Data
Processing
Techniques

GF20-0015-2

Introduction to the
List Processing Facilities
of PL/I

This manual discusses and illustrates usage of PL/I facilities
for organizing, processing, and relocating data in list form.
A data list is a chain of based variable structures that contain
data plus pointers that link the structures. List-processing
techniques are useful for handling data that has logical
complexities not conveniently represented by conventional
PL/I array and structure representation.

Illustrative programs were processed by the PL/I (F)
Compiler (Version 4) under control of the IBM System/360
Operating System (Release 16).

The list-processing facilities of PL/I are an advanced
topic in programming; this manual is intended for the ex-
perienced programmer. Additional information is presented
in Techniques for Processing Data Lists in PL/I (GF20-0018),
Techniques for Processing Pointer Lists and Lists of Lists
in PL/I (GF20-0019), and Techniques for Processing Re-
locatable Lists in PL/I (GF20-0020).

The IBM Program Product PL/I Optimizing Compiler
for DOS, and the IBM Program Product PL/I Optimizing
and PL/I Checkout Compilers for OS provide list processing
function addit.onal to the facilities described in this manual;
for example, more than one REFER option can be speci-
fied for a based structure.

The IBM Program Product SIMPL/I (Simulation Language
Based on PL/I) has a subset of list processing keywords
that can be used with regular PL/I keywords to handle
list processing applications. SIMPL/I supports convenient
creation of circular lists, lists of lists, and arrays of lists.
SIMPL/I has built-in functions to manipulate (insert,
delete, etc.) list components. Output from SIMPL/I is
used as input to the IBM Program Product OS PL/I
Optimizing Compiler or the IBM Program Product OS
PL/I Checkout Compiler.

Manuals that discuss the above-mentioned IBM Program
Products are available from your IBM marketing representative.

JLBIML

¢

Reprint (October 1975)

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

Adcress comments concerning the contents of this publication to IBM Corporation,
Technical Publications—Systems Department, Dept. 824, 1133 Westchester Avenue,
White Plains, New York 10604.

© Copyright International Business Machines Corporation 1973

-t

Table of Contents

Chapter 1. Introduction .

1A. Addressing Storage

1B. Data Movement

1C. Storage Allocation

1D. The Uses of Lists . . .
1D1. Information Storage and Retrreval
1D2. System Simulation .

1D3. Engineering Design . .
1D4. Computer-Software Productron
1D5. Text Editing .

1D6. Artificial Intelligence

1E. Purpose of this Manual .

1F. Summary of Chapter 1

Chapter 2. The Organization of Data in PL/I
2A. Element Items
2B. Arrays

2C. Structures .

2D. Arrays of Structures .

2E. Advantages of Arrays and Structures
2E1. Reducing Program Size

2E2. Avoiding Data Scanning

2F. Summary of Chapter 2 .

Chapter 3. Techniques for Addressing Data .

3A. Types of Addresses e

3B. Symbolic Addresses .

3C. Relative Addresses .

3C1. The Use of Subscript Values in
Auxiliary Arrays .

3C2. Using Subscript Values to Lmk Elements

3D. Absolute Addresses .

3D1. The Relationship of Relative and
Absolute Addresses . .

3D2. Pointer Variables

3D2A. How to Obtain a Value For 2 Pomter

Variable

3D2B. Using Pointer Vamble: in Asngnment
Statements .

3D2C. Using Pointer Variables in Operatronal
Expressions .o

3D3. Based Variables . .

3D3A. Assigning Pointer Values wrth the
SET Option

3D3B. Using a Based Variable in a Functron
Procedure

Page

NN T AN AN D WD

~N 2

10
10
15
15

16
16
16
16
16
18
24

24
24

25
25

26
26

26

27

3E. Arrays and Structures of Based Variables .

3E1. Qualifying Based Variables with Pointer
Variables .

3E2. Pointer Qualification in a Subroutme .

3E3. Restrictions on Based Variables .

3E4. Contextual Declarations of Pointer
Variables

3F. Advantages of Absolute Addressmg

3F1. Reducing Data Movement

3F2. Sorting with Pointer Variables

3F3. Sorting with an Array of Pointer Vanables .

3G. Associating Data Items in Scattered
Locations .
3G1. Associating Data Items through an Array
of Pointer Variables . .
3G2. Linking Data Items through Pomter
Variables .
3H. Review of Techniques For Addressrng
Data Items e
31. Summary of Chapter 3

Chapter 4. Lists and the Dynamic Allocation
of Storage
4A. Based Storage . . .
4A1. Allocating Based Storage . .
4A2. The SET Option in an Allocate Statement
4A3. Freeing Based Storage .

4A3A. Multiple References in a FREE Statement .

4A3B. Implicit Freeing of Storage .
4A4. An Example of Based Storage Used in a
Sort Procedure

4A5. Allocating Based Storage for a Se]f deﬁmng

Structure .
4ASA. The REFER Optron .
4A5B. An Example of the REFER Optlon ina
Sort Procedure .
4A6. Allocating and Freeing Based Storage
Within an Area .o

4A6A. The AREA Attribute
4A6B. The IN Option . .
4A6C. The Area On-condition .

4A6D. An Example of an Area Vanable ina
Sort Procedure .

4B. Organization of Data in List Fomr

4B1. The Main Parts of a List

4B2. Adventages of Lists ,

Page
28

28
30
32

32
32
32
32
32

35
35

37

45
45
45
46
46
47
47

47

48
49

50

51
51
52
53

53
53
53
58

4B3. Types of Lists

4C. Review of Techniques for Orgamzmg Based
Storgge in List Form . e

4D. Summary of Chapter 4 . . .

Chapter 5. Facilities for Relocating Data Llsts .

SA. Treating Lists as Units Within Areas .

SB. Assigning Areas to Other Areas

5C. The Extent of an Area .

SD. The Effect of Extent on Area Ass:gmnent

SE. The AREA ON-condition For Area
Assignment

SF. Computing the Extent of an Area

5G. The Length of an Area .

SH. The Effect of Area A551gnment on Pomter
Values .

51. Addressing the Contents of an A551gned Area

5J. Offset Variables

5J1. Assigning Values to Offset Vanables

5J2. The NULLO Built-in Function .

5J3. Restrictions on Offset Variables

SK. Relocation of Data Lists

5K1. Internal Relocation .

5K2. Relocatable Data Lists . . .

5K3. A Subroutine that Assigns a Relocatable

Data List to Another Area

Page
58

58
61
62
62
62
63
64

64
65
65

66
66
66
67
68
69
69
69
71

74

5K4. Converting Data Lists to and from
Relocatable Form .
SKS. Sorting Relocatable Data Lists .
5K6. External Relocation
SK6A. Writing Relocatable Data LlStS
5K6B. An Example that Creates Relocatable
Data Lists in a Work Area and Writes
Them into a File . .
5K6C. An Example that Creates Relocatable
Data Lists in an Output Buffer and
Writes Them into a File
5K6D. Reading Relocatable Data Lists
SK6E. An Example that Sorts and Prints
Relocatable Data Lists Contained
inaFile . .
SL. Review of Techniques for Creatmg
Relocatable Data Lists
SM. Summary of Chapter 5 .

Appendix. Summary of List-Processing Facilities .

Index

Page
75
77

78
78

79

80
81
81

82
85

86

87

Preface

The list-processing facilities of PL/1 provide more general
methods of allocating and organizing internal computer
storage than are available with array and structure organi-
zations. PL/I supplies these facilities through special data
attributes, built-in functions, interrupt conditions, and
executable statements, which allow the programmer to
manipulate storage addresses and to link scattered storage
areas during the course of program execution.

Linking scattered storage through address manipulation
produces a general type of data organization called a /ist,
and that aspect of programming concerned with organizing
and managing lists is referred to as list processing. PL/I,
however, does not define a specific type of list organiza-
tion; instead, it allows storage to be linked in an arbitrary
manner, so that a list can contain any combination of data
elements, arrays, and structures. This type of organization
even permits a list to contain other lists as its components.

The major advantage of lists over conventional array
and structure organizations is the efficiency they permit in
the use of storage. A list need reserve only the storage it
is actually using at any given moment during program exe-
cution; storage need not lie dormant in anticipation of
maximum requirements. As additional list components
are required, their storage is linked to the list and,when
list components are no longer needed, their storage is
linked to other lists or reserved in a storage pool for fur-
ther use. Such flexibility in storage management also re-
duces data movement'and frees the programmer from
having to know exactly how much storage a list will re-
quire.

But list processing supplies more than an efficient tech-
nique for using storage. It also furnishes a method for
organizing and manipwlating data whose structure is not

Note: Version 4, Release 16 of the PL/I (F) Compiler produced
the program printouts shown in this manual.

conveniently represented with PL/I arrays and structures.
Structured data of this type occurs in many non-numeric
applications, such as information storage and retrieval,
system simulation, engineering design, computer-software
production, text editing, and artificial intelligence. List
processing preserves the natural structure of the data in-
volved in such applications and, as a result, avoids unnec-
essary programming complexity.

This manual discusses the basic facilities for list pro-
cessing in PL/I and uses a simple sort application through-
out the text/to show how lists are created and processed;
printouts of program compilations appear with the dis-
cussions. The numbering scheme for illustrations asso-
ciates them with pertinent paragraphs. For example, the
paragraph numbered 1C references figures 1C-1, 1C-2,
and 1C-3.

Because the list-processing facilities of PL/I form an ad-
vanced topic in programming, this manual assumes that the
reader is an experienced programmer with a knowledge of
PL/I equivalent at least to that presented in 4 PL/I Primer,
Form C28-6808. Familiarity is assumed with array and
structure organization and with methods for creating and
invoking subroutines and functions. The programming ex-
amples in this manual are concerned mainly with illustra-
ting the use of the list processing facilities and, as a result,
frequently sacrifice efficient programming techniques for
the sake of clarity. No references are made to particular
implementations of PL/I, but information on the F-level
list-processing facilities appears in /BM System/360:

PL/I (F) Language Reference Manual (GC28-8201), and
in IBM System/360 Operating System: PL/I (F)
Programmer’s Guide (GC28-6594).

Chapter 1. Introduction

1A. ADDRESSING STORAGE

A computer generally uses a serial addressing scheme,
which permits a series of instructions to be placed in suc-
cessive storage locations. Similarly, because the data pro-
cessed by a program is also stored in core, the serial struc-
ture of core storage is usually imposed upon collections of
data items that are organized in tabular form. Successive
data items are then obtained through simple address incre-
mentation.

But the simplicity of incremental addressing, as applied
to data collections, becomes a disadvantage when the
arrangement of data items within a collection must vary
during the course of program execution. Such variation
in data organization frequently occurs in non-numeric
applications, and produces two major problems: the data
movement problem, which is concerned with inefficiencies
in program running time caused by extensive rearrange-
ments of data, and the storage allocation problem, which
is caused by excessive allocation of storage in anticipation
of maximum data requirements. The following discus-
sions show how both problems have led to the develop-
ment of list-processing facilities.

1B. DATA MOVEMENT

Many computer applications require a collection of data
items to be arranged in a specific order before processing
may proceed. Such ordeting permits faster retrieval of the
items than is normally possible with a serial search through
the unordered collection. The ordering process itself,

ARRAY:
A06

c81

D26

E98

Figure 1B-1, Array before insertion of data item

however, frequently becomes time consuming, particularly
when conventional sorting methods are used. An exorbi-
tant inefficiency in processing time may result when sev-
eral different orderings of the same items cccur during the
running of a program.

The amount of data that is moved to obtain the desired
reorderings determines the degree of inefficiency. As an
example, consider the representation of an array (Figure
1B-1) which contains four data items arranged in ascending
sequence. Each item is a string of three characters, and a
blank item specifies an available position in the array.
Figure 1B-2 shows the array after the character string
‘B72" has been inserted in proper sequence. Three items
have been moved to provide room for the string inserted
in the second array position. If the array were larger and
the items longer, inserting an item could require consider-
able movement of data.

One way of avoiding excessive data movement is to per-
mit collected data items to occupy non-contiguous storage
locations. A method for such organization is suggested by
branch instructions, which allow computer control to
transfer to non-consecutive locations (as required by sub-
routines and program loops). The location to which con-
trol is transferred is specified within the branch instruction
itself. A similar use of storage addresses is possible with
data items. Each item in an ordered collection can have
attached to it the address of the next item in sequence;
then logically successive items need not occupy physically
contiguous storage locations.

ARRAY.
A06
B72
~
C81
ITEMS MOVED
D26 > DOWN

E98

Figure 1B-2. Array after insertion of data item

Schematic representations of storage addresses are used
in this manual. A rectangle with a protruding arrow repve-
sents an address element (Figure 1B-3). The arrow indi-
cates that the rectangle contains an address that “points
to” another location. When the actual address is not im-
portant to the discussion, it does not appear within the
rectangle. An address element that specifies no address
(that is, a null address) uses no arrow but contains the
word NULL within the rectangle (Figure 1B4). Figure
1B-5 shows an address element attached to a data item,
and similar use of a null address element appears in Figure
1B-6. These diagrams provide a means for representing a
collection of non-contiguous data items.

Consider Figure 1B-7, which uses an address element at
the top to point to the first data item in a non-contiguous
collection. The first data item, in turn, uses an attached
address to point to the second data item in the collection.
This process continues until all items are linked. The null
address attached to the last item indicates the end of the
collection.

Figure 1B-3. An address element

A06 am—

Figure 1B-5. An address element attached to a data item

NULL

Figure 1B-4. A NULL address element

A06 NULL

Figure 1B-6. A NULL address element attached to a data item

LIST:

A06

— c81

—> D26

i
‘—’1 E98 NULL

Figure 1B-7. List before insertion of data item

The resulting organization shown in Figure 1B-7 forms
a list, which, for the purposes of this manual, is defined to
be a collection of non-contiguous data items linked in any
desired order by means of attached address elements.
Note that since each data item in a list has an attached
address element, two data items cannot be physically con-
tiguous. An address element, however, can be contiguous
to the data item toward which it points. In general, how-
ever, an address element is Incated remotely from the
data item toward which it points.

Figure 1B-§ demonstrates how address manipulation
permits a data item to be inserted into a list. Before in-
sertion, the list contains four data it.ms which are linked
in ascending sequence (Figure 1B-7). After insertion, the
items remain in sequence, but the inserted item ‘B72’
occupies the second position in the lJist. Insertion occurs
by assigning the address of ‘B72’ to the address element
attached to ‘A06’ and, in turn, by assigning the address cf
‘C81’ to the address element attached to ‘B72°. Manipu-
lating addresses in this manner permits list items to re-
main at their original locations and eliminates the process-
ing time that would normally be spent in moving the
items.

LIST: -——-‘

— ADG6 8

B72

—= c81

L D26

. E98 NULL

Figure 1B-8. List after insertion of data item

1C. STORAGE ALLOCATION

In many applications, the amount of storage allocated for
an array is based on the maximum amount of data that
might be assigned to the array. Should only a portion of

the array be needed during a particular run of the program,

the excess storage reserved for the array will remain un-
used. Permitting storage to lie dormant in this manner
frequently reduces the effective storage utilization of the
entire program.

A major advantage of the list organization shown in
Figure 1B-8 is that a list requires only the storage it is
actually using at any given moment and does not have to
reserve additional storage in anticipation of maximum
requirements. When a data item is inserted into a list,
only then is the storage for the item linked to the list;
otherwise, the storage is free to be used elsewhere in the
program. Similarly, when an item is deleted from a list,
the storage occupied by the item need not remain linked
to the list: it can be linked to another list or held in a
storage pool for further use.

Sharing of storage among lists is conveniently con-
trolled through a special list that links all storage not cur-
rently in use. Consider Figure 1C-1, which contains two
lists. The firstdist links four data items, and the second

LIST-

FREE:

A0S
L c81
D26 NULL
|
{
o €08 NULL

Figure 1C-1 Data list and free-storage list before insertion of new data item

LIST: FREE:

LIST: FREE:

o o 1
L]

[o:3]

D26 NULL

E98 NULL

Frgure 1C-2 Data st and tree-storgge st after insertion of new data item

list contains free storage for three list components. Inser-
tion of a data item into the first list requires storage to be
linked to the list. This storage is obtained from the free-
storage list, as shown in Figure 1C-2 where the item ‘B72’
is inserted in proper sequence into the first list. After in-
sertion, the data list links five items instead of four, and
the free-storage list contains storage for two list compo-
nents instead of three.

Deletion of an item from the data list causes the asso-
ciated storage component to be linked to the free-storage
list. Figure 1C-3, for example, shows how the third item
is deleted from the data list and how the storage for the
item is linked to the free-storage list.

This use of a list as a storage pool also {rees the pro-
grammer from having to know precisely how long each
list in a program may become. Such freedom frequently
simplifies the design of many computer applications that
have unpredictable or varying storage requirements.

1D. THE USES OF LISTS

The type of list organization presented in the previous dis-
cussions possesses a simple linear ordering: each data item
except the first has one predecessor, and each data item
except the last has one successor. But PL/I does not re-
strict list organizations to linear orderings; it also allows
multidimensional orderings, which are obtained by attach-
ing an arbitrary number of address elements (instead of
one) to each data item in a list. Additional address ele-

4

AO6 872 '-I
f
Lo
D26 NULL
- E98 NULL
Figure 1C-3. Data hat and frec-storage hist atter deletion of third data item

ments permit a list item to be linked to other iist items in
many diffzrent directions, so that the ordering within the
list can be made to reflect the multidimensional ordering
associated with spatial configurations. With additional
addresses, it is also possible to link lists in a backward as
well as a forward direction, and to form circular and inter-
twined lists. It is even possible for lists themselves to be
linked together to form higher-level lists.

The term list processing applies to those programming
activities concerned with the construction. management,
and application of list organizations. The computer appli-
cations that benefit most from list-processing techniques
generally process large collections of data items that are
interrelated in a logically complex manner. With lists, it
is possible to model the logical interrelationships found in
structured data and to avoid the organizational distortions
and storage inflexibilities frequently associated with
arrays.

List processing simplifies the design of computer appli-
cations in many areas, particularly those areas concerned
with the non-numeric aspects of computer programming,
such as information storage and retrieval, system simula-
tion, engineering design, computer-software production,
text editing, and artificial intelligence. These application
areas are concerned more with the logical structure and
organization of data and less with numeric computation.
The following discussions briefly describe the use of list-
processing techniques in each area.

1D1. Information Storage and Retrieval

This application area is concerned with computer tech-
niques for storing and searching large quantities of infor-
mation related to specific fields of interest, such as busi-
ness records, medical histories, government reports,
statistical indexes, and library catalogs. List processing
provides efficient methods for inserting, deleting, up-
dating, and retrieving data in such collections, and allows
many different orderings and cross references of the
stored items to be maintained without unnecessary data
duplication. For example, with list processing, three
separate copies of a library card catalog, arranged by title,
author, and subject, can be replaced by a single copy
within the computer. Attaching three address elements
to the data content of each card permits simultaneous
linking of each card to separate lists for title, author, and
subject.

1D2. System Simulation

A system, in general terms, is any collection of elements
(animate or inanimate) that are united to accomplish a
specific objective. Examples include traffic control sys-
tems, manufacturing plants, work routing systems, bio-
logical organisms, air defense systems, communication
networks, business enterprises, postal systems, and elec-
tronic computers. Many large-scale systems cannot be

studied analytically because their structural complexities
defy adequate mathematical description. But such systems
can be modeled or simulated through computer programs
that operate in a time-sequential manner similar to the
systems themselves.

Simulation programs maintain large collections of data
items that describe the dynamic state of the system at
particular intervals of time. For example, simulation of a
traffic control system might require current information
about the state of all traffic lights, the block-by-block
traffic on each avenue, and the locations of major traffic
jams caused by accidents or road repair. List processing
permits such information to be organized in list form and
allows the lists to expand and contract dynamically during
the running of the simulation.

1D3. Engineering Design

Engineering structures, such as automobiles, airplanes,
missiles, machines, bridges, highways, radios, television
sets, space satellites, and electronic computers, progress
through many design stages before an acceptable prototype
is achieved. Blueprints generally record the design criteria
at each stage and, therefore, must be redrawn each time
the design changes. The number of blueprints involved in
many engineering projects can easily run into the thou-
sands and, as a result, produce a serious problem in infor-
mation storage and retrieval.

List processing provides a convenient way of storing

blueprint information in machine-processable form so that
it is easily modified and kept up to date. But the com-
puting flexibilities associated with list processing also allow
graphic display devices and automatic drafting boards to
be incorporated into the design process itself. The cur-
rent design of an engineering structure, for example, can
be shown on the scope of a graphic display device where

it is quickly modified by the design engineer who uses a
light pen to indicate desired changes. When reflected in
the current design, such changes can then be used to gen-
erate a completely new blueprint on an automatic drafting
board.

Graphic display devices also permit functional illustra-
tions of engineering structures to be projected on a scope,
so that the design engineer can see the structures in opera-
tion. As an example, the engineer can display a set of
machine gears on a scope and then make the gears rotate
under program control. In this way, he can observe how
the gear teeth mesh and, if necessary, specify changes
with a light pen.

Projecting and modifying engineering designs through
graphic display devices requires flexible methods for repre-
senting the design within the computer. Such methods
are available through list-processing techniques. which not
only assist in organizing the logical structure of the
designs but also maintain efficient control over the varying
storage requirements generated by design changes.

1D4. Computer-Software Production

Software systems, such as operating systems, compilers,
assemblers, generators, subroutine libraries, and industrial
application packages, frequently exist in multiple versions
which are designed to run on different machine configura-
tions of varying sizes and compositions. Many experi-
mental techniques are continually being developed to
automate the production of such software and to elimi-
nate much of the redundant effort associated with sepa-
rate implementations.

One technique that has made significant contributions
to the automation of software production uses specifica-
tion languages (meta-syntactic languages) to describe the
organizational structure of software systems and the hard-
ware on which they function. Software and hardware
descriptions made in such languages serve as input to
special compilers (meta-compilers), which generate the
desired version of a software system for a specific machine
configuration.

A specification language designed for software produc-
tion generally possesses a free format, is open ended so
that it can incorporate additional language features, and
usually employs recursive techniques which permit ex-
tremely compact descriptions of software and hardware
characteristics. The descriptions produced in such a lan-
guage reflect the organizational complexities of the soft-
ware and hardware being described. The compilers that

process these descriptions perform intricate analyses to
generate the desired version of a software system.

These meta-compilers often use special list organiza-
tions, called push-down lists or stacks, to simplify the
scanning and analysis of source descriptions made in
specification languages. The compilers also rely on list-
processing methods to maintain efficient control over
storage requirements, which vary widely, depending upon
the complexity of the source description under analysis.

1D5. Text Editing

The preparation of printed material in the publishing in-
dustry frequently involves many alterations to the original
text before final copy is obtained. These changes affect
copy preparation at all stages; source text undergoes re-
peated typing, and even after type has been set, modifica-
tions are still performed, often at great expense. Cheaper,
quicker, and more flexible methods of producing printed
text, however, are becoming available with the increased
use of computers in the printing industry.

Once source copy is recorded in machine processable
form (on magnetic tape, for example), it can be modified
under program control. Text-editing programs can be
used to insert, delete, and reformat copy, and an output
tape can also be generated to control the operation of
automatic typesetting devices, such as linotype and photo-
composition machines.

The functions performed by text-editing programs gen-
erally require extensive movement of data within the
computer. Characters, words, sentences, lines, paragraphs,
pages, chapters, and sections are inserted, deleted, modi-
fied, or shifted to produce the desired text, and the vari-
able lengths of these textual groupings also affect the
efficient use of storage. By employing list-processing tech-
niques, text-editing programs can minimize data move-
ment and maintain control over storage efficiency.

1D6. Artificial Intelligence

This application area deals with computer-related tech-
niques for supplementing human intelligence. It attempts
to simulate the cognitive processes involved in such activi-
ties as game playing (chess, checkers), theorem proving
(geometry, algebra, symbolic logic), and pattern recogni-
tion (perception, discrimination, induction, hypothesis
formulation).

These activities produce extremely complex problems
which are usually solved in stages. Each stage, however,
often generates a huge set of subproblems, all of which
cannot be examined (even on a computer) in a reasonably
short period of time. In a game of chess, for example, the
possible lines of play from a given chess position can
easily involve trillions of moves. But the combinations of
winning moves continually change as new positions arise

at each stage of play. As a result, exhaustive analysis of
all possible moves in a game of chess is not generally pos-
sible for a human or a computer.

Selecting proper subproblems without analyzing all
possibilities at each stage of problem solution is a major
concern of artificial intelligence. Short cuts involving
classification techniques or heuristic methods are needed
to discriminate among subproblems, and the discovery of
such short cuts forms the main research activity of arti-
ficial intelligence.

Most computer programs designed to mechanize prob-
lem-solving behavior must contend with varying numbers
of subproblems and unpredictable variations in problem
structure. This type of variability calls for flexible meth-
ods of managing computer storage and organizing the
structure of a problem. Such methods are available
through list-processing techniques.

1E. PURPOSE OF THIS MANUAL

Detailed development of the application areas described
in the previous discussions lies beyond the scope of this
manual. As indicated, however, the various applications
possess common characteristics that permit efficient vse
of list-processing methods. The purpose of this manual,
then, is to serve as an introduction to the basic facilities
for list-processing in PL/I, and to show how these facilities
form the basis of list-processing methods. The following
chapters employ variations of an elementary sort program
to show how lists are created and processed.

1F. SUMMARY OF CHAPTER 1

A. A list is a collection of non-contiguous data items
linked in any desired order by means of attached ad-
dress elements.

B. The term list processing refers to that area of program-
ming concerned with the construction, manageinent,
and application of lists.

C. The use of lists can produce improvements in program
execution time by avoiding unnecessary data move-
ment.

D. The use of lists can also improve overall use of storage
by maintaining a common storage pool, from which
storage is obtained when needed and to which storage
is returned when not needed.

E. The computer applications that can benefit most from
list-processing techniques generally process large col-
lections of data items that are interrelated in a logically
complex manner.

Chapter 2. The Organization of Data in PL/I

Proper understanding of the list-processing facilities in
PL/I requires a basic knowledge of the internal data orga-
nizations provided by PL/I, namely, element items, arrays,
structures, and arrays of structures. This chapter presents
brief descriptions and simple examples of these organiza-
tions. The discussion is restricted to those aspects of in-
ternal data organization that are relevant to the list-
processing facilities of PL/I.

List-processing deals primarily with the organization
and manipulation of data and data addresses within the
internal storage facilities of a computer. Although it pro-
vides more flexible methods of handling data than are
available solely with element items, arrays, structures, and
arrays of structures, list-processing does not replace these
data organizations; it builds from them.

2A. ELEMENT ITEMS

PL/I statements refer to data items either individually as
single data elements, or collectively as arrays and struc-
tures. Single data elements, called element items, have
arithmetic, string, or label attributes and appear in PL/I

expressions either as constants or as variables. The follow-

ing examples show some types of element constants that
may appear in PL/I programs:

Element

Constant Data Type

751.62 Arithmetic: FIXED DECIMAL (5,2)
11011.101B Arithmetic: FIXED BINARY (8,3)
43.8E6 Arithmetic: FLOAT DECIMAL (3)

111.101E10B Arithmetic: FLOAT BINARY (6)

‘A1B2C3’ String: CHARACTER (6)

‘10110111'B String: BIT (8)

#3INPUT: Label: (the identifier to the left of a colon)

The DECLARE statement associates attributes with
element variables as shown in the following examples:

DECLARE COST FIXED DECIMAL (5,2);

DECLARE FREQUENCY FLOAT BINARY (21);
DECLARE TITLE CHARACTER (25):
DECLARE MASK BIT (6):

DECLARE SWITCH LABEL.:

In many applications, data items occur in collections
such as tables and records. To simplify the processing of
such collections, PL/I provides facilities that allow data
items to be organized and manipulated in arruy and struc-
ture form.

2B. ARRAYS

When all the element items in a collection have the same
attributes, the items can be arranged in a multidimensional,
tabular form, called an array. Examples of PL/I array
declarations, with associated serial and spatial representa-
tions, appear in Figure 2B-1. The serial representations
indicate how arrays are stored within the computer; note
that the rightmost subscript values vary most quickly when
array elements are referred to in succession.

For scrial representation, array dimensions may be inter-
preted as grouping levels (indicated by the braces in Figure
2B-1). With this interpretation, a one-dimensional array is
an array of element items; a two-dimensional array is an
array of subarrays of element items; a three-dimensional
array is an array of subarrays of subarrays of element
items; and so on. The number of element items or sub-
arrays at a given level is detcrmined by the bounds of the
dimension for that level. The second declaration in Figure
2B-1, for example, defines B as an array of three subarrays,
each of which contains two fixed-point binary values as
element items. This array has two dimensions. The lower
bound of the first dimension is 1; the upper bound is 3.
The second dimension has 1 as the lower bound and 2 as
the upper bound.

Spatial representations of arrays occur in geometrical
applications and apply to arrays with one, two, or three
dimensions. These representations frequently simplify the
definition and analysis of physicai problems. Except for
one-dimensional arrays, however, spatial representations
have no direct representation within the serial storage of a
computer.

8

[ARRAY
[DECLARATION

SERIAL

REPRESENTATION

SPATIAL

REPRESENTATION

DECLARE A(2)
FIXED DECIMAL14);

A1)

A(2)

A1)

A(2)

(ONE-DIMENSIONAL)

DECLARE B(3,2)
FIXED BINARY(8);

—-

N

N =

A,ﬁ/\

B(1,1)

B(1,2)

B(2,1)

B(2,2)

B(3,1)

B(3,2)

B(1,1)

B(1,2)

B(2,1)

B(2,2)

B(3,1)

B(3,2)

(TWO-DIMENSIONAL)

DECLARE C(2,3,2)
CHARACTERI(1);

N = N =

-y

N = N

-

N

w
e Lt Savt r-l:_‘/-/\/—/\

C(1,1,1)

c(1,1,2)

C(1,2,1)

c(1,2,2)

C(1,3.1)

€211, €(2,1.2)

c(1,1,1)

c(1,1,2)

C(1,3,2)

C(1,2,1)

Cc(1,2,2)

c(21,1)

C(2,1,2)

C(1,3,1)

C(1,3,2)

C(2,2,1)

C(2,2,2)

C(2,3,1)

C(2,3,2)

(THREE-DIMENSIONAL)

DECLARE D(2,2,2,2)
BIT(8);

f—/;\
N -
ST

-

Y o
N
——
- N -
o s

N

2

N
-
[S TN

4
r
N
TN -

D(1,1,1,1

D(1,1,1,2

D(1,1,21

D(1,1,2,2)

D(1,2,1,1

0(1,2,1,2)

D(1,2,2,1)

D(1,2,2.2

D(2,1,1,1

(2,112

D(2,1,2,1)

D(2,1,2,2

D(2,2,1,1

D(2,2,1,2

0(2,2,2,1

D(2,2,2,2

Figure 2B-1. Array declarations with corresponding serial and spatial representations

2C. STRUCTURES

Structures use a system of level numbers to arrange ele-
ment items in hierarchical fashion. Unlike array elements,
however, the elements of a structure need not have the
same attributes.

An example of a PL/I structure declaration appears in
Figure 2C-1. The diagram in Figure 2C-2 represents the

DECLARE
1 TIME_CARD,
2 NAME,
3 LAST CHARACTER(15),
3 FIRST_INITIAL CHARACTERI(1),
3 MIDDLE_INITIAL CHARACTERI(1),
2 MAN# CHARACTERI(6),
DEPT# CHARACTERI(4),
2 DATE,
3 MONTH FIXED DECIMAL(2),
3 DAY FIXED DECIMAL(2),
3 YEAR FIXED DECIMAL (2),
2 HOURSI(5) FIXED DECIMALI3,1);

N

Figure 2C-1. Structure declaration for TIME_CARD

relative storage requirements for the 13 element items of
the structure. A structure may contain other structures
as well as element items. In Figure 2C-2, the major struc-
ture TIME _CARD contains the minor structures NAME
and DATE. The appearance of the array HOURS in this
example also shows that a structure may contain arrays.
A representation of the grouping within this structure is
given in Figure 2C-3.

' e —J

FIHST T AL

NANE

MLLLE NeTiA

MANZ MAN =
DERPT = DEPT =

RGN T H

YE AR
HOURS
My,

NI RIFTRINET

HUURS Q)

\ ML G

Figure 2C-2. Relative storage requirements for TIME_CARD

/ NAME

MAN NOIDEPT NO

DATE HOURS

First Middie
Last Initial Initial

Month| Day | Year |Hours(1) |Hours(2) [Hours(3) |Hours(4) |Hours(5)

s

Figure 2C-3. A time card

2D. ARRAYS OF STRUCTURES

PL/I allows a dimension attribute to appear with a struc-
ture name in a DECLARE statement. This type of decla-
ration defines an array of structures, which is an array that
contains structures with identical names and levels.

Consider the DECLARE statement in Figure 2D-1.
This declaration defines an array of structures that con-
tains thiee array members (see Figure 21)-2). Each array
member is a structure that contains four element itcms
(the high, low, and mean temperature readings for a speci-
fied date).

DECLARE

1 TEMF{3),
2 DATE CHARAC TER{6),
2 HIGH FIXED DECIMA! (4,1},
2 LCw FIXED DECIMAL(4,1),
2 MEAN FIXED DECIMAL(4,1),

Figure 2D 1. Declaration of an array of structures

—

CESR—

DATE(1)

(
|
|

HIGH(1)
TEMP(1)
w Low(1)

IMEANH)

5 —
DATE(2) .I

' IHIGHQ)
TEMP

EMP
TEMP(2) \l LOW(2)

MEAN(2)

R

[DATE(3)

; HIGH(3)
TEMP(3) '\

| LOW(3)

| Cmeanca

Figure 2D-2. Relative storage requirements for an aray of structures

2E. ADVANTAGES OF ARRAYS AND STRUCTURES

The array and structure facilities of PL/I allow the data
collections that occur in many different types of applica-
tions to be represented in a direct, natural way. For ex-
ample, tax rates, wage scales, time schedules, inventory
counts, physical measurements, statistical observations,
frequency distributions, and function values are often re-
corded and used (even independently of computer appli-
cations) in formats that closely resenble the array and
structure organizations of PL/I. By permitting the natural
organizations of data items to be retained in computer
applications, the array and structure facilities of PL/I tend

10

to emphasize the application-oriented, rather than the
machine-oriented, aspects of computer programming.
This emphasis on the application generally produces great-
er ease and clarity of programming.

But arrays and structures do more than simplify the
writing of programs; they also affect the overall cfficiency
of programs. With these organizations, it is possible to re-
duce program storage and to improve program execution
time For instance, the subscripting and looping facilities
of arrays often produce more compact programs by
eliminating redundant statements. Similarly, structures
avoid time-consuming data scans by providing direct
access to the subficlds of data strings.

2E1. Reducing Program Size

The array facilities of PL/1 improve program efficiency by
allowing compact program loops to replace repeated se-
quences of statements. The significance of the resulting
reduction in program size becomes evident when attempts
are made to program without arrays, that is, solely with
element items.

As an illustration, consider the sort procedure SORT]1
in Figure 2E1-1. This program obtains five successive
records from the standard system input file (SYSIN),
sorts the five records into ascending order on the first
three characters of each record, and puts the five sorted
records into the standard system output file (SYSPRINT).
These steps are then repeated until all input records have
been processed. (To'simplify the discussion, the input file
is assumed to contain a multiple of five records.)

A sampie printout produced by SORT1 appears in
Figure 2E1-2; a flowchart of the program is shown in
Figure 2E1-3.

An important feature of SORT] is that it does not use
arrays. Therefore, each of the five records involved in the
sort has a distinct name: CARD1, CARD2, CARD3,
CARD4, and CARDS. Treating the records as individual
elements and not as members of an array increases the
lengths of the DECLARE, GET, and PUT statements in
SORT1 and forces the sort to use four separate [F state-
ments for successive comparisons of the five records.

Figure 2E1-4 illustrates successive passes of the sort
technique used in SORT1. This technique is a type of
transposition sort. (Note that the efficiency of this tech-
nique compared to other sort techniques is not under con-
sideration; the present discussion is preliminary to demon-
stration of the advantages of arrays.)

Figure 2E1-5 shows how sorting with an array can re-
sult in a shorter program. SORT2 produces the same
results as SORTI of Figure 2E1-1. instead of the five elc-
ment iterns CARD1, CARD2, CARD3, CARD4, and
CARDS, however, SORT?2 uses a five-member array named
CARD. The array name reduces the lengths of the DE-
CL.ARY, GET, and PUT statements. (For exaraple, the
statement GET EDIT (CARD) (A(80)); causes five cards

9

SORT1:

F2E1_1¢.

PROCFDURE JPTIUNS (MAIN)

DECLARF
(CARDLl, CARD2, CARD3, CARD&, CARDS,
SAVE) CHAR (B0):
ON FENDFILE (SYSIN) RFGING
CLUSC FILE (SYSPRINT);
6O TO OVFR;

FND
INPUT ¢
GET
ENIT (CAKDLl, CARD?, CARD3, CAKD4,
CARDS) (A(80))3
PUT
SKIP (2) LIST (*INPUT TN SORTL1:*):
PUT
EDIT
(CARLLy CARDZy CARD3I, CARN4, CARDS)
(SKIPy A(BRO));
SNRT:
K = O3
[+
SURSTR (CARDLy 14 3)>SURSTRICARD241,43)
THFM
nu;
k = li SAVE = CARDl:; CARDY1 = CARD2;
CARL?2 = SAVLS
FNDG
[F
SUASTRICARND2 414 3)1>SULSTRICARDI 14 3)
THEN
LU
K = 13 SAVF = CARN2: CARD?2 = CARD3;
CARD3 = SAVF;S
FND;
IF
SURBSTRICARD 3,1, 3)>SURSTRICARDG,1,43)
THEN
DOS
K = 13 SAVF = CARD3; CARD3 = CARUG;
CARDG = SAVE:
END
If
SURSTR(CARDSG 4 13 3)D>SUHRSTRICARDYS 1,4 ¥)
THEN
DI
K = 13 SAVE = CARD&4; CARD& = CARDSS
CARDY = SAVF;
END
| F
K =1
THEN
GO TN
SORTS
PUT
SKIP (2) LIST (*OUTPUT FROM SORT1:');
PUT
EDIT
(CARD1y CARD2, CARD3, CARD4, CARDS)
(SKIP, A(BO));
GO TO
INPUT
UVER:
END
SORT1;

Figure 2E1-1. Sorting without an array

INPUT TO SORT1:

1 BT T
A96_SECUND===-===-==ccoccmcmmmmmomemeeo
Al4_FIRST——mmmmm e
W17 _FUURTH= === == mm o e mcmmmomee o
FO2_THIRD===-=-===mccccmmmcmemom oo

OUTPUT FRUM SORT1L:

Y I LT B e ———
896_SECUND===-=—==- == mmm e
EO2_THIRD======= == mm e e o
W17 _FOURTH= == mm e e e e e o
BT T L T T —

INPUT TU SORTI:

AL _FIRST = m o e e e e
A96_SECOND----=-=====-—c—cmooemeeem o
E02_THIRD===-====—om—omceocmemceo oo
W17 _FUURTH= === = e oo e
L U L (R e e

OUTPUT FRUM SORTL:

Al4_FIRST oo oo oo oo cmmm e
A96_SECONU-=-===-===mmmmcmcmmmm e -—
FO2_THIRD=======— == - = e mmmmmmemme e
WL7_FUOURTH=—— === e mmmemmmm e e mmm e
LTL_FIF T m o m oo m e e oo e

INPUT TO SORT1:

W17 _FUURTH= == === mmm e oo
A 1 L R
A96_SECONU==-=-==--===-==--————c-oo—-
A14_FIRST==mmmmmmmmmm oo
FO2_THIRD===========—m=mmmm—comme oo

NUTPUT FRUM SORT1:

Al4_FIRSTecmmcmc e e cecm e c e o - -
A6 _SECOND---=----=-=---m-ccemcccm e m o
FO2_THIRU=-=-=-~==----cmeemccmc e mcmc e
wWl7_FUOURTH=--——cmmmeccmmemcmme e e e e
17l _FlIFTH-—emmm e e e ccm e e e e e e -

Figure 2E1-2. Sample printout produced by SORT1

11

14!

START

KEY1 >KEY2

K=1

SAVE = CARD1

SAVE = CARD2

SAVE = CARD3

'

'

'

SAVE = CARD4

'

CARD1 = CARD2

CARD2 = CARD3

CARD3 = CARD4

CARD4 = CARDS

!

'

'

'

CARD2 = SAVE

CARD3 =SAVE

CARD4 = SAVE

CARDS = SAVE

|

Figure 2E1-3. Flowchart for procedure SORT1

C

L

C

| |

YES

PRINT
SORTED
CARDS

NOTE

KEYi=SUBSTR(CARDIi,1,3)
(wherei=1.2,.. 5)

to be read). The array name also allows a single IF state- SOKT2:

ment within a DO loop to replace the four IF statements :igé;;:mt UPTIONS (MATN);
used in SORT1 for comparing successive records. DECLARC
Besides being a shorter program, SORT?2 is more easily (CARD(5)s SAVE) CHARACTER(#0)3
modified than SORT1. A change in the number of records ‘é'fu‘;;‘“,‘ :t: : E;g;t:.ﬁ,?‘ -
to be sorted by SORT2 requires adjustments only in the G0 TN OVER;
size of the array CARD and in the upper limit of the DO INPUT £ TND3
statement. Corresponding modifications in SORT1 would GET
require changes in the number of record names used by EDIT (CARD) (A(8G));
the DECLARE, GET, and PUT statements, as well as a SORT: K = 03

change in the number of IF statemenfs used for comparing comraRe:

successive records. DN I = 1 TO 4;

. . 1F
The flowchart for SORT2 appears in Figure 2E1-6. SUMSTRICARDIT) o143} > SUBSTRICA1,
(I « 1), 1,4 3)
THEN
bu;
ORDER BEFORE ORDER BEFORE ORDER BEFORE "SA;O“ :"“fcc’“‘””" cariitl) =
FIRST PASS SECOND PASS THIRD PASS END . (1 1): CARDII + 1) = SAve;
/ / tND
zn (4\96 Al4 LOMPARE ;
FIFTH SECOND FIRST I
K =1
THEN
/ 6N TN
A96 (AM (Ags S0RT;
SECOND FIRST SECOND PUT
SKIP (2) LIST (*CUTPUT FROM SORTV2:v);
PuT
7 SKIP (2) EOIT (CARM) (A (RO), SXIDP);
Al4 rwn ﬁoz PUT
FIRST FOURTH THIRD SKIP;
Ge TN
INPUT;
UVER:
w17 €02 (wn END
FOURTH THIRD FOURTH SoRT2:
OUTPUT FROM SORT2:
ALA_FIRST: 1
€02 L/zn (zn :::ﬁ:ﬁgg 3
THIRD FIFTH FIFTH W1T_FOURTH- o
ITL_FI1FTH- S
OQUTPUT FRON SORT2:
. . . Ala_FIRST 1
Figure 2E14. Example of sorting by successive interchanges A%6_ SECOND—— 2
€02_THIRD- 3
WIT_FOURT W 4
ITL1_FI1FTH- S

OUTPUT FROR SORT2:

AL4_FIRSY
A96_SECOND—

€02_THIRD——
W17_POURTH—
ITA_FIFTH-

Vo wNm-

Figure 2E1-5. Sorting with an array

13

START

GET 5
CARDS

NO

YES

YES TN\

1>4

YES

K=1

SAVE = CARDIl)

'

CARDI(I) = CARD(I+1)

'

CARDI(I+1) = SAVE

.

I =1+

Figure 2E1-6. Flowchart for procedure SORT2

14

NO

YES

NOTE:

KEY(l) = SUBSTR(CARD(I),1,3)

PRINT
SORTED
CARDS

wherel =1,2,....,4)

C

2E2. Avoiding Data Scanning

An improvement can be made to the SORT2 program
of Figure 2E1-5 by not using the built-in function
SUBSTR, which obtains the first three characters of each
record. Although SUBSTR is a useful function for ob-
taining a portion of a string, the function is time-consum-
ing and should be avoided when reduction in program
execution time is desired.

One way of removing SUBSTR from the SORT?2 pro-
gram is to declare the explicit structure of each element in
the array CARD. Then the first three characters of each
element can be referred to directly by name rather than
indirectly through SUBSTR.

The SORT3 program in Figure 2E2-1 contains explicit
structure declarations for the members of CARD. The
first three characters in each member of CARD are named
KEY and the remaining 77 are named DATA. This decla-
ration of an array of structures permits SORT3 to avoid
references to the built-in function SUBSTR and, as a re-
sult, produces a shorter execution time for SORT3 than
for SORT2. In general, explicit declarations improve data-
access time and thereby provide faster execution time.

2F. SUMMARY OF CHAPTER 2

A. PL/I statements refer to data items either individually
as element items or collectively as arrays, structures,
or arrays of structures.

B. Array and structure facilities permit the natural orga-
nizations of data items to be retained, and thus tend to
emphasize the application-oriented rather than the
machine-oriented aspects of computer programming.

C. The use of arrays can shorten programs by eliminating
redundant statements.

D. The use of structures can avoid time-consuming data
scans by providing direct access to the subfields of
data strings.

SORT3:
F2€2_1:
PROCEDURE UPTIONS (MAIN);
DECLARE
1 CARD(S),
2 (KEY CHARACTERI(3),
DATA CHARACTER(T77)),
1 SAVE,
2 (KEY CHARACTER(3),
DATA CHARACTER(77));
ON ENDFILE (SYSIN) BFGIN;
CLOSE FILE (SYSPRINT);
GO TU OVER;
END;
INPUT:
GET
EDIT (CARD)(A(3), A(T7));
SORT:
K = 03
COMPARE:
oU
I =170 4;
IF
CARD.KEY(I) > CARD. KEY(I + 1)
THEN
[}]'H
K = 13 SAVE = CARDI(I);
CARD(I) = CARD(I + 1);
CARD(I + 1) = SAVE;
END;
END
COMPARE ;
IF
K =1
THEN
GO TO
SORT;
PUT
SKIP (2) LIST (*OUTPUT FROM SORT3:');
QUTPUT:
00
I = 1 7O S;
PUT
SKIP EDIT (CAROD(I))I(A(3), A(TT));
ENO
OUTPUT;
PUT
SKIP(2)*
GO TO
INPUT
UVER:
END
SORT3:
OUTPUT FRON SORTI:
AL4_FIRST 1
A96_SECOND - 2
E02_THIRD- 3
W1T_FOURTH- *
IN_FIFTH- i
OUTPUT FROR SORT3:
Ala_FIRST 1
A96_SECOND 2
E02_THIRD- 3
W1T_FOURT 4
1T_FIFT L
OUTPUT FROM SORTI:
ALA_FIRST: 1
A9 _$ ECOND- 2
E02_THIRO— 3
W1T7_FOURTH- 4
ITN_FIFTH- td

Figure 2E2-1. Sorting with an array of structures

15

Chapter 3. Techniques for Addressing Data

The previous chapter showed how array and structure
organizations permit reductions in program size and im-
provements in data-access time. These efficiencies, how-
ever, are diminished ¢n many programs by the additional
execution time that results from extensive movements of
data within the computer. For example, the three sort
programs SORT1, SORT2, and SORTS3 of the previous
chapter move entire records when interchanges occur.
This practice causes a large amount of data to be moved
and, as a result, produces a slow sort. Execution time is
affected not only by the number of records being sorted
but also by the size of each record. Generally, the less
data that has to be moved, the faster the sort.

This chapter shows how data movement can be reduced
by manipulating the addresses of data items rather than
the items themselves, and also shows how scattered data
items may be organized into collective units without mov-
ing or duplicating the items.

3A. TYPES OF ADDRESSES

A data address, as used in computer programming, speci-
fies a particular storage location within which data can be
stored and from which it can be retrieved. PL/I provides
three major types of data addresses: symbolic, relative,
and absolute. Brief explanations of each type appear in
the following discussions.

3B. SYMBOLIC ADDRESSES

A symbolic address is an identifier that appears in a source
program in place of an actual storage address (which, in
machine language, is generally represented by a numeral).
In PL/I, a symbolic address consists of a sequence of
alphameric and break characters, the first of which must
be alphabetic.

Symbolic addresses free the programmer from having
to keep track of specific storage locations, simplify pro-
gram organization and modification, and allow mnemonic

names (such as TAX, PAYROLL, DATE1, and MASTER _

FILE) to be associated with data items. When a source
program is translated into machine language, the compiler
associates each symbolic address with a specific storage
location. The ability to form such associations distin-
guishes symbolic programming from numeric coding.

16

3C. RELATIVE ADDRESSES

As demonstrated by the SORT1 program of Figure 2E1-1,
programming solely with element items generally results in
large programs, because distinct names are needed for each
item. Organizing element items into arrays, however, re-
duces the number of distinct names in a program, permits
address modification through changes in subscript values,
and usually produces compact programs.

A reference to an item in an array consists of the array
name followed by a subscript expression that specifies the
position of the item in the array. In such a reference, the
array name is a symbolic address, but the subscript ex-
pression is a relative address, because it specifies the loca-
tion of the item relative to the beginning of the array.

Alteration of subscript values provides a restricted form
of address modification that may be used to reduce data
movement during execution of a program. When used for
this purpose, subscript values may be stored in auxilliary
arrays or employed as element links within arrays. Illustra-
tions of these methods are given in paragraphs 3C1 and
3C2.

3C1. The Use of Subscript Values in Auxilliary Arrays

The SORT4 program in Figure 3C1-1 shows how a second
array N may be used to reduce data movement in a sort of
an array of structures named CARD. SORT4 processes
the same input and produces the same results as SORT]1,
SORT?2, and SORTS3 in the preceding chapter. After
assigning input data to the five structures of CARD,
SORT4 then assigns the integers 1 through 5 (in fixed-
point binary form) to the five successive positions of N.
Each element of N is treated as a subscript value that spe-
cifies (points to) one of the structures in CARD (see
Figure 3C1-2).

As SORT4 compares the fields named KEY in succes-
sive structures of CARD, necessary interchanges are per-
formed not on the structures of CARD but on the values
of the corresponding elements of N. Moving the element
values of N, rather than the 80-character structures of
CARD, causes less data to be moved.

At the completion of the sort, the structures of CARD
remain in their original (physical) order, but the element
values of N are rearranged. Taken in sucgession, the re-
arranged values of N specify the sorted structures of
CARD in ascending order on their KEY fields (see Figure
3C1-3).

As indicated in Figure 3C1-4, successive structures in
the sorted array CARD may be referred to by the expres-
sions CARD(N(1)), CARD(N(2)), CARD(N(3)),

9

SORT4: (— SN
F;Cl_l: _ KEY({1) DATAI(1)
PROCEDURE OPTIONS (MAIN); AL m FIETH carom
DECLARE -
N(5) FIXED BINARY(3), N2 e |2 KEV(2)| DATA2 CARDI(2)
1 CARD(S), A96 SECOND
2 (KEY CHARACTER(3), —
DATA CHARACTER(T7))3 v na- | s KEV(3| DATA CARD(3)
ON ENDFILE (SYSIN) BEGIN; ™ FIRST > carp
CLOSE FILE (SYSPRINT); —
GO '!‘D OVER N = | 4 . KEY®W DATAW CARD(4)
END: w17 FOURTH
INPUT ¢ | KEY(5)| DATAI5)
. GET" NS = | 8§ CARDIS)
EDIT(CARD)(A(3), A(TT)) ™02 THIRD
INITIAL: ~ — Y
D0
. I =1 70 53 N(I) = I3 Figure 3C1-2. Auxiliary array and array of structures before sort
END
INITIALS
SORT:
K = 03
COMPARE :
DU
I =1 T0 4;
IF

KEYIN(I)IDKEY(N(I ¢ 1))

'd
THEN KEY (1) DATA() W
1 H N1 =| 3 CARDI(1)
K =13 J = N(I)s N(I) = N(I ¢+ 1)3 n FIFTH
NI(T ¢+ 1) = J3 KEY(2)| DATA(2)
END; Ni2) = 2 CARDI(2)
END A96 SECOND
COMPARE ; KEY(3) DATA(3)
If NOD = 8 CARD(3)
K =, l N A4 FIRST CARD
THEN KEY(4) DATA(4)
GO TO N(4) = 4 CARD(4)
SOR'; w17 FOURTH
PUT KEY(S) DATAI(S)
SKIP (2) LIST ("OUTPUT FROM SORT&4:*); NisI= CARDISI
OUTPUT: €02 THIRD
00 N /
I =1 T0 S;¢
pUT Figure 3C1-3. Auxiliary array and array of structures after sort
SKIP EDIT: (CARDIN(IN))I(A(A)ALTT))
END
OUTPUT;
PUT
SKIP(2)3:
GO 710
INPUT
OVER:
END LOW
SORT4 3
N
CARDIN(1)) = KEY(1) | DATA(1)
. T ey on SoaTa: L CARD(3) CARD(1)
A96_SECOND 2 zZn FIFTH
EO2_THIRD 3
WLT_FOURTH- . KEY(2) [DATA(2)
LTA_FIFTH 3 CARDIN(2)) = CARD(2)
CARD(2) A96 SECOND
CARDIN(3)) = KEY(3) DATA(3)
DuTPur fhon SoRTs: L CARDIS) CARD(3) gcAgD
A96_SECOND 2 A4 FIRST
EO2_THIRD 3
- 3 CARDIN(4)) =
:;:-:?;’:Tﬁ s A CARD(4) KEY(4) DATA(4) CARD(4)
- w17 FOURTH
CARDIN(S)) = KEY(5)| DATA(S)
OUTPUT FROM SORT4 . CARD(1) CARDIS)
AL4_FIRST
n:_secono- i ' E02 THIRD J
‘ E02_THIRD:
W1T_FOURTH- . HIGH
LTI_FIFTH— s
Figure 3C1-1. Using an auxilliary array of subscript values to Figure 3C14. Sequential references to the sorted elements in an
reduce data movement in a sort array of structures

17

CARD(N(4)), and CARD(N(5)). The compactness of
these expressions shows the advantages of using sub-
scripted subscripts when the elements of one array specify
the elements of another array.

Although the structures in CARD appear only once,
SORT4 specifies two orderings of CARD: the original
(physical) order and the sorted (logical) order. With addi-
tional arrays of subscript values, it is possible to obtain
further orderings from a single copy of CARD. This use
of auxilliary arrays, then, not only reduces data movement
but also avoids data duplication. Similar benefits may be
obtained from auxilliary arrays when array elements are
gathered, scattered, inserted, deleted, or merged.

3C2. Using Subscript Values to Link Array Elements

Subscript values can be used also to link (chain) the ele-
ments of an array into an ordered sequence. One way of
doing this appears in the SORTS program of Figure 3C2-1,
which processes the same type of input data and produces
the same type of output as SORT4.

SORTS:
F3c2_1:
PROCEDURE OPTIONS (MAIN);S
DECLARE
1 CHAIN,
2.H FIXED BINARY (3),
2 E(5),
3 CARD,
4 KEY CHARACTER (3),
4 DATA CHARACTER (77),
3 L FIXED BINARY (3)3
ON ENDFILE (SYSIN) BEGIN;
CLOSF FILE (SYSPRINT);
GO TO OVER;
END:
INPUT:
GET
EDIT (CARD) (A(3),A(TT));
INITIAL:
H =13
Li1) = 23 L(2) = 35 L(3) = &3
L(4) = 53 L(S5) = 03
SORT:
K_TEST = 03
IF
KEY(H) > KEY(L(H))
THEN
DO;
K_TEST = 1; J_SAVE = L(H)}
N_SAVE = L(J_SAVE);
L(J_SAVE) = H; L(H) = N_SAVE3
H = J_SAVE;
END;
I = H3
DU
WHILE (L(L(I)) ~= 0)3
1F
KEY (L{I)) > KEY(L(L(I)))
THEN
D03
K_TEST = 13 J_SAVE = L(L(I));
N_SAVE = L(J_SAVE);
L(J_SAVE) = L(1)3
LIL(I)) =N_SAVE;
L{I) = J_SAVE;S
END;

Because the methods used in SORTS are more complex
than those used in the previous program (SORT4), the
need for SORTS might be questioned, particularly since
both programs achieve the same results with equivalent
efficiency. The main purpose for developing SORTS,
however, is not to improve SORT4 but to introduce
(through the already familiar methods of subscripting) the
linkage techniques that underlie all list-processing meth-
ods. As later discussions show, the chained sequence of
CARD structures used by SORTS forms a type of primi-
tive list organization.

SORTS uses an array of structures called CHAIN,
which contains an element item H and an array of struc-
tures E. Each of the five structures in E consists of a
minor structure CARD and an element item L.

The program begins by assigning input data to the five
structures named CARD (which are members of the array
named E), and then assigns the integers 1 through S (in
fixed-point binary form) to the element H and the first
four L elements; the fifth element L receives a value of
Zero.

I = L)
END;
IF
K_TEST = 1
THEN
GO TO
SORT;
PUT
SKIP (2) LIST (*OUTPUT FROM SORTS:?);
PUT

SKIP;
I = H3
(V1]
WHILE (I ~= 0)3;
PUT
SKIP EDIT (CARD (1)) (A(3), ALTT))3
I = L)
END3
PUT
SKIP (2)3
GO TO0
INPUT
OVER:
END
SORTS;

OUTPUT FROM SORTS:

AL&_FIRST:
A96_SECOND
€02_THIRD
¥17_FOURTH—
ITI_FIFTH

VP WN-

OUTPUT FROM SORTS:

ALA_FIRST
A96_SECOND-
EO2_THIRD-
WM17_FOURTH—
ITI_FIFT

Ve WN~

OQUTPUT FROM SORTST

AL&_FIRST:

M
o
~
-
x
-
»
T
AP WN -

W1 T_FOURTH-
ITI_FIFTH-

Figure 3C2-1. Using subscript values as element links to reduce data movement in a sort of an array of structure

18

J

As illustrated in Figure 3C2-2, element H acts as a head-
er for CHAIN; that is, its value (in this case, 1) serves as a
subscript item that specifies (points to) the first CARD
structure (namely, CARD (1)). The value of element L(1),
which is associated with CARD(1), specifies the subscript
of the second CARD structure (namely, CARD (2)), and
so on, until all CARD structures in CHAIN have been
linked. The zero value of the last L element indicates the
end of CHAIN.

SORTS compares the KEY fields of successive CARD
structures. Required interchanges are performed on the
values of the H and L elements rather than on the CARD
structures themselves; as a result, little dat4 is moved dur-
ing the sort. At the completion of the sort, as shown in
Figure 3C2-3, the CARD structures remain in their origi-
nal (physical) order, but the values of the H and L ele-
ments (underlined in the figure) link the structures in
ascending order on their KEY fields.

The steps in Figure 3C24 show how SORTS uses the
following statements to transpose the order of the first
two CARD structures:

J_SAVE = L(H);
N_SAVE = L(J_SAVE);
L(J_SAVE)=H;
L(H)=N_SAVE;
H=J_SAVE;

The variables] _SAVE and N_SAVE (both declared by
default) serve as work variables for saving intermediate re-
sults. Also note that the interchange of the two CARD
structures CARD(1) and CARD(2) requires modification
of three link values: H=2;L(1)=3;and L(2) = 1.

Step 4 of Figure 3C2-4 shows how the CARD struc-
tures are linked after the first interchange has been com-
pleted. At that point in the sort, the CARD structures
occur in the following order:

CARD(2), CARD(1), CARD(3), CARD(4), CARD(5)

This is the logical order in which the CARD structures are
linked; their original physical order remains unchanged.

When an interchange does not involve the first (logi-
cally first) CARD structure in the sorted sequence, header
H is not modified; and, as the steps of Figure 3C2-5 show,
SORTS uses a different set of instructions for the inter-
change:

I1=H;

J_SAVE = L(L(1));
N_SAVE =1(J SAVE);
L(J_SAVE) = L(]);
L(L(1)) = N_SAVE;
L(I)=J SAVE:

CHAIN = (

= 1

) CARD (3)

-{L (3)

_ | CARD (4)
{L ()

CARD (5)
L (5)

CARD (1) =
LD

CARD (2) =
L (2)

4
4)

(5)
(5)

Figure 3C2-2. Array of linked structures before sort

E (1)

E (2)

CHAIN = {

E (3)

E (4)

E (5)

= 3
CARD (1)

L (1)
CARD (2)
r

L (2)

L (3)
CARD (4)

L (&)

={
={

CARD (5)
L (5)

4)
[€D)

5)

Figure 3C2-3. Array of linked structures after sort

271
FIFTH

A96
SECOND

Alb
FIRST

wi7
FOURTH

EO02
THIRD

271
FIFTH

A96
SECOND

All4
FIRST

w17
FOURTH

E02
THIRD

19

Step1 J_SAVE = L(H); N_SAVE = L(J_SAVE);

Step2 L(J_SAVE) =H;

1 H 1 H
KEY(1) | DATA(1) KEY(1) | DATA(1)
CARDI(1) CARD(1)
Z7N1 271
2 L (1) 2 L(1)
Y ATA J_SAVE KEY(2) | DATA(2)
J_SAVE KE -(2) DATA(2) CARDI(2) CARDI(2)
2 A96« 2 > A96
3 L (2) 1 L (2
N_SAVE Y A N_SAVE KEY(3) | DATA(3)
KEY(3) | DATA(3) CARD(3) (CARD(3)
—
3 A14 3 A14
4 L (3) 4 L (3)
KEY(4) | DATA(4) KEY(4) [DATA(4)
CARD(4) CARD(4)
w17 w17
5 L (4) 5 L (4)
KEY(S) | DATA(S) KEY(5) | DATA(S)
CARD(5) CARD(5)
E02 EO02
0 L(5) 0 L(s)
Step3 L(H) = N_SAVE; Step4 H-= J_SAVE;
1 H 2 H
KEY(1) | DATA(1) KEY(1) [DATA(1)
CARD(1) CARD(1)
zZn zZ71
3 L (1) 3 L (1)
J_SAVE KEY (2 DAT J \Y; Y
(2) A(2) CARD(2) _SAVE KEY(2) | DATA(2) CARD(2)
2 A96 2 : A96
1 L(2) 1 L(2)
N_SAVE KEY(3) | DATA(3) N_SAVE KEY(3) | DATA(3)
CARD(3) CARDI(3)
3 Al4 3 A14
4 L (3) 4 L (3)
KEY(4) | DATA(4) (- KEY(4) | DATA(4)
CARD(4) \ CARD(4)
w17 w17
5 L(4) 5 L (4)
KEY(5) | DATA(5) KEY(5) | DATA(5)
CARDI(5) CARD(5)
E02 E02
0 l L(s) 0 I L(5)

Figure 3C24. Perforrhing the first interchange, which involves CARD(1) and CARD(2)

20

5

Step1 |=H;J_SAVE = L(L(1)); N_SAVE = L(J_SAVE);

Step 2 L(J_SAVE) =L (1);

2 | H 2 H
KEY(1) | DATA(1 Y1
il CARD(1) KEY(1) | DATA(1) CARD(1)
4l 271
3 L(1) 3 L(1)
" KEY(2) | DATA(2) CARD(2) ! KEY(2) |DATA) | (arp(2)
2 A96 2 A96
1 L(2) 1 L(2)
1_SAVE KEY(3) | DATA(3) CARD(3) J_SAVE KEY(3) | DATA(3) CARDI(3)
3 Al4 3 Al4
4 L(3) 1 L(3)
N_SAVE KEY(4) | DATA(4) N_SAVE KEY(4) | DATA(4)
CARD(4) CARD(4)
4 w17 4 w17
5 L(4) 5 L(4)
v T KEY(5) | DATA(5
KEY(5) | DATA(S5) CARD(S) EY(5) ®) | caros)
E02 E02
o | °
Step 3 L(L(1)) = N_SAVE; Step4 L(l) = J_SAVE;
2 H 2 H
DATA(1
KEY(1) | DATA(1) CARD(1) KEY(1) A L carD()
Z71 zn
4 L(1) 4 Lo
v Y DATA
| Kev@ [DATA@ | .- [KEY(2) 2 | carp(2)
2 AQ6 2 A96
1 L(2) 3 L(2)
T oAve v B KEY(3) | DATA(3
s KEY(s) | DATA®) [oo J_SAVE EY(3) B3 1 caro@)
3 A14 3 Al4
1 L(3) 1 L(3)
N_SAVE KEY(4) | DATA(4 N_SAVE KEY(4) | DATA(4
(4) (4) CARD(4) S (4) (4) CARDI(4)
4 W17 4 w17
5 L(4) 5 I Li4)
KEY ATA
KEY(5)| DATA®) | . .- (EY(S) | DATAS) | ~arD(s)
E02 E02
o o |

Figure 3C2-5. Performing the second interchange, which involves CARD(1) and CARD(3)

21

[44

LOW

CARD(L(L{LIL(H)N = CARDI(L(L(L(L{3)))) = CARD(LIL(L(2)))) = CARDI(L(L(5))) = CARD(L(4))
HIGH
Figure 3C2-6. Sequential references to the sorted clements in a linked array of structures

CARD(H)

CARDI(L(H)} = CARD(L(3))

CARD(L(L(H)) = CARD(L(L(3))) = CARD(L(2))

CARDI(L(L(L(HN)) = CARDI(L(L(L(3)))) = CARDI(L(L(2))) = CARD(L(5))

CARDI(3)

CARD(2)

CARDI(5)

CARD(4)

CARD(1)

KEY(1)

DATA(1)

zn

0

KEY(2)

DATA(2)

A96

5

KEY(3)

DATA(3)

A14

2

KEY(4)

DATA(4)

w

17
2l

KEY(5)

DATA(5)

E02

L]

H

CARD(1)

L(1)

CARD(2)

L2

CARD(3)

L(3)

CARD(4)

L(4)

CARD(5)

LINK CARDS

— H=11(1)=21L(2)=3,
L{3) =4;L(4) =5:L(5) =0,

GET ARRAY —
OF 5
CARDS

NO NO

INTERCHANGE LINKS
OF FIRST AND
SECOND CARDS

l

LAST
PAIR YES YES

Lwan o
?

NO

1 NO

(KEY (L1
>

KEYI(L(LIN
?

INTERCHANGE LINKS
OF CARDS LI(I)
AND,LILI{I))

STEP I TONEXT
CARD | =L

Figure 3C2-7. Flowchart for procedure SORTS

Since SORTS executes these instructions under control of
a DO-loop, variable I is used to specify successive CARD
structures in the chained sequence; header H is not used
for this purpose, because its value must be retained to
determine which structure occurs first in the sequence.

Note the use of subscripted subscripts in Figure 3C2-5.
Expression L(L(I)) in Step 1, for example, refers to the
link value of CARD(1), since I =2 and L(I)= 1. The
figure illustrates the effect of the second interchange,
which involves CARD(1) and CARD(3). Step 4 shows the
CARD structures linked in the following order after the
interchange has been completed:

CARD(2), CARD(3), CARD(1), CARD(4), CARD(5)

| S

A complete sort of the CARD structures links them in
the following order:

CARD(3), CARD(2), CARD(5), CARD(4), CARD(1)

Figure 3C2-6 shows how the sorted CARD structures may
be referred to in succession by the expressions: CARD(H),
CARD(L(H)), CARD(I(L(H))), CARD(L(I(I(H)))), and

CARD(L(L(L(L(H))))). The compactness of these expres-
sions illustrates the advantages of using successive levels of

subscripted subscripts.
A flowchart for SORTS appears in Figure 3C2-7.

23

3D. ABSOLUTE ADDRESSES

The addressing techniques used in the two previous ex-
amples (SORT4 and SQRTS) depend upon relative ad-
dresses (subscripted array names). This dependency upon
subscripts prevents similar applications of address manipu-
lation to data items that are not contained in arrays. Fur-
thermore, subscripting increases the time it takes the
machine-language version of the program to refer to an
element of an array. At execution time, the program must
calculate the actual address of the array element in core
storage and use this address in place of the relative address.

3D1. The Relationship of Relative
and Absolute Addresses

As an illustration of the relationship between relative ad-
dresses and actual addresses, consider the array of struc-
tures CARD shown in Figure 3D1-1. Each structure in the
array is identified by a subscripted array name: CARD(1),
CARD(2), CARD(3), CARD(4), and CARD(5). The same
array appears in Figure 3D1-2, but the subscripted array
name for each structure has been replaced by a possible
storage address. It is assumed that each structure occupies
80 addressable storage positions and that the firsi struc-
_ture begins at location 1000. Then the structures have the
successive addresses 1000, 1080, 1160, 1240, and 1320.
For convenience, the addresses are specified in decimal
notation and not in binary, as would be required in the
machine code for IBM System/360.

These addresses are called absolute addresses, because
they specify the actual locations of the structures in stor-
age. An absolute address is never relative to any location
other than the first position of storage. By contrast, a
relative address can be relative to any location in storage
and, consequently, must be converted to an absolute ad-
dress before it can be used by the program at execution
time. Although the program automatically performs the
conversion from relative to absolute form, such conver-
sions may add to the running time of the program.

PL/I does not provide a direct means for controlling
the absolute address of a data item. It is the operating
system that determines which storage areas are available
to a program at execution time. However, once a specific
storage location has been allocated for a data item, PL/I
makes it possible to obtain the absolute address of the
location and to assign the absolute address to a special
type of variable called a pointer variable.

Pointer variables can be organized into arrays and used
in a manner similar to the way subscripts were used in
SORT4 and SORTS. But pointer variables provide advan-
tages over subscripts: they eliminate the need for storing
data items in arrays and thereby avoid the time spent in
converting relative addresses to absolute form. The fol-
lowing discussions presant the rules for manipulating
pointer variables and illustrate their use with examples.

24

KEY(1) DATA(1)
CARD(1)
27N FIFTH
KEY(2) DATA(2)
CARD(2)
A96 SECOND
KEY (3} DATAI(3)
CARD(3)
A14 FIRST
| — |
CARDI(4) KEY(4) DATA(4)
W17 FOURTH
KEY(5) DATA(5)
CARD(5)
EO02 THIRD

Figure 3D1-1. An array of structures showing a relative address
(subscripted array name) for each structure

KEY(1) DATA(1)
1000

271 FIFTH

KEY(2) DATA(2)
1080

A96 SECOND

KEY(3) DATA(3)
1160

A14 FIRST

KEY(4) DATA(4)
1240

W17 FOURTH

KEY(5) DATA(S)
1320

EQ02 THIRD

Figure 3D1-2. An array of structures showing a possible absolute
address for each structure

3D2. Pointer Variables

Pointer variables have absolute addresses as their values.
Declaration of an identifier with the POINTER attribute
establishes the identifier as a pointer variable.

EXAMPLES:

DECLARE P POINTER:
DECLARE (Q, R) POINTER EXTERNAL STATIC;
DECLARE T(5) POINTER INTERNAL, V(-2:2,
—3:3)POINTER;
DECLARE 1A,

2X CHARACTER(15),

2Y POINTER;
DECLARE 1 TABLES,

2 1(5) POINTER,

2 J(0:4) POINTER;

As shown in these examples, PL/I allows pointer vari-
ables to be individual element variables or elements of
arrays and structures. A pointer variable can have any
storage class and scope, and the usual default rules for
these attribute types also hold for a pointer variable.

3D2A. How to Obtain a Value for a Pointer Variable

Before a pointer variable can be manipulated, it must be
assigned an absolute address. One way of obtaining an ab-
solute address is to use the built-in functions ADDR and
NULL. A reference to the built-in function ADDR has the
following form:

ADDR(argument-variable)

The value returned by ADDR is the absolute address of
the specified argument variable. As an example, consider
the following assignment statement:

P = ADDR(X);

Assume P is a pointer variable and X is a data variable.
Then the reference ADDR(X) obtains the absolute address
of the storage location allocated for X, and the statement
assigns this absolute address as the value of pointer P.

The argument variable in a reference to ADDR must be
an identifier that specifies one of the following types of
variables:

an element variable

an array

an element of an array

a major or minor structure
an element of a structure

moPw®»

The argument can be of any data type and storage class,
but special results occur when the following conditions
apply to the argument of ADDR:

AA. When the argument is a controlled variable, the value
of the ADDR reference specifies the absolute ad-
dress of the current generation of the argument. If
no storage has been allocated for the controlled
argument, ADDR specifies a null address (which in-
dicates unallocated storage).

BB. When the argument is a parameter of a containing
procedure, the value of the reference to ADDR repre-
sents the absolute address of the argument associ-
ated with the parameter (including the absolute ad-
dress of a dummy associated argument).

CC. When the argument is an array expression that speci-
fies two or more noncontiguous elements, a refer-
ence to ADDR is not valid. For example, the ele-
ments of an array cross-section whose reference

includes asterisks not in the rightmost position or
positions do not occupy contiguous storage loca-
tions. Since ADDR obtains a single absolute ad-
dress, it has no way of relating noncontiguous
storage positions with that address.

A reference to the built-in function NULL uses no argu-
ments and has the following form:

NULL

This function returns a nuil address value that does not
identify any locaticn in storage. As later discussions illus-
trate, this special address value is used to clear pointer
variables and to test for unallocated storage.

3D2B. Using Pointer Variables in Assignment Statements

PL/I permits pointer variables to appear in the following
forms of the assignment statement:

1. element-pointer-variable = element-pointer-
expression,

2. pointer-array = element-pointer-expression;

3. pointer-array = pointer-array;

Two or more variables separated by commas may appear
on the left side of these statements for multiple assign-
ment. An element-pointer expression on the right side of
an assignment statement must be either an element-pointer
variable or a function reference (built-in or programmer-
defined) that specifies an element pointer value, that is, a
single absolute address.

Assignment of an element-pointer expression to a point:
er array causes the value of the expression to be assigned
to every element of the pointer array. When a pointer
array appears on the right side of an assignment statement,
the number of dimensions and the bounds for each dimen-
sion of the array on the right must be identical to those of
the receiving pointer array on the left.

EXAMPLES:

Assume the following pointer declarations:

DECLARE(P,Q,R,T(5), V(-2:2, —3:3)) POINTER;
DECLARE 1 A, 2 X CHARACTER(15), 2Y POINTER;
DECLARE 1 TABLES, 2 I(5) POINTER, 2 J(0:4)
POINTER;

The following statements illustrate possible pointer assign-
ments:

. P=ADDR(A);

. Q,R=NULL;

. T(4),V(-2,-3)=P;

. A Y=T(@4),

. TABLES. I, TABLES. J =NULL;

. T=TABLES.I;

AWV dH W -

25

Statements 2, 3, and 5 perform multiple assignments. The
last three statements show name qualification applied to
pointer variables.

3D2C. Using Pointer Variables in Operational
Expressions

PL/I allows only two operators to use pointer variables as
operands: the comparison operators equal (=) and not
equal (1=). A major consequence of this restriction is
that arithmetic operations cannot be performed on abso-
lute addresses.

EXAMPLES:

Assume that A and B are arithmetic variables and that P,
Q, R, S, and T are pointer variables; then the following
statements contain permissible uses of pointer variables as

operands:
1. IFP=NULL THEN GO TO L;
2. A=(Q7=R);

3. IF (T=NULL) | ((T=ADDR(B)) & (S =NULL))
THEN P=Q;
The last example shows that simple comparisons of point-
er variables may be compounded.

3D3. Based Variables

Although the value of a pointer variable represents the ab-
solute address of a specified data item, the pointer itself
provides no information about the attributes of the data
item. Such descriptive information is needed, however, for
proper manipulation of the data item at execution time.
For example, a pointer variable can specify the absolute
address of an array A,’but neither the pointer name nor
the pointer value indicates the dimensions of A or the
characteristics of its elements.

To associate descriptive information with a pointer
variable, PL/I provides a special type of variable called the
based variable, which is declared with the following attri-
bute:

BASED(element-pointer-variable)

The element-pointer variable appearing in the BASED
attribute cannot be a based variable itself nor can it be
subscripted.

Declaration of a based variable does not assign an ad-
dress to the pointer variable specified in the associated
BASED attribute. Before reference can be made to a
based variable, an address must be assigned to its associ-
ated pointer variable.

Any reference to a based variable applies the attributes
of the based variable to the storage location specified by
the associated pointer variable. Consider the following
declaration:

26

DECLARE NAME CHARACTER(15) BASED(P);

This statement declares the 15-position character string
called NAME to be a based variable and associates the
pointer variable P with NAME. A subsequent reference to
NAME will then cause the location given by P to be
treated as a storage area for a 15-position character string.
For example, let NAME appear in the following assign-
ment statement:

NAME = ‘JOHN’;

This statement assigns the character-string constant
‘JOHN’ to a 15-position storage area at the location given
by P. The four characters of the constant are positioned
to the left in the area and are followed by eleven blank
characters.

The attribute BASED(element-pointer-variable) is de-
fined to be a storage-class attribute along with STATIC,
AUTOMATIC, and CONTROLLED. The appearance of
BASED in a DECLARE statement, however, does not pro-
duce an allocation of storage. Only when an absolute ad-
dress is assigned to the pointer variable related to the
based variable does storage become associated with the
based variable. For example, consider the previous declar-
ation of the based variable NAME. Not until an absolute
address is assigned to pointer P does storage become asso-
ciated with NAME. When this association occurs, NAME
is said to be ““based on” P.

The value of the pointer variable in a BASED attribute
can specify a location of any data type and storage class,
including POINTER data and BASED storage. Care must
be taken, though, when changing the pointer value related
to a based variable to assure compatibility between the
attributes of the based variable and the data at its newly
assigned location.

3D3A. Assigning Pointer Values with the Set Option

Executing an assignment statement is not the only way of
assigning an address to a pointer variable. Another way is
to use a SET option with one of the following statements:

READ FILE (file-name) SET (element-pointer-variable);
LOCATE based-variable FILE (file-name) SET (element-
pointer-variable):

ALLOCATE based-variable SET (element-pointer-
variable);

The READ and LOCATE statements perform record-
oriented transmission; they process sequential buffered-
files and allow logical records to be retrieved from and
stored in file buffers. The ALLOCATE statement allocates
storage for a based variable and assigns the location of the
allocated storage to the pointer variable specified in the

B

9

SET option. Furgher discussion of the ALLOCATE state-
ment appears in paragraph 4B1. The following discussion
presents brief explanations of the SET option in READ
and LOCATE statements.

The READ statement obtains the location of the next
logical record in a buffer associated with the specified
file, and assigns the lecation to the element-pointer vari-
able given in the SET option. A based variable associated
with the same pointer will then relate to the fields of the
logical record. The based variable is effectively overlaid
on the logical record in the buffer.

The LOCATE statement allocates the next available
storage area for the specified based variable within a buf-
fer associated with the file. The location of the allocated
storage is assigned to the element-pointer variable given
in the SET option. The LOCATE statement need not con-
tain a SET option; when it does not, an implied SET is
assumed, which uses the pointer variable in the BASED
attribute of the specified based variable.

Record-oriented transmission statements may read and
write the values of pointer variables. A pointer value that
has been written, however, cannot be assumed to locate
the same data if it is read back into storage (further dis-
cussion of this appears in Chapter 5). Under no circum-
stances may pointer values be read or written with stream-
oriented transmission statements.

3D3B. Using a Based Variable in a Function Procedure

Function procedure MEAN in Figure 3D3B-1 shows how
a based variable can be used with an array of pointers to
simulate a variable-length parameter list. This function
procedure uses one parameter P, which is an array of
pointers. The single asterisk in the dimension attribute of
P indicates that P is one dimensional and has the samie
dimension bounds as its associated argument in an invoca-
tion of MEAN. This use of the asterisk notation allows
the function to process pointer-array arguments of dif-
ferent sizes.

Since the elements of P are associated with pointer
values and the number of its elements can vary, P acts as
a variable-length parameter list. Variability can also be
achieved by associating a null pointer value with one of
the P elements.

MEAN assumes that the non-null pointer values in P
specify the locations of fixed point decimal values. The
function computes the average of these arithmetic values
and, as indicated by the attributes in the PROCEDURE
statement, returns the average as a fixed-point decimal
value.

Assignment of each non-null pointer value in P to
pointer S causes the attributes of based variable VALUE
to be applied to the locations specified in P. When all
elements in P are null, the function returns a zero value.

T_MEAN:
F3038_1:
PRNCEDURE DPTINNS (MAIN);
DECLARE
MEAN RETURNS (FIXED),
(T(10), X) FIXED (S),
(P110), S) POINTER;

PAGE LIST (*INPUT ARRAY T 1S: *);

#100:
o]0}
I = LBOUND (T,1) TO HBOUND (T,1);
GEY
EDIT (T(I)) (F(S));
PUT SKIP DATA (
Tt
P(1) = ADDR(T(1));
END
¥100:
PUT SKIP (2);
X = MEAN (P);
PUT
SKIP (3) LISV
(YRESULT RETURNED BY PROC **MEAN'' =9, x);
MEAN:
PROCEDURE
(P) FIXED (S5);
DECLARE
(P(*)y, S) POINTER,
VALUE BASED (S) FIXED (S),
(My N) FIXED (5);
My N = 03
LOUP:
oo
I = LBOUND (P,1) TO HBOUND (P,1);
IF
P(I) ~= NULL
THEN.
DO
S =PI
M = M + VALUE;
N =N+];
END;
ENO
LOOP;
IF
N =0
THEN
RETURN (0);
ELSE
RETURN (M/N);
END
MEAN;
eND T_MEAN;

INPUT ARRAY T [S:
Tt = H

Tt2)= 225

TN = 33

Tie)= 46

T(S)= 55

Tle)= 66;

TH7)= 175

Ti8)= 88,

T(9)= 99

T(10)= 11

RESULT RETURNED BY PRUC *'MEAN' = 50

Figure 3D3B-1. Using a based variable and an array ot pointers to
simulate a variable-length parameter list

27

The lower and upper bounds of the array argument
associated with parametet P are determined by the buil¢-
in functions LBOUND and HBOUND, reference to which
occurs in the DO statement of MEAN.

3E. ARRAYS AND STRUCTURES OF BASED
VARIABLES

Besides being used in the declarations of element items,
the BASED attribute can also appear in the declaration of
an array, a structure, or an array of structures. When ap-
plied to a structure or an array of structures, BASED
must appear at level 1 and, consequently, applies to ail
members of the structure or array of structures.

Care is also required when assigning an absolute address
to the pointer variable of a based array or structure to
assure that the address actually specifies the location of an
array or a structure. For example, it is generally incorrect
to assume that the address of an array or a structure is
the same as the address of its first element. Compilers
frequently place descriptive information, applicable to the
entire array or structure, before the first element of the
array or structure in the object program. This descriptive
information can cause the address of the complete array or
structure to differ from that of the first element when the
program is executed.

As an example, consider the following sequence of
statements:

DECLARE
TABLE(5) FIXED DECIMAL(2),
1 CARD,

2 KEY CHARACTER(3),

2 DATA CHARACTER(77),
(P,Q,R,S) POINTER;

P = ADDR(TABLE);
Q = ADDR(TABLE(1));

R = ADDR(CARD);
S = ADDR(CARD KEY);

It cannot be assumed in this example that pointers P and
Q have the same address value; the address of TABLE is
not necessarily equal to the address of its first element
TABLE(1). The same distinction applies to pointers R and
S; the address of structure CARD generally differs from
the address of its first element CARD.KEY.

28

When a component of a based structure is referred to,
the address of the component, relative to the beginning of
the structure, is automatically accounted for and need not
be adjusted (offset) by the programmer. Consider the
following statement sequence:

DECLARE P POINTER
1 1 BASED(P), 2 J CHARACTER(10), 2 K CHARAC-
TER(20),
1L,2M CHARACTER(10), 2N CHARACTER(20);

GET EDIT (M,N) (A(10j, A(20));
P = ADDR(L);
PUT LIST(K);

In this example, values for element variables M and N in
structure L are obtained from the standard system-input
file (SYSIN) by the edit-directed GET statement. Assign-
ment of the address of L to pointer F associates the de-
scription of the based structure I with the storage of

structure L. The reference to K in the list-directed PUT
statement causes the value of N to be printed. Note that
no adjustment in the address of structure L assigned to
pointer P is necessary to obtain the value of N, even
though N is the last element in the structure.

3E1. Qualifying Based Variables with Pointer Variables

PL/I allows a based variable to be associated with more
than one storage area at the same time. This multiple
association is possible because a based variable by itself
does not specify a data item, but only a description of
storage. A based variable specifies the attributes and ex-
tent of the storage with which it is associated. But a
change in the value of the pointer variable specified in the
declaration of the based variable causes the based variable
to become associated with different storage, and conse-
quently, with new data. It is the combination of pointer
variable and based variable, therefore, that determines the
location and description of a data item.

So far, the BASED attribute is rthe only facility that
has been presented for associating a pointer variable with
a based variable. Since only one pointer variable can ap-
pear in a BASED attribute, some other faciiity is required
for simultaneously associating two or inore pointers with
the same based variable. The PL/I facility that permits
this multiple association is called pointer qualificaiion It
is used to distinguish among two or more storage areas
associated with the same based variable, and aliows other
pointers to override the pointer that was specified in the
declaration of the based variable.

J

The pointer qualification symbol is a composite symbol
that resembles an arrow. It consists of a minus sign imme-
diately followed by a greater-than symbol (—>). This
composite symbol, however, does not signify an operation;
its function is similar to that of the period symbol used in
the qualified name of a structure element. When used,
the pointer qualification symbol must always appear be-
tween two references. The reference on the left must be
either an element-pointer variable or a reference to the
built-in function ADDR. When it is an element-pointer
variable, it cannot be subscripted nor can it be of the
based storage class. The reference on the right of the
pointer qualification symbol must be a based variable.

A pointer qualification symbol applies the storage
description of the based variable on its right to the storage
location specified by the pointer value on its left; the
pointer originally declared with the based variable is over-
ridden. As an example, consider the following assignment
statement:

A—>B =C->B;

Assume B is a based variable, and A and C are nonbased,
element-pointer variables. The expression C—>B refers to

a data item that has the attributes declared for B and the
location specified i)y C. Similarly, the expression A—>B
determines the location and attributes of the area to
which the data item is assigned. Thus, the pointer quali-
fication symbols used in this assignment statement associ-
ate the attributes declared for the based variable B with
the two distinct storage areas addressed by pointers A and
C. This association constitutes pointer qualification.

The examples of pointer qualification given below use
the variables described in the following DECLARE state-
ment:

DECLARE
(P,Q) POINTER,

1 W BASED(P),

2 X FIXED,

2Y FLOAT,

2 Z POINTER,

(A, B BASED(Q)) FIXED;

P and Q are pointer variables. W is a based structure, and
X, Y, Z are based element-variables within W. Observe
that Z is a based element-pointer variable. A is a non-
based fixed-point variable, and B is a based fixed-point
variable.

Assume that P and Q have been assigned absolute ad-
dresses; then the following statements contain valid refer-
ences to the elements of the based structure W:

A. Y=X;
B. P->Y =P->X;

In statement A, the references to the based elements

X and Y do not involve the pointer qualification symbol;
therefore, the pointer variable P given in the BASED
attribute of W implicitly specifies the location of the
structure addressed by P within which the attributes of X
and Y are to be applied. If desired, explicit qualification
of X and Y by P can be specified, as shown in the second
statement. Statements A and B are effectively equivalent.

C. Q->Y=Q-—>X;

Statement C shows that a different pointer, in this
case Q, can be used to override pointer P, which appears
in the based declaration of W.

D. P->Y =Q->Y;
E. Q—>X=P->X;

The references in statements D and E show that two
different pointers may qualify the same based variable at
the same time. This is the multiple association of storage
areas with a based variable, as discussed previously. In

statement D, the attributes of element Y are applied
simultaneously to the two different structure locations
given by P and Q. Similarly, statement E applies the attri-
butes of element X to the structure locations given by P
and Q.

F. Y =(Q—>X)+(Q—>Y);
G. P—>Y = (Q—>X) + (Q—>Y);

Statements F and G are equivalent. They add the
values of elements X and Y within the structure location
addressed by Q, and assign the sum to element Y within
the structure given by P. Statement G contains explicit
pointer qualification of the receiving based variable;
statement F does not.

H. Q—>W=W,

Assignment of a based structure occurs in statement H.
Structure W at location P {implicit) is assigned to structure
W at the location specified by Q (explicit).

I. ADDR (A)->B=X;
J. Y = ADDR (A)- >B:;

Statements I and J use references to the built-in func-
tion ADDR to qualify references to the based element B.
In each case, ADDR (A) returns a pointer value that
qualifies B. Note that statement J, unlike statement I,

29

involves conversion of the assigned value from FIXED
type to FLOAT type.

K. Q—>Z=P;
L. Z=Q;

Pointer assignment occurs in statements K and L. P
and Q are each pointers, and Z is a based pointer. Pointer
Q in statement K explicitly qualifies based pointer Z,
which receives the value of pointer P. In statement L,
pointer Z receives the value of pointer Q, but Z is a based
pointer, which is implicitly qualified by pointer P. State-
ment L is equivalent to P->Z = Q;.

M. Q—>W.Y = Q->W.X;

Statement M shows pointer qualification used with
name qualification. Q overrides pointer P, which was
declared with based structure W. This statement also
involves conversion of the assigned value from FIXED
type to FLOAT type.

3E2. Pointer Qualification in a Subroutine

Subroutine procedure SWAP in Figure 3E2-1 contains an
example of pointer qualification used to interchange the
values of pairs of variables. When invoked, the subroutine
associates parameter P with a one-dimensional pointer
array of even, but arbitrary, length. Each pointer value in
P specifies the location of a fixed-point integer of length
8, and SWAP interchanges the numbers at successive

pairs of locations. The interchange of individual pairs of
values resembles that done in the previous sort routines,
except that SWAP does not perform sorting.

The subroutine associates the based variable CARD
with each location specified in P. However, since each
interchange involves two locations, the subroutine must
associate CARD with two different locations at the same
time. This double association is achieved by qualifying
CARD with separate pointers, S and R, as shown in the
following statements:

SAVE =S—->CARD;
S—>CARD = R—->CARD;
R—>CARD = SAVE;

The first location of each pair of locations is assigned to
pointer S, the second to pointer R.

The number of locations specified in array parameter
P is determined by the built-in functions LBOUND and
HBOUND.

The illustrations in Figure 3E2-2 show how SWAP
processes four character strings.

30

TEST_SWAP?

F3E2_1:

PROCEODURE OPTIONS (MAIN)}

DECLARE
P(10) POINTER,
T(10) FIXED (813
J = LBOUND (T,1);
K = HBOUND (T,1)%

ut
PAGE LIST (*INPUT ARRAY T ISt)3
#1002
vo

1 =J70K;
GET
EDIT (T(I)) (F(B));
PUT
SKIP DATA (TII))3
PUI) = ADDR(T(1));
€END

#100;
CALL SwAP (P)}
pUT

SKIP (3) LIST
(*RESULT OF PROCEDURE **SWAP**3¢);

#200:
00
1 = JT0K;
puUT
SKIP DATA (T(1))3
END
#2003
SWAP:
PROCEDURE (P);
DECLARE
(P(*), Ry, S) POINTER,
(CARD BASED (S)y, SAVE) FIXED
L = LBOUND (Py1);
M = HBOUND (Ps1);
LOOP:
DU
I =L TOM-=-18Y 2;
R = P(I+1f3;
S = P(I); °
SAVE = $->CARD;
S=>CARD = R->CARD;
R~>CARD = SAVE;
END
LOUP;
RETURN;
END
SWAP;
END
TEST_SWAP;
INPUT ARRAY T ISt
T(l)= 1234%673
T(2)= 89012345
Ti3)= 67890123;
Ti4)= 45678901 ;
T(S)= 23456709;
T(é6)= 1234567;
T(T)= 89012345
Ti8)= 67890123
T(9)= 45678901;
T(10)= 23456709;

RESULT OF PROCEDURE *SWAP':

T(l)= 89012345
T(2)= 12345067
(3= 45678901 ;
Tia)= 67890123;
T(5)= 1234567;
Ti6)= 234567089;
"= 678901233
Ti8)= 89012345;
T(9)= 23456789;
T(10)= 45678901 ;

(8)3

Figure 3E2-1. Using pointer qualification in a subroutine

procedure

P(1)

P(2)

P(3)

P(4)

P(1)

P(2)

P(3)

P(4)

(80)W' A ¢— |

ADDR(A)

ADDRIA] /
ADDR(B) ————————— > (80)°'X* B - ADDR(B)
ADDR(C)
\ (80),Y' c
ADDRI(D)
(80)'2* D
(BEFORE SWAPPING)
LOOP: DO =L BOUND (P,1) TOH BOUND (P,1) — 1BY 2;
R=P(l+1);S=Pl(l);
SAVE = § —> CARD;
S —> CARD = R —> CARD;
R —> CARD = SAVE;
END LOOP;
/ (80X’ A
ADDR(A)
ADDR(B) I (80)W' B
ADDR(C)
\ (80)°Z° C «@—————| ADDR(C)
ADDR(D)
(80)°Y’ D H———] ADDR(D)

(AFTER SWAPPING)

Figure 3E2-2. How pointer qualification is used by subroutine procedure SWAP in Figure 3E2-2.

3E3. Restrictions on Based Variables

The following restrictions apply to based variables:

A. The EXTERNAL attribute cannot appear in the declar-
ation of a based variable, but a based variable can be
qualified by an external pointer variable.

B. Based variables cannot have the INITIAL attribute,
nor can arrays of based labels be initialized by sub-
scripted label prefixes.

C. Data-directed input and output cannot transmit the
value of a based variable.

D. The BASED attribute cannot be specified for the
parameters of subroutines or functions.

E. The CHECK ON-condition cannot be applied to a
based variable.

F. The VARYING attribute cannot be applied to a based
variable.

3E4. Contextual Declarations of Pointer Variables

The appearance of an identifier in one of the following
contexts serves as a contextual declaration of the identi-
fier as a pointer variable:

A. in a BASED attribute

B. in the SET option of READ, LOCATE, and ALLO-
CATE statements

C. on the left of a pointer qualification symbol (—>).

A contextually declared pointer variable receives the
AUTOMATIC storage class and INTERNAL scope by
default. If different attributes are desired, they must ap-
pear in an explicit declaration of the pointer variable, that
is, along with the POINTER attribute. The pointer vari-
able contextually declared with a based variable does not
receive the null pointer value as a result of the based dec-
laration.

Only the INITIAL CALL form of the INITIAL attri-
bute is allowed in explicit declarations of pointers.

3F. ADVANTAGES OF ABSOLUTE ADDRESSING

The absolute addressing facilities provided by pointer and
based variables permit the same reductions in data move-
ment that were obtained earlier in this chapter by using
subscript values as the relative addresses of array elements.
The following discussions present examples that show
how pointer variables and based variables, in addition to
reducing data movement among array elements, also per-
mit efficient organization and manipulation of scattered
data items.

32

3F1. Reducing Data Movement

Procedure SORT4 showed how an auxiliary array of sub-
script values may be used to reduce data movement in a
sort. The same sorting efficiency can be obtained by using
pointer values in place of subscript values. Unlike the
subscript values in SORT4 however, pointer values need
not be members of an auxiliary array. The same sort
technique can use individual pointer elements as well as
pointer arrays. Examples of both methods appear in the
following discussions.

3F2. Sorting with Pointer Variables

Procedure SORT6 in Figure 3F2-1 sorts the same input
data processed by the previous sort examples. After
assigning input data to the five structures in the array ot
structures called CARD, SORT6 assigns the absoiute ad-
dresses of the structures CARD{1). CARD(2). CARD(3),
CARD(4), and CARD(5) to the clement pointers P1, P2,
P3,P4,and P5. Since the based structure IMAGE has the
same structuring and attributes as the structures in CARD,
IMAGE may be used with appropriate pointer qualifica-
tion to refer to the components of CARD.

SORT6 compares the KEY subfields in the successive
structures of CARD; necessary interchanges are performed
not on the structures of CARD but on the address values
of the corresponding pointers P1 through P5. Moving
pointer values rather than 80-character structures causes
less data to be moved and produces a faster sort.

At the completion of the sort, the structures of CARD
remain in their original (physical) order, but-the values of
pointers P1 through PS5 are generally changed. Taken in
succession, the pointers specify the sorted structures of
CARD in ascending order on their KEY fields (see Figures
3F2-2 and 3F2-3). Asindicated in Figure 3F24, succes-
sive structures in the sorted array CARD may be referred
to by the expressions P1->IMAGE, P2->IMAGE,
P3->IMAGE, P4->IMAGE, and PS—>IMAGE.

3F3. Sorting with an Array of Pointer Variables

A more compact version of the previous example, SORT6,
can be obtained by replacing the five element pointers P1
through PS5 with a five-element array of pointers. Proce-
dure SORT?7 in Figure 3F3-1 shows how such an array,
P, can be used to obtain the same resuics as SORT6.
Because DO loops can be used to modify references to
the pointer elements of array P, SORT7 requires fewer
statements than SORT6. Care must be taken, however,
when using the based structure IMAGE in references to
the components of the array of structures CARD. A
reference to IMAGE cannot be qualified by a subscripted
pointer variable. Therefore, SORT7 uses the element
pointers S and T to qualify usages of IMAGE. Then any
element of array P that is to qualify IMAGE must have its

J

value assigned to pointer S or pointer T, which performs
the actual qualification. Except for their use of a pointer
array, the diagrams associated with SORT7 (Figures
3F3-2.-3, and -4) are identical to those associated with
SORTS6.

SORT6:

FIF2_1:

PROCEDURE OPTIONS
DECLARE

(MAIN);

P2,
IMAGE

{ P3, P4, P5) POINTER,
1 BASED(S),
2 KEY CHARACTER(3),
2 NATA CHARACTERI(TT),
1 CARDI(S),
2 KEY CHARACTER(3),
2 NDATA CHARACTERI(TT);
ON ENDFILE (SYSIN) BEGIN;
CLOSE FILE (SYSPRINT);
G0 Tu OVLR3
ENDG
INPUT :
GET
tOIT(CARD)
P1
p2
P3
Po
PS

(A(3), ALTTY);
ADDR (CARDI(1)
ADDR(CARD(2}
ADDR{CARD(3)
ADDRICARDI(4)

)

ADDR {CARDI{S

[T T I TR 1]

SORT:
K = 03
1F
(PL1=>IMAGE.KEY) > (P2->IMAGE.KEY)
THEN

LU

FNDS
IF
(P2->IMAGF.KEY)} >
THEN
bu;

(P3->1MAGE.KEY)

K =13 S = P27 P2 = P35 P} = §;
END;
IF
(P3->IMAGF.KEY) >
THFN

)]0 H

(P4->1MAGE.KEY)

K =13 S = P3; P3 = P4 P4 = S3
END:
IF
(P&~>IMAGE.KEY) >
THEN

DU

(P5=>IMAGE.KEY)

X P4 = PS; PS = §;

15 S = P4
END:
IF
K =1
THEN
GO TO
SORT;
PUT
EDIT
P3=>IMAGE,
PS=>IMAGF)
PUT
SKIP;
GO Tu
INPUT

(P1=>IMAGEP2~->1MAGE,
P4->1MAGF,

(SKIP, AL3), ALTT))}

OVFR:
END
SORTG

Figure 3F2-1. Using pointers to sort an array of structures

P2

N

ADDRICARD({1))

ADDRI(CARD(2))

ADDRI(CARD{3}

ADDRI(CARDI(4)

ADDRICARDI51

LI

KEY(1) | DATA{1}

CARDI(1)
zn FIFTH
KEY(2) | DATA{2}

CARDI(2)
A96 SECOND
KEY(3) DATA(3)

CARD{(3)) CARD
A4 FIRST
KEY{4) DATA4)

CARD(4}
Wwt7 FOURTH
KEY(5) DATA(S!

CARDI(5)
E02 THIRD

J

Figure 3F2-2. Pointer variables and array of structures before sort

ADDRICARDI3}}

ADDRICARD(2})

ADDR{CARD(5))

ADDRICARD{4))

ADDRICARD{1))

KEY(1) DATAI(1)

CARD(1)
n FIFTH
KEYI2) DATA(2)

CARD(2)
Ag6 SECOND
KEYi3) DATA(3)

CARDI(3}) CARD
a4 FIRST
KEYI(4) DATA(4)

CARD(4)
w17 FOURTH
KEY(5} DATA(S)

CARD(S)
EQ2 THIRD

: J

Figure 3F2-3. Pointer variables and array of structures after sort

Low

HIGH

KEY{1) | DATA(1)}
PY - IMAGE

mn FIFTH

KEY(2)| DATAI2)
P2 -> IMAGE

A98 SECOND

KEY(3) | DATAI(3)
£3 -> IMAGE

Al4 FIAST

KEY{4) | DATA(#)
P4 -> IMAGE

w7 FOQURTH

KEYI(S)| DATA(S)
P5 -> IMAGE

€02 THIRD

CARDIY)
CARDI2I
CARO(3) > Ccamg

CARDI4)

CARDIS)

Figure 3F2-4. Sequential references to the sorted elements in an
array of structures

33

SORT7:

F3F3_1:
PROCEDURE OPTIONS (MAIN);
DECLARE
(P(S), T) POINTER,
1 IMAGE BASEDL(S),
2 KEY CHARACTERI(3),
2 DATA CHARACTER(TT7),
1 CARD(S}),
2 KEY CHARACTER(3),
2 DATA CHARACTER(TT7);
ON ENDFILE (SYSIN) BEGIN;
CLOSE FILE (SYSPRINT);
GO TO OVER;
END;
INPUT:
GET
EDIT(CARD) (A(3), A(TT));
bu
I =1 70 S; P(I) = ADDR{CARD(I)):
tND;
SORT:
K = 03
LOOP:
[o]n]
1 =170 4;
S =P(I);s T =P(1 + 1),
IF
(S=>IMAGE.KEY) > (T->IMAGF.KEY)
THEN
DO;
K = 13 P(I) = T; P(I ¢+ 1) = S
END;
END
LooP;
IF
K = 1
THEN
GO TO
SORT;
ouTPUT:
Do
I =1 5;
S P13
PUT
EDIT (S~>IMAGE) (SKIP, A{(3), A{(T7)):
END
OuUTPUT;
PUT
SKIP;
GO YO
INPUT
OVER:
END
SORTT;

Figure 3F3-1. Using an array of pointers to sort an array of
structures

e N
KEY{(1)| DATA(1)
ARD(1
P(1) |ADDRICARD(1)) ¢ !
n FIFTH
KEY(2)| DATA(2)
P(2) |ADDRICARD(2)) CARD(2)
A% | SECOND
KEY(3)| DATA(3)
[4
Pi3) | ADDRICARDIZN CARD(3)» CARD
Al4 FIRST
KEY(4)| DATA(4)
P4} | ADDRICARD(4)) CARD4)
w17 FOURTH
KEY(5)| DATAS! [.o
PiS) [ADDRICARDIS)
EO2 THIRD
\ J

Figure 3F3-2. Array of pointers and array of structures before sort

P(1)

P{2)

P{3)

Pla}

P(5)

[keviy | patam CARDHJ
ADDRICARD(3)) - pp—

KEY(2) | DATA(2)
ADDRI(CARD(2)} CARD(2}

A96 SECOND L

KEY(3) | DATA(3}

AR

ADDRICARDISH CARD(3}) CARD

A4 FIRST

KEY(4) | DATA(4)

e ARD(4

ADDRICARD(4)) CARDI(4)

w17 FOURTH

KEY(S) | DATAIS) | (o000
ADDRI(CARD{1)

E02 THIRD)

Figure 3F3-3, Armray of pointers and array of structures after sort

J

Low
N
KEY(1) DATAIN
$=P); $ ->IMAGE CARD(1)
m FIFTH
KEYID DATA(2)
“pa: - cano2)
$-p2: 8 ->IMacE poo ey
KEY(3) [DATAW
s-ri: $ ->1MAGE cano(3) cano
AV FINST
KEvY(&) DATA(4)
- - cAROt)
$-rla), $ ->IMAGE poves ey
—
KEY(S) | DATAIS)
s-P); $->1MAGE T2 T CARrO®
v
NIGH

Figure 3F3-4. Sequential references to the sorted elements in an
array of structures

3G. ASSOCIATING DATA ITEMS IN SCATTERED
LOCATIONS

The two preceding procedures, SORT6 and SORT7, re-
quire the data items involved in a sort to be placed in an
array of structures before sorting actually occurs. There
is no need, however, for the items to be placed in such an
array. Once the absolute address of each item is assigned
to a position in the pointer array, the location of one
data item relative to another has no effect upon the effi-
ciency of the sort; scattered (noncontiguous) data items
are sorted with the same efficiency as those contained in
arrays, because only addresses are moved.

Either an array of pointers or a pointer variable at-
tached to each item can be used to associate scattered data
items with each other. Examples of both methods appear
in the following discussions.

3G 1. Associating Data |tems through an Array of
Pointer Variables

Procedure SORTS in Figure 3G 1-1 uses an array of pointer
variables to sort sets of structures that are not contained
in an array. The procedure assigns the absolute addresses
of the individual structures-to the element positions in the
array of pointers. At this stage, SORT8 becomes identical
to SORT7 and produces the same results. This equiva--
lence is possible because the relative locations of the
structures (whether members of an array or not) have no
effect upon the actual sorting operations.

The major difference between the two procedures is
that SORTS requires more statements than SORT7. These
additional statements result from having to declare each

SORTS8:
F3Gl_1:
PROCEDURE OPTIONS (MAIN);

DECLARE
P(S), T) POINTER,
[IMAGE BASEDI(S),

KEY CHARACTER(3),
DATA CHARACTER(TT),
CARD1,

KEY CHARACTER(3),
NDATA CHARACTER(TT),
CARD2,

KEY CHARACTER(3),
DATA CHARACTER(T7),
CARD3,

KEY CHARACTER(3),
DATA CHARACTERI(TT),
CARD4,

KEY CHARACTER(3),
DATA CHARACTER(T7),
CARDS,

KEY CHARACTER(3),
DATA CHARACTER(77):
ON ENDFILE (SYSIN) BEGIN;
CLOSE FILE (SYSPRINT);
GO TO OVER;

NN=NN=NNENN NN RN -~ -

END:
INPUT:
GET
EDIT(CARD1l, CARDZ2, CARD3, CARD%,
CARDS)
(A(3), ALTT))S
P(1) = ADDR(CARD1);
P(2) = ADDR(CARD2):
P(3) = ADDR(CARD3);
P(4) = ADDR(CARD4);
P(5) = ADDR(CARDS);
SORT:
K = 03
LOOP:
DO
[=1 TO 4;
S =PI T = P(1 + 1)
IF
(S=>IMAGE.KEY) > (T->IMAGE.KEY)
THEN
DO;
K = 13 P(I) = T3 P(I + 1) = S3
END;
END
Looe;
IF
K =1
THEN
GO TO
SORT;
OUTPUT:
DO
I =170 5;
S = P(I);
PUT
EDIT (S->IMAGE) (A(3), A(77));
PUT
SKIP;
END
OUTPUT;
PUT
SKIP;
GO 1O
INPUT;
OVER:
END
SORTS8;

Figure 3G1-1. Using an array of pointers to sort structures not
in an array

35

structure separately and also from having to use separate KEY | DATA
assignment statements to a'ssign the absolute addresses of R carot
the structures to the array of pointers. The increase in (
program size is usually offset by a decrease in execution P(1) | ADDRICARD3) —T o
time, since data items are referred to more directly when CARD2
not in an array. P21 | ADDRICARD2) A% | SEeowe
Except for their use of scattered structures, the dia-
grams associated with SORTS (Figures 3G1-2, -3, and -4) o ¢ e | aooRICARDS A CARD3
are identical to the diagrams associated with SORT7. A FIRST -
It is also possible to create a subroutine procedure
from the common portions of SORT8 and SORT7. Such P4l | ApDRICARDY KEY | DATA CARDS
a procedure, SORTY, appears in Figure 3G1-5. This rou- W17 | FOURTH
tine uses a pointer array P as a parameter to sort structures PIS) | ADDRICARDT) \
that are not necessarily members of an array. . \’Bev DATA
Parameter P is a one-dimensional array of pointers that | £z | THimo cARDS

can be associated with argument arrays of arbitrary size
(as indicated by the asterisk in the dimension attribute of Figure 3G1-3. Array of pointers and individual structures after sort
P). The actual size of the array passed to P during an in-
vocation of SORT?Y is ascertained by the built-in function
DIM. The contents of the argument array are the absolute
addresses of the structures to be sorted. Each structure
must have the same attributes as the based variable IMAGE.
Upon completion of SORT9, successive addresses in the
argument array specify the order (from low to high) of the *
sorted structures.

Low
KEY | DATA
S=P(1); §->IMAGE CARD1
KEY DATA n FIFTH
CARD1
21 | FIFTH
q KEY | DATA CARD2
S=P(2); S->IMAGE
p(1) | aDDRICARD1) TR BTN A96 | SECOND
CARD2
/ ag6 | seconp
P2 | ADDRICARD2) <ev T OATA
S=P(3); §->IMAGE CARD3
KEY | DATA ata | FIRST
p { P31 | ADDR(CARDI) CARD3
A4 FIRST
KEY | DATA
S=Pl4); S ->IMAGE CARDA
Pi4) | ADDR(CARDA) <ev | DATA W17 | FOURTH
CARD4
w17 | FOURTH
P(S) | ADDR(CARDS) KEY | DATA
L S=P(5); S->IMAGE CARDS
\ T oara v 1 €02 THIRD
- CARDS
€02 | THIRD HIGH

Figure 3G 14. Sequential references to the sorted individual
Figure 3G1-2. Array of pointers and individual structures structures
before sort

36

SORTY:
PROCEDURE (P);
DECLARE
P(*) POINTER,
T PUINTER,
1 IMAGF EBASED (S),
2 KEY CHARACTERI(3),
2 DATA CHARACTER(TT):
SORT:
[FST = O3
LOOP:
LDu
I =1 TU (DIM(P,1)=113
S =P (1)s T =PI + 1)3
Ir
(S=>IMAGL.KEY) > (T=>IMAGF.KFY)
THEN
DO
TEST = 13 PU1) = T3 P(I + 1) = S3
END
END
LOGP
1F
TEST = 1
THEN
L0 TN
SORT;
RETUKN
END
SORTY;

Figure 3G1-5. A subroutine procedure that sorts structures not
in an array

3G2. Linking Data Items through Pointer Variables

An alternative method for organizing scattered data
items into a collective unit appears in procedure SORT10
of Figure 3G2-1, which links the scattered items through
a pointer variable attached to each item. This technique
is a generalization of the method employed earlier by
SORTS, in which subscript values were used to link the
members of an array. Procedure SORT 10, however, uses
pointer values to link scattered items, which may or may
not be members of an array.

SORT 10 uses five individual but identical structures:
CARDI1, CARD2, CARD3, CARD4, and CARDS5. Each
structure contains a three-character element, KEY: a 77-
character element, DATA: and a pointer element, L.

The program begins by assigning input data to each
structure. It then assigns the absolute address of each
structure to pointer L in the previous structure. The ad-
dress of CARD] is assigned to a pointer called HEAD, and
pointer L in CARDS receives a null address value (see
Figure 3G2-2).

At this point in the program, the structures form a
chain. Pointer HEAD specifies the location of the first

structure in the chain, and pointer L of each structure con-

tains the location of the next structure. A null address
for a pointer L indicates the end of the chain.

As SORT10 compares the KEY fields of successive
pairs of structures, required interchanges are performed on
the address values of the HEAD and L pointers, rather

than on the data values of the structures themselves; as a
result, less data is moved during the sort.

References to the chained structures use the based vari-
able IMAGE qualified by an appropriate pointer. Since
several structures in the chain may be referred to at the
same time during an interchange, intermediate pointer
variables, such as S, T, U, and V, are used to qualify simul-
taneous usages of IMAGE.

At the completion of the sort, as illustrated by Figure
3G2-3, the structures remain in their original (physical)
positions, but the HEAD and L pointers link the structures
in ascending order on their KEY elements.

The steps in Figure 3G2-4 show how SORT10 uses the
following statements to transpose the order of the first
two structures, CARD1 and CARD2:

S =HEAD->IMAGE.L;
T=S->IMAGE.L;

S ->IMAGE.L = HEAD;
HEAD->IMAGE.L=T;
HEAD =S,

Observe that the interchange of the two structures CARD1
and CARD?2 requires modification of three pointer vari-
ables: HEAD, CARDI1.L, and CARD2.L.

Figure 3G2-4 (step 4) shows how the structures are
linked after the first interchange has been completed. At
that point in the sort the structures are linked in the fol-
lowing order:

CARD2, CARDI1, CARD3, CARD4, CARDS

This is the logical order in which the structures are linked;
their original physical order remains unchanged.

When an interchange does not involve the logically
first structure in the chained sequence, pointer HEAD is
not modified; and, as the steps in Figure 3G2-5 show,
SORT10 uses a different set of instructions for the inter-
change.

U=HEAD,;

S=U->IMAGE.L;
T=S->IMAGE.L;
V=T->IMAGE.L;
T->IMAGE.L = U->IMAGEL.L;
U-->IMAGE.L = S—>IMAGE.L;
S—>IMAGE.L =V,

These instructions are executed under control of a DO-
loop, each cycle of which advances the pointers S, T, U,
and V to successive structures. Assignment of a null value
to T terminates the loop.

37

SORT10:
F3G2_1:
PROCEDURE OPTIONS (MAIN);
DECLARE
(HEADy Sy Ty Uy, V) POINTER,

IMAGE BASED(S),
KEY CHARACTER({13),
DATA CHARACTERI(TT),
L POINTER,
CARD1»
KEY CHARACTER(3),
DATA CHARACTFR(T77),
L POINTER,
CARD2,
KEY CHARACTERI(3),
DATA CHARACTERI(TT),
L POINTER,
CARD3,
KEY CHARACTER(3),
DATA CHARACTERI(TT7),
L POINTER,
CARD4,
KEY CHARACTERI(3),
DATA CHARACTERI(TT7),
L POINTER,
CARDS,
KEY CHARACTER(3),
DATA CHARACTFERI(TT7),

2 L POINTERS

ON ENDFILE (SYSIN)
REGIN;

NN RNRNN= NN~ N NN -

CLOSE FILF (SYSPRINT);
GO TO
PROC_END:
END:
INPUT:
GET
EDIT(CARDL.KEY, CARD1.DATA,
CARD2.KFY, CARD?.DATA, CARD3.KFY,
CARD3.DATA, CARD4.KEY, CARD4.DATA,
CARDS.KEY, CARDS.DATA) (A(3),
ALTTY)
HEAD = ADDR(CARD1);

CARD1.L = ADDR(CARD2);
CARD2.,L = ADDR(CARD3);
CARDI.L = ADDR(CARD4);
CARD4.L = ADDR(CARDS);
CARDS.L = NULL:

SORT:
K = 03 S = HEAD=-D>IMAGF.L;

IF
(HEAD->IMAGE.KEY) > (S=>IMAGE.KFY)
THEN
DO;
K = 15 T = S->IMAGE.L;
S=>IMAGE.L = HEAD:
HEAD->IMAGE.L = T; HEAD = S;
END;
U = HEAD; S = U->IMAGE.L;
T = S=>IMAGF.L:
DO
WHILE (T-=NULL):
IF
(S=>IMAGE.KEY) > (T->IMAGF.KEY)
THEN
DO
K =15 V= T->IMAGE.L:
T=>IMAGE.L = U->IMAGF.L;
U=>IMAGE.L = S->IMAGF.L;
S=>IMAGE.L = Vv;
END3
U = U=>IMAGE.L: S = U=->IMAGE.L:
T = $->IMAGF.L;
END;
IF
K =1
THEN
GO Tu
SORT; S, = HEAD;
OUTPUT:
bDu

WHILF (S-~=NULL):
PUT
EDIT(S->IMAGE.KEY, S->IMAGF.DATA)
(A(3), A(TT7));
PUT
SKIP;S
S = S->IMAGE.L;
END
QUTPUT
PUT
SKIP;
GO TO
INPUT
PROC_END:
END
SORT10;

Figure 3G2-1. Sorting structures that are linked by pointers

The steps in Figure 3G2-5 illustrate the effect of the
second interchange, which involves CARD1 and CARD3.
And Figure 3G2-5 (step 4) shows the structures are linked
in the following order after this second interchange has
been completed:

CARD2,CARD3,CARDI1,CARD4,CARDS5

A complete sort of the structures produces the follow-
ing order:

CARD3,CARD2,CARDS5,CARD4, CARDI

Figure 3G2-6 shows how the sorted structures may be
referred to in succession. Observe how a DO statement

38

can be used to move through the chain to a particular
structure. Also note the similarities between qualified
pointers in Figure 3G2-6 and subscripted subscripts in
Figure 3C2-6 (associated with SORTS).

Structures linked by pointer variables may also be
sorted with a subroutine, as demonstrated by procedure
SORT11 in Figure 3G2-7. This routine uses element-
pointer variable HEAD as a parameter. The associated
element-pointer argument in an invocation of SORT11
specifies the first structure in the chain of structures being
sorted.

The structures are linked as in SORT10, and a null link
indicates the end of the chain. The chain must contain at
least two structures; otherwise, the number of structures
is arbitrary.

J

J

ADDR(CARD1)
KEY DATA L
r4al FIFTH ADDR(CARD2)
KEY DATA L
A96 SECOND {\DDR(CARD3)
KEY DATA L
A14 FIRST ADDR(CARDA4)
KEY DATA L
w17 FOURTH ADDR(CARDS)
KEY DTAA L
E02 THIRD NULL

Figure 3G2-2. Linked structures before sort

HEAD

CARD1

CARD2

CARD3

CARD4

CARDS

ADDR(CARD1) HEAD

KEY DATA L
r4Al FIFTH NULL
KEY DATA L
A96 SECOND ADDR(CARDS)
s o
KEY DATA L
o
Al4 FIRST ADDR(CARD2)
KEY DATA L
w17 FOURTH ADDRI(CARDY)
LA
KEY DATA L
7N
EO02 THIRD ADDR(CARDA4)
Figure 3G2-3. Linked structures after sort

CARD1

CARD2

CARD3

CARD4

CARDS

39

Step1 S : HEAD ->IMAGE.L;T =S - > IMAGE.L;

Step2 S ->IMAGE L = HEAD;

HEAD HEAD
| ADDRICARD1) I—. ADDR(CARD1}
[’ CARD1 CARDI
KEY DATA L KEY DATA L
zn FIFTH ADDR(CARD2) | ™ | zn FIFTH | ADDRICARD2)
I cARD2 CARD2
s ! . KOV LATA 1 s ‘ KEY DATA L L
ey ATA —
uoon(cmo:; ® A96 | SECOND | ADDHICARD) "ﬂ ADDRICARD2) > R Y™ SECOND | ADDRICARDI)
|
| |
CARD3 o T
KLY DATA L T KEY pata 1
B "‘H —-f- v -
ADORICARD3) Ala EIRST ADDRICARDA) ! ADCRICARD3) Ara £1RST A anom |
J —— b e — e e !
L o . e
I CARDA F_ CARDA4
KEY DATA L KEY DATA L i
W17 | FOURTH | ADDRICARDS) | w17 FOURTH | AUDRICARDS) ,}_ﬁi
J
| 1
e]
CARDS [_ CARDS
KEY DATA L KEY DATA L
€02 THIRD NULL €02 THIRD | ADDRICARDS®)
Step3 HEAD _> IMAGE L= T HEAD Stepd4 HEAD - S, HEAD
ADDRI(CARD1) | Aoon(cno;)}_.'
-
B J
[CARD1 CARD!1
KEY DATA L KEY DATA L
zn FIFTH ADDR(CARD3) n FIFTH ADDR(CARD3! .'1
|
| o | J
| R CARD? CARD2
2 DATA [a
S i KEY DATA T s P KE
I R(CARDY
ADDRICARD?) ! A96 SECOND | ADDR(CARDY) ADDR(CARD2} A9 | SECOND | ADORI) ‘
L/'\ -
CARD3 CARD1.
T | KEY DATA L T KEY DATA L
ADDR(CARD3) Ale FIRST | ADDRICARD4) ADDR(CARD3) ala FIRST ADDRICARDA | '
CARD4 CARD4
KEY DATA L KEY | DaTA L
S T ——>1
w17 FOURTH | ADDRICARDS) w17 | FOURTH | ADDRICARDS) ‘
CARDS CARDS
KEY DATA L KEY DATA T
L
ﬂ €02 THIRD NULL €02 THIRD NULL

Figure 3G2-4. Performing the first interchange, which involves CARD1 and CARD2

Step1 U HEAD.S:U >IMAGE L:T=S ->IMAGE L;V = T ->IMAGE.L,

HEAD

ADDRICARD2)

Step2 T ->IMAGE.L = U ->IMAGE.L;

HEAD

ADDRI(CARD2)

CARD1 CARD1
S KEY DATA L S KEY DATA L
P =
ADDR{CARD1) Zn FIFTH ADDRI(CARDJ) ADDR(CARD1) mn FIFTH ADDRICARD3J)
CARD2 CARD2
u KEY DATA L U KEY DATA L
Lo o \ﬁ -
ADDR(CARD2) A96 SECOND ADDRI(CARD1) ADDRICARD2) A96 SECOND ADDR(CARD1)
N N
CARD3 CARD3
T KEY DATA L T KEY DATA L
- L o
ADDRI(CARDJ) Al4 FIRST ADDR(CARDA4) ADDR(CARD3J) Al4 FIRST ADDRI(CARD1})
CARD4 CARD4
v KEY DATA L v KEY DATA L
B
ADDRICARD4} w17 FOURTH ADDRICARDS) ADDRICARDY) w17 FOURTH ADDRICARDS)
2
CARDS5 CARDS
KEY DATA L KEY DATA L
E02 THIRD NULL €02 THIRD NULL
Step3 U -D>IMAGE L =S ->IMAGE L; StepA S->IMAGE L =V
HEAD HEAD
ADDR(CARD2) ADDR(CARD2)
CARD1 CARO1
S KEY DATA L S KEY DATA L
ADDRICARDt) m FIFTH ADDR(CARDI ADDRI(CARDY) m FIFTH ADOR!CARD4) ﬁ
CARD2 CARD2
v KEY DATA L U KEY DATA L
| e
ADDRICARD2) A96 SECOND ADDRICARDJ) ADORICARD2) A96 SECOND ADDRICARDJ)
CARD] CARO3
T KEY DATA L T KEY OATA L
ADDRICARD3) A4 FIRST ADOR(CARDY) ADORICARDY) Are FIRST ADDRI(CARDY
CARD4 CARD4
v KEY DATA L v KEY DATA L
> <
ADDRICARD4) w17 FOURTH ADDRICARDS) ADDR(CARD4®) w7 FOURTH ADCRICARDS!
CARDS CAKDS
KEY DATA L KEY DATA L
EO02 THIRD NULL €02 THIRD NULL

Figure 3G2-5. Performing the Second Interchange, which involves CARD 1 and CARD 3

41

LOW

v

HIGH

Iigure 3G2-6.

SORT11:
F3G2_T7:

S = HEAD: S —>IMAGE

S = HEAD; S = S —>IMAGE .L; S —>IMAGE

S - HEAD DO!=1T0O2;S=5->IMAGE.L END;S —>IMAGE

S =HEAD: DO = 1TO 3;S =S —>IMAGE.L: END: S —>IMAGE

S = HEAD:; DO |

Sequential references to the sorted sequence of linked structures

PROCEDURE (HEAD);
DECLARE

(HEAD, So Ty U, V) POINTER,
1 IMAGE BASED(S),

2 (KEY CHARACTER (3),

DATA CHARACTER(TT),

L POINTER):

SORT:
K = 03 S = HEAD->IMAGE.L:
1F
(HEAD-> IMAGE.KEY) > (S=D>IMAGE.KEY)
THEN
DO;
K = 13 T = S=>IMAGE.L:
S=>IMAGE.L = HEAD:
HEAD->IMAGE.L = T; HEAD = S;
END;
U = HEAD: S = U-D>IMAGE.L:
T = S=>IMAGE.LS
Do

42

WHILE (T-~=NULL)?

170 4:S =S ->IMAGE.L, END; S —>IMAGE

1F

DO

END

END

END

ADDR(CARD3)

KEY DATA L

zn FIFTH NULL

KEY DATA L

A96 SECOND ADDR(CARDS)
KEY DATA L

A1l14 FIRST ADDR(CARD2)
KEY DATA L

w17 FOURTH ADDR(CARD1)
KEY DATA L

E02 THIRD ADDR(CARD4)

(S=>IMAGE.KEY) > (T->IMAGE.KEY)
THEN

K

=13 v =
T->1MAGF.L

T->IMAGE.L:
= U=->IMAGE.L:

U->IMAGE.L = S->IMAGE.LS
S—->IMAGE.L = Vi

V]
T
H
IF
K =
THEN
GO TN

U->IMAGE.L: S
S->IMAGE.L:

SORT
RETURN;

SORT11:

U->IMAGE.L:

Figure 3G2-7. A subroutine procedure that sorts structures linked by pointer variables

HEAD

CARD1

CARD2

CARD3

CARD4

CARDS

3H. REVIEW OF TECHNIQUES FOR ADDRESSING
DATA ITEMS

This chapter has shown how the movement of data may
be reduced by manipulating the address of a data item
rather than the item itself. The discussion has been con-
cerned mainly with two types of addresses: relative ad-
dresses (subscript values) and absolute addresses (pointer
values). Since programmers are generally more familiar
with subscripts than with pointers, addressing techniques
were developed first in terms of subscripts and then ex-
tended to include analogous usage of pointers.

The first technique for reducing the movement of data
used an auxiliary array of address values, which permitted
a set of cards to be sorted without actually moving the
cards. An illustration of the subscript version of this
technique appears in Figure 3H-1. An array of structures
contains the cards being sorted, and an auxiliary array of
subscript values specifies the order of the cards. Rear-
ranging the subscript values rather than the cards reduces
the movement of data. An illustration of the same tech-
nique in terms of pointer values appears in Figure 3H-2.
Since pointer values are absolute addresses, there is no
need for the cards being sorted to be contained in an

array; the cards can be scattered throughout storage. Both

versions (subscript and pointer) of this technique were
implemented in procedures SORT4 and-SORTS.

Once it was seen how an auxiliary array of address
values could be used to specify the order of a set of cards,
a further generalization became possible. It was not nec-
essary to store the address values in an auxiliary array; in-
stead, they could be attached to the cards being sorted.
These attached addresses then permitted the cards to be
linked in a sequential manner without actually moving the
cards. An illustration of this technique in terms of sub-

N(1) KEY(1) DATA(1) CARD(1)
3 n FIFTH
N(2) KEY(2) DATA(2) CARD(2)
2
A96 SECOND
N(3) KEY(3) DATA(3) CARD(3)
5 N
A4 FIRST
N(4) KEY(4) DATA(4) CARD(4)
4
w17 FOURTH
N(5) KEY(5) DATAIS) CARD(S)
1
E02 THIRD

Figure 3H-1. Using an auxiliary array of subscript values to sort an

array of structures

P(1)

P(2)

P(3)

P(4)

P{s)

ADDRI(CARDJ)

ADDR(CARD2)

ADDRI(CARDS)

ADDR{(CARDY)

ADDRICARDI1)

KEY DATA
zn FIFTH
KEY DATA
A96 SECOND
KEY DATA
A4 FIRST
KEY DATA
w17 FOURTH
KEY DATA
E02 THIRD

CARD1

CARD2

CARD3

CAHRD4

CARDS

Figure 3H-2. Using an auxiliary array of pointer values to sort

scattered structures

H

CARD(1)

L1
CARD(2)

L2}
CARD(3)

L(3)
CARD(4)

L{4)
CARD({5)

3 |
KEY (1) DATA(1)
—
2N FIFTH
0
KEY(2) DATA(2)
—
A96 SECOND
— T N— 5
KEY(3) DATA(3)
—
\.
A14 FIRST
2
KEY{4) DATA(4)
W17 FOURTH
1
L/_ KEY (5) DATA(5)
EO2 THIRD
4]

L(5)

Figure 3H-3. Using subscript values to link an array of
structures in sort order

43

script values appears in Figure 3H-3. Each card (along 3l. SUMMARY OF CHAPTER 3

with an attached subscript value) is stored in an array of A. PL/I provides three major types of data addresses: J
structures. The attachgd subscript specifies the relative symbolic, relative, and absolute.

position of the next sorted card within the array. The
last of the sorted cards has an attached subscript value of
zero, and the first card in the sorted sequence is specified

B. Symbolic addresses permit mnemonic names to be
used in place of numeric addresses.

by the subscript value of variable H. This linking tech- C. Relative addresses are subscript expressions that speci-
nique contains the essential features of a list organization, fy the relative locations of items within arrays.

with one exception. The cards cannot be scattered D. Absolute addresses specify the actual locations of
throughout storage; they must be contained in an array. items within storage.

However, the use of pointer values in place of subscript
values removes this restriction, as shown in Figure 3H-4.
It is this type of list organization that is discussed in the

The built-in function ADDR obtains the absolute ad-
dress of a data item. The value of the built-in function

o . . . NULL identifies no generation of storage; it is used to R
remaining chapters of this manual. The subscript version o
. . - . . test for unallocated storage, and to indicate the end
and pointer version of this linking technique were imple- of a list

mented in procedures SORTS and SORT10.
F. The attribute POINTER declares an identifier to be a

pointer variable, which has an absolute address for its
value. PL/I also permits arrays of pointers to be de-
clared.

G. The attribute BASED (element-pointer-variable) de-

clares an identifier to be a based variable, which asso-

ciates descriptive information with a pointer variable.
KEY DATA L CARD? The descriptive information determines the storage
n FIFTH NULL characteristics at the location given by the pointer
variable. A based variable may be an element, an ar-
ray, a structure, or an array of structures.
KEY DATA L . CARD2 H. The pointer qualification symbol (->) allows different V)
r A96 | SECOND | ADDRICARDS) pointer variables to be associated with the same based
variable. The reference on the left of a pointer qual-
~ ification symbol must be an unsubscripted, nonbased
— — - CARD3 element-pointer variable, or a usage of the built-in

LT function ADDR. The reference on the right of the
A14 FIRST ADDR(CARD2) . g . .
pointer qualification symbol must be a based variable.

‘ I. When a reference to a based variable is not explicitly
qualified by a pointer variable, the reference is as-
KEY DATA L CARD4 sumed to be qualified by the pointer variable given in
W17 | FOURTH | ADDR(CARDY) the BASED attribute associated with the based vari-

p able.

| J. An identifier is contextually declared to be a pointer
KEY DATA L CARDS var#able by its appearance in one of the following

€02 THIRD ADDRI(CARD4) contexts: N
‘, 1) in a BASED attribute

2) in the SET option of READ, LOCATE, and ALLO-
CATE statements
3) on the left of a pointer qualification symbol (->).

Figure 3H-4. Using pointer values to link scattered structures in

sort order . :
K. A pointer variable receives a value through either the

assignment statement or the SET option of READ,
LOCATE, and ALLOCATE statements.

L. Only the comparison operators equal (=) and not
equal (=) may use pointer variables as operands.]

M. Pointer and based variables permit reductions in data
movement and allow associations to be formed among
scattered data items.

Chapter 4. Lists and the Dynamic Allocation
of Storage

The preceding chapter showed how pointer variables and
based variables may be used to reduce data duplication
and data movement when scattered data items are organ-
ized into collective units within internal storage. A re-
striction underlying the addressing techniques of the
preceding chapter, however, is that all storage locations
associated with based variables must be declared and allo-
cated independently of the based variables. As a result,
the number ot different storage locations that are to be
associated with based variables must be known at the time
a program is written. This requirement severely limits the
applications of based variables to problems that have well
defined storage needs and, for all practical purposes,
eliminates those applications that determine and allocate
nceded storage during the course of program execution.

This chapter presents methods for eliminating these
restrictions. so that storage may be allocated dynamically
for based variables as the need arises during program exe-
cution. The discussion also shows how the data-address-
ing techniques of the previoys chapter and the storage-
allocation techniques of this chapter may be combined to
form the basic facilities for list organization and manipu-
lation.

4A. BASED STORAGE

When storage is allocated, an association occurs between
a variable and a specified amount of storage. This associ-
ation can occur before program execution begins and can
remain in effect until the program is terminated; in this
case, the allocation is said to be static. It is also possible
for storage to be allocated after program execution begins
and for the storage to be released (freed for possible reuse)
before the program has finished; this type of allocation is
called dynamic.

The storage-class attributes determine which type of
allocation applies to a given variable. STATIC specifies
static storage allocation. AUTOMATIC, CONTROLLED,
and BASED each specify a type of dynamic storage allo-
cation:

A. Auromatic storage allocation for a variable occurs
automatically when program control enters the block
in which the variable is declared. Termination of a
block automatically frees the automatic storage inter-
nal to the block. Freeing the automatic storage asso-

ciated with a variable causes the value of the variable

to be lost.

B. Controlled storage allocation permits the programmer
to have direct control over allocation by means of the
ALLOCATE and FREE statements.

C. Based storage allocation also provides direct control
over allocation by means of the ALLOCATE and
FREE statemems but, unlike controlled allocation,
permits concurrent references to multiple storage areas
allocated for the same based variable.

4A1. Allocating Based Storage

Allocation of storage for a based variable is performed by
the ALLOCATE statement, which has the following basic
format:

ALLOCATE based-variable;

When executed, this statement allocates storage for the
based variable and assigns the absolute address of the allo-
cated storage to the pointer variable specified in the
BASED attribute of the based variable. The attributes
associated with the based variable determine the amount
of storage that is allocated.

EXAMPLE:

DECLARE TABLE(5) BASED(P) FIXED DECIMAL(3);

ALLOCATE TABLE;

These statements declare TABLE to be a based array and
allocate storage for an array of five elements, each of
which is a three-digit fixed-point decimal integer. The
location of the allocated storage is automatically assigned
to pointer P,

Reallocation of storage for a based variable does not
free previously allocated storage foi the variable. Instead,
both the old storage and the new storage are available,
provided the old value of the associated pointer is saved
before it is replaced by the location of the new storage.
Several allocations of storage for the same hased variable
may be distinguished by appropriate pointer qualification.

45

EXAMPLE:

DECLARE T POINTER,
SWITCH BASED (P) BIT(2);
ALLOCATE SWITCH;
T=P;
ALLOCATE SWITCH;
T—>SWITCH = ‘11’B;
SWITCH = ‘10’B;

In this example, SWITCH is a based variable that repre-
sents a two-position bit string. T and P are pointer vari-
ables. After each allocation of storage for SWITCH,
pointer P contains the address of the allocated storage.
Pointer T is used to save the address of the first allocation
before the second allocation is executed. The statement
T—>SWITCH = ‘11’B; assigns the bit-string constant ‘11°’B
to the first storage location allocated for SWITCH, and the
statement SWITCH = ‘10’B; assigns the constant ‘10’B to
the second storage location allocated for SWITCH.

Note how reallocation of based variables differs from
that of controlled variables. Although reallocation of a
controlled variable does not destroy its previously allo-
cated storage, only the most recent allocation is available
at any given time. Effectively, successive allocations of
storage for a controlled variable are stacked. Execution of
the FREE statement for a controlled variable releases the
current storage allocated for the variable and makes the
previous allocation available. Repeated execution of the
FREE statement for a controlled variable will eventually
release all storage that has been stacked for the variable.
The FREE statement has no effect on a controlled variable
that has no storage currently allocated for it.

4A2. The SET Option in an ALLOCATE Statement

As illustrated in the preceeding example, each allocation
of storage for a based variable assigns the address of the
new allocation to the pointer variable specified in the
BASED attribute associated with the based variable. When
two or more allocations of storage are performed concur-
rently for the same based variable, the addresses of previ-
ous allocations must be saved in separate pointer variables;
otherwise, the addresses will be lost. So.far, the address
of a previous allocation has been saved by means of the
assignment statement. PL/I, however, provides the SET
option in an ALLOCATE statement as an alternative
method for assigning the address of an allocation to a
pointer variable.

An ALLOCATE statement with a SET option has the
following form:

ALLOCATE based-variable SET (element-pointer-
variable);

a6

This statement allocates storage for the based variable and
assigns the address of the allocated storage to the pointer
variable specified in the SET option. The pointer variable
must represent a single pointer value; it cannot be the
name of an array of pointers or a structure of pointers.

An ALLOCATE statement without a SET option is
treated as having an implicit SET option that applies to
the pointer variable in the BASED attribute of the allo-
cated variable. An explicit SET option allows the pro-
grammer to specify a pointer variable different from the
one givern in the BASED attribute of tre allo.21¢3 variable,
This other pointer receives the address of the allocated
storage, and the pointer variable in the BASED attribute
remains unchanged.

EXAMPLE:

DECLARE P POINTER,
VALUE BASED (Q) FLOAT;

ALLOCATE VALUE;

ALLOCATE VALUE SET (P);

The first ALLOCATE statement allocates storage for
VALUE and assigns the location of the storage to pointer
Q. The second ALLOCATE statement allocates additional
storage for VALUE and assigns the location of this new
storage to pointer P. The value of pointer Q and the stor-
age allocated by the first ALLOCATE statement remain
unchanged by the second allocation.

A single execution of an ALLOCATE statement may
perform multiple allocations of storage.

EXAMPLE:
ALLOCATE VALUE, VALUE SET(P), SWITCH;

This statement is equivalent to the following set of state-
ments:

ALLOCATE VALUE;
ALLOCATE VALUE SET(P);
ALLOCATE SWITCH;

Commas separate multiple references in an ALLOCATE
statement. References to both based and controlled vari-
ables may appear in the same ALLOCATE statement.

4A3. Freeing Based Storage

Storage allocated for a based variable is freed for possible
reuse by the FREE statement, which has the following
basic format:

FREE based-variable;

9

This statement frees the storage currently associated with
the based variable. The program obtains the address of
this storage from the current value of the pointer variable
declared in the BASED attribute of the based variable.
The attributes of the based variable determine the amount
of storage that is freed.

EXAMPLE:

DECLARE P POINTER,

ITEM BASED(Q) CHARACTER(10);
ALLOCATE ITEM;
ALLOCATE ITEM SET(P);

FREE ITEM;
FREE P->ITEM;

In these statements, P and Q are pointer variables, and
ITEM is a character-string based variable. Two allocations
of storage occur for ITEM. Pointer Q contains the loca-
tion of the first allocation; pointer P, the second. The
first FREE statement frees the storage for ITEM at the
location specified by Q. The second FREE statement
frees the storage for ITEM at the location specified by P.

A based variable can be used to free storage only if that
storage has been allocated for a based variable with the
same attributes, including array bounds, string lengths,
and arithmetic precisions. An attempt to free a based
variable that has not been allocated produces unpredict-
able results.

4A3A. Multiple References in a Free Statement

A single FREE statement may free storage for two or
more based variables in one execution of the statement.

EXAMPLE:
FREE P->ITEM, ITEM;

This statement is equivalent to the following set of state-
ments:

FREE P->ITEM;
FREE ITEM;

Commas separate multiple references in a FREE state-
ment. References to both based and controlled variables
may appear in the same FREE statement.

4A3B. Implicit Freeing of Storage

Under the following conditions, based storage is freed
without the use of an explicit FREE statement:

A. Based storage that has been allocated in an input/out-
put buffer by the LOCATE statement is freed after the
value of the associated variable is written into a file.

B. Storage that has been effectively allocated by a READ
statement with a SET option is freed by the next
READ or CLOSE operation for the file.

C. All storage is freed at the end of the task in which it
was allocated, unless it was allocated within a storage
area belonging to another task.

4A4. An Example of Based Storage Used in a Sort
Procedure

Procedure SORT12 in Figure 4A4-1 obtains successive
sets of input cards from the standard system input file
(SYSIN). A control card precedes each set and contains
a number that specifies the number of cards in the set.
The number in the control card does not include the con-
trol card itself. The procedure sorts the cards of each set
into ascending order on the first three characters of each
card. It then puts the sorted cards (still preceded by their
control count) into the standard system output file
(SYSPRINT). These steps are repeated until all sets of
input cards have been processed.

When the control card for a set of input cards is read
and control enters the BEGIN block PROCESS, an array
of pointers P is allocated automatically. The number of
elements in P equals the number of cards in the set (that
is, the number in the first column of the control card).
SORT12 then allocates based storage for the cards of the
set as they are read and assigns the locations of the cards
to the elements of pointer array P, which is used to sort
the cards.

Actual sorting is performed by the subroutine-proce-
dure SORT9, which appeared in Figure 3G1-5. The in-
voking reference to SORT9 contains pointer array P as an
argument. When control returns from SORT9, the succes-
sive pointer values in P specify the locations of the cards
in sort sequence. The DO-group named OUTPUT succes-
sively assigns the card locations in the pointer array P to
the pointer S. The reference S—>IMAGE is used to print
each card in sort sequence.

Before processing continues with the next set of input
cards, the storage allocated for the present set of cards and
for array P is freed. The automatic storage for array P is
freed when control leaves the BEGIN block PROCESS.

47

SORT12: F3G1_5:
F4hAs_1: PROCEDURE (P);
PROCEDURE NPTIONS (MAIN); DECLARE
DECLARE P(*) POINTER,
1 IMAGE BASED (S), T POINTER,
2 KEY CHARACTER (3), 1 IMAGE BASED (S),
2 DATA CHARACTER (T77), 2 KEY CHARACTER(3),
N FIXED DECIMAL (1); 2 DATA CHARACTER(77);
ON ENDFILE (SYSIN) SORT:
BEGIN; TEST = 0;
CLOSE FILF (SYSPRINT); LoOP:
GO TO DU
PROC_END; I = 1 TO (DIM(P,1)-1);
END; =P (I); T = P(I + 1)
INPUT: IF
GET (S=>IMAGE.KEY) > (T->IMAGE.KEY)
EDIT (N) (F(1))3; THEN
GET no;
SKIP; TEST = 15 P(I) = T3 P(1 + 1) = S;
PROCESS: END;
BEGIN; END
DECLARE LoOP;
P(N) POINTER; IF
CARDS: TEST = 1
Do THEN
1 =1 TO N; 070
ALLOCATE IMAGE; SORT;
P(I) = S; RETURN;
GET END
EDIT(S->IMAGE)(A(3), A(T7)); SNRT9;
END PROC_END:
CARDS ; END
CALL SORTS (P); SORT12;
COUNT ¢
PUT
DATA (N); .
PUT Al4_FIRST 1
sK1P; e-econ: : :
UUTPUT: W1T_FOURTH. 4
[b]e] ITI_FIFTH 5
I =1 TO N; N 8y
= . 2
por® P i :
EDIT(S=>IMAGE) (A(3), A(TT)); WLT_FUURTH .
PUT ZT1_FIFTH- S
SKIP; FREE S->IMAGE: Ne Ss
END loodtia :
UUTPUT; E02_THIRD 3
PUT_ T ——— :
*
NEXT:
G0 TO
INPUT;
END
PROCESS:
SORT9:

Figure 4A4-1. Allocating and freeing based storage for numbers of structures sorted with an array of pointers

4A5. Allocating Based Storage for a Self-defining

Structure able array bound, the value of which is maintained by a

variable within the structure itself.

However, such a variable cannot posses a value until
storage has been allocated for the self-defining based array.
And since the amount of storage to be allocated depends
on the value of this variable, a facility is needed for asso-
ciating a value outside a based structure with a variable
within the structure prior to allocation. This facility in
PL/I is called the REFER option.

Self-defining data contains descriptive information about
itself, such as its size, which can be used by the program-
mer for packing, unpacking, scanning, editing, and storage
allocation purposes. A common application of self-defin-
ing data occurs with variable-length input/output records
that contain a specification of their own size. PL/I per-
mits a based structure to be self-defining’by allowing it to
contain either one adjustable string length or one adjust-

48

4A5A. The REFER Option

The declaration of a self-defining based structure contains
a REFER option, which determines the amount of storage
involved in an allocation of the structure. When storage is
allocated for a self-defining based structure, the REFER
option causes the value of a variable outside the structure
to be assigned to a variable within the structure, and also
causes this value to be used as the string length or array
bound of a component involved in the same allocation of
the structure.

The REFER option has the following general format:

element-variable REFER(element-variable)

The element variables must be unsubscripted fixed-point
binary variables of default precision. The variable to the
left of the keyword REFER must not be a component of
the self-defining based structure. This variable can be
qualified by both a pointer variable and the name of a
structure component if the variable is part of a structure.
The variable to the right of REFER must belong to the
structure that contains the REFER option.

The REFER option can be used in the declaration of a
based structure only as the length of a string, or as the
bound of an array.

EXAMPLE:

DECLARE 1 STRING BASED (P),
2 HEAD FIXED BINARY,
2 BODY CHARACTER(SIZE REFER
(HEAD)),
SIZE FIXED BINARY;

This statement declares STRING to be a self-defining
based structure, which contains the two elements HEAD
and BODY. When storage is allocated for STRING, the
length of the character string BODY is automatically set
equal to the current value of SIZE, and this value, in turn,
is automatically assigned to HEAD by the program. Any
reference to.STRING, other than a reference in an ALLO-
CATE statement, uses the value of HEAD to determine
the length of BODY. For example, the statement FREE
STRING: uses the value of HEAD to determine the amount
of storage to be freed.

Note that the REFER option can appear only once in a
structure declaration. When the option specifies a string
length, the string must be an element variable and must be
the last element variable in the structure declaration.

If the REFER option appears as an array bound, the
bound must be the upper bound of the leftmost dimen-
sion of the array variable with which it is used. The
REFER option must also belong to the last array variable
in the structure declaration or to a minor structure con-
taining the last element of the structure.

EXAMPLE:

DECLARE 1 TABLE BASED(P),
2 UPPER FIXED BINARY,
2 CONTENTS(0:N REFER(UPPERY))
CHARACTER(15);

In the declaration of TABLE, the REFER option specifies
N as an adjustable upper bound for the one-dimensional
array CONTENTS. Each element in array CONTENTS

is a string of 15 characters.

EXAMPLE:

DECLARE
1 PRESSURE BASED(P),
2 VOLUME,
3 INDEX FIXED BINARY,
3 POUNDS FLOAT,
2 TEMPERATURE,
3 FLASH FIXED BINARY,
3 RANGE FIXED BINARY,
3 DEGREES(T REFER(RANGE),—32:0)
FLOAT,
T FIXED BINARY;

The declaration of PRESSURE uses the REFER option to
specify T as the adjustable upper bound of the leading
dimension of the two-dimensional array named DEGREES.
As in the preceding example, the REFER option belongs
to the last array in the structure.

It should be noted that since the adjustable bound in a
self-defining based structure must appear as the leading
dimension of the component with which it is declared, it
is not possible for that component to inherit a dimension
from a higher level component. Inherited dimensions
automatically become the leading dimensions of the lower-
level component.

EXAMPLE:

DECLARE
1 SCHEDULE BASED (P),
2 LIMIT FIXED BINARY,
2 DISTANCE (10),
3 RATE (25),
3 TiME (25) FLOAT;

In this declaration, RATE and TIME inherit the bounds
1:10 of the leading dimension of DISTANCE. RATE and
TIME both receive the bounds 1:10 and 1:25. Any at-
tempt, therefore, to use the REFER option in the dimen-
sion attribute of TIME would be incorrect. However, the
option could appear with DISTANCE, in place of 10.

49

EXAMPLE:

DECLARE
1 STEAM BASED (P),
2 VOLUME.
3 INDEX FIXED BINARY,
3 POUNDS FLOAT,
2 TEMPERATURE FLOAT,
2 LEADING FIXED BINARY,
2 POOL (VECTOR REFER(LEADING)),
3 GALLONS (5) FLOAT,
3 DEGREES (5) FIXED DECIMAL,
3 AREA (5) FLOAT,
VECTOR FIXED BINARY;

The REFER option is used correctly in this example,
because it appears with the minor array of structures
named POOL, which contains the last component in the
based structure STEAM. When storage is allocated for
STEAM, the lower-level components of POOL, which are
the arrays GALLONS, DEGREES, and AREA, inherit the
value of VECTOR as their leading upper bound. The
value of VECTOR is also assigned automatically to the
element variable LEADING.

After storage has been allocated for a self-defining
structure, an assignment statement can be used to change
the value of the element variable on the right of the
REFER option. When this change occurs, the following
rules apply to the self-defining structure:

A. The self-defining structure must not be freed until the
element variable is restored to the value it had when
allocated.

B. The self-defining structure must not be written out
while the element variable has a value greater than the
value it received when allocated.

C. The self-defining structure may be written out when
the element variable has a value equal to or less than
the value it received when allocated. The number of
elements or the length of the string actually written is
that speciﬁéd by the current value of the element var-
iable.

EXAMPLE:

DECLARE
1 RECORD BASED(P),
2 SIZE FIXED BINARY,

2 ELEMENTS (COUNT REFER(SIZE)),
COUNT FIXED BINARY INITIAL(100);

ALLOCATE RECORD;

50

SIZE=90 SIZE = 90;
WRITE FILE(OUT) FROM(RECORD);

In this example, the first 90 values of array ELEMENTS
are written along with the value of SIZE. An attempt to
free RECORD at this point will create an error because
SIZE must be restored to the value it had when allocated,
namely, 100. Had SIZE been assigned a value greater than
100, the WRITE statement would produce an error.

4A5B. An Example of the REFER Option in a Sort
Procedure

Procedure SORT13 in Figure 4A5B-1 contains an example
of the REFER option. This procedure processes the same
input and produces the same results as procedure SORT12
in Figure 4A4-1. The major difference between the two
procedures occurs in the way based storage is allocated for
each set of cards being sorted. SORT12 allocates storage
individually for each card in a set and controls the alloca-
tions by means of.a DO statement. SORT13, however,
allocates storage collectively for all cards in a set by means
of a self-defining array of structures called ARRAY, which
contains the single element SIZE and a variable number of
occurrences of the structure IMAGE. ‘
The number in the first column of the control card be-
fore each set of cards specifies the number of cards in the
set (excluding the control card itself). This number is
assigned to variable N, which appears in the following ex-
pression associated with the declaration of IMAGE:

N REFER(SIZE)

The expression states that the number of occurrences of
IMAGE within ARRAY is given by N and that after stor-
age is allocated for ARRAY, the value of N is to be as-
signed to element SIZE within ARRAY.

This use of the REFER option permits a single execu-
tion of the ALLOCATE statement to allocate storage for
all cards in a set and removes the need for individual allo-
cations under control of a DO statement.

- As in SORT12, actual sorting is performed by subrou-
tine procedure SORTY, which appeared in Figure 3G1-5
of Chapter 3. The invoking reference to SORT9 contains
pointer array P as an argument. When control returns
from SORT?Y, the successive pointer values in P specify the
locations of the cards in sort sequence.

Note that the card addresses in array P cannot be used
to qualify the based structures in IMAGE when the cards
are printed in sort sequence. Any pointer value that qual-
ifies a based structure within IMAGE is assumed to qualify

' SORT13:
F4ASB_1:
PROCEDUR
DECLARE

ON
BEGIN;
c

END3
INPUT:
GET

GET

PROCESS:
BEGIN;S
DECLARE

CARDS®

‘;-r' END

OUTPUT:
PUT

GET

PUT

Do
PUT
PUT

END;

PUT

NEXT:
GO

END

E OPTIONS (MAIN);

ARRAY BASED(R),

MAP BASED (T),
KEY CHARACTER
DATA CHARACTER
FIXED BINARY,

ZNN =W NN -

COUNT FIXED DECIMAL

ENDFILE (SYSIN)

SIZE FIXED BINARY,
IMAGE (N REFER(SIZE)),
KEY CHARACTER(3),

DATA CHARACTERI(TT),

3),
(77),

LOSE FILE (SYSPRINT);
GO TO

PROC_FND;

EDIT (COUNT) (F(Ll))3

SKIP;
N = COUNT;
ALLUCATE ARRAY;

P(COUNT) PUINTER;

DO 1
PLT)

1 TO N;

ENIT (IMAGE (1))
CARDS ;

CALL SORT9(P);
NDATA (COUNT);

SKIP;

ADDR(IMAGE(I));

(A(3),

[=1 TON; T = P(I);

CDIT (T->MAP) (A(
SKIP;

SKIP;

FREE ARRAY;

T0
INPUT;

PROCHSS

PROC_FND:

FND

COUNT= 5:

SORT133

(1)

A(TT))

3)y AT

AL&_FIRST

A96_SECOND

€02_THIRD

WIT_FOURTH

Ve wN -

ZTLI_FIFTH-

Figure 4A5B-1. Allocating and freeing based storage for a self-
defining array of structures which is sorted with

an array of pointers

the entire containing structure ARRAY and will be auto-
matically adjusted (offset) by the number of storage bytes
separating the specified structure within IMAGE from the
beginning of ARRAY. To avoid this erroneous address
adjustment, an independent based structure named MAP
is used to refer to the cards when they are printed in sort
sequence.

Later examples in Chapter S show how the REFER
option is used to create self-defining records in output
files.

4A6. Allocating and Freeing Based Storage within an Area

PL/I provides a type of variable called the area variable,
which reserves storage for allocations of based variables.
The area variable permits based allocations to be grouped
as a unit for convenient input/output transmission or as-
signment to another area variable while maintaining the
separate identity of each allocation. The following discus-
sion describes how area variables are used to group based
allocations. Later discussions in Chapter S present the use
of area variables for relocating based allocations without
invalidating the address values of associated pointer varia-
bles.

4A6A. The AREA Attribute

An identifier becomes an area variable when it is declared
with the AREA attribute, which has the following general
format:

AREA(expression)

The integral portion of the value obtained from the ex-
pression represents the size of the area in bytes. The ex-
pression, however, is optional; when it is not used, an
implementation-defined size is assumed by the PL/I com-
piler.

Although an area variable reserves storage for alloca-
tions of based variables, it can have any storage class. The
size of an area with static storage class must appear in the
AREA attribute as an unsigned fixed-point decimal integer
constant. The AREA attribute is not restricted to element
identifiers; it also applies to array and structure identifiers.
PL/I also provides for area arguments and parameters; and
the asterisk notation can be used to denote the size of an
area parameter. The DEFINED attribute can be used to
define an area on another area, through overlay or corre-
spondence defining; both areas, however, must have the
same size.

51

EXAMPLE:

DECLARE A STATIC AREA(32767),
B AREA.
c AREA(N),
D AREA(S) CONTROLLED,
E AREA(10000) BASED(P),
F(5) AREA(400),
1 G,
2 H AREA(100),
2 1 AREA(200),
2 J AREA(300),
K AREA DEFINED B,
L AREA (*):

This statement specifies that:

A. A is a static area variable that reserves 32767 bytes of
storage.

B. B is an automatic area variable that reserves an imple-
mentation-defined amount of storage.

C. Cisan automatic area variable whose size depends on
the value of N current at the time the block to which
it is internal is activated.

D. Disa controlled area variable whose size depends ei-
ther on the value of S at the time an ALLOCATE

statement allocates storage for D, or on a size specifica-

tion in the ALLOCATE statement which overrides S.

E. E isa based area variable that reserves 10000 bytes of
storage on each allocation.

F. F isan area that contains five areas, each of which re-
serves 400 bytes of automatic storage.
G. G is an area structure that contains the three areas H,

I, and J. H reserves 100 bytes of automatic storage, I
reserves 200 bytes, and J reserves 300 bytes.

H. K is an area defined on area B.

I. Lisan area parameter that assumes the same size as its
associated area argument in a subroutine or function
invocation.

4A6B. The IN Option
The ALLOCATE statement uses the IN option for based

allocations within an area. The statement has the follow-
ing general format:

ALLOCATE based-variable SET(pointer-variable)
IN(area-variable);

This statement allocates storage for the based variable
within the specified area and assigns the location of the
allocated storage to the pointer variable. The IN option is
not required; when it is not used, the based variable is

52

allocated in a storage area provided by the operating sys-
tem. When the SET option is used, it may appear either
before or after the IN option. If the variable in an IN op-
tion is not explicitly declared, it is automatically assumed
to be an area variable.

The FREE statement, as applied to based variables, has
the foliowing general format:

FREE based-variable IN (area-variable);

The IN option must appear in a FREE statement if the
based allocation was made within an explicitly specified
area; otherwise, the option is omitted.

EXAMPLE:

DECLARE STORE AREA(500) BASED (P),
VALUE BASED (Q) FIXED DECIMAL (5,2),
R POINTER;

ALLOCATE STORE:

/* P ADDRESSES AREA STORE. */

ALLOCATE VALUE IN(STORE);
/* Q ADDRESSES ALLOCATION OF VALUE IN
STORE. */

ALLOCATE VALUE IN(P—>STORE) SET (R);
/* R ADDRESSES SECOND ALLOCATION OF VALUE
IN STORE. */

FREE VALUE IN(STORE);
/* FREES ALLOCATION OF VALUE ADDRESSED BY

Q.*/

FREE R—>VALUE IN(STORE);
/* FREES ALLOCATION OF VALUE ADDRESSED BY
R. */

The first ALLOCATE statement allocates 500 bytes of
storage for area STORE and assigns the location of the
allocated storage to pointer P.

The second ALLOCATE statement causes storage for
based variable VALUE to be allocated within area

J

P->STORE and assigns the location of the allocated stor-
age to pointer Q.

The third ALLOCATE statement causes another alloca-
tion of VALUE (different from Q—>VALUE) within area
P—>STORE and sets pointer R equal to the location of
the allocated storage.

The FREE statements employ the IN option because
allocations of VALUE were explicitly made in STORE.
Although the allocations of VALUE become free, the
storage for area STORE remains allocated.

4A6C. The AREA ON-Condition

An attempt to allocate based storage within an area that
contains insufficient free storage for the allocation pro-
duces an AREA ON-condition. If no ON-unit appears for
the AREA condition in an ON statement, the operating
system issues a comment and raises the ERROR condition.

When an ON-unit is specified and a normal return oc-
curs from the ON-unit, the ALLOCATE statement that
raised the AREA condition is executed again. If the ON-
unit has changed the value of a pointer qualifying (explic-
itly or implicitly) the reference to the inadequate area so
that the pointer value specifies another area, the allocation
is reattempted within the new area. Failure of the ON-unit
to provide a larger area may place the program in an error
loop.

Chapter 5 discusses other situations that may produce
an AREA condition. The ONCODE built-in function can
ascertain the type of situation that has raised the ON-con-
dition.

4A6D. An Example of an Area Variable in a Sort
Procedure

Procedure SORT 14 in Figure 4A6D-1 sorts successive sets
of cards into ascending order on the first three characters
of each card. The standard system-input file (SYSIN) con-
tains the cards, and each set may contain a different num-
ber of cards. A trailer card with asterisks in the first three
positions signals the end of each set of cards. After each
set is sorted, it is written with its trailer card into the
standard system-output file (SYSPRINT).

SORT 14 allocates storage for based variable IMAGE
throughout the empty area A (see Figure 4A6D-2). Point-
er variable HEAD receives the address of the first alloca-
tion for IMAGE (see Figure 4A6D-3). The location of
each subsequent allocation for IMAGE is assigned to
pointer L of the previous allocation. Pointer L of the last
allocation receives a null address value. Storage is allo-
cated for IMAGE throughout area A until the AREA ON-
condition occurs. At that point, all allocations for IMAGE
form a linked chain to which input is assigned (see Figure
4A6D-3).

Input cards are assigned to successive positions in the
chain until a trailer card is read. The pointer L associated

with the last card in storage then receives a null value, and
the location of the first unused storage position in the
chain is assigned to pointer UNUSED (see Figure 4A6D-4).

Actual sorting of the cards in storage is performed by
subroutine procedure SORT11 of Figure 3G2-7, which
was discussed in Chapter 3. Pointer HEAD serves as the
argument in the invocation of SORT11. When control re-
turns from SORT11, the cards are linked in ascending sort
order (see Figure 4A6D-5).

After the sorted cards are written into the output file,
the storage positions linked to pointer UNUSED are re-
linked to the chain formed by HEAD (see Figure 4A6D-6).
Processing then continucs with the next set of cards.

Figure 4A6D-7 contains examples of sample input and
output for SORT14.

4B. ORGANIZATION OF DATA IN LIST FORM

The storage allocation and pointer manipulation tech-
niques used by procedure SORT14 (paragraph 4A6D)
demonstrate basic methods for organizing and processing
data items in list form. These methods involve the follow-
ing general steps:

A. linking successive allocations of based storage nto a
chained list (briefly called a list), which is identified by
a pointer variable that contains the absolute address of
the first storage component in the list

B. inserting successive input items into the leading storage
components of the list to form a list of data items

C. retaining unused storage components in a separate list

D. processing the data items in the list (this usually pro-
duces changes in the address values of the pointer links
attached to the data items in the list)

E. relinking used and unused storage components into a
single list before processing the next set of input items.

Although these steps are general, they are not unique.
Alternative methods can be developed for obtaining equiv-
alent results. For example, based storage need not be allo-
cated throughout an area before input items are read.
Storage can be allocated as each item is read and freed
when processing has been completed for a set of items.
With this technique, no excess storage would be allocated
for a set of input items. However, allocating and freeing
storage repeatedly in this manner would be inefficient,
since it is faster to allocate all necessary storage once, and
to separate used from unused storage by pointer manipu-
lation.

4B1. The Main Parts of a List

The list organization shown in Figure 4B1-1, while not the
most general type of organization, illustrates the main
parts contained in all lists. The list in this figure consists

53

SORT14: THEN

F4A6D_1:
PROCEDURE OPTIONS (MAIN); /% SAVE LINK OF LAST CARD AND
DECLARE REPLACE IT BY NULL */
(HEADy UNUSEDy Sy Ty Uy V) POINTER, no;
A AREA (1000}, UNUSED = T=>L: T=>L = NULL;
1 IMAGE BASED(S), GO TO
2 (KEY CHARACTER(3), INPUT3;
DATA CHARACTER(77), FND;
L POINTER),
1 CARD, S~>IMAGE = CARD, BY NAME;
2 KEY CHARACTER(3), T =S; S = S=>L3
2 DATA CHARACTER(77), G0 TO
SORT11 ENTRY (POINTER); INPUT2;
INPUT3:
/% WHEN AREA CONDITION DCCURS, SET
LAST ALLOCATED LINK TO NULL */ /% PRINT INPUT SEQUENCE %/
ON AREA PUT
BEGIN; LIST ('SORT14 INPUT:');
IF PUT
S = NULL SKIP;
THEN S = HEAD;
EXIT: DU
r->L = NULL; WHILE (S~=NULL);
Gh TO PUT
INPUTL EDIT(S->IMAGE.KEY, S=>IMAGE.DATA)
END; (A);
PUT
SKIP;
/% WHEN END-OF-FILE CONDITION OCCURS S = S=>L;
FREE BASED STORAGE, CLOSE SYSPRINT END;
FILE, AND END PROCEDURE #/ PUT
ON ENDFILE (SYSIN) EDIT (CARD)(A(3), A(7T));
BEGIN; PUT
S = HEAD: SKIP(2);
Lo SORTM:
WHILE (S~=NUEL); CALL
T = S=>L; FREE S->IMAGE; S = T3 SORTL1 (HEAD);
END;
CLOSE FILE (/% PRINT SORTED CARDS FOLLOWED BY
SYSPRINT);
Gu TO TRAILER CARD %/
UVER; PUT
END; LIST (*SURT14 OQUTPUT:*);
/* THROUGHOUT AREA A, ALLOCATE AND PU'SK,,;
LINK STORAGE FOR BASED VARIABLE S = HEAD:
IMAGE */)
S = NULL: WHILE (S~=NULL):
ALLOCATE IMAGE IN(A) SET (S); PUT
HEAD, T = S3 EDIT (S->IMAGE.KEY, S—>IMAGE.DATA)
00 (AL3), ALTT)):
WHILE (1B): PUT
ALLOCATE IMAGE IN (A) SET (S); SKIP;
T->L = S3 T = S3 T = S; S = S=>Ls
END; END:
PUT
/% EDIT (CARD)(A(3), A(TT));
00 PUT
WHILE(1B) IS TERMINATEL BY AREA SKIP (2);
CONDITION &/
/% RELINK UNUSED STORAGE AND
/% ASSIGN CARDS TO BE SORTED TO CONTINUE PROCESSING INPUT &/
LINKED STORAGE #/ T->L = UNUSED:
INPUTL: GO 10
S = HEAD; INPUTL
INPUT2: OVER:
GET END
EDIT(CARD)(A (3), A(TT)); SORT 143
IF

CARD.KEY = 1%&%s

Figure 4A6D-1. Allocating and linking based storage in an area for varying numbers of structures that are to be sorted

54

SURTL& INPUT:
AB2_SECONY---

Faa_Thinp~--
A23_PIRST-——--
s00

ST e OUTPLT:
A23_#IRSTY
Ab2_SFCONG---

F36_THIRD= === mm oo m e oo 3

SURT14 INPUT:
IT1_FLIFTH-——-
A36_SECUND-
AL4_F IRST
WIT_FLURTH-

FO2_TRIAf= === ==mmmmmmemeo e e cemccema e

SURTL& UUTPUT:

FOZ2_THIRD
WLT_FUURTH==—
ITL_FIFTH
(113

SUMTI4 INPUT:

Al4_FIRST--—--- -

A96_SECUND

FO2_THINU-

WLT _FUURTH — oo oo oo e 4

[11]

SURT14 LUTPUT:

AL&_FIRST-omomamm

496_SECOND:

FO2_THIRD--===-~

W1T_FUukTh
s

SORTLI&4 [INPUT:

W1T_FUukTr

IT1_F1FTH= = mmm = et e

A96_St CUND

LTL_SIXTH-====-=
Ala_FIRLT-—mmmm
FU2_THIMU= === mmmmmmmm e e

SORTI4 GUTPUT:

Y T R LT e

&36_StCUNIT——=

FC2_TRIN{ ——mmme

ml/_FLURT === -
R N R L T rrs——

FUL S X Thim o mmm e e e e e e~

Figure 4A6D-7.

Printout of cards sorted by procedure SORT14

AREA A
HEAD
NULL
EMPTY
UNUSED
NULL

Figure 4A6D-2. Area A before based storage is allocated and

linked for cards

AREA A.

HEAD

KEY

DATA

KEY

DATA L

KEY

DATA

KEY

DATA L

KEY

DATA

KEY

DATA L

UNUSED

KEY

NULL

DATA

KEY

Figure 4A6D-3

DATA L

. Linked storage before cards are read

55

AREA A

HEAD KEY DATA L KEY DATA L
AB62 SECOND
KEY DATA L KEY DATA L
F34 THIRD
KEY DATA L KEY DATA L
A23 FIRST NULL
UNUSED KEY DATA L KEY DATA L
NULL
Figure 4A6D-4. Linked storage after cards are read
AREA A
HEAD KEY DATA L KEY DATA L
A62 SECOND
KEY DATA L KEY DATA L
F34 THIRD NULL
KEY DATA L KEY DATA L
A23 FIRST
UNUSED KEY DATA L KEY DATA L
NULL

Figure 4A6D-5. Linked storage after cards are sorted

56

AREA A

HEAD KEY DATA L KEY DATA L
KEY DATA L KEY DATA L
KEY DATA L KEY CATA L
UNUSED KEY DATA L KEY DATA L

NULL NULL

Figure 4A6D-6. Linked storage before next set of cards is read
BODY
e N ~
HEAD
f—&ﬂ
POINTER DATA POINTER DATA POINTER DATA POINTER DATA POINTER
> Bag B
COMPONENT COMPONENT COMPONENT COMPONENT

(ARROWS REPRESENT POINTER VALUES THAT SPECIFY THE LOCATION OF THE NEXT COMPONENT)

Figure 4B1-1. A list with four components

57

of a head and a body. The head is a pointer variable that
identifies the list and contains the address of the first com-
ponent in the list. The body is a sequence of list compo-
nents, each of which consists of a data item and a pointer
variable. Except for the last pointer, which has a null ad-
dress, the pointer in a component contains the address of
the next component in the list.

This type of list organization always requires a head and
permits the body of a list to contain an arbitrary number
of components, limited only by available storage. It is
even possible for the body of a list to contain no compo-
nents; in this case, the list is said to be null (see Figure
4B1-2).

HEAD

I—A’—\

POINTER

NULL

Figure 4B1-2. A null list

Figures 4B1-1 and 4B1-2 do not show the area within
which storage has been allocated for list components.
These illustrations emphasize the main parts of a list and
deemphasize the environmental aspects of list organiza-
tion. They also stress the close resemblance between a
list and a one-dimensional array, the major difference
being that successive components of a list need not occupy
contiguous storage locations.

4B2. Advantages of Lists

Lists retain the advantages obtained from absolute address-
ing:

A. reducing data movement
B. associating data items in scattered locations.

With these capabilities, items may be inserted into and
deleted from lists without forcing other items in a list to
be moved, as would be required with items in an array.
Lists also give the programmer better control over storage
allocation and permit the same storage to be used by sev-
eral different variables at different times. Sharing storage
in this manner also reduces the amount of storage that
would ordinarily lie dormant in anticipation of maximum
storage requirements for individual arrays and structures.

4B3. Types of Lists

Figure 4B1-1 illustrates one of the simplest types of list
organization. However, other organizations are possible,
and the pointer and based variable facilities of PL/I allow
three major types of lists to be created:

58

A. Data lists (i.e. lists of data items)
B. Pointer lists (i.e. lists of pointer values)
C. Lists of lists

A data list, as shown in Figure 4B1-1, consists of linked
data items. This type of list, however, possesses two im-
portant disadvantages: all data items in the list generally
must have the same attributes, and the same data item
cannot be shared by two or more lists at the same time; a
distinct copy of the item must appear in each list, thus
reducing conservation of storage.

These disadvantages can be removed by replacing the
data items in a list with pointer variables that specify the
locations of data items outside the list. Such lists are
called pointer lists because they consist of linked pointers.
They retain the advantages of list organization while allow-
ing the same data item to be shared (pointed to) by differ-
ent lists and permitting the data items associated with a
list to have different attributes.

Note that it is possible to allow a data list to contain
data items with different attributes. However, such a list
must be processed on an individual basis. Pointer lists, on
the other hand, permit general rather than specific process-
ing techniques to be developed for all lists and still allow
list items to possess a variety of attributes.

It is also possible for the items in a list to be other
lists. In this case, the containing list is called a list of lists.
This type of organization permits lists to possess advan-
tages analogous to those associated with multidimensional
arrays.

The techniques presented in SORT 14 for inserting, de-
leting, and rearranging items in a data list also apply to
pointer lists and lists of lists. These advanced types of
lists, however, permit far more complicated arrangements
of list items than is possible with the simple linear organi-
zation used in SORT14. Since detailed discussion of the
methods for organizing and processing advanced list organ-
izations lies beyond the scope of this manual, the remain-
der of the manual deals solely with data lists that possess
the simple linear organization used in SORT14.

4C. REVIEW OF TECHNIQUES FOR ORGANIZING
BASED STORAGE IN LIST FORM

This chapter has shown how the ALLOCATE statement
may be used to generate storage for a based variable as the
need arises during program execution. Successive execu-
tions of an ALLOCATE statement for a based variable
permit multiple generations of storage to be associated
simultaneously with the same based variable. Each gener-
ation of storage is distinguished by a qualifying pointer,
and should a particular generation of storage no longer be
needed, it can be released by executing a FREE statement.
Storage that has been freed becomes available for further

.

allocation. Allocating and freeing storage during program
execution generally improves the efficienicy of computer
applications that have highly variable storage requirements
(see the application areas described in Chapter 1).
Repeated allocation and release of storage, however,
often increases the execution time of a program by a sig-
nificant amount, particularly when the allocations are
managed by the operating system. One way of reducing
such inefficiency is to allocate required storage only once
and to link the storage into a list. An illustration of such
a list appears in Figure 4C-1 where 18 storage components
have been allocated throughout an area and linked to form
the list called UNUSED. As storage is required by other

lists, components can be unlinked from UNUSED and
linked in turn to the new lists. Figure 4C-2 shows two

“lists (LIST1 and LIST2) that have obtained different

amounts of storage from UNUSED. Similarly, when a
storage component is no longer needed by a list, the com-
ponent can be relinked to UNUSED where it becomes
available for assignment to other lists as the need arises.
These techniques for pooling storage were used in
SORT14. They eliminate the inefficiency associated with
repeated executions of ALLOCATE and FREE statements
and at the same time maintain flexibility in storage assign-
ment by means of address manipulation.

AREA
UNUSED DATA L DATA L DATA L
DATA L DATA L DATA L
DATA L DATA L DATA L
DATA L DATA L DATA L
DATA L DATA L DATA L
DATA L DATA L DATA L
NULL

Figure 4C-1. Allocating storage components throughout an area and linking them into a list

59

AREA

Figure 4C-2. Assigning unused storage components to other lists

60

LIST1 DATA DATA DATA L
DATA DATA DATA L

NULL
LIST2 DATA DATA DATA L

NULL
UNUSED DATA DATA DATA L
DATA DATA DATA L
DATA DATA DATA L

NULL

4D. SUMMARY OF CHAPTER 4

A.

The storage-class attribute BASED specifies a type of
dynamic storage allocation.

The ALLOCATE and FREE statements provide direct
control over based storage and have the following gen-
eral formats:

ALLOCATE based-variable SET(pointer-variable)
IN(area-variable);
FREE based-variable IN(area-variable);

Successive allocations of storage for a based variable
are not stackec as they are for a controlled variable.
Two or more aliocations for the same based variable
may be referred to at the same time.

. The pointer variable specified in the SET option of an

ALLOCATE statement receives the address of the
based allocation.

. An ALLOCATE statement without a SET option

causes the address of a based allocation to be assigned
to the pointer variable in the BASED attribute of the
allocated variable.

. The declaration of a self-defining based structure con-

tains a REFER option, which has the following format:
element-variable REFER(element-variable)

This option determines the amount of storage involved
in an allocation of the self-defining structure.

. The REFER option may appear only once in the dec-

laration of a self-defining structure, and must occur
either as a string length or as an array bound in the
component at the end of the structure.

. When storage is allocated for a self-defining based

structure, the REFER option causes the value of a var-

iable outside the structure to be assigned to a variable
within the structure. This value also replaces the
REFER option and determines the string length or
array bound of the final component involved in the
sarne allocation of the self-defining structure.

The AREA attribute has the following form:
AREA (expression)

This attribute specifies an area variable, which may
have any storage class and which reserves storage for
allocations of based variables. The expression in the
attribute determines the amaount of storage (in bytes)
that is reserved.

. The IN option of an ALLOCATE statement specifies

the area within which storage is allocated for a based
variable. When the IN option does not appear in an
ALLOCATE statement, the operating system provides
an area for the based allocation.

. The IN option must appear in a FREE statement if the

based allocation was made within a specified area;
otherwise, the option is omitted.

. An AREA ON-condition occurs when an attempt is

made to allocate based storage in an area that does not
contain enough free storage for the allocation.

. When an ON-unit appears in an ON statement for the

AREA condition and a normal return occurs from the
ON-unit, the ALLOCATE statement that raised the
AREA condition is executed again. Looping will occur
if the ON-unit does not increasé the amount of free
storage in the associated area.

. If no ON-unit appears in an ON statement for the

AREA condition, the operating system issues a com-
ment and raises the ERROR condition.

61

Chapter 5. Facilities for Relocating Data Lists

The previous chapter showed how scattered data items
may be linked with pointer variables to form list organi-
zations that can be processed with a minimum of data
movement. Many applications, however, require the com-
ponents of a list to be moved collectively either between
the internal and external storage devices of a computer, or
solely within internal storage. But the list-processing tech-
niques presented in the preceding chapter do not permit
valid movement of a list as a unit, primarily because the
values of pointer variables are absolute addresses which
become invalid when the items they point to are moved
to, or reallocated at, other storage locations. To overcome
this limitation, PL/I provides special variables called offset
variables, which allow list components to be linked by
relative addresses that remain valid during list transmission
and assignment. The linkage techniques developed in the
preceding chapter still apply to relocatable lists, but offset
variables are used in place of pointer variables.

This chapter shows how lists may be treated as collec-
tive units and how offset variables are used to form relo-
catable lists.

5A. TREATING LISTS AS UNITS WITHIN AREAS

PL/I allows the elements of an array or structure to be
referenced collectively through an array or structure name.
Similar reference, though, is not possible with a list, be-
cause a list is a data organization that is not explicitly
known to PL/I. However, a list can be treated as a collec-
tive unit by referring to the area in which the list compo-
nents have been allocated. Internal and external move-
ment of a list then becomes possible by transmitting the
containing area.

5B. ASSIGNING AREAS TO OTHER AREAS

The name of an area may be treated as an area variable,
the value of which is the storage currently allocated for
the area name. As a result, area variables can be used in
assignment statements. When an area variable appears to
the left of the equal sign in an assignment statement, the
expression on the right must be another area variable or a
function reference that returns an area. An area cannot
be converted to any other type of data; therefore, an area
can be assigned only to an area variable.

No operators, not even comparison operators, can be
applied to area variables, and only the INITIAL CALL
form of the INITIAL attribute may appear in an area
declaration.

62

When an area is allocated, it automatically receives the
empty state, which means that storage has not been allo-
cated for any based variables within the area. An area that
is not empty can be made empty by assigning it the value
of an empty area, or the value of the built-in function
EMPTY. The effect of such an assignment is to free all
allocations of based variables within the receiving area.
Note that the area itself does not become free but retains
its storage in reserve for further allocations of based vari-
ables.

A reference to the built-in function EMPTY uses no
arguments and has the following form:

EMPTY

An EMPTY reference cannot appear in an operational
expression; its value is used solely to free storage allocated
in a specified area.

EXAMPLE

DECLARE
(AREA1,AREA2) AREA(100),
STRING BASED(P) CHARACTER(100);

ALLOCATE STRING IN(AREA1) SET(P);
P—>STRING = (100)'X’;

AREA2 = AREAT;

AREA1 = EMPTY;

In this example, both area variables AREA1 and
AREAZ2 reserve 100 bytes of automatic storage. The
based variable STRING is a 100-position character string,
which is allocated in AREA1 and to which a string of 100
X characters is assigned. When AREAL is assigned to
AREAZ2, the contents of both-areas become equal. Assign-
ment of the EMPTY function to AREAT1 frees the storage
allocated for STRING in AREAL.

Besides providing a convenient way of equating the
contents of two or more area variables, area assignment
also permits a list of based allocations to extend beyond
the limits of a single area. For example, attempted alloca-
tion of a variable in a based area that contains insufficient
free storage raises the AREA ON-condition. An associated
ON-unit for the condition can then be used to assign the
contents of the area to a reserve area, and to empty the
original area for further allocations. Upon return from the
ON-unit, the allocation can be attempted again within the
original area.

EXAMPLE

DECLARE
(AREA1,AREA2) AREA(100),
STRING BASED(P) CHARACTER{100);

ON AREA

BEGIN;
AREA2 = AREA1;
AREA1 = EMPTY;;
GOTOA;

END;

A: ALLOCATE STRING IN(AREA1) SET(P);
P—>STRING = (100)'X’;

GO TO A;

EXAMPLE:

In this example, both area variables AREA1 and
AREA?2 reserve 100 bytes of automatic storage. The
based variable STRING is a 100-position character string,
which is allocated in AREA1 and to which a string of 100
X characters is assigned. When more than one allocation
of STRING is attempted in AREA1, the AREA ON-<condi-
tion occurs, and control transfers to the specified ON-unit
in the ON statement. The ON-unit saves the contents of
AREAL1 in AREA2, and empties AREAI1 for further allo-
cations. Control is then returned to the ALLOCATE
statement, where another allocation of STRING is made
in AREAL.

5C. THE EXTENT OF AN AREA

The amount of storage (in bytes) that is reserved when an
area is allocated is called the size of the area and is speci-
fied by the integral value of the expression in the associ-
ated AREA attribute. The amount of storage that is cur-
rently allocated for based variables within an: area deter-
mines the extent of the area, which is defined as the
amount of storage between the start of the area and the
end of the allocation most distant from the start. Asa
result, the extent of an area never exceeds the size of the
area and even can be zero when the size is not zero; a ref-
erence to the built-in function EMPTY always produces an
area of zero extent.

The diagrams in Figure 5C-1 illustrate the relationship
between extent and size for several area configurations.
Shaded portions of the diagrams represent free storage
that is available for further allocation of based variables.
In AREA1 of Figure 5C-1, all storage has been allocated,
therefore the extent equals the size. In AREA?2, the ex-
tent also equals the size, but the area contains free storage.
In this case, the end of the allocation most distant from
the start coincides with the end of the area. The extent
of AREA3 is less than the size. AREA4 has zero extent,
because no based storage is currently allocated within it.

)
U708k
))))

ZERO|
E X-
TEN

)

\

Yl |

(Shaded portions represent free storage)
Figure 5C-1. How area extent and area size are related

63

S5D. THE EFFECT OF EXTENT ON AREA
ASSIGNMENT

Assignment of an area effectively frees all allocations in
the receiving area, and then assigns the extent of the area
contents to the receiving area. All free-storage gaps are
retained during area assignment, so that allocations within
the assigned extent maintain their locations relative to
each other. If the gaps were closed up, relative addressing
techniques (which are discussed later) might become in-
valid.

Figure 5D-1 shows how area extents are assigned. The
diagrams illustrate several area configurations both before
and after assignment. Shaded portions of the diagrams
again represent free storage. AREA1 and AREA2 have
the same size but different extents. After assignment,
both areas have the same size, extent, and contents. Note
how the allocations in the assigned area retain their rela-
tive positions in the receiving area. AREA3 has a larger
size than AREA4, but the extent of AREA3 is less than
the size of AREA4; therefore, AREA3 can be assigned to
AREA4 as indicated.

AREA 1 AREA 2

SE. THE AREA ON-CONDITION FOR AREA
ASSIGNMENT

When the extent of an assigned area exceeds the size of the
receiving area, an AREA ON-condition occurs, and the
content of the receiving area becomes undefined. If the
procedure does not contain an ON-unit for the AREA
condition, the operating system issues a comment and
raises the ERROR condition. When an ON-unit is speci-
fied and normal return occurs from the ON-unit, program
execution continues from the point of interrupt. The
same activity occurs when the AREA condition is raised
by a SIGNAL statement. However, an AREA condition
raised by an attempted allocation of storage produces dif-
ferent activity when a normal return occurs from the asso-
ciated ON-unit (see paragraph 4B5D, “The AREA ON-
Condition”).

The ONCODE built-in function may be used to ascer-
tain the type of situation that has raised an AREA ON-
condition.

AREA 3 AREA 4

0000

Y

Y

) 7

BEFORE ASSIGNMENT

AREA 2=AREA 1;

AREA 1 AREA 2

BEFORE ASSIGNMENT

AREA 4 = AREA 3;

AREA 3 AREA 4

[0 W

00 000

o

7

AFTER ASSIGNMENT

Figure SD-1, How area extents are assigned

64

AFTER ASSIGNMENT

T_EXTENT:
FS5F_1:
PROCHOURE OPTIUNS (MAIN);
DECLARE
A AREA (48),
8 BASED (P) CHARACTER (24),
EXTENT RETURNS (FIXED (5)),
COUNT FIXED (5);
ALLOCATE B IN (A) SET (P);
P => B = (24) 'X';
COUNT = EXTENT (A);
PUT LIST
(*EXTENT OF A =*|]|COUNT]]* BYTES');

LXTENT:
PRUCEDURE
(AREA) FIXED DECIMAL(S);
VDECLARE
ARFEA AREA (%),
E FIXED DECIMAL (S),
SPACE AREA(E) CONTROLLED;
/% WHEN THE AREA CONDITION OCCURS,
REALLOCATE SPACE WITH INCREASED SIZE,
AND TRY ASSIGNMENT AGAIN., ®/
ON AREA
BEGIN;

FRFE SPACE; E = E + 13
GO TN
ALLOCATE_SPACF;
END3S

/% ALLOCATE SPACE WITH INITIAL SIZE
OF ZERO. &/
E = 03
ALLOCATF_SPACE:
ALLOCATE SPACE;

/% ASSIGN AREA TO SPACE. IF NOT
POSSIBLEs AREA CONDITION OCCURS. ®/
SPACE = AREA;

/% WHEN THIS POINT IS REACHED, THE
ASSIGNMENT [S SUCCESSFUL. FREE SPACE
BEFORE RETURNING. */

FREE SPACE;

/* RFTURN COMPUTED SIZE OF ZPACE,
WHICH EQUALS THE EXTENT OF AREA [N
BYTES. */
RETURNI(E)

END
EXTENT;

END T_EXTENT;

EXTENT OF A = 264 BYTES

Figure SF-1. A function procedure that computes the extent of
an area.

5F. COMPUTING THE EXTENT OF AN AREA

Area assignment can be used to compute the extent of an
area. The function procedure EXTENT in Figure SF-1
shows one way of performing such a computation and
demonstrates how the AREA condition may be raised
during area assignment. EXTENT contains the parameter
AREA, which represents the area whose extent is to be
computed. A reference to EXTENT produces a five-digit
fixed-point decimal integer that specifies the extent in
bytes.

The function uses a work area called SPACE, which
initially has a zero size and to which AREA is assigned.
When the size of AREA exceeds that of SPACE, the at-
tempted assignment produces an AREA condition. The
associated ON-unit reallocates SPACE with its size in-
creased by one byte and reattempts the assignment. Re-
peated failure of the assignment causes the size (E) of
SPACE to be increased until it is equal to the extent of
AREA. At that point the function returns the computed
extent. Faster computation of the extent is possible by
increasing E with a large number of bytes, say 100, until
E exceeds the extent of AREA. Rapid convergence to the
extent is then produced by repeated halving of the two
nearest values of E that straddle the extent.

5G. THE LENGTH OF AN AREA

The PL/1 compiler associates each area variable with a
control region that contains such information as the size
of the area and the locations of free-storage gaps within
the area. This control information is attached to the asso-
ciated area contents when record-oriented input and out-
put statements transmit an area variable. The length of
the resulting record always exceeds the size of the associ-
ated area. The amount of additional storage required for
area control information depends upon the implementa-
tion characteristics of the PL/I compiler and is obtained
from the Programmer’s Guide for the compiler.

To distinguish between area size and record length,
PL/I uses the length of an area, which is the sum of the
area size (specified in the AREA attribute) and the num-
ber of storage bytes required by the area control informa-
tion. During record-oriented transmission of an area var-
iable, it is the area length and not the area size that deter-
mines the record length. The programmer uses the record
length in an ENVIRONMENT attribute for the associated
file, or in a Data Definition statement under the Job
Control Language for the Operating System.

65

5H. THE EFFECT OF AREA ASSIGNMENT ON
POINTER VALUES

Pointer values contained in an area that is assigned to an-
other area become invalid in the receiving area. This re-
striction also applies to null pointer values.

Correct transmission of a pointer value requires explicit
assignment of the value to a receiving pointer variable.
Later discussions present another method, which uses
relocatable pointers called offsets to maintain the validity
of pointers transmitted by area assignment.

51. ADDRESSING THE CONTENTS OF AN ASSIGNED
AREA

When a based variable is allocated in an area, the SET
option in the ALLOCATE statement provides the address
of the based allocation. Subsequent assignment of the
area, however, does not provide a way of locating the
based item in the new area. As an example, consider the
following statements:

DECLARE
ITEM BASED(P) CHARACTER(10),
(AREA1,AREA2) AREA(100);

ALLOCATE ITEM IN(AREA1) SET(P);
AREA2 = AREAL;

Reference to ITEM in AREA1 may be made through
the expression P->ITEM. Though AREA1 has been as-
signed to AREA2, a reference to ITEM in AREA?2 is not
possible, because the address of ITEM in AREA2 is not
known and cannot be used to qualify ITEM. To overcome
this difficulty, PL/I uses relative pointer variables called
offset variables.

5J. OFFSET VARIABLES

Declaration of an offset variable must be explicit and is
made with the OFFSET attribute, which has the following
form:

OFFSET (area-variable)

The area variable in parentheses must be based and unsub-
scripted, and must have an implied or explicit level number
of one in its declaration.

EXAMPLES:

DECLARE
AREA1 AREA BASED(P1),
AREA2 AREA(500) BASED(P2),
O OFFSET(AREA1),
(M, N) OFFSET(AREA2) EXTERNAL STATIC,
SWITCH CONTROLLED OFFSET(AREA1),
T(5) OFFSET(AREA2) INTERNAL,
V(-2:2, ~3:3) OFFSET(AREA2),
1 A, 2 X CHARACTER(15), 2 Y OFFSET(AREA1),
1 TABLES, 2 I(5) OFFSET(AREA2), 2 J(0:4)
OFFSET(AREA1);

As shown in these examples, PL/I allows offset variables
to be individual element variables, or elements of arrays
and structures. An offset variable can have any storage
class and scope, and the usual default rules for these attri-
bute types also hold for an offset variable. The area vari-
able in an OFFSET attribute must be explicitly declared.
If it is not, the variable is assumed to be an area variable
by its appearance in the OFFSET attribute. However, an
error will occur, because the area variable receives the
automatic storage class by default. This type of storage
violates the requirement that the area variable in an OFF-
SET attribute must have the based storage class.

It is possible, however, to associate an offset variable
with an area that is not based. Consider the following
statements:

DECLARE
AREA1 AREA(2000),
DUMMY _AREA AREA(2000) BASED(DUMMY _
POINTER),
O OFFSET(DUMMY _AREA);

DUMMY _POINTER = ADDR(AREA1),

AREA1 and DUMMY _ AREA are area variables.
AREA1 reserves automatic storage, and DUMMY _AREA
reserves based storage. The OFFSET attribute for variable
O uses DUMMY _ AREA and thus satisfies the requirement
that the area specified in an OFFSET attribute must be
based. When the address of AREA1 is assigned to DUM-
MY _POINTER, DUMMY _AREA becomes equivalent to
AREA1. Subsequent references to offset variable O are
then effectively associated with AREAL.

9

The size of the area declared for DUMMY _AREA in
the previous example does not have to be the same as the
size of AREA1, and can even be zero. The only purpose
of DUMMY _AREA is to provide a level-one based area
variable for the OFFSET attribute of variable O, so that
variable O can be made relative to the starting address of
AREAI1. The size of DUMMY _AREA is unimportant,
because it does not affect the starting address assigned to
DUMMY _AREA through DUMMY POINTER.

5J1. Assigning Values to Offset Variables

The value of an offset variable is a relative address, that is,
an address which is relative to (or “offset” with respect
to) the beginning of the area associated with the offset
variable. Addresses that are relative to an area permit data
items within the area to be linked in list form, so that the
address linkage of the list does not become invalid when
the content of the area is assigned to another area (this
point is discussed in more detail in paragraph 5K).

An assignment statement can be used to assign a value
to an offset variable, and the offset variable can receive
the values of pointer variables as well as the values of off-
set variables. When the value of a pointer variable is as-
signed to an offset variable, the assigned value is converted
to an offset value. The conversion is performed automat-
ically by subtracting from the value of the pointer variable
the absolute address of the area specified in the OFFSET
attribute for the offset variable. The address arithmetic
performed by the program is equivalent to the following
calculation:

offset value = (pointer value)—(absolute address of area)

The offset value produced by this calculation is assigned to
the offset variable, but the pointer variable retains its or-
iginal value (which is an absolute address).

Similarly, when an offset variable is assigned to a point-
er variable, the offset value is converted to a pointer value.
The offset value is effectively added to the absolute ad-
dress of the area specified in the associated OFFSET at-
tribute:

pointer value = (offset value)+(absolute address of area)

The resulting pointer value is assigned to the pointer vari-
able, but the offset variable retains its original value (which
is a relative address).

Note that the foregoing address computations are per-
formed automatically by the program. PL/I does not
allow the programmer to use arithmetic operations to
specify address computations.

When an offset variable is assigned to another offset
variable, the offset value is assigned without modification.
The offset variables involved in the assignment do not have
to be associated with the same area. Consequently, an
offset address can be made relative to more than one area;
it is this facility that permits the construction of reloca-
table data lists (discussed in paragraph 5K).

The following example shows how address values are
assigned to offset variables; it also shows how to obtain the
absolute address of an item located in an assigned area:

DECLARE
AREA1 AREA(500),
AREA2 BASED(A) AREA(500).
DUMMY _AREA BASED{DUMMY _POINTER) AREA,
(P1, P2) POINTER,
01 OFFSET(DUMMY _AREA),
02 OFFSET(AREA2),
STRING BASED(P1) CHARACTER(80);

DUMMY _POINTER = ADDR(AREA1);
ALLOCATE STRING IN(AREA1) SET(P1);
ALLOCATE AREA2 SET(A);

A—>AREA2 = AREAL;

01=P1;
02=0l1;
P2=02;

AREA1 reserves 500 bytes of automatic storage, and
AREA? reserves 500 bytes of based storage. An imple-
mentation-defined amount of based storage is reserved by
DUMMY_ AREA. AREA?2 is itself allocated in an area
provided by the operating system: pointer A specifies the
location of AREA2. STRING is an 80-position based
character-string allocated in AREA1, and pointer P1 speci-
fies the address of STRING in AREA1. When the address
of AREAL1 is assigned to DUMMY FOINTER, offset vari-
able Ol becomes associated with AREAI.

After AREALI is assigned to A—->AREA2, both areas
contain equivalent storage configurations. Assignment of
pointer P1 to offset O1 produces the relative address of
STRING in AREA1. This relative address remains un-
changed when assigned to offset 02. Assignment of 02, in

67

AREA 1 A AREA 2
1000 // 2000

P1 / P2 %
1050 2050

/ /
/ /
/ /
y STRING STRING
01 02 //
50 5

W2

ALLOCATE STRING IN(AREA1) SET(P1);
ALLOCATE AREA2 SET(A);

A —>AREA2 = AREA1;
01=P1;
02=01;
P2 =02;

Figure 5J1-1. Obtaining the address of a data item in an assigned area

turn, to P2 produces the absolute address of STRING in
A—>AREA2. Reference to STRING in A->AREA?2 then
becomes possible with the expression P2—>STRING.

Figure 571-1 uses assumed addresses to illustrate the
relationship between AREA1 and A—>AREA2. The
figure assumes AREAT is located at address 1000, and
A—>AREA?2 at address 2000. STRING is further assumed
to be located in AREA1 at address 1050, which becomes
the value of P1. Assignment of AREA1 to A—>AREA2
places STRING in A—>AREA? at location 2050. Each
occurrence of STRING occupies the same relative position
(50th location) in both AREA1 and A—>AREA2.

When P1 is assigned to O1, O1 receives the relative ad-
dress value (50 = 1050 — 1000) of P1 with respect to
AREA1 rather than the absolute value (1050) of P1. 02
receives the relative address 50 through assignment of O1
to 02. P2 then receives the absolute address value (2050 =
50 + 2000) of 02 when O2 is assigned to P2. Note that
direct assignment of O1 to P2 would not be correct, be-
cause O1 is relative to AREA1 and not to A—>AREA2;
assignment of O1 to P2 produces an absolute address of
1050 rather than the desired 2050.

The broken lines in Figure 5J1-1 indicate offset varia-
bles to help distinguish them from pointer variables.

68

/*ALLOCATE STRING IN AREA1, and SET P1.*/
/*ALLOCATE AREA2, AND SET A.*/

/*ASSIGN AREA1 TO A —> AREA2.*/

/*SET O1 TO RELATIVE ADDRESS OF STRING IN AREA1.*/
/*SET 02 EQUAL TO 01.*/

/*SET P2 TO ABSOLUTE ADDRESS OF STRING IN A —> AREA2.*/

5J2. The NULLO Built-In Function

A null offset value can be assigned to an offset variable
through the built-in function NULLO, which requires no
arguments and has the following form:

NULLO

A reference to this function produces a null offset address,
which specifies no relative storage location. A null offset
address can be used to indicate the end of a list of compo-
nents linked by offset addresses.

. Although pointer values may be assigned to offset vari-
ables, and offset values, in turn, may be assigned to pointer
variables, a null offset value cannot be assigned to a point-
er variable. Similarly, a null pointer value cannot be as-
signed to an offset variable in place of a null offset value.
These restrictions apply not only to explicit references to
NULLO and NULL but also to assigned variables that cur-
rently have null offset and null pointer values.

As an illustration, if P is a pointer variable and O is an
offset variable, P can be assigned to O provided P does not
have a null value. When the value of P might be null, an
IF statement may be used to ensure proper assignment:

IFP=NULL
THEN O =NULLO;
ELSE O =P,

A similar statement governs the correct assignment of O to
P:

[F 0O=NULLO
THEN P =NULL;
ELSEP=0;

5J3. Restrictions on Offset Variables

The restrictions on pointer variables presented in Chapter
3 also apply to offset variables, with the addition of the
following points:

A. An ofrset variable cannot qualify a based variable. The
offset value must first be assigned to a pointer variable,
which is then used to qualify the based variable.

B. Offset values and pointer values form a special type of
program control data called the locator type. Locator
data cannot be converted to any other type, nor can
any other type of data be converted to locator type.
Offset variables can receive offset and pointer values
only; the same restriction applies to pointer variables.

C. Locator variables can appear as arguments and para-
meters. An offset argument associated with an offset
parameter, or a pointer argument associated with a
pointer parameter requires no conversion and therefore
produces no dummy argument. But an offset argument
associated with a pointer parameter, or a pointer argu-
ment associated with an offset parameter does require
conversion and will produce a dummy argument. Also,
when an offset argument is associated with an offset
parameter, both must be offset with respect to the
same area for the argument-parameter association to be
meaningful.

D. The DEFINED attribute can be used for overlay or
correspondence defining of an offset variable on an-
other offset variable. The area variables named in the
OFFSET attributes of the two offset variables need not
be the same. The DEFINED attribute also applies to
pointer variables. However, an offset cannot be de-
fined on a pointer, nor can a pointer be defined on an
offset.

E. As with pointer variables, the comparison operators
equal (=) and not equal (m=) are the only two opera-
tors that can use offset variables as operands.

5K. RELOCATION OF DATA LISTS

Once the components of a list have been allocated and
linked within an area, references to the area name allow
the list to be treated as a unit. The advantage of being
able to refer to the list as a unit is that area assignment can
be used to move the list to another area, such as a work
area. The name of the area also permits collective trans-
mission of the list to an external storage medium, such as
magnetic tape or magnetic disk, from which the list can be
retrieved for further processing. If area assignment were
not available, the components of a list would have to be
reallocated and linked individually within the new area.
Moving the list in this manner would generally take more
time than is required for direct assignment of the area.

A list that is linked by pointer values, however, does
not remain properly linked when it has been moved. The
components of the assigned list have new addresses that
are not specified in the linking pointers of the list. Ad-
justment must be made to the values of the linking point-
ers to maintain proper linkage of the list. The following
discussions show how these adjustments are made for
both internal and external relocation..

5K1. Internal Relocation

Chapter 4 showed how based allocations may be linked in
an area to form a data list. Relocation of such a list within
internal storage is performed, in part, by assigning the area
that contains the list to a receiving area. As discussed
previously, however, the pointer values that link the com-
ponents of the list become invalid in the receiving area
when transmission is performed by area assignment.

Consider, for example, the incorrect area assignment
illustrated in Figure 5K1-1. B1->BODY is a based area
that contains a three-component data list, which is as-
signed to based area B2—>BODY2. For continuity with
previous examples, the list components in this figure have
the same structure organization used in Chapter 4. In the
figure, pointer HEAD1 specifies the location of the first
list component in BI->BODY 1. Offsets OHEADI and
OHEAD? are relative to BODY 1 and BODY?2 and are used
to obtain the address value of pointer HEAD2, which
specifies the location of the first list component in B2—>
BODY?2. As before, broken lines indicate offset address
values.

The following statements perform the assignment:

B2->BODY2 = B1->BODY [;
OHEADI = HEADI;

OHEAD2 = OHEADI;

HEAD?2 = OHEAD2;

69

HEAD1 81 ->B0DY1

OMEAD1 = HEAD1;
OHEAD2 = OHEAD1;

B2 ->BOOY2 = 81 ->80DY1;
HEAD2 = OHEAD2;

Figure 5K1-1. Incorrect assignment of a data list

These statements assign the data list in BI->BODY1 to
B2—>BODY?2 and obtain the proper value for HEAD?2,
but they do not maintain the validity of the component
pointers in the receiving area B2—>BODY2. The pointers
in B2->BODY 2 have unknown values (indicated by the
question marks) and, therefore, do not link the list compo-
nents. Note further that the null pointer in the last com-
ponent also becomes invalid in the receiving area.

Even if the pointer values in the source area were trans-
mitted to the receiving area without modification, the
transmitted list would still be incorrectly linked, because
the pointers would continue to specify the list components
in the source area and not those in the receiving area.

Proper assignment of the data list appears in Figure
5K1-2, which illustrates the effect of the following state-
ments:

70

KEY DATA L KEY DATA L KEY DATA L
= NuULL
1
OHEAD1]
- Y
HEAD2 B2 ->BODY?2
KEY DATA L KEY DATA L KEY DATA L
P -
—— 1o~ ?
OMEAD? :
These perform an i

sssignment. Pointer values in
B2 —>BODY2 sre not known. See
Figure 5K 1-2 for compiete assignment.

B2->BODY2 = BI->BODY;

OHEADI = HEADI;

OHEAD?2 = OHEAD1;

HEAD2 = OHEAD2;

TEMP1 = HEADI;

TEMP2 = HEADZ;

DO WHILE(TEMP1-] = NULL);
OHEAD! = TEMP1—>L;
OHEAD?2 = OHEAD1;
TEMP2—>L = OHEAD?;
TEMP1 = TEMP1->L;

SAVE = TEMP2;
TEMP2 = TEMP2->L;
END;

SAVE->L =NULL;

82 ->B0DY2 - 81 ->BODY1,
OHEAD1 = HEAD!,

OHEAD2 = OHEAD!,

HEAD2 = OHEAD2.

TEMP1 = HEADI.

TEMP2 = HEAD2,

Figure 5K1-2. Correct assignment of a data list

These statements not onlv assign the data list in B1->
BODY 1 to B2—>BODY2 but also adjust the values of the
component pointers (the L’s) in the recewving area. Point-
ers TEMP1, TEMP2, and SAVE serve as work pointers
that specify the addresses of successive list components
in B1->BODY 1 and B2->B0DY2.

The statements illustrated in Figure 5K1-2 can be in-
corporated into a subroutine, as shown by procedure
MOVE_L in Figure 5K1-3. MOVE_L assigns the data list
in one area to anothgr area. The routine uses four para-
meters: BODY 1, HEAD1, BODY2, and HEAD2. BODY1
represents the area that conltains the data list to be assigned
to BODY2. Pointer HEAD1 specifies the location of the
first list component in BODY 1. Similarly, pointer HEAD2
specifies the location of the first list component in
BODY?2 after the list has been assigned.

The area arguments associated with parameters BODY |
and BODY?2 can be of any storage class, but MOVE_L
assumes that storage has been allocated for the arguments
before invocation. If BODY?2 is not large enough to re-
ceive the contents of BODY 1, pointer HEAD?2 receives a
null value. The subroutine uses based areas DUMMY _
BODY1 and DUMMY_BODY?2 in the declarations of off-
sets OHEAD1 and OHEAD?2 and overlays these areas on
BODY 1 and BODY2. As a result, BODY1 and BODY2

HEAD1 B1 ->BODY1
KEY DATA L KEY DATA L KEY DATA L
- — NULL
j I
OHEAD1 | _
B2 ->BODY2
HEAD2
‘| KEY DATA L KEY DATA L KEY DATA L
= NULL
OHEAD2 : _

DO WHILE (TEMP171= NULL).

OHEAD1 = TEMPT -> L.
OHEAD2 = OMEADI,
TEMP2 -> L = OHEAD2:
TEMP1 = TEMP1 -S> L,
SAVE - TEMP2;

TEMP2 = TEMP2 —> L.

END,
SAVE ->L = NULL,

need not be of the based storage class, as would be re-
quired if they appeared in the OFFSET attributes of
OHEADI1 and OHEAD?2.

5K2. Relocatable Data Lists

The *echniques used so far for assigning a data list from
one area to another prevent the assignment from being
direct. Not only must an area assignment be performed,
but the pointer links of the-assigned list must also be

modified. A way of avoiding the additional programming
needed for this pointer modification is to use offset vari-
ables, rather than pointer variables, as component links in
the data list. Assignment of the list, then, requires no
change in the values of the offset links, because the list
components maintain their relative positions in the receiv-
ing area. Even the head of the list can be an offset varia-
ble, in which case the relative address of the first list com-
ponents can also be assigned directly to the receiving head.

To distinguish between lists that are linked by pointer
variables and lists that are linked by offset variables, the
term absolute list is applied to a list linked by pointers
(because pointer addresses are absolute addresses), and the
term relocatable list is applied to a list linked by offsets
(because offset addresses are relative addresses and hence
relocatable).

T

T_MOVF_L:? IF

PRUCEULUKE UPTIONS [MAINDG THE AREA CONDITION OCCURS, B3DY2 IS

LECL ARE: TOO SMALL TO RECEIVE THE CONTENTS OF
n0CY_1 :::: ::gg:' BODYl. SET HEAD2 TO NULL, AND
l:”‘;:;;t FASEU'ISIv RETURN. ./

2 KEY UHARACTER (3), ON AREA
e BEGIN;
1 CARL, . HEAD2 = NULL;
2 KEY CHARACTER . Go TO
.
:n[\:;x ?::::c:i:d 15001, PTR, END_MOVE_L §
e "3"1':7':5}““- END;
s DyPsQyKy :
(MERD T+ MEAD-20 D /* ASSIGN BODYL TO BODY2. IF HEADI
§ = NULL: NI T HEAD2 TO NULL AND
St:?g%;e_ns-?ce IN (BCDY_1) SET (S): ;:rugbt':f 2 ULL,
vy BODY2 = BODYL:
1 = | 1O &3 ‘F
GET

ol cave Thace 1N thsov_1) SET (513 HEAD1 = NULL

ATE 1MA kL - 3
:Ll:gcl:llGE.L =S THEN
T o= Ss DO

O L imace.L = LLS HEAD2 = NULL; RETURN;

ASSION: END;

o0 C in e L) /% OVERLAY DUMMY_BODY1 ON BODY1 AND
ST MAGE = CARD, BY NAME: DUMMY_BOCY2 ON BODY2 SO THAT THE
R o= R > IMAGE.LS OFFSETS OHEAD1 AND DOHEAD2 ARE

N assions RELATIVE TO BASED AREAS. #/

put D1 = ADDRI(BODY1);
oo v SKIP (2) LIST (*CONTENT NF BODY_1:°); D2 = ADDR(BDUYZ);
WHILL (D == NULL):
puT > IMAGL.KEY /% ASSIGN ADDRESS QF FIRST LIST
3“1: fglnz.sl.gnn Ay XL41s AD3 COMPONENT IN BODY2 TU HEAD2. ®/
D = D -> IMAGF.L; UHFAULLl = HEAD1;
£nD;) UHEAD2 = OHEADL;
HEAD_L1 = P;
BODY_2 = EMPTY; HEAD2 = OHEAD2:
HEAD_2 = NULL: /% ADJUST LINK PUINTERS QOF LIST IN
CALL MOVF_L (RODY_l, MFAU_1, BODY2. #/
BODY_2, HFAD_2): TEMP1 = HEADL:
LuTPUT: TEMP? = HEADZ2:
put . 8]¥]
Su'-‘-l(:v(i»,m'"rl::u ITENS 1N ENOY_22 %) WHILE (TEMP1-~=NULL);
OHEAD]1 = TEMP1->L;
o 9" Mesoz OHEAD2 = OHEADL;
WHILE { Q ~= NULL)D; TEMP2->L = QOHEADZ:
’msur €DIT (0 -> IMAGE.KEY TEMPL = TEMPI->L;
G -> INAGE.DATA) (py Ri2)s A SAVE = TEMP?2;
Q= Q -> IMAGE.L} TEMP2 = TEMP2->L;

END3 END;

MOVE_L: SAVE->L = NULL:

PROCEDURE END_MOVE_L:

(BODY1, HEADl, BODY2, HEAD2); END
DECLARE MOVE _L;
BODY1 AREA(®), £wo ‘
BODY2 AREA(®), T_rOVE_L:
DUMMY_BODY1 AREA BASED (D1), A
- CUNTENT UF BUDY_L:
DUMMY_BODY2 AREA BASED (D2), ses = sea012y
OHEAD]1 OFFSET(DUMMY_BODY1), ::: ;::g:;g
OHEAD2 OFFSET(DUMMY_BODY2), 569 5690120
1 IMAGE BASED (S), 569 se9012¢
2 KEY CHARACTER (3), KEY AND DATA ITEMS IN BNOY_2:
2 DATA CHARACTER (T), ::: :::g:;‘:
2 L POINTER, S69 569012y
(HEAD1, HEAD2, TEMPl, TEMP2, SAVE) 569 5690120
POINTER; 569 5690120
/%

Figure 5K1-3. A subroutine procedure that assigns a data list to another list area

72

Figure 5K2-1 illustrates the organization of a reloca-
table data list; as usual, broken lines indicate offset vari-
ables. The figure also shows how list assignment may be
performed with the following statements:

B2->BODY2 =B1->BODY 1,
OHEAD2 = OHEADI;

These statements assume that the offset links (the OL’s) in
based area B1->BODY 1 and the offset head OHEADI] are
relative to BI->BODY 1. Similarly, the offset links in
B2->BODY?2 and the offset head OHEAD?2 are assumed
to be relative to based area B2—>BODY?2. The following
statement establishes the proper declaration for the vari-
ables used in the figure:

DECLARE
BODY1 BASED(B1) AREA,
BODY2 BASED(B2) AREA,
DUMMY_BODY BASED(DUMMY POINTER) AREA,
OHEAD] OFFSET(BODY 1),
OHEAD2 OFFSET(BODY?2),
1 COMPONENT BASED(COMPONENT _POINTER),
2 KEY CHARACTER(3),
2 DATA CHARACTER(77),
2 OL OFFSET(DUMMY _BODY);

Declaration of offset variable OL with respect to DUM-

MY _BODY permits OL to be made relative to any area by
assigning the address of the desired area to DUMMY _

81 ->800Y1

POINTER. Arbitrarily, a default area size has been as-
sumed for BODY1 and BODY?2. If desired, a specific area
size can be specified for each area.

By printing the KEY and DATA values of each list com-
ponent in B1->BODY1 the following statements show
how references are made to the elements of a relocatable
list:

DUMMY _POINTER = ADDR(B1—>BODY1);

COMPONENT _POINTER = OHEADI;

DO WHILE(COMPONENT POINTER 1= NULL);

PUT LIST(COMPONENT POINTER->KEY,

COMPONENT _POINTER->DATA);

PUT SKIP;

IF COMPONENT POINTER—>OL = NULLO
THEN COMPONENT _POINTER = NULL;
ELSE COMPONENT_POINTER =
COMPONENT _-POINTER—>OL;

END;

Similar statements allow printing of the KEY and
DATA values of each list component in B2->BODY?2:

DUMMY _POINTER = ADDR(B2—->BODY?2);

COMPONENT _POINTER = OHEAD?2;

DO WHILE(COMPONENT POINTER-1=NULL);

PUT LIST(COMPONENT POINTER->KEY,

COMPONENT_POINTER->DATA);

PUT SKIP;

IF COMPONENT_POINTER->OL = NULLO
THEN COMPONENT_POINTER = NULL;
ELSE COMPONENT _POINTER =
COMPONENT__ POINTER—->OL,;

END;

KEY DATA oL

OHEAD?

KEY

DATA oL KEY DATA

NULLO

82 ->800Y2

OHEAD2 KEY DATA oL

KEY

DATA oL KEY DATA oL

NULLO

82 ->800Y2 - 81 ->800Y1;
OHEAD2 = OMEAD;

Figure 5K2-1. Assigning a relocatable data list

In each of the previous sets of statements, the address
assigned to DUMMY_POINTER determines the area to
which the offset link OL becomes relative: area B1—->
BODY1 in the first set of statements, area B2—>BODY2
in the second set. Conversion of offset addresses to abso-
lute addresses is performed by ‘assigning the offsets to the
pointer variable COMPONENT POINTER.

5K3. A Subroutine that Assigns a Relocatable Data L ist
to Anocther Area

The techniques developed in the previous discussion for
assigning a relocatable data list to another area may be
summarized in subroutine form, as shown by subroutine
prozedure MOVE RL in Figure 5K3-1. MOVE_RL uses
four parameters: BODY1, OHEAD1, BODY2, and
OHEAD?2. BODY|1 represents the area that contains the
data iist tc be assigned to area BODY?2. The relative loca-
tion of the first list component in BODY 1 is given by off-
set vaticble OHEADI1. Similarly, OHEAD?2 specifies the
relative locaticn of the first list component in BODY 2
afier the assiznment has been made. If BODY?2 is not
large en~vgh to accept the contents of BODY 1, OHEAD?2
receives a nuil offret value. Under no circumstance does
MCVE PRI charge the contents of BODY 1.

20D {7 and BODY?2 can be of any storage class, but
storage is ascumed to have been allocated for the corre-
sponding area arguments upon entry to the subroutine.

DUMMY_BODY1 and DUMMY_BODY?2 are used to
supply based areas for the OFFSET attributes of OHEAD]1
and OHEAD?2.

The {cliowing statements show how MOVE_RL may
be invoked:

DECLARE

LIST_BODY1 AREA(500),
LIST_BODY2 AREA(500),
DUMMY 1 BASED(DUM1) AREA,
DUMMY2 BASED(DUM2) AREA,
LIST_OHEAD1 OFFSET(DUMMY1),
LIST OHEAD2 OFFSET(DUMMY?2);

DUM! = ADDR(LIST_BODY1);
DUM2 = ADDR(LIST_BODY?2);

CALL MOVE_RL(LIST_BODY]1, LIST_OHEADI,
LIST_BODY?2, LIST_OHEAD2);

74

T_MUVE_RL:

PROCEDURE OPTIONS (MAIND;
DECLARE
L_BODYL AREA (500),
L_RODY2 AREA (500),
UUM_BODY1 BASED (DUML) AREA,
DUM_BODY2 BASED (DUM2) ARFA,
L_OHEADL OFFSET (DUM_B0OY1),
L_OMEAD2 OFFSET (DUM_AODY2),
1 ITEM BASED (P),
2 CONSTANT CHARACTER (71,
2 OL OFFSET (DUM_BODY1),
Q POINTER,
MOVE_RL ENTRY (AREA (500),
OFFSET (DUM_BODY1), AREA (500),
OFFSET (DUM_BQDY2));

DUM1 = ADOR (L_BODY1);
ALLOCATE ITEM IN (L_BODY1) SET (P);
L_OHEAD1, Q = P;
P => CUNSTANT = *NEWMOVE®;

00
1 =2705;
ALLOCATE ITEM IN (L_BOOYL) SET (P)3
P -> CONSTANT = *MOVE_RL';
Q->0L=P; Q=P;

END3
Q => OL = NULLO;
OUM2 = ADDR (L_B0DY2);
L_BODY2 = EMPYY;
L_DHEAD2 = MULLO;
CALL MOVE_RL (L_BODY1l, L_OMEAD!],
L_B00Y2, L_OMEAD2):
OUMl, DUM2 = ADDR (L_300Y2);
ouTPUT:
14
" SKIP LISY (*CONSTANTS IN L_80DY2:%);
L_OMEAD2 = MULLD
THEN
Q = NULL;
ELS
Q = L_OMEAD2;
WHILE [Q ~= NULL)3
rPUY
. SKIP LIST (Q => CONSTANT);
Q -> 0L = NULLO
THEN
Q = NULL:
ELSE
Q=0 ~-> 0Ls
END3
MOVE_RL:
PROCEDURE
(BOLUY1, OHEADl, BODY2, OHEAD2)3
DECLARE
BODY1 AREA(®), BODY2 AREA(®),
DUMMY_B0DY1 BASED(DLl) AREA,
DUMMY_BODY2 BASED(D2) AREA,
OHEADL OFFSET(DUMMY_BODY1),
OHEAD2 OFFSET(DUMMY_BODY2)3
/%
IF
AREA CONDITION OCCURS, RODY2 IS TOO
SMALL TO RECEIVE CONTENTS OF 800Y1l.
SET DOMEAD2 TO NULLO, AND GO TO END
OF SUBROUTINE. ®/
ON AREA
BEGIN;
OMEAD2 = NULLO:
GO TO
END_MOVE_RL
END:
/¢ ASSOCIATE OMEADL AND OMEAD2 WITH
B80ODY1 AND BODY2. ®/
D1l = ADDR(BODY1):
D2 = ADDR(BODY2):
/& ASSIGN BODY1 AND OHEAD1 TO BODY2
AND OHEAD2. ®/
#oDY2 = BODY1:
OHEAD2 = OHEADL;
END_MOVE_RL:
END CONSTANTS IN L_B800Y2s
NEWROVE
MOVE_RL MOVE_RR
€0 HmOvVE_RL
T_MOVE_ALS m::t
Figure 5K3-1. A subroutine procedure that assigns a relocatable
data list to another area .

Because areas LIST_BODY 1 and LIST_BODY?2 have the
automatic storage class and not the based storage class,
‘based areas DUMMY 1 and DUMMY 2 are used to associate
offset variables LIST OHEADI and LIST_OHEAD2 with
LIST _BODY1 and LIST_BODY2.

5K4. Converting Data Lists to and from Relocatable
Form

Although the previous discussions have shown how to
assign relocatable data lists from one area to another, they
have not shown how to create a relocatable list. The tech-
niques developed in Chapter 4 for creating data lists dealt
solely with lists in absolute form and did not consider the
construction of relocatable lists. One way of creating a
relocatable list is to convert an established absolute list to
relocatable form. Subroutine procedure CONV_AR in
Figure 5K4-1 shows how this conversion can be made.
CONV _ AR uses four parameters: BODY 1, HEAD,
BODY?2, and OHEAD. BODY 1 represents the area that
contains the absolute data list to be converted to reloca-
table form and assigned to area BODY2. Pointer HEAD
specifies the address of the first list component in BODY 1,
and offset OHEAD receives the relative address of the first

list component in BODY?2 after the list has been converted.

If the extent of BODY?2 is not large enough to accept the
contents of BODY 1, OHEAD receives a null offset value.
BODY1 and BODY?2 can be of any storage class, but stor-
age is assumed to have been allocated for the correspond-
ing area arguments upon entry to the subroutine. The
offset argument corresponding to OHEAD must be de-
clared relative (either directly or through a dummy based
area) to the area argument associated with BODY 2. Exe-
cution of CONV _ AR does not change the contents of
BODY1.

It is also possible to convert a relocatable data list to
absolute form, as shown by subroutine procedure CONV _
RA in Figure 5K4-2. Again, this subroutine uses four
parameters: BODY 1, OHEAD, BODY?2, and HEAD.
BODY 1 represents the area that contains the relocatable
data list to be converted to absolute form and assigned to
BODY2. Offset OHEAD specifies the relative address of
the first list component in BODY 1, and pointer HEAD
receives the absolute address of the first list component in
BODY 2 after the list has been converted. If the extent of
BODY?2 is not large enough to accept the contents of
BODY 1, HEAD receives a null pointer value. Execution of
CONV _RA does not change the contents of BODY 1, and
the same restrictions apply to the parameters of CONV _
RA as they.do to CONV _AR in Figure 5K4-1. A later
discussion in paragraph 5K6 under “External Relocation”
shows how relocatable data lists can be constructed di-
rectly without being converted from absolute form.

T_CONV_RA3

T_CONV_ANR:

PROCEDURE OPYIONS (MAIN)G

OECLARE
.(800Y_1, BUDY_2) AREA (500),
DUMRY_BUOY BASED (DUMRY_POINTER) AREA,
(L_MEAD, Q) POINTER,
L_OMEAD OFFSET (DUMMY_BOOY),
1 LIST BASED (P},
2 KEY CHARACTER (3),
2 DATA CHARACTER (T),
2 L POINTER,
CONV_AR ENTRY (AREA {500), POINTER,
AREA (500)y OFFSET (DUMMY_B80OY)),
CONV_RA ENTRY (AREA (500), OFFSET
(OUMMY_BODY), AREA {300), POINTER)}

P = NULLS
ALLOCATE LIST IN (BOOY_1) SET (P)3
L_MEAD, Q = P}
P=>KEY = *444°; P->DATA = °*CONVERT'}
00

1 =1 70 4;
ALLOCATE. LIST IN (BODY_1) SET (P);
P->KEY = 9222°; P->DATA = *TREVNOC'}
Q-=>1L = P; Q=P

END3
Q => L = NULLY
DUMMY_POINTER = ADDR (800Y_2)3
BODY_2 = EMPTY; L_OMEAD = NULLOZ

CALL CONV_AR
(BUDY_14 L_MEAD, 800Y_2, L_OMEAD)}

CONV_AR:

PROCEDURE
(BODY1, HEAD, B0ODY2, OMEAD);
DECLARE
(BODY1l, BODY2) AREA (%),
DUMMY_BODY BASED
(DUMMY_POINTER) AREA,
(HEADy SAVE) POINTER,
OHEAD OFFSET (DUMMY_B0DY),
COMPONENT]1 BASED (C1),
KEY CHARACTER (3),
DATA CHARACTER (T),
L POINTER,
COMPONENT2 BASED (C2),
KEY CHARACTER (1),
DATA CHARACTER (7),
OL OFFSET (DUMMY_BODY);

NN NNN -

/% IF AREA CONOITION OCCURS, B8ODY2 IS
TOO SMALL TO RECEIVE CONTENT OF
BODYl. GO TO NULL_LIST. ®/
UN AREA
GO TO
NULL_LIST;
/% IF LIST IN BODY1 CONTAINS NO
COMPONENTS, GO TO NULL_LIST. */
IF
HEAD = NULL
THEN
GO TO
NULL_LIST3
/% ASSOCIATE OFFSET VARIABLES OMEAD
AND OL WITH BODY2. */
DUMMY_POINTER = ADOR(80DY2);

/% ALLOCATE COMPONENT2 IN BODY2,
AND ASSIGN TO THE ALLOCATION THE
KEY AND DATA VALUES OF THE FIRST
LIST COMPONENT IN BODYl., &/
ALLOCATE COMPONENT2 IN (BODY2Y

SET (C2);

OHEAD, SAVE = C2:

C2->COMPONENT2 = HEAD~>COMPONENTI1,
BY NAME;

Figures 5K4-1 (CONV_AR) and 5K4-2 (CONV_RA). Conversion
of a data list from absolute to relocatable, and from
relocatable to absolute

75

/% PERFORM SUCCESSIVE ALLOCATIONS

OF COMPONENT2 IN B80DY2, AND ASSIGN
TO THE ALLOCATIONS THE KEY AND DATA
VALUES OF SUCCESSIVE LIST COMPONENTS
IN BOOYl. %/

Cl = HEAD->L;

DO

SND3

WHILE (Cl-=NULL);

ALLOCATE COMPONENT2 IN (BODYZ2)
SET (C2)3

SAVE->0L, SAVE = C23;
C2->COMPONENT2 = C1->COMPONENT1,
BY NAME;

Cl = Cl->L3

/% ASSIGN A NULL OFFSET VALUE TO THE

OFFSET VARIABLE OL IN THE LAST
COMPONENT OF BODY2, THEN RETURN. ®/
SAVE->0L = NULLO;

RETURN;

/% 1F THIS POINT IS REACHED, ASSIGN
A NULL OFFSET TO OMHEAD. ®/

NULL_LIST:

END

1F

OHEAD = NULLO3

CONV_AR;

L_ONEAD = NULLD

THEN

EXIT;

/% PREPARE TO INVOKE CONV_RA ¢/
BODY_1 = BODY_2;
DUMMY_POINTER = AQODR (BODY1):

B800Y_2 = EMPTY;

L_MEAD = NULL;

CALL CONV_RA
(800Y_1, L_OHEAD, BODY_2, L_HEAD):

CONV_RA:

PROCEDURE

DECLARE

76

(BODYl, OHEAD, BODY2, HEAD);

(BODY1l, BODY2) AREA (%),
DUMMY_BODY BASED (DUMMY_POINTER)
AREA,

OHEAD OFFSET (DUMMY_BODY),

(HEAD, SAVE, TEMP) POINTER,
COMPONENT1 BASED (C1),

KEY CHARACTER (3),

DATA CHARACTER (T),

OL OFFSET (DUMMY_BODY),
COMPONENT2 BASED (C2),

KEY CHARACTER (3),

DATA CHARACTER (T7),

L POINTER;

/% IF AREA CONDITION OCCURS, BODYZ2
IS TOO SMALL TO RECEIVE CONTENTS OF
BODY1l. GO T0O NULL LIST. ®/

ON AREA

NNNFENNN -

GO TO

NULL_LISTS

/% IF LIST IN BODY1 CONTAINS NO
COMPONENTS, GO TO NULL_LIST. ®/
IF
OHEAD = NULLO
THEN
GO TO

NULL_LIST;
/% ASSOCIATE OFFSET VARIABLES OHEAD

AND OL

WITH BODYl. ®/

DUMMY_POINTER = ADDR(BODY1);

/% ALLO
AND ASS

CATE COMPONENT2 IN BODY2,
IGN TO THE ALLOCATION THE KEY

AND DATA VALUES OF THE FIRST LIST

COMPONE
ALLOCAT

DO

IF
THEN
ELSE

END;

NULL_LIS

END

ouTPUT:
T

NT IN BODY1l. #/
E COMPONENT2 IN (BODY2)

SET (C2);

HEAD, SAVE = C2;

TEMP = OHEAD;

C2->COMPONENT2 = TEMP->COMPONENT1,
BY NAME;

/% PERFORM SUCCESSIVE ALLOCATIONS
UF COMPONENT2 IN BODY2, AND ASSIGN
TO THE ALLOCATIONS THE KEY AND DATA
VALUES OF SUCCESSIVE LIST COMPONENTS
IN 8ODYl. ®/

Cl = TEMP->0L:

WHILE (Cl-=NULL);

ALLOCATE COMPONENT2 IN (BODY2)
SET (C2);

SAVE->L, SAVE = C2;
C2->COMPONENT2 = C1->COMPONENT1,
BY NAME;

C1->0L = NULLO
Cl = NULL;
Cl =Cl -> O3

/% ASSIGN A NULL VALUE TO THE
POINTER VARIABLE L IN THE LAST
COMPONENT OF 80DY2, THEN RETURN., ®/
SAVE->L = NULL:

RETURN;

/% IF THIS POINT IS REACHED, ASSIGN
A NULL VALUE TO POINTER HEAD. */

T:

HEAD = NULL;

CONV_RA3

SKIP LIST (*CONTENT OF BOOY_2:');

Q=

L_MEAD:

WHILE (Q ~= MULL)S

PUT

SKIP EOIT (Q -> KEY, Q =-> DATA)

(A,
Q=
END:
END

X(3), A3
Q -> L;

T_CONV_RA;

CONTENT OF BODY_2:
L2123 CONVERT
222 TREVNOC
222 TREVNOC
222 TREVNOC
222 TREVNOC

Figures 5K4-1 and 5K4-2. (Continued from preceding page)

C

5K5. Sorting Relocatable Data Lists

Once a list has been converted to relocatable form, the list
need not be converted back to absolute form before it can
be processed. Processing operations can be applied direct-
ly to relocatable lists. As an example, consider subroutine
procedure SORT1S in Figure 5K5-1, which shows how a
relocatable list of structures can be sorted. SORT15 uses
two parameters: LIST_OHEAD and LIST_BODY.
LIST_OHEAD is an offset variable that specifies the loca-
tion of the first list component in area LIST_BODY. As
usual, LIST_BODY can be of any storage class. The sub-
routine uses the same transposition technique employed
in previous chapters and is similar to subroutine SORT11.

SORT1S5:

PROCEDURE
(LIST_OHEAD, LIST_BODY);

DECLARE
(HEADy Ty Uy V) POINTER,
LIST_OHEAD OFFSET (DUMMY_BODY),
LIST_BODY AREA (%),
DUMMY_BODY AREA BASED
(DUMMY_POINTER),
1 COMPONENT BASED (C),
2 KEY CHARACTER (3),
2 DATA CHARACTER (7T7),
2 OL OFFSET (DUMMY_BRODY);
/% ASSOCIATE OFFSET VARIABLES
LIST_OHEAD -AND OL WITH LIST_BODY. */
DUMMY_POINTER = ADDR(LIST_BODY);
/% ASSIGN ADDRESS OF F[RST LIST
COMPONENT TO POINTER HEAD. */

IF
LIST_OHEAD = NULLO
THEN
HEAD = NULL;
ELSE
MEALU = LIST_OHEAD:
/% IF LIST CONTAINS LESS THAN TWO
COMPUNENTS, NO SORT RFQUIRED. */
IF
(HEAD = NULL) | (HEAD->0OL = ANULLO)
THEN
RETURN;S
/% SORT LIST., */
SORT:
K = 03
/% ASSIGN ADDRESS 0OF SECOND
COMPONENT IN SEQUENCE TO POINTER C.*/
C = HEAD->0L;
/* COMPARE KEY FIELDS OF SUCCESSIVE
COMPONENTS AND PERFORM NECESSARY
TRANSPOSITIUNS. */
IF

(HFALU=>KEY) > (C->KEY)

THEN
Dus
Ir
C=>0L = NULLO
THEN
T = NULL3S
FLSE
T = C->0L;

C=>0L = HEAD;
Ir
T = vuLL

Both subroutines use the same structure organization for
the list components. The number of list components con-
tained in LIST_BODY is arbitrary and can even be zero.

Because an offset variable cannot qualify a based vari-
able, the offset address must first be converted to a pointer
address. As SORT15 demonstrates, the address conver-
sion produces more instructions and generally adds to the
sort time. The increased sort time, however, may not
exceed the time required to convert the list back to abso-
lute form before sorting is performed, and on this basis, a
relocatable sort may be justified. Ordinarily, though, a list
should be in absolute form when the list is to be processed
extensively.

THEN
HFAD=->0NL

CLSF
HEAD=->UL

NULLO3S

T: HEAD = C; K = 13
END
U = HEAD; C = U->0L:
IF
C->0L = NULLO
THEN
T = ~NULLS
FLSF
T

"

C=>0L3
nn
wHILF (T-~=NULL)
IF
(C->KEY) > (T=->KEY)
THEN
Dus
1F
T=>0L = NULLO
THEN
V = NULL
FLSF
vV = I=->0L;
T->0L = U=->0L;
u=->uL = C->uL;
[+
vV = NULL
THEN
C=>00L = NULLOSG
FLSE
C->0L = V3
K = 13

U=>0L; C = U=>0L;

<
"

C->0L = NULLU
THEN
T = NULL:
[LSF
T = C=>0L3
END 3

IF
K =1

THEN

GO TO
SORT;S
/* WHEN LIST IS SORTED, ASSIGN
ADDRESS OF FIRST LIST COMPONENT
TO LIST_OHEAD. ®/
LIST_OHEAD = HEAD:
END

SORT15:

Figure 5KS-1. A subroutine procedure that sorts a relocatable list of structures

77

5K6. External Relocation

Although it is more convenient to assign a data list to an-
other area when the list is in relocatable rather than abso-
lute form, the major advantage of a relocatable list is that
the list can be stored, without reorganization, on an exter-
nal storage medium, such as magnetic tape or disk, from
which it can be retrieved for later processing.

It is possible, however, to disassemble the components
of a data list and to write them into a file in unlinked
form. It is also possible to read the components back into
internal storage and to reassemble the list by properly
lirking the components. But converting a list to and from
unlinked form can be costly in execution time, particularly
with list organizations that are far more intricately con-
structed than the simple linear lists discussed in this text.
With relocatable lists, external transmission can be direct
and, hence, generally more efficient in execution time.

The following discussions show how relocatable data
lists are transmitted to and from a file and how such trans-
mission permits a file of relocatable lists to be sorted and
printed.

5K6A. Writing Relocatable Data Lists

Because stream-oriented input and output statements can-
not transmit the address values of locator variables, record-
oriented statements must be used to transmit relocatable
lists. Output transmission of a list is performed by the
LOCATE statement. This statement was discussed briefly
in Chapter 3, and has the following form:

LOCATE based-variable FILE (file-name) SET (element-
pointer-variable);

The LOCATE statement processes sequential, buffered
files and allocates within an output buffer for the file the
next available storage area for the specified based variable.
The location of the allocated storage is assigned to the
element-pointer variable given in the SET option. The,
LOCATE statement, however, need not contain a SET
option; when it does not, an implied SET is assumed,
which uses the pointer variable in the BASED attribute of
the specified based variable. When the buffer is filled, its
contents are automatically transmitted to the associated
file. The buffer then becomes available again for further
transmission.

Subroutine procedure LWRITE in Figure SK6A-1 shows
how the LOCATE statement can be used to transmit a
relocatable data list to a file. The subroutine uses four
parameters: OUTFILE, LIST_OHEAD, LIST_BODY, and
BODY _SIZE. OUTFILE is a sequential, buffered output-
file used for record-oriented transmission. LIST_OHEAD
is an offset variable that specifies the relative address of
the first list component in area LIST_BODY, which can
contain an arbitrary number of list components. BODY _
SIZE specifies the number of bytes in LIST_BODY.

78

LWRITE:
PROCEDURE
(OUTFILE, LIST_OHFAD,
LIST_BODY, BODY_SIZE);
DECLARE
DUMMY_BODY1 AREA BASED
(DUMMY_POINTERL),
UUMMY_BODY2 AREA BASFD
(DUMMY_PNINTER2),
LIST_OHEAD OFFSET (DUMMY_BDDY1),
LIST_BODY ARFA (BODY_SIZE),
BODY_SIZE FIXED DECIMAL (5),
3IN_SIZE FIXED BINARY (15,0),
QUTFILE FILE RECORD OUTPUT,
1 OUTRECORD BASED (OUTPOINTER),
2 B_SIZE FIXED BINARY (15,0),
2 OHEAD OFFSET [(DUMMY_BODY2),
2 BODY AREA (BIN_SIZF REFER (B8_SIZE)):

/% INITIALIZE SIZE OF BODY IN
OUTRECORD. */
BIN_SIZE = BODY_SIZE;

/% LOCATE STORAGE IN OUTPUT BUFFER
FOR OUTRECORDy AND ASSIGN LOCATION
TO OUTPOINTER., */

LOCATE OUTRECORD FILE (OUTFILE) SET
(OUTPOINTER);

/% ASSOCIATE OFFSET VARIABLE OMEAD
WITH LOCATION OF OUTRECORD IN
OUTPUT BUFFER., */

DUMMY_POINTER2 = OUTPOINTER;

/% ASSOCIATE OFFSET PARAMETER
LIST_OHEAD WITH LIST_BODY. &/
DUMMY_POINTER]L = ADOR(LIST_BOOY);

/% ASSIGN LIST_OMEAD AND LIST_B0DY
TO OUTRECORD. */
OUTPOINTER=DOHEAD = LIST_OMEAD;
OUTPOINTER->BGDY = LIST_BODY:

END
LWRITE:
Figure SK6A-1. A sabroutine procedure that writes a relocatable
data list into a file

Execution of LWRITE causes storage in the output
buffer to be allocated for the self-defining based structure
OUTRECORD, which contains the fixed binary variable
B_SIZE, the offset variable OHEAD, and the area variable
BODY. The variable B_SIZE represents the size of
BODY, which is declared with the REFER option. The
values of LIST_OHEAD and LIST_BODY are then as-
signed to OHEAD and BODY, which are eventually writ-
ten along with B_ SIZE as a self-defining logical record in
OUTFILE when the output buffer becomes full.

Because LIST_BODY can have any storage class, the
OFFSET attribute of LIST_OHEAD, which requires a
based area, uses based area DUMMY_BODY1. Assignment
of the address of LIST BODY to the pointer variable
DUMMY _POINTERI1, which is associated with DUMMY _
BODY 1, causes LIST OHEAD to become relative to
LIST_BODY.

C

When the LOCATE statement allocates storage for
OUTRECORD, the location of the storage in the output
buffer is assigned to the pointer variable OUTPOINTER.
Assignment of OUTPOINTER, in turn, to DUMMY _
POINTERZ2, which is associated with DUMMY_ BODY?2,
causes OHEAD to become relative to the location of
OUTRECORD in the output buffer. Note that assignment
of LIST_OHEAD to OHEAD produces no address modi-
fication, because both variables are offset variables. As
usual, list components maintain their relative positions
when assigned from LIST_BODY to BODY.

Environmental information, such as input/output de-
vice type, unit number, recording density, block size, and
record size, is not specified in an ENVIRONMENT attri-
bute for OUTFILE. Data Definition (DD) statements are
assumed to contain such information in the job step that
calls for execution of the program under the operating
system.

LOUT1:

PROCEDURE OPTIONS (MAIN);

DECLARE

CARD,

KEY CHARACTER (3),

DATA CHARACTER (TT),

COMPONENT BASED (CUMPONENT_POINTER),
KEY CHARACTER (3),

NDATA CHARACTER (TT),

OL OFFSET (DUMMY_BODY),

OUTRECORD BASED (OUTPOINTER),

B_SIZE FIXED BINARY (15,0),

OHEAD OFFSET (DUMMY_BODY),

BODY AREA (BIN_SIZE REFER(B_SIZE)),
BIN_SIZE FIXED BINARY (15),

DUMMY_BODY AREA BASED (DUMMY_POINTER),
WORK_AREA AREA (550),

LAST POINTER,

OUTFILE FILE RECORD OQUTPUT,

LWRITE ENTRY (FILE, OFFSET
(DUMMY_BUDY), AREA (*), FIXED (5));

NN =N~ NN -

/% ESTABLISH ENDFILE
AND AREA ON-CONDITIONS. ®/
UN ENDFILE (SYSIN)
G0 TU
PROC_ENUL:
ON AREA
BEGIN;
PUT
LIST (*INSUFFICIENT STORAGE °*);
CLUSE FILE (
SYSPRINT)
GO TO
PROC_END;
END;

/*INIVIALIZE SIZE OF BOOY IN OUTRECORD®*/
BIN_SIZE = 500:

/*FREE ALL ALLNCATIONS IN WORK_AREA,
AND ALLOCATE STORAGE FOR OUTRECORD
IN WURK_AREA. */

START:
WORK_AREA = EMPTY;
ALLOCATE OUTRECORD IN (WORK_AREA)
SET (QUTPOINTER);

When the record size of OUTRECORD is specified in a
DD statement, the record size must account for the storage
associated with B_SIZE, OHEAD, and BODY. The
length, rather than the size, of BODY must be used (see
the previous discussion in this chapter under “The Length
of an Area”, paragraph 5G). As stated earlier, the length
of an area written as a record includes the number of bytes
used for area control information as well as the size of the
area.

5K6B. An Example that Creates Relocatable Data Lists in
a Work Area and Writes Them into a File

An application of the previously discussed subroutine
LWRITE appears in program LOUT]1 of Figure 5K6B-1,
which shows how relocatable data lists can be created di-
rectly, rather than converted from absolute to relocatable
form, and then written into a file.

/#ASSOCIATE OFFSET VARIABLE OL AND
OHEAD WITH BODY IN WORK_AREA.*/
DUMMY_POINTER = ADDR (OUTPOINTER
=> BODY);

/*INITIALIZE THE POINTER ®LAST™s/
LAST = NULL:

/% ORTAIN FIVE INPUT CARDS, AND
ASSIGN EACH TO COMPONENT STORAGE
ALLOCATED AND LINKED IN BOOY WITHIN
WORK_AREA. &/
DO
I =1 TO S§;
ALLOCATE COMPONENT IN (OUTPOINTER
=> BODY) SET (COMPONENT_POINTER);
GETY
EDIT (CARD) (A(3I), ALTT));
COMPUNENT_POINTER => COMPONENT =
CARD, RY NAME;

If
LAST = NuLL

THEN
UUTPUINTFR => OHEAD =
CUMPONENT_POINTER;

ELSE
LAST => OL = COMPNNENT_POINTERS
LAST = CUMPONENT_PUINTER;

tNDs
/*ASSIGN NULL OFFSET TO OL IN LAST
COMPUNENT..;/
LAST => OL ¢ NULLO;
/*WRITE (OHEAD AND BODY INTO QUTFILES/
CALL
LWRITE (OUTFILE, OHEAD, 80DY, 500);
/* PRUCFSS NEXT FIVE INPUT CARDS,*/
Gu Tu
START;
PROC_END:
CLOSE FILE ¢
OUTFILE)
END
LOuUT];

Figure SK6B-1. Creating relocatable data lists in a work area and writing them into a file

79

LOUT]1 reads five cards from the standard system input
file SYSIN, assigns each card to a relocatable list compo-
nent allocated and linked in the area BODY. Offset

OHEAD specifies the relative address of the first list com-
ponent in BODY. Both OHEAD and BODY form ele-
ments of the self-defining based structure OUTRECORD,
which is allocated in the work area WORK _AREA. The
variable B_SIZE represents the size of BODY, which is
declared with the REFER option. Subroutine LWRITE
then writes OHEAD and BODY as a record into the out-
put file OUTFILE, and processing continues with the next
five input cards.

LouT2:

PROCEDURE DOPTIONS (MAIN);
DECLARE

CARD,

KEY CHARACTER (3),
DATA CHARACTER (7T7),

KEY CHARACTER (3),
DATA CHARACTER (7T),
OL OFFSET (DUMMY_BODY),
OUT_RECORD BASED (QUTPOINTER),
OHEAD OFFSET (DUMMY_BODY),
BODY AREA (500),
DUMMY_B0ODY AREA BASED
(DUMMY_ POINTER),
LAST POINTER,
OUTFILE FILE RECORD QUTPUT;
/% ESTABLISH ENDFILE AND AREA
UN-CUNDITIONS. */
UN ENDFILE (SYSIN)
GO TO
END_LOUT?;
UN AREA

NN = N NN = NN -

BEGING
PUT
LIST (*INSUFFICIENT STORAGE');
CLOSE FILF (
SYSPRINT) §
GO TO
END_LOUTZ2:
END3
/% GET FIRST INPUT CARD IN NEXT SET
OF FIVE BEFORE LOCATING STORAGE
FOR OQOUT_RECORD IN OUTFILE BUFFER.
THIS STEP DETECTS END-OF~FILE
CONDITION BFEFORE LOCATING
UNNECESSARY STORAGE IN BUFFER, %/
START:
GET
EDIT (CARD) (A(3), A(T7));
LOCATE QUT_RECORD FILE(QUTFILE)
SET (OUTPOINTER);
/% ASSOCIATE OFFSET VARIABLES OL
AND UHEAD WITH BODY IN OUTFILE
BUFFER. %/
DUMMY_POINTER =
ADDR (OUTPOINTER=->BODY) ;

CUMPONENT BASED (COMPONENT_POINTER),

5K6C. An Example that Creates Relocatable Data Lists in
an Output Buffer and Writes them into a File

The use of a work areu in the previous program LOUT] is
not necessary, because no processing is performed on the
relocatable lists created in the work area. Instead, the lists
can be generated directly in an output butfer, as shown by
program LOUT2 in Figure SK6C-1. LOUT?2 produces the
same results as LOUT1 but replaces subroutine LWRITE
with a LOCATE statement that allocates list storage di-
rectly in the output bufter associated with the file QUT-
FILE. Also, the records gencrated by LOUT?2 are not self-
defining, as they are in LOUT1. The data definition state-
ment for LOUTI 1ecords specity four more bytes than are
specified for LOUT2. The extra four bytes are occupied
by the offset variable contained in LOUT1 records. Such
specifications relate to the implementation in use.

/* ALLOCATE COMPONENT STORAGE FOR
FIRST CARD IN BODY WITHIN DUTFILE
BUFFER., */

ALLOCATE COMPONENT IN
(QUTPOINTER->BODY)

SET (COMPONENT_POINTER);

/% ASSIGN FIRST CARD TO COMPONENT
STURAGE. */

COMPONENT_POINTER->CUMPONENT =
CARD, BY NAME;
/% ASSIGN ADDRESS OF FIRST COMPONENT
TO OUTPOINTER->0HEAD. %/
OUTPOINTER->QOHEAD =
COMPONENT _POINTERS
/% SAVE ADDRESS OF CUMPONENT IN WORK
POINTER LAST. */
LAST = COMPONENT_POINTER;
/* ASSIGN REMAINING FOUR CARDS OF
INPUT SET TO COMPONENT STORAGE
ALLOCATED AND LINKED IN BODY
WITHIN OUTFILE BUFFFR. */
bu
I =1 70 4;
ALLOCATE COMPONENT IN
(OUTPOINTER->B0ODY)
SET (COMPONENT_POINTER) ;
GET

FDIT (CARD) (A(3), A(TT));
COMPUNENT_POINTER=>COMPUNENT =
CARD,y BY NAME;
LAST=>NL 3 COMPONENT_POINTER;
LAST = CUMPUNENT_POINTER;

END
/¢ ASSIGN NULLO OFFSET TO OL IN
LAST COMPONENT. */
LAST->UL = NULLO;
/* PRUCESS NEXT FIVE INPUT CARDS. */

GO TO

START;

END_LOUTZ:

CLOSE FILE |
DUTFILE):

END
LouT?;

Figure SK6C-1. Creating relocatable data lists in an output buffer and writing them into a file

80

5K6D. Reading Relocatable Data Lists

Once relocatable lists are written into a file, they become

SORT16:

PROCEOURE OPTIUNS

(MAIN);

available for further processing at a later time. Retrieval DECLARE
. . . . INFILE FILE RECORD INPUT,
of a relocatable list fror.n afile is af:hlevgd with the READ 1 INRECURD BASED (INPOINTER),
statement, which was discussed briefly in Chapter 3 and 2 B_SIZE FIXED BINARY,
has the following form: 2 OHEAD OFFSET (DUMMY_BODY),
2 BODY AREA (500),
1 COMPUNENT BASED
READ FILE (file-name) SET (element-pointer-variable); (CUMPONENT_POINTER),
2 KEY CHARACTER (3),
.) 2 DATA CHARACTER (77)
The READ statement obtains the location of the next 2 OL OFFSET (Dunny_agav)y
logical record in a buffer associated with the specified OUMMY_BODY AREA BASFD
file and assigns the location to the element-pointer variable :gg:;%zg;ws:;ze POINTER)
. L] 1]
given in the SET option. A based variable associated with SORT15 ENTRY (OFFSET(DUMMY_BQDY),
the same pointer will then relate to the fields of the logi- jsfaéigoaéir RELOCATAB (ST
. . . .] LOCATABLE LIST FROM
cal recgrd. The ba}sed variable is effectively overlaid on INFILE, AND ASSIGN LIST LOCATION TO
the logical record in the buffer. INPOINTER. */
Subroutine LREAD in Figure 5K6D-1 shows how a SE:EI 3

READ statement can be used to obtain the location of the
next logical record in an input buffer. LREAD uses two
parameters: INFILE and INPOINTER. INFILE isa
sequential, buffered input-file used for record-oriented IF
transmission. INPOINTER is a pointer variable that re-
ceives the address of the next logical record in the buffer

associated with INFILE. When all records have been read
from INFILE, execution of LREAD causes INPOINTER
to receive a null pointer value.

LREAD (INFILE, INPOINTER);

/% IF INPOINTER IS NULL, END OF
INFILE REACHED. GO TO END OF
PROGRAM, ®*/

INPOINTER = NULL

THEN

GO TO

END_SORT16;
/* ASSOCIATE OFFSET VARIABLES
OHEAD AND OL WITH BODY OF LIST.
DUMMY_POINTER =
ADDR(INPOINTER->BODY) ;
/% SORT LIST. */

*/

5K6E. An Example that Sorts and Prints Relocatable
Data Lists Contained in a File

CALL

SORTIS(INPOINTER->OHEAD,
o)) . INPOINTER->BODY) ;
An application of the previously discussed subroutine /* PRINT CONTENT OF SORTED LIST., %/
LREAD appears in program SORT16 of Figure 5K6E-1, IF
which shows how relocatable data lists can be retrieved THEN
from a file and how the components of the retrieved list COMPONENT_POINTER
can be sorted and printed. Sorting is performed by sub- ELSE

. . . . COMPONENT_POINTER =
routine SORT15, which was discussed previously. INPOINTER=>0OHEAD;

INPOINTER->0HEAD = NULLO

= NULL:

Procedure SORT16 contains a declaration for B_SIZE Lo
which is contained in the self-defining records written by PUT“"[LE (COMPONENT_POINTER~=NULL):
LOUT1. The declaration for B_SIZE is not used in EDIT (COMPONENT_POINTER=->KEY,
SORT16 for reading records written by LOUT?2. COMPONENT_POINTER->DATA)
(COLUMN(L1), A(3), A(TT)):
LREAD: IF
’“gggfg:g (INFILE, INPOINTER); COMPUNENT_POINTER->0L = NULLO
THEN
INFILE FILE RECORD INPUT, .
INPOINTER POINTER: ELSECONPONENT_POINTER = NULL;
/% AT END OF INFILE, COMPONENTPOINT ER->0L 3
SET INPOINTER TO NULL, END3 -

AND ALLOW NORMAL RETURN FROM

P
ON=UNIT TO TERMINATE UTSKIP (2);
SUBROUTINE &/ .
ON ENDFILE (INFILE) {IS:TOEESS NEXT RELQCATABLE DATA
INPOINTER = NULL: GO TO
START;

/% READ NEXT LOGICAL RECORD FROM
AND SET INPOINTER TO LOCATION
OF RECORD IN INPUT BUFFER =/
READ FILE (INFILE) SET (INPOINTER);
END

INFILEsy gnp_sORT16:

CLOSE FILE (
SYSPRINT);
END
SORT163%

Figure SK6E-1. Sorting and printing relocatable data lists
contained in a file

LREAD;
Figure SK6D-1. A subroutine that reads a relocatable data list
from a file

5L. REVIEW OF TECHNIQUES FOR CREATING
RELOCATABLE DATA LISTS

This chapter has shown how to organize a data list in re-
locatable form so that it can be moved conveniently from
one location to another. The chief reason for considering
the relocation of a d'ata list occurs when the list is written
into a file; subsequent processing of the list requires that

it be retrieved from the file and assigned to an area in main
storage. Since this storage area generally differs from the
area that originally contained the list, the values of ths
pointer variables that link the components of the list be-
come invalid in the new area.

One way of maintaining proper linkage is to reconstruct
the list, component by component, in the new area. But
this method is costly in execution time, particularly when
frequent movement of the list is required. A more effi-
cient way is to treat the list as a unit and assign its contain-
ing area to the new area. The list, however, will not be
linked properly in the new area; the area assignment will
have invalidated the pointer values within the transmitted
list. Even if the pointers were to remain unchanged, they
would still refer to the components of the list in the
original area and not to the components in the new area.
This difficulty is overcome by using offset variables rather
than pointer variables to link the components of the Jist.

Figure 5L-1 contains illustrations of a data list linked
by pointer variables (absolute form) and by offset variables
(relocatable form). The offset head OHEAD and the off-
set links OL in the relocatable list contain the relative ad-
dresses of list components. These addresses are relative to
the beginning of the containing area. They remain valid
when the relocatable list is assigned to another area be-
cause the components of the list retain their same relative
positions within the new area.

Since most lists are initially constructed in absolute
form, relocatable lists are conveniently obtained by con-
verting from absolute to relocatable form. Subroutine
CONV_AR showed how this conversion may be per-
formed. Similarly, subroutine CONV_RA demonstrated
the reverse conversion (relocatable to absolute form).
The. essential techniques used by both of these sub-
routines are illustrated in Figure 5L-2, which shows how
area assignment may be used to relocate a data item and
how the location of the item may be obtained in the
assigned area. The figure assumes that offset variable O1
has been declared with the attribute OFFSET(AREA1)

82

and that offset variable O2 has been declared with the
attribute OFFSET(AREA2). These attributes cause all
address values of O1 to be made relative to the beginning
of AREA1 and those of 02 to be made relative to the be-
ginning of AREA2. For illustration purposes, the figure
assumes the arbitrary addresses 2000 and 4025 for
AREA1 and AREA2,

It is also assumed that storage has been allocated for
the based variable DATA _ITEM at location 2075 within
A1 => AREAI and that this address has been assigned to
pointer P1. The address of DATA_ITEM rc¢lative to the
beginning of A1 —> AREALI is obtained by assigning P1 to
O1. The program automatically subtracts the address
(2000) of A1 —> AREAL1 from the value (2075) of P1 and
assigns the difference (75) to O1. When Al --> AREA1 is
assigned to A2 —> AREA2, DATA_ITEM retains its rela-
tive location (75) within the new area. Note, however,
that the absolute address of DATA_ITEM in A2 —>
AREA2 is not immediately available. The relative location
(75) of DATA_ITEM in A2 —> AREA? must first be
assigned to offset variable 02, which is associated with
AREA2. Since the value of an offset variable is not
changed when it is assigned to another offset variable, 02
receives the value 75 when O1 is assigned to O2. The ab-
solute address of DATA_ITEM in A2 —> AREA2 is then
obtained by assigning O2 to pointer P2; the address (4025)
of A2 —> AREA?2 is automatically added to the value (75)
of 02, and the sum (4100) is assigned to P1. When the
subroutines CONV_AR and CONV_RA convert a data
list to or from relocatable form, they apply these address-
ing techniques to each component in the list.

Figure SL-3 shows how area assignment can be used to
move two relocatable lists within a single area. The com-
ponents of both lists retain their relative positions in the
new area, as illustrated by the sample values of the offset
links. (Note that the components of each list are arranged
within the figure in logical sequence and are not scattered
to show their physical positions in the area.)

When a relocatable list is written into 2 file, the
LOCATE statement is first used to obtain storage for the
list in an output buffer. Area assignment is then used to
move the list into the buffer, and, when the buffer be-
comes full, it is automatically transmitted to the file. In
turn, retrieval of a relocatable list from a file is achieved
with a READ statement that contains a SET option. The
SET option obtains the position of ti. list in-an input
buffer.

B1 B1 —>BODY1
1000
HEAD DATA L DATA L DATA L
1075 1335 1575 NULL
DATA LIST IN ABSOLUTE FORM
B2 B2 ->BODY2
3000
OHEAD DATA oL DATA oL DATA oL
75 335 5§75 NULLO
DATA LIST IN RELOCATABLE FORM
Figure SL-1. A data list in absolute and relocatable form
Al A1 —>AREA1 A2 A2 —> AREA2
2000 4025
P1 DATA_ITEM P2 DATA_ITEM
2075 y 4100 P
/7 7
Ve rd
7 7
'd
01 02 s
75 75

A2 —> AREA2= A1 —>AREA1;

01=P1;
02=01;
P2=02;

/* ASSIGN A1 —>AREA1 TO A2 —> AREA2.*/
/* SET O1 TO RELATIVE ADDRESS OF DATA_ITEM IN A1 —>AREA1.*/
/* SET 02 EQUAL TO 01.*/
/*SET P2 TO ABSOLUTE ADDRESS OF DATA_ITEM IN A2 —> AREA2.*/

Figure 5L-2. Obtaining the absolute address of a data item in an assigned area

83

B1 —>BODY1

OH1A DATA oL DATA oL DATA oL
240 550 340 645 :
|
________________________________ I
|
[
[DATA oL DATA oL DATA oL
50 735 NULLO
OH1B DATA oL DATA oL DATA oL
800 150 460 NULLO
B2 —>BODY 2
OH2A DATA oL DATA oL DATA oL
240 550 340 645 :
|
________________________________ I
I
I
! DATA oL DATA oL DATA oL
50 735 NULLO
OH28B DATA oL DATA oL DATA oL
800 150 460 NULLO

B2 —>BODY2 = B1 —>BODY1;
OH2A = OH1A;
OH2B = OH1B;

Figure SL-3. Assigning relocatable data lists to another area

84

5M. SUMMARY OF CHAPTER 5

A. A list can be treated as a collective unit by referring to

the area in which the list components have been allo-
cated; internal and external movement of a list then
becomes’possible by transmitting the containing area.

. The assignment statement permits the contents of one
area to be assigned to another area. However, pointer
values in the assigned area become invalid in the re-
ceiving area.

. No operators can be applied to area variables.

. When an area is allocated, it receives the empty state.
An area can also be made empty by assigning it the
value of an empty area or the value of the built-in func-
tion EMPTY.

. The extent of an area is the number of storage bytes
between the start of the area and the end of the alloca-
tion most distant from the start.

. Assignment of an arca effectively frees all allocations
in the receiving area, and then assigns the extent of the
area to the receiving area.

. All free-storage gaps within an area are retained during
area assignment, so that allocations within the assigned
extent maintain their locations relative to each other.

. When the extent of an assigned area exceeds the size of
the receiving area, an AREA ON-condition occurs, and
the content of the receiving area becomes undefined.

The length of an area is the sum of the area size (spec-
ified in the AREA attribute) and the number of storage
bytes occupied by the area control information, which
is supplied by the PL/I compiler.

During record-oriented transmission of an area variable,
the record length is determined by the length of the
area, not the size of the area.

. An offset variable has a relative address as its value and
is declared with the OFFSET attribute, which has the
following form:

OFFSET (area-variable)

The area variable in parentheses must be based and un-
subscripted, and have an implied or explicit level num-
ber of one.

. When the value of a pointer variable is assigned to an
offset variable, the assigned value is made relative to
the absolute address of the area specified in the OFF-

SET attribute for the variable. The address computa-
tion is equivalent to the following calculation:

offset value = (pointer value) — (absolute address of
area)

M. When an offset variable is assigned to a pointer varia-
ble, the assigned offset value is converted to a pointer
value. The offset value is effectively added to the ab-
solute address of the area specified in the associated
OFFSET attribute:

pointer value = (offset value) + (absolute address of
area)

N. When an offset variable is assigned to another offset
variable, the offset value is assigned without modifica-
tion.

0." A null offset value is assigned to an offset variable
through the built-in function NULLO.

P. A null offset value cannot be assigned to a pointer var-
iable. Similarly, a null pointer value cannot be assigned
to an offset variable.

Q. The comparison operators equal (=) and not equal
(71=) are the only two operators that can use offset
variables as operands.

R. An offset variable cannot qualify a based variable. The
offset value must first be assigned to a pointer variable,
which is then used to qualify the based variable.

S. The values of locator variables (offsets and pointers)
cannot be converted to any other type of data, nor can
any other type of data be converted to locator type.

T. Locator variables may be used as arguments and para-
meters. When an offset argument is associated with an
offset parameter, both must be offset with respect to
the same area.

U. A relocatable data list is formed by using offset vari-
ables rather than pointer variables as component links
in the list.

V. Internal relocation of a relocatable data list is achieved
with the assignment statement; the area that contains
the list is assigned to another area.

W. Only record-oriented transmission statements.can be
used for external relocation of lists. The LOCATE
statement transmits a list to a file, and the READ state-
ment retrieves a list from a file. The area that contains
the list is transmitted to and from the file.

85

Appendix. Summary of List-Processing Facilities

The following summary divides the list-processing facilities
into five categories: attributes, built-in functions, ON-
conditions, statements, and miscellaneous features. Facil-
ities within each category appear in alphabetic order.

When used in the format of each facility, brackets []
denote optional items; braces { } indicate that a choice
must be' made from the enclosed items, which are separ-
ated by an “‘or” symbol |; and an ellipsis (. . .) specifies
optional repetition of the preceding item.

Attributes
AREA [{ (size-expression)|(*) }]
BASED (element-pointer-variable)
OFFSET (area-variable)
POINTER

Built-In Functions
ADDR (argument-variable)
EMPTY
NULL
NULLO

On-Condition
AREA

Statements
ALLOCATE based-variable
[IN (area-variable)]
[SET (pointer-variable))]
{, based-variable
[IN (area-variable)]
[SET (pointer-variable)]] . . .;
FREE based-variable
[IN (area-variable)]
[, based-variable
[IN (area-variable)]] .. .;
LOCATE based-variable
FILE (file-name)
SET (pointer-variable);
READ FILE (file-name)
SET (pointer-variable);

Miscellaneous Features
Pointer-qualification symbol:
—>
REFER option:
element-variable REFER (element-variable)

>

C

Index

Absolute addresses
Absolute list

ADDR built-in function
Addressing storage
ALLOCATE statement
Area variables

Arrays

Arrays of structures
AREA attribute
AREA ON-condition
Assignment of areas
Assignment of offsets
Assignment of pointers

Based storage
Based variables
Buffer storage

Contextual pointers

Data movement
DEFINED attribute

Element items

EMPTY built-in function
Extent of an area
External relocation

FREE statement
IN option

Length of an area
List organization
List usage

LOCATE statement

NULL built-in function

NULLO built-in function

Offset variables

Pointer arrays
Pointer qualification
Pointer variables
Program examples in
figure number
sequence:
SORT1

Figure
Number

2E1-1

Para-
graph
Number
3D
4B
3D2A
1A
4A2
5B

2B
2D
4A6A
4A6C
5B
5J1
3D2B

4A
3D2
5K6C

3E4

1B
4A6A

5B
5C
5K6

4A3
4A6B

5G
4B
1D
SK6A

3D2A
512

5]

3G
3E1
3D2

Page
Number

24
53
25

1
46
62

7
10
51
53
62
67
25

45
26
80

32

1
51

7
62
63
78

46
52

65
53

4
78
25
638

66

35
28
24

11

SORT2
SORT3
SORT4
SORTS
MEAN
SWAP
SORT6
SORT7?
SORT8
SORT9
SORT10
SORTI11
SORTI12
SORT13
SORT14
EXTENT
MOVE_L
MOVE_RL
CONV_AR
CONV_RA
SORT15
LWRITE
LOUT!
LOUT2
LREAD
SORT16

READ statement
REFER option
Relative addresses
Relocatable list
Relocation of data lists
Restrictions on based
variables

SET option
Size of an area
Storage
automatic
based
controlled
Structures
Symbolic addresses

Figure
Number
2E1-5
2E2-1
3C1-1
3C2-1
3D3B-1
3E2-1
3F2-1
3F3-1
3G1-1
3G1-5
3G2-1
3G2-7
4A4-1
4A5B-1
4A6D-1
SF-1
5K1-3
5K3-1
5K4-1
5K4-2
5K5-1
SK6A-1
5K6B-2
5K6C-1
SK6D-1
5K6E-1

Para-

graph Page
Number Number

13
15
17
18
27
30
33
34
35
37
38
42
48
51
54
65
72
74
75
76
77
78
79
80
81
81

SK6D 81
4A5A 49
3C 16
5K2 71
5K 69

3E3 32

4A2 46
5C 63

4A 45
4A 45
4A 45
2C 9

3B 16

87

GF20-0015-2

TBM

International Business Machines Corporstion

Data Processing Division

1133 Westchesier Avenue, White Plains, New York 10004
(U.8.A. only)

IBM Worid Trade Corporation
821 United Nations Piaza, New York, New York 10017

(International)

Z-6100-0Z4D 'V'S'N Ul Paiullg)/ 1d 0 sanijioe4 Buissaso.d 151 ayi 01 UONINPOIIY|

