Techniques for Processing Pointer Lists

and Lists of Lists in PL/I

This manual illustrates usage of PL/I list-processing facilities for processing
pointer lists and lists of lists. Pointer lists consist of based variable structures
that contain pointers which address data plus pointers that link the structures.
Lists of lists contain pointers that address other lists.

The information in this manual assumes knowledge of Introduction to the List
Processing Facilities of PL/I (GF20-0015) and Techniques for Processing Data
Lists in PL/I (GF20-0018). The audience for this manual is assumed to be the
experienced programmer.

Illustrative programs were processed by the PL/I (F) Compiler (Version 5) under
control of the IBM System/360 Operating System (Release 18.6).

GF20-0019-0

First Edition (August 1971)

Copies of this and other IBM publications can be obtained through IBM branch offices.

A form has been provided at the back of this publication for readers’ comments. If this form has
been removed, address comments to: IBM Corporation, Technical Publications Department,
1133 Westchester Avenue, White Plains, New York 10604.

© Copyright International Business Machines Corporation 1971

Preface

This manual is the third in a series about processing lists
with PL/L. It assumes knowledge of the two preceding man-
uals, Introduction to the List Processing Facilities of PL/I
(GF20-0015) and Techniques for Processing Data Lists in
PL/I (GF20-0018).

This manual builds upon the preceding manuals to
extend the concept of processing simple and complex data
lists to include techniques for processing pointer lists and
lists of lists. Function and subroutine procedures used to
manipulate the lists are illustrated. Use of suitable inline
coding may be preferred for applications.

The illustrative programs compiled and executed. Rea-

Note: Version 5 of the PL/I (F) Compiler under control
of the IBM System/360 Operating System (Release
18.6) produced the program printouts shown in

this manual.

sonable care has been exercised to minimize error. Clarity
of presentation has been emphasized rather than efficient
programming or computer utilization techniques.

The advanced nature of this manual requires the reader
to be an experienced programmer who has studied the
companion texts mentioned above and who is skilled in the
use of subroutines and functions. References to particular
implementations of PL/I are held to a minimum, but in-
formation on the F-level facilities for processing lists
appears in IBM System/360: PL/I Reference Manual
(GC28-8201) and IBM System/360 Operating System: PL[I
(F) Programmer’s Guide (GC28-6594).

Contents

Page Page
Introduction ' 1 PROCESSING LISTS OF LISTS 22
Creating a List of Available Storage
DATA LISTS : 1 Components 22
POINTER LISTS ’ 1 Manipulating Component Elements in a
LISTS OF LISTS 1 List of Lists 24

Obtaining the Address of a List Component 24
‘ Obtaining the Values of Elements in

List Components 27
Assigning Values to Elements of
Chapter 1. Pointer Lists 3 List Components 31
Comparing Data Values of List
ORGANIZING POINTER LISTS 3 Components 33
Separating Storage for Data Items Manipulating Top Level of a List of Lists 34
and List Components 3 Counting Number of Values at Top Level
Sharing Data Items among Pointer Lists 4 of a List of Lists 34
Storing Mixed Data Types in Pointer Lists 4 Inserting Values into Top Level of a
Freeing Data Storage 5 List of Lists 36
) ‘ Obtaining Values and their Type Codes from
PROCESSING POINTER LISTS 5 Top Level of a List of Lists 39
Combining Lists of Lists at Top Level 42
USING POINTER LISTS 10 Copying Top Level of a List of Lists in
Multiple Sorting of Records 10 Reverse Order 46
Multiple Searching of Records 12 Manipulating All Levels of a List of Lists 48
Obtaining First and Last Data Values in a \
REVIEW OF POINTER LISTS 14 List of Lists 48
‘ Counting Data Values in a List of Lists 52
SUMMARY ‘ 14 Deleting List Components from a
: List of Lists 53
Copying Lists of Lists 56
Testing Lists of Lists 59 |
Replacing Data Values in a List of Lists 63
Chapter 2. Lists of Lists 15 :
USING LISTS OF LISTS 65
ORGANIZING LISTS OF LISTS 15 Sorting with a Binary Tree 65
Component Elements for Lists of Lists 15 Indexing Catalog Cards 70
Permissible Arrangements of List Components 15
Null Lists of Lists ' 17 REVIEW OF LISTS OF LISTS 75
Sharing Data Items among Lists of Lists 18
Sharing List Components among Lists of Lists 20 SUMMARY 75
Parenthetic Representation of Lists of Lists 20

Circular Lists of Lists 21 Index 76

Introduction

This introduction defines the organization of data lists,
pointer lists, and lists of lists. Diagrammatic representation
of the three types of list organization is shown. This manual
illustrates techniques for processing pointer lists and lists of
lists.

DATA LISTS

A data list is made up of allocations of based variable struc-
tures containing data plus pointer elements that link the
structures:

DECLARE

1 DATA_LIST COMPONENT BASED(P),

2 DATA CHARACTER (80),

2 LINK POINTER,

(P, SAVE, HEAD POINTER) POINTER;
ALLOCATE DATA_LIST COMPONENT SET(P);
HEAD_POINTER, SAVE = P;

ALLOCATE DATA_LIST COMPONENT SET(P);
SAVE->LINK = P;

SAVE =P;

ALLOCATE DATE_LIST_COMPONENT SET(P);
SAVE->LINK = P;

P->LINK = NULL;

The data list organization resulting from such code is repre-
sented in Figure I.1.

| HEAD_POINTER ——{ DATA | LINK |———,j
L[pATA [LINK—>{DATATNULL]

Figure I.1. Data list organization

A data list has two significant limitations: (1) all data
items in the list generally must have the same attributes,
and (2) the same data item cannot be shared by two or
more lists at the same time; a distinct copy of the item
must appear in each list, thereby reducing conservation of
storage.

POINTER LISTS

The cited limitations of data lists can be avoided by replac-
ing the data items in list components with pointer variables

that specify the locations of data items outside the list.
Such a pointer list component can be specified as follows:

DECLARE
1 POINTER_LIST COMPONENT BASED(P),
2 DATA_PTR POINTER,
2 PTR_LINK POINTER,
(P_HEAD, P) POINTER,
DATA CHARACTER(80);

Linked allocations of the type of list component associated
with such a declaration are represented in Figure I.2. Such
lists are called pointer lists because they consist of linked
pointers. They retain the advantages of list organization
while allowing the same data item to be shared (pointed to)
by different lists and permitting the data items associated
with a list to have different attributes.

P_HEAD DATA_PTR|PTR_LINK [

A

DATA _PTR|PTR_LINK

DATA

Figure 1.2. Pointer list

—{paTta_pTR [NuULL |

DATA

It is possible to allow a data list to contain data items
with different attributes. However, such a list must be proc-
essed on an individual basis. Pointer lists, on the other
hand, permit general rather than specific processing tech-
niques to be developed for all lists and still allow the data
items associated with a list to possess a variety of attributes.

Chapter 1 of this manual discusses pointer lists.

LISTS OF LISTS

The flexibility of a pointer list can be extended to organize
lists in higher-level lists called lists of lists. Each component
in a list of lists can contain three elements:

1. A pointer variable that specifies the location of the
next component in the list

2. Another pointer variable that specifies the location of
the data item or the sublist associated with the component

3. A type code that indicates whether a data item (code
‘D’) or a sublist (code °L’) is associated with the com-
ponent.

The elements can be specified as follows:

DECLARE
1 LIST_OF _LISTS_COMPONENT BASED(P),
2 CODE CHARACTER(1),
2 SUB_PTR POINTER,
2 LIST_LINK POINTER,

(L_HEAD, P) POINTER,
DATA CHARACTER(80);

Linked allocations of this type of list component are
represented in Figure 1.3.

Each sublist can contain other sublists to an arbitrary
depth, and the number of components permitted in each
sublist is also arbitrary. This type of organization retains
the advantages of pointer lists and also frees the program-
mer from having to know the exact number of lists that will
be required during a particular run of a program. New lists
can be accommodated by treating them as sublists within a
master list.)

Chapter 2 of this manual discusses lists of lists.

L_HEAD C(?L‘?E SUB_PTR| LIST_LINK C9D':?E SUB_PTR | NULL
DATA
Ly °9D°,E SUB_PTR |LIST_LINK > CQD'?E SUB_PTR | NULL

Figure 1.3. List of lists

L DATA L DATA

Chapter 1. Pointer Lists

An essential characteristic of a data list is that its data items
appear within the body of the list. As a result, a data item
must be duplicated if it is to be a member of two different
data lists. Duplication of a small data item, such as a single
character, does not require much storage. However, duplica-
tion of a large data item, such as a long string, or an array
or structure with many elements, may lead to excessive use
of storage.

A way of avoiding duplicate storage is to store the
address of a data item rather than the data item itself in a
list. Then storage need be allocated for only one copy of
the item.

The type of list produced by this arrangement is called a
pointer list to distinguish it from a data list. This chapter
shows how pointer lists may be organized and how they
permit more efficient use of computer storage and program
execution time.

ORGANIZING POINTER LISTS

Figure 1.1 illustrates the organization of a pointer list. Each
list component contains two pointer elements: DATA and
LINK. The DATA pointer contains the address of the data
item associated with the component. LINK points to the
next list component.

Separating Storage for Data Items and
List Components

The data items associated with a pointer list can be of any
storage class and data type and can be located anywhere
within a program. They can even be intermixed with their
associated list components in the same storage area. A less
complicated arrangement would involve separate areas for
list components and data items. Figure 1.2 shows how a

Component Declaration

Example of Pointer List

1 COMPONENT BASED(P), L1:
2 DATAPOINTER,
2 LINK POINTER;

Figure 1.1. Iixample of a pointer list

Area Declaration

Example of Area Use

1 MAIN_AREA,
2 LIST_AREA AREA(5000),

L1: G

MAIN_AREA

LIST_AREA

2 DATA_AREA AREA(20000),

I TN

DATA_AREA

o [B [[

Figure 1.2. Subdividing an area for list storage and data storage

structure Organization can be used to divide an area.into
separate list storage and separate data storage.

Sharing Data Items Among Pointer Lists

The illustration in Figure 1.3 shows how two data lists (L1
and L2) may share data items. Both lists contain the same
first two data items, but storage is required for only one
copy of each item.

Figure 1.3. Two pointer lists with data items in common

The same data item may appear on an arbitrary number
of pointer lists and may also appear an arbitrary number of
times on the same list.

Observe that the fourth component of L1 contains a null
data pointer, which allows a data item to be removed from
a pointer list without requiring a corresponding deletion of
the component. This use of a null data pointer avoids the
need to link the list component to the list of available stor-
age components when it is known that the list will use the
component again.

Also note that the size of L1 is five, even though its
fourth position contains a null data pointer. As a result, a
null data item is considered to be a possible member of a
pointer list.

Because the illustrations for pointer lists can become
complicated, a more compact representation is often desir-
able. Figure 1.4 contains an abbreviated representation of
pointer lists.

v [P RE - NEN
e PPN

Figure 1.4. Abbreviated representation of pointer lists

Storing Mixed Data Types in Pointer Lists

The techniques used for organizing data lists in Techniques
for Processing Data Lists in PL/I (GF20-0018) do not per-
mit data lists to contain mixed data types. Such flexibility
would require continual allocating and freeing of compo-
nent storage on an individual basis and would eliminate the
efficiency obtained from a list of available storage compo-
nents.

With pointer lists, however, mixed data types are pos-
sible without a loss in efficient storage handling. Figure 1.5
shows a pointer list that contains four data items. The first
element in each item represents a type code that distin-
guishes the item. The first item is a four-position array; the
second, a single character; the third, a three-element struc-
ture; and the fourth, a single character. A type code would
not be necessary if the items always appeared in a predeter-
mined pattern.

L1:

O XN
+
<

-n

] (5[]

-175
+016
-903
-415

I'igure 1.5. A pointer list with data items of mixed type; the first
element of each item serves as a type code

Since data items do not appear within the body of a
pointer list, the components of the list can have the same
structure. It is possible, therefore, to create a list of avail-
able storage components for pointer lists that contain data
items of mixed type.

Deletion of a data item from a pointer list can return the
associated list component to the list of available storage
components without destroying the data item. The data
item can still be a member of another list, as illustrated in
Figure 1.6.

B. After deletion of last item from L1

o (AN
2 A T EL]

C. Abbreviated form after deletion

Figure 1.6. Deletion of an item from a pointer list

Freeing Data Storage

A count can be attached to each data item to specify the
number of lists that contain the item. As the item is insert-
ed into or deleted from a list, the count can be adjusted
appropriately. A zero count would indicate that the item
belonged to no list and that its storage could be freed.

PROCESSING POINTER LISTS

The techniques for processing pointer lists resemble those
for processing data lists, except that the addresses of data
items and not the data items themselves are manipulated
within pointer lists. Insertion, deletion, and retrieval of a
data item associated with a pointer list always involve the
address of the item.

This section presents elementary subroutines and func-
tions (Figures 1.7 through 1.16) for processing simple
pointer lists that possess the linear organization developed

earlier in this chapter. Elementary procedures are developed
first and used in turn to create higher-level procedures.

Because of the similarity between the techniques of this
chapter and those in Techniques for Processing Data Lists
in PL/I, fewer procedures are developed here. The range of
development is restricted to those procedures needed for
the examples in the next section, “Using Pointer Lists”.
More extensive methods for processing pointer lists, includ-
ing recursive techniques, appear in Chapter 2, which dis-
cusses lists of lists.

AREA_OPEN_P Subroutine
Purpose

To create a list of available storage components
Reference

AREA_OPEN_P(P_AREAP_LIST)
Entry-Name Declaration

DECLARE AREA_OPEN_P ENTRY(AREA(™),
POINTER);

Meaning of Arguments

P_AREA — the area variable that is to contain the
list of available storage components

— the pointer variable that serves as the
head of the list of available storage
components

P_LIST

Figure 1.7A. Description of the AREA _OPEN _P subroutine for
creating a list of available storage compartments

AREA_OPEN_P:
PROCEDURE (P_AREA, P_LIST);
DECLARE
P_AREA AREA(*),
(P_LIST, T) POINTER,
1 P_COMP BASED(P),
2 DATA POINTER,
2 LINK POINTER;
ON AREA BEGIN;
IF
P-~=NULL
THEN
P->LINK = NULL3
GO TO
END_AREA_CPEN_P;
END;
P = NULL;
ALLOCATE P_COMP IN(P_AREA)
SET(P);

P_LIST = P;

T =P
ALLOCATE P_COMP IN(P_AREA)
SET(P);
T->LINK = P;
GO TO

Ls
END_AREA_OPEN_P:
END

AREA_OPEN_P;

Figure 1,7B. The AREA_OPEN_P subroutine

ADDRESS_N_P Function
Purpose

To obtain the address of the nth component in a
pointer list

Reference
ADDRESS_N_P(P_LIST,N)
Entry-Name Declaration

DECLARE ADDRESS_N_P ENTRY (POINTER,

FIXED DECIMAL(5))
RETURNS(POINTER);

Meaning of Arguments

P_LIST — the pointer variable that is the head
of the list to be examined

N — a fixed-point decimal integer value
that specifies the component whose
address is to be obtained; N has a
maximum size of five digits

DO
I =18Y 13
IF .
(ADDRESS->LINK = NULL)IE& (I~=N)
THEN
RETURN (NULL);
IF
I =N
THEN
RETURN(ADDRESS) 3
ADDRESS = ADDRESS->LINK3;

ADDRESS_N_P;
Figure 1.8B. The ADDRESS_N_P function

GET_LINK_P Function
Purpose

To obtain the address of the next component in a
pointer list

Reference
GET_LINK_P(ADDRESS)
Entry-Name Declaration

DECLARE GET_LINK_P ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

ADDRESS - a pointer value that specifies the
address of a list component

Figure 1.8A. Description of the ADDRESS_N_P function for
obtaining the address of the nth component in a
pointer list

ADDRESS_N_P:
PROCEDURE (P_LIST, N)
RETURNS (POINTER);
DECLARE .
P_LIST POINTER,
(NyI) FIXED DECIMAL(S),
1 P_COMP BASED(ADDRESS),
2 DATA POINTER,
2 LINK POINTER;
IF
(P_LIST = NULL) | (N < 1)
THEN
RETURN (NULL);
ADDRESS = P_LIST;

Figure 1.9A. Description of the GET _LINK _P function for
obtaining the address of the next component in a
pointer list

GET_LINK_P:
PROCEDURE (ADDRESS)
RETURNS (POINTER);
DECLARE
1 P_COMP BASED(ADDRESS),
2 DATA POINTER,
2 LINK POINTER;
IF
ADDRESS = NULL
THEN
RETURN (NULL);
RETURN(ADDRESS=>LINK) ;
END
GET_LINK_P3

Figure 1.9B. The GET_LINK P function

GET_DATA_P Function
Purpose

To obtain the value of the data pointer in a
component of a pointer list

Reference
GET_DATA_P(ADDRESS)
Entry-Name Declaration

DECLARE GET_DATA_P ENTRY (POINTER)
RETURNS(POINTER);

Meaning of Argument

ADDRESS — a pointer value that specifies the
address of a pointer list component

Figure 1.10A. Description of the GET_DATA P function for
obtaining the value of the data pointer in a
component of a pointer list

GET_DATA_P:
PROCEDURE (ADDRESS)
RETURNS (POINTER);
DECLARE
1 P_COMP BASED(ADDRESS),
2 DATA POINTER,
2 LINK POINTER;
IF
ADDRESS = NULL
THEN
RETURN (NULL);
RETURN (ADDRESS->DATA) ;
END
GET_DATA_P;

Figure 1.10B. The GET_DATA _P function

SET_LINK_P Subroutine
Purpose

To assign a value to the link pointer of a component
in a pointer list

Reference
SET_LINK_P(ADDRESS,L)
Entry-Name Declaration;

DECLARE SET_LINK_P ENTRY(POINTER,
POINTER);

Meaning of Arguments

ADDRESS — a pointer value that specifies the
address of a pointer list component

L — the value to be assigned to the link
element of the list component

Figure 1.11A. Description of the SET_LINK P subroutine for

assigning a value to the link pointer of a component

in a pointer list

SET_LINK_P:

PROCEDURE (ADDRESS,L)3
DECLARE

L POINTER,

1 P_COMP BASED(ADDRESS)

2 DATA POINTER,

2 LINK POINTER;

IF
ADDRESS = NULL
THEN

RETURN;

ADDRESS->LINK = L3
END

SET_LINK_P;

Figuré 1.11B. The SEF_LINK P subroutine

SET_DATA_P Subroutine
Purpose

To assign a value to the data pointer of a component
in a pointer list

Reference
SET_DATA_P(ADDRESS, D)
Entry-Name Declaration

DECLARE SET_DATA_P ENTRY(POINTER,
POINTER);

Meaning of Arguments

ADDRESS — a pointer value that specifies the
address of a list component

D — the pointer value to be assigned to the
data pointer of the list component

Figure 1.12A. Description of the SET_DATA _P subroutine for
assigning a value to the data pointer of a component
in a pointer list

SET_DATA_P:
PROCEDURE (ADDRESS ,D) 3
DECLARE
D POINTER,
1 P_COMP BASED(ADDRESS),
2 DATA POINTER,
2 LINK POINTER;
IF
ADDRESS = NULL
THEN
RETURN;
ADDRESS->DATA = D;
END v
SET_DATA_P;

Figure 1.12B. The SET_DATA _P subroutine

SIZE_P Function
Purpose

To obtain the number of data pointers (null and
non-null) in a pointer list

Reference
SIZE_P(P_LIST)
Entry-Name Declaration
DECLARE SIZE_P ENTRY(POINTER)
RETURNS(FIXED
DECIMAL(5));
"Meaning of Argument

P_LIST — the pointer variable that is the head

of the list to be examined

Figure 1.13A. Description of the SIZE P function for obtaining -
the number of data pointers in a pointer list

SIZE_P:
PROCEDURE (P_LIST)
RETURNS (FIXED DECIMAL(S5))3
DECLARE
(P_LIST, ADDRESS) PCINTER,
N FIXED DECIMAL(S);
ADDRESS = P_LIST3

DO
N = 0 BY 13
IF
ADDRESS = NULL
THEN)
RETURN(N) ;
ADORESS = GET_LINK_P(ADDRESS):
END3
END

SIZE_P3

Figure 1.13B. The SIZE_P function

INSERT_ND_P Subroutine
Purpose

To insert a data pointer into the nth position of a
pointer list

Reference
INSERT_ND_P(P_LIST,N,D)
Entry-Name Declaration

DECLARE INSERT_ND_P ENTRY(POINTER,
FIXED DECIMAL(5), POINTER);

Meaning of Arguments

P_LIST - the pointer variable that is the head of
the list to be processed

N — the position in the list where the data
pointer is to be inserted -

D — the pointer value to be inserted

Figure 1.14A. Description of the INSERT_ND_P subroutine for
inserting a data pointer into the nth position of a
pointer list

INSERT_ND_P:
PROCEDURE(P_LIST, N, D)3
DECLARE
N FIXED DECIMAL(S5),
(P,Q) POINTER,
(P_LIST, D, ADDRESS1, ADDRESS2,
AVAIL_P EXTERNAL) POINTER;
/% IF LIST OF AVAILABLE STORAGE
COMPONENTS IS EMPTY, THEN PRINT
MESSAGE AND RETURN. */
IF AVAIL_P = NULL THEN DO;
PUT
LIST('LIST OF AVAILABLE STORAGE IS
EMPTY*);
RETURN; END;
/% ASSIGN DATA ITEM TO FIRST
COMPONENT IN LIST OF AVAILABLE
STORAGE. */
CALL SET_DATA_P(AVAIL_P, D)3
/% IF P_LIST IS NULL OR N<2, INSERT
FIRST COMPONENT OF AVAIL_P INTO
FIRST POSITION OF LIST AND RETURN®*/
IF
(P_LIST = NULL) | (N < 2)
THEN DOG;
ADDRESS1 = P_LIST; P_LIST = AVAIL_P;
AVAIL_P = ADDRESS_N_P(AVAIL_P, 2);
CALL SET_LINK_P(P_LIST,ADDRESS1);
RETURN; END;
IF N > SIZE_P(P_LIST)
THEN DO;

P = P_LISTS

DO WHILE(P == NULL);

Q = P; P = Q-DLINK;

END;

Pe Q->LINK = AVAIL_P;

AVAIL_P = ADDRESS_N_P(AVAIL_P, 2)3

P->LINK = NULL;

RETURN;

END3

/* OTHERWISE OBTAIN THE ADDRESS CF

THE N-TH COMPONENT QF P_LIST. */

ADDRESS2 = ADDRESS_N_P(P_LIST, N);

ADDRESS1 = ADDRESS_N_P(P_LIST, N-1)3

/* INSERT FIRST COMPONENT OF AVAIL_P

INTO THE N-TH POSITICN OF P_LIST. */

CALL SET_LINK_P(ADDRESS1, AVAIL_P);

ADDRESS1 = AVAIL_P;

AVAIL_P = ADDRESS_N_P(AVAIL_P, 2);

CALL SET_LINK_P(ADDRESS1, ACDRESS2);
END INSERT_ND_P3;

Figure 1.14B. The INSERT _ND _P subroutine

GET_ND_P Function
Purpose

To get the value of the data pointer in the nth
position of a pointer list

Reference
GET_ND_P(P_LIST,N)
Entry-Name Declaration
DECLARE GET_ND_P ENTRY(POINTER, FIXED
DECIMAL(5))
RETURNS(PQINTER);

Meaning of Arguments

P_LIST — the pointer variable that is the head of
the list to be processed
N — the position of the data pointer whose

value is to be obtained

Figure 1.15A. Description of the GET_ND_P function for getting
the value of the data pointer in the nth position of
a pointer list .

GET_ND_P:
PROCEDURE (P_LIST, N)
RETURNS (POINTER);

DECLARE

P_LIST POINTER,
N FIXED DECIMAL(S);
RETURN(GET_DATA_P
(ADDRESS_N_P(P_LIST, N)));

END
GET_ND_P;

Figure 1.15B. The GET_ND_P function

DELETE_ND_P Subroutine
Purpose

To delete the data pointer in the nth position of a
pointer list

Reference
DELETE_ND_P(P_LIST,N)
Entry-Name Declaration
DECLARE DELETE_ND_P ENTRY(POINTER,
FIXED
DECIMAL(5));

Meaning of Arguments

P_LIST — the pointer variable that is the head of
the list to be processed
N — the position of the data pointer to be

deleted

Figure 1.16A. Description of the DELETE_ND_P subroutine for
deleting the data pointer in the nth position of a
pointer list

DELETE_ND_P:
PROCEDURE(P_LIST, N);
DECLARE
N FIXED DECIMAL(S),
(P_LIST,ADDRESS1,ADDRESS2,ADDRESS3,
AVAIL_P EXTERNAL) POINTER;
/% IF P_LIST. IS EMPTY OR N IS LESS
THAN 1y THEN RETURN. */
IF
(P_LIST = NULL) | (N < 1)
THEN
RETURN; =
/* DELETE FIRST COMPONENT IF N
EQUALS 1. */
IF
N =1
THEN

10

DO;
ADDRESS2 = P_LISTS
P_LIST = ADDRESS_N_P(P_LIST, 2);
GO TO
L3
END;
/% OBTAIN N-TH COMPONENT, */
ADDRESS2 = ADDRESS_N_P(P_LIST,N);
IF
ADDRESS2 = NULL
THEN :
RETURN;
ADDRESS1 = ADDRESS_N_P(P_LIST,N-1);
ADDRESS3 = ADDRESS_N_P(P_LIST,N¢1);
/% DELETE N-TH COMPONENT. */
CALL SET_LINK_P(ADDRESS1,ADDRESS3);
/% INSERT DELETED COMPONENT INTO
LIST OF AVAILABLE STORAGE
COMPONENTS. */
L:
ADDRESS]1 = AVAIL_P;
AVAIL_P = ADDRESS2;
CALL SET_LINK_P(AVAIL_P,ADDRESS1);
END

DELETE_ND_P;

Figure 1.16B. The DELETE_ND _P subroutine

USING POINTER LISTS

Pointer lists possess the same advantages as data lists in
providing efficient control over varying storage require-
ments. As with data lists, pointer lists need not reserve
dormant storage in anticipation of maximum requirements;
storage not needed by one list can be used by another.

Pointer lists also provide two additional benefits not
obtained from data lists. They permit a data item to be a
member of two or more lists at the same time and also
eliminate unnecessary data movement. Both benefits are
obtained by manipulating the addresses of data items rather
than the items themselves.

The following discussions demonstrate these advantages
by two examples. The first example shows how multiple
sorts may be performed efficiently on the records of a file
by manipulating the addresses of the records. The second
example illustrates how different arrangements of the same
records on separate pointer lists permit efficient searching
of the records for different key values.

Multiple Sorting of Records

Figure 1.17 presents the M_ SORT program, which shows
how a sort can be made more efficient by avoiding unneces-
sary data movement. The program obtains records from the
standard system-input file (SYSIN) and prints the records
in two different sorted arrangements on the standard
system-output file (SYSPRINT).

M_SORT:
PROCEDURE ;
DECLARE
(I9J9SIZE1,SIZE2)
FIXED DECIMAL(S5),
(AVAIL_P EXTERNAL, AUTHOR_LIST,
TITLE_LISTy Pl, P2) POINTER,
MAIN_AREA,
LIST_AREA AREA,
DATA_AREA AREA,
CARD, .
FIELD1 CHARACTER(1S),
FIELD2 CHARACTER(25),
FIELD3 CHARACTER(10),
FIELD4 CHARACTER(30),
DOCUMENT BASED(P1),
AUTHOR CHARACTER{(15}),
TITLE CHARACTER(25),
SUBJECT CHARACTER(10),
DESCRIPTORS CHARACTER(30);
/* WHEN DATA_AREA IS EXHAUSTED OR
ALL DOCUMENT CARDS HAVE BEEN READ,
GO TO PRINT_AUTHOR_LIST. */
ON AREA
GO TO
PRINT_AUTHOR_LIST;
ON ENDFILE (SYSIN)
GO TO
PRINT_AUTHOR_LIST;
/* INITIALIZE. */
SIZE1,SIZE2 = O3
AUTHOR_LIST,TITLE_LIST = NULLS
/% FORM LIST OF AVAILABLE STORAGE
COMPONENTS IN LIST_AREA. ¥/
CALL AREA_OPEN_P(LIST_AREA,AVAIL_P);
/* GET DOCUMENT CARDS, AND ASSIGN
THEM TO STORAGE ALLOCATED IN
DATA_AREA. ALSO FORM A POINTER
LIST OF DOCUMENT CARDS SORTED ON
AUTHOR. */
#AUTHOR:
D0 WHILE
(1B);
/% DO WHILE(1B) IS TERMINATED */
/% BY EOF OR AREA CONDITION */
GET
EDIT(CARD)(A(15),A(25),A(10),A(30));
ALLOCATE DOCUMENT IN(DATA_AREA)
SET(P1);
P1->DOCUMENT = CARD;
/* FIND INSERTION POINT IN
AUTHOR_LIST. */

NNV NFNONNNN =N -

Do
I =1 70 SIZE1 BY 13
P2 = GET_ND_P(AUTHOR_LIST,I)3
IF P2 = NULL
THEN GO TO INSERT_AUTHOR;
IF '
P1->AUTHORLKP2->AUTHOR
THEN
GO TO
INSERT_AUTHORS
END;

/* INSERT ADDRESS OF DOCUMENT IN
AUTHOR_LIST. */

INSERT_AUTHOR:
CALL INSERT_ND_P(AUTHOR_LIST,I,P1)3

Figure 1.17. The M_SORT procedure

N

SIZE1l = SIZEl+13
END_AUTHOR:
END
#AUTHOR3
/% PRINT AUTHOR_LIST. */
PRINT_AUTHOR_LIST:
PUT
PAGE;
PUT
LIST('AUTHOR FILE®);
PUT
SKIP(2);
Do
I =1 70 SIZE1 BY 13
Pl = GET_ND_P(AUTHOR_LIST,I);
PUT
EDIT(P1->DOCUMENT) (A);
PUT
SKIP;
END3

#TITLE:
DO
J =1 T0 SIZEl BY 13
/* GET AND DELETE ADDRESS OF FIRST
DOCUMENT FROM AUTHOR_LIST. */
Pl = GET_ND_P(AUTHOR_LIST,1)3
CALL DELETE_ND_P(AUTHOR_LIST,1)3
/% FIND INSERTION POINT IN
TITLE_LIST. */
DO
I =1 70 SIZE2 BY 13
P2 = GET_ND_P(TITLE_LIST,I);
IF P2 = NULL
THEN GO TO INSERT_TITLE;
IF
P1->TITLE<KP2->TITLE
THEN
GO TO
INSERT_TITLE;
END; .
/% INSERT ADDRESS OF DOCUMENT IN
TITLE_LIST. */
INSERT_TITLE:
CALL INSERT_ND_P(TITLE_LIST,
SIZE2 = SIZE2 + 13
END_TITLE:
END

I,P1)3

#TITLE;
/* PRINT TITLE_LIST. */
PRINT_TITLE_LIST:
PUT
PAGE3;
PUT
LIST(*TITLE FILE®');
PUT
SKIP(2);
DO
I =1 TO SIZE1 BY 13
Pl = GET_ND_P(TITLE_LIST,I);
PUT
EDIT(P1->DOCUMENT) (A)3
PUT
SKIP;

END
M_SORT;

/% SORT DOCUMENT CARDS ON TITLE. */

11

Each record describes a document and contains four
fields: AUTHOR, TITLE, SUBJECT, and DESCRIPTORS.
The records are printed in sort order: first on AUTHOR,
then on TITLE. ’

* As document cards are read, storage is allocated in
DATA AREA, and the address of each card is stored in the
pointer list AUTHOR _LIST, which is arranged in ascending
sequence on AUTHOR. LIST_ AREA contains all list com-
ponents. :

After AUTHOR _LIST is used to print the document
cards in sort order, successive data addresses are removed
from the list and inserted into the pointer list TITLE
LIST, which is arranged in ascending sequence on TITLE.
This list is used in the second printing of the sorted docu-
ment cards.

Note that during both sorts the document cards remain
at their original storage locations within DATA AREA;
only the addresses of the cards are rearranged within both
lists. As a result, less data is moved, and a more efficient
sort is obtained.

When the number of document cards exceeds the storage
capacity of DATA_AREA, only those cards that can be
stored in the area are sorted.

Multiple Searching of Records

Since the same data item may be referred to simultaneously
by two different pointer lists, it is possible to maintain
more than one sort arrangement of a single set of data
items. Multiple arrangements of this type avoid data dupli-
cation and permit faster searching of items on different
keys.

Figure 1.18A contains the SEARCH program, which
arranges a set of records on two different keys and searches
the records for specified values of the keys. Each record
describes a document and contains four fields: AUTHOR,
TITLE, SUBJECT, and DESCRIPTORS. The records are
read from the standard system-input file (SYSIN) and
stored at locations allocated within DATA _AREA. The
addresses of the records are stored in two pointer lists:
AUTHOR_LIST and TITLE_LIST. AUTHOR _LIST is
arranged in ascending sequence on AUTHOR and TITLE _
LIST, on TITLE (as shown in Figure 1.18B). LIST AREA
provides all storage for list components.

SEARCH:
PROCEDURE

DECLARE
1 MAIN_AREA,
2 LIST_AREA AREA,
2 DATA_AREA ARFA,
(AVAIL_P EXTFRNAL, AUTHOR_LIST,
TITLE_LIST, Pl,y, P2) POINTER,
(SIZE, 1) FIXED DECIMAL(S),
SEARCH_CARD CHARACTER(80),
TITLE_ITEM CHARACTER(25),
AUTHOR_ITEM CHARACTER(15),
1 CARD, ‘ i

12

FIELD]1 CHARACTER(15),

FIELD2 CHARACTER(25),

FIELD3 CHARACTER(10),

FIELD4 CHARACTER(30),

DOCUMENT BASED(P1),

AUTHOR CHARACTER(15),

TITLE CHARACTER(2S),

SUBJECT CHARACTER(10),

DESCRIPTORS CHARACTER(30);

/% WHEN DATA AREA CANNOT HOLD ALL
DOCUMENT CARDS, OR ALL SEARCH ‘
CARDS HAVE BEEN PROCESSEDs TERMINATE
PROGRAM. */

ON AREA

NNNNN=NNNDN

GO 70

END_SEARCH;

ON ENDFILE (SYSIN)
GO TO

END_SEARCH;

/7% INITIALIZE.
SIZE = 03
AUTHOR_LIST, TITLE_LIST = NULL;

/% FORM LIST OF AVAILABLE STORAGE
COMPONENTS IN LIST_AREA. */

CALL AREA_OPEN_P(LIST_AREA,AVAIL_P);
/* GET DOCUMENT CARDS, AND ASSIGN
THEM TO STORAGE ALLOCATED IN
DATA_AREA. ALSO FORM SORTED AUTHOR
LIST AND TITLE LIST. */

*/

GET_DOCUMENT_CARD:

DO

END3

GET

EDIT(CARD)(A(15), A(25), A(10),
A(30))3
IF

SUBSTR(FIELDly 1y 5) = t#ss%s%?

THEN
GO TO

DOCUMENT_SEARCH3;

ALLOCATE DOCUMENT IN(DATA_AREA)
SET(P1))
P1->DOCUMENT = CARD;

/% FIND INSERTION POINT IN AUTHOR
LIST. */

I = 1 7O SIZE BY 13

P2 = GET_ND_P(AUTHOR_LIST,

IF P2 = NULL

THEN GO TO INSERT_AUTHOR;
IF

P1->AUTHOR<P2->AUTHOR.

;3

THEN
GO TO

INSERT_AUTHOR;

/* INSERT ADDRESS OF DOCUMENT IN
SORTED AUTHOR LIST. */

INSERT_AUTHOR:

o]8]

END;

THEN
GO

CALL INSERT_ND_P(AUTHOR_LIST,1,P1);
/* FIND INSERTION POINT IN TITLE
LIST. */

I =1 T0 SIZE BY 13
P2 = GET_ND_P(TITLE_LIST,I);
IF P2 = NuULL
THEN GO TO INSERT_TITLE;
IF
P1->TITLE<P2->TITLE

T0
INSERT_TITLE;

/* INSERT ADDRESS OF DOCUMENT
SORTED TITLE LIST. */

IN

INSERT_TITLE:
CALL INSERT_ND_P(TITLE_LIST,I,P1);
/7* INCREASE SIZE BY ONE, AND GET
NEXT DOCUMENT CARD. */
SIZE = SIZE + 13
GO 1O
GET_DOCUMENT_CARD;
/% READ SUCCESSIVE SEARCH CARDS,
AND PRINT CORRESPONDING DOCUMENT
CARDS. */
DOCUMENT_SEARCH:
GET
EDIT(SEARCH_CARD)(A(80));
PUT
SKIP(2);
PUT
EDIT(SEARCH_CARD)(A(80));
IF
SUBSTR(SEARCH_CARD, 1,
THEN
G0 TO
AUTHOR_SEARCH;
/* PERFORM TITLE SEARCH. */
TITLE_SEARCH:
TITLE_ITEM = SUBSTR(SEARCH_CARD,
2y 25);

1) = A

DO

I =1 70 SIZE BY 13

Pl = GET_ND_P(TITLE_LIST, I)3
IF

TITLE_ITEM<P1-D>TITLE

THEN
G0 T0

DOCUMENT_SEARCH3
IF

TITLE_ITEM = P1->TITLE

THEN
PUT
EDIT(P1->DOCUMENT)
(COLUMN(1),A(15),A(25),A(10),A(30));
END;
/* WHEN THIS POINT IS REACHED,
NEXT SEARCH CARD. */
GO TO
DOCUMENT_SEARCH;
/* PERFORM AUTHOR SEARCH. */
AUTHOR_SEARCH:
AUTHOR_ITEM = SUBSTR(SEARCH_CARD,
2y 15)3

GET

DO
I =1 T0 SIZE BY 13
Pl = GET_ND_P(AUTHOR_LIST, I)3
IF
AUTHOR_ITEM<P1->AUTHOR
THEN
GO TO
DOCUMENT_SEARCH3
IF o
AUTHOR_ITEM = P1->AUTHOR
THEN
PUT
EDIT(P1->DOCUMENT)
(COLUMN(1),A(15),A(25),A(10),A(30));

/% WHEN THIS POINT IS REACHED, GET
NEXT SEARCH CARD. %/
G0 TO
DOCUMENT_SEARCH;
END_SEARCH:
END ‘
SEARCH;

Figure 1.18A. The SEARCH procedure

AUTHOR_LIST: TITLE_LIST
AUTHOR TITLE SUBJECT DESCRIPTORS
ROE A J SORTING SORTING BUSINESS
METHODS SORTING
8/19/62
AUTHOR TITLE SUBJECT DESCRIPTORS
AMES R S GENERAL STATISTICS MATHEMATICS
STATISTICS STATISTICS
1957
AUTHOR TITLE SUBJECT DESCRIPTORS
LADD EK BASIC PROGRAMMING| PROGRAMMING
COMPUTING COMPUTERS
1960

Figure 1.18B. How single copies of document cards are arranged in sort order on two different pointer lists

13

A trailer card with asterisks in cc 1 through 5 follows the
last document card in the input file. If DATA_AREA
cannot hold all the document cards, the program is
terminated.

The remaining input cards are search cards, which con-
tain two items: a type code and a key value. The type code
appears in cc 1 and must be either the letter A or the letter
T. Type code A indicates that the key value is the name of
an author, which appears left-adjusted in cc 2 through 16 of
the search card. The key value associated with type code T
is a title, which appears left-adjusted in cc 2 through 26.

- As each search card is read, the appropriate pointer list,
either AUTHOR _LIST or TITLE_LIST, is searched for the
specified AUTHOR value or TITLE value. All document
cards that contain the key value are printed along with
the search card on the standard system-output file
(SYSPRINT).

Associating the document cards with two sorted pointer
lists eliminates the need for exhaustive searching through all
the document cards. Each search ends when the specified
- key exceeds the key value in the current document card.

The SEARCH program need not be restricted to two
pointer lists; a pointer list can be created for each field in
the document cards. In a more elaborate program a pointer
list can be created for each key value. For example, a
pointer list can be created for all document cards that con-
tain the SUBJECT value “programming”. With such a list,
no searching is required, since the list contains only those
document cards that have “programming” as their SUB-
JECT value. The term “inverted file” is often used to
describe such arrangements.

LIST_AREA

REVIEW OF POINTER LISTS

This chapter shows how to overcome the main disadvan-
tages of data lists by replacing each data item in a list with a
pointer variable that specifies the address of the data item

_outside the body of the list (see Figure 1.19). The resulting

pointer list still retains flexible control over varying storage
requirements, but it also eliminates much of the duplication
and movement of data produced by data lists and allows
mixed data types to be associated with the same list.

SUMMARY

1. Pointer lists resemble data lists, except that the
address of a data item rather than the data item itself
appears in a pointer list.

2. Pointer lists provide the same advantages as data lists
in maintaining efficient control over varying storage re-
quirements. Pointer lists also possess the following addi-
tional benefits:

a. A data item may be shared by two or more pointer

lists, thus avoiding data duplication.

b. Transmission of data addresses (rather than data
items) to and from pointer lists reduces data move-
ment.

c. Different orderings of the same collection of data
items may be obtained with separate pointer lists.

d. Mixed data types may be associated with the same
pointer lists.

AVAIL:

[=N_—_}—>ED>N—}>N_1——N—P—]

v Lh

LBI_]»NI-»N|—>NI->|\I\|

(TH T T TN

DATA_AREA

2]3]

NE

Figure 1.19. Pointer lists

14

Chapter 2. Lists of Lists

The previous chapter shows how pointer lists may be used
to link various combinations of data elements, arrays, and
structures. However, pointer lists need not be restricted to
these types of items; the lists themselves can also appear as
members of a pointer list. The higher-level list formed by
this type of linkage is called a list of lists. This chapter
describes how such lists are constructed and shows how
they extend the general flexibility and efficiency of pointer
lists.

ORGANIZING LISTS OF LISTS

A pointer list and a list of lists use pointer values to link
data items that appear outside the body of the list. Since a
list of lists can link other lists as well as data items, some
method must be used to determine whether a list com-
ponent specifies a data item or a sublist.

The following discussions use a type code within each
list component to distinguish between a data item and a
sublist, and illustrate the effect of this code upon list organ-
ization and list-processing techniques.

Component Elements for Lists of Lists

Each component in a list of lists may contain three ele-
ments:

1. A type code (TYPE), which is a single-position
character string that contains the character ‘D’ (for data
item) or the character ‘L’ (for list)

2. A value pointer (VALUE), which specifies the
address of a data item or a sublist

3. Alink pointer (LINK), which specifies the address of
the next component in the list

The declaration in A of Figure 2.1 shows how these
elements may be combined to form a list component
(COMPONENT).

A schematic representation of a component for a
list of lists appears in B of Figure 2.1.

The diagram in C of Figure 2.1 shows a list com-
ponent that specifies a data item (the character *).

In D of Figure 2.1, the component with type code
‘L’ specifies a sublist. The first component in the sub-
list specifies a data item (the character *).

Note that the VALUE pointer in a list component
with type code ‘L’ serves as the head pointer of the
specified sublist.

DECLARE TYPE VALUE LINK
1 COMPONENT BASED(P),
2 TYPE CHARACTER(1),
2 VALUE POINTER,
2 LINK POINTER;

A. Component Declaration B. List component

C. List component that refers D. List component that

to a data item refers to a sublist

Figure 2.1. Illustrations of list components for lists of lists

Permissible Arrangements of List Components

A list of lists can contain D-components only, L-compo-
nents only, or any combination of D- and L-components.
The number of levels to which sublists may be linked is
arbitrary and limited only by available storage.

Figure 2.2 shows a list of lists that contains data items
only. Part A displays the full form of the list; storage areas
for the data items are shown outside the body of the list. A
more compact representation appears in Part B which
shows the data items within the body of the list. Since it is

v: [{o] T o[T} TN
g

A. Full form

o [P ol T PN

B. Compact form

Figure 2.2. A list of lists that contains data items only

15

16

o [Pl T THT N

A. Full form

v [Pl Tl T N
—>p[3] 6]\
BTN

B. Compact form

Figure 2.3. A list of lists that contains lists at the top level only

e o] T] T ol T T N

A. Full form

w: o[] T DT] N

N aENE

BN

DX D} * D|Y

B. Compact form

Figure 2.4. A list of lists that contains both data items and lists at the top level

understood that the value element in a list component
always contains the address of a data item and not the item
itself, the two representations in Figure 2.2 may be con-
sidered equivalent.

The use of single-character data items in Figure 2.2 is
arbitrary; a list of lists can contain data items of any size
and type.

Figure 2.3 shows how three sublists may be linked to
form a higher level list. The linking is done so that the
resulting lists of lists contains the sublists at the top level.

A combination of data items and lists at the top level of
a list of lists appears in Figure 2.4, and Figure 2.5 presents a
list of lists that contains data items and lists at multiple
levels.

Null Lists of Lists

As with data lists and pointer lists, a null address value for
the head pointer of a list of lists creates a null list (A in
Figure 2.6). Note the distinction between a list of lists with
a null head and a list of lists that contains a null data item
(B in Figure 2.6). A list with a null head has zero size, but a
list of lists that contains a null data item requires a list
component for the item and, therefore, has a size of one.

Observe further the difference between a list of lists that
contains a null data item (B in Figure 2.6) and a list of lists
that contains a null list (C in Figure 2.6). Both lists have a
size of one, but the first contains a D-component, and the
second, an L-component.

me e T o] T B{e]]

A. Full form

v [T i TN

L]

Mg BN

pjw] Fe{o[x]\]

o] Fei]

elr] FefuN

B. Compact form

—p[r] o[s[N

Figure 2.5. A list of lists that contains data items and- lists at multiple levels

17

A. A null list of lists

ts: [| EINN

B. A null data item in a list of lists

te: | | EHNN

C. A null list in a list of lists

Figure 2.6. Examples of null lists of lists

For the purposes of this book, the three lists of lists in
Figure 2.6 are considered to be null lists because they con-
tain null value pointers. As a result, a null list of lists can
have a size greater than zero. Such a size represents the
number of components in the null list.

Sharing Data Items Among Lists of Lists

The ability of two or more pointer lists to share the same
data item is retained by lists of lists. Figure 2.7 shows how
two lists of lists can contain the same data items without
requiring duplicate storage for the items. Although the
compact forms of both lists may seem to indicate dupli-
cation of the data items, remember that the value element
of a list component contains the address of an item and not
the item itself.

Sharing of data items among lists of lists permits direct
access to various subsets of items in a collection. The list of
lists L_ARRAY in Figure 2.8, for example, contains eight
sublists—ELEMENTS, ROW1, ROW2, COL1, COL2,

18

DIAG1, and DIAG2—which contain various combinations
of the elements in a two-dimensional array. Although each
element of the array appears in four sublists, storage for
only one copy of each element is required.

A similar application of lists of lists may be used to
represent the organization of PL/I structures. As an
example, consider the list of lists L_ STRUCTURE in
Figure 2.9. This list contains three sublists, which represent
the three minor structures declared at the left of the dia-
gram.

s Pl N

A. Full form

v P AN

—=|v| f=p|z[\]

oJv] F~olz [\

L8: D{X

B. Compact form

Figure 2.7. Sharing data items among lists of lists

DECLARE ARRAY(2,2) AlB
CHARACTER(1) INITIAL(‘A",'B","1",2"); 112

L_ARRAY: D_

ELEMENTS:

ROW 1:

o

coL 1: []

COoL 2:

DIAG 1:

DIAG 2:

Figure 2.8. A list of lists that contains various sets of elements from the same array

19

1 STRUCTURE,

DECLARE ' L_STRUCTURE: T:

2 A
3 T CHARACTER(1) INITIAL(*+),
3 U CHARACTER(1) INITIAL('6"),
2 B,
3 V CHARACTER(1) INITIAL("2),
3 W CHARACTER(1) INITIAL("."), .
3 X CHARACTER(1) INITIAL('8"), B:
2 c, '
3 Y CHARACTER(1) INITIAL('—"),
3 Z CHARACTER{1) INITIAL('4");

W:

M 1y 7y i W oy N

Figure 2.9. A list of lists that represents a PL/I data structure

Sharing List Components Among Lists of Lists

Not only may data items be shared among lists of lists, but
list components may be shared as well. Figure 2.10 shows
how the components for items X and Y are shared between
lists L9 and L10.

This type of sharing eliminates unnecessary duplication
of list components as well as data items. Note that the
L-component in Figure 2.10 could also be shared between
L9 and L10. The organization in Figure 2.10, however,
permits the L-component to be deleted from either list
without affecting the other list.

Parenthetic Representation of Lists of Lists

A shorter method of showing the organization of a list
appears in Figure 2.11, which contains a parenthetic repre-
sentation of a list of lists. The parenthetic representation
contains a sequence of items separated by commas. Paren-
these enclose the sequence, and a colon attaches the name
of the list to the left parenthesis.

The list presented in Figure 2.11 contains no sublists.
Should sublists appear in the list, they are also enclosed in
parentheses, as shown in Figure 2.12. Additional levels of
sublists are represented by further nesting of parentheses.

20

Lo: D NN

tio: ool T N
e

A. Full form

o [JeW - N

BN

vio: [p{olz] P] N

B. Compact form

Figure 2.10. Sharing list components among lists of lists

v [{o]x] {o]¥] e[z]\

A. Compact form

L11: (X,Y,2)

B. Parenthetic form

Iigure 2.11. Compact and parenthctic representations of a list of
lists without sublists

L12: D} X L

—o[v] ~{o[z[\]

A. Compact form

L12: (X,(Y,2))

B. Parenthetic form

Iligure 2.12. Compact and parenthetic representations of a list of
lists with a sublist

Circular Lists of Lists

The parenthetic representation of lists is particularly useful
in displaying the organization of circular lists. Figure 2.13
contains the parenthetic representation of a circular list of
lists that does not contain sublists. An ellipsis (. . .) indi-
cates the endless cycling of the list, and square brackets

([1) enclose the items that are repeated each cycle.

The parenthetic representation of a circular list of lists
that contains a sublist appears in Figure 2.14. Note that
square brackets do not denote a sublist but determine the
- 'scope of the ellipsis.

The circularities displayed in Figure 2.13 and 2.14 are
formed by linking successive list components by means of
link pointers. Value pointers can also be used, however, to
form circular lists of lists, as shown in Figure 2.15. This
type of linkage produces a nested circularity, because the
sublist involved links back to a component at a higher level
in the list of lists.

Cycling three times through the diagram in Figure 2.15
generates the following list:

LIS(X(Y.Z(XAY,Z(X(Y,2))))))
Such lists are useful in modeling data organizations that
have a recursive structure.

e (X[BRI -

A. Compact form

L13: (X,Y,Z,X,Y,Z[.X,Y,Z] ..))

B. Parenthetic form

Figure 2.13. A circular list of lists without sublists

o (BRI TH

D|Y D2

A. Compact form

L14: (X,(Y,2),X,(Y,2) [X,(Y,2)] ..)

B. Parenthetic form

Figure 2.14. A circular list of lists with a sublist

21

L15: (X eI N

pfv| Feofz] p+c | I/N

A. Compact form

B. Parenthetic form

L15: (X,(Y,Z,(X,(Y,Z([X,(Y,Z,(] .. 900

Figure 2.15. A list of lists with a nested circular sublist

PROCESSING LISTS OF LISTS

The following discussions develop subroutines and func-
tions for processing lists of lists. The organization of these
procedures resembles the organization used in Chapter 1:
elementary procedures are developed first and used in turn
to create higher-level procedures. ‘

The procedures are not designed to process lists that
contain circularities. Such lists would place many of the
procedures—particularly recursive procedures—into endless
loops. Circular lists are handled more conveniently on an
individual basis. ‘

This section organizes the procedures into four cate-
gories:

1. Creating a list of available storage components

2. Manipulating component elements in a list of lists

3. Manipulating the top level of a list of lists

4. Manipulating all levels of a list of lists ;
No attempt is made to develop an exhaustive collection of
procedures; instead, the emphasis is on general methods.

Many of the techniques used in this section have been
influenced by the list-processing language LISP, which is in
an interpretive programming language developed at the
Massachusetts Institute of Technology.*

Creating a List of Available Storage Components

Figure 2.16A,2.16B, and 2.16C present the AREA_OPEN

subroutine for creating a list of available storage components.

The subroutine requires two arguments:

*Berkeley, Edmund C., and Bobrow, D. G. (editors) The Pro-
gramming Language LISP: Its Operation and Applications.
Cambridge, Massachusetts: The M.LT. Press, 1966 (2nd printing) .

22

1. An area variable throughout which list components
are to be allocated

2. A pointer variable that serves as the head of the list of
available storage components

The area argument passed to AREA_OPEN can be of
any storage class and is not restricted to a particular size,
but storage for the area must have been allocated before the
subroutine is invoked.

The AREA_OPEN procedure can be used to establish a
list of available storage components named LIST. The com-
ponents can be organized into a list of lists specifying data
items. Another invocation of AREA_OPEN can establish a
list of available storage components named AVAIL. These
latter components relate to insertion and deletion of list
components in the list named LIST. The following code is
pertinent:

DECLARE
(AREA1, AREA2) AREA,
(LIST, AVAIL EXTERNAL) POINTER;
CALL AREA_OPEN(AREAL, LIST);
CALL AREA_OPEN(AREA?2, AVAIL);

A list component deleted from the list named LIST can
be inserted into the list named AVAIL. Conversely, a list
component can be deleted from the list named AVAIL as
needed for insertion into the list named LIST.

This subroutine resembles the similarly named procedure
in Chapter 1, except that it creates a list of available storage
components for lists of lists.

AREA_OPEN Subroutine
Purpose
To create a list of available storage components
Reference
AREA_OPEN(AREA, LIST)
Entry-Name Declaration

DECLARE AREA_OPEN ENTRY(AREA(¥),
POINTER);

Meaning of Arguments

AREA — the area variable that is to contain the
list of available storage components

LIST — the pointer variable that serves as the
head of the list of available storage
components

Remarks

Storage must have been allocated for the AREA
argument before AREA_OPEN is invoked.

The LIST argument is assumed to be null upon
entry to AREA_OPEN.

Other Programmer-Defined Procedures Required
None
Method

Storage for list components is allocated with the
following based structure:

1 COMPONENT BASED(P),

2 TYPE CHARACTER(1),

2 VALUE POINTER,

2 LINK POINTER,
Components are allocated throughout AREA until the
AREA ON-condition occurs. The LIST argument
contains the address of the first component. The LINK
element of each component contains the address of the

next component. The LINK element of the last
component has a null value.

Figure 2.16A. Description of the AREA OPEN subroutine for creating a list of available storage components

AREA_OPEN?:

PROCEDURE (AREAy, LIST);
DECLARE

P POINTER,

AREA AREA(*),

(LIST, T) POINTER,

1 COMPONENT BASED(P),

2 TYPE CHARACTER(1),

2 VALUE POINTER,

2 LINK POINTER;

/* WHEN ALL STORAGE HAS BEEN
ALLOCATED IN AREA, SET LINK POINTER
OF LAST COMPONENT, IF ANY, TO NULL
AND RETURN. */
ON AREA
BEGIN;
IF
P~=NULL
THEN
P->LINK = NULL;
GO TO
END_AREA_OPEN;

Figure 2.16B. The AREA_OPEN spbroutine

END;
/* ALLOCATE FIRST CCOMPONENT IN
AREA, AND ASSIGN COMPONENT

ADDRESS TO POINTER PARAMETER CALLED

LIST. */

P = NULL;

ALLOCATE COMPONENT IN(AREA)
SET(P);

LIST = P3

/% CONTINUE ALLOCATING COMPONENTS
AREA UNTIL ALL STORAGE HAS BEEN
ALLOCATED. LINK EACH COMPONENT TC
THE PREVIOUSLY ALLOCATED
COMPONENT . */

T =P;
ALLOCATE COMPONENT IN(AREA)
SET(P);
T-DLINK = P;

GO TO

Ls
END_AREA_OPEN:
END’

AREA_OPEN;

IN

23

Subroutine

Reference

Result

AREA_OPEN(STORAGE _AREA,AVAIL)

AVAIL: D——

STORAGE _AREA

T T T T T T T T
L—llll——lJIHIIHIJI——l
T

L T
W
LT T T T T T T
T T T T T

ST TN

Figure 2.16C. An example of a reference to the AREA_OPEN subroutine

24

Manipulating Component Elements in a List of Lists

+ The following discussions develop subroutines and

functions for:
1. Obtaining the address of a list component
2. Obtaining the values of elements in list components
3. Assigning values to the elements of list components
4. Comparing the data values of list components

These procedures eliminate the syntactic details associated
with PL/I pointer qualification and allow the programmer
to view and process lists of lists in a more application-
oriented manner.

Obtaining the Address of a List Component

The following discussions develop two function procedures
for obtaining the address of a specified list component:

1. ADDRESS_NVT, which obtains the address of the
component that contains the nth value at the top level of a
list of lists ,

2. ADDRESS_LVT, which obtains the address of the
component that contains the last value at the top level of a
list of lists

Later discussions show how to obtain the address of a

component that is not at the top level of a list.

ADDRESS_NVT Function
Figures 2.17A, 2.17B, and 2.17C present the ADDRESS
NVT function procedure. This function requires two
arguments:

1. A pointer variable that forms the head of the list
being processed

2. An integer that indicates the sequential position
(first, second, third, etc.) of a value at the top level of the
list

The function returns the address of the component that
contains the specified value.

ADDRESS_NVT Function

Purpose

To obtain the address of the nth component at the
top level of a list of lists

Reference
ADDRESS_NVT(LIST, N)
Entry-Name Declaration

DECLARE ADDRESS_NVT ENTRY (POINTER,

Meaning of Arguments

LIST
the list to be examined

FIXED DECIMAL(5))
RETURNS(POINTER);

— the pointer variable that is the head of

N — a fixed-point decimal integer value
that specifies the component whose
address is to be obtained; N has a
maximum size of five digits

Remarks
A null pointer value is returned when LIST is null,
N is less than one, or N is greater than the number
of components at the top level of LIST.

Other Programmer-Defined Procedures Required
None

Method
The function proceeds through the top level of
LIST until the (n-1)th component is reached. The

link pointer of this component contains the address
of the nth component.

Figure 2.17A. Description of the ADDRESS NVT function for obtaining the address of the nth component at the top level of a list of lists

ADDRESS_NVT:
PROCEDURE (LIST4N)
RETURNS (POINTER);

DECLARE
LIST POINTER,
(Ny1) FIXED DECIMAL(S),
1 COMPONENT BASED(ADDRESS),
2 TYPE CHARACTER(1),
2 VALUE POINTER,
2 LINK POINTER;

IF
(LIST = NULL)|(NC1)
THEN

RETURN (NULL);
ADDRESS = LIST;

Figure 2.17B. The ADDRESS _NVT function

Do
I =1 8Y 13
IF
(ADDRESS->LINK = NULL) & (I-~=N)
THEN
RETURN (NULL);
IF
I =N
THEN
RETURN(ADDRESS) ;
ADDRESS = ADDRESS->LINK;
END;
END

ADDRESS_NVT;

25

List of Lists

v [ps{ofw] F—={c] T o]z

D{X D|Y
Function Function
N Reference Value

ADDRESS_NVT(L1,1)

Address of component that
specifies W

ADDRESS_NVT(L1,2)

Address of component that
specifies the sublist contain-
ing Xand Y

ADDRESS_NVT(L1,3)

Address of component that
specifies Z

Figure 2.17C. Examples of references to the ADDRESS_NVT

function

ADDRESS _LVT Function

Many list-processing operations involve the last value at the
top level of a list of lists. It is convenient, therefore, to have
a function that specifically obtains the address of the last
component at the top level.

Figures 2.18A, 2.18B, and 2.18C present the ADDRESS
__LVT function procedure, which returns the address of the
last component at the top level of a list. The function
requires one argument: the pointer variable that forms the
head of the list being processed.

ADDRESS__LVT Function
Purpose

To obtain the address of the last component at the
top level of a list of lists

Reference
ADDRESS_LVT(LIST)
Entry-Name Declaration

DECLARE ADDRESS_LVT ENTRY (POINTER)

Meaning of Argument

RETURNS(POINTER);

LIST — the pointer variable that is the head of
the list to be examined

Remarks
A null pointer value is returned when LIST is null.
Other Programmer-Defined Procedures Required
None
Method
The function proceeds through the top level of LIST
until the last component is reached. The link

pointer in the next-to-last component contains the
address of the last component.

Figure 2:18A. Description of the ADDRESS LVT function for obtaining the address of the last component at the top level of a list of lists

26

ADDRESS_LVT:

DECLARE

o]a]

END;

END

PROCEDURE(LIST)
RETURNS (POINTER);

ADDRESS POINTER,

(LISTy SAVE, ADDRESS1) PCINTER,
1 COMPONENT BASED(ACORESS),

2 TYPE CHARACTER(1),

2 VALUE POINTER,

2 LINK POINTER;

ADDRESS, ADDRESS1 = LIST:

WHILE(ADDRESS1-~=NULL);
SAVE = ADDRESSI1;

ADDRESS1 = ADDRESS->LINK;
ADDRESS = SAVE;
RETURN(ADDRESS) ;

ADDRESS_LVT;

Figure 2.18B. The ADDRESS LVT function

List of Lists

R S I e (A I CI AN

o[PN

2 el N

—ofu] p]v]\]

Reference

Function Function

Value

ADDRESS_LVT(L1)

Address of component that
specifies Z

ADDRESS_LVT(L2)

Address of component that
specifies the sublist containing
Uand V

Figure 2.18C.

Examples of references to the ADDRESS_LVT
function

Obtaining the Values of Elements in List Components

Many list-processing operations examine the values of the
elements in list components. The following discussions
develop three function procedures for obtaining these
values:

1. GET_LINK, which obtains the value of the link
pointer in a specified list component

2. GET_VALUE, which obtains the value of the value
pointer in a specified list component

3. GET_TYPE, which obtains the value of the type
code in a specified list component

GET_LINK Function

Figures 2.19A, 2.19B, and 2.19C present the GET _LINK
function, which uses the address of a list component as its
argument. The function returns the value of the link
pointer in the specified list component. The effect of this
function is to obtain the address of the next list
component.

GET _VALUE Function

Figures 2.20A, 2.20B, and 2.20C present the GET_VALUE
function, which uses the address of a list component as its
argument. The function returns the value of the value
pointer in the specified list component.

GET_TYPE Function

Figures 2.21A, 2.21B, and 2.21C present the GET _TYPE
function, which uses the address of a list component as its
argument. The function returns the value of the type code
in the specified list component.

27

GET_LINK Function
Purpose

To obtain the address of the next component at the
top level of a list of lists

Reference
GET_LINK(ADDRESS)
Entry-Name Declaration

DECLARE GET_LINK ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

ADDRESS — a pointer value that specifies the
address of a component in a list of
lists

Remarks

The function assumes that ADDRESS represents a
valid address of a component in a list of lists. If
ADDRESS is null, a null pointer value is returned.

Method

The function returns the address contained in the
link pointer of the component specified by
ADDRESS.

GET_LINK:
PROCEDURE (ADDRESS)
RETURNS (POINTER);
DECLARE
ADORESS POINTER,
1 COMPONENT BASED(ADDRESS),

Figure 2.19A. Description of the GET _LINK function for obtaining the address of the next component at the top level of a list of lists

2 LINK POINTER;
IF
ADDRESS = NULL
THEN
RETURN (NULL);
RETURN(ADDRESS->LINK) ;

2 TYPE CHARACTER(1), END
2 VALUE POINTER, GET_LINK3;
Figure 2.19B. The GET_LINK function
List of Lists

DX D|Y
Function Function
Reference Value
GET_LINK(L1) Address of component that specifies the

sublist containing X and Y

GET_LINK(ADDRESS_NVT(L1,2))

Address of component that specifies Z

GET_LINK(ADDRESS_LVT(L1))

Null address

GET_LINK(NULL)

Null address

Figure 2.19C. Examples of references to the GET_LINK function

28

GET_VALUE Function
Purpose

To obtain the address of the value associated with a
component in a list of lists

Reference
GET_VALUE(ADDRESS)
Entry-Name Declaration

DECLARE GET_VALUE ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

ADDRESS — a pointer value that specifies the
address of a component in a list of
lists

Remarks

The function assumes that ADDRESS represents a

valid address of a component in a list of lists. If

ADDRESS is null, a null pointer value is returned.

Other Programmer-Defined Procedures Required

None

Method

The function returns the address value of the value
pointer in the component specified by ADDRESS.

Figure 2.20A. Description of the GET_VALUE function for obtaining the address of the value associated with a component in a

list of lists

GET_VALUE:
PROCEDURE (ADDRESS)
RETURNS (POINTER);
DECLARE
ADDRESS POINTER,

1 COMPONENT BASED(ADDRESS),

2 TYPE CHARACTER(1),
2 VALUE POINTER,

Figure 2.20B. The GET_VALUE function

2 LINK POINTER;
IF
ADDRESS = NULL
THEN
RETURN (NULL);
RETURN(ADDRESS->VALUE) ;
END
GET_VALUE;

List of Lists
L1: D (W | PHolz]\
—{ox] F=o[v[\]
Function Function
Reference Value

GET_VALUE(ADDRESS_LVT(L1))

Address of Z

GET_VALUE(ADDRESS_NVT(L1,2))

Address of sublist containing X and Y

GET_VALUE(ADDRESS_NVT(

GET_VALUE(ADDRESS_NVT(L1,2)),1)

Address of X

GET_VALUE(NULL)

Null address

Figure 2.20C. Examples of references to the GET _VALUE function

29

GET_TYPE Function
Purpose

To obtain the type code from a component in a list
of lists

Reference
GET_TYPE(ADDRESS)
Entry-Name Declaration
DECLARE GET_TYPE ENTRY(POINTER)
RETURNS(CHARACTER
(M)

Meaning of Argument

ADDRESS — a pointer value that specifies the
address of a component in a list of
lists

Remarks

The function assumes that ADDRESS represents a
valid address of a component in a list of lists. If
ADDRESS is null, type code ‘D’ is returned.

Other Programmer-Defined Procedures Required
None

Method

The function returns the value of the type element
in the specified component. The value is a single
alphameric character.

Figure 2.21A. Description of the GET_TYPE function for obtaining the type code from a component in a list of lists

30

GET_TYPE:
PROCEDURE (ADDRESS)
RETURNS (CHARACTER(1));
DECLARE
ADDRESS POINTER,

1 COMPONENT BASED(ADDRESS),

2 TYPE CHARACTER(1),
2 VALUE POINTER,

Figure 2.21B. The GET_TYPE function

2 LINK POINTER:
IF
ADORESS = NuULL
THEN
RETURN('D*);
RETURN(ADDRESS->TYPE) 3

GET_TYPE;

List of Lists

R e YT e 8 M e CIEAN

DX D|Y

Function
Reference

Function
Value

GET_TYPE(ADDRESS _LVT(L1))

‘D’ {Type code for Z)

GET_TYPE(ADDRESS_NVT(L1,2))

‘L' (Type code for sublist)

GET_TYPE(ADDRESS_LVT(

GET_VALUE(ADDRESS_NVT(L1,2))))

‘D’ (Type code for Y)

GET_TYPE(NULL)

‘D’ (Type code for null item)

Figure 2.21C. Examples of references to the GET_TYPE function

Assigning Values to Elements of List Components

The link pointers and value pointers of list components
must be changed when items are inserted into or deleted
from lists of lists. The following discussions develop two
subroutines that perform such changes:

1. SET_LINK, which assigns a value to the line pointer
in a list component

2. SET_VALUE, which assigns values to the value
pointer and type code in a list component

SET _LINK Subroutine
Figures 2.22A, 2.22 B, and 2.22C, present the SET_LINK
subroutine, which requires two arguments:

1. Address of a list component

2. Value to be assigned to the link pointer of the speci-
fied list component

SET_LINK Subroutine

Purpose
To assign a value to the link pointer of a component
in a list of lists

Reference
SET_LINK(ADDRESS, L)

Entry-Name Declaration

DECLARE SET_LINK ENTRY(POINTER,
POINTER);

Meaning of Arguments

ADDRESS — a pointer value that specifies the
address of a component in a list of
lists

L — the value to be assigned to the link
pointer of the list component

Remarks
The subroutine assumes that ADDRESS represents
a valid address of a component in a list of lists. |If
ADDRESS is null, no assignment is made.

Other Programmer-Defined Procedures Required
None

Method

The pointer value of L is assigned to the link pointer
of the specified component.

Figure 2.22A. Description of the SET _LINK subroutine for assigning a value to the link pointer of a component in a list of lists

SET_LINK:

PROCEDURE (ADDRESS,L) 3
DECLARE

(ADDRESSy L) POINTER,

1 COMPONENT BASED(ADDRESS),

2 TYPE CHARACTER(1),

2 VALUE POINTER,

2 LINK POINTER;

IF
ADDRESS = NULL
THEN
RETURN;
ADDRESS->LINK = L3
END

SET_LINK;
Figure 2.22B. The SET _LINK subroutine

Lists of Lists
(before reference)

ti: [JepJa] Jo[s [N
2o [P] T el p]zIN
—>10w] F={p[x[\]

Subroutine
Reference

Lists of Lists
(after reference)

SET_LINK(ADDRESS_LVT(L1),L2)

L1:

-

EEonEEOaRE

E}—ELI REOESOEN
o] BN

Figure 2.22C. Example of a reference to the SET_LINK subroutine

31

SET_VALUE Subroutine
Figures 2.23A, 2.23B, and 2.23C present the SET_VALUE
subroutine, which requires three arguments:

1. Address of a list component

2. Value to be assigned to the value pointer of the speci-
fied list component :

3. Value to be assigned to the type code of the specified
list component. :

SET_VALUE Subroutine
k Purpose
To assign an address to the value pointer of a
component in a list of lists and also to assign the
associated type code
Reference
SET_VALUE(ADDRESS, V, T)
Entry-Name Declaration
DECLARE SET_VALUE ENTRY(POINTER,
POINTER,
CHARACTER(1));
Meaning of Arguments
ADDRESS — a pointer value that specifies the

address of a component in a list of
lists

\) — a pointer value that specifies the
address of the value (data item or
sublist) associated with the list
component

T — the type code to be assigned to the
type element in the list component

Remarks

‘The subroutine assumes that ADDRESS represents
a valid address of a component in a list of lists. If
ADDRESS is null, no assignment is made.

Other Programmer-Defined Procedures Required

None
Method

The pointer value of V is assigned to the value
pointer of the specified component. The value of T
is converted, if necessary, to a character string,

and the leftmost character of the string is assumed to
be the type code.

Figure 2.23A. Description of the SET_ VALUE subroutine for assigning an address to the value pointer of a component in a list of lists

2 TYPE CHARACTER(1), IF

SET_VALUE: ;
PROCEDURE (ADDRESSV+T) 3 2 VALUE POINTER, (T==9Dt) € (T==tL")
DECLARE 2 LINK POINTER; THEN
(ADDRESSy V) POINTER, IF RETURN;

T CHARACTER(1),
1 COMPONENT BASED(ADORESS)sy THEN

ADDRESS = NULL

ADDRESS->TYPE = T;
ADDRESS->VALUE = V;

B END
Figure 2.23B. The SET_VALUE subroutine RETURN3 SET_VALUE;

List of Lists

(before reference)

e R RN
D|Y D{Z

Subroutine List of Lists

Reference (after reference)
SET_VALUE(ADDRESS_NVT(L1,2), L1: D|W L L

GET_VALUE(ADDRESS_LVTI(L1)),
GET_TYPE(ADDRESS_LVTI(L1)))

o[v] e[z[N

Figure 2.23C. Example of a reference to the SET_VALUE subroutine

32

Comparing Data Values of List Components

To test the equality of lists of lists, it is often necessary to
compare the data values of two list components. The fol-
lowing discussion develops the EQUAL_D function for
such comparisons.

EQUAL_D Function
Figures 2.24A, 2.24B, and 2.24C present the EQUAL_D
function, which requires two arguments:

1. The first list component involved in the test

2. The second list component involved in the test

The function returns ‘1’B when the list components
contain the same data value, and ‘0’B when they do not.

EQUAL _D Function ADDRESS2 — a pointer value that specifies the
address of the second list component
Purpose involved in the test

To test the equality of the data values associated

with two list components Remarks
Reference The function assumes that ADDRESS1 and
ADDRESS2 specify valid addresses of components
EQUAL_D(ADDRESS1, ADDRESS2) in lists of lists. When both ADDRESS1 and

ADDRESS?2 are null, equality is assumed.
Entry-Name Declaration
Other Programmer-Defined Procedures Required
DECLARE EQUAL_D ENTRY(POINTER,
POINTER) None
RETURNS(BIT(1));
Method
Meaning of Arguments
For equality, both list components must have type

ADDRESS1 — a pointer value that specifies the code ‘D’, and both must have the same value
address of the first list component pointer. The function returns ‘1'B when equality
involved in the test occurs and ‘0’B when inequality occurs.

Figure 2.24A. Description of the EQUAL _D function for testing the equality of the data values associated with two list components

& (GET_TYPE(ADDRESS2)= °D')

EQUAL_D: & (GET_VALUE(ADDRESS1) =
PROCEDURE (ADDRESS 1 ADDRESS2) GET_VALUE (ADDRESS2))
RETURNS (BIT(1))3 THEN
DECLARE RETURN(*1°B);
(ADDRESS1,ADORESS2) POINTER; : RETURN(*0°*B);
IF END
(GET_TYPE(ADORESS1)= *D*) EQUAL_D;

Figure 2.24B. The EQUAL _D function

List of Lists

v [N T el

Function Reference Function

Value

EQUAL_D(ADDRESS_NVT(L1,1),ADDRESS_NVT(L1,3)) “1'B (=)
EQUAL_D(ADDRESS_NVT(L1,1),ADDRESS_NVT(L1,2)) ‘0'B (T1=)
EQUAL_D(ADDRESS_NVT(L1,2),ADDRESS__LVT(L1)) ‘0'B ((1=)
EQUAL_D(ADDRESS_LVTI(L1),ADDRESS_LVT(L1)) 0B {1=)

Figure 2.24C. Examples of references to the EQUAL _D function

Manipulating Top Level of a List of Lists

All items in a list of lists may be processed by proceeding
through the list in stages. With this approach, the first stage
is restricted to the data items and sublists situated at the
top level of the list. The second stage then deals with the
top level of each sublist encountered during the first stage.
Subsequent stages, in general, are concerned only with the
sublists of the previous stage. When all sublists have been
treated in this manner, processing for the entire list is
complete.

The following discussions develop subroutines and func-
tions for manipulating the top level of a list of lists. These
procedures are concerned with the following operations:

1. Counting the number of values at the top level of a

list of lists
2. Inserting values into the top level of a list of lists

. 34

3. Obtaining values and their type codes from the top
level of a list of lists

4. Combining lists of lists at the top level

5. Copying the top level of a list of lists in reverse order

Counting Number of Values at Top
Level of a List of Lists

The size of a list of lists depends in part upon the number
of values at the top level of the list. The following discus-
sion develops the SIZE_ TOP function, which counts the

values at the top level of a list. '

SIZE_TOP Function

Figures 2.25A, 2.25B, and 2.25C present the SIZE_TOP
function, which requires the name of a list as its only argu-
ment. The function returns a count of the data items and
sublists at the top level of the specified list.

SIZE_TOP Function
Purpose

To count the number of values at the top level of a
list of lists

Reference
SIZE_TOP(LIST)
Entry-Name Declaration
DECLARE SIZE_TOP ENTRY(POINTER)
RETURNS(FIXED
DECIMAL(5));
Meaning of Argument

LIST — the pointer variable that is the head of

the list to be examined
Remarks

The maximum size is 99999. If LIST is null, a
zero size is returned.

Other Programmer-Defined Procedures Required
GET_LINK

Method
The function proceeds through the top level of LIST,
counting the number of list components, until a
null link pointer is encountered. The top level of

LIST can contain any combination of data (D)
values and list (L) values.

Figure 2.25A. Deécription of the SIZE _TOP function for counting

the number of values at the top level of a list of lists

SIZE_TOP:
PROCEDURE (LIST)
RETURNS(FIXED DECIMAL(S5));
DECLARE
(LIST,ADDRESS) POINTER,
N FIXED DECIMAL(S);
ADDRESS = LIST;

DO
N = 0 BY 13
IF
ADDRESS = NULL
THEN
RETURN(N) ;
ADDRESS = GET_LINK(ADDRESS) ;
END;
END
SIZE_TOP;

Figure 2.25B. The SIZE_TOP function

Lists of Lists
v [P{ow] Pl T oz
D|X D|Y
tze [P NN
L3: N
Function Function
Reference Value
SIZE_TOP(L1) 3
SIZE_TOP(GET_LINK(L1)) 2
SIZE_TOP(L2) 1
SIZE_TOP(L3) 0
SIZE_TOP(NULL) 0

Figure 2.25C. Examples of references to the SIZE_TOP function

35

Inserting Values Into Top Level of a List of Lists

The creation of a list of lists requires the ability to insert
data items and sublists into the list. The following discus-
sions develop two procedures that perform such insertions
at the top level of a list of lists:

1. INSERT_NVT, which inserts a value and its type
code into a specified position at the top level of a list

2. FORM_BODY, which forms the body of a new list
by extending the front of a given list with a specified value

INSERT _NVT Subroutine
Figures 2.26A, 2.26B, and 2.26C present the INSERT _
NVT subroutine, which requires four arguments:
1. List in which an insertion is to be made
2. Position of the insertion at the top level of the list
3. Address of the value to be inserted
4. Type code of the value to be inserted

INSERT_NVT Subroutine \Y — the address of the value to be inserted

Purpose T — the type code (‘D' or ‘L’) of the -
value to be inserted
To insert a value into the nth position at the top

level of a list of lists Remarks
Reference) | When the list is null or N is less than two, V is
inserted into the first position at the top level of the
INSERT_NVT(LIST,N, V,T) list. When N exceeds the size of the top level of the
list, V is inserted into the last position. N cannot
Entry-Name Declaration ’ have a value greater than 99999. V may be null.
DECLARE INSERT_NVT Other Programmer-Defined Procedures Required
- ENTRY(POINTER, FIXED DECIMAL(5),
POINTER, CHARACTER(1)); SET_VALUE, SET_LINK, ADDRESS_NVT, and

ADDRESS_LVT
Meaning of Arguments

Method
LIST — the pointer variable that is the head of
the list to be processed Insertion of a value causes the size of the top level
to increase by 1. The value previously at the nth
N — the position at the top level of the position becomes the (n+1)th value at the top level.

list where the value is to be inserted

Figure 2.26A. Description of the INSERT _NVT subroutine for inserting a value into the nth position at the top level of a list of lists

36

INSERT_NVT:

DECLARE

IF

PROCEDURE (LISTyNyV,T)3

T CHARACTER(1),

N FIXED DECIMAL(S),
(LIST,V,ADDRESS1,ADDRESS2,

AVAIL EXTERNAL) POINTER;

/% IF LIST OF AVAILABLE STORAGE
COMPONENTS IS EMPTY, PRINT MESSAGE
AND RETURN. */

IF AVAIL = NULL THEN DO;

LISTU'LIST OF AVAILABLE STORAGE IS
EMPTY");

RETURN; END;:

/% ASSIGN VALUE V AND TYPE T TO
FIRST COMPONENT IN AVAIL. %/

CALL SET_VALUE(AVAIL,V,T);

/% 1F LIST IS NULL OR N<2, INSERT
FIRST COMPONENT OF AVAIL INTO
FIRST POSITION OF LIST, AND
RETURN. */

(LIST = NULL)|(N<2)
THEN DO3
ADDRESS1 = LIST; LIST = AVAIL;

Figure 2.26B. The INSERT _NVT subroutine

AVAIL = ADDRESS_NVT(AVAIL,2);

CALL SET_LINK(LIST,ADDRESS1);
RETURN; END;

/% OTHERWISE OBTAIN THE ADDRESS OF
THE N-TH COMPONENT AT THE TOP OF
LIST. */

ADDRESS2 = ADORESS_NVT(LIST4N);

/% IF N EXCEEDS SIZE OF LIST TOP,
OBTAIN ADORESS OF LAST COMPONENT AT
TOP, ELSE OBTAIN ADDRESS OF (N-1)
COMPONENT AT TOP..*/

IF

ADDRESS2 = NULL
THEN

ADDRESS]1 = ADDRESS_LVT(LIST);
ELSE

ADDRESS1 = ADDRESS_NVT(LIST,N-1);

/% INSERT FIRST COMPONENT OF AVAIL

INTO THE N-TH POSITION AT THE TOP

OF LIST. */

CALL SET_LINK(ADDRESS1,AVAIL);

ADDRESS1 = AVAIL;

AVAIL = ADDRESS_NVT(AVAIL,2);

CALL SET_LINK(ADDRESS1,ADDRESS2);
END INSERT_NVT;

Data Storage

Lists of Lists
(before reference)

M: L1 D-»{D[T[F{o]uN]

N: L2: D—»[D[v[Te{o]wN]

s [REEN

L4: ES]

L[5 [} oV N]

Subroutine Lists of Lists
Reference (after reference)
INSERT_NVT(L1,2,L2,'L") L1: T L | F’iDIU[:I

—{o]v] F={o|w]\]

INSERT_NVT(L2,4,M,'D’) 2. [olv] Pow] o' N

INSERT_NVT(L3,0,N,D’) i [l P T PelzN

—s{o[x] F{p[¥[N\]

»H

INSERT_NVT(L4,5,N,'D’) L4:

[~{o]2]\]

Figure 2.26C. Examples of references to the INSERT _NVT subroutine

37

FORM _BODY Function
Figures 2.27A, 2.27B, and 2.27C present the FORM _
BODY function, which requires three arguments:

1. ‘Address of the value to be inserted at the front of a
list

2. Type code of the value to be inserted

3. List in which the insertion is to be made

The function returns the address of the new first component
in the list, but the head pointer of the original list does not

receive a new value; the head points to the second compo-
nent at the top level of the new list. If the head is to point
to the first component, the address value of the function
must be assigned explicitly to the head.

Because the head of the old list is not modified auto-
matically by FORM__BODY, the function can be thought
of as forming only the body of a new list. In fact, the built-
in function NULL can be used to specify the list in which
insertion is to occur. In this case, no explicit list head is
involved, and FORM_BODY generates the body of a new
list that contains one list component.

FORM_BODY Function
Purpose
To form the body of a new list of lists by extending
the front of a given list with a specified value, and
also to obtain the address of the first list component
in the new list
Reference
FORM__BODY(V, T, LIST)
Entry-Name Declaration
DECLARE FORM_BODY ENTRY(POINTER,
CHARACTER(1),
POINTER)
RETURNS(POINTER);

Meaning of Arguments

\) — the address of the value to be
inserted at the front of the new list

T — the type code (‘D' or ‘L’) of the value
inserted at the front of the new list

LIST — the pointer variable that is the head of
the list to be extended at the front
with the new value

Remarks

The effect of this function is equivalent to
inserting a value into the first position of LIST,
except that the pointer value of LIST is not
changed; instead, the address of the first list
component in the resulting list is returned as the
function value.

Other Programmer-Defined Procedures Required
SET_VALUE, GET_LINK, and SET_LINK
Method
Vand T are inserted into a new list component,

which is linked to the front of the components in
LIST. The pointer value of LIST is not changed.

Figure 2.27A. Description of the FORM_BODY function for forming the body of a new list of lists and returning the address of the first

list component

FORM_BODY:
: PROCEDURE (Vy Ty LIST)
RETURNS (POINTER);
DECLARE
T CHARACTER(1), .
(VoLIST,AVAIL EXTERNAL, P) POINTER;
/% IF LIST OF AVAILABLE STORAGE
COMPONENTS IS EMPTY, PRINT MESSAGE
AND RETURN. */
IF
AVAIL = NULL
THEN
D003
PUT :
LIST('LIST OF AVAILABLE STORAGE IS
EMPTY') 3

Figure 2.27B. The FORM_BODY function

38

RETURN;

END;
/% LET P POINT TO FIRST COMPONENT
OF AVAIL LIST, AND LET AVAIL POINT
TO SECOND COMPONENT OF AVAIL LIST.*/
P = AVAIL;
AVAIL = GET_LINK(AVAIL);
/% SET VALUE POINTER OF P COMPONENT
EQUAL TO V, AND SET LINK POINTER OF
P COMPONENT EQUAL TO LIST. */
CALL SET_VALUE(P4V,T);
CALL SET_LINK(P,oLIST);
/* RETURN ADDRESS OF P COMPONENT. */
RETURN(P);

END
FORM_BODY ;

Data Storage

Lists of Lists
(before reference)

v (B PEEN
L2: El
N[[N
EIEN
Function Reference Function Value (FV) Lists of Lists
(after reference)
FORM_BODY(M,'D’,L1) Address of component created L1:
for 1’
FV:
FORM_BODY(N,'D’,L2) Address of component created L2:
for ‘2"
FV:
FORM_BODY(N,'D’',NULL) Address of component created FV:
for ‘2’
FORM_BODY(GET_VALUE(L3),L’,L1) Address of component created L3:
for duplication of value pointer : |D IZ N
in first component at top level FV:
of L3
L1:

Figure 2.27C. Examples of references to the FORM _BODY function

Obtaining Values and Their Type Codes from

Top Level of a List of Lists

The following discussions develop two functions for obtain-
“ing values from the top level of a list of lists:
1. GET_NVT, which gets the nth value at the top level

of a list of lists

2. GET_NTT, which gets the nth type code at the top

level of a list of lists

39

GET_NVT Function

Figures 2.28A, 2.28B, and 2.28C present the GET_NVT
function, which uses two arguments:

1. Name of a list

2. Position of a value at the top level of the list

The function returns the address value of the value pointer
in the specified position at the top level of the list.

GET_NVT Function

Purpose

To obtain the address of the value associated with
the nth component at the top level of a list of lists

Reference

GET_NVT(LIST, N)

Entry-Name Declaration

DECLARE GET_NVT ENTRY(POINTER, FIXED
DECIMAL(5))
RETURNS(POINTER);

Meaning of Arguments

LIST — the pointer variable that is the head of
the list to be processed

N — the position of the retrieved value at
the top level of the list

Remarks

A value of N less than one or greater than the size of
the top level of the list causes a null address to be
returned.

Other Programmer-Defined Procedures Required
ADDRESS_NVT and GET_VALUE

Method

The following reference obtains the nth value at the
top level of the list:

GET_VALUE(ADDRESS_NVT(LIST, N))

The nth value at the top level remains in the list
_ after its equivalent is returned.

Figure 2.28A. Description of the GET _NVT function for obtaining

the nth value at the top level of a list of lists

40

GET_NVT:
PROCEDURE (LIST, N)
RETURNS (POINTER);

DECLARE
LIST POINTER,
N FIXED DECIMAL(S5);
RETURN(GET_VALUE (ADDRESS_NVT
(LIST4N)))3

ENOD
GET_NVT3

Figure 2.28B. The GET_NVT function

Lists of Lists

v B - T 0N
B I S BN

TN

Function Function
Reference Value

GET_NVT(L1,3) Address of Z

GET_NVTI(L1,2) Address of sublist containing

Xand Y
GET_NVT(L1,4) Null address
GET_NVT(L2,1) Null address

Figure 2.28C. L:xamples of references to the GET _NVT function

GET_NTT Function

Figures 2.29A, 2.29B, and 2.29C present the GET_NTT
function, which uses two arguments:

1. Name of a list

2. Position of a type code at the top level of the list

The function returns the type code in the specified position

at the top level of the list.

GET_NTT Function

Purpose
To obtain the type code (‘D' or ‘L’) of the nth value
at the top level of a list of lists

Reference

GET_NTT(LIST, N)

Entry-Name Declaration

DECLARE GET_NTT ENTRY(POINTER, FIXED
DECIMAL(5))
RETURNS(CHARACTER
(my

Meaning of Arguments

LIST — the pointer variable that is the head of

the list to be processed

N — the position of the retrieved type code
at the top level of the list
Remarks

A value of N less than one or greater than the size of
the top level of the list causes the type code ‘D’ to
be returned.

Other Programmer-Defined Procedures Required

ADDRESS_NVT and GET_TYPE

Method

The following reference obtains the nth type code
at the top level of the list:

GET_TYPE(ADDRESS_NVT(LIST, N))

The nth type code at the top level remains in the
list after its equivalent is returned.

Figure 2.29A. Description of the GET_NTT function for obtaining

the nth type code at the top level of a list of lists

GET_NTT:
PROCEDURE (LIST, N)
RETURNS (CHARACTER(1))3
DECLARE
LIST POINTER,
N FIXED DECIMAL(5);
RETURN(GET_TYPE(ADDRESS_NVT
(LISToNI))
END
GET_NTT;

Figure 2.29B. The GET_NTT function

Lists of Lists
v W =il T +beEN
—o[x| Po[v[\|
L2:
Function Function
Reference Value
GET_NTT(L1,3) ‘D’
GET_NTT(L1,2) v
GET_NTT(L1,4) ‘D’
GET_NTT(L2,1) ‘D’

Figure 2.29C. Examples of references to the GET_NTT function

Combining Lists of Lists at Top Level

A list can be extended by combining it at the top level with
another list. The following discussions develop two proce-
dures for such extensions:)

1. LINKL, which links two lists of lists at the top level

2. APPEND, which forms a new list of lists by dupli-
cating the top level of one list and linking the top level of
another list behind the duplicate

LINKL Subroutine

Figures 2.30A, 2.30B, and 2.30C present the LINKL sub-
routine, which requires the names of two lists as its argu-
ments. The subroutine links the last component at the top
level of the first list to the first component at the top level
of the second list. \

LINKL Subroutine

Remarks

Purpose
To link two lists of lists at the top level
Reference
LINKL(LIST1, LIST2)
Entry-Name Declaration
DECLARE LINKL ENTRY(POINTER, POINTER);
Meaning of Arguments
LIST1

— the first list to be linked

LIST2 — the list to be linked behind LIST1

When LIST1 is null, it becomes equal to LIST2.
When LIST2 is null, LIST1 does not change.
Other Programmer-Defined Procedures Required
ADDRESS_LVT and SET_LINK
Method
The following reference links the lists:
SET_LINK(ADDRESS_LVT(LIST1), LIST2)

No list components are duplicated, and the pointer
values of LIST1 and LIST2 are not changed‘.

Figure 2.30A. Description of the LINKL subroutine for linking two lists of lists at the top level

42

PROCEDURE(LIST1,LIST2);

(LIST1,LIST2) POINTER;

CALL SET_LINK(ADDRESS_LVT(LIST1),

LINKL:
DECLARE
IF
LIST1 = NULL
THEN
LIST1l = LIST2;
ELSE
LIST2);
END
LINKL;

Figure 2.30B. The LINKL subroutine

Lists of Lists
(before reference)

v [o [wN
o (L TBEN
S DEENEIIN
e \J
Subroutine Lists of Lists
Reference (after reference)
LINKL(L1,L2) L1:
L2:
L N
LINKL(L3,L1) |
v [wN
LINKL(L1,L3) SEEEEEITN
L3: N

Figure 2.30C. Examples of references to the LINKL subroutine

43

APPEND Function
Figures 2.31A, 2.31B, and 2.31C present the APPEND
function, which uses the names of two lists as its argu-
ments. This function duplicates the top level of the first list
and links the top level of the second list behind the dupli-
cate. The function then returns the address of the first
component in the new list.

The APPEND function, unlike the previous procedure
(LINKL), preserves the first list as an entity.

APPEND Function

Purpose
To form a new list of lists by duplicating the top
level of one list and appending the top level of
another list behind the duplicate top level, and also
to obtain the address of the first list component in
the new list.

Reference
APPEND(LIST1, LIST2)

Entry-Name Declaration

DECLARE APPEND ENTRY (POINTER, POINTER)
RETURNS(POINTER);

Meaning of Arguments

LIST1 — the list whose top level is to be
duplicated

LIST2 — the list to be appended behind the
duplicate top level

Remarks

When LIST1 is null, the address of the first list
component in LIST2 is returned. The components
in LIST?2 are never duplicated. The address values
of pointers LIST1 and LIST2 remain unchanged.

Other Programmer-Defined Procedures Required

FORM_BODY, GET_VALUE, GET_TYPE, and
GET_LINK

Method

The following recursive reference forms the new
list:

FORM_BODY(GET_VALUE(LIST1),
GET_TYPE(LIST1),APPEND
(GET_LINK(LIST1), LIST2))

Figure 2.31A. Description of the APPEND function

APPEND:

PROCEDURE (LIST1l, LIST2)

RETURNS (POINTER)

RECURSIVE;
DECLARE

(LIST1,LIST2) POINTER;

IF

LIST1 = NULL

THEN

RETURN(LIST2);

RETURN (FORM_BODY(GET_VALUE(LIST1),

GET_TYPE(LIST1),

APPEND(GET_LINK(LISTL), LISTZH),
END

APPEND3

Figure 2.31B. The APPEND function

Lists of Lists

(before reference)

L1: D{|V DWW
L2: D—»[L] [{o]z[N]
—>{D[x[|={p[¥ [\
L3: N
Function Function Value(FV) Lists of Lists
Reference (after reference)
APPEND(L1,L2) Address of duplicate component L1: D—P[D rVI H D IW N
specifying V
Fv: [={o]v[}=ow] |
e [T T hEN
o[x] Ppo|v[\]
APPEND(L2,L1) Address of duplicate component L2: L D|Z
specifying sublist elements
Xand Y Dix| Mbply[\{
~v. [P Bl
S T CILIN
APPEND(L3,L1) Address of first component in L1 L3: N
FV:
L1: DIV[PD[W[\J
APPEND(L1,L3) Address of duplicate component v: [olv] P wN
specifying V
FV: DV D (W
L3: N

Figure 2.31C. Examples of references to the APPEND function

45

Copying Top Level of a List of
Lists in Reverse Order

It usually takes less time to retrieve an item from the front
of a list than from the end, because fewer items have to be
traversed to reach the desired item. When more processing
occurs at the end of list than at the front, it may be more
efficient to reverse the list.
The following discussions develop two subroutines for
reversing a list of lists:
" 1. COPY_REVT, which copies the top level of a list of
lists in reverse order and returns the address of the new list
2. COPY_REVT1, which is the recursive equivalent of
COPY_REVT

Generating a new top-level list in reverse order generally

“takes less time than relinking the top level of the original

list. ; '

COPY _REVT Function
Figures 2.32A, 2.32B, and 2.32C present COPY REVT,
which requires the name of a list as its only argument. The
function returns the address of the new list, which has been
reversed at the top level.

Note that the function does not produce a distinct copy
of the new list. Both the new and old lists share compo-
nents at lower levels.

COPY_REVT Function
Purpose

To copy the top level of a list of lists in reverse order
and to return the address of the new list

Reference
COPY_REVT(LIST)
Entry-Name Declaration

DECLARE COPY_REVT ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

LIST — the list whose top level is to be copied
in reverse order

Remarks

Components at lower levels of LIST are not copied
but are shared between the old and new lists. When
LIST is null, a null address is returned.

Other Programmer-Defined Procedures Required

FORM_BODY, GET_VALUE, GET_TYPE, and
GET_LINK

Method

GET_ LINK obtains successive addresses of list
components at the top level of LIST.

GET_VALUE and GET_TYPE obtain the value
and type of each list component.

FORM_BODY creates and links the components
in the new top-level list.

Figure 2.32A. Description of the COPY _REVT function for copying the top level of a list of lists in reverse order and returning the address of

the new list.

COPY_REVT:
PROCEDURE (LIST)
RETURNS (POINTER)S

DECLARE
(LIST,ADDRESS1+,ADDRESS2) POINTER;
ADDRESS1 = LIST;
ADDRESS2 = NULL;3
L:
IF
ADDORESS1 = NULL

Figure 2.32B. The COPY_REVT function

46

THEN

RETURN(ADDRESS2) 3
ADDRESS2 = FORM_BODY(GET_VALUE
(ADDRESS1),
GET_TYPE(ADDRESS1),
ADDRESS2)3
ADDRESS1 = GET_LINK(ADORESS1NZ

GO T0 ‘
L3

END

COPY_REVT;

Lists of Lists
(before reference)

L1:

-

L2:

L3:

e EIME L BTN
Hps B G EIEN

N

— o[x] oY

Function

Reference

Function Value (FV)

Lists of Lists
(after reference)

COPY__REVT(L1)

Address of duplicate component
specifying W

L1: D——[DIVJ =~ p[w\]
- [{o[w[o[V

FV

COPY__REVTI(L2)

Address of duplicate component

2 [T EEN

specifying Z
NS EILN
Pv: [Folz] B T N
COPY REVTI(L3) Null address KN
FV:

Figure 2.32C. Examples of references to the COPY _REVT function

47

COPY _REVTT1 Function

Figures 2.33A and 2.33B present the COPY REVTI
function, which uses recursive techniques to produce the
same results as COPY_REVT in the previous discussion.

COPY_REVT1 Function

Purpose

To copy the top level of a list of lists in reverse order
and to return the address of the new list

Reference
COPY_REVT1(LIST,NULL)

Entry-Name Declaration

DECLARE COPY_REVT1‘ ENTRY (POINTER,
POINTER) RETURNS(POINTER);

Meaning of Argument

LIST — the list whose top level is to be copied
in reverse order

Remarks
Components at lower levels of LIST are not copied
but are shared with the new list. When LIST is
null, a null address is returned.

Other Programmer-Defined Procedures Required

FORM_BODY, GET_VALUE, GET_TYPE, and
GET_LINK

Method

COPY_REVT?1 performs the recursive equivalent
of the method developed in the previous function
COPY_REVT. COPY_REVT1 uses two pointer
parameters. The first parameter (LIST) represents
the list whose top level is to be copied. The second
parameter (ADDRESS) represents the new list;
initially ADDRESS is null. COPY_REVT1 returns
the value of the following recursive expression:

COPY_REVT1(GET_LINK(LIST), FORM_BODY
(GET_VALUE(LIST),GET_TYPE(LIST),
ADDRESS))

Each level of recursion is terminated by a null link
address.

Figure 2.33A. Description of the alternative function
COPY _REVTI1 for copying the top level of a list of
lists in reverse order and returning the address of the
new list

48

COPY_REVT1:PROCEDURE(LIST, ADDRESS)
RETURNS(POINTER) RECURSIVE;
DECLARE (LIST, ADDRESS) POINTER;
IF LIST = NULL THEN RETURN(ADDRESS);
RETURN(COPY_REVTI(GET_LINK(LIST),
FORM_BODY(GET_VALUE(LIST),
GET_TYPE(LIST),ADDRESS)));
END COPY_REVTL;

Figure 2.33B. The COPY_REVT!1 function

Manipulating all Levels of a List of Lists

So far, the procedures developed for processing items in a
list of lists are restricted to individual items or to the items
at the top level of a list. The following discussions develop
subroutines and functions for manipulating all levels of a
list of lists. These procedures are concerned with the fol-
lowing operations:

Obtaining the first and last data values in a list of lists
Counting the data values in a list of lists

Deleting values from a list of lists

Copying lists of lists

Testing lists of lists

Replacing data values in a list of lists

S AW~

Obtaining First and Last Data
Values in a List of Lists

To obtain either the first or the last data value in a list of
lists, it may be necessary to search sublists at many levels.
The following discussions develop four functions for per-
forming such searches:

1. GET_FD, which gets the first, or leftmost, data value
in a list of lists

2. GET_FDR, which is the recursive equivalent of
GET_FD

3. GET_LD, which gets the last, or rightmost, data
value in a list of lists

4. GET_LDR, which is the recursive equivalent of
GET_LD .

GET_FD Function ‘

Figures 2.34A, 2.34B, and 2.34C present the GET _FD
function, which requires the name of a list as its only argu-
ment. The function returns the address of the first data
value in the list.

GET _FDR Function

Figures 2.35A and 2.35B present the GET _FDR function,
which uses recursive techniques to produce the same result
as GET_FD in the previous discussion.

GET _LD Function
Figures 2.36A, 2.36B, and 2.36C present the GET_LD
function, which requires the name of a list as its only argu-

ment. The function returns the address of the last data
value in the list.

GET_LDR Function

Figures 2.37A and 2.37B present the GET_LDR function,
which uses recursive techniques to produce the same result

as GET LD in the previous discussion.

GET_FD Function
Purpose

To obtain the address of the first (leftmost) value
associated with a data component in a list of lists

Reference
GET_FD(LIST)
Entry-Name Declaration

DECLARE GET_FD‘ ENTRY (POINTER)
RETURNS(POINTER);

Meaning of Argument

LIST — the pointer variable that is the head of
the list to be processed

Remarks
When LIST is null, a null address is returned.

Other Programmer-Defined Procedures Required
GET_TYPE and GET_VALUE

Method
When the first component at the top level of LIST
contains a data address value (‘D’), this value is
returned. When the first component contains a
list address value (‘L’), this sublist is searched.

Searching continues in this manner until the first
data address value to the left is encountered.

Figure 2.34A. Description of the GET_FD function for getting the

first data item in a list of lists

GET_FOD:
PROCEDURE (LIST)
RETURNS (POINTER);
DECLARE
(LIST,ADDRESS) POINTER;
ADDRESS = LIST;
Ls
IF
GET_TYPE(ADDRESS)= *D°
THEN) '
RETURN(GET_VALUE(ADDRESS));
ADDRESS = GET_VALUE (ADDRESS);
G0 70
L3

GET_FD:

Figure 2.34B. The GET _FD function

Lists of Lists

L1 p|v cl N
o [wN]

L2: D"lLI [o x|
N EETOuN

s N

Function Function

Reference Value
GET_FD(L1) Address of V
GET_FD(L2) Address of Z
GET_FD(L3) Nutl address
GET_FD(NULL) Null address

Figure 2.34C. Examples of references to the GET_FD
function

49

GET_FDR Function
Purpose

To obtain the address of the first (leftmost) value
associated with a data component in a list of lists

Reference
GET_FDR(LIST)
Entry-Name Declaration

DECLARE GET_FDR ENTRY(POINTER)
RETURNS(POINTER);

Meaning of Argument

LIST — the pointer variable that is the head
of the list to be processed

Remarks
When LIST is null, a null address is returned.
Othef Programmer-Definéd Procedures Required
GET_TYPE and GET_VALUE

Method

GET_FDR performs the recursive equiv‘alent of the
previous function GET_FD.

Figure 2.35A. Description of the recursive function GET _FDR for getting the first data item in a list of lists

GET_FDR:

PROCEDURE (LIST)
RETURNS (POINTER) RECURSIVE;

DECLARE

IF

LIST POINTER;

GET_TYPE(LIST) = *D°

THEN

RETURN(GET_VALUE(LIST))
RETURN(GET_FOR(GET_VALUE(LIST)));

END
GET_FDR;

Figure 2.35B. The GET_FDR function

GET_LD Function

Purpose

associated with a data component in a list of lists
Reference

GET_LD(LIST)
Entry-Name Declaration

DECLARE GET_LD ENTRY (POINTER)
RETURNS(POINTER);

‘Meaning of Argument

LIST — the pointer variable that is the head
of the list to be processed

To obtain the address of the last (rightmost) value

Remarks
When LIST is null, a null address is returned.
Other Programmer-Defined Procedures Required
ADDRESS_LVT, GET_TYPE, and GET_VALUE
Method

When the last component at the top level of LIST
contains a data address value (‘D’), this value is
returned. When the last component contains a
list address value {‘L'), the sublist is searched.
Searching continues in this manner until a sublist
is encountered that contains a data address value
in the last component of its top level. '

Figure 2.36A. Description of the GET _LD function for getting the last data item in a list of lists

50

GET_LD: GET_TYPE(ADDRESS) = *D°

PROCEDURE (LIST) THEN
RETURNS (POINTER); RETURN(GET_VALUE (ADDRESS))3
DECLARE ADDRESS = GET_VALUE(ACDRESS);
(LIST,ADDRESS) PCINTER; GO TO
ADDRESS = LIST; Ls
Ls END
ADDRESS = ACDRESS_LVT(ACDRESS); GET_LD;.

IF
Figure 2.36B. The GET_LD function

Lists of Lists
v: Pl T ofu] PHolvN
—{pJo] J>p[r] F+p]s] TN
L2: plw L
—{.| [Po[z[N
D[x D |y
Function Function
Reference Value
GET_LD(L1) Address of V
GET_LD(L2) Address of Z
GET_LD(NULL) \ Null address

Figure 2.36C. Examples of references to the GET_ LD function

GET_LDR Function

LIST — the pointer variable that is the head of

Purpose the list to be processed

To obtain the address of the last (rightmost) value
associated with a data component in a list of lists

Remarks

When LIST is null, a null address is returned.
Reference

) Other Programmer-Defined Procedures Required
GET_LDR(LIST)

_ ADDRESS_LVT, GET_TYPE, and GET_VALUE
Entry-Name Declaration:

Method
DECLARE GET_LDR ENTRY (POINTER)

RETURNS(POINTER); GET__LDR performs the recursive equivalent of the

previous function GET_LD.

Meaning of Argument

Figure 2.37A. Description of the recursive function GET_LDR for getting the last data item in a list of Hsts

51

GET_LDR: :
PROCEDURE (LIST)
RETURNS (POINTER) RECURSIVE;
DECLARE , v
(LIST,ADDRESS) POINTER:
ADDRESS = ADDRESS_LVT(LIST);
IF
GET_TYPE(ADDRESS) = *D*
THEN
RETURN(GET_VALUE (ADDRESS))3
RETURN(GET_LDR(GET_VALUE (ADDRESS))) 3
END
GET_LDR;

Figure 2.37B. The GET_LDR function

Counting Data Values in a List of Lists

The overall size of a list of lists is determined by the num-
ber of data values at all levels of the list. The following
discussion developsthe COUNT _D function for counting
the number of data values throughout a list.

COUNT_D Function

Figures 2.38A, 2.38B, and 2.38C present the COUNT_D
function, which requires the name of a list as its only argu-
ment. The function returns a count of all data values in the
list.

COUNT_D Function
Purpose
To count all the data (D) values in a list of lists
Reference
COUNT_D(LIST)
Entry-Name Declaration
DECLARE COUNT_D ENTRY (POINTER)
RETURNS(FIXED
DECIMAL(5));

Meanihg of Argument

LIST — the pointer variable that is the head of
the list to be processed

Remarks

The maximum size is 99999. When LIST is null,

a zero size is returned. Only data items (‘D’) are
counted.

Other Programmer-Defined Procedures Required
GET_TYPE, GET_LINK, and GET_VALUE
Method
When the first component at the top level of LIST
contains a data item (‘D’), the following recursive
expression is evaluated:

1+ COUNT_D(GET_LINK(LIST))

When the first component contains a list item (‘L’),
the following recursive expression is evaluated:

COUNT_D(GET_VALUE(LIST)) + COUNT_D
(GET_LINK(LIST))

Each level of recursion is terminated when
GET_LINK returns a null address.

Figure 2.38A. Description of the COUNT_D function for counting all the data items in a list of lists

COUNT_D=
- PROCEDURE (LIST)
RETURNS (FIXED DECIMAL(S))
RECURSIVE;
DECLARE
LIST POINTER;
IF
LIST = NULL
THEN

Figure 2.38B. The COUNT _D function

52

RETURN(O) ;

IF
GET_TYPE(LIST) = *D*

THEN
RETURN(1+COUNT_D. (GET_LINK(LIST)));
RETURN(COUNT_D (GET_VALUE(LIST)) +
COUNT_D (GET_LINK(LIST)));

END

COUNT_D;

S EI N s CICIN

e [P T EEN
[T PN
—[o[x[]

L3: N

Function Function

Reference Value
COUNT_D(L1) 2
COUNT_DI(L2) 3
COUNT_DI(L3) 0
COUNT_D(NULL) 0

Figure 2.38C. Examples of references to the
COUNT _D function

Deleting List Components from a
List of Lists

The following discussions develop two subroutines for
deleting list components from a list of lists:

1. DELETE_LIST, which deletes all components from
a list of lists

2. DELETE NVT, which deletes the nth component
from the top level of a list of lists

DELETE _LIST Subroutine

Figures 2.39A, 2.39B, and 2.39C present the DELETE _
LIST subroutine, which requires as its only argument the
name of the list to be deleted. '

DELETE _NVT Subroutine
Figures 2.40A, 2.40B, and 2.40C present the DELETE _
NVT subroutine, which requires two arguments:

1. Name of a list of lists

2. Position of a value at the top level of the list

The subroutine deletes the value from the specified posi- '
tion at the top level of the list.

DELETE_LIST Subroutine
Purpose
To delete all values from a list of lists
Reference
DELETE_LIST(LIST)
Entry-Name Declaration
DECLARE DELETE_LIST ENTRY (POINTER);
Meaning of Argument

LIST — the list to be deleted

Remarks
LIST is null after deletion.
Other Programmer-Defined Procedures Required

GET_TYPE, GET_VALUE, GET_LINK, and
SET_LINK

Method

DELETE_LIST is a recursive subroutine. When the
value of the first component at the top level of the
list is a data item (‘D’), the component is inserted
into the list of available storage components AVAIL,
and the next component, which has now become
the first component at the top level, is examined.
When the value of the first component is a list

item (‘L’), the sublist (and any sublists within it)

is deleted recursively. The component that contains
the head of the deleted sublist is then inserted into
the list of available storage components, and the
next component at the top level is examined. These
steps are repeated until the list becomes null.

Figure 2.39A. Description of the DELETE_ LIST subroutine for
deleting all values from a list of lists

53

DELETE_LIST:
PROCEDURE (LIST) RECURSIVE;
DECLARE
' (LIST,S,AVAIL EXTERNAL) POINTER;
L:
IF
LIST = NULL
THEN \
RETURN;
/% IF THE VALUE OF THE FIRST
COMPONENT IS A SUBLIST,
RECURSIVELY DELETE THIS SUBLIST AND
PROCEED TO THE FOLLOWING
STATEMENTS, WHICH TREAT THE
COMPONENT THAT CONTAINS THE HEAD OF
THE DELETED LIST AS A DATA (°D*)
COMPONENT. */
IF
GET_TYPE(LIST) = *L*
THEN
CALL DELEVE_LIST (GET_VALUE(LIST));
/% OTHERWISE, THE VALUE OF THE
FIRST COMPONENT IS A DATA ITEM.
THEREFORE, INSERT THE COMPONENT
INTO THE LIST OF AVAILABLE STORAGE
COMPONENTS. */
S = AVAIL;
AVAIL = LIST;
LIST = GET_LINK(LIST);
CALL SET_LINK(AVAIL,S)3
/% DELETE NEXT COMPONENT. */
G0 TO
: Ls
END
DELETE_LIST;

Figure 2.39B. The DELETE _LIST subroutine

Lists of Lists
(before reference)

v (R PEEN
2 (PO T EEN
L TEEN

L3: E

Subroutine Lists of Lists

Reference (after reference)
DELETE_LISTIL1) | s N\
DELETE_LIST(L2) e N
DELETE_ LIST(L3) L3: ESJ

Figure 2.39C. .Examples of references to the
DELETE _LIST subroutine

54

DELETE_NVT Subroutine
Purpose

To delete the nth value from the top level of a list of
lists

Reference
DELETE_NVT(LIST,N)
Entry-Name Declaration

DECLARE DELETE_NVT ENTRY(POINTER,
FIXED DECIMAL(5));

Meaning of Arguments

LIST — the list from which the nth value at

the top level is to be deleted
N — an integer that specifies the position

of the value to be deleted from the top
level of the list

Remarks

No value is deleted when N is less than one or greater
than the size of the top level.

Other Programmer-Defined Procedures Required

ADDRESS_NVT, GET_TYPE, DELETE_LIST,
GET_VALUE, GET_LINK, and SET_LINK

Method

When the nth component contains a data item
(‘D’), it is inserted into the list of available storage
components AVAIL. When the nth component
contains a list item {'L"), the sublist is deleted first,
and then the nth component at the top level is
inserted into AVAIL.

Figure 2.40A. Description of the DELETE_NVT subroutine for

deleting the nth value from the top level of a list of
lists

DELETE_NVT:
PROCEDURE (LIST4N);

DECLARE
N FIXED DECIMAL(S5),
(LIST,COMPONENT,S,AVAIL EXTERNAL)

POINTER;
/% OBTAIN ADDRESS OF N-TH COMPONENT
AT TOP OF LIST. &/
COMPONENT = ADDRESS_NVT(LIST¢N);
/% RETURN IF ADDRESS OF N-TH
COMPONENT IS NULL. %/

IF
CCMPONENT = NULL

THEN
RETURN;
/% IF THE VALUE OF THE N-TH
COMPONENT IS A LIST, THEN DELETE
THIS LIST. %/

IF

GET_TYPE(COMPONENT) = *L*

Figure 2.40B. The DELETE _NVT subroutine

THEN
CALL DELETE_LIST(GET_VALUE
(COMPONENT)) 5
/% OTHERWISE THE VALUE OF THE N-TH
COMPONENT IS A DATA ITEM. THEREFORE,
INSERT THE N-TH COMPONENT INTO THE
LIST OF AVAILABLE STORAGE
COMPONENTS. %/

S = AVAIL; AVAIL = COMPONENT;
IF

N=1
THEN

LIST = GET_LINK{(LIST);
ELSE

CALL SET_LINK(ADDRESS_NVT(LIST,N-1),
GET_LINK(COMPONENT)) ;
CALL SET_LINK(AVAIL,S);
END
DELETE_NVT;

Lists of Lists
(before reference)
v HOITHEEN
- PR BN
L2: I!
Subroutine Lists of Lists
Reference (after reference)
DELETE_NVTI(L1,1) NI = FIEAN
DELETE _NVT(L1,2) L1:
o[x] Ho[v]N
DELETE_NVT(L1,3) L1 D—|L| =N
b [X] HDIYN
DELETE_NVT(L2,1) TN

Figure 2.40C. Examples of references to the DELETE NVT subroutine

55

* Copying Lists of Lists

It is often necessary to create a distinct copy of a list of lists
for working purposes, while retaining the original list. The
second list can be an exact duplicate of the first, or it can
contain modifications, such as having its sublists leveled, so
that all its data values appear at the top level. The follow-
ing discussions develop two functions for such duplication:

1. COPY_LIST, which copies a list without modifica-
tions

2. COPY_LEV, which copies a list with all sublists
leveled

Each function returns the address of the new list. Assign-
ment of this address to a pointer variable is effectively
equivalent to list assignment.

COPY _LIST Function

Figures 2.41A, 2.41B, and 2.41C present the COPY_LIST
function, which uses the name of a list as its only argument.
The function returns the address of the duplicate list.

COPY _LEYV Function

Figures 2.42A, 2.42B, and 2.42C present the COPY LEV
function, which uses as an argument the name of the list to
be copied with all sublists leveled. The function returns
the address of the new list.

COPY _LIST Function
Purpose

To copy a list of lists and to return the address of the
new list

Reference
COPY _LIST(LIST)
Entry-Name Declaration

DECLARE COPY_LIST ENTRY (POINTER)
RETURNS(POINTER);

Meaning of Argument
LIST — the list to be copied

Remarks

Distinct components are created at all levels for the
new list, so that no components are shared between
the old list and the new list. When LIST is null, a
null address is returned.

Other Programmer-Defined Procedures Required

FORM_BODY, GET_TYPE, GET_VALUE, and
GET_LINK

Method

COPY _LIST is a recursive function procedure.
When the first component at the top level of LIST
specifies a data item (‘D’), COPY _LIST returns the
value of the following recursive expression:

FORM_BODY(GET_VALUE(LIST), ‘D',
COPY_LIST(GET_LINK(LIST)))

When the first component at the top level of LIST

specifies a list item (L"), COPY _LIST returns the
value of the following recursive expression:

FORM_BODY(COPY _LIST(GET_VALUE
(LIST)), ‘L’, COPY _LIST(GET_LINK(LIST)})

Recursion is terminated by a null link address.

Figure 2.41A. Description of the COPY _LIST function for copying a list of lists and returning the address of the new list

COPY_LIST:
- PROCEDURE (LIST)
RETURNS (POINTER) RECURSIVE;
DECLARE
LIST POINTER;

IF

LIST = NULL
THEN

RETURN (NULL);
IF

; GET_TYPE(LIST) = *D*
Figure 2.41B. The COPY _LIST function

56.

THEN
RETURN(FORM_BODY(GET_VALUE(LIST)Y,
‘DY,
COPY_LIST (GET_LINK(LIST)IIN);
ELSE

RETURN(FORM_BODY(COPY_LIST

(GET_VALUE(LIST)),

sLe ?

COPY_LIST (GET_LINK(LIST)I)));
END

COPY_LIST;

Lists of Lists
(before reference)

specifying V

L1: D|V D|w
e [T ez
DX DlY
i N
Function Function Value (FV) Lists of Lists
Reference (after reference)
COPY _LIST(L1) Address of duplicate component v: [{o[v[o WN

rv: [Po]v P W

COPY _LIST(L2) Address of duplicate component L2: D‘PI LI I —HD IZ N
specifying sublist elements
Xand Y o [x] Fp[vN]
v [T EEN
{0 [x]| oY\
COPY__LIST(L3) Null address e N

Figure 2.41C. Examples of references to the COPY _LIST function

57

‘ Other Programmer-Defined Procedures Required
COPY_LEV Function :

FORM_BODY, GET_TYPE, GET_LINK, and
Purpose GET_VALUE

To copy a list of lists with all sublists leveled and to Method
return the address of the new list

COPY_LEV is a recursive function procedure that
uses two pointer parameters. The first parameter
(LIST) represents the list to be copied. The second
parameter (ADDRESS) represents the new list;
initially, ADDRESS is null. When the first
component at the top level of LIST is a data item
(‘'D’), COPY_LEV returns the pointer value of the
following recursive expression:

Reference
COPY_LEV(LIST,NULL)
Entry-Name Declaration

DECLARE COPY_LEV ENTRY (POINTER,
POINTER) RETURNS(POINTER);

. FORM_BODY(GET_VALUE(LIST), ‘D',
Meaning of Argument COPY_LEV(GET_LINK(LIST), ADDRESS))
LIST — the list to be copied When the first component at the top level of LIST
is a list item (‘L’), COPY _LEV returns the value of

Remarks the following recursive expression:

The new list contains only data items (‘D). Each
sublist in LIST is replaced in the new list by a
linked sequence of the data items contained in the
sublist. When LIST is null, a null address is '
returned.

COPY_LEV(GET_VALUE(LIST), COPY_LEV
(GET_LINK(LIST), ADDRESS))

Each level of recursion is terminated by a null link
address in LIST.

Figure 2.42A. Description of the COPY_LEV function for'copying a list of lists with all sublists leveled and returning the address of the
new list

COPY_LEV:
PROCEDURE (LESTyADDRESS) -
RETURNS (POINTER) RECURSIVE;
DECLARE
(LIST,ADDRESS) POINTER;
IF
LIST = NULL
THEN ,
RETURN(ADDRESS) ;
IF

THEN

GET_TYPE(LIST) = *D*

‘RETURN(FORM_BODY(GET_VALUE(LIST),

e, ‘ .

CGPY.LEY(GET_LINK(LISTl'ADDRESS)))S

RETURN(COPY_LEV(GET_VALUE(LIST),

COPY_LEV(GET_LINK(LIST) ,ADDRESS)));
END

COPY_LEV;

Figure 2.42B. The COPY LEV function

58

Lists of Lists
(before reference)

v O TRR RN

olv] P{c] N
—{oJw]| F={o][x]\]

2: [Polo] PHolr[Hols] ol HoluN

component specifying V

Function Function Value (FV) Lists of Lists
Reference (after reference)
COPY _LEV(L1) Address of duplicate v [l plv NE

—ofv]] N
—={oJw| F{ox[\]

Fv: [{o[v] }{olw[F{o[x] F+ol¥[}+{o]zN

COPY_LEV(L2) Address of duplicate L2:
component specifying Q

N

FV:

<

[F{ofo] }+{o]r[Fr{ols[F+pr[F+olvN

J+{olel F{olrT F+{olsT ol F{oluN

Figure 2.42C. Examples of references to the COPY _LEV function

Testing Lists of Lists

The following discussions develop two functions for per-
forming tests on lists of lists:

1. EQUAL_L, which tests two lists for equality

2. MEMBER, which tests for the presence of a specified
data value in a list of lists

EQUAL _L Function
Figures 2.43A, 2.43B, and 2.43C present the EQUAL_L
function, which uses the names of two lists for its argu-

ments. When the two lists are equal, the function returns
‘1’B; otherwise, ‘O’B is returned.

MEMBER Function
Figures 2.44A, 2.44B, and 2.44C present the MEMBER
function, which uses two arguments:

1. Address of a data item

2. Name of a list of lists

When the data item is a member of the list, the function
returns ‘1°B; otherwise, it returns ‘0’B.

59

EQUAL_L Function
Purpose
To test two lists of lists for equality
Reference
EQUAL_L(LISTT1, LIST2)
Entry-Name Declaration
DECLARE EQUAL_L ENTRY (POINTER,
POINTER)

RETURNS(BIT(1));

Meaning of Arguments

LIST1 — the first list to be tested for equality
LIST2 — the second list to be tested for
equality
Remarks’

When the lists are equal, EQUAL_L returns the
value ‘1’B. When the lists are not equal, ‘0’B is
returned. For equality, both lists must be linked
identically, and corresponding data components
(‘D’) must contain the same value pointers. Both

lists can share common components. Two null
lists are considered equal.

Other Programmer-Defined Procedures Required

EQUAL_D, GET_TYPE, GET_VALUE, and
GET_LINK

Method

EQUAL_L is a recursive function. When both lists
are null, ‘1'B is returned. When one of the lists is
null and the other is not, ‘O’B is returned. When the
first component at the top level of each list has
type ‘D’, the value of the following recursive
expression is returned:

EQUAL_D(LIST1, LIST2) & EQUAL_L
(GET_LINK(LIST1),GET_LINK(LIST2))

When the first components have type ‘L, EQUAL_L
returns the value of the following recursive
expression:

EQUAL_L(GET_VALUE(LIST1), GET_VALUE
(LIST2)) & EQUAL_L(GET_LINK(LIST1),
GET_LINK(LIST2))

When the first components have unequal types,
‘0’'B is returned. Each level of recursion is terminated
by a null link address in either list.

Figure 2.43A. Description of the EQUAL _L function for testing the equality of two lists of lists

EQUAL_L:
PROCEDURE(LIST1,LIST2)
"RETURNS (BIT(1)) RECURSIVE;
DECLARE
(LIST1,LIST2) POINTER; -

IF
(LISTL = NULL) & (LIST2 = NULL)
THEN
RETURN(*1°8);
IF
(LISTL = NULL)I(LIST2 = NULL)
THEN
RETURN(*0'8);
IF

(GET_TYPE(LIST1) = *D*) &
(GET_TYPE(LIST2) = *D*)

Figure 2.43B. The EQUAL _L function

THEN
RETURN(EQUAL_DILIST1,LIST2)
& EQUAL_L (GET_LINK(LISTL),
GET_LINK(LIST2)));

IF

GET_TYPE(LIST1) = GET_TYPE(LIST2)

THEN
RETURN(EQUAL_L (GET_VALUE(LIST1),
GET_VALUE(LIST2))
€ EQUAL_L (GET_LINK(LIST]),
GET_LINK(LIST2)));
RETURN(*0*B);

END

EQUAL_L;

Lists of Lists

v I EeEN
T T+EN
—{o[xN]
o D T +REN
LT T RN
La:

PR ENN

Function Function

Reference Value
EQUAL_L(L1,L2) 1'B (=)
EQUAL_L(L1,L3) ~0'B ("1=)
EQUAL_L(L4,L5) ‘0'B (" 1=)
EQUAL_L(L5,L6) ‘0'B (=)

Figure 2.43C. Examples of references to the EQUAL L
function

MEMBER Function
Purpose

To test for the presence of a data item in a list of
lists

Reference
MEMBER (7D,< LIST)
Entry-Name Declaration

DECLARE MEMBER ENTRY(POINTER, POINTER)
RETURNS(BIT(1));

Meaning of Arguments

D — the address of the data item being
tested for
LIST — the list being tested for the presence
of D
Remarks

When Dis in LIST, MEMBER returns ‘1'B;
otherwise, it returns ‘0'B.

Other Programmer-Defined Procedures Required

GET_TYPE, GET_VALUE, and GET_LINK
Method

MEMBER is a recursive function. When LIST is
null, ‘0'B is returned. When the first component at
the top level of LIST has type ‘D’ and its value
equals D, MEMBER returns ‘1’B. When the first
component at the top level of LIST has type ‘D’ but
its value does not equal D, MEMBER executes the
following statement:

IF MEMBER(D, GET_LINK(LIST))
THEN RETURN(’1'B); ELSE RETURN(‘0"B);

When the first component at the top level of LIST
has type ‘L’, MEMBER executes the foiiowing
statements:

IF MEMBER(D, GET_VALUE(LIST)) THEN
RETURN('1'B); ’

IF MEMBER(D, GET_LINK(LIST))
THEN RETURN(‘1"B); ELSE RETURN('0;B);

Each level of recursion is terminated by a null link
address.

Figure 2.44A. Description of the MEMBER function for testing a list of lists for the presence of a data item

MEMBER:
PROCEDURE (Dy LIST)
RETURNS (BIT(1)) RECURSIVE;
DECLARE
(Dy LIST) POINTER;
IF
LIST = NULL
THEN
RETURN('0'B);
- IF
GET_TYPE(LIST) =*D*
THEN
IF
GET_VALUE(LIST) =D
THEN
RETURN(*1°'B);

Figure 2.44B. The MEMBER function

62

ELSE;
ELSE

IF
MEMBER(Dy GET_VALUE(LIST))

RETURN(*1°B);

IF
MEMBER(Dy GET_LINK(LIST))
THEN
RETURN('1°B);
ELSE
RETURN(*0°B);
END

MEMBER

Lists of Lists

v [PV T pEN
o] PR o N
N M g CIEINN
Function Function
Reference Value
MEMBER(GET_NVT(L2,2),L1) ‘1B
(Xin L1)
MEMBER(GET_NVT(L2,1),L1) ‘0'B
(T notin L1)

Figure 2.44C. Examples of references to the MEMBER function ‘

Replacing Data Values in a List of Lists

The following discussion presents the REPLACE subroutine,
which replaces each occurrence of a data value in a list of
lists with another data value.

REPLACE Subroutine
Figures 2.45A, 2.45B, and 2.45C present the REPLACE
subroutine, which uses three arguments:

1. Address of the data value being replaced

2. Address of the new data value

3. Name of the list of lists in which the replacement
occurs

63

Remarks

REPLACE Subroutine _ |
' D1 and D2 must be addresses of data items and not
Purpose ' of lists (D1 or D2 can be null).
To replace each occurrence of a data item in a list Other Programmer-Defined Procedures Required

of lists with another data item
GET_TYPE, GET_VALUE, GET_LINK, and -

Reference SET VALUE
REPLACE(D1, D2, LIST)) Method
Entry-Name Declaration REPLACE is a recursive subroutine. When LIST is

. null, no replacement occurs.
DECLARE REPLACE ENTRY(POINTER,POINTER,

POINTER); When the first component at the top level of LIST
. has type ‘D’ and its value equals D1, value D2
Meaning of Arguments ‘ replaces D1. When the first component at the top
] level of LIST has type ‘L’, the sublist is processed
D1 — the address of the data item to be recursively with the following statement:
replaced
CALL REPLACE(D1, D2, GET_VALUE(LIST));
D2 — the address of the data item replacing
D1 In both cases, the remainder of the list is processed
recursively with the following statement:
LIST — the list within which replacement

oceurs CALL REPLACE(D1, D2, GET_LINK(LIST));

Figure 2.45A. Description of the REPLACE subroutine for replacing each occurrence of a data item in a list of lists with another data item

REPLACE:
PROCEDURE (D1,D24LIST) RECURSIVE;
DECLARE
' (D1,D2,LIST) POINTERS
IF
LIST = NULL
THEN
RETURN;
IF
GET_TYPE(LIST) = *D*
THEN
IF
GET_VALUE(LIST) = D1
‘THEN
CALL SET_VALUE(LIST,D2,°D');
ELSE;
ELSE
CALL REPLACE (D1,02,
GET_VALUE(LIST));
CALL REPLACE (D14D24GET_LINK(LIST));
END
REPLACE;

Figure 2.45B. The REPLACE subroutine

64

Data
Storage

Lists of Lists
(before reference)

L1:

L D|1

I—'ltl | Pofs\]

w2 [oz oz P2 N

Subroutine Lists of Lists
Reference (after reference)
REPLACE (M,N,L1) v Pl T2 N

L D |8

MEIN

REPLACE (N,M,L2) L2: DWD Ll Pl N

Figure 2.45C. Examples of references to the REPLACE subroutine

USING LISTS OF LISTS

Lists of lists provide the same reductions in data duplication
and data movement that are available with pointer lists. Un-
like pointer lists, however, lists of lists eliminate the need

to know exactly how many lists a program will require dur-
ing execution. New lists can be generated as the need arises
for them during program execution, and they can be
treated as sublists within a major list of lists.

The following discussions provide two examples of this
flexibility in list generation.

The first example shows how a list of lists may be used
to represent a binary tree that has an arbitrary number
of branches. It then applies the tree list to a sort applica-
tion.

The second example creates an index from descriptor
words contained in a set of catalog cards. The index is
organized as a list of lists. Each sublist specifies a descriptor
word and the catalog cards that contain the descriptor. The
number of descriptors, and consequently the number of sub-
lists, is arbitrary.

Sorting With a Binary Tree
The following discussion shows how a list of lists may be

used to represent a binary tree and how the resultant tree
list may be applied to sorting.

Figure 2.46 A applies a tree sort to the seven integers 4,
2,6,3,1,5,and 7, received in that order. Each node of the
tree contains an integer. The left branch of each node
always leads to a smaller integer, and the right branch
always leads to a larger integer. Successive integers enter the
tree at the bottom, as shown in Figure 2.46A.

The shape of the tree will vary according to the original
order of the integers. If the integers are already in ascending
sequence, the tree will contain right branches only. Simi-
larly, a descending sequence will produce left branches
only.

Although the placement of the integers in the binary tree
of Figure 2.46A does not correspond to a conventional
sort arrangement, the integers are readily retrieved in sort
order. The smallest integer is reached by always taking the
left branch of successive nodes. Taking the right branch of
successive nodes leads to the largest integer. Appropriate
combinations of left and right branches lead to the other
integers. Later discussions develop recursive procedures for
performing such retrieval.

Figure 2.46B contains a list representation of the binary
tree constructed in Figure 2.46A. This list uses three list
components for each node in the tree. The first component
specifies the data value at the node. The second compo-
nent is an L-component whose value pointer branches to
the next node on the left. The third component is also an
L-component whose value pointer branches to the next

65

66

Data to be Arranged in Binary Tree

4 e N N
\3
2/A4\6 2/4\6 2/4\6
1/ \3 1/ \3 5/ 1/ \3 5/ \

Figure 2.46A. Sorting data items by arranging them in a binary tree

" TREE:
T TN

—ole| Pl | P N

—{p 7] PN P NN
—>pfs[PN P NN

—pf2] Fi]

[N

I X AN 5 NN
—pl [NP NN

Figure 2.46B. Representing a binary tree with a list of lists

node on the right. When a node is not followed by another
node (either on the left or on the right), the appropri-
ate L-components contain null value pointers.
Representation of each node as a sublist within a list of
lists allows the main list to contain an arbitrary number of
nodes. It also frees the programmer from having to know
exactly how many nodes will be required and what their
arrangement will be during program execution.

The remainder of this discussion shows how a tree list
(as illustrated in Figure 2.46B) may be used to sort succes-
sive sets of input cards, where each set contains an arbitrary
number of cards. The cards are assumed to have the fol-
lowing structure:

1 CARD,
2KEY CHARACTER(3)
2 DATA CHARACTER(77)

Sorting occurs in ascending sequence on KEY. Each set of
cards is terminated by a card that contains three asterisks
(***)in its KEY field.

To simplify the organization of the sort program, a main
procedure (T__SORT) is designed to operate with a func-
tion procedure (NODE) and two subroutine procedures
(ADD_NODE and T _PRINT):

1. NODE creates a three-component node for the list
representation of a binary tree and returns the address of
the leftmost component in the node.

2. ADD_NODE inserts a node (created by NODE) into
the list representation of a binary tree in sort order.

3. T_PRINT prints in sort order the data values speci-
fied in the list representation of a binary tree. ‘

Figures 2.46C and 2.46D present the NODE function,
which uses the address of a card as its only argument. The
function generates a three-component node for the card,
assigns the address of the card to the value pointer of
the leftmost component, and returns the address of the
leftmost component. The value pointers of second and
third components as well as the link pointer of the third
component are null. The function creates the node by
using three nested references to the function FORM _
BODY, which was developed earlier.

NODE:
PROCEDURE (CARD_ADDRESS)
RETURNS (POINTER);

DECLARE
CARD_ADDRESS POINTER,
NULL_PTR POINTER;
NULL_PTR = NULL:
RETURN(FORM_BODY (CARD_ADDRESS,*D*,
FORM_BODY (NULL_PTR, L',
FORM_BODY (NULL_PTR, *L"*,
NULL_PTR))))

END
NODE;

Figure 2.46C. The NODE function

To simplify the diagrams in Figuré 2.46D, single-position
character strings are used instead of 80-position cards. This
simplification is also used in the remaining diagrams of the
discussion.

Data
Storage.

Function Generated Node Function

Reference Value

NQDE (M) rDI 1 L H L N I""[;L l\\!\\l Address of leftmost component
in node generated by function

NODE(N) FDI 2 | H L N H L N\l Address of leftmost component
in node generated by function

Figure 2.46D. Examples of references to the NODE function

67

Figures 2.46E and 2.46F present the ADD_NODE sub-
routine, which is a recursive procedure that uses two
arguments:

1. Address of a card that contains KEY and DATA
fields as described earlier ‘

2. Name of a list that represents a binary tree

ADD_NODE:
PROCEDURE (CARD_ADDRESS, TREE)

. RECURSIVE;

DECLARE
1 CARD_IMAGE BASED(NODE_CARD),
2 KEY CHARACTER(3),

2 DATA CHARACTER(7T),
NODE_CARD POINTER,
(TREEyCARD_ADDRESS s LEFT4RIGHT)

The subroutine creates a node for the card by invoking
the NODE function and then links the node to the bottom
of the specified tree list. The KEY field of the card deter-
mines where the new node is inserted into the tree list.

THEN
IF
GET_VALUE (LEFT) = NULL
THEN
CALL SET_VALUE(LEFT,NODE
(CARD_ADDRESS),*L*)3
ELSE
CALL ADD_NODE(CARD_ADDRESS,

POINTER; GET_VALUE(LEFT));
IF : ELSE
TREE = NULL IF
THEN GET_VALUE(RIGHT) = NULL
DO . THEN ‘ ,
TREE = NODE(CARD_ADDRESS); RETURN; CALL SET_VALUE(RIGHT,NODE
END; (CARD_ADDRESS)y'L*);
NODE_CARD = GET_VALUE(TREE); ELSE
LEFT = GET_LINK(TREE); CALL ADD_NODE (CARD_ADDRESS,
RIGHT = GET_LINK(GET_LINK(TREE)); GET_VALUE(RIGHT))
IF END
CARD_ADDRESS—->KEY<NODE_CARD->KEY ADO_NODE;
Figure 2.46E. The ADD_NODE subroutine
Data Tree Lists
Storage (before reference)

w: [F{s]

v LB TN |
N NS ENENENN
OO ENEEENN
Subroutine Tree Lists
Reference (after reference)

ADD_NODE (M,L1)

L D—b[olsf PN e NN

ADD_NODEI(N,L2)

lﬁ

LpleT I T N

—b o[LN PLDNN

—fola] P T NN

—p L[NN

Figure 2.46F. Examples of references to the ADD_NODE subroutine

68

Figures 2.46G and 2.46H present the T PRINT sub-
routine, which is a recursive procedure that uses the name standard system-input file, SYSIN, and printed unsorted on

of a tree list as its only argument. The subroutine prints the the standard system-output file, SYSPRINT. As each card

cards specified at the nodes of the tree list. The cards are

printed in sort order on the standard system-ouput file,

SYSPRINT.
T_PRINT:
PROCEDURE (TREE) RECURSIVE;
DECLARE
1 CARD_IMAGE BASED(NODE_CARD),
2 KEY CHARACTER(3),
2 DATA CHARACTER(T77),
NODE_CARD POINTER,
(TREE,LEFT,RIGHT) POINTERS
IF
TREE = NULL
THEN
RETURN;

END

NODE_CARD = GET_VALUE(TREE);
LEFT = GET_VALUE(GET_LINK(TREE))
RIGHT = GET_VALUE(GET_LINK
(GET_LINK(TREE)));
CALL T_PRINT(LEFT);
PUT
EDIT(NODE_CARD->CARD_IMAGE)(A);
PUT)
SKIP;
CALL T_PRINT(RIGHT);

T_PRINT;

Figure 2.46G. The T_PRINT subroutine

storage area called LIST AREA. Cards are read from the

is read, based storage is allocated for it in the area called
CARD_AREA. Reading stops when the KEY field of a
card contains three asterisks (***). Should the number of
cards in a set exceed the capacity of CARD_AREA, the
remaining cards in the set are skipped, and only those cards
allocated in CARD _AREA are sorted.

T_SORT:
PROCEDURE 3

DECLARE

CARD,

KEY CHARACTER(3),

DATA CHARACTER(T77),

CARD_IMAGE BASED(CARD_ADDRESS),

KEY CHARACTER(3),

DATA CHARACTER(TT),
(CARD_AREA, LIST_AREA) AREA,
CARD_ADORESS POINTER,
(TREEsAVAIL EXTERNAL) POINTER;
/% WHEN ALL SETS OF INPUT CARDS
HAVE BEEN SORTED, TERMINATE
PROGRAM., */

ON ENDFILE (SYSIN)

60 TO
END_T_SORT;
/* WHEN THE NUMBER OF CARDS IN A SET
EXCEEDS THE CAPACITY OF CARD_AREA,
SKIP REMAINING CARDS IN SET, AND
PRINT THE FOLLOWING MESSAGE AFTER
LAST CARD: '*%x INPUT EXCEEDED AREA
CAPACITY®*. THEN PRINT CONTENT OF
TREE LIST IN SORT ORDER. */

NN NN -

ON AREA
Actual sorting is under control of the main procedure S:ﬁg:m
T _SORT, which appears in Figure 2.461. T_SORT invokes GET
the AREA_OPEN subroutine (developed earlier) to create 1 EDIT (CARD) (A(3), A(TT));

a list of available storage components (AVAIL) in the

CARD.KEY = t%&x%¢

Tree List

L1:D7 L H

—=o[9] e IN P NN

—=ofa] Pl 1P NN

o] PN e NN

Subroutine Subroutine
Reference Printout
T_PRINT(LT) 1
4
7
9

Figure 2.46H. Example of a reference to the T_PRINT subroutine

69

THEN'
D03
PUT
LIST(***% INPUT EXCEEDED AREA
CAPACITY®);
PUT
SKIP;
GO 70
PRINT_QUTPUT;

/% INITIALIZE. */
TREE, AVAIL = NULL:
LIST_AREA = EMPTY;
CALL AREA_OCPEN(LIST_AREA,AVAIL);
/% GET NEXT SET OF INPUT CARDS.
PRINT EACH CARD AS IT IS READ, AND
CREATE A NODE FOR IT IN TREE LIST. */
START:
‘GET
EOIT(CARDI(A(3)A(TT))
PUT
PAGE
LIST(*T_SORT INPUT:?);
PUT
SKIP;
PRINT_INPUT:
PUT
EDIT(CARD)(A);
PUT
SKIP;
IF
CARD.KEY = t#xx%xt
THEN
GO TO
PRINT_OUTPUT;
ALLOCATE CARD_IMAGE IN(CARD_AREA)
SET(CARD_ADDRESS);
CARD_ADDRESS->CARD_IMAGE = CARD;
CALL ADD_NODE(CARD_ADDRESS, TREE);
GET
EDIT(CARD) (A(3),A(T7));
G0 TO
PRINT_INPUT;
/* PRINT TREE LIST IN SORT ORDER, */
PRINT_OUTPUT:
PUT
PAGE
LIST(*T_SORT QUTPUT:");
PUT
SKIP;
CALL T_PRINT(TREE);
PUT
EDIT(CARD)(A)3
/% CLEAR CARD_AREA AND TREE LIST,*/
/*THEN PROCESS NEXT SET OF INPUT #*/
/* CARDS. */
CARD_AREA = EMPTY;
CALL DELETE_LIST(TREE);
GO TO
START;
END_T_SORT:
END
T_SORT;

Figure 2.461. The T _SORT procedure

70

The address of each card in CARD _AREA is used to
form a node in the tree list.called TREE. The ADD_NODE
subroutine inserts the node into TREE, as described earlier.
When TREE contains a node for each card, the cards are
printed in sort order by the T_PRINT subroutine. A sample
printout appears in Figure 2.46J.

T_SORT OUTPUT:
1 ONE

2 TWO

3 THREE

4 FOUR

5 FIVE

6 SIX

7 SEVEN

x k¥

Figure 2.46J. Printout from T _SORT and T PRINT

Before the next set of input cards is sorted, CARD _
AREA and TREE are cleared. Processing is terminated
when an end-of-file condition occurs on the standard
system-input file, SYSIN.

In summary, a tree list permits varying numbers of input
cards to be sorted with a minimum of data movement and
data duplication.

Indexing Catalog Cards

The use of a list of lists to index catalog cards is illustrated
in Figures 2.47A through 2.47H. To avoid complexity, the
discussion uses a simplified version of a catalog card, as
shown in Figure 2.47A. The first ten columns of each card
contain an accession number, which consists of any combin-
ation of characters acceptable to the computer. In the case
of a book catalog, the accession number might correspond
to a Dewey decimal number; or it might serve as a part
number for a catalog of machine parts. It could also repre-
sent the identification number used in an art collection.

INPUT TO INDEX:

T2-XY4-16 PHOTOGRAPH BLACK WHITE LARGE
A9-1LT7-RZ PAINTING BLACK WHITE SMALL

¥9-016-X8 SCULPTURE MARBLE BLACK SMALL
Y8-123-X7 SCULPTURE MARBLE WHITE MEDIUM

Figure 2.47A. Input to INDEX

The remaining 70 columns of each card contain descrip-
tive information about the item ‘being cataloged. This
information consists of descriptive words (descriptors) that
specify particular features of the item being cataloged. For
this discussion, a descriptor cannot exceed ten characters
in length, but it can contain any combination of charac-
ters and need not be restricted to a word. The number of

descriptors in a card is arbitrary, but at least one blank
character must separate successive descriptors. When a card
cannot hold all the desired descriptors, additional cards may
be used, provided that they contain the same accession
number.

The four catalog cards in Figure 2.47A provide informa-
tion about art objects, and the index produced for these
cards appears in Figure 2.47H. The descriptors are printed
in sort order, and each descriptor is followed by all cards
that contain the descriptor. The cards for each descriptor
are arranged in ascending sequence on accession number.

A possible list representation for this type of index
appears in Figure 2.47B. The list contains an arbitrary num-
ber of sublists, each of which is associated with a separate
descriptor. The value pointer for the first component in a
sublist specifies the descriptor for that sublist. The value
pointer for each of the remaining components in a sublist
specifies a card that contains the descriptor for the sublist.

To simplify the organization of the program that creates
the index list and prints it, a main procedure (INDEX) is
designed to operate with two function procedures (GET _
DESCRIPTOR and GET_DESCRIPTOR_COMPONENT)
and two subroutine procedures (INSERT_CARD and
PRINT _INDEX):

1. GET_DESCRIPTOR obtains the next descriptor in a

catalog card.

2. GET_DESCRIPTOR _COMPONENT obtains the
address of the first component in a sublist that is associated
with a specified descriptor. When no sublist exists for the
descriptor, a sublist is created, and the address of its first
component is returned.

3. INSERT_CARD inserts a catalog card in a specified
sublist. :

4. PRINT INDEX prints the index list in sort order.

INDEX_LIST: l___l—]

— o ol Ho RN

||

—olo [Ho[en N

||

55 [o6 [Ho e [Ho[e N

— o[0 [o[[o[[Holea [Hpleu N

N

Key:

Di specifies the descriptor for the ith sublist.

Cij specifies the jth catalog card in the ith sublist.

Figure 2.47B. Representing an index with a list of lists

71

Figure 2.47C contains the GET_DESCRIPTOR function
procedure. It uses one parameter (DESCRIPTOR
_STRING), which is a varying-length character string that
has a maximum length of 71 characters. The value of the
parameter initially consists of the characters in columns 11
through 80 of a catalog card and an additional blank char-
acter appended on the right.

GET_DESCRIPTOR:
PROCEDURE (DESCRIPTCR_STRING)
RETURNS (CHARACTER (1C));
DECLARE
DESCRIPTOR_STRING CHARACTER(7!)
VARYING,
DESCRIPTOR CHARACTER(1C)H,
(C1,C2) FIXED DECIMAL(2);
FIRST_CHARACTER:

DO

Cl = 1 TO LENGTH(DESCRIPTCR_ST2IN3);

IF

SUBSTR(DESCRIPTOR_STRING, Cl,i)~=* ¢

THEN
GO TO
LAST_CHARACTER;
END;

RETURN_BLANK_DESCRIPTOR:
RETURN((10)* *)3
LAST_CHARACTER:

DO
C2 = C1 TCO LENGTH
(DESCRIPTOR_STRING) ;
IF
SUBSTR(DESCRIPTOR_STRING,C2,1) = ¢
THEN
GO TO
EXTRACTY_DESCRIPTOR;
END;

EXTRACT_DESCRIPTOR:
DESCRIPTOR = SUBSTR
(DESCRIPTOR_STRING,Cl,C2-113
SHIFT_DESCRIPTOR_STRING:
DESCRIPTOR_STRING =
SUBSTR(DESCRIPTOR_STRING, C2)3
RETURN_DESCRIPTOR:
RETURN(DESCRIPTOR) ;
END
GET_DESCRIPTOR;

Figure 2.47C. The GET_DESCRIPTOR function

Each invocation of GET _DESCRIPTOR obtains the
first descriptor in parameter DESCRIPTOR _STRING and
returns it to the point of invocation. The first descriptor is
also deleted from DESCRIPTOR _STRING, and if the
descriptor contains more than ten characters, the leftmost
ten are returned. When no descriptors remain in
DESCRIPTOR_STRING, an invocation of GET _
DESCRIPTOR produces a string of ten blank characters.

The function procedure GET_DESCRIPTOR _
COMPONENT appears in Figure 2.47D. The function uses
two parameters: DESCRIPTOR, which specifies a descrip-
tor word, and INDEX _LIST, which is the pointer head of a
list of lists that has the organization shown in Figure 2.47B.

72

GET_DESCRIPTOR_COMPONENT :
PROCEDURE (DESCRIPTOR INDEX_LIST)
RETURNS (POINTER);

DECLARE
N FIXED DECIMAL(S5),
DESCRIPTOR CHARACTER(10),
DESCRIPTOR_IMAGE BASED
(DESCRIPTOR_ADDRESS) CHARACTER(10),
(INDEX_LISTy SUBLIST) POINTER,
DATA_AREA AREA EXTERNAL;
N =13
SUBLIST = INDEX_LIST;

TEST_DESCRIPTOR:

IF
SUBLIST = NULL
THEN
GO TO
INSERT_DESCRIPTOR;
DESCRIPTOR_ADDRESS = GETV_VALUE
(GET_VALUE(SUBLIST));

IF
DESCRIPTOR_ADDRESS->DESCRIPTOR_IMAGE
<DESCRIPTOR

THEN
DO;
N=N=+13
SUBLIST = GET_LINK(SUBLIST);
GO TO
TEST_DESCRIPTOR;
END3

IF
DESCRIPTOR_ADORESS->DESCRIPTOR_IMAGE
= DESCRIPTOR

THEN

RETURN(GET_VALUE(SUBLIST));
INSERT_DESCRIPTOR:
ALLOCATE DESCRIPTOR_IMAGE IN
(DATA_AREA) SET(DESCRIPTOR_ADDRESS);
DESCRIPTOR_ADDRESS->DESCRIPTOR_IMAGE
= DESCRIPTOR;
CALL INSERT_NVT(INDEX_LIST,N,
FORM_BODY (DESCRIPTOR_ADDRESS,*D*,
NULL), *L*)3;
RETURN(GET_VALUE(ADDRESS_NVT
(INDEX_LISToN)));
END ’
GET_DESCRIPTOR_COMPONENT;

Figure 247D, The GET_DESCRIPTOR _COMPONENT function

GET_DESCRIPTOR _ COMPONENT searches INDEX
LIST for a sublist whose first component specifies the same
descriptor as parameter DESCRIPTOR. When the sublist is
found , the address of its first component is returned. If no
sublist exists for the descriptor, the function creates a sub-
list and inserts it into INDEX _LIST in ascending sequence
on the descriptor. The function then returns the address of
the first component in this new sublist.

Note that DESCRIPTOR is a ten-position character
string whose descriptor value is adjusted to the left and
extended, if necessary, with blanks on the right.

Figure 2.47E contains the subroutine procedure
INSERT _CARD. The subroutine uses two parameters:
CATALOG_CARD_ADDRESS, which represents the

storage address of a catalog card, and DESCRIPTOR _LIST,
which specifies the address of the first list component in a
sublist within the index list INDEX LIST).

INSERT_CARD:
PROCEDURE (CATALOG_CARD_ADDRESS,
DESCRIPTOR_LIST);

DECLARE
N FIXED DECIMAL(5),
CATALOG_CARD_ADDRESS
POINTER,
DESCRIPTOR_LIST POINTER,
CARD_COMPONENT POINTER,
1 CARD_IMAGE BASED(IMAGE_ADDR),
2 ACCESSION#_IMAGE CHARACTER(10),
2 DESCRIPTOR_GROUP_IMAGE
CHARACTER(T70);

INITIALIZE:
N =13
CARD_COMPONENT =
DESCRIPTOR_LIST;

NEXT_CARD:
N =N+ 1;
CARD_COMPONENT = GET_LINK
(CARD_COMPONENT) ;

IF
CARD_COMPONENT = NULL
THEN
GO TO
INSERT;
IMAGE_ADDR = GET_VALUE
(CARD_COMPONENT) ;

IF
(IMAGE_ADDOR->ACCESSION#_IMAGE
< CATALOG_CARD_ADDRESS->
ACCESSION#_IMAGE)

THEN
GO TO
NEXT_CARD;

IF
(IMAGE_ADDR->ACCESSION#_IMAGE
= CATALOG_CARD_ADDRESS->
ACCESSION#_IMAGE)

THEN
RETURN;

INSERT:

CALL INSERT_NVT(DESCRIPTOR_LIST,
NyCATALOG_CARD_ADDRESS,'D*);
RETURN;

END
INSERT_CARD;

Figure 2.47E. The INSERT_CARD subroutine

INSERT_CARD creates a new list component for the
catalog card and inserts the component into the specified
sublist. Insertion occurs in ascending sequence on accession
number. ‘

When all catalog cards have been inserted into the index
list, the list is printed by the subroutine PRINT INDEX
given in Figure 2.47F. The subroutine uses the name of the
index list INDEX _ LIST) as its only parameter and prints
the list on the standard system-output file, SYSPRINT.

PRINT_INDEX:

PROCEDURE(INDEX_LIST);

DECLARE

(INDEX_LIST,SUBLIST) POINTER,

POINTER POINTER,

DESCRIPTOR BASED(DESCRIPTOR_ADDRESS)

CHARACTER(10),

1 CARD_IMAGE BASED(CARD_ADDRESS)

2 ACCESSION#_IMAGE CHARACTER(10),

2 DESCRIPTOR_GROUP_IMAGE

CHARACTER(70) 3

SUBLIST = INDEX_LIST;

PUT PAGE LIST(*OUTPUT FROM PRINT_INDEX

PUT SKIP(2);

GET_SUBLIST:
DO

WHILE(SUBLIST~=NULL);

DESCRIPTOR_ADDRESS = GET_VALUE

(GET_VALUE(SUBLIST));
PRINT_DESCRIPTOR:

PUT

EDIT(DESCRIPTOR_ADDRESS->DESCRIPTOR)

(A)3

PUT

SKIP;

POINTER = GET_LINK

(GET_VALUE(SUBLIST));

PRINT_CARDS:
DO

WHILE(POINTER -~= NULL);
CARD_ADDRESS = GET_VALUE(POINTER);

PUT
EDIT(CARD_ADDRESS->CARD_IMAGE)
(A) 3

PUT

SKIP;

POINTER = GET_LINK(POINTER);
END_PRINT_CARDS:
END;

PUT

SKIP(2);

SUBLIST
END_GET_SUBLIST:
END;

END

[}

GET_LINK(SUBLIST);

PRINT_INDEX;

Figure 2.47F. The PRINT INDEX subroutine

Construction and printing of the index list is controlled
by the procedure INDEX, which appears in Figure 2.47G.
INDEX reads an arbitrary number of catalog cards from the
standard system-input file, SYSIN, and allocates storage for
each card in the storage area called DATA _AREA. If the
number of cards exceeds the storage capacity of DATA
AREA, a message is printed to indicate insufficient storage.
Reading then ceases, and only those cards allocated in
DATA_AREA are indexed.

As each card is read, its descriptors are scanned, and the
address of the card is inserted into the proper sublist for
each descriptor within the index list. When all cards have
been processed in this manner, the index list is printed, as
shown in Figure 2.47H.

73

INDEX:

PROCEDURE 3

1 CATALOG_CARD,

2 ACCESSION# CHARACTER(10),

2 DESCRIPTOR_GROUP CHARACTER(T0),
1 CARD_IMAGE BASED
(IMAGE_ADDRESS), :

2 ACCESSION#_IMAGE CHARACTER(10),
2 DESCRIPTOR_GROUP_IMAGE
CHARACTER(70),

DESCRIPTOR CHARACTER(10),
DESCRIPTOR_STRING CHARACTER(T71)
VARYING,

LIST_AREA AREA,

DATA_AREA AREA,

(INDEX_LIST, AVAIL EXTERNAL)
POINTER;

INDEX_LIST, AVAIL = NULL;

ON ENDFILE (SYSIN) GO TO PRINT;
ON AREA BEGIN;

LIST(*INSUFFICIENT STORAGE FOR
COMPLETE INDEX*);

GO TO PRINT; END;

CALL AREA_OPEN(LIST_AREA,AVAIL):
PUT PAGE LIST(*INPUT TO INDEX:');
PUT SKIP;

GET_CARD:

EDIT(CATALOG_CARD) (A(10),A(70))3
PUT SKIP EDIT(CATALOG_CARD)(A);
ALLOCATE CARD_IMAGE IN(DATA_AREA)
SET(IMAGE_ADDRESS) ;
IMAGE_ADDRESS->CARD_IMAGE =
CATALOG_CARD;
DESCRIPTOR_STRING =
DESCRIPTOR_GROUP| | *

'3

NEXT_DESCRIPTOR:

PRINT:

DESCRIPTOR = GET_DESCRIPTOR
(DESCRIPTOR_STRING) ;

IF DESCRIPTOR = (10)°*

THEN GO TO GET_CARD;

CALL INSERT_CARD(IMAGE_ADDRESS,
GET_DESCRIPTOR_COMPONENT
(DESCRIPTORy INDEX_LIST));

GO TO

NEXT_DESCRIPTOR;

CALL PRINT_INDEX(INDEX_LIST);

END INDEX;

Figure 2.47G. The INDEX procedure

74

OUTPUT FROM PRINT_INDEX:

BLACK

A9-1L7-RZ
T2-XY4-16
Y9-016-X8

LARGE
T2-XY4-16

MARBLE
Y8-123-X7
Y9-016-X8

MEDIUM
Y8-123-X7

PAINTING
A9-1L7-RZ

PAINTING BLACK WHITE SMALL
PHOTOGRAPH BLACK WHITE LARGE
SCULPTURE MARBLE BLACK SMALL

PHOTOGRAPH BLACK WHITE LARGE

SCULPTURE MARBLE WHITE MEDIUM
SCULPTURE MARBLE BLACK SMALL

SCULPTURE MARBLE WHITE MEDIUM

PAINTING BLACK WHITE SMALL

PHOTOGRAPH

T2-XY4-16

SCULPTURE
Y8-123-X7
Y9-016-X8

SMALL
A9-1L7-RZ
Y9-016-X8

WHITE

A9-1L7-R2
T2-XY4-16
Y8-123-X7

PHOTOGRAPH BLACK WHITE LARGE

SCULPTURE MARBLE WHITE MEDIUM
SCULPTURE MARBLE BLACK SMALL

PAINTING BLACK WHITE SMALL
SCULPTURE MARBLE BLACK SMALL

PAINTING BLACK WHITE SMALL
PHOTOGRAPH BLACK WHITE LARGE
SCULPTURE MARBLE WHITE MEDIUM

Figure 2.47H. Printout from PRINT_INDEX

REVIEW OF LISTS OF LISTS

This chapter shows how to extend the flexibility of a
pointer list so that it can be used to link other lists as well
as data items (see Figure 2.48). The resulting list of lists
uses a type code within each list component to distinguish

LIST_AREA

between sublists and data items. With this code, sublists can
in turn contain other sublists to an arbitrary depth. As a
result, new lists can be generated as the need arises during
the course of program execution, and the programmer is
freed from having to know the exact number of lists a pro-
gram will require.

AVAIL:

O4—0N N N N N N l—-l

NN BN N - ERN

L1:

OBl TRl T N
5]

[=] N
—={o]

[] N

DATA_AREA
—{1] Alslc]o +[9]s [1]
E|F|G[H _{o]2

NN NRE

m[nJo[p 4 |

5 |

I'igure 2.48. List of lists

SUMMARY

1. Alist of lists is a more general type of pointer list.

2. Besides permitting element items, arrays, and struc-
tures to be members of a list, a list of lists also permits a list
itself to be a member of another list.

3. Alist of lists provides the same advantages as pointer
lists: avoiding data duplication and reducing data move-
ment.

4. Alist of lists removes the need to know the exact
number of lists a program will require during execution. As
the need arises during program execution, a new list can be
generated automatically and inserted into a master list of
lists.

5. A type code within each list component determines
whether the component specifies the address of a data item
or the address of a sublist.

6. The subroutines and functions developed in this
chapter for processing lists of lists fall into four categories:

a. Creating a list of available storage components

b. Manipulating component elements in a list of lists

c. Manipulating the top level of a list of lists

d. Manipulating all levels of a list of lists

Elementary procedures are developed first and used in turn
to create higher-level procedures.

75

Index

ADD_NODE subroutine
ADDRESS_LVT function
ADDRESS_NVT function
APPEND function
AREA_OPEN subroutine
Array representation
Binary tree lists

Circular lists

COPY_LEYV function
COPY _LIST function
COPY_REVT function
COPY_REVT]1 function
COUNT_D function

Data lists

Data storage
DELETE_LIST subroutine
DELETE_NVT subroutine
EQUAL_D function
EQUAL_L function
FORM_ BODY function
Freeing storage
GET_DESCRIPTOR function
GET_DESCRIPTOR_COMPONENT function
GET_FD function’
GET_FDR function
GET_LD function
GET_LDR function
GET_LINK function
GET_NTT function

Page
Number

68
26
25
44
23
18
65
21
58
56
46
48
52

1

3
53
54
33
60
38

5
72
72
49
50
50
51
28
41

GET_NVT function
GET_TYPE function
GET_VALUE function

INDEX procedure

Indexing

INSERT_CARD subroutine
INSERT _NVT subroutine
LINKL subroutine

LISP

List storage

Lists of lists

MEMBER function

Mixed data

NODE function

Null lists

Parenthetic list representation
Pointer lists
PRINT_INDEX subroutine
REPLACE subroutine
Searching

SET_LINK subroutine
SET_VALUE subroutine
Sharing data

Sharing lists

SIZE_TOP function
Sorting

Structure representation
T_PRINT subroutine
T_SORT procedure

" Page
Number

40
30
29
73
70
72
36
42
22

cesscee

READER’'S COMMENT FORM

Techniques for Processing Pointer Lists GF20-0019-0
and Lists of Lists in PL/I

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges-
tions become the property of M. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GF20-0019-0

YOUR COMMENTS PLEASE...

Your comments on the other side of this form will help us improve future editions of this pub-
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub-
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your 1M

system should be directed to your 1BM representative or the 1M branch office serving your
locality.

..

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N.Y.

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY...

IBM Corporation
1133 Westchester Avenue
White Plains, N.Y. 10604

1/71d Ul $3s17] 3O SISIT pue sisiT J91ulog Buissadold 104 sanbiuyoa |

Attention: Technical Publications

...

JISIM

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM.World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International)

0-6L00-0249D 'V’'S'N ut pajuiid

GF20-0019-0

TSN

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

1BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International) :

0-6100-024D ‘V'S'N Ul Palulid |/71d Ul SISIT JO SISIT PUE S1s17 Je1ulod Buissaooug 104 sanbiuyos

