
Systems Reference Library 

IBM System/360 Operating System: 

Job Control Language Reference 

The job control language is used with all 
System/360 Operating System control programs. 
Every job submitted for execution by the 
operating system must include job control 
language statements. These statements contain 
information required by the operating system to 
initiate and control the processing of jobs. 

This publication describes the facilities 
provided with the job control language and 
contains the information necessary to code job 
control language statements. 

This publication is intended for review and 
reference by programmers who are familiar with 
the information contained in IBM system/360 
Operating System: Job Control Language User's 
Guide, GC28-61.03, or who have experience in 
using the job control language. 

File No. 8360-36 
Order No. GC28-6704-1 OS 



Second Edition (June. 1971) 

This is a major revision of .• and obsoletes, GC28-6704-0 and 
Technical Newsletter GN28-2451. Other changes to the text., 
and changes to illustrations" are indicated by a vertical 
line to the left of the change. 

This edition applies to Release 20.1 of. the IBM System/360 
Operating system, and to all subsequent releases until 
otherwise indicated in new editions or Technical Newsletters. 
Changes are periodically made to the information herein; 
before using this publication in connection with the 
operation of IBM systems., refer to the latest. IBM System/3 6 0 
SRL Newsletter" Order No,. GN20-0360, for the editions that 
are applicable and current. . 

This publication is for references purposes only. It 
contains all of the information necessary to code job control 
language statements. If you never coded job control language 
statements, you should read and become familiar with the 
information in tne publication IBM System/360 Operating 
System: Job Control Language User's Guide, GC28-6703, before 
using this one. 

Requests for copies of IBM publications should be made to 
your IBM representative or to the IBM branch office serving 
your locality. 

A form for readers' comments is provided at the back of 
this publication. If the form has been removed, comments may 
be~addressed to IBM Corporation, Programming Systems 
Publications., Department D58, PO Box 390, pougbkeeps ie. N. Y. 
12602 

© Copyright International Business Machines Corporation 1970.,1971 



This publication describes the facilities 
provided with the job control language and 
contains the information necessary to code 
job control language statements. 

This publication can be used by 
programmers who are familiar with the job 
control language and are coding job control 
language statements. The publication may, 
for example, be used for review of a 
particular job control language statement 
or parameter., or for reference on how to 
code a parameter or what occurs when a 
particular parameter or subparameter is 
coded. All information in this book is 
pertinent to systems with the control 
program configurations MFT and MVT unless 
otherwise noted. 

This publication has five logical parts: 

1. Programming notes " which contain 
coding conventions used in coding job 
control language statements. 

2. Job control language statements" which 
describe the format of each. statement 
and the format of the parameters 
associated with the statement. There 
is a separate section for each 
statement. 

3. Appendixes, which include additional 
information on the job control 
language facilities!, such as how to 
write and use cataloged procedures, 
and what default values are provided 
when certain parameters are not coded. 

4. Glossary" which contains definitions 
of many of the terms ~sed in this 
publication. 

5. Foldout charts, which show the format 
of JOB" EXEC, and DD statement 

Preface 

parameters,. The foldout charts appear 
after the index. 

Before you read this publication, you 
should understand the concepts and 
terminology introduced in the prerequisite 
publications listed below. In addition, 
the text refers you to other publications 
for detailed discussions beyond the scope 
of this publication. 

PREREQUISITE PUBLICATIONS 

IBM system/360 Operating System: 

Concepts and Facilities, GC28-6535 

Job Control Language User's Guide, 
GC28-6703 

PUBLICATIONS TO WHICH THE TEXT REFERS 

IBM System/360 Operating System: 

system Programmer's Guide, GC28-6550 

Utilities, GC28-6586 

Operator's Guide, GC28-6540 

Supervisor and Data Management services, 
GC28-6646 

Supervisor and Data Management Macro 
Instructions" GC28-6647 

storage Estimates, GC28-6551 

Tape Labels, GC28-6680 

Advanced Checkpoint/Restart, GC28-6708 

Preface 3 





Programming Notes Notes 

JOB Statement --------------------~~ 

EXEC Statement EXEC 

DD Statement -----------------------I~~ 

Command Statement ---------------------I~~ Command 

Comment Statement ----------------------1.~ Comment 

Delimiter Statement Delimiter 

Null Statement -----------------~------1.~ Null 

PEND Statement PEND 

PROC Statement PROC 

Appendixes Appendixes 

Glossary Glossary 

Index Index 

Foldout Charts Charts 





SUMMARY OF MAJOR CHANGES. 
Release 20.1 • . •• 
Release 20 • • • • • 
Release 19 .• 

THE FORMAT OF THIS PUBLICATION • 

SECTION I: PROGRAMMING NOTES 
Notation for Defining Control 
Statement Parameters • • • • • • 
Fields in Control statements • • 
Parameters in the Operand Field 
Continuing Control Statements 
Backward References • • .. .• • 
Concatenating Data Sets •.••• 
Character Sets • • .••• .. 
Using special Characters • 
Coding Form 

SECTION II: THE JOB STATEMENT. 
JOB statement Format .•••••• 
Rules for Coding • • • •• •• • 
Positional and Keyword Parameters 
Sample JOB statements 
Assigning a Jobname •••.••• 
Examples of Valid Jobnames. •• 
Accounting Information Parameter 
Rules for Coding • .• • ••• •• 
Supplying Accounting Information 

• • 13 
• .• 13 
• • 14 

15 

• • 17 

• • 19 

• • 19 
20 

• • 21 
• • 22 
•• 24 

24 
25 
26 

• • 27 

• • 29 
29 

• • 29 
• 30 

31 
33 

• • 33 
• • 35 

35 
35 

Examples of the Accounting Information 
Parameter _ • • •• • • .• • • • • 36 
Programmer's Name Parameter • • .• • • • 37 
Rules for Coding • • • • • • • • • • • • 37 
When to Code the Programmer's Name 
Parameter .. • • _. •• '. • • • • • • • • 37 
Examples of the Programmer's Name 
Parameter •• • • • • • • .. • • 37 
The CLASS Parameter • • • • • • 39 
Rules for Coding •• • • • • 39 
Assigning a Job Class to Your Job • 39 

The CLASS Parameter and Time-Slicing • 39 
Examples of the CLASS Parameter • • 39 
The COND Parameter .• -. • • • • 41 
Rules for Coding • • • • • • •• • • 41 
Using the COND Parameter • • • • • • 41 

When the COND Parameter is Coded on 
Both the JOB and EXEC Statements • 

Examples of the COND Parameter • • • 
The MSGCLASS Parameter • • • •• • • 
Rules for Coding • • • • • • • • -.. 
Assigning an Output Class to System 
Mess ages • • • • • • • • '. • • _. • • 
Examples of the MSGCLASS Parameter • 
The MSGLEVEL Parameter ••• ' •• 
Rules for Coding. • • • •• •• 
Requesting OUtput of Job Control 

41 
42 

• • 43 
43 

• • 43 
43 

• • 45 
• • 45 

Statements and Certain Messages •• • • 45 
Examples of the MSGLEVEL Parameter • • • 46 
The NOTIFY Parameter (For MVT with TSO) 47 
Rules for Coding • .• • • • • • • • • 47 
What the NOTIFY Parameter Does • • • 47 

What is Time Sharing •• • • • • 47 

Contents 

Example of the NOTIFY Parameter 47 
The PRTY Parameter • .• • • .• .• • • • • • 49 
Rules for Coding .. • • • .• •• • .• 4 9 
What the PRTY Parameter Does • • 49 

The PRTY Parameter and Time-Slicing • 49 
Examples of the PRTY Parameter • • 49 
The RD Parameter • • • • .. .• .. • • • • • 51 
Rules for COding -'.. • .• • .. • • 51 
Using the Restart Facilities .. • • • 51 

Defining Restart • .. .• •• • • • 52 
Examples of the RD Parameter • • • • • • 53 
The REGION Parameter - Without Main 
Storage Hierarchy Support (For MVT) 
Rules for COding •• .• .• • .. • 
Requesting Main Storage 

Acquiring Additional Main storage 
Examples of the REGION Parameter • • 
The REGION Parameter - With Main 

55 
• • 55 

55 
•• 55 

55 

Storage Hierarchy support (For MVT. 
Excluding M65MP) -. .•• • • 57 
Rules for Coding... • •• .• • • • • • • 57 
Requesting Main storage in One or Two 
Hierarchies • • • • .• • .. • • • • 57 

Acquiring Additional Main Storage 58 
Examples of the REGION Parameter • • • • 58 
The RESTART Parameter •••••.•••• 59 
Rules for Coding .• • • • .• • • • • • • • 59 
When to Code the RESTART Parameter • • • 59 

Rules for Referencing Generation 
Data Sets and Using Backward 
References. • • • • • • • • • .. .. • • 60 

Examples of the RESTART Parameter • 60 
The ROLL Parameter (For MVT) .• • • • 63 
Rules for Coding .• • •• • • • • • • 63 
When to Code the ROLL Parameter 63 
Examples of the ROLL Parameter • 64 
The TIME Parameter •• • .. •• • .• • • • 65 
Rules for Coding. • • .• • • • • • • • • 65 
Specifying a Time Limit for the Job •• 65 

Time Limit for Wait States .• • .• • • • 65 
How to Eliminate Timing • • 66 
Examples of-the TIME Parameter •• 66 
The TYPRUN Parameter (For MFT, MVT) •• 67 
Holding a Job •• • • • • • .• .• • • • • 67 
Example of the TYPRUN Parameter • • 67 

SECTION III: THE EXEC STATEMENT • • • • 69 
EXEC Statement Format • • • • • • • • • 69 
Rules for Coding. .• • • ... • • • • 69 
Positional and Keyword Parameters ••• 70 
Sample EXEC Statements. • • • • • 71 
Assigning a Stepname • • .• • • • • • 73 
Examples of Valid Stepnames. • • • • • 73 
The PGM Parameter • • • • • • • • 75 
Identifying the Program to be Executed • 75 

Temporary Library 75 
System Library • • • •• • • • • 76 
Private Library • • • • • • 76 
The IEFBR14 Program • 76 

Examples of the PGM Parameter • • 76 
The PROC Parameter. • • •• .• • • 79 

Contents 7 



Identifying the Cataloged or In-stream 
Procedure to be Called • • • • • 
Examples of the PROC Parameter • 

79 
79 
81 
81 

The ACCT Parameter ,. • • • • ,. 
Rules for Coding • .. _. • _. _. •• 
Providing Accounting Information for a 
Job Step or Procedure Step _. • • 81 
Examples of the ACCT Parameter • 81 
The COND Parameter ••• • _. • • 83 
Rules for Coding • • • • • _. 83 
Using the COND Parameter • • 84 

Bypassing a Job step • • .. 84 
Executing a Job step • -. • • 84 
When You call a Cataloged Procedure _. 85 

Examples of the COND Parameter .. 85 
The DPRTY Parameter (For MVT) • -. • '. • 87 
Rules for Coding '.. • '. • • •• • • • • 87 
Assigning a Dispatching Priority.. • • 87 

The DPRTY Parameter and Time-Slicing • 88 
When You call a Cataloged Procedure • 88 

Examples of the DPRTY Parameter • • 88 
The PARM Parameter -. • '. • • • 89 
Rules for Coding •• ••• -. • 89 
Providing a Processing Program With 
Information at Execution Time 

When You Call a cataloged or 
89 

In-Stream Procedure • .... • • • 89 
Examples of the PARM Parameter • 90 
The RD Parameter • • • '. •• • • 91 
Rules for Coding •• '. '. _. • • _. 91 
Using the Restart Facilities • • • • 91 

Defining Restart • • '. • • • • 92 
When You call a Cataloged Procedure • 92 

Examples of the RD Parameter • • -. 93 
The REGION Parameter - Without Main 
Storage Hierarchy Support (For MVT) 
Rules for Coding _. • • • .. • '. 
Requesting Main Storage 

Acquiring Additional Main Storage 
When You call a Cataloged Procedure 

Examples of the REGION Parameter • '. 
The REGION Parameter - With Main 
storage Hierarchy Support (For MVT, 
Excluding M65MP) •• ••• 
Rules for Coding.. • • •• • 

• • 95 
95 
95 
95 

• 95 
96 

• • 97 
97 

Requesting Main Storage in One or Two 
Hierarchies ••• '. '. • • • • • • •• • 97 

Acquiring Additional Main Storage •• 98 
When You call a Cataloged Procedure • 98 

Examples of the REGION Parameter • • • • 98 
The ROLL Parameter (For MVT) • • • • • • 99 
Rules for Coding •• • '. • • • • •• • • 99 
When to Code the ROLL Parameter • 99 

When You Call a Cataloged Procedure • 99 
Examples of the ROLL Parameter ••••• 100 
The TIME Parameter • • •• • _.. • • • .101 
Rules for Coding •• • • • • • • • • • .101 
specifying a Time Limit for a Job Step .101 

Time Limit for Wait States • • • .101 
How to Eliminate Timing • • • • •• 102 

How the Job Time Limit Affects the 
Step Time Limit • • • • • • • • .102 
When You Call a Cataloged Procedure .102 

Examples of the TIME Parameter • • .102 

SECTION IV: THE DD STATEMENT 
DD Statement Format 
Rules for Coding • • • • • • • • 

8 JCL Reference (Release 20.1) 

• .105 
• .105 
• .105 

Pos itional and Keyword Parameters •• .106 
Sample DD Statements • • '. • • .107 
Assigning a Ddname '. • , •• '. • •• 109 

When Adding or Overriding 
Information in a Cataloged Procedure 
Step • • '. '. • ,. • • • • • .109 

Examples of Valid Ddnames • ••• 110 
Special Ddnames • .. -.. • 
JOBLIB '. ,. • '. .. ,. 

Rules for Coding the JOBLIB DD 
Statement • '. • • • 

The DISP Parameter -. • • • ,. 
When the Library Is Cataloged 

.111 
• .112 

• .112 
• -.112 

.113 

.113 

.113 
When the Library Is Not cataloged 
Concatenating Libraries • '. • • • 
When the Job Includes a STEPLIB DD 
statement ... • • ,. '. • • • • • • .114 

Examples of the JOBLIB DD Statement •• 114 
STEPLIB • •• •• •• '. '. • • .116 

Rules for Coding the STEPLIB DD 
st atement • • .. • '. -. • '. .. • -. • • .116 

When the Library Is Cataloged .116 
When the Library Is Not Cataloged 
or Passed • • • • '. • .116 
When the Library Is Passed By a 
Previous Step • • • '. • .. • • • • .117 
Concatenating Libraries •••••• 117 
When the JOb Includes a JOBLIB DD 
Statement • '. '. • • '. • ,.. '. • • • 117 

Examples of the STEPLIB DD Statement •• 117 
SYSABEND and SYSUDUMP • •• • • .119 

Writing the Dump to a Unit Record 
Device '. ,. '. • • • • • ••• .. • .119 
Storing the Dump .. -. • '.. '. • • .119 

Examples of the SYSABEND and SYSUDUMP 
DD Statements •• 120 
SYSCHK • .. • • ,. • .• • '. • .121 

Rules for Coding the SYSCHK DD 
Statement ,. • '. • '. • .. • • • • .121 

When the Checkpoint Data Set Is 
Cataloged • • • • • •• 
When the Checkpoint Data Set Is 

• .121 

Not Cataloged • .122 
Examples of the SYSCHK DD Statement • .122 
The * Parameter • • '. • • • .123 
Rules for Coding • • •• .. '. • • • • • .123 
Defining Data in the Input Stream ••• 123 

The DCB Subparameters BLKSIZE and 
BUFNO • •• • • • '. • '. • .124 

Examples of the * Parameter • .124 
The DATA Parameter • _. •• • 127 
Rules for Coding •••• '. • • • • .127 
Defining Data in the Input Stream ••• 127 

The DCB Subparameters BLKSIZE and 
BUFNO '. '. • '. • '. '. '. • • • .128 

Examples of the DATA Parameter • • .128 
• .131 The DUMMY Parameter •• ' •• 

Rules for COding • • • • • • • • 
What the DUMMY Parameter Does 
Coding the DUMMY Parameter • • • 
Examples of the DUMMY Parameter 

• • • .131 
• .131 

.131 

.132 
• .133 
• .133 
• .133 

.133 
• .133 

The DYNAM Parameter -- MVT With TSO 
Rules for Coding _.. •• • • • • 
What the DYNAM Parameter Does 
Coding the DYNAM Parameter. • • 
Example of the DYNAM Parameter • 
The AFF Parameter • • • • • ••• 135 
Rules for coding • • •• • ••• • .135 



Optimizing Channel Usage '. • • 
Requesting Channel separation 
Example of the AFF Parameter. • 

• .135 
• .135 
• .136 
• .137 
• .137 

The DCB Parameter '. •• • • •• 
Rules for Coding • .• • • • •• • 
Completing the Data Control Block ••• 137 

DCB Macro Instruction 
DCB Parameter .•• • • • • • • • 
Data set Label • • .• '. • •• • '. 

Specifying DCB Information on the DD 

• .138 
• .139 
• .139 

statement •• • • • • • • • • • '. • • .139 
Supplying DCB Keyword Subparameters .139 
Copying DCB Information From a Data 
set Label •••••••••••••• 139 
Copying DCB Information From an 
Earlier DD statement • • • • • • .140 

Glossary of DCB subparameters • ,.140 
Examples of the DCB Parameter • .156 
The DDNAME Parameter '. • • • • • • .157 
Rules for Coding •• •• '. • • • • .157 
What the DDNAME Parameter Does • • .157 
When You Code the DDNAME Parameter ••• 157 

The DCB Subparameters BLKSIZE and 
BUFNO • • • • • '. '. • .• • • • 

Examples of the DDNAME Parameter 
The DISP Parameter • • • • • • • ,. • 
Rules for Coding '. .• • • • • • • 

What the DISP Parameter Does • 
Specifying the Data Set's Status •• 

When you Specify NEW as the Data 
Set' s Status •• • • • • • • 
When You Specify OLD as the Data 
Set' s status • • • • • • '.. 
When You Specify SHR as the Data 
Set' s Status •• .••• .• • • 
When You specify MOD as the Data 

• .159 
• .159 
• .161 
• .162 
• .162 
• .162 

• .163 

• .163 

• .163 

Set' s Status •• • .164 
specifying a Disposition for the Data 
set •••••• • • • .165 

When You specify DELETE as the 
Disposi tion '. • • • 
When You Specify KEEP as the 
Disposition .• •• • 
When You Specify PASS as the 
Disposition • • • • 
When You Specify CATLG as the 
Disposition • • • • •• • • 
When You Specify UNCATLG as the 
Disposition • ••• • • 

Specifying a Conditional Disposition 
for the Data set • • • •• • • 

When You Specify DELETE as the 
Conditional Disposition 
When You Specify KEEP as the 
Conditional Disposition 
When You Specify CATLG as the 
Conditional Disposition ••.•• 
When You specify UNCATLG as the 
Conditional Disposition 

Disposition Processing Chart • • 
Examples of the DISP Parameter • 
The DSNAME Parameter • 
Rules for Coding • • • • •• • • 

Identifying the Data Set • '. • 
Creating or Retrieving a Nontemporary 
Data Set •••• 

• .166 

• .166 

• .166 

• .167 

• .167 

• .168 

• .168 

• .168 

• .169 

• .169 
• .169 
• .171 
• .173 
• .173 
• .174 

Nontemporary Data Sets • • • • • • 
Members of a Partitioned Data set 

.174 

.174 

.175 

Generations of a Generation Data 
Group • • • '. • • • • • .• • • • • .175 
Areas of an Indexed sequential 
Data Set .• '. • • • • '. .• • • • • • .175 

Creating or Retrieving a Temporary 
Data set • •• • • .• '. .; • 

Temporary Data Sets .• • • • • 
Members of a Temporary Partitioned 

.176 

.176 

Data Set • • • .• • '. '. • • '. • • • .176 
Areas of a Temporary Indexed 
sequential Data Set •• • • .177 
Using a Dedicated Data Set ••••• 177 

Copying the Data Set Name From an 
Earlier DD Statement •••••••••• 177 
specifying the DSNAME Parameter in 
Apostrophes • • • • .• •• • • • • 177 
Examples of the DSNAME Parameter •••• 178 
The FCB Parameter • • • • .179 
Rules for Coding '. '. '. .• • .• • • • • • .179 
Image Identifier ' •••.• ' •• ' •••••• 179 

Requesting Alignment of Forms •••• 179 
Requesting Operator Verification • • .180 
Examples of the FCB Parameter .180 

The LABEL Parameter • • • .181 
Rules for Coding .•• • • • •• • .182 

Data Set Labels ••• ••• '. • • • .182 
When to Code the LABEL Parameter ' •••• 182 

The Data Set sequence Number 
Subparameter • • '.. .• • • • • • .183 
The Label Type Subparameter ••••• 183 
The PASSWORD and NOPWREAD 
Subparameters •• '. • • •• • • .184 
The IN and OUT Subparameters • • • • .185 
The RETPD and EXPDT Subparameters • .185 

Examples of the LABEL Parameter • • • .186 
The OUTLIM Parameter • • • • • • • • •• 187 
Rules for coding • • • • • • '. • • • • .187 
What the OUTLIM Parameter Does ••••• 187 
Determining the Output Limit .• • • .187 
Example of the OUTLIM Parameter • • •• 188 
The QNAME Parameter -- MFT and MVT 
wi th TCAM. • •• • • • • • .189 
Rules for Coding • • • • • '. '. • • .189 
What the QNAME Parameter Does •• 189 
Example of the QNAME Parameter ••••• 189 
The SEP Parameter •••• • .191 
Rules for Coding •••••••••••• 191 

Optimizing Channel Usage • • •• • • .191 
Requesting Channel Separation • • • • .191 
Example of the SEP Parameter •••••• 192 
The SPACE Parameter • • • • • • • .193 
Rules for Coding • '. • • • • '. • • .194 

'Requesting Space for a Data Set • • .194 
specifying the SPACE Parameter •••• 195 

Letting the System Assign Specific 
Tracks ••••••••• ~ ••••••• 195 

Specifying the Unit of Measurement •• 195 
Specifying a Primary Quantity • • • .196 
Specifying a Secondary Quantity ••• 196 
Requesting Space for a Directory or 
Index • '. • '. • .• • • • '. • • • .197 
Releasing Unused Space -- RLSE • .197 
Specifying the Format of Allocated 
Space -- CONTIG, MXIG, or ALX 
Allocating Whole Cylinders -- ROUND 

.198 

.198 

.199 Assigning Specific Tracks 
Examples of the SPACE Parameter 
The SPLIT Parameter •••••• 

• ••• 199 
•••• 20~ 

Contents 9 



Rules for Coding '. .. • • • • ,. • • • • .201 
Requesting Space for a Data Set .. • .202 

Specifying the SPLIT Parameter • .202 
Requesting Space in Units of 
Cylinders ........ ' ...... '. • .202 
Requesting Space in Units of Blocks .203 

Examples of the SPLIT Parameter • .204 
The SUBALLOC Parameter • .• • • • '. .• • .205 
Rules for Coding. '. .. '. .. • .. '. •• ..206 

Requesting Space for a Data set ••• 206 
Specifying the SUBALLOC Parameter .. • .206 

specifying the unit of Measurement •• ~07 
Specifying a Primary Quantity •• 207 
Identifying the Original Data Set • .207 
Specifying a Secondary Quantity .208 
Requesting Space for a Directory ••• 208 

Examples of the SUBALLOC Parameter • • .209 
The SYSOUT Parameter. • .• • • .211 
Rules for Coding •• .• .. • .. • .211 
Advantages to Coding the SYSOUT 
Parameter • • • • '. • • • 

The Classname • • '. • 
The Program Name • • • • •• '. 
The Form Number • • '. •• 
Coding other Parameters With the 

.. • 211 
• .212 
• .212 
• .212 

SYSOUT Parameter • • •• '. '. '. • .. • .213 
Job separators • .. • • • • '. '. .. '. • .213 

Examples of the SYSOUT Parameter • • • .214 
The TERM Parameter -- MVT and TSO • ..215 
Rules for Coding. '. • • '. •• • • .215 
What the TERM Parameter Does • • • .215 
Examples of the TERM Parameter. • .215 
The UCS Parameter .... '. .• • .217 
Rules for Coding •• • .. .. .. '. • • .217 
Special Character Sets • • .. • • • .217 

Identifying 'the Character Set • ,.218 
Requesting Fold Mode .. • '. •• • .219 
Requesting Operator Verification.. • .219 

Examples of the UCS Parameter •• 219 
The UNIT Parameter ... '. '. '. • .221 
Rules for Coding • '. • .. .. • .221 
Providing Unit Information. • .222 

Identifying the Device. • .223 
Unit Address • • '. • • .223 
Device Type •• 224 
Group Name • • • • • • .226 

Uni t Count .. .. • • • '. • '. .226 
Parallel Mounting •• 227 
Deferred Mounting • ~227 
Unit separation •• 227 

Unit Affinity •• 228 
Examples of the UNIT Parameter.. • .228 
The VOLUME Parameter • • • • • .231 
Rules for Coding '. .• • • • • • .232 
Providing Volume Information • • .232 

specific Volume Request •• 232 
Nonspecific Volume Request • • .233 

The PRIVATE SUbparameter • • • .233 
When PlUVATE Is Not Coded •• 233 

The RETAIN Subparameter • .234 
The Volume Sequence Number 
Subparameter • .. • • .• • • • • .234 
The Volume Count Subparameter .• .. • .235 
Supplying Volume Serial Numbers (SER) 235 
Referring th~ System to an Earlier 
Specific Volume Request (REF) 

I Volume Affinity • • .. •• • • • 
Volume States • • • • • • • 

10 JCL Reference (Release 20.1) 

• .236 
• .237 
• .237 

The Mount and Use Attributes • '. • • • 237 
Nonsharable Attribute .. • • • • • • .240 
Satisfying Specific Volume Requests.240 
Satisfying Nonspecific Volume 
~equests. .. .. • .. '. .• .• .• ,. '. .. • • .240 

Examples of the VOLUME Parameter • • • .241 

SECTION V: THE COMMAND STATEMENT ••• 243 
The Command Statement Format • • • • • .243 
Rules for Coding • .. • • .. •• • '. ill 243 
Commands That Can Be Entered Through 
the Input Stream • •• • • •• 244 

MFT • '. .• • • .. • • '. • .244 
MV'T ••.• 4 • ' ........ '. te ' •• •• 245 

Example of the Command Stat~ent • • • .246 

SECTION VI: THE COMMENT STATEMENT • 
The C~nt Statement E'ormat 
Rules for Coding .. .. • .. .. '. .• • .• 

Output Listings •• '. '. • 
Example of the Comment Statement .. 

• .247 
• .247 

.247 
• .247 

.247 

SECTION VII: THE DELIMITER STATEMENT .249 
The Delimiter Statement Format •• .249 
Rules for Coding .............. 249 
Example of the Delimiter Statement ••• 249 

SECTION VIII: THE NULL STATEMENT 
The Null Statement Format 
Example of the Null statement 

••• 251 
• .251 
• .251 

SECTION IX: THE PEND STATEMENT .. .• .253 
The PEND Statement Format •••• 253 
Rules For COding • '. .. • •• .. .253 
Examples of the PEND Statement • .254 

SECTION X: THE PROC STATEMENT ••••• 255 
The PROC statement Format •••• 255 
Rules for Coding • '. •• • .. • • '. • • .255 
Assigning a Value on a PROC Statement 
to a Symbolic Parameter •.•• • • • 256 
Examples of the PROC Statement • • .257 

SECTION XI: APPENDIXES • • .259 

APPENDIX A_: CATALOGED AND IN-STREAM 
PROCEDURES. . . ~ . . . . . . • .261 

USING CATALOGED AND IN-STREAM 
PROCEDURES. • .. •• .•• .. •• • •• • .263 
How To Call a Cataloged Procedure •• .263 
How to Call An In-stream Procedure • • • 263 
Assigning Values to Symbolic Parameters 264 

Nullifying a Symbolic Parameter • J. .266 
Example of Assigning Values to 
Symbolic Parameters ............. 267 
Overriding. Adding. and Nullifying 
Parameters on an EXEG Statement •••• 269 

OVerriding EXEC STATEMENT Parameters .269 
Adding EXEC STATEMENT Parameters ••• 271 
Nullifying EXEC· STATEMENT Parameters .• ~71 

Examples of Overriding. Adding. and 
Nullifying Parameters on an EXEC 
Statement • • .'. '. • • • • • • • • • .272 
OVerriding. Adding .• and Nullifying 
Parameters on a DD Statement • • • • • .273 

OVerriding DD STATEMENT Parameters •• 273 
Adding DD statement Parameters •• ' •• 275 



Nullifying DD STATEMENT Parameters •• 276 
Examples of Overriding, Adding, and 
Nullifying Parameters on a DD Statement 277 
OVerriding DD Statements That Define 
Concatenated Data Sets ••••••••• 279 
Adding DO Statements to a Procedure •• 279 
Examples of Adding DD Statements to a 
Procedure • • • • • • • • • • • • .280 

WRITING PROCEDURES: CATALOGED AND 
IN-STREAM • • • •• • • • • • • • • 
Why Catalog Job Control Statements • 
Why Use In-Stream Procedures • ,. 

The Contents of Cataloged And 
In- stream Procedures • • • '. • 
Using Symbolic Parameters in a 
Procedure •.• • .• • • • • • • 
Adding and Modifying Cataloged 
Procedures • • .• • • • • • • • 

APPENDIX B: USING THE RESTART 
FACILITIES • • • • • • • • 
Restarts • • • • • • • • • • • • 

Automatic step Restart • • • • 
Automatic Checkpoint Restart '. 
Deferred step Restart • • • • 
Deferred Checkpoint Restart 

Examples of Using the Restart 
Facilities • • • •• •• • • 

APPENDIX C: CREATING AND RETRIEVING 

• .282 
• .282 
• .282 

..282 

• .283 

• .285 

• .287 
• .287 
• .287 
• .287 
• .287 
• .288 

• .290 

INDEXED SEQUENTIAL DATA SETS. • .293 
Creating an Indexed Sequential Data Set 293 

The DSNAME Parameter •• 294 
The UNIT Parameter • • .294 
The VOLUME Parameter .294 
The LABEL Parameter .294 
The DCB Parameter •• 295 
The DISP Parameter • • • .295 
The SPACE Parameter •• 295 

Nonspecific Allocation Technique •• 295 
Absolute Track Technique. • • .296 

The SEP orAFF Parameter • • • • ,.296 
Area Arrangement of an Indexed 
Sequential Data set ....... • .296 
Retrieving an Indexed Sequential Data 
Set • • • • .• • • • • • • .298 

The DSNAME Parameter 
The UNIT Parameter • 
The VOLUME Parameter 
The DCB Parameter 
The DISP Parameter '. 

Example of Creating and Retrieving 
Indexed sequential Data Set 

• •• 298 

an 

• .298 
• .298 

.298 
• .299 

• •• 299 

APPENDIX 0: CREATING AND RETRIEVING 
GENERATION DATA SETS '. • • • • • • • • .301 
Before You Define the First Generation 
Data set • • • • • • • •• • '. • • • • .301 

Creating a Model Data Set Label • .301 
Referring the System to a 
Cataloged Data Set • .. 

Creating a Generation Data Set • 
The DSNAME Parameter 
The DISP Parameter •• '. 
The UNIT Parameter • • '. '. • 
The VOLUME Parameter 
The SPACE Parameter 
The LABEL Parameter 
The DCB Parameter 

• .302 
.302 

• ••• 302 
• .302 

• •• 303 
• .303 
• .303 
• .303 

Retrieving a Generation Data set • 
The DSNAME Parameter • 

• .303 
.304 

• .304 
The DISP Parameter • 
The UNIT Parameter • • • 
The LABEL Parameter 
The DCB Parameter 

.• • • .304 
.304 

• ~ 304 
.304 

Resubmitting a Job for Restart • 
Example of Creating and Retrieving 
Generation Data Sets •• • • • 

• .304 

.305 

APPENDIX E: DEFAULT PARAME.'I'ER VALUES 
SUPPLIED IN THE INPUT READER PROCEDURE .307 
How TO Keep Track of the Default 
Values and Restrictions • • • • • .307 

APPENDIX F: A CHECKLIST • • .311 
Examples •• • .313 

SECTION XII: GLOSSARY • ••• 317 

INDEX • •• 327 

SECTION XIII: CONTROL STATEMENT 
FOLDOUT CHARTS • • • .341 

Contents 11 



Illustrations 

Figures 
Figure 1,. Control Statement Fields • 20 
Figure 2,. Character Sets ....... 25 
Figure 3. Coding Form for Coding 
Control Statements • '. • .. 27 
Figure 4. How the Data Control Block 
Is Filled 0.. • • • • • • • • • .138 

Tables 
Table 1. Disposition Processing Chart 170 
Table 2. Combinations of Mount and 
Use Attributes .• • ••• • • • • '. 0 • .239 
Table 3. Area Arrangement of Indexed 
Sequential Data Sets ... 0 ••••••• 297 

12 JCL Reference (Release 20.1) 

Table 4. Default Values and 
Restrictions Supplied in the Input 
Reader Procedures • • • • • .309 
Table 5. A Checklist (Part 1 of 3) • .311 



Summary of Major Changes' 

Release 20.1 

The Release 20.1 changes listed below are described in this manual. They are indicated 
in the text by a vertical line to the left of the change. 

r---------------------T------------------------------------------------T----------------, 
I Item I Description 1 Areas Affected 1 
r---------------------+------------------------------------------------+----------------~ 
I support for 1 The 2305-1" 2305-2" 2319" and 3330 direct 1 151,224 I 
l2305-i, 2305-2" I access devices have been added to the section 1 1 
12319, and 3330 1 on the UNIT parameter. Z" a character coded in 1 1 
1 lthe subparameter OPTCD of the DeB parameter, has I I 
I 1 an additional. meaning when referring to input 1 I 
I 1 from a direct access storage device,. 1 I 
r---------------------+------------------------------------------------+----------------~ 
Isupport for 3211 IThe 3211 printer has been added to the section I 106,179-180, I 
I Ion the UNIT parameter. FCB, a new parameter to I 225,319 I 
I I be coded on the DD statement, allows you to I I 
I I specify forflls control information. The UCS I I 
I I parameter can also be coded for the 3211; I I 
I Icharacter set codes to be specified in the ucs I I 
I Iparameter for the 3211 printer have also been 1 I 
I I added. I I 
r---------------------+---------~----------------------------~---------+----------------~ 
IRemoval of PCP IAII references to the Primary Control Program I I 
I information Ihave been removed. All information in this I I 
I I manual now applies to systems with MFT or MVT, 1 1 
I I unless restrictions are specifically noted. I I L _____________________ ~ ___________________ ~ ___________________________ ~ ________________ J 

Summary of Major Changes -- Release 20.1 13 



Release 20 

r---------------------T------------------------------------------------, 
I Item I Description I 
r------------------~--+----------------~-----------~--------------~----~ 
ASCII Support IAII references to USAsc11 have been changed to I 

IASCII (American Standard Code for Information I 
IInterchange). In the DCB subparameter BLKSIZE, I 
I you can specify the minimum and maximum lengths I 
Ifor blocks of ASCII records on magnetic tape. D 
land DB can be specified as values for the RECFM 
Isubparameter of the DCB parameter; D means that 
Ithe ASCII records are of variable length and DB 
Imeans that the ASCII records are of variable 
Ilength and that they are blocked. A new DCB 
Isubparameter BUFOFF allows you to specify a 
Ibuffer offset for a block of one or more ASCII 
Irecords on magnetic tape. Q can be specified as 
la value for the DCB subparameter OPTCD; Q 
Ispecifies that translation from ASCII input to 
I EBCDIC is required or that trans lati on from 
IEBCDIC to ASCII output is required. AL andAUL 
I are new values for the LABEL parameter; AL 
I~pecifies that the data set has American 
INational Standard labels and AUL specifies that 
Ithe data set has both American National Standard 
Ilabels and American National Standard user 
I labels. 

~--~---~--------------+------------------------------------------------i 
I Dynamic Allocation I DYNAM,. a new DD statement parameter, allows you I 
ISupport for TSO Ito defer definition of a data set until you I 
I I require it. I 
~---------------------+---------------------------------~--------------~ 
INOTIFY Parameter INOTIFY,. a new JOB statement parameter" indicates I 
I Ito the system that you are requesting that a I 
I Imessage be sent to your time sharing terminal I 
I I when your background job completes. I 
~---------------------+-------------------~----------------------------~ 
INOPWREAD SubparameterlNOPWREAD, a new subparameter of the LABEL I 
I Iparameter" specifies that a data set can be read I 
I I without a password" but that the operator must I 
I I give the password bef ore the data set can be ' I 
I Iwritten in or· deleted. I 
~---------------------+-----------------~------------------------------i 
I TERM Parameter I TERM, a new DD statement parameter" allows you I 
I I to identify a job as a time-sharing task. I 

.---------------------+------------------------------------------~-----i 
1155/165 13210 and 3215 printer-keyboards have been added I 
IModel Dependency Ito the section on the UNIT parameter. I 
tch;~;~;-~~-~~~~o~---tQNAME~-;-~;;-~;;;;;t~--~~;-~h~-DD-;~;~;me~~~-~-1 
ITCAM (Telecommuni- lallows you to access messages received h¥ means I 
Ications Access lof TCAM for processing by an application I 
I Method) I program. Seven new subparameters .have been I 
I ladded to the DCB parameter: BUFIN, BUFOUT,. I 
I I BUFMAX, BUFSIZE, PCI" RESERVE, THRESH. In I 
I laddition,. five other subparameters of the DCB I 
I Iparameter may also be used with TCAM: BLKSIZE, I 
I I BUFL, LRECL, OPrCD, RECFM. I 
.---------------------+------------------------------------------------~ 
I Input/Output IThe command SWAP has been deleted from the list I 
I Recovery Management lof commands that can be coded on the command I 
I Support I statement. I L _____________________ ~ _________________ ~-----------------------_______ J 

14 JCL Reference (Release 20.1) 



Release 19 

r---------------------T------------------------------------------------, 
I Item I Description 1 
~--------------------+--------------------------------------.----------~ 
I system Management IThe TIME parameter on the JOB and EXEC state- 1 
IFacilities Subset 1 Iments now applies to MFT as well as MVT. I 

~-------------------+------------------------------------------------~ 
I System Management IOUTLIM" a new parameter on the DD statement I 
IFacilities Subset 2 Ithat specifies SYSOUT, allows you to limit the 1 
1 Inumber of logical records you want included in I 
I Ian output data set. 1 
~---------------------+------------------------------------------------~ 
1 Input/Output IREPOS, a new DCB subparameter that specifies 1 
IRecovery Management Irepositioning for tape devices" has been added. I 
I Support 1 A new command, SWAP,. that allows Dynamic Device I 
I IReconfiguration of two volumes has been added. 1 
~---------------------+------------------------------------------------~ 
IData Management ITWO new values for BFTEK. a DeB subparameter,. 1 
ISupport for American lhave been added. A specifies record area 1 
INational Standard I buffering; R specifies record buffering. I 
IOOBOL I I 
~--------------------+------------------------------------------------~ 
12495 Tape Cartridge 12495 is now supported. I 
I Reader I I 
~--~----------~------+-----------------~---~---------------------~----~ 
IOptical Readers I VOLUME=SER=OCRINP is assumed for Optical Readers I 
I lif nO'volume serial number is specified. 1285, 1 
I 11287. and 1288 Optical Readers are now I 
I I supported. 0 and H are new values for DCB 1 
I I subparameter OPTCD. 0 specifies on line 1 
I Icorrection for Optical Readers; H requests I 
I Ihopper empty exit for Optical Readers. I 

~---------------------+------------------------------------------------~ 
11419 Maq.netic Tape 11419 and 1275 are now supported. I 
IReader and 1275 I I 
IOptical Reader SOrter I I 

tR;~~Diti~~-~-----__ti~-;-~;;-;al~; fO;-DC;-;~bP~;;;;~;;-OP;CD~------1 
IEOF on Input Irequests that end-of-file recognition be I 
I Idisregarded for tapes. I 
~-------------.-_+---------------------------------------------i 
IISAM Improvements I For ISAM" a newly created data set can now I 
I loverlay an older one -- reusing the space. The I 
I I independent· overflow area of an ISAM data set I 
I I can now be on a different device type from the I 
I I prime area. I L ________________ J._..:. __________________________________________ J 

( continued> 

summary of Major Changes -- Release 19 15 



Release 19 (continued) 
r---------------------T------------------------------------------------, I Item I Descr iption , 
~-----~---------------+------------------------------------------------i 
IDirect system lIn MFT and MVT, an output data set can now , 
loutput Facility Ibe written directly to the desired unit record I 
I. lor magnetic tape device. , 
~--------------------+------------------------------------------------~ 
ISeven-Track Tape IThe default for 7-track tape is now 800 , 
I Default of 800 BPI I bits-per-inch. I 
~~-------------------+------------------------------------------------~ 
IDD DUMMY Substitu- IA data set that is not needed after restart can , 
Ition at Restart Ibe defined by coding the DUMMY parameter. , 
~--------------------+------------------------------------------------~ 
lIn-stream Procedures IA facility has been added that allows procedures' 
I I to be included in the input stream of a job. , 
~---------------------+---------~-----------------------~--------------~ 
IMain Storage IIf you code the REGION parameter and request , 
I Hierarchy support" I storage only from hierarchy I., no hierarchy 0 I 
I MVT Extension I segment is allocated.. I 
~--~------------------+----~-----~------------------------------------i 
IBlocksize Adjustment IIf the BLKSIZE parameter fora SYSOUT data set I 
Ifor sysout Data sets lis not an integral multiple of and larger than I 
I I the logical record length, it is adjusted. I L _____________________ ~ _________________ ~ ______________________________ J 

16 JCL Reference (Release 20.1) 



The Format of This Publication 

This publication is designed for easy reference. The first section of 
this publication contains information that is common to all job control 
language statements; for instance, one of the topics in this section is 
how to continue a field onto another control statement. You may want to 
review section I from time to time. 

sections II through X ,contain descriptions and examples of the 
different control statements. The job control statements are described 
in the following order: 

1. The JOB statement,. 
2. The EXEC statement,. 
3. The DD statement. 
4. The command statement. 
5,. The comment statement. 
6. The delimiter statement. 
7. The null statement,. 
8. The PEND statement. 
9. The PROC statement. 

Each statement description includes the purpose of the statement and 
rules for coding the statement. Notice that the JOB, EXEC, and DD 
statements are described first l, in the order in which they normally 
appear in the input stream. The remaining statements are described in 
alphabetical order,. 

The statement description for the JOB" EXEC, and DD statements is 
followed by a chapter on assigning a name in the name field of the 
statement and a chapter for each positional and keyword parameter that 
can be coded on the statement. The chapters on positional parameters 
appear before the chapters on keyword parameters. Both positional and 
keyword parameters are described in alphabetical order. 

The format of the positional or keyword parameter appears at the 
beginning of the chapter. Each subparameter is then descr wed briefly,. 
The text following the format description of the parameter describes the 
purpose of the parameter and each subparameter. Each chapter ends with 
examples on the use of the parameter and itssubparameters. 

section XI consists of Appendixes A through F. These appendixes 
include: 

1. 

2. 

3. 

4. 

5. 

6. 

Appendix A: cataloged and In-stream Procedures 

Appendix B: Using the Restart Facilities' 

Appendix C: Creating and Retrieving Indexed Sequential Data Sets 

Appendix D: Creating and Retrieving Generation Data Sets 

Appendix E: Default Pa~ameter Values Supplied in the Input Reader 
Procedure 

Appendix F: A Checklist 

section XII is a glossary of terms used in this publication. 

section XIII" which follows the index, is a set of foldout charts. 
These charts show the format of JOB" EXEC!, and DD statement parameters. 

The Format of This Publication 17 

/ 





Section I: Programming Notes 

Notation for Defin~ng Control Statement Parameters 

The formats of the parameters described in this publication for the JOB, 
EXEC, and DD statements appear at the beginning of the chapter on the 
corresponding parameter. Notations used in the format descriptions are 
described below. 

1. Uppercase letters and words are coded on the control statement 
exactly as they appear in the format description" as are the 
following characters. 

ampersand & 
asterisk * comma " 

equal sign = 
parentheses () 
period 

2. Lowercase letters,• words, and symbols appearing in the fonnat 
description represent variables for which specific information is 
substituted when the parameter io coded. 

For example, PRTY=pr ior i ty is the format descri pti on f or the PRTY 
parameter,. When you code the PRTY parameter on a JOB statement,. 
you substitute a number for the word "priority,." 

3. Braces { } are a special not'ation and are never coded on a control 
statement. Braces are used to group related items; they indicate 
that you must code one of the i terns.-

For example" l' TRK I is part of the format descr iption 
CYL 
block size 

for the SPACE parameter. When you code the SPACE parameter, you 
must code either TRK. CYL, or a substitute for "blQck size l " which 
would be a number. 

4. Brackets [ ] are a special notation and are never coded on a 
control statement. Brackets indicate that the enclosed item or 
items are optional and you can code one or none of the items. 

For example" [,DEFER] is part of the format description for the 
UNIT parameter. When you code the UNIT parameter" you can include 
,DEFER in the UNIT parameter or omit it. 

An example of more than one item enclosed in brackets is 

[
EXPDT=YYddd]" which is part of the format description for the 
RETPD=nnnn 

LABEL parameter • When you code the LABEL parameter, you can 
include either EXPDT=yyddd or RETPD=nnnn in the LABEL parameter or 
omit both,. 

Sometimes, one of a group of items enclosed in brackets is a conuna. 
You code the comma when none of the other items in the group is 
used and a following part of the parameter is still to be coded. 

secti on I: Programming Notes 19 

Notes 



The comma indicates to the system that you have not selected to 
code any of the items enclosed in the brackets. 

For example" [, progname] [ , form number]) is part of the format 

description for the SYSOUT parameter. When you code the SYSOUT 
parameter, you have the option of coding both ",progname" and 
",form number"., omitting both. or coding only one. The comma 
enclosed in brackets with ",progname" must be coded when 
""progname" is not coded but ", form number" is coded; that is" you 
would code: "form number) .• 

5. An ellipsis (three consecutive periods) is a special notation 
and is never coded on a control statement,. An ellipsis is' used to 
indicate that the preceding item can be coded more than once in 
success ion. 

For example, COND=( (code,operator),. ' •• ) is the format description 
for the COND parameter on the JOB statement. The ellipsis 
indicates that (code"operator) can be repeated. 

Fields in Control Statements 

Every control statement is logically divided into different fields. 
There are four fields -- name field" operation field, operand field, 
comments field -- but not all of the control statements can contain all 
of these fields. Figure 1 shows the fields for each statement. 

r--------------.----------~------------·---------------------------, 

I I Columns I I 
I statement I 1 and 2 I Fi elds I 
t---------------+-------------t--------------------------------------~ I Job I // Iname operation(JOB) operandi. commentsi. I 
I Execute I // lnamei. operation(EXEC) operand commentsi. I 
IData Definition I // Inamei. operation(DD) operand commentsi. I 
IPROC(Cataloged) I // Inamei. operation(PROC) operand commentsi. I 
iPROC(in-stream) I // Iname operation (PROC) operandi. comments 2 I 
I Procedure end I / / I namei. operation (PEND) commentsi. I 
I Command I // loperation(command) operand commentsi. I 
I Delimiter I /* Icommentsi. I 
I Null I // I I 
~---------------+------------t--------------------------------------~ 
I statement ICOlumns 1,2,,31 Field I 
t---------------+-------------t-------------~--------------------------~ 
I Comment I / / * I comments I 
~-----. ----------~-----------~----------------~---------------------i 

I i.Optional. I 
20ptional -- If operand (s) are not coded, comments cannot be coded,. If I 

I operand(s) are coded, comments are optional. I L ______________________________________________________________________ J 

Figure 1. Control Statement Fields 

The name field identifies the control statement so that other 
statements and system control blocks can refer to it. The name field is 
1. to 8 alphameric and national (I, i, $) characters; the first character 
must be alphabetic or national. The name field must begin in column 3. 

The operation field specifies the type of control statement" or, in 
the case of the command statement" the command. The operation field 
must follow the name field and must be preceded and followed by at least 
one blank. 

20 JCL Reference (Release 20.1) 



The operand field contains parameters separated by commas. The 
operand field must follow the operation field and must be preceded and 
followed by at least one blank. The operand field is described in more 
detail in the next chapter "Parameters in the Operand Field." 

The comments field contains any information deemed helpful by the 
person who codes the control statement,. The comments field must follow 
the operand field and must be preceded by at least one blank. 

Control statement fields -- except the name field,. which must begin 
in column 3 -- can be coded in free form. Free form means that the 
fields need not begin in a particular column. separate each field with 
a blank; the blank serves as a delimiter between fields. 

Except for the comment statement l which can be coded through column 
80, fields cannot be coded past column 71. If the total length of the 
fields will exceed 71 columns, you must continue the fields onto one or 
more succeeding statements. How to continue fields is described in the 
chapter "Continuing Control statements." 

Some examples of how the different fields appear on control 
stat ements are: 

Columns: 

123 
Name Operation Operand Comments 

/ / JOB8 JOB MSGLEVEL=(l,l) THE FIRST STATEMENT IN JOB 

/ / STP1 EXEC PGM=PROG4,REGION=80K EXECUTES PROGRAM NAMED PROG4 

/ / WORK DD UNIT=2400 DEFINES A TEMPORARY DATA SET 

Parameters in the Operand Field 

The operand field is made up of two types of parameters: one type is 
characterized by its position in the operand field in relation to other 
parameters (a positional parameter); the other type is positionally 
independent with respect to others of its type" and is characterized by 
a keyword followed by an equal sign and variable information (a keyword 
parameter). Both positional parameters and the variable information 
associated with keyword parameters can assume the form of a list of 
several items (subparameters) of information,. 

A11 positional and keyword parameters and subparameters coded in the 
operand field must be separated from one another by commas. 

Positional parameters must be coded first in the operand field in a 
specific order.. The absence of a positional parameter is indicated by a 
comma coded in its place,. However" if the absent parameter is the last 
one, or if all later positional parameters are also absent, you need not 
code replacing commas,. If all positional parameters are absent from the 
operand field" you need not. code any replacing commas. 

Keyword parameters can be used anywhere in the operand field with 
respect to one another. Because of this positional independence. you 
need not indicate the absence of a keyword parameter. 

A positional parameter or the variable information in a keyword 
parameter sometimes assumes the form of a list of subparameters. such a 

Section I: Programming Notes 21 

Notes 



list may be composed of both positional and keyword subparameters that 
follow the same rules and restrictions as positional and keYword 
parameters. You must enclose a subparameter list in parentheses" unless 
the list reduces to a single subparame~er. 

The EXEC statements and OD statements in cataloged procedures can 
contain one other type of parameter --a symbolic parameter. A symbolic 
parameter is characterized by a name preceded by an ampersand (&); a 
symbolic parameter stands as a symbol for a parameter7 a subparameter, 
or a value. Symbolic parameters allow you to make any information in 
the operand field of a procedure EXEC statement or OD statement 
variable. A value to be assumed by a symbolic parameter may be coded on 
the EXEC statement that calls the procedure.. This value is in effect 
only while the procedure is being executed. For a detailed discussion 
on how to assign values to symbolic parameters" refer to the chapter 
"Assigning Values to Symbolic Parameters" in Appendix A; for a detailed 
discussion on how to use symbolic parameters in a set of control 
statements that you plan to catalog as a procedure, refer to the chapter 
nUsing Symbolic Parameters in a Procedure" in Appendix A~ 

Continuing Control Statements 

When the total length of the fields on a control statement will exceed 
71 columns" you must continue the fields onto one or more succeeding 
statements. 

The command, comment, delimiter" and null statements cannot be 
continued. 

You can continue the operand field or the comments field. To 
continue either of these fields, you must follow the continuation 
conventions. 

To continue the operand field: 

1. Interrupt the field after a complete parameter or subparameter, 
including the comma that follows it" at or before column 71. 

2,. Comments can be included by following the interrupted field with at 
least one blank. 

3. Optionally" code any nonblank character in column 72. (The 
nonblank character in column 72 is required only when you are 
continuing a comments field.> If you do not code a character in 
column 72 when continuing the operand field, the system treats the 
next statement as a continuation statement as long as you follow 
the conventions outlined in items 4 and 5. 

22 JCL Reference (Release 20.1) 



4. Code the identifying characters // in columns 1 and 2 of the 
following statement. 

5. continue the interrupted operand beginning in any column from 4 
through 16. If you leave the statement blank after column 2 or if 
you begin coding after column 16, the system assumes that no other 
operands are present and treats any characters you code as a 
comment field. 

To continue the comments field: 

1. Interrupt the comment at a convenient place before column 72. 

2. Code a nonblank character in column 72. 

3. Code the identifying characters // in columns 1 and 2 of the 
following statement. 

4. continue the comments field beginning in any column after column 3. 

Section I: Programming Notes 23 

Notes 



Any control statements in the input stream, other than a comment 
statement" that the system considers to contain only comments have / /* 
in columns 1 through 3 on an output listing,. Any control statements in 
a cataloged procedure'l other than a comment statement, that the system 
considers to contain only comments have XX*in columns 1 through 3 on an 
output listing,. For a comment statement, *** appears in columns 1 
through 3 on an output listing. 

Backward References 

A facility of the job control language allows you to refer the system to 
an earlier DD statement in the job for certain information. A backward 
reference is of the following form: 

• parameter=*.ddname -- use this form when the earlier DD statement is 
contained in the same job step. 

• parameter=*.stepname.ddname -- use this form when the earlier DD 
statement is contained in an earlier job step. 

• parameter=*.stepname.procstepname.ddname -- use this form when the 
earlier DD statement is contained in a cataloged procedure called by 
an earlier job step. (ftStepnameft is the name of the step that calls 
the procedure,.) 

You can use the backward reference facility only with certain 
parameters. These parameters and the information the system obtains 
when the backward reference facility is used are: 

• PGM -- the data set that contains the program to be executed in this 
job step. 

• DCB -- all DCB subparameters coded on the earlier DD statement. (If 
you code any DCB keyword subparameters following the backward 
reference" these subparameters override any of the corresponding 
subparameters coded on the earlier DD statement. If a DD statement 
defines an existing data set and contains a backward reference in 
the DCB parameter, the system copies only those subparameters from 
the earlier DD statement that were not previously specified for the 
existing data set.) 

• DSNAME -- the name of the data set being defined on this DD 
statement. 

• VOLUME=REF -- the volume serial number(s) on which the data set 
resides or will reside; unit information is also obtained by the 
system. 

Concatenating Data Sets 

Up to 255 sequential or up to 16 partitioned input data sets'l each of 
which may reside on a different volume" can be logically connnected for 
the duration of a job step. To concatenate data sets, simply omit the 
ddnames from all the DD statements except the first in the sequence,. 
When this ddname is encountered in a data control block in the 
processing program" each data set is automatically processed" in the 
same sequence as the DD statements defining them. 

If concatenated data sets have unlike characteristics Ie. g. " the 
device types, block lengths" or record formats differ" the DCBOFLGS 

24 JCL Reference (Release 20.1) 



field of the data control block must be modified while the program is 
executing. For details, refer to the topic "Concatenating Sequential 
and Partitioned Data Sets" in the supervisor and Data Mangement Services 
publication. 

If you make a backward reference to a concatenation, the system 
obtains information only from the first data set defined in the 
sequence. 

You should not concatenate other data sets to a data set you have 
defined using the DUMMY parameter. When the processing program asks to 
read a dummy data set, an end-of-data-set exit is taken immediately and 
any concatenated data set is ignored. 

The following example illustrates a group of DD statements defining 
concatenated data sets, including a data set in the input stream. 

//INPUT DD DSNAME=A.B.C"DISP=(OLD,DELETE) 
// DD 
// DD 

DSNAME=X.. Y • Z., DISP=OLD., LABEL= (,NL) 
DSNAME=ALPHA,UNIT=2311,VOLUME=SER=P12,DISP=(OLD,DELETE) 

// DD * 

data 

/* 

Character Sets 

Job control statements are coded using a combination of the characters 
from three different character sets. The contents of each of the 
character sets are described in Figure 2. 

r-----------------------T----------------------------------------------, 
I Character Set I Contents I 
~----------------------+-------------------------T--------------------~ I Alphameric I Alphabetic I A through Z I 
I I Nmneric I 0 through 9 I 
~-----------------------+-------------------------+--------------------~ 
I I "At" sign I 0) I 
I National I Dollar sign I $ I 

. I I Pound sign I # I 
t-----------------------t----comm;----------------t----------~---------~ 

I I Period I 
I I Slash I 
I Special I Apostrophe I 
I I Left parenthesis I 
I I Right parenthes is I 
I I Asterisk I 
I I Ampersand I 
I I plus sign I 
I I Hyphen I 
I I Equal sign I 

/ 

( 
) 

* 
& 
+ 

= l _______________________ l ____ Bla~ _______________ l ____________________ J 

Figure 2. Character Sets 

section I: Programming NoteS 25 

Notes 



When you code any special characters, certain rules must be followed. 
These rules and the use of special characters are described next. 

Using Special Characters 

Special characters are used in the job control language to: 

1. Delimit parameters (the comma). 
2. Delimit fields (the blank). 
3. Perform syntactical f·unctions. (For example, the appearance of ~.~ 

as the first two characters following DSNAME= tells the system that 
a temporary data set name follows. The appearance of / in the UNIT 
parameter" UNIT=293/5" tells the system that a specific 2321 bin is 
desired.) 

Sometimes you can code a special character that does not satisfy one 
of the three uses of ~p~cial characters. In most of these cases, you 
must indicate that special characters are being used by enclosing the 
item that contains the special characters in apostrophes (5- 8 punch) " 
e,.g." ACCT='123+456',. If one of the special characters is an 
apostrophe. you must code two consecutive apostrophes (two 5-8 punches) 
in its place" e.g." '0' 'NEILL'. . 

The following list contains those parameters that can have special 
characters as part of their variable information" and indicates when the 
apostrophes are not required. 

1. The accounting information on the JOB statement,. The account 
number and additional accounting information can contain hyphens 
without being enclosed in apostrophes. 

2. The programmer's name on the JOB statement. The programmer's name 
can contain periods without being enclosed in apostrophes. 

3. The checkid field in the RESTART. parameter on the JOB statement,. 

4. The ACCT parameter on the EXEC statement. The ACCT parameter can 
contain hyphens without being enclosed in apostrophes. 

5. The PARMparameter on the EXEC statement. 

6. The DSNAME parameter on the DD statement.. The DSNAME par ameter can 
contain hyphens without being enclosed in apostrophes. If the 
DSNAME parameter contains a qualified name" it can contain periods 
without being enclosed in apostrophes.. If the DD statement 
identifies a generation of a generation data group" the generation 
number in the DSNAME parameter can contain a plus or minus (hyphen) 
sign without being enclosed in apostrophes. If the DD statement 
defines a temporary data set" the DSNAME parameter can contain, as 
the first two characters, ampersands without being enclosed in 
apostrophes. If the DD statement defines a member of a partitioned 
data set, a generation of a generation data group. or an area of an 
indexed sequential data set" the DSNAME parameter contains 
parentheses that enclose the member name, generation number, or 
area name; these parentheses are not enclosed in apostrophes. 

7. The volume serial number in the VOLUME parameter on the DD 
statement. The volume serial number can contain hyphens without 
being enclosed in apostrophes. 

26 JCL Reference (Release 20.1) 



Coding Form 

For your convenience in coding control statements, you can use Form 
N74167, a punch card containing formatted lines" each representing a 
different type of statement. (See Figure 3.) Some of the lines can be 
used for concatenations, overrides,. and continuation statements. 

Left Justification of Fields That Follow. 

Figure 3. Coding Form for Coding Control Statements 

section I: Programming Notes 27 





Section II: The JOB Statement 

The JOB statement marks the beginning of a job and, when jobs are 
stacked in the input stream. marks the end of the control statements for 
the preceding job. The JOB statement must contain a valid jobname in 
its name field. All parameters in its operand field are optional, 
unless your installation has established that the account number and the 
programmer's name parameters must be coded. If no parameters are coded 
in the operand field of the JOB statement, no comments can be coded on 
the statement. 

JOB Statement Format 

~//jObname JOB operands comments 

The JOB statement consists of the characters //, in columns 1 and 2, and 
four fields -- the name" operation (JOB)" operand, and comments fields. 

Rules for Coding 

Follow the order listed below when coding the JOB statement: 

1. Code the characters // in columns 1 and 2. 

2. Select a name for the job; code that name, starting in column 3. 

I-Iot 11-20 I 21-30 I 31-40 I 41-50 I 51-60 I 61-70 r 71-80 I 
I 12L3J415lEil71819 0 I 234567890 I 2 34567890 I 2 34 567 890 I 234567 890 I 234 567 890 I 234567890 I 234567819101 

1I.I,e,A,LIC. I I I I I I I I I I I I I I I 

3. Follow the jobname with at least one blank. 

4. Code JOB. 

5. Follow JOB with at least one blank. 

section II: The JOB Statement 29 



6. Code any desired positional parameters. Separate each parameter 
wi th a comma. 

7. Code any desired keyword parameters. Separate each parameter with 
a comma. 

8. Code at least one blank. 

9. Code any desired comments. 

Positional and Keyword Parameters 

There are two types of parameters that can be coded on the JOB 
statement: 

Positional parameters" which must precede any keyword parameters and 
must be coded in the follOWing order: 

accounting information 
programmer's name 

These positional parameters are described in the following pages in the 
order listed above. 

Keyword parameters, which may be coded in any order after the positional 
parameters. Any of the following keyword parameters can be coded on the 
JOB statement: 

CLASS 
COND 
MSGCLASS 
MSGLEVEL 
NOTIFY (MVT with TSO) 
PRTY 
RD 
REGION (MVT only) 
RESTART 
ROLL (MVT only) 
TIME 
TYPRUN 

These keyword parameters are described, after the positional parameters, 
in the order listed above. 

30JCL Reference (Release 20.1) 



Sample dOB Statements 

1,. 

2. 

3. 

4. 

//ALPHA JOB 

//LOS JOB 

//MART JOB 

//TRY8 JOB 

843" LINLEE,. CLASS=F. MSGLEVEL= ( 1. 1) 

,BROWNLY,.REGION=90K.TIME=( 4,. 30),.MSGLEVEL=(2. 0) 

1863,. RESTART=STEP4 

section II: The JOB Statement, 31 





Assigning a dobname 

(//jObname JOB 

You must assign a name to every job submitted for execution. The 
jobname must begin in column 3 of the JOB statement and must consist of 
1 through 8 alphameric and national (#, M, $) characters. The first 
character must be an alphabetic or national character. 

No two jobs in a multiprogramming environment should have the same 
jobname. 

The following names and characters should not be used as jobnames, 
because they are keywords of the DISPLAY command: 

CONSOLES 
DSNAME 
JOBNAMES 
SPACE 
STATUS 

A 
N 
Q 
R 
T 

u 

If you must assign one of these keywords as a jobname" notify the 
operator" so he will be sure to enclose the jobname in parentheses when 
he uses it with the DISPLAY command. For example, if you have assigned 
the jobname SPACE to a job and the system operator wishes to display the 
status of the job, he must issue a command stating DISPLAY (SPACE). If 
the parentheses were omitted, the operator would get the amount of 
available space on a particular direct access volume resulting from a 
DISPLAY SPACE command. 

Examples of Valid dobnames 

/ /RERUN4 JOB 

//#123A JOB 

//JOBD58 JOB 

Section .11: The JOB Statement -- Assigning a Jobname 33 





Accounting Information Parameter 

([account number] [,additional accounting information, ••• ]) 

account number 
the account number to which this job is to be charged. 

additional accounting information 
any other accounting information required by an installation's 
accounting routines. When additional accounting information 
consists of more than one item, each must be separated by a comma. 

Rules for Coding 

1. When accounting information is supplied, it must be coded before 
any other parameter on the JOB statement. 

2. The account number and each item of additional accounting 
information are considered subparameters and each must be separated 
by a comma. 

3. When accounting information consists of more than one subparameter, 
you must enclose the information in either parentheses or 
apostrophes (5-8 punch), e.g., '5438,GROUP6' or (5438,GROUP6). If 
apostrophes are used" all accounting information enclosed in the 
apostrophes is considered as one field. 

4. If the accounting information must be continued on another 
statement" enclose the accounting information in parentheses. You 
may not continue on another statement any accounting information 
enclosed in apostrophes. 

5,. The account number and other accounting information cannot exceed 
142 characters, including the commas that separate the 
subparameters. 

6. If any of the subparameters contain special characters (except 
hyphens) " either: (1) enclose the accounting information in 
apostrophes, or (2) enclose the subparameter in apostrophes and the 
accounting information in parentheses" e.g., '5438,10/08/66' or 
(54.38" "10/08/66 I). (The enclosing apostrophes are not considered 
part of the information.) If one of the special characters is an 
apostrophe, code two consecutive apostrophes in its place, e. g., 
(5438" '0' 'NEILL'). If one of the special characters is an 
ampersand and you are not defining a symbolic parameter, code two 
consecutive ampersands in its place, e.g.!, '34&&8241'. 

7. If you do not supply accounting information but do code the 
programmer's name, you must code a comma preceding the programmer's 
name to indicate that the accounting information parameter, which 
is a positional parameter, has been omitted. 

Supplying Accounting Information 

I Accounting information is optional unless the installation establishes 
it as a requirement in a PARM field parameter of the cataloged procedure 
for the input reader. 

section II: The JOB statement -- Accounting Information Parameter 35 



Routines that process accounting information must be supplied by the 
installation. For information on how to add accounting facilities, 
refer to the chapter "Handling Accounting Information" in the System 
Programmer's Guide publication. 

Examples of the Accounting Information Parameter 

1. //JOB43 JOB D548-868 

Account number only; no parentheses are required. 

2. //JOB44 JOB (D548-868, '12/8/69' " WILSON) 

Account number plus additional accounting information; parentheses 
are required. 

3. //JOB45 JOB (,E1659, GROUP6X) 

Only additional accounting information; parentheses are required. 

36 JCL Reference (Release 20.1) 



Programmer's Name Parameter 

programmer's name 

programmer's name 
the name or identification of the person responsible for the job. 

Rules for Coding 

1. If the programmer's name parameter is coded, it must follow the 
accounting information parameter., or the comma that indicates its 
absence, and must precede all keyword parameters. 

2. The name cannot exceed 20 characters, including all special 
characters. 

3. If the name contains special characters, other than periods, 
enclose the name in apostrophes. If the special characters include 
apostrophes, each must be shown as two consecutive apostrophes. 

4. If you are not required to specify a name , you need not code a 
comma to indicate its absence. 

When to Code the Programmer's Name Parameter 

\ 

The programmers' name parameter is optional unless the installation 
establishes it as a requirement in a PARM field parameter of the 
cataloged procedure for the input reader. 

Examples of the Programmer's Name Pa~ameter 

1. //APP JOB ,e.L.BROWN 

Programmer's name l without accounting information supplied. 

2. //DELTA JOB , 'T. 0' 'NEILL' 

Programmer's name containing special characters, without accounting 
information supplied. 

3. //#30S JOB (S46349,GROUP12>,GREGORY 

Account number plus additional accounting information and 
programmer's name. 

section II: The JOB statement -- Programmer's Name Parameter 37 





The CLASS Parameter 

CLASS=jobclass 

jobclass 
assigns a job class to your job. Code any alphabetic character 
from A through 0, depending on the characteristics of your job and 
the installation's rules for assigning a job class. 

Rules for Coding 

I 1. The jobclass is an alphabetic character from A through o. 

Assigning a Job Class to Your Job 

The CLASS keyword parameter provides a way of establishing a ,good mix of 
jobs in the system; an example of a good mix would be one job that is 
I/O bound in the system with another job that is CPU bound. A good mix 
can be established since the job class determines where a job will be 
placed on the input work queue and jobs with common characteristics are 
assigned to the same job class. Jobs within a job class are assigned a 
priority" either in the PRTY parameter or by default. This allows jobs 
within a class to be selected for processing based on their priorities. 

If you do not specify the CLASS parameter, the default job class of A 
is assigned to the job. 

THE CLASS PARAMETER AND TIME-SLICING 

If your installation provides time-slicing facilities with MFT, the 
CLASS parameter can be used to make a job part of a group of jobs to be 
time-sliced. At system generation., a group of contiguous partitions are 
selected to be used for time-slicing, and each partition is assigned at 
least one job class.. To make your job part of a group of jobs to be 
time-sliced, specify a class that was assigned only to the partitions 
selected for time-slicing. (With MVT, you use the PRTY parameter and 
the DPRTY parameter to make, respectively, a job or job step part of a 
group of jobs and job steps to be time-sliced.) 

Examples of the CLASS Parameter 

1. //SETUP JOB CIASS=C 

Assigning a job to job class C. 

2. //JAN JOB CLASS=M,PRTY=lO 

Assigning a job to job class M with a priority of 10. 

section II: The JOB statement -- CLASS Parameter 39 





The COND Parameter 

code 

COND= ( (code" operator) , ••• ) 

a decimal number from 0 through 4095. '!his number is compared with 
the return code issued by each job step. 

operator 
the type of comparison to be made with the return code. Relational 
operators and their meanings are: 

GT •• ~greater than 
GE ••• greater than or equal to 
EQ ••• equal to 
LT ••• less than 
LE ••• less than or equal to 
NE ••• not equal to 

Rules for Coding 

1. Code from one through eight different return code tests. 

2. When making only one return code test, you need not code the outer 
parentheses. 

USing the COND Parameter 

The COND keyword parameter can be used to eliminate unnecessary use of 
computing time by basing the continuation of a job on the successful 
completion of one or more of its job steps. The operator in the COND 
parameter indicates the mathematical relationship between the code 
specified on the JOB statement and the code returned by a completed job 
step. The operator or operators are compared with the return code and 
if any of the relationships are true, the remaining steps are bypassed 
and the job is terminated,. Up to eight different tests, each consisting 
of a code and operator" may be specified. 

The compiler" assembler, and linkage editor programs issue return 
codes. You may want to use the COND parameter to test these return 

I codes. If you write your processing programs in assembler language, ANS 
COBOL, FORTRAN" or PL/I, you can use the COND parameter to test return 
codes issued by your programs. 

WHEN THE COND PARAMETER IS CODED ON BOTH THE JOB AND EXEC STATEMENTS 

The COND parameter can also be coded on an EXEC statement. When a 
return code test requested on an EXEC statement is satisfied~ the 
associated job step is bypassed. 

If you code the COND parameter on the JOB statement and on one or 
more of the job's EXEC statements, the return code tests requested on 
the JOB statement have precedence over those requested on the EXEC 
statements. Therefore, any return code test requested on the JOB 
statement that is satisfied causes termination of the job" even if the 
return code test is not satisfied for a particular step. 

section II: The JOB Statement -- COND Parameter 41 



Examples of the COND Parameter 

1. //TYPE JOB COND=( 7"LT) 

If 7 is less than the return code" the job is terminated. (Any 
return code less than or equal to 7 allows the job to continue.) 

2. //TEST JOB COND= ( (20" GE) , (30, LT) ) 

If 20 is greater than or equal to the return code, or 30 is less 
than the return code, the job is terminated. (Any return code of 21 
through 30 allows the job to continue.) 

42 JCL Reference (Release 20.,1) 



The MSGCLASS Parameter 

MSGCLASS=output class 

output class 
the output class to which system messages for your job are to be 
routed by the system. Code an alphabetic (A-Z) or numeric (0-9) 
character depending on your installation,'s rules for assigning an 
output class for system messages. 

Rules for Coding 

I 1. The output class is an alphabetic (A-Z) or numeric (0'-9) character. 

Assigning an Output Class to System Messages 

If the MSGCLASS parameter is not coded, system messages associated with 
your job are routed to the default output class specified in the PARM 
field of the input reader procedure. The default for the MSGCLASS 

I 

parameter is A unless Changed,' by your installation. (Default values and 
restrictions supplied by IBM in the input reader procedure are listed in 
Appendix ,E. For more information on the input reader procedure" consult 
the system Programmer's Guide.) YoUr installation may require that you 
specify a different output class other than the default value in order 
to separate different types of output or to distribute the workload of 
the output writers,. One or more output classes is associated with each 
output writer~ each output writer is associated with a specific output 
device. 

You can route a job's system messages and output data sets to the 
same output class. You do this by coding the same output class in both 
the MSGCLASS parameter on the JOB statement and the SYSOUT parameter on 
the DD statements for the data sets,. 

Examples of the MSGCLASS Parameter 

1. //IN JOB MSGCLASS=F 

Specifying an output class. 

2. / /BOTLE JOB 

3. 

specifying no output class. In this case, the output class will 
default to the MSGCLASS value specified in the PARM field of the 
input reader procedure. The default is A unless changed by your 
installation. 

//A1430 
//STEP1 
//OUTPUT 

JOB 
EXEC 
DD 

MSGCLASS=L 
PGM=PRINT 
SYSOUT=L 

specifying that a job's system messages (MSGCLASS parameter) and 
output data set (SYSOUT parameter) are to be routed to the same 
output class. 

section II: The JOB Statement -- MSGCLASS Parameter 43 





The MSGLEVEL Parameter 

MSGLEVEli= (statements" messages) 

statements 
specifies which job control statements are to be written as 
output from your job. Code: 

o - when only the JOB statement is to be written. 
1 - when all input job control statements, cataloged 

procedure statements, and the internal representation of 
procedure statement parameters after symbolic parameter 
substitution are to be written. 

2 - when only input job control statements are to be written. 

messages 
specifies what allocation/termination messages (consisting of 
allocation, disposition, and allocation recovery messages) are 
to be written as output from your job. Code: 

o - when no allocation/termination messages are to be 
written, unless the job abnormally terminates. If this 
occurs~ these messages are to be written as output. 

1 - when all allocation/termination messages are to be 
written. 

Rules for Coding 

1. If the first subparameter of the MSGLEVEL parameter is omitted, you 
must code a comma to indicate its absence, e.g., MSGLEVEL=(,l). 

2. I f the second subparameter of the MSGLEVEL parameter is omitted, 
you need not code the parentheses" e.g., MSGLEVEli=2. 

Requesting Output of Job Control Statements 
and Certain Messages 

The MSGLEVEL keyword parameter is used to tell the job scheduler what 
output from your job is to be 'written as part of the output listing. 
You can request the following output: 

• The JOB statement. 

• All input job control statements. 

• All cataloged procedure statements for procedures called by any of 
the job's steps and the internal representation of procedure 
statement parameters after symbolic parameter substitution. 

• Allocation., disposition, and allocation recovery messages 
(allocation/termination messages). 

You need to code the MSGLEVEL parameter only when the establ.i.shed 
I default will not provide you with the desired output. The default is 

established as a PARM parameter field in the cataloged procedure for the 
input reader. The established default is assumed when MSGLEVEL is not 

I coded or when one of the subparameters i,S not coded. For system tasks, 
the system assumes a message level of (1.,0). 

section II: The JOB statement -- MSGLEVEL Parameter 45 



Examples of the MSGLEVEL Parameter 

1. //GD40 JOB MSGLEVEL=(2,1) 

Requesting that only input statements and all allocation/termination 
messages be written. 

2. //STEL JOB MSGLEVEL=(O.l) 

Requesting that only the JOB statement and all 
allocation/termination messages be written. 

3. //SYM JOB MSGLEVEL=(1.0) 

Requesting that all input control statements, procedure statements, 
the internal representation of procedure statements after symbolic 
parameter substitution, and no allocation/termination messages be 
written. 

46 JCL Reference (Release 20.1) 



The NOTIFY Parameter (For MVT With TSO) 

NOTIFY=user identification 

user identification 
specifies the identification that is to be used to notify you when 
your background job is complete. Code a 1 to 7 character 
alphameric identification. The first character must be an 
alphabetic character. 

Rules for Coding 

1. If the NOl'IFY parameter is coded for MFTr or MVT wi thoutthe Time 
Sharing Option (TSO)r the parameter is not used r but is checked for 
syntax. 

2. The user identification must be the same as the one you specify 
when you start the terminal session (LOGON). 

What the NOTIFY Parameter Does 

The NOTIFY keyword parameter indicates to the system that you are 
requesting that a message be sent to your time sharing terminal when 
your background job completes. Under TSO r a background job is one that 
is entered through the SUBMIT command or through the input stream 
(SYSIN) • 

What is Time Sharing 

Time sharing is a method of using a computing system that allows a 
number of users to execute programs concurrently and to interact with 
them during execution. The Time Sharing Option (TSO) is an option of 
the operating system providing conversational time sharing from remote 
terminals. That is the user "converses" with the system through the use 
of the terminal. 

Reference 

I 1. For a detailed discussion of the Time sharing Option'r refer to IBM 
System/360 Operating System Time Sharing Option Guide. 

Example of the NOTIFY Parameter 

1. //SIGN JOB NOTIFY=POK1 

When the job "SIGN" is complete'r a message will be sent to the user 
"POK1" informing him that his job has been completed,. 

section II: The JOB Statement -- NOTIFY Parameter 47 





The PRTY Parameter 

PRTY=priority 

priority 
assigns a priority of 0 through 13 to your job. (The highest 
priority is 13.) 

Rules for Coding 

1. Avoid using priority 13 since this priority is used by the system 
to expedite processing of jobs in which certain errors were 
diagnosed,. 

2. In MVT, if you want a job step to have a different dispatching 
priority than the job's, code the DPRTY parameter on the EXEC 
statement associated with that job step. 

What the PRTY Parameter Does 

The PRTY keyword parameter determines the job's initiation priority 
within its job class. (The job class is assigned in the CLASS parameter 
on the JOB statement.) When the job is initiated, the system converts 
the job's priority into a dispatching priority so that the job's tasks 
can compete with other tasks for bse of main storage and CPU resources. 

If you do not specify the PRTY parameter" a default priority is 
assumed. The default is specified as a PARM parameter field in the 
cataloged procedure for the input reader. 

THE PRl'Y PARAMETER AND TIME-SLICING 

If your installation provides time-slicing facilities in MVT" the PRTY 
parameter can be used to make a job part of a group of jobs and job 
steps to be time-sliced. The priori ties of the time-sliced groups are 
selected at system generation. To make your job part of a group of jobs 
to be time-sliced, specify a priority number selected for time-slicing. 
(To make one of the job's steps part of a group of jobs and job steps to 
be time-sliced,. code the DPRTY parameter on the associated EXEC 
statement. ) 

Examples of the PRTY Parameter 

1. //#1930 JOB PRTY=8" CLASS= C 

The job will have an initiation priority of 8 in the job class C. 

2. //RING JOB PRTY=4 

The job will have an initiation priority of 4 in the job class A. 
(Since the CLASS parameter is not specified, the job is assigned to 
the default job class A.) 

Section II: The JOB Statement -- PRTY Parameter 49 





The RD Parameter 

R 

RNC 

NC 

NR 

RD= R 
RNC 
NC 
NR 

specifies that automatic step restart is permitted. 

specifies that automatic step restart is permitted and automatic 
checkpoint restart is not permitted and no checkpoints can be 
established. 

specifies that neither automatic step restart nor automatic 
checkpoint restart is permitted and no checkpoints can be 
established. 

specifies that neither automatic step restart nor automatic 
checkpoint restart is permitted, but the CHKPT macro instruction 
can establish a checkpoint. 

Rules for Coding 

I 1. Be sure to code MSGLEVEL= (1. 0), MSGLEVEL= (1,1), or MSGLEVEL=l when 
RD=R or RD=RNC is specified. 

2. If you are permitting automatic step restart" assign each step a 
unique step name. 

3. Code the RD parameter on EXEC statements" instead of the JOB 
statement~ when you want·to make different restart requests for 
each job step. (If the RD parameter is coded on the JOB statement. 
RD parameters coded on the job's EXEC statements are ignored.) 

Using the Restart ,Facilities 

The RD (restart definition) keyword parameter is coded when you want to 
make use of the st.ep restart facilities" to suppress the actiOn of the 
CHKPT macro instruction~ or to· suppress automatic restarts. The step 
restart facilities permit execution of a job to be automatically . 

I restarted at a job step after the job abnormally terminates or after a 
system failure occurs. Through the RD parameter" you can specify that 
execution of a job is to· be automatically restarted at the beginni·ng of 
a job step that abnormally terminates (step restart)·. 

Execution of a job can also be automatically restarted within a job 
step that abnormally terminates (checkpoint restart). In order for 
checkpoint restart to occur~ the CHKPT macro instruction must have been 
executed in the processing program before abnormal termination •. When 
you use the RD parameter to request suppression of CHKPT macro 
instruction action, automatic checkpoint ~estart cannot occur. 

section 1:I: The JOB statement -- RD Parameter 51 



If the RD parameter is not coded, step restart cannot occur. If the 
RD parameter is not coded and the processing programs contain CHKPT 
macro instructions, checkpoint restart can occur. 

The following three conditions must be met before automatic step or 
checkpoint restart can occur: (1) the completion code returned during 
abnormal terminati")n indicates that the step is eligible for restart. 
(2) the operator authorizes restart, and (3) MSGLEVEL=( 1,.0). 

MSGLEVEL=( 1,.1),. or MSG~VEL=l must be coded on the JOB statement. If 
these conditions are satisfied" special disposition processing is 
performed before restart. If automatic step restart is to occur. all 
data sets in the restart step with a status of OLD or MOD,. and all data 
sets being passed to steps following the restart step., are kept. All 
data sets in the restart step with a status of NEW are deleted. If 
automatic checkpoint restart is ·to occur, all data sets currently in use 
by the job are kept. 

DEFINING RESTART 

You define the type of restart that can occur by coding one of the 
subparameters of the RD parameter: R. RNC. NC, or NR. Each of thes e 
subparameters is described in detail in the following paragraphs. 

RD=R: R indicates that automatic step restart is permitted. If the 
job's processing programs do not include any CHKPT macro instructions. 
coding RD=R permits execution to be resumed at the beginning of any step 
that abnormally terminates. If any program does include a CHKPT macro 
instruction, coding RD=R permits step restart to occur only if the step 
abnormally terminates before execution of the CHKPT macro instruction; 
thereafter,. only checkpoint restart can occur. If you cancel the 
effects of the CHKPT macro instruction before a checkpoint restart is 
performed" the request for automatic step restart is again in effect. 

RD=RNC: RNC indicates that automatic step restart is permitted and 
automatic checkpoint restart is not permitted. RD=RNC should be 
specified when you want to suppress the action of all CHKPT macro 
instructions included in the job's processing programs and to permit 
automatic step restart. 

RD=NC: NC indicates that neither automatic step restart nor automatic 
checkpoint restart is permitted. RD=NC should be specified when you 
want to suppress the action of all CHKPT macro instructions included in 
the job's processing programs and not to permit automatic step restart. 
RD=NC has no effect on processing if CHKPT macro instructions are not 
included in the programs. 

RD=NR: NR indicates that a CHKPT macro instruction can establish a 
checkpoint. but neither automatic step restart nor automatic checkpoint 
restart is permitted. Coding RD=NR allows you to resubmit the job at a 
later time and specify in the RESTART parameter the checkpoint at which 
execution is to be resumed. (The RESTART parameter is coded on the JOB 
statement of the resubmitted job.) RD=NR has no effect on processing if 
CHKPT macro instructions are not included in the job's processing 
programs. 

References 

1. For detailed information on the checkpoint/restart facilities. 
refer to the publication Advanced Checkpoint/Restart Planning 
Guide" Form C28-6708" the topic "Checkpoint and Restart" in the 
publication Supervisor and Data Management services~. and "Using the 
Restart Facilities" in Appendix B of this publication. 

52 JCL Reference (Release 20.1) 



2. For information on how to code the CHKPT macro instruction, refer 
to the publication supervisor and Data Management Macro 
Instructi ons·. 

Examples of the RD Parameter 

1. //MAY JOB RD=R"MSGLEVEL=(l,O) 

Permits execution to be automatically restarted with the step that 
abnormally terminates. 

2. //TRY56 JOB RD=RNC"MSGLEVEL= (1" 1) 

Permits execution to be automatically restarted beginning with the 
step that abnormally terminates and suppresses the action of CHKPT 
macro instructions. 

3. //PASS JOB RD=NR., MSG LEVEL= (1,,1) 

Neither automatic step nor checkpoint restart can occur, but CHKPT 
macro instructions can establish checkpoints. 

section II: The JOB statement -- RD Parameter 53 





The REGION Parameter--Without Main Storage Hierarchy 
Support (For MVT) 

REGION=valueK 

valueR 
specifies the number of contiguous 1024-byte areas of main storage 
to be allocated to each job step. The number can range from one to 
five digits but may not exceed 16383. 

Rules for Coding 

1,. Code an even number. (If you code an odd number" the system treats 
it as the next highest even number. When the value 16383K is 
coded" the system treats it as 16384K. However" the value 16384K 
must not be coded on the JOB statement.) 

2. Code the REGION parameter on EXEC statements~ instead of the JOB 
statement, when you want to specify a different region size for 
each job step. (If the REGION parameter is coded on the JOB 
statement, REGION parameters coded on the job's EXEC statements are 
ignored.) 

3. If the REGION parameter is coded for MFT, the parameter is not 
used" but is checked for syntax. 

Requesting Main Storage 

The REGION keyword parameter is used to specify how much main storage, 
in contiguous bytes" is to be allocated to each job step,. Code the 
REGION parameter when you want more storage or less storage than would 
be allocated if the default region size was used. The default region 
size is established as a PARM parameter field in the cataloged procedure 
for the input reader. You can consult the Storage Estimates publication 
to help you determine how much main storage is required to process your 
job. 

ACQUIRING ADDITIONAL MAIN STORAGE 

If any of the job's steps may require use of more storage than has been 
allocated" you can code the ROLL parameter and request that the system 
try to provide you with additional main storage. The ROLL parameter is 
described in the chapters "The ROLL Parameter" later in this section and 
in section III. 

Examples of the REGION Parameter 

1. //COLE JOB REGION=112K 

Specifies that 112 contiguous 1024-byte areas of main storage are to 
be allocated to each job step. 

Section II: The JOB Statement ~- REGION Parameter 55 



2. //J34 JOB REGION=7 0 K, ROLL= (YES" YES) 

The REGION parameter specifies that 70 contiguous 1024-byte areas of 
main storage are to be allocated to each job step. In the ROLL 
parameter, the first subparameter tells the system that any of the 
job's steps may be rolled out if additional storage is required by 
another job; the second subparameter tells the system that it should 
try to provide you with additional main storage if it is required. 

56 JCL Reference (Release 20.1) 



The REGION Parameter--With Main Storage Hierarchy Support 
(For MVT, Excluding MSSMP) 

REGION=(value K,value~K) 

value K 
specifies the number of contiguous 1024-byte areas in hierarchy 0 
to be allocated to each job step. If IBM 2361 Core Storage is 
present, the number cannot exceed 16383. 

value~K 
specifies the number of contiguous 1024-byte areas in hierarchy 1 
to be allocated to each job step. If IBM 2361 Core Storage is 
present, the number cannot exceed 1024 (for each Modell) or 2048 
(for each Model 2) .• 

Rules for Coding 

1. When processor storage includes hierarchies 0 and 1, the sum of 
value and value~ cannot exceed 16383 .• 

2. Code even numbers. (If you code an odd number, the system treats 
it as the next highest even number. When 16383K is coded for 
value " the system treats it as 16384K. However, 16384K must not 
be coded for value on the JOB statement.) 

3.. When you are requesting storage only in hierarchy 1, precede value~ 
with a comma" to indicate the absence of value • 

4. When you are requesting storage only in hierarchy 0, you need not 
code the parentheses. 

5. Code the REGION parameter on EXEC statements, instead of the JOB 
statement, when you want to specify a different region size for 
each job step. (If the REGION parameter is coded on the JOB 
statement, REGION parameters coded on the job's EXEC statements are 
ignored. ) 

6. If the REGION parameter is coded for MFT" the parameter is not 
used, but is checked for syntax. 

Requesting Main Storage in One or Two Hierarchies 

The REGION keyword parameter is used to specify how much main storage is 
to be allocated to each job step, and, when main storage hierarchy 
support has been specified at system generation, in which hierarchy or 
hierarchies main storage is to be allocated. With main storage 
hierarchy support, storage hierarchies 0 and 1 are provided. If IBM 
2361 Core Storage, Modell or 2, is present in the system, processor 
storage is referred to as hierarchy 0 and 2361 Core Storage is referred 
to as hierarchy 1. If 2361 Core Storage is not present, a two-part 
region is established in processor storage when regions are requested in 
two hierarchies. The two parts are not necessarily contiguous. 

Section II: The JOB Statement --,REGION Parameter 57 



Code the REGION parameter to specify how much storage is to be 
allocated in each hierarchy" or that all storage for the job is to be 
allocated in a pa:r:ticular hierarchy. (If you do not code the REGION 
parameter on either the JOB or· EXEC statement, the default region size, 
which is a PARM parameter field in the cataloged procedure for the input 
reader, is used and is always allocated in hierarchy O. If you code the' 
REGION parameter and request storage only from hierarchy 1" no hierarchy 
o segment will be allocated. YOU can consult the storage Estimates 
publication to help you determine how much main storage is required to 
process your jQb. Then, depending on your reasons for using 
hierarchies. determine how much storage is required in each. 

If main storage hierarchy support ~s not specified at system 
generation a'oo regions are requested in both hierarchies" the region 
sizes are combined and an attempt is made to allocate a single region 
from processor storage. If a region is requested entirely from 
hierarchy 1, an attempt is made to allocate the region from processor 
storage. 

ACQUIRING ADDITIONAL MAIN STORAGE 

If your job may require use of more main storage than has been allocated 
in a particular hierarchy" you can code the ROLL parameter and request 
that the system try to provide you with additional main storage in that 
hierarchy. The ROLL parameter is described in the chapters "The ROLL 
Parameter" later in this section and in Section III. 

Examples; of the REGION Parameter 

1. //MAIN JOB REGION= (80K.,30K) 

Specifies that the system is to allocate 80 contiguous 1024-byte 
areas of storage in hierarchy 0 and 30 contiguous 1024-byte areas of 
storage in hierarchy 1. If main storage hierarchy support is not 
included in the system, the system will try to obtain 110 contiguous 
1024-byte areas in processor storage. 

2. //WEEK JOB REGION: (, 98K) 

Specifies that the system is to allocate 98 contiguous 1024-byte 
areas of storage in hierarchy 1,. 

3. //JWC JOB REGION=98K 

Specifies that the system is to allocate 98 contiguous 1024-byte 
areas of storage in hierarchy O~ 

4. //TEST12 JOB REGION= (100K,50K) "ROLL: (YES, YES) 

The REGION parameter specifies that the system is to allocate 100 
contiguous 1024-byte areas of storage in hierarchy 0 and 50 
contiguous 1024-byte areas of storage in hierarchy 1. In the ROLL 
parameter, the first subparameter tells the system that any of the 
job's steps may be rolled out if additional storage is required by 
another job; the second subparameter tells the system that it should 
try to provide you with additional main storage it it is required. 

58 JCL Reference (Release 20.1) 



The RESTART Parameter 

* 

RESTART: < I * stepname 
stepname.procstepname 

[., checkidl) 

indicates that execution is to be restarted at or within the first 
job step. 

stepname 
specifies that execution is to be restarted at or within the named 
job step. 

stepname.procstepname 
specifies that execution is to be restarted at or within a 
cataloged procedure step. Stepname is the name of the job step 
that calls the cataloged procedure, and procstepname is the name of 
the procedure step. You -can code * in place of 
stepname.procstepname if the first job step calls a cataloged 
procedure and you want execution to be restarted at or within the 
first procedure step. 

checkid 
is the name of the checkpoint at which execution is to be 
restarted. When checkid is coded. execution is restarted within 
the specified job step at the named checkpoint,. If checkid is not 
coded, execution is restarted at the specified job step. 

Rules for Coding 

1. You need not code the parentheses if execution is to be restarted 
at a job step., i.e., if you do not code the checkid subparameter. 

2. If the checkpoint name contains special characters, the name must 
be enclosed in apostrophes. If one of the special characters is an 
apostrophe, identify it by coding two consecutive apostrophes in 
its place. 

3. Be sure to include the SYSCHK DD statement when execution is to be 
restarted within a job step. (The SYSCHK DD statement is described 
in the section titled -SYSCHK- in the chapter -Assigning a Ddname
in section IV of this publication.) 

When to Code the RESTART Parameter 

The RESTART keyword parameter is coded when you are resubmitting a job 
for execution and you want to make use of the restart facilities. The 
restart facilities allow a job that is resubmitted for execution to be 
restarted at or within a particular job step. This reduces the time 
required to execute the job since execution is resumed, not repeated. 
If the RESTART parameter is not coded, execution of the entire job is 
repeated,. 

Through the RESTART parameter" you can specify where execution is to 
be restarted. Execution of a resubmitted job can be restarted at the 

Section II: The JOB Statement -- RESTART Parameter 59 



beginning of a step (step restart) or within a step (checkpoint 
restart) '. In order for checkpoint restart to occur, the CHKPT macro 
instruction must have been executed in the processing program during the 
original execution of the job. If execution is to be restarted at a 
checkpoint" the resubmitted job must include an additional DD statement. 
This DD statement defines the checkpoint data set and has the ddname 
SYSCHK. (For additional information on the SYSCHK DD statement, see the 
section titled "SYSCHK" in the chapter "Assigning a Ddname" in Section 
IV of this publication.) 

RULES FOR REFERENCING GENERATION DATA SETS AND USING BACKWARD REFERENCES 

Because the resubmitted job has been previously executed and because you 
may not be restarting with the first job step, there are certain rules 
that apply to referencing generation data sets and using backward 
references,. They are: 

1. If step restart is performed" generation data sets that were 
created and cataloged in steps preceding the restart step must not 
be referred to in the re start step or in steps following the 
restart step by means of the same relative generation numbers that 
were used to create them. Instead" you must refer to a generation 
data set by means of its present relative generation number. For 
example, if the last generation data set created and cataloged was 
assigned a generation number of +2, it would be referred to as 0 in 
the restart step and in steps following the restart step. In this 
case" the generation data set assigned a generation number of +1 
would be referred to as -1. If generation data sets created in the 
restart step were kept instead of cataloged (i.e., 
DISP=(NEW.,CATLG,KEEP) was coded) " you can during checkpoint restart 
refer to these data sets and generation data sets created and 
cataloged in steps preceding the restart step by the same relative 
generation numbers used to create them. 

2. Before resubmitting a job, check all backward references to steps 
that precede the restart step. Eliminate all backward references 
for the following keywords..: PGM and COND" on the EXEC statements" 
and, SUBALLOC and VOLUME=REF=reference, on the DD statements. (A 
backward reference of VOLUME=REF=reference is allowed if the 
referenced statement includesVOWME=SER= (serial number, •• '. ) • ) 

Reference 

1. For detailed information on the checkpoint/restart facilities, 
refer to the publication Advanced Checkpoint/Restart Planning 
Guid~, the topic "Checkpoint and Restart" in the publication 
Supervisor and Data Management Services, and "Using the Restart 
Facilities" in Appendix B of this publication. 

Examples of the RESTART Parameter 

1. //LINES JOB RESTART=COUNT 

specifies that execution is to be restarted at the job step named 
COUNT. 

60 JCL Reference (Release 20,.1) 



2. //G)LOC5 JOB RESTART=(PROCESS,CHKPT3) 

Specifies that execution is to be restarted within the job step 
named PROCESS at the checkpoint named CHKPT3. This JOB statement 
must be followed by a DD statement named SYSCHK, which defines the 
data set on which an entry for the checkpoint named CHKPT3 was 
written. 

3. //WORK JOB RESTART=(*,CKPT2) 

Specifies that execution is to be restarted at the checkpoint named 
CKPT2 in the first job step. 

4. //CLIP5 JOB RESTART=(PAY.WEEKLY,CHECK8) 

Specifies that execution is to be restarted within the procedure 
step named WEEKLY at the checkpoint named CHECK8. PAY is the name 
of the job step that calls the cataloged procedure that contains the 
procedure step named WEEKLY,. This JOB statement must be followed by 
a DD statement named SYSCHK, which defines the data set on which an 
entry for the checkpoint named CHECK8 was written. 

Section II: The JOB Statement -- RESTART Parameter 61 





The ROLL Parameter (For MVT) 

ROLL= (x" y) 

x 

y 

declares whether the steps of the job may be rolled out,. Code YES 
if the job's steps can be rolled out; code NO if the job1 s steps 
cannot be rolled out. 

declares whether the steps of the job may cause rollout of another 
job step. Code YES if the job's steps can cause rollout of another 
job step; code NO if the job's steps cannot cause rollout of 
another job step. YES must be coded if you want additional main 
storage allocated to the job's steps when additional main storage 
is required. 

Rules for Coding 

1. If you code the ROLL parameter" both subparameters must be 
specified .• 

2. Code the ROLL parameter on EXEC statements, instead of the JOB 
statement" when you want to make different requests for each job 
step. (If the ROLL parameter is coded on the JOB statement" ROLL 
parameters coded on the job's EXEC statements are ignored.) 

3. Code ROLL= (NO" YES) or ROLL= (NO, NO) if this job is a teleprocessing 
job that uses the Auto Poll option. If you allow the job's steps 
to be rolled out" the job cannot be restarted properly. 

4. If the ROLL parameter is coded for MFT" the parameter is not used" 
but is checked for syntax. 

When to Code the ROLL Parameter 

The ROLL keyword parameter should be coded if any of the job's steps may 
require more main storage than was requested in the REGION parameter. 
When you specify in the ROLL parameter that this job can cause rollout 
of other job steps, an attempt is made to allocate additional storage if 
a job step requires it. In order to allocate this additional space to a 
job step, another job step with a lower priority may have to be rolled 
out" i. e., temporarily transferred to secondary storage. 

The ROLL parameter should also be coded when you want control over 
whether the job's steps can be rolled out because of another step's need 
for additional main storage. If the ROLL parameter is not coded, the 
default established in the PARM parameter field in the cataloged 
procedure for the input reader is used. 

section II: The JOB Statement -- ROLL Parameter 63 



Examples of the ROLL Parameter 

1. //DINTER JOB ROLL: (YES, YES) " REGION=100K 

Specif.ies that the job's steps can be rolled out and can cause 
rollout of 'another job step if a step requires more than lOOK of 
main storage. 

2. //TEST332 JOB ROLL= ( NOt, YES) 

Specifies that the job's steps cannot be rolled out but can cause 
rollout of another job step_ 

64 JCL Reference (Release 20.1) 



The TIME Parameter 

TIME= 1 (minutes,seconds)l 
1440 ~ 

minutes 
specifies the maximum number of minutes the job can use the cpu. 
The 'number of minutes must be less than 1440 (24 hours). 

seconds 

1440 

specifies the maximum number of seconds beyond the specified number 
of minutes the job can use the CPu., or, if no minutes are 
specified, the maximum number of seconds the job can use the cpu. 
The number of seconds must be less than 60. 

specifies that the job is not to be timed. Code 1440 if the job 
may require use of the cpu for 24 hours or more or if any of the 
job's steps should be allowed to remain in a wait state for more 
than the established time limit. 

Rules for Coding 

1. If the cpu time limit is given in minutes only., you need not code 
the parentheses. 

2. If the cpu time limit is given in seconds only., you must code a 
comma preceding the seconds to indicate the absence of minutes,. 

3. You can also code the TIME parameter on EXEC statements to indicate 
how long each step can use the cpu. 

Specifying a Time Limit for the Job 

The TIME keyword parameter can be used to s~ecify the maximum amount of 
time a job may use the cpu. Two benefits of coding the TIME parameter 
are that it allows you to find out how long the job uses the cpu (CPU 
time used appears on the output listi.ng), and it helps limit the cpu 
time wasted by a step that goes into a loop. Nonoally, a job that 
exceeds the specified time limit is terminated. However, if the System 
Management Facilities option is included in the system and a user exit 
routine is provided~ this routine can extend the time limit so that 
processing can continue. When the TIME parameter is not coded on the 
JOB statement" there is no cpu time limit assigned to the job; however" 
each job step is still timed. 

TIME LIMIT FOR WAIT STATES 

since a job step can go into an extremely long wait state, the time a 
job step may remain in a wait state is limited. If the System 
Management Facilities option is included in the system, the installation 
determines this time limit. In this case" a job step remaining in a 
wait state for more than the established time ltmit causes termination 
of the job unless a user-provided exit routine ext.ends the wait-state 
time limit for that step. If the System Management ,Facilities option is 
not included., the system automatically provides a 30-roinute time limit 
for wait states; a job step remaining in a wait state for more than 30 
consecutive minutes causes termination of the job. 

section II: The JOB Statement -- TIME Parameter 65 



How to Eliminate Timing 

Certain applications require a job to use the CPU for 24 hours or more. 
In this case you must eliminate timing by coding TIME=1440. This 
specification should also be made when any of the job's steps should be 
allowed to remain in a wait state for more than the established time 
limit. 

Reference 

1. A discussion of the System Management Facilities option is 
contained in ·Section 5: Task Management" in Concepts and 
Facilities. Information on user exit routines to be used with the 
System Management Facilities option is contained in the chapter 
·system Management Facilities" in System Programmer's Guide. 

Examples of the TIME Parameter 

1. //SEED JOB TIME= (12 ,10) 

Specifies that the maximum amount of time the job can. use the CPU is 
12 minutes 10 seconds. 

2. //TYPE41 JOB TIME=(.,30) 

Specifies that the maximum amount of time the job can use the CPU is 
30 seconds. 

3. //FORMS JOB TIME=5 

specifies that the maximum amount of time the job can use the CPU is 
5 minutes. 

4. //RAINCK' JOB TIME=1440 

Specifies that the job is not to be timed. Therefore" the job may 
use the CPU and may remain in a wait state for an unspecified period 
of time. 

66 JCL Reference (Release 20.1) 



The TYPRUN Parameter (For MFT, MVT) 

HOLD 

TYP RUN = HOLD 

specifies that the job is to be held in the job queue until the 
operator issues a RELEASE commandw 

Holding a Job 

Code TYPRUN=HOLD when the job should be held for execution until some 
event has occurred·. The operator must be informed of what it is you are 
waiting for. When the event has occurred,. the operator issues a RELEASE 
command,. thereby allowing the job to be selected for processing. 

Example of the TYPRUN Parameter 

Jobs UPDATE and LIST are to be submitted for execution. The job UPDATE 
uses a program that adds and deletes members to a library; the job LIST 
uses a program that lists the members of a library. In order to get an 
up-to-date listing of the libraryl UPDATE must be executed before LIST,. 
This is accompl ished by coding TYPRUN=HOLD on the JOB statement for the 
job named LIST. If a DISPLAY JOBNAMES command is issued by you or the 
operator,. the operator is notified on the console when UPDATE has 
completed processing; he issues a RELEASE command for LIST. The job 
LIST can then be selected for execution.. 

Section II: The JOB Statement -- TYPRUN Parameter 67 





Section III: The EXEC Statement 

The EXEC statement is the first statement of each job step and cataloged 
procedure 
data that 
statement 
procedure 
optional. 
steps. 

step. The EXEC statement is followed by DD statements and 
pertain to the step. The principal function of the EXEC 
is to identify the program to be executed or the cataloged 
to be called. All other parameters in the operand field are 

A job cannot contain more than 255 job steps and procedure 

EXEC Statement Format 

~//stepname EXEC operands comments 

The EXEC statement consists of the characters / /, in columns 1 and 2. 
and four fields -- the name, operation (EXEC>, operand, and comments 
fields • 

Rules for Coding 

Follow the order listed below when coding the EXEC statement: 

1. Code the characters // in columns 1 and 2. 

2. Optionally, you may assign a name to the job step; if you do,. code 
the stepname starting in col umn 3. 

3. Follow the stepname or // with at least one blank. 

4. Code EXEC. 

5. Follow EXEC with at least one blank. 

section III: The EXEC statement 69 

EXEC 



6. Identify the program to be -executed (PGM)" or the cataloged 
procedure to be called (PROC).. (When you are calliDJ a procedure, 
you may omit PROC=.) 

7.. Code any desired keyword parameters. separate each parameter with 
a comma. 

8. Code at least one blank. 

9. Co6e any desired comments. 

?ositional and Keyword Parameters 

There are two types of parameters that can be coded on the EXEC 
statement: 

Posi tional parameters" which must precede any keyword parameters. One 
of the following two positional parameters is coded: 

PGM 
PROC 

These positional parameters are deScribed in the following.pages.in the 
order listed above. 

Keyword parameters" which may be coded in' any order after,the positional 
parameter. Any of the following keyword parameters can be coded On the 
EXEC' statement: 

ACCT 
COND 
DPRTY (MVT only) 
PARM 
RD 
REGION (MVT only) 
ROLL (MVT only) 
TIME 

These keyword parameters are described" after th~' positional 'parameters, 
in the order listed above~ 

70 JCL Reference (Re'lease 20.1) 



Sample E~EC Statements 

1. //STEP4 EXEC 

2. // EXEC 

3. //FOR EXEC 

4. //PIC4 EXEC 

PGM=DRBC" PARM=· 3018, NO' 

PGM=ENl'RY,REGION=80K,TIME= (2.,30) .,DPRTY= (11., 11) 

PROC=PE489.,TIME=4 

SAL83,ACCT.STEP1=123019 

section III·: The EXEC Statement , 71 

EXEC 





Assigning a Stepname 

(//stepname EXEC 

The stepname identifies a job step within a job. The stepname is 
optional. You must assign a stepname if you wish to do any of the 
following: 

1. Make backward references to the step. 

2. Override parameters on an EXEC statement or DD statement in a 
cataloged procedure step" and add DD statements to a cataloged 
procedure step. 

3. Perform a step or checkpoint restart at or within the step. 

The stepname must begin in column 3 of the EXEC statement and must 
consist of 1 through 8 alphameric and national (/il" #" $) characters. 
The first character must be an alphabetic or national character. Each 
stepname within a job or a cataloged procedure must be unique. 

Examples of Valid Stepnames 

1. //STEP4 EXEC 

2. //OlLOC EXEC 

3. //PRINT EXEC 

section III: The EXEC Statement -- Assigning a Stepname 73 

EXEC 





The PGM Parameter 

PGM=lprogram name I 
*.stepname.ddname 
*.stepname.procstepname.ddname 

program name 
is the member name or alias of the program to be executed. The 
program must be a member of a partitioned data set that resides. in 
a temporary., system, or private library. 

*.stepname.ddname 
is a. backwa'rd reference to a DD statement that defines, as a member 
of a partitioned data set, the program to be executed; stepname is 
the name of the step in which the DD statement appears. Usually, 
this form is used when a previous job step creates a temporary 
partitioned data set to store one program until the program is 
required. 

* • stepname. procstepname,. ddname 
is a backward reference to a DD statement within a cataloged 
procedure step that defines l, as a member of a partitioned data set, 
the program to be executed. stepname is the name. of the step that 
calls the procedure., and procstepname is the name of the procedure 
step that contains the DD statement. Usually,this form is used 
when a cataloged procedure step~ called by an earlier job step in 
the job, creates a temporary partitioned data set to store a 
program until the program is required .• 

Identifying the Program to Be Executed 

·All programs that can be executed are members of partitioned data sets 
(libraries)~ The library that contains the program may be a temporary 
library/ the system library, or a private library. In order to execute 
a program contained in any of these libraries" you must code the PGM 
parameter as the first parameter on the EXEC statement. 

TEMPORARY LIBRARY 

If in a job you want to assemble, linkage edit, and then execute a 
program" you must make the output of the linkage editor a member of a 
partitioned data set. This is accomplished by creating a temporary 
library~ A temporary library is a partitioned data set created in the 
job to store a program/ as a member of the data set, until it is 
executed in a following job step.. When the program is required., you may 
refer back to the DD statement that defines the temporary library and 
the member by coding PGM=*.stepname,;.ddname or 
PGM=*.stepname.procstepname,.ddname. You may also request use of a 
program that is a member of a temporary library by coding PGM=program 
name and including a DD statement named JOBLIB or STEPLIB that defines 
the temporary library,. (Information on the JOBLIB and STEPLIB DD 
statements can be found in the chapter "Assigning a Ddname" in section 
IV of this publication.) 

If you want to keep this program available for use by other jobs" you 
must make the program a member of the system library or a private 
library. 

section III% The EXEC statement -- PGM Parameter 75 

EXEC 



SYSTEM LIBRARY 

The system library is a partitioned data set named SYS1.LINKLIB and it 
contains frequently used programs, as well as programs used by the 
system. You request the use of a program that is a member of the system 
library simply by coding PGM=program name. The system automatically 
looks in SYS1.LINKLIB for a member with the corresponding name. 

A program that resides in the system library may also be executed by 
coding PGM=*.stepnameoddname or PGM=*.stepname.procstepname.ddname. 
This can be done only when the named DD statement defines the program as 
a member of the system library. 

PRIVATE LIBRARY 

A private library is a partitioned data set that contains programs not 
used frequently enough to warrant their inclusion in the system library. 
You request use of a program that is a member of a private library by 
coding PGM=program name and including a DD statement named JOBLIB or 
STEPLIB that defines the private library. The 9ystem automatically 
looks in the private library and, if the program is not found there, in 
SYS1.LINKLIB for a member with the corresponding name. (Information on 
the JOBLIB and STEPLIB DD statements can be found in the sections titled 
"JOBLIB" and "STEPLIB" in the chapter "Assigning a Ddname" in Section IV 
of this publication.) 

A program that resides in a private library may also be executed by 
coding PGM=*. ste pname,. ddname or PGM=*. stepname. procstepname • ddname. 
This can be done only when the named DD statement defines the program as 
a member of a private library. 

THE IEFBR14 PROGRAM 

If space allocation and disposi~on processing requests are contained in 
your job control statements, you can satisfy these requests prior to 
executing your program. To do this, substitute IEFBR14 f or your 
program's name. This also allows you to check the accuracy of your 
control statements. (If you create a data set when using this program, 
the data set's status will be old when you execute your own program.) 

Examples of the PGM Parameter 

1. /./STEP1 EXEC PGM=TABULATE 

2. 

specifies that the program named TABULATE is a member of 
SYS1.LINKLIB. 

//JOB8 
//JOBLIB 
//STEP1 

JOB 
DD 
EXEC 

MSGLEVEL= (2,0) 
DSNAME=DEPT12 .LIB4, DISP= (OLD" PASS) 
PGM=USCAN 

Specifies that the system is ~o look for the program named USCAN in 
a private library named DEPT12.LIB4" and,. if not found there, the 
system is to look in the system library. 

76 JCL Reference (Release 20,.1) 



3. 

4. 

//CREATE 
//SYSLMOD 
// 
//EXCUTE 

EXEC PGM=IEWL,REGION=96K 
DD DSNAME=&&PARTDS(PROG),UNIT=2311,DISP=(MOD,PASS), 

SPACE=(1024, (50,20,1» 
EXEC PGM=*.CREATE.SYSLMOD 

X 

Use of backward reference to a DD statement that defines a temporary 
library created in the step named CREATE. The program named PROG is 
stored as a member of the partitioned data set named 6&PARTDS and is 
executed in the step named EXCUTE. 

//STEP2 
//DDA 
//STEP3 

EXEC 
DD 
EXEC 

PGM=UPDT 
DSNAME=SYS1.LINKLIB(P40),DISP=OLD 
PGM=*.STEP2.DDA 

Use of backward reference to a DD statement that defines the system 
library. The program named P40 is stored as a member of 
SYS1.LIWKLIB and is executed in the step named STEP3. 

5. / / CHECK EXEC PGM= IEFBR 14 

Executing the program named IEFBR14 allows you to satisfy space 
allocation and disposition processing requests prior to executing 
your program. The remaining job control statements in the job are 
also checked for syntax. 

Section III: The EXEC statement -- PGM Parameter 77 

EXEC 





The PROC Parameter 

procedure name 

lpRoc=procedure name I 
procedure name 

the member name (or alias) of the cataloged procedure or the name 
of the in-stream procedure to be called. 

Identifying the Cataloged or In-stream Procedure to Be Called 

A cataloged procedure is a set of job control statements that has been 
placed in a special partitioned data set referred to as the procedure 
library. (The IBM-supplied procedure library is named SYS1.PROCLIBi at 
your installation, there may be additional procedure libraries, which 
would have different names.) Each cataloged procedure is a member of 
this data set. An in-stream procedure is a set of job control 
statements" beginning with a PROC statement and ending with a PEND 
statement, that have been placed in the input stream. An in-stream 
procedure can be executed any number of times during the job in which it 
appears. Both cataloged and in-stream procedures consist of one or more 
procedure steps; each procedure step consists of an EXEC statement, 
which identifies the program to be executed. and DD statements, which 
define the data set requirements of the step. 

In order to use a cataloged or in-stream procedure 3 you must code the 
PROC statement as the first parameter on the EXEC statement, instead of 
the PGM parameter;, and give the name of the cataloged procedure. You 
can, instead" code only the cataloged or in-stream procedure namei the 
job scheduler will recognize that it is a procedure name since it must 
appear first in the operand field. 

When the EXEC statement specifies that a cataloged or in-stream 
procedure is to be called" subsequent parameters in the oper and fi eld 
can be used to override EXEC statement parameters in the procedure. 
Also, any DD statements that follow the EXEC statement are either 
overriding DD statements or DD statements that are to be added to the 
cataloged or in-stream procedure for the duration of the job step. 
overriding and adding to cataloged procedures are discussed in the 
chapter "Using Cataloged and in-stream Procedures" in Appendix A of this 
publication. 

Examples of the PROC Parameter 

1. //SP3 EXEC PROC=PAYWKRS 

Specifies that the cataloged or in-stream procedure named PAYWKRS is 
to be called. 

2. / /BK3 EXEC OPERATE 

Specifies that the cataloged or in-stream procedure named OPERATE is 
to be called. This specification has the same effect as coding 
PROC=OPERATE. 

Section III: The EXEC Statement -- PROC Parameter 79 

EXEC 





The ACCT Parameter 

ACCT= (accounting information, ••• ) 

accounting information 
includes one or more subparameters of accounting information to be 
passed to the installation's accounting routines by the system. 

Rules for Coding 

1. If the accounting information includes several subparameters, each 
must be separated by a comma. 

2. If the accounting information consists of only one subparameter, 
you need not code the parentheses. 

3. The maximum number of characters of accounting information, plus 
the commas that separate the subparameters, is 142. 

4. If a subparameter contains special characters (other than a 
hyphen), enclose the subparameter in apostrophes. The apostrophes 
are not considered part of the information. If one of the special 
characters is an apostrophe, code two consecutive apostrophes in 
its place. 

Providing Accounting Information for a Job Step or Procedure Step 

Code the ACCT keyword parameter when you want to provide accounting 
information for a step. If the job step calls a cataloged procedure, 
the ACCT parameter overrides any ACCT parameters coded in the procedure 
steps and pertains to all the procedure steps. If different steps in 
the procedure require different accounting information., code 
ACCT.procstepname=(accounting information, ••• ) for each step that 
requires accounting information. Accounting information will then 
pertain only to the named procedure step. 

Examples of the ACCT Parameter 

1. //STEP1 EXEC PGM=JP5,ACCT=(LOCATION8,'CHGE+3') 

Specifies that this accounting information pertains to this job 
step. 

2. //STP3 EXEC LOOKUP,ACCT= (. /83468') 

Specifies that this information pertains to this job step. Since 
this step calls a cataloged procedure, the accounting information 
pertains to all the steps in the procedure. 

3. //STP4 
// 

EXEC BILLING,. ACCT. PAID= 563 70, ACCT. LATE= 5 6470. 
ACCT.BILL=' 121+366' 

Specifies that different accounting information pertains to each of 
the named procedure steps (PAID, LATE" and BILL). 

X 

Section III: The EXEC Statement -- ACCT Parameter 81 

EXEC 





The COND Parameter 

code 

COND=<[<code,operator) J, ... [,][EVEN]> 
<code., operator, stepname) ONLY 
< code., operator, stepname. procstepname) 

a decimal number from 0 through 4095. '!his number is compared with 
the return code issued by all previous steps or a specific step. 

operator 
the type of comparison to be made with the return code. Relational 
operators and their meanings are: 

GT •• ogreater than 
GE ••• greater than or equal to 
EQ .••• equal to 
LT ••• less than 
LE ••• less than or equal to 
NE ••• not equal to 

stepname 
the name of a preceding job step that issued the return code to be 
tested 0 

stepname.procstepname 

EVEN 

ONLY 

the name of a procedure step "procstepname" that issued the return 
code to be tested# the procedure step is part of a procedure that 
was called by an earlier job step named "stepname." 

specifies that the job step is to be executed even if one or more 
of the preceding job. steps have abnormally terminated. If the 
current job step specifies that return code tests are to be made 
and if any of the tests are satisfied, this job step is bypassed. 
Do not code EVEN when ONLY is coded. 

specifies that the job step is to be executed only if one or more 
of the preceding job steps have abnormally terminated. If the 
current job step specifies that return code tests are to be made 
and if any of the tests are satisfied, this job step is bypassed. 
Do not code ONLY when EVEN is coded. 

Rules for Coding 

1. When neither EVEN nor ONLY is coded, you can .make as many as eight 
tests on return codes issued by preceding job steps or cataloged 
procedure steps, which completed normally. When either EVEN or 
ONLY is coded, you can make as many as seven tests on return codes. 

2. If you want only one test made" you need not code the outer 
parentheses. 

3. If you code only EVEN or ONLY, you need not enclose it in 
parentheses. 

4. If you want each return code test to be made on the return code 
issued by every preceding step, do not code a stepname. 

5. The EVEN or ONLY subparameter can appear before .• between., or after 
return code tests. 

section III: The EXEC statement -- COND Parameter 83 

EXEC 



Using the COND Parameter 

The COND keyword parameter can be used to eliminate unnecessary use of 
computing time by basing the execution of a job step on the successful 
completion of one or more preceding job steps. When theCOND parameter 
is coded on the JOB statement, any return code test that is satisfied 
causes all remaining job steps to be bypassed. If, instead, you want a 
particular job step to be bypassed when a return code test is satisfied, 
code the COND parameter on the EXEC statement. Besides allowing you to 
specify the conditions for bypassing a job step, the COND parameter 
allows you to specify the condition for executing a job step. 

The compiler, assembler, and linkage editor programs issue return 
codes,. You may want to use the CONn parameter to test these return 
codes. If you write your processing programs in assembler language, ANS 
COBOL, FORTRAN, or PL/I, you can use the COND parameter to test return 
codes issued by your programs. 

BYPASSING A JOB STEP 

The return code tests specified in the COND parameter determine whether 
a job step is to be bypassed. Each· return code test consists of a code, 
an operator, and, optionally, a stepname. The operator indicates the 
mathematical relationship between the code specified on the EXEC 
statement and the code returned by a completed job step. The operator 
or operators are compared with the return code or codes and if any of 
the relationships are true" the job step is bypassed. 

If the return code test includes a stepname, the test is made using 
the return code issued by the named step. If the return code test does 
not include a stepname" the test is made using the return code issued by 
every preceding job step that completed normally. To test in a later 
job step the return code i$sued by a cataloged procedure step, specify 
both the name of the job step tha t ca lIed the procedure and the 
procedure stepname., i.e,., stepname.procstepname. 

EXECUTING A JOB STEP 

Abnormal termination of a job step normally causes subsequent steps to 
be bypassed and the job to be terminated. By means of the COND 
parameter, you can specify the condition for executing a job step after 
one or more of the preceding job steps have abnormally terminated. For 
the COND parameter, a job step is considered to abnormally terminated if 
a failure occurs within the user's program once it has received control. 
(If, during scheduling" a job step is not scheduled for execution . 
because of failures such as job control language errors or inability to 
allocate space, the remainder of, the job steps are bypassed, whether or 
not a condition for executing a later job step was specified.) 

The condition for executing a job step after one or more of the 
preceding job steps have abnormally terminated is either EVEN or ONLY. 
EVEN causes the step to be executed even if one or more of the preceding 
job steps have abnormally terminated; ONLY causes the step to be 
executed only if one or more of the preceding job steps have abnormally 
terminated. When a job step abnormally terminates, the COND parameter 
on the EXEC statement of the next step is scanned for the EVEN or ONLY 
subparameter. If neither is specified. the job step is bypassed and the 
EXEC statement of the next step is scanned for EVEN or ONLY. If EVEN or 
ONLY is specified, return code tests, if any" are made on all previous 

I steps specified that did not abnormally terminate. The step is bypassed 
if anyone of these tests is satisfied" or if one of the previous job 

84 JCL Reference (Release 20.1) 



I steps abended because it exceeded the time limit for the job. 
otherwise, the job step is executed. 

Caution: When a job step that contains the EVEN or ONLY subparameter 
refers to a data set that was to be created or cataloged in a preceding 
step, the data set (1) will not exist if the step creating it was 
bypassed" or (2) may be imcomplete- if the step creating it abnormally 
terminated. Also, if the job step refers the system to an earlier job 
step for volume and unit information, this iriformation is not available 
if the earlier job step was bypassed. 

WHEN YOU CALL A CATALOGED PROCEDURE 

The COND parameter may be coded on the EXEC statement of a cataloged 
procedure step. If the job step calls a cataloged procedure, you may 
want to override all CONn parameters in the procedure or only certain 
COND parameters. To override all COND parameters, code the COND 
parameter on the EXEC statement that calls the procedure. This 
establishes one set of return code tests and the EVEN or ONLY 
subparameter for all steps in the procedure. To override only certain 
COND parameters, code, on the EXEC statement that calls the procedure, 
COND.procstepname for each procedure step that you want to override. 
Return code tests and the EVEN or ONLY subparameter will then pertain 
only to the named procedure step. 

Examples of the COND Parameter 

1. //STEP6 EXEC PGM=BAB.,COND=(4"GT,STEP3) 

If 4 is greater than the return code issued by STEP3, this step is 
bypassed. (A return code of 4 or greater allows this step to be 
executed.) Since neither EVEN nor ONLY is specified, this job step 
is automatically bypassed if a preceding step abnormally terminates. 

2. //TEST2 EXEC PGM=BACK.COND= «16,GE), (90,LE,STEP1), ONLY) 

If 16 is greater than or equal to the return code issued by any of 
the preceding job steps or if 90 is less than or equal to the return 
code issued by STEPl, this step is bypassed. If none of the tests 
are satisfied (any return code of 17 through 89 does not satisfy the 
tests) and a preceding job step has abnormally terminated, this step 
is executed because ONLY is coded. 

3. //PRCH EXEC PGM=SPE,COND= (12.,EQ,STEP4.LOOKUP) 

If 12 is equal to the return code issued by the procedure step named 
LOOKUP" the job step is bypassed. S ince neither EVEN nor ONLY is 
specified, this job step would be automatically bypassed if a 
preceding step abnormally terminated. 

4. //STP4 EXEC BILLING,COND.PAID=(EVEN, (20,LT}), X 
// COND.LATE=(60,GT,FIND),COND.;.BILL=( (20 ,GE), (30,LT, CHGE)} 

Specifies that different return code tests pertain to each of the 
named procedure steps (PAID, LATE, and BILL). If the return code 
test specified for the procedure step named PAID is not satisfied, 
the step is executed even if a preceding step abnormally terminated. 

Section III: The EXEC Statement -- COND Parameter 85 

EXEC 





The DPRTY Parameter (For MVT) 

DPRTY=(valuel,value2) 

valuel 
a number from 0 through 15. If you do not assign a number, a value 
of 0 is ass'WI\ed. 

value2 
a number from 0 through 15. If you do not assign a number, a value 
of 11 is assumed. 

Rules for Coding 

1. Avoid assigning a number of 15 to value1,. This number is used for 
certain system tasks. 

2. If you omit value2, you need not code the parentheses. 

3. If you omit valuel, you must code a comma preceding value2 to 
indicate the absence of valuel. 

4,. If the DPRTY parameter is coded for MFT, the parameter is not used" 
but is checked for syntax. 

Assigning a Dispatching Priority 

The DPRTY parameter is used to assign a dispatching priority to a job 
step. Dispatching priority determines in what order tasks will use main 
storage and CPU resources. If you do not code the DPRTY parameter, the 
job step is assigned the priority assigned to the job either on the JOB 
statement (the PRTY parameter) or by default. 

Value1 of the DPRTY parameter has the same meaning as the value you 
assign in the PRTY parameter. That is, if you code PRTY=10 on the JOB 
statement and DPRTY=10 on the EXEC statement" the job and step priority 
are the same. Also" in this ca se the job and step have the same 
dispatching- priority. This is because the system converts the number 10 
to an internal priority and then adds 11 to the internal priority to 
form the dispatching priority (11 is always the number addeq to the 
job's internal priority; 11 is the number added to the job step's 
internal priority when value2 of the DPRTY parameter is omitted). 

If you code value2 of the DPRTY parameter" the system adds that value 
to the internal priority to form the dispatching priority. (The 
internal priority is formed by the system by converting the value 
assigned to value1 in the DPRTY parameter.) 

When you want the job step to have a different dispatching priority 
than the job, you code the DPRTY parameter and either raise or lower the 
values" depending on whether the step is to have a higher or lower 
priority than the job. 

Section III: The EXEC statement -- DPRTY Parameter 87 

EXEC 



THE DPRTY PARAMETER AND TIME-SLICING 

If your installation provides time-slicing facilities in a system with 
MVT, the DPRTY parameter can be used to make a job step part of a group 
of jobs and job steps to be time-sliced. (To make an entire job part of 
a group of jobs and job steps to be time-sliced, code the PRTY parameter 
on the JOB statement.) At system generation, the priorities of the 
time-sliced groups are selected. If the number assigned to "valuel" 
corr~sponds to a priority number selected for time-slicing and "value2" 
is eithe~ omitted or assigned a value of 11, then the job step's tasks 
will be time-sliced .• 

WHEN YOU CALL A CATALOGED PROCEDURE 

The DPRTY parameter may be coded on the EXEC statement of a cataloged 
procedure step. If the job step calls a cataloged procedure., you may 
want to-override all DPRTY parameters in the procedure or only certain 
DPRTY parameters. To override all DPRTY parameters" code the DPRTY 
parameter on the EXEC statement that calls the procedure. This 
establishes one dispatching priority for all the steps in the procedure. 
To override only certain DPRTY paramete~s, code, on the EXEC statement 
that calls the procedure, DPRTY.procstepname for each procedure step 
that you want to override. The dispatching priority will then pertain 
only to the narned procedure step. 

Examples of the DPRTY Parameter 

1. //BP2 EXEC PGM=FOUR, DPRTY= (13.,9) 

The system uses these numbers to form a dispatching priority for 
this step. Since the numbers are high, the dispatching priority 
will be high. 

2. / /STEP3 EXEC PGM=BROWN31" DPRTY= (., 12) 

The system first assigns a value of 0 to the absent subparameter and 
then forms a dispatching priority. In this case, the dispatching 
priority will be very low. 

3. //ST2 EXEC COMP,DPRTY=4 

The system assigns a dispatching priority of 4 to all steps in the 
procedure named COMP. 

88 JCL Reference (Release 20.1) 



The PARM Parameter 

value 

PARM=value 

consists of up to 10,0 characters of information or options that the 
system is to pass to the processing program. 

Rules for Coding 

1. If the value contains more than one expression separated by commas, 
the value must be enclosed in apostrophes or parentheses, e. g. " 
PARM='Pl,123,MTS' or PARM=(P1,123,MrS). (Enclosing apostrophes and 
parentheses are not passed to the processing program; commas within 
apostrophes and parentheses are passed as pa'rt of the value.) 

2. If any expression contains special characters, either (1) enclose 
the value in apostrophes, or (2) enclose the expression in 
apostrophes and the value in parentheses., e.g., PARM=' PSO" 12+8 0' or 
PARM=(PSO,'12+80'). (The enclosing apostrophes and parentheses are 
not considered part of the value.) If one of the·special 
characters is an apostrophe, code two consecutive apostrophes in 
its place., e.g., PARM=' CONTROL INFORM' 'N'. If one c;>f the special 
characters is an ampersand and you are not def1ning a symbolic 
parameter, code two consecutive ampersands in its place, e.g., 
PARM='3462&&S'. (When two apostrophes or two ampersands are coded, 
only one is passed to the processing program.) 

3. If the value must be continued on another statement, enclose the 
value in parentheses. The continuation comma is considered part of 
the value field and'counts towards the maximum of 100 characters of 
data. You may not continue on another statement any value enclosed 
in apostrophes. 

Providing a Processing Program With Information at,; Execution Time ' 

same information required by a program may vary from application to 
application, such as module attributes and opti ons required by compiler, 
assembler, and linkage editor programs. In order to provide this 
information to the program at the time it is executed, you can code the 
PARM keyword parameter. The program must include instructions ·that can 
retrieve this information. (The exact location and format of the 
infornation passed to a processing program are described under the topic 
"Program Management" in section r of Supervisor and Data Management 
services. ) 

WHEN YOU CALL A CATALOGED OR IN-STREAM PROCEDURE 

The PARM parameter may be coded on the EXEC statement of a cataloged or 
in-stream procedure step. If the job step calls a cataloged or 
in-stream procedure, you can pass information to the first procedure. 
step and nullify all other PARM parameters in the procedure or override 
some of the PARM parameters contained in the procedure. To accomplish 
the first, code the PARM parameter on the EXEC statement that calls the 
procedure. The information contained in the PARM parameter is passed to 
the first procedure step and PARM parameters in all other procedure 

section III: The EXEC statement -- PARM Parameter 89 

EXEC 



steps are nullified·. To override some of the PARM parameters contained 
in the procedure" code, on the EXEC statement that calls the procedure, 
PARM.procstepname for each procedure step that you want to override. 
Information provided is passed only to the named procedure step .• 

Examples of the PARM Parameter 

1. / /RUN3 EXEC PGM=APG22" PARM= (Pl, 123,,' P2=5') 

The system passes the information in the PARM parameter, except the 
apostrophes,. to the processing program named APG22,. 

2. // EXEC PROC 81,. PARM=MT5 

The system passes this information to the first step of the 
procedure named PROC81. If any of the other procedure steps contain 
the PARM parameter, these parameters are nullified. 

3. //STP6 EXEC ASMFCLG., PARM.LKED= (MAP, LET) 

The system passes this information to the procedure step named LKED. 
If any of the other procedure steps contain the PARM parameter, 
these parameters are still in effect. 

90 JCL Reference (Release 20.1) 



The RD Parameter 

R 

RD=\R RNC 
NC 
NR 

specifies that automatic step restart is permitted. 

RNC 

NC 

NR 

specifies that automatic step restart is permitted and automatic 
checkpoint restart is not permitted and no checkpoints can be 
established. 

specifies that neither automatic step restart nor automatic 
checkpoint restart is permitted and no checkpoints can be 
established. 

specifies that neither automatic step restart nor automatic 
checkpoint restart is permitted, but the CHKPT macro instruction 
can establish a checkpoint. 

Rules for Coding 

I 1. Be sure to code MSGLEVEL= (l.,l), MSGLEVEL= (1, O), or MSGLEVEL=l when 
RD=R or RD=RNC is specified. 

2. If you are permitting automatic step restart, assign the step a 
unique step name. 

3. If you have coded the RD parameter on the JOB statement, RD 
parameters on the job's EXEC statements are ignored. 

Using the Restart Facilities 

The RD (restart definition) keyword parameter is coded when you want to 
make use of the step restart facilities, to suppress the action of the 
CHKPT macro instruction, or to suppress automatic restarts. The step 
restart facilities permit execution of a job to be automatically 

I restarted at a job step after the job abnormally terminates or after a 
system failure occurs. Through the RD parameter, you can specify that 
execution of a job step is to be automatically restarted at the 
beginning of the step if it abnormally terminates (step restart) .. 

Execution of a job step can also be automatically restarted within 
the step if it abnormally terminates (checkpain~ restart). In order for 
checkpoint restart to occur, the CHKPT macro instruction must have been 
executed in the processing program before abnormal termination. When 
you use the RD parameter to request suppression of the CHKPT macro 
instruction action, automatic checkpoint restart cannot occur. 

If the RD. parameter is not coded, step restart cannot occur. If the 
RD parameter is not coded and the processing program contains CHKPT 
macro instructions, checkpoint restart can occur. 

section III: The EXEC statement -- RD Parameter 91 

EXEC 



The following three conditions· must be met before automatic step or 
checkpoint restart can occur: (1) the completion code returned during 
abnormal termination indicates that the step is eligible for restart, 
(2') the operator authorizes restart, and (3) MSGLEVEL= (1,0), 
MSGLEVEL=(1.1), or MSGLEVEL=1 must be coded on'the JOB statement. If 
these conditions are satisfied, special disposition processing is 
performed before restCl;rt,. If automatic step restart is to occur" all 
data sets in the restart s,tep with a status of OLD or MOD, and all data 
sets .being passed to steps following the restart step, are· kept. All 
data sets in the restart step with a status of NEW are deleted. If 
automatic checkpoint restart is to occur., all d-ata sets currently in use 
by the job are kept. 

DEFINING RESTART 

You define the type of restart that can occur by coding one of the 
subparameters of the RD parameter: R,RNC, NC, or NR. Each of these 
subparameters is described in detail in the following paragraphs. 

RD=R: R indicates that automatic step restart is permitted. If the 
processing program used by the job step does not include any CHKPT macro 
instructions, coding RD=R allows execution to be resumed at the 
beginn~ng of this step if it abnormally terminates. If the program does 
include a CHKPT macro instruction, coding RD=R permits automatic step 
restart to occur only if the step abnormally terminates before executiOn 
of the CHKPT macro instruction; thereafter, only checkpoint restart can 
occ'Qr. If you cancel the effects of the CHKPT macro instruction before 
a checkpoint restart is performed, the request for automatic step 
restart is again in effect. 

'RD=RNC: RNC indicates that automatic step restart is permitted and 
automatic checkpoint restart is not permitted. RD=RNC should be 
specified when you want to suppress the action of all CHKPT macro 
instru9tions included in the processing program and to permit automatic 
step restart. 

RD=NC,: NC indicates that neither automatic step restart nor automatic 
checkpoint restart is permitted. RD=NC should be specified when you 
want to suppress the action of all CHKPT macro instructions included in 
the processing program and not to permit automatic step restart. RD=NC 
has no effect on processing if CHKPT macro instructions· are not included 
in the program. 

RD=NR: NR indicates that a CHKPT macro instruction can establish a 
checkpoint, but nei·ther automatic step restart nor automatic checkpoint 
restart is permitted. Coding RIFNR allows you to resubmit the job at a 
later time and specify in the RESTART para~eter the checkpoint at which 
execution is to be resumed. (The RESTAHT parameter is coded on the JOB 
statement of the resubmitted job.) RD=NR has not. effect on processing 
if CHKl?!' macro instructions are notinclu:ded, in the program. -

WHEN YOU CALL A CATALOGED PROCEDURE 

The RD parameter may be coded on the EXEC statement of a cataloged 
procedure step. If the job step calls a cataloged procedure, you may 
want to override all RD parameters in the procedure or only certain RD 
parameters. TO override all RD parameters, code the RDparameter on the 
EXEC statement that calls the procedur~. This establishes one restart 
request for all the steps in the procedure. To override only certain RD 
parameters, code, on the EXEC sta tement that calls the procedure, 
RD.procstepname for each procedure- step that you want to override. The 
restart request will then pertain only to the named procedure step. 

92 JCL Reference (Release 20.1) 



References 

1. For detailed information on the checkpoint/restart facilities, 
refer to the publication Advanced Checkpoint/Restart Planning 
Guide" the topic "Checkpoint and Restart" in the publication 
supervisor and Data Management Services, and "Using the Restart 
Facilities" in Appendix B of this publication. 

2. For information on how to code the CHKPT macro instruction, refer 
to the publication supervisor and Data Management Macro 
Instruction s. 

Examples of the RD Parameter 

1. //STEPl EXEC PGM=GIIM"RD=R 

Permits execution to be automatically restarted with this step if it 
abnormally terminates. 

2. //NEST EXEC PGM=T18,RD=RNC 

Permits execution to be automatically restarted with this step if it 
abnormally terminates; suppresses the action of CHKPT macro 
instructions issued in the program this job step uses. 

3. //CARD EXEC PGM=WTE,RD=NR 

Neither automatic step restart nor automatic checkpoint restart can 
occur, but CHKPT macro instructions issued in the program that this 
job step executes can establish checkpoints. 

4. //STP4 EXEC BILLING,RD. PAID=NC. RD. BILL=NR 

Specifies that different restart requests pertain to each of the 
named procedure steps (PAID and BILL). 

section III: The EXEC Statement -- RD Parameter 93 

EXEC 





The REGION Parameter--Without Main Storage Hierarchy 
Support (For MVT) 

REGION=value1< 

valueK 
specifies the number of contiguous 1024-byte areas of main storage 
to be allocated to the job step. The number can range from one to 
five digits but may not exceed 16383. 

Rules for Coding 

1. Code an even number. (If you code an odd number, the system treats 
it as the next highest even number. When the value 16383K is 
coded, the system treats it as 16384K. However, the value 16384K 
must not be coded on the EXEC statement.) 

2. If you have coded the REGION parameter on the JOB statement, REGION 
parameters on the job's EXEC statements are ignored,. 

3. If the REGION parameter is coded for MFT, the parameter is not 
used" but is checked for syntax. 

Requesting Main Storage 

The REGION keyword parameter is used to specify how much main storage, 
in contiguous bytes, is to be allocated to the job step. Code the 
REGION parameter when you want more storage or less storage than would 
be allocated if the default region size was used. The default region 
size is established as a PARM parameter field in the cataloged procedure 
for the input reader. You can consult the Storage Estimates publication 
to help you determine how much main storage is required to process your 
job. 

ACQUIRING ADDITIONAL MAIN STORAGE 

If the step may require use of more main storage than has been 
allocated, you can code the ROLL parameter on either the JOB statement 
or this EXEC statement and request that the system try to provide you 
with additional main storage. The ROLL parameter is described in the 
chapters "The ROLL Parameter" later in this section and in Section II. 

WHEN YOU CALLA CATALOGED PROCEDURE 

The REGION parameter may be coded on the EXEC statement of a cataloged 
procedure step. If the job step calls a cataloged procedure, you may 
want to override all REGION parameters in the procedure or only certain 
REGION parameters. To override,all REGION parameters, code the REGION 
parameter on the EXEC statement that calls the procedure. Each 
procedure step will be allocated the same amount of storage. To 
override only certain REGION parameters, code, on the EXEC statement 
that calls the procedure, REGION.procstepname for each procedure step 
that you want to override. The requested region size will then be 
allocate~ only to the named procedure step. 

section III: The EXEC Statement -- REGION Parameter 95 

EXEC 



Examples of the REGION Parameter 

1. //JUNE EXEC PGM=A1403,REGION=112K 

Specifies that 112 contiguous 1024-byte areas of main storage are to 
be allocated to the job step. 

2. //STP2 EXEC PGM=RATL., REG I ON=7 OK, ROLL=(YES, YES) 

The REGION parameter specifies that 70 contiguous 1024-byte areas of 
main storage are to be allocated to the job step. In the ROLL 
parameter., the first subparameter tells the system that this step 
may be rolled out if additional storage is required by another job; 
the second subparameter tells the system that it should try to 
provide this step with additional main storage if it is required. 

3,. / /STP4 EXEC BILLING"REGION~ IATE=80K, REGION. BILL=108K 

Specifies that different region sizes are to be allocated to the 
named procedure steps (LATE and BILL). 

96 JCL Reference (Release 20.1) 



The REGION Parameter--With Main Storage Hierarchy Support 
(For MVT, Excluding M6SMP) 

REGION=(value K,value~K) 

value K 
specifies the number of contiguous 1024-byte areas in hierarchy 0 
to be allocated to the job step. If IBM 2361 Core storage is 
present, the number cannot exceed 16383. 

value~K 
specifies the number of contiguous 1024-byte areas in hierarchy 1 
to be allocated to the job step. If IBM 2361 Core storage is 
present, the number cannot exceed 1024 (for each Modell) or 2048 
(for each Model 2). 

Rules for Coding 

1. When processor storage includes hierarchies 0 and 1, the sum of 
value and value~ cannot exceed 16383. 

2 • Code even numbers. (If you code an odd number., the system trea ts 
it as the next highest even number. When 16383K is coded for 
value " the system treats it as 16384K. However, 16384K must not 
be coded for value on the EXEC statement.) 

3. When you are requesting storage only in hierarchy 1, precede value1 
with a comma, to indicate the absence of value • 

4... When you are requesting storage only in hierarchy 0" you need not 
code the parentheses. 

5.~ If you have coded the REGION parameter on the JOB statement, REGION 
parameters on the job's EXEC statements are ignored. 

6. If the REGION parameter is coded for MFT, the parameter is not 
used, but is checked for syntax. 

Requesting Main Storage in One or Two Hierarchies 

The REGION keyword parameter is used to specify how much main storage is 
to be allocated to each job step, and" when main storage hierarchy 
support has been specified at system generation, in which hierarchy or 
hierarchies to allocate main storage. With main storage hierarchy 
support" storage hierarchies 0 and 1 are provided. If IBM 2361 Core 
storage" Model 1 or 2" is present in the system, processor storage is 
referred to as hierarchy 0 and 2361 Core storage is referred to as 
hierarchy 1. If 2361 Core storage is not present., a two-part region is 
established in processor storage when regions are requested in two 
hierarchies. The two parts are not necessarily contiguous in processor 
storage. 

Code the REGION parameter to specify how much storage is to be 
allocated in each hierarchy, or that all storage for the job step is to 
be allocated in a particular hierarchy. (If you do not code the REGION 
parameter on either the JOB or EXEC statement, the default region size, 
which is a PARM parameter field in the cataloged procedure for the input 
reader" is used and is always allocated in hierarchy O. If you code the 
REGION parameter and request storage only from hierarchy 1, no hierarchy 
o segment will be allocated.> You can consult the Storage Estimates 

Section III: The EXEC Statement -- REGION Parameter 97 

EXEC 



publication to help you determine how much main storage is required to 
process the job step. Then. depending on your reasons for using 
hierarchies,. determine how much storage is required in each,. 

If main storage hierarchy support was not specified at system 
generation and regions are requested in both hierarchies,. the region 
sizes are combined and an attempt is made to allocate a single region 
from processor storage. If a region is requested entirely from 
hierarchy 1" an attempt is made to allocate the region from processor 
storage. 

ACQUIRING ADDITIONAL MAIN STORAGE 

If the job step may require more main storage than has been allocated, 
you can code the ROLL parameter and request that the system try to 
provide you with additional main storage in that hierarchy,. The ROLL 
parameter is described in the chapters "The ROLL Parameter" later in 
this section and in Section II. 

WHEN YOU CALL A CATALOGED PROCEDURE 

The REGION parameter may be coded on the EXEC statement of a cataloged 
procedure step. If the job step calls a cataloged procedure" you may 
want to override all REGION parameters in the procedure or /only certain 
REGION parameters. To override all REGION parameters, code the REGION 
parameter on the EXEC statement that calls the procedure. Each 
procedure step will be allocated the same amount of storage in the 
specified hierarchies. To override only certain REGION parameters, 
code. on the EXEC statement that calls the procedure. 
REGION.procstepname for each procedure step you want to override. The 
requested region size will then be allocated in the specified 
hierarchies only to the named procedure step. 

Examples of the REGION Parameter 

1. //MART EXEC PGM=TYP,.REGION= (80K. 30K) 

Specifies that the system is to allocate 80 contiguous 1024-byte 
areas of storage in hierarchy 0 and 30 contiguous 1024-byte areas of 
storage in hierarchy 1. If main storage hierarchy support ,is not 
included in the system. the system will try to obtain 110 contiguous 
1024-byte areas in processor storage. 

2. // EXEC PGM=U1489,REGION=(.98K) 

Specifies that the system is to allocate 98 contiguous 1024-byte 
areas of storage in hierarchy 1. 

3. //RAND EXEC PGM=8SYS,REGION=(100K,50K).ROLL=(YES,YES) 

The REGION parameter specifies that the system is to allocate 100 
contiguous 1024-byte areas of storage in hierarchy 0 and 50 
contiguous 1024-byte areas of storage in hierarchy 1. In the ROLL 
parameter. the first subparameter tells the system that this step 
may be rolled out if additional storage is required by another job; 
the second subparameter tells the system that it should try to 
provide this step with additional main storage if it is required~ 

4. //STP4 EXEC BILLING,REGION.PAID=(28K,10K),REGION.LATE=(44K,8K) 

Specifies that different region sizes are to be allocated to the 
named procedure steps (PAID and LATE). 

98 JCL Reference (Release 20.1) 



The ROLL Parameter (For MVT) 

x 

y 

ROLL= (X"y) 

declares whether the job step may be rolled out. Code YES if the 
step may be rolled out~ code NO if the step may not be rolled out. 

declares whether the job step may cause rollout of another job 
step. Code YES if the step may cause rollout of another job step~ 
code NO if the step may not cause rollout of another job step. YES 
must be coded if you want additional main storage allocated to the 
step when additional main storage is required. 

Rules for Coding 

1. If you code the ROLL parameter, both subparameters must be 
specified. 

2. If you have coded the ROLL parameter on the JOB statement" ROLL 
parameters coded on the job's EXEC statements are ignored. 

3. Code ROLL=(NO"YES) or ROLL=(NO,NO) if this step is part of a 
teleprocessing job that uses the Auto Poll option. If you allow 
the step to be rolled out, the step cannot be restarted properly. 

4. If the ROLL parameter is coded for MFT, the parameter is not used" 
but is checked for syntax. 

When to Code the ROLL Parameter 
The ROLL keyword parameter should be coded if the job step may require 
more main storage than was requested in the REGION parameter. When you 
specify in the ROLL parameter that this job step may cause rollout of 
another job step, an attempt is made to allocate additional storage if 
the step requires it. In order to allocate this additional space to a 
job step, another job step with a lower priority may have to be rolled 
out" i. e. , temporarily transferred to secondary storage. 

The ROLL parameter should al so be coded when you want control over 
whether the job step can be rolled out because of another step's need 
for additional main storage. If the ROLL parameter is not coded, the 
specification made in the PARM parameter field in the cataloged 
procedure for the input reader is used. 

WHEN YOU CALL A CATALOGED PROCEDURE 

The ROLL parameter may be coded on the EXEC statement of a cataloged 
procedure step. If the job step calls a cataloged procedure, you may 
want to override all ROLL parameters in the procedure or only certain 
ROLL parameters. TO override all ROLL parameters, code the ROLL 
parameter on the EXEC statement that calls the procedure. This 
establishes one rollout/rollin request for all the steps in the 
procedure. To override only certain ROLL parameters, code, on the EXEC 
statement that calls the procedure, ROLL.procstepname for each procedure 
step that you want to override. The rollout/rollin request will then 
pertain only to the named procedure step. 

Section III: The EXEC statement -- ROLL Parameter 99 

EXEC 



Examples of the ROLL. Parameter 

1. //FILL EXEC PGM=PLUS1,ROLL=(YES1, YES),REGION=100K 

Specifies that this step may be rolled out and may cause rollout of 
another job step if this step requires more than lOOK of main 
storage. 

2. //UP EXEC PGM=Z165,ROLL=(NO,YES) 

specifies that this step may not be rolled out but may cause rollout 
of another job step. 

3. //STP4 EXEC BILLING., ROLL.LATE= (YES"NO) .ROLL.BILL=(NO,NO) 

Specifies that different rollout/rollin requests pertain to each of 
the named procedure steps (LATE and BILL) '. 

100 JCL Reference (Release 20.1) 



The TIME Parameter 

minutes 

TIME=l (minutes"seconds) l 
1440 ~ 

specifies the maximum number of minutes the job step can use the 
cpu. The number of minutes must be less than 1440 (24 hours). 

seconds 

1440 

specifies the maximum number of seconds beyond the specified number 
of minutes the job step can use the cpu, or, if no minutes are 
specif ied., the maximum number of seconds the job step can use the 
cpu. The number of seconds must be less than 60. 

specifies that the job step is not to be timed. Code 1440 if the 
step may require use of the CPU for 24 hours or more or if the step 
should be allowed to remain in a wait state for more than the 
established time limit. 

Rules for Coding 
J.. If the CPU time limit is given in minutes only, you need not code 

the parentheses. 

2. If the CPl1 time limit is given in seconds only" you must code a 
comma preceding the seconds to indicate the absence of minutes. 

3. You must not code TIME=O on an EXEC statement. 

Specifying a Time Limit for a dob Step 
The TIME keyword parameter can be used to specify the maximum amount of 
time the job step may use the cpu. Two benefits of coding the TIME 
parameter are that it allows you to find out how long the step uses the 
CPU (CPU time used appears on the output listing), and it helps limit 
the cpu time wasted by the step if it goes into a loop. Normally., a 
step that exceeds the specified time limit causes termination of the 
job. However., if the system Management Facilities option is included in 
the system and a user exit routine is provided., this routine can extend 
the time limit so that processing can continue. When the TIME parameter 
is not coded, a default time limit is assumed. The default is specified 
as a PARM parameter field in the cataloged procedure for the input 
reader. 

TIME LIMIT FOR WAIT STATES 

since the job step can go into an extremely long wait state, the time a 
job step may remain in a wait state is limited. If the System 
Management Facilities option is included in the system. the installation 
determines this time limit. In this case, if the job step remains in a 
wait state for more than the established time limit, the job is 
terminated unless a user-provided exit routine extends the wait-state 
time limit for the step. If the System Management Facilities option is 
not included, the system automatically provides a 3O-minute time limit 
for wait states; if the job step remains in a wait state for more than 
30 consecutive minutes., the job is terminated. 

Section III: The EXEC statement -- TIME Parameter 101 

EXEC 



How to Eliminate Timing 

Certain applications require a job step to use the CPU for 24 hours or 
more.. In this case you must eliminate timing by coding TIME=1440. This 
specification should also be made when the step should be allowed to 
remain in a wait state for more than the established time limit. 

HOW THE JOB TIME LIMIT AFFECTS THE STEP TIME LIMIT 

The remaining job time may affect the amount of time the step can use 
the CPU. If the remaining CPU time for the job is less than the CPU 
time limit specified on the EXEC statement., the step can use the CPU 
only for the job's remaining CPU time. For example, if the job's 
remaining CPU time is 5 minutes and the step specifies a CPU time limit 
of 10 minutes, the step can only use the CPU for 5 minutes. 

WHEN YOU CALL A CATALOGED PROCEDURE 

The TIME parameter may be coded on the EXEC statement of a cataloged 
procedure step. If the job step calls a cataloged procedure, you may 
want to override all TIME parameters in the procedure or only certain 
TIME parameters. To override all TIME parameters, code the TIME 
parameter on the EXEC statement that calls the procedure. This applies 
a CPU time limit for the entire procedure, and nullifies any TIME 
parameters that appear on EXEC statements in the proCedure. To override 
only certain TIME parameters, code., on the EXEC statement that calls the 
procedure" TIME. procstepname for each procedure step that you want to 
override. The CPU time limit will then pertain only to the named 
procedure step. 

Reference 

1. A discussion of the System Management Facilities option is 
contained in "section 5: Tas~ Management" in Concepts and 
Facilities. Information on user exit routines to be used with the 
System Management Facilities option is contained in the chapter 
"System Management Facilities" in System Programmer's Guide. 

Examples of the TIME Parameter 

1. //STEPl EXEC PGM=GRYS,TIME=(12,10) 

Specifies that the maximum amount of time the step can use the CPU 
is 12 minutes 10 seconds. 

2. //FOUR EXEC PGM=JPLUS, TIME= (,30) 

Specifies that the maximum amount of time the step can use the CPU 
is 30 seconds. 

3. //INT EXEC PGM=CALC,TIME=5 

Specifies that the maximum amount of time the step can use the CPU 
is 5 minutes. 

102 JCL Reference (Release 20.1) 



4. //LONG EXEC PGM=INVANL,.TIME=1440 

Specifies that the job step is not to be timed. Therefore. the step 
may use the CPU and may remain in a wait state for an unspecified 
period of time. 

5. //STP4 EXEC BILLING.TlME.PAID=(45.30).TIME.BILL=(112,59) 

specifies that different time limits pertain to each of the named 
procedure steps. 

Section III: The EXEC Statement -- TIME Parameter 103 

EXEC 





Section IV: The DD Statement 

The DD (data definition) statement describes a data set that is to be 
used in a job step and specifies the input and output facilities 
required for use of the data set. Each data set to be used in a step 
requires a DD statement; all DD statements for a step follow that step's 
EXEC statement. Although all DD statement parameters are optional., a 
blank operand field is invalid., except when you are overriding DD 
statements that define concatenated data sets. (See "OVerriding DD 
Statements that Define Concatenated Data Sets" in Appendix A of this 
publication.) You can include a maximum of 255 DD statements per job 
step. 

DD Statement Format 

~//ddname DD operands comments 

The DD statement consists of the characters //. in columns 1 and 2, and 
four fields - the name, operation (DD), operand., and comments field. 

Rules for Coding 

Follow the order listed below when coding the DD statement: 

1. Code the characters // in columns 1 and 2. 

2. Code a ddname., starting in column 3. (A ddname is not coded in two 
cases,. These cases are described in the chapter "Assigning a 
Ddname. ") 

3. Follow the ddname, or // if a ddname is not coded, with at least 
one blank. 

4. Code DD. 

5. Follow DD with at least one blank. 

Section IV: The DD Statement 105 



6. Code any desired positional parameter. 

7. Code any desired keyword parameters. Separate each parameter with 
a comma. 

8. Code at least one blank. 

9. Code any desired comments • 

. Positional and Keyword Parameters 

There are two types of parameters that can be coded on the DD statement:. 

Positional parameters, which must precede any keyword parameters. One 
of the following positional parameters may be coded on a DD statement: 

* DATA 
DUMMY 
DYNAM 

These positional parameters are described in the following pages in the 
order listed above. 

Keyword parameters, which may be coded in any order. The following 
keyword parameters can be coded on a DD statement: 

AFF 
DCB 
DDNAME 
DISP 
DSN (see DSNAME) 
DSNAME 
FCB 
LABEL 
OUTLIM 
QNAME - MFT and MVT with TCAM 
SEP 
(continued on next page) 

106 JCL Reference (Release 20.1) 



SPACE 
SPLIT 
SUBALLOC 
SYSOUT 
TERM - MVT with TSO 
UCS 
UNIT 
VOL (see VOLUME) 
VOLUME 

These keyword parameters are described, after the positional parameters, 
in the order listed above. 

Sample DD Statements 

1. //DDA DD DSNAME=i&TEMP, UNIT=2400"DISP=(NEW, PASS) 

2. //PRINT DD SYSOUT=F 

3. //IN DD DSNAME=ALLOC ,DISP= (,KEEP,DELETE) " UNIT=2311, X 
// VOLUME=SER=541382,SPACE=(CYL" (12.,1» 

4. //DWN DD * 

Section IV: The DD Statement 107 





Assigning a Ddname 

( //ddname DD 

The ddname identifies a DD statement so that subsequent control 
statements and the data control block in the processing program can 
refer to it. The ddname must begin in column 3 and consist of 1 through 
8 alphameric and national (Q), #, $) characters. The first character 
must be an alphabetic or national character. 

Each ddname within a job step should be unique. If duplicate ddnames 
exist in a step, allocation of devices and space and disposition 
processing are done for both DD statements; however, all references are 
directed to the first such DD statement in the step. 

There are several special ddnames that tell the system that you want 
to make use of particular facilities. Except for the ddname SYSCHK, do 
not use the special ddnames unless you want these facilities. These 
special ddnames are individually discussed following "Examples of Valid 
Ddnames" in the section titled "Special Ddnames". 

Apart from the restricted use of certain special ddnames, there are 
two instances when you should not code a ddname at all: 

1. If a DD statement is to define a data set that is concatenated with 
a data set defined by a preceding DD statement. 

2. If the DD statement is the second or third consecutive DD statement 
that defines an indexed sequential data set. (Defining an indexed 
sequential data set on more than one DD statement is discussed in 
"Appendix C: Creating and Retrieving Indexed sequential Data 
Sets. n) 

WHEN ADDING OR OVERRIDING INFORMATION IN A CATALOGED PROCEDURE STEP 

If the job step uses a cataloged procedure, DD statements that follow 
the EXEC statement are used (1) to override parameters on the various DD 
statements in the procedure" and (2) to add new DD statements to the 
procedure. These modifications exist only for the duration of the job 
step; they do not change the procedure permanently. 

To make one of these modifications, each ddname must be qualified by 
a procedure step name, i.e., procstepname.ddname,as follows: 

1. To override parameters on a DD statement" code the ;Dc;une of the 
procedure step in which the DD statement appears" followed by a 
period, followed by the name of the DD statement that you want to 
override. ' 

2. To-add DD statements to a procedure step, code the name of the 
procedure step in which you want to add the statement" followed by 
a period, followed by a ddname of your choosing. 

To supply a procedure step with data in the input stream" code the 
name of the procedure step that is to use the data, followed by a 
ddnameu This ddname may be predefined in the procedure step by 
means of the DDNAME parameter. In this case, the ddname that 
follows the procedure step name is the name coded in the DDNAME 
parameter. Otherwise, you code a ddname of your choosing. 

Section IV: The DD statement -- Assigning a Ddname 109 



Examples of Valid Ddnames 

1. //DD1 DD 

2. //#5863 DD 

3,. / /~NPUT DD 
// DD 

Because the ddname is missing from the second OD statement, the data 
sets defined in these statements are concatenated. 

4. //PAYROLL.DAY DD 

If the procedure step named PAYROLL includes a OD statement named 
DAY, this statement overrides parameters on the statement named DAY. 
If the step does not include a DD statement named DAY, this 
statement is added to the procedure step for the duration of the job 
step. 

5. //STEPSIX.DD4 DD 
// OD 

You can define data sets that are to be concatenated and added to 
the procedure step by coding this sequence; that is, by identifying 
the procedure step in which you want to add the. statements, followed 
by a ddname of your choosing, on the first DD statement and omitting 
the ddname on the second DD statement. 

110 JCL Reference (Release 20.1) 



Special Ddnames 

There are five special ddnames that tell the system you want to make use 
of a particular facility. The five ddnames and their functions are: 

• JOBLIB - this DD statement defines a private library that the 
system makes available for use by the job. 

• STEPLIB - this DD statement defines a private library that the 
system makes available for use by a job step. 

• SYSABEND - this DD statement defines a data set on which a dump 
can be written if the step abnormally terminates. The 
dump provided would include the system nucleus,. the 
processing program storage area, and" possibly" a 
trace table. 

• SYSUDUMP - this DD statement defines a data set on which a dump 
can be written if the step abnormally terminates. The 
dump provided would include only the processing 
program storage area. 

• SYSCHK- this DD statement defines the checkpoint data set and 
is included when a deferred checkpoint restart is to 
occur. 

section IV: The DD Statement -- Special Ddnames 111 



dOBLIB 

Unless the system is told that the program you request on the EXEC 
statement resides in a private or temporary library. the system expects 
to find it in the system library (SYS1.LINKLIB). One way to tell the 
system that a program resides in a private library is to follow the JOB 
statement with a, DD statement named JOBLIB,. (The other way to tell the 
system that a program resides in a private library is to include, as one 
of the DD statements for a job step; a DD statement named STEPLIB.. The 
STEPLIB DD statement is described under the next topic" "STEPLIB.") If 
you include a JOBLIB DD statement" each time you request a program the 
system first looks in the private library; if the system does not find 
the program there, the. system looks for it in the system library .• 

The parameters you code on the JOBLIBDD statement are dete~ined by 
whether the library is cataloged. The parameters that must be coded 
when the library is cataloged and when the library is not cataloged are 
described under "When the Library Is Cataloged" and "When the Library Is 
Not Cataloged," respectively. In either case, how you code the DISP 
parameter is the same and is described in the topic "The DISP 
Parameter." 

RULES FOR CODING THE JOBLIB DD STATEMENT 

1. The ddname must be JOBLIB. Never use the ddname JOBLIB except when 
you are defining a private library. 

2. The JOBLIB DD statement must appear immediately after the JOB 
statement to which it pertains. 

3. A JOBLIB DD statement cannot appear in a cataloged procedure. 

The DISP Parameter 

To make the private library available throughout the job, you must code 
the DISP parameter to specify the library's status and disposition. One 
of the following may be coded: 

1. DISP=(OLD,PASS) 
The library already exists and is kept at the end of the job. If 
you code DISP=OLD, the system assumes DISP=(OLD,PASS). 

2. DISP=(SHR,PASS) 
The library already exists and is kept at the end of the job. The 
library may be' used by other jobs that are being executed 
concurrently. If you code DISP=SHR, the system assumes 
DISP=(SHR,PASS). 

3. DISP=(NEW,PASS) 
The library is created and used in the job, and is deleted at the 
end of the job. 

4. DISP=(NEW,CATLG) 
The library is created, cataloged, and used in the job, and is kept 
at the end of the job. 

112 JCL Reference (Release 20.1) 



When the Library Is Cataloged 

If the private library is cataloged. you must always code the DSNAME and 
DISP parameters. 

• The DSNAME parameter specifies the name of the private library. 
• The DISP parameter is either DISP=(OLD,PASS) or DISP=(SHR,PASS). 

The other parameter you might code is DeB. 

• Code the DCB parameter if complete data control block information is 
not 'contained in the data set label. 

If you wish to refer to the private library in a later DD statement. 
code DSNAME=*.JOBLIB and the DISP parameter, DISP=(OLD,disposition). 
(Do not assign a disposition of DELETE, because the library would then 
be deleted at the end of the job step and be unavailable for use during 
the remairider of the job.) If a later DD statement defines a data set 
that is to be placed on the same volume as the private library, you can 
code VOLUME=REF=*.JOBLIB to obtain volume and unit information. 

When the Library Is Not Cataloged 

If the private library is not cataloged. you must always code the DISP 
and UNIT parameters. 

• The DISP parameter is 
DISP= (OLD, PASS), DISP= (SHR ,PASS) , DISP=(NEW, PASS) " or 
DISP=(NEW,CATLG). 

• The UNIT parameter specifies the device to be allocated to the 
library. 

You must always code the VOLUME parameter unless the status of the data 
set is NEW. The DSNAME parameter is required unless the data set has 
been assigned a di sposi tion of (NEW" PASS) • If the status of the data 
set is NEW, the SPACE parameter is required. 

• The VOLUME parameter identifies the volume serial number. 

• The DSNAME parameter specifies the name of the private library. 

• The SPACE parameter allocates space for the library on the 
designated volume. 

The other parameter you might code is DCB. 

• Code the DCB parameter if complete data control block information is 
not contained in the data set label. 

If you wish to refer to the private library in a later DD statement" 
code DSNAME=* .JOBLIB, VOLUME=REF=*.JOBLIB (or VOLUME=SER=serial number,. 
UNIT=unit information)" and the DISP parameter, DISP=(OLD,disposition). 
(Do not assign a dispOSition of DELETE, because the library would then 
be deleted at the end of the job step and be unavailable for use during 
the remainder of the job). If a later DD statement defines a data set 
that is to be placed on the same volume as the private library, you can 
code VOLUME=REF=*.JOBLIB to obtain volume and unit information. 

Concatenating Libraries 

You can arrange a sequence of DD statements that define different 
libraries. The libraries are searched in the order in which the DD 

section IV: The DD Statement -- special Ddnames 113 



statements appear. If the system library is not defined on one of these 
DD statements/I it is searched last. 

To concatenate libraries/I omit the ddname from all the DD statements 
defining the libraries except the first DD statement. The first DD 
sta tement must s peci fy a ddname of JOBLIB,. and the entire group must 
appear immediately after the JOB statement. 

When the Job Includes a STEPLIB DD statement 

If both JOBLIB and STEPLIB DD statements appear in a job. the STEPLIB 
definition has precedence" i.e •.• the private library defined by the 
JOBLIB DD statement is not searched for any step that contains the 
STEPLIB definition. If you want the JOB LIB definition ignored but the 
step does not require use of another private library, define·the system 
library on the STEPLIB DD statement: 

/ /STEPLIB DD DSNAME=SYS1.LINRLIB" DISP=OLD 

Examples of the JOBLIB DD Statement 

1. 

2. 

//PAYROLL 
//JOBLIB 
//STEPl 
//STEP2 
//DDl 

JOB 
DD 
EXEC 
EXEC 
DD 

DSNAME=PRIVATE.LIB4.DISP= (OLD, PASS) 
PGM=SCAN 
PGM=UPDATE 
DSNAME=* .JOBLIB., DISP= (OLD, PASS) 

The private library defined on the JOBLIB DD statement is cataloged. 
The statement named DDl refers to the private library defined in the 
JOBLIB DD statement. 

//PAYROLL JOB REGION=86K 
//JOBLIB DD DSNAME=PRIV. DEPTS8,.DISP=(OLD.PASS), UNIT=2311, X 
// VOLUME=SER=DS8PVL 
//STEPl EXEC PGM=DAY 
//STEP2 EXEC PGM=BENEFITS 
//DD1 DD DSNAME=* • JOBLIB. VOLUME=REF=*. JOBLIB,DISP= (OLD,. PASS) 

The private library defined on the JOBLIB DD statement is not 
cataloged. The statement named DDl refers to the private library 
defined in the JOBLIB DD statement. 

3. //TYPE 
//JOBLIB 
// 
//STEP1 
//DDA 

JOB MSGLEVEL= (1" 1) 
DD DSNAME=GROUP8.LEVELS,DISP=(NEW,CATLG).UNIT=2311, X 

VOLUME=SER=148S62.SPACE=(CYL,(SO,3,4» 
EXEC PGM=DISC 
DD DSNAME=GROUP 8. LEVELS (RATE), DISP=OLD, X 

VOL=REF=*.JOBLIB // 
//STEP2 EXEC PGM=RATE 

The private library defined on the JOBLIB DD statement does not 
exist yet; therefore. all the parameters required to define the 
private library are included on the JOBLIB DD statement. The 
library is not created until STEPl when a new member is defined for 
the library.. The system looks for the program named DISC in the 
system library; the system looks for the program named RATE first in 
the private library. 

114 JCL Reference (Release 20.1) 



4. //PAYROLL 
//JOBLIB 
// 
// 
// 

JOB 
DD 
DD 
DD 

DSNAME=KRG.LIB12,. DISP= (OLD,. PASS) 
DSNAME=GROUP31.TEST,.DISP= (OLD. PASS) 
DSNAME=PGMSLIB,. UNIT=2311. 
DISP=(OLD.PASS).VOLUME=SER~34568 

x 

several private libraries are concatenated. The system searches for 
each program in this order: KRG. LIB12. GROUP31. TEST,. PGMSLIB. 
before searching SYS1.LINKLIB. 

Section IV: The DD Statement -- Special Ddnames 115 



STEPLIB 

Unless the system is told that the program requested on the "EXEC 
statement resides in a pri va te or temporary library" the system expects 
to find the program in the system library (SYS1.LINKLIB),. One way to 
tell the system that the program the job step needs resides in a private 
library is to include, as one of 'the DD statements for that step" a DD 
statement named STEPLIB. (The other way to tell the system that a 
program resides in a private library is to follow the JOB statement with 
a DD statement named JOBLIB. The JOBLIB DD statement is described in 
the previous topic, " JOBLIB. ") If you include a STEPLIB DD statement" 
each time a program is requested the system first looks in the private 
library for the program the job step uses; if the system does not find 
the program there" it looks for the program in the system library. 

RULES FOR CODING THE STEPLIB DD STATEMENT 

1. The ddname must be STEPLIB. Never use the ddname STEPLIB except 
when you are defining a private library. 

2. A STEPLIB DD statement can appear in any position among the DD 
statements for the step. 

3. The library defined on a STEPLIB DD statement can be referred to by 
or passed to later job steps in the same job. 

4. A STEPLIB DD statement can appear in a cataloged procedure. 

S. The parameters you code on the STEPLIB DD statement are determined 
by whether the library is cataloged, not cataloged, or passed by a 
previous job step. 

When the Library Is Cataloged 

If the private library is cataloged, you must always code the DSNAME and 
DISP parameters. 

• The DSNAME parameter specifies the name of the private library. 

• The DISP parameter specifies the library's status, either OLD or 
SHR, and its disposition. The disposition would be KEEP, UNCATLG, 
DELETE" or PASS" depending on how you want the library treated after 
its use in the job step. 

The other parameter you might code is DCB. 

• Code the DCB parameter if complete data control block information is 
not contained in the data set label. 

When the Library Is Not Cataloged or Passed 

If the private library is not cataloged or passed, you must always code 
the DSNAME. DISP" VOLUME" and UNIT parameters. 

• The DSNAME parameter specifies the name of the private library. 

• The DISP parameter specUies the library's status. either OLD or 
SHR, and its disposition,. The disposition would be KEEP. CATLG. 
DELETE, or PASS, depending on how you want the library treated after 
its use in the job step. 

116 JCL Reference (Release 20.1) 



• The VOLUME parameter identifies the volume serial number. 

• The UNIT parameter specifies the device to be allocated to the 
library. 

The other parameter you might code is DCB. 

• Code the DCB parameter if complete data control block information is 
not contained in the data set label. 

When the Library Is Passed By a Previous step 

If a private library has been assigned a disposition of PASS, a later 
job step can use the library when you code the DSNAME and OISP 
parameters on a STEPLIB DO statement. 

• The DSNAME parameter specifies either the name of the private 
library or a backward reference of the form *.stepname.STEPLIB. If 
the STEPLIB DO statement that assigned a disposition of PASS oc.curs 
in a cataloged procedure" the backward reference must include the 
procedure step name, i~e., *. stepname. procstepname .• STEPLIB. 

• The DISP parameter specifies a status of OLD and a disposition. The 
disposition would be KEEP, CATLG., UNCATLG, DELETE., or PASS, 
depending on how you want the library treated after its use in the 
job step. 

Concatenating Libraries 

You can arrange a sequence of DD statements that define different 
libraries. The libraries are searched in the order in which the DO 
statements appear. If the system library is not defined on one of these 
statements, it will be searched last for the program the job step uses. 

To concatenate libraries" omit the ddname from all the DD statements 
defining the libraries except the first DO statement. The first DD 
statement must specify a ddname of STEPLIB. and the entire group appears 
as part of the DD statements for a particular step. 

When the Job Includes a JOBLIB DD Statement 

If both JOBLIB and STEPLIB DD statements appear in a job, the STEPLIB 
definition has precedence, i.e., the private library defined by the 
JOBLIB DO statement is not searched for any step that contains the 
STEPLIB definition. If you want the JOBLIB definition ignored but the 
step does not require use of another private library.. define the system 
library on the STEPLIB DO statement: 

/ /STEPLIB OD DSNAME=SYS1. LINKLIB .• DISP=OLD 

Examples of the STEPLIB DD Statement 
1. //PAYROLL 

//STEP1 
//STEP2 
//STEPLIB 
//STEP3 
//STEPLIB 

JOB 
EXEC 
EXEC 
OD 
EXEC 
OD 

LAB14 
PGM=SPKCH 
OONAME=PRIV. LIBS:. DISP= (OLD" KEEP) 
PGM=TIL80 
I5NAME=PRIV. LIB13, DISP= (OLD., KEEP) 

The private libraries defined in STEP2 and STEP3 are cataloged. 

Section IV: The DO Statement -- special Ddnames 117 



2,. 

3. 

//PAYROLL 
//JOBLIB 
//STEPl 
//STEP2 
//STEPLIB 
// 
//STEP3 
//STEP4 
//STEPLIB 
// 

JOB 
DD 
EXEC 
EXEC 
DD 

EXEC 
EXEC 
DD 

DSNAME= LIB5. GROUP4" DISP= (OLD, PASS) 
PROC=SNZ12 
PGM=SNAPI0 
ISNAME=L IBRARYP, DISP= (OLD, PASS) " 
UNIT=2311,VOLUME=SER=55566 
PGM=A1530 
PGM=SNAPll 
llSNAME=*. STEF2. STEPLIB" 
DISP=(OLD,KEEP) 

X 

X 

The private library defined in STEP2 is not cataloged. The STEPLIB 
DD statement in STEP4 refers to the library defined in STEP2. Since 
a JOBLIB DD statement is included, STEPl and STEP3 could execute 
programs from LIB5.GROUP4 or, if not found there, from SYS1.LINKLIB. 
STEP2 and STEP4 could execute programs from LIBRARYP or 
SYS1.LINKLIB. 

//PAYROLL 
//JOBLIB 
//STEPl 
//STEPLIB 
//STEP2 
//STEP3 
//STEPLIB 
// 
// 
// 
//STEP4 

JOB 
DD 
EXEC 
pD 
~EC 

EXEC 
DD 
DD 

DD 
EXEC 

DSNAME=LIB5.GROUP4, DISP=(OLD., PASS) 
PGM=SUM 
DSNAMErSYS1.LINKLIB,DISP=OLD 
PGM=VARY 
PGM=CALC 
llSNAME=PRIV • WORK, DISP= (OLD" PASS) 
DSNAME=LIBRARYA, DISP= (OLD"KEEP), 
UNIT=2311,VOLUME=SER=44455 
DSNAME=LIB.DEPT88,DISP=(OLD,KEEP) 
PGM=SHORE 

STEP2 and STEP4 can use programs contained in the private library 
named LIB5.GROUP4, which is defined in the JOBLIB DD statement. 
STEPl can use a program only from the system library, since the 
library defined on the STEPLIB DD statement ~s the system library 
and the JOBLIB definition is ignored. A concatenation of private 
libraries is defined in STEP3. The system searches for the program 
named CALC in this order: PRIV.WORK, LIBRARYA, LIB.DEPT88, 
SYS1.LINKLIBo If a later job step refers to the STEPLIB DD 
statement in STEP3" the system will search for the program in the 
private library named PRIV.WORK, and if not found there, in 
SYS1.LINKLIB. 

X 

118 JCL Reference (Release 20.1) 



SYSABEND and SYSUDUMP 
Each job step may contain one DD statement with a ddname of either 
SYSABEND or SYSUDUMP; if more than one is included, all but the first DD 
statement is ignored. These DD statements define a data set in which an 
abnormal termination dump can be written if the job step abnormally 
terminates. (Never use the ddname SYSABEND or SYSUDUMP unless you are 
defining a data set in which a dump can be written.) The dump provided 
when the SYSABEND DD statement is used includes the system nucleus, the 
processing program storage area, and a trace table, if the trace table 

I option (MFT only) was requested at system generation. The SYSUDUMP DD 
statement provides only a dump of the processing program storage area. 

The parameters you code on one of these statements are determined by 
whether you want the dump written to a unit record device or stored and 
written at a later time. 

WRITING THE DUMP TO A UNIT RECORD DEVICE 

If you want the dump written to a unit record device" you code either 
the UNIT or SYSOUT parameter. 

• The UNIT parameter specifies the unit record device to which you 
want to write the dump, e.g., UNIT=1403. 

• The SYSOUT parameter specifies the output class through which you 
want the data set routed, e.g., SYSOUT=A. 

If the SYSOUT parameter is coded, the dump is not routed directly to 
a system output device. Instead, the dump is stored on a direct access 
device and later written on a system output device. If you want control 
over which direct access device the dump is stored on, you can include 
the UNIT parameter. You can also control the amount of space allocated 
to the dump by including the SPACE parameter. Otherwise " the system 
assigns a direct access device and space for a dump. (The device and 
space that the system assigns are specified as PARM parameter fields in 
the cataloged procedure for the input reader.) If you may require a 
great deal of space for dumping, you should code the SPACE parameter" 
rather than using the default" and assign an adequate amount of space so 
that the dumping operation is not inhibited due to insufficient space. 

STORING THE DUMP 

If you want to store the dump and write it at a later time, the DD 
statement must include the DSNAME, UNIT, VOLUME, and DISP parameters. 

• The DSNAME parameter specifies the name of the data set. 

• The UNIT parameter specifies the device to allocate to the data set. 

• The VOLUME parameter identifies the volume serial number. 

• The DISP parameter specifies the data set's status and disposition. 
since you want to store the data set, the data set's disposition 
must be either KEEP, CATLG, or PASS. 

If the dump is to be stored on a direct access device" you must code 
either the SPACE, SPLIT, or SUBALLOC parameter. 

• The SPACE, SPLIT, or SUBALLOC parameter specifies the amount of 
space you want allocated to the data set. 

Section IV: The DD Statement -- Special Ddnames 119 



Reference 

1. Refer to the publication Programmer's Guide to Debugging for 
information on how to interpret dumps. 

Examples of the SYSABEND and SYSUDUMP DD Statements 

1. //STEP2 EXEC PGM=A 
//SYSABEND DD SYSOUT=A 

The SYSABEND DD statement specifies that you want the dump routed 
through the standard output class A. 

2. //STEP3 EXEC PGM=B 
//SYSUDUMP DD SYSOUT=F,SPACE=(TRK, (0,50) )" UNIT=( 2311,3) 

The SYSUDUMP tiD statement specifies that you want the dump routed 
through the output class F. The dump is temporarily stored on the 
specif ied device. If the UNIT and SPACE parameters were not coded" 
the system would assign a direct access device and an estimate of 
space required for the dump. In the SPACE parameter:, zero tracks 
are requested for the primary quantity; therefore, no space is 
allocated unless the step abnormally terminates,. If the step 
abnormally terminates, space for a dump is allocated using the 
secondary quantity.. Requesting multiple units increases the 
likelihood that one of the volumes mounted on these devices contains 
enough space to allocate the secondary quantity. 

3. / /STEPl EXEC PGM=PROGRAMl 

4. 

//SYSABEND DD 
. // 

//STEP2 EXEC 
//SYSABEND DD 

DSNAME=DUMP, UNIT=2311,DISP=("PASS,KEEP), 
VOLUME=SER=1234,SPACE=(TRK, (110,10» 
PGM=PROGRAM2 
DSNAME=*.STEP1.SYSABEND,DISP=(OID.DELETE,KEEP) 

X 

The SYSABEND DD statements specify that you want the dump stored. 
The space request in STEPl is large (110 tracks) so that the dumping 
operation is not inhibited due to insufficient space; if STEPl does 
not abnormally terminate but STEP2 does, the dump will be written 
using the space allocated in STEP1. In both steps,.. a conditional 
disposition of KEEP is specified,. This allows storing of the dump 
if either of the steps abnormally terminates. If both of the steps 
are successfully executed, the second term of the DISP parameter 
(DELETE) in STEP2 causes the data set to be deleted and the space 
acquired for dumping to be freed. 

//STEPl 
//SYSUDUMP 
// 
//STEP2 
//IN 
// 

EXEC 
DD 

EXEC 
DD 

PGM=WWK 
DSNAME=DUMP, UNIT=2311 ,DISP= (, DELErE, X 
KEEP) j VOLUME=SER=54366" SPACE=(TRK. (80,10» 
PGM=PRINT,COND=ONLY 
DSNAME=*.STEP1. SYSUDUMP. DISP= (OID, DELETE) , X 
VOLUME=REF=*.STEP1.SYSUDUMP 

STEPl specifies that the dump is to be stored if the step abnormally 
terminates. Because COND=ONLY is specified in STEP2, the step is 
executed only if STEPl abnormally terminates. STEP2 uses a program 
that prints the dump. 

120 JCL Reference (Release 20.1) 



SYSCHK 

If CHKPT macro instructions were executed during the original execution 
of your processing program., checkpoint entries were written on a 
checkpoint data set. If you plan to resubmit your job for restart and 
execution is to be restarted at a particular checkpoint, you must 
include a DD statement named SYSCHK when you resubmit the job. The 
SYSCHK DD statement defines the data set on which the checkpoint entry 
was written. 

RULES FOR CODING THE SYSCHK DD STATEMENT 

1. The ddname must be SYSCHK. SYSCHK can be used as the ddname of 
other DD statements in jobs. 

2. The SYSCHK DD statement must immediately precede the first EXEC 
statement of the resubmitted job when restart is to begin at a 
checkpoint. (If the first EXEC statement is preceded by a DD 
statement named SYSCHK and restart is to begin at a step, the 
SYSCHK DD statement is ignored.) 

3. If a JOBLIB DD statement is included, the SYSCHK DD statement must 
follow it. 

4. The RESTART parameter must be coded on the JOB statement; 
otherwise, the SYSCHK DD statement is ignored. 

5,. The parameters you code on the SYSCHK DD statement are determined 
by whether the checkpoint data set is cataloged. 

When the Checkpoint Data Set Is Cataloged 

If the checkpoint data set is cataloged, you must always code the DSNAME 
and DISP par ameters. 

• The DSNAME parameter specifies the name of the checkpoint data set. 

• The DISP parameter must specify or imply a status OLD and a 
disposition of KEEP. 

Other parameters you might code are VOLUME, UNIT, LABEL, and DCB. 

• If the checkpoint entry exists on a tape volume other than the 
first volume of the checkpoint data set, you must indicate this by 
coding the volume serial number or volume sequence number in the 
VOLUME parameter. (The serial number of the volume on which a 
checkpoint entry was written is contained in the console message 
printed after the checkpoint entry is written.) If you code the 
volume serial number, you must also code the UNIT parameter, since 
the system will not look in the catalog for unit information. 

• Code the LABEL parameter if the checkpoint data set does not have 
standard labels. 

• Code DCB=TRTCH=C if the checkpoint data set is on 7-track magnetic 
tape with nonstandard labels or no labels. 

Section IV: The DD Statement -- Special Ddnames 121 



When the Checkpoint Data set Is Not Cataloged 

If the checkpoint data set is not cataloged, you must always code the 
DSNAME:, DISP, VOLUME" and UNIT parameters,. 

• The DSNAME parameter specifies the name of the checkpoint data set. 
If the checkpoint data set is partitioned, do not include a member 
name in the DSNAME parameter. 

• The DISP parameter must specify'or imply a status of OLD and 
disposition of KEEP. 

• The VOLUME parameter specifies the volume serial number of the 
volume on which the checkpoint entry resides. (The serial number of 
the volume on which a checkpoint entry was written is contained in 
the console message printed after the checkpoint entry is written.) 

• The UNIT parameter specifies the device to be allocated to the data 
set. 

other parameters you might code are LABEL and DCB.. 

• Code the LABEL parameter if the checkpoint data set does not have 
standard labels. 

• Code DCB=TRTCH=C if the checkpoint data set is on 7-track magnetic 
tape with nonstandard or no labels. 

Examples of the SYSCHK DD Statement 

1. 

2. 

3. 

//JOB1 JOB 
//SYSCHK DD 
// 
//STEP1 . EXEC 

RESTART= (STEP3, CK3) 
DSNAME=CHLIB,UNIT=2311, 
DISP=OLD., VOLUME=SER=456789 

The checkpoint data set defined on the SYSCHK DD statement is not 
cataloged 0 

//JOB2 
//JOBLIB 
//SYSCHK 
// 
//STEP1 

JOB 
DD 
DD 

EXEC 

RESTART= (STEP2,NOTE2) 
DSNAME=PRIV. LIB3, DIS P= ( OLD,. PASS) 
DSNAME=CHECKPTS,DISP=(OLD,KEEP). 
UNIT=2400,VOLUME=SER=438291 

The checkpoint data set defined on the SYSCHK DD statement is not 
cataloged. Note that the SYSCHK DD statement follows the JOBLIB DD 
statement. 

//JOB3 JOB 
//SYSCHK DD 
// 
//STEP1 EXEC 

RESTART=(*,CHECK4) 
DSNAME=CHKPTLIB,DISP=OLD, 
LABEL=(, NSL), DCB= (TRTCH=C) 

The checkpoint data set defined on the SYSCHK DD statement is 
cataloged and has nonstandard labels. 

122 JCL Reference (Release 20.1) 

x 

x 

x 



The * Parameter 

(//ddname DD * 

* specifies that the data following this statement is to be entered 
through the input stream for use by a processing program.. 

Rules for Coding 
I 1. You may code more than one DD * statement per job step. 

I 2. 

I 3. 

I 4. 

When you call a cataloged procedure, you may add more than one DD * 
statement to a procedure step. 

If the data is preceded by a DD * statement, a delimiter statement 
(/*> following the data is optional. 

Only the DCB subparameters BLKSIZE and BUFNO have meaning when 
coded on a DD * statement. Any other parameters coded on a DD * 
statement are not used but are checked for syntax. 

I 

5 ... 

6. 

A cataloged procedure cannot contain a DD * statement. 

Code the DATA parameter instead of the * parameter when the data 
contains job control statements. 

Defining Data in the Input Stream 
I The input stream can be on a card reader, a magnetic tape, or a direct 

access device. 

If the EXEC statement for the job step specifie's a program name, you 
can include the data for the job step in the input stream. If the EXEC 
statement for the job step calls a cataloged procedure, you can include 
the data for each procedure step in the input stream. 

If the processing program does not read all the data in an input 
stream" the remaining data is flushed without causing abnormal 
termination of the job.. 

You can include several distinct groups of data in the input stream 
for a job step or procedure step. The system can recognize each group 
of data if you precede each group with a DD * statement, or follow each 
group with a delimiter statement (/*>. or both. (If you leave out the 
DD * statement for a group of data, the system provides a DD * statement 
baving SYSIN as its ddname.> 

The following rules apply when data is entered through an input 
stream: 

section IV: The DD statement -- * Parameter 123 



• The input stream can be on any device supported by QSAM,. 

• The characters in the records must be coded in BCD or EBCDIC. 

Note: When the automatic SYSIN batching reader is used to read the 
input stream, a DD * statement does not appear in the output listing. 
Instead, an identically named DD statement describing the temporary data 
set created from the input data appears. 

The DCB subparameters BLKSIZE and BUFNO 

The input reader procedure causes data in the input stream to be written 
onto a direct access device so that the data can be retrieved rapidly 
when it is required by a processing program. As the data is written 
onto the direct access device, the data may be blocked. The block size 
and number of buffers used for blocking the data is established in the 
input reader procedure assigned to read the input stream. If you want 
shorter blocks than would be the case if the block size in the input 
reader procedure were assumed, you can specify the desired block size. 
(You cannot request larger blocks,.) 

To specify the desired bloCk size, code DCB=BLKSIZE=blocksize on the 
DD * statement. To decrease the number of buffers, include the DCB 
subparameter BUFNO, e.g., DCB=(BLKSIZE=80,BUFNO=1). (When a job is 
submitted via remote job entry and the DCB subparameter BUFNO is coded 
on a DD * statement, BUFNO is ignored.) 

BLKS1ZE and BUFNO may be coded on a DD statement that contains the 

I 
D. DNAME parameter, which refers to another DD statement. (You cannot use 
a backward reference to a previously-defined DD statement to obtain 
these DCB subparameters; they must be coded explicitly on the DD 
statement that contains the DDNAME parameter,.) If, in turn, the 
referenced DD statement defines data in the input stream, these DCB 
subparameters are used to block the data. However" if the referenced DD 
statement contains its own DCB subparameters BLKSIZE and BUFNO, these 
values override those on the DD statement that contains the DDNAME 
par~eter. 

Examples of the * Parameter 

1. //1 NPUT1 

data 

/* 
//INPUT2 

data 

/* 

DD * 

DD * 

Defining several groups of data in the input stream. 

124 JCL Reference (Release 20.1) 



I 

I 

2. //STEP2 EXEC PROC=FRESH 
/ /SETUP • WORK DD UNIT=2400,LABEL=(,NSL) 
//SETUP.INPUTl DD * 

data 

/* 
//PRINT.FRM DD UNIT=180 
/ /PRINT. INP DD * 

data 

/* 

Defining data in the input stream. The input data defined by the DD 
statement named SETUP.INPUT1 is for use by the cataloged procedure 
step named SETUP; the input defined by the DD statement named 
PR1NT.1NP is for use by the cataloged procedure step named PRINT. 

3. //1 NPUT2 DD *,DCB=(BLKS1ZE=1600,BUFN0=2) 

data 

Defining data in the input stream. These DCB subparameters override 
those specified in the input reader procedure. 

Section IV: The DD Statement -- * Parameter 125 





The DATA Parameter 

DATA 

(//d d name DD DATA 

specifies that the data following this statement is to be entered 
through the input stream for use by a processing program. This 
data contains job control statements (i.e., these statements have 
the characters // in columns 1 and 2.) 

Rules for Coding 

1. 

I 2. 

3. 

I 

4. 

5. 

6. 

7. 

The data may not contain statements with /* in columns 1 and 2. 

You may code more than one DD DATA statement per job step. 

When you call a cataloged procedure., you may add more than one DD 
DATA statement to a procedure step. 

Each group of data must be preceded by a DD DATA statement and 
followed by a delimiter statement (/*). 

Only the DCB subparameters BLKSIZE and BUFNO have meaning when 
coded on a DD DATA statement. Any other parameters coded on a DD 
DATA statement are not used but are checked for syntax. 

A cataloged procedure cannot contain a DD DATA statement. 

The * parameter may be coded instead of the DATA parameter when the 
data does not contain job control statements. 

Defining Data in the Input Stream 

I The input stream can be on a card reader. a magnetic tape, or a direct 
access device. 

If the EXEC statement for the job step specifies a program name, you 
can include the data for the job step in the input stream. If the EXEC 
statement for the job step calls a cataloged procedure. you can include 
the data for each procedure step in the input stream. 

If the processing program does not read all the data in an input 
stream. the remaining data is flushed without causing abnormal 
termination of the job. 

You can include several distinct groups of data in the input stream 
for a job step or procedure step. The system can recognize each group 
of data only if you precede each group with a DD DATA statement and 
follow each group with a del imi ter statement (/*l. 

The following rules apply when data is entered through an input 
stream: 

• The input stream can be on any device supported by QSAM. 
• The characters in the records must be coded in BCD or EBCDIC. 

Note: When the automatic SYSIN batching reader is used to read the 
input stream, a DD DATA statement does not appear in the output listing. 
Instead, an identically named DD statement describing the temporary data 
set created from the input data appears. 

Section IV: The DD Statement -- DATA Parameter 127 



The DCB subparameters BLKSIZE and BUFNO 

The input reader procedure causes data in the input stream to be written 
onto a direct access device so that the data can be retrieved rapidly 
when it is required by a processing program. . As the data is written 
onto the direct access device, the data may be blocked. The block size 
and number of buffers used for blocking the data is established in the 
input reader procedure assigned to read the input stream. If you want 
shorter blocks than would be the case if the block size in the input 
reader procedure were assumed" you can specify the desired block size. 
(You cannot request larger blocks,.) 

To specify the desired block size, code DCB=BLKSIZE=blocksize on the 
DD DATA statement. To decrease the number of buffers, include the DCB 
subparameter BUFNO, e.g." DCB=(BLKSIZE=80.BUFNO=1). (When a job is 
submitted via remote job entry and the DCB subparameter BUFNO is coded 
on a DD DATA statement, BUFNO is ignored.) 

BLKSIZE and BUFNO may be coded on a DD statement that contains the 
DDNAME parameter" which refers to another DD statement. If, in t,urn" 
the referenced DD statement defines data in the input stream, these DCB 
subparameters are used to block the data. However" if the referenced DD 
statement contains its own DCB subparameters BLKSIZE and BUFNO, these 
values override those on the DD statement that ~ontains the DDNAME 
parameter. 

Examples of the DATA Parameter 

1. //INPUT1 DD DATA 

2. 

data 

/* 

Defining data in the input stream. 

//STEP2 EXEC 
/ /PREP,. DD4 DD 
// 
//PREP.INPUT DD 

data 

PROC=UPDATE 
DSNAME=A.B.C,VOLUME=SER=D88, X 
UNIT=2 311, SPACE= (TRK, (10,5» " DISP= (, CATLG, DELETE) 
DATA 

/* 
//ADD.DD6 
//ADD.IN 

DD SPACE=(TRK, (5,1» 
DD * 

data 

/* 

Defining data in the input stre~. The input defined by the DD 
statement named PREP. INPUT is for use by the cataloged procedure 
step named PREP. This data contains job control statements. The 
input defined by the DD statement named ADD.IN is for use by the 
cataloged procedure step anmed ADD. Since this data is defined by a 
DD * statement, it must not contain job control statements. 

128 JCL Reference (Release 20.1) 



3. //1 NPUT2 DD DATA!,DCB=(BLKS1ZE=400,BUFNO=l) 

data 

/* 
//1NPUT3 DD DATA 

data 

/* 

I Defining several groups of data in the input stream. The DCB 
subparameters coded on the DD statement named INPUT2 are used to 
block the data that follows that statement. 

Section IV: The DD statement -- DATA Parameter 129 





The DUMMY Parameter 

(/ddname DD DUMMY 

DUMMY 
specifies that no devices or external storage space is to be 
allocated to the data set, no disposition processing is to be 
performed on the data set" and, for BSAM and QSAM, specifies that 
no input or output operations are to be performed on the data set. 

Rules for Coding 

1. You can code the DUMMY parameter by itself or follow it with all 
the parameters necessary to define a data set. 

2. If the DUMMY parameter is coded and an access method other than the 
basic sequential access method (BSAM) or queued sequential access 
method (QSAM) is requested to read or wri te the data set" a 
programming error occurs. 

What the DUMMY Parameter Does 

When you use either the basic sequential or queued sequential access 
method, the DUMMY parameter allows your processing program to execute 
without performing input or output operations on a data set. When the 
precessing program asks to write a dummy d~ta set, the write request is 
recognized, but no data is transmitted. When the processing program 
asks to read a dummy data set, an end-of-data-set exit is taken 
immediately. 

Besides bypassing input or output operations on a data set, the DUMMY 
parameter causes the UNIT, VOLUME, SPACE, and DISP parameters, when 
coded on the DD DUMMY statement, to be ignored (if coded, these 
parameters are checked for syntax). Therefore" no devices or external 
storage space is allocated to the data set and no disposition processing 
is performed on the data set. 

If you know that certain parts of a program "work" and need not be 
processed each time the job is submitted for testing, the DUMMY 
parameter can help save time. The DUMMY parameter can also be used to 
suppress the writing of data sets, such as output listings, that you do 
not need. 

Coding the DUMMY Parameter 

You can code the DUMMY parameter by itself or follow it with all the 
parameters you would normally code when defining a data set. However, 
in one case you must code another parameter after the DUMMY parameter: 
when certain DCB information, not supplied in the DeB macro instruction, 
is required for the processing program to execute successfully. For 
example, when an OPEN routine requires a BLKSIZE specification to obtain 
buffers" and BLKSIZE is not specified in the DCB macro instruction, you 
should supply this information by coding the DCB parameter after the 
DUMMY parameter. When a DD statement that overrides a procedure DD 

section IV: The DD Statement ...;- DUMMY Parameter 131 



statement contains the DUMMY parameter, all of the parameters coded on 
the procedure DO statement are nullified. 

When you want input or output operations performed on the data set, 
replace the DD statement that contains the DUMMY parameter with a DD 
statement that contains all of the parameters required to define this 
data set. When.a procedure DO statement contains the DUMMY parameter" 
you can nullify it by coding the DSNAME parameter on the overriding DD 
statement. However, be sure the data set name is not NULLFILE. 
Assigning the name NULLFILE in the DSNAME parameter has the same effect 
as coding DUMMY. 

If you code OUMMY on a DD statement and a later DO statement in the 
same job refers to this DD statement when requesting unit affinity 
(UNIT=AFF=ddname) or volume affinity (VOLUME=REF=*.stepname.ddname), the 
data set defined on the later DD statement is assigned a dummy status. 

E:x:amples of the DUMMY Parameter 

1. //OUTPUT3 OD DUMMY,DSNAME=X.Y.Z,UNIT=2311, 
/ / SPACE= (TRK, (10,2) ),DISP= (,CATLG) 

This DO statement defines a dummy data set. The parameters coded 
with the DUMMY parameter are not used .• 

2. //IN OD DUMMY" DCB= (BLKSIZE=800 ,LRECL=400,RECFM=FB) 

This DO statement defines a dummy data set. The DCB parameter is 
coded to supply information for the data control block that was not 
supplied in the DCB macro instruction. 

x 

3. If you are calling a cataloged procedure that contains the following 
OD statement in STEP4 

//IN DO DUMMY,DSNAME=ELLN,DISP=OLD,VOL=SER=11257,UNIT=2314 

you can nullify the effects of the DUMMY parameter by coding: 

//STEP4.IN DD DSNAME=ELLN 

4.< If you are calling a cataloged procedure that contains the following 
DD statement in STEPl 

//TAB DD DSNAME=APP.LEV12,DISP=OLD 

you can make this DD statement define a dummy data set by coding: 

//STEP1.TAB DD DUMMY 

5. If you are calling a cataloged procedure that contains the following 
DD statement in a procedure step named LOCK 

//MSGS DD SYSOUT=A 

you can make this DD statement define a dummy data set by coding: 

//LOCK.MSGS DD DUMMY 

132 JCL Reference (Release 20.1) 



The DYNAM Parameter -- MVT With TSO 

DD DYNAM 

DYNAM 
used in the TSO LOGON procedure to specify that dynamic allocation 
of data sets is to be used. This allows you to defer definition of 
a data set until you require it. If DYNAM is used in the 
background (batch environment), it means the same as DUMMY. 

Rules for Coding 

1. The dynamic allocation meaning of DYNAM is only effective for 
foreground jobs using an MVT system with TSO. For MFT, or MVT 
without TSO, DYNAM has the same meaning as coding DUMMY. Like 
DUMMY, DYNAM is a positional parameter. 

2. No other parameters may be coded with the DYNAM parameter. 

3. The DDNAME parameter cannot be used to refer to a DYNAM DD 
statement. 

What the DYNAM Parameter Does 

During LOGON processing for TSO, no devices or external storage are 
allocated to a data set defined by a DD DYNAM statement. The DYNAM 
parameter reserves space in internal tables so that data set 
requirements that arise during the terminal session may be satisfied. 
When you require a data set, the actual device and external storage for 
the data set can then be allocated. 

When DYNAM is used in the background (batch environment) or in the 
foreground before allocation, it has the same effect as coding DUMMY. 
Refer to the section on the DUMMY parameter in this book for more 
information. 

Coding the DYNAM Parameter 

I DYNAM is a positional parameter. However, no other parameters may be 
coded with DYNAM. 

To nullify the DYNAM parameter in a cataloged procedure, code the 
SYSOUT or DSNAME parameter in the -overriding DD statement, but do not 
use the DSNAME of NULLFlLE. 

Example of the DYNAM Parameter 
1. //1 NPUT DD DYNAM 

For TSO, this statement specifies dynamic allocation is requested. 
For background jobs, DYNAM has the same meaning as DUMMY. 

Section IV: The DD Statement -- DYNAM Parameter 133 





The AFF Parameter 

AFF=ddname 

ddname 
the name of an earlier DD statement in the same job step that 
requests processing of a data set on a separate channel from the 
one on which certain other data sets are being processed. 

Rules for Coding 

1. The DD statement that the AFF parameter refers to must contain the 
SEP parameter. 

2. If channel separation is critical, use the UNIT parameter to 
specify a particular channel, using an absolute unit address or 
group name. (How to specify a particular channel is described in 
the chapter BThe UNIT Parameter.") 

3,. The AFF, SEP, DDNAME" and SYSOUT parameters are mutually exclusive 
parameters; therefore, when SEP, DDNAME, or SYSOUT is coded, do not 
code the AFF parameter. 

OPTIMIZING CHANNEL USAGE 

The devices that the system allocates for data sets used in a job step 
are attached to channels. These channels transmit the data in the data 
sets from the device to the cpu. When two or more data sets are to be 
used in a job step, processing time may be shortened if the system 
transmits data over separate channels. 

Requesting Channel Separation 

The SEP and AFF parameters can be used to request channel separation. 
You list in the SEP parameter the names of up to eight earlier DD 
statements that define data sets from which channel separation is 
desired. (The SEP parameter is described in the chapter "The SEP 
Parameter" which appears later in this section.> Coding the AFF 
parameter is a shortcut method of requesting channel separation, since 
you list only one ddname and that ddname refers to an earlier DD 
statement in the same job step that contains the SEP parameter. The AFF 
parameter tells the system that you want the data set defined· on this DD 
statement to have the same channel separation as the data set defined on 
the named DD statement. The AFF parameter does not tell the system that 
these two data sets are to be assigned to the same channel -- the system 
will decide that based on what devices are available for allocation. 

If the system finds it impossible in the current environment to 
satisfy the channel separation request, the system may try to alter the 
current environment through some operator action. The operator is given 
the option of bringing a device online, cancelling the channel 
separation request, or cancelling the job. In certain environments, the 
operator may also be able to tell the system to wait for devices to 
become free. If you make a nonspecific request for a direct access 
volume and request channel separation, your request for separation may 
be ignored. This happens when the algorithm used to allocate data sets 

section IV: The DD Statement -- AFF Parameter 135 



to devices is not able to select the device that would permit the 
desired channel separation. 

Requests for channel separation are ignored for any data sets that 
have been allocated devices by the automatic volume recognition (AVR) 
option. 

If it is essential that data be transmitted via a particular channel" 
you can specify an absolute unit address or group name (if the group of 
devices is associated with one channel) in the UNIT parameter. 

If neither the SEP nor AFF parameter is coded, any available channel, 
consistent with the UNIT parameter requirement" is assigned by the 
system. 

Example of the AFF Parameter 

1. //STEP1 
//INPUT1 
//INPUT2 
// 
//BUF 
//OUTPUT 

EXEC 
DO 
DO 

DO 
DO 

PGM=CONVERT 
OSNAME=A.B.C" DISP=OLD 
DSNAME=FILE"DISP=OID, UNIT=2400, 
VOLUME=SER=54333 
UNIT=2 400" SEP= (INPUT1 " INPUT 2) 
OONAME=ALPHA" UNIT=TAPE"DISP= C, KEEP) "AFF=BUF 

The system attempts to assign the data sets defined by the DD 
statements BUF and OUTPUT to a channel other than the ones assigned 
to the data sets defined by the DD statements INPUT1 and INPUT2. 

x 

The data sets defined by the DD statements BUF and OUTPUT mayor may 
not be assigned to the same channel. The parameter . 
SEP=(INPUT1,INPUT2) could have been coded instead of AFF=BUF. 

136 JCL Reference (Release 20.1) 



The DCB Parameter 

DCB=(list of attributes) 
DCB= ( I dsname 

* .ddname 
*.stepname.ddname 
*.stepname.procstepname.ddname 

list of attributes 

[,list of attributes]) 

those DCB keyword subparameters that describe the data set and are 
needed to complete the data control block. DCB keyword 
subparameters are listed in this chapter under nGlossary of DCB 
Subpar ameters • n 

dsname 
specifies that the system is to copy DCB information from the data 
set label of a cataloged data set named ndsname. n The cataloged 
data set must reside on a direct access volume and the volume must 
be mounted before execution of the job step. 

*.ddname 
specifies that the system is to copy DCB information from an 
earlier DD statement in the same job step named nddname." 

*.stepname.ddname 
specifies that the system is to copy DCB information from a DD 
statement named nddname, n which appears in an earlier job step 
named nstepname." 

*.stepname.procstepname_ddname 
specifies that the system is to copy DCB information from a DD 
statement named nddname,," which appears in a procedure step named 
"procstepname"; the procedure step is part of a cataloged procedure 
that was called by an earlier jobstep named nstepname." 

Rules for Coding 

1. Separate each DCB keyword subparameter with a comma. 

2. If the DCB parameter value consists of only one keyword 
subparameter, a data set name, or a backward reference, you need 
not enclose it in parentheses. 

3. All DCB subparameters, except BLKSIZE and BUFNO, are mutually 
exclusive with the DDNAME parameter; therefore, when the DDNAME 
parameter is coded, do not code any DCB subparameters except 
BLKSIZE and BUFNO. The DCB subparameters BLKSIZE and BUFNO have 
meaning when coded with the DDNAME parameter. 

Completing the Data Control Block 

Each data set that is to be read or written must have a data control 
block associated with it. ~he data control block is originally 
constructed in the processing program by a DCB macro instruction. This 
data control block can be completed when the DCB macro instruction is 
issued or at execution time through the DCB parameter on the DD 
statement and the data set label, if one exists. 

Section IV: The DD Statement -- DCB Parameter 137 



When more than one source is used to complete the data control block, 
a merging process takes place (see Figure 4): first, information coded 
with the DCB macro instruction is placed in the data control block; 
then, information coded on the DD statement is placed in unfilled 
sections of the data control block; and, finally, information in the 
data set label, if one exists, is placed in still unfilled sections of 
the data control block. (DCB information may also be provided by 
default options assumed in the OPEN macro instruction and by your 
program, either before the data set is opened, by using the DCBD macro 
instruction, or in the DCB exit routine. Refer to the chapter 
"Interface With the Operating System" in supervisor and Data Management 
Services publication and supervisor and Data Management Macro 
Instructions publication for details.) 

DD Statement 

Data Set Labe I 

D 

C 

DD Statement 
Fills Field 

Label Completes 
DCB Area 

Figure 4. How the Data Control Block Is Filled 

DCB Macro Instruction 

Step 1 

DCB Area 

A Step 2 

DCB Area 

A Step 3 

The DeB macro instruction includes information about the data that is 
unlikely to change each time the processing program is executed. Also, 
it includes any information that is not related to the DCB parameter and 
the data set label (e. g., MACRF., DDNAME, EXLST). 

138 JCL Reference (Release 20.1) 



DCB Parameter 

The DCB parameter is coded on the DD statement and includes all the 
information that is not specified by any other source. How to specify 
DCB information on the DD statement is described in "Specifying DeB 
Information on the DD Statement." 

Da ta set Label 

If the data set already exists and has standard labels, certain 
information is contained in the label that can be used to complete the 
data control block. For tape, the data set label can contain the data 
set's record format, block size., logical record length., tape recording 
density., and, for seven-track tape, tape recording technique. For 
direct access., the data set label can contain the data set's 
organization, record format, block size, logical record length, and if 
the data contains keys, the key length and relative key position. 

Specifying DeB Information on the DD Statement 

The DCB parameter must be coded on the DD statement unless the data 
control block is completed by other sources. There are several ways of 
specifying DCB information on the DD statement. You can: 

• Supply all pertinent DCB keyword subparameters on the DD statement. 

• Tell the system to copy DCB information from the data set label of 
an existing cataloged data set. 

• Tell the system to copy DCB information from an earlier DD statement 
in the same job. 

SUPPLYING DCB KEYWORD SUBPARAMETERS 

The DCB information required to complete the data control block can be 
listed as keyword subparameters in the DCB parameter; subparameters are 
separated by commas. If the processing program and the DCB parameter 
sUpply the same subparameter, the subparameter on the DD statement is 
ignored. Valid DeB keyword subparameters and the values that can be 
assigned to them are listed in this chapter under "Glossary of DCB 
Subparameters. " 

COPYING DCB INFORMATION FROM A DATA SET LABEL 

To save time in coding the DCB parameter, you can tell the system to 
copy the DCB information from the data set label of a cataloged data set 
on a currently mounted direct access volume. The data set must have 
standard labels. A permanently resident volume is the most likely place 
from which to copy such information because it is always mounted. Code 
in the DCB parameter the data set name of the cataloged data set. The 
name you code cannot contain special characters, except for periods used 
in a qualified name. 

The following DCB keyword subparameters can .be copied from the data 
set label: DSORG, RECFM, OPTCD, BLKSIZE, LRECL, KEYLEN, and RKP. The 
volwne sequence number and expiration date of the cataloged data set are 
also copied unless you specify these in the DD statement. If you code 
any DCB keyword subparameters following the name of the cataloged data 
set, these subparameters override any of the corresponding subparameters 
that were copied. Valid DCB keyword subparameters and the values that 
can be assigned to them are listed in this chapter under "Glossary of 
DCB Subparameters. n 

section IV: The DO statement -- DCB Parameter 139 



COPYING DCB INFORMATION FROM AN EARLIER DD STATEMENT 

Another way to save time in coding the DCB parameter is to tell the 
system to copy the DCB information from an earlier DD statement in the 
same job. The earlier DD statement can be contained in the same job 
step. an earlier job step or cataloged procedure step. If you code any 
DCB keyword subparameters following the reference to the DD statement!. 
these subparameters override any of the corresponding subparameters that 
were copied. If the DD statement defines an existing data set and 
contains the DCB parameter. the system copies those subparameters from 
the earlier DD statement that were not previously specified for the 
existing data set. Valid DCB keyword subparameters and the·values that 
can be assigned to them are listed below. 

Glossary of DeB Subparameters 

This glossary lists the keyword subparameters that you can code in the 
DCB parameter on a DD statement. their definitions. and the values that 
can be assigned to them. Across from each subparameter is a list of the 
access methods that use the subparameter. 

Certain required subparameters cannot be coded in the DCB parameter,. 
but must be coded in the DCB macro instruction. Thesesubparameters are 
described in the supervisor and Data Management Macro Instructions 
publication. 

Can be used with BDAM. BISAM. 
BPAM. BSAM. EXCP. QISAM. QSAM 

Specifies the boundary alignment of each buffer as follows: 

F each buffer starts on a fullword boundary that is not also a 
doubleword boundary. 

D each buffer starts on a doubleword boundary. 

If not specifed by any source, doubleword boundary alignment (D) is 
assumed. 

Note for QSAM: Buffer alignment information must be supplied from 
the same source as the type of buffering (BFTEK) information or 
both must be omitted. 

BFTEK= S 
E 
D 
A 
R 

Can be used with EXCP. QSAM. BTAM 

Specifies the type of buffering to be used by the control program 
as follows: 

For EXCP: 

S simple buffering. 
E exchange buffering. 

140 JCL Reference (Release 20.1) 



For QSAM: 

s simple buffering. 

E exchange buffering (track overflow cannot be specified in the 
RECFM subparameter). Exchange buffering cannot be used with 
variable-length blocked or spanned records. 

A -- record area buffering. In the locate mode with 
variable-length spanned records, the control program reads and 
writes entire logical records rather than segments. 

If neither is specified by any source, simple buffering (S) is 
assumed. 

Note for QSAM: The type of buffering information must be supplied 
from the same source as the boundary alignment (BFALN) information 
or both must be omitted. 

For BTAM: 

D -- dynamic buffering. If dynamic buffering is specified, a 
buffer pool must be defined. 

For BDAM or BSAM: 

R -- record buffering. For writing records in the create BDAM 
mode, this specification allows a logical record to span one 
or more tracks. For reading a data set, segments without keys 
are offset in the buffer by the key length. This means that 
the actual data starts in the same place in the buffer by the 
key length. This means that the actual data starts in the 
same place in the buffer for each read. 

BLKSIZE=block size Can be used with BDAM, BPAM, 
BSAM, QISAM (output only), 
QSAM, TCAM 

For BDAM, BPAM, BSAM, QISAM. QSAM: 

Specifies the maximum length, in bytes, of a block. The maximum 
length that can be specified is 32,760. For blocks of ASCII 
records on magnetic tape, the maximum length is 2048 and the 
minimum length is 18. 

• If RECFM=F, then BLKSIZE must be 2 logical record length. 

• If RECFM=FB, then BLKSIZE must be an integral multiple of the 
logical record length. 

• If RECFM=V, then BLKSIZE must be 2 (maximum block size + 4). 

• If RECFM=VB, then BLKSIZE must be (n times logical record length) 
+ 4; where n is the number of logical records in the block. 

• If RECFM=D or DB, then BLKSIZE must be 2 (maximum record length + 
block prefix length). 

Note for QISAM: The block size that is specified must be at least 
10 bytes less than the number of data bytes available on one track 
of the allocated direct access device. Block size information is 
required only when creating a data set containing blocked records. 

Section IV: The DD Statement -- DCB Parameter 141 



Note for BDAM" BPAM, BSAM, QSAM: If you code the BLKSIZE 
subparameter in the DCB macro instruction or on a DD statement that 
defines an existing data set and the data set has standard labels, 
the subparameter overrides the block size specified in the label,. 

Note for BSAM and QSAM with RECFM=FB: If the BLKSIZE subparameter 
on a DDstatement for a SYSOUT data set (an output data set being 
routed through the output stream) is not an integral multiple of 
and larger than the logical record length (LRECL), the block size 
will be adjusted to the nearest lower multiple of the logical 
record length (LRECL). 

For TCAM: 

Specifies the length in bytes of the application program's work 
area into which TCAM will move message units to be processed. The 
number specified should be at least equal to the record length as 
specified by the LRECL operand and must not exceed 32,760. If 
OPTCD=W is specified" eight bytes must be included for the source 
of the message. If OPTCD=C is specified, one byte must be included 
to indicate the message segment. For variable length records, four 
bytes must be included for unblocked records or eight bytes for 
blocked records. 

BUFIN=number of buffers Can be used with TCAM 

Specifies the number of buffers to be assigned initially for 
receiving operations for each line in the line group. The number 
specified must be less than the number of buffers in the buffer 
pool for this line group and may not exceed 15. The number of 
buffers specified in the combined BUFIN and BUFOUT operands must be 
no greater than the number of buffers in the buffer pool for this 
line group (not including those for disk activity only). If this 
operand is omitted, 1 is assumed. 

BUFL=buffer length Can be used with BDAM, BISAM, 
BPAM, BSAM, EXCP.f QISAM, QSAM, TCAM 

For BDAM, BISAM, BPAM, BSAM, EXCP, QISAM, QSAM: 

Specifies the length, in bytes, of each buffer in the buffer pool. 
The maximum length is 32,760 bytes. Requirements for supplying 
buffer length information vary with the different data 
organizations and access methods as follows: 

BDAM -- required only if dynamic buffering is specified in the 
MACRF subparameter of the DCB macro instruction. 

BPAM, BSAM, and QSAM -- optional. If omitted and the control 
program acquires buffers automatically, the block size and 
key length information is used to establish buffer length. 
If card image is specified (MODE=C), BUFL=160 must be 
specified. 

BISAM and QISAM -- not required if the control program acquires 
buffers automatically or if dynamic buffering is specified. 
(For BISAM, dynamic buffering is specified in the MACRF 
subparameter of the DCB macro instruction). 

For TCAM: 

Specifies the length in bytes of each of the Message Control 
Program buffers that handle messages received and sent by an 
application program. The length must be at least 31 bytes but may 
not exceed 65,535 bytes. 

142 JCL Reference (Release 20.1) 



BUFMAX=number of buffers can be used with TCAM 

Specifies the maximum number of buffers to be allocated to a line 
at one time. The number specified must be greater than 1 but may 
not exceed 15 and must be at least equal to the larger of the 
numbers specified by BUFIN and BUFOUT. If this operand is omitted, 
2 is assumed. 

BUFNO=number of buffers Can be used with BDAM, BISAM, 
BPAM, BSAM, BTAM, EXCP, QISAM, 
QSAM 

Specifies the number of buffers to be assigned to the data control 
block; the maximum number is 255. but the actual number allowed may 
be less than 255 because of limits established when the system was 
generated. Requirements for coding the BUFNO subparameter are as 
follows: 

Method of Obtaining the 
Buffer Pool 

BUILD macro instruction (BDAM, 
BISAM, BPAM, QISAM" QSAM) 

GETPOOL macro instruction (BDAM. 
BISAM, BPAM. BSAl'l, QISAM, QSAM) 

Automatically (BPAM and BSAM) 

Automatically (QISAM and QSAM) 

Dynamic buffering (BDAM and BISAM) 

Requirement for Indicating 
Number of Buffers 

Must be specified. 

Control program uses the 
number specified in the 
GETPOOL macro instruction. 

Must be specified. 

Optional; if not specified, 
two buffers are obtained. 

Optional; if not specified, 
two buffers are obtained. 

BUFOFF= : I Can be used with BSAM"QSAM 

Specifies the buffer offset. The buffer offset is the length of an 
optional block prefix that may precede a block of one or more ASCII 
records on magnetic tape. 

n -- the length of the block prefix. For input. n may be any 
unsigned decimal number from 0 through 99. For output, n can 
only be O. 

L -- the block prefix field is four bytes long and contains the 
block length. L may be specified only when record format 
(RECFM) is D. 

BUFOUT=number of buffers Can be used with TCAM 

Specifies the number of buffers to be assigned initially for 
sending operations for each line in the line group. The number 
specified must be less than the number of buffers in the buffer 
pool for this line group and may not exceed 15. The number of 
buffers specified in the combined BUFIN and BUFOUT operands must be 
no greater than the number of buffers in the buffer pool for this 
line group (not including those for disk activity only). If this 
operand is o~tted, 2 is assumed. 

section IV: The DD statement -- DCB Parameter 143 



BUFRQ=number of buffers Can be used with QTAM 

Specifies the number of buffers to be requested in advance for the 
GET macro instruction. The maximum number is 255.. If not 
specified by any source or if a value of less than 2 is specified, 
2 is assumed~ For information on calculating BUFRQ, refer to the 
publication IBM System/360 Operating System: Telecommunications 
Access Method Message Control., GC30- 200 5 .• 

BUFSIZE=number Can be used with TCAM 

Specifies the length in bytes of each of the buffers to be used for 
all lines in a particular line group. This length must be at least 
31 bytes, but may not exceed 65,535. The buffer size should be an 
even multiple of the buffer-unit size as specified in the INTRO 
macro; the maximum number of buffer-units per buffer is 255. 

CODE= A 
B 
C 
F 
I 
N 
T 

Can be used with BSAM" EXCP, QSAM 

Specifies the paper ta.pe .code in which the data is punched. 

A USASCII (8 track). 
B Burroughs (7 track). 
C National Cash Register (8 track). 
F Friden (8 track). 
I IBM BCD perforated tape and transmission code (8 track). 
N No conversion required. 
T Teletype (5 track). 

If not specified by any source, I is assumed. 

The subparameters CODE, KEYLEN, MODE, PRTSP, STACK, and TRTCH are 
mutually exclusive subparameters. Therefore, if CODE is coded, do 
not code any of these other subparameters. 

CPRI= Can be used with QTAM 

Specifies the relative priority to be given to sending and 
receiving operations, as follows: 

R -- receiving has priority over sending. An output message is 
sent on a given line only during a polling interval. 

E -- receiving and sending have equal priority. After each full 
polling sequence on a given line, all output messages queued 
for that line are transmitted. 

144 JCL Reference (Release 20.1) 



I 

S -- sending has priority over receiving. FOr nons witched lines 
after QTAM polls a terminal on a line, the line is made 
available for outgoing messages, and the next terminal is 
polled only when there are no output messages in the queue for 
the line. For Auto Poll lines, the line is made available for 
outgoing messages after a message ending in EOT is received by 
a terminal on the line, or when the end of the polling list is 
reached. S must be specified for IBM 2740 Communications 
Terminals Types I and VI, and if the line group includes IBM 
2740 Model 2 terminals. 

If this subparameter is not specified by any source, CPRI=S is 
assumed. 

This subparameter must be omitted if this line group consists of 
switched lines. 

For WTTA lines: 

R or E -- output messages are sent when there is no traffic over 
the line, after an EOT character has been received, or after a 
time-out has occurred. 

s -- output messages are sent when there is no traffic over the 
line, after an EOT or EOM character has been received, or 
after a time-out has occurred. 

CYLOFL=number Can be used with QISAM 
(output only) 

DEN= 

Specifies the number of tracks on each cylinder to hold the records 
that overflow from other tracks on that cylinder. The maximum 
number is 99. 

Can be used with BSAM, EXCP, QSAM 

Specifies the magnetic tape density in number of bits-per-inch used 
to write a data set, as follows: 

r----T-------T-------, 
IDEN=17 track I 9 track I 
~----+-------+-------~ 
I 0 I 200 I I 
I 1 I 556 I I 
I 2 I 800 I 800 I 
I 3 I I 1600 I L ____ ~ _______ ~ _______ J 

If not specified by any source, 800 bits-per-inch is assumed for 
7-track tape, 800 bits-per-inch for 9-track tape without dual 
density, and 1600 bits-per-inch for 9-track tape with dual density 
or phase-encoded drives. 

For 7-track tape, all information on the reel must be written in 
the same density (i.e., labels, data, tapemarks). Do not specify 
DEN for a SYSOUT data set. 

Section IV: The DD Statement -- DCB Parameter 145 



DSORG=data set organization Can be used with BDAM, BISAM, 
BPAM" BSAM, BTAM, EXCP, GAM" 
QISAM, QSAM, QTAM 

Specifies the organization of the data set and whether the data set 
contains any location-dependent information that would make the 
data set unmovable (U). The values that can be used are as 
follows: 

DA Direct access 
DAU Direct access unmovable 

CQ Direct access message queue or the checkpoint for a 
message control program. If this subparameter is not 
specified by any source, the telecommunications job, when 
executed" is termina ted. 

CX Communicatio~s line group 
GS Graphic data control block 
IS Indexed sequential 

ISU Indexed sequential unmovable 
MQ Data control block governing ~essage transfer to or from 

a telecommunications message processing queue. If this 
subparameter is not specified by any source. the 
telecommunications job, when executed, is terminated. 

PO Partitioned organization 
POU Partitioned organization unmovable 

PS Physical sequential 
PSU Physical sequential unmovable 

The values used with each access method are listed below. 

DSORG must always be coded in the DCB macro instruction, and" with 
certain access methods, must be coded on the DD statement. 

BDAM --

BISAM 
BPAM 
BSAM 
BTAM 
EXCP 

GAM 
QISAM 

QSAM 
QTAM 

EROPT=l~~ ! 
ABE 

DA or DAU (PS or PSU when creating the data set). The 
DSORG subparameter must be coded on the DD statement 
that defines the data set. When creating the data 
set, the DSORG subparameter must be coded as DA or DAU 
on the DD statement that defines the data set and PS 
or PSU in the DCB macro instruction,. 
IS; must be coded on the DD statement. 
PO or POU 
PS or PSU 
CX 
PS, PO, DA, or IS 
GS 
IS or ISU (ISU can be specified only when creating the 
data set) •. The DSORG subparameter must be coded on 
the DD statement that defines the data set. 
PS or PSU 
MQ, CQ, or CX 

Can be used with QSAM 

Specifies the option to be executed if an error occurs in writing 
or reading a record, as follows: 

ACC Accept the block causing the error. 
SKP Skip the block causing the error (implies RELSE). 
ABE Cause abnormal end of task. 

If the subparameter is not specified by any source, ABE is assumed. 

146 JCL Reference (Release 20.1) 



GNCP=number can be used with GAM 

Specifies the maximum number of input/output macro instructions 
that will be issued before a WAIT macro instruction. The value of 
GNCP must be from 1 to 99 at execution time. If the value of GNCP 
is not specified by any source, a value of 1 is assumed. The 
subparameters GNCP. BFTEK, BFALN, and HIARCHY are mutually 
exclusive subparameters. Therefore" if GNCP is coded" do not code 
any of these other subparameters. For additional information on 
the GNC~ subparameter" refer to the publication IBM system/360 
Operating system: Graphic Programming Services for IBM 2250 
Display Unit, GC27-6909. 

HIARCHY= l ~ I Can be used with BDAM, BISAM, 
BPAM, BSAM, EXCP, QISAM, QSAM 

Specifies the storage hierarchy in which the buffer pool is to be 
formed as follows: 

o forms the pool from available space in processor storage. 

1 forms the pool from available space in IBM 2361 Core 
storage. 

If the HIARCHY subparameter is not specified by any source, and if 
a hierarchy designation is not supplied by the GETPOOL macro 
instruction, hierarchy 0 is assumed. 

The buffer pool is formed in the user partition or region within 
the indicated hierarchy. If space is unavailable within the 
hierarchy specified, the task is abnormally terminated. 

INTVL=number Can be used with QTAM 

Specifies the polling interval (i.e., the number of seconds of 
intentional delay between passes through a polling list) for the 
lines in this line group. After all the terminals in a polling 
list for a given line have been polled (beginning to end), a delay 
equal to the number of seconds specified in this subparameter 
occurs before polling is restarted at the beginning of the list. 
The number specified must not be greater than 255. 

If this subparameter is not specified by any source, INTVL=O is 
assumed. This subparameter must be omitted if the line group 
consists of switched lines, WTTA lines, or if the Auto Poll feature 
is used. 

KEYLEN=number Can be used with BDAM, BPAM, 
BSAM, EXCP, QISAM (output only) 

Specifies the length, in bytes, of the keys used in the data set. 
Except for QISAM, the keys are associated with blocks on direct 
access devices; the keys for indexed sequential data sets are 
associated with records. The maximum key length is always 255 
bytes. . 

The subparameters KEYLEN, CODE, MODE, PRTSP, STACK, and TRTCH are 
mutually exclusive subparameters. Therefore, if KEYLEN is coded, 
do not code any of these other subparameters. 

Note for BDAM: If standard labels are used, the key length 
information can be supplied from the data set label for an existing 
data set. If a key length is not supplied by any source, no input 
or output requests that require a key may be issued. 

section IV: The DD Statement -~ DCB Parameter 147 



Note for BPAM and BSAM: If standard labels are used"the key 
length information can be supplied from the data set label for an 
existing data set. If a key length is not supplied by any source 
before the OPEN macro instruction i,s issued, a length of zero (no 
keys) is assumed. 

Note for QISAM: For an existing data set with standard labels. the 
key length can only be supplied from the data set label. 

LIMCT=number, Can be used with BDAM 

specifies the number of blocks, if relative block addressing is 
used, or the number of tracks. if relative track addressing is 
used, that are to be searched for a block or available space when 
the extended search option (OPTCD=E) is specified,. The number may 
equal or exceed the number of blocks or tracks in the data set, in 
which case the entire data set is searched. 

If the extended search option is not specified, the LIMCT 
subparameter is ignored. 

LRECL=number Can be used with BPAM, BSAM, 
QISAM (output only), QSAM, TCAM 

specifies the actual or maximum length, in bytes. of a logical 
record,. The record length is required for fixed-lergth and 
variable-length records; for variable-length records., the maximum 
record length should be specified. The length cannot exceed the 
block size (BLKSIZE) value except for variable-length spanned 
records. 

• If RECFM=V or VB, then LRECL must be equal .to the maximum 
record length + 4. 

• If RECFM=F or FB, then LRECL must be equal to the logical 
record length. 

• If RECFM=U. then LRECL should be omitted. 

• If RECFM=D or DB, then LRECL must be equal to the maximum 
record length +4. 

Note for BPAM: The record length is required for fixed-length 
recordsonlyo 

Note for BSAM: The record length can be omitted from all sources,. 
in which case the block size specification (BLKSIZE) is used. For 
variable-length spanned records (VS or VBS) processed under BSAM, 
if logical record exceeds 32.756, specify LRECL=X. For ASCII 
records on magnetic tape, the maximum record length is 2048 bytes 
and the minimum record length is 18 bytes. 

Note for QISAM: For unblocked records, with a relative key 
position (RKP) of zero, the record length includes only the data 
portion of the record. The record length can be specified only 
when .creating the data s·et. 

Note for QSAM: For variable-length spanned records (VS or VBS) 
processed under QSAM (locate mode), if logical record exceeds 
32,756, specify LRECL=X. For ASCII records on magnetic tape, the 
maximum record length is 2048 bytes and the minimum record length 
is 18 bytes. 

Note for TCAM: The record length should include the source and 
control bytes if these are specified by the OPTCD suboperands. The 
record length is required for fixed-length records only. 

148 JCL Reference (Release 20.1) 



MODE= l~! Can be used with BSAM, EXCP" QSAM 

Specifies the mode of operation to be used with a card reader, a 
card punch, or a card-read punch, as follows: 

C -- the card image (column binary) mode. 
E -- the EBCDIC mode. 

If this information is not supplied by any source, E is assumed. 

The subparameters MODE" CODE, KEYLEN, PRrSP, and TRTCH are mutually 
exclusive subparameters. Therefore, if MODE is coded, do not code 
any of these other subparameters. 

NCP=number Can be used with BISAM. BPAM" 
BSAM 

Specifies the maximum number of READ or WRITE macro instructions 
issued before a CHECK macro instruction is issued. The maximum 
number allowed is 99, based on limits established when the system 
was generated. If chained scheduling is used" NCP must be 
specified as more than 1. 

If not specified by any source, 1 is assumed. 

NTM=number Can be used with QISAM 

Specifies the number of tracks to be used for a cylinder index. 
When the specified number of tracks has been filled, a master index 
is createdu This information is required only when the master 
index option (OPTCD=M) is selected. 

If not specified by any source and OPTCD=M is specified, the master 
index option is ignored. 

OPTCD= J:r1. 

B 
C 
E 
F 
H 
I 
L 
M 
o 
Q 
R 
T 
U 
W 
Y 
Z 

can be used with BDAM" BPAM, 

BSAM, EXCP, QISAM (output only), 
QSAM, TCAM 

Specifies the optional services to be performed by the control 
program. All optional services must be requested by the same 
source. The characters may be coded in any order and, when used in 
combination, no commas are permitted between characters. 

A -- Actual device addresses are to be presented (nblock 
address n operand) in READ and WRITE macro instructions. 
For BDAM, R requests the same option as A, and either can 
be coded. 

Section IV: The DD Statement -- DCB Parameter 149 



B -- Requests that end-of-file recognition be disregarded for 
tapes. 

C -- For BPAM,BSAM,QSAM: requests that chained scheduling be 
used,. 

For TCAM: specifies that one byte of the work area be 
used to indicate if a segment of a message is the first, 
intermediate, or last segment. 

E -- An extended search (more than one track) is to be 
performed for a block or available space. (The LIMCT 
subparameter must also be specified; otherwise, this 
opti on is ignored,.) 

F -- Feedback may be requested in READ and WRITE macro 
instructions and the device address returned is to be of 
the form presented to the control program. 

H Requests hopper empty exit for Optical Readers (BSAM). 

I Requests that the control program use the independent 
overflow areas for overflow records. 

L -- Requests that 'the control program delete records that 
have a first byte of all ones; records so marked may be 
deleted when space is required for new records. Do not 
specify this option for blocked records if RKP=O. 

M -- Requests that master indexes be created as required, 
according to the information in the NTM subparameter. 
This option is ignored if the subparameter NTM=number is 
not specified. 

o Requests online correction for Optical Readers (QSAM). 

Q Specifies that translation from ASCII input to EBCDIC is 
required or that translation from EBCDIC to ASCII output 
is required. 

R -- For BDAM, actual device addresses are to be presented 
("block address" operand) in READ and WRITE macro 
instructions • 

For QISAM, requests the control prog,ram to place 
reorganization criteria information in the RORG1, RORG2, 
and RORG3 fields of the data control block. This option 
is provided whenever the OPTCD subparameter is omitted 
from all sources. 

T -- Requests user totaling facili ty,._ 

U -- For BSAM,QSAM: Only for 1403 printers with the Universal 
Character set feature. Unblocks data checks and allows 
analysis by an appropriate error analysis (SYNAD) 
routine. If U is omitted, data checks are blocked (not 
recognized as errors). 

For ISAM: specifies the full track index write feature. 

For TCAM: specifies that the work unit to be handled is 
a message. If U is omitted, the work unit is assumed to 
be a record. 

150 JCL Reference (Release 20.1) 



W -- For BDAM,BPAM,BSAM,QSAM: Requests a validity check for 
write operations on direct access devices. If the device 
is a 2321 data cell, validity checking is always 
performed whether requested or not. 

For TCAM: Specifies that the name of each message source 
is to be placed in an eight-byte field in the work area. 

Y -- Requests that the control program use the cylinder 
overflow areas for overflow records. 

Z -- For input from a magnetic tape: Requests the control 
program to shorten its normal error recovery procedure. 
When Z is specified, a data check is considered permanent 
after five unsuccessful attempts to read a record. This 
option is available only if selected at system 
generation. It should be used only when a tape is known 
to be faulty and there is no need to process every 
record. The error analysis (SYNAD) routine should keep a 
count of the number of permanent errors, and should 
terminate processing if the number becomes excessive. 

For input from a direct access storage device (DASD): 
Specifies search direct (SO) for sequential data sets. 

Only certain options can be selected with each access method, as 
follows: 

For BDAM: 

A or R E F W 

For BPAM: 

C W WC 

For BSAM and QSAM: 

B C Q T U W Z UC WC ZC 

For EXCP: 

Z 

For QISAM: 

I L M R W Y 

For QSAM: 

0 

For BSAM: 

H 

For TCAM: 

C U W 

Section IV: The DD Statement -- DCB Parameter 151 



PCI=(~] [:~} Can be used with TCAM 

specifies if and how a program-controlled interruption (PCI) is to 
be used to control the allocating and freeing of buffers. The 
suboperands apply to receiving" and sending operations respectively. 

N -- specifies that no PCls are taken during filling (on 
receiving operations) or emptying (on sending operations) 
of buffers. Buffers are freed at the end of 
transmission. 

R -- specifies that after the first buffer is filled (on 
receiving operations) or emptied (on sending operations), 
a PCI occurs during the filling or emptying of each 
succeeding buffer. The completed buffer is freed., but no 
new buffer is allocated to take its place. 

A -- specifies that after the first buffer is filled (on 
receiving operations) or emptied (on sending operations), 
a PCI occurs during the filling or emptying of the next 
buffer. The first buffer is freed. A buffer is 
allocated in place of the freed buffer. 

If this operand is not specified by any source., PCI=(A,A) is 
assumed. 

PRTSP= 0 
1 
2 
3 

Can be used with BSAM, EXCP, 
QSAM 

specifies the line spacing on a printer as 0, 1, 2, or 3 lines 
between printout. This subparameter is valid only if control 
characters are not present (A or M is not specified in the RECFM 
subparameter) • 

If not supplied by any source, 1 is assumed. 

The subparameters PRTSP, CODE, KEYLEN. MODE, STACK, and TRTCH are 
mutually exclusive subparameters. Therefore, if PRTSP is coded, do 
not code any of these other subparameters. 

RECFM=type Can be used with BDAM, BPAM, 
BSAM, EXCP, QISAM (output only), 
QSAM, TCAM 

Specifies the format and characteristics of the records in the data 
set. The format and characteristics must be completely described 
by one source. 

If this subparameter is omitted, an undefined-length record is 
assumed with no optional features provided, except for QISAM where 
variable-length records are assumed, and QTAM where a message 
segment is assumed. 

Both the record format and characteristics are specified using the 
characters defined below. The allowable combinations of characters 
are indicated for the associated access methods; the characters 
must be coded in the order shown. 

152 JCL Reference (Release 20.1) 



Character Definitions 

A The record contains ASA printer control characters. 

B The records are blocked~ 

D The ASCII records are of variable iength. Each record on 
magnetic tape has a four-byte record descriptor field 
giving the record length in decimal. 

F The records are of £ixed length. 

G The message data provided in the work unit is a 
complete message. 

M The records contain machine code control 
characters. 

R The message data provided in the work unit is a 
complete record. 

S For fixed-length records, the records are 
written as standard blocks:r i.e .• , no truncated 
blocks or unfilled tracks within the data set, 
with the exception of the last block or track. 

For variable-length records, a record may 
span more than one block. Exchange buffering 
(BFTEK=E) cannot be specified. 

For QTAM, the message data provided in the work 
unit is a message segment. 

T The records may be written onto overf low tracks 
if required. Exchange buffering (BFTEK=E) or 
chained scheduling (OPTCD=C) cannot be used. 

U The records are of undefined length. 

V The records are of variable length. (Variable length 
records cannot be in ASCII.) 

Only certain characters and combinations of characters can be 
selected with each access method. The allowable combinations of 
characters are indicated for the associated access methods; the 
characters must be coded in the order shown. 

For BDAM: 

1 ~ IT]! 
For BPAM: 

[!] U [T] 

V UT] [~] 
F [L] [~] 

section IV: The DD Statement -- DCB Parameter 153 



For BSAM and QSAM: 

U [T] [~J 
B 
S 
T 

V BS 
BT 
ST [~J BST 

B 
S 
T 

F BS 
BT 
ST 

~J BST 

For BSAM and QSAM using ASCII data sets on tape: 

D [B] [A] 

u [A] 

F [B] [A] 

Note: A or M cannot be specified if the PRTSP subparameter is 
specified. 

For QISAM: 

l~ [B] ! 
[B] 

For QTAM: 

~I 
For TCAM: 

I~ [B] 

REPOS=l!1 Can be used only with EXCP. 

Specifies repositioning for tape devices. 

Y -- Repositioning. A bit will be set to indicate that the user is 
keeping an accurate block count, and, if a permanent error 
occurs, Dynamic Device Reconfiguration (DDR) can use the block 
count to reposition. 

N -- No repositioning. DDR will not attempt repositioning. 

154 JCL Reference (Release 20.1) 



RESERVE=(number1,number2) Can be used with TCAM 

specifies the number of bytes (from 0 to 255) to be reserved in a 
buffer for insertion of data by the DATETIME and SEQUENCE macros. 
number1 indicates that space is to be reserved in the first buffer 
of each incoming message; number 2, that space is to be reserved in 
all buffers except the first. If RESERVE is not coded, no space is 
reserved. 

RKP=number Can be used with QISAM (output 
only) 

specifies the position of the first byte of the record key, 
relative to the beginning of each record. (The beginning byte of a 
record is addressed as 0.) 

If RKP=O is specified for blocked fixed-length records, the key 
begins in the first byte of each record, and the delete option 
(OPTCD=L) must not be specified. If RKP=O is specified for 
unblocked fixed-length records, the key is not written in the data 
field; the delete option can be specified. 

For variable-length records, the relative key position must be 4 o~ 
greater, when the delete option (OPTCD=L) is not specified. The 
relative key position must be 5 or greater if the delete option is 
specified. 

If this information is not specified by any source" a relative key 
position of zero is assumed. 

SOWA=number can be used with QTAM 

Specifies the size, in bytes, of the user-provided input work 
areas. The value IIRlst be less than 32,768 and must include the 
4-byte user prefix. 

If this subparameter is not specified by any source, the 
telecommunications job, when executed, is terminated. 

STACK=l~! Can be used with BSAM, EXCP, QSAM 

Specifies the stacker bin to receive the card, and is either 1 or 
2. 

If not specified by any source, 1 is assumed. 

The subparameters STACK, CODE, KEYLEN, PRTSP, and TRTCH are 
mutually exclusive subparameters. Therefore, if STACK is coded. do 
not code any of these other subparameters. 

THRESH=number Can be used with TCAM 

specifies the percentage of the nonreusable disk message queue 
records to be used before a flush closedown occurs. If this 
operand is omitted, closedown occurs when 95% of the records have 
been used. 

Section IV: The DD Statement -- DCB Parameter 155 



Can be used with BSAM, EXCP, QSAM 

Specifies the recording technique for seven-track tape. 

C Data conversion feature is to be used, with odd parity 
and no translation. 

E Even parity, with no translation and no conversion. 
T Odd parity and no convers ion:, and BCD to EBCDIC 

translation is required when reading; EBCDIC to BCD 
translation when writing. 

ET -- Even parity and no conversion, and BCD to EBCDIC 
translation is required when reading; EBCDIC to BCD 
translation when writing. 

If this subparameter is not specified by any source" odd parity and 
no translation or data conversion is assumed. 

The subparameters TRTCH, CODE, KEYLEN, MODE, PRSTP, and STACK are 
mutually exclusive subparameters. Therefore, if TRTCH is coded, do 
not code any of these other subparameters. 

Examples of the DeB Parameter 

1. 

2. 

//DD1 
// 
// 

DD DSNAME=ALP"DISP= (,KEEP) ,VOLUME=SER=44321, 
UNIT=2400,DCB=(RECFM=FB,LRECL=240,BLKSIZE=960, 
DEN=l,TRTCH=C) 

This OD statement defines a new data set and contains the 
information necessary to complete the data control block. 

//DD2 
// 
//DD3 
// 

DD DSNAME=BAL,DISP=OLD, DCB= (RECFM=F,LRECL=80, 
BLKSI ZE=8 0) 

DD DSNAME=CNANN.DISP=(,CATLG.DELETE),UNIT=2400, 
LABEL=(,NL),VOLUME=SER=663488,DCB=*.DD2 

The statement named DD3 defines a new data set and requests the 
system to copy the DCB subparameters from the DD statement named 
DD2, which is in the same job step. 

x 
x 

x 

x 

3. //DD4 DD DSNAME=JST,DISP=(NEW,KEEP),UNIT=2311, x 

4. 

// SPACE=(CYL, (12,2» "DCB=(A.B.C,KEYLEN=S) 

This DO statement defines a new data set and requests the system to 
copy DCB information from the data set label of the cataloged data 
set named A,. Be C. If the data set label contains a key length 
specification, it is overridden since KEYLEN is coded on the DD 
statement. 

//D05 
// 

DD DSNAME=SAME,DISP=OLD,UNIT=2311, 
DCB=(*.STEP1.PROCSTP5.DDS,BUFN0=5) 

x 

This DO statement defines an existing data set and requests the 
system to copy the DCB subparameters from the DD statement named 
DDS, which is contained in the procedure step named PROCSTP5. The 
cataloged procedure was called by the job step named STEP1. If any 
of the DCB subparameters coded on the procedUre DD statement have 
been previously defined for this data set" they are ignored. If the 
BUFNO subparameter has not been previously specified for the data 
set, then five buffers are assigned to the data control block. 

156 JCL Reference (Release 20.1) 



The DDNAME Parameter 

DDNAME=ddname 

ddname 
the name of a following DD statement in the same job step that 
defines tnis data set. 

Rules for Coding 

1. The only parameters that can be coded with the DDNAME parameter are 
the DCB subparameters BLKSIZE and BUFNO. 

2. The DDNAME parameter cannot appear on a DD statement named JOBLIB. 

3. You can code the DDNAME parameter up to five times in a job step or 
procedure step. However, each time the DDNAME parameter is coded, 
it must refer to a different ddname. 

4. If the data set" which will be defined later in the job step, is to 
be concatenated with other data sets, the DD statements that define 
these other data sets must immediately follow the DD statement that 
includes the OONAME parameter. 

5. The DDNAME parameter must not be used to refer to a DD statement 
that has DYNAM coded on it. 

6. A DD statement to which a DONAME parameter refers cannot contain 
any reference to a DO statement that follows the one with the 
DDNAME parameter. 

What the DDNAME Parameter Does 

The ODNAME parameter allows you to postpone defining a data set until 
later in the same job step. In the case of cataloged procedures, this 
parameter allows you to postpone defining a data set in the procedure 
until the procedure is called by a job step. 

The DDNAME parameter is most often used in cataloged prpcedures and 
in job steps that call procedures. It is used in cataloged procedures 
to postpone defining data in the input stream until a job step calls the 
procedure. (Procedures cannot contain DO statements that define data in 
the input stream, i.e., DD * or OD DATA statements). It is used in job 
steps that call procedures to postpone defining data in the input stream 

I 
on an overriding 00 statement until the last overriding DD statement for 
a procedure step. (Overriding DD statements must appear in the same 
order as the corresponding DO statements in the procedure,.) 

When You Code the DDNAME Parameter 

When the system encounters a DO statement that contains the DDNAME 
parameter, it saves the ddname of that statement. The system also 
temporarily saves the name specified in the ODNAME parameter so that it 
can relate that name to the ddname of a later DO statement. Once a DD 

Section IV: The DO st atement -- DDNAME Parameter 157 



statement with that corresponding name is encountered., the name is no 
longer saved. For example, if the system encounters this statement 

//XYZ DD DDNAME=PHOB 

the system saves XYZ and., temporarily, PHOB. Until the ddname PHOB is 
encountered in the input stream, the data set is a dummy data set. 

When the system encounters a statement whose ddname has been 
temporarily saved, it does two things. It uses the information 
contained on this statement to define the data set; it associates this 
information with the name of the statement that contained the DDNAME 
parameter. The value that appeared in the DDNAME parameter is no longer 
saved by the system. To continue the above example, if the system 
encounters this statement 

//PHOB DD DSNAME=NIN,DISP=(NEW,KEEP),UNIT=2400 

the system uses the data set name and the disposition and unit 
information to define the data set; it also associates the ddname of the 
statement that contained the DDNAME· parameter with this information. In 
this example, the ddname used is XYZ; the ddname PHOB is no longer 
saved. The data set is now defined, just as it would be if you had 
coded 

/ /XYZ DD DSNAME=NIN, DISP= (NEW., KEEP) , UNIT=24 00 

The system associates the ddname of the statement that contains the 
DDNAME parameter with the data set definition information. It does not 
use the ddname of the later statement that defines the data set. 
Therefore, any references to the data set, before or after the data set 
is defined, must refer to the DD statement that contains the DDNAME 
parameter, not the DD statement that defines the data set. The 
following sequence of control statements illustrates this: 

/ /DD1 DD DDNAME=LATER 

//LATER DD DSN=SET12,DISP=(NEW,KEEP),UNIT=2311,VOLUME=SER=46231, X 
// SPACE=(TRK.(20.5» 

//DD12 DD DSN=SET13.,DISP= (NEW, KEEP) , VOLUME=REF=*.DD1, X 
/ / SPACE=(TRK, (40.,5» 

When you want to concatenate data sets, the unnamed DD statements 
must follow the DD statement that contain~ the DDNAME parameter, not the 
DD statement that defines the data set. The following sequence of 
control statements illustrates this: 

//DDA DD 
// DD 
// DD 

DDNAME=DEFINE 
DSN=A. B. C" DISP=OLD 
DSN=SEVC,DISP=OLD,UNIT=2311,VOL=SER=52226 

//DEFINE DD * 
data 

/* 

You can use the DDNAME parameter up to five times in a job step or 
procedure step. However. each time the DDNAME parameter is coded" it 
must refer to a different ddname. 

158 JCL Reference (Release 20.1) 



THE DCB SUBPARAMETERS BLKSIZE AND BUFNO 

Two DCB subparameters can be coded with the DDNAME parameter -- BLKSIZE 
and BUFNO. This allows you to assign these DCB characteristics to the 
data set defined in the re~erenced DD statement. When the DCB 
subparameters BLKSIZE and BUFNO are coded both on the DD statement that 
contains the DONAME parameter and on the referenced OD statement" the 
subparameters coded on the former are ignored. 

These subparameters would most often be coded with the DDNAME 
parameter when the referenced DD statement defines data in the input 
stream. Oata in the input stream is written onto a direct access 
device" and the records are blocked as they are written. The input 
reader procedure normally assigns a block size and number of buffers for 
blocking. Coding the BLKSIZE subparameter allows you to specify that 
you want shorter blocks. Coding the BUFNO subparameter allows you to 
specify that you want fewer buffers,. You cannot specify that you want 
larger blocks or more buffers than would be assigned by the input reader 
procedure. (When a job is submitted via remote job entry and the BUFNO 
subparameter is coded, the BUFNO subparameter is ignored.) 

Examples of the DDNAME Parameter 

1. 

2. 

//STEP1 
//001 
//002 

EXEC 
OD 
00 

PGM=PROGRAM8 
DONAME=INPUT 
DSNAME=WELL,DISP=OLD 

The above statements make up the statements for a procedure ·step 
named STEP1., which is the first step of a procedure named MENT. The 
following statements illustrate how you would define DDl as a data 
set in the input stream: 

//STPA EXEC PROC=MENT 
//STEP1.INPUT DD * 

/* 

//ST4 
//DDl 
//002 
//DD3 
//DD4 
//DD5 
//ST5 
//DD6 

data 

EXEC 
DD 
DO 
DD 
DD 
DD 
EXEC 
DD 

PGM=FIFl'Y 
DDNAME=DD5 
UNIT=2400 
UNIT=2400 
SYSOUT=B 
DSNAME=ADDN,DISP=(,PASS).UNIT=2400 
PGM=FINE 
DSNAME=*·. ST4 .DDl ,DISP= (OLD. KEEP) 

The DD statement named DD5 defines the data set for the statement 
named DD1. The DD statement of the second job step wants the system 
to obtain the data set name, unit and volume information of this 
data set. This is done by referring to the DD statement that 
contains the DONAME parameter. 

section IV: The DD Statement -- DDNAME Parameter 159 



3. 

4. 

5. 

6. 

//STEP8 
//DDl 
// 
// 
//SKIP 

EXEC 
DD 
DD 
DD 
DD 

P GM= BLOCK 
DDNAME=SKIP 
DSNAME=A.B.C#DISP=OLD 
DSNAME=LEV,. FIVE, DISP=OLD 
DSNAME=SEF, DISP=OLD, UNIT=2311 i, VOLUME=SER=llllll 

The DD statement named SKIP defines the. data set for the statement 
named DD1. The two data sets" A. B.C,. and LEV .• FIVE" are 
concatenated with the data set named SEF. 

//STEPX 
//DDl 
//DD2 
//DD3 
//LATER 

EXEC 
DD 
DD 
DD 
DD 

PGM=PROG12 
DDNAME=LATER,DCB=(BLKSIZE=160o.,BUFNO=2) 
UNIT=2400 
SYSOUT=F 

* 

data 

/* 

The DD statement named LATER defines the data set for the statement 
named DD1. The DCB subparameters coded with the DDNAME parameter 
are used to bl.ock the input data. 

//STEPX 
//DDA 
//DDB 

EXEC 
DD 
DD 

PGM=B403 
DSNAME=SEL., DISP=OLD, VOLUME=SER=X3220" UNIT=24 00 
SYSOUT=B 

The above statements make up the statements for a procedure step 
named STEPX. which is the first step of a procedure named TYPE. The 
following statements illustrate how you would use the DDNAME 
parameter when overriding both of the DD statements and the first 
overriding DD statement is to define data in the input stream: 

//CALL 
//STEPX.DDA 
//STEPX.DDB 
//STEPX.IN 

EXEC 
DD 
DD 
DD .. 

data 

/* 

//MAR 
//CARDl 
//CARD2 
//CARD3 
//COGH 

EXEC 
DD 
DD 
DD 
EXEC 

PROC=TYPE 
DDNAME=IN 
SYSOUT=G 
* 

PGM=DEPT12 
DDNAME=CARD4 
UNIT=2400 
DSNAME=NINE.SCR,DISP=OLD 
PGM=DEPT13 

The DD statement named CARDl contains the DDNAME parameter,. This 
st~ement defines a dummy data set since there is no DD statement 
named CARD4 in the step_ 

160 JCL Reference (Release 20.1) 



The DISP Parameter 

NEW 

OLD 

SHR 

MOD 

DISP=( [NEW] OLD 
SHR 
MOD 

[

.DELETE] • KEEP 
• PASS 
.CATLG 
:UNCATLG 

[

.DELETE ] ) 

.KEEP 

.CATLG 

.UNCATLG 

specifi~s that the data set is to be created in this job step. 

specifies that the data set existed before this job step. 

specifies that the data set existed before this job step and can be 
used simultaneously (sha.!:ed) by another job,. since it will only be 
read. 

specifies that the read/write mechanism is to be positioned after 
the last record in the data set" and. if the system cannot find 
volume information for the data set. specifies that the data set is 
to be created • 

• DELETE 
specifies that the data set is no longer needed and its space on 
the volume is to be released at the end of this job step for use by 
other data sets • 

• KEEP 
specifies that the data set is to be kept at the end of this job 
step on the volume • 

• PASS 
specifies that the data set is to be passed for use by a subsequent 
job step in the same job • 

• CATLG 
specifies that the data set is to be kept at the end of this job 
step and an entry pointing to the data set is to be placed in the 
system catalog • 

• UNCATLG 
specifies that the data set is to be kept at the end of this job 
step but the entry pointing to the data set in the system catalog 
is to be removed. 

specifies that a disposition is not explicitly specified for the 
data set. but a conditional disposition follows. A new data set is 
to be deleted and a data set that existed before execution of the 
job is to be kept at the end of this job step • 

• DELETE 

• KEEP 

specifies that the data set is no longer needed and its space on 
the volume is to be released for use by other data sets if this 
step abnormally terminates • 

specifies that the data set is to be kept on the volume if this 
step abnormally terminates. 

Section IV: The DD statement -- DISP Parameter 161 



,CATLG 
specifies that an entry pointing to the data set is to be placed in 
the system catalog if this step abnormally terminates. 

,UNCATLG 
specifies that the entry pointing to the data set in the system 
catalog is to be removed if this step abnormally terminates. 

Rules for Coding 
1. If only the first subparameter is coded, you need not enclose it in 

parentheses. 

2. If. the data set is new, you can omit the subparameter NEW. 
However" if you specify a disposition or conditional disposition, 
you must code a comma to indicate the absence of NEW. 

3. You can omit the DISP parameter if a data set is created and 
deleted during a job step. 

4. If you do not want to change the automatic disposition processing 
performed by the system, you need not code the second subparameter. 
(When the second subparameter is not coded, the system 
automatically keeps data sets that did exist before the job and 
automatically deletes data sets that did not exist before the job.) 
If you omit the second subparameter and code a conditional 
disposition., you must code a comma to indicate the absence of the 
second subparameter. 

5. The DISP" SYSOUT, and DDNAME parameters are mutually exclusive 
parameters; therefore, when SYSOUT or DDNAME is coded, do not code 
the DISP parameter. 

WHA~ THE DISP PARAMETER DOES 

The DISP parameter describes to the system the status of a data set and 
indicates what is to be done with the data set after termination of the 
job step that processes it or at the end of the job. You can indicate 
in the DISP parameter one disposition to apply if the step terminates 
normally after execution and another to apply if the step terminates 
abnormally (conditional disposition). 

Specifying the Data Set's Status 
A data set is either a new data set or an existing data set. What you 
plan to do with the data set determines which status you code as the 
first subparameter of the DISP parameter. Ther are four different 
subparameters that can be coded. These subparameters allow you to tell 
the system: 

• The data set is to be created in the job step -- NEW. 
• The data set existed before this job step -- OLD. 
• The data set can be used by other concurrently executing jobs -

SHR. 
• The data set is to be lengthened with additional output -- MOD. 

At the begining of each job, the system determines by the status you 
specify in the DISP parameter whether a job is to have exclusive control 
of a data set. By specifying OLD., NEW, or MOD, you are requesting 
exclusive control of a data set for the duration of your job. In order 

162 JCL Reference (Release 20.1) 



to modify an existing data set, you must have exclusive control. If you 
plan for your job step or job to only read a data set and not to modify 
it, then you can request shared control of the data set. 

The status of a data set that is defined and used in more than one 
step of a job is determined by the most restrictive status specified. 
The status that the system assigns to a data set from the information on 
the DD statement is not for the duration of the step but for the 
duration of the job. Therefore, in a three step job., if OLD is 
specified as the status in one step and SHR as the status in the other 
two steps" the status of the data set for all three steps would be OLD. 
OLD is a more restrictive status than SHR. This means that if exclusive 
control of a data set is requested anywhere in a job the data set cannot 
be shared. In order to share a data set, SHR must be specified every 
time the data set is defined in the job. 

When you Specify NEW as the Data set's Status 

Specifying NEW as the first subparameter of the DISP paramet~r tells the 
system that the data set is to be created in the job step and may be 
used by the processing program to contain output data. If you omit the 
subparameter NEW, the system assumes the data set is to be created in 
the job step. (If you omit the subparameter NEW and specify a 
disposition or conditional disposition, you must code a comma to 
indicate the absence of NEW.) When the status of a data set is NEW, you 
must code on the DD statement all of the parameters necessary to define 
the data set. 

Coding NEW guarantees exclusive control of the nontemporary data set 
name specified in the DSNAME parameter for the data set. Exclusive 
control of the data set name means that no other job that requests the 
data set can be processed until the job with exclusive control 
terminates. This also means that the data set name itself is being 
exclusively controlled. If a request is made for the same data set 
name, the request will not be processed -- even though the request may 
refer to an entirely different physical data set. 

When You specify OLD as the Data Set's Status 

specifying OLD as the first subparameter of the DISP parameter tells the 
system that the data set existed before this job step. 

Coding OLD quarantees exclusive control of the nontemporary data set 
name specified in the DSNAME parameter for the data set. Exclusive 
control of the data set name means that no other job that requests the 
data set can be processed until the job with exclusive control 
terminates. This also means that the data set name itself is being 
exclusively controlled. If a request is made for the same data set 
name, the request will not be processed -- even though the request may 
refer to an entirely different physical data set. 

When You Specify SHR as the Data Set's Status 

Specifying SHR as the first subparameter of the DISP parameter tells the 
system that the data set resides on a direct access volume and other 
jobs that are executing concurrently with this job step may 
simultaneously use (share) the data set. When SHR is specified, any job 
step that uses the data set should only read the data set. 

You must have exclusive control of a data set in order to add or 
update records. If you plan to modify a data set, you should specify 
OLD or MOD in the DISP parameter. To protect other users of a shared 

Section IV: The DD Statement -- DISP Parameter 163 



data set, care should be exercised when specifying SHR if you plan to 
modify the data set. Several users can share a data set and write into 
it if exclusive control of the data set is acquired. For more 
information on sharing a data set and on gaining exclusive control of a 
data set when you have specified SHR, refer to the Supervisor and Data 
Management Services publication. 

Caution should be observed when specifying SHR for IBM processor 
output data sets since no provision is made for acquiring exclusive 
control of the data sets prior to writing (e.g. SYSGO for the 
Assembler). 

I If you code DISP=(SHR,DELETE) the system assumes OLD instead of SHR. 
Once you specify SHR for a data set, every reference to that data set 
within the job must specify SHR or the data set can no longer be used by 
concurrently executing jobs. 

When You specify MOD as the Data Set's status 

Specifying MOD as the first subparameter of the DISP parameter tells the 
system that when the data set is opened for output, the read/write 
mechanism is to be positioned after the last record in the data set. 
MOD is specified when you want to add records to a data set with 
sequential, indexed sequential, or partitioned organization. MOD should 
not be specified for data sets with direct organization. When MOD is 
specified and the number of volumes required to lengthen the data set 
may exceed the number of units requested, specify a volume count in the 
VOLUME parameter. This ensures that the data set can be extended to new 
volumes. 

When MOD is specified, the system first assumes the data set exists,. 
However, if the system cannot find volume information for the data set 
-- on the DD statement, in the system catalog. or passed with the data 
set from a previous step -- the system then assumes that the data set 
does not exist and the data set is created for the job step. Specifying 
MOD for a new sequential data set causes the read/write mechanism to be 
positioned after the last record in the data set each time it is opened 
for output. 

specifying MOD quarantees exclusive control of the nontemporary data 
set name specified in the DSNAME parameter for the data set. Exclusive 
control means that no other job that requests the data set can be 
processed until the job with control terminates. This also means that 
the data set name itself is being exclusively controlled. If a request 
is made for the same data set name, the request will not be processed -
even though the request may refer to an entirely different physical data 
set. 

If MOD is specified and volume information exists. the first volume 
of a multivolume data set will be mounted unless DEFER is specified in 
the UNIT parameter or (for tape data sets only) the VOLUME=REF parameter 
is used. 

When you lengthen a data set that has standard labels, DCB 
information in the data control block must agree with the DCB 
information contained in the data set label. Conflicting DCB 
information, specifically conflicting block sizes., may make the data set 
unusable by later jobs. Therefore" do not code the DCB information 
contained in the data set label on the DD statement. If this DCB 
information is coded in the DCB macro instruction, be sure it agrees 
with the information contained in the data set label. 

164 JCL Reference (Release 20.1) 



If you extend a data set that has fixed block standard (FBS) records 
and the last block was a truncated one. an end-of-data set condition 
occurs when the truncated block is encountered. If an attempt is made 
to read the data set backward on magnetic tape. processing is terminated 
immediately (with an end-of-data set condition) upon reading the 
truncated block. 

Specifying a Disposition for the Data Set 

The second subparameter of the DISP parameter tells the system what is 
to be done with the data set at the end of the job step. If you want 
the data set to assume the same attributes it had before the job, you 
need not code the second subparameter of the DISP parameter,. However, 
if a conditional dispostion is specified, you must code a comma to 
indicate the absence of the second subparameter. When the second 
subparameter is not coded, data sets that existed before the job 
continue to exist and data sets that were created in the job step are 
deleted. If you create a nontemporary data set in the job and assign a 
disposition of PASS to it. the data set is deleted at termination of the 
job step that receives the passed data set and does not assign a 
disposition to it. (The passed nontemporary data set is deleted at job 
termination if the data set is never received by a later job step.) 

The system ignores the disposition you have coded and automatically 
keeps existing data sets and deletes new data sets when the step is 
abnormally terminated before the step begins execution, e.g., primary 
direct access space cannot be obtained. 

sometimes the system does not perform disposition processing. The 
system does no disposition processing of data sets when: 

• The job step is bypassed because of an error that is found during 
interpretation of control statements, e.g., a control statement 
containing errors is read. 

• The job step is bypassed .because a return code test is satisfied. 

• The job step makes a nonspecific ~equest for a tape volume and the 
data set is never opened. There 1S one exception to this: If the 
data set is defined as a new generation data set, the system 
performs the requested disposition. 

• The job step requests that the mounting of a direct access volume be 
deferred and the data set is never opened. 

Except for the cases mentioned above, the specified disposition is in 
effect for the data set if the job step terminates normally or 
abnormally and you have not specified a conditional disposition as the 
third subparameter of the DISP parameter. 

There are five dispositions that can be specified for a data set. 
These dispositions allow you to: 

• Delete a data set -- DELETE. 
• Keep a data set -- KEEP. 
• Pass a data set to a later job step -- PASS. 
• Catalog a data set -- CATLG. 
• Uncatalog a data set -- UNCATLG. 

Section IV: The DD statement -- DISP Parameter 165 



When You specify DELETE as the Disposition 

Specifying DELETE as the second subparameter of the DISP parameter tells 
the system that you want the data set's space on the volume released at 
the end of the job step. If the data set resides on a tape volume, the 
tape is rewound and the volume i$ available for use,by other data sets 
at the end of the job step. If the data set resides on a direct access 
volume# the system removes the volwne table of contents entry associated 
with the data set and the data set's space is available for use by other 
data sets at the end of the job step_ However, if the direct access 
data set's expiration date or retention period has not expired, the 
system does not delete the data set. You can use the IEHPROGM utility 
program to remove the volume table of contents entry. 

If you are deleting a cataloged data set" the entry f or the· data set 
in the system catalog is also removed., provided the system obtained 
volume information for the data set from the catalog(l i.e., the volume's 
serial number was not coded on the DD statement. If the 'system did not 
obtain volume information from the catalog., the data set is still 
deleted but its entry in the catalog remains. If an error is 
encountered while attempting to delete a data set., its entry in the 
catalog will not be removed.. You may use the IEHPROGM utility program 
to delete an entry from the catalog. 

When You Specify KEEP as the Disposition 

Specifying KEEP as the second subparameter of the DISP parameter tells 
the system that you want the data set kept intact until a subsequent job 
step or job requests that the data set be deleted or until the 
expiration date is passed. (You can specify a retention period or 
expiration date in the LABEL parameter when the data set is created. If 
neither is coded in the LABEL parameter, a retention period of zero days 
is assumed by the system.) 

When You specify PASS as the Disposition 

specifying PASS as the second stibparameter of the DISP parameter tells 
the system that the data set is to be passed after it is used in a job 
step. The system retains unit and volume information for a pa~ed data 
set; when you refer to the data set in a DD statement of a subsequent 
job step, do not code the VOLUME parameter. A passed data set may be 
referred to once in a later job step. You continue to code PASS each 
time the data set is referred to until the last time it is used in the 
jOb.. At this time, you assign it a final disposition. If you do not 
assign the data set a final disposition, the system deletes the data set 
if it was created in the job and keeps the data set if it existed before 
the job. 

When the data set is not in use. the volume that contains the passed 
data set remains mounted; therefore, you need not code RETAIN in the 
VOLUME parameter of a DD statement that specifies a disposition of PASS. 
If the system must remove the volume that contains the passed data set., 
it ensures through messages to the operator that the volume is remounted 
before the data set is used again. 

When a subsequent job step wants to use the passed data set, you must 
include a DO statement for the step. On this DD statement., you must 
always code the DSNAME and DISP parameters • 

• The DSNAME parameter identifies the data set. Either code the data 
set's name or make a backward reference to any earlier DD statement 
in the job that defines the data set. 

166 JCL Reference (Release 20.1) 



• The DISP parameter specifies the data set's status and disposition. 
(If a later job step is to use this data set" specify a disposition 
of PASS; if this is the last job step that uses this data set" 
specify the data set's final disposition.) 

The other parameters you might code are UNIT, LABEL, and DCB. 

• Code the UNIT parameter if you want more than one device allocated 
to the data set. 

• Code the LABEL parameter if the data set does not have standard 
labels. 

• Code the DCB parameter if the data set does not have standard labels 
and the first DD statement that defines the passed data set contains 
the DCB parameter. 

If several data sets used in the job have the same name, you can only 
pass one of these data sets at a time. A job step must refer to a 
passed data set and assign a disposition of other than PASS to the data 
set before another data set with the same name can be passed. 

When You specify CATLG as the Disposition 

Specifying CATLG as the second subparameter of the DISP parameter tells 
the system to create an index entry in the system catalog that points to 
this data set. The disposition CATLG also implies ~ disposition of 
KEEP. Once the data set is cataloged, you can retrieve the data set in 
later job steps and jobs by coding the DSNAME parameter and a status of 
other than NEW in the DISP parameter. 

You can specify a disposition of CATLG for an already cataloged data 
set. This should be done when you are lengthening the data set with 
additional output (a status of MOD is coded) and the data set may exceed 
one volume. If the system obtained volume information for the data set 
from the catalog and you code DISP=(MOD,CATLG)" the system updates the 
entry to include the volume serial numbers of any additional volumes. 

If the data set's name is encl.osed in apostrophes, the data set must 
not be assigned a disposition of CATLG. If the data set you want 
cataloged has a qualified name, e.g., A.B.C., you must first create all 
but the lowest level of the name as indexes in the catalog. This is 
done using the IEHPROGM utility program. Once the indexes are 
established. you can request that a data set with a qualified name be 
cataloged. 

When You specify UNCATLG as the Disposition 

Specifying UNCATLG as the second subparameter of the DISP parameter 
tells the system that you want the data set's entry in the system 
catalog removed at the end of the job step, UNCATLG does not tell the 
system to delete the data set. Later jobs that use this data set must 
provide on the DD statement all of the parameters necessary to define 
the data set. 

Section IV: The DD Statement -- DISP Parameter 161 



Specifying a Conditional Dispositio'n for the Data Set 

The third subparameter of the DISP parameter tells the system what is to 
be done with the data set if the step abnormally terminates. If you do 
not specify a conditional disposition and the step abnormally 
terminates, the system uses the disposition specified as the second 
subparameter of the DISP parameter to determine what is to be done with 
the data set.. ('!here are a few exceptions and they are noted under 
·specifying a Disposition for the Data set.") If a passed data set has 
not been received and a job step abnormally terminates, the passed data 
set assumes the conditional disposition specified the last time it was 
passed. In this case" conditional disposition processing is done at job 
termination, not at step termination. 

There are four conditional dispositions. When a job step abnormally 
terminates, these conditional dispositions allow you to: 

• Delete a data set -- DELETE. 
• Keep a data set -- KEEP. 
• Catalog a data set -- CATLG. 
• Uncatalog a data set -- UNCATLG. 

When You Specify DELETE as the Conditional Disposition 

Specifying DELETE as the third subparameter of the DISP parameter tells 
the system that if the step abnormally terminates you want the data 
set's space on the volume released. DELETE is' the only valid 
conditional disposition that can be specified for a data set assigned a 
temporary name or no name. If the data set resides on a tape volume, 
the tape is rewound and the volume becomes available for use by other 
data sets at the end of the job step. If the data set resides on a 
direct access volume" the system removes the volume table of contents 
entry associated with the data set and the data set's space is available 
for use by other data sets at the end of the job step. However, if the 
direct access data set's expiration date or retention period has not 
expired. the system does not delete the data set. You can use the 
IEHPROGM utility program to remove the volume table of contents entry. 

If the data set is cataloged, its entry in the system catalog is also 
removed. provided the system obtained volume information for the data 
set from the catalog., i.e." the volume's serial number was not coded on 
the DD statement. If the system did not obtain volume information from 
the catalog" the data set is still deleted but its entry in the catalog 
remains. In this case, you may use the IEHPROGM utility program to 
delete the entry. 

When You specify KEEP as the Conditional Disposition 

Specifying KEEP as the third subparameter of the DISP parameter tells 
the system that if the step abnormally terminates you want the data set 
kept intact until a subsequent job requests that the data set be deleted 
or until the expiration date has passed. (You can specify a retention 
period or .. expiration date in the LABEL parameter when the data set is 
created. If neither is coded in the LABEL parameter, a retention period 
of zero days is assumed by the system.) 

Note: A scratch volume will be rewound, unloaded, and a KEEP message 
issued to the operator during abnormal termination of a job step when: 
(1) a temporary data set written on the scratch volume has been assigned 
a nontemporary name" and (2) a conditional disposition of KEEP has been 
assigned to the data set. 

168 JCL Reference (Release 20.1) 



When You Specify CATLG as the Conditional Disposition 

Specifying CATLG as the third subparameter of the DISP parameter tells 
the system that if the step abnormally terminates you want the system to 
create an entry in the system catalog that points to this data set. The 
conditional disposition of CATLG also implies a conditional disposition 
of KEEP.. Once the data set is cataloged" you can retrieve the data set 
in later job steps and jobs by coding the DSNAME pararneterand a status 
of other than NEW in the DISP parameter. 

If the data set' s name is enclosed in apostrophes" the data set must 
not be assigned a conditional disposition of CATLG. If the data set has 
a qualified name, e.g., A.B. C., you must have created all but the lowest 
level of the name as indexes in the catalog before asking that the 
system catalog the data seto This is done using the IEHPROGM utility 
program. 

When You specify UNCATLG as the Conditional Disposition 

specifying UNCATLG as the third subparameter of the DISP parameter tells 
the system that if the step abnormally terminates you want the data 
set's entry in the system catalog removed, UNCATLG·does not tell the 
system to delete the data set. Later jobs that use this data set must 
provide on the DO statement all of the parameters necessary to define 
the data set. 

Disposition Processing Chart 

The system performs disposition processing of data sets at step 
termination. This processing is based on whether the step terminated 
normally or abnormally" the data set' s status, the requested 
disposition, and the conditional disposition. Table 1 shows the 
disposition processing performed by the system based on these factors. 
(You may want to remove this page from the publication and place it in a 
convenient location, so that you and other programmers can refer to it.) 

section IV: The DD statement -- DISP Parameter 169 



~ 
-..J 
o 

~ 
t."4 

~ 
H\ 
(1) 

~ 
=s 
(") 
(1) 

-~ 
(I) 

I--' 
(1) 
Sl1 
C/l 
(1) 

I'V 
o 
• 
~ -

Table 1. Disposition Processing Chart 

Action Taken 
Status Requested Disposition Conditional Disposition at Normal 

End of Step1 

none none deleted 

KEEP none kept 

DELETE none deleted 

CATLG none cataloged 

PASS none passed 

NEW or MOD
5 PASS anyexcepf 

UNCATLG6 l'_assed 
any except requested 
PASS KEEP disposition 
any except requested 
PASS DELETE disposition 
any except requested 
PASS CATLG disposition 

none none kept • 
KEEP none kept 

DELETE none deleted 

CATLG none cataloged 

UNCATlG none uncataloged 

PASS none passed 
OLD or MOD PASS any passed 

or SHR 

any except requested 
PASS KEEP disposition 
any except requested 
PASS DELETE disposition 
any except requested 
PASS CATlG disposition 
any except requested 
PASS UNCATLG disposition 

Footnotes: 

1 'See list of exceptions in right-hand column. 
2 In the following cases, the data set is not allocated to the job step and, therefore, no 

disposition processing is performed: a JCL error is encountered i a return code test causes 
the job step to be bypassed i the job is cancelled before data set allocation; the system 
cannot allocate this data set to the job step. 

3 This is the disposition processing that is performed when the job is cancelled after data 
set allocation or a processing program error occurs. 

4 
This is the disposition processing that is performed when this data set has been allocated 
to the step but the system cannot allocate some other data set to the job step. 

5 
For MOD, a data set is considered to be a new data set if volume information is not 
avai lable to the system. 

6 
A conditional disposition other than DELETE is invalid for a data set that is assigned a 
temporary name or no name. The system assumes DELETE. 

- -- ------ ---

Action Taken at Abnormal End of Step 1 , 
Action Taken at I when Step Fails Due to: 
End of Job 

A2 S3 C
4 

i 

deleted deleted deleted 

deleted kept deleted 
I 

deleted deleted deleted • 

deleted c,ataloged deleted J 
deleted passed passed deleted 

conditional 
deleted passed passed disposition 

deleted kept kept 

deleted deleted deleted 

deleted cataloged cataloged 

k~t kept kept 
kept kept kept 

kept deleted kept 

kept cataloged kept 

kept uncataloged kept 

kept passed passed kept 
kept passed passed conditional 

dis£><=>sition 

kept kept kept 

kept deleted deleted 

kept cataloged cataloged 

kept uncataloged uncataloged 

List of Exceptions: 

1. When a nontemporary data set is passed and the receiving step does not assign it a disposition, 
the system will, upon termination of this step, do one of two things. If the data set was new 
when it was initially passed, it will be deleted. If the data set was old when initially 
passed, it wi II be kept. Temporary data sets are de leted. 

2. If a job step makes a nonspecific request for a tape volume and the data set is never opened, 
no disposition processing ts performed. 

3. If a job step requests that the mounting of a direct access volume be deferred and the data set 
is never opened, no disposition processing is performed. 

4. If automatic step restart is to occur, all data sets in the restart step with a status of OLD or 
MOD, and all data sets being passed to steps following the restart step, are kept. All data 
sets in the restart step with a status of NEW are deleted. 

5. If automati c checkpoi nt restart is to occur, a II data sets current Iy in use by the job are kept. 
6. When dedicated data sets are used in a job step, any disposition assigned to them is internally 

changed to PASS or KEEP to prevent deletion of the dedicated data sets~ 



Ezamples of the DISP Parameter 

1. //DD 
// 

DO DSNAME=D99 .GROUP.SIX., UNIT=2311, VOLUME=SER=llllll" 
DISP= (NEW., CATLG., DELETE), SPACE= (TRK, (5 .• 1) ) 

x 

This DD statement defines a new data set and requests the system to 
create an index entry in the system catalog that points to this data 
set if the step terminates normally. It also requests the system to 
delete the data set., instead of cataloging it., if the step 
abnormally terminates.. Because the data set's name is qualified" 
the IE'HPROGM utility program must be used to create the indexes in 
the catalog for D99 and GROUP before you request the system to 
catalog the data set. 

2. //002 DO DSNAME=FIX.UNIT=2400-1,VOLUME=SER=44889. x 

3. 

// DISP= (OLD, .• DELETE) 

This DO statement defines an existing data set and implies that the 
data set is to be kept if the step terminates normally. (For an 
existing data set., the system assumes it is to keep the data set if 
no disposition is specified.) The statement requests the system to 
delete the data set if the step abnormally terminates. 

//STEPl 
//DD1 
// 
//STEP2 
//DD2 
//D03 
//STEP3 
//D04 

EXEC 
DO 

EXEC 
DO 
DO 
EXEC 
DO 

PGM=FILL 
DSNAME=SWITCH.LEVEL18.GROUP12,UNIT=2311, X 
VOLUME=SER=LOCAT3 .• SPACE= (TRK, (80" 15) ), DISP= (, PASS) 
PGM=CHAR 
OONAME=XTRA"DISP=OLD 
OSNAME=* .STEP1.DD1,DISP= (OLD.,PASS.DELETE) 
PGM=TERM 
DSNAME=*. STEP2.DD3,DISP= (OLD, CATLG, DELETE) 

The DO statement named DOl in STEPi defines a new data set and 
requests that the data set be passed. If STEPl abnormally 
terminates., the data set is deleted since it is a new data set and a 
conditional disposition was not specified. The DD statement named 
003 in STEP2 receives the passed data set and requests that the data 
set be passed. If STEP2 abnormally terminates, the data set is 
deleted because of the conditional disposition of DELETE. The DD 
statement named 004 in STEP3 receives the passed data set and 
requests that the data set be cataloged at the end of the step. If 
STEP3 abnormally terminates, the data set is deleted because of the 
conditional disposition of DELETE. 

section IV: The DD Statement -- OISP Parameter 111 





The DSNAME Parameter 

dsname 

1 
DSNAME 1= 
DSN 

dsname 
dsname(member name) 
dsname(generation number) 
dsname(area name) 
iidsname 
iidsname(member name) 
iidsname(area name) 
*.ddname 
*.stepname.ddname 
*.stepname.procstepname.ddname 

identifies a data set name. 

dsname(member name) 
identifies a nontemporary partitioned data set name and the name of 
a member within that data set. 

dsname(generation number) 
identifies a generation data group by its name and a generation 
data set by its generation number (a zero or signed integer.) 

dsname(area name) 
identifies a nontemporary indexed sequential data set name and an 
area of that data set (INDEX, PRIME, or OVFLOW.) 

iidsname 
specifies the name you want'assigned to a temporary data set. 

iidsname(member name) 
specifies the name you want assigned to a temporary partitioned 
data set and to a member within that data set. 

iidsname(area name) 
specifies the name you want assigned to a temporary indexed 
sequential data set and identifies an area of that data set (INDEX, 
PRIME, or OVFLOW.) 

*.ddname 
specifies that the data set name is to be copied from the named DD 
statement, which is an earlier DD statement in ,the job step. 

*.stepname.ddname 
specifies that the data set name is to be copied from an earlier DD 
statement named ddname, which appears in an earlier step named 
stepname in the same job. 

*.stepname.procstepname.ddname 
specifies that the data set name is to be copied from an earlier DD 
statement in a cataloged procedure. stepname is the name of the 
job step that calls the procedure. procstepname 'is the name of the 
procedure step that includes the named DD statement, and ddname is 
the name of the DD statement that contains the data set name. 

Rules for Coding 

1. An unqualified data set name may consist of 1 of 8 characters. The 
first character must be an alphabetic or national (0),$,#) 
character; the remaining characters can be any alphameric or 
national characters, a hyphen, or a plus zero (12-0 punch). A 

section IV: The DD Statement -- DSNAME Parameter 173 



temporary data set name can consist of" 1 through 8 characters,. 
excluding the ampersands; the first character following an 
ampersand must be an alphabetic or national character~ 

2. A qualified name may consist of up to 44 characters including 
periods. For each eight characters or less there must be a period, 
and the character following a period must be an alphabetic or 
national (CiI.I$,#) character. 

3. You need not code the DSNAME parameter if the data set is created 
and deleted in the job. i.e •• if the data set is temporary. 

4. The DSNAME and DDNAME parameters are mutually exclusive parameters; 
therefore"." when the DDNAME parameter is coded. do not code the 
DSNAME parameter. 

IDENTIFYING THE DATA SET 

When you create a data set. you use the DSNAME parameter to assign a 
name to the data set. The data set name is part of the information 
stored with the data set on a volume. Later. when another job step or 
job wants to use the data set. it identifies the data set name in the 
DSNAME parameter; the system uses the data set name to locate the data 
set on the volume. 

How you code the DSNAME parameter depends on the type of data set and 
whether the data set is nontemporary or temporary. 

Creating or Retrieving a Nontemporary Data Set 
If the data set is nontemporary, you can identify: 

• A permanent data set by coding DSNAME=dsname. 
• A member of a nontemporary partitioned data set by coding 

DSNAME=dsname(member name). 
• A generation of a nontemporary generation data group by coding 

DSNAME=dsname(number). 
• An area of a nontemporary indexed sequential data set by coding 

DSNAME=dsname(area name). 

Nontemporary Data Sets 

When a nontemporary data set is created" it is assigned a name in the 
DSNAME parameter and is assigned a disposition of KEEP or CATLG. (A 
data set assigned a d"isposition of KEEP may be assigned a disposition of 
CATLG by a later job step or job.) The name you assign to a 
nontemporary data set must be specified in the DSNAME parameter by all 
other steps and jobs that want to use the data set. 

A nontemporary data set name can be either a unqualified or qualified 
name. An unqualified data set name consists of 1 through 8. characters. 
The first character must be an alphabetic or national (CiI,#.$) character; 
the remaining characters can be any alphameric or national characters, a 
hyphen. or a plus zero (12-0 punch). 

A qualified" data set name consists of 1 through 44 characters 
(including periods), except when the qualified name identifies a 
generation data group. In this case" the data set name may consist of 
only 1 through 35 characters "(including periods). For each eight 
characters or less there must be a period. and the first character of 
the name and the character following a period must be an alphabetic or 
national (Q,#.$) character. 

174 JCL Reference (Release 20.1) 



If you assign a qualified name to a data set that is to be cataloged, 
all but the lowest level of the name must already exist as indexes in 
the system catalog before you can request the system to catalog the data 
set. An index level is created by using the IEHPROGM utility program. 
Once the indexes are established, the data set can be cataloged. 

When you request a data set that is cataloged on a control volume 
other than the system catalog., the system attempts to mount this control 
volume if it is not already mounted. After the system obtains the 
pointer to this data set, the control volume may then be demounted by 
the system if the unit on which it was mounted is required by another 
volume. If you plan to delete, uncatalog, or recatalog the data set, 
the volume must be mounted during disposition processing (at the end of 
the job step) in order for the pointer to be deleted or revised. You 
can ensure that the volume remains mounted by requesting the operator to 
issue a MOUNT command for this volume before the job step is initiated. 
If you do not use the MOUNT command to mount the volume and if the 
volume is not mounted during disposition processing, then, after the job 
has terminated., use the IEHPROGM utility program to delete or revise the 
pointer in the control volume. (In order for the system to mount a 
control volume, the control volume must be logically connected to the 
system catalog. This is done using the CONNECT function of the IEHPROGM 
utility program. which is described in the Utilities publication.) 

Members of a Partitioned Data Set 

A partitioned data set consists of independent groups of sequential 
record~, each identified by a member name in a directory. When you want 
to add a member to a partitioned data set or retrieve a member., you 
specify the partitioned data set name and follow it with the member 
name. The member name is enclosed in parentheses and consists of 1 to 8 
characters. The first character must be an alphabetic or national 
(1)>,'$,#) character; the remaining characters can be any alphameric or 
national characters. 

Generations of a Generation Data Group 

A generation data group is a collection of chronologically related data 
sets that can be referred to by the same data set name. When you want 
to add a generation to a generation data group or retrieve a generation, 
you specify the generation data group name and follow it with the 
generation number. The generation number is enclosed in parentheses and 
the number is a zero or a signed integer. A zero represents the most 
current generation of the group; a negative integer (e.g., -1) 
represents an older generation; a positive integer (e.g., +1) represents 
a new generation that has not as yet been cataloged. 

To retrieve all generations of a generation data group (up to 255 
generations), code only the group name in the DSNAME parameter and the 
DISP parameter. 

A complete discussion of creating and retrieving generation data sets 
is contained in "Appendix D: Creating and Retrieving Generation Data 
sets" in this publication. 

Areas of an Indexed sequential Data Set 

The areas used for an indexed sequential data set are the index, prime, 
and. overflow areas,. When you are creating the data set and define any 
of these areas on a DD statement, you must identify the data set name 
and follow it with the area name you are defining. The area name is 
enclosed in parentheses and is either PRIME, INDEX, or OVFLOW. If you 

Section IV: The DD statement -- DSNAME Parameter 175 



are using only one DD statement to define the entire data set, code 
DSNAME=dsname or DSNAME=dsname(PRIME). When you retrieve the data set, 
you code only the data set name; you do not include the term PRIME., 
INDEX, or OVFLOW. For detailed information on how to create and 
retrieve indexed sequential data sets, refer to "Appendix C: Creating 
and Retrieving Indexed sequential Data Sets" in this publication. 

Creating or Retrieving a Temporary Data Set 

If the data set is temporary., you can identify: 

• A temporary data set by coding DSNAME=&&dsname. 

• A member of a temporary partitioned data set by coding 
DSNAME=&&dsname(member name). 

• An area of a temporary indexed sequential data set by coding 
DSNAME=&&dsname(area name). 

Temporary Data sets 

Any data set that is created and deleted within the same job is a 
temporary data set. A DD statement that defines a temporary data set 
need not include the DSNAME parameter; the system generates one for you. 

If you do include the DSNAME parameter, the temporary data set name 
can consist of 1 through 8 characters and is preceded by two ampersands 
(&&). The character following the ampersands must be an alphabetic or 
national (0),#,$) character; the remaining characters can be any 
alphameric or national characters. (A temporary data set name that is 
preceded by only one ampersand is treated as a temporary data set name 
as long as no value is assigned to it either on the EXEC statement for 
this job step when it calls a procedure, or on a PROC statement within 
the procedure. If a value is assigned to it by one of these means, it 
is treated as a symbolic parameter. Symbolic parameters are discussed 
in Appendix A.) 

The system generates a qualified name for the temporary data set, 
which begins with SYS and includes the jobname, the temporary name 
assigned in the DSNAME parameter, and other identifying characters. 

If you attempt to keep or catalog a temporary data set (you specify a 
disposition of KEEP or CATLG in the DISP parameter), the system changes 
the disposition to PASS and the data set is deleted at job termination. 
However, this change is not made for a data set on a tape volume when 
the following conditions exist: (1) the data set is new; (2) the data 
set is not assigned a name; and (3) DEFER is specified in the UNIT 
parameter. The data set is deleted at job termination, but the system 
tells the operator to keep the volume on which the data set resided 
during the j oh. 

Members of a Temporary Partitioned Data set 

When you want to add a member to a temporary partitioned data set or 
retrieve a member during the job, you specify the partitioned data set's 
temporary name and follow it with the member name. The member name is 
enclosed in parentheses and consists of 1 to 8 characters. The first 
character must be an alphabet'ic or national (0),$,#) character; the 
remaining characters can be any alphameric or national characters. 

176 JCL R~ference (Release 20.1) 



Areas of a Temporary Indexed sequential Data Set 

The areas used for an indexed sequential data set are the index, prime, 
and overflow areas. When you are creating a temporary indexed 
sequential data set and define any of these areas on a DD statement, you 
must identify the data sets's temporary name and follow it with the area 
name you are defining. The area name is enclosed in parentheses and is 
either PRIME, INDEX, or OVFLOW. If you are using only one DD statement 
to define the entire temporary data set" code DSNAME=&&dsname or 
DSNAME=&&dsname( PRIME). If you want to retrieve the temporary data set 
in the same job., you code only the data set's temporary name; you do not 
include the term PRIME, INDEX, or OVFLOW. For information on how to 
create and retrieve indexed sequential data sets, refer to "Appendix C: 
Creating and Retrieving Indexed sequential Data sets" in this 
publication,. 

Using a Dedicated Data Set 

If your installation provides dedicated data sets in a system with MVT, 
you can use these data sets to contain your data instead of creating 
your own temporary data sets. The use of dedicated data sets eliminates 
some of the time required to schedule a job step since the data sets are 
already allocated. 

To use a dedicated data set, code DSNAME=&&name or DSNAME=&name on a 
DD statement, along with all other parameters required to define your 
temporary data set, e.gD, UNIT, SPACE, DCB. Replace the term "name" 
with the ddname of the DD statement in the initiator cataloged procedure 
that defines the dedicated data set you want to use. If the system 
cannot assign you this dedicated data set, the parameters coded on your 
DD statement are used to create a temporary data set. (For detailed 
information on dedicated data sets,. refer to the chapter "System Reader, 
Initiator and Writer Cataloged Procedures" in the publication System 
Programmer's Guide.) 

Copying the Data Set Name From an Earlier DD Statements 

The name of a data set that is used several times in a job, whether 
specified in the DSNAME parameter or assigned by the system, can be 
copied after its first use in the job. This allows you to easily change 
data sets from job to job and eliminates your having to assign names to 
temporary data sets. To copy a data set name, refer to an earlier 00 
statement that identifies the data set. When the earlier DD statement 
is contained in an earlier job step, you code DSNAME=*.stepname.ddnamei 
when the earlier DD statement is contained in the same job step, you 
code DSNAME=*.ddname; when the earlier DD statement is contained in a 
cataloged procedure step called by an earlier job step., you code 
OSNAME=*.stepname.procstepname.ddname. 

Specifying the DSNAME Parameter in Apostrophes 

sometimes" it may be necessary or desirable to specify a data set name 
that contains special characters. If the name contains special 
characters, you must enclose the name in apostrophes (5-8 punch), e.g., 
DSNAME='OAT+5'. If one of the special characters is an apostrophe, you 
must identify it by coding two consecutive apostrpphes (two 5-8 punches) 
in its place, e.g., DSNAME='OAY' 'SEND'. A data :set.name enclosed in 
apostrophes can consist of 1 through 44 characters.' 

Section IV: The DD Statement DSNAME Parameter 177 



There are cases when your data set name must contain required special 
characters" which tell the system something about the data set (e. g. " && 
in 'DSNAME=&&name are required special characters that tell the system 
that this is a temporary data set). In these cases, the data set name 
must not be enclosed in apostrophes because the system will not 
recognize the required special characters as having any special 
significance. The following data set names contain special characters 
that tell the system something about the data set and, therefore, cannot 
be enclosed in apostrophes: 

• DSNAME=name(member name) 
• DSNAME=name(area name) 
• DSNAME=name(generation number) 
• DSNAME=&&name 
• DSNAME=*.stepname.ddname 

Keep the following rules in mind: 

1. If the data set is to be cataloged, the data set name cannot be 
enclosed in apostrophes. 

2. If the data set name begins with a blank character, the data set is 
assigned a temporary data set name by the system. 

3. If the data set name ends with a blank character. the blank is 
ignored. 

4. If the only special character is a period or a hyphen, you need not 
enclose the data set name in apostrophes. 

Examples of the DSNAME Parameter 

1. //DD1 DD DSNAME=ALPHA,DISP=(,KEEP). x 
// UNIT=24 00" VOLUME=SER=389984 

This DD statement defines a new data set whose name is ALPHA,. Later 
-job steps or jobs may retrieve this data set by supplying the data 
set name in the ISNAME parameter, unit information in the UNIT 
parameter, and volume information in the VOLUME parameter. 

: 2. //DD2 DD DSNAME=PDS (PROG12) "DISP=(OLD"KEEP)"UNIT=2311, x 
// VOLUME=SER=882234 

This DD statement retrieves a member of a partitioned data set named 
PDS. 

3. //DD3 DD DSNAME=&&WORK,UNIT=2400 

4. 

This DD statement defines a temporary data set. Since the data set 
is deleted at the end of the job step, the DSNAME parameter could be 
omitted. 

//STEPl EXEC 
//DD4 DD 
// 
/ /STEP 2 EXEC 
//DDS DD 

PGM=CREATE 
DSNAME=&&ISDATA(PRlME),DISP=(,PASS),UNIT=(2311,2), X 
SPACE= (CYL,(lO,. 2), ,CONTIG), VOLUME=SER= (33489,33490) 
PGM=OPER 
DSNAME=*.STEP1.DD4,DISP=(OLD,DELETE) 

The DD statement named DD4 in STEPl defines a temporary indexed 
sequential data set whose name is ISDATA. This DD statement is used 
to define all of the areas of an indexed sequential data set. The 
DD statement named DDS in STEP2 retrieves the data set by referring 
to the earlier DD statement that defines the data set. Since the 
temporary data set is passed when it is defined in STEP1, STEP2 can 
retrieve the data set. 

178 JCL Reference (Release 20.1) 



The FOB Parameter 

FCB= (image-id r,ALIGN J) 
L' VERIFY 

image-id 
the code that identifies the image to be loaded into the forms 
control buffer. 

,ALIGN 
requests the operator to check the alignment of the printer 
forms before the data set is printed. 

,VERIFY 
requests the operator to visually verify the image displayed on 
the printer as the desired one. The operator is also given an 
opportunity to align the printer forms. 

Rules for Coding 

1. The image-id can be 1 to 4 characters in length. 

2. The FCB parameter is ignored if the data set is not written to 
a 3211 printer. 

3. The FeB and DDNAME parameters and the DCB subparameters RKP, 
CYLOFL, and INTVL are mutually exclusive parameters; therefore, 
if you code the DDNAME parameter or one of the DCB 
subparameters RKP" CYLOFL, or INTVL is coded, do not code the 
FCB parameter. 

4. If you do not code ALIGN or VERIFY, you need not enclose the 
image-id in parentheses. 

IMAGE IDENTIFIER 

The image-id is the code that identifies the image to be loaded into 
the forms control buffer (FCB). It is retrieved from SYS1.IMAGELIB 
or defined in the user's program through the exit list facility of 
the DCB macro instruction. IBM provides two standard FCB images, 
STD1 and STD2. 

STD1 specifies that 6 lines per inch are to be printed on an 8.5 
inch form. STD2 specifies that 6 lines per inch are to be· printed 
on an 11 inch form. The installation can provide additional 
user-designed images. 

If you omit the FCB parameter and the data set is written to a 
3211 printer, the default image is used if it is currently in the 
buffer. otherwise, the operator will be requested to specify an 
image. 

REQUESTING ALIGNMENT OF FORMS 

If you want to request that the operator check the alignment of the 
printer forms before the data set is printed, code ALIGN as the 
second subparameter of the FCB parameter. 

section IV: The DD statement -- FCB Parameter 179 



REQUESTING OPERATOR VERIFICATION 

By specifying VERIFY, you can request that the operator visually 
verify that the image displayed on the printer is the desired one. 
specifying VERIFY also gives the operator an opportunity to align 
the forms. 

Examples of the FOB Parameter 

1. //DDl 00 UNIT=3211,FCB=(IMG1,VERIFY) 

This DO statement defines the output data set that is to be 
written to a 3211 printer. The FCBparameter requests that the 
data set be written using the control information corresponding 
to the forms control image with the code 'IMG1. Since VERIFY is 
coded, the forms control image is displayed on the printer 
before the data set is printed and the operator is asked to 
align the printer forms. 

2. / /DD2 DD SYSOUT=A.,FCB=IMG2 

This DO statement defines an output data set that is to be 
written to the device that corresponds with class A. The FCB 
parameter is ignored if the device is not a 3211 printer. 

180 JCL Reference (Release 20.1) 



The LABEL Parameter 
LABEL=([data set sequence number] ,SL 

;,SUL 
,AL 
,AUL 
I,NSL 
,NL 
"BLP 

[

" PASSWORD~r.IN l(r~]\rEXPDT=yYddd]) 
, NOPWREAD ~OUTJ -/LRETPD=nnnn 

data 

"SL 

"SUL 

AL 

AUL 

,NSL 

,NL 

,BLP 

, 

,;, 
t_l 

set sequence number 
specifies the relative position of a data set on a tape volume,. 

specifies that the data set has IBM standard labels. 

specifies that the data set has both IBM standard and user labels. 

specifies that the data set has AMERICAN National Standard labels. 

specifies that the data set has both American National Standard 
labels and American National Standard user labels. 

specifies that the tape data set has nonstandard labels. 

specifies that the tape data set has no labels. 

specifies that the system is not to perform label processing for 
the tape data set. 

specifies that the data set has standard labels and another 
subparameter follows. 

,PASSWORD 
specifies that the new data set cannot be used by another job step 
or job unless the operator can supply the system with the correct 
password" i. e .• , the data set cannot be read, changed, extended, or 
deleted. 

, NOPWREAD 

l\ 
I. 

,I. 
_.l 

,IN 

,OUT 

specifies that the data set can be read without the password, but 
the operator must give the password before the data set can be 
changed, extended, or deleted. 

,specifies that another subparameter follows and,. for a new data 
set" the data set is not to be password protected. 

specifies that the data set is to be processed for input only. 

specifies that the data set is to be processed for output only. 

specifies that either the RETPD or EXPDT subparameter follows and 
one or more subparameters precede it. 

EXPDT=yyddd 
specifies the date when the data set can be deleted or overwritten 
by another data set. Assign a 2-digit year number and a 3-digit 
day number. 

RETPD=nnnn 
specifies the length of time in days that the data set must be 
kept,. Assign the number of days that must pass before the data set 
can be deleted or overwritten by another data set. 

section IV: The DD Statement -- LABEL Parameter 181 



Rules for Coding 

1. All the subparameters except the last subparameter in the LABEL 
parameter are positional subparameters. Therefore" if you want to 
omit a subparameter, you must indicate its absence with a comma. 

2. If the only subparameter you want to specify is the data set 
sequence number, RETPD or EXPDT, you can omit the parentheses and 
commas and code LABEL=data set sequence number~ LABEL=RETPD=nnnn, 
or LABEL=EXPDT=yyddd. 

3. If the data set has IBM standard labels, you can omit the 
subparameter SL. 

4. When you are defining a data set that resides or will reside on a 
direct access volume, only SUL or SL can be specified as the second 
subparameter. 

5. If you are processing ASCII data on unlabeled (NL) tapes, you must 
code OPTCD=Q in your DCB macro instruction or on your DD statement. 

6. The LABEL, DDNAME" and SYSOUT parameters are mutually exclusive 
parameters; therefore, if DDNAME or SYSOUT is coded, do not code 
the LABEL parameter. 

DATA SET LABELS 

Labels are used by the operating system to identify volumes and the data 
sets they contain, and to store data set attributes. Data sets residing 
on magnetic tape volumes usually have data set labels. If data set 
labels are present" they precede each data set on the volume. Data sets 
residing on direct access volumes always have data set labels. These 
data set labels are contained in the volume table of contents at the 
beginning of the direct access volume. 

A data set label may be a standard or nonstandard label. Standard 
labels can be processed by the system; nonstandard labels must be 
processed by nonstandard label processing routines" which the 
installation includes in the system. Data sets on direct access volumes 
must have standard labels. Data sets on tape volumes usually have 
standard labels, but can have nonstandard labels or no labels. 

Tape label definitions and associated tape label processing are 
included in the Tape Label's publication. Direct access label 
definitions and associated direct access label processing are described 
in "Appendix A: Direct Access Labels" in the Supervisor and Data 
Management Services publication. 

When to Code the LABEL Parameter 

The LABEL parameter must be coded if: 

• You are processing a tape data set that is not the first data set on 
the reel; in this case, you must indicate the data set sequence 
number. 

• The data set labels are not IBM standard labels; you must indicate 
the label type. 

• You want to specify what type of labels a data set is to have when 
it is written on a scratch volume; you must indicate the label type. 

182 JCL Reference (Release 20.1) 



• The data set is to be password protected; you must specify PASSWORD 
when you create the data set. 

• The data set is to be processed only for input or output and this 
conflicts with the processing method indicated in the OPEN macro 
instruction; you must specify IN, for input" or OUT. for output. 

• The data set is to be kept for some period of time; you must 
indicate a retention period (RETPD) or expiration date (EXPDT). 

THE DATA SET SEQUENCE NUMBER SUBPARAMETER 

When you want to place a data set on a tape volume that already contains 
one or more data sets" you must specify where the data set is to be 
placed, i.e. " the data set is to be the second,. third" fourth, etc., 
data set on the volume. The data set sequence number causes the tape to 
be positioned properly so that the data set can be written on the tape 
or retr iev ed • 

The data set sequence number subparameter is a positional 
subparameter and is the first subparameter that can be coded. The data 
set sequence number is a 1- to 4-digit number. The system assumes 1" 
i. e., this is the first data set on the reel,. if you omit this 
subparameter or if you code 0, unless the data set is a passed or 
cataloged data set. If a data set is cataloged, the system obtains the 
data set sequence number from the catalog; for a passed data set, the 
data set sequence number is obtained from the passing step. 

When you request the system to bypass label processing (BLP is coded 
as the label type in th~ LABEL parameter) and the tape volume contains 
labels, the system treats anything between tapemarks as a data set. 
Therefore, in order for the tape with labels to be positioned properiy, 
the data set sequence number must reflect all labels and data sets that 
precede the desired set. section I of the Tape Labels publication 
ill ustrates where tapemarks appear. 

THE LABEL TYPE SUBPARAMEl'ER 

The label type subparameter tells the system what type of labels is 
associated with the data set. The label type subparameter is a 
positional subparameter and must be coded second, after the data set 
sequence number subparameter. You can omit this subparameter if the 
data set has IBM standard labels. 

The label type subparameter is specified as: 

• SL -- if the data set has IBM standard labels. 
• SUL -- if the data set has both IBM standard and user labels. 
• AL -- if the data set has American National Standard labels. 
• AUL -- if the data set has American National Standard labels and 

American National Standard user labels. 
• NSL -- if the data set has nonstandard labels. 
• NL -- if the data set has no labels. 
• BLP -- if you want label processing bypassed. 

SL or SUL is the only label type that can be specified for data sets 
that reside on direct access volumes. 

When SL or SUL is specified, or the label type subparameter is 
omitted and the data set has IBM standard labels, the system can ensure 
that the correct tape or direct access volume is mounted. When you 
specify NSL, installation-provided nonstandard label processing routines 
must ensure that the correct tape volume is mounted. When you specify 

Section IV: The DD statement -- LABEL Parameter 183 



NL er BLP, the eperater must ensure that the cerrect tape velume is 
meunted. If yeu specify NL, the data set must have no. standard labels. 
When yeu specify AL er AUL, the system ensures that the cerrect American 
Natiena I Standard labeled tape is meunted. 

Fer cataloged and passed data sets" label type infermatien is net 
kept.. Therefere, any time yo.u refer to. a cataleged er passed data set 
that has other than standard labels, yeu must cede the LABEL parameter 
and specify the label type. 

BLP is net a label type, but a request to. the system to. bypass label 
precessing. This specificatien allews yeu to. use a blank tape er 
everwrite a seven-track tape that differs frem yeur current parity er 
density specificatiens. Bypass'label precessing is an eptien ef the 
eperating system, specified as a PARM field value in the reader 
cataleged procedure. If the eptien is net selected and yeu have ceded 
BLP, the system assumes NL. 

Nete fer BLP: When yeu request the system to. bypass label precessing 
and the tape velume has labels, the system treats anything between 
tapemarks as a data set. Therefere, in erder fer a tape with labels to. 
be positiened preperly, the data set sequence number subparameter ef the 
LABEL parameter must be coded and the subparameter must reflect all 
labels and data sets that precede the desired data set. Sectien I ef 
the Tape Labels publicatien illustrates where tapemarks appear. 

The label type subparameter can also. be specified when yeu make a 
nenspecific velume request fer a tape velume (i.e., no. velume serial 
numbers are specified en the DD statement) and yeu want the data set to. 
have a certain type ef labels. If the velume that is meunted dees not 
have the cerrespending label type yeu desire, yeu may be able to. change 
th~ label type. 

When yeu specify NL er NSL and the eperater meunts a tape velume that 
contains standard labels, you may use the velume previded: (1) the 
expiratien date ef the existing data set en the velume has passed; (2) 
the existing data set en the velume is net passwerd pretected; and (3) 
yeu make a nenspecific velume request. AlIef these cenditio.ns must be 
met. If they are no.t, the system requests the eperater to. meunt another 
tape velume. 

If yeu specify SL and make a no.nspecific velume request, but the 
eperater meunts a tape vo.lume that co.ntains ether than IBM standard 
labels, the system requests the o.perato.r to. identify the vo.lume serial 
number and the velume's new o.wner befere the IBM standard labels are 
written. If the tape vo.lume has American Natienal Standard labels, the 
system asks the o.perater fer permissien to. destro.y the label. If yeu 
specify SL and make a specific velume request, but the velume that is 
mo.unted dees net centain IBM standard labels, the system rejects the 
tape and requests the o.pera~er to. mo.unt the tape velume specified. 

THE PASSWORD AND NOPWREAD SUB·BA-RAMETERS 

The PASSWORD and NOPWREAD subparameters tell the system that yeu want 
the data set to. be passwerd pretected. If yeu specify PASSWORD, the 
data set cannet be read from" written into., o.r deleted by anether jeb 
step o.r jeb unless the eperater can supply the system with the cerrect 
passwo.rd. If yo.u specify NOPWREAD (no. passwerd read), the data set can 
be read witheut the cperater supplying the passwerd, but the passwcrd is 
still required fo.r writing cr deleting data sets. 

The PASSWORD and NOPWREAD subparameters are a pcsiticnal subparameter 
and must be coded third, after the data set sequence number subparameter 
and the label type subparameter o.r the co.mmas that indicate their 

184 JCL Reference (Release 20.1) 



absence. If you want the data set password protected" specify PASSWORD 
when the data set is created. Password protected data sets must have 
standard labels. either IBM standard or American National Standard 
labels. 

THE IN AND OUT SUBPARAMETERS 

The basic sequential access method (BSAM) permits a specification of 
INOUT or OUTIN in the OPEN macro instruction as the processing method. 
If you have specified either of these processing methods in the OPEN 
macro instruction and want to override it, you may be able to do so by 
coding either the IN or OUT subparameter. For FORTRAN users. the IN and 
OUT subparameters provide a means of specifying how the data set is to 
be processed, i.e., for input or output. 

When INOUT is specified in the OPEN macro instruction and you want 
the data set processed for input only" you can specify the IN 
subparameter. When the IN subparameter is coded" any attempt by the 
processing program to process the data set for output is treated as an 
error. 

When OUTIN is specified in the OPEN macro instruction and you want 
the data set processed for output only. you can specify the OUT 
subparameter. When the OUT subparameter is coded" any attempt by the 
processing program to process the data set for input is treated as an 
error. 

The IN and OUT subparameters are positional subparameters. If either 
is coded, it must appear as the fourth subparameter, after the data set 
sequence number subparameter, the label type subparameter. and the 
PASSWORD subparameter, or the commas that indicate their absence. 

THE RETPD AND EXPDT SUBPARAMETERS 

When it is necessary that a data s,et be kept for some period of time,. 
you can tell the system how long it is to be kept when you create the 
data set. As long as the time period has not expired, a data set that 
resides on a direct access volume cannot be deleted by or overwritten by 
another job step or job. (If it is necessary to delete such a data set, 
you can use the IEHPROGM utility program to delete the data set,. The 
IEHPROGM utility program is described in the Utilities publication.) 

There are two different ways to specify a time period: (1) tell the 
system how many days you want the data set kept, the RETPD subparameter,. 
or (2) tell the system the exact date after which the data set need no 
longer be kept, the EXPDT subparameter. 

If you code the RETPD subparameter, you specify a 1- to 4-digit 
number, which represents the number of days the data set is to be kept. 
If you code the EXPDT subparameter, you specify a 2-digit year number 
and a 3-digit day number (e.g., January 1 would be 001, July 1 would be 
182), which represents the date after which the data set need no longer 
be kept. When neither the RETPD or EXPDT subparameter is specified for 
a new data set, the system assumes a retention period of zero days. 

The RETPD or EXPDT subparameter must follow all other subparameters 
of the LABEL parameter. If no other subparameters are coded, you can 
code LABEL=RETPD=nnnn or LABEL= EXPDT=yyddd. 

Section IV: The DD Statement -- LABEL Parameter 185 



Examples of the LABEL Parameter 

1. //DDl DD DSNAME=HERBI,DISP= (NEW,KEEP),UNIT=TAPE, x 
// VOLUME=SER=T2,LABEL=(3,NSL,RETPD=188) 

This DD statement defines a new data set. The LABEL parameter tells 
the system: (1) this data set is to be the third data set on the 
tape volume; (2) this data set has nonstandard labels; and (3) this 
data set is to be kept for 188 days. 

2. //DD2 DD DSNAME=A.B.C,DISP=(,CATLG,DELETE),UNIT=2400-2, x 
// LABEL=(,NL) 

This DD statement defines a new data set and requests the system to 
catalog it. The catalog entry for this data set will not indicate 
that the data set has no labels. Therefore, each time this data set 
is referred to by a DD statement, the statement must include 
LABEL= (, NL) • 

3. //DD3 DD DSNAME=SPECS.,UNIT=24 00, VOLUME= SER= 1 0222" x 

4. 

// DISP=OLD.,LABEL=4 

This DD statement defines an existing data set. The LABEL parameter 
indicates that the data set is the fourth data set on the tape 
volume .. 

//STEPl 
//DDX 
// 
//STEP2 
//DDY 

EXEC PGM=FIV 
DD DSNAME=CLEAR.DISP=(OLD,PASS).UNIT=2400-4. 

VOLUME=SER=1257,LABEL=(.NSL) 
EXEC PGM=BOS 
DD DSNAME= * . STEP1. DDX. DISP=OLD, LABEL= (" NSL) 

x 

The DD statement named DDX in STEPl defines an existing data set 
that has nonstandard labels and requests the system to pass the data 
set. The DD statement named DDY in STEP2 receives the passed data 
seta Unit and volume information is not specified since this 
information is available to the· system; the label type is not 
abailable to the system and must be coded. 

186 JCL Reference (Release 20.1) 



The OUT LIM Parameter 

OUTLIM=number 

number 
the limit for the number of logical records you want included in 
the output data set being routed through the output stream. The 
maximum number that can be specified is 16117215. 

Rules for Coding 

1. The OUTLIM parameter has meaning only if the System Management 
Facilities option with system., job, and step data collection was 
selected at system generation. 

2. The OUTLIM parameter is ignored unless SYSOUT is coded in the 
operand field of the sameDD statement. 

3. The value specified for OUTLIM can be any number from 1 through 
16777215. 

4. If OUTLIM is not specified or if OUTLIM=O is specified, no output 
limiting is done .• 

What the OUTLIM Parameter Does 

The OUTLIM parameter allows you to specify a limit for the number of 
logical records you want included in the output data set being routed 
through the output stream. When the number specified is reached, an 
exit provided by the System Management Facilities option is taken to a 
user supplied routine that determines whether to cancel the job or 
increase the limit. If the exit routine is not supplied, the job is 
cancelled. 

Determining the Output Limit 

The limit for the number of logical records you want as output must 
include a system overhead factor. Generally, the value you add to the 
limit is eight times the blocking factor for your data. (For those 
programmers who need a more precise value, the system overhead is the 
number of EXCPs issued each time the OPEN or CLOSE macro instruction is 
issued for the data set.) 

References: 

1. For information on coding the SYSOUT parameter on the DD statement, 
refer to the section -The SYSOUT PARAMETER -- MFT, MVT- in this 
publication. 

2. A discussion of the System Management Facilities Option is 
contained in the publication Concepts and Facilities. Information 
on user exit routines to be used with the System Management 
Facilities Option is contained in the publication System 
Programmer's Guide. 

Section IV: DO statement -- The OUTLIM Parameter 187 



Example of the OUT LIM Parameter 

1. / /OUTPUT DD SYSOUT=F"OUTLIM=1000 
The limit for the number of logical records is 1000. 

188 JCL Reference (Release 20.1) 



The QNAME Parameter -- MFT and MVT With TeAM 

QNAME=process name 

process name 
specifies the name of a TPROCESS macro which defines a destination 
queue for messages that are to be processed by an application 
program and creates a process entry for the queue in the Terminal 
Table. 

Rules for Coding 

1. The process name must consist of 1 through 8 alphameric and 
national (#,$,@) characters. The first character must be an 
alphabetic or national character. 

2. The process name is identical to the symbolic name on the TPROCESS 
macro. 

3. The DCB parameter is the only parameter that can be coded on a DD 
statement with the QNAME parameter.' BLKSIZE, BUFL, LRECL" OPTCD, 
and RECFM are the only operands that may be specified as 
subparameters. These subparameters are defined in the Glossary of 
DCB Subparameters in the section on the DCB parameter. 

What the QNAME Parameter Does 

The text portion of messages received from stations by means of the 
Telecommunications Access Method (TCAM) may be processed by an 
application program. The QNAME parameter is used to access these 
messages for the application program. Like the DUMMY parameter used 
with sequential access methods, the QNAME parameter does not perform 
input or output operations on a data set. The process name specified by 
the QNAME parameter names a TPROCESS macro which serves as the link 
between the Message Control Program (MCP) and an application program. 

An application program exists as a separate system task or subtask in 
the same computer as the MCP. Messages that are to be processed are 
placed in a destination queue by the Message Handler of the MCP,. The 
TPROCESS macro defines the destination queue and creates an entry for 
the queue (a process entry) in the Terminal Table. The user can 
indicate at execution time which destination queue is to be used by 
specifying a particular TPROCESS macro in the QNAME parameter on the DD 
statement. 

Example of the QNAME Parameter 

//DYD DD QNAME=FIRST,DCB=(RECFM=F,LRECL=80,BLKSIZE=320) 

This DD statement is used in an application program to define data that 
is to be accessed by TCAM. "FIRST" is the name of the TPROCESS macro 
that specifies the destination queue through which messages that must be 
processed by the application program are routed. The DCB parameter is 
coded to supply information for the data control block that was not 
supplied in the DCB macro instruction. 

section IV: DD statement -- The QNAME Parameter 189 





The SEP Parameter 

SEP=(ddname •••• ) 

ddname 
the names of up to eight earlier DD statements in the same job 
step. 

Rules for Coding 

1. Each ddname must be separated by a comma. 

2. If only one ddname is coded,. you need not enclose it in 
parentheses '. 

3. If channel separation is critical,. use the UNIT parameter to 
specify a particular channel,. using an absolute address or group 
name. (How to specify a particular channel is described under 
"Unit Address" in the chapter "The UNIT Parameter.") 

4. The SEP. AFF, DDNAME,. and SYSOUT parameters a,re mutually exclusive 
parameters; therefore, when AFF, DDNAME, or SYSOUT is coded, do not 
code the SEP parameter. 

OPTIMIZING CHANNEL USAGE 

The devices that the system allocates for data sets used in a job step 
are attached to channels. These channels transmit the data in the data 
sets from the device to the cpu. When two or more data sets are to be 
used in a job step, processing time may be shortened if the system 
transmits data over separate channels. ' 

Requesting Channel Separation 

The SEP and AFF parameters can be used to request channel separation. 
You list in the SEP parameter the names of up to eight earlier DD 
statements in the job step that define data sets from which channel 
separation is'desired. Coding the AFF parameter is a shortcut method of 
requesting channel separation, since you refer to an earlier DD 
statement in the same job step that contains the SEP parameter. (The 
AFF parameter is described in the chapter "The AFF Parameter. ") 

If the system finds it impossible in the current environment to 
satisfy the channel separation request, the system may try to alter the 
current environment through some operator action. The operator is given 
the option of bringing a device online, cancelling the channel 
separation request" or cancelling the job. In certain environments,. the 
operator may also be able to tell the system to wait for devices to 
become free. If you make a nonspecific request for a direct access 
volume and request channel separation" your request for separation may 
be ignored. This happens when the algorithm used to allocate data sets 
to devices is not able to select the device that would permit the 
desired channel separation. 

Requests for channel separation are ignored for any data sets that 
have been allocated devices by the automatic volume recognition (AVR) 
option. 

section IV: The DD statement -- SEP Parameter 191 



If it is essential that data be transmitted via a particular channel, 
you can specify an absolute unit address or group name (if the group of 
devices is associated with one channel) in the UNIT parameter,. 

If neither the SEP nor AFF parameter is coded" any available channel" 
consistent with the UNIT parameter requirement, is assigned by the 
system. 

Example of the SEP Parameter 

1. //STEP1 EXEC 
//D01 DD 
//002 DD 
// 
//003 OD 
//D04 DO 
// 

PGM=STARTS 
DSNAME=X.Y.Z,OISP=OID 
OSNAME=&&WORK, OISP= C,PASS), UNIT=2311. X 
SPACE=(CYL,(3,1» 
DSNAME=NABS, DISP=OLO. VOLUME=SER=111 0,. UNIT=2311 
OSNAME=PARE,DISP=OID,VOLUME=SER=E59, X 
UNIT=2311,. SEP= (002,. OD3) 

The system attempts to assign the data set defined by the OD 
statement named D04 to a channel other than the ones assigned to the 
data sets defined by the OD statements DD2 and OD3. Since the SEP 
parameter did not include the ddname 001, the data set defined by 
DOl and the data set defined by DD4 mayor may not be assigned to 
the same channel. 

192 JCL Reference (Release 20.1) 



The SPACE Parameter 

SPACE=(I TRK I ,(primary qUantity[ ~secondary qUantity] [,?irectory ])[ ,RlSE] [ ,CONTlG] [ ,ROUND] ) 
CYl '..l. ' Index Iii ,MXIG 
blocklength L ,... ,AlX 

",i l_ • 

. SPACE=(ABSTR,(primary quantity,address [,?irectory ])) 
, Index 

TRK 
specifies that space is to be allocated by track,. 

CYL 
specifies that space is to be allocated by cylinder. 

block length 
specifies the average block length of the data. The system 
computes how many tracks to allocate. 

primary quantity 
specifies how many tracks or cylinders are to be allocated, or how 
many blocks of data are to be contained in the data set. 

,secondary quantity 
specifies how many more tracks or cylinders are to be allocated if 
additional space is required, or how many more blocks of data may 
be included if additional space is required. 

specifies that the system is not to allocate additional space if it 
is required, and either a directory space requirement or index 
space requirement follows. 

,directory 
specifies the number of 256-byte records that are to be contained 
in the directory of a partitioned data set. 

,index 
specifies the number of cylinders that are required for the index 
of an indexed sequential data set. 

,RLSE 

"-, ( , I 

specifies that space allocated to the data set that is not used is 
to be released. 

,_/ specifies that space allocated to the data set that is not used is 
not to be released and another subparameter follows. 

,CONTIG 
specifies that space allocated to the data set must be contiguous. 

,MXIG 
specifies that the space allocated to the data set must be the 
largest area of contiguous space on the volume and the space must 
be equal to or greater than the space requested. This subparameter 
applies only to the primary space allocation. 

Section IV: The DD Statement -- SPACE Parameter 193 



"ALX 
specifies that up to five different contiguous areas of space are 
to be allocated to the data set and each area must be equal to or 
greater than the space ~equested. 

specifies that CONTIG" MXIG" or ALX is not specified and the ROUND 
subparameter follows. 

"ROUND 

ABSTR 

specifies that space is requested by specfying the average block 
length of the data and the space allocated to the data set must be 
equal to one or more cylinders. 

specifies that the data set is to be placed at a specific location 
on the volume. 

primary quantity 
specifies the number of tracks to be allocated to the data set. 

address 
specifies the track number of the first track to be allocated • 

. , directory 
specifies the number of 256-byte records that are to be contained 
in the directory of a partitioned data set. 

,index 
specifies the number of tracks that are required for the index of 
an indexed sequential data set. The number of tracks must be equal 
to one or more cylinders. 

Rules for Coding 

1. The SPACE parameter has no meaning f or tape volumes; however, if a 
data set is assigned to a device class that contains both direct 
access devices and tape devices, e. g., UNI T=SYSSQ, the SPACE 
parameter should be coded. 

2. If you do not code secondary., directory, or index quantities, you 
need not enclose the primary quantity in parentheses. 

3,. Code the second format of the SPACE parameter when you want a data 
set placed in a specific position on a direct access device. 

4. The SPACE, SPLIT" SUBALLOC" and DDNAME parameters are mutually 
exclusive parameters; therefore, if SPLIT, SUBALLOC" or DDNAME is 
coded" do not code the SPACE parameter. 

REQUESTING SPACE FOR A DATA SET 

Every data set that is to be written on a direct access volume must be 
allocated space on the volume before the data set can be written. There 
are three different parameters that can be used to request space -
SPACE, SPLIT, SUBALLOC -- and they are mutually exclusive. The SPLIT 
and SUBALLOC parameters are discussed in the chapters "The SPLIT 
Parameter" and "The SUBALLOC Parameter," respectively. 

194 JCL Reference (Release 20.1) 



SPECIFYING THE SPACE P~ER 

Space for data sets is allocated before the job step is executed. If a 
request for space cannot be satisfied., the job is terminated. 

There are two different ways to code the SPACE parameter. One way 
tells the system how much space you want and lets the system ass1gn 
specific tracks. The other way tells the system the specific tracks you 
want. 

Letting the System Assign Specific Tracks 
When you want the system to assign specific tracks, you must specify in 
the SPACE parameter: 

• The unit of measurement the system should use for allocating space; 
specify TRK. for tracks. CYL, for cylinders. or the average block 
length of the data, for blocks. 

• The amount of space to be allocated; specify the primary quantity as 
a number of tracks" cylinder. or blocks. 

Optionally, you can specify in the SPACE parameter: 

• That additional space is to be allocated to the data set if it is 
required; specify a secondary quantity of tracks, cylinders, or 
blocks. 

• The size of a directory or index area; specify the number of 
records required for a directory or the number of cylinders 
required for an index. 

• That unused space is to be released; specifY the RLSE 
subparameter. 

• The format of the space allocated to the data set; specify the 
CONTIG, MXIG, or ALX subparameter. 

• That space is to begin with a cylinder; specify the ROUND 
subparameter. 

When a Disk Operating System (DOS) volume is mounted for use in an 
IBM System/360 Operating System, you can let the system assign specific 
tracks on the DOS volume for a new data set. (There are restrictions on 
the use of an existing DOS data set in an IBM System/360 Operating 
system; these restrictions are described in the chapter "Maintaining the 
Catalog and the Volume Table of Contents" in system Programmer's Guide.) 

SPECIFYING THE UNIT OF MEASUREMENT 

The first subparameter of the SPACE parameter identifies the unit of 
measurement to be used in allocating the data set and can be specified 
as: 

• TRK if you want space allocated by track. 

• CYL if you want space allocated by cylinder. CYL must be 
specified if you are creating an indexed sequential data set. 

• a number of bytes which represents the average block length of the 
data -- if you want the system to compute and a llocate the least 
number of tracks required to contain the blocks. 

section IV: The DD Statement -- SPACE Parameter 195 



since the next subparameter (primary quantity) tells the system how 
many of these units you require, specify the unit that makes it most 
convenient for you to express your space requirement. A request for 
cylinders (CYL) provides the most efficient performance. 

When you request space in units of blocks, the average block length 
cannot exceed 65,535.. If the blocks have keys, code the DCB 
subparameter KEYLEN on the DD statement and specify the key length, 
ioe., DCB=KEYLEN=key length., 

SPECIFYING A PRIMARY QUANTITY 

The primary quantity tells the system how many tracks or cylinders are 
to be allocated to the data set or how many blocks of data will be 
written. When the first subparameter of the SPACE parameter specifies 
the average block length, the system computes the number of tracks (or 
cylinders if the ROUND subparameter is coded) required based on the 
number of blocks specified as the primary quantity. 

There must be enough available space on one volume to satisfy the 
primary quantity. If you request that a particular volume be used and 
there is not enough available space on that volume to satisfy the space 
request, the job step is terminated. If you make a nonspecific volume 
request, i,.e., no volume serial numbers are specified on the DD 
sta tement" the system selects a mounted volume or causes a volume to be 
mounted and then determines if there is enough space available on the 
volume to satisfy the request for space. If there is not enough space 
available" the system selects another volume. 

The system attempts to allocate the primary quantity in contiguous 
tracks or cylinders. If contiguous space is not available, the system 
satisfies the space request with up to five noncontiguous blocks 
(extents) 'of space. If a user label is requested, the system allocates 
up to four noncontiguous blocks of space. You can override these system 
actions by coding the CONTIG, MXIG, or ALX subparameter; these 
subparameters are discussed later. 

SPECIFYING A SECONDARY QUANTITY 

The secondary quantity (incremental quantity) tells the system that you 
want additional space allocated to the data set if it is required. You 
specify as the secondary quantity how many more tracks or cylinders you 
want allocated or how many more blocks of data may be written. (When 
you request space in units of blocks, the system computes the number of 
tracks required for the primary quantity based on the average block 
length that you specified in the SPACE parameter. The system computes 
the number of tracks required for the secondary quantity based on what 
is specified in the DeB subparameter BLKSIZE. Therefore, include the 
DCB subparameter BLKSIZE on the DD statement, i.e., DCB=BLKSIZE=maximum 
block length.) Specifying a secondary quantity is optional. 

If you do specify a secondary quantity and the data set requires 
additional space, the system allocates this space based on the quantity 
you specified. The system attempts to allocate the secondary quantity 
in contiguous tracks or cylinders. If contiguous space is not 
available, the system attempts to allocate the secondary quantity in up 
to five noncontiguous blocks (extents) of space. 

Each time the data set requires more space" the system allocates the 
secondary quantity. This space is allocated on the same volume on which 
the primary quantity was allocated until: (1) there is not enough space 
available on the volume to allocate the secondary quantity, or (2) a 
total of 16 extents have been allocated to the data set. If either of 

196 JCL Reference (Release 20.1) 



these conditions is satisfied" the system must allocate the secondary 
quanti ty on another volume. However, this can be done only if you 
request more than one volume in the VOLUME parameter (for a nonspecific 
volume request, code PRIVATE; for a specific volume request, request . 
more volumes than devices). 

If a data set has used all the primary space allocated to it" a later 
job step or job can lengthen the data set with additional output only if 
a secondary quantity was specified when the data set was created and 
only if there is enough space available on the volume. If a later job 
step or job is lengthening a data set and specifies a secondary 
quantity" this quantity overrides, for the duration of the step" any 
secondary quantity specified when the data set was created. 

For indexed sequential data sets. a secondary quantity cannot be 
requested. If you request a. secondary quantity for a checkpoint data 
set, the space cannot be used fOr a successful completion of the 
checkpoint entry. To determine how the space is used" refer to the 
chapter "Checkpoint and Restart" in the supervisor Services publication. 

The secondary quantity is a positional subparameter. If you specify 
a secondary quantity, the quantity must, follow the primary quantity. If 
you do not specify a secondary quantity and specify the size of an index 
or directory as the next subparameter, you must code a comma to indicate 
the absence of a secondary quantity • 

. REQUESTING SPACE FOR A DIRECTORY OR INDEX 

If the data set you are creating is a partitioned data set, you must 
request the system to allocate space for a directory. A directory 
consists of 256-byte records" and you specify, in the SPACE parameter, 
how many of these records the directory is to contain. These records 
contain entries for the members of the partitioned data set,. You can 
determine how many records you should request for the directory by 
referring to the chapter "Processing a Partitioned Data Set" in the 
supervisor and Data Management Services publication. 

If the data set you are creating is an indexed sequential data set, 
you can tell the system, in the SPACE parameter, how many cylinders to 
allocate for the index. (The alternate way to request space for the 
index is to include, as one of the DD statements used to define an 
indexed sequential data set" a DD statement that defines the index and 
specifies the number of cylinders required for the index as the primary 
quantity. ) 

The system can differentiate between a specification of the number of 
records for a directory and the number of cylinders for an index by 
examining the DCB parameter on the DD statement. Any DD statement that 
defines an indexed sequential data set must include the DCB subparameter 
DSORG=IS or DSORG=ISU. When neither is specified, the system assumes 
you are requesting space for a directory. 

RELEASING UNUSED SPACE -- RLSE 

The RLSE subparameter allows you to request the system to delete unused 
space when the data set is closed. If you requested space in units of 
tracks, any unused tracks are released. If you requested space in units 
of cylinders, any unused cylinders are released. If you requested space 
in units of blocks, any unused tracks or cylinders, whichever the system 
allocated to the data set, are released. 

section IV: The DD Statement -- SPACE Parameter 197 



If you code the SPACE parameter on a DD statement that defines an 
existing data set and include the RLSE subparameter, the data set's 
unused space is released. 

If you have specified RLSE and an ABEND occurs, unused space is not 
released. 

The RLSE subparameter is a positional subparameter. If you omit the 
RLSE subparameter and another subparameter follows, indicate the absence 
of the RLSE subparameter with a comma. 

The RLSE subparameter is ignored when the TYPE=T option is coded in 
the CLOSE macro instruction. 

SPECIFYING THE FORMAT OF ALLOCATED SPACE -- CONTIG, MXIG, OR ALX 

The system attempts to allocate space in contiguous tracks or cylinders. 
If contiguous space is not available, the system satisfies the space 
request with up to five noncontigUous blocks of space,. If a user label 
is requested, the system allocates up to f our noncontiguous blocks of 
space. You can override these system actions by coding the CONTIG, 
MXIG" or ALX subparameter. 

The CONTIG (contiguous) subparameter tells the system that the space 
it allocates to a data set must be contiguous,. If the request cannot be 
satisfied, the job is terminated. If secondary space is allocated to 
the data set, it may not be contiguous to the original space allocated 
to the data set,. 

The MXIG (maximum contiguous) subparameter tells the system to 
allocate the largest area of contiguous space available on the volume. 
The area must be at least as large as the primary quantity requested. 
The MXIG subparameter cannot be specified for an indexed sequential data 
set. 

The ALX (all extents) subparameter tells the system to allocate up to 
five different areas of contiguous space. If a user label is requested" 
the system allocates up to four different areas of contiguous space. 
Each area is to be at least as large as the primary quantity you 
requested. The system allocates as many areas as are available. The 
ALX subparameter cannot be specified for an indexed sequential data set. 

Whichever of these subparameters you choose must follow either the 
RLSE subparameter or the comma that indicates its absence. If you do 
not specify one of these subparameters and the ROUND subparameter 
follows, indicate the absence of the CONTIG, MXIG, and ALX subparameters 
with a comma. 

ALLOCATING WHOLE CYLINDERS -- ROUND 

When you request space in units of blocks, you can request that the 
allocated space be equal to one or more cylinders. To request this, 
code ROUND as the last subparameter in the SPACE parameter. The system 
computes the number of tracks required to hold the blocks, and ensures 
that the space begins on the first track of a cylinder and ends on the 
last track of a cylinder. 

198 JCL Reference (Release 20.1) 



Assigning Specific Tracks 

You can place a data set in a specific position on a direct access 
volume by specifying in the SPACE parameter: 

• ABSTR as the first subparameter. 
• How many tracks you want allocated. 
• The relative track number of the beginning track on which you want 

the data set placed. 

If the data set is a partitioned data set, you must also specify how 
many records you want allocated for a directory. If the data set is an 
indexed sequential data set, you can also indicate how many tracks are 
required for the index. (The number of tracks you specify must be equal 
to one or more cylinders, and any other DD statement used to define the 
indexed sequential data set must specify ABSTR in the SPACE parameter. 
If either of these conditions is not met" the job is terminated.) 

To determine the relative track number" count the first track of the 
first cylinder on the volume as 0, and count through the tracks on each 
cylinder until you reach the track on which you want your data set to 
start. (Track 0 cannot be requested.) The system automatically . 
converts the relative track number to an address; this address varies 
with different devices. For indexed sequential data sets, the relative 
track number must correspond to the first track on a cylinder. 
Capacities of a number of direct access devices are listed in "Data Set 
Disposition and Space Allocation" in the Supervisor and Data Management 
services publication. 

If the tracks you request have already been allocated to another data 
set, the job is terminated. 

Examples of the SPACE Parameter 

1. //DDl DD DSNAME=&&TEMP,UNIT=MIXED,SPACE=(CYL,10) 

2. 

This DD statement defines a temporary data set and requests the 
system to assign any available tape or direct access volume 
(UNIT=MIXED specifies a group name of units that consists of tape 
and direct access devices). If a tape volume is assigned, the SPACE 
parameter is ignored; if a direct access volume is assigned, the 
SPACE parameter is used to allocate space to the data set. The 
SPACE parameter includes only th~ required subparameters (i.e., the 
type of units and a primary quantity), and requests the system to 
allocate 10 cylinders. 

//DD2 
// 
// 

DD DSNAME=ELLN,DISP=(,KEEP),UNIT=2314, 
VOLUME=SER=11257,SPACE=(1024,(100,25)",ROUND), 
DCB=BLKSIZE=2048 

x 
X 

This DD statement defines a new data set that is to be written on a 
direct access volume. The SPACE parameter requests the system to 
compute the space required for the primary quantity; the system 
computes the space required based on an average block length of 1024 
bytes, and up to 100 blocks of data will be written. If more space 
is required, the system' is to compute how much additional space to 
allocate; the system computes the space required based on a maximum 
block length of 2048 bytes (specified in the BLKSIZE subparameter), 
and up to 25 blocks of data will be written. Since the ROUND 
subparameter is coded, the system ensures that the allocated space 
begins on the first track of a cylinder and ends on the last track 
of a cylinder. 

section IV: The DD Statement -- SPACE Parameter 199 



3. //DD3 DD DSNAME=PDS12,DISP=t,KEEP) ,UNIT=2311., 
// VOLUME=SER=26143,SPACE=(TRK,(200"10),,CONTIG) 

This DO statement defines a new partitioned data set. The system 
allocates 200 tracks to the data set and 10 256-byte records for a 
directory. since the CONTIG subparameter is coded, the system 
allocates 200 contiguous tracks on the volume. 

4. //D04 DO OSNAME=INDSEQ (INDEX), UNIT=2314" DCB=DSORG=IS, 
/ / DISP= C, KEEP) , SPACE= (ABSTR" (20,40» 

x 

X 

This DO statement defines the index area for a new indexed 
sequential data set,. The SPACE parameter allocates 20 tracks (for a 
2314. 20 tracks equal 1 cylinder), beginning with the fortieth track 
on the volume (the fortieth track on the volume is the beginning of 
the third cylinder). 

200 JCL Reference (Release 20.1) 



THE SPLIT PARAMETER 

n 

(n,CYL" (primary quantity ["secondary quantity]» 
n 
(percent"block length, (primary quantity [, secondary quantity]» 
percent 

the number of tracks per cylinder you want allocated to the first 
data set. 

CYL 
specifies that space is to be allocated by cylinder • 

. primary quantity 
specifies how many cylinders are to be allocated for use by all the 
associated data sets. 

,secondary quantity 

n 

specifies how many more cylinders are to be allocated to a data set 
if additional space is required. 

the number of tracks per cylinder you want allocated to the data 
set defined on the DD statement. 

percent 
the percentage of tracks per cylinder you want allocated to the 
first data set, a number from 1 through 99. 

block length 
specifies the average block length of the data. The system 
computes how many cylinders to allocate. 

primary quantity 
specifies the total number of blocks to be allocated for use by all 
the associated data sets. 

,secondary quantity 
specifies how many more blocks are to be allocated to a data set if 
additional space is required. 

percent 
the percentage of tracks per cylinder you want allocated to the 
data set defined on the DD statement. 

Rules for Coding 

1. The first DD statement that contains the SPLIT parameter must 
contain volume and unit information. You need not code volume and 
unit information on the following DD statements that contain the 
SPLIT parameter. 

2. If a secondary quantity is not specified, you need not enclose the 
primary quantity in parentheses. 

3. The SPLIT, SPACE, SUBALLOC, DDNAME, and SYSOUT parameters are 
mutually exclusive parameters; therefore, if SPACE, SUBALLOC, 
DDNAME, or SYSOUT is coded, do not code the SPLIT parameter. 

Section IV: The DD Statement -- SPLIT Parameter 201 



REQUESTING SPACE FOR A DATA SET 

Every data set that is to be written on a direct access volume must be 
allocated space on the volume before the data set can be written. There 
are three different parameters that can be used to request space -
SPLIT, SPACE" SUBALLOC -- and they are mutually exclusive. The SPACE 
and SUBALLOC parameters are discussed in the chapters "The SPACE 
Parameter" and "The SUBALLOC Parameter," respectively. 

Specifying the SPLIT Parameter 

The SPLIT parameter is specified when data sets defined in a job step 
require space on the same volume" and you want to minimize access-arm 
movement by having the data sets shar~ cylinders. The device on which 
the volume is mounted is said to be operating in a split cylinder mode 
when the SPLIT parameter is specified. In this mode, two or more data 
sets are stored so that portions of each data set occupy tracks within 
every allocated cylinder. 

The cylinders allocated to the data sets must be on one volume. If 
there are not enough cylinders available on the volume to satisfy the 
request, the job is terminated. The SPLIT parameter cannot be us ed to 
allocate space for direct, partitioned, and indexed sequential data 
sets. If the SPLIT parameter is used to allocate space for data sets 
that are to reside on a drum storage volume, space is allocated for the 
data sets, but the data sets are not stored using the split cylinder 
mode. The space occupied by a data set residing on a cylinder that has 
been split is not available for reallocation until all data sets sharing 
the cylinder have been deleted. 

The data sets that are to share cylinders are defined by a sequence 
of DD statements. The first DD statement in the sequence specifies the 
total amount of space required for all the data sets and the portion of 
that space required by this data set. Each succeeding DD statement in 
the sequence requests a porti on of the total space. 

In the SPLIT parameter, there are two ways to request the total 
amount of space for data sets that are to share cylinders. You can 
request the space in units of cylinders or in units of blocks. 

REQUESTING SPACE IN UNITS OF CYLINDERS 

When you request space in units of cylinders, the first DD statement of 
the sequence specifies in the SPLIT parameter: 

• The number of tracks per cylinder to be allocated to this data set; 
specify a number. 

• Space is to be allocated in units of cylinders; specify CYL. 

• How many cylinders are to be allocated for use by all the' data sets; 
specify the primary quantity as a number of cylinders. 

Optionally, you can specify: 

• That additional cylinders are to be allocated to a data set if 
additional space is required; specify the secondary quantity as a 
number of cylinders. 

Each succeeding DD statement in the sequence specifies only the 
number of tracks per cylinder to be allocated to the data set. 

202 JCLReference (Release 20.1) 



If a secondary quantity (incremental quantity) is specified in the 
SPLIT parameter on the first DD statement in the sequence" any data set 
that exceeds its allocated space is allocated additional space in the 
amount of the secondary quantity.. This additional space is allocated 
only to the data set that requires it and the space is not split with 
the other data sets. If a secondary quantity is not specified and a 
data set exceeds its allocated space, the job step is terminated. 

REQUESTING SPACE IN UNITS OF BLOCKS 

When you request space in units of blocks" the first DD statement of the 
sequence specifies in the SPLIT parameter: 

• The percentage of tracks per cylinder to be allocated to this data 
set; specify a number from 1 to 99. 

• The average block length of the data in the data sets; specify the 
average block length in bytes. 

• How many blocks are to be allocated for use by all the data sets; 
specify the primary quantity as a number of blocks. 

Optiona lly" you can specify: 

• That additional blocks are to be allocated to a data set if 
additional space is required; specify the secondary quantity as a 
number of blocks. 

Each succeeding DD statement in the sequence specifies only the 
percentage of tracks per cylinder to be allocated to the data set. 

When you request space in Wlits of blocks., the system computes for 
you how many cylinders are required. The average block length cannot 
exceed 65.,535 bytes. If the blocks have keys, code the DCB subparameter 
KEYLEN on the DD statement and specify the key length, i.e., 
DCB=KEYLEN=key length. 

If a secondary quantity (incremental quantity) is specified in the 
SPLIT parameter on the first DD statement in the sequence, any data set 
that exceeds its allocated space is allocated additional space. The 
secondary quantity is specified as a number of blocks, and the system 
computes how many cylinders to allocate based on this number. This 
additional space is allocated only to the data set that requires it and 
the space is not split with the other data sets. If a secondary 
quantity is not specified and a data set exceeds its allocated space, 
the job step is terminated. 

Section IV: The DD Statement -- SPLIT Parameter 203 



Examples of the SPLIT Parameter 

1. 

2,. 

//STEPl 
//001 
// 
//DD2 
//OD3 

EXEC PGM=CREATE 
DD DSNAME=QUEST,DISP=(.KEEP),UNIT=2311, 

VOLUME=SER=757500,SPLIT= (3.,CYL. (30,,1» 
DD DSNAME=APP,DISP=(,KEEP),SPLIT=4 
DD DSNAME=SET, DISP= (, KEEP) " SPLIT=3 

X 

This job step contains a sequence of DD statements that define new 
data sets and request that these data sets share the same- cylinders. 
The first DD statement of the sequence, named DD1, specifies: (1) 
three tracks per cylinder are to be allocated to this data set; (2) 
space is to be allocated in units of cylinders; (3) thirty cylinders 
are to be allocated for use by all the data sets; and (4) any data 
set that exceeds the space allocated to it should be allocated 
another cylinder. The DD statement named DD2 requests that the 
system allocate 4 tracks per cylinder to this data set. The DD 
statement named DD3 requests that the system allocate 3 tracks per 
cylinder to this data set. 

//STEP2 
//DDX 
// 
//ODY 
//DDZ 

EXEC PGM=PAGE 
DD DSNAME=ISSA, DISP= (,KEEP). UNIT=2314, 

VOLUME=SER=49463,SPLIT= (18,1024, (700» 
DD DSNAME=SEL12" DISP= (, KEEP) , SPLIT=48 
OD DSNAME=SEVE,DISP= (, KEEP) ,SPLIT=34 

X 

This job step contains a sequence of DD statements that define new 
data sets and request that these data sets share the same cylinders. 
The first DD statement of the sequence, named DDX, specifies in the 
SPLIT parameter: (1) 18 per cent of the tracks per cylinder are to 
be allocated to this data set; (2) the system is to compute how many 
cylinders are to be allocated for use by all the data sets based on 
an average block length of 1024 bytes and 700 blocks are required. 
The DD statement named DDY requests that the system allocate 48 per 
cent of the tracks per cylinder to this data set. The DD statement 
named DDZ requests that the system allocate 34 per cent of the track 
per cylinder to this data set. Since the first DD statement in the 
sequence does not specify a secondary quantity, the job is 
abnormally terminated when any of the data sets exceeds its 
allocated space. 

204 JCL Reference (Release 20.1) 



The SUBALLOC Parameter 

SUBALLOC=(! TRK 1 ,(primary quantity [,secOndary qUantity] [,directOry])! ,ddname I· ) 

CYL , , step name • ddname 
blocklength , step name .procstepname. ddname 

TRK 
speciifes that space is to be allocated by track. 

CYL 
specifies that space is to be allocated by cylinder. 

block length 
specifies the average block length of the data. The system 
computes how many tracks to allocate. 

primary quantity 
specifies how many tracks or cylinders are to be allocated, or how 
many blocks of data are to be contained in the data set. 

" secondary quantity 

, 

specifies how many more tracks or cylinders are to be allocated if 
the additional space is required., or how many more blocks of data 
may be included if additional space is required. 

specifies that the system is not to allocate additional space if it 
is required. and a directory space requirement follows. 

,directory 
specifies the number of 256-byte records that are to be contained 
in the directory of a partitioned data set. 

,ddname 
specifies that the system must allocate space from the data set 
defined on the earlier DD statement named ftddname ft that appears in 
the same job step. 

,stepname.ddname 
specifies that the system must allocate space from the data set 
defined on the DD statement named "ddname ft , which is contained in 
an ear lier job step named ft stepnameft that is part of the same job. 

,stepname.procstepname.ddname 
specifies that the system must allocate space from the data set 
defined on the DD statement "ddname. ft which is contained in an 
earlier procedure step named "procstepnameft ; the procedure step is 
part of a cataloged procedure called by an earlier job step named 
ftstepname" that is part of the same job. 

section IV: The DD Statement -- SUBALLOC Parameter 205 



Rules for Coding 

1,. Before you can use the SUBALLOC parameter" you must def iDe a new 
data set and request enough space in the SPACE parameter to contain 
all of the data sets .• 

2. When you code the SUBALLOC parameter " omit the VOLUME and UNIT 
parameters. 

3. The SUBALLOC, SPACE. SPLIT, DDNAME, and SYSOUT parameters are 
mutually exclusive parameters; therefore" when SPACE" SPLIT, 
DDNAME, or SYSOUT is coded, do not code the SUBALLOC parameter. 

REQUESTING SPACE FOR A DATA SET 

Every .data set that is to be written on a direct access volume must be 
allocated space on the volume before the data set can be written. There 
are three different parameters that can be used to request space -
SUBALLOC., SPACE, SPLIT -- and they are mutually exclusive. The SPACE 
and SPLIT parameters are discussed in the chapters "The SPACE Parameter" 
and "The SPLIT Parameter." respectively. 

Specifying the SUBALLOC Parameter 
TheSUBALLOC parameter allows you to place a series of data sets on one 
volume and in a certain sequence, in a contiguous area of space. This 
area of space is first allocated to one data set" then later DD 
statements defining new data sets in the same job may request parts of 
this space. This is called suballocation.. Suballocation is used to 
minimize access-arm movement when data sets are processed serially. The 
SUBALLOC parameter cannot be used to allocate space for an indexed 
sequential data set. 

To use suballocation. you must first define a data set on a DD 
statement and use the SPACE parameter to request space. This data set 
must be used only- for suballocation purposes, i. e. '. the data set should 
contain no data. The space you request must be large enough to contain 
all of the data sets and the space must be contiguous. On this same DD 
statement. you can request more than one device in the UNIT parameter or 
more than one volume in the VOLUME parameter. This allows a 
suballocated data set for which a secondary quantity was requested in 
the SUBALLOC parameter to be continued on another volume if the data set 
exceeds its primary quantity. 

Once this data set has been defined" other data sets defined in the 
job can use the previously allocated space by specifying the SUBALLOC 
parameter. Each DD statement that specifies the SUBALLOC parameter 
causes the new data set to be assigned to the next area of unused space 
from the original data set. 

You must specify in the SUBALLOC parameter: 

• The unit of measurement the system should use for allocating space; 
specify TRK, for tracks, CYL,. for cylinders,. or the average block 
length of the data, for blocks. 

• The amount of space to be allocated; specify the primary quantity as 
a number of cylinders. tracks, or blocks. 

• Where in the job the original data set is defined; specify the name 
of the DD statement that defines the data set and the name of the 
job step in which the DD statement appears. 

206 JCL Reference (Release 20.1) 



Optionally, you can specify in the SUBALLOC parameter: 

• That additional space is to be allocated to the data set if it is 
required; specify a secondary quantity of tracks, cylinders" or 
blocks. 

• The size of a directory; specify the number of records required 
for a directory. 

SPECIFYING THE UNIT OF MEASUREMENT 

The first subparameter of the SUBALLOC parameter identifies to the 
system the unit of measurement to be used in suballocating space for the 
data set and can be specified as: 

• TRK -- if you want space suballocated by track. 
• CYL -- if you want space suballocated by cylinder. 
• a number of bytes, which represents the average block length of 

the data -- if you want the system to compute and allocate the 
least number of tracks required to contain the blocks. 

since the next subparameter tells the system how many of these units 
you require, specify the unit tha t makes it most convenient for you to 
express your space requirement. A request for cylinders (CYL) provides 
the most efficient performance. 

When you request spac'e in units of blocks " the average block length 
cannot exceed 65,535 bytes. If the blocks have keys, you must specify 
the key length in the OCB subparameter KEYLEN=n. 

SPECIFYING A PRIMARY QUANTITY 

The primary quantity tells the system how many tracks or cylinders are 
to be suballocated for the data set or how many blocks of data will be 
written. If there is not enough space available in the original data 
set to satisfy the primary quantity request, the job is terminated. 
When the first subparameter of the SUBALLOC parameter specifies the 
average block length, the system computes the number of tracks required 
based on the number of blocks specified as the primary quantity. 

IDENTIFYING THE ORIGINAL DATA SET 

Since you want space suballocated from a particular data set, you must 
identify this data set each time space is to be suballocated for a new 
data set. You identify this data set by referring the system to the OD 
statement that originally defines the data set. This DD statement must 
be contained in the same job, and can appear in the same job step, an 
earlier job step, or in a procedure step that is part of a cataloged 
procedure called by an earlier job step. Code as the last subparameter 
in the SUBALLOC parameter: 

• ddname -- if the DO statement appears in the same job step • 

• stepname.ddname-- if the DD statement appears in an earlier job 
step. 

• stepnarne.procstepnameoddname -- if the DO statement appears in a 
procedure step that is part of a cataloged procedure called by an 
earlier job step. 

Section IV: The DO Statement -- SUBALLOC Parameter 207 



SPECIFYING A SECONDARY QUANTITY 

The secondary quantity (incremental quantity) tells the system that you 
want additional space allocated to the data set if it is required. You 
specify as the secondary quantity how many more tracks or cylinders you 
want allocated or how many more blocks of data may be written. (When 
you request space in units of blocks, the system computes the number of 
tracks required for the primary quantity based on the average block 
length that you specified in the SPACE parameter. The system computes 
the number of tracks required for the secondary quantity based on what 
is specified in the DCB subparameter BLKSIZE. Therefore, include the 
DCB subparameter BLKSIZE on the DD statement, i.e., DCB=BLKSIZE=maximum 
block length.) Specifying a secondary quantity is optional. 

If you specify a secondary quantity and the data set requires 
additional space, the system allocates this space based on the quantity 
you specified. This additional space is allocated from available space 
on the volume, not from the space in the original data set from which 
the system suballocated space for this data set. If more than one 
device or volume was requested on the same DD statement that requested 
space for suballocation, the data set can be continued onto another 

. volume. 

A data set may use all the space allocated to it and a later job step 
or job may then try to lengthen the data set with additional output,. In 
this case, the data set can be lengthened only if a secondary quantity 
was specified when the data set was created and only if there is enough 
space available on the volume. If a later job step or job is 
lengthening a data set and specifies a secondary quantity, this quantity 
overrides. for the duration of the step, any secondary quantity 
specified when the data set was created. 

The secondary quantity is a positional subparameter. If you specify 
a secondary quantity, the quantity must follow the primary quantity,. If 
you do not specify a secondary quantity and specify the size of a 
directory as the next suhparameter" you must code a comma to indicate 
the absence of a secondary quantity,. 

REQUESTING SPACE FOR A DIRECTORY 

If the data set you are creating is a partitioned data set, you must 
request that the system allocate space for a directory. A directory 
consists of 256-byte records and you specify how many of these records 
the directory is to contain. These records contain entries for the 
members of the partitioned data set. You can determine how many records 
you should request for the directory by referring to the chapter 
·Processing a Partitioned Data Set" in the supervisor and Data 
Management Services publication. 

If you request space for a directory in the SUBALLOC parameter, the 
request must follow the secondary quantity or the comma that indicates 
its absence. 

208 JCL Reference (Release 20.1) 



Examples of the SUBALLOC Parameter 

1. 

2. 

//STEP1 
//001 
// 
//STEP2 
//002 
// 
//003 
// 
//004 
// 

EXEC PGM=PREP 
00 OSNAME=DUM,DISP=(,KEEP),UNIT=2302, 

VOLUME=SER=ALLDS"SPACE=(CYL, SO" CONTIG) 
EXEC PGM=BSPED 
00 DSNAME=SPECSO"OISP=(, KEEP)., 

SUBALLOC= (CYL. (20,1), STEPl. DDl) 
DO DSNAME=SPECS1"DISP=( .• KEEP), 

SUBALLOC= (TRK, (44,7)" STEPl. ODl) 
OD OSNAME=SPECS2, DISP= (" KEEP) , 

SUBALLOC= (CYL" 2S"STEPl.ODl) 

X 

X 

x 

x 

The data set from which space is to be suballocated is defined on 
the DD statement named DOl in STEPl. Fifty cylinders are allocated 
to the data set and the cylinders are contiguous. The DO statements 
named OD2, DD3, and OD4 in STEP2 request a portion of this space in 
the SUBALLOC parameter by referring the system to the data set 
defined on the DO statement named DDl in STEPl. The order of the 
data sets on the volume, because of the request for suballocation, 
will be OUM, SPECSO, SPECSl, and SPECS2. 

//STEPX EXEC PGM=GARV 
//OOS DO DSNAME=SIMP,DISP=(,KEEP),UNIT=231l, X 
// VOLUME=SER=31S046,SPACE=(CYL,100"CONTIG) 
//OD6 DD DSNAME=FIELD, DISP= (, KEEP) , X 
// SUBALLOC=(1024,(800,60),DDS) 
//STEPY EXEC PGM=BERSS 
//OD7 DO DSNAME=POS,DISP=(,KEEP), X 
// SUBALLOC= (CYL, (7S" 8) ,STEPX.DDS) 

The data set from which space is to be suballocated is defined on 
the DD statement named DOS in STEPX. One hundred cylinders are 
allocated to the data set and the cylinders are contiguous. The DD 
statement named 006 requests a portion of this space in units of 
blocks. The system computes how many tracks or cylinders are 
required for the data set. The 00 statement named 007 in STEPY also 
requests a portion of the space allocated to the data set defined on 
the 00 statement named DOS in STEPX. The OD statement named D07 
defines a partitioned data set and requests the system to allocate 8 
2S6-byte records for a directory. 

section IV: The DD statement -- SUBALLOC Parameter 209 





The SYSOUT Parameter 

SYSOUT= (c lassname [ ; program name] [. form number]) 

classname 
the class associated with the output device to which you want your 
output data set written. 

,program name 

, 

the member name of a program in the system library that is to write 
your output data set, instead of the system output writer, to a 
unit record deviceo 

specifies that the system output writer is to write your output 
data set to a unit record device, and a form number follows. 

, form number 
specifies that the output data set should be printed or punched on 
a special output form. 

Rules for Coding 

1. The classname can be any alphameric character (A-Z, 0-9). 

2.. The form number is 1 to 4 alphameric and national (al, $,#) 
characters. 

3. If a program name and form number are omitted, you need not enclqse 
the classname in parentheses. 

I 4. The UNIT, SPACE, OUTLIM, UCS, FCB, and DCB parameters can be coded 
with the SYSOUT parameter.. Besides the mutually exclusive 
parameters listed below, other parameters coded with the SYSOUT 
parameter are ignored. 

5. The DISP, DDNAME, AFF, SEP, VOLUME, LABEL., SPLIT, and SUBALLOC 
parameters and the SYSOUT parameter are mutually exclusive 
parameters; therefore, if any of these parameters are coded, do not 
code the SYSOUT parameter. 

Advantages to Coding the SYSOUT Parameter 

When you want a data set printed on an output listing or in the form of 
punched cards, you can code the UNIT parameter and identify the unit 
record device you want., or code the SYSOUT parameter and specify the 
class that corresponds to the type of unit record device you want. 
There are advantages to coding the SYSOUT parameter: 

1. You can write your output data set to a direct access device and a 
system output writer writes the data set to a unit record device at 
a later time. This allows greater flexibility in scheduling print 
and punch operations., and improves operating system efficiency. 
You can also write your output data set directly to a unit record 
or magnetic tape device. 

Section IV: The DD statement -- SYSOUT Parameter 211 



2. The output data set and system messages resulting from the job can 
be assigned to the same type of unit record device.. This is 
accomplished by specifying the same classname in the SYSOUT and 
MSGCLASS parameters. (The MSGCLASS parameter is coded on the JOB 
statement. ) 

3. When you want the output data set printed or punched on a special 
output form, you can specify the form number in the SYSOUT 
parameter and let the system inform the operator at the time the 
data set is to be written what form is to be used. 

THE CLASS NAME 

When you code the SYSOUT parameter, you indicate a classname. A 
classname is an alphameric character (A-Z, 0~9) that corresponds to a 
type of unit record device. Each installation specifies what classnames 
correspond to what unit record devices. Therefore, when you specify a 
classname, the operator knows what type of unit record device you want 
and he ensures that a system output writer is available to write your 
output data set to the desired unit record device. 

The system determines where system messages resulting from a job are 
to be written based on what is coded in the MSGCLASS parameter on the 
JOB statement. If the MSGCLASS parameter is not coded., system messages 
associated with your job are routed to the default output class 
specified in the PARM field of the input reader procedure. The default 
for the MSGCLASS parameter is A unless changed by your installation. 
Class A corresponds to a printer. If you want your output data set and 
the system messages resulting from the job written to the same unit 
record device, you simply code the same classname in both the MSGCLASS 
and SYSOUT parameters, or omit the MSGCLASS parameter and code your 
installation's default output class in the SYSOUT parameter. 

THE PROGRAM NAME 

The system provides system output writers, which transfer your output 
data set from a direct access volume to the desired unit record device. 
If there is a special installation program to handle this transfer., you 
can use this program, instead of a system output writer, by specifying 
the program's name as the second subparameter in the SYSOUT parameter. 
The program must be a member of the system library (SYS1.LINKLIB). 

If you do not code a program name and code a form number as the last 
subparameter in the SYSOUT parameter, you must code a comma to indicate 
the absence of a program name. 

THE FORM NUMBER 

Each installation provides standard forms to contain printed or punched 
output. If there is a special output form you want to use, you can 
specify the form number as the last subparameter in the SYSOUT 
parameter. The system issues a message to the operator at the time the 
data set is to be printed or punched, which informs him of the form to 
be used. If you do not want system messages resulting from the job to 
appear on the special form, assign a classname in the MSGCLASS parameter 
on the JOB statement that is different from the class name assigned in 
the SYSOUT parameter. 

212 JCL Reference '(Release 20.1) 



CODING OTHER PARAMETERS WITH THE SYSOUT PARAMETER 

The UNIT. SPACE. OUTLIM and DCB parameters can be coded with the SYSOUT 
parameter. The DDNAME. DISP,. AFF. SEP, VOLUME, LABEL, SPLIT, and 
SUBALLOC parameters are mutually exclusive with the SYSOUT parameter; 
any other parameters that you code with the SYSOUT parameter are 
ignored. 

You can write output data sets destined for unit records devices to a 
direct access device instead of immediately writing the data set to the 
desired unit record device. Later, a system output writer writes the 
data set to the desired unit record device. In the UNIT parameter, you 
can request what type of direct access device you want for writing the 
output data set, how many devices you want (up to a maximum of five). 
and unit separation from other data sets defined in the job step. In 
the SPACE parameter, you can specify how much space should be allocated 
to the data set and that unused space is to be released. If you omit 
the UNIT parameter,. the system assigns a device; if you omit the SPACE 
parameter, the system assigns the amount of space to be allocated. 
These values are part of the PARM parameter field in the input reader 
procedure used to read the input stream. 

You can also write an output data set directly to the desired unit 
record or magnetic tape device. When direct system output is desired" 
the operator selects a unit record or magnetic tape device for a class 
by issuing a STAR!' DSO (direct system output) command. In addition to 
the SYSOUT parameter, the DCB and UCS parameters can be coded. If the 
SYSOUT subparameters other than classname are coded, the specified 
information is ignored. The UNIT and SPACE parameters are also ignored 
if direct system output processing is used. Since the type of 
processing to be used may not always be known, it is advisable to code 
these parameters in case an intermediate direct access device is used. 

The DeB parameter can be coded with the SYSOUT parameter to complete 
the data control block associated with the output data set. The 
information contained in this data control block is used when the data 
set is written to the direct access device and read by the system output 
writer. However, the output writer's own DCB attributes are used when 
the data set is written to the desired unit record device. 

The OUTLIM parameter allows you to specify a limit for the number of 
logical records you want included in the output data set being routed 
through the output stream. The OUTLIM parameter has meaning only in 
systems with the System Management Facilities option with system, job, 
and step data collection. Unless the SYSOUT parameter is coded in the 
operand field of the same DD statement" the OUTLIM parameter is ignored. 

JOB SEPARATORS 

Your output data is preceded by a job separator if your installation 
incorporated routines to write job separators. A job separator is a 
series of three listing pages or three punched cards that separates the 
output data sets of different jobs. The output data sets from these 
jobs were written to the same unit. Each page or card contains the name 
of the job whose data follows, and identifies the output class. Job 
separators make it easier for the operator to separate the data produced 
by your job from the data of other jobs. 

section IV: The DD Statement -- SYSOUT Parameter 213 



Examples of the SYSOUT Parameter 

1. - //DDl DD SYSOUT=P 

2. 

This DD statement specifies that the data set is to be written to 
the unit record d~vice corresponding to class P. Since the UNIT and 
SPACE parameters are not coded, the system obtains device and space 
allocation information from the input reader procedure .• 

//JOB50 
//STEPl 
//DDX 

JOB 
EXEC 
DD 

, 'C. BROWN',MSGCLASS=C 
PGM=SET 
SYSOUT=C,DCB=(BUFNO=4,OPTCD=W) 

The DD statement named DDX specifies that the data set is to be 
written to the unit record device corresponding to class C. The DCB 
parameter is coded to complete the data control block associated 
with this data set. Since the classnames in the SYSOUT parameter 
and the MSGCLASS parameter, on the JOB statement, are the same, the 
system messages resulting from this job and the output data set are 
written to the same unit record device. 

3. //DD5 DD SYSOUT=A .• UNIT=2314,SPACE= (CYL, (12,1) .RLSE) 

This DD statement specifies that the data set is to be written to 
the unit record device corresponding to the standard output class A. 
The system assigns a 2314 unit and allocates 12 cylinders to the 
data set, rather than obtaining device and space allocation 
information from the input reader procedure. Since the RLSE 
subparameter is coded in the SPACE parameter, any unused space is 
released. 

4. //DD6 DD SYSOUT=(F,,7402) 

This DD statement specifies that the data set is to be written to 
the unit record device corresponding to class F and the output data 
set is to be printed on a special form. The form number is 7402. 

214 JCL Reference (Release 20.1) 



The TERM Parameter - - MVT and TSO 

TS 

TERM=TS 

indicates to the system that the input or output data being defined 
is coming from or going to a time sharing terminal. 

Rules for Coding 

1. 

2. 

3. 

5. 

TERM=TS is effective only under the operating system with MVT and 
the Time Sharing Option (TSO). The TERM parameter is ignored in 
batch processing. in an MFT operating system, or in a system 
without TSO. 

TS is the only value that can be specified by the TERM parameter,. 
If any other value is used, a JCL error message is produced. 

A DD statement with TERM=TS can only be concatenated if it is the 
last DD statement. 

Except for the DCB parameter" all other parameters (including 
DUMMY, DYNAM and DSNAME=NULLFILE) coded on a DD statement with TERM 
are ignored. 

If the TERM parameter is coded for batch proce.ssing" the parameter 
is not used, but is checked for syntax. 

What the TERM Parameter Does 
The TERM parameter notifies the operating system that the data set 
(represented by the DD statement that contains the TERM parameter) is 
coming from or going to a time sharing terminal.. TERM allows your time 
sharing job to communicate with a terminal device. For example" your 
program can put out messages to a terminal user requesting data input 
records. Your program can then read in the data input records supplied 
by the terminal user, perform operations with this data" and then put 
out the results to the terminal. 

Examples of the TERM Parameter 

1. //DDl DD TERM=TS 
or 

/ /DD2 DD UNIT=2400" DISP= (MOD" PASS), TERM=TS 

The above two DD statements are equivalent in effect. In the time 
sharing environment" all the parameters coded on the second DD 
statement are ignored except the TERM parameter. In a batch 
processing environment, the UNIT and DISP parameters are used but 
TERM is ignored. 

2. //DD3 DD UNIT=2400,DISP=(MOD,PASS),DCB=(LRECL=80,BLKSIZE=80), 
TERM=TS,LABEL=(,NL) 

In a time sharing environment, all the parameters in the above 
example except TERM and DCB are ignored. 

Section IV: The DD Statement -- TERM Parameter 215 





The UCS Parameter 

ucs= (character set code [;FOLD ] 
character set code 

[, VERIFY]) 

identifies the special character set you want for printing the data 
set. 

,FOLD 

, 

specifies that you want the chain or train corresponding to the 
desired character set loaded in the fold mode. 

specifies that the chain or train is not to be loaded in the fold 
mode and the VERIFY subparameter follows. 

,VERIFY 
specifies that the operator is to verify that the correct chain at 
train is mounted before the data set is printed. 

Rules for Coding 

1. The character set code can be 1 through 4 characters. 

2. I f the FOLD and VERIFY subparameters are omitted" you need not 
enclose the character set code in parentheses. 

3. If the ues parameter is coded and the data set is not written to a 
printer with the universal character set (UeS) feature, the ues 
parameter is ignored. 

4. The ues and DDNAME parameters and the DeB subparameters RKP" 
eYLOFL" and INTVL are mutually exclusive parameters; therefore, if 
the DDNAME parameter or one of the DeB subparameters RKP, eYLOFL, 
or INTVL is coded, do not code the ues parameter. 

Special Character Sets 

The Universal Character Set (Ues) feature allows you to alternately use 
different sets of print characters. It is available as a special 
feature on the 1403 printer and as a standard feature on the 3211 
printer .• 

In the ues parameter you specify what character set you want to use; 
the operator ensures that the corresponding chain or train is mounted on 
the printer. In order to use a particular special character set, an 

I image of the character set must be contained in SYS1.IMAGELIB and the 
chain or train corresponding to the character set must be available for 
use. IBM provides standard special character sets and the installation 
may provide user-designed special character sets. How to include the 

I images for these special character sets in SYS1.IMAGELIB is discussed in 
the System Programmer's Guide. 

If you omit the ues parameter and the data set is written to a 
printer with the ues feature, a default character set is used. If the 
chain or train mounted on the printer does not correspond to a default 
character set, the operator is requested to identify a default character 
set and mount the corresponding chain or train. 

section IV: The DD statement -- UCS Parameter 217 



I Note: When the UCS parameter specifying a 1403 image is coded with the 
SYSOUT parameter and the data set is first wri ttento tape" the UCS 
specification is not kept.. Therefore, when the operator writes the data 
set from the tape to a 1403 printer, your data set may not be written 
using the desired character set. 

IDENTIFYING THE CHARACTER SET 

The first subparameter of the UCS parameter identifies the ~haracter set 
you want for printing your data set. Each character set has a unique 1-
through 4-byte code. 

The codes for the IBM standard special character sets are: 

r--------------T--------------T----~-----------------------------------, 
ICodes for 1403jCodes for 32111 Characteristics 1 
1---------------+-------------+-----------------------------------------f 

AN I All I Arrangement A:, standard ECBDIC character 

HN 

PCAN 

PCRN 

PN 

QN 

QNC 

RN 

SN 

TN 

XN 

YN 

I I set. 48 characters. 
I I 
I Hll Arrangement H. EBCDIC character set for 
I FORTRAN and COBOL, 48 characters. 
I 
I 
I 
I 
I 
I 
I 
I 
j 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
j 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Gll 

Pll 

Tl1 

ASCII character set. 

Preferred alphameric character set,. 
arrangement A. 

Preferred alphameric character set:, 
arrangement H. 

PL/1 alphameric character set. 

PL/1 preferred alphameric character set 
for scientific applications. 

PL/l preferred alphameric character set 
for commercial applications. 

Preferred character set for commercial 
applications of FORTRAN and COBOL. 

Preferred character set for text 
printing. 

Character set for text printing., 120 
characters. 

High-speed alphameric ~4aracter set for 
1403, Model 2. 

High-speed preferred alphameric 
j character set for 1403. Model 3 or Nl. L-_____________ ~ ______________ ~ ________________________________________ J 

For each user-designed special character set. the installation 
assigns a unique codeo If you want to use one of these, specify the 
corresponding code in the UCS parameter.. You can use the space that 
follows to list the codes assigned to user-designed special character 
sets available at your installation. 

218JCL Reference (Release 20.1) 



REQUESTING FOLD MODE 

FOLD can be coded as the second subparameter of the UCS parameter and 
requests the fold mode. The fold mode is described in the publication 
IBM 2821 Control Unit, GA24-3112. The fold mode is most. often requested 
when uppercase and lowercase data is to be printed only in uppercase. 

The FOLD subparameter is a positional subparameteL·. If you omit the 
FOLD subparameter and code the VERIFY subparameter, yuu must code a 
comma to indicate the absence of FOLD. 

REQUESTING OPERATOR VERIFICATION 

VERIFY can be coded as the last subparameter of the UCS parmeter and 
requests that the operator visually verify that the character set image 
corresponds to the graphics of the chain or train that was mounted. 
When VERIFY is coded, the charact'er set image is displayed on the 
printer so that the operator can make the verification before the data 
set is printed. 

Examples of the UCS Parameter 

1. //DD1 DD UNIT=1403,UCS=(YN"VERIFY) 

This DD statement defines an output data set that is to be written 
to a 1403 printer. The UCS parameter requests that the data set be 
written using the chain or train corresponding to the special 
character set with the code YN. Since VERIFY is coded, the 
character set image is displayed on the printer before the data set 
is printed. . 

2. //DD2 DD SYSOUT=G,UCS=PCHN 

This DD statement defines an output data set that is to be written 
to the unit record device that corresponds with class G. If the 
device is a printer with the universal character set, the request in 
the UCSparameter for the special character set with the code PCHN 
is recognized. Otherwise, the UCS parameter is ignored. 

Section IV: The DD Statement -- UCS Parameter 219 





The UNIT Parameter 

l 
UNIT=([uni1; address] [,Unit count] [,DEFER] L,SEP=(ddname, ••• )]) I 

dev1ce type ,P 
group name , 

UNIT=AFF=ddname 

unit address 
identifies a particular unit by its address, which consists of the 
channel, control unit, and unit numbers. 

device type 
identifies a particular type of device. 

group name 
identifies a particular group of devices. The group name and the 
devices that make up a group are specified during system 
gener at ion. 

,unit count 

"P 

, 

indicates the number of devices you want assigned to the data set. 

specifies that each volume on which the data set resides is to be 
assigned a device,. 

specifies that only one device is required and another subparameter 
follows. (If the DEFER subparameter is not coded but the SEP 
parameter is coded., this comma is opt ional • ) 

,DEFER 
specifies that the system should assign a device(s) to the data se~ 
but the volume("s) on which the data set resides should not be 
mounted until the data set is opened. 

"SEP= 
indicates that this data set is to be assigned a different direct 
access device than the devices assigned to certain other data sets., 
i.e., unit separation. 

(ddname" ••• ) 

AFF= 

the names of up to eight earlier DD statements in the job step that 
define data sets from which you want unit separation. 

indicates that the system should assign the data set to the same 
device(s) as assigned to another data set, i.e., unit affinity. 

ddname 
the name of an earlier DD statement in the job step that defines a 
data set with which you want unit aff ini ty .• 

Rules for Coding 

1. If the only subparameter coded in the UNIT parameter is the first 
subparameter, you need not enclose it in parentheses. 

section IV: The DO statement -- UNIT Parameter 221 



2. If the SEP subparameter is the only subparameter you are coding in 
the UNIT parameter" code UNIT= ('f SEP= (ddname" ••• ) ). 

3. I f the list of ddnames consists of only one ddname" you need not 
enclose it in parentheses. 

4. You need not code the unit count subparameter if you want only one 
device assigned to the data set. 

5. The UNIT and DDNAME parameters are mutually exclusive parameters; 
therefore, if DDNAME is coded, do not code the UNIT parameter. 

Providing Unit Information 

Before the data set can be used as input to a processing program or 
written as output by a processing program, the volume on which a data 
set resides or will reside must be mounted on an input/output device. 
The UNIT parameter provides the system with the information it needs to 
assign a device to the data set. 

In order for the system to assign a device" you must provide in the 
UNIT parameter: 

• The specific unit you want: 
description of the device: 

Optionally, you can: 

code the unit address; or a general 
code the device type or group name .• 

• specify how many devices you want assigned to the data set. when 
more than one device is required.. You can code the unit count and 
specify how many devices are required, or in certain cases, imply 
how many devices are required by coding P. 

• Request the system to assign a device to a data set and not to 
cause the volume on which the data set resides to be mounted until 
the data set is opened. 

• Request the system to assign a data set to a device other than the 
devices assigned to data sets defined in the same job step; code 
the keyword subparameter SEP and identify the data sets from which 
you want unit separation. 

Another way to provide unit information is to request unit affinity 
with another data set by coding UNIT=AFF=ddname. The system obtains 
unit information from the named DD statement. 

Except in a few cases, the UNIT parameter is always coded on·a DD 
statement that defines a data set that requires one or more devices. In 
the following cases, the system obtains the required unit information 
from other sources. Therefore., you need not code the UNIT parameter: 

• When the data set is cataloged. For cataloged data sets, the system 
obtains unit and volume information from the catalog. However, if 
VOLUME=SER=serial number is coded on a DD statement that defines a 
cataloged data set, the system does not look in the catalog. In 
this case, you must code the UNIT parameter. If the VOLUME 
parameter is not coded but you request a device in the UNIT 
parameter, the request is ignored. 

• When the data set is passed from a previous job step. For passed 
data sets, the system obtains unit and volume information from an 
internal table. However, if VOLUME=SER=serial number is coded on a 

222 JCL Reference (Release 20.1) 



DD statement that defines a passed data set, the system does not 
look in the internal table. In this case, you must code the UNIT 
parameter. If the VOLUME parameter is not coded but you request a 
device in the UNIT parameter, the request is ignored. 

• When the data set is to use the same volumes assigned to an earlier 
data set, i.e., VOLUME=REF=reference is coded. In this case, the 
system obtains unit and volume information from the earlier DD 
statement that specified the volume serial number or from the 
catalog.. If you request a device in the UNIT parameter, the request 
is ignored • 

• When the data set is to share space or cylinders with an earlier 
data set, i.e., SUBALLOC or SPLIT is coded. In this case, the 
system obtains unit and volume information from the earlier DD 
statement that specifies the total amount of space required for all 
the data sets. If the VOLUME parameter is coded, it is ignored. If 
you request a device in the UNIT parameter, the request is ignored. 

In all of these cases., you can code the UNIT parameter when you want 
more devices assigned. 

IDENTIFYIN~ THE DEVICE 

You must identify to the system the specific device you want or the type 
of device you want. To identify a specific device, you must specify a 
unit address. When a unit address is coded, the system assigns you that 
unit .. 

There are two ways to identify the type of device you want: specify 
a device type, which corresponds to a particular set of device features, 
or specify a group name, which identifies a group of devices that may be 
different models. When a device type is coded, the system assigns an 
available device of that type. When a group name is coded, the system 
assigns an available device that is part of that group. In all cases, 
the block size specified for the data cannot exceed the maximum block 
size permitted for the assigned device. 

Unit Address 

To identify a device by its unit address, you specify the 3-byte address 
of the unit. The address is made up of the channel, control unit, and 
unit numbers. For example, UNIT=180 indicates you want channell, 
control unit 8, and unit o. 

To request a specific bin on a specific 2321, you should code 
UNIT=address/bin, where "bin" is a number from 0 through 9. For 
example, UNIT=293/5 indicates you want channel 2, control unit 9, device 
3" and bin 5. If you code UNIT=293" you are requesting one of the 
available bins on that unit. 

I If you identify a telecommunications device by its unit address, the 
system will allocate that device on a shared basis whether or not,the 
device is already allocated. 

you should not identify a device by its address unless it is 
absolutely necessary. Specifying a unit address limits unit assignment 
and may result in a delay of the job if the unit is being used by 
another job. 

section IV: The DD Statement -- UNIT Parameter 223 



Device Type 

Device types correspond to particular set of features of input/output 
devices. When you code a device type" you allow the system to assign 
any available device of that device type. For example, if the device 
type you want is a 2302 Disk storage Drive!, you code UNIT=2302. The 
system assigns an available 2302. If only one device in the system is 
of that device type, the system assigns that device.. If there is more 
than 'one device in the system of that device type., there is a certain 
degree of device independence. 0 

The device types that can be coded and their descriptions are listed 
below.. (You can code only those device types that were defined during 
system generation.) 

Device Type 

2400 

2400-1 

2400-2 

2400-3 

2400-4 

DIRECT ACCESS 

Device Type 

2301 

2302 

2303 

1
2305-1 

2305-2 

2311 

2314 

123191 

2321 

3330 

Device 

2400 series Nine-Track Magnetic Tape Drive that can be 
allocated to a data set written or to be written in 
800 bpi when the dual-density feature is not installed 
on the drive or in 1600 bpi when the dual-density 
feature is installed on the drive. 

2400 series Magnetic Tape Drive with Seven-Track 
compatibility and without Data Conversion.. 

2400 series Magnetic Tape Drive with Seven-Track 
compatibility and Data Conversion. 

2400 series Nine-Track Magnetic Tape Drive that can be 
allocated to a data set written or to be written in 
1600 bpi density. 

2400 series Nine-Track Magnetic Tape Drive having an 
800 and 1600 bpi density capability. 

Device 

2301 Drum storage Unit. 

2302 Disk storage Drive. 

2303 Drum storage Unit. 

2305 Fixed Head Storage Facility Model 1 

2305 Fixed Head Storage Facility Model 2 

2311 Disk Storage Drive. 

2314 storage Facility. 

2319 Disk Storage Facility 

any bin mounted on a 2321 data cell drive. 

3330 Disk storage Drive 

1TO indicate the 2319 in the UNIT parameter, specify UNIT=2314. 
However, to designate the 2319 as the particular device for your data 
set. specify UNIT=unit address. 

224 JCL Reference (Release 20.1) 



UNIT RECORD 

Device TYEe 

1052 

1275 

1285 

1287 

1288 

1403 

1419 

1442 

1443 

2495 

2501 

2520 

2540 

2540-2 

2671 

3210 

13211 

3215 

GRAPHIC 

Device Ty~ 

1053 

2250-1 

2250-3 

2260-1 

2260- 2 

2280 

2282 

Device 

1052 Printer-Keyboard. 

1275 Optical Reader Sorter (available through 
World Trade branch offices only) 

1285 optical Reader 

1287 Optical Reader 

1288 Optical Reader 

1403 Printer or 1404 Printer (continuous form only). 

1419 Magnetic Character Reader 

1442 Card Read Punch. 

1443 Printer. 

2495 Tape Cartridge Reader 

2501 Card Reader. 

2520 Card Read Punch. 

2540 Card Read Punch (read feed). 

2540 card Read Punch (punch feed). 

2671 Paper Tape Reader. 

3210 Printer-Keyboard 

3211 Printer 

3215 Printer-Keyboard 

Device 

1053 Model 4 Printer. 

2250 Display Unit, Model 1. 

2250 Display Unit, Model 3,. 

2260 Model 1 Display Station (Local, Attachment) • 

2260 Model 2 Display station (Local Attachment) • 

2280 Film Recorder. 

2282 Film Recorder/Scanner. 

section IV: The DD Statement -- UNIT Parameter 225 



Group Name 

A group name is 1 through 8 alphameric characters and identifies a 
device or a group of devices. The ,group of devices can consist of 
devices of the same type or different direct access and tape device 
types. Group names are established during system generation. 

When you code a group name" you allow the system to assign any 
available device that is included in the group. (If a group consists of 
only one device, the system assigns that device.) For example, if 
all 2301 and 2303 Drum storage units are included in the group named 
DRUM and you code UNIT=DRUM., the system assigns an available 2301 or 
2303 device .. 

A group may consist of more than one device type. In this case, you 
should not code this group's group name when you are defining an 
existing data set, since the volume(s} on which the data set resides may 
require a different device than the one assigned by the system, i.e., a 
tape volume must be assigned to a tape device, not a direct access 
device. 

When the automatic volume recognition feature is included in the 
system and you specify a group name, this feature will assign devices to 
volumes already mounted, but will not request mounting of any volume 
that is not mounted. 

UNIT COUNT 

The unit count subparameter indicates how many devices you want assigned 
to a data set. If you do not code this subparameter, or code 0, the 
system assigns one device. (If you receive a passed data set or refer 
the system to a cataloged data set or earlier DD statement for volume 
and unit information (VOLUME=REF=reference) " the system assigns one 
device" even if more devices were requested in an earlier DD statement.) 
Only in one case may the system a ssign more than one device: when two 
DD statements in a step request use of the same volume,. If either of 
these two DD statements requests any other volume(s}, the system assigns 
an additional device. 

For operating efficiency, you can request multiple devices for' a 
multivolume data set or for a data set that may require additional 
volumes. When each required volume is mounted on a separate device, 
time is not lost during execution of the job step while the operator 
demounts and mounts volumes. The maximum number of devices that can be 
requested per DD statement is 59. 

In the following cases" you should always code the unit count 
subparameter when the data set may be extended to a new volume: 

• If the data set resides on a permanently resident or reserved 
volume. In these two cases, the volume cannot be demounted in order 
to mount another volume • 

• If the data set is assigned space through suballocation. Code the 
unit count subparameter on the DD statement that requests the space 
to be suballocated. 

The unit count subparameter is a positional subparameter, and it 
shares the same position as the subparameter P. If neither of these 
subparameters is coded and the DEFER or SEP subparameter follows, code a 
comma to indicate the absence of the unit count subparameter and the 
subparameter P. '(If the DEFER subparameter is not coded but the SEP 
parameter is coded, you may omit the comma.) 

226 JCL Reference (Release 20.1) 



PARALLEL MOUNTING 

Requesting parallel mounting has the same effect as specifying a unit 
count, i.e. ". more than one device is assigned to the data set. When 
parallel mounting is requested, the system counts the number of volume 
serial numbers specified on the DD statement and assigns to the data set 
as many devices as there are serial numbers. (For cataloged data sets, 
the system counts the number of volume serial numbers contained in the 
catalog.) You request parallel mounting by coding the letter P in place 
of the unit count subparameter. 

The subparameter P is a positional subparameter, and it shares the 
same position as the unit count subparameter. If neither of these 
subparameters is coded and the DEFER or SEP subparameter follows, code a 
comma to indicate the absence of the subparameter P and the unit count 
subparameter. (If the DEFER subparameter is not coded but the SEP 
subparameter is coded, you may omit the comma.) 

DEFERRED MOUNTING 

The DEFER subparameter requests the system to assign the required units 
to a data set and to defer the mounting of the volume(s) on which the 
data set resides until the processing program attempts to open the data 
set. The DEFER subparameter should only be coded on DD statements that 
define data sets residing on removable volumes. The DEFER subparameter 
cannot be coded on a DD statement that defines an indexed sequential 
data set or that defines a new data set that is to be written on a 
direct access volume" because space cannot be allocated to the data set. 

If you request deferred mounting of a volume and the data set on that 
volume is never opened by the processing program, the volume is not 
mounted during the execution of the job step. If ~ later job step 
refers to that data set, the system may assign a different device to the 
data set than was originally assigned to it. 

UNIT SEPARATION 

When you make nonspecific volume requests for data sets defined in a job 
step, the system assigns volumes to the data sets. If the DD statements 
that define these data sets request the same type of device, the system 
may assign more than one data set to the same device. 

If you do not want a data set to be assigned to the same device that 
is assigned to other data sets, you can request this in the SEP 
subparameter. A request for unit separation has meaning only for direct 
access devices. 

The SEP subparameter appears as the last subparameter in the UNIT 
parameter. To identify the data sets that should not be assigned the 
same device as this data set, follow SEP= with a list of up to eight 
ddnames of the DD statements that define these data sets. The listed DD 
statements must precede this statement and must be contained in the same 
job step. The list of ddnames must be enclosed in parentheses" unless 
there is only one ddname,. If one of the listed DD statements defines a 
dummy data set, the system ignores the unit separation request for that 
data set. 

When you make a specific volume request for a data set and request 
unit separation for that data set, the system issues a message to the 
ope.rator if the request for unit separation cannot be satisfied. The 
operator decides if the system should wait for devices to become 
available, or if the request for unit separation should be ignored, or 
if the job should be cancelled. When you make a nonspecific volume 

section IV: The DD statement -- UNIT Parameter 227 



request for a data set and request unit separation for that data set, 
the request may be ignored, depending on how many disk drives are 
available and how much space is available on those disk drives. A 
message will not be issued in this case if unit separation cannot be 
satisfied. 

U nit Affinity 

To conserve the number of devices used in a job step, you can request 
that an existing data set be assigned to the same device or devices as 
assigned to a data set defined earlier in the job step. When two data 
sets are assigned the same device, the data sets are said to have unit 
affinity. When the data sets reside on different volumes, unit affinity 
implies deferred mounting for one of the volumes, since both volumes 
cannot be mounted on the same device at the same time,. 

You request unit affinity by coding UNIT=AFF=ddname on a DD 
statement. The ddname l.S the name of an earlier DD statement in the 
same job step., and the system obtains unit information from this 
statement. The data set defined on the DD statement that requests unit 
affinity is assigned the same device or devices as the data set defined 
on the named DD statement. If the ddname refers to a DD statement that 
defines a dummy data set, the data set defined on the DD statement 
requesting unit affinity is assigned a dummy status. 

When unit affinity is requested for two data sets that reside on 
different 2321 volumes, the data sets are assigned the same device but 
may be assigned different bins. If the data sets are assigned different 
bins, the implied deferred mounting is ignored. 

Examples of the UNIT Parameter 

1. //DD1 DD 
// 

DSNAME=AAG3,DISP=(,KEEP), 
VOLUME=SER=13230,UNIT=2400 

This DD statement defines a new data set and requests the system to 
assign any 2400 9-Track Tape Drive to the data set. 

x 

2. / /DD2 DD DSNAME=X. Y. Z, DISP=OLD, UNIT= (,2) 

This DD statement defines a cataloged data set and requests the 
system to assign two devices to the data set. The device type is 
obtained from the catalog. 

3. / /DD3 DD DSNAME=COLLECT, DISP=OLD. x 

4. 

// VOLUME=SER=1095,UNIT=(DISK"DEFER) 

This DD statement defines an existing data set that resides on a 
direct access volume and requests the system to assign any device 
that is part of the group named DISK. Since DEFER is coded, the 
volume is· not mounted until the data set is opened. 

//STEP1 
//DDA 
//DDB 
//DDC 

EXEC 
DD 
DD 
DD 

PGM=XTRA 
UNIT=2311,SPACE=(1024,(150,20» 
UNIT=2311,SPACE=(1024,(100,10» 
UNIT=(2311,SEP=(DDA,DDB»,SPACE=(2048,(300,30» 

The DD statements in this job step define temporary data sets. The 
DD statement named DDC requests the system to assign the data set to 
a different device than is assigned to either of the data sets 
defined on the DD statements named DDA and DDB. 

228 JCL Reference (Release 20.1) 



5. //STEP2 
//DDX 
// 
//DDY 
//DDZ 
// 

EXEC PGM=PO INT 
DD DSNAME=EST,DISP=MOD,VOLUME=SER=(42569,42570). 

UNIT= (2311,,2) 
DD DSNAME=ERAS,DISP=OLD,UNIT=2400-2 
DD DSNAME=RECK, DISP=OLD, 

VOLUME=SER=(40653,13262>.UNIT=AFF=DDX 

The DD statement named DDZ requests that the system assign the same 
unit to this data set as it assigns to the data set defined on the 
statement named DDX. Since DDX requests two devices, these two 
devices are assigned to the data set defined on DDZ. 

x 

x 

Section IV: The DD Statement -- UNIT Parameter 229 





The VOLUME Parameter 

r--' 
j VOLUME I =( [PRIVATE] [ ,RETAIN] [ ,volume sequence number] [,volume count] : [,]:[ SER=(serial number, ••• ) 1) 
i VOL I J~ r.!~ . l. __ J REF=dsname 

REF=* .ddname 
. REF=* .stepname .ddname 

RE F=* .stepname. procstepname .ddname 

PRIVATE 
indicates that no output data set can be allocated to this volume 
unless the volume is specifically requested, and the volume is to 
be demounted after its last use in the job step, unless RETAIN is 
coded or the data set is passed. 

,RETAIN. 
indicates that this volume is not to be demounted after its last 
use in the job step. 

indicates that the volume does not need to be considered a private 
volume and the volume sequence number or volume count subparameter 
follows. 

,volume sequence number 
specifies which volume o~ an existing multivolume data set you want 
to begin processing with. 

,,-, 
\ ' \ 
,_I indicates that you want to begin processing of an existing 

multivolume data set with the first volume, and the volume count 
subparameter follows. 

,volume count 

SER= 

specifies the maximum number of volumes an output data set 
requires. 

specifies that either the SER or REF subparameter follows and one 
or more subparameters precede it. 

indicates that the serial numbers of the volumes on which the data 
set resides or will reside follow. 

(serial number, ••• ) 

REF= 

the serial numbers of the volumes on which the data set resides or 
will reside. 

indicates that the serial numbers of the volumes on which the data 
set resides or will reside are identified on an earlier DD 
statement in the job or in the catalog. 

dsname 
the name of a cataloged or passed data set. The system locates the 
information about the data set and assigns your data set to the 
same volumes as are assigned to the cataloged or passed data set. 

Section IV: The DD statement -- VOLUME Parameter 231 



*.ddname 
specifies that the system must obtain the volume serial numbers 
from an earlier 00 statement harned "ddname" in the same job step. 

*.stepname.ddname 
specifies that the system must obtain the volume serial numbers 
from a DO statement named "ddname," which was defined in an earlier 
job step named "stepname." 

*.stepname.procstepname.ddname 
specifies that the system must obtain the volume serial numbers 
from a DO statement named "ddname," which was defined in an earlier 
procedure step named "procstepname"; the procedure step is part of 
a procedure that was called by an earlier job step named 
"stepname. " 

Rules for Coding 

1. The volume sequence number subparameter can be 1 to 3 digits. 

2. The volume count subparameter is a number from 1 through 255. 

3. If the only subparameter you are coding is PRIVATE, you need not 
enclose it in parentheses. 

4. If the only subparameter you. are coding is SER or REF, code 
VOLUME=SER=(serial number, ••• ) or VOLUME=REF=reference. 

5.. If the list of volume serial numbers consists of only one serial 
~umber. you need not enclose the serial number in parentheses. 

6. The VOLUME, DDNAME, and SYSOUT parameters are mutually exclusive 
parameters; therefore, if DDNAME or SYSOUT is coded, do not code 
the VOLUME parameter. 

Providing Volume Information 

A volume can be a tape reel, a disk pack, a data cell, a drum, or part 
of an IBM 2302 Disk storage device served by one access mechanism. The 
VOLUME parameter provides information about the volume or volumes on 
which an input data set resides or on which an output data set will 
reside. 

Before a data set can be read or written, the volume on which the 
dat.a set resides or will reside must be mounted. For an existing data 
set, you must identify the volume or volumes on which the data set 
resides by making a specific volume request. For a new data set, you 
can make a specific volume request or let the system select a volume for 
you by making a nonspecific volume request. 

Specific Volume Reguest 

A specific volume request informs the system of the volume' s serial 
number. Any of the following implies a specific volume request: 

1. The data set is passed from an earlier step or is cataloged. 
2. VOLUME=SER=serial number is coded on the OD statement. 
3. VOLUME=REF=reference is coded on the DO statement, referring to an 

earlier specific volume request. 

232 JCL Reference (Release 20.1) 



When you make a specific volume request" you can code the PRIVATE 
subparameter or the PRIVATE and RETAIN subparameters in the VOLUME 
parameter. For passed data sets, you can also code the volume count 
subparameter. For cataloged data sets, you can also code the sequence 
number and volume count subparameters. 

Nonspecific Volume Request 

A nonspecific volume request can be made only if you are defining a new 
data set. When you make a nonspecific volume request, the system may 
assign your data set to a volume that is already mounted or may cause a 
volume to be mounted. What the system does depends on the volume state 
of the volumes that are already mounted. The volume states that mounted 
volumes can assume and how they affect volume selection are described 
under "Volume states" at the end of this chapter. 

When you make a nonspecific volume request" you can code the PRIVATE 
subparameter, or the PRIVATE and RETAIN subparameters, and the volume 
count subparameter in the VOLUME parameter. You should not code the 
volume sequence number subparameter when you make a nonspecific volume 
request. 

THE PRIVATE SUBPARAMETER 

When you make a specific or nonspecific volume request, you can code 
PRIVATE as the first subparameter in the VOLUME parameter. The volume 
assigned is called a private volume. This private volume cannot then be 
assigned to any other data set for which a nonspecific volume request is 
made. In addition, a private volume is demounted after its last use in 
the job step unless RETAIN or PASS is coded or the volume is a 
permanently resident or reserved volume. (Permanently resident and 
reserved volumes are described under "Volume States" at the end of this 
chapter. ) 

If PRIVATE is the only subparameter coded in the VOLUME parameter, 
you need not enclose it in parentheses. 

When PRIVATE Is Not Coded 

What occurs when PRIVATE is not coded depends on the type of volume 
request and whether a direct access or tape device is requested. 

specific reguest for a direct access volume: If PRIVATE is not coded 
and you make a specific request for a direct access volume, the volume 
assigned is called a public volume. A public volume remains mounted 
after its last use in a step so that it can be used again without the 
need to remount it. 

Nonspecific reguest for a direct access volume: If PRIVATE is not coded 
and you make a nonspecific request for a direct access volume and the 
data set is temporary, the system assigns a volume called a 'public 
volume. If PRIVATE is not coded and you make a nonspecific request for 
a direct access volume and the data set is nontemporary, the system 
assigns a volume called a storage volume. Public and storage volumes 
remain mounted after their last use in a step so that they can be used 
again without the need to remount them. If it is possible that the data 
set may require more space than was requested for it, request more than 
one volume in the volume count subparameter of the VOLUME parameter and 
more than one device in the unit count subparameter of the UNIT 
parameter. 

Section IV: The DD Statement -- VOLUME Parameter 233 



Specific request for a tape volume: If PRIVATE is not coded and you 
make a specific request for a tape volume, the system treats it as a 
request for a private volume. (How this affects the volume is described 
in the previous topic "The PRIVATE Subparameter.") 

Nonspecific request for a tape volume: If PRIVATE is not coded and you 
make a nonspecific request for a tape volume and the data set is 
nontemporary., the system treats it as a request for a private volume. 
(As mentioned earlier, the system always considers certain requests to 
be specific. For tape volumes" the system also considers the following 
to be a specific request: a status of OLD or SHR and a disposition of 
other than DELETE coded in the DISP parameter..) How a request for a 
private volume affects the volume is described in the previous topic 
"The PRIVATE Subparameter." 

If PRIVATE is not coded and you make a nonspecific request for a tape 
volume and the data set is temporary, the system assigns a volume called 
a scratch volume. A scratch volume remains mounted after its last use 
in a step so that it can be assigned again without the need to remount 
it. If it is possible that the data set may exceed one volume, request 
more than one volume in the volume count subparameter of the VOLUME 
parameter and more than one device in the unit count subparameter of the 
UNIT parameter. 

When PRIVATE is not coded, and the volume sequence number or volume 
count subparameter is coded, you must code a comma to indicate the 
absence of PRIVATE,. 

THE RETAIN SUBPARAMETER 

If you have coded PRIVATE as the first subparameter in the VOLUME 
parameter" you may want to code RETAIN as the second subparameter. 
RET~N overrides the system action of demounting a private volume after 
its use in a job step;. Instead, the volume remains mounted until after 
it is used in a subsequent step or at the end of the job, whichever 
occurs first. If the data set resides on more than one volume and the 
volumes are mounted in sequential order, only the last volume is 
retained. 

The RETAIN subparameter need not be coded when the data set is to be 
passed; the system automatically retains the volumes on which the data 
set resides. 

If the RETAIN subparameter is not coded and the volume sequence 
number or volume count subparameter follows, code a comma to indicate 
the absence of RETAIN. 

THE VOLUME SEQUENCE NUMBER SUBPARAMETER 

When you are reading or lengthening an existing multivolume data set, 
you can begin processing with other than the first volume of the data 
set by coding a volume sequence number. The sequence number must be 
less than or equal to the number of volumes on which the data set exists 
and can range from 1 to 4 digits. A volume sequence number is normally 
coded when volume serial numbers are not specified on the DD statement 
(i.e.

o
, you are retrieving a cataloged data set or 

VOLUME= (, , seq#, REF=reference) is coded). If both a volume sequence 
number and volume serial numbers are coded in the VOLUME parameter, you 
will begin processing with the volume that corresponds with the volume 
sequence number. 

234 JCL Reference (Release 20.1) 



The volume sequence number is a positional subparameter and must 
follow the PRIVATE and RETAIN subparametersor the commas that indicate 
their absence. If the volume sequence number subparameter is not coded 
and the volume count subparameter follows, code a comma to indicate the 
absence of a sequence number. 

If a volume sequence number is used with a nonspecific volume 
request, the results are unpredictable,. 

THE VOLUME COUNT SUBPARAMETER 

The volume count subparameter tells the system the maximum number of 
volumes an output data set may require.. The number can range from 1 
through 255. When you make a nonspecific volume request and the data 
set may exceed one volume, request more than one volume in the volume 
count subparameter and code PRIVATE or request the same number of 
devices as volumes. When you request a non-specific tape volume for a 
data set with no labels, the system assigns the volume serial numbers 
required for the data set. If a volume count greater than 99 is 
specified, duplicate volume serial numbers are assigned. 

When you make a specific volume request and the data set may require 
use of more volumes than there are serial numbers, specify in the volume 
count subparameter the total number of volumes that may be used. By 
requesting multiple volumes in the volume count subparameter, you can 
ensure that the data set can be written on more than one volume if it 
exceeds one volume. 

If you make a nonspecific volume request and the volume count exceeds 
the number of direct access devices requested in the UNIT parameter, you 
should code PRIVATE, e.g., UNIT=(2311,4),VOLUME=(PRIVATE",6). When 
PRIVATE is coded and all the mounted volumes are used, the system 
demounts one of the volumes and then mounts another volume in its place 
so that processing can continue. When PRIVATE is not coded and all the 
mounted volumes are used, the system does not demount any of the 
volumes; therefore, the job step abnormally terminates. For tape 
devices, the PRIVATE subparameter is unnecessary; additional volumes are 
mounted as they are required. 

The volume count subparameter is a positional subparameter. If you 
omit this subparameter, you code a comma to indicate its absence only if 
PRIVATE, RETAIN, or the volume sequence number subparameter is coded and 
the SER or REF subparameter follows. 

SUPPLYING VOLUME SERIAL NUMBERS (SER) 

To retrieve an existing data set, other than a cataloged or passed data 
set, you must supply the system with the serial numbers of the volumes 
on which the data set resides. When you are creating a data set, you 
can supply the system with the serial numbers of the volumes on which 
the data set will reside or let the system assign volumes to the data 
set. One of the ways to supply the system with serial numbers is to 
code the serial numbers on the DD statement. You can specify a maximum 
of 255 volume serial numbers per DD statement and a maximum of 4095 
volume serial numbers per job step. 

A volume serial number must be 1 to 6 characters in length. If 
volume serial number is not 6 characters, it will be padded with 
trailing blankso It can contain any alp:lameric and national (#, $,0» 
characters, and the hyphen. You must enclose any volume serial number 
that includes special characters, other than a hyphen, in apostrophes 
whenever you code that number in the VOLUME parameter. When using 
various typewriter heads or printer chains, difficulties in volume 

Section IV: The DD statement -- VOLUME Parameter 235 



serial recognition may arise if you use other than alphameric 
characters. Each volume at an installation should have a different 
serial number regardless of the volume type, e.g." tape, disk; the 
volume's serial number should be posted on the outside of the volume. 

The SER subparameter appears as the last subparameter in the VOLUME 
parameter. Follow SER= with the volume'serial numbers. The serial 
numbers must be enclo~ed in parentheses, unless there is 'only one serial 
number. If SER is the only subparameter you are coding, you can code 
VOLUME=SER= (serial number, ••• ) or VOLUME=SER=seria 1 number. 

SCRTCH should not be used as a volume serial number, because it is 
used to notify the operator to mount a non-specific ,volume. For Optical 
Readers, if no volume serial number is specified, VOLUME=SER=OCRINP is 
assumed. 

REFERRING THE SYSTEM TO AN EARLIER SPECIFIC VOLUME REQUEST (REF) 

Another way to supply the system with volume serial numbers is to refer 
the system to eitner a cataloged dataset or a data set that is defined 
earlier in the job. When you do this. the system obtains volume 
information, including volume serial numbers, and unit information from 
the source you refer it to. 

To refer the system to a cataloged data set or to a data set passed 
earlier in the job that has not been assigned a temporary data set name, 
you code REF as the last subparameter in the VOLUME parameter. Follow 
REF= with the data set name of the cataloged or passed data set. The 
data set name you code cannot contain special characters, except for 
periods used in a qualified name. 

To refer the system to a data set defined earlier in the job that was 
not passed or was passed but assigned a temporary name, you code REF= as 
the last subparameter in the VOLUME parameter. Follow REF= with a 
backward reference to the DD statement that contains the volume serial 
numbers 0 This backward reference must be one of the following: 

1. *.ddname. Use this form of backward reference when the DO 
statement you are referring to is contained in the same job step. 

2. *.stepname.ddname. Use this form of backward reference when the OD 
statement you are referring to is contained in an earlier job step. 

3. *.stepname.procstepname.ddname. Use this form of backward 
reference when the DD statement you are referring to is contained 
in a cataloged procedure step tha~ is part of a procedure called by 
an earlier job step. 

In any case, if the ddname refers to a DD statement that defines a dummy 
data set, the DO statement requesting use of the volumes assigned to 
that data set is assigned a dummy status. 

When you refer the system to a data set that resides on more than one 
tape volume, the system assigns only the last volume. When you refer 
the system to a data set that resides on more than one direct access 
volume, the system assigns all of the volumes. In either case, you can 
code the volume count subparameter if additional volumes may be 
required. 

If REF is the only subparameter you are coding. you can code 
VOLUME=REF=reference. 

236 JCL Reference (Release 20.1) 



Volume Affinity 

Two or more data sets sharing the same volume have volume affinity. 
This occurs when you specify the same volume serial numbers for the data 
sets, or when you use the REF subparameter of the VOLUME parameter to 
indicate that volumes identified in the catalog or on an earlier DD 
statement in the job are to be assigned to the data set being defined. 
The system ignores any request for a specific number of units made in 
the UNIT parameter on the DO statement of a data set that has volume 
affinity with at least one other data set. The number of units 
allocated to the data set being defined will at least equal the number 
of instances that volume affinity occurs. If the volume is a tape reel, 
however, specifying unit affinity in the UNIT parameter will force the 
system to honor the number of units requested. Unit affinity is 
discussed in the section on the UNIT parameter of the OD statement. 

Volume States 

Every mounted volume is assigned several attributes by the system. The 
attributes assigned to a mounted volume define the state of the volume; 
the volume state controls when a volume is demounted and controls volume 
sharing. Volume sharing is the allocation of a volume to two or more 
data sets defined in the same job step, or, in a multiprogramming 
environment, the allocation of a direct access volume to two or more 
data sets defined in different job steps that are executing 
concurrently. 

The attributes that are assigned both to a tape or direct access 
volume are the mount attribute and the use attribute. The nonsharable 
attribute can also be assigned to a direct access volume. These 
attributes are described in the next two topics. 

THE MOUNT AND USE ATTRIBUTES 

Every volume is assigned a mount and use attribute. The mount attribute 
controls volume demounting. The use attribute is one of the factors 
that controls allocation of mounted volumes· to data sets. The mount and 
use attributes are: 

r--------------------T-------, 
I Mount I Use I 
~--------------------+-------~ 
I I I 
IPermanently resident I Public I 
I Reserved I Private I 
I Removable I storage I 
I I scratch I L ____________________ ~ _______ J 

The following lists the mount attributes and describes how this 
attribute and a use attribute are assigned to a volume. 

1. Permanently resident volumes cannot be demounted. Only direct 
access volumes can be permanently resident. While all direct 
access volumes can be designated as permanently resident in a 
special member of SYS1.PARMLIB named PRESRES, the following volumes 
are always permanently resident: 

• All volumes that cannot be physically demounted, such as a 2301 
Drum Storage volume. 

section IV: The DD statement -- VOLUME Parameter 237 



4... 

• The volume from which the system is loaded (the IPL volume). 

• The volume containing the system data sets SYS1.LINKL1B, 
SYSl.PROCLIB, and SYSl.SYSJOBQE. 

A permanently resident volume can be assigned the use attribute of 
public, private, or storage. The use attribute is assigned to the 
volume in the PRESRES member in SYSl.PARMLIB, or is public by 
default. 

Reserved volumes remain mounted until an UNLOAD command is issued. 
Both direct access and tape volumes can be reserved volumes. A 
volume becomes reserved as a result of a MOUNT command or a PRESRES 
entry. A volume is usually designated as a reserved volume to 
avoid repeated mounting and demounting of the volume when it is to 
be used by a group of related jobs. 

A reserved direct access volume can be assigned the use attribute 
of public, private, or storage. The use attribute is assigned to 
the volume either in the PRESRES member in SYS1.PARMLIB or in a 
parameter of the MOUNT command. depending on how the volume becomes 
reserved. 

A reserved tape volume is always assigned the use attribute of 
private. 

3. Removable volumes are those volumes that are neither permanently 
resident nor reserved. Removable volumes are demounted either 
after their last use in a job step or when the unit on which the 
volume is mounted is required for another volume. Which occurs 
depends on the use attribute assigned to the volume. 

A removable direct access volume can be assigned the use attribute 
of public or private. The use attribute of public is assigned when 
the PRIVATE subparameter is not coded~ The use attribute of 
private is assigned when the PRIVATE subparameter is coded. 

A removable tape volume can be assigned the use attribute of 
scratch or private. The use attribute of scratch is assigned when 
the PRIVATE subparameter is not coded. a nonspecific volume request 
is made, and the data set is temporary. The use attribute of 
private is assigned when the PRIVATE subparameter is coded, a 
specific volume request is made, or the data set is nontemporary. 

Note: If, when you make a nonspecific volume request for a tape 
with IBM standard labels, the system allocates a device containing 
a ready tape, the system will assume it is a scratch tape and use 
it. This tape could be available for the following reasons: 

• The operator had premounted the tape. 

• The tape was left mounted as a scratch tape by another job 
because the disposition specified for the data set on that tape 
wcrs DELETE .. 

• The tape had been requested by another job, but the job 
terminated before the tape became ready. As a result, no message 
to demount the tape was sent to the operator. This situation can 
be avoided by coding DEFER in the UNIT parameter to defer 
mounting of the volume until the processing program attempts to 
open the data set. 

238 JCL Reference (Release 20.1) 



Table 2 summarizes what type of volume can be assigned when you make 
a specific or nonspecific volume request for a temporary or nontemporary 
data set, how these attributes are assigned, and how the volume is 
demounted. 

Table 2. Combinations of Mount arid Use Attributes 
r--------------T----------~------------T------------------T-----------, 
I I Temporary I Nontemporaryl I I 
I I Data Set I Data set I I I 
I ~-----------L------------i I How I 
I Volume state I Type of Volume Request I How Assigned I Demounted I 
~--------------+----------~-----------~+------------------t-----------~ 
I Public/ I I I I I 
I Permanently JNonspecificlspecific IPRESRES Entry or I Always I 
I Resident1 lor Specific I I by default I mounted I 
~--------------t----------_+------------+-------~----------t-----------i 
I Private/ I Specific I Specific I PRESRES Entry I Always I 
I Permanently I I I I mounted I 
I Resident 1 I I I I I 
~-------------t----------_+------------+------------------t-----------f 
I Storage/ I Nonspecific I Nonspecific I PRESRES Entry I Always I 
I Permanently lor Specificlor Specific I I mounted I 
I Resident1 I I I I I 
~--------------t-----------+------------t------------------t-----------i 
I Public/ I Nonspecific I Specific IPRESRES Entry or I UNLOAD I 
I Reserved1 lor Specific I I MOUNI' command I command I 
~--------------t----------_+------------+------------------t-----------i 
I Private/ I Specific I specific jPRESRES Entry or I UNLOAD I 
I Reserved (Tape I I I MOUNT command I command I 
land direct I I I (Only MOUNT I I 
laccess) I I· I command for tape.) I I 
~--------------t-----------+------------+------------------t-----------i 
I Storage/ INonspecificlNonspecific IPRESRES Entry or I UNLOAD I 
I Reserved1 lor specific I or specific IMOUNT command I command I 
~--------------t----------_+------------+------------------t-----------i 
I Public/ I Nonspecific I specific IVOLUME=PRIVATE is IWhen unit I 
I Removable 1 lor Specificl Inot coded on the lis required I 
I I I IDD statement Iby another I 
I I I I I volume. I 
~--------------+-----------+------------t------------------t-----------~ 
I Private/ I Specific I Specific IVOLUME=PRIVATE is IAfter its I 
I Removabl e I I I coded on the DD I us e. unless I 
I (Tape and I I I statement I RETAIN or I 
Idirect access) I I I (Specific request IPASS is I 
I I I lor a nontemporary Icoded. in I 
I I I I data set for tape I which case, I 
I I I I also causes this I volume I 
I I I I assignment.) I demounted I 
I I I I I at job I 
I I I I I termination I 
~-------------t-----------t------------+------------------t-----------i 
IScratch (Tape INonspecificlNonspecific IAny tape data set IWhen unit I 
I only) lor Specificlor Specific I (Scratch volume lis required I 
I I I Ibecomes private Iby another I 
I I I I if VOL UME=PRIVATE I vol moe. I 
I I I lis coded, specific I I 
I I I I request is made, I I 
I I I I or data set is I I 
I I I Inontemporary.) I I 
~--------------~---------L------------L------------------~-----------i 
11 Direct access volumes only. I L ______________________________________________________________________ J 

section IV: The DD Statement -- VOLUME Parameter 239 



NON SHARABLE ATTRIBUTE 

The nonsharable attribute is assigned by the system to direct access 
volumes that may require demounting during execution of the step that 
requested the volume. When a volume is assigned the nonsharable 
attribute, the volume cannot be assigned to a data set defined in the 
same step for which a nonspecific request is made or to any data set 
defined in another step that is being executed concurrently. 

The nonsharable attribute is never assigned to a permanently resident 
or reserved volume or to a volume that was mounted to satisfy a 
nonspecific request for a public volume. Except for these cases just 
described, the nonsharable attribute is always assigned to a volume when 
the following occurs: 

1. You make a specific volume request and request more volumes than 
devices. 

2. You request unit affinity with an earlier data set defined in the 
job step. (The volumes on which the data sets reside must be on 
different volumes.) 

3. You request deferred mounting of the volume on which the data set 
resides. 

4. You make a nonspecific request for a private volume. 

SATISFYING SPECIFIC VOLUME REQUESTS 

In the following cases the system can satisfy a request for a specific 
volume that is already mounted: 

1. The volume is permanently resident or reserved. The use attribute 
of the volume does not affect assignment of the volume and the use 
attribute is not changed. 

2. The direct access volume is a removable volume that has not been 
assigned the nonsharable attribute and is being used by a 
concurrently executing step. (If your request would make the 
volume nonsharable, the system waits to assign you that volume 
until all other job steps using the volume have terminated.> The 
volume remains private if its use attribute is private. The volume 
becomes private if the use attribute is public and the request is 
for a private volume. The volume remains public if its use 
attribute is public and the request is for a public volume .• 

3. The direct access volume is a removable public volume and is not in 
use. The use attribute (private or public) assigned to the volume 
when it is allocated is determined by the presence or absence of 
the PRIVATE subparameter. 

4. The tape volume is a scratch volume and is not in use. The use 
attribute of private is assigned to the volume. 

SATISFYING NONSPECIFIC VOLUME REQUESTS 

There are four types of nonspecific volume requests that can be made: 

1. You can request a private volume for a temporary data set. 
2. You can request a private volume for a nontemporary data set. 
3. You can request a public volume for a temporary data set. 
4. You can request a storage volume for a nontemporary data set. 

How the system satisfies these different types of requests are described 
below. Since the system satisfied the first two types of requests in 
the same way" these two requests are described together. 

240 JCL Reference (Release 20.1) 



1. When you make a nonspecific volume request fora private direct 
access or tape volume, the system assigns a volume that is mounted 
but not in use or requests the operator to mount a volume. The 
operator should mount a volume whose space is unused,. This allows 
you to have control over all space on the volume. Once mounted, 
the volume is assigned the use attribute of private. 

2. When you make a nonspecific volume request for a public direct 
access volume that is to contain a temporary data set, the system 
assigns a public or storage volume that is already mounted" or 
requests the operator to mount a removable volume. If a mounted 
volume is selected, its use attribute is not affected. If a 
removable volume is mounted, it is assigned the use attribute of 
public .. 

When you make a nonspecific volume request for a public tape volume 
that is to contain a temporary data set, the system assigns a 
scratch volume that is already mounted, or it requests the operator 
to mount a tape volume. Once mounted, the volume is assigned the 
use attribute of scratch. 

3. When you make a nonspecific volume request for, a public direct 
access volume that is to contain a nontemporary data set" the 
system assigns a storage volume if one is mounted. Otherwise" the 
request is treated as a nonspecific volume request for a private 
volume. 

When you make a nonspecific volume request for a public tape volume 
that is to contain a nontemporary data set, the request is treated 
as a nonspecific volume request for a private volume. 

Examples of the VOLUME Parameter 

1. //DD1 
// 

DD DSNAME=STEP,UNIT=2311,DISP=OLD, 
VOLUME= (PRIVATE, ,', SER=54 8863) 

This DD statement defines an existing data set and informs the 
system that the data set resides on the volume whose serial number 
is 548863u since PRIVATE is coded in the VOLUME parameter, the 
system will not assign the volume to any data set for which a 
nonspecific volume request is made and will cause the volume to be 
demounted after its use in the job step. 

2. //DDB 
// 

DD DSNAME=COMM,DISP=(NEW, KEEP), SPACE= (CYL, (30,2», 
VOLUME=(PRIVATE",2),UNIT=2311 

The DO statement named ODB defines a new data set for which the 
system is to assign a volume. Since only one device is requested 
(UNIT=2311) and the volume count is 2, PRIVATE is coded to ensure 
that the additional volume can be mounted if required. 

3. //002 
// 

DD DSNAME=QUET,DISP=(MOD,KEEP),UNIT=(2400,2), 
VOLUME=<",4,SER=(96341,96342» 

x 

x 

x 

This DD statement defines an existing data set, which resides on the 
volumes whose serial numbers are 96341 and 96342, and requests that 
a total of 4 volumes be used to process the data set if required. 

4. //DD3 DD DSNAME=&OUT,OISP=NEW,UNIT=2400 

This DO statement defines a temporary data set and, by omission of 
the VOLUME parameter, requests the system to assign a suitable 
volume to the data set. 

Section IV: The DD statement -- VOLUME Parameter 241 





Section V: The Command Statement 

Commands are issued to communicate with and control the system. All 
commands may be issued to the system via the opezator's console; some 
commands may be also issued via a command statement in the input stream. 
In most cases, the operator issues the command. If you include a 
command statement as part of your job control statements,. the command is 
usually executed as soon as it is read. (Disposition of commands read 
from an input stream is specified as a PARM parameter field in the 
cataloged procedure for the input reader.) Since a command is usually 
executed as soon as it is read, it is not likely that the command will 
be synchronized with the execution of the job step to which it pertains. 
Therefore. you should tell the operator which commands you want issued 
and when they should be issued, and let him issue them. 

A command statement may appear immediately before a JOB statement, an' 
EXEC statement, a null statement, or another command statement. 

The Command Statement Format 

~ command operand comments 

The command statement consists of the characters // in columns 1 and 2, 
and three fields -- the operation (command), operand, and comments 
fields. 

Rules for Coding 

Code the command statement in the following order: 

1. Code // in columns 1 and 2. 

2. Follow // with one or more blanks. 

3. Code the command. 

4. Follow the command with one or more blanks. 

section V: The Command Statement 243 

Command 



5. Code any required operands following the blank or blanks. separate 
each operand with a comma. 

6. Follow the operands with one or more blanks. 

7. Code any comments following the blank or blanks,. 

8. The command statement cannot be continued. 

Commands That Can Be Entered Through the Input Stream 

I The commands that can be entered through the input stream in MFT or MVT 
are listed below, with a brief explanation of what each command requests 
the system to do. Most command statements consist of an operation 
(command) field and an operand field, which includes options associated 
with the command. The operand field is not described here; a complete 
discussion of the commands and operands is presented in the Operator's 
Guide publication. 

MFT 

In MFT, the following commands can be entered through the input stream. 

CANCEL: The CANCEL command tells the system to immediately terminate 
the scheduling or execution of a job, to cancel a job on the queue, or 
to stop the writing of an output data set currently being processed by 
an output writer. 

DISPLAY: The DISPLAY command causes a console display of certain system 
status information. 

HOLD: The HOLD command causes the system to temporarily prevent one job 
or all jobs from being selected for processing. 

LOG: The LOG command is used to enter information into the system log. 

MODIFY: The MODIFY command tells the ~ystem to change the 
characteristics of a functioning output writer. 

MOUNT: The MOUNT command tells the system to assign a device so a 
particular volume can be mounted on it. This device can then be 
assigned by the system to any job step that requires that volume. 

RELEASE: The RELEASE command tells the system to resume job selection, 
which had been suspended by the HOLD command or TYPRUN=HOLD on the JOB 
statement. 

REPLY: The REPLY command is used to reply to messages from the system 
or from a processing program that requests information. 

244 JCL Reference (Release 20.1) 



RESEl': The RESET command tells the system to change the class or 
priority, or both. of a job in an input, hold. or system output queue. 

SET: The SET command is used to establish the values of certain 
variables, such as the time of day and the date,. 

START: The START command tells the system to start a particular system 
process, e .• g., an input reader, graphic job processor, initiator •. etc,. 

STOP: The STOP command tells the system to stop a system process that 
had been previously started by a START command, or to stop the console 
display effected by the DISPLAY connnand,. 

UNLOAD: The UNLOAD command tells the system to remove the volume 
previously mounted in response to a MOUNT conunand,. 

VARY: The VARY command tells the system to place an I/O device or path 
into an online or offline status,. 

WRITELOG: The WRITELOG command tells the system to have the system 
output writer write out the contents of the system log. 

MVT 

In MVT. the following commands can be entered through the input stream. 

CANCEL: The CANCEL command tells the system to immediately terminate 
the scheduling or execution of a job, to cancel a job on the queue, or 
to stop the writing of an output data set currently being processed by 
an output writer. 

DISPLAY: The DISPLAY command causes a console display of certain system 
status information. 

HOLD: The HOLD command causes the system to temporarily prevent one job 
or all jobs from being selected for processing. 

LOG: The LOG command is used to enter information into the system log. 

MODIFY: The MODIFY command tells the system to change the 
characteristics of a functioning initiator or output writer. 

MOUNT: The MOUNT command tells the system to assign a device so a 
particular volume can be mounted on it,. This device can then be 
assigned by the system to any job step that requires that volume. 

RELEASE: The RELEASE command tells the system to resume job selection., 
which had been suspended by the HOLD command or TYPRUN=HOLD on the JOB 
statement. 

REPLY: 1he REPLY command is used to reply to messages from the system 
or from a processing program that requests information. 

RESET: The RESET command tells the system to change the class or 
priority, or both, of a job in an input. hold, or system output queue. 

SET: The SET command is used to establish the values of certain 
variables, such as the time of day and the date. 

START: The START command tells the system to start a particular system 
process, e.g., an input reader, graphic job processor, initiator, etc. 

section V: The Command Statement 245 

Command 



• 

STOP: The STOP command tells the system to stop a system process that 
had been previously started by a START command or to stop the console 
display effected by the DISPLAY command • 

UNLOAD: The UNLOAD command tells the system to remove the volume 
previously mounted in response to a MOUNT command. 

VARY: The VARY command tells the system to place an I/O device or path 
into an online or offline status,. In a Model 65 multiprocessing system 
(M65MP). this command is used to place I/O devices,. paths, CPU. channel, 
and storage units in online or offline status. 

WRITELOG: The WRITELOG command tells the system to have the system 
output wri ter write out the contents of the system log,. 

Example of the Command Statement 

1. // START INIT •• ,AB START AN INITIATOR FOR MFT 

This command tells the system to start an initiator. The characters 
A and B indicate that the initiator is to select for execution only 
jobs of job classes A and B. 

246 JCL Reference (Release 20.1) 



Section VI: The Comment Statement 

The comment statement can be used to contain information that may be 
helpful to yourself or another person that may be running your job or 
reviewing your output listing. 

The comment statement may appear anywhere except before the JOB 
statement. A comment statement cannot be continued using continuation 
conventions; however. it can be followed by one or more comment 
statements. 

The Comment Statement Format 

1/*collllllE!nts 

The comment statement consists of the characters / /* in columns 1,. 2, 
and 3" and the comments field. 

Rules for Coding 

Code the comment statement in the following order: 

1. Code //* in columns 1, 2, and 3. 

2. Code the comments in columns 4 through 80. 

3. If all of the comments cannot be included on this comment 
statement, follow it with another comment statement. 

OUTPUT LISTINGS 

In the MSGLEVEL parameter, you can request an output listing of all the 
control statements processed in your job. If you do, you can identify 
comment statements by the appearance of *** in columns 1, 2, and 3. 

Example of the Comment Statement 

1. / /*THE COMMENT STATEMENT CANNOT BE CONTINUED, 
//*BUT IF YOU HAVE A LOT TO SAY, YOU CAN FOLLOW A 
//*COMMENT STATEMENT WITH ONE OR MORE COMMENT 
/ /*STATEMENTS. 

section VI: The Comment Statement 247 

Comment 





Section VII: The Delimiter Statement 

When you submit data through an input stream, you must indicate to the 
system the beginning of the data and the end of the data. The beginning 

I of the data is indicated by a DD * or DD DATA statement. The end of the 
data is indicated by a delimiter statement. The delimiter statement, 
however, is not required if the data is preceded by a DD * statement. 

The Delimiter Statement Format 

1* conunents 

The delimiter statement consists of the characters /* in columns 1 and 2 
and the comments field. 

Rules for Coding 

Code the delimiter statement in the following order: 

1. Code /* in columns 1 and 2. 

2. Code any desired comments. 

3. The comments cannot be continued. 

Example of the Delimiter Statement 

1. //JOB54 
//STEPA 
//DD1 

JOB,'C BROWN',MSGLEVEL=(2,O) 
EXEC PGM=SERS 
DD * 

data 

/* END OF DATA FOR THIS STEP 

Section VII: The Delimiter Statement 249 

Delimiter 





Section VIII: The Null Statement 

The null statement can be placed at the end of a job's control 
sta tements and data or at the end of all the statements in an input 
stream. The null statement tells the system that the job just read 
should be placed on the queue of jobs ready for processing. If there 
are any control statements or data between a null statement and the next 
JOB statement. these are flushed by the system. 

If you do not follow your job's control statements and data with a 
null statement. the system places your job on the queue when it 
encounters another JOB statement in the input stream. If your job is 
the "last job in the input stream and a null statement does not follow 
it~ the system recognizes that this is the last job in the input stream 
and it places your job on the queue. 

I If a null statement follows a control statement that is being 
continued, the system treats the null statement as a blank comment field 
and assumes that the control statement contains no other operands,. 

The Null Statement Format 

F 
The null statement consists only of the characters // in columns 1 and 
2. The remainder of the statement must be blank. 

Example of the Null Statement 

1. //MYJB 
//STEPl 
//STEP2 
//DDl 
//DD2 

JOB 
EXEC 
EXEC 
DD 
DD 

data 

/* 
// 

, 'c BROWN',MSGLEVEL= (1,1) 
PROC=FIELD 
PGM=XTRA 
UNIT=2400 

* 

Section VIII: The Null Statement 251 

Null 





Section IX: The PEND Statement 

The PEND statement is used to mark the end of an in-stream proce~ure. 
Th,. name field of the PEND statement can contain a name·. If comments 
.r:e to be used:. a blank must separate the operation field from the 
~t f.ield. The PEND statement may not be continued. 

Th. PEND Statement Format 

~/name PEND comments 

The PEND statement consists of the characters // in column 1 and 2 and 
four fields -- the name field. the operation (PEND) field,. and the 
can:ments field. 

Rules for Coding 

'Cod-e the PEND statement in the following order: 

1. Code // in columns 1 and 2. 

a. FolloW // with a 1- to 8-character name or one or more blanks. 

3. I f a name is coded,. 
Follow the name with one or more blanks. 

fl. Code PEND. 

5. Follow PEND with one or more blanks. 

6. Code any desired comments following the blank or blanks. 

A PEND statement cannot be continued. 

section IX: The Pend statement 253 

PEND 



Examples of the PEND Statement 

1.//PROCEND1 PEND THIS ,STATEMENT IS REQUIRED FOR INSTREAM 

This PEND statement contains a comment. 

2.// PEND 

A PEND statement can contain only the coded operation field preceded by 
// and one or more blanks and followed by blanks. 

254 JCL Reference (Release 20.1) 



Section X: The PROC Statement 

The PROC statement is the first control statement in an in-stream 
procedure. Optionally. the PROC statement can also be the first control 
statement in a cataloged procedure. If a PROC statement is included in 
a cataloged procedure. it is used to assign default values for symbolic 
parameters in the procedure.. In an in-stream procedure. the PROC 
statement is used to mark the beginning of the procedure and can be used 
to assign default values to symbolic parameter in the procedure,. A 
default value appearing on a PROC statement can be overridden by 
assigning a value to the same symbolic parameter on the EXEC statement 
that calls the procedure. 

The PROC Statement Format 

~/name PROC operands comments 

The PROC statement consists of the characters // in c?lumns 1 and 2 anq 
four fields -- the name field~ the operation (PROC) f1eld. the operand 
field. and the comments field. 

Rules for Coding 

Code the PROC statement in the following order: 

1,. Code / / in columns 1 and 2. 

2. Follow // with a 1- to 8-character name or one or more blanks. 
A name is required for in-stream procedures. 

3. If a name is coded,. follow the name with one or more blanks. 

4. Code PROC. 

5. Follow PROCwith one or more blanks. 

section X: The PROC statement 255 

PROC 



6. Code the symbolic parameters and their default values following the 
blank or blanks. Separate each symbolic parameter and its default 
value with a comma·. In a cataloged procedure, this field is not 
optional. In an in-stream procedure, this field is optional; if no 
operands are included" comments may not be coded. 

1. Follow the operands with one or more blanks. 

8. Code any desired comments following the blank or blanks. 

9. The PROC statement can be continued onto another statement. 

If PROC statement is to be included in a cataloged procedure" it must 
appear as the first control statement. For an in-stream procedure., the 
PROC statement is required; it must appear as the first control 
statement of the in-stream procedure. 

Assigning a Value on a PROe Statement to a Symbolic Parameter 

To assign a value on a PROC statement to a symbolic parameter, code: 

symbolic parameter=value 

omit the ampersand that precedes the symbolic parameter in the 
procedure. 

You can also nullify a symbolic parameter on th~ PROC statement. 
Code: 

symbolic parameter= 

Omit the ampersand that precedes the symbolic parameter and do not 
follow the equal sign with a value. 

There are some things you should keep in mind as you assign values to 
symbolic parameters: 

1. The value you assign can be any length, but it cannot be continued 
onto another statement .• 

2,. If the value contains special characters, enclose the value in 
apostrophes (the enclosing apostrophes are not considered part of 
the value). If the special characters include apostrophes, each 
must be shown as two consecutive apostrophes. 

256 JCL Reference (Release 20.1) 



3. If you assign more than one value to a symbolic parameter on the 
PROC statement, the first value encountered is assigned. 

4. If the symbolic parameter is concatenated with some other 
information (e. g. " iJOBNO. 321), this information and the value you 
assign to the symbolic parameter cannot exceed a combined total of 
120 characters. 

Examples of the PROCStatement 

1. //DEF 
//NOTIFY 
//DD1 
// 
//DD2 
// 

PROC 
EXEC 
DD 

DD 

STATUS=OLD,LIBRARY=SYSLIB,NUMBER=777777 
PGM=ACCUM 
DSNAME=MGMT,DISP=(iSTATUS,KEEP),UNIT=2400, 
VOLUME=SER=888888 
DSNAME=&LIBRARY,DISP=(OLD,KEEP),UNIT=2311, 
VOLUME=SER=iNUMBER 

X 

X 

Three symbolic parameters are defined in this cataloged procedure: 
iSTATUS, &LIBRARY, and & NUMBER. Values are assigned to the symbolic 
parameters on the PROC statement. These values are used when the 
procedure is called and values are not assigned to the symbolic 
parameters by the programmer. 

2. //CARDS PROC 

This PROC statement can be used to mark the beginning of an 
in-stream procedure named CARDS. 

section X: The PROC statement 257 

PRoe 





Section XI: Appendixes 

Appendixes 

section XI: Appendixes 259 





Appendix A: Cataloged and In-stream Procedures 

A cataloged procedure is a set of job control statements that has been 
assigned a name and placed in a partitioned data set known as the 
procedure library. (The IBM-supplied procedure library is named 
SYS1.PROCLIB; at your installation, there may be additional procedure 
libraries, which would have different names.) An in-stream procedure is 
a set of job control statements in the form of cards that have been 
placed in the input stream of a card reader. An in-stream procedure can 
be executed any number of times during the job in which it appears. 
Both cataloged and in-stream procedures can consist of one or more 
steps; each step is called a procedure step_ Each procedure step 
consists of an EXEC sta.tement and DD statements. The EXEC statement 
identifies to the system what program is to-be executed. The DD 
statements define the data sets to be used by the program. 

You can use a cataloged procedure by coding the procedure name on an 
EXEC statement. You can use an in-stream procedure by coding the 
procedure name that is on the PROC statement on an EXEC statement. With 
both cataloged and in-stream procedures, you can follow this EXEC 
statement with DD statements that modify the procedure for the duration 
of the job step,. 

Appendix A consists of two chapters. The first chapter "Using 
Cataloged and In-stream Procedures" describes how to call a procedure" 
how to assign values to symbolic parameters, how to override parameters 
on the EXEC and DD statement" and how to add DD statements to a 
procedure. The second chapter "Writing Procedures: Cataloged and 
In-stream" describes the makeup of a procedure, how to use symbolic 
parameters, how to place a set of job control statements in the 
procedure library, and how to modify a procedure. 

Appendix A: Cataloged and In-stream Procedures 261 

Appendix A 





Using Cataloged and In-stream Procedures 

How to Call a Cataloged Procedure 

To use a cataloged procedure, submit a JOB statement followed by an EXEC 
statement. On the EXEC statement you identify the cataloged procedure 
in one of two ways: 

1. Code, as the first operand, the name assigned to the procedure; or 
2. Code PROC= followed by the name assigned to the procedure as the 

first operand. 

When you call a procedure, the system finds the control statements in 
the procedure library and then executes the programs-identified on the 
EXEC statements in the procedure. 

Besides identifying the procedure on the EXEC statement, you can 
assign values to symbolic parameters and override parameters that are 
coded on the EXEC statements contained in the procedure. You follow the 
EXEC statement with DD statements when you want toover~ide DD 
statements in the procedure or add DD statements to the procedure. 

When a cataloged procedure is written as part of the system output 
listing (i.e., MSGLEVEL=(1"O), MSGLEVEL=(1,1), or MSGLEVEL=1 is coded on 
the JOB statement) " the procedure statements can be easily identified,. 
An XX app~ars in columns 1 and 2 of a procedure statement that you did 
~ot override; X/ appears in columns 1 and 2 of a procedure statement 
that you did override; xx* appears in columns 1 through 3 of a procedure 
statement, other than a comment statement. that the system considered to 
contain only comments; and *** appears in columns 1 through 3 of a 
comment statement. In addition, if the procedure contains symbolic 
parameters, the output listing will show the symbolic parameters and the 
values assigned to them. 

How to Call an In-stream Procedure 

To use an in-stream procedure, include the procedure, beginning with a 
PROC statement and ending with a PEND statement, with the job control 
language for your job. The in-stream procedure can appear immediately 
following the JOB statement, the JOBLIB DD statement,. or the SYSCHK DD 
statement. The in-stream procedure cannot appear before the JOB 
statement or after the EXEC statement that calls it. An in-stream 
procedure can appear after a SYSIN DD * statement; however, this is not 
advisable because the SYSIN DD * statement causes the input reader to 
obtain direct access space for a system input data set. 

To call the procedure, you identify the in-stream procedure on an 
EXEC statement in one of two ways: 

1. Code, as the first operand, the name on the PROC statement of the 
procedure; or 

2. Code PROe: followed by the name on the PROC statement of the 
procedure .• 

When you call an in-stream procedure, the system finds the control 
statements that have been written on a direct access device and then 
executes the programs identified on the EXEC statements of the 
procedure. 

Appendix A: Cataloged and In-stream Procedures -- Using Procedures 263 

Appendix A 



Besides identifying the procedure on the EXEC statement, you can 
assign values to symbolic parameters and override parameters that are 
coded on the EXEC statements contained in the procedure·. You follow the 
EXEC statement with DD statements when you want to override DD 
statements in the procedure or add DD statements to the procedure. 

When an in-stream procedure is written as part of the system output 
listing <i.e., MSGLEVEL=(l,O), MSGLEVEL=(l,l), MSGLEVEL=l, or MSGLEVEL=2 
is coded on the JOB statement), the procedure statements can be easily 
identified. An ++ appears in columns 1 and 2 of a procedure statement 
that you did not override; +// appears in columns 1 and 2 of a procedure 
statement that you did override; ++* appears in column 1 through 3 of a 
procedure statement. other than a comment statement, that the system 
considered to contain only comments; and *** appears in columns 1 
through 3 of a comment statement. In addition, if the procedure 
contains symbolic parameters and you assign values to these on the EXEC 
statement that calls the procedure, the output listing will show the 
symbolic parameters and the values assigned to them. 

Assigning Values to Symbolic Parameters 

The cataloged or in-stream procedure you call may contain symbolic 
parameters. A symbolic parameter is characterized by a name preceded by 
an ampersand (&) and appears in the operand field of a cataloged or 
in-stream procedure statement or a DD statement used to override a 00 
statement in the procedure. A symbolic parameter stands as a symbol for 
a parameter. a subparameter. or a value. symbolic parameters are used 
so that the procedure can be modified easily when it is called by a. job 
step. 

The following are examples of symbolic parameters: 

//STEP1 EXEC PGM=COB,PARM='P1,&P2,P3' 

//DD1 DD OSNAME=FIX,UNIT=&OEVICE,SPACE=(CYL,(&SPACE,10» 

//002 OD DSNAME=CHAG,UNIT=2400,OCB=BLKSIZE=&LENGTH 

Symbolic parameters must either be assigned values or nullified 
before the procedure is executed. There are two ways that a symbolic 
parameter can be assigned a value: 

1. You assign a value to the symbolic parameter on the EXEC statement 
that calls the procedure. 

2. The PROC statement" which can appear as the first statement in a 
cataloged procedure and must appear as the first statement in an 
in-stream procedure, assigns a default value to the symbolic 
parameter. 

Any default value assigned to a symbolic parameter on the PROC statement 
is overridden when you assign a value to the same symbolic parameter on 
the EXEC statement that calls the procedure. 

If cataloged procedures contain symbolic parameters, the installation 
should provide you with a list of the symbolic parameters used, what 
meaning is associated with each symbolic parameter, and what default 
value has been assigned to each of the symbolic parameters on the PROC 
statement. (The PROC statement is optional for catalog procedures; 
therefore, there may be no default values assigned to the symbolic 
parameters used in a catalog procedure.) You need this information to 
determine what the symbolic parameter represents and to decide whether 
to use the default value or to assign a value to the symbolic parameter 
on the EXEC statement that calls the procedure. 

264 JCL Reference (Release 20.1) 



TO assign a value to a symbolic parameter, you code on the EXEC 
statement that calls the procedure: 

symbolic parameter=value 

Omit the ampersand that precedes the symbolic parameter. For example, 
if the symbolic parameter &NUMBER appears on a DD statement in the 
procedure., code NUMBER=value on the EXEC statement that calls the 
procedure. Any value you assign to a symbolic parameter is in effect 
only during the current execution of the procedure. 

There are some things you should keep in mind as you assign values to 
symbolic parameters: 

1. The value you assign can be any length, but it cannot be continued 
onto another statement. 

2. If the value contains special characters, enclose the value in 
apostrophes (the enclosing apostrophes are not considered part of 
the value). If the special characters include apostrophes, each 
must be shown as two consecutive apostrophes. 

3. If " on the EXEC statement, you ass ign more than one value to a 
symbolic parameter, the first value encountered is used. 

4. If the symbolic parameter is concatenated with some other 
information (e.g., &JOBNO.321). this information and the value you 
assign to the symbolic parameter cannot exceed a combined total of 
120 characters. 

5. If the symbolic parameter is a positional parameter followed by 
other parameters in the statement, it should be delimited in the 
procedure by a per iod instead of a comma. Then, if the parameter 
is nullified on the PROC statement or on an EXEC statement calling 
the procedure. the statement containing the symbolic parameter will 
not begin with a comma. The system recognizes the period as a 
delimiter; the period does not appear in the statement when you 
nullify or assign a value to the symbolic parameter. When you do 
assign a value to a symbolic parameter that is a positional 
parameter, you should follow the value with a comma; the value must 
then be enclosed in apostrophes since a comma is a special 
character. 

For example, in the following DD statement contained in a cataloged 
procedure named EXAMPLE. &POSPARM represents a positional 
parameter. 

//DEFINE DD &POSPARM.DSN=ATLAS,DISP=OLD 

To replace the symbolic parameter &POSPARM with the parameter 
DUMMY, you would code on the EXEC statement calling the procedure: 

/ /OOTHIS EXEC EXAMPLE. POSPARM=' DUMMY. • 

When the cataloged procedure named EXAMPLE is executed, the DD 
statement named DEFINE appears as: 

//DEFINE DD DUMMY., DSN=ATLAS,DISP=OLD 

Note: Do not confuse positional parameters with positional 
subparameters. For a list of the positional parameters you can 
code on the DD statement, see "positional and Keyword Parameters" 
in the section on the DD statement. 

Appendix A: Cataloged and In-stream Procedures -- using Procedures 265 

Appendix A 



NULLIFYING A SYMBOLIC PARAMETER 

Besides assigning values to symbolic parameters, you can nullify a 
symbolic parameter, i. e., tell the system to ignore the symbolic 
parameter. 

To nullify a symbolic parameter, code on the EXEC statement that 
calls the procedure: 

symbolic parameter= 

omit the ampersand that precedes the symbolic parameter in the procedure 
and do not follow the equal sign with a value. 

For example, if a 00 statement in a procedure named TIMES is 

//008 DD UNIT=1403,UCS=&UCSINFO 

and you want to nullify the symbolic parameter &UCSINFO., you would code: 
'. 

//CALL EXEC TIMES,UCSINFO= 

266 JCL Reference (Release 20.1) 



Example of Assigning Values to Symbolic Parameters 

1. The following are the first four statements of a cataloged 
procedure named ASSEMBLE that contains symbolic parameters. The 
PROC statement assigns a default to the symbolic parameter &OBJECT 
and nullifies the symbolic parameter &LIST. Notice that the 
symbolic parameter &DEPT is not assigned a value on the PROC 
statement; therefore" the job step that calls this procedure must 
assign a value to &DEPT. 

//DEF PROC 
//ASM EXEC 
// 
//SYSLIB DD 
// DD 

OBJECT=NODECK.,LIST= 
PGM=IEUASM., PARM= ( , LINECNl'=5 O· , 
&LIST.LIST, &OBJECT) 
DSNAME=SYS1.MACLIB,DISP=OLD 
DSNAME=LIBRARY.&DEPT.MACS,DISP=OLD 

When you call this procedure, you can assign values to the symbolic 
parameters by coding: 

/ /STEP3 EXEC ASS:e;MBLE., DEPT=D82, OBJECT=DECK 

x 

The value assigned to &OBJECT in this EXEC statement overrides the value 
assigned to &OBJECT in the PROC statement. Since no value is assigned 
to&LIST in this EXEC statement, LIST is nullified -- because that is 
the default specified in the PROC statement. 

While the procedure is being executed, the first four statements of 
this procedure would appear as shown' below. 

//DEF PROC 
//ASM EXEC 
// 
//SYSLIB DD 
// DD 

OBJECT=NODECK,LIST= 
PGM=IEUASM,PARM=('LINECNT=50', 
LIST, DECK) 
DSNAME=SYS1. MACLIB., DISP=OLD 
DSNAME=LIBRARY.D82MACS,DISP=OLD 

The above example applies to in-stream procedures as well as cataloged 
procedures. However, you must refer to the name on the PROC statement 
of the in-stream procedure when calling the procedure. 

2. The following is an in-stream procedure that contains symbolic 
parameters. The PROC statement marks the beginning of the 
in-stream procedure and in this example assigns defaults to 
symbolic parameters &0., &U, iV, and is. The procedure is named 
INSTREAM. 

//INSTREAM 
// 
//IN1 
//SYSPRINl' 
//SYSUT1 
//SYSLIN 
//SYSLMOD 
// 

PROC 

EXEC 
DD 
DD 
DD 
DD 
PEND 

D=' (NEW,CATLG) ',U=2311,V='SER=6665S', 
S='(TRK,(l,l,l»' 
PGM=IEWL,PARM='XREF,LIST,NCAL' 
SYSOUT=A 
DSNAME=UTC,DISP=OLD,UNIT=2311,VOLUME=SER=666S1 
DSNAME=UTE,DISP=OLD,UNIT=2311,VOLUME=SER=66652 
DSNAME=&&LOAD,DISP=&D,UNIT=&U,VOLUME=&V,SPACE=&S 

X 

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 267 

Appendix A 



When you call this procedure, you must code the name on the PROC 
statement on the EXEC statement. You'can assign values to the symbolic 
parameters by coding: 

//CALL EXEC I NSTREAM, 0= , (NEW"PASS) " V='SER=66653' 

The values assigned to iDand iV in this EXEC statement override the 
values assigned to these symbolic parameters in the PROC statement. 

since no value is assigned to iU OR is, the defaults specified on the 
PROC statement are used when the procedure is executed. 

While the procedure is being executed, it would appear as shown 
below. 

//1 NSTREAM 
// 
//1Nl 
//SYSPR1NT 
//SYSUTl 
//SYSL1N 
//SYSLMOD 
// 

PROC 

EXEC 
DO 
DD 
DO 
DD 

0=' (NEW,CATLG) • , U=2311, V=' SER=66655' " 
S='(TRK,(l,l,l» 
PGM=1EWL,PARM='XREF,LIST, NCAL, 
SYSOUT=A 
DSNAME=UTC,D1SP=OLD,UN1T=2311,VOLUME=SER=66651 
DSNAME=UTE,D1SP=OLD , UN1T=2311,VOLUME=SER=66652 
DSNAME=iiLOAD, D1SP=(NEW,PASS) I UN1T=2311, 
VOLUME=SER=66653,SPACE=(TRK,(1,1 , 1» 

The PEND statement is printed but is not executed. 

3. The following are the first four statements of a cataloged 
procedure named TEST that contains symbolic parameters. The PROC 
statement nullifies the symbolic parameter &DUMl and assigns a 
default value to the symbolic parameter iDUM2. 

//TEST 
//STEPl 
//DOl 
//DD2 

PROC 
EXEC 
DD 
DO 

DUM1=,DUM2='OUMMY, • 
PGM=1EFBR14 
&DUMl. DSN=ABLE, D1SP=OLD 
&DUM2. DSN=BAKER, D1SP=OLD 

&OUMl and iOUM2 are positional parameters. They are delimited by a 
period so that, if they are nullified, the DD statement does not begin 
with a comma. The system recognizes the period as a delimiter; the 
period does not appear in the statement when you nullify or assign a 
value to the symbolic parameter. The value assigned to OUM2 in the PROC 
statement is followed by a comma so that a comma will delimit the value 
when it appears in the statement in the procedure. The value must be 
enclosed in apostrophes because the comma is a special character. 

When you call this procedure, you can reverse the default values on the 
PROC statement so that the OD statement named DDl defines a dummy data 
set and the DD statement named DD2 defines an existing data set: 

//STEPUP EXEC TEST, DUM1=' DUMMY,' I DUM2= 

The value assigned to &DUMl on the EXEC statement overrides the 
nullification of &DUMl on the PRoe statement. &DUM2 is nullified on 
this EXEC statement, so the value assigned to &DUM2 on the PROC 
statement is ignored. 

While this procedure is being executed, the first four statements will 
appear as shown below: 

//TEST 
//STEPl 
//DDl 
//DD2 

PROC 
EXEC 
DD 
DD 

DUM1=,DUM2='OUMMY, • 
PGM=IEFBR14 
DUMMY" DSN=ABLE, DISP=OLD 
DSN=BAKER,DISP=OLD 

268 JCL Reference (Release 20.1) 



Overriding, Adding, and Nulllfying Parameters on an EXEC Statement 

You can override, add ll or nullify parameters coded on EXEC statements 
contained in a cataloged or in-stream procedure. You make these changes 

Ion the EXEC statement that calls the procedure. You should override 
parameters only when you want to change their. values. Do not override 
parameters to correct syntactical errors in the procedure. You cannot 
change the PGM parameter. The changes you make are in effect during the 
current execution of the procedure. 

OVERRIDING EXEC STATEMENT PARAMETERS 

To override an EXEC statement parameter in a procedure. identify on the 
EXEC statement that calls the procedure the parameter you are 
overriding:, the name of the EXEC statement on which the parameter 
appears, and the change to be made. The format required to override a 
parameter is: 

parameter.procstepname=change 

For example, if one of the EXEC statements in the procedure named FILL 
is: 

//STEP3 EXEC PGM=DEF.REGION=100K 

and you want to change REGION=100K to REGION=80K., you would code: 

/ /CALL EXEC FILL., REGION. STEP3=80K 

You can change more than one EXEC statement parameter in the 
procedure. For example., if one of the EXEC statements in the procedure 
name JKW is: 

//STEP2 EXEC PGM=OUTwTIME= (2., 30).,REGION=120K 

and you want to change TIME=(2,30) to TIME=4 and REGION=120K to 
REGION=200K., you would code: 

//STEP3 EXEC JKW,TIME.STEP2=4,REGION.STEP2=200K 

If you want to change different parameters that appear on different 
EXEC statements in the procedure., you must code all overriding 
parameters for one procedure step before those for the next step. For 
example, if the first three EXEC statements in a procedure named DART 
are: 

/ /STEP1 EXEC PGM=JCTSB., PARM:' *14863", REGION=100K 
//STEP2 EXEC PGM=JCTRC,REGION=80K 
/ /STEP3 EXEC PGM=JCTQD. COND= (8, LT) .,TIME=3 

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 269 

Appendix A 



You want to make the following modifications: 

1. Override the PARM parameter on the first EXEC statement,. 
2. Override the REGION parameter on the first EXEC statement. 
3. Override the REGION parameter on the second EXEC statement,. 
4. Override the TIME parameter on the third EXEC statement. 

The EXEC statement that calls the procedure would appear as: 

//STEPC 

// 

// 

EXEC DART,PARM.STEP1='*86348'. 

REGION.STEP1=120K,REGION.STEP2=100K, 

TIME.STEP3=(4,30) 

X 

X 

You can code an EXEC statement parameter and omit the term 
"procstepname .. " When you do this, the procedure is modified as follows: 

• If the PARM parameter is coded, it applies only to the first 
procedure step. If a PARM parameter appears in a later EXEC 
statement, it is nullified • 

• ;rf the TIME parameter is coded, it applies to the total procedure. 
If the TIME parameter appears on any of the EXEC statements in the 
procedure" it is nullified. 

• If any other parameter is coded, it applies to every step in the 
procedure,. If the parameter appears on an EXEC statement, it is 
overridden; if the parameter does not appear on an EXEC statement, 
it is added,. 

For example, assume the EXEC statements in a procedure named RYIN 
are: 

//STEPl 
//STEP2 
//STEP3 

EXEC 
EXEC 
EXEC 

PGM=SECT~PARM=140947,REGION=100K 
PGM=PARA.PARM=105600,COND=EVEN 
PGM=SENT"PARM=L1644.REGION=80K 

You want to make the following modifications to the procedure: 

1,. Override the PARM parameter in the first procedure step, and 
nullify all other PARM parameters in the procedure. 

2,. Assign the same region size to all steps in the procedure,. 

The EXEC statement that calls the procedure would appear as: 

//SPAA EXEC RYIN,PARM=L1644,REGION=136K 

While the procedure named RYIN is being executed, these three EXEC 
statements would appear as: 

//STEPl 
//STEP2 
//STEP3 

EXEC 
EXEC 
EXEC 

PGM=SECT" PARM=L1644" REGION=136K 
PGM=PARA,COND=EVEN,REGION=136K 
PGM=SENT" REGION=136K 

270 JCL Reference (Release '20.1) 



ADDING EXEC STATEMENT PARAMETERS 

To add a parameter to an EXEC statement in the procedure. identify on 
the EXEC statement that calls the procedure the parameter you are 
adding:, the name of the EXEC statement to which you want to add the 
parameter, and the value you are assigning to the parameter. The format 
required to add a parameter is: 

parameter.procstepname=value 

Parameters you are adding and overriding for a step must be coded before 
those parameters you are adding and overriding for the next step. 

For example, if the first two EXEC statements of a procedure named 
GLEAN are: 

//STEPl 
//STEP2 

EXEC PGM=FAC,COND=(8,LT) 
EXEC PGM=UP.PARM=377685 

You want to make the following modifications to the procedure: 

1. Override the COND parameter on the first EXEC statement. 
2. Add the ROLL parameter to the first EXEC statement. 
3. Add the REGION parameter to the second EXEC statement. 

The EXEC statement that calls the procedure would appear as: 

//STPA EXEC GLEAN,COND.STEP1=(12,LT), 

// ROLL.STEP1=(NO,NO),REGION.STEP2=88K 

NULLIFYING EXEC STATEMENT PARAMETERS 

To nullify a parameter on an EXEC statement in the procedure" identify, 
on the EXEC statement that calls the procedure. the parameter you want 
to nullify and the name of the EXEC statement on which the parameter 
appears. The format required to nullify a parameter is: 

parameter.procstepname= 

Parameters that you are nullifying, overriding. and adding to a step 
must be coded before those for the next step. 

For example" if the first two EXEC statements of a procedure named 
GINN are: 

/ /STEP 1 EXEC 
//STEP2 EXEC 

PGM=INV"PARM=' 146, 899' "RD=R 
PGM=DRl', PARM=XYA34" COND= (80, GT) 

You want to make the following modifications to the procedure: 

1. Nullify the PARM parameter on the first EXEC ~tatement .. 
2. Add the COND parameter to the first EXEC statement. 
3. Override the COND parameter on the second EXEC statement. 

The EXEC statement that calls the procedure would appear as: 

/ /STEPY EXEC GINR, PARM. STEP1=" COND. STEP 1= (25" EQ) " 

// COND.STEP2= (80,GE) 

X 

X 

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 271 

Appendix A 



Example of Overriding, Adding, and Nullifying Parameters on an EXEC 
Statement 

1,. You want to call the following cataloged procedure named ESEAP: 

//STEPA 
//DDA 
//DDB 
//STEPB 
//DDC 
//DDD 
//DDE 

EXEC 
DD 
DD 
EXEC 
DD 
DD 
DD 

PGM= FLIER, P ARM= 712119 O. ACCT= ( 48 OS" UNASG N) 
DSNAME=LIBRARY.GROUP67,DISP=OLD 
DSNAME=STAND. FIVE., DISP=OLD 
PGM=VERSE,DPRTY= (11,,13) ,PARM=780684.RD=R 
UNIT=2311., SPACE= (TRK., (10,2» 
DSNAME=COL,DISP=OLD 
DDNAME=IN 

you want to make the following modifications to the procedure: 

1. Add the REGION parameter to both EXEC statements. 
2. Add the DPRTY parameter to the first EXEC statement. 
3. OVerride the ACeI' parameter on the first EXEC statement .• 
4. Nullify the RD parameter on the second EXEC statement,. 
5. Add the COND parameter to the second EXEC statement. 

The EXEC statement that calls the procedure would appear as: 

//MINC EXEC ESEAP,REGION=86K,DPRTY .STEPA= (11.,13) , x 

// ACCT. STEPA= (4805, 7554)., RD.STEPB=" COND.STEPB= (60.,LE) 

The two EXEC statements in the procedure would appear as shown below 
while the procedure is being executed. These modifications do not 
appear on an output listing. 

//STEPA EXEC 
// 
//STEPB EXEC 

PGM=FLIER,PARM=7121190.,ACCT= (4805,7554), 
REGION=86K,DPRTY=(11,13) 
PGM=VERSE,DPRTY= (11,13) ,REGION=86K,COND= (60,LE) 

2. You want to call the following in-stream procedure named INLINE: 

X 

//INLINE 
//STEPl 
//DDl 
//DD2 
//STEP2 
//DD3 
//DD4 

PROC 
EXEC 
DD 
DD 
EXEC 
DD 
DD 
PEND 

PGM=COMP,ACCT=(7037,2361).REGION=86K 
DSNAME=INFORM.,DISP=OLD,UNIT=2311, VOLUME=SER=75250 
DSNAME=LCJWC,DISP=OLD,UNIT=2311,VOLUME=SER=76250 
PGM=CHECKS,PARM=212334 ,COND= (SO.,LE) , ACCT= (2001, 0539) 
DSNAME=PAY,DISP=OLD,UNIT=2311,VOLUME=SER=MEMORY 
DSNAME=INCREAS,DISP=OLD,UNIT=2311,VOLUME=SER=33333 

// 

you want to make the following modifications to the procedure: 

1. Add DPRTY parameter to both EXEC statements. 

2. Nullify the REGION parameter on the first EXEC statement. 

3. Override the ACCT parameter on the second EXEC statement. 

The EXEC statement that calls the procedure would appear as: 

//CALLER EXEC INLINE,DPRTY=(11,13),REGION.STEP1=,ACCT.STEP2=(4710, 

// 5390) 

272 JCL Reference (Release 20.1) 



The two EXEC statements in the procedure would appear as shown below 
while the procedure is being executed.. These modifications do not 
appear on an output listing. 

//STEPl EXEC PGM=COMP, ACCT= (7037, 2361), DPRTY=( 11,13) 

//STEP2 EXEC PGM=CHECK,PARM=212334,COND=(SO,LE),DPRTY=(11,13) 

// ACCT=(4710,5390) 

Overriding, Adding, and Nullifying Parameters on a DD Statement 

You can override, add, or nullify parameters coded on a DD statement 
contained in a cataloged procedure. You make these changes at the time 
the procedure is called; these changes are in effect during the current 
execution of the procedure. Use one DD statement to override, add, and 
nullify parameters on the same DD statement in the procedure. 

OVERRIDING DD STATEMENT PARAMETERS 

To override a parameter on a DD statement in the procedure, you must 
include a DD statement following the EXEC statement that calls the 
procedure. The ddname of this DD statement must identify the DD 
statement that contains the parameter you are overriding and the 
procedure step in which the DD statement appears. Code. in the operand 
field of this DD statement, the parameter you are overriding and the 
change; or code a mutually exclusive parameter that is to take the place 
of a parameter. The format required for a DD statement following the 
EXEC statement is: 

//procstepname.ddname DD parameter=change 
or 

//procstepname.ddname DD mutually exclusive parameter=value 

For example, if one of the DD statements in a procedure step named 
STEP4 is: 

//DD2 DO DSNAME=ABIN,DISP=OLD,VOLUME=SER=54896,UNIT=2400 

and you want to change UNIT=2400 to UNIT=180, you would code: 

//STEP4.DD2 DD UNIT=180 

When you code a mutually exclusive parameter on an overriding DD 
statement, the system replaces the parameter on the specified DD 
statement with the mutually exclusive parameter.. For example., the 
parameters SYSOUT and DISP are mutually exclusive parameters,. If one of 
the DD statements in a procedure step named PRINT is: 

//DD8 DD SYSOUT=C 

and you do not want the data set printed, you could code: 

//PRINT.DD8 DD DUMMY,DISP=(NEW,DELETE) 

You have replaced the SYSOUT parameter with the DISP parameter and added 
the DUMMY parameter. (The DUMMY parameter causes this DD statement to 
define a dummy data set.) 

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 273 

,Appendix A 



You can change more than one parameter that appears on a DD statement 
in the procedure. For example" if one of the DO statements in a 
procedure step named STEPS is: 

/ /DDX DD OSNAME=FIES" DISP=OLn, UNIT=2400- 2" VOLUME=REF=*. STEP2. ODC 

and you want this DD statement to define a new data set" you would code: 

//STEPS.DDX DD DSNAME=RVA1,DISP=(NEW,KEEP) 

If you want to change parameters that appear on different DD 
statements in the same procedure step" the overriding DD statements must 
be in the same order in the input stream as the corresponding DD 
statements in the procedure step. For example, if the first step of a 
procedure named AJG is: 

!'/STEPl 'EXEC 
//DDl DD 
// 
//DD2 DD 
//DD3 DD 

PGM=MGR,REGION=80K 
DSNAME=LONE,DISP=(NEW,DELETE), 
UNIT=2400,VOLUME=SER=S68998 
UNIT=TAPE 
UNIT=2311,DISP=(.PASS),SPACE=(TRK.,(20,2» 

You want to make the following modifications to the procedure: 

1. Change the UNIT parameter on the first DD statement. 
2. Change the VOLUME parameter on the first DD statement,. 
3'e Change the SPACE parameter on the third DD statement. 

The statements in the input stream would appear as: 

//CATP 
//STEP1.DDl 
//STEP1.DD3 

EXEC 
DD 
DD 

AJG 
UNIT=2400-3,VOLUME=SER=WORK18 
SPACE=(CYL,{4,l» 

If you want to change parameters that appear in different procedure 
steps in the cataloged procedure you are calling" the overriding DD 
statements must be in the same order as are the procedure steps. 

x 

The DCB parameter: If you want to change some of the keyword 
subparameters in the DCB parameter, you need not recode the entire DCB 
parameter. Instead, code only those subparameters that you are changing 
and any mutually exclusive subparameters that are to replace particular 
subparameters. For example" if one of the DD statements in a procedure 
step named NED is: 

/ /DD3 DD DSNAME=PER" DISP= (, KEEP), UNIT=2311, SPACE=(TRK, (88. S) ), 
/ / DCB= (BUFNO= 1" BLKS IZE= 8 0, RECFM=F • BUFL= 8 0) 

and you want to change BLKSIZE=80 to BLKSIZE=320 and BUFL=80 to 
BUFL=320, you would code: 

//NED.DD3 DD DCB= (BLKSIZE=320, BUFL=320) 

The DCB subparameters BUFNO and RECFM remain unchanged. 

X 

When you are overriding a procedure DD statement that contains a DCB 
parameter and the overriding DD statement uses a backward reference to 
copy the DCB information on an earlier DD statement, the DCB information 
on the procedure DD statement overrides any of the corresponding 

274 JCL Reference (Release 20 .• 1) 



subparameters that are copied. For example. if one of the DO statements 
in a step'named NED of a procedure named CATROC is: 

//DDS 
// 

DD DSNAME=PER" UNIT=2311.SPACE= (TRK. (88, S», 
DCB= (BLKSIZE= 64 0, RECFM=FB') 

and you have in your input stream: 

//STPl EXEC 
//DDl DD 
// 
//STP2 EXEC 
//NED.DDS DD 

PGM=A 
DSN=AIR" UNIT=2311, SPACE= (TRK, (10,1) ) " 
DCB= (BLKSI ZE=32 0, R,ECFM=FBA'I BUFL=320) 
CATROC 
DCB=*.STP1.DDl , 

The DD statement DDS in cataloged procedure would appear as shown below 
while the procedure is being executed. This modification does not 
appear on output listing. 

//DDS 
// 

DD DSNAME=PER,UNIT=2311.SPACE=(TRK.(88,S». 
DCa=(BLKSIZE=640,RECFM=FB,BUFL=320) 

x 

x 

x 

If you want to override a DD statement that contains a dsname 
positional subparameter in the DCB parameter, you must recode the dsname 
sunparameter" even though you do not want to change it,. For example" if 
one of the OD statements in a procedure step named BANK is: 

//DDS 
// 

DD DSNAME=SAVE,DISP=(NEW,KEEP),UNIT=2311, 
SPACE= (CYL" (12,2» " DCB= (ACCNT" BUFNO=S. KEYLEN=2) 

and you want to change BUFNO=S to BUFNO=3, you would code: 

//BANK.DDS DD DCB=(ACCNT,BUFNO=3) 

Both the dsname ACCNT and KEY LEN subparameters remain unchanged. You 
must code ACCNT on the overriding DD statement. 

ADDING OD STATEMENT PARAMETERS 

x 

To add a parameter to a DD statement in the procedure, you must include 
a DD statement following the EXEC statement that calls the procedure. 
The ddname of this DD statement must identify the DD statement to which 
you are adding a parameter and the procedure step in which the DD 
statement appears. Code, in the operand field of this DD statement, the 
parameter you are adding. The format required for a DD statement 
following the EXEC statement is: 

/ /procstepname, • .ddname DD parameter=value 

For example, if one of the DD statements in a procedure' step named 
STPTWO is: 

/ /DDM DD DSNAME=TYPE. DISP= (, KEEP) " UNIT=24 00 

and you·want to add the VOLUME parameter. you would code: 

//STPTWO.DDM DD VOLUME=SER=S69433 

If you want to add parameters or change parameters that appear on 
different DD statements" the overriding DD statements must be in the 
same order in the input stream as the corresponding DD statements in the 
procedure,. 

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 27S 

Appendix A 



NULLIFYING DD STATEMENT PARAMETERS 

There may be parameters on a DD statement that you do not. want to 
override, but you want the system t9 ignor.e. Also" when you modify a DD 
statement in a procedure by overriding certain parameters or adding 
parameters, there may be some parameters remaining that no. longer have 
meaning for your data set definition but would effect processing of the 
data set.. To temporarily remove these parameters, you can nullify them. 
(If you are replacing a parameter with a mutually exclusive parameter, 
do not nullify the parameter that is being replaced.) 

To nullify a parameter on a DD statement in the procedure" you must 
include a DD statement following the EXEC. statement that,c~lls the 
procedure. The ddname of this DD statement must identi.fy the DD 
statement that contains the parameter you ,are nullifying and the 
procedure step in which the DD statement appears. Code in the operand 
field of this DD statement the parameter you are nullifying followed by 
an equal sign; do not follow the equal sign with a value. The format 
required for a DD statement following the EXEC statement is: 

/ /procstepname,. ddname DD parameter= 

For example, if one of the DD statements in a procedure step named 
SALLS is: 

//DDP DD DSNAME=STEP"DISP=OLD" UNIT=2314, 
// VOLUME=SER=556978 

X 

and you are overriding the DSNAME;, DISP" and UNIT parameters, adding the 
DCB parameter" and want the VOLUME parameter ignored, you would code: 

/ /SALLS. DDP DD DSNAME=~ ~TEMP., DISP= (, PASS) • UNIT=24 00- 2, x 
/ / DCB=(DEN=2", TRTCH=ET) " VOLUME= 

If you want to override a DD statement that contains a dsname 
positional subparameter in the DCB parameter,~ you must recode the dsname 
subparameter, even though you do want to change it. For example, if one 
of the DD statements in a procedure step named BANK is: 

/ /DD5 DD DSNAME=SAVE, DISP= (NEW, KEEP)" UNIT=2311, 

// SPACE= (CYL, (12,2) ) , DCB= (ACCNI'. BUFNO=5 'I.KEYLEN= 2) 

and you want to change BUFNO=5 to BUFNO=3, you would code: 

//BANK.DD5 DD DCB= (ACCNT, BUFNO=3) 

Both the dsname ACCNT and KEY LEN subparameters remain unchanged. You 
must code ACCNT on the overriding DD statement~ 

X 

To nullify the DCB parameter., each DCB subparameter must be nullified 
indi vidually. For example,. if a DD statement contains 
DCB=(RECFM=FBA.,BLKSIZE=160,LRECL=80)., then DCB= (RECFM="BLKSIZE= .. LRECL=) 
must be coded on the overriding DD statement in order to nullify the DCB 
parameter. 

To nullify a DUMMY par'ameter, code the DSNAME parameter on the 
overridingDD statement. but do not use the data set name NULLFILE. 
(Coding DSNAME=NULLFlLE has the same effect as coding the DUMMY 
parametera) 

276 JCL Reference (Release 20.1) 



caution: When you are overriding a procedure DD statement that contains 
the SPACE parameter and the overriding DD statement defines an existing 
data set, be sure to nullify the SPACE parameter. When a secondary 
quantity is coded On the procedure DD statement, the system uses this 
value to assign additional space to the data set instead of the 
secondary quantity you may have specified when the data set was created. 
Also" the RLSE subparameter. when specified on the procedure statement, 
causes the system to release any of the existing data set" s unused 
space. 

If you want to nullify" add" or override parameters that appear on 
different DD statements, the overriding DD statements must be in the 
same order in the input stream as the correspondingDD statements in the 
procedure. 

Examplesof Overriding, Adding, and Nullifying Parameters on a DD 
Statement 

1. You want to call the following procedure named SALL: 

//STP1 
//DD11 
//OD12 
//OD13 
//STP2 
//DD21 
//DD22 
// 
//DD23 

EXEC 
DD 
OD 
DD 
EXEC 
DD 
DD 

DD 

PGM=GLF14 
DSNAME=XTRA. LEVEL., DISP=OLD 
DSNAME:::CONDS"DISP=(,PASS) .. UNIT=2400 
DUMMY"DSNAME=LAST., VOLUME=~F=~. DD11,DISP= (, CATLG) 
PGM=FA:J:R . 
DSNAME=*. ST,Pl. DD12"DISP= (OLD, DELETE) 
DSNAME=JETZ" DISP= (NEW. KEEP) 'I UNIT=2311. 
S:PACE=(CYL'I (3,,1) ,RISE) 
SYSOUT=G 

You want to modify the procedure as follows: 

1. Change the data set name on the statement named DD12 from CONDS to 
C8495. 

2. Add the VOLUME parameter to the statement named DD12. 

3.. Nullify the DUMMY paramete~ on the statement named DD13. 

4.. Change the disposition on the statement named DD21 from DELETE to 
KEEP .. 

5. Define an existing data set on the statement named D022. 

6. Add the parameter UNIT on the statement named D023. 

7. Add the parameter SPACE on the statement named OD23 .• 

The EXEC statement that calls the procedure and the overriding DD 
statements that follow it would appear as: 

//CALL 
//STP1.DD12 
//STP1.DD13 
//STP2.DD21 
//STP2.DD22 
// 
//STP2.PD23 

EXEC 
DD 
DO 
DD 
DD 

DO 

SALL 
DSNAME=C8495.VOLUME=SER=979354 
DSNAME=LAST 
DISP= (OLD., KEEP) 
SPACE="DSNAME=GR1833,DISP=OLD, LABEL= (, NL) , 
VOLUME=SER=577632 
UNIT=2314" SPA<;E= (TRK" (150.,15» 

X 

X 

Appendix A: Cataloged and In .... Stream Procedures -- Using Procedures 277 

Appendix A 



The cataloged procedure would appear as shown below while the 
procedure is being executed~ These modifications do not appear on an 
output listing. 

//STPl 
//DDll 
//DD12 
// 
//DD13 
//STP2 
//DD21 
//DD22 
// 
//DD23 

EXEC 
DD 
DD 

DD 
EXEC 
DD 
DD 

DD 

PGM=GLF14 
DSNAME=XTRA.LEVEL.DISP=OLD 
DSNAME=C8495"DISP= (,PASS) ,.UNIT=2400, 
VOLUME=SER=979354 
DSNAME=LAST , VOLUME=REF=*. DDll, DISP= (" CATLG) 
PGM=FAIR 
DSNAME=*. STP1.DD12"DISP= (OLD"KEEP) 
DSNAME=GR1833,DISP=OLD" UNIT=2311" LABEL=( " NL) " 
VOLUME=SER=577632 
SYSOUT=G.,UNIT=2314" SPACE=(TRK. (150,,15» 

2. You want to call the following in-stream procedure named CARDS: 

You 

1 .. 

2. 

3. 

//CARDS 
//STEPA 
//DDAl 
//DDA2 
// 
//STEPB 
//DDBl 
//DDB2 
//DDB3 
// 

want to 

Change 
NAMES,. 

Add the 

Add the 

PROC 
EXEC 
DD 
DD 

EXEC 
DD 
DD 
DD 
PEND 

PGM=FIGURE 
DSNAME=NUMBERS,DISP=OLD 
DSNAME=PROCESS,DISP=(,PASS),UNIT=2311. 
SPACE= (TRK, (1,1,1) ) 
PGM=RESULT 
DSNAME=VSC., DISP=OLD 
DSNAME=* .STEPA. DDA2,DISP= (OLD, KEEP) 
SYSOUT=C 

modify the procedure as follows: 

the data set name on the DDAl statement from NUMBERS to 

VOLUME parameter to the DDA2 statement. 

parameters UNIT and SPACE on the DDB3 statement. 

The EXEC statement that calls the procedure and the overriding DD 
statements that follow it would appear as: 

//CALL 
//STEPA .. DDAl 
//STEPA.DDA2 
//STEPB .. DDB3 

EXEC 
DD 
DD 
DD 

CARDS 
DSNAME=NAMES 
VOLUME.'=SER=5858 
UNIT=2311,SPACE=(TRK,(150,15» 

The in-stream procedure would appear as shown below while the 
procedure is being executed 0 These modifications do not appear on an 
output listing. The PROC statement is processed only when it contains 
symbolic parameters. 

//STEPA 
//DDAl 
//DDA2 
// 
//STEPB 
//DDBl 
//DDB2 
//DDB3 

EXEC 
DD 
DD 

EXBC 
DD 
DD 
DD 

PGM=FIGURE 
DSNAME=NAMES,DISP=OLD 
DSNAME=PROCESS.DISP=(.PASS),UNIT=2311. 
SPACE=(TRK, (1.1,1» .VOLUMES=SER=5858 
PGl'Il=RESULT 
DSNAME=VSC,DISP=OLD 
DSNAME.'=*.STEPA.DDA2.DISP=(OLD.KEEP) 
SYSOUT=C n UNIT=2311,SPACE=(TRK;(150,15» 

278 JCL Reference (Release 20.1) 

X 

X 



Overriding DD Statements That Define Concatenated Data Sets 

When a concatenation of data sets is defined in a cataloged procedure 
and you attempt to override the concatenation with one DD statement. 
only the first (named) DD statement is overridden. To override others, 
you must include an overriding DD statement for each DD statement; the 
DD statements in the input stream must be in the same order as the DD 
statements in the procedure. The second and subsequent overriding 
statements must not be named. If you do not wish to change one of the 
concatenated DD statements,. leave the operand field blank on the 
corresponding DD statement in the input stream. (This is the only case 
where a blank operand field for a DD statement is valid.) 

For example. suppose you are calling a procedure that includes the 
following sequence of DD statements in STEPC: 

//DD4 
// 
// 
// 

DD DSNAME=A .• B.C"DISP=OLD 
DD DSNAME=STRP.DISP=OLD,UNIT=2311,VOL=SER=X12182 
DD DSNAME=TYPE3 wDISP=OLD.UNIT=2311.VOLUME=SER=BL142 
DD DSNAME=A.B.D~DisP=OLD 

If you want to override the DD statements that define the data sets 
named STRP and AoB.D, the sequence of DD statements in the input stream 
would appear as: 

//STEPC.DD4 
// 
// 
// 

DD 
DD DSNAME=INV.CLS.DISP=OLD 
DD 
DD DSNAME=PAL8,DISP=OLD.UNIT=2311.VOL=SER=125688 

Adding DD Statements to a Procedure 

You can add DD statements to a procedure when you call the procedure .• 
These additional DD statements are in effect only while the procedure is 
being executed. 

To add a DD statement to a procedure step, follow the EXEC statement 
that calls the procedure and any overriding DD statements for that step 
with the additional DD statement. The ddname of this DD statement must 
identify the procedure step to which this statement is to be added and 
must be assigned a name that is different from all the ddnames in the 
procedure step. The format required for a DD statement following the 
EXEC statement is: 

//procstepname.ddname DD parameters 

For example, if the first step of a cataloged procedure named MART 
is: 

//STEPl EXEC 
//DDM DD 
// 
//DDN DD 

PGM=DATE 
DSNAME=BPS(MEMG).DISP=OLD. 
UNIT=2311,VOLUME=SER=554982 
UNIT=SYSQE 

You want to make the following modifications to the procedure: 

1. Change the UNIT parameter on the statement named DDN. 
2. Add a DD statement. 

The statements in the input stream would appear as: 

//PROC 
//STEP1.DDN 
//STEP1 .. DDO 

EXEC 
DD 
DD 

MART 
UNIT=180 
UNIT=181 

x 

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 279 

Appendix A 



Examples of Adding DD Statements to a Procedure 

1. You want to call the following procedure named D995A: 

//SA 
//DDA1 
//DDA2 
//DDA3 
//SB 
//DDB1 
//DDB2 
//DDB3 
// 

EXEC 
DD 
DD 
DD 
EXEC 
DD 
DD 
DD 

PGM=ANALY 
DSNAME=PROJ.C843.DISP=OLD 
DDNAME=SYSIN 
SYSOUT=B 
PGM=MANM03 
UNIT=2400 
UNIT=2400 
DSNAME=X54, VOLUME=SER= (36544,36545) " 
UNIT=(2400,2).DISP=(OLD~KEEP) 

You want to modify the procedure as follows: 

1. Supply the data set definition for the DDA2 statement by adding a 
DD statement. 

2. Change the SYSOUT parameter on the DDA3 statement to UNIT=1403. 
3. Add a DD statement to the step named SB. 

The EXEC statement that calls the procedure and the overriding and 
additional DD statements that follow it would appear as: 

//PROCED 
//SA.DDA3 
//SA.SYSIN 

EXEC 
DD 
DD 

D995A 
UNIT=1403,DISP=NEW 

* 

data 

/* 
//SB.DDB4 DD UNIT=( 2400., "SEP=(DDB1.DDB2» 

The cataloged procedure would appear as shown below while the 
procedure is being executed. These modifications do not appear on 
output listing. 

//SA 
//DDA1 
//DDA2 
//DDA3 
//SB 
//DDB1 
//DDB2 
//DDB3 
// 
//DDB4 

EXEC 
DD 
DD 
DD 
EXEC 
DD 
DD 
DD 

DD 

PGM=ANALY 
DSNAME=PROJ.C843,DISP=OLD 

* UNIT=1403.DISP=NEW 
PGM=MANM03 
UNIT=2400 
UNIT=2400 
DSNAME=X54,VOLUME=SER=(36544,36545), 
UNIT=(2400,2),DISP=(OLD,KEEP) 
UNIT=(2400"SEP=(DDB1,DDB2» 

2,. You want to call the following in-stream procedure named WORK: 

//WORK 
//STPl 
//DD1 
//DD2 
// 

PROC 
EXEC' PGM=PROD 
DD DSNAME=PROJECT,DISP=OLD 
DD DDNAME=SYSIN 
PEND 

x 

x 

You want to modify the procedure by supplying the data set definition 
for the DD2 statement by adding a DD statement. 

280 JCL Reference (Release 20.1) 



The EXEC statement that calls the procedure and the additional DD 
statement that follows it would appear as 

//ADD EXEC WORK 
//STP1.SYSIN DD * 

data 

/* 

The in-stream procedure would appear as shown below while the 
procedure is being executed. These modifications do not appear on the 
output listing. 

//STP 
//DDl 
//DD2 

EXEC 
DD 
DD 

PGM=PROD 
DSNAME=PROJECT,DISP=OLD 

* 

Appendix A: Cataloged and In-stream Procedures -- Using Procedures 281 

Appendix A 



Writing Procedures: Cataloged and In-stream 

Why Oatalog Job Control Statements 

Applications performed at your installation on a regular basis and 
applications that require many control statements can be simplified when 
the control statements for these applications are cataloged. Once the 
job control statements for an application are cataloged on the procedure 
library, any programmer who wants to perform the application need only 
submit a JOB and EXEC statement. On the EXEC statement" he refers the 
system to the control statements required to perform the application,. 
If there are modifications the programmer wants to make for the duration 
of the job step, he assigns values to symbolic parameters on the EXEC 
statement and follows the EXEC statement with overriding DD statements. 

Why Use In-stream Procedures 

In-stream procedures appear within the job stream instead of in the 
procedure library. Like cataloged procedures,. they eliminate the 
necessity of repeating the same set of control statements in a job. An 
in-stream procedure can be executed any number of times during a job in 
which it appears and fifteen uniquely named in-stream procedures can 
appear in one joh. In-stream procedures can be modified just as 
cataloged procedures •. They also provide you with a means of testing 
procedures before adding them to the procedure library as cataloged 
procedures. Because an in-stream procedure may exist in the form of 
cards, it can be considered a "portable procedure" in that it can easily 
be moved from one input stream to another. 

THE CONTENTS OF CATALOGED AND IN-STREAM PROCEDURES 

Cataloged and in-stream procedures contain one or more EXEC statements, 
each followed by associated DD statements. Each EXEC statement 
identifies the program to be executed, and the DD statements that follow 
define the input, output, and work data sets to be used by the program.. 
Each EXEC statement and its associated DD statements are called a 
procedure step. 

Cataloged and in-stream procedures cannot contain; 

1. EXEC statements that refer to other cataloged procedures~ 
2,. JOB, delimiter, or null statements. 
3. DD statements with the ddname JOBLIB. 
4,. DD statements with * or DATA coded in the operand field. 

A cataloged procedure can contain a DD statement with the ddname 
STEPLIB. If a procedure step requires use of a program in a private 
library other than SYS1.LINKLIB, you define that library on this DD 
statement. If the DD statement is not overridden when the procedure is 
called, it makes the private library available to the step. (For 
information on the S'l'EPLIB DD statement, see the chapter .. special 
Ddnames" in section IV of this publication.) 

For ease in modifying a cataloged procedure, you can include symbolic 
parameters in the procedure. How to use symbolic parameters is 
described next. 

282 JCL Reference (Release 20.~) 



USING SYMBOLIC PARAMETERS IN A PROCEDURE 

When you prepare the control statements that you plan to catalog or use 
as an in-stream procedure" you can include symbolic parameters. A 
symbolic parameter is characterized by a name preceded by an ampersand 
(&) and appears in the operand field of a cataloged procedure statement. 
A symbolic parameter stands for a parameter. a subparameter,. or a 
value. 

Symbolic parameters allow a programmer who calls the procedure to 
easily modify the procedure for the duration of the job step. When the 
programmer calls the procedure, he assigns values to the symbolic 
parameters on the EXEC statement. When you prepare control statements 
that you plan to catalog:, you can include a PROC statement and assign 
default values to any of the symbolic parameters that are included,. 
When you prepare control statements to be used as an in-stream 
procedure, you must include a PROC statement which can be used to assign 
default values to any of the symbolic parameters that are included. 

A symbolic parameter is one to seven alphameric and national (#.~,$) 
characters preceded by a single ampersand. The first character must be 
alphabetic or national. Since a single ampersand defines a symbolic 
parameter,. you code double ampersands when you are not defining a 
symbolic parameter. For example, if you want to pass 543&LEV to a 
processing program by means of the PARM parameter on an EXEC statement,. 
you must code PARM=" 54&&LEV·. The system treats the double ampersands 
as if a single ampersand has been coded, and only one ampersand appears 
in the results. 

The following are examples of symbolic parameters: 

//STEPl EXEC PGM=COB,.PARM='·Pl,&P2.P3' 

//DDl DD DSNAME=&&FIX.UNIT=&DEVICE. SPACE= (CYL,. (&SPACE,10» 

//DD2 DD DSNAME=&&CHAG.UNIT=2400,DCB=BLKSIZE=&LENGTH 

Keyword parameters that can be coded on an EXEC statement cannot be 
used to define symbolic parameters. For example, &PGM and &REGION 
cannot be used as symbolic parameters. 

Any parameter" subparameter. or value in the procedure that may vary 
each time the procedure is called is a good candidate for definition as 
a symbolic parameter. For example, if different values can be passed to 
a processing program by means of the PARM parameter on one of the EXEC 
statements, you might define the PARM parameter field as one or more 
symbolic parameters, PARM=&ALLVALS or PARM=&DECK&CODE. 

If symbolic parameters are defined in the cataloged or in-stream 
procedures used at your installation, the definitions should be 
consistent. For example,. every time the programmer is to assign his 
department number to a symbolic parameter, no matter which procedure he 
is calling. the symbolic parameter could be defined as &DEPT. In 
different procedures you could code ACCT=(43877.&DEPT) and 
DSNAME=LIBRARY.&DEPT.MACS. The programmer would assign his department 
number on the EXEC statement that calls the procedure whenever &DEPT 
appears in a procedure. Of course., in order for the programmer to know 
that he is to assign his department number to the symbolic parameter 
&DEPT. the installation must make this information available to all the 
programmers that may be using the cataloged procedures. 

you can define two or more symbolic parameters in succession without 
including a comma to delimit the symbolic parameters. for example, 
&Pl&P2. You can also define a portion of a parameter, subparameter, or 
value as a symbolic parameter. You do this by placing the symbolic 

Appendix A: Cataloged and In-Stream Procedures--Writing Procedures 283 

Appendix A 



parameter before, after" or in between the information that is not 
variable. 

If you place a symbolic parameter after some information that does 
not vary. it is not necessary to code a delimiter.. The system 
recognizes a symbolic parameter when it encounters the single ampersand. 

If you place a symbolic parameter before some information that does 
not vary, a period may be required following the symbolic parameter to 
distinguish the end of the symbolic parameter and the beginning of the 
information that does not vary. A period is required following the 
symbolic parameter when: 

1. The character following the symbolic parameter is an alphabetic or 
numeric character,. 

2. The character following the symbolic parameter is a left 
parenthesis or a period. 

In these cases, the system recognizes the period as a delimiter" and the 
period does not appear after a value is assigned to the symbolic 
parameter. (A period will appear after a value is assigned to the 
symbolic parameter when two consecutive periods are coded.) 

The following examples are valid ways of combining symbolic 
parameters and information that does not vary. 

Placing a symbolic parameter after information that does not vary: 

i.. LIBRARY ( &MEMBER) 

2. USERLIB. &LEVEL 

Placing a symbolic parameter before information that does not vary: 

1. • &OPTION+1S' 

2. &PASS.A43B8 
The period is required because an alphabetic character follows the 
symbolic parameter. 

3. &URNO .. 54328 
The period is required because a numeric character follows the 
symbolic parametern 

4~ &LIBRARY. (MEMG) 
The per iod is required because a lef t parenthesis follows the 
symbolic parametero 

5. &FILL, •• GROUPS 
A period is to appear in the results; therefore, two consecutive 
periods are coded. 

When a value is assigned to the symbolic parameter, this value and 
the parameter, subparameter" or value that this is a portion of cannot 
exceed 120 characters. 

The programmer who calls a procedure assigns values to the symbolic 
parameters contained in the procedure. He can also nullify symbolic 
parameters. A delimiter, such as a leading comma or a trailing comma, 
next to a symbolic parameter is not automatically removed when the 
symbolic parameter is nullified. For example, if the operand field 
contains VOLUME=SER=(llllll,,&KEY), the comma preceding &KEY is not 
removed when &KEY is nullified. If the symbolic parameter that is 
nullified is a positional parameter, a comma must remain to indicate its 

284 JCL Reference (Release 20.1) 



absence. In other cases. a delimiter that is not removed when the 
symbolic parameter is nullified may cause a syntax error. To help the 
programmer who nullifies a symbolic parameter avoid this error 
condition, define those symbolic parameters that may be nullified 
without the delimitero For example. you could code 
VOLUME=SER=(llllll&KEY). The delimiter is included when a value is 
assigned to the symbolic parameter. For example, the programmer would 
code KEY=~lf222222·. 

A cataloged or in-stream procedure statement may utilize DDNAME and 
DCB parameters to define data in the input stream. such a statement 
should not contain symbolic parameters when the automatic SYSIN batching 
reader is used. (Information on the cataloged procedure for the 
automatic SYSIN batching reader is contained in the chapter "System 
Reader, Initiator" and Writer Cataloged Procedures" in the System 
Programmer's Guide publication.) 

The PROC statement: When establishing cataloged or in-stream procedures 
that contain symbolic parameters it is generally good practice to assign 
default values to the symbolic parameters. 'These default values are 
used if the programmer who calls the procedure does not assign values to 
one or more of the symbolic parameters. 

You assign default values on a PROC statement. The PROC statement is 
optional in cataloged procedures; if it is used, the PROC statement must 
be the first statement in the procedure. The PROC statement is 
described in Section X of this publication. The PEND statement which is 
used to mark the end of an in-stream procedure is described in Section 
IX. 

ADDING AND MODIFYING CATALOGED PROCEDURES 

You add procedures to the procedure library by using the IEBUPDTE 
utility program. You also use this utility program to permanently 
modify existing proedures. How to use this utility program for adding 
and modifying cataloged procedures is described in the chapter "The 
IEBUPDTE Program" in the Utilities publication. 

When you add a cataloged procedure to the procedure library, that 
procedure cannot be executed before the job that adds it to the 
procedure library terminates. When you modify an existing cataloged 
procedure, the operator must be notified. What the operator must do 
before he allows the job to be executed is described in the chapter "How 
to Run Jobs That Update System Data Sets" in the operator's Reference 
publication. 

Appendix A: Cataloged and In-Stream Procedures--Writing"procedures 285 

Appendix A 





Appendix B: Using the Restart Facilities 

When a job step abnormally terminates, you may have to resubmit the job 
for execution. This means lost computer time and a delay in obtaining 
the desired results. To reduce these effects" you can use the restart 
facilities. 

If a job step abnormally terminates or if a system failure occurs, 
the restart facilities allow you to request that the job step be 
restarted either at the beginning of the step (step restart) or within 
the step (checkpoint restart). Furthermore, restart can occur 
automatically after abnormal termination, or it can be deferred until 
the job is resubmitted. 

Restarts 

For automatic step restart to occur. the RD parameter must request it on 
the JOB statement or on the EXEC statement associated with the step that 
abnormally terminates. (The RD parameter on the JOB statement is 
described in Section II of this publication; the RD parameter on the 
EXEC statement is described in section III.) Automatic checkpoint 
restart can occur only if a CHKPT macro instruction is executed in the 
processing program prior to abnormal termination. 

If restart is deferred until the job is resubmitted,. the RESTART 
parameter must be coded on the JOB statement of the resubmitted job. 
(The RESTART parameter is described in Section II of this publication.) 
The RESTART parameter identifies the step or the step and the checkpoint 
at which execution is to be resumed. A deferred restart may be 
initiated regardless of how the resubmitted job was previously 
terminated (normally or abnormally) and regardless of whether an 
automatic restart occurred during the original execution. 

AUTOMATIC STEP RESTART 

If an abnormally terminated step is to be automatically restarted, the 
RD parameter must be coded as RD=R or RD=RNC. Execution resumes at the 
beginning of the abnormally terminated step. 

AUTOMATIC CHECKPOINT RESTART 

After an automatic checkpoint restart, execution resumes at the 
instruction immediately following the last CHKPT macro instruction that 
was successfully executed in the abnormally terminated step. An 
automatic checkpoint restart cannot occur if you suppress the action of 
the CHKPT macro instruction; you do this by coding RD=NC or RD=RNC. 
Also, an automatic checkpoint restart cannot occur if you code RD=NRi 
however" RD=NR allows the CHKP'I' macro instruction to establish a 
checkpoint. 

DEFERRED STEP RESTART 

To perform a deferred step restart, the RESTART parameter must identify 
the step at which execution is to be resumed. Steps preceding the 
restart step are interpreted but are not initiated. 

Appendix B: Using the Restart Facilities 287 

Appendix B 



since dispostion processing occurred during the original execution of 
the joh, you may have to modify control statements associated with the 
restart step before you resubmit the job. Modifications may be required 
in two cases: 

1. A data set was defined as NEW during the original execution. If it 
was created during the original execution~ you must change the data 
set's status to OLD, define a new data set, or delete the data set 
before resubmitting the job. 

2. A data set was passed and was to be received by the restart step or 
a step following the restart step. If the passed data set is not 
cataloged., you must supply, in the receiving step,. volume serial 
numbers" device type, data set sequence number" and label type. 
(Label type cannot be retrieved from the catalog~) 

To limit the number of modifications required before you resubmit the 
job., you can assign conditional dispositions during the original 
execution,. (Data sets assigned a temporary name or no name can only be 
assigned a conditional disposition of DELETE.) If deferred step restart 
will be performed, conditional dispositions should be used: 

• To delete all new data sets created by the restart step. 

• To keep all old data sets used by the restart step., other than those 
passed to the step.. (If a nontemporary data set is defined as 
DISP= (OLD., DELETE) I it is very important that you assign a 
conditional disposition of KEEP.) 

• To catalog all data sets passed from steps preceding the restart 
step to the restart step or to steps following the restart step. 

Additional changes can be made to your control statements before 
resu~mitting the job. For example, you can vary device and volume 
configurations and request step restart on an alternate system with the 
same configuration as used originally. You can also make changes to 
your data .. 

DEFERRED CHECKPOINT RESTART 

To perform a deferred checkpoint restart. the RESTART parameter must 
identify the step and the checkpoint at which execution is to be 
resumed. The SYSCHK DD statement, which defines the checkpoint data 
set, must also be included. (The SYSCHK DD statement is described in 
the chapter "Special Ddnames" in section IV .• 

An internal representation of your statements is kept as control 
information within the system. Some of the control information for the 
restart step or steps following the restart step may have to be modified 
before execution can be resumed at a checkpoint. The following 
modifications for the restart step are automatically made by the system, 
using information contained in the checkpoint entry: 

• ~he status of data sets used by the step is changed from NEW to OLD. 
(If a new data set was assigned a nonspecific volume and had not 
been opened before the checkpoint was established, this change is 
not made.) 

• If nonspecific volumes were- requested for a data set used in the 
restart step, the assigned device type and volume serial numbers are 
made part of the control information. 

• For a multivolume data set, the volume being processed when the 
checkpoint was established is mounted. 

288 JCL Reference (Release 20 .• 1) 



The only required modification that you must make to a control 
statement is to supply certain information about a data set that was 
being passed by a step preceding the restart step to a step following 
the restart step. You must supply" in the receiving step. volume serial 
numbers" device type, data set sequence number, and label type,. You 
will not have to make these modifications if" during the original 
execution" you assigned a conditional disposition of CATLG to such data 
sets. If the data is cataloged" the system can retrieve this 
information fr~m the catalog. (Label type cannot be retrieved from the 
catalog.) You should also use conditional dispositions to keep all data 
sets used by the restart step. Data sets assigned a temporary name or 
no name can only be assigned a conditional disposition of DELETE4 
Therefore, if you plan a deferred checkpoint restart, you should not 
define you data sets as .temporary.( For any nontemporary data set that 
may be deleted, it is very important that you assign a conditional 
disposition of KEEP.) 

Before resubmitting the job for checkpoint restartw you can make 
other modifications to control statements associated with the restart 
step or steps following the restart step,. The following items apply to 
the step in which restart is to occur: 

• The DD statements in the restart step can be altered" but the 
statements must have the same names as used originally. You can 
also include additional DD statements. 

• If a data set was open at the time a checkpoint was established and 
restart is to begin at that checkpoint, DD statements in the restart 
step can define the same data set. If there is no need to process a 
data set after restart, you can define the data set by coding the 
DUMMY parameter or DSNAME=NULLFILE on a DD statement provided that: 
(1) the basic sequential access method (BSAM) or the queued 
sequential access method (QSAM) was being used to process the data 
set when the checkpoint was established, (2)the data set is not the 
checkpoint data set that is being used to restart the jub step, and 
(3) the-job step is not restarted from a checkpoint that was 
established in an end-of-volume exit routine for the data set. The 
name of the DD statement must be the same as the one used for the 
data set during the original execution of your program. 

• If DUMMY is not specified, the DD statements must define the same 
data sets. Also, the data sets must not have been moved on the 
volume or onto another volume. 

• If a data set was not open when the checkpoint was established and 
is not needed during restart, you can replace the parameters used to 
define the data set with the DUMMY parameter. 

• You can alter the data in the restart step. If 'you omit the data" a 
delimiter statement (/*) is not required, unless the data was 
preceded by a DD DATA statement. 

Modifications you might want to make to control statements following 
the restart step are: varying device and volume configurations, 
altering data, and possibly., requesting checkpoint restart on an 
al ternate system with the same configuration as used originally,. If the 
parameters PGM, COND, SUBALLOC, and VOLUME=REF refer to steps preceding 
the restart step, you must resolve these references before resubmitting 
the job. (A backward reference of VOLUME=REF is allowed if the 
referenced statement includes VOLUME=SER=(serial number).) 

AppendixB: Using the Restart Facilities 289 

Appendix B 



Examples of Using the Restart Facilities 

1. The following control statements illustrate the preparations that 
would be made for either an automatic step or checkpoint restart 
before the job is submitted for the first time. 

//STMRG3 
//STEPl 
//INPUT 
// 
//0 UTP UT 
// 
//WORKl 
//WORK2 
//CHKPT 
//STEP2 
//MERGl 
//MERG2 
// 
//RESULTS 
// 

JOB 
EXEC 
DD 

DD 

DD 
DD 
DD 
EXEC 
DD 
DD 

DD 

54321" A,. USER, MSGLEVEL= (1,,0) " RD=R 
PGM=SIMPSORT 
DSN=SORTIN,VOL=SER=100468,UNIT=2400, 
DISP= (OLD, DELETE) 
DSN=INV (+1) " UNIT=2311 ,VOL=SER=555334, 
SPACE= (3200" (200,,100» "DISP= (NEW", CATLG) 
UNIT=2400"DISP= (NEW ,DELETE) 
UNIT=2400" DISP=(NEW, DELETE) 
UNIT=2400"DISP= (NEW ,DELETE) 
PGM=MYMERGE 
DSN=I NV ( +1), DISP=OLD 
DSN=M5, VOL=SER=( 092501;,092502, 092503), 
UNIT= (2400;,3) ,DISP= (OLD.,KEEP) 
DSN=M6" UNIT=24 00" VOL=SER= (100101,,100102, 
100103) ,DISP=(NEW"KEEP) 

x 

x 

x 

x 

Here" the RD parameter requests step restart for any abnormally 
terminated job step. In STEP1. the DD statement CHKPT defines a 
checkpoint data set. For this step,. once a CHKPT macro instruction 
is executed, only automatic checkpoint restart is performed. An 
automatic checkpoint restart cannot occur in STEP2 since a 
checkpoint data set is not defined. 

2. The following control statements illustrate the preparations that 
would be made for either an automatic or deferred step restart 
before the job is submitted for the first time. 

//STMRG3 JOB 
~/STEPl EXEC 
//INPUT DD 
// 
//OUTPUT DD 
// 
//WORKl DD 
//WORK2 DD 
//STEP2 EXEC 
//MERG1 DD 
//MERG2 DD 
// 
//RESULTS DD 
// 

54321,. A,. USER, MSGLEVEL= (1.,0), RD=R 
PGM=SIMPSORT 
DSN=SORTIN,VOL=SER=100468,UNIT=2400, X 
DISP= (OLD., DELETE, KEEP) 
DSN=INV (+1) ,.UNIT=2311 ,VOL=SER=555334, X 
SPACE= (3200" (200,.100) } "DISP= (NEW, CATLG,.DELETE) 
UNIT=2400,DISP=(NEW,DELETE) 
UNIT=2400,. DISP=(NEW,.DELETE) 
PGM=MYMERGE 
DSN=INV(+l),DISP=OLD 
DSN=M5,VOL=SER=(092501,092502,092503), X 
UNIT: (2400,,3) " DISP= (OLD, KEEP) 
DSN=M6 ,UNIT=2400,. VOL=SER= (100101, 100102, X 
100103) " DISP= (NEW,. KEEP ,DELEI'E) 

If you are resubmitting this job for step restart, you must code 
the RESTART parameter on the JOB statement and identify the step at 
which execution is to be resumed. If execution is to be resumed 
with STEP2,. the MERGl DD statement must be changed to refer to the 
generation data set by means of its present relative generation 
number, i.e., DSN=INV(O). 

290 JCL Reference (Release 20.1) 



3. The following control statements illustrate the preparations that 
would be made for an automatic step or checkpoint restart or a 
deferred checkpoint restart before the job is submitted for the 
first time. 

//STMRG3 JOB 
//STEP1 EXEC 
//INPUT DD 
// 
//OUTPUT DD 
// 
//WORK1 DD 
//WORK2 DD 
//CHKPT DD 
//STEP2 EXEC 
//MERG1 DD 
//MERG2 DD 
// 
//RESULTS DD 
// 

54321 ,A. USER, MSGLEVEL= (1., 0) , RD=R 
PGM=SIMPSORT 
DSN=SORTIN,VOL=SER=100468,UNIT=2400, X 
DISP=(OLD.DELETE.KEEP) 
DSN=INV(+1),UNIT=2311.VOL=SER=555334:1 X 
SPACE= (3200, (200.,100» ,DISP= (NEW.CATLG,KEEP) 
DSN=A,. UNIT=24 0 0, DISP= (NEW" DELETE:lCATLG) 
DSN=B, UNIT=2400,.DISP= (NEW ,DELRl'E,CATLG) 
DSN=C,. UNIT=24 00" DISP= (NEW,DELETE,.CATLG) 
PGM=MYMERGE 
DSN=INV (+1)" DISP=OLD 
DSN=M5,VOL=SER=(092501,092502,092503) , X 
UNIT= (2400,,3) " DISP=(OLD"KEEP) 
DSN=M6, UNIT=2400, VOL=SER= (100101,,100102, , X 
100103),DISP=(NEW,KEEP) 

Either an automatic checkpoint restart or a deferred checkpoint 
restart can occur in STEPl if the step abnormally terminates. To 
perform a deferred checkpoint restart, the RESTART parameter must 
be coded on the JOB statement and a SYSCHK DD statement must be 
included before resubmitting the job. Only automatic step restart 
can occur in STEP2. The data sets that would normally be defined 
as temporary have been defined as nontemporary data sets so 
conditional dispositions can be assigned to them. 

Appendix B: Using the Restart Facilities 291 

Appendix B 





Appendix C: Creating and Retrieving Indexed 
Sequential Data Sets 

Indexed sequential (ISAM) data sets are created and retrieved using 
special s~IDsets of DD statement parameters and subparameters. Each data 
set can occupy up to three different areas of space: 

1. Prime area -- This area contains data and related track indexes. 
It exists for all indexed sequential data sets. 

2. OVerflow area This area contains overflow from the prime area 
when new data is added.. It is optional. 

3. Index area -- This area contains master and cylinder indexes 
associated with the data set. It exists for any 
indexed sequential data set that has a prime area 
occupying more than one cylinder. 

Indexed sequential data sets must reside on direct access volumes. The 
data set can reside on.more than one volume and the device types of the 
volumes may in some cases differ,. 

Creating an Indexed Sequential Data Set 

One to three DD statements can be used to define a new indexed 
sequential data set.. When you use three DD statements to define the 
data set, each DD statement defines a different area and the areas must 
be defined in the following order: 

1. Index area. 
2. Prime area. 
3. Overflow area. 

When you use two DD statements to define the data set, the areas must be 
defined in the following order: 

1. Index area. 1. Prime area,. 
or 

2. Prime area. 2. Overflow area. 

When you use one DD statement to define the data set, you are defining 
the prime area and" optionally., the index area .• 

When more than one DD statement is used to define the data set, 
assign a ddname only to the first DD statement; the name field of the 
other statements must be blank •. 

The only DD statement parameters that can be coded when defining a 
new indexed sequential data set are the DSNAME., UNIT" VOLUME, LABEL, 
DCB, DISP, SPACE, SEP., and AFF parameters. When to code each of these 
parameters and what restrictions apply are described in the following 
paragraphs. 

Appendix C: Creating and Retrieving Indexed sequential Data Sets 293 

Appendix C 



THE DSNAME PARAMETER 

The DSNAME parameter is required on any DD statement that defines a new 
temporary or nontemporary indexed sequential data set. To identify the 
area you are defining~ you follow the DSNAME parameter with the area: 
DSNAME=name( INDEX), DSNAME=name (PRIME) " or DSNAME=name (OVFLOW) • If you 
are using only one DD statement to define the data set, code 
DSNAME=name (PRIME) or I5NAME=name. 

When reusing previously allocated space to create an ISAM data set, 
the DSNAME parameter must contain the name of the old data set to be 
overlaid. 

THE UNIT PARAMETER 

The UNIT parameter is required on any DD statement that defines a new 
indexed sequential data set unless VOLUME=REF=reference is coded. You 
must request a direct access device in the UNIT parameter and must not 
request DEFER. 

If there are separate DD statements defining the prime and index 
areas" you must request the same number of direct access devices for the 
prime area as there are volumes specified in the VOLUME parameter. You 
may request only one direct access volume for an index area and one for 
an overflow area. 

A DD statement for the index area or overflow area can request a 
device type different than the type requested on the other statements,. 

Another way to request a device is to code UNIT=AFF=ddname; where the 
named DD statement requests the direct access device or device type you 
want. 

THE VOLUME PARAMRrER 

The VOLUME parameter is required only if you want an area of the data 
set written on a specific volume or the prime area requires use of more 
than one volume. (If the prime area and index area are defined on the 
same statement. you cannot request more than one volume on the DD 
statement.) Either supply the volume serial number or numbers in the 
VOLUME parameter or code VOLUME=REF=reference. In all cases, the VOLUME 
parameter can be used to request a private volume (PRIVATE) and to 
retain the private volume (RETAIN). 

THE LABEL PARAME'TER 

The LABEL parameter need only be coded to specify a retention period 
(EXPDT or RETPD) or password protection (PASSWORD). 

294 JCL Reference (Release 20.1) 



THE DCB PARAMETER 

The DCB parameter must be coded on every DD statement that defines an 
indexed sequential data set. At minimum. the DCB parameter must contain 
DSORG=IS or DSORG=ISU. Other DCB subparameters can be coded to complete 
the data control block if it has not been completed by the processing 
program. When more than one DD statement is used to define the data 
set" code all the DCB subparameters on the first DD statement. Code 
DCB=*.ddname on the remaining statement or statements; ddname is the 
name of the DD statement that contains the DCB subparameters. 

When reusing previously allocated space and recreating an ISAM data 
set" desired changes in the DCB parameter must be coded on the DD 
statement. Although you are creating a new data set" some DCB 
subparameters cannot be changed if you want to use the space the old 
data set used. The DCB subparameters, you can change are: BFALN, 
BLKSIZE" CYLOFL, DSORG" HIARCHY" KEY LEN, LRECL" NCP" NTM" OPTCn, RECFM" 
and RKP. 

THE DISP PARAMETER 

If you are creating a new data set and not reusing preallocated space" 
the DISP parameter need only be coded if you want to keep" DISP= (I' KEEP) " 
catalog" DISP=(,CATLG)" or pass, DISP=(,PASS), the data set,. If you are 
reusing previously allocated space and recreating an ISAM data set, code 
DISP=QLD. The newly created data set will overlay the old one. 

In order to catalog the data set when DISP= (, CATLG) is coded or pass 
the data set when DISP=( ,PASS) is coded" the data set must be defined on 
only one 00 statement. If the data set was defined on more than one DD 
statement and the volumes on which the data set now resides correspond 
to the same device type, you can use the IEHPROGM utility program to 
catalog the data set. Refer to the chapter "The IEHPROGM Program" in 
the utilities publication for details. 

THE SPACE PARAMETER 

The SPACE parameter is required on any DD statement that defines a new 
indexed sequential data set. Use either the recommended nonspecific 
allocation technique or the more restricted absolute track (ABSTR) 
technique. If more than one DD statement is used to define the data 
set, all must request space using the same technique. 

Nonspecific Allocation Technigue 

You must request the primary quantity in cylinders (CYL). When the DD 
statement that defines the prime area requests more than one volume" 
each volume is assigned the number of cylinders requested in the SPACE 
parameter. 

One of the subparameters of the SPACE parameter, the "index" 
subparameter, is used to indicate how many cylinders are required for an 
index. When one DD statement is used to define the prime and index 
are~s and you want to explicitly state the size of the index, code the 
"index", subparameter. 

The CONTIG subparameter can be coded in the SPACE parameter. 
However, if CONTIG is coded on one of the statements" it must be coded 
on all of them. 

You cannot request a secondary quantity for an indexed sequential 
data set. Also, you cannot code the subparameters RLSE, MXIG" ALX" and 
ROUND. 

Appendix C: Creating and Retrieving Indexed Sequential Data Sets 295 

Appendix C 



Absolute Track Technigue 

The number of tracks you request must be equal to one or more whole 
cylinders,. The address of the beginning track must correspond with the 
first track of a cylinder other than the first cylinder on the volume. 
When the DD statement that defines the prime area requests more than one 
volume" space is allocated for the prime area beginning at the specified 
address and continuing through the volume and onto the next volume until 
the request is satisfied. (This can only be done if the volume table of 
contents of the second and all succeeding volumes is contained within 
the first cylinder of each volume.) 

One of the subparameters of the SPACE parameter" the "index" 
subparameter " is used to. indicate how many tracks are required for an 
index,. The number of tracks specified must be equal to one or more 
cylinders,. When one DD statement is used to define the prime and index 
areas and you want to explicitly state the size of the index, code the 
" .. ndex" subparameter. 

THE SEP OR AFF PARAMETER 

The SEP or AFF parameter is coded only if you want channel separation 
from the area or areas defined on the preceding statement or statements 
in the group. In order for the areas to be written using separate 
channels. you must also request devices by their actual address" e.g., 
UNIT=19 0,. 

Note: If the indexed sequential data set is to reside on more than one 
volume and an error is encountered as the volumes are being allocated to 
the data set~ follow this procedure before resubmitting the job: Use 
the IEHPROGM utility program to scratch the data set labels on any of 
the volumes to which the data set was successfully allocated. This 
utility program is described in the chapter "The IEHPROGM Program" in 
the Utilities publication. 

Area Arrangement of an Indexed Sequential Data Set 

When you create an indexed sequential data set, the arrangement of the 
areas is based on two criteria: 

1. The number of DD statements used to define 'the data set,. 
2. What area each DD statement defines. 

An additional criterion is used when you do not include a DD statement 
that defines the index area: 

3. Is an index size coded in the SPACE parameter of the DD statement 
that defines the prime area? 

Table 3 illustrates the different arrangements that can result based 
on the criteria listed above. In addition, Table 3 indicates what 
restrictions apply on the number and types of devices that can be 
requested. 

296 JCL Reference (Release 20.1) 



Table 3.. Area Arrangement of Indexed Sequential Data Sets 
r--------------------------------------y-----------------T-------------, 
I CRITERIA I I , 
~------------T---------------~-------_i , , 
I , 'IRESTRICTIONS ON I RESULTING I 
li.Number of 12.Area defined 13.Index IDEVICE TYPES AND IARRANGEMENT I 
I DD I on a DD I size I NUMBER OF DEVICES I OF , 
I statements I statement 'coded? 'REQUESTED. I AREAS I 
~-----------+---------------+---------+-----------------+-------------~ 
I I I I , , 
I 3 I INDEX I I None I Separate , 
I 'PRIME I I lindex, prime" 
I ,OVFLOW I I I and overflow I 
I I I I I areas.. I 
.------------+---------------+---------+-----------------+------------_i 
I I I I I I 
I 2 I INDEX, , None , separate I 
I I PRIME I I I index and I 
I , I' I prime I 
I I I I I areas .• 1 I 
~------------t_--------------+---------+-----------------+-------------~ 
I I I' I , 
I 2 I PRIME I No I None I separate I 
I I OVFLOW, I ,prime and I 
I I I I , overflow I 
I I " I areas. An I 
I I I I I index area is I 
I I 'I ,at the end of, 
I , 'I I the overflow , 
I I I I I area • I 
.------------+---------------+---------+-----------------t-------------i 
, I I I , 1 
I 2 1 PRIME 1 Yes 1 The statement 1 Separate 1 
I 1 OVFLOW' I defining the 1 prime and I 
1 I I Iprime area cannotloverflow 1 
I I I Irequest more thanlareas. An I 
1 I 1 lone device. I index area isl 
I I I I lembedded in I 
1 1 I 1 I the prime , 
I I 1 1 I area. 1 
~------------+---------------+---------+-----------------+-------------~ 
1 1 I I I 1 
I 1 I PRIME I No I None 1 Prime area I 
I 1 I I Iwith index 1 
I 1 I 1 1 area at its I 
1 1 1 1 1 end .• 2 1 
.------------+---------------+---------+-----------------+-------------i 
I I 1 I I 1 
I 1 1 PRIME 1 Yes I Cannot request I Prime area I 
I I I 1 more than one 1 wi th embedded 1 
1 1 1 1 device. I index area.. i 
.-----------~--------------~---------~-----------------~------~-----_i 
11If both areas are on volumes that correspond to the same device I 
I type., an overf low area is established if one of the cylinders I 
1 allocated for the index area is only partially used. The overflow 1 
, area is established in the unused portion of that cylinder. I 
12If the unused portion of the index area is less than one cylinder, I 
1 it is used as an overflow area. I L ______________________________________________________________________ J 

Appendix C: Creating and Retrieving Indexed Sequential Data Sets 297 

Appendix C 



Retrieving an Indexed Sequential Data Set 

If all areas of an existing indexed sequential data set reside on 
volumes of the same device#type, you can retrieve the entire data set 
with one DD statement. If the index or overflow resides on a volume of 
a different device type, you IDlst use two DD statements. If the index 
and overflow reside on volumes of different device types, you must use 
three DD statements to retrieve the data set. The DO statements are 
coded in the following order: 

1. First DD statement - defines the index area 
2. Second DD statement - defines the prime area 
3. Third DD statement - defines the overflow area 

The only DD statement parameters that can be coded when retrieving an 
indexed sequential data set are the DSNAME., UNIT, VOLUME. DeB. and DISP 
parameters. When to code each of these parameters and what restrictions 
apply are described in the following paragraphs. 

THE DSNAME PARAMETER 

The DSNAME parameter is always required. Identify the data set by its 
name. but do not· include the term INDEX, PRIME. or OVFLOW. If the data 
set was passed from a previous step, identify it by a backward 
reference. 

THE UNIT PARAMETER 

The UNIT parameter must be coded unless the data set resides on one 
volume and was passed. You identify in the UNIT parameter the device 
type and how many of these devices are required. 

If the data set resides on more than one volume and the volumes 
correspond to the same device type., you need only one DD statement to 
retrieve the data set. Request one device in the UNIT parameter per 
volume. If the index or overflow area of the data set resides on a 
different type of volume than the other areas., you must use two OD 
statements to retrieve the dataset. On one DO statement, request the 
device type required to retrieve the index or overflow area. On the 
other DD statement, request the device type and the number of devices 
required to retrieve the prime area and the overflow area if the 
overflow area resides on the same device type. If the index and the 
overflow areas reside on different device types from the prime area, a 
third DO statement is needed. 

THE VOLUME PARAMETER 

The VOLUME parameter must be coded unless the data set resides on one 
volume and was passed from a previous step. Identify in the VOLUME 
parameter the serial numbers of the volumes on which the data set 
resides. Code the serial numbers in the same order as they were coded 
on the DO statements used to create the data set. 

THE DeB PARAMErER 

The DeB parameter must be coded unless the data set was passed from a 
previous step. The DCB parameter must always contain DSORG=IS or 
DSORG=ISU. Other DeB subparameters can be coded to complete the data 
control block if it has not been completed by the processing program. 

298 JCL Reference (Release 20.1) 



THE DISP PARAMETER 

The DISP parameter must always be coded. The first subparameter of the 
DISP parameter must be MOD or OLD. You can, optionally., assign a 
disposition as the second subparameter. 

Example of Creating and Retrieving an Indexed Sequential Data Set 

1. r.rbe following job step incl.udes the DD statements that could be 
used to create an indexed sequential data set. Each area of the 
indexed sequential data set is defined on a separate DD statement. 

//OUTPUT4 
//GROUPl 
// 
// 
// 
// 
// 
// 
// 
// 

EXEC PGM=INCLUDE 
DD DSNAME=PART86 (INDEX)"DISP= (,KEEP) ,UNIT=2314, 

VOLUME=SER=538762" SPACE=(CYL" 10" "CONTIG). 
DCB= (DSORG=IS.; RECFM=F,. LRECL= 8 0" RKP=l,. KEYLEN=8 "j 

DD DSNAME=PART8 6 (PRIME)" DISP=( '. KEEP ),. UNIT= (2311,,2) '. 
VOLUME=SER=(538763,538764), 
SPACE= (CYL; (25)", CONl'IG) , DCB=*;.GROUPl 

DD DSNAME=PART86 (OVFLOW> ,DISP= (,KEEP) , UNIT=2311, 
VOLUME=SER=538765,SPACE=(CYL.15" CONTIG) " 
DCB=* • GROUPl 

The following job step includes the DD statements required to 
retrieve the indexed sequential data set created above. 

//INPUT12 EXEC PGM=ADD 
//RET4 DD DSNAME=PART86,DCB=ISORG=IS,UNIT=2314, 
// DISP=OLD,VOLUME=SER=538762 
// DD DSNAME=PART86,DCB=ISORG=IS,UNIT=(2311,3), 
// DISP=OLD,VOLUME=SER=(538763,538764,838765) 

x 
X 

x 
X 

X 
X 

X 

X 

Two DD statements are required to retrieve the data set because the 
index area resides on a volume of a different device type than the 
volumes on which the prime and overflow areas reside. 

Appendix C: Creating and Retrieving Indexed Sequential Data Sets 299 

Appendix C 





Appendix D: Creating and Retrieving 
Generation Data Sets 

A generation data set is one of a collection of successive. historically 
related. cataloged data sets knain as a generation data group. The 
system keeps track of each data set in a generation data group as it is 
created so that new data sets can be chronologically ordered and old 
ones easily retrieved. 

To create or retrieve a generation data set,. you identify the 
generation data group name in the DSNAME parameter and follow the group 
name with a relative generation number,. When creating a generation data 
set,. the relative generation number tells the system whether this is the 
first data set being added during the job.. the second. the third, etc. 
When retrieving a generation data set. the relative generation number 
tells the system how many data sets have been added to the group since 
thi s dataset was added. 

A generation data group can consist of cataloged sequential. 
partitioned. indexed sequential (if the data set is defined on one DD 
statement), and' direct data sets residing on tape volumes, direct access 
volumes,. or both. Generation data sets can have like or unlike DCB 
attributes and data set organizations. If the attributes and 
organizations of all generations in a group are identical. the 
generations can be retrieved together as a single data set (up to 255 
data sets can be retrieved in this way). 

Before You Define the First Generation Data Set 

Before you define the first generation'data set. you must build a 
generation data group index. This index provides lower-level entries 
for as many generation data sets (up to 255) as you would like to have 
in your generation data group. The system uses these lower-level 
indexes to keep track of the chronological order of the generation data 
sets. The index must reside on the system residence volume, or an 
alternate control volume. You use the IEHPROGM utility program to build 
your index; this program is described in the chapter "The IEHPROGM 
Program" in the Utilities publication. 

Another requirement of generation data groups is that a data set 
label must exist on the same volume as the index. The system uses this 
label to refer to DCB attributes when you define a new generation data 
set. There are two ways to satisfy this requirement: (1) create a 
model data set label before you define the first generation data set; or 
(2) use the DCB parameter to refer the system to an existing cataloged 
data set each time you define a new generation data set. 

Creating a Model Data Set Label 

To create a model data set label, you must define "a data set and request 
that it be placed on the same volume as the generation data group index. 
This ensures that there is always a data set label on the same volume as 
the index to which the system can refer. 

The name you assign to the data set'may be the same or different than 
the name assigned to the generation data group. (If you assign the same 
name for both, the data set associated with the model data set label 
cannot be cataloged.) You may request a space allocation of zero tracks 
or cylinders. The DCB attributes you can supply are' DSORG, OPTCD, 
BLKSIZE, LRECL. KEYLEN. and RKP. 

Appendix D: Creating and RetrieviDJ Generation Data Sets 301 



This is an example of creating a model data set label: 

//DD1 
// 
// 

DD DSNAME=PAY.WEEK,DISP=(NEW.KEEP),UNIT=2311, 
VOLUME=SER=SYSRES, SPACE=( TRK, .0), DCB= (RECFM=FB, 
LRECL=240,BLKSIZE=96 0) 

x 
X 

You need not create a model data set label for every generation data 
group whose indexes reside on the same volume. Instead, you may create 
one model data set label to be used by any number of generation data 
groups. If you create only one model, you should not supply any DCB 
attributes. When you create a generation data set, you spec ify the name 
of the model in the DCB parameter and follow the name with a list of al'l 
the DCB subparameters required for the new generation data set, i.e., 
DCB=(dsname,list of attributes). 

Referring the System to a Cataloged Data Set 

If there is a cataloged data set that resides on the same volume as your 
generation data group index and you are sure that data set will exist as 
long as you are adding data sets to your generation data group, you need 
not create a model data set label. When you create a generation data 
set, you specify the name of the cataloged data set in the DCB 
parameter;, i.e., DCB=dsname. If all the DCB attributes are not 
contained in the label of the cataloged data set, or if you want to 
override certain attributes ,. follow the data set name with these 
attributes" i.e .. , DCB=(dsname ,list of attributes). 

Creating a Generation Data Set 

When defining a new generation data set, you always code the DSNAME, 
DISP, and UNIT parameters. Other parameters you might code are the 
VOLUME, SPACE, LABEL, and DCB parameters. 

THE DSNAME PARAMETER 

In the Il3NAME parameter, you code the name of the generation data group 
followed by a number enclosed in parentheses. This number must be 1 or 
greater. If this is the first data set you are adding to a particular 
generation data group during the job, code +1 in parentheses. Each time 
during the job you add a data set to the same generation data group, 
increase the number by one. 

Any time you refer to this data set later in the job, you use the 
same relative generation number as was used earlier. At the end of the 
job, the system updates the relative generation numbers of all 
generations in the group to reflect the additions. 

THE DISP PARAMEl'ER 

New generations are assigned a status of NEW and a disposition of CATLG 

I in the DISP parameter, i.e., DISP=(NEW,CATLG). If you do not specify a 
disposition, or specify a disposition other than CATLG, the system 
assumes CATLG. 

302 JCL Reference (Release 20.1) 



THE UNIT PARAMETER 

The UNIT parameter is required on any DD statement that de.fines a new 
generation data set unless VOLUME=REF=reference is coded. In the UNIT 
parameter. you identify the type and number of devices you want (tape or 
direct access). 

Another way to request a device is to code UNIT=AFF=ddname; where the 
named DDstatement requests the device or device type you want. 

THE VOLUME PARAMETER 

You may assign a volume in the VOLUME parameter or let the system assign 
one for you. The VOLUME parameter can also be used to request a private 
volume (PRIVATE). to retain the private volume (RETAIN). and to indicate 
that more volumes may be required (volume count). 

THE SPACE PARAMETER 

The SPACE parameter is coded only when the generation data set is to 
reside on a direct access volume. The SPLIT or SUBALLOC parameter can 
be coded in place of the SPACE parameter if the data set's organization 
permits the use of these parameters. 

THE LABEL PARAMETER 

You can specify label type, password protection (PASSWORD). and a 
retention period (EXPDT or RETPD) in the LABEL parameter. If .the data 
set will reside on a tape volume and is not the first data set on the 
volume. specify a data set sequence number. 

THE DCB PARAMETER 

A model data set label that has the same name as the group name may 
exist. If this is so. and if the label contains all the attributes 
required to define this generation, you need not code the DCB parameter. 
If all the attributes are not contained in the label. or if you want to 
override certain attributes. code these attributes in the DCB parameter. 
i.e •• DCB=(list of attributes). 

If a model data set label has a different name than the group name 
and if the label contains ~ll the attributes required to define this 
generation data set, only the name of the data set associated with the 
model data set label need be coded. Code the name in the DCB parameter. 
i.e., DCB=dsname. If all the attributes are not contained in the label. 
or if you want to override certain attributes. follow the data set name 
with these attributes, i.e •• DCB=(dsname.list of attributes>. 

If a model data set label does not exist. you must code the name of a 
cataloged data set that resides on the same volume as the generation 
data group index. i. e. , DCB=dsname. If all the attributes are not 
contained in the label for this data set, or if you want to override 
certain attributes. follow the data set name with these attributes, 
i.e •• DCB=(dsname.list of attributes>. 

Appendix D: Creating and Retrieving Generation Data Sets 303 

Appendix D 



Retrieving a Generation Data Set 

To retrieve a generation dat a set, you always code the DSNAME and DISP 
parameters. other parameter s you might code are the UNIT, LABEL, and 
DCB parameters. 

THE DS NAME PARAMETER 

In the DSNAME parameter, you code the name of the generation data group 
followed by a number enclosed in parentheses. The number you code 
depends on how many new generation data sets have been added to the 
group since this generation data set was added. If none have been added 
prior to the job, code a zero (O)~ If one has been added prior to the 
job, code (-1). Decrement the number by 1 until you determine the 
present relative generation number of the data set, then code this 
number. 

Any time you refer to this data set later in the job, you use the 
same relative generation number as was used earlier, even if another 
generation has been added during the job.. 

If you want to retrieve all generations of a generation data group as 
a single data set, you specify the generation data group name without a 
generation number, e.g,., DSNAME=WEEKLY.PAYROLL. You can retrieve all 
generations as a single data set only if the attributes and 
organizations of all generations are identical. 

THE DISP PARAMETER 

The DISP parameter must always be coded. 
DISP parameter must be OLD. SHR, or MOD. 
disposition as the second subparameter. 

THE UNIT PARAMFl' ER 

The first subparameter of the 
You can, optionally, assign a 

Code the UNIT parameter when you want more than one device assigned to 
the data set. Code the number of devices you want in the unit count 
subparameter, or, if the data set resides on more than one volume and 
'you want as many devices as there are volumes, code P in place of the 
unit count subparameter,. 

THE LABEL PARAMETER 

Code the LABEL parameter when the data set has other than standard 
labels,. 

THE DCB PARAMETER 

Code the DCB parameter when the data set has other than standard labels 
and DCB information is required to complete the data control block. 

Resubmitting a Job for Restart 

Certain rules apply when you refer to generation data sets in a job 
resubmitted for restart (the RESTART parameter is coded on the JOB 
statement) • 

304 JCL Reference (Release 20.1) 



For step restart: If step restart is performed, generation data sets 
that were created and cataloged in steps preceding the restart step must 
not be referred to in the restart step or in steps following the restart 
step by means of the same relative generation numbers that were used to 
create them. Instead, you must refer to a generation data set by means 
of its present relative generation number. For example, if the last 
generation data set created and cataloged was assigned a generation 
number of +2, it would be referred to as 0 in the restart step and in 
steps following the restart step. In this case, the generation data set 
assigned a generation number of +1 would be referred to as -1. 

For checkpoint restart: If generation data sets created in the restart 
step were kept instead of cataloged (i.e .•• OISP=(NEW.CATLG.KEEP) was 
coded), you can, during checkpoint restart, refer to these data sets and 
generation data sets created and cataloged in steps preceding the 
restart step by means of the same relative generation numbers that were 
used to create them. 

Reference 

1. Generation data sets can be created and retrieved using utility 
programs. How to do this is described in "Appendix E: Generation 
Oata Groups" in the Utilities publication. Also described in this 
appendix is how to put indexed sequential data sets in a generation 
data groupo 

Example of Creating and Retrieving Generation Data Sets 

1. The following job step includes the 00 statements that could be 
used to add three data sets to a generation data group. 

//STEPA 
//001 00 
// 
//002 00 
// 
//D03 OD 
// 
// 

EXEC PGM=PROCESS 
DSNAME=A.B.C(+1),DISP=(NEW,CATLG),UNIT=2400, 
VOL=SER=13846,LABEL=(,SUL) 
DSNAME=A.B.C(+2),DISP=(OLD,CATLG),UNIT=2311, 
VOL=SER=10311 
DSNAME=A.B.C(+3),DISP=(NEW,CATLG),UNIT=2301, 
VOL=SER=28929,SPACE=(480,(150,20»,OCB=(LRECL=120, 
BLKSIZE=480) 

x 

x 

x 
X 

The first two OD statements do not include the DCB parameter; 
therefore, a model data set label must exist on the same volume as 
the generation data group index and must have the same name as the 
generation data group (A.B.C). Since the DCB parameter is coded 
on the third DD statement, the attributes LRECL and BLKSIZE, along 
with the attributes included in the model data set label, are 
used. 

The following job includes the DD statements required to retrieve 
the generation data sets defined above when no other data sets 
have been added to the generation data group. 

//JWC JOB CLASS=B 
//STEP1 EXEC PGM=REPORT9 
//DDA DD DSNAME=A.B.C(-2),DISP=OLD,LABEL=(,SUL) 
/ /DDB DD DSNAME=A.B. C (-1) "DISP=OLD 
//DDC DD DSNAME=A.B.C(O),DISP=OLD 

Appendix D: Creating and Retrieving Generation Data Sets 305 

Appendix D 



". 



Appendix E: Default Parameter Values 
Supplied in the Input Reader Procedure 

As your control statements are read and interpreted, the input reader 
assigns default values to specific parameters that are not coded and 
checks for violations of certain restrictions. The default values for 
specific parameters and the restrictions are specified in the cataloged 
procedure for the. input reader. 

The input reader is controlled by a reader/interpreter cataloged 
procedure supplied by IBM or the installation. The default parameter 
values and restrictions will probably differ in the IBM-supplied and the 
installation-supplied procedures • 

. How to Keep Track of the Default Values and Restrictions 

Table 4 lists the parameters for which default values are assigned when 
they· are not coded on specific control statements. The default values 
assigned to these parameters when an IBM-supplied cataloged procedure is 
used are also listed. Space is left in the right-hand portion of the 
table so you can write in the default values that will be assigned when 
an installation-supplied procedure is used. Table 4 also lists those 
restrictions that must be checked as the control statements are read and 
tells which apply when an IBM-supplied procedure is used. Space is left 
in the right-hand portion of the table so you can write in which of 
these restrictions apply when a installation-supplied procedure is used. 

The page on which Table 4 appears may be removed from the publication 
and placed in a convenient location, so that you and other programmers 
can refer to it. 

Appendix E 

Appendix E: Defaul t Param·eter Values Supplied in the Input Reader Procedure 307 





Table 4. Default Values and Restrictions Supplied in the Input Reader 
Procedures 

r----------------------------------------------------------------------, 
I Default Parameter Values I 
~---------------~-----------~-------------T--------------------------i 
I I I I Installation-supplied I 
I Parameter 'Istatement IIBM-Supplied ~------------T-------------~ 
1 I I I Name: 1 Name: I 
r----------------f------------+-------------+------------+-------------i I I MSGCLASS I JOB IA I 1 I 
IMSGLEVEL IJOB 1 (0,,1) I I I 
1 PRTY I JOB 11 I 1 I 
I REGION IJOB and EXECI50K I I 1 
I TIME I EXEC 130 minutes I I I 
1 ROLL IJOB and EXECI (YES,NO) 1 1 1 
I UNIT (note 2) I DD I SYSDA I I I 
ISPACE (note 2) 1 DO 1 (TRK, (50,,10» I I I 
IBLKSIZE (note 3)IDO I (note 1) 1 1 I 
IBUFNO (note 3) 100 1 (note 1) 1 I I 
~----------------~------------~-------------~-----------~-------------i 
I Restrictions I 
~-------------~----------~------------~--------------------------~ 
I I I I Installation-Supplied I 
I Parameter or I statement I IBM-supplied r:-----------T-------------i 
1 Subparameter I I I Name: I Name: I 
.----------------+------------+-------------+------------+-------------~ 
I Accounting I I I I I 
I Information I JOB I not required I I I 

,I Programmer's 1 I 1 I I 

I 

I Name I JOB Inot required I I I 
1 BLP (note 4) I DO I NL assumed I I I 
~----------------~------------~-------------~-----------~-------------i 
I 
I Notes: 
I 
1. The default value differs in each of the three .IBM-supplied 

procedures, as follows: 

r-----------------~----------------------------------------, 
I I Procedure Name I 
I ~-------------T-~-----------T-----------~ 
I I RDR I RDR400 I RDR3200 I 
I ~-------------+--------------+-----------i 
I BLKSIZE I 80 I 400 I 3200 I 
I BUFNO I 2 I 2 I 1 I L __________________ ~ _____________ ~ ______________ ~ __________ J 

2. The default values for the UNIT and SPACE parameters are used when I 
you do not include these parameters on a DD statement that defines I 
a data set being routed through an output stream (i.e., the SYSOUTI 
parameter is coded on the DD statement). These default values I 
also apply to data sets being routed through an output stream I 
during any automatic restart. I 

I 
13. The default values for the DCB subparameters BLKSIZE and BUFNO arel 
I used when you do not include these subparameters on a OD statement I 
I that defines data in the input stream (i.e •• DD * or DO DATA I 
I statement). I 
I I 
14. BLP is a subparameter in the LABEL parameter that requests that I 
1 tape label processing be bypassed. I L ______________________________________________________________________ J 

Appendix E 

Appendix E: Default Parameter Values Supplied in the Input Reader Procedure 309 





Appendix F: A Checklist 

When you create or retrieve a data set, the system requires certain 
information. This information is supplied on the DD statement that 
defines the data set. 

This appendix can be used as a checklist: As you code your DD 
statements, find the function you are perf orming in the left-hand column 
of Table 5. Across from the function are two separate lists of 
parameters. These parameters describe the information that you must 
supply to the system and the information that you may have to supply. 
You can compare your DD statement with what is listed to make sure all 
the required information is available'to the system. 

Following Table 5 are examples of the DD statements that might be 
used when performing functions described in the table. Each example is 
keyed by number to a particular block within the table. If you do not 
understand why a parameter is listed for the function, either look at 
the example that corresponds to the number within the block or refer to 
the parameter description in section IV of this pUblication,. 

Table 5. A Checklist (Part 1 of 3) 
r----------------------------------T-----------------------T-----------, 
I I 1 Information I 
I FUNCTION: IInformation That Is IThat May I 
I Creating a Data Set IAlways Required IBe Required 1 

~----------------------------------~-----------------------L-----------i 
I Temporaxy Data sets 1 
~---------------------------------T-----------------------T-----------i 
I Creating a Data set I UNIT 11 DCB 21 
I on a Unit Record Device I 1 UCS I 
~---------------------------------t-----------------------t-----------i I Creating a Data set on I UNIT 31 DCB 41 
I a Tape Volume I I VOLUME I 
I I I LABEL I 
~----------------------------------t-----------------------t-----------i I Creating a Data Set in I SYSOUT 71 DCB 81 II the OUtput Stream 1 I UNIT 1 
I I I SPACE I 
~---------------------------------t-----------------------t-----------i 
I Creating A Data set I UNIT 91 DCB 101 
I on a Direct Access I SPACE I VOLUME 1 
I Volume I I LABEL 1 
~----------------------------------~-----------------------L-----------i 
I Nontemporary Data sets 1 
~---------------------------------T-----------------------T----------~ 
1 Creating a Data Set I UNIT 111 LABEL 121' 
I on a Tape Volume I DSNAME I DCB I 
I I DISP I VOLUME I 
~---------------------------------t-----------------------t-----------i 
~ Creating a Generation I DISP 131 DCB 141 
I Data Set on a Tape I UNIT I LABEL I 
J Volume I DSNAME I VOLUME I L __________________________________ ~ _______________________ L ___________ J 

Appendix F: A Checklist 311 

Appendix F 



Table 5,. A Checklist (Part 2 of 3) 

r----------------------------------T-~---------------------T-----------, 
I I. I Informa tion I 
I Creating a Nontemporary I Information That· Is IThat May 1 
I Data Set (con't) IAlways Required IBe Required I 
~----------------------------------+-----------------------+----------~ 
1 Creating a sequential I UNIT 151 LABEL 161 
I Data Set on a Direct Access I DSNAME 1 DCB I 
I Volume (BSAM or QSAM) I DISP I VOLUME I 
I I SPACE, SPLIT, orSUBALLOC I I 
~--------------~-------------------+-----------------------+----------~ 
I Creating a Data set With I UNIT 171 LABEL 181 
I Direct Organization on a I DSNAME I VOLUME 1 
I Direct Access Volume (BDAM) I DISP I 1 
I I SPACE or SUBALLOC I 1 
I I DCB 1 I 
t----------------------------------+-----------------------+-----------~ 
I Creating a Partitioned I UNIT 191 LABEL 201 
I Data Set on a Direct Access I DSNAME 1 VOLUME I 
I Volume (BPAM) I DISP I DCB I 
I I SPACE or SUBALLOC I I 
t----------------------------------+-----------------------+-----------~ 
I Creating a New Member I DISP 211 UNIT 221 
I for a Partitioned Data 1 DSNAME 1 VOLUME I 
I Set I I I 
.----------------------------------+-----------------------+-----------~ 
I Creating a Data Set With I UNIT 231 VOLUME 241 
I Indexed Sequential Organi ~ I DSNAME I LABEL I 
1 zation on a Direct Access 1 DISP I I 
I Volume (QISAM) I DCB I I 
1 I SPACE I I 
t----------------------------------+-----------------------+-----------~ 
I Creating a Generation I SPACE 251 DCB 261 
I Data Set on a Direct I DISP I LABEL I 
I Access Volume I UNIT I VOLUME I 
1 1 DSNAME 1 I 
t----------------------------------+-----------------------+-----------~ 
I FUNCTION: 1 I I 
1 Retrieving a Data Set I I I 
t----------------------------------+-----------------------+-----------~ 
I Retrieving a Cataloged I DSNAME 271 DCB 281 
I Data Set 1 DISP I LABEL I 
I I 1 UNIT I 
~----------------------------------+-----------------------+-----------~ 
1 Retrieving a Noncataloged I DSNAME 291 LABEL 30 I 
I Data Set on a Tape I UNIT 1 DCB 1 
1 Volume I VOLUME I I 
1 1 DISP 1 I 
t----------------------------------f-----------------------+-----------~ 
I Retrieving a Noncataloged 1 UNIT 311 LABEL 321 
I sequential Data Set on a I VOLUME 1 I 
I Direct Access Volume I DSNAME 1 I 
I (BSAM or QSAM) I. DISP 1 I 
t----------------------------.------+----'-------------------+-----------~ 
I Retrieving a Noncataloged 1 UNIT 331 LABEL 341 
1 Data Set with Direct 1 VOLUME 1 I 
I Organization on a Direct 1 DSNAME 1 I 
I Access Volume (BDAM) I DISP I I 
t----------------------------------+-----------------------+-----------~ 
I Retrieving a Member of 1 DISP 351 UNIT 361 
I a Partitioned Data Set 1 DSNAME 1 VOLUME 1 
1 (BPAM) I I I L __________________________________ ~ _______________________ ~ ___________ J 

312 JCL Reference (Release 20.1) 



Table 5 A Checklist (Part 3 of 3) 
r----------------------------------T-----------------------T-----------, 
I I! I Information I 
I Information That Is IThat May 1 
I Retrieving a Data Set IAlways Required IBe Required I 
~----------------------------------+-----------------------t-----------i 
I Retr ieving a Data set I DSNAME 37 I I 
I with Indexed sequential I UNIT 1 1 
I Organization on a Direct I VOLUME I I 
I Access Volume (QISAM or I DCB 1 I 
I BISAM) I DISP 1 1 
~--------------------------------+-----------------------t-----------i 

·1 Retrieving a Passed 1 DSNAME 381 LABEL 391 
1 Data Set I DISP 1 DCB 1 
I I 1 VOLUME 1 
I I 1 UNIT 1 
r----------------------------------+-----------------------t-----------i 
I Retrieving a Generation I DSNAME 401 DCB 411 
1 Data Set I DISP 1 LABEL 1 
I I I UNIT 1 L __________________________________ ~ _______________________ ~ ___________ J 

Examples 

~ //DDA DD UNIT=1404 

® / /DDB DD UNIT=14 03,. UCS=PCAN,. DCB=PRTSP=2 

® //DDC DD UNIT=2400 

0 //DDD DD UNIT=2400-1.DCB=DEN=1.VOLUME=SER=14187,LABEL=2 

® //DDE DD SYSOUT=L 

® //DDF DD SYSOUT=G:. DCB=PRTSP=2 

(2) //DDG DD SYSOUT= (M. ,.7956) 

0 //DDH DD SYSOUT=B,. UNIT=2301,SPACE= (80 ,300) , DCB=BLKSIZE=64 0 

0 //DDI DD UNIT=SYSDA,.SPACE= (TRK,. (20,5» 

@ //DDJ DD UNIT=2311,SPACE=(CYL. (2,1» , DCB= (RECFM=S,LRECL=X), 
// LABEL=(,SUL).VOLUME=SER=190853 

Appendix F 

@ //DDK DD UNIT=24 00" DSNAME=OUT" DISP= (NEW" KEEP) 

@ //DDL DD UNIT=2400-2. DSNAME=WLK18,. DISP= (,KEEP). LABEL= (, NL) • X 
// ~CB=TRTCH=c,VOLUME=SER=1540 

@ //DDM DD DISP=(.CATLG),UNIT=2400.DSNAME=WEEK.PAY(+1) 

@ //DDN DD DISP= t. CATLG). UNIT=2400-1.DSN=YEAR.M:>N( +1), X 
// LABEL=(.SUL).DCB=A.B.C.VOLUME=SER=GDG18 

Appendix F: A Checklist 313 



@ //Doo DD UNIT=2311,DSNAME=LNG, DISP= (,KEEP) ,SPACE= (TRI\, (12,2» 

@ //DDP DD UNIT=2314" DSNAME=CLB, DISP= (, CATLG) , X 
// SPACE=( 1024, (100,25) ),LABEL= (,SUL" EXPDT=70180), X 
// VOL=SER=S12148,DCB=(BLRSIZE=240,RECFM=FB,LRECL=60) 

® //DOO DD UNIT=2311.,DSNAME=JCD, DISP= (NEW, KEEP)" X 
// SPACE=(CYL,(8,1»,DCB=DSORG=DA 

@ //DDR DO UNIT=2302,DSN=MT12,DISP=(,PASS), X 
// SPACE=(1024,(200,10»,DCB=(DSORG=DA,BLKSIZE=200, X 
// KEYLEN=4,RECFM=F),LABEL=(,SUL),VOLUME=SER=49878 

@ //DDS DD UNIT=2302,DSNAME=PDS14,DISP=(NEW,KEEP), X 
// SUBALLOC= (CYL, (20,1,3) , STEP1 .• DD1) 

@) //DDl' DO UNIT=2314, DSNAME=AHTRY, DISP= (, CATLG) " X 
// SPACE = (CYL, (8,2,2) ) , LABEL= ( "PASSWORD) , X 
// VOLUME=SER=158 491, DCB= (RECFM=F,LRECL=8 0) 

® //DDU DO DSNAME=AHTRY(SET4),DISP=OLD 

@ //DDV DO UNIT=2302,VOLUME=SER=X13912,DISP=OLD, X 
// DSNAME=SHTR(MEMB2) 

@ //DDW DD UNIT=2311,DSNAME=DAT(PRIME),DISP=(NEW,KEEP), X 
// DCB=DSORG=IS,SPACE=(CYL,(5"l» 

@ //DDX DD UNIT=2302,DSN=ISQ (PRIME) ,DISP= (,KEEP) ,DCB= (DSORG=IS, X 
// BLKSIZE=240,CYLOFL=l,OPTCD=MYLR,RECFM=FB,LRECL=60, X 
// RKP=19., KEYLEN=10) ,SPACE= (CYL,2) " VOL=SER=535861, X 
// LABEL=EXPDl'=70301 
// DD UNIT=2302,DSN=ISQ<OVFLOW),DISP=(,KEEP),DCB=*.DDX, X 
// SPACE= (CYL,l) " VOL=SER=538267,LABEL=EXPDT=70301 

@ //DDY DD DSNAME=PAY.WEEK(+1),DISP=(,CATLG),UNIT=2314, X 
// SPACE = (TRK, (3,2» 

@ //DDZ DO DSl'J=INV.FORM8(+2),DISP=(,CATLG),UNIT=2311, X 
// VOLUME=SER=SA2103,LABEL=(,SUL),DCB=(MODEL2,RECFM=F, X 
// LRECL=80),SPACE=(CYL,(2,1» 

@ //DD1 DO DSNAME=A,. B. C " DISP=OLD 

@ //DD2 DD DSN=KELL12, DISP=OLD, LABEL= (, NSL) " UNIT=(, P) , X 
// DCB=(BUFNO=4,HIARCHY=1) 

@ //DD3 DD DSNAME=FILE18,UNIT=2400,DISP=OLD,VOL=SER=96977 

@) //DD4 DO DSNAME=MILS,UNIT=2400-2,DISP=(OLO,PASS),VOL=SER=9818, X 
// LABEL=(,NSL),DCB=(BLKSIZE=1600,LRECL=80) 

@ //DD5 DD DSNAME=GLOSS,DISP=OLD, UNIT=2311., VOLUME=SER=P14992 

@ //DD6 DO DSNAME=LAB14,UNIT=2301,DISP=OLD,VOLUME=SER=H69568, X 
// LABEL=(,SUL"IN) 

314 JCL Reference (Release 20.1) 



@) //DD7 DD DSNAME=SERNOS,DISP=OLD.UNIT=2311,VOLUME=SER=X20 

@ //DD8 DD DSN=BOLS., DISP=OLD, VOLUME=SER=W5898, UNIT=2302, X 
// LABEL=(,.SUL) 

@ //DD9 DD DSN=PGM(A81).DISP=OLD 

@ //DD10 DD DSNAME=LIBS (PROJ6 ) " UNIT= 2 3 0 1" DIS P=OLD" VOL=SER=D4 762 

@ //ODl OD DSNAME=IN031" UNIT= (2311, 2), DISP=OLD, VOLUME=SER (C2 021" X 
// C2022) " DCB=DSORG=IS 

@ //DD12 DD DSNAME=CHAN,DISP=(OLD,KEEP) 

® //OD13 DD DSNAME=*,. STEP1.CREATE, DISP= (OLD, DELEl'E) , LABEL= (, NL) I, X 
// UNIT=(,2),VOLUME=(PRIVATE,,4),DCB=*.STEP1.CREATE 

® //DD14 DD DSNAME=PAY • WEEK (~3) " DISP=OLD 

@ //OD15 OD DSN=INV.FORM8 (0) ,DISP=OLD,LABEL= (,SUL),UNIT= <,P), X 
// DCB= (BLKS IZ E= 2 40, RECFM=FB, LRECL= 6 0) 

Appendix F 

Appendix F: A Checklist 315 





* parameter: This parameter is coded as 
the first parameter on a DD statement that 
precedes data in the input stream. 

ACCT parameter: This parameter is used to 
supply accounting information for a job 
step to an installation accounting routine 
and is coded on an EXEC statement. 

AFF parameter: This parameter is used to 
request the same channel separation from 
certain data sets as was requested earlier 
in the job step. The AFF parameter is 
coded on a DD statement. 

alias: An alternate name that may be used 
to refer to a member of a partitioned data 
set. 

allocation: The process of assigning a 
resource to a job step. 

automatic restart: A re start of a job 
after a job step abnormally terminates. 
The restart takes place during the current 
run, that is, without resubmitting the job. 

automatic volume recognition (AVR): A 
feature that allows the operator to mount 
labeled volumes on available input/output 
devices before those volumes are required 
by a job step. 

auxiliary storage: Data storage other than 
main storage; secondary storage .• 

background job: A job that is .entered 
through a time sharing terminal by means of 
the SUBMIT command or through the input 
stream (SYSIN). 

backward reference: A facility of the job 
control language that permits you to copy 
information or refer to DD statements that 
appear earlier in the job. 

block prefix: An optional field that may 
precede the first or only record in a 
block. For D-format records, the block 
prefix can contain the actual block length. 

catalog: 
1. The collection of all data set indexes 

maintained 'by data management. Each 
entry contains a data set name and 
volume and unit information about the 
data set,. 

Section XII: Glossary 

2. To place an entry for a data set in 
the catalog.. To specify this on a 
control statement, code 
DISP= (status, CATLG) on the DD 
statement that defines the data set 
you want cataloged. A cataloged data 
set is easy to retrieve. 

cataloged data set: A data set that is 
represented in an index or hierarchy of 
indexes in the system catalog, the indexes 
provide the means for locating the data 
set. 

cataloged procedure: A set of job control 
statements that has been assigned a name 
and placed in a partitioned data set known 
as the procedure library. To use a 
cataloged procedure, code the procedure 
name on an EXEC statement. 

checkpoint/restart: A facility of the 
operating system that can minimize time 
lost in reprocessing a job step that 
abnormally terminated,. The CHKPT macro 
instruction, the RESTART parameter on the 
JOB statement, and the RD parameter on the 
JOB or EXEC statement are associated with 
this facility_ 

checkpoint restart: A restart within a job 
step. The restart may be automatic 
(depending on an eligible completion code 
and the operator's consent) or deferred l 

where deferred involves resubmitting the 
job and coding the RESTART parameter on the 
JOB statement of the resubmitted job. 

CLASS parameter: This parameter is used to 
assign a job class to your job and is coded 
on a JOB statement. In multiprogramming 
systems, jobs within a job class are 
initiated according to their priority 
numbers. 

command statement: A job statement that is 
used to issue commands to the system 
through the input stream. • 

comment statement: A job control statemen't •• 
used to contain information that may be 
helpful to yourself or another person that 
may be running your job or reviewing your 
output listing. 

concatenated data sets: A group of input 
data sets that are treated as one data set 
for the duration of a job step. 

Section XII: Glossary 317 



'COND parameter: This parameter is used to 
test return codes issued by the processing 
programs; any test that is satisfied causes 
the job to be terminated or a job step to 
be bypassed. The COND parameter is coded 
on a JOB or EXEC statement. 

control volume: A volume that contains one 
or more indexes of the catalog. 

data control block (DCB): A control block 
used to contain certain attributes required 
by an access method to store or retrieve a 
data set. The DCB parameter is one means 
of supplying attributes. 

DATA parameter: This parameter is coded as 
the first parameter on a DO statement that 
precedes data in the input stream when the 
da~a contains job control statements. 

data set: An organized collection of 
related data in one of several prescribed 
arrangements.. The information required to 
store and retrieve this data is defined on 
a OD statement. 

data set control block: A data set label 
for a data set on a direct access volume. 

data set label: A collection of 
information that describes the attributes 
of a data set. The data set label f or a 
data set is normally on the same volume as 
the data set it describes. 

DCB: See data control block. 

DCB parameter: This parameter is used to 
supply attributes about the data set that 
are needed to complete the data control 
block. The DCB parameter is coded on a DO 
statement. 

D format: A data set format in which ASCII 
records are variable lengths. 

DD (data definition) statement: A job 
control statement that defines a data set 
that is being created or retrieved in a job 
step. DD statements follow an EXEC 
statement. 

ddname (data definition name): A name 
assigned to a DO statement.. This name 
corresponds to the ddname appearing in a 
data control block. 

OONAME parameter: This parameter is used 
to postpone the definition of a data set 
until later in the same job step and is 
coded on a 00 statement. 

deferred restart: A restart that is 
performed when a job is resubmitted and the 
RESTART parameter is coded on the JOB 
statement of the resubmitted job. 

318 JCL Reference (Release 20.1) 

delimi ter statement: A job control 
statement used to mark the .end of data. 
The characters /* appear in columns 1 and 2 
of this control statement. 

device type: A number that corresponds to 
a type of input/output device. Coding the 
device type in the UNIT parameter is one 
way of indicating what input/output device 
you want allocated to a job step. 

direct access device: An auxiliary storage 
device in which the access time is 
effectively independent of the location of 
the data set. 

direct data set: A data set whose records 
are in random order on a direct access 
volume. Each record is stored or retrieved 
according to its actual address or its 
address relative to the beginning of the 
data set. 

directory: A series of 256-byte records at 
the beginning of a partitioned data set 
that contains an entry for each member in 
the data set. 

DISP parameter: This parameter is used to 
describe the status of the data set and 
indicates what should be done with the data 
set after termination of the job step that 
processes it, or at the end of the job. 
The DISP parameter is coded on a DD 
statement. 

dispatching "priority: The number assigned 
to a task" which in a mul ti task 
environment, determines the order in which 
the tasks may use main storage and CPU 
re sources,. 

DPRTY parameter: This parameter is used to 
assign a dispatching priority to a job step 
and is coded on an EXEC statement. 

DSN parameter: This parameter is used to 
assign a name to a new data set or to 
identify an existing data set and is coded 
on a DO statement. Coding DSN is the same 
as coding DSNAME. 

DSNAME parameter: This parameter is used 
to assign a name to a new data set or to 
identify an existing data set and is coded 
on a DO statement. Coding DSNAME is the 
same as coding OSN. 

DUMMY parameter: This parameter is used to 
tell the system that the processing program 
should be executed, but no input or output 
operations should be performed on a 
particular data set. The DUMMY parameter 
is coded as the first parameter on a 00 
statement. 



DYNAM parameter: For TSO, this parameter 
is used to specify that dynamic allocation 
of data sets is to be used. This allows 
you to defer definition of data set until 
you require it. If DYNAM is used in the 
background (batch environment) " it means 
the same as DUMMY. The DYNAM parameter is 
coded on a DD statement. 

dynamic storage: That portion of main 
storage that is subdivided into partitions 
or regions for use by the programs 
associated with job steps and some system 
tasks. 

Exclusive control: This means that only 
one job at a time can process a data set. 
A request for an exclusively controlled 
data set will not be processed until the 
job with control terminates. Also a 
request for the data set name itself will 
not be processed -- even though the name 
may not refer to the same physical data 
set. 

EXEC (execute) statement: A job control 
statement that marks the beginning of a job 
step and identifies the program to be 
executed or the cataloged or in-stream 
procedure to be used. 

extent: A contiguous area of storage on a 
direct access volume in which a data set 
resides. A data set may reside in m0re 
than one area of storage on one or more 
volumes. 

F format: A data set format in which the 
logical records are the same length. 

FCB paramet er: This parameter is used to 
specify the forms control image you want to 
use to print an output data set on a 3211 
printer. The FCB parameter is coded on a 
DD statement.. . 

fixed-length record: A record having the 
same length as all other records with which 
it is logically or physically associated. 

foreground: The environment in which 
programs invoked by commands are performed. 
Programs are swapped in and out of main 
storage as necessary to efficiently utilize 
main storage. 

foreground job: Any job executing in a 
foreground region, such as a command 
processor or a terminal user's program. 
Also called a "terminal job." 

generation data group: A collection of 
data sets that are kept in chronological 
order; each data set is called a 
generation. The DSNAME parameter is used 
to define the generation you are creating 
or retrieving. 

generation data set: One generation of a 
generation data group. 

group name: A 1- to 8-character name that 
identifies a device or a collection of 
devices. Coding a group name in the UNIT 
parameter is one way of indicating what 
type of input/output device you want 
allocated to a job step. 

index: 
-r:--A table in the catalog used to locate 

data sets. 
2. A table used to locate the records of 

an indexed sequential data set. 

indexed sequential data set: A data set or 
one or more direct access volumes whose 
records contain a key portion, and the 
location of each record depends on the 
contents of the key portion. The location 
of each record is computed through the use 
of an index. 

initiation: The process of selecting a job 
step for execution and allocating 
input/output devices for the job step. 

input job gueue: A queue of summary 
information of· job control statements 
maintained by the job scheduler, from Which 
it selects the jobs and job steps to be 
processed. 

input stream: The sequence of control 
statements and data submitted to the 
operating system on an input device 
especially activated for this purpose by 
the opera tor. 

In-stream procedures: A set of job control 
statements, beginning with a PROC statement 
and ending with a PEND statement, that have 
been placed in the input stream. An 
in-stream procedure can be executed any 
number of times during the job in which it 
appears. 

job: A total processing application that 
consists of one or more processing programs 
required to perform the application. A job 
is identified by a JOB statement,. 

JOB statement: A job control statement 
that marks the beginning of a job., and when 
jobs are stacked in the input stream, marks 
the end of the control statements for the ~ 
preceding job. __ 

job class: An alphabetic character of A 
through 0 that characterizes the type of 
job you are submitting. Each job class is 
defined by the installation; you indicate 
the type of job you are submitting in the 
CLASS parameter on the JOB statement. In 
multiprogramming systems, jobs within a job 
class are initiated according to their 
priority numbers. 

section XII: Glossary 319 



job control language: A high-level 
programming language used to code job 
control statements" which describe a job to 
the operating system and inform the system 
of how the job is to be processed. 

job control statement: Anyone of the 
control statements in the input stream that 
identifies a job or defines its 
requirements. 

job library: See private library. 

job management: A general term that 
collectively describes the functions of the 
job scheduler and master scheduler. 

job processing: The reading of control 
statements and data from an input stream, 
the initiating of job steps defined in 
these statements, and the writing of system 
output messages. 

job scheduler: A control program function 
that controls input streams and sy,stem 
output, obtains input/output devices for 
jobs and job steps, and regulates the use 
of the computing system by jobs. The job. 
scheduler is made up of the 
reader/ int erpreter., ini tia tor/termina tor, 
and output writer. 

job step: The unit of work associated with 
one processing program or one cataloged 
procedure, and related data. A job 
consists of one or more job steps. 

JOBLIB: A special ddname that when 
specified on a DD statement indicates to 
the system that you are defining a private 
library. 

jobname: The name assigned to a JOB 
statement; it identifies the job to the 
system. 

!: 1024 bytes. 

keyword: A symbol that identifies a 
parameter or subparameter. 

keyword parameter: A parameter that 
consists of a keyword followed by an equal 
sign, followed by a single value or a list 
of subparameters. Keyword parameters must 
follow positional parameters in the operand 
field of a job control statement, but the 
keyword parameters may appear in any order. 

LABEL parameter: This parameter is used: 
(1) to describe the data set label 
associated with the data set; (2) to 
describe the sequence number of a data set 
that does not reside first on a reel; (3) 
to assign a retention period; (4) to assign 
password protection; and (5) to override 
the OPEN macro instruction (BSAM only). 

320 JCL Reference (Release 20,.1) 

The LABEL parameter is coded on a DD 
statement,. 

library: 
1. In general, a collection of 

information associated with a 
particular use, and the location of 
which is identified in a directory of 
some type. In this context, see link 
library, private library" system 
library. 

2. Any partitioned data set. 

limit priority: A priority associated with 
every task in an MVT system, representing 
the highest dispatching priority that the 
task may assign to itself or to any of its 
subtasks. 

link library: A partitioned data set named 
SYS1.LINKLIB. Each member is a processing 
program and is called in the PGM parameter 
on the EXEC statement or in the ATTACH, 
LINK, LOAD" and XCTL macro instructions. 

logical record: A record that is defined 
in terms of the information it contains 
rathe+ than by its physical traits. You 
may have to specify the length of the 
logical record to complete the data control 
block; one way to specify this is in the 
LRECL subparameter of the DCB parameter. 

main storage: All addressable storage from 
which instructions can be executed or from 
which data can be loaded directly into 
registers. 

main storage hierarchy support: An option 
that divides main storage into two blocks 
known as hierarchies; hierarchy 0 is 
assigned to processor storage and hierarchy 
1 to the IBM 2361 Core Storage unit. 

master scheduler: The part of the control 
program that responds to operator commands 
and returns required information. 

member: An independent" sequentially 
organized data set identified by a unique 
name in a data set directory. 

Message Control Program (MCP): A set of 
user-defined TCAM routines that identify 
the teleprocessing network to the IBM 
System/360 Operating System, establish the 
line control required for the various kinds 
of stations and modes of conne~ion, and 
control the handling and routing of 
messages in accordance with the user's 
requirements. 

MFT (multiprogramming with a fixed number 
of tasks): A control program that provides 
priority scheduling of a fixed number of 
tasks. A priority scheduler is used in 
MFT. 



MSGCLASS parameter: This parameter is used 
to assign an output class to the system 
messages for your job and is coded on a JOB 
statement. 

MSGLEVEL parameter: Thi s parameter is used 
to indicate what job control statements and 
allocation/termination messages you want 
displayed as output from your job and is 
coded on a JOB statement. 

multiprogramming: Executing more than one 
job step concurrently. 

mutually exclusive: The term applied to 
two parameters that cannot be coded on the 
same job control statement. 

MVT (multiprogramming with a variable 
number of tasks): A control program that 
provides priority scheduling of a variable 
number of tasks. A priority scheduler is 
used in MVT. 

MVT with Model 65 multiprocessing: An 
extension of MVT. This control program is 
used with the Model 65 multiprocessing 
(M65MP) system. 

M65MP: See MVT with Model 65 
Imlltiprocessing. 

name: A 1- to a-character term, beginning 
with an alphabetic or national (#, ., $) 
'character, that identifies a data set, a 
control statement, a program, or a 
cataloged procedure. 

nonspecific volume request: A request for 
volumes that allows the system to select 
suitable volumes. This type of request can 
only be made when defining an output data 
set. 

nontemporary data set: A new data set that 
exists after the job that created it 
terminates. 

NOTIFY parameter: This parameter indicates 
to the system that a message is to be sent 
to your time sharing terminal when your job 
completes. The NOTIFY parameter is coded 
on the JOB statement. 

null statement: A job control statement 
used to mark the end of a job's control 
statements and data. 

OUTLIM parameter: This parameter is used 
to specify the maximum number of logical 
records you want included for the output 
data set being ~outed through the output 
stream. The OUTLIM parameter is coded on a 
DO statement that must also contain the 
SYSOUT parameter. 

output class: An alphabetic or numeric 
character that characterizes the type of 
output data to be written to a unit record 
device. Each output class is defined by 
the installation. For system messages, you 
indicate the type of output data in the 
MSGCLASS parameter on a JOB statement; for 
output data sets. you indicate the type of 
output data in the SYSOUT parameter on a DO 
statement. 

output listing: A form that is printed at 
the end of your job that may contain job 
control statements used by your job" 
diagnostic messages about your job, data 
sets created by your job. or a dump. 

output stream: Diagnostic messages and 
other output data issued by the operating 
system or the processing program on output 
devices especially activated for this 
purpose by the operator. 

output writer: A part of the job scheduler 
that writes output data sets onto a system 
output device, independently of the 
programs that produced the data sets. 

PARM parameter: This parameter is used to 
supply a processing program with 
information it requires at the time the 
program is executed and is coded on an EXEC 
statement. 

parameter: A character string that is 
recognized as having meaning by the 
reader/interpreter. For most of these 
character strings, variable information is 
provided to give a constant value for a 
specific process or purpose. 

partition: In systems with MFT, a 
subdivision'of the dynamic area of main 
storage set'aside for a job step or a 
system task. 

partitioned data set: A collection of 
independent groups of sequential records on 
a direct access volume, each of which is 
called a member. Each member has a unique 
name and is listed in a directory at the 
beginning of the data set. 

PEND statement: A job statement used to ~ 
mark the end of an in-stream procedure. _ 

PGM parameter: This parameter appears as 
the first parameter on an EXEC statement 
when you want to execute a particular 
program. 

physical record: A record that is defined 
in terms of physical qualities rather than 
by the information it contains (logical 
record) • 

Section XII: Glossary 321 



positional parameter: A parameter that 
must precede all keyword parameters in the 
operand field of a job control statement. 
Positional parameters must appear in a 
specified order. 

primary quantity: The initial amount. of 
space on a direct access volume that you 
request in the SPACE, SPLIT, or SUBALLOC 
parameter. 

priority: A rank assigned to each job step 
that determines the order in which job 
steps are selected for execution and 
requests for resources are satisfied. 

priority scheduler: A scheduler that 
processes complete jobs according to their 
initiation priority within job classes. 
Priority shcedulers can accept input data 
from more than one input stream. 

private: The term applied to amounted 
volume that the system cannot allocate to 
an output data set for which a nonspecific 
volume request is made. A private volume 
is demounted after its last use in a job 
step. 

private library: A partitioned data set 
whose members are not used often enough to 
warrant their inclusion in the link 
library.. To execute a program that resides 
on a private library, you must define that 
library on a DD statement that has the 
ddname JOBLIB or STEPLIB. 

PROC parameter: This parameter appears as 
the first parameter on an EXEC statement 
when you want to call a particular 
cataloged or in-stream procedure. 

PROC statement: A job control statement 
used in cataloged or in-stream procedures. 
It can be used to assign default values for 
symbolic parameters contained in a 
procedure. For in-stream procedures, it is 
used to mark the beginning of the 
procedure. 

procedure step: That unit of work 
associated with one processing program and 
related data within a cataloged procedure. 
A cataloged procedure consists of one or 
more procedure steps. 

processing program: Any program capable of 
operating in the problem program mode. 
This includes IB~distributed language 
processors, application programs, service 
and utility· programs, and user-written 
programs. 

PRTY parameter: This parameter is used to 
indicate the job's initiation priority 
within its job class and is coded on a JOB 
statement. 

322 JCL Reference (Release 20.1) 

public: The term applied to a mounted 
volume that the system can allocate to an 
output data set for which a nonspecific 
volume request is made. A public volume 
remains mounted until the device on which 
it is mounted is required by another 
volume. 

QNAME parameter: This parameter allows the 
user to access messages received by means 
of TCAM for processing by an application 
program.. It is coded on the DD statement. 

qualified name: A data set name that is 
composed of multiple names separated by 
periods (e.g., A.B.C.). For a cataloged 
data set, each name corresponds to an index 
level in the catalog. 

RD parameter: This parameter is used to 
define the type of restart that can occur 
and is coded on a JOB or EXEC statement. 

reader/interpreter: A job scheduler 
function that analyzes an inpu~ stream of 
job control statements. 

record: A general term for any unit of 
data that is distinct from all others. 

region: In systems with MVT, a subdivision 
of the dynamic area of main storage set 
aside for a job step or a system task. You 
can specify in the REGION parameter on the 
JOB statement or EXEC statement how large 
this area of main storage should be. 

REGION parameter: This parameter is used 
to specify how much contiguous main storage 
is required to execute a job step and can 
be coded on a JOB or EXEC statement. If 
main storage hierarchy support is included 
in the system, the REGION parameter is also 
used to identify the hierarchy or 
hierarchies in which the storage is to be 
allocated. 

resource: Any facility of the computing 
system or operating system required by a 
job or task and includes main storage~ 
input/output devices, the CPU, data sets, 
and control and processing programs. 

restart: The process of resuming a job 
after it abnormally terminates. When a 
restart is performed, processing is 
continued either at the beginning of a job 
step that caused the abnormal termination 
or at a checkpoint within this job step. 

RESTART parameter: This parameter is used 
to identify the step or the step and the 
checkpOint within the step at which 
execution of a job is to be resumed and is 
coded on the JOB statement of a resubmitted 
job that is to use the checkpoint/restart 
facilities. 



ROLL parameter: This parameter is used to 
specify a job step's ability to be rolled 
out or to cause rollout of another job step 
and is coded on a JOB or EXEC statement. 

rollout/rollin: An optional MVT control 
program feature that allows the temporary 
assignment of additional main storage to a 
job step. 

scheduler: See job scheduler. 

secondary quantity: The additional amount 
of space on a direct access volume that you 
want allocated to a data set if the primary 
quantity requested in the SPACE, SPLIT, or 
SUBALLOC parameter is not sufficient. 

secondary storage: see auxiliary storage .• 

SEP parameter: This parameter is used to 
request channel separation from specific 
data sets defined earlier in the job step 
and can be coded on a DD statement. 

sequential data set: A data set whose 
records are organized on the basis of their 
successive physical positions, such as they 
are on magnetic tape. 

Shared control: This means that jobs that 
are executing simultaneously with a job 
step that specifies SHR for a data set can 
use that data set if they also specify SHR 
for that data set name. 

SPACE parameter: This parameter is used to 
indicate how much space should be allocated 
on a direct access volume for a new data 
set and is coded on a DD statement. 

specific volume request: A request for 
volumes that informs the system of the 
volume serial numbers. 

SPLIT parameter: This parameter is used to 
allocate space to two or more new data sets 
that are to share cylinders. The SPLIT 
parameter is coded on a DD statement. 

station: In TCAM, either a remote 
terminal, or.a remote computer used as a 
terminal. 

STEPLIB: A special ddname that when 
specified on a DD statement indicates to 
the system that you are defining a private 
library. 

stepname: The name assigned to an EXEC 
statement~ it identifies a job step within 
a job. 

step restart: A restart at the beginning 
of a job step that abnormally terminates. 
The restart may be automatic (depending on 
an eligible completion code and the 
operator's consent) or deferred, where 
deferred involves resubmitting the job and 
coding the RESTART parameter on the JOB 
statement of the resubmitted jah. 

storage volume: The main function of a 
storage volume is to contain nontemporary 
data sets for which a nonspecific volume 
request was made and PRIVATE was not coded 
in the VOLUME parameter. A direct access 
volume becomes a storage volume when so 
indicated in a MOUNT command or in a member 
of SYS1. PARMLIB named PRES RES • 

SUBALLOC parameter: This parameter is used 
to place a series of a new data sets in one 
area of contiguous space on a direct access 
volume and in a certain sequence. The 
SUBALLOC parameter is coded on a DD 
statement. 

subparameter: One of the items of variable 
information that follows a keyword 
parameter and can be either positional or 
keyword. 

symbol: In the IBM systeml360 Operating 
System, any group of eight or less 
alphameric and national characters that 
begins with an alphabetic or national 
(#,0) ,$) character. 

symbolic parameter: A symbol preceded by 
an ampersand that appears in a cataloged 
procedure. Values are assigned to symbolic 
parameters when the procedure in which they 
appear is called. 

SYSABEND: A special ddname that when 
specified on a DD statement tells the 
system you are defining a data set on which 
a dump can be written if the step 
abnormally terminates. The dump provided 
includes the system nucleus, the processing 
program storage area, and possibly a trace 
table. 

SYSCHK: A special ddname that when 
specified on a DD statement that precedes 
the first EXEC statement in the job tells 
the system you are defining a data set that 
contains checkpoint entries. This DD 
statement is included in a job that is __ 
being resubnitted for execution and • • 
execution is to begin at a particular 
checkpoint. 

SYSCTLG: The name of a system data set 
that contains the name and location of 
cataloged data sets. 

SYSIN: A name conventionally used as the 
data definition name of a data set in the 
input stream. 

Section XII: Glossary 323 



SYSOUT parameter: This parameter is used 
to assign an output class to an output data 
set and can be coded on a DD statement. 

system data sets: The data sets that make 
up the IBM System/360 Operating System. 

system generation: The process of 
producing an operating system made up of 
standard and optional components. 

system input device: A device specified as 
a source of an input stream. 

system library: One of the collection of 
all cataloged data sets at an installation. 

system management facilities: An optional 
control program feature that provides the 
means of gathering and recording 
information that can be used to evaluate 
system usage. 

system messages: Messages issued by the 
system that pertain toa problem program. 
These messages appear on an output listing 
and may include such messages as error 
messages, disposition messages, and 
allocation/de-allocation messages. 

system output device: An output device, 
shared by all jobs, onto which specified 
output data is written. 

SYSUDUMP: A special ddname that when 
specified on a DD statement tells the 
system you are defining a data set on which 
a dump can be written if the step 
abnormally terminates. The dump provided 
is the processing program storage area. 

SYS1,.LINKLIB: The name of a partitioned 
data set that contains the IBM-supplied 
processing programs and part of the 
nonresident portion of the control program. 
It may also contain user-written programs. 

SYS1.PROCLIB: The name of a partitioned 
system data set that contains cataloged 
procedures. 

SYS1.SYSJOBQE: A system data set that 
contains information about the input and 
output streams, and contains the input and 
output queues. 

task: The smallest unit of work that can 
be performed under the control program. 

Telecommunications Access Method (TCAM): 
The combination of an access technique and 
a given data set organization in a 
teleprocessing application that allows the 
programmer to transfer data between main 
storage and remote I/O devices. 

324 JCL Reference (Release 20.1) 

temporary data set: A new data set that is 
created and deleted in the same job. 

TERM parameter: This parameter is used to 
indicate to the system that the input or 
output data being defined is coming from or 
going to a time sharing terminal. 

terminal table: An ordered collection of 
information consisting of a control field 
for the table and blocks of information on 
each line, station. component, or 
application program from which a message 
can originate or to which a message can be 
sent. 

termination: The process of performing 
-disposition processing, as specified in the 
DISP parameter. de-allocating input/output 
devices, and supplying control information 
for writing job output on a system output 
unit. 

TIME parameter: This parameter is used to 
assign a time limit on how long the job or 
a particular job step can use the CPU and 
is coded on a JOB or EXEC statement. or 
both. 

time sharing: A method of using a 
computing system that allows a number of 
users to execute programs concurrently and 
to interact with the programs during 
execution. 

Time Sharing Option (TSO): An option of 
the operating system providing 
conversational time sharing from remote 
terminals. 

time-slicing: The sharing or the CPU by 
certain tasks for an equal. predetermined 
length of time. 

TYPRUN parameter: This parameter is used 
to hold a job for execution until the 
operator issues a RELEASE command and is 
coded as TYPRUN=HOLD on a JOB statement. 

UCS parameter: This parameter is used to 
describe the character set you want to use 
for printing an output data set on a 1403 
printer. The UCS parameter is coded on a 
DD statement. 

unit address: A 3-byte number, made up of 
the channel.. control unit. and unit 
numbers, that identifies a particular 
device. Coding a unit address i~ the UNIT 
parameter is one way of indicating what 
input/output device you want allocated to 
the job step. 

UNIT parameter: This parameter is used to 
describe wpat device and how many devices 
you want assigned to a data set. The UNIT 
parameter can be coded on a DD statement. 



V format: A data set format in which 
logical records are of varying length and 
include a length indicator, and in which V 
format logical records may be blocked, with 
each block containing a block length 
indicator. 

VOL parameter: This parameter is used to 
identify the volume(s) on which a data set 
resides or will reside and is coded on a DD 
statement. Coding VOL is the same as 
coding VOLUME. 

volume: That portion of an auxiliary 
storage device that is accessible to a 
single read/write mechanism. 

VOLUME parameter: This parameter is used 
to identify the volume(s) on which a data 
set resides or will reside and is coded on 
a DD statement. Coding VOLUME is the same 
as coding VOL. 

volume table of contents (VTOC): A table 
in a direct access volume that describes 
each data set on the volume. 

section XII: Glossary 325 



326 JCL Reference (Release 20.1) 



Indexes to systems reference library 
manuals are consolidated in the publication 
IBM System/360 Operating System: systems 
Reference Library Master Index" C28-6644. 
For additional information about any 
subject listed below, refer to other 
publications listed for the same subject in 
the Master Index. 

Where more than one page reference is 
given, the major reference is first,. 

{} 

[] 
use 19 

use 19-20 

use 20 
& 283-284,,176 
&& 176 

purpose 25 
* parameter on DD statement 123-125 

coding BLKSIZE subparameter 124 
coding BUFNO subparameter 124 
examples of 124-125 
glossary 317 
read by automatic SYSIN batching reader 

124 
* subparameter in the RESTART parameter 59 
*** 247,263,24 
/ 

purpose 25 
//* 247,24 
++ 264 
+// 264 
++* 264 

ABEND dumps 119-120 
absolute track technique 199 

for ISAM data set 296 
ABSTR subparameter in the SPACE parameter 

199 
for ISAM data set 295 

accounting information 
(see accounting information parameter 

and ACCT parameter) 
accounting information parameter on JOB 
statement 35-36 

continuing 35 
example of 36 
format of 35 
requirement for coding 35,309 
rules for coding 35 
special characters in 35,26 

ACCT parameter on EXEC statement 81 
examples of 81 
format of 81 
glossary 317 
overriding the 81 
rules for coding 81 
special characters in 81,26 

Index 

adding 
DD statements to cataloged procedure 

279 
parameters to 

DD statements in cataloged procedures 
275,,277-278 

EXEC statements in cataloged 
procedures 271 

address, unit 223 
address subparameter in the SPACE 
parameter 199 

AFF parameter on DD statement 135-136 
examples of 136 
format of 135 
glossary 317 
requesting channel separation 

135-136,191 . 
rules for coding 135 

affinity 
channel (see channel separation) 
uni t 228 
volume 237 

AL sub parameter in the LABEL parameter 
181,,183-184 

alias 75 
glossary 317 

I ALIGN subparameter of FCB parameter 179 
allocation 

glossary 317 
alphameric character set 25 
ALX subparameter in the SPACE parameter 

198 
American National Standard labels 

181,,183-184 
ANSI printer control characters 

181,183-184 
ANSI tape labels 181,183,184 
apostrophes 

data set name in 177 
purpose 26 

appendixes 259-315 
area arrangement for ISAM data set 296-297 
area name 293-294 
areas of ISAM data set 293 
ASB reader 

* parameter read by 124 
DATA parameter read by 127 
restriction on use of symbolic 

parameters 284-285 
ASCII magnetic tape 

DCB parameter 141,143,,148,150,153,154 
LABEL parameter 181-184 

AUL subparameter in the LABEL parameter 
181,183-184 

attributes, DCB 140-156 
automatic checkpoint restart 51,91,287 • 

disposition processing with 52,90 ._ 
automatic restart 

(see also automatic checkpoint restar 
automatic step restart) 

glossary 317 

Index 321 



automatic step restart 51,,91,287 
disposition prQcessing with 52,90 

automatic SYSIN batching reader 
* parameter read by 124 
DATA parameter read by 127 
restrictions on use of symbolic 

parameters 284-285 
automatic volume recognition (AVR) 

channel separation requests 191,,136 
glossary 317 
specifying a group name 226 

auxiliary storage 
glossary 317 

average block length 
in SPACE parameter 195-196 
in SPLIT parameter 203 
in SUBALLOC parameter 207,208 

AVR (see automatic volume recognition) 

background job 
glossary 317 

backward reference 24 
to a concatenation 25 
in DCB parameter 140,24 
with deferred restart 60 
in DSNAME parameter 177" 24 
glossary 317 
in PGM parameter 75-76,,24 
in VOLUME parameter 236,,24 

BDAM data set 
creating 312 
retrieving 312 

BFALN, DCB subparameter 140 
BFTEK 140-141 

BFTEK, DCB subparameter 140-141 
BFALN 140 

BISAM data set (see indexed sequential data 
set) 

blank 
purpose 25 

BLKSI ZE" DCB subparameter 141-142 
coded with 

* parameter 124 
DATA parameter 128 
DDNAME parameter 159 
SPACE parameter 196 
SUBALLOC parameter 208 

default for data in input stream 309 
block length subparameter 

in SPACE parameter 195-196 
in SPLIT parameter 2'03 
in SUBALLOC parameter 207,,208 

blocking data in the input stream 124,128 
default 309 

blocks, directory, in a BPAM data set 
(see directory) 

BLP subparameter in the LABEL parameter 
183-184 

restriction on use 309 
BPAM data set 

(see also directory·; member name) 
creating 312 
retrieving 312 

braces 
use 19 

brackets 
use 19-20 

328 JCL Reference (Release 20.1) 

BSAM data set 
creating 311-312 
retrieving 312 

BUFIN, DCB subparameter 
BUFL" DCB subparameter 
BUFMAX, DCB subparameter 
BUFNO" DCB subparameter 

coded with 
* parameter 124 

142 
142 

143 
143 

DATA parameter 12a 
DDNAME parameter 159 

default for data in input stream 309 
BUFOFF, DCB subparameter 143 
BUFOUT, DCB subparameter 143 
BUFRQ, DCB subparameter 144 
BUFSIZE, DCB subparameter 144 
bypass label processing 183-184 

restriction on use 309 
bypassing I/O operations on a data set 

131-132 
bypassing a job step 84 

catalog 
glossary 317 

cataloged data set 
creating 169 
generation data set 301-302 
glossary 317 
providing 

data set sequence number 183 
label type information 184 
unit information 222,226,227 
retrieving 312 

cataloged procedure 261-285 
adding to procedure library 285 
assigning values to symbolic parameters 

264-265 
calling 263,79 
contents of 282 
DD statement 

adding DD statements 279-281 
adding parameters to 275 
nullifying parameters 275-276 
overriding concatenated data sets 279 
overriding parameters on 273,275 

EXEC statement 
adding parameters to 271 
nullifying parameters on 271 
overriding parameters to 269-270 

glossary 317 
modifying 285 
using 263-281 
using the DDNAME parameter in 157 
writing 282-285 

CATLG subparameter in theDISP parameter 
167,168,,169 

channel affinity (see channel separation) 
channel separation 

requesting 191,135 
character set 

alphameric 25 
national 25 
special 25 

character set code" specifying 218 
checkid subparameter in the RESTART 

parameter 59 
special characters in 59,26 



checkpoint data set 121-122 
specifying a secondary quantity for 197 

checkpoint restart 
automatic 51,91,287 
deferred 59-61.288-289 
glossary 317 

checkpoint/restart facilities 
checkid 59 
checkpoint data set 121-122 
checkpoint restart (see checkpoint 

restart) 
deferred checkpoint restart 

59-61.,288-289 
deferred step restart 59-61,287-288 
glossary 317 
RD parameter on EXEC statement 91-93 
RD parameter on JOB statement 51-53 
RESTART parameter on JOB statement 

59-61 
step restart (see step restart) 
SYSCHK DD statement 121-122 

CHKPT macro instruction 51-53,59-61,91-93 
class 

job 39 
message 43 
system output 211-214 

CLASS parameter on JOB statement 39 
assigning a job class 39 
default 39 
examples of 39 
format of 39 
glossary 317 
rules for coding 39 

classnames 
for output streams 211.,212 

CODE" DCB subparameter 144 
mutually exclus ive with 

KEYLEN 147 
MODE 149 
PRTSP 152 
STACK 155 
TRTCH 156 

coding form 26-27 
coding special characters 25-26 
comma 

purpose 25 
command statement 243-246 

commands for 
MFT 244- 245 
MVT 245-246 

example of 246 
format of 243 
glossary 217 
rules for coding 243-244 

commands, operator 244-246 
comment statement 247 

example of 247 
format of 247 
glossary 317 
rules for coding 247 

comments field 21 
continuation of 23-24 
example of 21 

concatenated data set 
glossary 31,7 
overriding 279 

concatenating data sets 24-25 
example of 25 

concatenation 
of data sets 24-25 
of private librar ies 113-114 .. ,117 

COND parameter on EXEC statement 83-85 
examples of 85 
format of 83 
glossary 318 
overri ding 85 
rules for coding 83 
use of 

bypassing a job step 84 
executing a job step 84-85 

COND parameter on JOB statement 41-42 
examples of 42 
format of 41 
glossary 318 
rules for coding 41 
use of 41 

conditional disposition of a data set 
168-169 

CATLG 169 
for deferred restart 288,289 
DELETE 168 
KEEP 168 
UNCATLG 169 

CONTIG subparameter in the SPACE parameter 
198 

continuing control statements 
comments field 23-24 
operand field 22-23 

control volume 175 
CPRI, DCB subparameter 144-145 
CPU time limit 65,101 
creating data sets 

nontemporary 
to be cataloged 167 
direct organization 312 
generation data set on direct access 

volume 302-303 
generation data set on tape volume 

302-303 
indexed sequential organization 

293-296 
new member for a partitioned data set 

312 
partitioned data set 312 
sequential data set on direct access 

volume 312 
on tape volume 311 

temporary 
on direct access volume 311 ' 
output stream 311 
on ta pe vo lume 311 
on unit record device 311 

CYL subparameter 
in SPACE parameter 195-196 
in SPLIT parameter 202 
in SUBALLOC parameter 207 

cylinders 
sharing 201-204 

CYLOFL, DCB subparameter 145 

data control block 
completing the 137-140 
glossary 318 

data definition statement 105-241 
(see also DD statement) 

Index 329 



data in the input stream 
defining 123-129,157 

DATA parameter on DD statement 127-129 
coding BLKSIZE subparameter 128 
coding BUFNO subparameter 128 
examples of 128-129 
format of 127 
glossary 318 
read by automatic SYSIN batching reader 

127 
rules for coding 127 

data set 
creating a (see creating data sets) 
glossary 318 
retrieving a (see retrieving data sets) 

data set control 162-164 
data set control block 

glossary 318 
dataset in the input stream 

defining a 123-129,157 
data set integrity 162-164 
data set label 

completing the data control block 
137-140 

copying attributes from a 139 
glossary 318 
model 301-302 

data set name 

DCB 

in apostrophes 178 
copying name from earlier DD statement 

177 
nontemporary 174-175 
qualified 174-175 
temporary 176 
unqualified 174 

(see data control block) 
DCB attributes 140-156 
DCB macro instruction 

completing the data control block 138 
DCB parameter on DD statement 137-156 

backward references to 140",24 
coded on 

JOBLIB DD statement 113 
STEPLIB DD statement 116,117 
SYSCHK DD statement 121,122 

coded when 
creating generation data set 303 
creating ISAM data set 293 
retrieving generation data set 304 
retrieving ISAM data set 298 
retrieving passed data set 167 

coded with 
* parameter 124 
DATA parameter 128 
DDNAME parameter 159 
DUMMY parameter 131 
SYSOUT parameter 211,213 

completing the data control block 
137-140 

copying information from 
data set label 139 
earlier DD statement 140 

examples of 156 
format of 137 
glossary 318 
glossary of subparameters 140-156 

330 JCL Reference (Release 20.1) 

DCB parameter on DD statement 
(Cont inued) 

nullifying subparameters in the 276 
overriding subparameters in the 274-275 
rules for coding 137 
subparameters" glossary of 140-156 

DCB subparameters 140-156 
D format 141,,153 

glossary 318 
DD statement 105-241 

adding parameters to 275 
example of 276-278 

examples of 107 
fields in 105 
format of 105 
glossary 318 
keyword parameters on 135-241,106-107 
nullifying parameters on 275-276 

example of 277-278 
overriding parameters on 273-275 

example of 277-278 
positional parameters on 123-132,106 
rules for coding 105-106 

ddname 
assigning a 109-122 

when concatenating 24 
when defining ISAM data set 293 

duplicate 109 
examples of 110 
glossary 318 
qualified 109 
special 111-122 

DDNAME parameter on DD statement 157-160 
coded with 

BLKSIZE subparameter 159-160,,124,128 
BUFNO subparameter 159-160,124,128 

examples of 159-160 
format of 157 
glossary 318 
rules for coding 157 

dedicated data set 
disposition of 170 
using 177 

default for 
CLASS parameter 39 
CPU time limit 101,309 
data in the input stream 

BLKSIZE subparameter 309 
BUFNO subparameter 309 

disposition 164 
DPRTY parameter 88 
MSGCLA55 parameter 43 
MSGLEVEL parameter 45,309 
output class for system messages 43 
PRTY parameter 49,309 
REGION parameter 309 

with main storage hierarchy support 
57-58,97-98 

without main storage hierarchy 
support 55,95 

region size 309 
with main storage hierarchy support 

57-58,97-98 
without main storage hierarchy 

support 55,95 
ROLL parameter 63,99,309 
step priority 87 



default for (Continued) 
system output data set 

Sf ACE parameter 309 
UNIT parameter 309 

TIME parameter 101,309 
wait-state time limit 65,,101 

DEFER subparameter in the UNIT parameter 
227 

deferred checkpoint restart 59-61,288-289 
deferred mounting of volumes 227 

nonsharable attribute 240 
deferred restart 

(see also RESTART parameter) 
glossary 318 

deferred step restart 59-61,.287-288 
defining restart 

on EXEC statement 91-93 
on JOB statement 51-53.,59-61 

DELETE subparameter in the DISP parameter 
166,168 

delimiter statement 249 
* parameter 123 
DATA parameter 127 
example of 249 
format of 249 
glossary 318 
rules for coding 249 

DEN" DCB subparameter 145 
device type 224-225 

glossary 318 
direct access devices 

glossary 318 
list of 224 

directory 
glossary 318 
requesting space for 

in SPACE parameter 197 
in SUBALLOC par ameter 208 

DISP parameter on DD statement 161-171 
coded on 

JOBLIB DD statement 112 
STEPLIB DD statement 116,117 
SYSABEND DD statement 119 
SYSCHK DD statement 121,122 
SYSUDUMP DD statement 119 

coded when 
creating generation data set 302 
creating ISAM data set 295 
retrieving generation data set 304 
retrieving ISAM data set 299 

conditional disposition subparameter 
168-169 

disposition subparameter 165-167 
examples of 171 
format of 161 
glossary 318 
rules for coding 162 
status subparameter 162-165 

dispatching priority 87,49 
glossary 318 

disposition of a data set 165-167 
CATLG 167 
conditional disposition 168-169 
default 164 
DELETE 166 
KEEP 166 
PASS 166-167 
UNCATLG 167 

disposition processing 164-170 
bypassing 131 
cataloging a data set 167,169 
deleting a data set 166,168 
keeping a data set 166,168 
passing a data set 166-167 
for restart 52,92 
uncataloging a data set 167,169 

DOS 
assigning space in, 195 

DPRTY parameter on EXEC statement 87-88 
default for 87 
examples of 88 
format of 87 
glossary 318 
overriding 88 
rules for coding 87 
time-slicing in MVT 87-88 

DSN parameter on DD statement (see DSNAME 
parameter) 

DSNAME parameter on DD statement 
173-178 

backward references 177,24 
coded on 

JOBLIB DD statement 113 
STEPLIB DD statement '116,117 
SYSABEND DD statement 119 
SYSCHK DD statement 121,122 
SYSUDUMP DD statement 119 

coded when 
creating generation data set 303 
creating ISAM data set 293-294 
retrieving generation data set 304 
retrieving ISAM data set 298 

copying name from earlier DD 177 
examples of 177-178 
format of 173 
glossary 318 
name in apostrophes 177 
nontemporary data set names 174-176 
nullifying DUMMY 132,275 
rules for coding 173-174 
special characters in 177,26 
temporary data set names 176-177 

DSORG, DCB subparameter 146 
dummy data set 131-132,157-158 

(see also NULLFILE) 
DUMMY parameter on DD statement 131-132 

backward reference to 132 
examples of 132 
forma t of 131 
glossary 318 
nullifying 131-132,276 
rules for coding 131 

dump, abnormal termination 
storing the 119 
writing to unit record 119 

DYNAM parameter on DD statement 
133,,106,157 

example of 133 
format of 133 
glossary 319 
nullifying 133 
rules for coding 133 

dynamic allocation 133 
dynamic storage 

glossary 319 

Index 331 



ellipsis 
use 20 

EROPT, DCB subparameter 146 
EVEN subparameter in the COND parameter 

83,84-85 
exclusive control 162-164 

glossary 319 
EXEC statement 69-103 

adding parameters to 271 
example of 271-273 

examples of 71 
fields in 69 
format of 69 
glossary 319 
keyword parameters on 81-103" 70 
nullifying parameters on 271 

examples of 272-273 
overriding parameters on 269-270 

example of 272-273 
positional parameters on 75-79.,.70 
rules for coding 69-70 

execute statement (see EXEC statement) 
execution 

of a cataloged procedure 79,,263 
of a processing program 75-77 

EXPDT subparameter in the LABEL parameter 
185 

expiration date 185 
(see aiso retention period) 
effect on 

DELETE subparameter 166,168 
KEEP subparameter 166,168 

extending a data set (see lengthening a 
dataset) 

extent 196 
glossary 319 

FCB parameter 179-180 
examples of 180 
glossary 319 
image identifier 179 
requesting alignment of forms 179 
rules for coding 179 

F format 150 
glossary 319 

fields 20-21 
comments 21 
examples of 21 
name 20 
operand 20 
operation 20 

fixed-length record 
glossary 319 

FOLD subparameter in theUCS parameter 219 
form number subparameter in the SYSOUT 
parameter 212 

format of 
command statement 243 
comment statement 247 
DD statement 105 
delimiter statement 249 
EXEC statement 69 
JOB statement 29 
null statement 251 
PEND statement 253 
PROC statement 255 
publication 17 

332 JCL Reference (Release 20.1) 

generation data group 
creating 301-302 
glossary 319 
index 301 
name 301 

generation data set 
creating 302-303 
with deferred restart 304-305,,60 
glossary 319 
name of 301 
retrieving 304 

generation number" relative 301 
GNCP, DCB subparameter 147 
graphic devices, list of 225 
group name 226 

glossary 319 

HIARCHY, DCB subparameter 147 
hierarchy 0 57-58.97-98 
hierarchy 1 57-58,97-98 
HOLD subparameter in the TYPRUN parameter 

67 
holding a job 67 

identifying the data set (see DSNAME) 
IEFBR14 program 76 
IN subparameter in the LABEL parameter 185 
incremental quantity (see secondary 
quantity) 

index 
glossary 319 
requesting space for 295-296,197,199 

index area 293 
indexed sequential data set 291-297 

area arrangement of 296-297 
creating 293-296 

example of 299 
glossary 319 
lengthening 164 
name 

nontemporary 174 
temporary 176 

requesting space for index 
295-296,197,199 

retrieving 298-299 
example of 299 

unit restrictions for 297 
initiation 

glossary 319-
initiation priority 49 
input data set 

concatenating 24-25 
identifying the data set 174-177 
IN subparameter 185 
providing 

unit information 222-223 
volume information 232-233 

specifying 
conditional disposition of 168-169 
disposition of 164-168 
status of 162-164 

input job queue 
glossary 319 

input stream 123,,127 
defining data in the 123-129 
glossary 319 

input work queue 39 



in-stream procedures 261-285 
assigning values to symbolic parameters 

264 
calling 263 
contents of 282 
DD statement 

adding DD statements 
adding parameters to 
nullifying parameters 
overriding parameters 

EXEC statement 

279 
275 

275-276 
on 273-275 

adding parameters to 271 
nullifying parameters on 271 
overriding parameters to 269-270 

glossary 319 
modifying 285 
using 263-281 
writing 282-285 

INTVL, DCB subparameter 147 
ISAM data set (see indexed sequential data 
set) 

job 
glossary 319 

job class 39 
default 39 
glossary 319 
priority 49 

job control language 
glossary 320 

job control statement 
glossary 320 

job library 112-118 
. job management 

glossary 320 
job processing 

glossary 320 
job scheduler 

glossary 320 
job separators 213 
JOB statement 29-67 

examples of 31 
fields in 29 
format of 29 
glossary 320 
keyword parameters on 39-67,30 
positional parameters on 35-37,30 

job step 
glossary 320 

jobclass subparameter in the CLASS 
parameter 39 

JOBLIB DD statement 112-115,76 
(see also STEPLIB) 
concatenating private libraries 113-114 
examples of 114-115 
glossary 320 
parameters to code when 

cataloged 113 
not cataloged 113 

rules for coding 112 
jobname 

assigning a 33 
examples of 33 
glossary 320 

K 
glossary 320 

KEEP subparameter in the DISP parameter 
166,168 

kept data set 
retrieving 312-313 

KEYLEN, DCB subparameter 147-148 
coded with 

SPACE parameter 196 
SPLIT parameter 203 
SUBALLOC parameter 207 

mutually exclusive with 
CODE 144 
MODE 149 
PRTSP 152 
STACK 155 
TRTCH 156 

keyword 
glossary 320 

keyword parameters 
on DD statement 135-241,106-107 
on EXEC statement 81-103,7Q 
glossary 320 
on JOB statement 39-67,30 
rules for coding 21 

LABEL parameter on DD statement 181-186 
coded on SYSCHK DD statement 121,122 
coded when 

creating generation data set 303 
creating ISAM data set 294 
retrieving generation data set 304 
retrieving passed data set 167 

data set sequence number subparameter 
183 

examples of 185-186 
EXPDT subparameter 185 
format of 181 
glossary 320 
IN subparameter 185 
label type subparameter 183-184 
OUT subparameter 185 
PASSWORQ subparameter 184-185 
RETPD subparameter 185 
rules for coding 182 
when to code 182-183 

label types 183-184 
labels 

data set 182 
direct access 182 
nonstandard (NSL) 183,184 
standard (SL) 183,184 
standard and user (SUL) 183 
tape 182 

lengthening a data set 
space requirements 

SPACE parameter 196-197 
SUBALLOC parameter 208 

specifying status 162,164-165 
volume sequence number subparameter 

234-235 
libraries, concatenating private 

113-114,117 

Index 333 



library 
glossary 320 
private 112-118,76 
procedure 79,261 
system 76 
temporary 75 

LIMCT, DCBsubparameter 148 
OPTCD=E 150 

limit priority 
glossary 320 

link library 76 
glossary 320 

logical record 
glossary 320 

LRECL, DCB subparameter 148 

main storage 
acquiring additional 63-64,99-100 
glossary 320 
REGION parameter on EXEC statement 

95-99 
REGION parameter on JOB statement 

55-58 
main storage hierarchy support 57-58,97-99 

glossary 320 
master scheduler 

glossary 320 
MCP (see Message Control Program) 
member 

glossary 320 
member name" assigning a 175,176 
Message Control Program (MCP) 189 

glossary 320 
MFT (multiprogramming with a fixed number 

of tasks) 
glossary 320 

MOD subparameter in the DISP parameter 
164-165 

MODE, DCB subparameter 149 
mutually exclusive with 

CODE 144 
KEYLEN 147 
PRTSP 152 
TRTCH 156 

model data set label 301-302 
mount attributes 237-239 
mounting 

deferred 227 
parallel 227 

MSGCLASS parameter on JOB statement 43 
assigning an output class 43 
coded with SYSOUT parameter 43,212 
default 43 
examples of 43 
format of 43 
glossary 321 
rules for coding 43 

MSGLEVEL parameter on JOB statement 45-46 
default 45,309 
examples of 46 
format of 45 
glossary 321 
restart in MFT, MVT 52,92 
rules for coding 45 

multiprogramming 
glossary 321 

334 JCL Reference (Release 20.1) 

mutually exclusive parameters 
glossary 321 
bverriding with 273· 

MVT (multiprogramming with a variable 
number of tasks) 

glossary 321 
MXIG subparameter in the SPACE parameter 

198 

name 
glossary 321 

name field 20 
example of 21 

national character set 25 
NC subparameter in the RD parameter 52,92 
NCP, DCB subparameter 149 
new output data set 

creating 311-312 
NEW subparameter in the DISP parameter 163 
NL subparameter in the LABEL parameter 
183,184 

nonsharable attribute 240 
nonspecific volume request 233 

for direct access volume 196,,233 
glossary 321 
satisfying a 240-241 
for tape volume 233,184 

nonstandard labels 
label type subparameter 183,184 
processing r0utines for 183 

nontemporary data set 
creating 311-312 
glossary 321 

NOPWREAD subparameter in '~he LABEL 
parameter 181,184-185 

NOTIFY parameter on JOB statement 47,30 
example of 47 
format of 47 
glossary 321 
rules for coding 47 

NR subparameter in the RD parameter 52,92 
NSL subparameter in the LABEL parameter 
183,184 

NTM, DCB subparameter 149 
OPl'CD=M 150 

null statement 
example of 251 
format of 251 
glossary 321 

NULLFILE 132,276 
nullifying 

DCB subparameters 275 
DD statement parameters 276-277 
DUMMY parameter 132,276 
EXEC statement parameters 259 

OLD subparameter in the DISP parameter 163 
ONLY subparameter in the COND parameter 
.84-85 
operand field 20 

blank 279 
example of 21 
keyword parameters 21 
positional parameters 21 
subparameters 21 

operation field 20 
example of 21 



operator commands 244-246 
operator subparameter in the COND 

parameter 41,84 
OPTCD" DCB subparameter 149-151 
OUT subparameter in the LABEL parameter 

185 
OUTLIM parameter 187-188 

coded with SYSOUT parameter 187 
determining the output limit 187 
example .188 
glossary 321 
rules for coding 187 

output of 
allocation messages 45 
allocation recovery messages 45 
disposition messages 45 
job control statement.s 45 

output class 
glossary 321 
for system messages 43 

output class subparameterin the MSGCLASS 
parameter 43 

output data set 
allocating space for 193-209 
creating 311-312 
lengthening 164-165 
OUT subparameter 185 
printed using UCS feature 217-219 
providing 

unit inforw~tion 222-223 
volume information 232 

routed through output stream 211-214 
specifying 

conditional disposition 168-169 
disposition 165-167 
status 162-165 

output listing 
glossary 321 

output stream 
glossary 321 
routing data sets through the 211-214 

output writer 211-212 
glossary '321 

overflow area 293 
overriding 

concatenated data sets 279 
DCB subparameters 274-275 
DD statement parameters 273-275,277-278 
EXEC statement parameters 269-270 
with mutually e·xclusive parameters 273 
PARM parameter 270 
TIME parameter 269-270 

P subparameter in the UNIT parameter 227 
parallel mounting 227 
parameter 

glossary 321 
parentheses 

to enclose a subparameter list 21 
inclusion in variables 26 

PARM parameter on EXEC statement 89-90 
examples of 90 
format of 89 
glossary 321 
overriding the 89,270 
rules for coding 89 
special characters in 89,26 

partition 
glossary 321 

partitioned data set 
concatenating 24-25 
creating 312 
executing programs in a 75-77,112-118 
glossary 321 
lengthening 164-165 
name 

nontemporary 174 
temporary 176 

retrieving a member of 312 
space for directory 

in SPACE parameter 197,199 
in SUBALLOC parameter 208 

PASS subparameter in the DISP parameter 
166-167 

passed data set 
providing 

data set name 166 
data set sequence number 183 
DCB information 167 
disposition 167 
label type 184,167 
unit information 222,167 

retrieving 313 
password protection 185-185 
PASSWORD subparameter in the LABEL 

parameter 184-185 
PCI" DCB subparameter 152 
permanently resident volume '237-239 
PGM parameter on EXEC statement 

75-77 
backward references 75-76,24 
examples of 76-77 
executing programs from 

private library 112-118,76 
system library 76 
temporary library 75 

format of 75 
glossary 321 

physical record 
glossary 321 

positional parameters 
on DD statement 123-132,106 
on EXEC statement 75-79,70 
glossary 322 
on JOB statement 35-37,30 
rules for coding 21 

postponing definition of a data set 
DDNAME parameter 157-160 

PRESRES entry 237-238 
primary quantity 

glossary 322 
in SPACE parameter 196,199 
in SPLIT parameter 202-203 
in SUBALLOC parameter 207 

prime area 293 
priority 

glossary 322 
ini tia tion 49 
job 49 
job class 49 
step 87 

priority parameter 
(see PRTY) 

priority scheduler 
glossary 322 

Index 335 



private 
glossary 322 

private libraries 112-118,75-76 
concatenating 113-114,117 
executing programs from 112-118" 7 5-76 
glos'sary 322 

PRIVATE subparameter in the VOLUME 
parameter 233-234 

private volume 233,,237-239 
PROC parameter on EXEC statement 79,263 

examples of 79 
format of 79 
glossary 322 

PROC statement 255-257 
assigning values to symbolic parameters 

on 256-257 
example of 257 
format of 255 
glossary 322 
rules for coding 255-256 

procedure 
(see cataloged procedure; instream 

procedure) 
procedure library 79,261 
procedure name 79,261 
procedure step 261 

glossary 322 
processing program 

glossary 322 
processor storage 57-58,97-98 
program 

calling a 75-77 
program name 75 

subparameter in the SYSOUT parameter 
212 

programmer's name parameter on JOB 
statement 37 

examples of 37 
format of 37 
requirement for coding 309 
rules for coding 37 
special characters in 37,26 

PRTSP" DCB subparameter 152 
mutually exclusive with 

CODE 144 
KEYLEN 147 
MODE 149 
STACK 155 
TRTCH 156 

PRTY parameter on JOB statement 49 
default 49,309 
examples of 49 
format of 49 
glossary 322 
rules for coding 49 
time-slicing in MVT 49 

public . 
glossary 322 

public volume 233,237-239 

QISAM data set 
(see ISAM data set) 

QNAME parameter on the DD statement 189 
example of 189 
format of 189 
glossary 322 
rules for coding 189 

336 JCL Reference (Release 20.1) 

qualified name 
assigning a 174-175 
glossary 322 

R subparameter in the RD parameter 52" 92 
RD parameter on EXEC statement 91-93 

defining restart 92 
examples of 93 
format of 91 
glossary 322 
overriding the 92 
restart facilities 91 
rules for coding 91 

RD parameter on JOB statement 51-53 
defining restart 52 
examples of 53 
format of 51 
glossary 322 
restart facilities 51 
rules for coding 51 

reader procedure 
defaults supplied in the 307-309 

reader/interpreter 
glossary 322 

RECFM, DCB subparameter 152-154 
record 

glossary 322 
REF subparameter in the VOLUME parameter 

236 
references, backward (see backward 
r'eferences) 

region 
glossary 322 

REGION parameter on EXEC statement 95-99 
glossary 322 
with main storage hierarchy support 

97-99 
acquiring additional main storage 98 
default 97-98,309 
examples of 98 
format of 97 
overridin g the 98 
rules for coding 97 

without main storage hierarchy support 
95-96 
acquiring additional main storage 95 
default 95,309 
examples of 96 
format of 95 
overriding the 95 
rules for coding 95 

REGION parameter on JOB statement 55-58 
glossary 322 
with main storage hierarchy support 

57 .... 58 
acquiring additional main storage 58 
default 57-58,309 
examples of 58 
format of 57 
rules for coding 57 

wi thout main storage hi erarchy support 
55-56 
acquiring additional main storage 55 
default 55,309 
examples of 55-56 
format of 55 
rules for coding 55 



relational operators in the COND parameter 
41,84 

relative generation number 301 
relative track number 199 
releasing unused space (see RLSE) 
remote job entry 

restriction on use of BUFNO subparameter 
with * parameter 124 
with DATA parameter 128 
with DDNAME parameter 159 

removable volume 238-239 
REPOS, DCB subparameter 154 
RESERVE, DCB subparameter 155 
reserved volume 238-239 
resource 

glossary 322 
restart 

glossary 322 
types of 287-289 

restart definition (RD parameter) 
on EXEC statement 91-93 
on JOB statement 51-53 

restart facilities 
examples of 290-291 
RD parameter on EXEC statement 91-92 
RD parameter on JOB statement 51-52 
RESTART parameter on JOB statement 59 
REPOS, DCB subparameter 154 

RESTART parameter on JOB statement 59-61 
examples of 60-61 
format of 59 
glossary 322 
rules that apply when 

defining generation data set 60 
making backward reference 60 

rules for coding 59 
"RETAIN subparameter in the VOLUME 

parameter 234 
retention period 185 

effect on 
DELETE subparameter 166,168 
KEEP subparameter 166,168 

RETPD subparameter in the LABEL parameter 
185 

retrieving data sets 312-313 
cataloged 312 
generation data set 304,313 
indexed sequential data set" 298-299,313 
member of partitioned data set 312 
noncataloged 

data set with direct organization 312 
sequential data set on direct access 

volume 312 
on a tape volume 312 

passed data set 166-167,313 
return code 41,84 
return code test 41,84 

effect on disposition processing 164 
RKP, DCB subpaz"ameter 155 
RLSE subparameter in the SPACE parameter 

197-198 
effect on existing data set 198 
when overriding 276 

RNC subparameter in the RD parameter 
52,92 

ROLL parameter on EXEC statement 101-102 
default 101,309 
examples of 102" 

ROLL parameter on EXEC statement 
( continued) 

format of 101 
glossary 323 
overriding the 101 
rules for coding 101 

ROLL parameter on JOB statement 63-64 
default 63,309 
examples of 64 
format of 63 
glossary 323 
rules for coding 63 

rollout/roll in 63" 1 01 
glossary 323 

ROUND subparameter in the SPACE parameter 
198 

scheduler 
glossary 323 

scratch volume 234,238-239 
secondary quantity 

glossary 323 
when overriding 276 
in SPACE parameter 196-197 
in SPLIT parameter 202-203 
in SUBALLOC parameter 208 

secondary storage 
glossary 323 

Section I: Programming Notes 19-27 
Section II: The JOB Statement 29-67 
Section III: The EXEC Statement 69-103 
Section IV: The DD Statement 105-241 
section V: The Command statement 243-246 
Section VI: The Comment Statement 247 
Section VII: The Delimiter Statement 249 
Section VIII: The Null Statement 251 
section IX: The PEND statement 253 
section X: The PROC Statement 255-257 
section XI: Appendixes 259-315 
section XII: Glossary 317-325 
Section XIII: Control Statement Foldout 
Charts 341-345 

SEP parameter on DD statement 191-192 
examples of 192 
format. of 191 
glossary 323 
requesting channel separation 191 
rules for coding 191 

SEP subparameter in the UNIT parameter 
227-228 

separation 
channel 191-192,135-136 
uni t 227-228 

sequence number 
data set 183 
volume 234-235 

sequential data set 
concatenating 24-25 
creating 311-312 
glossary 323 
lengthening 164-165 
retrieving 312 

SER subparameter in the VOLUME parameter 
235-236 

shared control 163-164 
glossary 323 

Index 337 



sharing 
cylinders 201-204 
data set 163-164 

SHR subparameter in the DISP parameter 
163-164 

SL subparameter in the LABEL parameter 
183,,184 

SOWA, DCB subparameter 155 
SPACE parameter on DD statement 193-200 

(see also SPLIT; SUBALLOC) 
assigning specific tracks 199 
coded on 

SYSABEND DD statement 119 
SYSUDUMP DD statement 119 

coded when 
creating generation data set 303 
creating ISAM data set 295 

coded with SYSOUT parameter 
212-214,309 

examples of 199-200 
format of 193 
glossary 323 
letting system assign specific tracks 

195-198 
allocating whole cylinders 198 
releasing unused space 197-198 
requesting space for directory 197 
requesting space for index 197 
specifying format 198 
specifying primary quantity 196 
specifying secondary quantity 

196-197 
unit of measurement 195-196 

requesting space 194-199 
rules for coding 194 

special character set 25 
with UCS parameter 217 
using 25- 26 

special ddnames 111-122 
specific volume request 232-233 

for direct access volume 233,,196 
glossary 323 
satisfying a 240 
for tape volume 234 

split cylinder mode 202 
SPLIT parameter on DD statement 

201- 20 4 
(see also SPACE; SUBALLOC) 
coded on 

SYSABEND DD statement 119 
SYSUDUMP DD statement 119 

examples of 204 
format of 201 
glossary 323 
requesting space 202-203 
rules for coding 201 

STACK, DCB subparameter 155 
mutually exclusive with 

CODE 144 
KEYLEN 147 
PRTSP 152 
TRTCH 156 

states, volume 236-241 
station 189 

glossary 323 
status subparameter in the DISP parameter 

162-164 
step dispatching priority (see DPRTY) 

338 JCL Reference (Release 20.1) 

step restart 
automatic 51,91.,287 
deferred 59-61,287-288 
glossary 323 

STEPLIB DD statement 116-118,75-76 
(see also JOBLIB) 
concatenating private libraries 117 
examples of 117-118 
glossary 323 
parameters to code when 

cataloged 116 
not cataloged or not passed 116-117 
passed 117 

rules for coding 116 
stepname 

assigning a 73 
examples of 73 
glossary 323 

storage volume 237-238 
glossary 323 

stream, input, data sets in the 123-129 
stream, output, routing data sets through 
the 211-214 

SUBALLOC parameter on DD statement 205-209 
(see also SPACE; SPLIT) 
coded on 

SYSABEND DD statement 119 
SYSUDUMP DD statement 119 

examples of 209 
format of 205 
glossary 323 
requesting space 206-208 
rules for coding 206 

suballocation 206 
subparameter 

glossary 323 
rules for coding 21 

SULsubparameter in the LABEL parameter 
183 

suppre ssi ng 
CHKPT macro instruction 51,91 
automatic restarts 51,91 

symbol 
glossary 323 

symbolic parameters 282-284,263-266 
assigning default values to 255-257 
assigning values to 263-264 
defining 282-284 
definition of 282-283,22 
examples of 283,263 
glossary 323 
nullifying 266 
PROC statement 255-257,283 

SYSABEND DO statement 119-120 
(see also SYSUOUMP) 
examples of 120 
glossary 323 
storing the dump 119 
writing the dump to unit record device 

119 
SYSCHK DO statement 121-122 

with deferred restart 60,288 
examples of 122 
glossary 323 
parameters to code when 

cataloged 121 
not cataloged 122 

rules for coding 121 



SYSCTLG 
glossary 323 

SYSIN as a ddname 123 
glossary 323 

SYSOUT parameter on DD statement 211-214 
coded on 

SYSABEND DD statement 119 
SYSUDUMP DD statement 119 

examples of 213-214 
format of 211 
glossary 324 
rules for coding 211 
specifying classname 212 
specifying DCB parameter 213-214 
specifying form number 214 
specifying MSGCLASS parameter 212 
specifying program name 212 
specifying SPACE parameter 213,,309,307 
specifying UNIT parameter 213,,309 

system data set 
glossary 324 

system generation 
glossary 324 

system input devices 
glossary 324 

system library 76 
glossary 324 

system management facilities 
glossary 324 
with TIME parameter 65,101-102 

system messages 
glossary 324 
output class 43 

system output device 
glossary 324 

SYSUDUMP DD statement 119-120 
(see also SYSABEND) 
examples of 120 
glossary 324 
storing the dump 119 
writing the dump to unit record device 

119 
SYS1.LINKLIB 76 

glossary 324 
SYS1.PROCLIB 79,263 

glossary 324 
SYS1.SYSJOBQE 

glossary 324 

tape devices, list of 224 
tape labels, ANSI 181.183,184 
task 

glossary 324 
TCAM (see Telecommunications Access Method) 
Telecommunications Access Method (TCAM) 

189 
glossary 324 

teleprocessing 
what to code in ROLL parameter 63,99 

temporary data set 
creating 311 
glossary 324 

temporary library 75 
TERM parameter on the DD statement 215,107 

examples 215 
format of 215 
glossary 324 
rules for coding 215 

terminal table 189 
glossary 324 

termination 
glossary 324 

THRESH, DCB subparameter 155 
time limit 

CPU 65,101 
wait state 65,101 

TIME parameter on EXEC statement 101-103 
affect of JOB li~t 102 
CPU time limit 

default 101,309 
with SMF 101 
wi thout SMF 101 

eliminating timing 102 
examples of 102-103 
format of 101 
glossary 324 
overriding the 102,269-270 
rules for coding 101 
wait-state time limit 

wi th' SMF 101 
without SMF 101 

1440 102 
TIME parameter on JOB statement 65-66 

affect of JOB time limit 102 
CPU time limit 

with SMF 65 
without SMF 65 

eliminating timing 66 
examples of 66 
format of 65 
glossary 324 
rules for coding 65 
wait-state time limit 

with SMF 65 
without SMF 65 

1440 66 
Time Sharing Option (TSO) 47,133,215 

glossary 324 
time sharing terminal 47,215 
time-slicing 

glossary 324 
in MFT 87-88 
in MVT 49,87-88 
for a job 49 
for a step 87-88 

timing 
CPU 101,65 
eliminating 66,102 

track number, relative 199 
TRK subparameter 

in SPACE parameter 195 
in SUBALLOC parameter 207 

TRTCH. DCB subparameter 156 
for checkpoint data set 121,122 
mutually exclusive with 

CODE 144 
KEYLEN 147 
MODE 149 
PRTSP 152 
STACK 155 

TSO (see Time Sharing Option) 
TYPRUN parameter on JOB statement 67 

example of 67 
format of 67 
glossary 324 
rules for coding 67 

Index 339 



UCS parameter on DD statement 217-219 
examples of 219 
format of 217 
glossary 324 
identifying character set 218 
requesting 

fold mode 219 
operator verification 219 

rules for coding 217 
special character sets 217 

UNCATLG subparameter in the DISP parameter 
167,169 

unit address 223 
glossary 324 

unit affinity 228 
nonsharable attribute 240 

unit count subparameter in the UNIT 
parameter 226 

UNIT parameter on DD statement 221-229 
coded on 

JOBLIB DD statement 113 
STEPLIB DD statement 117 
SYSABEND DD statement 119 
SYSCHK DD statement 122 
SYSUDUMP DD statement 119 

coded when 
creating generation data set 302-303 
creating· I SAM data set 294 
retrieving generation data set 304 
retrieving ISAM data set 298 
retrieving passed data set 167 

examples of 228- 229 
format of 221 
glossary 324 
identifying the device 223-226 
providing unit information 222-228 
rules for coding 221-222 
specifying 

deferred mounting 227 
parallel mounting 227 
SYSOUT parameter 212-214,,309 
unit affinity 228 
unit count 226 
unit separation 227-228 

with suballocation 206 
unit record devices 

list of 225 
writing dumps to 119 

unit separation 227-228 
universal character set (see UCS) 
unqualified name, assigning 174 
use attributes 236-239 

V format 
glossary 325 

I 
VERIFY subparameter 

of FCB parameter 180 
of UCS parameter 219 

VOL parameter on DD statement (see VOLUME 
parameter) 

volume 
glossary 325 
permanently resident 237-239 

340 JCL Reference (Release 20.1) 

volume (Continued) 
private 233,,237-239 
public 233,237-239 
removable 238-239 
reserved 238-239 
scratch 234,238-239 
storage 237-238 

Ivolume affinity 237 
volume count subparameter in the VOLUME 
parameter 235 

VOLUME parameter on DD statement 231-241 
backward reference 236,24 
coded on 

JOBLIB DD statement 113 
STEPLIB DD statement 117 
SYSABEND DD statement 119 
SYSCHK DD statement 121,122 
SYSUDUMP DD statement 119 

coded when 
creating generation data set 303 
creating ISAM data set 294 
retrieving ISAM data set 298 

examples of 241 
format of 231 
glossary 325 
providing volume information 232-236 
referring to specific request 236 
rules for coding 232 
specifying 

PRIVATE subparameter 233-234 
RETAIN subparameter 234 
volume sequence number subparameter 

234-235 
volume count subparameter 235 

with suballocation 206 
supplying serial numbers 235-236 

volume sequence number subparameter in the 
VOLUME parameter 234-235 

for checkpoint entry 121 
volume serial number 235-236 

for checkpoint entry 121,122 
special characters in 235,26 

volume states 236-241 
volume table of contents (VTOC> 

glossary 325 
VOLUME=REF 

backward references 236,24 

wait state time limit 
with SMF 65,101 
without ~MF 65,101 

X/ 263 
xx 263 
xx* 263,24 

1440 66,102 
2321 data cell drive 

unit address 223 
unit affinity 228 

2361 core storage 57,97 



Section XIII: Control Statement Foldout Charts 

/ /Name Operation 

//jobname JOB 

Legend: 

The JOB Statement 
Operand 

([account number] [,additional accounting information, ••• ]) 

[programmer 's name] 

[C LASS=jobc lass] 

[COND=«(code,operator) / ••• )] 

[MSGCLASS=output class] 

[NOTIFY=user identification] 

[PRTY=priorityJ 

[
REGION=OvalueK I GvaluelK])l 

IvalueoK~ J 

[
RESTART=( I:tepname .1 [,Checkid])l 

stepname. procst.epname\ j 

[TIME={ ~~~~utes; seconds}}] 

[TYPRUN=HO LD ] 

P Positional parameter. 
K Keyword parameter. 
1 } Choose one. 
[] Optional; if more than one line is enclosed, choose one or none, 

Chart 1 

P/K Comments 

P Can be made mandatory 

P Ca,n be made mandatory 

K Assign A-O. 

K Maximum of 8 tests 

K Assign A-Z,0-9. 

K 

K Notify user of job completion. 
For MVT with TSO. 

K Assign 0-13. 

K Restart definition 

K For MVT 

K For deferred restart 

K Rollout/ro1lin. For MVT. 

K Assigns job CPU time limit. 

K Holding a job in job queue. 

Section XIII: Control Statement Foldout Charts 341 

Chart 1 



) 

D 

//Name Operation 

/ /[stepnomeJ EXEC 

legend: 

P Positional parameter. 
K Keyword parameter. 
{ } Choose one. 

The EXEC Statement 
Operand 

{

program name } 
PGM= * .stepname.ddname 

" • stepname. procstepname .ddname 
[PROC=]procedure name' 

rACCT=(accounting information, ••• ) ] 
LACCT .procstepname=(accounting information, ••• ) 

~
code ,operator) ] 

COND=( (code,operator,stepname) , •• -[,] EVEN ) 
(code ,operator, stepname. procstepname) [ON lY] 

COND .procstepname=( (code,operator ,stepname) , ••• [, JrEVEN 1) ~
code ,operator) J 

(code,operator,stepname .procstepname) L ONlYJ 

rDPRTY=(value1,value2) J 
LDPRTY. procstepnarrie=(value 1, value2) 

rPARM=value J 
LP ARM. procstepname=va lue 

R 
RD= RNC 

NC 
NR 

R 
RD • procstep'name= R NC 

NC 
NR 

[

REGION=({VaIUeK }[,value1 K]) ] 
valueoK 

REGION.pr~cstepname=({valueK }L value1 K]) 
valueoK 

f
ROLL=({YES}{, YES}) ] 

NO ,NO 

R Oll. procstepname=({~~ H: ~~}) 

[

TIME={(minutes, seconds)} ] 
1440 

TIME. procstepname={(~~~~tes,seCOnds)} 

[] Optional.; if more than one line is enclosed, choose one or none. 

Chart 2 

P/K Comments 

P Id enti fi es program or 
cataloged procedure 

K Accounting information for step 

K Maximum of 8 tests, or 7 tests 
if EVEN or ONLY is coded 

K Assign values of 0-15. For MVT. 

K Parentheses or apostrophes 
enclosing value may be required 

K Restart definition 

K For MVT 

K Rollout/rollin. For MVT. 

K Assigns step CPU time limit. 

'. 

section XIII: Control statement Foldout Charts 343 

Chart 2 

I11III:=_. --IIWII!_--_____ -_ .. _""""'---IIIIIIII;.~. ____ 111!1111! ____ : _; !IIIi¥""'¢1\11!1I· __ .... 4111¢ MII!III. 4111.II1II$4l1li4II1II1 -111\4-4l1li. 1IIII#-IIIM",,1I1I. 4 __ l!IIIIII!lIIIIII!IllIIIi 1II1!.t1llllti.!IIIIi .11(l1li1.: -_:.L"' •• ;IIJI;!l4111;lIall$._. __ .IIIII __ lIIIIIIIIilllll.i4111,g"';~i.;4= •. _( •••• __ IIIMIIiiIIii ___ IIIIIII_Q~IIWI! __ IIIII ___ qlllll'l_1IIIIW4***1III\IIIIIIIIIIIIZ4 ___ .III#4IIIII .. - __ ."11.( 1IIi,J$lIiIilllli.SII!I!IIU!III'III1III2Ii11lUlII&IIU ___ II:W_AllilliSIIIIIII=111111,"=_iillli¥'_'4!1111111l111ii .aZlllllitlllla."liIililliilll,tCII!$,!IIIIIII\IO:.MXIII.W.:S!III4IIIMiiIIU.UIIISAIiIW.illlaiiliblll;,aIlliWiIIIiiiIilJSaUI!II,SIIIIiUIIIiIbIIIU.U.$I!IiEU_i,illuraIilUlileallUu= ••• SiIllU£.iIIIII£lCIl41114111 •• ______ III$I"S "Mm. 



//Name Operation 

/ / [ddname ] 
procstepname. 

ddname 

DD 

, 
Chart 3 

The D D Statement 
Operand 

[DYNAM] 

[AFF=ddnameJ 

DCB-( * .ddname 
- *.stepname.ddname [

DCB=(list of attributes) 
dsname 

* • stepname. procstepname .ddname 

[DDNAME=ddname] 

[ 
[ ] 

[

,DELETE J NEW ,KEEP 

DISP=( OLD ,PASS 
SHR ,CATLG 
MOD ,UNCATLG 

, 

dsname 

,KEEP ) 

[

,DELETE ]] 

,CATLG 
,UNCATLG 

dsname(member name) 
dsname(generation number) 
dsname(area name} 

} DSNAMEL< &&dsname , 
I DSN ~- )&&dsname(member name) 

&&dsname(area name) 
* .ddname 

I *. stepname .dd name 
* • stepname. procstepname .ddname 

::-

rFCB=(image-id [,ALIGN])] L ,VERIFY 

r 

-

-

LABEL=( [data set seg #] 

,SL 
,SUL 
,AL 
,AUL 
,NSL 
,NL 
,BLP 

lr-,PAS5WORD] [,IN l[,JfEXPDT=yydddl) 
,NOPWREAD ,OU~ LRETPD=nnnn J 
, 

'- - -

[ OUTLiM=numberJ 

[QNAME=process name] 

P/K 

K 

K 

K 

K 

K 

K 

K 

K 

K 

Comments 

To define a data set in the input stream. 

To bypass I/o operations on a data set 
(BSAM and QSAM) 

To reguest dynamic allocation. 
For MVT with TSO. 

One way to request channel separation. 

To complete the data control block. See 
Glossary of DCB Subparameters. 

To postpone the definition of a data set. 

To assign a status, disposition, and 
conditional disposition to the data set 

To assign a name to a new data set or to 
identify an existing data set. An 
unqualified name is 1-8 characters, 
beginning with an alphabetic or national 
character. 

To specify forms control information. The FCB 
parameter is ignored if the data set is not 
written to a 3211 pri nter • 

To supply label information 

To limit the number of logical records you 
want included in the output data set. 

Specifies the name of a TPROCESS macro 
which defines a destination gueue for 
messages received by means of TCAM. 



The D D Statement 
Operand 

lname 

LETE ] J EP 
~TLG ) 
.JCATLG 

lber) 

Ime.ddname 

-

>ASSWORD] [,IN 1 [,] fEXPDT=yyddd 1 ) 
~OPWREAD ,OU~ LRETPD=nnnn J 

-

P/K 

P 

P 

P 

K 

K 

K 

K 

K 

K 

K 

Comments 

To define a data set in the input stream. 

To bypass I/o operations on a data set 
(BSAM and QSAM) 

To request dynamic allocation. 
For MVT with TSO. 

One way to request channel separation. 

To complete the data control block. See 
Glossary of DCB Subparameters. 

To postpone the definition of a data set. 

To assign a status, disposition, and 
conditional disposition to the data set 

To assign a name to a new data set or to 
identify an existing data set. An 
unqualified name is 1-8 characters, 
beginning with an alphabetic or national 
character. 

To specify forms control information. The FCB 
parameter is ignored if the data set is not 
wri tten to a 3211 pri nter • 

To supply label information 

K To limit the number of logical records you 
want included in the output data set. 

K Specifies the name of a TPROCESS macro 
which defines a destination queue for 
messages received by means of TCAM. 

//Name Operation 

//~ddname j 
procstepname. 

ddname 

DD 

Legend: 

P Positional parameter. 

K Keyword parameter. 

{} Choose one. 

The DD Statement (conlt) 

Operand 

[i 
ITRK I [CONTlGj }] 'SPACE=( CVl ,(primaryf,secOndaryJf,?irectOry])[,RLSE1,MXIG [,ROUND]) 

blocklength l: rmdex , J ,AlX 
, 

2S PACE=(ABSTR,(primary quantity ,address [,?irectory]» 
,Index 

[ 

(n, CVL ,(primary quantity ['secondary quantity] )) 1 
SPLlT= n 

(~ercent, blocklength, (primary quantity [,secondary quantity D) 
percent 

[ I TRK I I,ddname I ] SUBALLOC=( CVL ,(primary rseCOndar),] ['directoryJ) ,stepname.ddname ) 
blocklength, ,stepname. procstepname .ddname 

[TERM=TS] 

[UCS=(Character set code [:FOLD ] [, VERIFV])] 

[ 

[

unit address] [,unit count] ] 
UNIT=( device type ,P [,DEFER] [,SEP=(ddname, ... )]) 

group name , 

UNIT=AFF=ddname 

[ [

SER=(serial number, ••• ) ] ] 
REF=dsname 

~VOLUME H [PRIVATE] [,RETAIN] [,volume seq #J[ ,volume count] [,J REF=* .ddname ) 
~VOL \ " REF=* .stepname.ddname 

R EF=* • stepname. procstepname. ddname 

[] Enclosing subparameter, indicates that subparameter is optionol; if more than one line is enclosed, choose one or none. 

[] Enclosing entire parameter, indicates that parameter may be optional, depending on what type of data set you are defining. 

P/K 

K 

K 

K 

K 

K 

K 

K 

K 

Comments 

1 To assign space on a direct access volume 
for a new data set 

2 Tp assign specific tracks on a direct access 
volume for a new data ~et 

To assign space on a direct access volume 
for a new data set. Data sets share cyl i nders. 

To request part of the space on a direct 
access volume assigned earlier in the job 

Ta route a datp set through the output 
stream. For classname, assign A-Z or 
0-9. 

To indicate to the system that the input or output 
data being defined is coming from or going to a 
time sharing terminal. 

To request a special character set for a 
1403 printer 

To provide the system with unit information 

To provide the system with volume information 

Section XIII: Control Statement Foldout Charts 345 

Chart 3 



GC 28-6704- 1 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 



READER'S COMMENT FORM 

IBM System/360 Operating System: 
Job Control Language Reference Order No. GC28-6704-1 

Please use this form to express your opinion of this publication. We are interested in your 
comments about its technical accuracy, organization, and completeness. All suggestions 
and comments become the property of IBM. 

Please do not use this form to request technical information or additional copies of publications. 
All such requests should be directed to your IBM representative or to the IBM Branch Office 
serving your locality. 

• Please indicate your occu?Otion: 

• How did you use this publication? 

o Frequently for reference in my work. 

o As an introduction to the subject • 

o As a textbook in a course. 

01 For specific information on one or two subjects. 

• Comments (Please include page numbers and give examples.): 

• Thank you for your comments. No postage necessary if mailed in the U.S.A. 



GC 28-6704-1 

YOUR COMMENTS, PLEASE . .. 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of mM systems. Your answers to the questions on the back 
of this form, together with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of mM. 

Note: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the mM branch office serving your locality. 

Fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Attention: Programming Systems Publications 

Department 058 

Fold 

POSTAGE WILL BE PAID BY ••• 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10804 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

Fold 

FIRST CLASS 
PERMIT NO. 81 
POUGHKEEPSIE, N. Y. 

Fold 

() 

s. 
> 
0' 
:;, 
co 
r-:;. 
CD 


