
Program Product

GC33-0009-4
File No. S360/S370-29

OS
PL/I Checkout and
Optimizing Compilers:
Language Reference Manual

Program Numbers 5734-PL 1
5734-PL2
5734-LM4
5734-LM5

(These program products are available
as composite package 5734-PL3)

Fifth Edition (October 1976)

This is a major revision of, and obsoletes, GC33-0009-3. This edition
applies to Version 1, Release 3, Modification 0 of the OS PL/I Checkout
Compiler, Program Product 5734-PL2; Version 1, Release 3, Modification 0
of the OS PLII Optimizing Compiler, Program Product 5734-PL1; and all
subsequent versions, releases, or modifications.

Information in this publication is subject to significant change.
Before using the publication, consult the latest IBM System/370
Bibliography, GC20-0001, and the technical newsletters that amend the
bibliography, to learn which edition and technical newsletters are
applicable and current.

Requests for copies of IBM publications should be made to the IBM branch
office that serves you.

Forms for readers' comments are provided at the back of this publication.
If the form has been removed, comments may be address to IBM
Corporation, P.O. Box 50020, Programming Publishing, San Jose,
California 95150, USA. All comments and suggestions become the property
of IBM.

e Copyright International Business Machines Corporation
1970,1971,1972,1973,1976

This publication is planned for use as a
reference book by the PL/I programmer. It
is not a tutorial publication, but is
designed for the reader who already has a
knowledge of the language and who requires
a source of reference material.

The publication is in two parts. Part I
contains discussions of concepts of the
language. Part II contains detailed rules
and syntactic descriptions.

Although implementation information is
included, the book is not a complete
description of any implementation
environment. In general, it contains
information needed to write a program that
will be processed by the os PL/I Optimizing
Compiler or the as PL/I Checkout Compiler.
It does not contain all the information
needed to execute programs. For further
information on executing a program refer to
the appropriate programmer's guide (for
batch processing only) or the Time Sharing
Option or CMS publications (for processing
in conversational mode).

In order to execute programs processed
by these compilers, subroutine libraries
are required. The subroutines are provided
by the OS PL/I resident library (optimizing
compiler only) and the OS PL/I transient
library (both compilers).

Programs that have been compiled by the
PL/I Optimizing Compiler and which utilize
PL/I multitasking facilities can be
executed only under the MVT or VS2 version
of the operating system.

Use of this Publication

This publication is designed as a reference
book for the PL/I programmer. Its two-part
format allows a presentation of the
material in such a way that references can
be found quickly, in as much or as little
detail as the user needs.

Part I, ·Concepts of PL/I,· is composed
of discussions and examples that explain
the different features of the language and
their interrelationships. To reduce th~
need for cross references and to allow each
chapter to stand alone as a complete
reference to its subject, some information
is repeated from one chapter to another.
Fart I can, nevertheless, be read
sequentially in its entirety.

Preface

Part II, "Rules and Syntactic
Descriptions," provides a quick reference
to specific intormation. It includes less
information about interrelationships, but
it is organized so that a particular
question can be answered quickly. Part II
is organized purely from a reference point
of view; it is not intended for sequential
reading.

For example, a programmer would read
chapter 5, ·statement Classification" in
Part I for information about the
interactions of different statements in a
program; but he would look in section J,
"Statements" in Part II, to find all the
rules for the use of a specific statement,
its effect, options allowed, and the forma~
in which it is writ~en.

In the same manner, he would read
chapter 4, "Expressions and Data
Conversions" in Part I for a discussion of
the concepts of data conversion, but he
would use section F, "Data Conversion and
Expression Evaluation" in Part II, to
determine the exact results of a particula~
type of conversion.

An explanation of the syntax language
used in this publication to describe
elements of PL/I is contained in section A,
"Syntax Notation" in Part II.

Requisite Publications

For information necessary to compile, link
edit, and execute a program, the reader
should be familiar with the appropriate one
of the following publications:

as PL/I Optimizing Compiler:
Programmer's Guide, Order No. SC33-0006

as PL/I Checkout Compiler: programmer's
Guide, Order No. SC33-0007

as PL/I Optimizing Compiler: TSO User's
Guide, Order No. SC33-0029

as PL/I Checkout Compiler: TSO User's
Guide, Order No. SC33-0033

as PL/I Optimizing Compiler: CMS User's
Guide, order No. SC33-0037

as PL/I Checkout Compiler: CMS User's
Guide, Order No. SC33-0047

iii

Recommended Publications

The subjects covered in the following
publications include the compiler
facilities, the optimization or checkout
features (whichever are applicable),
methods of implementing the various
language features, and comparisons of the
language implemented by the OS PL/I
Optimizing or Checkout Compilers with that
implemented by the PL/I(F) Compiler.

iv

OS PL/I Optimizing Compiler: General
Information, Order No. GC33-0001

OS PL/I Checkout Compiler: General
Information, Order No. GC33-0003

OS PL/I Optimizing Compiler: Execution
Logic, Order No. SC33-0025

OS PL/I Checkout Compiler: Execution
Logic, Order No. SC33-0032

Availability of Publications

The availability of a publication is
indicated by its use key, the first letter
in the order number. The use keys for
publications referred to in this manual
are:

G - General: available to users of
IBM systems, products, and
services without charge, in
quantities to meet their normal
requirements; can also be
purchased by anyone through IBM
branch offices.

S - Sell: can be purchased by anyone
through IBM branch offices.

PART I: CONCEPTS OF PL/I ••••

CHAPTER 1: BASIC CHARACTERISTICS OF
PL/I •

Machine Independence • • • • •
Program structure • • • • • • •
Data Types and Data Description
Default Assumptions
Storage Allocation • • • •
Expressions • • • • • • • •
Data Collections
Input and Output
Multitasking
Facilities of the Two Compilers •
Compile-time Operations • •
Execution-time Facilities •
Interrupt Activities
Operating System Facilities

CHAPTER 2: PROGRAM ELEMENTS
Character Sets

60-character Set • • • •
48-character Set • • • •
Using the Character set

Identifiers
Blanks • • • • • •
Comments • • • • •

Basic Program Structure • •
Simple and compound statements

statement Prefixes
Groups and Blocks

CHAPTER 3: DATA ELEMENTS.
Data Types • • • • • • • •
Problem Data • • • • • • •

Arithmetic Data • • • •
Decimal Fixed-Point Data •
Binary Fixed-Point Data • . • •
Decimal Floating-Point Data
Binary Floating-Point Data •
Complex Arithmetic Data • • • .
Numeric Character Data

string Data
Character-String Data
Bit-string Data

Uninitialized Variables
Program Control Data

File Data
Label Data •
Entry Data
Event Data
Task Data
Locator Data •
Area Data

Data Organization •
Arrays • • • • •

Expressions as Subscripts
Cross-Sections of Arrays •

Struct ures • • • • • • •
Qualified Names ••• • •

Arrays of Structures • • • •
Cross-Sections of Arrays of

1

3
3
3
3
3
4
4
4
5
5
6
6
6
7
7

9
9
9
9

10
10
10
11
12
12
12
13

15
15
15
15
16
17
18
18
19
19
21
21
22
23
23
23
23
24
24
24
24
25
25
25
27
27
27
28
29

Contents

Structures •••••
other Attributes

DEFINED Attribute
LIKE Attribute • • •
ALIGNED and UNALIGNED Attributes
INITIAL Attribute

CHAPTER 4: EXPRESSIONS AND DATA
CONVERSION

Use of Expressions
Data Conversion • •

Operational Expressions
ASSignment • • • • • • •
Problem Data Conversion
Locator Data Conversion
Use of Built-in Functions

Expression Operations • • • •
Arithmetic Operations • • • •

Results of Arithmetic Operations
Operations using Built-in
Functions • • • • • • • • •

Bit-string Operations • • • •
Boolean Built-in Function

Comparison Operations
Concatenation Operations • •
Combinations of Operations •

Priority of Operators
Function Reference Operands
Attributes of Targets •
Array Expressions • • • • •

Prefix Operators and Arrays
Infix Operators and Arrays • •

Array-and-Element Operations • •
Array-and-Array Operations •
Array-and-structure Operations •
Data Conversion in Array
Expressions • • • • • • • • • •

Structure Expressions • • • • • • • .
Prefix Operators and Structures
Infix Operators and Structures • •

Structure-and-Element Operations
Structure-and-Structure
Operations ••••••••

structure Assignment BY NAME • •
Exceptional Conditions • • • • •

CHAPTER 5: STATEMENT CLASSIFICATION
Classes of Statements • • • • • •
Descriptive Statements •• • • •

DECLARE and DEFAULT Statements
other Descriptive Statements •

Input/output statements • • • • •
Record Transmission statements
STREAM Transmission Statements
Input/Output Control Statements
DISPLAY Statement •••• •

Data Movement and Computational
Statements • • • • • • • • • • •

ASSignment Statement • • • • •
Program Organization Statements •

PROCEDURE Statement
ENTRY Statement •• • • • •

29
29
30
30
31
32

35
35
36
36
36
36
37
37
37
38
38

38
38
39
39
40
40
41
42
43
43
44
44
44
44
45

45
45
45
46
46

46
46
47

49
49
49
49
49
50
50
50
51
51

51
51
52
52
52

Contents v

BEGIN Statement • • • • • • •
END Statement ••• • • • • •
FETCH and RELEASE Statements

Storage Control Statements •••••
ALLOCATE and FREE Statements

Control statements
GO TO Statement • • • •
IF Statement • •
SELECT Statement •
DO Statement • •
Noniterative DO Statements .
LEAVE Statement . • • • • •
CALL, RETURN, and END Statements •
STOP and EXIT Statements •
HALT statement • • • • • • •

Exception Control Statements
ON Statement • • • •
REVERT Statement • • • • • • • • •
SIGNAL statement • •

Preprocessor Statements
Listing Control statements
Diagnostic Statements • . •

CHECK and NOCHECK statements •
FLOW and NOFLOW statements •
PUT Statements • • • • • • •

CHAPTER 6: PROGRAM ORGANIZATION
Blocks • • • •

Procedure Blocks • • • • • •
Begin Blocks • • • • • • • •
Internal and External Blocks •

Use of the END Stat.ement •
Activation of Blocks
Termination of Blocks • . •

Begin Block Termination
Procedure Termination
Program Termination

Dynamic Loading of External
Procedure • • • • • • • • • • •

storage Allocation • • • • • •
Reactivation of an Active Procedure

(Recursion) •••••
prologues and Epilogues

Prologues
Epilogues • • • • •

CHAPTER 7: RECOGNITION OF NAMES
Explicit Declaration • • • • • • • •

Scope of an Explicit Declaration •
Contextual Declaration • • • • • • •

Scope of a Contextual Declaration
Implicit Declaration • • • • • • • •
Examples of Declarations • • • •
INTERNAL and EXTERNAL Attributes

scope of Member Names of
External Structures • • • •

Multiple Declarations and Ambiguous
References • • • • • • • • • •

Default Attributes • • • • • •
Processes in the Application of
Attributes • • • • • • • •

Application of Standard Defaults •
Problem Data • • • • •
Program Control Data • • • • • •

Default statement • • • • • • • • • •
Restoring standard Defaults
Scope of the DEFAULT Statement •
Factored Default Specification •

vi OS PL/I CKT AND OPT LRM PART II

53
53
53
53
53
54
54
54
55
55
58
58
59
59
59
59
59
60
60
60
60
61
61
61
61

63
63
63
63
64
64
65
67
67
68
69

69
70

71
72
72
73

75
75
76
76
76
77
77
78

80

80
81

81
81
82
82
83
84
84
85

Programmer-defin~d Defaults for
Parameter Descriptors • • 85

Programmer-defined Default for
the RETURNS Option 85

Restrictions of the Use of the
DEFAULT Statement • • • • • •• 85

CHAPTER 8: STORAGE CONTROL ••
Static storage • • • •
Automatic Storage • • • • •

Effect of Recursion on Automatic
Variables • • •• •• • • • •

Controlled storage • • • • • •
ALLOCATE Statement for Controlled
Variables • • • • • •

FREE Statement for Controlled
Variables • • • • • • • • • •
Implicit Freeing • • • • • • • •

Multiple Generations of Controlled
Variables • • • • •
Asterisk Notation • • • •

Controlled Structures
ALLOCATION Built-in Function

Based storage • • . • . • . . • • • •
Based Variables
Locator Qualification
Pointer Variables • • • •

Pointer Expression • • • • • • •
Setting Pointer Variables

ADDR Built-in Function • • •
Based Variables and Input/output •

READ with SET Statement ••••
LOCATE Statement • • • • • • • •

self-defining Data (REFER Option)
List Processing • • • •
ALLOCATE Statement for Based

87
87
87

88
88

89

89
90

90
90
91
91
91
91
91
92
92
92
93
93
94
94
95
96

Variables • • • • • • • • • • 97
FREE Statement for Based Variables 97
Multiple Generations of Based
Variables • • • • • • . • • • • • 97

98
98
98

NULL Built-in Function •
Types of List • • • •
Areas • • • • • . • . . • . •

Area Variables • • 99
Offset Variables • • • •• 99
Locator Conversion • • • • •
Offset Expressions •
ALLOCATE Statement with the IN

99
• 100

Option • • • • • • • 100
FREE statement with the IN

Option • • • • •
EMPTY Built-In Function

Area Assignment • • • •
AREA ON-Condition

• 101
• 101

•• 101
•• 101

102 Input/output of Areas ••••
Multiple Locator Qualification •

Levels of Locator Qualification
• 102

102

CHAPTER 9: SUBROUTINES AND FUNCTIONS 105
Entry points of Subroutines and
Functions • • • • • • • • • 106

ENTRY Attribute • • • • • • 106
Exit-points of Subroutines and

Functions • • • • • • • • • 106
RETURNS Attribute and RETURNS

Option • • • • • 106
Subroutines • • • • • • 107
Functions • • •• • • • • • • • • 108

Attributes of Returned Values • • 109
Generic Entry Names and References • 110
Built-in Functions •••• • 111
FORTRAN Library Functions • 112
Built-in Subroutines • 112
Relationship of Arguments and

Parameters • • • • • • 113
Dummy Arguments • 113
Entry Attribute • 114

Parameter Descriptor Lists • 114
Entry Expressions as Arguments • 115

Allocation of Parameters. • • 117
Parameter Attributes. • • • 117
Parameter Bounds, Lengths, and
Sizes • • • • • • • • • •

Simple Parameter Bounds,
Lengths, and Sizes

Controlled Parameter Bounds,

• 117

• 118

Lengths, and Sizes • 118
Argument and Parameter Types • • • 119

Passing an Argument to the Main
Procedure • • • • • • • • • •

CHAPTER 10: INPUT AND OUTPUT •
Data sets • • • • • • • • • • •

Information Interchange Codes
Files • • • • • • • • • • •

File Attribute • • • • • • • • •
Alternative Attributes • • • • •

STREAM and RECORD Attributes •
INPUT, OUTPUT, and UPDATE

• 120

• 121
• 121

122
• 122
• 123
• 123
• 124

Attributes • • • • • 124
SEQUENTIAL, DIRECT and TRANSIENT
Attributes • • • • • 124

BUFFERED and UNBUFFERED
Attributes ••••

Additive Attributes
PRINT Attribute • • • • •
BACKWARDS Attribute
KEYED Attribute
EXCLUSIVE Attribute
ENVIRONMENT Attribute

Opening and Closing Files •
OPEN Statement • • • •
Implicit Opening • • •
Merging of Attributes
Associating Data Sets with
CLOSE Statement • • • • •

Standard Files • • • • • • •

CHAPTER 11: STREAM-ORIENTED
TRANSMISSION • • • • • • • • •

List-directed Transmission •
Data-directed Transmission •
Edit-directed Transmission •

• 12ll
• • • 125

• 125
• 125

•• 125
125

• 125
• 126
• 126
• 121
• 127

Files 128
• 130

130

133
• 133
• 133
• 13ll

Data Transmission Statements
Options of Transmission statements

FILE and STRING Options

• 134
• 135
• 135

COpy Option • 135
SKIP Option • • • • • 135
PAGE Option • • • • • • • • • • 135
LINE Option

Data Specifications •
Data Lists • • • • • •

Repetitive Specification •
Transmission of Data-List

• 136
• • • 136

• 136
• 131

Elements ••••• • • • • 138
List-directed Data Specification • • 138

List-Directed Data in the Stream 139
List-Directed Input Format • • • 139
List-Directed Output Format 139

Data-directed Data Specification lll0
Data-Directed Data in the Stream 140
Data-Directed Data Specification
for Input • • • • • • • • • • • 141

Data-Directed Data Specification
for output • • • • • • • lll2

Length of Data-Directed output
Fields ••• • • • • • • • • • lll3

Example • • • • • • • • • • • • 143
Edit-directed Data Specification • • lll3

Format Lists • • • • • lll4
PRINT Files • • • • • • • • • lll1

Standard File SYSPRINT • • lll8
ENVIRONMENT Attribute • • . 148

Record Format Options • • •• lll9
Fixed-length Records • • • • • • lll9
variable-length Records • • • • 1119
Undefined-length Records • 150
RECSIZE Option • • • • 150
BLKSIZE Opt.ion • • • • 150
Record Format Defaults • • 151

Buffer Allocation 152
BUFFERS Option • • • . 152
DCB Subparameter • • • • • 152

Data Set Organization • 152
CONSECUTIVE Data Sets 152

Magnetic Tape Handling Options • • 153
LEAVE and REREAD options •• 153

ASCII Data Sets ••••••••• 153
ASCII Option • • • • • • • • • • 153
BUFOFF Option and Block Prefix
Fields •••••••••••• 153

D-format and DB-format Records • 15ll
Default Rules ••••••••• 15ll

CHAPTER 12: RECORD-ORIENTED
TRANSMISSION • • • • •

Data Transmitted • • • • •
Data Aggregates
Unaligned Bit Strings
Varying-Length Strings and Area

155
155
155
155

Variables • • • • • • • 155
Data Transmission Statements 155

READ Statement • • 156
WRITE statement • • • • • • • • 156
REWRITE Statement • • • • • 156
LOCATE Statement • • • 156
DELETE Statement • 156
UNLOCK Statement • • 156

options of Transmission Statements • 156
FILE Option • • • • • 156
INTO Option 151
FROM Option 151
SET Option • • 151
IGNORE Option • • • 151
KEY Option • • • • • • • •• 158
KEY FROM and KEYTO Options 158
EVENT Option • • • • • 158
NOLOCK Option • 159

processing Modes • • • • • 159
Move Mode 159
Locate Mode • • • • 161

ENVIRONMENT Attribute • 162
Record Format Options 162

Fixed-length Records • • 164

Contents vii

Variable-length Records
Undefined-length Records •

RECSIZE Option • • • • • •
BLKSIZE Option • • • •
Record Format Defaults

Buffer Allocation
BUFFERS Option • • • • •

Data Set Organization
CONSECUTIVE Data Sets
INDEXED Data sets
REGIONAL Data Sets •
VSAM Data Sets • • •

• 164
• 165
• 165

• • • 166
• 167
• 167
• 167
• 168
• 168
• 168
• 168
• 168

PASSWORD Option • • • •
SKIP and SIS Options •
BKWD Option

• • • • • 169

REUSE Option • • • • •
BUFND Option •
BUFNI Option •

• 169
• 170

• • • • • • 170
• 170
• 170

BUFSP Option • • • • • • • 170
Optimization of Input/Output
Operations ••••• • • • • • • 1 70
Teleprocessing Data Sets •••• 171

Magnetic Tape Handling Options •• 171
LEAVE and REREAD Options • 171

printer/punch Control
(CTL360/CTLASA) • • • • • • • 172

Data Interchange (COBOL) • • • 173
In-line Code Optimization (TOTAL) 174
Data Management Optimization

(INDEXAREA/NOWRIT /ADDBUFF) • •
Key Classification (GENKEY)
Number of Channel Programs lNCP)
Track Overflow (TRKOFL)
Varying-length string Option

(SCALARVARYING) • • • • • •
Key Length Option (KEYLENGTH)
Key Location Option (KEYLOC)

DCB Subparameters • • • • • •
Device-associated Files (IBM 3525

Card Punch) • • •
ASCII Data Sets • • • • • •

ASCII Option • • • • • • •
BUFOFF option and Block Prefix
Fields • • • • • • • • • • •

D-format and DB-format Records
Default Rules

Consecutive organization
Sequential Update

Indexed Organization
Keys • • • • • • •

• 174
• 174
• 175
• 175

• 175
176

• 176
• 176

• 176
• 171
• 171

• 178
• 178
• 178
• 178
• 179
• 179
• 179

Embedded Keys
Dummy Records
Creating a Data set
sequential Access

• • • • • • 180
• 183
• 183
• 183

Direct Access • • • • • 183
Regional Organization • • 184

Keys • • • • • • • • • 184
Types of Regional organization • • 185
Regional(l) Organization ••••• 185

Dummy Records • • • • • • • • • 185
Creating a REGIONAL(l) Data set 185
sequential Access • 187
Direct Access •• • • • 187

Regional(2) Organization • 188
Source Keys • • • • • 188
Dummy Records • • • • • • 189
Creating a Data Set • 189
Sequential Access • 1.89

viii os PL/I CKT AND OPT LRM PART II

Direct Access ••••• • • 190
Regional(3) Organizatipn ••••• 190

Dummy Records 190
creating a Data set • • 190
sequential Access • 191
Direct Access ••••• • • • • 191

VSAM Organization • • • • • • • • 192
Keys for VSAM data sets 192

Keys for Indexed VSAM Data Sets 192
Relative Byte Addresses (RBA) • 192
Relative Record Numbers • 192

Entry-Sequenced Data Sets .••• 193
Loading an ESDS • • • • • • 193
Sequential Access • 193

Key-Sequenced Data sets • • 193
Loading a KSDS • • • • • 193
sequential Access • • 193
Direct Access ••••• 194
Use of the SKIP option • 194
Use of the SIS option • • • 194
SAMEKEY Built-In Function 194

Relative Record Data Sets • • 194
Loading an RRDS • • 194
sequential Access . • • • 196
Direct Access 199

Teleprocessing • • • • • • • 199
ENVIRONMENT Attribute 199
TRANSIENT Attribute • • 202
Error Handling • • • • • • • • • 202
statements and Options • • • 203

Summary of Record-oriented
Transmission • • • • • • • • • • • • 204

Examples of Declarations for Record
Files • • • • • • • • • • • 205

CHAPTER 13: EDITING AND STRING
HANDLING • • • • • • • • 207

Editing by ASSignment • • • • • 201
Altering the Length of String Data 201
Other Forms of ASSignment • • 208

Input and output Operations 208
STRING Option in GET and PUT

Statements •••••• • • • • 208
Picture Specification • • • • • • 209

Numeric Character Specifications 209
Picture Character '9' in Numeric

Character Specifications • • • 210
Picture Characters Z * 210
Picture Character V • • • • • • 211
Insertion Picture Characters B •
, / • • 211

211 Picture Character $ •• • •
Sign SpeCification in Numeric
Character Specifications

overpunched Sign Specification
• 212

Characters, T I R • • • • • 212
Other Numeric Character
Facilities • • • • • • • • 212

Character-String Picture
Specifications

Bit-string Handling • • • • •
String Built-in Functions • •

CHAPTER 14: EXCEPTIONAL CONDITION

• 212
• • 213
• • 214

HANDLING AND PROGRAM CHECKOUT • 217
Enabled Conditions and Established
Action • • • • • • • • • • • 217

Condition Prefixes ••••••• 217

scope of the Condition Prefix • 218
ON statement • • • • • • 218
Null On-Unit • • • • • • • • • • 219
Scope of the ON Statement • 219
Dynamically Descendant On-Units 219
On-units for File Parameters and
File Variables • 219

REVERT Statement • • • 221
SIGNAL Statement • • • • 221
CONDITION Condition • 221
CHECK Condition • 221
SIZE condition • • • • • 222
SUBSCRIPTRANGE Condition • • 222
STRINGRANGE Condition • 222
Condition Built-~n Functions and

Condition Codes • • • • • • 223
Example of Use of ON-conditions • 223

CHAPTER 15: EXECUTION-TIME
FACILITIES OF THE CHECKOUT COMPILER

Tracing Facilities • • • • • • • •
CHECK and NOCHECK statements •
FLOW Statement •• • • • •
NOFLOW Statement • ~

Current status List •
PUT Variables
PUT SNAP Statement •
PUT FLOW Statement •
PUT ALL· Statement • • • •

Program Amending

227
• 228
• 228
• 230
• 232
• 232
• 232
• 235
• 235
• 236
• 237

CHAPTER 16: COMPILE-TIME FACILITIES 239
Preprocessor Input and Output • • • • 239

Preprocessor Scan • • • • • • • • 239
Rescanning and Replacement • • • 240
Character Strings and Comments • 241

Preprocessor Variables •••• • 242
Preprocessor Expressions •••••• 242
Preprocessor Procedures • • 243

Invocation of Preprocessor
Procedures • • • • • •

Arguments and Parameters for
Preprocessor Functions

Returned Value • • • • •
Example of Preprocessor

• 243

• 244
• 244

Functions • • • • • • • • • 244
preprocessor Built-in Functions 246

Preprocessor DO-Group • • • • 247
Inclusion of External Text • 247
Preprocessor Statements • • • 248
Listing Control statements • 249

CHAPTER 17: MULTITASKING.
Tasking and Reentrability • • • • •
Creation of Tasks •

Call Statement • •
TASK Option
EVENT Option •
PRIORITY Option

Priority of Tasks
PRIORITY Built-in Function and
pseudovariable • • • • •

Coordination and Synchronization of
Tasks •• • • • • • • • • • •

Sharing Data Between Tasks • •
Sharing Files Between Tasks
WAIT Statement • • • • • •
Testing and Setting Event

• 251
• 252
• 253
• 253
• 253
• 253
• 254
• 254

• 254

• 255
255

• 256
256

• 256
• 251
• 251

Variables • • • •
DELAY Statement

Termination of Tasks
programmdng Example • • • 258

CRAPTER 18: EFFICIENT PROGRAMMING • 261
261 Optimization Facilities •

The Compiler • • • • •
The Libraries ••••
The System Environment

• • • • 261
• • • • 262

Efficient performance • •
Tuning a PL/I Program - Stage 1
Tuning a PL/I Program - Stage 2
Tuning a PL/I Program - Stage 3
Tuning a Program for a Virtual

• 262
262

• 262
• 263
• 264

Storage system • 268
Modular Programming • • • • 269

In-line Operations 211
Data Conversion 271
String Handling • 273

Global optimization Features •••• 213
Common Expressions • • • • • • 273

Interrupt Handling for Programs
with Common Expression
Elimination • • • • • • • • • • 214

Transfer of Invariant Expressions
or Statements • • • • • • • 274

ORDER and REORDER Options • • • • 275
ORDER Option • • • • • • • • 215
REORDER Option • • • • • • • • • 215

Elimination of Redundant
Expressions • • • • • • • • 276

Expression Simplification • • 276
Taking Advantage of Global
Optimization • • • • • • 276

Common Expression Elimination • 276
Transfer of Invariant

Express ions • • • • • • • • • • 271
Redundant Expression Elimination 278
Other Optimization Features •• 218

Common Errors and Pitfalls •• • • • 278
Operating system and Job Control • 218
Source Program and General Syntax 218
Program Control •••• • • • • • 279
Declarations and Attributes 219
Assignments and Initialization • • 281
Arithmetic and Logical Operations 282
DO-Groups 284
Data Aggregates • • •• 285
Strings • • • • • • •• 285
Functions and Pseudovariables •• 285
ON-conditions and On-units 285
Input/Output • • • • • • • • 286

289
289

CHAPTER 19: INTERLANGUAGE
COMMUNICATION FACILITIES •

Interlanguage Facilities ••••
PaSSing Arguments to a COBOL or

FORTRAN Routine • • • • • • 290
•• 291 Invocation •• • • • •

passing Arguments to a PL/I
Procedure • • • • •

Invocation • • • • • • • • •
• 292

293
293 Using Common Storage •

Interlanguage Environment
Establishing the PL/I

• • • • 294

Environment •••••• 294
Establishing the FORTRAN

Contents ix

Environment • • • • • • • • • • 294
Interrupt Handling • • • • • • • 294
GO TO statement • • • • . 296
Termination of FORTRAN and COBOL

Routines
Multitasking • •

COBOL Interface
FORTRAN Interface
Compile-Time Return Codes
Execution-Time Return Codes

PART II: RULES AND SYNTACTIC
DESCRIPTIONS • ••••

SECTION A: SYNTAX NOTATION •

SECTION B: CHARACTER SETS WITH

• • 296
• • 297

297
• 297
• 299
• 301

· 303

305

EBCDIC AND CARD-PUNCH CODES • • • • 307
60-character Set • 307
48-character Set • • • • • • • • 308

SECTION C: KEYWORDS AND KEYWORD
ABBREVIATIONS • • • • • • • • • 309

SECTION D: PICTURE SPECIFICATION
CHARACTERS • • • • • • • • • • • • • 315

Picture Characters for Character-
string Data • • • • • • • • • • • • 315

Picture Characters for Numeric
Character Data • • • • • • • • • 316

Digit and Decimal-point Specifiers 317
Zero suppression Characters ••• 317
Insertion Characters • • • • • • • 318
Signs and Currency Symbol • 319
Credit, Debit, overpunched, and

Zero Replacement Signs • • • 322
Exponent Specifiers • • • •• 324
scaling Factor • • • • • . 324

SECTION E: EDIT-DIRECTED FORMAT
ITEMS • • • • •

Data Format Items • •
Control Format Items
Remote Format Item • • • •
Use of Format Items • •
Alphabetic List of Format Items

A-Format Item • • • • • •
B-Format Item
C-Format Item
COLUMN Format Item • •
E-Format Item • • • •
F-Format Item
LINE Format Item
P-Format Item • • • •
PAGE Format Item •
R-Format Item • • • •
SKIP Format Item
X~Format Item • • • •

Table of CEIL values

SECTION F: DATA CONVERSION AND
EXPRESSION EVALUATION

· • • 325
325

• 325
• • 326

• 326
• 326

• • • 326
• • • 326
• • • 327

• 327
• • • 328

• 329
• 330
• 330

• • • 330
• • • 331

• 331
• 331

333

• 335
Example of Use of the Conversion

Rules
Step 1 ••
Step 2 • •
Step 3 •

Tables for Arithmetic Operations

• 336
• 336
• 336
• 336

• • 349

x OS PL/I CKT AND OPT LRM PART II

Tables for Comparison Operations •• 350

SECTION G: BUILT-IN FUNCTIONS AND
PSEUDO VARIABLES • • • • • • .

Classification of Built-in
Functions • • • • • • • •
String-handling Built-in

353

353

Functions • • • • • • • 353
Arithmetic Built-In Functions • 353
Mathematical Built-In Functions 353
Array-Handling Built-In
Functions • • • • • • • • • 354

Condition-handling Built-In
Functions • • . • • • . • 354

storage Control Built-In
FUnctions • • • • • • • •• 354

Multitasking Built-In Functions 354
Input/Output Built-In Functions 354
preprocessor Built-In Functions 354
Miscellaneous Built-in Functions 354

Conversion of Arguments • • 354
String-handling Built-In

Functions • • • • • • • 355
Arithmetic Built-In Functions • 355
Mathematical Built-In Functions 355
Array-handling Built-In

Functions • • • • • • • • •
Accuracy of the Mathematical

Functions • • • • •
Aggregate Arguments ••••
Null Arguments • • • • • • •

Non-Preprocessor Built-in

355

355
356

• 356

FUnctions • • • • • • • •• 356
Preprocessor Built-in Functions 356

Pseudovariables •• • • 356

SECTION H: ON-CONDITIONS. 383
Condition Codes (ON-codes) 383

ERROR Condition Code • • • • • • 384
FINISH Condition Codes 384
ERROR Condition Code • • • • 384
NAME Condition Codes • • 384
RECORD Condition Codes • 384
TRANSMIT Condition Codes • 384
KEY Condition Codes • • • 384
ENDFILE Condition Code • • • • • 384
UNDEFINEDFILE Condition Codes • 384
ENDPAGE Condition Code • •• 385
PENDING Condition Code • • 385
STRINGSIZE Condition Code • • • 385
OVERFLOW Condition Code • • • • 385
FIXEDOVERFLOW Condition Code • • 385
ZERODIVIDE Condition Code • 385
UNDERFLOW Condition Code • • • • 385
SIZE Condition Code 385
STRINGRANGE Condition Code • • • 386
AREA Condition Codes • • • 386
ATTENTION Condition Code • 386
CONDITION Condition Code • • 386
CHECK Condition Codes • 386
SUBSCRIPTRANGE Condition Code • 386
CONVERSION Condition Codes • • • 386

Multiple Interrupts • • • • • •• 391
List of Conditions •••••• 392
Classification of Conditions •••• 392

SECTION I: ATTRIBUTES
ALIGNED and UNALIGNED

• • 405
• 405

AREA • • • • • • • • • • • • • • 408
AUTOMATIC, STATIC, CONTROLLED

and BASED •
BACKWARDS • . • • •
BASED • • • • •
BINARY and DECIMAL •
BIT, CHARACTER, and VARYING
BUFFERED and UNBUFFERED
BUILTIN • • • • • • • •
CHARACTER
COMPLEX and REAL • •
CONDITION
CONNECTED
CONTROLLED •
DECIMAL • • ••
DEFINED
Simple Defining
iSUB Defining
String Overlay Defining
Dimension Attribute
DIRECT, SEQUENTIAL, and

TRANSIENT • • • • • • •
ENTRY • • • • • • • • •

• 408
• • 410

• 410
• • 410

410
• 411

• • 411
• 412
• 412
• 412
· 412

• • 412
• • 413

413
• • 414

• 415
• • 416

• 417

• 417
• 418

Rules for Parameter Descriptor
lists • •• ••• • . 418

ENVIRONMENT • • • • . 421
EVENT • • • • • 421
EXCLUSIVE 423
EXTERNAL and INTERNAL • • 423
FILE • • • • • • 423
FIXED and FLOAT • . • • •• 424
FLOAT • • • • •• 424
GENERIC • • • • • 425
INITIAL • • • • • • • • • • 426
INPUT, OUTPUT, and UPDATE • 428
INTERNAL • •• •• • • • • • 428
IRREDUCIBLE and REDUCIBLE • 428
KEYED • • • • • . 429
LABEL • • • • • • 429
Length Attribute • • 430
LIKE • • 430
OFFSET and POINTER • 431
OPTIONS • • • • • • • 432
OUTPUT • • • • • • • 434
Parameter Attribute • 434
PICTURE • • • • • • • 434
POINTER • • • • • • 435
POSITION • • • • • • • 435
Precision Attribute • 435
PRINT • • • .• . • • • 436
REAL • • • • • • • • • • • • • • 436
RECORD and STREAM • 436
REDUCIBLE • • • • • 436
RETURNS • • • • • 437
SEQUENTIAL . 437
Size Attribute • . 437
STATIC • • . . • •. . 437
STREAM • • • • 437
TASK • • • 437
TRANSIENT • • 438
UNALIGNED . . • • . 438
UNBUFFERED . • . 438
UPDATE • • 438
VARIABLE • • • 438
VARYING • • • • • 438

SECTION J: STATEMENTS
ALLOCATE • • . • • •

• 439
• • 439

Assignment Statement •
BEGIN
CALL ••
CHECK

• 441
• • • • • 443

• • 444
• 445

CLOSE
DECLARE

• • • • • • • • • • 446

DEFAULT
DELAY

• • • • • 446
• • • • • • • • • • 447

DELETE •
DISPLAY

• • 450
450

• 451
DO • • • • • • • •• • • 451
END
ENTRY

• • • • • 454
• 455

EXIT ••
FETCH

• • • • • • • • • • 456

FLOW •.
FORMAT . • • • •
FREE ••
GET

• • 456
• • 457

• • •• 457
• • • • • • 458

• • • • • 459
GO TO
HALT •

• • •• •• 460

IF • • •
LEAVE • • • •
LOCATE • • • • •
NOCHECK
NOFLOW .
Null Statement •
ON • • • • •
OPEN ••••
PROCEDURE • • • • •
PUT

• • 461
• • • • • 461

• 462
• • • • • • 462

• 462
• 463
• 463

• • 463
• • 464

466
• 468

READ ••
RELEASE

• • • • • • • • 470

RETURN.
REVERT •
REWRITE
SELECT •
SIGNAL •
STOP.
UNLOCK •
WAIT ••
WRITE

Preprocessor Statements

• 472
• 472

• • 473
473

• 474
• 475

• • 475
• • 475
• • 476
• • 477
• • 478

~ACTIVATE • • • • •
lassignment Statement . • • •
IDEACTIVATE • • • • • •

• 478
• 479
• 479

10 ECLARE
"DO • • • • • • • •
~END ••
';GO TO •
IIF
II NCLUDE ••••
INOTE • • • •
Inull Statement
IPROCEDURE . . • •
Preprocessor RETURN

Listing Control
ICONTROL •
"NOPRINT •
IPAGE
"PRINT •
"SKIP

Statements

• 479
• • • • 480

• 480
• 480

481
• • 481

• 482
• • 482

• 482
• 483

• • 483
• • 483

• 484
• • 484
• • 484

• 485

SECTION K: DATA MAPPING • • 487
Structure Mapping • • • • • 487

Rules for Order of pairing • • • • 487
Rules for Mapping One pair •• 48B
Effect of UNALIGNED Attribute • • 488

Contents xi

Example of structure Mapping • • • 489
Record Alignment • • • • • • •• 502

SECTION L: COMPILER DIFFERENCES 505

GLOSSARY • 511

INDEX •• 525

xii OS PL/I CKT AND OPT LRM PART II

Figure 2.1. Some functions of
special characters • • • • • • 11

Figure 3.1. Section of main storage
showing alignment of fixed length
fields • • • • • • • . • • 31

Figure 7.1. Scopes of data
declarations • • • • • • • • • • •• 78

Figure 7.2. Scopes of entry and
label declarations •• • • 18

Figure 8.1. Example of one-
directional chain • • •• 98

Figure 10.1. Effect of operations on
EXCLUSIVE files • • • •• 126

Figure 11.1. General format for
repetitive specifications ••••• 137

Figure 11.2. Example of data-
directed transmission (both input
and output) •••••••••••• 143

Figure 11.3. options and format
items for controlling layout of
PRINT files •• . • • 148

Figure 11.4. Effect of LEAVE and
REREAD options • • •• • • • • • 153

Figure 12.1. Input and output: move
mode • • • • • • . • • • • • • • • • 160

Figure 12.2. Locate mode input, move
mode output • • • • • 163

Figure 12.3. Effect of LEAVE and
REREAD options. • • • • • • • • 112

Figure 12.4. CTLASA and CTL360 print
control codes for the IBM 1403
Printer • • • • • • • • • • • 112

Figure 12.5. CTLASA and CTL360
control codes for the IBM 2540 Card
Read Punch • • • • • • • • • • • 113

Figure 12.6. CTLASA print control
codes for the IBM 3525 Card Punch • 113

Figure 12.1. CTL360 print control
codes for the IBM 3525 Card Punch • 113

Figure 12.8. statements and options
permitted for creating and accessing
CONSECUTIVE data sets ••••• 180

Figure 12.9 (Part 1 of 2).
statements and options permitted for
creating and accessing INDEXED data
sets • • • • • • • • • • • • •• 181

Figure 12.9 (Part 2 of 2).
statements and options permitted for
creating and acceSSing INDEXED data
sets • • • • • • • • • • • • • • • • 182

Figure 12.10. Effect of KEYLOC and
RKP values on establishing embedded
keys in record variables or data
sets . · · · · · · · · · · · · · Figure 12.11 (Part 1 of 2).
statements and options permitted for
creating and acceSSing REGIONAL data
sets . · · · · · · · · · · · · · Figure 12.11 (Part 2 of 2).
statements and options permitted for
creating and acceSSing REGIONAL data
sets. · · · · · · · · · · · · · . .

182

186

187

Figures

Figure 12.12 (Part 1 of 2).
Statements and options permitted for
loading and acceSSing VSAM entry-
sequenced data sets •••••• 1-95

Figure 12.12 (Part 2 of 2).
Statements and options permitted for
loading and accessing VSAM entry-
sequenced data sets • • • • •• 196

Figure 12.13 (Part 1 of 3).
Statements and options permitted for
creating and accessing VSAM data
sets via prime or alternate in de 191

Figure 12.13 (Part 2 of 3).
statements and options permitted for
creating and acceSSing VSAM data
sets via prime or alternate inde 198

Figure 12.13 (Part 3 of 3).
Statements and options permitted for
creating and acceSSing VSAM data
sets via prime or alternate inde 199

Figure 12.14 (Part 1 of 3).
Statements and options permitted for
creating and acceSSing VSAM relative-
record data sets . • • • • • •• 200

Figure 12.14 (Part 2 of 3).
Statements and options permitted for
creating and acceSSing VSAM relative-
record data sets • • • • • • •• 201

Figure 12.14 (Part 3 of 3).
statements and options permitted for
creating and accessing VSAM relative
record data sets • • • • • • • • • • 202

Figure 12.15 Statements and options
permitted for TRANSIENT files • 204

Figure 14.1. A program checkout
routine • • • • • • • • • • • • 224

Figure 15.1. Example of use of CHECK
statement • • • • • • • • • • • • • 231

Figure 15.2. Flow comments produced
by various transfers of control 233

Figure 15.3. Program information
provided by the PUT statement
options • • • • • • • • • • • • 233

Figure 15.4. Information transmitted
by PUT ALL statement • • • • 235

Figure 17.1. Synchronous and
asynchronous operation • • 251

Figure 11.2. Example of multitasking
as applied to a banking system • • • 259

Figure 11.3. Flow diagram for
programming example of multitasking 260

Figure 18.1 (Part 1 of 2). Implicit
data conversion performed in-line • 210

Figure 18.1 (Part 2 of 2). Implicit
data conversion performed in-line • 271

Figure 18.2. Conditions under which
string operations are handled in-
line • • • • • • • • • • • • • • • • 212

Figure 18.3. Conditions under which
string functions are handled in-line 213

Figure 19.1. Extent of PLiI
environment • • • • • • • • • • • • 29S

Figures xiii

Figure 19.2. COBOL-PL/I data
equivalents • • • • • • • • • 298

Figure 19.3. Declaration of a data
aggregate in COBOL and PL/I • 298

Figure 19.4. FORTRAN-PL/I data
equivalents • • • • • • • • • • 299

Figure 19.5 (Part 1 of 2). Return
codes produced by PL/I data types • 300

Figure 19.5 (Part 2 of 2). Return
codes produced by PL/I data types • 301

Figure 0.1. Pictured character-
string examples • • • • • • 316

Figure 0.2. pictured numeric
character examples. • • • •• • 317

Figure 0.3. Examples of zero
suppression • • • • • • • • • • 319

Figure 0.4. Examples of insertion
characters • • • • • • • • • • • • • 320

Figure 0.5. Examples of drifting
picture characters • • • • • • • • • 321

Figure 0.6. Examples of CR, DB, T,
I, R, and Y picture characters • • • 323

Figure 0.7. Examples of floating-
point picture specifications • • • . 323

Figure 0.8. Examples of scaling
factor picture characters •••• • 324

Figure F.l. List of priority of
operations and guide to conversion
rules •• • • • • • • • • • • • • • 333

Figure F.2. Table of CEIL (n*3.32)
and CEIL (n/3.32) values •••••• 333

Figure F.3. Circumstances causing
conversion • • • • • • • • • • • 333

Figure F.4a. Master table for
arithmetic operations • • • • • 349

Figure F.4b. Key to conversions •• 349
Figure F.4c. Result table for

ADDITION, SUBTRACTION,
MULTIPLICATION, and DIVISION • 349

Figure F.4d. Result table for
EXPONENTIATION • • • • • • • •• 349

Figure F.5a. Master table for
comparison operations • • • • • 350

Figure F.5b. Types of comparison
operation and targets • • • • • • • 351

Figure G.l (Part 1 of 3). Performance
of the mathematical built-in
functions with short and long
precision floating-point arguments • 358

Figure G.l (part 2 of 3). Performance
of the mathematical built-in
functions with short and long
precision floating-point arguments . 359

Figure G.l (part 3 of 3). Performance
of the mathematical built-in
functions with short and long
precision floating-point arguments • 360

Figure G.2 (Part 1 of 3).
performance of the mathematical
built-in functions with extended
precision floating-point arguments • 361

Figure G.2 (Part 2 of 3).
performance of the mathematical
built-in functions with extended
precision floating-point arguments • 362

Figure G.2 (part 3 of 3).
performance of the mathematical

xiv OS PL/I CRT AND OPT LRM PART II

built-in functions with extended
preCision floating-point arguments • 363

Figure H.1. Output for CHECK
condition • • • • • • • • • • • • • 395

Figure I.1. Classification of
attributes according to data types • 406

Figure I.2. File declarations (files
associated with non-VSAM data sets) 407

Figure I.3. Guide to types of
defining • • • • • • • • • • •

Figure J.l. General formats of the
assignment statement • • . • .

Figure J.2. General formats of the
DEFAULT statement • • • • • •

Figure J.3. General formats of the

• 441

• 448

DO statement • • • • • 452
Figure J.4. Transfer and destination
statements • • • • • • • • • • 458

Figure J.5. Format of option list
for READ statement • •

Figure J.6. Effects of 'PAGE and
• 470

~SKIP ••• • • • • • • • • • 486
Figure K.1 (Part 1 of 2). summary of

alignment requirements for ALIGNED
data • • • • • ••••••••••• 490

Figure K.l (Part 2 of 2). Summary of
alignment requirements for ALIGNED
data • • • • • • • • • • • • • • • • 491

Figure K.2 (Part 1 of 2). Summary of
alignment requirements for UNALIGNED
data •••••••••••••••• 492

Figure K.2 (Part 2 of 2). Summary of
alignment requirements for UNALIGNED
data • • • • • • • • • • • • • • 493

Figure K.3. Mapping of minor
structure G •••• • • • • •

Figure K.4. Mapping of minor
structure E •• • • •

Figure K.5. Mapping of minor
struct ure N •••• • • • • •

Figure K.6. Mapping of minor
structure S ••• • • • • • •

Figure K.7. Mapping of minor
struct ure C •• • • • • • • •

Figure K.8. Mapping of minor
structure M •••• •

Figure K.9. Mapping of major
structure A •••• . • • .

Figure K.l0. Offsets in final

494

495

• 496

497

498

499

• 500

mapping of structure A • • • • • 501
Figure K.11. Format of Structure S • 502
Figure K.12. Block created from
structure s 503

Figure K.13. Block created by
structure S with correct alignment • 503

Figure K.14. Alignment of data in a
buffer in locate mode input/output,
for different formats and data set
organizations • • • • • • • • • • • 504

Figure L.l. Differences resulting
from differing compiler functions • 506

Figure L.2 (Part 1 of 2). Differing
qualitative restrictions • • • • • • 507

Figure L.2 (Part 2 of 2). Differing
qualitative restrictions • • • • • . 508

Figure L.3. Differing quantitative
restrictions • • • • • • • • • • • • 509

Part I: Concepts of PL/I

Part I: concepts of PL/I 1

Chapter 1: Basic Characteristics of PL/I

The modularity of PL/I, the ease with which
subsets can be selected to meet different
needs, becomes apparent when one examines
the different features of the language.
Such modularity is one of the most
important characteristics of PL/I.

This chapter contains brief discussions
of most of the basic features to provide an
overall description of the language. Each
is treated in more detail in subsequent
chapters.

Machine Independence

No language can be completely machine
independent, but PL/I is much less machine
dependent than most commonly used
programming languages. The methods used to
achieve this show in the form of
restrictions in the language. The most
obvious example is that data with different
characteristics cannot in general share the
same storage; to equate a floating-point
number with a certain number of alphabetic
characters would be to make assumptions
about the representation of these data
items which would not be true for all
machines.

It is recognized that the price entailed
by machine independence may sometimes be
too high. In the interest of efficiency,
certain features such as the UNSPEC built
in function and record-oriented data
transmission are machine dependent.

Program Structure

A PL/I program consists of one or more
blocks of statements called procedures. A
procedure may be thought of as a
subroutine. Procedures may invoke other
procedures, and these procedures or
subroutines may be either compiled
separately, or nested within the calling
procedure and compiled with it. Each
procedure may contain declarations that
define names and control allocation of
storage.

The rules defining the use of
procedures, communication between
procedures. the meanings of names. and
allocation of storage are fundamental to
the proper understanding of PL/I at any

level but the most elementary. These rules
give the programmer considerable control
over the degree of interaction between
subroutines. They permit flexible
communication and storage allocation, at
the same time allOWing the definition of
names and allocation of storage for private
use within a procedure.

By giving the programmer freedom to
determine the degree to which a subroutine
is self-contained, PLiI makes it possible
to write procedures which can freely be
used in other enVironments, while still
allowing interaction in procedures where
interaction is desirable.

Data Types and Data Description

The characteristic of PL/I that most
contributes to the range of applications
for which it can be used is the variety of
data types that can be represented and
manipulated. PL/I deals with arithmetic
data, string data (bit and character), and
program control data, such as labels.
Arithmetic data may be represented in a
variety of ways; it can be binary or
decimal, fixed-point or float.ing-point,
real or complex, and its precision may be
specified.

PL/I provides features to perform
arithmetic operations, comparisons, and
operations and functions for assembling,
scanning, and subdividing strings.

The compiler must be able to determine,
for every name used in a program, the
complete set of attributes associated with
that name. The programmer may specify
these attributes explicitly by means of a
DECLARE statement; the compiler may
determine all or some of the attributes by
context; or a partial or complete set of
attributes may be assumed by default. The
programmer can specify which attributes are
to be applied by default, or he can allow
the compiler to determine them.

Default Assumptions

An important feature of PL/I is its default
philosophy. If all the attributes
associated with a name, or all the options
permitted in a statement. are not specified

Chapter 1: Basic Characteristics of PLII 3

by the programmer, attributes or options
will be assigned by the compiler. This
default action has two main consequences.
First, it reduces the amount of declaration
and other program writing required; second,
it makes it possible to teach and use
subsets of the language for which the
programmer need not know all possible
alternatives, or even that alternatives
exist.

The default attributes assumed by the
compiler are the standard default
attributes of the PL/I language and the
implementation precision defaults.
However, the programmer can override these
by use of the DEFAULT statement.

The compiler optionally produces an
attribute listing which contains the
identifiers used in a PL/I source program
and a complete list of the attributes
specified either by explicit, contextual,
or implicit declarations, or by application
of default rules. The programmer can use
this listing to check that these attributes
are consistent with his intentions.

Storage Allocation

PL/I goes beyond most other languages in
the flexibility of storage allocation that
it provides. Dynamic storage allocation is
comparatively difficult for an assembler
language programmer to handle for himself;
yet it is automatically provided in PL/I.
There are four different storage classes:
AUTOMATIC, STATIC, CONTROLLED, and BASED.
In general, the default storage class in
PL/I is AUTOMATIC. This class of storage
is allocated whenever the block in which
the variables are declared is activated.
At that time the bounds of arrays and the
lengths of strings are calculated.
AUTOMATIC storage is freed and is available
for re-use whenever control leaves the
block in which the storage is allocated.

storage may also be declared STATIC, in
which case it is allocated when the program
is loaded; it may be declared CONTROLLED,
in which case it is explicitly controlled
by the programmer with ALLOCATE and FREE
statements, independent of the invocation
of blocks; or it may be declared BASED,
which gives the programmer an even higher
degree of control.

The existence of several storage classes
enables the programmer to determine for
himself the speed, storage space, or
programming economy that he needs for each
application. The cost of a particular
facility will depend upon the
implementation, but it will usually be true

4 OS PL/I CRT AND OPT LRM PART I

that the more dynamic the method of storage
allocation, the greater the execution time.

Expressions

Calculations in PL/I are specified by
expressions. An expression has a meaning
in PL/I that is similar to that of
elementary algebra. For example:

A + B * C

This specifies multiplication of the value
of B by the value of C and adding the value
of A to the result. PL/I places few
restrictions on the kinds of data that can
be used in an expression. For example, it
is conceivable, though unlikely, that A
could be a floating-point number, B a
fixed-point number, and C a character
string.

When such mixed expressions are
specified, the operands will be converted
so that the operation can be evaluated
meaningfully. Note, however, that the
rules for conversion must be considered
carefully; converted data may not have the
same value as the original. And, of
course. any conversion increases execution
time.

The results of the evaluation of
expressions are aSSigned to variables by
means of the assignment statement. An
example of an assignment statement is:

x = A + B * C;

This means: evaluate the expression on the
right and store the result in X. If the
attributes of X differ from the attributes
of the result of the expression. conversion
will again be performed.

Data Collections

PL/I offers the programmer many ways of
describing and operating on collections of
data, or data aggregates. Arrays are
collections of data elements, all of the
same type, collected into lists or tables
of one or more dimensions. Structures are
hierarchical collections of data, not
necessarily all of the same type. Each
level of the hierarchy may contain other
structures of deeper levels. An item that
does not contain another structure must
represent an elementary data item or array.

An element of an array may be a
structure; similarly, any level of a

structure may be an array. Operations can
be specified for arrays, structures, or
parts of arrays or structures. For
example:

A = B + C:

In this assignment statement, A, B, and C
could be arrays or structures.

Input and Output

Facilities for input and output allow the
user to choose between factors such as
simplicity, machine independence, and
efficiency. There are two broad classes of
input/output in PL/I: stream-oriented and
record-oriented.

Stream-oriented input/output is almost
completely machine independent. On input,
data items are selected one by one from
what is assumed to be a continuous stream
of characters that are converted to
internal form and aSSigned to variables
specified in a list. Similarly, on output,
data items are converted one by one to
external character form and are added to a
conceptually continuous stream of
characters. Within the class of stream
input/output, the programmer can choose
different levels of control over the way
data items are edited and selected from or
added to the stream.

For printing, the output stream may be
considered to be divided into lines and
pages. An output stream file may be
declared to be a print file with a
specified line size and page size. The
programmer has facilities to detect the end
of a page and to specify the beginning of a
line or a page. These facilities may be
used in subroutines that can be developed
into a report generating system suitable
for a particular installation or
application.

In a system employing the Conversational
Monitor system or the Time Sharing Option,
data may be fed into, and output may be
obtained from, a PL/I program using a
terminal remote from the machine.

Record-oriented input/output is machine
dependent. It deals with collections of
data, called records, and transmits these
one record at a time without any data
conversion: the external representation is
generally an exact copy of the internal
representation. Because the aggregate is
treated as a whole, and because no
conversion is performed, this form of
input/output is more efficient than stream
oriented input/output.

Teleprocessing facilities are provided
by PL/I as part of the basic record
oriented transmission facilities.

stream-oriented input and output usually
sacrifices efficiency for ease of handling.
Each data item is transmitted separately
and is examined to determine if data
conversion is required. Record-oriented
input and output, on the other hand,
provides faster transmission, but generally
requires a greater programming effort.

Input and output operations for data
banks involving a number of interrelated
data sets is simplified by the use of file
variables. All input/output statements can
use file variables with file values
established and mOdified during execution
of the program.

Multitasking

The operating system has facilities for
multiprogramming, that is, it allows a
number of programs to be active
concurrently. In the same way, PL/I has
facilities to allow a number of procedures
within a PL/I program to be active
concurrently.

Any PL/I procedure may invoke another,
in other words initiate the execution of
another procedure. The programmer may
specify that the procedures are to be
tasks, which means that they may both be
active concurrently. The invoked procedure
is known as a subtask of the other, and is
said to have been attached by it.

The advantage of multitasking is that
CPU operations may be carried out in one
task while an input/output operation (or
other CPU operations, in the case of
multiprocessing machines) is carried out
concurrently in another. As soon as the
CPU or the input/output operations in one
task are completed, a search is made
amongst all the active tasks for another
one that requires the same resource. If
more than one such task is found, the
resource is assigned to the one having
highest priority. The PL/I programmer may
allow the system to allocate relative
priorities or he may assign priorities to
his tasks when they are attached.

A number of tasks may be dependent on
each other at various pOints during their
execution. For example, One task may
require results obtained in another before
it can be completed. In PL/I, the
programme~ may synchronize tasks at various
points in their execution. An operation in
one task may be made to await the

Chapter 1: Basic Characteristics of PL/I 5

completion of an operation in another task.

The optimizing and checkout compilers
differ in their implementations of
multitasking. Each task in a PLII program
compiled by the optimizing compiler forms a
system task to be scheduled by the
operating system. The checkout compiler
constitutes a single task, and the compiler
itself schedules the tasks created within a
PL/I program.

Facilities of the Two Compilers

The optimizing and checkout compilers are
complementary program products. The main
function of the optimizing compiler is to
generate highly efficient object code,
while that of the checkout compiler is to
minimize the time a programmer needs to
spend in debugging.

Both compilers may be used for batch
processing, that is, processing in which a
program must be compiled, and possibly
executed, in full before the programmer
obtains any result. The checkout compiler
has the facility for conversational
processing. In this mode, the program's
execution is monitored from a keyboard
terminal and temporary amendments may be
made during execution as a result of
information so obtained; new PL/I code may
be temporarily included in the program, for
instance. The best use is made of PL/I
facilities when both compilers are
employed. The program is compiled by the
checkout compiler during the debugging
stages, to allow the programmer to use his
time most effiCiently; the debugged program
is then compiled by the optimizing
compiler, to obtain object code that makes
the most efficient use of the machine.

The language implemented by the two
compilers is, in general, the same. There
are a few exceptions concerned with the
different primary function of each
compiler. certain optimizing features are
not implemented by the checkout compiler
and certain program checkout features are
not implemented by the optimizing compiler.
For instance, a number of statements
instruct the checkout compiler to provide
the programmer with information about the
flow of control through his program during
execution. Since the optimizing compiler
does not have these facilities, it merely
checks the statements' syntax and oeherwise
ignores them. Similarly, there are
statement options concerned with generating
the most efficient object code possible
that are used by the optimizing compiler
but which are syntax-checked and then
ignored by the checkout compiler.

6 OS PL/I CKT AND OPT LRM PART I

Compile-Time Operations

PL/I permits a compile-time level of
operation, in which preprocessor statements
specify operations upon the text of the
source program itself. The simplest, and
perhaps the commonest preprocessor
statement is ~INCLUDE (in general,
preprocessor statements are preceded by a
percent symbol). This statement causes
text to be inserted into the program,
replaCing the ~INCLUDE statement itself. A
typical use could be to copy declarations
from an installation's standard set of
definitions into the program.

Another function provided by compile
time facilities is the selective
compilation of program text. For example,
it might specify the inclusion or deletion
of debugging statements.

Since a simple but powerful part of the
PL/I language is available for compile-time
activity, the generation, or replacement
and deletion, of text can become more
elaborate, and more subtle transformations
can be performed. Such transformations
might then be considered to be
installation-defined extensions to the
language.

Execution-Time Facilities

PL/I includes statements and options that
provide powerful facilities for debugging.
Other features allow program amendment
during execution; these require the use of
the Conversational Monitor System or the
Time Sharing option of the operating
system, and of the checkout compiler. They
allow the programmer to learn quickly about
the behaviour of his program while it is
being executed and also, in the appropriate
processing environment, to correct it.
Also, under the Conversational Monitor
System or the Time Sharing Option, stream
I/O can be performed from and toa
terminal, on programs compiled by either
the checkout or the optimizing compiler.

The debugging facilities cause
information to be written on the SYSPRINT
file (and, if desired, at the terminal when
the terminal is not defined as the SYSPRINT
file) throughout execution or at designated
pOints during execution. The programmer
can, throughout execution, cause
intormation to be written every time a
reference to a selected variable occurs in
a pre-defined situation or when a transfer
of control takes place. Similarly, at
designated paints in the program being
executed, the information to be written can

include the values of selected variables,
the names of the procedures currently
active, or the numbers of the statements
involved in the latest transfers of
control.

The time at which this output is
available depends on the processing mode.
In batch processing, information written on
the SYSPRINT file is only available when
the SYSPRINT file is printed, which is
normally after execution has terminated.
In conversational processing, information
written on the SYSPRINT file can be
immediately printed at the terminal;
therefore the output provided by the
debugging facilities can be made available
immediately it is produced.

Program amendment during execution is
possible only with conversational
processing under the checkout compiler.
The programmer can enter instructions at
the terminal that cause program execution
to be suspended and control passed to the
terminal. He can then enter statements
that are executed during the current
suspension of execution or during a further
suspension; this future suspension will be
at a point specified by the programmer.
These statements can, for instance,
initiate the debugging facilities described
above, change the value of a variable or
insert extra statements in the program.
Changes made to the existing program can be
temporary, or they can be incorporated
automatically into the current source
program. The current source program can be
saved on an external data set and can be
retranslated at any time without leaving
the checkout compiler environment.

Interrupt Activities

Modern computing systems provide facilities
for interrupting the execution of a program
whenever an exceptional condition arises.
Further, they allow the program to deal
with the exceptional condition and to
return to the point at which the interrupt
occurred.

PL/I provides facilities for detecting a
variety of exceptional conditions. It
allows the programmer to specify, by means
of a condition prefix, that an interrupt
will occur if the condition should arise.
By use of an ON statement, he can specify

the action to be taken when an interrupt
does occur. In Conversational processing,
the programmer can deal with any error
condition immediately it occurs.

Operating System Facilities

A number of facilities provided by the
operating system can be called upon by the
PL/I programmer. The most prominent ones,
namely interlanguage communication,
sort/merge, and checkpoint/restart are
outlined below. All relevant facilities
are described in the appropriate
programmer's guide.

It is possible for a PL/I program to
communicate with COBOL and FORTRAN routines
at execution time, provided that the latter
were compiled by a compiler developed by
IBM for OS. A PL/I procedure may invoke a
COBOL, FORTRAN, or assembler routine, and
may be invoked by a COBOL or FORTRAN
program or routine. In addition, a PLII
program may be used to create or access a
COBOL or FORTRAN data set. All these
facilities are provided by the
implementation of the PL/I language.
Further communication is possible between
PL/I and other languages if an assembler
language interface is provided. Such
interfaces are fully described in the
appropriate programmer's guide.

provided the operating system has been
generated with the appropriate sort/merge
program, the sort/merge facilities may be
utilized by the PL/I programmer. They may
be used on records on PL/I-created data
sets, on data passed by a PL/I program, and
On data being passed to a PL/I program.

When a PL/I batch processing program
compiled by the optimizing compiler is to
run for an extended period, the operating
system checkpoint/restart facility can be
employed to minimize the losses caused by a
machine or system failure. The programmer
selects checkpoints in his program at which
processing is to be recommenced following a
failure. Only the processing carried out
between the checkpoint and the failure may
be lost. Results obtained up to the
checkpoint are preserved on auxiliary
storage, together with data (including a
copy of the program and its associated
storage) necessary for continuation of the
run.

Chapter 1: Basic Characteristics of PL/I 7

There are few restrictions in the format of
PL/I statements. Consequently, programs
can be written without consideration of
special coding forms or checking to see
that each statement begins in a specific
column. As long as each statement is
terminated by a semicolon, the format is
completely free. Each statement may begin
in the next column or position after the
previous statement, or any number of blanks
may intervene.

Character Sets

One of two character sets may be used to
write a source program; either a 60-
character set or a 48-character set. For a
given external procedure, the choice
between the two sets is optional. In
practice, this choice will depend upon the
available equipment.

60-CHARACTER SET

The 60-character set is composed of
alphabetic characters, digits, and special
characters.

There are 29 alphabetic characters
beginning with the currency symbol ($), the
number sign (#), and the commercial "at"
sign Cal, which precede the 26 letters of
the English alphabet in the IBM System/360
collating sequence Extended Binary Coded
Decimal Interchange Code (EBCDIC). For use
with languages other than English, other
characters may be substituted for $, #, and
a.

There are ten digits. The decimal
digits are the digits 0 through 9. A
binary digit is either a 0 or a 1.

An alphameric character is either an
alphabetic character or a digit.

There are 21 speCial characters. They
are as follows:

Chapter 2: Program Elements

Character

Blank
Equal sign or assignment symbol
Plus sign +
Minus sign
Asterisk or multiply symbol *
Slash or divide symbol /
Left parenthesis (
Right parenthesis)
Comma
Point or period
Single quotation mark
or apostrophe

Percent symbol %
Semicolon
Colon
"Not" symbol
"And" symbol &
·Or" symbol I
"Greater than" symbol >
"Less than" symbol <
Break character
Question mark ?

special characters are combined to
create other symbols. For example, <=
means "less than or equal to", ~= means
"not equal to". The combination ** denotes
exponentiation (X**2 means X2). Blanks are
not permitted in such composite symbols.

The break character is the same as the
typewriter underline character. It can be
used in a name, such as GROSS PAY, to
improve readability. -

48-CHARACTER SET

The 48-character set is composed of 48
characters of the 60-character set. In all
but tour cases, the characters of the
reduced set can be combined to represent
the missing characters from the larger set.
For example, the percent symbol (I) is not
included in the 48-character set, but a
double slash (//) can be used to represent
it. The four characters that are not
duplicated are the commercial "at" ~ign,
the number sign, the break character, and
the question mark.

The restrictions and changes for this
character set are described in sect-ion B,
"Character sets with EBCDIC and card-Punch
Codes" •

Chapter 2: Program Elements 9

USING THE CHARACTER SET

All the elements that make up a PL/I
program are constructed from the PL/I
character sets. There are two exceptions:
character-string constants and comments may
contain any of the 256 characters
represented by an 8-bit code.

Certain characters perform specific
functions in a PL/I program. For example,
many characters function as operators.

There are four types of operators:
arithmetic, comparison, bit-string, and
string.

The arithmetic operators are:

+ denoting addition or prefix plus
denoting subtraction or prefix

minus
* denoting multiplication
/ denoting division
** denoting exponentiation

The comparison operators are:

> denoting "greater than"
... > denoting "not greater than"
>= denoting "greater than or

equal to~
= denoting "equal to"
... = denoting "not equal to"
<= denoting "less than or equal
< denoting "less than"
... < denoting "not less than"

The bit-string operators are:

denoting "not"
& denoting "and"
I denoting "or"

The string operator is:

II denoting concatenation

to"

Figure 2.1 shows some of the functions
of other special characters.

Identifiers

In a PL/I program, names or labels are
given to data, files, statements, and entry
points of different program areas. In
creating a name or label, a programmer must
observe the syntax rules for creating an
identifier.

An identifier is a single alphabetic
character or a string of alphameric and

10 OS PL/I CKT AND OPT LRM PART I

break characters, not contained in a
comment or constant, and preceded and
followed by a blank or some other
delimiter; the initial character of the
string must be alphabetic. The length must
not exceed 31 characters.

Language keywords also are identifiers,
possibly preceded by a percent symbol C%).
A keyword is an identifier that, when used
in the proper context, has a specific
meaning to the compiler. A keyword can
specify such things as the action to be
taken, the nature of data, the purpose of a
name. For example, READ, DECIMAL, and
ENDFILE are keywords. Some keywords can be
abbreviated. A complete list of keywords
and their abbreviations is contained in
section C, "Keywords and Keyword
Abbreviations".

~: PL/I keywords are not reserved
words. They are recognized as keywords by
the compiler only when they appear in their
proper context. In other contexts they may
be used as programmer-defined identifiers.

Examples of identifiers that could be
used for names or labels:

A

FILE2

LOOP 3

RATE OF_PAY

#32

Some identifiers, as discussed in later
chapters, cannot exceed seven characters in
length and must not contain the break
character. This limitation is placed upon
certain names, called external names, that
may be referred to by the operating system
or by more than one separately compiled
procedure. If an external name of a PL/I
procedure contains more than seven
characters, it is truncated by the
compiler, which concatenates the first four
characters with the last three characters.
The entry name of a COBOL or FORTAN routine
may have up to eight characters. If more
than eight characters are specified, the
leftmost eight are taken.

Blanks

Blanks may be used freely throughout a PL/I
program. They may surround operators and
most other delimiters. In general, any
number of blanks may appear wherever one
blank is allowed, such as between words in
a statement.

r---, 1 Name Character Use
1---
1 comma separates elements of a list: precedes
l BY NAME option.
l
1 period Indicates decimal point or binary point:

I
1
l
1

semicolon

assignment
symbol

colon

blank

single quotation
mark

parentheses

larrow
I

=

()

->

connects elements of a qualified name

Terminates statements

Indicates assignment of values1

Connects prefixes to statements: can be
used in specification for bounds of an
array; can be used in RANGE specification
of DEFAULT statement

separates elements of a statement

Encloses string constants and picture
specification

Enclose lists: specify information
associated with various keywords; in
conjunction with operators and operands,
delimit portions of a computational
expression

Denotes locator qualification

l percent symbol I Indicates statements to be executed by the
I compile-time preprocessor or listing
l control statements
1---1
11 Note that the character = can be used as an equal sign and as an assignment symbol. 1
L---__________ ----------------------------------J
Figure 2.1. Some functions of special characters

One or more blaDks must be used to
separate identifiers and constants that are
not separated by some other delimiter or by
a comment. However, identifiers, constants
(except character-string constants) and
composite operators (for example, ~=)
cannot contain blanks.

other cases that require or permit
blanks are noted in the text where the
feature of the language is discussed. Some
examples of the use of blanks are:

AB+BC is equivalent to AB + BC

TABLE(10) is equivalent to TABLE (10)

FIRST,SECOND is equivalent to FIRST, SECOND

ATOB is !!2!: equivalent to A TO B

Comments

Comments are permitted wherever blanks are
allowed in a program, except within data
items, such as a character string. A
comment is treated as a blank and can
therefore be used in place of a required
separating blank. Comments do not
otherwise affect execution of a program:
they are used only for documentation
purposes. Comments may be coded on the
same line as statements, either inserted
between statements or in the Ddddle of
them.

The general format of a comment is:

/* character-string

The character pair /* indicates the
beginning of a cOlllllent. The same character
pair reversed, */, indicates its end. No
blanks or other characters can separate the
two characters of either composite pair;
the slash and the asterisk must be

Chapter 2: Program Elements 11

immediately adjacent. The comment itself
may contain any characters except the */
combination, which would be interpreted as
terminating the comment. The initial /*.
must never be in columns 1 and 2 of a line.

Example:

/* THIS WHOLE SENTENCE COULD BE
INSERTED AS A COMMENT */

Any characters permitted for a
particular machine configuration may be
used in comments.

Basic Program Structure

A PL/I program is constructed from basic
program elements called statements. There
are two types of statements: simple and
compound. These statements make up larger
program elements called groups and blocks.

SIMPLE AND COMPOUND STATEMENTS

There are three types of simple statements:
keyword, assignment, and nUll, each of
which contains a statement body that is
terminated by a semicolon.

A keYWord statement has a keyword to
indicate the function of the statement; the
statement body is the remainder of the
statement.

The assignment statement contains the
assignment symbol (=) and does not have a
keyword.

The null statement consists only of a
semicolon and indicates no operation; the
semicolon is the statement body.

Examples of simple statements are:

GO TO LOOP _3; (keyword statement)
GO TO is a keyword; the
blank between GO and TO
is optional. The
statement body is
LOOP_3:

A = B + C; (aSSignment statement)

A c0l!l?Ound statement is a statement that
contains one or more other statements as a
part of its statement body. Th~e are two
compound statements: the IF statement and
the .ON statement. The final statement of a
compound statement is a Simple statement
that is terminated by a semicolon. Hence,
the compound statement is terminated by

12 OS PL/I CRT AND OPT LRM PART I

this semicolon. The IF statement can
contain two statements which may be simple
or compound as shown in the following
example:

IF A>B THEN A=B+C;
ELSE GO TO LOOP_3;

The follOWing is an example of the ON
statement:

ON OVERFLOW GO TO OVFIX;

statement Prefixes

Both Simple and compound statements may
have one or more prefixes. There are two
types of prefixes; the label prefix and the
condition prefix.

A label prefix identifies a statement so
that it can be referred to at some other
point in the program. A label prefix is an
identifier that precedes the statement and
is connected to the statement by a colon.

lIn general, any statement may have ~ne or
more label prefixes. If more than one
label is specified, they may be used
interchangeably to refer to that statement.

A condition prefix specifies whether the
named conditions are to be enabled.
Condition names are language keywords, each
of which represents an exceptional
condition that might arise during execution
of a program. Examples are OVERFLOW and
SIZE. The OVERFLOW condition arises when
the exponent of a floating-point number
exceeds the maximum allowed (representing a
maximum value of about 1075). The SIZE
condition arises when a value is assigned
to a variable with loss of high-order
digits or bits.

When the programmer does not expect the
condition to arise, he may disable it by
preceding the condition name in a prefix by
the word NO. If NO is used, there can be
no intervening blank between the NO and the
condition name.

A condition prefix consists of a list of
one or more condition names, separated by
cODlllas and enclos ed in parentheses. one or
more condition prefixes may be attached to
a statement, and each parenthesized list
must be followed by a colon. Condition
prefixes precede the entire statement,
including any possible labe1 prefixes for
the statement. For example:

(SIZE, NooVERPLOW) : COMPUTE: A=B*C**D;

The single condition prefix indicates that
an interrupt 1s to occur 1f the SIZE

condition arises during execution of the
assignment statement, but that no interrupt
is to occur if the OVERFLOW condition
arises. Note that the condition prefix
precedes the label prefix COMPUTE.

Since intervening blanks between a
prefix and its associated statement are
ignored, it is often convenient, when using
card input, to punch the condition prefix
into a separate card that precedes the card
into which the statement is punched. Thus,
after debugging, the prefix can be easily
removed. For example:

(NOCONVERSION):
(SIZE,NOOVERFLOW):
COMPUTE: A*B*C**Oi

Note that there are two condition prefixes.
The first specifies that no interrupt is to
occur if an invalid character is
encountered during an attempted data
conversion.

Condition prefixes are discussed in
chapter 14, -Exceptional Condition Handling
and Program Checkout-.

GROUPS AND BLOCKS

IA do-group is a sequence of statements
Idelimited by a DO statement and a

Icorresponding END statement. A select
Igroup is a sequence of selection clauses
Idelimited by a SELECT statement and a
Icorresponding END statement. Both types of
Igroup are used for control purposes.

A block is a sequence of statements that
defines-an area of a program. It is used
to delimit the scope of a name and for
control purposes. A program consists of
one or more blocks. Every statement must
appear within a block. There are two kinds
of blocks: begin blocks and procedure
blocks. A begin block is delimited by a
BEGIN statement and an END statement. A
procedure block is delimited by a PROCEDURE
statement and an END statement. Every
begin block must be contained within SOme
p~ocedure block.

Execution passes sequentially into and
out of a begin block. However, a procedure
block, except the first, must be invoked by
execution of a statement in another block.
The first procedure in a program to be
executed is invoked automatically by the
operating system. This first procedure
must be identified by specifying
OPTIONS(MAIN) in the PROCEDURE statement.

A procedure block may be invoked as a
task, in which case it is executed
concurrently with the invoking procedure.
Tasks are discussed in chapter 17,
-Multitasking-.

Chapter 2: Program Elements 13

Data is generally defined as a
representation of information or of value.

In P~/I, reference to a data item,
arithmetic or string, is made by using
either a variable or a constant (the terms
are not exactly the same as in general
mathematical usage).

A variable is a symbolic name having a
value that may change during execution of a
program.

A constant (which can be a symbolic
name) has a value that cannot change.

The following statement contains both
variables and constants:

AREA = RADIUS**2*3.1416;

AREA and RADIUS are variables; the numbers
2 and 3.1416 are constants. The value of
RADIUS is a data item, and the result of
the computation will be a data item that
will be assigned as the value of AREA. The
number 3.1416 in the statement is itself
the data item.

If the number 3.1416 is to be used in
more than one place in the program, it may
be convenient to represent it as a variable
to which the value 3.1416 has been
assigned. Thus, t~e above statement could
be written as:

PI = 3.1416;
AREA = RADIUS**2*PI;

In the last statement, only the number 2 is
a constant.

A constant does more than state a value;
it demonstrates various characteristics of
the data item. For example, 3.1416 shows
that the data type is arithmetic and that
the data item is a decimal number of five
digits and that four of these digits are to
the right of the decimal pOint.

A constant represented by a symbOlic
name has a value which is determdned by the
compiler, and which the programmer does not
need to know. Such constants are normally
associated with the control of the program;
they represent addresses in main storage
rather than computational values. For
instance the identifier -LOOP- in the
following example is a symbolic name which
represents a constant, namely the address
of the machine code generated by the
statement A=2*B as follows:

Chapter 3: Data Elements

GET LIST (B) ;
LOOP: A=2*B;

C=B+6 ;

The characteristics of a variable or a
symbolic constant are not immediately
apparent in the name. Since these
characteristics, called attributes, must be
known, certain keywords and expressions may
be used to specify the attributes in a
DECLARE statement. The attributes used to
describe each data type are discussed
briefly in this chapter. A complete
discussion of each attribute appears in
section I, -Attributes-.

In preparing a PL/I program, the
programmer must be familiar with the types
of data that are permitted, the ways in
which data can be organized, and the
methods by which data can be referred to.
The following paragraphs discuss these
features.

Data Types

The types of data that may be used in a
PL/I program fall into two categories:
problem data and program control data.
Problem data is used to represent values to
be processed by a program. It consists of
two data types, arithmetic and string.
Program control data is used by the
programmer to control the execution of his
program. Program control data consists of
the following seven types: label, event,
file, entry, locator, task, and area.

Problem Data

The types of problem data are arithmetic
and string.

ARITHMETIC DATA

An item of. arithmetic data is One with a
numeric value. Arithmetic data items have
the characteristics of base, scale,
precision, and mode. The characteristics
of data items represented by an arithmetic
variable are specified by attributes
declared for the name, or assumed by
default.

Chapter 3: Data Elements 15

The base of an arithmetic data item is
either decimal or binary.

The scale of an arithmetic data item is
either fixed-point or floating-point. A
fixed-point data item is a number in which
the position of the decimal or binary point
is specified, either by its appearance in a
constant or by a scale factor declared for
a variable. A floating-point data item is
a number followed by an optionally signed
exponent. The exponent specifies the
assumed position of the decimal or binary
point, relative to the position in which it
appears.

The precision of an arithmetic data item
is the number of digits the data item may
contain, in the case of fixed-point, or the
minimum number of significant digits
(excluding the exponent) to be maintained,
in the case of floating-point. For fixed
point data items, precision can also
specify the assumed position of the decimal
or binary point, relative to the rightmost
digit of the number.

Whenever a data item is assigned to a
fixed-point variable, the declared
precision is maintained. The assigned item
is aligned on the decimal or binary pOint.
Leading zeros are inserted if the assigned
item contains fewer integer digits than
declared; trailing zeros are inserted if it
contains fewer fractional digits. A SIZE
error may occur if the assigned item
contains too many integer digits;
truncation on the right may occur, without
rounding, if it contains too many
fractional digits.

The mode of an arithmetic data item is
either real or complex. A real data item
is a number that expresses a real value. A
complex data item is a pair of numbers:
the first is real and the second is
imaginary. For a variable representing
complex data items, the base, scale, and
precision of the two parts must be
identical.

Base, scale, and mode of arithmetic
variables are specified by keywords;
precision is specified by parenthesized
decimal integer constants. The precision
of arithmetic variables and constants is
discussed in greater detail below.

In the following sections, the real
arithmetic data types discussed are decimal
fixed-point, binary fixed-point, deeimal
floating-point, and binary floating-pOint.
Any of these can be used as the real part
of a complex data item. The imaginary part
of a complex number is discussed in the
section "Complex Arithmetic Data," in this
chapter.

16 OS PL/I CRT AND OPT LRM PART I

complex arithmetic variables must be
explicitly declared with the COMPLEX
attribute. Real arithmetic variables may
be explicitly declared to have the REAL
attribute, but it is not generally
necessary to do so, since an arithmetic
variable is generally assumed to be real
unless it is explicitly declared complex.

Decimal Fixed-Point Data

A decimal fixed-point constant consists of
one or more decimal digits with an optional
decimal pOint. If no decimal point
appears, the point is assumed to be
immediately to the right of the rightmost
digit. A sign may optionally precede a
decimal fixed-point constant.

Examples of decimal fixed-point
constants as written in a program are:

3.1416

455.3

132

003

-5280

.0012

For expression evaluation, decimal
fixed-point constants have an apparent
precision (p,q), where p is the total
number of digits in the-constant and q is
the number of digits specified to the righ~
of the decimal point. For example:

3.14 has the precision (3,2)

The keyword attributes for declaring
decimal fixed-point variables are DECIMAL
and FIXED. Precision is stated by two
decimal integers, separated by a comma and
enclosed in parentheses. The first, which
must be unsigned, specifies the total
number of digits; the second, the scale
factor, may be signed and specifies the
number of digits to the right of the
decimal pOint. If the variable is to
represent integers, the scale factor and
its preceding comma can be omitted. The
attributes may appear in any order, but the
precision specification must follow either
DECIMAL or FIXED (or REAL or COMPLEX).
Following are examples of declarations of
decimal fixed-point variables:

DECLARE A FIXED DECIMAL (5,4);

DECLARE B FIXED (6,0) DECIMAL;

DECLARE C FIXED (1,-2) DECIMAL;

DECLARE D DECIMAL FIXED REAL(3,2);

The first DECLARE statement specifies
that the identifier A is to represent
decimal fixed-point items of not more than
five digits, four of which are to be
treated as fractional, that is, to the
right of the assumed decimal point. Any
item assigned to A will be converted to
decimal fixed-point and aligned on the
decimal point.

The second DECLARE statement specifies
that B is to represent integers of no more
than 6 digits. Note that the comma and the
zero are unnecessary; it could have been
specified B FIXED DECIMAL(6).

The third DECLARE statement specifies a
negative scale factor of -2; this means
that the assumed decimal pOint is two
places to the right of the rightmost digit
of the item.

The fourth DECLARE statement specifies
that D is to represent fixed-point items of
no more than three digits, two of which are
fractional.

The maximum number of decimal digits
allowed is 15. Default preciSion, assumed
when no specification is made, is (5,0).
The internal coded arithmetic form of
decimal fixed-point data is packed decimal.
packed decimal is stored two digits to the
byte, with a sign indication in the
rightmost four bits of the rightmost byte.
Consequently, a decimal fixed-point data
item is always stored as an odd number of
digits, even though the declaration of the
variable may specify the number of digits
(p) as an even number.

When the declaration specifies an even
number of digits, the extra digit place is
in the high-order position, and it
participates in any operations performed
upon the data item, such as in a comparison
operation. Any arithmetic overflow or
assignment into an extra high-order digit
place can be detected only if the SIZE
condition is enabled.

Binary Fixed-Point Data

A binary fixed-point constant consists of
one or more binary digits with an optional
binary point, followed immediately by the
letter B, with no intervening blank. A

sign may optionally precede the constant.

Examples of binary fixed-point constants
as written in a program are:

10110B

11111B

101B

-111.01B

1011.111B

For expression evaluation, binary fixed
point constants have an apparent preciSion
(p,q), where p is the total number of
binary digits in the constant, and q is the
number of binary digits specified to the
right of the binary point. For example:

0000001B has the precision (7,0)

The keyword attributes for declaring
binary fixed-point variables are BINARY and
FIXED. Precision is specified by two
decimal integer constants, enclosed in
parentheses, to represent the maximum
number of binary digits and the number of
digits to the right of the binary pOint,
respectively. If the variable is to
represent integers, the second digit and
the comma can be omitted. The attributes
can appear in any order, but the precision
specification must follOW either BINARY or
FIXED (or REAL or COMPLEX).

Following is an example of declaration
of a binary fixed-point variable:

DECLARE FACTOR BINARY FIXED (20,2);

FACTOR is declared to be a variable that
can represent arithmetic data items as
large as 20 binary digits, two of which are
fractional. The decimal eqUivalent of that
value range is from -262,144.00 through
+262,143.15.

The maximum number of binary digits
allowed is 31. Default precision is
(15,0). The internal coded arithmetic form
of binary fixed-point data can be either a
fixed-point binary halfword or fullword. A
halfword is 15 bits plus a sign bit, and a
fullword is 31 bits plus a sign bit. Any
binary fixed-point data item with a
precision of (15,0) or less is stored as a
halfword, and with a precision greater than
(15,0), up to the maximum precision, is
stored as a full word. The declared number
of digits are considered to be in tht low
order pOSitions, but the extra high-order
digits participate in any operations
performed upon the data item. Any
arithmetic overflow into such extra high
order digit positions can be detected only

Chapter 3: Data Elements 17

if the SIZE condition is enabled.

When the standard default rules are in
force, an identifier for which no
declaration is made is assumed to be a
binary fixed-point variable, with default
precision, if its first letter is any of
the letters I through N.

Decimal Floating-point Data

A decimal floating-point constant is
written as a field of decimal digits
followed by the letter E, followed by an
optionally signed decimal integer exponent.
The first field of digits may contain a
decimal point. The entire constant may be
preceded by a plus or minus sign. Examples
of decimal floating-paint constants as
written in a program are:

15E-23

15E23

4E-3

-48333E65

438EO

3141593E-6

.003141593E3

The last two examples represent the same
value.

For expression evaluation, decimal
floating-point constants have an apparent
precision (p) where p is the number of
digits of the constant to the left of the E
(the mantissa). For example:

0.012E5 has the precision (4)

The keyword attributes for declaring
decimal floating-point variables are
DECIMAL and FLOAT. Precision is stated by
a decimal integer constant enclosed in
parentheses. It specifies the minimum
number of significant digits to be
maintained. If an item assigned to a
variable has a field width larger than the
declared precision of the variable,
truncation may occur on the right. The
least significant digit is the first that
is lost. Attributes may appear in any
order, but the precision specification must
follow either DECIMAL or FLOAT (or REAL or
COMPLEX) •

18 OS PL/I CKT AND OPr LRM PART I

Following is an example of the
declaration of a decimal floating-point
variable:

DECLARE LIGHT_YEARS DECIMAL FLOAT(5);

This statement specifies that LIGHT_YEARS
is to represent decimal floating-paint data
items with an accuracy of at least five
significant digits.

The maximum preciSion allowed for
decimal floating-point data items is (33):
the default precision is (6). The exponent
cannot exceed two digits. A value range of
approximately 10-78 to 1075 can be
expressed by a decimal floating-point data
item. The internal coded arithmetic form
of decimal floating-point data is
normalized hexadecimal floating-point, with
the point assumed to the left of the first
hexadecimal digit. If the declared
precision is less than or equal to (6),
short floating-point form is used; if the
declared preCision is greater than (6) and
less than or equal to (16), long floating
point form is used; if the declared
precision is greater than (16), extended
floating-point form is used.

An identifier for which no declaration
is made is assumed to be a decimal
floating-point variable if its first letter
is any of the letters A through H. 0
through Z, or one of the alphabetic
extenders, $, #, m, when the standard
default rules are applied.

Binary Floating-Point Data

A binary floating-point constant consists
of a field of binary digits followed by the
letter E, followed by an optionally signed
decimal integer exponent followed by the
letter B. The exponent is a decimal
integer and specifies a power of two. The
field of binary digits may contain a binary
pOint. The entire constant may be preceded
by a plus or minus sign. Examples of
binary floating-point constants as written
in a program are:

101101ESB

101.101E2B

11101E-28B

-10.01E99B

For expression evaluation, binary
floating-point constants have an apparent
precision (p) where p is the number of
binary digits to the left of the E (the
mantissa). For example:

O.0101E33B has the precision (5)

The keyword attributes for declaring
binary floating-point variables are BINARY
and FLOAT. Precision is expressed as a
decimal integer constant, enclosed in
parentheses, to specify the minimum number
of significant digits to be maintained.
The attributes can appear in any order, but
the precision specification must follow
either BINARY or FLOAT (or REAL or
COMPLEX). Following is an example of
declaration of a binary floating-poi~t
variable:

DECLARE S BINARY FLOAT (16):

This specifies that the identifier S is to
represent binary floating-point data items
with 16 digits in the binary field.

The maximum precision allowed for binary
floating-point data items is (109); the
default precision is (21). The exponent
cannot exceed three decimal digits. A
value range of approximately 2_ 260 to 2 252

can be expressed by a binary floating-point
data item. The internal coded arithmetic
form of binary floating-point data is
normalized hexadecimal floating-point. If
the declared precision is less than or
equal to (21), short floating-point form is
used; if the declared precision is greater
than (21) and less than or equal to (53),
long floating-point form is used: if the
declared precision is greater than (53),
extended floating-point form is used.

Complex Arithmetic Data

In the complex mode, an arithmetic data
item is considered to consist of two parts,
the first a real part and the second a
signed imaginary part. There are no
complex constants in PL/I. A complex value
is obtained by a real constant and an
imaginary constant.

An imaginary constant is written as a
real constant of any type immediately
followed h¥ the letter I.

Examples of imaginary constants as
written in a program are:

271

3. 968E10I

11011.01BI

Each of these is considered to have a real
part of zero. A complex value with a non
zero real part is represented in the
following form:

[+1-] real constant {+I-}
imaginary-constant

Thus a complex value could be written as
38+271.

The keyword attribute for declaring a
complex variable is COMPLEX. A complex
variable can have any of the attributes
valid for the different types of real
arithmetic data. Each of the base, scale,
and precision attributes applies to both
fields.

Unless a variable is explicitly declared
to have the COMPLEX attribute, it is
assumed to represent real data items.

Numeric Character Data

A numeric character data item (also known
as a numeric field data item) is the value
ot a variable that has been declared with
the PICTURE attribute and a numeric picture
specification. The data item is the
character representation of a decimal
fixed-point or floating-point value.

A numeric picture specification
describes a character string to which only
data that has, or can be converted ~o, an
arithmetic value is to be assigned. A
numeric picture specification canno~
contain either of the picture characters A
or X, which are used for non-numeric
picture-character strings. The basic form
of a numeric picture specification is one
or more occurrences of the digit-specifying
picture character 9 and an optional
occurrence of the picture character V, to
indicate the assumed location of a decimal
pOint. The picture spepification must be
enclosed in Single quotation marks. For
example:

'999V99'

This numeric picture specification
describes a data item conSisting of up to
five decimal digits in character form, with
a decimal pOint assumed to precede the
rightmost two digits.

Repetition factors may be used in
numeric picture specifications. A
repetition factor is an unsigned decimal
integer constant, enclosed in parentheses.

INo blanks are allowed within the
parentheses. The repetition factor
indicates the number of repetitions of the
immediately following picture character.
For example, the following picture
specification would result in the same
description as the example shown above:

Chapter 3: Data Elements 19

'(3)9V(2)9'

The format for declaring a numeric
character variable is:

DECLARE identifier PICTURE
'numeric-picture-specification'i

For example:

DECLARE PRICE PICTURE '999V99';

This specifies that any value assigned to
PRICE is to be maintained as a character
string of five decimal digits, with an
assumed decimal pOint preceding the
rightmost two digits. Data assigned to
PRICE will be aligned on the assumed point
in the same way that pOint alignment is
maintained for fixed-point decimal data.

The numeric picture specification
specifies arithmetic attributes of data in
much the same way that they are specified
by the appearance of a constant. Only
decimal data can be represented by picture
characters. Complex data can be declared
by specifying the COMPLEX attribute along
with a single picture specification that
describes either a fixed-point or a
floating-point data item.

The maximum number of decimal digits
allowed in a numeric character item is 15.

It is important to note that, although
numeric character data has arithmetic
attributes, it is not stored in coded
arithmetic form. Numeric character data is
stored in zoned decimal format: before it
can be used in arithmetic computations, it
must be converted either to packed decimal
or to hexadecimal floating-point format.
Such conversions are done automatically,
but they require extra execution time.

Although numeric character data is in
character form, like character strings, and
although it is aligned on the decimal pOint
like coded arithmetic data, it is processed
differently from the way either coded
arithmetic items or character strings are
processed. Editing characters can be
specified for insertion into a numeric
character data item, and such characters
are actually stored within the data item.
consequently, when the item is printed or
treated as a character string, the editing
characters are included in the assignment.
If, however, a numeric character item is
assigned to another numeric character or
arithmetic variable, the editing characters
will not be included in the assignment:
only the actual digits and the location of
the assumed decimal pOint are assigned.

20 os PL/I CRT AND OPT LRM PART I

Consider the following example:

DECLARE PRICE PICTURE '$99V.99',
COST CHARACTER (6),
VALUE FIXED DECIMAL (6,2);

PRICE = 12.28;
COST = '$12.28';

In the picture specification for PRICE, the
currency symbol ($) and the decimal pOint
C.) are editing characters. They are
stored as characters in the data item.
They are not, however, a part of its
arithmetic value. After execution of the
second aSSignment statement, the actual
internal character representation of PRICE
and COST can be considered identical. If
they were printed, they would print exactly
the same. They do not, however, always
function the same. For example:

VALUE PRICE;

COST = PRICE;

VALUE = COST;

PRICE = COST:

After the first two aSSignment
statements are executed, the value of VALUE
would be 0012.28 and the value of COST
would be '$12.28'. In the assignment of
PRICE to VALUE, the currency symbol and the
decimal point are considered to be editing
characters, and they are not part of the
aSSignment: the arithmetic value of PRICE
is converted to internal coded arithmetic
form. In the assignment of PRICE to COST,
however, the assignment is to a character
string, and the editing characters of a
numeric picture specification always
participate in such an assignment. No
conversion is necessary because PRICE is
stored in character form.

The third and fourth assignment
statements would cause errors. The value
of COST cannot be assigned to VALUE because
the currency symbol in the string makes it
invalid as an arithmetic constant. The
value of COST cannot be assigned to PRICE
for exactly the same reason. Only values
that are of arithmetic type, or that can be
converted to arithmetic type, can be
aSSigned to a variable declared with a
numeric picture specification.

Note: A1 though the decimal point can be an
edItIng character or an actual character in
a character string, it will not cause an
error in converting to arithmetic form,
since its appearance is valid in an
arithmetic constant. The same would be
true of a valid plus or minus Sign, since
arithmetic constants can be preceded by
Signs •

other editing characters, including zero
suppression characters, drifting
characters, and insertion characters, can
be used in numeric picture specifications.
For complete discussions of picture
characters, see section D, "Picture
Specification Characters" and the
discussion of the PICTURE attribute in
section I, -Attributes".

STRING DATA

A string is a contiguous sequence of
characters (or binary digits) that is
treated as a single data item. The length
of the string is the number of characters
(or binary digits) it contains.

There are two types of strings:
character strings and bit strings.

Character-String Data

A character string can include any digit,
letter, or special character re~ognized as
a character by the particular machine
configuration. Any blank included in a
character string is an integral character
and is included in the count of length. A
comment that is inserted within a character
string will not be recognized as a comment.
The comment, as well as the comment
delimiters (/* and */), will be considered
to be part of the character-string data.

Character-string constants, when written
in a program, must be enclosed in single
quotation marks. If a single quotation
mark is a character in a string, it must be
written as two single quotation marks with
no intervening blank. The length of a
character string is the number of
characters between the enclosing quotation
marks. If two single quotation marks are
used within the string to represent a
single quotation mark, they are counted as
a single character.

Examples of character-string constants
are:

'LOGARITHM TABLE'

'PAGE 5'

, SHAKESPEARE' 'S "" HAMLET' , , , ,

'AC438-19'

(2) '·WALLA '

The third example actually indicates

SHAKESPEARE'S' 'HAMLET" with a length of
24. In the last example, the parenthesized
number is a repetition factor, which
indicates repetition of the characters that
follow. This example specifies the
constant 'WALLA WALLA ' (the blank is
included as one of the characters to be
repeated). The repetition factor must be
an unSigned decimal integer constant,
enclosed in parentheses. It has a maximum
permissible value of 32761.

A null character-string constant is
written as two quotation marks with no
intervening blank.

The keyword attribute for declaring a
character-string variable is CHARACTER.
Length may be declared by an expression or
a decimal integer constant, enclosed in
parentheses, which specifies the number of
characters in the string. The length
specification must follow the keyword
CHARACTER. For example:

DECLARE NAME CHARACTER (15);

This DECLARE statement specifies that the
identifier NAME is to represent character
string data items, 15 characters in length.
If a character string shorter than 15
characters were to be assigned to NAME, it
would be left adjusted and padded on the
right with blanks to a length of 15. If a
longer string were assigned, it would be
truncated on the right. (Note: If such
truncation occurs it can be detected by use
of the STRINGSIZE condition).

When no length is specified, the
standard default assumption is a length of
one.

Character-string variables may also be
declared to have the VARYING attribute, as
follows:

DECLARE NAME CHARACTER (15) VARYING;

This DECLARE statement specifies that the
identifier NAME is to be used to represent
varying-length character-string data items
with a maximum length of 15. The actual
length attribute for NAME at any particular
time is the length of the data item
assigned to it at that time. The
programmer need not keep track of the
length of a varying-length character
string; this is done automatically. The
length at any given time can be determined
by the programmer, however, by use of the
LENGTH built-in function, as discussed in
chapter 13, "Editing and string Handling".

Character-string data is maintained
internally in character format, that is,
each character occupies one byte of
storage. The maximum length allowed for

Chapter 3: Data Elements 21

variables declared with the CHARACTER
attribute is 32,767. The maximum length
allowed for a character-string constant
before application of repetition factors
varies according to the amount of storage
available to the compiler, but it will
never be less than 512. The minimum length
for a character string is zero. The
storage allocated for varying-length
strings is two bytes longer than the
declared maximum length. The initial two
bytes hold the string's current length, in
bytes.

Character-string variables also can be
declared using the PICTURE attribute of the
form:

PICTURE 'character-picture-specification'

The character picture specification is a
string composed of the picture
specification characters A, X, and 9. The
string of picture characters must be
enclosed in single quotation marks, and it
must contain at least one A or X and no
other picture characters except 9. The
character A specifies that the
corresponding po~ition in the described
field will contain an alphabetic character
or blank. The character X specifies that
any character may appear in the
corresponding position in the field. The
picture character 9 specifies that the
corresponding position will contain a
numeric character or blank. For example:

DECLARE PART_NO PICTURE 'AA9999X999';

This DECLARE statement specifies that the
identifier PART_NO will represent
character-string data items consisting of
two alphabetic characters, four numeric
characters, one character that may be any
character, and three numeric characters.

Repetition factors are used in picture
specifications differently from the way
they are used in string constants.
Repetition factors must be placed inside
the quotation marks. The repetition factor
specifies repetition of the immediately
following picture character. For example,
the above picture specification could be
written:

, (2)A(4) 9X(3) 9'

The maximum length allowed for a picture
specification is the same as that allowed
for character-string constants, as
discussed above.

Note that, for character picture
specifications, the picture character 9
specifies a digit or a blank, while, for
numeric picture specifications, the same
character specifies only a digit.

22 OS PL/I eXT AND OPr LRM PART I

Bit-string Data

A bit-string constant is written in a
program as a series of binary dig~ts (bits)
enclosed in single quotation marks and
followed immediately by the letter B.

A null bit-string constant is written as
two quotation marks with nO intervening
blank, followed immediately by the letter
B.

Examples of bit-string constants as
written in a program are:

'l'B

'11111010110001'B

(64)'0'B

• 'B

The parenthesized number in the third
example is a repetition factor which
specifies that the following series of
digit~ is to be repeated the specified
number of times. The example shown would
result in a string of 64 binary zeros.

A bit-string variable is declared with
the BIT keyword attribute. Length may be
declared by an expression or a decimal
integer constant, enclosed in parentheses,
to specify the number of binary digits in
the string. The letter B is not included
in the length specification since it is not
part of the string. The length
specification must follow the keyword BIT.
Following is an example of declaration of a
bit-string variable:

DECLARE SYMPTOMS BIT (64);

Like character strings, bit strings are
assigned to variables from left to right.
If a string is longer than the length
declared for the variable, the rightmost
digits are truncated; if shorter, padding,
on the right, is with zeros.

If no length is specified, a length of
one is assumed.

A bit-string variable may be given the
VARYING attribute to indicate it is to be
used to represent varying-length bit
strings. Its application is the same as
that described for character-string
variables in the preceding section.

Bit strings are stored eight bits to a
byte. The maximum length allowed for a
bit-string variable is 32,767. The maximum
length allowed for a bit-string constant
before application of repetition factors
depends upon the amount of storage

available to the compiler, but it will
never be less than 4096 (512 bytes). The
minimum length for a bit string is zero.
The storage allocated for varying-length
strings is two bytes longer than that
required by the declared maximum length.
The initial two bytes hold the current
length of the string, in bits.

UNINITIALIZED VARIABLES

When the programmer makes a reference to an
arithmetic or string variable such that the
variable should contain a valid value -
assigns the value to another variable for
instance - errors can occur if this is the
first reference to the variable. The
programmer must ensure that a variable has
been assigned a value before trying to
access it. The checkout compiler checks
whether this has been done.

To facilitate this checking, the
compiler assigns a special value to each
variable as soon as storage is allocated to
it~ An attempt to use a variable having
this value will result in interruption of
execution. The special value is one which
the variable would not normally have. For
instance, with a varying-length character
string, the compiler assigns the variable a
length of -1. Certain of these special
values, however, might occasionally be used
by the programmer. These are as follows.

Fixed length character strings:

X'FE' in each byte

PiG:ture data:

X'FE' in each byte

Fixed-point binary data:

half word

fullword

X'8001', i.e. -215+1(-32161)

X'80000001', i.e. -231+1
(-2,141,483,647)

If it is essential that one of the above
values is used in a program to be run under
the checkout compiler, the compiler options
should specify that no checking for
unin1tialized variables is to be carried
out. The optimizing compiler does not
check for uninitialized variables during

I execution.

Program Control Data

The types of program control data are file,

label, entry, event, task, locator, and
area.

FILE DATA

A file data item repres~nts information
about a PL/I file. It may be a file
constant, or the value of a file variable.
A file constant can be assigned to a file
variable: a reference to the file variable
is a reference to the assigned file
constant.

LABEL DATA

A label data item is a label constant or
the value of a label variable.

A label constant is an identifier
written as a prefix to a statement so that,
during execution, program control can be
transferred to that statement through a
reference to its label. A colon connects
the label to the statement.

ABCDE: MILES = SPEED*HOURS;

In this example, ABCDE is the statement
label. The statement can be executed
either by normal sequential execution of
instructions or by transferring control to
this statement from some other point in the
program by means of a GO TO statement.

As used above, ABCDE can be classified
turther as a statement-label constant. A
statement-label variable is an identifier
that refers to statement-label constants.
Consider the following example:

statement;

statement;

LBL A and LBL B are statement-label
constants because they are prefixed to
statements. LBL X is a statement-label
variable. By assigning LBL_A to LBL_X, the
statement GO TO LBL_X causes a transfer to

Chapter 3: Data Elements 23

the LBL A statement. Elsewhere, the
program-may contain a statement assigning
LBL_B to LBL_X. Then, any reference to
LBL X would be the same as a reference to
LBL-B. This value of LBL X is retained
untIl another value is assigned to it.

A statement-label variable must be
d~clared with the LABEL attribute, as
follows:

DECLARE LBL_X LABEL;

ENTRY DATA

Entry data is used only in connection with
entry names, and has values which permit
references to be made to entry points of
procedures. Entry data may be an entry
constant or the value of an entry variable.

An entry constant is an identifier that
appears in the program as an entry name
written as a prefix to a PROCEDURE or ENTRY
statement. It permits references to be
made to an entry point of a procedure.

Example:

P: PROCEDURE;
CALL Pl;

CALL P1A;

Pl: PROCEDURE;

P1A:ENTRY;

P1 and P1A are declared as entry constants.
Control is transferred to the procedure
entry points designated by Pl or P1A when a
reference is made to either entry constant.

An entry variable is an identifier that
refers to an entry constant. Consider the
following example:

DECLARE EV ENTRY VARIABLE,
(E1,E2) ENTRY;

EV = El;
CALL EVi
EV = E2;
CALL EVi

24 OS PL/I CKT AND OPT LRM PART I

EV is declared an entry variable by means
of the VARIABLE attribute. The first CALL
statement invokes an entry point
represented by the entry constant E1. The
second CALL invokes the entry point E2.

EVENT DATA

Event variables are used to coordinate the
concurrent execution of a number of
procedures, or to allow a degree of overlap
between a record-oriented input/output
operation (or the execution of a DISPLAY
statement) and the execution of other
statem6nts in the procedure that initiated
the operation.

A variable is given the EVENT attribute
by its appearance in an EVENT option or a
WAIT statement, or by explicit declaration,
as in the following example:

DECLARE ENDEVT EVENT;

For detailed information, see chapter
11, -Multitasking," chapter 12, "Record
Oriented Transmission", or "DISPLAY" in
section J, -statements".

TASK DATA

Task variables are used to control the
relative priorities of different tasks
(i.e., concurrent separate executions of a
procedure or procedures).

A variable is given the TASK attribute
by its appearance in a TASK option, or by
explicit declaration, as in the following
example:

DECLARE ADTASK TASK;

For detailed information, see chapter
11, "Multitasking."

LOCATOR DATA

There are two types of locator data:
pOinter and offset.

The value ot a pointer variable is
effectively an address of a location in
storage, and so it can be used to qualify a
reference to a variable that may have been
allocated storage in several different
locations.

The value of an oftset variable

specifies a location relative to the start
of. a reserved area of storage and remains
valid when the address of the area itsel~
changes.

Locator variables can be declared as in
the following example:

DECLARE HEADPTR POINTER,
FIRST OFFSET (AREAl):

In this example, AREA1 is the name of the
reserved area of storage that will contain
the location specified by FIRST.

A variable can also be given the POINTER
attribute by its appearanc.e in the BASED
attribute, by its appearance on the left
hand side of a locator qualification
symbol, or by its appearance in a SET
option.

For detailed information, see chapter 8,
ftStorage Control ft •

AREA DATA

Area variables are used to describe areas
of storage that are to be reserved for the
allocation of based variables. An area can
be assigned or transmitted complete with
its contained allocations; thus, a set of
based allocations can be treated as one
unit for assignment and input/output while
each allocation retains its individual
identity.

A variable is given the AREA attribute
either by its appearance in the OFFSET
attribute or an IN option, or by explicit
declaration, as in the following example:

DECLARE AREAl AREA(2000),
AREA2 AREA;

The number of bytes of storage to be
reserved can be stated explicitly, as it
has been for AREAl in the example:
otherwise a default size is assumed. The
default size is 1000 bytes; the theoretical
maximum size is 16,777,200 bytes but in
practice the maximum depends on the amount
of storage available to the program.

For detailed information, see chapter 8,
·Storage Control-.

Data Organization

In PL/I, data items may be single data
elements, or they may be grouped together
to form data collections called arrays and

structures. A variable that represents a
single element is an element variable (also
called a scalar variable). A variable that
represents a collection of data elements is
either an array variable or a structure
variable.

Any type of problem data or program
control data can be collected into arrays
or structures.

ARRAYS

Data elements having the same
characteristics, that is, of the same data
type and of the same precision or length,
may be grouped together to form an array.
An array is an n-dimensional collection of
elements, all of which have identical
attributes. Only the array itself is given
a name. An individual item of an array is
referred to by giving its relative position
within the array.

Consider the following two declarations:

DECLARE LIST (8) FIXED DECIMAL (3):

DECLARE TABLE (4,2) FIXED DECIMAL (3);

In the first example, LIST is declared to
be a one-dimensional array of eight
elements, each of which is a fixed-point
decimal item of three digits. In the
second example, TABLE is declared to be a
two-dimensional array, also of eight fixed
pOint decimal elements.

The parenthesized number or numbers
following the array name in a DECLARE
statement is the dimension attribute
specification. It must follow the array
name, with or without an intervening blank.
It specifies the number of dimensions of
the array and the bounds, or extent, of
each dimension. Since only one bounds
specification appears for LIST, it is a
one-dimensional array. Two bounds
specifications, separated by a comma, are
listed for TABLE: consequently, it is
declared to be a two-dimensional array.

The bounds of a dimension are the
beginning and the end of that dimension.
The extent is the number of integers
between, and including, the lower and upper
bounds. If only one integer appears in the
bounds specification tor a dimension, the
lower bound is assumed to be 1. The one
dimension of LIST has bounds of 1 and 8;
its extent is 8. The two dimensions of
TABLE have bounds of 1 and 4 and 1 and 2;
the extents are 4 and 2.

Chapter 3: Data Elements 25

If the lower bound of a dimension is not
1, both the upper bound and the lower bound
must be stated explicitly, with the two
numbers connected with a colon. For
example:

DECLARE LIST_A (4:11):

DECLARE LIST_B (-4:3);

In the first example, the bounds are 4 and
11: in the second they are -4 and 3. Note
that the extents are the same: in each
case, there are 8 integers from the lower
bound through the upper bound. It is
important to note the difference between
the bounds and the extent of an array. In
the manipulation of array data (discussed
in chapter 4, "Expressions and Data
Conversions·) involving more than one
array, the bounds -- not merely the extents
-- must be identical. Although LIST,
LIST A, and LIST B all have the same
extent, the bounds are not identical.

The bounds of an array determine the way
elements of the array can be referred to.
For example, assume that the following data
items are assigned to the array LIST, as
declared above:

20 5 10 30 630 150 310 70

The different elements would be referred
to as follows:

Reference Element
LIST (1) 20

LIST (2) 5

LIST (3) 10

LIST (4) 30

LIST (5) 630

LIST (6) 150

LIST (7) 310

LIST (8) 70

Each of the numbers following the name
LIST is a subscript. A parenthesized
subscript following an array name, with or
without an intervening blank, identifies a
particular data item within the array. A
subscripted name, such as LIST(4), refers
to a single element and is an element
variable. The entire array can be referred
to by the unsubscripted name of the array,
for example, LIST. In this case, LIST is
an array variable. Note the difference
between a subscript and the dimension
attribute specification. The latter, which
appears in a declaration, specifies the
dimensionality and the number of elements

26 OS PL/I CRT AND OPr LRM PART I

in an array. Subscripts are used in other
references to identify specific elements
within the array.

The same data could be assigned to
LIST A and LIST B, as declared above
(though not by direct assignment from
LIST). In this case it would be would be
referred to as follows:

Reference Element

LIST_A (4) 20

LIST_A (5) 5

LIST_A (6) 10

LIST_A (7), 30

LIST_A (8) 630

LIST_A (9) 150

LIST_A (10) 310

LIST_A (11) 70

Reference

LIST_B (-4)

LIST_B (-3)

LIST_B (-2)

LIST_B (-1)

LIST_B (0)

LIST B (1)

LIST_B (2)

LIST_B (3)

Assume that the same data were assigned
to TABLE, which is declared as a two
dimensional array (though note again that
assignment could not be direct from LIST to
TABLE). TABLE can be illustrated as a
matrix of four rows and two columns, as
follows:

TABLE(m,n)

(l,n)

(2,n)

(3,n)

(4,n)

20

10

630

310

5

30

150

70

An element of TABLE is referred to by a
subscripted name with two parenthesized
subscripts, separated by a comma. For
example, TABLE (2,1) would specify the
first item in the second row, in this case,
the data item 10.

Note: The use of a matrix to illustrate
TABLE is purely conceptual. It has no
relationship to the way in which the items
are actually organized in storage. Data
items are aSSigned to an array in row major
order, that is, with the right-most
subscript varying most rapidly. For
example, aSSignment to TABLE would be to
TABLE(l,l), TABLE(1,2), TABLE(2,1),
TABLE(2~2) and so forth.

Arrays are not limited to two
dimensions; up to 15 dimensions can be

declared for an array. In a reference to
an element of any array, a subscripted name
must contain as many subscripts as there
are dimensions in the array.

Examples of arrays in this chapter have
shown arrays of arithmetic data. All data
types may be collected into arrays. String
arrays, either character or bit, are valid,
as are arrays of label, entry, event, file,
area, task, or locator data.

Expressions as Subscripts

The subscripts of a subscripted name need
not be constants. Any expression that
yields a valid arithmetic value can be
used. If the evaluation of such an
expression yields a value that is not a
fixed-point binary integer, it is converted
to FIXED BINARY(15,O), since subscripts are
maintained internally as binary integers.

Subscripts are frequently expressed as
variables or other expressions. Thus,
TABLE(I,J*K) could be used to refer to the
different elements of TABLE by varying the
values of I, J, and K.

Cross-Sections of Arrays

Cross-sections of arrays can be referred to
by substituting an asterisk for a subscript
in a subscripted name. The asterisk then
specifies that the entire extent is to be
used. For example, TABLE(*,l) refers to
all of the elements in the first column of
TABLE. It specifies the cross-section
consisting of TABLE(l,l), TABLE(2,1),
TABLE(3,1), and TABLE(4,1). The
subscripted name TABLEC2,*) refers to all
of the data items in the second row of
TABLE. TABLE(.,.) refers to the entire
array.

Note that a subscripted name containing
asterisk subscripts represents, not a
single data element, but an array with as
many dimensions as there are asterisks.
consequently, such a name is not an element
expression, but an array expression.

A reference to a cross-section of an
array may be a reference to two or more
elements of that array which may not be
adjacent in storage, the elements specified
by such a reference being separated by
other elements which are not part of the
cross-section. The storage represented by
such a cross-section is known as non
connected storage. Certain restrictions
apply to the use of non-connected storage;

for example, a record variable (that is, a
variable to or from which data is
transmitted by a record-oriented
transmission statement) must represent data
in connected storage (that is, data items
which are adjacent in storage).

STRUCTURES

Data items that need not have identical
characteristics, but that possess a logical
relationship to on~ another, can be grouped
into aggregates called structures.

Like an array, the entire structure is
given a name that can be used to refer to
the entire collection of data. Unlike an
array, however, each element of a structure
also has a name.

A structure is a hierarchical collection
of names. At the bottom of the hierarchy
is a collection of elements, each ot which
represents a single data item or an array.
At the top of the hierarchy is the
structure name, which represents the entire
collection of element variables. For
example, the following is a collection of
element variables that might be used to
compute a weekly payroll:

LAST NAME
FIRST NAME
REGULAR HOURS
OVERTIME HOURS
REGULAR RATE
OVERTIME_RATE

These variables could be collected into
a structure and given a single structure
name, PAYROLL, which would refer to the
entire collection.

PAYROLL

Any reference to PAYROLL would be a
reference to all of the element variables.
For example:

GET DATA (PAYROLL);

This input statement could cause data to
be assigned to each of the element
variables of the structure PAYROLL.

It often is convenient to SUbdivide the
entire collection into smaller logical
collections. In the above examples,
LAST_NAME and FIRST_NAME might make a
logical subcollection, as might

Chapter 3: Data Elements 21

REGULAR HOURS and OVERTIME HOURS, as well
as REGULAR RATE and OVERTIME RATE. In a
structure,-such subcollections also are
given names.

NAME

FIRST
LAST

PAYROLL

HOURS

REGULAR
OVERTIME

RATE

REGULAR
OVERTIME

Note that the hierarchy of names can be
considered to have different levels. At
the first level is the structure name
(called a major structure name): at a
deeper level are the names of substructures
(called minor structure names): and at the
deepest are the element names (called
elementary names). An elementary name in a
structure can represent an array, in which
case it is not an element variable, but an
array variable.

The organization of a structure is
specified in a DECLARE statement through
the use of level numbers. A major
structure name must be declared with the
level number 1. Minor structures and
elementary names must be declared with
level numbers arithmetically greater than
1; they must be decimal integer constants.
A blank must separate the level number and
its associated name. For example, the
items of a weekly payroll could be declared
as follows:

DECLARE 1 PAYROLL,
2 NAME,

3 LAST,
3 FIRST,

2 HOURS,
3 REGULAR,
3 OVERTIME,

2 RATE,
3 REGULAR,
3 OVERTIME:

Note: In an actual declaration of the
structure PAYROLL, attributes would be
specified for each of the elementary names
LAST and FIRST, and the two pairs REGULAR
and OVERTIME. The pattern of indentation
in this example is used only for
readability. The statement could be
written in a continuous string as DECLARE 1
PAYROLL, 2 NAME, 3 LAST, etc.

PAYROLL is declared as a major structure
containing the minor structures NAME,
HOURS, and RATE. Each minor structure
contains two elementary names. A
programmer can refer to the entire
structure by the name PAYROLL, or he can
refer to portions of the structure by
referring to the minor structure names. He
can refer to an element by referring to an
elementary name.

28 OS PL/I CRT AND OPr LRM PART I

Note that in the declaration, each level
number precedes its associated name and is
separated from the name by a blank. The
numbers chosen for successively deeper
levels need not be the immediately
succeeding integers. They are used merely
to specify the relative level of a name. A
minor structure at level n contains all the
names with level numbers greater than n
that lie between tha~ minor structure name
and the next name with a level number less
than or equal to n. PAYROLL might have
been declared as follows:

DECLARE 1 PAYROLL,
4 NAME,

5 LAST,
5 FIRST,

2 HOURS,
6 REGULAR,
5 OVERTIME,

2 RATE,
3 REGULAR,
3 OVERTIME:

This declaration would result in exactly
the same structuring as the previous
declaration. The maximum permissible
number of levels is 15, and the highest
permissible level number is 255.

The description of a major structure
name is terminated by the declaration of
another item with a level number 1, by the
declaration of another item with no level
number, or by a semicolon terminating the
DECLARE statement.

Level numbers are specified with
structure names only in DECLARE statements
and, in the case of controlled structures,
ALLOCATE statements. In references to the
structure or its elements, no level numbers
are used.

Quali.fied Names

A minor structure or a structure element
can be referred to by the minor structure
name or the elementary name alone if there
is no ambiguity. Note, however, that each
of the names REGULAR and OVERTIME appears
twice in the structure declaration for
PAYROLL. A reference to either name would
be ambiguous without some qualifi.cation to
make the name unique.

PL/I allows the use of qualified names
to avoid this ambiguity. A qualified name
is an elementary name or a minor structure
name that is made unique by qualifying it
with one or more names at a hi.gher level.
In the PAYROLL example, REGULAR and
OVERTIME could be made unique through use
of the qualified names HOORS.REGULAR,

HOURS. OVERTIME, RATE. REGULAR, and
RATE. OVERTIME.

The different names of a qualified name
are connected by periods. Blanks may
appear surrounding the period.
Qualification is in the order of levels;
that is, the name at the highest level must
appear first, with the name at the deepest
level appearing last.

Any of the names in a structure, except
the major structure name itself, need not
be unique within the procedure in which it
is declared. For example, the qualified
name PAYROLL. HOURS. REGULAR might be
required to make the reference unique
(another structure, say WORK, might also
have the name REGULAR in a minor structure
HOURS; it could be made unique with the
name WORK.BOURS.REGULAR). All of the
qualifying names need not be used, although
they may be, if desired. Qualification
need go only so far as necessary to make
the name unique. Intermediate qualifying
names can be omitted. The name
PAYROLL.LAST is a valid reference to the
name PAYROLL. NAME. LAST.

ARRAYS OF STRUCTURES

A structure name, either major or minor,
can be given a dimension attribute in a
DECLARE statement to declare an array of
structures. An array of structures is an
array whose elements are structures having
identical names, levels, and elements. For
example, if a structure, WEATHER, were used
to process meteorological information for
each month of a year, it might be declared
as follows:

DECLARE 1 WEATBER(12),
2 TEMPERATURE,

3 HIGH DECIMAL FIXED(4,1),
3 LOW DECIMAL FIXED(3,1),

2 WIND VELOCITY,
3 HIGH DECIMAL FIXED(3),
3 LOW DECIMAL FlXED(2),

2 PRECIPITATION,
3 TOTAL DECIMAL FIXED(3,1),

3 AVERAGE DECIMAL FlXED(3,1);

Thus, when such an array represents the
weather for a whole year, a programmer
could refer to the weather data for the
month of July by specifying WEATHER(1).
Portions of the July weather could be
referred to by TEMPERATURE(1),
WIND VELOCITY(7), and PRECIPITATION(1), but
TOTAL(1) would refer to the total
precipitation during the month of July.

TEMPERATURE.HIGH(3), which would refer

to the high temperature in March, is a
subscripted qualified name.

The need for subscripted qualified names
becomes more apparent when an array of
structures contains minor structures that
are arrays. For example, consider the
following array of structures:

DECIARE 1 A (6,6),
2 B (5),

3 C,
3 D,

2 E;

Both A and B are arrays of structures. To
identify a data item, it may be necessary
to use as many as three names and three
subscripts. For example, A(1,1).B(2).C
identifies a particular C that is an
element of B in a structure in A.

So long as the order of subscripts
remains unchanged, subscripts in such
references may be moved to the right or
left and attached to names at a lower or
higher level. For example, A.B.C(1,1,2)
and A(1,1,2).B.C have the same meaning as
A(l,1).B(2).C for the above array of
structures. Unless all of the subscripts
are moved to the lowest or highest level,
the qualified name is said to have
interleaved subscripts; thus, A.B(1,1,2).C
has interleaved subscripts.

An array declared within an array of
structures inherits dimensions declared in
the containing structure. For example, in
the above declaration for the array of
structures A, the array B is a three
dimensional structure, because it inherits
the two dimensions declared for A. If B is
unique and requires no qualification, any
reference to a particular B would require
three subscripts, two to identify the
specific A and one to identify the specific
B within that A.

Cross-Sections of Arrays of Structures

A reference to a cross-section of an array
of structures is not permitted, that is,
the asterisk notation cannot be used in a
reference.

Other Attributes

Keyword attributes for data variables such
as BINARY and DECIMAL are discussed briefly
in the preceding sections of this chapter.
Other attributes that are not peculiar to
one data type may also be applicable. A

Chapter 3: Data Elements 29

complete discussion of these attributes is
contained in section I, "Attributes". Some
that are especially applicable to a
discussion of data type and data
organization are DEFINED, LIKE, ALIGNED,
UNALIGNEB, and INITIAL.

DEFINED Attribute

The DEFINED attribute specifies that the
named data element, structure, or array is
to occupy the same storage area as that
assigned to other data. For example,

DECLARE LIST (100,100),
LIST_ITEM (100,100) DEFINED LIST r

LIST is a 100 by 100 two-dimensional array.
LIST ITEM is an identical array defined on
LIST~ A reference to an element in
LIST ITEM is the same as a reference to the
corresponding element in LIST.

'The DEFINED attribute with the POSITION
attribute can be used to subdivide or
overlay a data item. For example:

DECLARE LIST CHARACTER (50),
LISTA CHARACTER(10) DEFINED LIST,
LISTB CHARACTER(10) DEFINED LIST

POSITION(11) ,
LISTC CHARACTER(30) DEFINED LIST

POSITION (21) ;

LISTA refers to the first ten characters of
LIST. LISTB refers to the second ten
characters of LIST. LISTC refers to the
last thirty characters of LIST.

The DEFINED attribute may also be used
to specify parts of an array through use of
iSUB variables, in order to constitute a
new array. The iSUB variables are dummy
variables where i can be specified as any
decimal integer constant from 1 through n
(where n represents the number of
dimensions for the defined item). The
value of the iSUB variable ranges from the
lower bound to the upper bound of the ith
dimension of the defined array. For
example:

DECLARE A(20,20),
B(lO) DEFINED A(2*lSUB,2*lSUB)r

B is a subset of A consisting of every even
element in the diagonal of the array, A.
In other words, B(l) corresponds to A(2,2),
B(2) corresponds to A(4,4).

Non-connected storage: The use of the
DEFINED attribute to overlay arrays with

30 OS PL/I CKT AND OPT LRM PART I

arrays creates the possibility that array
expressions can refer to array elements in
non-connected storage (that is , array
elements which are not adjacent in
storage). It is possible for an array
expression involving consecutive elements
to refer to non-connected storage in the
two following cases:

1. Where an array is declared with iSUB
defining. An array expression which
refers to adjacent elements in an
array declared with iSUB defining can
be a reference to non-connected
storage (that is, a reference to
elements of an overlayed array which
are not adjacent in storage).

2. Where a string array is defined on a
string array which has elements of
greater length. Consecutive elements
in the defined array are separated by
the difference between the lengths of
the elements of the base and defined
arrays, and are considered to be held
in non-connected storage.

LIKE Attribute

The LIKE attribute is used to indicate that
the name being declared is to be given the
same structuring as the major structure or
minor structure name following the
attribute LIKE. For example:

DECLARE 1 BUDGET,
2 RENT,
2 FOOD,

3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAINMENT,
1 COST_OF_LIVING LIKE BUDGET:

This declaration for COST OF LIVING is the
same as if it had been declared:

DECLARE 1 COST OF LIVING,
2 RENT,-
2 FOOD,

3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAINMENT r

Note: The LIKE attribute copies
StrUCturing, names, and attributes of the

r---,
Address of Byte

50000 150001 150002 150003 150004 150005 150006 150007 150008

I I I I I I I I
byte I byte I byte I byte I byte 1 byte 1 byte 1 byte I byte

I I I I I 1 I I

I I
halfword Ihalfword Ihalfword

1
Ihalfword

I
Ihalfword

I 1 1 1

1 I
I word I word I word
I I I 1---
I I double
I doubleword I word
I I
L---J
Figure 3.1. Section of main storage showing alignment of fixed length fields

structure below the level of the specified
name only. No dimensionality of the
specified name is copied. For example, if
BUDGET were declared as 1 BUDGET(12), the
declaration of COST OF LIVING LIKE BUDGET
would not give the dimension attribute to
COST_OF_LIVING. To achieve dimensionality
of COST OF LIVING, the declaration would
have to-be-DECLARE 1 COST_OF_LIVING(12)
LIKE BUDGET.

A minor structure name can be declared
LIKE a major structure or LIKE another
minor structure. A major structure name
can be declared LIKE a minor structure or
LIKE another major structure.

ALIGNED and UNALIGNED Attributes

In System/360 and System/370, information
is held in units of eight bits, or a
multiple of eight bits. Each eight-bit
unit of information is called a~. When
PL/I data is stored in character form, each
character occupies one byte.

Bytes may be handled separately or
grouped together in fields. A halfword is
a group of two consecutive bytes. A word
is a group of four consec~tive bytes. A
double word is a field consisting of two
words. Byte locations in storage are
consecutively numbered starting with 0:
each number is considered the address of
the corresponding byte. A group of bytes
in storage is addressed by the leftmost
byte of the group.

Fixed-length fields, such as halfwords
and double words, must be located in main

storage on an integral boundary for that
unit of intormation. A boundary is called
integral for a unit of information when its
address is a multiple of the length of ~he
unit in bytes. For example, a word (four
bytes) must be located in storage so that
its address is a multiple of the number 4.
A halfword (two bytes) must have an address
that is a multiple of the number 2, and· a
doubleword (eight bytes) must have an
address that is a multiple of the number 8
(see figure 3.1).

Halfwords, words, and doublewords may be
accessed more readily than a field of the
same length that is not aligned on an
integral boundary. For this reason, it is
a system requirement that data to be used
in certain operations is aligned on one of
the three integral boundaries.

It is possible in PL/I to align data on
boundaries that will give the fastest
possible execution. This is not always
desirable, however, since there may be
unused bytes between successive data
elements, which increases use of storage.
This is likely to be particularly important
when the data items are members of
aggregates that are to be used to create a
data set: the unused bytes can greatly
increase the amount of external storage
required. The ALIGNED and UNALIGNED
attributes allow the programmer to choose
whether or not data is to be stored on the
appropriate integral boundary.

ALIGNED specifies that the data element
is to be aligned on the storage boundary
corresponding to its data type requirement.
These requirements are specified in section
K, -Data Mapping-.

Chapter 3: Data Elements 31

UNALIGNED specifies that each data
element, with one exception, is mapped on
the next byte boundary. The exception is
for fixed-length bit strings, which are
mapped on the next bit.

When the UNALIGNED attribute is
specified, the compiler generates code that
moves the data to an appropriate integral
boundary before an operation is performed,
if the operation requires data alignment.
Consequently, although the UNALIGNED
attribute may reduce storage requirements,
it may increase execution time.

Defaults are applied at element level.
The default for bit-string data, character
string data, and numeric character data is
UNALIGNED: for all other types of data, the
default is ALIGNED.

ALIGNED or UNALIGNED can be specified
for element, array, or structure variables.
The application of either attribute to a
structure is equivalent to applying the
attribute to all contained elements that
are not explicitly declared ALIGNED or
UNALIGNED.

The following example illustrates the
effect of ALIGNED and UNALIGNED
declarations for a structure and its
elements:

DECLARE 1 S,
2 X BIT(2),
2 A ALIGNED,

3 B,
3 C UNALIGNED,

4 D,
4 E ALIGNED,
4 F,

3 G,
2 H;

INITIAL Attribute

/*UNALIGNED BY DEFAULT*/
/*ALIGNED EXPLICITLY */
/*ALIGNED FROM A */
/*UNALIGNED EXPLICITLY*/
/*UNALIGNED FROM C */
/*ALIGNED EXPLICITLY */
/*UNALIGNED FROM C */
/*ALIGNED FROM A */
/*ALIGNED BY DEFAULT */

The INITIAL attribute specifies an initial
value to be assigned to a variable at the
time storage is allocated for it. For
example:

DECLARE NAME CHAR(10) INIT('JOHN DOE'):

DECLARE PI FIXED DEC(S,4) INIT(3.1416);

DECLARE TABLE(100,100) INIT CALL SUBR;

DECLARE A INIT«B*C»;

DECLARE X INIT(SQRT(Z»:

When storage is allocated for NAME, the
character string 'JOHN DOE' (padded on the
right to 10 characters) will be assigned to

3 2 OS PL/I CKT AND OPT LRM PART I

it. When PI is allocated, it will be
initialized to the value 3.1416. Either
value may be retained throughout the
program, or it may be changed during
execution.

The third example illustrates the CALL
option. It indicates that the procedure
SUBR is to be invoked to perform the
initialization. The required values are
assigned to TABLE during the execution of
SUER.

The fourth example shows an INITIAL
attribute which contains an expression. It
specifies that A is to be initialized with
the value of the product of Band C.

The fifth example illustrates the use of
a fUnction reference to initialize a data
item.

For a variable that is allocated when
the program is loaded, that is, a static
variable, which remains allocated
throughout execution of the program, any
value specified in an INITIAL attribute is
assigned only once. For automatic
variables, which are allocated at each
activation of the declaring block, any
specified initial value is assigned with
each allocation. For based and controlled
variables, which are allocated at the
execution of ALLOCATE statements (also
LOCATE statements for based variables), any
specified initial value is assigned with
each allocation. Note, however, that this
initialization of controlled variables can
be overridden in the ALLOCATE statement.

The INITIAL attribute cannot be given
for entry constants, file constants,
DEFINED data, entire structures, or
parameters (except CONTROLLED parameters).

Note: The CALL option or an expression
containing one or more variables cannot be
used with the INITIAL attribute for static
data.

An area variable is automatically
initialized with the value of the EMPTY
built-in function, on allocation, after
which any specified INITIAL is applied. An
area can be initialized by assignment ·of
another area, using the INITIAL attribute
with or without the CALL option.

The INITIAL attribute can be specified
for arrays, as well as for element
variables. In a structure declaration,
only elementary names can be given the
INITIAL attribute.

An array or an array of structures can
be partly initialized or fully initialized.
Uninitialized elements are specified by
either omitting to put a value in the

INITIAL attribute or by using an asterisk.
Far example:

DECLARE A(15) CHARACTER (13) INITIAL
('JOHN DOE', *,

'RICHARD ROW',
'MARY SMITH'),

B (10,10) DECIMAL FIXED(5)
INITIAL«25)0,(25)1,(50)0),

1 C(8),
2 D INITIAL (0),
2 E INITIAL«8)0);

In this example, only the first, third,
and fourth elements of A are initialized:
the rest of the array is uninitialized.
The array B is fully init~alized, with the
first 25 elements initialized to 0, the
next 25 to 1, and the last 50 to O. The
parenthesized numbers (25, 25, and 50) are
iteration factors, that specity the number
of elements to be initialized. In the
structure C, where the dimension (8) has
been inherited by D, only the first element
of D is initialized; where the dimension
(8) has been inherited by E, all the
elements of E are initialized.

When an array of structures is declared
with the LIKE attribute to obtain the same
structuring as a structure whose elements
have been initialized, it should be noted
that only the first structure in this array
of structures will be initialized. For
example:

DECLARE 1 G,
2 H INITIAL(O),
2 I INITIAL(O),

1 J(8) LIKE G;

In this example, only J(l).H and J(l).I are
initialized in the array of structures.

For STATIC arrays, iteration factors
must be decimal integer constants: for
arrays of other storage classes, iteration
factors may be constants, variables, or
expressions.

The iteration factor should not be
confused with the string repetition factor
discussed earlier in this chapter.
Consider the following example:

DECLARE TABLE (50) CHARACTER (10)
INITIAL «10)'A',(25)(10)'B',
(24)(1)'C'):

This INITIAL attribute specification
contains both iteration factors and
repetition factors. It specifies that the
first element of TABLE is to be initialized
with a string consisting of 10 A's, each of
the next 2~ elements is to be initialized
with a string conSisting of 10 B's, and
each of the last 24 elements is to be
initialized with the single character C.
In the INITIAL attribute specification for
a string array, a single parenthesized
factor preceding a string constant is
assumed to be a string repetition factor
(as in (10)'A'). If more than one appears,
the first is assumed to be an iteration
factor, and the second a string repetition
factor. For this reason (as in
(24)(1)'C'), a string repetition factor of
1 must be inserted if a single string
constant is to be used to initialize more
than one element.

Chapter 3: Data Elements 33

Chapter 4: Expressions and Data Con version

An expression is a representation of a
value. A single constant or a variable is
an expression. combinations of constants
and/or variables, along with operators
and/or parentheses, are expressions. An
expression that contains operators is an
operational expression. The constants and
variables of an operational expression are
called operands.

Examples of expressions are:

27

LOSS

A+B

(SQTY-QTY)*SPRICE

Any expression can be classified as an
element expression (also called a scalar
expression), an array expression, or a
structure expression. Element variables,
array variables, and structure variables
can appear in the same expression.

An element expression is one that
represents an element value. This
definition includes an elementary name
within a structure or a subscripted name
that specifies a single element of an
array.

An array expression is one that
represents an array of values. This
definition includes a structure, or part of
a structure (a minor structure or element)
that is given the dimension attribute.

A structure expression is one that
represents a structured set of values.
None of its operands are arrays, but an
operand can be subscripted.

In the examples that follow, assume that
the variables have attributes declared as
follows:

DeL A(10,10) BIN FIXED(31),
B(10,10) BIN FIXED(31),
1 RATE,

2 PRIMARY DEC FIXED(4,2),
2 SECONDARY DEC FIXEO(4,2),

1 COST(2),
2 PRIMARY DEC FIXED(4,2),
2 SECONDARY DEC FIXEO(4,2),

C BIN FIXED(15),
D BIN FIXED(15);

Examples of element expressions are:

C * D

A(3,2) + B(4,8)

RATE. PRIMARY - COST. PRIMARY(1)

A(4,4) * C

RATE. SECONDARY / 4

A(4,6) * COST.SECONDARY(2)

All of these expressions are element
expressions because each operand is an
element variable or constant (even though
some may be elements of arrays or
elementary names of structures); hence,
each expression represents an element
value.

Examples of array expressions are:

A + B

B / lOB

RATE + COST

All of these expressions are array
expressions because at least one operand of
each is an array variable; hence, each
expression represents an array value. Note
that the third example contains the binary
fixed-point constant lOB. The last example
represents an array of structures.

Examples of structure expressions are:

RATE * COST(2)

RATE / 2

Both of these expressions are structure
expressions because at least one operand of
each is a structure variable and no operand
is an array; hence, each expression
represents a structure value.

Use of Ex pressions

Expressions that are Single constants or
Single variables may appear freely
throughout a program. However, the syntax
of many PL/I statements allows the
appearance of operational expressions,

Chapter 4: Expressions and Data Conversion 35

provided the result of the expression
conforms with the syntax rules.

In syntactic descriptions used in this
publication, the unqualified term
-expression" refers to an element
expression, an array expression, or a
structure expression. For cases in which
the kind of expression is restricted, the
type of restriction is noted; for example,
the term "element-expression" in a
syntactic description indicates that
neither an array expression nor a structure
expression is valid.

~ Although operational expressions can
appear in a number of different PL/I
statements, their most common occurrences
are in assignment statements of the form:

A = B + C;

The assignment statement has no PL/I
keyword. The assignment symbol (=)

indicates that the value of the expression
on the right (B + C) is to be aSSigned to
the variable on the left (A). For purposes
of illustration in this chapter, some
examples of expressions are shown in
assignment statements.

Data Conversion

OPERATIONAL EXPRESSIONS

An operational expression consists of one
or more single operations. A sing1e
operation is either a prefix operation (an
operator preceding a single operand) or an
infix operation (an operator between two
operands). The two operands of any infix
operation, when the operation is performed,
usually must be of the same data type.

The operands of an operation in a PL/I
expression are automatically converted, if
necessary, to a common representation
before the operation is performed. General
principles concerning these conversions are
given in -Attributes of Targets" later in
this chapter. Detailed rules for specific
cases, including rules for computing the
precision or length of a converted item,
can be found in section F, "Data Conversion
and Expression Evaluation."

Data conversion is mainly confined to
problem data. The only conversion possible
with program control data is between offset
and pointer types (except that conversion
to character strings takes place under the
checkout compiler during stream output).

There are very few restrictions on the

36 OS PL/I CKT AND OPr LRM PART I

use of more than one representation in an
expression. It must be realized, however,
that such mixtures imply conversions. If
conversions take place at execution time,
they will slow down execution. A1so,
unless care is taken, conversion can result
in loss of precision and can produce
unexpected results. Mixed-representation
expressions should, therefore, be avoided
as far as poSSible, and when they are used
the relevant conversion rules should be
thoroughly understood by the programmer.

ASSIGNMENT

In addition to conversion performed in the
evaluation of an expression, conversion
will also occur when a data item (or the
result of an expression evaluation) is
aSSigned to a variable whose attributes
differ from the attributes of the item
assigned. The rules for such conversions
are, with a few exceptions, the same as
those for conversion in the eva1uation of
operational expressions.

Conversion also takes place during
stream-oriented input/output (see chapter
11), and there are a number of other
circumstances that cause conversion; a
complete list is given in SectionF.

PROBLEM DATA CONVERSION

Two classes of conversion can be performed
on problem data: type conversion and
arithmetic conversion.

Type conversions are those that take
p1ace between the different types of
problem data, namely:

character-string - data with the CHARACTER
attribute

bit-string - data with the BIT
attribute

numeric character- data with a PICTURE
attribute that contains
neither of the picture
characters A and X.

coded arithmetic - data with FIXED or
FLOAT, DECIMAL or BINARY,
REAL or COMPLEX, and
precision attributes.

(Strictly, numeric character data is merely
a particular case of arithmetic data, but
for the purpose of presenting the
conversion rules, it is regarded as a

separate type of representation.)

Arithmetic conversions are those that
occur within the coded arithmetic form -
conversions between fixed-point and
floating-point scales, decimal and binary
bases, and real and complex modes, and
conversions of precision.

An example of type conversion is a bit
string being converted to coded arithmetic
representation during the evaluation of an
arithmetic expression. The bit string is
interpreted as an unsigned binary integer,
as if it had the attributes FIXED
BINARY(31,O) REAL, with a value equal to
the positive binary value represented by
the bit pattern in the string. If the
current length of the string is greater
than 31, excess bits on the left-hand end
of the string are ignored.

An example of arithmetic conversion is
an item being converted from fixed-point
decimal representation to floating-point
binary representation, both in real mode,
during the evaluation of an arithmetic
expression. The item retains the same
value but the base on which it is
represented is changed from decimal to
binary and its scale is changed from fixed
point to floating-point. Also, the value
of the precision attribute is increased by
a factor of 3.32, because 3.32 times as
many binary integers are required to
represent a given value as decimal
integers. The precision is rounded up to
an integer after being multiplied by 3.32.

LOCATOR DATA CONVERSION

The only type of program control data that
may be converted during evaluation of
expressions, and execution of assignment
statements, is locator data, that is, data
with the OFFSET or POINTER attributes.
During the evaluation of an expression
(locator data may be included in comparison
operations using th~ = and ~= comparison
operators), only offset to pOinter
conversion may occur. During an
assignment, conversion from offset to
pointer and from pointer to offset may
occur.

USE OF BUILT-IN FUNCTIONS

As well as allowing conversions to take
place during expression evaluation and on
assignment, the programmer may initiate
conversions when he requires them by means
of PL/I built-in functions. (The concept

of a built-in function is explained in
chapter 9, "Subroutines and Functions," and
detailed descriptions of the functions are
given in section G, "Built-in Functions and
pseudovariables.") ,

The functions are:

CHAR
BIT
FIXED
FLOAT
DECIMAL
BINARY

Each function converts data to the
attribute implied by its name. It will
perform any type and arithmetic conversions
that may be required. In addition to these
functions, there are the COMPLEX built-in
function, which converts two real arguments
to a single complex value, and the function
REAL, which extracts the real part of a
complex value.

In the case of BIT and CHAR built-in
functions, the programmer may specify the
length attribute of the resultant string,
and in the case of FIXED, FLOAT, DECIMAL,
and BINARY, he may specify the precision of
the result.

The precision of a data item may be
controlled by means of the PRECISION built
in function.

Conversion between pOinter and offset
types may be initiated by the programmer
using the OFFSET and POINTER built-in
functions.

Most of the conversions performed by
these built-in functions could equally
readily be achieved by assignment to a PL/I
variable baving the required attributes
(with the exception of the conversions
performed by the COMPLEX built-in
fUnction). The programmer may, however,
find the use of a built-in function more
convenient than the creation of a variable
solely for the purpose of carrying out a
conversion.

Expression Operations

An operational expression can specify one
or more single operations. The class of
operation is dependent upon the class of
operator specified for the operation.
There are four classes of operations -
arithmetic, bit-string, comparison, and
concatenation.

Chapter 'h Expressions and Data Conversion 37

ARITHMETIC OPERATIONS

An arithmetic operation is one that is
specified by combining operands with one of
the following operators:

+ * / **

The plus sign and the minus sign can appear
either as prefix operators (associated with
and preceding a single operand, such as +A
or -A) or as infix operators (associated
with and between two operands, such as A+B
or A-B). All other arithmetic operators
can appear only as infix operators.

An expression of greater complexity can
be composed of a set of such arithmetic
operations. Note that prefix operators can
precede and be associated with any of the
operands of an infix operation. For
example, in the expression A*-B, the minus
sign preceding the variable B indicates
that the value of A is to be multiplied by
-1 times the value of B.

More thah one prefix operator can
precede and be associated with a single
variable. More than one positive prefix
operator will have no cumulative effect,
but two consecutive negative prefix
operators will have the same effect as a
single positive prefix operator.

Results of Arithmetic Operations

After any necessary conversion of the
operands in an expression has been carried
out, the arithmetic operation is performed
and a result is obtained. This result may
be the value of the expression or it may be
an intermediate result upon which turther
operations are to be performed.

Consider the expression

A * B + C

The operation A * B is performed first, to
give an intermediate result. Then the
value of the expression is obtained by
performing the operation (intermediate
result) + C.

The intermediate result is held in a
temporary location deSignated by the
compiler. It has attributes in the same
way as any variable in a PL/I program.
What attributes the result has depends on
the attributes of the two operands (or the
single operand in the case of a prefix
operation) and on the operator involved.
This dependence is further explained under
"Attributes of Targets· later in this

38 OS PL/I CKT AND OPT LRM PART I

chapter.

An intermediate result may undergo
conversion if a further operation is to be
performed, and the value of an expression
may be converted if it is assigned. These
conversions follow exactly the same rules
as the conversion of programmer-defined
data.

Operations using Built-in Functions

There are three built-in functions in PLII
that allow the programmer to override the
implementation preciSion rules for
addition, subtraction, multiplication, and
division operations. (The concept of a
built-in function is explained in chapter
9, "SUbroutines and Functions," and the
functions are described in detail in
section G, "Built-in functions and
Pseudovariables.")

The functions are ADD, MULTIPLY, and
DIVIDE. ADD may be used for subtraction
simply by prefixing the operand to be
subtracted with a minus sign. In using
these functions, two operands are
specified, together with the precision of
the result. The base, scale, and mode of
the result are as defined by the rules for
conversion in the evaluation of
expressions.

BIT-STRING OPERATIONS

A bit-string operation is one that is
specified by combining operands with one of
the following operators:

&

The first operator, the "not" symbol, can
be used as a prefix operator only. The
second and third operators, the "and"
symbol and the "or" symbol, can be used as
infix operators only. (The operators have
the same function as in Boolean algebra.)

Operands of a bit-string operation are,
if necessary, converted to bit strings
before the operation is performed. If the
operands of an infix operation are of
unequal current length, the shorter is
extended on the right with zeros.

The result of a bit-string operation is
a bit string equal in length to the current
length of the operands (the two operands,
after conversion, are always the same
length).

Bit-string operations are performed on a
bit-by-bit basis. The effect of the "not
operation is bit reversal; that is, the
result of ~1 is 0; the result of ~O is 1.
The result of an "and" operation is 1 only
if both corresponding bits are 1;
otherwise, the result is O. The result of
an 'or' operation is 1 unless both operands
are zero, in which case it is O. The
following table illustrates the result for
each bit position for each of the
operators:

r---~
A I B II -.A I ~B I A& B I A I B

I II

1 I 1 II 0 o 1 1

I
1 I 0

II
II o

I
I 1 o 1

o 1

II
II

I II

1
I
I 0 o 1

o I 0 II 1 I 1 I 0 I 0
L---J

More than one bit-string operation can
be combined in a single expression that
yields a bit-string value.

In the following examples, if the value
of operand A is '010111'B, the value of
operand B is '111111'B, and the value of
operand C is '110'B, then:

~ A yields '101000'B

C yields 'OOl'B

C , B yields 'l10000'B

A B yields '111111'B

C B yields '111111'B

A I (~C) yields '011111'B

~«~C)I(~B» yields 'l10111'B

Boolean Built-in Function

In addition to the "not", "and" and "or"
operations using the operators ~,& and I,
Boolean operations may be performed using
the BOOL built-in function. The concept of
a built-in function is described in chapter
9, "Subroutines and Functions," and the
function is described in detail in section
G, "Built-in Functions and
Pseudovariables."

COMPARISON OPERATIONS

A comparison operation is one that is
specified by combining operands with one of
the following operators.

< -.< <= = ~= >= > ~>

These operators specify "less than", "not
less than", "less than or equal to", "equal
to", "not equal to·, "greater than or equal
to", "greater than", and "not greater
than" •

There are four types of comparisons:

1. Algebraic, which involves the
comparison of signed arithmetic values
in internal coded arithmetic form. If
operands differ in base, scale,
precision, or mode, they are converted
according to the rules for arithmetic
operations. Numeric character data is
converted to coded arithmetic before
comparison. Only the operators = and
~= are valid for comparison of complex
operands.

2. Character, which involves left-to
right, character-by-character
comparisons of characters according to
the collating sequence.

3. Bit, which involves left-to-right,
bit-by-bit comparison of binary
digits.

4. Program control data, which involves
comparison of the internal coded forms
of the operands. Only the comparison
operators = and ,: are permitted; area
variables cannot be compared. The
only conversion that can take place is
offset to pointer; all other type
differences between operands for
program control data comparisons are
in error.

If the operands of a problem data
comparison are.not immediately compatible
(that is, if their data types are
appropriate to different types of
comparison), the operand of the lower
precedence is converted to conform to the
comparison type of the other. The
precedence of comparison types is (1)
algebraic (highest), (2) character, (3)
bit. Thus,. for example, if a bit string
were to be compared with a fixed decimal
value, the bit string would be converted to
fixed binary for algebraic comparison with
the decimal value (which would also be
converted to fixed binary). In the
comparison of strings of unequal lengths,
the shorter string is padded on the right
with blanks (in a character comparison) or
'O'B (in a bit comparison).

Chapter 4: Expressions and Data Convers ion 39

The result of a comparison operation
always is a bit string of length one; the
value is 'l'B if the relationship is true,
or 'O'B if the relationship is false.

The most common occurrences of
comparison operations are in the IF
statement, of the following format:

IF A = B

THEN action-if-true

ELSE action-if-false

The evaluation of the expression A = B
yields either 'l'B or 'O'B. Depending upon
the value, either the THEN portion or the
ELSE portion of the IF statement is
executed.

Comparison operations need not be
limited to IF statements, however. The
following assignment statement could be
valid:

x = A < Bi

In this example, the value 'l'B would be
assigned to X if A is less than Bi
otherwise, the value 'O'B would be
assigned. In the same way, the following
assignment statement could be valid:

X = A = B;

The first symbol (=) is the assignment
symbol; the second (=) is the comparison
operator. If A is equal to B, the value of
X will be 'l'B; if A is not equal to B, the
value of X will be 'O'B.

CONCATENATION OPERATIONS

A concatenation operation is one that is
specified by combining operands with the
concatenation symbol:

II

It signifies that the operands are to be
joined in such a way that the last
character or bit of the operand to the left
will immediately precede the first
character or bit of the operand to the
right, with no intervening bits or
characters.

The concatenation operator can cause
conversion to string type since
concatenation can be performed only upon
strings, either character strings or bit
strings. If either operand is character or
decimal, any necessary conversions are
performed to produce a character-string

40 OS PLII CRT AND OPT LRM PART I

result. Otherwise if the operands are bit
and binary, or both binary, conversions are
performed to produce a bit-string result.

The results of concatenation operations
are as follows:

Bit String: A bit string whose length as
equal to the sum of the lengths of the two
bit-string operands.

Character String: A character string whose
length is equal to the sum of the lengths
of the two character-string operands.

If an operand requires conversion for
the concatenation operation, the result is
dependent upon the length of the character
string to Which the operand is converted.
For example, if A has the attributes and
value of the constant '010111'B, B of the
constant '101'B, C of the constant 'XY,Z',
and 0 of the constant 'AA/BB', then

AIIB yields '010111101'B

AIIAIIB yields '010111010111101'B

CliO yields 'XY,ZAAlBB'

OIIC yields 'AAlBBXY,Z'

BIID yields '101AA/BB'

Note that, in the last example, the bit
string '101'B is converted to the character
string '101' before the concatenation is
performed. The result is a character
string conSisting of eight characters.

COMBINATIONS OF OPERATIONS

Different types of operations can be
combined within the same operational
expression. Any combination can be used.
For example, the expression shown in the
following assignment statement is valid:

RESULT = A + B < C , Di

Each operation within the expression is
evaluated according to the rules for that
kind of operation, with necessary data
conversions taking place before the
operation is performed.

Assume that the variables given above
are declared as follows:

DECLARE RESULT BIT(3), A FIXED
DECIMAL(l), B FIXED BINARY
(3), C CBARACTER(2), D BIT(4);

• The decimal value of A would be
converted to binary base.

• The binary addition would be performed,
adding A and B.

• The binary result would be compared with
the converted binary value of C.

• The bit-string result of the comparison
would be extended to the length of the
bit string 0, and the "and" operation
would be performed.

• The result of the "and" operation, a bit
string of length 4, would be assigned to
RESULT without conversion, but with
truncation on the right.

The expression in this example is
described as being evaluated operation-by
operation, from left to right. Such would
be the case for this particular expression.
The order of evaluation, however, depends
upon the priority of the operators
appearing in the expression.

Priority of Operators

In the evaluation of expressions, priority
of the operators is as follows:

** prefix+ prefix- (highest)

* /
infix+ infix-

II

v

(lowest)

If two or more operators of the highest
priority appear in the same expression, the
order of evaluation of those operators is
from right to left; that is, the rightmost
exponentiation or prefix operator is
evaluated first. Each succeeding
exponentiation or prefix operator to the
left has the next highest priority.

For all other operators, if two or more
operators of the same priority appear in
the same expression, the order or priority
of those operators is from left to right.

Note that the order of evaluation of the
expression in the assignment statement:

RESULT = A + B < C & Di

is the result of the priority of the
operators. It is as if various elements of
the expression were enclosed in parentheses

as follows:

(A) + (B)

(A + B) < (C)
«A + B) < C) & (D)

The order of evaluation (and,
consequently, the result) of an expression
can be changed through the use of
parentheses. The above expression, for
example, might be changed as follows:

(A + B) < (C & D)

The order of evaluation of this
expression would yield a bit string of
length one, the result of the comparison
operation. In such an expression, those
expressions enclosed in parentheses are
evaluated first, to be reduced to a single
value, before they are considered in
relation to surrounding operators. Within
the language, however, no rules specify
which of two parenthesized expressions,
such as those in the above example, would
be evaluated first.

The value of A would be converted to
fixed-point binary, and the addition would
be performed, yielding a fixed-point binary
result (result 1). The value of C would be
converted to a-bit string (if valid for
such conversion) and the "and" operation
would be performed.

At this point, the expression would have
been reduced to:

result 2 would be converted to binary, and
the algebraic comparison would be
performed, yielding the bit-string result
of the entire expression.

The priority of operators is defined
only within operands (or sub-operands). It
does not necessarily hold true for an
entire expression. Consider the following
example:

A + (B < C) & (0 II E *. F)

The priority of the operators specifies, in
this case, only that the exponentiation
will occur before the concatenation. It
does not specify the order of the operation
in relation to the evaluation of the other
operand (A + (B < e».

Any operational expression (except a
prefix expression) must eventually be
reduced to a single infix operation. The
operands and operator of that operation
determine the attributes of the result of
the entire expression. For instance, in
the first example of combining operations
(which contains no parentheses), the "and"

Chapter 4: Expressions and Data Conversion 41

operator is the operator of the final infix
operation; in this case, the result of
evaluation of the expression is a bit
string of length 4. In the second example
(because of the use of parentheses), the
operator of the final infix operation is
the comparison operator, and the evaluation
yields a bit string of length 1.

In general, unless parentheses are used
within the expression, the operator of
lowest priority determines the operands of
the final operation. For example:

A + B ** 3 II C * 0 - E

In this case, the concatenation operator
indicates that the final operation will be:

(A + B *. 3) II (C * D - E)

The evaluation will yield a character
string result.

Subexpressions can be analyzed in the
same way. The two operands of the
expression can be defined as follows:

A + (B *. 3)

(C * D) - E

Function Reference Operands

An operand of an expression can be a
constant, an element variable, an array
variable, or a structure variable. An
operand can also be an expression that
represents a value that is the result of a
computation, as shown in the following
assignment statement:

A = B * SQRT (C) ;

In this example, the exp~ession SQRT(C)
represents a value that is equal to the
square root of the value of C. Such an
expression is called a function reference.

A function reference consists of a name
and, usually, a parenthesized list of one
or more variables, constants, or other
expressions. The name is the name of a
block of code written to perform specific
computations upon the data represented by
the list and to substitute the computed
value in place of the function reference.

Assume, in the above example, that C has
the value 16. The function reference
SQRT(C> causes execution of the code that
would compute the square root of 16 and
replace the function reference with the
value 4. In effect, the assignment
statement would become:

42 OS PL/I CKT AND OPT LRM PART I

A = B * 4;

The code represented by the name in the
function reference is called a function.
The function SQRT is one of the PL/I
built-in functions. Built-in functions,
which provide a number of different
operations, are a part of the PL/I
language. A complete discussion of each
appears in section G, "Built-in Functions
and pseudovariables." In addition, a
programmer may write functions for other
purposes (as described in chapter 9,
"Subroutines and Functions"), and the names
of those functions can be used in function
references.

The use of a function reference is not
limited to operands of operational
expressions. A function reference is, in
itself, an expression and can be used
wherever an expression is .allowed. In
general, it cannot be used in those cases
where a variable represents a receiving
field, such as to the left of an assignmen~
symbol.

There are, however, several built-in
functions that can be used as
pseudovariables. A pseudovariable is a
built-in function name that is us·ed in a
receiving field. Consider the following
example:

DECLARE A CHARACTER(10),
B CHARACTER(30);

SUBSTR(A,6,S) = SUBSTR(B,20,S);

In this assignment statement, the SUBSTR
built-in function name is used both in a
normal function reference and as a
pseudovariable.

The SUBSTR built-in fUnction extracts a
substring of specified length from the
named string. As a pseudovariable, it
indicates the location, within a named
string, that is the receiving field.

In the above example, a substring five
characters in length, beginning with
character 20 of the string B, is to be
assigned to the last five characters of the
string A. That is, the last five
characters of A are to be replaced by
characters 20 through 24 of B. The first
five characters of A remain unchanged, as
do all of the characters of B.

All the built-in functions that can be
used as pseudovariables are discussed in
section G, "Built-in Functions and
Pseudovariables." NO programmer-written
function can be used as a pseudovariable.

Attributes of Targets

The target of a conversion or expression
operation is the receiving field to which
the result of the conversion or operation
is assigned. This section deals with the
principles of determining attributes of
such targets. Detailed rules are given in
section F, WData Conversion and Expression
Evaluation. w

In the case of a direct assignment, such
as the statement

A = B;

in which conversion must take place, then
the target is the variable on the left of
the assignment symbol (in this case A).
However, during the evaluation of an
expression, targets are frequently
temporary storage locations created by the
compiler.

Consider the following example:

DECLARE A CHARACTER(S),
B FIXED DECIMAL(3,2),
C FIXED BINARY(10);

A = B + C;

During the evaluation of the expression B+C
and during the assignment of that result,
there are four different targets, as
follows:

1. The compiler-created temporary to
which the converted binary equivalent
of B is assigned.

2. The compiler-created temporary to
which the binary result of the
addition is assigned.

3. The compiler-created temporary to
which the converted decimal fixed
point equivalent of the binary result
is assigned.

4. A, the final destination of the
result, to which the converted
character-string equivalent of the
decimal fixed-point representation of
the value is assigned.

The attributes of the first target are
determined from the attributes of the
source (B), from the operator, and from the
attributes of the other operand (if one
operand of an arithmetic infix operator is
binary, the other is converted to binary
before evaluation). The attributes of the
second target are determined from the
attributes of the source (C and the
converted representation of B). The
attributes of the third target are
determined in part from the source (the

second target) and in part from the
attributes of the eventual target (A).
(The only attribute determined from the
eventual target is DECIMAL, since a binary
arithmetic representation must be converted
to decimal repres entation before it can be
converted to a character string.) The
attributes of the fourth target (A) are
known from the DECLARE statement.

When an expression is evaluated, the
target attributes usually are partly
derived from the source, partly from the
operation being performed, and partly from
the attributes of a second operand. Some
assumptions may be made, and some
implementation restrictions (for example,
maximum precision) and conventions exist.
After an expression is evaluated, the
result may be further converted. In this
case, the target attributes usually are
independent of the source.

A conversion always involves a source
data item and a target data item, that is,
the original representation of the value
and the converted representation of the
value. All of the attributes of both the
source data item and the target data item
are known, or supplied by default, at
compile time.

It is possible for a conversion to
involve intermediate results whose
attributes may depend upon the source
value. For example, conversion from
character string to arithmetic may require
an intermediate conversion and, thus, an
intermediate result, before final
conversion is completed. The final target
attributes in such cases, however, are
always determined from the source data item
and are independent of the values of
variables.

It should be realized that constants
also have attributes; the constant 1.0 is
different from the constants 1, 'l'B, '1',
1B, or lEO. Under the optimizing compiler,
constants may be converted at compile time
as well as at execution time, but in all
cases, the rules are the same.

Arr ay Expressions

An array expression is a single array
variable or an expression that includes at
least one array operand. Array expressions
may also include operators (both prefix and
infix), element variables, and constants.

Evaluation of an array expression yields
an array result. All operations performed
on arrays are performed on an element-by
element basis, in row-major order.

Chapter 4: ExpreSSions and Data Conversion 43

Therefore, all arrays referred to in an
array expression must have the same number
of dimensions,- and each dimension must be
of identical bounds.

Although comparison operators are valid
for use with array operands, an array
operand cannot appear in the IF clause of
an IF statement. Only an element
expression is valid in the IF clause, since
the IF statement tests a Single true or
false result. However, the equality of two
arrays of string data can be tested py
using the STRING built-in function and
pseudovariable to produce two element
values. For example:

DECLARE (A,B) (10) CHAR(5);

IF STRING(A) = STRING(B) THEN •••

~ Array expressions are not generally
expressions of conventional matrix algebra.

PREFIX OPERATORS AND ARRAYS

The resu1t of the operation of a prefix
operator on an array is an array of
identical bounds, each element of which is
the result of the operation having been
performed upon each element of the original
array. For example:

If A is the array 5 3 -9

1 2 1

6 3 -4

then -A is the array -5 -3 9

-1 -2 -1

-6 -3 4

INFIX OPERATORS AND ARRAYS

Infix operations that include an array
variable as one operand may have an .
element, another array, or a structure as
the other operand.

Array-and-Element Operations

The result of an operation in which an
element and an array are connected by an
infix operator is an array with bounds

44 OS PL/I CRT AND OPT LRM PART I

identical to the original array, each
element of which is the result of the
operation performed upon the corresponding
element of the original array and the
single element. For example:

If A is the array 5 10 8

12 11 3

then A*3 is the array 15 30 24

36 33 9

The element of an array-element
operation can be an element of the same
array. For example, the expression
A*A(2,3) would give the same result in the
case of the array A above, since the value
of A (2,3) is 3.

Consider the following assignment
statement:

A = A * A(l,2);

Again, using the above values for A, the
newly aSSigned value of A would be:

50 100 800

1200 1100 300

Note that the original value for A(1,2),
which is 10, is used in the evaluation for
only the first two elements of A. Since
the result of the expression is assigned to
A, Changing the value of A, the new value
of A(1,2) is used for all subsequent
operations. The first two elements are
multiplied by 10, the original value of
A(1,2); all other elements are multiplied
by 100, the new value of A(1,2).

Array·and-Array Operations

If two arrays are connected by an infix
operator, the two arrays must be of
identical bounds. The result is an array
with bounds identical to those of the
original arrays; the operation is performed
upon the corresponding elements of the two
original arrays.

Note that the arrays must have the same
number of dimensions, and corresponding
dimensions must have identical lower bounds
and identical upper bounds. For example,
the bounds of an array declared X(10,6) are
not identical to the bounds of an array
declared Y(2:11,3:8) although the extents
are the same for corresponding dimensions,
and the number of elements is the same.

Examples of array infix expressions are:

If A is the array 2 4 3

6 1 1

4 8 2

and if B is the array 1 5 1

8 3 4

6 3 1

then A+B is the array 3 9 10

14 4 11

10 11 3

and A*B is the array 2 20 21

48 3 28

24 24 2

Array-and-Structure 0Eerations

The result of an operation in which an
array and structure are connected by an
infix operator is an array of structures
with bounds identical to the array and
structuring identical to the structure.

For example, given the follOwing
declaration:

DECLARE 1 A, 2 B, 2 c,
X(2),
Y(2) LIKE Ai

the assignment statement:

Y = X + Ai

is valid. This is equivalent to:

Y.B(l) = X(l) + A.B;
Y.C(l) = X(l) + A.C;
Y.B(2) = X(2) + A.B;
Y.C(2) = X(2) + A.C;

If the structure has a dimension attribute
on the level 1 name, the operation becomes
an array-and-array operation. If the array
elements are structures, the rules about
identical structuring given under
·Structure Expressions· apply to the array
elements and the structure.

Data Conversion in Array ExEressions

The examples in this discussion of array
expressions have shown only single
arithmetic operations. The rules for
combining operations and for data
conversion of operands are the same as
those for element operations.

Structur e Expressions

A structure expression is a single
structure variable or an expression that
includes at least one structure operand and
does not contain an array operand. Element
variables and constants can be operands of
a structure expression. EValuation of a
structure expression yields a structure
result. A structure operand can be a major
structure name or a minor structure name.

Although comparison operators are valid
for use with structure operands, a
structure operand cannot appear in the IF
clause of an IF statement. Only an element
expression is valid in the IF clause, since
the IF statement tests a single true or
false result.

All operations performed on struct ures
are performed on an element-by-element
basis. Except in a BY NAME assignment (see
below), all structure variables appearing
in a structure expression must have
identical structuring.

Identical structuring means that the
structures must have the same minor
structuring and the same number of
contained elements and arrays and that the
poSitioning of the elements and arrays
within the structure (and within the minor
structures if any) must be the same.
Arrays in corresponding positions must have
identical bounds. Names do not have to be
the same. Data types of corresponding
elements do not have to be the same, so
long as valid conversion can be performed.

PREFIX OPERATORS AND STRUCTURES

The result of the operation of a prefix
operator on a structure is a structure of
identical structuring, each element of
which is the result of the operation baving
been performed upon each element of the
original structure.

~ Since structures may contain
elements of many different data types, a
prefix operation in a structure expression

Chapter q: Expressions and Data Conversion ~5

would be meaningless unless the operation
can be validly performed upon every element
represented by the structure variable,
which is either a major structure name or a
minor structure name.

INFIX OPERATORS AND STRUCTURES

Infix operations that include a structure
variable as one operand may have an element
or another structure as the other operand.

Structure operands in a structure
expression need not be major structure
names. A minor structure name, at any
level, is a structure variable. Thus, if
M.N is a minor structure in the major
structure M, the following is a structure
expression:

M.N , '10i0'B

structure-and-Element Operations

When an operation has one structure and one
element operand, it is the same as a series
of operations, one for each element in the
structure. Each sub-operation involves a
structure element and the single element.

Consider the following structure:

1 A,
2 B,

3 C,
3 0,
3 E,

2F,
3 G,
3 H,
3 I:

If X is an element variable, then A * X is
equivalent to:

A.C * X
A.D * X
A.E * X
A.G * X
A.H * X
A.I * X

structure-and-structure Operations

When an operation has two structure
operands, it is the same as a series of
element operations, one for each
corresponding pair of elements. For
example, if A is the structure shown in the

46 OS PL/I CRT AND OPT LRM PART I

previous example and if M is the following
structure:

then A

1 M,
2 N,

3 0,
3 P,
3 Q,

2 R,

II M

A.C
A.D
A.E
A.G
A.H
A.I

3 S,
3 T,
3 U:

is equivalent

II M.O
II M.P
II M.Q
II M.S
II M.T
II M.U

to:

Structure Assignment BY NAME

One exception to the rule that operands of
a structure expression must have the same
structuring is the case in which the
structure expression appears in an
assignment statement with the BY NAME
option.

The BY NAME appears at the end of a
structure assignment statement and is
preceded by a comma. Examples are shown
below.

Consider the following structures and
assignment statements:

lONE,
2 PARTi,

3 RED,
3 ORANGE,

2 PART2,
3 YELLOW,
3 BLUE,
3 GREEN:

1 TWO,
2 PARTi,

3 BLUE,
3 GREEN,
3 RED,

2 PART2,
3 BROWN,
3 YELLOW:

ONE = TWO, BY NAME:

1 THREE,
2 PARTi,

3 RED,
3 BLUE,
3 BROWN,

2 PART2,
3 YELLOW,
3 GREEN:

ONE.PARTi = THREE.PARTi, BY NAME:
ONE = TWO + THREE, BY NAME:

The first assignment statement would be the
same as the following:

ONE.PARTi.RED = TWO.PART1.RED:

ONE.PART2.YELLOW = TWO.PART2.YELLOW:

The second assignment statement would be
the same as the following:

ONE. PARTl • RED = THREE. PARTi • RED:

The third assignment statement would be the

same as the following:

ONE.PART1.RED = TWO.PART1.RED
+ THREE.PART1.RED;

ONE.PART2.YELLOW = TWO.PART2.YELLOW
+ THREE.PART2.YELLOW;

The BY NAME option can appear in an
assignment statement only. It indicates
that assignment of elements of a structure
is to be made only for those elements whose
names are common to both structures.
Except for the highest-level qualifier
specified in the assignment statement, all
qualifying names must be identical.

If an operational expression appears in
an assignment statement with the BY NAME
option, operation and assignment are
performed only upon those elements whose
names have been declared in each of the
structures. In the third assignment
statement above, no operation is performed
upon ONE.PART2.GREEN and THREE.PART2.GREEN,
because GREEN does not appear as an
elementary name in PART2 of TWO.

Exceptional Conditions

Three PL/I exceptional conditions may be
raised during conversion of data: SIZE,
CONVERSION, and STRINGSIZE. (The concept
of a condition is explained in chapter 14,
-Exceptional Condition Handling and program
Checkout,- and the conditions are described
in detail in section H, -On-Conditions.-)

The SIZE condition is raised when
significant digits are lost from the left
hand side of an arithmetic value. This can
occur during conversion within an
expression, or upon assigning the result of
an expression. It is not raised in
conversion to character string or bit
string even if the value is truncated. It
is raised on conversion to E or F format in
edit-directed output if the field width

specified will not hold the converted value
of the list item. The SIZE condition is
normally disabled, so an interrupt will
occur only if the condition is raised
within the scope of a SIZE prefix (except
that, under the checkout compiler, standard
system action takes place whether or not
the condition is enabled).

The CONVERSION condition is raised when
th~ source field contains a character that
is invalid for the conversion being
performed. For example, CONVERSION would
be raised if a character string being
converted to arithmetic contains any
character other than those allowed in
arithmetic constants, or if a character
string that is being converted to bit
contains any character other than 0 and 1.
Each invalid character raises the
CONVERSION condition once, so a single
conversion operation causes several
interrupts if more than one invalid
character is encountered. The CONVERSION
condition is normally enabled, so when the
condition is raised, an interrupt will
occur. It can be disabled by a
NOCONVERSION prefix, in which case an
interrupt will not occur when the condition
is raised.

The STRINGSIZE condition is raised when
a character or bit string is assigned to a
target that is too small to accommodate it.
Characters or bits are truncated from the
right-hand end of the string so as to match
the length of the target. The STRINGSIZE
condition is normally disabled, so that an
interrupt will occur only within the scope
of a STRINGSIZE condition prefix.

These three conditions may be raised
also during the evaluation of an
expression,. In addition, four other
conditions may be raised: FIXEDOVERFLOW,
OVERFLOW, UNDERFLOW, and ZERODIVIDE. Note
that FIXEDOVERFLOW and OVERFLOW are raised
when the implementation-defined maximum
precisions are exceeded,. not when the
declared precision of a target is exceeded.

Chapter 4: Expressions and Data Conversion 41

Chapter 5: Statement Classification

This chapter classifies statements
according to their functions. Statements
in each functional class are listed, the
purpose of each statement is described, and
examples of their use are shown.

A detailed description of each statement
is not included in this chapter but may be
found in section J, "Statements."

Classes of Statements

statements can be grouped into the
following classes:

Descriptive

Input/Output

Data Movement and computational

Program Organization

storage Control

control

Exception Control

Preprocessor

Listing Control

Diagnostic

The names of the classes have been chosen
for descriptive purposes only; apart from
preprocessor and listing control statements
they have no fundamental significance in
the language. A statement may be included
in more than one class, since it can have
more than one function.

Descriptive Statements

When a PL/I program is executed, it may
manipulate many different kinds of data.
Each data item, except an arithmetic or
string constant, is referred to in the
program by a name. The PL/I language
requires that the properties (or
attributes) of data items referred to must
be known at the time the program is
compiled. There are a few exceptions to
this rule; for non-STATIC items, the bounds
of the dimensions of arrays, the lengths of

strings, area sizes, initial values, and
some file attributes may be determined
during execution of the program.

DECLARE AND DEFAULT STATEMENTS

The DECLARE statement is the principal
means of specifying the attributes of a
name. A name used in a program need not
always appear in a DECLARE statement; its
attributes often can be determined by
context. If the attributes are not
explicitly declared and cannot be
determined by context, default rules are
applied. Default rules are either the
standard default rules defined for the
compilers or those defined by the
programmer for a particular program using
the DEFAULT statement. The combination of
default rules and context determination can
make it unnecessary, in some cases, to use
a DECLARE statement.

The DEFAULT statement gives the
programmer control over attributes which
are applied by default, for the following:

explicitly declared identifiers

contextually declared identifiers

implicitly declared identifiers

descriptors in the ENTRY attribute

values returned by internal procedures

DECLARE statements may also be an
important part of the documentation of a
program; consequently, programmers may make
liberal use of declarations, even when
default attributes apply or when a
contextual declaration is possible.
Because there are no restrictions on the
number of DECLARE statements, different
DECLARE statements can be used for
different groups of names. This can make
modification easier and the interpretation
of diagnostics clearer.

OTHER DESCRIPTIVE STATEMENTS

The OPEN statement allows certain
attributes to be specified for a file
constant and may, therefore, also be
classified as a descriptive statement.

Chapter 5: Statement Classification 49

'Certain attributes can be specified in an
ALLOCATE statement for a controlled
variable. The FORMAT statement may be
thought of as describing the layout of data
on an external medium, such as on a page or
an input card.

Input/Output Statements

The principal statements of the
input/output class are those that actually
cause a transfer of data between internal
storage and an external medium. Other
input/output statements, which affect such
transfers, may be considered input/output
control statements.

Each of the input/output statements is
used with an associated FILE option to
identify a file. The file option specifies
a file expression which can be either a
file constant, a file variable, or a
function reference which returns a file
value.

In the following list, the statements
used when transferring data are grouped
into two subclasses, RECORD I/O and STREAM
I/O:

RECORD I/O statements

READ

WRITE

REWRITE

LOCATE

DELETE

STREAM I/O Statements

GET

PUT

I/O Control Statements

OPEN

CLOSE

UNLOCK

An allied statement, discussed with
these statements, is the DISPLAY statement.

There are two important differences
between STREAM transmission and RECORD
transmission. In STREAM transmission, each
data item is treated individually, whereas
RECORD transmission is concerned with
collections of data items (records) as a

50 as PL/I CKT AND OPT LRM PART I

whole. In STREAM transmission, each item
may be edited and converted as it is
transmitted: in RECORD transmission, the
record on the external medium is generally
an exact copy of the record as it exists in
internal storage, with no editing or
conversion performed.

As a result of these differences, record
transmission is particularly applicable for
processing large files that are ~ritten in
an internal representation, such as in
binary or decimal. Stream transmission may
be used for processing keypunched data and
for producing readable output, where
editing is required.

RECORD TRANSMISSION STATEMENTS

The READ statement transmits records
directly into internal storage and makes
them available for processing. The WRITE
statement causes records to be transmitted
to the output device. The LOCATE statement
allocates storage for a variable within an
output buffer, setting a pointer to
indicate the location in the buffer, having
previously caused any record already
located in a buffer for this file to be
written out.

The REWRITE statement alters existing
records in an UPDATE tile. The DELETE
statement deletes records in an UPDATE
file.

STREAM TRANSMISSION STATEMENTS

Only sequential files can be processed with
the GET and PUT statements. Record
boundaries generally are ignored: data is
considered to be a stream of indiVidual
data items, either coming from (GET) or
going to (PUT) the external medium.

The GET and PUT statements may transmit
a list of items in one of three modes:
data-directed, list-directed, or edit
directed. In data-directed transmission,
the names of the data items, as well as
their values, are recorded on the external
medium. In list-directed transmission, the
data is recorded externally as a list of
constants, separated by blanks or commas.
In edit-directed transmission, the data is
recorded externally as a string of
characters to be treated character by
character according to a format list.

Data-directed transmission is most
useful for reading a relatively small
number of values and for producing self-

annotated debugging output. List-directed
input is suitable for reading in larger
volumes of data punched in free form.
Edit-directed transmission is used wherever
format must be strictly controlled, for
example, in producing reports and for
reading cards punched in a fixed format.

Note: The GET and PUT statements can also
~ed for internal data movement, by
specifying a string name in the STRING
option instead of specifying the FILE
option. Although the facility may be used
for moving data to and from a buffer, it is
not actually a part of the input/output
operation.

INPUT/OUTPUT CONTROL STATEMENTS

The OPEN statement associates a file name
with a data set and prepares the data set
for processing. It may also specify
additional attributes for the file.

An OPEN statement need not always be
written. Execution of any input or output
transmission statement that specifies the
name of an unopened file will result in an
automatic opening of the file before the
data transmission takes place.

The OPEN statement may be used to
specify any fi1~ attribute except the
ENVIRONMENT ~ttribute. For a PRINT file,
the length" of each printed line and the
number of lines per page can be specified
only in an OPEN statement by the PAGESIZE
and LINESIZE options. The .LINESIZE option
can be specified for a non-PRINT OUTPUT
file to determine the length of the
phYSical blocks transmitted to a device.
The OPEN statement can also be used to
specify a name (in the TITLE option) other
than a file name, as a link between the
data set and the file.

The CLOSE statement dissociates a data
set from a file. All files are closed at
termination of a program, so a CLOSE
statement is not always required.

The UNLOCK statement releases, for use
by other tasks, a record which has
restricted access because it is associated
with an EXCLUSIVE file.

DISPLAY STATEMENT

The DISPLAY statement is used to write
messages on the console, usually to the
operator. It may also be used, with the
REPLY option, to allow the operator to

communicate with the program by typing in a
code or a message. The REPLY option may be
used merely as a means of suspending
program execution until the operator
acknowledges the message.

Data Movement and Computational
Statements

Internal data movement involves the
assignment of the value of an expression to
a specified variable. The expression may
be a constant or a variable, or it may be
an expression that specifies computations
to be made.

The most commonly used statement for
internal data movement, as well as for
specifying computations, is the assignment
statement. The GET and PUT statements with
the STRING option can also be used for
internal data movement. The PUT statement
can, in addition, specify computations ~o
be made.

ASSIGNMENT STATEMENT

The assignment statement, which has no
keyword, is identified by the assignment
symbOl (=). It generally takes one of the
two forms illustrated by the following
examples:

NTOT=TOT:

AV=(AV*NUM+TAV*TNUM)/(NUM+TNUM)i

The first form can be used purely for
internal data movement. The value of the
variable (or constant) to the right of the
aSSignment symbol is to be assigned to the
variable to the left. The second form
includes an operational expression whose
value is to be assigned to the variable to
the left of the aSSignment symbol. The
second form specifies computations to be
made, as well as data movement.

Since the attributes of the variable on
the left may differ from the attributes of
the result of the expression (or of the
variable or constant), the assignment
statement can also be used for conversion
and editing.

The variable on the left may be the name
of an array or a structure: the expression
on the right may yield an array or
structure value. Thus the assignment
statement can be used to mOve aggregates of
data, as well as single items.

Chapter 5: statement Classification 51

Multiple Assignment: The values of the
expression in an assignment statement can
be assigned to more than one variable in a
statement of the following form:

A,X = B + C;

Such a statement is executed in exactly the
same way as a single assignment, except
that the value of B + C is assigned to both
A and X. In general, it has the same
effect as if the following two statements
had been written:

A = B + C;

x = B + C;

Note: If multiple assignment is used for a
structure assignment BY NAME, the
elementary names affected will be only
those that are common to all of the
structures referred to in the statement.

Program Organization Statements

The program organization statements are
those statements used to delimit sections
of a program into blocks and to manipulate
these blocks. These statements are the
PROCEDURE statement, the END statement, the
ENTRY statement, the BEGIN statement, the
FETCH statement, and the RELEASE statement.

Proper division of a program into blocks
simplifies the writing and testing of the
program, particularly when a number of
programmers are co-operating in writing a
single program. It may also result in more
efficient use of storage, since dynamic
storage of the automatic class is allocated
on entry to the block in which it is
declared.

PROCEDURE STATEMENT

The principal function of a procedure
block, which is delimited by a PROCEDURE
statement and an associated END statement,
is to define a sequence of operations to be
performed upon specified data. This
sequence of operations is given a name (the
label of the PROCEDURE statement) and can
be invoked from any point at which the name
is known.

Every program must have at least one
PROCEDURE statement and one END statement.
A program may consist of a number of
separately written procedures linked
together. A procedure may also contain
other procedures nested within it. These

52 OS PL/I CKT AND OPT LRM PART I

internal procedures may contain
declarations that are treated (unless
otherwise specified) as local definitions
of names. Such definitions are not known
outSide their own block, and the names
cannot be referred to in the containing
procedure. Storage associated with these
names is generally allocated upon entry to
the block in which such a name is defined,
and it is freed upon exit from the block.

The sequence of statements defined by a
procedure can be executed at any pOint at
which the procedure name is known. This
execution can be either synchronous (that
is, the execution of the invoking procedure
is suspended until control is returned to
it) or asynchronous (that is, execution of
the invoking procedure proceeds
concurrently with that of the invoked
procedure); for details of asynchronous
operation, see chapter 17, "Multitasking."
A procedure is invoked either by a CALL
statement or by the appearance of its name
in an expression, in which case the
procedure is called a function reference.
A function reference causes a value to be
calculated and returned to the function
reference for use in the evaluation of the
expression. A function procedure cannot be
executed asynchronously with the invoking
procedure.

Communication between two procedures is
by means of arguments passed from an
invoking procedure to the invoked
procedure, by a value returned from an
invoked procedure, and by names known
within both procedures. A procedure may
therefore operate upon different data when
it is invoked from different points. A
value is returned from a function procedure
to a function reference by means of the
RETURN statement.

ENTRY STATEMENT

The ENTRY statement is used to provide
another possible entry point to a procedure
and, possibly, another parameter list to
which arguments can be passed,
corresponding to that entry pOint.

~ It is important to distinguish
between the ENTRY statement, which
specifies an entry to the procedure in
which it occurs, and the ENTRY attribute.
The ENTRY attribute is considered in
chapter 9, in ·Subroutines and Functions.·

BEGIN STATEMENT

Local definitions of names can also be made
within begin blocks, which are delimited by
a BEGIN statement and an associated END
statement. The BEGIN and END statements
specify that the statements contained
between them are to be considered as an
entity for the purpose of flow of control.
Begin blocks are executed in the normal
f low of a program. One of the most common
uses of a begin block is as the on-unit of
an ON statement, in which case it is not
executed through normal flow of control,
but only upon occurrence of the specified
condition. It is also useful for
delimiting a section of a program in which
some automatic storage is to be allocated.

Each begin block must be nested within a
procedure or another begin block.

END STATEMENT

The END statement is used to signify the
lend of a block, a do-group, or a select-
I group. Every block, do-group, or select
group must have an END statement.
However, the END statement may be explicit
or implicit; a single END statement can be
applied to a number of nested blocks, do-

I groups, and select-groups by the inclusion
of the label of the containing block, do-

I group, or select-group after the keyword
END. The other END statements are then
implied by the one containing the label,
and need not be given explicitly. If no
label follows END, the statement applies to

lonly one block, do-group, or select-group.

Execution of an END statement for a
block terminates the block. However, it is
not the only means of terminating a block,
even though each block must have an END
statement. For example, a procedure can be
terminated by execution of a RETURN
statement (see "Control Statements").

The effect of execution of an END
statement for a do-group depends on whether
or not the do-group is iterative (see
"Control Statements·). If the do-group is
iterative, execution of the END statement
causes control to return to the beginning
of the do-group until all iterations are
complete, unless control is passed out of
the do-group before then. If the do-group
is noniterative, the END statement merely
delimits the group (to enable it to be
treated as a Single unit in the logic of
the program), and control passes to the
next statement.

The END statement of a select-group

Idelimits the group to enable it to be
Itreated as a single unit in the logiC of
Ithe program. (See ·Control statements".>

FETCH AND RELEASE STATEMENTS

The FETCH statement copies a procedure from
auxiliary storage into main storage so that
it may be invoked, for instance by a CALL
statement later in the program. The
RELEASE statement frees main storage thus
allocated. If a procedure's entry name
appears in a FETCH statement, then, even if
this FETCH statement is never executed, the
invoking statement will load the procedure
before attempting to initiate its
execution. Also, if the procedure's name
appears in a RELEASE statement, but there
is no FETCH statement in the invoking
procedure, invocation will cause the
loading of the invoked procedure.

Storage Control Statements

AS with many other conventions in PLlI, the
conventions concerning storage allocation
may be overridden by the programmer.
Storage for variables is generally given
the storage class AUTOMATIC by default,
which means that the storage remains
allocated from the time the procedure is
activated until it is terminated.
Alternatives to the AUTOMATIC attribute
that may be chosen by the programmer are
STATIC, in which case storage is allocated
for the duration of the entire program, and
CONTROLLED or BASED, in which case the
storage can be allocated to the variable
and freed under the control of the
programmer, using the ALLOCATE and FREE
statements.

ALLOCATE AND FREE STATEMENTS

The ALLOCATE statement is used to assign
storage to controlled and based data,
independent of procedure block boundaries.
The bounds of controlled arrays, the
lengths of controlled strings, and the size
of controlled areas, as well as their
initial values, may also be specified at
the time the ALLOCATE statement is
executed. The FREE statement is used to
free previously-allocated controlled and
based storage when it is no longer
required.

Chapter 5: statement Classification 53

Control Statements

statements in a PL/I program, in general,
are executed sequentially unless the flow
of control is modified by the occurrence of
an interrupt or the execution of one of the
following control statements:

GO TO

IF

SELECT

DO

LEAVE

CALL

RETURN

END

STOP

EXIT

HALT

GO TO STATEMENT

The GO TO statement is used as an
unconditional branch. If the destination
of the GO TO is specified by a label
variable, it may then be used as a switch
by assigning label constants, as values, to
the label variable.

If the label variable is subscripted,
the switch may be controlled by varying the
subscript. The destination of a GO TO
statement can also be specified by a
function reference that returns a label
value. By using label variables or
function references, quite subtle switching
can be effected. It is usually true,
however, that simple control statements are
the most efficient.

The keyword of the GO TO statement may
pe written either as two words separated by
a blank or blanks, or as a single word,
GOTO.

IF STATEMENT

The IF statement provides the most common
conditional branch and is usually used with
a simple comparison expression follOwing
the word IF. For example:

54 OS PL/J: cn AND OPr LRM PART I

IF A = B

THEN action-if-true

ELSE action-it-false

A THEN or an ELSE clause consists of
either a single or compound statement, a
do-group (see -DO Statement- below),

la select-group (see ·SELECT Statement"
below), or a begin block. If the
comparison is true, the THEN clause is
executed. After execution of the THEN
clause, the ELSE clause is not executed,
and execution continues with the next
statement. Note that the THEN clause can
contain a GO TO statement or some other
control statement that would result in a
different transfer of control.

If the comparison is false, only the
ELSE clause is executed. control then
continues normally.

The IF statement might be as follows:

IF A = B

THEN C = D:

ELSE C = Ei

If A is equal to B, the value of 0 is
aSSigned to C, and the ELSE clause is not
executed. If A is not equal to B, the THEN
clause is not executed, and the value of E
is aSSigned to C.

Either the THEN clause or the ELSE
clause can contain a control statement that
causes a branch, either conditional or
unconditional. If the THEN clause contains
a GO TO statement, for example, there is no
need to specify an ELSE clause. Consider
the follOWing example:

IF A = B

next-statement

If A is equal to B, the GO TO statement of
the THEN clause causes an unconditional
branch to LABEL_i. If A is not equal to B,
the THEN cl~use is not executed and control
passes to the next statement, whether or
not it is an ELSE clause associated with
the IF statement.

Note: If the THEN clause does not cause a
tranSfer of control and if it is not
followed by an ELSE clause, the next
statement will be executed whether Or not
the THEN clause is executed.

The expression following the IF keyword
can be only an element expression; it

cannot be an array or structure expression.
It can, however, be a logical expression
with more than one operator. For example:

IF A = B , C = D
THEN GO TO Ri

The same kind of test could be made with
nested IF statements. The following three
examples are equivalent:

Example 1:

IF A = B , C = D
THEN GO TO Ri

B = B + 1;

Example 2:

IF A = B
THEN IF C = D

THEN GO TO R:
B = B + 1:

Example 3:

IF A .,= B THEN GO TO Si

IF C .,= D THEN GO TO S:
GO TO R:

S: B = B + 1:

ISELECT STATEMENT
I
I
IThe SELECT statement heads a select-group.
A select-group provides a multi-way
conditional branch and has the following
form:

SELECT CE);
WHEN CE1,E2,E3) action-l:
WHEN CE4,E5) action-2i

OTHERWISE action-n;
END:

NL: next statement;

In this example, E, El, etc.; are
expressions. When control reaches the

ISELECT statement, the expression E is
levaluated and its value is saved. The
lexpressions in the WHEN clauses are then
levaluated in turn (in the order in which
Ithey appear), and each value is compared
Iwith the value of E. If a value is found
Ithat is equal to the value of E, the action
Ifollowing the corresponding WHEN clause is
I performed; no further WHEN clause
lexpressions are evaluated. If none of the
lexpressions in the WHEN clauses is equal to
Ithe expression in the SELECT statement, the
laction specified after the OTHERWISE clause
lis executed unconditionally.

The 'action' after a WHEN or OTHERWISE
clause may be a single or compound
statement, a do-group, a select-group, or a
begin block. After the 'action' has been
performed, control passes to the first
executable statement tollowing the select
group, unless the normal flow is changed by
the specified action.

If the expression in the SELECT
statement is omitted, each WHEN clause
expression is evaluated and converted, if
necessary, to a bit string. The action
after the WHEN clause is performed if any
bit in the resulting bit string is a 'l'B.

For example:

SELECT:
WHEN CA>B) CALL BIGGER;
WHEN (A=B) CALL SAMEi
OTHERWISE CALL SMALLER;

END;

If a select-group contains no WHEN
clauses, the action in the OTHERWISE clause
is executed unconditionally. If the
OTHERWISE clause is omitted, and execution
of the select-group does not result in the
selection of a WHEN clause, the ERROR
condition is raised.

The following example shows nested
select-groups used to set a variable to the
number of days in a specified month.

DECLARE MONTH CHAR(3),
YEAR PIC'99',
NO_DAYS FIXED BINARY;

SELECTCMONTH) ;
WHENC'FEB') SELECT (MODCYEAR,4»;

WHENCO) NO DAYS = 29:
OTHERWISE NO_DAYS = 28;

END:
WHENC'APR','JUN','SEP','NOV')

NO_DAYS = 30;
OTHERWISE NO_DAYS = 31;

END;

In this example, the MOD built-in
function returns the remainder when YEAR is
divided by 4. (The algorithm is incorrect
for century years.)

100 STATEMENT
I
I
IThe DO statement, and its corresponding END
I statement, delimit a group of statements
Icollectively called a do-group.
I
I A common use of the DO statement is to
Ispecify that a group of statements is to be
lexecuted a stated number of times while a

Chapter 5: Statement Classification 55

Icontrol variable is incremented each time
Ithrough the loop. Such a group might take
Ithe form:
I
I DO I = 1 TO 10;
I
I
I
I END;
I
• In this example, the group of statements
will be executed ten times, while the value
of the control variable I ranges from 1
through 10. The effect of the DO and END
statements would be the same as the
following:

I = 1;
A: IF I > 10 THEN GO TO B;

I = I +1:
GO TO A:

B: next statement

Note that the increment is made before
the control variable is tested and that, in
general, control goes to the statement
following the group only when the value of
the control variable exceeds the limit set
in the DO statement. If a reference is
made to a control variable after the last
iteration is completed, the value of the
variable will be one increment beyond the
specified limit.

The increment applied to the control
variable is assumed to be one unless some
other value is stated, as follows:

DO I = 2 TO 10 BY 2;

This specifies that the loop is to be
executed five times, with the value of I
equal to 2, 4, 6, 8, and 10.

If negative increments of the control
variable are required, the BY option must
be used. For example:

DO I = 10 TO 1 BY -1;

The TO and BY options enable the control
Ivari~ble to be varied in fixed positive or
Inegative increments. In contrast, the
IREPEAT option, which is an alternative to
Ithe TO and BY options, enables the control
Ivariable to be varied non-linearly. It is
lused in the following way:
I
I DO I = 1 REPEAT 2*1;
I
I
I END:
I
I In this example, the control variable I
Ihas the value 1 for the first execution of

56 OS PL/I CKT AND OPT LRM PART I

the group. For succeeding executions, the
express~on in the REPEAT option (in this
example, 2*1) is evaluated and assigned to
the control variable. The group is thus
executed with I equal to 1, 2, 4, 8" 16,
and so on.

The effect of the preceding example is
the same as the following:

1=1:
A:

1=2*1 :
GOTO A:

Note that the REPEAT option does not
specify a terminal condition, and execution
of the group will continue indefinitely
unless it is halted by a WHILE or UNTIL
option (see following paragraphs) or
control is transferred to a point outside

Ithe group.
I
I The WHILE and UNTIL options provide a
Imethod of making successive executions of
Ithe do-group dependent upon a specified
I condition. Their basic format is:
I
I DO WHILE (A=B):
I
I DO UNTIL (A=B);
I
I In the DO WHILE statement, the
lexpression in the WHILE option is evaluated
Ibefore each execution of the do-group. If
Ithe expression is 'true', the do-group is
I executed; if it is not, control passes to
the first executable statement follOWing
the do-group. It is thus equivalent to the
following:

S: IF A=B THEN;
ELSE GOTO R;

GOTO S;
R: next statement

In the DO UNTIL statement, the
expression in the UNTIL option is evaluated
after each execution of the group. If the
expression is 'true', control passes to the
first executable statement follOWing the
do-group; otherwise, the group is executed
again. It is thus equivalent to the
following:

S: .
'--

IF (A=B) THEN GOTO R:
GOTO S:

R: next statement

Note that (in the absence of other
loptions) a do-group headed by a DO UNTIL
Istatement is executed at least once, but a

Ido-group headed by a DO WHILE statement may
Inot be executed at all. That is, the
Istatements DO WHILE (A=B) and DO UNTIL
I(A~=B) are not equivalent. ,
I
I The WHILE and UNTIL options may be
Icombined with one another and with control
Ivariable specifications. The following
lexamples show some of the possibilities:
I
I

I
I Example 1:

I
I DO WHILE(A=B) UNTIL(X=10);

In this example, the expression in the
WHILE option is tested before each
execution of the group, and the
expression in the UNTIL option is tested
at the end of each execution of the
group. If, when the DO statement is
first encountered, A~=B, the group is
not executed at all. If, however, A=B,
the group is executed at least once.

If, after an execution of the group,
X=10, no further iterations are
performed. Otherwise, a further
iteration is performed provided that A
is still equal to B.

Example 2:

DO I=l TO 10 UNTIL(Y=l):

In this example, the group is executed
a~ least once, with I equal to 1.

If, after an execution of the group,
Y=l, no further iterations are
performed. Otherwise, the implied
increment (BY 1) is added to I, and the
new value of I is compared with 10. If
I is greater than 10, no further
iterations are performed. Otherwise, a
new iteration commences.

Example 3:

DO 1=1 REPEAT 2*1 UNTIL(I=256)i

Here, the first execution of the group
is performed with 1=1.

After this and each subsequent
execution of the group, the UNTIL
expression is tested. If I=256, nO
further iterations are performed.
otherwise, the REPEAT expression is
evaluated and assigned to I, and a new
iteration commences.

Example 4:

DO P=PHEAD REPEAT P->FWD
WBILE(P~=NULL(»i

This example shows a DO statement used
to step along a chained list. The value
PHEAD is assigned to P for the first
iteration of the group. Before each
subsequent iteration, the value P->FWD
is assigned to P. The value of P is
tested before the first and each
subsequent execution of the grouPi if it
is NULL, no further iterations are
performed.

The effect of executing a do-group may
be summarized as follows:

1. If a control variable is specified,
assign the initial value to the
control variable.

2. If the TO option is present, test the
value of the control variable against
the expression in the TO option. If
the control variable is out of range,
leave the group.

3. If the WHILE option is specified, test
the expression in the WHILE option.
If it is • false', leave the group.

4. Execute the statements in the group.

5. If the UNTIL option is specified, test
the expression in the UNTIL option.
If it is 'true', leave the group.

6. If there is a control variable:

a. If the TO or BY option is
specified, add the increment to
the control variable.

b. If the REPEAT option is specified,
evaluate the expression in the
REPEAT option and assign it to the
control variable.

c. If the TO, BY, and REPEAT options
are all absent, leave the group.

7. Go to 2.

A more formal expansion of the iterative
do-group is given in ·section J:
statements·.

If a DO statement specifies a control
Ivariable (DO I = •• • i), the part of the
Istatement after the equals sign is called a
I specification. More than one specification
lean be included in a Single DO statement.
Iconsider each of the following DO
I statements:

Chapter 5: statement Classification 57

DO I J,K,L;

DO I 1 TO 10, 13 TO·15;

DO I 1 TO 10, 11 WHILE (A = B);

DO I 1 TO 9, 10 REPEAT 2*1
UNTIL (1)10000);

The first statement specifies that the
do-group is to be executed once only with
the value of I set equal to the value of J,
once only with the value of I set equal to
the value of K, and once only with the
value of I set equal to the value of L.

The second statement specifies that the
do-group is to be executed a total of
thirteen times, ten times with the value of
I equal to 1 through 10, and three times
with the value of I equal to 13 through 15.

The third DO statement specifies that
the group is to be executed at least ten
times, and then (provided that A is equal
to B) once more; if "BY 0" were inserted
after "11", execution would continue with I
set to 11 as long as A remained equal to B.

I The fourth DO statement specifies that
Ithe group is to be executed nine times,
with the value of I equal to 1 through 9,
and then successively with the value of I
equal to 10, 20, 40, and so on. Iteration
ceases when the group has been executed
with a value of I greater than 10000.

Note that, in all the above statements,
a comma is used to separate the
specifications. This indicates that a
succeeding specification is to be
considered only after the preceding
specification has been terminated.

The control variable of a DO statement
can be used as a subscript in statements
within the do-group, so that each iteration
deals with successive elements of a table
or array. For example:

DO I = 1 TO 10;
A(I) = I;
E~;

In this example, the first ten elements
of A are set to 1,2, ••• ,10, respectively.

NONITERATIVE DO STATEMENTS

The DO statement need not specify repeated
execution of the statements of a do-group.
It can be used as follows:

DO;

58 OS PL/I CKT AND OPT LRM PART I

The use of the DO statement in this
manner merely indicates that the do-group
is to be treated logically as a single
statement. It can be used to specify a
number of statements to be executed in the
THEN clause or the ELSE clause of an IF

I statement, or after the WHEN clause or the
10THERWISE clause of a select-group, thus
maintaining sequential control without the
use of a begin block.

LEAVE STATEMENT

The LEAVE statement is used to transfer
control from within a do-group to the first
executable statement tollowing the END
statement that delimits the group. For
example,

DO

LEAVE;

END;
next statement;

In this example, the LEAVE statement
causes control to be transferred to the
"next statement".

If the LEAVE statement contains a
reference to a statement label (for
example, LEAVE A), control is transferred
to the statement following the END
statement that closes the do-group whose DO
statement has the specified label. For
example:

A: DO I = 1 TO 10;

END;

DO J = 1 TO 5;
IF X(I,J)=O THEN LEAVE A;
ELSE • • • • •

END;
statement within group A;

statement after group A;

Here the statement LEAVE A causes
control to be transferred to the "statement
after group A"

If the do-group does not have an
explicit END statement, control is
transferred exactly as though all the END
statements were present. For example, in:

I A: DO I = 1 TO 10;
B: DO J = 1 TO 5; I

I
I

IF X(I,J)=O THEN LEAVE;
ELSE • • • • • ;

I END A;
I
I the LEAVE statement causes control to
Ileave group B; the next iteration of group
lA, if there is one, then commences.
I
, A LEAVE statement cannot cause control
Ito leave a block.

CALL, RETURN, AND END STATEMENTS

A subroutine may be invoked by a CALL
statement that names an entry pOint of the
subroutine. When the multitasking
facilities are not in use, control is
returned to the activating, or invoking,
procedure when a RETURN statement is
executed in the subroutine or when
execution of the END statement terminates
the subroutine. If the CALL statement
contains one of the multitasking options,
TASK, EVENT, or PRIORITY, the subroutine is
executed as a subtask with its own separate
flow of control: in this case, the RETURN
or END statement merely terminates th~
separate flow of control established for
the subtask. (See chapter 17,
-Multitasking. W)

The RETURN statement with a
parenthesized expression is used in a
function procedure to return a value to a
function reference.

Normal termination of a program occurs
as the result of normal execution of the
final END statement of the main procedure
or of a RETURN statement in the main
procedure, either of which returns control
to the calling program, which may be the
operating system. Termination of a program
by any other method is abnormal.

STOP AND EXIT STATEMENTS

The STOP and EXIT statements are both used
to cause abnormal termination. The STOP
statement terminates execution of the
entire program, including all concurrent
tasks. The EXIT statement terminates only
the task that executes it, together with
any attached tasks. (See chapter 11,
WMultitasking. W)

HALT STATEMENT

The HALT statement is effective only in
conversational processing: in batch

processing it is a null operation. When
included in a source program, it causes
program execution to be suspended and
control passed to the terminal.

Exception Control Statements

The control statements, discussed in the
preceding section, alter the flow of
control whenever they are executed.
Another way in which the sequence of
execution can be altered is by the
occurrence of a program interrupt caused by
an exceptional condition that arises.

In general, an exceptional condition is
the occurrence of an unexpected action,
such as an overflow error, or of an
expected action, such as an end of file,
that occurs at an unpredictable time. A
detailed discussion of the handling of
these conditions appears in chapter 14,
"Exceptional Condition Handling and Program
Checkout."

The three exception control statements
are the ON statement, the REVERT statement,
and the SIGNAL statement.

ON STATEMENT

The ON statement is used to specify action
to be taken when any subsequent occurrence
of a specified condition causes a program
interrupt. ON statements may specify
particular action for any of a number of
different conditions. For all of these
conditions, a standard system action exists
as a part of PL/I, and if no ON statement
is in force at the time an interrupt
occurs, the standard system action will
take place. For most conditions, the
standard system action is to print a
message and take action which usually leads
to termination of execution.

The ON statement takes the form:

ON condition[SNAP] {SYSTEMilon-unit}

The "condition" is one of those listed in
section H, "On-Conditions." The "on-unit"
is a single statement or a begin block that
specifies action to be taken when that
condition arises and an interrupt occurs.
For example:

ON ENDFILE(DETAIL) GO TO NEXT_MASTER;

This statement specifies that when an
interrupt occurs as the result of trying to
read beyond the end of the file named

Chapter 5: Statement Classification 59

DETAIL, control is to be transferred to the
statement labeled NEXT_MASTER.

When execution of an on-unit is
successfully completed, control will
normally return to the pOint of the
interrupt or to a pOint immediately
following it, depending upon the condition
that caused the interrupt.

The effect of an ON statement, the
establishment of the on-unit, can be
changed within a block (1) by execution of
another ON statement naming the same
condition with either another on-unit or
the word SYSTEM, which re-establishes
standard system action, or (2) by the
execution of a REVERT statement naming that
condition. On-units in effect at the time
another block is activated remain in effect
in the activated block, and in other blocks
activated by it, unless another ON
statement for the same condition is
executed. When control returns to an
activating block, on-units are re
established as they existed.

REVERT STATEMENT

The REVERT statement is used to cancel the
effect of all ON statements for the same
condition that have been executed in the
block in which the REVERT statement
appears.

The REVERT statement, which must specify
the condition name, re-establishes the on
unit that was in effect in the activating
block at the time the current block was
invoked.

SIGNAL STATEMENT

The SIGNAL statement simulates the
occurrence of an interrupt for a named
condition. It can be used to test tHe
coding of the on-unit established by
execution of an ON statement. For example:

SIGNAL OVERFLOW:

This statement would simulate the
odcurrence of an overflow interrupt and
would cause execution of the on-unit
established for the OVERFLOW condition. If
an on-unit has not been established,
standard system action for the condition is
performed. In most cases, the standard
system action is the same as for when the
on-unit is entered following an interrupt.

60 OS PL/I CRT AND OPT LRM PART I

Preprocessor St atements

PL/I allows a degree of control over the
contents of the source program during the
compilation. The programmer can specify,
for example, that any identifier appearing
in the source program will be changed: he
can select parts of the program to be
compiled without the rest: he can include
text from an external source. These
operations are performed by the
preprocessor stage of the compiler, and are
specified by preprocessor statements that
appear among the other statements within
the source program itself.

In general, preprocessor statements are
identified by a leading percent symbol
before the keyword: several of them have
the same keywords as standard PL/I
statements, and these have a similar effect
at compile time to that of their
counterparts at execution time.

The complete list of preprocessor
statements is as follows:

~ACTIVATE IIF

lassignment II NCLUDE

IDEACTIVATE INOTE

IDECLARE INULL

100 I PROCEDURE

lEND preprocessor RETURN

IGO TO

These statements are discussed in chapter
16, ·Compile-Time Facilities· and in
section J, ·Statements."

Listing Control Statements

IThere are five statements that allow the
Iprogrammer to control the format of the
Ilisting of his program, and to specify
Iwhich parts of the listings are to be
I printed. The statements are:
I
I ICONTROL
I
I INOPRINT ,
I I PAGE ,
I IPRINT ,
I ISKIP

They are described in chapter 16, ·Compile
time Facilities. w

Although they have the initial percent
symbol, these statements do not require the
use of the preprocessor.

Diagnostic Statements

A program processed by the PL/I checkout
compiler can include statements that
provide a considerable amount of diagnostic
information during execution. These
statements:

1. Control a continuing output of
diagnostic information throughout
execution:

CHECKINOCHECK statement
FLOWINOFLOW statement

2. Produce diagnostic information at
specific points during execution:

PUT statement with one of the
options:

LIST
DATA
EDIT
SNAP
FLOW
ALL

With the exception of a PUT statement with
the LIST, DATA, or EDIT option, none of
these statements provide diagnostic
information when processed by the PL/I
optimizing compiler. This compiler checks
these statements for syntax and then
ignores them; there is no output. In
addition, the implementation of a PUT
statement with the LIST or DATA option by
the optimizing compiler is different from
that of the checkout compiler. The
checkout compiler implements such a
statement by producing information about
problem and program-control "variables; the
optimizing compiler produces information
about problem variables only.

CHECK AND NOCHECK STATEMENTS

When a CHECK statement is executed,
information about the variables specified
or assumed is put out whenever these
variables occur in pre-defined situations.
This continues to the end of program
execution or until the CHECK statement is
overridden by a NOCHECK statement.

The execution of a CHECK statement that
specifies or assumes a particular
identifier has the same result as if the
CHECK condition has been enabled for every
blOCK in which the identifier is known.
This applies to all such blocks in the
current compilation and to all separately
compiled blocks in which the identifier is
known and which are active at the same time
as the current block.

Information is put out for label and
entry constants and for all variables. It
comprises:

1. Problem variables:

Name and value

2. Constants and program-control
variables:

Name, and, under the checkout
compiler, details of the current
situation of the constant or
variable. For example, the
details for a file variable
include whether the file is open
or closed.

The NOCHECK statement prevents output of
CHECK information for the specified or
assumed variables.

FLOW AND NOFLOW STATEMENTS

Execution of a FLOW statement results in
information being put out at every transfer
of control within the current task during

I execution. This continues until the task
Iterminates or until a NOFLOW statement is
executed.

If FLOW is active, and the task attaches
la subtask, FLOW is also active for the
Isubtask until the subtask executes a NOFLOW
I statement.

At each transfer of control, the
information put out comprises the statement
number of the statement that caused the
transfer of control, and the statement
number of the statement that received
control at that transfer.

The NOFLOW statement prevents the output
of FLOW information at a transfer of
control.

PUT STATEMENTS

When a PUT statement is executed, the

Chapter 5: Statement Classification 61

output comprises:

LIST, DATA or EDIT

The name of the variable appears if DATA
is used. The remaining output is:

SNAP

Problem variables: Value

Program-control variables (LIST and
DATA only): Current situation of the
variable

The current statement number and a list
of the procedures currently active.

62 OS PL/I CRT AND OPT LRM PART I

FLOW

The same information as for the FLOW
statement, for the last n transfers of
control. The value of ~-iS specified in
a compiler option.

~L

Information about all the variables in
the program, together with the
information provided by the SNAP and
FLOW options, and the values of the ON
bUilt-in functions. Options may be
specified to limit the output.

This chapter discusses how statements can
be organized into blocks to form a PL/I
program, how control flows within a program
from one block of statements to another,
and how storage may be allocated for data
within a block of statements. The
discussion in this chapter does not
completely cover multitasking, which is
discussed in detail later. However, the
discussion generally applies to all blocks,
whether or not they are executed
concurrently.

Blocks

A block is a delimited sequence of
statements that constitutes a section of a
program. It localizes names declared
within the block and limits the allocation
of variables. There are two kinds of
blocks: procedure blocks and begiri blocks.
The optimizing compiler will accept a
maximum of 255 blocks in one compilation.
There is no limit for the checkout
compiler.

PROCEDURE BLOCKS

A procedure block, simply called a
procedure, is a sequence of statements
headed by a PROCEDURE statement and ended
by an END statement, as follows:

label: [label:] ••• PROCEDURE;

END[labell;

All procedures must be named because the
procedure name is the primary point of
entry through which control can be
transferred to a procedure. Hence, a
PROCEDURE statement must have at least one
label. A label need not appear after the
keyword END in the END statement, but if
one does appear, it must match the label
(or one of the labels) of the PROCEDURE
statement to which the END statement
corresponds. (There are exceptions; see
·use of the' END statement·, later in this
chapter.) An example of a procedure
follows:

Chapter 6: Program Organization

A: READIN: PROCEDURE;
statement-l
statement-2

statement-n
END READIN;

In general, control is transferred to a
procedure through a reference to the name
(or one of the names) of the procedure.
Thus, the procedure in the above example
would be given control by a reference to
either of its names, A or READIN.

A PL/I program consists of one or more
such procedures, each of which may contain
other procedures and/or begin blocks.

BEGIN BLOCKS

A begin block is a set of statements headed
by a BEGIN statement and ended by an END
statement, as follows:

[label:] ••• BEGIN;

END [label];

Unlike a procedure block, a label is
optional for a begin block. If one or more
labels are prefixed to a BEGI~ statement,
they serve only to identify the starting
point of the block. (Control may pass to a
begin block without reference to the name
of that block through normal sequential
execution, although control can be
transferred to a labeled BEGIN statement by
execution of a GO TO statement.) The label
following END is optional. However, a
label can appear after END, matching a
label of the corresponding BEGIN statement.
(There are exceptions; see ·use of the END
statement-, later in this chapter.) An
example of a begin block follows:

B: CONTROL: BEGIN;
statement-1
statement-2

statement-n
END B.

Unlike procedures, begin blocks

Chapter 6: Program organization 63

generally are not given control through
special references to them. The normal
sequence of control governing ordinary
statement execution also governs the
execution of begin blocks. Control passes
into a begin block sequentially, following
execution of the preceding statement. The
only exception is a begin block used as the
on-unit in an ON statement. In this case,
the block is executed only upon occurrence
of the specified condition.

Begin blocks are not essential to the
construction of a PL/I program. However,
there are times when it is advantageous to
use begin blocks to delimit certain areas
of a program. These advantages are
discussed in this chapter and in chapter 7,
"Recognition of Names."

INTERNAL AND EXTERNAL BLOCKS

Any block can contain one or more blocks.
That is, a procedure, as well as a begin
block, can contain other procedures and
begin blocks. However, there can be no
overlapping of blocks; a block that
contains another block must totally
encompass that block.

A procedure block that is contained
within another block is called an internal
procedure. A procedure block that is not
contained within another block is called an
external procedure. There must always be
at least one external procedure in a PL/I
program. (Note: Each external procedure is
compiled separately. Entry names of
external procedures cannot exceed seven
characters.)

Begin blocks are always internal; they
must always be contained within another
block.

Internal procedure and begin blocks can
also be referred to as nested blocks.
Nested blocks, in turn, may have blocks
nested within them, and so on. The
outermost block must always be a procedure.
Consider the following example:

64 OS PL/I CRT AND OPT LRM PART I

A: PROCEDURE;
statement-al
statement-a2
statement-a 3
B: BEGIN;

statement-bl
statement-b2
statement-b3
END B;

statement-a 4
statement-aS
C: PROCEDURE;

statement-cl
statement-c2
D: BEGIN;

statement-dl
statement-d2
statement-d3
E: PROCEDURE;

statement-el
statement-e2
END E;

statement-d4
END D;

END C;
statement-a6
statement-a7
END A;

In the above example, procedure block A
is an external procedure because it is not
contained in any other block. Block B is a
begin block that is contained in A; it
contains no other blocks. Block C is an
internal procedure; it contains begin block
D, which, in turn, contains internal
procedure E. This example contains three
levels of nesting relative to Ai Band C
are at the first level, D is at the second
level (but the first level relative to C)
and E is at the third level (the second
level relative to C, and the first level
relative to D).

Under the optimizing compiler, the
maximum permissible depth of nesting is 50.
There is no limit under the checkout
compiler.

Us e of the END Stat ement

The use of the END statement with a
procedure, begin block, do-group, or

Iselect-group is governed by the. following
rules:

1. If a label is not used after END, the
END statement closes (that is, ends)
that unclosed block headed by the
BEGIN or PROCEDURE statement, or that
unclosed do-group headed by the DO
statement, or that unclosed select
group headed by a SELECT statement,
that physically precedes, and appears
closest to, the. END statement.

2. If the optional label is used after
END, the END statement closes that
unclosed block, do-group, or select
group headed by the BEGIN, PROCEDURE,
DO, or SELECT statement that has a
matching label, and that physically
precedes, and appears closest to, the
END statement. Any unclosed blocks,
do-groups, or select-groups nested
within such a block, do-group, or
select-group are automatically closed
by this END statement; this is known
as multiple closure.

Multiple closure is a shorthand method
of specifying a number of consecutive END
statements. In effect, the compiler
inserts the required number of END
statements immediately preceding the END
statement specifying multiple closure. For
example, assume that the following external
procedure has been defined:

FRST: PROCEDURE;
statement-fl
statement-f2
ABLK: BEGIN;

statement-al
statement-a2
SCND: PROCEDURE;

statement-sl
statement-s2
BBLK: BEGIN;

statement-bl
statement-b2
END;

END;
statement-a3
END ABLK;

END FRST;

In this example, begin block BBLK and
internal procedure SCND effectively end in
the same place; that is, there are no
statements between the END statements for
each. This is also true for begin block
ABLK and external procedure FRST. In such
cases, it is not necessary to use an END
statement for each block, as shown; rather,
one END statement can be used to end BBLK
and SCND, and another END can be used to
end ABLK and FRST. In the first case, the
statement would be END SCND, because one
END statement with no following label would
close only the begin block BBLK (see the
first rule above). In the second case,
only the statement END FRST is required;
the statement END ABLK is superfluous.
Thus, the example could be specified as
follows:

FRST: PROCEDURE;
statement-fl
statement-f2
ABLK: BEGIN;

statement-al
statement-a2
SeND: PROCEDURE;

statement-sl
statement-s2
BBLK: BEGIN;

statement-bl
statement-b2

END SCND;
statement-a3

END FRST;

Note that a label prefix attached to an END
statement specifying multiple closure is
assumed to apply to the last END statement.
Therefore all intervening groups and blocks
will be terminated if control passes to
such a statement. For example:

CBLK:

DGP:

LBL:

PROCEDURE;
statement-cl
statement-c2
DO I = 1 TO 10;
statement-dl
GO TO LBL;
statement-d2
END CBLK:

In this example, the END CBLK statement
closes the block CBLK and the iterative do
group DGP. The effect is as if an
unlabeled END statement for DGP appeared
immediately after statement-d2, so that the
transfer to LBL would prevent all but the
first iteration of DGP from taking place,
and statement-d2 would not be executed.

Activation of Blocks

Although the begin block and the procedure
have a physical resemblance and play the
same role in the allocation and freeing of
storage, as well as in delimiting the scope
of names, they differ in the way they are
activated and executed. A begin block,
like a Single statement, is activated and
executed in the course of normal sequential
program flow (except when specified as an
on-unit) and, in general, can appear
wherever a single statement can appear.
For a procedure, however, normal sequential
program flow passes around the procedure,
from the statement before the PROCEDURE
statement to the statement after the END
statement of that procedure. The only way
in which a procedure can be activated is by
a procedure reference.

A procedure reference is the appearance
of an entry expression in o~e of the
following contexts:

Chapter 6: Program Organization 65

'1. After the keyword CALL in a CALL
statement.

2. After the keyword CALL in the CALL
option of the INITIAL attribute.

3. As a function reference.

This chapter uses examples of the first
of these; the material, however, is
relevant to the other two forms as well.
For further information, refer to the
discussion of the INITIAL attribute in
section I,' "Attributes," and to chapter 9,
"Subroutines and Functions."

The simplest form of the CALL statement
is:

CALL entry-constant;

If the entry constant is a label of a
PROCEDURE statement it represents the
primary entry point to the procedure; if it
is a label of an ENTRY statement it
represents a secondary entry point. The
following is an example of a procedure
containing secondary entry pOints.

A: PROCEDURE;
statement-l
statement-2

ERRT: ENTRY;
statement-3
statement-4
statement-5

NEXT: RETR: ENTRY;
statement-6
statement-1
statement-8
END A;

In this example, A is the primary entry
point to the procedure, and ERRT, NEXT, and
RETR specify secondary entry points.
Actually, since they are both names for the
same ENTRY statement, NEXT and RETR specify
the same secondary entry point. The
procedure may be activated by one of the
following statements:

CALL A;
CALL ERRT;
CALL NEXT;
CALL RETR;

Alternatively, the appropriate entry
name value could be assigned to an entry
variable, and this entry variable could be
used in the procedure reference. In the
following example, the two CALL statements
have the same effect.

66 OS PL/I CRT AND OPT LRM PART I

DECLARE ENTl ENTRY VARIABLE;

ENTl = ERRT;

CALL ENT1:

CALL ERRT:

When a procedure reference is executed,
the procedure containing the specified
entry pOint is activated and is said to be
invoked; control is transferred to the
specified entry pOint. (This statement
does not apply when the CALL statement
specifies one of the multitasking options.
see "Multitasking.") The pOint at which
the procedure reference appears is called
the point of invocation and the block in
which the reference is made is called the
invoking block. An invoking block remains
active even though control is transferred
from it to the block it invokes.

Whenever a procedure is invoked at its
primary entry point, execution begins with
the first executable statement in the
invoked procedure. However, when a
procedure is ~nvoked at a secondary entry
pOint, execution begins with the first
executable statement following the ENTRY
statement that defines that secondary entry
point. Therefore, if all of the numbered
statements in the last example are
executable, the statement CALL A would
invoke procedure A at its primary entry
pOint, and execution would begin with
statement-l: the statement CALL ERRT would
invoke procedure A at the secondary entry
point ERRT, and execution would begin with
statement-3; either of the statements CALL
NEXT or CALL RETR would inVOke procedure A
at its other secondary entry point, and
execution would begin with statement-6.
Note that any ENTRY statements encountered
during sequential flow are never executed;
control flows around the ENTRY statement as
though the statement were a comment.

Any procedure, whether external or
internal, can always invoke an external
procedure, but it cannot always invoke an
internal procedure that is contained in
some other procedure. Those internal
procedures that are at the first level of
nesting relative to a containing procedure
can always be invoked by that containing
procedure, or by each other. For example:

PRMAIN: PROCEDURE:
statement-l
statement-2
statement-3
A: PROCEDURE:

statement-a1
statement-a 2
B: PROCEDURE;

statement-b1
statement-b2

END Ai
statement-4
statement-5
C: PROCEDURE;

statement-c1
statement-c2
END C:

statement-6
statement-1
END PRMAIN;

In this example, PRMAIN can invoke
procedures A and C, but not B: procedure A
can invoke procedures Band C: procedure B
can invoke procedure C; and procedure C can
invoke procedure A but not B.

The foregoing discussion about the
activation of blocks presupposes that a
program has already been activated. A PL/I
program becomes active when a calling
program invokes the initial procedure.
This calling program usually is the
operating system, although it could be
another program. The initial procedure,
called the main procedure, must be an
external procedure whose PROCEDURE
statement has the OPTIONS(MAIN)
specification, as shown in the following
example:

CONTRL: PROCEDURE OPTIONS (MAIN) ;
CALL Ai
CALL B:
CALL C:
END CONTRLi

In this example, CONTRL is the initial
procedure and it invokes other procedures
in the program.

The following is a summary of what has
been stated or implied about the activation
of blocks:

• A program becomes active when the
initial procedure is activated by the
operating system.

• Except for the initial procedure,
external and internal procedures
contained in a proqram are activated
only when they are invoked by a
procedure reference.

• Begin blocks are activated through
normal sequential flow or as on-units.

• The initial procedure remains active for
the duration of the program.

• All activated blocks remain active until
they are terminated (see below).

Termination of Blocks

In general, a procedure block is terminated
when, by some means other than a procedure
reference, control passes back to the
invoking block or to some other active
block. Similarly, a begin block is
terminated when, by some means other than a
procedure reference, control passes to
another active block.- There are a number
of ways by which such transfers of control
can be accomplished, and their
interpretations differ according to the
type of block being terminated.

Note that when a block is terminated,
any task attached by that block is
terminated (see chapter 17,
-Multitasking-).

BEGIN BLOCK TERMINATION

A begin block is terminated when any of the
following occurs:

1. Control reaches the END statement for
the block. When this occurs, con~rol
moves to the statement physically
following the END, except when the
block is an on-unit.

2. The execution of a GO TO statement
within the begin block (or any block
activated from within that begin
block) transfers control to a point
not contained within the block.

3. A STOP or EXIT statement is executed
(thereby terminating execution of the
current task and all its subtasks).

4. Control reaches a RETURN statement
that transfers control out of the
begin block and out of its containing
procedure as well.

5. A procedure within which the begin
block is contained has -been attached
as a task, and the attaching block
terminat es •

A GO TO statement of the type described
in item 2 can also cause the termination of
other blocks as follows:

If the transfer point is contained in a

Chapter 6: Program organization 61

block that did not directly activate the
block being terminated, all intervening
blocks in the activation sequence are
terminated.

For example, if begin block B is
contained in begin block A, then a GO TO
statement in B that transfers control to a
point contained in neither A nor B
effectively terminates both A and B. This
case is illustrated below:

FRST: PROCEDURE OPTIONS(MAIN):
statement-1
statement-2
statement-3
A: BEGIN:

statement-a1
statement-a2
B: BEGIN:

statement-b1
statement-b2
GO TO LAB:
statement-b3
END B:

statement-a]'
END A:

statement-4
statement-5

LAB: statement-6
statement-7
END FRST;

After FRST is invoked, the first three
statements are executed and then begin
block A is activated. The first two
statements in A are executed and then begin
block B is activated (A remaining active).
When the GO TO statement in B is executed,
control passes to statement-6 in FRST.
Since statement-6 is contained in neither A
nor B, both A and B are terminated. Thus,
the transfer of control out of begin block
B results in the termination of intervening
block A as well as termination of block B.

PROCEDURE TERMINATION

A procedure is terminated when one of the
following occurs:

1. Control reaches a RETURN statement.
within the procedure. The execution
of a RETURN statement causes control
to be returned to the point of
invocation in the invoking procedure.
If the point of invocation is a CALL
statement, execution in the invoking
procedure resumes with the statement
following the CALL. If the point of
invocation is one of the other forms
of procedure references (that is, a
CALL option or a function reference),
execution of the statement containing
the reference will be resumed.

68 OS PL/I CKT AND OPT LRM PART I

2. Control reaches the END statement of
the procedure. Effectively, this is
equivalent to the execution of a
RETURN statement.

3. The execution of a GO TO statement
within the procedure (or any block
activated from within that procedure)
transfers control to a point not
contained within the procedure.

4. A STOP or EXIT statement is executed
(thereby terminating execution of the
current task and all its subtasks).

5. The procedure or a containing
procedure has been attached as a task
and the attaching block is terminated.

Items 1 and 2 are normal procedure
terminations; items 3, 4, and 5 are
abnormal procedure terminations.

As with a begin block, the type of
termination described in item 3 can
sometimes result in the termination of
several procedures and/or begin blocks.
SpeCifically, if the transfer point
specified by the GO TO statement is
contained in a block that did not directly
activate the block being terminated, all
intervening blocks in the activation
sequence are terminated. Consider the
following example:

A: PROCEDURE OPTIONS(MAIN):
statement-1
statement-2
B: BEGIN:

statement-bl
statement-b2
CALL C:
statement-b3
END B;

statement-3
statement-4
C: PROCEDURE:

statement-c1
statement-c2
statement-c3
D: BEGIN:

statement-dl
statement-d2
GO TO LAB:
statement-d3
END D:

statement-c4
END C:

statement-5
LAB: statement-6

statement-7
END A:

In the above example, A activates B, which
activates C, Which activates D. In D, the
statement GO TO LAB transfers control to
statement-6 in A. Since this statement is
not contained in D, C, or B, all three

blocks are terminated; A remains active.
Thus, the transfer of control out of D
results in the termination of intervening
blocks Band C as well as the termination
of block D.

PROGRAM TERMINATION

A program is terminated when anyone of the
following occurs:

1. Control for the program reaches an
EXIT statement in the major task.
This is abnormal termination.

2. Control for the program reaches a STOP
statement. (When multitasking is in
operation, the program, that is, the
major task, is terminated when any
task reaches a STOP statement. See
chapter 11, "Multitasking.") This is
abnormal termination.

3. Control reaches a RETURN statement or
the final END statement in the main
procedure. This is normal
termination.

4. The ERROR condition is raised in the
major task and there is no established
on-unit for ERROR and FINISH, or, if
one or both of the conditions has an
established on-unit, on-unit exit is
by normal return, rather than by GO TO
branching. This is abnormal
termination. The program is not
terminated if ERROR is raised by a
SIGNAL ERROR statement inserted by the
checkout compiler in place of a
statement in which an error had been
detected. In conversational
processing, the ERROR and FINISH
conditions cause control to be passed
to the terminal, and this is regarded
as equivalent to an on-unit being
entered; any statements then entered
in immediate mode are processed as if
in an ERROR or FINISH on-unit.

On termination of a program, whether
normal or abnormal, control is returned to
the calling program (this is usually the
operating system control program).

Dynamic Loading of an External
Procedure

A procedure invoked by a CALL statement or
a CALL option of an INITIAL attribute, as
described in "Activation of Blocks",
earlier in this chapter, or by a function
reference, as described in chapter 9,

·Subroutines and Functions·, is generally
resident in main storage throughout the
execution of the entire program. If
required, however, a procedure may be
brought into main storage for only as long
as it is required: the invoked procedure
is dynamically loaded into, and dynamically
deleted from, main storage during execution
of the calling procedure.

Dynamic loading and deletion of
procedures is particularly useful when a
called procedure is not necessarily invoked
every time the calling procedure is
executed, and when conservation of main
storage is more important than a short
execution time.

The PL/I statements that initiate the
loading and deletion of a procedure are
FETCH and RELEASE. The appearance of an
entry name in a FETCH or RELEASE statement
indicates to the compiler that the
procedure containing an entry pOint with
that name will need to be fetched into main
storage before it can be executed. When a
FETCH statement is executed, the procedure
is copied from auxiliary storage into main
storage, unless a copy already exists in
main storage. In addition, when a CALL
statement or option or a function reference
is executed, the procedure is copied into
main storage, unless a copy exists already.
Thus, a procedure may be loaded from
auxiliary storage by:

1. execution of a FETCH statement;

2. execution of a CALL statement or
option or a function reference,
provided that the name of the entry
point of the procedure appears,
somewhere in the calling procedure,. in
a FETCH or RELEASE statement.

In neither case is it an error if the
procedure has. already been fetched into
main storage. In case 2, it is not
necessary that control should pass through
the FETCH or RELEASE statement, either
before or after execution of the CALL or
function reference.

Whichever statement caused the loading
of the fetched procedure, execution of the
CALL statement or option or the function
reference invokes the procedure in the
normal way.

The fetched procedure may be allowed to
remain in main storage until execution of
the whole program is completed.
Alternatively, the storage it occupies may
be freed for other purposes at any time by
means of the RELEASE statement.

Chapter 6: Program Organization 69

Consider the following example, in which
PROGA and PROGB are entry names of
procedures resident on auxiliary storage.

PROG: PROCEDURE;

FETCH PROGA;

CALL PROGA;

RELEASE PROGA;

CALL PROGB;
GO TO FIN;
FETCH PROGB;

FIN: END PROG;

PROGA will be loaded into main storage h¥
the first FETCH statement, and will be
executed when the first CALL statement is
reached; its storage is released when the
RELEASE statement is executed. PROGB will
be fetched when the second CALL statement
is reached, even though the FETCH statement
referring to this procedure is never
executed, and the same CALL statement will
initiate execution of PROGB. Note that the
same results would be achieved if the
statement FETCH PROGA; were omitted; the
appearance of PROGA in a RELEASE statement
will cause the stat~ent CALL PROGA; to
fetch the procedure, as well as invoke it.

The fetched procedure is compiled and
link-edited separately from the ca1ling
procedure. The programmer must ensure that
the entry name specified in FETCH, RELEASE,
and CALL statements and options, and in
function references, is known in auxiliary
storage. The job control statements
necessary to achieve this are discussed in
OS PL/I Checkout compiler: programmer's
Guide and OS PL/I Optimizing compiler:
Programmer's Guide

Rules concerning the use of dynamically
loaded procedures are:

1. Only external procedures may be
fetched.

2. Identifiers with the EXTERNAL
attribute are not permitted in a
fetched procedure.

3. Identifiers with the CONTROLLED
attribute are not permitted in a
fetched procedure unless they are
parameters.

4. With the exception of the standard

10 OS PL/I eXT AND OPr LRM PART I

print file SYSPRINT, identifiers with
the FILE attribute are not permitted
in a fetched procedure unless they are
parameters. This means any other file
used in the fetched procedure,
including the standard stream-oriented
input file SYSIN, must be passed from
the calling procedure.

The following additional rules
apply to the use of files in fetched
procedures:

a. A file that is explicitly opened
in a fetched procedure must be
explicitly closed in that
procedure before the procedure
ends •

b. A file that is implicitly opened
in a fetched procedure must be
closed only in the fetching
procedure.

c. A file that is open when it is
passed to a fetched procedure must
not be closed in the fetched
procedure.

I 5. Storage for STATIC variables in the
fetched procedure is allocated when
the FETCH statement is executed, and
is freed when a correSpOnding RELEASE
statement is executed. Each time a
procedure is fetched into main
storage, a STATIC variable either is
given the value specified in an
INITIAL attribute, or, if there is no
INITIAL attribute, is uninitialized.

I 6. The FETCH, RELEASE, and CALL
statements must specify entry
constants. Entry variables are not
permitted. Note that an entry
constant may have no more than seven
characters.

I 1. Fetched procedures may not fetch
further procedures.

I~: Violation of rules 3, 4, or 6 will
Icause random errors; neither the optimizing
Inor the checkout compiler is able to detect
Ithe violation.

Storage Allocation

Storage allocation is the process of
associating an area of storage with a
variable so that the data item(s) to be
represented by the variable may be recorded
internally. When storage has been
associated with a variable, the variable is
said to be allocated. Allocation for a
given variable may take place statically.

that is, before the execution of the
program, or dynamically, during execution.
A variable that is allocated statically
remains allocated for the duration of the
program. A variable that is allocated
dynamically will relinquish its storage
either upon the termination of the block
containing that variable or at the request
of the programmer, depending upon its
storage class.

The manner in which storage is allocated
for a variable is determined by the storage
class of that variable. There are four
storage classes: static, automatic,
controlled, and based. Each storage class
is specified by its corresponding storage
class attribute: STATIC, AUTOMATIC,
CONTROLLED, and BASED, respectively. The
last three define dynamic storage
allocation.

Storage class attributes may be declared
explicitly for element, array, and major
structure variables. If a variable is an
array or a major structure variable, the
storage class declared for that variable
applies to all of the elements in the array
or structure.

All variables that have not been
explicitly declared with a storage class
attribute are given the AUTOMATIC
attribute, with one exception: any
variable that has the EXTERNAL attribute is
given the STATIC attribute.

Chapter 8, ·Storage Control· discusses
how the various storage classes may be
used.

Reactivation of an Active Procedure
(Recursion)

An active procedure that can be reactivated
from within itself or from within another
active procedure is said to be a recursive
procedure: such reactivation is called
recursion.

A procedure can be invoked recursive~y
only if the RECURSIVE option has been
specified in its PROCEDURE statement. This
option also applies to the names of any
secondary entry points that the procedure
might have.

The environment (that is, values of
automatic variables, etc.) of every
invocation of a recursive procedure is
preserved in a manner analogous to the
stacking of allocations of a contro~~ed
variable (see chapter 8, ·Storage
Allocation·). An environment can thus be
thought of as being ·pushed down· at a

recursive invocation, and ·popped up· at
the termination of that invocation. Note
that a label constant in the current block
always contains information identifying the
current invocation of the block that
contains the label. Consider the following
example:

RECURS: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIAL (0);

X=X+I;
PUT DATA (X) :
IF X=5 THEN GO TO LAB:
CALL AGN;
X=X-I;
PUT DATA (X) ;

LAB: END RECURS;

AGN: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIAL (0);

X=X+I:
PUT DATA (X) ;

CALL RECURS;
X=X-I;
PUT DATA (X) ;
END AGN:

In the above example, RECURS and AGN are
both recursive procedures. Since X is
static and has the INITIAL attribute, it is
allocated and initialized before execution
of the program begins.

The first time that RECURS is invoked, X
is incremented by I and X=l is transmitted
by the PUT statement. Since X is less than
5, AGN is invoked. In AGN, X is
incremented by I and X=2 is transmitted
(also by a PUT statement). AGN then
reinvokes RECURS.

This second invocation of RECURS is a
recursive invocation, because RECURS is
still active. X is incremented as before,
and then X=3 is transmitted. X is still
~ess than 5, so AGN is invoked again.
SinceAGN is active when invoked, tbis
invocation of AGN is also recursive. X is
incremented once again, X=4 is tranSmitted,
and RECURS is invoked for the third time.

The third invocation of RECURS results
in the transmission of X=5. But, since X
is no longer less than 5, GO TO LAB is
executed, and then RECURS is terminated.
However, only the third invocation of

Chapter 6: Program Organization 71

RECURS is terminated, with the result that
control returns to the procedure that
invoked RECURS for the third time; that is,
control returns to the statement following
CALL RECURS in the second invocation of
AGN. At this point X is decremented by 1
and X=4 is transmitted. Then the second
invocation of AGN is terminated, and
control returns to the procedure that
invoked AGN for the second time; that is,
control returns to the statement following
CALL AGN in the second invocation of
RECURS. Here X is decremented again and
X=3 is transmitted, after which the second
invocation of RECURS is terminated and
control returns to the first invocation of
AGN. X is decremented again, X=2 is
transmitted, the first invocation of AGN is
terminated, and control returns to the
first invocation of RECURS. X is
decremented, X=l is transmitted, and the
first invocation of RECURS is terminated.
control then returns to the procedure that
invoked RECURS in the first place.

Note that if a label constant is
assigned to a label variable in a
particular invocation, a GO TO statement
naming that variable in another invocation
would restore the environment that existed
when the assignment was performed.

Note also that the environment of a
procedure invoked from within a recursive
procedure by means of an entry variable is
the one that was current when the entry
constant was aSSigned to the variable.
Consider the following example:

1=1;
CALL A; /*FIRST INVOCATION OF A*/

A:PROC RECURSIVE;
DECLARE EV ENTRY VARIABLE STATIC;
IF 1=1 THEN DO;

1=2;
EV=B;
CALL A; /*SECOND INVOCATION OF A*/

END;
ELSE CALL EV; /*INVOKES B WITH

ENVIRONMENT OF FIRST
INVOCATION OF A*/

B:PROC;
GO TO OUT;

END;
OUT:END A;

The GO TO statement in the procedure B will
transfer control to the END A; statement in
the first invocation of A, and will thus
termi-nite B and ~ invocations of A.

Prologues and Epilogues

Each time a block is activated, certain
activities must be performed before control

72 OS PL/I CKT AND OPT LRM PART I

can reach the first executable statement in
the block. This set of activities is
called a prologue. Similarly, when a block
is terminated, certain activities must be
performed before control can be transferred
out of the block; this set of activities is
called an epilogue.

Prologues and epilogues are the
responsibility of the compiler and not of
the programmer. They are discussed here
because knowledge of them may assist the
programmer in improving the performance of
his program.

PROLOGUES

A prologue is code that is executed as the
first step in the activation of a block.
In general, activities performed by a
prologue are as follows:

• computing dimension bounds and string
lengths for automatic and DEFINED
variables.

• Allocating storage for automatic
variables and initialization, if
specified.

• Determining which currently active
blocks are known to the procedure, so
that the correct generations of
automatic storage are accessible, and
the correct on-units may be entered.

• Allocating storage for dummy arguments
that may be passed from this block.

The prologue may need to evaluate
expressions for initial values (including
iteration factors), and for array bounds,
string lengths, and area sizes.

Note that errors may occur during the
prologue, and the ERR9R condition (or other
exceptional condition) may be raised. If
this happens, the environment of the block
may be incomplete, in particular some
automatic variables may not yet be
allocated. Statements executed after the
ERROR condition has been raised should not,
therefore, reference AUTOMATIC variables
declared in that block. PUT ALL and PUT
DATA statements in on-units established
prior to block entry, or entered at the
terminal, imply reference to automatic
variables in all active blocks and are
particularly vuLnerable to this situation.
The results of referring to unallocated
storage are unpredictable.

For each block in the program, the
optimizing compiler aSSigns these values in

the following order:

1. Values that are independent of other
declarations in the block. (Values
may be inherited from an outer block.)

2. Values that are dependent On other
declarations in the block. If a value
depends on more than one other
declaration in the block, correct
initialization is not guaranteed. For
example:

DCL I INIT(lO), J INIT(I), K INIT(J);

Correct initialization of K is not
guaranteed.

The checkout compiler has no restriction
on the number of dependencies; it evaluates
the expressions in the order required by
the dependencies (provided the dependencies
can be determined from inspection of the
DECLARE statement alone.)

Note that declarations of data items
must not be mutually interdependent. For

example, the following declaration is
invalid:

DCL A(B(l», B(A(l»;

Note that interdependency can occur with
more than two data items. For example, the
following declaration is also invalid:

DCL A(B(l», B(C(l», C(A(l»;

EPILOGUES

An epilogue is code that is executed as the
final step in the termination of a block.
In general, the activities performed by an
epilogue are as follows:

• Re-establishing the on-unit environment
existing before the block was activated.

• Releasing storage for all automatic
variables allocated in the block.

Chapter 6: Program organization 73

Chapter 7: Recognition of Names

A PL/I program consists of a collection of
identifiers, constants, and special
characters used as operators or delimiters.
Identifiers themselves may be either
keywords or names with a meaning specified
by the programmer. The PL/I language is
constructed so that the compiler can
determine from context whether or not an
identifier is a keyword, so there is no
list of reserved words that must not be
used for programmer-defined names. (Though
the uses of the 48-character set composite
symbols, and, under the checkout compiler,
of the file SYSPRINT, are restricted.) Any
identifier may he used as a name; the only
restriction is that at any point in a
program a name can have one and only one
meaning. For example, the same name cannot
be used for both a file and a floating
point variable.

Note: The above is true so long as the 60-
character set is used. Certain identifiers
of the 48-character set cannot be used as
programmer-defined identifiers in a program
written using the 48-character set;' these
identifiers are: GT, GE, NE, LT, NG, LE,
NL, CAT, OR, AND, NOT, and PT.

It is not necessary, however, for a name
to have the same meaning throughout a
program. A name declared within a block
has a meaning only within that block.
outside the block it is unknown unless the
same name has also been declared in the
outer block. In this case, the name in the
outer block refers to a different data
item. This enables programmers to specify
local definitions and, hence, to write
procedures or begin blocks without knowing
all the names being used by other
programmers writing other parts of the
program.

Since it is possible for a name to have
more than one meaning, it is important to
define which part of the program a
particular meaning applies to. In PL/I a
name is given attributes and a meaning by a
declaration (not necessarily explicit).
The part of the program for which the
meaning applies is called the scope of the
declaration of that name. In most cases,
the scope of a name is determined entirely
by the position at which the name is
declared within the program (or assumed to
be declared if the declaration is not
explicit). There are cases in which more
than one generation of data may exist with
the same name (such as in recursion); such
cases are considered separately.

In order to understand the rules for the
scope of a name, it is necessary to
understand the terms "contained in" and
"internal to."

Contained In:

All of the text of a block, from the
PROCEDURE or BEGIN statement through
the corresponding END statement, is
said to be contained in that block.
Note, however, that the labels of the
BEGIN or PROCEDURE statement heading
the block, as well as the labels of
any ENTRY statements that apply to the
block, are not contained in that
block. Nested blocks are contained in
the block in which they appear.

Internal To:

Text that is contained in a block, but
not contained in any other block
nested within it, is said to be
internal to that block. Note that
entry names of a procedure (and labels
of a BEGIN statement) are not
contained in that block.
Consequently, they are internal to the
containing block. Entry names of an
external procedure are treated as if
they were external to the external
procedure.

In addition to these terms, the
different types of declaration are
important. The three different types
explicit declaration, contextual
declaration, and implicit declaration
are discussed in the tollowing sections.

Explicit Declaration

A name is explicitly declared if it
appears:

1. In a DECLARE statement.

2. In a parameter list.

3. As a statement label.

4. As a label of a PROCEDURE or ENTRY
statement.

The appearance of a name in a parameter
list is the same as if a DECLARE statement
for that name appeared immediately
following the PROCEDURE or ENTRY statement

Chapter 1: Recognition of Names 15

in which the parameter list occurs (though
the same name may also appear in a DECLARE
statement internal to the same block).

The appearance of a name as the label of
either a PROCEDURE or ENTRY statement
constitutes a declaration within the
procedure containing the one to which it
refers.

The appearance of a label prefix on a
statement constitutes explicit declaration
of the label.

SCOPE OF AN EXPLICIT DECLARATION

The scope of an explici't declaration of a
name is that block to which the declaration
is internal, including all contained blocks
except those blocks (and any blocks
contained within them) to which another
explicit declaration of the same identifier
is internal.

For example:

P A B B' C C' D Q R
P: PROCEDURE;] DECLARE A, B:

Q: PROCEDURE;] DECLARE B, C;

R: PROCEDURE;

1 1
DECLARE C,D;

END Ri

END Q:]
END P:]

The lines to the right indicate the
scope of the names. Band B' indicate the
two distinct uses of the name B: C and C'
indicate the two uses of the name C.

Contextual Declaration

When a name appears in certain contexts,
some of its attributes can be determined
without explicit declaration. In such a
case, if the appearance of a name does not
lie within the scope of an explicit
declaration for the same name, the name is
said to be contextually declared.

A name that has not been declared
explicitly will be recognized and declared

76 OS PL/I CKT AND OPT LRM PART I

contextually in the following cases:

1. A name that appears in a CALL
statement, in a CALL option, or
followed by an argument list is given
the BUILTIN and INTERNAL attributes.
Built-in functions and pseudovariables
without arguments, such as ONCHAR,
ONSOURCE, DATE and DATAFIELD, should
be declared explicitly with the
BUILTIN attribute, contextually using
a null argument list, for example,
ONCHAR(), or implicitly by using a
DEFAULT statement, for example,

DEFAULT RANGE (ON,DAT) BUILTIN;

2. A name that appears in a FILE or COpy
option, or a name that appears in an
ON, SIGNAL, or REVERT statement for a
condition that requires a file name,
is given the FILE attribute.

3. A name that appears in an ON
CONDITION, SIGNAL CONDITION, or REVER'],
CONDITION statement is recognized as a
programmer-defined condition name.

4. A name that appears in an EVENT option
or in a WAIT statement is given the
EVENT attribute.

5. A name that appears in a TASK option
is given the TASK attribute.

6 • A name that appears in the BASED
attribute, in a SET option, or on the
left-hand side o~ a pointer
qualification symbol is given the
POINTER attribute.

7. A name that appears in an IN option,
or in the OFFSET attribute, is given
the AREA attribute.

Examples of contextual declaration are:

READ FILE (PREQ> INTO (Q);

ALLOCATE X IN (S);

In these statements, PREQ is given the FILE
attribute, and S is given the AREA
attribute.

SCOPE OF A CONTEXTUAL DECLARATION

The scope of a contextual declaration is
determined as if the declaration were made
in a DECLARE statement immediately
following the PROCEDURE statement of the
external procedure in which the name
appears.

Note that contextual declaration has the

same effect as if the name were declared in
the external procedure, even when the
statement that causes the contextual
declarations is internal to a block (called
B, for example) that is contained in the
external procedure. Consequently, the name
is known throughout the entire external
procedure, except for any blocks in which
the name is explicitly declared. It is as
if block B has inherited the declaration
from the containing external procedure.

Since a contextual declaration cannot
exist within the scope of an explicit
declaration, it is impossible for the
context of a name to add to the attributes
established for that name in an explicit
declaration. For example, the following
procedure is invalid:

P: PROC (F);

READ FILECF) INTO(X);

END P;

The identifier F is in a parameter list and
is, therefore, explicitly declared. The
standard default attributes REAL DECIMAL
FLOAT conflict with the attributes that
would normally be given to F by its
appearance in the FILE option. Such use of
the identifier is in error.

Implicit Declaration

If a name appears in a program and is not
explicitly or contextually declared, it is
said to be implicitly declared. The scope
of an implicit declaration is determined as
if the name were declared in a DECLARE
statement immediately following the
PROCEDURE statement of the external
procedure in which the name is used. A
name used only in a contained procedure
will be known in the containing procedure.

Unless the DEFAULT statement causes
programmer-defined defaults to override the
standard defaults, an implicit declaration
causes standard default attributes to be
applied, depending upon the first letter of
the name. If the name begins with any of
the letters I through N it is given the
attributes REAL FIXED BINARY (15,0). If
the name begins with any other letter
including one of the alphabetic extenders
$, #, or i, it is given the attributes REAL
FLOAT DECIMAL (6).

Examples of Declarations

Scopes of data declarations are illustrated
in figure 7.1. The brackets to the left
indicate the block structure; the brackets
to the right show the scope of each
declaration of a name. In the diagram, the
scopes of the two declarations of Q and R
are shown as Q and Q' and Rand R'.

P is declared in the block A and known
throughout A since it is not redeclared.

Q is declared in A, and redeclared in B.
The scope of the first declaration is all
of A except Bi the scope of the second
declaration is block B only.

R is declared in block C, but a
reference to R is also made in block B.
The reference to R in block B results in an
implicit declaration of R in A, the
external procedure. Two separate names
with different scopes exist, therefore.
The scope of the explicitly declared R is
C; the scope of the implicitly declared R
is all of A except block C.

I is referred to in block C. This
results in an implicit declaration in the
external procedure A. As a result, this
declaration applies to all of A, including
the contained procedures B, C, and D.

S is explicitly declared in procedure D
and is known only within D.

scopes of entry constant and statemen~
label declarations are illustrated in
figure 7.2. The example shows two external
procedures. The names of these procedures,
A and E, are assumed to be explicitly
declared with the EXTERNAL attribute within
the procedures to which they apply. In
addition, E is explicitly declared in A as
an external entry constant. The explicit
declaration of E applies throughout block
A. It is not linked to the explicit
declaration of E that applies throughout
block E. The scope of the name E is all of
block A and all of block E. The scope of
the name A is only all of the block A, and
not E.

However, it could appear in an external
entry declaration in E, which would then
result in the scope ot A being all of A and
all of E.

The label L1 appears with statements
internal to A and to C. Two separate
declarations are therefore established; the
first applies to all of block A except
block C, the second applies to block C
only. Therefore, when the GO TO statement
in block B is executed, control is
transferred to L1 in block A, and block B

Chapter 7: Recognition of Names 77

r---,
A: PROCEDURE;

DECLARE P, Q:
B: PROCEDURE:

[
DECLARE Q:
R = Q:
C: BEGIN:

DECLARE R:
DO I = 1 TO 10:
ENDi
END Ci

END B:

P] Q' i R' S I

1
[

D: PROCEDURE:]
DECLARE S;
END D:

END A: 1]
L---J
Figure 1.1. Scopes of data declarations

r---,
A:

[

PROCEDURE:
DECLARE E ENTRY:
L1: P = Qi
B: PROCEDURE:

[
D:

L2: CALL C:
C: PROCEDURE:

L1: X=Yi
CALL E;
END C:

GO TO L1:
END Bi
PROCEDURE:
END D:

CALL Bi
END Ai

rE: PROCEDURE:
L END Ei

L1 L1' L2 ABC D E

1
]

L---J
Figure 1.2. scopes of entry and label declarations

is terminated.

D and B are explicitly declared in block
A and can be referred to anywhere within Ai
but since they are INTERNAL, they cannot be
referred to in block E (unless passed as an
argument to E).

C is explicitly declared in B and can be
referred to from within B, but not from
outside B.

L2 is declared in B and can be referred
to in block B, including C, which is
contained in B, but not from outside B.

78 OS PL/I CKT AND OPT LRM PART I

INTERNAL and EXTERNAL Attributes

The scope of a name with the INTERNAL
attribute is the same as the scope of its
declaration. Any other explicit
declaration of that name refers to a new
object with a different, non-overlapping
scope.

A name with the EXTERNAL attribute may
be declared more than once in the same
program, either in different external
procedures or within blocks contained in
external procedures. Each declaration of
the name establishes a scope. These
declarations are linked together and,
within a program, all declarations of the
same identifier with the EXTERNAL attribute
refer to the same name. The scope of the

name is the sum of the scopes of all the
declarations of that name within the
program.

Note: External names of PL/I data cannot
be more than seven characters long and must
not contain the (break) character. This
restriction on the break character is a job
scheduler restriction. If a PL/I procedure
name, containing a break character, is
invoked by an EXEC statement, the job
scheduler will produce a diagnostic
message. A similar problem occurs with
PL/I file names in a DO statement.

Since these declarations all refer to
the same thing, they must all result in the
same set of attributes. It may be
impossible for the compiler to check all
declarations, particularly if the names are
declared in different procedures, so care
should be taken to ensure that different
declarations of the same name with the
EXTERNAL attribute do have matching
attributes. The attribute listing, which
is available as optional output from these
compilers, helps to check the use of names.
The following example illustrates the above
points in a program:

A: PROCEDURE;
DECLARE S CHARACTER (20);
DCL SET ENTRY(FIXED DEClMAL(l»,
OUT ENTRY(LABEL);
CALL SET (3);

E: GET LIST (S,M,N);
B: BEGIN;

DECLARE X(M,N), Y(M)i
GET LIST (X,Y);
CALL C(X,Y);
C: PROCEDURE (P,Q);

DECLARE P(•••), Q(.),
S BINARY FIXED EXTERNAL;

S = 0;
DO I = 1 TO M;

IF SUM (P(I,.» = Q(I)
THEN GO TO B;

S = S+l;
IF S = 3 THEN CALL OUT (E);
CALL 0(1);

B: END;
END C;

D: PROCEDURE (N);
PUT LIST ('ERROR IN ROW "

N, 'TABLE NAME " S);
END 0;

END B;
GO TO Ei
END A;

OUT: PROCEDURE (R);
DECLARE R LABEL,

(M,L) STATIC INTERNAL
INITIAL (0),

S BINARY FIXED EXTERNAL,
Z FIXED DECIMAL(l);

M M+l; S=O;
IF M<L THEN STOP; ELSE GO TO R;

SET: ENTRY (Z);
L=Z;
RETURN;
END OUT;

A is an external procedure name; its
scope is all of block A, plus any other
blocks where A is declared as external.

S is explicitly declared in block A and
block C. The character string declaration
applies to all of block A except block C;
the fixed binary declaration applies only
within block C. Notice that although D is
called from within block C, the reference
to S in the PUT statement in D is to the
character string S, and not to the S
declared in block C.

N appears as a parameter in block D, but
is also used outside the block. Its
apearance as a parameter establishes an
explicit declaration of N within D since
there is no other declaration Of N within
D; the references outside D cause an
impliCit declaration of N in block A.
These two declarations of the name N refer
to different Objects, although in this
case, the objects have the same data
attributes, which are, by standard default,
FIXED (15,0), BINARY, and INTERNAL.

X and Yare known throughout B and could
be referred to in block C or D within B,
but not ~n that part of A outside B.

P and Q are parameters, and therefore if
there were no other declaration of these
names within the block, their appearance in
the parameter list would be sufficient to
constitute an explicit declaration.
However, a separate DECLARE statement is
required in order to specify that P and Q
are arrays and it is this that is the
explicit declaration. Note that although
the arguments X and Yare declared as
arrays and are known in block C, it is
still necessary to declare P and Q in a
DECLARE statement to establish that they,
too, are arrays. (The asterisk notation
indicates that the bounds of the parameters
are the same as the bounds of the
arguments.)

I and M are not explicitly declared in
the external procedure Ai they are
therefore impliCitly declared and are known
throughout A, even though I appears only
within block C.

Chapter 1: Recognition of Names 19

The second external procedure in the
example has two entry names, SET and OUT.
These are considered to be explicitly
declared with the ENTRY and EXTERNAL
attributes. They must also be declared
explicitly with the ENTRY attribute in
procedure A. Since ENTRY implies EXTERNAL,
the two entry constants SET and OUT are
known throughout the two external
procedures.

The label B appears twice in the
program, once as the label of a begin
block, which is an explicit declaration, as
a label in A. It is redeclared as a label
within block C by its appearance as a
prefix to the END statement. The reference
to B in the GO TO statement within block C
therefore refers to the label of the END
statement within block c. Outside block C,
any reference to B would be to the label of
the begin block.

Note that C and D can be called from any
point within B but not from that part of A
outside B, nor from another external
procedure. Similarly, since E is known
throughout the external procedure A, a
transfer to E may be made from any point
within A. The label B within block C,
however, can only be referred to from
within C. Transfers out of a block by a GO
TO statement can be made; but such
transfers into a nested block generally
cannot. An exception is shown in the
external procedure OUT, where the label E
from block A is passed as an argument to
the label parameter R.

The statement GO TO R causes control to
pass to the label E, even though E is
declared within A, and not known within
OUT.

The variables M and L are declared
within the block OUT to be STATIC; their
values are preserved between calls to OUT.

In order to identify the S in the
procedure OUT as the same S in the
procedure C, both have been declared with
the attribute EXTERNAL.

scope of Member Names of External
Structures

When a major structure name is declared
with the EXTERNAL attribute in more than
one block, the attributes of the
corresponding structure members must be the
same in each case, although the
corresponding member ~ need not be
identical. Names of members of structures
always have the INTERNAL attribute, and
cannot be declared with any scope

80 OS PL/I CKT AND OPT LRM PART I

attribute. However, a reference to a
member of an external structure, using the
member name known to the block containing
the reference, is effectively a reference
to that member in all blocks in which the
external name is known, regardless of
whether the corresponding member names are
identical. For example:

PROCA: PROCEDURE:
DECLARE 1 A EXTERNAL,

2 B,
2 C:

END PROCA:

PROCB: PROCEDURE;
DECLARE 1 A EXTERNAL,

2 B,
2 D;

END PROCB;

In this example, if A.B is changed in
PROCA, it is also changed for PROCB, and
vice versa: if A.C is changed in PROCA, A.D
is changed for PROCB, and vice versa.

Multiple Declarations and Ambiguous
References

Two or more declarations of the same
identifier internal to the same block
constitute a multiple declaration, unless
at least one of the identifiers is declared
within a structure in such a way that name
qualification can be used to make the names
unique.

Two or more declarations anywhere in a
program of the same identifier as EXTERNAL
names with different attributes constitute
a multiple declaration.

Multiple declarations are in error.

A name need have only enough
qualification to make the name unique.
Reference to a name is always taken to
apply to the identifier declared in the
innermost block containing the reference.
An ambiguous reference is a name with
insufficient qualification to make the name
unique.

The following examples illustrate both
mUltiple declarations and ambiguous
references:

DECLARE 1 A, 2 C, 2 D, 3 E;
BEGIN:

DECLARE 1 A, 2 B, 3 C, 3 E;
A.C = D.E;

In this example, A.C refers to C in the
inner block; D.E refers to E in the outer
block.

DECLARE 1 A, 2 B, 2 B, 2 C, 3 D, 2 D;

In this example, B has been multiply
declared. A.D refers to the second D,
since A.D is a complete qualification of
only the second D; the first D would have
to be referred to as A.C.D.

DECLARE 1 A, 2 B, 3 C, 2 D, 3 C;

In this example, A.C is ambiguous because
neither C is completely qualified by this
reference.

DECLARE 1 A, 2 A, 3 A:

In this example, A refers to the first A,
A.A refers to the second A, and A.A.A
refers to the third A.

DECLARE X;

DECLARE 1 Y, 2 X, 3 Z, 3 A,
2 Y, 3 Z, 3 A;

In this example, X refers to the first
DECLARE statement. A reference to Y.Z is
ambiguous; Y.Y.Z refers to the second Z;
and Y.X.Z refers to the first Z.

Default Attributes

Every identifier in a PL/I source program
requires a complete set of attributes.
However, the attributes specified in a
DECLARE statement need rarely be the
complete set of attributes for the
identifier. Moreover, contextual
declaration can resUlt in only a partial
declaration of an identifier. For each
partially declared identifier the set of
attributes is completed implicitly by the
compiler by application of default rules.

Default rules which are determined for
the implementations are termed standard
default rules: alternative default rules
can be defined by the programmer who wishes
either to modify the standard default
rules, or develop a completely new set of
default rules. The DEFAULT statement is
used for this purpose. Its use is
described in a later section of this
chapter.

PROCESSES IN THE APPLICATION OF
ATTRIBUTES

Attribute processing by the compiler takes
place in the following order:

1. Defactoring of attributes.

2. Application of the LIKE attribute.

3. Application of ALIGNED or UNALIGNED
attributes to structure members.

q. Establishment and application of
explicit declarations.

5. Establishment and application of
contextual declarations.

6. Establishment of implicit
declarations.

7. Application of attributes specified in
the DEFAULT statements (if present),
for explicitly, contextually, and
implicitly declared identifiers; then
application of standard default
attributes.

8. Resolution of identical identifiers,
including identifiers used in
attributes, or declared in different
blocks of a procedure.

From this it should be seen that
attributes applied by default cannot
override attributes of the same class
applied to an identifier by explicit or
contextual declaration. Further, any
attributes applied by default are largely
dependent on attributes already applied.
This is fundamental to understanding the
use of the DEFAULT statement.

APPLICATION OF STANDARD DEFAULTS

Standard default rules are applied for a
class of a~tributes when an attribute of a
particular class, such as scope, scale,
base, or mode, etc., has not been applied
either by explicit or contextual
declaration. A summary of the standard
defaults for file attributes appears in
chapter 10, -Input and output.- A summary
of standard default assumptions for both
problem and program control data are given
below. A complete description of standard
default assumptions is given in section I,
-Attributes.-

Chapter 7: Recognition of Names 81

Problem Data

If the problem data is not known to be
either of character or of arithmetic type,
arithmetic type is assumed.

Arithmetic Data: The standard defaults
vary according to the information specified
for the data:

1. If an arithmetic data item is
partially specified in an explicit

declaration, the attributes assumed by
default are:

Default
Explicit attributes
declarations asswned

BINARY REAL, FLOAT
DECIMAL REAL, FLOAT
FIXED REAL, DECIMAL
FLOAT REAL, DECIMAL
REAL FLOAT, DECIMAL

FIXED BINARY REAL
FIXED DECIMAL REAL
FLOAT BINARY REAL
FLOAT DECIMAL REAL

REAL FIXED DECIMAL
REAL FLOAT DECIMAL
REAL BINARY FLOAT
REAL DECIMAL FLOAT

Note that if COMPLEX is declared
instead of REAL, the attributes are
the same as for REAL, and are applied
to each of the two parts.

2. If a base but not a scale is
specified, the scale assumed depends
on the presence of a scale factor in
the precision attribute. If there is
a scale factor, FIXED is assumed, if
there is not, FLOAT is assumed.

For example:

DCL A BINARY(S),
B BINARY(S,2):

The assumed attributes for A are REAL
FLOAT: for B, they are REAL FIXED.

3. If mode, scale, and base are not
specified by a DECLARE or DEFAULT
statement, the attributes assumed
depend on the initial letter of the
identifier.

82 OS PL/I CKT AND OPr LRM PART I

Default
Initial attributes
letter assumed

$,#,',A - H REAL FLOAT DECIMAL

I - N REAL FIXED BINARY

o - Z REAL FLOAT DECIMAL

A value returned from a function
reference can have default rules applied to
determine its base, scale, and mode.
Default attributes for a returned value are
obtained by applying default rules to the
function name as if it were an arithmetic
identifier.

Precision of arithmetic data: Standard
default precisions for arithmetic data are:

Attributes Precision

FIXED BINARY (15,0)

FIXED DECIMAL (5,0)

FLOAT BINARY (21)

FLOAT DECIMAL (6)

Other attributes of arithmetic data: The
assumed attributes are ALIGNED, and
AUTOMATIC if INTERNAL, or STATIC if
EXTERNAL.

String data: If the length of a character
or bit string is undefined, a length of 1
is assumed. The attributes UNALIGNED, and
AUTOMATIC if INTERNAL, or STATIC if
EXTERNAL, are assumed.

Structures and structure members: Level
one structures are assumed AUTOMATIC if
INTERNAL, and STATIC if EXTERNAL. Minor
structures and structure members cannot be
declared to have storage or scope
attributes.

Arrays and data elements: UNALIGNED is
assumed for data elements of string or
picture type. ALIGNED is assumed for all
other data types. Scope and storage depend
on the data type.

Program Control Data

ENTRY: An entry constant declared in a
DECLARE statement, or as a statement prefix
on a PROCEDURE or ENTRY statement, is
assumed EXTERNAL. An entry variable is
assumed INTERNAL.

LABEL, POINTER, OFFSET, AREA, EVENT, TASK:
Identifiers declared with anyone of these

attributes are assumed ALIGNED, and
AUTOMATIC if INTERNAL, STATIC if EXTERNAL.
If the size is not specified for an area
variable, the default size of 1000 bytes is
applied.

DEFAULT Statement

The function of the DEFAULT statement is to
give the programmer control over the
default attributes assigned to identifiers.
The DEFAULT statement cannot be used to
override the attributes assigned to
identifiers by explicit or contextual
declarations.

The DEFAULT statement can be used to
modify the standard default rules or to
specify a complete set of programmer
defined default rules. It can specify
attributes for identifiers whose attribute
sets are not complete after explicit,
implicit, or contextual declaration, for
the descriptors in entry declarations, and
for the attributes in the RETURNS option of
PROCEDURE and ENTRY statements. Standard
default rules can be restored after
programmer-defined default rules have been
established in a program.

A simplified general form of the DEFAULT
statement is as follows:

DEFAULT

{
RANGE({identifier} I {letter:letterl l {*})}
DESCRIPTORS
[attribute-specification];

RANGE Option: The RANGE option specifies
the identifiers to which the associated
default rules are to be applied. The range
can be specified as either two letters
separated by a colon, or as a single
identifier. For example, the option:

RANGE (A:J) ••.

applies to all identifiers with initial
letters in the range A through J. The
option:

RANGE (ABC) •••

applies to all identifiers with the initial
three letters 'ABC' such as ABC, ABCD, and
ABCDE.

The RANGE option can also be specified
as:

RANGE (*)

whereby all possible initial alphabetic
characters, from A through Z, and the
characters $, ~, and # are specified.

DESCRIPTORS Option: The DESCRIPTORS option
specifies that the associated default rules
are to be applied to non-null parameter
descriptors.

Attribute Specification: The attribute
specification is a list of attributes from
which selected attributes are applied to
identifiers in the specified range.
Attributes in the list may appear in any
order and must be separated by blanks.

Only those attributes that are necessary
to complete the declaration of a data item
are taken from the list of attributes. If
the list does not supply all the required
attributes, then standard default
attributes are applied. Therefore,
specification of any attribute that is a
standard de~ault is unnecessary. For
example:

DEFAULT RANGE(T) POINTER;

This means that any identifier that begins
with the letter T is a pointer. The
complete list of attributes that apply to
these identifiers is POINTER, AUTOMATIC,
INTERNAL, and ALIGNED.

Attributes that conflict when applied to
a data item do not necessarily conflict
when they appear in an attribute
specification. For example:

DEFAULT RANGE(S) BINARY VARYING:

This means that any identifier that begins
with the letter S and is declared
explicitly with the BIT or CHARACTER
attribute will receive the VARYING
attribute; all others (that are not
declared explicitly or contextually as
other than arithmetic data) will receive
the BINARY attribute.

The VALUE option is used within the
attribute speCification to specify
attributes that are represented by a
decimal integer constant or an expression.
These are the attributes length, size, and
precision. For example:

DEFAULT RANGE(*) VALUE(AREA(2000»;

This statement gives a default size of 2000
to all area variables. The dimension
attribute can be specified directly in an
attribute specification provided it appears
first in the list.

Example 1:

Assume that the following ranges of
initial letters are to correspond to the
attributes given:

Chapter 7: Recognition of Names 83

Initial letters Attributes required

A - D REAL FLOAT DECIMAL

E - B REAL FLOAT BINARY

I - N REAL FIXED BINARY

o - Z REAL FIXED DECIMAL

The precisions to be assumed are the
default precisions for these
implementations. A DEFAULT statement to
establish these additional default rules
is:

DEFAULT RANGE(E:B) BINARY,
RANGE(O:Z)FIXED;

In this statement additional default
rules for two ranges of initial letters are
specified. The standard default rules for
identifiers with initial letters outside
the ranges E - Band 0 - Z are unchanged.

Example 2:

A DEFAULT statement can specify that all
implicitly-declared data has the same
attribute.

DEFAULT RANGE (*) PICTURE '99999';

This statement causes all implicitly
declared identifiers to be assumed numeric
character type with the attributes REAL
PICTURE '99999'.

If values other than the standard
defaults are required, the argument of the
VALUE option should always contain an
attribute to qualify the precision, string
length, or area size for a particular
default attribute. For example:

a. DEFAULT RANGE (S:T) CHARACTER
VALUE (CHARACTER (10»;

b. DEFAULT RANGE (*) VALUE (FIXED
BINARY(31),FLOAT DECIMAL(33),
FLOAT BINARY(109), FIXED
DECIMAL(lS»;

The first example specifies that all
implicitly-declared identifiers with the
initial letters Sand T are to receive the
default attribute CHARACTER and a default
string length of ten characters. The
second example specifies that all
identifiers of arithmetic type with
undefined precisions will have the
precisions as defined in the argument to
the keyword VALUE. (In this instance the
precisions specified are the maximum
precisions permitted.)

Note that the only attributes which the
VALUE option can influence are precision,

84 OS PL/I CKT AND OPT LRM PART I

string length, and area size. Other
attributes in the option, such as CHARACTER
and FIXED BINARY in the above examples,
merely indicate which attributes the value
is to be associated with. Consider the
following example.

DEFAULT RANGE(I) VALUE(FIXED
DEClMAL(8,3»;

I = 1;

If it is not declared explicitly, I will be
given the standard default attributes FIXED
BINARY(15,O). It will ~ be influenced by
the default statement, because this
statement specifies only that the default
precision for FIXED DECIMAL identifiers is
to be (8,3).

Restoring standard Defaults

The following statement:

DEFAULT RANGE(*), DESCRIPTORS;

overrides, for all identifiers, any
programmer-defined default rules
established in a containing block. It can
be used to restore standard defaults for
contained blocks.

To restore standard defaults to a
particular identifier, the keyword SYSTEM
can be specified in its DECLARE statement.

scope of the DEFAULT Statement

The scope of a DEFAULT statement is the
block in which it is specified, and any
blocks contained in that block, except that
if a DEFAULT statement in a contained block
specifies all or part of the range
specified in a DEFAULT statement in a
containing block, the statement in the
contained block overrides the other for the
range that they have in common. For
example:

A: PROC;
DEFAULT RANGE(A:I) FIXED BINARY;

B: PROC;
DEFAULT RANGE(I) DECIMAL;

END A;

In procedure B, DECIMAL overrides BINARY

for identifiers beginning with I, and FIXED
is not inherited. standard defaults will
be applied for alignment, scope, storage
class, mode, and precision.

A DEFAULT statement in an internal block
affects only explicitly declared
identifie~s. This is because the scope of
contextually and implicitly declared
identifiers is determined as if their
declaration were made in a DECLARE
statement immediately following the
PROCEDURE statement of the external
procedure in which the name appears.

Factored Default Specification

A default specification can be factored.
For example, the following statement:

DEFAULT (RANGE(A:C) FIXED, RANGE(D:F)
FLOAT) DECIMAL;

specifies that arithmetic identifiers with
the initial letters A to C receive the
attributes FIXED DECIMAL, and those with
the initial letters D to F receive the
attributes FLOAT DECIMAL.

Programmer-defined Defaults for
Parameter Descriptors

The DEFAULT statement can be used to
specify attributes for parameter
descriptors. The keyword DESCRIPTORS
designates the list of attributes which
follows it as an attribute specification
for parameter descriptors. For example:

DEFAULT DESCRIPTORS BINARY;
DCL X ENTRY (FIXED, FLOAT);

the attribute BINARY is added to each
parameter descriptor in the list, producing
the equivalent list:

(FIXED BINARY, FLOAT BINARY)

The DESCRIPTORS default attributes are
not applied to parameters having null
descriptors, that is, parameters for which
no attributes are specified in the
parameter descriptor, and whose attributes

must therefore match those of the
corresponding arguments.

Programmer-defined Default for the
RETURNS Option

The default attributes of implicitly
declared values returned from function
procedures are dependent on the entry name
used to invoke the procedure. The DEFAULT
statement can be used to specify such
attributes when the entry name, or the
initial letter of the entry name, is
specified in the DEFAULT statement.

For example, the following statements:

DEFAULT RANGE (X) FIXED BINARY;
X PROC(Y);

would be interpreted as:

X PROC(Y) RETURNS (FIXED BINARY);

Restrictions of the Use of the DEFAULT
Statement

The DEFAULT statement~must not specify the
attributes ENTRY, ENVIRONMENT, RETURNS,
LIKE, VARIABLE, or any file attributes
other than FILE. It cannot be used to
specify structuring, although structure
elements can have defaults applied
according to a RANGE specification.

Although the DEFAULT statement may
specify the dimension attribute for
identifiers that have not been declared
explicitly, ~ subscripted identifier would
be contextually declared with the attribute
BUILTIN. Therefore the dimension attribute
can be applied by default only to
explicitly declared identifiers. For
example:

DEFAULT RANGE (ARRAY) (10,10) FIXED BIN;
DeL ARRAY1, ARRAY2;

Both ARRAYl and ARRAY2 are explicitly
declared two-dimensional arrays of 100
elements, each with the attributes FIXED
and BINARY.

Chapter 7: Recognition of, Names 85

86 OS PL/I CRT AND OPT LRM PART I

The purpose of this chapter is to describe
how the PL/I programmer can control the
allocation of storage. Allocation is the
process of obtaining storage for a
variable. A generation of a variable
refers to a particular allocation of it.
The four storage classes STATIC, AUTOMATIC,
CONTROLLED, and BASED allow the programmer
to exercise as 'much control as he requires
for a particular program.

All variables require storage: this
applies both to problem data, such as
string and arithmetic variables, and to
program control data such as label
variables, entry variables, and file
variables. The declaration of a variable
must include a storage class attribute even
if only by default. The name of a variable
is effectively the address of the variable,
and the attributes specified for a variable
describe the amount of storage required and
how it is to be interpreted. For example:

DECLARE X FIXED BlNARY(31,O) AUTOMATIC:

The name X addresses a fullword, i.e., four
bytes, that contains a value to be
interpreted as a fixed-point binary
integer. For static and automatic
variables, this concept is not very
important, but when considering controlled
and, particularly, based variables it is
relevant.

It should be understood that at no point
in a PL/I program does the programmer have
access to the absolute address of a
variable within main storage, because the
allocation of storage for variables is
managed by the compiler. The programmer
does not specify where in main storage the
allocation is to be made. He can, however,
specify where it is to be allocated
relative to storage already. allocated for
instance by allocating based variables in
an area variable.

The degree of storage control that can
be exercised depends on the class of
storage used.

Static Storage

Variables declared with the STATIC
attribute are allocated prior to the
execution of a program and remain allocated
until the program terminates. The program
has no control on the allocation of static

Chapter 8: Storage Control

variables during execution •. Programs often
need data that is used whenever the program
is executed. For example, all arithmetic
constants specified in a program are stored
in a manner similar to variables declared
STATIC. The difference is that constants
cannot be changed during program execution
whereas the values of static variables can.
Although static variables can be declared
at any point in a program, they are all
allocated prior to execution. But it is
important to note that static variables
follow normal scope rules for the validity
of references to them. For example:

A:PROC OPTIONSCMAIN):

B:PROC:
DECLARE X STATIC INTERNAL:

END B;
END A:

Although the variable X is allocated
throughout the program, it can be
referenced only within procedure B or any
block contained in B.

If static variables are initialized
using the INITIAL attribute, the initial
values must be specified as constants with
the exception of pointer variables as noted
below. And any specification of extenis,
for instance array bounds, must also be
constants. Thus if static storage is used,
it must be borne in mind that whatever
allocation has been specified when the
program was written will be retained
throughout the execution of the program.
static storage should be used for all data
that may be referred to by the programmer
at any point in a program~ A STATIC
pOinter or offset variable may be
initialized only by using the NULL built-in
function.

All other forms of storage allocation
are dynamic, that is, the storage is
obtained during the execution of the
program. Because. of this, the programmer
can exert more control.

Automatic Storage

Automatic variables are allocated on entry

Chapter 8: storage Control 87

to the block in which they have been
declared. They can be reallocated many
times during the execution of a program.
The programmer controls their allocation by
his design of the block structure of his
program. For example:

A:PROC;

CALL B;
B:PROC;

DECLARE X, Y AUTO;

END B;

CALL B;

Each time procedure B is invoked, the
variables X and Yare allocated storage,
and when B terminates the storage is
released; consequently, the values they
contained are lost. The storage that has
been freed is available for reallocation to
other variables. Thus, whenever a block
(procedure or begin) is active, storage is
allocated for all variables declared
automatic within that block, and whenever a
block is inactive no storage is allocated
for the automatic variables in that block.
Only one allocation of a particular
automatic variable can exist, except for
those procedures that are called
recursively or by more than one task.

Array bounds, string lengths, and area
sizes for automatic variables can be
specified as expressions. This means not
only that storage can be allocated when it
is required but also. that the required
amount of storage can be allocated. For
example:

A:PROC;
DECLARE N FIXED BIN;

B:PROC;
DECLARE STR CHAR(N);

The character string STR will have a length
defined by the value of the variable N that
existed when procedure B was invoked.
However, storage is conserved at the
possible expense of speed of execution
because of the extra operations required to
evaluate such expressions.

88 OS PL/I CRT AND OPT LRM PART I

EFFECT OF RECURSION ON AUTOMATIC
VARIABLES

A procedure that can be invoked when it is
already active in the same task is said to
be recursive. The values of variables
allocated in one activation of such a
procedure must be protected from change by
other activations. This is arranged by
stacking the variables. A stack operates
on a last-in first-out basis; the most
recent generation of an automatic variable
is the only one that can be referenced.
Note that static variables are not affected
by recursion. Thus they are useful for
communication across recursive invocations.
This also applies to automatic variables
that are declared in a procedure that
contains a recursive procedure and to
controlled and based variables. For
example:

A:PROC;
DCL X;

B:PROC RECURSIVE;
DeL Z,

Y STATIC;
CALL B;

END B;
END A;

A single generation of the variable X
exists throughout invocations of procedure
B. The variable Z will have a different
generation for each invocation of procedure
B. The variable Y can be referred to only
in procedure B and will not be reallocated
at each invocation. (The concept of
stacking of variables is also of importance
in the discussion of controlled variables.)

Controlled Storage

Variables declared as CONTROLLED are
allocated only when they are specified in
an ALLOCATE statement. The programmer has
individua1 control over each controlled
variable. Effectively, they are
independent of the program block structure,
but not compl ete1y • The scope of a
controlled variable. when declared
internal. is the block in which it is
declared anq any contained blocks. The
declaration of a controlled variable
describes only how much storage will be
required when the variable.is allocated and
how it is to be interpreted. For example:

A:PROCi
DCL x CONTROLLEDi

CALL Bi

B:PROCi
ALLOCATE Xi

END B;
END Ai

The variable X can be validly referred to
within procedure B and that part of
procedure A that follows the CALL
statement. Any reference to the value of
the variable before execution of the CALL
statement is in error. once a controlled
variable has been allocated, it remains
allocated either until a FREE statement
that names the variable is encountered or
until the end of the program. Note that
the scope of a controlled variable may not
be the whole programi this creates a
situation analogous to that for the STATIC
INTERNAL variable described under "Static
Storage- earlier, i.e., it exists but
cannot be referenced.

The FREE statement frees the storage
allocated for a controlled variable. The
storage can then be re-used for other
allocations.

Generally, controlled variables are
useful when large data aggregates with
adjustable extents are required in a
program. For example:

DCL A(M,N) CTLi

GET LIST(M,N)i
ALLOCATE Ai
GET LIST(A) i

FREE Ai

This program sequence allocates the exact
storage.required depending on the input
data and discards the data (and frees its
storage) when no longer required. This
method can be more efficient than the
alternative of setting up a begin block,
because no prologue or epilogue is
required.

ALLOCATE STATEMENT FOR CONTROLLED
VARIABLES

A controlled variable can be allocated only
by an ALLOCATE statement. The general form
of the ALLOCATE statement for controlled
v.ariables is:

ALLOCATE [level] identifier [dimension
attribute] [attribute]

[,[level] identifier [dimension
attributel [attribute]] •••

[INITIAL attribute];

The "identifier" is any variable that has
the CONTROLLED attribute. It can be an
element. array, or structure, but cannot be
subscripted or qualified. Permitted
at~ributes are those that specify
dimensions, the length of strings, and the
size of areas. (Areas are discussed later
in this chapter but in this context they
are simply variables whose storage is
adjustable.) This enables the programmer
to alter the amourit of storage for a
particular generation of a variable. These
attributes are:

dimension
CHARACTER (length)
BIT (length)
AREA(size)

The dimension attribute can appear with
any of the others. For example:

DCL X (20) CHAR (5) CONTROLLED;

ALLOCATE X(25) CHAR(6);

The attribute values specified in an
ALLOCATE statement always override those
given in the DECLARE statement for the same
variable. However, the~ttributes
themselves must agree. Thus the dimens ion
attribute must specify the same number of
dimensions. As in a DECLARE statement,
element expressions can be used to specify
bounds, lengths, and sizes.

The INITIAL attribute can also be
specified in an ALLOCATE statement.
Initial values given in an ALLOCATE
statement override those, if any, given in
a DECLARE statement.

FREE STATEMENT FOR CONTROLLED VARIABLES

Storage for a controlled variable is freed,

Chapter 8: storage Control 89

and therefore its value is lost, when a
FREE statement is executed that names the
variable. The form of the FREE statement
is:

FREE identifier[,identifier] ••• i

rhe "identifier" has the same restrictions
as in the ALLOCATE statement.

If the FREE statement names a variable
that has not been allocated, no action is
taken.

Implicit Freeing

If a controlled variable is to remain
allocated until the end of a task, it need
not be explicitly freed by a FREE
statement. All controlled storage is
automatically freed at the termination of
the task in which it was allocated.

MULTIPLE GENERATIONS OF CONTROLLED
VARIABLES

If storage for a controlled variable is
reallocated before being freed the first
generation is preserved, i.e., stacked.
The second generation becomes the current
generation; the first generation cannot be
directly accessed until the current
generation has been freed. This is similar
to the process described for automatic
variables in a recursive procedure. For
cont~olled variables, however, stacking and
unstacking of variables occur at ALLOCATE
and FREE statements rather than at block
boundaries and are independent of
invocation of procedures within a task.

Although values of successive
generations of a controlled variable are
stacked, values can be obtained from the
most recent generation to help create a new
generation. If, in an ALLOCATE or DECLARE
statement, a bound, length, or size is
specified by an expression that contains
references to the vatiabl&, the value is
taken from the most recent previous
generation. For example:

DCL X(20) FIXED BIN CTL;

ALLOCATE X;

ALLOCATE X(X(l»i

9 0 OS PL/I CXT AND OPr LRM PART I

In the first allocation of X the upper
bound is specified by the DECLARE
statement, i.e., 20. In the second
allocation the upper bound is specified by
the value of the first element of the first
generation of X.

Asterisk Notation

If, in an ALLOCATE statement, dimensions,
lengths, or sizes are indicated by
asterisks, values are inherited from the
most recent previous generation. For
arrays, the asterisk must be used for every
dimension of the array, not just one of
them. For example:

DCL X(10,20) CHAR(S) CTLi

ALLOCATE X;

ALLOCATE X(10,10);

ALLOCATE X (• , .) i

In this example. the first generation of X
has bounds (10,20); the second and third
generations have bounds (10,10). The
elements of each generation of X are all
character strings of length five.

The asterisk notation can also be used
in a DECLARE statement, but has a different
meaning. For example:

DCL Y CHAR(.) CTL,
N FIXED BINi
N=20:

ALLOCATE Yi

ALLOCATE Y CHAR (N) ;

This simply means that the length of the
character string Y is to be taken from the
previous generation unless it is specified
in an ALLOCATE statement, in which case Y
is given the specified length. This allows
the programmer to defer the specification
of the string length until the actual
allocation of storage.

CONTROLLED STRUCTURES

When a structure is controlled, any arrays,
strings, or areas it contains can be
adjustable. For this reason, it is
permissible to describe the relative
structuring in an ALLOCATE statement. For
example:

DCL 1 A CTL,
2 B(-10:10),
2 C CHAR(*) VARYING;

ALLOCATE 1 A,
2 B,
2 C CHAR(S);

FREE A;

When the structure is allocated, A.B has
the extent -10 to +10 and A.C is a VARYING
character string with maximum length 5 and
the value null. When the structure is
freed, only the major structure name is
given. All of a controlled structure must
be freed or allocated; it is an error to
attempt to obtain storage for part of a
structure.

ALLOCATION BUILT-IN FUNCTION

Where the allocation and freeing of a
variable depend on flow of control, it is
useful to be able to determine if the
variable has been allocated. The
ALLOCATION built-in function returns a
binary integer value indicating the number
of generations that can be accessed in the
current task for a given controlled
variable. If the variable is not
allocated, the value zero is returned. The
function reference has the form:

ALLOCATION (a)

where a must be a controlled variable.

Besides the ALLOCATION built-in
function, other built-in functions that may
be useful are the array-handling functions
DIM, which determines the extent of a
specified dimension of an array, and LBOUND
and HBOUND, which determine the lower and
upper bound respectively of a specified
dimension of a given array. Similarly for
strings, the built-in function LENGTH,
returns the current length of the string.

Based Storage

A based variable is fundamentally different
from all other storage classes in that the
name of a based variable does not identify
the location of a generation in main
storage; a declaration of a based variable
is only a description of the generation,
i.e., the amount of storage required and
how that storage is to be interpreted. The
location of the generation is identified by
a separate variable called a locator
variable. A locator variable is either a
pOinter variable or an offset variable.
Offset variables are discussed later in
this chapter in conjunction with area
variables.

Although a declaration for a controlled
variable is also only a description of the
storage, once an ALLOCATE statement has
been executed for the variable, its name
also identifies the location of the
variable. For this reason, it is
impossible to refer to more than one
generation of a controlled variable at a
particular point in a program. In fac~,
the ALLOCATE statement can also be used for
a based variable, but because the location
of any generation is identified by an
independent locator variable, it is
possible to refer at any point in a program
to any generation of a based variable by
using an appropriate locator value.

BASED VARIABLES

A declaration of a based variable has the
keyword BASED and, optionally, the name of
a locator variable that can be assumed to
be associated with the based variable. For
example:

DeL x FIXED BIN BASED(P);

For this declaration the value of the
variable P will identify the location of
the variable X, except when the reference
is otherwise explicitly qualified, as
described below.

The association of a pointer variable in
this way is not a special relationship. P
can be used to identify locations of other
based variables and other locators can be
used to identify other generations of the
variable X.

LOCATOR QUALIFICATION

Because a reference to the value of a based

Chapter 8: Storage Control 91

variable consists of two parts, it is a
q~alified reference and to distinguish this
from a reference to a member of a
structure, it is called a locator-qualified
reference. The composite symbol -> (a
minus sign immediately followed by a
greater than sign) represents 'qualified
by' or 'points to'. For example:

P -> X

X must be a based variable and P must be a
locator expression. The reference means:
that generation of X identified by the
value of the locator P. X is said to be
explicitly locator-qualified.

When a based variable is associated with
a locator variable in a declaration, the
programmer need specify only the name of
the based variable in a reference. For
example:

DCL X FIXED BIN BASED{P);

ALLOCATE X;

X X + 1;

The ALLOCATE statement sets a value in
the pointer variable P so that the
reference X applies to allocated storage.
The references to X in the assignment
statement are implicitly locator-qualified
by P. References are explicitly locator
qualified as follows:

Q->X = Q->X + 1~

This assignment statement has the same
effect as that of the previous example. A
based variable can be declared without
naming a pointer variable; in this case any
reference to the based v~riable must always
be explicitly locator-qualified.

(Note that PL/I allOWS a more general
form of locator qualification than is
described here; see "Multip1e Locator
Qualification" at the end of this chapter.
However, the general form is not essential
to an understanding of the remainder of
this chapter.)

POINTER VARIABLES

A pointer variable is declared contextually
if it appears in the declaration of a based
variable, if it appears as a locator
qualifier, or if it appears in the SET
option of an ALLOCATE, LOCATE, or READ

92 OS PL/I CKT AND OPT LRM PART I

statement. It can also be declared
explicitly as in the following example:

DeL Q POINTER;

Because Q is a variable it must have a
storage class; in this case, AUTOMATIC is
applied by default. Note that a pOinter
variable is a program control variable and
therefore cannot be manipulated in the same
way as arithmetic values. Pointer
variables can be collected in arrays and
structures.

Pointer Expression

A pOinter expression is either a pOinter
variable, which can be qualified or
subscripted, or a function reference that
returns a pOinter value.

A pointer expression can be used in the
following ways:

1. As a locator qualifier, in association
with a declaration of a based
variable.

2. In a comparison operation, for example
in a IF statement (pointer values can
be compared whether equal or not
equal) •

3. As an argument in a procedure
reference.

Setting Pointer Variables

,~

Before a reference is made to a pointer
qualified variable, the pOinter must have a
value. A pointer value is obtained from
any of the following:

1. The NULL built-in function.

2. The ADDR built-in function.

3. A READ or LOCATE statement.

4. An ALLOCATE statement.

All pOinter values are originally derived
from one of these three methods. Such
values can then be manipulated by
assignment that copies a pOinter value to a
pOinter variable: by locator conversion
that converts an offset value to a pOinter
value, or vice versa; by passing the
pOinter value as an argument in a procedure
reference; and by returning a painter value
from a function procedure.

ADDR BUILT-IN FUNCTION

The ADDR built-in function returns a
pOinter value that identifies the first
byte of a variable. The variable can have
any data type or organization and any
storage class. For example:

P = ADDR(X);

where P is a pointer variable and X is any
connected variable. The argument to the
built-in function can be a subscripted
qualified reference. For example:

DCL A(3,2) CHARACTER(S) BASED(P),
B CHAR(S) BASED(Q),
C(3,2) CHARACTER(S);

P = ADDR(C);
Q ADDR(A(2,1»;

In this example, the arrays A and C refer
to the same storage. The elements Band
C(2,1} also refer to the same storage.

Notice that when a based variable is
overlaid in this way no new storage is
allocated - the based variable uses the
same storage as the variable on which it is
overlaid (A(3,2) in the example).

This overlay technique can be achieved
by use of the DEFINED attribute, but an
important difference is that for DEFINED
the overlay is permanent. When based
variables are overlaid, the association can
be changed at any time in the program by
assigning a new value to the pointer
variable. Note that although PLII does not
permit the overlay of variables with
different data types, for example,
overlaying an integer with a bit string or
overlaying a character string with a bit
string, it is possible in this
implementation.

However, it should be understood that
this type of programming is invalid use of
PL/I, and the following points should be
noted:

1. Unless the length of the bit string is
a multiple of eight, data in the base
variable may be corrupted when an
assignment is made to the based
variable when running under the
optimizing compiler since this
compiler produces optimum code from
valid language.

2. Incompatibilities between the
attributes of the BASED variable and
the attributes of the base variable,
that is the variable being overlaid,

will be detected only when running
under the checkout compiler with the
NOCOMPATIBLE option.

The ADDR built-in function does not
supply any information on the organization
of a variable. Therefore, if the variable
is an aggregate, it should be in connected
storage if it is to be referenced as an
entity. For example, if the variable is a
cross-section of an array, the elements
must not be interleaved. Furthermore, in
this implementation, if the variable is a
varying-length string or an area, control
information is an integral part of the
variable. A varying-length string is
prefixed by a two-byte length field, and an
area is prefixed by 16 bytes of control
intormation. Thus if the ADDR function is
performed on these types of variable, the
pOinter value identifies the start of the
control information.

Other rules that apply to the use of the
ADDR function are given in section G,
"Built-in Functions".

BASED VARIABLES AND INPUT/OUTPUT

Based variables can be transmitted using
either stream-oriented or record-oriented
transmission.

In the list-directed form of stream
oriented transmission, provided the based
variables are locator-qualified (implici~ly
or explicitly), they are treated in the
same way as other types of variable. For
example:

GET LIST (P->X);

For data-directed transmission, however,
only a based variable that has been
associated with a locator expression in a
declaration can be transmitted. For
example:

DCL Y BASED(Q), Z BASED;

PUT DATA(Y);

The variable Z cannot be transmitted in a
PUT DATA or GET DATA (that is, data
directed I/O) statement. Chapter 11
discusses the techniques and facilities of
stream-oriented transmission.

Record-oriented transmission provides
two processing modes: move mode, which
moves data into or out of an allocated
generation of a variable either directly or
indirectly via a buffer; or, locate mode,

Chapter 8: Storage Control 93

which only moves the data into or out of a
buffer and identifies the storage allocated
within the buffer. Although based
variables can be transmitted using either
mode, they are designed to be used with
locate mode. Based variables are used in
locate mode to describe the contents of a
buffer, and therefore allow data to be
processed while it is in the buffer. Note
that locate mode applies only to BUFFERED
files: also, the files must be SEQUENTIAL,
except for INPUT and UPDATE files
associated with key-sequenced VSAM d~ta
sets. Chapter 12, "Record-Oriented
Transmission," discusses the two modes more
fully.

READ with SET Statement

In locate mode, the READ statement has the
form:

READ FILE(file-expression)
SET(element-pointer-variable):

This statement places a record in a buffer
and identifies its location by setting the
specified pointer variable. Any based
variable qualified by this pOinter variable
describes the contents of the buffer. For
example:

DCL X CHAR(20) BASED(P),
Y(20) CHAR (1) BASEDCP);

READ FILE(IN) SET(P):

In this program segment, a record is read
into a buffer and the pOinter variable P
identifies its location. The record in the
buffer is treated simultaneously by the
based variable X as a fixed-length
character string and by the based variable
Y as an array of single characters. Note
that P is declared contextually as a
pointer variable and that a reference to X
or Y is implicitly qualified by P.

The next I/O operation on the file
(including closing the file) frees the
buffer.

LOCATE statement

The LOCATE statement complements the READ
with SET statement and is used for output
from a buffer. The form is:

LOCATE based-variable

94 OS PL/I CKT AND OPT LRM PART I

FILE (file-expression)
[SET (element-pointer-variable)]:

This statement allocates storage in a
buffer for a specified based variable. The
SET option need only be specified if the
based variable has not been associated with
a pointer variable in a declaration.

The LOCATE statement operates
differently from all other transmission
statements. Because the statement sets a
pOinter to a storage address, there is
nothing to transmit until values have been
assigned to that storage. The LOCATE
statement transmits the previous record
(i.e., the contents of storage obtained by
a previous LOCATE statement), frees the
storage for that record, and allocates
storage for the next record. The current
record is also transmitted if a WRITE or
CLOSE statement is executed for the same
fi1e. The following example shows the use
of the LOCATE statement:

DCL 1 STR BASED(P),
2 NAME CHAR(20),
2 RATE FIXED(5,2):

OUTPUT:LOCATE STR FILE(OUT):

/*ASSIGN VALUES TO STR*/

GO TO OUTPUT:

Note: Because of the method of operation of
the LOCATE statement, some care is
necessary when using it with device
associated files, where a number of files
are grouped together; no transmission can
take place after anyone of the group has
been closed. (See "Device-associated
Fi1es," in chapter 12.)

By using locate mode the programmer can
specify that a number of different forms of
record be held in the same file. For
example:

DCL 1 STR1 BASED(Q),
2 CODE CHAR (1) ,
2 X CHAR(30).

1 STR2 BASED(Q),
2 CODE CHAR(l),
2 XeS) FIXED BIN:

READ FILE(IN) SET(Q):
IF STR1.CODE= '2' THEN DO:

I=Q->STR2.X(1):
END;

In this program segment each based
structure has an element CODE that
identifies the structure. A record is read
and its location is set in Q. Depending on

the value of CODE, the record can be
interpreted as STR1 or STR2.

If an element varying-length string is
transmitted using locate mode, the
SCALARVARYING option of the ENVIRONMENT
attribute must be specified for the file
(see chapter 12, -Record-Oriented
Transmission-). The records will include a
two-byte length prefix.

SELF-DEFINING DATA (REFER OPTION)

A self-defining record is one which
contains information about its own fields,
such as the length of a string. A based
structure can be declared so that such data
can be manipulated. string lengths, array
bounds, and area sizes can all be defined
by variables declared within the structure.
When the structure is allocated (by either
an ALLOCATE statement or a LOCATE
statement), the value of an expression is
assigned to a variable that defines a
leagth, bound, or size. For any other
reference to the structure, the value of
the defining variable is used.

The REFER option is used in the
declaration of a based structure to specify
that, on allocation of the structure, the
value of an expression is to be assigned to
a variable in the structure and is to
represent the length, bound, or size of
another variable in the structure. The
REFER option has the following general
format:

element-expression REFER
(element-variable)

The value of the element-expression must be
capable of being converted to an integer.
Any variables used as operands in the
expression must not belong to the structure
c~ntaining the REFER option.

The element-variable, known as the
ggjept of the REFER option, must be the
name of a member of the structure being
aeclared. It must not be locator-qualified
or subscripted and it must precede the
member it defines. For example:

DECLARE 1 STR BASED(P),
2 X FIXED BINARY,
2 Y (L REFER (X»,

L FIXED BINARY INITIAL(1000)~

~his 4eclaration specifies that the based
structure STR will consist of an array Y
aDd an element X. When STR is allocated,
the upper bound is set to the current value
of L which is assigned to X. For any other
reference to Y, such as a READ statement

that sets P, the bound value is taken from
x.

Any number of REFER options may be used
in the declaration of a structure provided
that at least one of the following
restrictions is satisfied:

1. All objects of REFER options are
declared at logical level two, that
is, not declared within a minor
structure. For example:

DECLARE 1 STR BASED,
2 (M,N),
2 ARR(I REFER (M),

J REFER(N»,
2 X:

When this structure is allocated, the
values assigned to I and J will set
the bounds of the two-dimensional
array ARR.

2. The structure is declared so that nO
padding between members Qf the
structure can occur. Section K, -Data
Mapping,- describes the rules by which
structures are mapped. For example:

DECLARE 1 STR UNALIGNED BASED (P),
2 B FIXED BINARY,
2 C,

3 D FLOAT DECIMAL,
3 E (I REFER (D»

CHAR(J REFER (B»,
2 G FIXED DECIMAL;

Because this structure has the
UNALIGNED attribute, all items require
only byte alignment. Therefore
regardless of the values of Band D
(the REFER objects) no padding will
occur. Note that D is declared within
a minor structure.

3. If the REFER option is used only once
in a structure declaration,
restrictions 1 and 2 can be ignored
provided that:

a. For a string length or area Size,
the option is applied to the last
element of the structure.

b. For an array bound, the option is
applied either to the last element
of the structure or to a minOr
structure that contains the last
element. The array bemd must be
the upper bound of the leading
dimension. For example:

Chapter 8: storage Control 95

DCL 1 STR BASED (P),
2 X FIXED BINARY,
2 Y,

3 Z FLOAT DECIMAL,
3 M FIXED DECIMAL,

2 D (L REFER (M»,
3 E (50),
3 F (20);

Note that the leading dimension of
an array can be inherited from a
higher level. For example, if we
had declared STR(4) in the above
example, the leading dimension
would have been inherited from
STR(4) and so it would not have
been possible to use the REFER
option in D.

This declaration does not satisfy
restrictions 1 or 2; the REFER
object M is declared within a
minor structure and padding will
occur. However, restriction 3 is
satisfied as the REFER option is
applied to a minor structure that
contains the last element.

If the value of the object of a REFER
option varies during the program then:

1. The structure must not be freed until
the object is restored to the value it
had when allocated.

2. The structure must not be written out
while the object has a value greater
than the value with which it was
allocated.

3. The structure may be written out when
the object has a value equal to or
less than the value it has when
allocated. The number of elements,
the string length, or area size
actually written will be that
indicated by the current value of the
object. For example:

DCL 1 REC BASED (P),
2 N,
2 A (M REFER(N»,

M INITIAL (100);

ALLOCATE REC;
N = 86;
WRITE FILE (X) FROM (REC);

In this example, 86 elements of REC
are written. It would be an error to
attempt to free REC at this point
since N must be restored to the value
it has when allocated (i.e., 100). If
N was assigned a value greater than
100, an error would occur when the
WRITE statement was encountered.

96 as PL/I CRT AND OPr LRM PART I

When the value of a refer object has
been changed, the next reference to the
structure causes remapping. For example:

DCL 1 A BASED(P),
2 B,
2 C (I REFER(B»,
2 D,

I INIT(10);
ALLOCATE A;

B = 5;

The next reference to A after the
aSSignment to B will cause the structure to
be remapped to reduce the upper bound of C
from 10 to 5, and to allocate to D storage
immediately following the new last element
of C. Although the structure is remapped,
no data is reaSSigned - the contents of the
part of storage originally occupied by the
structure A are unchanged. If the
programmer does not take account of
remapping, errors can occur. Consider the
following example, in which there are two
REFER options in the one structure:

DCL 1 A BASED (P),
2 B FIXED BINARY (15,0),
2 C CHAR (11 REFER (B»,
2 D FIXED BINARY (15,0),
2 E CHAR (12 REFER (D»,

(11,12) INIT (10);
ALLOCATE A;

B = 5;

The mapping of A with the original and new
values of B is as follows:

B C D E B=10

B C 0 E B=5

D now refers to data that was originally
part of that assigned to the character
string variable C. This data will be
interpreted according to the attributes of
D - that is, as a fixed-point decimal
number - and the value obtained will be
taken to be the length of E. Hence, the
length of E is unpredictable.

LIST PROCESSING

List processing is the name for a number of
techniques to help manipulate collections
of data. Although arrays and structures in
PL/I are also used for manipulating

collections of data, list processing
techniques are more flexible in that they
allow collections of data to be
indefinitely reordered and extended during
program execution. It is not the purpose
here to illustrate these techniques but
simply to show how based variables and
locator variables serve as a basis for this
type of processing.

A list that has at least one pointer
within each member that identifies the
location of another member in the list is
called a chained or threaded list. The
primary application of the ALLOCATE and
FREE statements is to build these lists.

ALLOCATE STATEMENT FOR BASED VARIABLES

The form of the ALLOCATE statement is:

ALLOCATE based-variable
[IN(area-variable)]
[SET(locator-variable)]
[,based-variable
[IN(area-variable)]
[SET(locator-variable)]] ••• ;

The based variable can be any data type or
organization. The SET option is needed if
the based variable was declared without an
associated pointer variable or if it is
required to leave the pointer that w~
declared with the based variable unchanged,
and to set a different pointer to the
generation of the based variable that is
being allocated.

Both based and controlled variables can
be allocated in the same statement.

FREE STATEMENT FOR BASED VARIABLES

The form of the FREE statement is:

FREE [locator-qualifier->]
based-variable [IN (area.-variablel 1
[,[locator-qualifier->l
based-variable [IN(area-variable)]] ••• ;

A particular generation of a based variable
is freed ~ specifying a pOinter qualifier
in the statement. If a qualifier is
omitted, the pointer variable associated
with the based variable in its declaration
is used; it is an error in this case if a
pointer variable has not been associated
with the based variable.

A FREE statement cannot be used to free
a locate-mode I/O buffer.

Both based and controlled variables can
be freed in the same statement.

MULTIPLE GENERATIONS OF BASED VARIABLES

All current generations of a based variable
can be referred to by speqifying
appropriate pointer variables. In list
processing, a number of based variables
with many generations can be included in a
list. Members of the list are chained
together by a pOinter in one member
identifying the location of another member.
Note that the allocation of a based
variable cannot specify where in main
storage the variable is to be allocated.
In practice a chain of items may be
scattered throughout main storage. But by
accessing each pointer the next member is
found. A member of a list is usually a
structure that includes a pOinter variable.
For example:

DCL 1 STR BASED(H),
2 P POINTER,
2 DATA,

T POINTER;

ALLOCATE STR;
T=H;

NEXT:ALLOCATE STR SET(T->P);
T=T->P;

GO TO NEXT;

In this program segment, a list of
structures is created. The structures are
generations of STR and are linked by the
pOinter variable P in each generation. The
independent poin~er variable T identifies
the previous generation during the creation
of the list. The first ALLOCATE statement
sets the pointer H to identify it.
Ultimately the pointer H identifies the
start, or head, of the list. The second
ALLOCATE statement sets the pointer P in
the previous generation to identify the
location of this new generation. The
aSSignment statement T=T->P; updates
pOinter T to identify the location of the
new generation.

Figure 8.1 shows ·a diagrammatic
representation of a one-directional chain.

Note that, unless the value of P in each
generation is aSSigned to a separate
pOinter variable for each generation, the

Chapter 8: storage Control 97

ITEM 1 r-------->ITEM 2 r--------> ITEM 3 r----
r-------------~----, I r------------------, 1 r------------------, 1
1 1----.1 1 1----.1 I 1----.1
I Forwards Pointer 1 1 Forwards Pointer 1 I Forwards Pointer I
1------------------1 1------------------1 1------------------1
1 I 1 1 I I
1 Data 1 1 1 Data 2 I I Data 3 1
I 1 1 I 1 1 L------------------.1 L------------------J L------------------J
Figure 8.1. Example of one-directional chain

generations of STR can be accessed only in
the order in which the list was created.
For the above example, the following
statements can be used to access each
generation in turn:

T=H;
NXT: T->DATA=X;

T=T->P;
GO TO NXT;

NULL BUILT-IN FUNCTION

When a list is created in the way
described, it is necessary to indicate the
end of the list. The NULL built-in
function returns a pointer value that
cannot identify a location in storage.
Thus by setting the pOinter in the last
generation in a list to the value of NULL a
positive indication of the end of the list
is given. For example:

T=H;
NXT: IF T-.=NULL THEN

DO;
T->DATA=X;

T=T->P;
GO TO NXT;
END;

This program segment can be used ins.tead of
the previous example to scan the list; it

. is assumed that the pointer P in the final
generation of STR has -been set to the value
of NULL.

In general, the value of a NULL built-in
function is used whenever a pointer (or
offset) variable should not identify a
location in storage. Note that the only
way a pointer can acquire the null value is
by assignment of the NULL built-in function
(apart from one special case, namely the
assignment of the value returned by the
ADDR built-in function when passed an

98 OS PL/I CRT AND opr LRM PART I

unallocated controlled variable). The
Value of a pOinter variable that no longer
identifies a generation of a based
variable, for example, when a based
variable has been freed, is undefined.

TYPES OF LIST

The foregoing examples showed a Simple list
processing technique, the creation of a
unidirectional list. More complex lists
can be formed by adding other painter
variables into the structure. If a second
pOinter were added, it could be made to
pOint to the previous generation. The list
would then be bidirectional; from any item
in the list, the previous and next items
could be accessed by using the appropriate
pointer value. Instead of the last pOinter
value being set to the value of NOLL, it
can be set to point to the first item in
the list, thus creating a ring or circular
list.

A list need not consist only of
generations of a single based variable.
Generations of different based structures
can be included in a list by setting the
appropriate painter values. Items can be
added and deleted from a list by
manipulating the values of painters. A
list can be restructured by manipulating
the pOinters, so that the processing of
data in the list may be simplified.

By reducing the amount of movement of
data within main storage, the programmer
can generally achieve· a considerable saving
on processing tim~. Note, however, that
each painter requires four bytes of storage
and any allocated based variable requires
at least eight bytes of storage, even if it
is a bit string of length one.

AREAS

When a based variable is allocated, the.
storage is obtained from wherever it is
available. Consequently, a list of

allocated based variables could be
scattered widely throughout main storage.
For internal operations on the list, this
is not significant, because items are
readily accessed using the pointers.
However, if th~ list is to be transmitted
to a data set, the items would have to be
collected together. Items allocated within
an area variable are already collected and
can be transmitted or assigned as a unit
while still retaining their separate
identities.

It is desirable to identify the
locations of based variables within an area
variable relative to the start of the area
variable. Offset variables are defined for
this,purpose. If pOinter variables were
used they would be unlikely to be valid
when the area variable were transmitted
back to main'storage.

Area variables

The AREA attribute defines an area of
stgrage that is to be reserved for the
allocation of based variables. The
declaration of an area variable has the
form:

DCL identifier AREA [(size)];

The amount of storage to be reserved is
given in bytes; i.e. the integral value of
·size". If size is not given, a default of
1000 bytes is assumed.

The size of an area is adjustable in th~
same way as a string length or an array
bound and therefore it can be specified by
an expression or an asterisk (for a
controlled area or parameter) or by a REFER
option (for a based area). The maximum
size of an area is limited only by the
amount of main storage available to the
program.

In addition to the declared size, an
extra 16 bytes of control information,
which contains such details as the amount
of storage in use, precedes the reserved
size of an area.

The amount of reserved storage that is
actually in use is known as the extent of
the area. The maximum extent is
represented by the area size. Based
variables can be allocated and freed within
an area at any time during execution. This
means that the extent of an area varies as
storage is used. Because any based
variable can be allocated within an area,
they could require different amounts of
storage. When a based variable is freed,
the storage it occupied is marked as

available for other allocations. In fact
the implementation maintains a chain of
available storage wi~in an area; the head
of the chain is held within the 16 bytes of
control information. Inevitably, as based
variables with different storage
requirements are allocated and freed, gaps
will occur in the area when allocations do
not fit available spaces. Thus the extent
of an area may contain allocations that
have been freed but are still significant.
A Significant allocation is one that has
not been freed or that has been freed but
has at least one unfreed allocation
following it. When an area has no
significant allocations, the extent is
zero.

Note that based variables are always
allocated in multiples of eight bytes.

No operators, not even comparison, can
be applied to area variables.

Offset Variables

Offset variables are a special form of
pOinter used exclusively with area
variables. The value of an offset variable
indicates the location of a based variable
within an area variable relative to the
start of the area. Because the based
variables are identified relatively, if the
area variable is assigned to a different
part of main storage, the offset values are
not invalidated. Note that offset,
variables do not preclude the use of
pOinter variables within an area. An
offset variable is declared as follows:

DCL identifier
OFFSET[(element-area-variable)]:

The association of an area variable with
an offset variable is not a special
relationship; an offset variable can be
associated with any area variable by means
of the POINTER built-in function (see
"Locator Conversion" below). The advantage
of making such an association in
declaration is that a reference to the
offset variable implies reference to the
associated area variable.

Note that the appearance of an area
variable in the declaration of an offset is
a contextual declaration of the area
variable.

Locator Conversion

When an offset variable is used in a

Chapter 8: Storage Control 99

reference, it is implicitly converted to a
pQinter value; the address value of an
associated area variable is added to the
offset value. Explicit conversion of an
offset to a pOinter value is accomplished
using the POINTER built-in function. For
example:

DCL P POINTER, 0 OFFSET(A),B AREA;

P = POINTER(O,B);

This statement assigns a pointer value to
P, giving the location of a based variable,
identified by offset 0 in area B. Because
the area variable is different from that
associated with the offset variable, the
programmer must ensure that the offset
value is valid for the different area. It
would be valid, for example, if area A had
been assigned to area B prior to the
invocation of the function.

The OFFSET built-in function complements
the POINTER built-in function and returns
an offset value derived from a given
pOinter and area. The given pOinter value
must identify the location of a based
variable in the given area.

In practice, these functions need rarely
be used as most conversions are carried out
implicitly.

Offset Expressions

Because an offset is implicitly converted
to a pointer value, offset expressions can
be used interchangeably with pOinter
expressions. An offset expression can be
used as a locator qualifier, in association
with a declaration of a based variable, in
a comparison operation, or as an argument
in a procedure reference. Note, however,
that an offset variable cannot be specified
in the SET option of a READ or LOCATE
statement.

ALLOCATE Statement with the IN Option

An offset value is originally obtained
either by conversion of a pointer value or
by the SET option of the ALLOCATE
statement. This form of the ALLOCATE
statement is as follows:

ALLOCATE based-variable
[IN(element-area-variable)]
[SET(locator-variable)];

100 OS PL/I CRT AND OPr LRM PART I

This statement allocates storage for a
based variable within the specified area.

The variable has an offset relative to
the start of the area, and this offset
value is assigned to the locator variable
specified in the SET option. Conversion
takes place if the locator variable is of
pointer type. Either or both of the
options IN and SET can be implied. For
example:

DeL x BASED(O),
Y BASED(P),
A AREA,
o OFFSET (A) ;

ALLOCATE X;
ALLOCATE Y INCA);

The storage class of area A and offset 0 is
AUTOMATIC by default. The first ALLOCATE
statement is equivalent to:

ALLOCATE X IN(A) SET(O);

The second ALLOCATE statement is eqUivalent
to:

ALLOCATE Y IN(A) SET(P);

The programmer must ensure that all
implications can be resolved. If, for
example, the offset 0 had not been
associated with the based variable X, the
SET option would be required.

When the IN and SET options are
specified rather than implied, it is
permissible to use an offset variable that
has been declared with no associated area.
The area in the SET option may also be
different from the one in the DECLARE
statement, provided it is contained within
that area. For example:

DCL 01 OFFSET(Al),
02 OFFSET,
A2 AREA BASED(P);

ALLOCATE A2 IN(Al) SET(P);

ALLOCATE X IN(A2) SET{Ol);
ALLOCATE Y IN(A2) SET(02);

The offset variables 01 and 02 have the
values of the offsets of the variables X
and Y, in, respectively, the areas A1 and
A2.

The following example shows how a list
can be built in an area variable using
offset variables. This example is a
rewrite of the example given in "Multiple
Generations of Based Variables" earlier in

this chapter.

DCL A AREA,
(T,H) OFFSET(A),
1 STR BASED(H),

2 P OFFSET (A) ,
2 DATA:

ALLOCATE STR IN(A);
T=H:

NEXT:ALLOCATE STR SET(T->P);
T=T->P:

GO TO NEXT;

FREE statement with the IN Option

A based variable allocated within an area
variable can be freed by specifying the
area variable by the IN option:

FREE based-variable
[IN(element-area-variable»);

Multiple freeing of both based and
controlled variables can be made by the
same FREE statement. When all the current
allocations of variables within an area
variable are to be freed, the EMPTY built
in function is the most convenient method.

EMPTY Built-In Function

When an area variable is allocated, it
automatically has the empty state, i.e.,
the area extent is zero. The value of the
EMPTY built-in function can be assigned to
an area variable to free all allocations in
the variable. The function reference does
not require arguments but must be given a
null argument list if the name has not been
declared BUILTIN. For example:

DECLARE A AREA,
I BASED (P),
J BASED (Q);

ALLOCATE I IN(A), J IN (A);

A = EMPTY();
/*EQUIVALENT TO:

FREE I IN (A), J IN (A); */

Note that the area variable itself is not
freed, its storage is retained for further
allocations of based variabies.

AREA ASSIGNMENT

The ,value of an area expression can be
assigned to one or more area variables by
an assignment statement. Area-to-area
assignment has the effect of freeing all
allocations in the target area and then
assigning the extent of the source area to
the target area, in such a way that all
otfsets for the source area are valid for
the target area. For example:

DECLARE X BASED (0(1»,
0(2) OFFSET (A),
(A,B) AREA;

ALLOCATE X IN (A) ;
X = 1:
ALLOCATE X IN CA)
0(2) -> X = 2;
B = A;

SET (O(2}) ;

Given this program segment and using the
POINTER built-in function, the references
POINTER (O(2),B)->X and 0(2)->X will
represent the same value allocated in areas
B and A respectively.

If a source area containing no
allocations is assigned to a target area,
the effect is merely to free all
allocations in the target area.

A possible use for area aSSignment is to
allow for expansion of a list of based
variables beyond the bounds of its original
area. When an attempt is made to allocate
a based variable within an area that
contains insufficient free storage to
accommodate it, the AREA condition is
raised (see below). The on-unit for this
condition could be to change the value of a
pOinter qualifying the reference to the
inadequate area, so that it pOinted to a
different area; on return from the on-unit,
the allocation would be attempted again,
within the new area. Alternatively, the
on-unit could write out the area and reset
it to EMPTY.

AREA ON-Condition

The AREA condition is raised in any of the
following circumstances:

1. When an attempt is made to allocate a
based variable within an area that
contains insufficient free storage for
the allocation to be made.

2. When an attempt is made to perform an
area assignment, and the target area
is too small to accommodate the extent

Chapter 8: Storage Control 101

of the source area.

3. When a SIGNAL AREA statement is
executed.

The ONCODE built-in function can be used
to determine whether the condition was
raised by an allocation, an assignment, or
a SIGNAL statement. On normal return from
the on-unit, the action is as follows:

1. If the condition was raised by an
allocation, the allocation is r~
attempted. If the on-unit has changed
the value of a pOinter qualifying the
reference to the inadequate area so
that it points to another area, the
allocation is re-attempted with~n the
new area. Note that if the on-unit
does not effectively correct the
fault, a loop may result.

2. If the condition was raised by an area
assignment, or by a SIGNAL statement,
execution continues at the point of
interrupt.

If no on-unit is specified, the system will
comment and raise the ERROR condition.

INPUT/OUTPUT OF AREAS

The area facility is designed to allow easy
input and output of complete lists of based
variables as one unit, to and from RECORD
files. On output, only the area extent,
together with the 16 bytes of control
information, is transmitted (although the
extent does include freed allocations which
are still significant). Thus the unused
part of an area does not take up space on
the data set. Because the extents of areas
may vary, V-format or U-format records
should be used. The maximum record length
required is governed by the area length
(i.e., area size + 16).

MULTIPLE LOCATOR QUALIFICATION

Locator qualification is the association of
one or more locator values with a based
variable to identify a particular
generation of the based variable.
Reference to a based variable can be
explicitly qualified as follows:

element-Iocator-expression->
[based-Iocator-variable-> ••• 1
based-variable

A number of general rules can be stated
concerning the use of locator

102 OS PL/I CRT AND OPT LRM PART I

qualification:

1. Locator qualification is used to
indicate the generation of a based
variable to which the associated
reference applies.

2. If an offset exp!ession or an offset
variable is used as a locator
qualifier, its value is implicitly
converted to a pOinter value on each
reference to the based variable.

3. When more than one locator qualifier
is used in a reference, only the
first, or leftmost, can be a function
reference; all other locator
qualifiers must themselves be based
variables. Note, however, that an
entry variable can be based and can
represent a function that returns a
locator value.

4. When more than one locator qualifier
is used, they are evaluated from left
to right.

Reference to a based variable can also
be implicitly qualified. The locator value
used to determine the generation of a based
variable that is implicitly qualified is
the one declared with the based variable.
Because the locator declared with a based
variable can also be based, a chain of
locator qualifiers can be implied. For
example:

DECLARE (P(lO),Q) POINTER,
R POINTER BASED (Q),
V BASED (P(3»,
W BASED (R),

Y BASED;
ALLOCATE R,V,W;

Given this declaration and allocation, the
following are valid references:

1. P(3) -> V

2. V

3. Q -> R -> W

4. R -> W

5. W

References 1 and 2 are equivalent as are
references 3, 4 and 5. Note that any
reference to Y must include a qualifying
locator variable.

Levels of Locator Qualification

A pOinter that qualifies a based variable

represents one level of locator
qualification: an offset represents two
levels because it is implicitly qualified
within an area. The number of levels is
not affected by a locator being subscripted
and/or an element of a structure. Under
the optimizing compiler, the maximum number
of levels of locator qualification allowed
in a reference depends on the available
storage, but it will never be less than

ten: there is no limit under the checkout
compiler. For example:

DECLARE X BASED (P),
P POINTER BASED (Q),
Q OFFSET (A):

Given this declaration the references: X,
P -> X, and Q -> P -> X all represent three
levels of locator qualification.

Chapter 8: storage COntrol 103

Chapter 9: Subroutines and Functions

The block structure of PL/I permits the use
of subroutines and programmer-defined
functions. Subroutines and functions are
groups of statements that can:

1. be invoked from different points in a
program to perform the same
frequently-used process.

2. process data passed from different
points of invocation.

3. return control, and in the case of
functions, return a value derived from
the execution of the function, to a
point immediately following the point
of invocation.

Subroutines and functions may be either
internal or external to the invoking block.
Built-in functions are always external
procedures which are permanently maintained
in a PL/I system environment, and are an
integral part of the PL/I language.

The rules given in this chapter for the
use of subroutines and functions depend on
whether the subroutine or function is an
external or internal procedure: this is
because the compiler can determine the
relationship between two procedures from
the procedures themselves when the invoked
procedure is internal to the invoking
procedure. When the invoked procedure is
external the relationship must be given
explicitly in the invoking procedure.
Consequently it is necessary to supply more
information about an external subroutine or
procedure in the invoking procedure to
enable the compiler to produce the required
object program.

A subroutine is a procedure invoked by a
CALL statement or CALL option of an INITIAL
attribute.

A function, either programmer-defined or
built-in, is invoked by the presence of a
'function reference' in an expression. A
function reference is an entry expression
which represents an entry name of a
fanction. (An entry name is an identifier
which represents a particular entry point
of a procedure.)

The definitive difference between a
subroutine and a function in PL/I is that a
Subroutine does not return data values to
the point of invocation, whereas a function
procedure returns a value to replace the
function reference in the evaluation of the
expression in which the function reference

appears.

Both subroutines and functions can make
use of data known in the invoking block.
There are two methods by which data can be
made available:

1. Data represented by names which are
known in both the invoking block and
the invoked procedure. For
information about the rules for
deciding where a name is known see
chapter 1, -Recognition of Names·.

2. Arguments and Parameters: values from
the invoking block can be passed to
the invoked procedure by writing
arguments in an argument list
associated with a CALL statement or
option, or function reference; these
values are made available by
parameters in the invoked procedure.

Parameters are identifiers which
appear in the parameter list of an
invoked entry point. The number of
arguments and parameters must be the
same; the maximum number permitted for
a particular entry pOint is 64.

A parameter has no storage associated
with it: it is simply a means of
allowing the invoked procedure to
access storage allocated in the
invoking procedure. A reference to a
parameter in a procedure is
effectively a reference to the
corresponding argument. Any change to
the value of the parameter is made to
the value of the argument. However in
certain circumstances a dummy argument
is created and the value of the
original argument is not changed.
These are:

a. When the attributes of an argument
differ from those of the
corresponding parameter. The
value of the original argument is
converted and assigned to a dummy.

b. When only a value is passed as an
argument. For example, when an
argument is a constant.

c. When the argument is an iS08-
defined array.

In these cases, a reference to the
parameter is effectively a reference
to the dummy. The dummy and the
parameter initially have the same

Chapter "9: Subroutines and Functions 105

value as the original argument, but
subsequent changes to the parameter do
not affect the original argument's
value. storage for dummy arguments is
within that belonging to the invoking
procedure.

Both internal and external subroutines
and functions are normally link-edited, and
loaded into main storage at the same time
as the calling procedure. An external
subroutine or function may, however, be
compiled, link-edited, and loaded
separately from the calling procedure. By
the use of FETCH and RELEASE statements in
the calling procedure, the subroutine or
function is allowed to remain on auxiliary
storage until required in the calling
procedure, at which time it is fetched into
main storage; and it may be deleted from
main storage when it is no longer required.
This dynamic loading of external procedures
is described in chapter 6, "Program
Organization".

Entry points of Subroutines and
Functions

A subroutine or function procedure may have
one or more entry points.

PROCEDURE Statement: The primary entry
pOint to a procedure is established by the
PROCEDURE statement.

ENTRY Statement: Secondary entry points to
a procedure are established by the ENTRY
statement.

Each PROCEDURE and subsidiary ENTRY
statement can specify its own parameters
and, in the case of function procedures,
returned value attributes. However, the
environment established on entry to a block
at a PROCEDURE statement is identical to
the environment established when the same
block is invoked at a secondary entry
point. Each entry point has an associated
entry name. The length of the name for an
external entry-point to a PL/I procedure is
limited to seven characters.

Entry names are explicitly declared in
the invoking block as entry constants for
internal procedures by their presence as
prefixes to PROCEDURE or ENTRY statements;
it is an error to declare an internal entry
name in a DECLARE statement. External
entry names must be declared explicitly as
entry constants with the ENTRY attribute.
Entry variables are identifiers with the
attributes ENTRY and VARIABLE which
represent entry constants assigned to them.
A reference to an entry variable is a
reference to its latest aSSigned entry

106 OS PL/I CKT AND OPT LRM PART I

constant value.

ENTRY Attribute

The general form of the ENTRY attribute is:

identifier ENTRY
[(parameter descriptor list)]
[VARIABLE]
[RETURNS (attribute list)]
[OPTIONS (options list)]

The parameter descriptor list is used to
specify the attributes of the parameters
associated with the entry pOint represented
by the identifier. The parameter
descriptor must provide accurate
information about the attributes of the
parameters so that the compiler can create
the correct dummy arguments. If the
parameter descriptor list is omitted from
an external entry declaration, the compiler
must assume that the attributes of any
arguments match those of the corresponding
parameters. No conversions are performed.
Further information is given under the
heading "Parameter Descriptor List" in this
chapter.

The RETURNS attribute may be given to
specify the attributes of the value
returned by the function procedure.

The OPTIONS attribute is required if the
entry pOint is in an external function or
subroutine that has been compiled by a
COBOL or FORTRAN compiler. Further
information is given in chapter 19,
ftInterlanguage communications".

Exit-POints of Subroutines and
Functions

The RETURN statement is used to return
control to the point immediately following
the point of invocation; the GOTO statement
is used to transfer control to some other
pOint; and the END statement can also be
used to return control from a subroutine
procedure in the same way as a RETURN
statement. For a function procedure, the
RETURN statement must specify an element
expression whose value is given to the
function reference in the expression in
which it appears.

RETURNS Attribute and RETURNS Option

The RETURNS attribute specifies for the

invoking block the attributes of the value
to be received from the function procedure.
The RETURNS option specifies for the
function procedure the attributes that a
value to be returned should have. If the
value does not have these attributes, the
appropriate conversion is performed before
the function relinquishes control and
returns the value.

If th~ RETURNS option is not specified,
the attributes of the returned value are
assumed by default according to the initial
letters of the entry-point name. The
standard default assumptions are: REAL
FIXED BINARY (15,0) for initial letters in
the range (I:N) and REAL FLOAT DECIMAL (6)
for the ranges (A:B) and (O:Z) and the
characters $, I, i.

The RETURNS attribute must not be
specified for an internal entry name
because the compiler can determine the
attributes of the returned value from the
function procedure itself. If it is not
specified for an external entry name or an
entry variable, the compiler assumes
default attributes (determined from the
name of the entry pOint) for the value
returned from the function. Consequently
the RETURNS attribute and the RETURNS
option must both be given in the situation
when an external function procedure must
return a value with attributes which cannot
be determined correctly by default. The
attributes in both the RETURNS attribute
and the RETURNS option should agree, since
the value returned by the function will
have the attributes specified in the
option, whereas the invoking procedure
always assumes that the value will have the
attributes specified in the RETURNS
attribute.

Subroutines

The PL/I statements associated with the use
of subroutine procedures are discussed
below.

A subroutine is a procedure that usually
requires arguments to be passed to it in an
invoking CALL statement. It can be either
an external or an internal procedure. A
reference to such a procedure is known as a
subroutine reference. The general format
of a subroutine reference in a CALL
statement or CALL option of an INITIAL
attribute is as follows:

CALL entry-expression
[(argument[,argumentl ••• »);

Whenever a subroutine is invoked, the
arguments of the invoking statement are

associated with the parameters of the entry
pOint, and control is then passed to that
entry pOint. The subroutine is thus
activated, and execution of the subroutine
procedure can begin.

Upon termination of a subroutine,
control is usually returned to the invoking
block. A subroutine can be terminated by
any of the following statements.

END Statement: Control reaches the final
END statement of the subroutine. Execution
of this statement causes control to be
returned to the CALL statement from which
the SUbroutine was invoked (unless control
passes to another task).

RETURN Statement: Control reaches a RETURN
statement in the subroutine. This causes
the same normal return caused by the END
statement.

GO TO Statement: Control reaches a GO TO
statement that transfers control out of the
subroutine. (This is not permitted if the
subroutin~ is invoked by the CALL option of
the INITIAL attribute.) The GO TO
statement may specify a label in a
containing block (the label must be known
within the subroutine), or it may specify a
parameter that has been associated with a
label argument passed to the subroutine.
Although this is a valid termination of the
subroutine, it is not normal return of
control, as effected by an END or RETURN
statement.

EXIT Statement: The EXIT statement
encountered in a subroutine abnormally
terminates execution of that subroutine and
of the task associated with the procedure
that invoked it.

STOP Statement: The STOP statement
encountered in a subroutine abnormally
terminates execution of that subroutine and
of the entire program associated with the
procedure that invoked it.

Use of Subroutines: The following examples
illustrate how a subroutine interacts with
the procedure that invokes it.

Chapter 9: Subroutines and Functions 107

PRMAIN: PROCEDURE;
DECLARE NAME CHARACTER (20),

ITEM BIT(S), OUTSUB ENTRY;

CALL OUT SUB (NAME, ITEM);

END PRMAIN;
OUTSUB: PROCEDURE (A,B);

DECLARE A CHARACTER (20),
B BITeS);

PUT LIST (A,B);

END OUTSUB;

In procedure PRMAIN, NAME is declared as a
character string, and ITEM as a bit string.
The CALL statement in PRMAIN invokes the
procedure called OUTSUB, and the
parenthesized list included in this
procedure reference contains the two
arguments being passed to OUTSUB. 'The
PROCEDURE statement defining OUTSUB
declares two parameters, A and B. When
OUTSUB is invoked, NAME is associated with
A and ITEM is associated with B. Each
reference to A in OUTSUB is treated as a
reference to NAME and each reference to B
is treated as a reference to ITEM.
Therefore, the PUT LIST (A,B) statement
causes the values of NAME and ITEM to be
written into the standard system output
file, SYSPRINT. Note that in the
declaration of OUTSUB within PRMAIN, no
parameter descriptor need be associated
with the ENTRY attribute, since the
attributes of NAME and ITEM match those of,
respectively, A and B.

A name is explicitly declared to be a
parameter by its appearance in the
parameter list of a PROCEDURE or ENTRY
statement. However, its attributes, unless
defaults apply, must be explicitly stated
within that procedure in a DECLARE
statement.

It can be seen that the use of arguments
and parameters provides the means for
generalizing procedures so that data whose
names may not be known within such
procedures can, nevertheless, be operated
upon.

108 OS PL/I CKT AND OPT LRM PART I

A: PROCEDURE;
DECLARE RATE FLOAT (10), TIME FLOAT(S),

DISTANCE FLOAT(lS), MASTER FILE;

CALL READCM (RATE, TIME, DISTANCE,
MASTER) ;

READCM: PROCEDURE (W,X,Y,Z);
DECLARE W FLOAT (10), X FLOAT(S),

Y FLOAT(lS), Z FILE;

GET FILE (Z) LIST (W,X,Y);
Y = W*X;
IF Y > 0 THEN RETURN;

ELSE PUT LIST('ERROR READCM');
END READCM;
END A;

The arguments RATE, TIME, DISTANCE, and
MASTER are passed to the parameters W, X,
Y, and Z. Consequently, in the subroutine,
a reference to W is the same as a reference
to RATE, X the same as TIME, Y the same as
DISTANCE, and Z the same as MASTER.

Functions

Unlike a subroutine, which is invoked by a
CALL statement or a CALL option, a function
is invoked by the appearance of the
function name (and associated arguments) in.
an expression. Such an appearance is
called a function reference. Like a
subroutine, a function can operate upon the
arguments passed to it and upon other known
data. But unlike a subroutine, a function
is written to compute a single va1ue which
is returned, with control, to the point of
invocation. This single value can be of
any data type except entry. An example of
a function reference is contained in the
following procedure:

MAINP: PROCEDURE;

GET LIST (A, B, C, Y);

x = Y**3+SPROD(A,B,C);

In the above procedure, the assignment
statement

x = Y*.3+SPROD(A,B,C);

contains a reference to a function called

SPROD. The parenthesized list following
t~e function name contains the arguments
that are being passed to SPROD. Assume
that SPROD has been defined as follows:

SPROD: PROCEDURE (U,V,W);

IF U > V + W
THEN RETURN (0);
ELSE RETURN (U*V*W);

END SPROD;

When SPROD is invoked by MAINP, the
arguments A, B, and C are associated with
the parameters U, V, and W, respectively.
Since attributes have not been explicitly
declared for the arguments and parameters,
default attributes of FLOAT DECIMAL (6) are
applied to each argument and parameter.

During the execution of SPROD, the IF
statement is encountered and a test is
made. If U is greater than V + W, the
statement associated with the THEN clause
is executed; otherwise, the statement
associated with the ELSE clause is
executed. In either case, the executed
statement is a RETURN statement.

RETURN Statement: The RETURN statement is
the usual way by which a function is
terminated and control is returned to the
invoking procedure. Its use in a function
differs somewhat from its use in a
subroutine; in a function, not only does it
retu~n control but it also returns a value
to the point of invocation. The general
form of the RETURN statement, when it is
used in a function, is as follows:

RETURN (element-expression);

The value of the element expression is
returned to the invoking 'procedure at the
point of invocation. Thus, for the above
example, SPROD returns either 0 or the
value represented by U*V*W, along with
control to the invoking expression in
MAINP. The returned value is taken as the
value of the function reference, and
evaluation of the invoking expression
continues.

GO TO Statement: A function can also be
terminated by execution of a GO TO
statement. If this method is used,
evaluation of the expression that invoked
the function will not be completed, and
control will go to the designated
statement. As in a subroutine, the
transfer point specified in a GO TO
statement may be a parameter that has been
associated with a label argument. For

example, assume that MAINP and SPROD have
been defined as follOWS:

MAINP: PROCEDURE;

GET LIST (A,B,C,Y);
X Y**3+SPRODCA,B,C,LAB1):

LAB1 : CALL ERRT;

END MAINP;

SPROD: PROCEDURE CU,V,W,Z);
DECLARE Z LABEL;

IF U > V + W
THEN GO TO Z;
ELSE RETURN CU*V*W)i

END SPROD;

In MAINP, LABl is explicitly declared to be
a statement label constant by its
appearance as a label for the CALL ERRT
statement. When SPROD is invoked, LABl is
associated with parameter Z. Since the
attributes of Z must agree with those of
LABl, Z is declared to have the LABEL
attribute. When the IF statement in SPROD
is executed, a test is made. If U is
greater than V + w, the THEN clause is
executed, control returns to MAINP at the
statement labeled LABl, and evaluation of
the expression that invoked SPROD is
discontinued. If U is not greater than V +
W, the ELSE clause is executed and a return
to MAINP is made in the normal fashion.
Additional information about the use of
label arguments and label parameters is
contained in the section -Relationship of
Arguments and Parameters- in this chapter.

~: In some instances, a fUnction may be
so defined that it does not require an
argument list. In such cases, the
appearance of an external function name
within an expression will be recognized as
a function reference only if the function
name has been explicitly declared to be an
entry name. See -ENTRY Attribute- in this
chapter for additional information.

ATTRIBUTES OF RETURNED VALUES

RETURNS Attribute: The RETURNS attribute

Chapter 9: Subroutines and Functions 109

is specified in a DECLARE statement for an
external entry name. It specifies for the
invoking block the attributes of the value
returned by that function. It further
specifies, by implication, the ENTRY
attribute for the name. Unless attributes
for the returned value can be determined
correctly by default, any invocation of an
external function must appear within the
scope of a declaration with the RETURNS
attribute for the entry name.

The general format of the RETURNS
attribute is:

RETURNS (attribute-list)

A RETURNS attribute specifies that within
the invoking procedure the value returned
from an external function procedure is to
be treated as though it had the attributes
given in the attribute list. The word
treated is used because no conversion is
performed in an invoking block upon any
value returned to it. The attributes given
in a RETURNS attribute must agree with the
data attributes given in the corresponding
RETURNS option, since the value returned
will have attributes determined from the
RETURNS option.

The RETURNS attribute cannot be given
for an internal procedure. The attributes
of the returned value are determined from
the RETURNS option at the entry point, if
given; otherwise according to default rules
as applied to the identifier of the entry
constant.

RETURNS Option: The RETURNS option is
specified in a PROCEDURE or ENTRY statement
of a function procedure. It specifies the
attributes to which the value returned by
the function will be converted before
return.

Generic Entry Names and References

A generic entry name represents a family of
procedure entry pOints, each member of
which can be invoked by a generic
reference, that is, a procedure reference
using the generic name in place of the
actual entry name. The member invoked is
determined according to the number and
attributes of the arguments specified in
the generic reference; the member that is
invoked is the first one whose generic
descriptor list matches the arguments both
in number and attributes.

A generic name must be declared with the
GENERIC attribute. The general format of
this attribute is as follows:

110 OS PL/I CKT AND OPT LRM PART I

generiC name GENERIC (entry-expression
WHEN (generic-descriptor-list)

[,entry-expression
WHEN(generic-descriptor-list)] •••);

where generic-descriptor-list is:

([descriptor£,descriptor] •••])

Each entry-expression corresponds to one
procedure entry point in the family. The
entry expression can be an entry name or an
expression which represents an entry name.
Each descriptor in the generic-descriptor
list corresponds to a single argument, and
may specify attributes that the
corresponding argument must have in order
that the associated entry name can be
selected. Where no descriptor is required,
it may be either omitted or indicated by an
asterisk. The asterisk form is essential
if the missing descriptor is the only
descriptor. For example, whereas (,)
represents two descriptors (*) represents
one. The generic descriptor list which is
to represent the absence of any argument
takes the form:

•••• ENTRYl WHEN() •••

An entry expression is chosen from those
specified in a generic declaration by a
process known as generic selection.
Generic selection is performed by comparing
arguments specified in a function reference
or CALL statement with the contents of the
generiC descriptor list supplied with each
entry expression in the GENERIC
declaration. Firstly, each generic
descriptor list is checked, in order of
appearance in the declaration to determine
whether it contains the same number of
descriptors as there are arguments in the
reference to the generic name.

When a generic descriptor list with the
same number of descriptors as arguments is
found, each descriptor is tested with the
corresponding argument to determine whether
attributes given in the descriptor are
attributes of the argument. For example,
if a generic descriptor list contains:

••••• (FLOAT,FIXED)

and the corresponding two arguments have
attributes such as DECIMAL FLOAT(6) and
BINARY FIXED(15,0) either explicitly,
contextually, implicitly, or by default,
then each attribute in the generic
descriptor list is an attribute of the
corresponding argument and the selection is
successful. However, if either argument
did not have the attributes in the
corresponding descriptor, the selection
process would consider the next generic
member with just two descriptors. For
example consider the following statement:

DECLARE CALC GENERIC
(FXDCAL WHEN (FIXED,FIXED),
FLOCAL WHEN (FLOAT, FLOAT) ,
MIXED WHEN (FLOAT,FIXED»;

This statement defines CALC as a generic
name having three members, FXDCAL, FLOCAL,
and MIXED. One of these three function
procedures will be invoked by a generic
reference to CALC, depending on the
characteristics of the two arguments in
that reference. For example, consider the
following statement:

Z=X+CALC(X,Y);

If X and Yare floating-point and fixed
point, respectively, MIXED will be invoked.

In a similar manner, an entry pOint to a
procedure can be selected by means of
dimensionality. For example,

DCL D GENERIC (Dl WHEN«.»,

A(2) ,
B(3,5);

CALL D(A);
CALL D(B) ;

D2 WHEN ((.,.») ,

When the first call statement is executed,
the procedure entry pOint D1 will be
invoked. When the second call statement is
executed, the procedure entry pOint 02 will
be invoked.

If all the descriptors are omitted or
consist of an asterisk, the first entry
name with the correct number of descriptors
is selected.

The program is in error if no generic
descriptor list is found to match the
attributes of the arguments to a particular
generic function reference.

Built-in Functions

Besides function references to procedures
written by the programmer, a function
reference may invoke one of a comprehensive
set of pre-defined functions called
built-in functions.

Built-in functions are an intrinsic part
of PL/I. They include not only the
commonly used arithmetic functions but also
other necessary or useful functions related
to language facilities, such as functions
for manipulating strings and arrays.

Built-in functions are invoked in the
same way that programmer-defined functions
are invoked. However, many built-in
functions can return an array of values,

whereas a programmer-defined function can
return only an element value.

Note: Some built-in functions will
actually be compiled as in-line code rather
than as procedure invocations.

The use of a built-in function with a
list, such as SUBSTR <X,Y,Z) or
INDEX(A,'B '), is recognized without further
identification being necessary to establish
the identifier as a built-in function.
However, any built-in function or
pseudovariable which does not have a
parenthesized argument list, such as
ONCHAR, ONSOURCE, TIME, must be either
declared explicitly with the attribute
BUILTIN, or specified with a null argument
list (for example TIME(» in the block in
which the identifier is used as a built-in
function.

Built-in function names can be used as
programmer-defined names. Consequently,
ambiguity may occur if a built-in function
reference is used in a block that is
contained in another block in which the
same identifier is declared for some other
purpose. To avoid this ambiguity, the
BUILTIN attribute can be declared for a
built-in fUnction name in any block that
has inherited, from a containing block,
some other declaration of the identifier.
Consider the tollowing example.

A: PROCEDURE;

B: BEGIN;
DECLARE SQRT FLOAT BINARY;

C: BEGIN;
DECLARE SQRT BUILTIN;

END C;

END B;

END A;

Assume that in external procedure A, SQRT
is contextually declared with the attribute
BUILTIN. consequently, any reference to
SQRT would refer to the built-in function
of that name. In B, however, SQRT is
declared to be a floating-point binary
variable, and it cannot be used in any
other way. Finally, in C, SQRT is declared
with the BUILTIN attribute so that any

Chapter 9: Subroutines and Functions 111

reference to sQRT will be recognized as a
reference to the built-in function and not
to the floating-point binary variable
declared in B.

Note that a variable having the same
identifier as a built-in function can be
implicitly declared as an arithmetic
variable by, for instance, its appearance
on the left-hand side of an assignment
symbol (in an assignment statement, a DO
statement, or a repetitive specification)
or in the data list of a GET statement,
provided that it is neither enclosed within
nor immediately followed by an argument
list. (This also applies to the names
ONCHAR, ONSOURCE, and PRIORITY which are
pseudovariables that do not require
arguments.) For example, if the statement
sQRT = 1 had appeared in begin block B
instead of the DECLARE statement, sQRT
would have been implicitly declared as a
floating-point decimal variable.

A programmer can even use a built-in
function name as the entry name of a
programmer-defined function and, in the
same program, use both the built-in
function and the programmer-defined
function. This can be accomplished by use
of the BUILTIN attribute when the
programmer-defined function is an internal
procedure, and by use of the BUILTIN and
ENTRY attributes when the programmer
defined function is an external procedure.

The following example illustrates use of
the BUILTIN attribute in conjunction with
an internal function procedure.

A: PROCEDURE;
sQRT: PROC(PARAM) RETURNs(FIXED(6,2»;

DECLARE PARAM FIXED (12):

END sQRT:

x = sQRT(Y):

B: BEGIN;
DECLARE SQRT BUILTIN;

Z = sQRT (P):

END B:

END A;

112 05 PL/I CRT AND OPT LRM PART I

The use of sQRT as the label of the second
PROCEDURE statement is an explicit
declaration of the identifier as an entry
name. The function reference in the
aSSignment statement in A thus refers to
the programmer-written sQRT function. In
the begin block B, the identifier sQRT is
declared with the BUILTIN attribute.
consequently, the function reference in the
assignment statement in B refers to the
built-in sQRT function.

For a programmer-written internal
function using the name of a built-in
function any reference 'to the identifier in
the containing block would be a reference
to the programmer-written function. In the
above example the attributes of the
returned value are specified in the RETURNS
option of the procedure statement for sQRT.
Since the function procedure is internal,
these attributes are known to the calling
procedure.

In the case of a programmer-written
external function procedure using as an
entry name the name of a built-in function,
any procedure containing a reference to
that function procedure name must also
contain an entry declaration of that name;
otherwise a reference to the identifier
would be a reference to the built-in
function. In the above example, if the
begin block B were not contained in A,
there would be no need to specify the
BUILTIN attribute; unless the identifier
sQRT is given attributes other than BUILTIN
(by explicit or contextual declaration), it
refers to the built-in function. If the
procedure sQRT were an external procedure,
procedure A would need the following
statement to declare explicitly sQRT as an
entry name, and to specify the attributes
of the values passed to and returned from
the programmer-written function procedure.

DCL sQRT ENTRY (FIXED (12» RETURNS
(FIXED(6,2»;

FORTRAN Library Functions

Library functions, analagous to PL/I built
in functions, are associated with FORTRAN
compilers. These functions may be invoked
from a PL/I program by means of PL/I
interlanguage communication facilities.
The facilities are described in chapter 19.

Built-in Subroutines

A PL/I programmer can avail himself of
certain operating system facilities by

using built-in subroutines. These have
entry names that are defined by the
implementation and are invoked by means of
the CALL statement. The operating system
facilities and the corresponding entry
names are as follows.

Checkpoint/restart (implemented by the
optimizing compiler only): PLICKPT,
PLIREST, PLICANC

A CALL statement specifying PLICKPT,
PLIREST, or PLICANC is treated as a null
statement by the checkout compiler.

Sort/merge: PLISRTA, PLISRTB, PLISRTC,
PLISRTD

In addition, there is a subroutine,
PLIDUMP, that provides an edited dump of
main storage, and another, PLIRETC, that
allows the user to set the return code of
his program.

The entry names are known as built-in
~, and can be explicitly or
contextually declared to have the BUILTIN
attribute. They are not reserved words.

The use of these subroutines is
described in the following publications:
OS PL/I Optimizing Compiler: programmer's
Guide and OS PL/I Checkout Compiler:
Programmer's Guide.

Relationship of Arguments and
Parameters

When a function or subroutine is invoked, a
relationship is established between the
arguments of the invoking statement or
expression and the parameters of the
invoked entry point. This relationship is
dependent upon whether or not dummy
arguments are created.

DUMMY ARGUMENTS

In the preceding discussions of arguments
and parameters, it is pointed out that the
name of an argument, not its value, is
passed to a subroutine or function.
However, this is not always possible. A
constant, for example, has no name; nor
does an operational expression. Therefore,
the compiler provides storage for such
values and associates the name of the
corresponding parameter with each. These
storage locations are called dummy
arguments. The PL/I programmer should be
aware of their existence because any change
to a parameter wi1l be reflected only in

the value of the dummy argument and not in
the value of the original argument from
which it was constructed.

A dummy argument is always created when
the original argument is any of the
following:

1. A constant.

2. An expression involving operators.

3. An expression in parentheses.

4. A variable whose data attributes are
different from the data attributes
declared for the parameter. This does
not apply when an expression other
than a decimal integer constant is
used to define the bounds, length or
size of a controlled parameter: the
compiler assumes that the argument and
parameter bounds, length or size
match. (In the case of arguments and
parameters with the PICTURE attribute,
a dummy argument will be created
unless the picture specifications
match exactly, after any repetition
factors have been applied. The only
exception is that an argument or
parameter with a + sign in a scaling
factor matches a parameter or argument
without the + sign.)

5. A function reference with an argument
list.

6. A controlled string or area, or a
string or area with an adjustable
length or size, associated with a nOn
controlled parameter whose length or
Size is a constant.

1. An iSUB-defined array.

The attributes of a dummy argument
created for an argument to be passed to an
internal procedure are derived as follows:

1. From the attributes declared for the
aSSOCiated parameter in the internal
procedure.

2. For the bounds of an array, the length
of a string or the size of an area, if
specified by asterisk notation in the
parameter declaration, from the bound,
length or size of the argument itself.

In all other cases, a reference to the
argument is passed directly (in effect, the
storage address of the argument is passed).
The parameter becomes identical with the
passed argument; thus, changes to the value
of a parameter will be reflected in the
value of the original argument only if a
dummy argument is not passed.

Chapter 9: Subroutines and FUnctions 113

ENTRY ATTRIBUTE

The ENTRY attribute is used to identify the
entry name of an external procedure. The
use of the ENTRY attribute to identify the
entry constant of an internal procedure is
invalid; its use to identify each entry
point of an external procedure is
mandatory. The general form of the ENTRY
attribute is described in ·use of the ENTRY
Attribute·, earlier in this chapter.

Note that the format allows the keyword
ENTRY to be specified without an
accompanying parameter descriptor list when
used to identify a function entry name that
does not require arguments, or when the
arguments and parameters match. The
parameter descriptor list must be specified
with an ENTRY attribute that identifies the
entry name of an external procedure if
arguments do not match parameters. The use
of the attribute VARIABLE in an entry
declaration establishes the identifier as
an entry variable. An entry variable
represents an entry constant after
assignment of the entry constant to the
entry variable. If an entry variable is
used in a function reference or CALL
statement to invoke an entry point to which
arguments are to be passed, the entry
variable should be declared with a
parameter descriptor list which specifies
the attributes of the parameters of the
entry point, otherwise erroneous arguments
may be passed.

Parameter Descriptor Lists

Each set of attributes, or descriptor, in
the parameter descriptor list in the ENTRY
attribute specification corresponds to one
parameter of the subroutine or fUnction
invoked, and if given, specifies the
attributes of that parameter. The
attributes of an individual parameter are
separated by blanks to form a parameter
descriptor for each parameter; parameter
descriptors in a parameter descriptor list
are separated by commas. In general, if
the i

:, attributes of an argument do not agree
with those of its corresponding parameter
(as specified in a parameter descriptor
list), a dummy argument is constructed for
that argument if conversion is possible.
The dummy argument contains the value of
the original argument converted to conform
with the attributes of the corresponding
parameter. Thus, when the subroutine or
function is invoked, it is the dummy
argument that is passed to it.

When a descriptor list is given with the
ENTRY attribute, each parameter of the

114 OS PL/I CKT AND OPT LRM PART I

subroutine or function must be accounted
for. When the attributes of the argument
and parameter match, the descriptor may be
either omitted or indicated by an asterisk,
but commas delimiting the descriptors must
not be omitted. For example, the
statement:

DECLARE SUBR ENTRY CFIXED"FLOAT);

specifies that sUBR is an entry point that
has three parameters: the first and third
have the attributes FIXED and FLOAT,
respectively, while the attributes of the
second are assumed to be the same as those
of the argument being passed. Since the
attributes of the second parameter are not
stated, no assumptions are made.

As mentioned earlier, the ENTRY
attribute may be specified without a
parameter descriptor list. It is used in
this way to indicate that the associated
identifier is an entry name. Such an
indication is necessary if an identifier is
not otherwise recognizable as an entry
name, that is, if it is not explicitly
declared to be an entry name by its
appearance as a label of a PROCEDURE or
ENTRY statement.

Therefore, if a reference is made to an
entry name in a block in which it does not
appear in this way, the identifier must be
given the ENTRY attribute explicitly. For
example, assume that the following has been
specified:

A: PROCEDURE;

PUT LIST (RANDOM);

END A;

Assume also that A is an external procedure
and RANDOM is an external function that
requires no arguments and returns a random
number. As the procedure is shown above,
RANDOM is not recognizable within A as an
entry name, and the result of the PUT
statement therefore is undefined. In order
for RANDOM to be recognized within A as an
entry name, it must be declared to have the
ENTRY attribute. For example:

A: PROCEDURE;
DECLARE RANDOM ENTRY;

PUT LIST (RANDOM);

END A;

Now, RANDOM is recognized as an entry name,
and the appearance of RANDOM in the PUT
statement cannot be interpreted as anything
but a function reference. Therefore, the
PUT statement results in the output
transmission of the random number returned
by RANDOM.

~ The ENTRY attribute is implied -
and therefore need not be stated explicitly
-- for an identifier that is declared in a
DECLARE statement to have one of the entry
name attributes RETURNS, OPTIONS,
REDUCIBLE, or IRREDUCIBLE.

Entry Expressions as Arguments

When an entry name is specified as an
argument of a function or subroutine
reference, one of the following applies:

1. If the entry expression argument, call
it M, is specified with an argument
list of its own, it is recognized as a
function reference: M is invoked, and
the value returned by M effectively
replaces M and its argument list in
the containing argument list. For
example:

CALL A (M(B»:

This passes the value returned by the
function procedure M.

If the entry expression argument
appears with a null argument list, it
is taken to be a fUnction reference
with no arguments. For example:

CALL A(BO);

This passes, as the argument 'to
procedure A, the value returned by the
function procedure B.

2. If the entry expression argument has
no argument list and appears within
parenthesiS, a dummy entry variable is
created. For example:

CALL A((B»:

This passes, as the argument to

procedure A, the value of the entry
name B.

3. When a built-in function name or an
entry expression is used without an
argument list as an argument to a
built-in function, the function
specified by the argument is not
invoked provided that the built-in
fUnction will accept an argument of
type ENTRY. If the built-in function
will not accept an entry argument, the
argument is assumed to be a reference
to the value of the function. For
example:

DCL DATE BUILTIN, Z CHAR(2);

Z SUBSTR (DATE, 5 , 2) :.

The days field is extracted from the
value returned by the DATE built-in
function

4. If the entry expression argument to a
user-defined function appears without
an argument list and neither within an
operational expression nor within
parentheses, the entry expression
itself is passed to the function or
subroutine being invoked. In such
cases, the entry expression is not
taken to be a function reference, even
if it is the name of a function that
does not require arguments. For
example:

CALL A(B);

This passes the entry expression B as
an argument to procedure A. If the
corresponding parameter in A has been
declared with the attribute ENTRY, it
will be given the attribute VARIABLE
by default. If B is an entry
variable, it will be passed to the
parameter in the same way as for any
argument whose attributes match those
of the parameter. If B is an entry
constant a dummy is created and
passed, as for any constant argument.

If an identifier is known as an entry
name and appears as an argument and if
'the parameter descriptor for that
argument specifies an attribute other
than ENTRY, the entry name will be
invoked and its returned value passed.
If the value returned has different
attributes from those specified in the
parameter descriptor, conversion is
performed. For example:

Chapter 9: Subroutines and Functions 115

A: PROCEDURE;
DECLARE B ENTRY,

C ENTRY(FLOAT);

x = C(B);

END A;

In this case, B is invoked and its
returned value is passed to C.

Consider the following example:

CALLP: PROCEDURE;
DECLARE RREAD ENTRY,

SUBR ENTRY (ENTRY, FLOAT,
FIXED BINARY, LABEL);

GET LIST (R,S);

CALL SUBR (RREAD, SQRT(R), 5,
LABl) ;

LABl: CALL ERRT (5) ;

END CALLP;

SUBR: PROCEDURE (NAME, X, J, TRANPT);
DECLARE NAME ENTRY, TRANPT LABEL;

IF X > J THEN CALL NAME(J);
ELSE GO TO TRANPT;

END SUBR;

In this example, assume that CALLP, SUBR,
and RREAD are external. In CALLP, both
RREAD and SUBR are explicitly declared to
have the ENTRY attribute. The explicit
declaration for SUBR is used to provide
information about the characteristics of
the parameters of SUBR. Four arguments are
specified in the CALL SUBR statement.
These arguments are interpreted as follows:

1. The first argument, ~READ, is
recognized as an entry name (because
of the ENTRY attribute declaration).
This argument is not in conflict with
the first parameter descriptor
specified in the ENTRY attribute
declaration for SUBR in CALLP.

116 OS PL/I CKT AND OPT LRM PART I

Therefore, since RREAD is recognized
as an entry name and not as a £unction
reference, the entry name is passed at
invocation. Since NAME is an entry
parameter, it is given the attribute
VARIABLE by default. Since RREAD is a
constant, a dummy entry argument is
created, and this is passed to NAME.

2. The second argument, SQRT(R), is
recognized as a built-in function
reference because of the argument list
accompanying the entry name. SQRT is
invoked, and the value returned by
SQRT is aSSigned to a dummy argument,
which will be passed to the subroutine
SUBR. The attributes of the dummy
argument agree with those of the
second parameter, as specified in the
parameter attribute list declaration.
When SUBR is invoked, the dummy
argument is passed to it.

3. The third argument, S, is simply a
decimal floating-point element
variable. However, since its
attributes do not agree with those of
the third parameter, a dummy argument
is created containing the value of 5
converted to the attributes of the
third parameter. When SUBR is
invoked, the dummy argument is passed.

4. The fourth argument, LABl, is a
statement-label constant. Its
attributes agree with those of the
fourth parameter. But since it is a
constant, a dummy argument is created
for it. When SUBR is invoked, the
dummy argument is passed.

In SUBR, four parameters are explicitly
declared in the PROCEDURE statement. If no
further explicit declarations were given
for these parameters, arithmetic default
attributes would be supp~ied for each.
Therefore, since NAME must represent an
entry name, it is explicitly declared with
the ENTRY attribute, and since TRANPT must
represent a statement label, it is
explicitly declared with the LABEL
attribute. X and J are arithmetic, so the
defaults are allowed to apply.

Note that the appearance of NAME in the
CALL statement does not constitute a
contextual declaration of NAME as a built
in procedure. Such a contextual
declaration is made if no explicit
declaration applies. However the
appearance of NAME in the PROCEDURE
statement of SUBR constitutes an explicit
declaration of NAME as a parameter. If the
attributes of a parameter are not
explicitly declared in a complementary
DECLARE statement, arithmetic defaults
apply. Consequently, NAME must be
explicitly declared to have the ENTRY

attribute: otherwise, it would be assumed
tQ be a binary fixed-point variable, and
its use in the CALL statement would result
in an error.

ALLOCATION OF PARAMETERS

Since a parameter has no associated storage
within the invoked procedure. it cannot be
declared to have any of the storage class
attributes STATIC, AUTOMATIC, or BASED. It
can, however, be declared to have the
CONTROLLED attribute. ThUS, there are two
classes of parameters, as far as storage
allocation is concerned: those that have
no storage class, i.e., simple parameters,
and those that have the CONTROLLED
attribute, i.e., controlled parameters.

A simple parameter may be associated
with an argument of any storage class.
However, if more than one generation of the
argument exists, the parameter is
associated only with that generation
existing at the time of invocation.

A controlled parameter must always have
a corresponding controlled argument. Such
an argument cannot be subscripted, cannot
be an element of a structure, and cannot
cause a dummy to be created. If more than
one generation of the argument exists at
the time of invocation, the parameter
corresponds to the entire stack of these
generations. Thus, at the time of
invocation, a controlled parameter
represents the current generation of the
corresponding argument. A controlled
parameter may be allocated and freed in the
invoked procedure, thus allowing the
manipulation of the allocation stack of the
associated argument. A simple parameter
cannot be specified in an ALLOCATE or FREE
statement.

When no parameter descriptor is given,
the entire stack is passed. In this case,
the parameter may be Simple or controlled
and be correspondingly associated with
either the latest generation or the entire
stack.

Parameter Attributes

IParameters cannot be declared with the
lattributes DEFINED or BASED. A parameter
lalways has the attribute INTERNAL. It must
lbe a level-one identifier.
I
I Variables that are used in record-
loriented input/output, or as the base for
IDEFINED items, must be in connected

I storage. If such a variable is a parameter
land an aggregate, it should have the
ICONNECTED attribute, both in its
Ideclaration in the subroutine, and, where
applicable, in the descriptor list of the
subroutine entry declaration.

In the subroutine, the CONNECTED
attribute specifies that the parameter
represents connected storage. In the entry
declaration, it specifies that, if the
argument is in non-connected storage, a
dummy argument in connected storage is to
be created.

Note that elements, arrays, and major
structures are always allocated in
connected storage. References to non
connected storage arise only when the
programmer refers to an aggregate that is

Imade up of non-contiguous items from a
Ilarger aggregate. For example, in the
I structure:
I
I
I
I
I

1 A(10),
2 B,
2 C;

Ithe interleaved arrays A.B and A.C are both
lin non-connected storage.
I
I For array cross-sections, the rule is as
I follows: if a non-asterisk bound appears
Ito the right of the left-most asterisk
I bound, the array cross-section is in non
Iconnected storage. Thus A(4,*,*) is in
Iconnected storage; A(*,2,.) is not. iSUB
Idefined variables are always regarded as
Ibeing in non-connected storage.

Parameter Bounds, Lengths, and Sizes

If an argument is an array, a string, or an
area, the bounds of the array, the length
of the string, or the size of the area must
be declared for the corresponding
parameter. The number of dimensions and
the bounds of an array parameter, or the
length and size of an area or string
parameter, must be the same as the current
generation of the corresponding argument.
Usually, this can be assured simply by
specifying actual numbers for the bounds,
length, or size of the parameter.

If the bounds, length, or size are not
known at the time the subroutine or
function is written, they may be specified
by asterisks, for simple parameters, or
asterisks or expressions for controlled
parameters.

Chapter 9: Subroutines and Functions 117

Simple Parameter Bounds, Lengths, and
Sizes

When the actual length, bounds, or size of
a simple parameter may be different for
different invocations, they can be
specified in a DECLARE statement by
asterisks. When an asterisk is used, the
length, bounds, or size are taken from the
current generation of the corresponding
argument.

An asterisk is not allowed as the length
specification of a character or bit string
that is an element of an aggregate, if the
corresponding argument is such that a dummy
is created. The string length must be
specified as a decimal integer constant.

Controlled Parameter Bounds, Lengths,
and sizes

The bounds, length, or size of a controlled
parameter can be represented in a DECLARE
statement either by asterisks or by element
expressions.

Asterisk Notation: When asterisks are
used, length, bounds, or size of the
controlled parameter are taken from the
current generation of the corresponding
argument. Any subsequent allocation of the
controlled parameter uses these same
bounds, length, or size, unless they are
overridden by a different length , bounds,
or size specification in the ALLOCATE
statement. If no current generation of the
argument exists, the asterisks only
determine the dimensionality of the
parameter, and an ALLOCATE statement in the
invoked procedure must specify bounds,
length, or size for the controlled
parameter before other references to the
parameter can be made.

Expression Notation: The bounds, length,
or size of a controlled parameter can also
be specified by element expressions. These
expressions are evaluated at the time of
allocation. Each time the parameter is
allocated, the expressions are re-evaluated
to give current bounds , length, or size
for the new allocation. However, such
expressions in a DECLARE statement can be
overridden by a bounds , length, or Size
specification in the ALLOCATE statement
itself. For example:

118 OS PL/I CKT AND OPT LRM PART I

MAIN: PROCEDURE OPTIONS (MAIN) ;
DECLARE (A(20), B(30), C(100),

D(100»CONTROLLED,
NAME CHARACTER (20),
I FIXED(3,0);

ALLOCATE A,B;
CALL SUB1 (A, B):

FREE A,B:

FREE A,B:
GET LIST (NAME,I);
CALL 5UB2 (C,D,NAME,I);

FREE C,D:

END MAIN:

5UB1: PROCEDURE (U,V):
DECLARE (U(*), V(*» CONTROLLED;

ALLOCATE U(30), V(40):

RETURN:
END SUBl:

SUB2: PROCEDURE (X, Y, NAMEA, N) :
DECLARE (X(N),Y(N»CONTROLLED,

NAMEA CHARACTER (*),
N FIXED(3,O);

ALLOCATE X, Y;

RETURN:
END SUB2:

In the procedure MAIN, the arrays A, B, C,
and D are declared with the CONTROLLED
storage class attribute: NAME and I are
AUTOMATIC by default.

When SUBl is invoked, A and B, which
have been allocated as declared, are
passed. SUBl declares its parameters with
the asterisk notation. The ALLOCATE
statement, however, specifies bounds for
the arrays; consequently, the allocated
arrays, which are actually a second
generation of A and B, have bounds
different from the first generation. If ne
bounds were specified in the ALLOCATE
statement, the bounds of the first and the
new generation would be identical.

On return to MAIN, the first FREE
statement frees the second generation of A
and B (allocated in SUBl as parameters),
and the second FREE statement frees the

first ~eneration (allocated in MAIN).

When SUB2 is invoked, C and D are passed
to X and Y, NAME is passed to NAMEA, and I
is passed to N. In S082, X and Yare
declared with bounds that depend upon the
value of I (passed to N). When X and Yare
allocated, this value determines the bounds
a£ the allocated array.

Although NAME (corresponding to NAMEA)
is Bot controlled, the asterisk notation
fer the length of NAMEA indicates th~t the
len~th is to be picked up from the argument
(NAME).

ARGUMENT AND PARAMETER TYPES

In genera l, an argument and its
~rresponding parameter may be of any data
&r9anization and type. However, not all
parameter/argument relationships are so
clear-cut. Some need further definition
and clarification; these are given below.

If a parameter is an element, i.e., a
va'riahle that is neither a structure nor an
array, the argument must be an element
e~ession. If the argument is a
suBscripted variable, the subscripts are
evaluated before the subroutine or function
is invoked and the name of the specified
element is passed. If the argument passed
to an external procedure is a constant, the
attributes of the corresponding parameter
mast agree with the attributes indicated by
the constant, unless there is a
corresponding parameter descriptor in the
entry declaration.

If a parameter is an array, the argument
may be an array expression or an element
empress ion. If the argument is an element
expression, the corresponding parameter
4escriptor or declaration must specify the
beunds of the array parameter. The bounds
mast be specified as decimal integer
eonstants. This causes the construction of
a dummy array argument, whose bounds are
those of the array parameter. The value of
tBe element expression is then aSSigned to
the value of each element of the dummy
array arqument.

If a parameter is a structure, the
argument must be a structure expression or
an element expression. If the argument is
an element expreSSion, the corresponding
parameter descriptor for an external entry
poiBt must specify the structure
des·cription of the structure parameter
(anly level numbers need be used -- see the
«iscussion of the ENTRY attribute in
section I, "Attributes", for details).
Tais causes the construction of a dummy

structure argument, whose description
matches that of the structure parameter.
The value of the element expression then
becomes the value of each element of the
dummy structure argument. The relative
structuring of the argument and the
parameter must be the same; the level
numbers need not be identical. The element
value must be one that can be converted to
conform with the attributes of all the
elementary names of the structure.

If the parameter is an array of
structures, the argument can be the
expression representing an element, an
array, a structure or an array of
structures.

If a parameter is a label, the argument
must be either a label variable or a label
constant. If the argument is a label
constant, a dummy argument is constructed.

If the parameter is an entry , the
argument must be an entry name or a generiC
name. If the argument is a generic name
the parameter descriptor (or paramet.er
declaration, if the invoked procedure is
internal) must give parameter descriptions
to enable generic selection to be made
before passing an entry. Under the
optimizing compiler, entry variables passed
as arguments are assumed to be aligned, so
that no dummy argument is created when only
the alignments of argument and parameter
differ. Note that the name of a
mathematical built-in function can be
passed as an argument but no other built-in
function name can be passed.

If a parameter is a file, the argument
must be a file variable or file constant.

For example:

E: PROCEDURE ;
DECLARE Fi FILE;
CALL El(Fl);

El: PROCEDURE(F2);
DECLARE F2 FILE;
CALL E2(F2);

E2: PROCEDURE (F3):
DECLARE F3 FILE;

END E;

The file parameters Fl, F2, and F3 all
refer to the same file. Input/output on
units for file parameters are discussed in
chapter 14, "Execution Condition Handling

Chapter 9: Subroutines and Functions 119

and Program Checkout·.

If the parameter is a fixed length
string, and if a dummy argument is not to
be created, then the argument must also be
a fixed length string. Similarly, if a
dummy is not to be created when the
parameter is a varying length string, the
argument must be a varying length string.
Whenever a varying-length element string
argument is passed to a non-varying element
string parameter whose length is undefined
(i.e. specified by an asterisk), the
current length of the argument is passed to
the invoked procedure. When the argument
is a varying-length string array passed to
a non-varying undefined-length parameter,
only one length is passed, namely the
maximum length.

If a parameter is a locator of either
pOinter or offset type, the argument must
be a locator expression of either type. If
the types differ, a dummy argument is
created. The parameter descriptor of an
offset parameter must not specify an
associated area.

If the parameter is an ~ , the
argument must be an area expression. If
th~ sizes differ, a dummy argument is
created.

120 OS PL/I eKT AND OPT LRM PART I

Passing an Argument to the Main
Procedure

A Single argument can be passed using the
PARM field in the statement for the step
executing the PL/I program. See OS PL/I
Optimizing Compiler: Programmer's Guide
and OS PL/I Checkout Compiler:
programmer's Guide. If this facility is
used, the parameter must be declared as a
VARYING character string; the maximum
length is 100, and the current length is
set equal to the argument length at obj ect
time. For example:

TOM: PROC (PARAM) OPTIONS (MAIN);
DCL PARAM CHAR(100) VARYING;

The value in the PARM field of the EXEC
statement for the execution job step will
be passed to TOM.

storage is allocated only for the
current length of the argument; the source
program will overwrite adjacent information
if a value greater than the current length
is assigned to the parameter.

PL/I includes input and o~tput statements
that enable data to be transmitted between
the internal and external storage devices
of a computer. A collection of data
external to a program is called a data set.
Transmission of data from a data set to a
program is termed input, and transmission
of data from a program to a data set is
called output.

PL/I input and output statements are
concerned with the logical organization of
a data set and not with its physical
characteristics: a program can be designed
without specific knowledge of the
input/output devices that will be used when
the program is executed. To a1low a source
program to deal primarily with the logical
aspects of data rather than with its
physical organization in a data set, PL/I
employs a symbolic representation of a data
set called a file. A file can be
associated with different data sets at
different times during the execution of a
program.

TWO types of data transmission can be
used by a PL/I program. In stream-oriented
transmission, the organization of the data
in the data set is ignored within the
program, and the data is treated as though
it actually were a continuous stream of
individual data items in character form:
data is converted from character form to
internal form on input, and from internal
form to character form on output. In
record-oriented transmission, the data set
is considered to be a collection of
discrete records. No data conversion takes
place during record transmission: on input
the data is transmitted exactly as it is
recorded in the data set, and on output it
is transmitted exactly as it is recorded
internally. (This is not strictly true for
ASCII data sets - see -Information
Interchange Codes- in this chapter.) It is
possible for the same data set to be
processed at different times by either
stream transmission or record transmission:
however, all items in the data set would
have to be in character form.

stream-oriented transmission is ideal
for simple jobs, particularly those that
use punched card input and have limited
output: a ~nimum of coding is required of
the programmer, especially for punched card
input and printed output. Stream-oriented
transmission also a1lows communication with
the program at execution time from a
termina1, if the program is being run under
the Time Sharing Option. However, compared

Chapter 10: Input and Output

with record-oriented transmission, stream
oriented tranSmission is less efficient in
terms of execution time because of the data
conversion it involves, and more space is
required on external storage devices
because all data is in character form.

Record-oriented transmission is more
versatile than stream-oriented
transmission, with regard to both the
manner in which data can be processed and
the types of data set that it can process.
Since data is recorded in a data set
exactly as it appears in main storage, any
data format is acceptable: no conversion
problems will arise, but the programmer
must have a greater awareness of the
structure of his data.

This chapter discusses those aspects of
PL/I input and output that are common to
stream-oriented and record-oriented
transmission, including files and t~eir
attributes, and the relationship of files
to data sets. The next two chapters
describe the input and output statements
that can be used in a PL/I program, and the
various data set organizations that are
recognized in PL/I.

Data Sets

oata sets are stored on a variety of
auxiliary storage media, such as punched
cards, reels of magnetic tape, magnetic
disks, and magnetic drums. oespite their
variety, these media have many common
characteristics that permit standard
methods of collecting, storing, and
transmi tting data. For convenience, the
general term volume is used to refer to a
unit of aUXiliary storage, such as a reel
of magnetic tape or a disk pack, without
regard to its specific physical
composition.

I In datasets other those with Virtual
IStorage Access Method (VSAM) organization,
the data items are arranged in distinct
physical groupings called blocks. (This
discussion has to be s1ight1y modified for
teleprocessing applications, where the data
set is in fact a queue of messages and the
term -block- is not strictly app1icable.
However, a message is similar to a block in
that it may consist of one or more records.
Teleprocessing is d1SCUSSed in chapter 12.
-Record-Oriented Transmission.-) These
blocks allow the data set to be transmitted

Chapter 10: Input and output 121

and processed in portions rather than being
transmitted in its entirety before any
processing is carried out. For processing
purposes, each block may consist of logical
subdivisions called records, each of which
contains one or more data items. A block
can comprise part of a record, a single
record, or several records. (Sometimes a
block is called a physical record, because
it is the unit of data that is physically
transmitted to and from a volume, and its
logical subdivisions are called logical
records.)

When a block contains two or more records,
the records are said to be blocked.
Blocked records permit more compact and
efficient use of auxiliary storage. The
use of blocked records can also improve the
throughput of a program where a large
number of short records are to be
processed, by reducing the number of
physical input/output operations.

In data sets with VSAM organization, the
data items are arranged in control
intervals, which are in turn arranged in
control areas. For processing purposes,
the data items within a control interval
are arranged in logical records. A control
interval may contain one or more logical
records, and a logical record may span two
or more control intervals. Further
information on the structure of VSAM data
sets is given in the Programmer's Guide for
the relevant compiler.

Most data processing applications are
concerned with logical records rather than

Iblocks or control intervals. Therefore,
the input and output statements of PL/I
generally refer to logical records; this
allows the programmer to concentrate on the
data to be processed, without being
directly concerned about its physical
organization in external storage.

INFORMATION INTERCHANGE CODES

In system/360 and System/310, the standard
code used to represent data, both in main
storage and on auxiliary storage, is EBCDIC
(extended binary-coded-decimal interchange
code). In general, PL/I programs compiled
by the optimizing or checkout compiler use
EBCDIC to record all character data. The
operating system does, however, support the
use of an alternative code, namely ASCII
(American Standard code for Information
Interchange), to represent data on
auxiliary storage, and such data sets may
be read or created using PL/I. The support
is limited to data sets held on magnetic
tape.

122 OS PL/I CKT AND OPT LRM PART I

Translation between the two codes is
performed by the operating system. Apart

from the options specified in the
ENVIRONMENT attribute, the same PL/I
program may be used to handle an ASCII data
set as would be used for a standard EBCDIC
data set. On output, translation from
EBCDIC to ASCII is performed immediately
before data is written from a buffer to
external storage. On input, translation is
pe~formed from ASCII to EBCDIC as soon as a
buffer is filled with data.

In PL/I, only CHARACTER data may be
written onto an ASCII data set. Each
character in the ASCII code is represented
by a seven-bit pattern and there are 128
such patterns. In EBCDIC, each character
has an eight-bit pattern, and there are 256
possibilities. The ASCII set includes a
substitute character (the SUB control
character) that is used to represent EBCDIC
characters having no valid ASCII code. (In
the American National Standards Institute
table, this is the character having the
column 1, row 10 position.) Upon reading
this data, the character would be
translated to the EBCDIC SUB character,
which has the bit pattern 00111111.

Files

To allow a source program to deal primarily
with the logical aspects of data rather
than with its physical organization in a
data set, PL/I employs a symbolic
representation of a data set called a file.
This symbolic representation determines how
input and output statements access and
process the associated data set. Unlike a
data set, however, a file has significance
only within the source program and does not
exist as a physical entity external to the
program.

PL/I requires that an identifier which
represents a file be declared with the FILE
attribute. Such an identifier may either
be a file constant or a file variable. A
file variable is a data item to which a
file constant can be assigned. After
assignment, a reference to the file
variable has the same significance as a
reference to the assigned file constant.
Each data set processed by a PL/I program
must be associated with a file constant
identifier.

File constants: The individual
characteristics of eacb file are described
with keywords called file description
attributes. The following lists show the
attributes that apply to each type of data
transmission:

stream-oriented Transmission

FILE
STREAM
INPUT
OUTPUT
PRINT
ENVIRONMENT

Record-Oriented Transmission

FILE
RECORD
INPUT
OUTPUT
UPDATE
SEQUENTIAL
DIRECT
TRANSIENT
BUFFERED
UNBUFFERED
BACKWARDS
KEYED
EXCLUSIVE
ENVIRONMENT

File variables: A file variable is an
identifier that has the attributes FILE and
VARIABLE; it cannot have any of the file
description attributes (except FILE). File
variables can be collected into arrays or
structures. Note that the VARIABLE
attribute can be implied by, for example,
the dimension attribute.

File expressions.: A file expression can be
a reference to a file constant, a file
variable, or a function reference which
returns a value with the FILE attribute.

A detailed description of each of these
attributes appears in section I,
·At~ributes.· The discussions below give a
brief description of each of the file
description attributes and show how these
attributes are declared for a file.

FILE ATTRIBUTE

The FILE attribute indicates that the
associated identifier is a file constant or
variable. For example, the identifier
MASTER is declared to be a file constant in
the following statement:

DECLARE MASTER FILE;

In the following statement, the
identifier ACCOUNT is declared to be a file
variable, and ACCT1, ACCT2, ••• are
declared to be file constants; the file
constants may subsequently be assigned to
the file variable.

DECLARE ACCOUNT FILE VARIABLE,

~\.

ACCTl FILE,
ACCT2 FILE,

The following example shows how the
VARIABLE attribute may be implied.

DECLARE PAYREC(10) FILE;

PAYREC(I), where I has a value from 1 to
10, has the attribute FILE by explicit
declaration and the attribute VARIABLE by
implication of the dimension attribute (10)
in the DECLARE statement.

The attributes associated with a file
constant fall into two categories:
alternative attributes and additive
attributes. An alternative attribute is
one that is chosen from a group of
attributes. If no explicit or implicit
declaration is given for one of the
alternative attributes in a group and if
one of the alternatives is required, a
default attribute is assumed.

An additive attribute is one that must
be stated explicitly or is implied by
another explicitly stated attribute. The
additive attribute KEYED is implied by the
DIRECT attribute. The additive attribute
PRINT can be implied by the standard output
file name SYSPRINT. An additive attribute
can never be implied by default.

~ With the exception of the INTERNAL
and EXTERNAL scope attributes, all the
alternative and additive attributes imply
the FILE attribute. Therefore, the FILE
attribute need not be specified for a file
that has at least one of the alternative or
additive attributes already specified
explicitly.

ALTERNATIVE ATTRIBUTES

PL/I provides five groups of alternative
file attributes. Each group (except scope,
which is discussed in section I,
"Attributes") is discussed individually.
Following is a list of the groups.

Chapter 10: Input and Output 123

Group Alternative Default
~ Attributes Attribute

Osage STREAM I RECORD STREAM

Function INPUT I OUTPUT I UPDATE INPUT

Access SEQUENTIAL I DIRECT I SEQUENTIAL
TRANSIENT

Buffering BUFFERED I UNBUFFERED BUFFERED
(for
SEQUENTIAL
and
TRANSIENT
files);
UNBUFFERED
(for
DIRECT
files)

Scope EXTERNAL I INTERNAL EXTERNAL

The scope attributes are discussed in
detail in section I, "Attributes."

STREAM and RECORD Attributes

The STREAM and RECORD attributes describe
the type of data transmission (stream
oriented or record-oriented) to be used in
input and output operations for the file.

The STREAM attribute causes a file to be
treated as a continuous stream of data
items recorded only in character form.

The RECORD attribute causes a file to be
treated as a sequence of records, each
record consisting of one or more data items
recorded in any internal form.

DECLARE MASTER FILE RECORD,
DETAIL FILE STREAM;

INPUT, OUTPUT, and UPDATE Attributes

The function attributes determine the
direction of data transmission permitted
for a file. The INPUT attribute applies to
files that are to be read only. The OUTPUT
attribute applies to files that are to
create or, in some cases, extend data sets.
The UPDATE attribute (which applies only to
RECORD files) describes a file that is to
be used for both input and output; it
allows records to be inserted into an
existing data set and other records already
in that data set to be altered.

124 OS PL/I CKT AND OPT LRM PART I

SEQUENTIAL, DIRECT and TRANSIENT
Attributes

The access attributes apply only to a file
with the RECORD attribute, and describe how
the records in the file are to be accessed.

The SEQUENTIAL attribute specifies that
records in the data set are to be accessed
in physical sequence or in key sequence

I order. For certain data set organizations,
la file with the SEQUENTIAL attribute can
lalso be used for random access or for a
Imixture of random and sequential access.
lIn this case, the file must have the
ladditive attribute KEYED.

The DIRECT attribute specifies that
records in a data set may be accessed in
any order. The location of the record in
the data set is determined by a character
string "key": therefore, the DIRECT
attribute implies the KEYED attribute. The
associated data set must be in a direct
access volume.

The TRANSIENT attribute applies to files
used for teleprocessing applications. A
TRANSIENT file is associated with a data
set which consists of a queue of messages.
The message queue data set contains
messages originating from and destined for
remote terminals while in transit between a
message control program and the PL/I
message processing program. The action of
reading a record removes that record from
the data set. Access is sequential, but
the file must have the KEYED attribute
since a key is used to identity the
terminal concerned; a buffer is always
used, and so the file must also have the
BUFFERED attribute. Teleprocessing is
discussed in chapter 12, "Record-Oriented
Transmission."

BUFFERED and UNBUFFERED Attributes

The buffering attributes apply only to
RECORD files. The BUFFERED attribute
indicates that records transmitted to and
from a file must pass through an
intermediate internal-storage area. If
BUFFERED is specified, data transmission
is, in most cases, overlapped automatically
with processing.

The UNBUFFERED attribute indicates that
a record in a data set need not pass
through a buffer but may be transmitted
directly to and from the main storage
associated with a variable. A file with
the UNBUFFERED attribute must not be
blocked. When UNBUFFERED is specified,
data transmission is not overlapped

automatically with processing; the
p,rogrammer must use the EVENT option to
achieve such overlapping.

The UNBUFFERED attribute is assumed for
DIRECT files unless BUFFERED is specified
explicitly. The UNBUFFERED attribute is
not allowed for TRANSIENT files.

Note: Specification of UNBUFFERED does not
preclude the use of buffers. In nearly all
cases, "hidden buffers" are required.
These cases are listed in the discussion of
the BUFFERED and UNBUFFERED attributes in
section I, "Attributes."

ADDITIVE ATTRIBUTES

The additive attributes are:

PRINT

BACKWARDS

KEYED

EXCLUSIVE

ENVIRONMENT (option-list)

PRINT Attribute

The PRINT attribute applies only to files
with the STREAM and OUTPUT attributes. It
indicates that the file is eventually to be
printed, that is, the data associated with
the file is to appear on printed pages,
although it may first be written on some
other medium. The PRINT attribute causes
the initial byte of each record of the
associated data set to be reserved for a
printer control character.

BACKWARDS Attribute

The BACKWARDS attribute applies only to
SEQUENTIAL RECORD INPUT files and only to
data sets on magnetic tape. It indicates
that a file is to be accessed in reverse
order, beginning with the last record and
proceeding through the file until the first
record is accessed.

KEYED Attribute

The KEYED attribute applies only to files

with the RECORD attribute. It indicates
that records in the file can be accessed
using one of the key options (KEY, KEYTO,
or KEYFROM) of data transmission statements
or of the DELETE statement. Note that the
KEYED attribute does not necessarily
indicate that the actual keys exist on, or
are to be written in, or are to be read
from the data set: consequently, it need
not be specified unless one of the key
options is to be used. The nature and use
of keys is discussed in detail in chapter
12, "Record-Oriented Transmission."

EXCLUSIVE Attribute

When access to a record is restricted to
one task, the record is said to be locked
by that task. The EXCLUSIVE attribute,
which can be specified for DIRECT UPDATE
files only, provides a temporary locking
mechanism to prevent one task from
interfering with an operation by another
task. It can be suppressed by the NOLOCK
option on the READ statement. Figure 10.1
shows the effects of various operations on
an EXCLUSIVE file.

The EXCLUSIVE attribute will also lock a
record on a data set that is shared between
two PLiI jobs in a multi-programming
environment. The effect is as for sharing
between two tasks.

I The EXCLUSIVE attribute, the UNLOCK
I statement, and the NOLOCK option of the
IREAD statement have no effect for a file
lassociated with a VSAM data set.

ENVIRONMENT Attribute

The ENVIRONMENT attribute provides
information that allows the compiler to
determine the method of accessing the data
associated with a file. It specifies the
phySical organization of the data set that
will be associated with the file, and
indicates how the data set is to be
handled.

The general format of the ENVIRONMENT
attribute is

ENVIRONMENT (option-list)

The ENVIRONMENT attribute can be given in a
file declaration or as an option of the
CLOSE statement. When ENVIRONMENT is
specified in a CLOSE statement, the only
option allowed is LEAVE or REREAD.

The options appropriate to the two types of

Chapter 10: Input and output 125

r---,
Attempted I current state of Addressed Record

1---
Operation I Unlocked I Locked by this task I Locked by another task

~--
READ NOLOCK Proceed Proceed Wait for unlock

READ 11. Lock record Proceed Wait for unlock
12. Proceed

DELETE/REWRITE 11. Lock record 11. Proceed Wait for unlock
12. Proceed 12. Unlock1 record
13. Unlock1 record I

UNLOCK No effect Unlock record No effect

CLOSE FILE IRaise ERROR if there are records locked by another task. Otherwise,
lunlock all records locked in this task, and proceed with closing.

Terminate Task IUnlock all records locked by task. Close file, if opened in this taskl
---1

1The unlocking occurs at the end of the operation, on completion of anyon-units I
entered because of the operation (that is, at the corresponding WAIT statement when I
the EVENT option has been specified). If the EVENT option has been specified with a I
READ statement, the operation is not completed until the corresponding WAIT statement I
is reached; in the meantime, no attempt to delete or rewrite the record should be I
made. I

L---J
Figure 10.1. Effect of operations on EXCLUSIVE files

data transmission are described in chapter
11, ·Stream-Oriented Transmission,· and
chapter 12, wRecord-Oriented Transmission,·
both in Part I.

Opening and Closing Files

Before the data associated with a file can
be transmitted by input or output
statements, certain file preparation
activities must occur, such as checking for
the availability of external storage media,
positioning the media, and allocating
appropriate operating system support. Such
activity is known as opening a file. Also,
when processing is completed, the file must
be closed. Closing a file involves
releasing the facilities that were
established during the opening of the file.

PL/I provides two statements, OPEN and
CLOSE, to perform these functions. These
statements, however, are optional. If an
OPEN statement is not executed for a file,
the file is opened automatically before the
first data transmission statement for that
file is executed: in this case, the
automatic file preparation consists of
standard system procedures that use
information about the file as specified in
a DECLARE statement (or assumed from a
contextual declaration derived from the
transmission statement). Similarly, if a

126 OS PL/I CKT AND OPT LRM PART I

file has not been closed before completion
of the task in which the file was opened,
the file is closed automatically upon
completion of the task.

When a file for stream input, sequential
input, or sequential update is opened, the
associated data set is positioned at the
first record. When a BACKWARDS file is
opened, the associated data set is
positioned at the last record.

OPEN Statement

Execution of an OPEN statement causes one
or more files to be opened explicitly. The
.oPEN statement has the following basic
format:

OPEN FILE (file-expression) (option group]
[,FILE(file-expression) [option
group]] ••• ;

The option.list of the OPEN statement can
specify any of the alternative and additive
attributes, except ENVIRONMENT, INTERNAL,
and EXTERNAL. Attributes included as
options in the OPEN statement are merged
with those stated in a DECLARE statement.
The same attributes need not be listed in
both an OPEN statement and a DECLARE
statement for the same file, and, of
course, there must be no conflict. other

options that can only appear in the OPEN
statement are the TITLE option, used to
associate the file with the data set, and
the PAGESIZE and LINESIZE options, used to
specify the layout of a data set. The
TITLE option is discussed below under
"Associating Data Sets with Files,· and the
PAGESIZE and LINESIZE options, which apply
only to STREAM files, in chapter 11,
"Stream-oriented Transmission.- The option
list may precede the FILE (file expression)
specification.

The OPEN statement is executed by
library routines that are loaded
dynamically at the time the OPEN statement
is executed. Consequently, execution time
can be reduced if more than one file is
specified in the same OPEN statement, since
the routines need be loaded only once,
regardless of the number of files being
opened. Note, however, that such multiple
opening may require temporarily more
internal storage than might otherwise be
needed.

For a file to be opened explicitly, the
OPEN statement must be executed before any
of the input and output statements listed
below in -Implicit Opening" are executed
for the file.

Implicit Opening

An implicit opening of a file occurs when
one of the statements listed below is
executed for a file for which an OPEN
statement has not already been executed.
The type of statement determines which
unspecified alternatives are applied to the
file when it is opened.

The following list.contains the
statement identifiers and the attributes
deduced from each:

statement Identifier Attributes Deduced

GET STREAM, INPUT

POT STREAM, OUTPUT

READ RECORD, INPUT

WRITE RECORD, OUTPUT

LOCATE RECORD, OUTPUT,
SEQUENTIAL, BUFFERED

REWRITE RECORD, UPDATE

DELETE RECORD, UPDATE

UNLOCK RECORD, DIREC'I',
UPDATE, EXCLUSIVE

Notes:

1. INPUT and OUTPUT are deduced from READ
and WRITE only if UPDATE has not been
explicitly declared.

2. If a GET statement contains a COPY
option, execution of the GET statement
causes implicit opening of either the
specified file as a STREAM OUTPUT file
or the standard output file SYSPRINT.

An implicit opening caused by one of the
above statements is equivalent to preceding
the statement with an OPEN statement that
specifies the deduced attributes.

Merging of Attributes

There must be no conflict between t. he
attributes specified in a file declaration
and the attributes merged as the result of
opening the file. For example, the
attributes INPUT and UPDATE are in
conflict, as are the attributes UPDATE and
STREAM.

After the attributes are merged, the
attribute implications listed below are
applied prior to the application of the
default attributes discussed eariier.
Implied attributes can also cause a
conflict. If a conflict in attributes
exists after the application of default
attributes, the UNDEFINEDFILE condition is
raised.

Following is a list of merged attributes
and attributes that each implies after
merging:

Merged Attributes

UPDATE

SEQUENTIAL

DIRECT

BUFFERED

UNBUFFERED

PRINT

BACKWARDS

KEYED

EXCLUSIVE

Implied Attributes

RECORD

RECORD

RECORD, KEYED

RECORD

RECORD

OUTPUT, STREAM

RECORD,
SEQUENTIAL,
INPUT

RECORD

RECORD

The following two examples illustrate
attribute merging for an explicit opening

Chapter 10: Input and output 127

using a file constant and a file variable.

File constant:

DECLARE LISTING FILE STREAM;

OPEN FILE (LISTING) PRINT;

Attributes after merge due to execution of
the OPEN statement are STREAM and PRINT.
Attributes after implication are STREAM,
PRINT, and OUTPUT. Attributes after
default application are STREAM, PRINT,
OUTPUT, and EXTERNAL.

File variable:

DECLARE ACCOUNT FILE VARIABLE,
(ACCT1,ACCT2, •••) FILE

OUTPUT:

ACCOUNT = ACCT1:
OPEN FILE (ACCOUNT) PRINT;

ACCOUNT = ACCT2:
OPEN FILE (ACCOUNT) RECORD UNBUFFERED:

The file ACCT1 has been opened with
attributes (by explicit and implicit
declaration) STREAM, EXTERNAL, PRINT, and
OUTPUT. The file ACCT2 has been opened
with attributes RECORD, EXTERNAL, OUTPUT,
SEQUENTIAL, and UNBUFFERED.

The following example illustrates implicit
opening.

DECLARE MASTER FILE KEYED INTERNAL
ENVIRONMENT (INDEXED F
RECSIZE(120) KEYLEN(S»:

READ FILE (MASTER) INTO
(MASTER_RECORD) KEYTO(MASTER_KEY):

Attributes after merge due to the opening
caused by execution of the READ statement
are KEYED, INTERNAL, RECORD, and INPUT.
Attributes after implication are KEYED,
INTERNAL, RECORD, and INPUT (no additional
attributes are implied). Attributes after
default application are KEYED, INTERNAL,
RECORD, INPUT, SEQUENTIAL, and BUFFERED.

Associating Data Sets with Files

With batch processing under the OS, the
association of a file with a specific data

128 OS PL/I CRT AND OPT LRM PART I

set is accomplished using job control
language, outside the PLII program. At the
time a file is opened, the PL/I file name
is aSSOCiated with the name (ddname) of a
data definition statement (DD statement),
Which is, in turn, associated with the name
of a specific data set (dsname). Notethat
the direct association is with the n~me of
a DD statement, not with the name of the
data set itself.

A ddname can be associated with a PL/I
file either through the file name or
through the character-string value of the
expression in the TITLE option of the
associated OPEN statement.

If a file is opened implicitly, or if no
TITLE option is included in the OPEN
statement that causes explicit opening of
the file, the ddname is assumed to be the
same as the file name. If the file name is
longer than eight characters, the ddname is
assumed to be composed of the first eight
characters of the file name.

~ Since external names are limited to
seven characters, an external file name of
more than seven characters is shortened
into a concatenation of the first four and
the last three characters of the file name.
Such a shortened name is not, however, the
name used as the ddname in-the associated
DO statement.

Consider the following statements:

1. OPEN FILECMASTER):

2. OPEN FILE(OLDMASTER):

3. READ FILECDETAIL) ••• :

When statement number 1 is executed, the
file name MASTER is taken to be the same as
the ddname of a DD statement in the current
job step. When statement number 2 is
executed, the name OLDMASTE is taken to be
the same as the ddname of a DD statement in
the current job step. (The first eight
characters of a file name form the ddname.
Note, that if OLDMASTER is an external
name, it will be shortened by the compiler
to OLDMTER for use within the program.) If
statement number 3 causes implicit opening
of the file DETAIL, the name DETAIL is
taken to be the same as the ddname of a DD
statement in the current job step.

In each of the above cases, a
corresponding DO statement must appear in
the job stream: otherwise, the
ONDEFINEDFILE condition would be raised.
The three DO statements would appear, in
part, as follows:

1. //MASTER DD DSNAME= •••

2. / /OLDMASTE DD DSNAME= •••

3. //DETAIL DD DSNAME= •••

If a file is opened explicitly by an
OPEN statement that includes a TITLE
option, the ddname is taken from the TITLE
option, and the file constant is not used
outside the program. The TITLE option
appears in an OPEN statement in the
following format:

OPEN FILECfile-expr) TITLECexpression):

The expression in the TITLE option is
evaluated and, if necessary, converted to a
character string, which is assumed to be
the ddname identifying the appropriate data
set. If the character string is longer
than eight characters, only the first eight
characters are used. The following OPEN
statement illustrates how the TITLE option
might be used:

OPEN FILECDETAIL) TITLEC'DETAIL1'):

If this statement were executed, there must
be a DD statement in the current job step
with DETAILl as its ddname. It might
appear, in part, as follows:

//DETAILl DD DSNAME=DETAILA, •••

Thus, the data set DETAILA is associated
with the file DETAIL through the ddname
DETAIL1.

Although a data set name represents a
specific collection of data, the file name
can, at different times, represent entirely
different data sets. In the above example
of the OPEN statement, the file DETAIL! is
associated with the data set named in the
DSNAME parameter of the DD statement
DETAIL1. If the file were closed and
reopened, a TITLE option specifying a
different ddname coUld be used, and then
the file could be associated with a
different data set.

If the file expression in the statement
which explicitly or implicitly opens the
file is not a file constant, then the DD
statement name must be the same as the
!:!l!!! of the file expression. The
following example illustrates how a DO
statement should be associated with the
value of a file variable.

PRICES = RPRICE:

OPEN FILECPRICES):

The DO card should associate the data set
with the file constant RPRICE, which is the
value of the file variable PRIC!S, thus:

//RPRICE DD DSNAME= •••

Use of the TITLE option allows a
programmer to choose dynamically, at open
time, one among several data sets to be
associated with a particular file name.
Consider the following example:

DECLARE 1 INREC, 2 FIELD 1 ••• ,
2 FILE_IOENT CHARACTER(8),

DETAIL FILE INPUT ••• ,
MASTER FILE INPUT ••• :

OPEN FILECDETAIL):

READ FILE (DETAIL) INTO CINREC):

OPEN FILE (MASTER) TITLE(FILE_IDENT):

Assume that the program containing these
statements is used to process several
different detail data sets, each of which
has a different corresponding master data
set. Assume, further, that the first
record of each detail data set contains, as
its last data item, a character string that
identifies the appropriate master data set.
The following DD statements might appear in
the current job step:

//DETAIL DD DSNAME= •••

/ /MASTERIA DO OSNAME=MASTERIA •••

//MASTERIB DD OSNAME=MASTERlB •••

/ /MASTERlC 00 OSNAME=MASTERlC •••

In this case, MASTERlA, MASTERlB, and
MASTER1C represent three different master
files. The first record of DETAIL would
contain as its last item, either
'MASTERIAI , 'MASTERIB', or 'MASTER1C',
which is aSSigned to the character-string
variable FILE IDENT. When the OPEN
statement is executed to open the file
MASTER, the current value of FILE IDENT
would be taken to be the ddname, and the
appropriate data set identified by that
ddname would be associated with the file
name MASTER.

Another similar use of the TITLE option
is illustrated in the follOWing statements:

DeL IDENT(3) CHAR(1)
INIT (I A', I B " I C') :

DO I = 1 TO 3;

END:

OPEN FILECMASTER)
TITLEC'MASTERI I IIIDENTCI»:

CLOSE FILE (MASTER) ;

In this exampie, IDENT is declared as a
character-string array with three elements
having as values the specific character
strings lA', IBI, and IC'. When MASTER is

Chapter 10: Input and output 129

opened during the first iteration of the
DO-group, the character constant 'MASTER1'
is concatenated with the value of the first
element of IDENT, and the associated ddname
is taken to be MASTER1A. After processing,
the file is closed, dissociating the file
name and the ddname. During the second
iteration of the group, MASTER is opened
again. This time, however, the value of
the second element of IDENT is taken, and
MASTER is associated with the ddname
MASTER1B. Similarly, during the final
iteration of the group, MASTER is
associated with the ddname MASTER1C.

Note: The character set of the job control
language does not contain the break
character (_). Consequently, this
character cannot appear in ddnames. Care
should thus be taken to avoid using break
characters among the first eight characters
of file names, unless the file is to be
opened with a TITLE option with a valid
ddname as its expression. The alphabetic
extender characters $, a, and #, however,
are valid for ddnames, but the first
character must be one of the letters A
through z.

Use of a file variable also allows a
number of files to be manipulated at
various times by a Single statement. For
example:

DECLARE F FILE VARIABLE,
A FILE,
B FILE,
C FILE:

F=A:
LAB: READ FILE (F) ,

F=B:
GO TO LAB:

F=C:
GO TO LAB;

The statement labeled LAB is used to read
the three files A, B, and C, each of which
may be associated with a different data
set. Note that the files A, B, and C
remain open after the READ statement bas
been executed in each instance. When a
number of data sets is to be accessed by a
single statement, use of a file variable
rather than the TITLE option may improve
program efficiency by allowing a file for
each data set to remain open for as long as
it is required by the program. Using the
TITLE option could necessitate closin9 and
reopening a file whenever it is to be
associated with a new data set.

130 OS PL/I CKT AND OPT LRM PART I

CLOSE Statement

The basic torm of the CLOSE statement is:

CLOSE FILE (file-expr) (ENVIRONMENT
({LEAVEIREREAD})]

(,FILE (file-expr) (ENVIRONMENT
({LEAVEIREREAD})]] ••• :

Executing a CLOSE statement dissociates the
specified file from the data set with which
it became associated when the file was
opened. The CLOSE statement also
dissociates from the file all attributes
established for it by the impliCit or
explicit opening process. If desired, new
attributes may be specified for the file
constant in a subsequent OPEN statement.
Howe~er, all attributes expliCitly given to
the file constant in a DECLARE statement
remain in effect.

AS with the OPEN statement, closing more
than one file with a Single CLOSE statement
can save execution time, but it may require
the temporary use of more internal storage
than would otherwise be needed.

The LEAVE and REREAD options are used to
control the disposition of magnetic tapes.

Note: Closing an already closed file or
opening an already opened file has no
effect apart fram increaSing the execution
time of the pro9ram.

STANDARD FILES

TWo standard files are provided that can be
used by any PL/I program. One is the
standard input file SYSIN, and the other is
the standard output file SYSPRINT. These
files need not be declared or opened
explicitly: a standard set of attributes is
applied automatically. For SYSIN, the
attributes are STREAM INPQT, and for
SYSPRINT they are STREAM OUTPUT PRINT.
Both file names, SYSIN and SYSPRINT, are
assumed to have the EXTERNAL attribute,
even though SYSPRINT contains more than
seven characters.

The FILE option need not be specified in
GET and PUT statements when these files are
to be used. GET and PUT statements that do
not name a file are equivalent to:

GET FILE(SYSIN) ••• :

PUT FILE (SYSPRINT) •••. ;

Any other references to SYSIN and SYSPRINT
(such as in ON statements or in record
oriented statements) must be stated

explicitly.

Under the optimizing compiler, the
identifiers SYSIN and SYSPRINT are not
reserved for the specific purposes
described above. They can be used for
other purposes besides identifying standard
files. other attributes can be applied to
them, either explicitly or contextually,
but the PRINT attribute is applied
automatically to SYSPRINT when it is
declared or opened as a STREAM OUTPUT file
unless the INTERNAL attribute is declared
for it.

Under the checkout compiler, the file
SYSPRINT is used for diagnostic messages,
and the file SYSIN may be used to hold the
source program. When the compiler uses one
of the files, the file is opened with
certain attributes that may not be altered;
the programmer consequently needs to
exercise care if he declares SYSPRINT or
SYSIN explicitly. Full details of the
restrictions are given in the programmer's
guide for the checkout compiler.

Even under the optimizing compiler, care
must be taken when SYSIN or SYSPRINT is
declared as anything other than a STREAM
file. The compiler causes, in effect, the
identifier SYSIN to be inserted into each
GET statement in which no file constant is
explicitly stated and the identifier
SYSPRINT to be inserted into each PUT
statement in which nO file constant is
explicitly stated. consequently, the
following would be in error:

DECLARE (SYSIN,SYSPRINT) FIXED
DECIMAL (4,2);

GET LIST (A,B,C);
PUT LIST (D,E,F);

The identifier SYSIN would be inserted into
the GET statement, and SYSPRINT in the PUT
statement. In this case, however, they
would not refer to the standard files, but
to the fixed-point variables declared in
the block.

Chapter 10: Input and output 131

Chapter 11: Stream-Oriented Transmission

This chapter describes the input and output
statements used in stream-oriented
transmission. Those features that apply
equally to stream-oriented and record
oriented transmission, including files,
file attributes, and opening and closing
files, are described in chapter 10, "Input
and Output".

In stream-oriented transmission, a data
set is treated as a continuous stream of
data items in character form; within a
program, block and record boundaries are
ignored. However, a data set is considered
to consist of a series of lines of data,
and each data set that is created or
accessed by stream-oriented transmission
has a line size associated with it. In
general, a line is equivalent to a record
in the data set; however, the line size
does not necessarily equal the record size.

There are three modes of stream~oriented
transmission: list-directed, data
directed, and edit-directed. The
transmission statements used in all three
modes require the following information:

1. The name of the file associated with
the data set from which data is to De
obtained or to which data is to be
assigned.

2. A list of program variables to which
data items are to be assigned during
input or from which data items are to
be obtained during output. This list
is called a data list. On output in
list- and edit-directed modes, the
data list can also include
expressions.

3. For edit-directed mode, the format of
each data item in the stream.

Under certain conditions some of this
required information can be implied.

LIST-DIRECTED TRANSMISSION

List-directed transmission permits the user
to read and write out data without having
to specify the format of the items in the
stream.

Input: In general, the data items in the
stream are character strings in the form of
optionally signed valid constants or in the
form of expressions that represent complex

constants. The variables to which the data
items are to be assigned are specified by a
data list. Items are separated by a comma
and/or one or more blanks.

output: The data values to be transmitted
are specified by a variable, a constant, or
an expression that represents a data item.
Each data item placed in the stream is a
character-string representation that
reflects the attributes of the variable.
Items are separated by one or more blanks.
Leading zeros of arithmetic data are
suppressed. Binary items are expressed in
decimal representation.

For PRINT files, data items are
automatically aligned on implementation
defined preset tab positions. These
positions are 1, 25, 49, 73, 97, and 121,
but provision is made for the programmer to
alter these values.

DATA-DIRECTED TRANSMISSION

Data-directed transmission permits the user
to transmit self-identifying data.

Input: Each data item in the stream is in
the form of an assignment that specifies
both the value and the variable to which it
is to be assigned. In general, values are
in the form of constants. Items are
separated by a comma and/or one or more
blanks. A semicolon must end ~ach group of
items to be accessed by a single GET
statement. A data list in the GET
statement is optional, since the semicolon
determines the number of items to be
obtained from.the stream. (These rules are
slightly amended when the program is
initiated and data entered from a terminal
under TSO. Details are given in the
following OS publications: Time
Sharing Option: PL/I Optimizing Compiler
and Time Sharing Option: PL/I Checkout
Compiler.)

output: The data values to be transmitted
may be specified by an optional data list.
Each data item placed in the stream has the
form of an assignment statement without a
semicolon. Items are separated by one or
more blanks. The last item transmitted by
each PUT statement is followed by a
semicolon. Leading zeros of arithmetic
data are suppressed. The character
representation of each value reflects the
attributes of the variable, except for

Chapter 11: Stream-oriented Transmission 133

binary items, which appear as values
expressed in decimal notation.

If the data list is omitted, it is
assumed to specify all variables that are
known within the block containing the
statement and are permitted in data
directed output.

For PRINT files, data items are
automatically aligned on the
implementation-defined preset tab positions
referred to under "List-Directed
Transmission".

EDIT-DIRECTED TRANSMISSION

Edit-directed transmission permits the user
to specify the variables to which data is
to be assigned or to specify data to be
transmitted, and to specify the format for
each item on the external medium.

Input: Data in the stream is a continuous
string of characters; different data items
are not separated. The variables to which
the data is to be assigned are specified by
a data list. Format items in a format list
specify the number of characters that
contain the value to be assigned to each
variable and describe characteristics of
the data (for example, the assumed location
of a decimal point). (These rules are
slightly amended when the program is
initiated and data entered from a terminal
under TSO. Details are given in the
following OS publications: OS Time
Sharing Option: PL/I Optimizing Compiler
and OS Time Sharing Option: PL/I Checkout
Compiler.)

output: The data values to be transmitted
are defined by a data list. The format
that the data is to have in the stream is
defined by a format list.

Data Transmission Statements

Stream-oriented transmission uses only one
input statement, GET, and one output
statement, PUT. A GET statement gets the
next series of data items from the stream,
and a PUT statement puts a specified set of
data items into the stream. The variables
to which data items are aSSigned, and the
variables or expressions from which they
are transmitted, are generally specified in
a data list with each GET or PUT statement.
The statements may also include options
that specify the origin or destination of
the data or indicate where it appears in
the stream relative to the preceding data.

134 OS PL/I CKT AND OPr LRM PART I

The following is a summary of the
stream-oriented data transmission
statements and their options:

STREAM INPUT:

GET ({FILE (file-expression)} I{STRING
(character-string-expression)}]

(data-specification]
(COPY(file-expression)]]
[SKIP (expression)]];

Note that neither the COpy option nor SKIP
option can be used with the STRING option
in a GET statement.

STREAM OUTPUT:

PUT ({FILE (file-expression)} I{STRING
(character-string-variable)}]

(data-specification]
[SKIP (expression)]];

Note that the SKIP option cannot be used
with the STRING option in a PUT statement.

STREAM OUTPUT PRINT:

PUT [FILE (file-expression)]
[data-specification]

[

PAGE(LINE(eXpreSSiOn)]]
SKIP(expression)]
LINE (expression) ;

The options may appear in any order. The
data specification can have one of the
following forms:

[LIST] (data-list)

DA'IA [(data-list)]

EDIT {(data-list) (format-list)} ••.

SNAP

FLOW

ALL [(character-string-expression)]

If a GET or PUT statement includes a data
list that is not preceded by one of the
keywords LIST, DATA, or EDIT, then LIST is
assumed. In such a statement, the data
list must immediately follow the GET or PUT
keyword; any options required must be
specified after the data list.

The SNAP, FLOW and ALL options in the data
specification cause information about the
program to be put into the stream. These
options can only be used in a PUT
statement. The information is provided
only if the PUT statement is processed by
the PL/I checkout compiler; if such a PUT
statement is included in a program that is
processed by the PL/I optimizing compiler,
these options are checked for syntax errors

and then ignored. The use of the options
is described in chapter 15, "Execution-Time
Facilities of the PL/I Checkout compiler".

The data specification can be omitted only
if one of the control options (PAGE, SKIP,
or LINE) appears. Format lists may use any
of the following format items:

A,B,C,E,F,
P,R,X

SKIP [(w)]
COLUMN (w)

PAGE
LINE (w)

which may be used with
any STREAM or
STRING option

which may be used with
any STREAM file

which may be used with
STREAM OUTPUT PRINT
files

The statements are discussed individually
in detail in section J, "Statements".

Options of Transmission Statements

FILE and STRING options

The FILE option specifies the file upon
which the operation is to take place. The
STRING option allows GET and PUT statements
to be used to transmit data between
internal storage locations rather than
between internal and external storage. If
neither the FILE option nor the STRING
option appears in a GET statement, the
standard input file SYSIN is assumed; if
neither option appears in a PUT statement,
the standard output file SYSPRINT is
assumed.

Examples of the use of the FILE option
are given in some of the statements below.
Chapter 13, "Editing and String Handling",
illustrates the use of the STRING option.

COpy Option

The COpy option may appear only in a GET
FILE statement. It specifies that the
stream is to be written, exactly as read,
onto the file named in the COpy
specification. If no file name is given,
the default is the standard output file
SYSPRINT. For example, the statement:

GET FILE(SYSIN) DATA(A,B,C) COPY(DPL);

not only transmits the values assigned to
A, B, and C in the input stream to the
variables with these names, but also causes
them to be written, exactly as they appear

in the input stream, On the file DPL. If
they were written, by default, on the
SYSPRINT file, they would appear in data
directed format. Data items that are
Skipped on input, and not transmitted to
internal variables, are copied intact into
the output stream.

SKIP Option

The SKIP option specifies a new current
line (or record) within the data set. The
parenthesized expression is converted to an
integer~. The data set is positioned to
the start of the wth line (record) relative
to the current line (record).

For non-PRINT files, if the expression
is omitted or if w is not greater than
zero, a value of 1 is assumed. For PRINT
files, if ~ is less than or equal to zero,
the effect is that of a carriage return
with the same current line; if the
expression is omitted, 1 is assumed.

The SKIP option takes effect before the
transmission of any values defined by the
data specification, even if it appears
after the data specification. Thus, the
statement:

PUT LIST(X,Y,Z) SKIP(3);

causes the values of the variables X, Y,
and Z to be printed on the standard output
file SYSPRINT commencing on the third line
after the current line.

When printing at a terminal in
conversational mode, SKIP(w) with ~ greater
than 3 is equivalent to SKIP(3). In other
words, no more than three lines may be
skipped.

PAGE Option

The PAGE option can be specified only for
PRINT files. It causes a new current page
to be defined within the data set. The
PAGE option takes effect before the
transmission of any values defined by the
data specification (if any>, even if it
appears after the data specification.

When printing at a termdnal in
conversational mode, the PAGE option causes
three lines to be skipped.

Chapter 11: Stream-oriented Transmission 135

LINE option

The LINE option can be specified only for
PRINT files. It causes blank lines to be
inserted so that the next line will be the
wth line of the current page, where w is
the va1ue of the parenthesized expression
when converted to an integer. The LINE
option takes effect before the transmission
of any values defined by the data
specification (if any), even if it follows
the data specification. If both the PAGE
option and the LINE option appear in the
same statement, the PAGE option is applied
first. For example, the statement

PUT FILE(LIST) DATA(P,Q,R) LINE(34) PAGE;

causes the values of the variables P, Q,
and R to printed in data-directed format on
a new page, commencing at line 34.

When printing at a terminal in
conversational mode, the LINE option always
causes three lines to be skipped.

Data Specifications

Data specifications are given in GET and
PUT 'statements to identify the data to be
transmitted.

DATA LISTS

List-directed and edit-directed data
specifications require a data list to
specify the data items to be transmitted.
A data list is optional for a data-directed
data specification.

General format:

(data-list)

where -data list- is defined as:

element [,element] •••

Syntax .rules:

The nature of the elements depends upon
whether the data list is used for input or
for output. The rules are as follows:

1. On input, a data-list element for
edit-directed and list-directed
transmission can be one of the
following: an element, array, or
structure variable, a pseudovariable
other than STRING, or a repetitive
specification (similar to a repetitive

136 OS PL/I CKT AND OPT LRM PART I

specification of a DO group) involving
any of these elements. For a data
directed data specification, a data
list element can be an element, array,
or structure variable. None of the
names in a data-directed data list can
be subscripted, locator-qualified, or
iSUB-defined, but qualified (that is,
structure-member), simple-defined, or
string-overlay-defined names are
allowed.

2. On output, a data-list element for
edit-directed and list-directed data
specifications can be one of the
following: an element expression, an
array expression, a structure
expression, or a repetitive
specification involving any of these
elements. For a data-directed data
specification, a data-list element can
be an element, array, Or structure
variable, or a repetitive
specification involving any of these
elements. It must not be locator
qualified or iSUB-defined, but may be
qualified (that is, a member of a
structure), or simple-defined or
string-overlay-defined. Subscripts
are allowed for data-directed output.

3. The elements of a data list can be:

Input: Problem data:

Output: Problem data:

Program control

Arithmetic
string

Arithmetic
String

data: Area
Entry
Event
File
Label
Offset
Pointer
Task

Entry and label constants may not be
specified.

A data list that specifies program
control data can only be used in PUT
DATA or PUT LIST statements that are
to be processed by the checkout
compiler or PUT DATA statements that
are to be processed under the
optimizing compiler. In the latter
case, the name of the variable is
transmitted, but not its value.

4. A data list must always be enclosed in
parentheses.

5. On output, a data list must not
contain more than 60 data items that
are expressions.

r---,
I(element (,elementl ••• DO = specificationl, specificationl •••)
I {Variable }

I pseudovariable
I
I
IA ·specification· has the following format:

II
II
I I
II
II expression1
II
II
II
II

r
ITO
I
IBY
I
I
L_

expression2lBY

expression3(TO

-,
expression3] I

I
expression2JI [WHILE(expression4)]1(UNTIL(expressionS)]

I
REPEAT expression6 I

_J

111 The WHILE and UNTIL options may appear in either order
L--_____ ----------------------------------J
Figure 11.1. General format for repetitive specifications

Repetitive Specification

The general format of a repetitive
specification is shown in figure 11.1.

Syntax rules:

1. An element in the element list of the
repetitive specification can be any of
those allowed as data-list elements as
listed above.

2. The expressions in tbe specification,
which are the same as those in a DO
statement, are described as follows:

a. Each expression in the
specification is an element
expression.

b. In the specification, expression1
represents the starting value of
the control variable or
pseudovariable. Expression3
represents the increment to be
added to the control variable
after each repetition of data-list
elements in the repetitive
specification. Expression2
represents the terminating value
of the control variable.
Expression6 is an expression that
is to be evaluated and assigned to
the control variable after each
repetition. Expression4 and
expressionS represent further
conditions to control the number
of repetitions. The exact meaning
of the specification is identical
to that of a DO statement with the
same specification. When the last
specification is completed,
control passes to the next element
in the data list.

3. Each repetitive specification must be
enclosed in parentheses, as shown in
the general format. Note that if a
repetitive.specification is the only
element in a data list, two sets of
outer parentheses are required, since
the data list must have one set of
parentheses and the repetitive
specification must have a separate
set.

4. As figure 11.1 shows, the
·specification· portion of a
repetitive specification can be
repeated a number of times, as in the
followi:ng form:

DO I = 1 TO 4, 6 TO 10;

Repetitive specifications can be
nested; that ,I. is, an element of a
repetitive specification can itself be
a repetitive specification. Each DO
portion must be delimited on the right
with a right parenthesis (with its
matching left parenthesis added to the
beginning of the entire repetitive
specification) •

When DO portions are nested, the
rightmost DO is at the outer level of
nesting. For example, consider the
follOWing statement:

GET LIST «(A(I,J) DO I = 1 TO 2)
DO J = 3 TO 4»;

Note the three sets of parentheses, in
addition to the s~t used to delimit
the subscript. The outermost set is
the set required by the data list~ the
next is that required by the outer
repetitive specification. The third
set of parentheses is that required by
the inner repetitive specification.
This statement is equivalent to the

Chapter 11: Stream-oriented Transmission 131

following nested DO-groups:

DO J = 3 TO 4;
DO I = 1 TO 2;
GET LIST CA CI,J»;
END;

END;

It gives values to the elements of the
array A in the following order:

AC1,3), AC2,3), AC1,4), A(2,Q)

Under the optimizing compiler, the
maximum permissible level of nesting
is 50. There is no such limdt under
the checkout compiler.

Note: Although the DO keyword is used in
the repetitive specification, a
corresponding END statement is not allowed.

Transmission of Data-List Elements

If a data-list element is of complex mode,
the real part is transmitted before the
imaginary part.

If a data-list element is an array
variable, the elements of the array are
transmitted in row-major order, that is,
with the rightmost subscript of the array
varying most frequently.

If a data-list element is a structure
variable, the elements of the structure are
transmitted in the order specified in the
structure declaration.

For example, if a declaration is:

DECLARE 1 A (10), 2 B, 2 C;

then the statement:

PUT FILE(X) LIST(A);

would result in the output being ordered as
follows:

A.B(l) A.C(l) A.B(2) A.C(2) A.B(3)
A.C(3) ••• etc.

If, however, the declaration had been:

DECLARE 1 A, 2 B(lO), 2 CCIO);

then the same PUT statement would result in
the output being ordered as follows:

A.B(l) A.B(2) A.B(3) ••• A.B(10)
A.C(l) A.C(2) A.C(3) ••• A.C(10)

If, within a data list used in an input
statement for list-directed or edit-

138 OS PL/I CRT AND OPr LRM PART I

directed transmission, a variable is
aSSigned a value, this new value is used if
the variable appears in a later reference
in the data list. For example:

GET LIST (N,(XCI) DO 1=1 TO N), J, K,
SUBSTR (NAME, J,K»;

When this statement is executed, data is
transmitted and assigned in the following
order:

1. A new value is aSSigned to N.

2. Elements are aSSigned to the array X
as specified in the repetitive
specification in the order

3.

4.

5.

X(1),X(2), ••• XCN), with the new value
of N used to specify the number of
items to be assigned.

A new value is assigned to J.

A new value is assigned to K.

A substring of length K is assigned to
the string variable NAME, beqinning at
the Jth character.

List-Directed Data Specification

General format for a list-directed data
specification, either input or output is as
follows:

(LIST] (data-list)

The data list is described under -Data
Lists", above. The keyword LIST specifies
the list-directed mode of transmission.

Examples of list-directed data
specifications:

LIST (CARD, RATE, DYNAMIC_FLOW)

LIST «TBICKNESS(DISTANCE)
DO DISTANCE = 1 TO 1000»

LIST CP, Z, N, R)

LIST CA*B/C, (X+Y)**2)

The specification in the last example can
be used only for output, since it contains
values specified by expressions. Such
expressions are evaluated when the
statement is executed, and the result is
placed in the stream.

List-Directed Data in the stream

Problem data in the stream, either input or
output, is of character data type and has
one of the following general forms:

[+1-] arithmetic-constant

character-string-constant

bit-string-constant

[+1-] real-constant{+I-limaginary-constant

A string constant must be one of the two
permitted forms listed above; iteration and
string repetition factors are not allowed.
A blank must not follow a sign preceding a
real constant, and must not precede or
follow the central + or - in complex
expressions.

The format of program control data is
described in chapter 15, RExecution-time
Facilities of the Checkout Compiler-.

List-Directed Input Format

When the data named is an array, the data
consists of constants, the first of which
is assigned to the first element of the
array, the second constant to the second
element, etc., in row-major order.

A structure name in the data list
represents a list of the contained element
variables and arrays in the order specified
in the structure description.

On input, data items in the stream must
be separated either by a blank or by a
comma. This separator may be surrounded by
an arbitary number of blanks. A null field
in the stream is indicated either by the
first non-blank character in the data
stream being a comma, or by two commas
separated by an arbitrary number of blanks.
A null field specifies that the value of
the associated item in the data list is to
remain unchanged.

The transmission of the list of
constants on input is terminated by
expiration of the list or at the end of the
file. In the former case, the file is
pqsitioned in the stream ready for the next
GET statement. More than one blank can
separate two data items, and a comma
separator may be preceded or followed by
one or more blanks.

I If the items are separated by a comma,
,then the first character to be scanned when
Ithe next GET statement is executed will be

Ithe one immediately following the comma: , ,
I ,

Xbb,bbbXX
t

I If the items are separated by blanks
,only, the first item scanned will be the
Inext non-blank character: , ,
I
1

XbbbbXXX
t

, unless the end of the record is
I encountered, in which case the file is
positioned at the end of the record:

Xbb-bbXXX
t

However, if the end of the record
immediately follows a non-blank character
(other than a comma), and the following
record begins with blanks, the file is
positioned at the first non-blank character
in the following record:

X-bbbXXX
t

If the record does terminate with a
comma, the succeeding record is not read in
until the next GET statement requires it.

If the data is a character-string
constant, the surrounding quotation marks
are removed, and the enclosed characters
are interpreted as a character string.

If the data is a bit-string constant,
enclosing quotation marks and the trailing
character B are removed, and the enclosed
characters are interpreted as a bit string.

If the data is an arithmetic constant or
complex expression, it is interpreted as
coded arithmetic data with the base, scale,
mode, and precision implied by the
constant.

List-Directed output Format

The values of the element variables and
expressions in the data list are converted
to character representations and
transmitted to the data stream. The
conversions follow the normal rules for
arithmetic to character conversions, except
that floating-point items are not rounded.

A blank separabes successive data items
transmitted. (For PRINT files, items are
separated according to program tab
settings.)

The length of the data field placed in

Chapter 11: stream-oriented Transmission 139

the stream is a function of the attributes
of the data item, including precision and
length. Detailed discussions of the
conversion rules and their effect upon
precision are listed in the descriptions of
conversion to character type in section F,
-Data Conversion and Expression
Evaluation".

Binary data items are converted to
decimal notation before being placed in the
stream.

For numeric character values, the
character-string value is transmitted.

Bit strings are converted to character
representation of bit-string constants,
consisting of the characters 0 and 1,
enclosed in quotation marks, and followed
by the letter B.

Character strings are written out as
follows. If the file does not have the
attribute PRINT, enclosing quotation marks
are supplied, and contained single
quotation marks or apostrophes are replaced
by two quotation marks. The field width is
the current length of the string plus the
number of added quotation marks. If the
file has the attribute PRINT, enclosing
quotation marks are not supplied, and
contained single quotation marks or
apostrophes are unrnodi~ied. The field
width is the current length of the string.

Data-Directed Data Specification

General format for a data-directed data
specification, either for input or output,
is as follows:

DATA[(data-list)]

General rules:

1. The data list is described in "Data
Lists" in this chapter. For input,
the data list cannot contain
subscripted names. Names of structure
elements in the data list need only
have enough qualification to resolve
any ambiguity; full qualification is
not required. On input, if the stream
contains an unrecognisable element
variable or a name that does not have
a counterpart in the data list, the
NAME condition is raised.

2. Omission of the data list implies that
a data list is assumed. This assumed
data list contains all the names that
are known to the block and to any
containing blocks.

140 as PL/I CKT AND OPT LRM PART I

On input, if the stream contains an
unrecognisable element-variable or an
unknown name, the NAME condition is
raised. If the assumed data list
contains a name that is not included
in the stream, the value of the
associated variable remains unchanged.

On output, all items in the assumed
data list are transmitted. Where two
or more blocks containing the PUT
statement each have declarations of
items which have the same name, all
the items will be transmitted, the
known item appearing first.

3. Recognition of a semicolon or an end
of-file in an input stream causes
transmission to cease, whether or not
a data list is specified. On output,
a semicolon is written into the stream
after the last data item transmitted
by each PUT statement.

Data-Directed Data in the Stream

The data in the stream associated with
data-directed transmission is in the form
of a list of element assignments. For
problem data, they have the following
general format (the optionally signed
constants, like the variable names and the
equal signs, are in character form):

element-variable = data value
[{bl,Jelement-variable = data
value] ••• ;

General rules for problem data:

1. The element variable may be a
subscripted name. Subscripts must be
optionally signed decimal integer
constants.

2. On input, the element assignments may
be separated by either a blank (~ in
the above format) or a comma.
Redundant blanks are ignored. On
output, the assignments are separated
by a blank. (For PRINT files, items
are separated according to program tab
settings.)

3. Each data value in the stream has One
of the forms described for list
directed transmission.

4. On input a semi-colon following an
element assignment terminates the list
of element assignments to be
transmitted by the execution of a
single GET DATA statement, and thereby
determines the number of element
aSSignments that are actually

transmitted by a particular statement.
On output a semi-colon is transmitted
on completion of a PUT DATA statement.

5. Locator qualifiers cannot appear in
the stream. The locator qualifier
declared with the based variable is
used to establish the generation.
Based variables that have not been
declared with a locator qualifier
cannot be transmitted.

Under the optimizing compiler, the
following restrictions apply to based
variables in the data list:

a. The variable must not be based on
an OFFSET variable.

b. The variable must not be a member
of a structure declared with the
REFER option.

c. The pointer on which the variable
is based must not be based,
defined, or a parameter, and it
must not be a member of an array
or structure.

6. Under the optimizing compiler, defined
variables in the data list must not
have been defined:

a. On a controlled variable.

b. On an array with one or more
adjustable bounds.

c. With a POSITION attribute that
specifies other than a constant.

Data-Directed Data Specification for
Input

General rules for data-directed input:

1. If the data specification does not
include a data list, the names in the
stream may be any names known at the
point of transmission. Qualified
names in the input stream must be
fully qualified. The name must not
contain mOre than 256 characters.

2. If a data list is used, each element
of the data list must be an element,
array, or structure variable. Names
cannot be subscripted, but qualified
names are allowed in the data list.
All names in the stream should appear
in the data list; however, the order
of the names need not be the same, and
the data list may include names that
do not appear in the stream. For
example, consider the following data

list, where A, B, C, and D are names
of element variables:

DATA (B, A, c, D)

This data list may be associated with
the following input data stream:

A= 2.5, B= .0047, D= 125, Z= 'ABC';

Note: C appears in the data list but
not in the stream: its value remains
unaltered. Z, which is not in the
data list, raises the NAME condition.

3. If the data list includes the name of
an array, subscripted references to
that array may appear in the stream
although subscripted names cannot
appear in the data list. The entir~
array need not appear in the stream;
only those elements that actually
appear in the stream will be assigned.
If a subscript is out of range, or is
missing, the NAME condition is raised.

Let X be the name of a two-dimensional
array declared as follows:

DECLARE X (2,3);

Consider the following data list and
input data stream:

Data Specification Input Data Stream

DATA (X) X(l,l)= 7.95,
X(1,2)= 8085,
X(1,3)= 73:

Although the data list has only the
name of the array, the associated
input stream may contain values for
individual elements of the array. In
this case, only three elements are
assigned: the remainder of the array
is unchanged.

4. If the data list includes the names of
structure elements, then fully
qualified names must appear in the
stream, although full qualification is
not required in the data list.
Consider the following structures:

DECLARE 1 CARDIN, 2 PARTNO, 2 DESCRP,
2 PRICE, 3 RETAIL, 3 WHSL;

If it is desired to read a value for
CARDIN. PRICE. RETAIL, the data
specification and input data stream
could have the following forms:

Data Specification Input Data Stream

DATA (CARDIN.RETAIL) CARDIN. PRICE.
RETAIL = 4.28;

Chapter 11: Stream-oriented Transmission 141

5. Interleaved subscripts cannot appear
in qualified names in the stream. All
subscripts must be moved all the way
to the right, following the last name
of the qualified name. For example,
assume that Y is declared as follows:

DECLARE 1 Y{5,5),2 A(10),3 B,
3 C, 3 D;

An element name would have to appear
in the stream as follows:

Y.A.B(2,3,8)= 8.72

The name in the data list could not
contain the subscript.

Data-Directed Data Specification for
Output

General rules for data-directed output:

1. An element of the data list may be an
element, array, or structure variable,
or a repetitive specification
involving any of these elements or
further repetitive specifications.
Subscripted names can appear. For
problem data, the names appearing in
the data list, together with their
values, are transmitted in the form of
a list of element assignments
separated by blanks and terminated by
a semicolon. (For PRINT files, items
are separated according to program tab
settings.)

The rules applying to program control
data are given in chapter 15,
"Execution-time Facilities of the
Checkout Compiler."

2. Array variables in the data list are
treated as a list of the contained
subscripted elements in row-major
order.

Consider an array declared as follows:

DECLARE X (2,4) FIXED;

If X appears in a data list as
follows:

DATA (X)

on output, the output data stream
would have the form:

X(l,l)= 1 X(1,2)= 2 X(1,3)= 3
X{1,4)= 4 X(2,1)= 5 X,(2,2)= 6
X(2,3)= 7 X(2,4)= 8;

~ In actual output, more than one

142 OS PL/I CRT AND OPTLRM PART I

blank would follow the equal sign. In
conversion from coded arithmetic to
character, leading zeros are converted
to blanks, and up to three additional
blanks may appear at the beginning of
the field.

3. Subscript expressions that appear in a
data list are evaluated and replaced
by their values.

4. Items that are part of a structure
appearing in the data list are
transmitted with the full
qualification, but subscripts follow
the qualified names rather than being
interleaved. For example, if ada~a
list is specified for a structur"e
element transmitted under data
directed output as follows:

DATA (Y(1,-3).Q)

the associated data field in the
output stream is of the form:

Y.Q{1,-3)= 3.756;

5. Structure names in the data list are
interpreted as a list of the contained
element or elements, and any contained
arrays are treated as above.

For example, consider the follOWing
structure:

1 A, 2 B, 2 C, 3 D

If a data list for data-directed
output is as follows:

DATA (A)

and the values of Band Dare 2 and
17, respectively, the associated data
fields in the output stream would be
as follows:

A.B= 2 A.C.D= 17;

6. In the following cases, data-directed
output is not valid for subsequent
data-directed input:

a. When the character-string value of
a riumeric character variable does
not represent a valid optionally
Signed arithmetic constant. For
example, this is always true for
complex numeric character
variables.

b. When a program control variable is
transmitted such a variable must
not be specified in an input data
list.

r---,
AB: PROCEDURE:

Input Stream
DECLARE (A(6), B(7» FIXED;

GET FILE (X) DATA (B):
B(l)=l, B(2)=2, B(3)=3,

B(4)=1, BlS)=2, B(6)=3, B(1)=4;
00 I = 1 TO 6:

A (I) = B (1+1) + B (I):
output Stream

END:
A(l)= 3 A(2)= S A(3)= 4 A(4)= 3

PUT FILE (Y) DATA (A):
A(S)= S A(6)= 1:

END AB;
L---J
Figure 11.2. Example of data-directed transmission (both input and output)

Length of Data-Directed output Fields

The length of the data field on the
external medium is a function of the
attributes declared for the variable and,
since the name is also included, the length
of the fully qualified subscripted name.
The field length for output items converted
from coded arithmetic data, numeric
character data, and bit-string data is the
same as that for list-directed output data,
and is governed by the rules for data
conversion to character type as described
in section F, "Data Conversion and
Expression Evaluation".

For character-string data, the contents
of the character string are written out
enclosed in quotation marks. Each
quotation mark contained within the
character string is represented by two
successive quotation marks.

Example

In the example shown in figure 11.2, A is
declared as a one-dimensional array of six
elements: B is a one-dimensional array of
seven elements. The procedure calculates
and writes out values for All) = B(I+1) +
B(l).

Edit-Directed Data Specification

General format for an edit-directed data
specification, either for input or output,
is as follows:

EDIT {(data-list) (format-list)}
[(data-list) (format-list)] •••

1. The data list, which must be enclosed
in parentheses, is described in "Data
Lists", above. The format list, which
also must be enclosed in parentheses,
contains one or more format items.
There are three types of format items:
data format items, which describe data
in the stream: control format items,
which describe page, line, and spacing
operations; and remote format items,
which specify the label of a separate
statement that contains the format
list to be used. Format lists and
format items are discussed in more
detail in "Format Lists", below.

~ Program-control variables
cannot be specified in data lists for
edit-directed transmission.

2. For input, data in the stream is
considered to be a continuous string
of characters not separated into
indiVidual data items. The number of
characters for each data item is
specified by a format item in the
format list. The characters are
treated according to the associated
format item.

3. For output, the value of each item in
the data list is converted to a format
specified by the associated format
item and placed in the stream in a
field whose width also is specified by
the format item.

4. For either input or output, the first
data format item is associated with
the first item in the data list, the
second data format item with the
second item in the data list, and so
forth. If a format list contains
fewer format items than there are
items in the associated data list, the
format list is re-used; if there are
excessive format items, they are

Chapter 11: Stream-oriented Transmission 143

ignored. Suppose a format list
contains five data format items and
its associated data list specifies ten
items to be transmitted. Then the
sixth item in the data list will be
associated with the first data format
item, and so forth. suppose a format
list contains ten data format items
and its associated data list specifies
only five items. Then the sixth
through the tenth format items will be
ignored.

5. An array or structure variable in a
data list is equivalent to n items in
the data list, where n is the number
of element items in the array or
structure, each of which will be
associated with a separate use of a
data format item.

6. If a control format item is
encountered, the control action is
executed, and the data list item is
paired with the next format item.

7. The specified transmission is complete
when the last item in the data list
has been processed using its
corresponding format item. Subsequent
format items, including control format
items, are ignored.

8. On output, data items are not
automatically separated, but
arithmetic data items generally
include leading blanks because of data
conversion rules and zero suppression.

Examples:

GET EDIT (NAME, DATA, SALARY)
(A(N), X(2), A(6), F(6,2»;

PUT EDIT ('INVENTORY=' IIINUM,INVCODE)
(A,F(5»;

The first example specifies that the first
N characters in the stream are to be
treated as a character string and aSSigned
to NAME; the next two characters are to be
skipped: the next six are to be aSSigned to
DATA in character format: and the next six
characters are to be considered as an
optionally signed decimal fixed-point
constant and aSSigned to SALARY.

The second example specifies that the
character string 'INVENTORY=' is to be
concatenated with the value of INUM and
placed in the stream in a field whose width
is the length of the resultant string.
Then the value of INVCODE is to be
converted to character to represent an
optionally signed decimal fixed-point
integer constant and is then to be placed
in the stream right-adjusted in a field
with a width of five characters (leading

144 OS PL/I CRT AND OPT LRM PART I

characters may be blanks). Note that
values represented by expressions and
constants can appear in output data lists
only.

Format Lists

Each edit-directed data specification must
be associated with a format list.

General format:

(format-list)

where "format list" is defined as:

[:
item 1
n item •••

n (format-list)

item

n item

n (format-list)

Syntax rules:

1. Each "item" represents a format item
as described below.

2. The letter n represents an iteration
factor, which is either an expression
enclosed in parentheses or an unsigned
decimal integer constant. If it is
the latter, a blank must separate the
constant and the following format
item. The iteration factor specifies
that the associated format item or
format list is to be used n successive
times. A zero iteration factor
specifies that the associated format
item or format list is to be skipped
and not used (the data list item will
be associated with the next data
format item). If an expression is
used to represent the iteration
factor, it is evaluated and converted
to an integer, which must be non
negative, once for each set of
iterations. The associated format
item or format list is that item or
list of items immediately to the right
of the iteration factor.

General rule:

There are three types of format items:
data format items, control format items,
and the remote format item. Data format
items specify the external forms that data
fields are to take.' Control format items
specify the page, line, column, and spacing
operations. The remote format item allows
format items to be specified in a separate
FORMAT statement elsewhere in the block.

Detailed discussions of the various

types of format items appear in section E,
-Edit-Directed Format Items-. The
following discussions show how the format
items are used in edit-directed data
specifications.

Data Format Items

On input, each data format item
specifies the number of characters to be
associated with the data item and how to
interpret the external data. The data item
is assigned to the associated variable
named in the data list, with necessary
conversion to conform to the attributes of
the variable. On output, the value of the
associated element in the data list is
converted to the character representation
specified by the format item and is
inserted into the data stream.

There are six data format items: fixed
point (F), floating-point (E), complex (C),
picture (P), character-string (A), and bit
string (B). They are, in general,
specified as follows:

F (w[,d[,p]])

E (w,d[,s])

C (real-format-item [,real-format-item])

P 'picture-specification'

A lew)]

B lew)]

In this list, the letter ~ represents an
expression that specifies the number of
characters in the field. The letter d
specifies the number of digits to the-right
of a decimal point: it may be omitted for
fixed-point integers. The real format item
of the complex format item represents the
appearance of either an F, E or P format
item. The picture specification of the P
format item can be either a numeric
character specification or a character
string specification~ On output, data
associated with E and F format items is
rounded if the internal precision exceeds
the external precision.

A third specification (E) is allowed in
the F format item: it is a scaling factor.
A third specification (!) is allowed in the
E format item to specify the number of
digits that must be maintained in the first
subfield of the floating-point number.
These specifications are discussed in
detail in section E, -Edit-Directed Format
Items-.

~ Fixed-point binary and floating-pOint
binary data items must always be
represented in the input stream with their

values expressed in decimal digits. The F
and E format items may then be used to
access them, and the values will be
converted to binary representation upon
assignment. On output, binary items are
converted to decimal values and the
associated F or E format items must state
the field width and pOint placement in
terms of the converted decimal number.

The following examples illustrate the
use of format items:

1. GET FILE (INFILE) EDIT (ITEM) (A(20»:

This statement causes the next 20
characters in the file called INFILE
to be assigned to ITEM. The value is
automatically transformed from its
character representation specified by
the format item A(20), to the
representation specified by the
attributes declared for ITEM.

Note: If the data list and format list
were-used for output, the length of a
string item need not be specified in
the format item if the field width is
to be the same as the length of the
string, that is, if no blanks are to
follOW the string.

2. PUT FILE (MASKFLE) EDIT (MASK) (B);

Assume MASK has the attribute BIT
(25); then the above statement writes
the value of MASK in the file called
MASKFLE as a string of 25 characters
consisting of O's and l's. A field
width specification can be given in
the B format item. It must be stated
for input. ----

3. PUT EDIT (TOTAL) (F(6,2»;

Assume TOTAL has the attributes FIXED
(4,2); then the above statement
specifies that the value of TOTAL is
to be converted to the character
representation of a fixed-point number
and written into the standard output
file SYSPRINT. A decimal point is to
be inserted before the last two
numeric characters, and the number
will be right-adjusted in a field of
six characters. Leading zeros will be
changed to blanks, and, if neces~ary,
a minus sign will be placed to the
left of the first numeric character.

The conversion from internal decimal
fixed-point type to character type is
performed according to the normal
rules for conversion. Extra
characters may appear as blanks
preceding the number in the converted
string. And, since leading zeros are
converted to blanks, additional blanks

Chapter 11: Stream-oriented Transmission 145

may precede the number. If a decimal
point or a minus sign appears, either
will cause one leading blank to be
replaced.

In edit-directed output, the field
width specification in the format item
(in this case, the 6 in the F(6,2)
format item) can be used to truncate
leading zeros. In this specification,
one zero is truncated. TOTAL would be
converted to a character string of
length seven. If all four digits of
the converted number are greater than
zero, the number, with its inserted
decimal point, will require five digit
positions; if the number is negative,
another digit position will be
required for the minus Sign.
Consequently, the F(6,2) specification
will always allow all digits, the
point, and a possible sign to appear,
but will remove the extra blank by
truncation.

4. GET FILE(A) EDIT (ESTIMATE) (E(10,6»;

This statement obtains the next ten
characters from the file called A and
interprets them as a floating-point
decimal number. A decimal point is
assumed before the rightmost six
digits of the mantissa. An actual
point within the data can override
this assumption. The value of the
number is converted to the attributes
of ESTIMATE and assigned to this
variable.

5. GET EDIT (NAME, TOTAL)
(P'AAAAA',P'9999');

When this statement is executed, the
standard input file SYSIN is assumed.
The first five characters must be
alphabetic or blank and they are
assigned to NAME. The next four
characters must be nonblank numeric
characters and they are assigned to
TOTAL.

Control Format Items

The control format items are the spacing
format item (X), and the COLUMN, LINE,
PAGE, and SKIP format items. The spacing
format item specifies relative spacing in
the data stream. The PAGE and LINE format
items can be used only with PRINT files
and, consequently, can only appear in POT
statements. All but PAGE generally include
expressions. LINE, PAGE, and SKIP can also
appear separately as options in the PUT
statement; SKIP can appear as an option in
the GET statement. The following examples
illustrate the use of the control format
items:

146 OS PL/I CRT AND OPT LRM PART I

1. GET EDIT (NUMBER, REBATE)
(A(S), xeS), A(S»;

This statement treats the next 15
characters from the standard input
file, SYSIN, as follows: the first
five characters are assigned to
NUMBER, the next five characters are
spaced over and ignored, and the
remaining five characters are assigned
to REBATE.

2. GET FILE(IN) EDIT (MAN, OVERTIME)
(SKIP(l), A(6), COLUMN(60), F(4,2»;

This statement positions the data set
aSSOCiated with file IN to a new line;
the first six characters on the line
are assigned to MAN, and the four
characters beginning at character
position 60 are assigned to OVERTIME.

3. PUT FILE (OUT) EDIT (PART, COUNT)
(A(4), X(2), F(S»;

This statement places in the file
named OUT four characters that
represent the value of PART, then two
blank characters, and finally five
characters that represent the fixed
point value of COUNT.

4. The'following examples show the use of
the COLUMN, LINE, PAGE, and SKIP
format items in combination with one
another.

PUT EDIT ('QUARTERLY STATEMENT')
(PAGE, LINE(2), A(19»;

PUT EDIT
CACCT#, BOUGHT, SOLD,

PAYMENT, BALANCE)
(SKIP(3), A(6), COLUMN(14),
F(1,2), COLUMN(30), F(1,2),
COLUMN(45), F(1,2),
COLUMN(60), F(1,2»;

The first PUT statement specifies that
the heading QUARTERLY STATEMENT is to
be written on line two of a new page
in the standard output file SYSPRINT.
The second statement specifies that
two lines are to be skipped (that is,
wskip to the third following lineW

)

and the value of ACCT# is to be
written, beginning at the first
character of the fifth line; the value
of BOUGHT, beginning at character
position 14; the value of SOLD,
beginning at character position 30;
the value of PAYMENT, beginning at
character position 45; and the value
of BALANCE at character position 60.

Note: Control format items are executed at
~ime they are encountered in the format
list. Any control format list that appears
after the data list is exhausted will have

no effect.

Remote Format Item

The remote format item (R) specifies the
label of a FORMAT statement (or a label
expression whose value is the label of a
FORMAT statement) located elsewhere; the
FORMAT statement and the GET or PUT
statement specifying the remote format item
must be internal to the same block. The
FORMAT statement contains the remotely
situated format items. This facility
permits the choice of different format
specifications at execution time, as
illustrated by the following example:

DECLARE SWITCH LABEL;
GET FILE(IN) LIST(CODE);
IF CODE = 1

THEN SWITCH = Ll;
ELSE SWITCH = L2;

GET FILE(IN) EDIT (W,X,Y,Z)
(R(SWITCH»;

Ll: FORMAT (4 F(S,3»;
L2: FORMAT (4 E(12,6»;

SWITCH has been declared to be a label
variable; the second GET statement can be
made to operate with either of the two
FORMAT statements.

Expressions in Format Items

The ~, E, ~, and ~ specifications in
data format items, as well as the
specifications in control format items,
need not be decimal integer constants.
Expressions are allowed. They may be
variables or other expressions.

A value read into a variable can be used
in a format item associated with another
variable later in the data list.

PUT EDIT (NAME,NUMBER,CITY)
(A(N),A(N-4),A(10»;

GET EDIT (M,STRING A,I,STRING B)
(F(2),A(M),X(M),F(2),A(I»;

In the first example, the value of NAME is
inserted in the stream as a character
string left-adjusted in a field of N
characters; NUMBER is left-adjusted in a
field of N-4 characters; and CITY is left
adjusted in a field of 10 characters. In
the second example, the first two
characters are assigned to M. The value of
M is then taken to specify the number of
characters to be assigned to STRING_A and
also to specify the number of characters to
be ignored before two characters are
assigned to I, whose value then is used to
specify the number of characters to be
assigned to STRING_B.

PRINT Files

The PRINT attribute can be applied only to
a STREAM OUTPUT file. It indicates that
the data in the file is ultimately intended
to be printed (although it may first be
written on a medium other than the printed
page). The first data byte of each record
of a PRINT file is reserved for an American
National Standard (ANS) printer control
cha~acter; the compiler causes the control
characters to be inserted automatically
when statements containing the control
options and format items PAGE, SKIP, and
LINE are executed.

The layout of a PRINT file can be
controlled by the use of the options and
format items listed in figure 11.3. (Note
that LINESIZE, SKIP, and COLUMN can also be
used for non-PRINT files.) LINESIZE and
PAGESIZE establish the dimensions of the
printed area of the page, excluding
footings. The LINESIZE option specifies
the maximum number of characters to be
included in each printed line; if it is not
specified for a PRINT file, a default value
of 120 characters is assumed (but there is
no default for a non-PRINT file). The
PAGESIZE option specifies the maximum
number of lines to appear in each printed
page; if it is not specified, a default
value ot 60 lines is assumed. Consider the
following example:

OPEN FILE(REPORT) OUTPUT STREAM PRINT
PAGESIZE(5S) LINESIZE(110);

This statement opens the file REPORT as a
PRINT file. The specification PAGESIZE(55)
indicates that each page should contain a
maximum of 55 lines. An attempt to write
on a page after 55 lines have already been
written (or skipped) will raise the ENDPAGE
condition. The standard system action for
the ENDPAGE condition is to skip to a new
page, but the programmer can establish his
own action through use of the ON statement.

The ENDPAGE condition is raised only
once per page. consequently, printing can
be continued beyond the specified PAGESIZE
after the ENDPAGE condition has been raised
the first time. This can be useful, for
example, if a footing is to be written at
the bottom of each page. For example:

ON ENDPAGE(REPORT) BEGIN;
PUT FILE (REPORT) SKIP LIST

(FOOTING);
N = N + 1;
PUT FILE (REPORT) PAGE LIST

(-PAGE 'liN);
PUT FILE(REPORT) SKIP (3);
END;

Assume that REPORT has been opened with

Chapter 11: Stream-oriented Transmission 147

r---, I Edit-directed I statement in I I
Option I format item I whic).'l option I Effect I

I I or format I I
I litem appears I I

LINESIZE(w)1. OPEN Establishes line width

PAGESIZE(w) OPEN Establishes page width

PAGE PAGE PUT Skip to new page

LINE(w) LlNE(w) PUT Skip to specified line

SKIP [(x)] 1. SKIP [(x)] 1. PUT Skip specified number of lines

COLUMN(w)1. PUT Skip to specified character
position in line

1.Can also be used with non-PRINT files: see ·Options of Transmission statements·,
earlier in this chapter, and "ENVIRONMENT Attribute" on this page.

L---J
Figure 11.3. Options and format items for controlling layout of PRINT files

PAGESIZE(55), as shown in the previous
example. When an attempt is made to write
on line 56 (or to skip beyond line 55), the
ENDPAGE condition will arise, and the begin
block shown here will be executed. The
first PUT statement specifies that a line
is to be skipped, and the value of FOOTING,
presumably a character string, is to be
printed on line 51 (when ENDPAGE arises,
the current line is always PAGESIZE+1).
The page number is incremented, the file
REPORT is set to the next page, and the
character string 'PAGE' is concatenated
with the new page number and printed. The
final PUT statement causes three lines to
be skipped. so that the next printing will
be on line 4. Control returns from the
begin block to the PUT statement that
caused the ENDPAGE condition, and the data
is printed. Any SKIP option specified in
that statement will have no further effect,
however.

Note that SIGNAL END PAGE is ignored if
there is no ENDPAGE on-unit.

The specification LlNESIZE(110)
indicates that each line on the page can
contain a maximum of 110 characters. An
attempt to write a line greater than 110
characters will cause the excess characters
to be placed on the next line.

Standard File SYSPRINT

unless the standard file SYSPRINT is
declared explicitly. it is always given the
attribute PRINT. Under the optimizing

148 OS PL/I CKT AND OPT LRM PART I

compiler, a new page is initiated
automatically when the file is opened. If
the first PUT statement that refers to the
file has the PAGE option, or if the first
PUT statement includes a format list with
PAGE as the first item, a blank page will
appear. Under the checkout compiler, nO
new page is started when an explicit or
implicit OPEN is executed for SYSPRINT,
because the file is used by the compiler to
transmit diagnostic messages. SYSPRINT is
always open under the checkout compiler.

ENVIRONMENT Attribute

The ENVIRONMENT attribute specifies
information about the physical organization
of the data set associated with a file.
The information is contained in a
parentheSized option list; the general
format is:

ENVIRONMENT (option-list)

The options applicable to stream
oriented transmission are:

FIFBIFSIFBSIVIVBtDIDBIU
RECSIZE(record-length)
BLKSIZECblock-size)

BUFFERS(n)

CONSECUTIVE

LEAVE
REREAD
ASCII

BUFOFF[(n)]

The options may appear in any order and
are separated by blanks, The options
themselves cannot contain blanks.

The options are discussed below.

RECORD FORMAT OPTIONS

Although record boundaries are ignored in
stream-oriented transmission, record format
is important when a data set is being
created, riot only because it affects the
amount of storage space occupied by the
data set and the efficiency of the program
that processes the data, but also because
the data set may later be processed by
record-oriented transmission. Having
specified the record format, the programmer
need not concern himself with records and
blocks as long as he uses only stream
oriented transmission; he can consider his
data set as a series of characters arranged
in lines, and can use the SKIP option or
format item (and, for a PRINT file, the
PAGE and LINE options and format items) to
select a new line.

Records can have one of the following
formats:

Fixed-length

variable-length

F unblocked
FB blocked
FBS blocked, standard
FS unblocked, standard

V unblocked
VB blocked
D unblocked (see

"ASCII Data Sets")
DB blocked (see

"ASCII Data Sets·)

Undefined-length U (cannot be blocked)

Blocking and deblocking of records is
performed automatically.

Note that spanned records (VBS and VS)
cannot be used with stream-oriented
input/output.

All records, whatever the format,
consist of data bytes and, optionally,
control or prefix bytes. Variable-length
records include control and prefix bytes to
specify record and block lengths; the use
of these bytes is described later in this
section. In addition, any record (whatever
the format) associated with a PRINT file
has the first data byte interpreted as a
printer control character. The compiler
analyzes the relevant PUT statement and
inserts the appropriate character (or a

default character).

Fixed-length Records

All records in the data set are the same
length.

F-format: The records are unblocked: each
record constitutes a single
block.

FB-format: The records are blocked, some
of the blocks may be shorter
blocks, that is they may be
shorter than the specified
block size.

FS-format: The records are unblocked: each
record constitutes a single
block. For direct-access
storage, every track except the
last one is filled to capacity.

FBS-format: The records are blocked. Only
the last block can be a short
block.

A sequential data set is said to contain
FBS-format records if:

1. All records in the data set are FB
format.

2. For direct-access storage, every track
except the last one is filled to
capacity.

3. No blocks except the last one are
truncated.

Data sets with FBS-format can be read more
efficiently from direct-access storage than
data sets with truncated blocks.

Variable-length Records

Each record can be a different length.

V-format: The records are unblocked:' each
record constitutes a single
block. Each record consists
of:

Four control bytes
Data bytes

The four control bytes contain
the record length (that is,
the length of the current
record): this value is
inserted automatically, and
requires nO action by the

Chapter 11: Stream-oriented Transmission 149

programmer.

In addition, four extra
control bytes are placed at
the beginning of the block
(that is, the record). These
bytes contain the block size;
the value is inserted in the
same way as the record length.

VB-format: The records are blocked. Each
record consists of:

Four control bytes
Data bytes

The four control bytes have
the same purpose as in V
format records. The block has
four extra control bytes for
the block size in the same way
as V-format records.

0- and DB-format: see "ASCII Data Sets".

Undefined-length Records

All processing is the responsibility of the
programmer. If a length specification is
required in the record, the programmer must
provide one and also interpret it.

RECSIZE option

The RECSIZE option specifies the record
length. This is the sum of:

1. The length required for data. For
variable-length and undefined records,
this is the maximum length.

2. Any control bytes required. Variable
length records require four, for the
record length; fixed-length and
undefined-length records do not
require any.

The record length can be specified as a
decimal integer constant, or as a variable
with the attributes FIXED BINARY(31,0)
STATIC.

The value is subject to the following
conventions:

Maximum: Fixed-length, and
undefined-length (except ASCII
data sets): 32,760 bytes.
Variable-length (except ASCII
data sets): 32,756 bytes
ASCII data sets: 9999 bytes

150 OS PL/I CKT AND OPT LRM PART I

Zero value: A search for a valid value is
made in (in the following
order) :

DO statement for the
data set associated with
the file

Data set label

If neither of these can
provide a value, default
action is taken (see "Record
Format Defaults·, later in
this section).

Negative value: The UNDEFINEDFILE
condition is raised.

A value implied by the LINESIZE option
overrides a value specified in the RECSIZE
option.

BLKSIZE Option

The BLKSIZE option specifies the block
size. This is the sum of:

1. The lengths of all the records in the
block. For variable length records,
the length of each record includes the
four control bytes for the record
length.

2. Any control bytes required. Variable
length blocked records require four
for the blocksize; fixed-length and
undefined-length records do not
require any.

Any block prefix bytes (ASCII data
sets)

The block size can be specified as a
decimal integer constant, or as a variable
with the attributes FIXED BINARY(31,0)
STATIC.

The value is subject to the following
conventions:

Maximum: 32,760 bytes (or 9999 for an
ASCII data set for which
BOFOFF is specified without a
prefix-length value)

Zero value: A search for a valid value is
made in (in the fOllowing
order):

DO statement for the
data set associated with
the file

Data set label

If neither of these can
provide a value, default
action is taken (see "Record
Format Defaults·, later in
this section).

Negative value: the UNDEFINEDFILE
condition is raised.

The relationship of the block size to
the record length depends on the record
format:

FB-format or FBS-format: The block size
must be a multiple of record
length

VB-format: The block size must be equal to
or greater than the sum of:

The lengths of all the records
in the block

Four control bytes for the
block size

DB-format: The blocksize must be equal to
or greater than the sum of:

Note:

The lengths of all the records
in the block

Length of the block prefix (if
block is prefixed)

1. The BLKSIZE option can be used with
unblocked (F-,V-, or D-format) records
as follows:

a. The BLKSIZE option, but not the
RECSIZE option, is specified. The
record length is set equal to the
block size (minus any control or
prefix bytes) and the record
format is unchanged.

b. Both the BLKSIZE and the RECSIZE
options are specified, and the
relationship of the two values is
compatible with blocking for the
record format used. The records
are assumed to be blocked and the
record format is set to FB, VB, or
DB whichever is appropriate.

2. If, for FB-format or FBS-format

records, the block Size equals the
record length, the records are assumed
to be unblocked and the record format
is set to F.

Record Format Defaults

If any of the record format options is not
specified in the ENVIRONMENT attribute, or
in the associated DD statement or data set
label, the following action is taken:

INPUT files:

Record format: The UNDEFINEDFILE condition
is raised, except for files
associated with dummy data sets or
the foreground terminal, in which
case U-format is assumed.

Block size or record length: If one of
these is specified, a search is
made for the other in the
associated DD statement or data
set label. If the search provides
a value, the UNDEFINEDFILE
condition is raised if this value
is imcompatible with the value in
the specified option. If the
search is unsuccessful, a value is
derived from the value for the
specified option (with the
addition or subtraction of any
control or prefix bytes).

If neither is specified, the
UNDEFINEDFILE condition is raised,
except for files associated with
dummy data sets, in which case a
block size of 121 is assumed for
F-format or U-format records and
129 for V-format records. For
files associated with the
foreground terminal a record size
of 120 is assumed.

OUTPUT files:

Record format: Set to VB-format, or if
ASCII option specified, to DB
format

Record length: The specified or default
LINESIZE value is used:

PRINT files:
F, FB, FBS, or U: LINESIZE + 1
V, VB, D, or DB: LINESIZE + 5

Non-PRINT files:
F, FB, FBS, or U: LINESIZE
V, VB, D, or DB: LINESIZE + 4

Chapter 11: Stream-oriented Transmission 151

Block size: F, FB, or FBS: record length
V or VB: record length + q
D or DB: record length + block

prefix (see note 3)

BUFFER offset: F, FB, or U: 0
D, or DB: q

Note:

1. The standard default for LINESIZE is
120.

2. If the default block size as
calculated above is greater than
32,760 the block size is set equal to
(record length + q), and the records
are set to V-format, except when the
ASCII option is specified. With ASCII
data sets, if the default blocksize is
greater than 32,760, or 9999 if BUFOFF
is specified without a prefix-length
value, then the block size is set
equal to (record length + length of
block prefix) and the record format is
set to D.

3. with DB-format records on output
files, the length of the block prefix
(that is, the buffer offset) must
always be either 0 or q.

q. The optimizing and checkout compilers
will also accept the form of record
format specification used for the
PL/I(F) compiler. In this form, the
record length and block size are
included in the format specification.

BUFFER ALLOCATION

A buffer is a main storage area that is
used for the intermediate storage of data
transmitted to and from a data set. The
use of buffers allows transmission and
computing time to be overlapped. Buffers
are essential for the automatic blocking
and deblocking of records.

BUFFERS option

The option BUFFERS(n) in the ENVIRONMENT
attribute specifies the number(n) of
buffers to be allocated for a data set;
this number must not exceed 255 (or such
other maximum as was established at system
generation). If the number of buffers is
not specified or is specified as zero, two
buffers are assumed for the optimizing
compiler, and one buffer is assumed for the
checkout compiler.

152 OS PL/I CKT AND OPT LRM PART I

The number of buffers can be specified
in the BUFNO subparameter of a DD statement
instead of in the ENVIRONMENT attribute.

DCB Subparameter

Some of the information that can be
specified in the options of the ENVIRONMENT
attribute can also be specified in the DCB
sUbparameter of a DO statement. The table
gives a list of equivalents.

ENV Option

Record format
RECSIZE
BLKSIZE
BUFFERS
ASCII
BUFOFF

DATA SET ORGANIZATION

DCB Subparameter

RECFM
LRECL
BLKSIZE
BUFNO
ASCII
BUFOFF

The organization of a data set determines
how data is recorded in the data set, and
how the data is subsequently retrieved so
that it can be transmitted to the program.
This implementation recognizes four data
set organizations, CONSECUTIVE, INDEXED,

IREGIONAL, and VSAM. A data set that is to
be accessed by stream-oriented transmission
must have CONSECUTIVE organization; since
this is the default for data set
organization, it need not be specified at
all for a STREAM file.

CONSECUTIVE Data Sets

The records in a CONSECUTIVE data set are
arranged sequentially in the order in which
they were written; they can be retrieved
only in the same order. After the data set
has been created, the associated file can
be opened for input (to read the data), or
for output (to extend the data set by
adding records at the end, or to replace
the contents of the data set by new data:
the effect of using an OUTPUT file to .
process an existing data set depends on the
DISP parameter of the associated DO
statement) •

r---,
ENVIRONMENT I DISP I Action I

Option I Parameter I I
---1

REREAD I I Positions the current volume to reprocess the
I I data set. Repositioning for a BACKWARDS file
I I is at the physical end of the data set.

LEAVE

Neither
REREAD nor
LEAVE

PASS

DELETE

I
I
I
I
I
I

KEEP, CATLG, I
I ONCATLG I

Positions the current volume at the logical
end of the data set. POSitioning for a
BACKWARDS file is at the physical beginning
of the data set.

Positions the volume at the end of the data
set

Rewinds the current volume

Rewinds and unloads the current volume

L---J
Figure 11.4. Effect of LEAVE and REREAD options

MAGNETIC TAPE HANDLING OPTIONS

LEAVE and REREAD Options

The volume disposition options allow the
programmer to specify the action to be
taken when the end of a magnetic tape
volume is reached, or when a data set on a
magnetic tape volume is closed. The LEAVE
option prevents the tape from being
rewound. The REREAD option rewinds the
tape to permit reprocessing of the volume
or data set. If neither of these is
specified, the action at end of volume or
on closing of a data set is controlled by
the DISP parameter of the associated DD
statement. The effects of the options are
summarized in figure 11.4.

ASCII DATA SETS

Data sets on magnetic tape using ASCII may
be created and accessed in PL/I. The
implementation supports F, U, and D record
formats. F and U formats are treated in
the same way as with other data setsJ D and
DB formats, which correspond to V and VB
formats with other data sets, are described
below.

In addition to the record format, two
other ENVIRONMENT options may be specified:
ASCII, and the buffer offset option BUFOFF.

ASCII Option

This option specifies that the code used to
represent data on the data set is ASCII.

BUFOFF Option and Block Prefix Fields

At the beginning of each block in an ASCII
data set, there may be a field known as the
block prefix field. It may be from one to
99 bytes long. The buffer offset option
indicates the length of this field to data
management, so that the accessing or
creation of data is started at this offset
from the beginning of each phYSical block.
PL/I does not support access to this field,
and in general it does not contain
information which is used in OS
implementations. There is one situation in
which data management does use information
in the block prefix: with unblocked or
blocked variable length records (that is,
D- or DB-format records), the block prefix
field may be used to record the length of
the block. In this case, it is four bytes
long and contains a right-aligned, decimal
character value that gives the lengtn of
the block in bytes, including the block
prefix field itself. It is then exactly
equivalent to a block length field.

The format of the buffer offset option
is BOFOFF (n»). A numerical value equal
to the length of the prefix can be
specified for wnw. It may be specified as
either a decimal integer constant or as a
variable with the attributes FIXED
BINARY(31,O) STATIC. Its minimum value is

Chapter 11: Stream-oriented Transmission 153

zero and its maximum is 99. The absence of
a prefix length specification indicates
that the block prefix is to be used as a
block length field; it implies that the
fie1d is four bytes long. The length of
the block is inserted in the prefix by data
management.

On input, any ASCII data set may be
accessed if it has a block prefix field of
length one to 99 bytes, or no block prefix
field at all; and it may be accessed
whether or not the block prefix field is
used as a block length field. On output, a
data set using anyone of the three valid
record formats may be created without a
block prefix, but the only situation in
which the creation of a block prefix is
supported by PL/I is when it is used as a
block length field.

The BUFOFF option may be used with ASCII
data sets only.

D-format and DB-format Records

Each record may be of a different length.
The two different formats are:

D-format: The records are unblocked; each

is. OS PL/I CRT AND OPT LRM PART I

record constitutes a single
block. Each record consists of:

Four control bytes
Data bytes

The four control bytes contain
the length of the record; this
value is inserted by data
management and requires no
action from the programmer. In
addition, there may be, at the
start of the block, a block
prefix field, which may contain
the length of the block.

DB-format: The records are blocked. All
other information given for
D-format applies to DB-format.

Oefault Rules

In addition to the rules given under
-Record Format Defaults·, the following
rule applies:

If ASCII is not specified in either the
ENVIRONMENT option or the DO statement, but
one of BUFOFF, D, or DB is specified, then
ASCII is assumed.

Chapter 12:

This chapter describes the input and output
statements used in record-oriented
transmission. Those features of PL/I that
apply equally to record-oriented and
stream-oriented transmission, including
files, file attributes, and opening and
closing files, are described in chapter 10,
-Input and Output".

In record-oriented transmission, data in
a data set is considered to be a collection
of records recorded in any format
acceptable to the operating system. No
data conversion is performed during record
oriented transmission: on input, the READ
statement either causes a single record to
be transmitted to a program variable
exactly as it is recorded in the data set,
or else sets a pointer to the record in a
buffer: on output, the WRITE, REWRITE, or
LOCATE statement causes a single record to
be transmitted from a program variable
exactly as it is recorded internally.

I Although, for non-VSAM data sets, data is
actually transmitted to and from a data set
in blocks, the statements used in record
oriented transmission are concerned only
with records: the records are blocked and
deblocked automatically.

Data Transmitted

Most variables, including parameters and
DEFINED variables, can be transmitted by
record-oriented transmission statements,
and in general, the information given in
this chapter may be applied equally to all
variables. There are certain special
considerations for a few types of data, and
these are given below.

Data Aggregates

The following restrictions apply to data
aggregates:

1. An aggregate must be in connected
storage. (An aggregate parameter must
have the CONNECTED attribute).

2. For the LOCATE statement, the variable
must be a level 1 based variable.

Record-Oriented Transmission

Unaligned Bit Strings

The following may not be transmitted.

1. BASED, DEFINED, parameter,
subscripted, or structure-base-element
variables that are unaligned fixed
length bit strings.

2. Minor structures whose first or last
base elements are unaligned fixed
length bit strings (except where they
are also the first or last elements of
the containing major structure).

3. Major structures that have the DEFINED
attribute or are parameters, and that
have unaligned fixed-length bit
strings as their first or last
elements.

Varying-Length Strings and Area
Variables

A locate mode output statement (see "LOCATE
Statement-, later in this Chapter)
specifying a varying-length string causes
the transmission of a field having a length
equal to the maximum length of the string,
plus a two-byte prefix denoting the current
length of the string. The SCALARVARYING
option must be specified for the file. A
locate mode output statement specifying an
area variable causes the transmission of a
field as long as the declared size of the
area, plus a 16-byte prefix containing
control information.

A move mode output statement (see -WRITE
Statement" and "REWRITE statement" later in
this chapter) specifying a varying-length
string variable transmits only the current
length of the string. A two-byte prefix is
included only if the SCALARVARYING option
is specified for the file. A move mode
statement specifying an element area
variable or a structure whose last element
is an area variable transmits only the
current extent of the area plus a 16-byte
prefix.

Data Transmission Statements

The follOWing is a general description of
the record-oriented data transmission

Chapter 12: Record-oriented Transmission 155

statements; they are described in detail in
section J, ·Statements·.

There are four statements that actually
cause transmission of records to or from
auxiliary storage. They are READ, WRITE,
LOCATE, and REWRITE. A fifth statement,
the DELETE statement, is used to delete
records from an UPDATE file. The
attributes of the file determine which
statements can be used.

READ statement

The READ statement can be used with any
INPUT or UPDATE file. It causes a record
to be transmitted from the data set to the
program, either directly to a variable or
to a buffer. In the case of blocked
records, a READ statement with the
appropriate option causes a record to be
transferred from a buffer to the variable
or sets a pointer to the record in a
buffer; consequently, not every READ
statement causes transmission of data from
an input device.

WRITE statement

The WRITE statement can be used with any
OUTPUT file or DIRECT UPDATE file, and also

Iwith SEQUENTIAL UPDATE files associated
Iwith VSAM data sets. It causes a record
to be transmitted from the program to the
data set. For unblocked records,
transmission may be directly from a
variable or from a buffer. For blocked
records, the WRITE statement causes a
logical record to be placed into a buffer;
only when the blocking of the records is
complete is there actual transmission of
data to an output device.

REWRITE statement

The REWRITE statement causes a record to be
replaced in an UPDATE file. For SEQUENTIAL
UPDATE files, the REWRITE statement
specifies that the last record read from
the file is to be rewritten; consequently a
record must be read before it can be
rewritten. For DIRECT UPDATE files, and

Ifor KEYED SEQUENTIAL UPDATE files
lassociated with VSAM data sets, any record
can be rewritten whether or not it has
first been read.

156 OS PL/I CRT AND OPT LaM PART I

LOCATE Statement

The LOCATE statement can be used only with
an OUTPUT SEQUENTIAL BUFFERED file. It
allocates storage within an output buffer
for a based variable, setting a pOinter to
the location in the buffer as it does so.
This pointer can then be used to refer to
the allocation so that data can be moved
into the buffer. When a complete block of
logical records is present in a buffer, the
block is transmitted to an output device.

DELETE Statement

The DELETE statement specifies that a
record in an UPDATE file be deleted.

UNLOCK Statement

The UNLOCK statement is used in association
with a READ statement that refers to an
EXCLUSIVE file. The UNLOCK statement makes
the specified record available to other
tasks in addition to that for which the
READ statement was issued.

Options of Transmission Statements

Options that are allowed for record
oriented data transmission statements
differ according to the attributes of the
file and the characteristics of the
associated data set. Lists of all of the
allowed combinations for each type of file
are given in figures 12.8 through 12.15,
later in this chapter.

Each option consists of a keyword
followed by a value, which is a file
expression, a variable, or an expression,
enclosed in parentheses. In any statement,
the options may appear in any order.

FILE Option

The FILE option must appear in every
record-oriented statement. It specifies
the file upon which the operation is to
take place. It consists of the keyword
FILE followed by a file expression enclosed
in parentheses. An example of the FILE
option is shown in each of the statements
in this section.

INTO option

The INTO option can be used in the READ
statement for any INPUT or UPDATE file.
The INTO option specifies a variable into
which the logical record is to be read.

READ FILE (DETAIL) INTO (RECORD_1) ~

This specifies that the next sequential
record is to be read into the variable
RECORD_1.

Note that the INTO option can name an
element string variable of varying length.
If the SCALARVARYING option of the
ENVIRONMENT attribute is specified for the
file, then each record is assumed to
contain a two-byte prefix that specifies
the length of the string data. (See -FROM
Option- below).

If SCALARVARYING was not declared then,
on input, the implementation calculates the
string length from the record length and
attaches it as a two-byte prefix. For
varying-length bit strings, this
calculation rounds up the length to a
multiple of 8 and therefore the calculated
length may be greater than the maximum
declared length.

FROM Option

The FROM option must be used in the WRITE
statement for any OUTPUT or DIRECT UPDATE
file. It can also be used in the REWRITE
statement for any UPDATE file. The FROM
option specifies the variable from which
the record is to be written.

Note that the FROM option can name an
element string variable of varying length.
When using a WRITE statement with the FROM
option, only the current length of a
varying-length string is transmitted to a
data set, and a two-byte prefix specifying
the length may be attached~ it is attached
only if the SCALARVARYING option of the
ENVIRONMENT attribute is specified for the
file.

Records are transmitted as an integral
number of bytes. Therefore, if a bit
string (or a structure that starts or ends
with a bit string) that is not aligned on a
byte boundary, is transmitted, the record
will contain bits at the start or end that
are not part of the string.

The FROM option can be omitted from a
REWRITE statement for SEQUENTIAL BUFFERED
UPDATE files. If the last record was read
by a READ statement with the INTO option,

REWRITE without FROM has nO effect on the
record in the data set~ but if the last
record was read by a READ statement with
the SET option, the record will be updated,
in the buffer, by whatever aSSignments were
made and copied back onto the ~ata set.

WRITE FILE (MASTER) FROM (MAS_REC);

REWRITE FILE (MASTER) FROM (MAS_REC);

Both statements specify that the value of
the variable MAS REC is to be written into
the file MASTER.- In the case of the WRITE
statement, it specifies a new record in a
SEQUENTIAL OUTPUT file. The REWRITE
statement specifies that MAS REC is to
replace the last record read-from a
SEQUENTIAL UPDATE file.

SET Option

The SET option can be used with a READ
statement or a LOCATE statement. It
specifies that a named pointer variable is
to be set to point to the location in the
buffer into which data has been moved
during the READ operation, or which has
been allocated by the LOCATE statement.

READ FILE (X) SET (P);

This statement specifies that the value of
the pointer variable P is to be set to the
location in the buffer of the next
sequential record. If the SET option is
omitted, the pointer declared with the
record variable will be set.

Note that if an element string variable
of varying-length is transmitted, the
SCALARVARYING option must be specified for
the file.

IGNORE Option

The IGNORE option can be used in a READ
statement for any SEQUENTIAL INPUT or
SEQUENTIAL UPDATE file. It includes an
expression whose integral value specifies a
number of records to be skipped over and
ignored. If the value of the expression is
negative or zero, no records are skipped.

READ FILE (IN) IGNORE (3)~

This statement specifies that the next
three records in the file are to be
skipped.

If a READ statement has none of the
options INTO, SET, and IGNORE, IGNORE (1) is

Chapter 12: Record-oriented Transmission 157

assumed.

KEY Option

The KEY option applies only to KEYED files
associated with data sets of INDEXED,

I REGIONAL, or VSAM organization. (The types
of data set organization applicable to
record-oriented transmission are discu~sed
under -Data Set Organization-, later in
this chapter.) The option consists of the
keyword KEY followed by a parenthesized
expression, which may be a character-string
constant, a variable, or any other element
expression: if necessary, the expression is
evaluated and converted to a character
string. The rules governing the length of
the character string and what it represents
are discussed under "INDEXED Organization",

I "REGIONAL Organization" , and "VSAM
Organization- later in this chapter.

The KEY option identifies a particular
record. It can be used in a READ statement
for an INPUT or UPDATE file, or in a
REWRITE statement for a DIRECT UPDATE file.
(The KEY option can be used in a READ
statement for a SEQUENTIAL file only if the
associated data set has INDEXED or VSAM
organi zation.)

READ FILE (STOCK) INTO (ITEM)
KEY (STKEY);

This statement specifies that the record
identified by the character-string value of
the variable STKEY is to be read into
the variable ITEM.

KEYFROM and KEYTO Options

The KEYFROM and KEYTO options apply only to
KEYED files associated with data sets of

IINDEXED, REGIONAL, or VSAM organization, or
to TRANSIENT files. Each option consists
of the keyword KEYFROM or KEYTO followed by
an expression in parentheses. For KEYFROM,
the expression may be a character-string
constant, or any other element expression;
if necessary, the expression is evaluated
and converted to a character string. For
KEYTO, the expression must be a character
string variable or pseudovariable whose
value is less than 256 bytes long. The
rules governing the lengths of the
character strings and what they represent
are discussed below, under -INDEXED
Organization-, "REGIONAL Organization",

land ·VSAM Organization- (except for
TRANSIENT files, which are discussed under
-Teleprocessing-).

158 OS PL/I CKT AND OPT LRM PART I

The KEYFROM option specifies a key that
identifies the record on the data set, or
(for TRANSIENT files) the terminal to which
the message or record is to be transmitted.
It can be used in a WRITE statement for a
SEQUENTIAL OUTPUT or DIRECT UPDATE file or
a DIRECT OUTPUT file that has REGIONAL
organization, or in a LOCATE statement.

lIt can also be used in a WRITE statement
Ifor a KEYED SEQUENTIAL UPDATE file
I associated with a VSAM data set.

WRITE FILE (LOANS) FROM (LOANREC)
KEYFROM (LOANNO);

This statement specifies that the value of
LOANREC is to be written as a record in the
file LOANS, and that the character string
value of LOANNO is to be used as the key
with which it can subsequently be
retrieved.

The KEYTO option specifies the name of
the variable into which the key (or
terminal identifier, if the file is
TRANSIENT) of a record is to be read. It
can be used in a READ statement for a
SEQUENTIAL INPUT, SEQUENTIAL UPDATE, or
TRANSIENT INPUT file.

lIt can also be used in a WRITE statement
Ifor a SEQUENTIAL OUTPUT or SEQUENTIAL
IUPDATE file associated with a VSAM entry
Isequenced or relative-record data set.

READ FILE (DETAIL) INTO (INVTRY)
KEYTO (KEYFLD);

This statement specifies that the next
record in the file DETAIL is to be read
into the variable INVTRY, and that the key
of the record is be read into the variable
KEYFLD.

EVENT Option

The EVENT option consists of the keyword
EVENT followed by the name of an event
variable in parentheses. (The appearance
of a name in the EVENT option constitutes a
contextual declaration of an event
variable.) The option can appear in any
READ, WRITE, REWRITE, or DELETE statement
for an UNBUFFERED file with CONSECUTIVE or
REGIONAL organization or for any DIRECT
file.

The EVENT option specifies that the
input or output operation is to take place
asynchronously (i.e., while other
processing continues) and that no I/O
conditions (except for UNDEFINEDFILE) are
raised until a WAIT statement, specifying
the same event variable, is executed by the
same task. For example:

READ FILE (MASTER) INTO (REC_VAR)
EVENT (RECORD_i);

WAIT (RECORD_i);

When any expressions in the options of the
READ statement have been evaluated, the
input operation is started. As soon as
this has happened, the statements following
are executed. Any RECORD, TRANSMIT, KEY,
or ENDFILE condition will not be raised
until control reaches the WAIT statement.
If, when the WAIT statement is executed,
the input operation is not complete, and if
none of the four conditions is raised,
execution of further statements is
suspended until the operation is complete.
When the operation is successfully
completed, processing continues with the
next statement following the WAIT
statement. If any of the four conditions
arise owing to execution of the READ
statement, the condition(s) will be raised
when the WAIT statement is executed. For
this implementation, only the conditions
TRANSMIT and RECORD can occur together;
TRANSMIT is always processed first. Then,
upon normal return from anyon-units
entered, processing continues with the next
statement following the WAIT statement.
Although the EVENT option specifies
asynchronous processing, none of the four
conditions can cause an interrupt until
they are synchronized with processing by
the WAIT statement.

Note that for consecutive and regional
sequential files only one outstanding
input/output operation is allowed for a
file unless a higher number is specified in
the NCP option of the environment attribute
or DCB subparameter. The ERROR condition
is raised if an attempt is made to initiate
an input/output operation on a file in
excess of the number allowed, while a
previous input/output operation has not
been waited for.

Once a statement containing an EVENT
option has been executed, the event
variable named in the option is considered
to be active: while it is active, the same
event variable cannot be specified again in
an EVENT option. The event variable
becomes inactive again only after execution
of the corresponding WAIT statement or when
the file is closed.

The EVENT option can also be used with
the CALL statement to specify asynchronous
execution of procedures (see chapter 11,
"Multitasking"), and with the DISPLAY
statement with the REPLY option.

NOLOCK Option

The NOLOCK option can be used in a READ
statement that refers to an EXCLUSIVE file.
It specifies that the record accessed by
the READ statement will not be locked
between completion of a READ statement and
commencement of the corresponding REWRITE;
the record will continue to be available to
other tasks in addition to that which
issued the READ statement.

Processing Modes

Record-oriented transmission offers the
programmer two methods of handling his
data. He can process data within a
declared storage area; this is termed the
move mode because the data is actually
moved into or out of main storage either
directly or via a buffer. Alternatively,
the programmer can process his data while
it remains in a buffer (that is, without
moving it into a declared storage area);
this is termed the locate mode, because the
execution of a data transmission statement
merely identifies the location of the
storage allocated to a record in the
buffer. The locate mode is applicable only
to SEQUENTIAL BUFFERED files. Which mode
is used is determined by the data
transmission statements and options used by
the programmer.

MOVE MODE

In the move mode, a READ statement causes a
record to be transferred from external
storage to the variable named in the INTO
option (via an input buffer if a BUFFERED
file is used); a WRITE or REWRITE statement
causes a record to be transferred from the
variable named in the FROM option to
external storage (perhaps via an output
buffer). The variables named in the INTO
and FROM options can be of any storage
class.

Consider the following example, which is
illustrated in figure 12.1:

NEXT: READ FILE(IN) INTO(DATA);

WRITE FILE (OUT) FROM (DATA);
GO TO NEXT:

The first time the READ statement is
executed, a block is transmitted from the
data set associated with the file IN to an

Chapter 12: Record-oriented Transmission 159

DATA
SET

INPUT
IUFFER

VARIAIU
(DATA)

OUTPUT
IUFFER

r
.'A I lit

Piqure 12.1.

I
Input

1ST
READ

A

and

1ST
READ

1ST
WRITE

I
output: move

160 OS PL/I CKT AND opr LRM PART I

2ND
READ

3RD
READ

D

,
I

mode

2ND
WRITE

3RD
WRITE

I ! I

input buffer, and the first record in the
block is assigned to the variable DATA:
further executions of the READ statement
assign successive records from the buffer
to DATA. When all the records in the
buffer have been processed, the next READ
statement causes a new block to be
transmitted from the data set although this
READ statement will probably access a new
record in an alternative buffer, thus
permitting overlapped data transmission and
processing. The WRITE state~ent is
executed in a similar manner, building
physical records in an output buffer and
transmitting them to the data set
associated with the file OUT each time the
buffer is filled.

The move mode may be simpler to use than
the locate mode since there are no buffer
alignment problems. Furthermore, it can
result in faster execution when there are
numerous references to the contents of the
same record, because of the overhead
incurred by the indirect addressing
technique used in locate mode.

It is possible to use the move mode
access technique and avoid internal
movement of data in the following cases:

1. SEQUENTIAL UNBUFFERED files with:
CONSECUTIVE organization with either
U-format records, or F-format records
which are not larger than the variable
specified in either the INTO or FROM
option; and REGIONAL(l) organization
with F-format records which are not
larger than the variable specified in
the FROM or INTO option.

2. DIRECT files with REGIONAL(l) or
REGIONAL(2) organization and F-format
records; and REGIONAL(3) organization
with F-format or U-format records.

LOCATE MODE

Locate mode requires the use of based
variables. A based variable is effectively
overlaid an the data in the buffer, and
different based variables can be used to
access the same data by associating the
same pointer with each one; thus the same
data can be interpreted in different ways.
Locate mode can also be used to read self
defining records, in which information in
one part of the record is used to indicate
the structure of the rest of the record;
for example, this information could be a
count of the number of repetitions of a
subfield, or a code identifying which one
of a class of structures should be used to
interpret the record.

A READ statement causes a block of data
to be transferred from the data set to an
input buffer if necessary, and then sets a
pointer variable named in the SET option to
point to the location in the buf~er of the
next record; the data in the record can
then be processed by reference to the based
variable associated with the pointer
variable. The record is available only
until the execution of the next READ
statement that refers to the same file.

A LOCATE statement causes storage for a
based variable to be allocated in an output
buffer, and sets a pOinter variable to
identify the allocated storage. The based
variable can now have values aSSigned to
it. The next LOCATE, WRITE, or CLOSE
statement for the same file will, if
necessary, transmit the data in the output
buffer to the data set. After transmission
the storage used for the buffer is freed;
hence, only the latest one can be accessed.

Locate mode frequently provides faster
execution than move mode since there is
less movement of data, and less storage may
be required. But it must be used
carefully; in particular, the programmer
must be aware of how his data will be
aligned in the buffer and how structured
data will be mapped; structure mapping and
data alignment are discussed in section K,
"Data Mapping".

Figure 12.2 illustrates the following
example, which uses locate mode for input
and move mode. for output:

DCL DATA BASED(P);

NEXT: READ FILE(IN) SET(P):

WRITE FILE(OUT) FROM(DATA);
GO TO NEXT;

The first time the READ statement is
executed, a block is transmitted from the
data set associated with the file IN to an
input buffer, and the pointer variable P is
set to point to the first record in the
buffer; any reference to the variable DATA
or to any other based variable qualified by
the pointer P will then in effect be a
reference to this first record. Further
executions of the READ statement set the
pOinter variable P to point to succeeding
records in the buffer. When all the
records in the buffer have been processed,
the next READ statement causes a new block
to be transmitt~ from the data set.

It is doubtful whether the use of locate
mode for both input and output in the above
example would result in increased
efficiency. An alternative would be to use

Chapter 12: Record-oriented Transmission 161

move mode for input and locate mode for
output, for example:

DCL DATA BASED(P):

NEXT: LOCATE DATA FILE(OUT):
READ FILE (IN) INTO (DATA) :

GO TO NEXT:

Each execution of the LOCATE statement
reserves storage in an output buffer for a
new allocation of the based variable DATA
and sets the pointer variable P to point to
this storage. The first execution of the
READ statement causes a block to be
transmitted from the data set associated
with the file IN to an input buffer, and
the first record in the block to be
assigned to the first allocation of DATA:
subsequent executions of the READ statement
assign successive logical records to the
current allocation of DATA. When all the
records in the buffer have been processed,
the next READ statement causes a new block
to be transmitted from the data set. Each
record is available for processing during
the period between the execution of the
READ statement and the next execution of
the LOCATE statement. When no further
space is available in the output buffer,
the next execQtion of the LOCATE statement
causes a block to be transmitted to the
data set associated with the file OUT, and
a new buffer to be allocated.

Note that if the READ statement raises
the ENDFlLE condition, the file OUT will
have been allocated a buffer which will be
transmitted when the file is closed.

ENVIRONMENT Attribute

The ENVIRONMENT attribute specifies
information about the physical organization
of the data set associated with a file.
The information is contained in a
parenthesized option list: the general
format is:

ENVIRONMENT (option-list)

The options applicable to record
oriented transmission are:

FIFBIFSIFBSIVIVBIVSIVBSIDIDBIU
RECSIZE(record-length)
BLKSIZE(block-size)

BUFFERS (n)

BUFND(n)
BUFNI(n)
BUFSP(n)

162 OS PL/I CRT AND OPT LRM PART I

CONSECUTIVE
INDEXED
VSAM
REGIONAL({11213})
TP({MIR})

LEAVE
REREAD

SIS
SKIP

BKWD

REUSE

TOTAL

CTLASA
CTL360

COBOL

INDEXAREA (index-area-size)]
NOWRITE
ADDBUFF

GENKEY

NCP(n)

TRKOFL

SCALARVARYING

KEYLENGTH(n)

KEYLOC(n)

ASCII
BUFOFF ((n)]

PASSWORD (password-specification)

A constant or variable can be used with
those ENVIRONMENT options that require
decimal integer arguments, such as block
Sizes and record lengths. The variable
must be unsubscripted and unqualified with
the attributes FIXED BINARY(31,O) and
STATIC.

The options may appear in any order, and
are separated by blanks. The options
themselves cannot contain blanks.

The options are discussed below.

RECORD FORMAT OPTIONS

1The follOWing discussion of the record
I format options does not apply to VSAN data
I sets. If a record format option is
Ispecified for a file associated with a VSAM

DATA
SET

INPUT
BUFFER

OUTPUT
BUFFER

DATA
SET

1ST
READ

I

pl

1ST
READ

I

pt

2ND
READ

1ST
WRITE

lRD
WRITE

__ ------------~)l,---------------('\

I I
Figure 12.2. Locate mode input, move mode output

I

Pt
lRD
READ

2 NO
WRITE

lRD
WRITE

I I I

Chapter 12: Record-oriented Transmission 163

Idata set, the option is ignored.
Recor.ds can have one of the following
formats:

Fixed-length

Variable ~length

F unblocked
FB blocked
FS unblocked, standard
FBS blocked, standard

v
VB
VS
VBS
D

DB

unblocked
blocked
spanned
blocked, spanned
unblocked (see "ASCII
Data Sets")
blocked (see ASCII
Data Sets")

undeffned-Iength U (cannot be blocked)

Blocking and deblocking of records is
performed automatically.

All records, whatever the format, consist
of data bytes and, optionally, control or
prefix bytes. variable-length records
include control or prefi::: bytes to specify
record and block lengtbs; the use of these
bytes is described later in this section.
In addition, any record (whatever the
format) can have an optional printer or
machine control character in the first data
byte. The programmer must insert the
character himself, and must indicate the
presence of such a character by means of
the CTLASA or CTL360 options of the
ENVIRONMENT attribute, or by means of the
equivalent field of the DCB subparameter in
the associated DD statement.

The SCALARVARYING option (described later
in this section) can be specified with
records of any format. This option cannot
be specified if the first data byte
contains a printer or a machine control
character, as this would lead to an
ambiguous interpretation of this byte.

Fixed-length Records

All records in the data set are the same
length.

F-format: The records are unblocked; each
record constitutes a single block

FB-format: The records are blocked. Some
of the blocks may be short blocks, that
is, they may be shorter than the
specified block size.

FS-format: The records are unblocked. each
record constitutes a single block. For
direct-access storage, every track
except the last one is filled to

164 OS PL/I CRT AND OPT LRM PART I

capacity.

FBS-format: The records are blocked. Only
the last block can be a short block.

A consecutive data set is said to contain
FBS-format records if:

1.

2.

3.

All records in the data set are FB
format

For direct-access storage, every track
except the last one is filled to
capacity.

No blocks except the last one are
truncated.

Data sets with standard format (FS or FBS)
records can be read from direct-access
storage more efficiently than data sets
with truncated blocks or embedded unfilled
tracks.

variable-length Records

Each record can be a different length.

V-format: The records are unblocked; each
record constitutes a single block. Each
record consists of:

Four control bytes

Data bytes

The four control bytes contain the
record length (that is, the length of
the current record including the four
control bytes); this value is inserted
automatically and requires nO action by
the programmer. In addition, four extra
control bytes are placed at the
beginning of the block. Thes~ bytes
contain the block size including all
control bytes; the value is inserted in
the same way in the record length.

VB-format: The records are blocked. Each
record consists of:

Four control bytes

Data bytes

The four control bytes have the same
purpose as in V-format records. The
block has four extra control bytes for
the block size, in the same way as for
V-format records.

VS-format: Each record constitutes at
least one block. On CONSECUTIVE data
sets, record length can be greater than
block size; if it is, the record can

'span' several blocks. A spanned record
is divided into segments, and each
segment occupies a block. Therefore a
block consists of:

Four block control bytes

Four record or segment control bytes

Data Bytes

The block control bytes contain the
length of the block; the record (or
segment) control bytes contain the
length of the record (or segment).
These values are inserted automatically
and require no action by the programmer.

VS-format records can be specified for
data sets with CONSECUTIVE or
REGIONAL (3) organization only. The VS
record format option must be specified
as an option of ENVIRONMENT, not in the
DCB subparameter of the DD card.

CONSECUTIVE: Record length can be equal
to or greater than block size;
each block contains one record or
record segment.

REGIONAL(3): Record length cannot be
greater than block size. A record
can only be segmented across track
boundaries, when a complete record
will not fit into the space
remaining on the current track.
Each such segment constitutes a
block.

VBS-format: Each record constitutes part
of a block, a block or several blocks.
Each block consists of:

Four block control bytes
One of the following:

One or more complete records
One or more complete records, and
either one or two record segments.
Two record segments
A single record segment

Each complete record or each record
segment consists of:

Four record or segment control bytes
Data bytes

The control bytes have the same purpose
as in VB-format records. VBS-format
records can be specified for data sets
with CONSECUTIVE organization only.

D- and DB-format: see ·ASCII Data sets·

segmentation and reassembly of records,
like blOCking and deblocking, take place
automatically, and require no action by the

programmer.

Undefined-length Records

All processing is the responsibility of the
programmer; if a length specification is
required in the record, the programmer must
provide it, and must interpret it.

RECSIZE OPTION

The RECSIZE Option specifies the record
length. For files other than transient

Ifiles and files associated with VSAM data
Isets, this is the sum of:

1. The length required for data. For
variable-length and undefined-length
records, this is the maximum length.

2. Any control bytes required. Variable
length records require four, for the
record length; fixed-length and
undefined-length records do not
require any.

For a transient file, it is the sum of:

1. The four V-format control bytes.

2. One flag byte.

3. Eight bytes for the key.

4. The maximum length required for the
data.

IFor VSAM data sets, the maximum and average
Ilengths of the records are specified when
Ithe data set is defined (see the
IProgrammer's Guide for the compiler). If
Ithe RECSIZE option is included in the file
Ideclaration for checking purposes, the
Imaximum record size should be specified.

The record length can be specified as a
decimal integer constant or as a variable
with the attributes FIXED BINARY (31,0)
STATIC.

The value is subject to the following
conventions:

Maximum: Fixed-length, and undefined
(except ASCII data sets):
32,160 bytes

V-format, and VS- and
VBS-format with UPDATE files:
32,756 bytes

VS-and VBS-format with INPUT

Chapter 12: Record-oriented Transmission 165

and OUTPUT files: no limit

ASCII data sets: 9999

VSAM data sets: 32,161 for
non-spanned records. For
spanned records, the maximum is
the size of the control area.

For VS- and VBS-format records longer than
32,156 bytes, the length must be specified
in the RECSIZE option of ENVIRONMENT, and
the DCB subparameter of the DD card mus~
specify LRECL=X.

Zero value: A search for a valid value is
made in (in the following order):

DD statement for the data
set associated with
the file

Data set label

If neither of these can provide a value,
default action is taken (see -Record Format
Defaults-, later in this section).

Negative value: The UNDEFINEDFILE
condition is raised

BLKSIZE option

IThe BLKSIZE option does not apply to VSAM
Idata sets, and is ignored if it is
I specified.
The BLKSIZE option specifies the maximum
block size on the data set. The length of
a block is the sum of:

1. The total length(s) of one of the
following:

A single record

A single record and either one or two
record segments

several records

Several records and either one or two
record segments

Two record segments

A single record segment

For variable length records; the
length of each record or record
segment includes the four control
bytes for the record or segment
length.

The above list summarizes all the
possible combinations of records and

166 OS PL/I CKT AND OPT LRM PART I

record segments options: fixed- or
variable-length blocked or unblocked w
spanned or non-spanned. When
specifying a block size for spanned
records, the programmer must be aware
that each record and each record
segment will require four control
bytes for the record length, and that
these quantitites are in addition to
the four control bytes required for
each block.

2. Any further control bytes required.
Variable-length blocked records
require four, for the block size;
fixed-length and undefined-length
records do not require any.

Any block prefix bytes required (ASCII
data sets only).

The value can be specified as a decimal
integer constant, or as a variable with the
attributes FIXED BINARY (31,0) STATIC.

The value is subject to the following
conventions:

Maximum: 32,160 bytes (or 9999 for an ASCII
data set for which BUFOFF without
a prefix-length value has been
specified)

Zero value: A search for a valid value is
made in (in the following order):

DD statement for the data set
associated with the file

Data set label

If neither of these can provide a
value, default action is taken
(see -Record Format Defaults·)

Negative value: The UNDEFINEDFILE
condition is raised

The relationship of the block size to the
record length depends on the record format:

FB-format or FBS format: The block size
must be a multiple of the record
length

VB-format: The block size must be equal to
or greater than the sum of:

The maximum length of any
record

Four control bytes

VS-format or VBS-format: The block size
can be less than, equal to, or

greater than the record length.

DB-format: The blocksize must be equal to
or greater than the sum of:

Notes:

The maximum length of any record

The length of the block prefix (if
block is prefixed)

1. The BLKSIZE option can be used with
unblocked (F-, V-, or D-format)
records, as follows:

a. The BLKSIZE option, but not the
RECSIZE option, is specified. The
record length is set equal to the
block size, (minus any control or
prefix bytes) and the record
format is unchanged.

b. Both the BLKSIZE and the RECSIZE
options are specified, and the
relationship of the two values is
compatible with blocking for the
record format used. The records
are assumed to be blocked and the
record format is set to FB VB, or
DB whichever is appropriate.

2. If, for FB-format or FBS-format
records, the block size equals the
record length, the records are assumed
to be unblocked and the record format
is set to F.

3. For files associated with VSAM data
sets (described later in this
chapter), the only record format
option that applies is RECSIZE (which
must match the actual record size of
the data set). The others (that is,
the BLKSIZE option and the various
letter combinations indicating the
blocking types) are ignored if
specified.

Reeord Format Defaults

IIf, for a non-VSAM data set, any of the
record format options is not specified, the
following action is taken.

Record format: The UNDEFINEDFILE condition
is raised, except for files
associated with'dummy data sets or
the foreground terminal, in which
case U-format is assumed.

Block size or record length: If one of
these is specified, a search is
made for the other in the
associated DO statement or data

set label. If the search provides
a value, the UNDEFINEDFILE
condition is raised if this value
is incompatible with the value in
the specified option. If the
search is unsuccessful, a value is
deri ved from the speci'fied option
(with the addition or subtraction
of any control or prefix bytes).
If neither is specified, the
UNDEFINEDFILE condition is raised,
except for files associated with
dummy data sets, in which case a
block size ot 121 is assumed for
F-format or U-format records and
129 for V-format records. For
files associated with the
foreground terminal a record size
of 120 is assumed.

~: The optimizing and checkout
compilers will also accept the form of
record format specification used for the
PL/ICF) compiler. In this form, the record
length and block size are included in the
format specification.

BUFFER ALLOCATION

A buffer is an internal storage area that
is used for the intermediate storage of
data transmitted to and from a data set.
The use of buffers can speed up processing
of SEQUENTIAL files. Buffers are essential
for the automatic blocking and deblocking
of reco~ds and for locate-mode
transmission.

BUFFERS option

The option BUFFERS(n) in the ENVIRONMENT
attribute specifies, for CONSECUTIVE and
INDEXED data sets, the number (n) of
buffers to be allocated for a data set;
this number must not exceed 255 (or such
other maximum as was established at system
generation). If the number of buffers is
not specified for a BUFFERED file or is
speCified as zero, two buffers are assumed
for the optimizing compiler, and one buffer
is assumed for the checkout compiler. A
REGIONAL data set is always allocated two
buffers.

In teleprocessing, the BUFFERS option
specifies the number of buffers available
for a particular message queue, that is,
for a particular TRANSIENT file. The
buffer size is specified in the message
control program for tbe installation. The
number of buffers specified should, if
poSSible, be sufficient to provide for the

Chapter 12: Record-oriented Transmission 161

longest message to be transmitted.

~ The BUFFERS option is inadequate for
files associated with VSAM data sets, since
the numbers of index and data buffers are
specified separately. Instead, the BUFND
and BUFNI subparameters of the AMP
parameter of the DD statement can be used,
and the BUFFERS option is ignored. The
default is two data buffers and, if the
data set is key-sequenced, one index
buffer.

DATA SET ORGANIZATION

The organization of a data set determines
how data is recorded in a data set volume,
and how the data is subsequently retrieved
so that it can be transmitted to the
program. Records are stored in and
retrieved from a data set either
sequentially on the basis of successive
physical or logical positions, or directly
by the use of keys specified in data
transmission statements. These storage and
retrieval methods provide PL/I with five
general data set organizations:
CONSECUTIVE, INDEXED, REGIONAL, 'TP, and
VSAM. If the data set organization is not
specified, a default is obtained thus:

1. If the merged attribute from the
DECLARE and OPEN statements do not
include TRANSIENT: the default is
CONSECUTIVE.

2. If the attributes include TRANSIENT:
the default is TP(M).

ICONSECUTIVE Data sets
I
I
lIn a data set with CONSECUTIVE
I organization, records are organized solely
Ion the basis of their successive physical
I positions; records are retrieved only in
Isequential order, and keys are not used.
I
I CONSECUTIVE data sets are the simplest
lof the five types to create and use, and
Ithey have the advantage that less external
Istorage is required. However, records in a
ICONSECUTIVE data set can be updated only in
Itheir existing sequence, and if records are
Ito be inserted a new data set must be
(created. Updating is not supported for
lmagnetic tape.

168 OS PL/I CRT AND OPT LRM PART I

IINDEXED Data sets
I
I
IThe records of an INDEXED data set are
larranged in logical sequence according to
Ikeys associated with each record; the
Irecords are arranged in ascending key
I sequence, and indexes are maintained in the
Idata sets and are used for retrieval of
I records.
I
I Although an INDEXED data set must be
Icreated sequentially, once it exists
Irecords can be retrieved, updated, added,
lor deleted at random. sequential
Iprocessing of an INDEXED data set is slower
than that of a corresponding CONSECUTIVE
data set, because the records it contains
are not necessarily retrieved in physical
sequence; turthermore, random access is
less efficient for an INDEXED data set than
for a REGIONAL data set, because the
indexes must be searched to locate a
record. other disadvantages of an INDEXED
data set are that it requires more external
storage space than a CONSECUTIVE data set,
and that all volumes of a mUlti-volume data
set must be mounted even for sequential

I processing.
I
I
I
IREGIONAL Data sets
I
I
IA data set with REGIONAL organization is
Idivided into regions, each of which is
lidentified by a region number and contains
lone or more records; for retrieval, the key
Isupplied gives the region number or track
lat which the search for the record is to
I commence.
I
I
I Direct access of REGIONAL data sets is
Iquicker than that of INDEXED data sets, but
Ithey have the disadvantage that sequential
Iprocessing may present records in random
I sequence; the order of sequential retrieval
lis not necessarily that in which the
Irecords were presented, nor need it be
Irelated to the relative key values.
IBlocked records are not permitted in a
IREGIONAL data set.
I
I
I
IVSAM Data Sets
I
I
IVSAM data sets have either entry-sequenced
I(ESOS), key-sequenced (KSDS), or .relative
Irecord (RRDS) organization. These
lorganizations correspond roughly to the
Inon-VSAM organizations CONSECUTIVE,
I INDEXED, and REGIONAL (1).. In general,
Ihowever, VSAM offers a wider range of data
Iset operations than non-VSAM access

I methods, and this is reflected in the
Igreater flexibility of input/output
Istatements for files associated with VSAM
Idata sets.
I
I Although only key-sequenced data sets
have keys as part of their logical records,
keyed access is also possible for entry
sequenced data sets (using relative-byte
addresses) and relative-record data sets
(using relative record numbers).

It is also possible to define a1ternate
indexes on a KSDS or an ESOS. An alternate
index on an ESOS enables it to be treated,
in general, as a KSDS. An alternate index
on a KSOS enables a field in the logical
record different from that used in the
prime index to be used as the key field.
Alternate indexes may be either non-unique,
in which duplicate keys are allowed, or
unique, in which they are not. The prime
index can never have duplicate keys.

Before a VSAM data set is used for the
first time, its structure is defined to the
system by the DEFINE command of Access
Method Services. consequently, many of the
options of the ENVIRONMENT attribute
affecting data set structure are
superfluous for VSAM data sets. If they
are specified, they are either ignored, or
used for checking purposes. If those that
are checked conflict with the values
defined for the data set, the UNDEFINEDFILE
condition is raised when an attempt is made
to open the file.

The options that are checked for a VSAM
data set are RECSIZE and, for a key
sequenced data set, KEYLEN and KEYLOC. The
options GENKEY, SCALARVARYING, and COBOL
have the same effect as fornon-VSAM data
sets. The foregoing options, together with
the VSAM-only options BKWD, BUFND, BUFNI,
BUFSP, PASSWORD, REUSE, SIS, and SKIP, are
the only options applicable to a file
declared with ENVIRONMENT(VSAM). The VSAM
only options are described later in this
section.

In most circumstances, existing PL/I
programs using files declared with
ENVIRONMENT (CONSECUTIVE) or
ENVIRONMENT (INDEXED) are able to access

IVSAM data sets without alteration. PL/I
Ican detect that a VSAM data set is being
I opened, and can provide the correct access,
leither directly or by use of a
Icompatibility interface. This support is
Inot provided when the data set is accessed
lunder TSO and the DD information is
Isupplied by the ALLOCATE command; in this
Icase the program is abnormally ter.minated
Iwhen the fi1e is opened. Note that
,existing PL/I programs that use REGIONAL(l)
Ifiles cannot be used unaltered to access
IVSAM relative-record data sets.

1 Further information on the structure of
IVSAM data sets and the ways in which they
Ican be accessed are given under "VSAM
IOrganization" later in this chapter. Fu11
Idetails on the structure of VSAM data sets
land indexes, the way in which they are
Idefined by Access Method Services, and the
Irequired JCL statements are either given or
Ireferenced in the programmer's Guide for
the compiler.

PASSWORD OPTION

The PASSWORD option is applicable only to
files associated with VSAM data sets. When
a VSAM data set is defined to the system
(using the DEFINE command of Access Method

Iservices), READ and UPDATE passwords can be
I associated with it. Thenceforward, the
lappropriate password must be included in
Ithe declaration of any PL/I file used to
laccess the data set. The format of the
loption is:
I .
I PASSWORD (password-specification)
I
where the password specification is a
character-string constant or character
string variable. If the specification is a
constant, it must not contain a repetition
factor; if it is a variable, it must be
level-l, element, static, and
unsubscri~ed. The character string is
padded or truncated to eight characters and
passed to VSAM for inspection. The system
operator is given a number of chances to
specify the correct password. The number
of chances to be allowed is specified when
the data set is defined. After this number
of unsuccessful tries, the UNDEFINEDFILE
condition is raised.

SKIP ANO SIS OPTIONS

The SKIP and SIS options specify the form
of access that is to be used for VSAM data
sets. SKIP is applicable to key-sequenced
data sets accessed by means of a SEQUENTIAL
file; SIS is applicable to key-sequenced

Idata sets accessed by means of a DIRECT
Ifile.
I
I Although it is never an error to omit
Ithese options, specifying one or the other
Ican sometimes result in improved
I performance, depending upon how the file is
Ibeing used. Guidance on the use of these
loptions is given under "Key-Sequenced Data
ISets" later in this chapter.

Chapter 12: Record-oriented Transmission 169

BKWD OPTION

The BKWD option specifies backwards
processing for a SEQUENTIAL INPUT or
SEQUENTIAL UPDATE file associated with a
VSM data set.

The effect of the option is to cause
sequential reads (that is, reads Without
the KEY option) to retrieve the previous
record in sequence. For indexed data sets,
the previous record is, in general, the
record with the next lower key. However,
if the data set is being accessed via a
non-unique alternate index, records with
the same key are recovered in their normal
sequence. For example, if the records are:

A B Cl C2 C3 D E

where Cl, C2, and C3 have the same key,
they are recovered in the sequence:

E D Cl C2 C3 B A

When a file with the BKWD option is
opened, the data set is positioned at the
last record. ENDFILE is raised in the
normal way when the start of the data set
is reached.

The BKWD option must not be specified
with either the REUSE option or the GENKEY
option. Also, the WRITE statement is not
allowed for files declared with the BKWD
option.

REUSE OPTION

The REUSE option specifies that an OUTPUT
file associated with a VSAM data set is to
be used as a workfile.

The effect of the option is to cause the
data set to be treated as an empty data set
each time the file is opened. Any
secondary allocations for the data set are
released, and the data set is treated
exactly as if it were being opened for the
first time.

A file with the REUSE option must not be
associated with a data set that. has

lalternate indexes.
I
f ,
I BUFND OPTION
I
I
IThe BUFND option specifies the number of
Idata buffers required for a VSAM data set.
IThe format of the option is:

1 70 OS PL/I CKT AND OPr LRM PART I

BUFND(n)

where wnw is a decimal integer constant, or
a variable with the attributes FIXED
BINARY(31,O) STATIC.

BUFNI OPTION

The BUFNI option specifies the number of
index buffers required for a VSM data set.
The format of the option is:

BUFNI(n)

Iwhere WnW is a decimal integer constant, or
la variable with the attributes FIXED
IBINARY(31,O) STATIC.
I
I
I
IBUFSP OPTION
I
I
IThe BUFSP option specifies, in bytes, the
Itotal buffer space required for a VSAM data
Iset. The format of the option is:
I
I BUE-SP(n)
I
Iwhere wnw is a decimal integer constant, or
la variable with the attributes FIXED
IBINARY(31,O) STATIC.

OPTIMIZATION OF INPUT/OUTPUT OPERATIONS

In general, I/O operations are performed by
library subroutines called from compiled
code. Under certain conditions, however,

Ithe optimizing compiler can, when
,requested, provide in-line code to carry
out these operations, thus saving the
overheads of library calls. This gives
considerably faster execution of the I/O
statements.

I It should be noted that the use.of in
Iline input/output code may result in
I reduced error-handling capability. In
I particular, if a program-check interrupt or
Ian ABEND occurs during in-line
linput/output, the error message produced
lmay contain incorrect offset and statement
Inumber information. Also, execution of a
IGOTO statement in an ERRORon-ttnit for such
Ian interrupt may cause a further program
I check.

For an I/O statement to be executed in
line, the data set being accessed or
created must be CONSECUTIVE, and the file
used must be a non-parameter file constant
with the attributes SEQUENTIAL, BUFfERED,

and 'either INPUT or OUTPUT. Record
variables in the data set must not be
subscripted structures. The ENVIRONMENT
attribute must specify the following
options: TOTAL and either F, FB, FS, FBS,
D, DB, V, VB, or U record format. If
varying-length strings are to be
transmitted, and the file is not an output
file with V or VB record format, the
SCALARVARYING option is also needed. The
file declaration would therefore be as
follows:

DCL F FILE RECORD SEQUENTIAL BUFFERED
INPUTIOUTPUT ENV(CONSECUTIVE
FIFBIFSIFBSIDIDBIVIVBIU
TOTAL (SCALARVARYING]
[RECSIZE(n)] (BLKSIZE(n)]):

The standard default attributes and option
are underlined. At least one of the
underlined attributes must be specified,
otherwise the file would be given the
attribute STREAM by default. If the file
is to be printed, one or other of the
printer-punch control options CTLASA and
CTL360 must also be specified in the
ENVIRONMENT attribute: this information
cannot be supplied via the DD statement
when the record format is specified in the
ENVIRONMENT attribute.

Note: The TOTAL option cannot be specified
for files associated with VSAM data sets or
for device-associated files (described
later in this chapter), or for files
reading Optical Mark Read data.

The statement READ SET will always be
implemented by in-line code if it specifies
a file declared or indicated as above,
except when a file with the attribute
BACKWARDS is used to transmit U-format
records. The other record I/O statements,
namely READ INTO, WRITE FROM, and LOCATE,
generate in-line code provided:

1. the record variable declaration does
not include an expression as a string
length, an array bound, or an area
size;

and

2. the ENVIRONMENT attribute specifies
record size for F-, FB-, FS-, FBS-, or
V-format records, or the block size
for U-format records.

I/O statements compiled by the checkout
compiler always generate a library call.

When in-line code is employed to
implement an I/O statement, the compiler
gives an informatory message.

The speed of I/O operations when
accessing an INDEXED data set can be

improved by specifying the INDEXAREA,
NOWRITE, and ADDBUFF options. Details are
given under -Data Management optimization
later in this chapter.

Teleprocessing Data Sets

A teleprocessing data set comprises a queue
of messages that constitute the input to a
PL/I message processing program. The
messages are retrieved sequentially: keys
are used to identify the terminal
associated with the message.

The TP(M) option specifies that the file
is a teleprocessing file and can only be
associated with a teleprocessing data set.
Each I/O operation in the PL/I program
causes a complete message to be transmitted
to or from the data set. The message can
consist of one logical record, or several
logical records, on the data set.

The TP(R) option is the same except that
each I/O operation applies to one logical
record only in the data set. This record
can be a message or part of a complete
message.

A teleprocessing file can be declared
with the following attributes only:

FILE
RECORD
INPUT or OUTPUT
BUFFERED or UNBUFFERED
TRANSIENT
KEYED
ENVIRONMENT

For teleprocessing applications, the
only environment options that can be
specified are:

TP({MIR})
RECSIZE(record-length)
BUFFERS(n)

Record format must not be specified for
teleprocessing programs.

MAGNETIC TAPE HANDLING OPTIONS

LEAVE and REREAD Options

The volume disposition options allow the
programmer to specify the action to be
taken when the end of a magnetic tape
volume is reached, or when a data set on a
magnetic tape volume is closed. The LEAVE
option prevents the tape from being
rewound. The REREAD option rewinds the

Chapter 12: Record-oriented Transmission 171

r---,
ENVIRONMENT 1 DISP I Action 1

Option 1 Parameter. 1 I
---1

REREAD 1 1 Positions the current volume to reprocess the,
I I data set. Repositioning for a BACKWARDS file ,
I 1 is at the physical end of the data set. ,

---1
LEAVE 1 I Positions the current volume at the logical ,

I 1 end of the data set. Repositioning for a I
1 I BACKWARDS file is at the physical beginning I
, 1 of the data set. 1

---1
Neither 1 PASS I Positions the volume at the end of the data I
REREAD nor I I set I

I LEAVE I I ,
I I I ,
I I DELETE I Rewinds the current volume ,
I I I ,
I I REEP, CATLG, 1 Rewinds and unloads the current volume ,
1 I UNCATLG , I
L---J
Figure 12.3. Effect of LEAVE and REREAD options

r---,
CTLASA code I CTL360 code bytes I ,

---1 I
action before I action after I action without, Action I

printing 1 printing I printing I I

+ 00000001 print only (no space)
b 00001001 00001011 Space 1 line
'0 00010001 00010011 Space 2 lines

00011001 00011011 Space 3 lines
1 10001001 10001011 Skip to channel 1
2 10010001 10010011 Skip to channel 2
3 10011001 10011011 Skip to channel 3
4 10100001 10100011 Skip to channel 4
5 10101001 10101011 Skip to channel 5
6 10110001 10110011 Skip to channel 6
7 10111001 10111011 Skip to channel 7
8 11000001 11000011 Skip to channel 8
9 11001001 11001011 Skip to channel 9
A 11010001 11010011 Skip to channel 10
B 11011001 11011011 Skip to channel 11
C 11100001 11100011 Skip to channel 12

L---J
Figure 12.4. CTLASA and CTL360 print control codes for the IBM 1403 Printer

tape to permit reprocessing of the data
set. If neither of these is specified, the
action at end of volume or on closing of a
data set is controlled by the DISP
parameter of the associated DD statement.
The effects of the options are summarized
in figure 12.3.

PRINTER/PUNCH CONTROL (CTL360/CTLASA)

The printer/punch control options CTLASA
and CTL360 apply only to OUTPUT files

172 OS PL/I CKT AND OPT LRM PART I

associated with CONSECUTIVE data sets.
They specify that the first character of a
record is to be interpreted as a control
character.

1. The CTLASA option specifies ANSI
standard control characters.

2. The CTL360 option specifies IBM
machine code control characters.

The codes that can be used with these
options are listed with their actions in
figures 12.4 and 12.5.

DATA INTERCHANGE (COBOL)

The COBOL option facilitates the
interchange of data between programs
written in PL/I and programs written in
COBOL. It specifies that structures in the
data set associated with the file will be
mapped as they would be in American
National Standard COBOL. The COBOL
structures can be SYNCHRONIZED or
unsynchronized; it is the programmer's
responsibility to ensure that the
associated PL/I structure has the
equivalent alignment stringency, that is,
it must be ALIGNED or UNALIGNED,
respectively.

The restrictions noted below apply to
the handling of a file with the COBOL
option. The PL/I equivalents of COBOL data
types are given in chapter 19,
-Interlanguage Communication Facilities".

r---,
ICTLASA codelcTL360 codel Action 1
I I bytes I I
1---1
I V I 00000001 Iselect stacker 1 I
I W I 01000001 Iselect stacker 2 I
I I 10000001 ISelect stacker 3 1
L---J
Figure 12.5. CTLASA and CTL360 control

codes for the IBM 2540
Card Read Punch

r---,
ICTLASA code I Action

b ISpace 1 line and print o ISpace 2 lines and print
ISpace 3 lines and print

1 ISkip to channel 1 and print
2 I Skip to channel 2 and print
3 ISkip to channel 3 and print
4 ISkip to channel 4 and print
5 ISkip to channel 5 and print
6 ISkip to channel 6 and print
7 I Skip to channel 7 and print
8 I Skip to channel 8 and print
9 ISkip to channel 9 and print
A ISkip to channel 10 and print
B ISkip to channel 11 and print
C ISkip to channel 12 and print

INote: Use of the '+' control character
Iwould result in abnormal termination of
Ithe program.
L---J
Figure 12.6. CTLASA print control

codes for the IBM 3525
Card Punch

A file with the COBOL option can be used
only for READ INTO, WRITE FROM, and REWRITE

FROM statements. The file name cannot be
passed as an argument or assigned to a file
variable. The variable to be transmitted
must not be subscripted.

r---,
CTL360 code I Action

bytes I

00001101 Print on line 1
00010101 Print on line 2
00011101 Print on line 3
00100101 . Print on line 4
00101101 Print on line 5
00110101 Print on line 6
00111101 Print on line 7
01000101 Print on line 8
01001101 Print on line 9
01010101 Print on line 10
01011101 Print on line 11
01100101 Print on line 12
01101101 Print on line 13
01110101 Print on line 14
01111101 Print on line 15
10000101 Print on line 16
10001101 Print on line 17
10010101 Print on line 18
10011101 Print on line 19
10100101 Print on line 20
10101101 Print on line 21
10110101 Print on line 22
10111101 Print on line 23
11000101 Print on line 24
11001101 Print on line 25

L---J
Figure 12.7. CTL360 print control

codes for the IBM 3525
Card Punch

If an ON-condition is raised during the
execution of a READ statement, the variable
named in the INTO option cannot be used in
the on-unit. If the completed INTO
variable is required, there must be a
normal return from the on-unit.

The EVENT option can be used only if the
compiler can determine that the PL/I and
COBOL structure mappings are identical
(i.e., all elementary items have identical
boundaries). If the mappings are not
identical, or if the compiler cannot tell
whether they are identical, an intermediate
variable is created to represent the level
1 item as mapped by the COBOL algorithm.
The PL/I variable is assigned to the
intermediate variable before a WRITE
statement is executed, or aSSigned from it
after a READ statement has been executed~

Chapter 12: Record-oriented Transmission 173

IN-LINE CODE OPTIMIZATION (TOTAL)

The purpose of this option is to aid the
optimizing compiler in the production of
efficient compiled code. In particular, it
allows the compiler to use in-line code for
certain I/O operations (see "Optimization
of Input/Output Operations" earlier in this
chapter). It specifies that no attributes
will be merged from the OPEN statement or
the I/O statement. In other words, the
complete set of attributes is to be built
up at compile time from explicitly declared
and default attributes.

The UNDEFINEDFILE condition is raised if
any attribute that was not explicitly
declared appears on the OPEN statement, or
if the I/O statement implies a file
attribute that conflicts with a declared or
default attribute.

The checkout compiler accepts and checks
the TOTAL option but does not perform any
optimization.

Notes: (1) The TOTAL option cannot be
specified for files associated with VSAM
data sets or for device-associated files
(described later in this chapter), or files
reading Optical Mark Read data.

1(2) The use of the TOTAL option may result
lin reduced error-handling capability. See
I "Optimization of Input/Output Operations"
learlier in this chapter.

DATA MANAGEMENT OPTIMIZATION
(INDEXAREA/NOWRITE/ADDBUFF)

The data management optimization options in
the ENVIRONMENT attribute increase program
efficiency, in certain circumstances, when
DIRECT files are used to access INDEXED
data sets.

The INDEXAREA option improves the
input/output speed of a DIRECT INPUT or
DIRECT UPDATE file with INDEXED data set
organization, by having the highest level
of index placed in main storage. The
"index area size" enables the programmer to
limit the amount of main storage he is
prepared to allow for an index area. The
size, when specified, must be a decimal
integer constant or a variable with
attributes FIXED BINARY (31,0) STATIC whose

Ivalue lies within the range zero through
164,000. If the "index area size" is not
specified, the highest level index is moved
unconditionally into main storage. If an
index area size is specified, the highest
level index is held in main storage,
provided that its size does not exceed that
specified. If the specified size is less

174 OS PL/I CKT AND OPT LRM PART I

Ithan zero or greater than 64,000,
lunpredictable results will occur.

The NOWRITE option is used for DIRECT
UPDATE files. It informs the compiler that
no records are to be added to the data set
and that data management modules concerned
solely with adding records are not
required; it thus allows the size of the
object program to be reduced.

The ADDBUFF option can be specified for
a DIRECT INPUT or DIRECT UPDATE file with
INDEXED data set organization and F-format
records to indicate that an area of
internal storage is to be used as a
workspace in which records on the data set
can be rearranged when new records are
added. The size of the workspace is
assumed to be equivalent to one track of
the direct device used. The option need
not be specified for DIRECT INDEXED files
with V-format records, as the workspace is
automatically allocated for such files.

KEY CLASSIFICATION (GENKEY)

The GENKEY (generic key) option applies
only to INDEXED and VSAM key-sequenced data
sets. It enables the programmer to
classify keys recorded in a data set and to
use a SEQUENTIAL KEYED INPUT or SEQUENTIAL
KEYED UPDATE file to access records
according to their key classes.

A generic key is a character string tha~
identifies a class of keys: all keys that
begin with the string are members of that
class. For example, the recorded keys
'ABCO', 'ABCE', and 'ABDF' are all members
of the classes identified by the generic
keys 'A' and 'AB', and the first two are
also members of the class 'ABC'; and the
three recorded keys can be considered to be
unique members of the classes 'ABCD',
'ABCE', and 'ABDF', respectively.

The GENKEY option allows the programmer
to start sequential reading or updating of
an INDEXED data set from the first non
dummy record that has a key in a .particular
class; the class is identified by the
inclusion of its generic key in the KEY
option of a READ statement. Subsequent
records can be read by READ statements
without the KEY option. No indication is
given when the end of a key class is
reached.

Note that, although the first record
having a key in a particular class can be
retrieved by READ KEY, the actual key
cannot be obtained unless the records have
embedded keys, since the KEYTO option
cannot be used in the same statement as the

KEY option.

In the following example, a key length
of more than three bytes is assumed.

DCL IND FILE RECORD SEQUENTIAL KEYED
UPDATE ENV (INDEXED GENKEY);

READ FILE(IND) INTO (INFIELD) KEY ('ABC');

NEXT: READ FILE (IND) INTO (INFIELD);

GO TO NEXT;

The first READ statement causes the first
non-dummy record in the data set whose key
begins with 'ABC' to be read into INFIELD;
each time the second READ statement is
executed, the non-dummy record with the
next higher key will be retrieved.
Repeated execution of the second READ
statement could result in reading records
from higher key classes since no indication
is given when the end of a key class is
reached. It is the responsibility of the
programmer to check each key if he does not
wish to read beyond the key class. Any
subsequent execution of the first READ
statement would reposition the file to the
first record of the key class 'ABC'.

If the data set contains no records with
keys in the specified class, or if all the
records with keys in the specified class
are dummy records, the KEY condition is
raised. The data set is then positioned
either at the next record that has a higher
key or at the end of the file.

Note how the presence or absence of the
GENKEY option affects the execution of a
READ statement that supplies a source key
that is shorter than the key length
specified in the KEYLEN SUbparameter of the
DD statement that defines the data set.
GENKEY causes the key to be interpreted as
a generic key, and the data set is
positioned to the first non-dummy record in
the data set whose key begins with the
source key. If the GENKEY option is not
specified, a short source key is padded on
the right with blanks to the specified key
length, and the data set is positioned to
the record that has this padded key (if such
a record exists).

The use of the GENKEY option does not
affect the result of supplying a source key
whose length is greater than or equal to
the specified key length. The source key,
truncated on the right if necessary,

identifies a specific record (whose key can
be considered to be the only member of its
class) •

NUMBER OF CHANNEL PROGRAMS (NCP)

The NCP option specifies the number of
incomplete input/output operations with the
EVENT option that can be handled for the
file at anyone time. For consecutive and
regional sequential files, it is an error
to allow more than the specified number of
events to be outstanding.

For indexed files, any excess operations
are queued, and no exceptional condition is
raised. However, specification of the
number of channel programs required may aid
optimization of I/O with an indexed file.
The NCP option has no effect with a
regional direct file.

The decimal integer constant specified
with NCP must have a value in the range 1
through 99: otherwise, 1 is assumed.

This option is eqUivalent to the NCP
subparameter of the DCB parameter of the DD
statement.

I A file declared with ENVIRONMENT(VSAM)
Ican never have more than one incomplete
linput/output operation at anyone time. If
Ithe NCP option is specified for such a
Ifile, it is ignored.

TRACK OVERFLOW (TRKOFL)

Track overflow is a feature of the
operating system which can be incorporated
at system generation time: it requires the
record overflow feature on the direct
access storage control unit. Track
overflow allows a record to overflow from
one track to another. It is useful in
achieving a greater data packing
efficiency, and allows the size of a record
to exceed the capacity of a track.

Note: Track overflow is not available for
REGIONAL(3) or INDEXED data sets.

VARYING-LENGTH STRING OPTION
(SCALARVARYING)

The SCALARVARYING option is used in the
input/output of varying-length strings.
The transmission of element varying-length

Chapter 12: Record-oriented Transmission 115

strings using locate mode is possible only
when this option is specified. This is
achieved by the inclusion or recognition of
a two-byte length prefix to an element
varying-length string when the string is
transmi tted.

When storage is allocated for a varying
length string, the compiler includes a two
byte prefix that specifies the current
length of the string. For an element
varying-length string, this prefix is
included on output, or recognized on input,
only if SCALARVARYING is specified for the
file.

When locate mode statements (LOCATE and
READ SET) are used to create and read a
data set with element varying-length
strings, SCALARVARYING must be specified to
indicate that a length 'prefix is present,
since the pointer that locates the buffer
will always be assumed to pOint to the
start of the length prefix.

1. When SCALARVARYING is specified and
element varying-length strings are
transmitted, the programmer must allow
two bytes in the record length to
include the length prefix.

2. A data set created using SCALARVARYING
should be accessed only by a file that
also specifies SCALARVARYING.

3. SCALARVARYING and CTLASA/CTL360 must
not be specified for the same file, as
this causes the first data byte to be
ambiguous.

4. SCALARVARYING must not be used with
data sets created by the PL/I (F)
compiler; this compiler neither
creates nor recognizes a length
prefix.

KEY LENGTH OPTION (KEYLENGTH)

The KEYLENGTH option specifies the length
of the recorded key for KEYED files.
KEYLENGTH must be specified for INDEXED or
REGIONAL(3) files.

KEY LOCATION OPTION (KEYLOC)

The KEYLOC option can be used with INDEXED
data sets, when the data set is created, to
specify the start poSition of an embedded
key in a record. The position given must
be within the limits:

176 OS PL/I CKT AND OPT LRM PART I

1 S n S recordsize - keylength +1

That is, the key cannot be larger than the
record, and must be contained completely
within the record.

If KEYLOC is not specified, the value of
the RKP subparameter of the DCB parameter
of the DO statement is used. If this
sUbparameter is not specified, then RKP=O
is assumed.

~

1. The RKP value for a particular byte
always differs from the KEYLOC value.
See "Embedded Key·, in ·INDEXED
ORGANIZATION", later in this chapter.

2. When KEYLOC is specified, the key is
always part of the variable. When RKP
is specified, the key is part of the
variable only when RKP~

3. If SCALARVARYING is specified, the
emabedded key must not immediately
precede or follow the first byte:
hence, KEYLOC must specify greater
than 2.

DCB Subparameters

Some of the information that can be
specified in the options of the ENVIRONMENT
attribute can also be specified in the
subparameters of the DCB parameter of a DO
statement. The table gives a list of
equivalents:

ENV Option

Record format
RECSIZE
BLKSIZE
BUFFERS
CTLASA/CTL360
NCP
TRKOFL
KEYLENGTH
KEYLOC
ASCII
BOFOFF

DCB Subparameter

RECFM
LRECL
BLKSIZE
BUFNO
RECFM
NCP
RECFM
KEYLEN
RKP
ASCII
BUFOFF

DEVICE-ASSOCIATED FILES (IBM 3525 CARD
PUNCH)

The IBM 3525 device is an 80-column card
punch, available to IBM System/370 users,
that can also read cards and print on them.
The CTLAsA and CTL360 control characters
for the device are given in figures 12.13
and 12.14 respectively.

Advantage can be taken of the multiple
capabilities of the device by associating
two or three files together with the device
so that more than one of the operations
read, punch, and print can be performed on
the same card during one pass through the
device. Details of the use of the device,
together with the IBM 3505 card reader, a~e
given in the programmer's guide for the
compiler; however, certain restrictions
have to be considered at the time of
writing the program. These restrictions
are as follows:

1. Device-associated files must have the
RECORD attribute and must be either
all BUFFERED or all UNBUFFERED.

2. The records must be F-format. The
maximum record size is 80 for read and
punch files and 64 for print files,
plus one byte for punch/print control
characters.

3. ENVIRONMENT (TOTAL) cannot be used.

4. When a read or punch associated file
is opened, the value of the BUFFERS
option (for BUFFERED files) or of NCP
(for UNBUFFERED files) will be set to
one.

5. Device-associated files may be opened
in any order, but all of the files
must be open before any transmission
takes place to or from anyone of
them.

6. Depending on the files associated, the
appropriate input/output operations on
each card must strictly follow the
order read-punch-print. If the
sequence rules are not followed, the
ERROR condition is raised. Only the
print operation can be omitted or
repeated.

1. A print-associated file that uses
control characters for line
poSitioning must not attempt to feed a
card. Such an attempt would occur if
an instruction to print beyond the
maximum line number (2 or 25) for the
card were issued, or if a control
character that implied a new record
were used. For example, the control
character '1' specifies printing on
the first line of the next card.

8. Device-associated files can normally
be closed in any order, but no
transmdssion can take place after any
one of the files has been closed. As
a result, care is needed if the LOCATE
statement is used for BUFFERED OUTPUT
files. The output from a LOCATE
statement does not actually take place
until the next LOCATE, WRITE, or CLOSE

statement for the file. If the LOCATE
statement is used on both print and
punch associated files, a multiple
CLOSE statement must be used,
specifying the punch file before the
print file. For example:

LOCATE A FILE(PUNCHOUT);
LOCATE B FlLE(PRINTOUT);
CLOSE FILE(PUNCHOUT),FILE(PRINTOUT);

9. The ANS print control character '+'
(or SKIP(O» is not allowed with the
IBM 3525.

10. Files associated with column binary or
Optical Mark Read data sets must be
RECORD files.

ASCII DATA SETS

Data sets on magnetiC tape using ASCII may
be created and accessed in PL/I. The
implementation supports F, FB, U, D, and DB
record formats. F, FB, and U formats are
treated in the same way as with other data
sets; D and DB formats, which correspond to
V and VB formats with other data sets, are
described below.

In addition to the record format, two
other ENVIRONMENT options may be specified:
ASCII, and the buffer offset option BUFOFF.

Only character data may be written onto
an ASCII data set: when the data set is
created, transmission must be from a
character string variable. This variable
may have the attribute VARYING as well as
CHARACTER, but the two length bytes of a
varying-length character string can not be
transmi tted; in other words, varying-length
character strings can not be transmitted to
an ASCII data set using a SCALARVARYING
file. Also, data aggregates containing
varying~length strings may not be
transmitted.

Since an ASCII data set must be on
magnetic tape, it must be of CONSECUTIVE
organization. The associated file must be
BUFFERED.

ASCII Option

This option specifies that the code used to
represent data on the data set is ASCII.

Chapter 12: Record-oriented Transmission 177

BUFOFF Option and Block Prefix Fields

At the beginning of each block in an ASCII
data set, there may be a field known as the
block prefix field. It may be from one to
99 bytes long. The buffer offset option
indicates the length of this field to data
management, so that the accessing or
creation of data is started at th1s offset
from the beginning of each physical block.
PL/I does not support access to this field,
and in general it does not contain
information Which is used in these
implementations. There is one situation in
which data management does use information
in the block prefix: with variable length
records (that is, D- or DB-format records),
the block prefix field may be used to
record the length of the block. In this
case, it is four bytes long and contains a
right-aligned, decimal character value that
gives the length of the block in bytes,
including the block prefix field itself.
It is then exactly equivalent to a block
length field.

The format of the buffer offset option
is BUFOFF[(n»). A numerical value equal to
the length of the prefix may be specified
for wnw. It may be specified as either a
decimal integer constant or as a variable
with the attributes FIXED BINARY(31,O)
STATIC. Its minimum value is zero and its
maximum is 99. The absence of a prefix
length specification indicates that the
block prefix is to be used as a block
length field: it implies that the field is
four bytes long. The length of the block
is inserted in the prefix by data
management.

On input, any ASCII data set may be
accessed if it has a block prefix field of
length one to 99 bytes, or no block prefix
field at all: and it may be accessed
wh~her or not the block prefix field is
used as a block length field. On output, a
data set using anyone of the valid record
formats may be created without a block
prefix, but the only situation in which the
creation of a block prefix is supported by
PL/I is when it is used as a block length
field. The only permissible buffer offset
specification on output is therefore
BUFOFF, with no prefix length
specification.

The BUFOFF option may be used with ASCII
data sets only.

D-format and DB-format Records

Each record may be of a different length.
The two formats are:

178 OS PL/I CRT AND OPT LRM PART I

D-format: The records are unblocked: each
record constitutes a Single
block. Each record consists of:

Four control bytes
Data bytes

The four control bytes contain
the length of the record: this
value is inserted by data
management and requires no
action from the programmer.
In addition, there may be, at
the start of the block, a block
prefix field, which may contain
the length of the block.

DB-format: The records are blocked. All
other information given for
D-format applies to DB-format.

Default Rules

In addition to the rules given under
"Record Format Defaults", the following
rule applies:

If ASCII is not specified in either the
ENVIRONMENT option or the DD statement, but
one of BUFOFF, Dr or DB is specified, then
ASCII is assumed.

Consecutive Organization

In a data set with CONSECUTIVE
organizationl the records have no keys.
When the data set is created, records are
written consecutively in the order in which
they are presented. The records can be
retrieved only in the order in which they
were written or in the reverse order when
using the BACKWARDS attribute: therefore
the associated file must have the
SEQUENTIAL attribute. A CONSECUTIVE data
set can have F-format, FB-format, FBS
format, V-format, VB-format, VS-format,
VBS-format, D-format, DB-format, or U
format records. The BACKWARDS attribute
cannot be specified when a data set has V-,
VB-, VS-, VBS-, 0-, or DB-format records.

Note the difference between the
CONSECUTIVE option of the ENVIRONMENT
attribute and the SEQUENTIAL attribute.
CONSECUTIVE specifies the physical
organization of a data set: SEQUENTIAL
specifies how a file is to be processed. A
data set with CONSECUTIVE organization must
be associated with a SEQUENTIAL file; but a
data set with INDEXED or REGIONAL
organization can be associated with either
a SEQUENTIAL or DIRECT file.

A CONSECUTIVE data set on magnetic tape
can be read forwards or backwards. If the
data set is to be read backwards, the
associated file must have the BACKWARDS
attribute. If a data set is first read or
written forwards and then read backwards in
the same program, the LEAVE option should
be specified in the ENVIRONMENT attribute
to prevent normal rewind when the file is
closed (or, with a multi-volume data set,
when volume-switching occurs). Variable
length record data sets cannot be read
backwards.

Once a CONSECUTIVE data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT, OUTPUT or, for
direct access data sets, UPDATE. If it is
opened for OUTPUT, DISP=MOO must be
specified in the DO statement; records can
then be added to the end of the data set.
(If DISP=MOD is not specified, the data set
will be overwritten.) Figure 12.12 lists
the data transmission statements and
options that can be used to create and
access a CONSECUTIVE data set.

SEQUENTIAL UPDATE

When a CONSECUTIVE data set is accessed by
a SEQUENTIAL UPDATE file, a record must be
retrieved with a READ statement before it
can be updated by a REWRITE statement;
however, every record that is retrieved
need not be rewritten. A REWRITE statement
will always update the last record read.

Consider the following:

READ FILE(F) INTO(A);

READ FILE(F) INTO(B);

REWRITE FILE(F) FROM(A);

The REWRITE statement updates the record
which was read by the second READ
statement. The record that was read by the
first statement cannot be rewritten after
the second READ statement has been
executed.

Indexed Organization

A data set with INDEXED organization must
be on a direct-access device. Its records,
which can be either F-format or V-format
records, blocked or unblocked, are arranged

in logical sequence according to keys that
are associated with each record. A key is
a character string that can identify each
record uniquely. Logical records are
arranged in the data set in ascending key
sequence according to the Systeml360 and
System/370 collating sequence. Indexes
associated with the data set are used by
the operating system data-management
routines to locate a record when the key is
supplied.

Unlike CONSECUTIVE organization, INDEXED
organization does not require every record
to be accessed in sequential fashion. An
INDEXED data set must be created
sequentially; but, once it has been
created, the associated file may have the
attribute SEQUENTIAL or DIRECT as well as
INPUT or UPDATE. When the file has the
DIRECT attribute, records may be retrieved,
added, deleted, and replaced at random.

Figure 12.9 lists the data-transmission
statements and options that can be used to
create and access an INDEXED data set.

KEYS

There are two kinds of keys, recorded keys
and source keys. A recorded key is a
character string that actually appears with
each record in the data set to identify
that record; its length cannot exceed 255
characters. A source key is the character
string value of the expression that appears
in the KEY or KEYFROM option of a data
transmission statement to identify the
record to which the statement refers; for
direct access of an INDEXED data set, each
transmission statement must include a
source key.

The length of the recorded keys in an
INDEXED data set is defined by the
KEYLENGTH environment option or the KEYLEN
sUbparameter of the DD statement that
defines the data set. If the length of a
source key is greater than the specified
length of the recorded keys, the source key
is truncated on the right. If the source
key is shorter than the specified key
length, and GENKEY has not been specified,
the source key is padded with blanks on the
right to the specified length.

The recorded keys in an INDEXED data set
may be separate from, or embedded within,
the logical records. If the keys are
embedded within the records, either the
KEYLOC(n) environment option should be
specified when the data set is created, or
the sUbparameter RKP must be included in
the DD statement for the associated data
set (in the job step in which the data set

Chapter 12: Record-oriented Transmission 179

I

r---,
IFile deciaration1 1Vaiid statementsa , with options that must 10ther options that can I
1 I appear lalso be used 1
1---1
1 SEQUENTIAL OUTPUTIWRITE FILE(file-expr) FROM(variable): I 1
I BUFFERED 1 I 1
I ILOCATE variable FILE(file-expr): 1 SET (pointer-variable) I
1---1
'SEQUENTIAL OUTPUTIWRITE FILE(file-expr) FROM(variable): I EVENT (event-variable) ,
I UNBUFFERED 1 I'
,---------------------------------~---1
ISEQUENTIAL INPUT IREAD FILE(file-expr) INTO(variable): I I
1 BUFFERED I I 1
I IREAD FILE(file-expr) SET(pointer-variable): I ,
1 IREAD FILE(file-expr) IGNORE(expression): I I
I~--
1 SEQUENTIAL INPUT IREAD FILE(file-expr) INTO(variable): I EVENT (event-variable)
UNBUFFERED 1 I

IREAD FILE(file-expr) IGNORE(expression): I EVENT (event-variable)

SEQUENTIAL UPDATEIREAD FILE(file-expr) INTo(variable): I

I
I
I

BUFFERED I
IREAD FILE(file-expr) SET(pointer-variable):
IREAD FILE(file-expr) IGNORE(expression):
IREWRITE FILE(file-expr): I FROM (variable)

SEQUENTIAL UPDATEIREAD FILE(file-expr) INTO(variable): I EVENT (event-variable)
UNBUFFERED I I

IREAD FILE(file-expr) IGNORE(expression): I EVENT (event-variable)
IREWRITE FILE(file-expr) FROM(variable): I EVENT (event-variable)

---1
1The complete file declaration would include the attributes FILE, RECORD, and I

ENVIRONMENT I
I

aThe statement READ FILE (file-expression) : is a valid statement and is equivalent to:1
READ FILE (file-expression) IGNORE (1): I

L---J
Figure 12.8. Statements and options permitted for creating and accessing CONSECUTIVE

data sets

is created), to give the location of the
key within the record.

Note: All VSAM key-sequenced data sets have
embedded keys, even if they have been
converted from ISAM data se~s with non
embedded keys.

Embedded Keys

The KEYLOC option specifies the absolute
position of an embedded key from the start
of the data in a record, while the RKP
suhparameter specifies the position of an
embedded key relative to the start of the
record.

Thus the equivalent KEYLOC and RKP values
for a particular byte are affected by the
following:

1. The KEYLOC byte count starts at 1: the
RKP count starts at 0

180 OS PL/I CKT AND OPT LRM PART I

2. The record format

For example, if the embedded key begins
at the tenth byte of a record variable,
then the specifications are:

Fixed length: KEYLOC(10)
RKP=9

variable-length: KEYLOC(10)
RKP=13

If KEYLOC is specified with a value
equal to or greater than one, embedded kEYS
exist in the record variable and on the
data set. If KEYLOC is equal to zero, or
is not specified, the RKP value is used: as
a result, embedded keys may not always be
present in the record variable or the data
set. If KEYLOC(l) is specified, it must be
specified for every file that accesses the
data set. This is necessary because
KEYLOC (1) cannot be converted to an
unambiguous RKP value. (Its equivalent is
RKP=O for fixed format, which in turn
implies non-embedded keys.) The effect of

r---,
IFi1e declaration~lvalid statements2 , with options that must IOther options that can
I I appear lalso be used

SEQUENTIAL OUTPUTIWRITE FILE(file-expr) FROM (variable)
I KEYFROM(expression):

I
I
I

SEQUENTIAL INPUT

I
ILOCATE variable FILE(file-expr) I SET (pointer-variable)
I KEYFROM(expression); I

I READ
I
I
I READ
I
I
I READ

FILE (file-expr) INTO(variable): I KEY (expression) or
I (character-string
I variable)

FILE(file-expr) SET(pointer-variable);IKEY(expression) or
I (character-string
I variable)

FILE (file-expr) IGNORE(expression): I

KEYTO

KEYTO

SEQUENTIAL UPDATEIREAD FILE(file-expr) INTO(variable);
I

KEY (expression) or KEYTO
(character-string
variable)

KEY(expression) or KEYTO
(character-string
variable)

DIRECT INPUT

I
IREAD FILE(file-expr) SET(pointer-variable):
I
I
IREAD FILE(file-expr) IGNORE(expression):
I
IREWRITE FILE(file-expr):
I
IDELETE FILE(file-expr):

IREAD FILE(file-expr) INTO(variable)
I KEY(expression):

FROM (variable)

KEY(expression)

I EVENT (event-variable)
I

I DIRECT
I

UPDATE IREAD FILE(file-expr) INTO (variable)
I KEY(expression)i

I EVENT (event-variable)
I

I
I
I
I
I
I
I

I
IREWRITE FILE(file-expr) FROM(variable)
I KEY(expression);
I
IWRITE FILE(file-expr) FROM(variable)
I KEYFROM(expression)i
I

I
IEVENT(event-variable)
I
I
IEVENT(event-variable)
I
I

I IDELETE FILE(file-expr) KEY(expression): I EVENT (event-variable)
L---J
Figure 12.9 (Part 1 of 2). Statements and options permitted for creating and

accessing INDEXED data sets

the use of either option is shown in figure
12.10.

Programs written for the PL/I F Compiler
which use records with embedded keys can be
compiled without alteration to the
ENVIRONMENT attribute for the inclusion of
the KEYLOC option, if the original RKP
subparameter is specified when the
recompiled program is executed.

The use of embedded keys avoids the need
for the KEYTO option during sequential
input, but the KEYFROM option is still
required for output. (However, the data
specified by the KEYFROM option may be the
embedded key portion of the record variable
itself.) In a data set with unblocked
records, a separate recorded key precedes

each record, even when there is already an
embedded key. If the records are blocked,
the key of only the last record in each
block is recorded separately in front of
the block.

During the execution of a WRITE
statement that adds a record to a data set
with embedded keys, the value of the
expression in the KEYFROM option is
assigned to the embedded key position in
the record variable. Note that a record
variable can be declared as a structure
with an embedded key declared as a
structure member, but that such an embedded
key must not be declared as a VARYING
string.

For a LOCATE statement, the KEYFROM

Chapter 12: Record-oriented Transmission 181

r-----------------
DIRECT UPDATE
EXCLUSIVE

READ FILE(file-expr) INTO (variable)
KEY(expression);

REWRITE FILE(file-expr) FROM (variable)
KEY(expression):

WRITE FILE(file-expr) FROM (variable)
KEYFROM(expression);

DELETE FILE(file-expr) KEY(expression):

UNLOCK FILE(file-expr) KEY(expression);

-------------------------,
EVENT (event-variable)
and/or NOLOCK

EVENT (event-variable)

EVENT (event-variable)

EVENT(event-variable)

~The complete file declaration would include the attributes FILE, RECORD, and
ENVIRONMENT: if any of the options KEY, KEYFROM, and KEYTO is used, it must
also include the attribute KEYED.

2The statement: READ FILE (file-expression); is equivalent to the statement:
READ FILE (file-expression) IGNORE (1):

Notes: The attribute UNBUFFERED is ignored and BUFFERED is assumed for INDEXED
SEQUENTIAL and SEQUENTIAL files.

Use of the DELETE statement is invalid if OPTCD=L (DCB subparameter) was not
specified when the data set was created or if the RKP subparameter is zero for
FB records, or four for V and VB records.

L---J
Figure 12.9 (part 2 of 2). Statements and options permitted for creating and

accessing INDEXED data sets

r---1
I I I Data Set
I I 1-----------------------

KEYLOC I RKP I Record Variable I Unblocked I Blocked
(n) I I I records I records

n>l I RKP equivalent = Key Key I Key

I n-1+C~ I

n=l I No equivalent Key Key2 I Key

n=O
or not
specified

I RKP=C~ I No key I No key I Key3
1---
1 I I I
I RKP>C1 I Key I Key I Key

1 C = number of control bytes, if any: C=O for fixed-length records
C=4 for variable-length records

2 In this instance the key is not recognized by data management.
3 Each logical record in the block has a key.
L---J
Figure 12.10. Effect of KEYLOC and RKP values on establishing embedded keys in

record variables or data sets

182 OS PL/I CKT AND OPT LRM PART I

string is assigned to the embedded key when
the next operation on the file is
encountered.

DUMMY RECORDS

Records within an INDEXED data set are
either actual records containing valid data
or dummy records. A dummy record is
identified by the constant (8)'1'B in its
first byte. Dummy records can be inserted
by the programmer, or can be created by
deleting records. They can be replaced by
valid data records having the same keys as
the dummy records. The sUbparameter
OPTCD=L must be included in the DD
statement that defines the data set when it
is created, so that dummy records are
recognized and not retrieved by READ
statements.

CREATING A DATA SET

When an INDEXED data set is being created,
the associated file must be opened for
SEQUENTIAL OUTPUT, and the records must be
presented in the order of ascending key
values. (If ther~ is an error in the key
sequence, the KEY condition will be
raised.) A DIRECT file cannot be used for
the creation of an INDEXED data set.

Once an INDEXED data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT or UPDATE, or
for DIRECT INPUT or UPDATE. In the case of
F-format records, it can also be opened for
OUTPUT to add records at the end of the
data set. The keys for these records must
have higher values than the existing keys
for that data set and must be in ascending
order. The storage allocated for a data
set can be increased when it is required
for output.

SEQUENTIAL ACCESS

A SEQUENTIAL file that is used to access an
INDEXED data set may be opened with either
the INPUT or the UPDATE attribute. The
data transmission statements need not
include source keys, nor need the file have
the KEYED attribute. Sequential access is
in order of ascending recorded-key values;
records are retrieved in this order, and
not necessarily in the order in which they
were added to the data set. Dummy records
are not retrieved if the DO statement that
defined the data set included the

subparameter OPTCD=L.

Except that the EVENT option cannot be
used, rules governing the relationship
between the READ and REWRITE statements for
a SEQUENTIAL UPDATE file that accesses an
INDEXED data set are identical to those for
a CONSECUTIVE data set (described above).

Embedded keys in a record to be updated
must not be altered. The modified record
must always overwrite the updated record in
the data set.

Additionally, records can be effectively
deleted from the data set; a DELETE
statement marks a record as a dummy by
putting (8)'1'B in the first byte. The
DELETE statement should not be used to
process a data set with F-format blocked
records and either KEYLOC=l or RKP=O, or V
or VB-format records and either KEYLOC=l or
RKP=4. (The code (8) 'l'B would overwrite
the first byte of the recorded key.) Note
that the EVENT option is not supported for
SEQUENTIAL access of INDEXED data sets.

During sequential access of an INDEXED
data set, it is possible to read a
particular record by supplying a source key
in the KEY option of a READ. statement, and
to continue sequential reading from that
pOint in the data set. (The associated
file must have the KEYED attribute.) Thus,
a READ statement that includes the KEY
option will cause the record, whose key is
supplied, to be read; a subsequent READ
statement without the KEY option will cause
the record with the next higher recorded
key to be read (even if the keyed record
has not been found).

The effect of supplying a source key
that is shorter than the recorded keys in
the data set differs according to whether
or not the GENKEY option is specified in
the ENVIRONMENT attribute. In the absence
of the GENKEY option, the source key is
padded on the right with blanks to the
length specified in the KEYLENGTB option of
the ENVIRONMENT attribute, and the record
with this padded key is read (if such a
record exists). If the GENKEY option is
specified, the source key is interpreted as
a generic key, and the first record with a
key in the class identified by this generic
key is read. (Refer to -Key
Classification,- above.)

DIRECT ACCESS

A DIRECT file that is used to access an
INDEXED data set may be opened with either
the INPUT or the UPDATE attribute. All
data transmission statements must include

Chapter 12: Record-oriented Transmission 183

source keys; the DIRECT attribute implies
the KEYED attribute.

A DIRECT UPDATE file can be used to
retrieve, add, delete, or replace records
in an INDEXED data set according to the
following conventions:

1. Retrieval: If the DD statement that
defined the data set included the
subparameter OPTCD=L, dummy records
are not made available by a READ
statement. (The KEY condition is
raised.)

2. Addition: A WRITE statement that
includes a unique key causes a record
to be inserted into the data set. If
the key is the same as the recorded
key of a dummy record, the new record
replaces the dummy record. If the key
is the same as the recorded key of a
record that is not marked as deleted,
or if there is no space in the data
set for the record, the KEY condition
is raised.

3. Deletion: The record specified by the
source.key in a DELETE statement is
retrieved, marked as deleted, and
rewritten into the data set. The
effect of the DELETE statement is to
insert the value (8) 'l'B in the first
byte of the data in a record.
Deletion is possible only if OPTCD=L
was specified in the DD statement that
defined the data set when it was
created. If the data set has F-format
blocked records with RKP=O or
KEYLOC=l, or V-format records with
RKP=4 or KEYLOC=l, records cannot be
deleted. (The code (8)'1'B would
overwrite the embedded keys.)

4. Replacement: The record specified by a
source key in a REWRITE statement 1S
replaced by the new record. If the
data set contains F-format blocked
records, a record replaced with a
REWRITE statement causes an implicit
READ statement to be executed unless
the.previous I/O statement was a READ
statement that obtained the record to
be replaced. If the data set contains
V-format records and the updated
record has a length different from
that of the record read, the whole of
the remainder of the track will be
moved, and may cause data to be moved
to an overflow track.

Regional Organization

A data set with REGIONAL organization is
divided into regions, each of which is

184 OS PL/I CRT AND OPT LRM PART I

identified by a region number, and each of
which may contain one record or more than
one record, depending on the type of
REGIONAL organization. The regions are
numbered in succession, beginning with
zero, and a record may be accessed by
specifying its region number, and perhaps a
key, in a data transmission statement.

REGIONAL organization of a data set
permits the programmer to control the
physical placement of records in the data
set, and enables him to optimize the access
time for a particular application. Such
optimization is not available with
CONSECUTIVE or INDEXED organization, in
which successive records are written either
in strict phySical sequence or in logical
sequence depending on ascending key values;
neither of these methods takes full
advantage of the characteristics of direct
access storage devices. REGIONAL data sets
are confined to direct-access devices.

A REGIONAL data set can be created in a
similar manner to a CONSECUTIVE or INDEXED
data set, records being presented in the
order of ascending region numbers;
alternatively, direct access can be used,
in which records can be presented in random
sequence and inserted directly into
preformatted regions. Once a REGIONAL data
set has been created, it can be accessed by
a file with the attributes SEQUENTIAL or
DIRECT as well as INPUT or UPDATE. Note
that neither a region number nor a key need
be specified if the data set is associated
with a SEQUENTIAL INPUT or SEQUENTIAL
UPDATE file. When the file has the DIRECT
attribute, records can be retrieved, added,
deleted, and replaced at random.

Records within a REGIONAL data set are
either actual records containing valid data
or dummy records. The nature of the dummy
records depends on the type of REGIONAL
organization; the three types of REGIONAL
organization are described below.

Figure 12.11 lists the data transmission
statements and options that can be used to
create and access a REGIONAL data set.

KEYS

There are two kinds of keys, recorded keys
and source keys. A recorded key is a
character string that immediately precedes
each record in the data set to identify
that record; its length cannot exceed 255
characters. A source key is the character
string value of the expression that appears
in the KEY or KEYFROM option of a data
transmission statement to identify the
record to Which the statement refers. When

a record in a REGIONAL data set is
accessed, the source key gives a region
number, and may also give a recorded key.

The length of the recorded keys in a
REGIONAL data set is defined by the
KEYLENGTB option of the ENVIRONMENT
attribute, or the KEYLEN subparameter on
the DD statement. Unlike the keys for
INDEXED data sets, recorded keys in a
REGIONAL data set are never embedded within
the record.

TYPES OF REGIONAL ORGANIZATION

There are three types of REGIONAL
organization:

1. A REGIONAL(l) data set contains F
format records that do not have
recorded keys. Each region in the
data set contains only one record;
therefore, each region number
corresponds with a relative record
position within the data set.

2. ~ REGIONAL(2) data set contains F
format records that have recorded
keys. Each region in the data set
contains only one record. Direct
access to a REGIONAL(2) data set
employs the region number specified in
a source key to locate the required
region. REGIONAL (2) differs from
REGIONAL(l) in that records are not
necessarily in the specified regions.
The specified region identifies a
starting-point; a search is then made
for a record with the given recorded
key starting at the beginning of the
track containing the region specified.

3. A REGIONAL(3) data set contains F
format, V-format, VS-format or U
format records with recorded keys.
Each region in the data set
corresponds with a track on a direct
access device, and can normally
contain one or more records. Direct
access of a REGIONAL(3) data set
employs the region number specified in
a source key to locate the required
region. Once the region has been
located, a sequential search for space
to add a record~ or for a record that
has a recorded key identical with that
supplied in the source key, can be
made. VS-format records may span more
than one region.

REGIONAL(l) ORGANIZATION

In a REGIONAL(l) data set, since there are
no recorded keys, the region number serves
as the sole identification of a particular
record. The character-string value of the
source key should represent an unsigned
decimal integer that should not exceed
16777215. If the region number exceeds
this figure, it is treated as modulo
16771216: 16717226, for instance, is
treated as 10. Only the characters 0
through 9 and the blank character are valid
in the source key; leading blanks are
interpreted as zeros; embedded blanks are
not permitted in the number; the first
embedded blank, if any, will terminate the
region number. I f more than eight
characters appear in the source key, only
the rightmost eight are used as the region
number; if there are fewer than eight
characters, blanks (interpreted as zeros)
are assumed on the left.

Dummy Records

Records in a REGIONAL(l) data set are
either actual records containing valid data
or dummy records. A dummy record in a
REGIONAL (1) data set is identified by the
constant (8)'1'B in its first byte.
Although such dummy records are
automatically inserted in the data set
either when it is created or when a record
is deleted, they are not ignored when the
data set is read~ the PL/I program must be
prepared to recognize them. Dummy records
can be replaced by valid data. Note that
if the programmer inserts (8)'1'B in the
first byte, the record will be lost if the
file is copied onto a data set whose dummy
records are not retreived.

Creating a REGIONAL(l) Data Set

A REGIONAL(1) data set can be created
either sequentially or by direct access.

When a SEQUENTIAL OUTPUT file is used to
create the data set, the opening of the
file causes all tracks on the data set to
be cleared, and a capacity record to be
written at the beginning of each track to
record the amoant of space available on
that track. Records must be presented in
ascending order of region numbers; any
region that is omitted from the sequence is
filled with a dummy record. If there is an
error in the sequence, or if a duplicate

Chapter 12: Record-oriented Transmission 185

r---,
File declaration1 1Valid statements, with options that must lother options that can 1

'appear lalso be used I

SEQUENTIAL OUTPUTIWRITE FILE (file-expr) FROM (variable) I , BUFFERED 1 KEYFROM(expression):
,LOCATE variable FILE(file-expr)
, KEYFROM(expression):

I SET (pointer-variable)
1

SEQUENTIAL OUTPUTIWRITE FILE(file-expr) FROM(variable) I
UNBUFFERED 1 KEYFROM(expression) : 1 EVENT (event-variable)

SEQUENTIAL INPUT
BUFFERED

I READ
1
I
1 READ
1 ,
I READ

FILE (file-expr) INTO (variable): IKEYTO
I (character-string
, variable)

FILE(file-expr) SET(pointer-variable):IKEYTO
I (character-string
I variable)

FILE (file-expr) IGNORE(expression): 1

SEQUENTIAL INPUT IREAD FILE(file-expr) INTO(variable): 1 EVENT (event-variable)
1 and/ or KEYTO UNBUFFERED I

I
1
'READ FILE (file-expr) IGNORE(expression):

I (character-string
I variable)
1 EVENT (event-variafile)

SEQUENTIAL UPDATEIREAD FILE(file-expr) INTO(variable). 'KEYTO
BUFFERED 1 1 (character-string-

, I variable)
IREAD FILE(file-expr) SET(pointer-variable):IKEYTO
, I (character-string-
I , variable)
IREAD FILE(file-expr) IGNORE(expression). I
I I
,REWRITE FILE(file-expr): I FROM (variable)

SEQUENTIAL UPDATEIREAD FILE(file-expr) INTO(variable); IEVENT (event-variable)
UNBUFFERED , ,

, ,and/or KEYTO
1 , (character-string-
I I variable)
IREAD FILE(file-expr) IGNORE(expression): IEVENT(event-variable)
ill

, IREWRITE FILE(file-expr) FROM(variable); ,EVENT(event-variable)
1---
IDIRECT OUTPUT IWRITE FILE(file-expr) FROM (variable) 'EVENT (event-variable)
I , KEYFROM(expression): 1
1---
IDIRECT INPUT IREAD FILE(file-expr) INTO(variable) 1 EVENT (event-variable)
, 1 KEY(expression). 1
1---
IDIRECT UPDATE IREAD FILE(file-expr) INTO (variable) I EVENT (event-variable)
I I KEY (expression) : I
1 I ,
1 IREWRITE FILE(file-expr) FROM(variable) I EVENT (event-variable)
, , KEY(expression): ,
I 1 ,
1 ,WRITE FILE(file-expr) FROM(variable) ,EVENT(event-variable)
1 , KEYFROM(expression): I

" , , IDELETE FILE(file-expr) KEY(expression); IEVENT(event-variable)
L---J
Figure 12.11 (Part 1 of 2). Statements and options permitted for creating and

accessing REGIONAL data sets

186 OS PL/I CRT AND OPT LRM PART I

r---,
IFile deciaration1 1Valid statements, with options that must I Other options that can
I I appear lalso be used
1---
IDIRECT INPUT IREAD FILE(file-expr) INTO(variable) I EVENT (event-variable)
I EXCLUSIVE I KEY(expression); land/or NOLOCK
1---
IDIRECT UPDATE READ FILE(file-expr) INTO (variable) IEVENT(event-variable)
EXCLUSIVE KEY(expression)i land/or NOLOCK

I
REWRITE FILE(file-expr) FROM(variable)

KEY(expression);
I EVENT (event-variable)
I
I

WRITE FILE(file-expr) FROM (variable)
KEYFROM(expression):

I EVENT (event-variable)
I
I

DELETE FILE(file-expr) KEY(expression); I EVENT (event-variable)
I

UNLOCK FILE(file-expr) KEY(expression)i I

1The complete file declaration would include the attributes FILE, RECORD, and
ENVIRONMENT: if any of the options KEY, KEYFROM, and KEYTO is used, it must also
include the attribute KEYED.

IThe statement: READ FILE (file-expression): is equivalent to the statement:
I READ FILE (file-expression) IGNORE(l):
L---J
Figure 12.11 (Part 2 of 2). statements and options permitted for creating and

accessing REGIONAL data sets.

key is presented, the KEY condition will be
raised. When the file is closed, any space
remaining at the end of the current extent
is filled with dummy records.

If a data set is created using a
buffered file, and the last WRITE or LOCATE
statement before the file is closed
attempts to transmit a record beyond the
limits of the data set, the CLOSE statement
may raise the ERROR condition.

If a DIRECT OUTPUT file is used to
create the data set, the whole of the
primary extent allocated to the data set is
filled with dummy records when the file is
opened.

Once a REGIONAL(l) data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT or UPDATE, or
for DIRECT INPUT or UPDATE. It can be
opened for OUTPUT only if the existing data
set is to be overwritten.

Sequential Access

A SEQUENTIAL file that is used to process a
REGIONAL (1) data set may be opened with
either the INPUT or UPDATE attribute. The
data transmission statements must not
include the KEY option: but the file may
have the KEYED attribute, since the KEYTO
option can be used. If the character-

string variable specified in the KEYTO
option has more than eight characters, the
value returned (the region number) is
padded on the left with blanks: if it has
fewer than eight characters, it is
truncated on the left.

sequential access is in the order of
ascending region numbers. All records are
retrieved, whether dummy or actual, and the
PL/I program should be prepared to
recognize dummy records.

The rules governing the relationship
between READ and REWRITE statements for a
SEQUENTIAL UPDATE file that accesses a
REGIONAL (1) data set are identical to those
for a CONSECUTIVE data set (described
above).

Direct Access

A DIRECT file that is used to process a
REGIONAL (1) data set may be opened with
either the INPUT, or the UPDATE attribute.
All data transmission statements must
include source keys; the DIRECT attribute
implies the KEYED attribute.

A DIRECT UPDATE file can be used to
retrieve, add, delete, or replace records
in a REGIONAL(l) data set according to the
following conventions:

Chapter 12: Record-oriented Transmission 181

1. Retrieval: All records, whether dummy
or actual, are retrieved. The program
must be prepared to recognize dummy
records.

2. Addition: A WRITE statement
substitutes a new record for the
existing record (actual or dummy) in
the region specified by the source
key.

3. Deletion: The record specified by the
source key in a DELETE statement is
converted to a dummy record.

4. Replacement: The record specified by
the source key in a REWRITE statement,
whether dummy or actual, is replaced.

REGIONAL(2) ORGANIZATION

In a REGIONAL(2) data set, each record is
identified by a recorded key that
immediately precedes the record. The
actual position of a record in the data set
relative to other records is determined not
by its recorded key, but by the region
number that is supplied in the source key
of the WRITE statement that adds the record
to the data set.

When a record is added to the data set
by direct access, it is written with its
recorded key in the first available space
after the beginning of the track that
contains the region specified. When a
record is read by direct access, the search
for a record with the appropriate recorded
key begins at the start of the track that
contains the region specified. Unless it
is limited by the LIMCT subparameter of the
DO statement that defines the data set, the
search for a record or for space to add a
record continues right through to the end
of the data set and then from the beginning
until the whole of the data set has been
covered. The closer a record is to the
specified region, the more quickly it can
be accessed.

Source Keys

The character-string value of the source
key can be thought of as having two logical
parts, the region number and a comparison
key. On output, the comparison key is
written as the recorded key: for input, it
is compared with the recorded key.

The rightmost eight characters of the
source key make up the region number, which
must be an unsigned decimal integer that

188 OS PL/I CKT AND OPT LRM PART I

does not exceed 16777215. If the region
number exceeds this figure, it is treated
as modulo 16777216: 16777226 is treated as
10. The region specification can include
only the characters 0 through 9 and the
blank character: leading blanks are
interpreted as zeros: embedded blanks are
not permitted in the number; the first
embedded blank, if any, will terminate the
region number. The comparison key is a
character string which occupies the left
hand side of the source key, and may
overlap or be distinct from the region
number, from which it can be separated by
other, non-significant, characters. The
length of the comparison key is specified
by either the KEYLEN subparameter of the DD
statement for the data set or the KEYLENGTH
option of the ENVIRONMENT attribute. If
the source key is shorter than the
specified key length, it is extended on the
right with blanks. To retrieve a record,
the comparison key must exactly match the
recorded key of the record. The comparison
key can include the region number, in which
case the source key and the comparison key
are identical; alternatively, part of the
source key may not be used. The length of
the comparison key is always equal to
KEY LENGTH or KEYLEN; if the source key is
longer then KEYLEN+8, the characters in the
source key between the comparison key and
the region number are ignored.

Consider the following examples of
source keys (the character "bW represents a
blank):

KEY ('JOHNbDOEbbbbbb12363251')

The rightmost eight characters make up the
region specification, the relative number
of the record. Assume that the associated
DO statement has the subparameter
KEYLEN=14. In retrieving a record, the
search will begin with the beginning of the
track which contains the region number
12363251, until the record is found having
the recorded key of JOHNbDOEbbbbbb.

If the subparameter were KEYLEN=22, the
search still would begin at the same place,
but SinCE the comparison and the source key
are the same length, the search would be
for a record having the recorded key
'JOHNbDOEbbbbbb12363251'.

KEY C'JOHNbDOEbbbbbbDIVISIONb423bbbb34627')

In this example, the rightmost eight
characters contain leading blanks, which
are interpreted as zeros. The search will
begin at region number 00034627. If
KEYLEN=14 is specified, the characters
DIVISIONb423b will be ignored.

Assume that COUNTER is declared FIXED
BINARY (21) and NAME is declared

CHARACTER(15). The key might be specified
as :

KEY (NAME II COUNTER)

The value of COUNTER will be converted to a
character string of eleven characters.
(The rules for conversion specify that a
binary value of this length, when converted
to character, will result in a string of
length 11, three blanks followed by eight
decimal digits.) The value of the
rightmost eight characters of the converted
string will be taken to be the region
specification. Then if the keylength
specification is KEYLEN=15, the value of
NAME will be taken to be the comparison
specification.

Dummy Records

A REGIONAL(2) data set can contain dummy
records. A dummy record consists of a
dummy key and dummy data. A dummy key is
identified by the constant (8) 'l'B in its
first byte. The first byte of the data
contains the sequence number of the record
on the track.

Dummy records can be replaced by valid
data. They are inserted automatically
either when the data set is created or when
a record is deleted, and they are ignored
when the data set is read. (Unlike INDEXED
data sets, REGIONAL data sets do not
require the subparameter OPTCD=L in the DO
statement.)

creatinq a Data set

A REGIONAL(2) data set can be created
either sequentially or by direct access.
In either case, when the file associated
with the data set is opened, the data set
is initialized with capacity records
specifying the amount of space available On
each track.

When a SEQUENTIAL OUTPUT file is used to
create the data set, records must be
presented in ascending order of region
numbers; any region that is omitted from
the sequence is filled with a dummy record.
If there is an error in the sequence,
including an attempt to place more than one
record in the same region, the KEY
condition will be raised. ~hen the file is
closed, any space remaining at the end of
the current extent is filled with dummy
records.

If a data set is created using a

buffered file, and the last WRITE or LOCATE
statement before the file is closed
attempts to transmdt a record beyond the
limits of the data set, the CLOSE statement
may raise the ERROR condition.

If a DIRECT OUTPUT file is used to
create the current extent of a data set,
the whole of the primary extent allocated
to the data set is filled with dummy
records when the file is opened. Records
can be presented in random order, and no
condition is raised by duplicate keys.
Each record is substituted for the first
dummy record on the track that contains the
region specified in the source key; if
there are no dummy records on the track,
the record is substituted for the first
dummy record encountered on a subsequent
tracK, unless the LIMCT subparameter
specifies that the search cannot reach
beyond this track. (Note that it is
possible to place records with identical
recorded keys in the data set.)

Once a REGIONAL(2) data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT or UPDATE, or
for DIRECT INPUT or UPDATE. It cannot be
opened for OUTPUT.

sequential Access

A SEQUENTIAL file that is used to process a
REGIONAL (2) data set may be opened with
either the INPUT or the UPDATE attribute.
The data transmission statements must not
include the KEY option, but the file may
have the KEYED attribute since the KEYTO
option can be used. The KEYTO option
specifies that the recorded key only is ~o
be aSSigned to the specified variable. If
the character-string variable specified in
the KEYTO option has more characters than
are specified in the KEYLEN subparameter,
the value returned (the recorded key) is
extended on the right with blanks; if it
has fewer characters than specified by
KEYLEN, the value returned is truncated on
the right.

sequential access is in the physical
order in which the records exist on the
data set, not necessarily in the order in
which they were added to the data set. The
recorded keys do not affect the order of
sequential access. Dummy records are not
retrieved.

The rules governing the relationship
between READ and REWRITE statements for a
SEQUENTIAL UPDATE file that accesses a
REGIONAL(2) data set are identical with
those for a CONSECUTIVE data set (described
above) •

Chapter 12: Record-oriented Transmission 189

Direct Access

A DIRECT file that is used to process a
REGIONAL(2) data set may be opened with
either the INPUT or the UPDATE attribute.
All data transmission statements must
include source keys; the DIRECT attribute
implies the KEYED attribute. The search
for each record is commenced at the start
of the track containing the region number
indicated by the key.

1. Retrieval: Dummy records are not made
available by a READ statement. The
KEY condition is raised if a record
with the specified recorded key is not
found.

2. Addition: A WRITE statement
substitutes the new record for the
first dummy record on the track
containing the region specified by the
source key. If there are nO dummy
records on this track, and an extended
search is permitted by the LIMCT
subparameter, the new record replaces
the first dummy record encountered
during the search.

3. Deletion: The record specified by the
source key in a DELETE statement is
converted to a dummy record.

4. Replacement: The record specified by
the source key in a REWRITE statement
must exist; a REWRITE statement cannot
be used to replace a dummy record. If
it does not exist, the KEY condition
is raised.

Note that if a track contains records
with duplicate recorded keys, the record
farthest from the beginning of the track
will never be retrieved during direct
access.

REGIONAL(3) ORGANIZATION

A REGIONAL(3) data set differs from a
REGIONAL(2) data set (described above) only
in the following respects:

1. Each region number identifies a track
on the direct-access device that
contains the data set; the region
number should not exceed 32767. A
region in excess of 32767 is treated
modulo 32768; 32778 is treated as 10.

2. A region can contain one or more
records, or a segment of a VS-format
record.

3. The data set can contain F-format, V-

190 OS PUI CKT AND OPT LRM PART I

format, VS-format, or U-format
records. Dummy records can be
created, but a data set that has V
format, VS-format, or U-format records
is not preformatted with dummy records
because the lengths of records cannot
be known until they are written;
however, all tracks in the primary
extent are cleared and the operating
system maintains a capacity record at
the beginning of each track, in which
it records the amount of space
available on that track.

Source keys for a REGIONAL(3) data set
are interpreted exactly as those for a
REGIONAL (2) data set, and the search for a
record or space to add a record is
conducted in a similar manner.

Dummy Records

Dummy records for REGIONAL(3) data sets
with F-format records are identical with
those for REGIONAL(2) data sets.

V-format, VS-format, and U-format dummy
records are identified by the fact that
they have dummy recorded keys «8)'l'B in
the first byte). The four control bytes in
each V-format and VS-format dummy record
are retained, but otherwise the contents of
V-format, VS-format, and U-format dummy
records are undefined. V-format, VS
format, and U-format format records are
converted to dummy records only when a
record is deleted; they cannot be
reconverted to valid records.

Creating a Data Set

A REGIONAL(3) data set can be created
either sequentially or by direct access.
In either case, when the file associated
with the data set is opened, the data set
is initialized with capacity records
specifying the amount of space available on
each track.

When a SEQUENTIAL OUTPUT file is used to
create the data set, records must be
presented in ascending order of region
numbers, but the same region number can be
specified for successive records. If there
is an error in the sequence, the KEY
condition will be raised. If a track
becomes filled by records for which the
same region number was specified, the
region number is automatically incremented
by one; an attempt to add a further record
with the same region number will raise the
KEY condition (sequence error).

If a data set is created using a
buffered file, and the last WRITE or LOCATE
statement before the file is closed
attempts to transmit a record beyond the
limits of the data set, the CLOSE statement
may raise the ERROR condition.

If a DIRECT OUTPUT file is'used to
create the data set, the whole of the
primary extent allocated to the data set is
initialized when the data set is opened;
for F-format records, the space is filled
with dummy records, and for V-format, VS
format, and U-format records, the capacity
record for each track is written to
indicate empty tracks. Records can be
presented in random order, and no condition
is raised by duplicate keys or duplicate
region specifications. If the data set has
F-format records, each record is
substituted for the first dummy record in
the region (track) specified in the source
key; if there are no dummy records on the
track, and an extended search is permitted
by the LIMCT subparameter, the record is
substituted for the first dummy record
encountered during the search. If the data
set has V-format, VS-format, or U-format
records, the new record is inserted on the
specified track, if sufficient space is
available; otherwise, if an extended search
is permitted, the new record is inserted in
the next available space.

Note that for spanned records space may
be required for overflow onto subsequent
tracks.

Once a REGIONAL(3) data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT or UPDATE, or
for DIRECT INPUT or UPDATE. It can only be
opened for OUTPUT if the entire existing
data set is to be deleted and replaced.

Sequential Access

A SEQUENTIAL file that is used to access a
UGIONAL(3) data set may be opened with
either the INPUT or UPDATE attribute. The
data transmission statements must not
iBclude the KEY option, but the file may
have the KEYED attribute since the KEYTO
option can be used. The KEYTO option
specifies that the recorded key only is to
De assigned to the specified variable. If
the character-string variable specified in
the KEYTO option has more characters than
are specified in the KEYLEN subparameter,
the value returned (the recorded key) is
extended on the right with blanks; if it
has fewer characters than specified by
KEYLEN, the value returned is truncated on
the right.

sequential access is in the order of
ascending relative tracks. Records are
retrieved in this order, and not
necessarily in the order in which they were
added to the data set; the recorded keys do
not affect the order of sequential access.
Dummy records are not retrieved.

The rules governing the relationship
between READ and REWRITE statements for a
SEQUENTIAL UPDATE file that accesses a
REGIONAL(3) data set are identical with
those for a CONSECUTIVE data set (described
above) •

Direct Access

A DIRECT file that is used to process a
REGIONAL (3) data set may be opened with
either the INPUT or the UPDATE attribute.
All data transmission statements must
include source keys; the DIRECT attribute
implies the KEYED attribute.

1. Retrieval: Dummy records are not made
available by a READ statement. The
KEY condition is raised if a record
with the specified recorded key is not
found.

2. Addition: In a data set with F-format
records, a WRITE statement substitutes
the new record for a dummy record in
the region (track) specified by the
source key. If there are no dummy
records on the specified track, and an
extended search is permitted by the
LIMCT subparameter, the new record
replaces the first dummy record
encountered during the search. If the
data set has V-format, VS-format., or
U-format records, a WRITE statement
inserts the new record after any
records already present on the
specified track if space is available;
otherwise, if an extended search is
permitted, the new record is inserted
in the next available space.

3. Deletion: A record specified by the
source key in a DELETE statement is
converted to a dummy record. The
space formerly occupied by an F-format
record can be re-used; space formerly
occupied by V-format, VS-format, or U
format records is not available for
re-use.

4. Replacement: The record specified by
the source key in a REWRITE statement
must exist; a REWRITE statement cannot
be used to replace a dummy record.
When a VS-format record is replaced,
the new one must not be shorter than
the old.

Chapter 12: Record-oriented Transmission 191

Note: If a track contains records with
duplicate recorded keys, the record
farthest from the beginning of the
track will never be retrieved during
direct access.

IVSAM Organization
I
I
There are three types of VSAM data set,
key-sequenced data sets (KSDS), entry
sequenced data sets (ESDS), and relative
record data sets (RRDS). They are all
ordered, and they can all have keys
associated with their records. Both
sequential and keyed access are therefore
possible with all three types.

Indexes are mandatory only for key
sequenced data sets; these indexes being
known as the prime indexes. It is,
however, possible to define, over a KSDS or
an ESDS, one or more alternate indexes. An
alternate index is unique if it does not
contain duplicate keys, and non-unique if
it does. (A prime index can never have
duplicate keys.)

Any change in a data set that has
alternate indexes must be reflected in all
the indexes if they are to remain useful.

IThis activity is known as index upgrade,
land is automatic for any index in the index
lupgrade set of the data set. (For a KSDS,
Ithe prime index is always a member of the
lindex upgrade set.) The programmer,
I however, must avoid making changes in the
Idata set that would cause duplicate keys in
Ithe prime index or in a unique alternate
I index.
I
I VSAM data sets are defined to the system
by means of the Access Method Services
utility program (see the Programmer's Guide
for the compiler). The definition
completely defines the type of the data
set, its structure, and the space it
requires. If the data set is indexed, its
indexes (together with their key lengths
and locations) and the index upgrade set
are also defined. A VSAM data set is thus
-created- by Access Method services; the
operation of writing the initial data into
a newly-created VSAM data set is referred

Ito as loading in this publication.
I
I
I
IKEYS FOR VSAM DATA SETS
I
I
IAlI VSAM data sets can have keys associated
Iwith their records. For key-sequenced data
Isets, and for entry-sequenced data sets
laccessed via an alternate index, the key is
la defined field within the logical record.

192 OS PL/I CRT AND OPT LRM PART I

For entry-sequenced data sets, the key is
the relative byte address (RBA) of the
record. For relative-record data sets, the
key is a relative record number.

Keys for Indexed VSAM Data Sets

Keys for key-sequenced data sets and for
entry-sequenced data sets accessed via an
alternate index are part of the logical
records recorded on the data set. The
length and location of the keys are defined
when the data set is created. The KEYLOC
and KEYLEN options may be included, for
checking purposes, in the ENVIRONMENT
attribute when the file is declared. If,
when the file is opened, these values
conflict with those defined for the
dataset/index combination, the
UNDEFINEDFILE condition is raised.

The ways in which the keys may be
referenced in the KEY, KEYFROM, and KEYTO
options are as described under "KEY Option"
and "KEYFROM and KEYTO Options" earlier in
this chapter.

Relative Byte Addresses (RBA)

Relative byte addresses allow the
programmer to use keyed access on an ESOS
associated with a KEYED SEQUENTIAL file.
The RBAs, or keys, are character strings of
length 4, and their values are defined by
VSAM. RBAs cannot be constructed or
manipulated in PL/I; their values, however,
can be compared in order to determine the
relative positions of records within the
data set. RBAs are not normally printable.

The RBA for a record can be obtained by
Imeans of the KEYTO option, either on a
IWRITE statement when the data set is being
Iloaded or extended, or on a READ statement
Iwhen the data set is being read. An RBA
lobtained in either of these ways can
Isubsequently be used in the KEY option of a
IREAD or REWRITE statement.
I
I An RBA must not be used in the KEYFROM
loption of a WRITE statement.
I
I
I
IRelative Record Numbers
I
I
IRecords in an RRDS are identified by a
Irelative record number that starts at 1 and
lis incremented by 1 for each succeeding
I record. These relative records numbers may
Ibe used as keys to allow keyed access to

the data set.

Keys used as relative record numbers are
character strings of length 8. The
character string value of a source key used
in the KEY or KEYFROM option must represent
an unsigned decimal integer constant. If
the sourcekey is not 8 characters long, it
is truncated or padded with blanks
(interpreted as zeros) on the left. The
va1ue returned by the KEYTO option is a
character string of length 8, with leading
zeros suppressed.

ENTRY-SEQUENCED DATA SETS

The statements and options allowed for
files associated with an ESDS are shown in
figure 12.12.

Loading an ESDS

When an ESDS is being loaded, the
associated file must be opened for
SEQUENTIAL OUTPUT. The records are
retained in the order in which they are
presented.

The KEYTO option may be used to recover
the relative byte address of each record as
it is written. The keys thus obtained may
subsequently be used to achieve keyed
access to the data set.

sequential Access

A SEQUENTIAL file that is used to access an
ESDS may be opened with either the INPUT or
the UPDATE attribute. If either of the
options KEY or KEYTO is used, the file must
also have the KEYED attribute.

Sequential access is in the order in
which the records were originally loaded
into the data set. The KEYTO option may be
used on the READ statements to recover the
RBAs of the records that are read. If the
KEY option is used, the record that is
recovered is the one with the specified
RBA. subsequent sequential access
continues from the new position in the data
set.

For an UPDATE file, the WRITE statement
causes a new record to be added at the end
of the data set. With a REWRITE statement,
the record rewritten is the one with the
specified RBA if the KEY option is used;
otherwise it is the record accessed on the

Iprevious READ. A REWRITE statement must
Inot attempt to change the length of the
Irecord that is being replaced.
I
I The DELETE statement is not allowed for
lentry-sequenced data sets.
I
I
I
I
KEY-SEQUENCED DATA SETS

The statements and options permitted for
indexed VSAM data sets are shown in figure
12.13. An indexed data set may be a KSDS
with its prime index, or either a KSDS or
an ESDS with an alternate index. Except
where stated, the following description
applies to all indexed VSAM data sets.

Loading a KSDS

When a KSDS is being loaded, the associated
file must be opened for KEYED SEQUENTIAL
OUTPUT. The records must be presented in
ascending key order, and the KEYFROM option
must be used. Note that the prime index
must be used for loading the data set; nO
VSAM data set can be loaded via an
alternate index.

If a KSDS already contains some records,
and the associated file is opened with the
SEQUENTIAL and OUTPUT attributes, records
may only be added at the end of the data
set. The rules given in the previous
paragraph apply; in particular, the first
record presented must have a key greater
than the highest key present on the data
set.

Sequential Access

A SEQUENTIAL file that is used to access a
KSDS may be opened with either the INPUT or
the UPDATE attribute.

For READ statements without the KEY
option, the records are recovered in
ascending key order (or in descending key
order if the BKWD option is used). The key
of a record recovered in this way can be
obtained by means of the KEYTO option.

If the KEY option is used, the record
recovered by a READ statement is the One
with the specified key. Such a READ
statement positions the data set at the
specified record; subsequent sequential

treads will recover the following records in
lsequence.

Chapter 12: Record-oriented Transmission 193

WRITE statements with the KEYFROM option
are allowed for KEYED SEQUENTIAL UPDATE
files. Insertions can be made anywhere in
the data set, irrespective of the position
of any previous access. If the data set is
being accessed via a unique index, the KEY
condition is raised if an attempt is made
to insert a record with the same key as a
record that already exists on the data set.
For a non-unique index, subsequent
retrieval of records with the same key is
in the order in which they were added to
the data set.

REWRITE statements with or without the
KEY option are allowed for UPDATE files.
If the KEY option is used, the record that
is rewritten is the first record with the
specified key; otherwise it is the record
that was accessed by the previous READ
statement. When a record is rewritten
using an alternate index, the prime key of
the record must not be changed.

Direct Access

A DIRECT file that is used to access an
indexed VSAM data set may be opened with
the INPUT, OUTPUT, or UPDATE attribute. A
DIRECT file must not be used to access the
data set via a non-unique index.

If a DIRECT OUTPUT file is used to add
records to the data set, the KEY condition
is raised if an attempt is made to insert a
record with the same key as a record that
already exists.

If a DIRECT INPUT or DIRECT UPDATE file
is used, records may be read, written,
rewritten, or deleted in the same way as
for a KEYED SEQUENTIAL file.

Use of the SKIP option

IThe SKIP option of the ENVIRONMENT
lattribute specifies that the VSAM OPT CD
'·SKp· is to be used wherever possible. It
lis applicable to key-sequenced data sets
laccessed by means of a SEQUENTIAL file.
I
I If the application program is designed
Ito access individual records scattered
Ithroughout the data set, but the access
Iwill be primarily in ascending key order,
Ithe SKIP option should be specified for the
Ifile.
I
I If the program is designed to read large
Inumbers of records sequentially, without
Ithe use of the KEY option, or if it is
Idesigned to insert large numbers of records

194 OS PL/I CRT AND OPT LRM PART I

at specific points in the data set (mass
sequential insert), the SKIP option should
be omitted.

It is never an error to specify (or
omit) the SKIP option: its effect on
performance is significant only in the
circumstances described.

Use of the SIS option

The SIS option is applicable to key
sequenced data sets accessed by means of a
DIRECT file.

If mass sequential insert is used for a
IVSAM data set, that is, if records with
lascending keys are inserted, a KEYED
ISEQUENTIAL UPDATE file is normally
I appropriate. In this case, however, VSAM
Idelays writing the records to the data set
I until a complete control interval h'as been
I built. If DIRECT is specified, VSAM writes
leach record as soon as it is presented.
I Thus, in order to achieve immediate writing
land efficient use of disk space, a DIRECT
file should be used and the SIS option
should be specified.

The SIS option is intended primarily for
use in online applications.

SAMEKEY Built-In Function

If a VSAM data set is being accessed via a
non-unique alternate index, the presence of
duplicate keys can be detected by means of
the SAMEKEY built-in function. This
function returns 'l'B if the input/output
statement has completed sucessfully and the
accessed record is followed by another with
the same key: otherwise it returns 'O'B.

RELATIVE RECORD DATA SETS

The statements and options permitted for
VSAM relative record data sets (RRDS) are
shown in figure 12.14.

ILoading an RRDS
I
I
IWhen a RRDS is being loaded, the associated
I file must be opened for OUTPUT. Ei ther a

r---,
File declaration1 tValid statements, with options that must lother options that can I

tappear lalso be used I
---1
SEQUENTIAL OUTPUTtWRITE FILE{file-expr) FROM(variable); IKEYTO(character-string- I
BUFFERED t I variable) I

I I 1
ILOCATE variable FILE(file-expr); I SET (pointer-variable)

SEQUENTIAL OUTPUTIWRITE FILE(file-expr) FROM(variable);
UNBUFFERED , ,

I EVENT (event-variable)
land/or KEYTO(character-
I string-variable)

SEQUENTIAL
I BUFFERED

INPUT IREAD FILE(file-expr) INTO(variable): IKEYTO(character-string-
1 I variable)

. 1 ,
I
I
I

, lor KEYCexpression)3
1 I .
IREAD FILE(file-expr) SET(pointer-variable); IKEYTO(character-string-
1 I variable)
1 lor KEYCexpression)3

1 1 I
t tREAD FILE(file-expr); IIGNORECexpression)
1---
ISEQUENTIAL INPUT IREAD FILE(file-expr) INTO(variabl~); I EVENT (event-variable)
1 UNBUFFERED t land/or either
1 I IKEY(expression)30r
1 I IKEYTO(character-string-I' I variable)
1 t I
1 IREAD FILE(file-expr):2 I EVENT (event-variable)
I I land/or
I t I IGNORE (expression)
1---
ISEQUENTIAL UPDATEtREAD FILE(file-expr) INTO(variable); IKEYTO(character-string-
BUFFERED 1 I variable)

SEQUENTIAL
I UNBUFFERED
I
I
I
1
I
t

1 lor KEY(expression)3
1 I
tREAD FILE(file-expr) SET(pointer-variable); IKEYTOCcharacter-string-
, I variable)
1 lor KEY(expression)3
I I
IREAD FILE(file-expr);2 IIGNORECexpression)
I I
IWRITE FILE(file-expr) FROMCvariable): IKEYTOCcharacter-string-
1 I variable)
I I
IREWRITE FILE(file-expr); IFROM(variable) and/or
, I KEY (expression) 3

UPDATEIREAD FILE(file-expr) INTOCvariable);
t ,
1 , ,
tREAD FILE(file-expr);2 ,

1 EVENT (event-variable)
land/or either
IKEY(expression)30r
IKEYTO{character-string-
I variable)
I
IEVENTCevent-variable)
land/or

,(continued) , I IGNORE C expression) L ___ ----------------------------------J
Figure 12.12 (Part 1 of 2). Statements and options permitted for loading and

accessing VSAM entry-sequenced data sets

Chapter 12: Record-oriented Transmission 195

r---,
File declaration1 1valid statements, with options that must IOther options that can I

I appear lalso be used I

SEQUENTIAL UPDATEIWRITE FILE(file-expr) FROM(variable); I EVENT (event-variable)
land/or
IKEYTO(character-string-

UNBUFFERED I
I
I
I

I variable)
I

IREWRITE FILE(file-expr) FROM(variable); I EVENT (event-variable)
I land/or KEY(expression)3

1The complete file declaration would include the attributes FILE, RECORD, and
ENVIRONMENT; if either of the options KEY or KEYTO is used, it must
also include the attribute KEYED.

2The statement READ FILE (file-expression); is equivalent to the statement:
READ FILE(file-expression) IGNORE (1);

3The expression used in the KEY option must be a relative byte address obtained by
means of the KEYTO option. L---------------------------------------______________ ----------------------------------J

Figure 12.12 (Part 2 of 2). Statements and options permitted for loading and
accessing VSAM entry-sequenced data sets

DIRECT or a SEQUENTIAL file may be used.

For a DIRECT OUTPUT file, each record is
placed in the position specified by the
relative record number (or key) in the
KEYFROM option of the WRITE statement (see
"Keys for VSAM Data sets" earlier in this
chapter).

For a SEQUENTIAL OUTPUT file, WRITE
statements with or without the KEYFROM
option may be used. If the KEYFROM option
is specified, the record is placed in the
specified slot; if it is omitted, the
record is placed in the slot following the
current position. There is no requirement
for the records to be presented in
ascending relative record numbers. If the
KEYROM option is omitted, the relative
record number of the written record can be
obtained by means of the KEYTO option.

If an RRDS is to be loaded sequentially,
without use of the KEYFROM or KEYTO
options, the file is not required to have
the KEYED attribute.

It is an error to attempt to load a
record into a position that already
contains a record: if the KEYFROM option
is used, the KEY condition is raised; if it
is omitted, the ERROR condition is raised.

sequential Access

A SEQUENTIAL file that is used to access a
RRDS may be opened with either the INPUT or
the UPDATE attribute. If any of the

196 OS PL/I CKT AND OPT LRM PART I

loptions KEY, KEYTO, or KEYFROM is used, the
Ifile must also have the KEYED attribute.
I
I For READ statements without the KEY
I option, the records are recovered in
lascending relative record number order.
IAny empty slots in the data set are skipped
lover.
I
I If the KEY option is used, the record
Irecovered by a READ statement is the one
Iwith the specified relative record number.
ISuch a READ statement positions the data
,set at the specified record; subsequent
Isequential reads will recover the following
Irecords in sequence. ,
, WRITE statements with or without the
IKEYFROM option are allowed for KEYED
ISEQUENTIAL UPDATE files. Insertions can be
Imade anywhere in the data set, irrespective
lof the position of any previous access.
IFor WRITE with the KEYFROM option, the KEY
Icondition is raised if an attempt is made
Ito insert a record with the same relative
Irecord number as a record that already
lexists on the data set. If the KEYFROM
loption is omitted, an attempt is made to
Iwrite the record in the next slot, relative
Ito the current position. The ERROR
Icondition is raised if this slot is not
I empty.
I
I The KEYTO option may be used to recover
Ithe key of a record that is added by means
lof a WRITE statement without the KEYFROM
I option.
I
I REWRITE statements, with or without the
IKEY option, are allowed for UPDATE files.
IIf the KEY option is used, the record that

r---,
IFile declaration1 1Valid statements, with options that must IOther options that can I
I I appear lalso be used I
1---
ISEQUENTIAL OUTPUTIWRITE FILE(file-expr) FROMCvariable) I
BUFFERED 3 I KEYFROM(expression): I

I I
ILOCATE variable FILE(file-expr) I SET (pointer-variable)
I KEYFROM(expression): I

SEQUENTIAL OUTPUT WRITE FILE(file-expr) FROMCvariable)
UNBUFF ERED 3 KEYFROM(expression):

IEVENTCevent-variable)
I

SEQUENTIAL INPUT READ FILE(file-expr) INTOCvariable)i IKEYCexpression) or KEYTO
BUFFERED I Ccharacter-string

I variable)
I

READ FILE(file-expr) SET(pointer-variable)iIKEY(expression) or KEYTO
I Ccharacter-string-
I variable)
I

READ FILE(file-expr)i 2 I IGNORE C expression)

SEQUENTIAL INPUT IREAD FILE(file-expr) INTOCvariable); IEVENTCevent-variable)
land/or either KEY UNBUFFERED I

I
I
I
I
IREAD FILE(file-expr):2
I

SEQUENTIAL UPDATE READ FILE(file-expr) INTOCvariable)i
BUFFERED

I (expression) or KEYTO
I (character-string-
I variable)
I
,EVENT(event-variable)
land/or IGNORE(expression)

KEYCexpression) or KEYTO
(character-string
variable)

READ FILE(file-expr) SETCpointer-variable); KEYCexpression) or KEYTO
Ccharacter-string
variable)

READ FILECfile-expr)i 2

WRITE FILECfile-expr) FROM (variable)
KEYFROMCexpression):

REWRITE FILECfile-expr)i

DELETE FILE(file-expr):5

IGNORE (expression)

FROMCvariable) and/or
KEY(expression)

KEY(expression)

'SEQUENTIAL UPDATE READ FILE(file-expr) INTOCvariable); EVENT (event-variable)
and/or either KEY
(expression) or KEYTO
Ccharacter-string-

'UNBUFFERED
I , , ,
I
I
I
I

READ FILE(file-expr);2

WRITE FILECfile-expr) FROMCvariable)
I (continued) KEYFROM(expression);

variable)

EVENT C event-variable)
and/or IGNORE(expression)

EVENT (event-variable)

L---J
Figure 12.13 CPart 1 of 3). Statements and options permitted for creating and

accessing VSAM data sets via prime or alternate indexes

Chapter 12: Record-oriented Transmission 191

r---,
File declaration1 1Valid statements, with options that must lother options that can

I appear lalso be used

SEQUENTIAL UPDATEIREWRITE FILE(file-expr) FROMCvariable);
UNBUFFERED I
Ccontinued) I

DIRECT't INPUT
BUFFERED

DIRECT't INPUT
UNBUFFERED

DIRECT OUTPUT
BUFFERED

DIRECT OUTPUT
UNBUFFERED

IDELETE FILECfile-expr);5
I

I READ FILECfile-expr) INTOCvariable)
I KEYCexpression)i
I
IREAD FILE(file-expr) SET (pointer-variable)
I KEY(expression)i

IREAD FILE(file-expr) INTO (variable)
I KEY(expression)i

IWRITE FILECfile-expr) FROM (variable)
I KEYFROM(expression)i

IWRITE FILE(file-expr) FROM (variable)
I KEYFROMCexpression):

DIRECT't UPDATE READ FILE(file-expr) INTO (variable)
BUFFERED KEYCexpression)i

DIRECT't UPDATE
UNBUFFERED

READ FILE(file-expr) SETCpointer-variable)
KEY(expression)i

REWRITE FILE(file-expr) FROM (variable)
KEY(expression)i

DELETE FILE(file-expr) KEY(expression)i 5

IWRITE FILECfile-expr) FROM (variable)
I KEYFROM(expression)i

IREAD FILECfile-expr) INTOCvariable)
, KEYCexpression); ,
,REWRITE FILE(file-expr) FROM (variable)
, KEY(expression); ,
IDELETE FILE(file-expr) KEY(expression)i 5

I
IWRITE FILE(file-expr) FROM (variable)
I KEYFROM(expression)i

I EVENT (event-variable)
land/or KEYCexpression)
I
IKEY(expression) and/or
I EVENT (event-variable)

I EVENT (event-variable)
I

I EVENT (event-variable)
I

IEVENTCevent-variable)
I
I
I EVENT (event-variable) , ,
'EVENT(event-variable)
I
IEVENT(event-variable) ,

1The complete file declaration would include the attributes FILE and RECORD. If any
of the options KEY, KEYFROM, and KEYTO is used, the declaration must also include
the attribute KEYED.

The EXCLUSIVE attribute for DIRECT INPUT or UPDATE files, the UNLOCK statement for
DIRECT UPDATE files, and the NOLOCK option of the READ statement for DIRECT INPUT
files are ignored if they are used for a file associated with a VSAM KSDS.

L---J
Figure 12.13 (Part 2 of 3). statements and options permitted for creating and

accessing VSAM data sets via prime or alternate indexes

198 OS PL/I CKT AND OPT LRM PART I

r---,
laThe statement: READ FILE(file-expression); is equivalent to the statement: I
I READ FILE (file-expression) IGNORE(l); I
I I
13A SEQUENTIAL OUTPUT file must not be associated with a data set accessed via an I
I alternate index. I
I I
I~A DIRECT file must not be associated with a data set accessed via a non-unique I
I alternate index. I
I I
15 DELETE statements are not allowed for a file associated with an ESDS accessed via an I
I alternate index. I L-------------__ ----------------------------------J
Figure 12.13 (Part 3 of 3). Statements and options permitted for creating and

accessing VSAM data sets via prime or alternate indexes

is rewritten is the record with the
specified relative record number; otherwise
it is the record that was accessed by the
previous READ statement.

DELETE statements, with or without the
KEY option, may be used to delete records
from the data set.

Direct Access

IA DIRECT file used to access an RRDS may
Ihave the OUTPUT, INPUT. or UPDATE
I attribute. Records may be read, written,
I rewritten, or deleted exactly as though a
IKEYED SEQUENTIAL file were used.

Telepro cessing

The teleprocessing facilities of PL/I are
provided by an extension of the basic
record-oriented transmission facilities
with the addition of the TRANSIENT file
attribute and the PENDING condition. The
implementation provides a communicating
link between the PL/I message processing
programs using these features, and the
teleprocessing facilities of the operating
system.

A teleprocessing message control program
(MCP) handles messages originating from and
destined for a number of remote terminals
or a number of PL/I message processing
programs. Each origin or destination
associated with a message is identified by
a name carried within that message.
Messages are transmitted to and from a PL/I
message processing program via queues in
main storage. (These queues are supported
by corresponding intermediate queues in a
disk data set. The PL/I program has access
only to the main storage queues, by means
of intermediate buffers for each file.)

The "data set" associated with each
TRANSIENT file is in fact an input or
output message queue set up by the MCP. A
READ statement for the file will take the
next message (or the next record from the
current message) from the associated queue,
assign the data part to the variable named
in the READ INTO option (or set a pointer
to point to the data in a READ SET buffer),
and save the origin name by assigning it to
the variable named in the KEYTO option.
(The PENDING condition is raised if the
input queue is empty when the READ
statement is executed.) A WRITE or LOCATE
statement will transmit the processed
message or record to the output queue,
using the element expression specified in
the KEYFROM option to identify the
destination.

ENVIRONMENT Attribute

A message can consist of one logical
record, or several logical records, on the
teleprocessing data set. The programmer
must specify whether a complete message
(which may be several logical records) or
only one logical record is to be
transmitted to his PL/I program at each I/O
operation. He must also specify the size
of the record variable (or input and output
buffer, for locate mode), and the number of
intermediate buffers required for each
message. This information can be provided
by means of the appropriate options of the
ENVIRONMENT attribute.

The options, and their meanings, are:

TP(M):

TP(R):

Each I/O operation in the PL/I
program transmits a complete
message

Each I/O operation in the PL/I
program transmits one logical
record

Chapter 12: Record-oriented Transmission 199

r---------------------~---,
File deciaration1 1Vaiid statements, with options that must lother options that can I

I appear lalso be used 1
---1
SEQUENTIAL OUTPUTIWRITE FILE(file-expr) FROM(variable); IKEYFROM(expression) or I
BUFFERED I IKEYTO(character-string- I

I I variable) I
I I I
ILOCATE variable FILE(file-expr) I SET (pointer-variable) I

SEQUENTIAL OUTPUTIWRITE FILE(file-expr) FROM(variable); I EVENT (event-variable)
land/or either
IKEYFROM(expression) or
IKEYTO(character-string-

UNBUFFERED I
I
I
I I variable)

SEQUENTIAL INPUT
BUFFERED

I READ
I

FILE (file-expr) INTO(variable); IKEY(expression) or KEYTO
I (character-string-

I I variable)
I I
I READ FILE (file-expr) SET(pointer-variable);IKEY(expression) or KEYTO
I I (character-string-
I I variable)
I I
I READ FILE(file-expr);2 I IGNORE (expression)

SEQUENTIAL INPUT IREAD FILE(file-expr) INTO(variable);
UNBUFFERED I

I
I
I
I
IREAD FILE(file-expr);2
I

SEQUENTIAL UPDATE READ FILE(file-expr) INTO(variable);
BUFFERED

READ FILE(file-expr) SET (pointer-variable)

READ FILE(file-expr);2

WRITE FILE(file-expr) FROM(variable);

IREWRITE FILE(file-expr);
I
I
IDELETE FILE(file-expr);

I EVENT (event-variable)
I and/or either
IKEY(expression) or KEYTO
I (character-string-
I variable)
I
IEVENT(event-variable)
land/or IGNORE(expression)

KEY(expression) or KEYTO
(character-string
variable)

KEY(expression) or KEYTO
(character-string
variable)

IGNORE (expression)

KEYFROM(expression) or
KEYTO(character-string

variable)

FROM (variable) and/or
KEY(expression)

KEY(expression)

SEQUENTIAL UPDATEIREAD FILE(file~expr) INTO(variable); I EVENT (event-variable)
I UNBUFFERED I land/or either
I I IKEY(expression) or REYTO

1 I I I (character-string-
II I , variable)
II I I
II IREAD FILE(file-expr)i 2 I EVENT (event-variable)
II(continued) I land/or IGNORE(expression)
IL---J
I
IFigure 12.14 (Part 1 of 3). Statements and options permitted for creating and
I accessing VSAM relative-record data sets

200 OS PL/I CRT AND OPT LRM PART I

r---,
IFile declaration1 1Valid statements, with options that must lother options that can
I I appear lalso be used
1--- -------------------------
ISEQUENTIAL UPDATEIWRITE FILE(file-expr) FROM(variable); EVENT (event-variable)
UNBUFFERED I and/or either
(continued) I KEYFROM(expression) or

I KEYTO(character-string-
I variable)

DIRECT OUTPUT
BUFFERED

I
'REWRITE FILE(file-expr) FROM(variable);
I
I
IDELETE FILE(file-expr);
1

IWRITE FILE(file-expr) FROM (variable)
1 KEYFROM(expression);

EVENT (event-variable)
and/or KEY (express ion)

EVENT (event-variable)
and/or KEY (expression)

ilDIRECT OUTPUT IWRITE FILE(file-expr) FROM (variable) I EVENT (event-variable)
I UNBUFFERED I KEYFROM(expression); I
1---
IDIRECT INPUT IREAD FILE(file-expr) INTO(variable) 1
1 BUFFERED 1 KEY(expression); I
1 1 I
1 IREAD FILE(file-expr) SET (pointer-variable) I
I I KEY(expression); 1
1---
IDIRECT INPUT IREAD FILE(file-expr) INTO (variable) I EVENT (event-variable)
1 UNBUFFERED I KEY(expression); 1
1--- -------------------------
IDIRECT UPDATE IREAD FILE(file-expr) INTO (variable)
1 BUFFERED 1 KEY(expression);
I 1
I IREAD FILE(file-expr) SET (pointer-variable)
1 1 KEY(expression);
1 I
1 IREWRITE FILE(file-expr) FROM(variable)

1 KEY(expression);
1
IDELETE FILE(file-expr) KEY(expression);
1
IWRITE FILE(file-expr) FROM (variable)
I KEYFROM(expression);

DIRECT UPDATE IREAD FILE(file-expr) INTO (variable) I EVENT (event-variable)
UNBUFFERED 1 KEY(expression); I

I I
IREWRITE FlLE(file-expr) FROM(variable) I EVENT (event-variable)
I KEY(expression); I
I I
IDELETE FILE(file-expr) KEY(expression); IEVENT(event-variable)
1 I
IWRITE FILE(file-expr) FROM(variable) IEVENT(event-variable)
I KEYFROM(expression); I

L ___ ----------------------------------J
Figure 12.14 (Part 2 of 3). statements and options permitted for creatin9 and

accessing VSAM relative-record data sets

Chapter 12: Record-oriented Transmission 201

r---,
11 The complete file declaration would include the attributes FILE and RECORD. If any I
I of the options KEY, KEYFROM, and KEYTO is used, the declaration must also include I
I the attribute KEYED. I
I I
I The EXCLUSIVE attribute for DIRECT INPUT or UPDATE files, the UNLOCK statement for I
I DIRECT UPDATE files, and the NOLOCK option of the READ statement for DIRECT INPUT I
I files are ignored if they are used for a file associated with a VSAM RRDS. I
I I
12The statement: READ FILE{file-expression): is equivalent to the statement: I
I READ FILE(file-expression) IGNORE(l); I
L ___ ----------------------------------J
Figure 12.14 (Part 3 of 3). statements and options permitted for creating and

accessing VSAM relative-record data sets

RECSIZE: Size of the record variable (or
input or output buffer, for locate
mode) in the PL/I program. If the
TP(M) option is used, this size
should, if possible, be equal to
the length of all the logical
records that constitute the
message. If it is smaller, part
of the message will be lost. If
it is greater, the contents of the
last part of the variable (or
buffer) are undefined. If the
TP(R) option is specified, this
size must be the same as the
logical record length.

BUFFERS: Number of intermediate buffers
required to contain the longest
message to be transmitted. If a
message is too long for the
buffers specified, extra buffers
must be obtained before processing
can continue, which increases
execution time. The extra buffers
are obtained by the operating
system: the programmer need not
take any action.

These are the only options of the
ENVIRONMENT attribute that can be specified
for a TRANSIENT file.

TRANSIENT Attribute

The TRANSIENT attribute, which is an
alternative to the DIRECT and SEQUENTIAL
attributes, indicates that the contents of
the data set associated with the file are
re-established each time the data set is
accessed. In effect, this means that
records can be continually added to the
data set by one program during the
execution of another program that
continually removes records from the data
set. Thus the data set can be considered
to be a continuous queue through which the
records pass in transit between the message
control program and the message processing

202 OS PL/I CKT AND OPT LRM PART I

program. The queue is always accessed
sequentially.

The data set associated with a TRANSIENT
file differs from those associated with
DIRECT and SEQUENTIAL files in that its
contents are dynamiC: reading a record
removes it from the data set. Such a da~a
set can never be created by a DIRECT or
SEQUENTIAL file. (It can, however, be
accessed as a CONSECUTIVE data set by a
SEQUENTIAL file.)

The TRANSIENT attribute can be specified
only for RECORD KEYED BUFFERED files with
either the INPUT or the OUTPUT attribute.
(The EVENT option cannot be used for
teleprocessing operations.) The file may
also have the ENVIRONMENT attribute with
the options appropriate to teleprocessing.

For TRANSIENT files, the file name or
title must be the ddname of a DO statement.
The message queue data set is identified in
the DO statement by the QNAME parameter.
For a TRANSIENT OUTPUT file, the element
expression specified in the KEYFROM option
must have as its value a recognized
terminal or program identification.

Error Handling

The conditions that can be raised during
teleprocessing transmission are TRANSMIT,
KEY, RECORD, ERROR, and PENDING.

The TRANSMIT condition can be raised
only on input, and is as described for
other types of transmission.

The RECORD condition is raised in the
same circumstances as for other types of
transmission. (The messages and records
are treated as V-format records.)

The ERROR condition is raised as for
other types of transmission; it is also
raised when the expression in the KEYFROM

option is missing or detectably invalid.
Note that if the expression is
syntactically valid but does not represent
an origin or a destination name recognized
by the MCP, the KEY condition is raised.

The PENDING condition can be raised only
during execution of a READ statement for a
TRANSIENT file. It is raised when the
associated queue is empty: standard system
action is to wait at the READ statement
until a message is available. When the
PENDING condition is raised, the value
returned by the ONKEY built-in function is
a null string.

Note: When the TP(R) optio~ is specified
in the ENVIRONMENT attribute, a message is
transmitted one record at a time. There is
no ON-condition or other'automatic means
for detecting the end of the message: the
user is responsible for arranging the
indication of the end of the message
(possibly by using the first record as a
header giving the necessary control
information.)

statements and Options

The READ statement is used for input, with
either the INTO option or the SET option:
the KEYTO option must be given. The origin
name is assigned to the variable named in
the KEYTO option. If the-origin name is
shorter than the character-string variable
named in the KEYTO option, it is padded on
the right with blanks. If the KEYTO
variable is a varying-length string, its
current length is set to that of the origin
name. The origin name should not be longer
than the KEYTO variable_(if it is, it is
truncated), but in any case will not be
longer than 8 characters. The data part of
the message or record is a~signed to the
variable named in the INTO option, or the
pointer variable named in the SET option is
set to point to the data in the READ SET
buffer.

Either the WRITE or the LOCATE statement
may be used for output: either statement
must have the KEYFROM option -- the first
eight characters of the value of the
KEYFROM expression are used to identity the
destination. The data part of the message
is transmitted from the variable named in
the FROM option of the WRITE statement: or,
in the case of LOCATE, a pOinter variable
is set to point to the location of the data
in the output buffer. When a message is
transmitted by an OUTPUT TRANSIENT file as
a number of logical records, the end of the
message must be indicated by closing the
file.

The list of statements and options
permitted for TRANSIENT files is given in
tabular form in figure 12.15. Some
examples follow:

DECLARE (IN INPUT,OUT OUTPUT) FILE
TRANSIENT ENV(TP(M) RECSIZE(124»,
(INREC, OOTREC) CHARACTER(120)
VARYING, TERM CHARACTER(S);

READ FILE(IN) INTO(INREC) KEYTO(TERM):

WRITE FILE(OUT) FROM(OUTREC)
KEYFROM (TERM) :

The above example illustrates the use of
move mode in teleprocessing applications.
Note that the files IN and OUT are given
the attributes KEYED and BUFFERED because
TRANSIENT implies these attributes. The
input buffer for file IN contains the next
message (or record from a message,
depending on the message format) from the
input queue. The input queue will also be
named IN unless the file has been opened
with a TITLE option specifying a different
queue name. The message format is
determined by the programmer, and the file
declaration for IN includes this
information in the ENVIRONMENT attribute.

The READ statement causes the message or
record to be moved from the input buffer
into the variable INREC: if the buffer is
empty when the READ statement is executed
(i.e., there are no messages in the queue),
the PENDING condition is raised. 'I'he
standard system action for the condition is
to suspend execution and wait until a
message is available. The name of the
origin is aSSigned to TERM.

After processing, the message or record
is held in OUTREC. The WRITE statement
moves it to the output buffer, together
with the value of TERM (which will still
contain the origin name unless another name
has been assigned to it during processing).
From the buffer, the message will be
automatically transmitted to the correct
queue for the destination, as specified by
the value of TERM.

Since the output queue is determined
from the destination name, the fite name
OOT has no significance outside the PL/I
program. However, the file would need the
TRANSIENT, KEYED, and BUFFERED attributes,
and the correct message format in the
ENVIRONMENT attribute.

DECLARE (IN INPUT,OUT OUTPUT) FILE
TRANSIENT ENV(TP(M) RECSIZE(124»,
MESSAGE CHARACTER(120) VARYING
BASED(INPTR),
TERM CHARACTER(S):

Chapter 12: Record-oriented Transmission 203

r---,
IFile Declaration IValid statements, with options that must lother options that can I
I 1 appear I also be used I
1---
ITRANSIENT INPUT IREAD FILE(file-expr) INTO (variable) I
1 I KEYTO(character-string-variable); I
1 1 I
1 IREAD FILE(file-expr) SET (pointer-variable) I
I I KEYTO(character-string-variable); I
1---
ITRANSIENT OUTPUT IWRITE FILE(file-expr) FROM(variable) I
1 1 KEYFROM(expression); I
I 1 1
1 ILOCATE variable FILE(file-expr) I SET (pointer-variable)
I I KEYFROM(expression); I
1---
11 The complete file declaration would include the attribute FILE, RECORD, KEYED,
1 BUFFERED, and the ENVIRONMENT attribute with either the TP(M) or the TP(R) option.
L---J
Figure 12.15 statements and options permitted for TRANSIENT files

READ FILE (IN) SET (INPTR) KEYTO(TERM);

WRITE FILE(OUT) FROM (MESSAGE)
KEYFROM(TERM);

This example is similar to the previous
one, except that locate mode input is used;
the message data is processed in the input
buffer, using the based variable MESSAGE,
which has been declared with the pOinter
variable INPTR. (The data of the message
will be aligned on a doubleword boundary.)
Note that the attribute TRANSIENT implies
KEYED and BUFFERED. The WRITE statement
moves the processed data from the input to
the output buffer; otherwise its effect is
as described for the WRITE statement in the
first example.

The technique used in this example would
be useful in applications where the
differences between processed and
unprocessed messages were relatively
simple, since the maximum size of input and
output messages would be the same. If the
length and structure of the output message
could vary widely, depending on the text of
the input message, locate mode output could
be used to advantage; after the input
message had been read in, a suitable based
variable could be located in the output
buffer (using the LOCATE statement), where
further proceSSing would take place. The
message would be transmitted immediately
before execution of the next WRITE or
LOCATE statement for the file.

Note that although the EVENT option is
not permitted, data transmission could be
overlapped with processing in an MVT
operating system by means of the PL/I
multitasking facilities described in
chapter 11, "Multitasking". For example,

204 OS PL/I CRT AND OPT LRM PART I

the processing program could consist of a
number of subtasks, each associated with a
different queue. Each subtask processes
the input from its associated queue, and
transmits output to the required
destination. As soon as the PENDING
condition is raised in a subtask, another
subtask could receive input or transmit
output.

Summary of Record-Oriented
Tr ansmission

The following points cover the salient
features of record-oriented transmission:

1. A SEQUENTIAL file specifies that the
acceSSing, creation, or modification
of the data set records is performed
in a particular order:

CONSECUTIVE or REGIONAL data set; from
the first record of the data set to
the last record of the data set (or
from the last to the first if the
BACKWARDS attribute has been
specified).

INDEXED or REGIONAL(l) data set; in
ascending order of key sequence.

2. A DIRECT file specifies that records
may be processed in random order. The
particular record is identified by a
key.

3. Records in a data set that are
accessed, created, or modified by a
SEQUENTIAL file mayor may not have
recorded keys. If they do, the
recorded keys may be extracted from
the data set or placed into the data
set by the KEYTO and REYFROM options.

REGIONAL (1) data sets may also be
retrieved or created using the KEYTO
and KEYFROM options respectively; the
region number is specified as the key.

4. INDEXED KEYED files opened for
SEQUENTIAL INPUT and SEQUENTIAL UPDATE
may be positioned to a particular
record within the data set either by a
READ KEY or a DELETE KEY operation
that specifies the key of the desired
record. Thereafter, successive READ
statements without the KEY option will
access the following records in the
data set sequentially.

5. Existing records of a data set in a
SEQUENTIAL UPDATE file can be
modified, ignored, or, if the data set
is INDEXED, deleted. The DELETE
statement used without the KEY option
for this type of file specifies that
the last record read is to be deleted.
(If the DELETE statement is used with
a SEQUENTIAL file, the data set must
have INDEXED organization.) The DELETE
statement can be used with the KEY
option to delete a specific record in
a DIRECT UPDATE file; also, records
can be added to such a file by means
of the WRITE statement. An eXisting
record in an UPDATE file can be
replaced through use of a REWRITE
statement.

6. When a file has the DIRECT, INPUT or
UPDATE, and EXCLUSIVE attributes, it
is possible to protect individual
records that are read from the data
set. For an EXCLUSIVE file, any READ
statement without a NOLOCK option
automatically locks the record read.
No other task operating upon the same
data set can access a locked record
until it is unlocked by the lOCking
task. The record is protected from
access by tasks in other jobs, as well
as by those within the same job as the
locking task. Any task referring to a
locked record will wait at that point
until the record is unlocked. A
record can be explicitly unlocked by
the locking task through execution of
a REWRITE, DELETE, UNLOCK, or CLOSE
statement. Records are unlocked
automatically upon completion of the
locking task. The EXCLUSIVE attribute
applies to the data set and not the
file. consequently, record protection
is provided even when all tasks refer
to the data set through use of
different files.

7. A WRITE statement adds a record to a
data set, while a REWRITE statement
replaces a record. Thus, a WRITE
statement may be used with OUTPUT
files, and DIRECT UPDATE files, but a

REWRITE statement may be used with
UPDATE files only. Moreover, for
DIRECT files, a REWRITE statement uses
the KEY option to identify the
existing record to be replaced; a
WRITE statement uses the KEYFROM
option, which not only specifies where
the record is to be written in the
data set, but also specifies, except
for REGIONAL(l), an identifying key to
be recorded in the data set.

8. Records of a SEQUENTIAL INPUT or
SEQUENTIAL UPDATE file can be skipped
over and ignored by use of the IGNORE
option of a READ statement. The
expression of the IGNORE option
specifies the number of records to be
skipped. A READ statement in which
only the FILE option appears indicates
that one record is to be skipped.

9. Teleprocessing support is provided by
an extension of the basic record
oriented transmission facilities.
TRANSIENT files are associated with
queues of messages either incoming
from or outgoing to remote terminals.
Such files must be KEYED and BUFFERED,
and the ENVIRONMENT attribute may be
used to specify the message format.
TRANSIENT files can be accessed by
READ, WRITE, and LOCATE statements,
which cannot have the EVENT option.

110. For VSAM data sets, the WRITE
1 statement is permitted with UPDATE
I files. Also, for an ESDS or an RRDS,
1 the WRITE statement may have the KEYTO
I option.

Examples of Declarations of Record

Files

Following are examples of declarations of
file constants including the ENVIRONMENT
attribute:

DECLARE FILE#3 INPUT DIRECT
ENVIRONMENT(V BLKSIZE(328)
REGIONAL (3 » ;

This declaration specifies only three file
attributes: INPUT, DIRECT, and ENVIRONMENT.
other implied attributes are FILE (implied
by any of the attributes) and RECORD and
KEYED (implied by DIRECT). Scope is
EXTERNAL, by default. The ENVIRONMENT
attribute specifies that the data set is of
the REGIONAL(3) organization and contains
unblocked varying-length records with a
maximum length of 328 bytes. Note that a
maximum length record will contain only 320
bytes of data to be used by the program,
because 8 bytes are required for control

Chapter 12: Record-oriented Transmission 205

information in such V-format records. The
KEY option must be specified in each READ
statement that refers to this file.

DECLARE INVNTRY UPDATE BUFFERED
ENVIRONMENT CF RECSIZE(100)

INDEXED BUFFERS(4»;

This declaration also specifies only three
file attributes: UPDATE, BUFFERED, and
ENVIRONMENT. Implied attributes are FILE,
RECORD, and SEQUENTIAL (the last two
attributes are implied by BUFFERED). Scope
is EXTERNAL, by default. The data set is
of INDEXED organization, and it contains
fixed-length records of 100 bytes each.
Four buffers are to be allocated for use in
accessing the data set. Note that although
the data set actually contains recorded
keys, the KEYTO option cannot be specified
in a READ statement, since the KEYED
attribute has not been specified.

Note that for both of the above
declarations, all necessary attributes are
either stated or implied in the DECLARE
statement. None of the attributes can be
changed in an OPEN statement or in a DO
statement. The second declaration might
have been written:

DECLARE INVNTRY
ENVIRONMENT(F RECSIZE(100)

INDEXED);

206 OS PL/I CKT AND OPT LRM PART I

With such a declaration, INVNTRY can be
opened for different purposes. It could,
for example, be opened as follows:

OPEN FILE (INVNTRY)
UPDATE SEQUENTIAL BUFFERED;

With this OPEN statement, the file
attributes would be the same as those
specified (or implied) in the DECLARE
statement in the second example above (the
number of buffers would have to be stated
in the associated DO statement). The file
might be opened in this way, then closed,
and then later opened with a different set
of attributes, for example:

OPEN FILE (INVNTRY)
INPUT SEQUENTIAL KEYED;

This OPEN statement allows records to be
read with either the KEYTO or the KEY
option. Because the file is SEQUENTIAL and
the data set is INDEXED, the data set may
be accessed in a purely sequential manner:
or, by means of a READ statement with a KEY
option, it may be accessed randomly. A KEY
option in a READ statement with a file of
this description causes a specified record
to be obtained. Subsequent READ statements
without a KEY option access records
sequentially, beginning with the next
record.

Chapter 13: Editing and String Handling

The data manipulations performed by the
arithmetic, comparison, and bit-string
operators are extended in PL/I by a variety
of string-handling and editing features.
These features are specified by data
attributes, statement options, built-in
functions, and pseudovariables.

The following discussions give general
descriptions of each feature, along with
illustrative examples.

Editing by Assignment

The most fundamental form of editing
performed by the assignment statement
involves converting the data type of the
value on the right-hand side of the
assignment symbol to conform to the
attributes of the receiving variable.
Because the assigned value is made to
conform to the attributes of the receiving
variable, the precision or lengtn of the
assigned value may be altered. Such
alteration can involve the addition of
digits or characters to and the deletion of
digits or characters from the converted
item. The rules for data conversion are
discussed in chapter 4, "Expressions and
Data Conversions", and in section F, "Data
Conversion and Exp~ession Evaluation".

ALTERING THE LENGTH OF STRING DATA

When a value is assigned to a string
variable, it is converted, if necessary, to
the same string type (character or bit) as
the receiving string. If necessary, it is
truncated or, for fixed-length receiving
strings, extended on the right to conform
to the declared length of the receiving
string. For example, assume SUBJECT has
the attributes CHARACTER (10), indicating a
fixed-length character string of ten
characters. Consider the follOwing
statement:

SUBJECT = 'TRANSFORMATIONS';

The length of the string on the right is
fifteen characters; therefore, five
characters will be truncated from the right
end of the string when it is aSSigned to
SUBJECT. This is equivalent to executing:

SUBJECT. = • TRANSFORMA ' ;

If the aSSigned string is shorter than
the length declared for the receiving
string variable, the assigned string is
extended on the right either with blanks,
in the case of a character-string variable,
or with zeros, in the case of a bit-string
variable. Assume SUBJECT still has the
attributes CHARACTER (10). Then the
following two statements assign equivalent
values to SUBJECT:

SUBJECT = 'PHYSICS';

SUBJECT = 'PHYSICSbbb';

The letter ~ indicates a blank character.

Let CODE be a bit-string variable with
the attributes BIT(10). Then the following
two statements assign equivalent values to
CODE:

CODE '110011'B;

CODE '1100110000'B;

Note, however, that the following
statements do not assign equivalent values
to SOBJECT if it has the attributes
CHARACTER (10):

SUBJECT = '110011'B:

SUBJECT '1100110000'B;

When the first statement is executed, the
bit-string constant on the right is first
converted to a character string and is then
extended on the right with blank characters
rather than zero bits. This statement is
equivalent to:

SUBJECT = '110011bbbb';

The second of the two statements
requires only a conversion from bit-string
to character-string type and is equivalent
to:

SUBJECT = '1100110000';

A string value, however, is not extended
with blank characters or zero bits when it
is assigned to a string variable that has
the VARYING attribute. Instead, the length
specification of the receiving string
variable ~s effectively adjusted to
describe t~e length of the assigned string.
Truncation will occur, though, if the
length of the aSSigned string exceeds the
maximum length declared for the varying
length string variable.

Chapter 13: Editing and String Handling 207

OTHER FORMS OF ASSIGNMENT

In addition to the assignment statement,
PL/I provides other ways of assigning
values to variables. Among these are two
methods that involve input and output
statements: one in which actual input and
output operations are performed, and one in
which data movement is entirely internal.

Input and output Operations

Although the assignment statement is
concerned with the transmission of data
between storage locations internal to a
computer, input and output operations can
also be treated as related forms of
assignment in which transmission occurs
between the internal and external storage
facilities of the computer.

Record-oriented operations, however, do
not cause any data conversion of items in a
logical record when it is transmitted.
Required editing of the record must be
performed within internal storage either
before the record is written or after it is
read.

Stream-oriented operations, on the other
hand, do provide a variety of editing
functions that can be applied when data
items are read or written. These editing
functions are similar to those provided by
the assignment statement, except that any
data conversion always involves character
type, conversion from character type on
input, and conversion to character type on
output.

STRING option in GET and PUT statements

The STRING option in GET and PUT statements
allows the statements to be used to
transmit data between internal storage
locations rather than between the internal
and external storage facilities. In both
GET and PUT statements, the FILE option,
specified by FILE (file-expr) , is replaced
by the STRING option, as shown in the
following formats:

GET STRING (character-string
expression)
data specification;

PUT STRING (character-string-variable)
data specification;

The GET statement specifies that data items
to be aSSigned to variables in the data

208 OS PL/I CKT AND OPT LRM PART I

list are to be obtained from the specified
character string. The PUT statement
specifies that data items of the data list
are to be assigned to the specified
character-string variable. The "data
specification" is the same as described for
input and output. In general, it takes one
of the following forms:

DATA [(data-list)]

(LIST] (data-list)

EDIT {(data-list) (format-list)} •••

Although the STRING option can be used
with each of the three modes of stream
oriented transmission, it is most Useful
with edit-directed transmission, which
considers the input stream to be a
continuous string of characters. For list
directed and data-directed GET statements,
individual items in the character string
must be separated by commas or blanks; for
data-directed GET statements, the string
must also include the transmission
terminating semicolon, and each data item
must appear in the form of an assignment
statement. Edit-directed transmission
provides editing facilities by means of the
format list. Note that the COLUMN control
format option may not be used with the
STRING option.

The NAME condition is not raised for a
GET DATA statement with the STRING option.
Instead, the ERROR condition is raised for
situations that would cause the NAME
condition to be raised for a GET DATA
statement with the FILE option.

The STRING option permits data gathering
or scattering operations to be performed
with a Single statement, and it allows
stream-oriented processing of character
strings that are transmitted by record
oriented statements. Consider the
following statement:

PUT STRING (RECORD) EDIT
(NAME, PAY#, HOURS*RATE)
(A(12), A(1), P'$999V.99');

This statement specifies that the
character-string value of NAME is to be
aSSigned to the first (leftmost) 12
character pOSitions of the string named
RECORD, and that the character-string value
of PAY# is to be aSSigned to the next seven
character pOSitions of RECORD. The value
of BOURS is then to be multiplied by the
value of RATE, and the product is to be
edited into the next seven character
pOSitions, according to the picture
specification.

Frequently, it is necessary to read
records of different formats, each of which

gives an indication of its format within
the record by the value of a data item.
The STRING option provides an easy way to
handle such records: for example:

READ FILE (INPUTR) INTO (TEMP);
GET STRING (TEMP) EDIT (CODE) (F(l»:
IF CODE ~= 1 THEN GO TO OTHER TYPE:
GET STRING (TEMP) EDIT (X,Y,Z)

(X(l), 3 F(lO,Q»:

The READ statement reads a record from the
input file INPUTR. The first GET statement
uses the STRING option to extract the code
from the first byte of the record and to
assign it to CODE. The code is tested to
determine the format of the record. If the
code is 1, the second GET statement then
uses the STRING option to assign the items
in the record to X,Y, and Z. Note that the
second GET statement specifies that the
first character in the string TEMP is to be
ignored (the X(l) format item in the format
list). Each GET statement with the STRING
option always specifies that the scanning
is to begin at the first character of the
string. Thus, the character that is
ignored in the second GET statement is the
same character that is assigned to CODE by
the first GET statement.

In a similar way, the PUT statement with
a STRING option can be used to create a
record within internal storage. In the
following example, assume that the file
OUTPRT is eventually to be printed.

PUT STRING (RECORD) EDIT
(NAME, PAY#, HOURS*RATE)
(X(l), A(12), X(10), A(1), X(lO),
P'$999V.99');

WRITE FILE (OUTPRT) FROM (RECORD):

The PUT statement specifies, by the X(l)
spacing format item, that the first
character assigned to the character-string
variable is to be a single blank, the ANS
carriage-control code that specifies a
single space before printing. Following
that, the values of the variables NAME and
PAY# "and of the expression HOURS*RATE are
assigned. The format list specifies that
ten blank characters are to be inserted
between NAME and PAY# and between PAY# and
the expression value. The WRITE statement
specifies that record transmission is to be
used to write the record into the file
O~P~.

PICTURE SPECIFICATION

Picture specifications extend the editing
facilities available in PL/I, and provide
the user with greater control over his data

formats. A picture specification consists
of a sequence of character codes enclosed
in quotation marks which is either part of
the PICTURE attribute, or part of the P
(picture) format-item:

DECLARE PRICE

PUT FILE(SYSPRINT)

PICTURE'$Z9V99'i

EDIT
('PART NUMBER', PART#)
(A(12), P'AAA99X'):

Picture specifications are of two types:

• numeric character specificatons

• character-string picture specifications

A numeric character specification in a
PICTURE attribute indicates that the
data item represents a numeric quantity
but that it is to be stored as a
character-string, and indicates how the
numeric value is to be represented in
the string. A numeric character
specification in a P format item
indicates how a numeric value is, or is
to be, represented as a character-string
on the external medium.

A character-string picture specification
is an alternative way of describing a
fixed-length character string, with the
additional facility of indicating that any
position in the string may only contain
characters from certain subsets of the
complete set of characters available On the
operating system.

The concepts of the two types of picture
specifications are described separately
below, and a detailed description of each
picture character, together with examples
of its use, appears in section 0, "Picture
Specification Characters·. It is
sufficient here to note that the presence
of an A or X picture character defines a
picture specification as a character-string
picture specification: otherwise, it is a
numeric character specification.

Numeric Character Specifications

A numeric character specification specifies
that the associated data item has a numer1c
value but is to be stored (or is to be
represented in the external medium) as a
character string. It also specifies the
form the character string is to take, and
exactly how the numeric value is
represented in the string. For example:

DCL PRICE PICTURE'$Z9V99';

This specifies that PRICE is to be

Chapter 13: Editing and string Handling 209

represented by a character-string of length
S. The first character is always $, the
second will be a blank or non- zero digit,
and the third, fourth and fifth characters
will be digits. The numeric value is
indicated by the four characters which can
represent digits, a decimal pOint being
assumed in the position indicated by the V;
hence it is regarded as FIXED DECIMAL
(4,2), and is always positive. 13.2S is
represented as '$132S' and .9S as '$b09S'.

The numeric character specification has
two major uses:

• For data items which will be concerned
with input/output operations (although
they may be used anywhere in a program
where numeric data can occur). However,
most numeric operations on pictured data
are considerably less efficient than the
same operations on coded numeric data.

• The second use stems from the fact that
a pictured data item effectively has two
values. When the item is used in a
numeric context, the numeric value is
obtained from or stored into the
character-string by the conversion
process defined by the picture
specification; when the item is used as
source data in a context where a
character-string expression is required,
the actual character-string which
represents the value is used. For
example:

DCL COUNT PICTURE'999' INITIAL(O),
STRING CHAR (3);

COUNT = COUNT +1;
STRING = COUNT;

The initial representation of COUNT is
'000'. In the first aSSignment
statement, this is converted to FIXED
DECIMAL (3,0), the addition is
performed, and the result is converted
back to the pictured form '001'. In the
second assignment statement the value of
string is set to '001'.

Note particularly that the character
context includes defining. A numeric
character data-item may be defined on a
character-string and vice versa.

Picture Character '9' in Numeric
Character Specifications

The picture character '9' is the simplest
form of numeric character specification. A
string of n '9' picture characters
specifies that the item is to be
represented by a fixed-length character
string of length n, each character of which

210 OS PL/I CKT AND OPT LRM PART I

is a digit (zero through nine). The
numeric value is the value of the digits as
an unsigned decimal number (i.e., FIXED
DECIMAL (n,O». For example:

DCL DIGIT PICTURE'9'
COUNTPICTURE'999',
XYZ PICTURE' (10)9';

The last example shows an alternative way
of writing the picture specification 9 ten
times.

Example of use:

DCL 1 CARD IMAGE,
2 DATA CHAR(12),
2 IDENTIFICATION CHAR(3),
2 SEQUENCE PIC'99999'~

SEQUENCE = SEQUENCE + 1;
WRITE FILE(OUTPUT) FROMCCARD_lMAGE);

(Note that the definition of '9' in a
character-string picture is different in
that the corresponding character can be
blank or a digit.)

Picture Characters Z *

It is often preferable to replace leading
zeros in numbers by blanks. In pictures
this is accomplished by using the Z picture
specification character. A picture
specification containing only ZS and 9s has
one or more ZS optionally followed by one
or more 9s. The representation of numeric
data is as for the '9' picture
specification except that if the digit to
be held would otherwise be zero and if all
digit positions to the left would also be
zero, then the character-string will
contain a blank in this position. For
example:

DCL PAGE_NUMBER PICTURE'ZZ9';

The value 191 is held as '191', 69 as
'b69', S as 'bbS' and zero as 'bbO'. With
a picture specification of all Zs, the
value zero is held as an all-blank string.

The asterisk picture specification
character has the same effect as the Z
character except that an * is held in the
string instead of a blank. This can be
used, for example, when printing checks,
when it is desired not to leave blank
spaces within fields. For example:

DeL CREDIT PICTURE '$**9.99';

(The $ and (.) characters are described

below.) A value of 95 is held as '$**0.95';
a value of 12350 is held as '$123.50'.

Picture Character V

The V picture specification character
indicates the position of an assumed
decimal point within the character-string.
For example:

DCL VALUE PICTURE 'Z9V999';

The string '12345' represents the numeric
value 12.345. Note that th~ V character in
the picture specification does not specify
a character position in the character
string representation. In particular, on
assignment to the data item a decimal pOint
is not included in the character string.

Insertion Picture Characters B. /

A decimal point picture character(.) can
appear in a numeric picture specification.
It merely indicates that a pOint is to be
included in the character representation of
the value. Therefore, the decimal point is
a part of its character-string value. The
decimal point picture character does not
cause decimal point alignment during
assignment; it is not a part of the
variable's arithmetic value. Only the
character V causes alignment of decimal
points. For example:

DECLARE SUM PICTURE '999V.99';

SUM is a numeric character variable
representing numbers of five digits with a
decimal point assumed between the third and
fourth digits. The actual pOint specified
by the decimal point insertion character is
not a part of the arithmetic value; it is,
however, part of its character-string
value. (The decimal point picture
character can appear on either side of the
character V. In certain contexts the two
forms have different meanings but V. is
recommended in most cases. See section D,
·Picture Specification Characters.-) The
following two statements assign the same
character string to SUM:

SUM = 123;

SUM = 123.00;

In the first statement, two zero digits are
added to the right of the digits 123.

Note the effect of the following
declaration.

DECLARE RATE PICTURE '9V99.99';

Let RATE be used as follows:

RATE = 7.62;

When this statement is executed, decimal
pOint alignment occurs on the character V
and not the decimal point picture character
that appears in the picture specification
for RATE. If RATE were printed, it would
appear as '762.00', but its arithmetic
value would be 7.6200.

Unlike the character V, which can appear
only once in a picture specification, the
decimal pOint picture character can appear
more than once; this allows digit groups
within the numeric character data item to
be separated by points, as is common in
Dewey decimal notation and in the numeric
notations of some European countries.

Because a decimal point picture
character causes a period character to be
inserted into the character-string value of
a numeric character data item, it is called
an insertion character. PL/I provides
three other insertion characters: comma
e,), slash(/), and blank(B). Consider the
following statements:

DECLARE RESULT PICTURE '9.999.999,V99';

RESULT = 1234567;

The character-string value of RESULT would
be'1.234.5b7,00'. Note that decimal pOint
alignment occurs before the two rightmost
digit positions, as specified by the
character V. If RESULT were assigned to a
coded arithmetic field, the value of the
data converted to arithmetic would be
1234567.00.

It a pOint, comma or slash picture
character appears with a string of Z or *
zero suppression characters, then if all
previous digits in the string are
suppressed, the insertion character is
suppressed to blank or '*'.

The B character differs from the other
three in that a·blank is always inserted in
the corresponding position of the character
string, even within a string of * zero
suppression characters.

Picture Character $

The $ picture character controls the
appearance of the currency symbol $ in
specified positions of numeric character
data items. For example a dollar sign can
be appended to the left of a numeric

Chapter 13: Editing and String Handling 211

character item, as indicated in the
following statements:

DECLARE PRICE PICTURE '$99V.99';

PRICE = 12.45;

The character-string value of PRICE is
equivalent to the character-string constant
'$12.45'. Its arithmetic value, however,
is 12.45.

Sign Specification in Numeric Character
Specifications

There are several ways in which signed
information may be held in a numeric
character data item. The simplest of these
is the S character specification. This
specifies a character in the character
string representation which contains '+' if
the value is positive or zero, and "~_I if
the value is negative. It must occur
either to the right or to the left of all
digit positions. For example:

DeL ROOT PICTURE 'S999';

50 is held as '+50', zero as '+000' and
-243 as '-243'. Similarly the '+' picture
character specifies a corresponding
character position containing '+' for
positive or zero, and blank for negative
values; the '_I picture character specifies
a corresponding character position
containing blank for positive or zero, and
1_' for negative values.

overpunched Sign Specification
Characters, T I R

An alternative way of representing signed
values, which does not require an
additional character in the string, is by
an overpunched sign specification. This
representation has arisen from the custom
of indicating signs in numeric data held on
punched cards, by superimposing a 12-punch
(to represent +) or an ii-punch (to
represent -) on top of a column containing
a digit (usually the last one in a field).
The resulting card-code is, in most cases,
the same as that for an alphabetic
character (e.g., 12-punch superimposed on 1
through 9 gives A through I, ii-punch
superimposed on 1 through 9 gives J through
R). The 12-0 and 11-0 combinations are not
characters in the PL/I set but are within
the set of characters accepted by the
operating system.

The T picture specification character

212 OS PL/I CRT AND OPT LRM PART I

specifies a character in the character
string representation which will hold a
digit and sign, in the representation
described above, i.e., 12-punch
superimposed on 0, or on 1 through 9 (A
through I) for positive, ii-punch
superimposed on 0, or on 1 through 9 (J
through R) for negative. It can appear
anywhere a '9' picture specification
character could have occurred. For
example:

DCL CREDIT PICTURE 'ZZV9T';

The character-string representation of
CREDIT is 4 characters. +21.05 is held as
'210E'. -0.07 is held as 'bbOP'.

The I picture specification character
specifies a character position which holds
the representation of a digit overpunched
with a 12-punch if the value is positive or
zero, but just a digit if the value is
negative.

The R picture specification character
specifies a character position which hold
the representation of a digit overpunched
with an ii-punch if the value is negative,
but just a digit if the value is positive.
For example:

GET EDIT (X) (P'R99');

will set X to (+) 132 on finding '132' in
the next 3 positions of the input stream,
but -132 on finding 'J32'.

other Numeric Character Facilities

Further details on the use of the above
picture specification characters, together
with details of picture specification
characters for floating signs and currency
symbols, and floating pOint values, appear
in section 0, ·Picture Specification
Characters·.

The tull list of numeric character
specification characters is:

9,V,Z,*,Y,(.),(,),/,B,S,+,-,$,CR,DB,T,I,R,
K,E,F of which all except K,V,F specify the
occurrence of a character in the character
string representation.

Character-String picture Specifications

A character-string picture specification is
an alternative way of describing a fixed
length character string, with the
additional facility of indicating that any

position in the string may only contain
characters from certain subsets of the
complete set of available characters.

A character-string picture specification
is recognized by the occurrence of an A or
X picture specification character. The
only valid characters in a character-string
picture specification are X, A, and 9.
Each of these specifies the presence of one
character position in the character-string
which can contain the following:

X any character recognized by the
particular implementation (i.e.,
all 256 possible bit combinations
represented by the 8-bit byte).

A any alphabetic character, #, a, $,
or blank.

9 any digit, or blank. Note the
difference from the 9 picture
specification character in numeric
character specifications.

When a character-string value is aSSigned,
or transferred, to a pictured character
string data item, the particular character
in each pOSition is checked for validity,
as specified by the corresponding picture
specification character, and the CONVERSION
condition is raised for an invalid
character. For example:

DECLARE PART# PICTURE 'AAA99X':

The following values are valid for
assignment to PART#.

'ABC12M'
'bbb09/'
'XYZb13'

The following values are not (the invalid
characters are underscored)~

'AB123M'
'ABC1/2'
'Mb#AS· , - ,

Bit-String Handling

The following examples illustrate SOme of
the facilities of PL/I that can be used in
bit-string manipulations.

DECLARE 1 PERSONNEL RECORD,
2 NAME, -

3 LAST CBARACTER(15),
3 FIRST CHARACTER(lO),
3 MIDDLE CHARACTER(l),

2 CODE STRING,
3 MALE BIT(l),
3 SECRETARIAL BIT(l),
3 AGE,

4 (UNDER 20,
TWENTY TO 30,
OVER 30) BIT(l),

3 HEIGHT,-
4 (OVER 6,

FIVE-SIX TO 6,
UNDER 5 6) BIT(l),

3 WEIGHT, - -
4 (OVER 180,

ONE TEN TO 180,
UNDER_ll0)-BIT(1),

3 EYES,
4 (BLUE,

BROWN,
HAZEL,
GREY,
OTHER) BIT(l),

3 HAIR,
4 (BROWN,

BLACK,
BLOND,
RED,
GREY,
BALD) BIT (1) ,

3 EDUCATION,
4 (COLLEGE,

HIGH SCHOOL,
GRAMMAR_SCHOOL) BIT(l)~

This structure contains NAME, a minor
structure of character-strings, and
CODE STRING, a minor structure of bit
strings. By default, the elements of
PERSONNEL-RECORD have the UNALIGNED
attribute. Consequently, CODE_STRING is
mapped with eight elements per byte, that
is, in the same way as a bit-string of
length 25.

Each of the first two bits of the string
represents only two alternatives: MALE or
.... MALE and SECRETARIAL or SECRETARIAL. The
other categories (at level 3) list several
alternatives each. (Note that the level
number 4 and the attributes BIT (1) are
factored for each category.)

The following portion of a program might
be used with PERSONNEL_RECORD:

Chapter 13: Editing and String Handling 213

INREC: READ FILE (PERSON)
INTO (PERSONNEL RECORD):

IF (~MALE , SECRETARIAL
, UNDER 20
, UNDER-5 6
, UNDER=110
, BLUE
, (HAIR. BROWN I BLOND)
, HIGH SCHOOL)
I (MALE , ~SECRETARIAL
, OVER 30
, OVER-6
, OVER=180
, EYES. GREY
, BALD
, COLLEGE)
THEN PUT LIST (NAME):
GO TO INREC;

Another way to program the same
information retrieval operation is as
follows:

DECLARE PERS STRING BIT(25) DEFINED
CODE_STRING;

IF PERS STRING
= -, 0110000100110000100000010'1 B
THEN GO TO OUTP;

IF PERS STRING
=-'0110000100110000001000010'B
THEN GO TO OUTP;

IF PERS STRING
=-'1000110010000010000001100'B
THEN GO TO OUTP;

GO TO INREC;

OUTP: PUT LIST (NAME):

GO TO INREC;

In this example, the bit string PERS_STRING
is defined on the minor structure
CODE_STRING. Bit-string constants are
constructed to represent the values of the
information being sought. The bit string
then is compared, in turn, with each of the
bit-string constants. Note that the first
and second constants are identical except
that the first tests for brown hair and the
second tests for blond hair. These two
variations are specified in the first
example by (HAIR.BROWNIBLOND).

Note that the second method of testing
PERSONNEL RECORD could not be used if the
structure-were ALIGNED (the base identifi~
for overlay defining must beUNALXGNED).
The first method, if it were used, would be
more efficient with an ALIGNED structure.

The second method has the disadvantage
that the 25 bits in PERS STRING have to
match the bit-string constant exactly.
This means that in an abnormal situation,

214 OS PL/I CRT AND OPT LRM PART I

such as when a man is described as having
grey hair and being bald, he would be
selected by the first method but not by the
second. The second method also has the
disadvantage that if a further item of
data, such as another colour of hair, were
to be added, the bit string constants would
have to be changed in every comparison,
whereas the first method requires that only
the comparisons in which the new item is
used need to be changed.

If the second method were used, an
improvement could be made by using
combinations of bits to denote each
characteristic, rather than Single bits.
For instance, the minor structure HAIR
could be replaced by a bit string length 3
at the same level in the structure and,
'OOO'B could represent bald, 'OOl'B grey
haired, '010'B red-haired, etc. ThiS would
reduce length required for PERS STRING from
25 to 16 bits, and would obviate the
possibility of conflicts such as that
between bald and grey-haired.

The tests might also be made with a
series of IF statements, either nested or
unnested, in which each bit would be tested
with a single IF statement.

String Built-in Functions

PLII provides a number of built-in
fUnctions, some of which also can be used
as pseudovariables, to add power to the
string-handling facilities of the language.
Following are brief descriptions of these
functions (more detailed descriptions
appear in section G, -Built-in FUnctions
and pseudovariables W

).

The BIT built-in function specifies tbat
a data item is to be converted to a bit
string. The built-in function allows a
programmer to specify the length of the
converted string, overriding the length
that would result from the standard rules
of data conversion.

The CHAR built-in function is exactly
the same as the BIT built-in function,
except that the conversion is to a
character string whose length may be
specified by the programmer.

The SUBSTR built-in function, which CaB

also serve as a pseudovariable in a
receivin9 field, allows a specific
sUbst.ring to be extracted from (or assiC'jDeil
to in the case of a pseudovariablel witbin
a specified strinq value.

The IMDBX built-in function allows a
string, either a character string or a m. t

string, to be searched for the first
occurrence of a specified substring, which
can be a single character or bit. The
value returned is the location of the first
character or bit of the Substring, relative
to the beginning of the string. The value
is expressed as a binary integer. If the
substring does not occur in the specified
string, the value returned is zero.

The LENGTH built-in function gives the
current length of a character string or bit
string. It is particularly useful with
strings that have the VARYING attribute.

The HIGH built-in function provides a
string of a specified length that consists
of repeated occurrences of the highest
character in the collating sequence. For
these implementations, the character is
hexadecimal FF.

The LOW built-in function provides a
string of a specified length that consists
of repeated occurrences of the lowest
character in the collating sequence. For
these implementations, the character is
hexadecimal 00.

The REPEAT built-in function permits a
string to be formed from repeated
occurrences of a specified substring. It
is used to create string patterns.

The STRING built-in function, which can
also be used as a pseUdovariable,
concatenates all the elements in an
aggregate variable into a single string
element.

The BOOL built-in function allows any of
the 16 different Boolean operations to be
applied to two specified bit strings.

The UNSPEC built-in function, which can
also be used as a pseudovariable, specifies
that the internal coded representation of a
value is to be regarded as a bit string
with no conversion. For example:

x = ARRAY(UNSPEC('A'»;

In this statement the internal
representation of the character 'A' is for
these implementations a string eight bits
in length. This bit string is converted to
a fixed binary arithmetic value, and used
as a subscript for the array. (The decimal
value of this particular subscript is 193).

The TRANSLATE built-in function changes
specified character elements in a string
for specified replacement character
elements. The 'replacement' element is
inserted into the 'position' in the string
occupied by the element to be replaced.

This built-in function enables the
programmer to use a translation facility
Whereby all the characters in a given
string are translated according to a
translation table contained in two other
strings. One of these strings serves as a
key to the replacement characters held in
the other string. For example:

DECLARE (W,X,Y,Z) CHAR (3);

X='ABC';
Y='TAR';
Z='CAB'i

W = TRANSLATE (X,Y,Z);

/* W = 'ART' */

The VERIFY built-in function compares
two strings to check whether the bits or
characters in one string occur anywhere in
the other string. If all the characters or
bits in one string are detected in the
second string, a value of '0' is returned.
If a character or bit does not occur in the
second string, a value representing the
position of this character or bit in the
first string is returned.

The first string is verified from left
to right. A position value for the first
unmatched bit or character only is
returned.

CHapter 13: Editing and string Handling 215

Chapter 14: Exceptional Condition Handling and Program
Checkout

When a PL/I program is executed, a large
number of exceptional conditions are
monitored by the system and their
occurrences are automatically detected
whenever-they arise. These exceptional
conditions may be errors, such as overflow
or an input/output transmission error, or
they may be conditions that are expected
but infrequent, such as the end of a file
or the end of a page when output is being
printed.

When checking out a program, a
programmer can also get a selective flow
trace and dumps by specifying that the
occurrence of anyone of a list of
identifiers be treated as an exceptional
condition.

Each of the conditions for which a test
may be made has been given a name, and
these names are used by the programmer to
control the handling of exceptional
conditions. The list of condition names is
part of the PL/I language. For keyword
names and descriptions of each of the
conditions, see section H, -ON-Conditions.-

The situations in which these conditions
occur is the same for both the optimizing
and the checkout compilers. The enabling
of these conditions, and the specifying of
the action required when a condition is
raised, are described in this chapter.

with the checkout compiler, the
facilities for making values available to
the programmer during execution are greatly
extended. These facilities are described
in chapter 15, -Execution-time Facilities
of the Checkout Compiler-.

Enabled Conditions and Established
Action

A condition that is being monitored, and
the occurrence of which will cause an
interrupt, is said to be enabled. Any
action specified to take place when an
occurrence of the condition causes an
interrupt, is said to be established.

Most conditions are checked for
automatically, and when they occur, the
system will take control and perform some
standard action specified for the
condition. Such conditions are enabled by
default, and the standard system action is
established for them.

The most common system action is to
raise the ERROR condition. This provides a
common condition that may be used to check
for a number of different types of errors,
rather than checking each error type
individually. standard system action for
the ERROR condition depends on the
processing mode:

Batch processing (opt~izing and checkout
compilers): If the condition is raised
in the major task, the FINISH condition
is raised and the program is
subsequently terminated. If it is
raised in a subtask, that task is
terminated.

Conversational processing (checkout
compiler only): Control is passed to
the terminal.

The programmer may specify whether or
not some conditions are to be enabled, that
is, are to be checked for so that they will
cause an interrupt when they arise. If a
condition is disabled, an occurrence of the
condition will not cause an interrupt.
Under the checkout compiler, the SIZE,
STRINGRANGE, and SUBSCRIPTRANGE conditions
are continuously monitored, whether enabled
or not.

All input/output conditions and the
ERROR, FINISH, and AREA conditions are
always enabled and cannot be disabled. All
of the computational conditions and the
program checkout conditions may be enabled
or disabled. The program checkout
conditions and the SIZE condition must be
explicitly enabled if they are to cause an
interrupt: all other conditions are enabled
by default and must be explicitly disabled
if they are not to cause an interrupt when
they occur.

Condition Prefixes

Enabling and disabling can be specified for
the eligible conditions by a condition
prefix. A condition prefix is a list of
one or more condition names, enclosed in
parentheses and separated by commas, and
connected to a statement (or a statement
label) by a colon. The prefix always
precedes the statement and any statement
labels. For example:

(SIZE): L1: X=(I*.N)/(M+L);

Chapter 14: Exceptional Condition Handling and Program Checkout 217

A condition name in a prefix list indicates
that the corresponding condition is enabled
within the scope of the prefix.

The name of a condition used in a prefix
can be preceded by the word NO, without a
separating blank or connector, to indicate
that the corresponding condition is
disabled. For example:

(NOCONVERSION): Y=AIIB:

scope of the Condition Prefix

The scope of the prefix, that is, the part
of the program throughout which it applies,
is usually the statement to which the
prefix is attached. The prefix does not
apply to any functions or subroutines that
may be invoked in the execution of the
statement.

A condition prefix to an IF statement
applies only to the evaluation of the
expression following the IF: it does not
apply to the statements in the THEN or ELSE
clauses, although these may themselves have
prefixes. Similarly, a prefix to the ON
statement has no effect on the statements
in the on-unit.

IA condition prefix to a DO statement or a
ISELECT statement applies only to the
levaluation of any expressions in the
(statement itself and not to any other
Istatement in the group. Condition prefixes
Ito a WHEN clause apply only to the
levaluation of expressions in the WHEN
Iclause itself: they do not apply to the
Istatements following the WHEN clause.

Condition prefixes to the PROCEDURE
statement and the BEGIN statement are
special (though commonly used) cases. A
condition prefix attached to a PROCEDURE or
BEGIN statement applies to all the
statements up to and including the
corresponding END statement. This includes
other PROCEDURE or BEGIN statements nested
within that block. It does not apply to
any procedures lying outside that block.

The enabling or disabling of a condition
may be redefined within a block by
attaching a prefix to statements within the
block, including PROCEDURE and BEGIN
statements (thus redefining the enabling or
disabling of the condition within nested
blocks). Such a redefinition applies only
to the execution of the statement to which
the prefix is attached. In the case of a
nested PROCEDURE or BEGIN statement, it
applies only to the block the statement
defines, as well as any blocks contained
within that block. When control passes out

218 OS PL/I CKT AND OPr LRM PART I

of the scope of the redefining prefix, the
redefinition no longer applies. A
condition prefix can be attached to any
statement except a DECLARE, DEFAULT, or
ENTRY statement.

ON Statement

A standard system action exists for every
condition, and if an interrupt occurs, this
standard system action will be performed
unless the programmer has specified an
alternate action in an ON statement for
that condition. The purpose of the ON
statement is to establish the action to 'be
taken when an interrupt results from an
exceptional condition that has been
enabled, either by default Or by a
condition prefix.

~ The action specified in an ON
statement will not be executed durihg any
portion of a program throughout which the
condition has been disabled.

The form of the ON statement is:

ON condition[SNAP]{SYSTEMilon-unitJ

(See section J, ·Statements· for a full
description) •

The keyword SYSTEM followed by a
semicolon specifies standard system action
whenever an interrupt occurs. It re
establishes system action for a condition
for which some other action has been
established.

The on-unit is used by the programmer to
specify an alternative action to be taken
whenever an interrupt occurs.

The SNAP option specifies that, when an
interrupt occurs, a list of all blocks in
the chain of invocation leading to the
current task is written on the standard
system file SYSPRINT. If SNAP is
specified, the action of the SNAP option
precedes the action of the on-unit. If
SNAP SYSTEM is specified, the system action
message is followed immediately by a list
of active blocks.

The on-unit must be either a single,
unlabeled, Simple statement or an unlabeled
begin block. The single statement cannot
be a RETURN, FORMAT, DECLARE, or DEFAULT
statement. It cannot be either of the two
compound statements, IF and ON, or a do-

I group, or a select-group. (PROCEDURE,
I BEGIN, END, DO, and SELECT statements can
never appear as single statements.) The
begin block, if it appears, can contain any

Istatement (except that a RETURN statement

can appear only within a procedure nested
in the begin block).

The single statement on-unit, or the
begin block on-unit, is executed as though
it were a procedure (without parameters)
that was called at the point in the program
at which the interrupt occurred. If the
on-unit is a single statement it behaves as
though it were a single-statement
procedure; when execution of the unit is
complete, control generally returns to the
block from which the on-unit was entered.
Just as with a procedure, control may be
transferred out of an on-unit by a GO TO
statement; in this case, control is
transferred to the point specified in the
GO TO, and a normal return does not occur.

Note: The specific pOint to which control
returns from an on-unit varies for
different conditions. In some cases, it
returns to the point that immediately
follows the action in which the condition
arose, or the statement following the one
in which the condition was raised. In
other cases, control returns to the actual
point of interrupt, and the action is
reattempted. An example of the latt·er case
is the return from the on-unit of an ON
CONVERSION statement. When an interrupt
occurs as the result of a conversion error,
control returns from the on-unit to
reattempt conversion of the character that
caused the error (on the assumption that
the invalid character has been changed
during execution of the on-unit). If the
invalid character is not changed, the ERROR
condition is raised.

Null On-Unit

A special case of an on-unit is the null
statement. The effect of this is the same
as a normal return from a begin-block on
unit, except that with the CONVERSION and
AREA conditions, there is nO retry.

Use of the null on-unit is not the same
as disabling, for two reasons: first, a
null on-unit may be specified for any
condition, but not all conditions can be
disabled; and, second, disabling a
condition, if possible, may save time by
avoiding any checking for this condition.
If a null on-unit is specified, the system
must still check for occurrence of the
condition; the action then taken is the
action that would be taken on normal return
from an on-unit.

Note: A null on-unit for the CONVERSION
condition will not cause a permanent loop
if a conversion error occurs, because no
conversion is re-attempted unless the

invalid character is changed in the on
unit. If it is not changed, the ERROR
condition is raised.

Scope of the ON Statement

The execution of an ON statement associates
an action specification with the named
condition. Once this association is
established, it remains until it is
overridden or until termination of the
block in which the ON statement is
executed.

An established interrupt action passes
from a block to any block it activates, and
the action remains in force for a11
subsequently activated blocks unless it is
overridden by the execution of another ON
statement for the same condition. If it is
overridden, the new action remains in force
only until that block is terminated or
until a REVERT statement is executed for
the condition. When control returns to the
activating block, all established interrupt
actions that existed at that point are re
established. This makes it impossible for
a subroutine to alter the interrupt action
estab1ished for the block that invoked the
subroutine.

If more than one ON statement for the
same condition appears in the same block,
each subsequently executed ON statement
permanently overrides the previously
established condition. No re-establishment
is pOSSible, except through execution of
another ON statement with an identical
action specification (or re-execution,
through some transfer of control, of an
overridden ON statement).

Dynamically Descendant On-Units

It is possible to raise a condition during
execution of an on-unit and enter a further
on-unit. An on-unit entered due to a
condition either raised or signalled in
another on-unit is a dynamically-descendant
on-unit. A normal return from a
dynamically-descendant on-unit
reestablishes the environment of the on
unit in which the condition was raised.

On-units for File Parameters and File
Variables

File constants or file variables used as
arguments and parameters can be specified

Chapter 14: Exceptional Condition Handling and Program Checkout 219

in input or output condition on-units. The
following examples illustrate the rules and
uses of this facility:

1. On-units for a particular condition in
separate blocks can specify different
file identifiers for the same file.

For example:

E: PROCEDURE;
DECLARE Fl FILE;
ON ENDFILE (Fl) GOTO Ll;
CALL El (Fl);

El: PROCEDURE (F2);
DECLARE F2 FILE;
ON ENDFILE (F2l' GO TO L2:
READ FILE (Fl);
READ FILE (F2);
END El;

An end-of-file encountered for Fl in
El causes the on-unit for F2 in El to
be entered. If the on-unit in El were
not specified, an end-of-file
condition encountered for either Fl or
F2 would cause entry to the on-unit
for Fl in E.

2. On-units for a particular input or
output condition in the same block can
specify different file identifiers for
the same file. The presence of a
second on-unit overrides the first.

For example:

E: PROCEDURE;
DECLARE Fl FILE;
CALL El (F1);

El: PROCEDURE (F2);
DECLARE F2 FILE;
ON ENDFILE (F1) GOTO L1;
READ FILE (F1) INTO (Xl);

ON ENDFILE (F2) GOTO L2:
READ FILE (F2) INTO (X2);

READ FILE (Fl) INTO (X3);

END E:

An end-of-fi1e condition raised by
execution of the second READ FILE
(Fl); statement causes the on-unit for

220 as PL/I CKT AND OPT LRM PART I

F2 to be entered.

3. If a REVERT statement for a particular
condition that specifies a file
parameter is executed, anyon-unit
previously established for the
argument corresponding to the file
parameter is entered.

For example:

E: PROCEDURE;
DCL Fl FILE:
ON ENDFILE (F1):
CALL El (Fl);

El: PROCEDURE (F2);
DECLARE F2 FILE;
ON ENDFILE (F2) GOTO L;

REVERT ENDFILE (F2);
/*NULL ON-UNIT IN E ASSOCIATED

WITH ENDFILE INTERRUPI'S FOR F2*/
READ FILE (F2) INTO (Xl);

END E;

An end-of-fi1e condition encountered
in the execution of the READ statement
for F2 does not cause the on-unit for
F2 in El to be entered. Because of
REVERT statement the on-unit for Fl in
the containing procedure is entered.

Whenever a file variable is used, the
effect is the same as if the current file
constant value of the variable had been
used. Thus having an ON statement which
SPecifies a file variable refers to the
file constant that is the current value of
the variable when the on-unit is
established.

For example:

DECLARE FV FILE VARIABLE,
FCl FILE,
FC2 FILE;

FV = FC1;
ON ENDFILE(FV) GO TO FIN;

FV = FC2;
READ FILE(FC1) INTO (Xl);
READ FILE(FV) INTO (X2);

An end-of-file condition raised during the
first READ statement will cause the on-unit
to be entered, since the on-unit refers to
file FC1. If the condition is raised in
the second READ statement, however, the on-

unit is not entered, since this READ refers
to file FC2.

If an ON statement specifying a file
variable is executed more than once, and
the variable has a different value each
time, then a different on-unit will be
established at each execution. For
example.

DECLARE FV FILE VARIABLE,
FC1 FILE,
FC2 FILE;

DO FV=FC1,FC2;
ON ENDFILE(FV) GO TO FIN;

END;

REVERT statement

The REVERT statement is used to cancel the
action specification of all the ON
statements for the named condition that
have been executed in the same block in
which the REVERT statement is executed. It
then re-establishes the action that was in
force at the time of activation of that
block. This statement has tne form:

REVERT condition-name;

A REVERT statement that is executed in a
block in which no on-unit has been
established for the named condition is
treated as a null statement.

SIGNAL statement

The programmer may simulate the occurrence
of an ON condition by means of the SIGNAL
statement. An interrupt will occur unless
the named condition is disabled. This
statement has the form:

SIGNAL condition-name;

The SIGNAL statement causes execution of
the interrupt action currently established
for the specified condition. The principal
use of this statement is in program
checking, to test the action of an on-unit,
and to determine that the correct action is
associated with the condition.

If the signaled condition is not
enabled, the SIGNAL statement is treated as
a null statement.

CONDITION Condition

The ON-condition of the form:

CONDITION (identifier)

allows a programmer to establish an on-unit
that will be executed whenever a SIGNAL
statement is executed specifying CONDITION
and that identifier.

As a debugging aid, this condition can
be used to establish an on-unit whose
execution results in printing information
that shows the current status of the
program. The advantage of using this
technique is that the statements of the on
unit need be written only once. They can
be executed from any point in the program
through placement of a SIGNAL statement.
Following is an example of how the
CONDITION condition might be included in a
program:

ON CONDITION (TEST) BEGIN;

END;

Execution of the begin block would be
caused wherever the following statement
appears:

SIGNAL CONDITION (TEST);

The identifier can be declared
contextually (as in the example given
above) or explicitly. An explicit
declaration of a condition name could be as
follows:

DCL CNAME CONDITION;
ON CONDITION(CNAME) BEGIN;

END;

The CONDITION condition is always
enabled, but it can be raised only by the
SIGNAL statement.

CHECK Condition

The CHECK condition is an important tool
provided in PL/I for program testing. It
is raised during execution of the program
whenever the value of a deSignated variable
is mOdified, or whenever control is
transferred to a statement prefixed by a
deSignated label or entry constant.
Variables, label constants, and entry
constants for which the CHECK condition is

Chapter 14: Exceptional Condition Handling and Program Checkout 221

to be raised are designated explicitly in
an optional name list given with the CHECK
prefix that enables the CHECK condition.
If the CHECK prefix is given without the
name list, all variables, label constants,
and entry constants that are within the
scope of the CHECK prefix can cause the
CHECK condition to be raised. Variables
that can raise the CHECK condition include
array and structure variables, label
variables, entry variables, event
variables, area variables, file variables,
task variables, based and defined
variables, and locator variables.
subscripted and locator-qualified names are
not allowed but qualified names (i.e.,
members of structures) can be used. iSUB
defined variables are not allowed.

The interrupt occurs immediately after
assignment to the variable being checked.
An interrupt will take place, for instance,
after the assignment of each element of a
checked array. Exceptions are as follows.

1. If arguments specified in a CALL
statement are being passed directly
(as opposed to being passed by means
of dummy arguments), then CHECK for
these names is raised on return from
the subroutine.

2. With label and entry constants, the
interrupt occurs immediately before
the execution of the statement or the
invocation of the entry name.

The system action for problem variables is
to print the identifier causing the
interrupt and its new value in the form of
data-directed output. For program control
variables, the information provided is:

Checkout compiler: As for PUT DATA

Optimizing compiler: Name of the
identifier

If the CHECK condition is raised by a
SIGNAL CHECK, the standard system action is
to print the identifiers (and their values,
where applicable) given in the name list of
the CHECK prefix. If the CHECK prefix does
not have a name list, the standard action
is to print all the identifiers (and their
values, where applicable), that are within
the scope of the CHECK prefix.

Thus, by preceding a block with a CHECK
prefix, as shown in the example in figure
14.1, the programmer can obtain selective
dumps in a readable format by specifying
variables; he can obtain a flow trace by
specifying labels and entry names.

The CHECK condition may also be
specified in an ON statement, if other than
system action is required. This gives the

222 OS PL/I CKT AND OPT LRM PART I

user all the facilities of PL/I, including
the simplicity of data-directed output for
controlling and editing his debugging
information.

SIZE condition

The SIZE condition is not enabled unless it
appears in a condition prefix. It is
raised it high-order significant digits are
lost from an arithmetic value during
assignment to a variable or cornpiler
created intermediate storage location, or
in an input/output operation. An error
message is printed, and the ERROR condition
is raised; in the absence of an appropriate
on-unit, this leads to termination of the
task. The checkout compiler will detect a
SIZE error and take standard system action
whether or not the condition is enabled,
although a SIZE on-unit can be entered only
when the condition has been enabled.

SUBSCRIPTRANGE Condition

Another ON condition that is used
prinCipally for program checkout, but that
may also be used in production, is
SUBSCRIPTRANGE. For the optimizing
compiler, the condition needs to be enabled
by a condition prefix. The checkout
compiler will detect a SUBSCRIPTRANGE error
and take standard system action, whether or
not the condition is enabled, although a
SUBSCRIPTRANGE on-unit can be entered only
when the condition has been enabled.

Since this checking involves a
substantial overhead in both storage space
and execution time, it usually is used only
in program testing - it is removed for
production programs, SUBSCRIPTRANGE being a
normally-disabled condition.

STRINGRANGE Condition

The STRINGRANGE condition is not enabled
unless it appears in a condition prefix.
It is raised by an invalid reference to the
SUBSTR built-in function and
pseudovariable, the arguments to which must
lie within certain bounds (see "SUBSTR
String Built-in Function" in section G,
·Built-in Functions and pseudovariables·).
It allows execution to continue with a
SUBSTR reference that has been revised
either automatically (that is, by standard
system action) or by the programmer using
an on-unit. The checkout compiler will

detect a STRINGRANGE error and take
standard system action whether or not the
condition has been enabled, although a
STRINGRANGE on-unit can be entered only
when the condition has been enabled.

Condition Built-In Functions and
Condition Codes

When an on-unit is invoked, it is as if it
were a procedure without arguments. It is
therefore impossible to pass to the on-unit
any information about the interrupt (other
than the name of the condition). To assist
the programmer in making use of on-units,
some special functions are provided that
may be used to inquire about the cause of
an interrupt and possibly to attempt to
correct the error.

These condition built-in functions can
be used only in on-units or in blocks
invoked by on-units. They are listed in
section G, WBuilt-In functions and
Pseudovariablesw •

The condition built-in functions provide
information such as the name of the
procedure in which the interrupt occurred,
the character or character string that
caused a conversion interrupt, the value of
the key used in the last record
transmitted, and so on. Some can be used
as pseudovariables for error correction.

The ONCODE function provides a binary
integer whose value depends on the cause of
the last interrupt. This function, used in
conjunction with the ERROR condition,
allows the programmer to deal with errors
that may be detected by the implementation,
but that are not represented by condition
names in the language. It can also be used
to distinguish between the various
circumstances under which a particular
condition (for instance the KEY condition)
can be raised.

Example of Use of ON-Conditions

The routine shown in figure 14.1
illustrates the use of the ON statement,
the SIGNAL and REVERT statements, and
condition prefixes. The routine reads
batches of cards containing test readings.
Each batch has a header card with a sample
number, called SNO, of zero and a trailer
card with SNO equal to 9999. If a
conversion error is found, one retry is
attempted with the error character set to
zero. Two data fields are used to
calculate a subscript; if the subscript is

out of range, the sample is ignored. If
there is more than one subscript error or
more than one conversion error in a batch,
that batch is then ignored.

The numbers to the right of each line
are card sequence numbers, which are not
part of the program itself.

The CHECK prefixes in cards 1 and 25 are
included to help with debugging: in a
production program, they would be removed.
The prefix in card 1 specifies that
interrupts will occur at the following
times: just before the statements HEADER,
NEWBATCH, and BADBATCH are executed: just
before the procedure INPUT is invoked: and
whenever the value of an element of the
variable SAMPLE changes. Since no ON
statement has been executed for the CHECK
condition, system action is performed.
This will result in the appropriate name
being written on SYSPRINT (together with
the new value in the case of SAMPLE).

Since the labels used within the
internal procedure INPUT are not known in
DIST, they cannot be specified in a CHECK
list for DIST. A separate CHECK prefix is
therefore inserted just before the
procedure statement heading INPUT. This
check list specifies the labels in INPUT,
and the array TABLE.

The first statement executed is the ON
ENDFILE statement in card 9. This
specifies that the external procedure
SUMMARY is to be called when an ENDFILE
interrupt occurs. This action applies
within DIST and within INPUT and within all
other procedures called by DIST, unless
they establish their own action for
ENDFILE.

Throughout the procedure, any conditions
except SIZE, SUBSCRIPTRANGE, STRINGRANGE,
STRINGSIZE, and CHECK are enabled by
default: and for all conditions except
those mentioned explicitly in ON
statements, the system action applies.
This system action, in most cases, is to
generate a message and then to raise the
ERROR condition. The action specified for
the ERROR condition in card 13 is to
display the contents of the card being
processed. When the ERROR action is
completed, the FINISH condition is raised,
and execution of the program is
subsequently terminated.

The statement in card 10 specifies
action to be taken whenever a CONVERSION
interrupt occurs. Since this action
consists of more than one statement, it is
bracketed by BEGIN and END statements.

The main loop of the program starts with
the statement HEADER. Since the CHECK

Chapter 14: Exceptional Condition Handling and Program Checkout 223

r---,
(CHECK(HEADER,NEWBATCH,INPUT,BADBATCH,SAMPLE»: /*DEBUG*/ 01

DIST: PROCEDURE; 02
DECLARE 1 SAMPLE EXTERNAL, 03

2 BATCH CHARACTER(6), 04
2 SNO PICTURE '9999·, 05
2 READINGS CHARACTER(70), 06

TABLE(15,15) EXTERNAL, (ONCHAR,ONCODE) BUILTIN
/* ESTABLISH INTERRUPT ACTIONS FOR ENDFILE & CONVERSION */ 08

ON ENDFILE (PDATA) CALL SUMMARY; 09
ON CONVERSION BEGIN; CALL SKIPBCH; 10

GO TO NEWBATCH; 11
END; 12

ON ERROR DISPLAYCBATCHIISNOIIREADINGS); 13
/* MAIN LOOP TO PROCESS HEADER & TABLE */ 14

HEADER: READ INTO (SAMPLE) FILE (PDATA); 15
/* CHECK ACTION LISTS INPUT DATA FOR DEBUG */ 16
IF SNO 1 = 0 THEN SIGNAL CONVERSION; 1 7

NEWBATCH: GET LIST (OMIN,OINT,~N,AINT) STRING (READINGS); 18
TABLE = 0; 19
CALL INPUT; 20
CALL PROCESS; 21
GO TO HEADER; 22

/* ERROR RETURN FROM INPUT */ 23
BADBATCH: SIGNAL CONVERSION; 24
(CHECK(IN1,IN2,ERR2,ERR1,TABLE»: /*DEBUG*/ 25

INPUT: PROCEDURE; 26
/* ESTABLISH INTERRUPT ACTIONS FOR CONVERSION , SUBRG */ 27

ON CONVERSION BEGIN; 28
IF ON CODE = 624 , ONCHAR = , , 29

THEN DO; ONCRAR = '0': 30
GO TO ERR1; 31

END; 32
ELSE GO TO BADBATCH; 33

END; 34
ON SUBSCRIPTRANGE GO TO ERR2; 35

/* LOOP TO READ SAMPLE DATA AND ENTER IN TABLE */ 36
IN1: READ INTO (SAMPLE) FILE (PDATA); 37

IF SNO = 9999 THEN RETURN; /*TRAILER CARD*/ 38
IN2: GET EDIT (R,OMEGA,ALPHA) (3 P'999') 39

STRING (READINGS): 40
(SUBSCRIPTRANGE): TABLE ((OMEGA-OMIN)/OINT, (ALPHA-AMIN)/AINT) = R: 41

GO TO IN1; 42
/* FIRST CONVERSION , SUBSCRIPTRANGE ERROR IN THIS BATCH */ 43

ERR2: ON SUBSCRIPTRANGE GO TO BADBATCB: /*FOR NEXT ERROR*/ 44
CALL ERRMESS(SAMPLE,02); 45
GO TO IN1; 46

ERR1: REVERT CONVERSION: /*SWITCB FOR NEXT ERROR*/ 41
CALL ERRMESS (SAMPLE, 01) ; 48
GO TO IN2: 49
END INPUT: 50

END DIST: 51
L---J
Figure 14.1. A program checkout routine

condition is enabled for HEADER, an
interrupt will occur before HEADER is
executed. The READ statement with the INTO
option will cause a CHECK condition to be
raised for each element of the variable
SAMPLE; consequently, the input is listed
in the form of data-directed output.

The card read is assumed to be a header
card. If it is not, the SIGNAL CONVERSION
statement causes execution of the BEGIN

224 OS PL/I CKT AND OPT LRM PART I

block. which in turn calls a procedure (not
shown here) that reads on, ignoring cards
until it reaches a header card. The begin
block ends with a GO TO statement that
terminates the on-unit.

The GET statement labeled NEWBATCH uses
the STRING option to get the different test
numbers that have been read into the
character string READINGS, which is an
element of SAMPLE. Since the variables

named in the data list are not explicitly
declared, their appearance causes implicit
declaration with the attributes FLOAT
DECIMAL (6).

The array TABLE is initialized to zero
before the procedure INPUT is called. This
procedure inherits the on-units already
established in DIST, but it can override
them.

The first statement of INPUT establishes
a new action for CONVERSION interrupts.
Whenever an interrupt occurs, the ONCODE is
tested to check that the interrupt is due
to an illegal P format input character and
that the illegal character is a blank. If
the illegal character is a blank, it is
replaced by a zero, and control is
transferred to ERR1. .

ERRl is internal to the procedure INPUT.
The statement, REVERT CONVERSION, nullifies
the ON CONVERSION statement executed in
INPUT and restores the action specified for
conversion interrupts in DIST (which causes
the batch to be ignored).

After a routine is called to write an
error message, control goes to IN2, which
retries the conversion. If another
conversion error occurs, the interrupt
action is that specified in cards 10 and
11.

The second ON statement in INPUT
establishes the action for a SUBSCRIPTRANGE
interrupt. This condition must be
explicitly enabled by a SUBSCRIPTRANGE
prefix for an interrupt to occur. If an

interrupt does occur, the on-unit causes a
transfer to ERR2, which establishes a new
on-unit for SUBSCRIPTRANGE interrupts,
overriding the action specified in the ON
statement in card 35. Any subs equent
subscript errors in this batch will,
therefore, cause control to go to BADBATCH,
which signals the CONVERSION condition as
it existed in the procedure DIST. Note
that on leaving INPUT, the on-action
reverts to that established in DIST, which
~n this case calls SKIPBCH to get to the
next header card.

After establishment of a new on-unit, a
message is printed, and a new sample card
is read.

The statement labeled INl reads an 80-
column card image into the structure
SAMPLE. A READ statement does not cause
input data to be checked for validity, so
the CONVERSION condition cannot arise.

The statement IN2 checks and edits the
data in card columns 11 through 19
according to the picture format item. A
non-numeric character (including blank) in
these columns will cause a conversion
interrupt, with the results discussed
above.

The next statement (card 41) has a
SUBSCRIPTRANGE prefix. The data just read
is used to calculate a double subscript.
If either subscript falls outside the
bounds declared for TABLE, an interrupt
occurs. If both fall outside the range,
two interrupts occur.

Chapter 14: Exceptional Condition Handling and Program Checkout 225

Chapter IS: Execution-Time Facllities of the Checkout Compiler

This chapter describes language features
which can provide various facilities to
help the programmer at execution time.
These features are implemented by the- PL/I
checkout compiler only. If they are
included in a source program to be
processed by the PL/I optimizing compiler,
they are checked for correct syntax and
then ignored; their presence in such a
program is not regarded as an error.

In order that the working time of both
the programmer and the computer shall be
used with the maximum efficiency, it is
essential that program turnaround should be
as rapid as possible. The most important
way of achieving this, as far as the
programmer is concerned, is to reduce the
time he spends finding out how well his
program works, and to allow him to correct
any syntactic or logical errors with the
minimum delay. The PL/I checkout compiler
supports this aim by providing execution
time facilities that:

1. Provide the programmer with
information about designated items.
This information comprises:

a. A trace of the items, that is,
information is put out whenever
these items are referenced in pre
defined situations throughout
execution.

b. A list showing the current status
of the designated items at any
specified point during execution.

The items to be traced or listed, and
the points at which this output
occurs, are specified by statements in
the source program. The pre-defined
situations are specified in the
language.

2. Allow the programmer to initiate the
trace dynamically.

3. Provide hi~ with the opportunity, in
the appropriate processing
environment, for amending his program.
Changes made to the existing program
can be temporary, Or they can be
incorporated automatically into the
current source program. The current
source program can be saved on an
external data set and can be
retranslated at any time without
leaving the checkout compiler
environment.

The extent to which these facilities are
applicable to a particular program depends
on the processing mode:

1. Batch processing:

The programmer does not control the
time at which execution begins, and
cannot intervene during execution to
initiate a trace or a current-status
list, or to modify his program. If a
trace or a current-status list is
required, the appropriate statements
must have been included in the source
program. output from these facilities
is not avai~able until execution has
terminated.

2. Conversational processing:

The programmer initiates execution of
his program at the terminal and can
intervene during execution to initiate
a trace or a current-status list, or
to modify his program. statements to
initiate a trace or status-list can
also be included in the source
program. output from these facilities
is immediately available and can be
printed at the terminal.

If the SYSPRINT file is associated
with a device other than the
programmer's terminal, some of
SYSPRINT output will appear on both
devices. That part of the SYSPRINT
output which is not normally available
at the terminal can be copied onto it
by means of the appropriate terminal
instruction.

Conversational processing requires a
keybOard terminal as the input/output
device. This enables the programmer to:

1. Transmit and receive data at a rate
fast enough to allow him to maintain a
train of thought, and

2. Have control passed to him at the
termin~l, or obtain it by calling
attention from the terminal.

processing at the terminal is performed
in immediate mode, that is, any instruction
entered can be executed immedi~tely. If a
permitted PL/I statement or statement group
is entered, it can be translated and
interpreted (executed) immediately.

PL/I includes statements and options
that support these facilities. These

Chapter 15: Execution-time Facilities of the Checkout Compiler 227

provide:

1. Tracing facilities:

Information about designated items can
be written on the SYSPRINT file.

2. Current status list:

The current status of problem data or
program-control data can be written on
the SYSPRINT file.

3. Program amending:

Extra PL/I statements can be included
in the program during execution.
Depending on the subcommands used,
such statements may take effect once,
or for the remainder of the execution,
or they may be incorporated into the
current source program. Such changes
as are thus incorporated become
permanent if the current source
program is saved on an external data
set.

Note the relationship of PL/I and the
processing mode:

1. Any statement in a PL/I source program
submitted for batch processing can
also be included in a source program
submitted for conversational
processing, and vice versa.

2. There are some language items that
have or can have a different usage in
batch processing from that in
conversational processing. They are:

a.

b.

c.

GO TO statement: In batch
processing, control is transferred
to a statement identified by a
label. In conversational
processing, control can be
transferred to a statement
identified by either a label or,
in a GO TO statement entered in
immediate mode, a number. The
number is the number of a
statement in either the current or
the immediate source porgram, that
is, a number, or a number followed
by -T".

HALT statement:
processing, this
null operation.
processing, this
execution of the
be suspended and
the terminal.

In batch
statement is a
In conversational
statement causes
current task to
control passed to

ERROR condition: In batch
processing, if the ERROR condition
is raised, the standard system
action is to raise the FINISH

228 OS PL/I CKT AND OPT LRM PART I

condition and terminate the task
or, if the condition is raised in
the major task, terminate the
program. (Note that the raising
of the ERROR and FINISH conditions
for the checkout compiler may be
controlled by the ERRORS compiler
option, described in the
programmer's guide.)

In conversational processing, if
the ERROR condition is raised, the
standard system action is to pass
control to the terminal.

d. FINISH condition: In batch
processing, the standard system
action in the absence of an on
unit is simply to continue
processing from the point where
the interruption occurred.

In conversational processing, the
standard system action is to pass
control to the terminal.

3. There are a few PL/I statements that
cannot be used in immediate mode;
these are described in the section
"Program Amending," below.

Tracing Facilities

The tracing mechanism is activated by the
following statements:

Item or feature

Data
Transfer of control

Statements

CHECK/NOCHECK
FLOW/NOFLOW

CHECK and NOCHECK Statements

A CHECK statement provides, for every
statement that comes within its range,
dynamic enabling of the CHECK condition.
As a result, the standard system action for
the CHECK condition can be taken for these
statements; this action provides that
information is written, on the SYSPRINT
file, about the names specified or assumed
in the prefix whenever these names appear
in pre-defined situations during program
execution. If an on-unit has been
established for the CHECK condition the on
unit is executed and standard system action
is not performed.

A CHECK statement can specify a list of
names. If it has such a list, the CHECK
condition is enabled for the specified
names only. If it does not have a list,

the CHECK condition is enabled for all the
names ~n the program.

A CHECK statement remains effective
until the program terminates or an
appropriate NOCHECK statement is executed.
The NOCHECK statement suppresses the CHECK
condition for specified or assumed names.
If no names are specified in a NOCHECK
statement, then the CHECK condition is
suppressed for all names in the program.
CHECK and NOCHECK statements executed in a
procedure compiled by the checkout compiler
have no effect in any procedures compiled
by the optimizer that may form part of the
same program.

The range of a CHECK or NOCHECK
condition statement is:

1. In the external block that contains
the CHECK or NOCHECK statement: all
the statements executed after the
execution of the CHECK or NOCHECK
statement.

In this context, ·contains· means that
the CHECK or NOCHECK statement is in
the external block or in a block
internal to the external block.

2. In an external, separately compiled
block invoked from a block to which
the CHECK or NOCHECK statement
applies: all references to names
associated with the inherited prefixes
if these names are known in both the
invoking and the invoked blocks.
Thus, when a name in the CHECK or
NOCHECK statement name list appears in
the invoked external procedure, it
will be within the range of the
statement only if it is declared in
both procedures to be EXTERNAL.

The names can be unsubscripted, non
locator-qualified variables, label
constants, or entry constants~

The effect of the use of both CHECK and
NOCHECK statements in a program is shown by
the following example:

CHECK (A,B,C,D);

NOCBECK (A,D);

CHECK (D,E);

NOCHECK (B,E);

The first CHECK statement establishes

the names A, B, C, and D as members of the
name list.

The first NOCHECK statement deletes A
and D from this list; after this pOint, the
CHECK condition is raised for Band Conly.

The second CHECK statement restores D to
the name list and adds a new name E, to the
list. After this pOint, the CHECK
condition is raised for B, C, 0, and E.

The second NOCHECK statement deletes B
and E from the name list. After this
pOint, the CHECK condition is raised for C
and 0 only.

The CHECK and NOCHECK statements
effectively modify actual or inherited
CHECK or NOCHECK prefixes and add CHECK or
NOCHECK prefixes to currently unprefixed
statements. A statement inherits a prefix
either from an actual prefix to a PROCEDURE
or BEGIN block or from a previously
executed CHECK or NOCHECK statement; in
both cases, the CHECK or NOCHECK keyword
effectively adds a corresponding prefix to
every statement within its range. To
determine the effect of a CHECK or NOCHECK
statement, carry out, conceptually, the
following steps.

1. When a CHECK statement without a name
list is executed, delete all actual or
inherited CHECK and NOCHECK prefixes
within its range, then allow every
statement within its range to inherit
a CHECK prefix without a name-list.

2. When a NOCHECK statement without a
name-list is executed, delete all
actual or inherited CHECK and NOCHECK
prefixes within its range.

3. When a CHECK or NOCHECK statement with
a name-list is executed, carry out the
following steps on all statements
within its range.

a. Delete from all actual or
inherited prefixes (both CHECK and
NOCHECK) all names that appear in
the CHECK or NOCHECK statement
name-list (except where the same
name appears in the statement and
the prefix but refers to a
different data item in each case).
In both cases, treat a prefix with
no name-list as having a name-list
that includes all known names.

b. If the statement is a CHECK add a
CHECK prefix having the same name
list to every statement. If the
statement is a NOCHECK, add a
NOCHECK prefix having the same
name-list to every statement. In
both cases, exclude any names that

Chapter 15: Execution-time Facilities of the Checkout Compiler 229

are not known at the statement
being prefixed.

Note: Before carrying out Cal, expand into
their element names any structure names in
the CHECK or NOCHECK statement and in any
prefixes that may be modified.

The action of CHECK and NOCHECK
statements in combination with prefixes is
illustrated by the following examples.
They show how the effects of prefixes
written by the programmer are modified by
the execution of a CHECK or NOCHECK
statement.

Example 1:

CHECK: /* NAMES CHECKED FOR: */

CCHECKCA»: ••• : /* ALL
(CHECK(D,E»: •••• :/* ALL
(NOCHECK(A»: •••• i/* ALL
(NOCHECK): •••• : /* ALL
CCHECK): •••• : /* ALL

Example 2:

CHECKCA,B,C): /* NAMES CHECKED FOR:

CCHECKCA»: •••• : /* A,B,C
CCHECK(D,E»: •••• :/* A,B,C,D,E
(NOCHECK(A»: •••• :/* A,B,C
(NOCHECK): •••. : /* A,B,C
(CHECK): •••• : /* ALL

Example 3:

NOCHECKCC,D): /* NAMES CHECKED FOR: */

{CHECK{A»: •••• : /* A */
{CHECK(D,E»: •••• i/* E */
{NOCHECK(A»: •••• :/* NONE */
(NOCHECK): •••• : /* NONE */
{CHECK): •••• ; /* ALL EXCEPT C,D */

The situations in which the CHECK
condition is raised are described in "CHECK
Condition" in section H, "ON-Conditions."
Some of them are illustrated in figure
15.1.

The CHECK condition is raised when
AUTOMATIC, BASED, or CONTROLLED variables
are initialized by means of the INITIAL
attribute (with or without the CALL
option). If standard system action is
taken, CHECK output is produced as follows:

AUTOMATIC: Only if the CHECK statement has
been executed before the establishment
of the prologue for the block containing

230 OS PL/I CKT AND OPT LRM PART I

the initialization. Thus in the example
given, CHECK output is never produced
for the variable C because, in the
example, nO assignment is made to C.
Such output would be produced if, for
example, the CHECK statement,was
executed in a block that contained the
procedure PR, or if the procedure PR was
invoked recursively. In the latter
instance, CHECK output would be produced
at the second and all succeeding
invocations.

BASED or CONTROLLED: When the variable is
allocated by means of an ALLOCATE or
LOCATE statement. CHECK is never raised
by the INITIAL attribute of a BASED
variable that is never explicitly
allocated.

Note: The CHECK condition is never raised
for the initialization of STATIC variables.

FLOW Statement

The FLOW statement causes information about
the transfer of control during execution of
a task to be written on the SYSPRINT file.
When a FLOW statement has been executed, it
remains effective until the task terminates
or until a NOFLOW statement is executed in
the same task. The FLOW statement has no
effect outside procedures compiled by the
checkout compiler.

I When a task is first attached, the
Istatus of the FLOW/NOFLOW statement is the
Isame as that of the attaching task at the
Ipoint where the CALL statement was
I executed. Thereafter, the status can be
Ichanged only by FLOW and NOFLOW statements
lexecuted within the task.

When a FLOW statement has been executed
lin or inherited by a task, every transfer
of control that occurs subsequently in that
task causes a flow comment to be put out
before the transfer takes place. This
comment consists of:

1. The number of the statement that
causes the transfer of control.

2. The number of the statement to which
control is transferred.

While it is always clear why a
particular statement is specified in the
flow comment as the statement that caused
the transfer of control, it is not always
so obvious why control was transferred to
the statement given as the destination.

PR:PROC OPTIONSCMAIN):
DCL (A,B) OECIMALCS),

C CHAR(10) INITC'OAILYRATES') AUTO,
Cl CHAR(2S) BASEO(P),
0(10) LABEL,
GENTRY;

. ,
CHECK(A,B,C,Cl,O,F,P):

A=l:
B=2:
ALLOCATE Cl:

/*CHECK OUTPUT FOR A*/
/*CHECK OUTPUT FOR B*/
/*CHECK OUTPUT FOR p*/

0(1): READ FILE (X) INTO(Cl): /*CHECK OUTPUT FOR D(l) AND Cl*/

E: GET DATA(A,B):

DISPLAY (C) REPLY(Cl):

CALL F (A,B) :

CALL G:

F: PROC(Y,Z):
DCL (Y,Z) DECIMAL (5)

. ,
Y=20:

END F:
END PRj

Notes:

/*CHECK OUTPUT FOR A AND B*/

/*CHECK OUTPUT FOR Cl*/

/*CHECK OUTPUT FOR F AT TIME OF CALL*/
/*CHECK OUTPUT FOR A, B ON RETURN

FROM F (EVEN IF VALUES OF Y, Z
NOT CHANGED IN F)*/

1. If the CHECK statement had been CHECK:, output
would have been as indicated with, in addition,
CHECK output for E, G, and Y.

2. If dummy arguments had been created for A and
B, no CHECK output would have been produced.

Figure 15.1. Example of use of CHECK statement

Chapter 15: Execution-time Facilities of the Checkout Compiler 231

Consider the following program:

statement
number

3 FLOW;

12

24

35
36

42

57

65
66

117

ON CONVERSION GO TO L12;

GO TO L19;

L12:CALL ABS: ... ,

x = F(A,B):

L19:DO I = 1 TO 99:

END:
A = B •• 2:

ABS:PROC:

124 RETURN:

130 END ABS:

150

192

197
198

SIGNAL CONVERSION:

F:PROC(Y,Z) RETURNS(DECIMAL):

RETURN eM):
END Fi

In this program, the statement numbers in
the flow comments produced by transfers of
control are shown in figure 15.2.

Statement numbers are derived from a
count of semicolons, for both simple and
compound statements. In the example above,

232 OS PL/I CRT AND OPT LRM PART I

ON CONVERSION GO TO L12:

is counted as one statement.

NOFLOW Statement

The NOFLOW statement suppresses the action
of a FLOW statement executed earlier in the
same task.

Current Status List

Information about selected items in a
program can be put into the output stream
by means of a POT statement with one of the
options LIST, DATA, SNAP, FLOW, or ALL.
This information can comprise names and
values of both problem-data and program
control variables and details of data
relating to flow of control and ON
conditions. Note that only the PL/I
checkout compiler can provide all this
information. The PL/I optimizing compiler
can provide only the names and values of
problem-data variables, and 'the names of
program control variables.

The information provided by the options
specified in the PUT statement is
summarized in figure 15.3.

Details of the output provided by the
use of each of these options is given in
the sections below.

PUT Variables

The data list for the LIST and DATA options
can specify both problem and program
control variables. Only problem variables
can be specified in an EDIT data list. If
DATA is specified without a data list, the
data is assumed to be all problem and
program-control variables known in the
block.

The information provided for the problem
variables specified or assumed depends on
the data-transmission option selected:

Option output

LIST Value

DATA Name of variable, and value

EDIT Value as specified

If a variable specified or assumed for a

r---,
statement 1 Transferred from I Transferred to I

---1
GO TO in on-unit I 12 I 35 I
---1

I I 1
GO TO I 24 1 57 I

CALL 35 I 117

FUnction reference I 42 192

DO 1 57 IWhen iteration is complete,

I Istatement number of statement
I lafter matching END statement,
I Ithat is, 66

END for iterative DO 65 1 57

RETURN in 124 I 35
procedure invoked I
by CALL 1

END in procedure 1 130 I 35
invoked by CALL I 1

SIGNAL I 150 12

RETURN in 197 42
procedure invoked
as function reference 1 I
L---J
Figure 15.2. Flow comments produced by various transfers of control

r---,
Option 1 Intormation 1

---1
[LIST] (data-list) 1 Variables I
DATA [(data-list)] 1 1
EDIT (data-list) (format-list) 1 1

[(data-list) (format-list»)... 1 I
---1

SNAP IActive blocks and on-units I
---1

FLOW(n)] ILast n transfers of control I
---1
ALL[(character-string-expression)] IVariables, active blocks and on-units, 1

Itransfers of control, ON built-in functions 1
L---J
Figure 15.3. Program information provided by the PUT statement options

PUT DATA statement is not initialized or is
not allocated, the checkout compiler
includes a comment to this effect in the
output.

The information provided for a program
control variable specified or assumed in a
PUT LIST or POT DATA statement depends on
the variable. The name of the variable is
put out only if DATA (with or without a
data list) is specified. A progra~control
variable does not have a value in the sense
that a problem variable has one. Instead,

the output for a progra~control variable
comprises information re1ated to the
current situation of the variable. For
example, the output for a file variable
states whether the file is open or closed,
and the output for an event variable states
whether the event is active or inactive.

Onder the optimizing compiler a POT DATA
statement specifying a program control
variable will cause only the name of the
variable to be printed. A PUT LIST or PUT
EDIT statement must not specify program

Chapter 15: Execution-time Facilities of the Checkout compiler 233

control data under the optimizing compiler.

The value output for each type of
program-control variable is:

AREA
Area size
Area extent

List of freed allocations within the
extent

ENTRY
Entry constant assigned to the variable

(if any)
If the entry constant is internal and is

in a procedure that is not the current
procedure:
statement number

A list of the currently active
procedures invoked in the process of
activating the block containing the
entry constant. If the list of active
blocks cannot be produced, because the
entry variable no longer has a valid
value, a comment to this effect is
made.

Note: The above output is provided by a
PUT DATA statement specifying any
entry variable or a PUT LIST statement
specifying an entry variable that has
been declared as having a non-null
argument list. If a PUT LIST
statement specifies an entry variable
that has been declared as not
requiring an argument list, the entry
is invoked. In such a case, only PUT
DATA may be used to put out the value
of the entry variable.

EVENT
Description of the event:

Task or I/O event
Active or inactive
Complete or incomplete
status

If the event is active:
Indication of whether task or I/O event
Absolute priority
If a task event:
Entry name specified in the CALL
statement that activated the event
variable
Statement number of this CALL
statement

If an I/O event
File name or 'DISPLAY'

Statement number of I/O statement that
activated the event variable
statement numbers of the WAIT
statements associated with this event

FILE (variable or constant)
If item is a variable:
File constant aSSigned to variable

Whether the file is open or closed
If the file is open:
List of attributes other than the

23q OS PL/I CKT AND OPT LRM PART I

ENVIRONMENT attribute
Number of records transmitted

If the file is a STREAM file:
Already-transmitted items in the current

record

LABEL If variable has valid label constant
value
Label constant assigned to the variable
Statement number

If the label constant is in a procedure
that is not the current procedure: A
list of the currently active
procedures invoked in the process
of activating the block containing
the label constant. If the list of
active blocks cannot be produced,
because the label variable nO
longer has a valid value, a comment
to this effect is made.

If label variable does not have a valid
value:

Comment to this effect

Note: Label variables can be initialized
without having constants aSSigned to
them. In the program:

DeL L(3) LABEL;

L(l): ••• ;

L(l) has a value and can appear in a
GO TO statement; but it is not a label
constant. In this case, the full
output for a label variable with a
label constant value is transmitted,
except for the label constant value
itself.

OFFSET
Whether the offset has a null value

If the offset is not null and the long
form of the offset variable is used:

Name of the based variable addressed by
the offset

Name of the area, and value (in bytes)
of the offset

Whether it is invalid; for example,
because the based variable previously
associated with it had been freed

If the offset is not null and the short
form of the offset is used:
The byte-address value of the offset

POINTER
Whether the pointer has a null value

If the pOinter is not null and the long
form of pOinter is used:

Name of the based variable addressed by
the pOinter

If the last value assigned to the pOinter
is the value of an offset:

r---,
I
1.. Current

2.

3.

task

Highest
priority
task
(excl.
current
task)

Next
highest
priority
task
(excl.
current
task)

r---
I
1.
2.
3.

4.

SNAP information
FLOW information
Condition built-in
functions
Currentr---
block 11. Entry name

12. Condition
I status
I 3 • Variables
L---

r---
5. Block 11. As for

that 12. current
invoked I 3. block
current L---

block
r---

6. Block 1
that 11. As for
invoked I 2. current
above 13. block
block 1

L---

etc, to initially
invoked procedure of
task

L---

r---
1
11.
12.
14.
15.
16.
I etc
L---

r---
11.
12.
14 •
15.
16.
I etc
I

As for current
task, with item
4 being the
latest block in
the chain of
invocation.

As for current
task, with item
4 being the
latest block in
the chain of
invocation.

1 L---
letc., to lowest priority task
L---J
Figure 15.4. Information transmitted

by POT ALL statement

Name of the area, and value (in bytes)
of ,the offset

(Except that if the area is based or is an
ele"ment of an array of areas, the value of
the offset is not transmitted: and if the
area is an element of a based structure,
n~ither the offset nor the name of the area
is transmitted.)

If the last usage of the pOinter was in a
READ ••• SET or a LOCATE statement:

Name of the file
Record number of the record with which
the pointer is associated Name of
based variable (if a LOCATE

statement)
Whether it is invalid: for example,

because the based variable previously
associated with it has been freed

If the painter is not null and the short
form of pOinter is used:
The byte-address of the painter

TASK
Description of the task:

Active or inactive
Absolute priority

If the task is active:
Entry name specified in the CALL

statement that activated the task
variable

Statement number of this CALL statement

PUT SNAP Statement

The PUT statement with the SNAP option
causes the following data to be put into
the stream:

1. The current statement number.

2. A list of the currently active blocks
and on-units invoked in the process of
activating the block in which the PUT
statement was executed. Routines
compiled by the optimizing compiler,
and FORTRAN and COBOL routines, are
included in the list.

PUT FLOW Statement

The PUT statement with the FLOW option
causes a list of the last n transfers of
control to be put into the-stream. In each
transfer of control, the statements
involved are:

1. The statement that caused the transfer
of control.

2. The statement to which control is
transferred.

The rules for identifying these statements
are the same as for the FLOW statement.
The value of n is any value specified by
the programmer; it may be specified in the
PUT FLOW statement or in the appropriate
compiler option. If there are conflicting
values for n in the PUT statement and the
compiler option, the smaller is used. If
no value is given in either place, then a
default of 25 is assumed.

Under the optimizing compiler, the syntax
of a PUT FLOW statement is checked, then it

Chapter 15: Execution-time Facilities of the Checkout Compiler 235

is ignored. A PUT FLOW statement has nO
effect outside procedures compiled by the
checkout compiler.

PUT ALL statement

The PUT ALL statement provides the maximum
amount of debugging information obtainable
without a dump of main storage. Options
may be specified to select a part only of
the total information available.

The information transmitted by PUT ALL
with no options is as shown in figure 15.4.
The content of each item is as follows.

SNAP information: The information provided
by a PUT SNAP statement. In a
multitasking program, the chain of
invocation is followed back through
all attaching tasks to the main
procedure of the program.

FLOW information: The information provided
by a PUT FLOW statement without a
number-of-statements option.

Condition built-in functions: Values of
the following built-in functions in
data-directed format.

DATAFIELD
ONCBAR
ONCODE
ONCOUNT
ONFILE
ONKEY
ONLOC
ONSOURCE

This information is given for the
current task only, because the values
of the built-in functions are no
different in the contexts of other
tasks.

Entry name:
through
entered
This is
name in

The name of the entry pOint
which the procedure was
on its current invocation.
the same as the corresponding
the SNAP information.

Condition status: For each PL/I on
condition:

Whether it is enabled.

Variables: The value of every problem data
and program control variable and every
file constant declared in that block,
in data-directed format. controlled
variables have every generation
transmitted, starting with the latest.
If a variable is uninitialized or
unallocated a comment is printed.

236 OS PL/I CKT AND OPT LRM PART I

However, if a variable is based and
the based option for the variable is
anything other than an unsubscripted
automatic or static pointer or offset,
for example based(expression) or
based(based-pointer), the data for
this item will not be accessed and a
comment to this effect will appear in
the output. This is because the
compiler tries to avoid errors
occurring during a PUT ALL statement.

The options are specified as a character
string following the ALL option. The full
list of options is as follows.

PUT ALL ('DSFCTn')

where n is a number 1 through 9999. Any or
all of the options may be specified
together.

When one or more of the options is
specified, SNAP and FLOW information is
given for each task for which other
information is transmitted, except that it
is always omitted for the current task.
The other information is transmitted if one
or more of the options 0, S, F, or C is
specified. The information is given for
all tasks and blocks unless limited by one
or both of the options T and n.

The meaning of each option is as
follows.

0: Values of problem and program control
variables, as defined under "Variables"
above, are transmitted. Values of file
constants are not transmitted.

S: The same meaning as 0, except that
array variables are not transmitted.

F: Values of file constants are
transmitted.

C:

T:

Values of the condition built-in
functions and the condition status of
each block are transmitted.

Limits the output to the current task.

n: Limits the output to this number of
blocks.

The options 0 and S conflict. There is
also a conflict if two or more numbers
corresponding to two values of n appear in
the string. In these cases, the option
specified latest in the string overrides
any earlier conflicting option.

Under the optimizing compiler, the syntax
of the POT ALL statement is checked, then
it is ignored.

Program Amending

When processing in conversational mode, the
programmer can suspend program execution
and obtain control at the terminal. He
does this by striking the appropriate key
at the terminal. This raises the ATTENTION
condition, which causes processing to be
interrupted, and in the absence of an
ATTENTION on-unit, control to be passed to
the terminal. If the interrupt takes place
within the scope of an ATTENTION on-unit,
control goes to the terminal upon normal
return from the on-unit.

The programmer can then do one of the
following:

1. He can enter PL/I statements for
immediate execution. When these
statements have been processed, he can
cause program execution to be resumed
at any specified point.

2. He can enter PL/I statements for
execution at a specified point once
program execution has been resumed.
These statements are not executed
immediately they are entered, as in
the preceding situation, but are
stored for later use. Program
execution is resumed; when the
specified point in execution is
reached, then, without further action
by the programmer, program execution
is again suspended and the extra
statements are executed. In order to
achieve this, the extra statements
must be preceded by an appropriate
terminal subcommand. This is an
instruction to the checkout compiler.
In this instance, the subcommand
specifies the point at which program
execution will automatically be
suspended so that the extra statements
entered with it can be executed.

3. He can enter, by itseif, one of a
number of terminal subcommands.

The subcommands provide various aids to
debugging that do not involve entering
extra statements.

Full details of the terminal subcommands

and their usage are given in the CMS and
TSO User's Guides for the checkout
compiler.

The extra PL/I statements are always
executed in immediate mode; this applies
whether they are inserted while the
programmer has control at the terminal or
whether he has used a terminal command to
cause them to be inserted at a specified
pOint once program execution has been
resumed. These statements may refer to
names in three different circumstances:

1. The names may be known in the scope of
the current block.

2. The QUALIFY command may be used to
specify an external procedure in which
the name is known.

3. In the case of an immediate DO-group
or begin block, the name may be known
only within the scope of that bloCk.
An immediate-mode statement cannot
alter an existing declaration.

The restrictions imposed on PL/I
statemeLts used in immediate mode are:

1. The following statements cannot be
used in immediate-mode:

DEFAULT

ENTRY

FORMAT

ON

PROCEDURE

2. FETCH and RELEASE are valid in
immediate mode only when they specify
procedures specified in FETCH and
RELEASE statements contained in the
original source program.

3. An unmatched END statement cannot be
used.

4. statements cannot have condition
prefixes.

5. The ~INCLUDE facility may not be used.

Chapter 15: Execution-time Facilities of the Checkout Compiler 237

Chapter 16: Compile-Time Facilities

Compile time is generally defined as that
time during which a user's source program
is compiled, or translated, into an
executable object program. Ordinarily,
changes to a source program may not be made
at this time.

However, with PL/I, the programmer does
have some control over his source program
during compile time. His source program
can contain special statements (identified
by a leading percent symbol (I) that can
cause parts o£ the source program to be
altered in various ways:

1. Any identifier appearing in the source
program can be changed.

2. If conditional compilation is desired,
the programmer can indicate which
sections of his program are to be
compiled.

3. Strings of text residing in a user
library or a system library can be
incorporated into the source program.

PL/I makes source program alteration at
compile time possible by providing two
stages:

1. The preprocessor stage -- During this
stage, the user's source program is
scanned for preprocessor statements,
special statements that cause the
preprocessor to alter the text being
scanned. These statements are
considered part of the source program,
and appear freely intermixed with the
statements and other text of the
source program. The altered source
program, resulting from the action of
the preprocessor statements, then
serves as input to the second stage.
Note that the preprocessor stage is
optional.

2. The Processor Stage -- During this
stage, the output from the first stage
is compiled into an executable object
program.

This chapter is concerned with the first
stage; the actual compilation of a program
is not discussed.

In addition to the preprocessor
statements, the programmer has at his
disposal listing control statements which
allow him to control the layout of the
printed listing of his program. These do
not employ the preprocessor stage.

Preprocessor Input and Output

The preprocessor interprets preprocessor
statements and acts upon the source program
accordingly. Input to the preprocessor is
a sequence of characters that is the user's
source program. It contains preprocessor
statements freely intermixed with the rest
of the user's source program. Preprocessor
statements are identified by a leading
percent symbol (~) and are executed as
they are encountered by the preprocessor
(with the exception of preprocessor
procedures, which must be invoked in order
to be executed). One or more blanks may
separate the percent symbol from the
statement.

In addition to interpreting the
preprocessor statements, the preprocessor
checks the source program for unmatched
delimiters on comments and character-string
constants. It also checks non-preprocessor
statements for invalid characters, and
replaces them with blanks. This is the
only checking done at this stage on nOn
preprocessor statements.

output from the preprocessor consists of
a string of characters called the
preprocessed text, which consists of the
altered source program and which serves as
input to the processor stage.

The programmer can specify compiler
options that cause the input to, and the
output from, the preprocessor to be
printed. The listing of the input to the
preprocessor, which represents the program
as coded by the programmer, is known as the
insource listing, and the listing of the
input to the compiler - the preprocessed
text if the preprocessor is used - is known
as the source listing.

Similarly, by the use of compiler
options, the output from the preprocessor
may also be punched as a sequenced deck of
cards, or written to a data set defined by
a DO statement with the name SYSPUNCH.

PREPROCESSOR SCAN

The preprocessor starts its scan of the
input text at the beginning of the string
and scans each character sequentially. As
long as a preprocessor statement is not
encountered, the characters are placed into

Chapter 16: Compile-time Facilities 239

the preprocessed text in the same order and
general form in which they were scanned.
However, when a preprocessor statement is
encountered, it is executed. This
execution can cause the scanning of the
source program and the subsequent formation
of preprocessed text to be altered in
either of two ways:

1. The executed statement may cause the
preprocessor to continue the scan from
a different point in the program.
This new point may very well be one
that has already been scanned.

2. The executed statement may initiate
replacement activity. That is, it may
cause an identifier not appearing in a
preprocessor statement to be replaced
when that identifier is subsequently
encountered in the scan. The
replacement value will then be written
into the preprocessed text in place of
the old identifier (see "Rescanning
and Replacement" below for details).

The scan is terminated when an attempt
is made to scan beyond the last character
in the source program. The preprocessed
text is completed and the second stage of
compilation can then begin.

Rescanninq and Replacement

For an identifier to be replaced by a new
value, the identifier must first be
activated for replacement. Initially, an
identifier is activated by its appearance
in a preprocessor DECLARE statement (i.e.,
a , DECLARE statement). (It can be
deactivated by appearing in a , DEACTIVATE
statement and it can be reactivated by
appearing in a , ACTIVATE statement.) After
it has been activated initially, it must be
given a replacement value. This is usually
done via the execution of a preprocessor
assignment statement. Once an identifier
has been activated and been given a value,
any occurrence of that identifier in text
other than preprocessor statements is
replaced by that value, provided that the
identifier is still active when it is
encountered by the scan. Preprocessor
variables can be activated with either the
RESCAN or the NORESCAN options. If the
NORESCAN option applies, the value is
immediately inserted into the program text.
If the RESCAN option applies, a rescan is
made during which the value is tested to
determine whether it, or any part of it,
should be replaced by another value. If it
cannot be replaced, it is inserted into the
preprocessed text: if it can be replaced,
replacement activity continues until no
further replacements can be made. Thus,

240 OS PL/I CKT AND OPT LRM PART I

insertion of a value into preprocessed text
takes place only after all possible
replacements have been made. Note that the
deactivation of an identifier causes it to
lose its replacement capability but not its
value. Hence, the subsequent reactivation
of such an identifier need not be
accompanied by the assignment of a
replacement value.

For example, if the source program
contained the following sequence of
statements:

%DECLARE A CHARACTER, B FIXED:
~A = 'B+C';
'B = 2:
X = A:

then the following would be inserted int.o
the preprocessed text in place of the above
sequence:

X = 2+C:

In this example, the first statement is
a preprocessor DECLARE statement that
activates A and B and also activates them
as preprocessor variables with the default
RESCAN.

The second and third statements are
preprocessor assignment statements: the
second assigns the character string 'B+C'
to A, and the third assigns the constant 2
to B.

The fourth statement is a
nonpreprocessor statement and, therefore,
is not executed at this stage. (For the
purpose of this discussion, a
nonpreprocessor statement is any statement
or sequence of text that appears in the
source program but is not contained in a
preprocessor statement, nor in a
preprocessor procedure, nor in a comment.)
However, because this statement contains A,
and A is a preprocessor variable that has
been activated for replacement, the current
value of A will replace it in that
statement. Thus, the string 'B+C' replaces
A in the statement. But this string
contains the preprocessor variable B. Upon
checking B, the preprocessor finds that it
has been activated and that it has been
aSSigned a value of 2. Hence, the value 2
replaces B in the string. Further checking
shows that 2 cannot be replaced: scanning
resumes with +C which, again, cannot be
replaced. Thus, the chain of replacements
comes to an end and the resulting statement
is inserted into the preprocessed text.

If, in the above example, the
preprocessor variable A has been activated
by this statement:

IACTIVATE A NORESCAN:

the statement inserted into the text would
be:

x = B + C:

since the NORESCAN option for preprocessor
variable A suppresses the res canning of the
result 'B+C' substituted for A.

Note that the preprocessor variable B
has a default precision of (5,0) and,
therefore. actually contains 2 preceded by
four zeros. When this value replaces B in
the string 'B+C' it is converted to a
character string and becomes 2 preceded by
seven blanks (the rules for conversion of
decimal fixed-point values to character
string are followed). See the section
·preprocessor Expressions· later in this
chapter, for details.

Replacement values must not contain
percent symbols, unmatched quotation marks,
or unmatched comment delimiters.

The following example illustrates how
compile-time facilities can be used to
speed up the execution of a DO-loop.

A programmer might include the following
loop in his program:

DO 1=1 TO 10:
Z(I)=X(I)+Y(I):
END;

The following sequence would accomplish the
same thing, but without the requirements of
incrementing and testing during execution
of the compiled program:

IDECLARE I FIXED:
11=1;
ILAB: ;
ZCI)=X(I)+Y(I);
11=1+1;
IIF 1<=10 ITHEN IGO TO LAB;
IDEACTIVATE I;

The first statement activates I and
establishes it as a preprocessor variable.
The second statement assigns the value 1 to
I. This means that subsequent encounters
of the identifier I in non-preprocessor
statements will be replaced by 1 (provided
that I remains activated). The third
statement is a preprocessor null statement
that is used as the transfer target for the
preprocessor GO TO statement appearing
later.

The fourth statement, not being a

preprocessor statement, is only scanned for
replacement activity; it is not executed.
The first time that this statement is
scanned, I has the value 1 and has been
activated. Therefore, each occurrence of I
in this statement is replaced by 1 and the
following is inserted into the preprocessed
text being formed:

Z(l)=X(l)+Y(1)

Note that each 1 is preceded by seven
blanks.

The fifth statement increments the value
of I by 1 and the sixth statement, a
preprocessor IF statement, tests the value
of I. If I is not greater than 10, the
scan is resumed at the statement labeled
LAB: otherwise, the scan continues with the
text immediately following the IGO TO
statement. Hence, for each increment of I,
up to and including 10, the assignment
statement is rescanned and each occurrence
of I is replaced by its current value. As
a result, the following statements are
inserted into the preprocessed text:

Z(l)=X(l)+Y(1):

Z(2)=X(2)+Y(2) :

Z(10)=X(10)+Y(10):

As before, each number from 1 through 9
is preceded by seven blanks: the number 10
is preceded by six blanks.

When the value of I reaches 11, control
falls through to the IDEACTIVATE statement.
This statement is interpreted as follows:
subsequent encounters of the identifie~ I
in source program text are not to be
replaced by the value 11 in the
preprocessed text being formed; each I will
be left unmOdified, either for the
remainder·of the scan or at least until I
is reactivated by a IACTIVATE statement.
If I is again activated, it will still have
the value 11 (unless an intervening
preprocessor assignment statement has
established a new value for I).

Character strings and comments

PL/I character or bit string constants and
comments are not processed by the

I preprocessor, unless they appear in a
I function reference to an active
Ipreprocessor procedure. The existence of
an otherwise valid preprocessor statement
in a character string or comment will be
ignored, as will the existence of a

Chapter 16: Compile-time Facilities 241

preprocessor variable for replacement.

Such strings or comments will be passed
through unchanged from input to output.
However, this can cause mismatches between
input and output lines for strings or
comments extending over several lines, when
the input and output margins are different,
and particularly where V-format input is
used, since the output is always F-format,
with margins in columns 2 and 72.

The output line numbering in these cases
will also show this inevitable mismatch.

Preprocessor Variables

A preprocessor variable is an identifier
that has been specified in a 'DECLARE
statement with either the FIXED or
CHARACTER attribute. No other attributes
can be declared for a preprocessor
variable. Other attributes are supplied by
the compiler, however. A preprocessor
variable declared with the FIXED attribute
is also given the attributes DECIMAL and
precision (5,0): a CHARACTER preprocessor
variable is given the VARYING attribute
with no maximum length. No con1:extual or
implicit declaration of identifiers is
allowed in preprocessor statements.

The scope of a preprocessor variable
encompasses all text except those
preprocessor procedures that have
redeclared that variable. The scope of a
preprocessor variable that has been
declared in a preprocessor procedure is the
entire procedure (there is no nesting of
preprocessor procedures).

When a preprocessor variable has been
given a value, that value replaces all
occurrences of the corresponding identifier
in text other than preprocessor statements
during the time that the variable is
active. If the preprocessor variable is
inactive, replacement activity cannot occur
for the corresponding identifier.

A preprocessor variable is activated by
its appearance in the ~DECLARE statement.
It can be deactivated and subsequently
reactivated by its appearance in
~DEACTIVATE and ~ACTIVATE statements,
respectively. Deactivation of a
preprocessor variable does not strip it of
its value: in other words, an inactive
preprocessor variable retains the value it
had while it was active and can be altered
by a preprocessor statement or procedure if
so desired.

If a preprocessor variable is not
explicitly declared the error will be

242 OS PL/I CRT AND OPT LRM PART I

diagnosed, and it will be given the default
attribute of CHARACTER, but will not be
activated for replacement unless it is
subsequently in an executed 'ACTIVATE
statement. The variable will be usable in
preprocessor statements, however, so that
it is not essential to declare iterative DO
control variables or intermediate result
temporaries, which are not themselves
replacement items.

Preprocessor Expressions

Preprocessor expressions are written and
evaluated in the same way as source program
expressions, with the following exceptions:

1. The operands of a preprocessor
expression can consist only of
preprocessor variables, references to
preprocessor procedures, decimal
integer constants, bit-string
constants, character-string constants,
and references to preprocessor built
in functions. Repetition factors are
not allowed with the string constants
and the arguments to a built-in
function reference must be
preprocessor expressions.

2. The exponentiation symbol (**) cannot
be used as an arithmetic operator.

3. For arithmetic operations, only
decimal integer arithmetic of
precision (5,0) is performed: that is,
each operand is converted to a decimal
fixed-point value of precision (5,0)
before the operation is performed, and
the decimal fixed-point result is
converted to precision (5,0) also.
Any character string being converted
to an arithmetic value must be in tbe
form of an optionally signed decimal
integer constant. Note that the
properties of the division operator
are affected. For example, the
expression 3/5 evaluates to 0; rather
than to 0.6.

4. The conversion of a fixed-point
decimal number to a character string
always results in a string of length
8. (Leading zeros in the number are
replaced by blanks and an additional
three blanks are appended to the left
end of the number, one of which is
replaced by a minus sign if the number
is negative.)

A character string in an expression
being assigned to a preprocessor variable
may include preprocessor variables,
references to preprocessor procedures,
constants, and operators: preprocessor

statements cannot be included in such
strings.

Preprocessor Procedures

A preprocessor procedure is an internal
function procedure that can be executed
only at the preprocessor stage. Its syntax
differs from other function procedures in
that its PROCEDURE and END statements must
each have a leading percent symbol. The
format of a preprocessor procedure is as
follows:

~label: [label:]... PROCEDURE
[(identifier
[,identifier] •••)]
[STATEMENT]
RETURNS({CHARACTERIFIXED});

[label:l ••• RETURN
(preprocessor-expression);

" [label:] END [label]:

More than one RETURN statement may
appear. The general rules governing the
statements that can appear within a
preprocessor procedure are given in the
description of the ~PROCEDURE statement in
section J, ·Statements·. One thing should
be noted, however: no statement appearing

Iwithin a preprocessor procedure (except for
Ilisting control statements) can have a
leading percent symbol.

INVOCATION OF PREPROCESSOR PROCEDURES

IA preprocessor procedure is invoked by the
lappearance of its entry name, together with
Ian optional list of arguments. If the
lassociated "PROCEDURE statement does not
Ihave the STATEMENT option, the argument
Ilist must be a parenthesized list of
lpositional arguments following the entry
I name. If the STATEMENT option is present,
land the reference to the procedure occurs
lin non-preprocessor text, the arguments may
lbe specified either in the positional
largument list or by keyword reference. If
Ithe reference occurs in preprocessor text,
Ithe positional argument list must be used.
I
I For example, a preprocessor procedure
Iheaded by:
I
I "TEST:PROCEDURE(A,B,C) •••• :

Imust be invoked by a reference of the form:
I
I TEST(X,Y,Z)
I
I A preprocessor procedure headed by:
I
I IFIND:PROCEDURE(A,B,C) STATEMENT •••• :
I
Imust be invoked from preprocessor text by a
reference of the form:

FIND(X,Y,Z)

If the reference is in non-preprocessor
text, the procedure can be invoked, with
the same result, by any of the following
references:

FIND(X,Y,Z):

FIND BCY) C(Z) A(X);

FIND(X) C(Z) BCY);

FIND(,Y,Z) A(X);

etc.

Note that, if the STATEMENT option applies,
and the reference is in non-preprocessor

Itext, the end of the reference must be
lindicated by a semicolon.

A condition must be met if the reference
to the preprocessor procedure is made in a
nonpreprocessor statement: the entry name
used in the reference must be active at the
time the reference is encountered. Entry
names of preprocessor functions are the
same as preprocessor variables as far as
activation and deactivation is concerned:
i.e., they can be activated initially by a
"DECLARE statement or by a "ACTIVATE
statement.

Provided its entry name is active, a
preprocessor procedure need not be scanned
before it is invoked. It must, however, be

Ipresent either in the main text, or in text
included (by a ~INCLUDE statement) before
the pOint of invocation. Preprocessor
procedure entry names need not be specified
in "DECLARE statements.

The value returned by a preprocessor
function (i.e., the value of the
preprocessor expression in the RETURN
statement) always replaces the function
reference and its associated argument list.

IIf the associated "PROCEDURE statement has
Ithe STATEMENT option, and the reference is
lin non-preprocessor text, the semicolon
Ithat delimits the reference is not retained
Iwhen the replacement takes place. Note
that for a reference made in a preprocessor
statement, the replacement is only for that
particular execution of the statement: a
subsequent scanning of the statement would

Chapter 16: Compile-time Facilities 243

again result in the invocation of the
function.

ARGUMENTS AND PARAMETERS FOR
PREPROCESSOR FUNCTIONS

The number of arguments in the procedure
reference and the number of parameters in
the IPROCEDURE statement need not be the
same. The arguments are interpreted
according to the type of statement
(preprocessor or nonpreprocessor) in which
the function reference appears. The
arguments in the argument list are
evaluated before any match is made with the

Iparameter list. If there are more
positional arguments than parameters, the
excess arguments on the right are ignored.

I (Note that for an argument that is itself a
Ifunction reference, the function is invoked
and executed, even if the argument is

lignored later.) Parameters that are not
Iset by the function reference are given
values of zero, for FIXED parameters, or
the null string, for CHARACTER parameters.

I Parameters should not be set more than
lonce by a function reference. However, if
Ithe value of a parameter is specifed more
Ithan once, for example both positionally
land by keyword, the first setting is used
Ifor the invocation.

The usual rules concerning the creation
of dummy arguments apply if the function
reference is in a preprocessor statement,
but dummy arguments are always created if
the function reference occurs in a
nonpreprocessor statement.

If the function reference appears in a
nonpreprocessor statement, the arguments
are interpreted as character strings and
are delimited by the appearance of a comma
or a right parenthesis occurring outside of
balanced parentheses, a character-string

lenclosed in single quotes, or a comment.
IFor example, the positional argument list

(ACB,C),D) has two arguments, namely, the
string A(B,C) and the string D. If an
argument is not enclosed in quotes and is
continued on another line, blanks at the
end of the line are replaced by one blank.

Each argument is then scanned for
lpossible replacement activity. (If keyword
linvocation is used, the keywords themselves
I are' not eligible for replacement activity.)
Both the procedure name and its argument
list must be found at one replacement
level. Thus, only the commas and
parentheses seen in the text being scanned
when the procedure name is encountered are
considered in this context. After all
replacements have been made, each resulting

244 OS PL/I CKT AND OPT LRM PART I

argument is converted to the type indicated
by the corresponding parameter attribute in
the preprocessor procedure statement for
the function entry name.

If the function reference appears in a
preprocessor statement, the arguments are
associated with the parameters in the
normal fashion. If there is a
disagreement, the arguments are converted
to the attributes of the corresponding
parameters. Only preprocessor variables,
character- string constants, and fixed
pOint decimal constants can be passed to a
preprocessor function invoked by a
preprocessor statement.

Returned Value

The value returned by a preprocessor
function to the pOint of invocation is
represented by the preprocessOr expr~ssion
in the RETURN statement of that function.
Before being returned, this value is
converted (if necessary) to the attribute
(CHARACTER or FIXED) specified in the
RETURNS option of the function's IPROCEDURE
statement. If the point of invocation is
in a nonpreprocessor statement, and the
entry name has not been activated with the
NORESCAN option, the value is scanned for
replacement activity after it has replaced
the function reference.

Note that the rules for preprocessor
expressions do not permit the value
returned by a preprocessor procedure to
contain preprocessor statements.

Example of Preprocessor Functions

In the statements below, VALUE is a
preprocessor function procedure that
returns a character string of the form
'argl(arg2)', where arql and arq2 represent
the arguments that have been passed to the
function. Assume that the source program
contains the following sequence:

IDECLARE A CHARACTER;
IDECLARE VALUE ENTRY;
DECLARE (Z(10), Q) FIXED;
IA='Z';
IVALUE: PROC(ARG1,ARG2) RETURNS (CHAR) ;

DCL ARGl CHAR, ARG2 FIXED;
RETURN (ARGlI I' C' IIARG211')');
lEND VALUE;

Q = 6+VALUE(A,3);

When the scan encounters the last
statement, A is active and is thus eligible
for replacement. Since VALUE is also

active, the reference to it in the last
statement causes the preprocessor to invoke
the preprocessor function procedure of that
name. However, before the arguments A and
3 are passed to VALUE, A is replaced by its
value Z (assigned to A in a previous
assignment statement), and 3 is converted
to fixed-point to conform to the attribute
of its corresponding parameter. VALUE then
performs a concatenation of these arguments
and the parentheses and returns the
concatenated value, that is, the string Z
(3), to the point of invocation. The
returned value replaces the function
reference and the result is inserted into
the preprocessed text. Thus, the
preprocessed text generated by the above
sequence is as follows:

DECLARE (Z(10),Q) FIXED;
Q = 6+Z(3);

The preprocessor function procedure GEN
defined in the following example can
generate a GENERIC declaration for up to 99
entry names with up to 99 parameter
descriptors in the parameter descriptor
lists. Only four are generated in this
example, however.

Assume that the source program contains
the following sequence:

IDCL GEN ENTRY;
DCL A GEN (A,2,S,FIXED), ••• ;

IGEN: PROC (NAME, LOW, HIGH,ATTR) RETURNS
(CHAR);

DCL (NAME, SUFFIX, ATTR, STRING)
CHAR, (LOW, HIGH, I, J) FIXED;

STRING='GENERIC(':
DO I=LOW TO HIGH;/*ENTRY NAME LOOP*/

IF 1>9 THEN SUFFIX=SUBSTR(I, 7, 2);
/* 2 DIGIT SUFFIX*/

ELSE SUFFIX=SUBSTR(I, 8, 1):
/*1 DIGIT SUFFIX*/

STRING=STRINGIINAMEIISUFFIXI I 'WHEN (';
DO J=l TO I; /*DESCRIPTOR LIST*/

STRING=STRINGIIATTR;

END:

IF J<I /*ATTRIBUTE SEPARATOR*/
THEN STRING=STRINGII',';
ELSE STRING=STRINGI 1')';
/* LIST SEPARATOR */

IF I<HIGH /*ENTRY NAME SEPARATOR*/
THEN STRING=STRINGII',';

ELSE STRING=STRINGI I')':
/* END OF LIST */

END;
RETURN (STRING):

~ END:

The following text is produced by this
preprocessor procedure:

DCL A GENERIC(A2 WHEN (FIXED,FIXED),
A3 WHEN (FIXED, FIXED,

FIXED),
A4 WHEN (FIXED, FIXED,

FIXED, FIXED),
AS WHEN (FIXED, FIXED,

FIXED, FIXED, FIXED»:

I The final example shows a preprocessor
Iprocedure which implements a statement of
Ithe form:
I
I
I
I

SEARCH TABLE(array) FOR (value)
USING(variable) AND(variable);

I This statement searches a specified two-
Idimensional array for a specified value,
lusing specified or default variables for
Ithe array subscripts. After execution of
the statement, the array subscript
variables identify the element that
contains the specified value. If nO
element contains the specified value, both
subscript variables are set to -22222.

The preprocessor procedure that
implements this statement is as follows:

ISEARCH:
PROC(TABLE,FOR,USING,AND) STATEMEru

RETURNS(CHARACTER):

DECLARE(TABLE,FOR,USING,AND,LABL,
D01,D02) CHARACTER,

(PARMSET,COUNTER) BUILTIN:

IF PARMSET(TABLE) 'PARMSET(FOR) THEN:
ELSE SERR:DO:

NOTE('MISSING OR INVALID ARGUMENT(S), II
'FOR "SEARCH"',4):

RETURN('/*INVALID SEARCH STATEMENT*/'):
END:

IF ~PARMSET(USING) THEN USING='I':
IF ~PARMSET(AND) THEN AND='J':
IF USING = AND THEN GO TO SERR;

LABL='SL'IICOUNTER;
D01=LABLII ':00 'I I USING I I'=LBOUND('I I

TABLE I I ' ,1) TO HBOUND (' I I TABLE I I ' , 1) : ' ;
D02='DO 'IIUSINGII '=LBOUND('II
TABLEII',2) TO HBOUND('IITABLEII',2):':

RETURN (001 I ID021 I'SELECT(' I I TABLE I I' (I II
USING I I ' , , II AND I I I »: WHEN (, I I FOR I I
') LEAVE '1Ih~BLII'; OTHER; END 'I I
LABLII'; IF 'IIANDII' > HBOUND('II
TABLE I 11 ,2) THEN 'IIUSINGII',' IIANDII
, = -22222:'):

lEND SEARCH:

Chapter 16: Compile-time Facilities 245

In this example, the PARMSET built-in
function is used to investigate which
parameters have been set when the procedure
is invoked. If USING is not set, the .
default array subscript variable I is used:
if AND is not set, J is used. If TABLE or
FOR is not set, or if the invocation would
result in the same variable being used for
both subscripts, a preprocessor diagnostic
message is issued (by means of the
preprocessor NOTE statement) and a warning
comment is returned for inclusion in the
source text.

The COUNTER built-in fUnction is used to
generate unique labels for the text
returned by the procedure.

The procedure may be invoked with
keyword arguments or positional arguments,
or a combination of the two. The following
invocations of the procedure produce
identical results:

SEARCH TABLE(LIST.NAME) FOR('J.DOE')
USING(I) AND(J):

SEARCH TABLE(LIST.NAME) FOR('J.DOE'):

SEARCH (LIST. NAME) FOR('J.DOE'):

SEARCH(LIST.NAME,'J.DOE'):

SEARCH(,'J.DOE') TABLE(LIST.NAME):

The text returned by any of these
invocations is as follows:

SL00001:
DO I=LBOUND (LIST. NAME, 1) TO

HBOUND(LIST.NAME,l):
DO J=LBOUND(LIST.NAME,2) TO

HBOUND(LIST.NAME,2);
SELECT(LIST.NAME(I,J»;

WHEN('J.DOE') LEAVE SL00001:
OTHER:

END SL00001;
IF J > HBOUND (LIST. NAME, 2.) THEN
I,J = -22222:

Here, the returned text has been
formatted in order to show its structure
more clearly. Also, the label SL00001 is

Ireturned only for the first invocation. A
Inew unique label is returned for each
Isubsequent invocation.

IPreprocessor Built-in Functions

IThe built-in functions that can be executed
lat the preprocessor stage are:

246 OS PL/I CKT AND OPT LRM PART I

SUBSTR
INDEX
LENGTH
COMPILETIME
COUNTER
PARMSET

IThe SUBSTR, INDEX, and LENGTH built-in
Ifunctions have the same functions as the
Inon-preprocessor built-in functions of the
Isame names. Upon invocation, the first
largument of SUBSTR, INDEX, or LENGTH is
I converted, if necessary, to character; the
Isecond and third arguments of SUBSTR are
I converted, if necessary, to decimal; and
Ithe second argument of INDEX is converted,
lif necessary, to character. The returned
Ivalue is CHARACTER for SUBSTR, and FIXED
Ifor INDEX or LENGTH.

The COMPILETIME built-in function
Ireturns a character string containing the
Itime and date of its invocation. It may
Ithus be used to generate information about
Ithe time and date of compilation of the
Iprogram in which it appears.

I The COUNTER built-in function returns a
Icharacter string of length five containing
la unique decimal number. The value
Ireturned by the first invocation is 00001.
IThe value is incremented by one for each
Isubsequent invocation, up to a maximum of
199999. COUNTER may be used to generate
lunique identifiers, or for general counting
I purposes.

I The PARMSET built-in function may only
Ibe used within a preprocessor procedure.
lIt is used to determine whether a specified
Iparameter has been set on invocation of the
I procedure. PARMSET returns a bit value of
lone or zero. The returned value is
Iconverted if necessary to a FIXED value of
lone or zero, or to a character string of
Ilength one containing '1' or '0'.

I A reference to a preprocessor built-in
function in a nonpreprocessor statement is
executed by the preprocessor only if these

Inames are active. The built-in functions
can be activated only by a ~DECLARE or

I'ACTIVATE statement. If a preprocessor
Ibuilt-in function name is used as the name
10f a user-defined preprocessor procedure,
lit is assumed that references to the name
lare references to the procedure, not to the
built-in function. In such cases the

lidentifiers may be re-declared with the
BUILTIN attribute when the built-in
functions are to be used within a
preprocessor procedure.

Preprocessor Do-Group

The preprocessor do-group can provide
iterative execution of the preprocessor
statements contained within the group. The
format of the preprocessor do-group is as
follows:

I [label: 1 • •• DO [i=ml [TO m2 [BY m3]1];
BY m3 [TO m2]J

i[label:] ••• END[labell;

In the above format, i must be a
preprocessor'variable and m1, m2, and m3
must be preprocessor expressions. The
label that can follow the keyword END must
be one of the labels preceding the keyword
DO. Preprocessor do-groups may be nested
and multiple closure is allowed.

Control cannot be transferred into a
preprocessor do-group specifying iteration,
except by way of a return from a
preprocessor procedure invoked from within
the group.

Both preprocessor statements and text
other than preprocessor statements can
appear within a preprocessor do-group.
However, only the preproc~ssor statements
are executed; nonpreprocessor statements
are scanned but only for possible
replacement activity.

Noniterative preprocessor do-groups are
useful as THEN or ELSE clauses of iIF
statements.

The expansion of a preprocessor do-group
is similar to that shown under the
nonpreprocessor DO statement section J,
"Statements".

The example below results in the same
expansion generated for the example of
preprocessor loop expansion in the section
"Rescanning and Replacement" in this
chapter:

$DECLARE I FIXED;
%DO 1=1 TO 10;
Z(I)=X(I)+Y(I);
'END;
'DEACTIVATE I;

The second example under "Returned
Value" shows how preprocessor do-groups can
be used within a preprocessor procedure
(percent symbols must be omitted, of
course) •

Inclusion of External Text

Strings of external text can be
incorporated into the source program by use
of the %INCLUDE statement. Such text, once
incorporated, is called included text and
may consist of both preprocessor and
nonpreprocessor statements. Hence,
included text can contribute to the
preprocessed text being formed.

Note: If text inclusion is the only pre
processor facility required, that is, if
the source program and the included text
contain no preprocessor statements other
than 'INCLUDE, the preprocessor stage may
be omitted. (For the optimizing compiler,
this necessitates the use of the INCLUDE
compiler option. See the programmer's
guide for the optimizing compiler.)

It the included text contains any
preprocessor declarations, the scope of the
names ~eclared as preprocessor variables is
all the included text and any text which
follows the included text, except
preprocessor procedures in which the name
is redeclared.

The general format and the rules
governing the use of the iINCLUDE statemen~
are presented in section J, "Statements".

The text specified by a iINCLUDE
statement is incorporated into the source
program immediately after the point at
which the statement is executed. The scan
therefore continues with the first
character in the included text. All
preprocessor statements in this text are
executed and replacements are made where
required.

Preprocessor procedures whose
declarations appear in external text can be
invoked only after that external text
becomes included text. The result of a
preprocessor procedure reference
encountered before that procedure has been
incorporated into the source program is
undefined.

Assume that PAYRL is a member of the
data set SYSLIB and contains the following
structure declaration:

DECLARE 1 PAYROLL,
2 NAME,

3 LAST CHARACTER (30) VARYING,
3 FIRST CHARACTER (15) VARYING,
3 MIDDLE CHARACTER (3) VARYING,

2 MAN NO,
3 REGLR FIXED DECIMAL (8,2),
3 OVERTIM FIXED DECIMAL (8,2),

2 RATE,
3 REGLAR FIXED DECIMAL (8,2),
3 OVERTIME FIXED DECIMAL (8,2);

Chapter 16: Compile-time Facilities 247

Then the following sequence of
preprocessor statements:

IDECLARE PAYROLL CHARACTER:
IPAYROLL='CUM PAY':
'INCLUDE PAYRL:
IDEACTIVATE PAYROLL:
"INCLUDE PAYRL:

will generate two identical structure
declarations into the preprocessed text,
the only difference being their names,
CUM PAY and PAYROLL. Execution of the
first IINCLUDE statement causes the text in
PAYRL to be incorporated into the source
program. When the scan encounters the
identifier PAYROLL in this included text,
it replaces it by the current value of the
active preprocessor variable PAYROLL,
namely, CUM_PAY. Further scanning of the
included text results in no additional
replacements. The scan then encounters the
"DEACTIVATE statement. Execution of this
statement deactivates the preprocessor
variable PAYROLL and makes the identifier
ineligible for replacement. When the
second IINCLUDE statement is executed, the
text in PAYRL once again is incorporated
into the source program. This time,
however, scanning of the included text
results in no replacements whatsoever,
because none of the identifiers in the
included text are active. Thus, two
structure declarations, differing in name
only, are inserted into preprocessed text.

Preprocessor Statements

This section lists tho$e statements that
can be used at the preprocessor stage and
briefly discusses those preprocessor
statements that have not yet been explained
in this chapter. All of the preprocessor
statements, their formats, and the rules
governing their use are described in the
sub-section ·Preprocessor statements· in
section J, "statements".

But first, some unrelated comments
pertaining to preprocessor statements in
general should be made:

1. Some keywords appearing in
preprocessor statements can be
abbreviated as shown in section C,
"Keywords and Abbreviations".

2. Comments can appear within
preprocessor statements wherever
blanks can appear; however, such
comments are never inserted into
preprocessed text.

3. All preprocessor statements can be
labeled. Such labels mu~t appear

248 OS PL/I CKT AND OPT LRM PART I

immediately follOWing the " (only
blanks can intervene). All labels
must be unsubscripted statement label
constants. (Labels on %DECLARE
statements are ignored.)

The functions performed ~ the following
preprocessor statements have already been
discussed in this chapter:

"ACTIVATE
"DEACTIVATE
"DECLARE
"DO
lEND
"INCLUDE
"PROCEDURE
RETURN

Note that the preprocessor RETURN
statement cannot have a leading " because
it can be used only within a preprocessor
procedure.

I Five other statements can be eXEcuted at
the preprocessor stage:

"assignment
"GO TO
"IF
"null
"NOTE

The preprocessor aSSignment statement is
used to evaluate preprocessor expressions
and to assign the result to a preprocessor
variable. All of the examples shown in
this section make use of this statement.

The " GO TO statement causes the
preprocessor to interrupt its sequential
scanning and continue it elsewhere in the
source program, specifically at the label
specified in the " GO TO. Thus, it can be
useful for rescanning or avoiding text.

The " IF statement can be used to
control the sequence of the scan according
to the value of a preprocessor expression.
It must have a THEN clause and it can have
an ELSE clause. Each Clause, as well as
each preprocessor statement within the
clause, must be preceded by a J. Nesting
of "IF statements is allowed and must
follow the same rules that apply for the
nesting of nonpreprocessor IF statements.

The preprocessor null statement is the
same as a nonpreprocessor null statement
(except for the percent symbol). It can be
used to provide transfer targets for IGO TO
statements or it can be used in nested "IF
statements to balance the "ELSE clauses.
For example, IELSEI: is a null ELSE clause.

I The "NOTE statement enables the
,programmer to generate a preprocessor
Idiagnostic message of specified text and

'severity level. programmer-generated
Imessages are treated exactly like
Ipreprocessor-generated messages of the same
Iseverity level.

I Listing Control Statements
I
I
IThe listing control statements enable the
Iprogrammer to control the layout of his
Iprinted listings and to specify which parts
of the listings are to be printed. The
statements are:

'PRINT;
INOPRINT;
ISKIP [(n)] :
IPAGE:
ICONTROL({FORMATINOFORMAT}):

The IPRINT and %NOPRINT statements act
as on/off controls to govern the printing
of the listings. The ISKIP and IPAGE
statements control the spacing of the
listings in a manner similar to the SKIP

land PAGE options or format-items in PUT
Istatements for a PRINT file. The ICONTROL
Istatement applies only to the formatted
Ilisting produced by the checkout compiler
Iwhen the FORMAT compiler option is
I specified, and enables the formatting

lactivity to be stopped and started at will.

I
I Although these statements have an
linitial percent symbol, they are not
I·preprocessor statements", and they do not
Inecessitate the use of the preprocessor.
IIf the preprocessor is used, however, a
IINOPRINT, IPRINT, ISKIP, or %PAGE statement
Iwhich appears in the input on a line by
litself is applied to both the insource
Ilisting (the input to the preprocessor) and
Ithe source listing (the preprocessed text).
IIf the statement is not on a Single line by
I itself, it is moved by the preprocessor to
la single line, and applied only to the
Isource listing.
I
I Because the listing control statements
lare not preprocessor statements, their
linitial percent symbols must not be omitted
lif they appear within a preprocessor
I procedure. (The ICONTROL statement is not
lallowed within a preprocessor procedure.)
I
I The ~PRINT and 'NOPRINT statements apply
lonly if the relevant compiler option
I (SOURCE Or INSOURCE) has been specified.
IThe ~PRINT statement will not override, for
I example, the NOSOURCE compiler option.
I
I More detailed information on the listing
Icontrol statements is given in Section J.

Chapter 16: Compile-time Facilities 249

The use of a computing system to execute a
number of operations concurrently is
broadly termed multiprogramming. The PL/I
programmer can make use of the
multiprogramming capability of the system
by means of the multitaskinq facilities
described in this chapter.

A PL/I program is a set of one or more
procedures, each of which consists of one
or more blocks of PL/I statements. The
execution of these procedures constitutes
one or more tasks, each of which can be
identified by a different task name. A
task is dynamic; it exists only while the
procedure is being executed. This
distinction between the procedure and its
execution is essential to the discussion of
multitasking. A procedure could be
executed several times in different tasks.

When the multitasking facilities are not
used, the execution of a program comprising
one or more procedures constitutes a Single
task, with a single flow of control; when a
procedure invokes another procedure,
control is passed to the invoked procedure,
and execution of the invoking procedure is
suspended until the invoked procedure
passes control back to it. This serial
type of operation is said to be
synchronous: when the progranuner is
concerned only with synchronous operations,
the distinction between program and task is
relatively unimportant.

With multitasking, the invoking
procedure does not relinquish control to
the invoked procedure. Instead, an
additional flow of control is established,
so that both procedures can be executed (in
effect) concurrently. This process is
known as attaching a task. The attached
task is a subtask of the attach~g task.
Any task can attach a number of subtasks.
The task that has control at the outset is
called the major task. This parallel type
of operation is said to be asynchronous.

The diagram shown in figure 11.1
illustrates the difference between
synchronous and asynchronous operations.
The arrowed lines represent the control
flows. Procedures A and B are executed
synchronously: C and D are executed
asynchronously.

When several procedures are executed as
asychronous tasks, individual statements
are not necessarily executed simultaneously
by different tasks: whether this occurs
depends on the state and resources of the

Chapter 17: Multitasking

system. Hence, at any given time, it. may
be necessary for the system to select its
next action from a number of different
tasks. Each task has a eriority value
associated with it, which governs this
selection process. The programmer can
control the priority of the task, within
limits, if he wishes to do so; otherwise,
the priority value is set automatically.

A:PROC;-------I .. ~ CALL B; ~-------4"~ END A;

B:PROC; ------~ ... END;

C:PROC;------I ... CALL D TASK; ------I.... END C;

D: PROC; ------.1.... END;

Figure 11.1. Synchronous and
asynchronous operation

A task can have control of either the
CPU or the systems's I/O resources. I/O
may be performed in one task while CPU
operations are being carried out in
another, and there may, at the same time,
be other tasks waiting for one or other of
the resources. Operation of the CPU can be
interrupted if a task of higher priority
than the current one requires CPU
facilities. Interruption can occur, for
instance, if a higher-priority task
completes an I/O operation or if the
current task attaches a subtask of higher
priority. An I/O operation is never
interrupted: I/O resources can only be re
allocated after completion of an I/O
operation. When an I/O operation is
completed, the system searches amongst all
the active tasks that require the 110

Chapter 17: Multitasking 251

resources to find the one with the highest
priority.

The checkout and optimizing compilers
implement the multitasking features of PL/I
in different ways. The optimizing compiler
utilizes the operating system tasking
facilities, whereas the checkout compiler
maintains full control of all processing,
whether synchronous or asynchronous. The
results produced by a multitasking program
will, however, be the same under both
compilers. (This is only true if execution
of the multitasking program is independent
of time. If the code in one procedure is
dependent on the values of variables in
another procedure that is executing
asynchronously, the use of variables in
separate tasks must be synchronized.)

It may be that one task is to run
independently of other concurrent tasks for
some time, but then become dependent on
some other task (for example, one task may
require the result of another task before
it can be completed). To allow for this,
provision has been made for one task to
await the completion of an operation at any
stage of another task before carrying on.
This process is known as task
synchronization. Information about the
state of an operation can be held by an
event variable, to which an event name
refers. By specifying an event name in a
WAIT statement, the programmer can cause
the task to wait for completion of the
associated operation before proceeding.

The programmer can apply the EVENT
option to tasks and certain input/output
operations, in which case the value of the
event variable is set automatically as a
result of the operation concerned: or he
can set the value explicitly.

The EVENT option allows an input/output
operation to proceed asynchronously with
the task that initiated it; at any time
subsequent to the initiation of the
input/output operation, the task can await
its completion. For example, a task can
display a message to the operator and,
instead of waiting for a reply, can
immediately proceed, pausing later to deal
with the reply.

In general, the rules associated with
the synchronous invocation of procedures
apply equally to the asynchronous
attachment of tasks. For example, on-units
established prior to attachment of a
subtask are inherited by the subtask, just
as if the initial block of the subtask had
been synchronously invoked. However,
asynchronous operation introduces some
extra considerations, such as the fact that
a number of concurrent tasks can
independently refer to one variable. This

252 OS PL/I CKT AND OPT LRM PART I

necessitates some extra rules, which are
described in this chapter.

Multitasking also requires some extra
rules and provisions for input/output. For
example, without special provision, there
would be nothing to prevent one task from
operating on a record in a DIRECT UPDATE
file while another task was operating on
the same record; to cope with this, the
EXCLUSIVE attribute is provided. The
protection of records on EXCLUSIVE files is
described in chapter 12, -Record-Oriented
Transmission".

Tasks can be terminated in a number of
different ways. Normal termination occurs
when control for the task reaches a RETURN
or END statement for the procedure attached
as a task. The EXIT statement specifies
abnormal termination of the task and its
subtasks, while the STOP statement
specifies abnormal termination of the major
task (even if STOP is executed in a
subtask) •

Multitasking may allow the central
processing unit and input/output channels
to be used more effiCiently, by reducing
the amount of waiting time. It does not
necessarily follow that an asynchronous
program will be more efficient than an
equivalent synchronous program (although
the latter may be easier to write). It
depends on the amount of overlap possible
between operations with varying amounts of
input/output: if the overlap is slight,
multitasking .will be the less efficient
method, because of the increased system
overheads.

Tasking and Reentrability

If multitaSking is required, there is no
need to specify the TASK keyword in the
OPTIONS option of the PROCEDURE statement
for the main procedure. Under the
optimizing compiler, the multitasking
modules of the PL/I library are made
available by means of the SYSLIB DD job
control statement; and under the checkout
compiler, the multitasking facilities are
always available. It is not an error to
specify TASK in the PROCEDURE statement: if
present, the keyword is ignored. This
allows programs written for the PLlI(F)
compiler to be compiled without error
messages being generated.

Under the optimizing compiler, it is,
however, necessary to specify the REENTRANT
option if the procedure could possibly be
attached as more than one task, to be
executed concurrently. The code generated
"by the compiler might otherwise not be

reentrant.

When REENTRANT is specified, the
compiler will generate code that is
reentrable as far as machine instructions
and compiler-created storage is concerned.
However the programmer must ensure that the
logic of his PL/I source code is such that
the program remains reentrable. In
particular, he must not overwrite static
storage.

Creation of Tasks

The programmer specifies the creation of an
individual task by using one or more of the
multitasking options with a CALL statement.
Once a procedure has been activated by
execution of such a CALL statement, all
blocks synchronously activated as a result
of its execution become part of the created
task, and all tasks attached as a result of
its execution become subtasks of the
created task. The created task itself is a
subtask of the task executing the CALL
statement. All programmer-created tasks
are subtasks of the major task.

~: A task can be attached by a
procedure entered as a result of a function
reference in a PUT statement for the
standard file SYSPRINT.

CALL STATEMENT

The CALL statement for asynchronous
operation has the same form as that for
synchronous operation, except for the
addition of one (or any combination) of the
multitasking options, TASK, EVENT, or
PRIORITY. These options, in addition to
their individual meanings (listed below),
all specify that the invoked procedure is
to be executed concurrently with the
invoking procedure.

The CALL statement for asynchronous
operation can specify arguments to be
passed to the invoked procedure, just as it
could if the operation were to be
synchronous.

TASK Option

TASK option has the following format:

TASK [(element-task-name)l

The task name can be subscripted and/or

qualified. Without the task name, the
option merely specifies asynchronous
operation. If the task is to have a name,
the option must appear complete with the
task name, which is thus contextuallY
declared to have the TASK attribute, unless
an explicit declaration exists. This is
the only way in which a task can acquire a
name. (Explicit declaration of a task
variable does not associate the task name
with any task.) The name can be used to
control the priority of the task at some
other pOint, by means of the PRIORITY
pseudovariable and built-in function. The
task name has no other use to the PL/I
programmer.

EVENT Option

The EVENT option has the following format:

EVENT (element-event-name)

The event name can be subscripted and/or
qualified. When this option is used, the
event name is contextually declared to have
the EVENT attribute (unless an explicit
declaration exists) and is associated with
the completion of the task created by the
CALL statement. Another task can then be
made to wait for completion of this task by
specifying the event name in a WAIT
statement of the other task.

An event variable has two separate
values: a completion value that indicates
whether or not the event is complete, and a
status value that indicates whether the
event has been abnormally completed. The
completion value is a Single bit, and the
status value is a fixed binary number of
preciSion (15,0). When the CALL statement
is executed, the completion value of the
event variable is set to loeB (for
wincompleteW) and the status value to zero
(for Wnot abnormally completedW). On
termination of the created task, the
completion value is set to 'l'B, and, in
the case of abnormal termination, the
status value is set to 1 (if it is still
zero).

The EVENT option can also be specified
on the READ, WRITE, REWRITE, and DELETE
statements, and on the DISPLAY statement
with the REPLY option (see chapter 8,
wlnput and outputW). In these cases, it
allows other processing to continue while
the input/output operation is being
executed.

Chapter 11: Multitasking 253

PRIORITY Option

When a number of tasks simultaneously
require attention, a choice has to be made
Under the optimizing compiler, this choice
is made by the operating system, based on
the relative importance of the various
tasks: a task that has a higher priority
value than the others will receive
attention first. Note that tasks, other
than those executing the user's program and
those in a wait state, may require
attention from the system, and may have a
higher priority than any of the user's
tasks. Under the checkout compiler, the
choice is made by the compiler, but when
processing in one task is interrupted, the
compiler always gives control to the task
within the same program that has the
highest priority.

The PRIORITY option has the following
format:

PRIORITY (expression)

If this option appears in the CALL
statement, the expression is evaluated to a
binary integer m, of precision (n,O), where
n is implementation-defined (15 for this
implementation). The priority of the
created task is then made m relative-to the
task executing thE CALL statement. The
lowest absolute priority possible is 0; the
highest absolute priority possible is 234.
(See "Priority of Tasks," in this chapter)

If the option does not appear, the
priority of the attached task is equated to
that of the task variable named in the TASK
option, if any, or else equated to thE
priority of the attaching task. If the
programmer employs a task variable, hs must
specify a priority for the task (by means
of either thE PRIORITY pseudovariable or
the PRIORITY option of the CALL statement),
otherwise the priority will be undefined.

Examples

1. CALL PROCA TASK(T1);

2. CALL PROCA TASK(T2) EVENT(ET2)i

3. CALL PROCA TASK(T3) EVENT (ET3)
PRIORITY(-2);

4. CALL PROCA PRIORITY(1);

The CALL statements in the above
examples create four different tasks that
execute one procedure, PROCA. In example
3, the subtask T3 has a lower priority than
the attaching task, while in example 4, the
unnamed subtask has a higher priority than
the attaching task. (It is assumed that
the priorities of the attached tasks would

254 OS PL/I CKT AND OPT LRM PART I

lie within the range 0 to the highest on
the current job step).

PRIORITY OF TASKS

A priority specified in a PL/I source
program is a relative value; the actual
value depends on factors outside the source
program.

Under OS, the priority associated with
each job step is provided by the
programmer, using the PRTY parameter in the
JOB statement. This priority can have any
number from 0 through 14: the higher the
number, the higher the priority.

The priority of the major task of the
PL/I program when the program is first
entered is:

MIN«16*(jobstep prty)+14),disptch prty)

where "disptch prty" is the dispatching
priority used in the job control language
parameter DPRTY. The default dispatching
priority is the job step priority. The
maximum priority for the program is:

(16*Cjobstep prty)+14)

(This is a minor incompatibility with
previous releases of the optimizing and
PL/I F compilers, but allows full use of
job control and operating system
facilities.)

If an attempt is made to create a
subtask with a higher priority than the
maximum priority, the subtask will be
executed at the maximum priority. Priority
can be reduced to zero, but not below (a
priority of less than zero, will be treated
as zero priority). A task can change its
own priority and that of any other task.

PRIORITY BUILT-IN FUNCTION AND
PSEUDOVARIABLE

The PRIORITY pseudovariable provides a
method of setting the priority of a named
task relative to the current task. The
effect of the statement

PRIORITY(T)=N;

is to set the priority of the task T equal
to the priority of the current task plUS
the integral value of the expression N. If
the priority thus calculated would be
higher than the maximum priority or less
than zero, the implementation ensures that

the priority is set to the maximum, or
zerQ, respectively.

The PRIORITY built-in function returns
the relative priority of the named task
Cthat is, the difference between the actual
priority of the named task and the actual
priority of the current task). Consider a
task, Tl, that attaches a subtask, T2, that
itself attaches a subtask, T3. If task T2
executes the sequence of statements

PRIORITYCT3)=3i
X=PRIORITYCT3)i

X will not necessarily have the value 3.
If, for example, task T2 had an actual
priority of 24, and the maximum priority
were 26, then execution of the first
statement would result in task T3 having a
priority of 26, not 27. Relative to task
T2, task T3 would have a priority of 2;
hence, after execution of the second
statement, X would have a value of 2.

Between execution of the two statements,
control could pass to task Tl, which could
change the priority of task T2, in which
case the value of X would depend on the new
priority. For example, given the same
original priorities as before, task T3
would have a priority of 26 after execution
of the first statement. If the priority of
task T2 were now changed to 20 by its
attaching task, Tl, execution of the second
statement would result in X having a value
of 6.

A task name may have a priority assigned
to it before it is associated with a
procedure. It is not an error if such a
name is never associated with a procedure.
Thus, when a program is being developed,
task names may be introduced into the
program before the corresponding tasks are
introduced.

Coordination and Synchronization of
Tasks

The rules for scope of names apply to
blocks in the same way whether or not they
are invoked as, or by, subtasks; thus, data
and files can be shared between
asynchronously executing tasks. Hence, a
high degree of cooperation is possible
between tasks, but this necessitates some
coordination. Certain additional rules are
introduced to deal with sharing of data and
files between tasks, and the WAIT statement
is provided to allow task synchronization.

SHARING DATA BETWEEN TASKS

It is the programmer's reponsibility to
ensure that two references to the same
variable cannot be in effect at one instant
if either reference would cause the value
of the variable to be changed. He can do
so by including an appropriate WAIT
statement at a suitable pOint in his source
program to force temporary synchronization
of the taSks involved. Subject to this
qualification, and the normal rules of
scope, the following additional rules
apply:

1. Static variables can be, referred to in
any task in which they are known.

2. Regardless of task boundaries, an
automatic variable can be referred ~o
in any block in which it is known, or
to which it is passed as an argument,
or in which it is referred to using an
appropriate based variable. (Note
that unless a dummy argument is
created, the value of an argument can
change at any time; the current value
is used when any reference is made by
any task.)

3. Controlled variables can be referred
to in any task in which they are
known. However, not all generations
are known in each task. When a task
is initiated, only the latest
generation, if any, of each controlled
variable known in the attaching task
is known to the attached task. Both
tasks may refer to this generation.
Subsequen~ generations in the attached
task are known only within the
attached task; subsequent generations
within the attaching task are known
only within the attaching task. A
task can free only its own
allocationsi an attempt to free
allocations made by another task will
have no effect. No generations of the
controlled variable need exist at the
time of attaching. It is not
permissible for a task to free a
controlled generation shared with a
subtask if the subtask will later
refer to the generation. When a task
is terminated, all generations of
controlled storage made within that
task are freed.

4. Based variables allocated within an
area are freed when the area is freed;
unless contained in an area allocated
in another task, all based variable
allocations (including areas) are
freed on termination of the task in
which they were allocated.

5. Any generation of a variable of any

Chapter 17: Multitasking 255

storage class can be referred to in
any task by means of an appropriate
based variable reference. The
programmer must ensure that the
required variable has been allocated
at the time of reference.

A task may allocate and free based
variables in any area to which it can
refer. A task can only free an allocation
of a based variable not allocated in an
area if the based variable was allocated by
that task.

SHARING FILES BETWEEN TASKS

A file is shared between a task and its
subtask if the file is open at the time the
subtask is attached. If a subtask shares a
file with its attaching task, the subtask
must not attempt to close the file. A
subtask must not access a shared file while
its attaching task is closing the file.
The subtask may re-open a file closed by
the attaching task, but it will not then be
shared.

If a file name is known to a task and
its subtask, and the associated file was
not open when the subtask was attached,
then the file is not shared; the effect is
as if the task and its subtask were
separate tasks to which the file name were
known. That is, each task may separately
open, access, and close the file. This
type of operation is guaranteed only for
files that are DIRECT in both tasks. Note
that if one task opens a file, no other
task can provide the corresponding close
operation.

It is possible that two or more tasks
may attempt to operate simultaneously on
the same record in a data set opened for
direct access; this can be synchronized by
use of the EXCLUSIVE file attribute. This
attribute is described in chapter 12,
"Record-Oriented Transmission" and section
D, "Attributes".

WAIT STATEMENT

The WAIT -statement has the following
format:

WAIT (event-name [,event-name] •••)

[(element-expression)];

Full details of the WAIT statement are
given in section J, "Statements"; the
following is a shorter description,

256 OS PL/I CKT AND OPT LRM PART I

providing background to the present
discussion.

The WAIT statement specifies that the
task executing it will go into a waiting
state and execution of another task may be
started or resumed until such time as the
required events have been completed. An
event is complete when its completion value
is 'l'B. Note that the WAIT statement
specifies event names, not task names.

An event variable may be associated with
an input/output operation that has been
initiated by the task executing the WAIT
statement. In this case, execution of the
WAIT statement has the following effect:

1. If transmission ends (or has ended)
normally, the event variable is set
complete.

2. If the transmission ends (or has
ended) requiring input/output
conditions to be raised, the event
variable is set abnormal (i.e., its
status value is set to 1) and all the
required conditions are raised. The
event variable is set complete on
return from the last on-unit.

If an abnormal return is made from an
on-unit entered from the WAIT operation,
the associated event variable is set
complete, the WAIT operation is terminated,
and control for the task passes to the
point specified by the abnormal return.

Example

P1: PROCEDURE;

CALL P2 EVENT(EP2):
CALL P3 EVENT(EP3):
WAIT (EP2):
WAIT (EP3);

END P1;

In this example, the task executing P1 will
proceed until it reaches the first WAIT
statement: it will then await the
completion of the task executing P2, and
then the completion of the task executing
P3, before continuing.

TESTING AND SETTING EVENT VARIABLES

The two values, completion and status, of
an event variable can be retrieved by the
built-in functions COMPLETION and STATUS.

The COMPLETION function returns the
current completion value of the event
variable named in the argument. This value
is 'O'B if the event is incomplete, or 'l'B
if the event is complete.

The STATUS function returns the current
status value of the event variable named in
the argument. This value is nonzero if the
event variable has been set abnormal, or 0
if it is normal.

These two built-in functions can also be
used as pseudovariables; thus, either of
the two values of an event variable can be
set independently. Alternatively, it is
possible to assign the compOSite value of
one event variable to another by specifying
the event variables in an aSSignment
statement. Thus, the setting of an event
variable can be controlled by the
programmer. By this means, he can mark the
stages of a task; and, by using a WAIT
statement in one task and an event
assignment (from the COMPLETION built-in
function or another event variable) in
another task, he can synchronize any stage
of one task with any stage of another.

The programmer should not attempt to
assign a completion value to an event
variable currently associated with an
active task or with an input/output event.
An input/output event is never complete
until an associated WAIT statement is
executed, the WAIT being in the same task
as the EVENT option.

Other ways in which an event variable
can be set have already been discussed
(such as specifying the event name in the
EVENT option of a CALL statement). Full
details of event variables will be found
under wEVENT AttributeW in section I,
-Attributes w• See also wEVENT Optionw in
chapter 12, -Record-Oriented Transmission-.

Task Tl

WAIT (E2);

COMPLETION (EV)
='l'B;

Task T2 (Event E2)

COMPLETION(EV)='O'B;

WAIT (EV);

RETURN;

Task Tl would wait for the completion
of task T2, and task T2 would wait for
task Tl to execute the completion
pseudovariable to set the event
variable EV complete.

Under the checkout compiler this
condition is detected and causes
termination of processing. Under the
optimizing compiler, the program waits
until canceled by the operating system
or the operator.

DELAY STATEMENT

The DELAY statement (see section J,
WStatements W) allows a task to wait for a
specified period, without reference to an
event variable.

Termination of Tasks

A task is terminated by the occurrence of
one of the following:

1. Control for the task reaches a RETURN
or END statement for the initial
procedure of the task.

2. Control for the task reaches an EXIT
Note: statement.

When tasks are being synchronized, the
following points should be kept in mind:

1. An input/output event must be waited
for in the task that initiates the
input/output operation. The event can
also be waited for in any other task,
but in this case this task will wait
until the event has been set complete
by a WAIT statement in the initiating
task.

2. There is a very real danger that two
tasks could interlock and enter a
permanent wait state. The programmer
must ensure that this cannot happen in
a program. For example:

3. Control for the task, or for any other
task, reaches a STOP statement.

4. The block in which the task wes
attached is terminated (either
normally or abnormally).

5. The attaChing task itself is
terminated.

6. Standard system action for the ERROR
condition or the action on normal
return from an ERROR on-unit is
carried out.

Termination is normal only if item (1) of
the above list applies. In all other

Chapter 17: Multitasking 257

cases, termination is abnormal.

To avoid unintentional abnormal
termination of a subtask, an attaching task
should always wait for completion of the
subtask in the same block that attached the
subtask before the task itself is allowed
to be terminated.

When a task is terminated, the following
actions are performed:

1. All input/output events that have been
initiated in the task and.are not yet
complete are set complete, and their
status values (if still zero) are set
to 1: the results of the input/output
operations are not defined.

2. All files that have been opened during
the task and have not yet been closed
are closed; all input/output
conditions are disabled while this
action is taking place.

3. All allocations of controlled
variables made by the task are freed.

4. All allocations of based variables
made by the task are freed, except
those it has allocated within an area
allocated by another task (these are
freed when the area is freed).

5. All active blocks (including all
active subtasks) in the task are
terminated.

6. If the EVENT option was specified when
the task was attached, the completion
value of the associated event variable
is set to t'l'B. If the status value
is still zero, and termination is
abnormal, the status value is set to
1.

1. All records locked by the task are
unlocked.

Note: If a task is terminated while it is
assigning a value to a variable, the value
of the variable is undefined after
termination. Similarly, if a task is
terminated while it is creating or updating
an OUTPUT or UPDATE file, the effect on the
associated data set is undefined after
termination. It is the responsibility of
the programmer to ensure that assignment
and transmission are properly completed

258 OS PL/I CRT AND OPr LRM PART I

before termination of the task performing
these operations.

Programming Example

An example of the application of
multitasking to a banking system is shown
in figure 11.2. The program is divided
into a batch section and a real-time
section. Each section constitutes a
subtask of the major task; each subtask has
other subtasks attached to it that perform
the various data processing routines
necessary in each section. The use of
several subtasks increases the program
efficiency by permitting overlap between
the input/output operations and the
operations performed by the central
proceSSing unit.

The batch section of the program
processes batches of cards that contain
account information (such as cheques
cashed, deposits made, or loan account
details) and, after a certain number of
transactions, produces a statement.

The real-time section of the program
provides a means of communication between
itself and the operator, using the DISPLAY
statement with the REPLY option. This
facility permits the user to issue commands
to the program through the operator's
console. These commands can:

1. Cause management or credit
information, bank statements, or
similar information to be made
immediately available.

2. Initiate or terminate processing.
Thus the user can initiate the
processing of card batches, terminate
a section of processing. terminate the
entire program, or reply to a call for
clarification of mispunched data.

The functions of the various tasks that
make up the program, and their relationship
to each other, are shown in figure 11.3.
suggested coding for the ONLINE and PROCESS
procedures is given below. These
procedures are internal to the BANKER
procedure, as are all the procedures in the
program in this case.

ONLINE; PROCEDURE;
DECLARE COMMAND CHARACTER(30) VARYING,

COMTYPE(S) CHARACTER (30) VARYING,
COUNT(S) FIXED BINARY INITIAL «S)O),
10 CHARACTER (72) VARYING',
XL(S) LABEL,
ENDBEVT EVENT EXTERNAL;

COMTYPE(l) = 'CREDIT';
COMTYPE(2) = 'STATEMENT';
COMTYPE(3) = 'INFORMATION';
COMTYPE(4) = 'CALL BATCH';
COMTYPE(5) = 'END BATCH';

COMTYPE(S) = 'END PROGRAM';
START: DISPLAY (' NEXT COMMAND') REPLY .(COMMAND);

/*TASK IS IN WAITING STATE UNTIL REPLY IS RECElVED*/
X: 00 I = 1 TO 8;

IF COMMAND = COMTYPE (I)
THEN GO TO XL(I);

END;
DISPLAY (' UNRECOGNIZABLE COMMAND, REPEAT')

REPLY (COMMAND);
GO TO X;

XL(l): DISPLAY ('ACCOUNT 10') REPLY (10);
COUNT (1) = COONT(l) + 1;

XL(2) :

XL(S):

CALL CREDIT (ID) PRIORITY (-1); /*ATTACH CREDIT TASK*/
GO TO START;

COMPLETION (ENDBEVT) = 'l'B;
/*SETS EVENT COMPLETE IN BATCH. BATCH
WILL TERMINATE WHEN ALL CARDS READ IN*/
GO.TO START;

END ONLINE;

PROCESS: PROCEDURE;
DECLARE ANS CHARACTER (30) VARYING,

(READEVT, ENDEVT, TEVREAD,
TEVUPDT, TEVRED) EVENT EXTERNAL;

WS: WAIT (READEVT, ENDBEVT) (1);

IF COMPLETION(READEVT)='l'B THEN GO TO READIN;
WAIT (TEVREAD, TEWPDT, TEVRED) (3);

EXS: EXIT;
/*IF 'END BATCH' COMMAND WAIT FOR ASSOCIATED
TASKS BEFORE BATCH IS TERMINATED*/

READIN: COMPLETION (READEVT) = '0' B;
CALL READER TASK (PR1) PRIORITY (-1) EVENT (TEVREAD);
CALL UPDATE TASK (PR2) PRIORITY (-2) EVENT (TEVUPDT);
CALL RED TASK (PR4) PRIORITY (-3) EVENT (TEVRED);
WAIT (TEVREAD, TEVUPDT, TEVRED) (3);
DISPLAY (' CARDS PROCESSED') REPLY (ANS);
IF ANS = 'WAIT' THEN GO TO WS; /*WAIT FOR COMMAND*/
IF ANS = 'READ' THEN GO TO READIN; /*PROCESS NEXT BATClt*/

END PROCESS;

Figure 17.2. Example of multitasking as applied to a banking system

Chapter 17: Mul ti tasking 25'9

Major task PRIORITY = P
r-------------------~--------, r------------------,
I BANKER: PROC OPTIONS(MAIN, I I CREDIT: PROC(X): I
I TASK: I r->IWhatis X's credit I
I Function: I I I rating? I
I Initialization, e.g., open I Subtask CONTROL PRIORITY = P~l I L------------------J
lmaster files. I r~--~-------------------------, I
IAttach on-line control task:I--->IONLINE: PROC: I
I CALL ONLINE TASK(CONTROL) I I Function: I
I PRIORITY (-1) EVENT "DISPLAY ('Next command') 'r------------------,
I (TEVCTRL): I IREPLY (command) I I ISTATEMENT:PROC(Y):I
IWAIT (for command or CONTROLI<-, IAttach tas~ according to l-t->IPrint statement
Itermination): I Icommand, or satisfy a WAIT I Ifor Y's account. I
IIf command, attach subtask I Istatement in a different taskl L------------------J
I BATCH, then return , ,by completing its event var- I
I to WAIT I, liable. The same procedure can I
IIf termination, end program II Ibe attached several times as , L------______________________ JI Idifferent tasks. I r------------------,

r-----------------J Ipriorities should be in the I IMANIFO: PROC: I
I Irange (P-3) to (P-l0). I ->IExtract management I

I informa tion. I V L-----------------------------J
Subtask BATcH PRIORITY= P-2 I
r----------------------------, v I PROCESS: PROC: I r--------------,
I Function: "WAIT satisfied I
IInitialization of card I L--------------J
Iprocessing routines. I -----------------J
IWAITl (for 'Read' or 'End I<-J
I batch 'commands) • ,
,CALL (processing tasks). 1--,
IWAIT2 (for cards to be ,
I processed) I
IDISPLAY ('Cards processed, I
lany more?'). I
IREPLY ('No more', 'READ', orl
,'wait'): I
I If 'No more': terminate I
I BATCH. ,
, If -Read': return to CALL. I
I If 'Wait' : return to WAIT1. I
L--------------------~-------J

L------------------J

r------------------, ,CREDIT: PROC(Z): I
->IWhat is Z's credit I

I rating? I

V
other
tasks

L------------------J

r------------------ -----------,------------------------------,
V V V

Subtask PRl PRIORITY = P-ll Subtask PR2 PRIORITY = P-12 Subtask PR4 PRIORITY = P-13
r---------------------------, r--------------------------, I READER: PROC: . I ,UPDATE: PROC: I
I Function: I I Function: I
IRead cards into array I IProcess array information: I
I (which must have at least I Icheck that each row is I
I three rows). When one row I I full before processing. I
lis filled, test for comple-I IUpdate master files, I
Ition of processing of next I Itransaction files. I
Irow by subtask PR2 before I IWhen statement 'page' is I
Icontinuing to read. I Ifull, attach task to print I
L---------------------------J I statement. Transfer infor-I
Subtask PB3 PRIORITY = P-15 lmation on a 'RED' account I
r---------------------------, Ito a 'RED' array for I
ISTATBMENT:PROC(Account ID):I Iprocessing by 'RED' pro- ,
I Function: I Icedure. I IPrint statement for the I L_--_______________________ J

laccount identified. I<---------------J L_- _________________________ J

r--------------------------,
IRED: PROC: I
I Function: I
,Treatment of 'RED' 1
1 accounts. If necessary 1
,attac~ task for treatment I
lof 'VERY RED' accounts. I
L--------------------------J ,

V
Subtask PRS PRIORITY = P-14
r--------------------------, I VERYRED: PROC: 1
1 Function: I
IPrint letter for account I
I owner, and owner's name I
Ifor branch manager. 1
L--------------------------J

Figure 17.3. Flow diagram for programming example of multitasking

260 OS PL/I eKT AND OPT LRM PART I

Chapter 18: Efficient Programming

IThis chapter on efficient programming is
lintended primarily for the user of the PL/I
10ptimizing compiler. Some sections may,
I however, be of interest to the user of the
IPL/I Checkout Compiler.
I
I The chapter starts with a brief look at
Isome of the various types of optimization
Ithat are provided by the optimizing
Icompiler and its libraries.
I
I This is followed by some suggestions on
Ihow to tune a PL/I program for more
lefficient performance. The suggestions are
larranged in order of increasing programming
leffort required to effect the improvements.
IThis section also contains information on
Ituning a program for a virtual storage
I environment, and concludes with a brief
Idiscussion of the benefits of modular
I programming.
I
I The next section, wIn-Line Operations·,
Idetails the rules for determining whether
lor not a particular operation will be
limplemented by in-line code. By using the
linformation given in this section, it may
loften prove possible to avoid the overhead
lof library calls for particular operations.
I
I The next section, "Global Optimization",
Idiscusses the various types of global
loptimization performed by the optimizing
Icompiler when OPTIMIZE(TIME) is specified.
IThe section also contains some hints on
Icoding PL/I programs to take advantage of
19lobal optimization. This section is
Ilikely to be of interest mainly to the
Iscientific programmer.
I
I The chapter concludes with a list of
Isome of the errors and pitfalls that may be
lencountered by a programmer using PL/I for
Ithe first time.
I
I
I
I
IOptimization Facilities
I
I
ITHE COMPILER
I
I
IThe optimization facilities of PL/I are
lavailable only for programs processed by
Ithe PL/I optimizing compiler. The PL/I
Icheckout compiler does not provide
loptimization of object programs: it
limplements the optimization language items
Iby checking the syntax and then ignoring
I them.

I The main purpose of optimization is to
Igenerate object programs which execute as
Ifast as possible and which occupy as little
Ispace as possible during execution. In
Imany cases this will involve generating
letficient code for the statements written
Iby the programmer; in other cases, however,
the optimizing compiler may alter the
sequence of statements or operations to
improve the performance whilst produCing
the same result.

The following types of optimization are
carried out by the optimiZing compiler:

• Elimination of common expressions

• Transfer of invariant expressions out of
loops

• Elimination of redundant expressions

• Simplification of expressions

• Initialization of arrays and structures

• In-line code for conversions

• In-line code for record I/O transmission
statements

• Reduction of key conversion for REGIONAL
data sets

• Matching format lists with data lists

• In-line code for string manipulation

• In-line code for many of the built-in
functions

• Special-case code for DO statements

• Special-case code for array and
structure assignments

• Register and address optimization,
including maintenance of values in
registers for as long as possible and
producing efficient address arithmetic
based on optimal flow-paths

• Program branches kept as much as
possible to the same base address

• Elimination of common constants and
program control data to minimize space
usage

• Analysing execution-time options during
compile time (the PLIXOPT variable)

Chapter 18: Efficient Programming 261

some of these types of optimization are
performed even when the NOOPTIMIZE compiler
option is specified. Full optimization,
however, is attempted only when the
OPTIMIZE (TIME) compiler option is
specified.

THE LIBRARIES

The PL/I resident and transient libraries
contain a large number of modules, each of
which performs a distinct logical function.
During compilation, the optimizing compiler
can determine which library modules (if
any) are required and can thus select a
minimal subset of modules for link-editing
with the compiled code.

This selection of library modules
lminimizes the main storage requirements of
Ithe program. It can also cause a reduction
lin the time requred to load the program
linto main storage - often an important
Iconsideration in DB/DC environments.
I
I
I
ITHE SYSTEM ENVIRONMENT
I
I
The PL/I libraries can be organized in a
number of different ways within the system
environment in which the PL/I programs are
executed.

The library modules that are required
for initializing and terminating a PL/I
program are normally part of the transient
library. They can, however, be link-edited
with the object module. This technique can
Significantly reduce the time taken to
initialize and terminate execution of a
PL/I program, at the expense of the
program's main storage requirements.

An installation can place commonly-used
resident library modules into a shared
library, so that the same module can be
accessed by any PL/I program executing in
the system. Using a shared library may
increase slightly the execution time of the
PL/I programs; however, the overall storage
requirements can be reduced if a number of
PL/I programs are required to execute
concurrently.

Default execution-time options, based on
Ithe overall requirements of the
I installation, can be chosen at the time
Ithat the compiler is installed. These may
Ibe overridden for individual programs by

,modules that can be preloaded, in order to
,improve overall system performance.
ICommonly-used PL/I library modules may
lusefully be preloaded. ,
, Decisions on how the libraries are to be
lorganized are usually taken on an
linstallation-wide basis at the time that
Ithe libraries are installed. ,
I These topics are discussed more fully in
Ithe PL/I Optimizing compiler Installation
I Manual, Order No. SC33-0026.
I
I ,
I!EffieieRt Performance ,
t
IBecause of the modularity of the PL/I
,libraries and the wide range of
loptimization performed by the optimizing
I compiler, many PL/I application programs
Iwill have acceptable performance and will
Inot require 'tuning' by the programmer.
f
I This section suggests ways in which the
Iperformance of programs that do not fall
-tinto the above category may be improved.
,IThe section is divided into three parts,
·,arranged in order of increasing effort
Irequired by the programmer to effect the
timprovements. ,
I It is assumed that system considerations
Ihave been resolved (for example, the
lorganization of the PL/I libraries), and
falso that the reader has some knowledge of
Ithe compile-time and execution-time
Icompiler options (see the Programmer's
IGuide for the compiler).
I
f
I
ITUNING A PL/I PROGRAM - STAGE 1
I ,
I 1. Remove all debuggin~ aids from the
I program.
.I

The overheads incurred by some
debugging aids (for example, the CHECK
condition prefix) are immediately
obvious because they tend to produce
lar~e amounts of output. However,
debugging aids such as the
SOBSCRIPTRANGE and STRINGRANGE
condition prefixes, or the FLOW
compiler option, which produce output
only when an error occurs, also
significantly increase both the
storage requirements and the execution
time of the program.

I means of the PLIXOPT variable. -I PUT DATA statements should also be
removed from the program, especially
those for which no data list is
specified. These statements require

1:1
I Program products such as IMS/VS give the·. I
luser the ability to specify a list of I

262 as PL/I CKT AND OPT LRM PART I

2.

3.

I

control blocks to describe the
variables and library modules to
convert their values to external
format, both of which increase the
program's storage requirements.

Use of the GOSTMT or GONUMBER compiler
option will not increase the execution
time of the progr~, but will increase
its storage requirements. The
overhead is approximately 4 bytes per
PL/I statement for GOSTMT and
approximately 6 bytes per PL/I
statement for GONUMBER.

Specify execution-time options in the
PLIXOPT variable, rather than as
parameters passed to the program
initialization routines. It may prove
beneficial to alter existing programs
to take advantage of the PLIXOPT
variable, and to recompile them.

After removing the debugging aids,
compile and execute the program with
the REPORT execut~on-time option. The
output from the REPORT option will
give the size that should be specified
in the ISASIZE execution-time option
to enable all PL/I storage to be
obtained from a single allocation of
system storage.

Note: For a full description of the
output from the REPORT option, see the
Programmer's Guide for the compiler.

The program should also be separately
compiled and executed with the COUNT
compiler option, and the statement
frequency tables used to compare the
program with the original design. If
there is a conflict between the
original design and the way in which
the program works, this should be
resolved before further attempts are
made to improve performance.

The COUNT option output may also be
used to identify heavily-used sections
of the program for additional tuning
if this should prove necessary.

ITUNING A PL/I PROGRAM - STAGE 2
I
I
lIn PL/I there are often several different
Iways of producing a given effect. One of
Ithese ways will usually be more efficient
Ithan another, depending largely on the
lmethod of implementation of the language
Ifeatures concerned. The difference may be
lonly one or two machine instructions, or it
Imay be several hundred.
I
I The second stage of tuning a program for

efficient performance is to look for those
language features that are inherently
expensive for any compiler to implement,
and for which alternative language exists.
This type of attention is of most benefit
in heavily-used parts of the program, as
identified by the statement frequency table
produced by the COUNT compiler option.

It is important to realize, however,
that a particular use of the language is

Inot necessarily bad just because it is less
lefficient than some other usage; it must be
Ireviewed in the context of what the program
lis doing now and what it will be required
Ito do in the future.
I
I Some examples of language features which
lare inherently expensive are given below:
f
i 1.
I
1
I

-I
I
I
f
I
I
I
'I
I
I
I
I 2.
I
I
f
I
I
I
I
I
f
I
1
I
I
'I
I

A common programming practice is to
put,the format list used by edit
directed input/output statements into
a FORMAT statement. The FORMAT
statement is then referenced from the
input/output statement by means of the
R format item. For example:

DECLARE NAME CHARACTER(20),
MANNO DECIMAL FlXED(S,O);

PUT EDIT (MANNO,NAME)(RCOUTFORM»;

OUTFORM:FORMAT(FC8),X(S),AC20»;

programming in this way reduces the
level of optimization that the
compiler is able to provide for edit
directed input/output. If the format
list is repeated in each input/output
statement,

PUT EDIT CMANNO,NAME)
(F(8),X(S),A(20»;

the compiler is able to generate more
efficient compiled code which calls
fewer library modules, with a
consequent saving in execution time
and load module size.

The use of self-defining data (the
REFER option) enables data to be held
in a compact form; it can, however,
lead to the production of less-than
optimum compiled code. For example,
with the structure:

DECLARE 1 STR BASED(P),
2 N,
2 BEFORE,
2 ADJUST (NMAX REFER(N»,
2 AFTER;

a reference to BEFORE requires one
instruction to address the variable,
whereas a reference to AFTER requires

Chapter 18: Efficient programming 263

I

approximately 18 instructions plus a
call to a resident library module.

The most efficient way of organizing a
self-defining structure is to ensure
that the members whose lengths are
known appear before any adjustable
members, and that the most frequently
used adjustable members appear before
those that are less frequently used.
The previous example could thus be
changed to:

DECLARE 1 STR BASED(P),
2 N,
2 BEFORE,
2 AFTER,
2 ADJUST (NMAX REFER(N»;

3. Even though a condition has been
explicitly disabled by means of a
condition prefix, a lot of processing
may be required if a situation occurs
in which the condition would normally
be raised. For example, consider a
random number generator in which the
previous random number is multiplied
by some factor and the effects of
overflow are ignored:

DECLARE (RANDOM, FACTOR)
FIXED BINARY(31,O);

(NOFOFL):RANDOM=RANDOM*FACTOR;

If the product of RANDOM and FACTOR
cannot be held as FIXED BINARY(31,O),
a program check interrupt will be
produced. This has to be processed by
both the system interrupt handler and
the PL/I error handler before it can
be determined that the FIXEDOVERFLOW
condition has been disabled.

TUNING A PL/I PROGRAM - STAGE 3

This stage is really a refinement of the
ideas given previously in stage 2.
However, whereas stage 2 was concerned with
potential savings of hundreds of
instructions, this stage concerns savings
of only a few instructions. Again, the
measures that are described are most
effectively applied to the heavily-used
parts of the program.

I 1. The following measures apply to
I program control:
I
I
I
I
I
I
I

a. Avoid unnecessary program
segmentation and block structure;
all procedures, on-units, and
begin blocks need prologues and
epilogues, the initialization and
housekeeping for which carry an

264 OS PL/I CKT AND OPT LRM PART I

overhead.

This recommendation should be
assessed in conjunction with the
notes on modular programming given
later in this chapter.

b. If a GOTO statement references a
label variable, it will be more
efficient if the label constants
that are the values of the label
variable appear in the same block
as the GOTO statement.

c. The PL/I language does not allow
the use of the INITIAL attribute
for arrays that have the
attributes STATIC and LABEL
because environment information
for the array does not exist until
execution time.

However, when using the optimizing
compiler to compile procedures
containing STATIC LABEL arrays,
improved performance may be
Obtained by specifying the INITIAL
attribute. What happens under
these conditions is described
below.

The compiler diagnoses the invalid
language (STATIC, LABEL, and
INITIAL) and produces message
IEL0580I, but it accepts the
combination of attributes. If
OPT (TIME) is specified, GO TO
statements that refer to STATIC
LABEL variables are checked to see
whether the value of the label
variable is a label constant in
the same block as the GO TO
statement. If it is, the normal
interpretative code produced by
the compiler is replaced by direct
branching code. If it is not,
message IEL0918I is produced and
the interpretative code remains
unchanged.

If NOPT is specified, or if
message IEL0918I is produced,
execution is liable to terminate
with an interrupt, or go into a
loop.

d. If pOSSible, avoid using on-units
for the FINISH condition. These
cause an increase in the time
taken to terminate a PL/I program.

e. After debugging, disable any
normally-disabled conditions that
were enabled for debugging
purposes by removing the relevant
prefixes, rather than by including
NO-condition prefixes. For
instance, disable the SIZE

condition by removing the SIZE
prefix, rather than by adding a
NOSIZE prefix. The former method
allows the compiler to eliminate
code that checks for the
condition, whereas the latter
method necessitates the generation
of extra code to prevent the
checks being carried out.

f. Avoid the use of constant
expressions for array bounds and
string lengths: the compiler will
assume that the variable is
adjustable.

DECLARE A(S):

is more efficient than

DECLARE A(5+3):

2. The following measures apply to
conversions, which should in general
be kept to a minimum.

a. The section on in-line operations
which appears later in this
chapter describes which
conversions are done in-line.

b. Use additional variables to avoid
conversions. For example,
consider a program in which a
character variable is to be
regularly incremented by 1.

DECLARE CTLNO CHARACTER(S),

CTLNO = CTLNO + 1,

This example requires two
conversions (one of which involves
a library call), while

DECLARE CTLNO CHARACTER(S),
DCTLNO FIXED DECIMAL;

DCTLNO = DCTLNO + 1,
CTLNO = DCTLNO,

requires only one conversion.

c. Take special care to make
structures match when it is
intended to move data from one
structure to another.

d. Avoid mixed mode arithmetic,
especially the use of character
strings in arithmetic
calculations.

e. Use pictured data rather than
character data if possible. For
example, if a piece of input data

should contain three decimal
digits, and neither ONSOURCE nor
ONCHAR is used to correct invalid
data, then:

DCL EXTREP CHARACTER(3),
INTREP FIXED DECIMAL (5,0);

ON CONVERS ION GOTO ERR;

INTREP = EXTREP,

is less efficient than:

DCL EXTREP CHARACTER (3) ,
PICREP PIC '999' DEF EXTREP,
INTREP FIXED DECIMAL (5,0),

IF VERIFY(EXTREP,'0123456789')
~= 0 THEN GOTO ERR,

INTREP = PICREP,

f. Internal switches and counters,
and variables used as array
subscripts, should be declared
FIXED B!NARY. Data required for
output should in general be
declared DECIMAL.

g. Exercise care in specifying the
precision and scale factor of
variables that are used in
expressions. The use of variables
with different scale factors in an
expression can cause the
generation of additional object
code to create immediate temporary
values.

3. The following measures apply to
strings:

a. The section on in-line operations
which appears later in this
chapter discusses those string
operations that are done in line.

b. Bit strings Should, if pOSSible,
be specified, and tested, as
multiples of eight bits. However,
bit strings used as logical
switches should be specified
according to the number of
Switches required. In the
following examples, (a) is
preferable to (b), and (b) to (c):

Chapter 18: Efficient Programming 265

·f
I
i
t
f
·f
·f
f ;,

of

• f

• I:
t
I·
I
I ,
1
l
·f , ,
t
I
.f
.J
t
1
I
t
I
I
I
t
I.
I
f ,
I
I ,
t
I
I
t
1
t
t
t
f
t
f
1
I
I
t

t
l . ~
f
t ..
t
t:

EXlample 1:

Single switches

(a) DCL SW BIT(l) INIT('l'B);

IF SW THEN DO;

(b) DCL SW BIT(S) INIT('l'B);

IF SW THEN DO;

(c) DeL SW BIT(S) INIT ('l'B);

IF SW = '10000000'B THEN
DO;

Example 2:

Multiple switches

(a) DeL B BIT(3);

B = 'lll'B;

IF B = '111'B THEN DO;

(b) DeL B BIT(S);

B = '11100000'B;

IF B = '11100000'B THEN DO

(c) DeL (SWl,SW2,SW3) BIT(l);

SW1, SW2, SW3 = 'l'B;

IF SW1'SW2'SW3 THEN DO:

If bit-string data whose length is
not a multiple of S is to be held
in structures, such structures
should be declared ALIGNED.

Note: The use of bit strings in a
mul~itasking program can
0Ccasionally cause incorrect
resUlts. When the program
references the bit string, it may

be necessary for a PL/I library
routine to access adjacent
storage, as well as the string
itself. If another task accesses
this adjacent storage at the same
time, then the results may be
unpredictable. The problem is
less likely to arise with aligned
bit strings than unaligned.

c. Note that concatenation operations
on bit-strings are time-consuming.

d. Varying-length strings are
generally less efficient than
fixed-length strings.

e. Fixed-length strings are not
efficient if their length is not
known at compile'time, as in the
following example:

DCL A CBAR(N);

f. Do not refer.to the DATE built-in
function more than once in a run;
it is expensive. Instead, refer
to the funct~on once and save the
value in a variable for subsequent
use; for example, instead of:

PAGEA= TITLEAIIDATE;
PAGEB= TITLEBIIDATE;

it is more efficient to write

DTE=DATE;
PAGEA=TITLEAIIDTE;
PAGEB=TITLEBIIDTE;

4. The fOllowing measures apply to
input/output:

a. Allocate sufficient buffers to
prevent the program beCOming I/O
bound, and use blocked output
records.

However, consideration must be
given to the imp~ct on other
programs executing within the
system.

b. Open a number of files in a single
OPEN statement.

c. In STREAM input/output, u.se long
data lists instead of splitting up
input/output statements.

d. Use edit-direct input/output in
preference to list- or data
directed •

e. Consider the use of overlay
defining to simplify transmission
to or from a character string
structure. For example:

DCL 1 IN,
2 TYPE CHAR(2),
2 REC,

3 A CHAR(S),
3 B CHAR(7),
3 C CHAR(66);

GET EDIT(IN)
(A(2),A(S),A(7),A(66»;

In the above example, each format
item/data-field pair is matched
separately, code being generated
for each matching operation. It
would be more efficient to define
a character string on the
structure and apply the GET
statement to the string:

DCL STRNG CHAR(SO) DEF IN;

GET EDIT (STRNG) (A(SO»;

f. If a file is declared DIRECT
INDEXED, the ENVIRONMENT options
INDEXAREA, NOWRITE, and ADD BUFF
should be applied if possible.

g. When creating or accessing a
CONSECUTIVE data set, use file and
record variable declarations that
cause in-line code to be
generated, if possible. Details
of the declarations are given in
chapter 12, "Record-Oriented
Transmission· •

h. Conversion of source keys for
REGIONAL data sets can be avoided
if the following special cases are
observed.

(1) For REGIONAL(l): When the
source key is a fixed binary
element variable or constant,
use precision in the range
(12,0) to (23,0).

(2) For REGIONAL(2) and (3): When
the source key is of the form
(character-string
expressionllr), where r is a
fixed binary element variable
or constant, use precision in
the range (12,0) to (23,0).

i. Direct update of an INDEXED data
set is slowed down if an I/O
operation on the same file
intervenes between a READ and a
REWRITE for the same key. This
can cause the REWRITE statement to
issue an extra READ.

j. When creating or accessing a data
set having fixed-length records,
use standard formatting, that is,

specify FS or FBS record format,
whenever possible.

5. The following measures apply to
interlanguage communication:

a. Where poSSible, ensure that PL/I
aggregate arguments will be mapped
the same as those for COBOL or
FORTRAN.

b. The compiler cannot always detect
when a structure in PL/I and COBOL
will map identically. Each
element in the base structure has
an alignment requirement; for
example, a CHAR(4) item can be
aligned on any byte in main
storage, whereas a FIXED BIN(31)
item must be fullword aligned.
The compiler creates a dummy
argument for the structure
whenever the first base element
has a less stringent alignment
requirement than any other base
element. This rule is applied
independently to each minor
structure at level 2. The NOMAP
option should be specified if the
actual lengths of items do not
require padding bytes to be
inserted. For example:

DeL 1 5,
2 X CHAR(4),
2 Y FIXED BIN(31);

The compiler will create a dummy
argument for this structure
because Y has a greater alignment
stringency than X. However, the
structure will map identically in
PL/I and COBOL because no padding
is required.

c. When arguments do map differently,
use the NOMAPIN option to avoid
unnecessary initialization of
dummy arguments, and use the
NOMAPOUT option to avoid
unnecessary assignment from dummy
arguments if the final value is
not required (e.g_, if the value
is unchanged).

d. Avoid multiple initialization of
the PL/I environment by ensuring:

(1) that the main procedure is
PL/I, or

(2) that a PL/I procedure is
called from the main routine,
or

(3) that the structure of the
program is such that the PL/I
environment is not destroyed

Chapter lS: Efficient programming 261

,
I
I ,

6.

between calls to PLII
procedures.

The following measures apply to the
use of storage when storage
conservation is an important factor:

a. Use the UNALIGNED attribute to
obtain denser packing of data with
a minimum of padding.

b. If a DIRECT UPDATE file is used to
access an INDEXED data set, but no
records are to be added to the
data set, specify the NOWRITE
option in the ENVIRONMENT
attribute for the file. This
option will save data management
approximately 5000 bytes of
storage.

c. Avoid the use of iterative do
groups with multiple
specifications. The following is
inefficient in terms of storage
requirements:

DO I = 1,3,7,15,31;

END;

ITUNING A PROGRAM FOR A VIRTUAL STORAGE
I SYSTEM
I
I
IThe output of the optimizing compiler is
Iwell suited to the requirements of a
Ivirtual storage system. The executable
code is read-only and is separate from the
data which is itself held in discrete
segments. For these reasons there is
usually little cause to tune the program to
reduce paging. Where such action is
essential, a number of steps can be taken.
However, it should be borne in mind that
the effects of tuning are usually small.

The object of tuning for a virtual
storage system is to minimize the paging,
that is to reduce the number of times the
data is moved from auxiliary storage into
main storage and vice-versa. This can be
done by making sure that items that are
accessed together are held together and by
making as many pages as possible read only.

When using the optimizing compiler the
problem can be approached both by writing
the source program so that the compiler

Iwill produce the most advantageous use of
Ivirtual storage and, if further tuning is
,required, by using linkage editor
Istatements to manipulate the output of the
Icompiler so that certain items appear on

268 OS PL/I CKT AND OPT LRM PART I

I certain pages.
I
I By deSigning and programming modular
I programs, it may be possible to achieve
Ifurther tuning of progams for a virtual
Istorage system.
I
I To enable the compiler to produce the
Imost advantageous output, care must be
Itaken both in how the source code is
Iwritten and how the data is declared.
I
I In writing source code large branches
laround the program should be avoided.
IStatements that are frequently executed
Itogether should be placed in the same
Isection of the source program.
I
I In declaring data, the most important
[aspect is the handling of data aggregates
Ithat are considerably larger than the page
Isize. Care should be taken that items
Iwithin the aggregate that are accessed
together are held together. In this
situation the choice between arrays of
structures and structures of arrays may be
critical. Consider an aggregate containing
3000 members and each member consisting of
a name and a number. If it is declared:

DCL 1 A(3000),
2 NAME CHAR(14),
2 NUMBER FIXED BINARY;

the 100th name would be held adjacently
with the lOOth number and so they could
easily be accessed together. However, if
it is declared:

DCL 1 A,
2 NAME(3000) CHAR(14),
2 NUMBER(3000) FIXED BINARY;

all the names would be held contiguously
followed by all the numbers, thus the 100th
name and the 100th number would be widely
separated.

When choosing the storage class for
variables there is little to choose between
STATIC INTERNAL and AUTOMATIC. The storage
where both types of variable are held is
required during execution for reasons other
than access to the variables. The storage
used for based or controlled variables is
not however required and avoiding these
storage classes may reduce paging.

Complete control of the positioning of
variables can be obtained by declaring them
BASED within an AREA variable. All
variables held within the area will be held

I together.
I
I A further refinement is possible that
lincreases the number of read only pages.
IThis is to declare STATIC INITIAL only
Ithose variables that remain unaltered

throughout the program and to declare the
procedure in which they are contained
REENTRANT. If this is done, the static
internal CSECT produced by the compiler
will be made read-only, with a consequent
reduction in paging overhead.

To produce code that can be manipulated
by linkage editor statements, it is
necessary to understand that the compiler
output is a series of CSECTS (control
sections) and that these are the units that
are manipulated by the linkage editor. You
can control the linkage editor so that the
CSECTS you specify will be placed together
either within pages or so that a particular
CSECT will be placed at the start of a
page. The linkage editor statements to do
this are given in the publication OS/VS
Linkage Editor and Loader, Order No. GC26-
3813.

The optimizing compiler always produces
at least two CSECTs for every external
procedure. One CSECT contains the
executable code and is known as the program
CSECT, the other CSECT contains addressing
data and static internal variables and is
known as the static CSECT. In addition, it
produces a CSECT for every static external
variable. A number of other CSECTs are
produced for housekeeping purposes. (A
full description of compiler output is
given in the publication OS PL/I Optimizing
Compiler: Execution Logic, Order No.
SC33-002S.)

You can affect the number of CSECTs
produced by the compiler by declaring
variables STATIC EXTERNAL and by making
procedures external thus getting a CSECT
for each external variable and a program
CSECT and a static internal CSECT for each
external procedure. It is possible to
place a number of variables in one CSECT by
declaring them BASED in an AREA that has
been declared STATIC EXTERNAL.

When a program is divided into a
satisfactory arrangement of CSECTs it is
then possible to analyze the use of the
CSECTS and arrange them to minimdze paging.
It should be realized however t.hat this is
a difficult and time consuming operation

Iwhich should not be undertaken lightly.
I
I
I
t
IMODULAR PROGRAMMING
I
I
IAlthough it is possible to write a program
las a Single external procedure, it is often
Isensible to split the program into a number
lof smaller sections, or modules. In PL/I,
Ithe basic units of modularity are the
Iprocedure and the begin block.

Some of the general benfits that can
result from modular programming are
outlined below:

• Program size affects the time and space
required for compilation. Generally,
compilation time increases more than
linearly with program size, especially
if the compiler has to spill text onto
auxiliary storage. Also, the process of
adding code to a program and then
recompiling it leads to wasteful
multiple-compilation of existing text.

• A procedure designed to perform a singl8
function need only contain the data
areas for that function. Because of the
nature of AUTOMATIC storage, there is
less danger of data areas for other
fUnctions being corrupted.

• If a procedure is designed to perform a
single function, it can be more easily
replaced by a different version. Also,
the same procedure may be useful in
several different applications.

• The storage for all the automatic
variables in a procedure is allocated
when the procedure is invoked at any of
its entry points. By reducing the
number of functions performed by a
procedure, it is often possible to
reduce the number of variables declared
in the procedure. This in turn can
reduce the overall demand for storage
for automatic variables.

More important from the efficient
programmdng viewpoint are the following
considerations.

1. The compiler has a limitation on the
number of variables that it can
consider for global optimization.
(Note that the number of variables
does not affect other forms of
optimization.)

2. The compiler has a limitation on the
number of flow units that it can
consider for flow analysis and
subsequently for global optimization.

3. If the static CSECT or the DSA exceeds
4096 bytes in Size, the compiler has
to generate additional code to address
the more remote storage.

4. If the compiled code for a procedure
exceeds 4096 bytes in size, the
compiler may have to repeatedly reset
base registers.

IExtra invocation of procedures will cause
lexecution time to be increased, but the use
lof modular programming will often offset
Ithe increase because the additional

Chapter 18: Efficient Programming 269

r---,
Conversion 1 I

--------------------------------------1 Comments and Conditions I
Source Target 1 I

FIXED BINARY I
I

FIXED DECIMAL I
I

FIXED BINARY FLOAT ILong or short FLOAT target.

FIXED DECIMAL

FLOAT (Long or
Short)

I
Bit string IString must be fixed-length, ALIGNED, and with

Ilength ~2088. STRINGSIZE condition must be
I disabled.
I

Character string IVia FIXED DECIMAL. String must be fixed-length
or Numeric Picturelwith length ~256 and STRINGSIZE disabled.

IPicture types 1, 2 or 3 when SIZE disabled.

FIXED BINARY

FIXED DECIMAL

FLOAT If Q1+P1~75. Long or short-FLOAT target.

Bit String String must be fixed-length, ALIGNED, and with
length ~2088. STRINGSIZE Condition must be
disabled.

Character string If precision = scale factor, it must be even.
string must be fixed-length and length ~256.
STRINGSIZE must be disabled.

Numeric picture Picture types 1, 2 and 3.

IFIXED BINARY
I
IFIXED DECIMAL
I
I FLOAT
I
I
IBit string
I
I

Scale factor <80.

Source and target may be single or double length

String must be fixed-length, ALIGNED, and with
length ~2088. STRINGSIZE condition must be
disabled.

IFIXED BINARY Isource string must be fixed-length, ALIGNED,
I land with length ~32.
I I

Bit string IFIXED DECIMAL 'Source must be fixed-length, ALIGNED, and with
land FLOAT Ilength <32.
I I
\Character string ISource must be fixed-length, ALIGNED, and lengthl
I Ii only. I

---1
IBit string I I
I I I
IFIXED DECIMAL ISource length 1 only. CONVERSION condition I

Character I Imust be disabled. I
I FLOAT I I
I I I

I IFIXED BINARY I I
I L---J
I
IFigure 18.1 (Part 1 of 2). Implicit data conversion performed in-line

270 OS PL/I CKT AND OPT LRM PART I

r---,
1 Conversion 1
1--------------------------------------1 comments and Conditions
1 Source 1 Target I
1---
1 ICharacter string IString must be fixed-length with length ~256.
ICharacter Picture 1 I
1 ICharacter Picture IPictures must be identical.
1---
1 IFIXED BINARY IVia FIXED DECIMAL. SIZE condition disabled.
1 1 1
I IFIXED DECIMAL IType 2 pictures without * or embedded
1 1 1 punctuation. SIZE condition disabled.
INumeric Picture I I
Itype 1 and 2 1 FLOAT IVia FIXED DECIMAL. SIZE condition disabled.
1 I 1
1 INumeric Picture IPicture types 1, 2 or 3. SIZE condition
1 I I disabled.
1---
I Label 1 Label I
1---
I locator I locator I L- __ ----------------------------------J
Figure 18.1 (Part 2 of 2). Implicit data conversion performed in-line

optimization can cause Significantly fewer
instructions to be executed.

In-Line Operations

Many operations are handled in-line. It
will repay the user, therefore, to
recognise which operations are performed
in-line and which require a library call,
and to arrange his program to use the
former wherever possible. The majority of
these in-line operations are concerned with
data conversion and string handling.

Data Conversion

The data conversions performed in-line are
shown in figure 18. A conversion outside
the range or condition given is performed
by a library call.

Not all the picture characters available
may be used in a picture involved in an in
line arithmetic conversion. The only ones
permitted are:

V and 9

Drifting or non-drifting characters $
S +

Zero suppression characters Z *

Punctuation characters ,. / B

For in-line conversions, pictures with
this subset of characters are divided into
three types:

Picture type 1: Pictures of all 9s with
(optionally) a V and a leading or
trailing sign. For example:

Picture:

, 99V999' , , 99' , 'S99V9',

, 99V+ " '$999'

type 2: pictures with zero
suppression characters and
(optionally> punctuation
characters and a sign character.
Also, type 1 pictures with
punctuation characters. For
example:

'ZZZ', '**/**9', 'ZZ9V.99',

'+ZZ.ZZZ·, '$///99', '9.9'

Picture type 3: Pictures with drifting
strings and (optionally>
punctuation characters and a sign
character. For example:

• $$$$', '-, --9', • S/SS/S9 ' ,

'+++9V.9' " $$$9-'

Sometimes a picture conversion is not
performed in-line even though the picture
is one of the above types. This may be
because:

1. SIZE is enabled and could be raised.

Chapter 18: Efficient Programming 271

r---,
, String operation 1 Comments and Conditions I
,--_·_------------------------------1
1
I
Assign

I Source I Target 1 Comments I
1--
INon-adjustable. ALIGNED. INon-adjustable.INo length restriction
Ifixed-Iength bit string IALIGNED. bit lif OPTIMIZE(TIME) is
I I string I specified; otherwise
I I Imaximum length of
, I 18192 bits
1--
IAdjustable or VARYING, I Non-adjustable, I Only if OPTIMIZE(TIME)
IALIGNED bit string IALIGNED bit lis specified
I Istring S 20Q8 I
I I bits I
1--
I Non-adjustable, UNALIGNED, I (same as IOnly if OPTIMIZE(TlME)
Ifixed-Iength bit string I source) lis specified. Maximum
Ithat is an element of an I Ilength = 57 bits
I AUTOMATIC, BASED, or STATIC I I
Istructure with nO adjustable I I
lbounds or extents I I
1---~----
,Non-adjustable, fixed-lengthINon-adjustable I
Icharacter string I character I
1 I string I
1--
IAdjustable or VARYING INon-adjustable ,
Icharacter string I character ,
I Istring of I
I Ilength S 256 I

'and', 'not', 'or'IAs for bit string assignments, but no adjustable or varying-length
loperands are handled

Compare

Concatenate

STRING function

lAS for string assignment with the two comparands taking the roles of
Isource and target, but no adjustable or varying-length operands are
I handled

lAS for string assignments, but no adjustable or varying-length
Isource strings are handled

,Element variables and non-adjustable array and structure variables
lin connected storage.

I Notes: 1. the maximum lengths specified refer to the lengths of operations rather than,
I operands. If the target is fixed-length, the operation length is the target I
I length. If the target is VARYING, the operation length is the lesser of the I
I operand lengths. I
I I
I 2. UNALIGNED bit strings that are parameters, defined variables, or part of I
I aggregate variables are not handled. I L-----__ ----------------------------------J
Figure 18.2. Conditions under which string operations are handled in-line

272 OS PL/I CKT AND OPT LRM PART I

2. There is no overlap between the digit
positions in the source and target.
For example:

DECIMAL (6,8) or DECIMAL (5,-3) to PIC
'999V99' will not be performed

3. The picture may have certain
characteristics that make it difficult
to handle in-line. example:

a. punctuation between a drifting Z
or a drifting * and the first 9 is
not preceded by a V. For example:

'ZZ.99'

b. Drifting or zero suppression
characters to the right of the
decimal point. For example:

'ZZV.ZZ', '++V++'

string Handling

IThe string functions and operations
Iperformed in-line are shown in figures 18.2
land 18.3. It should be noted that even the
Istring functions indicated as always being
Iperformed in-line may sometimes call a
Ilibrary routine. For example, if the
lexpression in the BIT or CHAR functions
Irequires an implicit conversion not handled
lin-line, the appropriate library routines
Iwill be called.
I
I
I
I
I
I Global Optimization Features
I
I
ICOMMON EXPRESSIONS
1
I
IThe term "common expression" is used to
Idescribe an expression such as B+C in:
I
I A = B+C
I
I
I
I D = B+C
I
lin which the variables Band C are not
Ireset between the two occurrences of the

r---,
String I Comments and Conditions I

Function I I
---1
BIT I Always I

I I
BOOL IThe third argument must be a 1

I constant. The first two I
larguments must satisty the I
Iconditions for 'and', 'or', andl
I'not' operations in fig 18.2. I
I I

C~ Ihl~~ 1
1 1

HIGH 1 Always 1
1 I

INDEX ISecond argument must be a 1
Inon-adjustable character string
1<256 characters long
I

LENGTH 1 Always
I

LOW 1 Always
I

REPEAT ISecond argument must be
1 constant
I

SUBSTR ISTRINGRANGE must be disabled
I

TRANSLATEIFirst argument must be
Ifixed-Iength, second and third
larguments must be constant
I

UNSPEC I Al ways
I

1 VERIFY IFirst argument must be
I 1 fixed-length: if CHARACTER it
1 Imust be S256 characters, if BITI
I lit must be ALIGNED, S2048 bits. I
I Isecond argument must be 1
1 I constant I L----------------------------------_______ J

Figure 18.3. Conditions under which
string functions are
handled in-line

Chapter 18: Efficient programming 273

expressions. In a case like this it is not
necessary to evaluate the expression more
than once.

The technique of avoiding repeated
evaluation of the same expression is called
common expression elimination.

An important application of common
expression elimination occurs in statements
containing subscripted variables where the
same subscript value is used for each
variable. For example:

PAYROLL TAX(MANNO) = PAY_CODE(MANNO) *
WEEKPMNT(MANNO);

The value of the subscript expression MANNO
is computed once only when the statement is
executed (the computation would involve the
conversion of a value from decimal to
binary if MANNO were declared a decimal
variable) .

Interrupt Handling for Programs with
Common Expression Elimination

The order of most operations in each PL/I
statement is dependent on the priority of
the operators involved. However, the order
of evaluation of those sub-expressions
whose results form the operands of
operators of lower priority, such as
subscript expressions, locator qualifier
expressions, and function references, is
not defined beyond the rule that an operand
must be fully evaluated before its value
can be used in another operation.

ITherefore on-units associated with
linterrupts which occur during the
levaluation of such sub-expressions can be
lentered in an unpredictable order.
I Consequently, an expression might have
Iseveral possible values, according to the
lorder of, and action taken by, the on-units
that are entered. When a computational on
unit is entered:

1. The values of all variables set by the
execution of previous statements are
guaranteed to be the latest values
aSSigned to the variables, and can be
used by the on-unit. For instance the
PUT DATA statement can be used to
record the values of all variables on
entry to an on-unit.

2. The value of any variable set in an
on-unit resulting from a computational
interrupt is guaranteed to be the
latest value assigned to the variable,
for any part of the program.

Where there is a possibility that
variables might be modified as the result

214 OS PL/I CKT AND OPT LRM PART I

lof a computational interrupt, either in the
lassociated on-unit, or as the result of the
lexecution of a branch from the on-unit,
Icommon expression elimination is inhibited.
IFor example:
I
I ON ZERODIVIDE B,C=l;

X=A*B+B/C:
Y=A*B+D:

The compiler would normally attempt to
eliminate the re-evaluation of the sub
expression A*B in the second assignment
statement. However, in this example, if
the ZERODIVIDE condition is raised during
the evaluation of B/C the two values for
A*B would be different. This optimization
is inhibited to allow for this possibility.

Note that the above discussion applies
only when the optimization option ORDER is
specified or assumed. If the programmer
does not require the guarantees described
above, the optimization option REORDER can
be specified. In this case, common
expression elimination is not inhibited.
The ORDER and REORDER opt~ons are discussed
later in this chapter.

TRANSFER OF INVARIANT EXPRESSIONS OR
STATEMENTS

An expression or statement occuring within
a loop is said to be invariant if the
compiler can detect that the expression

Ivalue or statement action would be
lidentical for each iteration of the loop.
I
(An invariant expression or statement can
Ibe moved from within a loop to a point in
the program outside the loop, so that it is
executed once only, rather than for each
iteration of the loop. For example:

DO I = 1 TO N:

J = 3;

END;

IThe statement J=3 is invariant and can be
Imoved outside the loop. It can be moved
(forwardS or backwards, according to
I circumstances.
I
I If the programmer wishes to take
ladvantage of this type of optimization, he
Imust specify the optimization option

IREORDER on a BEGIN or PROCEDURE block which
Icontains the loop with reorderable
Istatements or operations. If the option is
Inot specified, the default option ORDER is
lassumed and the optimization is inhibited.
I
I
I
IORDER AND REORDER OPTIONS
I
I
IORDER and REORDER are optimization options
Ispecified for a procedure or begin block in
la PROCEDURE or BEGIN statement.
I
I The default is ORDER, but REORDER is
linherited by all contained blocks unless
Ithey explicitly specify ORDER.
I
I ,
IORDER Option ,
I
'The ORDER option should be specified for a
Iprocedure or begin block if the programmer
Irequires that the most recently assigned
Ivalues of variables that are modified in
Ithe block are guaranteed for use in On
lunits entered because of computational
linterrupts during the execution of
Istatements and expressions in" the block.
lIn a block to which the ORDER option
,applies, common expreSSions may be
leliminated by the compiler. If so, the
,occurrence of computational interrupts
,during execution of the block may be less
Ithan would occur if common expressions had
Inot been eliminated. However, if an
linterrupt occurs during execution of an
'ORDER block, the values of variables in
Istatements which precede the interrupt are
Iguaranteed to be the most recent values
lassigned when reference is made to them in
Ithe on-unit for the interrupt. Other forms
lof optimization are permitted in an ORDER
Iblock except for forward or backward move
lout of any expression which can cause an
I interrupt. Since it would be necessary to
Idisable all the possible conditions which
Imight be encountered, the use of ORDER
Ivirtually suppresses any move-out of
,statements or expressions from loops.
I
I
I
IREORDER Option ,
I
'The REORDER option permits the compiler to
Igenerate optimized code to produce the
'result specified by the source program,
Iwhen error-free execution takes place.
'Move-out is permitted for any invariant
,statements and expressions from inside a
Iloop to a pOint in the source program
leither preceding or following such a loop.
IThus the statement or expression is

executed once only, either before or after
the loop.

More efficient execution of loops can be
achieved by maintaining in registers the
values of variables which are subject to
frequent modification during the execution
of the loops. When error-free execution
permits, values can be kept in registers,
and considerable efficiency can be achieved
by dispensing with time-consuming load-and
store operations to reset the values of
variables in their storage locations. If

Ithe latest value of a variable is required
lafter a loop has been executed, the value
lis assigned to the storage location of the
Ivariable when control passes out of the
Iloop.
I
I Register allocation can be more
ISignificantly optimized if REORDER is
Ispecified for the plock. However, the
Ivalues of variables that are reset in the
Iblock are not guaranteed to be the latest
lassigned values when a computational
linterrupt occurs, since the latest value of
la variable may be present in a register but
Inot in the storage location of the
I variable. ThUS, anyon-unit entered for a
Icomputational interrupt must not refer to
Ivariables set in the reorder block.
I However, use of the built-in functions
10NSOURCE and ONCHAR is still valid in this
I context.
I
I A program is in error if during
lexecution there is a computational or
Isystem action interrupt in a REORDER block
Ifollowed by the use of a variable whose
Ivalue is not guaranteed.
I
I Since these restrictions preclude the
Icorrection of erroneous data, except by
lusing ONSOURCE and ONCHAR pseudovariables
Ifor a CONVERSION on-unit, the programmer
Imust either depend on the standard system
'action, thereby terminating execution of
Ithe program, or use the on-unit to perform
lerror recovery and to restart execution by
lobtaining fresh data for computation. The
Isecond approach should ensure thqt all
Ivalid data is processed, and that invalid
data is noted, while still taking advantage
of any possible optimization. For example:

ON OVERFLOW PUT DATA;
DO J = 1 TO M;
DO I = 1 TO Ni
X(I,J) = Y(I) + Z(J) *L + SQRT(W)i
P = I*Ji
END;
END;

When the above statements appear in a
reorder block, the source code compiled is
interpreted as follows:

ON OVERFLOW PUT DATA;

Chapter 18: Efficient Programming 215

TEMP1 = SQRTCW)i
DO J = 1 TO Mi
TEMP2 = Ji
DO I = 1 TO Ni
X(I,J) = Y(I) +Z(J)*L+TEMP1i
P=TEMP2;
TEMP2=TEMP2+Ji
END;
END;

TEMP1 and TEMP2 are temporary variables
created to hold the values of expressions
moved backwards out of the loops, and the
statement P=I*J can be simplified to P=N*M.
If an overflow interrupt occurs, the values
of the variables used in the loops cannot
be guaranteed to be the most recent values
assigned before the occurrence of the
interrupt, since the current values may be
held in registers, and not in the storage
location to which the on-unit must refer.

Although this example does not show it,
Ithe subscript calculations for x, Y, and Z
Iwill also be optimized.
I
I
I
IELIMINATION OF REDUNDANT EXPRESSIONS
I
I
A redundant expression is an expression
that need not be evaluated in order to
continue executing the program correctly.

The effect of this optimization is to make
the use of logical expressions in IF
statements more efficient than a series of
nested IF statements. For &xample:

IF (A = D) I (C = D) THEN
X = Y + Zi

is more efficient, in terms of space
occupied by object code, than:

IF A = D THEN X = Y+Z;
ELSE IF C=D THEN X = Y + Zi

If A or C does equal 0, the THEN clause in
the first example is executed, without the
expression ever being resolved to a single
bit.

EXPRESSION SIMPLIFICATION

Expression simplification is the process of
changing the form of source statement
expressions without changing the intended
effect so that they can be compiled into
more efficient object code.

TWO forms of expression simplification are
carried out by the compiler. Both involve
the use of arithmetic constants in

216 OS PL/I CRT AND OPT LRM PART I

loperational expressions. The
Isimplifications are as follows:
lexpressions such as 3*B are transformed
linto B+B+B; and in subscript expressions,
lexpressions such as 1+2 are transformed
linto I*MULT+2*MULT where MULT is a constant
I multiplier. The 2*MULT is then used as an
loffset factor in the addressing
I calculations.
I
I
I
ITAKING ADVANTAGE OF GLOBAL OPTIMIZATION
I
I
IThis section contains details of coding
Ipractices whiCh should be observed or
lavoided in order to take advantage of the
19lobal optimization facilities offered by
luse of the OPTIMIZE(TIME) compiler option.
I
I
I
ICommon Expression Elimination
I
I
Common expression elimination is inhibited
by.:

1. The use in expressions of variables
whose values can be reset in either an
input-output or computational on-unit.

2. If a based variable is, at some point
in the program, overlaid on top of a
variable used in the common
expression, then assigning a new value
to the based variable in between the
two occurences of the common
expression, inhibits optimization.

For instance, the common expression
X+Z, in the follOWing example, is not
eliminated because the based variable
A which, earlier in the program, is
overlaid on the variable X, is
aSSigned a value in between the two
occurences of X+Z.

DeL A BASF;D(P);
P=ADDR(X) ;

P=ADDR(Y) i

B=X+Zi
P->A=2i
C=X+Zi

3. The use of aliased variables. An
aliased variable is any variable whose
value can be modified by references to
identifiers other than its own
identifier. Examples are variables
with the DEFINED attribute, variables
used as the base for defined
variables, parameters, arguments, and

based variables.

variables whose addresses are known to
an external procedure by means of
pOinters that are either external or
used as arguments are also assumed to
be aliased variables.

The effect of an aliased variable is
not to prevent common expression
elimination completely, but to inhibit
it slightly. For all aliased
variables the compiler builds a list
of all the variables which could
possibly reference the aliased
variable. The list is the same for
each member of the list, and in a
given program there may be many such
lists.

When an expression containing an
aliased variable is being checked for
its use as a common expression, the
possible flow paths along which
related common expression could occur
are searched for assignments, not only
to the variable referenced in the
expression, but also for all the
members of the alias list to which
that variable belongs. If the program
contains an external pOinter variable,
it is assumed that this pOinter could
be set to all variables whose
addresses are known to external
procedures, that is, all external
variables, all arguments passed to
external procedures, and all variables
whose addresses could be assigned to
the external pointer. Thus variables
addressed by the external pointer, or
by any other pOinter which has a value
assigned to it from the external
pointer, are assumed to belong to the
same alias list as the external
variables, etc.

4. The form of an expression. If the
expression B+C could be treated as a
common expression, the compiler would
not be able to detect it as a common
expression in the following statement:

D=A+B+C;

The compiler processes the expression
A+B+C from left to right.
consequently it only recognizes the
expressions A+B and (A+B)+C. However,
by coding the expression D=A+(B+C),
the programmer can ensure that it is
recognized, since the compiler must
process the expression with the
highest priority first.

5. The scope of a common expression. In
order to determine the presence of
common expressions, the program is
analyzed and the existence of flow

units is determined. A flow unit is a
unit of compiled code that can only be
entered at the first instruction and
left at the last. A flow unit may
contain several PL/I source
statements; conversely, a single PLiI
source statement may comprise several
flow units. Common expressions are
recognized across individual flow
units. However, if the program flow
paths between flow units are complex,
the recognition of common expressions
is inhibited across flow units.

Common expression elimination is assisted
by thes e points:

1. Variables in expressions should not be
external or associated with external
pointers, or arguments to ADDR built
in functions.

2. The source program should not contain
external procedures, external label
variables, or label constants known to
external procedures.

3. Variables in expressions should not be
set or accessed in on-units if
possible.

4. Expressions to be commoned or
transferred must be arithmetic (for
example A+B) or string (for example
EIIF or STRING(G) rather than
compiler generated.

Transfer of Invariant Expressions

Transfer of invariant expressions out of
loops is inhibited by:

1. ORDER specified for the block.
However, transfer is not entirely
prevented by the ORDER option. It is
only inhibited for operations which
can cause computational interrupts.
Such operations do not include array
subscript manipulation where the
subscripts are represented by binary
halfword integers; such subscripts
cannot cause overflow unless they are
uninitialized, in which case the
program is in error anyway.

2. The use of variables whose values can
be set or used by input or output
statements.

3. The use of variables whose values can
be set in input/output or
computational on-units, or which are
aliased variables.

4. A complicated program flow, involving

Chapter 18: Efficient programming 211

external procedures, external label
variables and label constants.

Transfer is assisted by:

1. Specifying REORDER for the block

2. Avoidance of points 2-4 above

IRedundant Expression Elimination
I
I
Redundant expression elimination is
inhibited or assisted by the same factors
as for transfer of invariant expressions,
described above.

other Optimization Features

Optimized code can be generated for the
following items:

1. For a do-loop control variable except
when its value can be modified either
explicitly or by an on-unit during
execution of a do-loop.

2. For do-loops that do not contain other
do-loops, provided that, if the scope
of the control variable extends beyond
the block containing the do-loop, then
it is given a definite value after the
do-loop and before the end of the
block.

3. For assignment of arrays or structures
unless non-contiguous storage is used.

4. For array initialization where the
same value is assigned to each element
unless the array occupies non
contiguous storage.

5. For in-line conversions unless they
involve complicated picture or
character to arithmetic conversions.

6. For in-line code for the string built
in functions SUBSTR and INDEX unless
the on-conditions STRINGSIZE or
STRINGRANGE are enabled.

7. For register allocation and addressing
schemes unless the program flow is
complicated by use of external
procedures, external label variables,
or label constants known to external
procedures. Optimized register usage
is also inhibited by the use of
alia sed variables and variables that
are referenced or set in an on-unit.

278 OS PL/I CKT AND OPT LRM PART I

Common Errors and Pitfalls

This is a list of the errors and pitfalls
most likely to be encountered when writing
a PL/I source program. Some of the items
concern misunderstood or overlooked
language rules, while others result from
failure to observe the implementation
conventions and restrictions.

The warnings apply particularly to
programs compiled by the optimizing
compiler. Although a source program which
is in error under the optimizing compiler
will in general be in error under the
checkout compiler as well, the checkout
compiler detects many of the errors listed
and takes appropriate action.

OPERATING SYSTEM AND JOB CONTROL

A STATIC variable in an overlay segment
could be overwritten during an overlay
operation unless it is contained in the
root segment.

SOURCE PROGRAM AND GENERAL SYNTAX

1. Transcription errors may occur unless
particular care is taken when writing
the following characters:

1 (numeral), I (letter) , I (or),
/ (slash), , (quotation mark)~

(not), 7 (seven) ,
> (greater than) ;

L (letter) , < (less than) •

0 (letter) , 0 (zero) ;

S (letter) , 5 (five);

Z (letter) , 2 (two);

(break character),
- (minus sign) ~

2. Ensure that the source program is
completely contained within the
margins specified by the MARGINS
option.

3. Inadvertent omission of certain
symbols may give rise to errors that
are difficult to trace. Common errors
are: unbalanced quotation marks:
unmatched parentheses; unmatched
comment delimiters (e.g., 1* instead
of */ when closing a comment); and

missing semicolons.

4. Reserved keyword operators in the 48-
character set (e.g., GT, CAT) must in
all cases be preceded and followed by
a blank or comment.

5. Care should be taken to ensure that
END statements correctly match the
appropriate DO, SELECT, BEGIN, and
PROCEDURE statements.

6. In some situations, parentheses are
required when their necessity is not
immediately obvious. In particular,
the expression following WHILE, UNTIL,
and RETURN must be enclosed in
parentheses.

PROGRAM CONTROL

1. The procedure to be given initial
control at execution time must have
the OPTIONS(~.IN) attribute. If more
than one procedure has the MAIN
option, the first one encountered by
the linkage-editor gets control.

2. When a procedure of a program is
invoked while it is still active in
the same task, it is said to be used
recursively. Under the optimizing
compiler, attempting the recursive use
of a procedure that has not been given
the RECURSIVE attribute may result in
a program interrupt after exit from
the procedure. This will occur if
reference is made to automatic data of
an earlier invocation of the
procedure.

3. When a procedure may be invoked while
it is still active in another task,
the REENTRANT option must be
specified.

DECLARATIONS AND ATTRIBUTES

1. DECLARE statements for AUTOMATIC
variables are in effect executed at
entry to a block: sequences of the
following type should not be used:

A: PROC:
N=4:
DCL B(N) FIXED:

END:

2. Missing commas in DECLARE statements

are a common source of error. For
example, a comma must follow the entry
for each element in a structure
declaration.

3. External identifiers should not
contain more than seven characters.

4. In a PICTURE declaration, the V
character indicates the scale factor,
but does not in itself produce a
decimal point on output. The pOint
picture character produces a point on
output, but is purely an editing
character and does not indicate the
scale factor. In a decimal constant,
however, the point does indicate the
scale factor. For example:

DCL A PIC'99.9',
B PIC'99V9',
C PIC'99.V9':

A,B,C=4!>.6:
PUT LIST (A,B,C):

This will cause the following values
to be put out for A, B, and C,
respectively:

04.5 456 45.6

If these values were now read back
into the variables by a GET LIST
statement, A, B, and C would be set to
the following respective values:

004 5b.O 4~. 6

If the PUT statement were then
repeated, the result would be:

00.4 560 4~. 6

5. Separate external declarations for the
same identifier must not specify
conflicting attributes, either
explicitly or by default. If this
occurs the compiler will not be able
to detect the conflict.

If the INITIAL attribute is specified
for an external identifier, it must be
specified, with the same value, on all
the declarations for that identifier.
An exception to this rule is that an
INITIAL attribute specified for an
external identifier in a procedure
compiled by the optimizing compiler
need not be repeated elsewhere.

6. An identifier cannot be used for more
than one purpose within its scope.
Thus, the use of X in the following
sequence of statements would be in
error:

PUT FILE (X) LIST (A,B,C):
X=Y+Z:

Chapter 18: Efficient programming 219

X: M=N:

7. The prec1s1on of decimal integer
constants should be taken into account
when such constants are passed. For
example:

CALL ALPHA(6):

ALPHA: PROCEDURE (X) :
DCL X FIXED DECIMAL:
END:

If ALPHA is an external procedure, the
above example is incorrect because X
will be given default preciSion (5,0),
while the constant, 6, will be passed
with preciSion (1,0).

8. When a data item requires conversion
to a dummy, and the called procedure
alters the value of the parameter,
note that the dummy is altered, not
the original argument. For example:

DCL A FIXED,
B FLOAT:

CALL X(A,B):

X:PROC(Y,Z):
DCL (Y,Z) FIXED:
Y=Z**100: /*A IS ALTERED IN

CALLING PROC*/
Z=Y**3: /*B IS UNALTERED IN

CALLING PROC*/
END X:

9. When the attributes for a given
identifier are incompletely declared,
the rest of the required attributes
are supplied by default. The
following default assumptions should
be carefully noted.

FLOAT DECIMAL(6) REAL is assumed for
implicitly declared arithmetic
variables, unless the initial letter
is in the range I through N, when
FIXED BINARY(lS,O) REAL is assumed.

If a variable is explicitly declared
and any of the base, scale, or mOde
attributes is specified, the others
are taken from the set
FLOAT/DECIMAL/REAL. For example:

DCL I:

DCL J REAL;

/*1 IS FIXED BINARY
(15,0) REAL
AUTOMATIC*/

/*J IS FLOAT DECIMAL
(6) REAL
AUTOMATIC*/

DCL K STATIC: /*K IS FIXED BINARY
(15,0) REAL
STATIC*/

280 OS PL/I CKT AND OPT LRM PART I

DCL L FIXED: /*L IS FIXED DECIMAL
(5,0) REAL
AUTOMATIC*/

10. The precision of complex expressions
is not obvious. For example, the
precision of 1 + 11 is (2,0), that is,
the precision follows the rules for
expression evaluation.

11. When a procedure contains more than
one entry point, with different
parameter lists On each entry, make
sure that no references are made to
parameters other than those associated
with the point at which control
entered the procedure. For example:

A: PROCEDURE(P,Q):
P=Q+ 8: RETURN:

B: ENTRY(R,S):
R=P+S: /*THE REFERENCE TO P

IS AN ERROR*/
END:

12. Based storage is allocated in terms of
doublewords: therefore, even for the
smallest item, at least eight bytes
are required.

13. The variable used in the REFER option
must be referred to unambiguously.
For example:

DCL 1 A,
2 Y FIXED BIN,
2 Z FLOAT,

1 B,
2 Y FIXED BIN,
2 T(l:N REFER(B.Y»;

In any references to this declaration,
Y must be fully qualified to prevent a
possible ambiguity.

1q. Conflicting contextual declarations
must be avoided. P is often used as
the name of a pOinter: it must not,
therefore, assume by default the
characteristics of another data type.
For example:

DCL B BASED (P),

P AUTO,

. ,
The explicit declaration of P is
processed first by the compiler and
the default attributes, FLOAT and
DECIMAL are added; the contextual
declaration of P is then conflicting.

15. Parameters may not be given one of the

storage class attributes AUTOMATIC,
BASED, or STATIC; a parameter must
either be CONTROLLED or have nO
storage class.

AND INITIALIZATION

1. When a variable is accessed, it is
assumed to have a value which has been
previously assigned to it and which is
consistent with the attributes of the
variable. If this assumption is
incorrect, either the program will
proceed with incorrect data or a
program interrupt will occur. Such a
situation can result from failure to
initialize the variable, or it can
occur as a result of the variable
having been set in one of the
following ways:

a. by the use of the UNSPEC
pseudovariable

b. by record-oriented input

c. by overlay defining a picture on a
character string, with subsequent
assignment to the character string
and then access to the picture

d. by passing as an argument a
variable assigned in a different
procedure, without matching the
attributes of the parameter.

e. by aSSignment to a based variable
with different attributes, but at
the same location.

Failure to initialize a variable will
result in the variable having an
unpredictable value at execution time.
Do not assume this value to be zero.

Failure to initialize a subscript can
be detected by enabling
5UBSCRIPTRANGE, when debugging the
program (provided the uninitialized
value does not lie within the range of
the subscript).

2. Under the optimizing compiler, any
attempt to put out a variable or array
that has not been initialized may well
cause a data interrupt to occur. For
example:

DCL A(10) FIXED;
A(1)=10:
PUT LIST (A);

To avoid the data interrupt, the array
should be initialized before the
assignment statement, thus:

A=O;

Note that this problem can also occur
under the optimizing compiler as a
result of CHECK system action for an
uninitialized array. If the CHECK
condition were enabled for the array
in the above example, and system
action were taken, the results, and
the way in which the program
terminates, would be unpredictable.
The same problem arises when PUT DATA
is used.

3. Note the distinction between =
(assignment) and = (comparison). The
statement

A=B=C;

means ·compare B with C and assign the
result (either 'l'B or 'O'B) to A,
performing type conversion if
necessary."

q. Assignments that involve conversion
should be avoided if possible (see
"Arithmetic and Logical Operations"
later in this chapter).

5. In the case of initialization of or
aSSignment to a fixed length string:
if the aSSigned value is shorter than
the string, it is extended on the
right with blanks (for a character
string) or zeros (for bit strings).
For example:

DCL A CHAR(6),
B CHAR(3) INIT('CR'):
A=B:

After the execution of the above
statements, B would contain CRb, and A
would contain CRbbbb.

6. It is not possible to reference a
cross section of an array of
structures; the whole of an array of
structures, or a single element may be
referenced, but not a cross section.

7. When SIZE is disabled, the result of
an aSSignment which would have raised
SIZE is unpredictable:

FIXED BINARY: The result of an
aSSignment here -- which includes, for
instance, source language assignments
and the conversions implied by
parameter matching may be to raise
FIXEDOVERFLOW.

FIXED DECI~~L: Truncation to the
nearest byte may occur, without
raising an interrupt. If the target
preciSion is even, an extra digit may
be inserted in the high-order byte.

Chapter 18: Efficient programming 281

ARITHMETIC AND LOGICAL OPERATIONS

1. The rules for expression evaluation
should be carefully noted, with
particular reference to priority of
operations. The following examples
show the kind of mistake that can
occur:

X>YIZ is not equivalent to X>YIX>Z but
is equivalent to (X>Y)IZ

X>Y>Z is not equivalent to X>Y&Y>Z but
is equivalent to (X>Y»Z

All operation sequences of equal
priority are evaluated left to right,
except for **, prefix +, prefix -, and
~, which are evaluated right to left.
Thus, the statement

is equivalent to

A=B**(-(C**D»;

The normal use of parentheses is to
modify the rules of priority; however,
it may be convenient to use redundant
parentheses as a safeguard Or to
clarify the operation.

2. Conversion is governed by
comprehensive rules which must be
thoroughly understood if unnecessary
trouble is to be avoided. Some
examples of the effect of conversion
follow.

a. DECIMAL FIXED to BINARY FIXED can
cause unexpected results if
fractions are involved:

DCL I FIXED BIN(31,S) INIT(l);
I = 1+.1;

The value of I is now 1.0625.
This is because .1 is converted to
FIXED BINARY(S,4), so that the
nearest binary approximation is
O.OOOlB (no rounding occurs). The
decimal equivalent of this is
.062S. A better result would have
been achieved by specifying .1000
in place of .1.

b. If arithmetic is performed on
character string data, the
intermediate results are held in
the maximum fixed decimal
precision (lS,O):

DCL A CHAR(6) INIT('123.4S');
DCL B FIXED(5,2);
B=A; /*B HAS VALUE 123.45*/
B=A+A; / *B BAS VALUE 246.00*/

282 OS PL/I CRT AND OPT LRM PART I

c. The rules for arithmetic to bit
string conversion affect
assignment to a bit string from a
decimal constant:

DeL A BIT(l),
o BIT(S);

A=l: /*A HAS VALUE 'O'B*/
0=1: /*0 HAS VALUE '00010'B*/
D='l'B; /*0 HAS VALUE

'10000'B*/
IF A=l THEN GO TO Y:

ELSE GO TO X;

The branch will be to X, because
the assignment to A resulted in
the following sequence of actions:

(1) The decimal constant, 1, is
assumed to be FIXED DECIMAL
(1,0) and is assigned to
temporary storage with the
attributes FIXED BINARY(4,0),
taking the value 0001S:

(2) This value is now treated as a
bit string of length (4), so
that it becomes 'OOOl'B;

(3) The resultant bit string is
assigned to A. Since A has a
declared length of 1, and the
value to be assigned has
acquired a length of 4,
truncation occurs at the
right, and A has a final value
of 'O'B.

To perform the comparison
operation in the IF statement,
'O'B and 1 are converted to FIXED
BINARY and compared
arithmetically. They are unequal,
giving a result of "false" for the
relationship A=l.

In the first assignment to D, a
sequence of actions similar to
that described for A takes place,
except that the value is e~ended
at the right with a zero, because
D has a declared length that is 1
greater than that of the value to
be assigned.

d. Assignment of arithmetic values to
character strings involves
conversion according to the rules
given in section F, -Data
Conversion and Expression
Evaluation- •

Example 1

DCL A CHAR(4),
B CHAR(?);

A='O'; /*A HAS VALUE 'Obbb'*/
A=O; /*A HAS VALUE 'bbbO'*/
B=1234567; /*B HAS VALUE

'bbb1234'*/

Note: The three blanks are
necessary to allow for the
possibility of a minus sign, a
decimal or binary point, and
provision for a Single leading
zero before the pOint.

Example 2

DCL CTLNO CHAR(8) INIT{'O');
DO 1=1 TO 100;

CTLNO=CTLNO+l;

END;

In this example, a conversion
error occurs because of the
following sequence of actions:

(1) The initial value of CTLNO,
that is, 'Obbbbbbb'i is
converted to FIXED
DECIMAL{15,0).

(2) The decimal constant, 1,
assumed to be FIXED
DECIMAL(l,O), is added: in
accordance with the rules for
addition, the precision of the
result is (16,0).

(3) This value is now converted to
a character string of length
18 in preparation for the
assignment back to CTLNO.

(4) Because CTLNO has a length of
8, the assignment causes
truncation at the right; thus,
CTLNO has a final value that
consists entirely of blanks.
This value cannot be
successfully converted to
arithmetic type for the second
iteration of the loop.

e. FIXED division can result in
unexpected overflows or
truncation. For example, the
result of evaluating the
expression

25+1/3

would be undefined and
FIXEDOVERFLOW would be raised. To
obtain the correct result it would

be necessary to write

25+01/3

The explanation is that constants
have the precision and scale
factor with which they are
written, while FIXED division
results in a value of maximum
implementation-defined precision.
The results of the two evaluations
are reached as follows:

r---------------------------------,
I precn/I
I Scale I

Item I Factor Result

1 1
3
1/3

(1,0)
(1,0)

(15,14)
(2,0)

(15,14)

3
0.33333333333333

25
undefined

2!>
25+1/3

(truncation on
left:
FIXEDOVERFLOW
would be raised
unless disabled)

01 (2,0) I 01
3 (1,0) 1 3

01/3 (15,13)100.3333333333333
25 (2,0) 1 25
25+01/3 (15,13)125.3333333333333
L---------------------------------J
Alternatively, the PRECISION
built-in function could be used:

25+PREC(1/3,15,13)

f. Checking of a picture is performed
only on assignment into the
picture variable:

DCL A PIC'999999',
B CHAR(6) DEF A,
C CHAR(6);

B= ' ABCDEF' :
C=A; /*WILL NOT RAISE CONV

CONDITION*/
A=C; /*WILL RAISE CONV*/

Note also (A, B, C as declared
above):

A=123456: /*A HAS VALUE
123456*/

/:ljcB HAS VALUE
'123456' */

C=123456; /*C HAS VALUE
'bbb123 '*/

C=A; /*C HAS VALUE '123456'*/

g. A FIXED DECIMAL element with a
declared even precision (P,Q) may
have an effective precision of
(P+1,Q), as the high-order byte

Chapter 18: Efficient Proqramming 283

DO-GROUPS

may not be non-zero. The SIZE
condition can be used to eliminate
this effect:

DCL (A,B,C) FIXED DECIMAL (6,0);
ON SIZE;

(SIZE): A = B + C;

This ensures that the high-order
byte of A is zero after the
assignment.

1. The scope of a condition prefix
applied to a DO statement is limited
to execution of the statement itself;
it does not apply to execution of the
entire group.

2. An iterative do-group is not executed
if the terminating condition is
satisfied at initialization:

1=6:
DO J=I TO 4;

X=X+J;
END;

X is not altered by this group, since
BY 1 is implied. Iterations can step
backwards, and if BY -1 had been
specified, three iterations would have
taken place.

3. Expressions in a DO statement are
assigned to temporaries with the same
characteristics as the expression, not
the variable. For example:

DCL A DECIMAL FIXED(S,O);
A=10;
DO 1=1 TO A/2;

END;

This loop will not be executed,
because A/2 has decimal precision
(15,10), which, on conversion to
binary (for comparison with I),
becomes binary (31,34).

Five iterations would resu1t if the DO
statement were replaced by

ITEMP=A/2;
DO 1=1 TO ITEMP;
or
DO 1=1 TO PREC(A/2,6,1)

284 OS PL/I CKT AND OPT LRM PART I

4. do-groups cannot be used as on-units;
a BEGIN block must be used for an on
unit of more than one statement.

5. Upper and lower bounds of iterative do
groups are computed once only, even if
the variables involved are reassigned
within the group. This applies also
to the BY expression.

Any new values assigned to the
variables inyolved would take effect
only if the:do-group were started
again.

6. In a do-group with both a control
variable and a WHILE option, the
evaluation and testing of the WHILE
expression is carried out only after
determination (from the value of the
control variable) that iteration may
be performed. For example, the
following group would be executed at
most once:

DO 1=1 WHILE (X>Y) ;

END;

7. I is frequently used as the control
variable in a do-group, for example:

DO 1=1 TO 10;

Within the scope of this implicit
declaration, I might be contextually
declared as a pointer, for example:

DCL X BASED (I) ;

The two statements are in conflict and
will produce a diagnostic message.
When I is a pointer variable, it can
only be used in a do-group in one of
the following ways:

a. DCL (I, lA, IB, IC) POINTER;

DO I=IA,IB,IC;

b. DeL (I, IA) POINTER;

DO WHlLE(I=IA);

8. If the control variable is used as a
subScript within the do-group, care
must be taken not to let the variable
run beyond the bounds of the array
dimension. For instance:

i
I

DECLARE A(10):
DO I = 1 TO N:

ACI) = X:

END:

If N is greater than 10 then the
assignment statement may overwrite
data beyond the storage allocated to
the array A. Such a bug can be
difficult to find, particularly if the
overwritten storage happens to contain
object code. The error can be
detected by enabling SUBSCRIPTRANGE.

DATA AGGREGATES

1. Array arithmetic should be thought of
as a convenient way of specifying an
iterative computation. For example:

DeL A(10,20):

A=A/AC1,1):

has the same effect as

DCL A(10,20):

DO 1=1 TO 10:
DO J=l TO 20:
A(I,J}=A(I,J)/A(l,l):
END: END:

Note that the effect is to change the
value of A(l,l) only, since the first
iteration would produce a value of 1
for A(l,l). If the programmer wished
to divide each element of A by the
original value of A(l,l), he could
write

B=A(l,l):
A=A/B:

or alternatively,

DCL A(10,20),
B(10,20}:

B=A/A(l,l}:

2. Note the effect of array
multiplication:

DCL (A, B, C) (10 I 10) ;

A=B*C:

This does not affect matrix
multiplication: it is equivalent to:

DCL (A,B,C) (10,10);

DO 1=1 TO 10:
DO J=l TO 10:
A(I,J)=B(I,J}*C(I,J):
END: END:

STRINGS

1. Assignments made to a varying string
by means of the SUBSTR pseudovariable
do not set the length of the string.
A varying string initially has an
undefined length, so that if all
assignments to the string are made
using the SUBSTR pseudovariable, the
string still has an undefined length
and cannot be successfully assigned to
another variable or written out.

2. The user must ensure that the lengths
of intermediate results of string
expressions do not exceed 32767 bytes.
This applies particularly to strings
of varying lengths, as there is nO
object-time length checking.

FUNCTIONS AND PSEUDOVARIABLES

1. When UNSPEC is used as a
pseudovariable, the expression on the
right is converted to a bit string.
consequently, the expression must not
be invalid for such conversion: for
example, if the expression is a
character string containing characters
other than 0 or 1, a conversion error
will result.

ION-CONDITIONS
I

AND ON-UNITS

I
I 1. Note the correct poSitioning of the ON

statement. If the specified action is
to apply when the named condition is
raised by a given statement, the ON

I
I
I

Chapter 18: Efficient programming 285

statement must be executed before that
statement. The statements:

GET FILE (ACCTS) LIST (A,B,C):
ON TRANSMIT (ACCTS) GO TO TRERR:

would result in the ERROR condition
being raised in the event of a
transmission error during the first
GET operation, and the required branch
would not be taken (assuming that no
previous ON statement applies).
Furthermore, the ON statement would be
executed after each execution of the
GET statement.

2. An on-unit cannot be entered by means
of a GOTO statement. To execute an
on-unit deliberately, the SIGNAL
statement can be used.

3. CONVERSION on-units entered as a
result of an invalid conversion (as
opposed to SIGNAL) should either
change the invalid character (by means
of the ONSOURCE or ONCHAR
pseudovariable), or else terminate
with a GOTO statement. Otherwise, the
system will print a message and raise
the ERROR condition.

4. At normal exit from an AREA on-unit
the standard system action is to try
again to make the allocation. As a
result the on-unit will be entered
again, and an indefinite loop will be
created. To avoid this, the amount
allocated should be modified in the
on-unit, for example, by using the
EMPTY built-in function or by changing
a pointer variable.

5. Do not use on-units to implement the
program's logic: use them only to
recover from truly exceptional
conditions. Whenever an on-unit is
entered, considerable error-handling
overheads are incurred. To implement
the logic, the programmer should
perform the necessary tests, rather
than relying on the compiler's
condition-detecting facilities.

For example, in a program using
record-oriented output to a keyed data
set, the programmer might wish to
eliminate certain keys because they
would not fit into the limits of the
data set. He may rely on the raising
of the KEY condition to detect
unsuitable keys, but it is
considerably more efficient tor him to
test each key himself.

286 OS PL/I CKT AND OPT LRM PART I

INPUT/OUTPUT

1. The UNDEFINEDFILE condition is raised
not only by conflicting language
attributes (such as DIRECT with
PRINT), but also by the following:

a. Block size smaller than record
size (except when records are
spanned).

b. LINESIZE exceeding thE permitted
maximum.

c. KEYLENGTH zero or not specified
for creation of INDEXED,
REGIONAL(2), or REGIONAL(3) data
sets.

d. Specitying a KEYLOC option, for an
INDEXED data set, with a value
resulting in KEYLENGTH + KEYLOC
exceeding the record length.

e. Specifying a V-format logical
record length of less than 18
bytes for STREAM data sets.

f. Specitying, for FB-format blocked
records, a block size which is not
an integral multiple of the
recordsize.

g. Specifying, for VB-format records,
a logical record length that is
not at least four bytes smaller
than the specified block size.

2. If a file is to be used for both input
and output, it must not be declared
with either the INPUT or the OUTPUT
attribute. The required option can be
specified on the OPEN statement.

3. Input/output lists must be surrounded
by a pair of parentheses: so must
iteration lists. Therefore, two pairs
of outer parentheses are required in

GET LIST «ACI) DO 1=1 TO N»;

4. The last eight bytes of a source key
to access a regional data set must be
the character string representation of
a fixed decimal integer. When
generating the key, the rules for
arithmetic to character string
conversion should be considered. For
example, the following group would be
in error:

DCL KEYS CHAR(8):
DO 1=1 TO 10:

KEYS=I:
WRITE FILE (F) FROM (R)

KEYFROM (KEYS):
END:

The default for I is FIXED
BINARY(15,0), which requires not 8 but
9 characters to contain the character
string representation of the
arithmetic values.

S. Note that the file must have the KEYED
attribute if the KEY, KEYFROM, or
KEYTO options are to be used in any
input/output statement referring to
that file.

6. The standard file names SYSIN and
SYSPRINT are implicit only in GET and
PUT statements. Any other reference,
such as those in ON statements or
record-oriented input/output
statements, must be explicit.

1. PAGESIZE and LINESIZE are not file
attributes, that is, they cannot be
included in a declaration for the
file; they are options on the OPEN
statement.

8. When an edit-directed data list is
exhausted, no further format items
will be processed, even if the next
format item does not require a
matching data item. For example:

DCL A FIXED (5) ,
B FIXED(S,2);

GET EDIT (A,B) (F(S),F(5,2),X(10»;

The X(10) format item will not be
processed. To read a following card
with data in the first ten columns
only, the SKIP option can be used:

GET SKIP EDIT (A,B) (F(S), F(S,2»;

9. The number of data items represented
by an array or structure name
appearing in a data list is equal to
the number of elements in the array or
structure; thus if mqre than one
format item appears in the format
list, successive elements will b~
matched with successive format items.
For example:

DCL 1 A,
2 B CHAR(S),
2 C FIXED(S,2);

PUT EDIT (A) (A(S),F(S,2»;

B will be matched with the A(S) item,
and C will be matched with the F(S,2)
item.

10. Arrays are transmitted in row major
order (e.g., A(l,l), A(1,2), A(1,3),

A (2 , 1), ••• etc.)

tll.
t
t
I
t12 •
I
I
I
I
I
13.

Strings used as input data for GET
DATA and GET LIST must be enclosed in
quotation marks.

The 48-character representation of a
semicolon (,.) is not recognized as a
semicolon if it appears in a data
directed input stream; the 11-8-6
punch must be used.

The user must be aware of a limitation
of PUT DATA; (i.e., without a data
list): its effect when used with an
ON statement is restricted because the
data known to PUT DATA would be the
data known at the pOint of the on
unit.

If the ON statement

ON ERROR PUT DATA;

is used in an outer block, it must be
remembered that variables in inner
blocks are not known and therefore
will not be dumped. It would be a
good practice, therefore, to repeat
the on-unit in all inner blocks during
debugging.

If an error occurs during execution of
the PUT DATA statement, and this
statement is within an ERROR on-unit,
the program will recursively enter the
ERROR on-unit until no more storage
remains. Since this could be wasteful
of machine time and printout, the
ERROR on-unit should be turned off
once it is entered. Instead of:

ON ERROR PUT DATA:

better code would be:

ON ERROR BEGIN;
ON ERROR SYSTEM:
PUT DATA;
END;

When PUT DATA is used without a data
list every variable known at that
pOint in the program is transmitted in
data-directed output format to the
specified file. Users of this
facility, however, should note that:

a) Uninitialized FIXED DECIMAL data
may raise the CONVERSION condition
or a data interrupt.

b) Unallocated CONTROLLED data will
cause arbitrary values to be
printed and, in the case of FIXED
DECIMAL, may raise the CONVERSION
condition or a data interrupt.

14. A pointer set in READ SET or LOCATE
SET is not valid beyond the next

Chapter 18: Efficient programming 281

operation on the file, or beyond a
CLOSE statement. In OUTPUT files,
WRITE and LOCATE statements can be
freely mixed.

When it is required to rewrite a
record that has been read into a
buffer (using a READ SET statement
that specifies a SEQUENTIAL UPDATE
file) and then updated, the REWRITE
statement without a FROM option may be
used. The result of a REWRITE after a
READ SET is always to cause the
contents of the last buffer to be
rewritten onto the data set. For
example:

3 READ FILE (F) SET (P);

5 P->R = S;

1 REWRITE FILE (F);

11 READ FILE (F) INTO (X);

15 REWRITE FILE (F);

19 REWRITE FILE (F) FROM (X);

Notes:

Statement 1 will rewrite a record
updated in the buffer.

Statement 15 will not change the
record on the data set at all.

statement 19 will raise ERROR, since
there is no preceding READ statement.

There is one case where it is not
possible to check for the KEY
condition on a LOCATE statement until

288 OS PL/I CRT AND OPT LRM PART I

transmission of a record is attempted.

This is:

When there is insufficient room in
the specified region to output the
record on a REGIONAL(3) V- or u
format file. Neither the record
raising the condition nor the
current record is transmitted.

If a LOCATE is the last I/O statement
to be executed before the file is
closed, the record is not transmitted
and the condition may be raised by the
CLOSE statement.

15. If a reference is made, at object
time, to a based variable that has nOt
been allocated storage, an
unpredictable interrupt (protect-ion,
addressing, or specification) may
occur.

16. Areas, pOinters, offsets and
structures containing any of these
cannot be used with STREAM I/O.

111.
I

When a based variable is freed, the
associated pOinter no longer contains
useful information. I

I
18. A based variable allocated in an area

must be freed in that area. For
example:

DCL A AREA, B BASED (X);
ALLOCATE B IN (A);

FREE B;
FREE B IN (A);

/* INVALID * /
/* VALID */

19. The alignment in the buffer of the
first byte of the first record in a
block that has been read from an ASCII
data set is not necessarily on a
doUbleword. The block prefix is
doubleword aligned, but the alignment
of the first record depends on the
length of the block prefix.

Chapter 19: Interlanguage Communication Facilities

I

The PL/I interlanguage facilities permit
communication, at execution time, between
programs compiled by the PL/I checkout and
optimizing compilers and programs compiled
by one of the following compilers, and
executed using the corresponding library.
The compilers and libraries have all been
developed by IBM for os.

Program program No.
I
lOS FORTRAN IV Compiler
I
lOS
lOS
I

(H Extended)
FORTRAN Library Mod I
FORTRAN Library Mod II

5734-F02
5734-LM1
5734-LM3

lOS FULL ANS COBOL (Version 4)
Compiler and Library I

I
5736-CB2
5736-LM2

IOS/VS FULL·ANS
(Library only)

COBOL Compiler
and Library

(Library only)
I
I

5746-CB1
5746-LM4

Communication between a PL/I program,
and a program compiled by one of the
FORTRAN or COBOL compilers, can be achieved
in two ways:

1. By using a conversion data set for the
PL/I and COBOL/FORTRAN routines.

2. By invoking a COBOL/FORTRAN routine
from a PL/I routine, or vice versa,
and by passing data either as
arguments or in the form of static
storage.

If a common data set is used to
communicate between a PL/I and a COBOL
routine, the COBOL option of the
ENVIRONMENT attribute may be required. For
further details, see the section "Data
Interchange (COBOL)" in chapter 12.

A PL/I procedure can invoke a COBOL
routine by use of the CALL statement, or
can invoke a FORTRAN routine by use of the
CALL statement or a function reference.
Alternatively, a PL/I procedure can be
invoked by use of the corresponding
1anguage features in a COBOL or a FORTRAN
main program or routine. Arguments can be
passed on invocation, and a value can be
returned for function references.

A COMMON block in FORTRAN has storage
equivalent to that of a STATIC EXTERNAL
variable in PL/I. If a COMMON block and a
STATIC EXTERNAL variable are given the same
name, then they will be allocated the same
block of storage, in the same way as two
identical STATIC EXTERNAL variables in

PL/I. Assigning a value to one variable
causes the same valUE to be assigned to the
other. TherE is no similar equivalence in
COBOL - no COBOL variable can have common
storage with a PL/I variable other than as
an argument or parameter.

The interlanguage facilities are
entirely provided by the PL/I compiler;
they are obtained by specifying the
appropriate language items in the invoking
or invoked PL/I procedure. Existing COBOL
or FORTRAN programs or routines generally
do not need modification or recompiling for
interlanguage use; new programs or routines
can be written in these languages and
compiled as before, without the need to
antiCipate interlanguage communication.
Thus existing COBOL or FORTRAN application
programs can be extended by the use of PL/I
procedures, while COBOL or FORTRAN
libraries can be made available to new or
existing PL/I procedures.

~ In the context of this Chapter,
"routine" includes a COBOL subprogram, or a
FORTRAN subroutine or function, including a
FORTRAN library function. The conventions
that exist in these languages for handling
subroutines and fUnctions apply normally,
and are not modified for interlanguage use.
In particular, the restriction that a
FORTRAN function cannot be invoked without
passing an argument or arguments still
applies when the invocation is from a PL/I
routine.

Interlanguage Facilities

While a detailed knowledge of COBOL or
FORTRAN is not essential for use of the
interlanguage facilities, the programmer
may need to be aware of the equivalents in
data organization in PL/I and the other two
languages. These equivalents must be
understood in order to achieve
argument/parameter matching.

The interlanguage facilities
automatically resolve differences in the
mapping for equivalent data organizations,
when matching arguments and parameters; the
programmer can, if he wishes, override this
action.

Facilities are provided to extend PL/I
interrupt-handling to cover invoked COBOL
or FORTRAN routines.

Chapter 19: Interlanguage Communication Facilities 289

Passing Arguments to a COBOL or FORTRAN
Routine

When an argument is passed to a COBOL or a
FORTRAN routine, the data type is
determined in the normal PL/I manner, that
is, from the parameter descriptor list of
the associated entry declaration, or from
the argument itself. The inter language
facilities ensure, however, that the
addressing mechanism for the argument is
that used by the invoked language, and
that, unless otherwise required, the
mapping of any aggregates passed is that
used by the invoked language. Note that
since the interlanguage facilities provided
by PL/I cannot look at the parameter in the
invoked routine, it is the programmer's
responsibility to ensure that the parameter
in the invoked routine corresponds in data
type and organization to the argument
description in PL/I.

If the PL/I compiler can determine, at
compile-time, that the mapping of a
structure or array argument is the same in
PL/I as in the invoked language, the
argument is passed directly to the invoked
routine. However, where such mapping
equivalence does not exist, the
interlanguage facilities provide for a
dummy argument to be passed, where the
dummy is mapped according to the rules of
the invoked language. See section K, AData
Mapping".

If the PL/I data types of arguments
passed to FORTRAN or COBOL have no
equivalents in these languages, a warning
message is produced at compile-time. At
execution-time the results are undefined,
and may include abnormal termination.

Data types: PL/I has more data types than
either COBOL or FORTRAN: some have no
equivalents in these languages. The extent
to which PL/I data types have equivalents
in COBOL or FORTRAN, and therefore can be
passed as arguments, is summarized here.

Problem data: Most of the PL/I data types
have equivalents in either COBOL or
FORTRAN. Tables of data equivalents for
PL/I-COBOL and PL/I-FORTRAN are given
below, in "COBOL Interface" and "FORTRAN
Interface" respectively.

Program-control data: Arguments of any
program-control data type can be passed to
an invoked COBOL or FORTRAN routine.
However, only an entry argument can be
passed and used within tQe invoked routine,
and then only if the routine is a FORTRAN
routine. Arguments of any other data type
should not be used in the invoked routine
except to be passed in turn to a PL/I
procedure.

290 OS PL/I CKT AND OPT LRM PART I

Note: The COBOL option in the ENVIRONMENT
attribute can be specified for a file that
is to be used in certain input/output
operations. Although this option initiates
remapping of PL/I structures, it is in no
way associated with the interlanguage
facilities described here: a file with this
option cannot be used as a file argument or
a file parameter. For use of the COBOL
option of the ENVIRONMENT attribute, see
"ENVIRONMENT Attribute" in chapter 12,
"Record-Oriented Transmission."

Data-mapping: In order that an argument
can be successfully passed to a COBOL or
FORTRAN routine, the mapping of the actual
argument passed must correspond to the
mapping assumed for the parameter by COBOL
or FORTRAN.

For an element argument, the only
requirement is that the alignments of
argument and parameter are compatible. In
PL/I the alignment of variables is
determined by the ALIGNED and UNALIGNED
attributes. The eqUivalent specifications
in COBOL and FORTRAN are:

~ COBOL FORTRAN

ALIGNED SYNCHRONIZED Normal alignment

UNALIGNED Unsynchronized No eqUivalent

The alignment of a PL/I argument is
deduced, like the data type, from the
parameter descriptor list or from the
argument itself. Only ALIGNED elements may
be passed to SYNCHRONIZED COBOL parameters,
or to FORTRAN parameters. Either ALIGNED
or UNALIGNED elements can be passed to
COBOL unsynchronized parameters. It is the
programmer·s responsibility to ensure that
these alignments are compatible.

The prOblem is more complicated for data
aggregates. A PL/I or a COBOL structure
for example can have either of the
alignment stringencies given above. In
addition, each member can have its own
alignment stringency or all members can
have the same alignment stringency.
padding bytes are inserted b¥ the mapping
algorithm for the particular language, in
order to preserve the required alignment
for each member. In a PL/I structure, the
alignments are adjusted, where poSSible, to
minimize the amount of padding required;
this adjustment does not occur in a COBOL
structure. The result is that a structure
mapped with the PL/I mapping algorithm may
not have the same layout in main storage as
a structure mapped with the COBOL
algorithm.

Similarly, the mapping of arrays is
different in PL/I and FORTRAN. PL/I stores
arrays of more than one dimension in row-

major-order, while FORTRAN stores them in
column-major-order. Hence, for arrays with
more than one dimension, a reference to an
element in PL/I is obtained by reversing
the order of the subscripts that would be
used in FORTRAN to refer to the same
element.

The interlanguage facilities resolve
these problems by creating dummy arguments
for PL/I data aggregates passed as
arguments to COBOL or FORTRAN routines.

IWhen a PL/I ALIGNED structure is passed as
an argument to a COBOL routine, the mapping
of the argument in both languages is
considered. If the compiler can determine
that the mappings are identical, the
argument is passed directly to the COBOL
routine.

However, if the compiler cannot
determine that the mappings are identical,
a dummy argument is created, mapped

laccording to the COBOL -SYNCHRONIZED mapping
algorithm. The values of the members of
the PL/I structure are assigned to the
corresponding members in the dummy
argument; the dummy is then passed as an
argument to the COBOL routine. On return
to the PL/I procedure, the values ~n the
dummy argument (which mayor may not have
been changed) are assigned to the
corresponding members of the original PL/I
argument.

Similarly, when a PL/I array is passed
as an argument to a FORTRAN routine, the
mapping of the array in both languages is
considered. If the arrays are
unidimensional, and are in connected
storage and are aligned identically, the
argument is passed directly to the invoked
FORTRAN routine. If either the arrays are
unidimensional and do not meet the above
conditions, or are multidimensional, a
dummy argument is created, mapped according
to FORTRAN array handling. (In effect,
this means the subscripts are reversed).
The values of the PL/I array elements are
assigned to the corresponding elements in
the dummy argument. The dummy is then
passed as an argument to the FORTRAN
routine. On return to the PL/I procedure,
the values in the dummy argument (which may
or may not have been changed) are assigned
to the appropriate elements of the PL/I
argument.

The programmer can specify certain
options that inhibit or restrict the effect
of the interlanguage facilities for
remapping data aggregates. If several are
passed at an invocation, he can, for
example, inhibit the facilities for one
argument, allow them for another argument,
or restrict them for a third argument.

Invocation

Invocation of a COBOL or FORTRAN routine is
performed by a CALL statement or (in the
case of a FORTRAN routine only) function
reference that specifies an entry constant
or variable whose value corresponds to the
entry point of a COBOL or FORTRAN routine.
The entry pOint must not be that of a
FORTRAN main program. The entry constant
or variable must be identified as invoking
COBOL or FORTRAN by use of the appropriate
options in the OPTIONS attribute in the
declaration of the entry in the PL/I
program. The programmer may also specify,
in this deClaration, options which suppress
re-mapping of data aggregates and an option
which allOWS PL/I to deal with certain
interrupts in the COBOL or FORTRAN routine.

The options are:

COBOL: This specifies that the
designated entry point is in a
COBOL routine.

FORTRAN: This specifies that the
designated entry pOint is in a
FORTRAN routine.

NOMAP: This specifies that a dummy
argument is not created; the
aggregate argument is passed
directly to the invoked
routine.

NOMAPIN: This specifies that, if a dummy
argument is created, it is not
initialized with the values of
the aggregate argument.

NOMAPOUT: This specifies that, if a dummy
argument is creat ed, then, on
return, the values in the dummy
argument are not aSSigned to
the aggregate argument.

INTER: This specifies that any
interrupts occurring during the
execution of a COBOL or FORTRAN
routine that are not dealt with
by the COBOL or FORTRAN
interrupt-handling facilities
are dealt with by the PL/I
interrupt-handling facilities
(see also -Interrupt Handling
later in this chapter).

The NOMAPIN and NOMAPOOT options
should be used if initialization
is not required whenever program
efficiency is important, because
they allow the compiler to omit
unnecessary initialization code.

ARGn: This is an option of NOMAP,
NOMAPIN, and NOMAPOUT which

Chapter 19: Interlanguage Communication Facilities 291

specifies which arguments the
option applies to. If no ARGn
is specified, the option is
applied to all arguments.

The following points should be noted in
the declaration of the entry name:

1. Either COBOL or FORTRAN (but not both)
can appear in the declaration. One or
more of the options NOMAP, NOMAPIN and
NOMAPOUT can appear in the same
declaration.

2. The RETURNS attribute cannot be used
with the COBOL option, as COBOL
subprograms do not return values.

3. An entry variable or a parameter can
be declared with the interlanguage
options.

4. An entry name with the interlanguage
options can. appear in a GENERIC
attribute specification.

5. The entry constant name of the COBOL
or FORTRAN routine may have one
through eight characters. If more
than eight characters are specified,
the leftmost eight only are taken.

Examples:

1. DCL COBOL ENTRY (CHAR(S»
OPTIONS(COBOL INTER),

COBOLB ENTRY (1, 2 FIXED, 2 FLOAT)
OPTIONS(COBOL NOMAPIN),

COBOLBXX OPTIONS (COBOL) EXTERNAL
ENTRY(•••);

2. DCL FORTA ENTRY C FIXED BINARY)
OPTIONS (FORTRAN) RETURNS
(FLOAT (5»;

3. DCL A EXTERNAL ENTRY (•••) VARIABLE
OPTIONS (FORTRAN),

B OPTIONSCFORTRAN);

A=B;
CALL AC •••);

4. DCL A GENERIC (COBOLZ
WHEN (CHARACTER) ,

FORTZ WBEN(FIXED BINARY»,

COBOLZ OPTIONS(COBOL),

FORTZ OPTIONS(FORTRAN);

292 OS PL/I CRT AND OPT LRM PART I

S. DCL A ENTRY;

CALL XCA);

X:PROC(B);
OCL B OPTIONSCCOBOL);

6. DCL COBSUB ENTRY(••• , ••• , ••• ,)
OPTIONS(COBOL,NOMAP(ARG1,ARG3»;

CALL COBSUB(A,B,C);

CALL COBSUB(X,Y,Z);

passing Arguments to a PL/I Procedure

When an argument is passed to a PL/I
procedure from COBOL or FORTRAN, the data
type is determined in the normal PL/I
manner, that is from the declaration of the
parameter. The interlanguage facilities
ensure that the addressing mechanism used
for the parameter is that used by PL/I, and
that, unless otherwise required, the
mapping of any aggregate parameters passed
is also that used by PL/I. Note that since
the interlanguage facilities provided by
PL/I cannot look at the argument in the
routine invoking PL/I, it is the
programmer's responsibility to ensure that
the argument passed to PL/I corresponds in
data type and organization to the parameter
declared in PL/I.

Data mapping: The situation is similar to
that which occurs on invocation of COBOL or
FORTRAN by PL/I. The mapping of the
argument on entry to the PL/I procedure
must correspond to the mapping used by PL/'I
in addressing the parameter.

For element arguments and parameters,
this means that a SYNCHRONIZED or
unsynchronized COBOL argument may be passed
to an UNALIGNED PL/I parameter, or that a
SYNCHRONIZED COBOL argument or a FORTRAN
argument can be passed to an ALIGNED PL/I
parameter.

For aggregate arguments and parameters
where the mapping of the argument in COBOL

ICsynchronized) or FORTRAN differs from the
mapping of the parameter in PL/I, the
interlanguage fa~ilities resolve the
problem by creating a dummy argument which
is passed to the PL/I procedure.

The dummy argument is mapped according
to PL/I rules, and, before invocation of

the PL/I procedure, the values of the
members of the COBOL or FORTRAN argument
are assigned to the corresponding members
of the dummy argument. On return from the
PL/I prOcedure, the values of the members
of the dummy argument are assigned back to
the original argument.

If the compiler can recognize that the
mapping in COBOL or FORTRAN and PLII are
eqUivalent, no such dummy is created.
Alternatively, the programmer can inhibit
the creation of the dummy, or the
assignments between the original argument
and the created dummy, by means of options.

Invocation

The entry pOints in a PLII procedure that
are to be invoked from COBOL or FORTRAN
must be identified by the appropriate
options in the corresponding PROCEDURE or
ENTRY statement. The programmer may also
specify options that suppress re-mapping of
data aggregates.

COBOL:

FORTRAN:

NOMAP:

NOMAPIN:

NOMAPOUT:

Parameter
list:

This specifies that the entry
point can only be invoked by a
COBOL routine.

This specifies that the entry
point can only be invoked by a
FORTRAN routine.

This specifies that a dummy
argument is not created: the
COBOL or FORTRAN aggregate
argument is passed directly to
PL/I.

This specifies that, if a dummy
argument is created, it is not
initialized with the values of
the aggregate argument.

This specifies that, if a dummy
argument is created its values
are not assigned back to the
aggregate argument on return.
The NOMAPIN and NOMAPOUT
options should be used, if
initializations not required,
whenever program efficiency is
important, since they allow the
compiler to omit unnecessary
initialization code.

The parameter or parameters
to which the NOMAP, NOMAPIN, or
NOMAPOUT options apply can be
specified in a list. If no
list is specified, the option
is applied to-all parameters.

The following points should be noted

when coding the PROCEDURE or ENTRY
statement:

1. Only one of the options MAIN, COBOL,
or FORTRAN can appear in the same
statement. One or more of the options
NOMAP, NOMAPIN, or NOMAPOUT can appear
in the same statement.

2. If the parameters for the procedure
include strings, areas or arrays, the
lengths, sizes or bounds for these
must be specified as decimal integer
constants.

3. The RETURNS option cannot be specified
for any entry point invoked by a COBOL
routine.

Examples:

1. P1:PROC(A,B,C) OPTIONS(FORTRAN
NOMAPIN(C) NOMAPOUT(A»;

DCL A(3,4) FLOAT BIN(20),
B FIXED BIN(31),
C(S,6) FLOAT DEC(6):

2. P2:PROC(R,S,T) OPTIONS (FORTRAN
NOMAP);

3. P3:PROC(X,Y) OPTIONS(COBOL NOMAPIN(X)
NOMAPOOT(Y»;

DCL 1 X, 2 ••• 2 ••• 3 ••• ,
1 Y, 2 ••• 2 ••• 3 ••• ;

Using Common Storage

A variable in a PL/I program can be
allocated the same block of storage as a
group of variables in a FORTRAN routine.
This storage can then be used to
communicate between the two routines.
Allocation of common storage is achieved by
declaring a PLII variable to be STATIC
EXTERNAL and to have the same name as a
COMMON block in the FORTRAN routine. The
STATIC EXTERNAL variable and the COMMON
block will then be equivalent to two
declarations of a STATIC EXTERNAL variable
in different external PL/I procedures. 'l'he
number of variables using common storage is
not limited to two: any number of
identical STATIC EXTERNAL variables in
different PL/I procedures may be used
together with any number of identical
COMMON blocks in different FORTRAN
routines, if all the procedures and
routines are link-edited into a single
program. Methods of link-editing are given
in the compilers' programmers' guides.

The STATIC EXTERNAL variables must
follow the normal PL/I rules relating to
these attributes, and they must be of a
data type that corresponds to the data type

Chapter 19: Interlanguage Communication Facilities 293

of the COMMON variables (see "FORTRAN
Interface" later in this chapter for a
table of corresponding data types). Also,
the PL/I variables must be aligned to meet
the requirements of the corresponding
FORTRAN data type.

The PL/I variables may be initialized
using the INITIAL attribute, and the
FORTRAN variables may be initialized using
a block data subprogram. If the PL/I
variables on the one hand and the FORTRAN
variables on the other are not initialized
to the same value, the procedure or routine
that is encountered first by the linkage
editor determines the initial value of all
the variables. It is not an error to
initialize a PL/I variable to a different
value from a corresponding FORTRAN
variable, or to initialize one and not the
other.

The PL/I variable may have further
variables overlayed upon it by means of the
DEFINED attribute, provided that the
defined variable meets the data type and
alignment requirements of the FORTRAN
variable. If the requirements are not met,
execution errors may occur.

Common storage cannot be used for a PL/I
and a COBOL variable; the only facility
provided by PL/I for communication between
a PL/I procedure and a COBOL routine is
that for passing arguments.

INTERLANGUAGE ENVIRONMENT

IFor a program to be executed, a suitable
environment must first be established. If
the program contains a PL/I main procedure,

Ithe PL/I environment is established when
the program is first entered. If the main
routine is COBOL or FORTRAN, the
interlanguage facilities will establish the
required PL/I environment when necessary.
This section describes the conventions and
restrictions in the interlanguage context.

Establishing the PL/I Environment

If the main routine of the program is a
PL/I main procedure, the PL/I environment
is established on entry to the program.
Even if this program contains a mixture of
PL/I and COBOL or FORTRAN routines, the
normal rules for freeing PL/I storage and
closing PL/I files apply.

If the main routine of the program is
not a PL/I main procedure, the PL/I
environment is established when the first

294 OS PL/I CKT AND OPT LRM PART I

PL/I procedure is invoked. The extent of
this environment includes the routine that
invoked the PL/I procedure (see figure
19.1), and the environment remains in
existence until that routine is terminated.
The environment can be reestablished and
terminated as frequently as required.
Whenever the PL/I environment is destroyed,
all PL/I controlled and based storage is
released, and all PL/I files are closed.

For reasons of efficiency and of
programmdng convenience, the PL/I
environment should be destroyed as
infrequently as possible during execution
of a program. This can be ensured if the
main routine is a PL/I main procedure, or
if a PL/I procedure, no matter what it
contains, is invoked from the main routine.
The latter alternative, however, has the
disadvantage that if the main routine is in
FORTRAN, the PL/I environment will not be
ended normally when the final FORTRAN
RETURN is executed to return control to the
operating system (see "Termination of
FORTRAN and COBOL Routines" later in this
Chapter) •

Establishing the FORTRAN Environment

Before a FORTRAN routine can be eXecuted, a
suitable environment must be established.
The extent of this environment includes the
PL/I procedure that invokes the FOR'I'RAN
routine, and this environment remains in
existence until the PL/I procedure is
terminated.

For reasons of e~ficiency, the FORTRAN
environment should be destroyed as
infrequently as possible during the
execution of a program. This is ensured if
the PL/I procedure that calls the FORTRAN
routine is not terminated until all the
FORTRAN calls have been executed, or if the

IFORTRAN environment is extended to include
Ithe outer PL/I procedure by invoking a
IFORTRAN routine (no matter what it
Icontains) from the outer PL/I procedure.

Interrupt Handling

COBOL and FORTRAN routines handle certain
of the hardware interrupts that may occur
during their execution, but there are sOme
that they do not handle. The inter language
communication facilities of PL/I allow any
interrupt not dealt with by a COBOL or
FORTRAN routine to be handled by any PL/I
procedure from which that routine is
dynamically descendent.

r-------------------,
I I
I PROC1 (MAIN) 1
I I
1 FORTRAN 1
I I L-------------------J

r--,
I +++++++++++++1+++++++++++++ 1
1 + 1 + 1

r-------------------,
I I
I PROC8 1
1 I
I FORTRAN I
I 1 L-------------------J

r-------------------,
I 1
1 PROC9 1
I I
I FORTRAN I
I I L-------------------J

+
+
+
+
+
+
+
+
+

r-------------------,
1 1
I PROC2 I
I 1
I FORTRAN 1
I I
L-------------------J

+
+
+
+
+
+
+
+
+

+ +
+ +
+ r-------------------, +
+ I 1 +
+ I PROC3 1 +
+ 1 1 +
+ I PL/I 1 +
+ 1 I +
+ L-------------------J +
+ +
+ +
+ +
+
+
+
+
+
+
+
+

r-------------------,
1 I
1 PROC4 I
1 1
I COBOL 1
I I l-------------------J

+
+
+
+
+
+
+
+

+ +
+++++++++++++++++++++++++++

t
I
I
I
I
I

r-------------------,
1 I
I PROC5 I
I I
I FORTRAN I
I I
L-------------------J

+++++++++++++1+++++++++++++
+ I +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

r-------------------,
I I
1 PROC6 I
I I
1 FORTRAN I
I ,
L-------------------J

r-------------------,
1 I
I PROC7 I
I I
I PL/I 1
I I L-------------------J

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+ +
+++++++++++++++++++++++++++

t
I
I
I
1
1

Boundaries of PL/I environments------------J

Figure 19.1. Extent of PL/I environment

The programmer specifies the INTER
option of the OPTIONS attribute when
declaring the COBOL or FORTRAN entry name.
(See also the INTER option under "passing
Arguments to COBOL or FORTRAN Routine"
earlier in this chapter.) This allows the
interrupts not dealt with by the invoked
COBOL or FORTRAN routine to be handled by
either a PL/I on-unit or by PL/I standard
system action. (Except that PL/I cannot
handle a ZERODIVIDE interrupt in a division
of COMPUTATIONAL-3 data in a routine
compiled by a COBOL compiler other than the
COBOL E compiler. Such an interrupt will
cause termination of the program.) In PL/I,

an on-unit, while established, applies not
only to the procedure in which it was
created, but also to all procedures that
are dynamically descendent from it. If
there occurs, during the execution of a
COBOL or FORTRAN routine, an interrupt that
will not be handled by that routine, and if
the routine was invoked by a PL/I procedure
in which the INTER option was specified for
the COBOL or FORTRAN entry name, then a
search is made through all invoking
procedures for an appropriate on-unit. If
none is found, standard system action is
taken. If INTER is not specified, nO
search is made, and the interrupt is dealt

Chapter 19: Interlanguage Communication Facilities 295

with by the operating system control
program.

Note that the search passes through all
routines in the invoking chain, as far as
the limit of the PL/I environment. It is
therefore possible for the search to
include COBOL and FORTRAN routines. Such
routines have no effect on the results of
the search, since only PL/I on-units are
searched for, unless one of them is a COBOL
routine that has been compiled by a
compiler that does not implement Americam
National Standard COBOL or that was made
available prior to Release 19 of System/360
Operating system. In these cases, the
result of the search and the effects of the
interrupt are undefined, and may include
abnormal termination o£ the program.

GO TO Statement

The GO TO statement must not be used to
transfer control across more than one
interlanguage boundary, where an
interlanguage boundary is defined as an
invocation in which one routine calls
another of a different language. Such
transfers of control may be initiated
inadvertently if the programmer uses a GO
TO statement in an on-unit. (Note that
entry to an on-unit is not considered as
transferring control outside the block or
routine in which the statement that caused
the on-unit to be entered was executed; the
on-unit may be regarded as being appended
to the procedure or routine from which it
is entered. This applies even if the on
unit is entered from a COBOL or FORTRAN
routine). Consider the following example:

P:PROCEDURE;
DECLARE LAB LABELCL1,L2) EXTERNAL,
FORT ENTRY OPTIONS(FORTRAN INTER);

ON ERROR GO TO LAB;

CALL FORT;

Ll: ;

END P;

Q:PROCEDURE OPTIONS(FORTRAN);
DECLARE LAB LABEL(L1,L2)
EXTERNAL;

L2: ••••••• ;

END Q;

296 OS PL/I CKT AND OPT LRM PART I

Assume that the CALL FORT; statement is
executed, and that FORT then calls Q.
Assume further that an error occurs in Q
which initiates entry to the on-unit
established in P. At this stage control is
still with procedure Q because the on-unit
is regarded as being appended to the
procedure from which it was entered. If
LAB has the value L1, then the GO TO branch
is in error because it transfers control
back to procedure P and ~n dOing so crosses
the interlanguage bou~daries between Q and
FORT and between FORT and P. If LAB has
the value L2, the GO TO is not in error
because control remains in procedure Q. If
an interrupt in FORT caused the on-unit to
be entered before Q was called, then the GO
TO would not have been in error, if LAB had
the value L1: only one interlanguage
boundary would be crossed, namely the
FORTRAN-PL/I boundary between FORT and P.
(LAB should not have the value L2 in this
case because procedure Q is not active).

Termination of FORTRAN and COBOL
Routines

A routine may be terminated by either
executing a statement that terminates th~
whole program, or by handing control back
to the calling routine.

The statements that terminate the whole
program are STOP in FORTRAN and STOP RUN in
COBOL. They are equivalent to the PL/I
STOP statement. The effects of these
statements are unchanged in a mixed
language program; they still terminate the
whole program.

If a FORTRAN STOP is executed in a
routine that is within a PL/I enVironment,
that environment is not ended in the normal
way. If a COBOL STOP RUN is executed in a
routine that is within a PL/I environment,
that environment is ended in the normal way
only if it includes the main routine of the
program; otherwise the termination will be
abnormal. The main difference, from the
programmer's point of view, between a
normal and an abnormal ending is that in
the abnormal ending, open files in PL/I
procedures are not closed. This could
cause output data to be lost. Considering
the example in figure 19.1, a STOP in PROC2
or a STOP RUN in PROC4 would not close any
files that may be open in PROC3, and a STOP
in PROC6 would not close any files in
PROC1.

A RETURN executed in a FORTRAN
subroutine or function that is inside a
PL/I environment and which returns control
to a routine outside that environment (in
other words, a RETURN statement in a

FORTRAN routine that directly invokes a
PL/I routine but which is not dynamically
descendent from any PL/I routine), ends the
PL/I environment and causes all files in
dynamically descendent PL/I procedures to
be closed. However, a RETURN statement in
a FORTRAN main routine is effectively a
STOP statement: control is passed to the
operating system without any files being
closed.

When a COBOL main routine that is within
a PL/I environment passes control back .to
the operating system, the environment is
ended normally.

Multitasking

A PL/I procedure cannot invoke a COBOL or a
FORTRAN routine as a task, that is, the
CALL statement must not specify the TASK,
EVENT, or PRIORITY options.

Only one task of a PL/I program can have
active COBOL or FORTRAN routines at anyone
time. If a PL/I program has more than one
task active at the same time, then, if one
of these tasks has invoked a COBOL or a
FORTRAN routine, the programmer must ensure
that the other tasks wait until control has
returned to the PL/I program before another
non-PL/I routine is invoked.

COBOL INTERFACE

Argument/parameter matching across a PL/I
COBOL interface requires a knowledge of the
equivalence of data types and of data
organization in the two languages. The
PL/I equivalents of the COBOL data types
are shown in figure 19.2. These are the
PL/I data types that should appear in PL/I
parameter descriptors associated with COBOL
arguments or parameters respectively.

While a knowledge of the equivalent data
types is sufficient for specifying COBOL
items in terms of PL/I element variables,
the specification of equivalent data
aggregates (group items in COBOL,
structures or arrays in PL/I) requires a
knowledge of the data-organization
descriptions of the two languages. The
example given in figure 19.3 shows how a
COBOL data aggregate is described in PL/I
terms.

In COBOL, the OCCURS clause cannot
appear mOre than three times in anyone
group-item description. This imposes a
restriction on any PL/I array within a
structure passed as an argument to a COBOL

routine. Also, the OCCURS clause cannot
appear on a level-01 entry. This precludes
the use of a level-01 array in a PL/I
structure passed to or from a COBOL
routine.

A PL/I structure that contains an area
or a bit-string variable should not be
passed as an argument to a COBOL routine.
If it is, a diagnostic message is produced
and the structure is not automatically
remapped.

A bit or character string with the
VARYING attribute may be passed to a COBOL
routine, although there is nO equivalent
attribute in COBOL. The address of the
start of the two-byte length prefix is
passed, so that the prefix consitutes the
first two bytes of the COBOL string.
Conversely, when COBOL data is passed to a
PL/I string parameter with the VARYING
attribute, the first two bytes of the
argument form the parameter's length
prefix.

FORTRAN INTERFACE

Argument/parameter matching across a
PL/I-FORTRAN interface, and the use of
common storage for PL/I and FORTRAN
variables, require a knowledge of the
equivalence of data types and of data
organizations in the two languages. The
PL/I equivalents of the FORTRAN data types
are shown in tigure 19.4. These are the
PL/I data types that should appear in PL/I
parameters or parameter descriptors
associated with FORTRAN arguments or
parameters respectively, and in the
declaration of STATIC EXTERNAL variables
with the same names as FORTRAN COMMON
blocks.

The specification of equivalent data
aggregates in PL/I and FORTRAN is simpler
than in PL/I and COBOL, as the only data
aggregates that exist in FORTRAN are
arrays. The problems arise when using non
connected unidimensional arrays or
multidimensional arrays as PL/I arguments.

Generally, when passing arguments
between PL/I and FORTRAN, the interlanguage
facilities pass a unidimensional array
directly to the invoked routine, without
the creation of a dummy argument. However,
if a PL/I unidimensional array in non
connected storage is passed as an argument
to a FORTRAN routine, the interlanguage
facilities create a dummy argument into
which the unconnected. array is mapped. The
dummy is then passed as the
argument. On return, the values in the
dummy are assigned to the corresponding

Chapter 19: Interlanguage Communication Facilities 297

r---,
1 COBOL I PL/I I
1---1
1 1 1 Alignment 1 1 1 Alignment 1
I 1 1-------------------1 1 1------------------1
1 Data type ILength 1 Synch. IUnsynch.1 pata Type 1 Length 1 Aligned 1 Un- 1
1 ICbytes)ICaligned) 1 Cun- 1 1 (bytes) I 1 aligned 1
I 1 I I aligned) 1 1 1 1 1
1--------------- ------------------ ------------------------- ------- ---------- -------
COMPUTATIONAL1 1

dec. length: 1
1-4 2 Halfword Byte 1 FIXED 2 Half word Byte

IBINARY(15,0)
IChalfword
I integer)
1

5-9 4 Fullword Byte IFIXED 4 Fullword Byte

10-18 8

COMPUTATIONAL-l 4

Fullword

Fullword

Byte

Byte

BINARY(31,0)
(fullword
integer)

No equivalent

FLOAT DEC(6)
(short float)

4 Fullword Byte

ICOMPUTATIONAL-2 8 Doubleword Byte FLOAT DEC(16) 8 Doublewordl Byte
I (long float) 1
1 1
ICOMPUTATIONAL-31 12 Byte Byte FIXED DEC 12 Byte 1 Byte
1 1 I
'DISPLAY 1 any Byte Byte CHARACTER any Byte 1 Byte
1---
1 1Decimal length is equal to the number of 9s in the picture.
1
, 2The length of 1 byte applies to the smallest fixed decimal value (i.e., 1 digit).
1 For other values, the length is given by CEIL«number of digits + 1)/2) bytes.
l---J
Figure 19.2. COBOL-PL/I data equivalents

r---,
1 01 A SYNCHRONIZED. 1 A ALIGNED, 1
1 02 B OCCURS 3 TIMES. 2 B(3), I
I 03 C OCCURS 4 TIMES. 3 C(4), I
1 04 D OCCURS 5 TIMES USAGE COMP-3 4 D(5) FIXED DECIMAL(7,3), 1
I PIC S9999V999. 1
1 02 E USAGE DISPLAY. 2 E, I
I 03 F PIC X(8). 3 F CHAR(8), I
1 03 G PIC 9(8). 3 G PIC '(8)9', 1
I 02 DUMMY OCCURS 6 TIMES. 2 H(6,7) FIXED BINARY (15,0)~ ,
I 03 H OCCURS 7 TIMES USAGE COMP 1
I PIC S9999. I
l---J
Figure 19.3. Declaration of a data aggregate in COBOL and PL/I

298 OS PL/I CRT AND OPT LRM PART I

r---,
I FORTRAN I PL/I
1---
I I I I I I Alignment
IData Type ILength I Alignment 1 I Data Type ILength 1-----------------------
I I(bytes) 1 I 1 (bytes) Aligned I Unaligned
1----------- --- ------- ----------- -----------
IINTEGER*2
1
IINTEGER*4
I
IREAL*4
I
1
IREAL*S
1
1
IREAL*16
I
I
ICOMPLEX*S
I
I
ICOMPLEX*16
I
I
I COMPLEX * 32
I
I
1
ILOGICAL*l
1

2

4

4

S

16

S

16

32

1

I Halfword IREAL FIXED BINARY(15,O)
I I
Fullword IREAL FIXED BINARY(31,O)

I
Fullword IREAL FLOAT DEC(6)

I (real short float)
I

DoublewordlREAL FLOAT DEC(16)
I (real long float)
I

DoublewordlREAL FLOAT DEC(33)
I (real extended float)
I

Fullword ICOMPLEX FLOAT OEC(6)
I (complex short float)
I

DoublewordlCOMPLEX FLOAT OEC(16)
I (complex long float)
I

OoublewordlCOMPLEX FLOAT DEC(33)
I (complex extended
I float)
I

Byte IBIT(S)
I

2

4

4

8

16

8

16

32

1

Halfword

Fullword

Fullword

Doubleword

Doubleword

I
Fullword

Doubleword

Doubleword

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Bit2

ILOGICAL*4 4 FUilword IBIT(32) 4 Byte Byte
I----------------------~--
I 1Generally, FORTRAN data is held inmain storage with these alignments. COMMON data,
I however, is always byte-aligned. This could cause a specification interrupt if the
I items in the COMMON area are not stored in order of decreasing stringency.
I
I 3The fact that the alignment required of unaligned bit strings is bit rather than byte 1
I does not affect PL/I-FORTRAN data interchange, since the FORTRAN string will always 1
I take up an integral number of bytes. I
l---J
Figure 19.4. FORTRAN-PL/I data equivalents

elements in the array.

A dummy argument is always created for a
~ltidimensional array passed between PL/I
and FORTRAN routines, unless the NOMAP
option specified.

If a PL/I array of bit strings is passed
as an argument to a FORTRAN routine, only S
or 32 should be specified for the string
lengths. If values other than these are
specified, a diagnostic message is produced
and the array is not automatically
remapped. Similarly, only these lengths
should be used for PL/I variables having
storage common with FORTRAN variables.

COMPILE-TIME RETURN CODES

Diagnostic messages are provided at compile
time as an aid to debugging the program.
The messages are classified according to
the type of the information they provide.
A numeric value, the return code, is
associated with each class of message, as a
guide to the severity of the error or
possible error that has been diagnosed.
The highest return code generated during
compilation constitutes the.return code of
that compilation, and its value is printed
on the compile-time listing. Diagnostic
messages and return codes are described in
the programmer's guides for the compilers.
The classes of message and corresponding
return codes are as follows.

Chapter 19: Interlanguage Communication Facilities 299

r---,
PL/I
Attribute

I COBOL I FORTRAN I
1---1
I Argument I. Parameter I Argument I Parameter I

--,--------
AJ,IGNED 0000 0000 0000 0000

AREA Note 1 Note 1 Note 1 Note 1

BINARY 0000 0000 0000 I 0000

BIT Note 1 I Note 1 Note 2 I Note 2

CHARACTER 0000 I 0000 I OOOlJ OOOlJ
--~--

COMPLEX OOOlJ OOOlJ I Note lJ I Note lJ

CONNECTED 0000 I 0000 0000 I 0000

CONTROLLED 0000 I 0012 0000 0012

DECIMAL 0000 0000 Note 3 I Note 3

DEFINED 0000 I 0000 I ---
Dimension Note 8 Note 8 I 0000 0000

ENTRY OOOlJ OOOlJ OOOlJ I OOOlJ
---------------~--"-----------------------------

EVENT OOOlJ I OOOlJ 0004 I OOOlJ

FILE OOOlJ I OOOlJ OOOlJ OOOlJ

FIXED I 0000 0000 0000 0000

FLOAT I 0000 I 0000 I 0000 I 0000
---1

LABEL I OOOlJ I 0004 I OOOlJ I OOOlJ I

---1
Non-connected I Note 5 I 0000 r Note 5 I 0000 I

---1
OFFSET I OOOlJ I OOOlJ I OOOlJ I OOOlJ I

---1
PICTURE I 0000 I 0000 I OOOlJ I OOOlJ I

---1
POINTER I OOOlJ I OOOlJ I OOOlJ I OOOlJ I

---1
Precision I Note 6 I Note 6 I Note 1 I Note 1 I

---1
REAL I 0000 I 0000 I 0000 I 0000 I

---1
Structure I 0000 I 00·00 I Note 1 I Note 1 I

---1
TASK I 0004 I OOOlJ I OOOlJ I OOOlJ I

---1
UNALIGNED I Note 9 I 0000 I Note 9 I 0000 I

---1
VARYING I OOOlJ I 0004 I OOOlJ I OOOlJ I

L---J
Figure 19.5 (Part 1 of 2). Return codes produced by PL/I data types

300 OS PL/I CXT AND OPT LRM PART I

r---,
~ I

I
1. Checkout compiler: 0004 6. Variable is FIXED(p,O), or is short or

long FLOAT: 0000 Optimizing compiler: OOOS
In both cases, creation of a dummy
argument is suppressed

Variable is BINARY FIXED (p,q) with
q,=O, or is extended FLOAT: 0004

2. BIT(S) or BIT(32): 0000 7. variable is FLOAT, or is FIXED BINARY
with precision (p,O): 0000 Any other length: OOOS

In latter case, creation of a dummy
argument is suppressed.

Variable is FIXED DECIMAL, or is
BINARY(p,q) with q~=O: 0004

3. FLOAT DECIMAL: 0000 S. If item is element of a structure or
is a minor structure: 0000 FIXED DECIMAL: 0004
All other cases: OOOS

". FLOAT COMPLEX: 0000
FIXED COMPLEX: OOOS 9. If argument is an aggregate and

creation of temporary is suppressed
by NOMAP, or if argument is 5. If creation of temporary suppressed by

NOMAP option: 0012
If no NOMAP option: 0000

scalar: 0012
If argument is an aggregate and no
NOMAP: 0000

L---J
Figure 19.5 (Part 2 of 2). Return codes produced by PL/I data types

Informatory
Warning
Error
Severe error

return code 0000
return code 0004
return code 0008
return code 0012

If no messages are produced, a code of 0000
is returned.

A return code of 0000 indicates that the
compiler found no possible sources of
error. A code of 0004 indicates that
execution will probably be successful. A
code of 0008 indicates that an error has
been found but that execution nevertheless
might be successful. A code of 0012
indicates that execution will probably not
be successful.

As part of the interlanguage facilities
of PL/I, diagnostic messages are produced,
and the return code set appropriately, if
the programmer specifies arguments or
parameters whose attributes are such that
errors may occur at execution time. The
compiler will never prevent data being
passed, nor will it attempt to correct
errors; although it produces messages to
indicate likely sources of error to the
programmer, it will always allow him to
attempt to pass any type of data he
specifies.

Figure 19.5 shows the return codes
generated by various types of PLII data.

,EXECUTION-TIME RETURN CODES
I
I
IThe value of the PL/I return code may be
,set in a PL/I routine by means of the
,PLIRETC built-in subroutine (see the
Iprogrammer's guide for the compiler).
I
, The return code of a non-PL/I routine
Imay be obtained by declaring the entry
Ipoint with OPTIONS(RETCODE). This option
,causes the value of the PLII return code to
(be set to the value returned by the non
IPL/I routine in the lower half of register
115.
I
, The latest value of the PLII return code
Ican be read by means of the PLIRETV bu1lt
lin function.
I
'Example:
I
, DECLARE AR ENTRY OPTIONS(ASM,RETCODE); , ,
, CALL AR;
I IF PLIRETV() = 0 THEN ••••••• ;

Chapter 19: Interlanguage Communication Facilities 301

Part II: Rules and Syntactic Descriptions

Part II: Rules and Syntactic Descriptions 303

Throughout this publication, wherever a
PL/I statement -- or some other combination
of elements -- is discussed, the manner of
writing that statement or phrase is
illustrated with a uniform system of
notation.

This notation is not a part of PL/I; it
is a standardized notation that may be used
to describe the syntax -- or construction

of any programming langu~ge. It
provides a brief but precise explanation of
the general patterns that the languag@
permits. It does not describe the meaning
of the language elements, merely their
structure; that is, it indicates the order
in which the elements may (or must) appear,
the punctuation that is required, and the
options that are allowed.

The following rules explain the use of
this notation for any programming language;
only the examples apply specifically to
PL/I:

1. A notation variable is the name of a
general class of elements in the
programming language. A notation
variable must consist of:

a. Lower-case letters, decimal
digits, and hyphens and must begin
wi th a letter.

b. Either all lower-case letters or a
combination of lower-case and
upper-case letters. In the latter
case, there must be one portion in
all lower-case letters and one
portion in all upper-case letters,
and the two portions must be
separated by a hyppen.

All such variables used are defined in
the manual either syntactically, using
this notation, or are defined
semantically. For example:

a. digit. This denotes the
occurrence of a digit, which may
be 0 through 9 inclusive.

b. file-expression. This denotes the
occurrence of a reference to a
file.

c. DO-statement. This denotes the
occurrence of a DO statement. The
upper-case letters are used to
indicate a language keyword.

2. A notation constant denotes the

Section A: Syntax Notation

literal occurrence of the characters
represented. A notation constant
consists either of all capital letters
or of a special character. For
example:

DECLARE identifier FIXED:

This denotes the literal occurrence of
the word DECLARE followed by the
notation variable "identifier," Which
is defined elsewhere, followed by the
literal occurrence of the word FIXED
fo1lowed by the literal occurrence of
the semicolon (;).

3. The term "syntactic unit," which is
used in subsequent rules, is defined
as one of the following:

4.

a. A single notation variable or
notation constant.

b. Any collection of notation
variables, notation constants,
syntax-language symbols, and
keywords surrounded by braces or
brackets.

Braces {} are used to denote grouping
of more than one element into a
syntactic unit.

Example:

identifier {
FIXED l
FLOAT j

The vertical stacking of syntactic
units indicates that a choice is to be
made. The above example indicates
that the variable "identifier" must be
fo1lowed by the literal occurrence of
either the word FIXED or the word
FLOAT.

5. The vertical stroke I indicates that a
choice is to be made.

Example:

identifier (FIXEDIFLOAT}

This has exactly the same meaning as
the above example. Both methods are
used in this manual to display
alternatives.

section A: Syntax Notation 305

6. Square brackets [] denote options.
Anything enclosed in brackets may
appear once or may not appear at all.
Brackets can serve the additional
purpose of delimiting a syntactic
unit. For example:

({[lower-bound:] upper-bound}I*)

This denotes the occurrence of either
a literal asterisk or the variable
"upper-bound," but not both. If
"upper-bound" appears, it can
optionally be preceded by the
syntactic unit composed of the
variable "lower-bound" and the literal
colon.

7. Three dots ••• denote the occurrence
of the immediately preceding syntactic
unit one or more times in succession.

For example:

[digit] •••

306 OS PL/I CKT AND OPT LRM PART II

The variable "digit" mayor may not
occur since it is surrounded by

brackets. If it does occur, it may be
repeated one or more times.

8. Underlining is used to denote an
element in the language being
described when there is conflict
between this element and one in the
syntax language. For example:

operand {'Il} operand

This denotes that the two occurrences
of the variable "operand" are
separated by either an "and" ('> or an
·or· (I). The operator I is
underlined to indicate that it is an
"or" symbol in the PL/I language
rather than an ·or" symbol in the
syntax language.

Section B: Character Sets with EBCDIC and Card-Punch Codes

60-CHARACTER SET

Character

blank

<
(

+
I ,
$

*)

/
,
I

>
?

til

=
A
B
C
D
E
F
G
B
I
J
K
L
M
N
o
P
Q
R
S
T
U
V
W
X
Y
Z

Card-Punch

no punches
12-8-3
12-8-4 (12-8-6)
12-8-5 (0-8-4)
12-8-6 (12)
12-8-7 (NA)
12 (NA)
11-8-3
11-8-4
11-8-5 (12-8-4)
11-8-6
11-8-7 (NA)
11
0-1
0-8-3
0-8-4 (NA)
0-8-5 (NA)
0-8-6 (8-6)
0-8-7 (12-0)
8-2 (8-5)
8-3 (NA)
8-4 (NA)
8-5 (8-4)
8-6 (8-3)
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9

8-Bit EBCDIC
Code

0100 0000
0100 1011
0100 1100
0100 1101
0100 1110
0100 1111
0101 0000
0101 1011
0101 1100
0101 1101
0101 1110
0101 1111
0110 0000
0110 0001
0110 1011
0110 1100
0110 1101
0110 1110
0110 1111
0111 1010
0111 1011
0111 1100
0111 1101
0111 1110
1100 0001
1100 0010
1100 0011
1100 0100
1100 0101
1100 0110
1100 0111
1100 1000
1100 1001
1101 0001
1101 0010
1101 0011
1101 0100
1101 0101
1101 0110
1101 0111
1101 1000
1101 1001
1110 0010
1110 0011
1110 0100
1110 0101
1110 0110
1110 0111
1110 1000
1110 1001

Character

o
1
2
3
4
5
6
7
8
9

Composite
Symbols

<=
II
** <
.... >
.... =
>=
/*
*/
->

Card-Punch

o
1
2
3
4
5
6
7
8
9

Card-Punch

8-Bit EBCDIC
Code

1111 0000
1111 0001
1111 0010
1111 0011
1111 0100
1111 0101
1111 0110
1111 0111
1111 1000
1111 1001

12-8-4, 8-6 (12-8-6, 8-3)
12-8-7, 12-8-7 (NA)
11-8-4, 11-8-4
11-8-7, 12-8-4 (NA)
11-8-7, 0-8-6 (NA)
11- 8-7, 8-6 (NA)
0-8-6, 8-6 (8-6, 8-3)
0-1, 11-8-4
11-8-4, 0-1
11,·0-8-6 (11, 8-6)

The card-punch codes given in brackets
are BCDIC codes that differ from the
corresponding EBCDIC codes.

NA indicates that the symbol has no
representation in BCDIC. BCDIC codes can
be used in the PL/I source program provided
that the CHARSET(BCD) compiler option is
specified. No BCDIC 8-bit codes are given
here since, when the CHARSET(BCD) option is
specified, all BCDIC codes in the s·ource
program are converted by the compiler into
EBCDIC.

Although the full PL/I 60-character set
is not available in BCDIC, all the 48-
character set (see next page) is available,
so if CHARSET(48,BCD) is specified, all
PL/I operations can be performed.

section B: Character sets With EBCDIC and Card-punch Codes 307

".a-CHARACTER SET

Character Card-Punch 8-Bit EBCDIC
Code

blank no punches 0100"0000
12-8-3 0100 1011

(12-8-5 (0-8-4) 0100 1101
+ 12-8-6 (12) 0100 1110
$ 11-8-3 0101 1011
• 11-8-4 0101 1100
) 11-S-5 (12-8-4) 0101 1101

11 0110 0000
/ 0-1 0110 0001

0-8-3 0110 1011
8-5 (8-4) 0111 1101

= S-6 (8-3) 0111 1110
A 12-1 1100 0001
8 12-2 1100 0010
C 12-3 1100 0011
D 12-4 1100 0100
E 12-5 1100 0101
F 12-6 1100 0110
G 12-7 1100 0111
B 12-8 1100 1000
I 12-9 1100 1001
J 11-1 1101 0001
J(11-2 1101 0010
L 11-3 1101 0011
M 11-4 1101 0100
N 11-5 1101 0101
0 11-6 1101 0110
P 11-7 1101 0111
Q 11-8 1101 1000
R 11-9 1101 1001
S, 0-2 1110 0010
T 0-3 1110 0011
U 0-4 1110 0100
V 0-5 1110 0101
W 0-6 1110 0110
X 0-7 1110 0111
Y O-S 1110 1000
Z 0-9 1110 1001
0 0 1111 0000
1 1 1111 0001
2 2 1111 0010
3 3 1111 0011
fI 4 1111 0100
5 5 1111 0101
6 6 1111 0110
7 7 1111 0111
a 8 1111 1000
9 9 1111 1001

The card-punch codes given in brackets
are BCDIC codes that differ from the
corresponding EBCDIC codes. BCDIC codes
can be used in the PL/I soarce proqram
provided that the CHARSET(B.CD) compiler
o~ion is specified. No BCDIC a-bit codes
are given here since, wben tbe CBARSET(BCD)
o.ption is specified, all BCOIC codes in the
soux-ce proqram are converted by the
e_piler into EBCDIC.

308 OS PL/I CKT AND OPT LRM PART II

ComEgsite 60-Char Set
Svmbols Card Punch Eguivalent

12-8-3, 12-8-3
LE 11-3, 12-5 <=
CAT 12-3, 12-1, 0-3 II
** 11-S- fI, 11-8-4 **
NL 11-5, 11-3 ~

NG 11-5, 12-1 ... >
NE 11-5, 12-5 ... =
// 0-1, 0-1 I
, . 0-S-3, 12-8-3 :
AND 12-1, 11-5, 12-4 &
SE 12-1, 12-5 >=
GT 12-7, 0-3 >
LT 11-3, 0-3 <
NOT 11-5, 11-6, 0-3
OR 11-6, 11-9 I
/* 0-1, 11-S-4 /*
*/ 11-8-4, 0-1 */
PT 11-1, 0-3 ->

When using the 4S-character set, the
following rues must be observed:

1. The two periods that replace the colon
must be immediately preceded by a
blank if the preceding character is a
period.

2. The two slashes that replace the
percent symbol must be immediately
preceded by a blank if the preceding
character is an asterisk, or
immediately followed by a blank if the
follOWing character is an asterisk.

3. The sequence "comma period" represents
a semicolon except when it occurs in a
comment, a character string, or a
picture specification or when it is
immediately followed by a digit.

fl. If CBARSET(4S) is specified, 60-
character set symbols may be freely
intermixed with 4S-character set
symbols and will be accepted by the
compiler as valid input.

5. 4S-character set "reserved" words
(e.g., ST, LE, CAT, etc.,) must be
preceded and followed by a blank or a
comment.

6. 4S-character set symbo1s represent
their 60-character set equivalents
only when they do not occur in a
colIIDent r a cbaracter string r or a
picture specification.

A record containing part or all of a
_a-character set reserved word must be
3 characters or more in lengtb.

Section C: Keywords and Keyword Abbreviations

Keyword

A[(w))
ABS(x)
ACOS(x)
IACTIVATE
ADD(x1,xa'X3['X~])
ADDBUFF
ADDR(x)
ALIGNED
ALL [(character-string-

expression)]
ALL (x)

ALLOCATE
ALLOCATION (x)
ANY(x)
AREA
AREA[(size)]
ARGn
ASCII
ASIN(x)
ASSEMBLER
ATAN(x1 [, xa])
ATAND(x1 [,xa])
ATANH(x)
ATTENTION
AUTOMATIC
B[(w)]

BACKWARDS
BASED[(locator-expression)]
BEGIN
BINARY
BINARY(x1[,xa[,x3)])
BIT [(length)]
BIT (Xs. (, Xa])

IBKWD
BLKSIZE(block-size)
BOOL(x1,xa,x3)
BUFFERED
BUFFERS(n)

I BUFND(n)
I BUFNI(n)
I BUFSP(n)
BUFOFF [(n)]
BUILTIN
BY

BY NAME
C(real-format-item

[,real-format-item)
CALL
CEIL(x)
CHAR (X1 (, xa])
CHARACTER(length)]
CHECK
CBECK[(name-list)]
CLOSE
COBOL

COLUMN(n)
I COMPILETlME
COMPLETION (x)

Abbreviation

'ACT

ALLOC
ALLOCN(x)

ASM

ATTN
AUTO

BIN
BIN(Xs.l,xa[,x3])

BUF

BYNAME

CHAR ((length))

COL(n)

CPLN(x)

Use of Keyword

format item
built-in function
built-in function
preprocessor statement
built-in function
option of ENVIRONMENT attribute
built-in function
attribute
option of PUT statement

built-in function
statement
built-in function
built-in function
condition
attribute
option of NOMAP, NOMAPIN, NOMAPOUT options
option of ENVIRONMENT attribute
built-in function
option of OPTIONS attribute
built-in function
built-in function
built-in function
condition
attribute
format item
attribute, option of OPEN statement
attribute
statement
attribute
built-in function
attribute
built-in function
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
built-in function
attribute
option of
option of
option of
option of
option of
attribute

ENVIRONMENT
ENVIRONMENT
ENVIRONMENT
ENVIRONMENT
ENVIRONMENT

attribute
attribute
attribute
attribute
attribute

option of DO statement, option of
repetitive input/output specification

option of aSSignment statement
format item

statement, option of INITIAL attribute
built-in function
built-in function
attribute
statement
condition, condition prefix
statement
option of ENVIRONMENT attribute, or

OPTIONS option/attribute
format item
preprocessor built-in function
built-in function, pseudovariable

Section C: KeywordS and Keyword Abbreviations 309

Keyword

COMPLEX
COMPLEX (x~, xa)
CONDITION
CONDITION (name)
CONJG(x)
CONNECTED
CONSECUTIVE
ICONTROL
CONTROLLED
CONVERSION
COPY[(file-expression)]
COS (x)
COSD(x)
COSH (x)
COUNT (file-expression)

I COUNTER
CTLASA
CTL360

ICURRENTSTORAGE(variable)
D
DATA
DATAFIELD
DATE
DB
IDEACTIVATE
DECIMAL
DECIMAL(x~[,xa[,x3]])
DECLARE
iDECLARE
DEFAULT
DEFINED
DELAY
DELETE
DESCRIPTORS
DIM(x~,xa)
DIRECT
DISPLAY
DIVIDE(x~,xa,x3['x_])
00

100
E(w,d[,s)
EDIT
ELSE
IELSE
EMPTY
END
lEND
ENDFILE(file-expression)
ENDPAGE(file-expression)
ENTRY
ENVIRONMENT
ERF(x)
ERFC(x)
ERROR
EVENT

EXCLUSIVE
EXIT
EXP(x)
EXTERNAL
F(w, [,d[,s])
F
FB

Abbreviation

CPLX
CPLX(x~,xa)
COND
COND(name)

CONN

CTL
CONV

CSTG(variable)

IbEACT
DEC
DEC(x1 l ,xa l ,x3]])
DCL
IDCL
OFT
DEF

ENV

EXCL

EXT

310 OS PL/I CKT AND OPT LRM PART II

Dse of Reyword

attribute
built-in function, pseudovariable
attribute
condition
built-in function
attribute
option of ENVIRONMENT attribute
listing control statement
attribute
condition, condition prefix
option of GET statement
built-in function
built-in function
built-in function
built-in function
preprocessor built-in function
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
built-in function
option of ENVIRONMENT attribute
option of GET or POT statement
built-in function
built-in function
option of ENVIRONMENT attribute
preprocessor statement
attribute
built-in function
statement
preprocessor statement
statement
attribute
statement
statement
option of DEFAULT statement
built-in function
attribute
statement
built-in function
statement, repetitive input/output data

specification
preprocessor statement
format item
option of GET or PUT statement
clause of IF statement
clause of IIF statement
built-in function
statement
preprocessor statement
condition
condition
attribute, statement
attribute, option of CLOSE statement
built-in function
built-in function
condition
attribute, option of CALL, DELETE,

DISPLAY, READ, REWRITE, and WRITE
statements

attribute
statement
built-in function
attribute
format item
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute

Keyword

FBS
FETCH
FILE
FILE (file-expression)

FINISH
FIXED
FIXED(x1 l ,xa l,x3]])
FlXEDOVERFLOW
FLOAT
FLOAT(x1 [,xa1)
FLOOR (x)
FLOW
FORMAT
FORTRAN
FREE
FROM (variable)
FS
GENERIC
GENKEY
GET
GO TO
IGO TO
HALT
BBOUND(xs.,xa)
HIGB(x)
IF
IIF
IGNORE(n)
lMAG(x)
IN (element-area-variable)
"INCLUDE
INDEX(xs.,xa)
INDEXAREA [(index-area-

size)]
INDEXED
INITIAL
INPUT
INTER
XNTERNAL
INTO (variable)
IRREDUCIBLE
KEY (file-expression)
KEY(x)

KEYED
KEY FROM (x)
KEYLENGTB (n)
KEYLOC(n)
KEYTO(variable)
LABEL
LBOUND(Xs.,xa)
LEAVE

'LEAVE
LENGTB(x)
LIKE
LINE(n)
LINENO(x)
LINESIZECexpression)
LIST
LOCATE
LOG (x)
LOG 2 (x)
~OGl.O(x)

Abbreviation

FOFL

GOTO
IGOTO

IN~T

INT

IRRED

Use of Keyword

option of ENVIRONMENT attribute
statement
attribute
option of CLOSE, DELETE, GET, LOCATE,

OPEN, PUT, READ, REWRITE, UNLOCK, and
WRITE statements

condition
attribute
built-in function
condition, condition prefix
attribute
built-in function
built-in function
statement, option of PUT statement
statement, option of ICONTROL statement
option of OPTIONS option/attribute
statement
option of WRITE or REWRITE statements
option of ENVIRONMENT att~ibute
attribute
option of ENVIRONMENT attribute
statement
statement
preprocessor statement
statement
built-in function
built-in function
statement
preprocessor statement
option of READ statement
built-in function, pseudovariable
option of ALLOCATE and FREE statements
preprocessor statement
built-in function
option of ENVIRONMENT attribute

option of ENVIRONMENT attribute
attribute
attribute, option of OPEN statement
option of OPTIONS option/attribute
attribute
option of READ statement
attribute
condition
option of READ, DELETE, and REWRITE

statements
attribute, option of OPEN statement
option of WRITE statement
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
option of READ statement
attribute
built-in function
option of ENVIRONMENT attribute
statement
built-in function
attribute
format item, option of PUT statement
built-in function
option of OPEN statement
option of GET or PUT statement
statement
built-in function
built-in function
built-in function

Section C: Keywords and Keyword Abbreviations 311

Keyword

LOW(x)
MAIN
MAX(X1,Xa··· xn)
MIN(x1,xa··· xn)
MOD(X1,Xa)
MULTIPLY(x1,Xa,x3['X~])
NAME (file-expression)
NCP(n)
NOCHECK
NOCHECK[(name-list)]
NOCONVERSION
NOFlXEDOVERFLOW
NOFLOW
NOFORMAT
NOLOCK
NOMAP[(arg-list)]
NOMAPIN[(arg-list)]
NOMAPOUT[(arg-list)]
NOOVERFLOW

tiNOPRINT
NORESCAN
NOSIZE
NOSTRINGRANGE
NOSTRINGSIZE
NOSUBSCRIPTRANGE

IINOTE
NOUNDERFLOW
NOWRI1f£
NOZERODIVIDE
NULL
OFFSET[(area-name)]
OFFSET (X1,Xa)
ON
ONCHAR
ONCODE
ONCOUNT
ONFILE
ONKEY
ONLOC
ONSOURCE
OPEN
OPTIONS (list)

ORDER
I OTHERWISE
OUTPUT
OVERFLOW
P 'picture specification'
PAGE
~PAGE
PAGESIZE(W)

IPARMSET(parameter)

Abbreviation

NOCONV
NOFOFL

NOOFL

NOSTRG
NOSTRZ
NOSUBRG

NOUFL

NOZDIV

OTHER

OFL

PASSwORD (password-specification)
PENDING (file-expression)
PICTURE

tPLIRETV
POINTER
POINTER(x1,xa)
POLY(X1 ,xa)
POSITION (expression)
PRECISION(x1,xa[,x3])
PRINT
I~PRINT
PRIORITY(x)
PRIORITY [(x)]

PIC

PTR
PTR(x1,xa)

POS (expression)
PREC(x1 ,xa(,x3])

312 OS PL/I CKT AND OPT LRM PART II

Use of Keyword

built-in function
option of OPTIONS option
built-in function
built-in function
bUilt-in function
built-in function
condition
option of ENVIRONMENT attribute
statement
condition prefix
condition prefix
condition prefix
statement
option of 'CONTROL statement
option of READ statement
option of OPTIONS attribute
option of OPTIONS attribute
option of OPTIONS attribute
condition prefix
listing control statement
option of IACTIVATE statement
condition prefix
condition prefix
condition prefix
condition prefix
preprocessor statement
condition prefix
option of ENVIRONMENT attribute
condition prefix
built-in function
attribute
built-in function
statement
built-in function, pseudovariable
built-in function
built-in function
built-in function
built-in function
built-in function
built-in function, pseudovariable
statement
attribute, option of ENTRY and

PROCEDURE statements
option of BEGIN and PROCEDURE statements
clause of select-group
attribute, option of OPEN statement
condition, condition prefix
format item
format item, option of PUT statement
listing control statement
option of OPEN statement
preprocessor built-in function
option of ENVIRONMENT attribute
condition
attribute
built-in function
attribute
built-in function
built-in function
attribute
built-in function
attribute, option of OPEN statement
listing control statement
option of CALL statement
built-in function, pseudovariable

Keyword

PROCEDURE
JPROCEDURE
PROD (x)
PUT
R(x)
RANGE
READ
REAL
REAL (x)
RECORD
RECORD (file-expression)
RECSIZE(record-length)
RECURSIVE
REDUCIBLE
REENTRANT
REFER(element-variable)
REGIONAL(11213)
RELEASE
REORDER
REPEAT (X1. , xa)

I REPEAT
REPLY(c)
REREAD
RESCAN

IRETCODE
RETURN
RETURNS (attribute-list)

I REUSE
REVERT
REWRITE
ROUND(X1.,xa)

ISAMEKEY(x)
SCALARVARYING

I SELECT
SEQUENTIAL
SET (locator-variable)

SIGN(x)
SIGNAL
SIN(x)
SIND(x)
SINH(x)

ISIS
SIZE
SKIP[(n)]

I SKIP
JSKIP
SNAP
SQRT(x)

I STATEMENT
STATIC
STATUS (x)
STOP

I STORAGE (variable)
. STREAM
S'l'RING(x)
S'l'RING(string-name)
S'l'RI NGRANGE
STRINGSIZE
iSUB
SUBSCRIPTRANGE
SUBSTR(x1.,xa[,x3])
SUM (x)
SYSIN

Abbreviation

PROC
JPROC

•

REO

SEQL

STG(variable)

STRG
STRZ

SUBRG

Dse of KeyWord

statement
preprocessor statement
built-in function
statement
format item
option of DEFAULT statement
statement
attribute
built-in function, pseud~variable
attribute, option of OPEN statement
condition
option of ENVIRONMENT attribute
option of PROCEDURE statement
attribute
option of OPTIONS option
option of BASED attribute
option of ENVIRONMENT attribute
statement
option of BEGIN and PROCEDURE statements
built-in function
option of DO statement
option of DISPLAY statement
option of ENVIRONMENT attribute
option of IACTIVATE statement
option of OPTIONS attribute
statement, preprocessor statement
attribute, option of PROCEDURE statement
option of ENVIRONMENT attribute
statement
statement
built-in function
built-in function
option of ENVIRONMENT attribute
statement
attribute
option of ALLOCATE, LOCATE, and

READ statements
built-in function
statement
built-in function
built-in function
bUilt-in function
option of ENVIRONMENT attribute
condition, condition prefix
format item, option of GET and

POT statements
option of ENVIRONMENT attribute
listing control statement
option of ON and PUT statements
bUilt-in function
option of IPROCEDURE statement
attribute
built-in function, pseudovariable
statement
bUilt-in function
attribute, option of OPEN statement
built-in function, pseudovariable
option of GET and PUT statements
condition, condition prefix
condition, condition prefix
dummy variable of DEFINED attribute
condition, condition prefix
built-in function, pseudovariable
built-in function
name of standard system input file

Section C: Keywords and Keyword Abbreviations 313

Keyword

SYSPRINT
SYSTEM
TAN (x)
TAND(x)
TANH (x)
TASK
TASK(task-name)]
THEN
%THEN
TIME
TITLE (element-expression)
TO

TOTAL
TP(MIR)
TRANSIENT
TRANSLATE (X1,X2 (,X3])
TRANSMIT(file-expression)
TRKOFL
TRUNC(x)
U
UNALIGNED
UNBUFFERED
UNDEFINEDFILE

(file-expression)
UNDERFLOW
UNLOCK
UNSPEC(x)

I UNTIL
UPDATE
V
VALUE
VARIABLE
VARYING
VB
VBS
VERIFY(x1,x2)
VS
VSAM
WAIT
WHEN (generic-descriptor

list)
I WHEN
WHILE
WRITE
X(w)

ZERODIVIDE

Abbreviation

UNAL
UNBJJF
UNDF

(file-expression)
UFL

VAR

ZDIV

314 OS PL/I CKT AND OPT LRM PART II

Use of Keyword

name of standard system output file
option of ON or DECLARE statements
built-in function
built-in function
built-in function
attribute, option of OPTIONS option
option of CALL statement
clause of IF statement
clause of 'IF statement
built-in function
option of OPEN statement
option of DO statement, option of

repetitive input/output specification
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
attribute
built-in function
condition
option of ENVIRONMENT attribute
built-in function
option of ENVIRONMENT attribute
attribute
attribute, option of OPEN statement
condition

condition, condition prefix
statement
built-in function, pseudovariable
option of DO statement
attribute, option of OPEN statement
option of ENVIRONMENT attribute
option of DEFAULT statement
attribute
attribute
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
built-in function
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
statement
option in GENERIC declaration

clause of select-group
option of DO statement
statement
format item
condition, condition prefix

Section D: Picture Specification Characters

picture specification characters appear in
either the PICTURE attribute or the P
format item for edit-directed input and
output. In either case, an individual
character has the same meaning. A
discussion of the concepts of picture
specifications appears in chapter 13,
-Editing and string Handling-.

Picture characters are used to describe
the attributes of the associated data item,
whether it is the value of a variable or a
data item to be transmitted between the
program and external storage.

A picture specification always describes
a character representation that is either a
character-string data item or a numeric
character data item. A character-string
pictured item is one that can consist of
alphabetic characters, decimal digits, and
blanks. A numeric character pictured item
is one in which the data itself can consist
only of decimal digits, a decimal point,
the letter E, and, optionally, a plus or
minus sign. Other characters generally
associated with arithmetic data, such as
currency symbols, can also be specified,
but they are not a part of the arithmetic
value of the numeric character variable,
although the characters are stored with the
digits and are considered to be part of the
character-string value of the variable.
Under the optimizing compiler, the maximum
length of character string pictured data
that is guaranteed to be handled is 1023,
though longer items may be handled if
sufficient storage is available. The
checkout compiler will accept items of
length not exceeding 32767 characters.
Under both compilers, the maximum length of
numeric character item is 255.

Arithmetic data assigned to a numeric
character variable is converted to
character representation. Edi~ing, such as
zero-suppression and the insertion of other
characters, can be specified for a numeric
character data item.

Data assigned to a variable declared
with a numeric picture specification (or
data to be written with a numeric picture
format item) must be either internal coded
arithmetic data or data that can be
converted to coded arithmetic. ThUS,
assigned data can contain only digits and,
optionally, a decimal pOint, a sign and the
exponent delimiter E. It should not
contain any editing characters, for
example, a currency symbol; if it does, the
CONVERSION condition is raised.

Numeric character data to be read using
the P-format item must conform to the
specification contained in the P-format
item, including editing characters. If the
indicated character does not appear in the
input stream, the CONVERSION condition is
raised.

Data aSSigned to a variable declared
with a character-string picture
specification (or data to be written with a
character-string picture format item)
should conform, character by character (or
be convertible, character by character) to
the picture specification; if it does not,
the CONVERSION condition is raised.
Character string data read in using the P
format item must conform to the
specification given in the format item. If
the indicated character does not appear in
the input stream, the CONVERSION condition
is raised.

Figures in this section i1lustrate how
different picture specifications affect the
representation of values when assigned to a
pictured variable or when printed using the
P-tormat item. Each figure shows the
original value of the data, the attributes
of the variable from which it is assigned
(or written), the picture speCification,
and the character-string value of the
numeric character or pictured character
string variable.

Picture Char acters for Character-String
Data

Only three picture characters can be used
in character-string picture specifications:

x specifies that the associated position
can contain any character whose internal
bit configuration can be recognized by
the computer in use.

A specifies that the associated position
can contain any alphabetic character or
a blank character.

9 specifies that the associated position
can contain any decimal digit or a blank
character.

A character picture specification must
contain at least one A or X.

Figure 0.1 gives examples of character
string picture specifications. In the

Section 0: Picture Specification Characters 315

r---,
Source I Source Data I Picture I Character-String I

Attributes I (in constant form) I Specification I Value1 I

CHARACTER(S) 9B/2L

CHARACTER(S) L26.1

1A variable declared with a character-string picture specification has a character
string value only.

L---J
Figure D.l. pictured character-string examples

figure, the letter b indicates a blank
character. Note that assignments are. left
adjusted, and any necessary padding with
blanks is on the right.

Picture Characters for Numeric
Character Data

Numeric character data must represent
numeric values: therefore, the associated
picture specification cannot contain the
characters X or A. The picture characters
for numeric character data can specify
detailed editing of the data.

A numeric character variable can be
considered to have two different kinds of
value, depending upon its use. They are
(1) its arithmetic value and (2) its
character-string value.

The arithmetic value is the value
expressed by the decimal digits of the data
item, the assumed location of a decimal
point, and possibly a sign. The arithmetic
value of a numeric character variable is
used whenever the variable appears in an
expression that results in a coded
arithmetic value or whenever the variable
is assigned to a coded arithmetic, numeric
character, or bit-string variable. In such
cases, the arithmetic value of the numeric
character variable is converted to internal
coded arithmetic representation.

The character-string value is the value
expressed by the decimal digits of the data
item, as well as all of the editing and

316 OS PL/I CRT AND OPT LRM PART II

insertion characters appearing in the
picture specification. The character
string value does not, however, include the
assumed location of a decimal point, as
specified by the picture character V. The
character-string value of a numeric
character variable is used whenever the
variable appears in a character-string
expression operation or in an assignment to
a character-string variable, whenever the
data is printed using list-directed or
data-directed output, or whenever a
reference is made to a character-string
variable that is defined on the numeric
character variable. In such cases, nO data
conversion is necessary.

The picture characters for numeric
character speCifications may be grouped
into the following categories:

• Digit and Decimal-Point Specifiers

• Zero suppression Characters

• Insertion Characters

• Signs and Currency Symbol

• Credit, Debit, and Overpunched Signs

• Exponent Specifiers

• Scaling Factor

A numeric character specification
consists of one or more fields, each field
describing a fixed-point number. A
floating-point specification has two fields
- one for the mantissa and one for the
exponent. A field may be divided into

r---, Source I Source Data I Picture I Character-String
Attributes I (in constant form) I Specification I Value~

FIXED (5) 12345 99999 12345

FIXED(5) 12345 99999V 12345

FIXED (5) 12345 999V99 345002

FIXED(5) 12345 V99999 000,¥>2

FIXED (7) 1234567 99999 345612

FIXED(3) 123 99999 00123

FIXED(5,2) 123.45 999V99 12345

FlXED(7,2) 12345.67 9V9 562

FIXED(5,2) 123.45 99999 00123

~The arithmetic value is the value expressed by the digits and the actual or assumed
location of the V in the specification.

2In this case, PL/I does not define the result since significant digits have been
truncated on the left. The result shown, however, is that given for these
implementations. The SIZE condition will be raised, if enabled.

L---J
Figure 0.2. Pictured numeric character examples

subfields by inserting a V picture
specification character~ the portion
preceding the V and that following it (if
any) are subfields of the specification.

A major requirement of the picture
specification for numeric character data is
that each field must contain at least one
picture character that specifies a digit
position. This picture character, however,
need not be the digit character 9. other
picture characters, such as the zero
suppression characters (Z or * or Y), also
specify digit positions. At least one of
these characters must be used to define a
numeric character specification.

DIGIT AND DECIMAL-POINT SPECIFIERS

The picture characters 9 and V are used in
the simplest form of numeric character
specifications that represent fixed-point
decimal values.

9 specifies that the associated position
in the data item is to contain a decimal
digit.

V specifies that a decimal point is
assumed at this poSition in the
associated data item. However, it does
not specify that an actual decimal point
is to be inserted. The integer and

fractional parts of the assigned value
are aligned on the V character~
therefore, an assigned value may be
truncated or extended with zero digits
at either end. (Note that if
significant digits are truncated on the
left, the result is undefined and a SIZE
interrupt will occur, if SIZE is
enabled.) If no V character appears in
the picture specification of a fixed
point decimal value (or in the first
field of a picture specification of a
floating-point decimal value), a V is
assumed at the right end of the field
specification. Th1s can cause the
assigned value to be truncated, if
necessary, to an integer. The V
character cannot appear more than once
in a picture specification.

Figure D.2 gives examples of numeric
character specifications.

ZERO SUPPRESSION CHARACTERS

The zero suppression picture characters
specify conditional digit poSitions in the
character-string value and may cause
leading zeros to be replaced by asterisks
or blanks and non leading zeros to be
replaced by blanks. Leading zeros are
those that occur in the leftmost digit
positions of fixed-point numbers or in the

Section D: picture Specification Characters 317

leftmost digit positions of the two parts
of floating-point numbers, that are to the
left of the assumed position of a decimal
point, and that are not preceded by any of
the digits 1 through 9. The leftmost
nonzero digit in a number and all digits,
zeros or not, to the right of it represent
significant digits. Note that a floating
point number can also have leading zeros in
the exponent field.

Z specifies a conditional digit position
and causes a leading zero in the
associated data position to be replaced
by a blank character. When the
associated data position does not
contain a leading zero, the digit in the
position is not replaced by a blank
character. The picture character Z
cannot appear in the same field as the
picture character * or a drifting
character, nor can it appear to the
right of any of the picture characters
9, T, I, R, or Y in a field.

* specifies a conditional digit position.
It is used the way the picture character
Z is used, except that leading zeros are
replaced by asterisks. The picture
character * cannot appear in the same
subfield as the picture character Z or a
drifting character, nor can it appear to
the right of any of the picture
characters 9, T, I, R, or Y in a field.

Figure 0.3 gives examples of the use of
zero suppression characters. In the
figure, the letter b indicates a blank
character.

Note: If one of the picture characters Z
or * appears to the right of the picture
character V, then all fractional digit
positions in the specification, as well as
all integer digit poSitions, must employ
the Z or * picture character, respectively.
When all digit positions to the right of
the picture character V contain zero
suppression picture characters, fractional
zeros of the value are suppressed only if
all positions in the fractional part
contain zeros and all integer positions
have been suppressed. The entire
character-string value of the data item
will then consist of blanks or asterisks.
No digits in the fractional part are
replaced by blanks or asterisks if the
fractional part contains any significant
digit.

INSERTION CHARACTERS

The picture characters comma (,), pOint
(.), slash (/), and blank (B) are insertion

318 OS PL/I CKT AND OPT LRM PART II

characters; they cause the specified
character to be inserted into the
associated position of the numeric
character data. They do not indicate digit
or character positions, but are inserted
between digits or characters. Each does,
however, actually represent a character
position in the character-string value,
whether or not the character is suppressed.
The comma, point, and slash are conditional
insertion characters: within a string of
zero suppression characters, they, too, may
be suppressed. The blank (B) is an
unconditional insertion character: it
always specifies that a blank is to appear
in the associated position.

~ Insertion characters are applicable
only to the character-string value. They
specify nothing about the arithmetic value
of the data item.

causes a comma to be inserted into the
associated position of the numeric
character data when no zero suppression
occurs. If zero suppression does occur,
the comma is inserted only when an
unsuppressed digit appears to the left
of the comma position, or when a V
appears immediately to the left of it
and the fractional part contains any
significant digits, or when the comma is
at the start of a string or is preceded
only by characters not specifying digit
positions. In all other cases where
zero suppression occurs, the comma
insertion character is treated as though
it were a zero suppression character
identical to the one immediately
preceding it.

is used the same way the comma picture
character is used, except that a point
e.) is assigned to the associated
position. This character never causes
point alignment in the picture
specifications of a fixed-point decimal
number and is not a part of the
arithmetic value of the data item. That
function is served solely by the picture
character V. Unless the V actually
appears, it is assumed to be to the
right of the rightmost digit pOSition in
the field, and point alignment is
handled accordingly, even if the pOint
insertion character appears elsewehre.
The point (or the comma or slash) can be
used in conjunction with the V to cause
insertion of the point (or comma or
slash) in the position that delimits the
end of the integer portion in and the
beginning of the fractional portion of a
fixed-point (or floatin9~point) number,

as might be desired in printing, since
the V does not cause printing of a
point. The point must immediately
precede or immediately follow the V. If

r---,
Source I Source Data I Picture I Character-String I

Attributes I (in constant form) I Specification I Value1 I

FIXED(5) 12345 ZZZ99 12345

FIXED(S) 00100 ZZZ99 bb100

FIXED(S) 00100 ZZZZZ bb100

FIXED(S) 00000 ZZZZZ bbbbb

FIXED(5,2) 123.4S ZZZ99 bb123

FIXED(S,2) 001.23 ZZZV99 bb123

FIXED(5) 12345 ZZZV99 34500 a

FIXED(5,2) 000.08 ZZZVZZ bbb08

FIXED(S,2) 000.00 ZZZVZZ bbbbb

FIXED(5) 00100 ***** **100

FIXED (5) 00000 ***** * ••••

FIXED(S,2) 000.01 •• *v·* *··01

1The arithmetic value is the value expressed by the digits and the actual or assumed
location of the V in the specification.

alf SIZE is enabled, it would be raised in this case, and the result would be as shown.
If SIZE is not enabled, the result is undefined.

L---J
Figure D.3. Examples of zero suppression

the point precedes the V, it will be
inserted only if an unsuppressed digit
appears to the left of the V, even if
all fractional digits are significant.
If the point immediately follows the V,
it will be suppressed if all digits to
the right of the V are suppressed, but
it will appear if there are any
significant fractional digits (along
with any intervening zeros).

/ is used the same way the comma picture
character is used, except that a slash
(/) is inserted in the associated
position.

B specifies that a blank character always
be inserted into the associated position
of the character-string value of the
numeric character data.

Figure D.4 gives examples of the use of
insertion characters. In the figure, tbe
letter b indicates a blank character.

SIGNS AND CURRENCY SYMBOL

The picture characters S, +, and - specify
signs in numeric character data. The
picture character $ specifies a currency
symbol in the character-string value of
numeric character data.

These picture characters may be used in
either a static or a drifting manner. The
static use specifies that a sign, a
currency symbol, or a blank always appears
in the associated position. The drifting
use specifies that leading zeros are to be
suppressed. In this case, the rightmost
suppressed poSition associated with the
picture character will contain a sign, a
blank, or a currency symbol (except that
where all digit positions are occupied by
drifting characters and the value of the
data item is zero, the drifting character
is not inserted).

A drifting character is specified by
multiple use of that character in a picture
field. Thus, if a field contains one
currency symbOl ($), it is interpreted as
statiC; if it contains more than one, it is
interpreted as drifting. The drifting

Section D: Picture specification Characters 319

r---,
Source I Source Data I Picture I Character-String

Attributes I (in constant form) I Specification I Value1

FIXED(4) 1234 9,999 1,234

FIXED(6,2) 1234.56 9, 999V. 99 1,234.56

FIXED(4,2) 12.34 ZZ.VZZ 12.34

FIXED(4,2) 00.03 ZZ.VZZ bbb03

FIXED (4 , 2) 00.03 ZZV.zz bb.03

FIXED(4,2) 12.34 ZZV.ZZ 12.34

FIXED(4,2) 00.00 ZZV.ZZ bbbbb

FIXED(9,2) 1234561.89 9,999,999.V99 1,234,561.89

FIXED(1,2) 12345.61 **,999V.99 12,345.61

FIXED(1,2) 00123.45 **,999V.99 ***123.45

FIXED(9,2) 1234561.89 9.999.999V,99 1.234.561,89

FI.XED(6) 123456 99/99/99 12/34/56

FIXED (6) 123456 99.9/99.9 12.3/4!>.6

FIXED(6) 001234 ZZ/ZZ/ZZ bbb12/34

FIXED(6) 000012 ZZ/ZZ/ZZ bbbbbb12

FIXED(6) 000000 ZZ/ZZ/ZZ bbbbbbbb

FIXED(6) 000000 **/**/** ********

FIXED(6) 000000 **B**B** **b**b**

FIXED(6) 123456 99B99B99 12b34b56

FIXED(3) 123 9BB9BB9 1bb2bb3

FIXED(2) 12 9BB/9BB 1bb/2bb

1The arithmetic value is the value expressed by the digits and the actual or assumed
location of the V in the specification.

L---J
Figure D.4. Examples of insertion characters

character must be specified in each digit
position through which it may drift.

Drifting characters must appear in
strings. A string is a sequence of the
same drifting character, optionally
containing a V and one of the insertion
characters comma, point, slash, or B. Any
of the insertion characters slash, comma,
or point within or immediately following
the string is considered part of the
drifting string. The character B always
causes insertion of a blank, wherever it
appears. A V terminates the drifting
string, except when the arithmetic value of

320 OS PL/I CKT AND OPT LRM PART II

the data item is zero: in that case, the V
is ignored. A field of a picture
specification can contain only one drifting
string. A drifting string cannot be
preceded by a digit position nor can it
occur in the same field as the picture
characters * and Z.

The position in the data associated with
the characters slash, comma, and point
appearing in a string of drifting
characters will contain one of the
following:

• slash, comma, or pOint if a significant

r---,
Source I Source Data I Picture 1 Character-String

Attributes I (in constant form) I Specification I Value1

FIXED(5,2)

FIXED(5,2)

FIXED(5,2)

FIXED (5, 2)

FIXED (1)

FIXED(5,2)

FIXEQ(5,2)

FIXED(2)

FIXED(4)

FIXED(5,2)

FIXED (5)

FIXED (5)

FIXED(5,2)

FIXED(5,2)

FIXED(5,2)

FIXED(5,2)

FIXED (5, 2)

• l

123.45

012.00

001.23

000.00

0

123.45

001.23

12

123q

2.45

214

-4

-123.45

-123.45

123.45

001.23

001.23

$999V.99 $123.45

99$ 12$

$ZZZV.99 $bb1.23

$ZZZV.ZZ bbbbbbb

$$$.$$ bbbbbb

$$$9V.99 $123.45

$$$9V.99 bb$1.23

$$$,999 bbb$012

$$$,999 b$1,234

SZZZV.99 +bb2.45

SS,SS9 +214

SS,SS9 -q

+999V.99 b123.45

-999V.99 -123.45

999V.99S 123.45+

++B+9V.99 bbb+1.23

---9V.99 bbbl.23

I FIXED(5,2) 1 -001.23 SSS9V.99 bb-l.23
1--------------------------------------- ------------------------ ----------------------
11 The arithmetic value is the value expressed by the digits and the actual or assumed
I location of the V in the specification.
L---J
Figure 0.5. Examples of drifting picture characters

digit has appeared to t~e left

• the drifting symbol, if the next
position to the right contains the
leftmost significant digit of the field

• blank, if the leftmost significant digit
of the field is more than one position
to the right

If a drifting string contains the
drifting character n times, then the string
is associated with n-1 conditional digit
positions. The position associated with
the leftmost drifting character can contain
only the drifting character or blank, never
a digit. Two different picture characters
cannot be used in a drifting manner in the
same field.

If a drifting string contains a V within

it, the V delimits the preCeding portion as
a subfield, and all digit positions of the
subfield following the V must also be part
of the drifting string that commences the
second subfield.

Only one type of sign character can
appear in each field. An 5, +, or - used
as a static character can appear to the
right or left of all digits in the mantissa
and exponent fields of a floating-point
specification, and to the right or left of
all digit positions of a fixed-point
specification.

In the case in which all digit positions
after the V contain drifting characters,
suppression in the subfield will occur only
if all o~ the integer and fractional digits
are zero. The resulting edited data item
will then be all blanks (except for any

Section D: Picture Specification Characters 321

insertion characters at the start of the
field). If there are any significant
fractional digits, the entire fractional
portion will appear unsuppressed.

$ specifies the currency symbol. If this
character appears more than once, it is
a drifting character; otherwise it is a
static character. The static character
specifies that the character is to be
placed in the associated position. The
static character must appear either to
the left of all digit positions in a
field of a specification or to the right
of all digit positions in a
specification. See details above for
the drifting use of the character.

S specifies the plus sign character (+) if
the data value is ~O, otherwise it
specifies the minus sign character (-).
The character may be drifting or static.
The rules are identical to those for the
currency symbol.

+ specifies the plus sign character (+) if
the data value is ~O, otherwise it
specifies a blank. The character may be
drifting or static. The rules are
identical to those for the currency
symbol.

specifies the minus sign character (-)
if the data value is <0, otherwise it
specifies a blank. The character may be
drifting or static. The rules are
identical to those for the currency
symbol.

If, during or before assignment to a
picture, the fractional digits of a decimal
number are truncated so that the resulting
value is zero, the sign inserted in the
picture corresponds to the value of the
decimal number prior to its truncation.
ThUS, the sign in the picture may depe~d on
how the decimal value was calculated.

Figure 0.5 gives examples of the use of
drifting picture characters. In the
figure, the letter b indicates a blank
character.

I CREDIT, DEBIT, OVERPUNCHED, AND ZERO
IREPLACEMENT SIGNS

The character pairs CR (credit) and DB
(debit) specify the signs of real numeric
character data items and usually appear in
business report forms.

Any of the picture characters T, I, or R
specifies an overpunched sign in.the
associated digit position of numeric
character data. An overpunched sign is a

322 OS PL/I CKT AND OPT LRM PART II

i2-punch (for plus) or an ii-punch (for
minus) punched into the same column as a
digit. It indicates the sign of the
arithmetic data item. Only one overpunched
sign can appear in a specification for a
fixed-pOint number. A floating-point
specification can contain two, one in the
mantissa field and one in the exponent
field. The overpunch character can,
however, be specified for any digit
position within a field. The overpunched
number then will appear in the specified
digit position.

I The Y picture character specifies that
Izero is to be replaced by the blank
I character.

CR specifies that the associated pOSitions
will contain the letters CR if the value
of the data is less than zero.
otherwise, the positions will contain
two blanks. The characters CR can
appear only to the right of all digit
positions of a field.

DB is used the same way that CR is used
except that the letters DB appear in the
associated positions.

T specifies that the associated position,
on input, will contain a digit
overpunched with a i2-punch if the value
is ~O or an ii-punch if the value is <0.
It also specifies that an overpunch is
to be indicated in the character-string
value.

I specifies that the associated pOSition,
on input, will contain a digit
overpunched with a 12-punch if the value
is ~O; otherwise, it will contain the
digit with no overpunching. It also
specifies that an overpunch is to be
indicated in the character-string value
if the data value is ~O.

R specifies that the associated position,
on input, will contain a digit
overpunched with an ii-punch if the
value is <0; otherwise, it will contain
the digit with no overpunching. It also
specifies that an overpunch is to be
indicated in the character-string value
if the data value is <0.

IY specifies that a zero in the specified
I digit position is to be replaced
I unconditionally by the blank character.

Figure 0.6 gives examples of the CR, DB,
loverpunch, and zero replacement characters.
In the figure, the letter b indicates a
blank character.

Note: The picture characters CR, DB, T, I,
and R cannot be used with any other sign
characters in the same field.

r---,
Source I Source Data I Picture I Character-String

Attributes I (in constant form) I Specification I Value1

FIXED(3) -123 $Z.99CR $1.23CR

FIXED(4,2) 12.34 $ZZV.99CR $12.34bb

FIXED(4,2) -12.34 $ZZV.99DB $12.34DB

FIXED(4,2) 12.34 $ZZV.99DB $12.34bb

FIXED(4) 1021 9991 102A

FIXED(4) -1021 Z99R 102J

FIXED(4) 1021 99T9 10Bl

FIXED(S) 00100 YYYYY bblbb

FIXED(S) 10203 9Y9Y9 lb2b3

FIXED(S,2) 000.04 YYYVY9 bbbb4

1The arithmetic value is the value expressed by the digits and the actual or assumed
location of the V in the specification.

L---J
IFigure D.6. Examples of CR, DB, T, I, R, and Y picture characters

r---,
Source Source Data I Picture I Character-String

Attributes (in constant form) I Specification I Value1

FLOAT(S) .12345E06 V.99999E99 .12345E06

FLOAT(S) .12345E-06 V.99999ES99 .12345E-06

FLOAT(S) .12345E+06 V.99999KS99 .12345+06

FLOAT(S) -123.4SE+12 S999V.99ES99 -123.45E+12

FLOAT(S) 001.23E-Ol SSS9.V99ESS9 +123.00Eb-3

FLOAT(S) 001.23E+04 ZZZV.99KS99 123.00+02

FLOAT(S) 0Ol.23E+04 SZ99V.99ES99 +123.00E+02

FLOAT(S) OOl.23E+04 SSSSV.99E-99 +123.00Eb02

1The arithmetic value is the value expressed by the mantissa, multiplied by 10 to the
power indicated in the exponent field.

L---J
Figure 0.7. Examples of floating-point picture specifications

Section 0: Picture Specification Characters 323

r---,
Source 1 Source Data 1 Picture 1 Character-String

Attributes 1 (in constant form) 1 Specification 1 Value1

FIXED(4,0)

FIXED (7,0)

FIXED(5,5)

FIXED (6,6)·

1200

-1234500

.00012

.012345

99F(2) 12

S999V99F(4) -12345

99FC-5) 12

999V99FC-4) 12345

1The arithmetic value is the same as the character-string value, multiplied by 10 to
the power of the scaling factor.

L---J
Figure 0.8. Examples of scaling factor picture characters

EXPONENT SPECIFIERS

The picture characters K and E delimit the
exponent field of a numeric character
specification that describes floating-point
decimal numbers. The exponent field is
always the last field of a numeric
character floating-point picture
specification. The picture characters K
and E cannot appear in the same
specification.

K specifies that the exponent field
appears to the right of the associated
position. It does not specify a
character in the numeric character data
item.

E specifies that the associated position
contains the letter E, which indicates
the startlof the exponent field.

The value of the exponent is adjusted in
the character-string value so that the
first significant digit of the first field
(the mantissa) appears in the position
associated with the first digit specifier
of the specification (even if it is a zero
suppression character).

Figure 0.7 gives examples of the use of

324 OS PL/I CKT AND OPT LRM PART II

exponent delimiters. In the figure, the
letter b indicates a blank character.

SCALING FACTOR

The picture character F specifies a scaling
factor for fixed-point decimal numbers. It
appears at the right end.of the picture
specification and is used in the following
format:

F «(+1-] decimal-integer-constant)

F specifies that the optionally signed
decimal integer constant enclosed in
parentheses is the scaling factor. The
scaling factor specifies that the
decimal pOint in the arithmetic value of
the variable is that number of places to
the right (if the scaling factor is
positive) or to the left (if negative)
of its assumed poSition in the
character-string value.

The scaling factor must not imply a
scale outside the range -128 to 127.

Figure 0.8 shows examples of the use of
the scaling factor picture character.

Section E: Edit-Directed Format Items

This section describes each of the edit
directed format items that can appear in
the format list of a GET or PUT statement.

There are three categories of format
items: data format items, control format
items, and the remote format item.

In this section, the three categories
are discussed separately and the format
items are listed under each category. The
remainder of the section contains detailed
discussions of each of the format items,
with the discussions appearing in
alphabetic order.

Data Format Items

A data format item describes the external
format of a single data item.

For input, the data in the stream is
considered to be a continuous string of
characters; all blanks are treated as
characters in the stream, as are quotation
marks. Each data format item in a GET
statement specifies the number of
characters to be obtained from the stream
and describes the way those characters are
to be interpreted. Strings should not be
enclosed in quotation marks, nor should the
letter B be used to identify bit strings.
If the characters in the stream cannot be
interpreted in the manner specified, the
CONVERSION condition is raised.

For output, the data in the stream takes
the form specified by the format list.
Each data format item in a PUT statement
specifies the width of a field into which
the associated data item in character form
is to be placed and describes the format
that the value is to take. Enclosing
quotation marks are not inserted, nor is
the letter B to identify bit strings.

Leading blanks are not inserted
automatically to separate data items in the
output stream. String data is left
adjusted in the field, whose width is
specified. Arithmetic data is right
adjusted. Because of the rules for
conversion of arithmetic data to character
type, which can cause up to three leading
blanks to be inserted (in addition to any
blanks that replace leading zeros), there
generally will be at least one blank
preceding an arithmetic item in the
converted field. Leading blanks will not

appear in the stream, however, unless the
specitied field width allows for them.
Truncation, due to inadequate field-width
specification is on the left for arithmetic
items, on the right for string items.

Note that the value of binary data both
on input and output is always represented
in decimal form for edit-directed
transmission.

Following is a list of data format
items:

Fixed-point format item F

Floating-point format item E

Complex format item C

Picture format item p

Bit-string format item B

Character-string format item A

Control Format Items

The control format items specify the layout
of the data set associated with a file.
The following is a list of control format
items:

Paging format item PAGE

Line skipping format item SKIP

Line position format item LINE

Column position format item COLUMN

Spacing format item X

A control format item has no effect
unless it is encountered before the data
list is exhausted.

The PAGE and LINE format items apply
only to output and only to files with the
PRINT attribute. The SKIP, COLUMN and X
format items apply to both input and
output.

The PAGE, SKIP, and LINE format items
have the same effect as the corresponding
options of the PUT statement (and of the
GET statement, in the case of SKIP), except
that the format items take effect only when
they are encountered in the format list,

Section E: Edit-directed Format Items 325

while the options take effect before any
data is transmitted.

The COLUMN format item positions the
file to the specified character position in
the current or following line. It cannot
be used in a GET STRING or PUT STRING
statement.

The spacing format item specifies
relative horizontal spacing. On input, it
specifies a number of characters in the
stream to be skipped over and ignored; on
output, it specifies a number of blanks to
be inserted into the stream.

For the effects of control format items
when specified in the first GET or PUT
statement following the opening of a file,
see "OPEN Statementn in section J,
"Statements".

Remote Format Item

The remote format item specifies the label
of a FORMAT statement that contains a
format list which is to be taken to replace
the remote format item.

The remote format item is:

R(statement-Iabel-designator)

The "statement-Iabel-designator" is a
label constant or scalar label variable.

Use of Format Items

Most of the format items listed below are
followed by a specification. In all cases
except the picture and remote items, any
expression contained in the specification
can be given as decimal integer constants,
as element variables, or as other element
expressions. The value assigned to a
variable during an input operation can be
used in an expression in a format item that
is associated with a later data item. An
expression is evaluated and converted to an
integer each time the format item is used.

Alphabetic List of Format Items

A-Format Item

The A-format item is:

A [(field-width)]

326 OS PL/I CKT AND OPT LRM PART II

The character-string format item
describes the external representation of a
string of characters.

General rules:

1. The "field-width" is an expression
that is evaluated and converted to an
integer, which must be non-negative,
each time the format item is used. It
specifies the number of character
positions in the data stream that
contain (or will contain) the string.

2. On input, the specified number of
characters is obtained from the data
stream and aSSigned, with any
necessary conversion, truncation, or
padding, to the associated element in
the data list. The field width is
always required on input, and if it
has a value equal to zero, a null
string is assumed. If quotation marks
appear in the stream, they are treated
as characTers in the string.

3. On output, the associated element in
the data list is converted, if
necessary, to a string of characters
and is truncated or extended with
blanks on the right to the specified
field width before being placed into
the data stream. If the field width
is equal to zero, the format item and
its associated element in the data
list are skipped, and no characters
are placed into the data stream.
Enclosing quotation marks are never
inserted. If the field width is not
specified, it is assumed to be equal
to the character-string length of the
element named in the data list (after
conversion, if necessary, according to
the rules given in section F, "Data
Conversion and Expression
Evaluation").

B-Format Item

The B-format item is:

B [(field-width)]

The bit-string format item describes the
external representation of a bit string.
Each bit is represented by the character 0
or 1.

General rules:

1. The "field-width" is an expression
that is evaluated and converted to an
integer, which must be non-negative,
each time the format item is used. It
specifies the number of data-stream

character positions that contain (or
will contain> the bit string.

2. On input, the character representation
of the bit string may occur anywhere
within the specified field. Blanks,
which may appear before and after the
bit string in the field, are ignored.
Any necessary conversion occurs when
the bit string is assigned to the
associated element in the data list.
The field width is always required on
input, and if it is equal to zero, a
null string is assumed. Any character
other than 0 or 1 in the string,
including embedded blanks, quotation
marks, or the letter B, will raise the
CONVERSION condition.

3. On output, the character
representation of the bit string is
left-adjusted in the specified field,
and necessary truncation or extension
with blanks occurs on the right. Any
necessary conversion to bit-string is
performed. No quotation marks are
inserted, nor is the identifying
letter B. If the field width is equal
to zero, the format item and its
associated element in the data list
are skipped, and no characters are
placed into the data stream. If the
field width is not specified, it is
assumed to be equal to the bit-string
length of the element named in the
data list (after conversion, if
necessary, according to the rules
given in section F "Data Conversion
and Expression Evaluation").

C-&ormat Item

The C-format item is:

C(rea1-format-item[,real-format-item])

The complex format item describes the
external representation of a complex data
item.

General rules:

1. Each "real-format-item" is specified
by one of the F-, E-, or P-format
items. The P-format item must
describe numeric character data; it
cannot describe character-string data.

2. On input, the complex format item
describes the real and imaginary parts
of the complex data item within
adjacent fields in the data stream.
If the second real format item is
omitted, it is assumed to be the same
as the first. The letter I will cause

the CONVERSION condition to be raised.

3. On output, the real format items
describe the forms of the real and
imaginary parts of the complex data
item in the data stream. If the
second real format item is omitted, it
is assumed to be the same as the
first. The letter I is never appended
to the imaginary part. If the second
real format item (or the first, if
only one appears) is an F or E item,
the internal sign will be printed only
if the value of the imaginary part is
less than zero. If the real format
item is a P item, the sign will be
printed only if the S or - or +
picture character is specified. If
the I is to be appended, it must be
specified as a separate data item in
the data list, immediately follOwing
the variable that specifies the
complex item. The I, then, must have
a corresponding format item (either A
or P).

COLUMN Format Item

The COLUMN format item is:

COLUMN (character-position)

The column position format item
positions the file to a specified character
position within the current or following
line. It can be used with either input or
output files.

General rules:

1. The "character-position" is an
expression which is evaluated and
converted to an integer, which must be
non-negative, each time the format
item is used.

2. The file is positioned to the
specified character position in the
current line, provided it has not
already passed this position. On
input, intervening character positions
are ignored; on output, they are
filled with blanks. If the file is
already positioned after the specified
character poSition, the current line
is completed and a new line is
started; the format item is then
applied to the following line.

3. If the specified character position
lies beyond the rightmost character
position of the current line, or if
the value of the expression for the
character position is less than one,
then the character position is assumed

Section E: Edit-directed Format Items 327

to be one.

Note: The rightmost character
position is determined as follows:

a. For output files, it is determined
by the line size.

b. For input files, the compiler uses
the length of the current logical
record to determine the line size
and, hence, the rightmost
character position. In the case
of V-format records, this line
size is equal to the logical
record length minus the number of
bytes containing control
information.

4. The COLUMN format item has no effect
unless it is encountered before the
data list is exhausted.

5. The COLUMN format item must not be
used in a GET STRING or PUT STRING
statement.

E-Format Item

The E-format item is:

ECfield-width,number-of-fractional-digits
[,number-of-significant-digits])

The floating-point format item describes
the external representation of decimal
arithmetic data in floating-point format.

General rules:

1. The -field-width", "number-of
fractional-digits", and "number-of
significant-digits" can be represented
by expressions, which are evaluated
and converted to integers when the
format item is used.

"Field-width" specifies the total
number of characters in the field.

"Number-of-fractional-digits"
specifies the number of digits in the
mantissa that follow the decimal
point.

"Number-of-significant-digits"
specifies the number of digits that
must appear in the mantissa.

2. On input, the data item in the data
stream is the character representation
of an optionally signed decimal
floating-point or fixed-point constant
located anywhere within the specified
field. If the data item is a fixed-

328 OS PL/I CKT AND OPT LRM PART II

point number, an exponent of zero is
assumed.

The external form of a floating-point
number is:

[+1-] mantissa['[E](+I-}texponent] lE [+I-]f

The mantissa must be a decimal fixed
pOint constant.

a. The number can appear anywhere
within the specified field; blanks
may appear before and after the
number in the field and are
ignored. If the entire field is
blank, the CONVERSION condition is
raised. When nO decimal point
appears, the expression for the
number of fractional digits
specifies the number of character
positions in the mantissa to the
right of the assumed decimal
point. If a decimal point does
appear in the number, it overrides
the specification of the number of
the fractional digits.

The value expressed by "field
width" includes trailing blanks,
the exponent pOSition, the
positions for the optional plus or
minus signs, the position for the
optional letter E, and the
position for the optional decimal
point in the mantissa.

b. The exponent is a decimal integer
constant. Whenever the exponent
and preceding sign or letter E are
omitted, a zero exponent is
assumed.

3. On output, the internal data is
converted to floating-point, and the
external data item in the specified
field has the following general form:

[-] (s-d digits}.{d digits}
E {+I-} exponent

In this form, s represents the number
of significant digits, and d
represents the number of fractional
digits. The value is rounded if
necessary. If the data item is
fractional, the character 0, rather
than s-d digits, appears before the
decimal point.

a. The exponent is a two-digit
decimal integer constant, which
may be two zeros. The exponent is
automatically adjusted so that the
leading digit of the mantissa is
nonzero. When the value is zero,
zero suppression is applied to all

digit positions (except the first)
to the left of the decimal point.
All other digit positions contain
zero.

b. If the above form of the number
does not fill the specified field
on output, the number is right
adjusted and extended on the left
with blanks. If the number of
significant digits is not
specified, it is taken to be 1
plus the number of fractional
digits. The field width for non
negative values of the data item
must be greater than or equal to 5
plus the number of significant
digits. For negative values of
the data item, the field width
must be greater than or equal to 6
plus the number of significant
digits. However, if the number of
fractional digits is zero, the
decimal point is not written, and
the above figures for the field
width are reduced by 1.

c. The rounding of internal data is
as follows: if truncation causes
a digit to be lost from the right,
and this digit is greater than or
equal to 5, then 1 is added to the
digit to the left of the truncated
digit.

d. If the field width is such that
significant digits or the sign are
lost, the SIZE condition is
raised.

F-Format Item

The F-format item is:

F(field-width[,number-of-fractional-digits
[,scaling-factor]])

The fixed-point format item describes
the external representation of a decimal
arithmetic data item in fixed-point format.

General rules:

1. The "field-width", "number-of
fractional-digits", and nscaling
factor" can be represented by element
expressions, which are evaluated and
converted to integers when the format
item is used. The evaluated field
width and number of fractional digits
must both be non-negative.

2. On input, the data item in the data
stream is the character representation
of an optionally signed decimal fixed-

point constant located anywhere within
the specified field. Blanks may
appear before and after the number in
the field and are ignored. If the
entire field is blank, it is
interpreted as zero.

The number of fractional digits, if
not specified, is assumed to be zero.

If nO scaling factor is specified and
no decimal point appears in the field,
the expression for the number of
fractional digits specifies the number
of digits in the field to the right of
the assumed decimal point. If a
decimal pOint actually does appear in
the data, it overrides the expression
for the number of fractional digits.

If a scaling factor is specified, it
effectively multiplies the value of
the data item in the data stream by 10
raised to the integral value (E) of
the scaling factor. Thus, if E is
positive, the number is treated as
though the decimal point appeared E
places to the right of its given
position. If E is negative, the
number is treated as though the
decimal point appeared E places to the
left of its given position. The given
position of the decimal pOint is that
indicated either by an actual point,
if it appears, or by the expression
for the number of fractional digits,
in the absence of an actual point.

3. On output, the internal data is
converted, if necessary, to fixed
pOint; the external data is the
character representation of a decimal
fixed-point number, rounded if
necessary, and right-adjusted in the
specified field.

If only the field width is specified
in the format item, only the integer
portion of the number is written; no
decimal pOint appears.

If both the field width and number of
fractional digits are specified, but
the scale factor is not, both the
integer and fractional portions of the
number are written. If the value (d)
of the number of fractional digits Is
greater than zero, a deCimal pOint is
inserted before the rightmost Q
digits. Trailing zeros are supplied
when the number of fractional digits
is less than d (the value d must be
less than the-field width)~
Suppression of leading zeros is
applied to all digit positions (except
the first) to the left of the decimal
pOint.

Section E: Edit-directed Format Items 329

The rounding of internal data is as
follows: if truncation causes a digit
to be lost from the right, and this
digit is greater than or equal to 5,
then 1 is added to the digit to the
left of the truncated digit.

The integer value (E) of the scaling
factor effectively multiplies the
value of the associated element in the
data list by 10 raised to the power of
Q, before it is edited into its
external character representation.
When the number of fractional digits
is zero, only the integer portion of
the number is used.

On output, if the value of the fixed
point number is less than zero, a
minus sign is prefixed to the external
character representation; if it is
greater than or equal to zero, no sign
appears. Therefore, for negative
values of the fixed-point number, the
field width specification must include
a count of both the sign and the
decimal pOint.

If the field width is such that any
character is lost, the SIZE condition
is raised.

LINE Format Item

The LINE format item is:

LINE (line-number)

The line position format item specifies
the particular line on the current or
following page of a PRINT file upon which
the next data item is to be printed.

General rules:

1. The "line-number" can be represented
by an expression, which is evaluated
and converted to an integer, which
must be non-negative, each time the
format item is used.

2. Blank lines are inserted, if
necessary.

3. If the specified line number is less
than or equal to the current line
number, or if the specified line is
beyond the limits set by the PAGESIZE
option of the OPEN statement (or by
default), the ENDPAGE condition is
raised. An exception is that if the
specified number is equal to the
current line number, and the column
one character has not yet been
transmitted, the effect is as for a

330 OS PL/I CKT AND OPT LRM PART II

SKIP(O) item-carriage return with no
line spacing.

4. If "line-number" is equal to zero, it
is assumed to be one.

5. The LINE format item has no effect
unless it is encountered before the
data list is exhausted.

P-Format Item

The P-format item is:

P 'picture-specification'

The picture format item describes the
external representation of numeric
character data and of character-string
data.

The "picture-specification" is discussed
in detail in section 0, "Picture
Specification Characters" and in the
discussion of the PICTURE attribute in
section I, "Attributes".

On input, the picture specification
describes the form of the data item
expected in the data stream and, in the
case of a numeric character specification,
how the item's arithmetic value is to be
interpreted. Note that the picture
specification should accurately describe
the data in the input stream, including
characters represented by editing
characters. It the indicated character
does not appear in the stream, the
CONVERSION condition is raised.

On output, the value of the associated
element in the data list is converted to
the form specified by the picture
specification before it is written into the
data stream.

PAGE Format Item

The PAGE format item is:

PAGE

The paging format item specifies that a
new page is to be established. It can be
used only with PRINT files.

General rules:

1. The establishment of a new page
implies that the file be positioned to
line one of the next page.

2. The PAGE format item has no effect
unless it is encountered before the
data list is exhausted.

R-Format Item

The R-format item is:

R (statement-label-designator)

The remote format item allows format
items in a FORMAT statement to replace the
remote format item.

General rules:

1. The "statement-label-designator" is a
label constant, or an element label
variable, or a function reference that
has as its value the statement label
of a FORMAT statement. The FORMAT
statement includes a format list that
is taken to replace the format item.

2. The R-format item and the specified
FORMAT statement must be internal to
the same block. (If the procedure is
executed recursively, they must be in
the same invocation.)

3. There can be no recursion within a
FORMAT statement. That is, a remote
FORMAT statement cannot contain an R
format item that names itself as a
statement label designator, nor can it
name another remote FORMAT statement
that will lead to the naming of the
original FORMAT statement. Avoidance
of recursion can be assured if the
FORMAT statement referred to by a
remote format item does not itself
contain a further remote format item.

4. Any conditions enabled for the GET or
PUT statement must also be enabled for
the remote FORMAT statement(s) that
are referred to.

5. If the GET or PUT statement is a
single statement of an on-unit, it
cannot contain a remote format item.

SKIP Format Item

The SKIP format item is:

SKIP[(relative-position-of-next-line)]

The line skipping format item specifies
that a new line is to be defined as the
current line.

General rules:

1. The "relative-position-of-next-line n

can be specified by an element
expression, which is evaluated and
converted to an integer, w, which must
be non-negative, each time the format
item is used. It must be greater than
zero for non-PRINT files. If it is
not, or if it is omitted, 1 is
assumed.

2. The new line is the wth line after the
present line.

3. If w is greater than one, then on
input, one or more lines will be
ignored; on output, one or more blank
lines will be inserted.

4. w may be equal to zero for PRINT files
only; the effect is that of a carriage
return without line spacing.
Characters previously written may be
overprinted.

5. For PRINT files, if the specified
relative position is beyond the limit
set by the PAGESIZE option of the OPEN
statement (or the default), the
ENDPAGE condition is raised.

6. If the SKIP format item is the first
item to be executed after a file has
been opened, output commences on the
wth line of the first page. If w is
zero or 1, it commences on the first
line of the first page.

7. The SKIP format item has nO effect
unless it is encountered before the
data list is exhausted.

X-Format Item

The X-format item is:

x (field-width)

The spacing format item controls the
relative spacing of data items in the data
stream. It is not limited to PRINT files.

General rules:

1. The "field-widthn is an expression,
which is evaluated and converted to an
integer, which must be non-negative,
each time the format item is used.
The integer specifies the number of
blanks before the next field of the
data stream, relative to the current
position in the stream.

2. On input, the specified number of

Section E: Edit-directed Format Items 331

characters is spaced over in the data
stream and not transmitted to the
program.

3. On output, the specified number of
blank characters are inserted into the
stream.

4. The spacing format item has nO effect
unless it is encountered before the
data list is exhausted.

332 OS PL/I CKT AND OPT LRM PART II

Priority Operator Type of Operation Reference Remarks

*" Arithmetic Figure F. 4 Result is in coded arithmetic form

No conversion required

- If operand is in coded arithmetic form

Operand is converted to FIXED DECIMAL

1 prefix +, - Arithmetic
FIXED DECIMAL if it is a CHARACTER string or numeric

target character (PICTURE) representation of a
fixed-point decimal number

Operand is converted to FLOAT DECIMAL

FLOAT DECIMAL if it is a numeric character (PICTURE)
target representation of a floating-point decimal

number

FIXED BINARY Operand is converted to FIXED BINARY if
target it is a BIT string

..., Bit string BIT target All non·BIT data converted to BIT

2 .. / Arithmetic FigureF.4 Result is in coded arithmetic form

3 infix +,., Arithmetic Figure F. 4 Result is in coded arithmetic form

If one or both operands are CHARACTER
CHARACTER target or DECIMAL, non-CHARACTER operand(s)

converted to CHARACTER
4 " Concatenation

If operands are BIT and BINARY or both
BIT target operands are BINARY, non·BIT operand(s)

converted to BIT

5 «-.. «= = -,= >= >-,> Comparison Figure F.5 Result is always either 'l'B or 'O'B

6 8, Bit string BIT target All non·BIT data converted to BIT

7 I Bit string BIT target All non·BIT data converted to BIT

All forms of assignment See specific target
Figure F.3 indicates target attributes for

all forms of assignment

Figure F.1. List of priority of operations and guide to conversion rules
The operators are listed in order of priority, group 1 having the highest priority ana group 7 the lowest. All operators in the same priority

group have the same priority. For example, the exponentiation operator * * has the same priority as the prefix + and prefix - operators and
the "not" operator,:

If two or more operators in priority group 1 appear in an expression, the order of priority is right to left within the expression; the rightmost
exponentiation or prefix +, -, or., operator has the highest priority, the next rightmost the next highest, and so on. For all other operators,
if two or more in the same priority group appear in an expression, their relative order or priority is their order left to right within the expression.

334 OS PL/I CKT AND OPT LRM PART II

Table of CEIL Values

When conversions are made between decimal and binary bases, the
values of the precision attributes need to be multiplied or divided by

3'32, and the result needs to be rounded to an integer. This table shows
the result of the multiplication or division and rounding.

If the source precision attribute is positive, the next largest integer
(in PUI terms, the CEIL value) is taken after mu~tiplication. For example:

5*3'32=16'6
CEI L (16'6)=17
The new precision attribute would therefore be 17.

This result could have been read directly from the table, which shows

that CEIL (n*3.32) where n=5 is 17.
If the source precision attribute is negative (the scale factor of the

precision attribute may be negative), the next lowest integer (in PUI
terms, the FLOOR value) is taken. For example:

(-5) *3'32=(-16'6)

FLOOR (-16'6)=(·17)
The new scale factor would therefore be -17

It can be seen from the example that the table may be used with negative
values as well as positive, since

FLOOR (-n)=-CEll (n)

n CEI L (n"3'32) n CEIL (n/3'32)

1 4 1-3 1

2 7 4-6 2

3 10 7-9 3

4 14 10-13 4

5 17 14-16 5

6 20 17-19 6
7 24 20-23 7

8 27 24-26 8

9 30 27-29 9

10 34 30-33 10

11 37 34-36 11

12 40 37-39 12

13 44 40-43 13

14 47 44-46 14

15 50 47-49 15

16 54 50-53 16

17 57 54-56 17

18 60 57-59 18

19 64 60-63 19

20 67 64-66 20

21 70 67-69 21

22 74 70-73 22

23 77 74-76 23

24 80 77-79 24

25 83 80-82 25

26 87 83-86 26

27 90 87-89 27

28 93 90-92 28

29 97 93-96 29
30 100 97-99 30

31 103 100-102 31

32 107 103-106 32

33 110 107-109 33
110-112 34
113-116 35

Figure F .2. Table of eEl L (n *3.32) and CE I L (n/3.32) values

Tt

1/\

RI

DI

D

D

FI
(a

n

1/

I

:orm

IECIMAL
umeric
Ion of a

)ECIMAL
JRE)

decimal

:INARY if

T

1

1

=tACTER
operand(s}

or both
)perand(s}

B

T

T

Ites for

le priority

ators and

the rightmost
:>perators,
the expression,

Table of CEil Values

When conversions are made between decimal and binary bases, the
values of the precision attributes need to be multiplied or divided by
3'32, and the result needs to be rounded to an integer. This table shows
the result of the multiplication or division and rounding.

If the source precision attribute is positive, the next largest integer
(in PUI terms, the CEIL value) is taken after muHiplication. For example

5 4 3'32=16'6
CEI L (16'6}=17

The new precision attribute would therefore be 17.

This result could have been read directly from the table, which shows
that CEIL (n*3.32) where n=5 is 17.

If the source precision attribute is negative (the scale factor of the
precision attribute may be negative), the next lowest integer (in PL/I
terms, the FLOOR value) is taken. For example:

(-5) *3'32=(-16'6)

FLOOR (-16'6)=(-17)

The new scale factor would therefore be -17

It can be seen from the example that the table may be used with negative
values as well as positive, since

FLOOR (-n)=-CEIL (n)

:

n CEIL (n*3'32) n CE I L (n/3'32)

1 4 1-3 1
2 7 4-6 2
3 10 7-9 3
4 14 10-13 4
5 17 14-16 5
6 20 17-19 6
7 24 20-23 7
8 27 24-26 8
9 30 27-29 9

10 34 30-33 10
11 37 34-36 11
12 40 37-39 12
13 44 40-43 13
14 47 44-46 14
15 50 47-49 15
16 54 50-53 16
17 57 54-56 17
18 60 57-59 18
19 64 60-63 19
20 67 64-66 20
21 70 67-69 21
22 74 70-73 22
23 77 74-76 23
24 80 77-79 24
25 83 80-82 25
26 87 83-86 26
27 90 87-89 27
28 93 90-92 28
29 97 93-96 29
30 100 97-99 30
31 103 100-102 31
32 107 103-106 32
33 110 107-109 33

110-112 34
113-116 35

Figure F.2. Table of CEIL (n*3.32) and CEIL (n/3.32) values

The following may cause conversion to any attributes:

~ase

Assignment

Operand in an expression

Istream input (GET statement)

Istream output (PUT statement)

Argument to PROCEDURE or ENTRY

Argument to built-in function or pseudovariable

INITIAL attribute

RETURN statement expression

DO statement, BY or TO option

Irhe following may cause conversion to character-string:

~tatement

DISPLAY

Record liD

iOPEN

Option

KEY FROM
KEY

TITLE

trhe following may cause conversion to a binary integer:

~tatement

DECLAR E/ ALLOCATE/DEFAU L T

DELAY

FORMAT
(and format items
'n GET and PUT)

iOPEN

110

~AIT statement

lMost statements

Figure F .3. Circumstances causing conversion

Target attributes

Attributes of variable on left of assignment symbol

Determined by rules for evaluation of expressions

Attributes of receiving field

As determined by format list if stream is edit directed,
otherwise character-string

Attributes of corresponding parameter

Depends on the function or pseudovariable

Other attributes of variable being initialized

Attributes specified in PROCEDURE or ENTRY statement

Attributes of control variable

Maximum String Length Used

Source, 72-character maximum

Key length specified + 8

Key length specified + 8

Determined by conversion rules, 8 character maximum

Option/A ttribute/Reference Precision

length, size, 15
dimension, bound, 15
repetition factor 15

milliseconds 31

interation factor 15
w 15
d 7
s 7
p 7

L1NESIZE 15
PAGESIZE 15

SKIP 15
LINE 15
IGNORE 15

expression option 31

subscript 15

Section F: Data Conversion and Expression Evaluation

The purpose of this section is to help the
user analyze a mixed expression, involving
problem data, to determine the conversions
that will occur, and the effect these
conversions will have on the final result.
In this context, an assignment is
considered as a special case of a mixed
expression. An expression is termed "mixed"
for one of two reasons:

1. Operands have attributes that differ.
For example,

DCL A CHAR(6),B FIXED BINARY(3l);

A=B;

B is converted to character-string
form before assignment to A.

2. Operands have attributes that are not
compatible with the operation to be
performed. For example,

DCL C BIT(10) VARYING;

C=C+Ci

C is converted to an arithmetic value
before the addition is performed. The
arithmetic result of the addition is
converted to bit-string form before
assignment back to C.

This section gives all the circumstances
and rules under which such conversions take
place.

Conversions may also occur in situations
other than assignment or expression
evaluation. However, the rules given here
are directly applicable to these
situations. Figure F.3 lists all the
circumstances under which conversion may
occur.

SECTION ORGANIZATION

The conversion rules are presented by
figures F.l, F.4, and F.S, and by source to
target rules.

Figure F.l shows the operations that may
be performed, gives their priority in
expression evaluation, and contains
references to figures F.4 and F.S, and to
source to target rules where further
information may be obtained.

Figure F.4 shows, for all arithmetic
operations, the conversions that will take
place.

Figure F.S shows, for all problem data
comparisons, the conversions that will take
place.

Source to target rules are given for
each of the following data types:

Coded Arithmetic:

FIXED BINARY
FIXED DECIMAL
FLOAT BINARY
FLOAT DECIMAL

PICTURE (numeric character)

CHARACTER

BIT

The following pages take each of these
data types as a target and give the
conversion rules for all the others taken
as sources to that target. The source to
target rules are used directly for all
conversions that do not involve operators.
See tigure F.3.

The relationship between figures F.l,
F.4, and F.S, and the source to target
rules is illustrated as follows:

r----------,
IFigure F.11-------,
L---- -----J I

1
1 r----------, I

1 Figure F. 41 1
L----------J I

1 I
1 V
1 r----------,
1 IFigure F.51
I L----------J
1 I

V V V
r----------------------,
Isource to target rules I
L----------------------J
One other figure, tigure F.2, is an aid

to calculating the new precision resulting
from a conversion.

The placement of the figures in this
section is designed so that the user can

section F: Data Conversion and Expression Evaluation 335

have access to most of the information at
one page opening. Figures F.l and F.2 are
together on a foldout page so that they are
clear of the normal page. Figures F.4 and
F.5 are each on a foldout page and placed
at the back of the section. Thus, figures
F.l, F.2, and F.4 or F.5, and specific
source to target rules can all be viewed
simultaneously.

EXAMPLE OF USE OF THE CONVERSION RULES

The following example illustrates how
information is retrieved from the figures
and the source to target rules.

DCL FB FIXED BINARY(S),
FD FIXED DECIMAL(5,2),
CH CHARACTER(12)~

CH=4.2*FB+FD~

From the priority rules in figure F.l, the
assignment statement is executed in the
following steps:

1. resultl=4.2*FB

2. result2=resultl+FD

3. CH=result2

The attributes of the result at each
step are determdned as follows.

step 1

The constant 4.2 has implied attributes of
FIXED DECIMALC2,1).

Refer to figure F.4a using the
attributes of the constant as the first
operand and the attributes of FB as the
second operand. This gives the code
reference S. In figure F.4d, code

336 OS PL/I CRT AND OPT LRM PART II

reference S gives the attributes of the
result as FIXED BINARY(p,q), where the
precision for multiplication is:

p=1+(1+2*3.32)+S=14
q=(1*3.32)+0=4

• resultl has attributes FIXED
BINARY(14,4)

step 2

Refer to figure F.4a using the attributes
of resultl as the first operand and the
attributes of FD as the second operand.
This gives the code reference 7. In figure
F.4c, code reference 7 gives the attributes
of the result as FIXED BINARY(p,q), where
the precision for addition is:

p=1+MAX(14-4,(Cl+S*3.32)-2*3.32»+7=19
q=MAX(4, (2*3.32»=7

• result2 has attributes FIXED
BINARY (19, 7)

Step 3

Refer to the rules for FIXED BINARY source
to CHARACTER target. The source is first
converted to FIXED DECIMALCp,q), where

p=1+19/3.32=7
q=7/3.32=3

Refer to the rules for FIXED DECIMAL
source to CHARACTER target. The decimal
constant is assigned to an intermediate
string of length 10.

The intermediate string is assigned to
CH, which is padded on the right with two
blank characters.

Source: Target: Coded Arithmetic

Coded Arithmetic

The four data types FIXED BINARY, FIXED DECIMAL, FLOAT BINARY, and
FLOAT DECIMAL are all coded arithmetic data. Rules for conversion
between them are given under each data type taken as a target.
However, the following general points should be noted:

• Small changes in value may occur due to truncation on the right in
conversion from decimal to binary, and between fixed-point decimal
and floating-point decimal.

• If a complex value is converted to a real value, the imaginary
part is ignored. If a real value is converted to a complex value,
the imaginary part is zero.

PICTURE (numeric character)

CHARACTER

BIT

Data is first interpreted as decimal with scale and precision
determined by the corresponding PICTURE specification. The item is
then converted to the base, scale, mode, and precision of the target.
See under specific target types of coded arithmetic data using FIXED
DECIMAL or FLOAT DECIMAL as the source.

The source string must represent a valid arithmetic constant or
complex expression; otherwise, the CONVERSION condition will be
raised, if enabled. The constant can be signed, and can be surrounded
by blanks, but cannot contain blanks between the sign and the value,
or between the end of the real part and the sign preceding the
imaginary part of a complex expression.

A null string gives the value zero.

The constant will have base, scale, mode, and prec~s~on attributes.
It will be converted to the attributes of the target when they are
independent of the source attributes, as in the case of assignment.
see under specific target types of coded arithmetic data using the
attributes of the constant as the source.

However, if an intermediate target is necessary, as is the case in
evaluation of an operational expression, the attributes of the
intermediate target are those it would have if a decimal fixed-point
integer of precision (15,0) had appeared in place of the string.
(This allows the compiler to generate code to handle all cases,
regardless of the attributes of the contained constant.)
Consequently, any fractional portion of the constant is lost. See
under specific target types of coded arithmetic data using FIXED
DECIMAL as the source.

If a character string which represents a complex number is assigned
to a real target, the complex part of the string is not checked for
valid arithmetic characters and CONVERSION will not be raised,
since only the real part of the string is assigned to the target.

The source string is interpreted as an unsigned binary integer whose
precision is (31,0) if the conversion occurs during evaluation of an
operational expression, or whose precision is (56,0) if the conversion
occurs during an assignment. The greater precision allowed for in an
assignment is possible because the compiler can readily determine the

Section F: Data Conversion and Expression Evaluation 331

Source: 'l'arget: coded Arithmetic
(continued)

BIT (continued)

final target. See under specific target types of coded arithmetic
data using FIXED BINARY as the source.

If the source string is longer than the allowable precision, bits on
the left are ignored: if nonzero bits are lost, the result is
undefined and the SIZE condition will be raised if enabled.

A null string gives the value zero.

338 OS PL/I CRT AND OPT LRM PART II

Source: Target: FIXED BINARY

FIXED BINARY

The binary point alignment is maintained during precision conversion,
and therefore padding or truncation can occur on the left or the
right. If nonzero bits on the left are lost, the result is undefined;
the SIZE condition will be raised, if enabled.

FIXED DECIMAL

If the precision of the source is (P~,q1)' the precision of the result
is (P2,q2)' where p2=1+CEIL(p~*3.32) and q2=CEIL(q~*3.32). If the
calculated value of P2 exceeds 31, significant digits on the left may
be lost, this will cause the SIZE condition to be raised, if enabled,
and the result is undefined.

FLOAT BINARY

This conversion can occur only when data is assigned. The precision
conversion is the same as that given for FIXED BINARY to FIXED BINARY
with p~ as declared or indicated and q~ as indicated by the binary
point position and modified by the value of the exponent.

FLOAT DECIMAL

This conversion can occur only when data is assigned. The precision
conversion is the same as that given for FIXED DECIMAL to FIXED BINARY
with P1 as declared or indicated and q~ as indicated by the d~cimal
point position and modified by the value of the exponen~.

PICTURE (numeric character>
CHARACTER
BIT

See under Coded Arithmetic Target.

Section F: Data Conversion and Expression Evaluation 339

Source: Target: FIXED DECIMAL

FIXED BINARY

If the precision of the source is (P1,q1)' the precision of the result
is (P2,Q2). where P2=1+CEIL(p1/3.32) and Q2=CEIL(Q1/3.32).

FIXED DECIMAL

The decimal point alignment is maintained during precision conversion,
and therefore padding or truncation can occur on the left or the
right. If nonzero bits on the left are lost, the result is undefined;
the SIZE condition will be raised, if enabled.

FLOAT BINARY

This conversion can occur only when data is assigned. The prec1s10n
conversion is the same as that given for FIXED BINARY to FIXED DECIMAL
with P1 as declared or indicated and Q1 as indicated by the binary
point position and modified by the value of the exponent.

FLOAT DECIMAL

This conversion can occur only when data is assigned. The precision
conversion is the same as that given for FIXED DECIMAL to FIXED
DECIMAL with P1 as declared or indicated and Q1 as indicated by the
decimal pOint position and modified by the value of the exponent.

PICTURE (numeric character)
CHARACTER
BIT

See under Coded Arithmetic Target.

340 OS PL/I CKT AND OPT LRM PART II

Source: Target: FLOAT BINARY

FIXED BINARY

If the precision of the source is (P1,Q1)' the prec1s10n of the result
is P2, where P2=P1. The exponent will indicate any fractional part of
the value.

FIXED DECIMAL

If the precision of the source is (P1,Q1)' the precision of the result
is P2, where P2=CEIL(p1*3.32). The exponent will indicate any
fractional part of the value.

FLOAT BINARY

The prec1s1on of the result may be converted from short to long
precision by padding with zeros on the right, or may be converted from
long to short precision by truncation on the right.

FLOAT DECIMAL

If the precision of the source is (P1,Q1)' the precision of the result
is P2, where P2=CEIL(p1*3.32).

PICTURE (numeric character)
CHARACTER
BIT

See under Coded Arithmetic Target.

Section F: Data Conversion and Expression Evaluation 341

Source: Target: FLOAT DECIMAL

FIXED BINARY

If the precision of the source is CP1,Q1)' the prec1s10n of the result
is P2, where P2=CEILCP1/3.32). The exponent will indicate any
fractional part of the value.

FIXED DECIMAL

If the precision of the source is CP1,Q1)' the prec1s1on of the result
is P2, where P2=P1. The exponent will indicate any fractional part of
the valuE.

FLOAT BINARY

If the precision of the source is CP1)' the precision of the result is
P2, where P2=CEILCP1/3 •32).

FLOAT DECIMAL

The precision of the result may be converted from short to long
precision by padding with zeros on the right, or may be converted from
long to short precision by truncation on the right.

PICTURE Cnumeric character)
CHARACTER
BIT

See under coded Arithmetic Target.

342 OS PL/I CKT AND OPT LRM PART II

Source: Target: PICTURE (numeric character)

Upon conversion to numeric character form, the source data acquires
attributes that depend entirely on the known attributes of the target
variable. Any PICTURE specification implies coded arithmetic data,
which is either FIXED DECIMAL or FLOAT DECIMAL. The following rules
for different source to numeric character target show those target
attributes that are necessary to permit error-free assignment.

FIXED BINARY

If the precision of the source is (P1,q1)' the target must imply,

FIXED DECIMAL (l+x+q-y,q) or
FLOAT DECIMAL (x)
where x>=CEIL(p1/3.32),y=CEIL(q1/3.32) , and q>=y.

FIXED DECIMAL

If the precision of the source is (P1,Q1)' the target must imply,

FIXED DECIMAL (x+q-pl,q) or
FLOAT DECIMAL (x)
where x>=p and q>=q1.

FLOAT BINARY

If the precision of the source is (P1), the target must imply,

FIXED DECIMAL (p,q) or
FLOAT DECIMAL (p)
where p>=CEIL(p1/3.32) and the values of p and q take account of
the range of values that may be held by the exponent of the
source.

FLOAT DECIMAL

If the precision of the source is (P1)' the target must imply,

FIXED DECIMAL (p,q) or
FLOAT DECIMAL (p)
where P>=P1 and the values of p and q take account of the range of
values that may be held by the exponent of the source.

PICTURE (numeric character)

CHARACTER

The implied attributes will be either FIXED DECIMAL or FLOAT DECIMAL.
See the respective entries for this target.

The source string must represent a valid arithmetic constant: otherwise the
CONVERSION condition will be raised if enabled. (See Target: Coded Arithmetic).

section F: Data Conversion and Expression Evaluation 343

Source:

BIT

Target: PICTURE (numeric character)
(continued)

If the length of the source string. is (n), the target must imply,

FIXED DECIMAL (l+x+q,q) or
FLOAT DECIMAL (x)
where x>=CEIL{n/3.32) and q>=O.

344 OS PL/I CRT AND OPT LRM PART II

Source: Target: CHARACTER

Coded Arithmetic

The arithmetic value is converted to a decimal constant. The constant
is inserted into an intermediate character-string whose length is
derived from the attributes of the source. The intermediate string is
assigned to the target according to the rules given for CHARACTER to
CHARACTER.

Note that the rules for coded arithmetic to character-string
conversion are also used for list-directed and data-directed output,
and for evaluating keys (even for REGIONAL files).

FIXED BINARY

The binary precision (P1,q1) is first converted to the equivalent
decimal precision (p,q), where p=1+CEIL(P1/3.32) and q=CEIL(Q1/3.32).
Thereafter the rules are the same as those given for FIXED DECIMAL to
CHARACTER.

FIXED DECIMAL

A decimal fixed-point source with precision (p,q) is converted as
follows:

1. If p>=q>=O then:

• The constant is right adjusted in a field of width p+3.

• Leading zeros are replaced by blanks, except for a single zero
that immediately precedes the decimal point of a fractional
number.

• A minus sign will precede the first digit of a negative number.
A positive value is unsigned.

• Unless the source is an integer, the constant has q fractional
digits.

2. If p<q or q<O, a scaling factor is appended to the right of the
constant. The scaling factor has the form:

F{+I-}nnn, where {+I-}nnn has the value of q.

The length of the intermediate string is p+k+3, where k is the
number of digits necessary to hold the value of q (not including
the sign or the letter F).

If the arithmetic value is complex, the intermediate string consists
of the imaginary part concatenated to the real part. The left-hand,
or real, part is generated exactly as a real source. The right-hand,
or imaginary, part is always signed, and it has the letter I appended.
The generated string is a complex expression with no blanks between
its elements. The length of the intermediate string is:

2*p+7 for p>=q>=O and
2*(p+k)+1 for p<q or q<O.

The following examples show the intermediate strings that are
generated from several real and complex fixed-point decimal values:

precision:
value
string

(5,0)
2941
'bbbb2941'

(4,1)
-121.1
'b-121.1'

(4,-3)
-3219000
'-3279F+3'

(2,1)
1.2+0.31
'bbb1.2+0.3I'

section F: Data Conversion and Expression Evaluation 345

Source: Target: CHARACTER
(continued)

FLOAT BINARY

The floating-point binary precision (P1) is first converted to the
equivalent floating-point decimal precision (p), where
p=CEIL(p1/3.32). Thereafter the rules are the same as those given for
FLOAT DECIMAL to CHARACTER.

FLOAT DECIMAL

A decimal floating-point source with precision (p) is converted as if
it were transmitted by an E-format item of the torm E(w,d,s) where:

w, the length of the intermediate string, is p+6.
d, the number of fractional digits, is p-1.
s, the number of significant digits, is p.

An E-format item generates a floating-point decimal constant with a
signed 2-digit exponent (see section E, "Edit Directed Format Items").

If the arithmetic value is complex, the intermediate string consists
of the imaginary part concatenated to the real part. The left-hand,
or real, part is generated exactly as a real source. The right-hand,
or imaginary, part is always signed, and it has the letter I appended.
The generated string is a complex expression with no blanks between
its elements. The length of the intermediate string is:

2*p+13.

The following examples show the intermediate strings that are
generated from several real and complex floating-point decimal values:

precision:
value
string

precision:
value
string

(5)
1735*10**5
'b1.73~OE+08'

(5)

(5)
-.001663

'-1.6630E-03'

17.3+1.51
'b1.7300E+01+1.5000E+OOI'

(3)

1
'b1.00E+OO'

PICTURE (numeric character)

CHARACTER

BIT

A real numeric character field is interpreted as a character string
and assigned to the target string according to the rules given for
CHARACTER to CHARACTER. If the numeric character field is complex,
the real and imaginary parts are concatenated before assignment to the
target string. Insertion characters wi 11 be included in the target". string.

The source string is assigned to the target string from left to right.
If the source string is longer than the target, excess characters on
the right are ignored, and the STRINGSIZE condition will be raised, if
enabled. If the target is longer than the source, the target is
padded on the right with blanks.

Bit 0 becomes character 0 and bit 1 becomes character 1. A null bit
string becomes a Dull character string. The generated character
string is assigned to the target string according to the rules given
for CHARACTER to CHARACTER.

346 OS PL/I CKT AND OPT LRM PART II

Source: Target: BIT

Coded Arithmetic

If necessary, the arithmetic value is converted to binary and both the
sign and any fractional part are ignored. (If the arithmetic value is
complex, the imaginary part is also ignored.) The resulting binary
integer is treated as a bit string. It is assigned to the target
according to the rules given for BIT to BIT.

FIXED BINARY

If the prec1s1on of the source is (p,q), the length of the
intermediate bit string is given by:

MIN (31, (p-q» •

If (p-q) is negative or zero, the result is a null bit string.

The following examples show the intermediate strings that are
generated from several fixed-point binary values:

precision:
value
string

FIXED DECIMAL

(1)
1
'l'B

(3)

-3
'Oll'B

(4,2)
1.25
'Ol'B

If the prec1s1on of the source is (p,q>, the length of the
intermediate bit string is given by:

MIN(31,CEIL«p-q)*3.32».

If (p-q) is negative or zero, the resul·t is a null bit string.

The following examples show the intermediate strings that are
generated from several fixed-point decimal values:

precision:
value
string

FLOAT BINARY

(1)
1
'OOOl'B

(2,1)
1.1
'OOOl'B

If the prec1s1on of the source is (p), the length of the intermediate
bit string is given by:

MIN(31,p).

FLOAT DECIMAL

If the precision of the source is (p), the length of the intermediate
bit string is given by:

MIN(31,CEIL(p*3.32».

PICTURE (numeric character)

Data is first interpreted as decimal with scale and precision
determined by the corresponding PICTURE specification. The item is
then converted according to the rules given for FIXED DECIMAL or FLOAT
DECIMAL to BIT.

Section F: Data Conversion and Expression Evaluation 347

Source: Target: BIT
(continued)

CHARACTER

BIT

Character 0 becomes bit 0 and character 1 becomes bit 1. Any
character other than 0 or 1 will raise the CONVERSION condition, if
enabled. A null string becomes a null bit string. The generated bit
string, which has the same length as the source character-string, is
assigned to the target according to the rules given for BIT to BIT.

The source string is assigned to the target string from left to right.
If the source string is longer than the target, excess bits on the
right are ignored, and the STRINGSIZE condition will be raised, if
enabled. If the target is longer than the source, the target is
padded on the right with zeros.

348 OS PL/I CKT AND OPT LRM PART II

Tables for Arithmetic Operations

These tables indicate the attributes of the result when a two-operand arithmetic expression is evaluated, together with any
conversions to tempor;Jry attributes which take place during evaluation. To find the attributes of the result and to determine
what intermediate conversions, if any, take place, proceed as follows:
1. Refer to figure F .4a_ Find the entry that corresponds to the operands in the expression to be evaluated. The entry

consists of either a number, or one or two letters, or a number followed by one or two letters in brackets_ The numbers
are used to determine the attributes of the result and the letters to determine the intermediate conversions. Where there
are no letters, no intermediate conversions take place; where there are letters and numbers, the reader has the choice of
either determining the attributes of the result without reference to the intermediate conversions, or of working through
each intermediate conversion.

2. a. If the entry in figure F.4a consists of a number only, refer to Figure F.4c or F.4d, whichever is appropriate to the
operation being performed, and read off the attributes against the number that was found in figure F .4a. These are
the attributes of the result.

b. If the entry in figure F.4a consists of a letter or letters only, the reader must determine the attributes of each inter
mediate operand before he can determine the attributes of the result. This is done by looking up the corresponding
entry in figure F .4b, then looking up the source to target rules indicated there; the source to target rules will give the
intermediate attributes. Steps 1 and 2 are then repeated using the intermediate attributes_ Where an entry in figure
F.4a consists of two letters separated by a comma the first refers to the intermediate attributes of the first operand,
and the second to those of the second operand.

c. If the entry in figure F.4a consists of a number followed by a letter or letters in brackets, either use the number to
find the attributes of the result directly, according to the instructions in Step 2 (a) or follow through the intermediate
conversions, according to the instructions in Step 2 (b). The latter method is likely to be of greatest value when debugging,
the former when writing the program_

Note: The letters referring to intermediate operands do not apply when an exponentiation operation is to be
performed; this table cannot be used to determine intermediate operands for exponentiation operations.

Maximum Precisions of Arithmetic Data

Figures F .4c and F.4d give formulas for the calculation of precisions_ The actual precision values can never exceed the
implemented maximums, which are:

31 for FIXED BINARY
15 for FIXED DECIMAL
53 for FLOAT BINARY
16 for FLOAT DECIMAL

Second Operand

Coded arithmetic Numeric character

FIXED FLOAT (PICTURE)
CHARACTER (n::!) BIT (n2)

DECIMAL BINARY DECIMAL BINARY Fixed- Floating-
(P2,Q2) (P2,Q2) (P2) (P2) point point

DECIMAL
1 5(b) 3(c) 6(d)

(PI,QI) W Y W x

FIXED
BINARY

7(x)
(PI,ql)

2 8(d,z) 4(d) W Y W x
Coded
arithmetic DECIMAL

(PI) 3(y) 6(d,z) 3 6(d) W y W x
FLOAT

First BINARY
8(z) 4(z) 8(z)

Operand (PI)
4 W y W x

Numeric Fixed-point a a a a a,w a,y a,w a,x
character
(PICTURE) Floating-point c c c c c,W c,y c,W C,x

CHARACTER (nl) a a a a a,w a,y a,w a,x

BIT (nl) b b b b b,w b,y b,w b,x

To determine whether mode of result is REAL or COMPLEX:
If both operands are REAL, there is no conversion of mode and the result is REAL.
If both operands are COMPLEX, there is no conversion of mode and the result is COMPLEX.

If one operand is REAL and the other is COMPLEX, the REAL operand is converted to COMPLEX and the result is COMPLEX, with two exceptional
cases. The exceptions are exponentiations in which the second operand (the exponent) is either a FIXED (p,O) variable or a fixed-point decimal
integer constant: in these cases, no conversion of mode takes place prior to evaluation but the result is COMPLEX,

Figure F .4a. Master Table for arithmetic operations

First Operand Second Operand
Target Code Code

a w FIXED DECIMAL
b x FIXED BINARY
c y FLOAT DECIMAL
d z FLOAT BINARY

Figure F .4b. Key to conversions

Code

1 FIX

2 FIX

3 FL(

4 FL(

5 FIX

6 FL(

7 FIX

8 FLC

Figure F .4c.

Code

1 3 FLC
[unl
p = I

2 4 FLC
[unl

p = I

5 6 FLC
[unl
p = I

7 8 FLC
[unl
p = I

Note: There ar

Real mode:
If x = 0 and y

If x = 0 and y

Ifx<Oandy
condition is ra

Figure F .4d.

· with any
to determine

mtry
e numbers
Ihere there
~ choice of
19 through

! to the
·hese are

~ch inter
sponding
,ill give the

in figure
operand,

Imber to
ntermediate
when debugging,

~d the

Second Operand

Coded arithmetic Numeric character

FIXED FLOAT
(PICTURE)

CHARACTER (n:!) BIT (n2)
DECIMAL BINARY DECIMAL BINARY Fixed- Floating-

(P2,Q2) (P2,Q2) (P2) (P2 I point point

DECIMAL
1 5(bl 3(c) 6(d)

(PI,ql)
w Y w x

FIXED
BINARY

7(x) 2 8(d,z)
(PI,qI)

4(d) w Y W x
Coded
arithmetic DECIMAL

(ptl 3(y) 6(d,z) 3 6(d) W y W x
FLOAT

First BINARY
8(zl 4(z) a(z)

(PII
4 W y w x

Operand

Numeric Fixed-point a a a a a,w a,Y a,w a,x
character
(PICTURE) Floating-point c c c c c,W c,Y c,W c,X

CHARACTER (n I) a a a a a,w a,Y a,w a,x

BIT (nl) b b b b b,w b,Y b,w b,x

To determine whether mode of result is REAL or COMPLEX:

If both operands are REAL, there is no conversion of mode and the result is REAL.
If both operands are COMPLEX, there is no conversion of mode and the result is COMPLEX.

If one operand is REAL and the other is COMPLEX, the REAL operand is converted to COMPLEX and the result is COMPLEX, with two exceptional
cases. The exceptions are exponentiations in which the second operand (the exponent) is either a FIXED (p,OI variable or a fixed-point decimal
integer constant: in these cases, no conversion of mode takes place prior to evaluation but the result is COMPLEX.

Figure FAa. Master Table for arithmetic operations

First Operand Second Operand
Target

Code Code

a w FIXED DECIMAL
b x FIXED BINARY
c y FLOAT DECIMAL
d z FLOAT BINARY

Figure F Ab. Key to conversions

Precision of the result
Code Attributes of result

ADDITION or SUBTRACTION MU L TIPLICATION DIVISION

1 FIXED DECIMAL (p,ql p=15

p=1+MAX(PI-QI ,Pz- q2 1+ q P=PI + P~ + 1 q=15 - ((PI -qll +q~)

2 FIXED BINARY (p,ql
q=MAX (ql,qzl q=ql + q~ p=31

q=31 - ((p I - q I I + q~ I

3 FLOAT DECIMAL (pI

4 FLOAT BINARY (pI
p=MAX (PI, p:!)

p=1 + MAX (r - s, P2 - q2) + q p=l + r + P2 p=31

5 FIXED BINARY (p,q) q= MAX (s, q2) q=s + q2 p=31 - ((r - s) + q2 I

where r·o 1 + PI * 3.32, s = ql *3.32

6 FLOAT BINARY (p) p=MAX (PI *3.32, pz I

p=l + MAX (PI - ql, r - s) + q p=l + PI + r p=31

7 FIXED BINARY (p, q)
q=MAX (q I, s) q=ql + S p=31-((PI -q\l+s

where r = 1 + P2 * 3·32 and s=q2 * 3·32

8 FLOAT BINARY (p) p=MAX (PI, P:! *3.32)

Figure FAc. Result table for ADDITION, SUBTRACTION, MULTIPLICATION, and DIVISION

Code Attributes of result Special cases (see also Note below)

1 3 FLOAT DECIMAL (pI Case First Operand Second Operand
[unless special case A or C appliesl

FIXED DECIMAL p = MAX (PI, P2 I A Unsigned integer
(PI, q}) constant with value n

2 4 FLOAT BINA~Y (pI
(unless special case B or C applies]

p = MAX (PI, q21

5 6 FLOAT BINARY (pI B FIXED BINARY Unsigned Integer

(unless special case A or C applies) (PI, QI) constant with value n

p = MAX (PI *3·32, P2)

7 a FLOAT BINARY (pI
[unless special case Bar C applies) C FLOAT FIXED

p = MAX (PI, (P2 *3·321) (pd (P2,0)

Note: There are further special cases of x ** y, as follOWS:

Real mode:
If x = 0 and Y >0, result is 0
If x = 0 and Y < = 0, ERROR condition is raised
If x <0 and Y not FIXED (p, 01, ERROR
condition is raised

Complex mode:
If x = 0, and real part of y >0 and
imaginary part of y = 0, result is 0
If x = 0 and real part of y < = 0 or
imaginary part of y~ = 0, ERROR condition
is raised
If x..., = 0 and real and imaginary parts of
y = 0, result is 1

Figure F Ad. Result table for EXPONENTIATION

Attributes of result

FIXED DECIMAL (p, ql
[provided p < - 15]

p = (PI + 1 \ *n - 1
q = ql *n

FIXED BINARY (p, q)
(provided p <, 31)

P = (PI + 1 I *n . 1
q = PI *n

FLOAT (pd
with base of first operand

Section F: Data Conversion and Expression Evaluation 349

Tables for Comparison Operations
These tables show the attributes to which the two operands of a comparison operation are converted before they are compared.
They also show the type of comparison that is made.

Refer first to figure F .5a. Find the entry in this table that corresponds to the two operands in the expression to be evaluated;

the entry will consist of two numbers separated by a comma. The numbers refer to the entries in figure F .5b; these indicate
the attributes to which each operand is converted. The first number gives the attributes to which the first operand is converted,
and the second number those for the second operand. For example, consider the following comparison, with variables being
declared as shown.

DECLARE ITEM CHARACTER (5),

STANDARD FIXED BINARY (15,0);

IF ITEM-,=STANDARD THEN DO;

In figure F.5a, the entry corresponding with a first operand having the CHARACTER attribute and a second operand having

the attributes FIXED BINARY is the two numbers 13, 1. Entry 13 in figure F.5b shows attributes FIXED BINARY (31,0),
which indicates that ITEM is converted to coded arithmetic form with these attributes. Entry 1 in Figure F .5b is "No conver·
sian", indicating that STANDARD is not converted. Both entries show that the comparison will be algebraic. (The two

entries in figure F .5b will always show the same type of comparison). The tables indicate, then, that ITEM will be converted
to FIXED BINARY (31,0) and will then be compared algebraically with STANDARD whose attributes remain FIXED
BINARY (15,0).

Maximum Precisions for Arithmetic Data

Figure F .5b gives formulas for the calculation of precisions. The actual precision values can never exceed the implemented
maximums, which are:

31 for FIXED BINARY
15 for FIXED DECIMAL
53 for FLOAT BINARY
16for FLOAT DECIMAL

Second operand

Coded arithmetic Numeric
character

FIXED FLOAT (PICTURE)
CHARACTER (n2)

DECIMAL BINARY DECIMAL BINARY Fixed· Floating·
(P2,Ql) (P2,Ql) (P2) (Pl) point point

DECIMAL
1,1 4,1 5,1 8,1 1,10 5,11 1,12

FIXED
(PI,qtl

BINARY
1,4 1,1 7,6 7,1 1,4 7,6 1,13

(PI,qtl
Coded
arithmetic DECIMAL

1,5 6,7 1,1 6,1 1,5 1,11 1,14
FLOAT

(PI)

First BINARY
1,8 1,7 1,6 1,1 1,8 1,6 1,15 operand (Ptl

Numeric Fixed·point 10,1 4,1 5,1 8,1 *10,10 5,11 10,12
character
(PICTURE) Floating-point 11,5 6,7 11,1 6,1 11,5 ·11,11 11,14

CHARACTER (n 1) 12,1 13,1 14,1 15,1 12,10 14,11 2,2

BIT (n.) 13,4 13,1 9,6 9,1 13,4 9,6 9,2

If one operand is COMPLEX and the other is REAL, the REAL operand is converted to COMPLEX before the comparison is made.

it For the optimizing compiler only, if both operands are numeric character form and have identical PICTURE specifications, the

type of comparison is character and no conversion of operands takes place.

Figure F .5a. Master table for comparison operations

Code
Type 0'

compar

Algebra

BIT (n2) 2 Charact

3 Bit

4
4,13

Algebra

1,13
5 Algebra

6,9
6 Algebra

1,9
7 ~Igebra

4,13 B Algebra

6,9
9 ~Igebra

2,2
10 Algebra

3,3
11 Algebrc

12 Algebrc

13 Algebrc

14 Algebr;

15 Algebrc

16 Algebrc

Note 1: If the

Figure F .5b.

, are compared,

o be evaluated;

~se indicate
Id is converted,

iables being

~rand having
.RY (31,0),
"No conver-

1e two

Ie converted
:IXED

Ilemented

Second operand

Coded arithmetic Numeric
character

FIXED FLOAT (PICTURE)
CHARACTER (n2)

DECIMAL BINARY DECIMAL BINARY Fixed- Floating-
(P2,q2) (P2,Q2) (P2) (P2) point point

DECIMAL
1,1 4,1

(Pl,q.!
5,1 8,1 1,10 5,11 1,12

FIXED
BINARY

1,4 1,1
(Pt,ql)

7,6 7,1 1,4 7,6 1,13

Coded
arithmetic DECIMAL

(pd
1,5 6,7 1,1 6,1 1,5 1,11 1,14

FLOAT
First BINARY
operand (p(l

1,8 1,7 1,6 1,1 1,8 1,6 1,15

Numeric Fixed-point 10,1 4,1 5,1 8,1 *10,10 5,11 10,12
character
(PICTURE) Floating-point 11,5 6,7 11,1 6,1 11,5 *11,11 11,14

CHARACTER (n t) 12,1 13,1 14,1 15,1 12,10 14,11 2,2

BIT (n.! 13,4 13,1 9,6 9,1 13,4 9,6 9,2

If one operand is COMPLEX and the other is REAL, the REAL operand is converted to COMPLEX before the comparison is made,

.. For the optimizing compiler only, if both operands are numeric character form and have identical PICTUR E specifications, the
type of comparison is character and no conversion of operands takes place,

Figure F ,5a, Master table for comparison operations

Code
Type of

Attributes of comparison target
comparison

1 Algebraic No conversion

BIT (n2) 2 Character CHARACTER (MAX (nt, n2)) where (n1) and (n2) are the lengths of the first and second operands, respectively,

3 Bit BIT (MAX (nl, n2)) where (nl) and (n2) are the lengths of the first and second operands, respectively

4,13
4 Algebraic FIXED BINARY (l+p"3'32, q*3'32) where (p,q) is precision of operand being converted (If operand is in numeric

character (PICTURE) form, see Note 1)

1,13
5 Algebraic FLOAT DECIMAL (p) where (p,q) is precision of operand being converted /If operand is in numeric character (PICTURE)

form, see Note 1)

6,9
6 Algebraic FLOAT BINARY (p*3'32) where (p) is precision of operand being converted (If operand is in numeric character

(PICTURE) form, see Note 1)

1,9
7 ~Igebraic FLOAT BINARY (p) where (p, q) is precision of operand being converted (If operand is in numeric character (PICTURE)

form, see Note 1)

4,13 8 Algebraic FLOAT BINARY (p*3'32) where (p, q) is precision of operand being converted (If operand is in numeric character

(PICTURE) form, see Note 1)
6,9

9 !4lgebraic FLOAT BINARY (31)
2,2

10 Algebraic FIXED DECIMAL (Precision same as implied by PICTURE specification of operand being converted)

3,3
11 Algebraic FLOAT DECIMAL (Precision same as implied by PICTURE specification of operand being converted)

12 Algebraic FIXED DECIMAL (15,0)

13 Algebraic FIXED BINARY (31,0)

14 Algebraic FLOAT DECIMAL (15)

15 !Algebraic FLOAT BINARY (50)

16 Algebraic FLOAT DECIMAL (10)

Note 7: If the operand being converted is in numeric character form, its precision is that which is implied by the PICTURE specification,

Figure F ,5b. Types of comparsion operation and targets

Section F: Data Conversion and Expression Evaluation 351

Section G: Built-in Functions and Pseudovariables

All of the built-in functions that are
available to the programmer are given in
this section and are presented in
alphabetical order. Any built-in fUnction
that can also be used as a pseudovariable
has a subentry describing the action of the
pseudovariable.

The general form of a built-in function
reference is as follows:

where x or x~,X2 ••• ,xn represent the
arguments required. For some functions one
or more arguments are optional. For
example:

Each function in the alphabetical list
is identified by the general form of the
function reference (the pseudovariable
reference is always identical to the
equivalent function reference). In
general, each function description has the
following items:

1. A description of the value returned.

2. Details of the arguments.

3. Any other qualifications on the use of
the function.

4. When applicable, a description of the
action of the equivalent
pseudovariable.

CLASSIFICATION OF BUILT-IN FUNCTIONS

The built-in functions can be classified
according to the PL/I features they are
intended to serve. These classes are:

string-handling
Arithmetic
Mathematical
Array-handling
Condition-handling
storage Control
Multitasking
Input/Output
Preprocessor
Miscellaneous

The first four classes are all
computational built-in functions.

String-handling Built-in Functions

These functions simplify the processing of
bit and character strings. They are:

BIT
BOOL
CHAR
HIGH
INDEX
LENGTH
LOW

REPEAT
STRING
SUBSTR
TRANSLATE
UNSPEC
VERIFY

Arithmetic Built-In Functions

These functions allow the programmer to
control conversion of base, scale, mode,
and precision both directly and during
basic arithmetic operations. Other
functions in this class are used to
investigate simple properties of arithmetic
values, for example, the SIGN function
indicates the sign of an arithmetic value.
They are:

ABS
ADD
BINARY
CEIL
COMPLEX
CONJG
DECIMAL
DIVIDE
FIXED
FLOAT
FLOOR

I MAG
MAX
MIN
MOD
MULTIPLY
PRECISION
REAL
ROUND
SIGN
TRUNC

Mathematical Built-In Functions

These functions provide standard
mathematical operations. They are:

ACOS'
ASIN
ATAN
ATAND
ATANH
COS
COSO
COSH
ERF
ERFC
EXP

LOG
LOG 2
LOG10
SIN
SIND
SINH
SQRT
TAN
TAND
TANH

Section G: Built-in Functions and Pseudovariables 353

Array-Handling Built-In FUnctions

These functions all operate on array
arguments and return a single value
property of an array. They are:

ALL
ANY
DIM
HBOUND

LBOUND
POLY
PROD
SUM

Condition-handling Built-In FUnctions

These functions allow the programmer to
investigate interrupts that arise from
enabled conditions. Each of the functions
returns a value that is defined only within
the scope of an on-unit that can be entered
for the condition specific to the built-in
function or within the scope of an on-unit
for the ERROR or FINISH condition when
raised as standard system action. They
are:

DATAFIELD
ONCHAR
ONCODE
ONCOUNT

ONFILE
ONKEY
ONLOC
ONSOURCE

storage Control Built-In Functions

These functions allow the programmer to
determine the storage requirements and
location of variables, to assign special
implementation-defined values to area and
locator variables, to perform conversion
between offset and pointer values, and to
obtain the number of generations of a
controlled variable. They are:

ADDR
ALLOCATION
EMPTY
CURRENTSTORAGE

NULL
OFFSET
POINTER
STORAGE

Multitasking Built-In Functions

These functions allow the programmer to
investigate the current state of an event
variable. They are:

COMPLETION
PRIORITY
STATUS

3511 OS PL/I CKT AND OPT LRM PART II

1Input/Output Built-In Functions

These functions allow the programmer to
investigate the current state of a file.
They are:

COUNT
LINENO
SAME KEY

IPreprocessor Built-In Functions
I
I
These functions are the only built-in
functions that can be executed by the
preprocessor. They are:

COMPILETIME
COUNTER
INDEX
L.ENGTH
PARMSET
SUBSTR

The SUBSTR, LENGTH, and INDEX built-in
functions are the same as the non
preprocessor built-in functions of the same
names. The COUNTER, COMPILETIME, and
PARMSET built-in functions can be executed
only by the preprocessor.

In preprocessor statements, the
preprocessor built-in function names are
always active as built-in functions unless
they have been declared to have some other
meaning. In non-preprocessor statements,
the preprocessor built-in function names
are recognized as built-in functions only
if they are active when they are
encountered and have not been declared with
an attribute other than BUILTIN.

IMiscellaneous Built-in Functions
I
I
IThe built-in functions which do not fit
linto any of the foregoing classes are:
I
I
I
I
I

DATE
PLIRETV
TIME

CONVERSION OF ARGUMENTS

Conversion of arguments can occur for many
of the built-in functions. Arguments to
these built-in functions can be operational
expressions. An expression argument, which
can include references to built-in

functions, is evaluated and converted,
according to the rules for data conversion,
to a form suitable for the built-in
function. The data type required by each
argument is given in each function
description.

string-handling Built-In Functions

Some of these functions require arithmetic
as well as string arguments. The
arithmetic arguments denote the length of a
string and therefore should be integer or
capable of being converted to integer. The
string arguments can be represented by an
arithmetic expression that will be
converted to string either according to
data conversion rules or according to the
rules given in the function description.
The programmer should ensure that the
conversion will cause the function to
operate on the string type he requires.

Arithmetic Built-In Functions

Some of these functions derive the data
type of their results from one or more
arguments. When the data types of the
arguments differ, they are converted
according to the following scheme: if
scales differ, fixed-point is converted to
floating-point; if bases differ, decimal is
converted to binary; and if modes differ,
real is converted to complex. These rules
are applied after any string-type arguments
have been connected to arithmetic. When a
data attribute of the result cannot agree
with that of the argument, for example, the
FLOOR built-in function, the rules are
given in the function description.

The symbol N is used to represent the
maximum precision allowed for fixed-point
results. The value of N is defined as:

15 for FIXED DECIMAL
31 for FIXED BINARY

Mathematical Built-In Functions

All of these functions operate on floating
point values to produce a floating-point
result and therefore, if any argument is
not floating-point, it will be converted.

Array-handling Built-In Functions

Any conversion of arguments required for
these functions is noted in the function
description.

ACCURACY OF THE MATHEMATICAL FUNCTIONS

The accuracy of a result is influenced by
two factors:

1. The accuracy of the argument.

2. The performance of the algorithm.

Most arguments contain errors. An error in
a given argument may have accumulated over
several steps prior to the evaluation of a
function. Even data fresh from input
conversion may contain slight errors. The
effect of argument error on the accuracy of
a result depends solely on the nature of
the mathematical function and not on the
algorithm that computes the result. Errors
of this type are not discussed furt.her in
this publication.

Performance statistics for each
mathematical function are given in figures
G.l and G.2. The values are based on the
assumption that the arguments are free from
error.

For each function, accuracy values are
given for the valid argument range or
representative segments of it. In each
case the particular statistics given are
the most meaningful to the function and
range under consideration.

For example, the root-mean-square(RMS)
of the relative error and the maximum
relative error of a set of results-are
generally useful and revealing statistics,
but are useless for the range of a function
where its value becomes zero: the slightest
error of the argument value can cause an
unbounded fluctuation in the relative
magnitude of the result. Such is the case
with SIN(x) for values of 'x' close to pi:
in this range it is more appropriate to
discuss absolute errors.

The values for short and long precision
floating-point arguments are given in
figure G.l. They are derived from random
distribution of 5000 arguments per range,
generated to be either uniform or
exponential, as appropriate. The values
for extended preCision floating-point
arguments are given in figure G.2. They
are derived from 2000 randomly-distributed
arguments, generated to have one of the
four types of distribution noted at the

Section G: Built-in Functions and pseudovariables 355

foot of each part of the figure.

Note that, in both figures, each value
quoted for the maximum error refers to a
particular sample and should be regarded
only as a guide to the true maximum error.

Maximum and RMS values are given for
short, long, and extended floating-point
results.

Maximum and RMS values for the relative
or (where necessary) the absolute errors
are given for each function range. These
are defined as follows:

Let f(x) = the true value for the
function

g(x) = the calculated value for the
function

Then the absolute error of the result is

ABS(f(x)-g(x»

and the relative error of the result
is

ABS«f(x)-g(x»/(f»

Let the number of sample results obtained
be n; then the RMS of the absolute error
is:

SQRT(~«f(X)-g(x »**2)/n)

and the RMS of the relative error is

SQRT(2:«(f(X)-g(x »/f(x »**2)/n)

AGGREGATE ARGUMENTS

The only functions that can accept
structure arguments are ADDR, ALLOCATION,
and STRING.

All built-in functions that can have
arguments can have array arguments. But
whereas ADDR, ALLOCATION, STRING, and the
array-handling functions return single
values, all other functions return an array
of values. Thus for functions such as
SUBSTR, anyone of the arguments can be an
array (if more than one is an array, the
bounds must be identical). This facility
is equivalent to placing the function
reference in a do-loop where one or more
arguments is a subscripted array reference
that is modified by the control variable.

356 OS PL/I CKT AND OPT LRM PART II

NULL ARGUMENTS

INon-Preprocessor Built-in Functions

IA number of non-preprocessor built-in
functions do not require arguments. It
should be noted that the functions must
either be explicitly declared with the
BUILTIN attribute or contextually declared
by including a null argument list in the
function reference, for example, ONCHAR().
Otherwise, the name cannot be recognized by
the compiler as a built-in function name.

I The functions tnat have nO arguments or
Ihave a Single optional argument are:

DATAFIELD
DATE
EMPTY
NULL
ONCHAR
ONCODE
ONCOUNT
ONFILE

ONKEY
ONLOC
ONSOURCE
PLIRETV
PRIORITY
STATUS
TIME

IPreprocessor Built-in Functions
I
I
IThe preprocessor built-in functions which
Ido not require arguments are COUNTER and
ICOMPlLETlME. These built-in functions
Ishould not be given a null argument list;
lall preprocessor built-in functions shoUld
Ibe declared if they are to be active in
Inon-preprocessor statements.

PSEUDOVARIABLES

Certain built-in functions can be used to
represent receiving fields. In this form
they are pseudovariabl~s. Except when
noted in the description of the
pseudovariable, it can appear on the left
of the equal sign in an assignment or DO
statement; it can appear in a data list of
a GET statement; and it can appear as the
string name in a KEYTO, STRING, or REPLY
option.

Since all pseudovariables are also
built-in functions, only a short
description is given in the relevant
function description.

Note that pseudovariables cannot be
nested; for example, the following
statement is invalid:

UNSPEC(SUBSTR(A,1,2» = 'OO'B;

The pseudovariables are:

COMPLETION
COMPLEX
IMAG
ONCHAR
ONSOURCE
PRIORITY

REAL
STATUS
STRING
SUBSTR
UNSPEC

Section G: Built-in Functions and Pseudovariables 351

r---,
" , Short Floating Point, Long Floating Point ,
'I 1---

Function ,Argument, Range I Relative Error I Relative Error
Name I Mode I I *10**8 I *10**17
'I 1---
1 1 1 RMS I MAX I RMS I Max

ACOS(x) real 1 ABS{x)~0.5 1 43 , 88 1 7.2 I 20
1---
I O.5<ABS{x)~1 I 16 1 89 1 6.6 I 21

ASIN{x) I real I ABS(x)~0.5 1 10 1 54 I 4.4 I 21

I 1---
1 1 O.5<ABS(x)~1 1 26 I 94 1 5.9 1 21

ATAN{x) I real I ABS(x)<l 13 90 4.1 21
I 1---
1 I full range 2 1 25 1 99 I 5.2 I 17
1---
1 complex 1 full range 2 I 21 , 110 1 5.2 , 44

ATAN{X1,X2) 1 real 1 ABS{X1)~1, 1

1 1 ABS(x2)~12 29 160 1 6.9 36

ATAND(x) I similar to real ATANH(x)

ATANH(x) real I ABS(x)~0.2 I 46 1 110 1 I
I-------------~---
I ABS(x)<0.9 ,39 1 120 1 ,
1---
1 ABS{x)~0.25 I I 1 5.8 1 21

1 1---
1 1 ABS(x)~0.95 , 1 1 9.0 1 25
1---
I complex 1 full range 2 1 22 1 120 1 5.6 1 41

COS (x) real1 I O~x~pi 1 4.7 1 12 I 7.3 1 27
1---
1 -10~x<0,pi<x~10 1 4.0 1 12 1 6.9 1 27
1---

1 I 10<ABS{x)~100 1 4.0 1 12 1 100 1 270
1---
1 complex3 1 ABS(a)~10,ABS(b)~11 120 1 320 1 31 1 380

cOSD(x) 1 similar to real COS (x)

cOSH(x) real 1 ABS(x)~l I 41 1 96 1 1

1---
1 1<ABS(x)<2 1 21 1 72 1 1

1---
1 ABS(x)~170 1 20 1 82 1 1

1---1
1 ABS(x)~17 1 1 1 11 1 39 1

1--~------I
1 ABS{x)~5 1 1 1 11 1 38 1

---1
complex3 , ABS(a)~10,ABS(b)~1' 97 , 310 1 25 , 73 1

---1
1 RMS and Max values given are absolute errors. I
2 All these ranges are distributed exponentially; all other distributions are uniform. I
3 Where (a+i*b) represents x. ,

l---J
Figure G.1 (Part 1 of 3). Performance of the mathematical built-in functions with

short and long preCision floating-pOint arguments

358 OS PL/I CKT AND OPT LRM PART II

r---, I 1 I Short Floating Point 1 Long Floating Point
1 1 j-------------------------.-----------------

Function 1 Argument 1 Range 1 Relative Error 1 Relati ve Error
Name 1 Mode 1 1 *10**8 I *10**17

1 1 1---
1 1 1 RMS 1 MAX 1 RMS 1 Max

ERF(x) I real I ABS(x>~1 1 11 1 85 1 2.6 1 19

1 1---
I 1 1<ABS(x)<2.04 1 3.1 1 11 1 0.95 1 2.9
1 1---
1 I 2.04<AaS(x><3.91921 3.5 1 6.0 1 - 1 -
1 1---
1 I 2.04<ABS(x><6.092 1 1 1 0.80 1 1.4

ERFC (x) real -3 •. 8<x<O 30 94 1

-6<x<0 1 1 6.5 21

OSxS1 13 1 69 2.7 15

1<xS2.04 37 1 200 1 9.1 43

2.04<x<4 31 130 I 8.7 33

4Sx<13.3 820 1500 200 350

EXP(x) real 1 -1<x<1 13 44 5.4 21

fu11 range 1 12 46 4.7 43
--------- ---

complex ABS(a)~170 1 1
AB5(b)~pi/2 I 65 I 240

ABS(a)S170. I I
pi/2<ABS(b)S20 ·63 1 230 1

ABS(a)<l 1 I I
ABS(b)<pi/2 I 1 I 19 62

ABS(a)<20 1 1
ABS(b)<20 I I 20 82

-------------------------------------~---
LOG (x) real I excluding 1 I I 1

IO.S<X<2.02 I 12 1 84 I 5.5 I 34
1 1---
I I 0.5<x<2.01 I 2.5 1 6.8 I 2.4 I 4.7
1---
1 complex I fu11 range2 I 38 I 190 I 13 I 53

LOG 2 (x) real 1 excluding 1

I 0.5<x<2.02 I 34 1 98 I 8.8 I 43
1---

I 1 O.5<x<2.0 1 1 23 1 48 I 2.9 I 5.8
1---
I LOGl0(x) 1 real I excluding 1 1 I 1
1 1 IO.S<x<2.0a I 22 I 110 1 6.6 1 32
I 1 1---
1 1 1 O. S<x<2 • 01 I 2. 3 1 7. 2 I 1. 2 I 2. 9
1---
1 1 RMS and Max values given are absolute errors.
1 a A11 these ranges are distributed exponentially; all other distributions are uniform.
I 3 Where (a+i*b) represents x.
L--_------------------J
Figure G.l (part 2 of 3). Performance of the mathematical built-in functions with

short and long precision floating-point arg~ments

Section G: Built-in Functions and Pseudovariables 359

r---, I 1 1 Short Floating Point 1 Long Floating Point 1
1 I 1---1

Function 1 Argument 1 Range I Relati ve Error 1 Relati ve Error I
Name 1 Mode 1 1 *10**8 1 *10**17 I

1 1 1---1
I I I RMS 1 MAX 1 RMS I Max I

---1
SIN(x) I rea11 1 ABS(x)Spi/2 1 4.8 I 12 I 1.8 1 7.7 1

I 1---1
I 1 pi/2<ABS(x)S10 I 4.6 1 13 I 32 I 240 I
1 1---1
1 1 10<ABS(x)S100 I 4.6 1 12 I 93 I 270 1

1---1
1 complex3 1 ABS(a)S10,ABS(b)S11 120 1 340 1 200 I 11000 1

---1
SIND (x) 1 similar to real SIN(x) I

------------- --------- ---1
SINH (x) real ABS(x)Sl 1 20 1 88 1 I I

---1
1<ABS (x)<2 I 25 1 100 1 1 1

---1
ABS(x)S110 I 20 1 82 1 1 I

---1
ABS (x) S11 1 I 1 10 1 36 1

ABS(x)<0.881314 I 1 3.1 20

0.881314<ABS(x)S5 I 1 10 35

complex 1 ABS(a)S10,ABS(b)S11 88 210 23 64

SQRT(x) 1 real 1 full range 2 f 13 1 48 1 3.1 1 11
1---
1 complex 1 full range2 1 54 1 220 1 13 1 49

------------- ---
TAN(x) rea14 1 ABS(X)Spi/4 1 29 1 160 1 6.2 1 39

1---
t pi/4<ABS(x)<pi/2 I 37 I 150 1 1
1---
1 pi/4<ABS(x)<1.5 1 I 1 41 1 230
1---
1 pi/2<ABS(x)S10 1 32 1 480 I - 1 -
1---
1 1.5<ABS(x)S10 1 I 1 1800 1 41000
1---
I 10<ABS(x)S100 I 31 1 140 1 1800 1 27000

1---
1 complex3 1 ABS(a)<1,ABS(b)<9 1 53 1 290 1 11 1 11

TAND(x) 1 similar to read TAN(x)

TANH (x) real 1 ABS(x)SO.7 1 15 1 18 1 1
1---
1 0.1<ABS(x)S9.011 1 3.9 I 2.3 I 1
1---
1 ABS(x)SO.54931 1 1 1 3.8 1 19
1---
I 0.54931<ABS(x) I 1 I 1

1 1 S20.101 1 I 1 1.0 1 16
1---
1 complex3 1 ABS(a)<9,ABS(b)<1 1 52 1 270 1 17 1 69

14 Each figure here depends on the particular pOints encountered near the singularities
1 of the function, where no error control can be maintained.
L---J
Figure G.l (part 3 of 3). Performance of the mathematical built-in functions with

short and long precision floating-point arguments

360 OS PL/I CKT AND OPr LRM PART II

r---,
1 1 1 1 Relative Error *10**3lJ

Function I Argument 1 Range IDistribution 1-----------------------------
Name 1 Mode 1 1 Type 1 1

1 I 1 (see foot of 1 RMS I Max
1 1 1 table) 1 1

ACOS(x) 1 real 1 ABS(x)~l u 9.9 32

ASIN(x) 1 real 1 ABS(x)~l I U 8.1 32

ATAN(x) 1 real 1 ABS(x)<10**15 1 T 1 1.3 1 30
1------------------------·---
1 complex2 1 full range 1 EU 1 12 1 110

ATAN(x~,x2) 1 real 1 full range EU 1 8.5 38

ATANH(x) 1 real 1 ABS(x)<0.25 1 U 1 8.6 1 28
1 1---
1 1 ABS (x) ~ 0 • 95 1 U 1 18 1 50
1---
1 complex2 1 full range 1 EU 1 11 1 59

COS(x) real 1 O~x<pi~ 1 U 1 1.5 1 3.3
1---
1 -10<x<0,pi~x<10~ 1 U 1 1.6 1 3.5

1 1---
1 1 10~ABS(x)<200~ 1 U 1 1.6 1 3.5
1---
1 complex2 1 ABS(a)<10 1 U 1 24 1 62
1 , ABS (b) <1 1 u, ,

COSH(x) 1 real 1 ABS(x)<10 1 U 1 15 1 61

1---
1 complex2 1 ABS(a)<10 1 U 1 20 1 67
1 1 ABS (b) <1 1 u 1 1

ERF(x) real 1 ABS(x) <1 1 U I 5.3 1 30

1---
I 1~ABS(x)<2.8437 1 U 1 2.3 1 9.2
1---
I 2.8431~ABS(x)<5 1 U I 1.3 1 1.9

ERFC(x) real 1 -5<x<0 lUI 12 1 31
1---
I O~x<l 1 U 1 5.8 1 33
1---
1 1~x<2.8431 1 U I 28 1 11
1---
1 2.8431~x<5 1 U 1 180 1 490

~RMS and Max values are for absolute errors 2Where x=a+i*b

E exponential EU a+i*b=r*EXP(i*k) where x=a+i*b
U uniform (linear) or (ATAN only) x~=a, x2=b, and:
T tangents of linearly-scaled r has E distribution in (0,10**15)

angles in (-pi/2,pi/2) k has U distribution in (-pi, pi)
L---J
Figure G.2 (Part 1 of 3). Performance of the mathematical built-in functions with

extended-precision floating-point arguments

section G: Built-in Functions and pseudovariables 361

r---,
1 1 1 1 Relative Error *10**34

Function 1 Argument 1 Range IDistribution 1-----------------------------
Name 1 Mode 1 1 Type 1 1

1 I 1 (see foot of I RMS 1 Max
1 1 1 table) 1 1

EXP(x) real 1 ABS(x)<l 1 U I 4.3 I 15
1---
1 ABS(x)<10 1 U 1 3.8 1 15
1---
1 -180<x<174 1 U I 3.7 1 15

complex21 ABS(a)<170 1 U 1 7.8 I 35

1 ABS(b)<pi/2 1 U 1 1
1---
1 ABS(a)<170 1 U 1 8.0 1 33
1 pi/2~ABS(b)<100 1 U 1 1

LOG(x) real 1 0.99<x<1.01~ 1 U 1 0.084 1 0.20
1---
1 0 • 5<x<2 ~ 1 u 1 1. 7 1 3. 2
1---
1 10**-78<x<10**75 1 E I 8.9 1 45

complex2 1 full range EU 9. 8 1 51

LOG 2 (x) real I 0.99<x<1.01~ 1 U 1 0.055 1 0.13
1---
1 0.5<x<2~ 1 U 1 1.0 1 1.9
1---
1 10**-78<x<10**75 1 E 1 4.4 1 30

------------- ---_._------------
LOG10(x) real 1 O.99<x<1.01~ 1 U 1 0.038 1 0.16

SIN(x)

SINH (x)

1---
1 0 • 5<x<2 ~ 1 U 1 1. 5 1 2 . 9
1---
1 10**-78<x<10**75 1 E 1 12 1 38

real 1 ABS(x)<pi/2~ 1 U 1 1.2 1 3.0
1---
1 pi/2~ABS(x)<10~ 1 U 1 1.6 1 3.5
1---1 10~S(x)<200~ 1 U 1 1.5 1 3.6

complex2 1 ABS(a)<10
1 ABS(b)<l

U
U

24 60

1 real 1 ABS (x) <1 1 u 1 6.8 1 29
1 1---
1 1 1~BS(x)<10 1 U 1 13 1 54
1---
1 complex3 1 ABS(a)<10 1 U 1 18 1 53
1 1 ABS (b) <1 1 u 1 1

~RMS and Max values are for absolute errors 2Where x=a+i*b

E exponential EU a+i*b=r*EXP(i*k) where x=a+i*b
U uniform (linear) or (ATAN only) x~=a, x2=b, and:
T tangents of linearly-scaled r has E distribution in (0,10**75)

angles in (-pi/2,pi/2) k has U distribution in (-pi, pi)
L---J
Figure G.2 (Part 2 of 3). Performance of the mathematical built-in functions with

extended-precision floating-point arguments

362 OS PL/I CKT AND OPT LRM PART II

r---,
1 1 1 I Relative Error *10**34

Function 1 Argument 1 Range 'Distribution 1-----------------------------
Name ,Mode 1 , Type, 1

1 1 ,(see foot of, RMS 1 Max
1 1 , table), 1

SQRT(x) 1 real 1 10**-50<x<10**50 E 3.0 15
1 1---
1 I 10**-78<x<10**15, E , 2.8 I 14
1---
I complex2 , full range I EU I 1.1 1 21

TAN(x) real, ABS(x)<pi/4 I U I 9.6 , 36

1---
I pi/4~ABS(x)<pi/2 lUI 8.9 , 39
1---
1 pi/2~S(x)<10 I U I 12 I 52

1 1---
1 1 10SABS(x)<200 1 U I 11 1 46
1---
1 complex21 ABS(a)<l 1 U , 15 1 61
1 1 ABS (b) <9 1 U 1 1

TANB(x) I real I ABS(x)<0.54931 lUI 5.0 1 25

1 1---
1 1 0.54931~BS(x)<5 I U I 2.6 1 21
1---
1 complex2 1 ABS(a)<9 1 U I 15 1 53
1 1 ABS(b)<l 1 U I I

1RMS and Max values are for absolute errors 2Where x=a+i*b

E exponential EU a+i*b=r*EXP(i*k) where x=a+i*b
U uniform (linear) or (ATAN only) x1=a, x2=b, and:
T tangents of linearly-scaled r has E distribution in (0,10**15)

angles in (-pi/2,pi/2) k has U distribution in (-pi, pi)
L---J
Figure G.2 (Part 3 of 3). Performance of the mathematical built-in functions with

extended-precision floating-point arguments

section G: Built-in Functions and Pseudovariables 363

ABS(x) Arithmetic

ABS returns the absolute value of a given
expression x. If x is real, it is the
positive value of x; if x is complex, it is
the positive square root of the sum of the
squares of the real and imaginary parts.

If x is fixed and complex with precision
(p,q), the precision of the result is given
by:

(MIN(N,p+l),q)

where N is the maximum allowable number of
digits.

ACOS(x) Mathematical

ACOS returns a floating-point value that
represents the inverse (arc) cosine in
radians of a given value x.

x must be real, and the absolute value
mast be less than or equal to 1, i.e.,
ABS(x)<=l. The result is in the range:

O<=ACOS(x)<=pi

Arithmetic

ADD returns the sum of two values x~ and Xa
with a precision specified by X3 and X~ •

X1 and Xa values to be added.

unsigned decimal integer constant
specifying the number of digits to be
maintained throughout the operation;
it must not exceed the implementation
limit.

decimal integer constant, optionally
signed, specifying the scale factor of
the result. For a fixed-point result,
if ~is omitted, zero is assumed. For
a floating-point result, X't must be
omitted.

ADDR(x) storage Control

ADDR returns a pointer value that identifes
the location at which a given variable x
bas been allocated.

x a variable of any data type and
organization and of any storage class
except:

364 OS PL/I CKT AND OPT LRM PART II

1. A BASED, DEFINED, parameter,
subscripted, or structure-base
element variable that is an
unaligned fixed-length bit string.

2. A minor structure whose first base
element is an unaligned fixed
length bit string (except where it
is also the first element of the
containing major structure).

3. A major structure that has the
DEFINED attribute or is a
parameter, and that has an
unaligned fixed-length bit string
as its first element.

4 • A variable not in connected
storage.

If x is .an aggregate, the returned value
identifies the first element.

If x is a varying string, the retarned
value identifies the two-byte prefix.

If x is an area, the returned value
identifies the control information.

If x is a controlled variable that has not
been allocated, the null pointer value is
returned.

If x is a parameter and a dummy argument
has been created, the returned value
identifies the dummy argument.

Note that because of condition 4 above, if
x is a parameter, it must have the
CONNECTED attribute.

Array-Handling

ALL returns a bit string in which each bit
is 1 if the corresponding bit in each
element of the given array x exists and is
1 • The length of the result is equal to
that of the longest element.

If x is not a bit-string array, it is
converted to bit string. It must not be
iSUB-defined.

ALLOCATION (x) Storage Control

Abbreviation: ALLOCN

ALLOCATION returns a default-precision
fixed-point binary integer specifying the
number of generations that can be accessed
in the current task for a given controlled

variable x.

x the name of the controlled variable.
·The name must be level one and
unsubscripted.

If x is not allocated, the result is zero.

ANY (x) Array-Handling

ANY returns a bit string where each bit is
1 if the corresponding bit in any element
of the given array x exists and is 1. The
length of the result is equal to that of
the longest element.

If x is not a bit-string array, it is
converted to bit string. It must not be
iSUB-defined.

ASIN(x) Mathematical

ASIN returns a floating-point value that
represents the inverse (arc) sine in
radians of a given value x.

x must be real, and the absolute value
must be less than or equal to 1, i.e.,
ABS(x)<=l. The result is in the range:

-pi/2<=ASIN(x) <=pi/2

ATAN(x, [,Xa]) Mathematical

ATAN returns a floating-point value that
represents the inverse (arc) tangent in
radians of a given value X1 or of a given
ra tio xs./xa.

If X1 alone is specified and is real,
the result is in the range:

-pi/2<ATANex1) <pi/2

If X1 alone is specified and is complex,
it must not be +i or -i. The result is
given by:

-i*ATANB(i*x1)

If X1 and xa are specified, they must
both be real. It is an error if X1 and Xa
are both zero. The results for all other
values of X1 and xaare given by:

arctan (X1/Xa) for xa>O

pi/2 for xa=O and X1>O

-pi/2 for xa=O and X1<O

-pi+arctan(x1/xa) for xa<O and X1<O

ATAND(XJ,[,Xa]) Mathematical

ATAND returns a floating-point value that
represents the inverse (arc) tangent in
degrees of a given value x1 or of a given
ratio X1/Xa.

If X1 alone is specified it must be
real. The result is in the range:

-90<ATAND(x1)<90

If X1 and xa are specified, they must
both be real. The result is defined in
terms of the function ATAN as:

180/pi*ATAN(x1,xa)

ATANH(x) Mathematical

ATANH returns a floating-point value that
represents the inverse (arc) hyperbolic
tangent of a given value x.

If x is real, its absolute value must be
less than 1, i.e., ABS(x)<l.

If x is complex, it must not be +1 or -
1. The result is defined as:

LOG«1+x)/(1-x»/2

BINARY (x, [,Xa[,X3]]) Arithmetic

BINARY returns the binary representation of
a given value X1 with a precision specified
by xa and X3.

X1 value to be converted to binary base.

Xa unsigned decimal integer specifying
the number of digits to be maintained
throughout the operation; it must not
exceed the implementation limit.

decimal integer, optionally Signed,
specifying the scale factor of the
result. For a fixed-point result, if
xa is given and X3 is omitted, a scale
factor of zero is assumed. For a
floating-point result, only xa can be
given. If both Xa and X3 are omitted,
the precision of the result is

Section G: Built-in Functions and Pseudovariables 365

determined from the rules for base
conversion.

BIT(x,- [,xa 1) String-handling

Bit returns a bit string representation of
a given value X1.

expression to be converted.

an expression that can be converted to
integer specifying the length of the
resulting bit string. If necessary,
X2 is converted to a binary integer of
precision (15,0). If X2 is omitted,
the length is determined by the rules
for type conversion.

BOOL(x,-,xa,X3) string-handling

BOOL returns a bit string that is the
result of a Boolean operation, speCified by
X3, on bit strings X1 and X2. The length
of the result is equal to that of the
longer operand, X1 or X2.

and X2 bit-string expressions or
expressions that may be converted to
bit strings.

bit string of four bits. Each bit
specifies the result when a bit from
X1 is compared with the corresponding
bit from X2 as follows:

X1 X2 result

0 0 bit 1 of X3
0 1 bit 2 of X3
1 0 bit 3 of X3
1 1 bit 4 of X3

If X1 and X2 are different lengths, the
shorter is ~added on the right with zeros
to match the longer. If X3 is not a bit
string expression of length 4, it will be
converted and padded on the right with
zeros or truncated on the right, as
necessary.

CEIL(x) Arithmetic

CEIL returns the smallest integer greater
than or equal to a given value x. x must
be real.

If x is fixed-point with precision
(p,q), the precision of the result is given
by:

366 OS PL/I CKT AND OPT LRM PART II

(MIN(N,MAX(p-q+1,1»,O)

where N is the maximum number of digits
allowable.

String-handling

CHAR returns a character string
representation of a given value X1.

X1 expression to be converted.

an expression that can be converted to
integer specifying the length of the
resulting character string. If
necessary, X2 is converted to a binary
integer of precision (15,0). If X2 is
omitted, the length is determined by
the rules for type conversion.

ICOMPILETIME Preprocessor
I
I
ICOMPILETIME returns a character string of
Ilength 18, containing the date and the time
lof compilation. The returned string has
the following format:

DD~MMM~YY~HH.MM.SS

where ~ is a blank and:

DO is the day of the month.
MMM is the month in the

form JAN, FEB, MAR, etc.
YY is the year.
HB is the hour.
MM is the minute.
SS is the second.

A leading zero in the day of the month
field is replaced by a blank; no other
leading zeros are suppressed.

If no timing facility is available, the
last eight characters of the returned
string are set to 00.00.00.

COMPLETION (x) Multitasking

COMPLETION returns a single bit specifying
the completion value ot a given event x.
If the event is incomplete, 'O'B is
returned; if complete, 'l'B is returned.

COMPLETION Pseudovariable

The pseudovariable sets the completion
value of the given event x. x must be
inactive. No interrupt can occur during
assignment to the pseudovariable. The
COMPLETION pseudovariable cannot be used as
the control variable in a do-goup.

COMPLEX(Xa"xa) Arithmetic

Abbreviation: CPLX(x~,xa)

COMPLEX returns a complex value formed from
two given values X1 and Xa.

real value that is to be the real part
of the result.

real value that is to be the imaginary
part of the result.

If x~ and Xa differ in base, the decimal
one is converted to binary; if they differ
in scale, the fixed-point is converted to
floating-point. The result will have the
same base and scale. Both X1 and Xa must
be real.

The precision of the result, if fixed
point, is given by:

(MIN(N,MAX(p1-Q1,Pa-qa)+MAX(q1,qa»,
MAX(Q~,q2»

where (P1,Q1) and (Pa,qa) are the
precisions of X1 and Xa respectively, and N
is the maximum number of digits allowable.

If the arguments, after any necessary
conversions have been performed, are
floating point, and their precisions are P1
and Pa, then the precision of the result is
MAX (P1 , P:.a) •

COMPLEX Pseudovariable

The pseudovariable assigns the real part of
a complex value to the variable X1 and the
imaginary part to the variable xa. Only a
complex value can be assigned to the
pseudovariable. The COMPLEX pseudovariable
cannot be used as the control variable in a
do-group.

CONJG(x) Arithmetic

CONJG returns the conjugate of a given
complex value x, i.e., the same value with
the sign of the imaginary part reversed.
If x is real, it will be converted to
complex.

COS (x) Mathematical

COS returns a floating-point value that
represents the cosine of a given value x.

x an expression whose value is in
radians.

If x is complex, the result is given by:

cos(a)*cosh(b)-i*sin(a)*sinh(b)

where (a+i*b) represents x.

COSO(x) Mathematical

COSO returns a floating-point value that
represents the cosine of a given value x.

x an expression whose value is in
degrees. x must be real.

COSH(x) Mathematical

COSH returns a floating-point value that
represents the hyperbolic cosine of a given
value x.

If x is complex, the result is given by:

cosh(a)*cos(b)+i*sinh(a)*sin(b)

where (a+i*b) represents x.

COUNT (x) Input/Output

COUNT returns a binary integer of default
precision specifying the number of data
items transmitted during the last GET or
POT operation on the specified file x.

x a file expression, the file must have
the STREAM attribute.

The count of transmitted items for a GET

Section G: Built-in Functions and Pseudovariables 367

lor PUT operation on the specified file is
linitialized to zero before the data item is
I transmitted, and is incremented by one
lafter the transmission of each data item in
Ithe list.

Note that if an on-unit or procedure is
entered during a GET or PUT operation and,
within that on-unit or procedure, a GET or
PUT operation is executed for the same
file, the value of COUNT is reset for the
new operation; it is restored when the
original GET or PUT is continued.

COUNTER Preprocessor

COUNTER returns a character string of
length 5, containing a decimal number.
The returned number is 00001 for the first
invocation, and is incremented by one on
each successive invocation. COUNTER may be
used to generate unique identifiers, or for
general counting purposes.

If COUNTER is. invoked more than 99999
times, a diagnostic is issued and 00000 is
returned. The next invocation is treated
as the first.

CURRENTSTORAGE(x) storage Control

Abbreviation: CSTG(x)

CURRENTSTORAGE returns a fixed-point binary
integer of precision (31,0) giving the
implementation-defined storage, in bytes,
required by a specified variable Wx".

x a variable of any data type, data
organization, and storage class
except:

1. A BASED, DEFINED, parameter,
subscripted, or structure-base
element variable that is an
unaligned fixed-length bit string.

2. A minor structure whose first or
last base element is an unaligned
fixed-length bit string (except
where it is also the first or last
element of the containing major
structure).

3. A major structure that has the
BASED, DEFINED, or parameter
attribute, and which has an
unaligned fixed-length bit string
as its first or last element.

4. A variable not in connected

368 os PL/I CKT AND OPT LRM PART II

storage.

t
I The value returned by CURRENTSTORAGE(x)
lis defined as the number of bytes that
Iwould be transmitted in the following
I circumstances:

I

DECLARE F FILE RECORD OUTPUT
OPTIONS(SCALARVARYING);

WRITE FILE(F) FROM(x);

I If x is a scalar varying-length string,
Ithe returned value includes the length
Iprefix of the string and the number of
Icurrently-used bytes; it does not include
lany unused bytes in the string.

I
I If x is a scalar area, the returned
Ivalue includes the area control bytes and
Ithe current extent of the area; it does no~
linclude any unused bytes at the end of the
larea.

I

If x is structure or array containing
areas or varying-length strings, the
returned value includes the area control
bytes, the maximum sizes of the areas, the
length prefixes of the strings, and the
number of bytes in the maximum lengths of
the strings. There is one exception to
this rule: if x is a structure whose last
element is a non-dimensional area, the
returned value includes that area's controi
bytes and the current extent of that area;
it does not include any unused bytes at the
end of that area.

I CURRENTSTORAGE cannot be used to obtain
Ithe storage requirements of a structure
Imapped according to the COBOL mapping
I algorithm.

DATAFIELD condition-handling

DATAFIELD is used in a NAME condition on
unit to return a character string whose
value is the name and contents of the field
that caused the condition to be raised.

It can also be used in an on-unit for an
ERROR or FINISH condition raised as part of
the standard system action for the NAME
condition.

If DATAFIELD is used out of context, a
null string is returned.

DATE returns a character string of length
six, in the form yymmdd, where:

yy
rom
dd

the current year
the current month
the current day

Arithmetic

DECIMAL returns the decimal representation
of a given value a1 with a precision
specified by X2 and X3.

X1 value to be converted to decimal base.

X2 unsigned decimal integer constant
specifying the number of digits to be
maintained throughout the operation;
it must not exceed the implementation
limit.

decimal integer constant, optionally
signed, specifying the scale factor of
the result. For a fixed-point result,
if X2 is given and X3 is omitted, a
scale factor of zero is assumed. For
a floating-point result, only xa can
be given.

If both X2 and X3 are omitted, the
precision of the result is determined from
the rules for base conversion.

DIM(xa.'x,a) Array-Handling

DIM returns a default-precision fixed-point
binary integer specifying the current
extent of a specified dimension X2 of a
given array X1.

Xa

the given array; it must be currently
allocated.

the element expression specifying a
particular dimension of X1. If
necessary, xa is converted to a binary
integer of precision (15,0).

X1 must not have less than (xa) dimensions,
land must not be an array of structures.

Arithmetic

DIVIDE returns the quotient of two values
X1 and xa with a precision specified by X3
and x", •

dividend

Xa divisor

unsigned decimal integer constant
specifying the number of digits to be
maintained throughout the operation;
it must not exceed the implementation
limit.

decimal integer constant, optionally
signed, specifying the scale factor of
the result. For a fixed-point result,
if x", is omitted, a scale factor of
zero is assumed. For a floating-point
result, only X3 can be given.

storage Control

EMPTY returns an area of zero extent. It
is used to free all allocations in an area.
Note that the value of this function is
automatically aSSigned to an area variable
when it is allocated.

ERF(x) Mathematical

ERF returns a floating-point value that
represents the error function of a given
value x. x must be real.

The result is given by:
x -t2

ERF(x)=£ f e dt
vII 0

ERFC(x) Mathematical

ERFC returns a floating-point value that
represents the complement of the error
function of a given value x. x must be
real.

The result is defined in terms of the
function ERF as:

1-ERF(x)

Section G: Built-in Functions and Pseudovariables 369

EXP(x) Mathematical

EXP returns a floating-point value that
represents the base of the natural
logarithm system e to a given power x.

Arithmetic

FIXED returns the fixed-point
representation of a given value X1 with a
precision specified by xa and X3.

X1

Xa

value to be converted to fixed-point
scale.

unsigned decimal integer constant
specifying the total number of digits
in the result.

decimal integer constant, optionally
signed, specifying the scale factor of
the result. If X3 is omitted, a scale
factor of zero is assumed.

If both Xa and X3 are omitted, the default
value (15,0), for a binary result, or
(5,0), !or a decimal result, is assumed.

FLOAT(X, (,X,il]) Arithmetic

FLOAT returns the floating-point
representation of a given value X1 with a
precision specified by xa.

X1 value to be converted to floating
point scale.

Xa unsigned decimal integer constant
specifying the total number of digits
in the result. If Xa is omitted, the
default value 21, for a binary result,
or 6, for a decimal result, is
assumed.

FLOOR(x) Arithmetic

FLOOR returns the largest integer less than
or equal to a given value x. x must be
real.

If x is fixed-point with prec1s1on (p,q),
the precision of the result is given by:

("IN(N,MAX(p-q+l,l»,O)

where N is the maximum number of digits

HBOUND(x"x,il) Array-Handling

HBOUND returns a default-precision fixed
point binary integer specifying the current
upper bound o! a specified dimension Xa of
a given array X1_

X1 the given array; it must be currently
allocated.

xa an element expression specifying a
particular dimension of X1. If
necessary, xa is converted to a binary
integer of precision (15,0).

X1 must not have less than (xa) dimensions,
land must not be an array of structures.

BIGB(x) String-handling

HIGH returns a character string of length x
where each character is the highest
character in the collating sequence
(hexadecimal FF).

x expression specifying the length. If
necessary, x is converted to a binary
integer of precision (15,0).

I MAG (x) Arithmetic

lMAG returns the imaginary part of a given
complex value x. If real, x is converted
to complex. The mode of the result is
real.

lMAG Pseudovariable

The pseudovariable assigns a real value or
real part of a complex value to the
imaginary part of a given complex variable
x. x must be complex.

INDEX(x"Xa) string-handling

INDEX returns a halfword binary integer
indicating the starting position within the
string X1 of a substring identical to
string xa.

X1 string to be searched

xa string to be searched for

allowable. If xa does not occur in X1. the value

370 os PL/I CRT AND OPr LRM PART II

zero is returned.

If xa occurs more than once in X1' the
starting position of the first occurrence
is returned.

If any argument is character or decimal,
conversions are performed to produce
character strings. Otherwise if the
arguments are bit and binary, or both
binary, conversions are performed to
produce bit strings.

IINDEX(xs,xa) Preprocessor
I
I
IINDEX (preprocessor) returns a FIXED value
lindicating the starting position within
Istring X1 of a substring identical to
Istring xa.
I
X1 string to be searched

Xa string to be searched for

If Xa does not occur in X1, the value zero
is returned.

If xa occurs more than once in X1 , the
starting position of the first "occurrence
is returned.

The arguments of INDEX (preprocessor) are
converted to character if necessary.

LENGTH (x) String-handling

LENGTH returns a default-precision fixed
point binary integer specifying the current
length of a given string x. If x is
binary, it is converted to bit string;
otherwise any other conversion required is
to character string.

I LENGTH (x) Preprocessor
I
I
ILENGTH (preprocessor) returns a FIXED value
Ispecifying the current length of a given
Istring x. If x is FIXED, it is converted
Ito CHARACTER.

LBOUND(x, ,Xa) Array-Handling

LBOUND returns a default-precision fixed
point binary integer specifying the current
lower bound of a specified dimension Xa of
a given array X1.

the given array; it must be currently
allocated.

xa an element expression specifying the
particular dimension of X1. If
necessary, Xa is converted to a binary
integer of precision (15,0).

X1 must not have less than (xa) dimensions,
land must not be an array of structures.

LINENO(x) Input/output

LINENO returns a default-precision fixed
point binary integer specifying the current
line number of the specified file x.

x a file expression, the file must have
the PRINT attribute.

LOG (x) Mathematical

LOG returns a floating-point value that
represents the natural logarithm, i.e.,
base e, of a given value x. If x is real,
it must be greater than zero. If x is
complex, it must not be equal to 0+01. The
fUnction is multiple-valued if x is
complex; hence, only the principal value
can be returned. The principal value has
the form:

(a+i*b)

where b is the range:

-pi<b<=pi.

LOG2(x) Mathematical

LOG2 returns a floating-point value that
represents the binary logarithm, i.e., base
2, of a given value x. x must be real and
greater than zero.

tOG10(x) Mathematical

LOG10 returns a floating-point value that
represents the common logarithm, i.e., base
10, of a given value x. x must be real and
greater than zero.

Section G: Built-in FUnctions and Pseudovariables 371

LOW(x) String-handling

LOW returns a character string of length x
where each character is the lowest
character in the collating sequence
(hexadecimal 00). If necessary, x is
converted to binary integer of precision
(15,0).

x expression specifying the length

If the arguments, after any necessary
conversions have been performed,. are
floating point, and their precisions are
P~,Pa'P3 ••• Pn, then the precision of the
result is MAX(P1,Pa,P3 ••• Pn).

MOD(X"xa) Arithmetic

MAX (Xi., Xa ... , xp) Arithmetic IMOD returns the smallest non-negative
value, R, such that:

MAX returns, from a set of two or more
arguments, the value of the argument with
the largest value.

X1,Xa ••• ,xn list of values from which the
largest is to be returned.

The maximum number of arguments that the
function will accept is 64. All the
arguments must be real.

If the arguments are fixed-point with
precisions:

the precision of the result is given by:

(MIN(N,MAXCP1-Q1,Pa-qa···,Pn-qn)+
MAX(qi.,qa.·· ,qn» ,MAX(Q1,qa ••• ,~»

If the arguments, after any necessary
conversions have been performed, are
floating point, and their precisions are
P1,pa,P3 ••• Pn, then the preCision of the
result is MAX(P1,Pa,P3 ••• Pn).

Arithmetic

MIN returns, from a set of two or more
arguments, the value of the argument with
the smallest value.

X1,Xa ••• ,xn list of values from which the
smallest is to be returned.

The maximum number of arguments that the
function will accept is 64. All the
arguments must be real.

If the arguments are fixed-pOint with
precisions:

(P1,~),(Pa,Qa)···,(Pn,~)

the precision of the result is given by:

(MIN(N,MAX(p1-q1,P2-Qa···,Pn-qn)+

372 OS PL/I CRT AND OPT LRM PART II

(Xi. - R)/Xa = n where n is an integer.

IR is the smallest non-negative value that
must be subtracted from a given value xi. to
make it exactly divisible by the given
value xa.

X1 must be real. If X1 is positive, R
is the remainder of the division of Xi. and
Xa; if x1 is negative, R is the modular
eqUivalent of this remainder.

Xa must be real. If xa is zero, the
ZERODIVIDE condition is raised. If R is
floating-point, the precision is the
greater of those of X1 and xa; if R is
fixed-pOint, the precision is given by:

where (P1,Q1)' and (Pa,qa) are the
precisions of X1 and Xa respectively.

If X1 and xa are fixed-point with different
scale factors, R may be truncated on the
right, and the SIZE condition is raised, if
enabled.

Ari thmet'ic

MULTIPLY returns the product of two values
X1 and xa with a precision specified by X3
and X41 •

X1 and xa values to be multiplied.

unsigned decimal integer constant
specifying the number of digits to be
maintained throughout the operation;
it must not exceed the implementation
limit.

decimal integer constant, optionally
signed, specifying the scale factor of
the result. For a fixed-pOint result,
if x4\is omitted, a scale factor of
zero is assumed. For a floating-pOint
result, only X3 can be given.

Storage control

NULL returns a null pOinter value, i.e., a
value that cannot identify any generation
of a variable. The null pOinter value can
be converted to OFFSET by assignment of the
built-in function value to an offset
variable.

OFFSET (X,.,Xa) Storage control

OFFSET returns an offset value derived from
a given pOinter x~ and relative to a given
area X2. If x~ is null, then the null
value is returned.

x~ a pointer expression. It must
identify a generation of a based
variable within area X2.

an area variable

If x~ is an element expression, then X2
must be an element Variable.

ONCHAR Condition-handling

ONCHAR returns the character that caused
the CONVERSION condition to be raised. It
can be used in an on-unit for the
CONVERSION condition or for ERROR or FINISH
condition raised as standard system action
for the CONVERSION condition.

If the ONCHAR built-in fUnction is used
out of context, a blank is returned unless
ONCBAR has a value given to it by an
assignment to the pseudovariable out of
context; in this case, the character
assigned to the pseudovariable is returned
by the built-in function.

ONCHAR pseudovariable

The pseudovariable resets the current value
of the ONCHAR built-in function. The value
assigned to the pseudovariable is converted
to a character string of length 1. The new
character is used when the conversion is
r-e-attempted.

If the pseudovariable is used out of
context, and the next reference to the
built-in function is also out of context,
then the character assigned to the
pseudovariable is returned. The out-of
context assignment is otherwise ignored.

ON CODE Condition-handling

ONCODE returns a default-precison fixed
point binary integer that defines the
type of interrupt that caused the on-unit
to become active. It can be used in any
on-unit. All on-codes are defined in
section H, "On-Conditions".

If ONCODE is used out of context, zero
is returned.

ONCOUNT Condition-handling

ONCOUNT returns a default-precision fixed
pOint binary integer specifying the number
of interrupts that remain when an on-unit
is entered. Both types of multiple
interrupt are discussed in section H, "ON
Conditions".

If ONCOONT is used out of context, zero
is returned.

ONFILE Condition-handling

ONFILE returns a character string whose
value is the name of the file for which an
input/output or CONVERSION condition is
raised. It can be used in an on-unit for
any input/output or CONVERSION condition,
or for the ERROR or FINISH condition raised
as standard system action for an
input/output or the CONVERSION condition.

If ONFILE is used out of context, a null
string is returned.

Condition-handling

ONKEY returns a character string whose
value is the key of the record that caused
an input/output condition to be raised. It
can be used in an on-unit for any
input/output condition, except ENDFILE, or
for the ERROR or FINISH condition raised as
standard system action for an input/output
condition. Note that ONKEY is always set
for operations on a KEYED file, even if the
statement that causes the condition to be
raised has not specified the KEY, KEYTO, or
KEYFROM options.

The result is determined by the
following rules:

1. For any input/output condition (other
than ENDFILE), or for the ERROR or

section G: Built-in Functions and Pseudovariables 313

FINISH condition raised as standard
system action for these conditions,
the result is the value of the
recorded key from the I/O statement
causing the error.

For REGIONAL(l) data sets, the result
is an eight-byte character
representation of the region number.
If the key was incorrectly specified,
the result is the last eight bytes of
the source key. If the source key is
less than eight bytes, it is padded on
the right with blanks to make it eight
bytes. If the key was correctly
specified, the eight-byte character
string consists of the region number
in character form padded on the left
with blanks, if necessary.

2. For a REWRITE statement that attempts
to write an updated record on to an
indexed data set when the key of the
updated record differs from that of
the input record, the result is the
value of the embedded key of the input
record.

If ONKEY is used out of context, a null
string is returned.

value aSSigned to the pseudovariable is
converted to a character string and, if
necessary, is padded on the right with
blanks to match the length of the field
that caused the error. The new string is
used when the conversion is re-attempted.

When conversion is re-attempted, the
string assigned to the pseudovariable is
processed as a Single data item. For this
reason, the error correction process should
not assign a string containing more than
one data item when the conversion occurs
during the execution of a GET LIST or GET
DATA statement. The presence of blanks or
commas in the string will cause further
conversion error.

I PARMSET (x) Preprocessor
I
I
IPARMSET returns the truth value of the
lassertion that parameter x was set when a
Ipreprocessor procedure was invoked.

Ix
Condition-handling I

a parameter of a preprocessor
procedure.

ONLOC returns a character string whose
value is the name of the entry-point of the
procedure in which the condition was
raised. It can be used in anyon-unit.

If ONLOC is used out of context, a null
string is returned.

ONSOURCE Condition-handling

ONSOURCE returns a character string whose
value is the contents of the field that was
being processed when the CONVERSION
condition was raised. It can be used in an
on-unit for the CONVERSION condition or for
the ERROR or FINISH condition raised as
standard system action for the CONVERSION
condition.

If ONSOURCE is used out of context, a
null string is returned.

ONSOURCE Pseudovariable

The pseudovariable resets the current value
of the ONSOURCE built-in function. The

374 OS PL/I CKT AND OPT LRM PART II

I PARMSET may be used only within a
Ipreprocessor procedure, and x must be a
Iparameter of that procedure. It may be
lused freely in preprocessor expressions.

I PARMSET returns a bit value of one if
Ithe parameter has been set, or a bit value
lof zero if it has not. The returned value
lis converted if necessary to a FIXED value
lor to a CHARACTER value of length one.

, PARMSET is always returns zero if the
Iprocedure reference does not contain an
largument that matches the specified
,parameter. However, PARMSET may also
Ireturn zero if a matching argument does
appear in the reference, but the reference
is in another preprocessor procedure. The
rules that apply in this case are as
follows:

1. If the argument is not itself a
parameter of the invoking procedure,
PARMSET returns one.

2. If the argument is a parameter of the
invoking procedure, PARMSET returns
the value for the specified parameter
when the invoking procedure was itself
invoked.

,PLIRETV , ,
IPLIRETV returns a fixed binary integer of
Idefault precision whose value is the
,current value of the PL/I return code.

I
I The value of the PL/I return code is
leither the value specified by a CALL
I PLIRETC statement, or the value r·eturned in
,the lower-half of register 15 by a COBOL,
I FORTRAN, or Assembler routine whose entry
,point is declared with OPTIONS(RETCODE ••).

POINTER(x"Xa) storage Control

Abbreviation: PTR(x1 ,xa)

POINTER returns a pointer value derived
from a given offset value X1 and a given
area xa. If X1 is null then the null value
is returned.

Xa

an offset expression. It must
identify a generation of a based
variable, but not necessarily in xa.
If it is not in Xa, the generation
must be equivalent to one in xa.

an area variable.

Generations of based variables in
different areas are equivalent if, up to
the allocation of the latest generation,
the variables have been allocated and freed
the same number of times as each other.

POLY(X"Xa) Array-Handling

POLY returns a floating-point value that
represents a polynomial formed from two
given unidimensional arrays X1 and Xa.

Xa

an array defined as a(m:n), where
(m:n) represents the lower and upper
bounds.

an array defined as x(p:q), where
(p:q) represents the lower and upper
bounds.

If the elements of one or both of the
arrays are not floating-point, they are
converting to floating-point

The returned value is defined as:

n-m j-l

a(m) +~ (a(m+ j)*1ilr x (p+i»

j=l i=O

If (q-p)«n-m-1) then x(p+i)=x(q) for
(p+i»q.

If m=n then the result is a(m).

If Xa is an element expression, it is
interpreted as an array of one element,
i.e., x(l), and the result is defined as:

n-m

~ a(m+j)*x(l)**j

j=O

X1 must not be iSUB-deinfed.

PRECISION(x"xa[,xa]) Arithmetic

PRECISION returns a given value x1 with a
p~ecision specified by Xa and Xa.

value whose precision is to be
changed.

unSigned decimal integer constant
specifying the number of digits that
the value of X1 is to have after
conversion; it must not exceed the
implementation limit.

decimal integer constant, optionally
signed, specifying the scale factor of
the result. For a fixed-point result,
if X3 is omitted, a scale factor of
zero is assumed. For a floating-point
result, X3 must not be given.

The base and scale of the returned value
are the same as those of X1.

PRIORITY (x) Multitasking

PRIORITY returns a halfword binary integer
indicating the priority associated with the
given task variable x. It gives the
priority relative to the priority of the
current task. No interrupt can occur
during evaluation of PRIORITY.

Section G: Built-in Functions and pseudovariables 375

PRIORITY Pseudovariable

The pseudovariable adjusts the priority of
the task associated with the given task
variable x. It receives a halfword binary
integer, and sets the priority of a to· the
received value, relative to the priority
held by the current task immediately prior
to the assignment. x may be associated
with any active or inactive task, including
the current one. The task variable may be
omitted, in which case the variable
associated with the current task is
assumed. No interrupt can occur during
assignment to the PRIORITY pseudovariable.
The PRIORITY pseudovariable cannot be used
as the control variable in a DO group.

PROD (x) Array-Handling

PROD returns the product of all the
elements in a given array x.

x an array of integers or floating-point
elements.

If the elements of x are non-integer
fixed-point, they are converted to
floating-point.

If the elements of x are string, they
are converted to integers. The preCision
of the result for fixed-point integers is
(N, 0), where N is the maximum number of
digits allowable. x must not be iSUB
defined.

REAL (x) Arithmetic

REAL returns the real part of a given
complex value x. x will be converted to
complex if it is real.

REAL Pseudovariable

The pseudovariable assigns a real value or
the real part of a complex value to the
real part of a·given complex variable x. x
must not be real.

REPEAT(x,-,xa) string-handling

REPEAT returns a string consisting of the
string xl. concatenated to itself the number
of times specified by Xa, i.e., there will

376 OS PL/I CKT AND OPT LRM PART II

be (xa+l) occurrences of the string xl._

xl. string to be repeated

xa an expression that can be converted to
integer indicating number of
repetitions.

If xl. is arithmetic, it will be converted
to string - bit string if it is binary,
character string if it is arithmetic. If
Xa is zero or negative, the string xl. is
returned.

If xa is an array, then xI. should be an
array with identical bounds.

ROUND(x"Xa) Arithmetic

ROUND returns the given value xl. rounded at
a digit specified by xa.

the value to be rounded.

decimal integer constant, optionally
Signed, specifying the digit at which
rounding is to occur. If Xa is
poSitive, it is the (xa)th digit to
the right of the point; if negative,
it is the (xa+l)th digit to the left
of the paint.

If xl. is floating-point, xa is ignored: the
rightmost bit of the mantissa is set to 1.

The precision of a fixed-paint result i~
given by:

(MAX(l,MIN(p-q+l+xa,N»,xa)

where (p,g) is the preCision of xl. and N is
the maximum number of digits allowable.

Note that the rounding of a negative
value results in the rounding of its
absolute value, then the sign is replaced.

ISAMEKEY(x)
I

Input/Output

I
ISAMEKEY returns a Single bit indicating
Iwhether a record that has been accessed is
Ifollowed by another with the same key.
I
Ix
I
I

a file expression, the file must have
the RECORD attribute.

I The SAMEKEY built-in function returns a
IBIT(l) value. Upon successful completion
lof an input/output operation on file ·x·,
lor immediately before the RECORD condition
lis raised, the value of SAMEKEY is set to
l-l'B if the record processed is followed by

lanother record with the same key.

I
1 A value of 'O'B is returned if the file
Idoes not have the KEYED and SEQUENTIAL
I attributes, if the file is not open, if the
Ifile is not associated with a VSAM indexed
Idata set, or if the record processed is not
Ifollowed by another record with the same
I key.
1
I If the input/output operation causes a
Icondition other than RECORD to be raised,
Ithe value of SAMEKEY is 'O'B if file
Ipositioning has been changed or lost.
I Otherwise, the value of SAMEKEY remains
I unchanged.
I
I The value returned by SAMEKEY is
lundefined if ·x· has the STREAM attribute.

SIGN(x) Arithmetic

SIGN returns a default-precision fixed
point binary integer that indicates whether
a given value x is positive, zero, or
negative. The value returned is as
follows:

value of x value returned

x > ° +1

x = ° °
x < ° -1

x must be real.

SIN (x) Mathematical

SIN returns a floating-point value that
represents the sine of a given value x.

x an expression whose value is in radians.

If x is complex, the result is given by:

sin(a)*cosh(b) +i*cos (a) *sinh(b)

where (a+i*b) represents x.

SIND (x) Mathematical

SIND returns a floating-point value that
represents the sine of a given value x.

x an expression whose value is in
degrees. x must be real.

SINH(x) Mathematical

SINH returns a floating-point value that
represents the hyperbolic sine of a given
value x. If x is complex, the result is
given by:

sinh(a)*cos(b)+i*cosh(a)*sin(b)

where (a+i*b) represents x.

SQRT(x) Mathematical

SQRT returns a floating-point value that
represents the square root of x. If x is
real, it must not be less than zero. The
result is the positive square root of x.
If x is complex, the function is multiple
valued; hence, only the principal value can
be returned. The principal value has the
form:

(a+i*b)

where either a>O, or a=O and b>=O.

STATUS[(x)] Multitasking

STATUS returns a default-precision fixed
pOint binary integer specifying the status
value of a given event x. If the event is
normal, zero is returned; if abnormal, non
zero is returned. If no argument is
specified, the event associated with the
current task is assumed.

STATUS pseudovariable

The pseudovariable resets the status value
of a given event x. No interrupt can occur
during aSSignment to the pseudovariable.

STORAGE (x) Storage Control

Abbreviation: STG(x)

STORAGE returns a fixed-point binary
integer of precision (31,0) giving the
implementation-defined storage, in bytes,
required by a specified variable ·x".

x a variable of any data type, data
organization, and storage class
except:

Section G: Built-in Functions and pseudovariables 311

1. A BASED, DEFINED, parameter,
subscripted, or structbre-base
element variable that is an
unaligned fixed-length bit string.

2. A minor structure whose first or
last base element is an unaligned
fixed-length bit string (except
where it is also the first or last
element of the containing major
structure) •

3. A major structure that has the
BASED, DEFINED, or parameter
attribute, and which has an
unaligned fixed-length bit string
as its first or last element.

4. A variable not in connected
storage.

The value returned by STORAGE(x) is
defined as the number of bytes that would

Ibe transmitted in the following
I circumstances:
I
I
I
I
I
I
I

DECLARE F FILE RECORD INPUT
OPTIONS(SCALARVARYING);

READ FILE (F) INTO (x);

I If x is a scalar varying-length string,
Ithe returned value includes the length
Iprefix of the string and the number of
I bytes in the maximum length of the string.
I
I If x is a scalar area, the returned
Ivalue includes the area control bytes and
Ithe maximum size of the area.
I
I If x is a structure or array containing
lareas or varying-length strings, the
Ireturned value includes the area control
I bytes, the maximum sizes of the areas, the
Ilength prefixes of the strings, and the
Inumber of bytes in the maximum lengths of
Ithe strings.
I
I STORAGE cannot be used to obtain the
Istorage requirements of a structure mapped
laccording to the COBOL mapping algorithm.

STRING (x) string-handling

STRING returns an element string that is
the concatenation of all the elements of a
string data aggregate.

x an array or structure expreSSion whose
elements are either all character
strings and/or numeric character data,
or all bit strings.

x cannot be an operational expression or a

378 OS PL/I CRT AND OPT LRM PART II

function reference.

If x is a structure that has padding caused
by ALIGNED elements, the padding is not
included in the result.

If any of the strings in the aggregate x
are of varying length, only the current
length, and not including the two-byte
length prefix, is concatenated.

x must not be iSUB-defined.

If x is an element variable, the rules for
aggregates apply except that there is nO
concatenation.

STRING pseudovariable

The pseudovariable assigns a string, piece
by piece, to the given aggregate variable
x, until either all of the aggregate
elements are filled or nO piece of the
aSSigned string remains. In the latter
case, any remaining strings in the
aggregate variable are filled with blanks
or, if varying-length, are given zero
length.

The STRING pseudovariable must not be
used in the data speCification of a GET
statement, nor in an INTO or KEYTO option
of a READ statement.

The STRING pseudovariable cannot be used
as the control variable in a DO-group.

A varying-length string is filled to its
maximum length.

string-handling

SUBSTR returns a substring of the given
string X1.

X1 string from which the substring is to
be extracted.

xa an expression that can be converted to
integer indicating the starting
position of the substring in X1.

X3 an expression that can be converted to
integer specifying the length of the
substring in x~. If %3 is zero, a
null string is returned. If X3 is
Omitted, the substring returned is
position xa in x~ to the end of x~.

If X1 is not a string, it is converted to a
bit string if binary or a character string
if decimal.

The STRINGRANGE condition, if enabled,
is raised if the values of X2 and X3 are
such that the substring does not lie
entirely within x~. If STRINGRANGE is not
enabled, then under the optimizing compiler
the result is undefined and under the
checkout compiler, standard system action
is taken (even if there is STRINGRANGE on
unit established.)

ISUBSTR(x&,xa[,X3]) Preprocessor
I ,
ISUBSTR (preprocessor) returns a substring
lof a specified string (see description of
Ithe non-preprocessor built-in function in
Ipreceeding paragraphs). If necessary, x~

lis converted to CHARACTER and xa and X3 are
,converted to FIXED.

SUBSTR Pseudovariable

The pseudovariable assigns a string to a
substring of the given string x. The
remainder of string x is unchanged.

SUM (x) Array-Handling

SUM returns the sum of all the elements in
a given array x.

x an array of arithmetic elements.

If the elements of x are fixed-point, the
precision of the result is (N,q), where N
is the maximum number of digits allowable
and q is the scale factor of x. If the
elements of x are strings, they are
converted to integers.

x must not be iSUB-defined.

TAN (x) Mathematical

TAN returns a floating-point value that
represents the tangent of a given value x.

x an expression whose value is in
radians.

If x is complex, the result is defined as:

REAL (TAN(x» = TANCa)*(1-TANH(b)**2)/
(1+(TAN(a)*TANB(b»**2)

IMAG(TAN(x» = TANH(b)*(1+TAN(a)**2)/
Cl+(TAN(a)*TANH(b»**2)

where (a+i*b) represents x.

TAND(x) Mathematical

TAND returns a floating-point value that
represents the tangent of a given value x.

x an expression whose value is in
degrees. x must be real.

TANH (x) Mathematical

TANH returns a floating-point value that
represents the hyperbolic tangent of a
given value x.

x an expression whose value is in
radians.

If x is complex the result is defined as:

-i*TAN(i*x)

TIME returns a character string of length
nine, in the form hhmmssttt, where:

hh
nun
ss
ttt

the current hour
number of minutes
number of seconds
number of milliseconds

If no timing facility is available, TIME
returns the value (9)'0'.

String-handling

TRANSLATE returns a string the same length
as a given string X1 where all or some of
the characters may have been changed.
Characters are changed according to a look
up table provided by strings xa and X3.

The function operates on each character
of X1 as follOWS:

If a character in X1 is found in X3' then
the character in Xa that corresponds to the
one in X3 is copied to the result:
otherwise, the character in X1 is copied
directly to the result.

character string to be searched for
possible translation of all or some of
its characters.

Section G: Built-in FUnctions and Pseudovariables 379

character string containing the
translation values of characters.

X3 character string containing the
characters that are to be translated.
If X3 is omitted, a string of 256
characters is assumed; it contains all
possible characters arranged in
ascending order (hexadecimal 00
through FF).

strings X2 and X3 should be the same
length; otherwise X2 is padded with blanks,
or truncated, on the right to match the
length of X3.

Any non-character arguments are
converted to character.

TRUNC(x) Arithmetic

TRONC returns an integer that is the
truncated form of a given value x. If x is
positive or zero, the result is the largest
integer less than or equal to x. If x is
negative, the result is the smallest
integer greater than or equal to x. x must
be real.

If x is fixed-point with precision
(p,q), the precision of the result is given
by:

(MIN(N,MAX(p-q+1,1»,0)

where N is the maximum number of digits
allowable.

ONSPEC(x) String-handling

UNSPEC returns a bit string that is the
internal coded form of a given value x.

x expression of any data type.

The length of the returned bit-string
depends on the-attributes of x.

If x is a varying-length string, its
two-byte prefix is included in the returned
bit-string.

If x is complex, the length of the
returned string is twice the value given in
the following table.

380 OS PL/I CKT AND OPT LRM PART II

r---,
bit-string I attributes of x

length I

16

32

64

128

256

n

n+16

tFlXED BINARY (p,q) for p<16

IFIXED BINARY (p,q) for p>15
!FLOAT BINARY (p) for p<22
IFLOAT DECIMAL (p) for p<7
!POINTER (standard length)
I OFFSET
IFILE constant or variable
!POINTER (under checkout
Icompiler with COMPATIBLE
!option)

tFLOAT BINARY (p) for 21<p<54
!FLOAT DECIMAL (p) for 6<p<17
!LABEL constant or variable
!ENTRY constant or variable

!FLOAT BINARY(p) for 53<p<110
IFLOAT DECIMAL(p) for 16<p<34
!TASK
IPOINTER (under checkout
Icompiler with NOCOMPATIBLE
!option)

!EVENT

tBIT (n)

IBIT VARYING where n is the
Imaximum length of x.

8*n ICHARACTER (n)
'PICTURE

8* (n+2)

I (with character-string
Ilength of n)

ICHARACTER VARYING where n is
,the maximum length of x.

8*(n+16) IAREA (n)

8*FLOOR(n) ,FIXED DECIMAL (p,q)
,where n = (p+2)/2

l---J

UNSPEC pseudovariable

The pseudovariable assigns a bit string
directly to the given variable x, i.e., nO
conversion to the data type of the variable
is atte~ed. The bit string is padded, if
necessary, on the right with zeros to match
the length of the variable. If x is a
varying length string, its two-byte prefix
is included in the field to which the bit
string is assigned.

string-handling

VERIFY returns a default-precision fixed
point binary integer indicating the
position in the given string X~ of the
first character or bit that is not in the
given string Xa. If all the characters or
bits in X1 do appear in Xa, a value of zero
is returned. The arguments are converted
to strings if they are arithmetic. If one
string argument is bit and the other
character, the bit is converted to
character.

string to be scanned for any character
not in Xa.

Xa the verification string, consisting of
a set of characters in any order.

If either argument is character or decimal,
conversions are performed to produce
character strings. Otherwise, if the
arguments are bit and binary or both
binary, conversions are performed to
produce bit.

Section G: Built-in Functions and Pseudovariables 381

The on-conditions are those exceptional
conditions that can be specified in PLII by
means of an ON statement. If a condition
is enabled, the occurrence of the condition
will result in an interrupt. The
interrupt, in turn, will result in the
execution of the current action
specification for that condition. If an ON
statement for that condition is not in
effect, the current action specification is
the standard system action for that
condition. If an ON statement for that
condition is in effect, the current action
specification is either SYSTEM, in which
case the standard system action for that
condition is taken, or an on-unit, in which
case the programmer has supplied his own
action to be taken for that condition.

Some conditions are always enabled
unless they have been explicitly disabled
by condition prefixes; others are always
disabled unless they have been explicitly
enabled by condition prefixes; and still
others are always enabled and cannot be
disabled.

Those conditions that are always enabled
unless they have been explicitly disabled
by condition prefixes are:

CONVERSION

FIXEOOVERFLO~

OVERFLOW

UNDERFLOW

ZERODIVIDE

Each of the above conditions can be
disabled by a condition prefix specifying
the condition name preceded by NO without
intervening blanks. Thus, one of the
following names in a condition prefix will
disable the respective condition:

NOCONVERSION

NOFIXEDOVERFLOW

NOOVERFLOW

NOUNDERFLOW

NOZERODIVIDE

Such a condition prefix renders the
corresponding condition disabled throughout
the scope of the prefix; the condition
remains enabled outside this scope. (Scope

Section H: ON-Conditions

of a condition prefix is discussed in
chapter 14, "Exceptional Condition Handling
and Program Checkout".)

conversely, those conditions that are
always disabled unless they have been
enabled by a condition prefix are:

SIZE

SUBSCRIPTRANGE

STRI NGRANGE

STRINGSIZE

CHECK

The appearance of one of these five in a
condition prefix renders the condition
enabled throughout the scope of the prefix;
the condition remains disabled outside this
scope. Further, a condition prefix speci
fying NOSIZE, NOSUBSCRIPTRru~GE, NOSTRING
RANGE, NOSTRINGSIZE, or NOCHECK will
disable the corresponding cop-dition
throughout the scope of that prefix. Since
SIZE, STRINGRANGE, and SUBSCRIPTRANGE
represent errors that are likely to prevent
successful execution, the checkout compiler
checks for these conditions, and takes
standard system action, even when they are
disabled, although an on-unit cannot be
entered while the corresponding condition
is disabled.

All other conditions are always enabled
and remain so for the duration of the
program. These conditions are:

AREA KEY

ATTENTION NAME

CONDITION PENDING

ENDFILE RECORD

ENDPAGE TRANSMIT

ERROR UNDEFINEDFILE

FINISH

Condition Codes (ON-Codes)

The ONCODE built-in fUnction may be used by
the programmer in anyon-unit to determine
the nature of the error or condition that

Section H: ON-conditions 383

caused entry into that on-unit. The codes
corresponding to the conditions and errors
checked for are given below:

o

Error or Exceptional Condition

The ONCODE built-in function has
been used outside an on-unit.

ERROR Condition Code

3 Execution of SIGNAL ERROR
statement in place of statement
diagnosed as in error.

FINISH Condition Codes

4 SIGNAL FINISH, STOP, or EXIT
statement executed.
or
Main procedure completed normally.

ERROR Condition Code

9 SIGNAL ERROR statement executed.

Note: For further ERROR condition
codes, see code numbers 1000
onwards.

NAME Condition Codes

10 SIGNAL NAME statement executed.
or
unrecognizable identifier in GET
DATA input stream.

RECORD Condition Codes

20

21

SIGNAL RECORD statement executed.

Record variable smaller than
record size.

22 Record variable larger than record
size.

23

24

Record variable length is either
zero or too short to contain the
embedded key.

Zero length record has been read
from a REGIONAL data set.

TRANSMIT Condition Codes

40

41

42

43

SIGNAL TRANSMIT statement
executed.

Uncorrectable transmission error
in output data set.

Uncorrectable transmission error
in input data set.

Uncorrectable transmission error
on output to index set (VSAM).

384 OS PL/I CKT AND OPT LRM PART II

44

45

46

Uncorrectable transmission error
on input from index set (VSAM).

Uncorrectable transmission error
on output to sequence set (VSAM).

Uncorrectable transmission error
on input from sequence set (VSAM).

KEY Condition Codes

50

51

52

53

54

155

56

57

58

SIGNAL KEY statement executed.

Key specified cannot be found.

Attempt to add keyed record which
has same key as a record already
present in data set, or, in a
REGIONAL (1) data set, attempt to
write into a region already
containing a record.

Value of expression specified in
KEYFROM option during sequential
creation of INDEXED or REGIONAL
data set is less than value of
previously specified key or region
number.

Key conversion error has occurred,
possibly due to region number not
being numeric character.

Key specified is invalid.

Attempt to access a record using a
key that is outside the data set
limits.

No space available to add a keyed
record.

Key of record to be added lies
outside the range(s) specified for
the data set.

ENDFILE Condition code

70 SIGNAL ENDFILE statement executed.
or
Attempt to read past the file
delimiter.

UNDEFINEDFILE Condition Codes

80

81

82

SIGNAL UNDEFINEDFILE statement has
been executed.

Conflict in file attributes exists
at open time between attributes in
DECLARE statement and those in
explicit or implicit OPEN
statement.

Conflict between file attributes
and phySical organization of data
set, e.g. between file
organization and device type.

83

84

85

86

81

88

89

91

92

93

1

VSAM data set has not been loaded.

After merging ENVIRONMENT options
with DD statement and data set
label, data set specification is
incomplete, e.g. blocksize or
record format has not been
specified.

No DD statement associating file
with a data set.

During initialization of a DIRECT
OUTPUT file associated with a
REGIONAL data set, an input/output
error occurred.

Linesize greater than
implementation-defined maximum.
or
Invalid value in an ENVIRONMENT
option.

After merging ENVIRONMENT options
with DD statement and data set
label, conflict exists in data set
specification, e.g., record format
incompatible with block size or
file organization.

After merging ENVIRONMENT options
with DD statement and data set
label, conflict exists in data set
specification, e.g., record format
incompatible with block size or
file organization.

Password invalid or not specified.

ENVIRONMENT option invalid for
file accessing VSA.M data set.

Error detected by VSAM while
opening a VSAM data set.
or
During opening of a VSAM data set
with the BKWD option, the attempt
to poSition the data set at the
last record failed.

Unidentified error detected by the
operating system while opening a
data set.

194 REUSE specified for a non-reusable
1 data set.
1
195 Alternate index specified for a
1 VSAM data set is empty.

ENDPAGE Condition Code

90 SIGNAL END PAGE statement executed.
or
Attempt to start new line when

line number is equal to current
page size.

PENDING Condition Code

100 SIGNAL PENDING statement executed.
Q!:
READ issued for TRANSIENT INPUT
file when message queue empty.

STRINGSIZE Condition Code

150 SIGNAL STRINGSIZE statement
executed.
or
Characters have been lost in an
assignment to a character-string
variable or temporary or in an
input/output operation.

OVERFLOW Condition Code

300 SIGNAL OVERFLOW statement has been
executed.
or
Magnitude of floating-point number
exceeds permitted maximum.

FIXEDOVERFLOW Condition Code

310 SIGNAL FIXEDOVERFLOW statement
executed.
or
Length of result of fixed-point
arithmetic operation exceeds
permitted maximum.

ZERODIVIDE Condition Code

320 SIGNAL ZERODIVIDE statement
executed.
Q!:
Attempt to divide by zero.

UNDERFLOW Condition Code

330 SIGNAL UNDERFLOW statement
executed.
or
Magnitude of a floating-point
number is smaller than the
permitted minimum.

SIZE Condition Code

340

341

SIGNAL SIZE statement executed.
or
High-order non-zero digits have
been lost in an assignment to a
variable or temporary, or
significant digits have been lost
in an input/output operation.

High order non-zero digits have
been lost in an input/output
operation.

Section H: ON-conditions 385

STRINGRANGE Condition Code

350 SIGNAL STRINGRANGE statement
executed.
or
Length of the arguments of a
SUBSTR reference failed to comply
with the rules described for the
SUBSTR built-in fUnction.

AREA Condition Codes

360

361

Attempt to allocate a based
variable within an area that
contains insufficient free storage
for allocation to be made.

Insufficient space in target area
for assignment of source area.

362 SIGNAL AREA statement executed.

ATTENTION Condition Code

1400 SIGNAL ATTENTION statement
executed
or
Attention signaled from terminal.

CONDITION Condition Code

500 SIGNAL CONDITION (condition)
statement has been executed.

CHECK Condition Codes

510 SIGNAL CHECK statement executed.
or
Value of all or part of variable
is about to change, or execution
of labeled or named statement is
about to take place, within scope
of CHECK prefix.

SUBSCRIPTRANGE Condition Code

520

521

SIGNAL SUBSCRIPTRANGE statement
executed.
or
Subscript has been evaluated and
found to lie outside its specified
bounds.

subscript of iSUB-defined variable
lies outside bounds of
corresponding dimension of base
variable.

CONVERSION Condition Codes

600 SIGNAL CONVERSION statement
executed.

601

603

Invalid conversion attempted
during input/output of a character
string.

Error during processing of an

386 OS PL/I CKT AND OPT LRM PART II

604

605

606

601

608

609

610

611

612

613

614

615

616

611

618

619

F-format item for a GET STRING
statement.

Error during processing of an
F-format item for a GET FILE
statement.

Error during processing of an
F-format item for a GET FILE
statement following a TRANSMIT
condition.

Error during processing of an
E-format item for a GET STRING
statement.

Error during processing of an
E-format item for a GET FILE
statement.

Error during processing of an
E-format item for a GET FILE
statement following a TRANSMIT
condition.

Error during processing of a
B-format item for a GET STRING
statement.

Error during processing of a
B-format item for a GET FILE
statement.

Error during processing of a
B-format item for a GET FILE
statement following TRANSMIT
condition.

Error during character string to
arithmetic conversion.

Error during character string to
arithmetic conversion for a GET or
PUT FILE statement.

Error during character string to
arithmetic conversion for a GET or
PUT FILE statement following a
TRANSMIT condition.

Error during character string to
bit string conversion.

Error during character string to
bit string conversion for a GET or
PUT FILE statement.

Error during character string to
hit string conversion for a GET or
PUT FILE statement following a
TRANSMIT condition.

Error during character string to
picture conversion.

Error during character string to
picture conversion for a GET or
PUT FILE statement.

620

621

622

623

624

625

626

Error during character string to
picture conversion for a GET or
PUT FILE statement following a
TRANSMIT condition.

Error in decimal P-format item for
a GET STRING statement.

Error in decimal P-format input
for a GET FILE statement.

Error in decimal P-format input
for a GET FILE statement following
a TRANSMIT condition.

Error in character P-format input
for a GET FILE statement.

Error exists in character P-format
input for a GET FILE statement.

Error exists in character P-format
input for a GET FILE statement
following a TRANSMIT condition.

ERROR Condition Codes

~: For other ERROR conditions, see
condition codes 3 and 9.

1002

1003

1004

1005

1007

1008

1009

GET or PUT STRING specifies data
that exceeds size of string.

Further output prevented by
TRANSMIT or KEY conditions having
been previously raised for the
data set.

Attempt to use PAGE, LINE, or SKIP
S 0 for non-print file.

In DISPLAY(element-expression)
REPLY (character-variable)
statement, element-expression or
character-variable is of zero
length.

A REWRITE or a DELETE statement
has not been preceded by a READ.

Unrecognized identifier in a
string specified in a GET STRING
DATA statement.

An input/output statement
specifies an operation or an
option which conflicts with the
file attributes.

11011
I

Data management has detected an
input/output error but is unable
to provide any information about
its cause.

I
I

1013 Previous input operation
incomplete: REWRITE or DELETE
statement specifies data which has
been previously read in by a READ

1014

1015

1016

1018

1019

1020

1021

1022

1023

1024

1025

1026

1021

1028

1029

11030
1
1
11031
1

statement with an EVENT option,
and no corresponding WAIT has been
executed.

Attempt to initiate further
input/output operation when number
of incomplete operations equals
number specified by ENVIRONMENT
option NCP(n) or by default.

Event variable has been specified
for an input/output operation when
already in use.

After UNDEFINEDFILE condition has
been raised as a result of an
unsuccessful attempt to implicitly
open a file, the file was found to
be unopened on normal return from
the on-unit.

End of file or string was
encountered in data before end of
data-list or (in edit-directed
transmission) format list.

Attempt to close file which was
not opened in current task.

Further input/output attempted
before WAIT statement executed to
ensure completion of previous
READ.

Attempt to access a record locked
by another file in this task.

Insufficient space on direct
access storage for VSAM data set.

Exclusive file closed while
records still locked in a subtask.

Incorrect sequence of I/O
operations on device-associated
file.

Insufficient virtual storage
available for VSAM to complete
request. .

No position is established in
VSAM data set.

Record already held in exclusive
control.

Requested record lies on
non-mounted volume.

Attempt to reposition in VSAM
data set failed.

An error has ocurred during
index upgrade on a VSAM data set.

Invalid sequential write attempted
on VSAM data set.

Section H: ON-conditions 387

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1514

1515

computational error; short
floating point argument of SQRT
built-in function is negative. 1516

computational error; long floating
point argument of SQRT built-in
function is negative.

computational error; extended
floating pOint argument of SQRT
built-in function is negative.

computational error in LOG, LOG2,
or LOGI0 built-in function;

1517

extended floating pOint argument 1518
is S o.

computational error in LOG, LOG2,
or LOGI0 built-in function; short
floating point argument is S O. 1519

computational error in LOG, LOG2
or LOGI0 built-in function: long
floating point argument is S O.

computational error in SIN, COS,
SIND, or COSD built-in function;
absolute value of short floating
point argument exceeds (2**18)*pi

1520

(SIN and COS) or (2**18)*180 (SIND 1521
and COSD).

Computational error in SIN, COS,
SIND, or COSD built-in function;
absolute value of long floating 1522
point argument exceeds (2**50)*pi
(SIN and COS) or (2**50)*180 (SIND
and SIND).

Computational error; absolute
value of short floating pOint 1550
argument of TAN or TAND built-in
functuion exceeds, respectively,
(2.*18)*pi or (2**18)*180.

Computational error; absolute 1551
value of long floating point
argument of TAN or TAND built-in
function exceeds, respectively,
(2*.SO)*pi or (2**50)*180.

computational error; short
floating point arguments of ATAN
or ATAND built-in function both
zero.

Computational error; long floating
point arguments of ATAN or ATAND
built-in function both zero.

Computational error; absolute
value of short floating pOint
argument of ATANH built-in
function ~ 1.

Computational error: absolute
value of long floating point
argument of ATANH built-in

1552

1553

1554

1555

388 OS PL/I CRT AND OPr LRM PART II

function ~ 1.

Computational error; absolute
value of extended floating point
argument of ATANH built-in
function ~ 1.

Computational error in SIN, COS,
SIND, or COSD built-in function;
absolute value of extended
floating point argument exceeds
(2**106)*pi (SIN and COS) or
(2**106)*180 (SIND and COSD).

Computational error; absolute
value of short floating pOint
argument of ASIN or ACOS built-in
function exceeds 1.

Computational error; absolute
value of long floating pOint
argument of ASIN or ACOS built-in
fUnction exceeds 1.

Computational error; absolute
value of extended floating pOint
argument of ASIN, ACOS built-in
fUnction exceeds 1.

Computational error; extended
floating point arguments of ATAN
or ATAND built-in function both
zero.

Computational error; absolute
value of extended floating point
argument of TAN or TAND built-in
function ~ (2**106)*pi or
(2**106)*180, respectively.

Computational error; real short
floating-point base is zero and
fixed-point integer exponent not
positive.

Computational error: real long
floating-point base is zero and
fixed-point integer exponent not
positive.

Computational error; real short
floating point base is zero and
the floating-point or non-integral
exponent is not positive.

Computational error; real long
floating point base is zero and
the floating-point or non-integral
exponent is not positive.

Computational error; complex short
floating point base is zero and
fixed-point integer exponent is
not posi ti ve.

Computational error: complex long
floating point base is zero and
fixed-point integer exponent is

1556

1557

1558

1559

1560

1561

1562

1563

1564

2002

3000

3004

3005

not positive.

computational error; complex short
floating point base is zero and
floating-point or non-integral
exponent is not positive and real.

computational error; complex long
floating point base is zero and
floating-point or non-integral
exponent is not positive and real.

computational error; complex short
floating point argument of ATAN or
ATANH built-in function has value,
respectively, of tlI or tl.

computational error; complex long
floating point argument of ATAN or
ATANH built-in function has value,
respectively, of tlI or tl.

computational error; real extended
floating-point base is zero and
fixed-point integer exponent not
positive.

computational error: real extended
floating point base is zero and
floating-point or non-integral
exponent is not positive.

computational error: complex
extended floating point base is
zero and integer exponent is not
positive.

Computational error: complex
extended floating pOint base is
zero and floating-point or
non-integral exponent is not
positive.

computational error: complex
extended floating point argument
of ATAN or ATANH built-in function
has value, respectively, of ±11 or
t1.

WAIT statement cannot be executed
because of restricted system
facility.

Field width, number of fractional
digits, and number of significant
digits (w,d, and s) specified for
E-format item in edit-directed
input/output statement do not
permit transmission without loss
of significant digits or sign.

Checkout compiler only: A-format
width unspecified in format list
for GET EDIT statement.

Checkout compiler only: B-format
width unspecified in format list
for GET EDIT statement.

300b

3008

3!>00

3501

3502

3503

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3901

Picture description of target does
not match non-character-string
source.

Checkout compiler only: remote
format item specifies label not in
current block.

Checkout compiler only: argument
to HIGH built-in function is less
than zero.

Checkout compiler only: argument
to LOW built-in function is less
then zero.

Checkout compiler only: argument
to BIT built-in function less than
zero.

Checkout compiler only: argument
to CHAR built-in function less
than zero.

ONCHAR or ONSOURCE pseUdovariable
used out of context.

In an on-unit entered as a result
of the CONVERSION condition being
raised by an invalid character in
the string being converted, the
character has not been corrected
by use of the ONSOURCE or ONCHAR
pseudovariables.

Checkout compiler only: length of
data aggregate exceeds system
limit of 2**24 bytes.

Checkout compiler only: element
of an array in a structure cannot
be mapped.

Checkout compiler only: array
bound is out of valid range.

Checkout compiler only: array has
lower bound greater than upper
bound.

Checkout compiler only: string
has 1ength greater than permitted
maximum.

Checkout compiler only: length of
string less than zero.

Checkout compiler only: size of
area exceeds permitted maximum.

Checkout compiler only: size.of
area is less than zero.

Aggregate cannot be mapped in
COBOL or FORTRAN.

Attempt to invoke task having name
variable that is already

Section H: ON-conditions 389

3904

3906

3907

3909

3910

3911

3912

3913

3914

4000

4001

4002

4003

4050

4051

associated with an active task.

Event variable specified as
argument to COMPLETION
pseudovariable while already in
use for a DISPLAY statement.

Assignment to an event variable
that is already active.

Attempt to associate an event
variable that is already
associated with an active task.

Attempt to create a subtask (using
CALL statement) when insufficient
main storage available.

Attempt to attach a task (using
CALL statement) when number of
active tasks was already at limit
defined by ISASIZE paramter of
EXEC statement.

WAIT statement in on-unit
specifies that an event already
being waited for in task from
which on-unit was entered.

Attempt to execute CALL with TASK
option in block invoked while
executing PUT FILE(SYSPRINT)
statement.

CALL statement with TASK option
specifies an unknown entry pOint.

Attempt to call FORTRAN or COBOL
routines in two tasks
simultaneously.

Checkout compiler only: use of
uninitialized variable as source.

Checkout compiler only: reference
to CONTROLLED variable before it
has been allocated.

Controlled variable with bound,
length, or size as * has been
specified in an ALLOCATE statement
when no previous allocation
exists.

Checkout compiler only: IN option
of ALLOCATE statement specifies an
area not the same as that declared
to be associated with offset
variable specified in SET option.

Checkout compiler only: attempt
to refer to a based variable whose
pointer has the null or other
initial va1ue.

Checkout compiler only: attempt
to free a variable that has no
valid allocation in its associated

390 OS PL/I CRT AND OPT LRM PART II

4052

4053

4054

4055

4056

4057

4058

5000

5001

5002

5003

5004

5005

5050

area.

Checkout compiler only: pOinter
addresses based variable whose
attributes differ from attributes
of variable declared with that
pOinter value.

Checkout compiler only: reference
to based variable when pOinter
addresses storage that no longer
contains the variable.

Checkout compiler only: locator
variable refers to a locate mode
input/output buffer when buffer is
not the latest one or when file is
closed.

Checkout compiler only: attempt
to assign to an offset variable a
locator that does not reference
storage in the appropriate area.

POINTER or OFFSET built-in
function does not address a valid
allocation of storage in the
specified area.

Checkout compiler only: locator
qualifying a based variable refers
to storage which has not been
allocated in current task.

Checkout compiler only: a based
structure is referred to by means
of a pointer that is not valid for
that structure.

Checkout compiler only: number of
arguments being passed does not
match number of parameters.

Checkout compiler only:
attributes of argument being
passed do not match attributes of
corresponding parameter.

Checkout compiler only:
attributes of value being returned
do not match those implied by
context of function reference.

Checkout compiler only: attempt
to return a value from a block
invoked by a CALL statement.

Checkout compiler only: block
invoked as a fUnction without
returning a value.

FORTRAN routine would pass invalid
data type.

Checkout compiler only: attempt
to use defined variable whose
storage extends beyond end of base
variable.

5051

8091

8092

8093

8094

8095

8096

8091

9002

9003

9004

9005

9050

9051

9101

9200

9201

9250

9251

9252

POSITION attribute specifies value
greater than permitted maximum.

Checkout compiler only: size of
simple defined area greater than
that of base variable.

Operation exception.

privileged operation exception.

EXECUTE exception.

Protection exception.

Addressing exception.

specification exception.

Data exception.

Attempt to execute GO TO
statement specifying label in an
inactive block.

Checkout compiler only: attempt
to invoke an entry point ~n a
procedure compiled by the
optimizing compiler when that
procedure's containing block is
inactive.

Checkout compiler only: linkage
editor cannot find entry constant
on specified data set.

Checkout compiler only: attempt
to use label variable in a GO TO
statement when value not in label
list.

Program has been terminated by an
abend.

Attempt to invoke procedure
compiled by the checkout compiler
from one compiled by the
optimizing compiler.

Checkout compiler only: number of
lines specified in STEPLINES
compiler option has been
transmitted.

Program check occurred in
SORT/MERGE program.

SORT is not supported in CMS.

Procedure to be fetched cannot be
found.

Permanent transmission error when
fetching a procedure.

FETCH/RELEASE is not supported in
eMS.

Multiple Interrupts

A multiple interrupt is the simultaneous
occurrence of two or more interrupts.

With processors that do not have
imprecise interrupts (for example, all
system/3bO models excluding the Model 91>,
a multiple interrupt can only occur for the
conditions TRANSMIT and RECORD. The
interrupt for TRANSMIT is always processed
first. The interrupt for RECORD will be
ignored unless there is an on-unit for
TRANSMIT that causes normal return.

In most of the System/370 range,
particularly the 155, 158, 165, 168, and
the 195, as well as the System/360 Model
91, the processors have a second type of
multiple interrupt, known as an imprecise
interrupt, which can occur during parallel
processing. The interrupt may be due to
the raising of a PL/I condition or a
hardware exception which subsequently
raises the ERROR condition. The conditions
and exceptions that may cause an imprecise
interrupt are shown below, in the order in
which they are processed.

PL/I on-conditions:

1 • UNDERFLOW
2. FIXEDOVERFLOW
3. SIZE
4. OVERFLOW
5. ZERODIVIDE

Hardware interrupts:

6. Data exception
1. Specification exception
8. Addressing exception
9. Protection exception

Event I/O and imprecise interrupts
cannot occur as part of the same multiple
interrupt.

Imprecise interrupt conditions are
processed successively, until one of the
following occurs, in which case nO
subsequent conditions are processed.

1. The processing of a condition causes
termination of the task, through
either standard system action, normal
return from an on-unit, or abnormal
termination in the on-unit.

2. Control is transferred out of an on
unit by means of a GO TO statement, so
that a normal return is not allowed to
take place.

Section H: ON-conditions 391

List of Conditions

This section presents conditions in
alphabetical order. In general, the
following information is given for each
condition:

1. General format -- given only when it
consists of more than the condition
name.

2. Description -- a discussion of the
condition, including the circumstances
under which the condition can be
raised. Note that an enabled
condition can always be raised by a
SIGNAL statement; this fact is not
included in the descriptions.

3. Result -- the result of the operation
that caused the condition to occur.
This applies when the condition is
disabled as well as when it is
enabled. In some cases, the result is
not defined; that is, it cannot be
predicted. This is stated wherever
applicable.

4. Standard system action -- the action
taken by the system when an interrupt
occurs and the programmer has not
specified an on-unit to handle that
interrupt.

5. Status -- an indication of the
enabled/disabled status of the
condition at the start of the program,
and how the condition may be disabled
(if possible) or enabled.

6. Normal return the pOint to which
control is returned as a result of the
normal termination of the on-unit. A
GO TO statement that transfers control
out of an on-unit is an abnormal on
unit termination. Note that if a
condition (except the ERROR condition>
has been raised by the SIGNAL
statement, the normal return is always
to the statement immediately following
SIGNAL.

Classification of Conditions

1. computational conditions -- those
conditions associated with data
handling, expression evaluation, and
computation. They are:

CONVERSION
FIXEDOVERFLOW
OVERFLOW
SIZE
UNDERFLOW
ZERODIVIDE

2. Input/output conditions -- those
conditions associated with data
transmission. They are:

ENDFILE
END PAGE
KEY
NAME
PENDING
RECORD
TRANSMIT
UNDEFINEDFILE

3. program-checkout conditions -- those
conditions that facilitate the
debugging of a program. They are:

CHECK
SUBSCRIPTRANGE
STRINGRANGE
STRINGSIZE

4. Storage Control condition

AREA

5. System action conditions -- those
conditions that provide facilities to
extend the standard system action that
is taken after the occurrence of a
condition or at the completion of a
program. They are:

ERROR
FINISH

6. programmer-named condition

CONDITION

7. Conversational Processinq Condition

The conditions are classified as follows: ATTENTION

392 OS PL/I CKT AND OPT LRM PART II

storage Control

Description: The AREA condition is raised
in either of the following circumstances:

1. When an attempt is made to allocate a
based variable within an area that
contains insufficient free storage for
the allocation to be made.

2. When an attempt is made to perform an
area assignment, and the target area
contains insufficient storage to
accommodate the allocations in the
source area.

Result: In both cases the attempted
allocation or assignment has no effect.

standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: AREA is always enabled: it cannot
be disabled.

Normal Return: On normal return from the
on-unit, the action is as follows:

1. If the condition was raised by an
allocation, the allocation is
reattempted. Before the attempt is
made, the area reference is
reevaluated. Thus, if the on-unit has
changed the value of a pointer
qualifying the reference to the
inadequate area so that it pOints to
another area, the allocation is
reattempted within the new area.

2. If the condition was raised by an area
assignment, or by a SIGNAL statement,
execution continues at the point of
interrupt.

ATTENTION Conversational Processing

Abbreviation: ATTN

Description: The ATTENTION condition is
raised when the user signals attention at
the terminal during conversational

I processing. Raising the condition
interrupts processing to enter an ATTENTION

lon-unit, or, for the checkout compiler
only, to pass control to the terminal.

The condition can also be raised by a
SIGNAL ATTENTION statement in batch or
conversational processing.

I Under the optimizing compiler, an
IATTENTION on-unit will be entered when
lattention is signaled only if the INTERRUPT

loption has been specified for the
I compilation. If the option has not been
I specified, signalling attention causes the
I program to be terminated. In
Ichecker/optimizer mixtures, however, the
IINTERRUPT option can be omitted; an
lestablished ATTENTION on-unit will be
lentered irrespective of whether it is in a
Ichecker-compiled or an optimizer-compiled
I module.

In batch processing under the checkout
compiler, a SIGNAL ATTENTION statement
causes an on-unit to be entered, or, if
there is nO ATTENTION on-unit, causes a
comment to be printed, with no interrupt in
the flow of control.

In batch processing under the optimizing
I compiler, a SIGNAL ATTENTION statement
Icauses an on-unit to be entered. If there
lis no ATTENTION on-unit, the condition is
leffectively ignored, and there is no
linterruption in the flow of control.

IStandard System Action: Under the checko~
compiler, control is passed to the
terminal. The transfer of control takes
place, in general, at the end of the
statement currently being executed. There
are exceptions to this rule if the
statement is a stream input/output
statement or a compound statement. The
exceptions are detailed in OS Time Sharing
Option: PL/I Checkout Compiler.

Iunder the optimizing compiler, the
lattention is effectively ignored.

I Status: ATTENTION is always enabled; it
cannot be disabled.

Normal Return: On return from an ATTENTION
on-unit, processing is resumed at a pOint
in the program immediately following the
point at which the interrupt occurred.

CHECK [(name-list)] program Checkout

The optional -name list- is one or more
names separated by commas; a name may be a
qualified name. Each name must be one of
the following:

1. An entry constant.

2. A label constant.

3. An unsubscripted variable representing
an element, an array, or a structure,
of any data type. The variable must
not be iSUB-defined, and must not be
explictly qualified by a locator in
the name-list.

Section H: ON-conditions 393

Under the optimizing compiler, the
following restrictions apply to based
variables in the name list:

a. the variable must not have the
OFFSET attribute.

b. the variable must not be a member
of a structure declared with the
REFER option.

c. The pointer on which the variable
is based must not be based,
defined, or a parameter, and it
must not be a member of an array
or structure.

Under the optimizing compiler, defined
variables in the name list must not
have been defined:

a. On a controlled variable.

b. On an array with one or more
adjustable bounds.

c. With a POSITION attribute that
specifies other than a constant.

The names appearing in a CHECK prefix
refer to the names known within the block
or statement to whicb the prefix is
attached. Under the optimizing compiler,
the maximum number of names that may be
specified in the name-list is 255. There
is no limit under the checkout compiler.

oescription: The CHECK condition is raised
only within the scope of a CHECK condition
prefix. Such a condition prefix may be
prefixed to any statement except a DECLARE,
DEFAULT or ENTRY statement. The CHECK
condition is enabled separately for each
name in the list of the CHECK prefix. For
example, the prefix (CHECK (A,B,C»: is
equivalent to (CHECK (A»: (CHECK (B»:
(CHECK (C»:. Hence, the action
specification can be controlled separately
for each name. Alternatively, if no name
list is given, the condition is enabled for
each variable, entry constant, and label
constant within the scope of the CHECK
prefix. Under the checkout compiler, a
label on the same statement as a CHECK
prefix is not included in the scope of the
prefix, but is included under the
optimizing compiler.

The REVERT statement can be used to
change the action specification for one or
more names in the list. Also, a NOCHECK
prefix can be used to disable the CHECK
condition for specific names.

If the name of a structure or array of
structures appears in the name list
following CHECK, such a list is equivalent
to one that contains, in the order in which

394 OS PL/I CKT AND OPT LRM PART II

they were declared, the elements of that
structure or array of structures. For
example, if P is defined:

DECLARE 1 P, 2 Q, 2 R, 2 S;

then:

CHECK (P)

is equivalent to:

CHECK (P.Q, P.R, P.S)

The CHECK condition is raised within the
scope of a CHECK prefix in any of the
following cases:

1. If a name in the CHECK prefix is a
statement label constant, the
condition is raised and the interrupt
occurs prior to the execution of the
statement to which the label is
prefixed. If the label is prefixed to
a FORMAT statement, the condition is
not raised.

2. If a name in the CHECK prefix is a
variable (as specified in the general
format above), the condition is raised
whenever the value of the variable, or
of any part of the variable, is
changed by any statement within the
scope of the prefix.

Specifically, if the identifier ID
represents th~ variable, the condition
is raised in the following cases:

a. ID appears on the left-hand side
of an assignment statement. (This
applies to BY NAME aSSignment only
if the name mentioned changes its
value.)

b. 10 is set as a result of a
pseudovariable appearing on the
left-hand side of an assignment
statement.

c. 10 appears as the control variable
ot a DO-group or a repetitive
specification in a data list (or
it is set as a result of a
pseudovariable appearing as the
control variable of a DO-group or
a repetitive specification in a
data list).

d. ID appears in the data list of an
edit-directed or list-directed GET
statement.

e. ID is altered by data-directed
input.

f. 10 appears in the REPLY option of
a DISPLAY statement.

g. ID appears in the STRING option of
a PUT statement.

h. ID is passed as an argument to a
programmer-defined procedure, no
dummy argument is created, the
procedure terminates with a RETURN
or END, and the procedure is not
invoked with the TASK, PRIORITY,
or EVENT option.

i. ID appears in the KEYTO or INTO
option of a READ statement. Note
that if the READ statement has an
EVENT option, the CHECK condition
will not be raised.

j. 10 is a locator variable and
appears in a SET option or is set
implicitly.

k. ID is a non-static variable set by
the INITIAL attribute.

In a, b, d, and ~ above, if 10 is a
data aggregate, the CHECK condition is
raised and the ipterrupt occurs each
time an element of that aggregate is
given a value. If 10 is an element of
a data aggregate, the condition is
raised for that element only, not the
whole array.

The condition is not raised under any
of the following circumstances:

a. If the value of a variable defined
on ID or on part of 10 changes in
any of the ways described above.

b. If the parameter that represents
the argument 10 changes value.

c. If 10 appears in a GO TO or RETURN
statement or any statement that
involves the execution of a GO TO
or RETURN statement.

Note that in all of the above
contexts, 10 can appear in subscripted
or qualifi~d form. Note also that 10
need not appear in the name list of a
CHECK prefix; it only need represent a
structure or element contained by, or
containing, a name in the list.

The interrupt for a CHECK condition
occurs immediately after the
assignment to 10, except in case h.
Then it occurs immediately after
execution of the subroutine's RETURN
or END statement. In a 00 statement,
the interrupt occurs each time control
proceeds sequentially to the statement
following the 00 statement. If the DO
specifies repetitive execution, the
interrUpt occurs each time the control
variable changes value.

If a statement causes a CHECK
condition to be raised for several
names, the conditions will be raised
in the left-to-right order of
appearance of the names.

3. If an identifier in the CHECK prefix
name list is an entry constant, the
condition is raised and the interrupt
occurs prior to each invocation of the
entry point corresponding to the entry
constant. The condition is raised
only if the entry point is invoked by
the entry constant given in the
prefix.

Result: When CHECK is raised, there is no
effect on the statement being executed.

Standard System Action: In the absence of
a CHECK on-unit, the output consists of the
current statement number together with the
data shown in tigure H.l.

r---,
Variable or I Checkout I Optimizing I
Constant 1 Compiler 'Compiler ,
---1
Arithmetic or 1 Name and Value ,
string variable I I
---1
Area, file, entry I 1 1
event, label, lAs for PUT I Name ,
locator or task I DATA 1 I
variable I 1 I
Entry or label, I I
constant 1 1 I

L---J
Figure H.l. Output for CHECK condition

If SIGNAL CHECK without a name-list is
given, in the absence of a CHECK on-unit,
within the scope of a CHECK prefix that is
also without a name list, all problem data
identifiers within the scope of the prefix
are printed, together with their values.
In addition, under the checker the names
and values ot all internal program control
variables and the names of all external
program control variables within the scope
of the prefix are printed.

Note: Standard system action for the CHECK
condition requires access to the variable:
consequently, if SIGNAL CHECK is given for
an unallocated variable, an error will
result, as it would if the variable were
accessed by an on-unit. Under the checker,
a comment will be printed and execution
continued if the variable has the INTERNAL
attribute; variables with the EXTERNAL
attribute or any variable under the
optimizer will raise ERROR.

Status: CHECK is disabled by default and
within the scope of a NOCBECK condition
prefix. It is enabled only within the

Section B: ON-conditions 395

scope of a CHECK prefix.

For other details of the enabling and
disabling of the CHECK condition, see
chapter 14, -Execution-Time Facilities of
the Checkout Compiler-.

Normal Return: Upon the normal completion
of the on-unit for the CHECK condition,
execution continues immediately following
the point at which the interrupt occurred.

CONDITION (name) programmer-Named

Abbreviation: COND(name)

The Rname R must be specified by the
programmer. The appearance of an
identifier with CONDITION in an ON, SIGNAL,
or REVERT statement constitutes a
contextual declaration for it: the
identifier is given the EXTERNAL attribute.

An identifier may also be declared
explicitly as a condition name by means of
the CONDITION attribute.

Description: CONDITION is raised by a
SIGNAL statement that specifies the
appropriate identifier. The identifier
specified in the SIGNAL statement
determines which CONDITION condition is to
be raised.

Standard system Action: In the absence of
an on-unit for this condition, the system
prints a message and continues with the
statement following SIGNAL.

Status: CONDITION is always enabled; it
cannot be disabled.

Normal Return: Upon the normal completion
of the on-unit, execution continues with
the statement following the SIGNAL
statement that caused the interrupt.

CONVERSION Computational

Abbreviation: CONV

Description: The CONVERSION condition
occurs whenever an invalid conversion is
attempted on character-string data. This
attempt may be made internally or during an
input/output operation. For example, the
condition occurs when a character other
than 0 or 1 exists in a character string
being converted to a bit string; other
examples are when a character string being
converted to a numeric character field
contains characters not permitted by the

396 OS PL/I CRT AND OPT LRM PART II

PICTURE specification, or when a string
being converted to coded arithmetic data
does not contain the character
representation of an arithmetic constant.

All conversions of character-string data
are carried out character-by-character in a
left-to-right sequence and the condition
occurs for each invalid character. The
condition is also raised if all the
characters in the string are blank. When
an invalid character is encountered, an
interrupt occurs (provided, of course, that
CONVERSION has not been disabled) and the
current action specification for the
condition is executed. If the action
specification is an on-unit, the invalid
character can be corrected within the unit
by using the ONSOURCE or ONCHAR
pseudovariables. When one of these
pseudovariables has been used, the
conversion is retried on return from the
on-unit. If the error has not been
corrected the program will loop. If these
pseudovariables have not been used the
ERROR condition is raised.

Result: When CONVERSION occurs, the
contents of the entire result field are
undefined.

standard System Action: In thc absence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: CONVERSION is enabled throughout
the program, except within the scope of a
condition prefix specifying NOCONVERSION.

Normal Return: Upon the normal termination
of the on-unit for this condition, control
returns to the beginning of the string and
the conversion is retried.

ENDFILE (element-file-'expr) Input/output

Description: The ENDFILE condition can be
raised during a GET or READ operation; it
is caused by an attempt to read past the
file delimiter of the file named in the GET
or READ statement. It applies only to
SEQUENTIAL INPUT, SEQUENTIAL UPDATE and
STREAM INPUT files.

In record-oriented I/O, ENDFILE is
raised whenever a file delimiter is
encountered during the execution of a READ
statement.

In stream-oriented I/O, ENDFILE is
raised during the execution of a GET
statement" if a file delimiter is
encountered either before any items in the
GET statement data list have been
transmitted or between transmission of two

of the data items. If a file delimiter is
encountered within a data item, or if it is
encountered while an X format item is being
implemented, the ERROR condition is raised.

If the file is not closed after ENDFILE
occurs, then any subsequent GET or READ
statement for that file immediately raises
the ENDFILE condition again.

If ENDFILE is raised by an input/output
statement using the EVENT option, the
interrupt does not take place until the
execution of a subsequent WAIT statement
for that event in the same procedure.

standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: The ENDFILE condition is always
enabled: it cannot be disabled.

Normal Return: Upon the normal termination
of the on-unit for the condition, execution
continues with the statement immediately
following the GET or READ statement that
caused the ENDFILE (or, if ENDFILE was
raised by a READ with the EVENT option,
control passes back to the WAIT statement
from which the on-unit was invoked).

Note: If a file is closed in an on-unit
for this condition, the results of normal
return are undefined. Exit from such an
on-unit should be by means of a GO TO
statement.

ENDPAGE (element-file-expr) -Input/Output

Description: The ENDPAGE condition is
raised when a PUT statement results in an
attempt to start a new line beyond the
limit specified for the current page. This
limit can be specified by the PAGESIZE
option in an OPEN statement; if PAGESIZE
has not been specified, a default limit of
60 is applied. The attempt to exceed the
limit may be made during data transmission
(including associated format items, if the
PUT statement is edit-directed), by the
LINE option, or by th~ SKIP option.
ENDPAGE can also be raised by a LINE option
or LINE format item that specified a line
number less than the current line number.

When ENDPAGE is raised, the current line
number is one greater than that specified
by the PAGESIZE option (or 61, if the
default applies) so that it is possible to
continue writing on the same page. The On
unit may start a new page by execution of a
PAGE option or a PAGE format item, which
sets the current line to 1.

ENDPAGE is raised only once per page,
except when it is raised by the SIGNAL
statement. If the on-unit does not start a
new page, the current line number may
increase indefinitely. If a subsequent
LINE option or LINE format item specifies a
line number that is less than or equal to
the current line number, ENDPAGE is not
raised, but a new page is started with the
current line set to 1. An exception is
that if the current line number is equal to
the specified line number, and the file is
positioned on column 1 of the line, ENDPAGE
is not raised.

If ENDPAGE is raised during data
transmission, then, on return from the on
unit, the data is written on the current
line, which may have been changed by the
.on-unit. If ENDPAGE results from a LINE or
SKIP option, then, on return from the on
unit, the action specified by LINE or SKIP
is ignored.

If a SIGNAL statement is used to raise
ENDPAGE, this condition can also occur
during output of the page.

standard system Action: In the absence of
an on-unit, the system starts a new page.
If the condition is si9naled, execution is
unaffected and continues with the statement
following the SIGNAL statement.

Status: ENDPAGE is always enabled: it
cannot be disabled.

Normal Return: Upon the normal completion
of the on-unit for this condition,
execution of the PUT statement continues in
the manner described above.

system Action

Description: The ERROR condition is raised
under the following circumstances:

1. As a result of the standard system
action for an ON-condition for which
that action is to "print an error
message and raise the ERROR
condition".

2. As a result of an error (for which
there is no ON-condition) occurring
during program execution.

3. As a result of a SIGNAL ERROR
statement.

Standard system Action: This depends on
the processing mode:

Batch processing (optimizing or checkout
compiler): If the condition is raised

Section H: ON-conditions 397

in the major task, the FINISH condition
is raised and the task is terminated.
If the condition is raised in any other
task, the task is terminated.

Conversational processing (checkout
compiler only): Control is passed to
the terminal. processing that is then
initiated at the terminal takes place as
if it were in an ERROR on-unit, and
completion of this processing (other
than by a GO TO statement out of the on
unit) constitutes a return from the on
unit.

status: ERROR is always enabled; it cannot
be disabled.

Normal Return: With certain exceptions,
this depends on the processing mode:

Batch processing (optimizing or checkout
compiler): The standard system action
for batch processing mode is taken.

Conversational processing (checkout
compiler only): The FINISH condition is
raised.

The exceptional cases occur under the
checkout compiler when a SIGNAL ERROR
statement is executed in place of a
statement in which the compiler has found
an error. In these cases, normal return is
to the statement following the one in which
ERROR was signaled. The cases are
characterized by an oncode of 3.

FINISH system Action

Description: The FINISH condition is
raised during execution of a statement
which would cause the termination of the
major task of a PL/I program, that is, by a
STOP statement in any task, or an EXIT
statement in the major task, or a RETURN or
END statement in the initial procedure of
the major task. The condition is also
raised by SIGNAL FINISH in any task, and as
part of the standard system action for the
ERROR condition. The interrupt occurs in
the task in which the statement is
executed, and anyon-unit specified for the
condition is executed as part of that task.
An abnormal return from the on-unit will
avoid any subsequent task termination
processes and permit the interrupted task
to continue.

standard system Action: This depends on
the processing mode:

Batch processing (optimizing or checkout
compiler): No action is taken; that is,
proceSSing is continued from the point

398 OS PL/I CKT AND OPT LRM PART II

at which the condition was raised.

Conversational processing (checkout
compiler only): Control is passed to
the terminal. processing that is then
initiat.c:d at the terminal takes place as
if it were in a FINISH on-unit, and
completion of that processing (other
than by a GO TO statement out of the on
unit) constitutes a normal return from
the on-unit.

Status: FINISH is always enabled: it
cannot be disabled.

Normal Return: Upon the normal completion
of the on-unit, execution of the
interrupted statement is resumed.

FIXEDOVERFLOW Computational

Abbreviation: FOFL

Description: The FIXEDOVERFLOW condition
occurs when the length of the result of a
fixed-point arithmetic operation exceeds
the maximum length allowed by the
implementation. This maximum is 15 for
decimal fixed-point values and 31 for
binary fixed-point values.

Result: The result of the invalid fixed
point operation is undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: FIXEDOVERFLOW is enabled
throughout the program, except within the
scope of a condition prefix that specifies
NOFIXEDOVERFLOW.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the pOint of interrupt.

Note: If the SIZE condition is disabled,
an attempt to assign an oversize number to
a fixed decimal variable may raise the
FIXEDOVERFLOW condition.

KEY (element-file-expr) Input/Output

Description: The KEY condition can be
raised only during operations on keyed
records. It is raised in any of the
following cases:

1. The keyed record cannot be found.

2. An attempt is made to add a duplicate
key.

3. The key is out of saquence.

4. An error occurred in the conversion of
the key.

5. The key has a null string or begins
with the dummy record string (8)'1'B;
or, for a VSAM ESDS, the key is not a
valid relative byte address

6. No space is available to add the keyed
record.

1. The key is outside the data set limits
(regional data sets only).

8. The key of a record to be added lies
outside the range(s) specified for the
data set. (This case applies only to
VSAM key-sequenced data sets.)

Note: When a LOCATE statement is used
for a VSAM key-sequenced data set, the
KEY condition for this LOCATE
statement is not raised until
transmission of the record is
attempted; that is, at the next WRITE
or LOCATE statement for the file, or
when the file is closed.

If KEY is raised by an input/output
statement using the EVENT option, the
interrupt does not occur until the
execution of a subsequent WAIT statement
for that event in the same procedure.

When a LOCATE statement is used for a
REGIONAL(3) data set with V-format or U
format records, and there is not enough
room in the specified region, the KEY
condition is not raised until transmission
of the record is attempted. Neither the
record that causes the condition to be
raised nor the current record is
transmitted.

standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: KEY is always enabled; it cannot
be disabled.

Normal Return: Upon the normal completion
of the on-unit for this condition, control
passes to the statement immediately
following the statement that caused KEY to
be raised (or, if KEY was raised by an
input/output statement with the EVENT
option, control passes back to the WAIT
statement from which the on-unit was
invoked) •

Note: If a file is closed in an on-unit
for this condition, the results of normal

return are undefined. Exit from such an
on-unit should be by means of a GO TO
statement.

NAME (element-file-expr) Input/Output

Description: The NAME condition can be
raised only during a data-directed GET
statement with the FILE option. It is
raised in any of the to1lowing situations
where an unrecognizable element variable
appears in the stream:

1. There is an invalid character in thc
variable:

A non-blank delimiter (comma,
semicolon, or end-of-file mark) on
left hand side of equals sign.

A non-blank character between the
right parenthesis and the equal sign

A subscript character is not a digit

2. There is an invalid blank in the
variable:

3.

Within the name or a subscript value.
(Note: Blanks are permitted on either
side of the period in a qualified
name, or between a sign and a digit in
a subscript)

The name is missing or invalid:

No counterpart in the data list

If there is no data list, the name is
not known in the block

Qualified name is not fully qualified

More than 256 characters for a fully
qualified name

The name is iSUB-defined

4. A subscript list is missing or
invalid:

A subscript is missing

Incorrect number of subscripts

More than five digits in a subscript
(leading zeros ignored)

A subscript is beyond the permitted
range

The programmer may retrieve the
incorrect data field by using the built-in
fUnction DATAFIELD in the on-unit.

Section H: ON-conditions 399

standard system Action: In the absence of
an o~-unit, the system ignores the
incorrect data field, prints a message, and
continues the execution of the GET
statement.

status: NAME is always enabled; it cannot
be disabled.

Normal Return: Upon the normal completion
of the on-unit for this condition, the
execution of the GET statement continues
with the next identifier in the stream.

OVERFLOW computational

Abbreviation: OFL

Description: The OVERFLOW condition occurs
when the magnitude of a floating-point
number exceeds the permitted maximum. The
magnitude of a floating-point number or
intermediate result must not be greater
than approximately 1075 or 2252.

Result: The value of such an invalid
floating-point number is undefined.

standard system Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: OVERFLOW is enabled throughout the
program, except within the scope of a
condition prefix specifying NOOVERFLOW.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

PENDING (element-file-expr) Input/Output

Description: Except when signaled, the
PENDING condition can be raised only during
execution of a READ statement for a
TRANSIENT INPUT file. It is raised when an
attempt is made to read a record that is
temporarily unavailable (i.e., when the
message queue associated with the file
contains no messages at the time the READ
statement is executed).

Standard System Action: In the absence of
an on-unit, the action is as described for
normal return.

status: PENDING is always enabled; it
cannot be disabled.

Normal Return: Upon the normal completion
of the on-unit for this condition, control

400 OS PL/I CKT AND OPT LRM PART II

returns to the point of interrupt (unless
the condition was Signaled), where
execution is suspended until an appropriate
record becomes available. If the condition
was Signaled, execution continues with the
statement immediately following the SIGNAL
statement that caused the interrupt.

Note: The value of the ONKEY Duilt-in
fUnCtion when the PENDING condition is
raised is a null string.

RECORD (element-file-expr) Input/Output

Description: The RECORD condition can be
raised only during a READ, WRITE, LOCATE,
or REWRITE operation. It is raised by any
of the following:

1. When the record length specified for a
file with fixed-length records is
smaller than the variable in a READ
INTO statement; the remainder of the
variable is undefined. If the
variable is a varying-length string,
RECORD is not raised if the
SCALARVARYING option is applied to the
file.

2. When the record is larger than the
variable in a READ INTO statement; the
remainder of the record is lost.

3. When the maximum record length is
smaller than the variable in a WRITE,
REWRITE, or LOCATE statement. For
WRITE or REWRITE, the remainder of the
variable is lost; for LOCATE, the
variable is not transmitted.

4. When the record length specified for a
file with fixed-length records is
larger than the variable in a WRITE,
REWRITE, or LOCATE statement; the
remainder of the record is undefined.
If the variable is a varying-length
string, RECORD is not raised if the
SCALARVARYING option is applied to the
file.

5. When the variable in a WRITE or
REWRITE statement indicates a zero
length; no transmission occurs. If
the variable is a varying-length
string, RECORD is not raised if the
SCALARVARYING option is applied to the
file.

6. When the variable in a WRITE or
REWRITE statement is too short to
contain the data set embedded key; no
transmission occurs. (This case
currently applies only to VSAM key
sequenced data sets.)

If the SCALARVARYING option is applied
to the file (it must be applied to a file
using locate mode to transmit varying
length strings), a 2-byte length prefix is
transmitted with an element varying-length
string. The length prefix is not reset if
the RECORD condition is raised. If the
SCALARVARYING option is not applied to the
file, the length prefix is not transmitted:
on input, the current length of a varying
length string is set to the shorter of the
record length and the maximum length of the
string.

If RECORD is raised by an input/output
statement using the EVENT option, the
interrupt does not occur until the
execution of a subsequent WAIT statement
for that event in the same proc~dure.

The RECORD condition is not raised for
undefined-length records read from:

A CONSECUTIVE data set to a SEQUENTIAL
UNBUFFERED file

A REGIONAL(3) data set to a DIRECT file

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: RECORD is always enabled; it
cannot be disabled.

Normal Return: Upon normal completion of
the on-unit, execution continues with the
statement immediately following the one for
which RECORD occurred (or if RECORD was
raised by an input/output statement with an
EVENT option, control returns to the WAIT
statement from which the on-unit was
invoked) •

Note: If a file is closed'in an on-unit
for this condition, the results of normal
return are undefined. Exit from such an
on-unit should be by means of a GO TO
statement.

Computational

Description: The SIZE condition occurs
only when high-order (i.e., leftmost)
significant binary or decimal digits are
lost in an assignment to a variable or an
intermediate result or in an input/output
operation. This loss may result from a
conversion involving different data types,
different bases, different scales, or
different precisions.

The SIZE condition differs from the
FlXEDOVERFLOW condition in that, whereas
FIXEDOVERFLOW occurs when the size of a

calculated fixed-point value exceeds the
maximum allowed by the implementation (see
the description of the FIXEDOVERFLOW
condition), SIZE occurs when the size of
the value being assigned to a data item
exceeds the declared (or default) size of
the data item. SIZE can be raised on
assignment of a value regardless of whether
or not FlXEDOVERFLOW was raised in the
calculation of that value.

The declared size is not necessarily the
actual precision with which the item is
held in storage; however, the limit for
SIZE is the declared or default size, not
the actual size in storage. For example, a
fixed binary item of precision (20) will
occupy a full word in storage, but SIZE is
raised if a value whose size exceeds FIXED
BINARY(20) is assigned to it.

Result: The contents of the data item
receiving the wrong-sized value are
undefined.

standard system Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: SIZE is disabled within the scope
of a NOSIZE condition prefix and elsewhere
throughout the program, except within the
scope of a condition prefix specifying
SIZE. Under the checkout compiler, the
standard system action takes place for SIZE
under the circumstances given under
-Description" above, even when the
condition is disabled; no on-unit for this
condition can be entered, however, while it
is disabled.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

STRINGRANGE Program-Checkout

Abbreviation: STRG

Definition: The STRINGRANGE condition is
raised whenever the lengths of the
arguments to a SUBSTR reference fail to
comply with the rules described for the
SUBSTR built-in function. It is raised for
each such reference.

Standard System Action: A message is
printed and processing continues as
described for normal return.

status: STRINGRANGE is disabled by default
and within the scope of a NOSTRINGRANGE
condition prefix. It is enabled only
within the scope of a STRINGRANGE condition

Section H: ON-conditions 401

prefix. Under the checkout compiler, the
standard system action takes place for
STRINGRANGE under the circumstances given
under "Definition" above, even when the
condition is disabled; no on-unit for this
condition can be entered, however, while it
is disabled.

Normal Return: On normal return from the
on-unit, execution continues with a revised
SUBSTR reference whose value is defined as
follows:

Assuming that the length of the source
string (after execution of the on-unit, if
specified) is k, the starting point is i,
and the length of the substring is j;

1. If i is greater than k the value is
the null string.

2. If i is less than or equal to k, the
value is that substring beginning at
the ~h character or bit of the source
string and extending g characters or
bits, where ~ and ~ are defined by:

m=MAX(i,l)

n=MAX(O,MIN(j+MIN(i,l)-l,k-m+l»
lif j is specified]

n=k-m+l
[if j is not specified]

This means that the new arguments are
forced within the limits.

The values of i and j are established
bef'ore entry to the on-unit; they are not
reevaluated on return from the on-unit.

The value of k may change in the on-unit
if the first argument of SUBSTR is a
varying-length string. The value !l is
computed on return from the on-unit using
any new value of k.

STRINGSIZE program-Checkout

Abbreviation: STRZ

Definition: The STRINGSIZE condition is
raised when a string is about to be
assigned to a shorter string.

Result: After the interrupt, the truncated
string is assigned to its target string.
The right hand characters or bits of the
source string are truncated so that the
target string can accomodate the source
string.

standard System Action: A message is
printed and processing continues.

402 OS PL/I CKT AND OPT LRM PART II

status: STRINGSIZE is disabled by default
and within the scope of a NOSTRINGSIZE
condition prefix. It is enabled only
within the range of a STRINGSIZE condition
prefix.

Normal Return: On normal return from the
on-unit, execution continues from the point
of interruption.

SUBSCRIPTRANGE Program-checkout

Abbreviation: SUBRG

Description: SUBSCRIPTRANGE can be raised
whenever a subscript is evaluated and found
to lie outside its specified bounds. The
condition is also raised when an iSUB
subscript is outside the range given in the
declaration of the iSUB defined array. The
order of raising SUBSCRIPTRANGE relative to
evaluation ot other subscripts is
undefined.

Result: When SUBSCRIPTRANGE has been
raised, the value of the illegal subscript
is undefined, and, hence, the reference is
also undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: SUBSCRIPTRANGE is disabled by
default and within the scope of a
NOSUBSCRIPTRANGE condition prefix. It is
enabled only within the scope of a
SUBSCRIPTRANGE condition prefix. Under the
checkout compiler, the standard system
action takes place for SUBSCRIPTRANGE under
the circumstances given under "Description"
above, even when the condition is disabled;
no on-unit for this condition can be
entered, however, while it is disabled.

Normal Return: Normal return from a
SUBSCRIPTRANGE on-unit raises the ERROR
condition.

TRANSMIT (element-file-expr) Input/Output

Description: The TRANSMIT condition can be
raised during any input/output operation.
It is raised by a permanent transmission
error and therefore signifies that any data
transmitted is potentially incorrect.

During input, TRANSMIT is raised after
assignment of the potentially incorrect
record. If records are blocked, TRANSMIT
is raised for each subsequent record in the
block. During output, TRANSMIT is raised

after transmission of the potentially
incorrect data item has been attempted.

If records are blocked, transmission
will occur when the block is complete,
rather than after each I/O statement

When a spanned record is being updated,
the TRANSMIT condition is raised on the
last segment of a record only. It is not
raised for any subsequent records in the
same block, although the integrity of these
records cannot be assumed.

If TRANSMIT is raised by an input/output
statement using the EVENT option, the
interrupt does not take place until the
execution of a subsequent WAIT statement
for that event in the same procedure.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: TRANSMIT is always enabled; it
cannot be disabled.

Normal Return: Upon the normal completion
of the on-unit, processing continues as
though no error had occurred, allowing
another condition (e.g., RECORD) to be
raised by the statement or data item that
raised the TRANSMIT condition. (If
TRANSMIT is raised by an input/output
statement with an EVENT option, control
returns to the WAIT statement from which
the on-unit was invoked.)

Note: If a file is closed in an on-unit
for this condition, the results of normal
return are undefined. Exit from such an
on-unit should be by means of a GO TO
statement

UNDEFINEDFILE (element-file-expr)
Input/Output

Abbreviation: UNDF(element-file-expr)

Description: The UNDEFINEDFILE condition
is raised whenever an attempt to open a
file is unsuccessful. If the attempt is
made by means of an OPEN statement that
specifies more than one file name, then the
condition is raised as follows:

Checkout compiler: After an attempt
to open each file

Optimizing compiler: After attempts
to open all the other files specified
in the statement

If the condition is raised for more than
one file in the same OPEN statement, on
units will be executed according to the

order of appearance (taken from left to
right) of the file names in that OPEN
statement.

If the condition is raised by an
implicit file opening in an input/output
statement without the EVENT option, then,
upon normal return from the on-unit,
processing continues with the remainder of
the interrupted input/output statement. If
the file was not opened in the on-unit,
then the statement cannot be continued and
the ERROR condition is raised.

If the condition is raised by an
implicit file opening in an input/output
statement having an EVENT option, then the
interrupt occurs before the event variable
is initialized. In other wordS, the event
variable retains its previous value and
remains inactive. On normal return from
the on-unit, the event variable is
initialized, that is, it is made active and
its completion value is set to loeB
(provided the file has been opened in the
on-unit). Processing then continues with
the remainder of the interrupted statement.
However, if the file has not been opened in
the on-unit, the event variable remains
uninitialized, the statement cannot be
continued, and the ERROR condition is
raised.

Some cases for which the UNDEFINEDFILE
condition is raised are as follows:

1. A conflict in attributes exists.

2. The blocksize has not been specified.

3. There is no recognizable DD statement
for the file.

4. The TOTAL option of the environment
attribute has been specified and
either attributes have been added on
an OPEN statement or attributes
implied by an I/O statement conflict
with default attributes.

Standard System Action: In the abe ence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: UNDEFINEDFILE is always enabled;
it cannot be disabled.

Normal Return: Upon the normal completion
of the final on-unit, control is given to
the statement immediately following the
statement that caused the condition to be
raised (see -Description- for action in the
case of an implicit opening).

Section H: ON-conditions 403

UNDERFLOW Computational

Abbreviation: UFL

Description: The UNDERFLOW condition
occurs when the magnitud.e. of a floating
point number is smaller than the permitted
minimum. (For System/360 and System/370
implementations, the magnitude of a non
zero floating-point value may not be less
than approximately 10-78 or 2- 26°.)

UNDERFLOW does not occur when equal
numbers are subtracted (often called
significance error).

Note that the expression X**(-Y) (where
Y>O) can be evaluated by taking the
reciprocal of X**Y; hence, the OVERFLOW
condition may be raised instead of the
UNDERFLOW condition.

Result: The invalid floating-point value
is set to o.

standard System Action: In the absence of
an on-unit, the system prints a message and
continues execution from the point at which
the interrupt occurred.

status: UNDERFLOW is enabled thrOughout
the program, except within the scope of a
condition prefix specifying NOUNDERFLOW.

Normal Return: Upon normal termination of

404 OS PL/I CKT AND OPr LRM PART II

the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

ZERODIVIDE Computational

Abbreviation: ZDIV

Description: The ZERODIVIDE condition
occurs when an attempt is made to divide by
zero. This condition is raised for fixed
pOint and f1oating-point division. The
optimizing compiler may also raise this
condition, instead of FIXEDOVERFLOW, when
the result of a conversion from decimal to
binary exceeds the maximum length a1lowed
by the implementation, that is, 31.

Result: The result of a division by zero
is undefined.

standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: ZERODIVIDE is enabled throughout
the program, except within the scope of a
condition prefix specifying NOZERODIVIDE.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the pOint of interrupt.

This section gives detailed descriptions of
all attributes in alphabetical order.
Alternative attributes are discussed
together.

Figure 1.1 has been compiled from the
individual rules for attributes and is
intended to serve as a quick reference to
the following:

1. The classification of attributes
according to data type.

2. The valid combinations of attributes
that may be applied to a data item.
For a variable, attributes must be
selected from the columns Data
Attributes, Scope Attributes, Storage
Attributes, and Alignment Attributes.
For the types of constants shown in
the table, attributes must be selected
from columns Data Attributes and Scope
Attributes. Note that a complete set
of attributes for a data item may be
obtained by explicit or contextual
declaration and programmer-defined or
standard defaults.

3. Those attributes that conflict.
Attributes shown as applying to one
data type conflict with those of any
other data type, except for those
attributes shown as applying to both
types. Alternative attributes within
a data type, e.g., BIT and CHARACTER,
are conflicting.

The following example illustrates the
function of the figure:

DECLARE ST BIT(10);

Given the above declaration, the standard
default attributes, AUTOMATIC, INTERNAL,
and UNALIGNED will be applied to the name
ST.

Figure 1.2 is an expansion of the entry
for file constants in figure 1.1, to
include the relationships between file
attributes and options of the ENVIRONMENT
attribute for the different data set
organizations. The figure also shows the
attribute implications of each file
attribute.

ALIGNED and UNALIGNED

Abbreviation: UNAL for UNALIGNED

Section I: Attributes

The ALXGNED and UNALIGNED attributes
.specify the pOSitioning of data elements in
storage, to influence speed of access or
storage economy respectively. They may be
specified for element, array, or structure
variables.

ALIGNED specifies that the data element
is to be aligned on the storage boundary
corresponding to its data type requirement.

UNALIGNED specifies that a bit string is
to be mapped on the next available bit
bo~ndary, and that a halfword, a word, or
doubleword item is to be mapped on the next
available byte boundary.

General format:

ALIGNED I UNALIGNED

General rules:

1. Although they are essentially element
data attributes, ALIGNED and UNALIGNED
can be applied to any array or
structure. This is equivalent to
applying the attribute to all
contained elements that are not
explicitly declared with the ALIGNED
or UNALIGNED attribute.

2. Application of either attribute to a
contained array or structure overrides
an ALXGNED or UNALIGNED attribute that
otherwise would apply to elements of
the contained aggregate by having been
specified for the containing
structure.

3. The LIKE attribute is expanded before
the ALIGNED and UNALIGNED attributes
are applied to the contained elements
of the LIKE structure variable. The
only ALIGNED and UNALIGNED attributes
that are carried over from the LIKE
structure variable are those
explicitly specified for substructures
and elements of the structure
variable.

4. For overlay defining involving bit
and character-class data, both the
defined item and the overlaid part of
the base item must be UNALIGNED. For
all other types of defining,
equivalent i~ems must be either both
ALIGNED or both UNALIGNED.

5. The ALIGNED and UNALIGNED attributes
of an argument actually passed must
match the attributes of the

Section X: Attributes 405

DATA TYPE DATA ATTRIBUTES SCOPE ATTRIBUTES STORAGE ATTRIBUTES ALIGNMENT
ATTRIBUTES

Arithmetic REAL I COMPLEX
variable 1 FLOAT I FIXED {ALIGNED}

BINARY I DECIMAL {UNALIGNED}
(precision)

String BIT I CHARACTER
variable [(length)] {INTERNAL}

[VARYING] {EXTERNAL} {ALIGNED }
Storage Class: {UNALIGNED}

Picture {PICTURE } AUTOMATIC
variable {~ICOMPLEX PICTURE} INTERNAL is STATIC

standard default BASED
Label LABEL and mandatory CONTROLLED
variable for:

AUTOMATIC, AUTOMATIC is standard
File FILE [VARIABLE] BASED, default for INTERNAL.
variable DEFINED, STATIC is standard

parameter default for EXTERNAL.
Entry ENTRY {ALIGNED }
variable2 and standard [INITIAL] {UNALIGNED}

[RETURNS] [OPTIONS] default for:
[VARIABLE] CONTROLLED, Defined:

STATIC DEFINED
Locator POINTER I {OFFSET[(area- [POSITION]
variable variable)]}

Simple Parameter:
Area AREA[(Size)] parameter
variable [CONNECTED]

Event EVENT Controlled Parameter: ALIGNED
variable parameter

CONTROLLED
Task TASK [INITIAL]
variable

File FILE ENVIRONMENT
constant3 STREAM I RECORD Aggregate Variables

INPUT I OUTPUT I UPDATE
SEQUENTIAL I DIRECT I {INTERNAL} Arrays.: (dimension) may be added to the
TRANSIENT {EXTERNAL} declaration of any variable.
BUFFERED I UNBUFFERED
KEYED BACKWARDS
PRINT EXCLUSIVE Structures: the attributes that may be

speCified for a name in a structure
Entry (as for entry variables, depend upon the level at which the
constant but excluding VARIABLE) EXTERNAL name is declared:

Built-in BUILTIN 1. For a major structure name, exclude
entry data typel the LIKE attribute may
constant be specified.

INTERNAL
Generic GENERIC 2. For a minor structure name, exclude
entry data type~ scope, and storaCJe1 the
constant LIKE attribute may be specified.

Condition CONDITION {INTERNAL} 3. For a base element name, exclude
constant {EXTERNAL} scope and storaCJe.

Standard default attributes are underlined.

1 Identifiers that are implicitly declared (or explicitly declared with only scope, storage,
or aliqnment) are assumed to be arithmetic variables. If the initial letter of the
identifier is I through N, FIXED BINARY (15,0) are standard defaultsl all others are
FLOA~ DECIMAL (6). If BINARY, DECIMAL, REAL, or COMPLEX are specified, FLOAT is standard
default; otherwise if precision is specified with a scale factor, FIXED is standard
default.

2 ENTRY is implied by IRREDUCIBLE, REDUCIBLE, RETURNS, or OPTIONS. An entry constant may
have the parameter attribute.

3 File attributes, and their relationship to options of the ENVIRONMENT attribute, are
deacribed in Figure 1.2. A file conataat .. y ha .. the par ... ter attribute.

Figure 1.1. Classification of attributes according to data types

406 OS PL/I CKT AND OPT LRM PART II

RECORD

Types of File SEQUENTIAL DIRECT

BUF UNBUF

C T C
0 e 0
N 1 N
S R e S R R
E I E P E E I E

Applicable S C N G r C G N G
Attributes and T U D I 0 U I D I
Options R T E 0 c T 0 E 0

E I X N , I N X N
A V E A n V A E A
M E D L g E L D L

F FILE I I I I I I I I I
I STREAM D - - - - - - - -
L RECORD - I I I I I I I I
E INPUT D D D D D D D D D

OUTPUT 0 0 0 0 0 0 0 0 0
A UPDATE - 0 0 0 - 0 0 0 0
T SEQUENTIAL - D D D - D D - -
T DIRECT - - - - - - - S S
R BUFFERED - D D D I - - - -
I UNBUFFERED - - - - - S S D D
B PRINT 0 - - - - - - - -
U BACKWARDS - 0 - - - 0 - - -
T KEYED - - 0 0 I -. 0 I I
E TRANSIENT - - - - I - - - -

EXCLUSIVE - - - - - - - 0 0
ENVIRONMENT I I S S S I S S S

0 FIFBIFSIFBSIVI I S - - - S - - -
P VBIVSIVBSIU
T FIFBIDIDBlu S S - - - - - - -
I FIVIVSIU - - - S - - S - S
0 FIFBIVIVB - - S - - - - S -
N RECSIZE(n) I I I I I I I I I
S BLKSIZE(n) I I I I - I I I I

ASCII 0 0 - - - - - - -
0 BUFOFF(n) 0 0 - - - - - - -
F CTLASAICTL360 - 0 - - - 0 - - -

SCALARVARYING - 0 0 0 - 0 0 0 0
E LEAVE 0 0 - - - 0 - - -
N REREAD 0 0 - - - 0 - - -
V COBOL - 0 0 0 - 0 0 0 0
I BUFFERS(n) I I I I I - - - -
R CONSECUTIVE - D - - - D - - -
0 INDEXED - - S - - - - S -
N REGIONAL - - - S - - S - S
M ({11213})
E TP ({MI R}) - - - - S - - - -
N KEYLENGTH(n) - - S S - - S S S
T KEYLOC(n) - - 0 - - - - 0 -

NCP(n) - 0 0 0 - 0 0 0 0
TRKOFL - 0 - 0 - 0 0 - 0
INDEXAREA(n) - - - - - - - 0 -
ADDBUFF(n) - - - - - - - 0 -
NOWRITE - - - - - - - 0 -
GENKEY - - 0 - - - - 0 -
TOTAL 0 0 0 0 0 0 0 0 0

Additional Notes:

1. UPDATE is invalid for tape files.

2. BACKWARDS is valid only for tape files.

3. KEYED is required for INDEXED and REGIONAL output.

4. File declarations for VSAM data sets are discussed
in chapter 12, "Record-Oriented Transmission."

~:

I attribute or option must be
specified or implied.

D default attribute or option.
0 optional attribute or option:

specified only if required.
S attribute or option must be

specified.
- invalid attribute or option.

The term "specified" includes the
appearance of an option in the
ENVIRON~~F.NT attribute or in the
DCP subparameter of the DD card.

Attrihutes Implied

FILE
FILE
FILE
FILE
FILE RECORD
FILE RFCORD
FILE RECORD KEYED
FILE RECORD
FILE RECORD
FILE STREM1 OUTPUT
FILE RECORD SEOUENTIAL INPtlT
FILE RECORD
FILE
FILE RECORD
FILE

VS and VBS are invalid with STRE1\M
ASCII data sets only
Only F for REGIONAl, (1) and (2)
vs invalid with mmUF

{ One or both must be specified for
CONSECUTIVE, INDEXED, and RFGIONAL fi lese

} invalid for ~SCII data sets.

for REGIONAL (2) ann (3) OUTPUT only

invalid for REGIONAL (3)

UPDATE files only.
INPUT or UPDATE files only; KEYED
is required.

Figure 1.2. File declarations (files associated with non-VSAM data sets)

Section I: Attributes 407

corresponding parameter. If these
attributes of the original argument do
not match those of the corresponding
parameter, a dummy argument is
created.

6. If abased variable is used to refer
to a generation of another variable,
the ALIGNED and UNALIGNED attributes
of both variables must agree.

1. The alignment of string data depends
not only on the use of ALIGNED or
UNALIGNED, but also on whether the
strings are fixed-length or varying
length. A summary of string alignment
is included in figures K.1 and K.2.

8. TASK r EVENT r and AREA cannot be
unaligned.

9. If an unaligned fixed-length bit
string is used as the argument of the
ADDR function, or appears as the first
element of a based structure which is
used in a LOCATE or ALLOCATE
statement, the locator value returned
may not address the bit string at the
first bit position.

Assumptions:

1. Defaults are applied at element level.
The default for bit-string data,
character-string data, and numeric
character data is UNALIGNED; for all
other types of data, the default is
ALIGNED.

2. For all operators and user-defined and
built-in functions, the default for
ALIGNED or UNALIGNED is applicable to
the elements of the result.

3. Constants take the default for ALIGNED
or UNALIGNED.

The AREA attribute defines storage that, on
allocation, is to be reserved for the
allocation of based variables. storage
thus reserved can be allocated to and freed
from based variables by naming the area
variable in the IN option of the ALLOCATE
and FREE statements. Storage that has been
freed can be subsequently reallocated to a
based variable.

General format:

AREA [(size)]

General rules:

408 OS PL/I CKT AND OPT LRM PART II

1. The area size for areas that are not
of static storage class is given by an
expression whose integral value
specifies the number of bytes to be
reserved.

2. The size for areas of static storage
class must be specified as a decimal
integer constant. The theoretical
maximum size permitted is 16,111,200
bytes; in practice the maximum depends
on the amount of main storage
available to the program.

3. An asterisk may be used to specify the
size if the area variable being
declared is controlled or is a
parameter. In the case of a
controlled area variable that is
declared with an asterisk, the size
must be specified in the ALLOCATE
statement used to allocate the area.
In the case of a parameter that is
declared with an asterisk, the size is
inherited from the argument.

4. Data of the area type cannot be
converted to any other type; an area
can be assigned to an area variable
only.

5. No operators can be applied to area
variables.

6. An area variable cannot be unaligned.

1. If an area has the BASED attribute,
the size attribute must be a decimal
integer constant unless the area is a
member of a based structure and the
REFER option is used (see chapter 8,
·storage Control").

8. For RECORD input/output, only the
extent (rather than the declared size)
and control information of an area is
transmitted (except when the area is
in a structure and is not the last
item in it - then, the declared size
is transmitted).

Assumptions:

1. If the size specification is omitted,
a default value is assumed. For this
implementation, it is 1000.

2. An area variable can be contextually
declared by its appearance in an
OFFSET attribute or an IN option.

AUTOMATIC, STATIC, CONTROLLED and BASED

Abbreviations: AUTO for AUTOMATIC
CTL for CONTROLLED

The storage class attributes are used to
specify the type of storage allocation to
be used for data variables.

AUTOMATIC specifies that storage is to
be allocated upon each entry to the block
to which the storage declaration is
internal. The storage is released upon
exit from the block. If the block is a
procedure that is invoked recursively, the
previously allocated storage is "pushed
down" upon entry; the latest allocation of
storage is "popped up" upon termination of
each generation of the recursive procedure
(for a discussion of push-down and pop-up
stacking, see chapter 6, "Program
Organization").

STATIC specifies that storage is to be
allocated when the program is loaded and is
not to be released until program execution
has been completed.

CONTROLLED specifies that full control
will be maintained by the programmer over
the allocation and freeing of storage by
means of the ALLOCATE and FREE statements.
Multiple allocations of the same controlled
variable, without intervening freeing, will
cause stacking of generations of the
variable.

BASED, like CONTROLLED, specifies that
full control over storage allocation and
freeing will be maintained by the
programmer, but by various methods that are
described in chapter 8, "Storage Control"
multiple allocations are not stacked but
are available at any time; each can be
identified by the value of a pOinter
variable.

General format:

STATIC I AUTOMATIC I CONTROLLED I
BASED[(e1ement-locator-expression)]

General rules:

1. Automatic and based variables can have
internal scope only. Static and
controlled variables may have either
internal or external scope.

2. Storage class attributes cannot be
specified for entry constants, file
constants, members of structures, or
DEFINED data items.

3. Parameters can be declared explicitly
with the storage class attribute
CONTROLLED, but not STATIC, BASED, or
AUTOMATIC.

4. Variables declared with adjustable
lengths and dimensions cannot have the
STATIC attribute.

5. For a structure variable, a storage
class attribute can be given only for
the major structure name. The
attribute then applies to all elements
of the structure or to the entire
array of structures. If the attribute
CONTROLLED or BASED is given to a
structure, only the major structure
and not the elements can be allocated
and freed.

6. The following rules govern the use of
based variables:

a. Whenever a locator value is needed
to complete a based variable
reference, and none is explicitly
specified, the value of the
locator expression in the relevant
BASED attribute is used. It is an
error if no locator has been
declared.

b. When reference is made to a based
variable, the data attributes
assumed are those of the based
variable, while the qualifying
pOinter variable identifies the
location of data.

c. A based variable can be used ~o
identify and describe existing
data; to obtain storage by means
of the ALLOCATE statement; or to
obtain storage in an output buffer
by means of the LOCATE statement.

d. The relative locations of based
variables allocated within an area
can be identified by the values of
offset variables.

e. The EXTERNAL attribute cannot
appear with a based variable
declaration, but a based variable
reference can be qualified by an
external pointer variable.

f. A based structure can be declared
to contain adjustable area-sizes,
array-bounds, and string-length
specifications, by using the REFER
option. See chapter 8, ·Storage
Control" •

g. References to based variables in a
CHECK prefix list or in a data
list for data directed
input/output cannot be explicitly
locator qualified.

h. A BASED VARYING string must have a
maximum length equal to the
maximum length of any string upon
which it is defined. For example:

DECLARE A CHAR(SO) VARYING
BASED(Q) ,

Section I: Attributes 409

B CHAR(50) VARYING;
Q=ADDR(B) ;

i. The INITIAL attribute may be
specified for a based variable.
The values are used only upon
explicit allocation of the based
variable with an ALLOCATE or
LOCATE statement.

If both the REFER option and the
INITIAL attribute are used for the
same member, initialization is
done after the object of the REFER
has been assigned its value.

Assumptions:

1. Default storage class is AUTOMATIC for
internal variables and STATIC for
external variables.

2. A pointer variable can be contextually
declared by its appearance:

in the BASED attribute

in the SET option of a LOCATE,
ALLOCATE, or READ statement

as a locator qualifier.

BACKWARDS

The BACKWARDS attribute specifies that the
records of a SEQUENTIAL INPUT file
associated with a data set on magnetic tape
are to be accessed in reverse order, i.e.,
from the last record to the first record.

General format:

BACKWARDS

General rules:

1. The BACKWARDS attribute applies to
RECORD files only: that is, it
conflicts with the STREAM attribute.
It implies RECORD and SEQUENTIAL.

2. The BACKWARDS attribute applies to
magnetic tape files only.

See AUTOMATIC.

410 OS PL/I CKT AND OPT LRM PART II

BINARY and DECIMAL

Abbreviations: BIN for BINARY
DEC for DECIMAL

The BINARY and DECIMAL attributes
specify the base of the data items
represented by an arithmetic variable as
either binary or decimal.

General format:

BINARY I DECIMAL

General rule:

The BINARY or DECIMAL attribute cannot
be specified with the PICTURE attribute.

Assumptions:

Undeclared identifiers (or identifiers
declared only with one or more of the
dimensions, UNALIGNED, ALIGNED, scope, and
storage class attributes) are assumed to be
arithmetic variables with aSSigned
attributes depending upon the initial
letter. For identifiers beginning with any
letter I through N, the standard default
attributes are REAL FIXED BINARY (15,0).
For identifiers beginning with any other
alphabetic character, the standard default
attributes are REAL FLOAT DECIMAL (6). If
FIXED or FLOAT and/or REAL or COMPLEX are
declared, then DECIMAL is assumed.

BIT, CHARACTER, and VARYING

Abbreviations: CHAR for CHARACTER
VAR for VARYING

The BIT and CHARACTER attributes are used
to specify string variables. The BIT
attribute specifies a bit string. The
CHARACTER attribute specifies a character
string.

General format:

lBIT

CHARACTER
(length)] [VARYING]

General rules:

1. The length attribute specifies the
length of a fixed-length string or the
maximum length of a varying-length
string. If it is not specified, a
length of one is assumed. For a bit
string the length is specified in
bits, and for a character string, in
bytes.

2. The VARYING attribute specifies that
the variable is to represent varying
length strings, in which case length
specifies the maximum length. The
current length at any time is the
length of the current value. The
storage allocated for varying-length
strings is two bytes longer than the
declared maximum length. The initial
two bytes hold the string's current
length (in bytes for a character
string or bits for a bit string).

3. If present, the length attribute must
immediately follow the CHARACTER or
BIT attribute at the same factoring
level with or without intervening
blanks.

4. The length attribute may be specified
by an expression or an asterisk.

If the length specification is an
expression, it is converted to an
integer when storage is allocated for
the variable.

The asterisk notation can be used for
parameters or controlled variables.
The length can be taken from a
previous allocation or, for CONTROLLED
variables, it can be specified in a
subsequent ALLOCATE statement.

There are restrictions on the use of
asterisks and expressions in the
length specifications of the elements
of data aggregates in parameter
descriptors: expressions may be used
only for controlled parameters, and
asterisks must not be used if the
corresponding argument is such that a
dummy is created.

5. If a string has the STATIC attribute,
the length attribute must be a decimal
integer constant.

6. If a string has the BASED attribute,
the length attribute must be a decimal
integer constant unless the string is
a member of a based structure and the
REFER option is used. (See chapter 8,
-storage Control-).

7. The BIT, CHARACTER, and VARYING
attributes cannot be specified with
the PICTURE attribute.

8. The PICTURE attribute can be used
instead of CHARACTER to declare a
fixed-length character-string variable
(see the PICTURE attribute).

9. The maximum length allowed for a bit
or character-string variable is
32,767. The minimum length for any
string is zero.

BUFFERED and UNBUFFERED

Abbreviations: BUF for BUFFERED
UNBUF for UNBUFFERED

The BUFFERED attribute specifies that
during transmission to and from auxiliary
storage each record of a RECORD file must
pass through intermediate storage buffers.

The UNBUFFERED attribute specifies that
such records need not pass through buffers.
It does not, however, specify that they
must not. Hidden buffers will, in fact, be
used if INDEXED, REGIONAL(2), or
REGIONAL(3) is specified in the ENVIRONMENT
attribute or if the records are variable
length.

General format:

BUFFERED I UNBUFFERED

General rules:

1. The BUFFERED and UNBUFFERED attributes
can be specified for RECORD files
only.

2. The UNBUFFERED attribute may not be
specified for TRANSIENT files.

3. The locate-mode I/O statements LOCATE
and READ SET can be used only on
buffered files.

Assumption:

The default for SEQUENTIAL and TRANSIENT
files is BUFFERED. UNBUFFERED is assumed
for DIRECT files, un1ess BUFFERED is
specified explicitly.

BUILTIN

The BUILTIN attribute specifies that any
reference to the associated name within the
scope of the declaration is to be
interpreted as a reference to the built-in
function, a pseudovariable, or built-in
subroutine of the same name.

Genera1 format:

BUILTIN

General rules:

1. BUILTIN is used to refer to a built- in
function, a pseudovariable or a built
in subroutine in a block that is
contained in another block in which
the same identifier has been declared
to have another meaning.

Section I: Attributes 411

2. If the BUILTIN attribute is declared
for a name, the attribute INTERNAL is
implied. No other attributes may be
given to the name.

3. The BUILTIN attribute cannot be
declared for parameters. Built-in
functions without arguments should be
declared, either explicitly, with the
BUILTIN attribute, or contextually by
using a null argument list, or
implicitly using a DEFAULT statement.
A list of these built-in functions is
given in section G, "Built-in
Functions and Pseudovariables."

CHARACTER

see BIT.

COMPLEX and REAL

Abbreviation: CPLX for COMPLEX

The COMPLEX and REAL attributes are used
to specify the mode of an arithmetic
variable. REAL specifies that the data
items represented by the variable are to be
real numbers. COMPLEX specifies that the
data items represented by the variable are
to be complex numbers, that is, each data
item is a pair: the first member is a real
number and the second member an imaginary
number.

General format:

REAL I COMPLEX

General rule:

If a numeric character variable is to
represent complex values, the COMPLEX
attribute must be specified with the
PICTURE attribute. The COMPLEX attribute
is the only other arithmetic or string data
attribute that can be specified with the
PICTURE attribute.

Assumption:

The standard default is REAL.

CONDITION

Abbreviation: COND

The CONDITION attribute specifies that
the associated identifier is a condition

412 OS PL/I CRT AND OPT LRM PART II

name.

General format:

CONDITION

General rules:

1. The only other attributes that can
apply to a condition name are the
scope attributes, INTERNAL and
EXTERNAL.

2. The only statements in which a
condition name can appear are ON,
SIGNAL, REVERT, DECLARE, and DEFAULT.

Assumptions:

An identifier that appears with the
CONDITION condition in an ON, SIGNAL, or
REVERT statement is contextually declared
to be a condition name.

The default scope is EXTERNAL.

CONNECTED

Abbreviation: CONN

The CONNECTED attribute is applied only
to parameters, and specifies that the
parameter will be a reference to connected
storage only and, hence, allows the
parameter to be used as a target or source
in record-oriented I/O or as a base in
string overlay defining.

General format:

CONNECTED

General rules:

1. CONNECTED is an additive attribute of
non-controlled aggregate parameters
and may be associated only with level
one names. It may be specified in a
DECLARE statement or in a parameter
descriptor of an ENTRY attribute.

2. An argument passed to a CONNECTED
parameter must be a reference to
connected storage. If not, a dummy
argument is created in connect ed
storage.

CONTROLLED

See AUTOMATIC.

DECIMAL

see BINARY.

DEFINED

Abbreviation: DEF

The DEFINED attribute specifies that the
variable being declared is to be associated
with some or all of the storage associated
with the designated base variable.

General format:

DEFINED{base-variablel (base-variable)}
[POSITION(element-expression)]}

The "base-variable" is the variable
whose storage is to be associated with the
variable being declared; the latter is the
"defined variable".

The POSITION attribute specifies the
beginning of the part of a string base
variable with which the defined variable is
to be associated. The position is that of
the first bit or character in the required
part of the base variable.

General rules:

1. The purpose of defining one variable
on another is to allow the programmer
to refer to internally stored data by
more than one name. The name of the
base variable is the name initially
declared for the data. Each variable
defined on this base variable has a
different name. If the internally
stored data is a data aggregate, a
defined variable can comprise all the
data or only a specified part of it.
The defined variable does not inherit
any attributes from the base variable.

2. There are three types of defining;
simple, iSOB, and string overlay.

If the POSITION attribute is
specified, string overlay defining is
in effect; in this case the base
variable must not contain iSUB
references. If the subscripts
specified in the base variable contain
references to iSOB variables, iSOB
defining is in effect. If neither
iSOB variables nor the POSITION
attribute is present, then simple
defining is in effect if the base
variable and defined variable match
according to the criteria given below;
otherwise string overlay defining is
in effect. For a tabulated summary of

these rules, see Figure 1.3.

A base variable and a defined variable
~ if the base variable when passed
as an argument would match a parameter
which had the attributes of the
defined variable (except for the
DEFINED attribute). For this purpose,
the parameter is assumed to have all
array bounds, string lengths, and area
sizes specified by asterisks.

For simple and iSUB defining a PICTURE
attribut~ can only be matched by a
PICTURE attribute that is identical
except for repetition factors. For a
reference to specify a valid base
variable in string overlay defining,
the reference must be to connected
storage. The implementation allows
the programmer to override the
matching rule completely, provided he
is willing to accept that this could
have unwanted side-effects On his
program.

3. The values specified or derived for
any array bounds, string lengths, or
area sizes in a defined variable need
not always match those of the base
variable, but must be such that the
defined array, string or area can be
contained in the corresponding base
array, string or area.

4. Some attributes of the base variable
need not or cannot match those of the
defined variable. The fol.l.owing
restriction should be noted:

Base Variable:

May be EXTERNAL or INTERNAL,
qualified, or subscripted, or both.
A parameter (in string overlay
defining, the parameter must
refer to connected storage).
Cannot be BASED or DEFINED.

Defined variable:

Must be INTERNAL and a
level-one identifier.
May have the dimension attribute.
Cannot be INITIAL
AUTOMATIC/BASED/CONTROLLED/STATIC
or a parameter.

5. If the base variable is EXTERNAL, it
must be known in the procedure to
which the defined variable is
internal. An EXTERNAL base variable
may be known in several external
procedures; a change to its val.ue made
in one of these causes a simil.ar
change to the value of the defined
variable.

Section I: Attributes 413

r---,
POSITION attribute I References to iSUB I Base and defined I Type of defining I

specified I variables in base I match 1. I in effect I
I item subscripts I I I

---1
I I I I

YES I I I string overlay I
--------------------- ---1

I I I
YES I I iSUB I

1 I I
---1

I 1 I
NO 1 YES I simple I

1 1 I
NO 1---1

I I 1
I NO I string overlay I
I I I

---1
l.A definition of matching in this context is given in General Rule 2. I

L---J
Figure 1.3. Guide to types of defining

6. In references to defined data, the
SUBSCRIPTRANGE and STRINGSIZE
conditions are raised for the array
bounds and string lengths of the
defined variable, not the base
variable.

7. The determination of values and the
interpretation of names occurs in the
following sequence:

a. The array bounds, string lengths,
and area sizes of a defined
variable are evaluated on entry to
the procedure in which the
variable is declared.

b. A reference to a defined variable
is a reference to the current
generation of the base variable.
When a defined variable is passed
as an argument without creation of
a dummy, the corresponding
parameter refers to the generation
of the base variable that is
current when the argument is
passed. This remains true even if
the base variable is reallocated
within the invoked procedure.

c. When a reference is made to the
defined variable, the order of
evaluation of the subscripts of
the base and defined variable is
undefined.

Simple Defining

Simple defining allows an element, array or

414 OS PL/I CRT AND OPT LRM PART II

structure variable to be referred to by
another name.

General rules:

1. The defined and base variab1es can
comprise any data type; they must
match, in the sense described earlier
in this section. If the ALIGNED or
UNALIGNED attribute is speQ~fied for
an element in the defined variable, it
must also be specified for the
corresponding element in the base
variable.

2. The defined variable may have the
dimension attribute. The base
variable may be subscripted; the
subscripts must not be iSUB variables.

3. The POSITION attribute cannot be used
in simple defining.

4. In Simple defining of an array:

a. The base variable can be a cross
section of an array.

b. The number of dimensions in the
defined variable must be equal to
the number of dimensions in the
base variable.

c. The rarge specif 1ed by a bound
pair of the defined array must
equal or be contained within the
range specified by the
corresponding bound pair of the
base array.

5. In simple defining of a string, the
length of the defined string must be

less than or equal to the length of
the base string.

6. In simple defining of an area, the
size of the defined area must be equal
to the size of the base area.

1. A base variable may be, or may
contain, a VARYING string, provided
that the corresponding part of the
defined variable is a VARYING string
of the same maximum length.

Examples:

DCL A(lO,lO,lO),
Xl(2,i,2) DEF A,
X2(10,10) DEF A(*,*,S),
X3 DEF A(L,M,N);

Xl is a three-dimensional array that
consists of the first two elements of
each row, column and plane of A. X2
is a two-dimensional array that
consists of the fifth plane of A.
X3 is an element that consists of the
element identified by the subscript
expressions L,M,and N.

DCL B CHAR(lO),
Y CHAR(S) DEF B;

Y is a character string that consists
of the first five characters of B.

DCL C AREA(SOO),
Z AREA(SOO) DEF C;

Z is an area defined on C.

DCL 1 D UNALIGNED,
2 E,
2 F,

3 G CHAR(lO) VAR,
3 H,

1 S UNALIGNED DEF 0,
2 T,
2 U,

3 V CHAR(lO) VAR,
3 W;

S is a structure defined on D; for
simple defining the organization of
the two structures must be identical.
A reference to T is a reference to E,
V to G, etc.

iSUB Defining

iSUB defining allows a programmer to create
a defined array that consists of designated
elements from a base array. Both defined
and base arrays can be arrays of
structures.

General rules:

1. The defined and base arrays can
comprise any data types, and must have
identical attributes (apart from the
dimension attribute).

2. The defined variable must have the
dimension attribute. In the
declaration of the defined array, the
base array must be subscripted, and
the subscript positions cannot be
specified as asterisks.

3. The POSITION attribute cannot be used
in iSUB defining.

4. An iSUB variable is a reference, in
the subscript list for the base array,
to the ith dimension of the defined
array. At least one subscript in the
base-array subscript-list must be an
iSUB expression which, on evaluation,
gives the required subscript in the
base array. The value of i ranges
from 1 to n, where n is the number of
dimensions in the defined array. The
number of subscripts for the base
array must be equal to the number of
dimensions for the base array.

S. As well as the general rules for
evaluation, the following should be
noted:

a. If a reference to a defined array
does not specify a subscript
expression, subscript evaluation
occurs during the evaluation of
the expression or assignment in
which the reference occurs.

b. The value of i is specified as a
decimal integer constant. Within
an iSUB expression, an iSUB
variable is treated as a fixed
binary variable, with default
precision.

c. A subscript in a reference to a
defined variable is evaluated even
if there is no corresponding iSUB
in the base-variable subscript
list.

6. iSUB-defined variables may not appear
in the explicit or assumed data-list
of a data-directed transmission
statement or a CHECK statement or
prefix.

Examples:

DeL A(100,100) CHAR(l),
X(10,10) CHAR(l)

DEF A(lSUB+20,2SUB+90);

X is a two-dimensional array that

Section I: Attributes 41S

consists of the elements of A that lie
within the bounds 21 - 30 for the
first dimension, and 91 - 100 for the
second dimension.

DCL B(2,5),
Y(S,2) DEF B(2SUB,lSUB);

Y is a two-dimensional array that
consists of the elements of B with the
bounds transposed.

DCL A(10,10) B(S,S) DEF
A(1+lSUB/S,1+2SUB/S);

In this case there is a many-to-one
mapping of certain elements of B to a
single element of A. B(I,J) is
defined on:

A(l,l) for 1<5 and J<5
A(l,2) for 1<5 and J=S
A(2,l) for 1=5 and J<S
A(2,2) for 1=5 and J=5

Since all the elements B(I,J) are
defined on the single element A(l,l)
when I<5 and J<5, assignment of a
value to one of these elements causes
the same value to be assigned to all
of them.

String Overlay Defining

String overlay defining allows a programmer
to associate a defined variable with the
storage for a base variable. Both the
defined and the base variable must be
string or picture data.

General rules:

1. Neither the defined nor the base
variable can have the ALIGNED or the
VARYING attributes.

2. Both the defined and the base
variables must belong to the bit
class, or both must belong to the
character class. The bit class
consists of:

a. Fixed-length bit strings.

b. Aggregates of fixed-length bit
strings.

The character class consists of:

a. Fixed-length character strings.

b. Character string and numeric
pictured data.

c. Aggregates of ~ and Q.

416 OS PL/I CKT AND OPT LRM PART II

3. iSUB variables cannot be used for the
base variable in string overlay
defining.

4. The POSITION attribute can be used to
specify the bit or character within
the base v~riable at which the defined
variable is to begin. It has the
format:

POSITION (element-expression)

where the expression, on evaluation,
provides the position of the required
bit or character relative to the start
of the base variable. This attribute
can precede or follow the DEFINED
attribute; if it is omitted,
POSITION(l) is assumed. The value
provided by the expression can range
from 1 to n, where g is defined as

n = N(b) - N(d) + 1

where N(b) is the number of bits or
characters in the base
variable, and

N(d) is the number of bits or
characters in the defined variable.

The expression is evaluated, and
converted to an integer, at each
reference to the defined item. The
absolute maximum permissible value is
32767.

5. When the defined variable is a bit
class aggregate:

a. the POSITION attribute can contain
only an unsigned decimal integer
constant;

b. the base variable must not be
subscripted.

6. The base variable must refer to data
in connected storage.

7. Under the optimizing compiler, an
array overlay-defined on another array
is always assumed to be in unconnected
storage. Under the checkout compiler,
it is treated as being in unconnected
storage only when the bounds of the
base and defined items differ.

Examples:

DeL A CHAR(100),
V(lOr10) CHAR(l) DEF A:

V is a two-dimensional array that
consists of all the elements in the
character string A.

DCL B(10) CHAR(l),
W CHAR(lO) DEF B;

W is a character string that consists
of all the elements in the array B.

DeL C(10,10) BIT(l),
X BIT(40) DEF C POS(20);

X is a bit string that consists of 40
elements of C, starting at the 20th
element.

DCL E PIC'99V.999',
Zl(6) CHAR(l) DEF E,
Z2 CHAR(3) DEF E POS(4),
Z3(4) CHAR(l) DEF E POS(2):

Zl is a character-string array that
consists of all the elements of the
decimal numeric picture E. Z2 is a
character string that consists of the
elements '999' of the picture E. Z3
is a character-string array that
consists of the elements '9.99' of the
picture E.

Dimension Attribute

The dimension attribute specifies the
number of dimensions of an array and the
bounds of each dimension. The dimension
attribute either specifies the bounds
(either the upper bound or the upper and
lower bounds) or indicates, by use of an
asterisk, that the actual bounds for the
array are to be taken from elsewhere.

General format:

Cbound [,bound] •.•)

where "bound· is:

{[lower-bound:] upper-bound}l*

and ·upper-bound· and -lower-bound" are
element expressions.

General rules:

1.

2.

The number of bounds specifications
indicates the number of dimensions in
the array unless the variable being
declared is contained in an array of
structures, in which case it inherits
dimensions from the containing
structure.

The bounds specification indicates the
bounds as follows:

a. If only the upper bound is given,
the lower bound is assumed to be
1.

b. The lower bound must be less than
or equal to the upper bound.

c. An asterisk specifies that the
actual bounds are to be specified
in an ALLOCATE statement, if the
variable is CONTROLLED, or in a
declaration of an associated
argument, if the variable is a
simple parameter. Thus, the
asterisk notation can be used only
for parameters and CONTROLLED
variables.

3. Bounds that are expressions are
evaluated and converted to FIXED
BINARY (15,0) when storage is
allocated for the array. For simple
parameters, bounds can be only
optionally signed decimal integer
constants or asterisks. 4. The
bounds of arrays declared STATIC must
be optionally signed decimal integer
constants.

5. The bounds of arrays declared BASED
must be optionally signed decimal
integer constants unless the array is
part of a based structure and the
REFER option is used. (See chapter 8,
·Storage Control".)

6. The dimension attribute must
immediately follow the array name (or
the parentheSized list of names, if it
is being factored). Intervening
blanks are optional.

7. The maximum permissible number of
dimensions is 15. The minimum
permissible value for a lower bound is
-32768; the maximum permissible for an
upper bound is 32767.

DIRECT, SEQUENTIAL, and TRANSIENT

Abbreviation: SEQL for SEQUENTIAL

The DIRECT, SEQUENTIAL, and TRANSIENT
attributes specify access information for
the data set associated with a file.

The DIRECT and SEQUENTIAL attributes
specify the manner in which the records in
a data set associated with a RECORD file
are to be accessed. SEQUENTIAL implies
that the records are to be accessed
according to their physical or logical
sequence in the data set. (The records in

Ian indexed data set are processed in their
logical sequence: the records in a
CONSECUTIVE or REGIONAL data set are
processed in their physical sequence.)
DIRECT specifies that the records are to be
accessed by use of a key: each record must,
therefore, have a key associated with it.
Either of these two attributes implies the
RECORD attribute.

Section I: Attributes 417

I Note that the SEQUENTIAL attribute does
Inot necessarily imply that keyed access to
Ithe data set cannot be used. In general,
Ifor INDEXED and VSAM data sets, a mixture
lof keyed and sequential access is possible.

The TRANSIENT attribute is designed for
teleprocessing applications. It indicates
that the contents of the data set
associated with the file are reestablished
each time the data set is accessed. In
effect, this means that records can be
continually added to the data set by one
program during the execution of another
program that continually removes records
from the data set. Thus the data set can
be considered to be a continuous queue
through which the records pass in transit
between a message control program and a
message processing program.

Note that DIRECT and SEQUENTIAL specify
only the current usage of the file~ they do
not specify physical properties of the data
set associated with the file. The data set
associated with a SEQUENTIAL file may
actually have keys recorded with the data.
Most data sets accessed by DIRECT files are
created by SEQUENTIAL files. However, a
data set associated with a TRANSIENT file
differs from those associated with DIRECT
and SEQUENTIAL files in that its contents
are dynamic~ reading a record removes it
from the data set. Such a data set can
never be created or accessed by a DIRECT or
SEQUENTIAL file.

The use of TRANSIENT files is almost
totally dependent on the implementation~
for this reason, a list of rules for the
use of TRANSIENT is given below the general
rules and assumptions.

General format:

SEQUENTIAL I DIRECT I TRANSIENT

General rules:

1. DIRECT files must be KEYED~ this
attribute is implied by DIRECT.
SEQUENTIAL files mayor may not have
the KEYED attribute.

2. The DIRECT, SEQUENTIAL, and TRANSIENT
attributes cannot be specified with
the STREAM attribute.

3. TRANSIENT files must be KEYED. This
attribute is implied by TRANSIENT.

Assumptions:

1. Default is SEQUENTIAL for RECORD
files.

2. If a file is implicitly opened by an

418 OS PL/I CKT AND OPT LRM PART II

UNLOCK statement, DIRECT is assumed.

3. The TRANSIENT attribute implies KEYED
and RECORD.

The following rules apply specifically
to the use of the TRANSIENT attribute:

1. The TRANSIENT attribute can be
specified only for RECORD KEYED
BUFFERED (or UNBUFFERED) files with
either the INPUT or OUTPUT attribute.

2. Input can be specified only by a READ
statement with the KEYTO option and
either the INTO option or the SET
option.

3. Output can be specified only by a
WRITE statement or a LOCATE stat anent,
either of which must have the KEYFROM
option.

4. The EVENT option is not permitted.

5. The "data set" associated with a
TRANSIENT file is in fact a queue of
messages maintained automatically in
main storage by a separate message
control program using the
teleprocessing facilities of the
operating system. The queue is always
accessed sequentially.

6. The element expression specified in
the KEYFROM option should have as its
value a recognized terminal or process
queue identification.

The ENTRY attribute specifies that the
identifier being declared is either an
external entry constant or an entry
variable. It is also used to describe the
attributes of the parameters of the entry
pOint.

General format:

ENTRY(parameter-descriptor-list)]

where "parameter-descriptor-list" is:

[parameter descriptor(,parameter
descriptor] •••]

Rules for Parameter Descriptor lists

1. A parameter descriptor list can only
be given to describe the attributes of
the parameters of the associated

external entry constant or entry
variable.

If nO parameter descriptor list is
given, the arguments are assumed to
match the parameters: if a parameter
descriptor list is given, it is used
for argument and parameter matching
and the creation of dummy argUments:
the parameter descriptor list must be
supplied if arguments do not match the
parameters.

2. A descriptor describes the attributes
of a single parameter. For example,
the descriptors for the parameters in
the following procedure:

TEST:PROCEDURE (A,B,C,D,E,F):

DECLARE A FIXED DECIMAL (5),
B FLOAT BINARY (15),
C POINTER,
1 D,

2 P,
2 Q,

3 R FIXED DECIMAL,
1 E,

2 X,
2 Y,

3 Z,
F(4) CHARACTER (10):

END TEST;

could be declared as follows:

DECLARE TEST ENTRY
(DECIMAL FIXED (5),
BINARY FLOAT (15),
,
1,

2,
2,

3 DECIMAL FIXED,
,

(4) CHARACTER (10»:

3. The parameter descriptors must appear
in the same order as the parameters
they describe. If a descriptor is
absent, the argument is assumed to
match the parameter.

4. If a descriptor is not required for a
parameter, the absence of a descriptor
must be indicated in one of the
following ways:

by a comma:
ENTRY(CHARACTER(10)",FIXED DECIMAL)
indicates four parameters;

by an asterisk followed by a comma or
the closing parenthesis of the
parameter descriptor list: ENTRY(.)

indicates one parameter:

by the closing parenthesis when it
follows a comma with no intervening
descriptor: ENTRY(FLOAT BINARY,)
indicates two parameters.

A declaration ENTRY() is equivalent
to ENTRY with no parameter descriptor
list and the entry name must never
have any arguments.

In the example in rule 2 above, the
parameter C has no descriptor nor has
the structure parameter E.

5. In general, the attributes may appear
in any order in a parameter
descriptor, but for an array parameter
descriptor, the dimension attribute
must be the first specified. For a
structure parameter descriptor, the
level numbers must appear in the same
order as the level numbers of the
corresponding parameter, and they must
precede the attributes for each level:
the descriptor level numbers need not
be the same as those of the parameter,
but the structuring must be identical;
the attributes for a particular level
may appear in any order.

Note: Each descriptor level number,
together with any attributes specified
for the level, is delimited by a comma
(see example above).

6. Defaults are not applied to a
parameter descriptor unless attributes
or level numbers are specified in the
descriptor. If a level number and/or
the dimension attribute only is
specified in a descriptor, FLOAT
DECIMAL(6) REAL are assumed.

1. Extents (lengths, sizes, and bounds)
in parameter descriptors may only be
specified by decimal integer constants
or by asterisks. Extents in
descriptors for controlled parameters
may only be specified by asterisks.

8. Attributes gi ven in the parameter
descriptor list can be established
implicitly by use of the DEFAULT
statement in conjunction with the
DESCRIPTORS option. However they are
not applied for missing descriptors.

General rules:

1. The ENTRY attribute, without a
parameter descriptor list, is implied
by the .attributes OPTIONS, REDUCIBLE,
IRREDUCIBLE, and RETURNS.

2. The ENTRY attribute cannot be
specified with the BU:tLTIN or GENERIC

Section I: Attributes 419

attribute.

3. The ENTRY attribute must be specified
or implied for a parameter
representing an entry constant or
entry variable argument.

The maximum permissible depth of
nesting of the ENTRY attribute is two.
For example:

DCL E ENTRY(ENTRY(FIXED»:

is permissible, but:

DCL E ENTRY(ENTRY(ENTRY(FIXED»):

is not permissible.

4. Factoring of attributes is not
permitted within the parameter
descriptor list of an ENTRY attribute
specification.

5.

6.

7.

8.

External entry constants must be
explicitly declared.

The optional attribute VARIABLE is an
additive attribute. When given, it
specifies that the associated
identifier is an entry variable. The
VARIABLE attribute is declared
implicitly if the identifier is
declared with anyone or more of the
following attributes:

ALIGNED
AUTOMATIC
BASED
CONTROLLED
DEFINED

dimension
INITIAL
parameter
STATIC
UNALIGNED

The use of an entry variable in a CALL
statement or function reference means
that associated entry pOints cannot be
known until execution time. When an
entry variable declared without a
parameter descriptor list appears
either in a CALL statement or as a
function reference that involves
passing arguments, the arguments are
assumed to match the parameters of the
referenced entry pOint. However, if a
parameter descriptor list is given in
the declaration of an entry variable,
the parameters of the referenced entry
point are assumed to match the
attributes given in the parameter
descriptor list: dummy arguments are
created if necessary.

When a reference to any entry
expression includes an argument list
(which may be a null argument list),
the procedure it represents is always
invoked.

420 OS PL/I CKT AND OPT LRM PART II

9. When a reference to any entry
expression does not include an
argument list, the procedure it
represents is not invoked in the
following contexts:

a. The righthand side of an
aSSignment to an entry variable.

b. Comparison with an entry
expression.

c. An argument to a generic entry
name.

d. An argument passed to an entry
parameter.

e. An argument to the UNSPEC built-in
function.

f. Any context that requires a
variable (applicable only to entry
variables).

110. If an entry variable has as its value
1 an entry constant which is an entry
1 pOint of an internal procedure, the
1 generation of the block that contains
1 the procedure which was active (and,
1 for recursive blockS, current) when
1 the entry constant was aSSigned to the
1 entry variable must still be active
1 when the entry variable is referenced
1 in a CALL statement.

If the variable has an invalid value,
the checkout compiler will raise the
ERROR condition: under the optimizing
compiler, however, detection of such
an error is not guaranteed.

11. The values of two entry expressions
may be compared using either the = or
~= comparison operator. It is not an
error to specify, in a comparison
operation, an entry variable whose
value is an entry point of an inactive
block.

12. Entry names on the same PROCEDURE or
ENTRY statement do not compare equal.

13. The ENTRY attribute cannot be
specified in a RETURNS attribute or
option. ENTRY statement do not
compare equal.

Assumptions:

The ENTRY attribute can be implied. The
appearance of an identifier as a label
prefix of either a PROCEDURE statement or
an ENTRY statement constitutes an explicit
dec1aration of that identifier as an entry
constant. Its attributes are obtained from
this explicit declaration and from the
declarations, if any, given in an

additional DECLARE statement. The
attributes are obtained as follows:

scope attribute: For an external entry
constant, the scope is EXTERNAL
(INTERNAL is invalid). For an entry
variable, the scope is INTERNAL by
default.

RETURNS Attribute: This is obtained
from the RETURNS attribute in the
DECLARE statement.

ENVIRONMENT

Abbreviation: ENV

The ENVIRONMENT attribute is an
implementation-defined attribute that
specifies various file characteristics that
are not part of the PL/I language.

General format:

ENVIRONMENT (option-list)

Options in the "option list" are separated
by blanks or commas. The option list is
defined individually for each
implementation of PL/I. For this
implementation, it is as follows:

[record-format] [BUFFERS(n»)
[data-set-organization]
[magnetic tape handling]
[printer-punch-control]
[COBOL] [data-management-optimization]
[key-classification)
[KEYLENGTH(n)]
[KEYLOC(n»)
[SCALARVARYING]
[teleprocessing format]
[direct access device usage]
[ASCII - data interchange code)
[BUFOFF[(n)] - buffer offset]
[TOTAL]
[PASSWORD(password-specification)]
[SISISKIP]
[REUSE]
[BKWD]
[BUFND(n)]
[BUFNI(n)]
(BUFSP(n)]

The options may appear in any order. They
are described in chapter 11, "Stream
Oriented Transmission" and chapter 12,
"Record-Oriented Transmission".

The ENVIRONMENT attribute may be
included only in a DECLARE statement. It
cannot be specified as an option of an OPEN
statement. It can be specified as an
option of thQ CLOSE statement for the
volume disposition options LEAVE and

REREAD.

The EVENT attribute specifies that the
associated identifier is used as an event
name. Event names are used to investigate
the current state of tasks or of
asynchronous input/output operations. They
can also be used as program switches.

General format:

EVENT

General rules:

1. An identifier may be explicitly
declared with the EVENT attribute in a
DECLARE statement. It may be
contextually declared by its
appearance in an EVENT option of a
CALL statement, in a WAIT statement,
in a DISPLAY statement, or in various
input/output statements (see chapter
10, "Input and Output", and chapter
11, "Multitasking").

2. Event names may also have the
following attributes:

Dimension

Scope (the default is INTERNAL)

Storage class (the default is
AUTOMATIC)

DEFINED (event names may only be
defined on other event names)

INITIAL or INITIAL CALL

3. An event variable has two separate
values:

a. A Single bit which reflects the
completion value of the variable.
'1'B indicates complete, lOeB
indicates incomplete.

b. A fixed-point binary value of
default precision (i.e.,(15,0»
which reflects the status value of
the variable. A zero value
indicates normal, nonzero
indicates abnormal status.

The values of the event variable can
be separately returned by use of the
COMPLETION and STATUS built-in
functions. The COMPLETION function
returns a bit-string value
corresponding to the completion Value
of the variable; STATUS returns a

Section I: Attributes 421

fixed binary value corresponding to
the status value.

Assignment of one event variable to
another causes both the completion and
status values to be assigned.
Conversion between event variables and
any other data type is not possible.

4. Event variables may be elements of an
aggregate. Aggregates containing
event variables may take part in
assignment, provided that this would
not require conversion to or from
event data.

5. The values of the event variable can
be set by one of the following means:

a. Use of the COMPLETION
pseudovariable, to set the
completion value.

b. Use of the STATUS pseudovariable,
to set the status value.

c. Event variable assignment.

d. By a statement with the EVENT
option.

e. By a WAIT statement for an event
variable associated with an
input/output event or DISPLAY
statement.

f. By the termination of a task with
which the event variable is
associated.

g. By closing a file on which an
input/output operation with an
event option is in progress.

6. On allocation of an event variable,
its completion value is 'O'B
(incomplete). The status value is
undefined. (On the checkout compiler
it is set to the uninitialized value
used for fixed binary(15) items.)

7. An event variable may be associated
with an event, that is, a task or an
input/output operation, by means of
the EVENT option on a statement. The
variable remains associated with the
event until the event is completed.
For a task the event is completed when
the task is terminated because of a
RETURN, END or EXIT: for an
input/output event, the event is
completed during the execution of the
WAIT for the associated event Which
must be present in the task that
initiated the input/output operation.
During this period the event variable
is said to be active. It is an error
to associate an active event variable

422 OS PL/I CKT AND OPT LRM PART II

with another event, or to modify the
completion value of an active event
variable by event variable assignment
or by use of the COMPLETION pseudo
variable.

8. It is an error to assign a value to an
active event variable (including an
event variable in an array, structure,
or area) by means of an input/output
statement.

9. On execution of a CALL statement with
the EVENT option, the event variable,
if inactive, is set to zero status
value and to incomplete. The sequence
of these two assignments is
uninterruptable, and is completed
before control passes to the named
entry pOint. On termination of the
task initiated by the CALL statement,
the event variable is set complete and
is no longer active. If the task
termination is not due to RETURN or
END in the task, then the event
variable status is set to 1, unless it
is already nonzero. The sequence of
the two assignments to the event
variable values is uninterruptable.

10. On execution of an input/output
statement with the EVENT option, the
event variable, if inactive, is set to
zero status value and to incomplete.
The sequence of these two assignments
is uninterruptable and is completed
before any transmission is initiated
but after any action associated with
an implicit opening is completed. An
input/output event variable will not
be set complete until either the
termination of the task that initiated
the event or the execution, by that
task, of a WAIT statement naming the
associated event variable. The WAIT
operation delays execution of this
task until any transmission associated
with the event is terminated. If no
input/output conditions are to be
raised for the operation, the event
variable is set complete and is nO
longer active. If any input/output
conditions are to be raised, the event
variable is set to have a status 'value
of 1 and the relevant conditions are
raised. On normal return from the
last on-unit entered as a result of
these conditions, or on abnormal
return from one of the on-units, the
event variable is set complete and is
no longer active.

11. Event variables cannot be unaligned.

12. TWo event variables can be compared
using a = or a ,= comparison operator.
The variables compare equal if both the
status and completion values are equal,

otherwise they compare not equal.

EXCLUSIVE

Abbreviation: EXCL

The EXCLUSIVE attribute specifies that
records in a DIRECT UPDATE file may be
locked by an accessing task to prevent
other task~ from interfering with an
operation. The section entitled "EXCLUSIVE
Attribute" in chapter 10, "Input and
Output", contains a table showing the
effects of various operations on EXCLUSIVE
files and the records contained in them.

General format:

EXCLUSIVE

General rules:

1. The EXCLUSIVE attribute can be applied
to RECORD KEYED DIRECT UPDATE or INPUT
files only.

2. A READ statement referring to a record
in an EXCLUSIVE file has the effect of
locking that record, unless the READ
statement has the NOLOCK option', or
unless the record has already been
locked by another task; in the latter
case, the task executing the READ
statement will wait until the record
is unlocked before proceeding.

3. A DELETE or REWRITE statement
referring to a locked record will
automatically unlock the record at the
end of the DELETE or REWRITE
operation; if the record has been
locked by another task, the task
executing the DELETE or REWRITE
statement will wait until the record
is unlocked. While a DELETE or
REWRITE operation is taking place, the
record is always locked.

4. Automatic unlocking takes place at the
end of the operation, on completion of
anyon-units entered because of the
operation (that is, at the
corresponding WAIT statement when the
EVENT option has been specified) or by
a GO TO branch out of such an on-unit.

5. A locked record can be explicitly
unlocked by the task that locked it,
by means of the UNLOCK statement.

6. Closing an EXCLUSIVE file unlocks all
the records locked by that task in the
file.

1. When a task is terminated, all records

locked by that task are unlocked.

Assumptions:

1. If a file is implicitly opened by the
UNLOCK statement, it is given the
EXCLUSIVE attribute.

2. EXCLUSIVE implies RECORD, DIRECT,
KEYED, and UPDATE.

EXTERNAL and INTERNAL

Abbreviations: EXT for EXTERNAL
INT for INTERNAL

The EXTERNAL and INTERNAL attributes
specify the scope of a name. INTERNAL
specifies that the name can be known only
in the declaring block and its contained
blocks. EXTERNAL specifies that the name
may be known in other blocks containing an
external declaration of the same name.

General format:

EXTERNAL I INTERNAL

General rules:

1. When a major structure name is
declared EXTERNAL in more than one
block, the attributes of the structure
members must be the same in each case,
although the corresponding member
names need not be identical.

2. Members of structures always have the
INTERNAL attribute and cannot be
declared with any scope attribute.
However, a reference to a member of an
external structure, using the member
name known to the block containing the
reference, is effectively a reference
to that member in all blocks in which
the external name is known, regardless
of whether the corresponding member
names are identical.

Assumptions:

INTERNAL is assumed for entry names of
internal procedures and for variables with
any storage class. EXTERNAL is assumed for
file constants and entry constants of
external procedures. programmer-defined
condition names are assumed to be EXTERNAL.

The FILE attribute specifies that the
identifier being declared is a file name.

Section I: Attributes 423

General format:

FILE

General rules:

1. File description attributes, such as
RECORD, INPUT, etc., cannot be applied
to a file variable.

2. A file expression is a file constant,
a file variable or a function
reference that represents a file
value. It may be used as:

a. an argument to the FILE or COpy
option

b. an argument to be passed to a
function or subroutine

c. an argument to an input/output
condition name for ON, SIGNAL, and
REVERT statements

d. an argument to a RETURN statement

3. On-units can be established for a file
constant through a file variable that
represents its value.

For example:

DCL F FILE,
G FILE VARIABLE;
G=F;

L1: ON ENDFILE(G);
L2: ON ENDFILE(F);

The statements labelled L1 and L2 are
eqUivalent.

4. A dummy argument is created for a file
constant argument to a CALL statement
or function reference.

5. A file variable may be specified in a
CHECK prefix list. Tqe CHECK
condition is not raised for such a
file variable by its appearance as a
FILE option in ON, SIGNAL, and REVERT
statements.

6. The value of a file variable may be
transmitted by record-oriented
transmission statements. The value
may not be valid after transmission.

7. The values of two file expressions may
be compared using either the = or
comparison operator. The expressions
compare equal only if they represent
file values, all of whose parts are
equal.

Assumptions:

The FILE attribute can be implied for a

424 OS PL/I CKT AND OPT LRM PART II

file constant by any of the "file
description attributes". Refer to chapter
10, "Input and output", for discussion of
the file attributes. In addition, an
identifier can be contextually declared as
a file constant through its appearance in
the FILE option of any input or output
statement, or in an ON statement for any
input/output condition.

An identifier with the FILE attribute is
assumed to be a file variable if the
identifier is an element of an array or
structure, or if any of the following
additional attributes is specified:

Storage class attributes
dimension attributes
parameter
ALIGNED or UNALIGNED
DEFINED
INITIAL
VARIABLE

FIXED and FLOAT

The FIXED and FLOAT attributes specify the
scale of the arithmetic variable being
declared. FIXED specifies that the
variable is to represent fixed-point data
items. FLOAT specifies that the variable
is to represent floating-point data items.

General format:

FIXED I FLOAT

General rule:

The FIXED and FLOAT attributes cannot be
specified with the PICTURE attribute.

Assumptions:

Undeclared identifiers (or identifiers
declared only with one or more of the
dimension, ALIGNED or UNALIGNED, scope, and
storage class attributes) are assumed to be
arithmetic variables with aSSigned
attributes depending upon the initial
letter. For identifiers beginning with any
letter I through N, the standard default
attributes are REAL FIXED BINARY (15,0).
For identifiers beginning with any other
alphabetic character, the standard default
attributes are REAL FLOAT DECIMAL (6). If
BINARY or DECIMAL and/or REAL or COMPLEX
are specified, FLOAT is assumed.

See FIXED.

GENERIC

The GENERIC attribute is used to define an
entry name that is generic to a specified
group of entry expressions. When the
generic name is referred to, one of the
specified entry expressions is selected,
based upon the arguments specified for the
generic name in the reference.

General format:

GENERIC (entry-expression WHEN
(generic-descriptor-list)
[,entry-expression WHEN
(generic-descriptor-list}l •••);

where generic-descriptor-list is:
[descriptor[,descriptorl ••• l

General rules:

1. The only attribute than can be
specified for the namE being given the
GENERIC attribute is INTERNAL.

2. Each entry expression following the
GENERIC attribute corresponds to one
member of the generic group. An
entry-expression must be a constant or
variable of type ENTRY. It must not
be based, subscripted, or defined.

3. The same entry-expression may appear
more than once within a single GENERIC
declaration with different lists of
descriptors.

4. The selection of a particular entry
expression is based upon the arguments
of, or absence of all arguments from,
the reference to the generic name.
When a generic name is referred to,
the number of arguments and attributes
of each argument are compared with
each generic descriptor list from left
to right until all the attributes in
one generic descriptor list are found
to be attributes of the arguments.
The reference is then interpreted as a
reference to the member with the
matching generic descriptor list.

5. The only attributes allowed are those
that affect generic selection: these
are:

ALIGNED
AREA (No size may be specified)
Base
BIT (No length may be specified)
CHARACTER CNo length may be

specified)
ENTRY (No descriptor list may be

specified)
EVENT
FILE

LABEL (No label list may be
specified)

Mode
Number of dimensions (No bounds

may be
specified)

OFFSET (No area variable may be
specified)

PICTURE 'picture-specification'
POINTER
Precision (Number of digits and

scale factor must be
specified)

Scale
TASK
UNALIGNED
VARYING

A missing descriptor may be indicated
by an asterisk or a comma in the
generic descriptor list.

6. An entry expression used as an
argument in a reference to a generic
value only matches a descriptor of
type ENTRY. If there is no such
description, the program is in error.

1. An argument with the GENERIC attribute
matches an ENTRY attribute in a
generic descriptor list.

8. Under the optimizing compiler, if a
locator attribute (POINTER or OFFSET)
is specified in the generiC descriptor
list, the corresponding parameter must
have the same attribute; no conversion
from one type to the other can be
performed when the entry-point is
invoked. Under the checkout compiler,
the conversion can be performed.

9. Level numbers must not be specified in
a generiC descriptor. An aggregate
may be passed as an argument to a
generic entry name but no dummy
argument will be created.

10. GeneriC names (as opposed to
references) may be specified as
arguments to non-generic entry names.

If the non-generic entry name is an
entry variable or an external entry
constant it must be declared with a
parameter descriptor list. The
descriptor for the generiC argument
must be ENTRY with a parameter
descriptor list. This nested list is
used to select the argument to be
passed. For example:

A: PROC:
DCL B GENERIC (C WHEN(FIXED),

D WHENCFLOAT»,
E ENTRY (ENTRY(FIXED»;

CALL ECB):

Section I: Attributes 425

END A:

When procedure E is invoked, C is
selected and passed as the argument,
since the ~escriptor specifies that
the parameter specified by the entry
name parameter is FIXED.

If the non-generic entry name is an
internal entry constant, the
corresponding parameter must be
declared ENTRY with a parameter _
descriptor list. This list is used to
select the argument to be passed. For
example:

A: PROC:
DCL B GENERIC (C WHEN(FIXED),

D WHEN(FLOAT»:
CALL E(B):
E: PROC (P):

DCL P ENTRY(FIXED):

END E:
END A:

When procedure E is invoked, C is
selected and passed as the argument,
since the parameter of entry name
parameter is declared to be FIXED.

INITIAL

Abbreviation: INIT

The INITIAL attribute has two forms.
The first specifies a constant, expression,
or function reference, whose value is to be
assigned to a data item when storage is
allocated to it. The second form specifies
that, through the CALL option, a procedure
is to be invoked to perform initialization
at allocation. The variable is initialized
by assignment during the execution of the
called routine (rather than by this routine
being invoked as a function that returns a
value to the point of invocation).

General format:

1. INITIAL (item [,item1 •••)

2. INITIAL CALL entry-expression
[argument-list1

General rule:

The INITIAL attribute cannot be given to
constants, defined data, structures or
parameters (except CONTROLLED parameters).

Rules for form 1:

426 OS PL/I CKT AND OPT LRM PART II

1. Each item in the list can be a
constant, a parenthesized expression,
a reference, an asterisk denoting no
initialization for a particular
element, or an iteration
specification.

2. In this discussion, the term
"constant" denotes one of the
following:

[+1-1 arithmetic-constant

bit-string-constant

character-string-constant

entry-constant

file-constant

label-constant

[+1-1real-constant{+I-limaginary
constant

The term "expression" denotes an
element expression used to provide an
initial value to be assigned to the
initialized data item. An expression
is always enclosed in parentheses when
specified in the INITIAL attribute.
The term ~reference" denotes a
reference to a variable or a function
which can be used for the initial
value of the data item.

3. The time at which the INITIAL
attribute is applied depends on the
storage class of the variable.

STATIC: When the external procedure
in which the variable is declared
is entered.

AUTOMATIC: When the block in which
the variable is declared is
entered.

CONTROLLED: When the ALLOCATE
statement is executed.

BASED: When an ALLOCATE or a LOCATE
statement is executed for the
variable. If the variable is
referenced only by setting a
pOinter and is never specified in
an ALLOCATE or LOCATE statement,
the INITIAL attribute specified in
a DECLARE statement is never
applied.

4. Only one initial value can be
specified for an element variable:
more than one can be speCified for an
array variable. A structure variable
can be initialized only by separate
initialization of its elementary

names, whether they are element or
array variables.

5. Initial values specified for an array
are assigned to successive elements of
the array in row-major order (final
subscript varying most rapidly).

6. If too many initial values are
specified for an array, excess ones
are ignored; if not enough are
specified, the remainder of the array
is not initialized.

7. Only constant values with no
operations, for example, 3, 'ABC', can
be specified in the INITIAL attribute
for STATIC variables, except that the
NULL built-in function may be used to
initialize a STATIC pointer variable.

8. The iteration speCification has one of
the following general forms:

(iteration-factor)
reference I constant I (expression)

(iteration-factor)
item[, item] •••

(iteration-factor) *
The "iteration-factor" specifies the
number of times the constant,
expression, or item list, is to be
repeated in the initialization of
elements of an array. If a constant
or expression follows the iteration
factor, then the specified number of
elements are to be initialized with
that value. If a list of items
follows the iteration factor, then the
list is to be repeated the specified
number of times, with each item
initializing an element of the array.
If an asterisk follows the iteration
factor, then the specified number of
elements are to be skipped in the
initialization operation.

9. The iteration factor can be an element
expression, except for STATIC data, in
which case it must be an unsigned
decimal integer constant. When
storage is allocated for the array,
the expression is evaluated to give an
integer that specifies the number of
iterations.

10. A negative or zero iteration factor
causes no initialization.

11. The initialization of an array of
strings may include both string
repetition and iteration factors.
Where only one of these is given it is
taken to be a string repetition factor
unless the string constant is placed

in parentheses. Note that a string
repetition factor must be an unsigned
decimal integer constant. For
example, consider the following:

«2)'A')is equivalent to ('AA')
«2)('A'» is equivalent to ('A','A')

«2)(1)'A') is equivalent to ('A','A')

12. Iterations may be nested.

13. It is an error to specify an iteration
factor in an INITIAL attribute of a
scalar item.

14. Names used in expressions and function
references for initial values must be
known within the block in which the
initialized item is declared.

15. STATIC label or entry variables cannot
have the INITIAL attribute.

16. An alternate method of initialization
is available for elements of arrays of
non-STATIC label variables: an element
of a label array can appear as a
statement prefix, provided that all
subscripts are optionally signed
decimal integer constants. The effect
of this appearance is the
initialization of that array element
to a value that is a constructed label
constant for the statement prefixed
with the subscripted reference. This
statement must be immediately internal
to the block containing the
declaration of the array. Only one
form of initialization can be used for
a given label array. If CHECK is
specified for such an array and the
elements of the array are initialized
in this way, the CHECK condition is
not raised at initialization.

17. If the attributes of an item in the
INITIAL attribute differ from those of
the data item itself, then, provided
the attributes are compatible,
conversion will be performed.

118.
I

If a STATIC EXTERNAL item is given the
INITIAL attribute in more than one
declaration, it must have this
attribute on all of its declaratiOns,
and the value specified must be the
same in every case, except that an
INITIAL attribute specified on a
declaration in a procedure compiled by
the PL/I Optimizing Compiler need not
be repeated.

I
I
I
I
I
I
I
I

Rules for form 2:

1. The "entry-expression" and -argument
list" passed must satisfy the
condition stated for prologues as
discussed in chapter 6, ·program

Section I: Attributes 427

Organization".

2. Form 2 cannot be used to initialize
STATIC data.

Examples:

a. DECLARE SWITCH BIT (1)
INITIAL ('l'B);

b. DECLARE MAXVALUE INITIAL (99),
MINVALOE INITIAL (-99);

c. DECLARE A (100,10) INITIAL
«920)0, (20) «3)5,9»;

d. DECLARE TABLE (20,20) INITIAL
CALL SET_UP (X,Y);

e. DECLARE 1 A(8),
2 B INITIAL (0),
2 C INITIAL «8)0);

f. DECLARE Z(3) LABEL;

Z(l): IF X = Y THEN GO TO EXIT;

Z(2): A = A + B + C * D;

Z(3): A = A + 10;

GO TO Z(I);

EXIT: RETURN;

Example c results in the following:
each of the first 920 elements of A is set
to 0, the next 80 elements consist of 20
repetitions of the sequence 5,5,5,9.

in Example d, SET UP is the name of a
procedure that sets the initial values of
elements in TABLE. X and Yare arguments
passed to SET_UP.

In Example e, B and C inherit a
dimension of (8) but, whereas only the
first element of B is initialized, all the
elements of C are initialized.

In the last example, transfer is made to
a particular element of the array Z by
giving I a value of 1,2, or 3.

428 OS PL/I CKT AND OPT LRM PART II

INPUT, OUTPUT, and UPDATE

The INPUT, OUTPUT, and UPDATE attributes
indicate the function of the file. INPUT
specifies that data is to be transmitted
from auxiliary storage to the program.
OUTPUT specifies that data is to be
transmitted from the program to auxiliary
storage either to create a new data set or
extend an existing one. UPDATE specifies
that the data can be transmitted in either
direction; that is, the file is both an
input and an output file.

General format:

INPUT I OUTPUT I UPDATE

General rules:

1. A file with the INPUT attribute cannot
have the PRINT attribute.

2. A file with the OUTPUT attribute
cannot have the BACKWARDS attribute.

3. A file with the UPDATE attribute
cannot have the STREAM, BACKW~DS, or
PRINT attributes. A declaration of
UPDATE for a SEQUENTIAL file indicates
the update-in-place mode. To access
such a file, the sequence of
statements must be READ, then REWRITE.

Assumptions:

Default is INPUT. The PRINT attribute
implies OUTPUT. The EXCLUSIVE attribute
implies UPDATE.

INTERNA~

See EXTERNAL.

IRREDUCIBLE and REDUCIBLE

Abbreviations: IRRED for IRREDUCIBLE
RED for REDUCIBLE

IThe REDUCIBLE and IRREDUCIBLE attributes
lare optimization attributes. Although
Ithese attributes are part of the PL/I
I language, they are not fully implemented by
leither the checkout or the optimizing
I compiler. If the attributes are specified,
Ithey are checked for syntax errors, and the
limplied attribute ENTRY is applied; they
lare otherwise ignored.

, REDUCIBLE and IRREDUCIBLE are specified
in entry-constant declarations of function

procedures. REDUCIBLE specifies that if
the entry name appears with an argument
list that is identical to an argument list
used in an earlier invocation, the function
need not necessarily be reinvoked and the
result of the earlier evaluation may be
used. IRREDUCIBLE specifies that this type
of optimization is not permitted.
Optimization within a function procedure is
not affected by either attribute.

General format:

IRREDUCIBLE I REDUCIBLE

General rule:

1. These attributes can be applied only
to external entry constants or entry
variables, since internal entry names
cannot be declared. For internal
entry constants, the equivalent
options can be applied to PROCEDURE or
ENTRY statements.

Assumptions:

The IRREDUCIBLE and REDUCIBLE attributes
imply ENTRY.

The standard default is IRREDUCIBLE.

The KEYED attribute specifies that the
options KEY, KEYTO, and KEYFROM may be used
to access records in the file. These
options indicate that keys are involved in
accessing the records in the file.

General format:

KEYED

General rules:

1. A KEYED file cannot have the
attributes STREAM or PRINT.

2. The KEYED attribute can be specified
for RECORD files only, and must be
associated with direct access devices
or with a file with the TRANSIENT
attribute.

3. The KEYED attribute must be specified
for every file with which any of the
options KEY, KEYTO, and KEYFROM is
used. It need not be specified if
none of the options are to be used,
even though the corresponding data set
may actually contain recorded keys.

Assumption:

The DIRECT attribute implies KEYED.

The LABEL attribute specifies that the
identifier being declared is a label
variable and is to have statement labels as
values. To aid in optimization of the
object program, the attribute specification
may also include the values that the name
can have during execution of the program.

General format:

LABEL ((statement-label-constant
[,statement-label-constant] •••)]

General rules:

1. If a list of statement label constants
is given, the variable must have as
its value a member of the list when
used in a GO TO statement or R format
item. The label constants in the list
must be known in the block containing
the declaration. Under the optimizing
compiler, the maximum permissible
number of label constants in the list
is 125. There is no limit under the
checkout compiler.

2. The parenthesized list of statement
label constants can be used in a LABEL
attribute specification for a label
array.

3. A label variable may not be used to
identify a PROCEDURE or ENTRY
statement, and an entry constant may
not be assigned to a label variable.

q. A subscripted label specifying an
element of a label array can appear as
a statement label prefix if the label
variable is not STATIC, but it cannot
appear in an END· statement after the
keyword END. For further information,
see the INITIAL attribute.

5. A label variable may have another
label variable or a label constant
aSSigned to it. When such an
aSSignment is made, the environment of
the source label is assigned to the
target.

6. The INITIAL attribute cannot be
specified for STATIC label variables.

1. A label variable used in a GO TO
statement must have as its value a
label constant that is used in a block
that is active at the time the GO TO

Section I: Attributes q29

is executed. If the variable has an
invalid value, the checkout compiler
will raise the ERROR condition: under
the optimizing compiler, however,
detection of such an error is not
guaranteed.

8. Labels may be compared. Comparison
operators permitted for labels are =
and ~=. Labels on the same statement
compare equal. It is not an error to
specify, in a comparison operation, a
label variable whose value is a label
constant used in a block that is nO
longer active.

9. A label prefixed to a null statement
does not compare equal to a label
prefixed to the statement immediately
following the null statement.

For example:
A: ;
B: X=1:

Label A is not equal to label B.

10. A label prefixed to a FORMAT statement
does not compare equal with the label
prefixed to the following statement.

11. A label prefixed to an END statement
does not compare equal with the label
prefixed to the following statement.

12. The label on IF statement does not
compare equal with that on the
succeeding THEN clause.

Length Attribute

See BIT.

The LIKE attribute specifies that the name
being declared is a structure variable with
the same structuring as that for the name
following the attribute keyword LIKE.
Substructure names, elementary names, and
attributes for substructure names and
elementary names are to be identical.

General format:

LIKE structure-variable

430 OS PL/I CRT AND OPT LRM PART II

General rules:

1. The ·structure variable· can be a
major structure name or a minor
structure name. It can be a qualified
name, but it cannot be subscripted.
Also, it must not contain a REFER
variable. For example, the
declaration:

DECLARE 1 A BASED,
2 X FIXED BINARY,
2 Y (Z REFER (X» I

1 B BASED LIKE Ai

is invalid, because references to the
REFER object X would be ambiguous.

2. The "structure-variable· must be known
in the block containing the LIKE
attribute specification. The
structure names in all LIKE attributes
are associated with declared
structures before any LIKE attributes
are expanded. For example:

DECLARE 1 A, 2 C, 3 E, 3 F,
1 D, 2 C, 3 G, 3 Hi

BEGIN:
DECLARE 1 A LIKE D, 1 B LIKE A.C;

END:

These declarations result in the
following:

1 A LIKE D is expanded to give:

1 A, 2 C, 3 G, 3 H

1 B LIKE A.C is expanded to give:

1 B, 3 E, 3 F

3. a. Neither the ·structure variable"
nor any of its substructures can
be declared with the LIKE
attribute. For example, the
following is invalid:

DECLARE 1 A LIKE C,
1 B,

2 C ,
3 D,
3 E LIKE X,

2 F,
1 X,

2 Y,
2 Z:

because the LIKE attribute of A
specifies a structure, C, that
contains an identifier, E, that

has the LIKE attribute.

b. "Structure variable" must not be a
substructure of a structure
declared with the LIKE attribute.
For example, the following is
invalid:

DECLARE 1 A LIKE G.C,
1 B,

2 C,
3 D,
3 E,

2 F,
1 G LIKE B;

because the LIKE attribute of A
specifies a substructure, G.C, of
a structure, G, declared with the
LIKE attribute.

c. Under the optimizing compiler, no
substructure of the major
structure containing "structure
variablew can have the LIKE
attribute. For example, the
following is invalid under the
optimizing compiler:

DECLARE 1 A LIKE C,
1 B,

2 C,
3 D,
3 0,
3 E,

2 F LIKE X,
1 X,

2 Y,
2 Z;

because the LIKE attribute of A
specifies a structure, C, within a
structure, B, that contains a
s~bstructure, F, having the LIKE
attribute.

4. Neither additional substructures nor
elementary names can be added to the
created structure; any level number
that immediately follows the
Wstructure variable" in the LIKE
attribute specification in a DECLARE
statement must be algebraically equal
to or less than the level number of
the name declared with the LIKE
attribute.

5. Attributes of the "structure variable"
itself do not carryover to the
created structure. For example,
storage class attributes do not carry
over. If the "structure variablew

following the keyword LIKE represents
an array of structures, its dimension
attribute is not carried over.
Attributes of substructure names and
elementary names, however, are carried
over; contained dimension and length

attributes are ~ecomputed. An
exception is that this does not apply
to the INITIAL attribute for any
elements of a label array that has
been initialized by prefixing to a
statement.

6. If a direct application of the
description to the structure declared
LIKE would cause an incorrect
continuity of level numbers (for
example, if a minor structure at level
3 were declared LIKE a major structure
at level 1) the level numbers are
modified by a constant before
application.

7. The LIKE attribute is expanded before
the ALIGNED and UNALIGNED attributes
are inherited by the contained
elements of a structure.

8. The LIKE attribute is expanded before
the standard defaults or DEFAULT
statements are applied.

OFFSET and POINTER

Abbreviation: PTR for POINTER

The OFFSET and POINTER attributes
describe locator variables. A pointer
variable can be used in a based variable
reference to identify a particular
generation of the based variable. Offset
variables identify a location relative to
the start of an area; pointer variables
identify any location, including those
within areas.

General format:

POINTER I OFFSET
((element-area-variable)]

General rules:

1. A pointer variable can be explicitly
declared in a DECLARE statement, or it
can be contextually declared by its
appearance as a pointer qualifier, by
its appearance in a BASED attribute,
or by its appearance in a SET option.

2. An offset variable cannot be
contextually declared. If no area
variable is specified the offset can
only be used as a locator qualifier
through use of the POINTER built-in
function.

3. The value of a pOinter variable can be
set in any of the following ways:

a. With the SET option of a READ

Section I: Attributes 431.

statement.

b. By a LOCATE statement.

c. By an ALLOCATE statement.

d. By assignment of the value of
another locator variable, or a
locator value returned by a user
defined function.

e. By assignment of an ADDR or NULL
built-in function value.

4. The value of an offset variable can be
set in anyone of the following ways:

a. By an ALLOCATE statement.

b. By assignment df the value of
another locator variable, or a
locator value returned by a user
defined function.

c. By assignment of the NULL built-in
function value.

5. Locator variables cannot be operands
of any operators other than the
comparison operators = and , =.

6. Locator data cannot be converted to
any other data type, but pOinter can
be converted to offset, and vice
versa.

7. A locator value can be assigned only
to a locator variable. When an offset
value is assigned to an offset
variable, the area variables named in
the OFFSET attributes are ignored.

A pointer value is converted to offset
by effectively deducting the painter
value for the start of the area from
the pointer value to be converted.
This conversion is limited to pOinter
values that relate to addresses within
the area named in the OFFSET
attribute. Except when assigning the
NULL built-in function value, it is an
error to attempt to convert to an
offset variable that is not associated
with an area.

In conversion of offset data to
pointer, the offset value is added to
the pOinter value of the start of the
area named in the OFFSET attribute.
It is an error to attempt to convert
an offset variable that is not
associated with an area.

In any conversion of locator data
under the optimizing compiler, if the
offset variable is a member of a
structure, or if it appears in a DO
statement or a multiple assignment

432 OS PL/I CKT AND OPT LRM PART II

statement, then the area associated
with that offset variable must be an
unsubscripted, non-defined, element
variable. The area may be based, bUt
if so, its qualifier must be an
unsubscripted, non-based, non-defined
painter: and this pointer must not be
used to qualify the area explicitly in
declaration of the offset variable.
NO such restrictions apply to the
checkout compiler.

8. With one exception, locator data
cannot be transmitted using STREAM
input/output. The exception is that,
for the checkout compiler, locator
variables can appear in a PUT DATA or
PUT LIST statement.

9. Whenever implicit conversion between
pOinter and offset takes place the
area variable designated in the OFFSET
attribute is used to establish the
value.

Assumption:

The variable named in the OFFSET
attribute is contextually declared to have
the AREA attribute.

OPTIONS

The OPTIONS attribute specifies
characteristics of entry data. The OPTIONS
attribute impli6s the ENTRY attribute and
is additive. It has nO effect on argument
passing and generic selection.

General Format:

OPTIONS (options-list)

It is used in the following manner:

DECLARE identifier

[ENTRY[(parameter-descriptor-list)]]

[VARIABLE] OPTIONS(option-list):

The options are separated by blanks.
For this implementation, the options are:

lCOBOL [additional-options] I
FORTRAN [additional-options]
{ASSEMBLERIASM} INTER [RETCODE]

One or more additional options may
appear, in any order, with either the COBOL
or the FORTRAN option. They are:

NOMAP
NOMAPIN

[(argument-list)]
[(argument-list)]

NOMAPOUT [(argument-list)]

INTER
RETCODE

The COBOL, FORTRAN, and additional
options are described only briefly
below; a full account of
the effect and usage is given in chapter
19, WInterlanguage Communication".

General rules:

1. The OPTIONS attribute can only be used
in an entry declaration. It can only

be specified for external entry constants,
or entry variables, or parameters.

2. The options can be specified in any
order.

3. The COBOL option specifies that the
designated entry point is in a COBOL

subprogram.

4. The FORTRAN option specifies that the
designated entry point is in a FORTRAN

subroutine or function.

5. The ASSEMBLER option specifies that
the designated entry point is in an
assembler subroutine; this option aids
invocation of the entry pOint from a
PL/I program, by causing arguments to
be passed directly to the subroutine,
rather than via PL/I control blocks.
The option is subject to the following
rules:

a. An entry name declared with the
OPTIONS (ASSEMBLER) attribute
cannot be used as a function
reference.

b. Any number of arguments can be
passed in the CALL statement
invoking the entry, from zero up
to the number implied by the entry
declaration, but intervening
arguments cannot be omitted.

c. If the INTER option (see rule 1)
is omitted, a warning diagnostic
will be issued, and INTER will be
assumed; the PL/Iinterrupt
handling facilities will deal with
interrupts that are not handled by
the assembler routine, provided
that certain PL/I conventions are
followed. (see the programmer's
guide for the compiler.)

d. Multitasking options cannot be
used when invoking subroutines for
which OPTIONS(ASSEMBLER) has been
specified.

6. The NOMAP, NOMAPIN and NOMAPOUT

options prevent the manipulation of
data aggregates at the interface
between PL/I and either COBOL or
FORTRAN.

One or more of these options can
appear in the same OPTIONS-attribute
specification.

The arguments to which each option
applies can be specified in the
optional "argument-list" that follows
the option keyword. The format of the
"argument-list" is:

(ARGi [,ARGj] •••)

where i,j, ••• are decimal integers,
and the option is to apply to the ith,
jth, ••• items in the argument list of
procedure reference.

Only the arguments to which this
option applies are specified in the
argument list; they can be specified
in any order.

If there is no argument list for an
option, the option is assumed to apply
to all the arguments passed on
invocation of the entry name.

An OPTIONS specification should not
include the same argument in more than
one specified or assumed argument
list.

1. The INTER option specifies that the
PL/I interrupt handling facilities are
to deal with those interrupts
occurring during execution of a non
PL/I routine or subprogram that are
not handled by the invoked program or
its associated facilities. Note that
routines executed with the INTER
option must follow certain PL/I
conventions if the interrupt is to be
successfully handled by PL/I. (See
the programmer's guide for the
compiler.)

~ For Models 91 and 195, the INTER
option will pass all interrupts to the
PL/I interrupt handler, never to the
appropriate non-PL/I routines.

8. The RETCODE option specifies that, on
return from the non-PL/I routine, the
value in the lower half of register 1~
is to be saved as the PL/I return
code. This option enables non-PL/I
routines to pass return codes to PLiI.
The value of the return code can be
interrogated by means of the PLIRETV
built-in function.

Examples:

Section I: Attributes 433

DCL COBOLA OPTIONS(COBOL NOMAP(ARG1)
NOMAPOUT(ARG3»;

CALL COBOLA(X,Y,Z); /* x, Y, Z ARE
STRUCTURES */

. ,
DCL FRTRNA OPTIONS(FORTRAN I~TER);

CALL FRTRNA(L,M); /* L AND M ARE*/
/*ARRAYS */

. ,
DCL ASSEMA OPTIONS(ASM INTER RETCODE)

ENTRY(FIXED DEC",FLOAT);

CALL ASSEMA(A,B,C,D); /*VALID*/

CALL ASSEMA(A,B); /*VALID*/

CALL ASSEMA; /*VALID*/

CALL ASSEMA(A",D): /*INVALID*/

O~PUT

see INPUT.

Parameter Attribute

The parameter attribute specifies that a
name in an invoked procedure represents an
argument passed to that procedure.

General rules:

1. An identifier is explicitly declared
with the parameter attribute by its
appearance in a parameter list. The
identifier must not be subscripted or
qualified.

2. A parameter list is specified in a
PROCEDURE or ENTRY statement.
Parameters in a parameter list
correspond, from left-to-right, with
arguments in an argument list. The

434 OS PL/I CKT AND OPT LRM PART II

number of arguments and parameters
must be the same.

3. Attributes other than parameter can be
supplied by a DECLARE statement
internal to the proced\~e. A
parameter cannot be declared with any
file attributes other than FILE, or
with any of the attributes STATIC,
AUTOMATIC, BASED, BUILTIN, EXTERNAL,
GENERIC, or DEFINED.

4. If a parameter is to be used as a base
item for string overlay defining, or
is to be specified in record-oriented
transmission, the CONNECTED attribute
must be declared explicitly.

s. Bounds, lengths, and sizes of simple
parameters must be specified either by
asterisks or by constants. Only
controlled parameters may have the
INITIAL attribute.

6. If the attributes of an argument do
not match those given for the
corresponding parameter, a dummy
argument is generated with attributes
that agree with those of the
parameter. The original argument is
then converted and assigned to the
dummy argument. The conversion is
performed automatically for internal
entry constants: but for external
entry constants and entry variables, a
parameter-descriptor list must be
given in an appropriate entry
declaration if conversion is required.

The relationships between arguments
and parameters is discussed in chapter
9, ·Subroutines and Functions".

Assumptions:

If attributes are not supplied in a
DECLARE statement, default attributes are
applied, depending on the initial letter of
the parameter identifier and on any
associated DEFAULT statement. A parameter
has the INTERNAL attribute by default.

PICTURE

Abbreviation: PIC

The PICTURE attribute is used to define
the internal and external formats of
character-string and numeric character data
and to specify the editing of data.
Numeric character data is data having an
arithmetic value but stored internally in
character form. Numeric character data
must be converted to coded arithmetic
before arithmetic operations can be

performed.

The picture characters are described in
·Picture Specification Character" in Part
II.

General format:

PICTURE

'character-picture-specification'

'numeric-picture-specification'

A "picture specification", either character
or numeric, is composed of a string of
picture characters enclosed in single
quotation marks. An individual picture
character may be preceded by a repetition
factor, which is a decimal integer
constant, B, enclosed in parentheses, to
indicate repetition of the character B
times. If n is zero, the character is
ignored. Picture characters are considered
to be grouped into fields, some of Which
contain subfields.

General rules:

1. The "character-picture-specification·
is used to describe a character-string
data item.

2. The "numeric-picture-specification" is
used to describe a character item that
represents either an arithmetic value
or a character-string value, depending
upon its use.

3. A numeric character data item can have
only a decimal base. Its scale and
precision are specified by the picture
characters. The PICTURE attribute
cannot be specified in combination
with base, scale, or precision
attributes. If the mode of the
numeric character data is COMPLEX,
however, the COMPLEX attribute must be
explicitly stated.

Q. Only coded arithmetic data or
character string data representing
arithmetic constants may be assigned
to a numeric picture variable.

POINTER

See OFFSET.

POSITION

See DEFINED.

PreCision Attribute

The prec1s10n attribute is used to specify
the minimum number of significant digits to
be maintained for the values of the data
items, and to specify the scale factor (the
assumed position of the binary or decimal

t point). The preCision attribute applies to
both binary and decimal data.

General format:

(number-of-digits [,scale-factor])

The "number-of-digits· is an unsigned
decimal integer constant and "scale-factor"
is an optionally Signed decimal integer
constant. The precision attribute
specification is often represented, for
brevity, as (p,q), where E represents the
"number-of-digits· and g represents the
"scale-factor".

General rules:

1. The preCision attribute must follow,
with no intervening keywords or names,
the scale (FIXED or FLOAT), base
(DECIMAL or BINARY), or mode (REAL or
COMPLEX) at the same factoring level.

2. The number of digits s~ecifies the
number of digits to be maintained for
data items assigned to the variable.
The scale factor specifies the number
of fractional digits. No point is
actually present; its location is
assumed.

3. The scale factor can be specified for
fixed-point variables only; the number
of digits is specified for both fixed
-point and floating-point variables.
Q. When the scale is FIXED and no
scale factor is specified, it is
assumed to be zero: that is, the
variable is to represent integers.

5. The scale factor of the variable, or
of an intermediate result must be in
the range -128 through +121.

6. The scale factor can be negative, and
it can be larger than the number of
digits. A negative scale factor (-q)
always specifies integers, with the
point assumed to be located g places
to the right of the rightmost actual
digit. A positive scale factor (q)
that is larger than the number of
digits always specifies a fraction,
with the point assumed to be located g
places to the left of the rightmost
actual digit. In either case,
intervening zeros are assumed, but
they are not stored; only the
specified number of digits are

Section I: Attributes Q35

actually stored.

7. The precision attribute cannot be
specified in combination with the
PICTURE attribute.

8. The maximum number of digits allowed
is 15 for decimal fixed-point data, 31
for binary fixed-point data, 33 for
decimal floating-point data, and 109
for binary floating-point data.

Assumptions:

The standard defaults for precision are
as follows:

(5,0) for DECIMAL FIXED
(15,0) for BINARY FIXED
(6) for DECIMAL FLOAT
(21) for BINARY FLOAT

The PRINT attribute specifies that the data
of the file is ultimately to be printed.
The PAGE and LINE options and format items
of the PUT statement and the PAGESIZE
option of the OPEN statement can be used
only with files having the PRINT attribute.
These options are described in section J,
"Statements" •

General format:

PRINT

General rules:

1. The PRINT attribute implies the OUTPUT
and STREAM attributes.

2. The PRINT attribute conflicts with the
RECORD attribute. (However RECORD
files can be associated with the
printer~ see chapter 12, "Record
Oriented Transmission".)

3. The PRINT attribute causes the initial
data byte.within each record to be
reserved for ANS printer control
characters. These control characters
are set by the PAGE, SKIP, or LINE
format items or options.

Assumption:

If no FILE or STRING specification
appears in a PUT statement, the standard
output file SYSPRINT is assumed.

436 OS PL/I CKT AND OPT LRM PART II

See COMPLEX.

RECORD and STREAM

The RECORD and STREAM attributes specify
the kind of data transmission to be used
for the file. STREAM indicates that the
data of the file is considered to be a
continuous stream of data items, in
character form, to be assigned from the
stream to variables, or from expressions
into the stream. RECORD indicates that the
file consists of a collection of physically
separate records, each of which consists of
one or more data items in any form. Each
record is transmitted as an entity to or
from a variable.

General format:

RECORD I STREAM

General rules:

1. A file with the STREAM attribute can
be specified only in the OPEN, CLOSE,
GET, PUT, ON, and aSSignment
statements.

2. A file with the RECORD attribute can
be specified only in the OPEN, CLOSE,
READ, WRITE, REWRITE, LOCATE, UNLOCK,
DELETE, ON, and assignment statements.

3. A file with the STREAM attribute
cannot have any of the following
attributes: UPDATE, DIRECT,
SEQUENTIAL, TRANSIENT, BACKWARDS,
BUFFERED, UNBUFFERED, EXCLUSIVE, and
KEYED, any of which implies RECORD.

4. A file with the RECORD attribute
cannot have the PRINT attribute.

Assumptions:

Default is STREAM. If a file is
implicitly opened by a READ, WRITE,
REWRITE, LOCATE, UNLOCK, or DELETE
statement, RECORD is assumed.

REDUCIBLE

See IRREDUCIBLE.

RETURNS

The RETURNS attribute is specified in an
ENTRY declaration to define the data
attributes of a value returned by an entry
variable or an external procedure.

General format:

RETURNS (attribute •••)

It is used in the following manner:

DECLARE identifier
[ENTRY (parameter descriptor list)]

[VARIABLE] RETURNS (attribute •••);

General rules:

1. The attributes in the parenthesized
list following the keyword RETURNS
must be separated by blanks (except
for attributes, such as precision,
that are enclosed in parentheses).
They must agree with the attributes
specified either explicitly in the
RETURNS option of the PROCEDURE or
ENTRY statement to which the entry
name is prefixed, or by default.

2. The attributes specify the data
characteristics of the value returned
when the entry is invoked as a
function.

3. The only attributes that may be
specified are string or arithmetic
attributes (including VARYING), or
ALIGNED, UNALIGNED, POINTER, OFFSET,
AREA, FILE, EVENT, TASK, and LABEL.
The OFFSET attribute may include an
area name; under the optimizing
compiler, this must be a non-defined,
unsubscripted, unqualified name, but
under the checkout compiler it may be
any area expression other than a
function reference. The LABEL
attribute may include a list of label
constants.

4. If RETURNS attributes are not
specified with an explicitly declared
entry constant of an external function
procedure, default attributes are
applied according to the entry
constant identifier. Standard default
assumptions are given below.

Note: The value returned by a
procedure function reference should
agree with the attributes specified by
RETURNS; if it does not agree, there
is an error since no conversion will
be performed.

5. string lengths and area s~zes must be
specified by decimal integer

constants. The returned value has the
specified length or size.

Assumptions:

If the RETURNS attribute is not
specified for an external entry point, a
RETURNS attribute is assumed specifying
default attributes; the defaults are either
as specified in a DEFAULT statement or are
the standard defaults: REAL FIXED BINARY
(15,0) if the entry constant begins with
any of the letters I through N, otherwise,
REAL FLOAT DECIMAL (6).

SEQUENTIAL

See DIRECT.

Size Attribute

See AREA.

STATIC

See AUTOMATIC.

STREAM

See RECORD.

The TASK attribute describes a variable
that may be used as a task name, to test or
control the relative priority of a task.

General format:

TASK

General rules:

1. An identifier can be explicitly
declared with the TASK attribute in a
DECLARE statement, or it can be
contextually declared by its
appearance in a TASK option of a CALL
statement.

2. Task variables can also have the
following attributes:

section I: Attributes 437

a. Dimension

b. Scope (the default is INTERNAL)

c. storage class (the default is
AUTOMATIC)

d. DEFINED (task variables may only
be defined on other task names)

e. INITIAL and INITIAL CALL

3. A task expression can be used in the
following contexts only:

a. In the TASK option of a CALL
statement

b. As an argument of the PRIORITY
pseudovariable or built-in
function

c. As an argument in a CALL statement
or function reference

d. As a parameter in a PROCEDURE or
ENTRY statement

e. In an ALLOCATE or FREE statement

f. In an assignment statement

g. In a RETURN statement

h. AS the control variable of a DO
loop.

i. In a comparison operation.

4. A task variable may be associated with
the priority of a task by including
the task name in the TASK option of a
CALL statement. A task variable is
said to be active if its associated
task is active. A task variable must
be in an allocated state when it is
associated with a task and must not be
freed while it is active. An active
task variable cannot be associated
with another task.

5. A task variable contains a Single
value, a priority value. This value
is a fixed-point binary value of
precision (15,0). This value can be
tested and adjusted by means of the
PRIORITY built-in function and
·pseudovariable. The built-in function
returns the priority of the task
argument relative to the priority of
the task executing the function.
Similarly, the pseudovariable permits
assignment, to the named task
variable, of a priority relative to
the priority of the task executing the
assignment.

6. Unless the priority of the task

438 OS PL/I CRT AND OPT LRM PART II

variable is SEt by means of either the
PRIORITY pseudovariable or the
PRIORITY option of the CALL statement
which invokes the task, its priority
will be undefined.

1. Task data cannot be converted to any
other data type.

8. Assignment of task data to an inactive
task variable is permitted. The value
aSSigned must be the priority of a
task derived from a task expression.

9. Two task expressions can be compared
using = or a ~= comparison operator.
The variables compare equal if their
priorities are equal, otherwise they
compare not equal.

TRANSIENT

See DIRECT.

UNALIGNED

See ALIGNED.

UNBUFFERED

See BUFFERED.

UPDATE

See INPUT.

VARIABLE

IThe VARIABLE attribute can be used only
Iwith the ENTRY or FILE attributes. It
lestablishes the name as an entry-variable
lor a file-variable.

General format:

VARIABLE

VARYING

See BIT.

This section presents the PL/I statements
in alphabetical order. (The preprocessor
statements are alphabetically arranged at
the end of this section.) Most statements
are accompanied by the following
information:

1. Function a short description of the
meaning and use of the statement

2. General format -- the syntax of the
statement

3. Syntax rules -- rules of syntax that
are not reflected in the general
format

4. General rules -- rules governing the
use of the statement and its meaning
in a PL/I program

ALLOCATE

Abbreviation: ALLOC

The ALLOCATE statement causes storage to be
allocated for specified controlled or based
data.

General format:

ALLOCATE option[,optionJ ••• ;

where ·option" has one of two forms:

Option 1

[levelJ identifier [dimensionJ
[attribute] •••

Option 2

based-variable-identifier
[SETCelement-locator-variable)]
[INCelement-area-variable)]

Syntax rules:

Syntax rules 1 through 6 apply only to
Option 1:

1. ·Level" indicates a level number. The
first identifier appearing after the
keyword ALLOCATE must be a level 1
identifier.

2. Each identifier must represent data of
the controlled storage class or be an
element of a controlled major

Section J: Statements

structure.

3. "Dimension" indicates a dimension
attribute. "Attribute" indicates an
AREA, BIT, CHARACTER, or INITIAL
attribute.

4. A dimension attribute, if present,
must specify the same number of
dimensions as that declared for the
associated identifier.

5. The attribute BIT may appear only with
a BIT identifier; CHARACTER may appear
only with a CHARACTER identifier; AREA
may only appear with an area
identifier.

6. A structure element name, other than
the major structure name, may appear
only if the relative struc~uring of
the entire major structure containing
the element appears as in the DECLARE
statement for that structure. In this
case, dimension attributes must be
specified for all identiters that are
declared with the dimension attribute.

Syntax rules 7 and 8 apply only to
Option 2:

7. The based variable appearing in the
ALLOCATE statement may be an element
variable, an array, or a major
structure. When it is a major
structure, only the major structure
name is specified.

8. The SET option, if present, may appe~r
preceding or following the IN option.

General rules:

Rules 1 through 6 apply only to option 1:

1. When Option 1 is used, an ALLOCATE
statement for an identifier for which
storage was allocated and not freed
causes storage for the identifier to
be "pushed down" or stacked. This
pushing down creates a new generation
of data for the identifier. When
storage for this identifier is freed,
using the FREE statement, storage is
·popped upn or removed from the stack.

2. Bounds for arrays, lengths of strings,
and sizes of areas are fixed at the
execution of an ALLOCATE statement.

a. If a bound, length, or size is
explicitly specified in an

section J: statements 439

ALLOCATE statement, it overrides
that given in the DECLARE
statement.

b. If a bound, length, or size is
specified by an asterisk in an
ALLOCATE statement, the bound,
length or size is taken from the
current generation. If no
generation of the variable exists,
the bound, length, or size is
undefined and the program is in
error.

c. Either the ALLOCATE statement or a
DECLARE or DEFAULT statement must
specify any necessary dimension,
size, or length attributes for an
identifier. Any expression taken
from a DECLARE or DEFAULT
statement is evaluated at the
point of allocation using the
conditions enabled at the ALLOCATE
statement, although names in the
expression are interpreted in the
environment of the DECLARE or
DEFAULT statement.

d. If, in either an ALLOCATE or a
DECLARE statement, bounds,
lengths, or sizes are specified by
expressions that contain
references to the variable being
allocated, the expressions are
evaluated using the value of the
most recent generation of the
variable.

3. Upon allocation of an identifier,
initial values are assigned to it if
the identifier has an INITIAL
attribute in either the ALLOCATE
statement or DECLARE statement.
Expressions or a CALL option in the
INITIAL attribute are executed at the
point of allocation, using the
conditions enabled at the ALLOCATE
statement, although the names are
interpreted in the environment of the
declaration. If an INITIAL attribute
appears in both DECLARE and ALLOCATE
statements, the INITIAL attribute in
the ALLOCATE statement is used. If
initialization inVOlves reference to
the variable being allocated, the
reference will be to the new
generation of the variable.

4. To determine whether or not storage
has been allocated for an identifier
and how many generations exist, the
built-in function ALLOCATION may be
used.

5. A parameter that is declared
CONTROLLED may be specified in an
ALLOCATE statement.

440 05 PL/I CKT AND OPT LRM PART II

6. Any evaluations performed at the time
the ALLOCATE statement is executed
(e.g., evaluation of expressions in an
INITIAL attribute) must not be
interdependent.

Rules 7 through 12 apply only to Option 2:

7. When Option 2 is used, storage is not
"pushed down" or stacked. In this
case, reference may be made to any
generation of a based variable through
a locator variable.

8. The allocation of a based variable
involves the based variable to be
allocated, a locator variable to
identify the new generation, and an
area if the generation is to be
allocated in an area. If no SFT
option is specified, a SET option is
assumed to specify the locator
variable given in the BASED attribute
of the based variable declaration; it
is an error, in such a case, if this
BASED attribute does not specify a
locator variable. If the SET option
specifies an offset variable and no IN
option is present then an IN option is
assumed to specify the area given in
the OFFSET attribute of the offset
variable declaration; in such a case,
it is an error if this OFFSET
attribute does not specify an area
variable.

·9. If the SET option specifies an offset
variable, the locator value
identifying the new generation is
assigned to the offset variable; the
IN option must be present, or be
assumed, and it must specify either
the same area as that specified in the
OFFSET attribute of the offset
variable declaration, or an area
contained in or containing that area.

10. If no IN option is present and none is
assumed, the new generation is
allocated in storage associated with
the task which executes the ALLOCATE
statement. The SET option in this
case must specify a pOinter variable.

11. If the IN option appears in, or is
assumed for, the ALLOCATE statement,
storage will be allocated in the named
area, for the based variable. If
sufficient storage does not exist
within this area, the AREA condition
will be raised.

12. The amount of storage allocated for a
based variable depends on its
attributes, and on its dimensions,
length, or size specifications if
these are applicable at the time of
allocation.

r---,
I
option 1 (Element Assignment)

{
element-variable} [,element-variable]

pseudovariable ,pseudovariable

option 2 (Array Assignment)

{

array-variable

pseudovariable
} [

,array-variable

,pseudovariable]

= element-expression:

{
structure-expression (,BY NAMEl}

= array-expression (,BY NAMEl :
element-expression

IOption 3 (structure Assignment)
I
: {structure-variable}frstructure-variableJ ••• = {structure-expression (,BY NAMEl}:

I pseudovariable . ~pseudovariable element-expression
L---J
Figure J.1. General formats of the assignment statement

These attributes are determined from
the declaration of the based variable,
and additional attributes may not be
specified in the ALLOCATE statement.
A based structure may contain
adjustable array bounds or string
lengths or area sizes (see ftREFER
Option", in "Storage Control" in Part
I). Note that the asterisk notation
for bounds, length, or size is not
permitted for based variables.

Assignment statement

The assignment statement is used to
evaluate an expression and to assign its
value to one or more target variables: the
target variables may be element, array, or
structure variables. The target variables
can be pseudovariables.

General formats:

The assignment statement has three
general format options. They are given in
figure J.1.

syntax rules:

1. In Option 2, each target variable must
be an array. If the right-hand side
contains arrays of structures, then
all target variables must be arrays of
struct ures • The BY NAME option may be
given only when the right-hand side
contains at least one structure.

2. In Option 3, each target variable must
be a struct ure.

General rules:

1. Aggregate assignments (Options 2 and
3) are expanded into a series of
element aSSignments according to rules
5 through 8.

2. An element assignment is performed as
follows:

a. Subscripts and locator
qualifications of the target
variables, and the second and
third arguments of SUBSTR
pseudovariable references, are
evaluated first. (The order of
evaluation of subscripts and
qualifiers is undefined).

b. The expression on the right-hand
side is then evaluated.

c. For each target variable (in left
to right order), the expression is
converted to the characteristics
of the target variable according
to rules for data conversion
(except that whenever a conversion
of arithmetic base is involved,
the value is converted directly to
the precis·ion of the target
variable). The converted value is
then assigned to the target
variable.

d. The element variable can be a
variable with the PICTURE
attribute. The rules for
assignments to picture targets are
described in section 0, "Picture
Specification Characters ft •

3. The following rules apply to string
element assignment:

Section J: Statements 441

a. The assignment is performed from
left to right, starting with the
leftmost position.

b. If the target variable is a fixed
length string, the expression
value is .. trl.Ulcatp.d on the right if
it is too long (raising the
STRINGSIZE condition, if enabled)
or padde~ on the right (with
blanks for character string, zeros
for bit strings) if the value is
too short. (Note that a string
pseudovariable is considered to be
a fixed-length string.) The
resulting value is assigned to the
target.

c. If the target is a VARYING string
and the value of the expression is
longer than the maximum length
declared for the variable, the
value is truncated on the right
(raising the STRINGSIZE condition,
if enabled). The target string
obtains a current length equal to
its maximum length. If the value
of the expression is not longer
than the maximum length, the value
is assigned; the target string
obtains a current length equal to
the length of the value.

4. The following rules apply to other
element assignments:

a. If the target is an area variable,
the expression must be an area
variable or function. The AREA
condition will be raised by this
assignment if the size of the
target area is insufficient for
the current extent of the area
being assigned.

b. If the target is a pOinter
variable, the expression can only
be a pointer (or offset) variable
or a pOinter (or offset) function
reference. If the expression is
of offset type, its value is
converted to pointer.

c. If the target is an offset
variable, the expression can only
be an offset (or pointer) variable
or an offset (or pointer) function
reference. If the expression is
of pointer type, its value is
converted to offset.

d. If the target is a label variable,
the expression can only be a label
variable or label constant.
Environmental information (i.e.,
information that identifies the
invocation of the block) is always
assigned to the label variable.

442 OS PL/I CKT AND OPT LRM PART II

e. If the target is an event
variable, the expression can only
be an event variable. The
assignment is uninterruptable, and
it involves both the completion
and status values. An event
variable does not become active
when it has an active event
variable assigned to it. It is an
error to aSSign to an active event
variable.

t. If the target is a STATUS
pseudovariable, a value can be
assigned whether or not the event
variable is active. It is an
error to aSSign to a COMPLETION
pseudovariable if the named event
variable is active.

g. If the target is an entry
variable, the expression can only
be an entry expression.

h. If the target is a file name
variable, the expression can only
be a file expression.

i. If the target is a task variable,
the expression can only be a task
variable or a task function
reference. The task variable
specified must be inactive. The
aSSignment involves the priority
of the task variable or task
function reference.

5. The first target variable in an
aggregate assignment is known as the
master variable. If the master
variable is an array, then an array
expansion (Rule 6) is performed:
otherwise, a structure expansion
(Rules 7 and 8) is performed. The
CHECK condition for assignment to a
target variable is raised (when
suitably enabled) after assignment to
each element. In the case of BY NAME
aSSignment, the CHECK condition for
the target variable is raised
regardless of whether any value is
aSSigned to an item. The label prefix
of the original statement is applied
to a null statement preceding the
other generated statements.

6. In Option 2, all array operands must
have the same number of dimensions and
identical bounds. The array
aSSignment is expanded into a loop as
follows.

LABEL: DO jl LBOUND(master-variable,l) TO
HBOUND(master-variable,l);

DO j2 = LBOUND(master-variable,2) TO
HBOUND(master-variable,2);

DO jn = LBOUND(master-variable,n) TO
HBOUND(master-variable,n);

generated assignment statement

END LABEL;

In this expansion, n is the number of
dimensions of the master variable that
are to participate in the assignment.
In the generated assignment statement,
all array operands are fully
subscripted, using (from left to
right) the dummy variables jl to jn.
If an array operand appears with no
subscripts, it will only have the
subscripts jl to jn; if cross-section
notation is used, the asterisks are
replaced by jl to jn. If the original
assignment statement (which may have
been generated by Rule 7 or Rule 8)
has a condition prefix, the generated
assignment statement is given this
condition prefix. If the original
assignment statement (which may have
been generated by Rule 8) has a BY
NAME option, the generated assignment
statement is given a BY NAME option.
If the generated assignment statement
is a structure assignment, it is
expanded as given below.

7. In Option 3, where the BY NAME option
is not specified, the following rules
apply:

a. None of the operands can be
arrays, although they may be
structures that contain arrays.

b. All of the structure operands must
have the same number, k, of

immediately contained items.

c. The assignment statement (which
may have been generated by Rule 6)
is replaced by ~ generated
assignment statements. The !th
generated assignment statement is
derived from the original
assignment statement by replacing
each structure operand by its !th
contained item; such generated
assignment statements may require
further expansion according to
Rule 6 or Rule 7. All generated
assignment statements are given
the condition prefix of the
original statement.

8. In Option 3, where the BY NAME option
is given, the structure assignment,
which may have been generated by Rule
6, is expanded according to steps a
through d below. None of the operands

can be arrays.

a. The first item immediately
contained in the master variable
is considered.

b. If each structure operand and
target variable has an immediately
contained item with the same
identifier, an assignment
statement is generated as follows:
the statement is derived by
replaCing each structure operand
and target variable with its
immediately contained item that
has this identifier. If any
structure contains no such
identifier, no statement is
generated. If the generated
assignment is a structure or
array-of-structures assignment, BY
NAME is appended. The first
generated assignment is given the
label prefix of the original
assignment statement; all
generated assignment statements
are given the condition prefix of
the original assignment statement.

c. Step b is repeated for each of the
items immediately cqntained in the
master variable. The assignments
are generated in th~ order of the
items contained in the master
variable.

d. Steps a through c may generate
further array and structure
assignments. These are expanded
according to Rules 6 through 8.

The BEGIN statement heads and identifies a
begin block.

General format:

BEGIN(ORDERIREORDER];

Syntax rules:

1 • A label of a BEGIN statement may be
subscripted, but such a label caMlfM:
appear in an END statement.

General rules:

1. A BEGIN statement is used in
conjunction with an END statement to
delimit a begin block. A complete
discussion of begin blocks can be
found in chapter 6, ·Program
Organisation."

Section J: statements 443

2. ORDER and REORDER are optimization
options for use by the optimizing
compiler. If they are included in a
program processed by the checkout
compiler, they are checked for syntax
errors and then ignored. Their
presence in such a program is not an
error.

3. ORDER and REORDER specify the extent
to which the block is to be optimized.
In general, ORDER permits optimization
to the degree such that the latest
values of variables set in a block are
guaranteed available in a
computational on-unit entered at any
point during execution of the block.
REORDER permits a greater degree of
optimization; with REORDER the latest
values of variables set in the block
are not guaranteed available in an on
unit entered during execution of the
block. If neither is specified, ORDER
is assumed, but REORDER is inherited
by all contained blocks unless they
explicitly specify ORDER.

The CALL ~tatement invokes a procedure and
causes con~rol to be transferred to a
specified entry point of the procedure.

General format:

CALL {entry-expression I generic-name I
bUilt-in name}

[(argument [,argument] •••)]

[TASK [(element-task-name)]] [EVENT
(element-event-name)] [PRIORITY
(expression)];

Syntax rules:

1. The entry expression, generic name, or
built-in name represents the entry
point of the subroutine invoked.

2. The TASK, EVENT, and PRIORITY options
can appear in any order.

General rules:

1. The TASK, EVENT, and PRIORITY options,
when used alone or in any combination,
specify that the invoked and invoking
procedures are to be executed
asynchronously. Note that if either
the EVENT option or the PRIORITY
option, or both, are used without the
TASK option, the created task will
have no name. (see chapter 17,
wMul ti taksing W

•)

444 OS PL/I CRT AND OPT LRM PART II

2. When the TASK option is used, the task
name, if given, is associated with the
task created by the CALL. Reference
to this name enables the priority of
the task to be controlled at some
other point by the use of the PRIORITY
pseudovariable and built-in function.

3 • When the EVENT option is used, the
event name is associated with the
completion of the task created by the
CALL statement. Another task can then
wait for completion of this created
task by specifying the event name in a
WAIT statement.

Upon execution of the CALL statement,
the event variable is made active, and
the completion value is set to 'O'B
and the status value to O. Upon
termination of the created task, the
completion value is set to 'l'B and,
unless the task has been terminated by
a RETURN qr END statement, the status
is set to 1 if still zero.

4. If the PRIORITY option is used, the
expression in the PRIORITY option is
evaluated to an integer ~, of an
implementation-defined precision
(15,0). The priority of the named
task is then made m relative to the
task in which the CALL is executed.

If a CALL statement with the EVENT or
TASK option does not have the PRIORITY
option, the priority of the invoked
task is made equal to that of the task
variable in the TASK option, if there
is a task variable, or else made equal
to the priority of the invoking task.
The programmer must specify a priority
if he uses a task variable, (by means
of either a PRIORITY option on the
CALL statement or the PRIORITY
pseudovariable prior to the CALL
statement), otherwise the task will be
of undefined priority.

5. Expressions in these options, as well
as any argument expressions, are
evaluated in the task in which the
call is executed. This includes
execution of anyon-units entered as
the result of the evaluations.

6. The environment of the invoked
procedure is established after
evaluation of the expressions named in
Rule 5, and before the procedure is
invoked.

7. A CALL statement must not be used to
invoke a procedure if control is
returned to the invoking procedure by
means of a RETURN(expression)
statement.

8. See chapter 9, ·Subroutines and
Functions· for detailed descriptions
of the interaction of arguments with
the parameters that represent these
arguments in the invoked procedure".

9. If the procedure invoked by the CALL
statement has been specified in a
FETCH or RELEASE statement, and if it
is not present in main storage, the
CALL statement initiates dynamic
loading of the procedure from
auxiliary storage. The execution of
the invocation is delayed until the
procedure has been loaded.

In this case, the entry expression
must be an entry constant, and it must
be eqUivalent to both the name by
which the procedure is known in
external storage and a point through
which the procedure may be entered:
and the same constant must have
appeared in a FETCH or RELEASE
statement compiled at the same time as
the CALL statement. A main procedure
may not be dynamically loaded. A
fetched procedure may not fetch a
further procedure.

The CHECK statement causes the CHECK
condition to be dynamically enabled for
specified or assumed names.

The PL/I checkout compiler implements
the CHECK statement in this sense, but the
PL/I optimizing compiler implements this
statement by checking the syntax and then
ignoring it.

General format:

CHECK[(name-list)];

Syntax rules:

1. The optional "name-list- is one or
more names separated by commas.

2. A name must be one of the following:

a. An unsubscripted variable
representing element, an array or
a structure of any data type. The
variable must not be iSUB-defined
or locator qualified.

b. A label constant.

c. An entry constant.

3. If a name-list is specified, the CHECK
statement applies to those names only.

The names must be known in the block
in which the CHECK statement is
executed.

If no names are specified, the CHECK
statement is assumed to apply to every
name known in the external procedure
that contains the CHECK statement,
whether or not these names were known
at the time the CHECK statement was
executed. These names may be known in
other, separately compiled, external
procedures.

General Rules:

1. Execution of a CHECK statement has the
effect of enabling a CHECK condition
prefix, or of modifying an existing
CHECK condition-prefix, for every
statement that is executed after the
execution of the CHECK statement.

The prefixes thus derived operate in
the same way as ordinary prefixes. If
the condition is raised, any CHECK on
unit established is executed. If
there is no on-unit, the standard
system action for the CHECK condition
is taken. The situations in which the
CHECK condition is raised are
described in ·CHECK Condition·, in
section H, ·On-Conditions".

2. The variable can be of any storage
class, or DEFINED, or a parameter.

3. If the name of a structure or an array
of structures appears in the name
list, this is expanded into a list of
the names of all the elements in the
structure or array of structures, in
the order in which they were declared.
This expanded list appears in the name
list for the derived prefixes.

4. The information provided by standard
system action for the CHECK condition
for a particular name is:

a. The statement number of the
statement in which the references
to the name occurs.

b. Information similar to that put
out by a PUT DATA statement for
the particular type of variable.

If the name is the name of an array,
the information includes the
subscripted name of the element to
which a new value is being assigned.

5. If the name is an entry name, this can
be specified as an entry constant or
an entry variable, whether it appears
in a function reference, a CALL
statement, or an INITIAL CALL

section J: statements 445

attribute. If the reference is to an
entry variable, the information
provided by standard system action
includes the name of the entry
constant associated with the
particular invocation of the entry
variable.

6. A CHECK statement remains effective
until:

a. The program terminates, or

b. An appropriate NOCHECK statement
is executed.

The CLOSE statement dissociates the named
file from the data set with which it was
associated by opening in the current task.

General format:

CLOSE FILE(file-expr)
[ENVIRONMENT({LEAVEIREREAD})]
[,FILE(file-expr)
[ENVIRONMENT({LEAVEIREREAD})]] ••• ;

General rul es :

1. The FILE(file-expression) option
specifies which file is to be closed.
It must appear once. Several files
can be closed by one CLOSE statement.
There must be a FILE option for each
one.

2., A closed file can be reopened.

3. Closing an unopened file, or an
already closed file, has no effect.

4. The CLOSE statement cannot be used to
close a file in a task different from
the one that opened the file. If a
file is not closed by a CLOSE
statement, it is automatically closed
at the completion of the task in which
it was opened.

6. All input/output events associated
with the file that have a status value
of zero when the file is closed are
set complete, with a status value of
1.

1. A CLOSE statement unlocks all records
in the file previously locked in the
task in which the CLOSE appears.

8. The ENVIRONMENT attribute with either
the REREAD or LEAVE options can be
given.

446 OS PL/I CRT AND OPT LRM PART II

DECLARE

Abbreviation: DeL

The DECLARE statement is the principal
method for explicitly declaring attributes
of names.

General format:

DECLARE
[level] identifier[attribute] •••
[SYSTEM]
l,[level] identifier[attribute] •••
(SYSTEM]] ••• ;

Syntax rules:

1. Any number of identifiers may be
declared in one DECLARE statement.

2. "Level" is a nonzero unsigned decimal
integer constant. If a level number
is not specified, level 1 is assumed
for all element and array variables.
Level 1 must be specified for all
major structure names. A blank space
must separate a level number from the
identifier following it.

3. Attributes specified in DECLARE
statements are separated by blanks.
Except for the dimenSion, length, and
precision attribute specifications,
they may appear in any order. The
dimension attribute specification must
immediately follow the array name; the
length and preciSion attribute
specifications must follow one of
their associated attributes. A comma
must follow the last attribute
specification for a particular- name
(or the name itself if no attributes
are specified with it), unless it is
the last name in the DECLARE
statement, in which case the semicolon
is used.

4. "SYSTEM" specifies that the standard
default attributes are to be applied
to the associated identifier;
attributes are not taken from DEFAULT
statements. "SYSTEM" may appear
before, after, or between the other
attributes.

Factoring of Attributes

Attributes common to several names can
be factored in a declaration to eliminate
repeated specification of the same
attribute for many identifiers. Factoring
is achieved by enclOSing the names in
parentheses, and following this by the set
of attributes which apply. All factored
attributes must apply to all of the names.
No factored attribute can be overridden for

any of the names, but any name within the
list may be given other attributes so long
as there is no conflict with the factored
attributes. Factoring of attributes is
permitted only in the DECLARE and DEFAULT
statement, but not within an ENTRY
attribute declaration. The dimension
attribute may be factored. The precision
and length attributes can be factored only
in conjunction with an associated keyword
attribute. Factoring can be nested as
shoWn in the fourth example below.

Names within the parenthesized list are
separated by commas.

Note: Structure level numbers can also be
factored, but a factored level number must
precede the parenthesized list.

DECLARE (A,B,C,D) BINARY FIXED (31);

DECLARE (E DECIMAL(6,5),
F CHARACTER(10» STATIC:

DECLARE 1 A, 2(B,C,D) (3,2) BINARY
FIXED (15), ••• :

DECLARE «A,B) FIXED(10), C FLOAT(S»
EXTERNAL:

General rules:

1. A particular level 1 identifier can be
specified in only one DECLARE
statement within a particular block.
All attributes given explicitly for
that identifier must be declared
together in that DECLARE statement.
(Note, however, that identifiers
having the FILE attribute may be given
attributes in an OPEN statement as
well. See "The OPEN statement" in
this section and chapter 10, "Input
and output" for further information.)

2. Attributes of external names, in
separate blocks and compilations, must
be consistent (except that an INITIAL
attribute given in one declaration in
a procedure compiled by the optimizing
compiler need not be repeated).

3. Labels may be prefixed to DECLARE
statements. However, a branch to such
a label is treated as a branch to a
null statement. Condition prefixes
cannot be attached to a DECLARE
statement.

DEFAULT

Abbreviation: OFT

The DEFAULT statement allows the
programmer to specify the default
attributes to be applied to designated
identifiers that require implicit
declaration of some or all of their
attributes. The DEFAULT statement can
specify default attributes for:

1. Explicitly declared identifiers

2. contextually declared identifiers

3. Attributes to be included in parameter
descriptors

4. Implicitly declared identifiers and
values returned from function
procedures

General format: See figure J.2.

General Rules:

1. Any attributes not applied according
to DEFAULT statement rules for any
partially complete explicit or
contextual declarations, and for
implicit declarations, are supplied
according to standard default rules.

2. There may be more than one DEFAULT
statement within a block. The scope
of a DEFAULT statement is the block in
which it occurs, and all blocks within
that block which neither include
another DEFAULT statement with the
same range, nor are contained in a
block having a DEFAULT statement with
the same range.

It is possible for a containing block
to have a DEFAULT statement with a
range that is partly covered by the
range of a DEFAULT statement in a
contained block. In such a case, the
range of the DEFAULT statement in the
containing block is reduced by the
range of the DEFAULT statement in the
contained block.

For example:

P: PROCEDURE;
L1 : DEFAULT RANGE (XY) FIXED:

Q: BEGIN:
L2: DEFAULT RANGE (XYZ) FLOAT:

END Pi

The range and scope of DEFAULT

Section J: Statements q47

r---,
DEFAULT {simple-specificationlfactored-specification}

(,{simple-specificationlfactored-specification}] •••

"simple-specification" is

RANGE ({identifier I letter: letter}
(,{identifierlletter:letter}] •••)

[attribute-specification]

RANGE(.) [attribute-specification]

DESCRIPTORS [attribute-specification]

"factored-specification" is

({simple-specificationlfactored-specification}
[,(simple~specificationlfactored-specification}] •••)

(attribute-specification]

"attribute-specification" is

{
attribute... (VALUE(VaIUe-specificatiOn)]}
VALUE (value-specification)

l---J
Figure J.2. General formats of the DEFAULT statement

statement Ll is all identifiers in the
procedure P beginning with the
characters XY, together with all
identifiers in begin block Q beginning
with the characters XY, except for
those beginning with the characters
XYZ. The range and scope of the
DEFAULT statement L2 is all the
identifiers in begin block Q beginning
with characters XYZ.

3. VALUE (value-specification) may appear
anywhere within an attribute
specification, except before an array
dimension attribute.

4. VALUE establishes any default rules
for a string length, area size, and
preCision. The base and scale
attributes in the value specification
must be present to identify a
particular precision specification
with a particular attribute.

5. A value specification is a list of one
or more of the following in any order;

a. AREA (size)

b. BIT (length)

c. CHARACTER (length)

d. {base-attribute scale-attribute I
scale-attribute base-attribute}

(precision[,scale factor])

448 OS PL/I CKT AND OPT LRM PART II

The base and scale attributes may be
factored, if, when expanded, the above
format is used.

The size of AREA data, or length of
BIT or CHARACTER data, can be an
expression or a decimal integer
constant, or can be specified as an
asterisk.

Example:

DEFAULT RANGE(A:C)
VALUE (FIXED DECIMAL(10),

FLOAT DECIMAL(14),
AREA(2000»;

DECLARE B FIXED DECIMAL, C FLOAT
DECIMAL,

A AREA;

These statements are equivalent to:

DECLARE B FIXED DECIMAL(10), C FLOAT
DECIMAL(14), A AREA(2000);

6. RANGE deSignates the particular
identifiers to which the attributes
specified in a DEFAULT statement
apply.

a. The form of RANGE(identifier) is
used when the default rules are to
apply to those identifiers which
contain the letters indicated in
"identifier" as their first and
subsequent letters. For example:

RANGE (ABC)

applies to these identifiers:

but not to:

~C

ABCD
ABCD •••• etc.

ABO
ACB
AB
A

hence a single letter in the RANGE
specification applies to all
identifiers which start with that
letter.

b. An alternative specification of
RANGE is the form "letter:letter"
This is used to specify that
identifiers with initial letters
which either correspond to the two
letters specified, or to any
letters between the two in
alphabetic sequence, are subject
to the default attributes
specified for a particular range.
The letters given in the
specification must be in
increasing alphabetic order, for
example:

RANGE{A:G,I:M,T:Z)

c. RANGE(*> specifies all identifiers
in the scope of the DEFAULT
statement.

7. DESCRIPTORS specifies that the
associated attributes are to be
included in any parameter descriptors
in a parameter descriptor list of an
explicit entry declaration, provided
that the inclusion of any such
attributes is not prohibited by the
presence of alternative attributes of
the same class and provided that at
least one attribute is already
present. From the second provision it
follows that the DESCRIPTORS default
attributes are not applied to
parameters having null descriptors,
that is, parameters whose attributes
match those of the corresponding
argument.

8. Factored-default-specification: this
form is used as follows:

DEFAULT (RANGE (A)FIXED, RANGE (B)
FLOAT) BINARY;

This statement establishes default
attributes FIXED BINARY for implicitly
declared identifiers with the initial

letter A, and FLOAT BINARY for those
with the initial letter B.

9. Labels may be prefixed to DEFAULT
statements. However, a branch to such
a label is treated as a branch to a
null statement. Condition prefixes
cannot be attached to a DEFAULT
statement.

Rules for Attributes in a DEFAULT
Statement:

1. The file attributes (excluding FILE),
and the attributes ENTRY, ENVIRONMENT,
RETURNS, LIKE, and VARIABLE are not
permitted in an attribute
specification. If FILE is used, it
implies a scope attribute of INTERNAL
and the attribute VARIABLE.

2. It is not possible to use the DEFAULT
statement to create a structure.
Structure elements are given default
attributes according to the identifier
of the element, not the qualified
structure element name.

3. The following attributes are allowed
in an attribute specification only if
the restriction given below for each
is observed.

AREA - without a size specification
BIT - without a string length

specification
CHARACTER - without a string length

specification
LABEL - without a label list
Arithmetic base and scale attributes -

without preciSion specifications

4. The CONTROLLED attribute cannot be
applied to a parameter or parameter
descriptor. For any identifier that
is a parameter name, a specification
of CONTROLLED as a default attribue
will be ignored, and the attribute
will be ignored if it appears in a
DESCRIPTORS attribute specification.

5. The dimensions of an array are
permitted as attributes, but only as
the first item in an attribute
specification. The bounds may be
specified as a arithmetic constant or
an expreSSion involving variables.
For example:

DEFAULT RANGE (J) (5);
DEFAULT RANGE (J) (5,5) FIXED;

but not

DEFAULT RANGE (J) FIXED (5);

6. The INITIAL attribute may be
specified.

section J: Statements 449

The DELAY statement causes the execution of
a task to be suspended for a specified
period of time.

General format:

DELAY (element-expression);

General rules:

1. Execution of the DELAY statement
causes the element expression to be
evaluated and converted to an integer
g; execution is then suspended for ~
milliseconds. The value is recorded
to 1/50th or 1/60th second, depending
on whether the frequency of the
electrical supply to the machine is 50
or 60 hertz (cycles per second).

2. If no timing facility is available,
DELAY acts as a null statement.

Example:

DELAY (20);

This statement causes execution of the
task to be suspended for 20 milliseconds or
11 milliseconds (approximately), depending
on whether the supply is 50 or 60 hertz.

DELETE

The DELETE statement deletes a record from
an UPDATE file.

General format:

DELETE FILE (file-expr)
[KEY(expression)]
[EVENT(event-variable)];

General rules:

1. The options may appear in any order.

2. The FILE option specifies the UPDATE
file; it must be specified.

3. The KEY option must be specified if
the file is a DIRECT UPDATE file. It
can be specified for a SEQUENTIAL
UPDATE file with INDEXED or key
sequenced VSAM organization. The
expression is converted to a character
string and determines which record is
to be deleted.

4. If the file is a SEQUENTIAL UPDATE
file, and the KEY option is omitted,
the record to be deleted is the last
record that was read; the data set

450 as PL/I CKT AND OPT LRM PART II

organization must be INDEXED or key
sequenced VSAM.

5. The EVENT option allows processing to
continue while a record is being
deleted.

When control reaches a DELETE
statement containing this option, the
-event variable- is made active (that
is, it cannot be associated with
another event) and is given the
completion value loeB, provided that
the UNDEFINEDFILE condition is not
raised by an implicit file opening
(see -Note- below). The event
variable remains active and retains
its loeB completion value until
control reaches a WAIT statement
specifying that event variable. At
this time, either of the following can
occur:

a. If the DELETE statement has been
executed successfully and neither
of the conditions TRANSMIT or KEY
has been raised as a result of the
DELETE, the event variable is set
complete, given the completion
value 'l'B, and the event variable
is made inactive, that is, can be
associated with another event.

b. If the DELETE statement has
resulted in the raising of
TRANSMIT or KEY, the interrupt for
each of these conditions does not
occur until the WAIT is
encountered. At such time, the
corresponding on-units (if any)
are entered in the order in which
the conditions were raised. After
a return from the final on-unit,
or if one of the on-units is
terminated by a GO TO statement,
the event variable is given the
completion value 'l'B and is made
inactive.

Note: If the DELETE statement causes
an implicit file opening that results
in the raising of UNDEFINEDFILE, the
on-unit aSSOCiated with this condition
is entered immediately and the event
variable remains unchanged; that is,
the event variable remains inactive
and retains the same value it had when
the DELETE was encountered. If the
on-unit does not correct the
condition, then, upon normal return
from the on-unit, the ERROR condition
is raised; if the condition is
corrected in the on-unit, that is, if
the file is opened successfully, then,
upon normal return from the on-unit,
the event variable is set to 'O'B, it
is made active, and execution of the
DELETE statement continues.

6. The DELETE statement unlocks a record
only if that record had been locked in
the same task in which the DELETE
appears.

1. The DELETE statement can cause
implicit opening of a file.

Example:

DELETE FILE(ALPHA) KEY (DKEY);

This statement causes the record
identified by DKEY to be deleted from the
data set associated with the file ALPHA.
If the record was previously locked in the
same task, it is unlocked.

DISPLAY

The DISPLAY statement causes a message to
be displayed to the machine operator. A
response may be requested.

General format:

option 1.

DISPLAY (element-expression);

option 2.

DISPLAY (element-expression)
REPLY (character
variablelpseudovariable)
[EVENT (event-variable)];

General rules:

1. Execution of the DISPLAY statement
causes the element expression to be
evaluated and, where necessary,
converted to a varying character
string of implementation-defined
maximum length (126 characters).
This character string is the message
to be displayed.

2. In Option 2, the character variable or
pseudovariable receives a string that
is a message to be supplied by the
operator. The STRING pseudovariable
must not be used. The message cannot
exceed 126 characters.

3. In Option 2, if the EVENT option is
not specified, execution of the
program is suspended until the
operator's message is received. In
option 1, execution continues
uninterrupted.

4. If the EVENT (event-variable) option
is given, execution will not wait for
the reply to be completed before
continuing with subsequent statements.

The completion part of the event
variable will be given the value 'O'B
until the reply is completed, when it
will be given the value 'l'B. The
reply is considered complete only
after the execution of a WAIT
statement naming the event. Another
DISPLAY statement must not be executed
until the previous reply is complete.

Example:

DISPLAY ('END OF JOB');

This statement causes the message "END
OF JOB" to be displayed.

The DO statement heads a do-group and can
also be used to specify repetitive
execution of the statements within the
group.

General formats:

The three format types for the DO
statement are shown in Figure J-3.

Syntax rules:

1. In all three types, the DO statement
is used in conjunction with the END
statement to delimit a do-group. Only
Type 1 does not provide for the
repetitive execution of the statements
within the group.

2. In Type 3, the variable or
pseudovariable must represent a Single
element; "variable" may be subscripted
and/or qualified. (The following
pseudovariables may not be used under
the optimizing compiler: COMPLETION,
COMPLEX, PRIORITY, STRING.) Real
arithmetic variables are generally
used, but all variable types are
allowed, provided that the expansions
given in the general rules below
result in valid PL/I programs. Note
that if ·variable· is a progra~
control variable, the BY and TO
options cannot be used in
"specification·.

3. Each expression in a specification
must be an element expression.

4. If ·BY expression3· is omdtted from a
"specification," and if "TO
expression2· is included,
·expression3· is assumed to be 1.

5. If "TO expression2" 1s omitted from a
·specification,· and if ·BY

section J: Statements 451

lr---,
I
I
I
I
1

Type 1. DO:

Type 2. DO {

WHILE(element-expreSSiOn) [UNTIL(element-expreSSiOn)]}

UNTIL (element-expression) [WHILE(element-expression)]

Type 3. DO {

pseudovariable }
= specification [,specification] ••• :

variable

where "specification" has the form:

r- -,
ITO expression2[BY expression311 , ,

expressionl ,BY expression3[TO expression21 I [WHILE(expression4)]1[UNTIL(expressionS)1:
, I
I REPEAT expression6 ,
L_ _J

1 The WHILE and UNTIL options may appear in either order.
L- __ ----------------------------------J
Figure J.3. General formats of the DO statement

expression3" is included, repetitive
execution continues until it is
terminated by the WHILE or UNTIL
clause or some statement causes
control to pass out of the group.

6. If "REPEAT expression6" is included in
a specification, repetitive execution
continues until it is terminated by
the WHILE or UNTIL clause or some
statement causes control to pass out
of the group.

7. If "TO expression2n, nBY expression3",
and "REPEAT expression6" are all
omitted from a specification, it
implies a Single execution of the
group, with the control variable
having the value of "expressionl".
The UNTIL clause is redundant is this
case, but, if "WHILE expression4" is
included, the single execution will
not take place unless "expression4" is
true.

General rules:

1. In Type 1, the DO statement only
delimits the start of ado-group: it
does not provide for repetitive
execution.

LABEL: DO WHILE (expressionl)
UNTIL (expression2):

statement-l

NEXT:

statement-n
END:
statement /*STATEMENT

FOLLOWING THE DO GROUP*/

The abOve is exactly equivalent to the
following expansion:

LABEL: IF (expressionl) THEN: ELSE
GO TO NEXT:

statement-1

statement-n
LABEL2: IF (expression2) THEN: ELSE

GO TO LABEL:
NEXT: statement /*STATEMENT

FOLLOWING THE DO GROUP*/

If the UNTIL option is omitted, the IF
statement at label LABEL2 in the
expansion is replaced by the statement
GO TO LABEL:. If the WHILE option is
omitted, the IF statement at label
LABEL is replaced by a null statement.
Note that if the WHILE option is
omitted, statements 1 through ~ are
executed at least once.

2. In Type 2, the DO statement delimits
the start of a do-group and provides
for repetitive execution as defined by
the following: 3. In Type 3, the DO statement delimits

452 OS PL/I CRT AND OPr LRM PART II

the start of a do-group and provides
for controlled repetitive execution.

If the specification includes the TO
or BY option, the action of the do
group is defined by the following:

LABEL: DO variable=
expressionl
TO expression2
BY expression3
WHILE (expression4)
UNTIL(expressionS);

statement-l

statement.;.m
LABELl: END:
NEXT: statement

For a variable that is not a
pseudovariable, this is exactly
equivalent to the following expansion:

LABEL: p=ADDR(variable):
el=expressionl;
e2=expression2:
e3=expression3:
v=el:

LABEL2: IF (e3>=O)& (v>e2)I
(e3<O)&(v<e2)
THEN GO TO NEXT;

IF (expression4) THEN:
ELSE GO TO NEXT:

statement-l

statement-m
LABELl: IF (expressionS) THEN

GO TO NEXT;
LABEL3: v=v+e3:

GO TO LABEL 2 ;
NEXT: statement

If the specification includes the
REPEAT option, the action of the do
group is defined by the following:

LABEL: DO variable=
expressionl
REPEAT expression6
WHILE (expression4)
UNTIL(expressionS);

statement-l

statement-m
LABELl: END:
NEXT: statement

For a variable that is not a
pseudovariable, this is exactly
equivalent to the following expansion:

LABEL: p=ADDR(variable):
el=expression1;
v=el;

LABEL2: ;
IF Cexpression4) XHEN:

ELSE GO TO NEXT;
statement-l

statement-m
LABELl: IF (expressionS) THEN

GO TO NEXT:
LABEL3: v=expression6;

GO TO LABEL2;
NEXT: statement

In the above expansions, p is a
compil,er-created pOinter: v is a
compiler-created based-variable based
on p and with the same attributes as
-variable-. -el," "e2,· and "e3" are
compiler-created variables having the
attributes of -expressionl,·
-expression2,- and -expression3,"
respectively. Note that the
generation of the control variable is
established once outside the loop,
immediately before the initial value
expression (expressionl) is evaluated.

Additional rules for the above
expansions follow:

a. The above expansions only show the
result of one ·specification." If
the DO statement contains more
than one "specification," the
statement labeled NEXT is the
first statement in the expansion
for the next "specification." The
second expansion is analogous to
the first expansion in every
respect. Note, however, that
statements 1 through !!! are not
actually duplicated in the
program.

b. If the WHILE clause is omitted,
the IF statement immediately
preceding statement-l in each of
the expansions is omitted.

c. If the UNTIL clause is omitted,
the IF statement immediately
following statement-m in each of
the expansions is omitted.

d. If -TO expression2- is omitted,
and -BY expression3" is included,
the statement "e2=expression2- and
the IF statement identified by
LABEL2 in the first expansion are
omitted.

e. If -BY expression3· is omitted,
and -TO expression2- is included,
the statement "e3=expression3" in

Section J: statements 453

4.

5.

the first expansion is replaced by
ne3=ln.

f. If nTO expression2", nBY
expression3 n

, and "REPEAT
expression6n are all omitted, the
first expansion applies. All
statements involving e2 and e3, as
well as the statement GO TO
LABEL2, are omitted.

The WHILE clause in Types 2 and 3
specifies that, before each repetition
of statement execution, the associated
element expressiop is evaluated, and,
if necessary, converted to a bit
string. If any bit in the resulting
string is 1, the .statements of the do
group are executed. If all bits are
0, then, for Type 2, execution of the
do-group is terminated, while for Type
3, only the execution associated with
the "specification" containing the
WHILE clause is terminated: repetitive
execution for the next
-specification," if one exists, then
begins.

The UNTIL clause in Types 2 and 3
specifies that, after each repetition
of statement execution, the associated
element expression is evaluated, and,
if necessary, converted to a bit
string. If all the bits in the
resulting string are 0, the statements
of the do-group are executed. If any
bit is 1, then, for Type 2, execution
of the do-group is terminated, while
for Type 3, only the execution
associated with the "specification"
containing the UNTIL clause is
terminated; repetitive execution for
the next "specification," if one
exists, then begins.

6. In a ·specification" that contains
the TO and BY options, "expressionl"
represents the initial value of the
control variable .(i.e., "variable" or
"pseudovariable")'; -expression3"
represents the increment to be added
to the control variable after each
execution of the statements in the
group: expression2 represents the
terminating value of the control
variable. Execution of the statements
in a do-group terminates for a
"specification" as soon as the value
of the control variable, when tested
at the end of the loop, is outside the
range defined by "expressionl" and
-expression2.- When execution for the
last -specification" is terminated,
control, in general, passes to the
statement following the do-group.

7. In a "specificatibn" that contains the
REPEAT option, "expression1"

454 OS PL/I CKT AND 0Pl' LRM PART II

represents the initial value of the
control variable, and "expression6" is
an expression that is evaluated and
aSSigned to the control variable after
each execution of the statements in
the group.

8. Control may transfer into a do-group
from outside the do-group only if the
do-group is delimited by the DO
statement in Type 1; that is, only if
repetitive execution is not specified.
consequently, repetitive do-groups
cannot contain ENTRY statements.

I 9. The generation of a control variable
that is either pointer-qualified or
controlled is established outside the
loop, immediately before the initial
value expression (expression1) is
evaluated. If the control variable
generation is changed in the loop by
either changing its pointer or by
allocating it, the loop is continued
with the control variable derived from
the previous generation. However any
reference to the control variable
inside the loop is a reference to the
subsequent generation. It is an error
to free the generation.

10. Under the optimizing compiler the
maximum permissible depth of nesting
is 49. There is no limit under the
checkout compiler.

The END statement closes, or delimits,
Iblocks, do-groups, and select-groups.

General format:

END [identifier];

Syntax rules:

The "identifier" is a label or entry
constant: it cannot be subscripted.

General rules:

1. If a label follows END, the statement
closes the unclosed do-group, select
group, or block, headed by the nearest
preceding DO, SELECT, BEGIN, or
PROCEDURE statement having that label.
It also closes any unclosed do-groups,
select-groups, or blocks physically
within that group or block.

2. If a label does not follow END, the

statement closes that do-group,
select-group, or block headed by the
nearest preceding DO, SELECT, BEGIN,
or PROCEDURE statement for which there
is no corresponding END statement.

3. If control reaches an END statement
for a procedure, it is treated as a
RETURN statement.

The ENTRY statement specifies a secondary
entry point of a procedure.

General format:

entry-constant: [entry-constant:] •••
ENTRY [(parameter [,parameter] •••)]

(RETURNS (attribute list)]
[IRREDUCIBLE I REDUCIBLE]
(OPTIONS(option-list)];

Syntax rules:

1. The only attributes in the attribute
list of the RETURNS option that may be
specified with an ENTRY statement are
the arithmetic, string, ALIGNED,
UNALIGNED, POINTER, OFFSET, AREA,·
FILE, EVENT, LABEL, and TASK
attributes. strings can be given the
VARYING attribute. The OFFSET
attribute may include an area name;
under the optimizing compiler, this
must be a non-defined, unsubscripted,
unqualified name. The LABEL attribute
may include a list of label constants.
An area size or string length must be
specified by a decimal integer
constant.

2. A condition prefix cannot be specified
for an ENTRY statement.

3. The options RETURNS, REDUCIBLE (or
IRREDUCIBLE), and OPTIONS can appear
in any order.

4. The options REDUCIBLE and IRREDUCIBLE
are for optimization. If they are to
appear in a program processed by the
checkout compiler, they are checked
for syntax errors and ignored; their
presence in such a program is not an
error.

5. The noptions-list" of the OPTIONS
option specifies one or more
additional implementation-defined
options. These are:

{COBOL I FORTRAN}

(NOMAP [(argument-list)]]

[NOMAPIN [(argument-list)]]
[NOMAPOUT[(argument-list)]]

The options are separated by blanks,
and can appear in any order.

The "argument-list" is a list of the
names of the parameters to Which the
option applies. Not more than sixty
four parameters can be specified in an
argument list; they can appear in any
order, and are separated by commas or
blanks. If there is nO argument list,
the option is assumed to apply to all
the parameters associated with the
entry name.

NOMAP, NOMAPIN, and NOMAPOUT can all
appear in the same OPTIONS
specification. This specification
should not include the same parameter
in more than one specified or assumed
argument list.

The use of these options is described
in chapter 19, nInterlanguage
Communication Facilities".

General rules:

1. The relationship established between
the parameters of a secondary entry
pOint and the arguments passed to that
entry point is exactly the same as
that established tor primary entry
pOint parameters and arguments. See
chapter 9, "Subroutines and
Functions", for a complete discussion
of this s ubj ect •

2. As stated in syntax rule 1, the
attributes specified with an ENTRY
statement determine the
characteristics of the value returned
by the procedure when it is invoked as
a function at this entry point. The
value being returned by the procedure
(i.e., the value of the expression in
a RETURN statement) is converted, if
necessary, to correspond to the
specified attributes. If the
attributes are not specified at the
entry pOint, default attributes are
applied, according to the first letter
of the entry name used to invoke the
entry pOint.

3. If an ENTRY statement has more than
one name, each name is interpreted as
though it were a single entry name for
a separate ENTRY statement having the
same parameter list and explicit
attribute specification. For example,
consider the statement:

A: I: ENTRY;

This statement is effectively the same

Section J: Statements 455

as:

A: ENTRY;

I: ENTRY.

Since the attributes of the returned
value are not explicitly stated, the
characteristics of the value returned
by the procedure will depend on
whether the entry pOint has been
invoked as A or I.

4. The ENTRY statement must be internal
to the procedure for which it defines
a secondary entry pOint. It may not
be internal to any block contained in
this procedure; nor may it be within a
do-group that specifies repetitive
execution.

5. When an ENTRY statement is encountered
in normal sequential flow, control
passes around it.

6. IRREDUCIBLE and REDUCIBLE are
optimization options that can only be
specified for function procedures.
REDUCIBLE specifies that if the entry
name appears with an argument list
that is identical to an argument list
used in an earlier invocation, the
function will not necessarily be
reinvoked and the result of the
earlier evaluation may be used.
IRREDUCIBLE specifies that this type
of optimization is not permitted.
Optimization within a function
procedure is not affected by either
attribute. If neither option is
specified, IRREDUCIBLE is assumed.

1. The meaning of the options in the
OPTIONS option is:

COBOL: The PL/I procedure is to be
invoked at this entry pOint by
only a COBOL subprogram.

FORTRAN: The PL/I procedure is to be
invoked at this entry point by
only a FORTRAN subroutine or
function.

NOMAP, NOMAPIN, NOMAPOUT: These
options prevent the automatic
manipulation of data aggregates at
the interface between either COBOL
or FORTRAN and PL/I.

Each option argument-list can
specify the parameters to Which
the option applies. If there is
no argument-list for an option,
that option is assumed to apply to
all the parameters associated with
the invocation of the entry name.

456 OS PL/I CKT AND OPT LRM PART II

The EXIT statement causes immediate
termination of the task that contains the
statement and all tasks attached by this
task. If the EXIT statement is executed in
a major task, it is equivalent to a STOP
statement.

General format:

EXIT;

General rule:

If executed in a major task, EXIT causes
the FINISH condition to be raised in that
task. On normal return from the FINISH on
unit, the task executing the statement, and
all of its descendant tasks are terminat-ed.
The completion values of the event
variables associated with these tasks are
set to 'l'B, and their status values to 1
(unless they are already non-zero).

The FETCH statement indicates to the
compiler that the procedures identified by
the entry constants are resident on
auxiliary storage and will need to be
copied into main storage if they are to be
executed. The FETCH statement, when
executed, causes a test to be made in main
storage tor the named procedures. Any
procedures found not to be already in main
storage are loaded from auxiliary storage.
A similar test and loading is performed
whenever a procedure named in a FETCH
statement is invoked by a CALL statement,
by a CALL option of an INITIAL attribute,
or by a function reference, before an
attempt is made to execute that procedure.
COBOL and FORTRAN routines ,cannot be
fetched.

General format:

FETCH entry-constant
(,entry-constantl ••• ;

General rules:

1. The entry-constant must be a name by
which the procedure to be fetched is
known to the operating system.

Note: Details of the linkage-editing
required for fetchable procedures are
given in the Programmer's Guide for
the compiler.

2. The entry constant in the FETCH
statement must be the same as the one

used in the corresponding CALL
statement, CALL option, or function
reference.

3. A fetched procedure may not fetch any
further procedures.

4. A FETCH statement will not overlap
with other statements.

The FLOW statement causes information about
the transfer of control within a task to be
written on the SYSPRINT file.

The PL/I checkout compiler implements
the FLOW statement in this sense, but the
PL/I optimizing compiler implements this
statement by checking the syntax and then
ignoring it.

General format:

FLOW;

General rules:

1. When a FLOW statement has been
executed, the execution of a
subsequent statement that causes a
transfer of control results in a flow
comment being written on the SYSPRINT
file.

A flow comment consists of:

a. The number of the statement that
causes the transfer of control

b. The number of the statement to
which control is transferred

A flow comment is written after
control is transferred, but before
execution of the target statement is
commenced.

2. When a subtask is first attached, its
FLOW/NOFLOW status is the same as that
of the attaching task at the point
where the CALL statement is executed.
Thereafter, the status of the subtask
can be altered only by FLOW and NO FLOW
statements executed within the
subtask.

3. The flow comment is written only when
the transfer of control is to a point
within the task that contains the FLOW
statement. If control passes to a
point outside this task, (becaus€ the
task terminates), no further flow
comments are written.

I 4. The statement that causes a flow
comment to be written is a transfer
statement; the statement to which
control is transferred is a
destination statement. A summary of
the transfer statements and their
destination statements is given below,
in figure J.4.

I 5. The FLOW statement remains effective
until:

a. The program terminates, or

b. The task terminates, or

c. A NOFLOW statement is executed
later in the same task.

FORMAT

The FORMAT statement specifies a format
list that can be used by edit-directed
transmission statements to control the
format of the data being transmitted.

General format:

label: [label:] ••• FORMAT (format-list);

Syntax rules:

1. The "format list" must be specified
according to the rules governing
format list specifications with edit
directed transmission as described in
chapter 10, "Input and output".

2. At least one "label" must be specified
for a FORMAT statement. One of the
labels (or a label variable or a
function reference representing the
value of one of the labels) is the
statement label designator appearing
in a remote format item.

General rules:

1. A GET or PUT statement may include a
remote format item, R, in the format
list of an edit-directed data
specification. That portion of the
format list represented by R must be
supplied by a FORMAT statement
identified by the statement label
specified with R.

2. The remote format item and the FORMAT
statement must be internal to the same
block.

3. If a condition prefix is associated
with a FORMAT statement, it must be
identical to the condition prefix
associated with the GET or PUT

section J: Statements 457

r---,
Transfer statement I Destination Statement I

GO TO

CALL

END or RETURN statement in a procedure
invoked by a CALL statement

END or RETURN statement that terminates
a procedure invoked by the INITIAL CALL
attribute

statement that contains a function
reference

RETURN statement in a procedure invoked
as a function reference

END statement of an iterative do-group

IStatement prefixed by GO TO label

IPROCEDURE or ENTRY statement in the invoked
I procedure

ICALL statement
I

ISTATIC or AUTOMATIC variable: PROCEDURE or
IBEGIN statement of the block that contains
Ithe DECLARE statement
IBASED or CONTROLLED variable: ALLOCATE
Istatement that specifies the variable

IPROCEDURE or ENTRY statement in the
linvoked procedure

Istatement containing the function reference
I

IMatching DO statement, even if there are no
Imore iterations to be performed

Iterative DO statement, either when the Istatement that follows the matching END
statement list has been executed in full, I statement
or when the statement list is not to be I
executed I

END statement that terminates an
on-unit, or a single statement (except
GO TO or CALL) that is an on-unit

IStatement to which the on-unit returns
Icontrol normally
I

Statement (including SIGNAL) that resultslFirst, or only, statement of the on-unit
in an interrupt for which there is an I
on-unit I

LEAVE

SELECT

Istatement to which control would be passed
lif the referenced do-group (explicit or
I implied) had terminated normally

IFirst statement of the "unit" following the
Iselected WHEN or OTHERWISE clause

After execution of a "Qnit" following IThe first executable statement following the
a WHEN or OTHERWISE clause, provided that Iselect-group
the unit does not alter the normal flow I
L---J
Figure J.4. Transfer and destination statements

statement referring to that FORMAT
statement.

4. When a FORMAT statement is encountered
in normal sequential flow, control
passes around it, and the CHECK
condition will not be raised for a
statement label attached to it.

5. It is an error to attempt to transfer
control to a FORMAT statement by means
of a GO TO statement.

458 OS PL/I CKT AND OPT LRM PART II

The FREE statement causes the storage
allocated for specified based or controlled
variables to be freed. For controlled
variables, the next most recent allocation
in the task is made available, and
subsequent references in the task to the
identifier refer to that allocation.

General format:

FREE option[,option] ••• :

where -option" has one of two forms:

Option 1

identifier

Option 2

[locator-qualifier ->]
based-variable-identifier

[IN(element-area-variable)]

Syntax rules:

1. In Option 1, the -identifier- is a
level-one, unsubscripted variable of
the controlled storage class.

2. In Option 2, the nbased-variable
identifierW must be an unsubscripted,
level-one based variable.

3. It is permissible to use both types of
option in one statement.

General rules:

1. Controlled storage, and based storage
not in an area, that has been
allocated in a task cannot be freed by
any other task.

2. If a specified nonbased identifier has
no allocated storage at the time the
FREE statement is executed, it is a
no-operation.

Rules 3 through 6 apply only to Option 2.

3. If the based variable is not
explicitly qualified by locator
qualification, the locator declared
with the based variable will be used
to identify the generation of data
occupying the portion of storage to be
freed. If no locator has been
declared the statement is in error.

4. The amount of storage freed depends
upon the attributes of the based
variable, including bounds and/or
lengths at the time the storage is
freed, if applicable. The user is
responsible for determining that this
amount coincides with the amount
allocated. If the variable has not
been allocated, the results are
unpredictable.

5. A based variable can be used to free
storage only if that storage has been
allocated for a based variable having
identical data attributes.

6. The IN option must be specified or
implied, if the storage to be freed
was allocated in an area. The option

is implied if the based variable is
qualified by an offset declared with
an associated area. The IN option
cannot appear if the based variable
was not allocated in an area. Note
that area assignment causes allocation
of based storage in the target area:
such allocations can be freed by the
IN option naming the target area.

The GET statement is a STREAM transmission
statement that can be used in either of the
following ways:

1. It can cause the assignment of data
from an external source (that is, from
a data set) to one or more internal
receiving fields (that is, to one or
more variables).

2. It can cause the assignment of data
from an internal source (that is, from
a character-string variable) to one or
more internal receiving fields (that
is, to one or more variables).

General format:

GET option-list:

Following is the format of -option
list-:

[FILE (file-expression)
ISTRINGCcharacter-string-expression)]
[data-specification]
[COPY[(file-expression)]]
(SKIP[(expression)]]

General rules:

1. If neither the FILE option nor the
STRING option appears, the file option
FILE(SYSIN) is assumed.

2. One data specification must appear
unless the SKIP option is specified.

3. The options may appear in any order.

4. The -file-expression- of the FILE
option represents a file which has
been aSSOCiated, by opening, with the
data set which is to provide the
values. It must be a STREAM INPUT
file.

The wfile-expression- of the COpy
option represents a file associated
with the data set Which is to receive
the values. It must be a STREAM
OUTPUT file.

Section J: statements 459

5. The "character-string-expression"
refers to the character string that is
to provide the data to be assigned to
the data list. This name may be a
reference to a built-in function.
Each GET operation using this option
always begins at the beginning of the
specified string. If the number of
characters in this string is less than
the total number of characters
specified by the data specification,
the ERROR condition is raised.

6. When the STRING option is used under
data-directed transmission, the ERROR
condition is raised if an identifier
within the string does not have a
match within the data specification.

1. The "data-specification" is as
describe-d in chapter 11, "Stream
Oriented Transmission".

8. If the FILE option refers to a file
that is not open in the current task,
the file is implicitly opened in the
task for stream input transmission.

If the COpy option refers to a file
that is not open in the current task,
the file is implicitly opened in the
task for stream output transmission.

9. The COpy option, which cannot be used
with the STRING option, specifies that
the source data stream, as read, is to
be written, without alteration, on the
specified file. Each new record in
the input stream starts a new record
on the COpy file. If nO file is
specified, the default is standard
print file SYSPRINT.

10. If an interrupt during the execution
of a GET statement with a COpy option
causes an on-unit to be entered in
which another GET statement is
executed for the same file, and if
control is returned from the on-unit
to the interrupted statement, then
resumed execution of that statement
will be as if no COPY option had been
specified. If, in the on-unit, a PUT
statement is executed for the file
associated with the COpy option, the
position of the data tranSmitted will
not necessarily be immediately
following the most recently
transmitted COpy data item.

11. The SKIP option causes a new current
line to be defined for the data set.
The expression, if present, is
converted to an integer w, which must
be greater than zero. If not, the
compiler substitutes a value of 1.
The data set is positioned at the
start of the !th line relative to the

460 OS PL/I CKT AND OPT LRM PART II

current line. If the expression is
omitted, SKIP(l) is assumed. The SKIP
option is always executed before any
data is transmitted.

12. For the effect of statement options
when specified in the first GET
statement following the opening of the
file, see "OPEN statement" in this
section.

Abbreviation: GOTO

The GO TO statement causes control to be
transferred to the statement identified by
the specified label.

General format:

{

element-Iabel-expreSSiOn;}
GOTO

statement-number;

Syntax rules:

1. 'Element-label-expression' can be used
in a GO TO statement in a source
program, or in a GO TO entered in
immediate mode.

2. 'Statement-number' can only be used in
a GO TO immediate statement entered at
the terminal when running under the
checkout compiler.

General rules:

1. An element-Iabel-expression is a label
constant, a label variable, or a
function reference that returns a
label value. Since a label expression
may have different values at each
execution of the GO TO statement,
control may not always pass to the
same statement.

2. A GO TO statement cannot pass control
to an inactive block or to another
task.

3. A GO TO statement cannot trans fer
control from outside a do-group to a
statement inside the do-group if the
do-group specifies repetitive
execution, unless the GO TO terminates
a procedure or on-unit invoked from
within the do-group.

4. If a GO TO statement transfers control
from within a block to a point not
contained within that block, the block
is terminated. Also, if the transfer
point is contained in a block that did

not directly activate the block being
terminated, all intervening blocks in
the activation sequence are also
terminated (see chapter 8, "storage
control-, for examples and details).
When one or more blocks are terminated
by a GO TO statement, conditions are
reinstated and automatic variables are
freed just as if the blocks had
terminated in the usual fashion.

5. When a GO TO statement specifies a
label constant contained in a block
that has more than one activation,
control is transferred to the
activation current when the GO TO is
executed.

6. When a GO TO statement transfers
control out of a procedure that has
been invoked as a function, the
evaluation of the expression that
contained the corresponding function
reference is discontinued.

The HALT statement causes execution of a
task being executed in conversational mode
under the checkout compiler to be
interrupted and control passed to the
terminal.

General format:

HALT:

General rules:

1. The HALT statement is only effective
in a conversational environment. In a
non-conversational environment and
under the optimizing compiler, the
HALT statement is a null operation.

2. The HALT statement remains effective
until the programmer at the terminal
causes execution to be resumed.

The IF statement tests the value of a
specified expression and controls the flow
of execution according to the result of
that test.

General format:

IF element-expression
THEN unit-1
[ELSE unit-21

Syntax rules:

1. Each unit is either a Single statement
(except DO, SELECT, END, PROCEDURE,
BEGIN, DECLARE, DEFAULT, FORMAT, or
ENTRY), a do-group, a select-group, or
a begin block.

2. The IF statement itself is not
terminated by a semicolon: however,
each -unit- specified must be
terminated by a semicolon.

3. Each -unit- may be labeled and may
have condition prefixes.

General rules:

1. The element expression is evaluated
and, if necessary, converted to a bit
string. When the ELSE clause (that
is, ELSE and its following -unital is
specified, the following occurs:

If any bit in the string is 1, -unit-
1- is executed, and control passes to
the statement following the IF
statement. If all bits in the string
have the value 0, "unit-1- is not
executed and -unit-2 ft is executed,
after which control passes to the next
statement.

When the ELSE clause is not specified,
the following occurs:

If any bit in the string is 1, -unit-
1- is executed, and-control passes to
the statement following the IF
statement. If all bits are 0, -unit-
1- is not executed and control passes
to the next statement.

Each -unit- may contain statements
that specify a transfer of control
(e.g., GO TO): hence, the normal
sequence of the IF statement may be
overridden.

An array or structure variable can
appear in the element expression only
as an argument to a function that
returns an element value.

2. IF statements may be nested: that is,
either -unit-, or both, may itself be
an IF statement. Since each ELSE
clause is always associated with the
innermost unmatched IF in the same
block or do-group, an ELSE with a null
statement may be required to specify a
desired sequence of control. Under
the optimizing compiler, the maximum
permissible depth of nesting is 49.
There is no restriction under the
checkout compiler.

Section J: Statements 461

The LEAVE statement causes control to leave
a do-group in the same way as if the group
had terminated normally.

General format:

LEAVE [label-constant]

General rules:

1. LEAVE is valid only within a do-group.

2. If 'label-constant' is specified, it
must be a label of a containing do
group.

3. If 'label-constant' is specified, the
do-group that is left is the group
headed by the DO statement that has
the specified label. If 'label
constant' is omitted, the do-group
that is left is the group that
immediately contains the LEAVE
statement.

4. The LEAVE statement and the referenced
or implied DO statement must not be in
different blocks.

5. LEAVE cannot be the single statement
of an on-unit.

LOCATE

The LOCATE statement, which applies to
BUFFERED OUTPUT files, causes allocation of
a based variable in a buffer; it may also
cause transmission of a based variable
previously allocated in a buffer.

General format:

LOCATE variable FILE(file-expression)
[SET(pointer-variable)]
[KEYFROM(expression»):

Syntax rules:

1. The options may appear in any order.

2. The -variable- must be an
unsubscripted level 1 based variable.

General rules:

1. The FILE option specifies the file
involved. This option must appear.

2. Execution of a LOCATE statement causes
the specified based variable to be
allocated in the buffer. Components
of the based variable that have been

462 OS PL/I CKT AND OPT LRM PART II

specified in REFER options are
initialized. A pointer value is
aSSigned to the pointer variable named
in the SET option or, if the SET
option is omitted, to the pOinter
variable specified in the declaration
of the based variable. The pointer
value identifies the record in the
buffer. After execution of the LOCATE
statement, values may be assigned to
the based variable for subsequent
transmission to the data set, which
will occur immediately before the next
LOCATE, WRITE, or CLOSE operation on
the file. The transmitted data item
must not be referred after
transmission.

3. If the KEYFROM option appears, the
value of the expression is converted
to a character string and is used as
the key of the record when it is
subsequently written.

4. If the FILE option refers to an
unopened file, the file is opened
automatically: the effect is as if the
LOCATE statement were preceded by an
OPEN statement referring to the file.
The file is given the attributes
RECORD and OUTPUT.

NOCHECK

The NOCHECK statement suppresses the action
of the CHECK statement for the specified
names.

The PL/I checkout compiler implements
the NOCHECK statement in this sense, but
the PL/I optimizing compiler implements
this statement by checking the syntax and
then ignoring it.

General format:

NOCHECK [(name-list)];

Syntax rules:

1. The optional -name-list- is one or
more names separated by commas; a name
can be qualified, but cannot be
subscripted or locator-qualified.

2. A name must be one of the following:

a. An element, an array or a
structure variable of any data
type.

b. A label constant.

c. An entry constant.

3. If a name-list is specified, the
NOCHECK statement applies to those
names only. These names must be known
in the block in which the NOCHECK
statement is executed.

If there is no name-list, the NOCHECK
statement applies to every name in the
program.

General rules:

1. Execution of a NOCHECK statement has
the effect of disabling the CHECK
condition for specified or assumed
names. The condition-prefix can be an
actual prefix, written in the program,
or a conceptual prefix, derived from a
previous CHECK statement.

2. The NOCHECK statement remains
effective until:

a. The program terminates, or

b. It is overidden by an appropriate
CHECK statement.

NOFLOW

The NOFLOW statement suppresses the action
of the FLOW statement.

The PL/I checkout compiler implements
the NOFLOW statement in this sense, but the
PL/I optimizing compiler implements this
statement by checking the syntax and then
ignoring it.

General format:

NOFLOW;

General rules:

1. The NOFLOW statement remains effective
until:

a. The program terminates, or

b. The task terminates or

c. It is overridden by a FLOW
statement.

Null statement

The null statement causes no action and
does not modify sequential statement
execution. If the label of a null
statement is enabled for the CHECK
condition, CHECK is raised whenever control

reaches the null statement.

General format:

[label:] ••• ;

Note that a label prefixed to a null
statement does not compare equal to a label
prefixed to the statement immediately
following the null statement.

For example:

A:;
B: X=T;

Label A does not compare equal to label B.

The ON statement specifies what action is
to be taken (programmer-defined or standard
system action) when an interrupt results
from the occurrence of the specified
exceptional condition.

General format:

ON condition [SNAP] {SYSTEM; lon-unit}

Syntax rules:

1. The condition may be any of those
described in section H, "On
Conditions".

2. The "on-unit" represents a programmEr
defined action to be taken when an
interrupt results from the occurrence
of the specified "condition". It can
be either a single unlabeled simple
statement or an unlabeled begin block.
If it is an unlabeled simple
statement, it can be any simple
statement except BEGIN, DO, LEAVE,
SELECT, END, RETURN, FORMAT,
PROCEDURE, ENTRY, DECLARE, or DEFAULT.
If the on-unit is an unlabeled begin
block, any statement can be used
freely within that block, with two
exceptions: a RETURN statement can
appear only within a procedure nested
within the begin block; a LEAVE
statement can appear only within a do
group nested within the begin block.

3. Since the "on-unit" itself requires a
semicolon, no semicolon is shown for
the "on-unit" in the general format.
However, the word SYSTEM must be
followed by a semicolon.

General rules:

1. The ON statement determines how an

Section J: Statements 463

interrupt occurring for the specified
condition is to be handled. Whether
the interrupt is handled in a standard
system fashion or by a programmer
supplied method is determined by the
action specification in the ON
statement, as follows:

a. If the action specification is
SYSTEM, the standard system action
is taken. The standard system
action is not the same for every
condition, although for most
conditions the system simply
prints a message and raises the
ERROR condition. The standard
system action for ,each condition
is given in section H, ·On
Conditions·. (Note that the
standard system action is always
taken if an interrupt occurs and
no ON statement for the condition
is in effect.)

b. If the action specification is an
"on-unit," the programmer has
supplied his own interrupt
handling action, namely, the
action defined by the statement(s)
in the on-unit itself. The on
unit is not executed when the ON
statement is executed; it is
executed only when an interrupt
results from the occurrence of the
specified condition (or if the
interrupt results from the
condition being signaled by a
SIGNAL statement).

2. The action specification (i.e., "on
unit" or SYSTEM) established by
executing an ON statement in a given
block remains in effect throughout
that block and throughout all blocks
in any activation sequence initiated
by that block, unless it is overridden
by the execution of another ON
statement or a REVERT. statement, as
follows:

a. If a later ON statement specifies
the same condition as a prior ON
statement and this later ON
statement is executed in a block
that lies within the activation
sequence initiated by the block
containing the prior ON statement,
the action specification of the
prior ON statement is temporarily
suspended, or stacked. It can be
restored either by the execution
of a REVERT statement, or by the
termination of the block
containing the later ON statement.

b. If the later ON statement and the
prior ON statement are internal to
the same invocation of the same

464 OS PL/I CKT AND OPT LRM PART II

block, the effect of the prior ON
statement is completely nullified.

3. An on-unit is always treated by the
compiler as a procedure internal to
the block in which it appears.
(Conceptually, it is enclosed in
PROCEDURE and END statements.) Any
names referenced in an on-unit are
those known in the environment in
which the ON statement for that on
unit was executed, rather than the
environment in which the interrupt
occurred.

4. A condition raised during execution
results in an interrupt if and only if
the condition is enabled at the point
where it is raised.

a. The conditions AREA, OVERFLOW,
FIXEDOVERFLOW, UNDERFLOW,
ZERODIVIDE, CONVERSION, all of the
input/output conditions, and the
conditions CONDITION, FINISH,
ATTENTION, and ERROR are enabled
by default.

b. The conditions SIZE, STRINGSIZE,
STRINGRANGE, SUBSCRIPTRANGE, and
CHECK are disabled by default.

c. The enabling and disabling of
OVERFLO~I, FIXEDOVERFLOW,
UNDERFLOW, ZERODIVIDE, CONVERSION,
SIZE, STRINGSIZE, STRINGRANGE,
SUBSCRIPTRANGE, and CHECK can be
controlled by condition prefixes.

5. If an on-unit is a Single statement,
it cannot refer to a remote format
specification.

6. If SNAP is specified, then ~hen the
given condition occurs and the
interrupt results, a list of all of
the blocks and on-units active at the
time the interrupt occurred is printed
on SYSPRINT, followed by the FLOW
table. This table is the same as
would be produced by a PUT FLOW
statement. The list of blocks and on
units, and the FLOW table, are printed
by the both the checkout and the
optimizing compilers.

7. Under the optimizing compiler, up to
49 on-units may be concurrently active
in anyone block, and up to 254 in any
one compilation. There are no limits
under the checkout compiler.

The OPEN statement associates a file name

with a data set. It also can complete the
specification of attributes for the file,
if a complete set of attributes has not
been declared for the file being opened.

General format:

OPEN FILE (file-expr) (options-group]
[,FILE(file-expr) (options-group]] ••• :

where "options-group" is as follows:

lDIRECTISEQUENTIALITRANSIENT]
[BUFFERED I UNBUFFERED]
[STREAMIRECORDJ
[INPUT I OUTPUT I UPDATE]
[KEYED] [EXCLUSIVE]
[BACKWARDS]
[TITLE (element-expression)]
[PRINT]
[LINESIZE(element-expression)]
[PAGESIZE(element-expression)]

Syntax rules:

1. The INPUT, OUTPUT, UPDATE, STREAM,
RECORD, DIRECT, SEQUENTIAL, TRANSIENT,
BUFFERED, UNBUFFERED, KEYED,
EXCLUSIVE, BACKWARDS, and PRINT
options specify attributes that
augment the attributes specified in
the file declaration; for rules
governing which of these attributes
can be applied together, see chapter
11, "Input and "output", and the
corresponding attributes in section I,
"Attributes".

2. The options in an "option-group" and
the FILE option for a file may appear
in any order.

3. The "file-expression" represents the
name of the file that is to be
associated with a data set. Several
files can be opened by one OPEN
statement.

General rules:

1. The opening of an already open file
does not affect the file if t.he second
opening takes place in the same task
or an attached task. In such cases,
any expressions in the "options-group"
are evaluated, but they are not used.

2. If the TITLE option is specified, the
"element-expression" is converted to a
character string, if necessary, the
first eight characters of which
identify the data set (the ddname) to
be associated with the file. If this
option does not appear, the first
eight characters of the file name
(padded or truncated) are taken to be
the ddname. Note that this is not the
same truncation as that for external

names. If the file name is a
parameter, the identifier of the
original argument passed to the
parameter, rather than the identifier
of the parameter itself, is used as
the identification.

3. The LINESIZE option can be specified
only for a STREAM OUTPUT file. The
expression is evaluated, converted to
an integer, and used as the length of
a line during subsequent operations on
the file. New lines may be started by
use of the printing and control format
items or by options in a GET or PUT
statement. If an attempt is made to
position a file past the end of a line
before explicit action to start a new
line is taken, a new line is
automatically started, and the file is
positioned to the start of this new
line. The following implementation
defined values apply:

4.

Maximum line size:

F- or U-format:
V-format

Minimum line size:

F- or U-format
V-format: PRINT files

Non - PRI NT FILES

Default line size

32,759
32,751

1
9
10

120

The LINESIZE option cannot be
specified for an INPUT file. The line
Size taken into consideration whenever
a SKIP option appears in a GET
statement is the line size, if any,
that was used to create the data set;
otherwise, the line size is taken to
be the current length of the logical
record (minus control bytes, for V
format records).

The PAGESIZE option can be specified
only for a file having the STREAM and
PRINT attributes. The element
expression is evaluated and converted
to an integer, which represents the
maximum number of lines to a page.
During subsequent transmission to the
PRINT file, a new page may be started
by use of the PAGE format item or by
the PAGE option in the PUT statement.
If a page becomes filled and more data
remains to be printed before action to
start a new page is taken, the ENDPAGE
condition is raised. The following
implementation-defined values apply:

Maximum page size
Minimum page size
Default page size

32,767
1
60

section J: Statements 465

I 5. When a non-print STREAM file is
opened, it is conceptually positioned
as if it had just completed scanning
of the zeroth record - that is, it is
positioned at the end of an imaginary
record immediately preceding the
record accessed in the first GET or
PUT statement. Thus if the first GET
or PUT specifies, by means of a
statement option or format item, that
n lines are to be skipped before the
first record is accessed, the file is
then positioned at the start of tne
nth record.

When a PRINT file is opened, it is
physically positioned at column 1 of
line 1 of the first page. However, if
the first PUT statement specifies that
n lines are to be skipped, the file is
treated as though it were positioned
at the end of line 0; that is, the PUT
statement causes the file to be
positioned at the start of line n.

PROCEDURE

The PROCEDURE statement has the following
functions:

• It heads a procedure.

• It defines the primary entry pOint to
the procedure.

• It specifies the parameters, if any, for
the primary entry pOint.

• It may specify certain special
characteristics that a procedure can
have.

• It may specify the attributes of the
value that is returned by the procedure
if it is invoked as a function at its
primary entry point.

General format:

entry-constant: [entry-constant:] •••
PROCEDURE[{parameter[,parameter] •••)]
[OPTIONS (option-list)]
[RECURSIVE] [RETURNS {data attributes)]
[ORDER I REORDER]
[REDUCIBLEIIRREDUCIBLE];

Syntax rules:

1. The "data attributes" given in the
RETURNS option represent the
attributes of the value returned by
the procedure when it is invoked as a
function at its primary entry pOint.
Only arithmetic, string, ALIGNED,
UNALIGNED, POINTER, OFFSET, AREA,

466 OS PL/I CKT AND OPT LRM PART II

FILE, EVENT, LABEL, and TASK
attributes are allowed. Strings can
be given the VARYING attribute. The
OFFSET attribute may include an area
name; under the optimizing compiler,
this must be a non-defined,
unsubscripted, unqualified, area name.
The LABEL attribute may include a list
of label constants. An area size or
string length must be specified by a
decimal integer constant.

2. OPTIONS, RECURSIVE, RETURNS, ORDER,
REORDER, REDUCIBLE and IRREDUCIBLE,
can appear in any order and are
separated by blanks.

3. The options ORDER, REORDER, REDUCIBLE
and IRREDUCIBLE are for optimization.
If they ar~ included in a program
processed by the checkout compiler,
they are checked for syntax errors and
ignored; their presence in such a
program is not an error.

4. The ·options-list" of the OPTIONS
option specifies one or more
additional implementation-defined
options. These are:

{MAINI COBOL I FORTRAN}

(NOMAP(argurnent-list)]]
[NOMAPIN[{argument-list)]]
[NOMAPOUT[{argument-list)]]

[REENTRANT]

[TASK]

The options are separated by blanks or
commas, and can appear in any order.

The "argument-list" is a list of the
names of the parameters to which the
option applies. Not more than sixty
four parameters can be specified in an
argument list; they can appear in any
order and are separated by commas or
blanks. If there is no argument list,
the option is assumed to apply to all
the parameters associated with the
entry name.

NOMAP, NOMAPIN, and NOMAPOUT can all
appear in the same OPTIONS-attribute
specification. This specification
should not include the same parameter
in more than one specified or assumed
argument list.

The use of COBOL, FORTRAN, NOMAP,
NOMAPIN, and NOMAPOUT is described in
chapter 19, "Interlanguage
Communication Facilities·.

Note:

a. The TASK option need not be
specified for procedures to be
processed by the checkout or
optimizing compilers. However, it
may be required if these
procedures are processed by other
PL/I compilers.

b. The REENTRANT option applies to
code produced by a PL/I compiler;
if this option is specified with
either the COBOL or FORTRAN
options, this has no effect on the
code in the COBOL or FORTRAN
program. A program that calls
COBOL or FORTRAN routines is not
reenterable.

c. The TASK option must not be
specified with either the COBOL or
the FORTRAN options.

General rules:

1. When the procedure is invoked, a
relationship is established between
the arguments passed to the procedure
and the parameters that represent
those arguments in the invoked
procedure. This topic is discussed in
chapter 9, ·Subroutines and
Functions·.

2. OPTIONS may be specified only for an
external procedure, and at least one
external procedure must have the
OPTIONS (MAIN) designation; if more
than one is so designated, the
operating system will invoke the one
that appears first, physically.

3. RECURSIVE must be specified if the
procedure might be invoked
recursively; that is, if it might be
reactivated while it is still active.
If specified, it applies to all of the
entry points (primary and secondary)
that the procedure might have. It
applies only to the procedure for
which it is declared.

4. The ·data attributes· in the RETURNS
option specify the attributes of the
value returned by the procedure when
it is invoked as a function at its
primary entry point. The value
specified in the RETURN statement of
the invoked procedure is converted to
conform with these attributes before
it is returned to the invoking
procedure.

If the RETURNS option is not
specified, default attributes are
supplied. In such a case, the name of
the entry point (the entry constant by

5.

6.

1.

which the procedure has been invoked)
is used to determine the default base,
precision, and scaie. (Since the
entry point can have several entry
constants, the default base,
precision, and scale can differ
according to the entry constant.)

ORDER and REORDER are optimization
options. ORDER and REORDER specify
the extent to which the block is to be
optimized. In general, ORDER permits
optimization to the degree such that
the latest values of all variables set
in a block are guaranteed available in
a computational on-unit entered during
execution of the block. REORDER
permits a greater degree of
optimization; with REORDER the values
of variables set in the block are not
guaranteed to be the most recently
assigned values in an on-unit entered
during execution of the block. If
neither option is specified, ORDER is
assumed but REORDER is inherited by
all contained blocks unless they
explicitly specify ORDER.

IRREDUCIBLE and REDUCIBLE are
optimization options that can only be
specified for function p~ocedures.
REDUCIBLE specifies that. if the entry
name appears with an arg~ment list
that is identical to an argument list
used in an earlier invocation, the
function will not necessarily be
reinvoked and the result of the
earlier evaluation may be used.
IRREDUCIBLE specifies that this type
of optimization is not permitted.
Optimization within a function
procedure is not affected by either
attribute. If neither option is
specified, IRREDUCIBLE is assumed.

If a PROCEDURE statement has more than
one entry constant, the first constant
can be considered as the only label of
the statement; each subsequent entry
constant can be considered as a
separate ENTRY statement having an
identical parameter list as specified
in the PROCEDURE statement. For
example, the statement:

A: I: PROCEDURE (X);

is effectively the same as:

A: PROCEDURE (X);

I: ENTRY (X);

Since the attributes of the value are
not explicitly stated, the characters
of the value returned by the procedure
will depend on whether the procedure
has been invoked as A or I.

Section J: Statements &I 67

8. The meaning of the options in the
OPTIONS option is:

COBOL: The PL/I procedure is to be
invoked at its main entry point by
only a COBOL subprogram.

FORTRAN: The PL/I procedure is to be
invoked at its main entry point by
only a FORTRAN subroutine or function.

MAIN: The PL/I procedure is the
initial procedure of a PL/I program,
and is invoked by the operating-system
control program as the first step in
the execution of that program.

NOMAP, NOMAPIN, NOMAPOUT: These
options prevent the automatic
manipulation of data aggregates at the
interface between either COBOL or
FORTRAN and PL/I.

Each option argument-list can specify
the parameters to which the option
applies. If there- is no argument list
for an option, that option is assumed
to apply to all the parameters
associated with the invocation of the
entry name.

REENTRANT: The code produced by the
compiler is reenterable.

TASK: The PL/I multitasking
facilities are to be used.

The PUT statement is a STREAM transmission
statement that can be used in either of the
following ways:

1. It can cause the values in one or more
internal storage locations to be
transmitted to a data set on an
external medium.

2. It can cause the values in one or more
internal storage locations to be
assigned to an internal receiving
field (represented by a character
string variable).

3. Under the checkout compiler, it can
cause program checkout information to
be written onto the SYSPRINT file.

General format:

PUT [FILE (file-expression)] I
[STRING (character-string-variable)]
[data-specification] I
[SNAP] I
[FLOW [(n)]] I

468 OS PL/I CKT AND OPT LRM PART II

[ALL[(character-string-expression)]]

[

PAGE lLINE(element-expreSSiOn)]]
SKIP (element-expression)]
LINE (element-expression)

Syntax rules:

1. If neither the FILE nor STRING option
appears, the specification FILE
(SYSPRINT) is assumed. If such a PUT
statement lies within the scope of a
declaration of the identifier
SYSPRINT, SYSPRINT must have been
declared as FILE STREAM OUTPUT. If
the PUT statement does not lie within
the scope of a declaration of
SYSPRINT, SYSPRINT is the standard
system output file.

2. The FILE option specifies transmission
to a data set on an external medium.
The file expression in this option is
the name of the file that has been
associated (by impliCit or explicit
opening) with the data set that is to
receive the values. This file must
have the OUTPUT and STREAM attributes.

3. Under the checkout compiler, the SNAP
option causes a list of all currently
active blocks and on-units to be
printed on SYSPRINT. Under the
optimizing compiler, the option's
syntax is checked, then it is ignored.

4. Under the checkout compiler, the FLOW
option causes a comment on each of the
last ~ transfers of control to be put
into the SYSPRINT stream. The rules
determining the nature of each flow
comment are the same as for the FLOW
statement, described earlier in this
section. If ~ is not specified, the
value specified in the appropriate
compiler option is used; if no value
is specified there, a default of 25 is
taken. Under the optimizing compiler,
the syntax of the option is checked,
then it is ignored.

5. Under the checkout compiler, the ALL
option causes all information provided
by the SNAP and FLOW options to be put
into the SYSPRINT stream, together
with certain other debugging
information. A description of this
information is given in chapter 15,
-Execution-time Facilities of the
Checkout Compiler-. Under the
optimizing compiler, the syntax of the
option is checked, then it is ignored.
The value of the character-string
expre~sion must be one or more of the
option characters O,S,F,C,T,n
concatenated to form a string without
blanks or punctuation marks, n being
one through four digits.

6. The STRING option specifies
transmission from internal storage
locations (represented by variables or
expressions in the "data
specification") to a character string
(represented by the "character-string
variable"). It cannot be used with a
SNAP, FLOW, or ALL option. The
"character-string-variable" can be any
string pseudovariable other than
STRING.

7. The "data specification" option is as
described in chapter 11, "Stream
Oriented Transmission".

8. The PAGE, SKIP, and LINE options
cannot appear with the STRING option.

9. The options may appear in any order:
at least one must appear.

General rules:

1. If the FILE option is specified, and
the "file-expression" refers to an
unopened file, the file is opened
implicitly as an OUTPUT file.

2. If the STRING option is specified, the
PUT operation begins assigning values
to the beginning of the string (that
is, at the left-most character
position), after appropriate
conversions have been performed.
Blanks and delimiters are inserted as
usual. If the string is not long
enough to accomodate the data, the
ERROR condition is raised.

3. The PAGE and LINE options can be
specified for PRINT files only. All
of the options take effect before
transmission of any values defined by
the data specification, if given. Of
the three, only PAGE and LINE may
appear in the same PUT statement, in
which case, the PAGE option is applied
first.

4. The PAGE option causes a new current
page to be defined within the data'
set. If a data specification is
present, the transmission of values
occurs after the definition of the new
page. The page remains current until
the execution of a PUT statement with
the PAGE option, until a PAGE format
item is encountered, or until the
ENDPAGE condition is raised, resulting
in the definition of a new page. A
new current page implies line one.

When printing at a terminal in
conversational mode, the PAGE option
causes three lines to be skipped.

5. The SKIP option causes a new current

line to be defined for the data set.
The expression, if present, is
converted to an integer ~, which for
non-PRINT files must be greater than
zero. The data set is positioned at
the start of the wth line after the
current line. If-the expression is
omitted, SKIP(l) is assumed.

For PRINT files w may be less than or
equal to zero: in this case, the
effect is that of a carriage return
with the same current line. If less
than w lines remain on the current
page when a SKIP(w) is issued, ENDPAGE
is raised.

When a SKIP option is specified On the
first PUT statement of a file, the
data set is positioned at the start of
the ~h line on the first page. If ~
is zero or one, it is positioned at
the start of the first line.

When printing at a terminal in
conversational mode, no more than
three lines may be skipped: SKIP(w)
with w greater than 3 is equivalent to
SKIP(3).

6. The LINE option causes a new current
line to be defined for the data set.
The expression is converted to an
integer!!.. The LINE option specifies
that blank lines are to be inserted so
that the next line will be the wth
line of the current page. If at least
!! lines have already been written on
the current page or if ~ exceeds the
limits set by the PAGESIZE option of
the OPEN statement, the ENDPAGE
condition is raised. If w is less
than or equal to zero, it-iS assumed
to be 1. If ~ specifies the current
line, ENDPAGE is raised except when
the file is posi~ioned on column 1: in
this case, the effect is as for a
SKIP(O) option.

If the LINE option is specified in the
same statement as a PAGE option, the
PAGE option is executed first.

When printing at a terminal in
conversational mode, the LINE option
causes three lines to be skipped.

1. For the effects of statement options
when specified in the first PUT
statement follOWing the opening of the
file, see ·OPEN statement" in this
section.

Section J: Statements 469

r---,
r-- --, --,

r-- I KEY (expression) (NOLOCKJ I I
I (INTO(variable)] I IlEVENT(event-variable)JI
I IKEYTO(character-string-variable)I I
I L-- --J I
I r-- ---, I

FILE I I KEY (expression) I I
(filename) IlSET(pointer-variable)] I I I

I IKEYTO(character-string-variable) I I
I L-- ---J I
I I
I lIGNORE(expression)] (EVENT(event-variable)] I
L-- --J

l---J
Figure J.5. Format of option list for READ statement

The READ statement causes a record to be
transmitted from a RECORD INPUT or RECORD
UPDATE file to a variable or buffer.

General format:

READ option-list;

The format of the option list is shown
in figure J.5.

General rules:

1. The options may appear in any order.

2. The FILE option specifies the file
from which the record is to be read.
This option must appear. If the file
specified is not open in the current
task, it is opened.

3. The INTO(variable) option specifies
the variable into which the record is
to be read. If· the variable is an
aggregate, it must be in connected
storage; certain uses of unaligned
fixed-length bit strings are
disallowed (for details, see "Data
Transmitted" in chapter 12, "Record
Oriented Transmission").

4. The KEY and KEYTO options can be
specified for KEYED files only.

5. The KEY option must appear if the file
has the DIRECT attribute. The
"element-expression" is converted to a
character string that represents a
key. It is this key that determines
which record will be read.

The KEY option may also appear for a
file having INDEXED or VSAM
organization and the SEQUENTIAL and
KEYED attributes. In such cases, the

410 OS PL/I CRT AND OPT LRM PART II

file is positioned to the record
having the specified key. Thereafter,
records may be read sequentially from
that point on by using READ statements
without the KEY option. (See general
rule 11.)

6. The KEYTO option can be given only if
the file has the SEQUENTIAL and KEYED
attributes. It specifies that the key
of the record being read is to be
assigned to the "character-string
variable" according to the rules for
character-string assignment. The
KEYTO option can specify any string
pseudovariableother than STRING. It
cannot specify a variable declared
with a numeric picture specification.
The maximum permissible length for the
character string is 256.

Assignment to the KEYTO variable
always follows assignment to the INTO
variable. If an incorrect key
specification is detected, the KEY
condition is raised. For this
implementation, the value assigned is
as follows:

a. For REGIONAL(l), the eight
character region number, padded or
truncated on the left to the
declared .. 1ength of the character
string variable. If the
character~string variable is of
varying length, any leading zeros
in the region number are truncated
and the string length is set to
the number of significant digits.
An all-zero region number is
truncated to a single zero.

b. For REGIONAL(2} and REGIONAL(3),
the recorded key without the
region number, padded or truncated
on the right to the declared
length of the character-string
variable.

c. For INDEXED and for indexed VSAM,
the recorded key, padded or
truncated on the right to the
declared length of the character
string variable.

d. For entry-sequenced VSAM data
sets, a 4-character relative-byte
address, padded or truncated on
the right to the declared length
of the character-string variable.

e. For relative-record VSAM data
sets, an 8-character relative
record number with leading zeros
suppressed, truncated or padded on
the· left to the declared length of
the character string.

The KEY condition will not be raised
for such padding or truncation.

7. The EVENT option allows processing to
continue while a record is being read
or ignored. This option cannot be
specified for a SEQUENTIAL BUFFERED
file.

When control reaches a READ statement
containing this option, the "event
variable" is made active (that is, it
cannot be associated with another
event) and is given the complet~on
value loeB, provided that the
UNDEFINEDFlLE condition is not raised
by an implicit file opening (see
"Note" below). The event variable
remains active and retains its lOeB
completion value until control reaches
a WAIT statement specifying that event
variable. At this time, either of the
following can occur:

a. If the READ statement has been
executed successfully and none of
the conditions ENDFlLE, TRANSMIT,
KEY or RECORD has been raised as a
result of the READ, the event
variable is set complete (given
the completion value 'l'B), and
the event variable is made
inactive, that is, it can be
associated with another event.

b. If the READ statement has resulted
in the raising of ENDFILE,
TRANSMIT, KEY, or RECORD, the
interrupt for each of these
conditions does not occur until
the WAIT is encountered. At such
a time, the corresponding on-units
(if any) are entered in the order
in which the conditions were
raised. After a return from the
final on-unit, or if one of the
on-units is terminated by a GO TO
statement, the event variable is
given the completion value 'l'B

and is made inactive.

Note: If the READ statement causes an
implicit file opening that results in
the raising of UNDEFINEDFlLE, the on
unit associated with this condition is
entered immediately and the event
variable remains unchanged; that is,
the event variable remains inactive
and retains the same value it had when
the READ was encountered. If the on
unit does not correct the condition,
then, upon normal return from the on
unit, the ERROR condition is raised;
if the condition is corrected in the
on-unit, that is, if the file is
opened successfully, then, upon normal
return from the on-unit, the event
variable is set to 'O'B, it is made
active, and execution of the READ
statement continues.

8. Any READ statement referring to an
EXCLUSIVE file will cause the record
to be locked unless the NOLOCK option
is specified. A locked record cannot
be read, deleted, or rewritten by any
other task until it is unlocked. Any
attempt to read, delete, rewrite, or
unlock a record locked by another task
results in a wait. Subsequent
unlocking can be accomplished by the
locking task through the execution of
an UNLOCK, REWRITE, or DELETE
statement that specifies the same key,
by a CLOSE statement, or by completion
of task in which the record was
locked.

Note that a record is considered
locked only for tasks other than the
task that actually locks it; in other
words, a locked record call always be
read by the task that locked it and
still remain locked as far as other
tasks are concerned (unless, of
course, the record has been explicitly
unlocked by one of the above methods).

9. The SET option specifies that the
record is to be read into a buffer and
that a pointer value is to be assigned
to the named locator variable. The
pointer value identifies the record in
the buffer.

10. The IGNORE option may be specified for
SEQUENTIAL INPUT and SEQUENTIAL UPDATE
files. The expression in the IGNORE
option is evaluated and converted to
an integer. If the value, ~, is
greater than zero, ~ records are
ignored; a subsequent READ statement
for the file will access the (n+1)th
record. If n is less than 1, the
option has nO effect. A READ
statement without an INTO, SET, or
IGNORE option is equivalent to a READ

Section J: Statements 471

with an IGNORE(1).

111. A file with INDEXED or VSAM
organization that is being accessed
sequentially may be positioned by
issuing a READ statement with the KEY
option. The specified key will be
used to identify the record required.
Thereafter, records may be read
sequentially from that point by use of
READ statements without the KEY
option. This applies to INPUT and
UPDATE files.

Two poSitioning statements can be
used, with the following formats:

READ FILE (file-expression) INTO
(variable) KEY (expression);

READ FILE (file-expression) SET
(pointer-variable) KEY
(expression);

12. The EVENT, IGNORE, KEY and NOLOCK
options cannot be used with a
TRANSIENT file.

RELEASE

The RELEASE statement frees for other
purposes main storage occupied by
procedures identified by the specified
entry constants. Also, whenever a
procedure named in a RELEASE statement is
invoked by a CALL statement, a CALL option
of an INITIAL attribute or a fUnction
reference, and is found not to be resident
in main storage, a search is made for the
procedure on auxiliary stor~ge. If it is
found, it is copied into main storage
before any attempt is made to execute it.

General format:

RELEASE entry-constant
[,entry-constant] ••• ;

General rules:

1. At execution time, the only effect of
the RELEASE statement is to free the
necessary storage. It has nO effect
on the meaning or scope of the entry
constant.

2. The entry-constant must be the same as
the one used in any corresponding CALL
statements or options, or function
references, and FETCH statements.

472 OS PL/I CKT AND OPT LRM PART II

RETURN

The RETURN statement terminates execution
of the procedure that contains the RETURN
statement. If the procedure has not been
invoked as a task, the RETURN statement
returns control to the invoking procedure.
The RETURN stat€ment may also return a
value.

General format:

Option 1.

RETURN;

Option 2.

RETURN (element-expression):

Gener.al rules:

1. Only the RETURN statement in Option 1
can be used to terminate procedures
not invoked as function procedures:
control is returned to the pOint
logically following the invocation.

Option 1 represents the only form of
the RETURN statement that can be used
to terminate a procedure initiated as
a task. If the RETURN statement
terminates the major taSk, the FINISH
condition is raised prior to the
execution of any termination
processes. If the RETURN statement
terminates any other task, the
completion value of the associated
event variable (if any) is set to
'l'B, and the status value is left
unchanged.

2. The RETURN statement in Option 2 is
used to terminate a procedure invoked
as a function procedure only. Control
is returned to the point of
invocation, and the value returned to
the function reference is the value of
the expression specified converted to
conform to the attributes declared for
the invoked entry point. These
attributes may be explicitly specified
at the entry point; they are otherwise
implied by the initial letter of the
entry name through which the procedure
is invoked.

Note: The optimizing compiler
provides object code to convert every
RETURN statement expression to the
RETURNS attributes of every entry
point of the procedure. Some of these
conversions may be invalid and may
cause diagnostic messages to be
produced when the procedure is
compiled. At execution time, however,
only the conversion applicable to the

invoked entry point is performed.

3. If control reaches an END statement
corresponding to the end of a
procedure, this END statement is
treated as a RETURN statement (of the
option 1 form) for the procedure.

REVERT

The REVERT statement is used to cancel the
effect of the latest relevant ON

statement. It can affect only ON
statements that are internal to the block
in which the REVERT statement occurs o.nd
which have been executed in the same
invocation of that block. Execution of the
REVERT statement in a given block cancels
the action specification of any ON
statement for the named condition that has
been executed in that block; it then re
establishes the action specification that
was in force at the time of activation of
the block.

General format:

REVERT condition;

Syntax rule:

The "condition" is any of those
described in section H, "On-Conditions".

General rule:

The execution of a REVERT statement has
the effect described above only if (1) an
ON statement, specifying the same condition
and internal to the same block, was
executed after the block was activated and
(2) the execution of no other similar
REVERT statement has intervened. If either
of these two conditions is not met, the
REVERT statement is treated as a null
statement.

REWRITE

The REWRITE statement can be used only for
update files. It replaces an existing

record in a data set.

General format:

REWRITE FILE (file-expression)
[FROM(variable)]
[KEY (element-expression)J
[EVENT (event-variable)];

Syntax rules:

1. The options may appear in any order.

2. The "file-expression" represents the
name of the file containing the record
to be rewritten. The file must have
the UPDATE attribute.

3. The FROM option specifies a variable
that represents the record that will
replace the existing record in the
specified file. If the variable is an
aggregate, it must be in connected
storage; certain uses of unaligned
fixed-length bit strings are
disallowed (for details, see "Data
Transmitted" in chapter 12, "Record
Oriented Transmission").

General rules:

1. If the file referred to by "file
expression" has not been opened, it is
opened implicitly with the attributes
RECORD and UPDATE.

2. The KEY option must appear if the file
has the DIRECT attribute; it can
appear if the file has the SEQUENTIAL
attribute and is associated with a
VSAM data set. It must not appear for
other SEQUENTIAL files. The element
expression is converted to a character
string. This character string is the
source key that determines which
record is to be rewritten.

3. For SEQUENTIAL files with INDEXED
organization, if the key is an
embedded key, the user must take care
that the rewritten key is the same as
the key in the replaced record.

4. The FROM option must be specified for
UPDATE files having either the DIRECT
attribute or both the SEQUENTIAL and
UNBUFFERED attributes. A REWRITE
statement in which the FROM option has
not been specified has the following
effect:

a. If the last record was read by a
READ statement with the INTO
option, REWRITE without FROM has
nO effect on the record in the
data set.

b. If the last record was read by a
READ statement with the SET
option, the record will be updated
by whatever assignments were made
in the buffer identified by the
pointer variable in the set
option. When the records are
blocked, a REWRITE statement
issued for any record in the block
causes the complete block to be
rewritten even if no REWRITE
statements are issued for other

Section J: Statements 473

records in the block.

5. The EVENT option allows processing to
continue while a record is being
rewritten. This option must not be
specified for a SEQUENTIAL BUFFERED
file.

When control reaches a REWRITE
statement containing this option, the
event variable is made active (that
is, it cannot be associated with
another event) and is given the
completion value loeB, provided that
the UNDEFINEDFILE condition is not
raised by an implicit file opening
(see "Note- below). The event
variable remains active and retains
its loeB completion value until
control reaches a WAIT statement
specifying that event variable. At
this time, either of the following can
occur:

a. If the REWRITE statement has been
executed successfully and none of
the conditions TRANSMIT, KEY, or
RECORD has been raised as a result
of the REWRITE, the event variable
is set complete (given the
completion value 'l'B), and the
event variable is made inactive
(that is, it can be associated
with another event).

b. If the REWRITE statement has
resulted in the raising of
TRANSMIT, KEY, or RECORD, the
interrupt for each of these
conditions does not occur until
the WAIT is encountered. At such
time, the corresponding on-units
(if any) are entered in the order
in which the conditions were
raised. After a return from the
final on-unit, or if one of the
on-units is terminated by a GO TO
statement, the event variable is
given the completion value 'l'B
and is made inactive.

Note: If the REWRITE statement causes
an implicit file opening that results
in the raising of UNDEFINEDFILE, the
on-unit associated with this condition
is entered immediately and the event
variable remains unchanged, that is,
the event variable remains inactive
and retains the same value it had when
the REWRITE was encountered. If the
on-unit does not correct the
condition, then, upon normal return
from the on-unit, the ERROR condition
is raised; if the condition is
corrected in the on-unit, that is, if
the file is opened successfully, then,
upon normal return from the on-unit,
the event variable is set to loeB, it

474 OS PL/I CKT AND OPT LRM PART II

is made active, and execution of the
REWRITE statement continues.

6. If the record rewritten is one that
was locked in the same task, it
becomes unlocked.

SELECT

The SELECT statement heads a select-group.

General format:

SELECT [(expression-1)];
[[(condition-prefix

[,condition-prefix] •••) :]
WHEN(expression-2,

[,expression-2] •••) unit] •••
[{OTHERWISE OTHER} unit]

END [identifier] ;

Syntax rules:

1. Each "unit" is either a Single
statement (except DO, SELECT, END,
PROCEDURE, BEGIN, DECLARE, DEFAULT,
FORMAT, or ENTRY) or a do-group, a
select-group, or a begin block.

2. Each unit may be labeled and may have
condition prefixes.

3. A select-group must be terminated by
an END statement.

General rules:

1. The expression in the SELECT statement
is evaluated and its value is saved.
The expressions in the WHEN clauses
are then evaluated in turn and
compared with the saved value. If an
expression is found that is equal to
the saved value, the evaluation of
expressions in WHEN clauses is
terminated, and the "unit" after the
associated WHEN clause is executed.
If no such expression is found, the
"unit" after the OTHERWISE clause is
executed.

2. If "expression-1" is omitted, each
"expression-2" is evaluated and
converted, if necessary, to a bit
string. If any bit in the string is a
'l'B, the "unit" after the associated
WHEN clause is executed. If no
"expression-2" yields such a bit
string, the "unit" after the OTHERWISE
clause is executed.

3. After execution of a "unit" following
a WHEN or OTHERWISE clause, control

passes to the first executable
statement following the select-group,
unless the normal flow of control is
altered within the wunitw•

4. If wexpression-lft is specified, each
"expression-2 ft must be such that the
comparison expression

«expression-l)=(expression-2»

has a scalar bit value.

5. If the OTHERWISE clause is omitted and
execution of the select-group does not
result in the selection of a ·unitW,
the ERROR condition is raised.

6. A condition-prefix attached to the
SELECT statement applies only to the
evaluation of the expression in the
SELECT statement itself, not to any
other statements in the group. A
condition-prefix attached to a WHEN
clause applies only to the evaluation
of the expressions in the WHEN clause
itself, not to the wunit· that follows
the WHEN clause.

7. Under the optimizing compiler, the
maximum permissible depth of nesting
of select-groups is 49. There is no
restriction under the checkout
compiler.

SIGNAL

The SIGNAL statement simulates the
occurrence of an interrupt. It may be used
to test the current action specification
for the associated condition.

General format:

SIGNAL condition;

Syntax rule:

The "condition" is anyone of those
described in section H, "On-Conditionsw•

General rules:

1. When a SIGNAL statement is executed,
it is as if the specified condition
has actually occurred. sequential
execution is interrupted and control
is transferred to the current on-unit
for the_specified condition. After
the on-unit has been executed,
standard system action for the
condition is performed. This usually
results in control returning to the
statement immediately following the
SIGNAL statement. However, for the

ERROR condition the standard system
action is to terminate the task (after
raising the FINISH condition if the
SIGNAL statement is in the major
task) •

2. The on-condition CONDITION can cause
an interrupt only as a result of its
specification in a SIGNAL statement.

3. If the specified condition is
disabled, no interrupt occurs, and the
SIGNAL statement becomes equivalent to
a null statement, unless, under the
checkout compiler, the condition is
SIZE, STRINGRANGE, or SUBSCRIPTRANGE,
in which case standard system action
takes place.

4. If there is no current on-unit for the
specified condition, then the standard
system action for the condition is
performed.

The STOP statement causes imm~diate
termination of the major task and all sub
tasks

General format:

STOP;

General rule:

Prior to any termination activity the
FINISH.condition is raised in the task _in
which the STOP is executed. On normal
return from the FINISH on-unit, all tasks
in the program are_terminated.

UNLOCK

The UNLOCK statement makes the specified
locked record available to other tasks for
operations on the record.

General format:

UNLOCK option-list;

FollOWing is the format of Woption
list":

FILE (file-expression) KEY(expression)

Section J: Statements 475

General rules:

1. The options may appear in either
order.

2. The FILE option specifies the file
involved, which must have the
attributes UPDATE, DIRECT, and
EXCLUSIVE.

3. In the KEY option, the -expression- is
converted to a character string and
determines which record is unlocked.

4. A record can be unlocked only by the
task which locked it.

The execution of a WAIT statement within an
activation of a block retains control for
that activation of that block within the
WAIT statement until certain specified
events have completed.

General format:

WAIT (event [,event] •••)
[(element-expression)];

Syntax rules:

Each event is an event variable, or an
array or (for the checkout compiler only) a
structure consisting only of event
variables.

General rules:

1. Control for a given block activation
remains within this statement until,
at possibly separate times during the
execution of the statement, the
condition

COMPLETION (event) = 'l'B

has been satisfied, for some or all of
the event names in the list.

2. If the expression does not appear, all
the event names in the list must
satisfy the above condition before
control is passed to the next
statement 'in this task following the
WAIT.

3. If the optional expression appears,
the expression is evaluated when the
WAIT statement is executed and
converted to an integer. This integer
specifies the number of events in the
list that must satisfy the above
condition before control for the block
passes to the statement following the

476 OS PL/I CKT AND OPT LRM PART II

WAIT. Of course, if an on-unit
entered due to the WAIT is terminated
abnormally, control might not pass to
the statement following the WAIT.

If the value of the expression is
zero or negative, the WAIT statement
is treated as a null statement. If
the value of the expression is greater
than the number, n, of event names in
the list, the value is taken to be n.
If the statement refers to an array
event name, then each of the array
elements contributes to the count.

4. 1-f the event variable named in the
list has been associated with a task
in its attaching CALL statement, then
the condition in Rule 1 wil~ be
satisfied on termination of that task.

5. If the event variable named in the
list is associated with an
input/output operation initiated in
the same task as the WAIT, the
condition in Rule 1 will be satisfied
when the input/output operation is
completed. The execution of the WAIT
is a necessary part of the completion
of an input/output operation. If
prior to, or during, the WAIT all
transmission associated with the
input/output operation is terminated,
then the WAIT performs the following
action. If the transmission has
finished without requiring any
input/output conditions to be raised,
the event variable is set complete
(i.e., COMPLETION(event name) = 'liB).
If the transmission has been
terminated but has required conditions
to be raised, the event variable is
set abnormal (i.e., STATUS(event name)
= 1) and all the required on
conditions are raised. On return from
the last on-unit, the event variable
is set complete.

6. The order in which on-conditions for
different input/output events are
raised is not dependent on the order
of appearance of the event names in
the list. If an on-condition for one
event is raised, then all other
conditions for that event are raised
before the WAIT is terminated or
before any other input/output
conditions are raised unless an
abnormal return is made from one of
the on-units thus entered. The
raising of ON conditions for one event
implies nothing about the completion
or termination of transmission of
other,events in the list.

1. If an abnormal return is made from any
on-unit entered from a WAIT, the
associated event variable is set

complete, the execution of the WAIT is
terminated, and control passes to the
point specified by the abnormal
return.

8. If some of the event names in the WAIT
list are associated with input/output
operations and have not been set
complete before the WAIT is terminated
(either because enough events have
been completed or due to an abnormal
return), then these incomplete events
will not be set complete until the
execution of another WAIT referring to
these events in this same task.

The WRITE statement is a RECORD
transmission statement that transfers a
record from a variable in internal storage
to an OUTPUT or UPDATE file.

General format:

WRITE FILE (file-expression) FROM
(variable)

[KEYFROM(element-expression)]
[KEYTO(character-string-variable)]
[EVENT(event-variable)];

Syntax rules:

1. The options may appear in any order.

2. The "file expression" specifies the
file in which the record is to be
written. This file must be a RECORD
file that has either the OUTPUT
attribute or the DIRECT and UPDATE
attributes.

3. The FROM option specifies a variable
that represents the record to be
written. If the variable is an
aggregate, it must be in connected
storage; certain uses of unaligned
fixed-length bit strings are
disallowed (for details see "Data
Transmitted" in chapter 12, "Record
Oriented Transmission").

4. The KEYFROM AND KEYTO options cannot
appear together in the same statement.

General rules:

1. If the file is not open in a task, it
is opened for that task implicitly
with the attributes RECORD and OUTPUT
(unless UPDATE has been declared).

2. If the KEYFROM option is specified,
the "element expression" is converted
to a character string" This character

string is the source key that
specifies the relative location in the
data set where the record is written.
For REGIONAL(2), REGIONAL(3), and
INDEXED, KEYFROM also specifies a
recorded key whose length is
determined by the KEYLEN subparameter
or the KEYLENGTH option.

3. The KEYTO option may be used to obtain
the relative byte address (RBA) when a
record is added to a VSAM entry
sequenced data set, or the relative
record number when a record is added
to a VSAM relative record data set.
The value returned for an ESDS is a
character-string of length 4
representing an RBA. The value
returned for an RRDS is a character
string of length 8, representing an
unsigned decimal integer with leading
zeros suppressed.

4. The EVENT option allows processing to
continue while a record is being
Written. This option cannot be
specified for a SEQUENTIAL BUFFERED
file; record transmisson and
proceSSing are automatically
overlapped in such a file.

When control reaches a WRITE statement
containing this option, the "event
variable" is made active (that
is, it cannot be associated with
another event) and is given the
completion value loeB, provided that
the UNDEFlNEDFILE condition is not
raised by an implicit file opening
(see "Note" below). The event
variable remains active and retains
its loeB completion value until
control reaches a WAIT statement
specifying that event variable. At
this time, either of the fOllowing can
occur:

a. If the WRITE statement has been
executed successfully and none of
the conditions TRANSMIT, KEY, or
RECORD has been raised as a result
of the WRITE, the event variable
is set complete (given the
completion value 'l'B), and the
event variable is made inactive,
that is, it can be associated with
another event.

b. If the WRITE statement has
resulted in the raising of
TRANSMIT, KEY, or RECORD, the
interrupt for each of these
conditions does not occur until
the WAIT is encountered. At such
time, the corresponding on-units
(if any) are entered in the order
in which the conditions were
raised. After a return from the

section J: statements 477

final on-unit, or if one of the
on-units is terminated by a GO TO
statemeht, the event variable is
given the completion value ('l'B)
and is made inactive.

Note: If the WRITE statement causes
an implicit file opening that results
in the raising of UNDEFINEDFILE, the
on-unit associated with this condition
is entered immediately and the event
variable remains unchanged; that is,
the event variable remains inactive
and retains the same value it had when
the WRITE was encountered. If the on
unit does not correct the condition,
then, upon normal return from the on
unit, the ERROR condition is raised;
if the condition is corrected in the
on-unit, that is, if the file is
opened successfully, then upon normal
return from the on-unit, the event
variable is set to 'O'B, it is made
active, and execution of the WRITE
statement continues.

5. The EVENT option cannot be used with a
TRANSIENT file.

Preprocessor Statements

All of the statements that can be executed
at the preprocessor stage are presented
al~habetically in this section.

%ACTIVATE

Abbreviation: ~ACT

The appearance of an identifier in a
%ACTIVATE statement makes it active and
eligible for replacement; that is, any
subsequent encounter of that identifier in
a nonpreprocessor statement, while the
identifier is active, will initiate
replacement activity.

General format:

I(label:] ••• ACTIVATE identifier
[RESCANINORESCAN] (,identifier
[RESCANINORESCAN]] ••• ;

syntax rUles:

1. Each identifier must be a preprocessor
variable, a preprocessor procedure
name, or a preprocessor built-in
fv.Qction name.

2. A IACTlv.ATE statement cannot appear
within a preprocessor procedure.

478 OS PL/I CKT AND OPT LRM PART II

General rules:

1. When an identifier is active (and has
been given a value if it is a
preprocessor variable) any encounter
of that identifier within a
nonpreprocessor statement will
initiate replacement activity in all
cases except when the identifier
appears within a comment or within
single quotes. For example, if the
source program contains the following
sequence of statements:

~DECLARE I FIXED, T CHARACTER;

~DEACTIVATE Ii

~I = 15;

~T = 'A(I)';

S = I*T*3;

~I = 1+5;

';ACTIVATE I;

';DEACTIVATE T;

R = I*T*2;

then the preprocessed text generated
by the above would be as follows
(replacement blanks are not shown):

S = I*A(I)*3;

R = 20*T*2;

2. If the identifier to which RESCAN or
NORESCAN refers is the name of a
preprocessor variable of type FIXED or
of a preprocessor procedure which
returns a FIXED value, replacement in
the output stream occurs irrespective
of which option is specified. If the
identifier to which RESCAN or NORESCAN
refers is the name of a preprocessor
variable of type CHARACTER or of a
procedure which returns a CHARACTER
value then:

a. RESCAN specifies that when the
identifier is scanned by the
preprocessor, replacement in the
output stream takes place as
usual.

b. NORESCAN specifies:

(1) That when the identifier is
scanned bf the preprocessor,
it is replaced in the output
stream by that text which is
the current value of the
variable named by the
identifier, or by that text

which is the result of
invoking the procedure named
by the identifier.

(2) That this text is not to be
res canned for further
replacement.

RESCAN is the default.

3. The execution of a %ACTIVATE statement
to activate a preprocessor identifier
that is already activated has no
effect.

'assignment statement

The %assignment statement is used to
evaluate preprocessor expressions and to
assign the result to a preprocessor
variable.

General format:

%[label:J ••• preprocessor-variable =
preprocessor-expression;

General rule:

When the value assigned to a
preprocessor variable is a character
string, this character string should not
contain a preprocessor statement.

%DEACTIVATE

Abbreviation: %DEACT

The appearance of an identifier in a
%DEACTIVATE statement makes it inactive and
ineligible for replacement; that is, any
subsequent encounter of that identifier in
a nonpreprocessor statement will not
initiate any replacement activity (unless,
of course, the identifier has been
reactivated in the interim).

General format:

%[label:J ••• DEACTIVATE identifier
[,identifierJ ••• ;

Syntax rules:

1. Each "identifier" must be either a
preprocessor variable, a preprocessor
procedure name, or a preprocessor
built-in fUnction name.

2. A %DEACTIVATE statement cannot appear
within a preprocessor procedure.

General rule:

The deactivation of an identifier does
not strip it of its value, nor does it

prevent it from receiving new values in
subsequent preprocessor statements.
Deactivation simply prevents any
replacement for a particular identifier
from taking place. Deactivation of a
deactivated preprocessor identifier has nO
effect.

"DECLARE

Abbreviation: %DCL

The 'DECLARE statement establishes an
identifier as a preprocessor variable or a
preprocessor procedure name and also serves
to activate that identifier.

General format:

"[label:] •••
DECLARE identifier

{FIXED I CHARACTER I ENTRY I BUILTIN}
[, identifier

{FIXEDICHARACTERIENTRYIBUILTIN}] ••• ;

Syntax rules:

1. CHARACTER or FIXED must be specified
if the "identifier" is a preprocessor
variable; an entry declaration may be
optionally specified if the
"identifier" is a preprocessor
procedure name. The declaration of a
preprocessor procedure entry name can
be performed explicitly by its
appearance as the label of a
'PROCEDURE statement. This explicit
declaration however, does not cause
the activation of the preprocessor
procedure name.

2. Only the attributes shown in the above
format can be specified in a %DECLARE
statement.

3. Factoring of attributes is allowed as
for nonpreprocessor DECLARE
statements.

4. Any label attached to a %DECLARE
statement is ignored by the scan.

General rules:

1. No length can be specified with the
CHARACTER attribute. If CHARACTER is
specified, it is assumed that the
associated identifier represents a
varying-length character string that
has no maximum length.

Section J: Statements 479

2. A preprocessor variable declared with
the attribute FIXED is also given the
attributes DECIMAL and (5,0) by
default.

3. The scope of all preprocessor
variables, procedure names, and labels
is the entire source program scanned
by the preprocessor, not including any
preprocessor procedures that redeclare
such identifiers. The scope of a
declaration in a preprocessor
procedure is limited to that
procedure.

4. An entry declaration may be specified
for each preprocessor procedure in the
source program. It is used to
activate the entry name. Each time a
preprocessor function is invoked, its
arguments are converted if necessary
to the attributes of the corresponding
parameters.

See ·Preprocessor Procedures" in
·Compile-Time Facilities· in Part I,
for a discussion of the association of
arguments and parameters at the time
of invocation.

5. A preprocessor IDECLARE statement
behaves as a %ACTIVATE statement when
it is encountered, and activates, with
theRESCAN option, all preprocessor
variables identified in the statement.

6. The BUILTIN attribute may only be
specified for SUBSTR, LENGTH,
INDEX, COUNTER, COMPILETIME, or
PARMSET. It indicates that the
associated identifier is the built-in
function of the same name.

The ~DO statement is used in conjunction
with a lEND statement to delimit a
preprocessor do-group. It cannot be used
in any other way.

General format:

IUabel:1 ••• 00 [i=m1[::: ::: ::]]:
Syntax rule:

The Wift represents a preprocessor
variable, and ·ml," "m2," and "m3" are
preprocessor expressions.

General rule:

The expansion of a preprocessor do-

480 OS PL/I CKT AND OPT LRM PART II

group is the same as the expansion for a
corresponding nonpreprocessor do-group and
wi,w Wml," "m2,· and "m3" have the same
meaning that the corresponding expressions
in a nonpreprocessor do-group have.

See "Preprocessor DO-GrOups· in chapter
16, "Compile-Time Facilities·, for a
discussion and an example of its use.

The lEND statement is used in conjunction
with 100 or IPROCEDURE statements to
delimit preprocessor do-groups or
preprocessor procedures.

General format:

% [label:] ••• END [label];

Syntax rule:

The label follOWing END must be a label
of a IPROCEDURE or 100 statement. Multiple
closure is permitted.

IGO TO

Abbreviation: IGOTO

The IGO TO statement causes the
preprocessor to continue its scan at the
specified label.

General format:

'[label:] ••• GO TO label;

General rules:

1. The label following the keyword GO TO
determines the point to Which the scan
will be transferred. It must be a
label of a preprocessor statement,
although it cannot be the label of a
preprocessor procedure.

2. A preprocessor GO TO statement
appearing within a preprocessor
procedure cannot transfer control
point outside of that procedure.
other words, the label following
must be contained within the
procedure.

to a
In

GO TO

3. See ·IINCLUDE Statement· for a
restriction regarding the use of IGO
TO with included text.

The ~IF statement can control the flow of
the scan according to the value of a
preprocessor expression.

General format:

%[label:l ••• IF preprocessor-expression
~THEN preprocessor-clause-1
[%ELSE preprocessor-clause-21

Syntax rule:

A preprocessor clause is any single
preprocessor statement other than %DECLARE,
~PROCEDURE, ~END, or ~DO (percent symbol
included) or a preprocessor do-group
(percent symbols included). otherwise, the
syntax is the same as that for non
preprocessor IF statements.

General rules:

1. The preprocessor expression is
evaluated and converted to a bit
string (if the conversion cannot be
made, it is an error). If any bit in
the string has the value 1, clause-1
is executed and clause-2, if present,
is ignored: if all bits are 0, clause-
1 is ignored and clause-2, if present,
is executed. In either case, the scan
resumes immediately following the IF
statement, unless, of course, a %GO TO
in one of the clauses causes the scan
to resume elsewhere.

2. %IF statements can be nested according
to the rules for nesting
nonpreprocessor IF statements.

"INCLUDE

The 'INCLUDE statement is used to include
(incorporate) strings of external text into
the source program being scanned. This
included text can contribute to the
preprocessed text being formed.

General format:

The "INCLUDE statement is defined as
follows for these compilers:

%[label:l ••• INCLUDE

{
ddname-1 (member-name-1)}

member-name-1

[

,ddname-2 (member-name-2~
,member-name-2 J ... ,

Syntax rules:

1. Each "ddname" and "member name" pair
identifies the external text to be
incorporated into the source program.
This external text must be a member of
a partitioned data set.

2. A "ddname" specifies the ddname
occurring in the name field of the
appropriate DO statement. Its
associated "member name" specifies the
name of the data set member to be
incorporated. If "ddname n is omitted,
SYSLIB is assumed, and the SYSLIB DD
statement is required.

3. A %INCLUDE statement cannot be used in
a preprocessor procedure.

General rules:

1. Included text can contain
nonpreprocessor and/or preprocessor
statements.

2. The included text is scanned, in
sequence, in the same manner as the
source program: that is, preprocessor
statements arE executed and
replacements are made where required.

3. %INCLUDE statements can be nested. In
other words, included text also can
contain "INCLUDE statements. A ~GO TO
statement in included text can
transfer control to a pOint in ~he
source program or in any included text
at an outer level of nesting, but the
reverse is not permitted. An
analogous situation exists for nested
do-groups that specify iterative
execution: control can be transferred
from an inner group to an outer,
containing group, but not from an
outer group into an inner, contained
group. There is nO limit to the
permissible depth of nesting.

4. Preprocessor statements in included
text must be complete. It is not
permissible, for example, to have half
of a "IF statement in included text
and half in the other part of the
source program.

If the source program contained the
following sequence of statements:

IDECLARE (FILENAME1, FILENAME2)
CHARACTER;

I FILENAME1 'MASTER' ;

" FILENAME2 = 'NEWFILE':

I INCLUDE DCLS;

Section J: Statements 481

and if the SYSLIB member name DCLS
contained:

DECLARE (FILENAME1, FILENAME2)
FILE RECORD INPUT
DIRECT KEYED ENVIRONMENT

(REGIONAL (3) KEYLENGTB(8) F
RECSIZE(80»;

then the following would be inserted into
the preprocessed text:

DECLARE (MASTER, NEWFILE)
FILE RECORD INPUT
DIRECT KEYED ENVIRONMENT

(REGIONAL(3) KEYLENGTB(8) F
RECSIZE(80»;

Note that this is a way in which a
central library of file declarations can be
used, with each user supplying his own
names for the files being declared.

IINOTE

The INOTE statement enables the user to
generate a preprocessor diagnostic message
of specified text and severity.

General format:

l[label:l ••• NOTE (message[,codel)

Syntax rules:

1. The nmessage· is a character-string
expression whose value is the required
diagnostic message. The message
should not exceed 256 characters.

2. The ·code" is a FIXED expression whose
value indicates the severity of the
message, as follows:

code severitI

0 I
4 W
8 E

12 S
16 U

If ncode R is omitted, 0 is assumed.

3. If ·code" has a value other than those
listed above, a diagnostic message is
produced and a default value is taken.
If the value is less than zero or
greater than 16, severity U is
assumed. otherwise, the next higher
severity is assumed.

482 OS PL/I CKT AND OPT LRM PART II

General rules:

1. User-generated messages are filed
together with preprocessor-generated
messages. Whether or not a particular
message is subsequently printed
depends upon its severity level and
the setting of the compiler FLAG
option.

2. User-generated messages of severity U
cause immediate termination of
preprocessing and compilation. User
generated messages of severity S, E,
or W may cause termination of
compilation (or checkout compiler
execution), depending upon the setting
of the NOSYNTAX, NOCOMPILE, and NORUN
compiler options.

~null statement

The ~null statement can be used to provide
transfer targets for %GO TO statements. I~

is also useful for balanCing ELSE clauses
in nested IIF statements.

General format:

~ [label:] ••• ;

~PROCEDURE

Abbreviation: ~PROC

The IPROCEDURE statement is used in
conjunction with a lEND statement to
delimit a preprocessor procedure. Such a
preprocessor procedure is an internal
function procedure that can be executed
only at the preprocessor stage.

General format:

I label: [label:] ••• PROCEDURE
[(identifier [, identifierl •••)]
[STATEMENT]
RETURNS({CHARACTERIFIXED});

syn~ax rules:

1. Each "identifier" is a parameter of
the function procedure; a maximum of
63 may be specified.

2. One of the attributes CHARACTER or
FIXED must be specified in the RETURNS
attribute list to indicate the type of
value retUrned by the function
procedure. There can be no default.

General rules:

1. The only statements and groups that
can be used within a preprocessor
procedure are:

a. the preprocessor assignment
statement

b. the preprocessor DECLARE statement

c. the preprocessor do-group

d. the preprocessor GO TO statement

e. the preprocessor IF statement

f. the preprocessor null statement

g. the preprocessor RETURN statement

h. the preprocessor NOTE statement

i. the iPAGE listing control
statement.

j. the ISKIP listing control
statement.

k. the 'PRINT listing control
statement

1. the INOPRINT listing control
statement

All of these statements and the do
group must adhere to the syntax and
general rules given for them in
this section, except that, for 'a'
through 'he, the initial percent
symbols must be omitted.

2. A GO TO statement appearing in a
preprocessor procedure cannot transfer
control to a point outside of that
procedure.

3. As implied by general rule 1,
preprocessor procedures cannot be
nested.

4. A preprocessor procedure can be
invoked by a function reference in a
preprocessor statement or a
preprocessor procedure, or, if the
function procedure name is active, by
encountering that name in a
nonpreprocessor statement.

Preprocessor RETURN

The preprocessor RETURN sta~ement can be
used only in a preprocessor procedure and,
therefore, can have no leading J. It
returns a value as well as control back to
the point from which the preprocessor
procedure was invoked.

General format:

[label:] ••• RETURN
Cpreprocessor-expression);

General rule:

The value of the preprocessor
expression is converted to the RETURNS list
of attribute specified in the iPROCEDURE
statement before it is passed back to the
point of invocation. If the point of
invocation is in a nonpreprocessor
statement, replacement activity can be
performed on the returned value after that
value has replaced the procedure reference.

Note that the rules for preprocessor
expressions do not permit the value
returned by a preprocessor procedure to
contain preprocessor statements.

Listing Control Statements

iCONTROL

The checkout compiler FORMAT option, when
specified, may be activated and deactivated
by the iCONTROL statement. Onder the
optimizing compiler, the syntax of the
statement is checked, then it is ignored.

General format:

ICONTROLCFORMATINOFORMAT):

syntax rules:

1. To influence formatting of a listing,
the statement must be on a line w~th
no other statements.

2. The statement will have no effect if
it appears within a comment. The
statement must not appear in another
statement.

General rules:

1. The ICONTROL statement has no effect
if the FORMAT compiler option has not
been specified.

2. The FORMAT compiler option is
nullified if more ICONTROL statements
have been executed with the NOFORMAX
option than with the FORMAT option:
the result is as if the FORMAT option
had not been specified. In all other
cases, the ICONTROL statement has nO
effect on the format.

3. The statement may be used with or
without the preprocessor.

section J: Statements 483

4. The ICONTROL statement is printed in
the formatted listing. It is also
retained in the text passed to the
compiler, but is ignored by the
compiler.

5. If the preprocessor is used, and a
"CONTROL statement is written on the
same line as one or more other
statements, the preprocessor moves the
ICONTROL so that it is on a line of
its own in the text passed to the
compiler.

IINOPRINT
I
I
IThe INOPRINT statement causes printing of
the source and insource listings to be
suspended from the following statement.

General format:

"NOPRINT;

Syntax rules:

1. To cause printing to be suspended, the
statement must be on a line with no
other statements.

2. The statement will have no effect if
it appears within a comment. It must
not appear within another statement.

General rules:

1. The statement may be used with or
without the preprocessor. It will
control both the insource and the
source listinq.

2. The INOPRINT statement causes printing
of the insource and source listings to
be suspended. No further statements
are printed Until a IPRINT statement
is encountered.

3. If the preprocessor is used, text
included by a IINCLUDE statement
inherits the print/noprint status that
was in effect when the IINCLUDE
statement was executed. INOPRINT and
"PRINT statements in the included text
affect the included text only; the
original status is restored at the end
of the included text.

4. If the preprocessor is not used,
included text inherits the
print/noprint status that was in
effect when the IINCLUDE status was
executed. In this case, however, the
original status is not restored at the
end of the included text.

484 OS PL/I CKT AND OPT LaM PART II

The statement following a "PAGE statement
in the program listing is printed on the

Ifirst line of the next page. Examples of
Ithe effects of the "PAGE statement are
Ishown in figure J.6

General format:

"PAGE:

Syntax rules:

1. To cause formatting to take place, the
statement must be on a line with no
other statements.

2. The statement will have no effect if
it appears within a comment. The
statement must not appear in another
statement.

General rules:

1. The statement may be used with or
without the preprocessor. It will
control both the insource and the
source listing.

2. After being put into effect, the
SPAGE; is not printed by the
preprocessor and is deleted from the
text by the compiler; it does not
appear in the formatted listing.

3. If the preprocessor is used, and a
"PAGE statement is written on the same
line as one or more other statements,
the preprocessor moves the "PAGE so
that it is on a line of its own in the
text passed to the compiler. The
insource listing is therefore not
formatted, but the source listing is.

4. When the preprocessor is used, an
identifier that is split across the
end of a line that contains a "PAGE
statement is concatenated to form one
word. The second part of the word is
moved onto the same line as the first
part if there is sufficient space on
that line, otherwise the concatenated
word is printed at the start of a new
line.

,
,SPRINT , ,
I The SPRINT statement causes printing of the
,source and insource listings to be resumed
,from the following statement.
I
, General format:

"PRINT:

Syntax rules:

1. To cause printing to be resumed, the
statement must be on a line with no
other statements.

2. The statement will have no effect if
it appears within a comment. It must
not appear within another statement.

General rules:

1. The statement may be used with or
without the preprocessor. It will
control both the insource and the
source listing.

2. "print" is the default for both the
insource and the source listings,
provided that the relevant compiler
options are specified.

3. If the preprocessor is used, text
included by a IINCLUDE statement
inherits the print/noprint status that
was in effect when the "INCLUDE
statement was executed. "NOPRINT and
"PRINT statements in the included text
affect the included text only: the
original status is restored at the end
of the included text.

4. If the preprocessor is not used,
included text inherits the
print/noprint status that was in
effect when the IINCLUDE status was
executed. In this case, however, the
original status is not restored at the
end of the included text.

The specified number of lines following a
ISKIP statement in the program listing are

Ileft blank. Examples of the effects of the
IISKIP statement are shown in figure J.6.

General Format

"SKIP [(n)] :

Syntax rules:

1. To cause formatting to take place, the
statement must be on a line with nO
other statements.

2. The statement will have no effect if
it appears within a comment. The
statement must not appear in another
statement.

3. n must be a decimal integer constant
in the range 1 through 999. Omdssion
of the option is equivalent to
specifying the value 1 for n.

General rules:

1. The statement may be used with or
without the preprocessor. It will
control both the insource and the
source listing.

2. After being put into effect, the "SKIP
statement is not printed by the
preprocessor and is deleted from the
text by the compiler; it does not
appear in the formatted listings.

3. If the preprocessor is used, and a
"SKIP statement is written on the same
line as one or more other statements,
the preprocessor moves the "SKIP so
that it is on a line of its own in the
text passed to the compiler. The
insource listing is therefore not
formatted, but the source listing is.

4. When the preprocessor is used, an
identifier that is split across the
end of a line that contains a "SKIP
statement is concatenated to form one
word. The second part of the word is
moved onto the same line as the first
part if there is sufficient space on
that line, otherwise the concatenated
word is printed ~t the start of a new
line.

5. If n is greater than the number of
lines remaining on the page, the
equivalent of a "PAGE statement is
executed in place of the ISKIP
statement.

Section J: Statements 485

r---,
Programmer's I Insource Listing ~ Source I Source Listing after I

Code I Listing without Preprocessor, preprocessing I

A=B; 'A=B; A=B;
%SKIP(2); ,
C=D; I

I C=D; C=D;

X=2; JSKIP(l); I X=2; ~SKIP(l); X=2;
Y=O; ,Y=O;

, Y=O;

B1='1'B; I B1='1'B; B1='1'B;
%SKIP;B2='0'B; , ~SKIP;B2='O'B;

, B2='0'B;

P=O; ••• ISKIP(l);SIG
NAL CONVERSION;
(G of SIGNAL in
last posn. in line)

RES=SQRT(X);
IPAGE:
DCL Z FLOAT;

OPEN FILE (Fl);
%PAGE; PUT (REC_1):

END LOOP 3B;%PAGE;A
LLOCATE A 3:
(A of ALLOCATE in

P=O; ••• ISKIP(l);SIG
NAL CONVERSION;

DCL Z FLOAT; at
start of new page

No skip to new page

No skip to new page

last posn. in line) I I

P=O; •••

SIGNAL
CONVERSION;

DCL Z FLOAT; at
start of new page

PUT CREC 1); at
start of-new page

ALLOCATE A 3; at
start of new page

L------------------------_____________________________ ----------------------------~-----J
Figure J.6. Effects of ~PAGE and ISKIP

l
I

486 OS PL/I CKT AND OPT LRM PART II

This section describes structure mapping
and alignment of records in buffers. The
information is included because, under
certain circumstances, it should be borne
in mind when a program is being written.
However, the information is not essential
to programmers using stream-oriented
transmission or unaligned data (other than
bit strings): it is intended for those
using record-oriented transmission
(particularly locate mode) with aligned
structures.

Structure Mapping

For any structure (major or minor), the
length, alignment requirement, and position
relative to a doubleword boundary will
depend on the lengths, alignment
requirements, and relative positions of its
members. The process of determining these
requirements for each level in turn and
finally for the complete structure, is
known as structure mapping.

During the structure mapping process,
the compiler minimizes the amount of unused
storage (padding) between members of the
structure. It completes the entire process
before the structure is allocated,
according (in effect) to the rules
discussed in the following paragraphs. It
is necessary for the user to understand
these rules for such purposes as
determining the record length required for
a structure when record-oriented
input/output is used, and for determining
the amount of padding or rearrangement
required to ensure correct alignment of a
structure for locate-mode input/output (see
"Record Alignment", at the end of this
section).

structure mapping is not a physical
process. Although during this discussion
such terms as "shifted" and "offset" are
used, these terms are used purely for ease
of discussion, and do not imply actual
movement in storage; when the structure is
allocated, the relative locations are
already known as a result of the mapping
process.

The mapping for a complete structure
reduces to successively combining pairs of
items (elements, or minor structures whose
individual mappings have already been
determined). Once a pair has been
combined, it becomes a unit to be paired

Section K: Data Mapping

with another unit, and so on until the
complete structure has been mapped. The
rules for the process are therefore
categorized as:

Rules for determining the order of
pairing

Rules for mapping one pair

These rules are described below, and an
example shows an application of the rules
in detail.

Note: To follow these rules, it is
necessary to appreciate the difference
between logical level and level number.
The item with the greatest level number is
not necessarily the item with the deepest
logical level. If thE structure
declaration is written with consistent
level numbers or suitable indentation (as
in the detailed example given after the
rules), the logical levels are immediately
apparent. In any case, the logical level
of each item in the structure can be
determined by applying the following rule
to each item in turn, starting at the
beginning of the structure declaration:

"The logical level of a given item is
always one unit deeper than that of the
most immediate of its containing
structures."

For example:

DeL 1 A, 4 B, 5 C, 5 D, 3 E, 8 F, 1 G;

1 2 3 3 2 3 3

The lower line shows the logical level for
each item in the declaration.

RULES FOR ORDER OF PAIRING

The steps in determining the order of
pairing are as follows:

1. Find the minor structure with the
deepest logical level (which we will
call logical level n).

2. If the number of minor structures at
logical level n exceeds one, take the
first one of them as it appears in the
declaration.

3. Using the rules for mapping one pair

Section K: Data Mapping 487

(see below), pair the first two
elements appearing in this minor
structure, thus forming a unit.

4. Pair this unit with the next element
(if any) appearing in the declaration
for the minor structure, thus forming
a larger unit.

5. Repeat rule 4 until all the elements
in the minor structure have been
combined into one unit. This
completes the mapping for this minor
structure; its alignment requirement
and length, including any padding, are
now determined and will not change
(unless the programmer cpanges the
structure declaration). Its offset
from a doubleword boundary will also
have been determined;- note that this
offset will be significant during
mapping of any containing structure,
and it may change as a result of such
mapping.

6. Repeat rules 3 through 5 for the next
minor structure (if any) appearing at
logical level n in the declaration.

7. Repeat rule 6 until all minor
structures at logical level n have
been mapped. Each of these minor
structures can now be thought of as an
element for structure mapping
purposes.

8. Repeat the process for minor
structures at the next higher logical
level; that is, make n equal to (n-1)
and repeat rules 2 through 7.

9. Repeat rule 8 until n = 1; then repeat
rules 3 through 5 for the major
structure.

RULES FOR MAPPING ONE PAIR

As stated earlier, terms apparently
implying phySical storage are used here
only for ease of discussion; the storage
thus implied may be thought of as an
imaginary model consisting of a number of
contiguous doublewords. Each doubleword
has eight bytes numbered zero through 7, so
that the offset from a doubleword boundary
can be given; in addition, the bytes in the
model may be numbered continuously from
zero onwards, starting at any byte, so that
lengths and offsets from the start of a
structure can be given.

1. Begin the first item of the pair on a
doubleword boundary; or, if the item
is a minor structure that has already
been mapped, offset it from the

488 05 PL/I CKT AND OPT LRM PART II

doubleword boundary by the amount
indicated.

2. Begin the other item of the pair at
the first valid poSition following the
end of the first item. This position
will depend on the alignment
requirement of the second item.
Alignment and length requirements for
elements are given in figures K.1 and
K.2. (If the item is a minor
structure, its alignment requirement
will have been determined already.)

3. Shift the first item towards the
second item as far as the alignment
requirement of the first item will
allow. The amount of shift determines
the offset of this pair from a
doubleword boundary.

After this process has been completed,
any padding between the two items will have
been minimized and will remain unChanged
throughout the rest of the operation. The
pair can nOw be considered to be a unit of
fixed length and alignment requirement; its
length is the sum of the two lengths plus
padding, and its alignment requirement is
the higher of the two alignment
requirements (if they differ).

EFFECT OF UNALIGNED ATTRIBUTE

The example of structure mapping given
below shows the rules applied to a
structure declared ALIGNED, because mapping
of aligned structures is more complex Owing
to the number of different alignment
requirements. The general effect of the

IUNALIGNED attribute is to reduce halfword,
fullword, and doubleword alignment
requirements down to byte, and to reduce
the alignment requirement for bit strings
from byte down to bit. The same structure
mapping rules apply, but the reduced
alignment requirements are used. This
means that unused storage between items can
only be bit padding within a byte, and
never a complete byte: bit padding may
occur when the structure contains bit
strings.

TASK, EVENT and AREA data cannot be
unaligned. If a structure has the
UNALIGNED attribute and it contains an
element that cannot be unaligned, then
UNALIGNED is ignored for that element; the
element is aligned by the compiler and an
error message is put out. For example, in
a program with the declaration

DECLARE 1 A UNALIGNED,
2 B,
2 C AREA(100);

C is given the attribute ALIGNED, as the
inherited attribute UNALIGNED conflicts
with AREA.

EXAMPLE OF STRUCTURE MAPPING

This example shows the application of the
structure mapping rules for a structure
declared as follows:

DECLARE 1 A ALIGNED,
2 B POINTER,
2 C,

3 D FLOAT DECIMAL(14),
3 E,

4 F LABEL,
4 G,

S H CHARACTER(2),
S I FLOAT DECIMAL(13),

4 J FIXED BINARY(31,O),
3 K CHARACTER(2),
3 L FIXED BINARYC20,O),

2 H,
3 N,

4 P FIXED BINARY(S),
4 Q CHARACTER(S),
4 R FLOAT DECIMAL(2),

3 S,
4 T FLOAT DECIMALC1S),
4 U BIT(3),
4 V CHAR(1),

3 W POINTER,
2 X PICTURE '$9V99'i

The minor structure at the deepest
logical level is G, so that this is mapped
first as shown in figure K.3. Then E is
mapped, followed by N, S, C, and H, in that
order as shown in figures K.4 through K.S.
Finally, the major structure A is mapped as
shown in figure K.9.

For each structure, a table is given
showing the steps in the process,
accompanied by a diagram g1v1ng a visual
interpretation of the process. At the end
of the example, the structure map for A is
set out in the form of a table (figure
K.l0) showing the offset of each member
from the start of A.

Section K: Data Mapping 489

r---,
I I storage I I I

Variable
Type

IStored Internally I Requirements I Alignment I Explanation I
I as I (in Bytes) I Requirements I I

BIT (n) lOne byte for eachl CEIL(n/a)
Igroup of a bits I

CHARACTER (n)

I (or part thereof) I

lOne byte per
1 character

n

PICTURE lOne byte for each I.Number of
IPICTURE character I PICTURE charac
I (except V, K, andlters other than
Ithe F scaling IV, K, and F
I factor I specification
I specification) I

DECIMAL FIXED (p,q) I Packed decimal
Iformat (1/2 byte
Iper digit, plus
11/2 byte for
I sign)

CEIL ((p+1) /2)

BIT(n) VARYING ITwo-byte prefix I 2+CEIL(n/S)
Iplus one byte fori

CHARACTER(n)
VARYING

BINARY FIXED (p,q)
P < =15

p > 15

BINARY FLOAT (p)

leach group of a I
Ibits (or part 1
I thereof) I

ITwo-byte prefix I
Iplus one byte perl
I character I

I Halfword
Ibinary integer
I 1
I I
1-----------------
IFullword binary
I integer

P < 22 I Short
-------------------Ifloating-point
DECIMAL FLOAT (p) I

p < 7 I

POINTER1 I

IOFFSET1 I
1-------------------------------------1
1 FILE I - I

2+n

2

4

1---
IENTRY I I
1-------------------------------------1 a
I LABEL I I
1---
ITASK I - I 16
1---
IEVENT I I 32

Byte

Halfword

Full
word

I
I
I
1
I
IData may
Ibegin on
lany byte
o through 7

Data may begin
on byte 0,2,
4 or 6

Data may
begin on
byte 0 or
4 only

L---J
Figure K.l (Part 1 of 2). Summary of alignment requirements for ALIGNED data

490 OS PL/I CKT AND OPT LRM PART II

r---,
I I I Storage I I
1 Variable 1 Stored Internally 1 Requirements I Alignment 1 Explanation
1 Type 1 as I (in Bytes) I Requirements I
1---
IBINARY FLOAT (p) I 1 I IData may
1 21 < P < 54 "lLong I I Double 1 begin on
1-------------------1 floating-point I 8 ,word Ibyte 0
IDECIMAL FLOAT (p) , , I ,only
I 6 < P < 17 1 1 I I
1---I 1
IBINARY FLOAT(p) 1 I I I
153 < p < 110 1 Extended 1 1 I
I-------------------Ifloating-point I 16 1 I
IDECIMAL FLOAT(p) I I I I
116 < p < 34 I I I I
1---I 1
I AREA 1 1 16+size 1 I
I------------------~--
11 Locators (pointers and offsets) used in programs processed by the checkout compiler
1 can be 4 or 16 bytes long. The mapping of four-byte locators is described here; the
I mapping of 16-byte locators is identical except for the extra storage requirement.
L---J
Figure K.1 (Part 2 of 2). summary of alignment requirements for ALIGNED data

Section K: OataMapping "'1

r---,
I I Storage I I I

Variable IStored Internally I Requirements I Alignment I Explanation I
Type I as I (in Bytes) I Requirements I I

---1
BIT (n) lAs many bits as I n bits IBit IData may begin I

I are required, I I Ion any bit in I
Iregardless of I I lany byte 0 I
I byte boundaries I I Ithrough 1 I

CHARACTER (n) lOne byte per I n I
I character I I

---I
PICTURE I one byte for each I Number of PICTURE

IPICTURE characterlcharacters other
I (except V or K) Ithan V or K

BIT(n) VARYING ITWo-byte prefix I
Iplus one byte forl2 bytes + n bits
leach group of 8 I
Ibits (or part I
I thereof) I

CHARACTER(n) I Two-byte prefix I 2+n

I VARYING I plus one byte perl
1 1 character I
1---
IDECIMAL FIXED(p,q) IPacked decimal I CEIL«p+1)/2)
I Iformat (1/2 byte I
1 Iper digit, plus I
I 11/2 byte for I
1 I sign) I
1--- Byte
IBINARY FIXED (p,q) IBalfword binary I
1 p < = 15 1 integer I 2
I 1----------------- -----------------
1 p > 15 IFullword binary
I I integer
1-------------------------------------
I BINARY FLOAT (p) I
1 p < 22 I Short
1-------------------1 floating-point
IDECIMAL FLOAT (p) I
1 p < 1 1
1-------------------------------------
I POINTER I -
1-------------------------------------
I OFFSET I
1-------------------------------------
1 FILE 1

Data may begin
on any byte 0
through 1

L---J
Figure K.2 (Part 1 of 2). Summary of alignment requirements for UNALIGNED data

492 OS PL/I CKT AND OPT LRM PART II

r---, I 1 1 storage I I
I Variable Istored Internally 1 Requirements 1 Alignment 1 Explanation
1 Type 1 as I (in Bytes) 1 Requirements
1--- ------------ ------------------
1 ENTRY I I
1-------------------------------------1
1 LABEL 1 I
1-------------------------------------1
IBINARY FLOAT (p) 1 1
1 21 < P < 54 1 Long 1
I-------------------Ifloating-point I 8
IDECIMAL FLOAT (p) 1 I
I 6 < P < 17 1 I
1---
IBINARY FLOAT(p) I I
153 < p <110 I Extended I
I-------------------Ifloating-point I 16
IDECIMAL FLOAT(p) 1 1
116 < P < 34 I I
1---
I ~ TASK, EVENT, and AREA data cannot be UNALIGNED. A pOinter or offset can be 4 or
I 16 bytes long (see figure K.1) •
. l---J
Figure K.2 (Part 2 of 2). Summary of alignment requirements for UNALIGNED data

Section K: Data Mapping 493

r--,
I 1 1 IOffset from I I
I Name of 1 Alignment 1 Length IDoubleword 1 Length of 1 Offset from
1 Item I Requirement 1 I--------~--I padding I G
I I I 1 Begin 1 End I I
1--

Step 1 1 H I Byte 1 2 I 0 1 1 I I
I I I Double 1 8 1 0 I 7 I I
I I I I I 1 I

Step 2 I *H I Byte I 2 I 6 I 7 I I 0

Step I

Step 2

I I I Double I 8 I 0 1 7 1 0 I 2
1--
I G I Double I 10 I 6 I 7 1 1
L--J
*First item shifted right

H
~ ,

•
G

I

Figure K.3. Mapping of minor structure G

494 OS PL/I CKT AND OPT LRM PART II

r--,
I IOffset from I I

Name of I Alignment Length IDoubleword I Length of I Offset from
Item I Requirement 1-----------1 padding I E

I I Begin, End I I
----------------------- --

step 1 F 1 Word 8 0 7
G I Double 10 6 7

I
step 2 *F I Word 8 4 3 0

G 'Double 10 6 7 2 10
I

step 3 F I
through I Double 20 4 7

G ,
J ,Word 4 0 3 0 20

-- -------------------------
E I Double ,24 1 4 , 3 ,

L--J
*First item shifted right

F G

Step 0
~~~~~~~~~~~~~~~_P~~~~~~~~~~~~~~_+_ 

F G 

Step 2 

F G J 

Step 3 

E 

Figure K.4. Mapping of minor structure E 

Section K: Data Mapping 495 



r----------------------------------------------------------------------, 
I tOffset froml I I 

Name of Alignment I Length IDoubleword I Length of I Offset from I 
Item Requirement I 1-----------1 padding I N I 

I I Begin I End I I I 
--------- ------------------------------------------------------------1 

step 1 P Halfword I 2 I 0 I 1 I I 0 I 
Q Byte I 5 I 2 I 6 I I 2 I 

I I I I I I 
step 2 P I I I I I I 

through Halfword I 1 I 0 I 6 I I I 
Q I I' I I 1 
R Word I 4 I 0 I 3 I 1 I 8 I 

----------------------------------------------------------------------1 
N I word I 12 I 0 I 3 I I I 

l----------------------------------------------------------------------J 

Step I 

P Q R 
,.-A---w • 

Step 2 

, 
• 
N 

Figure K.5. Mapping of minor structure N 

496 os PL/I CKT AND OPT LRM PART II 



r----------------------------------------------------------------------, 
I I IOffset from I I 

Name of I Alignment I Length IDoubleword I Length of I Offset from 
Item I Requirement I 1-----------1 Padding I S 

I I I Begin I End I I 

step 1 T Double 8 0 I 1 0 
U Byte 1 0 I 0 0 8 

I 
Step 2 T I 

through Double 9 0 I 0 
U I 
V Byte 1 1 I 1 0 9 

----------------------------------------------------------------------
S Double I 10 I 0 I 1 I I 

L----------------------------------------------------------------------J 

T 
I 

Step I o 

T 

Step 2 0 

, 
", 

S 

Figure K.6. Mapping of minor structure S 

section K: Data Mapping 491 



Step 1 

Step 2 

step 3 

Step I 

Step 2 

Step 3 

r----------------------------------------------------------------------, 
I 1 IOffset froml I 

Name of I Alignment 1 Length IDoubleword I Length of I Offset from 
Item I Requirement 1 1-----------1 Padding 1 C 

I 1 IBegin End 1 I 

D Double 8 0 1 
E Double 2q q 3 q 

D 
through Double 36 0 3 

E 
K Byte 2 q 5 o 

D 
through Double 38 0 5 

K 
L Word q 0 3 2 

C I Double qq 0 I 3 I I 

o 
12 

36 

qO 

L--------------------_________________________________ -----------------J 

D E (I~ngth 24) 

D E (length 24) K 
, ,A, , • .. .,.,...,.,....., 

I 011 1213141 5 16Il9fjJ?~ 415 Ofr-7r""""'1l ° lr-""'Tq-....yo213--r""14""""ls-r-1 0-'--17'--1 0'--11 r-II21-'31--r4Is'"""'"r"l b-'-17'-1 ° 

D E (I eng th 24) K L 
, ~ , , ~ ~,. , 

l0ll 121314151617~1415)()f7IOII 1213141516171°11 121314151bl7io 

, 
c 

Figure K.1. Mapping of minor structure C 

q98 OS PL/I CKT AND OPT LRM PART II 



r----------------------------------------------------------------------, 
I I IOffset from 1 I 

Name of I Alignment I Length IDoubleword 1 Length of 1 Offset from 
Item 1 Requirement I 1----------- Padding, M 

, I I Begin, End I 
----------------------- -------------------- -------------------------

Step 1 N Word 12 0 3 , 
S Double 10 0 1 I 

I 
Step 2 *N Word 12 4 7 I 0 

S Double 10 0 1 0 I 12 
I 

Step 3 N I 
through Double 22 4 1 I 

S I 
W Word 4 4 7 2 I 24 

----------------------- ----------------------------------------------
M I. Double 1 28 ,4 I 7 I 1 L-----------------------------------------------------_________________ J 

*First item shifted right 

N s 

Step I 0 
~~~~+_~~_+-L~~~~~L4~-L~4_~~~~~-L~~L-~~ 

N s

Step 2

N S w

Step 3

,

M

Figure K.8. Mapping of minor structure M

Section K: Data Mapping 499

r--,
1 1 IOffset from 1 1 1

Name of 1 Alignment 1 Length IDoubleword I Length of 1 Offset from 1
Item 1 Requirement 1 1-----------1 Padding 1 A 1

I I I Begin I End I I I

Step 1 B Word 4 0 3
C Double 44 0 3

step 2 *B Word 4 4 1 0
C Double 44 0 3 0 4

Step 3 B
through Double 48 4 3

C
M Double 28 4 1 0 48

Step 4 B
through Double 16 4 1

M
X Byte 4 0 3 0 16

--------- ------------- --
A Double 80 I 4 I 3 I I

L------------------------~-----------_________________ -----------------J
*First item shifted right

B C (I ength 44)

Step I

B C

Step 2

B C M (length 28)
, " '" ,. Vi ,., •

Step 3 101 I 121314IsI617IOI'Jf)1314IsI617IOI'Jf)1~3~14~15~16~17~IO~I'~12~13~14~15~lb~17~IO

B C M X
• A ~.. ,. \,,'&.

Step 4 101 I 121314ISI6171°1')()f314ISI6171°1')(,6314ISI6171°1'121314IS1& 17 1°
,

A ('e",th 10)

Figure)(.9. Mapping of major structure A

500 OS PL/I CRT AND OPT LRM PART II

r----------------------------
A

B
C

M

X

o
padding (4)
E

F
padding (2)
G

H
I

J
1<
padding (2)

L

N

S

p

Q
padding (1)
R

T
U
V

padding (2)
W

From G
o
2

From E
o
8

10
10
12
20

From N
o
2
1
8

From S
o
8
9

From C
o
8

12
12
20
22
22
211
32
36
38
110

From M
o
o
2
1
8

12
12
20
21
22
211

-------------,
From A

o
4
II

12
16
16
211
26
26
28
36
110
112
1111
118
118
48
50
55
56
60
60
68
69
10
12
16

l---J
Figure K.l0. Offsets in final mapping of structure A

Section K: Data Mapping 501

Record Alignment

The user must pay attention to record
alignment within the buffer when using
locate mode input/output. The first data
byte of the first record in a block is
generally aligned in a buffer on a
doubleword boundary (see figure K.~4); the
next record begins at the next available
byte in the buffer. The user must ensure
that the alignment of this byte matches the
alignment requirements of the based
variable with which the record is to be
associated.

For blocked records, doubleword
alignment of the first byte of data in each
record in the block is ensured if the
record length (RECSIZE) is a multiple of
eight. For spanned records, the block size
(BLKSIZE) must be a multiple of eight if
this alignment is required. For data read
from ASCII data sets, the first byte of the
block prefix is doubleword-aligned; to
ensure similar alignment of the first byte
of the first record, the prefix length must
be a multiple of eight bytes, less four to
allow for the four record length bytes.

Most of the alignment problems
described here occur in ALIGNED based or
non-based variables. If these variables
were UNALIGNED, the preservation of the
record alignment in the buffer would be
considerably easier.

If a VB-format record is to be
constructed with logical records defined by
the structure:

1 S,
2 A CHAR(l),
2 B FIXED BINARY(3l,0);

this structure is mapped as in figure K.ll.

r-----------------------,
I IA I B I
I--J--J--------J--J--J--I
t t t
W W W

W Word boundary

Figure K.ll. Format of structure S

If the block was created using a
sequence of WRITE FROM(S) statements, the
format of the block would be as in figure
K.l2, and it can be seen that the alignment
in the buffer differs from the alignment of
S.

There is no problem if the file is then
read using move mode READ statements, e.g.,
READ INTO(S), because information is moved

502 OS PL/I CKT AND OPT LRM PART II

from the buffer to correctly aligned
storage.

If, however, a structure is defined as:

1 SBASED BASED(P) LIKE S;

and READ SET(P) statements are used,
reference to SBASED.B will, for the first
record in the block, be to data aligned at
a doubleword plus one byte, and will
probably result in a specification
interrupt.

The same problem would have arisen had
the file originally been created by using
the statement:

LOCATE SBASED SETCP);

Again, for the first record in the
block, P would be set to address a
doubleword and references to SBASED.B would
be invalid.

In both cases the problem is avoided if
the structure is padded in such a way that
B is always correctly aligned:

1 S,
2 PAD CHAR(3),
2 A CHAR(l),
2 B FIXED BINARY;

The block format would now be as in figure
K.13; B is always on a word boundary.
padding may be required at the beginning
and end of a structure to preserve
alignment.

The alignment of different types of
record within a buffer is shown in figure
K.14. For all organizations and record
types, except FB, V and VB records in
INDEXED data sets with KEYLOC = 0 or
unspecified, the first data byte in a block
(or hidden buffer) is always on a
doubleword boundary. The position of any
successive records in the buffer depends on
the record format.

For INDEXED data sets with unblocked F
format records, the LOCATE statement will
use a hidden buffer if the data set key
length is not a multiple of eight and the
KEYLOC value is 1, 0 or is not specified
(that is, RKP = 0). The pointer variable
will pOint at this hidden buffer.

A special problem arises when using
locate mode input/output in conjunction
with a based variable containing adjustable
extents, i.e., containing a REFER option.
Consider the following structure:

1 S BASED(P),
2 N,
2 C CHAR (L REFER (N»;

If it is desired to create blocked V-format
records of this type, using locate mode
input/output, record alignment must be such
that N is half-word aligned. If L is not a
multiple of 2 then. if the alignment of the
current record is correct, that of the
following record will be incorrect.

LENGTH = L;
/*SAVE DESIRED LENGTH L */

L = 2* CEILCL/2);
/* ROUND UP TO MULTIPLE OF 2*/

LOCATE S FILE CF);
N = LENGTH;

/* SET REFER VARIABLE */
Correct alignment can be obtained by the
following sequence: This technique can be adapted to other

uses of the REFER option.

r---
I BL I RL I A I B I RL I A I B I
I--J __ J--J-----J--J--J------~-J--J--J-----J--J--J--------J--J--J------------
t t t t t t
o W D W D W

BL = Block length
RL = Record length

D Doub~eword boundary
W = Word boundary

Figure K.12. Block created from structure S

r---I BL I RL I PAD I }'a_I B I RL I PAD I AI B I
I--J--J--J-----J--J--J-----J--J--------J--J--J-----J--J--J-----J--J--------J--J--J------
t t t t t t t t
o W D W D W D W

BL = Block length
RL Record length

D
W

Doubleword boundary
Word boundary

Figure K.13. Block created by structure S with correct alignment

Section K: Data Mapping 503

· CONSECUT IVE

F,V,VS,D,U

FB

VB,VBS ,DB

INDEXED

F

FB

v

VB

REGIONAL

F,V,VS,U

Notes:

KEYLOC

1

>1

0

1

>1

0

1

>1

0

1

>1

0

1. EK = embedded key

RKP

0

>0

0

0

>0

0

4

>4

4

4

>4

4

K = key

Doubleword
boundary

data

data

I

I data I

~data---. ~data---..

I
~data~

IEKI I
~data~

I
r----data~

I
~data~~data---..

I
----data~~data~

...-data~ ~data--'"

EKI J
.....-d at a---.

lEKl J
~data~

I
...-data--...

I
~data.--.· ~data---...

I
~data~ ~data~

I
~data~ ~data

data I

1 = record length

2. Each I/O operation sets the pointer to the beginning of the data in the records.

3. For CONSECUTIVE data sets with VBS-format records, if the record length is greater
than the block size, the record is moved to a hidden buffer, with the first data
byte on a doubleword boundary.

Figure K.14. Alignment of data in a buffer in locate mode input/output, for
different formats and data set organizations

504 OS PL/I CKT AND OPT LRM PART II

The tables in this section list the
principal differences between the
optimizing and checkout compilers.

Figure L.1 gives the differences that
arise from the differing functions of the
two compilers. There are, for" instance,
keywords concerned with the checkout and
conversational facilities of the checkout
compiler that are not implemented by the
optimizing compiler, and optimization
keywords that are not implemented by the
checkout compiler.

Section L: Compiler Differences

Figures L.2 and L.3 show differences
that do not arise directly from differing
compiler functions. Figure L.2 contains
general syntactic and semantic differences,
and figure L.3 shows differing quantitative
restrictions on the use of various
facilities of the language.

The section is applicable only to
error-free programs processed in batch
mode.

Section L: Compiler Differences 505

r---,
Language feature I Optimizing compiler I Checkout compiler I

I implementation I implementation I

statements: syntax~checkonly I Implemented
CHECK I
NOCHECK I
FWW I
NOFLOW I
PUT SNAP I
PUT FLOW I
PUT ALL I
HALT I
I CONTROL I

Options: I Implemented syntax-check only
ORDER I
REORDER I
TOTAL I

Built-in subroutines: I Implemented Syntax-check only
PLICKPT I
PLIREST I
PLICANC ,

PUT DATA statement and I Names of variables only Names and values of
CHECK prefix I transmitted variables transmitted
specifying program I
control data I

PUT LIST statement I Invalid Values of variables
specifying program I transmitted
control data I

Lengths of pointer and
offset variables

4 bytes With COMPATIBLE compiler
option: 4 bytes
With NOCOMPATIBLE compiler
option: 16 bytes

Oncodes I Certain codes not All oncodes implemented
I implemented (See list
I in section Hr "On-
I conditions"). I

L---J
Figure L.1. Differences resulting from differing compiler functions

506 os PL/I CKT AND OPT LRM PART II

r---,
Language feature I Optimizing compiler I Checkout compiler

I implementation I implementation

Based variable in data
directed I/O and CHECK
name-list

Defined variable in
data-directed I/O and
CHECK name-list

CHECK prefix specifying I
label of statement to I
which prefix is I
attached I

LIKE attribute
specifying a minor
structure that is
contained in a major
structure of which
some other minor
structure is declared
with LIKE attribute

Area variable in an I
OFFSET attribute either I
in DECLARE statement orl
RETURNS attribute or I
option I

1 Must not be based on an
offset variable.

2 Must not be a member of
a structure containing
the REFER option.

3 Must not be based on a
pOinter that is based,
defined, or a parameter,
or a member of an
aggregate.

Must not be defined:
1 on a controlled variable.
2 on an array with one or

more adjustable bounds.
3 with a POSITION attri

bute specifying other
than a constant.

CHECK raised for the
label

Not allowed

Must be non-defined,
unsubscripted,
unqualified area name

No corresponding rules

No corresponding rules

CHECK not raised for
the label

NO co~responding rule

No corresponding rule

Area variable in OFFSET I Not allowed No corresponding rule
attribute in parameter I I
descriptor I I

---1
Data-directed output I output in row major order I Output as interleaved arrays I
of dimensioned I for each array I in row major order I
structure I I I

---1
Exponentiation I see section F, figure f.4d 1

L---J
Figure L.2 (Part 1 of 2). Differing qualitative restrictions

Section L: compiler Differences 507

r---,
Language feature I Optimizing compiler I Checkout compiler I

I implementation I implementation ,

Aggregate argument to
generic entry name

Parameter string length,
or area size specified I
as other than decimal ,
integer constant I

Dummy argument cannot be
be created

Length or size attribute I
assumed to match argument: I
dummy never created I

I

No corresponding rule

Dummy created if length or
size differs from argument

Attributes of entry
argument and parameter
differ in alignment
only

Pseudovariables:
COMPLETION
COMPLEX
PRIORITY
STRING

UNDEFINEDFILE condition
in OPEN statement
specifying more than
one file name

Standard default files
SYSIN and SYSPRINT

Locator conversion
(offset to pointer and
vice versa)

No dummy argument

Not allowed as control
variables for do-groups

Raised once, after
attempting to open every
file

No corresponding rule

1 If offset is a structure
member, or if it appears
in a DO statement or
multiple assignment, the
associated area must be
an unsubcripted,
non-defined element
variable. If the area is
based, its locator must
be an unsubscripted,
non-based, non-defined
pointer, and it must not
be used to explicitly
qualify the area in the
offset declaration.

2 Locator conversion can
not be performed between
argument and parameter:
both must be either
offset or pointer.

I
I
I
I

Dummy argument created

No corresponding rule

Raised at each attempt to
open a file that is un
defined

Used by compiler. Must not
be declared with attributes
conflicting with compiler
requirements. SYSPRINT
always open, therefore no
new page started for
program's output

No corresponding rules

L---J
Figure L.2 (Part 2 of 2). Differing qualitative restrictions

508 OS PL/I'CKT AND OPT LRM PART II

r---,
Language feature I Optimizing compiler I Checkout compiler

I implementation I implementation

Maximum number of
blocks in one
compilation

Maximum level of
nesting of blocks

255

50

I
I
I

I
I

No corresponding rule

No corresponding rule

Maximum number of
active on-units

I
I

49 in any block
254 in any compilation

I
I

No corresponding rule

Maximum level of
nesting of DO and IF
statements

Maximum level of
nesting of select
groups

Maximum level of
dependency in DECLARE
statement

Maximum number of
entries in list of
constants in
declaration of COBOL
variable

Maximum level of
locator qualification

Maximum length of
character-string
picture data

I
I
I

I
I
I

49

49

1, except that an adjust
able bound may not dep
end on a defined var
iable whose base:
1. is a parameter,
2. is automatic with

adjustable extents,
or 3. has fixed subscripts

125

Depends on storage avail
able, but never less than
10

Depends on storage avail
able, but never less than
1023

No corresponding rule

No corresponding rule

No corresponding rule

No corresponding rule

No corresponding rule

32161

--- -------------------------------
Maximum number of I 400 maximum. The exact
subscripted label I number depends on the main
variables or I storage available to the
subscripted label I compiler, and is one tenth.
prefixes in one block I of the spill file record

I size. The maximum of 400
I is obtained when the size
I of main storage available
I to the compiler is greater
I than 80k bytes

No corresponding rule

Maximum number of
active qualified
temporary results

I
I
I
I

32 for statements that
generate intermediate

I
I

temporary results for I
BASED, dynamically DEFINED, I

I I or subscripted variables I

No corresponding rule

L---J
Figure L.3. Differing quantitative restrictions

Section L: compiler Differences 509

510 OS PL/I CRT AND OPl' LRM PART II

access: the act that encompasses the
references to and retrieval of data.

action specification: in an ON statement,
the on-unit or the single keyword SYSTEM,
either of which specifies the action to be
taken whenever an interrupt results from
raising of the named on-condition. The
action specification can also include the
keyword SNAP.

activate (a block): to initiate the
execution of a block. A procedure block is
activated when it is invoked at any of its
entry points; a begin block is activated
when it is encountered in normal flow of
control, including a branch.

activation (of a block):

1. The process of activating a block.

2. The execution of a block.

activation (of a preprocessor variable or
entry name): the establishment of the
validity for replacement of the value of a
variable or the returned value of an entry
name. The first activation must be the
result of the appearance of the name in a
IDECLARE statement. If an active variable
or entry name is made inactive by a
IDEACTIVATE statement it may be activated
again by a %ACTIVATE statement.

active:

1. The state of a block after activation
and before termination.

2. The state in which a preprocessor
variable or preprocessor entry name is
said to be when its value can replace
the corresponding identifier in source
program text.

3. The state in which an event variable
is said to be during the time it is
associated with an asynchronous
operation. An event variable remains
active and, hence, cannot be
associated with another operation
until a WAIT statement specifying that
event variable has been executed or,
in the case of an event variable
associated with a task, until an EXIT,
RETURN, or END statement has caused
termination of the task.

4. The state in which a task variable is
said to be when its associated task is
attached.

Glossary

5. The state in which a task is said to
be before it has been terminated.

additive attributes: attributes for which
there are nO defaults and which, if
required, must always be added to the list
ot specified attributes or be implied
(i.e., they have to be added to the set of
attributes, if they are required).

address: a specific storage location at
which a data item can be stored.

adjustable extent: bound (of an array),
length (of a string), or size (of an area)
that may be different for different
generations of the associated variable.
Adjustable bounds, lengths, and sizes are
specified as expressions or asterisks (or
by REFER options for based variables),
which are evaluated separately for each
generation. They cannot be used for static
variables.

aggregate: see data aggregate.

aggregate expressions: an array expression
or a structure expression.

alignment: the storing of data items in
relation to certain machine-dependent
boundaries.

allocated variable: a variable with which
main storage has been associated and not
freed.

allocation:

1. The reservation of main storage for a
variable.

2. A generation of an allocated variable.

alphabetic character: any of the
characters A through Z of the English
alphabet and the alphabetic extenders #, $,
and ~ (which may have different graphic
representation in different countries).

alphameric charact.er: an alphabetic
character or a digit.

alternative attribute: an attribute that
may be chosen from a group of two or more
alternatives. If none is specified, a
detault is assumed.

ambiguous reference: a reference that is
not sufficiently qualified to identify One
and only one name known at the point of
reference.

Glossary 511

ancestral task: the attaching task or any
of the tasks in a direct line from the
given task to, and including, the major
task.

~: a declared portion of contiguous
main storage identified by an area variable
and reserved, on allocation, for the
allocation of based variables.

area variable: a variable with the AREA
attribute; its values may only be areas.

argument: an expression in an argument
list as part of a procedure reference.

argument list: a parenthesized list of one
or more arguments, separated by commas,
following an entry-name constant, an entry
name variable, a generic name, or a built
in function name. The list is passed to
the parameters of the entry point.

arithmetic constant: a fixed-point
constant or a floating-point constant.
Although most arithmetic constants can be
signed, the sign is not part of the
constant.

arithmetic conversion: the transformation
of a value from one arithmetic
representation to another.

arithmetic data: data that has the
characteristics of base, scale, mode, and
precision. It includes coded arithmetic
data and pictured numeric character data.

arithmetic operators: either of the prefix
operators + and -, or any of the following
infix operators: + - * / **
arithmetic picture data: decimal picture
data or binary picture data containing the
following types of picture specification
characters.

1. Decimal digit characters.

2. Zero-suppression characters.

3. Sign and currency symbol characters.

4. Insertion characters.

5. Commercial characters.

6. Exponent characters.

array: a named, ordered collection of data
elements, all of which have identical
attributes. An array has dimensions
specified by the dimension attribute, and
its individual elements are referred to by
subscripts. An array can a1so be an
ordered collection of identical structures.

array expression: an expression whose

512 OS PL/I CKT AND OPT LRM PART II

evaluation yields an array of values.

array of structures: an ordered collection
of identical structures specified by giving
the dimension attribute to a structure
name.

aSSignment: the process of giving a value
to a variable.

asynChronous operation: the overlap of an
input/output operation with the execution
of statements or the concurrent execution
of procedures using multiple flows of
control for different tasks.

attachment of a task: the invocation of a
procedure and the establishment of a
separate flow of control to execute the
invoked procedure (and procedures it
invokes) asynchronously with execution of
the invoking procedure.

attention: an occurence, external to a
task, that could cause an interrupt to the
task.

attribute:

1. A descriptive property associated with
a name to describe a characteristic of
items that the name may represent.

2. A descriptive property used to
describe a characteristic of the
result of evaluation of an expression.

automatic storage allocation: the
allocation of storage for automatic
variables.

automatic variable: a variable that is
allocated automatically at the activation
of a block and released automatically at
the termination of that block.

base: the number system in terms of which
an arithmetic value is represented.

base element: the name of a structure
member that is not a minor structure.

base item: the automatic, controlled, or
static variable or the parameter upon which
a defined variable is defined. The name
may be qualified and/or subscripted.

based storage allocation: the allocation
of storage for based variables.

based variable: a variable whose
generations are identified by locator
variables. A based variable can be used to
refer to values of a variable of any
storage class; it can also be allocated and
freed explicitly by use of the ALLOCATE and
FREE statements.

begin block: a collection of statements
headed by a BEGIN statement and ended by an
END statement that is a part of a program
that delimits the scope of names and that
is activated by normal sequential flow of
control, including any branch resulting
from a GO TO statement.

binary: the number system based on the
number 2.

bit: a binary digit (0 or 1).

bit string: a string composed of zero or
more bits.

bit-string operators: the logical
operators ~ (not), & (and), and I (or).

block: a begin block or procedure block.

block heading statement: the PROCEDURE or
BEGIN statement that heads a block of
statements.

bounds: the upper and lower limits of an
array dimension.

buffer: intermediate storage, used in
input/output operations, into which a
record is read during input and from which
a record is written during output.

built-in function: a function that is
supplied by the language.

call: (verb) to invoke a SUbroutine by
means of the CALL statement or CALL option:
(noun) such an invocation.

character set: a defined collection of
characters. See language character set and
data character set.

character string: a string composed of
zero or more characters.

character-string picture data: data
described by a picture specification which
must have at least One A or X picture
specification character.

closing (of a file): the dissociation of a
file from a data set.

coded arithmetic data: arithmetic data
that is stored in a form that is
acceptable, without conversion, for
arithmetic calculations.

comment: a string of zero or more
characters used for documentation, that is'
preceded by /* and terminated by */ and
which is a separator.

commercial character: the following
picture specification characters;

1. CR (credit).

2. DB (debit).

3. T, I, and R, the overpunched-sign
characters, which indicate that the
associated position in the data item
contains or may contain a digit with
an overpunched sign and that this
overpunched sign is to be considered
in the character string value of the
data item.

comparison operators: infix operators used
in comparison expressions. They are ~<
(not less than), < (less than), <= (less
than or equal to), ~= (not equal to), =
(equal to), >= (greater than or equal to),
> (greater than), and ~> (not greater
than) •

compile time: in general, the time during
which a source program is translated into
an object module. In PL/I, it is the time
during which a source program can be
altered (preprocessed), if desired, and
then translated into an Object program.

compile-time statements: see preprocessor
statement~.

complex data: arithmetic data, each item
of which consists of a real part and an
imaginary part.

composite operators: an operator composed
of two operator symbols, e.g., ~>

compound statement: a statement that
contains other statements. IF and ON are
the only compound statements.

concatenation: the operation that joins
two strings in the order specified, thus
forming one string whose length is equal to
the sum of the lengths of the two strings.
It is specified by the operator 'I.
condition: see on-conditions.

condition list: a list of one or more
condition prefixes.

condition name: a language keyword (or
CONDITION followed by a parenthesized
programmer-defined name) that denotes an
on-condition that might arise within a
task.

condition prefix: a parenthesized list of
one or more language condition names,
prefixed to a statement. It specifies
whether the named on-conditions are to be
enabled.

connected reference: a reference to
connected storage: it must be apparent,
prior to execution of the program, that the

Glossary 513

storage is connected.

connected storage: main storage of an
uninterrupted linear sequence of items that
can be referred to by a single name.

constant: an arithmetic or string data
item that does not have a name and whose
value cannot change; an unsubscripted label
prefix or a file name or an entry name.

contained text: all text in a procedure
(including nested procedures) except it~
entry names and condition prefixes of th~
PROCEDURE statement; all text in a begin
block except labels and condition prefixes
of the BEGIN statement that heads the
block. Internal blocks are contained in
the external procedure.

contextual declaration: the appearance of
an identifier that has not been explicitly
declared, in a context that allows the
association of specific attributes with the
identifier.

control format item: a specification used
in edit-directed transmission to specify
positioning of a data item within the
stream or printed page.

control variable: a variable used to
control the iterative execution of a group.
See iterative do-group.

controlled parameter: a parameter for
which the CONTROLLED attribute is specified
in a declare statement; it can be
associated only with arguments that have
the CONTROLLED attribute.

controlled storage allocation: the
allocation of storage for controlled
variables.

controlled variable: a variable whose
allocation and release are controlled by
the ALLOCATE and FREE statements, with
access to the current generation only.

conversion: the transformation of a value
from one representation to another to
conform to a given set of attributes.

cross section of an array: the elements
represented by the extent of at least one

Idimension of an array. An asterisk in the
place of a subscript in an array reference
indicates the entire extent of that
dimension.

current generation: that generation (of an
automatic or controlled variable) currently
available by reference to the name of the
variable.

data: representation of information or of
value in a form suitable for processing.

514 OS PL/I CKT AND OPT LRM PART II

data aggregate: a logical collection of
two or more data items that can be referred
to either collectively or individually; an
array or structure.

data character set: all of those
characters whose representation is
recognized by the computer in use.

data-directed transmission: the type of
stream-oriented transmission in which data
is transmitted as a group, comprising one
or more items separated by commas or
blanks, terminated by a semicolon, where
each item is of the form:

name = value

The name can be qualified and/or
subscripted.

data format item: a specification used in
edit-directed transmission to describe the
representation of a data item in the
stream.

data item: a Single unit of data; it is
synonymous with element.

data list: a parenthesized list of
expressions or repetitive specifications,
separated by commas, used in a stream
oriented input or output specification that
represents storage locations to which data
items are to be assigned during input or
values which are to be obtained for output.

data set: a collection of data external to
the program that can be accessed by the
program by reference to a single file name.

data specification: the portion of a
stream-oriented data transmission statement
that specifies the mode of transmission
(DATA, LIST, or EDIT) and includes the data
list (or lists) and, for edit-directed
mode, the format list (or lists).

data stream: data being transferred from
or to a data set by stream-oriented
transmission, as a continuous stream of
data elements in character form.

data transmission: the transfer of data
from a data set to the program or vice
versa.

deactivated: the state in which a
preprocessor variable or entry name is said
to be when its value cannot replace the
corresponding identifier in source program
text.

decimal: the number system based on the
number 10.

decimal digit character: the picture
specification character 9.

decimal picture data: arithmetic picture
data specified by picture specification
characters containing the following types
of picture specification characters:

1. Decimal digit characters.

2. The virtual point picture character.

3. zero-suppression characters.

4. Sign and currency symbol characters.

5. Insertion characters.

6. Commercial characters.

7. Exponent characters.

declaration:

1. The establishment of an identifier as
a name and the construction of a set
of attributes (partial or complete)
for it.

2. A source of attributes of a particular
name.

default: the alternative attribute or
option assumed, or specified for assumption
by the DEFAULT statement, when no such
attribute or option has been specified.

defined item: a variable declared to
represent part or all of the same storage
as that assigned to another variable known
as the base item.

delimiter: all operators, comments, and
the following characters: percent,
parentheses, comma, period, semicolon,
colon, assignment symbol, and blank: they
define the limits of identifiers,
constants, picture specifications, iSOBs,
and keywords.

descriptor: see parameter descriptor.

digit: one of the characters 0 through 9.

dimensionality: the number of bounds
specifications in an array declaration.

disabled: the state in which a particular
on-condition will not result in an
interrupt that would cause an on-unit for
that condition to be entered.

do-group: a sequence of statements headed
by a DO statement and ended by its
corresponding END statement, used for
control purposes.

do loop: see iterative.do-group.

drifting-characters: see sign and currency
symbol characters.

dummy argument: temporary storage that is
created automatically to hold the value of
an argument that cannot be passed by
reference.

edit-directed transmission: the type of
stream-oriented transmission in which data
appears as a continuous stream of
characters and for which a format list is
required to specify the editing desired for
the associated data list.

element: a single item of data as opposed
to a collection of data items such as an
array: a scalar item.

element expression: an expression whose
evaluation yields an element value.

elementary name: see base element.

element variable: a variable that
represents an element: a scalar variable.

enabled: that state in which a particular
on-condition will result in a program
interrupt that would cause an on-unit for
that condition to be entered.

entry constant: an entry. name.

entry expression: an expression whose
evaluation yields an entry value.

entry name: an identifier that is
explicitly or contextually declared to have
the ENTRY attribute (unless the VARIABLE
attribute is given) or has an implied ENTRY
attribute; the value of an entryvariable.

entry point: a point in a procedure at
which it may be invoked. (See primary
entry point and secondary entry pOint.)

entry variable: a variable that can
represent entry values. It must have both
the ENTRY and VARIABLE attributes.

entry value: the entry pOint represented
by an entry constant; the value includes
the environment of the activation that is
associated with the entry constant.

environment (of an activation):
information associated with the invocation
of a block that is used in the
interpretation of references, within, the
invoked block, to data declared outside the
block. This information includes
generations of automatic variables, extents
of defined variables, and generations of
parameters.

environment {of a label constant):
identity of the particular activation of a
block to which a reference.to a statement
label constant applies. This information
is determined at the time a.statement-label

Glossary 515

constant is passed as an argument or is
assigned to a statement-label variable, and
it is passed or assigned along with the
constant.

epilogue: those processes that occur
automatically at the termination of a block
or task.

evaluation: reduction of an expression to
a single value, an array of values, or a
structured set of values.

~: an activity in a program whose
status and completion can be determined
from an associated event variable.

event variable: a variable with the EVENT
attribute, which may be associated with an
event; its value indicates whether the
action has been completed and the status of
the completion.

explicit declaration: the appearance of an
identifier in a DECLARE statement, as a
label prefix, or in a parameter list.

exponent characters: the follOwing picture
specification characters:

1. K and E, which are used in floating
point picture specifications· to
indicate the beginning of the exponent
field.

2. F, the scaling factor character,
specified with an integer constant
which indicates the number of decimal
positions the decimal point is to be
moved from its assumed position, to the
right (if the constant is positive) or
to the left (if the constant is
negative) •

expression: a notation, within a program,
that represents a value, an array of
values, or a structured set of values; a
constant or a reference appearing alone, or
combinations of constants and/or references
with operators.

extent:

1. The range indicated by the bounds of
,an array dimension, the range
indicated by the length of a string,
or the range indicated by the size of
an area.

2. The significant allocations in an
area.

external name: a name (with the EXTERNAL
attribute) whose scope is not necessarily
confined only to one block and its
contained blocks.

external procedure: a procedure that is

516 os PL/I CKT AND OPT LaM PART II

not contained in any other procedure.

factoring: the application of one or more
attributes or of a level number to a
parenthesized list of names.

field (in the data stream): that portion
of the data stream whose width, in number
of characters, is defined by a single data
or spacing format item.

field (of a picture specification): any
character-string picture specification or
that portion (or all) of a numeric
character picture specification that
describes a fixed-point number.

~: a named representation, within a
program, of a data set or data sets. A
file is associated with the data set or
data sets for each opening.

file attribute: any of the attributes that
describe the characteristics of a file.

file constant: a name declared for a file
and for which a complete set of file
attributes exists during the time that the
file is open.

file expression: an expression whose
evaluation yields a file name.

file name: a name declared for a file.

file variable: a variable to which file
constants can be assigned; it must have
both the attributes FILE and VARIABLE. No
file-name attributes, other than FILE, can
be specified for a file-name variable.

fixed-point constant: see arithmetic
constant.

floating-point constant: see arithmetic
constant.

flow of control: sequence of execution.

format item: a specification used in edit
directed transmission to describe the
representation of a data item in the stream
(data format item) or to specify
positioning of a data item within the
stream (control format item).

format list: a parenthesized list of
format items required for an edit-directed
data specification.

fully-qualified name: a qualified name
that is complete, i.e., that includes a11
names in the hierarchical sequence above
the structure member to which the name
refers, as ·well as the name of the member
itself.

function: a function procedure

(programmer-specified or built-in): a
procedure that is invoked by the appearance
of one of its entry names in a function
reference and which returns a value to the
point of reference.

function reference: the appearance of an
entry-name or built-in function name (or an
entry variable) in an expression.

generation (of a variable): the allocation
of a static variable, a particular
allocation of a controlled or automatic
variable or the storage indicated by a
particular locator qualification of a based
variable, or by a defined variable or a
parameter.

generic key: a character string that
identifies a class of keys: all keys that
begin with the string are members of that
class. For example, the recorded keys
'ABCD', 'ABCE', and 'ABDF', are all members
of the classes identified by the generic
keys 'A' and 'AB', and the first two are
also members of the c1ass 'ABC': and the
three recorded keys can be considered to be
unique members of the classes 'ABCD',
'ABCE', 'ABDF', respectively.

generic name: the name of a family of
entry names. A reference to the name is
replaced by the particular entry name whose
parameter descriptors match the attributes
of the arguments in the argument list at
the point of invocation.

I group: a do-group or a select-group: it
can be used wherever a single statement can
appear,' except as an on-unit.

identifier: a string of alphameric and,
possibly, break characters, not contained
in a comment or constant and which is
preceded and followed by a separator: the
initial character must be alphabetic.

implicit declaration: the establishment of
an identifier, which bas no explicit or
contextual declaration, as a name. A
default set of attributes is assumed for
the identifier.

implicit opening: the opening of a file as
the result of an input or output statement
other than the OPEN statement.

infix operator: an operator that appears
between two operands.

initial procedure: an external procedure
whose PROCEDURE statement has the OPTIONS
(MAIN) attribute. Every PL/I program must
have an initial procedure. It is invoked
automatically as the first step in the
execution of a progam.

input/output: the transfer of data between

an auxiliary medium and main storage.

insertion picture character: a picture
specification character that is, on
assignment of the associated data to a
character string, inserted in the indicated
position. When used in a p-format item for
input, an insertion character serves as a
checking picture character.

interleaved array: an array whose name
refers to non-connected storage.

interleaved subscripts: a subscript
notation, used with subscripted qualified
names, in which not all of the necessary
SUbscripts immediately follow the same
component name.

internal block: a block that is contained
in another block.

internal name: a name that is not known
outside the block in which it is declared.

internal procedure: a procedure that is
contained within a block.

internal text: all of the text contained
in a block except that text that is
contained in another block. Thus the text
of an internal block (except its entry
names) is not internal to the containing
block.

interrupt: the redirection of flow of
control of the program (possibly temporary)
as the result o~ an on-condition or
attention.

invocation: the activation of a procedure.

invoke: to activate a procedure at one of
its entry points.

invoked procedure: a procedure that has
been activated at one of its entry points.

invokinq block: a block containing a
statement that activates a procedure.

iteration factor: an expression that
specifies:

1. In an INITIAL attribute specification,
the number of consecutive elements of
an array that are to be initialized
with a given constant.

2. In a format list, the number of times
a given format item or list of items
is to be used in succession.

iterative do-group: a do-group whose ,DO
statement specifies a control variable
and/or a WHILE option.

key: data that identifies a record within

Glossary 517

a direct-access data set. See source key
and recorded key.

keyword: an identifier that is part of the
language and which, when used in the proper
context, has a specific meaning to the
compiler.

known: (applied to a name) recognized with
its declared meaning; a name is known
throughout its scope.

label: a name used to identify a statement
other than a PROCEDURE or ENTRY statement;
a statement label.

label constant: an unsubscripted name that
appears prefixed to any statement other
than a PROCEDURE or ENTRY statement.

label list (of a statement): all of the
label prefixes of a statement.

label list (of a label variable
declaration): a parenthesized list of one
or more statement-label constants
immediately following the keyword LABEL to
specify the range of values that the
declared variable may have; names in the
list are separated by commas. When
specified for a label array, it indicates
that each element of the array may assume
any of the values listed but no other.

label prefix: a label prefixed to a
statement.

label variable: a variable declared with
the LABEL attribute and thus able to assume
as its value a label constant.

language character set: a character set
whiah has been defined to represent program
elements in the source language (in this
context, character-string constants and
comments are not considered as program
elements).

leading zeros: zeros that have no
significance in the value of an arithmetic
integer; all zeros to the left of the first
si~nificant integer digit of a number.

level number: an unsigned decimal integer
constant in a DECLARE or ALLOCATE statement
that specifies the position of a name in
the hierarchy of a structure. It precedes
the name to which it refers and is
separated from that name by the name's
delimiter. Level numbers appear without
the names in a parameter descriptor of an
ENTRY attribute specification.

level-one variable: a major structure
name; any unsubscripted variable not
contained within a structure.

list-directed transmission: the type of

518 OS PL/I CRT AND OPT LRM PART II

stream-oriented transmission in which data
in the stream appears as constants
separated by blanks or commas and for which
formatting is provided automatically.

locator qualification: in a reference to a
based variable, either a locator variable
or function reference· connected by an arrow
to the left of a based variable to specify
the generation of the based variable to
which the reference refers, or the implicit
connection of a locator variable with the
based reference.

locator variable: a variable whose value
identifies the location in main storage of
a variable or a buffer.

locked record: a record in an EXCLUSIVE
DIRECT UPDATE file that is available to
only one task at a time.

logical level (of a structure member): the
depth indicated by a level number when all
level numbers are in direct sequence, that
is, when the increment between successive
level numbers is one.

logical operators: the bit-string
operators, (not), , (and), and I (or).

lower bound: the lower limit of an array
dimension.

major structure: a structure whose name is
declared with level number 1.

major task: the task that has control at
the outset of execution of a program. It
exists throughout the execution of the
program.

minor structure: a structure that is
contained within another structure. The
name of a minor structure is declared with
a level number greater than one.

mode (of arithmetic data): a
characteristic of arithmetic data; real or
complex.

multiple declaration: two or more
declarations of the same identifier
internal to the same block without
different qualifications, or two or more
external declarations of the same
identifier with different attributes in the
same program.

mUltiprocessinq: the use of a computing
system with two or more processing-units to
execute two or more programs
simultaneously.

mUltiprogramming: the use of a computing
system to execute more than one program
concurrently, using a single processing
unit.

multitasking: a facility that allows a
programmer to execute more than one PL/I
procedure simultaneously.

name: an identifier appearing in a context
where it is not a keyword.

nesting: the occurrence of:

1. A block within another block.

2. A group within another group.

3. An IF statement in a THEN clause or an
ELSE clause.

4. A function reference as an argument of
a function reference.

5. A remote format item in the format
list of a FORMAT statement.

6. A parameter descriptor list in another
parameter descriptor list.

7. An attribute specification within a
parenthesized name list for which one
or more attributes are being factored.

non-connected storage: separate locations
in storage that contain related items of
data that can be referred to by a single
name but that are separated by other data
items not referred to by that name.
Examples are the storage referred to by an
unsubscripted elementary name in an array
of structures or by a subscripted name
referring to an array cross section in
which the subscript list contains an
asterisk to the left of any element
expression.

null locator value: a special locator
value that cannot identify any location in
internal storage: it gives a positive
indication that a locator variable does not
currently identify any generation of data.

null string: a string data item of zero
length.

numeric character data: see decimal
picture data.

offset variable: a locator variable with
the OFFSET attribute, whose value
identifies a location in storage, relative
to the beginning of an area.

on-condition: an occurrence, within a PL/I
task, that could cause a program interrupt.
It may be the detection of an unexpected
error or of an occurrence that is expected,
but at an unpredictable time.

on-unit: the specified action to be
executed upon detection of the on-condition
named in the cpntaining ON statement. This

excludes SYSTEM and SNAP.

opening (of a file): the association of a
file with a data set and the completion of
a full set of attributes for the file name.

operand: an expression to whose value an
operator is applied.

operational expression: an expression
containing one or more operators.

operator: a symbol specifying an operation
to be performed. See arithmetic operators,
bit-string operators, comparison operators
and concatenation.

option: a specification in a statement
that may be used to influence the execution
or interpretation of the statement.

packed decimal: the internal
representation of a fixed-point decimal
data item.

padding:

1. one or more characters or bits
concatenated to the right of a string
to extend the string to a required
length. For character strings,
padding is with blanks; for bit
string, with zeros.

2. one or more characters or bits
inserted in a structure so that the
structure elements have the required
alignment.

parameter: a name in a procedure that is
used to refer to an argument passed to that
procedure.

parameter descriptor: the set of
attributes specified for a single parameteI;'
in an ENTRY attribute specification.

parameter descriptor list: the list of all
parameter descriptors in an ENTRY attribute
specification.

parameter list: a parenthesized list of
one or more parameters, separated by commas
following either the keyword PROCEDURE in a
PROCEDURE statement, or the keyword ENTRY·
in an ENTRY statement. The list
corresponds to a list of arguments passed
at invocation.

partially-qualified name: a qualified name
that is incomplete, i.e., that includes one
or more, but not all, names in the
hierarchical sequence above the structure
member to which the partially-qualified
name refers, as well as the name of the
member itself.

picture specification: a character-by-

Glossary 519

character description of the composition
and characteristics of decimal picture data
and character-string picture data.

picture specification character: any of
the characters that can be used in a
picture specification. See decimal picture
data and character-string picture data.

point of invocation: the pOint in the
invoking block at which the procedure
referenceto the invoked procedure appears.

pointer variable: a locator variable with
the POINTER attribute, whose value
identifies an absolute location in main
storage.

precision: the value range of an
arithmetic variable expre'ssed as a total
number of digits and, for fixed-point
variables, the number of those digits
assumed to appear to the right of the
decimal or binary point.

prefix: a label or a parenthesized list of
one or more condition names connected by a
colon to the beginning of a statement.

prefix operator: an operator that precedes
an operand and applies only to that
operand. The prefix operators are +
(plus), - (minus), and ~ (not).

preprocessor: a program that examines the
source program for preprocessor statements
which are then executed, resulting in the
alteration of the source program.

preprocessor statement: a special
statement appearing in the source program
that specifies how the source program text
is to be altered; it is executed as it is
encountered by the preprocessor.

primary entry point: the entry point
identified by any of the names in the label
list of the PROCEDURE statement.

priority: a value associated with a task,
that specifies the precedence of the task
relative to other tasks.

problem data: string or arithmetic data
that is processed by a PL/I program.

procedure: a collection of statements,
headed by a PROCEDURE statement and ended
by an END statement, that is a part of a
program, that delimits the scope of names,
and that is activated by a reference to one
of its entry names.

procedure reference: an entry constant or
variable or a built-in function name. The
name may be followed by one or more
argument lists. It may appear in a CALL
statement or CALL option or as a function

520 OS PL/I CKT AND OPT LRM PART II

reference.

processor: a program that prepares source
program text (possible preprocessed text)
for execution.

program: a set of one or more external
procedures, one of which must have the
OPTIONS (MAIN) option in its PROCEDURE
statement.

proqram control data: data used in a PLII
program to effect the execution of the
program. Program control data consists of
the following types: entry, task, file,
label, event, pointer, offset, and area.

prologue: the processes that occur
automatically on block activation.

pseudovariable: any of the built-in
function names that can be used to specify
a target variable.

qualified name: a hierarchical sequence of
names of structure members, conrtected by
periods, used to identify a component of a
structure. Any of the names may be
subscripted. See also locator
qualification.

ranqe (of a default specification): a set
of identifiers and/or parameter descriptors
to which the attributes in a default
specification of a DEFAULT statement apply.

record: the logical unit of transmission
in a record-oriented input or output
operation.

recorded key: a key recorded in a direct
access volume to identify an associated
data record.

recursive procedure: a procedure that may
be reactivated while still active in the
same task.

reentrant procedure: a procedure that may
be reactivated while active in another
task.

REFER expression: the expression preceding
the keyword REFER, from which an original
bound, length, or size is taken when a
based variable containing a REFER option is
allocated, either by an ALLOCATE or LOCATE
statement.

REFER Object: the unsubscripted element
variable appearing in a REFER option that
specifies a current bound, length, or size
for a member of a based structure. It must
be a member of the structure, and it must
precede the member declared with the REFER
option.

reference: the appearance of a name,

except in a context that causes explicit
declaration.

remote format item: the letter R specified
in a format list together with the label of
a separate FORMAT statement.

repetition factor: a parenthesized
unsigned decimal integer constant that
specifies:

1. The number of occurrences of a string
configuration that make up a string
constant.

2. The number of occurrences of a picture
specification character in a picture
specification.

repetitive specification: an element of a
data list that specifies controlled
iteration to transmit one or more data
items, generally used in conjunction with
arrays.

returned value: the value returned by a
function procedure to the point of
invocation.

scalar item: a single item of data; an
element.

scalar variable: a variable that can
represent only a single data item; an
element variable.

scale: a system of mathematical notation:
fixed-point or floating-point scale of an
arithmetic value.

scale factor: a specification of the
number of fractional digits in a fixed
point number.

scope (of a condition prefix): the portion
of a program throughout which a particular
condition prefix applies.

scope (of a declaration): the portion of a
program throughout which a particular
declaration is a source of attributes for a
particular name.

scope (of a name): the portion of a
program throughout which the meaning of a
particular name does not change.

secondary entry point: an entry point
identified by any of the names in the label
list of an ENTRY statement.

I select-group: a sequence of selection
'clauses headed by a SELECT statement and
Iclosed by its corresponding END statement,
lused for control purposes. ,
,selection clause: A WHEN or OTHERWISE
Iclause of a select-group.

self-defining data: a data item, or an
aggregate of data items, that includes
descriptive information about attributes of
the data, such as values for adjustable
bounds or lengths.

separator: see delimiter.

sign and currency symbol characters: the
picture specification characters, S, +, -
and $. These can be used

1. As static characters in which case
they are specified only once in a
picture specification and appear in
the associated data item in the
position in which they have been
specified.

2. As drifting characters, in which case
they are specified more than once (as
a string in a picture specification)
but appear in the associated data item
at most once, immediately to the left
of the significant portion of the data
item.

significant a1location: any unfreed
allocation in an area and any freed
allocation that lies between the start of
the area and the end of the unfreed
allocation that is farthest from the start
of the area. If a subsequent allocation of
the same size is made in the same location
the original allocation ceases to be
significant.

simple parameter: a parameter for which nO
storage-class attribute is specified; it
may represent an argument of any storage
class, but only the current generation of a
controlled argument.

source key: a key referred to in a record
oriented transmission statement that
identifies a particular record within a
direct-access data set.

source program: the program that serves as
input to the compiler. The source program
may contain preprocessor statements.

source variable: a variable whose value is
to be aSSigned or to take part in some
other operation.

standard default: the alternative
attribute or option assumed when none has
been specified and there is no applicable
DEFAOLT statement.

standard file: a file assumed by the
processor in the absence of a FILE or
STRING option in a GET or PUT statement;
SYSIN is the standard input file and
SYSPRINT is the standard output file.

standard system action: action specified

Glossary 521

by the language to be taken in the absence
of an on-unit for an on-condition.

statement: a basic element of a PL/I
program that is used to delimit a portion
of the program, to describe names used in
the program, or to specify action to be
taken. A statement can consist of a
condition list, a label list, a statement
identifier, and a statement body that is
terminated by a semicolon.

statement body: that part of a statement
that follows the statement identifier, if
any, and is terminated by the semicolon: it
includes the statement options.

statement identifier: the PL/I keyword
that indicates the purpose of the
statement.

statement-label constant: see label
constant.

statement-label expression: see label
expression.

statement-label variable: see label
variable.

static storage allocation: the allocation
of storage for static variables.

static variable: a variable that is
allocated before execution of the program
begins and that remains allocated for the
duration of execution of the program.

stream: see data stream.

string: a connected sequence of characters
or bits that is treated as a single data
item.

strinq variable: a variable declared with
the BIT or CHARACTER attribute, whose
values can be either bit strings or
character strings.

structure: a hierarchical set of names
that refers to an aggregate of data items
that may have different attributes.

structure expression: an expression whose
evaluation yields a structure set of
values.

structure of arrays: a structure
containing arrays specified by declaring
individual members names with the dimension
attribute.

structure member: any of the minor
structures or elementary names in a
structure.

structurinq: the makeup of a structure, in
terms of the number of members, the order

522 OS PL/I CRT AND OPT LRM PART II

in which they appear, their attributes, and
their logical level (but not necessarily
their names or declared level numbers).

subfield (of a picture specification):
that portion of a picture specification
field that appears before or after a V
picture specification character.

subroutine: a procedure that is invoked by
a CALL statement or CALL option. A
subroutine cannot return a value to the
invoking block, but it can alter the value
of variables.

SUbscript: an element expression that
specifies a position within a dimension of
an array. A subscript can also be an
asterisk, in which case it specifies the
entire extent of the dimension.

subscript list: a parenthesized list of
one or more subscripts, one for each
dimension of an array, which together
uniquely identify either a single element
or cross section of the array.

subtask: a task that is attached by the
given task or any of the tasks in a direct
line from the given task to the last
attached task.

synChronous: using a single flow of
control for serial execution of a program.

target variable: a variable to which a
value is assigned.

task: the execution of one or more
procedures by a Single flow of control.

task name: an identifier used to refer to
a task variable.

task variable: a variable with the TASK
attribute whose value gives the relative
priority of a task.

termination (of a block): cessation of
execution of a block, and the return of
control to the activating block by means of
a RETURN or END statement, or the transfer
of control to the activating block or to
some other active block by means of a GO TO
statement.

termination (of a task): cessation of the
flow of control for a task.

truncation: the removal of one or more
digits, characters, or bits from one end of
an item of data when a string length or
precision of a target variable has been
exceeded.

upper bound: the upper limit of an array
dimension.

variable: a named entity that is used to
refer to data and to which values can be
assigned. Its attributes remain constant,
but it can refer to different values at
different times. Variables fall into three
categories, applicable to any data type:
element, array, and structure. Variables
may be subscripted and/or qualified, or
locator qualified.

virtual point picture character: the
picture specification character, V, which
is used in picture specifications to
indicate the position of an assumed decimal
or binary point.

zero-suppression characters: the picture
specification characters Z, Y, and *, which
are used to suppress zeros in the
corresponding digit positions.

Glossary 523

+ picture character 322

II concatenation symbol 40

$ currency symbol 9,322
$ picture character 211

* (asterisk) notation
ALLOCATE.statement 90
array cross-sections 21
controlled parameters 118
CONTROLLED variables 90
simple parameters 118

* picture character 210
* zero suppression character 318
*/ (comment identifier) 11

/ insertion character 319
/ insertion picture characters 211
/* (comment identifier) 11

, insertion character 318

IACTIVATE preprocessor statement 478
lassignment preprocessor statement 419
ICONTROL listing control statement 483
IDEACTIVATEpreprocessor statement 419
IDECLARE preprocessor statement 419
IDO preprocessor statement 480
IELSE clause 248,481
lEND preprocessor statement 480
IGO TO preprocessor statement 480
IIF preprocessor statement 481
IINCLUDE preprocessor statement 481
INOPRINT listing control statement 484
INOTE preprocessor statement 482
Inu1l preprocessor statem 482
IPAGE listing contro atement 484
IPRINT listing cont 01 statement 484
IPROCEDURE preprocessor statement 482
ISKIP listing contro~ statement 485
ITHEN clause 248,481

• number sign 9

I commercial -at- sign 9

A picture specification character 22
A-format item 326
abbreviations of keywords 309
abnormal termination of progr~ 69

ASS built-in function 364
access

direct 183,181,190,191
sequential 183,189,181,191

accuracy of mathematical built-in
functions 355

ACOS built-in function 364
activation of blocks 65
ADD built-in function 364
ADDBUFF option 114
additive attributes 123,125

BACKWARDS attribute 125
ENVIRONMENT attribute 125
EXCLUSIVE attribute 125
KEYED attribute 125
locked record 125
PRINT attribute 125

ADDR built-in function 364,93
address

symbolic names 15
aggregates

arguments 356
data 4,155,285

algebraic comparisons 39
aliased variable 276
ALIGNED attribute 31,405
alignment, record 502
ALL built-in function 364
ALL option 62
ALLOCATE statement 439,53

for based variables 97
for controlled variables 89
with IN option 100

allocation
buffer 152,161
of storage 10

Index

ALLOCATION built-in function 364,91
allocation of parameters 111

asterisk notation 118
bounds, lengths, and sizes 111
controlled parameter 117
expression notation 118
parameter attributes 111
simple parameter 111

alphabetiC character 9
alphabetic list of format items 326

A-format item 326
B-format item 326
C-format item 327
COLOMN format item 321
conversion rules 335
E-format item 328
F-format item 329
LINE format item 330
P-format item 330
PAGE format item 330
R-format item 331
SKIP format item 331
X-format item 331

alphameric character 9
altering length of string data 207
alternate-index 192

Index 525

alternative attributes 123
BUFFERED and UNBUFFERED 124
INPUT, OUTPUT, and UPDATE 124
SEQUENTIAL, DIRECT and TRANSIENT 124
STREAM and RECORD 124

ambiguous references 80
amending a program 237
American standard code for information
interchange (ASCII) 153

ANY built-in function 365
application of attributes 81
application of standard defaults 81

problem data 82
program control data 82

area 155,98
ALLOCATE statement with IN option 100
assignment 101
condition 101,393
condition codes 386
data 25
EMPTY built-in function 101
extent of 99
FREE statement with IN option 101
input/output of 102
locator conversion 99
offset expressions 100
offset variables 99
parameter 120
variables 155,99

AREA attribute 408
AREA condition 101
ARGn option 291
argument 119

aggregate 356
area parameter 120
array parameter 119
conversion of 354
dummy 113
element parameter 119
entry expressions as 115
entry parameter 119
file parameter 119
label parameter 119
locator parameter 120
null 356
preprocessor functions 244
string parameter 120
structure parameter 119

arithmetic
built-in functions 353,355
conversion 36
operation 282
operators 10
overflow 17

arithmetic built-in function
arithmetic built-in functions
arithmetic data

base 16
description 15
mode 16
precision 16
scale 16

arithmetic operations 353
general discussion 38
results of 38

array 25

526

bounds 25
cross-sections 27

array (continued)
dimension 25
extent 25
infix operators with 44
parameter 119
prefix operators with 44
subscripts 26

array expressions 35
converting 44
data conversion in 45
evaluation of 43
in IF clauses 44

array of structures 29
cross-sections or 29

array-and-array operations 44
array-and-element operations 44
array-and-structure operations 45
array-handling built-in functions 354,355
ASCII (American standard code for

information interchange) 153
ASCII data sets 153,177

block prefix fields 153,178
BUFOFF option 153,178
D-format record 154
D-format records 178
DB-format record 154
DB-format-records 118
default rules 154,118

ASCII option 153,171
ASIN built-in function 365
ASSE~mLER option 432
assignment

and initialization 281
area 101
BY NAME 46.
data conversion 36
editing by 201
other forms of 208
statement 12,441,51

associating data sets with files 128
asterisk (*) notation

ALLOCATE statement 90
array cross-sections 21
controlled parameters 118
CONTROLLED variables 90
simple parameters 11.8

asynchronous operation 158,251
ATAN built-in function 365
ATAND bUiit-in function 365
ATANB built-in function 365
ATTENTION

condition 393
condition code 386

attribute 405
additive 123,125
ALIGNED 31,405
alternative 123
AREA 408
AUTOMATIC 408
BACKWARDS 125,410
BASED 408
BINARY 410
BIT 410
BUFFERED 124,411
BUILTIN 411
CHARACTER 410
COMPLEX 19,412
CONDITION 412

attribute (continued)
CONNECTED 412
CONTROLLED 408
DECIMAL 410
declarations 279
default 81
DEFINED 30,413
dimension 411
DIRECT 417
ENTRY 106,114,418
ENVIRONMENT 125,148,162,199,421
EVENT 421
EXCLUSIVE 125,423
EXTERNAL 423,78
file 123,423
FIXED 424
FLOAT 424
GENERIC 425
INITIAL 32,426
INPUT 428
INTERNAL 423,78
IRREDUCIBLE 428
iSUB defining 415
KEYED 125,429
LABEL 429
length 410
LIKE 30,430
merging of 127
of returned values 109
OFFSET 431
OPTIONS 432
OUTPUT 428
parameter 117,434
parameter descriptor lists 418
PICTURE 19,22,434
POINTER 431
POSITION 30,413
prec:1.s:1.on 435
PRINT 125,436
processes in application of 81
REAL 412
RECORD 124,436
REDUCIBLE 428
RETURNS 110,431
SEQUENTIAL 417
simple defining 414
size 408
specifications 83
specifying 15
STATIC 408
STREAM 124,436
string overlay defining 416
targets in aSSignment 43
TASK 437
TRANSIENT 202,417
UNALIGNED 31,405
UNBUFFERED 124,411
UPDATE 428
VARIABLE 438
VARYING 21,410

AUTOMATIC attribute 408
automatic storage 87,88

B insertion character 319
B-format item 326
BACKWARDS attribute 125,410
base of arithmetic data 16

BASED attribute 408
based storage 91

ADDR built-in function 93
ALLOCATE statement 97
area assignment 101
areas 98
based variables 91
based variables and input/output 93
FREE statement 97
input/output of areas 102
list processing 96
locator qualification 91
multiple generations of based
variables 91

multiple locator qualification 102
NULL built-in function 98
pOinter variables 92
self-defining data (REFER option) 95
types of list 98

based variables 91,93
ALLOCATE statement for 97
and input/output 93
FREE statement for 97
multiple generations of 97
processing mode 93

based variables and input/output
LOCATE statement 94
READ with SET statement 94

batch processing 227
begin block 63

as on-unit 63
definition 13
termination of 67

BEGIN statement 443,53
BINARY attribute 410
BINARY built-in function 365
binary digit (bit) 9
binary fixed-point data 17

default precision 17
maximum length 17

binary floating-point data 18
default precision 19
extended form 19
long form 19
maximum size 19
short form 19

bit (binary digit) 9
BIT attribute 410
BIT built-in function 214,366
bit comparisons 39
bit to arithmetic conversion 331
bit to character conversion 346
bit to numeric character conversion 344
bit-string

data 22
handling 213
operations 38
operators 10
unaligned 155

BKWD option 170
BKWK option 162
blanks 10
BLKSIZE option 150,166
block

activation of 65
begin 63
definition 13
external 64

Index 527

block (continued)
general discussion 63
internal 64
nested 64
prefix fields 153,118
procedure 63
termination of 61

BOOL built-in function 215,366
in bit-string operations 39

Boolean algebra 39
bounds

·controlled parameter 118
simple parameter 118

bounds of array dimension 25
buffer allocation 152,161

BUFFERS option 152,161
DCB subparameter 152

BUFFERED attribute 124,411
BUFFERS option 152,161
BUFND option 162,110
BUFNI option 162,110
BUFOFF option 153,118
BUFSP option 162,110
built-in

functions 111
subroutines 112

built-in function
ABS 364

528

accuracy of mathematical functions 355
ACOS 364
ADD 364
ADDR 364,93
aggregate arguments 356
ALL 364
ALLOCATION 364,91
ANY 365
arithmetic 353
array-handling 354,355
ASIN 365
ATAN 365
ATAND 365
ATANH 365
BINARY 365
B:::T 214,366
BOOL 215,366
CEIL 366
CHAR 214,366
classification of 353
COMPILETIME 336
COMPLETION 257,366,400
COMPLEX 367
condition-handling 354
CONJG 367
conversion of arguments 354
COS 367
COSD 367
COSH 367
COUNT 367
COUNTER 368
CURRENTSTORAGE 368
DATAFIELD 368
DATE 369
DECI~..AL 369
DIM 369
DIVIDE 369
EMPTY 101,369
ERF 369
ERFC 369

built-in function (continued)
EXP 370
FIXED 370
FLOAT 370
FLOOR 370
HBOUND 370
HIGH 215,370
I MAG 370
INDEX 214,370
input/output 354
LBOUND 371
LENGTH 215,371
LINENO 371
LOG 371
LOG10 371
LOG2 371
LOW 215,372
mathematical 353,355
MAX 372
MIN 372
miscellaneous 354
MOD 372
MULTIPLY 312
multitasking 354
NULL 373,98
null arguments 356
OFFpET 373
ONCHAR 373
ONCODE 373
ONFILE 373
ONKEY 373
ONLOC 374
ONSOURCE 373
PARMSET 374
PLIRETV 375
POINTER 375
POLY 375
PRECISION 375
preprocessor 354
PRIORITY 375
PROD 376
REAL 376
REPEAT 215,376
ROUND 376
SAMEKEY 376
SIGN 377
SIN 377
SIND 377
SINH 377
SQRT 377
STATUS 257,377
STORAGE 377
storage control 354
string 214,215,378
string-handling 353,355
SUBSTR 214,378
SUM 379
TAN 379
TAND 379
TANH 379
TIME 379
TRANSLATE 215,379
TRUNC 380
UNSPEC 215,380
used in data conversion 37
VERIFY 215,381

BUILTIN attribute 411

BY NAME option 46
BY option 56
byte 31

C-format item 327
CALL option 32
CALL statement 253,444,59

EVENT option 253
PRIORITY option 254
TASK option 253

case selection
(see select-group)

CEIL built-in function 366
CEIL values

table of 333
chained list 97
channel programs (NCP)

number of 115
CHAR built-in function 214,366
character

• (period) 211
+ picture 322
* zero suppression 318
/ insertion 319
, (comma) 211
, insertion 318
alphabetic 9
alphameric 9
B (insertion) 211
B insertion 319
comparisons 39
CR picture 322
DB picture 322
E picture 324
F picture 324

-I picture 322
insertion 318
K picture 324
picture 211,322
picture specification 315
R picture 322
S picture 322
special 10
T picture 322
Z zero suppression 318
zero suppression 311

CHARACTER attribute 410
character sets 301

introduction 9
use of 10
with EBCDIC and card-punch codes 307
48-character set 308
60-character set 307

character specifications
numeric 209

character strings
and comments 241
PICTURE attribute 22

character to arithmetic conversion 331
character to bit conversion 348
character to numeric character

conversion 343
character-string data 21

picture characters for 315
repetition factors 21

character-string picture
specifications 212

characteristics, data 15
characters

special 9
CHECK condition 221,393
CHECK condition codes 386
CHECK condition prefix 394
CHECK statement 228,445,61
checkout compiler, facilities of 6
classes of statements 49

descriptive statements 49
DISPLAY statement 51
procedure blocks 63

classification
key (GENKEY) 114
of built-in functions 353
of conditions 392
of statements 49

classification of built-in functions 353
arithmetic built-in functions 353
array-handling built-in functions 354
condition-handling built-in
functions 354

input/output built-in functions 354
mathematical built-in functions 353
miscellaneous built-in functions 354
multitasking built-in functions 354
preprocessor built-in functions 354
storage control built-in functions 354
string-handling built-in functions 353

classification of conditions 392
AREA condition 393
ATTENTION condition 393
CHECK condition 393
COMPLETION built-in func~ion 400
CONDITION condition 396
CONVERSION condition 396
ENDFILE condition 396
ENDPAGE condition 391
ERROR condition 397
FINISH condition 398
FIXEDOVERFLOW condition 398
KEY condition 398
NAME condition 399
OVERFLOW condition 400
PENDING condition 400
RECORD condition 400
SIZE condition 401
STRINGRANGE condition 401
STRINGSIZE condition 402
SUBSCRIPTRANGE condition 402
TRANSMIT condition 402
UNDEFINEDFILE condition 403
UNDERFLOW condition 404
ZERODIVIDE condition 404

clause
"ELSE 481
"THEN 481
ELSE 461
OTHERWISE 414
THEN 461
WHEN 414

CLOSE statement 130,446
clOSing file 126

in dynamically-loaded procedure 10
clOSing nested blocks and groups 64
closure of blocks 61
COBOL interface 297
COBOL option 291

Index 529

COBOL routine
passing arguments to 290
termination of 296

code
AREA condition 386
ATTENTION condition 386
card punch 307
CHECK condition 386
condition 383
condition built-in functions 223
CONDITION condition 386
CONVERSION condition 386
EBCDIC 307
ENDFILE condition 384
END PAGE condition 385
ERROR condition 384
FINISH condition 384
FIXEDOVERFLOW condition 385
information interchange 122
KEY condition 384
NAME condition 384
OVERFLOW condition 385
PENDING condition 385
RECORD condition 384
return 299
SIZE condition 385
STRINGRANGE" condition 386
STRINGSIZE condition 385
SUBSCRIPTRANGE condition 386
TRANSMIT condition 384
UNDEFINEDFILE condition 384
UNDERFLOW condition 385
ZERODIVIDE condition 385

coding format 9
coding source programs for optimizing
compiler

aliased variable 276
common expression elimination 276
other optimization features 278
redundant expression elimination 278
transfer of invariant expressions 277

collections, data 4
COLUMN format item 327
comments 11,241
commercial nat" sign (w) 9
common errors and pitfalls 278

arithmetic and logical operations 282
assignments and initialization 281
data aggregates 285
declarations and attributes 219
do-groups 284
functions and pseudovariables 285
input/output 286
on-conditions and on-units 285
operating system and job control 218
program control 279
source program and general syntax 218
strings 285

common expression
elimination 276
interrupt handling 274

common storage 293
communication, inter language 289
comparison 39

530

bit 39
character 39
conversion of operands in 39
operations 39

comparison (continued)
operators 10
program control data 39
tables for 353

compile-time operations 6
compiler

differences 505
facilities of 6

COMPILETIME built-in function 366
COMPLETION

built-in function 251,366,400
pseudovariable 361

complex arithmetic data 16,19
COMPLEX attribute 19,412
COMPLEX built-in function 367
COMPLEX pseudovariable 367
complex to real conversion 331
compound statement 12
computational statement type 51
concatenation operations 40
concatenation symbol (II) 40
concepts of PL/I 1

blanks 10
identifiers 10
string data 21

condition
AREA 393
ATTENTION 393
built-in functions 223
CHECK 221,393
classification of 392
codes (ON-codes) 383
condition 221,396
condition code 386
CONVERSION 396
disabling 12
ENDFILE 396
END PAGE 391
ERROR 202,391
FINISH 398
FIXEDOVERFLOW 398
KEY 398
list of 392
NAME 399
OVERFLOW 400
PENDING 203,400
prefix 12.,217
RECORD 202,400
SIZE 17,222,401
STRINGRANGE 222,401
STRINGSIZE 402
SUBSCRIPTRANGE 222,402
TRANSMIT 202,402
UNDEFINEDFILE 403
UNDERFLOW 404
ZERODIVIDE 404

CONDITION attribute 412
condition codes (ON-codes) 383

AREA condition codes 386
ATTENTION condition code 386
CHECK condition codes 386
CONDITION condition code 386
CONVERSION condition codes 386
ENDFILE condition code 384
ENDPAGE condition code 385
ERROR condition code 384
FINISH condition codes 384
FIXEDOVERFLOW condition code 385

condition codes (ON-codes) (continued)
KEY condition codes 384
NAME condition codes 384
OVERFLOW condition code 385
PENDING condition code 385
RECORD condition codes 384
SIZE condition code 385
STRINGRANGE condition code 386
STRINGSIZE condition code 385
SUBSCRIPTRANGE condition code 386
TRANSMIT condition codes 384
UNDEFINEDFILE condition codes 384
UNDERFLOW condition code 385
ZERODIVIDE condition code 385

CONDITION condition 221,396
condition-handling built-in functions 354
CONJG built-in function 367
CONNECTED attribute 412
connected storage 117
CONSECUTIVE data sets 152,168
CONSECUTIVE option 162
consecutive organization 178

sequential update 179
constant

definition 15
file 122

contained in, definition 75
contextual declaration 76
control

format items 325
printer/punch 112
program 279
storage 81

control area 122
control data, program 23
control format
control interval 122
control statement

listing 249,483
type 54

control variable 55
CONTROLLED

data 10
parameter 117
storage 88
structures 91

CONTROLLED attribute 408
controlled parameter

bounds, lengths, and sizes 118
controlled storage 88

ALLOCATE statement 89
ALLOCATION built-in function 91
controlled structures 91
FREE statement 89
multiple generations 90

controlled variables
ALLOCATE statement for 89
FREE statement for 89
multiple generations of 90

conversational processing 227
conversion

arithmetic 36
condition 396
condition codes 386
data 271,35
in concatenation operations 40
locator 99
of arguments 354

conversion (continued)
of program control data 37
rules 33!>
type 36

CONVERSION condition 396,41
conversion of arguments 354

array-handling built-in functions 355
mathematical built-in functions 355
string-handling built-in functions 355

conversion of data
by built-in function 37
in arithmetic operations 38
in assignments 36
in comparison operations 39
in operational expressions 36

coordination and synchronization of
tasks 255

DELAY statement 257
sharing files between tasks 256
testing and setting event variables 256
WAIT statement 256

coordination of tasks
sharing data between tasks 255

COpy option 135
COS built-in function 367
COSO built-in function 361
COSH built-in function 361
COUNT built-in function 367
COUNTER built-in function 368
CR picture character 322
creating data set 183,189,190
creation of tasks 253

call statement 253
priority of tasks 254

credit, debit, and overpunched signs 322
CR picture character 322
DB picture character 322
I picture character 322
R picture character 322
T picture character 322

cross sections
arrays 27
arrays of structures 29

CTLASA option 112
CTL360 option 172
currency symbol ($)
current status list

PUT ALL statement
PUT FLOW statement
PUT SNAP statement
PUT variables 232

9,319
232

236
235
235

CURRENTSTORAGE built-in function 368

D option 162
O-format record 154,178
data

aggregates 155,285
binary fixed-point 17
binary floating-point 18
conversion 271
deCimal fixed-point 16
description 3
elements 15
format items 325
interchange (COBOL) 173
lists 136
mapping 290,487

Index 531

data (continued)
organization 25
problem 290,82
program control 290,82
set organization 152,168
sets 121
specifications 136
string 21
transmission statements 134,155
transmitted 155
types 3,15,290

data conversion 271,35
and expression evaluation 335
exceptional conditions 47
expressions and 35
in array expres~ions 45
in assignments 36
in operational expressions 36
source to target rules 335

data lists 136
repetitive specification 137
transmission of data-list elements 138

data management optimization 174
ADDBUFF option 174
INDEXAREA option 174
NOWRITE option 174

data mapping 290,487
record alignment 502
structure mapping 487

data movement statement type 51
DATA option 140
data set 121

ASCII 153,177
CONSECUTIVE 152
creating 183,189,190
information interchange codes 122
organization 152,168
teleprocessing 171

data set organization
CONSECUTIVE 152,168
INDEXED 168
REGIONAL 168
VSAM 168,192

data specification 136
data lists 136
data-directed 140
edit-directed 143
list-directed 138

data transmission statements 134,155
DELETE statement 156
LOCATE statement 156
READ statement 156
REWRITE statement 156
UNLOCK statement 156
WRITE statement 156

data transmitted 155
area variables 155
data aggregates 155
unaligned bit strings 155
varying-length strings 155

data-directed data specification 140
data-directed data in stream 140
data-directed data specification for
input 141

532

data-directed data specification for
output 142

example 143
length of output fields 143

data-directed transmission 133
DATAFIELD built-in function 368
DATE built-in function 369
DB option 162
DB picture character 322
DB-format. record 154,178
DCB sUbparameter 152,176
DECIMAL attribute 410
DECIMAL built-in function 369
decimal digit 9
decimal digit specifier 317
decimal fixed-point data 16

default precision 17
maximum length 17

deCimal floating-point data 18
default precision 18
maximum length 18

decimal-point specifier 317
declaration

attributes 279,49
contextual 76
examples 77
explicit 75
implicit 77
record files 205

DECLARE statement 446,49
default

assumptions 3
attributes 81
record format 151,167
restoring standard 84
rules 154,178
specification, factored 85
statement 83

default attributes 81
application of standard defaults 81
control of by programmer 49
processes in application of
attributes 81

default precision
b~nary fixed-point data 17
binary floating-point data 19
decimal fixed-point data 17
decimal floating-point data 18

default statement 447,49,83
attribute specifications 83
DESCRIPTORS option 83
factored default specification 85
programmer-defined defaults 85
restoring standard defaults 84
restrictions 85
scope of 84

DEFINED attribute 30,413
defining

iSUB 415
simple 414
string overlay 416

DELAY statement 257,450
DELETE statement 156,450
descendant on-units
descriptive statements 49
descriptor lists, parameter 114
DESCRIPTORS option 83
device-associated files 176
diagnostic statements 61
differences, compiler
digit

binary (bit) 9

digit (continued)
decimal 9

digit specifier 317
DIM built-in function 369
dimension attribute 25,417
direct access 183,187,190,191
DIRECT attribute 417
disabling conditions 12
DISPLAY statement 451,51
DIVIDE built-in function 369
Do loops 451
DO statement 451,55
do-group 284

definition 13
preprocessor 247

doubleword 31
dummy arguments 113
dummy records 183,189,185,190
dynamic 69

allocation of storage 70
loading of external procedure 69

dynamically descendant on-units 219

E picture character 324
E-format item 328
EDIT option 143
edit-directed data specification 143

format lists 144
edit-directed format items 325

alphabetic list 326
control format items 325
data format items 325
remote format item 326
table of CEIL values 333

edit-directed transmission 134
editing by assignment 207

altering length of string data 207
picture specification 209

editing characters
numeric picture specification 20

element
data 15
expression 35
parameter 119

elimination
common expression 276
redundant expression 276,218

ELSE clause 461
embedded keys 180
EMPTY built-in function 101,369
enabled conditions

CHECK condition 221
condition built-in functions 223
condition codes 223
CONDITION condition 221
condition prefixes 217
dynamically descendant on-units 219
null on-unit 219
ON statement 218
on-units 219
REVERT statement 221
scope of condition prefix 218
scope of ON statement 219
SIGNAL statement 221
SIZE condition 222
STRINGRANGE condition 222
SUBSCRIPTRANGE condition 222

END statement 101,454,53,59
as procedure delimiter 52
with nested blocks and groups 64

ENDFILE
condition 396
condition code 384

END PAGE
condition 391
condition code 385

entry attribute 106,114,418
entry expressions as arguments 115
parameter descriptor lists 114

entry data 24
entry expressions as arguments 11S
entry parameter 119
entry pOints

fUnctions 106
primary 66
secondary 66
subroutine 106

ENTRY statement 455,52
environment

establishing FORTRAN 294
establishing PL/I 294
interlanguage 294

ENVIRONMENT attribute 125,199,421
for RECORD files 162,114

ADDBUFF option 114
ASCII option 177
BKWD option 110
BLKSIZE option 166
block prefix fields 118
buffer allocation 167
BUFFERS option 161
BUFND option 170
BUFRI option 110
BUFOFF option 118
BUFSP option 110
COBOL option 173
CONSECUTIVE option 168
CTLASA option 112
CTL360 option 112
D-format record 118
data interchange (COBOL) 173
data management optimization 114
data set organization 168
DB format record 118
device-associated files 116
GENKEYoption 114
in-line code optimization

(TOTAL) 114
INDEXAREA option 174
INDEXED option 168
key classification (GENKEY) 114
key length option (KEYLENGTB) 116
key location option (KEYLOC) 116
KEYLENGTB option 116
KEYLOC option 116
LEAVE option 111
magnetic tape handling options 171
NCP option 175
NOwRITE option 174
number of channel programs

(NCP) 115
optimization options 170
PASSWORD option 169
printer/punch control 172
record format options 162

Index 533

ENVIRONMENT attribute (continued)
for RECORD files (continued)

RECSIZE option 165
REGlbNAL option 168
REREAD option 111
REUSE option 110
SCALARVARYING option 115
SIS option 169
SKIP option 169
teleprocessing 111
TOTAL option 170,114
TP(M) option 111
TP(R) option 171
track overflow (TRKOFL) 175
TRKOFL option 115
VSAM option 168

for STREAM files 148
ASCII data sets 153
block prefix fields 153
buffer allocation option 152
BUFFERS option 152
BOFOFF option 153
CONSECUTIVE option 152
D-format record 154
data set organization options 152
DB-format record 154
LEAVE option 153
magnetic tape handling options 153
record format options 149
REREAD option 153

epilogue 13
ERF built-in function 369
ERFC built-in function 369
error

condition code 384
conditions 12
handling 202

ERROR condition 202,391
error condition code 384
established action
establishing FORTRAN environment 294
establishing PL/I environment 294
EVENT attribute 421
event data 24
EVENT option 158
exception control statements 59
exceptional conditions

during data conversion 41
EXCLUSIVE attribute 125,423
execution-time facilities 6
EXIT statement 107,456,59
exit-points of subroutine 106
EXP built-in function 310
explicit declaration 15

scope of 76
exponent specifiers 324

E picture character 324
K picture character 324

expression

534

and data conversion 35
array 35
as subscript 21
common 213
element 35
elimination 216,218
evaluation 335
file 123
general discussion 4

expression (continued)
notation 118
offset 100
operational 35
operations 37
pOinter 92
preprocessor 242
simplification 216
structure 35

expression and data conversion
ambiguous references 80
classes of statements 49
default attributes 81
default statement 83
EXTERNAL attribute 78
INTERNAL attribute 18
multiple declarations 80
prologues and epilogues 12

expressions and data conversion 35
extended floating-point form 19
extent

of area 99
of array dimension 25

EXTERNAL attribute 423,18
external blocks 64
external names

format restrictions 10
truncation of by compiler 10

external procedure
definition (>4
dynamic loading 69

external text
inclusion of 241

F option 162
F picture character 324
F-format item 329
facilities

interlanguage 289
traCing 228

factor, scaling
factored default specification 85
FB option 162
FBS option 162
FETCH statement 456,53,69
fetched procedures
file

additive attributes 125
alternative attributes 123
associating data sets with 128
attribute 123
closing 126
constant 122
data 2~

expression 123
in dynamically loaded procedure 10
opening 126
option 156
paramefer 119,219
PRINT 141
standard 130
SYSIN 130
SYSPRINT 130,148
variable 123,219

FILE attribute 423
FILE option 135,156

FINISH
condition 398
condition codes 384

FIXED attribute 424
fixed binary data 17
FIXED built-in function 370
fixed decimal data 16
fixed-length records 149,164
FIXEDOVERFLOW

condition 398,47
condition code 385

FLOAT attribute 424
float binary data 18
FLOAT built-in function 370
float decimal data 18
FLOOR built-in fUnction 370
flow of control, modifying statements 54
FLOW option 468
FLOW statement 230,235,457,61
format

coding 9
list-directed input 139
list-directed output 139
lists 144

format item
alphabetic list of 326
COLUMN 327
control 325
data 325
edit-directed 325
LINE 330
PAGE 330
remote 326
SKIP 331

FORMAT statement 457
FORTRAN

environment 294
interface 297
library functions 112

FORTRAN option 291
FORTRAN routine

passing arguments to 290
termination of 296

FREE statement 458,53
£o~ based variables 97
for controlled variables 89
with IN option 101

freeing
implicit 90
main storage 69

FROM option 157
FS option 162
function reference operands

definition 42
functions 108

and pseudovariables 285
and subroutines 105
arithmetic built-in 353,355
array-handling built-in 354,355
as expression 42
as target of assignment 42
attributes of returned values 109
built-in 111
condition-handling built-in 354
exit-points of 106
FORTRAN library 112
GO TO statement 109
input/output built-in 354

353,355
354

354
354

354

functions (continued)
mathematical built-in
miscellaneous built-in
multitasking built-in
preprocessor built-in
RETURN statement 109
storage control built-in
string built-in 214
string-handling built-in 353,355

general syntax 278
generiC

entry names 110
key 174
references 110
selection 110

GENERIC attribute 425
GENKEYoption 174
GET statement 459

STRING option in 208
global optimization 276
GO TO statement 109,296,460,54
groups 13

halfword 31
HALT statement 461,59
handling

bit-string 213
error 202
interrupt 294
string 273

handling options
magnetic tape 153,171

HBOUND built-in function 370
HIGH built-in function 215,370

I picture character 322
I/O

general discussion 5
identifiers 10

definition 10
format restrictions 10
keywords 10

IF statement 461
as flow mOdifier 54
comparison operation 40

IGNORE option 151
IMAG

built-in function 370
pseudovariable 370

imaginary data 19
immediate mode 227
implicit

declaration 77
freeing 90
opening 121

IN option
ALLOCATE statement with 100
FREE statement with 101

in-line code optimization (TOTAL) 174
in-line operatiOns 271

data conversion 271
string handling 273

inclusion of external text 247
INDEX built-in function 214,246,370

Index 535

INDEXAREA option 174
INDEXED data sets 168
INDEXED option 162
indexed organization 179

creating data set 183
direct access 183
dummy records 183
keys 119
sequential access 183

infix operators
definition 38
with arrays 44
with structures 46

information interchange codes 122
INITIAL attribute 32,426
initial procedure 67
initialization

assignments and 281
of static variable 87

input
data-directed 141
general discussion 5
list-directed 139
operation 208

INPUT attribute 124,428
input/output 286

based variables and 93
of areas 102
operations 170
statement type 50

input/output built-in functions 354
insertion characters 211,318

• insertion character 211
/ insertion character 211,319
, insertion character 211,318
B insertion character 211,319
numeric picture specification 20

insource listing 239
integral boundary

definition 31
INTER option 291
interchange (COBOL)

data 113
interchange codes 122
interface

COBOL 297
FORTRAN 297

interlanguage environment 294
establishing FORTRAN environment 294
establishing PL/I environment 294
GO TO statement 296
interrupt handling 294
multitasking 297
termination of FORTRAN and COBOL
routines 296

interlanguage facilities 289
COBOL interface 297

536

data mapping 290
data types 290
FORTRAN interface 297
interlanguage environment 294
invocation 291,293
passing arguments to COBOL or FORTRAN

routine 290
passing ~rguments to PL/I procedure 292
problem data 290
program control dat~ 290
using common storage 293

intermediate result in arithmetic
operations 38

intermediate storage of results 43
internal

blocks 64
procedure 64

INTERNAL attribute 423,78,80
internal to, definition 75
interrupt

facilities 1
handling 294
multiple 391

interrupt handling 294
by condition prefix 12
for programs with common expression
elimination 274

INTO option 157
invariant expressions 274
invocation 291,293

of preprocessor procedures 243
of procedure 66

invoking block 66
IRREDUCIBLE attribute 428
iSOB defining 415
item

A-format 326
C-format 327
COLUMN format 327
data format 325
E-format 328
edit-directed format 325
F-format 329
LINE format 330
P-format 330
PAGE format 330
R-format 331
remote format 326
SKIP format 331
X-format 331

iteration factors
in initialization 33

iterative do-group 55

job control 278
joining strings(see concatenation)

K picture character 324
key 179,184

classification (GENKEY) 174
condition 398
condition codes 384
embedded 180
generic 174
length option (KEYLENGTH) 116
location option (KEYLOC) 176
option 158
recorded 179,185
source 119,185,188

key classification 174
key classification (GENKEY)

generic key 114
GENKEY option 114

KEY option 158
KEYED attribute 125,429
KEYFROM option 158
KEYLENGTH option 162

KEYLOC option 162
KEYTO option 158
keyword

and keyword abbreviation 309
general definition 10
statement 12

keyword arguments 243

label
data 23
parameter 119
prefix 12

LABEL attribute 429
language characteristics

general discussion 3
LBOUND built-in function 311
LEAVE option 153,171
LEAVE statement 462,58
length

built-in fUnction 215,311
of data-directed output fields 143
parameter bounds, 117

length attribute 410
LENGTH built-in function 215,311
levels of locator qualification 102
library functions

FORTRPu~ 112
LIKE attribute 30,430
LINE

format item 330
option 136

LINENO built-in function 371
LINESIZE option 464
list

chained 91
current status 232
data 136
format 144
of conditions 392
parameter descriptor 114
processing 96
threaded 97
types of 98

LIST option 138
list processing 96

chained list 97
threaded list 97

list-directed 139
data in stream 139
data specification 138
input format 139
output format 139
transmission 133

listing
control statements 249,483
insource 239
source 239

listing control statements 249,60
ICONTROL 483
INOPRINT 484
I PAGE 484
IPRINT 484
ISKIP 485

locate mode 161
LOCATE statement 156·,462,94
locator

conversion 99

locator (cont~nued)
parameter 120
qual~fication 91

locator data 24
conversion of 37

locator qualif~cation 91
levels of 102
multiple 102

locked record 125
LOG built-in function 311
logical operation 282
logical operators 39
LOG10 built-in function 311
LOG2 built-in function 311
long floating-point form 19
loop, do 55
LOW built-in function 215,312

machine independence of PL/I 3
magnetic tape handling options

LEAVE 153,111
REREAD 153,171

MAIN option 13
main procedure

identifying 13
passing argument to 120

mapping
data 290,487
rules 488
structure 487,96

mathematical built-in functions 353,355
accuracy of 355

MAX built-in function 372
function 372

maximum size of numeric picture 20
member names of external structures

scope of 80
merging of attributes 127
message control program 199
MIN built-in function 312
miscellaneous built-in functions 354
MOD built-in function 312
mode 337

conversion 331
immediate 221
locate 161
move 159
of arithmet~c data 16
processing 93

move mode 159
multiple

ambiguous references 80
assignment statements 52
declarations 80
interrupts 391
labels 12
locator qualification 102

multiple closure of blocks 65
multiple generations

of based variables 91
of controlled variables 90

MULTIPLY built-in function 372
multitasking 291

built-in functions 354
general discussion 5

Index 531

name
generic entry 110
qualified 28
recognition of 75
symbolic 15

name (see identifiers)
NAME condition 384,399
NAME condition codes 384
nested blocks

definition 64
maxi»um depth 64

NOCHECK statement 228,462,61
NOFLOW statement 232,463,61
NOLOCK option 159
NOMAP option 291
NOMAPIN option 291
NOMAPOOT option 291
non-connected storage 117,30
noniterative DO statement 58
normal termination of program
notation

asterisk 118
118 expression

syntax 305
NOWRITE option 174
null

ar~Qments 356
built-in function 373,98
character string 21
on-unit 219
statement 12,463

NULL built-in function 373,98

69

number of channel programs (NCP) 175
number sign (#) 9
numeric character data 19

picture characters for 316
numeric character specifications 209

sign specification in 212
numeric character to arithmetic
conversion 337

numeric character to bit conversion
numeric character to character
conversion 346

numeric picture specification
insertion characters 20
IIliIxilRWR size 20
repetition factors in 19

object of REFER option 95
offset

expressions 100
variables 37,99

OFFSET attribute 431
OFFSET built-in function 373
ON statement 218,463,59

scope of 219
with BEGIN block 53

ON-codes
(see condition codes)

ON-conditions 383

538

and en-units 285
classification of conditions
conditioa codes (ON-codes)
example of use of 223
list of conditions 392
multiple interrupts 391

392
383

on-unit
dynamically descendant 219
file parameters 219
file variables 219
null 219
on-conditions 285

ONCHAR
built-in function 373
pseudovariable 373

ONCODE
(see condition codes)

ONCODE built-in function
ONCOONT built-in function
ONFILE built-in function
ONKEY built-in function
ONLOC built-in function
ONSOORCE

built-in function 374
pseudovariable 374

OPEN statement 126,464

373
373

373
373
374

opening and closing files 126
associating data sets with files 128
CLOSE statement 130
implicit opening 127
in dynamica1ly-loaded procedure 70
merging ot attributes 127
OPEN statement 126
standard files 130
TITLE option 128

operand
definition 35

operating system and job control 278
operating system facilities

available to programmer 7
operation

arithmetic 282,38
asynchronous 158,251
bit-string 38
combinations of 40
comparison 39
concatenation 40
expression 37
in-line 271
infix 36
input 208
logical 282
output 208
prefix 36
synchronous 251
using built-in functions 38

operational expressions
definition 35

operators
arithmetic 10
bit-string 10
comparison 10
infix 38
prefix 38
priority of 41
string 10

optimdzation 261
data management 174
features 278
in-line code 174
of input/output operations 170

optimizing compiler
facilities of 6

option 156,95

option (continued)
ADDBUFF 174
ALL 62
ARGn 291
ASCII 153,177
ASSEMBLER 432
BKWD 170
BLKSIZE 150,166
BUFFERS 152,167
BUFND 170
BUFNI 170
BUFSP 170
BY 56
COBOL 291
COpy 135
CTLASA 172
CTL360 172
DATA 140
DESCRIPTORS 83
EDIT 143
EVENT 158,253
FILE 135,156
FLOW 468
FORTRAN 291
FROM 157
GENKEY 114
IGNORE 157
INDEXAREA 174
INTER 291
INTO 157
KEY 158
KEYFROM 158
KEYLENGTH 162,176
KEYLOC 162,176
KEYTO 158
LEAVE 153,171
LINE 136
LlNESIZE 464
magnetic tape handling 153,171
NOLOCK 159
NOMAP 291
NOMAPIN 291
NOMAPOUT 291
NOWRITE 174
of transmission statements 135,156
OPTIONS 466
ORDER 215
PAGE 135
PAGESIZE 464
PASSWORD 169
PRIORITY 254
record format 149,162
RECSIZE 150,165
RECURSIVE 466
REENTRANT 466
REORDER 275
REPEAT 56
REREAD 153,171
RETURNS 110
REUSE 110
SCALARVARYING 175
SET 157
SIS 169
SKIP 135,169
STATEMENT 482
statements and 203
STRING 135
TASK 253

option (continued)
TITLE 128
UNTIL 56
WHEN 425
WHILE 56

OPTIONS attribute 432
OPTIONS option 466
order

of evaluation of expressions 41
of pairing 481

ORDER option 215
organization

consecutive 118
data 25
data set 152,168
indexed 119
regional 184
REGIONAL(l) 185
REGIONAL(2) 188
REGIONAL(3) 190

OTHERWISE clause 414,55
output

data-directed 142
general discussion 5
list-directed format 139
operation 208
preprocessor 239

OUTPUT attribute 428
overflow

arithmetic 17
track 11~

OVERFLOW condition 400,41
OVERFLOW condition code 385
overlay defining 416
overpunched sign specification
characters 212

P-format item 330
packed decimal form 17
PAGE

format item 330
option 135

PAGESIZE option 464
pairing 481
parameter

allocation of 117
area 120
array 119
attribute 117
bounds 117
controlled 111
descriptor lists 114,418
element 119
entry 119
file 119
label 119

. lengths 111
locator 120
preprocessor functions 244
relationship with arguments 113
simple 117
sizes 117
string 120
structure 119
type 119

parameter attribute 434

Index 539

parameter descriptors
programmer-defined defaults for 85

parentheses
PARMSET built-in function 374
passing arguments

to COBOL routine 290
to FORTRAN routine 290
to main procedure 120
to PL/I procedure 292

PASSWORD option 169
PENDING

condition 203,400
condition code 385

PICTURE attribute 434
character strings 22
numeric character data 19

picture character 316,322
$ (currency symbol) 211
* (asterisk) 210
'9' in character specification 210
character-string data 315
credit 322
debit 322
decimal-point specifier 317
digit specifier 317
exponent specifiers 324
factor 324
for character-string data 315
for numeric character data 316
insertion characters 318
overpunched signs 322
scaling factor . 324
signs and currency symbol 319
V (decimal point specifier) 211
Z (zero suppression) 210
zero replacement 322
zero suppression characters 317

picture specification 209,22
characters 315
insertion character. 211
insertion character / 211
insertion character, 211
insertion character B 211
numeric character 209
overpunched characters 212
picture character $ 211
picture character * 210
picture character '9' 210
picture character V 211
picture characters 210
repetition factors 22
sign specification 212

picture.specification characters 315
picture specifications

character-string 212
pitfalls and common errors 278
PL/I

concepts of 1
environment 294
procedure 292

PLIRETV built-in function 375
point of invocation of procedure 66
point specifier

V decimal 317
pointer

540

built-in function 375
expression 92
variables 37,92

POINTER attribute 431
POINTER built-in function 375
POLY built-in function 375
POSITION attribute 30,413
pOSitional arguments 243
precision attribute 435
PRECISION built-in function 375
precision of arithmetic data 16
prefix operation 36
prefix operators

definition 38
with arrays 44
with structures 45

prefixes
condition 12,217
label 12

preprocessed text 239
preprocessor

do-group 247
expressions 242
fUnctions 244
input 239
output 239
procedures 243

invocation 243
keyword arguments 243
positional arguments 243
STATEMENT option 243

RETURN 483
scan 239
stage 239
statements 248,478
variables 242

preprocessor built-in functions 354
preprocessor scan 239

character strings and comments 241
res canning and replacement 240

preprocessor statements 248,60
IACTIVATE 418
lassignment 419
IDEACTIVATE 419
IDECLARE 479
IDO 480
lEND 480
IGO TO 480
"IF 481
I INCLUDE 481
I NOTE 482
Inull 482
IPROCEDURE 482
RETURN 483

primary entry point 66
PRINT attribute 125,436
PRINT files 141

standard file SYSPRINT 148
printer/punch control (CTL360/CTLASA) 112
priority

of operands 41
of operators 41
of tasks 254

PRIORITY built-in function 375
PRIORITY option 254
PRIORITY pseudovariable 316
prOblem data 290,82

definition 15
procedure

blocks 63
labels On 63

procedure (continued)
main 13
preprocessor 243
recursive 71
reference 65
termination of 68

procedure block
definition 13
invoking 13

PROCEDURE statement 466,52
processes in application of attributes 81
processing

batch 227
conversational 227
list 96
mode 159,93

processing modes 159
locate mode 161
move mode 159

processor stage 239
PROD built-in function 376
program

amending 237
control 279
control data 290,82
elements 9
interrupt handling for 274
message control 199
organization 63
structure 3,12
termination 69

program control data 290,82
area 25
comparisons 39
definition 15
entry 24
event 24
file 23
label 23
locator 24
restriction on conversion of 37
task 24

program organization statement type 52
programmer-defined default 85
programming example 258
programming techniques for optimizing
compiler

in-line operations 271
prologues 72
pseudovariable

COMPLETION 367
COMPLEX 367
definiton 42
general description 356
IMAG 370
nesting restriction 356
ONCBAR 373
ONSOURCE 374
PRIORITY 376
REAL 376
STRING 378
SUBSTR 379
ONSPEC 3-80

punch, card
POT ALL statement 236
PUT diagnostic statements 61
PUT FLOW statement 235
PUT SNAP statement 235

PUT statement 468
PUT variables 232

qualification
locator 91
multiple locator 102

qualified names 28
of structure elements 28

quotation marks 21

R picture character 322
R-format item 331
RANGE option 448
reactivation of active procedure 71
READ statement 156,470,94
real arithmetic data 16
REAL attribute 412
REAL built-in function 376
REAL pseudovariable 376
recognition of names 75
record

alignment 502
condition codes 384
D-format 154,178
DB-format 154,178
dummy 183,185,189,190
files 205
fixed-length 149,164
locked 125
transmission 50
undefined-length 150,165
variable-length 149,164

RECORD attribute 124,436
RECORD condition 202,400
record format defaults 151,167
record format options 149,162

BLKSIZE option 150,166
fixed-length records 149,164
RECSIZE option 150,165
undefined-length records 150,165
variable-length records 149,164

recorded key 179,185
RECSIZE option 150,165
recursion 71,88
RECURSXVE option 466
REDUCIBLE attribute 428
redundant expression elimination 278
reentrability 252
REENTRANT option 466
REFER option 95
reference

generic entry names 110
subroutine 107

REGIONAL data sets 168
regional organization 184

keys 184
types of 185

REGIONAL(l) organization 185
creating data set 185
direct access 187
dummy records 185
sequential access 187

REGIONAL(2) organization 188
creating data set 189
direct access 190
dummy records 189

Index 541

REGIONAL(2) organization (continued)
sequential access 189
source keys 188

REGIONAL (3) organization 190
cre~ting data set 190
direct access 191
dummy records 190
sequential access 191

relationship of arguments and
parameters 113

allocation of parameters 117
argument and parameter types 119
dummy arguments 113
entry attribute 114

RELEASE statement 472,53,69
remote format item 326
REORDER option 275
REPEAT built-in function 215,376
REPEAT option 56
repetition factors

in character string data 21
in numeric picture specifications 19

repetitive specification 137
replacement 240
REREAD option 153,171
rescanning 240
reserved words 75
restoring standard defaults 84
results of arithmetic operations 38
results of assignments 43
RETURN

preprocessor statement 483
return codes 299
RETURN statement 107,109,472,59,68
returned value 244

attributes of 109
RETURNS attribute 110,437
RETURNS option 110

programmer-defined default for 85
RETURNS attribute and 106

REUSE option 162,170
REVERT statement 221,473,60
REWRITE statement 156,473
ROUND built-in function 376

S picture character 322
SAMEREY built-in function 376
SCALARVARYING option

varying-length string option
(SCALARVARYING) 175

scale of arithmetic data 16
scaling factor 324
scan, preprocessor 239
scope

of condition prefix 218
of contextual declaration 76
of declaration of name 75
of DEFAULT statement 84
of explicit declaration 76
of member names of external
structures 80

of ON statement 219
secondary entry point 66
SELECT statement 474,55
select-group 55

definition 13
selection, generic 110

542

self-defining data (REFER option) 95
object of REFER option 95
structure mapping 96

sequential 124
access 183,189,187,191
update 179

SEQUENTIAL attribute 417
SET option 157
setting

event variables 256
pOinter variables 92

sharing data between tasks 255
sharing files between tasks 256
short floating-point form 19
SIGN built-in function 377
sign specification in numeric character
specifications 212

SIGNAL statement 221,475,60
signs and currency symbol 319

+ picture character 322
$ currency symbol 322
picture character 322
S picture character 322

simple defining 414
simple parameter 111
simple statement 12
simplification, expression 216
SIN built-in function 317
SIND built-in function 371
SINH built-in function 371
SIS option 162,169
SIZE

condition 11,222,401
condition code 385
raised in data conversion 47

size attribute 408
SIZE condition 11
SKIP

format item 331
option 135

SKIP option 162,169
SNAP option 235
source 335

key 119,185
keys 188
listing 239
program 218
to target rules 335

special characters 9
specification

attribute 83
character 212
character-string picture 212
characters 315
data 136
data-directed data 140
edit-directed data 143
factored default 85
list-directed data 138
numeric cha~acter 209
picture 209
picture character '9' 210
repetitive 131

specification for input
data-directed data 141

specification for output
data-directed data 142

specifier
decimal digit 317
decimal-point 317
digit 317
exponent 324
V decimal point 317

SQRT built-in function 377
stage

preprocessor 239
processor 239

standard defaults
application of 81
restoring 84

standard file 130
input file SYSIN 130
output file SYSPRINT 130,148

statement
IACTIVATE 418
lassignment 419
"CONTROL 483
IDEACTlVATE 419
IDECLARE 479
100 480
lEND 480
"GO TO 480
"IF 481
"INCLUDE 481
INOPRINT 484
"NOTE 482
Inull 482
"PAGE 484
"PRINT 484
"PROCEDURE 482
"SKIP 485
ALLOCATE 439
and options 203
assignment 441
BEGIN 443
CALL 253,444
CHECK 228,445
classes of 49
CLOSE 130,446
data transmission 134,155
DECLARE 446
DEFAULT.447,83
DELAY 257,450
DELETE 156,450
descriptive 49
DISPLAY 451,51
DO 451
END 101,454
ENTRY 455
EXIT 101,456
FETCH 456
FLOW 230,451
FORMAT 457
FREE 458
general discussion 12
GET 459
GO TO 109,296,460
GOTO 101
HALT 461
IF 461
LEAVE 462
listing control 249,483
LOCATE 156,462,94
NOCHECK 228,462
NOFLOW 232,463

statement (continued)
null 463
ON 218,463
OPEN 126,464
preprocessor 248,418
PROCEDURE 466
PUT 468
PUT ALL 236
PUT FLOW 235
PUT SNAP 235
READ 156,410
RELEASE 412
RETURN 101,109,472

(preprocessor) 483
REVERT 221,413
REWRITE 156,413
SELECT 414
SIGNAL 221,415
STOP 101,415
UNLOCK 156,475
WAIT 256,416
WRITE 156,417

STATEMENT option 482
statement prefixes

condition 12
label 12

STATIC attribute 408
static storage 81

allocation of 70
initialization of 87

static variables 70
STATUS built-in function 251,311
status list, current 232
STOP statement 107,475,59
storage

automatic 87
based 91
connected

general discussion 111
controlled 88
non-connected

and DEFINED attribute 30
general discussion 117

static 87
using common 293

storage allocation 70
types of 4

STORAGE built-in function 377
storage control

automatic storage 87
based storage 91
built-in functions 354
controlled storage 88
statement type 53
static storage 87

STREAM attribute 124,436
stream transmission

data-directed data 140
list-directed data 139
statement type 50

string 285
built-in function 215,378
data 21
handling 213
operator 10
overlay defining 416
parameter 120
pseudovariable 318

Index 543

string (continued)
unaligned bit 155

STRING built-in function
in array expressions 44

string built-in functions 214
BIT 214
BOOL 215
CHAR 214
HIGH 215
INDEX 214
LENGTH 215
LOW 215
REPEAT 215
STRING 215
SUBSTR 214
TRANSLATE 215
UNSPEC 215
VERIFY 215

string data
altering length of 207
bit 22
character 21
qualified names 28

STRING option 135
in GET statement 208
in PUT statement 208

STRING pseudovariable 378
string-handling built-in functions 353,355
STRINGRANGE

condition 222,401
condition code 386

STRINGSIZE 402
condition 402
condition code 385
raised in data conversion 47

structure 27
arrays of 29
BYNAME assignm~nts 46
controlled 91
expression 35,45
infix operators with 46
mapping 487,96
operations involving arrays 45
parameter 119
prefix operators with 45
qualified names 28

structure mapping 96
example of 489
rules 487

structure-and-e1ement operations 46
structure-and-structure operations 46
structure, program

general discussion 3,12
subparameter, DCB 152,176
subroutine 107

and functions 105
built-in 112
END statement 107
EXIT statement 107
GOTO statement 107
reference 107
RETURN statement 107
STOP statement 101
subroutine reference 101

subroutine and functions
built-in functions 111
built-in subroutines 112
ENTRY attribute 106

544

subroutine and functions (continued)
entry pOints of 106
exit-points of 106
FORTRAN library functions 112
functions 108
generic entry names and references 110
paSSing argument to main procedure 120
relationship of arguments and
parameters 113

RETURNS attribute and RETURNS
option 106

subroutines and functions 105
subscripted qualified names

definition 29
SUBSCRIPTRANGE

condition 222,402
condition code 386

subscripts
expressions used as 21
of arrays 26

SUBSTR built-in function 214,246,318
SUBSTR pseudovariable 319
SUM built-in function 379
suppression character

* 318
Z 318
zero 311

symbol
$ currency 322

symbolic name 15
synchronization of tasks 255
synchronous operation 251
syntax notation 305
SYSIN standard input file 130
SYSPRINT

standard file 148
standard output file 130

T picture character 322
TAN Quilt-in function 319
TAND built-in function 319
TANH built-in function 319
target variable

attributes of 43
task

coordination 255
creation of 253
data 24
priority of 25lJ
sharing data between 255
Sharing files between 256
synchronization 255
termination of 251

TASK attribute 431
TASK option 253
tasking and reentrability 252
teleprocessing

data sets 171
ENVIRONMENT attribute 199
ERROR condition 202
error handling 202-
message control program 199
PENDING condition 203
RECORD condition 202
statements and options 203
TRANSIENT attribute 202
TRANSMIT condition 202

termination
of blocks 67
of FORTRAN and COBOL routines 296
of program 69
of tasks 257

testing event variables 2S6
COMPLETION built-in function 257
STATUS built-in function 2~7

text, preprocessed 239
THEN clause 461
threaded list 97
TIME built-in function 379
TITLE option 128
TO option 55
TOTAL option 170
tracing facilities

CHECK statement 228
FLOW statement 230
NOCHECK statement 228
NOFLOW statement 232

track overflow (TRKOFL) 175
transfer

of invariant expressions 277
of invariant expressions or

statements 274
TRANSIENT attribute 124,202,417
TRANSLATE built-in function 215,379
transmission

data-directed 133
edit-directed 134
list-directed 133
of data-list elements 138

transmission statements
data 134,155
options of 135,156

TRANSMIT
condition 202,402
condition codes 384

transmitted data 155
TRUNC built-in function 380
tuning a program for virtual storage 268
type conversion 36
types

argument 119
data 290
of list 98
of regional organization 185
of statements 49
parameter 119

U option 162
UNALIGNED attribute 31,405

effect of 488
unaligned bit strings 155
UNBUFFERED attribute 124,411
undefined-length records 150,165
UNDEFINEDFILE

condition 403
condition codes 384

UNDERFLOW
condition 404,47
condition code 385

uninitialized variables 23
UNLOCK statement 156,475
UNSPEC built-in function 215,380
UNSPEC pseudovariable 380
UNTIL option 56

UPDATE attribute 124,428
update, sequential

V decimal point specifier 317
V option 162
V picture character 211
value returned 244
variable

aliased 276
area 99
based 91
definition 15
file 123
offset 99
painter 92
preprocessor 242
PUT 232
setting painter 92
static 87
uninitialized 23

VARIABLE attribute 438
variable-length records 149,164
VARYING attribute 21,410
varying-length string

and area variables 155
option (SCALARVARYING) 175

VB option 162
VBS option 162
VERIFY built-in function 215,381
virtual storage tuning 268
VS option 162
VSAM data sets 168
VSAM organization 192

WAIT statement 256,476
WHEN clause 474,55
WHEN option 425
WHILE option 56
word 31
WRITE statement 156,477

x picture speCification character 22
X-format item 331

Y picture character 322

Z picture character 210
Z zero suppression character 318
zero replacement picture character 322
zero suppression character 311
ZERODIVIDE

condition 385,404,47
condition code 385

48-character set 9,308

60-character set 9,307

9 in numeric character specifications 210

Index 545

OS PLjI Checkout and Optimizing Compilers:
Language Reference Manual

Order Number GC33-0009-4

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name and address
(including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

Reader's
Comment
Form

GC33-0009-4

Fold and Staple

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

First Class Permit
Number 6090
San Jose, California

..
Fold and Staple

International Busin .. Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.s.A. only)

IBM World Trade Corporation
832 United Nations Plaza, New York, New York 10017
U nternational)

o en
-0
r ::::-

u~33-0009-4

Intwnaflonal chl Corporation
DR Procesalng Dlvlalon
1133 WMlch r Av __ , White Plain., New York 10104
(U.s.A. only)

1811 World Trade Corporation
121 United NatIons Plaza, New York, New York 10017
(l1IIerutIonaI)

o en
."
r:::::

r
Q)

:l
(Q
c:
Q)

(Q
CD

::xJ
CD -CD
~
CD
:l

~
~
Q)
:l
c:
~

."

CD
Z
~
(I)
eN
c:» o -en
eN,
o
~
<0

." .,
:r ... a

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	334a
	334b
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349a
	349b
	351a
	351b
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	replyA
	replyB
	xBack

