0S
PL/l1 Optimizing Compiler:
TSO User’s Guide

SC33-0029-3
File No. 8360/S370-29

(013
PL/l Optimizing Compiler:
Program Product TSO User’s Guide

Program Numbers 5734-PL1
5734-LM4
5734-LM5

(These program products are available

as composite package 5734-PL3)

i)
ikl
| il

FOURTH EDITION (July 1979)

This is a major revision of, and makes obsolete, SC33-0029-2, and its
technical newsletter, SN33-6163.

This edition applies to Version 1, Release 3, Modification 1, of the
0S PL/I Optimizing Compiler and libraries, Program Products 5734-PL1,
§734-LM4, and 5734-LM5, and to any subsequent version, release, and
modification until otherwise indicated in new editions or technical
newsletters.

The changes for this edition are summarized under "Summary of
Amendments” following the list of figures. Technical changes made are
indicated by a vertical bar to the left of the change. These bars will
be deleted in any subsequent republication of the affected page.
Editorial changes that have no technical significance are not noted.

Changes are continually made to the information herein; before using
this publication in connection with the operation of IBM systems,
consult the latest IBM System/370 Bibliography, GC20-0001, for the
editions that are applicable and current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs), programming or
services which are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce
such IBM products, programming or services in your country.

Publications are not stocked at the address given below; requests for

IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Corporation, P. O. Box 50020, Programming Publishing, San Jose,
California, U.S.A. 95150. IBM may use or distribute any of the
information you supply in any way it believes appropriate without

incurring any obligation whatever. You may, of course, continue to use
the information you supply.

©Copyright International Business Machines Corporation 1973, 1976, 1979.

Preface

This book is an extension of the 0S_PL/I Optimizing Compilers
Proqrammer?'s Guide. It describes how to use the facilities of TSO to
comrpile a PL/I progras using the PL/I Optimizing Compiler, and how to
execute the program. The reader is assumed to be familiar with PL/I and
TSO; the manual covers both the 0S/AVT and the 0S/VS2 versions of TSO.

Requisite publications for this manual are listed below:

0S_PL optimiz Checkout Compi S3 nage Referen ¢
GC33-0009

0S PL/Y Optimizing Compiler: Programmer's Guide, SC33-0006

1BN System/360 Operating System; Time Sharing Option Command Language
Reference, GC28-6732

08/¥S2_T$0 Conmand Language BReference, GC28-0646

0S/982 TS0 _Terminal User's Gujde, 6C28-0645

QS/H¥T and 0S/VS2 7SO Teraminal Manual, 6C28-6762

The terminal user?s guides are the basic authoritative sources for
information about the PL/I conasand and about the coapiler options under
:Sgi The authoritative sources of information on other topics are as
ollows:

e TS0 facilities other than PLI coaaand: the Coanand Language
Refereace

e Terainals: the Terminal Nanual
e The PL/I Optimizing Coapiler: The Programmer®s Guide

e The PL/I language iapleaented by the PL/I Optimizing Coapiler: the
PL/I Language Refereace Nanaal

The authoritative sources will be the first to be updated to reflect any
changes.

Preface iii

Contents

pRBPan. L J L] L] e @ e @ * o L J e L] * e - ® ® o o * o o e ® & o o o 111

PIGURBS. L d L J * ° L] ® o *® o o L L J L] - - e e e - * e - e e L] - ® e '1 1

suun‘n' 0? augunugurs. - - L] - -* - - * L J - .Q - L] L J - L] L] - L] - - i.!
cﬂkptga " ISTRODUCTIO'. - * L 2 L] - - - - L] L] * - * - - - - - - L] 1
Tso. - L J - - - - L) - L] L] * - - L] - L] - L J - L] - - L J [] L] L] - L] - 1
Conversational Processing e @ ¢ e ® 8 0o 6 o a0 0 0 e 0 e e 1
The Optlulzinq Conpilet....... e @6 ¢ © 6 @ @ o o o o o 1
CHAPTER 2., CREATING AND UPDATING PL/L PROGBANS: « « o ¢ ¢ o o « 3
CHAPTER 3. RUNNING A PROGBANe « o @« ¢ « ©« « ¢ ¢ ¢ © ¢« ¢« @ o = o S
ConpilatioNe o o « « ¢ ¢ ¢ ¢ ¢ @« ¢« o a ¢ e 06 6 @ ¢ o s o o o o o 5
Invoking the Compiler « « o« ¢ ¢« ¢ o e « ¢ ¢« 2 o« s 2 o o« = o 5
Ran Conaand and Subcoanande « ¢« ¢« « « o« ¢ « ¢ ¢ o ¢ ¢ o o o o 6
Coapiler LiStingS « ¢ o« ¢ ¢ ©« « ¢« « @« ¢ ¢ ¢ c o« ¢ ¢ ¢ ¢ o o o 7
calling the conpiler‘ L] .A. L] - L] - L J L J - - L J - L] L J - - -* - L] 7
Background ProGessSing « « « o« « « ¢« ¢ « ©« ¢ ¢ © ¢ ¢ o @ ¢ o @ 7
Link-Bditing and Executing « « « « « = e e o e e 8 0o o8 0 o 8
Introduction to ComRaANdSe ¢« « « ¢ © ©« ©« @ @« ©« « © o o @ ¢ o o 8
The LOADGO ComBAaNde o « ©« ©« @« @« ©« ©« @« @ © @« @« ©c ©« e« @« ©« @« o o 8
The LI"K co.’and. - - - - - - - - - - L] - - - L J * L J * L J - L J - 9
.rhe CALL coanand. - - - - - L] - L] ® L] - L] - - * L] - - L - - - 9
Mixing Procedures from the PL/I Optimizing and Checkout
conpllets . - - - 3 - L] - L] - - - L] - - L J * L d - - L] - L] L] - L J - * 10
conpile' Load' and Go. - - - - - - L] *® o L] - - L J - L] L J - - L] - L] 10
Cotlpile, Link'Bdit' and Bxecnte. e © @6 @ ®© © ® ®© ® © °© °o @ o o o 12
Usinq the Ru u ?acility - L] - - - - - L] - - - - L - - L] - - - - L J ‘ S
CHAPTER 4. I/0 AND ATTENTION INTEPRRUPTS <« « = « o @« ¢ « = o « o 17
mtroduction - - L] - - - L - - - - - - - - - - - L] L J L] - L] - - - ‘7
Conversationallnpnt...................... 17
Conversational Outpute =« o« ¢ o « « ¢ 2 o @ ¢ ¢ @ @ o o o o 19
Compiler Data SetS o « ¢ « @« @« @ o ¢ © © o s s s ©« o6 o o o o o o 20
Exanple of Inpnt/Ontpnt. ® 6 ®© ®© ©6 © ® 6 6 °o ®© @ o @ o © ® ° o o 22
Attentionlntettllpts.... e ¢ © 8 o o © ®© ® ¢ ° o e e o o o 23
How to Cause an Attention IDterrupte « o o © o o o o o o o 24
How to Use Attention IDLErruptsS « « « o ¢ ¢ ¢ « o ¢ o ¢ o o « 24
Attention On-Units Used for Debl.lgging. e 6 @« ¢ & o & o o o 24
Attention On-Units Used for Interactive Systems. « « « o« « 24
Background to Attention Handling « « o « o o« « o ¢« @ = = o 25
Pitfalls When Using Attention INterruptsS « « o« « « o o < o 25
SYDChronizatioNe « « « « « e e« @ ¢ ¢ ¢« ¢ o @ ¢ o ¢ o o o @ 26
Programs Partly Compiled with the INTEBRUPT Option « « « 26

caapTBR 5. PLI cona‘un. - - - - - o - - - - o L) Ll - L J e e . - * 21
CHAPTER 6. COMPILER OPTIONS o « ¢ ¢« @ © o ¢ ©« o ¢« @« © o« @ o o o 31

.
.

]

.

]

L]

.
()
]
=
-

Conmand SYNLAX « « « © © @« © © ¢« © ¢« « @« ¢ » o6 o ¢ &« o s o © = @ 49
APPENDIX B. USING A TERMINAL OTHER THAN A 2781c ¢ ¢ ¢« ¢ o o = 51
Cansing an Attention Interrupt @ & @ © 6 @« @ @ ¢ o o o & o o = 51
Attention on 3277, 2260, and 2265 Display SCreelSe « « « « o o 51
Using the TERMINAL COBRANA « <« « o o © 2 o o =« = « = « « © « = 51

contents v

'Responding to An Intervention Request.
Pormatting on a 3277 Display Screen. . .

APPENDIX C. ®INCLUDE DATA . o o
Secondary Input. « « ¢« o o o o e
Allocating Data Sets « . « « - o
Input Record Formats « « « « o o
Source Listings and Statement Nuabers.

-
U

I"an.‘...‘..‘........‘

vi

s ¢ 0 o 0

e &6 0 &

52
53

55
55
55
56
56

59

Figures

Pigure 1. Some Descriptive Qualifiers « « « « « « a ¢ « « « « « 3
Pigure 2. Standard Default Becord FPOrnats « « « « ¢ « « ¢« « o = 3
Pigure 3. Compiler Data SetSe « « « o« » @« s »« c.« © o o o « o.o 21
Figure 4. Compiler Option Keywords, Abbreviations, and Defaults 32
Pigure S. Coapiler Options Arranged by Punction « « « o o « o « 33

Figures vii

Summary of Amendments

JULY 1979

SERVICE CHANGES

For Release 3, Modification 1, the storage size imn which the conmpiler
runs has beea increased.

OTHER MODIPICATIONS

This publication has been redesigned into one part with six chapters and
three appendixes.

Chapter 1 remains an introduction giving an overview of the advantages
of using TSO to create, coampile, and execute data sets.

Information that vas formerly contained in Chapter 2, "Operating the
Terninal,® and Chapter 3 "The Terminal Session,” can be found in the TS0

Terainal User's Guyide for your installation.

Chapter 2 (formerly Chapter 4) has been revised and condensed and gives
a brief discussion on creating and updating PL/I programs. The %S0

a e _Refe e manual for your installation contains
detatled information on this subject.

Chapter 3 (formerly Chapter S5) is a description of hov to coapile and
execute a PL/I progras under TSO.

Chapter 4 (formerly Chapter 6) discusses input and outpat procedures and
attention interrupts. Detailed information om allocating and perforaing
operations on data sets can be found in the TS0 _Command lLanguage
Reference manual for your installation.

Chapter S (formerly Part 2) describes the PL/I command that is used to
invoke the Optiaizing Coapiler umder TSO.

Chapter 6 (formerly Part 2) describes compiler optioas.
Appendix A briefly discusses coamand syntax under TSO.

Appendix B has beem condensed and describes items relevant to PL/I when
.you use a terninal other tham an IBM 2741 Comaunications Teraminal.
Information on the IBM 2260 and 2265 Display Stations can be found in
the appropriate manuals for those terminals.

Pormer Appendixes C through B have been deleted. Inforamation om data
set types (formerly included in Appendix D) has beea moved to Chapter 2;
namning conventions for data sets (formerly in Appendix B) are discussed

in the TSO_Teraminal User's Guide for your ianstallation.

Appendix C (formerly Appendix P) discusses creating secondary data sets
with the SINCLUDE stateaent.

Former Appendix G has been deleted. Inforaation aboat prograas of

non-TSO0 data sets caam be found ia the 1SO_Coasand lLanguage Reference

manual for your imstallatioa.

Summary of Amendments ix

Chapter 1: Introduction

TSO

The facilities of TSO that will be of particular interest to a PL/I
programmer are those for:

e Creating, updating, and manipulating data sets

° Invoking programs

° These facilities are described in your TSO User's Guide.

The data sets can hold PL/I programs and input data for them. The
program-invoking facilities can be used to invoke PL/I compilers
(including the optimizing compiler), load modules, and 0S facilities
such as the linkage editor and the loader.

CONVERSATIONAL PROCESSING

The optimizing compiler operates under TSO in conversational mode.

In conversational mode, you invoke each program you wish to run at
the time you wish to execute it. Execution generally starts almost as
soon as you send the instruction from the terminal, and results can be
displayed at your terminal as soon as the program produces them. If the
program requires input data, you can enter it at the terminal whenever
the execution reaches an appropriate input statement.

A benefit of TSO is the ability it gives you to interact
conversationally not just with your own programs, but with the
computing system as a whole. Nearly all the operations a programmer
needs to perform can be carried out from a terminal.

THE OPTIMIZING COMPILER

The optimizing compiler will compile PL/I source programs, print the
diagnostic messages at the terminal, and write the object modules
onto a data set. These object modules can then be conversationally
link-edited and executed.

During execution, the terminal can be used as an input and output
device for consecutive files in the program. You can therefore
receive output from your program and provide input for it.
Conversational I/O needs no special PL/I code, so any STREAM file
can be used conversationally.

The INTERRUPT compiler option, introduced with Release 3 of the
compiler, allows attention interrupts to become an integral part of
programs compiled on the optimizing compiler. Chapter 6 has more
information on this option.

Chapter 1: Introduction 1

Chapter 2: Creating and Updating PL/I Programs

When you create a PL/I program using the EDIT command, you must specify
the data set type as either PLI or PLIF. PLI indicates that the records
are to be of variable length; PLIF indicates that they are to be of

fixed length. Both types are accepted by the PL/I optimizing and
checkout compilers.

You should distinguish carefully between the data set type and the
descriptive qualifier in the data set name. Both PLI and PLIF data set
types take the descriptive qualifier PLI.

The following figure lists some descriptive qualifiers and the data
types they describe.

Data Descriptive guélifiex
PL/I source code PLI
Object module OBJ
Formatted source code FPORM
Compiler listing of source code LIST
Preprocessor output in card format DECK

Figure 1. Some descriptive qualifiers

The differences between the two types of data set are as follows:

1. Record formats. You can control the format by means of the LINE and
BLOCK operands of the EDIT command (see the manual TSO Command
Language Reference), but the gstandard default formats are as follows.

PLI-type:
Record format: VB
Maximam logical record length: 104 bytes
Block size: 500 bytes

PLIF-type:
Record format: FB
Logical record length: 80 bytes
Block size: 400 bytes

2. Location of sequence numbers. In PLI-type records, sequence numbers
are held in bytes 1 to 8; in PLIF-type, they are in bytes 73 to 80.

You can have line numbers omitted from the records by specifying the
additional operand NONUM. In this book, however, it is assumed that the
records have line numbers.

Provided you allow the standard defaults for the MARGINS, SEQUENCE,
NUMBER, and STMT compiler options to apply when you compile your program,
the compiler will assume all source text (including *PROCESS statements)
starts after column 8 for V-format data sets and extends from columns 2

Chapter 2: Creating and Updating PL/I Programs 3

to 72 for F-format data sets. The statement numbers printed on all
compiler listings will be derived from the sequence numbers.

The default options for each field are summarized in Figure 2.

PLI record
1 .‘Yl” 10 30 (Max. value: 100)
[ofoJofofoJo[1]o] [r[:[r[r[o[c] [o]p[T[z]ofn|s|(nu][a]z{n])];:]
\ V, 4 N\ - v V4
Seqguence number Source text
PLIF-type record
2 27713 80
[Ir]:IrTrlofc] [ofp|r[z]o]nis]c[m[alrin]r]:] | {3 il [o]efnfofe]ef1]o]
\ - A\ Ve /
Source text) Sequence number

Figure 2. Standard default record formats

The differences between the record types are shown in Figure 12,
As that figure suggests, PLI-type data sets generally take less space
to hold a particular size of program than PLIF-type.

Notice that although the standard defaults assume no carriage control
character for PLI-type recoxds, byte 9 is assumed to be occupied by
neither source text nor sequence number. It can therefore be used to
hold a carriage control character if there is any possibility of the
program being listed in batch mode.

Chapter 3: Running a Program

COMPILATION
INVOKING THE COMPILER

The usual method of invoking the optimizing compiler is by

the PLI command. In its simplest form, the command consists of the
keyword and the name of the TSO data set holding the PL/I source
program. For instance: .

pli caltrop

In addition to the data set name, you can also specify the PRINT -
operand to control the compiler listings, and the LIB operand to specify
secondary input data sets for RINCLUDE statements. You can also specify
compiler options as operands of the PLI command.

The command processor for the PLI command is a program known as the
PL/I prompter. When the command is entered, this program checks the
operands and allocates the data sets required by the compiler. Control
is then passed to the compiler and a message displayed. . :

If the source data set has a conventional TSO data set name, you can
use the simple name, as in the example. If not, you will need to
specify the full name, and enclose it in single quotation marks:

pli ‘dianthus’
or:
pli *jjones.erica.pli*

The compiler translates the source programs into object modules,
which it stores on external data sets. You can link-edit and execute
these object modules conversationally (see "Link Editing and Executing”
later in this chapter).

If you use an unqualified data set name, as in the example at
the start of this section, the system will generate a name for the
object module data set. It will take the simple name of the source data
set - CALTROP in the example - and add to it your user-identification
and the descriptive qualifier OBJ. Hence, if the user who entered the
example PLI command had the identification WSMITH, the object module
would be written onto a data set called WSMITH.CALTROP.OBJ.

You can make your own choice of name for the object module data set
by including the OBJECT compiler option as an operand of the PLI
command. For instance:

pli caltrop object(trapa)

Chapter 3: Running a Program 5

The system will . add the same qualifiers to this name as it would to the
source data set simple name, so .the object module would, in this
example, be written onto a data set called WSMIT'H.TRAPA.OBJ.

You can specify the full name of the object module data set by
enclosing it in quotation marks. For instance:

pli caltrop object('natans*®)

The system in this case adds no qualifiers, so the object module is
stored on a data set called NATANS.

The specification of a full name can be used to store the object
module with another user's user-identification. For instance, the
following command would store the object module using the user-
identification JJONES:

pli caltrop object('jjones.caltrop.obj®)

An alternative to the PLI command is the RUON command or subcommand.

RUN COMMAND AND SUBCOMMAND

The RUN command is used to invoke a specified compiler and to execute
the compiled program. It can be used to invoke, via the prompter, the
optimizing compiler. Compared with the PLI command, the RUN command has
the following limitations:

e No compiler options can be specifiéd.

e There is no PRINT operand, so if your system was generated with the
IBM default for this operand, the prompter will allocate SYSPRINT to
a dummy data set. You cannot therefore obtain compiler listings at
the terminal.

e Under the OS/MVT version of TSO, there is no LIB operand, so you
cannot specify a preprocessor input data set. Such a data set must be
allocated by means of the ALLOCATE command. (The enhanced 0S/VS2
version includes the LIB operand.)

e The source program data set must have V-format records. A data set
created under the EDIT command is therefore suitable if the PLI
operand was specified, but not if the PLIF operand was used.

A simplified general form of the command is:

RUN|R data-set-name ['parameter-string'l}
(PLI] [CHECK|OPT)

The “data-set-name" operand must be the name of the data set holding the
PL/I source program. It can be specified in the form "user-supplied-
name.descriptive-qualifier®”. If it is not specified in this form - if,
for instance, only the simple name is specified - or if the descriptive
qualifier is not PLI, you must include the operand PLI. The CHECK and
OPT operands indicate, respectively, the checkout and optimizing
compiler; OPT is the standard default applied when neither is specified.
The “"parameter-string” will be passed to the main procedure of the PL/I
programe.

RUN can also be used as a subcommand of the EDIT command. The syntax
shown here for the RUN command also applies to the subcommand, except
that there is no "data-set-name" or PLI operand. Approximately 30K
bytes of storage will be reserved in your region for the EDIT command
routines, so the storage available to the compiler and your program will
be reduced by this amount. RUN is particularly useful as a subcommand

when a program is being developed. After a run, amendments can be made
to the source data set by means of other subcommands of EDIT, without
the need to reenter the EDIT command.

COMPILER LISTINGS

As in batch mode, compiler options control which listings ‘the compiler
produces (see "Compiler Options® in Chapter 6). You can specify the
options as operands of the PLI command.

In addition to specifying which options are to be produced, you will
need to indicate where they are to be transmitted to. If you wish to
have them displayed at the terminal, you can specify either the PRINT(#*)
operand, which allocates the compiler listing file to the terminal, or
the TERMINAL option. The latter should contain a list of the options
corresponding to the listings you require at the terminal. For
instance, to produce a source listing at the terminal, you could enter
either:

pli caltrop print(*) source
or:
pli caltrop term(source)

Compiler listings can be directed to a data set by specifying the
PRINT operand with the data set's name, or to a SYSOUT class by
specifying the SYSPRINT operand. For further details see "PLI Command"
in Chapter 5.

CALLING THE COMPILER

The CALL command can be used to invoke the compiler directly. The
member name is IELOAA and you call the entry point IELOAC. Because the
PL/I prompter is not used, you must ensure that all data sets required
by the compiler are allocated before it is called (see "Compiler Data
Sets"™ in Chapter 4). The command takes the form:

CALL IELOAC

BACKGROUND PROCESSING

If you have the necessary authorization, you can submit jobs for
processing in a background region. Your installation must record the
authorization in your UADS (User Attribute Data Set) entry.

Jobs are submitted by means of the SUBMIT command. The command must
include the name of the data set holding the job or jobs to be
processed, and the data set must contain the necessary Job Control
Language statements. Jobs will be run under the same version of the
operating system as is used for TSO. Output from the jobs can be
manipulated from your terminal.

Further details about submitting background jobs are given in the
manual TSO Terminal User's Guide.

Chapter 3: Running a Program 7

LINK-EDITING AND EXECUTING
INTRODUCTION TO COMMANDS

Compilation using the PLI command produces an object module on a data
set; to execute the program this must be link-edited to form a load
module, which must then be invoked. These operations can be performed by
means of either the LOADGO command, or the LINK command followed by the
CALL command.

The LOADGO command invokes the loader program. This builds the load
module in main storage, and then invokes it. The load module can be
built from a single load module, or from a number of object modules or
load modules, or a wmixture of objeéect and load modules.

The LINK command invokes the linkage editor, which link-edits one or
more object modules into a load module. It stores the load module on an
external data set. The CALL command invokes the load module.

You can use the LOADGO method if you do not wish to retain a copy of
the load module. Otherwise, you must use the LINK-and-CALL method.

An alternative to the LOADGO method is the RUN method, in which the
single command or subcommand RUN initiates compilation followed by link-
editing and execution. The RUN command and subcommand are described in
the earlier section "RUN Command and Subcommand” .

The succeeding sections describe the LOADGO, LINK, and CALL commands.

THE LOADGO COMMAND

This command invokes the O0S loader. A simplified general form is:

LOADGO| LOAD (data-set-1ist) ['parameter-string'l]
(LIB(data-set-1ist)] (PLICMIX|PLIBASE]

The initial "data-set-list®” specifies the names of data sets holding the
modules - object modules or load modules - that are to be loaded and
executed. The names must be separated by commas or blanks; the
parentheses can be omitted when there is only one name.

For programs compiled on the optimizing compiler ®parameter-string”
contains two fields separated by a slash (/), and takes the form:

' [execution time optionsl [/parameter stringl*

The first field will be passed to the library initialization routine
as an execution-time option list; the second will be passed to the main
procedure of the PL/I program.' If there is no list of execution time
options, the main procedure parameter must be preceded by a /.
Execution time options are described in the manual 0S PL/I Optimizing
Compiler: Programmer®'s Guide.

The LIB operand should contain a list of the names of data sets that
contain user-supplied modules to be link-edited by means of the
automatic library call facility.

The name of the PL/I resident library must be specified as an
operand. It can be either PLIBASE or PLICMIX. PLIBASE must be used in
normal conditions. PLICMIX is for use when modules that have been
translated by the checkout compiler are being mixed with those from the
optimizing compiler. In such conditions, PLICMIX gives a smaller load

module than the use of PLIBASE, although execution may be slower.

You can specify loader options as operands of the LOADGO command; for
further information, see the 0S/VS2 TSO: Command Language Reference manual.

The LOADGO command processor allocates all data sets used by the

THE LINK COMMAND

This command invokes the OS linkage editor. A simplified general form
is:

LINK (data-set-list) [LOAD(data-set-name)]
[LIB(data-set-1ist)] [(PLICMIX|PLIBASE]

The initial "data-set-list"™ specifies the names of data sets holding the
object modules that are to be link-edited. They can also contain
linkage-editor control statements. The names must be separated by
commas or blanks; the parentheses can be omitted when there is only one
name. The rules about positioning of control statements in relation to
object modules are the same as for batch mode.

The LOAD operand specifies the name of the data set that is to hold
the load module. If you specify a simple name, the system will add your
ugser-identification qualifier and the descriptive qualifier LOAD. The
load module must be a member of a partitioned data set. If you do not
specify a member name, the system will use the name TEMPNAME. If you
omit the LOAD operand, the system will construct a name by adding your
user-identification qualifier and the descriptive qualifier LOAD to the
first data set name in the initial “data-set-list".

The LIB operand should contain a list of the data sets that contain
user-supplied modules to be link-edited by means of the automatic
library call facility.

The name of the PL/I resident library must be specified. It can be
either PLIBASE or PLICMIX. PLIBASE must be used in normal conditions.
PLICMIX is for use when modules that have been translated by the
checkout compiler are being mixed with those from the optimizing
compiler. 1In these conditions, either PLICMIX or PLIBASE can be used.
PLICMIX produces a smaller load module, although execution may be slower
than if PLIBASE is used.

You can also specify linkage editor options in the LINK command; for

further information., see the 0S/VS2 TSO: Command Language Reference manual.

The LINK command processor allocates all data sets required by the
linkage editor.

THE CALL COMMAND

This command loads and executes a specified load module. 1Its general
form is:

CALL data-set-name (®parameter-string']

The "data-set-name” specifies the partitioned data set member that holds
the load module. If you specify the simple name of the data set, the
system assumes the descriptive qualifier LOAD. If you do not specify a

member name, the system assumes the name TEMPNAME.

For programs compiled on the optimizing compiler, "parameter-string*”

Chapter 3: Running a Program 9

contains two fields separated by a slash(/), and takes the form:
' [execution time options] (/parameter stringl

The first field will be passed to the library initialization routine
as an execution-time option list; the second will be passed to the main
procedure of the PL/I program. If there is no list of execution time
options, the main procedure parameter must be preceded by a /.
'Execution time options are described in the manual OS PL/I Optimizing

Compiler: Programmer's Guide.

MIXING PROCEDURES FROM THE PL/I OPTIMIZING AND CHECKOUT COMPILERS

Procedures processed by the two compilers can be link-edited to form a
single program. The LOADGO or LINK command is used to do this, in the
same way as for procedures from the optimizing compiler alone. However,
the following special points should be noted:

e The data set holding the checkout compiler and a work file must be
allocated. This can be done by the LOGON procedure. The IBM
standard logon procedure for the checkout compiler, PLICKLGN, makes
the allocations, but that for the optimizing compiler, PLIXLGN, does
not. PLICKIGN is suitable for use with the optimizing compiler. As
an alternative to the logon procedure, ALLOCATE commands can be used.
FPor instance:

ALLOCATE FILE(SYSPLIé)vDATASET('SYSl.PLICLNK') SHR
ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)

The SHR operand is required to allow other users to access the
compiler.

¢ The checkout compiler must have control at the start of execution.
Contrxol must not pass initially to a procedure compiled by the
optimizing compiler. One way of ensuring this is to put a data set
holding a procedure translated by the checkout compiler at the start
of the list of data sets in the LOADGO or LINK command.

e The PL/I resident library PLICMIX can be used as an alternative to
PLIBASE. The required version can be specified in the LOADGO or LINK
command. PLICMIX gives a smaller load module at the expense of
execution time; PLIBASE gives faster execution at the expense of
space.

Further information about mixing modules from the two compilers is

given in the programmer's guide for the checkout compiler. Examples
are given in the following two sections.

COMPILE, LOAD, AND GO

You should use the load-and-go method when you wish to:

e Build the load module in main storage, without producing a permanent
copy on a data set, and either:

e Link-edit two or more external procedures together and execute the
resulting program, Or:

e Execute a single external procedure

10

If you want a permanent copy of the load module, you must use the
LINK command, examples of which are given later.

Further information about using the loader is given in the
programmer's guide for the optimizing compiler.

Example 1

A single external procedure, held on a data set called
PGROUP3.2Z2A311B.PLI, is compiled by the optimizing compiler, and the
resulting code is link-edited and executed by means of the LOADGO
command.

The terminal session is started by a LOGON command specifying a user-
identification of PGROUP3. The compiler is then invoked by means of a
PLI command. No data set name is specified for the object module data
set, so the system generates one from the name of the source data sets
the object module data set will be called PGROUP3.ZA311B.OBJ.

logon pgroup3

PGROUP3 LOGON IN PROGRESS AT 13:41::07 ON FEBRUARY 7, 1979
READY

pli za311b

PL/I OPTIMIZER V1 R2.0 TIME: 13.41.08 DATE: 7 FEB 79

NO MESSAGES PRODUCED FOR THIS COMPILATION

COMPILE TIME 0.02 MINsS SPILL FILL: 0 RECORDS, SIZE 4051
READY '

loadgo za3llb plibase

READY

Example 2

An external procedure that uses the procedure compiled in Example 1 as a
subroutine is compiled and executed. The two procedures are link-edited
together and executed by means of the LOADGO command. The main
procedure is held on a data set called PGROUP3.XA311B.PLI, and it is
first compiled by the optimizing compiler. It is then link-edited with
the object module on PGROUP3.ZA311B.OBJ, produced in Example 1. The
OBJECT option specifies XAB as the simple name for the object module.
data set. The full name of the data set will be PGROUP3.XAB.OBJ.

The parameter '999°' is passed to the main procedure at execution
time.

pli xa311lb obj(xab)

PL/I OPTIMIZER V1 R2.0 TIME: 13.52.41 DATE: 7 FEB 79
OPTIONS SPECIFIED

OBJ

NO MESSAGES PRODUCED FOR THIS COMPILATION

COMPILE TIME 0.02 MINS SPILL FILE: 0 RECORDS, SIZE 4051
READY

loadgo (xab,za311b) */999*' plibase

READY

If the execution time option REPORT were to be specified, the LOADGO
command would take the form:

loadgo (xab,za311lb) ‘reports/999°* plibase

Chapter 3: Running a Program 11

Example 3

A procedure compiled by the optimizing compiler uses, as a subroutine, a
procedure that was translated by the PL/I checkout compiler. The main
procedure is held in object-module form on a data set whose full name is
REVERT; this name is not in accordance with the TSO conventions. The
translated version of the subroutine is held on two data sets:
PGROUP3.TOMPROC.0OBJ, which holds the link-edit stub, and
PGROUP3.TOMPROC. ITEXT, which holds the intermediate text. The latter
data set must be allocated before the LOADGO command is entered.

The data set holding the checkout compiler, S¥S1.PLICLINK,

and a work file, called SYSUT1l, must also be allocated unless this is
done in the logon procedure. For further information about processing
checkout compilexr modules, see the manual O0S PL/I Checkout Compiler: TSO
Usexr's Guide.

The resident library PLICMIX is chosen. The option STEP(5000) is
passed to the interpreter stage of the checkout compiler. Notice that
the checkout compiler procedure is specified first in the LOADGO

command.

READY

allocate file(sysplic) dataset('sysl.pliclnk®') shr

READY

allocate file(sysutl) block(1024) space(60,60)

READY

allocate file(sysitext) dataset(tomproc.itext)

READY v

loadgo (tomproc, ‘revert®) °*step(5000)°' plicmix

V1l R3 PL/I CHECKROUT 6 MAR 79 interpretation stage
TIME 15.33.39 checkout compiler

OPTIONS SPECIFIED invoked
STEP(5000)

IEN1184A 435X °*FINISH®' RAISED.
AT 920 IN TOP

290 GO subcommand of PLIC command
INTERPRET TIME 0.01 MINS ends interpretation stage

- TOTAL TIME 0.01 MINS of checkout compiler

READY

COMPiLE, LINR-EDIT, AND EXECUTE

The LINK command is used to link-edit a compiled external procedure, or
to combine two or more procedures to form a single load module. A load
module can be executed by means of the CALL command. You should use the
LINK-and-CALL method of processing when you wish to:

e Keep a copy of the load module on an external data set.

e And either link-edit two or more external procedures to form a single
program

e Or execute a program repeatedly, without making amendments to the
PL/I source code '

If you wish to execute a compiled program without keeping a copy of
the load module, you can use the LOADGO command (see previous section).

Further information about using the linkage editor is given in the
programmer’s guide for the optimizing compiler.

12

Example 1

Two PL/I external procedures are compiled and link-edited to form a
single load module, which is then executed. The PL/I source code is
held on two data sets, HIBBS.MEDICS.PLI, and HIBBS.MED4.PLI.

The two procedures are compiled using the PLI command. No data set
names axre specified for the object modules, so the system generates
names from the names of the source data sets. The data sets will be
called HIBBS.MEDICS.0OBJ and HIBBS.MED4.0BJ.

In the LINK command, the names of the two data sets holding the
object modules are specified. No name is specified for the data set
that will hold the load module, so the system generates the name
HIBBS.MEDICS.LOAD (TEMPNAME), based on MEDICS, the first name in the LINK
command .

The simple name MEDICS is specified in the CALL command; the system
generates the full name HIBBS.MEDICS.LOAD (TEMPNAME).

logon hibbs

HIBBS LOGON IN PROGRESS AT 14:51:27 ON FEBRUARY 7, 1979
READY

pli medics

PL/I OPTIMIZER V1 R3.0 TIME: 14.52.15 DATE 7 FEB 1979

NO MESSAGES PRODUCED FOR THIS COMPILATION

COMPILE TIME 0.02 MINS SPILL FILE: 0 RECORDS, SIZE 4051
READY

pli medd

‘PL/I OPTIMIZER V1 R3.0 TIME: 14.54,.15 DATE 7 FEB 1979

NO MESSAGES OF SEVERITY W AND ABOVE PRODUCED FOR THIS COMPILATION
MESSAGES SUPPRESSED BY THE FLAG OPTION: 1 I.

COMPILE TIME 0.02 MINS SPILL FILE: 0 RECORDS, SIZE 4051
READY

link (medics,medl4) plibase

READY

call medics
TEMPNAME ASSUMED AS A MEMBER NAME
READY

If the main procedure had a parameter which was to be passed the CALL
command would take the form:

call medics ‘skildare’

where KILDARE was the parameter. If, in addition, the execution time
option NOSPIE was required, the command would take the form:

call medics ‘nospieskildare!

Chapter 3: Running a Program 13

Example 2

The two external procedures compiled in example 1 are link-edited and
executed again, but this time a data set name is specified for the load
module. The full name of the data set member will be
HIBBS.MED.LOAD(MY4). The simple name is specified both in the LOAD
operand of the LINK command and in the CALL command.

link (medics,med#) load(med(m4)) plibase
READY .

call med(m4)

READY

Example 3

The object module of the MEDICS external procedure is link-edited with a
module translated by the PL/I Checkout Compiler. This module is held on
a data set called HIBBS.STD7F.OBJ. Before this module can be executed,
the data set holding the corresponding intermediate text must be
allocated. This data set is called HIBBS.STD7F.ITEXT. (For further
information about processing checkout compiler procedures, see the
manual OS PL/I Checkout Compiler: TSO User's Guide.) It is assumed that
the data set holding the checkout compiler has been allocated in the
logon procedure. Otherwise, it must be allocated before the load

ggdgle is called, as in Example 3 of the section “"Compile, Load, and

Notice that in the LINK command, the data set holding the checkout
compiler module is the first one in the list. Also notice that the
resident libary PLICMIX has been selected.

The load module will be stored as HIBBS.MED.LOAD(M7F); in other
words, it is another member of the same data set as the load module
generated in Example 2.

The load module is executed by means of the CALL command.

READY

link (std7f,medics) load(med(m7f)) plicmix

READY

allocate file(sysitext) dataset(std7f.itext)

READY

call med(m7f£)

V1l R2.0 PL/I CHECKOUT S FEB 79 interpretation stage of
TIME 13.21.45 checkout compiler

invoked

IEN1184A 1095X °'FPINISH' RAISED. normal end of processing
AT 4010 IN MED

?go GO subcommand of PLIC command

INTERPRET TIME 0.39 MINS ends interpreter stage of
TOTAL TIME 0.39 MINS checkout compiler

READY

14

USING THE RUN FACILITY

RUN can be used as a command or a subcommand of the EDIT command. In
the example below, it is used as a subcommand. A data set is created
under the EDIT command and then compiled and executed under the RUN
command. The argument ‘noxtest' is passed to the main PL/I procedure.
After successful execution of the program, the compiler terminates and
edit submode of the EDIT command is reentered. If the run had detected
any errors, they could have been corrected at this stage using
subcommands of EDIT. The source data set is then saved and the EDIT
command is ended.

edit delin pli new

INPUT

00010 delin:proc (parm) options(main);
00020 dcl parm char(100) var;

00450 end;

00460

EDIT

run ‘/noxtest' opt

PL/I OPTIMIZER V1 R2.0 TIME: 15.24.10 DATE: 7 FEB 79

NO MESSAGES PRODUCED FOR THIS COMPILATION

COMPILE TIME 0.03 MINS SPILL FILE: 0 RECORDS, SIZE 4051
EDIT

save

SAVED

end

READY

Chapter 3: Running a Program 15

Chapter 4: I/O and Attention Interrupts

INTRODUCTION

When a PL/I program is invoked conversationally, data can be transmitted
between it and the following:

e The terminal. You can type and enter data when it is needed by the
program, and have output sent to the terminal when it is produced by
the program.

e Data sets on direct-access storage. Your program can read input data
from existing data sets, and can write output data to existing data
sets and to new ones.

In neither case does your program need any special PL/I code. The
I/0 statements can be exactly the same as for a batch mode job.

There are a few special considerations you need to be aware of for
conversational I/O, explained in the sections "Conversational Input” and
"Conversational Output."

Data sets used by the compiler during compilation also need to be
allocated, although the system will generally do this for you. The
section "Compiler Data Sets," describes the data sets required by the
compiler.

A further conversational facility is the use of attention interrupts
and the ATTENTION condition. This is described at the end of this
chapter.

CONVERSATIONAL INPUT

You can enter data at the terminal for an input file in your PL/I
program, provided the file has been:

1. Declared explicitly or implicitly with the CONSECUTIVE environment
option. All stream files meet this condition.

2. Allocated to the terminal.

The standard default input file SYSIN generally meets both these
oconditions. It is a stream file, and is allocated to the terminal in
the logon procedure PLIXLGN.

You are prompted for input to stream files by a colon(:). Each time
a GET statement is executed, the system initiates a skip at the terminal
to position one of the next line, displays the colon, and initiates a
second skip to position one of the following line. You can then enter
the required data. If you enter a line that does not contain enough
data to complete execution of the GET statement, a further prompt,
consisting of a plus sign followed by a colon (+:), is displayed.

You can delay transmission of the data to your program until two or
more lines have been entered by adding a hyphen to the énd of any line
that is to be continued. The hyphen is a TSO feature, and is known as a
continuation character.

Chapter 4: I/O and Attention Interrupts 17

You may wish to include, in your program, output statements that
prompt you for input. If you do so, you can inhibit the initial system
prompt by ending your own prompt with a colon. The GET statement could
be preceded by a PUT statement such as:

PUT SKIP LIST('ENTER NEXT ITEM:‘);

To inhibit the system prompt for the next GET statement, your own
prompt must meet the following conditions.

1. It must be either list-directed or edit-directed, and if list-
directed, must be to a PRINT file.

2. The file transmitting the prompt must be allocated to the terminal.
The system prompt will not be inhibited if the file is merely being
copied at the terminal by means of the MONITOR subcommand.

Format of Data: The data you enter at the terminal should have exactly
the same format as stream input data in batch mode, except for the
following variations:

e Simplified punctuation for input: If you enter separate items of
input on separate lines, there is no need to enter intervening blanks
or commas; the compiler will insert a comma at the end of each line.
For instance, in response to the statement:

GET LIST(IUJUK);

your terminal interaction could be as follows:

* b=
" o

2
3
with a carriage return following each item. It would be equivalent
to:

11293

If you wish to continue an item onto another line, you must end the
first line with a continuation character. Otherwise, for a GET LIST
or GET DATA statement, a comma will be inserted, and for a GET EDIT
statement, the item will be padded (see next paragraph).

e Automatic padding for GET EDIT: There is no need to enter blanks at
the end of a line of input for a GET EDIT statement. The item you
enter will be padded to the correct length. For instance, for the
PL/I statement:

GET EDIT(NAME) (A(15));

you could enter the five characters:

SMITH

followed immediately by a carriage return. The item will be padded
with 10 blanks, so that the program receives a string 15 characters
long. If you wish to continue an item on a second or subsequent
line, you must add a continuation character to the end of every line

except the last; the first line transmitted would otherwise be padded
and treated as the complete data item.

18

e SKIP option or format item: A SKIP in a GET statement asks the
program to ignore data not yet entered. All uses of SKIP(n) where n
is greater than one are taken to mean SKIP(1); SKIP(1) is taken to
mean that all unused data on the current line is to be ignored.

Stream and Record Files: Both stream and record files can be allocated
to the terminal. However, no prompting is provided for record files,
and if more than one file is allocated to the terminal, and one or more
is a record file, the files® output will not necessarily be
synchronized. There is no guarantee that the order in which data is
transmitted to and from the terminal will be the same as the order in
which the corresponding PL/I input/output statements are executed. It
is therefore advisable to use stream files wherever possible.

capital and Lowercase Letters: Character-strings are transmitted to the
program as entered. Assuming that your terminal has both sets of
characters, you must type in lowercase or capital letters, according to
the requirements of your program. There is no translation of the input
string from lowercase to capital letters or vice versa. If the string
is to be compared with a character-string constant in the program,
remember that if the program was created using the EDIT command without
the ASIS operand, the constant will be in capitals whether it was
entered in lowercase or capitals.

End of File: The characters /#* in positions one and two of a line that
contains no other characters are treated as an end-of-file mark, that
is, they raise the ENDFILE condition.

COPY Option of GET Statement: The GET statement can specify the COPY
option, but if the COPY file, as well as the input file, is allocated to
the terminal, no copy of the data will be printed. Note that SYSPRINT
is the default COPY file, and that this file is allocated to the
terminal by default in the standard LOGON procedure PLIXLGN.

CONVERSATIONAL OUTPUT

You can obtain at your terminal data from a PL/I file that has been
both:

1. Declared explicitly or implicitly with the CONSECUTIVE
environment option. All stream files meet this condition.

2. Allocated to the terminal.

The standard print file SYSPRINT generally meets both these
conditions. It is a stream file, and is allocated to the terminal in
the standard logon procedure PLIXLGN.

Format of PRINT Files: Data from SYSPRINT or other PRINT files is not
normally formatted into pages at the terminal. Three lines are always
skipped for PAGE and LINE options and format items. The ENDPAGE
condition is normally never raised. SKIP(n), where n is greater than
three, causes only three lines to be skipped. SKIP(0) is implemented by
backspacing, and should therefore not be used with terminals that do not
have a backspace feature, such as the IBM 2260 and 2265.

You can cause a PRINT file to be formatted into pages by inserting a
tak control table in your program. The table must be called PLITABS,
and its contents are explained in the programmer's guide for the
optimizing compiler. The element PAGELENGTH must be initialized to the
length of page you require, that is, the length of the sheet of paper on

Chapter 4: I/0 and Attention Interrupts 19

which each page is to be printed, expressed as the maximum number of
lines that could be printed on it. The element PAGESIZE must be
initialized to the actual number of lines to be printed on each page.
After the number of lines in PAGESIZE has been printed on a page,
ENDPAGE is raised, for which standard system action is to skip
PAGELENGTH minus PAGESIZE lines, and then start printing the next page.
For otherwise standard layout, the other elements in PLITABS must be
initialized to the values shown in the programmer‘'s guide. You can also
use PLITABS to alter the tabulating positions of list-directed and data-
directed output.

Although some types of terminal have a tabulating facility,
tabulating of list-directed and data-directed output is always achieved
by transmission of blank characters.

Stream and Record Files: Both stream and record files can be allocated
to the terminal. However, if more than one file is allocated to the
terminal and one or more is a record file, the files' output will not
necessarily be synchronized. There is no guarantee that the order in
which data is transmitted between the program and the terminal will be
the same as the order in which the corresponding PL/I input and output
statements are executed. In addition, because of a TCAM restriction,
any output to record files at the terminal is printed in uppercase .
(capital) letters. It is therefore advisable to use stream files
wherever possible.

Capital and Lowercase Characters: For stream files, characters are
displayed at the terminal as they are held in the program, provided the
terminal can display them. For instance, with an IBM 2741 terminal,
capital and lowercase letters are printed as such, without translation.
For record files, all characters are translated to uppercase. A
variable or constant in the program can contain lowercase letters if the
program was created under the EDIT command with the ASIS operand, or if
the program has read lowercase letters from the terminal.

COMPILER DATA SETS

The compiler requires the use of a number of data sets in order to.
process a PL/I program. These are listed in Figure 3. The following
data sets are always required by the compiler.

e The data set holding the PL/I program
e A data set for the compiler listing

Up to six more data sets may be required, depending on which compiler
options have been specified.

The data sets must be allocated before the compiler uses them. If
the PLI command or the RUN command or subcommand is used, the compi ler
will be invoked via the prompter, and the prompter will allocate the
necessary data sets. If you invoke the compiler without the prompter,
you must allocate the necessary data sets yourself.

When the prompter allocates compiler data sets, it uses ddnames
generated by TSO rather than the ddnames that are used in batch mode.
Figure 3 includes the batch-mode ddnames of the data sets, but their
main purpose here is to help you identify the data sets. If the
compiler is invoked via the prompter, you cannot refer to the data sets
by these names. To control the allocation of compiler data sgts. you
need to use the appropriate operand of the PLI command. For instance,
to allocate the standard output file (ddname SYSPRINT in batch mode) to
the terminal, you should use the PRINT(*) operand of the PLI command;
you cannot make the allocation by using the ALLOCATE command with
FILE (SYSPRINT) and DATASET(*) operands. Figure 3 shows which operands
to use for those data sets whose allocation you can control.

20

s3dnzzejul UOTIUS3IY pue 0/I :4 Ioideyd

%4

*S398 ejep za'['gdmoa

‘¢ aambta

Data set when required Where to specify Descriptive Allocated by Parameters used by prompter?
(and batch-mode data set qualifier SPACE=2 DISP=3

ddname) in PLI command

Primary input Always 1st operand PLI Prompter - SHR

(SYSCIN or SYSIN)

Temporary work When insufficient Cannot specify - Prompter (1024, (60,60)) (NEW,DELETE)
data set(SYSUT1) main storage

Compiler listing Always Argument of PRINT LIST Prompter (629, (n,m)) (OLD,KEEP) ors
(SYSPRINT) operand (NEW,CATLG)
Object module When OBJECT option 1st argument of OBJ Prompter, when (400,(50,50)) (OLD,KEEP)) or
(SYSLIN) applies OBJECT operand required? (NEW, CATLG)
Object module or When MACRO and MDECK Argument of MDECK DECK Prompter, when (400,(50,50)) (OLD,KEEP) or
preprocessor options apply DECK operand required? (NEW, CATLG)
output in card

format (SYSPUNCH)

Secondary input When LIB operand used Arguments of LIB - Prompter, when -¢ SHR

t0 preprocessor operand required

(SYSLIB)®

1

Unit is determined by entry in User Attribute Data Set.

These space allocations apply only if the data set is new. The first argument of the SPACE parameter establishes
the block size. For the SYSUT1, SYSPRINT, SYSLIN, and SYSPUNCH data sets, the record format, record length,

and number of bufters are established by the compiler when it opens the data sets. The values it uses are given
in the compiler‘'s programmer‘®s guide.

The prompter first tries to allocate the SYSPRINT, SYSLIN, and SYSPUNCH data sets with DISP=(OLD,KEEP).

This will cause any existing data set (or partitioned data set member) with the same name to be replaced
with the new one. If the data set name cannot be found in the system catalog, the data set is allocated

with DISP=(NEW,CATLG).

The data set already exists, therefore SPACE (and also UNIT) are already established.

DISP parameter used only if PRINT(dsname) operand applies. Otherwise, prompter supplies following parameters.
TERM=TS if PRINT(*) operand applies
DUMMY if NOPRINT operand applies
SYSOUT if SYSPRINT operand applies

If any ddnames are specified in RINCLUDE statements, allocate the d§ta sets with the ALLOCATE statement.

Except when the associated option has been specified by means of a *PROCESS statement.
In this case the data set(s) must be allocated by the user.

*s3as eaep xa1tdwoo ay3 o3 buraxsgox se pazrubooaa

2q TTITM SouWeUPp Spow-ijdo3eq oYl °pa)OAUT 0u ST xoajdwoxd sy3 usym

EXAMPLE OF INPUT/OUTPUT

The example program prints a report based on information retrieved from
a data base. The content of the report is controlled by a list of
parameters that contains the name of the person requiring the report and
a set of numbers indicating the information that is to be printed. 1In
the example, the parameters are read from the terminal. The program
includes a prompt for the name parameter, and a message confirming its
acceptance. The report is printed on a system output device. The
program uses four files:

SYSPRINT Standard stream output file. Prints prompt and
confirmation at terminal.

PARMS Stream input file. Reads parameters from terminal. ‘

INBASE Record input file. Reads data base, namely, member MEM3 of

data set ‘BDATA.
REPORT Sends report to SYSOUT device.

SYSPRINT has been allocated to the terminal by the logon procedure. The
other three files are allocated by ALLOCATE commands entered in TSO
submode.

The program is called REPORTR and it is held on a conventionally-
named TSO data set whose user-supplied name is REPORTER. The compiler
is invoked with the SOURCE option to provide a list of the PL/I source
code.

READY
pli reporter print(*) source "print(#*)" allocates
OPTIMIZING COMPILER INVOKED source listing to terminal

PL/I OPTIMIZER V1 R2.0 TIME:10.48.34 DATE: 17 MAR 79
OPTIONS SPECIFIED
SOURCE

SOURCE LISTING
NUMBER
10 00000010 REPORTR:PROC OPTIONS(MAIN) ;

180 00000180 ON ENDFILE(PARMS) GO TO READER;

1000 00001000 PUT LIST(*ENTER NAME:'); print prompt at terminal
1010 00001010 GET FILE(PARMS) LIST(NAME);

. read name parameter from

. terminal

1050 00001050 PUT LIST(°NAME ACCEPTED®);
- confirmation message

2000 00002000 GET FILE(PARMS) LIST((A(I) DO I=1 TO 50));
. read other parameters from
. terminal

2010 00002010 READER:

00002020 READ FILE(INBASE) INTO(B);

. read data base

4010 00004010 PRINTER:
00004020 PUT FILE (REPORT) EDIT (HEAD1 | [NAME) ;
- print line of report on

. system printer
5000 00005000 END REPORTR;

22

NO MESSAGES PRODUCED FOR THIS COMPILATION

COMPILE TIME 0.30 MINS SPILL FILE: 0 RECORDS, SIZE 3491

. READY

alloc file(parms) dataset(*) file to read parameters from
READY terminal

alloc file(inbase) dataset(®bdata(mem3)*) old

READY file to read data base
alloc file(report) sysout file to print report on
READY system printer

loadgo reporter plibase

ENTER NAME: 'F W WIlliams* prompt & name parameter
NAME ACCEPTED confirmation message

H automatic prompt for params.
13571014 15 19 parameters entered

+3/% prompt for further params.
READY End-of-file entered

ATTENTION INTERRUPTS

The INTERRUPT option allows attention interrupts to become an integral
part of programming with the optimizing compiler, and this gives the
user considerable interactive control of the program.

If the INTERRUPT option is in effect during compilation, the compiled
program will respond to one attention interrupt by searching for an
established ATTENTION on-unit, executing it if it f£inds one, and
continuing with the processing if it does not. When the execution of an
ATTENTION on-unit is complete, control will return to the point of
interrupt unless directed elsewhere by means of a GOTO statement. Two
attention interrupts terminate execution.

If NOINTERRUPT was in effect during compilation, the compiled
program will be terminated if one attention interrupt occurs.

Attention interrupts can be simulated with any type of terminal. The
TERMINAL command is used for this purpose and described in Appendix B,
"Using a Terminal other than a 2741."

With a 2741 terminal, the simplest way to cause an attention
interrupt is to press the ATTN key. If the terminal is fitted with a
Receive Interrupt special feature, the system will respond to the ATTN
key at any time. If the terminal does not have this feature, you can
initiate an attention interrupt only when the system is waiting for a
command, subcommand, or data.

Chapter 4: I/0 and Attention Interrupts 23

One attention interrupt is caused on a 2741 by pressing the attention
button once. Two are caused by pressing the attention button twice in
quick succession.

HOW TO USE ATTENTION INTERRUPTS

The ability given by the INTERRUPT option to respond or not respond to
attention interrupts allows for two possible uses:

1. Attention interrupts can .be used purely as a debugging feature with
ATTENTION on units used to supply debuggingy data. The program can
finally be compiled with NOINTERRUPT for production purposes.

2. Production programs which are run from a terminal can be made more
responsive and convenient to use by the introduction of ON
ATTENTION on-units.

Attention on-units used for debuggqing

When debugging under the optimizing compiler, ATTENTION on-units can be
used to transmit values to the terminal when an attention interrupt is
caused. For example, an ATTENTION on-unit might read:

ON ATTENTION PUT DATA(A,B,C,ICOUNT);

These values would then be transmitted to the terminal when an attention
interrupt was caused. When the program had been debugged, the unit
could be retained and the program compiled with the NOINTERRUPT option.
This would prevent code designed to poll for attention interrupt being
included in the load module and so there would be no time overhead.

There would, however, be a small space overhead because the on-unit
itself would be compiled. .

The use of NOINTERRUPT also allows programs compiled on the checkout

compiler with debugging ATTENTION on-units to be compiled on the
optimizing compiler without producing an execution time overhead.

Attention on-units used for_ Interactive Systems

Full ON ATTENTION support by the optimizing compiler also improves the
convenience of using conversational programs in a production
environment, by allowing the user to interrupt unwanted processing. For
example, the user may wish to respecify the criteria for a data base
inquiry without waiting for the entire cutput to be displayead.

Typically, the ATTENTION on-unit will prompt the user for input and:
carry out some action determined by that input. For example:

ON ATTENTION BEGIN;
ERRCOUNT=0;
PUT EDIT
('ENTER 1 FOR NEXT TABLE, 2 FOR REPETITION OF CURRENT TABLE 3
TO END OUTPUT:*)(A); '
FIRST:
GET EDIT (NUM) (A(1));

24

SELECT (NUM) ;
WHEN(1) GOTO NEXT;
WHEN(2) GOTO START;
WHEN(3) GOTO FINAL;
OTHERWISE DO;
ERRCOUNI'=ERRCOUNT +1;
IF ERRCOUNT<3 THEN DO;
PUT EDIT (* INCORRECT INPUT TRY AGAIN') (A);
GOTO FIRST:;
END;
ELSE SIGNAL ERROR;
END; /+*OTHERWISE CLAUSE*/
END; /*SELECT#/
END; /#ON-UNIT#*/

The terminal interaction resulting from causing an attention interrupt
could be as follows:

call bicent

THIS PROGRAM LISTS TABLES OF DATA RELATING
TO AMERICAN BICENTENNIAL CELEBRATIONS

USE ATTENTION INTERRUPT TO CHANGE TABLE
LIST OF STATE BIRDS

AMERICAN ROBIN CONNECTICUT, MICHIGAN, WISCONSIN
BALTIMORE ORIOLE MARYLAND
BLACK CAPPED CHICKADEE MAINE,MASSACHUSETS

(Attention interrupt here)
ENTER 1 FOR NEXT TABLE, 2 FOR REPEAT OF CURRENT TABLE, 3 TO END OUTPUT:1

LIST OF STATE FLOWERS

AMERICAN BEAUTY ROSE DISTRICT OF COLUMBIA
APPLE BLOSSOM ARKANSAS,MICHIGAN
ARBUTUS MASSACHUSETTS

etc

Backqround to Attention Handling

If you are going to make extensive use of attention interrupts, it is
important to understand something of how they are implemented by the
optimizing compiler.

Essentially, causing an attention interrupt sets a switch immediately
and this switch is tested by means of polling at suitable points in the
compiled program.

In procedures compiled with the INTERRUPT option, polling takes place
between PL/I statements at branch-in points. Polling also takes place
in all stream I/O statements to and from the terminal if any procedure
in the load module was compiled with the INTERRUPT option. This
arrangement allows maximum control of terminal input and output with
minimum performance overheads. It also ensures that the ATTENTION
condition is raised between PL/I statements.

Pitfalls when using Attention Interrupts

The synchronization of terminal printout and processing by the CPU and
the method used of implementing the ATTENTION condition cause various
pitfalls for the user of attention interrupts. These are described
below.

Chapter 4: I/O and Attention Interrupts 25

Synchronization

When output is being transmitted to the terminal, the statement being
executed in the CPU may be well beyond the point where the output is
transmitted. (The number of buffers allocated during TSO installation
determines how far.) Consegquently, an attention interrupt will often
cause loss of output that is held in buffers. 1In addition, an attempt to
end excessive output to the terminal by use of an attention interrupt
may have unexpected results if the program is not actually executing the
output statement when the attention interrupt is caused.

Consider the on-unit
ON ATTN BEGIN;
/*Unit illustrates a potential pitfall#*/

ON ATTN GOTO ENDUNIT; /*Second ON statement kills the
output if too long, by accepting
attention interrupt during output*/

PUT DATA;

ENDUNIT:END;

An attehtion interrupt entered when you have seen enough output may
in fact occur when the unit has completed executing. Thus the attention,

far from ending the output, will just cause another set of output to
begin. ‘

Synchronization is only carried out when a GET statement to the
terminal is executed. Therefore, a GET statement at the end of the unit
would solve the problem. A corrected on-unit could read:

ON ATTN BEGIN;
ON ATTN GOTO ENDUNIT;
PUT EDIT
(*TO END OUTPUT CAUSE ATTENTION. THEN ENTER GO TO CONTINUE OR STOP TO STOP') (A);
| DCL ANS CHAR(4) INIT(");
PUT DATA;
ENDUNIT:
/*Execution will wait herxe to synchronize the GET statement. Therefore,
attention interrupts entered during output of data will occur within the
scope of the on-unit, so data will be ended by second ON ATTN
statement#*/ .
GET EDIT (ANS) (A(4));
UNSPEC (ANS) =UNSPEC(ANS) | (4) °01000000°'B;
/*Fold to upper case because input may be in upper or lower®/
IF ANS='STOP' THEN STOP;
END;

Note that the prompt for the GET statement must appear before the PUT
DATA or it will be lost when an attention interrupt occurs.

Programs Partly Compiled with the INTERRUPT Option

If any procedures within a load module have been compiled with the
INTERRUPT option, a STAX macro instruction is issued at the start ot
execution. Consequently, an attention interrupt will be noted whenever
it is caused. The ATTENTION condition itself will not be raised until
later, since PL/I may be in the process of constructing control blocks
at the time the attention interrupt is noted. It will be raised during
stream I/0 to or from the terminal in all procedures and at branch-in
points in procedures compiled with the INTERRUPT option. If you wish to
use attention interrupts for debugging purposes, the results may be
unexpected because any attention on units will be executed regardless of
the option with which the procedure that contains them was compiled.

26

Chapter 5: PLI Command

Use the PLI command to compile a PL/I program. The command invokes the
PL/I Optimizing Compiler.

COMMAND i OPERANDS

data-set-name i
(option-1ist]

PRINTL(#*) |

(dsname (y(nl(,ml})]
SYSPRINT((sysout-class(,(nl(,ml}))
NOPRINT

(LIB(dslist)]

[N

Jata-set-name

specifies the name of the primary input data set for the
optimizing compiler. This can be either a fully qualified name
(enclosed in single quotation marks) or a simple name (for
which the prompter will add the identification qualifier, and
the descriptive qualifier PLI). This must be the first operand
specified.

option-list

PRINT(*)

specifies one or more compiler options which are to apply for
this compilation.

The compiler options that can be specified in a TSO environment
are described in the following section. Programmers familiar
with batch processing should note that defaults are altered for-
TSO, and that the DECK, MDECK, and OBJECT options have been
extended to allow names of data sets onto which the output will
be written to be specified.

Separate the options by at least one blank or one comma; you
can add any number of extra blanks. The order of the options is
unimportant. In fact, the PRINT/NOPRINT and LIB operands can be
interspersed in the option-list; they are recognized by their
keywords. If two contradictory options are specified, the last
is accepted and the first ignored.

Options specified in the PLI command can be subsequently
overridden by options specified on *PROCESS compiler control
statements in the primary input. If the DECK, MACRO, MDECK, and
OBJECT options are required for any program in a batched
compilation the option should be specified in the PLI command
so that the prompter allocates the required data sets. The
negative forms can then be used on the PROCESS statements for
the programs that do not require the option.

specifies that the compiler listing, on the SYSPRINT file, is

Chapter 5: PLI Command 27

PLI COMMAND

to be written at the terminal; no other copy will be available.

PRINT(dsname(, (nl{,ml1])

specifies that the compiler 113t1ng. on the SYSPRINT file, is
to be written on the data set named in parentheses. This can be
either a fully qualified name (enclosed in single quotation
marks) or a simple name (for which the prompter will add the
identification qualifier, and the descriptive qualifier LIST).

If no dsname argument is specified for the PRINT operand, the
prompter will add the identification and descriptive qualifiers
to the data set name specified in the first operand, producing
a data set name of the form ‘user-identification.user-supplied-
name.LIST'. If "dsname” is not specified and the first operand
of PLI specifies a member of a partitioned data set, the member
name will be ignored - the generated data set name will be
based on the name of the partitioned data set.

n,m Specifies the space allocation in lines for the listing
dataset. It should be used when the size of the listing has
caused a B37 abend during compilation.

n specifies the number of lines in the primary
allocation.

m specifies the number of lines in the secondary
allocation.

If n is omitted the preceding comma must be included. For
example to enter only the size of the secondary allocation and
accept the default for the primary you would enter:

SYSPRINT (PRINTDS, ,500) .

The space allocation used if n and m are not specified is that
specified during compiler installation.

SYSPRINT((sysout~class{,nl,ml])]

specifies that the compiler listing, on the SYSPRINT file. is
to be written to the sysout class named in parentheses. If no
class is specified, the output is written to a default sysout
class; the IBM standard for this default is class A. For
meaning of n, m see "PRINT" above.

NOPRINT
specifies that the compiler listing is not to be produced on
the SYSPRINT file. You can still get most of the listing
written at the terminal by using the TERMINAL compiler option.
LIB(dslist)

28

specifies one or more data sets’ that are to be used as the
secondary 1nput to the preprocessor. These data sets will be
concatenated in the order specified and then associated with
the ddname SYSLIB. This will override any previous ALLOCATE
statement with a FILE(SYSLIB) operand. If you have specified
any other ddname in the RINCLUDE statements in the PL/I
program, you must allocate the data sets asscciated with that
ddname yourself.

The data set names can be either fully qualified (each enclosed
in single quotation marks) or simple names (for which the
prompter will add the identification qualifier, but no
descriptive qualifier).

Separate the data set names by at least one blank or one comma;
you can add any number of extra blanks.

If you use the LIB operand, either the INCLUDE or the MACRO
compiler option must also apply.

PLI COMMAND

Example 1

Operation: Invoke the PL/I optimizing compiler to process a PL/I
program.

Known: User-identification is ABC
Data set containing the program is named ABC.UPDATE.PLI
SYSPRINT file is to be directed to the terminal.
Default options and data set names are to be used.

PLI UPDATE PRINT(¥)

Example 2

Operation: 1Invoke the PL/I optimizing compiler to process a PL/I
program.

Known: User-identification is XYZ.

Data set containing the program is named ABC.MATRIX.PLI

SYSPRINT file is to be written on a data set named MATLIST.

MACRO and MDECK options are required, with the associated
output to be written on a data set named MATCARD.

Secondary input to preprocessor to be read from a library
named XYZ.SOURCE.

Otherwise default options and data set names are to be used.

PLI ‘ABC.MATRIX.PLI® PRINT(*MATLIST'),MACRO,MDECK (*MATCARD®),LIB(SOURCE)

Chapter 5: PLI Command 29

Chapter 6: Compiler Options

This chapter describes the options that can be specified for the PL/I
optimizing compiler in a TSO environment. The keywords, abbreviations,
and IBM defaults are listed in Figure 4; the functions of the options
are shown in Figure 5. Most options comprise positive and negative
forms, the latter beginning with NO. Where negative forms exist, one or
other form is applied by default. Where no negative forms exist, the
option must in most cases, be explicitly specified.

Note: Your installation may have adopted a different set of defaults
from the standard IBM defaults shown here.

The abbreviations listed in Figure 4 are the standard abbreviations
recognized by the optimizing compiler. In addition, the PL/I prompter
will accept the following standard TSO forms:

LINECNT for LINECOUNT

LOAD for OBJECT

NOLOAD for NOOBJECT
CHARG60 for CHARSET (60)
CHAR4 B for CHARSET(48)
EBCDIC for CHARSET(EBCDIC)
BCD for CHARSET (BCD)

Keywords can be shortened by deleting any number of characters on the
right provided the result remains non-ambiguous. As the prompter is also
used to invoke the PL/I checkout compiler, you must take into account
the additional options which apply only to the checkout compiler {that
is, BLOCK, COMPATIBLE, DIAGNOSE, FORMAT, HALT, ISASIZE, RUN, SMAN, STEP,
and STEPLINES) when deciding whether an abbreviation is non-ambiguous.

Each option is considered to be a separate operand and must follow TSO
syntax conventions. Thus, in arguments containing two or more items,
items can be omitted only from the end of the list (for instance,
MARGINS(2,70) would be accepted, while MARGINS(,70) would not). The
items must be separated by one blank or one comma; though any number of
additional blanks may Le added.

Several of the options cause tables, etc., to be included in the
compiler listing that is written on the standard output file. A full
description of this listing is given in the programmer's guide for the
optimizing compiler. If you wish to have these listings directed to the
terminal, you can specify them in the TERMINAL option (see TERMINAL in
the following list). Alternatively, you can specify a PRINT (#) operand
in the PLI command, in addition to the list of options.

Chapter 6: Compiler Options 31

PLI COMMAND
COMPILER OPTIONS

AGGREGATE | NOAGGREGATE

NOATTRIBUTES
CHARSET
(48| 60, EBCDIC|BCD)

| CONTROL(* password*)

| COUNT | NOCOUNT

| DECK| NODECK
DUMP | NODUMP

ESD| NOESD
FLAGI(I|W|E|S)]
FLOW((n,m)] | NOFLOW
GONUMBER | NOGONUMBER
GOSTMT | NOGOSTMT
IMPRECISE | NOIMPRECISE
INCLUDE|NOINCLUDE
INSOURCE | NOINSOURCE
INTERRUPT| NOINTERRUPT
LINECOUNT(n)
LIST(n,m) | NOLIST
LMESSAGE | SMESSAGE
MACRO| NOMACRO
MAP | NOMAP
MARGINI('c') | NOMARGINI
MARGINS(m,n,c)

MDECK | NOMDECK
NAME (*name"’)
NEST | NONEST
NUMBER | NONUMBER
OBJECT | NOOBJECT
OFFSET | NOOFFSET
OPTIMIZE(TIME| 0] 2) |
NOOPTIMIZE
OPTIONS| NCOPTIONS
SEQUENCE (m,n)

SIZE(yyyyyy|yYYYK|MAX)
SOURCE | NOSOURCE

STMT | NOSTMT
STORAGE | NOSTORAGE

NOTERMINAL

Figure 4.

32

Compiler Option Reywords

ATTRIBUTES { (FULL|SHORT)] |

COMPILE | NOCOMPILE[(W|E|S))

SYNTAX | NOSYNTAX [(W[E|S)]
TERMINAL[(option-1ist)]|

XREF [(FULL | SHORT)] | NOXREF

Abbreviations

AG | NAG
AL(F|S)]{NA

CS (48 60,EB|B)
CINCI(W|E|S)]

D|ND
DU |NDU

FI(I|W|E|S))

GN | NGN
GS|NGS
IMP|NIMP

IS|NIS
INT | NINT
LC(n)

LMSG | SMSG
M|NM

MI('c')|NMI
MAR(m,n,c)

MD | NMD
N(*name’)

NUM| NNOM

OBJ | NOBJ

OF | NOF

OPT(TIME|0|2)|
NOPT

OP| NOP

SEQ (m. n)

SZ2(yyyyyy|yyyK|MAX)
S|NS

STG|NSTG

SYN|NSYNI[(W|E|S)]

TERM[(option-1ist)]|
NTERM

XI(F|S)]|NX

1FULL is the default suboption

IBY Default for
TS0 Environment

NOAGGREGATE
NOATTRIBUTES
(FULL*)
CHARSET
(60,EBCDIC)
NOCOMPILE(S)

NOCOUNT
NODECK
NODUMP
NOESD

FLAG (W)

. NOFLOW

NOGONUMBER
NOGOSTMT
NOIMPRECISE
NOINCLUDE
INSOURCE
NOINTERRUPT
LINECOUNT (55)
NOLIST
SMESSAGE
NOMACRO

NOMAP
NOMARGINI
F-format:
MARGINS(2,72,0)
V-format:
MARGINS(10,100,0)
NOMDECK

NONEST
NUMBER
OBJECT
NOOFFSET
NOOPTIMIZE

NOOPTIONS
F-format:
SEQUENCE(73,80)
V-format:
SEQUENCE(1,8)
SIZE(MAX)
NOSOURCE
NOSTMT
NOSTORAGE
NOSYNTAX(S)
TERMINAL

NOXREF(FULL%)

Compiler option-keywords, abbreviations, and defaults

e . i s S . P e s s G T G, S S G, S e, s, et S e i, S e

PLI COMMAND
COMPILER OPTIONS

T
LISTING OPTIONS

Control listings
produced

AGGREGATE
ESD

INSOURCE
FLAG [(I|W|E|S))

LIST
MAP

OPT IONS
SOURCE
STORAGE

NEST
MARGINI

Control lines per page of listing
' LINECOUNT

ATTRIBUTES [(SHORT |
FULL))

XREF{ (SEORT| FULL) }

|Improve readability of source listing

-

list of aggregates and their
size
list of attributes of identifiers

list of external symbol
dictionary

list of preprocessor input

suppress diagnostic messages
below a certain severity

list compiled code produced by
compiler

lists offsets of variables in |
static control section and
DSAs '

list of options used

list of source program orxr
preprocessor output

list of storage used

list of statements in which each
identifier is used

O T oy S i, S G S i, S e,

indicates do-group and block |
level by numbering in margin

highlights any source outside
margins

specifies number of lines per
page on listing

INPUT OPTIONS

CHARSET

SEQUENCE

identify the character set used
in source

identify position of a carriage
control character

specify the columns used for
sequence numbers

L

OPTIONS TO PREVENT UNNECESSARY PROCESSING
NOSYNTAX ((W|E|S))
NOCOMPILE [(W|E|S))

stop processing after errors are
found in preprocessing
stop processing after errors are

found in syntax checking
- 4

Figure S.

(Part 1 of 2). Compiler options arranged by function

Chapter 6: Compiler Options 33

PLI COMMAND

COMPILER OPTIONS

OPTIONS FOR PREPROCESSING

—— e, e o

INCLUDE allows secondary input to be
included without using
preprocessor

MACRO allows preprocessor to be used

MDECK produces a source deck from

preprocessor output |

OPTIONS TO USE WHEN PRODUCING AN OEJECT MODULE

NAME specify the name of the object

OBJECT produce an object module from
compiled output

module produced
DECK produce an object module in
punched card format

OPTIONS TO CONTROL STORAGE USED

SIZE controls the amount of storage
used by the compiler

OPTIONS TO IMPROVE USABILITY AT A TERMINAL .

TERMINAL specifies how much of listing is
- transmitted to terminal
LMESSAGE/SMESSAGE specifies concise or
full message format

OPTIONS TO SPECIFY STATEMENT NUMBERING SYSTEM USED

NUMBER & GONUMBER numbers statements according to
line which they start

STMT &§ GOSTMT numbers statements sequentially

OFFSET specifies that a listing
associating statement numbers
with offsets will be generated

OPTIONS FOR USE WHEN DEBUGGING

' COUNT- count number of times each

statement is executed

FLOW generate code that will result in
a trace of statements executed |
being retained

OPTIONS TO CONTROL EFFECT OF ATTENTION INTERRUPTS

INTERRUPT specifies that the ATTENTION
condition will be raised when
interrupt is caused

NOINTERRUPT specifies that the use of the
attention interrupt will
terminate the program

L

OPTION FOR USE WHEN DEBUGGING COMPILER

DUMP produces a dump if the compiler
terminates abnormally (ignored
if used in *PROCESS statement)

b

Figure 5. (Part 2 of 2). Compiler options arranged by function

34

PLI COMMAND
COMPILER OPTIONS

AGGREGATE

The AGGREGATE option specifies that the compiler is to include in the
compiler listing an aggregate length table, giving the lengths of all
arrays and major structures in the source program.

ATTRIBUTES [(FULL| SHORT) 1 | NOATTRIBUTES

IBM default NOATTRIBUTES
IBM default suboption FULL

The ATTRIBUTES option specifies that the compiler is to include in the
compiler listing a table of source-program identifiers and their
attributes. If both ATTRIBUTES and XREF apply., the two tables are
combined.

If SHORT is specified, unreferenced identifiers are omitted, making the
listing more manageable.

If both ATTRIBUTES and XREF apply, and there is a conflict between SHORT
and FULL, the usage is determined by the last option found. For example
ATTRIBUTES(SHORT) XREF (FULL) results in FULL applying to the combined
listing.

The default FULL means that FULL applies if the option is specified with
no sub-option.

CHARSET(48] 60, EBCDIC|BCD)
IBM default CHARSER(60,EBCDIC)

The CHARSET option specifies the character set and data code that you
have used to create the source program. The compiler will accept source
programs written in the 60-character set or the 48-character set, and in
the Extended Binary Coded Decimal Interchange Code (EBCDIC) or Binary
Coded Decimal (BCD). It is unlikely you will ever need to use BCD. The
48-character set may be required for terminals with a limited character
set.

60- or u48-Character Set: If the source program is written in the 60-
character set, specify CHARSET(60); if it is written in the 48-character
set, specify CHARSET(48). The language reference manual for this
compiler lists both of these character sets. (The compiler will accept
source programs written in either character set if CHARSET(48) is
specified, however, if the reserved keywords CAT, LE, etc., are used as
identifiers, errors may occur.)

BCD _or EBCDIC: If the source program is written in BCD, specify
CHARSET(BCD); if it is written in EBCDIC, specify CHARSET(EBCDIC). The
language reference manual for this compiler lists the EBCDIC
representation of both the 48-character set and the 60-character set.

If both arguments are specified, they may be in any order.

COMPILE|NOCOMPILE[(W|E]S)]

IBM default NOCOMPILE(S)
The COMPILE option specifies that the compiler is to compile the source

program unless an unrecoverable error was detected during preprocessing
or syntax checking. The NOCOMPILE option without an argument causes

Chapter 6: Compiler Options 35

PLI COMMAND
COMPILER OPTIONS

processing to stop unconditionally after syntax checking. With an
arqument, continuation depends on the severity or errors detected so
far, as follows:

.

NOCOMPILE(W) No compilation if a warning, error, severe error, or
unrecoverable error is detected.

NOCOMPILE(E) No compilation if an error, severe error, or
unrecoverable error is detected.

NOCOMPILE(S) No compilation if a severe error or unrecoverable error
is detectead.

CONTROL(* password*)

IBM default: CONTROL does not apply unless specified

?he CONTRQL option specifies that any compiler options deleted for your
1nst§11at10n are to be available for this compilation. You must still
specify the appropriate keywords to use the options. The CONTROL option
must be specified with a password that is established for each

installation; use of an incorrect password will cause processing to be

t?rminated.. The CONTROL option, if used, must be specified first in the
list of options. ‘ :

It has the format:

CONTROL(* password®)

where “"password™ is a character string, not exceeding eight characters.

COUNT| NOCOUNT

IBM default NOCOUNT

The COUNT option specifies that a list of how many times each statement
has been executed is to be produced when the program terminates. The
list is written is the PLIDUMP data set, if such a data set has been
allocated, otherwise on SYSPRINT. COUNT implies GONUMBER (if NUMBER
applies) or GOSTMT (if STMT applies).

DECK [(dsname)] | NODECK
IBM ‘default NODECK

The DECK option specifies that the compiler is to produce an object
module in the form of 80-column card images and store it on a data set.
Columns 73-76 of each card contain a code to identify the object module;
this code comprises the first four characters of the first label in the
external procedure represented by the object module. Columns 77-80
contain a 4-digit decimal number: the first card is numbered 0001, the
second 0002, etc.

The data set onto which the object module is written will have the name
specified in "dsname.® This can be a fully qualified name (enclosed in
single quotation marks) or a simple name (to which the user
identification and the descriptive qualifier DECK will be added). 1If
"dsname” is not specified, the user-supplied name will be taken from the
first operand of the PLI command, and the user-identification and
descriptive qualifier DECK will be added. If “"dsname®™ is not specified
and the first operand of PLI specifies a member of a partitioned dat§
set, the member name will be ignored - the generated data set name will
be based on the name of the partitioned data set.

36

PLI COMMAND
COMPILER OPTIONS

DUMP | NCDUMP
IBM default NODUMP

The DUMP option specifies that the compiler is to produce a formatted
dump of the contents of the registers and main storage used by the
optimizing compiler if compilation terminates abnormally (usually due to
an I/0 error or compiler error). This dump is written on the data set
associated with SYSPRINT. Implementation of the DUMP option
necessitates the use of a considerable amount of main storage by
routines that handle the dumping. This reduces the storage available
for compilation which reduces the speed of the compilation.

ESD| NOESD
IBM default NOESD

The ESD option specifies that the external symbol dictionary (ESD) is to
be listed in the compiler listing.

FLAG(I|W]E]S)
IBM default FLAG(W)

The FLAG option specifies the minimum severity of error that requires a
message to be listed in the compiler listing and at the terminal. The
possible forms of the FLAG option are:

FLAG(I) List all messages.

FLAG (W) List all except informatory messages. If you specify
FLAG, FLAG(I) is assumed.

FLAG(E) List all except warning and informatory messages.

FLAG(S) List only severe error and unrecoverable error
messages.

FLOW((n,m)] | NOFLOW

IBM default NOFLOW
The FLOW option specifies that the compiler is to list the transfers of
control most recently executed in the PL/I program prior to the
occurrence of an interrupt that results in an execution-time message.
The format of the FLOW option is:

FLOW[(n,m) J
where:

"n" is the maximum number 2f entries to be included in the list. It
shoull not exceed 32768.

"m" is the maximum number of changes of block to be recorded in the
list ("block"™ here meaning procedure or on-unit). It should not
exceed 32768.

“n" and "m" may be omitted; in this case, the standard default values
are, respectively, 25 and 10.

Chapter 6: Compiler Options 37

PLYI COMMAND
COMPILER OPTIONS

The list will start at the earliest information and continue to the
latest in order of execution.

GONUMBER|] NOGONUMBER

IBM default NOGONUMBER

The GONUMBER option specifies that the compiler is to produce additional
information that will allow line numbers from the source program to be
included in execution-time messages.

Alternatively, these line numbers can be derived by using the offset
address, which is always included in execution-time messages, and the
table produced by the OFFSET option. (The NUMBER option must also
apply.)

Use of the GONUMBER option implies NUMBER and NOSTMT.

GOSTNMT | NOGOSTMT
IBM default NOGOSTMT

The GOSTMT option specifies that the compiler is to produce additional
information that will allow statement numbers from the source program to
be included in execution-time messages.

Aliernatively. these statement nhmbers can be derived by using the
offset address, which is always included in execution-time messages, and
the table produced by the OFFSET option. (The STMT option must also
apply.)

Use of the GOSTMT option implies STMT and NONUMBER.

IMPRECISE | NOIMPRECISE
IBM default NOIMPRECISE

The IMPRECISE option specifies that the compiler is to include extra
text in the object module to localize imprecise interrupts when
executing the program with an IBM Systenv360 Model 91 or 195. This
extra text ensures that if interrupts occur, the correct on-units will
be entered, and that the correct line or statement numbers will appear
in execution-time messages.

INCLUDE | NOINCLUDE
IBM default NOINCLUDE

The INCLUDE option requests the syntax checking stage of the compiler to
handle the inclusion of PL/I secondary input data sets for programs that
use the RINCLUDE statement. This method is faster tham using the PL/I
preprocessor for programs that contain %INCLUDE statements, but no other
preprocessor statements. The INCLUDE option should not be used if the
MACRO option also applies. :

38

PLI COMMAND
COMPILER OPTIONS

INSOURCE | NOINSOQURCE
IBM default INSOURCE

The INSOURCE option specifies that the compiler is to include a listing
of the source program (including preprocessor statements) in the
compiler listing. This option is applicable only when the preprocessor
is used; therefore the MACRO option must also apply.

INTERRUPT | NOINTERRUPT

IBM default NOINTERRUPT

This option determines the effect of attention interrupts when the
compiled PL/I program is being executed.

If INTERRUPT was in effect during compilation, an established ATTENTION
on-unit will be executed when one attention interrupt is caused during
execution of the compiled program. If there is no such on-unit,
processing will continue. Two attention interrupts will end the
execution of the program and cause control to return to TSO.

If NOINTERRUPT was in effect during compilation, one attention interrupt
entered during execution of the compiled program will end the execution
of the program and cause control to return to TSO.

It should be noted that if any procedure within a load module was
compiled with the INTERRUPT option, an attention interrupt at any time
will lead to the ATTENTION condition being raised if polling is carried
out, and execution continuing with no apparent effect if polling is not
carried out. Polling is carried out during the execution of stream IL/0
for all modules, and, additionally. at branching points for modules
compiled with the INTERRUPT option. Because the ATTENTION condition is
raised when polling is done, an attention interrupt in a program partly
compiled with the INTERRUPT option can lead to unexpected results.

A fuller discussion of the use of attention interrupts is given in
Chapter 4. On a 2741 one attention interrupt is caused by pressing the

ATTN key once and two by pressing it twice in quick succession. For
other terminals see Appendix B.

LINECOUNT (n)
IBM default LINECOUNT(SS)
The LINECOUNT option specifies the number of lines to be included in
each page of the compiler listing, including heading lines and blank
lines. The format of the LINECOUNT option is:

LINECOUNT(n)

where "n" is the number of lines. It must be in the range 1 through
32767, but only headings are generated if you specify less than 7.

LISTI(m{,n))]|NOLIST

IBM default NOLIST
The LIST option specifies that the compiler is to include a listing of

the object module (in a form similar to IBM System/360 assembler
language instructions) in the compiler listing. When used in

Chapter 6: Compiler Options 39

PLI COMMAND
COMPILER OPTIONS

conjunction with MAP it increases the information generated by MAP (see
MAP later in this section). "m" indicates the first statement whose
assembl er-language equivalent is to be listed; "n" the last. If "n" is
omitted, statement "m" only is listed. If neither "m™ nor "n*® is
specified, a listing of the whole program is produced. *m" and "n" must
be line numbers if the NUMBER option applies, or statement numbers if
the STMT option applies. To direct the listing of particular statements
to the terminal, an option of the form LIST(mi{,nl)) must be specified,
together with either the LIST option, with no statement numbers, within
the TERMINAL option, or the PRINT(*) operand in the PLI command.

LMESSAGE | SMESSAGE
IBM default SMESSAGE

The LMESSAGE and SMESSAGE produce messages in a long form (specify
LMESSAGE) or in a short form (specify SMESSAGE). Short messages can
have advantages in a TSO environment due to the slow printing speed of a
typewriter type terminal.

MACRO| NOMACRO
IBM default NOMACRO

The MACRO option specifies that the source program is to be processed by
the preprocessor.

MAP | NOMAP
IBM default NOMAP

The MAP option specifies that the compiler is to produce tables showing
the organization of the storage for the object module. These tables
show how variables are mapped in the static internal control section and
in DsSAs, thus enabling STATIC INTERNAL and AUTOMATIC variables to be
found in PLIDUMP. If LIST is also specified the MAP option produces
tables showing constants, control blocks and INITIAL variable values.

LIST generates a listing of the compiled code in pseudo assembler
language format. If you want a complete MAP but not a complete LIST,
you can specify a single statement number as an argument for LIST to
minimize the size of the LIST. For example:

#PROCESS MAP LIST(1);

MARGINI(‘c®) | NOMARGINI
IBM default NOMARGINI

The MARGINI option specifies that the compiler is to include a specified
character in the column preceding the left hand margin, and the column
following the right hand margin of the listings resulting from the
INSOURCE and SOURCE options. Any text in the source input which
precedes the left hand margin will be shifted left one column, and any
text that follows the right hand margin will be shifted right one
column. Thus text outside the source margins can be easily detected.

The MARGINI option has the format:

40

PLI COMMAND
COMPILER OPTIONS

MARGINI(‘c')

where "c®" is the character to be printed as the margin indicatbr.

MARGINS (m, ne ©)

¢

IBM default: V or U-format records (10,100,0) F-format records (2,72,0)

The MARGINS option specifies which part of each compiler input record
contains PL/I statements, and the position of the ANS control character
that formats listings. The MARGINS option is used to override the
default margin positions that are set up during compiler installation by
the FMARGINS and VMARGINS options.

The FMARGINS option applies to F-format records and the VMARGINS option
appliés to V-format or U-format records. Only one of these defaults is
overridden by the MARGINS option. If the first input record to the
compiler is F-format, the FMARGINS defaults are overridden by the
MARGINS option. If the first record is a V-format or U-format record,
the VMARGINS defaults are overridden by the MARGINS option. Default
values are assumed if a second type of record is encountered by the
compiler.

The format of the MARGINS options is:
MARGINS(m,n,c)
where:

m is the column number of the leftmost column that will be scanned by
the compiler. m must not exceed 100. ')

n is the column number of the rightmost column that will be scanned by
the compiler. n must not be less then m, nor greater than 100.

Chapter 6: Compiler Options 41

PLI COMMAND
COMPILER OPTIONS

¢ 1is the column of' the American National Standard (ANS) printer control
character. It must not exceed 100 and it must be outside the values
specified for m and n. A value of 0 for c indicates that no ANS
control character is present. The control character applies only
to listings on a line printer; it is ignored in conversational-mode

%istings at the terminal. Only the following control characters can
e used: '

(blank) skip one line before printing.

0 Skip two lines before printing.
- . Skip three lines before printing.
+ skip no lines. before printing.

1 ' stért new page.

Any other character is taken to be blank. If the value c is greater
than the maximum length of a source statement record, the compiler will
not be able to recognize it; consequently- the listing will not have the
required format.

MDECK([(dsname)] | NOMDECK
IBM default NOMDECK

The MDECK option specifies that the preprocessor is to produce a copy of
its output on the file named SYSPUNCH. The last four bytes of the 8
byte output records are not copied, thus this option allows you .to
retain the output from the preprocessor as a deck of 80-column punched
cards.

The data set onto which the output is written will have the name
specified in "dsname.®™ This can be a fully qualified name (enclosed in
single quotation marks) or a simple name (to which the user
identification and the descriptive qualifier DECK will be added). If
"dsname" is not specified, the user-supplied name will be taken from the
first operand of the PLI command, and the user-identification and
descriptive qualifier DECK will be added. If "dsname® is not speclfied
and the first operand of PLI specifies a member of a partitioned data
set, the member name will be ignored - the generated data set name will
be based on the name of the partitioned data set.

NAME

IBM default: NAME does not apply unless specified.

The NAME option specifies that the compiler is to place a linkage-editor
NAME statement as the last record of the object module. When processed
by the linkage editor, this NAME statement indicates that primary input
is complete and causes the specified name to be assigned to the load
module created from the preceding input (since any previous NAME
statement).

The NAME option is required if you want the linkage editor to create
more than one load module from the object modules produced by batched
compilation.

If you do not use this option, the linkage editor will use the member
name specified in the DD statement defining the load module data set.
You can also use the NAME option to cause the linkage editor to
substitute a new load module for an existing load module with the same
name in the library.

42

PLI COMMAND
COMPILER OPTIONS

The format of the NAME option is:
NAME (*name*)

where "name" has from one through eight characters, and begins with an
alphabetic character.

NEST | NONEST
IBM default NONEST

The NEST option specifies that the listing resulting from the SOURCE
option will indicate, for each statement, the begin-block level and the
do-group level.

NUMBER | NONUMBER
IBM default NUMBER

The NUMBER option specifies that the numbers specified in the sequence
fields in the source input records are to be used to derive the
statement numbers in the listings resulting from the AGGREGATE,
ATTRIBUTES, LIST, OFFSET, SOURCE, and XREF options.

The position of the sequence field can be specified in the SEQUENCE
option. Alternatively, the following default positions are assumed:

e First 8 columns for V-format or U-format source input records. In
this case, 8 is added to the source margins and control character
position if the MARGINS option is not explicitly specified.

e Last 8 columns for F-format source input records.

These defaults are the positions used for line-numbers generated by TSO;
thus it is not necessary to specify the SEQUENCE option, or change the
MARGINS defaults, when using line-numbers generated by TSO.

Note that the preprocessor output has fixed-length records irrespective
of the original primary input. Any sequence numbers in the primary input
are repositioned in columns 73-80.

The line-number is calculated from the five right-hand characters of the
sequence number (or the number of characters specified, if less than
five). These characters are converted to decimal digits if necessary.
Each time a line-number is found which is not greater than the preceding
one, 100000 is added to this and all following line-numbers.

If there is more than one statement on a line, a suffix is used to
identify the actual statement in the messages. For example, the second
statement beginning on the line numbered 40 will be identified by the
number 40.2. The maximum value for this suffix is 31. Thus the thirty-
first and subsequent statements on a line have the same number.

If NONUMBER applies, STMT is implied. NUMBER is implied by NOSTMT or
GONUMBER.

OBJECT((dsname)] | NOOBJECT
IBM default OBJECT
The OBJECT option specifies that the compiler is to store the object

module that it creates in the data set associated with the ddname
SYSLIN. The data set onto which the output is written will have the

Chapter 6: Compiler Options 43

PLI COMMAND
COMPILER OPTIONS

name specified in "dsname." This can be a fully qualified name (enclosed
in single quotation marks) or a simple name (to which the user
identification and the descriptive qualifier OBJ will be added). If
"dsname” is not specified, the user-supplied name will be taken from the
first operand of the PLI command, and the. user-identification and
descriptive qualifier OBJ will be added. If “"dsname®” is not specified
and the first operand of PLI specifies a member of a partitioned data
set, the member name will be ignored - the generated dataset name will
be based on the name of the partitioned data set.

OFFSET

The OFFSET option specifies that the compiler is to include in the
compiler listing a table of statement or line numbers for each procedure
with their offset addresses relative to the primary entry point of the
procedure. This information is of use in identifying the statement
being executed when an error occurs and neither the GOSTMT nor GONUMBER
option applies.

If GOSTMT applies, statement numbers, as well as offset addresses, will
be included in execution-time messages. If GONUMBER applies, line
numbers, as well as offset addresses, will be included in execution-time
messages.

OPTIMI ZE(TIME|] 0] 2) | NOOPTIMIZE
The OPTIMIZE option specifies the type of optimization required:

NOOPTIMIZE specifies maximum compilation speed, but inhibits
optimization for faster execution and reduced main-
storage requirements.

OPTIMIZE (TIME) specifies that the compiler is to optimize the
machine instructions generated for minimum execution
time. A secondary effect of this type of
optimization can be a reduction in the amount of main
storage required for the object module. The use of
OPTIMIZE(TIME) could result in a substantial increase
in compile time over NOCOPTIMIZE.

OPTIMIZE(0) is the equivalent of NOOPTIMIZE.
OPTIMIZE(2) is the equivalent of OPTIMIZE(TIME).

The language reference manual for this compiler includes a full
discussion of optimization.

OPTIONS | NOOPTIONS

IBM default NOOPTIONS

The OPTIONS option specifies that the compiler is to include, in the
compiler listing, a list showing the compiler options to be used during
this compilation. This list includes all options applied by default.

If the PRINT(*) operand of the PLI command applies, the list of options
will be printed at the terminal. This will show the negative forms of

4y

PLI COMMAND
COMPILER OPTIONS

the OPTION option and all other options that cause listings to be
produced, even where the positive forms in fact apply. The positive
forms will be shown within the TERMINAL option. This is because the
PRINT (*) operand is implemented by generating a TERMINAL option
containing a list of options corresponding to those listings that are to
be printed at the terminal.

SEQUENCE(m, n) { NOSEQUENCE
IBM default: F-format records (73,80)
V- and U-format record (1,8)-

The SEQUENCE option is concerned with the position of the sequence
numbers in compiler input records. It specifies the positions from
which the compiler will extract sequence numbers It is used to override
the defaults that are set up at compiler installation time by the
FSEQUENCE and VSEQUENCE options. The values specified in the SEQUENCE
option override the default values for FSEQUENCE, if the first record
read is an F-format record, and VSEQUENCE if it is a V-format or U-
format record. If the input to the compiler contains both F-format and
V-format or U-format records, the values set up during compiler
installation will apply to the second type of record. The number found
in the sequence field is included in the source listings produced by the
FORMAT, INSOURCE, and SOURCE options. If the NUMBER option applies,
statement numbers are derived from the sequence numbers. No attempt is
made to sort the input records into the sequence implied by the numbers.
The SEQUENCE option has the format:

SEQUENCE (m,n)

where: m specifies the column number of the leftmost digit of the
statement number.

n specifies the column number of the rightmost digit of the
statement number.

SIZE(yyyyyyyylyyyyyK|MAX)
IBM default SIZE(MAX)

The SIZE option can be used to limit the amount of main stotage used by
the compiler. This is of value, for example, when dynamically invoking
the compiler, to ensure that space is left for other purposes.

The SIZE option can be expressed in three forms:

SIZE(yyyyyyyy) specifies that yyyyyyyy bytes of main storage are to-
be requested. Leading zeros need not be specified.

SIZE (yyyyyK) specifies that yyyyyK bytes of main storage are to be
requested (1K=1024). Leading zeros need not be
specified.

SIZE (MAX) specifies that the compiler is to obtain as much main
storage as it can.

The IBM default, and the most usual value to be used, is SIZE(MAX),

which permits the compiler to use as much main storage in the region as
it can. o,

Chapter 6: Compiler Options 45

PLI COMMAND
COMPILER OPTIONS

When a limit is specified, the amount of main storage used by the
compiler depends on how the operating system has been generated, and the
method used for storage allocation. The compiler assumes that buffers,
data management routines, and processing phases take up a fixed amount
of main storage, but this amount can vary undetected by the coampiler.
Under MVT, a region of 56K bytes or more is required.

After the compiler has loaded its initial phases and opened all
files, it attempts to allocate space for working storage. If SIZE(MAX)
is specified it obtains all space remaining in the region (after
allowance for subsequent data-management storage areas). If a limit is
specified then this amount of storage is requested. If the amount
available is less than specified, but is more than the minimum workspace
required, compilation proceeds. .If insufficient storage is available,
compilation is terminated. This latter situation should arise only if
the region is toco small, that is, less than 56K, or if too much space
for buffers has been requested. The value cannot exceed the main
storage available for the job step and cannot be changed after
processing has begun. This means that, in a batched compilation, the
value established when the compiler is invoked cannot be changed for
later programs in the batch. Thus it is ignored if specified in a
*PROCESS statement after the first program.

An additional 10K to 30K bytes must be allowed for TSO. The actual
size required for TSO depends on which routines are placed in the link-
pack area (a common main storage pool available to all regions). Also,
if you run the compiler in TSO edit mode, about 30K bytes are required
for the EDIT routines.

SMESSAGE

See LMESSAGE option.

SOURCE | NOSOURCE
IBM default NOSOURCE

The SOURCE option specifies that the compiler is to include a source
program listing:in the compiler listing. The source program listed is
either the original source input or, if the MACRO option applies, the
output from the preprocessor.

STMT | NOSTMT
IBM default NOSTMT

The STMT option specifies that statements in the source program are to
be counted, and that the resulting statement numbers are to be used to
identify statements in the listings resulting from the AGGREGATE,
ATTRIBUTES, LIST, OFFSET, SOURCE, and XREF options. If NOSTMT applies,
NUMBER is implied. STMT is implied by NONUMBER or GOSTMT.

STORAGE | NOSTORAGE
IBM default NOSTORAGE

The STORAGE option speclfles that the compller is to include in the
compiler listing a table giving the main storage requirements for the
object module.

46

PLI COMMAND
COMPILER OPTIONS

SYNTAX | NOSYNTAX[(W] E[S))

IBM default NOSYNTAX(S)

The SYNTAX option specifies that the compiler is to continue into syntax
checking after initialization (or after preprocessing if the MACRO
option applies) unless an unrecoverable error is detected. The NOSYNTAX
option without an argument causes processing to stop unconditionally
after initialization (or preprocessing). With an argument, continuation
depends on the severity of errors detected so far, as follows:

NOSYNTAX(W) No syntax checking if a warning, error, severe error,
) or unrecoverable error is detected.

NOSYNTAX (E) No syntax checking if an error, severe error, or
unrecoverable error is detected.

NOSYNTAX(S) No syntax checking if a severe error or unrecoverable
error is detected.

If the SOURCE option applies, the compiler will generate a source
listing even if syntax checking is not performed.

TERMINAL [(option-1ist)] | NOTERMINAL
IBM default TERMINAL

The TERMINAL option specifies that some, or all of the compiler listing
produced during compilation is to be copied at the terminal. 1If
TERMINAL is specified without an argument, any diagnostic and
informatory messages are printed at the terminal. You can add an
argument, which takes the form of an option list, to specify other parts
of the compiler listing that are to be printed at the terminal.

The listing at the terminal is independent of that written on SYSPRINT.
However, if SYSPRINT is associated with the terminal, only one copy of
each option requested will be printed even if it is requested in the
TERMINAL option and also as a first-level option.

The following option keywords, their negative forms, or their
abbreviated forms, can be specified in the option list for the TERMINAL
option:

AGGREGATE, ATTRIBUTES, ESD, INSOURCE, LIST, MAP, OFFSET, OPTIONS,
SOURCE, STORAGE, and XREF.

If the option does not apply to the compiler listing, specifying it in
the TERMINAL option has no effect.

The other options that relate to the listing (that is, FLAG, LMESSAGE,
MARGINI, NEST, NUMBER, STMT and the SHORT and FULL suboptions of
ATTRIBUTES and XREF) will be the same as for the listing on the standard
output file.

XREF { (SHORT| FULL)] | NOXREF

IBM default NOXREF
IBM default suboption FULL

The XREF option specifies that the compiler is to include in the
compiler listing a list of all identifiers used in the PL/I program,
together with the numbers of the statements in which they are declared
or referenced. Refer to the programmer's guide listed in the Preface
for a description of the format and content of the cross-reference
table.

Chapter 6: Compiler Options 47

PLI COMMAND
COMPILER OPTIONS

If the suboption SHORT is specified, unreferenced identifiers are not
listed, making the listing more manageable.

If both XREF and ATTRIBUTES are specified, the two listings are
combined. If there is a conflict between SHORT and FULL, the usage
is determined by the last option specified. For example,

ATTRIBUTES (SHORT) XREF (FULL) reéesults in FULL applying to the combined
listing. '

48

Appendix A: Command Syntax

SYNTAX NOTATION

The syntax notation used to illustrate the commands and subcommands in
this manual follows that in used and explained in the manual 0S/VS2 TSO

Command Language Reference. Briefly, the conventions are as follows:

Items in brackets [) are optional
Items stacked between braces { } are alternatives; choose only one.

Items separated by a logical OR sign | are alternatives; choose only
one. (This convention is not used in the Command Language Reference
manual.)

Items in capital letters are keywords. The command or subcommand name
must be spelled as shown. Operands of commands can be shortened by
deleting any number of characters from the right, provided the result is
unambiguous.

Items in lowercase letters must be replaced by appropriate names or
values.

The special characters ' () * must be included where shown

COMMAND SYNTAX

A command or subcommand consists of a keyword, followed, in the general
case, by several operands. The rules for entering a command or
subcommand are fully described in the manual 0S/VS2 TSO Command Language
Reference. The following is a summary of the general syntax rules.

Separate the command or subcommand name from the first operand by one or
more blanks.

Separate operands by a blank or a comma. You can insert any number of
extra blanks around the mandatory blank or the comma.

Positional operands, shown in lowercase letters in the syntax notation,
must follow the command or subcommand keyword in the prescribed order.
Keyword operands, shown in capital letters, must follow the positional
operands, but may be in any order; they must be typed as shown.

End a subcommand with a semicolon if it is followed by any other input
on the same line.

Appendix A: Command Syntax 49

Appendix B: Using a Terminal Other Than a 2741

If you are using a terminal other than a 2741, you should regard the
appropriate terminal manual as the source for information on how to use
dit. 1If it is an IBM terminal, it will be described in the manual OS/MVT
and 0s/Vs2 TSO: Terminals, Order No. GC28-6762.

In principle, this appendix describes only those items that are of
particular relevance to PL/I programming. These are, causing an
attention ,interrupt from the terminal, and various formatting anomalies
that occur when using display-screen type terminals. However, when this
manual was originally written it included general information on how to
use the 2260 and 2265 display screens and this information is retained
for the benefit of those who are used to using it as an information
source.

An attention interrupt in an optimizer compiled procedure causes the
program to enter its attention exit. A description of how to cause an
attention interrupt is given below for the 3277, 2260, and 2265 display
screens, for other terminals the appropriate terminal and system
Jocumentation must be read.

ATTENTION ON 3277, 2260, AND 2265 DISPLAY SCREENS

Before an attention interrupt can be caused on a 3277, 2260, or 2265
display screen the system must have issued a READ to the terminal.
During execution of the program, READs are only issued when the screen
is full, when the optimizer expects input, or at intervals specified in
the TERMINAL command. On a 3277, this is when the INPUT INHIBITED light
is off.

To make full use of the compiler, it is necessary to use the TERMINAL
command to set points where TSO will stop execution and give you the
opportunity of entering an attention interrupt. On the 2260 and 2265 it
is also necessary to set an input string that will simulate the
attention condition and though not strictly necessary, this also has
some advantages on a 3277. Like setting the time interval, it is done
using the TERMINAL command.

USING THE TERMINAL COMMAND

A simplified form of the TERMINAL command showing only the relevant
options is:

TERMINAL SECONDS(n) LINES(n) INPUT(attention_string)

SECONDS (n) specifies the amount of time in seconds that will
elapse without terminal activity taking place before
an intervention request is issued by TSO enabling you
to enter an attention interrupt. n must be a multiple
of 10 seconds, if it is not, it is rounded up to the
nearest multiple of ten. The maximum value is 2550.

Appendix B: Using a Terminal other than a 2741 51

LINES (n) specifies the number of lines that will be displayed at
the terminal before an intervention request is issued.
n can be from 1 to 255, however you should remember
that an intervention request is always issued when the
screen ‘is full, so there is no point in making n larger
than the screen size. .

INPUT (attention_string)
specifies the string that will be used for causing an
attention interrupt. This is essential on the 2260 and
2265 and has some advantages on the 3277.
Attention_string is one to four non-blank characters.

For example: \
TERMINAL SECONDS (30) INPUT (ATTN)

means that TSO will issue an intervention request if 30 seconds pass
without input from, or output to the terminal, and that the string
entered in response to the intervention request to simulate attention
will be ATTN. (30 seconds is a useful time interval to try as a start
giving adequate control without excessive interruption of processing.)
Note that a TERMINAL command may form part of your LOGON procedure. You
should check with your systems programmer.

RESPONDING TO AN INTERVENTION REQUEST

When an intervention request has been issued, TSO puts out the string
"**%" followed by a cursor mark, and processing is halted. You may
continue normal processing by pressing the enter key (on the 2260 you
must hold down the SHIFT key at the same time). Alternatively you may
issue an attention interrupt in one of the following ways:

1. Entering the string specified in the TERMINAL command thus:
*#*ATTN

2. Entering the string followed by a digit from 1 to 9. This controls
the number of attention interrupts that will be caused. 1 will pass
control to an established attention on-unit or be ignored if there
is not one. 2 will return control to the next higher system,
normally TSO, thus:

**&ATTN2

3. Enter the digit without the string. The digit has the effect
described above and can be used on the 3277 regardless of whether

an attention string has been specified thus:
Ty .

4. 3277 only, press the PAl key thus:
*** (you press the PAl key)

Attention when the PL/I program expects input

When input is expected from the terminal, (that is, when it has issued a
prompt ending a:), an attention interrupt can be specified in any of
the ways above except number 3. On the 3277, this means that there is an
advantage in specifying an attention simulation string because the
number of interrupts can then be specified in this situation by using
method 2. This enables you to exit easily from your program into TSO.

52

FORMATTING ON A 3277 DISPLAY SCREEN

Certain anomalies arise when formatting output on a 3277 display screen.
When stream output is transmitted to the terminal, it is preceded by an
attribute character which contains information such as the intensity
required for the item. This attribute character appears on the screen as
a blank character. ‘

Thus, for example, the statement PUT(EDIT('A’,*B')(A); formats thus:
AB

whereas the two statements PUT EDIT('A')(A); PUT EDIT('B') (A); format
thus:

AB

This can result in incorrect alignment of tables, and other apparent
anomalies.

Further troubles may occur when the size of a transmitted item

approaches screen width, because the transmitted item and the attribute
character may take up more than one line on the screen.

aAppendix B: Using a Terminal other than a 2741 53

Appendix C: %INCLUDE Data

SECONDARY INPUT

In conversational mode, as in batch mode, you can incorporate PL/I
source code into your program by means of the %ZINCLUDE statement. The
statement names members of partitioned data sets that hold the code to
be included. You can create these secondary input data sets either
under TSO or in batch mode.

®INCLUDE is a preprocessor statement; to invoke the preprocessor, the
MACRO compiler option must apply. However, if there are no other
preprocessor statements in your program, you need not invoke the
preprocessor: the syntax checking stage of the compiler will include
the secondary input, if you specify the option INCLUDE.

The RINCLUDE statement can specify simply the name of the data set
member that holds the text to be included. For instance:

%INCLUDE RECDCL;

It can also specify a ddname that is to be associated with the member.
For instance:

%INCLUDE STDCL(F726) ;

STDCL is the ddname, and F726 is the member name. A single RINCLUDE
statement can specify several data set members, and can contain both
forms of specification. For instance:

FINCLUDE SUBA(READS),SUBC(REPORT1),DATEFUNC;

ALLOCATING DATA SETS

All data sets containing secondary input must be allocated before the
compiler is invoked.

If a data set member name is specified in a RINCLUDE statement
#ithout a ddname, then the data set can be allocated by specifying the
data set name in the LIB operand of the PLI command. (This operand is
the equivalent of the batch-mode SYSLIB DD statement.) The necessary
allocation will be made by the PL/I prompter.

If a ddname has been specified in the RINCLUDE statement, the

corresponding data set must be allocated by means of either an ALLOCATE
command or the logon procedure.

Appendix C: ®RINCLUDE Data 55

Suppose, for example, that the data set members specified in the
%INCLUDE statements in the preceding section are held on data sets as
follows (the ddname used in the %INCLUDE statement is also shown):

Member: Data set name: ddname:

RECDCL ILDSRCE none
F726 WPSRCE STDCL
READS JESRCE SUBA
REPORT1 GHSRCE SUBC
DATEFUNC DRSRCE none

Then the necessary data sets could be allocated by the following
commands . - .

allocate file(stdcl) dataset (wpsrce)
allocate file(suba) dataset(jesrce)
allocate file(subc) dataset(ghsrce)
pli mnthcost lib(ldsrce,drsrce) include

INPUT RECORD FORMATS

The compiler will accept both F-format and V-format records, and the
primary and secondary input data sets can have different formats.

The compiler determines the positions, within each record, of the
PL/1I source code and the sequence numbers from the following options.

Option Specifying Standard default
FMARGINS Positions of source text and sequence FMARGINS(2,72)
FSEQUENCE numbers for F-format records ' FSEQUENCE(73,80)
VMARGINS Positions of source text and sequence 'VMARGINS(10,100)
VSEQUENCE numbers for V-format records VSEQUENCE(1,8)
MARGINS overriding values for above options -

SEQUENCE -

The values of FMARGINS, FSEQUENCE, VMARGINS, and VSEQUENCE can be set
only at system generation time. If no values are set at this time, the
standard default values apply. MARGINS and SEQUENCE can be specified
when the compiler is invoked. When specified, they override either
FMARGINS and FSEQUENCE or VMARGINS and VSEQUENCE, depending on whether
the first input data set read by the syntax-checking stage of the
compiler is P-format or V-format. The overriding values will also apply
if records of the same format are read as secondary input. If records
of the other format are read as secondary input, the system generation
values for that format apply.

SOURCE LISTINGS AND STATEMENT NUMBERS

If the MACRO option applies, the source listing will show the included
text in place of the RINCLUDE statements in the primary input data set.

If the MACRO option dces not apply but the INCLUDE option does, the
source listing will contain both the ZINCLUDE statements and the
included text. Each piece of included text will immediately follow the
corresponding $INCLUDE statement. The end of the included text will be
marked by a line of asterisks; with F-format primary input, the line
containing the %INCLUDE statement will also have asterisks between the
end of the statement and the right hand margin.

56

If the STMT compiler option applies, the statement numbers are
derived from a count of the number of statements in the program after
secondary input has been included.

If the NUMBER option applies, the statement numbers are derived from
the sequence numbers of the primary and secondary input records.
Normally the compiler uses the last five digits as statement numbers.
If, however, this would give numbers such that each statement does not
have a higher number than the one before it, 100000 is added to all
statement numbers starting from the one which would otherwise be equal
to or less than its predecessor.

For instance, if a V-format primary input data set had the following
lines:

00001000 A:PROC;
00002000 RINCLUDE B;
00003000 END;

and member B contained:

00001000 C=D;
00002000 E=F;
00003000 G=H;

then the source listing would be as follows.

SOURCE LISTING
NUMB
1000 00001000 A:PROC;
00002000 ¥INCLUDE B;
101000 00001000 C=D;
102000 00002000 E=F;
103000 00003000 G=H;
*hkkbrbbket
203000 00003000 END;

The additional 100000 has been introduced into the statement numbers at
two points: once beginning at the first statement of the included text
(the statement C=D;) and again beginning with the first statement after
the included text (the END statement.)

Appendix C: %INCLUDE Data 57

+3 input data prompt 17
exaaple 22

{ conpand syntax 49
! attention interrupt 23

*PROCESS statement 27,3
coapiler options 27
position in record 3

/* end~-of-file 19

Y¥INCLOUDE data 55
data sets 28
without using preprocessor 38

H inpat data proapt 17
example 22

{ } command syntax 49
[] comrand syntax 49

abbreviations

conpiler options 31
abnormal teraination of coapiler,
dump 37
addresses, offsets of statements 44§
AGGREGATE coapiler option 35
ALLOCATE command 6

example 22,23
allocating data sets 20

SINCLODE data 55

example 22

for compiler 20
amending a PL/I prograa 7
ANS printer control character 42,41
argaments to PL/I main
procedure 8,9
arrays, leagth table 35
ASIS operand of EDIT command 20,19
asseabler listing of program 39
attention interrupt 23,24,25

how to cause 24,51

how to use 28§ :

potential errors when using 25

terminals other tham 2741 S1
ATTN key 23

attention interrupt 23
ATTRIBUTES compiler option 35
automatic library call 8,9

background processing 7

batch mode 7 .

BCD character set 35

blank ‘
character in ficrst position in
line of PL/I 40,41,42

CALL compmand
examples 13
invoking compiler 7
capital letters
for commands and subcoamands 19

Index

in input to program 19
in output from program 20
card deck
for object aodule 36
for preprocessor output 42
carriage coatrol character 4
character sets for PL/I source
code 35
CHARSET compiler option 35
checkout coapiler
allocating data set 3,8
format of primary input 3,48
link-editing modules 10,112,148
uppercase and lowercase
characters 19
code, PL/I source
format of records 3,4
listing at compile time 46,7
position in record 41
uppercase and lowercase
characters 19
colon proapt 17

example 23
coaaand
syatax 49

coamand procedures 8
copmand processor
for PL/I coamand 5
COMPILE coapiler option 35
coapiler data sets 20
table 21
compiler error messages
long and short foras &0
suppressing 37
coapiler error, dump after 37
coapiler listings 28,7
‘controlling size of 7
compiler options 31
abbreviations 31
.controlling listings 7
execution-tise 8,9
in PLI coamand 27
listing a4
table 32
using vhen deleted by
installation 36
conpiler, optimizing
format of primary input records
records 3,4
foraat of secondary input
data sets 56
introduction 1
invoking S
compiling a PL/I program S
exaaples 10,12
fast coapilation 44
RU¥ command or subcommand 6
CONSECUTIVE files 19
continuatioa character 17
CONTROL coapiler option 36
coaventions, data set naaing 3
conversational input 17
example 22
conversational mode 1

Index 59

conversational output 19
exaaple 22
COPY option of GET PL/I
statement 19 :
COUNT compiler option 36
creating a program 3

data
input froa terminal 17
output to terminal 19
data sets
allocation 20
creating PL/I program 3,4
exaaple of allocation 22
for XINCLUDE data 28
for conpiler listings 28
for load modules 8
for object nodale 5,43
for object aocdules 36
for preprocessor output §2
holding XINCLUDE data 55
names in PLI coamand 27
naaing conventions 3
required by coampiler 21,20
data set naames
load modules 8
data~-directed input 18
data-directed output 19
DD statement
conversational equivalent 20
ddnanes
for SINCLUDE data 55
for batch mode 21
debugging a progranm
attention interrupts for 26
ATITENTION on-units for 24
dump information 37
flow information 37
statement counting 36
statenent aumbers at execution
time 38
statement offsets U4
storage map 40
debugging using RUN subcoamand of
EDIT 6 .
DECK compiler option 36
DECK descriptive gualifier 36,42,3
default coapiler options 31
descriptive qualifier 3
display stations, 2260 and 2265 51
DUMP compiler option 37

EBCDIC character set 35
edit-directed input 18
edit-directed output 19
end-of-file 19
BENDFILE condition 19
ending PLI command S
ENDPAGE condition 19
error messages, coapiler
long and short foras &0
suppressing 37
error, coapiler, dumap after 37
BSD coapiler option 37
executing a PL/I prograa

60

introduction 8

RUN coamand or subcoanand 6
execution time options

exanple under CALL coamand 14

exanple under LOADGO command 11
execution-time parameters 8,9
external symbol dictionary BSD 37

F-foramat records
data sets unsuitable for RUN
comnand or subcomrmamd 6
for primary imput to coapiler 56
for secondary input to
compiler 56
fast SINCLUDE 55
compiler option 38
files
conversational input 17
conversational output 19
exanple of use 22
for RINCLUDE data 56
used by coapiler 20,21
fixed-length records
data sets unsuitable for
RUE command or subcoanand 6
for primary input to
compiler 3,4
for secondary iaput to
conpiler 56
PLAG coapiler option 37
FPLO# coapiler option 37
FORN descriptive qualifier 3
format of print file output 19
format of records
primary input to coampiler 3,4
secondary input to coapiler 56
PULL
suboption of ATTRIBUTES 35
suboption of XREP 47

GBT PL/1 stateaent 17,18
COPY option 19

GONUMBER compiler option 38
inplied by COUNT Optioa 36

GOSTNT coapiler option 38
iaplied by COUNT option 36

halting execution 39
halting operations

by attention interrupt 23
hyphen as continuation character 17

IELOAC compiler entry point name 7
INPRECISE conmpiler option 38
INCLUDE comapiler option 38
includiag PL/I source code 55
inpat/output 17

exaaple 22

introduction 1
input, conversational 17

exanple 22

INSOURCEB coapiler option 39
INTERRUPT option 39
effect of 23
potential errors when
using 25,26
prograsaing with 25
prograns partly compiled with 26
interrupt, attention
definition 23
interrupting operations 23
interrupts in prograa, flow
information 37
interrupts, imprecise 38
invoking the PL/I optimizing
compiler S

job, background 7
keyvords 32

length of records on PL/I source
data sets 3,4,56
LIB operand of PLI coamand 28,55
library call automatic 8,9
library PL/TI resident
for checkout coapiler modules 10
specifying 8,9
line
continuation 17
of PL/I, creation 3,4
line nunbers
XINCLUDE data 56
introduction 3
oaitting 3
position in record 3
position of sequence nuamber 3,45
statement numbers &,43
statenent nunbers at execution
time 38
LINE option and format itea 19
LINECOUNT compiler option 39
LIBK comaand
description 8
examples 12
link-and-call method of
execution 12
exaaples ' 13
introduction 8
link-editing and executing 8
exaaples 13
RUN comnand or subcommand 6
linkage editor 8
NANE statement 42
LIST compiler option 39
LIST descriptive qualifier 3
list-directed input 18
list-directed output 19
listings
aggregate length table 35
at terminal 21,47
attributes of PL/I variables 35
conmpile-time 7
compiler options 46
external syambol dictionary
ESD 37

insource 39
nargin character 40
nesting levels in source
listing 43 .
object aodule 39
of XINCLUDE data 56
source code 46
storage map at execution tiue 40
storage requirenments of object
nodule 46
variables, cross-reference u1
LMBSSAGE coapiler option 40
LOAD descriptive gqualifier 9
load modules
executing 8)
linkage editor NAME statement uz
producing 8 :
load-and—-go method of .execution
description 10
exaaples 11
introdaction 8
loader 8
LOADGO command
description 8
exaaples 11
lovercase letters
for commands and
subconnands 19,20
for PL/I code 19,20 .
in input to program 19
in outpat from program 20

MACRO coamapiler option 40
data set allocation 21
INCLUDE as alternative 38
main storage
liniting use by conpiler 4s
listing requirezents: of object
module 46 ,
MAP compiler option " 40
MARGINI compiler option 40
MARGINS coapiler option 41
maximua record leagth om PL/I source
data sets 3,4
HDECK compiler option 42 -
data set allocation 21
messages, conpiler
long and short foras 40
suppreSSLng 37
ainus sign as continuatxon
character 17
maixing with checkout conmpiler
modules 10
examples 12,13

NAME cosmspiler option 42
NAME linkage editor statenment 42
nanes of data sets
for compiler listings 7.
for object modules 36,44
for preprocessor output 42
holding SINCLOUDE data :55
IELOAC compiler entry point name 7
in PLI command S
object modules S

Index 61

NBST coapiler option 43
NOATTRIBUTBS compiler option 35
NOCOMPILE compiler option 35
HOCOUNT compiler option 36
RODECK compiler option 36
BODUMP compiler option 37
NOESD compiler option 37
NOPFLOW compiler optioa 37
NOGONUMBER conmpiler option 38
HOGOSTNT compiler option 38
WOIMPRECISE coampiler option 38
NOINCLUDE compiler option 38
HOINSOURCE coapiler option 39
HOINTERRUPT compiler option 39
NOLIST compiler optiomn 39
NOMACRO compiler option 40
NOMAP conmpiler option &0 -

interaction with LIST 40
NOMARGINI compiler option 40
HOMDECK compiler option 82
NONEST compiler option 43
NONUMBER coapiler option &3

inplied by GOSTNT option 38
NOOBJEBCT compiler option 43
NOOPTIMIZE compiler option #4§
NOOPTIONS coapiler option 44
NOPRINT operand of PLI command 28
NOSEQUENCE compiler option 45
NOSOURCE conpiler optiom 46
NOSTMT compiler option 46

implied by GONUMBER compiler

options 38
NOSTORAGE compiler option 46
NOSYNTAX coapiler option 47
notation, syntax 49
NOTERMINAL coapiler option &7
NOXREF .compiler option 47

sequence, position in-: .record 45
NUMBER compiler option 43

implied by GONUMBJR option 38

implied by NOSTHNT option 46
nuabers

of statements-in- SINCLUDB

data 56

statement 43,46

statement, at execution time 38

0BJ descriptive qualifiers 5,43,3
OBJECT conmpiler option 44
data set allocation 21
introduction S
object modules
link-editing and executing 8
linkage-editor NAME statement 42
listing 39
names of data sets 5
producing 5,36,44
storage map 40
OFPSET compiler option 44
offsets of variables 40
syntax 49 -
optimization 1 . :
OPTIMIZE compiler option 44

62

optiamizing coapiler
format of primary iamput
records 3,8
forerat of secondary input data
sets 56
introduction 1
invoking 5
OPTIONS coapiler option 44
options, compiler 31
abbreviations 31,32
controlling listings 7
execution-tinme 8,9
in PLI comamand 27
listing 44
using wvhen deleted by
installation 36
output, conversational
exanple 22
interruption of 23

PAGE option and foramat itea 19
PAGELENGTH element of PLITABS 19
parameters, execution-time 8,9
passing parameter to nmain procedure
under LOADGO coamand, exaaple 11
passing paraaeters to main procedure
under CALL command, exaaple 14
password
CONTROL coapiler-option 36
PL/I checkout coapiler
allocating data set 10
examples of link editing
nodules 12,14
format of prisary inpat 3,4
link-editing modules 10
uppercase and lowvercase
character 19,20
PL/I optimizing compiler
format of primary input
records 4
format of secondary input data
sets 56
introduction 1
invoking 5
PL/I prograa
creating 3
running S
PL/I pronmpter
allocating data sets 21,20
introduction 5
PL/I resident library
for checkout coapiler modules 10
specifying 8,9
PL/I source code
XIBCLUDE data 55
foramat of records 56
listing at compile time 7,46
position in record 40
uppercase and lowercase
characters 19,20
PLI and PLIFP data set types 4§

PLI coamaand
introduction S
main description 27 .
PLY descriptive qualifiers 3
PLIBASE library 8,9,10
PLICMIX library 8,9,10
PLIDUMP ddname 21
data set unsuitable for rum coamand
or subcommand 6
PLIF operand of EDIT command 4
PLITABS table 19
plus sign 17
preprocessor output 42
sequence numbers 43
preprocessor statements
XINCLUDE 55
XINCLUDE without using
preprocessor 38
coapiler option 40
data sets 28
primary input to coampiler
creating 3
format of records 3,4
print files for conversational
output 19
PRINT operand of PLI coamand 27
data set allocation 21
introduction 7
printer control characters 40,81,42
printing
coapiler listings 7
for PLI comnand S

prograss

running S
prompter, PL/YT S
proapts

for input to prograa 17
PUT PL/I statement 18

guotes in data set names 3

record files
conversational input 19
conversational output 20
example of use 22

record foraat
of primary input to compiler 3,4
of secondary iaput to
compiler 56

record in PL/I source data set 3

region, background 7

REPORT coapiler optioan 21

resident PL/I library
for checkout compiler modules 10
specifying 8,9

RUN command and subcommand
description 6
exanple 15

running a PL/I progran
optimization 44

running a PL/I program 5
exaaples 10

screen, display S3
secondary input to compiler 38
coapiler option 40
data sets 28
sending a command to computer 17
SBQUENCE compiler option 45
sequence nuabers
SINCLUDE data 56
introduction 3
position in record 3,4
stateaent numbers 43
SHORT
suboption of ATTRIBUTES 35
suboption of XREF 47
sinple nane of data set 3
SIZE coampiler optioan 45
SKIP option and format itea 19
conversational input 19
SMESSAGE coapiler option 40
source code
XINCLUDE data 5SS
listing at coapile time 7,46
position in record &0
uppercase and lovercase
characters 19,20
SOURCE compiler option 46
source prograa
creating 3
format of records 3,4
statement nuabering &
statement nuabers
of XINCLUDE data 56
static storage map 40
STHT coapiler option 46
iaplied by GOSTNT option 38
implied by HUNBER option &3
stopping execution 23
STORAGE compiler option 46
storage map at execution time 40
storage, aain
limiting use by compiler a5
listing requirements of object

module 46
streaa files for conversatiomal
input 17

example 22
strean files for coanversational
output 19, 22

example 47
structures, length table 35
SYNTAX compiler option 47
syntax of coamands &9
SYSCIN ddname 21
SYSIN ddname 21
SYSIN file 17

allocation 20
SYSLIB ddname 21,28,55
SYSLIN ddname 21

Index 63

SYISOUT class
example of use 22
for compile-time listings 7,28
SYISPLIC checkout compiler file
nane 10,112,184
SYSPRINT file 19
allocation 20
used by compiler 27V
SYSPRINT operand of PLI
coamand 7,28
SYSPUNCH ddname 21
SYSPUNCH output froa
preprocessor 42
SYSUT1 checkout coapiler work
file 10,12,1%
SYSUT1 ddnaae 21

TEMPNAME assuaed for load modules 9
terminal
for coapile listings 47
- for coapiler listings 27
input data 17
output data 19
2260 or 2265 51
TERMINAL compiler option 47
terainals
2260 and 2265 5t
terainating a terainal session
2260 and 2265 terainals 51
terninating PLI coamand 5
teranination of coapiler, abnormal,
duap 37

64

UADS user attribute data set
authorization for SUBNIT coamand
updating a PL/I prograa 3
uppercase letters
for coamands and subcoamands 17
for PL/I code 19,20
in input to prograa 19
in output from program 20

V-foramat records
for primary iaput to
coapiler 3,4
for secondary input to
coapiler 56
variable~length records
for primary input to
coapiler 3,84
for secondary input to
coapiler 56
visual display unit VDU
terainals 53

XREF compiler option 47
2260 or 2265 terainal 51

3277 terainal
attention on 51

Staples can cause problems with automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form

Note:

esee:
02000006000 0060000000000000vecstsetssessneoetsseseresseserseeroeretesottecssecetsessectsssessssssretosscccreveitsscccecsnntcns

coens

cesse

sessesereesseereseernsstssttaresnee

sesseerarssssene

Reader’s

OS PL/I Optimizing Compiler: Comment
TSO User’s Guide Form
SC33-0029-3

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author’s department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

SC33-0029-3

\

Reader’s Comment Form

Fold and tape Please do not staple

000000 0800000000000000000000080000000000000000008000000000008006000000000s0socssssssscssse

| || || | NO POSTAGE
NECESSARY
IF MAILED
IN THE
’ UNITED STATES
b]
BUSINESS REPLY MAIL ——
FIRST CLASS PERMIT NO.40 ARMONK, N.Y. =
POSTAGE WILL BE PAID BY ADDRESSEE e ——
. |
]
]
1BM Corporation C—
P.O. Box 50020 E———
Programming Publishing —
San Jose, California 95150 E——
|
. |
Fold and tape Please do not staple Fold and tape
=== =

international Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

1BM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Fold and tape

00000000 000000ettessesssesesnasssssnatiosesssseesestasesenssssnssonisocscccsscscossce

secssecssscncssccne

ceecnscssccccssocne

cscene

eseccessressscssesssesacnssssessecssconsesel

eesssecssnse

:19)1dwog Buiziwndo 1/1d SO

apIng 495 OSL

(62-0LES/09ES ON 3}!d)

€-6200-€€0S 'V'S'N u! paiuld

SC33-0029-3

I
il
iy

@

i)
I

Il
i

L

|

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corparation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

ejidwog buiziwdo 174 SO

!
S4

(62-0££S/09€5 0N 2l14) aping s,1950 O

VST Ul parutig

£:6200-£€DS

	0000
	0001
	0002
	0003
	0005
	0006
	0007
	0009
	001
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	051
	052
	053
	055
	056
	057
	059
	060
	061
	062
	063
	064
	replyA
	replyB
	xback

