Techniques for Processing Relocatable Lists in PL/I

This manual illustrates usage of PL/I list-processing facilities for processing
relocatable data lists, pointer lists, and lists of lists. Relocatable lists are lists
organized within an area of storage in a way that permits the area to be trans-
mitted to and from an external storage medium without disturbing the linkage
of list components in the area. Such organization also permits moving lists
about in main storage.

The information in this manual concerning data lists assumes knowledge of
Introduction to the List Processing Facilities of PL/I (GF20-0015) and
Techniques for Processing Data Lists in PL/I (GF20-0018). Some of the
information in this manual assumes knowledge of Techniques for Processing
Pointer Lists and Lists of Lists in PL/I (GF20-0019). The audience for this
manual is assumed to be the experienced programmer.

ustrative programs were processed by the PL/I (F) Compiler (Version 5.1)
under control of the IBM System/360 Operating System (Release 19).

GF20-0020-0

Table of Contents

Préface)

Introduction

Chapter 1. Organizing Relocatable Lists .

AREA ASSIGNMENT .

OFFSET VARIABLES .

RELOCATABLE ORGANIZATIONS FOR
DATA LISTS, PCINTER LISTS, AND
LISTS OF LISTS.

INPUT AND OUTPUT STATEMENTS FOR

RELOCATABLE LISTS
The LOCATE Statement
The READ Statement .
Self-Defining Records

Chapter 2. Processing Relocatable Lists .

CONVERTING ABSOLUTE LISTSTO
RELOCATABLE FORM
CON_DAR Subroutine .
CON_PAR Subroutine .

CON_LAR Subroutine .

CONVERTING RELOCATABLE LlSTS TO

ABSOLUTE FORM .
CON_DRA Subroutine.

First Edition (August 1971)

Page

1
11
13
16

21

23
23
25
27

29
29

CON_PRA Subroutine
CON__LRA Subroutine .
MOVING RELOCATABLE LISTS
MOVE _RDL Subroutine .
MOVE_RPL Subroutine .
WRITING RELOCATABLE LISTS.
WRITE_RDL Subroutine .
WRITE_RPL Subroutine .
READING RELOCATABLE LISTS
READ_RDL Subroutine .
READ_RPL Subroutine

Chapter 3. Using Relocatable Lists .
AN EXAMPLE THAT TRANSMITS
RELOCATABLE DATA LISTS .
AN EXAMPLE THAT TRANSMITS
RELOCATABLE LISTS OF LISTS.
Summary .

Appendix .

The Recursive Function Procedure CONV

The Recursive Function Procedure CON .

Index

Copies of this and other IBM publications can be obtained through IBM branch offices.

A form has been provided at the back of this publication for readers’ comments. If this form has
been removed, address comments to: IBM Corporation, Technical Publications Department,

1133 Westchester Avenue, White Plains, N. Y. 10604.

© Copyvright International Business Machines Corporation 1971

Page

47
50
56
57

57

59

Preface

List processing in PL/I concerns programs which manipu-
late the storage addresses and the contents of based vari-
ables that are linked by contained locator variables.
Techniques for using the list-processing facilities of PL/I to
manipulate list components in main storage have been
presented in Techniques for Processing Data Lists in PL/I
(GF20-0018) and Techniques for Processing Pointer Lists
and Lists of Lists in PL/I (GF20-0019).

This manual discusses methods used to convert list com-
ponents linked within an area by absolute storage addresses
to list components linked within an area by relative storage
addresses. These latter addresses are relative to the begin-
ning of the containing area. Such lists are called relocatable
lists because they can be transferred about in main storage
or transmitted to and from external storage for subsequent
processing.

As indicated in the preceding manuals, the primary
advantages of list-processing techniques are efficient main
storage utilization and the ability to preserve the logical
organization of complex data entities that do not lend
themselves to convenient representation by conventional
PL/I arrays and structures. Data of this type occurs in many
nonnumeric applications, such as information storage and
‘retrieval, system simulation, engineering design, computer-
software production, text editing, and artificial intelligence.
List processing preserves the natural structure of the data
involved in such applications and reduces the complexity of
related programs. The convenience of organizing data in list
form is enhanced by the ability to transmit relocatable lists
to and from external storage as needed by the application.

This manual illustrates the techniques involving relocat-
able lists with subroutine and function procedures that
concentrate on specific aspects of creating and moving
relocatable lists. Clarity of presentation has been empha-
sized rather than efficient programming techniques. No
attempt has been made to produce “production” code.
Suitable inline code may be preferred for many applica-
tions.

Because processing lists in PL/I is an advanced program-
ming topic, this manual assumes that the reader is an ex-
perienced programmer with a knowledge of PL/I equivalent
at least to that presented in A PL/I Primer (SC28-6808).
Familiarity is assumed with array and structure organiza-
tion and with methods for creating and invoking sub-
routines and functions. In addition, knowledge of the
information contained in the following publications is
assumed:

Introduction to the List Processing Facilities of PL/[I
(GF20-0015)

Techniques for Processing Data Lists in PL/I
(GF20-0018) :

Techniques for Processing Pointer Lists and Lists of Lists
(GF20-0019)

Information on the F-level list-processing facilities
appears in IBM System/360: PL/I(F) Language Reference
Manual (GC28-8201) and IBM System/360 Operating Sys-
tem: PL/I(F) Programmer’s Guide (GC28-6594).

Introduction

The techniques developed for creating and processing lists
in Techniques for Processing Data Lists in PL/I and Tech-
niques for Processing Pointer Lists and Lists of Lists do not
consider moving a list about in storage or a list to and from
a file. The ability to store a list in a file is important be-
cause it allows a list to be processed in stages by successive
runs of either the same program or any other designed to
retrieve the list.) ,
One approach to the external transmission of a list is to
disassemble the components of the list and to write their
associated data values successively into a file. Then, when
the list is to be processed further, the data values can be
retrieved from the file, and the list can be reconstructed
component by component. Transmission of a list in this
manner may have merit with simple linear data lists but
becomes complicated and inefficient when applied to non-
linear lists. A more desirable approach is to keep the list
intact within its containing area and to write the area into

the file as a unit; however, this method also presents a
problem—pointer values within an area become invalid
when the area is stored at a new location. Since there is no
way of assuring that an area will occupy the same storage
each time it is read from a file, the organization of a list
contained in a retrieved area can generally be assumed to be
destroyed because its linking pointers will be invalid at the
new location.

PL/I overcomes this difficulty in the transmission of a
list by providing special variables called offset variables,
which are used in place of pointer variables and which
remain valid when a list is moved to a new location. An
offset variable is a storage address that is relative to the
beginning of an area. This manual shows how offset vari-
ables can be used to organize data lists, pointer lists, and
lists of lists into relocatable form and how such lists can be
written into and read from a file.

Chapter 1. Organizing Relocatable Lists

The organization of relocatable lists depends mainly upon
two PL/I facilities: offset variables, and the assignment
statement applied to area variables. A detailed presentation
of these facilities appears in the companion manual. Intro-
duction to the List Processing Facilities of PL/I
(GF20-0015). However, for the purposes of this chapter,
the following discussions present a review of offset variables
and area assignment and show how these facilities may be
used to organize relocatable lists. The discussions also illus-
trate how relocatable lists can be moved to new storage
locations and how they can be transmitted to and from
files.

AREA ASSIGNMENT
An area variable is declared with the following attribute:
AREA [(size-expression)]

The size expression determines the number of bytes of
storage reserved for the area. However, the size expression
is optional; when it is not used, an implementation-defined
size is assumed by the PL/I compiler. An asterisk (*) may
be used in place of the size expression when the area vari-
able appears as a parameter in either a subroutine or a
function. The asterisk causes the area parameter to assume
the size of the associated area argument.

An assignment statement can contain an area variable to
the left of the equal sign provided the expression on the
right is restricted to either another area variable or a func-
tion reference that possesses an area value. Execution of an
assignment statement that contains area variables effec-
tively frees all allocations in the receiving area and then
assigns the contents of the source area to the receiving area.
Free-storage gaps are retained during the assignment, so
that allocations within the assigned area maintain their
locations relative to each other.

Hlustrations of area assignments appear in Figure 1.1.
The shaded portions of the areas represent free storage that
is available for further allocations of based variables within
the areas. When the source area is smaller than the receiving
area, the assigned area is, in effect, extended with free
storage. Similarly, when the source area is larger than the
receiving area, truncation of free storage occurs at the end
of the assigned area. However, if the truncation involves
allocated storage and not just free storage, the AREA ON-
condition occurs, and the contents of the receiving area
become undefined. If no ON-unit appears in an ON state-

ment for the AREA condition, the operating system issues
a comment and raises the ERROR condition. When an
ON-unit is specified and normal return occurs from the
ON-unit, program control returns to the point of inter-
ruption.

When an area variable is allocated, it is automatically
given the empty state, which indicates that no storage has
been allocated for based variables within the area. An area
that is not empty can be made empty by assigning to it the
value of an empty area or the value of the built-in function
EMPTY. The effect of such an assignment is to free all
allocations of based variables within the receiving area.
Note that the area itself does not become free but retains
its storage in reserve for further allocations of based vari-
ables.

A reference to the built-in function EMPTY uses no
arguments and consists solely of the keyword EMPTY. A
reference to EMPTY cannot appear in an operational
expression; the value of EMPTY is used only to free storage
allocated in a specified area.

Area assignment can be used to transmit any type of
data from one area to another, but, as mentioned earlier,
pointer values contained in the assigned area will generally
be transmitted incorrectly. As a result, area assignment
cannot be used to move a list linked by pointer variables;
the addresses of the list components would not be known
in the receiving area (see Figure 1.2). Note that assigning
the head pointer in the source list to the intended head of
the list in the receiving area would also be incorrect since
the second head would specify the address of the first list
component in the source area and not the address of the
first list component in the receiving area. This difficulty in
pointer transmission is overcome by replacing pointer vari-
ables with relocatable variables called offset variables.

OFFSET VARIABLES

An offset variable is a storage address that is relative to the
beginning of an area. An offset variable must be declared
explicitly with the OFFSET attribute, which has the fol-
lowing form: °

OFFSET(area-variable)
The area variable in parentheses must also be declared ex-

plicitly and must be a based variable that is unsubscripted
and has an implied or explicit level number of one.

AREA1

S |

AREA4

1| | 7z
| 7 Z ////
) A\ 7))

Before Assignment
AREA2=AREA1;

Before Assignment

AREA4=AREA3;

AREA1

oo oA |

v.N e

After Assignment

After Assignment

Figure 1.1. How areas are assigned

Bl 2> BODY1
HEAD1 | DATA LINK DATA LINK | DATA LINK
> NULL
B2 >BODY2
HEAD2 DATA LINK , DATA LINK - DATA LINK
? ? >

B2 —>BODY2 = B1 > BODY1;
HEAD2 = HEAD1;

Figure 1.2. Incorrect use of area assignment to move a list

. Examples:

DECLARE
AREA1 AREA(2000) BASED(P1),
O OFFSET(AREALI),
~ (M,N) OFFSET(AREA1) EXTERNAL STATIC,
SWITCH CONTROLLED OFFSET(AREA1),
T(5) OFFSET(AREA1) INTERNAL,
1 A,2 X CHARACTER(15), 2 Y OFFSET(AREA1);

As shown in these examples, PL/I allows offset variables
to be individual element variables or elements of arrays and
structures. An offset variable can have any storage class and
scope, and the usual default rules for these types of attri-
butes also hold for an offset variable.

The value of an offset variable is always treated as a
relative address and never as an absolute address. The offset
value is relative to the beginning of the area specified in the
associated OFFSET attribute. Assume, for example, that
01 is an offset variable and that AREAL1 is an area variable
declared as follows:

DECLARE
AREA1 AREA BASED(A),
01 (OFFSET(AREA1);

Assume further that the value of O1 is 75. The O1 specifies
the 75th storage position (in bytes) from the beginning of
AREAL.

Values are assigned to offset variables through the assign-
ment statement. An offset variable can receive the value of
another offset variable or the value of a pointer variable.»
When the value of a pointer variable is assigned to an offset
variable, the assigned pointer value is automatically ad-
justed so that it becomes relative to the beginning of the
area associated with the receiving offset variable. The
address arithmetic performed automatically by the PL/I
program to obtain the offset value is equivalent in effect to
the following calculation:

Offset value = (Pointer value) - (Absolute address of area)

Similar but reverse address arithmetic is performed auto-
matically when an offset value is assigned to a pointer vari-
able. The offset value is added to the absolute address of
the area specified in the associated OFFSET attribute:

Pointer value = (Offset value) + (Absolute address of area)

Note that these calculations are performed automatically
by the PL/I program; the programmer cannot apply explicit
arithmetic operations to offset variables in the source pro-
gram.

When the value of an offset variable is assigned to
another offset variable, no address arithmetic is performed;

the assignment is direct, so that both offset variables have
the same value.

The following example shows how values are assigned to
offset variables and how the absolute address of a data item
is obtained in an assigned area:

DECLARE
AREA1 AREA(500) BASED(A1),
AREA2 AREA(500) BASED(A2),
01 OFFSET(AREA1),
02 OFFSET(AREA?),
DATA_ITEM BASED (P1) CHARACTER(80);

ALLOCATE AREALI SET(A1);
ALLOCATE AREA?2 SET(A2);
ALLOCATE DATA_ITEM IN(A1->AREA1) SET(P1);

A2-—>AREA2 = A1->AREAL,;

01 =P1;
02=01;
P2 =02;

AREA1 and AREA?2 are area variables, each of which
reserves 500 bytes of based storage; Ol is an offset variable
associated with AREA1, and O2 is an offset variable as-
sociated with AREA2. The based variable DATA_ITEM is
a character string that requires 80 storage bytes. :

When storage is allocated for AREA1, the absolute
address of the allocation is assigned to pointer Al. Simi-
larly, pointer A2 receives the absolute address of the stor-
age allocated for AREA2. For example, Figure 1.3 assumes
that AREAL is allocated at location 2000 and that AREA2
is allocated at location 4025. The allocation of DATA
ITEM in A1->AREAL1 is also assumed to occur at location
2075, which is assigned to pointer P1.

After Al—>AREALI is assigned to A2—>AREA2, both
areas contain equivalent storage configurations, as shown in
Figure 1.3. Assignment of pointer P1 to offset O1 produces
the relative address (75 = 2075 - 2000) of DATA ITEM
within A1->AREAL. This relative address remains un-
changed when assigned to offset O2. Assignment of 02, in
turn, to P2 produces the absolute address (4100 =75 +
4025) of DATA ITEM in A2—>AREA2. Reference to
DATA _ITEM in A2—>AREA?2 is then possible with the
expression P2—>DATA_ITEM. (Note that an offset vari-
able cannot be used to qualify a based variable.) The
broken lines in Figure 1.3 distinguish offset variables from
pointer variables.

Al A1 —~>AREA1
2000

P1 DATA_ITEM
2075 A

01 e
75

A2 ~>AREA2 = A1 ~>AREA1;

01=P1;
02=01;
P2 =02;

A2 A2 > AREA2
4025

P2 DATA_ITEM
4100 bq

02 |.-
75

/* ASSIGN A1—>AREA1TO A2 >AREA2. */

/* SET O1 TO RELATIVE ADDRESS OF DATA_ITEM IN A1 > AREA1. */
/* SET 02 EQUAL TO O1. */ :

/* SET P2 TO ABSOLUTE ADDRESS OF DATA_ITEM IN A2 > AREA2. */

Figure 1.3. Obtaining the absolute address of a data item in an assigned area

Offset values and pointer values form a special type of
program control data called the locator type. Locator data
cannot be converted to any other type, nor can any other
type of data be converted to locator type. Offset variables
can receive offset and pointer values only; the same restric-
tion applies to pointer variables.

A null offset value may be assigned to an offset variable
through the built-in function NULLO, which uses no argu-
ments and consists solely of the keyword NULLO. A refer-
ence to this function produces a null offset address, which
does not specify any relative storage location.

Although pointer values may be assigned to offset vari-
ables and offset values may be assigned, in turn, to pointer
variables, a null offset value cannot be assigned to a pointer
variable, nor can a null pointer value be assigned to an off-
set variable. These restrictions apply not only to explicit
references to NULL and NULLO but also to assigned vari-
ables that currently have null pointer or null offset values.

Assume, for example, that P is a pointer variable and O
is an offset variable. Then P can be assigned to O provided
that P does not have a null value. When the value of P may
be null, an IF statement can be used to ensure proper
assignment:

IF P=NULL
THEN O = NULLO;
ELSE O =P;

A similar statement governs the correct assignment of O to
P:

IF 0 =NULLO
THEN P =NULL;
ELSE P = O;

As with pointer variables, the comparison operators equal
(=) and not equal ("F) are the only operators that can use
offset variables as operands.

Offset variables, as well as pointer variables, can serve as
arguments and parameters. An offset argument associated
with an offset parameter or a pointer argument associated
with a pointer parameter requires no conversion and there-
fore produces no dummy argument. But an offset argument
associated with a pointer parameter or a pointer argument
associated with an offset parameter does require conversion
and will produce a dummy argument. Also, when an offset
argument is associated with an offset parameter, both must
be offset with respect to the same area for the argument-
parameter association to be meaningful.

Although the area variable specified in the OFFSET
attribute for an offset variable must be a based area, it is
possible to associate an offset variable with an area that is
not based. Consider the following statements:

DECLARE
AREA1 AREA(2000),
DUMMY _AREA AREA(2000) BASED
(DUMMY _POINTER), ,
O OFFSET(DUMMY AREA);

DUMMY _POINTER = ADDR(AREA1);

AREA1 and DUMMY _ AREA are area variables. AREA1
reserves automatic storage, and DUMMY _ AREA reserves
based storage. The OFFSET attribute for variable O uses
DUMMY _AREA and thus satisfies the requirement that
the area specified in an OFFSET attribute must be based.

When the address of AREAL is assigned to DUMMY _
POINTER, DUMMY _ AREA becomes equivalent to
AREAL1. Subsequent references to offset variable O are
then effectively associated with AREAL.

The size declared for DUMMY _ AREA in the previous
example does not have to be the same as the size of AREA1
and can even be zero. The only purpose of DUMMY _
AREA is to provide a level-one based area variable for the
OFFSET attribute of variable O, so that variable O can be
made relative to the starting address of AREA1. The size of
DUMMY _ AREA is not important, because it does not
affect the starting address assigned to DUMMY _AREA
through DUMMY _POINTER.

RELOCATABLE ORGANIZATIONS FOR
DATA LISTS, POINTER LISTS, AND
LISTS OF LISTS

A relocatable list has the same organization as an absolute
list except that offset variables rather than pointer variables
are used to link the components of the relocatable list. This
section presents illustrations of relocatable organizations
for data lists, pointer lists, and lists of lists and shows how
such lists may be moved from one location to another with-
in internal storage. However, procedures for actually con-
structing relocatable lists are deferred to Chapter 2. The

solid lines, indicate the offset links (OL’s) and offset head
of each list in the figure. Actual values (in decimal) are
assumed for the offset variables to show that they remain
unchanged when the list is moved.

Two assignment statements perform the relocation of
the data list in Figure 1.4:

B2->BODY2 = B1->BODY1;
OHEAD2 = OHEADI;

The based area B1—>BODY 1 contains the body of the list,
which is assigned to the based area B2—>BODY?2. The
offset variable OHEAD? receives the offset head OHEAD1
of the list. The effect of these assignments is to produce a
separate copy of the original data list.

Since an offset variable cannot be used to qualify a
based variable, it is not possible to refer to a component of
a relocatable list unless the absolute address of the com-
ponent is used. As an example, the following statements
show how to obtain the absolute address of the last com-
ponent in each of the relocatable data lists illustrated in
Figure 1.4:

DECLARE
BODY1 AREA(500) BASED(BI1),
BODY2 AREA(500) BASED(B2),
1 COMPONENT! BASED(P1),

emphasis in this section is upon the use of offset variables 2 DATA CHARACTER(1), '
as component links in relocatable lists. 20L OFFSET(BODY1),
Figure 1.4 illustrates the organization of a relocatable 1 COMPONENT2 BASED(P2),
data list and shows the PL/I statements that can be used to 2 DATA CHARACTER(1),
move the list to a new location. Broken lines, instead of 20L OFFSET(BODY2),
B1—~>BODY1
OHEAD1 | _ _|_| DATA oL | _ _ _ | DATA oL | _ _ _ __|DATA oL
50 150 275 NULLO
B2 >BODY2
OHEAD2 | | | DATA oL | _ _ __|DATA oL | _ __ ,|DATA oL
50 150 275 NULLO

B2 >BODY2=B1—~>BODY1;
OHEAD2 = OHEAD1;

Figure 1.4. Assigning a relocatable data list to a new area

OHEAD1 OFFSET(BODY1),
OHEAD2 OFFSET(BODY?2),

P1 =0OHEADI;
P1 =P1->COMPONENT1.0L;
P1 =P1->COMPONENT1.0L;
P2 = OHEAD2;
P2 = P2—>COMPONENT2.0L;
P2 =P2—>COMPONENT2.0L;

These statements specify that the area variables BODY 1
and BODY?2 each reserve 500 bytes of based storage and
that the based variable DATA associated with each list
component is a character string that contains one character.
The offset links (OL’S) in B1—>BODY 1 and the offset
head OHEADI are declared to be offset with respect to
BODY 1. Similarly, the offset links in B2—>BODY?2 and the

offset head OHEAD? are declared to be offset with respect
to BODY?2. After the above statements are executed,
pointer P1 contains the absolute address of the last com-
ponent in B1->BODY1, and pointer P2 contains the abso-
lute address of the last component.in B2—>BODY?2. The
data elements of these two components can then be refer-
red to with the following expressions:

P1->COMPONENT1.DATA
P2—>COMPONENT2.DATA

Figure 1.5 illustrates the organization of a relocatable
pointer list and shows how the list can be moved to a new
area. Three assignment statements are used to move the list:

OHEAD2 = OHEADI;
B2—>BODY2 = B1->BODY1;
D2—>DATA_AREA2 = D1->DATA_AREAI;

Note that each component of the list contains two offset
variables: the offset link OL and the offset data pointer
ODP. Both elements must use offset values because pointer

B1->BODY1
OHEAD1| | | ODP oL |___| oor oL |__ __| oor oL
30 10 140 115 290 220 NULLO
E : i
: | s
D1 >DATA_AREA1 i !
H s é
i _|DATA_ITEM i | DATA_ITEM i _|DATA_ITEM
‘B2 >BODY2
OHEAD?2 oDP oL ODP oL oDP oL
-1 e - — =
30 10 140 115 290 220 NULLO
T . § T
! ! ‘
P ! i
D2 >DATA_AREA2 i |
- —+ |
: ! i
]
i _[DATA_ITEM i (|DATA_ITEM ! J|DATA_ITEM

OHEAD2 = OHEAD?1;

B2—~>BODY2 =B1—>BODY1;
D2 >DATA_AREA2=D1—>DATA_AREA1;

Figure 1.5. Assigning a relocatable pointer list to a new area

values become invalid when moved by area assignment.
Movement of the data area of a relocatable pointer list is
optional; if the data area is not moved, it can be shared
between the old and new versions of the list body.

As with relocatable data lists, offset variables cannot
appear as qualifying pointers in references to the based
components of a relocatable pointer list; absolute addresses
must serve as the qualifying pointers. The following state-
ments show how to obtain the absolute address of the last
data item in each of the relocatable pointer lists illustrated
in Figure 1.5:

DECLARE
BODY1 AREA(500) BASED(B1),
BODY2 AREA(500) BASED(B1),
DATA_AREA1 AREA(500) BASED(D1),
DATA_AREA2 AREA(500) BASED(D2),
1 COMPONENT1 BASED(P1),
2 ODP OFFSET(DATA_AREAL1),
2 OL OFFSET(BODY1),
1 COMPONENT?2 BASED(P2),
2 ODP OFFSET(DATA_AREA2),
2 OL OFFSET(BODY?2),
OHEAD! OFFSET(BODY1),
OHEAD2 OFFSET(BODY2),
DATA_ITEM BASED(DATA1) CHARACTER(1),
(DATA1,DATA2) POINTER;

P1 =0HEADI;

P1 =P1->COMPONENT1.0L;

P1 =P1->COMPONENT1.0L;
DATA1 = P1->COMPONENT1.0DP;
P2 = OHEAD2;

P2 =P2—>COMPONENT2.0L;

P2 =P2—>COMPONENT2.0L;
DATA?2 = P2—>COMPONENT2.0DP;

These statements specify that the area variables BODY1,
BODY2, DATA_ AREAI, and DATA_ AREA?2 each reserve
500 bytes of based storage and that the based variable

. DATA_ITEM associated with each list component is a
character string that contains one character. The offset
links (OL’s) in B1—>BODY 1 and the offset head OHEAD]1
are declared to be offset with respect to BODY1. Since the
data items associated with the list are located in
D1-—>DATA _AREALl, the offset data pointers (ODP’s) in
B1—>BODY]1 are offset with respect to DATA_AREAL.
Similarly, the offset links (OL’s) in B2—>BODY?2 and the
offset head OHEAD?2 are declared to be offset with respect

‘to BODY2, and the offset data pointers (ODP’s) in

B2—>BODY?2 are offset with respect to DATA AREA2.

After the above statements are executed, pointer
DATAL1 contains the absolute address of the data item
associated with the last component in B1->BODY 1, and
pointer DATA?2 contains the absolute address of the data
item associated with the last component in B2—>BODY?2.
The following expressions can then be used to refer to these
two data items:

DATA1->DATA_ITEM
DATA2—->DATA_ITEM

Figure 1.6 illustrates the organization of a relocatable
list of lists and shows how the list can be moved to a new
area. As with relocatable pointer lists, three assignment
statements are used to move the relocatable list of lists:

OHEAD2 = OHEADI ;
B2—>BODY2 = B1—>BODY]1;
D2->DATA_AREA2 = DI->DATA_AREAI;

Again, each component of the list contains two offset vari-
ables: the offset link OL and the offset value pointer OVP.
A third element, however, appears in each component of a
relocatable list of lists, namely, the type code T, which
determines whether the offset value pointer (OVP) specifies
the offset address of another list component (type code L)
or the offset address of a data item (type code D).

The following statements show declaration of type code
T and how to obtain the absolute address of the last data
item in each of the relocatable lists of lists illustrated in
Figure 1.6:

DECLARE
BODY1 AREA(500) BASED(B1),
BODY2 AREA(500) BASED(B2),
DATA_AREA1 AREA(500) BASED(D1),
DATA_AREA2 AREA(500) BASED(D2),
1 D_COMPONENT1 BASED(P1),

2T CHARACTER(1),

2 -~ PAD CHARACTER(3),

2 OVP OFFSET(DATA_AREAIl),

2 OL OFFSET(BODYI),
/*THE PAD ELEMENTS ALIGN THE OFFSETS ON
FOUR-BYTE BOUNDARIES*/
1 L_COMPONENT! BASED(P1),

2 T CHARACTER(1),

2 PAD CHARACTER(Q3),
2 OVP OFFSET(BODY),
2 OL OFFSET(BODY1),

1 D_COMPONENT2 BASED(P2),
20T CHARACTER(1),
2 PAD CHARACTER(3),

B1 >BODY1

OHEAD1Y | T OovVP oL
40 L 180 NULLO
|
LalT| ovwp oL | ___ 1| ovwp oL
‘ID 50 300 D 125 NULLO
i E
! i
D1 —>DATA_AREA1 ! !
! i
L DATA_ITEM L | DATA_ITEM
B2—>BODY2 .
OHEAD?2 T OVP oL
40 L 180 NULLO
- T
|
LT ovp oL T ovP oL
D 50 300 D 125 NULLO
i T
' i
|
D2 > DATA_AREA2 !
+ T
| [}
t | DATA_ITEM L __|DATA_ITEM

OHEAD2 = OHEAD1;

B2 >BODY2 =
D2 >DATA_A

B1—~>BODY1;
REA2=D1—~>DATA_AREA1;

Figure 1.6. Assigning a relocatable list of lists to a new area

2 OVP OFFSET(DATA_AREA2),
2 OL OFFSET(BODY?2),
1 L_COMPONENT2 BASED(P2),
2 T CHARACTER(1),
2 PAD CHARACTER(3),
2 OVP OFFSET(BODY?2),
2 OL OFFSET(BODY?2),
OHEAD1 OFFSET(BODY1),
OHEAD2 OFFSET(BODY?2),
DATA_ITEM BASED(DATA1) CHARACTER(I)
(DATAl DATA2) POINTER;

P1 = OHEADI;
P1 =P1->L_COMPONENT1.0VP;

10

P1 =P1->D_ COMPONENTI.OL;
DATA1 =P1->D_COMPONENT1.OVP;
P2 = OHEAD2;

P2 =P2—>L_COMPONENT2.0VP;

P2 =P2—>D COMPONENT2.OL;
DATA2 = P2—>D_COMPONENT2.0VP;

These statements specify that the area variables BODY1,
BODY?2, DATA_AREA1, and DATA_AREA?2 each reserve
500 bytes of based storage and that the based variable
DATA_ITEM associated with each list component is a
character string that contains one character. Because area

. B1->BODY1 contains two types of components

(D-components and L-components), separate declarations
(D_COMPONENT1 and L_COMPONENT1) are given for
each type. The distinction between the two types of com-
ponents is that the offset value pointer (OVP) in D_
COMPONENT!1 is offset with respect to DATA_AREAI,
while OVP in L_COMPONENT1 is offset with respect to
BODY1. However, the offset link (OL) in each type of
component is offset with respect to BODY1, and both use a
single character for the type code (T). Similarly, the two
types of components in B2—>BODY?2 are declared as D__
COMPONENT?2 and L_COMPONENT?2. The offset value
pointer (OVP) in D_COMPONENT?2 is offset with respect
to DATA_AREA2, and OVP in L_COMPONENT? is off-
set with respect to BODY?2. Also, the offset link (OL) for
each component type in B2—>BODY?2 is offset with
respect to BODY?2, and both types of components use a
single character for the type code (T).

INPUT AND OUTPUT STATEMENTS
FOR RELOCATABLE LISTS

The preceding discussions describe how to move a relocat-
able list from one location to another within internal stor-
age. The main reason, however, for organizing a list in
relocatable form is to allow it to be recorded on an external
storage medium, such as magnetic tape or magnetic disk,
from which it can be retrieved for further processing at a
later time. Transmission of a relocatable list to and from an
external file requires input and output statements for read-
ing and writing the list. Since PL/I does not permit stream-
oriented input and output statements (such as GET and
PUT) to read and write the values of pointer variables and
offset variables, record-oriented statements (such as READ
and LOCATE) must be used to transmit a relocatable list to
and from a file. The following discussions describe the
effect of the LOCATE and READ statements upon relocat-
able lists.

The LOCATE Statement

Output transmission of a relocatable list is performed with
the LOCATE statement, which has the following form:

LOCATE based-variable
FILE (file-name)
[SET (pointer-variable)] ;

This statement processes sequentially accessed files that are
buffered, and allocates within an output buffer (auto-
matically provided for the file) the next available storage
‘position for the specified based variable. The location of
the allocated storage is assigned to the pointer variable
given in the SET option. The pointer variable allows proper
“qualification of references to the based variable in the

buffer. A SET option, however, need not appear in the
LOCATE statement; when it does not, an implied SET is
assumed, which uses the pointer variable in the BASED
attribute of the specified based variable. After the LOCATE
statement has been executed, values can be assigned to the
based variable in the buffer. If the based variable is a struc-
ture, it may require padding elements for boundary align-
ment.

Successive executions of the LOCATE statement
produce successive allocations of storage in the buffer. An
attempt to execute a LOCATE statement when the buffer
has become full, momentarily suspends execution of the
LOCATE statement and automatically causes the contents
of the buffer to be transmitted as a block to the associated
file. The buffer is then cleared, and storage is allocated at
the beginning of the buffer for the suspended LOCATE
statement. '

The following statements show how the LOCATE state-
ment may be used to write a relocatable data list into a file:

DECLARE
OHEAD OFFSET(BODY),
BODY AREA(500) BASED(B),
1 LIST_RECORD BASED(RECORD POINTER),
2 R_HEAD OFFSET(DUMMY_BODY),
2 PADDING CHARACTER(4),
/*PADDING ALIGNS R_BODY ON AN EIGHT-BYTE
BOUNDARY IN THE OUTPUT BUFFER*/
2 R_BODY AREA(500),
DUMMY_BODY AREA BASED(DUMMY _POINTER),
OUTFILE FILE RECORD OUTPUT;

LOCATE LIST_RECORD
FILE(OUTFILE) SET(RECORD POINTERY);
DUMMY _POINTER = ADDR
(RECORD_POINTER—>R_BODY));
RECORD_POINTER—>R_HEAD = OHEAD;
RECORD_POINTER—>R_BODY = B—>BODY;

Figure 1.7 illustrates the effect of these statements.
B—>BODY and OHEAD form the body area and offset
head of the relocatable data list that is transmitted to the
output file OUTFILE. Each record in the file is formed
from the based variable LIST _RECORD, which contains
two elements: R_HEAD and R_BODY. R_HEAD receives
the value of OHEAD, and R_BODY receives the contents
of B—>BODY.

Observe that R_HEAD is declared to be offset with
respect to the based area DUMMY __BODY. Actually,
R_HEAD should be offset with respect to based area
R_BODY because R_HEAD contains the relative address
of the first list component in R_BODY. But R_BODY has
a level number of two and, therefore, does not satisfy the

11

B ~>BODY

OHEAD DATA oL

. - DATA oL o DATA oL
25 125 ' 240 NULLO
‘Q /
Output Buffer . \\
LIST_RECORD LIST_RECORD LIST_RECORD LIST_RECORD
N\ J
OUTFILE

| |
B file-block B
G G

file-block

| |
B file-block B
G G

Figure 1.7. How a relocatable data list is transmitted as a logical record to a file

requirement that the based area in an OFFSET attribute
must have a level number of one. However, R_HEAD
becomes effectively offset with respect to R_BODY when
DUMMY _BODY and R_BODY are made to occupy the
same location. This overlay is achieved by assigning the
address of R_BODY to the pointer variable DUMMY _
POINTER associated with DUMMY _ AREA.

This example assumes that environmental information,
such as record type, record size, block size, input/output
device type, unit number, and recording density, is speci-
fied in a data definition (DD) statement within the job step
that calls for execution of the program under the operating
system. The block size determines the size of the buffer,
which in Figure 1.7 is assumed to contain storage for four
allocations of LIST _RECORD. Also note that, when the
size of LIST_RECORD is given in the appropriate DD
statement, the size must include additional storage for the
internal control information associated with R_BODY. For
example, the F-level version of the PL/I compiler adds 16
bytes of internal control information to each area variable.
Additional information on this point appears in IBM Sys-
tem/360 Operating System: PL/I(F) Programmer’s Guide
(GC28-6594). '

When the contents of the output buffer are transmitted
to the file, they are wrjtten as a block (also called a physical

12

record). Figure 1.7 shows successive blocks recorded in
OUTFILE, which is assumed to be on magnetic tape. Each
block is separated by an interblock gap (IBG) and contains
up to four logical records (that is, four allocations of LIST
_RECORD). The number of logical records in a block can
be changed by specifying a different block size in the
associated DD statement.

The transmission of a relocatable data list to an external
file has been discussed. The following discussion pertains
to the transmission of relocatable pointer lists and lists of
lists to an external file. ‘

To write a relocatable pointer list or list of lists into a
file, it is necessary to transmit the data area of the list along
with its head and body. The following statements show
how the head, body, and data area can be combined into a
single logical record:

DECLARE

OHEAD OFFSET(BODY),

BODY AREA(500) BASED(B),

DATA_AREA AREA(500) BASED(D),

1 LIST_RECORD BASED(RECORD POINTER),
2 R_HEAD OFFSET(DUMMY_BODY),
2 PADI CHARACTER(4),
2 R_BODY AREA(500),

2 PAD2 CHARACTER(4),

2 R_DATA_AREA AREA(500),
DUMMY _BODY AREA BASED(DUMMY _POINTER),
OUTFILE FILE RECORD OUTPUT;

LOCATE LIST_RECORD
FILE(OUTFILE) SET(RECORD_POINTER);
DUMMY _POINTER = ADDR(RECORD POINTER->
R_BODY);
RECORD_POINTER—>R_HEAD = OHEAD;
RECORD POINTER->R_BODY = B—>BODY;
RECORD POINTER->R_DATA_AREA =D->
DATA_AREA;

These statements apply to both pointer lists and lists of lists
because each type of list contains a head, a body, and a
data area. The statements are also similar to those of the
preceding example except that the data area of the list is
included in the record transmitted to the file.

Inclusion of the data area in the logical record, however,
may cause the record size to become too large and thus
require additional buffer storage. A more convenient record
size can be obtained by splitting the list into two logical
records. The first record can contain the head and body of
the list, and the second record can contain the data area.
This type of transmission is obtained with the following
statements:

DECLARE
OHEAD OFFSET(BODY),
BODY AREA(500) BASED(B),
DATA_AREA AREA(500) BASED(D),
1 HEAD_BODY_RECORD BASED(RECORD _
POINTER),
2 R_HEAD OFFSET(DUMMY_BODY),
2 PAD CHARACTER(4),
2 R_BODY AREA(500),
DUMMY_BODY AREA BASED(DUMMY _POINTER),
OUTFILE FILE RECORD OUTPUT;

LOCATE HEAD BODY_ RECORD
FILE(OUTFILE) SET(RECORD_POINTER);
DUMMY _POINTER = ADDR(RECORD_POINTER—>
R_BODY);
RECORD_POINTER->R_HEAD = OHEAD;

RECORD_POINTER->R_BODY = B—>BODY;
LOCATE DATA_AREA
FILE(OUTFILE) SET(RECORD POINTER);
RECORD POINTER->DATA AREA =D->
DATA_AREA;

Figure 1.8 illustrates the effect of these statements on a
relocatable list of lists. The first LOCATE statement
obtains storage in the output buffer for the logical record
HEAD_BODY_RECORD, which receives the head and
body of the relocatable list. The second LOCATE state-
ment allocates storage in the output buffer for DATA _
AREA, which is written as an individual logical record. The
buffer in Figure 1.8 contains four logical records (for two
lists), with HEAD_BODY_RECORD and DATA_AREA
occupying alternate positions. When the buffer becomes
full it is automatically written into QUTFILE and cleared
for further transmission.

The READ Statement

After relocatable lists have been written into a file, they can
be retrieved from the file for additonal processing. Retrieval
is accomplished with a READ statement:

READ FILE(file-name) SET(pointer-variable);

This statement obtains the location of the next logical
record in an input buffer associated with the specified file
and assigns the location to the pointer variable given in the
SET option. A based variable qualified by the same pointer
will then relate to the fields of the logical record; the based
variable is effectively overlaid on the logical record in the
buffer.

The following statements demonstrate how a relocatable
data list can be read from a file:

DECLARE
OHEAD OFFSET(BODY),
BODY AREA(500) BASED(B),
1 LIST_RECORD BASED(RECORD POINTER),
2 R_HEAD OFFSET(DUMMY_BODY),
2 PAD CHARACTER(4),
2 R_BODY AREA(500),
DUMMY_BODY AREA BASED(DUMMY_POINTER),
INFILE FILE RECORD INPUT;

13

B~>BODY

OHEAD | |~ ovP oL
40 L 180 NULLO
i
b 1| ovp o | _ ovpP oL
) D 50 300 125 NULLO
T T
L I I
1 I
| |
D > DATA_AREAI 1
| H
| |
L. DATA_ITEM Lo DATA_ITEM
Output Buffer \
HEAD_BODY _ DATA_AREA HEAD_BODY _ DATA_AREA
RECORD RECORD
N J
OUTFILE
|] | |
B file-block B file-block B file-block B
G G G G

Figure 1.8. How a relocatable list of lists is transmitted as two ldgical records to a file

READ FILE(INFILE) SET(RECORD_POINTER);

DUMMY _POINTER = ADDR
(RECORD_POINTER—>R_BODY);

OHEAD = RECORD_POINTER—>R_HEAD;

B—>BODY = RECORD_POINTER—>R_BODY);

Figure 1.9 illustrates the effect of these statements. The
READ statement obtains the address of the next occur-
rence of LIST_RECORD in the input buffer associated
with INFILE and assigns the address to RECORD _
POINTER. The head and body of the relocatable list are
then assigned to OHEAD and B—>BODY by the following
statements: .

14

OHEAD = RECORD POINTER—>R_HEAD;
B—>BODY = RECORD_POINTER—>R_BODY;

Each execution of the READ statement advances the
value of RECORD _POINTER to the location of the next
logical record in the buffer. When the end of the buffer is
reached and an attempt is made to read another logical
record, the program automatically refills the buffer with
the next block from INFILE and assigns the address of the
first logical record in the buffer to RECORD_POINTER.
This process is repeated until the end of the file is reached.

When a relocatable pointer list or list of lists is read from
a file, the data area of the list must also be retrieved along
with the head and body of the list. The following state-
ments show how to read a relocatable pointer list or list of

INFILE

G G

| |
2 B file-block B file-block B file-block B

. J

P

I

Input Buffer

LIST_RECORD LIST_RECORD

LIST_RECORD LIST_RECORD

r

B >BODY

OHEAD DATA oL

DATA oL DATA oL

25 125

240 NULLO

I'igure 1.9. How arelocatable data list is retrieved as a logical record from a file

lists when the head, body, and data area are contained in a
single logical record:

DECLARE
OHEAD OFFSET(BODY),
BODY AREA(500) BASED(B),
DATA_AREA AREA(500) BASED(D),
1 LIST_RECORD BASED(RECORD POINTER),
2 R_HEAD OFFSET(DUMMY BODY),
2 PAD1 CHARACTER(4),
2 R_BODY AREA(500),
2 PAD2 CHARACTER(4),
2 R_DATA_AREA AREA(500),
DUMMY_BODY AREA BASED(DUMMY _POINTER),
INFILE FILE RECORD INPUT;

READ FILE(INFILE) SET(RECORD _ POINTER)

DUMMY _POINTER = ADDR
(RECORD_POINTER->R_BODY);

OHEAD = RECORD _POINTER->R_HEAD;

B—>BODY = RECORD POINTER—>
R_BODY;

D->DATA_AREA = RECORD POINTER—>
R_DATA_AREA;

These statements retrieve either a relocatable pointer list or
a relocatable list of lists because both types contain a head,
a body, and a data area. This example is similar to the
preceding example except that, in this example, the re-
trieved record contains a data area.

Had the list originally been split and recorded in the file
as two logical records, one for the head and body, the other
for the data area, then the following statements could be
used to retrieve the list:

DECLARE

OHEAD OFFSET(BODY),

BODY AREA(500) BASED(B),

DATA_AREA AREA(500) BASED(D),

1 HEAD BODY_RECORD BASED(RECORD _
POINTER),
2 R_HEAD OFFSET(DUMMY_BODY),
2 .PAD CHARACTER(4),

15

16

2 R_BODY AREA(500), Figure 1.10 illustrates the effect of these statements on a
DUMMY _BODY AREA BASED(DUMMY _POINTER), relocatable list of lists. The first READ statement obtains
INFILE FILE RECORD INPUT; the location of the next logical record (HEAD_BODY _

. . : RECORD) in the input buffer associated with INFILE and

assigns the location to RECORD_POINTER. The head and
body of the list are then assigned to OHEAD and

READ FILE(INFILE) SET(RECORD_POINTER); B—>BODY. The second READ statement obtains the
DUMMY _POINTER = ADDR(RECORD_POINTER—> address of the next logical record (DATA_AREA) in the
R_BODY); ‘ " input buffer and assigns the address to RECORD _
OHEAD = RECORD_POINTER—>R_HEAD; POINTER. The data area is then moved from the buffer to
B—>BODY = RECORD_POINTER—> D->DATA_AREA.
R_BODY;
READ FILE(INFILE) SET(RECORD_POINTER); Self-Defining Records
D-—>DATA_AREA = RECORD_POINTER—>.
DATA AREA; So far, the LOCATE and READ statements have been

restricted to fixed-length records, but it is also possible to
apply these statements to self-defining records. Such re-
cords contain a specification of their own size, which per-

INFILE

| | o |

B file-block B file-block B " file-block B

G G G G

' . Y
r \
Input Buffer
HEAD_BODY _ DATA_AREA HEAD_BODY_ DATA_AREA
RECORD RECORD

J

B->BODY

oL
NULLO

D ~>DATA_AREA

DATA_ITEM DATA_ITEM

~re-r T

e

\

Figure 1.10. How a relocatable list of lists is retrieved as two logical records from a file

mits them to vary in length. They prove useful in handling
the varying storage requirements associated with list-
processing techniques.

The declaration of a self-defining record must be made
with a based structure that contains an adjustable string
length, adjustable area size, or adjustable array bound, the
value of which is maintained by a variable within the struc-
ture. This variable, however, cannot possess a value until
storage has been allocated for the containing based struc-
ture; otherwise, there would be no storage to hold the value
" of the variable. Since the amount of storage to be allocated
depends on the value of this variable, a facility is needed for
associating a value with the vzriable before allocation.

PL/I provides this facility through the REFER option,
which has the following general format:

element-variable REFER(element-variable)

Both element variables in the option must be unsubscripted
fixed-point binary variables having the same precision. The
variable to the right of the keyword REFER must be an
element of the self-defining based structure, but the vari-
able to the left must be declared outside the structure. The
option itself must appear as a string length, area size, or
array bound within the structure. As an example, consider
the following DECLARE statement:

DECLARE

DUMMY_BODY AREA BASED (DUMMY _POINTER),

BINARY BODY _SIZE FIXED BINARY(16,0),
1 LIST_RECORD BASED (RECORD POINTER),
2 R_HEAD OFFSET(DUMMY_BODY),
2 R_BODY_SIZE FIXED BINARY(16,0),
2 R_BODY AREA(BINARY BODY_SIZE
REFER(R_BODY_SIZE));

LIST_RECORD is declared to be a self-defining based
structure, which contains three components: R_HEAD,
R_BODY_SIZE, and R_BODY. This declaration can be
used to generate a self-defining record for a relocatable data
list, in which R_HEAD serves as the offset head of the list
and R_BODY contains the relocatable components of the
list. The area attribute for R_BODY uses a REFER option
to specify the size of the area:

BINARY BODY_SIZE REFER
(R_BODY_SIZE)

When storage is allocated for LIST RECORD, the size of
R_BODY is obtained from BINARY BODY _SIZE (which
is declared outside LIST _RECORD) and is automatically
assigned to R_BODY _SIZE (which is declared inside LIST
_RECORD). It is the programmer’s responsibility to assign
the proper value to BINARY _BODY _SIZE before storage

is allocated for LIST _RECORD. By changing the value of
BINARY _BODY_SIZE, the programmer can vary the size
of R_BODY within each generation of LIST_RECORD.

The following example shows how LIST RECORD may
acquire different lengths when used to write two relocat-
able data lists into a file:

DECLARE
OHEAD1 OFFSET(BODY1),
BODY1 AREA(500) BASED(B),
OHEAD2 OFFSET(BODY?2),
BODY2 AREA(750) BASED(B),
DUMMY_BODY AREA BASED(DUMMY POINTER),
BINARY BODY_SIZE FIXED BINARY(16,0),
OUTFILE FILE RECORD OUTPUT,
1 LIST_RECORD BASED(RECORD POINTER),
2 R_HEAD OFFSET(DUMMY BODY),
2 R_BODY_SIZE FIXED BINARY(16,0),
2 R_BODY AREA(BINARY BODY SIZE
REFER(R_BODY_SIZE));

BINARY BODY _SIZE = 500;
LOCATE LIST RECORD
FILE(OUTFILE) SET(RECORD POINTER);
DUMMY _POINTER = ADDR
(RECORD_POINTER—>R_BODY);
RECORD _POINTER—>R_HEAD = OHEADI;
RECORD POINTER—>R_BODY = B—>BODY];

BINARY_ BODY_SIZE = 750;
LOCATE LIST RECORD
FILE(OUTFILE) SET(RECORD_POINTER);
DUMMY_POINTER = ADDR
(RECORD_POINTER—>R_BODY);
RECORD_POINTER->R_HEAD = OHEAD2;
RECORD POINTER—>R_BODY = B—>BODY?2;

- OHEADI and B—>BODY1 form the offset head and body

area of the first list, while OHEAD2 and B—>BODY?2 serve
as the corresponding parts of the second list. The two body
areas have different storage sizes: BODY1 contains 500
bytes, and BODY?2 contains 750 bytes. Before the first list
is transmitted to OUTFILE, the value 500 is assigned to
BINARY BODY_SIZE. Execution of the LOCATE state-
ment for LIST_RECORD causes 500 bytes of buffer
storage to be allocated for R_BODY within LIST
_RECORD and this size to be assigned automatically to

17

R_BODY_SIZE. The following statements then fill LIST
_RECORD with the offset head and body area of the first
list:

RECORD_POINTER—>R_HEAD = OHEADI;
RECORD_POINTER—>R_BODY = B—>BODY];

The same process is used to write the second list into
OUTFILE, but BINARY_BODY _SIZE is set equal to 750
before storage is allocated for LIST _RECORD. This value
causes the size of area R_BODY to change from 500 bytes
to 750 bytes.

Retrieval of these two lists is illustrated by the following
example:

DECLARE
OHEADI1 OFFSET(BODY1),
BODY1 AREA(500) BASED(B),
OHEAD2 OFFSET(BODY?), -
BODY2 AREA(750) BASED(B),
DUMMY _BODY AREA BASED(DUMMY _POINTER),
BINARY BODY _SIZE FIXED BINARY(16,0),
(BODY_SIZE1, BODY _SIZE2) FIXED DECIMAL(5),
INFILE FILE RECORD INPUT,
1 LIST_RECORD BASED(RECORD_POINTER),
2 R_HEAD OFFSET(DUMMY_BODY),
2 R_BODY_SIZE FIXED BINARY(16,0),
2 R_BODY AREA(BINARY_BODY_SIZE
REFER(R_BODY_SIZE));

READ FILE(INFILE) SET(RECORD_POINTER);

DUMMY _POINTER = ADDR
(RECORD_POINTER—>R_BODY);

OHEAD1 = RECORD_POINTER->R_HEAD;

B—>BODY1 = RECORD_POINTER->R_BODY;

BODY_SIZE1 = RECORD_POINTER—>
R_BODY_SIZE;

The first READ statement retrieves a logical record from
INFILE and assigns the location of the record to RECORD
_ POINTER. This assignment causes the based structure
LIST_-RECORD to be overlaid on the record. The example
assumes that the retrieved record contains the offset head,
body size, and body area for a relocatable data list that is to
be assigned to OHEAD1 and B—>BODY]1.

The REFER option in LIST_RECORD indicates that
the size of area R_BODY can vary and is automatically
determined by the value of R_BODY _SIZE. Execution of
the following statements causes the head and body of the

18

retrieved list to be assigned to OHEAD1 and B—>BODY1:

OHEADI = RECORD_POINTER—>R_HEAD;
B—>BODY1 = RECORD_POINTER->R_BODY;

Note that, although BINARY_BODY _SIZE appears at the
left of the REFER option, its value is not used or changed
in any way by the READ statement. Only a LOCATE state-
ment could make use of BINARY_BODY _SIZE. In this
example, the size of the first retrieved body area is assigned,
for further use, to the variable BODY _SIZE1 by the state-
ment:

BODY_SIZE1 = RECORD POINTER->
R_BODY_SIZE;

Similar steps are used to read the next relocatable data
list from INFILE and to assign it to OHEAD2 and
B—>BODY?2. The size of the body area for this second list
is assigned to BODY _SIZE2.

PL/I(F) allows one REFER option in the declaration of
a self-defining based structure. When the REFER option
specifies a string length or an area size, the string or area
must be an element variable and must be the last element in
the structure declaration. If the REFER option appears as
an array bound, the bound must be the upper bound of the
leftmost dimension in the array declaration, and the
REFER option must also belong to the last array variable in
the self-defining structure or to a minor structure that con-
tains the last element of the self-defining structure.

Earlier examples, illustrated in Figures 1.8 and 1.10,
showed how to write and read body areas and data areas as
separate logical records that are not self-defining. The fol-
lowing discussion shows how those examples can be modi-
fied to handle self-defining records. Consider the following
example:

DECLARE
OHEAD! OFFSET(BODY1)
BODY1 AREA(500) BASED(B),
DATA1 AREA(1000) BASED(D),
OHEAD2 OFFSET(BODY2),
BODY2 AREA(750) BASED(B),
DATA2 AREA(1000) BASED(D),
DUMMY_BODY AREA BASED(DUMMY _POINTER),
BINARY_SIZE FIXED BINARY(16,0),
OUTFILE FILE RECORD OUTPUT,
1 HEAD_BODY_RECORD BASED
(RECORD_POINTER),
2 R_HEAD OFFSET(DUMMY _BODY),
2 R_BODY_SIZE FIXED BINARY(16,0),
2 R_BODY AREA :
(BINARY_SIZE REFER(R_BODY_SIZE)),
1 DATA_RECORD BASED(RECORD_POINTER),

2 R_DATA_SIZE FIXED BINARY(16,0),

2 PAD CHARACTER(4),

2 R_DATA AREA(BINARY_SIZE
REFER(R_DATA_SIZE));

BINARY_SIZE = 500;

LOCATE HEAD BODY_RECORD
FILE(OUTFILE) SET(RECORD_POINTER);

DUMMY _POINTER = ADDR
(RECORD_POINTER—>R_BODY);

RECORD_POINTER—>R_HEAD = OHEADI;

RECORD_POINTER—>R_BODY =B—>BODY1;

BINARY _SIZE = 1000;
LOCATE DATA_RECORD

FILE(OUTFILE) SET(RECORD_POINTER);
RECORD POINTER—>R_DATA = D->DATAI;

BINARY _SIZE = 750;

LOCATE HEAD BODY_RECORD
FILE(OUTFILE) SET(RECORD _POINTER);

DUMMY _POINTER = ADDR
(RECORD_POINTER->R_BODY);

RECORD POINTER—>R_HEAD = OHEAD2;

RECORD_POINTER—>R_BODY = B—>BODY2;

BINARY _SIZE = 1000;
LOCATE DATA_RECORD

FILE(OUTFILE) SET(RECORD _POINTER);
RECORD_POINTER—>R_DATA = D—>DATA2;

This example applies to relocatable pointer lists and lists of
lists. It uses the self-defining based structure HEAD _
BODY _RECORD for the offset head and body area of
each list, and the self-defining based structure DATA _
RECORD for the data area. Two lists are written. The
offset head, body area, and data area of the first list are
specified by OHEAD1, BODY1, and DATAL1, while
OHEAD?2, BODY?2, and DATA?2 denote the corresponding
parts of the second list. BODY1 and DATA1 contain 500
and 1000 bytes each, and BODY2 and DATA?2 contain 750
and 1000 bytes each. These sizes are transmitted with the
associated self-defining records.

Retrieval of these two lists is illustrated by the following
example:

DECLARE
OHEAD1 OFFSET(BODY1),
BODY! AREA(500) BASED(B),
DATA1 AREA(1000) BASED(D),
OHEAD2 OFFSET(BODY?2),
BODY2 AREA(750) BASED(B),
DATA2 AREA(1000) BASED(D),
DUMMY_BODY AREA BASED(DUMMY _POINTER),
BINARY SIZE FIXED BINARY(16,0),
(SIZE1, SIZE2, SIZE3, SIZE4) FIXED DECIMAL(S),
INFILE FILE RECORD INPUT,
1 HEAD_BODY_RECORD BASED
(RECORD_POINTER),
2 R_HEAD OFFSET(DUMMY_BODY),
2 R_BODY_SIZE FIXED BINARY(16,0),
2 R_BODY AREA(BINARY _SIZE REFER
(R_BODY_SIZE)),
1 DATA_RECORD BASED(RECORD _POINTER),
2 R_DATA_SIZE FIXED BINARY(16,0),
2 PAD CHARACTER(4),
2 R_DATA AREA(BINARY _SIZE REFER
(R_DATA SIZE));

READ FILE(INFILE) SET(RECORD _POINTER);

DUMMY _POINTER = ADDR ‘
(RECORD_POINTER->R_BODY);

OHEAD1 = RECORD POINTER—>R_HEAD;

B—>BODY1 = RECORD POINTER—>R_BODY;

SIZE1 = RECORD POINTER—>R_BODY _SIZE;

READ FILE(INFILE) SET(RECORD _POINTER);
D—>DATAI = RECORD POINTER—>R_DATA;
SIZE2 = RECORD_POINTER—>R_DATA_SIZE;

READ FILE(INFILE) SET(RECORD POINTER);

DUMMY_POINTER = ADDR
(RECORD_POINTER—>R_BODY);

OHEAD2 = RECORD POINTER->R_HEAD;

B—>BODY2 = RECORD POINTER—>R_BODY;

SIZE3 = RECORD_POINTER—>R_BODY _SIZE;

L

READ FILE(INFILE) SET(RECORD POINTER);
D—>DATA2 = RECORD POINTER—>R_DATA;
SIZE4 = RECORD POINTER—>R_BODY _SIZE;

19

This example uses the same self-defining based structure
HEAD_BODY_RECORD and DATA_RECORD as the
preceding example. It retrieves two lists. The parts of the
first list are assigned to OHEAD1, BODY1, and DATALI,
and those of the second list are assigned to OHEAD2,
BODY?2, and DATA?2. The sizes of BODY1 and DATALI1 are
assigned to SIZE1 and SIZE2 for possible use by other
statements. SIZE3 and SIZE4 receive the sizes of BODY2
and DATA2.,

20

Chapter 2. Processing Relocatable Lists

The following discussion develop subroutines that use the
relocation facilities described in the preceding chapter. No
attempt is made, however, at creating a collection of proce-
dures for relocatable lists. Instead, it is assumed that lists
will usually be created and manipulated in absolute form

and then converted to relocatable form when they are to be

moved to new locations or transmitted to files. This
approach restricts the procedures needed for relocatable
lists to five categories:

1. Converting absolute lists to relocatable form
2. Converting relocatable lists to absolute form
3. Moving relocatable lists

4. Writing relocatable lists

5. Reading relocatable lists

Each category contains subroutines for three types of lists:
data lists, pointer lists, and lists of lists.

B ~>BODY_AREA

The subroutines in these categories are designed to
process an arbitray number of relocatable lists in each area
and are not limited to areas that contain a single list. The
heads of all the relocatable lists in an area are passed to
each subroutine as an array of offset variables. This con-
vention permits the number of offset heads in the array
(and consequently, the number of lists in the area) to vary
while at the same time allowing the number of arguments in
each invocation to remain constant. As an example, Figure
2.1 shows the area B—>BODY _AREA with three relocat-
able data lists, the heads of which are individual offset
variables. The offset head OAVAIL is assumed to identify
the relocatable list of available storage components in the
area. The same area and lists appear in Figure 2.2, but the
offset heads of the lists have been assigned to the array
OHEAD_ARRAY. The subroutines in the following dis-
cussions assume an arbitrary size for the airay of offset
heads and transmit the array as a self-defining record.

OHEAD1 | _DATA oL | | DATA oo | ___ | para oL | _
25 125 240 350 I
I
______________ e
r-~-~"~~"~-"~"=-====-- (
1 .
I | DATA oL | | paTA oL | DATA oL
o 440 575 NULLO
OHEAD2 | DbpaTa oL DATA o | | DATA oL
690 - 800 990 NULLO
OAVAIL _| pata oL DATA oL | | DATA oL |
1100 o 1200 o 1350 1445 | |
|
o m e e e oo e —d
1
! [DpATA oL DATA oo | | pATA oL |
1565 1690 1800 | |
|
Frmmm e e e e e e e e e e e e e -
[
L | bpaTa oL | DATA oL | __ DATA oL
1950 2100 NULLO

Figure 2.1. Relocatable lists with individual offset heads

21

22

r-
|

1

|

|

|

|
OHEAD _|
ARRAY |
25 |--
690 |----
1100 |—1q
i

|

|

L

B—~>BODY_AREA

___ .| DATA oL . DATA oL | pata oL |
125 240 350 | |
]‘/'_'_""""'""“"—"““-"—“"'-"“"J
!
I | DATA oL _ DATA oL | | DATA oL
440 575 o NULLO
DATA oL L DATA oL | | DATA oL
800 990 NULLO
DATA oL DATA oL | DATA o |
1200 1350 1445 | |
]
r__‘__._________.____.-_-___________._____l
:
[pata oL [paTA oL DATA oL
1565 1690 o 1800 |
|
F——=-— U |
] :
| | DATA oL DATA oL DATA oL
1950 2100 NULLO

Figure 2.2. Relocatable lists with their offset heads stored in an array

CONVERTING'ABSOLUTE LISTS
TO RELOCATABLE FORM

The following discussions develop three subroutines for
converting the absolute lists in one area to relocatable lists
in another area:

1. CON_DAR, which converts data lists from absolute
to relocatable form .

2. CON_PAR, which converts pointer lists from
absolute to relocatable form

3. CON_LAR, which converts lists of lists from
absolute to relocatable form

These subroutines are used after the absolute lists have
been constructed and processed by other routines and are
ready to be moved to new storage locations or to be written
into files.

- CON_DAR Subroutine

Figures 2.3A and 2.3B present the CON_DAR subroutine,
which converts absolute data lists in one area to relocatable
data lists in another area. The subroutine uses four argu-
ments: the body area and head array of the absolute data
lists being converted, and the body area and head array that
are to receive the relocatable data lists during conversion.

CON_DAR Subroutine

Purpose
To convert data lists from absolute to relocatable
form :

Reference
CON_DAR(BODY_AREA1,HEAD_ARRAY,
BODY_AREA2, OHEAD_ARRAY)

Entry-Name Declaration
DECLARE CON_DAR

ENTRY(AREA(*),(*)POINTER, AREA("),
(*)OFFSET(DUMMY_BODY_AREA));

Meaning of Arguments

— the area that contains the

BODY_AREA1 ;
bodies of the absolute lists
being converted to relocatable
form

HEAD_ARRAY — the array that contains the

pointer heads of the absolute
lists in BODY_AREA1

* Method

BODY_AREA2 — the area that receives the
bodies of the lists after they
have been converted to
relocatable form

OHEAD_ARRAY — the array that receives the
offset heads of the relocatable

listsin BODY_AREA2
Remarks

BODY_AREA1 and BODY _AREA2 can have any
storage class and be of arbitrary and unequal size. If
BODY_AREAZ2 is not large enough to receive the
converted components of BODY _AREA1, or if
OHEAD_ARRAY is smaller than HEAD_ARRAY,
or i HEAD_ARRAY is completely null, then
OHEAD_ARRAY is filled with null offset values,
and the content of BODY_AREA2 becomes
undefined.

Other Programmer-Defined Procedures Required

None

Each absolute list in BODY _AREAT1 is reconstructed,
component by component, as a relocatable list in
BODY__AREA2. The data element of each
component is a single character.

Figure 2.3A. Description of the CON_DAR subroutine for converting data lists from absolute to relocatable form

23

CON_DAR:

DECLARE

IF

THEN
GO TO

PROCEDURE(BODY_AREA1l, HEAD_ARRAY,
BODY_AREA2, OHEAD_ARRAY);

(DUMMY_POINTER,C15C2)PCINTER,
(BODY_AREA1l, BODY_AREA2) AREA(*),
DUMMY_BODY_AREA BASED
(DUMMY_POINTER) AREA,
(HEAD_ARRAY(*), SAVE) POINTER,
OHEAD_ARRAY (*) OFFSET
(DUMMY_BODY_AREA),

COMPONENT1 BASED(C1),

DATA CHARACTER(1),

LINK POINTER,

CGCMPONENT2 BASED(C2),

DATA CHARACTER(1),

OLINK OFFSET(DUMMY_BODY_AREA);
/* IF AREA CONDITION OCCURS,
BODY_AREA2 IS TCO SMALL TO RECEIVE
CONTENTS OF BODY_AREAl. GO TO
NULL_LIST.*/ ‘

ON AREA

NN -

GO TO

NULL_LIST;
/* IF OHEAD_ARRAY IS SMALLER THAN
HEAD_ARRAY, GO TO NULL_LIST */

DIM(OHEAD_ARRAY, 1)<DIM(HEAD_ARRAY, 1)

NULL_LIST;

/* ASSOCIATE OFFSETS OHEAD_ARRAY AND
OLINK WITH BODY_AREA2.*/
DUMMY_POINTER = ADDR(BODY_AREA2);

/* CCNVERT SUCCESSIVE DATA LISTS IN
BODY_AREA1l TO RELOCATABLE DATA LISTS
IN BODY_AREA2.*/
J=LBOUND(OHEAD_ARRAY,1)-1;

BEGIN_CCNVERT_LQGP:
DO

IF

I=LBOUND(HEAD_ARRAY,1) TO HBOUND
(HEAD_ARRAY,1)3;

J = J+l;

/% 1IF I-TH POINTER IN HEAD_ARRAY IS
NULL,y SET J-TH OFFSET IN OHEAD_ARRAY
TO NULLO, AND CONVERT NEXT LIST IN
BODY_AREAl.*/

HEAD_ARRAY (I) = NULL

THEN
D03

OHEAD_ARRAY(J) = NULLO;

END3

DO

END;

GO TO

END_CONVERT_LCOP;

/* ALLOCATE COMPONENTZ2 IN
BODY_AREA2, AND ASSIGN TO THE
ALLOCATION THE DATA VALUE OF THE
FIRST COMPONENT IN THE I-TH LIST IN
BODY_AREAl.*/

ALLOCATE COMPONENT2 IN(BODY_AREA2)
SET(C2)3

OHEAD_ARRAY (J)y SAVE = C23;

Cl = HEAD_ARRAY(I);
C2->COMPONENT2.DATA = C1->
COMPONENT1.DATA;

/* PERFORM SUCCESSIVE ALLOCATIONS OF
COMPONENT2 IN BODY_AREAl, AND ASSIGN
TO THE ALLOCATIONS THE DATA VALUE OF
SUCCESSIVE COMPONENTS IN THE I-TH
LIST WITHIN BODY_AREAl.*/

Cl = C1->LINK;

WHILE (Cl-~=NULL);

ALLOCATE COMPONENT2 IN (BODY_AREA2)
SET(C2)3;

SAVE->OLINK, SAVE = C2;
C2->COMPONENT2.DATA = C1->
COMPONENT1.DATA;

Cl = C1->LINK;

/* ASSIGN A NULL OFFSET VALUE TO
OLINK IN LAST COMPONENT OF J-TH LIST
IN BODY_AREA2.*/

SAVE->0LINK = NULLO; '
/* CONVERT NEXT LIST IN BODY_AREAl
BY EXECUTING NEXT CYCLE OF CONVERT
LOQP.*/

END_CONVERT_LOOP:

END3;

/% THIS POINT IS REACHED WHEN ALL.
DATA LISTS IN BODY_AREA1l HAVE BEEN
CONVERTED TO RELOCATABLE DATA LISTS
IN BODY_AREA2. THEREFOREy RETURN
SUBROUTINE CONTROL TO POINT OF
INVOCATION.*/

RETURN;

/% IF THIS POINT IS REACHED, ASSIGN
A NULL OFFSET VALUE TO EACH ELEMENT
OF OHEAD_ARRAY.*/

NULL_LIST:

END

OHEAD_ARRAY = NULLO3

CON_DAR;

Figure 2.3B. The CON_DAR subroutine used to convert data lists from absolute to relocatable form

24

CON_PAR Subroutine

Figures 2.4A and 2.4B present the CON_PAR subroutine,
which converts absolute pointer lists to relocatable form.
The subroutine uses five arguments: the body area and head
array of the absolute pointer lists being converted, the body
area and head array that are to receive the relocatable
pointer lists during conversion, and the data area, which is
shared by both the absolute and relocatable forms of the
pointer lists.

CON__PAR Subroutine

Purpose

To convert pointer lists from absolute to relocatable
form

Reference

CON_PAR (BODY_AREA1, HEAD_ARRAY
BODY_AREA2, OHEAD_ARRAY,
DATA_AREA)

Entry-Name Declaration

DECLARE CON_PAR \
ENTRY(AREA(*), (*) POINTER,
AREA(*), (*) OFFSET
(DUMMY_BODY_AREA), AREA(¥));

Meaning of Arguments

BODY_AREA1 — the area that contains the
bodies of the absolute lists
being converted to relocatable
form

HEAD _ARRAY — the array that contains the

pointer heads of the absolute
lists in BODY_AREA1

BODY_AREA2 — the area that receives the
bodies of the lists after they
have been converted to

relocatable form

OHEAD_ARRAY — the array that receives the
offset heads of the relocatable
lists in BODY_AREA2

DATA_AREA — the area that contains the
data values of the lists before
and after conversion

Remarks

BODY_AREA1, BODY_AREA2,and DATA_AREA
can have any storage class and be of arbitrary size.

If BODY _AREAZ2 is not large enough to receive the
converted components of BODY _AREAT1, or if
OHEAD_ARRAY is smaller than HEAD_ARRAY,
or if HEAD__ARRAY is completely null, then
OHEAD_ARRAY is filled with null offset values,

and the content of BODY_AREA2 becomes
undefined.

Other Programmer-Defined Procedures Required
None

‘Method
Each absolute list in BODY_AREAT1 is reconstructed,
component by component, as are relocatable lists in

BODY_AREA2. After conversion, both types of
lists share DATA_AREA.

Figure 2.4A. Description of the CON_PAR subroutine for converting pointer lists from absolute to relocatable form

CON_PAR: THEN

PROCEDURE(BCDY_AREAl, HEAD_ARRAY, DO ' o
BODY_AREA2, OHEAD_ARRAY, OHEAD_ARRAY(J) = NULLO;
DATA_AREA); GO TO
DECLARE ‘ END_CONVERT_LCOP;
(BODY_AREAl, BODY_AREA2, DATA_AREA) END;
AREA(*), /% ALLOCATE COMPONENT2 IN
DUMMY_BODY_AREA BASED(DUMMY_POINTER1) BODY_AREA2, AND ASSIGN TO THE
AREA, ALLOCATION THE DATA POINTER OF THE
DUMMY_DATA_AREA BASED(DUMMY_POINTER2) FIRST COMPONENT IN THE I-TH LIST IN
AREA, ° BODY_AREAl. */ .
(HEAD_ARRAY (*), SAVE) POINTER, ALLCOCATE COMPONENT2 IN(BODY_AREA2)
OHEAD_ARRAY (*)) SET(C2);
OFFSET(DUMMY_BODY_AREA), OHEAD_ARRAY(J)y, SAVE = C2;
1 COMPONENT1 BASED(C1), . Cl = HEAD_ARRAY(I);
2 DATA POINTER, IF
2 LINK POINTER, DATA = NULL
1 COMPONENT2 BASED(C2), THEN
2 ODATA OFFSET(DUMMY_DATA_AREA), ODATA = NULLGC;
2 CLINK OFFSET(DUMMY_DATA_AREA); ELSE
/% IF AREA CONDITION OCCURS, ODATA = DATA;
BODY_AREA2 IS TOO SMALL TO /* PERFORM SUCCESSIVE ALLOCATIONS
RECEIVE CONTENTS OF BODY_AREAl. GO OF COMPONENT2 IN BODY_AREA2, AND
TO NULL_LIST. */ ASSIGN TO THE ALLOCATIONS THE DATA
ON AREA POINTER OF SUCCESSIVE COMPONENTS IN
GO TO ‘ : THE I-TH LIST WITHIN BODY_AREAl. */
NULL_LIST: Cl = C1->LINK;
/* IF HEAD_ARRAY IS NULL, GC TC Do
NULL_LIST. #*/ WHILE(C1-~=NULL);
DO I = LBOUND(HEAD_ARRAY,1) ALLCCATE COMPONENT2 IN(BODY_AREA2)
"~ TO HBOUND(HEAD_ARRAY,1); SET(C2);
IF HEAD_ARRAY(I) =-= NULL SAVE->0LINK,SAVE = C23
. THEN GO TO GO2; IF
END; . ‘ DATA = NULL
GO TO THEN
" NULL_LIST; ODATA = NULLO;
G02: ELSE
/* IF CHEAD_ARRAY IS SMALLER THAN ODATA = DATA;
HEAD_ARRAY, GO TO NULL_LIST. */ Cl = C1->LINK;
IF , END3
DIM(OHEAD_ARRAY,1)<DIM(HEAD_ARRAY,1) /* ASSIGN A NULL OFFSET VALUE TC
THEN OLINK IN LAST COMPONENT OF J-TH LIST
GO TO : v IN BODY_AREA2. */
NULL_LIST; SAVE->0LINK = NULLO;)
/% ASSOCIATE OFFSETS OHEAD_ARRAY AND /* CONVERT NEXT LIST IN BODY_AREA1l
OLINK WITH BODY_AREA2 AND OFFSET BY EXECUTING NEXT CYCLE OF CONVERT
ODATA WITH DATA_AREA. */ : LOCP. */
DUMMY_POINTER]1 = ADDR(BODY_AREA2); END_CONVERT_LQOQP:
DUMMY_POINTER2 = ADDR(DATA_AREA); END;
/* CONVERT SUCCESSIVE POINTER LISTS /% THIS POINT IS REACHED WHEN ALL
IN BODY_AREA1l TO RELOCATABLE POINTER LISTS IN BODY_AREAl HAVE
POINTER LISTS IN BODY_AREA2. */ BEEN CONVERTED TO RELOCATABLE
J = LBOUND(OHEAD_ARRAY,1)-13; POINTER LISTS IN BODY_AREA2,
BEGIN_CONVERT_LOOP: THEREFORE, RETURN SUBROUTINE CONTROL
28] ‘ TO POINT OF INVOCATION. */
I = LBOUND(HEAD_ARRAY,1) RETURN;
TO HBOUND(HEAD_ARRAY,1); /* IF THIS POINT IS REACHED, ASSIGN
Jd=J + 13 A NULL OFFSET VALUE TO EACH ELEMENT
/% IF I-TH POINTER IN HEAD_ARRAY IS OF OHEAD_ARRAY. */
NULLy SET J-TH OFFSET IN OHEAD _ARRAY NULL_LIST:
TO NULLC, AND CONVERT NEXT LIST IN OHEAD_ARRAY = NULLO;
BODY_AREAl. */ END
IF CON_PAR;

HEAD_ARRAY(I) = NULL

Figure 2.4B. The CON_PAR subroutine used to convert absolute pointer lists to relocatable form

26

CON_LAR Subroutine

Figures 2.5A and 2.5B present the CON_LAR subroutine,
which converts absolute lists of lists to relocatable form.

" The subroutine uses six arguments: the body area and head
array of the absolute lists of lists being converted, the body
area and head array that are to receive the relocatable lists
of lists during conversion, the data area, which is shared by

both the absolute and relocatable forms of the lists of lists,
and the number of sublists.

The code in CON_LAR indicates an optional use of the
recursive function procedure CONV shown in the
Appendix. CONV examines the type code in each list com-
ponent and takes appropriate conversion action. CONV
returns an offset value.

CON__LAR Subroutine
Purpose

To convert lists of lists from absolute to relocatable
form

Reference

CON_LAR(BODY_AREA1,HEAD_ARRAY,
BODY_AREA2, OHEAD_ARRAY,
DATA_AREA #SUBS)
Entry-Name Declaration
DECLARE CON_LAR
ENTRY(AREA(¥), (*)POINTER,
AREA(*), (*)OFFSET

FIXED DECIMAL);
Meaning of Arguments

— the area that contains the
bodies of the absolute lists

BODY_AREA1

form

HEAD_ARRAY — the array that contains the
pointer heads of the absolute
lists in BODY_AREA1

BODY_AREA2 — the area that receives the
bodies of the lists after they
have been converted to
relocatable form

(DUMMY_BODY_AREA), AREA(¥), .

being converted to relocatable

OHEAD_ARRAY — the array that receives the
offset heads of the relocatable
lists in BODY_AREA2

DATA_AREA — the area that contains the
data values of the lists before
and after conversion

#SUBS — the number of sublists

Remarks

- BODY_AREA1, BODY_AREA2,and DATA_AREA
can have any storage class and be of arbitrary size.
If BODY_AREA2 is not large enough to receive the
converted components of BODY _AREAT1, or if
OHEAD_ARRAY is smaller than HEAD_ARRAY,
or if HEAD_ARRAY is completely null, then
OHEAD_ARRAY is filled with null offset values,
and the content of BODY__AREA2 becomes
undefined.

Other Programmer-Defined Procedures Required

CONV (optional)

Method

Each absolute list in BODY _AREAT1 is reconstructed,
component by component, as a relocatable list in
BODY _AREA2. After conversion, both types of
lists share DATA - AREA.

Figure 2.5A. Description of the CON_LAR subroutine for converting lists of lists from absolute to relocatable form

27

CON_LAR:
) PROCEDURE (BODY_AREAL sHEAD_ARRAY
BODY_AREA2, OHEAD_ARRAY, DATA_AREA,
#SUBS) 3 :
DECLARE
#SUBS FIXED DECIMAL,
(SAVE, KEEP, PA(#SUBS)) POINTER,
/* PARAMETER #SUBS IS NOT NECESSARY
WHEN FUNCTION CONV IS USED */
(DUMMY_BODY_POINTER,
DUMMY_DATA_POINTER,C1,C2)POINTER,
(BODY_AREA1,BODY_AREA2,DATA_AREA)
AREA(*),
DUMMY_BODY_AREA
BASED(DUMMY_BODY_POINTER) AREA,
DUMMY_DATA_AREA
BASED(DUMMY_DATA_POINTER) AREA,
HEAD_ARRAY(*) POINTER,
OHEAD_ARRAY (*)
OFFSET (DUMMY_BODY_AREA)
COMPONENT1 BASED(C1),
TYPE CHARACTER(1),
VALUE POINTER,
LINK POINTER,
D_COMPONENT2 BASED(C2),
DO_OTYPE CHARACTER(1),
D_OVALUE OFFSET (DUMMY_DATA_AREA),
D_OLINK OFFSET(DUMMY_BODY_AREA),
L_COMPONENT2 BASED(C2),
L_OTYPE CHARACTER(1),
L_OVALUE OFFSET(DUMMY_BODY_AREA),
L_OLINK OFFSET(DUMMY_BODY_AREA);
/% IF AREA CONDITION OCCURS,
BODY_AREA2 IS TOO SMALL TO RECEIVE
CONTENTS OF BODY_AREAl. GO TO
NULL_LIST. #/
ON AREA
GO TO
NULL_LIST;
/* IF OHEAD_ARRAY IS SMALLER THAN
HEAD_ARRAY, GO TO NULL_LIST. */

NNNERNRN=NNN -

IF

DIM(OHEAD_ARRAY 1) <DIM(HEAD_ARRAY,1)

THEN
G0 TO
NULL_LIST;
/* ASSOCIATE OFFSETS OHEAD_ARRAY,

D_OLINKy L_OLINK, AND L_OVALUE WITH
BODY_AREA2, AND OFFSET D_OVALUE WITH

DATA_AREA. */
DUMMY_BODY_POINTER
ADDR(BODY_AREA2) 3
DUMMY_DATA_POINTER
ADDR(DATA_AREA) ;
/* CONVERT SUCCESSIVE LISTS OF
LISTS IN BODY_AREA1l TO
RELOCATABLE LISTS OF LISTS IN
BODY_AREA2. */

PA = NULL; ,
J = LBOUND(OHEAD_ARRAY,1)-13

BEGIN_CONVERT_LOOP:

00

= LBOUND(HEAD_ARRAY,1)
0 HBOUND(HEAD_ARRAY,1);
J + 13

13

Cl = HEAD_ARRAY(I);

IF C1 = NULL THEN DO;
OHEAD_ARRAY(J) = NULLO;
GO TO END_CONVERT_LOQP;
END;)

I
T
J
K

/% OPTION */
/7* TEST */ IF #SUBS ~= 1 THEN GO TO NO_CONV;
USE_CONV:
/* USE THE FOLLOWING CODE
TO EMPLOY FUNCTION CONV
FOR CONVERSIONS */
OHEAD_ARRAY (J) = CONV(HEAD_ARRAY(I),
BODY_AREAl, BODY_AREA2, DATA_AREA);
GO TO END_CONVERT_LOGP;
/% END OF OPTION */
NO_CONV:
ALLOCATE L_COMPONENT2 IN(BODY_AREA2)
SET(C2);
SAVE, KEEP, OHEAD_ARRAY(J) = C23
C2->L_0TYPE = *'L°*;
PA(K) = C1->VALUE;
Cl = C1->LINK;
DO WHILE(C1 -~= NULL);

K =K+ 13

ALLOCATE L_COMPONENT2 IN(BODY_AREA2)
SET(C2);

SAVE->L_OLINK = C23

SAVE = C2;

C2->L_OTYPE = 'L*3
PA(K) = C1->VALUE;
Cl = C1->LINK;

END;
SAVE->L_OLINK = NULLO3
D_LIST:
DO L =1 TO #SUBS;
Cl = PA(L);)

IF C1 = NULL THEN GOTO END_D_LIST;
ALLOCATE D_COMPONENT2 IN(BODY_AREA2)
SET(C2)3
SAVE = C2;
KEEP->L_OVALUE = C2;
KEEP = KEEP->L_OLINK;
C2->D_OTYPE = *'D*;
IF C1->VALUE = NULL
THEN C2->D_OVALUE = NULLO:
ELSE C2->D_OVALUE = C1->VALUE;
Cl = C1->LINK;
DO WHILE(C1 == NULL):
ALLOCATE D_COMPONENT2 IN(BODY_AREA2)
SET(C2);
SAVE->D_OLINK = C23
SAVE = C23
C2->D_O0TYPE = 'D*;
IF C1->VALUE = NULL
THEN C2->D_OVALUE
ELSE C2~>D_OVALUE
Cl = C1->LINK;
END3
SAVE->D_OLINK = NULLO;
END_D_LIST: END;
END_CONVERT_LOOP:
END;

NULLO3
C1->VALUE;

/* WHEN THIS POINT IS REACHED, ALL
LISTS OF LISTS IN BODY_AREA1l HAVE
BEEN CONVERTED TO RELOCATABLE LISTS
OF LISTS IN BODY_AREA2. THEREFORE,
RETURN SUBROUTINE CONTROL TO POINT
OF INVOCATION. */
RETURN;
/* IF THIS POINT IS REACHED, ASSIGN
A NULL OFFSET VALUE TO EACH
ELEMENT OF OHEAD_ARRAY. */
NULL_LIST:
OHEAD_ARRAY = NULLO;
END
CON_LAR;

Figure 2.5B. The CON_LAR subroutine used to convert absolute lists of lists to relocatable form

28

CONVERTING RELOCATABLE LISTS
TO ABSOLUTE FORM

The following discussions develop three subroutines for
converting the relocatable lists in one area to absolute lists
in another area:

1. CON_DRA, which converts data lists from relocat-
able to absolute form

2. CON_PRA, which converts pointer lists from
relocatable to absolute form

3. CON_LRA, which converts lists of lists from
relocatable to absolute form

These subroutines are used after the relocatable lists
have been retrieved from files or moved to new storage
locations. Conversion of the lists to absolute form permits
them to be processed by routines that accept only absolute
lists.

CON_DRA Subroutine

Figures 2.6A and 2.6B present the CON_DRA subroutine,
which converts data lists from relocatable to absolute form.
The subroutine uses four arguments: the body area and
head array of the relocatable lists being converted, and the
body area and head array that are to receive the absolute
lists during conversion.

CON_DRA Subroutine

Purpose

To convert data lists from relocatable to absolute
form

Reference

CON_DRA(BODY_AREA1, OHEAD_ARRAY,
BODY_AREA2, HEAD_ARRAY)

Entry-Name Declaration

DECLARE CON_DRA
ENTRY(AREA(*), (*)OFFSET
(DUMMY_BODY_AREA), AREA(*),
(*)POINTER);

Meaning of Arguments

BODY _AREA1 — the area that contains the
bodies of the relocatable
lists being converted to
absolute form

OHEAD_ARRAY — the array that contains the
offset heads of the relocatable
lists in BODY_AREA1

BODY_AREA2 — the area that receives the
bodies of the lists after they
have been converted to abso-
lute form

HEAD_ARRAY — the array that receives the
pointer heads of the absolute
listsin BODY_AREA2

Remarks

BODY_AREA1 and BODY_AREAZ2 can have any
storage class and be of arbitrary and unequal size.

If BODY _AREAZ2 is not large enough to receive the
converted components of BODY__AREAT1, or if
HEAD_ARRAY is smaller than OHEAD_ARRAY,
or if all positions of OHEAD _ARRAY contain null
offset values, then HEAD _ARRAY is filled with null
pointer values, and the content of BODY__AREA2
becomes undefined.

Other Programmer-Defined Progedures Required
None

Method
Each relocatable list in BODY _AREAT1 is recon-
structed, component by component, as an absolute

list in BODY_AREA2. The data element of each
component is a single character.

Figure 2.6A. Description of the CON_DRA subroutine for converting data lists from relocatable to absolute form

29

CON_DRA:

DECLARE

IF

THEN
GO TO

PROCEDURE (BODY_AREA1,CHEAD_ARRAY,
BODY_AREA2,HEAD_ARRAYY);

(DUMMY_POINTER,C14C2)POINTER,
(BODY_AREA1,BODY_AREA2)AREA(*),
DUMMY_BODY_AREA BASED
(DUMMY_POINTER)AREA,
OHEAD_ARRAY(*) CFFSET
(DUMMY_BODY_AREA),

(HEAD_ARRAY(*), SAVE, TEMP) POINTER,
COMPONENT1 BASED(C1),

DATA CHARACTER(1),

OLINK OFFSET(DUMMY_BODY_AREA),
COMPONENT2 BASED(C2),

DATA CHARACTER{L)»

LINK POINTER;

/* IF AREA CONDITION OCCURS,
BODY_AREA2 IS TCO SMALL TO RECEIVE
CONTENTS OF BODY_AREAl. GO TO
NULL_LIST.*/

ON AREA

NN=NN -~

GO0 TO

NULL_LIST;
/* IF HEAD_ARRAY IS SMALLER THAN
OHEAD_ARRAY, GO TO NULL_LIST.*/

DIM(HEAD_ARRAY, 1)<DIM(OHEAD_ARRAY,1)

NULL_LISTS

/% ASSOCIATE OFFSETS OHEAD_ARRAY AND
OLINK WITH BODY_AREAl.*/
DUMMY_POINTER = ADDR(BODY_AREA1l);

/% CONVERT EACH RELOCATABLE DATA
LIST IN BODY_AREAl TO AN ABSOLUTE
DATA LIST IN BODY_AREA2.%*/

J = LBOUND(HEAD_ARRAY,1)-1;

BEGIN_CONVERT_LOQOP:

]1]

IF

I = LBOUND(OHEAD_ARRAY,1) TGO HBOUND
(OHEAD_ARRAY,1)3;

J = J+13

/* IF I-TH OFFSET IN OHEAD_ARRAY IS
NULLO,y SET J-TH POINTER IN
HEAD_ARRAY TO NULLy AND CONVERT NEXT
LIST IN BODY_AREAl.*/

OHEAD_ARRAY(1) = NULLO

THEN

D03

HEAD_ARRAY(J) = NULL;

GO To

END_CONVERT_LOOP;

END3

IF

/* ALLOCATE COMPONENT2 IN
BODY_AREA2, AND ASSIGN TO THE
ALLCCATION THE CATA VALUE OF THE
FIRST COMPONENT IN THE I-TH LIST IN

BODY_AREAl.*/
ALLOCATE COMPONENT2 IN(BODY_AREA2)

SET (C2)3

_HEAD_ARRAY(J)y SAVE = C23

TEMP = OHEAD_ARRAY(I);
C2->COMPONENT2.DATA = TEMP->
COMPONENT1.DATA;

/* PERFORM SUCCESSIVE ALLOCATIONS OF
COMPONENT2 IN BODY_AREA2, AND ASSIGN
TO THE ALLOCATIONS THE DATA VALUES

0F SUCCECCTIUE COMDANENTS IN THE [-TH

i

LIST WITHIN BODY_AREAL.*/

Cl = TEMP->OLINK; _

DO WHILE(C1 == NULL);

ALLOCATE COMPONENT2 IN(BODY_AREA2)
SET(C2);

SAVE->LINK, SAVE = C2;
C2->COMPONENT2.DATA = C1->
COMPONENT1.DATA;

C1->0LINK = NULLO

THEN

Cl = NULL;

ELSE

END;

[}

Cl C1->0LINK;

/* ASSIGN A NULL VALUE TO LINK IN
LAST COMPONENT OF J-TH LIST IN
BODY_AREA2.*/

SAVE->LINK = NULL;

/* CONVERT NEXT LIST IN BODY_AREAlL
BY EXECUTING NEXT CYCLE OF CONVERT
LOGP.*/

END_CONVERT_LOQP:

END;
/* THIS POINT IS REACHED WHEN ALL
RELCCATABLE LISTS IN BODY_AREA1l
HAVE BEEN CONVERTED TO ABSOLUTE
LISTS IN BODY_AREA2. THEREFORE,
RETURN SUBROUTINE CONTROL TO POINT
OF INVOCATION.*/
RETURN} '
/* IF THIS POINT IS REACHED, ASSIGN
A NULL VALUE TO EACH ELEMENT OF
HEAD_ARRAY.*/

NULL_LIST:
HEAD_ARRAY = NULL;

END

CON_DRA;

Figure 2.6B. The CON_DRA subroutine used to convert data lists from relocatable to absolute form

30

CON_PRA Subroutine

Figures 2.7A and 2.7B present the CON_PRA subroutine,
which converts relocatable pointer lists to absolute form.
The subroutine uses five arguments: the body area and head
array of the relocatable pointer lists being converted, the
body area and head array that are to receive the absolute
pointer lists during conversion, and the data area, which is
shared by both the relocatable and absolute forms of the
pointer lists.

CON_ PRA Subroutine

Purpose

To convert pointer lists from relocatable to absolute
form

Reference

CON_PRA(BODY_AREA1, OHEAD_ARRAY,
BODY_AREA2, HEAD_ARRAY,
DATA_AREA)

Entry-Name Declaration

DECLARE CON_PRA
ENTRY(AREA(*), (*)OFFSET
(DUMMY_BODY_AREA), AREA(*),
(*)POINTER, AREA(*));

Meaning of Arguments

- BODY_AREA1 — the area that contains the
bodies of the relocatable
lists being converted to
absolute form

OHEAD_ARRAY — the array that contains the
offset heads of the relocatable
lists in BODY_AREA1

BODY_AREA2 — the area that receives the
bodies of the lists after they
have been converted to
absolute form

HEAD_ARRAY — the array that receives the
pointer heads of the absolute
lists in BODY_AREA2

DATA_AREA — the area that contains the
data values of the lists
before and after conversion

Remarks

BODY_AREA1, BODY_AREA2, and DATA_AREA
can have any storage class and be of arbitrary size.

If BODY_AREAZ2 is not large enough to receive the
converted components of BODY _AREAT1, or if

HEAD _ARRAY is smaller than OHEAD_ARRAY,

or if all positions of OHEAD_ARRAY contain

null offset values, then HEAD_ARRAY is filled with
null pointer values, and the content of BODY_AREA2
becomes undefined.

Other Programmer-Defined Procedures Required

None

Method

Each relocatable list in BODY _AREAT1 is recon-
structed, component by component, as an absolute
list in BODY _AREAZ2. After conversion, both types
of lists share DATA_AREA.

Figure 2.7A. Description of the CON_PRA subroutine for converting pointer lists from relocatable to absolute form

CON_PRA:

DECLARE

DO 1

PROCEDURE (BODY_AREAl, OHEAD_ARRAY,
BODY_AREA2, HEAD_ARRAY, DATA_AREA);

(BOOY_AREA1,BODY_AREA2,DATA_AREA)
AREA(*),

DUMMY_BODY_AREA
BASED(DUMMY_POINTER1) AREA,
DUMMY_DATA_AREA
BASED(DUMMY_POINTER2) AREA,
(HEAD_ARRAY (*), SAVE, TEMP) POINTER,
OHEAD_ARRAY (*)
OFFSET(DUMMY_BODY_AREA),
CCMPONENT1 BASED(C1),

ODATA OFFSET(DUMMY_DATA_AREA)
OLINK OFFSET(DUMMY_BODY_AREA),
CCMPONENT2 BASED(C2),

DATA POINTER,

LINK POINTER3

/* IF AREA CONDITIGON OCCURS,
BODY_AREA2 IS TCO SMALL TO RECEIVE
CONTENTS OF BODY_AREAl. GO TO
NULL_LIST. */

ON AREA

NN =N N -

GO TO

NULL_LIST;

/% IF ALL OFFSET VALUES IN
OHEAD_ARRAY ARE NULLO, GO TO
NULL_LIST. */

= LBOUND(OHEAD_ARRAY,1)

TO HBOUND (OHEAD_ARRAY,1)3
IF OHEAD_ARRAY(I) ~= NULLO
THEN GO TO GOS53

END;

GO TO NULL_LIST;

GO5:

IF °

/% IF HEAD_ARRAY IS SMALLER THAN
OHEAD_ARRAY GO TO NULL_LIST. */

DIM(HEAD_ARRAY,1)<DIM(OHEAD_ARRAY,1)

THEN

GO TO
NULL_LIST3
/* ASSOCIATE OFFSETS OHEAD_ARRAY AND
OLINK WITH BODY_AREA2 AND OFFSET
ODATA WITH DATA_AREA. */
DUMMY_POINTER1 = ADDR(BODY_AREA2);
DUMMY_POINTER2 = ADDR(DATA_AREA);
/* CONVERT EACH RELOCATABLE POINTER
LIST IN BODY_AREAl TO AN ABSOLUTE
POINTER LIST IN BODY_AREA2. */
J = LBOUND(HEAD_ARRAY,1)-13

BEGIN_CONVERT_LOQOP:

00

I = LBOUND(OHEAD_ARRAY,1)

TO HBOUND(OHEAD_ARRAY,1)3

J=J + 1;

/* IF I-TH OFFSET IN OHEAD_ARRAY IS
NULLO, SET J-TH POINTER IN

HEAD_ARRAY TO NULL, AND CONVERT NEXT

IF

LIST IN BODY_AREAl. */
OHEAD_ARRAY(I) = NULLO

THEN

[PvH

END;

IF

THEN
ELSE

END;

DO

HEAD_ARRAY (J) = NULL;

GO TO

END_CONVERT_LOOP;

/7* ALLOCATE COMPONENT2 IN BCDY_AREA2,
AND ASSIGN TO THE ALLOCATION THE
DATA POINTER OF THE FIRST COMPONENT
IN THE I-TH LIST IN BODY_AREAl */
ALLOCATE COMPONENT2 IN(BODY_AREA2)
SET(C2)3

HEAD_ARRAY(J)y SAVE = C2;

TEMP = OHEAD_ARRAY(I);

C2->DATA = TEMP->0DATAj;

/* PERFORM SUCCESSIVE ALLOCATIONS OF
COMPCONENT2 IN BODY_AREA2, AND ASSIGN
TO THE ALLOCATIONS THE DATA POINTER
OF SUCCESSIVE COMPONENTS IN THE I-TH
LIST WITHIN BOOY_AREAl. */
Cl = TEMP->OLINK;

WHILE

(Cl-~=NULL);
ALLCCATE COMPONENT2 IN(BODY_AREA2)
SET(C2);
SAVE->LINK, SAVE = C23
C2->DATA = C1->00DATA;

C1->0LINK = NULLO
Cl

NULL;

C1

C1->0LINK3

/* ASSIGN A NULL VALUE TO LINK IN
LAST COMPONENT OF J-TH LIST IN
BODY_AREA2. */

SAVE->LINK = NULL:

/* CONVERT NEXT LIST IN BODY_AREA1L
BY EXECUTING NEXT CYCLE OF CONVERT
LOOP. */

END_CONVERT_LOOP:

END;

/* THIS POINT IS REACHED WHEN ALL
RELOCATABLE LISTS IN BODY_AREA1

HAVE BEEN CONVERTED TO ABSOLUTE LISTS
IN BODY_AREA2. THEREFORE, RETURN

-SUBROUTINE CCNTROL TO POINT OF

INVOCATION. #/

RETURN; _

/% IF THIS POINT IS REACHED,
ASSIGN A NULL VALUE TO EACH
ELEMENT OF HEAD_ARRAY. */

NULL_LIST:

END

HEAD_ARRAY = NULL3
CON_PRA;

Figure 2.7B. The CON_PRA subroutine used to convert relocatable pointer lists from relocatable to absolute form

32

CON_ LRA Subroutine

Figures 2.8A and 2.8B present the CON _LRA subroutine,
which converts relocatable lists of lists to absolute form.
The subroutine uses six arguments: the body area and head
array of the relocatable lists of lists being converted, the

shared by both the relocatable and absolute forms of the
lists of lists, and the number of sublists.

The code in CON_LRA indicates an optional use of the

recursive function procedure CON shown in the Appendix.
CON examines the type code in each list component and
takes appropriate conversion action. CON returns a pointer

body area and head array that are to receive the absolute value.
lists of lists during conversion, the data area, which is
CON__LRA Subroutine BODY_AREA2 — the area that receives the
bodies of the lists after they
P have been converted to
urpose absolute form
:’o convert lists of lists from relocatable to absolute HEAD_ARRAY — the array that receives the
orm pointer heads of the absolute
lists in BODY_AREA2
Reference DATA_AREA — the area that contains the
data values of the lists before
and after conversion
CON_LRA(BODY_AREA1, OHEAD_ARRAY,
BODY_AREA2, HEAD_ARRAY, #SUBS — the number of sublists
DATA_AREA #SUBS)
Remarks

Entry-Name Declaration

DECLARE CON_LRA
ENTRY(AREA(¥), (*)OFFSET
(DUMMY_BODY_AREA), AREA(*),
(*)POINTER, AREA(*),FIXED
DECIMAL);

Meaning of Arguments

BODY_AREA1 — the area that contains the
bodies of the relocatable
lists being converted to
absolute form

OHEAD_ARRAY — the array that contains the
offset heads of the relocatable
lists in BODY_AREA1

BODY_AREA1, BODY_AREA2, and DATA_AREA
can have any storage class and be of arbitrary size.

If BODY_AREAZ2 is not large enough to receive the
converted components of BODY _AREAT1, or if
HEAD_ARRAY is smaller than OHEAD _ARRAY,

or if all positions of OHEAD__ARRAY contain null
offset values, then HEAD_ARRAY is filled with

null pointer values, and the content of BODY _AREA2
becomes undefined.

Other Programmer-Defined Procedures Required

CON (optional)

Method

Each relocatable list in BODY_AREAT1 is recon-
structed, component by component, as an absolute
list in BODY_AREA2. After conversion, both types
of lists share DATA_AREA.

Figure 2.8A. Description of the CON _LRA subroutine for converting lists of lists from relocatable to absolute form

33 .

CON_

DEC

I

LRA:

LARE

GO

F

THEN
GO

"D_OLINK,
BODY_AREAly AND OFFSET D_OVALUE WITH

PROCEDURE (BODY_AREA1yOHEAD_ARRAY,
BODY_AREA2, HEAD_ARRAY, DATA_AREA,
#SUBS) 3

#SUBS FIXED DECIMAL,

(SAVEs KEEP, PA(#SUBS)) PUINTER:
/* PARAMETER #SUBS IS NOT NECESSARY
WHEN FUNCTIGON CON IS USED */
(BODY_AREAL1 4BODY_AREA2,DATA_AREA)
AREA(*),

DUMMY_BODY_AREA
BASED(DUMMY_BODY_POINTER) AREA,
DUMMY_DATA_AREA
BASED(DUMMY_DATA_POINTER) AREA,
HEAD_ARRAY (*) POINTER,
(DUMMY_BODY_POINTER,

DUMMY_DATA_ POINTER,C1, CZ)POINTERv
OHEAD_ARRAY (¥*)
OFFSET(DUMMY_BODY_AREA),
D_COMPONENT1 BASED(C1),
D_OTYPE CHARACTER(1),

D_OVALUE OFFSET(DUMMY_DATA_AREA),
D_OLINK OFFSET(DUMMY_BODY_AREA),
L_COMPONENT1 BASED(C1),
L_OTYPE CHARACTER(1),

L_OVALUE OFFSET(DUMMY_BODY_AREA),
L_OLINK OFFSET(DUMMY_BODY_AREA),
COMPONENT2 BASED(C2),
TYPE CHARACTER(1),

VALUE POINTER,

LINK POINTER;

/* IF AREA CONDITION OCCURS,
BODY_AREA2 IS TOO SMALL TO RECEIVE
CONTENTS OF BODY_AREAl. GO TO
NULL_LIST. */

ON AREA !

T0
NULL_LISTS
/% IF HEAD_ARRAY IS SMALLER THAN
CHEAD_ARRAY, GO TO NULL_LIST. */

NN NNN -

DIM(HEAD_ARRAY,1)<DIM(OHEAD_ARRAY,1)

T0

NULL_LISTS

/% ASSOCIATE OFFSETS OHEAD_ARRAY,
L_OVALUE AND L_OLINK WITH

DATA_AREA. */
DUMMY_BODY_POINTER
ADDR(BODY_AREAL1)3;
DUMMY_DATA_PCINTER
ADDR(DATA_AREA); .
/* CONVERT EACH RELOCATABLE LIST OF
LISTS IN BODY_AREAl TO AN ABSOLUTE
LIST OF LISTS IN BODY_AREA2. */

PA = NULL;

J = LBOUND(HEAD_ARRAY,1)-1;

BEGIN_CONVERT_LOOP:

Do

34

= LBOUND(CQHEAD_ARRAY,1)
O HBOUND(OHEAD_ARRAY,1)3;
J + 13

13

IF OHEAD_ARRAY(I) = NULLO
THEN DO;

HEAD_ARRAY(J) = NULL3;

GO TO END_CONVERT_LCOP;

I
T
J
K

"END;
/% OPTION */
/* TEST */ IF #SUBS -~= 1 THEN GO TO NO_CON;

USE_

CON:

/* USE THE FOLLOWING CODE

TO EMPLOY FUNCTION CON

FOR CONVERSIONS */

HEAD_ARRAY(J) = CON(OHEAD_ARRAY(I),
BODY_AREAl, BODY_AREA2, DATA_AREA);
GO TO END_CONVERT_LOGOP;

/* END OF OPTION */

NO_CON:

Cl = OHEAD_ARRAY(I);

ALLOCATE COMPONENT2 IN(BODY_AREA2)
SET(C2);
SAVE, KEEP,
C2->TYPE = 'L*3

PA(K) = Cl -> L_OVALUE;

IF C1->L_OLINK = NULLO
THEN C1 = NULL;

ELSE C1 = C1->L_OLINK3

DO WHILE(C1 -= NULL);
K=K+ 1;

ALLOCATE COMPONENT2 IN(BODY_AREA2)
SET(C2)3;
SAVE->LINK
SAVE = C23
C2->TYPE = 'L*;
PA(K) = C1 -> L_OVALUE;
IF C1->L_OLINK = NULLO
THEN C1 NULL;
ELSE C1 C1->L_OLINK3
END;
SAVE->LINK = NULL;3

HEAD_ARRAY(J)} = C23

= C2;

D_LIST:

DO L = 1 TO #SUBS;

Cl = PA(L);

IF Cl=NULL THEN GOTO END_O_LIST;
ALLOCATE COMPONENT2 IN(BODY_AREA2)
SET(C2);

SAVE = C23

C2->TYPE = 'D*;

KEEP->VALUE = C2;

KEEP = KEEP->LINK;

IF C1->D_OVALUE = NULLO

THEN C2->VALUE = NULL;

ELSE C2->VALUE = C1->D_OVALUE;
IF C1->D_OLINK = NULLO

THEN C1 = NULL;

ELSE Cl1 = Cl—)D OLINK3

DO WHILE (C1 -~= NULL);

ALLOCATE COMPONENT2 IN(BODY_AREA2)

SET(C2);
SAVE->LINK = C23;
SAVE = C2;
C2->TYPE = *D*3

IF C1->D_OVALUE = NULLO

THEN C2->VALUE = NULL;

ELSE C2->VALUE C1->D_ OVALUE,
IF C1->D_OLINK = NULLO

THEN C1 = NULL;
ELSE C1 = C1->D_OLINK;
END;

SAVE->LINK = NULL;

END_D_LIST: END;
END_CONVERT_LOOP:

END3

/% WHEN THIS POINT IS REACHED,
RELOCATABLE LISTS OF LISTS IN
BODY_AREA1 HAVE BEEN CONVERTED TO
ABSOLUTE LISTS OF LISTS IN
BODY_AREA2. THEREFOREy RETURN
SUBROUTINE CONTROL TO POINT OF
INVOCATION. */

RETURN;

/% IF THIS. POINT IS REACHED,
ASSIGN A NULL VALUE TO EACH
ELEMENT OF HEAD_ARRAY. */

ALL

_ NULL_LIST: MOVE_RDL Subroutine
HEAD_ARRAY = NULL3S
CON_LRA; Figures 2.9A and 2.9B present the MOVE_RDL sub- ,
routine, which moves relocatable data lists from one area to
Figure 2.8B. The CON LRA subroutine used to convert another. The subroutine uses four arguments: the body area
relocatable lists of lists from relocatable to . and head array of the source lists, and the body area and
absolute form head array that are to receive the relocatable lists when
' they are moved.

END

MOVING RELOCATABLE LISTS

The following discussions develop two subroutines for
moving relocatable lists from one storage area to another:

1. MOVE_RDL, which moves relocatable data lists

2. MOVE_RPL, which moves either relocatable pointer
lists or relocatable lists of lists. This subroutine can be
used with either type of list because both types have
a head, a body area, and a data area.

MOVE_RDL Subroutine BODY_AREA2 — the area to which the reloca-
‘ table lists are moved
Purpose
OHEAD_ARRAY2 — the array that receives the
To move relocatable data lists offset heads of the relocatable
lists in BODY _AREA2

Reference

MOVE_RDL(BODY_AREA1, OHEAD_ARRAY1,
BODY_AREA2, OHEAD_ARRAY?2)

Remarks

BODY_AREA1 and BODY_AREA2 can have any
storage class and be of arbitrary and unequal size.

If BODY_AREAZ2 is not large enough to receive

the contents of BODY_AREAT1, or if OHEAD _
ARRAY2 is smaller than OHEAD _ARRAY1, then
OHEAD_ARRAY2 isset to NULLO, and the content
of BODY _AREAZ2 becomes undefined.

Entry-Name Declaration

DECLARE MOVE_RDL
ENTRY(AREA(*), (*)JOFFSET
(DUMMY_BODY_AREAT1), AREA(*),
(*)JOFFSET(DUMMY_BODY_AREA2));

Other Programmer Defined Procedures Required
Meaning of Arguments

None
BODY_AREA1 — the area that contains the
relocatable lists being moved Method
OHEAD_ARRAY1 — the array that contains the Assignment statements are used to move BODY _
offset heads of the relocatable AREA1 to BODY_AREA2 and OHEAD _ARRAY1
lists in BODY_AREA1 to OHEAD _ARRAY2.

Figure 2.9A. Description of the MOVE_RDL subroutine for moving relocatable data lists

35

MOVE_RDL:
PROCEDURE)
(BODY_AREAly CHEAD_ARRAY1,
BODY_AREA2, OHEAD_ARRAY2);
DECLARE
(DUMMY_POINTER1, DUMMY_POINTER2)
POINTER, .
"(BODY_AREA1,BODY_AREA2)AREA(*),
DUMMY_BODY_AREA1 BASED
(DUMMY_POINTER1) AREA,
DUMMY_BODY_AREA2 BASED
(DUMMY_POINTER2) AREA,
_OHEAD_ARRAY1(*) OFFSET
(DUMMY_BODY_AREAL),
OHEAD_ARRAY2(*) OFFSET
(DUMMY_BODY_AREA2) ;
/% IF AREA CONDITION OCCURS,
BODY_AREA2 IS TCO SMALL TGO RECEIVE
CONTENTS OF BODY_AREAl. SET
OHEAD_ARRAY2 TO NULLO, AND GO TO END
OF SUBROUTINE.*/
ON AREA
BEGIN;
OHEAD_ARRAY2 = NULLO;
G0 TO
END_MOVE_RDL;

END3
/* ASSOCIATE OHEAD_ARRAY1 AND
OHEAD_ARRAY2 WITH BODY_AREALl ANC
BODY_AREA2.*/
DUMMY_POINTER1 = ADDR(BODY_AREA1l);
DUMMY_POINTER2 = ADDR(BODY_AREA2);
/* IF OHEAD_ARRAY2 IS SMALLER THAN
OHEAD_ARRAY1l, THEN SET OHEAD_ARRAY2
TO NULLO, AND GC TO END OF
SUBROUTINE, OTHERWISE, ASSIGN
OHEAD_ARRAY1 TO OHEAD_ARRAY2.*/

IF
DIM(OHEAD_ARRAY2,1)<DIM(CHEAD_ARRAY1,1)
THEN DO;
OHEAD_ARRAY2 = NULLO;
GO TO
END_MOVE_RDL;
END;
ELSE

OHEAD_ARRAY2 = OHEAD_ARRAY1;
/* ASSIGN BODY_AREA1l TO BODY_AREAZ2.
AREA CONDITICON MAY OCCUR.*/
BODY_AREA2 = BODY_AREAL;
END_MOVE_RDL:
END
MOVE_RDL;

Figure 2.9B. The MOVE_RDL subroutine used to move relocatable data lists from one area to another

\

36

MOVE _RPL Subroutine

Figures 2.10A and 2.10B present the MOVE_RPL sub-
routine, which moves relocatable pointer lists and relocat-
able lists of lists to new storage locations. The subroutine
uses six arguments: the body area, head array, and data area
of the source lists, and the body area, head array, and data
area that are to receive the relocatable lists when they are
moved.

MOVE_RPL Subroutine
Purpose
To move relocatable pointer lists and lists of lists

Reference

MOVE_RPL(BODY_AREA1, OHEAD_ARRAY1,
DATA_AREA1, BODY_AREA?2,
OHEAD_ARRAY2, DATA_AREA?2)

Entry-Name Declaration

DECLARE MOVE_RPL
ENTRY(AREA(*), (*)JOFFSET
(DUMMY _BODY_AREA1),
AREA(*), AREA(*),
(*)JOFFSET(DUMMY _BODY_AREA2),
AREA("));

Meaning of Arguments

BODY_AREA1 — the area that contains the
bodies of the relocatable
lists being moved

OHEAD_ARRAY1 — the array that contains the
offset heads of the relocatable
lists in BODY_AREA1

DATA_AREA1 — the area that contains the
data values of the lists in
BODY_AREA1

BODY_AREA2 — the area that receives the
contents of BODY _AREA1

OHEAD_ARRAY?2 — the array that receives the
offset heads of the relocatable

lists in BODY_AREA2

DATA_AREA2 — the area that receives the data

values of the lists in BODY _
AREA2
Remarks

BODY_AREA1, BODY_AREA2, DATA_AREAT1,
and DATA_AREAZ2 can have any storage class and
be of arbitrary size. |f BODY_AREAZ2 is not large
enough to receive the contents of BODY_AREAT1,

or if DATA_AREAZ2 is not large enough to receive
the contents of DATA_AREAT1, or if OHEAD _
ARRAY?2 is smaller than OHEAD _ARRAY1, then
OHEAD_ARRAY2 is set to NULLO, and the content
of BODY_AREA2 and DATA_AREA2 becomes
undefined.

Other Programmer-Defined Procedures Required
None

Method
Assignment statements are used to move BODY __
AREA1 to BODY_AREA2, OHEAD_ARRAY1 to

OHEAD_ARRAY?2, and DATA_AREAT1 to
DATA_AREA2.

Figure 2.10A. Description of the MOVE _RPL subroutine for moving relocatable pointer lists and lists of lists

37

MOVE_RPL:

PROCEDURE (BCDY_AREA1 OHEAD_ARRAY1,
DATA_AREAl, BODY_AREA2, OHEAD_ARRAY2,
DATA_AREA2);

DECLARE

(BODY_AREA1l yDATA_AREA1,BODY_AREA2,
DATA_AREA2) AREA(¥*),
DUMMY_BODY_AREA1
BASED(DUMMY_POINTERL) AREA,
DUMMY_BODY_AREA2
BASED(DUMMY_POINTER2) AREA,
OHEAD_ARRAY1 (%)
OFFSET(DUMMY_BODY_AREA1),
OHEAD_ARRAY2(*)
OFFSET(DUMMY_BODY_AREA2) 3

/* 1F AREA CONDITION OCCURS,
BODY_AREA2 OR DATA_AREAZ2 IS TOO
SMALL TO RECEIVE CONTENTS OF
BODY_AREA1l OR DATA_AREAl. SET
OHEAD_ARRAY2 TO NULLOy AND GO TC END
OF SUBROUTINE. */

ON AREA

BEGIN;

END;

OHEAD_ARRAY2 = NULLO;
GO TO
END_MOVE_RPL;

/* ASSOCIATE OHEAD_ARRAY1 AND

OHEAD_ARRAY2 WITH BOOY_AREA1l AND
BODY_AREA2. */

DUMMY_POINTER1 ADDR(BODY_AREA1);
DUMMY_POINTER2 ADDR(BODY_AREA2) ;
/* IF OHEAD_ARRAY2 IS SMALLER THAN
OHEAD_ARRAY1l, THEN SET OHEAD_ARRAY2
TO NULLOy AND GG TO END OF
SUBROUTINE. OTHERWISE ASSIGN
OHEAD_ARRAY1 TO OHEAD_ARRAY2. */

IF ,
DIM(OHEAD_ARRAY2,1)<
DIM(OHEAD_ARRAY1,1)

THEN

003

. OHEAD_ARRAY2 = NULLO;
GO TG
‘ END_MOVE_RPL;
END;
ELSE
CHEAD_ARRAY2 = OHEAD_ARRAY13 :
/* ASSIGN BODY_AREA1l TC BODY_AREA2
AND DATA_AREA1l TO DATA_AREA2. AREA
CONDITIGON MAY OCCUR. */
BODY_AREA2 = BODY_AREAL;
DATA_AREA2 = DATA_AREAL1l;
END_MOVE_RPL:
END
MOVE_RPL3

Figure 2.10B. The MOVE_RPL subroutine used to move relocatable pointer lists and relocatable lists of lists to new storage locations

38

WRITING RELOCATABLE LISTS

The following discussions develop two subroutines for
writing relocatable lists into a file:

1. WRITE_RDL, which writes relocatable data lists

2. WRITE_RPL, which writes either relocatable pointer
lists or relocatable lists of lists. This subroutine can be
used with either type of list because both types have
a head, a body area, and a data area.

WRITE_RDL Subroutine

Figures 2.11A and 2.11B present the WRITE_RDL sub-
routine, which writes relocatable data lists into a file. The
subroutine uses four arguments: the file that receives the
lists, the head array and body area of the relocatable lists,
and the size of the body area in bytes. The head array and
body area are written as separate self-defining records in
that order.

WRITE_RDL Subroutine
Purpose
To write relocatable data lists into a file

Reference

WRITE_RDL(DFILE, OHEAD_ARRAY,
BODY_AREA, BODY_SIZE)

Entry-Name Declarafion

DECLARE WRITE_RDL
ENTRY(FILE RECORD OUTPUT,
(*)OFFSET(DUMMY_BODY1),
AREA(*), FIXED DECIMAL(5));

Meaning of Arguments

DFILE — the file into which the
relocatable lists are written

OHEAD_ARRAY — the array that contains the
offset heads of the relocatable
lists

BODY_AREA — the area that contains the
' bodies of the relocatable
lists

BODY_SIZE — the size of BODY_AREA in
bytes

Remarks

DFILE must be a sequentially buffered output file.
OHEAD_ARRAY and BODY _AREA can be of any
storage class and have arbitrary size, and are written
as separate logical records in that order. The records
are self-defining: OHEAD_ARRAY is preceded by
a count of its elements, and BODY_AREA is
preceded by its storage size (BODY _SIZE), which
does not include the control storage internally
associated with an area.

Other Programmer-Defined Procedures Required
None
' Method

Separate LOCATE statements are executed for each
of the following record descriptions:

1 OHEAD_RECORD BASED(OUTPOINTER1),
2 OUT_OHEAD_SIZE FIXED BINARY(16,0),
2 OUT_OHEAD_ARRAY
(BINARY_OHEAD_SIZE
REFER(OUT_OHEAD_SIZE))OFFSET
(DUMMY_BODY?2),
1 BODY_RECORD BASED(OUTPOINTER?2),
2 PADDING2 CHARACTER(4),
2 OUT_BODY_SIZE FIXED BINARY (16,0),
2 OUT_BODY_AREA AREA
(BINARY_BODY_SIZE
REFER(OUT_BODY_SIZE)),

Figure 2.11A. Description of the WRITE _RDL subroutine for writing relocatable data lists into a file .

39

WRITE_RDL: .

DECLARE

END

PROCEDURE(OQUTFILE, OHEAD_ARRAY,
BODY_AREA,BODY_SIZE); ’

(DUMMY_POINTER1, DUMMY_POINTER2,
OUTPOINTERL, OUTPOINTER2)

POINTER, ;

DUMMY_BODY1 AREA
BASED(DUMMY_POINTER1L),

DUMMY_BODY2 AREA

BASED (DUMMY_POINTER2),
OHEAD_ARRAY (*)

OFFSET (DUMMY_BODY1),

BODY_AREA AREA (%),

BODY_SIZE FIXED DECIMAL(5),
BINARY_OHEAD_SIZE FIXED BINARY(16,0),
BINARY_BODY_SIZE FIXED BINARY(16,0),
OUTFILE FILE RECCRD OUTPUT,

1 OHEAD_RECORD BASED(QUTPOINTER1),
2 OUT_OHEAD_SIZE FIXED BINARY(16,0),
2 OUT_OHEAD_ARRAY (BINARY_OHEAD_STZE
REFER(OUT_OHEAD_SIZE))
OFFSET(DUMMY_BODY2),

1 BCDY_RECORD BASED(OUTPOINTER2),

2 PADDING2 CHARACTER(4),

2 OUT_BODY_SIZE FIXED BINARY(16,0),
2 OUT_BODY_AREA AREA
(BINARY_BODY_SIZE
REFER(OUT_BODY_SIZE));

/* ASSOCIATE OHEAD_ARRAY AND
OUT_OHEAD_ARRAY WITH BODY_AREA. */
DUMMY_POINTER1,DUMMY_POINTER2 =
ADDR (BODY_AREA) ;

/% INITIALIZE SIZE OF
OUT_OHEAD_ARRAY */
BINARY_OHEAD_SIZE =
DIM(OHEAD_ARRAY,1);

/% INITIALIZE SIZE OF

OUT_BODY_AREA */

BINARY_BODY_SIZE = BODY_SIZE;

/* LOCATE STORAGE IN OUTPUT BUFFER
FOR OHEAD_RECORD, AND ASSIGN ACCRESS
OF LOCATION TO OUTPOINTERL. */
LOCATE OHEAD_RECORD FILE(OUTFILE)
SET(QUTPOINTERL);

/% ASSIGN OHEAD_ARRAY TO
OUT_OHEAD_ARRAY IN OHEAD_RECORD. */
GUTPOINTERL->OUT_OHEAD_ARRAY =
OHEAD_ARRAY ;

/* LOCATE STORAGE IN OUTPUT BUFFER
FOR BODY_RECORD, AND ASSIGN ADDRESS
OF LOCATION TO OUTPOINTER2. #/
LOCATE BODY_RECORD FILE(OUTFILE)
SET(OUTPOINTER2);

/% ASSIGN BODY_AREA TO OUT_BODY_AREA
IN BODY_RECORD. */
OUTPOINTER2->0UT_BODY_AREA =
BODY_AREA;

WRITE RDL3;

Figure 2.11B. The WRITE_RDL subroutine used to write

40

relocatable data lists into a file

WRITE_RPL Subroutine

Figures 2.12A and 2.12B present the WRITE _RPL sub-
routine, which writes relocatable pointer lists and relocat-
able lists of lists into a file. The subroutine uses six
arguments: the file that receives the relocatable lists, the
head array of the lists, the containing body area and its size,
and the associated data area and its size. The head array,
the body area, and the data area are written as separate
self-defining records in that order. s

WRITE_RPL Subroutine
Purpose

To write relocatable pointer lists and lists of lists into
afile '

Reference

WRITE_RPL(LFILE, OHEAD_ARRAY,
BODY_AREA, BODY_SIZE,
DATA_AREA, DATA_SIZE)

Entry-Name Declaration

DECLARE WRITE_RPL
ENTRY(FILE RECORD OUTPUT, (*)OFFSET
(DUMMY_BODY1), AREA(*), FIXED
DECIMAL(5), AREA(*), FIXED
DECIMAL(5));

Meaning of Arguments

LFILE — the file into which the relo-
catable lists are written

OHEAD_ARRAY — the array that contains the
offset heads of the relocatable
lists

BODY_AREA — the area that contains the
bodies of the relocatable
lists

BODY_SIZE — the size of BODY_AREA in
bytes

DATA_AREA — the area that contains the data
values of the relocatable lists

DATA_SIZE — the size of DATA_AREA in
bytes

Remarks

LFILE must be a sequentially buffered output file.
OHEAD_ARRAY, BODY_AREA, and DATA _
AREA can be of any storage class and have arbitrary
size, and are written as separate logical records in
that order. The records are self-defining: OHEAD _
ARRAY is preceded by a count of its elements, and
BODY_AREA and DATA_AREA are preceded by
their storage sizes, which do not include the control
storage internally associated with the areas.

Other Programmer-Defined Procedures Required

None

Method

Separate LOCATE statements are executed for each
of the following record descriptions:

1 OHEAD_RECORD BASED(OUTPOINTER),
2 OUT_OHEAD_SIZE FIXED BINARY(16,0),
2 OUT_OHEAD_ARRAY
(BINARY_OHEAD_SIZE
REFER(OUT_OHEAD_SIZE)) OFFSET
(DUMMY_BODY?2),
1 BODY_RECORD BASED(OUTPOINTER),
2 PADDING2 CHARACTER(4),
2 OUT_BODY_SIZE FIXED BINARY(16,0),
2 0UT_BODY_AREA AREA
(BINARY_BODY_SIZE
REFER(OUT_BODY_SIZE)),
1 DATA_RECORD BASED(OUTPOINTER),
2 PADDING3 CHARACTER(4),
2 OUT_DATA_SIZE FIXED BINARY(16,0),
2 OUT_DATA_AREA AREA
(BINARY_DATA_SIZE
REFER(OUT_DATA_SIZE)),

Figure 2.12A. Description of the WRITE _RPL subroutine for writing relocatable pointer lists and lists of lists into a file

41

WRITE_RPL:

DECLARE

PROCEDURE(OUTFILE,OHEAD_ARRAY,
BODY_AREA,BODY_SIZE,DATA_AREA,
DATA_SIZE)

(DUMMY_POINTER1, DUMMY_POINTERZ,
OUTPOINTER) POINTER,

DUMMY_BODY1 AREA
BASED(DUMMY_POINTERL),

DUMMY_BODY2 AREA

BASED (DUMMY_POINTER2),
OHEAD_ARRAY(*) OFFSET(DUMMY_BODY1),
BODY_AREA AREA (*),

BODY_SIZE FIXED DECIMAL(5),
DATA_AREA AREA (*),

DATA_SIZE FIXED DECIMAL(5),

OUTFILE FILE RECORD OUTPUT,
BINARY_OHEAD_SIZE FIXED BINARY (1640),

- BINARY_BODY_SIZE FIXED BINARY(16,0),

BINARY_DATA_SIZE FIXED BINARY(16,0),
1 OHEAD_RECORD BASED(OUTPOINTER),

2 OUT_OHEAD_SIZE FIXED BINARY(16,0),
2 OUT_OHEAD_ARRAY(BINARY_OHEAD_SIZE
REFER(OUT_OHEAD_SIZE))
OFFSET(DUMMY_BODY2)

1 BODY_RECORD BASED(OQUTPOINTER),

2 PADDING2 CHARACTER(4),

2 OUT_BODY_SIZE FIXED BINARY(lbsO)c
2 OUT_BODY_AREA AREA
(BINARY_BODY_SIZE REFER
(OUT_BODY_SIZE)),

1 DATA_RECORD BASED(OUTPOINTER),

2 PADDING3 CHARACTER(4),

2 OQUT_DATA_SIZE FIXED BINARY(16,0),
2 OUT_DATA_AREA AREA
(BINARY_DATA_SIZE

END

REFER(OUT_DATA_SIZE));

/% ASSOCIATE OHEAD_ARRAY AND
OUT_OHEAD_ARRAY WITH BODY_AREA. */
DUMMY_POINTER19DUMMY_POINTER2 =
ADDR(BODY_AREA);

/* INITIALIZE SIZE OF HEAD ARRAY IN
OHEAD_RECORD, SIZE OF BODY AREA IN
BODY_RECORD, AND SIZE OF DATA

AREA IN DATA_RECORD. */
BINARY_OHEAD_SIZE =
DIM(OHEAD_ARRAY,1)3
BINARY_BODY_SIZE = BODY_SIZE;
BINARY_DATA_SIZE = DATA_SIZE;

/* LOCATE STORAGE IN OUTPUT BUFFER
FOR OHEAD_RECORDy AND ASSIGN
OHEAD_ARRAY TO OUT_OHEAD_ARRAY. */
LOCATE OHEAD_RECORD FILE(QUTFILE)
SET(CQUTPOINTER) 3
OUTPOINTER->QUT_OHEAD_ARRAY =
OHEAD_ARRAY;

/* LOCATE STORAGE IN OUTPUT BUFFER
FOR BODY_RECORD, AND ASSIGN
BODY_AREA TO OUT_BODY_AREA. */
LOCATE BODY_RECORD FILE(QOUTFILE)
SET(CUTPCOINTER);
OUTPOINTER->CUT_BCODY_AREA .=
BODY_AREA;

/* LOCATE STCRAGE IN OUTPUT BUFFER
FOR DATA_RECORD, AND ASSIGN DATA
AREA TO OUT_DATA_AREA. */

LOCATE DATA_RECORD FILE(QUTFILE)
SET(QUTPOINTER);
OUTPOINTER->CUT_DATA_AREA =
DATA_AREA;

WRITE_RPL;

Figure 2.12B. The WRITE _RPL subroutine used to write relocatable pointer lists and relocatable lists of lists into a file

42

READING RELOCATABLE LISTS READ_RDL Subroutine

The following discussions develop two subroutines for
reading relocatable lists from a file: '

Figures 2.13A and 2.13B present the READ_RDL sub-
routine, which reads relocatable data lists from a file. The

1. READ_RDL, which reads relocatable data lists

2. READ_RPL, which reads either relocatable pointer
lists or relocatable lists of lists. This subroutine can be
used with either type of list because both types have
a head, a body area, and a data area.

subroutine uses four arguments: the file that contains the
relocatable lists, the head array and body area that are to

receive the lists, and a variable that receives the size of the
body area. The head array and body area are assumed to be
contained in separate self-defining records, which are read
in-that order.

READ_RDL Subroutine
Purpose

To read relocatable data lists from a file

Reference

READ_RDL(DFILE, OHEAD_ARRAY,
BODY_AREA, BODY_SIZE)

Entry-Name Declaration

DECLARE READ_RDL
ENTRY(FILE RECORD INPUT, (*)OFFSET
(DUMMY_BODY 1), AREA(*), FIXED
DECIMAL(5));

Meaning of Arguments

DFILE — the file from which the
relocatable data lists are read

OHEAD_ARRAY — the array that receives the
offset heads of the relocatable
lists

BODY_AREA — the area that receives the
bodies of the relocatable lists

BODY_SIZE — the size of BODY_AREA in
‘ bytes

Remarks

DFILE must be a sequentially buffered input file.
OHEAD_ARRAY and BODY_AREA can be of any
storage class and have arbitrary size; their values are
read as separate logical records in that order. The
records are self-defining: the record for OHEAD __
ARRAY is preceded by a count of its offset values,
and the record for BODY__AREA is preceded by the
size of the area in bytes. The size of BODY_AREA
is assigned to BODY _SIZE. An attempt to read past
the end of DFILE assigns a zero value to BODY _SIZE
and returns control to the invoking procedure.

Other Programmer-Defined Procedures Required

None

Method

Separate READ statements are executed for each of
the following record descriptions:

1 OHEAD_RECORD BASED(INPOINTER),
2 IN_OHEAD_SIZE FIXED BINARY(16,0),
2 IN_OHEAD_ARRAY
(BINARY_OHEAD_SIZE
REFER(IN_OHEAD_SIZE))
OFFSET(DUMMY_BODY?2),
1 BODY_RECORD BASED(INPOINTER),
2 PADDING2 CHARACTER(4),
2 IN_BODY_SIZE FIXED BINARY(16,0),
2 IN_BODY_AREA AREA
(BINARY_BODY_SIZE
REFER(IN_BODY_SIZE)),

Figure 2.13A. Description of the READ_RDL subroutine for reading relocatable data lists from a file

43

READ_RDL:

PROCEDURE(INFILE, CHEAD_ARRAY,
BODY_AREA,BODY_SIZE);

DECLARE

(DUMMY_POINTER1, DUMMY_POINTER2,
INPOINTER) POINTER,

DUMMY_BODY1 AREA
BASED(DUMMY_POINTERL),

DUMMY_BODY2 AREA
BASED(DUMMY_POINTER2),
OHEAD_ARRAY (*) OFFSET(DUMMY_BODY1),
BODY_SIZE FIXED DECIMAL(5),
BODY_AREA AREA (*),

INFILE FILE RECORD INPUT,
BINARY_OHEAD_SIZE FIXED BINARY (1640),
BINARY_BODY_SIZE FIXED BINARY(164+0),
1 OHEAD_RECORD BASED(INPOINTER),

2 IN_OHEAD_SIZE FIXED BINARY(16,0),
2 IN_OHEAD_ARRAY(BINARY_OHEAD_SIZE
REFER(IN_OHEAD_SIZE))
OFFSET(DUMMY_BODY2),

1 BCOY_RECORD BASED(INPOINTER),

2 PADDING2 CHARACTER(4),

2 IN_BODY_SIZE FIXED BINARY(16,0),
2 IN_BODY_AREA AREA
(BINARY_BODY_SIZE
REFER(IN_BODY_SIZE));

/* AT END OF INFILE, SET BODY_SIZE 71O

ZERGy, AND END SUBROUTINE. */
ON ENDFILE(INFILE)

BEGIN;

END;

BADY_SIZE = 03
GO TO
END_READ_RDL

/* ASSOCIATE OHEAD_ARRAY AND
IN_OHEAD_ARRAY WITH BODY_AREA. */
DUMMY_POINTER1,DUMMY_POINTER2 =
ADDR(BODY_AREA);

/* READ NEXT LOGICAL OHEAD_RECORD
FROM INFILE, AND SET INPOINTER TO
LOCATION OF OHEAD_RECORD IN INPUT
BUFFER. */

READ FILE(INFILE) SET(INPOINTER);
/* ASSIGN IN_OHEAD_ARRAY WITHIN
OHEAD_RECORD TO OHEAD_ARRAY. */
OHEAD_ARRAY =
INPOINTER->IN_OHEAD_ARRAY;

/* READ NEXT LOGICAL BODY_RECORD
FROM INFILE, AND SET INPOINTER TO
LOCATION OF BODY_RECORD IN INPUT
BUFFER. */

READ FILE(INFILE) SET(INPOINTER);
/* ASSIGN IN_BODY_AREA WITHIN
BODY_RECORD TO BODY_AREA. */
BODY_AREA =
INPOINTER->IN_BODY_AREA;

END_READ_RDL:

END

READ_RDL;

Figure 2.13B. The READ_RDL subroutine used to read

44

relocatable data lists from a file

READ_RPL Subroutine

Figures 2.14A and 2.14B present the READ_RPL sub-
routine, which reads relocatable pointer lists and relocat-
able lists of lists from a file. The subroutine uses six

- arguments: the file that contains the relocatable lists, an

array to receive the heads of the lists, an area and a variable
to receive the body and the body size of the lists, and an
area and a variable to receive the data area and the data-area
size of the lists. The head array, the body area, and the data
area are assumed to be contained in separate self-defining
records, which are read in that order.

READ_RPL Subroutine
Purpose

To read relocatable pointer lists and lists of lists from
a file

Reference

READ_RPL(LFILE, OHEAD_ARRAY,
BODY_AREA, BODY_SIZE,
DATA_AREA, DATA_SIZE)

Entry-Name Declaration

DECLARE READ_RPL
ENTRY(FILE RECORD INPUT, (*)OFFSET
(DUMMY_BODY 1), AREA(*), FIXED
DECIMAL(5), AREA(¥), FIXED
DECIMAL(5));

Meaning of Arguments

LFILE — the file from which the
relocatable lists are read

OHEAD_ARRAY - the array that receives the
offset heads of the relocatable
lists

BODY_AREA — the area that receives the
bodies of the relocatable lists

BODY_SIZE — the size of BODY_AREA in
bytes

DATA_AREA — the area that receives the
data values of the relocatable
lists

DATA_SIZE — the size of DATA_AREA in
bytes

Remarks

LFILE must be a sequentially buffered input file.
OHEAD_ARRAY, BODY_AREA, and DATA_AREA
can be of any storage class and have arbitrary size;
their values are read as separate logical records in
that order. The records are self-defining: the record
for OHEAD _ARRAY is preceded by a count of its

_ offset values, and the records for BODY_AREA and
DATA _AREA are preceded by their storage sizes.
The size of BODY _AREA is assigned to BODY _
SIZE, and DATA_SIZE receives the size of DATA _
AREA. An attempt to read past the end of LFILE
assigns zero values to BODY _SIZE and DATA_SIZE
and returns control to the invoking procedure.

Other Programmer-Defined Procedures Required
None
Method

Separate READ statements are executed for each of
the following record descriptions:

1 OHEAD_RECORD BASED(INPOINTER),
2 IN_OHEAD_SIZE FIXED BINARY(16,0),
2 IN_OHEAD_ARRAY
(BINARY_OHEAD_SIZE
REFER(IN_OHEAD_SIZE)) OFFSET
(DUMMY_BODY?2),
1 BODY_RECORD BASED(INPOINTER),
2 PADDING2 CHARACTER(4),
2 IN_BODY_SIZE FIXED BINARY(16,0),
2 IN_BODY_AREA AREA
(BINARY_BODY_SIZE
REFER(IN_BODY_SIZE)),
1 DATA_RECORD BASED(INPOINTER),
2 PADDING3 CHARACTER(4),
2 IN_DATA_SIZE FIXED BINARY(16,0),
2 IN_DATA_AREA AREA
(BINARY_DATA_SIZE
REFER(IN_DATA_SIZE)),

Figure 2.14A. Description of the READ_RPL subroutine for reading relocatable pointer lists and lists of lists from a file.

45

READ_RPL:

DECLARE

PROCEDURE(INFILE,OHEAD_ARRAY,
BODY_AREA,BODY_SIZE,DATA_AREA,
DATA_SIZE);

(DUMMY_POINTER1l, DUMMY_POINTER2,
INPGINTER) " POINTER,

DUMMY_BODY1 AREA
BASED(DUMMY_POINTERL)»

DUMMY_BODY2 AREA .
BASED(DUMMY_POINTER2),
OHEAD_ARRAY (*)

OFFSET(DUMMY_BODY1),

BODY_AREA AREA (*),

BODY_SIZE FIXED DECIMAL(S),
DATA_AREA AREA (*),

DATA_SIZE FIXED DECIMAL(S5),

INFILE FILE RECORD INPUT,
BINARY_OHEAD_SIZE FIXED BINARY(16,40),
BINARY_BODY_SIZE FIXED BINARY(16,0),
BINARY_DATA_SIZE FIXED BINARY(16,40),
1 OHEAD_RECORD BASED(INPOINTER),

2 IN_OHEAD_SIZE FIXED BINARY(16,50),
2 IN_OHEAD_ARRAY(BINARY_OHEAD_SIZE
REFER(IN_OHEAD_SIZE))
OFFSET(DUMMY_BODY2)

1 BODY_RECORD BASED(INPOINTER),

2 PADDING2 CHARACTER(4),

2 IN_BODY_SIZE FIXED BINARY(16,0), .
2 IN_BODY_AREA AREA(BINARY_BODY_SIZE
REFER(IN_BODY_SIZE)),

1 DATA_RECORD BASED(INPOINTER),

2 PADDING3 CHARACTER(4),

2 IN_DATA_SIZE FIXED BINARY(16,0),

2 IN_DATA_AREA AREA(BINARY_DATA_SIZE
REFER(IN_DATA_SIZE));

/* AT END OF INFILE, SET BODY_SIZE
AND DATA_SIZE TO. ZERO, AND END
SUBROUTINE. */

ON ENDFILECINFILE)

BEGIN;

END;

) BODY_SIZE,DATA_SIZE = 03
GO 10 ’
END_READ_RPL;

/* ASSOCIATE OHEAD_ARRAY AND :
IN_CHEAD_ARRAY WITH BODY_AREA. */
DUMMY_POINTER1,DUMMY_POINTER2 =
ADDR(BODY_AREA); ‘

/* READ NEXT LOGICAL OHEAD_RECORD
FROM INFILE. */ i

READ FILE(INFILE) SETUINPOINTER);
/* ASSIGN IN_CHEAD_ARRAY WITHIN
OHEAD_RECORD TO OHEAD_ARRAY. */
OHEAD_ARRAY =
INPOINTER->IN_OHEAD_ARRAY;

/* READ NEXT LOGICAL BODY_RECORD
FROM INFILE. */

READ FILE(INFILE) SETV(INPOINTER);
/* ASSIGN IN_BODY_AREA WITHIN
BODY_RECORD TO BODY_AREA. */
BODY_AREA = |
INPCINTER~>IN_BODY_AREA;

/* READ NEXT LOGICAL DATA_RECORD
FROM INFILE. */

READ FILE(INFILE) SET(INPOINTER);
/% ASSIGN IN_DATA_AREA WITHIN
DATA_RECORD TO DATA_AREA. */
DATA_AREA =
INPCINTER->IN_DATA_AREA;

END_READ_RPL:

END

READ_RPL;

Figure 2.14B. The READ_RPL subroutine used to read relocatable pointer lists and relocatable lists of lists from a file

46

Chapter 3. Using Relocatable Lists

Organizing a list in relocatable form permits the list to be
stored in a file. Transmission of relocatable lists to and
from files allows programs to be run in stages and also
allows libraries of list organizations to be created and main-
tained for use by other programs.

The following discussions present two examples of list
transmission. The first example processes relocatable data
lists, and the second processes relocatable lists of lists. Both
examples use the previously developed subroutines for
converting, writing, and reading relocatable lists.

AN EXAMPLE THAT TRANSMITS
RELOCATABLE DATA LISTS

Figures 3.1A through 3.1F present the TRANS_D pro-
gram, which provides a simple illustration of how relocat-
able data lists may be constructed and then transmitted to
and from a file. The program performs little actual proc-
essing of the lists and concentrates mainly on showing how
relocatable data lists can be written into and read from a
file.

TRANS_ D begins by allocating list components in the
storage area ABSOLUTE_BODY _AREA and linking the
components into an absolute list of available storage com-
ponents called FREE. Each component contains a single
character as its data element. The program then uses the
components in FREE to create two additional lists, LIST1
and LIST2, which contain ten components each.

TRANS_D:

PROCEDURE;

DECLARE
(LIST1, LIST2y, FREE, WORK_POINTER,
DPy P) POINTER,
ABSOLUTE_HEAD_ARRAY(2) POINTER,
RELOCATABLE_HEAD_ARRAY(2)
OFFSET (DUMMY_RELOCATABLE_AREA),
ABSOLUTE_BODY_AREA AREA(240),
RELOCATABLE_BODY_AREA AREA (240),
BODY_SIZE FIXED DECIMAL(S)
INITIAL (240),
DUMMY_RELOCATABLE_AREA
AREA BASED(DP),
DFILE FILE RECORD /* RECFM =V */,
1 LIST_COMPONENT BASED(P),
2 DATA CHARACTER(1),
2 LINK POINTER,
BLANKS CHARACTER(70);
/% WHEN FREE LIST HAS BEEN FORMED,
GO TO NULL_LINK. */
ON AREA

GO TO

NULL_LINK;

ON ENDFILE (SYSIN)
BEGIN;
CLOSE FILE(DFILE);
OPEN FILE(DFILE) INPUT;
GO TO OUTPUT;
END;
START:
/7% INITIALIZE. */
ABSOLUTE_HEAD_ARRAY = NULL3
RELOCATABLE_HEAD_ARRAY = NULLO;
ABSOLUTE_BODY_AREA,
RELOCATABLE_BODY_AREA = EMPTY;
/* ASSOCIATE RELOCATABLE_HEAD_ARRAY
WITH RELOCATABLE_BODY_AREA. */
DP = ADDR(RELOCATABLE_BODY_AREA);
/* FORM ABSOLUTE LIST OF FREE
STORAGE COMPONENTS, AND SET DATA
ELEMENT OF EACH COMPONENT TO
BLANK. */
ALLOCATE LIST_COMPONENT
IN(ABSOLUTE_BODY_AREA) SET(FREE);
WORK_POINTER = FREE;
REPEAT:
ALLOCATE LIST_COMPCNENT
IN(ABSOLUTE_BODY_AREA) SET(P)3
WORK_POINTER->LINK = P3;
WORK_POINTER=->DATA = ¢ 3
WORK_POINTER = P; '
GO TO
REPEAT;
NULL_LINK:
/* IN LAST COMPONENT OF FREE LIST,
SET LINK POINTER TO NULL AND DATA
ELEMENT TO BLANK. */
WORK_POINTER=DLINK = NULL3S
WORK_POINTER->DATA = * 3
/* FORM ABSOLUTE LISTS, LIST1 AND
LIST2, WITH TEN COMPONENTS EACH
FROM FREE LIST. */
LISTly, WORK_POINTER = FREE3
DO
1 =1T0 9;
WORK_POINTER =
. WORK_POINTER->LINKS
END;
LIST2 = WORK_POINTER->LINKS
WORK_POINTER->LINK = NULL3
WORK_POINTER = LIST2;
DO
I =170 9;
WORK_POINTER = WORK_POINTER->LINK;
END3
FREE = WORK_POINTER-DLINK;
WORK_POINTER->LINK = NULL;S
/* ASSIGN HEAD POINTERS LIST1
AND LIST2 TO ABSOLUTE_HEAD_ARRAY */
ABSOLUTE_HEAD_ARRAY(1) = LIST1;
ABSOLUTE_HEAD_ARRAY(2) = LIST2;
OPEN FILE(DFILE) OUTPUT;
INPUT:
/* READ TWO INPUT CARDS AND INSERT
THE FIRST TEN CCLUMNS COF FIRST CARD
INTO LIST1 AND THE FIRST TEN
COLUMNS OF SECOND CARD INTO LIST2.%*/
DO

47

WORK_POINTER = LIST1,LIST2;
DO
I =170 103
GET
EDIT(WORK_POINTER->DATA)(A(1));
WORK_POINTER = WORK_POINTER=-DLINK;
END3
GET EDIT(BLANKS) (A(T70));
END;
/* EMPTY RELOCATABLE_BODY_AREA. */
RELGCATABLE_BODY_AREA = EMPTY;
/% CONVERT DATA LISTS LIST1
AND LIST2 FROM ABSOLUTE TO
RELGCCATABLE FORM. */
CALL CON_DAR(ABSOLUTE_BODY_AREA,
ABSOLUTE_HEAD_ARRAY,
RELOCATABLE_BODY_AREA,
RELOCATABLE_HEAD_ARRAY) 3
/* WRITE RELOCATABLE DATA LISTS */
CALL WRITE_RDL(DFILE,
RELOCATABLE_HEAD_ARRAY,
RELOCATABLE_BODY_AREA, BODY_SIZE);
/* PROCESS NEXT TWO INPUT CARDS. */
GO TO
INPUT S
ouTPUT:

/* READ HEAD ARRAY AND BODY AREA FOR

NEXT SET OF RELOCATABLE LISTS */
CALL READ_ROL(DFILE,
RELOCATABLE_HEAD_ARRAY,
RELOCATABLE_BODY_AREA,BODY_SIZE);
IF
BODY_SIZE = 0
THEN
G0 T0
END_TRANS_D3
/% EMPTY ABSOLUTE_BODY_AREA. */
ABSOLUTE_BODY_AREA = EMPTY;
/* CONVERT DATA LISTS FROM
RELOCATABLE TO ABSOLUTE FORM. */
CALL CON_DRA(RELOCATABLE_BODY_AREA,
RELOCATABLE_HEAD_ARRAY,
ABSGLUTE_BODY_AREA,
ABSOLUTE_HEAD_ARRAY);
/* ASSIGN POINTER VALUES OF
ABSOLUTE_HEAD_ARRAY TO LIST1
AND LIST2. */
LIST1 = ABSOLUTE_HEAD_ARRAY(1)3;
LIST2 = ABSOLUTE_HEAD_ARRAY(2)3;
/* PRINT DATA VALUES IN LIST1 IN
SUCCESSIVE POSITIONS ON ONE LINE
AND THOSE OF LIST2 ON NEXT LINE. */
PRINT:
Do
WORK_POINTER= LIST1,LIST2;
DO
I =17010;3

48

PUT
EDIT(WORK_POINTER->DATA) (A(1)) 3
WORK_POINTER = WORK_POINTER-D>LINK;

END3
PUT SKIP;
END_PRINT:ZEND;

PUT
LIST('**%%%x0);

PUT
SKIP(2)3
/* PROCESS NEXT SET QF
RELOCATABLE ' LISTS IN OFILE. */

GO TO.
OUTPUT;
END_TRANS_D:
CLOSE FILE(SYSPRINT);
CLOSE FILE(DFILE);
END
TRANS_D3

Figure 3.1A. The TRANS_D program, which illustrates the
construction of a relocatable data list and its
transmission to and from a file

LIST1 and LIST?2 obtain their data values from the
standard system-input file, SYSIN. LIST1 receives the
characters in cc 1 through 10 of the first input card.

Similarly, the second input card supplies the data values for

LIST2. Sample input cards appear in Figure 3.1B, and
Figure 3.1C shows how the characters from the first two
input cards are arranged in LIST1 and LIST?2.

CARD10 — — — —

Figure 3.1B. Sample input from SYSIN file

ABSOLUTE_BODY_AREA

usti: - el Al R R i
N
stz el HA A BTl 1+
MO TN
eree. [J—t—{ T T T
T T H TN

Figure 3.1C. Examples of absolute data lists

Next, the program assigns the head pointers of LIST1
and LIST2 to the pointer array ABSOLUTE_HEAD _
ARRAY and invokes the subroutine CON_DAR, which
was discussed in Chapter 2. This subroutine converts the
absolute lists LIST1 and LIST2 in ABSOLUTE_BODY _
AREA to relocatable data lists in RELOCATABLE _BODY
__AREA, as illustrated by Figure 3.1D. The array
RELOCATABLE _HEAD ARRAY contains the offset
heads of the relocatable lists. At this point, subroutine
WRITE_RDL writes the relocatable lists into the file,
DFILE, as shown in Figure 3.1E.

RELOCATABLE_BODY_AREA

0 i C g EN I o CY B s Y I e K

'..---..- —_— e, e = = e e = e = = =

recocatasie | | T [L EN
HEAD_ARRAY: J
Et"--"—ICI [~EI~F~E 0~

L>I-I g g o B g S AN

I
-

Figure 3.1D. Examples of relocatable data lists

RELOCATABLE _ RELOCATABLE_
HEAD_ARRAY BODY_AREA

Figure 3.1E. Sample content of DFILE (unblocked)

49

TRANS _D continues processing pairs of input cards and
generating relocatable output for DFILE. When the end
of the SYSIN file is reached, DFILE is closed and reopened
as an input file. The previous processing steps are now
_reversed. Subroutine READ_RDL retrieves each relocat-
able head array and body area from DFILE, and subroutine
" CON_DRA converts the retrieved lists from relocatable to
absolute form. The data values of absolute LIST 1 are then
printed in successive positions on a line in the standard
system-output file, SYSPRINT. Similarly, the data values of
LIST?2 appear on the next line, as shown in Figure 3.1F.
- Each pair of output lines is followed by a line of five
asterisks and a blank line. The program terminates when the
end of DFILE is reached.

CARD10 —— — —

® KK KK

Figure 3.1F. Sample output to SYSPRINT file

AN EXAMPLE THAT TRANSMITS RELOCATABLE
LISTS OF LISTS ’

Figures 3.2A through 3.2F present the TRANS_L program,
which illustrates how relocatable lists of lists may be trans-
mitted to and from a file. This program resembles the
previous program, TRANS _D, except that it processes
relocatable lists of lists.

S0

TRANS_L:
PROCEDURE;
DECLARE -
(LIST1,LIST2,FREE9sWORK_POINTER,
suBl, sSus2, DB, Py D) POINTER,
ABSOLUTE_HEAD_ARRAY(2) POINTER,
RELOCATABLE_HEAD_ARRAY(2)
OFFSET(DUMMY_RELOCATABLE_BODY) ,
(ABSOLUTE_BODY_AREA,
RELOCATABLE_BODY_AREA,
DATA_AREA) AREA (400),
DATA_SIZE FIXED DECIMAL(S5)
INITIAL (400),
BODY_SIZE FIXED DECIMAL(S5)
INITIAL (400),
DUMMY_RELOCATABLE_BODY
AREA BASED(DB),
1 LIST_COMPONENT BASED(P)y
2 TYPE CHARACTER(1),
2 VALUE POINTER,
2 LINK POINTER,
DATA_ITEM CHARACTER(1) BASED(D),
LFILE FILE RECORD /* RECFM = V */,
COUNT FIXED DECIMAL INIT(O),
#SUBS FIXED DECIMAL INIT(2),
BLANKS CHARACTER (80),
/% WHEN FREE LIST HAS BEEN FORMED,
GO TO NULL_LINK. */
ON AREA
GO0 TO
NULL_LINK3;
/% WHEN ALL INPUT CARDS HAVE BEEN
READ FROM SYSIN FILE, CLOSE LFILE
AND REOPEN ‘IT AS AN INPUT FILE.
THEN GO TO OUTPUT. */
ON ENDFILE (SYSIN)
BEGIN;
CLOSE FILE ¢
LFILE);
OPEN FILE (
LFILE) INPUT;
GO TO '
OuUTPUT;
END;
START:
/7% INITIALIZE. */
ABSOLUTE_HEAD_ARRAY = NULL3;
RELOCATABLE_HEAD_ARRAY = NULLO;
ABSOLUTE_BODY_AREA = EMPTY;
RELOCATABLE_BODY_AREA = EMPTY;

/* ASSOCIATE RELOCATABLE_HEAD_ARRAY

WITH RELOCATABLE_BODY_AREA. */

DB = ADDR(RELOCATABLE_BODY_AREA);
/* FORM ABSOLUTE LIST OF FREE
STORAGE COMPONENTS. IN EACH

COMPONENT, SET TYPE CODE TO *D*' AND

VALUE POINTER TO NULL. */
ALLOCATE LIST_COMPONENT
IN(ABSOLUTE_BODY_AREA) SET(FREE);
WORK_POINTER = FREE;

REPEAT:
ALLOCATE LIST_COMPONENT
INC(ABSOLUTE_BODY_AREA) SET(P);
WORK_POINTER=->LINK = P;
WORK_POINTER->VALUE = NULL3; -
WORK_POINTER->TYPE = *D°*;

WORK_POINTER = P3

GO TO

REPEAT;

NULL_LINK:

D0

END;

DO

END3

(]0]

DO

END;

DO

END;

END;

/* IN LAST COMPONENT OF FREE LIST,
SET LINK ELEMENT TO NULL, VALUE
ELEMENT TO NULLs AND TYPE CODE TO
DY.*/

WORK_POINTER->LINK = NULL3
WORK_POINTER->DVALUE = NULL;
WORK_POINTER->TYPE = *D*3

/* FORM ABSOLUTE LISTS OF LISTS,
LIST1 AND LIST2, FROM FREE LIST BY
ASSIGNING 12 LIST COMPONENTS AT THE
TOP LEVEL OF EACH LIST. */

LIST1 = FREE;

WORK_POINTER = LIST13

I =170 113
WORK_POINTER = WORK_POINTER->LINK;

LIST2 = WORK_POINTER=->LINK;
WORK_POINTER->LINK = NULL;
WORK_POINTER = LIST2;

I =1T7011;
WORK_POINTER = WORK_POINTER-D>LINK3

FREE = WORK_POINTER->LINK3
WORK_POINTER->LINK = NULL;

/% ASSIGN HEAD POINTERS LIST1
AND LIST2 TO ABSOLUTE_HEAD_ARRAY */
ABSOLUTE_HEAD_ARRAY(1) = LIST1;
ABSOLUTE_HEAD_ARRAY(2) = LIST2;
/* ORGANIZE THE 12 COMPONENTS IN
LIST1 SO THAT THE TOP LEVEL
CONTAINS TWO SUBLISTS WITH FIVE
COMPONENTS EACH. DO THE SAME FOR
LIST2. */ .

I =170 2;

WORK_POINTER =
ABSOLUTE_HEAD_ARRAY(I);
WORK_POINTER->TYPE = °*'L*';
WORK_POINTER = WORK_POINTER-D>L INK;
WORK_POINTER-D>DTYPE = *L*;

SUB1 = WORK_POINTER->LINK;
WORK_POINTER->LINK = NULL3
WORK_POINTER = SUBl;

J =1 T0 4;
WORK_POINTER = WORK_POINTER->LINK;

SUB2 = WORK_POINTER->LINK;
WORK_POINTER->LINK = NULL;
WORK_POINTER = SUB23

J =170 4;
WORK_POINTER = WORK_POINTER->LINK;

WORK_POINTER->LINK = NULL;
WORK_POINTER =)
ABSOLUTE_HEAD_ARRAY(I);
WORK_POINTER->VALUE = SuBl3;
WORK_POINTER =
WORK_POINTER->LINK;
WORK_POINTER->VALUE = SUB2;

/% GPEN LFILE AS QUTPUT FILE. */

OPEN FILE (

LFILE) OUTPUT;

INPUT:

END;

END;

END;

DATA_AREA = EMPTY;

DO WORK_POINTER = LIST1l, LIST2;
SUBL1 = WORK_POINTER->VALUE}
WORK_POINTER = WORK_POINTER=>LINK3
SUB2 = WORK_POINTER->VALUE;

D0 WHILE(SUB1 -~= NULL);
ALLOCATE DATA_ITEM
IN(DATA_AREA) SET(D)3

GET EDIT(D-=>DATA_ITEM)(A(1));
SUB1->VALUE = D3

SUBl1 = SUBL->LINK;

COUNT = COUNT + 13

DO WHILE(SUB2 ~= NULL);
ALLOCATE DATA_ITEM
IN(DATA_AREA) SET(D)3

GET EDIT(D->DATA_ITEM)(A(1));
SUB2->VALUE = D3

SuUB2 = SUB2->LINK;

COUNT = COUNT + 13

GET EDIT (BLANKS) (A(80 - COUNT));
COUNT = 03

/% EMPTY RELOCATABLE_BODY_AREA. */
RELOCATABLE_BODY_AREA = EMPTY;

/% CONVERT ABSOLUTE LISTS OF

LISTS (LIST1 AND LIST2) TO
RELOCATABLE FORM. */

CALL CON_LAR(ABSOLUTE_BODY_AREA,
ABSOLUTE_HEAD_ARRAY,
RELOCATABLE_BODY_AREA,
RELOCATABLE_HEAD_ARRAY,

DATA_AREA, #SUBS);

/* WRITE RELOCATABLE DATA LISTS INTO
LFILE. */

CALL WRITE_RPL(LFILE,
RELOCATABLE_HEAD_ARRAY,
RELOCATABLE_BODY_AREA,BODY_SIZE,
DATA_AREA, DATA_SIZE);

/7* PROCESS NEXT TWO INPUT CARDS. */

GO TO

OuTPUT:

IF

INPUT

/* READ HEAD ARRAY, BODY AREA, AND
DATA AREA FOR NEXT SET OF
RELOCATABLE LISTS OF LISTS IN
LFILE. */

CALL READ_RPL(LFILE,
RELOCATABLE_HEAD_ARRAY,
RELOCATABLE_BODY_AREA, BODY_SIZE,
DATA_AREA, DATA_SIZE);

/% IF END OF LFILE IS REACHED
TERMINATE PROGRAM. */

BODY_SIZE = 0

THEN
GO TO

END_TRANS_L 3

/% EMPTY ABSOLUTE_BODY_AREA. */
ABSOLUTE_BODY_AREA = EMPTY;

/% CONVERT LISTS OF LISTS FROM
RELOCATABLE TO ABSOLUTE FORM. #*/
CALL CON_LRA(RELOCATABLE_BODY_AREA,
RELOCATABLE_HEAD_ARRAY,
ABSOLUTE_BODY_AREA,
ABSOLUTE_HEAD_ARRAY,

DATA_AREA, #SUBS);

/% ASSIGN POINTER VALUES OF
ABSOLUTE_HEAD_ARRAY TO HEAD

51

POINTERS LIST1 AND LIST2 %/
LIST1 = ABSOLUTE_HEAD_ARRAY(1);
LIST2 = ABSOLUTE_HEAD_ARRAY(2);

/* PRINT ALL DATA VALUES OF LIST1 IN
SUCCESSIVE POSITIONS ON ONE LINE AND

THOSE OF LIST2 ON NEXT LINE. */
PRINT:
DO WORK_POINTER = LISTl, LIST2;
IF WORK_POINTER = NULL
THEN GO TO END_PRINT;
SUBL = WORK_POINTER->VALUE;
WORK_POINTER = WORK_POINTER=>LINK;
IF WORK_POINTER = NULL
THEN DO3;SUB2=NULL;GOTO FIRSTSEND;
SUB2 = WORK_POINTER->VALUE;
" FIRST:
WORK_POINTER = SUB1;
IF WORK_POINTER = NULL
THEN GO TO SECOND;
DO WHILE(WORK_POINTER =~= NULL);
P = WORK_POINTER->VALUE;
PUT EDIT(P->DATA_ITEM) (A);
WORK_POINTER = WORK_POINTER=->LINK;
END;
SECCND:
WORK_POINTER = SUB2;
IF WORK_POINTER = NULL
THEN GO TO END_PRINT;
DO WHILE(WORK_POINTER ~= NULL);
P = WORK_POINTER->VALUE;
PUT EDIT(P->DATA_ITEM)(A);
WORK_POINTER = WORK_POINTER->L INK;
 END;
PUT
SKIP;
END_PRINT:
END
PUT
LIST(t#xaskr);
PUT
SKIP(2);
/* PROCESS NEXT SET OF RELOCATABLE
LISTS IN LFILE . #/
60 TO
: OUTPUT;
END_TRANS_L:
CLOSE FILE(SYSPRINT);
CLOSE FILE(LFILE);
END
TRANS_L;

Figure 3.2A. The TRANS_L program, which illustrates the
construction of relocatable lists of lists and
transmission to and from a file

52

TRANS__L begins by allocating list components in the
storage area ABSOLUTE_BODY _ AREA and linking the
components into an absolute list of available storage com-
ponents called FREE. The program then uses the compo-
nents in FREE to create two absolute lists of lists, LIST1
and LIST2, which contain two sublists each at the top level.
Each sublist contains five data (D) components, as shown in
Figure 3.2C.

CARD10 — — ——

Figure 3.2B. Sample input from SYSIN file

ABSOLUTE_BODY_AREA

LIST1: D——

LIST2: D—

FREE: D—

TN
LR e e
PR p 1 BB
—

B A BT R
o[Folol 1 oI BT
TEN

DATA_AREA

D - DATA_ITEM

lclafrofr [={-|-[-[-[c[a[rp[2][-[-]-]-|-]

Figure 3.2C. Examples of absolute lists of lists

DATA_ AREA serves as the storage area for the data
values associated with LIST1 and LIST2. The based variable
DATA_ITEM is allocated in DATA_AREA. DATA_ITEM
specifies single characters whose addresses are assigned to
the 20 value pointers in the data components of LIST1 and
LIST?2. Input is obtained from the standard system-input
file, SYSIN, samples for which appear in Figure 3.2B. The
characters in cc 1 through 10 of each two input cards are
assigned to allocations of DATA_ITEM. Figure 3.2C illus-
trates the association between the data content of DATA _
AREA and the lists of lists in ABSOLUTE_BODY _AREA.
The diagram uses compact representation for LIST1 and
LIST?2 to avoid excessive usage of arrows.

TRANS_L now invokes the subroutine CON_LAR,
which converts the absolute lists of lists in ABSOLUTE _
BODY _AREA to relocatable lists in RELOCATABLE _
BODY _AREA, as illustrated by Figure 3.2D. The array
RELOCATABLE _HEAD ARRAY contains the offset
heads of the relocatable lists. At this point, subroutine
WRITE_RPL writes RELOCATABLE_HEAD ARRAY,
RELOCATABLE_BODY_AREA, and DATA_AREA as
separate logical records into the file LFILE (see Figure
3.2E). '

53

54

RELOCATABLE_BODY_AREA

i ""i lel [=1elal I '“_’J?':'_._'Ti”_'i_J_tf
cecooatanie | ;TE“%“!]:'E'P'_ I :L_“’_':'__'t‘f’_".' 1
HEAD_ARRAY: - J' T N '~
AN
‘oL 1-Pll 1~ ~PEL]
':l?'_“_l B0l 1y =EE-EE T
SEEN SEEN
DATA_AREA

D~ DATA_ITEM

[elafrlofr]-[-]-[-]-]c]a[r[o]2]-[-[-]-]-]

Figure 3.2D. Examples of relocatable lists of lists

o]

RELOCATABLE _ RELOCATABLE_ : DATA_AREA
HEAD_ARRAY BODY _AREA

Figure 3.2E. Sample content of LFILE (unblocked)

TRANS_L contrinues processing pairs of input cards
and generating relocatable output for LFILE. When the end
of the SYSIN file is reached, LFILE is closed and reopened
as an input file. The previous processing steps are now
reversed. Subroutine READ_RPL retrieves each head array,
body area, and data area from LFILE, and subroutine CON
_LRA converts the retrieved lists from relocatable to
absolute form. The data values of absolute list LIST1 are
then printed in successive positions on a line in the standard
system-output file, SYSPRINT. Similarly, the data values of
LIST2 appear on the next line, as shown in Figure 3.2F.
Each pair of output lines is followed by a line of five
asterisks and a blank line. The program terminates when the
end of LFILE is reached.

CARD10 — ———

L

Figure 3.2F. Sample output to SYSPRINT file

55

SUMMARY

This manual shows how to form a relocatable list by using
offset variables rather than pointer variables as component
links in the list. The values of the offset variables remain
valid when the list is moved to a new location within inter-
nal storage or transmitted to and from a file.

A relocatable list can be treated as a collective unit by
referring to the area in which the components of the list
have been allocatéed and linked. Internal and external move-

ment of the relocatable list is then achieved by transmitting

the containing area.
The techniques are summarized below:

1. A list can be treated as a collective unit by referring
to the area in which the list components have been allo-
cated. Internal and external movement of a list then be-
comes possible by transmitting the containing area.

2. The assignment statement permits the contents of
one area to be assigned to another area. However, pointer
values in the assigned area become invalid in the receiving
area.

3. No operators can be applied to area variables.

4. An area is made empty by assigning it the value of
the builit-in function EMPTY or the value of another
empty area.

5. Assignment of an area effectively frees all alloca-
tions in the receiving area and then assigns the content of
the area to the receiving area.

6. All free-storage gaps are retained within an assigned
area, so that allocations within the assigned area maintain
their locations relative to each other.

7. When the source area is smaller than the receiving
area, the assigned area is effectively extended with free
storage. Similarly, when the source area is larger than the
receiving area, truncation of free storage occurs at the end
of the assigned area. However, if the truncation involves
allocated storage and not just free storage, the AREA ON-
condition occurs, and the contents of the receiving area
become undefined.

8. A relocatable list is formed by using offset variables
rather than pointer variables as component links in the list.

9. An offset variable has a relative address as its value
and is declared with the OFFSET attribute, which has the
following form:

OFFSET(area-variable)
The area variable in parentheses must be based and unsub-
scripted and must have an implied or explicit level number

of one.

56

10. When the value of a pointer variable is assigned to
an offset variable, the assigned pointer value is auto-
matically adjusted so that it becomes relative to the begin-
ning of the area associated with the receiving offset
variable. The address computation is equivalent in effect to
the following calculation:

Offset value = (Pointer value) — (Absolute address
of area)

11. When an offset value is assigned to a pointer vari-
able, the offset value is automatically added to the absolute
address of the area specified in the associated OFFSET
attribute; the result becomes the value of the receiving
pointer:

Pointer value = (Offset value) + (Absolute
address of area)

12. Assignment of an offset value to an offset variable is
performed without address modification.

13. The programmer cannot apply explicit arithmetic
operations to offset variables in the source program; how-
ever, comparisons of offset variables can be made with the
operators equal (=) and not equal (T1=).

14. A null offset value is assigned to an offset variable
through the built-in function NULLO.

15. A null offset value cannot be assigned to a pointer
variable. Similarly, a null pointer value cannot be assigned
to an offset variable.

16. An offset variable cannot qualify a based variable.
The offset value must first be assigned to a pointer variable,
which is then used to quahfy the based variable.

17. The values of locator variables (offsets and pointers)
cannot be converted to any other type of data, nor can any
other type of data be converted to locator type.

18. Locator variables may be used as arguments and
parameters. When an offset argument is associated with an
offset parameter, both must be offset with respect to the
same area.

19. Only record-oriented input and output statements
can be used to transmit relocatable lists. The LOCATE
statement is used to transmit lists to a file, and the READ
statement is used to retrieve lists from a file.

20. The subroutines developed in this manual for proc-
essing relocatable lists fall into five categories:

a. Converting absolute lists to relocatable form
b. Converting relocatable lists to absolute form
c. Moving relocatable lists
d. Writing relocatable lists

‘e. Reading relocatable lists

APPENDIX

The Recursive Function Procedure CONV

/% FUNCTION PROCEDURE CGNV
CAN BE USED WITH CON_LAR */
/* DECLARE CONV ENTRY
(POINTER, AREA(*), AREA(*), AREA(*))
RETURNS (CFFSET (DUMMY_BODY_AREA)),
DUMMY_BODY_AREA AREA BASED
(DUMMY_POINTER),
DUMMY_POINTER POINTER; */
CONV:
PROCEDURE(LIST,
BODY_AREA1,BODY_AREA2,D0ATA_AREA)
RETURNS (OFFSET (DUMMY_BODY_AREA))
RECURSIVE;
/* CONV IS A RECURSIVE FUNCTION
PROCEDURE THAT CONVERTS A LIST OF
LISTS IN BODY_AREALl TO A
RELOCATABLE LISTS OF LISTS IN
BODY_AREA2. THE HEAD POINTER OF THE
LIST TO BE CONVERTED IS PASSED TO
CONV AS AN ARGUMENT. THE FUNCTICN
RETURNS THE OFFSET ADDRESS OF THE
NEW LIST IN BODY_AREA2. */
DECLARE
LIST POINTER,
0 OFFSET(DUMMY_BODY_AREA),
(DUMMY_BODY_POINTER,
DUMMY_DATA_POINTER9C1,C2)POINTER,
(BODY_AREA1,BODY_AREA2,DATA_AREA)
AREA(*),
DUMMY_BODY_AREA
BASED(DUMMY_BODY_POINTER) AREA,
DUMMY_DATA_AREA
BASED(DUMMY_DATA_POINTER) AREA,
COMPONENT1 BASED(C1),
TYPE CHARACTER(1),
VALUE POINTER,
LINK POINTER,
D_COMPONENT2 BASED(C2),
D_OTYPE CHARACTER(1),

NNN=ENNN -

D_OLINK OFFSET(DUMMY_BODY_AREA),

D_OVALUE OFFSET(DUHHY_DATA_AREAlv’

1 L_COMPONENT2 BASED(C2),
2 L_OTYPE CHARACTER(1),
2 L_OVALUE OFFSET(DUMMY_BODY_AREA),
2 L_OLINK OFFSET(DUMMY_BODY_AREA);
IF
LIST = NULL
THEN
RETURN(NULLO);
DUMMY_BODY_POINTER=ADDR(BODY_AREA2);
DUMMY_DATA_POINTER=ADDR(DATA_AREA);
Cl = LIST;
IF
Cl1->TYPE = D!
THEN
00
ALLOCATE D_COMPCNENT2 IN(BODY_AREA2)
SET(C2);
C2->D_0TYPE = *D*;
IF
C1l->VALUE = NULL
THEN
C2->D_OVALUE
ELSE
C2->D_0OVALUE = C1->VALUE;
C2->D_OLINK=CONV(C1->LINK,
BODY_AREA1yBODY_AREA2 yCATA_AREA);

NULLC;

END;
ELSE
DO;

ALLOCATE L_COMPCNENT2 IN(BODY_AREA2)
SET(C2)3
C2->L_OTYPE = 'L*';
C2->L_OVALUE=CONV(C1->VALUE,
BODY_AREAl, BODY_AREA2, DATA_AREA);
C2->L_OLINK=CONV(C1->LINK,
BODY_AREAl, BODY_AREA2, DATA_AREA);

END; : .

0 =C2;

RETURN(O) ;

END
CONV;

57

The Recursive Function Procedure CON

/%
/%

CON:

FUNCTION PROCEDURE CON

CAN BE USED WITH CON_LRA */
DECLARE CON ENTRY
(OFFSET(DUMMY_BCODY_AREA)y AREA(*),
AREA(*), AREA(*))RETURNS{POINTER),
DUMMY_BODY_AREA AREA BASED
(DUMMY_PCINTER)

DUMMY_POINTER POINTER; */

PROCEDURE(RLIST,
BODY_AREA1,BODY_AREA2sDATA_AREA)
RETURNS(POINTER)IRECURSIVE;

/* CON IS A RECURSIVE FUNCTION
PROCEDURE THAT CONVERTS A

RELOCATABLE LIST OF LISTS IN
BODY_AREA1 TO AN ABSOLUTE LIST OF
LISTS IN BODY_AREA2. THE OFFSET HEAD
OF THE LIST TO BE CONVERTED IS

PASSED TO CON AS AN ARGUMENT. THE
FUNCTION RETURNS THE ABSOLUTE ADDRESS
OF THE NEW LIST IN BODY_AREA2. */

DECLARE

58

RLIST OFFSET(DUMMY_BODY_AREA),
(BODY_AREAL , BODY_AREA2 s DATA_AREA)
AREA(*), ;

DUMMY_BODY_AREA

BASED (DUMMY_BODY_POINTER) AREA,
DUMMY_DATA_AREA
BASED(DUMMY_DATA_POINTER) AREA,
(DUMMY_BODY_POINTER,
DUMMY_DATA_POINTER,C1,C2)POINTER,
D_COMPONENT1 BASED(C1),

D_OTYPE CHARACTER(1),

D_OVALUE OFFSET(DUMMY_DATA_AREA),
D_OLINK OFFSET(DUMMY_BODY_AREA),
L_COMPONENT1 BASED(C1),

L_OTYPE CHARACTER(1),

L_OVALUE OFFSET (DUMMY_BODY_AREA),
L_OLINK OFFSET(DUMMY_BODY_AREA),
COMPONENT2 BASED(C2),

RN E=NNN -

2 TYPE CHARACTER(1),
2 VALUE POINTER,
2 LINK POINTERS

IF

RLIST = NULLO
THEN)
RETURN(NULL) 3
DUMMY_BODY_POINTER = ADDR(BODY_AREAL1);
DUMMY_DATA_POINTER=ADDR(DATA_AREA);

Cl = RLIST;
IF
C1->D_OTYPE = *p*
THEN
00;
ALLOCATE COMPONENT2
IN (BODY_AREA2) SET(C2);
C2->TYPE = 'D';
IF
C1->D_OVALUE = NULLO
THEN
C2->VALUE = NULL;
ELSE
C2->VALUE = C1->D_OVALUE;
C2->LINK=CON(C1->D_OLINK,
BODY_AREA1,BODY_AREA2,DATA_AREA);
END;
ELSE
00;
ALLOCATE COMPONENT2
IN (BODY_AREA2) SET (C2);
C2->TYPE = 'L*;
C2->VALUE=CON(C1->L_OVALUE,
BODY_AREAL ,BODY_AREA2,DATA_AREA);
C2->LINK=CON(C1=->L_CLINK,
BODY_AREA1,BODY_AREA2,DATA_AREA);
END;
RETURN (C2)3
END
CON;

Index

AREA assignment
Area control bytes
AREA On-condition
CON function
CON_DAR subroutine
CON_DRA subroutine
CON_LAR subroutine
CON__LRA subroutine
CON_PAR subroutine
CON_PRA subroutine
CONYV function
EMPTY function
External blocks
External relocation
FILE attribute
Input/output statements
Internal relocation
LOCATE statement
Logical records

Page
Numbers

3,4,35,37
12

3

33, 58
23,24
29, 30
27,28
33,34
25,26
31,32
27,57
3

12
39, 41
11

11
35,37
11

12

MOVE _RDL subroutine
MOVE_RPL subroutine
NULLO function

Offset variables

Output buffer

Padding elements in structures
Reading relocatable lists
READ_RDL subroutine
READ_RPL subroutine
READ statement
REFER option
Self-defining records

SET option

TRANS_ D procedure
TRANS_ L procedure
Type codes

Writing relocatable lists
WRITE_RDL subroutine
WRITE__RPL subroutine

Page
Numbers

35, 36
37,38

6

3

11

9,11

43
43,44
44, 45,46
13

17

16

11

47,48
50,51, 52
9

39

39, 40
40, 41,42 -

59

GF20-0020-0

TBM

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only) '

1BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

0-0200-0Z4D “V"S'M Ul PauLld /14 Ul SIS 8|qeleoojay Buissadoid 40y sanbiuyoa)

READER’S COMMENT FORM
Techniques for Processing Relocatable GF20-0020-0
Lists in PL/I

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges-
tions become the property of 18Mm. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GF20-0020-0

YOUR COMMENTS PLEASE...

Your comments on the other side of this form will help us improve future editions of this pub-
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub-
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your M
system should be directed to your 1BM representative or the 18BM branch office serving your
locality.

...

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N.Y.

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY. ..

IBM Corporation
1133 Westchester Avenue
White Plains, N.Y. 10604

A-N7AN-NZ40 "Y°'S'N Ul Paluldd |/71d Ul SisiT ajqeledojay Buissadold 104 sanbiuyoa j

Attention: Technical Publications

...

B

®

International Business Machines Corporation

Data Processing Division |

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM.World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

