

Program Product

SC33·0029·3
File No. 5360/5370·29

OS
PL/I Optimizing Compiler:
TSO User's Guide

Program Numbers 5734·PL 1
6734·LM4
6734·LM6

(These program products are available
as composite package 6734·PL3)

~ EDITION (July 1979)

This is a major revision of, and makes obsolete, SC33-0029-2, and its
technical newsletter, SN33-6163.

This edition applies to version 1, Release 3, Modification 1, of the
OS PL/I optimizing compiler and libraries, Program Products 5734-PL1,
5734-LM4 and 5734-LMS, and to any subsequent version, release, and
modification until otherwise indicated in new editions or technical
newsletters.

The changes for this edition are summarize.d under "Summary of
Amendments" following the list of figures. Technical changes made are
indicated by a vertical bar to the left of the change. These bars will
be deleted in any subsequent republication of the affected page.
Editorial changes that have no technical Significance are not noted.

Changes are continually made to the information hereinl before using
this publication in connection with the operation of IBM systems,
consult the latest IBM Sibtem/370 Biblioqraphy, GC20-0001, for the
editions that are appl1c Ie and current:

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs), programming or
services which are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce
such IBM products, programming or services in your country.

Publications are not stocked at the address given belowl requests for
IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Corporation, P. O. Box 50020, Programming Publishing, San Jose,
California, U.S.A. 95150. IBM may use or distribute any of the
information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use
the information you supply.

@Copyright International Business Machines Corporation 1973, 1976, 1979.

Preface

T~is boot is an extension of the os PLII Opti.izing Co.pilar;
,rogra •• er's Ggida. It dascribas hOIf to usa the facilities of TSO to
compila a PLII progra. using tha PL/I optiaizin9 Co.pilar, and hOIl to
execute the prograa. The readar is assu.ed to be faailiar .itb PL/I and
TSO; the aanual covers both the OSII'T and tba OS/'S2 varsions of TSO.

Requisita publications for this manual ara listed balo,,:

os 'LII Opti.izing and Checkout co.pilers: Language Reference Banual,
sell-0009

os PLII Optiaizipg Compiler: program.er's Guide, SC3l-0006

IBn System/J60 Oparating SIste!; Ti.e SbaEing optiop Co •• and Language
BefeE8Pce, GC2S-6732

OSI!S2 150 Comaapd Language Bafarepce, GC28-0646

IBI Slatel/l60 ogeratiB! Systel; Tlee "'riPa OptiOD 1e"i911 0str',
!IlA!, GC28-6763

OS/IS2 TSO Terainal Oser's Gpide, GC2S-06'S

OS/n!z aDd OS/'S2 TSO TeralRal lapgal, GC28-6762

Th~ terainal user's guides are the basic authoritative sources for
lnf.oraaUon about the PLII cO!llaad and about the coapiler options UDder
!SO. The authoritative sources of inforaation on other topics are as
fo11olls;

• TSO facilities other thaD PLI cOI.and; the Coaaand Langaage
BefereDce

• Terainals: the Terainal laDual

• The PL/t Opti.izinq Coapiler: The Prograaaer's Guide

• The PL/t laDguage iapleaented by the PLII OptiaiziDg Coapiler: the
PL/I Language Reference BaDual

The authoritative sources vill be the first to be updated to reflect any
changes.

Preface iii

Contents

PBBF&CE.
PIGuns. • • ·
SUK!ARI OF lKBBD!EBTS.
CHAPTBR 1. IITRODUCTIOI
TSO. • • • • • • • • • ·

Conversational processing
The Optimizing Compiler •

. . . . • • • • • • • .. . ·
CHAPTER 2. CRElTIIG ABD UPDATIIG PL/I PROGRA!Su • • • • • • • ..

CHAPTEI 3. RUHHIIG A PROGRA!. • • • • • • • • • • • • • •
Compilation. •

Invoking the compiler • • • • • • • • • • • • • • · ..
Bun Command and Subcommand. • • • • • • • • • • • • • • • • •
Compiler Listings • • • • • • • • • • • • • • • • • •
Calling the Coapiler. • • • • • • • • • • • • •
Background proqessing •

Link-Editing and Executing • • • • • · ..
Introduction to Coa.ands. • • • • • • • • • • · . .
The LOADGO Com.and. • • • • • • • • • • •
The LIBI Coa.and. • • • • • • • • • • • • • • • •
The CALL Command. • • • • • • • • • • • • ..

Bixing Procedures from the PL/I optimizing and Checkout · . . Compilers •••• ,. • • • • ••••••••••
Compile, Load, and Go. • • • • • • • • • •
Compile, Link-Edit, and Execute.
Using the RUB Facility • • • • • . . .
CHAPTER q. I/O AID ATTBNTION INTERRUPTS •
Introduction • • • • • • • • • • • • • •
Conversational Input • • • • •
Conversational Output. • • •
Compiler Data Sets • • • • • •
Bxample of Input/Output. • • • •••
Attention Interrupts • • • • • • • • • • • •

Bow to Cause an Attention Interrupt.
How to Use Attention Interrupts • • • •

Attention On-Units Used for Debugging. •
. ..

· ... · .
· . · .

. ..
• •

· ...
Attention On-Units Used for Interactive Systeas
Background to Attention Handling • • • • • • ••
Pitfalls When Using Attention Interrupts. • • •
Synchronization. • • • • • • • • • • • • • • • •
Prograas Partly Compiled witb the INTERRUPT option •

CRAnER 5. PLI COBBAID. • •

CHAPTER 6. COMPILBR OPTIO!S

APPBIDIX A. COBRAND SIHTAI. .. •
Syntax Notation. •
Command Syntax • • • • • • • • • • • • •

APPENDIX B. USI!G A TBRSI!AL OTHER TRAN A 2741 ••
Causing an Attention Interrupt • • • • • • • • • •

Attention on 3277, 2260, and 2265 Display Screens ••
Using the TER!IIAL Com.and • • • • • • • • • • • • •

· .

· . .
· ..
· . .
· . ..

iii

Yii

ix

1
1
1
1

3

5
5
5
6
7
7
7
8
8
8
9
9

10
10
12
15

17
17
17
19
20
22
23
2'
24
24
2q
25
25
26
26

27

31

49
49
49

51
51
S1
S1

Contents v

Responding to An Intervention Request. • •• _ • _ • •
Formatting on a 3271 Display Screen. • • • • • • _ ••••

APPBNDIX C. 'INCLODB DATA • • • • • _ •
Secondary Input. • • • • • • • _ • • -
Allocating Data Sets • • • • _ • _ • • -.- . Input Record Formats • • • • • • • _ •
Source Listings and Statement Ku.bers_ --
ISDBI.

vi

52
53

55
55
55
56
56

59

Pig are 1.
Pigure 2.
Pigare 3.
Pigure 4.
• igure S.

Figures

Some Descrip~ive Qualifiers • • • • • • • • • • • • •
S~andard Defa.l~ Record Por.a~s • • • • • • • • • • •
co.piler Da~a Se~s. •••••••••.••.•••• _ .•
co.piler op~ioa lefvords. Abbrevia~ioDs. aad Defa.l~s
Co.piler Op~ions Arranged br PaactioR • _ ••• __ •

3

" 21
32
33

Figures vii

Summary of Amendments

SBlnC! CHAIIGBS

For Release J. "odification 1. the storage size in which the compile~
rQns has been increased.

OTHER "ODIPICATIORS

This PQblication has been redesigned into one par.t with six chapters and
three appendixes.

Chapter 1 remains an introduction giYing an overview of the advantages
of using TSO to create, cOllpile, and execute data sets.

Infor8ation that was forllerly contained in Chapter 2, ·Operating the
Terllinal.,w and Chapter 3 -'rhe Terainal Session,· can be found in the !SO
'e~lIi9!l User's Ggide for-Jour installation. ---

Chapter 2 (foraerly Chapter 4) has been revised and condensed and gives
a brief discussion on creating and updating PLII prograas. 'rhe ZSO
COllaRd Lanquaqe Referegpe manual for your installation contains
detailed info~lIation on this subject.

Chapter 3 (forllerly Chapter 5) is a description of how to cOllpile and
execute a PL/I prograa under !So.

Chapter 4 (forllerly Chapter 6) discusses input and output procedures and
attention interrupts. Detailed inforllation on allocating and perforlliag
operations on data sets can he found in the 'SO COIl!a9d L!nquage
Refereape lIanual for Jour installation.

Chapter 5 (forllerly Part 2) describes the PLIl cOII.and that is used to
invoke the Optilizing COllpiler uader TSO.

Chapter 6 (foraerly Part 2) describes coapiler options.

Appendix A briefly discusses cOllaand syntax under TSO.

Appendix B has beeD condensed and describes itells relevant to PL/I when
,you use a terllinal other than an IBK 2741 Coa.uaications 'rerainal.
lnforllation on the IB" 2260 and 2265 Display Stations can be found in
the appropriate lIanuals for those terainals.

Forller Appendixes C through B hawe been deleted. Inforlation on data
set types (forllerly included ia Appendix D) has been lIoved to Chapter 2;
naaing cODventions for data sets (forllerly in Appendix B) are discussed
in the ,so TeraiRal User's Gglde for your installation.

Appendix C (foraerly Appeadix P) discusses creating secondary data sets
with the IIICLUDB statellent.

Forller Appendix G has been deleted. Information aboat prograas of
non-TSO data sets caa be fOGDd La the ~Co.,agd Language Refe£egce
lIanual for Jour iastallatioa.

Summary of Amendments ix

Chapter 1: Introduction

'1'SO

The facilities of '1'SO that will be of particular interest to a PL/I
programmer are those for:

• Creating, updating, and manipulating data sets

• Invoking programs

• These facilities are described in your '1'SO User's Guide.

The data sets can hold PLiI programs and input data for them. The
program-invoking facilities can be used to invoke PLiI compilers
(including the optimizing compiler), load modules, and OS facilities
such as the linkage editor and the loader.

CONVERSATIONAL PROCESSING

The optimizing compiler operates under TSO in conversational m29!.

In conversational mode, you invoke each program you wish to run at
the time you wish to execute it. Execution generally starts almost as
soon as you send the instruction from the terminal, and results can be
displayed at your terminal as soon as the program produces them. If the
program requires input data, you can enter it at the terminal whenever
the execution reaches an appropriate input statement.

A benefit of TSO is the ability it gives you to intera9t
conversationally not just with your own programs, but with the
computing system as a whole. Nearly all the operations a programmer
needs to perform can be carried out from a terminal.

THE OPTIMIZING COMPILER

The optimizing compiler will compile PL/I source programs, print the
diagnostic messages at the terminal, and write the object modules
onto a data set. These object modules can then be conversationally
link-edited and executed.

During execution, the terminal can be used as an input and output
device for consecutive files in the program. You can therefore
receive output from your program and provide input for it.
Conversational I/O needs no special PL/I code, so any STREAM file
can be used conversationally.

The INTERRUPT compiler option, introduced with Release 3 of the
compiler, allows attention interrupts to become an integral part of
programs compiled on the optimizing compiler. Chapter 6 has more
information on this option.

Chapter 1: Introduction

Chapter 2: Creating and Updating PL/I Programs

When you create a PL/I program using the EDIT command, you must specify
the data set type as either PLI or PLIF. PLI indicates that therecor.ds
are to be of variable length; PLIF indicates that they are to be of
fixed length. Both types are accepted by the PL/I optimizing and
checkout compilers.

You should distinguish carefully between the data set type and the
descriptive qualifier in the data set name. Both PLI and PLIF data set
types take the descriptive qualifier PLI.

The following figure lists some descriptive qualifiers and the data
types they describe.

PL/I source code

Object module

Formatted source code

compiler listing .of source code

Preprocessor output in card format

Figure 1. Some descriptive qualifiers

DescripU ve Qualifier

PLI

OBJ

PORM

LIST

DICK

The differences between the two types of data set are as follows:

1. Record formats. You can control the format by means of the LINE and
BLOCK operands of the EDIT command (see the manual TSO Command
Language Reference), but the standard default formats are as follows.

PLI-type:
Record format: VB
Maximum logical record length: 10Q bytes
Block size: 500 bytes

PLIF-type:
Record format: FB
Logical record length: 80 bytes
Block Size: 400 bytes

2. Location of sequence numbers. In PLI-type records, sequence numbers
are held in bytes 1 to 8; in PLIF-type, they are in bytes 73 to 80.

You can have line numbers omitted from the records by specifying the
additional operand NONUM. In this book, however, it is assumed that the
records have line numbers.

Provided you allow the standard defaults for the MARGINS, SEQUENCE,
NUMBER, and STMT compiler options to apply when you compile your program,
the compiler will assume all source text (including *PROCESS statements)
starts after column 8 for V-format data sets and extends from columns 2

Chapter 2: Creating and Updating PL/I Programs 3

to 72 for F-format data sets. The statement numbers printed on all
compiler listings will be derived from the sequence numbers.

The default options for each field are summarized in Figure 2.

PLI·type record
1 8

1010101010101 1101 , ,
v

Sequence number

PLlF.type record
2

10 30 I~x. value: 1001

Ipi :lplRlolcl IO]pITllloiNlslclHIAlrlNIII :1
, I

V

SourcetelCt

72 73 80

I[Jllololnlnl(lIr.11Iol
v A V f

Source text Sequence number

Figure 2. Standard default record formats

The differences between the record types are shown in Figure 12.
As that figure, suggests, PLZ-type data sets generally take less space
to hold a particular size of program than PLIf-type.

Notice that although the standard defaults assume no carriage control
character for PLI-type records, byte 9 is assumed to be occupied by
neither source text nor sequence number. It can therefore be used to
hold a carriage control character if there is any possibility of the
program being listed in batch mode.

4

Chapter 3: Running a Program

COMPILATION

INVOIUNG THB COMPILER

The usual method of invoking the optimizing compiler is by
the PLI command. In its simplest form, the command consists of the
keyword and the name of the TSO data set holding the PL/I source
program. For instance:

pH caltrop

In addition to the data set name, you can also specify the PRINT
operand to control the compiler listings, and the LIB operand to specify
secondary input data sets for IINCLUDB statements. You can also specify
compiler options as operands of the PLI command.

The command processor for the PLI conunand is a program known as the
~ prompter. When the command is entered, this program checks the
operands and allocates the data sets required by the compiler. Control
is then passed to the compiler and a message displayed.

If the source data set has a conventional TSO data set naJ'!le, you can
use the simple name, as in the example. If not, you will need to
specify the full name, and enclose it in single quotation marks:

pli 'dianthus'

or:

pli 'jjones.erica.pli'

The compiler translates the source programs into object modules,
which it stores on external data sets. You can link~edit and execute
these object modules conversationally (see "Link Bditing and Bxecuting"
later in this chapter).

If you use an unqualified data set name, .as in the example at
the start of this section, the system will generate a name for the
object module data set. It will take the simple name of the source data
set - CALTROP in the example - and add to it your user-identification
and the descriptive qualifier OBJ. Hence, if the user who entered the
example PLI conunand had the identification WSMITH, the object module
would be written onto a data set called WSMITH.CALTROP.OBJ •

. You can make your. own choice of name for the object module .data set
by including the OBJECT compiler option as an operand of the PLI
command. For instance: .

pli caltrop object(trapa)

Chapter 3: Running a Program 5

The system will.add tbe :same qualifiers to this name as it would to the
source data set simple name, so.the object module would, in this
example, be written onto a data set called WSMIra.rRAPA.OBJ.

You can specify the full name of the object module data set by
enclosing it in quotation marks. Por instance:

pli caltrop object('natans·)

The system in this case adds no qualifiers, so the object module is
stored on a data set called NATANS.

Tbe specification of a full name can be used to store the object
modlllewitn.another user!·s . user-identification. For instance, the
following command would "store the object module using the user­
identification JJONBS:

pli caltrop objectC'jjones.caltrop.obj')

An alternative to the PLI command is the RUN command or subcommand.

RUN COMMAND AND SUBCOMMAND

The RON .cOlllJDand i,s used" to invoke a specified compiler and to execute
the compiled program. It can be used to invoke, via the prompter, the
optimizing compiler. Compared with the PLI command, the RUN command has
the following limitations:

• No compiler "options can be specified.

• There is no PRIN'l' operand, so if your system was generated with the
IBM default for this operand, the prompter will allocate SYSPRINT to
a dummy data set. You cannot therefore obtain compiler listings at
the terminal.

• Under the OS/MVT version of TSO, there is no LIB operand, so you
cannot specify a preprocessor input data set. Such a data set must be
allocated by means of the ALLOCATE command. (The enhanced OS/VS2
version includes the LIB operand.)

• The source program data set must have V-format records. A data set
created under the EDIT command is therefore sui table if the PLI
operand was specified, but· not if the PLIF operand was used.

A simplified gene·r~l form of the command is:

RON I R data-set-name ['parameter-string' 1
[PLIl [CBECKIOPTl

The -data-set-name- operand must be the name of the data set holding the
PL/I source program. It· can be specified in the "form ·user-supplied­
name.descriptive-qualifier-. If it is not specified in this form - if.
for instance, only the simple name is specified - or if the descriptive
qualifier is not PLI, you must include the operand PLI. The CHECK and
OPT operands indicate, respectively, the checkout and optimizing
compiler I OPT is the standard default applied when neither is specified.
The -parameter-string- will be passed to the main procedure of the PLII
program.

RUN can also be used as a subcommand of the EDIT command. The syntax
shown here for the RON command also applies to the subcommand, except
that there is no -data-set-name- or PLI operand. Approximately 30R
bytes of storage will be reserved in your region for the EDIT command
routines, so the storage available to the compiler and your program will
be reduced by this amount. RUN is particularly useful as a subcommand

6

when a program is being developed. After a run, amendments can be made
to the source data set by means of other subcommands of EDIT, without
the need to reenter the EDIT command.

COMPILER LISTINGS

As in batch mode, compiler options control which listings 'the compiler
produces (see ·compiler Options ft in Chapter 6). You can specify the
options as operands of the PLI command.

In addition to specifying which options are to be produced, you will
need to indicate where they are to be transmitted to. If you wish to
have them displayed at the terminal, you can specify either the PRINT(.)
operand, which allocates the compiler listing file to the terminal, or
the TERMINAL option. The latter should contain a list of the options
corresponding to the listings you require at the terminal. For
instance, to produce a source listing at the terminal, you could enter
either:

pli caltrop print(.) source

or:

pli caltrop term (source)

Compiler listings can be directed to a data set by specifying the
PRINT operand with the data set's name, or to a SYSOUT class by
specifying the SYSPRINT operand. For further details see "PLI Command"
in Chapter 5.

CALLING THE COMPILER

The CALL command can be used to invoke the compiler directly. The
member name is IELOAA and you call the entry point IELOAC. BecaUSe the
PLII prompter is not used, you must ensure that all data sets required
by the compiler are allocated before it is called (see "Compiler Data
Sets· in Chapter 4). The command takes the form:

CALL IELOAC

BACKGROUND PROCESSING

If you have the necessary authorization, you can submit jobs for
processing in a background region. Your installation must record the
authorization in your OADS (User Attribute Data Set) entry.

Jobs are submitted by means of the SUBMIT command. The command must
include the name of the data set holding the job or jobs to be
processed, and the data set must contain the necessary Job Control
Language statements. Jobs will be run under the same version of the
operating system as is used for TSO. output from the jObS can be
manipulated from your terminal.

Further details about submitting background jobS are given in the
manual TSO Terminal user's Guide.

Chapter 3: Running a Program 7

LINK-EDITING AND EXECOTlNG

INTRODUCTION TO CO~NDS

compilation using the PLI command produces an object module on a data
set; to execute the program this must be link-edited to form a load
module, which must then be invoked. These operations can be performed by
means of either the LOADGO command, or the LINK command followed by the
CALL command.

The LOADGO command invokes the loader program. This builds the load
module in main storage, and then invokes it. The load module can be
built from a single load module, or from a number of object modules or
load modules, or a mixture of object and load modules.

The LINK command invokes the linkage editor, which link-edits one or
more object modules into a load module. It stores the load module on an
external data set. The CALL command invokes the load module.

You can use the LOADGO method if you do not wish to retain a copy of
the load module. Otherwise, ~ou must use the LINK-and-CALL method.

An alternative to the LOADGO method is the RUN method, in which the
single command or subcommand RUN initiates compilation followed by link­
editing and execution. The RON command and sUbcommand are described in
the earlier section -RON Command and Subcommand-.

The succeeding sections describe the LOADGO, LINK, and CALL commands.

THE LOADGO COMMAND

This command invokes the OS loader. A simplified general form is:

LOADGOILOAD (data-set-list) ['parameter-string')
[LIB(data-set-list)] [PLICMIXIPLIBASE]

The initial -data-set-list- specifies the names of data sets holding the
modules - object modules or load modules - that are to be loaded and
executed. The names must be separated by commas or blanks; the
parentheses can be omitted when there is only one name.

For programs compiled on the optimizing compiler -parameter-string­
contains two fields separated by a slash (/)', and takes the form:

'[execution time options] [/parameter string]'

The first field will be passed to the library initialization routine
as an execution-time option list; the second will be passed to,the main
procedure of the PL/I program.' If there is no list of execution time
options, the main procedure parameter must be preceded by a /. '
Execution time options are described in the manual OS PL/I Optimizing
compiler: Programmer's Guide. '

The LIB operand should contain a list of the names of data sets that
contain user-supplied modules to be link-edited by means of the
automatic library call facility.

The name of the PL/I resident library must be specified as an
operand. It can be either PLIBASE or PLICMIX. PLIBASE must be used in
normal conditions. PLICMIX is for use when modules that have been
translated by the checkout compiler are being mixed with those from the
optimizing compiler. In such conditions, PLICMIX gives a smaller load

8

module than the use of PLIBASE, although execution may be slower.

You can specify loader options as operands of the LOADGO command; for
further information, see theOS!VS2 TSO: Command Language Reference manual.

The LOAD GO command processor allocates all data sets used by the
loader •.

THE LINK C:)MMAND

This command invokes the OS linkage editor. A simplified general form
is:

LINK (data-set-list) [LOAD(data-set-name)]
[LIB(data-set-list)] [PLICMIXI PLIBASE]

The initial -data-set-list- specifies the names of data sets holding the
object modules that are to be link-edited. They can also contain
linkage-editor control statements. The names must be separated by
commas or blanks: the parentheses can be omitted when there is only one
name. The rules about positioning of control statements in relation to
object modules are the same as for batch mode.

The LOAD operand specifies the name of the data set that is to hold
the load module. If you specify a simple name, the system will add your
user-identification qualifier ·and the descriptive qualifier LOAD. The
load module must be a member of a partitioned data set. If you do not
specify a member name, the system will use the name TEMPNAME. If you
omit the LOAD operand, the system will construct a name by adding your
user-identification qualifier and the descriptive qualifier LOAD to the
first data set name in the initial -data-set-list-.

The LIB operand should contain a list of the data sets that contain
user-supplied modules to be link-edited by means of the automatic
library call facility.

The name of the PLII resident library must be specified. It can be
either PLIBASE or PLICMIX. PLIBASE must be used in normal conditions.
PLICMIX is for use when modules that have been translated by the
checkout compiler are being mixed with those from the optimizing
compiler. In these conditions, either PLICMXX or PLIBASE can be used.
PLICM!X produces a smaller load module, although execution may be slower
than if PLIBASE is used.

You can also specify linkage editor options in the LINK command: for
further information, see the OS/yS2 TSO: Command Language Reference manual.

The LINK command processor allocates all data sets required by the
linkage editor.

THE CALL COMMAND

This command loads and executes a specified load module. Its general
form is:

CALL data-set-name ['parameter-string']

The -data-set-name- specifies the partitioned data set member that holds
the load module. If you specify the simple name of the data set, the
system· assumes the descriptive qualifier LOAD. If you do not specify a
member name, the system assumes the name TEMPNAME.

Por programs compiled on the optimizing compiler, ·parameter-string·

Chapter 3: Running a Program 9

contains two fields separated by a slash(/'), and takes the form:

'(execution time options] (/parameter string]

The first field will be passed to the library initialization routine
as an execution-time option list; the second will be passed to the main
procedure of the PL/I program. If there is no list of 'execution time
options, the main procedure parameter must be preceded by a /.
Execution time options are described in the manual OS PL/I Optimizing
Compiler:'Programmer's Guide.

MIXING PROCEDURES FROM THE PLII OPTIMIZING AND CHECKOUT COMPILERS

Procedures processed by the two compilers can be link-edited to
single program. The LOADGO or LINK command is used to do this,
same way as for procedures from the optimizing compiler alone.
the follOwing speQial points should be noted:

form a
in the
However,

• The data set holding the checkout compiler and a work file must be
allocated. This can be done by the LOGON procedure. The IBM
standard logon procedure for the checkout compiler, PLICKLGN, makes
the allocations, but that for the optimizing compiler, PLIXLGN, does
not. PLICKLGN is suitable for use with the optimizing compiler. As
an alternative to the logon procedure, ALLOCATE commands can be used.
Por instance:

ALLOCATE FILECSYSPLIC). DATASEr('SYS1.PLICLNK') SHR
ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)

The SHR operand is required to allow other users to access the
compiler.

• The checkout compiler must have control at the start of execution.
Control must not pass initially to a procedure compiled by the
optimizing compiler. One way of ensuring this is to put a data set
holding a procedure translated by the checkout compiler at the start
of the list of data sets in the LOADGO or LINK command.

• The PL/I resident library PLICMIX can be used as an alternative to
PLIBASE. The required version can be specified in the LOADGO or LINK
command. PLICMIX gives a smaller load module at the expense of
execution time; PLIBASE gives faster execution at the expense of
s~ce.

Further information about mixing modules from the two compilers is
given in the programmer's guide for the checkout compiler. Examples
are given in the following two sections.

COMPILE, LOAD, AND GO

You should use the load-and-go method when you wish to:

• Build the load module in main storage, without producing a permanent
copy on a data set, and either:

• Link-edit two or more external procedures together and execute the
resulting program, or:

• Execute a single external procedure

10

If you want a permanent copy of the load module, you must use the
LINR command, examples of which are given later.

Further information about using the loader is given in the
programmer's guide for the optimizing compiler.

Example 1

A single external procedure, held on a data set called
PGROUP3.ZA311B.PLI, is compiled by the optimizing compiler, and the
resulting code is link-edited and executed by means of the LOADGO
command.

The terminal session is started by a LOGON command specifying a user­
identification of PGROOP3. The compiler is then invoked by means of a
PLI command. No data set name is specified for the Object module data
set, so the system generates one fronl the name of the source data set:
the object module data set will be called PGROOP3.ZA311B.OBJ.

logon pgroup3
PGROOP3 LOGON IN PROGRESS AT 13:41::07 ON FEBROARY 7, 1979
READY
pH za311b
PL/I OPTIMIZER V1 R2.0 TIME: 13.41.08 DATE: 7 FEB 79

NO MESSAGES PRODUCED FOR THIS COMPILATION
COMPILE TIME 0.02 MINS SPILL FILL: o RECORDS, SIZE 4051
READY
loadgo za311b plibase
READY

Example 2

.

An external procedure that uses the procedure compiled in Exareple 1 as a
subroutine is compiled and executed. The two procedures are link-edited
together and executed by means of the LOADGO command. The main
procedure is held on a data set called PGROUP3.XA311B.PLI, and it is
first compiled by the optimizing compiler. It 1s then link-edited with
the object module on PGROOP3.ZA311B.OBJ, produced in Example 1. The
OBJECT option specifies XAB as the Simple name for the object module
data set. The full name of the data set will be PGROOP3.XAB.OBJ.

The parameter '999' is passed to the main procedure at execution
time.

pli xa311b obj(xab)
PL/I OPTIMIZER V1 R2.0 TIME: 13.52.41 DATE: 7 FEB 79
~PTIONS SPECIFIED

OBJ

NO MESSAGES PRODOCED FOR THIS COMPILATION
COMPILE TIME 0.02 MINS SPILL FILE:
READY
loadgo (xab,za311b) '/999' plibase
READY

o RECORDS, SIZE 4051

If the execution time option REPORT were to be specified, the LOADGO
command would take the form:

loadgo (xab,za311b) 'report/999, plibase

Chapter 3: Running a Program 11

Example 3

A procedure compiled by the optimizing compiler uses, as a subroutine, a
procedure that was translated by the PL/I checkout compiler. The main
procedure is held in object-module form on a data set whose full name is
REVERT; this name is not in accordance with the TSO conventions. The
translated version of the.subroutine is held on t~ data sets:
PGROUP3.TOMPROC.OBJ, which holds the link-edit stUb, and
PGROUP3.TOMPROC.ITEXT, which holds the intermediate text. The latter
data set must be allocated before the LOADGO command is entered.
The data set holding the checkout compiler,S~Sl.PLICLINK,
and a work file, called SYSOTl, must also be allocated unless this is
done in the logon procedure. For further information about processing
checkout compiler modules, see the manual Q§ ~~ Checkout Compiler: TSO
User's Guide.

The resident library PLICMIX is chosen. The option STEP(5000) is
passed to the interpreter stage of the checkout compiler. Notice that
the checkout compiler procedure is specified first in the LOADGO
command.

READ~

allocate file(sysplic) dataset('sysl.pliclnk') shr
READY
allocate file(sysutl) block(102~) space(60,60)
READY
allocate file(sysitext) dataset(tomproc.itext)
READY
loadgo (tomproc,'revert') 'step(5000),
V1 R3 PL/I CHECKOUT 6 MAR 79

TIME 15.33.39
OPTIONS SPECIFIED

STEP(5000)

IENl18~A 435X 'FINISH' RAISED.
AT 920 IN TOP

?go
INTERPRET TIME

TOTAL TIME
READY

0.01 MINS
0.01 MINS

COMPILE, LINK-EDIT, AND EXECOTE

plicmix
interpretation stage

checkout compiler
invoked

GO subcommand of PLIC command
ends interpretation stage
of checkout compiler

The LINK command is used to link-edit a compilej ~xternal procedure, or
to combine two or more procedures to form a single load module. A load
module can be executed by means of the CALL command. ~ou should use the
LINK-and-CALL method of proceSSing when you wish to:

• K.eep a copy of the load module on an external data set.

• And either link-edit two or more external procedures to form a Single
program

• Or execute a program repeateaIy, without making amendments to the
PL/I source code . .

If you wish to execute a compiled program without keeping a copy of
the load module, you. can use the LOADGO command (see previous section).

Further information about using the linkage editor is given in the
programmer's guide for the optimizing compiler.

12

Example 1

Two PLII external procedures are compiled and link-edited to form a
single load module, which is then executed. The PLII source code is
held on two data sets, HIBBS.MEDICS.PLI, and HIBBS.MED4.PLI.

The two procedures are compiled using the PLI command. NO data set
names are specified for the object modules, so the system generates
names from the names of the source data sets. The data sets will be
called HIBBS.MEDICS.OBJ and HIBBS.MED4.0BJ.

In the LINK command, the names of the two data sets holding the
object modules are specified. NO name is specified for the data set
that will hold the load module, so the system generates the name
HIBBS.MEDICS.LOAD(TEMPNAME), based on MEDICS, the first name in the LINK
command.

The simple name MEDICS is specified in the CALL command, the system
generates the full name HIBBS.MEDICS.LOAD(TEMPNAME).

logon hibbs
HIBBS LOGON IN PROGRESS AT 14: 51: 27 ON FEBRUARY 7, 1979
READY
pli medics
PLII OPTIMIZER V1 R3.0 TIME: 14.52.15 DATE 7 FEB 1979

NO MESSAGES PRODUCED FOR THIS COMPILATION
COMPILE TIME 0.02 MINS SPILL FILE: 0 RECORDS, SIZE 4051
READY
p~i med4
IPL/I OPTIMIZER V1 R3.0 TIME: 14.54.15 DATE 7 FEB 1979

NO MESSAGES OF SEVERITY W AND ABOVE PRODUCED FOR THIS COMPILATION
MESSAGES SUPPRESSED BY THE FLAG OPTION: 1 I.
COMPILE TIME 0.02 MINS SPILL FILE: 0 RECORDS, SIZE 4051
READY
link (medics,med4) plibase
READY
call medics
TEMPNAME ASSUMED AS A MEMBER NAME
READY

If the main procedure had a parameter which was to be passed the CALL
command would take the form:

call medics '/kildare'

where KILDARE was the parameter. If, in addition, the execution time
option NOSPlE was required, the command would take the form:

call medics 'nospie/kildare'

Chapter 3: Running a Program 13

Example 2

The two external procedures compiled in example 1 are link-edited and
executed again, but this time a data set name is specified for the load
module. The full name of the data set member will be
BIBBS.MED.LOAD(M4). The Simple name is specified both in the LOAD
operand of the LINK command and in the CALL command.

link (medics,med4) load(med(m4» plibase
READY
call med(m4)
READY

Example 3

The object module of the MEDICS external procedure is link-edited with a
module translated by the PL/I Checkout Compiler. This module is held on
a data set called HIBBS.STD7F.OBJ. Before this module can be executed,
the data set holding the corresponding intermediate text must be
allocated. This data set is called HIBBS.STD7F.ITEXT. (For further
information about processing checkout compiler procedures, see the
manual OS PL I Checkout Com iler: TSO User's Guide.) It is assumed that
the data set 0 ~ng t e c eckout comp er as been allocated in the
logon procedure. Otherwise, it must be allocated before the load
module is called, as in Example 3 of the section "Compile Load and Go." , ,

Notice that in the LINK command, the data set holding the checkout
compiler module is the first one in the list. Also notice that the
resident libary PLICMIX has been selected.

The load module will be stored as HIBBS.MED.LOAD(M7F); in other
words, it is another member of the same data set as the load module
generated in Example 2.

The load module is executed by means of the CALL command.

READY
link (std7f,medics) load(med(m7f) plicmix

READY
allocate file(sysitext) dataset(std7f.itext)
READY
call med(m7f)
V1 R2. 0 PL/I CHECKOUT 5 FEB 79

TIME 13.21.45

IEN1184A 1095X 'FINISH' RAISED.
AT 4010 IN MEn

?go
INTERPRET TIME

TOTAL TIME
READY

0.39 MINS
0.39 MINS

interpretation stage of
checkout compiler
invoked

normal end of processing

GO subcommand of PLIC command
ends interpreter stage o~
checkout compiler

OSING THE RON FACILITY

RUN can be used as a command or a subcommand of the EDIT command. In
the example below. it is used as a subcommand. A data set is created
under the EDIT command and then compiled and executed under the RUN
command. The argument enoxtest' is passed to the main PL/I procedure.
After successful execution of the program, the compiler terminates and
edit sUbmode of the EDIT command is reentered. If the run had detected
any errors, they could have been corrected at this stage using
subcommands of EDIT. The source data set is then saved and the EDIT
command is ended.

edit delin pli new
INPUT
00010 delin:proc (parm) options(main);
00020 dcl parm char(100) var,

00450 end;
00460
EDIT
run '/noxtest' opt
PL/I OPTIMIZER V1 R2.0 TIMB: 15.24.10 DATE: 1 FBB 19

NO MESSAGES PRODUCBD FOR THIS COMPILATION
COMPILE TIME 0.03 NINS SPILL FILE:
BOlT
save
SAVED
end
READY

o RECORDS, SIZB 4051

Chapter 3: Running a Program 1S

Chapter 4: I/O and Attention Interrupts

INTRODUCTION

When a PL/I program is invoked conversationally. data can be transmitted
between it and the following:

• The terminal. You can type and enter data when it is needed by the
program. and have output sent to the terminal when it is produced by
the program.

• Data sets on direct-access storage. Your program can read input data
from existing data sets. and can write output data to existing data
sets and to new ones.

In neither case does your program need any special PL/I code. The
I/O statements can be exactly the same as for a batch mode job.

There are a few special considerations you need to be aware of for
conversational I/O, explained in the sections "Conversational Input" and
"Conversational Output."

Data sets used by the compiler during compilation also need
allocated, although the system will generally do this for you.
section "Compiler Data Sets," describes the data sets required
compiler.

to be
The

by the

A further conversational facility is the use of attention interrupts
and the ATTENTION condition. This is described at the end of this
chapter.

CONVERSATIONAL INPUT

~ou can enter data at the terminal for an input file in your PL/I
program, provided the file has been:

1. beclared explicitly or implicitly with the CONSECUTIVE environment
option. All stream files meet this condition.

2. Allocated to the terminal.

The standard ~efault input file SYSIN generally meets both these
am dit ions. It is a stream fil e. and is a lloca ted to the termi. nal in
the logon procedure PLIXLGN.

You are prompted for input to stream files by a colon(:). Each time
a GET statement is executed, the system initiates a skip at the terminal
to position one of the next line, displays the colon, and initiates a
second skip to position one of the following line. You can then enter
the required data. ~f you enter a line that does not contain enough
data to complete execution of the GET statement, a further prompt,
consisting of a plus sign followed by a colon (+:), is displayed.

You can delay transmission of the data to your program until two or
more lines have been entered by adding a hyphen to the end of any line
that is to be continued. The hyphen is a TSO feature, and is known as a
continuation character.

Chapter 4: I/O and Attention Interrupts 17

You may wish to include, in your program, output statements that
prompt you for input. If you do so, you can inhibit the initial system
prompt by ending your own prompt with a colon. The GET statement could
be preceded by a PUT statement such as:

PUT SKIP LIST('ENTER NEXT ITEM:');

To inhibit the system prompt for the next GET statement, your own
prompt must meet the following conditions.

1. It must be either list-directed or edit-directed, and if list­
directed, must be to a PRINT file.

2. The file transmitting the prompt must be allocated to the terminal.
The system prompt will not be inhibited if the file is merely being
copied at the terminal by means of the MONITOR subcommand.

Format of Data: The data you enter at the terminal should have exactly
the same format as stream input data in batch mode, except for the
following variations:

• Simplified punctuation for input: If you enter separate items of
input on separate lines, there is no need to enter intervening blanks
or commas; the compiler will insert a comma at the end of each line.
For instance, in response to the statement:

GET LIST (I, J, K) ;

your terminal interaction could be as follows:

1
+:2
+:3

with a carriage return following each item. It would be equivalent
to:

. .
1,2,3

If you wish to continue an item onto another line, you must end the
first line with a continuation character. otherwise, for a GET LIST
or GET DATA statement, a comma will be inserted, and for a GET EDIT
statement, the item will be padded (see next paragraph).

• Automatic padding for GET EDIT: There is no need to enter blanks at
the end of a line of input for a GET EDIT statement. The item you
enter will be padded to the correct length. FOr instance, for the
PL/I statement:

18

GET EDIT (NAME) (A(15»;

you could enter the five characters:

SMITH

followed immediately by a carriage return. The item will be padded
with 10 blanks, so that the program receives a string 15 characters
long. If you wish to continue an item on a second or subsequent
line, you must add a continuation character to the end of every line
except the last; the first line transmitted would otherwise be padded
and treated as the complete data item.

• SRIP option or format item: A SKIP in a GET statement asks the
program to ignore data not yet entered. All uses of SRIP(n) where n
is greater than one are taken to mean SKIP(l); SRIP(l) is taken to
mean that all unused data on the current line is to be ignored.

Stream and Record Files: Both stream and record files can be allocated
to the terminal. However, no prompting is provided for record files,
and if more than one file is allocated to the terminal, and one or more
is a record file, the files· output will not necessarily be
synchronized. There is no guarantee that the order in which data is
transmitted to and from the terminal will be the same as the order in
which the corresponding PL/I input/output statements are executed. It
is therefore advisable to use stream files wherever possible.

Capital and Lowercase Letters: Character-strings are transmitted to the
program as entered. Assuming that your terminal has both sets of
characters, you must type in lowercase or capital letters, according to
the requirements of your program. There is no translation of the input
string from lowercase to capital letters or vice versa. If the string
is to be compared with a character-string constant in the program,
remember that if the program was created using the EDIT command without
the ASIS operand, the constant will be in capitals whether it was
entered in lowercase or capitals.

End of File: The characters /* in positions one and two of a line that
contains no other characters are treated as an end-of-file mark, that
is, they raise the ENDFILE condition.

COpy Option of GET Statement: The 3ET statement can specify the COpy
option, but if the COpy file, as well as the input file, is allocated to
the terminal, no copy of the data will be printed. Note that SYSPRINT
is the default COpy file, and that this file is allocated to the
terminal by default in the standard LOGON procedure PLIXLGN.

CONVERSATIONAL OUTPUT

You can obtain at your terminal data from a PL/I file that has been
both:

1. Declared explicitly or implicitly with the CONSECUTIVE
environment option. All stream files meet this condition.

2. Allocated to the terminal.

The standard print file SYSPRINT generally meets both these
conditions. It is a stream file, and is allocated to the ter.minal in
the standard logon procedure PLIXLGN.

Format of PRINT Files: Data from SYSPRINT or other PRINT files is not
normally formatted into pages at the terminal. Three lines are always
skipped for PAGE and LINE options and format items. The ENDPAGE
condition is normally never raised. SKIP(n), where n is greater than
three, causes only three lines to be skipped. SRIP(O) is implemented by
backspacing, and should therefore not be used with terminals that do not
have a backspace feature, such as the IBM 2260 and 2265.

You can cause a PRINT file to be formatted into pages by inserting a
tab control table in your program. The table must be called PLITABS,
and its contents are explained in the programmer's guide for the
optimizing compiler. The element PAGELENGTB must be initialized to the
length of page you require, that is, the length of the sheet of paper on

Chapter q: I/O and Attention Interrupts 19

which each page is to be printed, expressed as the maximum number of
lines that could be printed on it. The element PAGESIZE must be
initialized to the actual number of lines to be printed on each page.
After the number of lines in PAGESIZE has been printed on a page,
END PAGE is raised, for which standard system action is to skip
PAGELENGTH minus PAGESIZE lines, and then start printing the next page.
For otherwise standard layout, the other elements in PLITABS must be
initialized to the values shown in the programmer's guide.. You can also
use PLITABS to alter the tabulating positions of list-directed and data-
directed output. .

Although some types of terminal have a tabulating facility,
tabulating of list-directed and data-directed output is always achieved
by transmission of blank characters.

Stream and Record Files: Both stream and record files can be allocated
to the terminal. However, if more than one file is allocated to the
terminal and one or more is a record file, the files' output will not
necessarily be synchronized. There is no guarantee that the order in
which data is transmitted between the program and the terminal will be
the same as the order in which the corresponding PL/I input and output
statements are executed. In addition, because of a TCAM restriction,
any output to record files at the terminal is printed in uppercase'
(capital) letters. It is therefore advisable to use stream files
wherever possible.

capital and Lowercase Characters: For stream files, characters are
displayed at ttle terminal as they are held in the program, provided the
terminal can display them. lOr instance, with an IBM 2741 terminal.
capital and lowercase letters are printed as such, without translation.
For record files, all characters are translated to uppercase. A
variable or constant in the program can contain lowercase letters if the
program was created under the EDIT command with the ASIS operand, or if
the program has read lowercase letters from the terminal.

COMPILER DATA SETS

The compiler requires the use of a number of data sets in order to
process a PL/I program. These are listed in Figure 3. The following
data sets are always required by the compiler.

• The data set holding the PLII program

• A data set for the compiler listing

Up to six more data sets may be required, depending on which compiler
options have been specified.

The data sets must be allocated before the compiler uses them. If
the PLI command or the RON command or subcommand is used, the compiler
will be invoked via the prompter, and the prompter will allocate the
necessary data sets. If you invoke the compiler without the prompter,
you must allocate the necessary data sets yourself.

When the prompter allocates compiler data sets, it uses ddnames
generated by TSO rather than the ddnames that are used in batch mode.
Figure 3 includes the batch-mode ddnames of the data sets, but their
main purpose here is to help you identify the data sets. If the
compiler is invoked via the prompter, you cannot refer to the data sets
by these names. TO control the allocation of compiler data sets, you
need to use the appropriate operand of the PLI command. For instance,
to allocate the standard output file (ddname SYSPRINT in batch mode) to
the terminal, you should use the PRINT(.) operand of the PLI command;
you cannot make the allocation by using the ALLOCATE command with ,
FILE(SYSPRINT) and DATASET(.) operands. Figure 3 shows which operands
to use for those data sets whose allocation you can control.

20

Data set When required
(and batch-mode
ddname)

Primary input Always
(SYSCIN or SYSIN)

Temporary work When insufficient
data set(SYSUTU mai.n storage

Compiler listing Always
(SYSPRINT)

ODject module
(SYSLIN)

When OBJECT option
applies

Object module or When ~CRO and MDECK
preprocessor options apply
output in card
format (SYSPUNCH)

Where to specify
data set
in PLI command

1st operand

cannot specify

Argument of PRINT
operand

1st argument of
OBJECT operand

Argument of MDECK
DECK operand

secondary input
to preproce:;sor
(SYSLIB)tI

When LIB operand used Arguments of LIB
operand

~ Un1t is determined by entry in User Attribute Data Set.

Descriptive
qualifier

PLI

LIST

OBJ

DP£K

Allocated by Parameters used by prompter~
SPACE=z DISP=3

Prompter
_ ..

SRR

prompter (1024,(60,60» (NEW, DELETE)

Prompter (629, (n, m»

prompter, When (400,(50,50»
required"

Prompter, when (400,(50,50»
required"

Prompter, when _6

required

(OLD, KEEP) or!5
(NEW,CATLG)

(OID,KEEP» or
(NEW,CATLG)

(OLD, KEEP) or
(NEW,CATLG)

SHR

Z These space allocations apply only if the data set is new. The first argument of the SPACE parameter establishes
the block size. For the SYSUT1, SYSPRlNT, SYSLIN, and SYSPONCH data sets, the record format, record length,
and number of bufters are established by the compiler when it opens the data sets. The values it uses are given
in the compiler's programmer's guide.

3 The prompter first tries to allocate the SYSPRINr, SYSLIN, and SYSPUNCH data sets with DISP:(OLD,KEEP).
Th1s will cause any existing data set (or partitioned data set member) with the same name to be replaced
witn the new one. If the data set name cannot be found in the system catalog, the data set is allocated
with DISP= (NEW,CATLG) •

.. The data set already exists, therefore SPACE (and also UNIT) are already established.

!5 DISP parameter used only if PRINT(dsname) operand applies. otherwise, prompter supplies following parameters:
TERM=TS if PRINr(.) operand applies
DUMMY if NOPRINT operand applies
SYSOUT if SYSPRINT operand applies

6 If any ddnames are specified in ~INCLUDE statements, allocate the data sets with the ALLOCArE statement •

.. Except when the associated option has been specified by means of a *PROCESS statement.
In this case the data set(s) must be allocated by the user.

EXAMPLE OF INPUT/OUTPUT

The example program prints a report based on information retrieved from
a data base. The content of the report is controlled by a list of
parameters that contains the name of the person requiring the report and
a set of numbers indicating the information that is to be printed. In
the example, the parameters are read from the terminal. The program
includes a prompt for the name parameter, and a message confirming its
acceptance. The report is printed on a system output device. The
program uses four files:

SYSPRINT Standard stream output file. Prints prompt and
confirmation at terminal.

Stream input fi~e. Reads parameters from terminal. PARMS

INBASE Record input file. Reads data base, namely, member MEM3 of
data set -BDATA.

REPORT sends report to SYSOUT device.

SYSPRINT has been allocated to the terminal by the logon procedure. The
other three files are allocated by ALLOCATE commands entered in TSO
submode.

The program is called REPORTR and it is held on a conventionally­
named TSO data set whose user-supplied name is REPORTER. The compiler
is invoked with the SOURCE option to provide a list of the PL/I source
code.

READY
pli reporter print(.) source
OPTIMIZING COMPILER INVOKED
PLII OPTIMIZER Vl R2.0 TIME:I0.Qa.3Q
OPTIONS SPECIFIED

SOURCE

SOURCE LISTING
NUMBER

·print(.)· allocates
source listing to terminal

DATE: 11 MAR 79

10 00000010 REPORTR:PROC OPTIONS(MAIN);

22

lao 000001ao ON ENDFILE(PARMS) GO TO READER;

1000 00001000 PUT LIST(eENTER NAME:'); print prompt at terminal
1010 00001010 GET FILE(PARMS) LIST(NAME);

1050 00001050 PUT LIST(eNAME ACCEPTED');

read name parameter from
terminal

confirmation message

2000 00002000 GEl' FILE (PARMS) LIST((AU) 00 1=1 TO 50» ;
read other parameters from

terminal
2010 00002010 READER:

00002020 READ FILE(INBASE) INTO(B);
read data .base

Q010 00004010 PRINTER:
00004020 PUT FILE (REPORT) EDIT(HEADIIINAME);

5000 00005000 END REPORTR;

print line of report on
system pri nter

NO MESSAGES PRODUCED FOR THIS COMPILATION
COMPILE TIME 0.30 MINS SPILL FILE: o RECORDS, SIZE 3491

. READY
alloc file(parms) dataset(.)
READY
alloc file(inbase) dataset(·bdata(mem3)')
READY
alloc file(report) sysout
READY
loadgo reporter plibase

ENTER NAME: 'F W WIlliams·
NAME ACCEPTED

1 3 5 7 10 14 15 19
+:/*
READY

ATTENTION INTERRUPTS

file to read parameters from
terminal

old
file to read data base
file to print report on

system printer

prompt i name parameter
confirmation message
automatic prompt for params.
parameters entered
prompt for further params.

End-of-file entered

The INTERRUPT option allows attention interrupts to become an integral
part of programming with the optimizing compiler, and this gives the
user considerable interactive control of tbe program.

If the INTERRUPT option is in effect during compilation, tbe compiled
program will respond to one attention interrupt by searching for an
establisbed ATTENTION on-unit, executing it if it finds one, and
continuing with the proceSSing if it does not. When the execution of an
ATTENTION on-unit is complete, control will return to tbe pOint of
interrupt unless directed elsewhere by means of a GOTO statement. Two
attention interrupts terminate execution.

If NOINTERRUPT was in effect during compilation, tbe compiled
program will be terminated if one attention interrupt occurs.

Attention interrupts can be simulated with any type of terminal. The
TERMINAL command is used for this purpose and described in Appendix S,
"Using a Terminal other than a 2741."

With a 2741 terminal, the simplest way to cause an attention
interrupt is to press the ATTN key. If the terminal is fitted with a
Receive Interrupt special feature, the system will respond to the ATTN
key at any time. If the terminal does not have this feature, you can
initiate an attention interrupt only when the system is waiting for a
command, subcommand, or data.

Chapter 4: I/O and Attention Interrupts 23

B2~t2-cause an Attention znterrupt

One attention interrupt is caused on a 2741 by pressing the attention
button once. Two are caused by pressing the attention button twice in
quick succession.

BOW TO USE ATTENTZON ZNTERRUPTS

The ability given by the ZNTERRUPT option to respond or not respond to
attention interrupts allows for two possible uses:

1. Attention interrupts can .be used purely as a debugging feature with
ATTENTZON on units used to supply debugging data. The program can
finally be compiled vith NOZNTERROPT for production purposes.

2. Production programs which are run from a terminal can be made more
responsive and convenient to use by the introduction of ON
ATTENrZON on-units.

Attention on-units used for debugging

Hben debugging under the optimizing compiler, ATTENTZON on-units can be
used to transmit values to the terminal vhen an attention interrupt is
caused. For example, an ATTENTZON on-unit migh~ read:

ON ATTENrZON POT D~A(A,B,C,ZCOONT);

~ese values would then be transmitted to the texminal when an attention
interrupt was caused. When the program had been debugged. the unit
could be retained and the program compiled with the NOZNTERRUPT option.
This would prevent code "designed to poli for attention interrupt being
included in the load module and so there would be no time overhead.
There would, however, be a small space overhead because the on-unit
itself would be comp1led. .

The use of NOZNrERROPl' also allows programs compiled on the checkout
compiler with debugging ATTENT!ON on-units to be compiled on the
optimizing compiler without producing an execution time overhead.

Attention on-units used for Znteractive systems

Full ON ATTENrZON support by the optimizing compiler also improves the
convenience of using conversational programs in a production
environment, by allowing the user to interrupt unwanted processing. For
example. the user may wish to respecify the criteria for a data base
inquiry without waiting for the entire output to be displayed.

Typically. the ATTENTZON on-unit will prompt the user for input and:
carry out some action determined by that input. For example:

ON ATTENTZON BEGZN;
ERRCOON'l'=O;
PUT EDZT
('ENTER 1 FOR NEXT TABLE. 2 FOR REPETITZON OF CURRENT TABLE 3

TO END OOTPO'l':·) (A) ;
FZRST:

GET EDZT (NOM) (A(t»;

24

SELECT(NUM);
WHEN(l) GOrO NEXT;
WHEN(2) GOTe ST~RT;
WHEN(3) GOTO FINAL;

OTHERWISE DO;
ERRCO[JNl' =ERRCOONT +1;
IF ERRCOUNT<3 THEN DO;

PUT EDIT(eINCORRECT INPUT TRY AGAIN')(A);
GOTe FIRST;
END;

ELSE SIGNAL ERROR;
END; /*OTHERWISE CLAOSE*/

END; /*SELECT*/
END; /*ON-ONIT*/

The terminal interaction resulting from causing an attention interrupt
COUld. be as follows:

call bicent
THIS PROGRAM LISTS TABLES OF DATA RELATING
TO AMERICAN BICENTENNIAL CELEBRATIONS
OSE ATTENTION INTERRUPT TO CHANGE TABLE
LIST OF STATE BIRDS

AMERICAN ROBIN
BALTIMORE ORIOLE
BLACK CAPPED CBICKADEE
(Attention interrupt here)

CONNECTICUT, MICBIGAN, WISCONSIN
MARYLAND
MAINE,MASSACHUSBTS

ENTER 1 FOR NEXT TABLE, 2 FOR REPEAT OF CURRENT TABLE, 3 TO END OUTPUT: 1

LIST OF STATE FLOWE:RS
AMERICAN BEAUTY ROSE
APPLE BLOSSOM
ARBUTUS
etc

DISTRICT OF COLUMBIA
ARKANSAS,MICHIGAN
MASSACHUSETTS

Background to Attention Handling

If you are going to make extensive use of attention interrupts, it is
important to understand something of how they are implemented by the
optimizing compiler.

Essentially, causing an attention interrUpt sets a switch immediately
and this switch is tested by means of polling at suitable points in the
compiled program.

In procedures compiled with the INTERRUPT option, polling takes place
between PL/I statements at branch-in points. Polling also takes place
in all stream I/O statements to and from the terminal if any procedure
in tfie load module was compiled with the INTERROPT option. This
arrangement allows maximum control of terminal input and output with
minimum performance overheads. It also ensures that the ATTENTION
condition is raised between PL/I statements.

Pitfalls when using Attention Interrupts

The synchronization of terminal printout and processing by the CP? and
the method used of implementing the ATTENTION condition cause var10US
pitfalls for the user of attention interrupts. These are described
below.

Chapter q: I/O and Attention Interrupts 25

Synchronization

When output is being transmitted to the terminal. the statement being
executed in the CPU may be well beyond the pOint where the output is
transmitted. (The number of buffers allocated during TSO installation
determines how far.) Consequently. an attention interrupt will often
cause loss of output that is held in buffers. In addition. an attempt to
end excessive output to the terminal by use of an attention interrupt
may have unexpected resUlts if the program is not actually executing the
output statement when the attention interrupt is caused.

consider the on-unit
ON ATTN BEGIN;
/*Unit illustrates a potential pitfall*/

ON ~TN GOTO ENDUNIT; /*Second ON statement kills the
output if too long. by accepting
attention interrupt during output*/

PUT DATA;
ENDUNIT:END;

An attehtion interrupt entered when you have seen enough output may
in fact occur when the unit has completed executing. Thus the attention,
far from ending the output. will just cause another set of output to
begin. .

synchronization is only carried out when a GET statement to the
terminal is executed. Therefore. a GET statement at the end of the unit
would solve the problem. A corrected on-unit could read:

ON ATTN BEGIN;
ON ATTN GOTO ENDONIT;
PUT EDIT

('TO END OUTPUT CAUSE ATTENTION. THEN ENTER GO TO CONTINUE OR STOP TO STOP') (A);
I DCL ANS CHAR(4) INIT(")~

PUT DATA;
ENDUNIT:

/*Execution will wait here to synchronize the GET statement. Therefore.
attention interrupts entered during output of data will occur within the
scope of the on-unit, so data will be ended by second ON ATTN
statement*/

GET EDIT (ANS) (ACq»;
UNSPEC(ANS)=UNSPECCANS)IC4) '01000000'B;

/*Fold to upper case because input may be in upper or lower*/
IF ANS='STOP' THEN STOP;
END;

Note that the prompt for the GET statement must appear before the PUT
DATA or it will be lost when an attention interrupt occurs.

Programs partly Compiled with the INTERRUPT Option

If any procedures within a load module have been compiled with the
INTERRUPT option, a STAX macro instruction is issued at the start ot
execution. consequently. an attention interrupt will be noted whenever
it is caused. The ATTENTION condition itself will not be raised until
later. since PL/I may be in the process of constructing control blocks
at the time the attention interrupt is noted. It will be raised during
stream I/O to or from t~e terminal in all procedures and at branch-in
points in procedures compiled with the INTERRUPT option. If you wish to
use attention interrupts for debugging purposes, the results may be
unexpected because any attention on units will be executed regardless of
the option with which the procedure that contains them was compiled.

26

Chapter 5: PLI Command

Use the PLI command to compile a PL/I program. The command invokes the
PL/I Optimizing Compiler.

r--, COMMAND I OPERANDS I

PLI dat~-set-name

(option-list]

IPRINT[(.) I I
(dsname (,(n)(,m]])]

SYSPRINT [(sysout-class (, (n] (, mJ J)]
NOPRINT

(LIB(dslist)] L---___ J

::lata-set-name
specifies the name of the primary input data set for the
optimizing compiler. This can be either a fully qualified name
(enclosed in single quotation marks) or a simple name (for
which the prompter will add the identification qualifier, and
the descriptive qualifier PLI). This must be the first operand
specified.

option-list

PRINT(·)

specifies one or more compiler options which are to apply for
this compilation.

The compiler options that can be specified in a TSO environment
are described in the following section. Programmers familiar
with batch processing should note that defaults are altered for
TSO, and that the DECK, HDECK, and OBJECT options have been
extended to allow names of data sets onto which the output will
be written to be specified.

Separate the op~ions by at least one blank or one comma; you
can add any number of extra blanks. The order of the options is
unimportant. In fact, the PRINT/NOPRINT and LIB operands can be
interspersed in the option-list; they are recognized by their
keywords. If two contradictory options are specified, the last
is accepted and the first ignored.

Options specified in the PLI command can be subsequently
overridden by options specified o~ .PROCESS compiler control
statements in the primary input. If the DECK, MACRO, HOECK, and
OBJECT options are required for any program in a batched
compilation the option should be specified in the PLI command
so that the prompter allocates the required data sets. The
negative forms can then be used on the PROCESS statements for
the programs that do not require the option.

specifies that the compiler listing, on the SYSPRINT file, is

Chapter 5: PLI Command 27

PLI COMMAND
to be written at the terminal; no other copy will be available.

PRINT(dsname(,(n](,m]])
specifies that the compiler listing, on the, SYSPRINT file, is
to be written on the data set named in parentheses. This can be
either a fully qualified name (enclosed in single quotation
marks) or a simple name (for which the prompter will add the
identification qualifier, and the descriptive qualifier LIST).

If no dsname argument is specified for the PRINT operand, the
prompter will add the identification and descriptive qualifiers
to the data set name specified in the first operand, producing
a data set name of the form 'user-identification.user-supplied­
name.LIST'. If -dsname- is not specified and the first operand
of PLI specifies a member of a partitioned data set, the member
name will be ignored - the generated data set name will be
based on the name of the partitioned data set.

n,m Specifies the space allocation in lines for the listing
dataset. It should be used when the size of the listing has
caused a B37 abend during coupi1ation.

n specifies the number of lines in the primary
allocation.

m specifies the number of lines in the secondary
allocation.

If n is omitted the preceding comma must be included. For
example to enter only the size of the secondary allocation and
accept the default for the primary you would enter:
SYSPRINT(PRINTDS,,500).

The space allocation used if nand m are not specified is that
specified during compiler installation.

SYSPRINT(sysout-classl,n(,m]])]

NOPRINT

specifies that the compiler listing. on the SYSPRINT file. is
to be written to the sysout class named in parentheses. If no
class is specified, the output is written to a default sysout
class; the IBM standard for this default is class A. For
meaning of n, m see ·PRINT- above.

specifies that the compiler listing is not to be produced on
the SYSPRINT file. You can still get most of the listing
written at the terminal by using the TERMINAL compiler option.

LIB (dslist)

28

specifies one or more data sets that are to be used as the
secondary input to the preprocessor. These data sets will be
concatenated in the order specified an~ tn~n associated with
the ddname SYSLIB. This will override any previous ALLOCATE
statement with a FILE(SYSLIB) operand. If you bave specified
any other ddname in the %INCLUDE statements in the PL/I
program, you must allocate the data sets associated with that
ddname yourself.

The data set names can be either fully qualified (each enclosed
in Single quotation marks) or s1mple names (for which the
prompter will add the identification qualifier, but no
descriptive qualifier) ..

separate tbe data set names by at least one blank or one comma;
you can add any number of extra blanks.

If you use the LIB operand, either the INCLUDE or the MACRO
compiler option must also apply.

PLI COMMAND

Example 1

Operation: Invoke the PL/I optimizing compiler to process a PLiI
program.

Rnown: User-identification is ABC
Data set containing the program is named ABC.OPDATE.PLI
SYSPlUNT file is to be directed to the terminal.
Default options and data set names are to be used.

PLI UPDATE PRINT(.)

Example 2

Operation: Invoke the PL/I optimizing compiler to process a PLiI
program.

Rnown: User-identification is XYZ.
Data set containing the program is named ABC.MATRIX.PLI
SYSPlUNT file is to be written on a data set named MATLIST.
MACRO and MDECK options are required, with the associated

output to be written on a data set named MA~ARD.
Secondary input to preprocessor to be read from a library

named XYZ.SODRCE.
Otherwise default options and data set names are to be used.

PLI 'ABC.MATRIX. PLI· PRINT (. MATLIS'l") ,MACRO,MDECK (' MATCARD') , LIB(SOURCE)

Chapter 5: PLI Command 29

Chapter 6: Compiler Options

This chapter describes the options that can be specified for the PL/I
optimizing compiler in a TSO environment. The keywords, abbreviations,
and IBM defaults are listed in Figure 4; the functions of the options
are shown in Figure 5. Most options comprise positive and negative
forms, the latter beginning with NO. Where negative forms exist, one or
other form is applied by default. Where no negative forms exist, the
option must in most cases, be explicitly specified.

Note: Your installation may have adopted a different set of defaults
from the standard IBM defaults shown here.

The abbreviations listed in Figure 4 are the standard abbreviations
recognized by the optimizing compiler. In addition, the PLiI prompter
will accept the following standard TSO forms:

LINECN'l'
LOAD
NOLOAD
CHAR 6 0
CHAR48
EBCDIC
BCD

for
for
for
for
for
for
for

LINECOUNT
OBJECT
NOOBJEC'l'
CHARSET (60)
CHARSET(48)
CHARSET(EBCDIC)
CHARSET(BCD)

Keywords can be shortened by deleting any number of characters on the
right provided the result remains non-ambiguous. As the prompter is also
used to invoke the PL/I checkout compiler, you must take into account
the additional options which apply only to the checkout compiler (that
is, BLOCK, COMPATIBLE, DIAGNOSE, FORMAT, HAL'r, lSASIZE, RUN, SMAN, STEP,
and STEPLlNES) when deciding whether an abbreviation is non-ambiguous.

Each 9ption is considered to be a separate operand and must follow TSO
syntax conventions. Thus, in arguments containing two or more items,
items can be omitted only from the end of the list (for instance,
MARGINS(2,70) would be accepted, while MARGINS(,10) would not). The
items must be separated by one blank or one comma; though any number of
additional blanks may be added.

Several of the options cause tables, etc., to be included in the
compiler listing that is written o~ the standard output file. A full
description of this listing is given in the programmer"s guide for the
optimizing compiler. If you wish to have these listings directed to the
terminal, you can specify them in the TERMINAL option (see TERMINAL in
the follOwing list). Alternatively, you can specify a PRINT(.) operand
in the PLI command, in addition to the list of options.

Chapter 6: Compiler Options 31

PLI COMMAND
COMPILER OPTIONS

r---1
I
ICompiler Option Keywords
I
I
I AGGREGATE I NOAGGREGATE
IATTRIBUTES[(FULLISBORT)]I
I NOATTRIBUTES
ICBARSET

Abbreviations

AGINAG
AI (FIS)] INA

I (48 I 60,EBCDICIBCD)
ICOMPILEINOCOMPILE[(WIEIS)] CINC(WIEIS)]
ICONTROL('password')
I COUNT I NOCOUNT
IDECRINODECK
I DUMP I NODUMP
IESDINOESD
I FLAG [(IIWIEIS)]
IFLOW[(n,m)] I NOFLOW
IGONUMBERINOGONUMBER
I GOSTMi' I NOGOSTMT
I IMPRECISE I NOIMPRECISE
I INCLUDE I NOINCLUDE
IINSOORCEINOINSOORCE
I INTERRUPTI NOINTERRUPT
I LINECOUNT(n)
ILIST(n,m) I NOLIST
ILMESSAGEISMESSAGE
I MACRO I NOMACRO
IMAPINOMAP
IMARGINI('c') I NOMARGINI
IMARGINS(m,n,c)
I
I
I
I MDECK I NOMDECK
I NAME ('name')
INESTINONEST
I NUMBER I NOOUMBER
I OBJECT I NOOBJECT
I OFFSET I NOOFFSET
IOPTIMIZE(TlMEI012)1
I NOOPTIMIZE
I OPTIONS I NOOPTIONS
I SEQUENCE (m. n)
I
I
I
ISIZE (yyyyyy I yyyKI MAX)
I SOURCE I NOSOURCE
ISTMTINOSTMT
I STORAGE I NOS TORAGE
ISYNT~INOSYNT~X(WIEIS)]
ITERMINAL[(option-list)]I
I NOTERMINAL
IXREF(FULLISBORT)] I NOXREF
I

DIND
DUINDU

FI (I IWIEIS)]

GNINGN
GSINGS
IMPINIMP

ISINIS
INTININT
LC(n)

LMSGISMSG
MINM

Ml (' c') INMI
MAR(m,n.c)

NUMINNUM
OBJINOBJ
OFINOF
OPT (TIMEI 012) I

NOPT
OPINOP
SEQ(m.n)

SZ(YYYYYYlyyyKI~)
SINS

STGINSTG
SYNINSYNI(W\EIS)]
TERM(option-list)]I

NTERM
XI(FIS)]INX

I~FULL is the default suboption

IBM Default for
TSO Environment

NOAGGREGATE
NOATTRIBOTES

(FULL1)
CHARSET
(60,EBCDIC)
NOCOMPILE(S)

NOCODNT
NODECK
NODUMP
NOESD
FLAG(W)
NOFLOW
NOGONUMBER
NOGOSTMT
NOIMPRECISE
NOINCLUDE
lNSOURCE
NOINTERRUPT
LINECOUNl'(55)
NOLIST
SMESSAGE
NOMACRO
NOMAP
NOMARGlNI
F-format:
MARGINS (2. 72, 0)
V-format:
MARGINS(10.100,0)
NOMDECK

NONEST
NUMBER
OBJECT
NOOFFSET
NOOPTIMIZE

NOOPTlONS
F-format:
SEQUENCE (73.80)
V-format:
SEQUENCE <1. 8)
SIZE (MAX)
NOSOORCE
NOSTMT
NOSTORAGE
NOSYNTAX(S)
TERMINAL

NOXREF(POLLS.)

L--------------------___ J

Figure 4. Compiler option· keywords. abbreviations, and defaults

32

PLI COMMAND
COMPILER OP'.rIONS

r---, ILISTING OPTIONS I
I I
IControl listings I
I produced AGGREG~E list of aggregates and their J

size I
ATTRIBUTES [(SBORT 1 list of attributes of identifiers

FULL)]
ESD

INSOURCE
FLAG [(I 1 WIE 1 S)]

LIST

MAP

OP'.rIONS
SOURCE

STORAGE
XREF(SBORTIFDLL)]

IImprove readability of source listing
I
I
I
I
I
I

NEST

MARGINi

Icontrol lines per page of listing
I

list of external symbol
dictionary

list of preprocessor input
suppress diagnostic messages

below a certain severity
list compiled code produced by

compiler
lists offsets of variables in

static control section and
DSAs

list of options used
list of source program or

preprocessor output
list of storage used
list of statements in which each

identifier is used

indicates do-group and block
level by numbering in margin

highlights any source outside
margins

I LINECOUN'l' specifies number of lines per
1 page on listing
1---1
IINPUT OPTIONS 1
1 1
1 1
1 CBARSEf identify the character set used I
1 in source I
1 identify position of a carriage I
1 control character I
1 SEQUENCE specify the columns used for 1
1 sequence numbers I
1---1 IOPTIONS TO PREVENT UNNECESSARY PROCESSING 1

I 1 I
1 NOSYNT~X[(WIEIS)] stop proceSSing after errors are 1

I 1 found in preprocessing I
1 NOCOMPILE(WIEIS») stop processing after errors are I
I found. in syntax checking . I l-------------__ -----------------_J
Figure 5. (Part 1 of 2). compiler options arranged by function

Chapter 6: Compiler Options 33

PLI COMMAND
COMPILER OPl'IONS

r---1 IOPTIONS FOR PREPROCESSING
I 1
1
1
1
1

INCLUDE

MACRO
MDECK

allows secondary input to be
included without using
preprocessor

allows preprocessor to be used
produces a source deck from

1 preprocessor output
1---IOPl'IONS TO USE WHEN PRODUCING AN OBJECT MODULE
1
1
1
1
1
I

OBJECT

NAME

DECK

produce an object module from
compiled output

specify the name of the object
module produced

produce an object module in
I punched card format
1---IOPTIONS TO CONTROL STORAGE USED
1
1 SIZE controls the amount of storage
1 used by the compiler
1---IOPTIONS TO IMPROVE USABILITY AT A TERMINAL
1
1
1
1

TERMINAL

LMESSAGE/SMESSAGE

specifies how much of listing is
transmitted to terminal

specifies concise or
1 full message format
1---·--------------------------
IOPTIONS TO SPECIFY STATEMENT NUMBERING SYSTEM USED
1
1
I
1 ,
1

NUMBER , GONOMBER

STM'l' , GOSTMT
OFFSET

numbers statements according to
line which they start

numbers statements sequentially
specifies that a listing

aSSOCiating statement numbers
1 with offsets will be generated
1---,OPTIONS FOR USE WHEN DEBUGGING ,
1
I
1
1

COUNT'

FLOW

count number of times each
statement is executed

generate code that will result inl
a trace of statements executed 1

1 being retained 1
1---1
IO~IONS TO CONTROL EFFECT OF ATTENTION INTERRUPTS 1
1 ,
1 INTERRUPT specifies that the ATTENTION ,
1 condition will be raised when I
1 interrupt is caused 1
1 NOINTERRUPT specifies that the use of the I
I attention interrupt will I
I terminate the program 1
1---1
IOPTION FOR USE WREN DEBUGGING COMPILER . 1
I 1
1 DUMP produces a dump if the compiler 1
1 terminates abnormally (ignored ,
1 if used in *PROCESS statement) ,
l--~
Figure ·5. (Part 2 of 2). Compiler options arranged by function

34

AGGREGATE

PLI COMMAND
COMPILER OPTIONS

The AGGREGATE option specifies that the compiler is to include in the
compiler listing an aggregate length table, giving the lengths of all
arrays and major structures in the source program.

ATTRIBUTES(FULL!SHORT)]!NOATTRIBOTES

IBM default NO~TRIBUTES
IBM default suboption FOLL

The ATTRIBUTES option specifies that the compiler is to include in the
compiler listing a table of source-program identifiers and their
attributes. If both ATTRIBUTES and XREP apply, the two tables are
combined.

If SHORT is specified, unreferenced identifiers are omitted, making the
listing more manageable.

If both ATTRIBUTES and XREF apply, and there is a conflict between SHORT
and FOLL, the usage is determined ~ the last option found. FOr' example
ATTRIBUTES(SHORT) XREF (FULL) results in FOLL applying to the combined
listing.

The default FULL means that FULL applies if the option is specified with
no sub-option.

CHARSET(48!60,EBCDIC!BCD)

IBM default CHARSER(60,EBCDIC)

The CHARSET option specifies the character set and data code that you
have used to create the source program. The compiler will accept source
programs written in the 60-character set or the 48-character set, and in
the Extended Binary Coded Decimal Interchange Code (EBCDIC) or Binary
Coded Decimal (BCD). It is unlikely you will ever need to use BCD. The
48-character set may ,be required for terminals with a limited character
s~.

60- or 48-Cha{acter Set: If the source program is written in the 60-
character set, specify CHARSET(60); if it is written in the 48-character
set, specify CBARSET(48). The language reference manual for this
compiler lists both of these character sets. (The compiler will accept
so~ce programs written in either character set if CHARSET(48) is
specified, however, if the reserved keywords CAT, LE, etc., are used as
identifiers, errors may occur.) ,

BCD or EBCDIC: If the source program is written in BCD, specify
CBARSET(BCD); if it is written in EBCDIC, specify CBARSET(EBCDIC). The
la'nguage reference manual for this compiler lists the EBCDIC
representation of both the 48-character set and the 60-character set.

If both arguments are specified, they may be in any order.

COMPILE! NOCOMPILE (W!EIS)]

IBM default NOCOMPILE(S)

The COMPILE option specifies that the compiler is to compile the source
program unless an unrecoverable error was detected during preprocessing
or syntax checking. The NOCOMPlLE option without an argument causes

Chapter 6: Compiler Options 35

PLI COMMAND
COMPILER OPTIONS

processing to stop unconditionally after syntax checking. With an
argument, continuation depends on the severity or errors detected so
far, as follows:

NOCOMPILE(W) No compilation if a warning, error, severe error, or
unrecoverable error is detected.

NOCOMPlLE(E) No compilation if an error, severe error, or
unrecoverable error is detected.

NOCOMPILE(S) No compilation if a severe error or unrecoverable error
is detected.

CONTROLC"password")

IBM default: CONTROL does not apply unless specified

~he CONTR?L option specifies that any compiler options deleted for your
1nst~1lat10n are to.be available for this compilation. You must still
spec1fy the appropr1ate keywords to use the options. The CONTROL option
~ust be specified with a password that is established for each
1nstallationi use of an incorrect password.will cause proceSSing to be
t~rminated •. The CONTROL option, if used, must be specified first in the
!l.st of opt10ns •.

It has the format:

CONTROL(I password.)

where -password- is a character string, not exceeding eight characters.

COUNT! NOCOUNT

IBM default NOCOUNT

The COUNT option specifies that a list of how many times each statement
has been executed is to be produced when the program terminates. The
list is written is the PLIDUMP data set, if such a data set has been
allocated, otherwise on SYSPRINT. COUNT implies GONUMBER (if NUMBER
applies) or GOSTMT (if STMT applies).

DECK[(dsname)] I NODECK

IBM default NODECK

The DECK option specifies that the compiler is to produce an object
module in the form of SO-column card images and store it on a data set.
Columns 73-76 of each card contain a code to identify the object module;
this code comprises the first four characters of the first label in the
external procedure represented ~ the object module. Columns 77-S0
contain a 4-digit decimal number: the first card is numbered 0001, the
second 0002, etc.

The data set onto which the object module is written will have the name
specified in -dsname.- This can be a fully qualified name (enclosed in
single quotation marks) or a Simple name (to which the user
identification and the descriptive qualifier DECK will be added). If
-dsname- is not specified, the user-supplied name will be taken from the
first operand of the PLI command, and the user-identification and
descriptive qualifier DECK will be added. If -dsname- is not specified
and the first operand of PLI specifies a member of a partitioned data
set, the member name will be ignored - the generated data set name will
be based on the name of the partitioned data set.

3E?

DUMP I NODUMP

IBM default NODUMP

PLI COMMAND
COMPILER OPTIONS

The DUMP option specifies that the compiler is to produce a formatted
dump of the contents of the registers and main storage used by the
optimizing compiler if compilation terminates abnormally (usually due to
an I/O error or compiler error). This dump is written on the data set
associated with SYSPRINT. Implementation of the DUMP option
necessitates the use of a considerable amount of main storage by
routines that handle the dumping. This reduces the storage available
for compilation which reduces the speed of the compilation.

ESDI NOESD

IBM default NOESD

The ESO option specifies that the external symbol dictionary (ESD) is to
be listed in tBe compiler listing.

FLAG(I!W!E!S)

IB~ default FLAG(W)

The FLAG option specifies the minimam severity of error that requires a
message to be listed in the compiler listing and at the terminal. The
possible forms of the FLAG option are:

FLAG(I)

FLAG(W)

FLAG (E)

FLAG(S)

List all nessages.

List all except informatory messages. If you specify
FLAG, FLAG (I) is assumed.

List all except warning and informatory messages.

List only severe error and unrecoverable error
messages.

FLOW(n,m») !NOFLOW

IBM default NOFLOW

The FLOW option specifies that the compiler is to list the transfers of
control most recently execated in the PLII program prior to the
occurrence of an interrupt that results in an execution-time message.
The format of the FLOW option is:

FLOW[(n,m»)

~here:

WnW is the maximum nunber ~f entries to be included in the list. It
shou11 not exceed 32768.

Wmn is the maximum number ~f changes of block to be recorded in the
list (ftblockw here meaning procedure or on-unit). It should not
exceed 32768.

WnW and wmw may be omitted; in this case, the standard detault values
are, respectively, 25 and 10.

Chapter 6: Compiler Options 37

PLI COMMAND
COMPILER OPTIONS

The list will start at the earliest information and continue to the
latest in order of execution.

2Q~~~NOGONUMBER

IBM default NOGONUMBER

The GONUMBER option specifies that the compiler is to produce additional
information that will allow line numbers from the source program to be
included in execution-time messages.

Alternatively, these line numbers can be derived by using the offset
address, which is always included in execution-time messages, and the
table produced by the OFFSET option. (The NUMBER option must also
apply.)

Use of the GONUMBER option implies NUMBER and NOSTMT.

GOSTMT!NOGOSTlofl'

IBM default NOGOSTMT

The GOSTMT option specifies that the compiler is to produce additional
information that will allow statement numbers from the source program to
be included in execution-time messages.

Alternatively, these statement numbers can be derived by USing the
offset address, which is always included in execution-time messages, and
the table produced by the OFFSET option. (The STMT option must also
apply.)

Use of the GOSTMT option implies STMT and NON UMBER.

IMPRECISE I NOIMPRECISE

IBM default NOIMPRECISE

The IMPRECISE option specifies that the compiler is to include extra
text in the object module to localize imprecise interrupts when
executing the program with an IBM Systeml360 Model 91 or 195. This
extra text ensures that if interrupts occur, the correct on-units will
be entered, and that the correct line or statement numbers will appear
in execution-time messages.

INCLUDE! NOI NCL ODE

IBM default NOINCLODE

The INCLUDE option requests the syntax checking stage of the compiler to
handle the inclusion of PL/I secondary input data sets for programs that
use the %INCLUDE statement. This method is faster than using the PLII
preprocessor for programs that contain %INCLUDE statements, but no other
preprocessor statements. The INCLUDE option should not be used if the
MACRO option also applies.

38

INSOURCE!NOINSOURCE

IBM default INSOURCE

PLI COMMAND
COMPILER OPTIONS

The INSOURCE option specifies that the compiler is to include a listing
of the source program (including preprocessor statements) in the
compiler listing. This option is applicable only when the preprocessor
is used: therefore the 'M~RO option must also apply.

INTERRUPT ! NOINTERRUPT

IBM default NOINTERRupr

This option determines the effect of attention interrupts when the
compiled PL/I prograre is being executed.

If INTERRUPT was in effect during compilation. an established ATTENTION
on-unit will be executed when one attention interrupt is caused during
execution of the compiled program. If there is no such on-unit.
processing will continue. Two attention interrupts will end the
execution of the program and cause control to return to TSO.

If NOINTERROPT was in effect during compilation. one attention interrupt
entered during execution of the compiled program will end the execution
of the program and cause control to return to TSO.

It should be noted that if any procedure within a load module was
compiled with the INTERRUPT option. an attention interrupt at any time
will lead to the ATTENTION condition being raised if polling is carried
out. and execution continuing with no apparent effect if polling is not
carried out. Polling is carried out during the execution of stream I/O
for all modules. and. additionally. at branching points for modules
compiled with the INTERRUPT option. Because the ATTENTION condition is
raised when polling is done. an attention interrupt in a program partly
compiled with the INTERRUPT option can lead to unexpected results.

A fuller discussion of the use of attention interrupts is given in
Chapter 4. On a 2741 one attention interrupt is caused by preSSing the
ATTN key once and two by pressing it twice in quick succession. For
other terminals see Appendix B.

LINECOUNT(n)

IBM default LINECOUNT(SS)

The LINECOUNT option specifies the number of lines to be inCluded in
each page of the compiler listing, including heading lines and blank
lines. The format of the LINECOUNT option is:

LINECOUNT(n)

where wnw is the number of lines. It must be in the range 1 through
32161. but only headings are generated if you specify less than 1.

LIST[(m[.n))!NOLIST

IBM default NOLIST

The LIST option specifies that the compiler is to include a listing of
the object module (in a form similar to IBM Systeml360 assembler
language instructions) in the compiler listing. ~hen used in

Chapter 6: Compiler Options 39

PLI COMMAND
COMPILER OPTIONS

conjunction with M~P it increases the information generated by MAP (see
MAP later in this section). "m" indicates the first statement whose
assembler-language equivalent is to be listed; "n" the last. If "nw is
omitted, statement "mw only is listed. If neither "m" nor "n" is
specified, a listing of the whole program is produced. "m" and "n" must
be line numbers if the NUMBER option applies. or statement numbers if
the STMT option applies. To direct the listing of particular statements
to the terminal. an option of the form LIST(ml.n) must be specified.
together with either the LIST option. with no statement numbers. within
the TERMINAL option. or the PRINT(*) operand in the PLI command.

LMESS~GEISMESSAGE

IBM default SMESSAGE

The LMESSAGE and SMESSAGE produce messages in a long form (specify
L~SSAGE) or in a short form (specify SMESSAGE). Short messages can
have advantages in a TSO environment due to the slow printing speed of a
typewriter type terminal.

MACRO I NOMACRO

IBM default NOMACRO

The MACRO option specifies that the source program is to be processed by
the preprocessor.

MAP I NOMAP

IBM default NOMAP

The MAP option specifies that the compiler is to produce tables showing
the organization of the storage for the object module. These tables
show how variables are mapped in the static internal control section and
in DSAS. thus enabling STATIC INTERNAL and AUTOMATIC variables to be
found in PLIDUMP. If LIST is also specified the MAP option produces
tables showing constants. control blocks and INITIAL variable values.

LIST generates a listing of the compiled code in pseudo assembler
language format. If you want a complete MAP but not a complete LIST.
you can specify a single statement number as an argument for LIST to
minimize the size of the LIST. For example:

*PROCESS'MAP LIST(l);

MARGINI('c') INOMARGZNI

IBM default NOMARGINI

The MARGINI option specifies that the compiler is to include a speCified
character in the column preceding the left hand margin, and the column
following the right hand margin of the listings resulting from the
INSOORCE and SOURCE options. Any text in the source input which
precedes the left hand margin will be shifted left one column. and any
text that follows the right hand margin will be shifted right one
column. Thus text outside the source margins can be easily detected.

The MARGINI option has the format:

MARGINI('c')

PLI COMMAND
COMPILER OPTIONS

~here ·c· is the character to be printed as tbe margin indicator.

MARGINS(m,n,c)

IBM default: V or o-format records (10,100,0) F-format records (2,72,0)

The MARGINS option specifies which part of each compiler input record
contains PL/I statements, and the position of the ANS control character
that formats listings. The MARGINS option is used to override the
default margin positions that are set up during compiler installation by
the FMARGINS and VMARGINS options.

The FMARGINS option applies to F-format records and the VMARGINS option
applies to V-format or o-format records.- Only one of these defaults is
overridden by the MARGINS option. If the first input record to the
compiler is F-format, the FMARGINS defaults are overridden by the
MARGINS option. If the. first record is a V-format or D-format record,
the VMARGINS defaults are overridden by the MARGINS option. Default
values are assumed if a second type of record is encountered by the
compiler.

The format of the MARGINS options is:

MARGINS (m,n,c)

~here:

m is the column number of the leftmost column that will be scanned by
the compiler. m must not exceed 100. .

n is the column number of the rightmost column that will be scanned by
the compiler. n must not be less then m, nor greater than 100.

Chapter 6: Compiler options 41

PLI COMMAND
COMPILER OPTIONS

c is the column of'the American National Standard (ANS) printer control
character. It must not exceed 100 and it must be outside the values
specified for m a~d n. A value o'f 0 for c indicates that no ANS
control character is present. The control character applies only
to listings on a line printer; it is ignored in conversational-mode
listings at the termina,l. Only the following control characters can
be used: . '

(blank) Skip one line before printing.

o Skip two lines before printing.

Skip three lines before printing.

+ Skip no lines. before printing.

1 Start new page.

~ny other character is taken to be blank. If the value c is greater
than the maximum length of a source statement record" the compiler Ifill
not be, able to recognize it; consequently, ,the listing will not have the
required format.

MOECK[(dsname)] I NOMDECK

IB~ default NOMOECK

The MOECK option specifies that the preprocessor is to produce a copy of
its output on the file named SYSPUNCH. The last four bytes of the 84
byte output records are not copied, thus this option allows you to
retain the output'from the preprocessor as a deck of 80-column punched
cards.

Tile data set onto which t;he oatpllt is. ilritten will have the name
specified in wdsname.- This can be a fully quali~ied name (enclosed in
single quotation marks) or a simple name (to Which the user
identification and the des~iptive qualifier DECK will be added). If
-dsname- is not specified" the user-supplied name will be taken from the
first operand of the PLI command, and the user-identification and
descriptive qualifier DECK will be added. If wdsname- is not specified
and the first operand of PLI specifies a member of a partitioned data
set, the member name will be ignored - the generated data set name will
be based on the name of the partitioned data set.

IBM default: NAME does not apply unless specified.

The NAME option specifies that the compiler is to place a linkage-editor
NAME statement as the last record of the object module. When processed
by the linkage editor, this NAME statement indicates that primary input
is complete and causes the specified name to be aSSigned to the load
module created f~om the preceding input (since any previous NAME
statement) •

rile N~E option is reqaired if you want the linkage editor to create
more than one load module from the object modules produced by batched
compilation.

If yoa do not use this option, the linkage editor will use the member
name speCified in the DO statement defining the load module data set.
You can also use the NAME option to cause the linkage editor to
substitute a new load module for an existing load module with the same
name in the library.

42

PLI COMMAND
COMPILER OPTIONS

The format of the NAME option is:

NA.I'f1E (, name')

where RnameR has from one through eight characters, and begins with an
alphabetic character.

NEST I NONEST

IBM default NONEST

The NEST option specifies that the listing resulting from the SOURCE
option will indicate, for each statement, the begin-block level and the
do-group level.

NUMBER I NONUMBER

IBM default NUMBER

The NUMBER option specifies that the numbers specified in the sequence
fields in the source input records are to be used to derive the
statement numbers in the listings resulting from the AGGREGArE,
ATTRIBUTES, LIST, OFFSEl', SOURCE, and XREF options.

The position of the sequence field can be specified in the SEQUENCE
option. Alternatively, the following default posit.ions are assumed:

• First 8 columns for V-format or U-format source input records. In
this case, 8 is added to the source margins and control character
position if the MARGINS option is not explicitly specified.

• Last 8 columns for F-format source input records.

These defaults are the positions used for line-numbers generated by TSO,
thus it is not necessary to specify the SEQUENCE option, or change the
MARGINS defaults, when using line-numbers generated by TSO.

Note that the preprocessor output has fixed-length records irrespective
of the original primary input. Any sequence numbers in the primary input
are repositioned in columns 73-80.

The line-number is calculated from the five right-hand characters of the
sequence number (or the number of characters specified, if less than
five). These characters are. converted to decimal digits if necessary.
Each time a line-number is found which is not greater than the preceding
one, 100000 is added to this and all following line-numbers.

If there is more than one statement on a line, a suffix is used to
identify the actual statement in the messages. For example, the second
statement beginning on the line numbered qO will be identified by the
number qO.2. The maximum value for this suffix is 31. Thus the thirty­
first and subsequent statements on a line have the same number.

If NONUMBER applies, STMT is implied. NUMBER is implied by NOSTMT or
GONOMBER.

OBJECT[(dsname)] INOOBJECT

IBM default OBJECT

The OBJEC~ option specifies that the compiler is to store the object
module that it creates in the data set associated with the ddname
SYSLIN. The data set onto which the output is written will have the

Chapter 6: Compiler Options 43

PLI COMMAND
COMPILER OPTIONS

name specified in wdsname.- This can be a fully qualified name (enclosed
in single quotation marks) or a simple name (to which the user
identification and the descriptive qualifier OBJ will be added). If
ftdsname W is not specified, the user-supplied name will be taken from the
first operand of the PLI command, and the· user-identification and
descripti~e qualifier OBJ will be added. If -dsname- is not specified
and the first operand of PLI specifies a member of a partitioned data
set, the member name will be ignored - the generated dataset name will
be based on the name of the partitioned data set.

OFFSEr

The OFFSET option specifies that the compiler is to include in the
compiler listing a table of statement or line numbers for each procedure
with their offset addresses relative to the primary entry point of the
procedure. This information is of use in identifying the statement
being executed when an error occurs and neither the GOSTMT nor GONUMBER
option applies.

If GOSTMT applies, statement numbers, as well as offset addresses, will
be included in execution-time messages. If GONUMBER applies, line
numbers, as well as offset addresses, will be included in execution-time
messages.

OPTlMIZE(TIMEJ 012)1 NOOPTIMIZE

The OPTIMIZE option specifies the type of optimiza~ion required:

NOOPTIMIZE specifies maximum compilation speed, but inhibits
optimization for faster execution and reduced main­
storage requirements.

OPTIMIZE (TIME) specifies that the compiler is to optimize the
machine instructions generated for minimum execution
time. A secondary effect of this type of
optimization can be a reduction in the amount of main
storage required for the object module. The use of
OPTIMIZE (TIME) could result in a substantial increase
in compile time over NOOPTIMIZE.

OPTIMIZE (0) is the equivalent of NOOPTIMIZE.

OPTIMIZE (2) is the equivalent of OPTIMIZE(TIME).

The language reference manual for this compiler includes a full
discussion of optimization.

OPTIO~SI~OOPTIONS

IB~ default NOOPTIONS

The OPTIONS option specifies that the compiler is to include, in the
compiler listing, a list showing the compiler options to be used during
this compilation. This list includes all options applied by default.

If the PRINT(.) operand of the PLI command applies, the list of options
will be printed at the terminal. This will show the negative forms of

44

PLI COMMAND
COMPILER OPTIONS

the OPTION option and all other options that cause listings to be
produced, even where the positive forms in fact apply. The positive
forms will oe shown within the TERMINAL option. This is because the
PRINT(.) operand is implemented by generating a TERMINAL option
containing a list of options corresponding to those listings that are to
be printed at the terminal.

SEQUENCE(m,n)!NOSEQUENCE

IBM default: F-format records (73,80)
V- and O-format record (1,8)·

The SEQUENCE option is concerned with the pOSition of the sequence
numbers in compiler input records. It specifies the positions from
which the compiler will extract sequence numbers It is used to override
the defaults that are set up at compiler installation time by the
FSEQUENCE and VSEQUENCE options. The values specified in the SEQUENCE
option override the default values for FSEQUENCE, if the first record
read is an F-format record, 'and VSEQUENCEif it is a V-format or U­
format record. If the input to the compiler contains both F-format and
V-format or U-format records, the values set up during compiler
installation will apply to the second type of record. The number found
in the sequence field is included in the source listings produced by the
FORMAT, INSOURCE, and SOURCE options. If the NUMBER option applies,
statement numbers are derived from the sequence numbers. No attempt is
made to sort the input records into the sequence implied 'by the numbers.
The SEQUENCE option has the format:

SEQUEl~CE (m,n)

where: m specifies the column number of the leftmost digit of the
statement number.

n specifies the column number of the rightmost digit of the
statement number.

SIZE(yyyyyyyy!yyyyyK!MAX)

IBM default SIZE(MAX)

The SIZE option can be used to limit the amount of main storage used by
the compiler. This is of value, for example, when dynamically invoking
the compiler, to ensure that space is left for other purposes.

The SIZE option can be expressed in three forms:

SIZE(yyyyyyyy) specifies that yyyyyyyy bytes of main storage are ·to
be requested. Leading zeros need not be specified.

SIZE (yyyyyK) specifies that yyyyyK bytes of main storage are to be
requested (lK=1024). Leading zeros need not be
specified.

SIZE (MAX) specifies that the compiler is to obtain as much main
storage as it can.

The IBM default, and the most usual value to be used, is SIZE(MAX),
which permits the compiler to use as much main storage in the region as
it ciano

Chapter 6: Compiler Options 45

PLI COMMAND
COMPILER OPTIONS

When a limit. is specified, ·the amount of main storage used by the
compiler depends on how the operating system has been generated, and the
method used for storage allocation. ~he compiler. assumes that buffers,
data management routines, and;processing phases take up a fixed amount
of main storage, but tbis amo~t can v.ary undetected by the compiler.
Under MY'l, a region of 56K bytes or more is required.

After the compiler has loaded its initial phases and opened all
files, it attempts to allocate space for working storage. If SIZE(MAX)
is specified it obtains all space remaining in the region (after
allowance for subsequent data-management storage areas). If a limit is
specified then this amount of storage is requested. If the amount
available is less than specified. but is more than the minimum workspace
required, compi'lation proceeds •. If insufficient storage is available,
compilation .. is. terminated. ~bis latter situation should arise only if
the region is too small,. that .is, 1'ess than 56K, or if too much space
for buffers bas been requested. ~he v.alue cannot exceed the main
storage available for the job step and cannot be changed after
processing has begun. 2.'bis meanstbat, in a batched compilation, the
value est.ablished when the- compiler is invoked cannot be changed for
later programs in t.he batch. ~hus it. is ignored if speci~ied in a
*PROCESS stat.ement aft.er the first. program.

An addit.ional 10K to 30K bytes must. be allowed for ~SO. ~he actual
size required for.~SOdepends on which routines are placed in t.he link­
pack area (a common main st.orage pool avallaole to all regions). Also,
if you run the compiler in ~SO edit mode, about 30K Oyt,es are required
for t.he EDI~ routines.

SMESSAGE

see LMESSAGE option.

SOURCE! NOSOURCE

IBM default NOSOURCE

~he SOURCE option specifies that. the compiler is to include a source
program listing'in .the compiler listing. The source program listed is
either the original source input or, if the MACRO option applies, the
output from the preprocessor.

S'l'MT ! NOSTM~

IBM default NOSTMT

The STMT option specifies that statements in the source program are to
be counted, and that the resulting statement numbers are to be used to
ident.ify statements in the listings resulting from the AGGREGATE,
ATTRIBUTES, LIST, OFFSET, SOURCE, and XREF options. If NOSTMT applies,
NUMBER is implied. STMT is implied by NONUMBER or GOSTMT.

STORAGE!NOS~RAGE

IBM default NOS~RAGE

The STORAGE option specifies that t.he compiler is to include in the
compiler listing a table giving the main storage requirements for the
object module.

PLI COMMAND
COMPILER OPTIONS

SYNTAXINOSYN~X(WIEIS)]

IBM default NOSYNTAX(S)

The SYNTAX option specifies that the compiler is to continue into syntax
checking after initialization (or after preprocessing if the MACRO
option applies) unless an unrecoverable error is detected. The NOSYNTAX
option without an argument causes processing to stop unconditionally
after initialization (or preprocessing). With an argument, continuation
depends on the severity of errors detected so far, as follows:

NOSYNTAX(W)

NOSYNTAX(E)

NOSYNTAX (S)

No syntax checking if a warning, error, severe error,
or unrecoverable error is detected.

NO syntax checking if an error, severe error, or
unrecoverable error is detected.

NO syntax checking if a severe error or unrecoverable
error is detected.

If the SOURCE option applies, the compiler will generate a source
listing even if syntax checking is not performed.

TERMINAL(option-list)]INOTERMINAL

IBM default TERMINAL

The TERMINAL option specifies that some, or all of the compiler listing
produced during compilation is to be copied at the terminal. If
TERMINAL is specified without an argument, any diagnostic and
informatory messages are printed at the terminal. You can add an
argument, which takes the form of an option list, to specify other parts
of the compiler listing that are to be printed at the terminal.

The listing at the terminal is independent of that written on SYSPRINT.
However, if SYSPRINT is associated with the terminal, only one copy of
each option requested will be printed even if it is requested in the
TERMINAL option and also as a first-level option.

The following option keywords, their negative forms, or their
abbreviated forms, can be specified in the option list for the TERMINAL
option:

AGGREGATE, ATTRIBUTES, ESD, INSOURCE, LIST, MAP, OFFSET, OPTIONS,
SOURCE, STORAGE, and XREF.

If the option does not apply to the compiler listing, specifying it in
the TERMINAL option has no effect.

The other options that relate to the listing (that is, FLAG, LMESSAGE,
MARGINI, NEST, NUMBER, STMT and the SHORT and FULL suboptions of
ATTRIBUTES and XREF) will be the same as for the listing on the standard
output file.

XREF{ (SHORT I FULL)] I.NOXREF

IBM default NOXREF
IBM default suboption FULL

The XREF option specifies that the compiler is to include in the
compiler listing a list of all identifiers used in the PL/I program,
together with the numbers of the statements in which they are declared
or referenced. Refer to the programmer's guide listed in the Preface
for a description of the format and content of the cross-reference
table.

Chapter 6: Compiler Options 47

PLI COMMAND
COMPILER OPl'IONS

If the suboption SHORT is specified, unreferenced identifiers are not
listed, making the listing more manageable.

If both XREF and ATTRIBUTES are specified, the two listings are
combined. If there is a conflict between SHORT and FULL, the usage
is determined by the last option specified. For example,
ATTRIBUTES (SHORT) XREF(FULL) results in FULL applying to the combined
listing.

Appendix A: Command Syntax

SINTAX NOTaTiON

The syntax notation used to illustrate the commands and subcommands in
this manual follows that in used and explained in the manual OS/VS2 TSO
Command Language Reference. Briefly, the conventions are as follows:

Items in brackets [] are optional

Items stacked between braces { } are alternatives; choose only one.

Items separated by a logical OR sign I are alternatives; choose only
one. (This convention is not used in the Command Language Reference
manual.)

Items in capital letters are keywords.
must be spelled as shown. Operands of
deleting any number of characters from
unambiguous.

The command or subcommand name
commands can be shortened by
the right, provided the result is

Items in lowercase letters must be replaced by appropriate names or
values.

The special characters • () • must be included where shown

COMMAND SYNTAX

A command or subcommand consists of a keyword, followed, in the general
case, b¥ several operands. The rules for entering a command or
subcommand are fully described in the manual OS/VS2 TSO Command Language
Reference. The follOWing is a summary of the general syntax rules.

separate the command or subcommand name from the first operand by one or
more blanks.

separate operands by a blank or a comma. You can insert any number of
extra blanks around the mandatory blank or the comma.

~ositional operands, shown in lowercase letters in the syntax notation,
must follow the command or subcommand keyword in the prescribed order.
Keyword operands, shown in capital letters, must follow the positional
operands, but may be in any order; they must be typed as shown.

End a subcommand with a semicolon if it is followed by any other input
on the same line.

Appendix A: Command Syntax 49

Appendix B: Using a Terminal Other Than a 2741

If you are using a terminal other than a 2741, you should regard the
appropriate terminal manual as the source for information on how to use
.it. If it is an IBM terminal, it will be described in the manual OS/MVT
and OS/VS2 TSO: Terminals, Order No. GC28-6162.

In principle, this appendix describes only those items that are of
particular relevance to PL/I programming. These are, causing an
attention ,interrupt from the terminal, and various formatting anomalies
that occur when using display-screen type terminals. However, when this
manual was originally written it included general information on how to
use the 2260 and 2265 display screens and this information is retained
for the benefit of those who are used to USing it as an information
source.

CAUSING_~ ~rENTION INTERRUPT

An attention interrupt in an optimizer compiled procedure causes the
program to enter its attention e~it. A description of how to cause an
attention interrupt is given below for the 3211, 2260, and 2265 display
screens, for other terminals the appropriate terminal and system
~ocumentation must be read.

ATTENTION ON 3217, 2260, AND 2265 DISPLAY SCREENS

Before an attention interrupt can be caused on a 3277, 2260, or 2265
display screen the system must have issued a READ to the terminal.
During execution of the program. READs are only issued when the screen
is full, when the optimizer expects input, or at intervals specified in
the TERMINAL command. On a 3217, this is when the INPUT INHIBITED light
is off.

To make full use of the compiler. it is necessary to use the TERMINAL
command to set points where TSO will stop execution. and give you the
opportunity of entering an attention interrupt. On the 2260 and 2265 it
is also necessary to set an input string that will simulate the
attention condition and though not strictly necessary, this also has
some advantages on a 3211. Like setting the time interval, it is done
using the TERMINAL command.

USING THE TERMINAL COMMAND

A simplified form of the TERMINAL command showing only the relevant
options is:

TERMINAL SECONDS(n) LINES(n) INPUT(attention_string)

SECONDS(n) specifies the amount of time in seconds that will
elapse without terminal activity taking place before
an intervention request is issued by TSO enabling you
to enter an attention interrupt. n must be a multiple
of 10 seconds, if it is not, it is rounded up to the
nearest multiple of ten. The maximum value is 2550.

Appendix B: Using a Terminal other than a 2741 51

LINESCn) specifies the number of lines that will be displayed at
the terminal before an intervention request is issued.
n can be from 1 to 255, however you should remember
that an intervention request is always issued when the
screen is full, so there is no pOint in making n larger
than the screen size.

INPUTCattention_string)
specifies the string that will be used for causing an
attention interrupt. This is essential on the 2260 and
2265 and has some advantages on the 3211.
Attention_string is one to four non-blank characters.

For example:

TERMINAL SECONDS(30) INPUTCATTN)

means that TSO will issue an intervention request if 30 seconds pass
without input from, or output to the terminal, and that the string
entered in response to the intervention request to simulate attention
will be ATTN. C30 seconds is a useful time interval to try as a start
giving adequate control without excessive interruption of processing.)
Note that a TERMINAL command may form part of your LOGON procedure. You
should check with your systems programmer.

RESPONDING TO AN INfERVENTION REQUEST

When an intervention request has been issued, TSO puts out the string
ft ••• " followed by a cursor mark, and proceSSing is halted. You may
continue normal processing by pressing the enter key (on the 2260 you
must hold down the SHIFT key at the same time). Alternatively you may
issue an attention interrupt in one of the follOWing ways:

1. Entering the string specified in the TERMINAL command thus:
··.ATTN

2. Entering the string followed by a digit from 1 to 9. This controls
the number of attention interrupts that will be caused. 1 will pass
control to an established attention on-unit or be ignored if there
is not one. 2 will return control to the next higher system,
normally TSO, thus:
••• ATTN2

3'. Enter the digit without tbe string. The digit has the effect.
described above and can be used on t.he 3277 regardless of whether
an attention string bas been specified thus: ···1

4. 3277 only, preas the PAl key thus:
••• Cyou press the P~l key)

Attent.ion w~en the PL/I program expects input
When input is expected from the terminal, Cthat is, when it bas issued a
prompt ending a:), an attention interrupt can be specified in any of
the ways above except number 3 ~ On the 3277, this means that there is an
advantage in specifying an attention simulation string because the
number of interrupts can then be specified in this situation by using
method 2. This enables you to exit easily from, your program into TSO.

52

fQRMATTlNG O~_A 3277 DlSPLAf SCREEN

Certain anomalies arise when formatting output on a 3277 display screen.
When stream output is trans~itted to the terminal, it is preceded by an
attribute character which contains information such as the intensity
required for the item. This attribute character appears on the screen as
a blank character. .

Thus, for example, the statement POT(EDlT('A','B')(A); formats thus:

AB

whereas the two statements PUT EDlT('A')(A); PUT BOlT('B') (A); format
thus:

A B

This can result in incorrect alignment of tables, and other apparent
anomalies.

Further troubles may occur when the size of a transmitted item
approaches screen width, because the transmitted item and the attribute
character may take up more than one line on the screen.

Appendix B: USing a Terminal other than a 27ql 53

Appendix C: %INCLUDE Data

SECONDARY INPUT

In conversational mode, as in batch mode, you can incorporate PL/I
source code into your program by means of the 'INCLUDE statement. The
statement names members of partitioned data sets that hold the code to
be included. You can create these secondary input data sets either
under TSO or in batch mode.

~INCLUDE is a preprocessor statement; to invoke the preprocessor, the
MACRO compiler option must apply. However, if there are no other
preprocessor statements in your program, you need not invoke the
preprocessor: the syntax checking stage of the compiler will include
the secondary input, if you specify the option INCLUDE.

The %INCLUDE statement can specify simply the name of the data set
member that holds the text to be included. For instance:

~INcLUDE RECDCL;

It can also specify a ddname that is to be associated with the member.
For instance:

lINcLUDE STDCL(F726);

STDCL is the ddname, and F726 is the member name. A single 'INCLUDE
statement can specify several data set members, and can contain both
forms of specification. For instance:

lINCLUDE SUBACREAD5),SUBC(REPORT1),DATEFUNC;

ALLOCATING DATA SEl'S

All data sets containing secondary input must be allocated before the
compiler is invoked.

If a data set member name is specified in a IINCLUDE statement
~ithout a ddname, then the data set can be allocated by specifying the
data set name in the LIB operand of the PLI command. (This operand is
the equivalent of the batch-mode srSLIB DD statement.) The necessary
allocation will be made by tne PLII prompter.

If a ddname has been specified in the %INCLUDE statement, the
corresponding data set must be allocated by means of either an ALLOCATE
command or the logon procedure.

Appendix C: 'INCLUDE Data 55

suppose, for example, that the data set members specified in the
IINCLODE statements in the preceding section are held on data sets as
follows (the ddname used in the IINCLUDE statement is also shown):

Member: Data set name: ddname:

RECDCL LDSRCE none
F726 WPSRCE STDCL
READS JESRCE SUBA
REPORTl GHSRCE SUBC
DATEFUNC DRSRCE none

Then the necessary data sets could be allocated by the following
commands.

allocate file(stdcl) dataset (wpsrce)
allocate file(suba) dataset(jesrce)
allocate file(subc) dataset(ghsrce)
pli mnthcost lib(ldsrce.drsrce) include

INPUT RECORD FOR~TS

The compiler will accept both F-format and V-format records, and the
primary and secondary input data sets can have different formats.

The compiler determines the positions, within each record, of the
PL/I source code and the sequence numbers from the following options.

Option

!'MARGINS
FSEQUENCE

VMARGINS
VSEQUENCE

MARGINS
SEQUENCE

Specifying

Positions of source text and sequence
numbers for F-format records

Positions of source text and sequence
numbers for V-format records

OVerriding values for above options

Standard default

FMARGINS(2,12)
FSEQUENCE(13,SO)

VMARGINS(10.100)
VSEQUENCE(l,S)

The values of FMARGINS. FSEQUENCE, VMARGINS, and VSEQUENCE can be set
only at system generation time. If no values are set at this time, the
standard default values apply. MARGINS and SEQUENCE can be specified
when the compiler is invoked. When specified, they override either
FMARGINS and FSEQUENCE or VMARGINS and VSEQUENCE, depending on whether
the first input data set read by the syntax-checking stage of the
compiler is F-format or V-format. The overriding values will also apply
if records of the same format are read as secondary input. If records
of the other format are read as secondary input, the system generation
values for that format apply.

SOURCE LISTINGS AND STATEMENT NUMBERS

If the MACRO option applies, the source listing will show the included
text in place of the IINCLUDE statements in the primary input data set.

If the MACRO option does not apply but the INCLUDE option does, the
source listing will contain both the iINCLUDE statements and the
included text. Each piece of included text will immediately follow the
corresponding IINCLUDE statement. The end of the inclUded text will be
marked by a line of asterisks; with F-format primary input, the line
containing the ~INCLUDE statement will also have asterisks between the
end of the statement and the right hand margin.

56

If the STMT compiler option applies. the statement numbers are
derived from a count of the number of statements in the program after
secondary input has been included.

If the NUMBER option applies. the statement numbers are derived from
the sequence numbers of the primary and secondary input records.
Normally the compiler uses the last five digits as statement numbers.
If. however. this would give numbers such that each statement does not
have a higher number than the one before it. 100000 is added to all
statement numbers starting from the one which would otherwise be equal
to or less than its predecessor.

For instance. if a V-format primary input data set had the following
lines:

00001000 A:PROC;
00002000 ~INCLUDE B;
00003000 END;

and member B contained:

00001000 C=D;
00002000 E=F;
00003000 G=H;

then the source listing would be as follows.

SOURCE LISTING
NUMB
1000 00001000 A:PROC,

00002000 ~INCLUDE B;
101000 00001000 C=D,
102000 00002000 E=F;
103000 00003000 G=B;

•••••••••••
203000 00003000 END;

The additional 100000 has been introduced into the statement numbers at
two points: once beginning at the first statement of the included text
(the statement C=D;) and again beginning with the first statement after
the included text (the END statement.)

Appendix C: ~INCLUDE Data 57

+: input data proapt 11
exaaple 22

comaand syntax 49

! attention interrupt 23

*PBOCESS statement 27,3
compiler options 21
position in record 3

1* end-of-file 19

~INCLUDB data 55
data sets 28
without using preprocessor 38

. . input data proapt
example 22

11

I l coamand syntax 49

[] command syntax 49

abbreviations
compiler options 31

abnormal teraination of coapiler,
dump 31

addresses, offsets of statements 4"
AGGREGATE compiler option 35
ALLOCATE command 6

exaaple 22,23
allocating data sets 20

SINCLUDE data 55
example 22
for compiler 20

amending a PL/I prograa 7
ANS printer control character 42,41
arguments to PL/I main

procedure 8,9
arrays, length table 35
ASIS operand of EDIT coaaand 20,19
assembler listing of prograa 39
attention interrupt 23,24,25

how to cause 24,51
how to use 211
potential errors when using 25
terminals other than 2741 51

ATTN key 23
attention interrupt 23·

ATTRIBUTES compiler option 35
automatic library call 8,9

background processing 1
ba tch mode 1 .
BCD character set 35
blank

character in first position ia
line of PLIl 40,41,42

CALL command
examples 13
invoking compiler 1

capital letters
for commands and subcollmands 19

Index

in input to progra. 19
in output fro. progra. 20

card deck
for object sodule 36
for preprocessor output .2

carriage control character •
character sets for PL/I source

code 35
CHlBSBT co.piler option 35
checkout compiler

allocating data set 3,.
format of priaary input 3,4
link-editing aodules 10,12,14
uppercase and lovercase
characters 19

code, PL/I source
format of records 3,4
listing at co.pile tiae 46,1
position in record .1
uppercase and lovercase
characters 19

colon proapt 11
exaaple 23

comaand
syntax 49

coaaand procedures 8
co •• and processor

for PL/I coa.aad 5
COIiPILB compiler option 35
co.piler data sets 20

table 21
compiler error .essages

10Dg and sbort foras 40
suppressing 37

compiler error, duap after 31
coapiler listings 28,1

controlling size of 7
coapiler options 31

abbreviations 31
.controlling listings 1
execution-time 8,9
in PLI coa.and 27
listing ""
table 32
using when deleted by
installation 36

compiler, optimizing
foraat of primary input records

records 3,.
foraat of secondary input

data sets 56
introduction 1
invokillg 5

compiling a PL/I program 5
exa.ples 10,12
fast compilation ••
BUB co •• and or subcomaand 6

CONSECUTIVB files 19
continuatioa character 11
CONTBOL coapiler option 36
conventions, data set naaiag 3
conYersational input 17

example 22
conversational mode 1

Index 59

conversational output 19
exaaple 22

COpy option of GB~ PL/I
statellent 19

COOIT compiler option 36
creating a progra. 3

data
input froll terllinal 17
output to teraina! 19

data sets
allocation 20
creating PL/I progra. 3,'
example of allocation 22
for ~IHCLODB data 28
for cOllpiler listings 28
for load modules 8
for object modele 5,43
for object aodules 36
for preprocessor output '2
holding ~IICLODB data 55
names in PLI co.aand 27
naaing conventions 3
required by compiler 21,20

data set names
load modul.es 8

data-directed input 18
data-directed output 19
DD statement

conversational equivalent 20
ddnalles

for ~IHCLODB data 55
for batch mode 21

debugging a program
attention interrupts for 26
AfTBITIOH on-units for 2'
duap information 37
fl.ov information 31
statement counting 36
statement nUllbers at execution
tille 38

statement offsets 44
storage map 40

debugging using 80B subcom.and of
BDIT 6

DECK compiler option 36
DBCK descriptive gualifier 36,42,3
default co.piler options 3'
descriptive gualifier 3
display stations, 2260 and 2265 51
DU"pcoapiler option 37

BBCDIC character set 35
edit-directed input 18
edit-directed output 19
end-of-file 19
BHDPItB condition 19
ending PLI command 5
EHDPAGB condition 19
error messages, compiler

long and short forms 40
suppressing 31

error, compiler, dUllp after 31
BSD co.piler option 31
executing a PL/I program

60

introduction 8
aOI command or subcommand 6

execution time options
example under CALL coamand 14
example under LOADGO coalland 11

execution-time parameters 8,9
external syabol dictionary BSD 37

P-for.at records
data sets unsuitable for BOI
co.mand or subcommand 6

for prillary input to cOllpiler 56
for secondary input to
cOllpiler 56

fast IIICLUDE S5
cOllpiler option 38

fUes
conversational input 17
conversational output 19
example of use 22
for IIICLOD! data 56
used by compiler 20,21

fixed-length records
data sets unsuitable for

aUI command or subcomlland 6
for prillary input to

compiler 3,4
for secondary i.put to

compiler 56
PLAG compiler option 37
PLOY coapiler option 37
POBS descriptive qualifier 3
format of print file output 19
forllat of records

primary input to coapiler 3,.
secondary input to compiler 56

PULL
suboption of ATTRIBUTES 35
suboption of IRBP 41

GET PL/I statement 17,18
COP! option 19

G010"8E8 compiler option 38
illplied by COOIT Option 36

GOSTIT compiler option 38
i.plied by COOIT option 36

halting execution 39
halting 'operations

by attention interrupt 23
hyphen as continuation character 11

IBL01C cOllpiler entry point naae 7
I!PRBCISB compiler option 38
IICLUDB cOllpiler option 38
includiag PL/I source code 55
input/output 11

en.ple 22
introduction 1

.input, cOIlYersational 11
example 22

INSOUBCB compiler option 39
INTERRUPT option 39

effect of 23
potential errors when
using 25*26

programming with 25
programs partly compiled with 26

interrupt* attention
definitioll 23

interrupting operations 23
interrupts in program, flow

information 37
interrupts, imprecise 38
invoking the PL/l optimizing
compiler 5

job, background 7

keywords 32

length of records on PL/I source
data sets 3*4*56

LIB operand of PLI command 28,55
library call automatic 8,9
library PL/I resident

for checkout co.piler modules 10
specifying 8,9

line
continuation 17
of PL/I, creation 3,4

line numbers
IIBCLODB data 56
introduction 3
omitting 3
position in record 3
pOSition of sequence number 3,45
statement numbers ~,43
statement numbers at execution

time 38
LINB option and format item 19
LIHECOONT compiler option 39
LIBK cOllmand

description 8
examples 12

link-and-call method of
execution 12

exallples . 13
introdl1ction 8

link-editinq and execl1tiag 8
examples 13
RUN command or subcommand 6

linkage editor 8
HAKE statement 42

LIST compiler option 39
LIST descriptive qualifier 3
list-directed input 18
list-directed output 19
listings

aggreqate length table 35
at terminal 21,41
attributes of PL/I variahles 35
compile-time 1
compiler options 46
external symbol dictionary

ESD 37

insource 39
margin character 40
nesting levels in source
listinq IU

object module 39
of 'IHCLUDE data" 56
source code 46
storage map at execution time 40
storage requirements of object .

lIodule 46
variables, cross-reference 47

L!BSSAGB compiler option 40
LOAD descripti~e qualifier 9
load 1I0dules

executing 8
linkage editor IA8B statement 42·
producing 8

load-and-go method of .execution
description 10
examples 11
introduction 8

loader 8
LOADGO command

description 8
examples 11

lowercase letters
for co.mands and

subcom.ands 19,20
for PL/I code 19,20
in input to program 19
in output froll program 20

ftACIO compiler option 40
data set allocation 21
IBCLUDB as alternative 38

main storage .
limiting use by compiler 45
listing requirellentsof object
.odule 46

8AP compiler option . 40
8iRGINI compiler option 40
8ARG11S compiler option 41
maximum record length on PLII source
data sets 3,4

BDECK compiler option 42··
data set allocation 21

messages, compiler
long and short forms 40
suppressing 37

minus sign as continuation
character 11

mixing with checkout compiler
modules 10

examples 12,13

HAftE compiler option 42
HAftE linkage editor statement 42
nalles of data sets

for compiler listings 7
for object modules 36*44
for preprocessor output 42
holding 'INCLUDE data :55
IELOAC compiler entry point nalle 1
in PLI command 5
object modules 5

Index 61

IBS! compiler option 43
IOA!!BIBO!BS compiler option . 35 .
IOCOSPILB compiler optioD 35
lacOONT co.piler option 36
RODICI compiler option 36
IODUftP compiler option 31
ROBSD co.pller option 31
10PLOW .compiler option 37
ROGOROftBBI compiler optioD 38
IOGOS!S! compiler optioD 38
10IftfRBCISB compiler.optioD 38
IOIHCLODlcoapiler option ·38
10IISOOBCB compiler optioD 39·
IOIHTIIIUP! compiler option 39
lOLlS! compiler optioD 39
ROSACIO compiler option 40
IOSAP compiler option 110

interaction with LIS! 40
10SAIGINI compiler option 40
10SDICK compiler option 112
lOR 1ST compiler optiOD 43
10HO"BII co.piler optioD 43

iaplied by GOS!"! option 38
IOOBJBC! co.piler option 43
IOOPTI!IZI compiler optioD "
HOOf!IOHS compiler option 44
JOPBIR! operand of PLI co •• and 28
JOSBQUBHCI co.piler option 45
ROSOURCB compiler optioD 46
lOST!! compiler option '6

iaplied by GOIOIBIB coapiler
options 38

HOS!OlAG! co.piler option '6
IOSTNT!X co.piler option 47
notat~on. syntax 49
10TERNIBAL compiler option 47
HOIBBF.collpileroption 47

sequence, position i~'record "5
IU!BIR compiler option "3

implied by GONO!B,I option 38
implied by HOST!! option 46

numbers .
ofstatements·iri·IIICLUDB
data 56

statement 43,"6.
statement, at execution time 38

OBJ descriptive gualifiers 5,43,3
OBJECT compiler option 44

data setallocatioD 21
introduction 5

object. modules
link-editing and executing 8
linkage-edltor HA!E statellent 42
listing 39
names of data sets 5
producing 5,36,44
storage map 40

OPPSET compiler option 44
offsets of v~riables 40

syntax 119
optimization :1.
OPTIKIZE compiler option 411

62

optimizing compiler
format of primarr input
records 3,'

format of secondary input data
sets 56

intrOduction 1
inyoking 5

OPrIOIS compiler optioD 4'
options, compiler 31

abbreviatioDs 31,32
cODtroll1ag listings 7
eXecutioD-time 8,9
in PLI coaaand 27
listing "
using when deleted by
installation 36

output, conversational
exaaple 22
interruption of 23

fAGB option and foraat itea 19
PAGBLIIGTB element of PLI!ABS 19
parameters, executioD-time 8,9
passing paraaeter to main procedure

under tOADGO com.and, exaaple 11
passing paraaeters to aain procedure

under CALL co.aand, exaaple 14
passvord

COI!IOL coapiler-option 36
PL/I checkout compiler

allocating data set 10
examples of link editing

modules 12,111
format of primary. input 3,4
link-editing .odules 10
uppercase and lovercase
cbaracter 19,20

PL/I optimizing compiler
for.at of primary input
records "

format of secondary input data
sets 56

introduction 1
invoking 5

PL/I prograa
creating 3
running 5

PL/I prollpter
allocating data·sets 21,20
introduction 5

PL/I resident library
for checkout compiler aodules 10
specifying 8,9

PL/I source code
IIICLODB data 55
format of records 56
listing at coapile tiae 7,46
position in record 40
uppercase and lowercase
characters 19,20

PLI and PLIP data set types 4

PLI command
introduction 5
.ain description 27

PLI descriptiYe qualifiers 3
PLIBASE library 8,9,10
PLICftII library 8,9,10
PLIDOBP ddnalle 21
data set unsuitable for rUIl command
or subco.mand 6

PLIP operand of BOlT cOllmand 4
PLITABS table 19
plus sign 17
preprocessor output 42

sequence numbers 43
preprocessor statements

IINCLODB 55
IINCLODB without using

preprocessor 38
compiler optioll 40
data sets 28

primary input to co.piler
creating 3
format of records 3,4

print files for conyersational
output 19

PRIIT operand of PLI cOllmand 27
data set allocation 21
introduction 1

printer control characters 40,41,42
printing

cOllpiler listings 7
for PLI command 5

prograllls
running 5

prompter, PL/I 5
prollpts

for input to program 17
POT PL/I statement 18

quotes in data set nalles 3

record files
conversational input 19
conversational output 20
example of use 22

record format
of primary input to compiler 3,4
of secondarr illput to
cOllpiler 56

record in PL/I source data set 3
region, background 1
REPORT co.piler option 21
resident PL/I library

for checkout compiler modules 10
specifring 8,9

RON command and subcom.and
description 6
exallple 15

running a PL/I program
optimization 44

running a PL/I prograll 5
exallples 10

screen, display S3
secondary input to compiler 38

compiler option 40
data sets 28

sending a coamand to coaputer 17
SBQOEICB co.piler option 45
sequence nusbers

IIICLODB data 56
introduction 3
position in record 3,4
statement nu.bers 43

SHORT
suboption of A~TIIBUTBS 3S
suboption of IIBP 47

simple nalle of data set 3
SIZB co.piler option 45
SlIP option and format item 19

conYersational input 19
SftBSSAGE compiler option 40
source code

IIICLUDE data 55
listing at cOllpile tille 7,46
position in record 40
uppercase and lowercase
characters 19,20

SOURCB compiler option 46
source program

creating 3
format of records 3,4

statement numbering 4
stateaent numbers

of II9CLODB data 56
static storage .ap 40
SrlT co.piler option 46

implied by GOSTftT option 38
iaplied by IUIBBR option 43

stopping execution 23
STORAGB co.piler option 46
storage .ap at execution time 40
storage, main

lilliting use by co.piler 45
listing requirements of object
.odule 46

stream files for conYersational
input 11

exa.ple 22
stream files for conyersational
output 19, 22

example 47
structures, length table 3S
SflTAI compiler option 47
syntax of cOllmands 49
srSCII ddnaae 21
SISII ddnaae 21
SISII file 17

allocation
SISLIB ddname
srSLII ddnalle

20
21,28,55
21

Index 63

SISOU! class
exaaple of use 22
for coapile-tiae listings 7,28

SISPLIC checkout coapiler file
Ilaae 10,12,111

SISPBII! file 19
allocation 20
used by co.piler 21·

SYS,BIlt operaad of ,LI
co •• and 7,28

SISPUBCB ddDaae 21
srS,UICB output fro.

preprocessor 42
srS~1 checkout coapiler work
file 10,12,111

SrSU~1 ddaaae 21

~BBP.&BB assuaed for load aodules 9
teraiDal

for compile listings '7
for coapiler listings 27
input data 17
output data 19
2260 or 2265 51

!BBBIB&L coapiler optioD '7
teraiDals

2260 and 2265 51
tera1DatiBg a teraiDal sessioD

2260 aDd 2265 teraiDals 51
termiDating PLI cODaand 5
teraination of coapiler, abnorDal,

duap 37

64

glDS user attrihate data set
aathorization for SUBII! coaaand 7

apdatiDg a PL/I prograa 3 '
.ppercase letters

for cODaands and subcoaaaads 17
for 'L/I code 19,20
ia iapat to prograa 19
in output froa prograa 20

'-foraat records
for priaary iaput to
coapiler 3,'

for secondary inpat to
coapiler 56

Yariable-length records
for priaary input to

cODpller 3,'
for secondar, input to
coapiler 56

visual display unit fDU
terainals 53

IBBP coapiler optioa ,7

2260 or 2265 terainal 51

3277 terainal
attention oa 51

OS PL/I Optimizing Compiler:
TSO User's Guide
SC33·0029·3

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications. or for assistance in using your IBM system. to your IBM representative
or to the IBM branch office serving your locality.

List TNu here:

If you have applied any technical newsletters (TNu) to this book, please list them here:

Last TNL ________ _

Previous TNL ________ _

Previous TNL ________ _

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

SC33-0029-3

Reader's Comment Form

Fold and tape Please do not staple Fold and tapa

.
" ". " " .. "" " . " " " " ... " .. " " , . ,," . """ " . " . " . " "" " .. " " . " "" . " . " . " " " . "" " " " " " " . " "" " " ... " " ... " . " "" .. , """ :

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAlO BY ADDRESSEE

IBM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

I II II I NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

."" " " " ••• " .. " " •• " •• " t', .. " .. " • " ••• ,. '" • " " " " " " .. " ••••••••• "." ... """ "" •• "." • " •• " ... '''' • " " ••• " •••• " •••••••••••••••••••• " ", •• :

Fold and tape

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue. White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation

Please do not staple

Town of Mount Pleasant, Route 9, North Tarrytown. N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains. N.Y .• U.S,A. 10601

Fold and tape

o
en
"'tJ

!;
o
'C ...
3'
N'
:;'

CQ

g
3
'2.
CD ..,

~ o
c
Kl ..,
",'

G')
c:
a:
CD

(

	0000
	0001
	0002
	0003
	0005
	0006
	0007
	0009
	001
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	051
	052
	053
	055
	056
	057
	059
	060
	061
	062
	063
	064
	replyA
	replyB
	xback

