
--.. -. ------ ------- ~--- -.. -..-.-- - - _ -
==-=~=

A Guide to PL/I for
FORTRAN Users

Student Text

--.- ------ - ---- ---- -. ---- - - ------------ _.-

A Guide to PL/I for
FORTRAN Users

Student Text

Preface

This manual is an introductory guide to PL/I written
especially for those who have a working knowledge of
FORTRAN II or IV. No particulaI: machine imple­
mentation of FORTRAN or PL/I has been assumed.
Part 1 gives a broad survey of PLjI. A sample pro­
gram illustrating some of the principal features of the
language is explained siep by siep.

Part 2 gives sufficient detail for the user to be able
to write a straightforward program for himself. It is
not a rigorous exposition. Examples have been used
to clarify the text. The terminology used is intended
to be that which is familiar to a FORTRAN user.

U~_L ') ...1~~~._:L~~ ____ ~_L~ __ L C~_:l:~_ L~ DAUTU A 1\.T
~ eli l V UC;;:'\..:llUC;:' \":Ul1\,,:C;l)l~ HUl lctlHlUctl lU ~. V.Ll.L .Llrl.l ~

users, although some of them are familiar to those
who know COBOL or ALGOL. Where references to
COBOL or ALGOL will help readers who know these
languages, the reference is made, but the explanation
is also given in full for those \vho do not.

This guide does not attempt to cover all the features
of the language. Many facilities have not been men­
tioned at all, and some of the statements and features
have not been explained in full detail.
Other related publications are "A PL/I Primer," Form
C28-6808, "A Guide to PL/I for Commercial Program­
mers," Form C20-1651, and IBM System/360; PL/I
Reference l\,fanual, Form C28-8201.

Major Revision (May 1968)

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality. Address comments concerning the
contents of this publication to IBM Corporation, DPD Education Development -
Publications Services. Education Center. South Road. Poughkeepsie. New York 12602.

© Copyright International Business Machines Corporation 1965, 1968

Contents

Part 1: An Introduction to PLj I
\Vhya New Language?
Features of the Language
The Structure of a PL/I Program .. .
Sample Program: Matrix Inversion .. .

Part 2: How to Write a PLj I Program
Character Set
Basic Syntax of PL/I
Data Types

Data Declaration
Precision
Implicit Declaration
Character and Bit Data .
Constants
Initial Values

Expressions And Assignment Statements.
Evaluation of Expressions
Logical and Bit String Expressions
Character and Bit String Operations
Hierarchy of Operations

Data Aggregates ...
Types of Aggregates
Subscripts and Declaration
Array Expressions
Asterisk Subscripts

Control Statements .
GO TO Statement
IF Statements
DO Statements
The ON Statement and the Prefix.
PAUSE and STOP

Subprograms
The Procedure Statement
Internal Procedures
Separately Compiled Procedures
Multiple Entries to Procedures

Input/Output
Stream I/O

5
5
5
6
6

9
9
9

10
10
11
11
11
12
12
13
13
14
14
15
15
15
15
15
16
16
16
16
17
18
19
20
20
20
21
21
21
22

Data-Directed Input/Output
List-Directed Input/Output
File Names
Data Lists
Edit-Directed Input/Output
Types of Format Items
Format List.
Variable Format.
Internal I/O
Print Files

22
22
23
23
23
24
24
24
25
25

Record I/O 25

Part 3: New Concepts in PLj I
Structures .

N arne Qualification
Assignment BY NAME
Structure Expressions
Arrays of Structures.

Allocation of Storage .
The Scope of Names
STATIC and AUTOMATIC Storage
CONTROLLED and BASED Storage
Variable Dimensions

Asynchronous Procedures
The TASK, EVENT, and PRIORITY Options ..
The WAIT Statement
THE COMPLETION Function

List Processing

Appendix 1: Built-In Functions

Appendix 2: ON Conditions ..

Appendix 3: Correspondence of FORTRAN and

26
26
26
27
27
27
27
28
28
29
29
29
30
30
30
31

32

34

PL/I Statements 34

Index 35

Why a New Language?
FORTRAN began as a very early experiment in effi­
cient compilation of an algebraic language. It uses
the conventions of algebra to specify computation on
floating-point numbers. A few simple control state­
ments, DO, IF, and GO TO, specify the flow of con­
trol. Input and output statements are a compromise
between simplicity of use and flexibility of format.

FORTRAN has proved such an effective compro­
mise between generality and efficiency that it has be­
come the most widely accepted higher-level language
in use today. It has progressed from a language for
occasional use by amateur programmers to the major
language in use in most scientific installations. This
acceptance has been possible because FORTRAN has
developed from the early single compilation FOR­
TRAN I, to FORTRAN II with subprogram facilities,
and FORTRAN IV, which includes improved logical
facilities, more data types, and better facilities for
storage assignment and initialization.

A joint SHARE and IBM committee was set up in
1963 to investigate what modifications should be made
to FORTRAN to make it as useful in the newly devel­
oping computer environment as it had been in scien­
tific and engineering installations in the past.

This committee reached the conclusion that they
could cater to a wider variety of users and applica­
tions if they abandoned the conventions of FOR­
TRAN. The main reason is that FORTRAN was de­
signed to operate most efficiently in installations per­
forming scientific and engineering calculations on a
computer that uses .cards and magnetic tape for input
and output. This type of environment is becoming less
common. Scientific computing centers now have a
number of programmers who are concerned with ac­
tivities outside the scope of FORTRAN, such as sys­
tems programming; and scientific programmers are
increasingly concerned with the problems of efficient
input/output operation and the generation of reports.

PL/I is designed to meet the needs of all these
kinds of users. For many installations, even with a
wide range of scientific and commercial applications,
it will be the only language used. The language in­
cludes the ability to handle character, bit, and numeric
data as well as the floating and integer arithmetic of
FORTRAN. Input/output statements provide for the
detailed control of physical records and files, and for
efficient use of data channels.

Part 1: An Introduction to PL/I

Besides meeting the needs of a wider range of users,
PL/I is designed for efficient use with a wider range
of machines. Most modern corp.puters have an inter­
rupt system; PL/I recognizes this and provides state­
ments to use the interrupt facility. An increasing pro­
portion of machines are used with an operating sys­
tem, and the concurrent performance of tasks is be­
coming more common. PL/I is designed with this
type of machine and operating system in mind.

Another feature of PL/I is that it is possible to
teach and use subsets of the language. For example,
an open-shop scientific user can program using a short
and simple manual, without being concerned with the
complex facilities that might be required by a pro­
grammer who wanted to use PL/I to Write an operat­
ing system. This feature is essential if the language is
to be used by programmers of widely varying inter­
ests, experience, and ability.

It was felt that the advantages to be gained from
having a single higher-level language which could be
used for all the activities of an installation, which
would work efficiently in a modern environment, and
which would be suitable for all varieties of program­
ming, were sufficiently great to justify the launching
of a new programming language.

Among the advantages of PL/I are:
1. Better integration of sets of programs covering

several applications.
2. Easier interchangeablility of files.
3. Fewer programs to be written in a machine ori­

ented language.
4. Reduced training costs; fewer people to learn

a machine oriented language.
5. Better machine utilization, greater use of chan­

nels, more flexible storage assignment, better in­
terrupt handling.

features of the Language
In PL/I, as in FORTRAN, computation is specified by
arithmetic expressions designed to resemble algebraic
expressions. Statements such as IF, GO TO, and DO
appear in both FORTRAN and PL/I, and have similar
but not identical meanings. The PL/I statements in
most cases have a more general construction and a
wider range of meaning than their FORTRAN equiva­
lents. Input and output are specified by READ or
WRITE and GET or PUT statements, the form at-

An Introduction to PL/I 5

directed input/output statements in FORTRAN cor­
responding to one of three possible types of GET and
PUT statements in PL/I.

C' _______ 1 ____ .L_!_.L! ___ ! _______ ..l L __ DADrrD A,..r ____ L
,:H:::veli:l1 le~UlCUUU~ llupu~eu uy .L'V.Ll.L.Llfil'lj ,ue; C:tu-

sent from PL/I. Statements may be written in free
format and are not affected by card boundaries. The
semicolon is llsed to terminate statements. Names, and
not numbers, are used to refer to statements and files.
The same set of rules is used for constructing all
names, whether for statements, functions, files, or
varibles. There are many more different kinds of
data, and data types may be mixed within expressions.
In nearly all cases where a single variable is allowed,
an expression may be used. This eliminates the limi­
tations on subscript expressions and the restrictions
on the elements in a DO statement \vhich exist in
~f"'\.n"""'Tl .. 1\.T
['Vfl1 flf"H'II.

Several features of the language permit more effec­
tive use of the computer at object time. Storage allo­
cation may be regulated so that storage is assigned
only when it is actually required by the program. This
is in contrast to most systems where every variable has
its storage assigned at load time and has sole use of
that storage throughout the program. Language fea­
tures are provided that permit the programmer to
make use of the more sophisticated machine features
now available, such as interrupts and asynchronous
operation. These features are described in Part 3 of
this guide.

The range of input/output facilities has been ex­
tended beyond those available in FORTRAN. GET
and PUT statements may be used with a format list
to provide the equivalent of FORTRAN READ and
\\TRITE. However, it is also possible to omit the for­
mat specification and have them dednced from the
data. In addition, there are READ and WRITE state­
ments in PL/I to provide a wide range of I/O opera­
tions including the transmission of records without
conversion, the handling of devices with various tech­
niques of organization and access, and the use of vari­
able length and blocking.

The Structure of a PL/I Program
A strength of FORTRAN is its ability to combine
separately compiled subprograms into a single pro­
gram, but it is usually unable to specify a subprogram
within a compilation, except in the limited form of an
arithmetic statement function. Consequently, subpro­
grams of a few statements are rare, and if a pro­
grammer wishes to achieve the effect of a subprogram
without incurring the overhead of a separate cmnpila­
tion and copying a set of CO~fMON and DIME~-

6

SION statements, he uses a device such as the as­
signed GO TO.

PL/I allows more than one subprogram to be com-
!1..l .,~ _ •• _:.1. L •• .L :_~~ •• ~~ •• _l-"" l-1~" VAUTU ,\ 1\.T C,,~
pue;u <t~ £1. ll1Ul, Ulll lULV11JVl £1.le;;:> lue; .1. '--'.1.~.1..1.U)'~" l\;;a.-

ture of combining separate compilations. In PL/I a
subprogram is called a procedure, whether it is the
eqtlivalent of n fllnctio11 Slll)program or a sllbroutine
subprogram.

A procedure may contain other procedures within
it. Procedures are nested in a manner similar to DO
loops, and each procedure must be completely con­
tained within the next higher level of the nest. As with
arithmetic statement functions in FORTRAN, inner
procedures may make use of variables specified in
outer procedures without requiring explicit communi­
cation such as the use of argument lists or COMMON,
An iniernaIIy nested procedure in PL/I is not limited
to a single statement, as the FORTRAN arithmetic
statement function is, and so has a much wider range
of usefulness.

Another feature of the language is that for the pur­
nm:p of tllP flow of ('ontrol in a nr02:ram_ 2:rouns of r---- -- .--- --- - - .L U "'--' .L

statements may be bracketed together. The pairs of
statements DO ... END; BEGIN ... END; PROCEDURE
... END; act as brackets to enclose a group of state­
ments. The second two pairs may include declaration
statements that control the assignment of storage. The
use of the PROCEDURE and BEGIN statements is
illustrated in the example below.

Sample Program: Matrix Inversion
The following example has been chosen to illustrate
some of the features of PL/I. It is a modification of
the Gaussian elimination method of matrix inversion,
which inverts a matrix in its own space.

It is certainly not meant to be a good example of an
inversion program, nor is it necessary to follow the
algorithm in detail to understand the way the lan­
guage is used. The individual statements are explained
in the commentary that follows the program; the com­
mentary will enable the reader with a basic knowl­
edge of FORTRAN to understand, in general, the
function of each statement.

The principal features illustrated are:
1. The ability to assign storage, with variable di­

mensions at object time, and initialize it.
2. The use of (I, in a subscript position, to indicate

evaluation of the expression for all values of the
subscript.

3. The extension of the DO statement to control
a loop from 1 to J-l and then from J+l to N.

4. The use of list-directed input to avoid writing
FOR!'.1AT statements.

1 INVERT: PROCEDURE OPTIONS (MAIN);
2 DECLARE HEADING CHARACTER (20), RIGHT FIXED;
3 GET LIST (LEFT, RIGHT); /-0 ITEMS MAY BE ANYWHERE IN RECORD, SEPARATED

BY BLANKS. "LEFT" AND "RIGHT" WILL SPECIFY NUMBER OF PLACES
TO LEFT AND RIGHT OF DECIMAL POINT. -0/

4 DELTA = .5/ (IOU RIGHT);
5 GET LIST (HEADING,N) ; /~ NAME AND ORDER OF MATRIX ~ /
6 PUT PAGE LIST (HEADING II ' ROW COL ELEMENT');
7 MATIN: BEGIN; DECLARE A(N,N); A=O ; r STORAGE FOR MATRIX A IS

ASSIGNED AND INITIALIZED AT THIS
POINT -0/

10 ON ENDFILE (SYSIN) GO TO INVERSION;
12 INPUT: GET LIST (I, J, A(I,J»; GO TO INPUT;

/-0 ONLY NON-ZERO ELEMENTS ARE READ. END OF FILE ENDS READ -0/

14 INVERSION: ON ZERODIVIDE BEGIN;
16 PUT LIST('ZERO ON DIAGONAL'); STOP;END;
19 PIVOT: DO K= 1 TO N; D=A(K,K) ; A(K,K)=1 ;
22 PIVOT_ROW: A(K,-o) = A(K,-o) / D;
23 NON_PIVOT: DO I = 1 TO K-1, K+1 TO N;
24 D = A(I,K) ; A(I,K) = 0;
26 INNEILLOOP: A(I,-o) = A(I,-o) - D {t A(K,-o) ;
27 END PIVOT;
29 OUTPUT: DO I = 1 TO N; DO J = 1 TO N;
31 IF ABS (A(I,J) > DELTA THEN
32 PUT SKIP(2) EDIT (I,J,A (I,J))

(F(23),F(5),F(LEFT +RIGHT +4,
RIGHT» ;

33 END OUTPUT;
35 END INVERT;

(The numbers at the left are not part of the PL/I ~ource program, and are
included here for reference purposes only.)

5. The use of variable and expressions in FOR­
MAT specifications.

6. The use of the ON statement to handle machine
interrupts.

The PROCEDURE statement in the first line names
the routine. The DECLARE statement in the next
line specifies HEADING as a 20-character string and
RIGHT as a fixed point number. The remaining at­
tributes of RIGHT and all attributes of LEFT are de­
faulted to the system.

The first GET statement reads in two numbers that
will later be used to control the format of output. A
typical input record might be:

54

The word LIST specifies that the input is list-directed.
Numbers appear as constants and are separated by
commas or blanks.

Comments, which may occur in any position where
blanks are allowed, are enclosed in brackets /"# - - _"# /.

DEL TA is the smallest number that will appear on
the output file; numbers that would appear as a zero
are not written. The next GET statement reads in the
heading associated with the matrix and the order of
the matrix. The data for this might be:

'DX20 STIFFNESS' 48

The PUT statement on line 6 causes an eject to a new
page, and the heading to be printed followed by the
words ROvV, COL, and ELEMENT.

The BEGIN statement isolates declarations in this
block from the block containing it. The storage for
the matrix is assigned. The statement, A==O, means
that each element of the array, A, is to be set to zero.

The next GET statement reads in each element, pre­
ceded by its row and column numbers. A typical in­
put record might be:

35 17.7

which would cause a value of 17.7 to be read into
A(3,5).

The standard input unit (SYSIN) will be read since
no FILE name was include in the GET statements.
The ON statement on line 10 sets the action to be
taken when the end-of-file is encountered on SYSIN.
The GET statement on line 12 is repeatedly executed
until then, when a transfer is made to the block
labeled INVERSION, on line 14.

This next ON statement says that if an attempt is
made to divide by zero, the program is to type a mes­
sage and abandon the job.

An Introduction to PL/I 7

The first DO statement sets up the outer loop of
the calculation. In PL/I the commas of the FOR­
TRAN DO statement are replaced by TO and BY.
The DO statement does not itself specify the range
of the loop; that is done by the terminating END
statement, END PIVOT. The underscore may be used
within a variable name to improve readability.

The statement PiVOT_nOv V performs the loop that
divides the pivot row by the pivot. The (t in a sub~
script position specifies that the operation is to be
repeated for all values of the subscript. It is equiva­
lent to:

DO J=l TO N; A(K,J) = A(K,J)/D; END;

The statement NONJIVOT is an example of more

8

than one looping specification in a DO. The loop is
executed first for 1=1 TO K-1, then for I=K+l TO
N.

The statement INNER_LOOP uses (t in a subscript
position in the same way that PIVOT_ROW used
it earlier, to operate on a row at a time.

The END PIVOT statement ends all the DO loops
included between the statement PIVOT: DO--; and
this statement. In PL/I, an END statement does not
terminate a compilation.

The loop OUTPUT tests each element. If its abso­
lute value is large enough to print as a nonzero num­
ber, it is written on the standard output file. The state­
ment END INVERT ends the procedure, and also
ends the block MA TIN.

Character Set
PL/I uses a larger character set than FORTRAN.
Besides the set of special characters used by FOR­
TRAN, nine additional characters appear in PL/I
statements. Their use simplifies the rules for construc­
ting statements, and improves the appearance of
source programs.

However, since many installations will wish to make
use of equipment with a smaller character set, a con­
version to the FORTRAN character set from the larger
PL/I set is specified.

The nine additional PL/I characters are shown be­
low, together with the alternative representation suit­
able for use on equipment with only the smaller,
48-character set.

EQUIVALENT IN

pL/I NAME 48-CHARACTER SET

colon
; semicolon ,.
& and AND
i or OR , not NOT
> greater than GT
< less than LT

underscore no equivalent
% percent II

In addition some combinations of these special
characters have a special representation in the FOR­
TRAN character set.

EQUIVALENT IN

pL/I NAME 48-CHARACTER SET

>= greater than GE
or equal to

<= less than LE
or equal to

,= not equal to NE
,< not less than NL
,> not greater than NG
II concatenation CAT

operator

When the nature of these translated characters
could result in their being confused with the preced­
ing and following characters, they should be sepa­
rated from them by blanks. For example, in the 48-
character set X> Y should be written X GT Y.

Basic Syntax of PLII
Under this heading are included the rules for form­
ing symbols and statements, and for using separating
symbols such as the comma.

Part 2: How to Write a PL/I Program

FORTRAN assumes that the card is the normal
method of input for source programs. With the growth
in the use of remote terminals and other forms of
Tele-processing, this assumption is no longer valid. In
PL/I a program is treated as a continuous string of
characters. The boundaries of physical records are
ignored, and there is no need for a continuation
column. Punctuation marks such as the comma and
semicolon are used to separate statements and parts
of statements.

PL/I uses the same basic components as FORTRAN
for writing programs. A program may consist of a
number of separately compiled subprograms, each
consisting of a number of statements. Both the pro­
gram and subprograms are known as procedures. A
statement consists of a collection of symbolic names,
operators, keywords such as DO (which have a spe­
cial meaning to the compiler), and separators such
as commas and parentheses. A glance at the sample
program in Part 1 will show that much of the pro­
gram construction is familiar.

One immediately obvious difference between PL/I
and FORTRAN is that statement numbers are not
used in PL/I. A statement number is merely a way of
identifying a statement. PL/I has the rule that all
words (or identifiers) are constructed in exactly the
same way. Thus the rules for forming names for state­
ments, files, and keywords are the same as those for
forming variable names.

The rules for constructing a name are similar to the
FORTRAN rules. The first character must be alpha­
betic, and the remaining characters, if any, may be
alphabetic or numeric. The language definition limits
the length of a name to 31 characters; implementa­
tions may make further restrictions. Because PL/I
does not ignore blanks, as most versions of FORTRAN
do, it is not permissible to embed blanks in a name.
However, to improve the clarity and mnemonic signifi­
cance of names it is permissible to include the special
character _ (underscore) within a name when using
the larger character set.

The names BIG_A, JOB_NO, and TEMP_1 are
valid PL/I symbols, as are BIGA, JOB NO, and
TEMPI. The underscore is a part of the name, so
BIGA is not the same as BIG_A. BIG A is invalid
since it contains a blank within the symbol.

Since the end of the card is no longer available to
end statements, the semicolon is used. Statements
may be punched more than one to a card, or may

How to Write a PL/I Program 9

extend over several cards; the semicolon marks the
end of a statement. The label (which takes the place
of the FORTRAN statement number) is separated
from the remainder of the statement by a colon.

PLjI contains many more keywords than FOR­
TRAN, since it expresses a much wider variety of
operations. It would be contrary to the philosophy of
PijI if the programmer had to learn all these words
whether or not he intended to use them. PLjI there­
fore allows the programmer to use keywords as names
for his own use - for example, as variable names or
as statement labels. The word IF may therefore exist
in the same program both as a name and as a key­
word. Similarly, the programmer may use the name
KEY without knowing, or being affected by, its spe­
cial meaning to the compiler when used as an option
in a READ statement.

Another consequence of the fact that many key
words and options can also be used as names, is that
the compiler cannot rely on programmer names being
separated by special characters or reserved words.
Tho In rt1l .. nn"'O' ... hootn ... o ",cu·"f·.,~oCl ... h-:l.... '1'1'7ha a '1xrn ,.lC'
.1...1..1.\..1 .I.Q..L.l.5UU.5'""I..I.v.l.v.l.v ... v .I.v'1.\..I..I..LvaJ '-.I. ... """ VY.L.I.'\J.A.V 'r"''J.L'-A.'"

do appear without a special character separating
them, they should be separated by one or more blanks.

Parentheses are used, as in FORTRAN, for contain­
ing subscripts and other lists of names, such as data
and format lists. The names of variables in a list are
separated by commas. Attributes (which describe
variables, procedures, files, etc.) are separated by
blanks and not commas. This is illustrated by the
following example:

DECLARE A(M,N) FLOAT COMPLEX;

This statement specifies that A is an m by n array of
complex floating point numbers. The name A may be
followed immediately by the left parenthesis (al­
though blanks are allowed). The names M and N in
the subscript list are separated by a comma. The
attributes FLOAT and COMPLEX, which describe
A, are separated by blanks.

STEP: A=X+ Y;

is a labeled statement. The label is separated from
the remainder of the statement by a colon. Other
examples of PLjI statements are:

10

IF A> B THEN C = AU 2; ELSE C = BU 2;

DO J = 1 TO M(tN+1 BY K;

ALPHA: K2 = ZU 2 + XII;

A(I,J) = (B(I+1,J) + B(I-1,J»)
+(B(I, J-I) + B(I,J+l))°.25;

L = COS (OMEGA) (tCOS(U) - SIN(OMEGA)
(tSIN (U) (tCOS(C);

CALL CONVERT (X,DEG,MIN,SEC);

Data Types
FORTRAN II originally recognized two types of vari­
ables: integer and floating. This \XlaS extended in some
versions of FORTRAN II to include double precision,
complex, logical, and character data. PLjI provides
an even wider range of data types, and a wider range
of operations on character and bit data. At the same
time, by starting afresh, it has been possible to classify
this wider range in a more logical way.

FORTRAN is concerned mainly with engineering
calculations, where numbers can conveniently be rep­
resented in floating point since engineers are con­
cerned primarily with precision and not with the form
in which the number is represented. However, some
computer users are concerned with the particular way
in which numbers are handled. For example, in some
financial problems conversion of decimal numbers to
binary noating point is not acceptable. PL/I gives the
user the ability to declare in detail the way in which
arithmetic data shall be stored and used in computa­
tion. If th"e user is not interested in this level of detail,
he omits declarations, and his variables assume a
standard fom1.

PLjI recognizes the following characteristics of
numeric information:

Base: which can be BINARY or DECIMAL
Scale: which can be FIXED or FLOAT
Mode: which can be REAL or COMPLEX

An arithmetic variable will have one each of base,
scale, and mode attributes. The language also allows
the programmer to choose precision, although in most
implementations the choice will be limited by the
machine available.

Data Declaration

One of the consequences of having a variety of data
types is that it is necessary to" be able to specify the
attributes of a variable. In PLjI this is done by the
DECLARE statement, which combines the functions
of the various specification statements of FORTRAN.
Besides the type statements of FORTRAN IV (REAL,
INTEGER, DOUBLE PRECISION, COMPLEX,
LOGICAL, and EXTERNAL), DECLARE includes
the functions of DIMENSION and DATA, and re­
places the functions of COMMON and EQUIVAL­
ENCE. The principle of the DECLARE statement is
that all the attributes of a variable should be specified
in a single statement.

To avoid undue repetition, names with the same
attribute may be grouped together by parentheses.

Examples of DECLARE statements specifying at­
tributes of arithmetic variables follow:

1. DECLARE ALPHA REAL FLOAT BINARY
BETA COMPLEX FLOAT BINARY; ,

2. DECLARE (ALPHA REAL, BETA COMPLEX)
FLOAT BINARY;

NOTES:

Example 1. A variable name is followed by its attributes, sepa­
rated by blanks. The name, with its attributes, is
separated from the next name in the list by a
comma.

Example 2. Parentheses are used to indicate that the attributes
FLOAT and BINARY apply to both ALPHA and
BETA. This example is equivalent in meaning to
the preceding one.

Precision

The language allows the user to specify the precision
of data, together with its other attributes, in a DE­
CLARE statement. The precision specification consti­
tutes a constant, or constants, enclosed in parentheses
immediately following a base, scale, or mode attrib­
ute. If the variable is binary, the precision is specified
in bits; if decimal, in decimal digits. In PL/I, fixed­
point variables are not restricted to integers. The pre­
cision of any fixed-point number is specified by one
or, more usually, two numbers. The first (w) indicates
the total number of bits or digits in the variable. The
second (d) is a scale factor indicating the number of
binary or decimal places in the variable. The magni­
tude of the scale factor need not be less than w, and
it may be negative; it may also be omitted altogether,
in which case the scale factor is assumed to be zero
(that is, the variable is an integer). Where, as is more
often the case, both wand d are specified, the two
numbers are separated by a comma. Examples of
precision specifications in DECLARE statements are:

DECLARE A BINARY (20),
B DECIMAL FIXED (6,2);

DECLARE X BINARY FLOAT (48),
Y BINARY FIXED (17,2);

A precision specification specifies the mInImum
number of digits to be used, and in the case of fixed
point, the scaling to be performed. The actual num­
ber of digits to be held will depend on the implemen­
tation.

Implicit Declaration

One of the ground rules of PL/I is that the user need
not specify details in which he is not interested. There

are therefore some simple rules for determining char­
acteristics that are not explicitly declared:

1. Data is assumed arithmetic unless declared otherwise.
2. If no base is specified, decimal is assumed. (Decimal is

chosen because for most people it is a more familiar rep­
resentation than binary, though, of course, many FOR­
TRAN users are accustomed to binary.)

3. If no scale is specified, floating point is assumed.
4. If no mode is specified, real is assumed.
5. Precision will depend upon the implementation.

An exception to these rules is that if a variable has
none of these characteristics declared, and its name
begins with one of the letters I through N, it is as­
sumed to be a binary integer. This preserves the use­
ful FORTRAN convention of using names beginning
with I through N for indexing and counting. For some
machines a different internal representation may be
used. For example, not all machines have decimal
arithmetic capability, in which case a binary internal
representation might be used.

Character and Bit Data

FORTRAN was at first concerned only with numbers.
However, it soon became clear that there were oc­
casions when it was necessary to be abie to move
alphabetic data in order to produce readable reports.
This requirement was fulfilled by the introduction of
the A format specification, which allowed alphabetic
information to be read into arithmetic variables. The
alphabetic data could then be moved using an arith­
metic statement.

PL/I has a new type of variable, the character
string. There are therefore no exceptions to the rule
that a variable within a procedure can be of only one
data type. Character strings may be of fixed or vari­
able length. They may be moved using the assign­
ment statement, which is the PL/I counterpart of the
FORTRAN arithmetic statement; they may also be
compared, and character fields may be connected,
using the concatenation operator, to form a new field.
The operations on character fields will be described
in more detail under "Expressions and Assignment
Statements."

In FORTRAN, A-type format is used to modify
format statements; PL/I achieves this by allowing the
FORMAT specifications to be variables, thus simpli­
fying the task of altering them. An I/O statement may
also have anyone of a number of format statements
associated with it. The particular one can be selected
at object time without the necessity of having multiple
I/O statements. Character data can be held in variable
character strings that can be easily manipulated. FOR­
MAT statements are described under "Input/Output."

How to Write a PL/I Program 11

Character strings must be described in a DECLARE
statement; examples of DECLARE statements for
character variables are

DECLARE ALPHA CHARACTER (20);
DECLARE TITLE CHARACTER (80) VARYING;

The attribute CHARACTER must be followed by
a specification of the length of the string (in charac­
ters), or if it is a varying-length string, by the maxi­
mum length followed by the attribute VARYING.
The length specification is enclosed in parentheses. In
Part 3, when dynamic storage assignment is discussed,
examples are given of cases where the length specifica­
tion can be a variable or even an expression.

FORTRAN IV does include the logical variable as
a data type, but this is limited to operations with a
single bit of information. PL/I deals with a wider
class of bit variables, the bit string. As its name im­
plies, the bit string is a sequence of bits; the complete
string, which may be of fixed or varying length, may
be used in expressions. The permissible operations are
explained ill Part 2, under "Evaluation of Expres­
sions." The logical variable of FORTRAN IV exists
in PL/I as a bit string of length 1; the logical con­
stants .TRUE. and .FALSE. are replaced by <1'B and
<O'B, which describe bit strings one bit long. The state­
ment:

DECLARE (B 1,B2,B3) BIT (32);

specifies three bit strings, each of 32 bits.

Constants

In FORTRAN the form in which a constant was writ­
ten specified the form in which it was to be stored.
For example, the constant 1 specified a fixed-point
number, and 1. specified a floating-point number, the
form chosen depending on the expression in which
it was used. This led to X==X + 1, a very frequent
beginner's error in FORTRAN.

In PL/I, a constant may be written in any way
allowable for any type of number. The internal repre­
sentation that will actually be used depends on the
expression in which the constant appears. The details
of this are explained in the section on expression
evaluation, but a few examples will illustrate the prin­
ciple; for example, in the expression (J + 1.) the
constant would be represented internally as fixed
point, but in X + 1 the constant would be floating
point. In each case, the context is used to determine
the scale and base.

A constant is written as one or more digits, with
an optional decimal point. It may be multiplied by a
power of 10 by following the constant vlith the letter

12

E, an optional sign, and one or two digits. To specify
floating point, the E and the exponent must appear.
The rules correspond to those for FORTRAN, except
that blanks are not al1owed. Examples of constants
are:

1
9.
.117
1.1
9.7E-2

Only when an E is present is the constant held as
floating point. In the above examples, only the last is
floating point.

An imaginary constant is a real constant followed
by the letter I. Where a complex number is required
within an expression, ii is represented by a real num­
ber foilowed by a signed imaginary number. Examples
of complex numbers appearing in expressions and
statements are:

A = C O (27.1+17.3I);
B = 11;
C = 4+71;
X = 1 1.2+ 17AE+3I;

Constants can also be used in character and bit string
expressions. A string constant is enclosed in quotation
marks. For example:

'THIS IS A CHARACTER STRING'
'SO IS 0 % + $))'

To represent a quotation mark or an apostrophe in the
string, two quotation marks must be written;
for example:

'MARY"S T JAMB'

Bit strings may contain only the digits 0 and 1, and
the letter B follows the terminating quotation mark,
for example:

'lOIOlll'B

To specify a string repeated a number of times, it may
be preceded by an integer constant in parentheses, for
example:

(8) 'I'B is equivalent to 'llllllll'B
(2) 'TOM' is equivalent to 'TOMTOM'

Initial Values

A programmer will often wish to assign initial values
to variables on entry to his program. In FORTRAN
this is done using the DATA statement. In PL/I ini­
tial values are specified in a DECLARE statement, as
one of the attributes of a variable. The statement

DECLARE A FIXED INITIAL (0),
B CHAR(lO) INITIAL ('FREQUENCY='),
(C,D,E,F,G) INITIAL (lEO);

would assign a value of zero to the fixed point variable
A, assign to variable B the character constant FRE­
QUENCY=, and set all the five elements, C through
G, to 1. The initial value attribute is followed by a list
of constants enclosed in parentheses. Repetition may
be indicated by preceding the constant by a replica­
tion factor enclosed in parentheses.

Expressions and Assignment Statements

In PL/I, as in FORTRAN, the foundation of the
language is the expression. It is the expression that
specifies the computation to be performed. And it is
partly because the rules for forming expressions are
the same as those of elementary algebra that FOR­
TRAN has achieved its popularity.

Evaluation of Expressions

In nearly all cases, a PL/I expression that is an exact
copy of a FORTRAN expression will have precisely
the same meaning algebraically. For example:

X(I) = F(I) <) XFX/(XFX+V<)(E(I)-1.»

evaluates the same expression in FORTRAN and PL/I
and assigns a value to X (I). In PL/I, an assignment
statement may have several variables on the left-hand
side, all of which would be assigned the value of the
expression.

For example:

A, B, C=X/2;

assigns the value of X/2 to each of A, B, and C.
For arithmetic expressions where all the operands

have the same attributes, as is the case with all FOR­
TRAN expressions, the rules for PL/I and FORTRAN
are almost identical. Where there are differences, they
are designed to make PL/I more consistent with nor­
mal algebraic usage.

In FORTRAN, because no two operators may ap­
pear in sequence, A <) # -3 is invalid. In PL/I the pre­
fix plus and minus signs (those that precede a single
operand or expression) are distinguished from infix
operators (those that connect two operands). For
example, in the expression:

-A+B

the minus sign is a prefix operator, and the plus sign
an infix operator.

The hierarchy of arithmetic operations in PL/I is
basically the same as in FORTRAN, with certain ex­
ceptions. In PL/I, the prefix operators, just defined,
share the highest priority with exponentiation.

In the example A # # -3, the - sign is a prefix oper­
ator of the same precedence as # #, and the operations
are, therefore, performed from right to left. The ex­
pression is treated as A # # (-3), which in normal
algebraic convention would be what was expected.
Similarly, the expression E## -X##2, in which the
minus sign is a prefix operator, would be evaluated as
E## (-(X##2)).

PL/I, however, includes many more data types than
FORTRAN, and allows much greater freedom in com­
bining types in expressions. In FORTRAN II, only
two types of variables exist, and they cannot be mixed.
In FORTRAN IV there are five data types, and some
combinations of different types are permissible (for
example, complex and real). In PL/I, any numeric or
string data can be combined in an expression. The
consequence of this freedom is that more detailed
rules are specified for the sequence in which opera­
tions are carried out, and for the order and method
of conversion from one kind of variable to another.

The rules for expression evaluation are chosen so
that conversions to higher types are not carried out un­
less necessary, and so that precision can be maintained
in the result.

Each operation is considered to be associated with
one or two operands. Each operand may either be a
single variable, or a subexpression that has previously
been evaluated. An arithmetic operator will usually
be associated with two arithmetic operands.

Each operand will be either decimal or binary, Boat­
ing or fixed, and complex or real, and will have. a pre­
cision associated with it.

From the point of view of the possibility of conver­
sion to a higher type, each arithmetic operation may
be considered as producing a single, resultant oper­
and. This resultant operand may in turn become one
of the two associated with another operator in a sub­
sequent operation. Thus the evaluation of an expres­
sion can be broken down into a number of basic opera­
tions, each consisting of:

RESUL T = operand 1, operator, operand 2

If either operand is a constant, there will normally be
no conversion at object time. The constant will have
been converted at compilation to correspond to the
base of the variable. If the constant's scale is explicitly
floating -- that is, if the constant is written with an
exponent Exx where xx is a numeric exponent -- the
variable will be converted to Boating point.

How to Write a PL/I Program 13

If the operands are both constants or both variables
and have different characteristics, either operand may
be converted. If either is Hoating point, the fixed-point
operand will be converted to floating point. If either
is binary, the decimal operand will be converted to
binary. If either is complex, the result is complex, but
ihe real operand is noi converted.

In all cases, the precision and significance of inter-
mediate results is maintained.

These rules must be exhaustive for the operations
to be fully defined. The main concern for the pro­
grammer is that expressions are evaluated as he ex­
pects them to be, that he is not restricted by arbitrary
conventions, but at the same time that he should not
lose efficiency by unnecessary conversions of data.

To illustrate the rules, let us consider the steps in
the folloWing example:

DECLARE C COMPLEX;
A = XU 2 - 2~X~Y + Z/(J+1) + C;

@ XU 2 No conversion - operation is
actually X~X - result is floating

tn\ 2~X 0 is
~ __ •• _ _..1 .. - Ll __ .. :_~ _ ..

~ ""' U.l..1V{;l'-t:::U. LV llVelU.l11;; elL

compile time - no object time
conversion

® (2~X) ~Y No conversion
@ J+1 No conversion - integer result
® Z/(J + 1) Intermediate integer result (J

+ 1) converted to floating -
result floating

® (XU 2) - (2~X~Y) No conversion
® (XU 2 - 2~Xoy) +

(Z/(J + 1» No conversion
® (XU 2 _ 2°Xoy

+ZI(J+l»)+C Nu cunversiun - result cumplex

From the programmer's point of view the expression
is evaluated as he would expect it to be, and conver­
sion is performed only when needed.

Logical and Bit String
Expressions

In FORTRAN II, the arithmetic expression was the
only type of expression; FORTRAN IV introduced the
logical expression. In PL/I logical expressions and
logical variables exist as a subset of bit string expres­
sions.

PL/I has the same set of relational operators as
FORTRAN IV, although the expanded character set
allows a more mathematical notation

. CT. becomes>

.L T. becomes <

. EQ. becomes =

.CE. becomes >=

.LE. becomes <=

.NE. becomes ,=

The result of a relational operation is always a bit
string of length 1. These operators have a lower prior-

14

ity than arithmetic operators; therefore comparisons
are carried out after the arithmetic operations have
been performed, as in FORTRAN.

Relational operators may be used to compare oper­
ands with any characteristics, and even with different
characteristics. If both operands are arithmetic, the
conversion rules for operands are ihe same as for the
arithmetic operators + and -. If both operands are
character or bit strings, the comparison is carried out
from left to right, character by character, or bit by hit.
If the strings are of unequal length, the shorter is
padded on the right with blanks (in the case of char­
acter strings) or with zeros (in the case of bit strings).

Three FORTRAN operators and their PL/I equiv­
alents are shown below:

FORTRAN

.AND.

.OR.

.NOT.

PL/I

&

I -,

These operators require bit string operands. If other
data types are used, conversion to bit string will be
performed. The operations are performed bit by bit
from the left; if the strings are of unequal length, the
shorter is padded on the right with zeros.

Charader and Bit String Operations

Two strings may be combined into one by the operator
I! (concatenation). This operation may be performed
~nly on bit or character strings. If both operands are
bit strings, no conversion is performed and the result
is a bit string. In all other cases, the operands are
converted, where necessary, to character strings. The
concatenation operator is used in expressions such
as:

'ITERATION NO ' liN

which, if the value of N were 153, for example, would
produce the character string ITERATION NO 153.
Another typical usage would be:

where all three variables are character strings .
In addition to the concatenation operator a number

of functions are provided to assist in processing strings .
Among them are SUBSTR, which extracts a part of a
string, and INDEX, which will locate the position of
a character, or substring, within a string. These func­
tions are described in "Appendix 1: Built-In Func­
tions.~'

Hierarchy of Operations

The hierarchy of operations in PLjI is:

" (10 (10, prefix -i-, prefix -,
(10, /

infix +, infix -
>=,>,'=,=,<,<=,'>,'<
II (concatenation)
& (and)
I (or)

highest

I
lowest

Operations of equal priority are perfonned sequen­
tially from left to right through an expression except
in the case of the four operators of highest priority
(~~"', prefix +, prefix -, and ,), which are dealt with
from right to left.

Data Aggregates

Types of Aggregates

The concept of an array as a collection of variables all
with the same attributes is well known to FORTRAN
users. This concept is extended in PLjI to include
larger and more varied arrays and to operate on them
as units.

In addition, there is a second type of aggregate in
PLjI known as a structure. This is a collection of vari­
ables each of which has its own name and may have
widely different attributes. More will be said about
structures in Part 3.

Subscripts and Declaration

As with FORTRAN, an individual element within an
array is identified by attaching subscripts to the name
of the array. Unlike FORTRAN, subscripts may be an
expression and may, in fact, include subscripted ex­
pressions. This eliminates another of the more frequent
sources of error, particularly for beginners, in FOR­
TRAN. In PLjI, A(3+J) is as valid as A(J+3).

In PLjI, both the upper and lower limits of a sub­
script can be specified, in contrast to FORTRAN,
where the lower limit is always 1. This sometimes
simplifies the use of subscripts; for example, an algo­
rithm may more naturally require zero as a starting
point. To specify both limits, the DECLARE state­
ment uses either one or a pair of numbers to define
the range of a subscript. Examples of DECLARE
statements that define arrays are:

DECLARE A(lO,lO), AX(0:99,-2:7);
DECLARE CA (M:X+l, N:X+l,J,K);

Where the dimensions alone (as opposed to the
actual numeric limits) of an array are specified, they
are separated by a comma. Thus, A is an array 10
x 10.

Where the numeric limits are specified, the limits
of each dimension are separated by a colon, and the
dimensions themselves by a comma. Thus AX is an
array 100 x 10, whose first element is identified as
AX (0, - 2) and whose last element is AX (99,7) .

The DECLARE statement for CA specifies a four­
dimensional array with subsequent limits as follows:

Mto(X+1)
N to (X + 1)
1 to J
1 to K

These dimensions will be calculated at object time
(the rules for doing so are discussed under the head­
ing "Variable Dimensions" in Part 3). Note that since
the expression (X + 1) is used here as a subscript,
if X is floating point the result of (X + 1) will be
converted to an integer.

Array Expressions

One of the most successful features of FORTRAN is
its ability to specify arrays of variables. FORTRAN,
however, does not permit operations on an array as
a whole, but only on elements of an array. Part of the
power of the DO loop lies in its ability to vary the
subscripts of an array name, thereby permitting oper­
ations to be performed, in tum, on each element in
the array.

PLjI uses arrays similarly to the way in which they
are used in FORTRAN but, in addition, allows whole
arrays to be used as variables within an expression.
For example, if A and B are arrays, then A == B will
move each element of B into the corresponding posi­
tion in A.

The interpretation of an array name appearing in
a statement is that the statement is to be perfonned
repetitively, using each element of the array in tum.
A restriction on the use of two or more arrays in an
expression or assignment statement is that the arrays
must have identical dimensions and identical upper
and lower bounds. If an array appears on the right
of the equal sign, there must also be an array on the
left. Some examples of array statements follow.
Given the declare statement:

DECLARE A(lO,lO), B(l0,10), C(lO,lO),
D(l2, 6), E(l2, 6), F(l2, 6),
C(l2, 12);

the PLjI statement:

A = B+C;

is equivalent to the FORTRAN loop

DOl 1=1,10
DOl J=1,10

1 A(I,J)=B(I,J)+C(I,J)

How to Write a PL/I Program 15

The statements:

D= .5\'1oEoF +X;
G=O;

are equivalent to the FORTRAN statements:

D(I,J)= .5°E(I,J)\'IoF(I,J)+X
G(I,J) =0

enclosed in DO loops similar to those in the first
example.

Note that scalars may be used in array expressions,
and also that multiplication of arrays does not cor­
respond to matrix multiplication.

Asterisk Subscripts

Besides allowing a whole array to be used in an ex­
pression, PL/I permits the programmer to specify a
part of an array -- for example, a row or a column,
or, in a three-dimensional array, a plane. The notation
used is that if ~ appears as a subscript, the expression
is to be evaluated for all values of the subscript. One
example of the use of ~ is in adding one row of a
matrix to another. The PL/I statement:

A(I,O) =A(I,"')+A(J,·);

would add the Jth ro\v of a matrix to the Ith. In
FORTRAN, this would require the loop

DO 1 K = I,N
lA(1,K) =A(I,K)+A(J,K)

Any number of subscript positions may be asterisks.
For example, given A(O:3,O:2), then A(1,~) is A(1,0),
A (1,1), A (1,2). A (~, ~) represents the entire array
and is therefore equivalent to A.

Control Statements

PL/I uses the three principal control statements of
FORTRAN: DO, IF, and GO TO. These statements
have been altered to remove some of the restrictions
of FORTRAN and to improve their power and clarity.

GO TO Statement

Since, in PL/I, the statement number has been re­
placed by a symbolic label, the GO TO n of FOR­
TRAN becomes GO TO label -- for example:

GO TO INVERT;

To produce the effects of the computed and as­
signed GO TO in a consistent way, a new type of
variable exists in PL/I: the label variable. This vari-

16

able, which may be in an array, has a label as its
value -- for example:

M = INVERT;

GO TOM;

The statement GO TO M has the same effect as GO
7"1\ Tl\.HTDDrro ~_....l ~~_ L~ __ ~~....l :_ TIT IT _:_:1 __ 1. • .L~

.L '-J .1.1" \' D.Ll.L, dllU Ldll UC; U;)C;U 111 .I. L/ ~ ~llllUdll Y lU

the way in which the assigned GO TO is used in
FORTRAN.

If the label variable is subscripted, the destination
of the GO TO may be controlled by the subscript.
Consider the following:

DECLARE SWITCH (4) LABEL;
SWITCH (3) = HERE;
GO TO SWITCH (3);

GO TO S\VITCH (3) is equivalent to GO TO HERE.
The use of a subscripted label variable in the GO TO
replaces the computed GO TO of FORTRAN.

To facilitate the use of subscripted label variables
for switching, a statement label may be a label vari­
able with a constant subscript. Thus a program might
be:

L(3) : X= ___ ;
y= ---;

L (2) : IF ___ ;
Z= ___ ;

L(I) : A= ___ ;
CALL P(X,J);
GO TO L(J);

If the value of J is 2 after the return from the CALL,
the branch is to the IF statement at L(2).

IF Statements

PL/I has one basic form of the IF statement which is
more general than the logical IF of FORTRAN IV,
and more readable and less error-prone than the
arithmetic IF of FORTRAN II. The components of
the IF statement are:

IF expression THEN group ELSE group

The IF can test any scalar expression. The expression
is evaluated and converted to a bit string. If any bit in
the result is 1, the THEN group is executed; if all bits
are zero, the ELSE group is executed.

The groups following THEN and ELSE can be
either single statements or a number of statements
bracketed together using the statements DO; and
END;. The word DO by itself can be considered to
specify a DO loop with only one iteration. The word
END is used to terminate groups of statements; it is
not the same as the END statement in FORTRAN,
which indicates the end of a compilation.

An example of a simple IF statement is:

IF X<IE-4 THEN Y=2°X+l;
ELSE Y=AoXH 2+X+SIN(X) + 1;

which corresponds to the FORTRAN II statements:

IF (X--1.E-4) 1,2,2
2 Y=AoXH 2+X+SINF(X) + 1.

GOT03
1 Y=2.oX+1.
3 ----

or to the FORTRAN IV statements:

IF (X.LT.1.E-4) GO TO 1
Y=AoXH 2+X+SIN(X) + 1.
GOT02

1 Y=2.oX+1.
2 ----

Points to note in writing IF statements in PL/I
are: Because the word IF is followed by an expres­
sion, not a statement, the word THEN is not preceded
by a semicolon. The statements following THEN and
ELSE would each be terminated by a semicolon, as
usual. There is no semicolon associated with the IF
statement as a whole.

The ELSE path of the IF statement may be omitted.
For example:

IF ABS (X(I,J» <DELTA THEN X(I,J) = 0;
X(I,J) = X(I,J) + D;

would set an element of an array to zero if its magni­
tude were below a limiting value DELTA; otherwise,
the computation would skip the statement following
the word THEN. The program would continue with
the statement:

X(I,J) =X(I,J)+D;

An example of a part of a program to find the roots
of the equation ax2 + bx + c == 0, shows some more
examples of the use of the IF statement:

/oFIND ROOTS OF EQUATION A °XH 2+BoX+C = 0
0/
DECLARE (Rl,R2,F)COMPLEX;
IF A = 0 THEN LINEAR: Rl,R2 = -C/B;
ELSE QUAD:DO;D = BH2 - 4°AoC;
E = -B/(2°A);

IF D = 0 THEN Rl,R2 = E;
ELSE IF D>O THEN REAL:DO;

END QUAD;

NOTES:

F = SQRT(D)/(2°A);
Rl = E+F; R2 = E-F; END;

ELSE IMAG:DO;
F = SQRT (-D)/(2°A) °11;
Rl = E+F; R2 = E-F;

1. More than one name may appear on the left-hand
side of an assignment. in which case the names are
separated by commas - for example, R1, R2==E.

2. The entire quadratic case is enclosed in the state­
ments:

QUAD: DO; ... ; END QUAD;

This forms the ELSE group for the first IF statement.
3. The second IF statement contains another IF

statement as its ELSE path. Although this statement
contains groups bracketed by DO; and END;, the
statement itself does not require an enclosing DO­
END, since it counts as a single statement, known as
a compound statement.

4. The statement labels LINEAR, REAL, and
IMAG are not required but are used to illustrate the
fact that the statements following THEN and ELSE
may be labeled. They also show how labels can be
used as commentary.

5. The END QUAD; statement terminates the
groups QUAD and IMAG. An end statement, followed
by a label, terminates all the groups nested within
the labeled group.

6. The free format is used to emphasize the struc­
ture of the program.

7. Comments are enclosed in 10
----- 0/.

B. As in FORTRAN, the rules for expression evalu­
ation result in the expression for the imaginary F be­
ing interpreted as:

where II is the imaginary constant i. The result F is
complex.

9. Though REAL and IMAG are keywords in the
language, and have a special meaning, they can also
be used by the programmer as labels. The general
principle is that the programmer is not hurt by what
he does not know.

10. The constants in the floating-point expressions
do not need a decimal point.

DO Statements

One use of the word DO, in the IF statement, has
already been illustrated. The following example shows
some of the differences between the PLII and the
FORTRAN DO statements:

MPY: DO I = 1 TO L; DO J = 1 TO N;
C(I,J) = SUM (A(I,O)OB(°,J»;

END MPY;

is equivalent to the FORTRAN statements

DO 1 I = I,L
DO 1 J = I,N
C(I,J) = O.
DO 1 K = I,M

1 C(I,J) = A(I,K) ° B(K,J) + C(I,J)

How to Write a PL/I Program 17

NOTES:

1. In PL/I, the statement END MPY; ends both of
the two loops,

~ ('1TTTt.. !_ ~ £ •• _~~!~_ ~1..._L __ L _____ L1... _ _____ £ _11
"". LJUIV.l .l~ Cl. lUU\,;UVU 111al lClUlU;:) lUC ::lULU Vl aU

the elements of an array. Its argument is the array
expression A(I,I))I)B(~\J), whose result is a vector.

3. The first comma in the FORTRAN DO state­
ment is replaced by TO in PL/I.

4. As in FORTRAN, if the increment is not speci­
fied, it is assumed to be 1. As in FORTRAN, an incre­
ment other than 1 may be specified, in which case the
second comma in the FORTRAN DO is replaced by
the word BY.

DO 99 I = J,K,L

becomes

DO I = J TO K BY L;

In PL/I the initial value, limiting value, and incre­
ment may be expressions. Hence, the following DO
statements are valid in PL/i:

DO I = N TO 1 BY -1;
DO X = 0 TO 10.1 BY 0.2;
DO P = Q(I,J)+l TO Xoo2 BY DELTA;

A further extension is that there may be more than
one specification in the statement, and a specification
may be a single value. For example:

DO X = 0 TO 4,95 BY .1;

5 TO 10.1 BY .2,

10.5 TO 20.1 BY .5, 50;

Y = SOMEF(X);

PUT LIST (Y,X);

END;

would evaluate the function SOMEF for values of X
from 0 to 20, with a varying interval. The first speci­
fication controls X from 0 to 4.9; when X exceeds 4.95,
the second iteration specification controls X from 5 to
10, in steps of .2, and the third from 10.5 to 20 in steps
of .5. The final specification causes a single iteration
with X==50.

The ON Statement and the Prefix

In FORTRAN, special IF statements are used to test
for such conditions as overflow and divide check.
However, many modern machines signal exceptional
conditions such as these by means of an interrupt. In
PL/I, the concept of an interrupt is extended beyond

18

those conditions detected by the hardware of a par­
ticular machine, and includes checking for such condi­
tions as subscript out of range, or checking the execu-
~!~_ ~£ ____ ~!~ •• 1 __ ~~_~~_~_~
llVU Vl a pal l1\,;UICl.l ~lCl.lCJ.11C;1H..

Interrupt handling in PL/I may be thought of as
follows:

1. A special condition arises. This condition may be
a machine condition, such as end of file or overflow;
a condition recognized in a subroutine, such as a data
conversion error; or a condition requiring that a speciai
code be created so that the condition can be detected,
such as a subscript exceeding its declared bounds.

2. If the condition has been enabled, an interrupt
occurs; if the condition is disabled, no action is taken.
Some conditions are always enabled (for example,
ENDFILE); others may be enabled or disabled by
n Ct n o~oa~'V' a. \3\.0. ... "".1..1..1.'-'.1..1. ... j:I.I.\..ILLA.

A prefix may enable a condition within a statement,
a procedure, or a begin block. The prefix consists of a
condition name, or a list of condition names enclosed
in parentheses and separated from the remainder of
the statement by a colon. The prefix precedes the re­
mainder of the statement, including the label (if any).
If the prefix is attached to a BEGIN or PROCEDURE
statement, the condition is enabled throughout the
block headed by the statement. For all other state­
ments, the condition is enabled only for the single pre­
fixed statement.

The prefix may also disable a condition. In this
case the condition name is preceded by the word NO.

A prefix applies only to the statement or block to
which it is attached, and not to other procedures
which are called or which appear as function refer­
ences within the statement or block.

Examples of enabling and disabling are given in the
following procedure:

(CHECK(L» : ATTENUATE: PROCEDURE
(T,D,M);
(SUBSCRIPTRANGE) :C1 = ALPHA(Moo2+1);
(NOOVERFLOW) :C2 = AOO (Cl+T);
IF C2 > MAX THEN L: Y=O;

ELSE Y = D/C2;
RETURN (Y);
END;

In this example the prefix CHECK (L) specifies
that an interrupt is to occur whenever the statement
labeled L is executed. This prefix applies to the whole
of the procedure. The prefix SUBSCRIPTRANGE
specifies that the subscript (M I) 02+ 1) is to be
checked to ensure that it lies within the bounds de­
clared for ALPHA. The overflow condition is enabled
by default throughout the procedure, except for the
assignment statement C2== ... , where it is disabled by
the prefix NOOVERFLOW.

A full list of conditions and default enabling or dis­
abling is given in Appendix 2.

3. The ON statement specifies the action to be
taken when the interrupt occurs; if no ON statement
has been executed, a standard system action is as­
sumed. The ON statement has the following form:

ON condition-name SNAP on-unit.

The word SNAP may be omitted. If used, it specifies
that when the interrupt occurs, debugging informa­
tion relevant to the status of the program at the time
of the interrupt is listed on a debugging file.

The on-unit may be a statement or a BEGIN block.
The only way in which control can pass to the unit
is through an interrupt. When execution of the unit
is complete, control returns to the machine instruc­
tion following the one that caused the interrupt.

When an ON statement is executed, it remains in
force until the completion of the block in which it
appears; it also remains in force during the execution
of procedures or blccks entered from that block. An
ON statement in a subsequent block can temporarily
override an ON given in a previous block: on the
completion of the later block, the previous ON will be
restored.

The effect of an ON statement can also be canceled
by a REVERT statement, which must be in the same
block as the ON.

The prefix option may be thought of as an instruc­
tion to the compiler to initiate checking. The scope of
the prefix option depends on the order in which state­
ments are written and compiled - that is, on the static
structure of the program. ON statements, on the other
hand, may be thought of as inserting branch instruc­
tions in a trap location. The actual branch taken de­
pends on the last insertion, and therefore depends on
the sequence in which statements are executed - that
is, on the dynamic How of the program. Examples of
ON statements are:

ON ENDFILE (INFILE) CALL LAST_CARD;
ON OVERFLOW BEGIN;
OCOUNT = OCOUNT + 1;
IF OCOUNT> 100 THEN STOP;
ELSE PUT LIST ('OVERFLOW NUMBER', OCOUNT);
END;

Besides providing a convenient and efficient way of
dealing with special conditions, an interrupt can be
used as a powerful tool for program checking. Among
the conditions that may be enabled by means of a
prefix is:

CHECK (identifier list)

The list of names may include variable names (which
must not be subscripted, but may include names of
arrays and structures), statement labels, and procedure
names. An internlpt will then occur when the value
of a variable is altered, or before the labeled state­
ment or procedure is executed. The system action
when the interrupt occurs is to write the identifier
name, and its value, on a debugging file. The system
action may of course be overridden by an ON state­
ment. For example, the prefix:

(CHECK (L1, LOOP, BEGIN, HI, LO)):
PROCESS: PROCEDURE (X,Y);

would cause the specified label names in the proce­
dure PROCESS to be written out before the state­
ments to which they refer were executed.

(CHECK (Y»: BEGIN Y = A (I,pftQ-R) ftZftftA;

would cause the value of Y to be written as for data­
directed output.

PAUSE and STOP

The PAUSE statement in FORTRAN provides a prim­
itive way of communicating with the operator. It is
replaced in PL/I by the DISPLAY statement, which
causes a message to be displayed to the operator. An
example of a DISPLAY statement is:

DISPLAY ('END OF PHASE'IIN);

which, if N had the value 2, would cause the message
END OF PHASE 2 to be displayed at the console.

The parentheses following the word DISPLAY may
contain any expression that is evaluated and converted
to a character string when the statement is executed.

If the message must be acknowledged by the oper­
ator, a statement such as the following would be used:

DISPLAY ('KO CONVERGENCE AFTER'
IINII'ITERATIONS;
TYPE "GO" TO CONTINUE, "STOP" TO
ABANDON') REPLY (ANS);

Here ANS is a character variable. The program will be
suspended until a reply has been typed. The reply will
be entered into the variable ANS, and so can be tested
by the program.

The STOP statement, in PL/I as in FORTRAN,
terminates the execution of the program. The state­
ment CALL EXIT, which is used in some FORTRAN
systems, is replaced by EXIT in PL/I, and is used to
termina te a task.

There are no tasks for sense lights or sense switches
in PL/I, nor do functions such as SLITET exist.

How to Write a PL/I Program 19

Subprograms
The subroutine facilities in FORTRAN II were very
largely responsible for its acceptance as a language
for production programming. PLjI uses much of the
basic philosophy of the FORTRAN function and sub­
routine, but has greatly increased the facilities pro­
vided. In FORTRAN~ four types of subprogram exist:

1. The built-in function
2. The arithmetic statement function
3. The function subprogram
4. The subroutine subprogram
PL/I provides similar but extended facilities. The

number of built-in functions has been increased; a
list is given in Appendix 1. There is a much larger
list of mathematical subr<1utines, and there are also
subroutines for handling the new data types such as
arrays, character strings, and bit strings.

An important extension to the concept of the FOR­
TRAN built-in function is the generic function. Each
generic function name refers to a group of subrou­
tines, the actual subroutine chosen depending on the
('h~r~('h:'rlo;:ti('o;: of thp ~r(J"l1Tnpnt For pY~Tnnlp thp ----- ----- -- ---- -- ---- --0--------· - -- -------.1:'--, ~-'-

single name MAX replaces AMAXO, AMAXI, MAXO,
MAXI, and DMAXI; the single name SIN replaces
SIN, DSIN, and CSIN.

The Procedure Statement

The form of the PROCEDURE statement differs from
that of its FORTRAN equivalents. The PL/I format is
chosen to be consistent with the rest of the language.
The statement:

FUNCTION SOMEF(X,Y)

becomes:

SOMEF: PROCEDURE (X,Y);

The name of the procedure appears as a label.

SUBROUTINE RANDOM

becomes:

RANDOM: PROCEDURE;

The dummy arguments (which in PL/I are known
as parameters) follow the word PROCEDURE. The
list of parameters is enclosed in parentheses; items
in the list are separated by commas. The last state­
ment of a procedure is END; control is returned to
the calling procedure by a RETURN or an END
statement. The only difference between a subroutine
and a function subprogram in PL/I is that the word
RETURN in a function subprogram is followed by an

20

expression enclosed in parentheses. The value of the
expression is the value returned by the function.

An example of a procedure, used as a function is:

AGMEAN: PROCEDURE (X,Y);

AGAIN: T = (X + Y)/2;

Y = SQRT(Xoy);

X=T;

IF (X-Y) > .001 THEN GO TO AGAIN;
ELSE RETURN (X);

END;

This function would be used in a statement such as:

A = AGMEAN(B,C);

The parameters used in a PROCEDURE statement
may refer to variables (including label variables),
arrays, files, or the names of other procedures. Pa­
rameters must not be subscripted, although the argu­
ments in a CALL statement, or a function reference,
may be. The mechanism of relating arguments to
parameters in PL/I may be thought of as substituting
the addresses of arguments for the addresses of pa­
rameters. These addresses will be evaluated at the
time the procedure is called. Thus, in the example
above, the arguments Band C will be replaced by
their arithmetic geometric mean. Another consequence
of this mechanism is that if an argument is subscripted,
the subscript is evaluated when the CALL is initiated;
any change in the value of the subscripts within the
procedure will not alter the address. If an argument
is an expression, the expression will be evaluated and
the parameter will be replaced by the address of a
dummy containing the value of the result.

Internal Procedures

In FORTRAN, the most elementary form of program­
mer defined subprogram is the arithmetic statement
function. It has the advantages of not requiring a
separate compilation, and of being able to refer to
variables used in the caning program without using
the devices of argument lists or COMMON. However,
since the arithmetic statement function is limited to a
single statement, it is seldom used.

PL/I allows the full flexibility of the subprogram­
defining facility to be used either for separately com­
piled procedures or for procedures contained in, and
compiled with, other procedures. The rules for nest­
ing procedures are similar to those for DO groups:
the nesting must not overlap. When a procedure is
nested within another procedure, it can make use of

variables declared in the outer procedure. This elimi­
nates the need for the equivalent of DIMENSION
and COMMON statements at the beginning of every
procedure.

Although procedures may be nested in this way,
control must always pass to the procedure by a CALL
statement or a function reference and will normally
leave by a RETURN statement. GO TO statements
may transfer control out of a procedure; the effect of
the GO TO is as if a RETURN were executed and
followed by a GO TO. A GO TO from a procedure
called as a function will not return a value, and the
evaluation of the expression containing the function
reference will be terminated.

This provides a convenient means of specifying an
error return within a subroutine. The GO TO may
transfer to a label variable passed as a parameter, so
that the error return can be specified in the CALL
statement.

Separately Compiled Procedures

PL/I retains the facility, which has proved so valu­
able in FORTRAN, for communicating between sepa­
rately compiled procedures.

Separately compiled procedures in PL/I are known
as external procedures. Each external procedure has a
PROCEDURE statement as its first statement and an
END statement as its last statement. Other procedures
may be nested within it.

External procedures may communicate through an
argument list, in the same way as internal procedures.
They may also communicate through names declared
to have the EXTERNAL attribute, which corresponds
in function to the COMMON statement in FORTRAN.
Names declared external in two or more procedures
are assigned the same storage and can be used by all
the procedures in which they are declared. Procedure
names and labels may be passed as parameters. This
gives the same facility for specifying an error return
as is available with internal procedures.

Multiple Entries to Procedures

Very often a programmer may want to write a sub­
program with more than one entry point. Examples of
this are routines that may have a considerable amount
of code in common, such as sine and cosine, or subpro­
grams that require an initializing entry and a normal
entry. To allow for this PL/I provides the ENTRY
statement, which specifies an alternate entry point to
a procedure. This entry point may have a different

list of parameters from that of the main entry. There
may be more than one ENTRY statement in a pro­
cedure.

Consider, for example, a random number generator.
It might require one entry point to set a starting num­
ber and multiplier, and another entry point for ob­
taining a random number - for example:

SETRND: PROCEDURE (I, J);
DECLARE (MIER, MICAND) STATIC;
MIER = I; MICAND = J;
RETURN;

GETRND: ENTRY;
MICAND = MIER * MICAND;
RETURN (MICAND);
END;

This subprogram has an initializing entry and a nor­
mal entry; it would be invoked by statements such as:

CALL SETRND (M, N);

x = GETRND;

In one case it is used as a function; in the other as a
subroutine.

Input/Output
The input statements in FORTRAN were a compro­
mise between ease of learning and flexibility of input!
output format control. This compromise satisfied a
very large proportion of potential users, but a num­
ber of open-shop users complained of the complica­
tion of the FORMAT statement, and an equally large
number of more experienced users found that FOR­
MA T did not provide the facilities they needed.

PL/I deals with this problem by providing several
types of I/O facilities. These vary in level of complex­
ity, and in the degree of control that the programmer
has over the external format of the data records. The
capabilities are grouped into two main categories, rep­
resenting two basically different approaches to I/O.

In Stream-Oriented I/O, the data is considered as a
continuous sequence of characters, which are sepa­
rated into data fields. Logical and physical record
boundaries are ignored. The external representation of
the data need not be related to the internal form, and
conversions are performed as needed, when each data
field is transferred. At the simpler levels, the format
need not be specified, and for input, the data names
themselves can be obtained from the data stream. At
the highest level, external format can be specified to
an even greater degree than in FORTRAN.

In Record-Oriented I/O, a logical record is trans­
mitted as an entity, there is no scanning of the record

How to Write a PL/I Program 21

for data fields. The external form is identical with the
internal; no conversions are performed. Skipping of
records or positioning at a specific record on a direct
access device can be accomplished.

Stream 1/0

The PL/I statements to transmit data fields in Stream
I/O are GET and PUT. There are three modes of
transmission which can be specified:

1. Data-directed - Self-identifying data, no format control
similar to NAMELIST in FORTRAN

2. List-Directed - Data list in I/O statement, no format
control

3. Edit-directed - Data and format list in I/O statement;
similar to READ/WRITE with format in FORTRAN.

Data-Directed Input I Output

Data used with data-directed input/output statements
appears in a form very similar to a series of assignment
statements. For example, an input card might contain:

A = 17.7, B = 13.2, C = 9.1;

The statement to read this could be:

GET DATA;

This statement would assume that the data is on the
system input file, since no file is specified. The names
appearing on the input medium must have been used
in the procedure containing the GET, if this form is
used. This is needed in order to make the name known
to the compiler, so that a data type and storage loca­
tion can be noted for use at object time.

The same effect is achieved by writing the state­
ment:

GET DATA (A,B,C);

This differs from a FORTRAN list in that there need
be no correspondence between the order of the input
data and the order of the list.
Thus, the statement could also have been written:

GET DATA (B,C,A);

Neither is it necessary that all variables on the list
appear on the input medium. A GET statement will
process the assignment indications which are separated
by commas until one, terminated by semicolon, ap­
pears. That ends the GET statement, and any variable
names in the list which were not encountered, will
leave the data value unchanged.

On output, the PUT statement must contain a list,
and the output produced will be a series of assign­
ment statements appearing in the order specified by

22

the list. The statements will be in a form that could
be read using a data-directed GET statement with the
same list. For example, a program using the procedure
AGlvIEAN, which was used as an example in "The
Procedure Statement", could be:

ON ENDFILE (SYSIN) STOP;
IN: GET DATA (." .. ,S);
X = AGMEAN (A,B);
PUT DATA (A,B,X);
CO TO IN;

The input data for this could be:

A = 1, B = 2; B = 3; B = 4;

Each GET statement would read up to a semicolon,
so this program would find the arithmetic mean for
the three cases:

A = 1,B = 2; A = 1,B = 3; A = 1,B = 4;

and then end the program when an end-of-file is
reached. The results would be written on the standard
output file as a series of assignment statements.
The output format of numbers in data-directed output
is similar to the G format of some systems (for exam­
ple, 1620 FORTRAN without FORMAT). The num­
ber of digits output is equal to the precision of the
internal data. The decimal point is adjusted within
the field to give the correct numeric value without an
exponent, if possible. Otherwise, an E with two digits
and a sign is attached to give a valid floating-point
constant.

On input, any valid constant is allowed to the right
of the equal sign. If the variables on the left-hand side
are arrays, the names may have constant subscripts.
For example, in a program with the declaration:

DECLARE A (l2,12),B(6,6),C(6,6);

the statement:

GET DATA;

would be very convenient way of reading either a
few alterations to matrices already in core, or even
whoie matrices if most elements are zero.

Data-directed output is a very simple way of pro­
ducing a few results with annotation. It is also a very
straightforward way of producing legible debugging
output for testing flow or arithmetic.

List-Directed Input I Output

With list-directed input and output, the programmer
specifies the sequence and the names of the data
items to be read from or written onto the external file.
He does not, however, have to specify the format, nor

is the input format rigidly controlled. Data appears on
the file as a sequence of constants, separated by one
or more blanks or a comma. As with constants in the
source program, imbedded blanks are not allowed.
Contrary to data-directed I/O, the number of data
fields processed is exactly the same as the number of
scalar items in the list. If array or structure names ap­
pear in the list, they are considered as merely a short­
hand for all of their components, and thus the number
of data fields must equal the total of all the parts of
the aggregates.

List-directed input provides a convenient method
of specifying free-form input for long lists of data
such as matrices. It is also a convenient input speci­
fication for input media such as paper tape or remote
terminals, which do not use card columns for position­
ing input data. A list-directed input statement has the
form:

GET LIST (data list);

The word LIST specifies that the I/O is list-directed;
it is immediately followed by the data list which is
enclosed in parenthesiS. Examples of list-directed
statements are:

GET LIST (I, J, A(I,J);
PUT LIST ('VALUE OF X IS',X);
GET LIST (LMATRIX);

NOTES:

1. As in FORTRAN, data read in may be used in
subscripts later in the list.

2. Unlike FORTRAN, character data appears in the
list as a character literal and not in a FORMAT
statement.

3. Array names may appear in lists, as in FOR­
TRAN.

File Names

In FORTRAN, the usual input/output medium is
magnetic tape. The programmer specifies logical unit
numbers in his READ and WRITE statements and
gives instructions to the operator for mounting and
dismounting tapes.

In PL/I the programmer addresses files, not units;
the location of these files is left to the operating sys­
tem or may be specified by means of control cards.
The name of the file is specified in an input! output
statement by the option:

FILE (file name)

If no name is specified, the standard input (SYSIN)
and output (SYSPRINT) files are assumed, as shown

in all the preceding examples. Typical statements re­
ferring to other files are:

GET LIST (A, B, K) FILE (IN-DATA);
PUT FILE (PRINT) DATA (ITERATION, DELTAX, X);
The options may appear in any order.

Data Lists

The data lists used in edit-directed and list-directed
input control statements have a function very similar
to that of the list in a FORTRAN input/output state­
ment.

For input, a list consists of a list of variable names,
separated by commas. As in FORTRAN, an array
name may be used in a list. In PL/I, arrays are trans­
mitted in row-major order - that is, with the right­
most subscript varying most rapidly. This does not
correspond with most FORTRAN implementations.
Each complex variable corresponds to two numbers
on the external medium.

As in FORTRAN, lists may contain indexing loops.
PL/I allows the full power of its DO specification in
input! output lists, and looping within a list may be
nested. An example of an indexed list is:

GET LIST (ID, N,((A(lJ) DO J = 0 TO I-I,
1+1 TO N) DO I = 0 TO N));

This statement would read in the two scalar items, ID
and N, and then all except the diagonal elements of
the matrix, A.

For list-directed and data-directed output, the list
may contain expressions as well as single variable
names. The expression is evaluated when the PUT
statement is executed, and the result is the data that
is output. A program could conceivably consist of only
one executable statement, for example:

PUT LIST ('SQUARE ROOTS OF FIRST 100
INTEGERS', (X,SQRT (X) DO X = 1 TO 100»;

Edit-Directed Input/Output

The edit-directed input/output statements in PL/I
come closest to FORTRAN input/output. The main
difference between a PL/I and FORTRAN format
specification is that in PL/I the format type refers only
to the appearance of the data on the external medium,
whereas in FORTRAN a format type specifies con­
version between one internal form and one external
form. For example, F conversion in FORTRAN speci­
fies conversion between internal floating point and ex­
ternal fixed point, with a printed decimal point. In
PL/I, F format may be used with any internal data;
externally the data appears in the same form as the
FORTRAN F format output in FORTRAN.

How to Write a PL/I Program 23

A second but less fundamental difference is that in
PL/I the format specifications may be either within
the GET or PUT statement, or in a separate FORMAT
statement. Examples of edit-directed input/output
statements are:

GET EDiT (1,], A(I,J))(2 F(2), F(lO,4));
PUT EDIT (A, (X (I) DO I = 1 TO 5» (R (FMT1));
FMTl: FOP-MAT (SKIP (2), F(ll, 3), X(lO),
5 E (14,7»;

The format specification is enclosed in parentheses
and immediately follows the data specification. It may
be either a list of format elements, similar to FOR­
TRAN format elements, or it may be the label of a
FORMA T statement elsewhere in the program, en­
closed in parentheses and preceded by the ietter R
(for remote). Each element consists of a letter speci­
fying the type of data on the external medium, fol­
lowed by specifications for size of field, decimal places,
etc. Unlike FORTRAN, these need not be integer con­
stants; instead, they may be any expression. Therefore,
to avoid ambiguity, these specifications are separated
by commas and enclosed in parentheses. Thus, in­
stead of E14.8, in PL/I one would write E(14,8).

Types of Format Items

E and F formats in PL/I correspond to FORTRAN E
and F formats. The rules for truncation of fields on
output, the use of signs, and the punching or omission
of decimal points on input, are the same in PI";I as in
FORTRAN. One difference is that in PL/I the F for­
mat also fulfills the function of the I format in FOR­
TRAN. If the d specification is omitted, a point is not
printed, and the output item appears as an integer.

The following examples illustrate the use of F and
E formats:

X = -123.4567

F(IO)
F(I0,5)
F(10,3,2)
E(13,7)
E(I3,5,7)

-123
-123.45670
-12345.670
-.1234567E+03
-12.:145fl7F.+Ol

An F format item without a d specification, corre­
sponds to an integer externally in spite of the value
of X. A third specification, a scale factor, can be in­
cluded to cause the external value to be ten raised to
that power times the internal value. In E format, two
specifications can be given in addition to the field
width, w. One, d, gives the number of digits to the
right of the decimal point, and the other, s, if given,
is the total number of significant digits. If this thiTd
specification is omitted, it is assumed equal to d.

24

As in FORTRAN, the A format specifies alphabetic
data on the external medium, and X format specifies
characters to be ignored on input, and blanks on out­
put. PL/I also includes format items for complex data
and bit strings. In addition, if the external form does
not match any of the possible format types, a PIC­
TURE format specification can be given which indi­
cates the contents of each character position.

Since literal data to be printed appears in the data
list, rather than the format list, there is no need for the
H specification. An A format item, however, must ap­
pear in the format list at the position desired for the
character string. The width need not be specified; it
will be deduced from the literal itself. Carriage con­
trol characters are not written as such by the pro­
grammer. Format items, PAGE, SKIP, LINE, and
COLUMN are placed instead in the format list, and
the necessary characters are created at object time.

PUT PAGE LINE (3) EDIT
('SUMMARY') (COLUMN (13),A);

PUT SKIP (2) EDIT (X,Y) (X(3), F (12,5), X (7),
E (30,15));

This would cause an eject to a new page and SUM­
MARY to be printed on the third line, starting in
printing position 13. Then one blank line would be
skipped and X would be printed in F format begin­
ning in the 4th column, seven spaces after X would
he left blank, and Y would be printed in E format, all
on the fifth line of the page.

Format List

In PL/I, as in FORTRAN, each item in the data list
is matched against an item in the format list. A for­
mat item may be preceded by an iteration factor; thus:

3 A (20)

is equivalent to:

A (20), A (20), A (20)

A difference between PL/I and FORTRAN is that,

in PL/I, if a format list is completed before all the
items in the data list have been transmitted, the for­
mat list starts again from the beginning, and not from
the last left-hand parenthesis, as in FORTRAN.

Also, if the data list is completed before the format
list is exhausted, the unused portions of the format
list are ignored. This is true even if the next items are
for control only and are not associated with data list
items.

Variable Format

FORTRAN has the facility to vary a format specifica­
tion by reading in a FOR~'fAT card at object time. In

PL/I, this facility can be obtained differently. One
technique would be to write the I/O statement with
a format specification for a remote format list. The
label used can be a variable and can be set to anyone
of the possible formats. For example:

GET LIST (TYPE);
IF TYPE = 1 THEN DUMMY = FMTI;

ELSE DUMMY = FMT2;
GET EDIT (A, B, C) (R(DUMMY));

FMTI: FORMAT (3 F(l0,3));
FMT2: FORMAT (3 E(l4,8));

Here the variable DUMMY must have been declared
with the attribute LABEL. Then the single I/O state­
ment can be made to operate with either of the FOR­
MA T statements.

A more general solution is to make use of the fact
that PL/I allows expressions for the wand d fields
of format items, as well as the repetition factor. For
example:

DECLARE X(N);
PUT EDIT (X) ((N) F (l20IN,5));

This could be used to space the N elements of array
X across the page. The width of the field would be
computed when the I/O statement is executed, and
would be based on the value of N, which could have
been read in or computed.

It is also permissible for the expression indicating
repetition to evaluate to zero or a negative number, in
which case the format item is skipped. Thus, a single
format list can be used with various results by select­
ing those items which are used. For example:

PUT EDIT (A, B) ((KEY) F(l0,3), (I-KEY) E(l4,8));

Here, if KEY is equal to 1, the second expression is
zero and the format item is skipped. Thus, both varia­
bles would use the F format. If KEY equals zero, E
format is used for both.

Internal I/O

In PL/I, it is possible to have an I/O statement refer
to an internal character string, rather than an external
file. Thus, data already read in, can be moved and
converted by GET and PUT statements with the
STRING option.

Frequently, it is necessary to read in a record whose
format is not known by the program, but is indicated
on the record itself. In FORTRAN, this could be ac­
complished by reading in the record, examining the
indicator, writing the record out on a scratch file and
then reading it back in, with the proper format. One
of the uses of the STRING option in PL/I is to solve
this problem. For example:

GET EDIT (TEMP) (A(80));
GET STRING (TEMP) EDIT (CODE) (F(l));
IF CODE = 1 THEN GO TO OTHER_TYPE; ELSE
GET STRING (TEMP) EDIT (X, Y, Z) (X(l),

3 F(lO,4));

The first GET reads in eighty characters from SYSIN
and places them in the character string TEMP with­
out any conversion. TEMP must have been declared
to be a string of at least eighty characters in length.
The other GET statements use this variable as the
source of data, rather than reading in anything else.
The data remains in the character string and can be
re-used by any number of GET statements, or proc­
essed in any other way desired.

Print Files

In stream-oriented I/O an output file may be declared
with the attribute PRINT. This enables carriage con­
trol information to be included as options on the PUT
statement. The options may be used with any mode of
output, data-directed, list-directed, or edit-directed,
and precede the printing of the data, regardless of the
order in the PUT statement. For example:

PUT PAGE LIST ('PAGE NO', N);
PUT FILE (RESULTS) DATA (TOTAL) SKIP (3);
PUT LINE (40) EDIT (I, DELTAX) (F(lO), F(20,5));

The first example would eject to a new page on SYS­
PRINT, and then print the data on the top line. Two
lines would be skipped on file RESULTS and then the
representation for TOTAL in the second example
would be printed on the third line. The last would
cause the data list to be printed on line 40 of the
current page.

Record 1/0

Each READ and WRITE operation transmits a single
logical record. The record is moved between the exter­
nal medium and the variable specified without any
conversions. The variable specified must be a structure
and will normally contain several data items or arrays.
(See "Structures" in Part 3 for a description of the
type of data organization.)

One of the uses for Record I/O would be for tem­
porary storage of intermediate results. This is analo­
gous to unformatted READ /WRITE statements in
FORTRAN. For example:

WRITE FILE (SCRATCH) FROM (TEMPI);
READ FILE (UTI) INTO (RAW DATA);
READ FILE (DATAIN) IGNORE (7);

FROM and INTO are key words which are followed
by the single name of a structure. The IGNORE op­
tion on READ specifies skipping the number of rec­
ords given by the expression following it.

How to Write a PL/I Program 25

Structures
~A ... rrays are a convenient notation for many mathemati­
cal problems that are concerned primarily with col­
lections of numbers having the same attributes.

Some programs are concerned with collections of
data of different types. For example, a record of a
customer file might well contain various items of
numeric information of different length and alpha­
betic information such as a name and address. It may
often be desirable to treat the record, or parts of it
that contain more than one item, as a whole.

PL/I uses the word «structure" to describe a collec­
tion of variables of different types, organized in a
hierarchy. Consider the collection of variables:

EMP _NO,NAME,SALARY,INSUR,LOAN ,SAVE.

A programmer might \'v'ish to move the whole collec­
tion, or only a part of it. To do this he must be able to
name the group to which he intends to refer.
The following declaration accomplishes this:

DECLARE 1 MAN_MASTER, 2 IDE NT,
3 EMP _NO, 3 NAME, 2 SALARY, 2 DEDNS,
3 INSUR, 3 LOAN, 3 SAVE;

The number preceding each name indicates the level
of the name. The name MAN _MASTER has levell,
the highest level. This name refers to a structure that
includes all the other names in this declaration.

IDENT includes EMP _NO and NAME
DEDNS includes INSUR, LOAN, and SAVE.

The collection of items could be represented pictori­
ally as:

I
IDENT

I I i
EMP_NO NAME

MAN MASTER
I

SALARY
I

DEDNS

IN~UR L~AN slvE

A structure could be used to group together data
which does not have a hierarchial relationship, but
which is convenient to refer to by a single name. Send­
ing a collection of arguments to a procedure could be
simplified by using a structure as follows:

26

DECLARE 1 ARGLIST,
2 X COMPLEX,
2 I ,
2 Y (10,10),
2 Z BIT (6),
2 (A, B, C) FLOAT (16)

CALL SUB_I (ARGLIST);

Part 3: New Concepts in PL/I

The CALL statement with the single argument would
then transmit the entire collection of data to SUB l.
The parameter in SUB_I would need to be decIa~d
as a structure with the same attributes as those beini!
sent, but not necessarily the same names. '-'

To simplify the transmission of data even further,
the entire structure could be declared EXTERNAL in
both procedures. This would give the analogy of
named COMMON in FORTRAN IV in that the ex­
ternal names used, and the order and types of data,
must match in all procedures but the names of indi­
vidual elements could be different. If variables are de­
clared EXTERNAL individually, then the name of
each item is known to each procedure making the de­
claration. In this case, the names must match exactly,
but the order of declaration may be different.

Narne Qualification

In order to refer to an individual item in the struc­
ture, names can be used that do not contain lower
levels. In the above example, these are EMP _NO,
NAME, SALARY, INSUR, LOAN, and SAVE. How­
ever, these names need not be unique. It is permissi­
ble to use some or all of the same lower-level names in
another structure declared in the same part of the pro­
gram. For example, another structure in the same pro­
gram as the previous example might be: DECLARE
1 PAYSLIP, 2 IDENT, 3 EMP_NO, 3 NAME, 2
GROSS_PAY,2 DEDNS, 3 INSUR, 3 LOAN, 3 SAVE,
3 TAX, 2 NET_PAY;.

To distinguish between the two different variables
both called INSUR, it is necessary to specify some
additional information. This is done by qualifying
them with other, higher-level names to make the
identification unique. One INSUR is contained in
DEDNS, which is contained in PAYSLIP; the other
INSUR is contained in DEDNS, which is in turn
contained in MAN_MASTER. To differentiate be­
tween the two, the names PAYSLIP.DEDNS.INSUR
and MAN_MASTER.DEDNS.INSUR can be used.
More simply, PAYSLIP.INSUR and MAN_MASTER.
INSUR could be used, since DEDNS does not help in
distinguishing between the two. The process is known
as qualification. The rules for qualification are that a
name used in a structure may be qualified by prefix­
ing it with the names of structures in which it is con­
tained. The names are separated by a period and must
be in order of level number, the most inclusive level

appearing first. The names used must be sufficient to
positively identify the variable.

Assignment BY NAME

The ability to use, in a structure, names that are not
unique does help the programmer in maintaining the
mnemonic significance of the words he is using. The
most important use of this facility is to indicate that
the variables have something in common, and to make
use of that fact in his program. The following example
shows how PL/I allows this to be done:

PAYSLIP = MAN_MASTER, BY NAME;

Each of the names in each structure is compared with
a11 the names in the other structure. The comparison
includes higher-level qualifications up to, but not in­
cluding, the names that actually appear in the assign­
ment statement. The assignment is then executed
wherever names match. With the examples used pre­
viously, the single assignment statement above would
be equivalent to:

or

PAYSLIP.EMP _NO =MAN_MASTEREMP _NO;
PAYSLIP.NAME= MAN_MASTER NAME;
PAYSLIP.INSUR= MAN_MASTERJNSUR:
PAYS LIP. LOAN = MAN_MASTER LOAN; ,
PAYSLIP.SAVE= MAN_MASTER.SAVE;

PAYSLIPJDENT=MAN_MASTERJDENT;
PAYSLIP.DEDNS= MAN_MASTER.DEDNS,BY NAME;

In the case of the structure IDENT the BY NAME
option is not required, since the two structures have
the same composition. If two structures have the same
organization (that is, if they are divided into levels
in the same way, and if each level contains the same
number of items), the names of the items do not need
to match.

Structure Expressions

Structures may also be used in expressions. If the BY
NAME option is used, all the names are compared
and the expression is evaluated for all the cases where
the names- match. If structures appear in an expres­
sion without the BY NAME option, the structures
must be identically constructed. For example, given
the declarations above, and:

DECLARE 1 HASH, 2A, 3D, 3E, 2B, 2C,
3F, 3G, 3H;

then:

HASH = HASH + MAN_MASTER;

would cause each element of MAN_MASTER to be
added into the corresponding element of HASH.

There is no restriction on the types of variables in
the two structures; corresponding elements of the
two structures may be different types. If conversion
is required, it is performed according to the rules for
arithmetic expressions.

Structures, like arrays, provide a convenient way of
referring to a group of items, using a single name. Un­
like arrays, every item must have its own name, and
identification to the lowest level of the structure is
by name. Also unlike arrays, the types of the elements
differ.

Arrays of Structures

Some collections of data may be most easily organized
as a combination of arrays and structures. The sim­
plest case would be where a table has an argument of
a different type from the function. For example, a table
of parts might have 100 entries, each entry consisting
of PART_NO, DESC, QTY, COST. This could be
declared as:

DECLARE 1 ITEM (100), 2 PART_NO FIXED
(9,0),2 DESC CHARACTER VARYING (20),
2 QTY FIXED (4,0),2 COST FIXED (5,2);

The dimension following the name ITEM indicates
that it is a vector and that individual items may be
selected by subscripting. Thus, ITEM (11) would be
the eleventh entry in the table, and the eleventh part
number would be:

ITEM.PART_NO (11), or PART_NO (ll)

More than one level may be subscripted, for example:

DECLARE 1 PART (100),2 PRICE,
2 STOCK (10);

To refer to a particular element of STOCK, for a par-
ticular PART, one could write PART (I) .STOCK (J)
or PART.STOCK (I,}) or, if PART is not needed to
positively identify STOCK, it could be written
STOCK (I,}).

Allocation of Storage
One of a programmer's problems when writing in a
high-level language, or even assembly language, is that
every time a variable is declared, storage is assigned
for it, normally for the entire duration of the program.
Usually, if he is writing a program that is divided into
subroutines, he wishes, when entering a subroutine,
to be able to use names and storage that will not be
confused with the names and storage used in the call­
ing program. When he leaves the subroutine, he has

New Concepts in PL/I 27

finished with the working storage used in the subrou­
tine, and he does not want to be prevented from
using, in the main program, names used in the sub­
Tmitine,

FORTRAN protects the user from accidental con­
fusion of names between subroutines, while at the'
same time .allowing communication behveen subpro­
grams by means of the COMMON statement. How­
ever, the storage associated with names remains static,
If a subroutine uses working storage for an array, that
storage remains assigned, whether or not the subrou­
tine is in use.

The EQUIVALENCE statement in FORTRAN
helps, by allowing two names to refer to the same loca­
tion in storage, but once again this a static arrange­
ment and cannot be altered after compilation, An­
other problem arising from the static allocation of
storage is that the amount of storage allocated to an
array cannot be altered at object time. If an array is
smaller than the DIMENSION statement specifies,
the surplus space is wasted. Another difficulty is that
the DIMENSION statement specifies the limit on each
dimension. If an array may be 100 x 50 or 50 x 100,
the dimensions allotted to it must be 100 x 100, and
half the space is wasted.

In a multiprogramming environment, where surplus
storage might profitably be used by another program,
it becomes even more important that a program should
not retain storage it is not using. The operating sys­
tem will therefore provide facilities for assigning and
releasing storage. The storage assignment features of
PL/I are particularly relevant to this type of environ­
ment and operating system.

The Scope of Names

IN FORTRAN, a variable name used in a subprogram
cannot be confused with other uses of the same name
in other subprograms. If the name is required to l'efer
to the same variable in various subprograms, it is
placed in COMMON.

In PL/I, a name is known in the procedure in
which it is declared, and in all procedures nested
within that procedure. A name can, however, be de­
clared in an inner procedure, and in this case the
name refers to a new variable and is not confused
with the previous use of the name.

This means of communication cannot work with
separately compiled procedures. PL/I, therefore, pro­
vides an attribute EXTERNAL for variable names.
A name that has been declared EXTERNAL is known
to all other procedures in which it has also been de­
clared EXTERNAL. In this way, EXTERNAL is
analogous to COMMON; this is illustrated in the fol­
lowing example:

28

A: PROCEDURE; DECLARE (X,Y,Z) COMPLEX;

B: PROCEDURE; DECLARE (r,Q,n,X) l-IXED;

ENDB;
C: PROCEDUH.E; DECLARE V EXTERNAL FLOAT

BINARY;
ENDC;
END A;

D: PROCEDURE; DECLARE V EXTERNAL FLOAT
BINARY;
ENDD;

V is common to procedures C and D.
Y and Z are known in procedures A, B, and C, and are com­
plex.
X is complex in procedures A and C, but refers io a different
fixed-point variable in procedure B.
P, Q, and R are known only in procedure B.

STATIC and AUTOMATIC Storage

In PL/I there are four ways in which data storage
may be assigned: STATIC. which corresnonrts to

FORTRAN u~age; AUTOMATIC, which is ;i~ii~r ~~
ALGOL usage; CONTROLLED and BASED, which
are assigned by executable statements called ALLO­
CATE and FREE.

STATIC storage is assigned when a job is ·l~aded,
and remains assigned until the end of a job. This is the
kind of storage to which the FORTRAN programmer
is accustomed.

A UTOMATIC storage is aSSigned on e~try to the
block in which it is declared, and is released on exit
from that block. A block is either a procedure or a
group of statements headed with BEGIN and termi­
nated with END. Either form of block may include
DECLARE statements. If it does, the AUTOMATIC
storage specified in the DECLARE statement is as­
signed only when control passes to the block. A pro­
cedure may gain control as a result of being called
either as a function or as a subroutine, and may be
called at either its main entry point or a secondary
entry point. In each case, the same assignment is per­
formed. On exit from the procedure, by a RETURN
or END statement, the storage allocated on entry is
released.

Since the assignment and release of storage, particu­
larly in a multiprogramming environment, will involve
calls to a Supervisor, which might be time-consuming,
this class of storage will not normally be used for sin­
gle variables. However, in matrix problems there are
significant advantages to be gained. Consider a pro­
gram in which two matrices are to be multiplied.
Once the product has been formed, the original
matrices are no longer required; only the product

need be retained. The following BEGIN block would
achieve this:

STRESS: PROCEDURE; DECLARE C(l2,12) BINARY;
PROD: BEGIN;

DECLARE (A(l2,12), B(l2,12)) BINARY;
GET LIST (A,B);
C= 0;
DO 1=1 TO 12; DO }=1 TO 12;
C(I,J) = SUM (A (I,1))1)B(1),J));
END PROD;

END STRESS;

If names in a DECLARE statement are not de­
clared EXTERNAL, they are assumed to be INTER­
NAL; Similarly, if they are not declared STATIC,
CONTROLLED, or BASED, they are assumed to be
AUTOMATIC. Therefore, A and B are assigned stor­
age on entry to the block:

PROD: BEGIN;

When the block is completed, A and B are discarded.
The array C remains and may be used in a succeeding
statement.

CONTROLLED and BASED Storage

STATIC and AUTOMATIC storage deal with most
cases where a programmer needs to control storage
only as control enters or leaves a block. There may,
however, be cases where conditions arising during
execution may influence the assignment of storage.
In a particular case, for example, the need for addi­
tional storage may become apparent only when the
input data is supplied.

CONTROLLED and BASED storage are provided
to handle such situations. Storage that has been speci­
fied as CONTROLLED in a DECLARE statement
can be assigned and released by the ALLOCATE and
FREE statements.

In the previous example, if the DECLARE state­
ment had been:

DECLARE (A(l2,12), B(l2,12»
CONTROLLED, C(l2,12) STATIC;

the block might have contained statements such as:

ALLOCATE A,B;

IF (SPECIAL) THEN FREE A,B;
END;

The storage for arrays A and B would be allocated
only when the statement to do so is executed. When
the FREE statement is executed the storage is re­
leased, and any data values for A and B are lost. If a
second ALLOCATE were executed before the FREE

statement, the previous allocation would be "pushed
down" and a new one would be created. Now, a
FREE statement would release the most recent alloca­
tion, and "pop-up" the one previous to it with its data
values preserved.

The BASED storage type also allows the ALLO­
CA TE and FREE statements to control storage as­
signment. Unlike CONTROLLED, however, BASED
does not "stack" multiple allocations for the same vari­
able but permits concurrent reference to each allo­
cated area. Special variables called POINTER vari­
ables are used to distinguish several allocations for the
same BASED variable.

Variable Dimensions

Since the storage for AUTOMATIC, CONTROLLED,
and BASED data is allocated at object time, it is pos­
sible to specify the dimensions of AUTOMATIC,
CONTROLLED, or BASED arrays at object time.
The dimension attributes for these three classes of
arrays may, therefore, be variables, or even expres­
sions. The values of the variables must be known on
entry to the block in which the array is declared, or,
in the case of CONTROLLED or BASED data, at the
time that the ALLOCATE statement is executed. Ex­
amples of this method of declaration are:

GET LIST (L,M,N);

BEGIN; DECLARE A(L,M),B(M,N),C(L,N);

Where a called procedure needs to declare an array
of the same dimensions as a calling procedure, the
dimension specifications may be replaced by asterisks.
F or example:

DECLARE X (100,100);
CALL INVERT (X);

INVERT: PROCEDURE (X);
DECLARE X (1),(1,);

The dimension bounds of X are transmitted to pro­
cedure INVERT along with the data. X can then be
used in array assignment statements without the need
for passing or knowing the dimensions. If they are
needed for other purposes, a built-in function, DIM,
will supply them as needed. Note, however, that the
asterisk notation is not permitted for BASED variables.

Asynchronous Procedures
IN FORTRAN, statements are executed one at a time
in the order in which they are written, except where
this is modified by control statements such as GO TO
and DO. A READ statement can, however, take a long
time to execute, and during most of this time only the
channels will be active, the CPU being idle. With
Teleprocessing lines and typewriter displays, the de-

New Concepts in PL/I 29

lays can be even more severe than with a conventional
magnetic tape system. Buffering systems can help, but
limitations on buffer size make it impossible to achieve
the same efficiency as a good programmer in making
use of the channels and the CPU simultaneously.

In PLjl, a procedure may be called asynchronously.
This means that control may pass to the next statement
before the caned procedure has been executed. The
control system treats the called procedure as an inde­
pendent task and assIgns it a priority. \Vhenever an
interrupt occurs, the task with the highest pliority that
is able to proceed is given control. From the point of
view of the programmer, the called procedure may be
considered to be executed in parallel with the calling
procedure.

The advantage to be gained from this will depend
on the amount of computing that can be done by one
program while the other is executing channel com­
mands. Where disks are being used for random proc­
essing, or Teleprocessing lines are being used, the
savings can be considerable.

A newer development is the computing installation
with two or more central processing units in direct
communication with each other. In thiS situation, the
ability to execute more than one task at a time is
fundamental. The provisions for the simultaneous op­
eration of tasks need to allow for more than two tasks,
and for more than two levels of task. One task may call
another, which may in turn call yet another. In this
way, a "tree of tasks" may be built.

The relationship of tasks that call each other is a
purely dynamic one. The exact form of the tree of
tasks is not normally known at compile time. Tasks
that may affect each other's data need a means of
testing whether other accesses to that data are com­
plete.

Procedures, whether or not they are called asyn­
chronously, communicate in exactly the same way. Ex­
ternal data is known between procedures; automatic
data is assigned on entry to a procedure, in the same
way as in a single task. The only exception is that
allocated controlled data can be freed only in the task
that allocated it.

The TASK, EVENT, and PRIORITY Options

A procedure may be called asynchronously by attach­
ing one or more of the three options TASK, PRIOR­
ITY, and EVENT to a CALL statement.

The TASK option names the task so that it can
later be referred to in PRIORITY pseudo variables or
functions. The EVENT option names a variable that
can be waited on or tested to determine whether the
task is complete. The PRIORITY option specifies the

30

priority of the attached task relative to the task
creating it.

A subroutine to assemble and transmit a message
could he caned by a statement such as:

CALL TRANSMIT (A, DATE_TIME, ADDRESS,
TEXT) EVENT (MESSAGE);

Control can go to the statement following as soon as
the task has been established. The task would be ter­
minated when the procedure TRANSMIT reached a
RETURN or END statement that would normally re­
turn control to the calling procedure. If an exit state­
ment is executed in a task, the task is abandoned, but
the calling procedure is unaffected.

The WAIT Statement

The programmer needs some means of testing whether
a task has been completed. (The completion of a task
does not interrupt the program that initiated it.) One
way of doing so is by the WAIT statement, which sus­
pends the How of control through the program con­
taining the WAIT statement until the task specified by
the WAIT statement is complete.· Suppose that the
programmer wishes to wait until the message in the
CALL statement of the previous example has been
transmitted, and the procedure TRANSMIT has been
terminated. This could be done by the statement:

WAIT (MESSAGE);

The name MESSAGE identifies the event to which
the WAIT statement refers, namely the completion of
the task that was created with MESSAGE as its event
variable. The WAIT statement can refer to a number
of tasks by specifying a list of event variables. For
example:

WAIT (MESSAGE!, MESSAGE2, MESSAGE3,
REPLY);

If the programmer wishes to wait for only one of these
to be completed, he can write:

WAIT (MESSAGEl, MESSAGE2, MESSAGE3,
REPLY) (1);

The integer following the parentheses specifies the
number of events in the 'list that are to be completed
before the calculation proceeds.

The COMPLETION Function

There will often be cases where the programmer will
not want to go into a waiting state to test whether a
task has been completed. This situation is provided for

by a built-in function COMPLETION. The argument
of the function is the EVENT variable associated with
the task to be tested. The value of the function is
binary 1 if the task has been completed, and binary 0
if it has not. (1 and 0 correspond to TR DE and
FALSE.) This function could be used in a statement
such as:

IF COMPLETION (COMPUTE) THEN GO TO
PROCESS;

There may be cases where the programmer wishes
to test whether a task has reached a particular point
other than completion. An EVENT variable may be
set by a statement of the form COMPLETION(P) ==
1. This can then be tested in another task by aWAIT
statement or by a COMPLETION function. Note that
such EVENT variables should be, at the time, unas-

socia ted with the completion of a task. Thus they
should be declared as EVENT variables.

PL/I also pennits the DISPLAY statement and cer­
tain RECORD-oriented input/output statements to
contain an EVENT option. Such statements, however,
cannot be tested for completion by means of the
COMPLETION function; the WAIT statement must
be used instead.

List Processing
PL/I provides an additional data type known as a
POINTER. This is a data item whose value is the loca­
tion of another data item. This gives the ability to
chain together strings of data. Structures might be
used where all pertinent data is collected into one
aggregate, and one of the fields in the structure is a
pointer to the next structure in the chain. Pointers
may also point to other pointers, and thus a multi­
level organization can be created.

New Concepts in PL/I 31

These functions, which are summarized below, are
described in greater detail in the publication IBIv1
Operating System/360: PL/I Language Specifications
(C28-6571) .

In the summary below, the following notation is
used:

X,Y and Z Denote obligatory arguments, which may be
expressions.

O,P and Q Denote optional arguments, which may be
expressions.

I and j Denote obligatory arguments, which must be
integer constants.

M and N Denote optional arguments, which must be
integer constants. In their absence, a default
value is assumed that will depend on either
the arguments or the implementation.

Arithmetic Generic Functions
The base, scale, and mode of the arguments of the
arithmetic generic functions are used to determine the
characteristics of the result, except where these are
specified by the function itself (for example, FIXED).

\Vhen an argument specifies a fixed-point scale fac­
tor, it may be omitted if the result is floating point.

.'32

The arithmetic genedc functions are listed below:

FUNCTION

(ARGUMENTS)

ABS(X)
MAX(X,Y,O, ...)

MIN(X,Y,O, ...)

MOD(X,Y)

SICN(X)

FIXED(X,M,N)

FLOAT(X,M)

FLOOR(X)
CEIL(X)

TRUNC(X)
BINARY(X,M,N)

DECIMAL (X,M,)J)

PRECISION (X,I,M)
ADD(X,Y,I,M)
MULTIPLY(X,Y,I,M)
DIVIDE (X,Y,I,M)
COMPLEX(X,Y)

VALUE RETURNED

Absolute value of X.
Value of maximum argument of
any number of arguments.
Value of minimum argument of
any number of arguments.
Remainder of integer division
X/Yo
1 if X is positive, 0 if zero, -1 if
negative.
X, converted to fIxed point, pre­
cision (M,N).
X, converted to floating point,
precision (M).
Largest integer not exceeding X.
Smallest integer not exceeded by
X.
X, truncated to an integer.
X, converted to binary, precision
(M,N).
X, converted to decimal, preci­
sion (M,N).
X, precision altered to (I,M).
X + Y, precision (I,M).
XOT, precision (I,M).
X/Y, precision (I,M).
Complex result (X + iY).

Appendix 1: Built-In Functions

FUNCTION

REAL(X)
IMAG(X)
CON]C(X)

VALUE RETURNED

Real part of X.
Imaginary part of X.
Complex conjugate of X

Floating-Point Arithmetic Functions
These functions have the conventional mathematic
meanings. A terminal D indicates that the argument,
or, in the case of ATAND, the result, is in degrees and

The arguments will be converted to floating point
before evaluation; the result will be floating point.
Some, but 'not all, of the functions will accept com­
plex arguments (see Appendix 1 in C28-6571).

The functions are listed below:

EXP(X)
LOC(X)
LOClO(X)
LOC2(X)
ATAND(X)
ATAN(X)
ATAN(Y,X)
ATAND(Y,X)
SIN(X)
SIND(X)
COSD(X)

String Functions

COS(X)
TAND(X)
TAN(X)
TANH(X)
SINH(X)
COSH(X)
ATANH(X)
ERF(X)
ERFC(X)
SQRT(X)

These functions return bit strings if the arguments
are binary, character strings if the arguments are deci-

1 rnal.

FUNCTION

(ARGUMENTS)

BIT(X,M)

CHAR(X,M)

SUBSTR(X,Y,P)

INDEX(X,Y)

LENGTH(X)
HICH(I)

LOW(I)

REPEAT(X,I)
UNSPEC(X)

BOOL(X,Y,Z)

VALUE RETURNED

X, converted to a bit string of
length M.
X, converted to a character string
of length M.
A string, P characters (or bits)
long, starting from the Yth char­
acter (or bit) of X.
If Y is not a substring of X, the
value 0 is returned. If Y is a
substring of X, the value re­
turned is the position of Y in X.
The length of the string X.
A string, I characters long, of the
highest data characters.
A string, I characters long, of the
lowest data characters.
The string X repeated I times.
A bit string that is the internal
representation of X.
Boolean function (see C28-6571
for details).

Array Functions
These may have array expressions as arguments. All
the functions return a scalar result. In addition, any of
the arithmetic or string generic functions may have
an array as an argument. The result will be each
element of the array operated on individually by the
function.

FUNCTION

(ARGUMENTS)

SUM(X)
PROD(X)

ALL(X)

ANY(X)

POLY(X,Y)
LBOUND(X,Y)

HBOUND(X,Y)

DIM(X,Y)

Condition Functions

VALUE RETURNED

The sum of all the elements of X.
The product of all the elements
of X.
The AND sum of the elements of
X after the elements have been
converted to bit strings.
The OR sum of the elements of
X, after the elements have been
converted to bit strings.
Polynomial (see C28-6571) .
The lower bound of the Yth di­
mension of X.
The upper bound of the Yth di­
mension of X.
The extent of the Yth dimension
of X.

These functions may be used only in ON units. They
return information on various aspects of the program
at the moment when an interrupt occurs.

FUNCTION

ONCOUNT

ONFILE

ONLOC

ONSOURCE

VALUE RETURNED

The number of unprocessed in­
terrupts produced by the abnor­
mal termination of an input!
output event.
The name of the file on last I/O
operation.
The entry name of the current
procedure.
The field being processed at con­
version interrupt.

FUNCTION

ONCHAR

ONKEY

ON CODE
DATAFIELD

VALUE RETURNED

The character which caused con­
version interrupt.
The key of logical record which
caused interrupt.
A code specifying type of error.
The incorrect NAME on data-di­
rected input.

List-Processing Built-In Functions
ADDR(X) Current address of data variable

X.
EMPTY

NULL

NULLO

A storage area of zero size, con­
taining no allocations.
Null value, for pointer. End of
chain.
A null offset value.

Other Built-In Functions
FUNCTION

(ARGUMENTS)

DATE

TIME

ALLOCATION (X)

LINENO(X)

COUNT(X)

ROUND(X,I)

STRING(X)

COMPLETION (X)

PRIORITY(X)

STATUS(X)

VALUE RETURNED

Character string of form
YYMMDD, where YY represents
the year, MM the month, and
DD the date.
Character string of form
HHMMSSTTT, where HH repre­
sents the hour, MM the minutes,
SS the seconds, and TTT the
milliseconds.
If storage has been allocated for
X, the value returned is 1; if not,
the value returned is O.
The current line number of
PRINT file X.
The number of items transmitted
during the last GET or PUT on
file (X).
The expression X, rounded on
the Ith digit after the point.
The structure X, converted to a
string.
o or 1, depending on the status
of EVENT (X).
The priority of task relative to
the task containing the function.
Zero or non-zero, depending on
whether the status of event X is
normal or abnormal.

Appendix 1 33

Appendix 2: ON Conditions

The following conditions must be enabled by a pre£i.x
for an interrupt to occur:

CONDITION

NAME

CHECK (identifier list)

SIZE

SUBSCRIPTRANGE
STRINGRANGE

DESCRIPTION

The listed variable is al­
tered or the labeled state­
ment executed.
Loss of significant digits
on the left of assignment.
Subscript out of range.
Invalid attempt to use
SUBSTR built-in func-
tiona

The following conditions are nonnally enabled, but
may be disabled by NO prefix:

OVERFLOW

UNDERFLOW

ZERODIVIDE

CONVERSION

FIXEDOVERFLOW

Floating-point result too
big.
Floating-point result too
smail.
Fixed- or floating-point
division by zero.
Error in converting to a
different data type~
Loss of left-hand signifi­
cant digits during fixed­
point expression -evalua­
tion.

The following conditions are always enabled and can­
not appear in prefix lists:

ENDFILE(X)
ENDPAGE(X)

TRANSMIT(X)

UNDEFINEDFILE (X)

NAME(X)

KEY(X)

RECORD(X)

AREA

CONDITION (X)

FINISH

ERROR

End-of-file on file X.
End-of-page on PRINT
file X.
Permanent transmission
error on file X.
File named is incorrectly
specified or cannot be
OPENed.
Unrecmmized name on
data-di~cted inDut on
file X. -
Incorrect KEY given on
file X.
Record on file X is incor­
rect length.
Attempts to allocate more
storage than exists in an
area.
X is programmer-named
condition raised by signal
statement.
Termination of main pro­
cedure by STOP, RE­
TURN, END or EXIT,
Termination of major task
due to error.

Appendix 3: Correspondence of FORTRAN and PL/I Statements

FORTRAN PL/I FORTRAN PL/I

DIMENSION DECLARE PAUSE DISPLAY
COMMON DECLARE with EXTERNAL CONTINUE Not needed
EQUIVALENCE DECLARE with DEFINED or CALL CALL

CELL T"t'J"":'lP'T1TTT'"II"'T
n.c.l un!'" RETURN

DATA DECLARE with INITIAL FUNCTION PROCEDURE
DOUBLE PRECISION DECLARE with Precision SUBROUTINE PROCEDURE
INTEGER DECLARE with FIXED ENTRY ENTRY
REAL DECLARE with FLOAT or READ GET or READ

REAL WRITE PUT or WRITE

COMPLEX DECLARE with COMPLEX FORMAT FORMAT
ENDFILE CLOSE LOGICAL DECLARE with BIT REWIND CLOSE Assignment Assignment BACKSPACE No equivalent GO TO GO TO BLOCKDATA DECLARE with EXTERNAL

LC;:~IGN Assignment with Label Data and INITIAL
IF IF EXTERNAL DECLARE with ENTRY
DO DO NAMELIST GET IPUT with data-directed
STOP STOP 110

.'34

aggregates, data
ALLOCATE statement
allocation of storage
arguments, dummy
arithmetic built-in functions
arithmetic data .. .
arithmetic operations .. .
arrays

of sturctures
assignment

array
statement
structure

asterisks
for bounds or length
for cross sections of arrays

asynchronous operations
attributes
AUTOMATIC storage

15
29
27
20
32
10
13
15
27

15
11,13

27

16
16
29
10
28

BASED storage ... 29
begin block 19
BINARY ... 10
bit-string operations 14
blanks use of 9
bounds;

see array
built-in functions
BY and TO Clauses .
BY NAME option

CALL statement
CHARACTER
character-string data
characters

48-character set .. .
language character set
60-character set
special .. .

CHECK
COLUMN format item
comment .. .
COMPLETION built-in function
COMPLEX
compound statement
concatenation operations
condition functions ..
constants
control statements
CONTROLLED storage
conversion

data
aggregates
bit-string
character-string
lists

32,33
18
27

26
12
11

9
. 9

9
9

18
24
17
30
10
17
14
33
12
16
29

13,14

15
11
11
23

transmission '"
types

..................... 21
10

data-directed transmission
DECIMAL
DECLARE statement

.. 22
10

....... 10,11,12,15

Index

dimension 29
DISPLAY statement ... 19
DO statement 17

E format.
edit-directed transmission

format of
ELSE clauses
enabling
END statement
ENDFILE condition .. .
ENTRY statement
evaluation of expressions
expressions .. .

array .. .
evaluation of
logical
structure

24
23
24
16
18
16
19
21
13
13
15
13
14
27

EXTERNAL attribute 21,26,28
external names

scope of
external procedure

28
28
21

F format ... 24
file names 23
FIXED .. 10
FLOAT .. 10, 11
format

of data-directed output 22
of list-directed I/O 22
variable 24

format items ... 24
data ... 11
remote

format list .. .
FORMAT statement .. .
48-character set
FREE statement
FROM option
function

24
24
24
9

29
25

built-in 33
generic 21,32

generic functions 32
GET statement 22
GO TO statement 16,21

hierarchy of operations 15

IDENT option .. 27
IF statement .. 16
IGNORE option 25
imaginary numbers 12
INDEX 14
infix operators 13
INITIAL 13
initial values ... 12
input/output 21, 22
internal 110 25
internal procedure 21
interrupt 18
INTO option 25
iteration 14

factor 24

Index 35

keyword .. .

label
LINE fonnat item
list -directed

data specification

10

17
24

input
23
22
22
22

output
transmission

list processing

names
qualified
scope of

nesting procedures

ON statement
ON -conditions
operations

arithmetic
bit string
character string
comparison
concatenation

output

PAGE fonnat item
parameters
PAUSE
pointer data
precision
plefix, condition
prefix operators
PRINT attribute
PRIORITY option
priority of operators
procedure

external
internal

PROCEDURE statement
PUT statement

qualified names

READ statement
REAL
RECORD transmission
remote format specification

36

31,33

9
26
28
20

.... 18
.......... 34

13
14
14
14
14

21,22

24
............... 20

19
29, 31

11
18
13

..................... 25
......... 30

13, 15
9

21
20
20
23

26

25
10

21,25
.... 24

RETURN statement ..
REVERT statement

scope of names
60-character set
SKIP format item
SNAP option
specification, fonnat .
standard files

input (SYSIN)
print (SYSPRINT)

statement labels
statements
STATIC storage
STOP statement
storage

ALLOCATE statement
automatic
controlled
FREE statement .
static

STREAM transmission modes
data·directed
edit=directed ..
list-directed

STRING option
structure

assignment
BY NAME.
declarations and attributes
!e'le! numbers

subprograms
subroutine
SUBSCRIPTRANCE condition
subscripts
SUBSTR built-in function
syntax
SYSIN file
SYSPRINT file

TASK option
THEN clause
TO and BY
truncation

WAIT statement
WHILE clause
"",VRITE statement

30
19

28
9

24
19
24

23
2:3

10,17
1a 1"1
iV, i'

28
19

29
.... 28

29
................... 29

28
.... 21

22
. 23

22
25
27
27
27
26
26
20
27
18
15

14,32
9

23
23

. ... 30
16
17
24

30
18
25

-------- ------- ~--- - ---- - - -~------
-~-,,~

.",

International Business Machint;,;:; C.'i:"lor;;fon
Data Processing Division
1133 Westchester Avenue, White Piains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 1001
(International)

SC20-1637-3

