
Techniques far Processing Pointer Lists

and Lists of Lists in PL/I

This manual illustrates usage of PL/I list-processing facilities for processing
pointer lists and lists of lists. Pointer lists consist of based variable structures
that contain pointers which address data plus pointers that link the structures.
Lists of lists contain pointers that address other lists.

The information in this manual assumes knowledge of Introduction to the List
Processing Facilities of PL/I (GF20-0015) and Techniques for Processing Data
Lists in PL/I (GF20-0018). The audience for this manual is assumed to be the
experienced programmer.

Illustrative programs were processed by the PL/I (F) Compiler 01 ersion 5) under
control of the IBM System/360 Operating System (Release 18.6).

GF20-0019-0

First Edition (August 1971)

Copies of this and other IBM publications can be obtained through IBM branch offices.

A form has been provided at the back of this publication for readers' comments. If this form has
been removed, address comments to: IBM Corporation, Technical Publications Department,
1133 Westchester Avenue, White Plains, New York 10604.

©Copyright International Business Machines Corporation 1971

Preface

This manual is the third in a series about processing lists
with PL/I. It assumes knowledge of the two preceding man­
uals, Introduction to the List Processing Facilities of PL/I
(GF20-0015) and Techniques for Processing Data Lists in
PL/I (GF20-0018).

This manual builds upon the preceding manuals to
extend the concept of processing simple and complex data
lists to include techniques for processing pointer lists and
lists of lists. Function and subroutine procedures used to
manipulate the lists are illustrated. Use of suitable inline
coding may be preferred for applications.

The illustrative programs compiled and executed. Rea-

Note: Version 5 of the PL/I (F) Compiler under control
of the IBM System/360 Operating System (Release
18.6) · produced the program printouts shown in
this manual.

sonable care has been exercised to minimize error. Clarity
of presentation has been emphasized rather than efficient
programming or computer utilization techniques.

The advanced nature of this manual requires the reader
to be an experienced programmer who has studied the
companion texts mentioned above and who is skilled in the
use of subroutines and functions. References to particular
implementations of PL/I are held to a minimum, but in­
formation on the F-level facilities for processing lists
appears in IBM System/ 360: PL/I Reference Manual
(GC28-8201) and IBM System/360 Operating System: PL/I
(F) Programmer's Guide (GC28-6594).

Contents

Page Page
Introduction 1 PROCESSING LISTS OF LISTS 22

Creating a List of Available Storage
DATA LISTS Components 22
POINTER LISTS Manipulating Component Elements in a
LISTS. OF LISTS List of Lists 24

Obtaining the Address of a List Component 24
Obtaining the Values of Elements in

List Components 27
Assigning Values to Elements of

Chapter 1. Pointer Lists 3 List Components 31
Comparing Data Values of List

ORGANIZING POINTER LISTS 3 Components 33
Separating Storage for Data Items Manipulating Top Level of a List of Lists 34

and List Components 3 Counting Number of Values at Top Level
Sharing Data Items among Pointer Lists 4 of a List of Lists 34
Storing Mixed Data Types in Pointer Lists 4 Inserting Values into Top Level of a
Freeing Data Storage 5 List of Lists 36

Obtaining Values and their Type Codes from
PROCESSING POINTER LISTS 5 Top Level of a List of Lists 39

Combining Lists of Lists at Top level 42
USING POINTER LISTS 10 Copying Top Level of a List of Lists in

Multiple Sorting of Records 10 Reverse Order 46
Multiple Searching of Records 12 Manipulating All Levels of a List of Lists 48

Obtaining First and Last Data Values in a
REVIEW OF POINTER LISTS 14 List of Lists 48

Counting Data Values in a List of Lists 52
SUMMARY 14 Deleting List Components from a

List of Lists 53
Copying Lists of Lists 56
Testing Lists of Lists 59 '
Replacing Data Values in a List of Lists 63

Chapter 2. Lists of Lists 15
USING LISTS OF LISTS 65

ORGANIZING LISTS OF LISTS 15 Sorting with a Binary Tree 65
Component Elements for Lists of Lists 15 Indexing Catalog Cards 70
Permissible Arrangements of List Components 15
Null Lists of Lists 17 REVIEW OF LISTS OF LISTS 75
Sharing Data Items among Usts of Lists 18
Sharing List Components among Lists of Lists 20 SUMMARY 75
Parenthetic Representation of Lists of Lists 20
Circular Lists of Lists 21 Index 76

Introduction

This introduction defines the organization of data lists,
pointer lists, and lists of lists. Diagrammatic representation
of the three types of list organization is shown. This manual
illustrates techniques for processing pointer lists and lists of
lists.

DATA LISTS

A data list is made up of allocations of based variable struc­
tures containing data plus pointer elements that link the
structures:.

DECLARE
1 DATA LIST COMPONENT BASED(P), - -
2 DATA CHARACTER (80),
2 LINKPOINTER,
(P, SA VE, HEAD _POINTER) POINTER;

ALWCATE DATA_LIST_COMPONENT SET(P);
HEAD _POINTER, SA VE= P;
ALLOCATE DATA_LIST_COMPONENT SET(P);
SA VE->LINK = P;
SAVE=P;
ALLOCATE DATE_LIST _COMPONENT SET(P);
SA VE->LINK = P;
P->LINK = NULL;

The data list organization resulting from such code is repre­
sented in Figure 1.1.

I HEAD_POINTER 11---1•~· DATA LINK 1-------.

DATA LINK 1----- DATA NULL

Figure 1.1. Data list organization

A data list has two significant limitations: (l)all data
items in the list generally must have the same attributes,
and (2) the same data item cannot be shared by two or
more lists at the same time; a distinct copy of the item
must appear in each list, thereby reducing conservation of
storage.

POINTER LISTS

The cited limitations of data lists can be avoided by replac­
ing the data items in list components with pointer variables

that specify the locations of data items outside the list.
Such a pointer list component can be specified as follows:

DECLARE
1 POINTER_LIST _COMPONENT BASED(P),
2 DATA_PTRPOINTER,
2 PTR_LINK POINTER,
(P _HEAD, P) POINTER,
DATA CHARACTER(80);

linked allocations of the type of list component associated
with such a declaration are represented in Figure 1.2. Such
lists are called pointer lists because they consist of linked
pointers. They retain the advantages of list organization
while allowing the same data item to be shared (pointed to)
by different lists and permitting the data items associated
with a list to have different attributes.

P _HEAD 1-----.1~ DATA_PTR PTR LINK 1------~

DATA

DATA_PTR PTR_LINK 1----1~ DATA_PTR NULL

DATA DATA

Figure I. 2. Pointer list

It is possible to allow a data list to contain data items
with different attributes. However, such a list must be proc­
essed on an individual basis. Pointer lists, on the other
hand, permit general rather than specific processing tech­
niques to be developed for all lists and still allow the data
items associated with a list to possess a variety of attributes.

Chapter 1 of this manual discusses pointer lists.

LISTS OF LISTS

The flexibility of a pointer list can be extended to organize
lists in higher-level lists called lists of lists. Each component
in a list of lists can contain three elements:

1. A pointer variable that specifies the location of the
next component in the list

2. Another pointer variable that specifies the location of
the data item or the sublist associated with the component

3. A type code that indicates whether a data item (code
'D') or a sublist (code 'L') is associated with the com­
ponent.

The elements can be specified as follows:

DECLARE
1 LIST_OF _LISTS_COMPONENT BASED(P),
2 CODE CHARACTER(l),
2 SUB_ PTR POINTER,
2 LIST _LINK POINTER,

(L_HEAD, P) POINTER,
DATA CHARACTER(80);

Linked allocations of this type of list component are
represented in Figure 1.3.

Each sublist can contain other sublists to an arbitrary
depth, and the number of components permitted in each
sublist is also arbitrary. This type of organization retains
the advantages of pointer lists and also frees the program­
mer from having to know the ex.act number of lists that will
be required during a particular run of a program. New lists
can be accommodated by treating them as sublists within a
master list.

Chapter 2 of this manual discusses lists of lists.

SUB_PTR LIST_LINK 1----.i CODE
'D'

SUB_PTR NULL

DATA

CODE
'D'

CODE
'D'

NULL SUB_PTR LIST _LINK SUB_PTR

I DATA I DATA

Figure 1.3. List of lists

2

Chapter 1. Pointer Lists

An essential characteristic of a data list is that its data items
appear within the body of the list. As a result, a data item
must be duplicated if it is to be a member of two different
data lists. Duplication of a small data item, such as a single
character, does not require much storage. However, duplica ·
tion of a large data item, such as a long string, or an array
or structure with many elements, may lead to excessive use
of storage.

A way of avoiding duplicate storage is to store the
address of a data item rather than the data item itself in a
list. Then storage need be allocated for only one copy of
the item.

The type of list produced by this arrangement is called a
pointer list to distinguish it from a data list. This chapter
shows how pointer lists may be organized and how they
permit more efficient use of computer storage and program
execution time.

Component Declaration

1 COMPONENT BASED(P), L1:

2 DATA POINTER,

2 LINK POINTER;

Figure 1.1. Example of a pointer list

Area Declaration

MAIN_AREA,

2 LIST _AREA AREA(5000),

2 DATA_AREA AREA(20000), L1:

ORGANIZING POINTER LISTS

Figure 1.1 illustrates the organization of a pointer list. Each
list component contains two pointer elements: DATA and
LINK. The DATA pointer contains the address of the data
item associated with the component. LINK points to the
next list component.

Separating Storage for Data Items and
List Components

The data items associated with a pointer list can be of any
storage class and data type and can be located anywhere
within a program. They can even be intermixed with their
associated list components in the same storage area. A less
complicated arrangement would involve separate areas for
list components and data items. Figure 1.2 shows how a

Example of Pointer List

Example of Area Use

MAIN_AREA

LIST_AREA

Figure 1.2 .. Subdividing an area for list storage and data storage

3

structure organization can be used to divide an area into
separate list storage and separate data storage.

Sharing Data Items Among Pointer Lists

The illustration in Figure 1.3 shows how two data lists (Ll
and L2) may share data items. Both lists contain the same
first two data items, but storage is required for only one
copy of each item.

L1:

L2:

Figure 1.3. Two pointer lists with data items in common

The same data item may appear on an arbitrary number
of pointer lists and may also appear an arbitrary number of
times on the same list.

Observe that the fourth component of L1 contains a null·
data pointer, which allows a data item to be removed from
a pointer list without requiring a corresponding deletion of
the component. This use of a null data pointer avoids the
need to link the list component to the list of available stor­
age components when it is known that the list will use the
component again.

Also note that the size of L1 is five, even though its
fourth position contains a null data pointer. As a result, a
null data item is considered to be a possible member of a
pointer list.

Because the illustrations for pointer lists can become
complicated, a more compact representation is often desir­
able. Figure 1.4 contains an abbreviated representation of
pointer lists.

L1:

L2:~

Figure 1.4. Abbreviated representation of pointer lists

4

Storing Mixed Data Types in Pointer Lists

The techniques used for organizing data lists in Techniques
for Processing Data Lists in PL/I (GF20-0018) do not per­
mit data lists to contain mixed data types. Such flexibility
would require continual allocating and freeing of compo­
nent storage on an individual basis and would eliminate the
efficiency obtained from a list of available storage compo­
nents.

With pointer lists, however, mixed data types are pos­
sible without a loss in efficient storage handling. Figure 1.5
shows a pointer list that contains four data items. The first
element in each item represents a type code that distin­
guishes the item. The first item is a four-position array; the
second, a single character; the third, a three-element struc­
ture; and the fourth, a single character. A type code would
not be necessary if the items always appeared in a predeter­
mined pattern.

L1:

...._ _________ ...,. 3
....__..__~

-175

+016

-903
-415

Figure l.5; A pointer list with data items of mixed type; the first

element of each item serves as a type code

Since data items do not appear within the body of a
pointer list, the components of the list can have the. same
structure. It is possible, therefore, to create a list of avail­
able storage components for pointer lists that contain data
items of mixed type.

Deletion of a data item from a pointer list can return the
associated list component to the list of available storage
components without destroying the data item. The data
item can still be a member of another list, as illustrated in
Figure 1.6.

L1:

L2:

A. Before deletion of last item from L 1

L1:

L2:

B. After deletion of last item from L 1

L1:

L2:

C. Abbreviated form after deletion

Figure 1.6. Deletion of an Item from a pointer list

Freeing Data Storage

A count can be attached to each data item to specify the
number of lists that contain the item. As the item is insert­
ed into or deleted from a list, the count can be adjusted
appropriately. A zero count would indicate that the item
belonged to no list and that its storage could be freed.

PROCESSING POINTER LISTS

The techniques for processing pointer lists resemble those
for processing data lists, except that the addresses of data
items and not the data items themselves are manipulated
within pointer lists. Insertion, deletion, and retrieval of a
data item associated with a pointer list always involve the
address of the item.

This section presents elementary subroutines and func­
tions (Figures 1.7 through 1.16) for processing simple
pointer lists that possess the linear organization developed

earlier in this chapter. Elementary procedures are developed
first and used in turn to create higher-level procedures.

Because of the similarity between the techniques of this
chapter and those in Techniques for Processing Data Lists
in PL/I, fewer procedures are developed here. The range of
development is restricted to those procedures needed for
the examples in the next section, "Using Pointer Lists".
More extensive methods for processing pointer lists, includ­
ing recursive techniques, appear in Chapter 2, which dis­
cusses lists of lists.

AREA_ OPEN P Subroutine

Purpose

To create a list of available storage components

Reference

AREA_OPEN P(P AREA,P LIST)

Entry-Name Declaration

DECLARE AREA_OPEN_P ENTRY(AREA(*),
POINTER);

Meaning of Arguments

P AREA

P _LIST

- the area variable that is to contain the
list of available storage components

- the pointer variable that serves as the
head of the list of available storage
components

Figure 1.7 A. Description of the AREA_ OPEN _P subroutine for
creating a list of available storage compartments

AREA_OPEN_P:
PROCEOURECP_AREA, P_LISTI;

DECLARE

END;

P_AREA AREAC*I•
CP_LIST, Tl POINTER,
1 P_COMP BASEOCPI,
2 DATA POINTER,
2 LINK POINTER;
ON AREA BEGIN;
IF
P-.=NULL

THEN
P->LINK = NULL;

GO TO
END_AREA_OPEN_P;

P = NULL;
ALLOCATE P_COMP INCP_AREAI
SET CPI;

5

P_LIST = P;

T = P;
ALLOCATE P_COMP IN(P_AREA)
SET<PI;
T->LINK = P;

GO TO
L;

END_AREA_OPEN_P:
END

AREA_OPEN_P;
Figure 1.7B. The AREA_ OPEN_ P subroutine

ADDRESS N P Function

Purpose

To obtain the address of the nth component in a
pointer list

Reference

ADDRESS_N_P(P _LIST,N)

Entry-Name Declaration

DECLARE ADDRESS_N_P ENTRY (POINTER,
FIXED DECIMAL(5))
RETURNS(POINTER);

Meaning of Arguments

P LIST the pointer variable that is the head
of the list to be examined

N - a fixed-point decimal integer value
that specifies the component whose
address is to be obtained; N has a
maximum size of five digits

Figure 1.8A. Description of the ADDRESS_ N _ P function for
obtaining the address of the nth component in a
pointer list

6

ADDRESS_N_P:

DECLARE

THEN

PROCEDURE CP_LIST, N)
RETURNS (POINTERJ;

P_LIST POINTER,
CN,I) FIXED DECIMALC5),
1 P_COMP BASEDCADDRESSJ,
2 OATA POINTER,
2 LINK POINTER;

IF
CP_LIST = NULLI (N < 1)

RETURN C NULLI;
ADDRESS = P_LIST;

00

END;
END

THEN

I = 1 BY l;
IF

CADORESS->LINK = NU"lll& (h=NJ

RETURN CNULLI;
IF
I = N

THEN
RETURNCAOORESSJ;
ADDRESS ADDRESS->LINK;

AOORESS_N_P;

Figure 1.SB. The ADDRESS_ N _ P function

GET LINK_P Function

Purpose

To obtain the address of the next component in a
pointer list

Reference

GET_LINK P(ADDRESS)

Entry-Name Declaration

DECLARE GET LINK_P ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

ADDRESS - a pointer value that specifies the
address of a list component

Figure 1.9A. Description of the GET _LINK_P function for
obtaining the address of the next component in a
pointer list

GET _LI NK_P:
PROCEDURE CADDRESSJ
RETURNS CPOINTERJ;

DECLARE

END

IF

1 P_COMP BASEDCADDRESSJ,
2 DATA POINTER,
2 LINK POINTER;

ADDRESS = NULL
THEN

RETURN CNULLI;
RETURNCAOORESS->LINKJ;

GET_LINK_P;

Figure 1.9B. The GET_ LINK_ P function

GET_DATA P Function

Purpose

To obtain the value of the data pointer in a
component of a pointer list

Reference

GET _DATA P(ADDRESS)

Entry-Name Declaration

DECLARE GET _DATA_P ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

ADDRESS - a pointer value that specifies the
address of a pointer list component

Figure LlOA. Description of the GET DATA P function for
obtaining the value of the data p-;;inter in a
component of a pointer list

GET _DAT A_P:
PROCEDURE (ADDRESS)
RETURNS !POINTER);

DECLARE

ENO

l P_COMP BASEDCADDRESS),
2 DATA POINTER, .
2 LINK POINTER;

IF
ADDRESS = NULL

THEN
RETURN (NULL);
RETURNIAOORESS->OATAI;

GET_DATA_P;

Figure l.lOB. The GET_ DATA _P function

SET LINK P Subroutine

Purpose

To assign a value to the link pointer of a component
in a pointer list

Reference

SET LINK_P(ADDRESS,L)

Entry-Name Declaration;

DECLARE SET _LINK_P ENTRY(POINTER,
POINTER);

Meaning of Arguments

ADDRESS - a pointer value that specifies the
address of a pointer list component

L - the value to be assigned to the link
element of the list component

Figure 1.1 lA. Description of the SET_ LINK_ P subroutine for
assigning a value to the link pointer of a component
in a pointer list

SET_LINK_P:
PROCEDUREIADDRESS,Lt;

DECLARE

END

L POINTER,
l P_COMP BASEDIADDRESS),
2 DATA POINTER,
2 LINK POINTER;

IF
ADDRESS = NULL

THEN
RETURN;
AOORESS->LINK L;

SET_LINK_P;

Figure l.llB. The SET _LINK _P subroutine

7

SET _DATA_P Subroutine

Purpose

To assign a value to the data pointer of a component
in a pointer list

Reference

SET _DATA_P(ADDRESS, D)

Entry-Name Declaration

DECLARE SET _DATA_P ENTRY(POINTER,
POINTER);

Meaning of Arguments

ADDRESS - a pointer value that specifies the
address of a list component

D - the pointer vaiue to be assigned to the
data pointer of the list component

Figure 1.12A. Description of the SET_ DATA_ P subroutine for
assigning a value to the data pointer of a component
in a pointer list

SET_OATA_P:
PROCEOURECAOORESS,OI;

DECLARE

ENO

0 POINTER,
1 P_COMP BASEOCAOORESSI,
2 DATA POINTER,
2 LINK POINTER;

IF
ADDRESS = NULL

THEN
RETURN;
AOORESS->OATA = O;

SET_OATA_P;

Figure 1.12B. The SET_DATA_P subroutine

8

SIZE_P Function

Purpose

To obtain the number of data pointers (null and
non-null) in a pointer llst

Reference

SIZE_P(P _LIST)

Entry-Name Declaration

DECLARE SIZE_P ENTRY(POINTER)
RETURNS(FIXED
DECIMAL(5));.

Meaning of Argument

P _LIST - the pointer variable that is the head
of the list ~o be examined

Figure 1.13A. Description of the SIZE_ P function for obtaining ·
the number of data pointers in a pointer list

SIZE_P:

OE CLARE

DO

PROCEDURE CP_LISTI
RETURNS !FIXED OECI~All511;

CP_LIST, AODRESSI POINTER,
N FIXED DECIMALC51;
ADDRESS = P_LIST;

N = 0 BY l;
. IF

ADDRESS = NULL
THEN

ENO;
END

RETURNCNI;
ADDRESS= GET_LIN~_PCAQ~RFSSI;

SIZE_P;

Figure 1.13B. The SIZE_P function

INSERT _ND_P Subroutine

Purpose

To insert a data pointer into the nth position of a

pointer list

Reference

INSERT_ND_P(P _LIST,N,D)

Entry-Name Declaration

DECLARE INSERT_ND_P ENTRY(POINTER,
FIXED DECIMAL(5), POINTER);

Meaning of Arguments

P LIST - the pointer variable that is the head of
the list to be processed

N - the position in the list where the data
pointer is to be inserted ·

D - the pointer value to be inserted

Figure 1.14A. Description of the INSERT_ ND_ P subroutine for
inserting a data pointer into the nth position of a
pointer list

INSERT_ND_P:
PROCEDURE(P_LIST, N, DJ;

DECLARE

PUT

N FIXED DECIMAL(511
(P,QI POINTER,
IP_LIST, D1 AOORESSl, AOORESS21
AVAIL_P EXTERNAL) POINTER;
I* IF LIST OF AVAILABLE STORAGE
COMPONENTS IS EMPTY, THEN PRINT
MESSAGE AND RETURN. */
IF AVAIL_P = NULL THEN DO;

LISTl'LIST OF AVAILABLE STORAGE IS
EMPTY' I;
RETURN; ENO;
I* ASSIGN DATA ITEM TO FIRST
COMPONENT IN LIST OF AVAILABLE
STORAGE. *I
CALL SET_OATA_PIAVAIL_P, 01;
I* IF P_LIST IS NULL OR N<21 INSERT
FIRST COMPONENT OF AVAIL_P INTO
FIRST POSITION OF LIST ANO RETURN*/

IF
(P_LIST = NULLI I (N < 21
THEN 00;
AOORESSl = P_LIST; P~LIST = AVAIL_P;
AVAIL_P = AOORESS_N_PIAVAIL_P, 21;
CALL SET_LINK_PIP_LIST,AOORESSll;
RETURN; ENO;
IF N > SIZE_PIP_LISTI
THEN DO;

P = P_LIST;
DO WHILE(P ,: NULL);
Q = P; P = Q->LINK;
ENO;
P1 Q->LINK = AVAIL_P;
AVAIL_P = AOORE.SS_N_PIAVAIL_P, 2 I;
P->LINK = NULL;
RETURN;
ENO;
I* OTHERWISE OBTAIN THE AOORESS CF
THE N-TH COMPONENT OF P_LIST. *I
AODRESS2 = AOORESS_N_PIP_LIST 1 ~I;
AODRESSl = AOORESS_N_PIP_LIST, N-11;
I* INSERT FIRST COMPONENT OF AVAIL P
INTO THE N-TH POSITION OF P_LIST. ;,
CALL SET_LINK_P(AOORESS1 1 AVAIL Pl;
AOORESSl = AVAIL_P; -
AVAIL_P = AOORESS_N_P(AVAIL_P, 21;
CALL SET_LINK_PIADORESS1 1 ACDRESS21;

ENO INSERT_NO_P;

Figure 1.14B. The INSERT_ ND _P subroutine

GET _ND P Function

Purpose

To get the value of the data pointer in the nth
position of a pointer list

Reference

GET_ND_P(P _LIST,N)

Entry-Name Declaration

DECLARE GET_ND_P ENTRY(POINTER, FIXED
DECIMAL(5))
RETURNS(POINTER);

Meaning of Arguments

P _LIST - the pointer variable that is the head of
the I ist to be prncessed

N - the position of the data pointer whose
value is to be obtained

Figure 1.lSA. Description of the GET_ ND_ P function for getting
the value of the data pointer in the nth position of
a pointer list

9

GET_ND_P:

DECLARE

END

PROCEDURE CP_LIST, NI
RETURNS CPOINTERI;

P_LIST POINTER,
N FIXED DECIMALC51;
RETURNCGET_DATA_P
CADORESS_N_PCP_LIST, Niii;

.GET_ND_P;

Figure 1.lSB. The GET_ ND _P function

DELETE ND P Subroutine

Purpose

To delete the data pointer in the nth position of a
pointer list

Reference

DELETE ND P(P LIST,N)

Entry-Name Declaration

DECLARE DELETE ND P ENTRY(POINTER,
FIXED
DECIMAL(5));

Meaning of Arguments

P LIST - the pointer variable that is the head of
the list to be processed

N - the position of the data pointer to be
deleted

Figure 1.16A. Description of the DELETE_ ND _P subroutine for
deleting the data pointer in the nth position of a
pointer list

DELETE_ND_P:
PROCEDURECP_LIST, NJ;

DECLARE

10

N FIXED DECIMALl5),
CP_LIST,ADDRESS1,ADDRESS2,ADDRESS3,
AVAIL_P EXTERNAL) POINTER;
I* IF P_LIST· IS EMPTY OR N IS LESS
THAN lt THEN RETURN. •I

IF
IP_LIST = NULL) I IN < 11

THEN
RETURN;
I* DELETE FIRST COMPONENT IF N
EQUALS 1. *I

IF
N = 1

THEN

DO;

END;

END

ADDRESS2 = P_LIST;
P_LIST • AODRESS_N_PIP_LIST, 2H

GO TO
L;

I* OBTAIN N-TH COMPONENT. *I
AODRESS2 ADDRESS_N_PIP_LIST,Nt;

IF
ADDRESS2 NULL

THEN
RETURN;
ADDRESSl = ADDRESS_N_PCP_LIST,N-11;
ADDRESS3 = ADORESS_N_PCP_LIST ,N+l I;
I* DELETE N-TH COMPONHH. •I
CALL SET_LINK_PIADORESSI,AODRESS31;
I* INSERT DELETED COMPONENT INTO
LIST OF AVAILABLE STORAGE
COMPONENTS. *I

ADDRESSl = AVAIL_P;
AVAIL_P = ADDRESS2;
CALL SET_LINK_PIAVAIL_P,ADORESSll;

DELETE_ND_P;

Figure 1.16B. The DELETE_ ND P subroutine

USING POINTER LISTS

Pointer lists possess the same advantages as data lists in
providing efficient control over varying storage require­
ments. As with data lists, pointer lists need not reserve
dormant storage in anticipation of maximum requirements;
storage not needed by one list can be used by another.

Pointer lists also provide two additional benefits not
obtained from data lists. They permit a data item to be a
member of two or more lists at the same time and also
eliminate unnecessary data movement. Both benefits are
obtained by manipulating the addresses of data items rather
than the items themselves.

The following discussions demonstrate these advantages
by two examples. The first example shows how multiple
sorts may be performed efficiently on the records of a file
by manipulating the addresses of the records. The second
example illustrates how different arrangements of the same
records on separate pointer lists permit efficient searching
of the records for different key values.

Multiple Sorting of Records

Figure 1.17 presents the M_SORT program, which shows
how a sort can be made more efficient by avoiding unneces­
sary data movement. The program obtains records from the
standard system-input file (SYSIN) and prints the records
in two different sorted arrangements on the standard
system-output file (SYSPRINT).

M_SORT:
PROCEDURE;

DECLARE
(1,J,SIZE1 1 SIZE21
FIXED DECIMAL151,
(AVAIL_P EXTERNAL, AUTHOR_LIST 1

TITLE_LIST, Pl, P21 POINTER,
1 MAIN_AREA,
2 LIST_AREA AREA,
2 OATA_AREA AREA,
1 CARO,
2 FIELOl CHARACTERl15J,
2 FIELD2 CHARACTERl25J,
2 FIEL03 CHARACTERCIOI,
2 FIEL04 CHARACTERl301,
1 DOCUMENT BASEOIP11 1

2 AUTHOR CHARACTERC151 1

2 TITLE CHARACTERC25J,
2 SUBJECT CHARACTERCIOJ,
2 DESCRIPTORS CHARACTERC301;
I* WHEN DATA_AREA IS EXHAUSTED OR
ALL DOCUMENT CARDS HAVE BEEN READ,
GO TO PRINT_AUTHOR_LIST. *I
ON AREA

GO TO
PRINT_AUTHOR_LIST;

ON ENDFILE CSYSINI
GO TO

PRINT_AUTHOR_LIST;
I* INITIALIZE. *I
SIZE1,SIZE2 = O;
AUTHOR_LIST,TITLE_LIST = NULL;
I* FORM LIST OF AVAILABLE STORAGE
COMPONENTS IN LIST_AREA. *I
CALL AREA_OPEN_PCLIST_AREA,AVAIL_PI;
I* GET DOCUMENT CARDS, AND ASSIGN
THEM TO STORAGE ALLOCATED IN
OATA_AREA. ALSO FORM A POINTER
LIST OF DOCUMENT CARDS SORTED ON
AUTHOR. *I

#AUTHOR:

DO

DO WHILE
ClB I;
I* DO WHILEClBI IS TERMINATED •I
I* BY EOF OR AREA CONDITION *I

GET
EDITICAROICAC151,AC251,All01 1 A(30JI;
ALLOCATE DOCUMENT INCDATA AREAi
SET CPI I; -
Pl->DOCUMENT = CARO;
I* FINO INSERTION POINT IN
AUTHOR_LIST. *I

I = 1 TO SIZEl BY I;
P2 = GET_ND_PCAUTHOR_LIST,11;
IF P2 = NULL
THEN GO TO INSERT_AUTHOR;

IF

ENO;

Pl->AUTHOR<P2->AUTHOR
THEN

GO TO
INSERT_AUTHOR;

I* INSERT ADDRESS OF DOCUMENT IN
AUTHOR_LI ST. *I

INSERT_AUTHOR:
CALL INSERT_ND_PIAUTHOR_LIST,I,PlJ;

Figure 1.17. The M_SORT procedure

SIZEl = SIZEl+l;
END_AUTHOR:
END

#AUTHOR;
I* PRINT AUTHOR LIST. *I

PRINT_AUTHOR_LIST: -

DO

END;

PUT
PAGE;

PUT
LIST('AUTHOR FILE 1 J;

PUT
SKI PC 21;

I = l TO SIZEl BY l;
Pl = GET_ND_PIAUTHOR_LIST,IJ;

PUT
EDITIPl->DOCUMENTICAI;

PUT
SKIP;

I* SORT DOCUMENT CARDS ON TITLE. *I
#TITLE:

DO

DO

J = l TO SIZEl BY l;
I* GET AND DELETE ADDRESS OF FIRST
DOCUMENT FROM AUTHOR_LIST. *I
Pl = GET_ND_PIAUTHOR_LIST 1 11;
CALL DELETE_ND_PCAUTHOR_LIST,11;
I* FIND INSERTION POINT IN
TITLE_LIST. •I

I = l TO SIZE2 BY l;
P2 = GET_ND_PCTITLE_LIST,II;
IF P2 = NULL
THEN GO TO INSERT_TITLE;

IF

END;

Pl->TITLE<P2->TITLE
THEN

GO TO
INSERT_ TITLE;

I* INSERT ADDRESS OF DOCUMENT IN
TITLE_LIST. •I

INSERT_TITLE:
CALL INSERT_ND_PCTITLE_LIST, I,PlJ;
SIZE2 = SIZE2 + l;

END_ TITLE:
END

#TITLE;
I* PRINT TITLE LIST. *I

PRINT_TITLE_LIST: -

DO

ENO;
END

PUT
PAGE;

PUT
LISTl'TITLE FILE 1 1;

PUT
SKIPC21;

I = l TO SIZEl BY 1;
Pl = GET_ND_PCTITLE_LIST,11;

PUT
EOITCPl->DOCUMENTJCAJ;

PUT
SKIP;

M_SORT;

11

Each record describes a document and contains four
fields: AUTHOR, TITLE, SUBJECT, and DESCRIPTORS.
The records are printed in sort order: first on AUTHOR,
then on TITLE.

As document cards are read, storage is allocated in
DATA_ AREA, and the address ofeach card is stored in the
pointer list AUTHOR_LIST, which is arranged in ascending
sequence on AUTHOR. LIST_AREA contains all list com­
ponents.

After AUTHOR _LIST is used to print the document
cards in sort order, successive data addresses are removed
from the list and inserted into the pointer list TITLE_
LIST, which is arranged in ascending sequence on TITLE.
This list is used in the second printing of the sorted docu­
ment cards.

Note that during both sorts the document cards remain
at their original storage locations within DATA_ AREA;
only the addresses of the cards are rearranged within both
lists. As a result, less data is moved, and a more efficient
sort is obtained.

When the number of document cards exceeds the storage
capacity of DATA_ AREA, only those cards that can be
stored in the area are sorted.

Multiple Searching of Records

Since the same data item may be referred to simultaneously
by two different pointer lists, it is possible to maintain
more than one sort arrangement of a single set of data
items. Multiple arrangements of this type;: avoid data dupli­
cation and permit faster searching of items on different
keys.

Figure 1.18A contains the SEARCH program, which
arranges a set of records on two different keys and searches
the records for specified values of the keys. Each record
describes a document and contains four fields: AUTHOR,
TITLE, SUBJECT, and DESCRIPTORS. The records are
read from the standard system-input file (SYSIN)and
stored at locations allocated within DATA_AREA. The
addresses of the records are stored in two pointer lists:
AUTHOR_LIST and TITLE_LIST. AUTHOR_LIST is
arranged in ascending sequence on AUTHOR and TITLE_
LIST, on TITLE (as shown in Figure 1.18B). LIST _AREA
provides all storage for list components.

SEARCH:

DECLARE

12

PROCFDURF ;

l MAIN_AREA,
2 LIST_ARFA AREA,
? DATA_AREA AREA,
(AVAIL_P EXTERNAL, AUTHOR_LIST,
TITLE_LIST, Pl, P21 POINTER,
(SIZE, II FIXED OECIMAL(51,
SEARCH_CARO CHARACTER(BOI,
TITLE_ITEM CHARACTER(251,
AUTHOR_ITEM CHARACTER(l51,
l CARO,

2 FIELDl CHARACTER(l51 1

2 FIELD2 CHARACTER(251 1

2 FIELD3 CHARACTER(l01 1

2 FIELD4 CHARACTER(30),
l DOCUMENT BASEO(Pl) 1

2 AUTHOR CHARACTER(l5),
2 TITLE CHARACTER(25) 1

2 SUBJECT CHARACTER(lO),
2 DESCRIPTORS CHARACTER(30);
I* WHEN DATA AREA CANNOT HOLD All
DOCUMENT CARDS, OR All .SEARC~
CARDS HAVE BEEN PROCESSED, TERMINATE
PROGRAM. •I
ON AREA

GO TO
END_SEARCH;

ON ENDFILE lSYSIN)
GO TO

END_SEARCH;
I* INITIALIZE. •I
SIZE = O;
AUTHOR_LIST, TITLE_LJST • NULL;
I• FORM LIST OF AVAILABLE STORAGE
COMPONENTS IN LIST_AREA. *I
CALL AREA_OPEN_P(LIST_AREA,AVAIL_P);
I* GET DOCUMENT CARDS, AND ASSIGN
THEM TO STORAGE ALLOCATED IN
DATA_AREA. ALSO FORM SORTED AUTHOR
LIST AND TITLE LIST. •I

GET_DOCUMENT_CARD:

DO

ENO;

GET
EDIT(CARD)(A(l5) 1 A(25) 1 A(l0) 1

A(30));
IF

SUBSTRtFIELDl, 11 5) • '*****'
THEN

GO TO
DOCUMENT..,;SEARCH;

THEN

ALLOCATE DOCUMENT IN(DATA_AREA)
SETIPU I
Pl->DOCUMENT • CARD;
I* FIND INSERTION POINT IN AUTHOR
LIST. *I

I "' 1 TO SIZE BY l;
P2 = GET_NO_P(AUTHOR_LIST, I);
IF P2 = NULL
THEN GO TO INSERT_AUTHOR;

IF
Pl->AUTHOR<P2->AUTHOR.

GO TO
INSERT_AUTHOR;

I• INSERT ADDRESS OF DOCUMENT IN
SORTED AUTHOR LIST. *I

INSERT_AUTHOR:

DO

ENO;

THEN

CALL INSERT_NO_P(AUTHOR_LIST 1 1 1 Pl);
I* FIND INSERTION POINT IN TITLE
LI ST. •I

I = 1 TO SIZE BY l;
P2 = GET_ND_P(TITLE_LIST,I);
IF P2 "' NULL
THEN GO TO INSERT_TITLE;

IF
P1->TITLE<P2->TITLE

GO TO
INSERT_ TITLE;

I* INSERT ADDRESS OF DOCUMENT IN
SORTED TITLE LIST. *I

INSERT_ TITLE:
CALL INSERT_NO_PlTITLE_LIST,l,Pl,;
I* INCREASE SIZE BY ONE, ANO.GET
NEXT DOCUMENT CARO. •I
SIZE = SIZE + t;

GO TO
GET_DOCUMENT_CARO;
I• READ SUCCESSIVE SEARCH CARDS,
AND PRINT CORRESPONDING DOCUMENT
CARDS. •I

DDCUMENT_SEARCH:
GET

EDITCSEARCH_CARD,(A(80,,;
PUT

SKIPC2,;
PUT

EDITCSEARCH_CAR0,(A(80JJ;
IF

SUBSTRCSEARCH_CARO, l, 1, = 'A'
THEN

GO TO
AUTHOR_SEARCH;
I• PERFORM TITLE SEARCH. •I

TI TLE_SEARCH:

DO

THEN

TITLE_ITEM • SUBSTRCSEARCH_CARD1
2, 251;

I • 1 TO SIZE BY l;
Pl• GET_ND_PITITLE_LIST, I,;

IF
TITLE_ITEM<Pl->TITLE

GO TO
OOCUMENT_SEARCH;

IF
TITLE_ITEM • Pl->TITLE

AUTHOR_LIST:

AUTHOR

ROE AJ

AUTHOR

AMES RS

AUTHOR

LADD EK

TITLE

SORTING

METHODS

TITLE

GENERAL

STATISTICS

TITLE

BASIC

COMPUTING

THEN

ENO;

PUT
EDITCPl->DOCUMENT,
ICOLUMNll,eAC15,,Al25,,AllO,,AC30,,;

I* WHEN THIS POINT IS REACHED, GET
NEXT SEARCH CARD. •I

GO TO
DOCUMENT_SEARCH;
I* PERFORM AUTHOR SEARCH. *I

AUTHOR_SEARCH:

DO

AUTHOR_ITEM • SUBSTRCSEARCH_CARD,
2, 15,;

I a 1 TO SIZE BY l;
Pl = GET_ND_PCAUTHOR_LIST, IJ;

IF
AUTHOR_ITEM<Pl->AUTHOR

THEN
GO TO

DOCUMENT_SEARCH;
IF

AUTHOR_ITEM • Pl->AUTHOR
THEN

PUT
EDITCPl->DOCUMENT,
CCOLUMNC1,,All5,,Al25J,All0,,Al301,;

ENO;
I* WHEN THIS POINT IS REACHED, GET
NEXT SEARCH CARO. •I

GO TO
OOCUMENT_SEARCH;

END_SEARCH:
ENO

SEARCH;

Figure 1.18A. The SEARCH procedure

SUBJECT

SORTING

SUBJECT

STATISTICS

DESCRIPTORS

BUSINESS

SORTING

8/19/62

DESCRIPTORS

MATHEMATICS

STATISTICS

1957

SUBJECT DESCRIPTORS

PROGRAMMING PROGRAMMING

COMPUTERS

1960

TITLE_LIST:

Figure 1.18B. How single copies of document cards are arranged in sort order on two different pointer lists

13

A trailer card with asterisks in cc 1 through 5 follows the
last document card in the input file. If DATA_AREA
cannot hold all the document cards, the program is
terminated.

The remaining input cards are search cards, which con­
tain two items: a type code and a key value. The type code
appears in cc 1 and must be either the letter A or the letter
T. Type code A indicates that the key value is the name of
an author, which appears left-adjusted in cc 2 through 16 of
the search card. The key value associated with type code T
is a title, which appears left-adjusted in cc 2 through 26.

· As each search card is read, the appropriate pointer list,
either AUTHOR_ LIST or TITLE_ LIST, is searched for the
specified AUTHOR value or TITLE value. All document
cards that contain the key value are printed along with
the search card on the standard system-output file
(SY SPRINT).

Associating the document cards with two sorted pointer
lists eliminates the need for exhaustive searching through all
the document cards. Each search ends when the specified
key exceeds the key value in the current document card.

The SEARCH program need not be restricted to two
pointer lists; a pointer list can be created for each field in
the document cards. In a more elaborate program a pointer
list can be created for each key value. For example, a
pointer list can be created for all document cards that con­
tain the SUBJECT value "programming". With such a list,
no searching is required, since the list contains only those
document cards that have "programming" as their SUB­
JECT value. The term "inverted file" is often used to
describe such arrangements.

LIST ~AREA

AVAIL:

L1:

DATA_AREA

1
Figure 1.19. Pointer lists

14

REVIEW OF POINTER LISTS

This chapter shows how to overcome the main disadvan­
tages of data lists by replacing each data item in a list with a
pointer variable that specifies the address of the data item

. outside the body of the list (see Figure 1.19). The resulting
pointer list still retains flexible control over varying storage
requirements, but it also eliminates much of the duplication
and movement of data produced by data lists and allows
mixed data types to be associated with the same list.

SUMMARY

1. Pointer lists resemble data lists, except that the
address of a data item rather than the data item itself
appears in a pointer list.

2. Pointer lists provide the same advantages as data lists
in maintaining efficient control over varying storage re­
quirements. Pointer lists also possess the following addi­
tional benefits:

a. A data item may be shared by two or more pointer
lists, thus avoiding data duplication.

b. Transmission of data addresses (rather than data
items) to and from pointer lists reduces data move­
ment.

c. Different orderings of the same collection of data
items may be obtained with separate pointer lists.

d. Mixed data types may be associated with the same
pointer lists.

+ 7 2

-- 2 3

+ 8 6

Chapter 2. Lists of Lists

The previous chapter shows how pointer lists may be used
to link various combinations of data elements, arrays, and
structures. However, pointer lists need not be restricted to
these types of items; the lists themselves can also appear as
members of a pointer list. The higher-level list formed by
this type of linkage is called a list of lists. This chapter
describes how such lists are constructed and shows how
they extend the general flexibility and efficiency of pointer
lists.

ORGANIZING LISTS OF LISTS

A pointer list and a list of lists use pointer values to link
data items that appear outside the body of the list. Since a
list of lists can link other lists as well as data items, some
method must be used to determine whether a list com­
ponent specifies a data item or a sublist.

The following discussions use a type code within each
list component to distinguish between a data item and a
sublist, and illustrate the effect of this code upon list organ­
ization and list-processing techniques.

Component Elements for Lists of Lists

Each component in a list of lists may contain three ele­
ments:

1. A type code (TYPE), which is a single-position
character string that contains the character 'D' (for data
item) or the character 'L' (for list)

2. A value pointer (VALUE), which specifies the
address of a data item or a sublist

3. A link pointer (LINK), which specifies the address of
the next component in the list

The declaration in A of Figure 2.1 shows how these
elements may be combined to form a list component
(COMPONENT).

A schematic representation of a component for a
list of lists appears in B of Figure 2.1.

The diagram in C of Figure 2.1 shows a list com­
ponent that specifies a data item (the character *).

In D of Figure 2.1, the component with type code
'L' specifies a sublist. The first component in the sub­
list specifies a data item (the character *).

Note that the VALUE pointer in a list component
with type code 'L' serves as the head pointer of the
specified sublist.

DECLARE TYPE VALUE LINK
1 COMPONENT BASED(P),

~ 2 TYPE CHARACTER(1),
2 VALUE POINTER,
2 LINK POINTER;

A. Component Declaration B. List component

L

~ D

C. List component that refers D. List component that

to a data item refers to a sublist

Figure 2.1. Illustrations of list components for lists of lists

Permissible Arrangements of List Components

A list of lists can contain D-components only, L-compo­
nents only, or any combination of D- and L-components.
The number of levels to which sublists may be linked is
arbitrary and limited only by available storage.

Figure 2.2 shows a list of lists that contains data items
only. Part A displays the full form of the list; storage areas
for the data items are shown outside the body of the list. A
more compact representation appears in Part B which
shows the data items within the body of the list. Since it is

L1:

A. Full form

L1: D X D • D y

B. Compact form

Figure 2.2. A list of lists that contains data items only

15

L2: L L

D

D

A. Full form

L2: L L L

D 3 D 6

D +

D X D * D y

B. Compact form

Figure 2.3. A list of lists that contains lists at the top level only

L3: D L D

D

D

A. Full form

L3:

B. Compact form

Figure 2.4. A list of lists that contains both data items and lists at the top level

16

understood that the value element in a list component
always contains the address of a data item and not the item
itself, the two representations in Figure 2.2 may be con­
sidered equivalent.

The use of single-character data items in Figure 2.2 is
arbitrary; a list of lists can contain data items of any size
and type.

Figure 2.3 shows how three sublists may be linked to
form a higher level list. The linking is done so that the
resulting lists of lists contains the sublists at the top level.

A combination of data items and lists at the top level of
a list of lists appears in Figure 2.4, and Figure 2.5 presents a
list of lists that contains data items and lists at multiple
levels.

ML: L D

A. Full form

ML: L D V

L

L

L D p

D Q

B. Compact form

Null Lists of Lists

As with data lists and pointer lists, a null address value for
the head pointer of a list of lists creates a null list (A in
Figure 2.6). Note the distinction between a list of lists with
a null head and a list of lists that contains a null data item
(Bin Figure 2.6). A list with a null head has zero size, but a
list of lists that contains a null data item requires a list
component for the item and, therefore, has a size of one.

Observe further .the difference between a list of lists that
contains a null data item (B in Figure 2.6) and a list of lists
that contains a null list (C in Figure 2.6). Both lists have a
size of one, but the first contains a D-component, and the
second, an L-component.

D

D Z

L D y

ow D X

L D T D U

R D S

Figure 2.5. A list of lists that contains data items and lists at multiple levels

17

L4: rs!

A. A null list of lists

L5: D .. ioNSI

B. A null data item in a list of lists

L6: D .. jLNSI

C. A null list in a list of lists

Figure 2.6. Examples of null lists of lists

For the purposes of this book, the three lists of lists in
Figure 2.6 are considered to be null lists because they con­
tain null value pointers. As a result, a null list of lists can
have a size greater than zero. Such a size represents the
number. of components in the null list.

Sharing Data Items Among Lists of Lists

The ability of two or more pointer lists to share the same
data item is retained by lists of lists. Figure 2 .7 shows how
two lists of lists can contain the same data items without
requiring duplicate storage for the items. Although the
compact forms of both lists may seem to indicate dupli­
cation of the data items, remember that the value element
of a list component contains the address of an item and not
the item itself.

Sharing of data items among lists of lists permits direct
access to various subsets of items in a collection. The list of
lists L_ARRAY in Figure 2.8, for example, contains eight
sublists-ELEMENTS, ROWl, ROW2, COLI, COL2,

18

DIAG 1, and DIAG2-which contain various combinations
of the elements in a two-dimensional array. Although each
element of the array appears in four sublists, storage for
only one copy of each element is required.

A similar application of lists of lists may be used to
represent the organization of PL/I structures. As an
example, consider the list oflists L_STRUCTURE in
Figure 2.9. This list conta.ins three sublists, which represent
the three minor structures declared at the left of the dia­
gram.

L7: D L

D

x

D

L

A. Full form

L7: D-jolxl HLlt
oJvl MD lz l'\J

colvl Holz 1\1

Q+!ojxj LS: HLI

B. Compact form

Figure 2.7. Sharing data items among lists of lists

DECLARE ARRAY(2,2) ffiE CHARACTER(l) INITIAL('A','B'.'1 '.'2'); 2

L ARRAY: D A D B D 1 D 2

ELEMENTS: L

D A D B

ROW 1: L

D 1 D 2

ROW 2: L

D A D 1

COL 1: L

D B D 2

COL 2: L

D A D 2

DIAG 1: L

D B D 1

DIAG 2: L

Figure 2.8. A list of lists that contains various sets of elements from the same array

19

DECLARE L_STRUCTURE:

STRUCTURE,

2 A,

3 T CHARACTER(1) INITIAL('+'),

3 u CHARACTER(1) INITIAL('6'),

2 B,
3 v CHARACTER(1) INITIAL('2'),

3 w CHARACTER(1) INITIAL('.'),

3 x CHARACTER(1) INITIAL('8'),

2 C,

3 y CHARACTER(1) INITIAL('-'),

3 z CHARACTER·(1) INITIAL('4');

Figure 2.9. A list of lists that represents a PL/I data structure

Sharing List Components Among Lists of Lists

Not only may data items be shared among lists of lists, but
list components may be shared as well. Figure 2 .l 0 shows
how the components for items X and Y are shared between
lists L9 and Ll 0.

This type of sharing eliminates unnecessary duplication
of list components as well as data items. Note that the

L

B: L

C: L

L9:

L-component in Figure 2.10 could also be shared between L10:

L9 and LlO. The organization in Figure 2.10,however,
permits the L-component to be deleted from either list
without affecting the other list.

Parenthetic Representation of Lists of Lists

A shorter method of showing the organization of a list
appears in Figure 2.l l, which contains a parenthetic repre­
sentation of a list of lists. The parenthetic representation
contains a sequence of items separated by commas. Paren­
these enclose the sequence, and a colon attaches the name
of the list to the left parenthesis.

The list presented in Figure 2.l l contains no sublists.
Should sublists appear in the list, they are also enclosed in
parentheses, as shown in Figure 2.12. Additional levels of
sublists are represented by further nesting of parentheses.

A. Full form

L9: D W

L10: D Z

B. Compact form

T: U:

D + D 6

V: W: X:
D 2 D D 8

Y: Z:

D - D 4

L

D'Y

L

i'igure 2.10. Sharing list components among lists of lists

20

L11: D X D y D Z

A. Compact form

L11: (X,Y,Z)

B. Parenthetic form

Figure 2.11. Compact and parenthetic representations of a list of

lists without sublists

u2: 0-1 oJ x I
MoJzN

A. Compact form

L12: (X,(Y,Z))

B. Parenthetic form

Figure 2.12. Compact and parenthetic representations of a list of

lists with a sublist

Circular Lists of Lists

The parenthetic representation of lists is particularly useful
in displaying the organization of circular lists. Figure 2.13
contains the parenthetic representation of a circular list of
lists that does not contain sublists. An ellipsis (...) indi­
cates the endless cycling of the list, and square brackets
([])enclose the items that are repeated each cycle.

The parenthetic representation of a circular list of lists
that contains a sublist appears in Figure 2.14. Note that
square brackets do not denote a sublist but determine the
scope of the ellipsis.

The circularities displayed in Figure 2 .13 and 2 .14 are
formed by linking successive list components by means of
link pointers. Value pointers can also be used, however, to
form circular lists of lists, as shown in Figure 2.15. This
type of linkage produces a nested circularity, because the
sublist involved links back to a component at a higher level
in the list of lists.

Cycling three times through the diagram in Figure 2.15
generates the following list:

LI 5(X,(Y ,Z,(X,(Y ,Z,(X,(Y ,Z))))))
Such lists are useful in modeling data organizations that
have a recursive structure.

L13: 0-SoJxJ
A. Compact form

L13: (X,Y,Z,X,Y,Z[.X,Y,Z] ...)

B. Parenthetic form

Figure 2.13. A circular list of lists without sublists

L14: oJ;jojxj

A. Compact form

L14: (X,(Y,Z).X,(Y,Z)[,X,(Y,Z)] ...)

B. Parenthetic form

Figure 2.14. A circular list of lists with a sublist

21

L15:

A. Compact form

L15': (X,(Y ,Z,(X,(Y ,Z,([X,(Y ,Z,(])))))))

B. Parenthetic form

Figure 2.15. A list of lists with a nested circular sublist

PROCESSING LISTS OF LISTS

The following discussions develop subroutines and func­
tions for processing lists of lists. The organization of these
procedures resembles the organization used in Chapter 1 :
elementary procedures are developed first and used in turn
to create higher-level procedures.

The procedures are not designed to process lists that
contain circularities. Such lists would place many of the
procedures-particularly recursive procedures-into· endless
loops. Circular lists are handled more conveniently on an
individual basis.

This section organizes the procedures into four cate-
gories:

1. Creating a list of available storage components
2. Manipulating component elements. in a list of lists
3. Manipulating the top level of a list of list~
4. Manipulating all levels of a list of lists

No attempt is made to develop an exhaustive collection of
procedures; instead, the emphasis is on general methods.

Many of the techniques used in this section have been
influenced by the list-processing language LISP, whic~ is in
an interpretive programming language developed at the
Massachusetts Institute of Technology.*

Creating a List of Available Storage Components

Figure 2.16A, 2.16B, and 2.16C present the AREA_ OPEN
subroutine for creating a list of available storage components.
The subroutine requires two arguments:

*Berkeley, Edmund C., and Bobrow, D; G. (editors) The Pro­
gramming Language LISP: Its Operation and Applications.
Cambridge, Massachusetts;: The M.I.T. Press, 1966 (2nd printing) •

22

1. An area variable throughout which list components
are to be allocated

2. A pointer variable that serves as the head of the list of
available storage components

The area argument pa:ssed to AREA_ OPEN can be of
any storage class and is not restricted to a particular size,
but sforage for the area must have been allocated before the
subroutirte is invoked.

The AREA_OPEN procedure can be used to establish a
list of available storage components na.med LIST. The com­
ponents can be organized into a list of lists specifying data
items. Another invocation of AREA_ OPEN can establish a
list of available storage components named AV AIL. These
latter components relate to insertion and deletion of list
components in the list named LIST. The following code is
pertinent:

DECLARE
(AREAl, AREA2) AREA;
(LIST, AV AIL EXTERNAL) POINTER;

CALL AREA_ OPEN(AREAl, LIST);
CALL AREA_ OPEN(AREA2, AV AIL);

A list component deleted from the list named LIST can
be inserted into the list named A VAIL. Conversely, a list
component can be deleted from the list named AV AIL as
needed for insertion into the list named LIST.

This subroutine resembles the similarly named procedure
in Chapter 1, except that it creates a list of available storage
components for lists of lists.

AREA_OPEN Subroutine

Purpose

To create a list of available storage components

Reference

AREA_OPEN(AREA, LIST)

Entry-Name Declaration

DECLARE AREA_OPEN ENTRY(AREA(*),
POINTER);

Meaning of Arguments

AREA

LIST

Remarks

- the area variable that is to contain the
list of available storage components

- the pointer variable that serves as the
head of the list of available storage
components

Storage must have been allocated for the AREA
argument before AREA_ OPEN is invoked.

The LIST argument is assumed to be null upon
entry to AREA_ OPEN.

Other Programmer-Defined Procedures Required

None

Method

Storage for list components is allocated with the
following based structure:

1 COMPONENT BASED(P),

2 TYPE CHARACTER(1),

2 VALUE POINTER,

2 LINK POINTER,

Components are allocated throughout AREA until the
AREA ON-condition occurs. The LIST argument
contains the address of the first component. The LINK
element of each component contains the address of the
next component. The LINK element of the last
component has a null value.

Figure 2.16A. Description of the AREA_ OPEN subroutine for creating a list of available storage components

AREA_OPEN:

DECLARE

BEGIN;
IF

PROCEOURE(AREA, LIST);

P POINTER,
AREA AREA(*),
(LIST, T) POINTER,
1 COMPONENT BASEO(P),
2 TYPE CHARACTER(l),
2 VALUE POINTER,
2 LINK POINTER;

I* WHEN ALL STORAGE HAS BEEN
ALLOCATED IN AREA, SET LINK POINTER
OF LAST COMPONENT, IF ANY, TO NULL
ANO RETURN. *I
ON AREA

p..,=NULL
THEN

P->LI NK = NULL;
GO TO

END_AREA_OPEN;

Figure 2.16B. The AREA_ OPEN subroutine

END;
I* ALLOCATE FIRST COMPONENT IN
AREA, ANO ASSIGN COMPONENT
ADDRESS TO POINTER PARAMETER CALLEO
LIST. */
P = NULL;
ALLOCATE COMPONENT IN(AREA)
SET(P);
LIST = P;

/*CONTINUE ALLOCATING COMPONENTS IN
AREA Ut-ITlL ALL STORAGE HAS BEEN
ALLOCATED. LINK EACH COMPONENT TO
THE PREVIOUSLY ALLOCATED
COMPONENT. *I

T = P;
ALLOCATE COMPONENT IN(AREA)
SET(P);
T->LINK = P;

GO TO
L;

ENO_AREA_OPEN:
END'

AREA_OPEN;

23

Subroutine

Reference

Result

AREA_OPEN (STORAGE_AREA.A VAi LI STORAGE_AREA

AVAIL:

Figure 2.16C. An example of a reference to the AREA OPEN subroutine

24

Manipulating Component Elements in a List of Lists

The following discussions develop subroutines and
functions for:

1. Obtaining the address of a list component
2. Obtaining the values of elements in list components
3. Assigning values to the elements of list components
4. Comparing the data values of list components

These procedures eliminate the syntactic details associated
with PL/I pointer qualification and allow the programmer
to view and process lists of lists in a more application-
oriented manner. ·

Obtaining the Address of a List Component

The following discussions develop two function procedures
for obtaining the address of a specified list component:

1. ADDRESS_ NVT, which obtains the address of the
component that contains the nth value at the top level of a
list of lists

2. ADDRESS LVT, which obtains.the addre8s of the
component that contains the last value at the top level of a
list of lists

Later discussions show how to obtain the address of a
component that is not at the top level of a list.

ADDRESS_NVT Function
Figures 2.17 A, 2.17B, and 2.l 7C present the ADDRESS_
NVT function procedure. This function requires two
arguments:

1. A pointer variable that forms the head of the list
being processed

ADDRESS NVT Function

Purpose

To obtain the address of the nth component at the
top level of a list of lists

Reference

ADDRESS NVT(LIST, N)

Entry-Name Declaration

DECLARE ADDRESS NVT ENTRY(POINTER,
FIXED DECIMAL(5))
RETURNS(POINTER);

Meaning of Arguments

LIST - the pointer variable that is the head of
the list to be examined

2. An integer that indicates the sequential position
(first, second, third, etc.) of a value at the top level of the
list

The function returns the address of the component that
contains the specified value.

N

Remarks

- a fixed-point decimal integer value
that specifies the component whose
address is to be obtained; N has a
maximum size of five digits

A null pointer value is returned when LIST is null,
N is less than one, or N is greater than the number
of components at the top level of LIST.

Other Programmer-Defined Procedures Required

None

Method

The function proceeds through the top level of
LIST until the (n· 1)th component is reached. The
link pointer of this component contains the address
of the nth component.

Figure 2.17 A. Description of the ADDRESS_ NVT function for obtaining the address of the nth component at the top level of a list of lists

AOORESS_NVT:

DECLARE

IF

THEN

PROCEOUREtLIST,NI
RETURNS (POINTER);

LIST POINTER,
CN,11 FIXEO OECIMALC51,
1 COMPONENT BASEOtAOORESSI,
2 TYPE CHARACTERtllt
2 VALUE POINTER,
2 LINK POINTER;

CLIST = NULLlltN<ll

RETURN (NULL>;
AOORESS = LIST;

Figure 2.17B. The ADDRESS_ NVT function

00

IF

THEN

IF

THEN

ENO;
ENO

I = 1 BY l;

(AOORESS->LINK a NULL) & tl~=NI

RETURN tNULLI;

I = N

RETURNtAOORESS);
ADDRESS • AOORESS->llNK;

ADORESS_NVT;

25

List of Lists

L 1: D W

Function

Reference

ADDRESS_:NVT(L 1, 1)

ADDRESS_NVT(L 1,2)

ADDRESS_NVT(L 1,3)

L D Z

D X

Function

Value

Address of component that

specifies W

Address of component that

specifies the sublist contain­

ing X and Y

Address of component that

specifies Z

D y

Figure 2.l 7C. Examples of references to the ADDRESS_NVT

function

ADDRESS_LVT Function
Many list-processing operations involve the last value at the
top level of a list of lists. It is convenient, therefore, to have
a function that specifically obtains the address of the last
component at the top level.

ADDRESS LVT Function

Purpose

To obtain the address of the last component at the
top level of a list of lists

Reference

ADDRESS LVT(LIST)

Entry-Name Declaration

DECLARE ADDRESS LVT ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

Figures 2.18A, 2.18B,and 2.18C present the ADDRESS
_LVT function procedure, which returns the address of the
last component at the top level of a list. The function
requires one argument: the pointer variable that forms the
head of the list being processed.

LIST

Remarks

- the pointer variable that is the head of
the list to be examined

A null pointer value is returned when LIST is null.

Other Programmer-Defined Procedures Required

None

Method

The function proceeds through the top level of LIST
until the last component is reached. The link
pointer in the next-to-last component contains the
address of the last component.

Figure 2:18A. ·Description of the ADDRESS_ LVT function for obta~ning the address of the last component at the top level of a list of lists

26

ADDRESS_LVT:
PROCEDURE CLI STt
RETURNS CPOINTERI;

DECLARE

DO

ADDRESS POINTER,
(LIST, SAVE, ADDRESSll PCI\T~R.

l COMPONENT BASEDCADORESSI.
2 TYPE CHARACTERlll,
2 VALUE POINTER,
2 LINK POINTER;
ADDRESS, ADDRESSl = LIST;

WHILECADDRESSl,=NULLI;
SAVE = ADORESSl;
ADDRESS! = AODRESS->LIN~;
ADDRESS = SAVE;

END;

END
RETURNIAOORESSI;

ADDRESS_LVT;

Figure 2.18B. The ADDRESS_ L VT function

List of Lists

L 1: Q+jolwl HLl~o:z~
ixolvN

L2: Q+lolTI HLI~
:olul H 0 lvN

Function Function

Reference Value

ADDRESS_LVT(L1) Address of component that

specifies Z

ADDRESS_LVT(L2) Address of component that

specifies the sublist containing

U and V

Figure 2.18C. Examples of references to the ADDRESS_LVT

function

Obtaining the Values of Elements in List Components

Many list-processing operations examine the values of the
elements in list components. The following discussions
develop three function procedures for obtaining these
values:

1. GET_ LINK, which obtains the value of the link
pointer in a specified list component

2. GET_ VALUE, which obtains the value of the value
pointer in a specified list component

3. GET_ TYPE, which obtains the value of the type
code in a specified list component

GET _LINK Function
Figures 2.19A, 2.19B, and 2.19C present the GET_LINK
function, which uses the address of a list component as its
argument. The function returns the value of the link
pointer in the specified list component. The effect of this
function is to obtain the address of the next list
component.

GET_ VALUE Function
Figures 2.20A, 2.20B, and 2.20C present the GET_ VALUE
function, which uses the address of a list component as its
argument. The function returns the value of the value
pointer in the specified list component.

GET_ TYPE Function
Figures 2.21A, 2.21B, and 2.21C present the GET_TYPE
function, which uses the address of a list component as its
argument. The function returns the value of the type code
in the specified list component.

27

GET _LINK Function

Purpose

To obtain the address of the next component at the
top level of a list of lists

Reference

GET _LINK(ADDRESS)

Entry-Name Declaration

DECLARE GET LINK ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

ADDRESS - a pointer value that specifies the
address of a component in a list of
lists

Remarks

The function assumes that ADDRESS represents a
valid address of a component in a list of lists. If
ADDRESS is null, a null pointer value is returned.

Method

The function returns the address contained in the
link pointer of the component specified by
ADDRESS.

Figure 2.19A. Description of the GET_ LINK function for obtaining the address of the next component at the top level of a list of lists

28

GET_LINK: 2 LINK POINTER;

DECLARE

PROCEDURE CADDRESSI
RETURNS CPOINTERJ;

ADDRESS POINTER,
1 COMPONENT BASED(ADDRESSI,
2 TYPE CHARACTER(llt
2 VALUE POINTER,

END

IF
ADDRESS = NULL

THEN
RETURN (NULLI;
RETURNCADDRESS->LINKJ;

GET _l INK;

Figure 2.19B. The GET_ LINK function

List of Lists

L1: D-!olwl HLl~o:z~ =ox: : :olvN
Function Function

Reference Value

GET - LINK(L1) Address of component that specifies the

sublist containing X and Y

GET _LINK(ADDRESS_NVT(L 1,2)) Address of component that specifies Z

GET _LINK(ADDRESS_LVT(L 1)) Null address

GET - LINK(NULL) Null address

Figure 2.l 9C. Examples of references to the GET _LINK function

GET_ VALUE Function

Purpose

To obtain the address of the value associated with a
component in a list of lists

Reference

GET VALUE(ADDRESS)

Entry-Name Declaration

DECLARE GET VALUE ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

ADDRESS - a pointer value that specifies the
address of a component in a list of
lists

Remarks

The function assumes that ADDRESS represents a
valid address of a component in a list of lists. If
ADDRESS is null, a null pointer value is returned.

Other Programmer-Defined Procedures Required

None

Method

The function returns the address value of the value
pointer in the component specified by ADDRESS.

Figure 2.20A. Description of the GET VALUE function for obtaining the address of the value associated with a component in a
list of lists

GET_VALUE:

DECLARE

PROCEDURE (ADDRESS)
RETURNS lPOINTERI;

ADDRESS POINTER,
1 COMPONENT BASEDlADDRESSI,
2 TYPE CHARACTERlllt
2 VALUE POINTER,

Figure 2.20B. The GET_ VALUE function

List of Lists

ENO

2 LINK POINTER;
IF

ADDRESS = NULL
THEN

RETURN (NULL);
RETURNlADDRESS->VALUEI;

GET_VALUE;

L 1: Q+lo iwl HLl~D:Z~ = D x: . olvN
Function Function

Reference Value

GET - VALUE(ADDRESS_LVT(L 1)) Address of Z

GET_ VALUE(ADDRESS_NVT(L 1,2)) Address of sublist containing X and Y

GET_ VALUE(ADDRESS_NVT(Address of X

GET _VALUE(ADDRESS_NVT(L 1,2)),1)

GET_ VALUE(NULL) Null address

Figure 2.20C. Examples of references to the GET_ VALUE function

29

GET_ TYPE Function

Purpose

To obtain the type code from a component in a list
of lists

Reference

GET_ TYPE(ADDRESS)

Entry-Name Declaration

DECLARE GET_ TYPE ENTRY(POINTER)
RETURNS(CHARACTER
(1));

Meaning of Argument

ADDRESS - a pointer value that specifies the
address of a component in a list of
lists

Remarks

The function assumes that ADDRESS represents a
valid address of a component in a list of lists. If
ADDRESS is null, type code 'D' is returned.

Other Programmer-Defined Procedures Required

None

Method

The function returns the value of the type element
in the specified component. The value is a single
alphameric character.

Figure 2.21A. Description of the GET TYPE function for obtaining the type code from a component in a list of lists

30

GET_ TYPE:

DECLARE

PROCEDURElADDRESSI
RETURNS CCHARACTERCltl;

ADDRESS POINTER•
1 COMPONENT BASEDCADDRESSI.
Z TYPE CHARACTERC11.
Z VALUE POINTER,

Figure 2.21B. The GET_ TYPE function

List of Lists

IF

THEN

END

Z LINK POINTER;

ADDRESS = NULL

RETURN(1 0 1 1;
RETURN(ADDRESS->TYPEI;

GET_TYPE;

L1: Q+loiwl HLl~o:z~ = n:: :olvN

Function Function

Reference Value

GET_ TYPE(ADDRESS_LVT(L 1)) ·o· (Type code for Z)

GET_ TYPE(ADDRESS_NVT(L 1,2)) 'L' (Type code for sublist)

GET_ TYPE(ADDRESS_LVT('D' (Type code for Y)

GET_ VALUE(ADDRESS_NVT(L 1,2))))

GET_ TYPE(NULL) 'D' (Type code for null item)

Figure 2.21C. Examples of references to the GET_ TYPE function

Assigning Values to Elements of List Components

The link pointers and value pointers of list components
must be changed when items are inserted into or deleted
from lists of lists. The following discussions develop two
subroutines that perform such changes:

1. SET_ LINK, which assigns a value to the line pointer
in a list component

SET _LINK Subroutine

Purpose

To assign a value to the link pointer of a component
in a list of lists

Reference

SET _LINK(ADDRESS, L)

Entry-Name Declaration

DECLARE SET _LINK ENTRY(POINTER,
POINTER);

Meaning of Arguments

ADDRESS - a pointer value that specifies the
address of a component in a list of
lists

2. SET_ VALUE, which assigns values to the value
pointer and type code in a list component

SET _LINK Subroutine
Figures 2.22A, 2.22 B, and 2.22C, present the SET _LINK
subroutine, which requires two arguments:

1. Address of a list component
2. Value to be assigned to the link pointer of the speci­

fied list component

L

Remarks

- the value to be assigned to the link
pointer of the list component

The subroutine assumes that ADDRESS represents
a valid address of a component in a list of lists. If
ADDRESS is null, no assignment is made.

Other Programmer-Defined Procedures Required

None

Method

The pointer value of L is assigned to the link pointer
of the specified component.

Figure 2.22A. Description of the SET LINK subroutine for assigning a value to the link pointer of a component in a list of lists

SET_LINK:
PROCEDURECADDRESS,LI;

DECLARE

END

IF

(ADDRESS, LI POINTER,
1 COMPONENT BASEDCADDRESSI,
2 TYPE CHARACTER(ll,
2 VALUE POINTER,
2 LINK POINTER;

ADDRESS = NULL
THEN

RETURN;
ADDRESS->LINK = L;

SET_LINK;

Figure 2.22B. The SET_ LINK subroutine

Subroutine

Reference

SET _LINK(ADDRESS_LVT(L 1),L2)

L 1:

L2:

Ll:

L2:

Lists of Lists

(before reference)

Lists of Lists

(after reference)

D A D B

L D y D Z

D W D X

Figure 2.22C. Example of a reference to the SET _LINK subroutine

31

SET_ VALUE Subroutine 2. Value to be assigned to the value pointer of the speci­
fied list component Figures 2.23A, 2.23B, and 2.23C present the SET_ VALUE

subroutine, which requires three arguments: 3. Value to be assigned to the type code of the specified
list component. 1. Address of a list component

SET_ VALUE Subroutine

Purpose

To assign an address to the value pointer of a
component in a list of lists and also to assign the
associated type code

Reference

SET_VALUE(ADDRESS, V, T)

Entry-Name Declaration

DECLARE SET_ VALUE ENTRY(POINTER,
POINTER,
CHARACTER(1));

Meaning of Arguments

ADDRESS - a pointer value that specifies the
address of a component in a list of
lists

v

T

- a pointer value that specifies the
address of the value (data item or
sublist) associated with the list
component

- the type code to be assigned to the
type element in the list component

Remarks

The subroutine assumes that ADDRESS represents
a valid address of a component in a list of lists. If
ADDRESS is null, no assignment is made.

Other Programmer-Defined Procedures Required

None

Method

The pointer value of V is assigned to the value
pointer of the specified component. The value of T
is converted, if necessary, to a character string,
and the leftmost character of the. string is assumed to
be the type code.

Figure 2.23A. Description of the SET_ VALUE subroutine for assigning an address to the value pointer of a component in a list of lists

SET_VALUE:
PROCEDUREIADDRESS,V,TJ;

DECLARE .
(ADDRESS, VJ POINTER,
T CHARACTER(lJ,
1 COMPONENT BASEDIADDRESSJ,

Figure 2.23B. ·The SET_ VALUE subroutine

Subroutine

Reference

SET _VALUE(ADDRESS_NVT(L1,2),

GET _VALUE(ADDRESS_LVT(L1)),

GET_ TYPE(ADDRESS_LVT(L1)))

IF

2 TYPE CHARACTER(lJ,
2 VALUE POINTER,
2 LINK POINTER;

ADDRESS • NULL
THEN

RETURN; END

List of Lists

IF

THEN
(T,•'D'I & fT,• 1 L1 1

RETURN;
ADDRESS->TYPE = T;
ADDRESS->VALUE • V;

SET_VALUE;

(before reference)

L1: O+lolwl Holxl HLI~
:o Iv I HolzN

List of Lists

(after reference)

L1: O+lolwl HLI I HLI

i;:o Iv I I H0 12 N

Figure 2.23C. Example of a reference to the SET_ VALUE subroutine

32

Comparing Data Values of List Components

To test the equality of lists of lists, it is often necessary to
compare. the data values of two list components. The fol­
lowing discussion develops the EQUAL_D function for
such comparisons.

EQUAL_D Function
Figures 2.24A, 2.248, and 2.24C present the EQUAL_D
function, which requires two arguments:

1. The first list component involved in the test
2. The second list component involved in the test

The function returns 'l 'B when the list components
contain the same data value, and 'O'B when they do not.

EOUAL_D Function

Purpose

To test the equality of the data values associated
with two list components

Reference

EOUAL_D(ADDRESS1, ADDRESS2)

Entry-Name Declaration

DECLARE EOUAL_D ENTRY(POINTER,
POINTER)
RETURNS(BIT(1));

Meaning of Arguments

ADDRESS1 - a pointer value that specifies the
address of the first list component
involved in the test

ADDRESS2 - a pointer value that specifies the
address of the second list component
involved in the test

Remarks

The function assumes that ADDRESS1 and
ADDRESS2 specify valid addresses of components
in lists of lists. When both ADDRESS1 and
ADDRESS2 are null, equality is assumed.

Other Programmer-Defined Procedures Required

None

Method

For equality, both list components must have type
code 'D', and both must have the same value
pointer. The function returns '1'B when equality
occurs and 'O'B when inequality occurs.

Figure 2.24A. Description of the EQUAL_ D function for testing the equality of the data values associated with two list components

EQUAL_D:

DECLARE

IF

PROCEDURECADORESS1.ADDRESS21
RETURNS lBITllll;

IADDRESSl.ADDRESSZI POINTER;

IGET_TYPEIADDRESSll• '0')
Figure 2.24B. The EQUAL _D function

END

' IGET_TYPElADORESSZI• 1 0 1 1
' IGET_VALUECADDRESSll •
GET_VALUElADDRESSZll

THEN
RETURNl 1 11 81;
RETURNl'O 1 8);

EQUAL_D;

33

List of Lists

L1: ~olvl HLI I Holvl HLI

J~oJzN I

Function Reference Function

Value

EQUAL_D(ADDRESS_NVT(L1, 1),ADDRESS_NVT(L1 ,3)) 'l'B (=)

EQUAL - D(ADDRESS _NVT(Ll ,1),ADDRESS_NVT(Ll ,2)) 'O'B (!=)

EQUAL - D(ADDRESS _NVT(L 1,2),ADDRESS_LVT(L 1)) 'O'B (!=)

EQUAL - D(ADDRESS _LVT(L 1),ADDRESS_LVT(L1)) 'O'B (!=)

Figure 2.24C. Examples of references to the EQUAL __ D function

Manipulating Top Level of a List of Lists

All items in a list of lists may be processed by proceeding
through the list in stages. With this approach, the first stage
is restricted to the data items and sublists situated at the
top level of the list. The second stage then deals with the
top level of each sublist encountered during the first stage.
Subsequent stages, in general, are concerned only with the
sublists of the previous stage. When all sublists have been
treated in this manner, processing for the entire list is
complete.

The following discussions develop subroutines and func­
tions for manipulating the top level of a list of lists. These
procedures are concerned with the following operations:

1. Counting the number of values at the top level of a
list of lists

2. Inserting values into the top level of a list of lists

34

3. Obtaining values and their type codes from the top
level of a list of lists

4. Combining lists of lists at the top level
5. Copying the top level of a list of lists in reverse order

Counting Number of Values at Top
Level of a List of Lists

The size of a list of lists depends in part upon the number
of values at the top level of the list. The following discus­
sion develops the SIZE_TOP function, which counts the
values at the top level of a list.

SIZE_TOP Function
Figures 2.25A, 2.25B, and 2.25C present the SIZE_TOP
function, which requires the name of a list as its only argu­
ment. The function returns a count of the data items and
sublists at the top level of the specified list.

SIZE TOP Function

Purpose

To count the number of values at the top level of a
list of I ists

Reference

SIZE_ TOP(LIST)

Entry-Name Declaration

DECLARE SIZE TOP ENTRY(POINTER)
RETURNS(FIXED
DECIMAL(5));

Meaning of Argument

LIST - the pointer variable that is the head of
the list to be examined

Remarks

The maximum size is 99999. If LIST is null, a
zero size is returned.

Other Programmer-Defined Procedures Required

GET LINK

Method

The function proceeds through the top level of LIST,
counting the number of list components, until a
null link pointer is encountered. The top level of
LIST can contain any combination of data (D)
values and list (L) values.

Figure 2.25A. Description of the SIZE_ TOP function for counting
the number of values at the top level of a list of lists

SIZE_ TOP:

DECLARE

DO

IF

PROCEDURE ClISTt
RETURNSCFIXED DECIMALC5tt;

(lIST.ADDRESSt POINTER.
N FIXED DECIMALC5t;
ADDRESS = LIST;

N = 0 BY I;

ADDRESS • NULL
THEN

RETURNCNt;
ADDRESS = GET_llNKIADDRESSt;

END;
END

SIZE_ TOP;

Figure 2.25B. The SIZE_ TOP function

Lists of Lists

L1: [Molwl
~x =oJvN

HLl~D:Z~

L2: ~

L3: !SI
Function Function

Reference Value

SIZE TOP(L 1) 3 -

SIZE_ TOP(GET _ LINK(L1)) 2

SIZE TOP(L2) 1 -

SIZE TOP(L3) 0 -

SIZE_ TOP(NULL) 0

Figure 2.25C. Examples of references to the SIZE TOP function

35

Inserting Values Into Top Level of a List of Lists

The creation of a list of lists requires the ability to insert
data items and sublists into the list. The following discus­
sions develop two procedures that perform such insertions
at the top level of a list of lists:

1. INSERT_ NVT, which inserts a value and its type
code into a specified position at the top level of a list

2. FORM_BODY, which forms the body of a new list
by extending the front of a given list with a specified value

INSERT _NVT Subroutine
Figures 2.26A, 2.268, and 2.26C present the INSERT_
NVT subroutine, which requires four arguments:

1. List in which an insertion is to be made
2. Position of the insertion at the top level of the list
3. Address of the value to be inserted
4. Type code of the value to be inserted

INSERT _NVT Subroutine v - the address of the value to be inserted

Purpose

To insert a value into the nth position at the top
level of a list of lists

Reference

INSERT_NVT(LIST, N, V, T)

Entry-Name Declaration

DECLAREINSERT_NVT
ENTRY(POINTER, FIXED DECIMAL(5),
POINTER, CHARACTER(1));

Meaning of Arguments

LIST

N

- the pointer variable that is the head of
the list to be processed

- the position at the top level of the
list where the value is to be inserted

T

Remarks

- the type code ('D' or 'L') of the
value to be inserted

When the list is null or N is less than two, V is
inserted into the first position at the top level of the
list. When N exceeds the size of the top level of the
list, V is inserted into the last position. N cannot
have a value greater than 99999. V may be null.

Other Programmer-Defined Procedures Required

SET_ VALUE, SET _LINK, ADDRESS NVT, and
ADDRESS LVT

Method

Insertion of a value causes the size of the top level
to increase by 1. The value previously at the nth
position becomes the (n+ 1)th value at the top level.

Figure 2.26A. Description of the INSERT_ NVT subroutine for inserting a value into the nth position at the top level of a list of lists

36

INSERT_NYT: AVAIL = ADDRESS_NVT(AVAIL,21;
CAlL SET_LINK(LIST,ADDRESSll;
RETURN; END; DECLARE

PUT

If

PROCEDURE(llST,N,V,T);

T CHARACTER (11,
N FIXED DECIMAL(5),
(lIST,V,ADDRESSl,ADDRESS2,
AVAIL EXTERNAL) POINTER;
I• IF LIST OF AVAILABLE STORAGE
COMPONENTS IS EMPTY, PRINT MESSAGE
AND RETURN. •I
IF AVAll = NULL THEN DO;

llST('llST OF AVAILABLE STORAGE IS
EMPTY•);
RETURN; ENO;
I• ASSIGN VALUE V AND TYPE T TO
FIRST COMPONENT IN AVAIL. *I
CALL SET_VALUE(AVAIL,V,TI;
I• IF LIST IS NULL OR N<2, INSERT
FIRST COMPONENT Of AVAIL INTO
FIRST POSITION Of LIST, ANO
RETURN. •I

(lIST = NUllll(N<21
THEN DO;
ADDRESSl = LIST; LIST = AVAIL;

IF

I• OTHERWISE OBTAIN THE ADDRESS Of
THE N-TH COMPONENT AT THE TOP Of
LIST. •I
ADDRESS2 = ADDRESS_NVT(LIST,NI;
I• If N EXCEEDS SIZE Of LIST TOP,
OBTAIN ADDRESS Of LAST COMPONENT AT
TOP, ELSE OBTAIN ADDRESS Of (N-11
COMPONENT AT TOP.·*/

AOORESS2 NULL
THEN

ELSE
AOORESSl ADDRESS_LVTCLISTI;

AODRESSl AODRESS_NVT<LIST,N-11;
I* INSERT FIRST COMPONENT OF AVAIL
INTO THE N-TH POSITION AT THE TOP
Of LIST. *I
CALL SET_LINK(ADDRESSl,AVAILI;
ADORESSl = AVAIL;
AVAIL= ADORESS_NVTIAVAIL,21;
CALL SET_LINKCADORESS1,AODRESS21;

END INSERT_NVT;

Figure 2.268. The INSERT_ NVT subroutine

Data Storage Lists of Lists

(before reference)

M:~ L1: ~
N:D+EJ L2: ~

L3: [YjLl~o:z~ ~x· ~olvKI
L4: ISi

Subroutine Lists of Lists

Reference (after reference)

INSERT _NVT(L 1,2,L2,'L') L1: [}-lo IT I HLl~o:u~ = o v: : :o[wl'\.[
INSERT _NVT(L2,4,M,'D') L2: oTvT oJw1 oJ 1JS]

INSERT _NVT(L3,0,N,'D') L3: [J--10!21 HL[~o:z~ = o: x~ : :o[vN
INSERT _NVT(L4,5,N,'D') L4: [J-.@IiliJ

Figure 2.26C'. Examples of references to the INSERT _NVT subroutine

37

FORM_BODY Function
Figures 2.27 A, 2.27B, and 2.27C present the FORM_
BODY function, which requires three arguments:

1. Address of the value to be inserted at the front of a
list

2. Type code of the value to be inserted
3. List in which the insertion is to be made

The function returns the address of the new first component
in the list, but the head pointer of the original list does not

FORM BODY Function

Purpose

To form the body of a new list of lists by extending
the front of a given list with a specified value, and
also to obtain the address of the first list component
in the new list

Reference

FORM_BODY(V, T, LIST)

Entry-Name Declaration

DECLARE FORM_BODY ENTRY(POINTER,
CHARACTER(1).
POINTER)
RETURNS(POINTER);

Meaning of Arguments

v - the address of the value to be
inserted at the front of the new list

receive a new value; the head points to the second compo­
nent at the top level of the new list. If the head is to point
to the first component, the address value of the function
must be assigned explicitly to the head.

Because the head of the old list is not modified auto­
matically by FORM_BODY, the function can be thought
of as forming only the body of a new list. In fact, the built­
in function NULL can be used to specify the list in which
insertion is to occur. In this case, no explicit list head is
involved, and FORM_BODY generates the body of a new
list that contains one list component.

T

LIST

Remarks

- the type code ('D' or 'L') of the value
inserted at the front of the new list

- the pointer variable that is the head of
the list to be extended at the front
with the new value

The effect of this function is equivalent to
inserting a value into the first position of LIST,
except that the pointer value of LIST is not
changed; instead, the address of the first list
component in the resulting list is returned as the
function value.

Other Programmer-Defined Procedures Required

SET_ VALUE, GET _LINK, and SET _LINK

Method

V and Tare inserted into a new list component,
which is linked to the front of the components in
LIST. The pointer value of LIST is not changed.

Figure 2.27 A. Description of the FORM BODY function for forming the body of a new list of lists and returning the address of the first
list component -

FORM_BOOY:
PROCEDURE CV, T, LIST)
RETURNS (POINTER);

DECLARE

IF

T CHARACTER(l),
CV 1 LIST 1 AVAIL EXTERNAL, P) POINTER;
I* IF LIST OF AVAILABLE STORAGE
COMPONENTS IS EMPTY, PRINT MESSAGE
AND RETURN. *I

AVAIL = NULL
THEN

DO;
PUT

LISTC 1 LIST OF AVAILABLE STORAGE IS
EMPTY');

Figure 2.27B. The FORM_ BODY function

38

ENO;

END

RETURN;

I* LET P POINT TO FIRST COMPONENT
OF AVAIL LIST, AND LET AVAIL POINT
TO SECOND COMPONENT OF AVAIL LIST.•/
P = AVAIL;
AVAIL= GET_LINKCAVAILt;
I* SET VALUE POINTER OF P COMPONENT
EQUAL TO y, AND SET LINK POINTER OF
P COMPONENT EQUAL TO LIST. *I
CALL SET_VALUE(P,V,T);
CALL SET_LINK(P,LIST);
I• RETURN ADDRESS OF P COMPONENT. *I
RETURN IP);

FORM_BODY;

Data Storage Lists of Lists

(before reference)

L1: ~
M: ~

L2: lSl
N: D-0 L3:

~
Function Reference Function Value (FV) Lists of Lists

(after reference)

FORM_BODY(M,'D',L 1) Address of component created L1:

~::~: ~o[vN for '1' I
FV:

FORM_BODY(N,'D',L2) Address of component created L2:

~ for '2'

FV:

FORM_BODY(N,'D',NULL) Address of component created FV: o----@EJSJ
for '2'

FORM - BODY(GET _VALUE (L3),'L',L1) Address of component created L3: Lj ~
for duplication of value pointer

in first component at top level

of L3

Figure 2.27C. Examples of references to the FORM_BODY function

Obtaining Values and Their Type Codes from
Top Level of a List of Lists

FV:

L 1:

The following discussions develop two functions for obtain­
. ing values from the top level of a list of lists:

1. GET_ NVT, which gets the nth value at the top level
of a list of lists

2. GET_NTT, which gets the nth type code at the top
level of a list of lists

~olzt:J
Lj l)

[
~ ojx J oivJSJ

39

GET _NVT Function
Figures 2.28A, 2.28B, and 2.28C present the GET_NVT
function, which uses two arguments:

I: Name of a list
2. Position of a value at the top level of the list

The function returns the address value of the value pointer
in the specified position at the top level of the list.

GET _NVT Function

Purpose

To obtain the address of the value associated with
the nth component at the top level of a list of lists

Reference

GET _NVT(LIST, N)

Entry-Name Declaration

DECLARE GET _NVT ENTRY(POINTER, FIXED
DECIMAL(5))
RETURNS(POINTER);

Meaning of Arguments

LIST - the pointer variable that is the head of
the list to be processed

N - the position of the retrieved value at
the top level of the list

Remarks

A value of N less than one or greater than the size of
the top level of the list causes a null address to be
returned.

Other Programmer-Defined Procedures Required

ADDRESS NVTandGET_VALUE

Method

The following reference obtains the nth value at the
top level of the list:

GET_ VALUE(ADDRESS_NVT(LIST, N))

The nth value at the top level remains in the list
after its equivalent is returned.

Figure 2.28A. Description of the GET_ NVT function for obtaining
the nth value at the top level of a list of lists

40

GET_NVT:

DECLARE

END

PROCEDURE (LIST, NI
RETURNS (POINTER);

LIST POINTER,
N FIXED DECIMAL(5);
RETURN(GET_VALUEIAODRESS_NVT
(LIST,N))I;

GET_NVT;

Figure 2.28B. The GET_ NVT function

Lists of Lists

L1: D-jo!wl HLl~o:z~ n ~olvl"J
L2: LSJ

Function Function

Reference Value

GET _NVT(L 1,3) Address of Z

GET _NVT(L 1,2) Address of sublist containing

Xand Y

GET _NVT(L 1.4) Null address

GET _NVT(L2,1) Null address

Figure 2.28C. Examples of references to the GET _NVT function

GET _NTT Function
Figures 2.29A, 2.29B, and 2.29C present the GET _NTT
function, which uses two arguments:

I. Name of a list
2. Position of a type code at the top level of the list

The function returns the type code in the specified position
at the top level of the list.

GET _NTT Function

Purpose

To obtain the type code ('D' or 'L') of the nth value
at the top level of a list of I ists

Reference

GET _NTT(LIST, N)

Entry-Name Declaration

DECLARE GET _NTT ENTRY(POINTER, FIXED
DECIMAL(5))
RETU RNS(CHARACTE R
(1));

Meaning of Arguments

LIST - the pointer variable that is the head of
the I ist to be processed

N - the position of the retrieved type code
at the top level of the list

Remarks

A value of N less than one or greater than the size of
the top level of the list causes the type code 'D' to
be returned.

Other Programmer-Defined Procedures Required

ADDRESS_NVT and GET_ TYPE

Method

The following reference obtains the nth type code
at the top level of the list:

GET_ TYPE(ADDRESS_NVT(LIST, N))

The nth type code at the top level remains in the
list after its equivalent is returned.

Figure 2.29A. Description of the GET_ NTT function for obtaining
the nth type code at the top level of a list of lists

GET_NTT:

DECLARE

END

PROCEDURE CLIST, NI
RETURNS CCHARACTERClll;

LIST POINTER,
N FIXED DECIMALC51;
RETURNCGET_TYPECADDRESS_NVT
CLIST 1 Nlll;

GET_NTT;

Figure 2.29B. The GET_ NTT function

Lists of Lists

L1: [}-lolwl HL[~o:z~
ix \lvN

L2: ISi
Function Function

Reference Value

GET _NTT(L1 ,3) ·o··

GET _NTT(L1 ,2) 'L'

GET _NTT(L1 ,4) 'D'

GET _NTT(L2,1) 'D'

Figure 2.29C. Examples of references to the GET _NTT function

41

LINKL Subroutine

Purpose

Combining lists of lists at Top Level

A list can be extended by combining it at the top level with
another list. The following discussions develop two proce­
dures for such extensions:

1. LINKL, which links two lists of lists at the top level
2. APPEND, which forms a new list of lists by dupli­

cating the top level of one list and linking the top level of
another list behind the duplicate

L/NKL Subroutine
Figures 2.30A, 2.30B, and 2.30C present the LINKL sub­
routine, which requires the names of two lists as its argu­
ments. The subroutine links the last component at the top
level of the first list to the first component at the top level
of the second list.

Remarks

When LIST1 is null, it becomes equal to LIST2.

To link two lists of lists at the top level When LIST2 is null, LIST1 does not change.

Reference

LINKL(LIST1, LIST2)

Entry-Name Declaration

DECLARE LINKL ENTRY(POINTER, POINTER);

Meaning of Arguments

LIST1 - the first list to be linked

LIST2 - the list to be linked behind LIST1

Other Programmer-Defined Procedures Required

ADDRESS_LVT and SET_LINK

Method

The following reference links the lists:

SET _LINK(ADDRESS_LVT(LIST1). LIST2)

No list components are duplicated, and the pointer
values of LIST1 and LIST2 are not changed.

Figure 2.30A. Description of the LINKL subroutine for linking two lists of lists at the top level

42

LINKL:
PROCEDURE(LIST1,LIST21;

DECLARE

END

CLIST1,LIST21 POINTER;
IF

LISH NULL
THEN

LISTl LIST2;
ELSE

CALL SET_LINK(ADDRESS_LVT(LISTlJ,
LIST21;

LINKL;

Figure 2.30B. The LINKL subroutine

Subroutine

Reference

L1:

L2:

L3:

LINKL(L1,L2) L1:

L2:

LINKL(L3,L1) L3:

L 1:

LINKL(L1,L3) L1:

L3:

Lists of Lists

(before reference)

Lists of Lists

(after reference)

D Z

D X D Y

~
~
[SJ

Figure 2.30C. Examples of references to the LINKL subroutine

43

APPEND Function
Figures 2.31A, 2.31B, and 2.31C present the APPEND
function, which uses the names of two lists as its argu­
ments. This function duplicates the top level of the first list
and links the top level of the second list behind the dupli­
cate. The function then returns the address of the first
component in the new list.

The APPEND function, unlike the previous procedure
(LINKL), preserves the first list as an entity.

APPEND Function LIST2 - the list to be appended behind the
duplicate top level

Purpose

To form a new list of lists by duplicating the top
level of one list and appending the top level of
another list behind the duplicate top level, and also
to obtain the address of the first list component in
the new list.

Remarks

When LIST1 is null, the address of the first list
component in LIST2 is returned. The components
in LIST2 are never duplicated. The address values
of pointers LIST1 and LIST2 remain unchanged.

Reference Other Programmer-Defined Procedures Required

APPEND(LIST1, LIST2) FORM_BODY, GET_ VALUE, GET_ TYPE,.and
GET_LINK

Entry-Name Declaration

DECLARE APPEND ENTRY(POINTER, POINTER)
RETURNS(POINTER);

Method

The following recursive reference forms the new
list:

Meaning of Arguments

LIST1 - the list whose top level is to be
duplicated

FORM_BODY(GET _ VALUE(LIST1),
GET_ TYPE(LIST1),APPEND
(GET_LINK(LIST1), LIST2))

Figure 2.31A. Description of the APPEND function

44

APPEND:

DECLARE

IF

PROCEDURE CLISTl, LIST2t
RETURNS CPOINTERt
RECURSIVE;

CLIST1,LIST2t POINTER;

LISTl = NULL
THEN

RETURNCLIST2t;

END

RETURN CFORM_BODYCGET_VALUECLISTlt,
GET_TYPECLISTltr
APPENOCGET_LINKCLISTltr LIST2ttt;

APPEND;

Figure 2.31B. The APPEND function

Function

Reference

APPEND(L1,L2)

APPEND(L2,L 1)

APPEND(L3,L1)

APPEND(L1 ,L3)

Function Value(FV)

Address of duplicate component

specifying V

Address of duplicate component

specifying sublist elements

Xand Y

Address of first component in L1

Address of duplicate component

specifying V

Figure 2.3 lC. Examples of references to the APPEND function

Lists of Lists

(before reference)

L1:~

L2:

L3: ISi
Lists of Lists

(after reference)

L1:~

FV:

L2:

L2:

FV:

L1:

L3: ISi
FV:

L1: D V D W

L1:~

FV:~

L3: !SJ

45

Copying Top Level of a List of
Lists in Reverse Order

It usually takes less time to retrieve an item from the front
of a list than from the end, because fewer items have to be
traversed to reach the desired item. When more processing
occurs at the end of list than at the front, it may be more
efficient to reverse the list.

The following discussions develop two subroutines for
reversing a list of lists:

1. COPY_ REVT, which copies the top level of a list of
lists in reverse order and returns the address of the new list

2. COPY _REVTl, which is the recursive equivalent of
COPY_REVT

COPY _REVT Function

Purpose

To copy the top level of a list of lists in reverse order
and to return the address of the new list

Reference

COPY REVT(LIST)

Entry-Name Declaration

DECLARE COPY REVT ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

LIST - the list whose top level is to be copied
in reverse order

Generating a new top-level list in reverse order generally
. takes less time than relinking the top level of the original
list.

COPY _REVT Function
Figures 2.32A, 2.32B, and 2.32C present COPY _REVT,
which requires the name of a list as its only argument. The
function returns the address of the new list, which has been
reversed at the top level.

Note that the function does not produce a distinct copy
of the new list. Both the new and old lists share compo­
nents at lower levels.

Remarks

Components at lower levels of LIST are not copied
but are shared between the old and new lists. When
LIST is null, a null address is returned.

Other Programmer-Defined Procedures Required

FORM_BODY, GET_ VALUE, GET_ TYPE, and
GET_LINK

Method

GET _LINK obtains successive addresses of list
components at the top level of LIST.

GET_ VALUE and GET_ TYPE obtain the value
and type of each list component.

FORM_BODY creates and links the components
in the new top-level list.

Figure 2.32A. Description of the COPY_ REVT function for copying the top level of a list of lists in reverse order and returning the address of
the new list.

COPY_REVT:

OECLARE

IF

PROCEOURE (LIST>
RETURNS (POINTER);

(LIST,AOORESS1,AOORESS21 POt~TER;
AOORESSl LIST;
AOORESS2 NULL;

AOORESSl = NULL

Figure 2.32B. The COPY_ REVT function

46

END

THEN
RETURN(A00RESS2>;
AODRESS2 = FORM_BOOY(GET_VALUE
UDDRESSl >.
GET_TYPElADDRESSll,
ADDRESS2);
ADDRESSl • GET_LtNK(AOORESSl>;

GO TO
L;

COPY_REVT;

Function

Reference

COPY REVT(L 1)

COPY REVT(L2)

COPY __ REVT(L3)

Function Value (FV)

Address of duplicate component

specifying W

Address of duplicate component

specifying Z

Null address

Figure 2.32C. Examples of references to the COPY __ REVT function

L1;

L2:

L3:

Lists of Lists

(before reference)

Lists of Lists

(after reference)

L1:~

FV:~

L2:

FV:

L3: ISi
FV: ISi

D y

47

COPY _REVT1 Function
Figures 2.33A and 2.33B present the COPY:_ REVTI
function, which uses recursive techniques to produce the
same results as COPY _REVT in the previous discussion.

COPY REVT1 Function

Purpose

To copy the top level of a list of lists in reverse order
and to return the address of the new list

Reference
COPY _REVT1 (LIST,NULL)

Entry-Name Declaration

DECLARE COPY _REVT1 ENTRY(POINTER,
POINTER) RETURNS(POINTER);

Meaning of Argument

LIST - the list whose top level is to be copied
in reverse order

Remarks
Components at lower levels of LIST are not copied
but are shared with the new list. When LIST is
null, a null address is returned.

Other Programmer-Defined Procedures Required

FORM_BODY, GET_ VALUE, GET_ TYPE, and
GET_LINK

Method

COPY _REVT1 performs the recursive equivalent
of the method developed in the previous function
COPY _REVT. COPY _REVT1 uses two pointer
parameters. The first parameter (LIST) represents
the list whose top level is to be copied. The second
parameter (ADDRESS) represents the new list;
initially ADDRESS is null. COPY REVT1 returns
the value of the following recursive expression:

COPY _REVT1 (GET _LINK(LIST), FORM_BODY
(GET _VALUE(LIST),GET _TYPE(LIST),
ADDRESS))

Each level of recursion is terminated by a null link
address.

Figure 2.33A. Description of.the alternative function

48

COPY_ REVTl for copying the top level of a list .of
lists in reverse order and returning the address of the
new list

COPY_REVTl:PROCEDUREfLIST. ADDRESSJ
RETURNSf POINTERJ RECURSIVE;
DECLARE (LIST• ADDRESSJ POINTER;
IF LIST • NULL THEN RETURNfADDRESSJ;
RETURNfCOPY_REVTlfGET_LINKfLISTJ•

FORM_BODYfGET_VALUEfLISTI •
GET_TYPECLISTJ.ADDRESS,JJ;

ENO COPY_REVTl;

Figure 2.33B. The COPY _REVTl function

Manipulating all Levels of a List of Lists

So far, the procedures developed for processing items in a
list of lists are restricted to individual items or to the items
at the top level of a list. The following discussions develop
subroutines and functions for manipulating all levels of a
list of lists. These procedures are concerned with the fol­
lowing operations:

1. Obtaining the first and last data values in a list of lists
2. Counting the data values in a list of lists
3. Deleting values from a list of lists
4. Copyinglists of lists
5. Testing lists of lists
6. Replacing data values in a list of lists

Obtaining First and Last Data
Values in a List of Lists

To obtain either the first or the last data value in a list of
lists, it may be necessary to search sublists at many levels.
The following discussions develop four functions for per­
forming such searches:

L GET_FD, which gets the first, or leftmost, data value
in a list of lists

2. GET_ FDR, which is the recursive equivalent of
GET FD

3. GET_LD, which gets the last, or rightmost, data
value in a list of lists

4. GET_ LDR, which is the recursive equivalent of
GET_LD

GET _FD Function
Figures 2.34A, 2.34B, and 2.34C present the GET_FD
function, which requires the name of a list as its only argu­
ment. The function returns the address of the first data
value in the list.

GET _FDR Function
Figures 2.35A and 2.35B present the GET_FDR function,
which uses recursive techniques to produce the same result
as GET_ FD in the previous discussion.

GET _LD Function
Figures 2.36A, 2.36B, and 2.36C present the GET_LD
function, which requires the name of a list as its only argu-

ment. The function returns the address of the last data
value in the list.

GET _LDR Function
Figures 2.37 A and 2.37B present the GET _LDR function,
which uses recursive techniques to produce the same result
as GET_ LD in the previous discussion.

GET _FD Function

Purpose

To obtain the address of the first (leftmost) value
associated with a data component in a list of lists

Reference

GET _FD(LIST)

Entry-Name Declaration

DECLARE GET _FD ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

LIST

Remarks

- the pointer variable that is the head of
the list to be processed

When LIST is null, a null address is returned.

Other Programmer-Defined Procedures Required

GET_TYPE and GET_VALUE

Method

When the first component at the top level of LIST
contains a data address value ('D'), this value is
returned. When the first component contains a
list address value ('L'). this sublist is searched.
Searching continues in this manner until the first
data address value to the left is encountered.

Figure 2.34A. Description of the GET_ FD function for getting the
first data item in a list of lists

GET_FD:
PROCEDURE CLISTI
RETURNS IPOINTERI;

DECLARE

L:
IF

ILIST,ADDRESSI POINTER;
ADDRESS • LIST;

GET_TYPEIADDRESS)• 'D'
THEN

END

RETURNIGET_VALUEIADDRESS));
ADDRESS • GET_VALUEIADDRESSI;

GO TO
L;

GET_FDI

Figure 2.34B. The GET_ FD function

Lists of Lists

L1:

L2: L D X

L D y

D Z

L3: lSJ
Function Function

Reference Value

GET_FD(L1) Address of V

GET_FD(L2) Address of Z

GET_FD(L3) Null address

GET _FD(NULL) Null address

Figure 2.34C. Examples of references to the GET _FD

function

49

GET _FDR Function

Purpose

To obtain the address of the first (leftmost) value
associated with a data component in a list of lists

Reference

GET _FDR(LIST)

Entry-Name Declaration

DECLARE GET_FDR ENTRY(POINTER)
RETURNS(POINTER);

Me,aning of Argument

LIST

Remarks

- the pointer variable that is the head
of the list to be processed

When LIST is null, a null address is returned.

Other Programmer-Defined Procedures Required

GET_TYPE and GET _VALUE

Method

GET _FDR performs the recursive equivalent of the
previous function GET _FD.

Figure 2.35A. Description of the recursive function GET_ FDR for getting the first data item in a list of lists

GET _LO Function

Purpose

GET_FDR:
PROCEDURE C LIST I
RETURNS CPOINTERI RECURSIVE;

DECLARE

IF

THEN

ENO

LIST POINTER;

GET_TYPECLISTI • •o•
RETURNCGET_VALUECLISTll;
RETURNCGET_FDRCGET_VALUECLISTlll;

GET_FOR;

Figure 2.35B. The GET_ FDR function

Remarks

To obtain the address of the last (rightmost) value
associated with a data component in a list of lists

When UST is null, a null address is returned.

Reference

GET _LD(LIST)

Entry-Name Declaration

DECLARE GET _LO ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

LIST - the pointer variable that is the head
of the I ist to be processed

Other Programmer-Defined Procedures Required

ADDRESS_LVT, GET_ TYPE,. and GET_ VALUE

Method

When the 1·ast component at the top level of LIST
contains a data address value ('D'), this value is
returned. When the last component contains a
list address value l'l'), the sublist is searched.
Searching continues in this manner until a sublist
is encountered that contains a data address value
in the last component of its top level.

Figure 2.36A. Oe'Seriptiun1 a£ the GET_ LD func~ fat getting the last data item in a list of lists

SO.

GET_LO:
PROCEDURE I LI ST>
RETURNS (POINTERI;

DECLARE

IF

ILIST.AODRESSI PCI~TER;
ADDRESS LIST;

ADDRESS= ADORESS_LVTIACORESSJ;

Figure 2.36B. The GET_ LD function

ENO

GET_TYPEIADDRESSJ = 1 0 1

THEN
RETURNIGET_VALUEIADDRESSJI;
ADDRESS = GET_VALUEIADDRESSI;

GO TO
L;

GET_LD;.

Lists of Lists

L1:

L2:

L D z

D x D y

Function Function

Reference Value

GET _LD(L1) Address of V

GET_LD(L2) Address of Z

GET _LD(NULL) Null address

Figure 2.36C. Examples of references to the GET _LD function

GET _LOR Function

Purpose

To obtain the address of the last (rightmost) value
associated with a data. component in a list of lists

Reference

GET _LDR(UST)

ET!ttycName Declaration

DECLARE GET _LOR ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

LIST

Remarks

- the pointer variable that is the head of
the list to be processed

When LIST is null, a null address is returned.

Other Programmer:Defined Procedures Required

ADORESS_LVT, GET_ TYPE.and GET_VALUE

Method

GET _LOR performs the recursive equivalent of the
previous function GET _LO.

Figure 2.37 A. Description of the recursive function GET_ LOR for getting the last data item in a list of lists

51

GET_LDR:
PROCEDURE ILISTt
RETURNS IPOINTERt RECURSIVE;

DECLARE

IF

THEN

END

ILIST,ADDRESSt POI~TER;
ADDRESS= ADDRESS_LVTILISTt;

GET_TYPEIADDRESSt = 1 D1

RETURNIGET_VALUEIADORESStt;
RETURNIGET_LDRIGET_VALUEIADORESSttt;

GET_LOR;

Figure 2.37B. The GET_ LDR function

COUNT _D Function

Purpose

To count all the data (0) values in a list of lists

Reference

COUNT _D(LIST)

Entry-Name Declaration

DECLARE COUNT _D ENTRY(POINTER)
RETURNS(FIXED
DECIMAL(5)); ·

Meaning of Argument

LIST

Remarks

- the pointer variable that is the head of
the I ist to be processed

The maximum size is 99999. When LIST is null,

Counting Data Values in a List of Lists

The overall size of a list of lists is determined by the num­
ber of data values at all levels of the list. The following
discussion develops the COUNT_ D function for counting
the number of data values throughout a list.

COUNT_D Function
Figures 2.38A, 2.38B, and 2.38C present the COUNT _D
function, which requires the name of a list as its only argu­
ment. The function returns a count of all data values in the
list.

a zero size is returned. Only data items ('D') are
counted.

Other Programmer-Defined Procedures Required

GET_TYPE,GET_LINK,and GET_VALUE

Method

When the first component at the top level of LIST
contains a data item ('D'), the following recursive
expression is evaluated:

1 +COUNT _D(GET _LINK(LIST))

When the first component contains a list item ('L'),
the following recursive expression is evaluated:

COUNT _D(GET _ VALUE(LIST)) +COUNT _D
(GET _LINK(LIST))

Each level of recursion is terminated when
GET _LINK returns a null address.

Figure 2.38A. Description of the COUNT_ D function for counting all the data items in a list of Ji.sts

CDUNT_D:

DECLARE

IF

PROCEDURE C LIS Tl
RETURNS (FIXED DECIMALC511
RECURSIVE;

LIST POINTER;

LIST • NULL
THEN

Figure 2.38B. The COUNT_ D function

52.

END

RETURNIOI;
IF

GET_TYPECLISTI • 1 0 1

THEN
RETURN(l+COUNT_D CGET_LINKCLISTI 11;
RETURNCCDUNT_D CGET_VALUECLISTll +
COUNT_D CGET_LINKCLISTI I I;

COUNT_D;

Lists of Lists

L1: ~
L2:

D+l~s:~
L3: ISi

Function Function

Reference Value

COUNT _D(L 1) 2

COUNT _D(L2) 3

COUNT _D(L3) 0

COUNT_D(NULL) 0

Figure 2.38C. Examples of references to the

COUNT D function

Deleting List Components from a
List of Lists

The following discussions develop two subroutines for
deleting list components from a list of lists:

1. DELETE_ LIST, which deletes all components from
a list of lists

2. DELETE_NVT, which deletes the nth component
from the top level of a list of lists

DELETE_LIST Subroutine
Figures 2.39A, 2.39B, and 2.39C present the DELETE_
LIST subroutine, which requires as its only argument the
name of the list to be deleted.

DELETE_NVT Subroutine
Figures 2.40A, 2.40B, and 2.40C present the DELETE_
NVT subroutine, which requires two arguments:

1. Name of a list of lists
2. Position of a value at the top level of the list

The subroutine deletes the value from the specified posi­
tion at the top level of the list.

DELETE LIST Subroutine

Purpose

To delete all values from a list of lists

Reference

DELETE_LIST(LIST)

Entry-Name Declaration

DECLARE DELETE_LIST ENTRY(POINTER);

Meaning of Argument

LIST - the list to be deleted

Remarks

LIST is null after deletion.

Other Programmer-Defined Procedures Required

GET_ TYPE, GET_ VALUE, GET _LINK, and
SET_LINK

Method

DELETE_LIST is a recursive subroutine. When the
value of the first component at the top level of the
list is a data item ('D'), the component is inserted
into the list of available storage components AV Al L,
and the next component, which has now become
the first component at the top level, is examined.
When the value of the first component is a list
item ('L'), the sublist (and any sublists within it)
is deleted recursively. The component that contains
the head of the deleted sublist is then inserted into
the list of available storage components, and the
next component at the top level is examined. These
steps are repeated until the list becomes null.

Figure 2.39A. Description of the DELETE_ LIST subroutine for
deleting all values from a list of lists

53

OELETE_LIST:
PROCEOURECLISTJ RECURSIVE;

DECLARE

L:
CLIST 9 S9 AVAIL EXTERNALI POINTER;

IF
LIST • NULL

THEN
RETURN;

IF

I• IF THE VALUE OF THE FIRST
COMPONENT IS A SUBLIST.
RECURSIVELY DELETE THIS SUBLl.ST AND
PROCEED TO THE FOLLOWING
STATEMENTSe WHICH TREAT THE
COMPONENT THAT CONTAINS THE HEAD OF
THE DELETED LIST AS A DATA c•o•1
COMPONENT. •I

GET_TYPECLISTI = 'L'
THEN

CALL DELETE_LIST CGET_VALUECLISTll;
I• OTHERWISE. THE VALUE OF THE
FIRST COMPONENT IS A DATA ITEM.
THEREFORE 9 INSERT THE COMPONENT
INTO THE LIST OF AVAILABLE STORAGE
COMPONENTS. •I
S = AVAIL;
AVAIL = LIST;
LIST • GET_LINKCLISTI;
CALL SET_LINKCAVAIL,SI;
I• DELETE NEXT COMPONENT. •I

GO TO
L;

END
DELETE_LIST;

Figure 2.39B. The DELETE_ LIST subroutine

54

Lists of Lists

(before reference)

L1:~

L2: L D Z

L D y

D X

L3: !SJ
Subroutine Lists of Lists

Reference (after reference)

DELETE _usnu1 l1: !SJ

DELETE _l!IST(L2) :L2: IS]

DELETE_LIST(L3) L3: ISi
Figure 2.39C .. fa.:1mples of refetenoes .to the

DELETE _LIST ·strbroutine

DELETE NVT Subroutine

Purpose

To delete the nth value from the top level of a list of
lists

Reference

DELETE_NVT{LIST, N)

Entry-Name Declaration

DECLARE DELETE_NVT ENTRY(POINTER,
FIXED DECIMAL(5));

Meaning of Arguments

LIST - the list from which the nth value at
the top level is to be deleted

N - an integer that specifies the position

Remarks

of the value to be deleted from the top
level of the list

No value is deleted when N is less than one or greater
than the size of the top level.

Other Programmer-Defined Procedures Required

ADDRESS_NVT, GET_ TYPE, DELETE_LIST,
GET_ VALUE, GET_LINK, and SET _LINK

Method

When the nth component contains a data item
('D'), it is inserted into the list of available storage
components AV Al L. When the nth component
contains a list item ('L'), the subljst ls deleted first,
and then the nth component at the top level is
.inserted into AV Al L.

Figure 2.40A. Description of the DELETE_ NVT subroutine for
deleting the nth value from the top level ofa list ·of
lists

DELETE_NVT:

DECLARE
PROCEDUREILIST,NI;

N FIXED DECIMALl51,
ILIST,COMPONENT,S,AVAIL EXTERNALI
POINTER;
I• OBTAIN ADDRESS OF N-TH COMPONENT
AT TOP OF LIST. •I

IF

COMPONENT = ADDRESS_NVTCLIST,NI;
I• RETURN IF ADDRESS OF N-TH
COMPONENT IS NULL. •I

CCMPONENT "' NULL
THEN

RETURN;

IF

I• IF THE VALUE OF THE N-TH
COMPONENT IS A LIST, THEN DELETE
THIS LIST. •I

GET_TYPECCO~PONENTI = 'L'

FigUie 2AOB. The DELETE_ NVT subroutine

Subroutine

Reference

DELETE_NVT(L1,1)

DELETE_NVT(L1 ,2)

DELETE _NVT(L 1,J)

DELETE_NVT(L2,1)

L1:

L2:

L1:

L1:

L1:

L2:

END

THEN

IF

CALL OELETE_LISTCGET_VALUE
CCOMPONENTI I;
I• OTHERWISE THE VALUE OF THE N-TH
COMPONENT IS A DATA ITEM. THEREFORE,
INSERT THE N-TH COMPONENT INTO THE
LIST OF AVAILABLE STORAGE
COMPONENTS. •I
S AVAIL; AVAIL = COMPONENT;

N = 1
THEN

ELSE
LIST = GET_LINKCLISTI;

CALL SET_LINKCADDRESS_NVTCLIST,N-11,
GET_LINKICOMPONENTll;
CALL SET_LINKIAYAIL,SI;

OELETE_NYT;

Lists of Lists

(before reference)

D-{Ll~o:z~ ~x~ ~olv~
[SJ

Lists of Lists

(after reference)

[]-€!ill

[}--jL I~ .
:o Ix I HojvN

D+l~o:z~ =ox:.·olvN

lSl

Figure 2.40C. Examples of references fo the DELETE NVT subroutine

55

Copying Lists of Lists

It is often necessary to create a distinct copy of a list of lists
for working purposes, while retaining the original list. The
second list can be an exact duplicate of the first, or it can
contain modifications, such as having its sublists leveled, so
that all its data values appear at the top level. The follow­
ing discussions develop two functions for such duplication:

I. COPY_ LIST, which copies a list without modifica­
tions

2. COPY _LEV, which copies a list with all sublists
leveled

COPY LIST Function

Purpose

To copy a list of lists and to return the address of the
new list

Reference

COPY LIST(LIST)

Entry-Name Declaration

DECLARE COPY LIST ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

,LIST - the list to be copied

Remarks

Distinct components are created at all levels for the
new list, so that no components are shared between
the old list and the new list. When LIST is null, a
null address is returned.

Each function returns the address of the new list. Assign­
ment of this address to a pointer variable is effectively
equivalent to list assignment.

COPY _LIST Function
Figures 2.41A, 2.41B, and 2.4IC present the COPY_ LIST
function, which uses the name of a list as its only argument.
The function returns the address of the duplicate list.

COPY _LEV Function
Figures 2.42A, 2.42B, and 2.42C present the COPY _LEV
function, which uses as an argument the name of the list to
be copied with all sublists leveled. The function returns
the address of the new list.

Other Programmer-Defined Procedures Required

FORM_BODY, GET_ TYPE, GET_ VALUE, and
GET LINK

Method

COPY _LIST is a recursive function procedure.
When the first component at the top level of LIST
specifies a data item ('D'). COPY _LIST returns the
value of the following recursive expression:

FORM_BODY(GET _ VALUE(LIST), 'D',
COPY _LIST(GET _LINK(LIST)))

When the first component at the top level of LIST
specifies a list item ('L'). COPY LIST returns the
value of the following recursive expression:

FORM BODY(COPY _LIST(GET _VALUE
(LIST)). 'L', COPY _LIST(GET _LINK(LIST)H

Recursion is terminated by a null link address.

Figure 2.41A. Description of the COPY_ LIST function for copying a list of lists and returning the address of the new list

COPY_LIST:
PROCEDURE (LISTJ
RETURNS (POINTERt RECURSIVE;

DECLARE
LIST POINTER;

IF
LIST = NULL

THEN
RETURN (NULU;

IF
GET_TYPE(LISTt = 1 0 1

Figure 2.4 lB. The COPY_ LIST function

THEN

ENO

RETURN(FORM_BOOY(GET_VALUE(LISTt,
•o•,
COPY_LIST (GET_LINK(LISTttJJ;

ELSE
RETURN(FORM_BOOY(COPY_LIST
(GET_VALUE(LISTJt,
• LI'
COPY_LIST IGET_llNK(lISTJ J t t;

COPY_LI ST;

Lists of Lists

(before reference)

L1: ~
L2: ~Ll~o:z~

;;olvKI
L3: (SJ

Function Function Value (FV) Lists of Lists
Reference (after reference)

COPY - LIST(L1 l Address of duplicate component L1: ~
specifying V

FV: ~

COPY - LIST(L2l Address of duplicate component L2: ~Ll~o:z~ specifying sublist elements

Xand Y ~x ~olv~
FV: ~Ll~o:z~ = o :x: : :olvN

COPY~_LIST(L3) Null address L3: ISi

Figure 2.4 lC. Examples of references to the COPY _LIST function

57

COPY _LEV Function

Purpose

To copy a list of lists with all sublists leveled and to
return the address of the new list

Reference

COPY _LEV(LIST,NULL)

Entry-Name Declaration

DECLARE COPY _LEV ENTRY(POINTER,
POINTER) RETURNS(POINTER);

Meaning of Argument

LIST - the list to be copied

Hemarks

The new list contains only data items ('D'). Each
sublist in LIST is replaced in the new list by a
linked sequence of the data items contained in the
sublist. When LIST is null, a null address is
returned.

Other Programmer-Defined Procedures Required

FORM_ BODY, GET_ TYPE, GET _LINK, and
GET~VALUE

Method

COPY _LEV is a recursive function procedure that
uses two pointer parameters. The first parameter
(LIST) represents the list to be copied. The secotid
parameter (ADDRESS) represents the new list;
initially, ADDRESS is null. When the first
component at the top level of LIST is a data item
('D'), COPY__'.LEV returns the pointer value of the
following recursive expression:

FORM_BODY(GET _ VALUE(LIST), 'D',
COPY _LEV(GET_LINK(LIST), ADDRESS))

When the first component at the top level of LIST
is a list item ('L'), COPY _LEV returns the value of
the following recursive expression:

COPY _LEV(GET _VALUE(LIST), COPY _LEV
(GET _LINK(LIST), ADDRESS))

Each level of recursion is terminated by a null link
address in LiST.

Figure 2.42A. Description of the COPY_ LEV function for copying a list of lists with all sublists leveled and returning the address of the
new list

58

COPY_LfV;
PROCEDURE (LIST.,ADDRESSI ·
R.ftURNS (POINTERI RECORSIVE;

DECLARE

IF

THEN

IF

THEN

END

CUST1ADDRESSI POINT•ER;

UST·· 'NULL

RETURf.i(ADDRESS H

•GEt_lfYPE•:CLIST) * 1 D1

R'E.TURNC FORM_aoov (GET._ VALUE (LI ST 1,
'D'' . . .
COPY ... LEVlGET,_LINK(LISTI ,ADDRESS I 11;
RETURNCCOPY lEVCGET_YA .. UE (LISTI t
COPY ... l.EVCGET_LINKCLISTI ,ADDRESS))).;

CDPY_LEV;

Figure 2;42B •. The COPY_ LEV function

Function

Reference

COPY _LEV(L1)

COPY _LEV(L2)

Function Value (FV)

Address of duplicate

component specifying V

Address of duplicate

component specifying Q

L1:

L2:

L1:

FV:

L2:

FV:

Figure 2A2C. Examples of references to the COPY _LEV function

Testing lists of lists

The following discussions develop two functions for per­
forming tests on lists of lists:

1. EQUAL_L, which tests two lists for equality
2. MEMBER, which tests for the presence of a specified

data value in a list of lists

EQUAL_L Function
Figures 2.43A, 2.43B, and 2.43C present the EQUAL_L
function, which uses the names of two lists for its argu-

L

D

D Q

D V

D Q

D Q

D

v

D

Lists of Lists

(before reference)

y D z

L

R D s

Lists of Lists

(after reference)

D W D X

D R D S

D R D S

D W D X

D T D U

D y D Z

D T D U

D T D U

ments. When the two lists are equal, the function returns
'l 'B; otherwise, 'O'B is returned.

MEMBER Function
Figures 2.44A, 2.44B, and 2.44C present the MEMBER
function, which uses two arguments:

1. Address of a data item
2. Name of a list of lists

When the data item is a member of the list, the function
returns 'l 'B; otherwise, it returns 'O'B.

59

EOUAL_L Function

Purpose

To test two lists of lists for equality

Reference

EQUAL_L(LIST1, UST2)

Entry-Name Declarati~n

DECLARE EOUAL_L ENTRY(POINTER,
POINTER)
RETURNS(BIT(1));

Meaning of Arguments

LIST1

LIST2

Remarks'

- the first list to be tested for equality

- the second list to be tested for
equality

When the lists are equal, EQUAL_L returns the
value '1'8. When the lists are not equal, 'O'B is
returned. For equality, both lists must be linked
identically, and corresponding data components
('D') must contain the same value pointers. Both

lists can share common components. Two null
lists are considered equal.

Other Programmer-Defined Procedures Required

EOUAL_D, GET_ TYPE, GET_ VALUE, and
GET_LINK

Method

EOUAL_L is a recursive function. When both lists
are null, '1'8 is returned. When one of the lists is
null and the other is not, 'O'B is returned. When the
first COJTiponent at the top level of each list has
type 'D', the value of the following recursive
expression is returned :

EQUAL_D(LIST1, LIST2) & EOUAL_L
(GET _LINK(LIST1),GET _LINK(LIST2))

When the first components have type 'L', EOUAL_L
returns the value of the following recursive
expression:

EOUAL_L(GET _VALUE(LIST1). GET_VALUE
(LIST2)) .& EOUAL_L(GET _LINK(LIST1),
GET _LINK(LIST2))

When the first components have unequal types,
'O'B is returned. Each level of recursion is terminated
by a null link address in either list.

Figure 2.43A. Description of the EQUAL_ L function for testing the equality of two lists of lists

60

EQUAL_L:
PROCEDURECLIST1,LIST2)

'RETURNS CBITC111 RECURSIVE;
DECLARE

IF

THEN

IF

THEN

IF

CLIST1,LIST2) POINTER;

CLISTl • NULL) & CLIST2 = NULL1

RETURNC 1 11 81;

CLISTl • NULLllCLIST2 • NULL1

RETURNl 1 0'B1;

CGET_TVPECLISTll • 1 0 1 1 &
CGET_TVPECLIST21 = 1 0'1

Figure 2.43B. The EQUAL_ L function

THEN

IF

THEN

END.

RETURN(EQUAL_DCLIST1,LIST21
& EQUAL_L CGET_LINKCLIST11t
GET_LINKCLIST2l1t;

GET_TVPEC LISTU • GET_TVPECLIST21

RETURN(EQUAL_L CGET_VALUECLISTlt,
GET_VALUECLIST2ll
& EQUAL_L CGET_LINKCLISTll,
GET_LINKCLIST21tl;
RETURNl'O'BI;

EQUAL_L;

Lists of Lists

L1:

L2:

L3: D x D y D z

L4: LSJ
L5: O+@JSISJ

L6: ~
Function Function

Reference Value

EOUAL_L(L 1,L2) '1'B (=)

EQUAL _L(L1,L3) •'O'B (l=)

EQUAL_L(L4,L5) 'O'B (l=)

EQUAL_L(L5,L6) 'O'B (i=l

Figure 2.43C. Examples of references to the EQUAL_L

function

61

MEMBER Function

Purpose

To test for the presence of a data item in a list of
lists

Reference

MEMBER(D,. LIST)

Entry-Name Declaration

DECLARE MEMBER ENTRY(POINTER, POINTER)
RETURNS(BIT(1));

Meaning of Arguments

D

LIST

Remarks

- the address of the data item being
tested for

- the list being tested for the presence
of D

When Dis in LIST, MEMBER returns TB;
otherwise, it returns 'O'B.

Other Programmer-Defined Procedures Required

GET_TYPE,GET_VALUE,and GET_LINK

Method

MEMBER is a recursive function. When LIST is
null, 'O'B is returned. When the first component at
the top level of LIST has type 'D' and its value
equals D, MEMBER returns TB. When the first
component at the top level of LIST has type 'D' but
its value does not equal D, MEMBER executes the
following statement:

IF MEMBER(D, GET _LINK(LIST))

THEN RETURN('1'B); ELSE RETURN('O'B);

When the first component at the top level of LIST
has type 'L'. MEMBER executes the following
statements:

IF MEMBER(D, GET _VALUE(LIST)) THEN
RETURN('1'B);

IF MEMBER(D, GET _LINK(LIST))

THEN RETURN('1'B); ELSE RETURN('O;B);

Each .level of recursion is terminated by a null link
address.

Figure 2.44A. Description of the MEMBER function for testing a list of lists for the presence of a data item

62

MEMBER:
PROCEDURE CD, LIST)
RETURNS lBITC l J J RECURSIVE;

DECLARE

IF

THEN

IF

THEN
IF

THEN

CO, LISTt POINTER;

LIST a NULL

RETURN(•o•et;

GET_TYPECLISTt ='0 1

GET_VALUE(LISTt = 0

RETURNC 1 1 1 Bt;

Figure 2.44B. The MEMBER function

ELSE;
ELSE

IF
MEMBER(O• GET_VALUECLISTJt

THEN
RETURNC'l'Bt;

If
MEMBERCO. GET_LINKCLISTlt

THEN

ENO

RETURNC 1 1 1 Bt;
ELSE

RETURN('O 1 8);

MEMBER;

Lists of Lists

L1: ~oJvl HLl~o:z~ ~w: ~olxl HojvN
L2: ~

Function Function

Reference Value

MEMBER(GET _NVT(L2,2),L 1) '1'B

(X in L1)

MEMBER(GET _NVT(L2,1).L1) 'O'B

(T not in L 1)

Figure 2.44C. Examples of references to the MEMBER function

Replacing Data Values in a List of Lists

The following discussion presents the REPLACE subroutine,
which replaces each occurrence of a data value in a list of
lists with another data value.

REPLACE Subroutine
Figures 2.45A, 2.45B, and 2.45C present the REPLACE
subroutine, which uses three arguments:

1. Address of the data value being replaced
2. Address of the new data value
3. Name of the list of lists in which the replacement

occurs

63

REPLACE Subroutine

Purpose

To replace each .occurrence of a data item in a list
of lists with another data item

Reference

REPLACE(D1, D2, LIST)

Entry-Name Declaration

DECLARE REPLACE ENTRY(POINTER,POINTER,
POINTER);

Meaning of Arguments

D1

D2

- the address of the data item to be
replaced

- the address of the data item replacing
D1

LIST - the list within which replacement
occurs

Remarks

D1 and D2 must be addresses of data items and not
of lists (D1 or D2 can be null).

Other Programmer-Defined Procedures Required

GET_ TYPE, GET _VALUE, GET _LINK, and
SET_VALUE

Method·

REPLACE is a recursive subroutine. When LIST is
null, no replacement occurs.

When the first component at the top level of LIST
has type 'D' and its value equals D1, value D2
replaces D 1 . When the first component at the top
level of LIST has type 'L'. the sublist is processed
recursively with the following statement:

CALL REPLACE(D1, D2, GET_ VALUE(LIST));

In both cases, the remainder of the list is processed
recursively with the following statement:

CALL REPLACE(D1, D2, GET _LINK(LIST));

Figure 2.45A. Description of the REPLACE subroutine for replacing each occurrence of a data item in a list oflists with another data item

64

REPLACE:
PROCEDURECD1,D2,LISTI RECURSIVE;

DECLARE

IF

THEN

IF

THEN
IF

THEN

CD1,D2,LISTI POINTER;

LIST = NULL

RETURN;

GET_TYPECLISTJ = 'D'

GET_VALUECLISTI = Dl

CALL SET_VALUECLIST,02,'D'li
ELSE;
ELSE

END

CALL REPLACE CD1,D2,
GET VALUECLISTll;
CALL REPLACE (Dl,D2,GET_LINKILISTll;

REPLACE;

Figure 2.45B. The REPLACE subroutine

Data Lists of Lists

Storage (before reference)

Ll: L D 1

M: ~
L D 8

N: D.QJ D

L2: D 2 D 2 D 2

Subroutine Lists of Lists

Reference (after reference)

REPLACE(M,N,L 1) L1: L D 2

L D 8

REPLACE (N,M,L2) L2: D 1

Figure 2.45C. Examples of references to the REPLACE subroutine

USING LISTS OF LISTS

Lists of lists provide the same reductions in data duplication
and data movement that are available with pointer lists. Un­
like pointer lists, however, lists of lists eliminate the need
to know exactly how many lists a program will require dur­
ing execution. New lists can be generated as the need arises
for them during program execution, and they can be
treated as sublists within a major list of lists.

The following discussions provide two examples of this
flexibility in list generation.

The first example shows how a list of lists may be used
to represent a binary tree that has an arbitrary number
of branches. It then applies the tree list to a sort applica­
tion.

The second example creates an index from descriptor
words contained in a set of catalog cards. The index is
organized as a list of lists. Each sublist specifies a descriptor
word and the catalog cards that contain the descriptor. The
number of descriptors, and consequently the number of sub­
lists, is arbitrary.

Sorting With a Binary Tree

The following discussion shows how a list of lists may be
used to represent a binary tree and how the resultant tree
list may be applied to sorting.

Figure 2.46A applies a tree sort to the seven integers 4,
2, 6, 3, 1, 5, and 7, received in that order. Each node of the
tree contains an integer. The left branch of each node
always leads to a smaller integer, and the right branch
always leads to a larger integer. Successive integers enter the
tree at the bottom, as shown in Figure 2.46A.

The shape of the tree will vary according to the original
order of the integers. If the integers are already in ascending
sequence, the tree will contain right branches only. Simi­
larly, a descending sequence will produce left branches
only.

Although the placement of the integers in the binary tree
of Figure 2.46A does not correspond to a conventional
sort arrangement, the integers are readily retrieved in sort
order. The smallest integer is reached by always taking the
left branch of successive nodes. Taking the right branch of
successive nodes leads to the largest integer. Appropriate
combinations of left and right branches lead to the other
integers. Later discussions develop recursive procedures for
performing such retrieval.

Figure 2.46B contains a list representation of the binary
tree constructed in Figure 2.46A. This list uses three list
components for each node in the tree. The first component
specifies the data value at the node. The second compo­
nent is an L-component whose value pointer branches to
the next node on the left. The third component is also an
L-component whose value pointer branches to the next

65

Data to be Arranged in Binary Tree

4,2,6,3,1,5,7

4
/4 /4~ /4~

2 2 6 2 6

""' 3

(A) (B) (C) (D)

4

/4~ /4~ /'~ 2 6 2 6

/2"'
6

/ " /""' /
5/ "'7 1 3 1 3 5 1 3

(E) (F) (G)

Figure 2.46A. Sorting data items by arranging them in a binary tree

. TREE:

D 4 L L

D 6 L L

D

D 5 L

D 2 .L, 'IL

L

D 1 L

Figure 2.46B. Representing a binary tree with a list of lists

66

node on the right. When a node is not followed by another
node (either on the left or on the right), the appropri·
ate L-components contain null value pointers.

Representation of each node as a sublist within a list of
lists allows the main list to contain an arbitrary number of
nodes. It also frees the programmer from having to know
exactly how many nodes will be required and what their
arrangement will be during program execution.

The remainder of this discussion shows how a tree list
(as illustrated in Figure 2.46B) may be used to sort succes­
sive sets of input cards, where each set contains an arbitrary
number of cards. The cards are assumed to have the fol­
lowing structure:

1 CARD,
2 KEY CHARACTER(3)
2 DAT A CHARACTER(77)

Sorting occurs in ascending sequence on KEY. Each set of
cards is terminated by a card that contains three asterisks
(***)in its KEY field.

To simplify the organization of the sort program, a main
procedure (T _SORT} is. designed to operate with a func­
tion procedure (NODE) and two subroutine procedures
(ADD_NODE and T_PRINT):

1. NODE creates a three-component node for the list
representation of a binary tree and returns the address of
the leftmost component in the node.

2. ADD_ NODE inserts a node (created by NODE) into
the list representation of a binary tree in sort order.

Function Generated Node

Reference

3. T_PRINT prints in sort order the data values speci­
fied in the list representation of a binary tree.

Figures 2.46C and 2.46D present the NODE function,
which uses the address of a card as its only argument. The
function generates a three-component node for the card,
assigns the address of the card to the value pointer of
the leftmost component, and returns the address of the
leftmost component. The value pointers of second and
third components as well as the link pointer of the third
component are null. The function creates the node by
using three nested references to the function FORM
BODY, which was developed earlier.

NOOE:

DECLARE

END

PROCEDURE CCARD_ADDRESSI
RETURNS CPOINTERI;

CARO_AODRESS POINTER,
NULL_PTR POINTER;
NULL_PTR = NULL;
RETURN(FORM_BODYCCARD_ADDRESS1 1 D1 1

FORM_BOOY(NULL_PTR 1 1 l 1 1

FORM_BODYCNULL_PTR 1 1 l 1 1

NULL_PTR I 111;

NOOE;

Figure 2.46C. The NODE function

To simplify the diagrams in Figure 2.46D, single-position
character strings are used instead of 80-position cards. This
simplification is also used in the remaining diagrams of the
discussion.

Data

Storage

M: ~
N: ~

Function

Value

NODE(M) ID! 1 I HLN HL l\f\I Address of leftmost component

in node generated by function

NODE(N) ID I 2 I H L l"J HLN\J Address of leftmost component

in node generated by function

Figure 2.46D. Examples of references to the NODE function

67

Figures 2 .46E and 2.46F present the ADD_ NODE sub­
routine, which is a recursive procedure that uses two
arguments:

1. Address of a card that contains KEY and DATA
fields as described earlier

2. Name of a list that represents a binary tree

IF

THEN
DO;

END;
TREE = NODECCARD_ADDRESSJ; RETURN;

NODE_CARD • GET_VALUECTREEJ;
LEFT= GET_LINK(TREEJ;
RIGHT• GET_LINKCGET~LINKCTREEJJ;

IF
CARD_ADDRESS->KEY<NODE_CARO->KEY

Figure 2.46E. The ADD_ NODE subroutine

M:

N:

Data

Storage

~

~

Subroutine

Reference

ADD_NODE (M,L1)

ADD_NODE(N,L2)

L1: IS]

L2:

D 6

L1: D 5

L2:

L

L

D

L

D

The subroutine creates a node for the card by invoking
the NODE function and then links the node to the bottom
of the specified bee list. The KEY field of the card deter­
mines where the new node is inserted into the tree list.

THEN
IF

THEN
GET_VALUECLEFTJ • NULL

CALL SET_VALUECLEFT,NODE
CCARD_ADDRESSJ •·'L' J;

ELSE

ELSE
IF

THEN

ELSE

CALL ADD_NODECCARD_ADDRESS,
GET_VALUECLEFTJJ;

GET_VALUECRIGHTJ • NULL

CALL SET_VALUECRIGHT,NODE
ICARD_ADDRESSJ,•L•J;

CALL ADD_NODEICARD_ADDRESS,
GET_VALUECRIGHTIJ;

END

L

4

L

4

ADD_NODE;

Tree Lists

(before reference)

D 9

L

Tree Lists

(after reference)

D 9

L

L

L

L

L

Figure 2.46F. Examples of references to the ADD_ NODE subroutine

68

Figures 2.46G and 2.46H present the T _PRINT sub­
routine, which is a recursive procedure that uses the name
of a tree list as its only argument. The subroutine prints the
cards specified at the nodes of the tree list. The cards are
printed in sort order on the standard system-ouput file,
SYSPRINT.

T_PRINT:
PROCEpUREITREE) RECURSIVE;

DECLARE

IF

1 CARD_IMAGE BASEDINODE_CARD),
2 KEY CHARACTERl3),
2 DATA CHARACTERC77),
NODE_CARD POINTER,
CTREE,LEFT,RIGHT) POINTER;

TREE = NULL
THEN

END

RETURN;
NODE_CARD = GET_VALUEITREE);
LEFT = GET_VALUECGET_LINKCTREE)J
RIGHT = GET_VALUECGET_LINK
CGET_LINKITREEI));
CALL T_PRINTCLEFT);

PUT
EDITCNODE_CARD->CARD_IMAGE)(A);

PUT
SKIP;
CALL T_PRINTCRIGHTJ;

T_PRINT;

Figure 2.46G. The T _PRINT subroutine

Actual sorting is under control of the main procedure
T_SORT, which appears in Figure 2.461. T _SORT invokes
the AREA_ OPEN subroutine (developed earlier) to create
a list of available storage components (AVAIL) in the

storage area called LIST_ AREA. Cards are read from the
standard system-input file, SYSIN, and printed unsorted on
the standard system-output file, SYSPRINT. As each card
is read, based storage is allocated for it in the area called
CARD_ AREA. Reading stops when the KEY field of a
card contains three asterisks (***). Should the number of
cards in a set exceed the capacity ofCARD_AREA, the
remaining cards in the set are skipped, and only those cards
allocated in CARD AREA are sorted.

T_SORT:
PROCEDURE;

DECLARE
1 CARO,
2 KEY CHARACTERC3J,
2 DATA CHARACTERC77J,
1 CARD_I,MAGE BASEDCCARD_ADDRESSJ,
2 KEY CHARACTERC3),
2 DATA CHARACTERCllJ,
CCARD_AREA, LIST_AREAJ AREA,
CARO_ADORESS POINTER,
CTREE,AVAIL EXTERNAL) POINTER;
I• WHEN All SETS OF INPUT CARDS
HAVE BEEN SORTED, TERMINATE
PROGRAM. •I

ON ENDFILE CSYSIN)
GO TO

BEGIN;
SKIP:

GET

IF

ENO_T_SORT;
I* WHEN THE NUMBER OF CARDS IN A SET
EXCEEDS THE CAPACITY OF CARD_AREA,
SKIP REMAINING CARDS IN SETt AND
PRINT THE FOLLOWING MESSAGE AFTER
LAST CARD: '*** INPUT EXCEEDED AREA
CAPACITY'. THEN PRINT CONTENT OF
TREE LIST IN SORT ORDER. */
ON AREA

EDIT CCARDJ CAC3J, Alllll;

CARD.KEY • '***'

Tree List

L1: D 7 L

Subroutine

Reference

T_PRINT(L1)

L

D 4

D 9 L

L L

D 1 L

Subroutine

Printout

1

4

7

9

Figure 2.46H. Example of a reference to the T _PRINT subroutine

69

THEN
DO;

PUT

PUT

LIST('*** INPUT EXCE•EOED AREA
CAPACITY');

SKIP;
GO TO

PRINT_OUTPUT;
END;

ELSE

END;

GO TO
SKIP;

I• INITIALIZE. •I
TREE• AVAIL • NULL;
LIST_ARE•A • EMPTY;
CALL AREA_OPEf!ULIST_AREA,AVAIL I;
I* GET NEXT SET OF INPUT CARDS.
PRINT EACH CARD AS IT IS READ, AND
CREATE A NODE J=OR IT IN TREE LIST. •I

SURT.1
GET

EDITCCARDICAC3),AC77JJ;
PUT

PAGE
LISTC 1 T_SORT INPUT:•J;

PUT
SKIP;

PRINT_INPUT:

IF

PUT
EIHTICAROl(At;

PUT
SKIP;

CARO.KEY = '***'
TH.EN

GO TO
PRINT_OUTPUT;
ALLOCATE CARO_IMAGE INCCARD_AREAI
SET(CARD_AODRESSJ;
CARD_ADDRESS->CARD_IMAGE s CARO;
CALL ADD_NODECCARD_AOORESS,TREEI;

GET
EOlT(CARO)(A(3J,A(7711;

GO TO
PRINT_INPUT;
I* PRINT TREE LIST IN SORT ORDER, *I

PRINT_OUTPUT:
PUT

.PAGE
LISTC 1 T_SORT OUTPUT:•);

PUT
SKIP;
CALL T_PRINT(TREEI;

PUT
EOTHCARO I (A I ;
I* CLEAR CARD_AREA ANO TREE LIST,•/
/*THEN PROCESS NEXT ~ET OF INPUT *I
I* CARDS. *I
CARD_AREA = EMPTY;
CALL DELETE_L1STCTREEt;

GO TO
START;

ENO_ T_SORT:
END

T_SORT;

Figure 2.461. The T _SORT procedure

70

The .address of each card in CARD_ AREA is used to
form a node in the tree list called TREE. The ADD _NODE
subroutine inserts the node into TREE, as described earlier.
When TREE contains a node for each card, the cards are
printed in sort order by the T _PRINT subroutine. A sample
printout appears in Figure 2.461.

T_SORT OUTPUT:
1 ONE
2 TWO
3 THREE
4 FOUR
5 FIVE
6 SIX
7 SEVEN

Figure 2.46J. Printout from T _SORT and T PRINT

Before the next set of input cards is sorted, CARD_
AREA and TREE are cleared. Processing is terminated
when an end-of-file condition occurs on the standard
system-input file, SYSIN.

In summary, a tree list permits varying numbers of input
cards to be sorted with a minimum of data movement and
data duplication.

Indexing Catalog Cards

The use of a list of lists to index catalog cards is illustrated
in Figures 2.47 A through 2.47H. To avoid complexity, the
discussion uses a simplified version of a catalog card, as
shown in Figure 2 .4 7 A. The first ten columns of each card
contain an accession number, which consists of any combin­
ation of characters acceptable to the computer. In the case
of a book catalog, the accession number might correspond
to a Dewey decimal number; or it might serve as a part
number for a catalog of machine parts. It could also repre­
sent the identification number used in an art collection.

INPUT TO INDEX:

T2-XY4-16 PHOTOGRAPH BLACK WHITE LARGE
.A9-1L7-RZ PAINTING BLACK WHITE SMALL
Y9-016-X1l SCULPTURE MARBLE BLA:CK S'MALL
Y8-123-X7 SCULPTURE MARBLE WHITE MEDIUM

Figure 2.47A. Input to INDEX

The remaining 70 columns of each card contain descrip­
tive information about the item being .catalog.ed. This
information consists of descriptive words (descriptors) that
specify particular features of the item being cataloged. For
this discussion, a descriptor cannot exceed ten characters
in length, but .it can contain .any combination of charac­
ters and need not be restricted to a word. The number of

descriptors in a card is arbitrary, but at least one blank
character must separate successive descriptors. When a card
cannot hold all the desired descriptors, additional cards may
be used, provided that they contain the same accession
number.

The four catalog cards in Figure 2.4 7 A provide informa­
tion about art objects, and the index produced for these
cards appears in Figure 2.47H. The descriptors are printed
in sort order, and each descriptor is followed by all cards
that contain the descriptor. The cards for each descriptor
are arranged in ascending sequence on accession number.

A possible list representation for this type of index
appears in Figure 2.4 7B. The list contains an arbitrary num­
ber of sublists, each of which is associated with a separate
descriptor. The value pointer for the first component in a
sublist specifies the descriptor for that sublist. The value
pointer for each of the remaining components in a sublist
specifies a card that contains the descriptor for the sublist.

INDEX LIST:

L

L

L

L

Key:

Di specifies the descriptor for the ith sublist.

Cij specifies the jth catalog card in the ith sublist.

Figure 2.4 7B. Representing an index with a list of lists

To simplify the organization of the program that creates
the index list and prints it, a main procedure (INDEX) is
designed to operate with two function procedures (GET_
DESCRIPTOR and GET_DESCRIPTOR_COMPONENT)
and two subroutine procedures (INSERT_CARD and
PRINT_INDEX):

1. GET DESCRIPTOR obtains the next descriptor in a
catalog card.
2. GET DESCRIPTOR_COMPONENT obtains the

address of the first component in a sublist that is associated
with a specified descriptor. When no sublist exists for the
descriptor, a sublist is created, and the address of its first
component is returned.

3. INSERT_CARD inserts a catalog card in a specified
sublist.

4. PRINT_INDEX prints the index list in sort order.

71

Figure 2.47C contains the GET DESCRIPTOR function
procedure. It uses one parameter (DESCRIPTOR
_STRING), which is a varying-length character string that
has a maximum length of 71 characters. The value of the
parameter initially consists of the characters in columns 11
through 80 of a catalog card and an additional blank char­
acter appended on the right.

GET_DESCR I PTOR:

DECLARE

PROCEDUREIDESCRIPTOR_STRJ~GI
RETURNS (CHARACTER (1011;

DESCRIPTOR_STRING C~ARACTER(711
VARYING,
DESCRIPTOR CHARACTERIICI,
1c1,c2t FIXED OECl~ALl21;

FIRST_CHARACTER:
DO

Cl= 1 TO LENGTHIDESCRIPTOR_ST~r~;1;
IF

SUBSTR(DESCRIPTOR_STRJNG, Cl,l.1~•' •
THEN

GO TO
LAST_CHARACTER;

END;
RETURN_BLANK_DESCRIPTOR:

RETURN(not •• >;
LAST_CHARACTER:

DO

IF

C2 = Cl TO LENGTH
(DESCRIPTOR_STRINGI;

SUBSTR(OESCRIPTOR_STRI~G,C2,ll
THEN

GO TO
EXTRACT_DESCRIPTOR;

ENO;
EXTRACT_OESCRIPTOR:

DESCRIPTOR = SUBSTR
(DESCRIPTOR_STRING,c1,c2-~i;

SHIFT_OESCRIPTOR_STRING:
DESCRIPTOR_STRING =
SUBSTR(DESCRIPTOR_STRI\G, C21;

RETURN_DESCRIPTOR:
RETURN(OESCRIPTORI;

END
GET_DESCRIPTOR;

Figure 2.47C. The GET_ DESCRIPTOR function

••

Each invocation of GET DESCRIPTOR obtains the
first descriptor in parameteillESCRIPTOR STRING and
returns it to the point of invocation. The fir-;t descriptor is
also deleted from DESCRIPTOR STRING and if the
descriptor contains more than te; characte;s, the leftmost
ten are returned. When no descriptors remain in
DESCRIPTOR_ STRING, an invocation of GET
DESCRIPTOR produces a string of ten blank ch~acters.

The function procedure GET DESCRIPTOR
COMPONENT appears in Figurel.47D. The function uses
two parameters: DESCRIPTOR, which specifies a descrip­
tor word, and INDEX_LIST, which is the pointer head ofa
list of lists that has the organization shown in Figure 2.47B.

72

GET_DESCRIPTDR_COMPONENT:
PROCEDURECDESCRIPTOR.INDEX LISTI
RETURNS CPOINTERt; -

DECLARE
N FIXED DECIMALC5t,
DESCRIPTOR CHARACTERClOt,
DESCRIPTOR_IMAGE BASED
CDESCRIPTOR_ADDRESSt CHARACTERClOt,
CINDEX_LIST, SUBLISTI POINTER,
DATA_AREA AREA EXTERNAL;
N • l;
SUBLIST • INDElC_LIST;

TEST_DESCRIPTOR: .
IF

THEN

IF

THEN
DO;

SUBLIST = NULL

GO TO
INSERT_DESCRIPTOR;
DESCRIPTOR_ADORESS = GET_VALUE
CGET_VALUECSUBLISTtt;

OESCRIPTOR_AOORESS->DESCRIPTOR IMAGE
<DESCRIPTOR -

N = N + l;
SUBLIST = GET_LINKCSUBLISTt•

GO TO '

ENO;
IF

THEN

TEST_OESCRIPTOR;

DESCRIPTOR_AOORESS->DESCRIPTOR IMAGE
= DESCRIPTOR . . -

RETURN(GET_VALUECSUBLISTJt;
INSERT_DESCRIPTOR:

END

ALLOCATE DESCRIPTOR_IMAGE IN
(DATA_AREAt SETCDESCRIPTOR_ADDRESSJ;
DESCRIPTOR_ADDRESS->DESCRIPTOR IMAGE
= DESCRIPTOR; -
CALL INSERT_NVTCINDEX_LIST,N,
FORM_BODYIDESCRIPTOR_ADDRESS,•D•,
NULL I , 'L' t ;
RETURNCGET_VALUE(AODRESS NVT
llNOEX_LIST,Nltt; -

GET_DESCRIPTOR_COMPONENT;

Figure 2.470. The GET _DESCRIPTOR COMPONENT function

GET_ DESCRIPTOR_ COMPONENT searches INDEX
LIST for a sublist whose first component specifies the sam~
descriptor as parameter DESCRIPTOR. When the sublist is
found , the address of its first component is returned. If no
sublist exists for the descriptor, the function creates a sub­
list and inserts it into INDEX_LIST in ascending sequence
on the descriptor. The function then returns the address of
the first component in this new sublist.

Note that DESCRIPTOR is a ten-position character
string whose descriptor value is adjusted to the left and
extended, if necessary, with blanks on the right.

Figure 2.47E contains the subroutine procedure
INSERT_ CARD. The subroutine uses two parameters:
CATALOG_CARD_ADDRESS, which represents the

storage address of a catalog card, and DESCRIPTOR_LIST,
which specifies the address of the first list component in a
sublist within the index list (INDEX_ LIST).

INSERT_CARO:
PROCEOUREICATALOG_CARO_AOORESS.
OESCRIPTOR_LISTJ;

DECLARE
N FIXED OECIMALl51•
CATALOG_CARO_ADORESS
POINTER,
OESCRIPTOR_LIST POINTER.
CARO COMPONENT POINTER•
1 CARD_IMAGE BASEOIIMAGE_AOORJ,
2 ACCESSIONt_IMAGE CHARACTERllOJ,
2 OESCRIPTOR_GROUP_IMAGE
CHARACTER 170J;

INITIALIZE:
N = l;
CARO_COMPONENT =
OESCR IPTOR_LIST;

NEXT_CARO:
N = N + l;
CARO_COMPONENT = GET_LINK
ICARO_COMPONENTJ;

IF
CARO_COMPONENT = NULL

THEN

IF

GO TO
INSERT;
IMAGE_AOOR = GET_VALUE
ICARO_COMPONENTJ;

IIMAGE_ADOR->ACCESSION#_IMAGE
< CATALOG_CARO_AOORESS->
ACCESSIONt_IMAGEJ

THEN

IF

GO TO
NEXT_CARO;

llMAGE_AOOR->ACCESSIONt_IMAGE
= CATALOG_CARO_ADDRESS->
ACCESSION#_IMAGEJ

THEN
RETURN;

INSERT:

ENO

CALL INSERT_NVTIOESCRIPTOR_LIST•
N.CATALOG_CARD_AODRESS.•D•J;
RETURN;

INSERT_CARO;

Figure 2.47E. The INSERT_ CARD subroutine

INSERT CARD creates a new list component for the
catalog card-;.nd inserts the component into the specified
sublist. Insertion occurs in ascending sequence on accession
number.

When all catalog cards have been inserted into the index
list, the list is printed by the subroutine PRINT_INDEX
given in Figure 2.47F. The subroutine uses the name of the
index list (INDEX_LIST) as its only parameter and prints
the list on the standard system-output file, SYSPRINT.

PRINT_INDEX:

DECLARE
PROCEOUREllNOEX_LISTJ;

(INOEX_LIST.SUBLISTJ POINTER,
POINTER POINTER.
DESCRIPTOR BASEOIOESCRIPTOR_AOORESSJ
CHARACTER no,.
1 CARO_IMAGE BASEOICARO_AOORESSJ.
2 ACCESSIONt_IMAGE CHARACTERllOJ,
2 OESCRIPTOR_GROUP_IMAGE
CHARACTERl70J;
SUBLIST = INOEX_LIST;
PUT PAGE LISTl 1 0UTPUT FROM PRINT_INOEX
PUT SKIP12J;

GET_SUBLIST:
00

WHILEISUBLIST,=NULLJ;
DESCRIPTOR ADDRESS = GET_VALUE
IGET_VALUElSUBLISTJJ;

PRINT_OESCRIPTOR:
PUT

EOITIOESCRIPTOR_AOORESS->DESCRIPTORJ
IAJ;

PUT
SKIP;
POINTER = GET_LINK
(GET_VALUE(SUBLISTJJ;

PRINT_CAROS:
00

WHILE(POINTER ,: NULL);
CARO_ADDRESS = GET_VALUE(POINTERJ;

PUT
EOITICARO_AOORESS->CARO_IMAGEJ
I A J;

PUT
SKIP;
POINTER GET_LINK(POINTERJ;

ENO_PRINT_CAROS:
ENO;

PUT
SKIPl2J;
SUBLIST= GET_LINKISUBLISTJ;

ENO_GET _SUBLIST:
ENO;
END

PRINT_INDEX;

Figure 2.4 7F. The PRINT_ INDEX subroutine

Construction and printing of the index list is controlled
by the procedure INDEX, which appears in Figure 2.47G.
INDEX reads an arbitrary number of catalog cards from the
standard system-input file, SYSIN, and allocates storage for
each card in the storage area called DAT A_ AREA. If the
number of cards exceeds the storage capacity of DATA_
AREA, a message is printed to indicate insufficient storage.
Reading then ceases, and only those cards allocated in
DATA AREA are indexed.

As e-;ch card is read, its descriptors are scanned, and the
address of the card is inserted into the proper sublist for
each descriptor within the index list. When all cards have
been processed in this manner, the index list is printed, as
shown in Figure 2.47H.

73

INDEX:

DECLARE

PUT

PROCEDURE;

1 CATALOG_CAR01
2 ACCESSIONI CHARACTERC1011
2 DESCRIPTOR_GROUP CHARACTERC701 1
1 CARD_IMAGE BASED
CIMAGE_AOORESS11
2 ACCESSIONl_IMAGE CHARACTERC101 1
2 DESCRIPTDR_GROUP_IMAGE
CHARACTER no, I
DESCRIPTOR CHARACTERC101 1
DESCRIPTDR_STRING CHARACTERC711
VARYING,
LIST_AREA AREA,
DATA_AREA AREA 1
CINOEX_LIST, AVAIL EXTERNALI
POINTER;
INOEX_LIST, AVAIL • NULL;
ON ~NDFILE .CSYSIN1 GO TO PRINT;
ON AREA BEGIN;

LIST('INSUFFICIENT STORAGE FOR
COMPLETE INDEX•J;
GO TO PRINT; ENO;
CALL AREA_OPENCLIST_AREA,AVAIL1;
PUT PAGE LISTC 1 1NPUT TO INDEX:•I;
PUT SKIP;

GET_CARD:
GET

EDITCCATALOG_CARDICAC101,AC701);
PUT SKIP EDITCCATALOG_CAROICAJ;
ALLOCATE CARD_IMAGE INCOATA_AREAI
SETCIMAGE_AODRESS1;
IMAGE_AODRESS->CARO_IMAGE =
CATALOG_CARO;
DESCRIPTOR_STRING =
DESCRIPTOR_GROUPll' •;

NEXT_OESCRIPTOR:

PRINT:

DESCRIPTOR = GET_DESCRIPTOR
CDESCRIPTOR_STRINGJ;
IF DESCRIPTOR = (101' •
THEN GO TO GET_CARD;
CALL INSERT_CARD(IMAGE_ADDRESS,
GET_DESCRIPTOR_COMPONENT
COESCRIPTOR, INDEX_LISTJJ;

GO TO
NEXT_DESCRIPTOR;

CALL PRINT_INDEXCINDEX_LISTJ;
END INDEX;

Figure 2.47G. The INDEX procedure

74

OUTPUT FROM PRINT_INOEX:

BLACK
A9~1L7-RZ PAINTING BLACK WHITE SMALL
T2-XY4-16 PHOTOGRAPH BLACK WHITE LARGE
Y9-016-X8 SCULPTURE MARBLE BLACK SMALL

LARGE
T2-XY4-16 PHOTOGRAPH BLACK WHITE LARGE

MARBLE
Y8-123-X7 SCULPTURE MARBLE WHITE MEDIUM
Y9-016-X8 SCULPTURE MARBLE BLACK SMALL

MEDIUM
Y8-123-X7 SCULPTURE MARBLE WHITE MEDIUM

PAINTING
A9-1L7-RZ PAINTING BLACK WHITE SMALL

PHOTOGRAPH
T2-XY4-16 PHOTOGRAPH BLACK WHITE LARGE

SCULPTURE
YB-123-Xl SCULPTURE MARBLE WHITE MEDIUM
Y9-016-X8 SCULPTURE MARBLE BLACK SMALL

SMALL
A9-1L7-RZ PAINTING BLACK WHITE SMALL
Y9-0l6-X8 SCULPTURE MARBLE BLACK SMALL

WHITE
A9-1L7-RZ PAINTING BLACK WHITE SMALL
T2-XY4-l6 PHOTOGRAPH BLACK WHITE LARGE
Y8-123-X7 SCULPTURE MARBLE WHITE MEDIUM

Figure 2.4 7H. Printout from PRINT_ INDEX

REVIEW OF LISTS OF LISTS

This chapter shows how to extend the flexibility of a
pointer list so that it can be used to link other lists as well
as data items (see Figure 2.48). The resulting list of lists
uses a type code within each list component to distinguish

UST _AREA

AVAIL:

D

L1: D D L

DATA_;A.REA

A B

E F

I J

M N

Figure 2.48. List of lists

SUMMARY

1. A list of lists is a more general type of pointer list.
2. Besides permitting element items, arrays, and struc­

tures to be members of a list, a list of lists also permits a list
itself to be a member of another list.

3. A list of lists provides the same advantages as pointer
lists: avoiding data duplication and reducing data move­
ment.

4. A list of lists removes the need to know the exact
number of lists a program will require during execution. As
the need arises during program execution, a new list can be
generated automatically and inserted into a master list of
lists.

c D

G H

K L

0 p

between sublists and data items. With this code, sublists can
in turn contain other sublists to an arbitrary depth. As a
result, new lists can be generated as the need arises during
the course of program execution, and the programmer is
freed from having to know the exact number of lists a pro­
gram will require.

D L

+ 9

- 0

- 6

8

2

5 3

4

5

5. A type code within each list component determines
whether the component specifies the address of a data item
or the address of a sublist.

6. The subroutines and functions developed in this
chapter for processing lists of lists fall into four categories:

a. Creating a list of available storage components
b. Manipulating component elements in a list of lists
c. Manipulating the top level of a list of lists
d. Manipulating all levels of a list of lists

Elementary procedures are developed first and used in turn
to create higher-level procedures.

75

Index

Page Page
Number Number

ADD _NODE subroutine 68 GET NVT function 40
ADDRESS LVT function 26 GET_ TYPE function 30
ADDRESS_NVT function 25 GET_ VALUE function 29
APPEND function 44 INDEX procedure 73
AREA OPEN subroutine 23 Indexing 70
Array representation 18 INSERT_ CARD subroutine 72
Binary tree lists 65 INSERT _NVT subroutine 36
Circular lists 21 LINKL subroutine 42
COPY _LEV function 58 LISP 22
COPY _LIST function 56 List storage 3
COPY REVT function 46 Lists of lists 1, 15
COPY _REVTl function 48 MEMBER function 62
COUNT_D function 52 Mixed data 4
Data lists 1 NODE function 67
Data storage 3 Null lists 17
DELETE_LIST subroutine 53 Parenthetic list representation 20
DELETE_NVT subroutine 54 Pointer lists 1, 3
EQUAL_D function 33 PRINT _INDEX subroutine 73
EQUAL_L function 60 REPLACE subroutine 64
FORM BODY function 38 Searching 12
Freeing storage 5 SET _LINK subroutine 31
GET _DESCRIPTOR function 72 SET_ VALUE subroutine 32
GET _DESCRIPTOR_ COMPONENT function 72 Sharing data 4
GET_FD function 49 Sharing lists 20
GET FDR function 50 SIZE_ TOP function 35
GET_LD function 50 Sorting 10
GET_LDR function 51 Structure representation 18
GET_LINK function 28 T ~PRINT subroutine 69
GET _NTT function 41 T_SORT procedure 69

READER'S COMMENT FORM

Techniques for Processing Pointer Lists

and Lists of Lists in PL/I

GF20-0Q19-0

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges­
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GF20-0019-0

YOUR COMMENTS PLEASE •••

Your comments on the other side of this form will help us improve future editions of.this pub­
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub­
lishing this material.

Please note that .requests for copies of publications and for assistance in utilizing your IBM

system should be directed to your IBM representative or the IBM branch office serving your
locality.

fold

FIRST CLASS

PERMIT NO. 1359.

fold

WHITE PLAINS, N. Y.

Attention: Technicol Publications

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

I BM Corporation

1133 Westchester Avenue

White Plains, N.Y. 10604

...

fold

lnternetiDnal Business Machines CDrpDratiDn
Data PrDcessing DivisiDn
1133 Westchester Aven.ue, White Plains, New YDrk 10604
[U.S.A. Dnly]

IBM- W Drld Trade CDrpDratiDn
821 United NatiDns Plaza, New YDrk, New YDrk 10017
[lnternatiDnal)

fold

..

GF20-0019-0

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

::I .,,
....
:::::::

