IBM System/360 Operating System
PL/I (F) Compiler

Program Logic Manual

Program Number 360S5-NL-511

This manual describes the internal
design of the IBM System/360 Operating
System PL/I (F) Compiler. It is aimed at
perscnnel responsible for analyzing program
operations, diagnosing malfunctions, and
changing the program format for special or
national language usage. The information
provides a guide for effective use of the
program listings. Program logic informa-
tion is not necessary for the use and
operation of +the program; therefore, dis-
tribution of this puklication is limited to
those persons with the aforementioned
requirements.

Restricted Distribution

File No.S360-29
Form ¥28-6800-3

Program Logic

PREFACE

This publication is organized in three
sections. Section 1 is an introduction
describing the 1relationship between the
compiler and the Operating System, and the
overall organization of the compiler. Sec-
tion 2 is a description of the compiler
phases, including a general description of
each logical phase fcllowed by descriptions
of each of the physical phases contained in
the 1logical phase. Section 3 consists of
flowcharts and routine directories, The
flowcharts show the relationship between
the routines of each rhase, while the
directories 1list the routines and their
functions.

The appendixes appearing at the end of
the publication contain topics of svecial
importance and reference material.

The convention has been followed in this
manual of printing all PL/I language items
in block capitals.

Prerequisite to the use of this publica-
tion are the following:

IBM System/360:

Principles of Operation, Form A22-6821

PL/I Reference Manual, Form C28-8201

IBM System/360 Operating System:

Fourth Edition (March 1968)

This publication is a major revision of the previous edition, Y28B-6800-2,
and corresponds to Release 15 of Operating System/360; it reflects the
improvements and additions which have been incorporated in the fourth
version of the PL/I (F) Compiler. Significant additions include the
implementation of PL/I multitasking, based storage and list procesaing,
and the extension of input/output facilities which include LOCATE mode
I/0, mixed record formats, variable length records, positioning control
in stream I/0, and data interchange facilities with OS COBOL data sets.
Other changes provide additional compile-time facilities, and improved
object~time performance in certain areas of application. These and other
changes are indicated by a vertical line to the left of the change; new
or rgvised illustrations are denoted by the symbol e to the left of the
caption.

| PL/I(F) Prograrmers Guide, Form C28-6594
| PL/I Language Sgecifications, Form
| C28-6571

| Although not prerequisite, the following
|publications are related to this manual and
|should ke consulted.

|IBM_System/360 Operating Systerm:

| Introduction to Control Program Logic,

| Form Y28-6605

| Seqguential Access Methods, Frcgrar Lcgic

| Manual, Form Y28-660L

| Operator's Guide, Form C28-6540

| Supervisor and Data Management Services,
| Form C28-66L46

| Supervisor and Data Management Macro

| System Programmers Guide, Fcrm C28-6550

Storage Estimates, Form C28-6551

| System Generation, Form C2§-6554

] PL/I Sukroutine Library, PFrogram Logic

| Manual, Form ¥28-6801

Specifications contained herein are subject to change from time to time.

Any such change will be reported in subsequent

Newsletters.

This publication was prepared for production using an IBM
update the text and to control the page and 1line

Printer using a special print chain.

Address comments concerning the
United Kingdom Laboratories Ltd.,
Park, Winchester, Hampshire, England.

contents

RESTRICTED DISTRIBUTION:

by IBM personnel involved in program design and maintenance.

Programming Publications,

revisions or Technical

computer to
format.
impressions for photo-offset printing were obtained from an IBM

Page
1403

of this publication to IBM

Hursley

This publication is intended primarily for use

It may not

be made available to others without the approval of local IBM manage-

ment.

© International Business Machines Corporation 1966, 1967, 1968

SECTION 1:

INTRODUCTION.

Purpose of the Compiler.

The Compiler and Operating System/360.

Compiler Organization.
Logical Phases. . .

Compile-time Processor

Read-In Phase. .
Dictionary Phase

Pretranslator Phase

Translator Phase
Aggregates Phase

Pseudo-Code Phase.
Storage Allocation Phase .

. e e & s e

e e e .
e s e e

e o o e .
s e e e
« s e e

Register Allocation Phase. .
Final Assembly Phase
Error Editor Phase

SECTION 2:

Compiler Control and
PreproCessor. « « « .
Compiler Control. .
Initialization .

COMPILER PHASES

Character Translation Tables
Communications Region. . . .
Text and Dictionary BRlock

control

Scratch Storage Control. . .
Storage Requirements

Phase Loading. .
Phase Directory.

. " e e e e

Diagnostic Message Cecntrol .
Input/Output Control
Program Check Handling . . .

Job Termination.

Compiler Control Modules.

Module AC. . . .
Module AD. . . .
The DUMP Option.
Module AE. . . .
Module AF. . . .
Module AG. . . .
Module AH. . . .

Modules AI, AJ .
Module AK. . . .
Module AL. . . .
Module AM. . . .
Module AN. . . .

Module JZ.

- " & e = e

. -

. .
s =2 =2 2 3z 3 3
e o & o o »
e s e s o
.
.

48-Character Set Preprocessor .

Compile-time processor
Line Numbering .
Phase AS
Phase AV . . .
Phase BC
Phase BG
Phase BM
Module BN

(BI,
(BO). .
(BP,

(BE, BF).
BJ). .

BV) .

Phase . . .

A e s e
s e e
e e o
« s s e

48-Ccharacter Set

« 2 s e e

15

15

Phase BW

The Read-In Logical Phase. .
Statement Numbering. .
Statement and Entry Lakels .
Chains Constructed by Read-In.
Frrors and Diagnostic Messages
The Output String. . .

Identifiers. . .
Constants. . . .
Operators. . . .
Initial Lakels .

Structure of the Read-In Logic

Phase. « . « « «
Phase CI
Phase CL
Phase CO
Phase ¢S
Phase CV

The Dictionary Logical
constructing

the

Testing for
Attributes . .

e o e
. e e
» . .

Phase

LI S

CONTENTS

al

and Accessing
Dictionary. . .
Consistent

Compiler Pseudo-Variables an

Functions . . .
Dictionary
Points. « . .« .
Phase ED
Phase EG « . . .
Phase EI
Phase EL
Phase EP « . . .
Phase EW .
Phase EY
Phase FA .
Phase FE
Phase FI
Phase FK
Phase FO . . .
Phase FQ . . .
Phase FT . . .
Phase FV . . .
Phase FX

The Pretranslator Logical Phase

Additions to the
Phase GA
Phase GB (GC). .
Phase GK
Phase GO . .
Phase GP . .
Phase GU .

Phase HF .

Phase HK
Phase HP .

The Translator
Phase IA
Phase IG
Phase IL « .+ « .

Entries

for

Text.

e s e

Entry

« e e s a

.
.
.
.

e e« o 8 & 5 & = a e o & o

s s e .

* s e s 8 o

® e s s o a

Phase IM . ¢ ¢ + &« & « o & & =
Phase IT ¢« ¢ « o ¢ o« o o o o
Phase IX ¢ ¢ o« o« ¢ o o o o o =
Phase JD . +v &« ¢ & o« + « .

The Aggregates Logical Phase .
Phase JI
Phase JK . « « ¢« « « « &
Phase JP . « + « « « .

The Pseudo-Code Logical Phase.
Pseudo-Code Design . . .
Pseudo-Code Items. . . .
Register Description . .

-

The Use of Symbolic Una551gned

Registers

The Use of Phy51ca1 Reglsters.

Temporary Descriptors. .
Temporary Workspace. . .
Phase LA . +« ¢ & « & + =«
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase

e} 222 =
o3} 2U® =

]
=

OS ¢ & o v & & o« &

Allocation
PA ¢ ¢« o o« ¢ o« o

The Storage
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase

g
[l

.
-

e« & o & e
-

PP . . .

-
H

QX v o v 4 4 e e .

The Register Allocation Logical Phase

Phase RA + ¢« & o o o « o o o =«
Phase RF . 4 ¢ 4 o o « o o o =

The Final Assembly Logical Phase . .

Phase TF . ¢« v ¢ 4 o « o o o «

Phase TJ & ¢ o o o « o o o « &
Phase TO (T¢) e e e e e e e e
Phase TT . « v ¢« &« ¢ ¢« « o « &
Phase UA . ¢ & ¢ ¢ 4« 4 o o« o =
Phase UD . . & ¢ ¢ & o« o « « &
Phase UE ¢ ¢ 4 « « 4 o o o« &
Phase UF (UH). « « .
The Error Editor Phase

Phase XA . ¢ ¢« v ¢ « o« o »

SECTION 3: CHARTS AND ROUTINE
DIRECTORIES +« « .« o « & o « «

APPENDIX A: GUIDE TO PHASES AND
MOPULES . +« « ¢ ¢ ¢« &« o &« « « .
Ccompiler Phase-in-Storage Map

APPENDIX B: RESIDENT TABLES. . .
of

ot
of

Organization Keyword Tables .,
Format
Format
Format of Third Level Takl
Format of Entry Requiring

Additional Comparisons. .

Phase Directory. . . - .

Contrel Code Word -- CCCOD

APPENDIX C: INTERNAL FORMATS OF
DICTIONARY ENTRIES. . . .« « . .

1. Dictionary Entry Code Bytes .

€es

E.

-

First Level Directory.
Second Level Directory

2. Dictionary Entries for Entry Points

Entry type 1 for

BEGIN, and ENTRY
Entry Type 2 +« ¢« « « ¢« o«
Entry Type 3 « ¢« « « . . .
SETS List Format
Entry Type 4 . . +
Entry Type 5 . « « « « . .
GENERIC Entry Point. . . .

3. Code Bytes for Entry Dictiona
Entries . . e e e .
ENTRY Code Byte. e e e e
Options Code Byte.
Optimization Byte.

4. Dictionary Entries for Data,

and Structure Items

Label Variables -

from DECLARE Statement
Dictionary Entries for

ItemS. o« o o + o o & o

Major and Minor Structu

Entries. «

5. Code Bytes for DATA, LABEL, a
STRUCTURE Dictionary Entries. .

ry

-

Label

Obtained

Data

re

nd

PROCEDURE,
sStatements

The First Code Byte - Other 1.

The Second Code Byte - Other 2
The Third Code Byte - Other 3.
The Fourth Code Byte - Other 4
Variable Byte. . « . .« .+ « .« .
Data Byte. « « « « « « ¢« + . .

.

-

. 62
. 63"
. 63
. 63
. 6l
. bl
. 6l

. 6l

66

.335
.339

. 341

.3u1
.342
342
. 342

.3u2

.343
L343

. 345
. 345
347

.347
. 349
. 349
.350
. 350
.351
. 351

.351
.351
.351
.352

. 355
.355
. 355
.356
.356
.357
.357

6.

bl

[

Format of Variable Information. . .

Uses of the OFFSET1 and OFFSET2
Slots in Data, Label, and
Structure Dictionary Entries. .

STATIC INTERNAL Structures . . .

AUTOMATIC Structures. . . « «

STATIC EXTERNAL and Parameter
SEruUCtuUreSe + « o o o« o o & o

CONTROLLED Structures. . . .« . .

Non-Structured Arrays in

STATIC INTERNAL . . . « . . .

Non-Structured Arrays in

AUTOMATIC. &« « « o o o o o .

STATIC EXTERNAL, CONTROLLED or
Parameter Array « « « « o« o« « o

Non-Structured Scalar Strings

in STATIC INTERNAL . .« .« . «

Non-Structured Scalar Strings

in AUTOMATIC. « « + o « « o =

Non-Structured Scalar Strings

in STATIC EXTERNAL,
CONTROLLED or Parameter. . .
Non-Structured Non-String
Scalars in AUTOMATIC or
STATIC INTERNAL . . + « « .

Non-Structured Non-String
Scalars in STATIC EXTERNAL,
CONTROLLED or Parameter

Other Dictionary Entries.,

Label Constants - Extracted
by the Read-In Phase. . . .
Compiler ©Labels
Formal parameter type 1
ENEXYe o o 4 4 o o « o o o o =
Dictionary entry for FILE . .
FILE Constants « « + « « & « o« =«
FILE Parameters and Temporaries.

FILE Environment Entries
Dictionary Entries from
Constants . . <« . .« . « . . .

Task Identifiers and EVENT Data.
Dictionary Entries for Built-in

Functions .« + « v ¢« ¢« o o o o
Second Code Byte . + .« ¢« « & 4
Internal Library Functions . . .
BCD entri€S. . v« « v o o o o o o«
Dictionary Entry for Parameter

Descriptions.
ON Statements. « . . .
ON Condition . . « . . . « . . .
CHECK List Entry . <« « « « « « .

PICTURE Entry. « « o+ o « « o « =«
Byte 9 - Code Byte
Dictionary Entry for Workspace
Requirement . . c e e e 4 e e
Dictionary Entry for Parameter
LiStS v o o o ¢ v ¢« 4 o« o o o
Dictionary Entries for Dope
Vector Skeletons. . . . « .« . .
Symbol Table Entry
Dictionary Entry for AUTOMATIC
Chain Delimiter+
DED Dictionary Entry
DED2 Entries « e
Dictionary Entry for FED -
Format Element Descriptor.. . .
Label BCD Entries. . . . « . . .

.357

.360
.360
.360

.360
.360

.360
.360
.360
.360

.361

.361

.361

.361
.361

.361
.361

.361
.362
.362
. 362
.362

.362
.363

.363
.364
.364
.364

.364
. 364
-365
.365
.365
.365

.366
.366

.366
.366

.366
.366
. 367

.367
.367

Dope Vector Entries for

Temporaries « « + o « « + 4 =
Record Dope Vector Entry . . .
Dope Vector Descriptor Entry .
Format of a Second File

Dictionary Entry.
Dictionary Entry for a STATIC
DSA ¢ ¢ o ¢« o o o o o o o o o

8. Dimension Table « . . .+ .

9. Dictionary Entries for Initial
Values. « e e e e .
INITIAL Value LlSt e e o e e e

APPENDIX D: INTERNAL FORMATS OF TEXT

1. Text Code Byte after the Read-In

Phase o« . v v v v ¢ v 4 o o o o o
First Level Takle (00 to 7F)
First Level Takle (80 to FF) .
3econd Level Table (00 to 7F)
(preceded by second level
marker byte C8)
Second Level Table (80 to FF).

2. Text Formats After The Read-In

Phase . . ¢ ¢« & ¢« ¢ &« 4« & & o o o &
PROCEDURE Statement.
ENTRY Statement. . « «
BEGIN Statement, « « « « « « =«
END Statement. . « + « + o« .+ &
IF Statement « « « o « « « « @
DO Statement « + « « ¢« + o o .
ON Statement . . « +« o« « o o &
ASSIGN Statement « <« + « « o
WAIT Statement. « « « + « o
CALL Statement. . .+ « « + <«
GO TO Statement. . .« .« .+ .« .
SIGNAL and REVERT Statements
DISPLAY Statement <« .
DELRAY Statement. + « « + « o =«
RETURN Statement « . .
STOP, EXIT, and Null Statements

INITIAL Lakel DCECLARE Statements

DECLARE and ALLOCATE Statements
FORMAT StatementsS. o« o « o« + &
OPEN and CLOSE Statements. . .
READ, WRITE, GET, PUT, REWRITE,
UNLOCK, and DELETE Statements

3. Text Code Bytes on Entry to the
Translator Phases . . . « « .+ « o«

4. Format of Triples . . . « « « +
5. Text Code Bytes in Pseudo-Code. .

6. Text Formats in Pseudo-Code . . .
pPseudo-code Design

RX InNStructionS. « « « « o« o &
RS Instructions. « « « + « «
RR InstructionS. « « « « o« «
ST INnStructionsS. « « « o« « + o«
SS Instructions. . e o e .

Variable Length Item FLAG. . .
Compiler Function (Bit 1=1). .

.

.367
<367
.368

.368

.368

.368

. 369
.369

.371

.372
.372
.373

. 374
.375

.375
. 375
.376
.376
.376
. 377
377
377
<377
.378
.378
.378
.378
.379
379
.379
<379
.379
.380
. 380
-380

.380

.381
.383
.386

.386
.386
.387
.388
.388

.388
.388
.388
.389

Pseudo-code Format between IEMRA
and IEMRF v o o « o o o o o s =

7. Text Formats in Absolute Code . . .
RR Instructions. . .
RX Instructions. . .
SS Instructions. . . .

RS Instructions. . N .
SI Instructions. . . .

8. Second File Statements, and the
Formats of Compiler Functions and
Pseudo-vVariables. . . . ¢« + ¢ « . . .

Second File Statements
Array Bounds . « « « « o o« o o =
Multiplier Function.

String Length statement.
INITIAL value statements « o .
Second File Statements for BASED
and OFFSET. « « « « « o« o o + «
Second File Statements for
DEFINED.: « o o o o o o » s «

9. Pseudo-Code Phase Temporary Result
Descriptors (IMPD). « ¢ « « o « & « @
Temporary Description Stack. .
Temporary Descriptions in
Pseudo-Code « « « ¢ « « & o« o &

10, Library Calling Sequences.
11. Descriptions of Terms and
Abbreviations used in Text During a
compilation « « ¢ ¢ ¢ ¢ e 4 € 0 s e e

APPENDIX E: STORAGE REQUIREMENTS. .

.389

.390
.390
.390
.390
.390
.390

.390
.390
.391
.391
.392
.392
.392
.393
.393
.393
.395

.395

. 396

405

Compiler Requirements and
Dictionary/Text Block
Relationship . « . + « « . .

APPENDIX F: COMMUNICATIONS REGION

Transfer Vectors. « « ¢« ¢ « « ¢ o« =«
Communications Region . . «. « « .+ &
APPENDIX G: SYSTEM GENERATION. . . .
APPENDIX H: CODE PRODUCED FOR
PROLOGUES AND EPILOGUES
Prologues and Epilogues
DSA Optimization . « « ¢ ¢ & & ¢ + @
APPENDIX I: DIAGNOSTIC MESSAGES. . .
APPENDIX J: COMPILE-TIME PROCESSOR .
1. Internal Formats of Text.

Format of a Dictionary Entry
Format of an Identifier Value

Block (IVB) . « . . . « o .

Instruction Codes for the

Compile-time processor. . . .
2. Ccommunications Region Use

3. Compile-time Processor, Operating
System, and Compiler Control
Interfaces. « o « o« o « o 2 « o o o

INDEX: « ¢ o « o o o o o o o o ¢ o @

. 405
. 407
. 407
. 408
Luly
<416
416
J420
LU422
429

429
<429

U430
431

430

U437

. 438

FIGURES

Figure 1. Compiler Data Flow and Data Figure 8. Crganization of Read-In

Sets Used . . & ¢ ¢ & & ¢« v v« ¢« o o . 16 Phase .« . ¢« ¢ o ¢ 4 o 4« o o« o & « « . 3041
Figure 2. Logical Phases of the Figure 9. Organization of Keyword

Compiler and their Corresponding Table + & ¢ ¢« ¢« v ¢ v ¢ o ¢ o o & & o J3U2
Functions . + o« ¢ ¢« o ¢ o o o o o o« o o 17 Figure 10. Decision to Include a
Figure 3. Compiler Organization an Second Offset Slot. « « . . .359
Control F1OW. « « « o « « 2 & o o o « - 18 Figure 11. Dimension Table369
Figure 4. Input/Output Usage Table . . . 24 Figure 12. Temporary Descriptions in
Figure 5. Storage Map for the Read-In Pseudo-Code -- Use of TMPD Triple

PhaSe€ « 4 ¢« ¢ o ¢ ¢ o o o o o s o« o« « « 30 Fields F5 and F6. . . + &« « « &« « « o« 394
Figure 6. Dictionary Entries for an Figure 13. The IEMAF Control Section . .414

Internal Entry Point. . « « « « « « « .+ 33 Figure 14. Bit Identification Table . .415
Figure 7. PL/I Phase-in-Storage Map. . .340

TABLES

Table AA. Module AA Compiler Control

Resident Control Phase. « « . . . « « . 70
Table AAl. Module AA

Routine/Subroutine Directory. 71
Table AB. Module AB Compiler Control

Initialization. « . « « « « <« « ¢« « « . 73
Table ABl. Module AB

Routine/subroutine Directory. 74
Table AC. Module AC Compiler Control

Intermediate File Control 74
Table AD. Module AD Compiler Control

Interphase Dumping. . . .+« « « « « « « o 14
Table AD1. Module AD

RoutinesSubroutine Directory. 74
Table AE. Module AE Compiler Control

Clean-Up Phase. . . « « « ¢« « ¢« « « « . 175
Table AEl. Module AE

Routines/Subroutine Directory. 75
Table AF. Module AF Compiler cControl

Sysgen Options. . . e e e e e . . « 715
Table AG. Module AG Compller Control

Intermediate File Switching 75
Table AK. Module AK Compiler Control

Closing Phase . . o o . . 75
Table AL/AN. Modules AL/AN Extended
Dictionary/Dictionary Phases. 76

Table AL/AN. Modules AL/AN Extended
Dictionary/Dictionary Phases (cont'd) . 77
Table AL/AN. Modules AL/AN Extended
Dictionary/Dictionary Phases (cont'd) . 78
Table AL/AN. Modules AL/AN Extended
Dictionary/Dictionary Phases (cont'd) . 79
Table AL1/ANl. Modules AL/AN

Routines/Subroutine Directory. 80
Table AM. Module AM Compiler Control

Phase Marking 81
Table AS. Phase AS Re51dent Phase for

Compile-time Processing . . « 89
Table Asl. Phase AS Routine/subroutine

DIXectory « « « « « o « « o« « « o « « « 90
Table AV Phase AV Macro Processing

Initialization. + +« « « « + ¢« ¢« « « . . 91
Table AV1l. Phase AV Routine/Subroutine
Directory . . . e e e e . . < . 91

Table BC. Phase BC Initial Scan and
Translation 92
Table BCl. Phase BC Routlne/Subroutlne

Directory e e e« e e e« . 93
Table BG. Phase BG Flnal Scan and
Replacement . . « . « +« « ¢ v « 4+ « « . 94
Table BGl. Phase BG Routine/sukroutine
Directory . « « +« « « ¢ « & « &« « « « . 95
Table BGl. Phase BG Routine/sukroutine
Directory (cont'd). e e .+ . . 96
Table BM. Phase BM Dlagnostlc Message
Determination and Printing. . . . 97
Table BMl. Phase BM Routlne/Subroutlne
Directory . « « « o ¢« v o 4 4 4 e . . . 97
Table BW. Phase BW Cleanup Phase 97
Table BX. Phase BX 48-Character Set
PreproCcessOr. . « « « « « « o o« o « o« 2105

Takle CA. NModule CA Read-In Common
Block 1 .+ & & ¢ ¢ v ¢ o o o o o @
Table CAl. Module CA
rRoutine/Subroutine Directory.
Table CC. Module CC Read-In Comrmon
Block 2 . ¢ v v v v 4 4 i e v e e e
Table CCl. Module CC
Routines/subroutine Directory. . .
Table CE. Modules CE, CK, CN, and CR
Read-In Keyword Block «
Table CI. Phase CI1 Read-In First Pass.
Table CI1l. Phase CI Routine/Sukroutine
DirecCtory « « « o o« o o o & o o o .
Table CL. Phase CL Read-In Seccnd Pass
Table CL1. Phase CL Routine/Subroutine
Directory « .« « v w4 v ¢« 4 4 o« . .
Table CO. Fhase CO Read-In Third Pass.
Table COl. Phase CC Routine/Sukroutine
DirectOry « « « ¢ v v ¢« ¢ v v 4 .+ . .
Table CS. Phase CS Read-In Fourth Pass
Table CS1. Phase CS routine/Sukroutine
DIireCtOry .« « o v o o « o o« o o + o
Table CV. Phase CV Read-In Fifth Pass.
Table CV1l. Phase CV Routine/Subroutine
DIirectory .« « ¢ o v o« « o 2 o o o o =
Table ED. Phase ED, Initialization . .
Table ED1. Phase ED Routine/Sukroutine
Directory . . « o &« ¢« o ¢ « + ¢« o . .
Table EG. Phase EG Dictionary
Initialization.
Table EGLl. Phase EG Routlne/Subroutlne
DIrectory « « o« v o v ¢ o« o« v 4 4 . .
Table EI. Fhase EI Dictionary Declare
Pass ONE. « v v & o o o o o o o o o =
Table EI1. Phase EI Routine/Sukroutine
DirecCtoOry « « « v o o « o o o o & o @
Table EL. Phase EL Dictionary Declare
Pass TWO. « o o « o o o s « s o o =«
Table EL1l. Phase EL Routine/Subroutine
DIirectory « « « o o o o« o « o o o
Table EP. Phase EP Dictionary Entry
IITI and Call. « ¢ & v « o o o« o «
Table EP1l. Phase EP Routine/Sukroutine
DirectOry . « « ¢ ¢« o o o o o o o o .
Table EW. Phase EW Dictionary LIKE .
Table EWl. Phase EW Routine/Subroutine
Directory« « « <« « « . . .
Table EY. Phase EY Dictionary ALLOCATE
Table EY1l. Phase EY Routine/Subroutine
DIirectory « « v v ¢« v « v 4 v e 4 . .
Table FA. Phase FA Dictionary Context.
Table FR1l. Phase FA Rcutine/Sukroutine
DirectOry « « « v o« « ¢« ¢ o v « « . .
Table FE. Phase FE Dictionary BCLC to
Dicticnary Reference. . . . e .
Table FEl1. Phase FE Routlne/uquoutlne
Directory + + « v o o v ¢ 4 ¢ e o .
Table FI. Phase FI Dictionary Checking
Table IFI1. Phase FI Routine/Subroutine
Directory . ¢ v ¢ 4w ¢« ¢« 4 4 ¢ e 4 o«
Table FK. Phase FK Dictionary
Attribute o . . . 0

.106
.106
.107
.107

107
.108

.108
.109

.109
.110

.110
111

111
112

2112
.129

.129
129
.130
-131
2132
134
.135
.137

.133
.139

.139
140

140
141

L1482
2143

s
L1uh

145

146

Table FK1l. Phase FK Routine/Subroutine
DireCtOYy « o « o « o « o o o o o o
Table FO. Phase FO Dictionary ON . . .
Table FOl. Phase FO Routine/Subroutine
DireCtOry « « o « « o o o« o o o o o« =
Table FQ. Phase FQ Dictionary Picture
ProCeSSOr « o o « o o o a o« a o o o
Table FQl. Phase FQ Routine/Subroutine
Directoxry . . . o v e « e e e
Table FT. Phase FT chtlonary Scan . .
Table FT1l. Phase FT Routine/Subroutine
DirectOory . o v 4 ¢ o ¢« o« o o s o o+ »
Table FV. Phase FV Dictionary Second

File Merge. e e e e e e e e
Table FV1l. Phase FV Routlne/Subroutlne
Directory . . . e s e e e e e e e

Table FX. Phase Fx Dictionary
Attributes and Cross Reference. . . .
Table FXl1l. Phase FX Routine/Subroutine
Directory . . e e e e e . .
Table GA. Phase GA DCLCB Generatlon. .
Table GAl. Phase GA Routine/Subroutine
Directory« « ¢« « ¢ < « . . .
Table GB. Phase GB Pretranslator I/O
Modification. . . . e e e e e e e e
Table GB1l. Phase GA Routlne/subroutlne
Directory . . . e 4 e e e e e e e
Table GK. Phase GK Pretranslator
Parameter Matching 1.
Table GK1. Phase GK Routine/Subroutine
DirXeCtOXY o o o o « o o o o o o o o o
Table GO. Phase GO Preprocessor
Parameter Matching 2.
Table GOl. Phase GO Routine/Subroutine

Directory . . . e s e e 8 e e o
Table GP. Phase GP Pretranslator
Parameter Matching 2.

Table GP1l. Phase GP Routine/Subroutine
Directory « « « ¢ ¢ o o« o« « o o o .
Table GU. Phase GU Pretranslator Check

List. ¢« & o « . . e o e e+ e e =
Table GUl. Phase GU Routlne/Subroutlne
Directory . . . e e e e e e e e e .

Table HF. Phase HF Pretranslator
Structure Assignment.
Table HF1l. Phase HF Routine/Subroutine
Directory e e e e s e e e
Table HK. Pretranslator Array
Assignment. « « « « o 4 e ¢ o 4 o o
Table HK1. Phase HK Routine/Subroutine
Directory . . . e e e e e e e . .
Table HP. Phase HP Pretranslator 1Sub
Defining. « « « & 4 « ¢ o ¢« ¢ & o . .
Table HP1l. Phase HP Routine/Subroutine
DirectOry . « o« o « « ¢ o« o o o o o
Table IA. Phase IA Translator Stacker.
Table IAl. Phase IA Routine/Subroutine
DireCtOry o « v o o o o o « o o o o o
Table IG. Phase IG Translator
Pre-Generic « « o« o o o« o o o o« « o @
Table IGl. Phase IG Routine/Subroutine
DireCtOry « o « o 4 o o o o o o o o o
Table IL. Phase IL Translator
Pre-Generic . . . e e « e e e .
Table IM. Phase IM TransLator Generic.
Table IM1. Phase IM Routine/Subroutine
DireCtOry o « v « « o o o o o o o o =

.146
.147

147
.148

.149
.150

.151
.152
.153
.154

.155
.165

.165
.166
.167
.168
.168
.169
.169
.170
.171
172
173
174
.175
.176
176
177

177
.183

.183
.186
.186

.187
.187

.188

Table IM1. Phase IM Routines/Sukroutine
Directory (continuved)
Table IT. Phase IT Post—Generic
ProcessoOr « « « « o s+ « o o o o o o =
Table IT1l. Phase IT Routine/Sukroutine
Directory . . . “ e e e e e & s e
Table IX. Phase IX Pointer and Area
Checking. « « ¢ ¢ « ¢ « o « &
Table IX1l. Phase IX Routine/Subroutine
Directory e e . o e e e
Table JD. Phase JD COnstant Expre551on
Evaluator e e e s e s s @
Table JD1. Phase JD Routlne/Subroutlne
DireCtOry « « « ¢ o « & o o & o o o @
Table JI. Phase JI Aggregates
Structure Processor . .+ . e o e e
Table JIl. Routlne/Subroutlne
Directory . . . e e e e a4 s = e e
Table JK. Phase JK Aggregates
Structure Processor . « « « « s « «
Table JK1. Phase JK Routine/Subroutine
DirectOry « « v o o ¢ o « « o o o o«
Table JP. Phase JP Translator Defined
Check . .« + ¢« ¢ ¢ « & o« & &
Table JP1l. Phase JP Routine/Sukroutine
Directory . . « « . e e e e 4 e e e
Table JZ. Module JZ Compller Ccntrol
Table LA. Phase LA Pseudo-Code Scan. .
Table LAl. Phase LA Routine/Subroutine
Directory« e e
Table LB. Phase LB Pseudo Code Inltlal
Table LB1l. Phase LB Routine/Subroutine
DireCtOry o v o o o & ¢ o o o o o o
Table LD. Phase LD Pseudo-Code Initial
Table LD1. Phase LD Routine/Subroutine
DireCtOry o« « o o o o o o o o = o o =
Table LG. Phase LG Pseudo-Code DO
EXpansion . . « « o ¢ o o o o « o o e
Table LGl. Phase LG Routine/Subroutine
DIYECtOrY v v o « o o 5 o o o o o o
Table LS. Phase LS Pseudo-Code
Expression Evaluation
Table LS1. Phase LS Routine/Sukroutine
Directory . « o ¢ o o & o o o o o o« .
Table LV. Phase LV Pseudo-Code String
Utilities « « e e e e .
Table LV1l. Phase LV Routlne/Subroutlne
Directory
Table LX. Phase LX Pseudo Code Strlng
Handling. . . . e e e e
Table LX1. Phase LX Routine/Subroutine
Directory . . . e e e & e e e e @
Table MB. Phase MB Pseudo code
Pseudo-Variables. e e e e e
Table MB1l. Phase MB Routlne/Subroutlne
Directory . . « « « + o .
Table MD. Phase MD Pseudo-Code In-Line
Functions . . ¢ ¢ ¢« « ¢ 4« o 4 o o «
Table MD1. Phase MD Routine/Subroutine
DirecCtory .+ « « o o o« o o o o o « o @
Table ME. Phase ME Pseudo-Code In-Line
FUnNctionsS .« « o o « o « « o o o+ o o =
Table MEl. Phase ME Routine/Sukroutine
DirecCtOry o o o o o o o o o o o o « =
Table MEl. Phase ME Routine/Subroutine
Directory (continued) . . .
Table MG. Phase MG Pseudo-Code In-Line
Functions 1 . ¢« v ¢« v &« &« o o s « o

« s e e

.189
.189
.190
.190
.190
<191
.191
.196
.196
197
.198
.199
.199
.199
.231

.232
.233

.233
. 234

. 234
.235
236
.237
.238
.239
.239
. 240
<241
.242
. 243
244
244
. 245
. 245
.26

. 247

Table MGl. Phase MG Routine/Subroutine
Directory « o o o ¢ o o« o o o o o o« &
Table MI. Phase MI Pseudo-Code In-Line
Functions 2 « « « « « 2 e 4 e e .
Table MI1. Phase MI Routlne/Subroutlne
Directory « « o « ¢ o o o o o o o o @
Table MK. Phase MK Pseudo-Code In-Line
Functions 3 . . « « « .« « e e e
Table MK1l. Phase MK Routlne/Subroutlne
Directory . .
Table ML. Phase ML Pseudo Code Calls
and FUnctions « o« « ¢ ¢ « « « o « o «
Table ML1. Phase ML Routine/Subroutine
Directory o .
Table MM. Phase MM Pseudo- Code Calls
and Functions . . . e e e e s
Table MM1. Phase MM Routlne/Subroutlne
DireCtory « o o o « o o o o o o o » =
Table MP. Phase MP Pseudo-Code BUY
Reorder . . . e & s o e e e e =
Table MP1. Phase MP Rout1ne/Subrout1ne
Directory« o « e e
Table MS. Phase MS Pseudo Code
Subscripts. « ¢ v ¢ ¢ ¢ 0 v e e e . o
Table MS1. Phase MS Routine/Subroutine
Directory . . . e e e e e e e
Table NA. Phase NA Pseudo—Code
Branches, ON, Returns . « .« « « « « =
Table NAl. Phase NA Routine/Sukroutine
Directory . « . . e o o
Table NG. -Phase NG Pseudo-code
Operating System Services
Table NG1l. Phase NG Routine/Subroutine
Directory B .
Table NJ. Phase NJ Pseudo-Code RECORD
I/0 . . . e« o 8 o e e s o o @
Table NJ1. Phase NJ Routine/Subroutine
Directory . . . o« o . « 0.
Table NM. Phase NM Pseudo—Code
Executable I/0. « « ¢« ¢ o« « o o o o
Table NM1l. Phase NM Routine/Subroutine
DIirectory o« o« o o o o « 2 s « o o « &
Table NT. Phase NT Pseudo-Code Data
and Format. e 4 e e e o s @
Table NT1l. Phase NT Routlne/Subroutlne
Directory e e e s s e e s e
Table NU. Phase NU Pseudo Code Data
and Format ListS. « ¢ « ¢ ¢« « o o o«
Table NU1l. Phase NU Routine/Subroutine
Directory « « « « « « o . . e e .
Table OB. Phase OB Pseudo- Code
compiler FUnNCtionS. « « « « « & « & =
Table OBl. Phase. OB Routine/Subroutine
DiYXeCtOryY « o o o o o o o o o o o o &
Table OD. Phase OD Pseudo-Code
ASSignment. « « s o o s o o ¢ s o
Table ODl1l. Phase OD Routine/Subroutine
Directory . .
Table OE. Phase OE Pseudo-Code
Assignment.
Table OEl. Phase OE Routlne/Subroutlne
Directory . . . « . [
Table OG. Phase OG lerary Calllng
Sequences . . . s e e e s e e s e .
Table OGl. Phase OG Routine/Subroutine
Directory . . « e« e e 4 e & o @
Table OM, Phase OM In line Data
CONVErSiONS « « o« o « o o o o o o o &

. 247
.250
. 250
.251
.251
. 252
.252
.252
.253
.254
. 254
.255
« 255
.256
. 257
.259
.259
.260
.264
.266
266
. 267
. 267
.268
.268
.269
.270
.271
271
272
.272
.273
274

275

Table OMl. Phase OM Routine/Sukroutine
DireCtOry « o o « o« o o o « « o o« o«
Table OP. Phase OP Further In-line
CONVErSionsS o v « o « o s o o o o o
Table OPl. Phase OP Routine/Sukroutine
DireCtoOry .« o o o o « o o o s o o o =
Table 0S. Phase 0S Constant
Conversions « e e .
Table 0S1l. Phase 0S Routlne/Subroutlne
DireCtOry o « o « o o o o o o o o o =
Table PA. Phase PA DSAs in STATIC
StOrage « o ¢ o 4 o+ 4 s a4 e e e
Table PAl. Phase PA Routine/Subroutine
DIirectory « . o o o o o o o o o o, @
Table PD. Phase PD Storage Allocation
Statdic 1. o 4 ¢ ¢ 4 i e+ 4 4 e e
Table PDl. Phase PD Routine/Sukroutine
Directory . . . e e e e e e e e .
Table PH. Phase PH Storage Allocatlon
Static 2. e e e e
Table PH1. Phase PH Routine/Subroutine
Directory . .« .« « « « & « .
Table PL. Phase PL Storage Allocatlon
Symbol Table and DEDS « .+ « « « « o« =
Table PL1. Phase PL Routine/Sukroutine
Directory
Table PP. Phase PP Storage Allocatlon
Sort of AUTOMATIC Chain . . . « + « .
Table PP1l. Phase PP Routine/Sukroutine
DirectOory . « v o ¢ ¢« o o 4 o « o o =
Table PT. Phase PT Storage Allocation
AUTOMATIC Storage « « « « « o o o o« o
Table PTl. Phase PT Routine/Subroutine
DirecCtory . . o ¢« o o o o s o o o o =
Table QF. Phase QF Storage Allocation
Prologues e e s e e e e
Table QFl. Phase QF Routlne/subroutlne
Directory
Table QJ. Phase QJ Storage Allocatlon
Dynamic StOrage .« « « « « o o« o o o
Table QJ1. Phase QJ Routine/Sukroutine
Directory « o o v o v o o o o o o o
Table QgX. Phase QX Print Aggregate
Length Takle. « . « ¢« « v o &« o &« o« &
Table QX1. Phase QX Routine/Subroutine
DireCtOry « « o « o o o o o o s a o
Table RA. Phase RA Register Allocation
Addressibility Analysis
Table RAl. Phase RA Routine/Subroutine
DIrectory « « « « o o o o o « o « o =
Table RF. Phase RF Register Allocation
Physical RegistersS. « « « « « « « o« &
Table RF1l. Phase RF Routine/Subroutine
Directory . . .« . . PN
Table TF. Phase TF Flnal Assembly Pass
1 . . « v s s e s s e w s e e
Table TF1. Phase TF Routine/Sukroutine
DireCtOrYy « o« o « o o o o o o o« o o «
Table TJ. Phase TJ Final Assemkly
Optimization. . . « . . « . « & . . .
Table TJ1l. Phase TJ Routine/Sukroutine
Directory . . . « o e
Table TO. Phase TO Flnal Assembly
External Symbol Dictionary.
Table TOl. Phase TO Routine/Subroutine
Dir€CtOry « ¢ o o o o o o o o o o o &
Table TT. Phase TT Final Assembly Pass

2 e v e e e e e e e e s e e e e e e e

.275
.276
.276
. 277
277
.290
.290
.291
.291
292
.293
.294
294
. 295
.296
.297
.298
.299
.300
.301
.302
.303
.303
.307
.308
«309
.309
.321
.321
.322
.322
.323
.323

324

Table TT1l. Phase TT Routine/Sukroutine
DireCtOXy o o o o ¢ ¢ o o« o 4 4« o o .
Table UA. Phase UA Final Assembly
Initial Values, Pass 1. « « « « o« o &
Table UAl. Phase UA Routine/Subroutine
Directory . . . e e e e .
Table UD. Phase UD Final Assembly
Initial values, Pass 2. « « . « e .
Table UD1. Phase UD Routhe/Subroutlne
Directory . « o & ¢ o o o o . e o e
Table UE. Phase UE Final Assembly
Initial Values, Pass 2. « « o« o« o« o =
Table UEl. Phase UE Routine/Subroutine
Directory e
Table UF. Phase UF Flnal Assembly
Object Listing. « « « « ¢ ¢ o o o o &

.325
.326
.327
.328
.328
.329
.330

.331

Table UFl. Phase UF Routine/Sukroutine
DireCtOry « « o « o o o o« o o « o o =

Table XA. Phase XA Error Message
EQitor. o o o 4 4 4 4 e o o o o « a
Table XAl. Phase XA Routine/Subroutine
Airectory « « o ¢ ¢ v ¢ 4 e o e . e

Table 1. Communications Region
Table 1. Communications Region
(cont'd).
Table 2. Communications Region
Table 2. Communications Region
(cont'd) e v ¢ v v o v @ 4 4 4 e e 4.
Table 3. Communications Region. Bit
Usage in ZFLAGS + « « « o o o o o o o

. e o o e e e o

.332

. 334

. 334

<409

<410
411

412

<413

CHARTS

Chart 00.

Overall Compiler Flowchart

Chart AA. Resident Control Phase Logic
Diagram (Modules AA through AM, and
/7 S

Chart 01. Compile-time Processor
Logical Phase Flowchart

Chart AS. Phase AS Overall Logic
Diagram . « . . e s s e e e e e o .

Chart AV. Phase AV Overall Logic
Diagram e e e e e e e . .

Chart RBC. Phase BC Overall Logic
Diagram « « o ¢ 4 o o o @ @ 4 o o« . =

Chart BG. Phase BG Overall Logic
Diagram . . . e e e e e e e e e

Chart BM. Phase BM Overall Logic
Diagram . .+ . . e e e e e e e e e

Chart BW. Phase BW Overall Logic
Diagram « « o o o« o o o o « o o« o o

Chart 02. Read-In Logical Phase
Flowchart « « « « « &« ¢« &« « o & .

Chart BX. Phase BX Overall Logic
Diagram « « o o o o o « « o & o « o

Chart CI. Phase CI Overall Logic
Diagram « e e e e e e e e

Chart CL. Phase CL Overall Logic
Diagram . . . =« e e o 2 4 e s = e

Chart CO. Phase CO Overall Logic
DIiagram « v o o « o « o o o o s e o

Chart CS. Phase CS Overall Logic
Diagram « « o o o o« « 2 o « o o o o

Chart CV. Phase CV Overall Logic

Diagram « « o« « o o o o o o« o o

Chart 03. Dictionary Logical Phase
Flowchart . . « « « ¢« ¢ ¢ « « « .
Chart EG. Phase EG Overall Logic
Diagram « « « o & o o o o « o o
Chart EI. Phase EI Overall Logic
Diagram . « o « 2 o « o o s o « «
Chart EL. Phase EL Overall Logic
Diagram c e e e e e e .
Chart EP. Phase EP Overall Logic
Diagram « . . . « s e e & e o o
Chart EW. Phase Ew Overall Logic
Diagram « « o o o o « o o o « o o
Chart EY. Phase EY Overall Logic
Diagram . . . e e e e e+ . e
Chart FA. Phase FA Overall Logic
Diagram « « + o & o o &+ o + « o o
Chart FE. Phase FE Overall Logic
Diagram o« « o o o « o o o « o o
Chart FI. Phase FI Overall Logic
Diagram . . « e e e e e e e
Chart FK. Phase FK Overall Logic
Diagram « « « o « « + « « o o =
Chart FO. Phase FO Overall Logic
Diagram « « « « o o o o « o o &
Chart FQ. Phase FQ Overall Logic
Diagram « « o« ¢ o o o o o o o o «
Chart FT. Phase FT Overall Logic
Diagram e e e e e . s .
Chart FV. Phase FV Overall Logic

Diagram « « o o o o « o s o o o

69

8u

86

.100
.101
.102
.103
.104
.113
114
.115
.116
.117
.118
.119
.120
.121
.122
.123
124
.125
.126

.127

Chart FX. Phase FX Overall Logic
Diagram e e e e e e e e e e .
Chart 0OU4. Pretranslator Logical Phase
Flowchart+ + + + « « .

Chart GA. Phase GA Overall Logic
Diagram « . « o v o« o o o o « « o
Chart GB. Phase GB Overall Logic
Diagram « « « o + o ¢ o « o o o s
Chart GK. Phase GK Overall Logic
Diagram « o « & « o o o o o o o o
Chart GP. Phase GP Overall Logic
Diagram « « « & « o & o« « o « « o «
Chart GU. Phase GU Overall Lcgic
Diagram e s e e e 4 e e
Chart HF. Phase HF Overall Logic
Diagram . . e e e e e e e e
Chart HK. Phase HK Overall Logic
Diagram ¢ & &« « ¢« ¢ ¢« o . .
Chart HP. Phase HP Overall Logic
Diagram « « 4 « o o « o« o o o o o«
Chart 05. Translator Logical Phase
Flowchart . « « « o« o o o o« « o «
Chart IA. Phase IA Overall Logic
Diagram . « « o ¢ o o ¢ 4 o o & o @
Chart IG. Phase IG Overall Logic
Diagram . .+ « & ¢ ¢ ¢« « 4 o« « « o
Chart IM. Phase IM Overall Logic
Diagram . « « o o o« « o o o o o o &
Chart IT. Phase IT. Overall Logic

Diagram . « « « o o o« o « o o« &
Chart IX. Phase IX Overall Logic
Diagram « « « « o« « o o o o o o
Chart JD. Phase JD Overall Logic
Diagram . . « o « o « o & o o o .
Chart 06. Aggregates Logical Phase
Flowchart . . « « « ¢ « ¢« « « « .
Chart JI. Phase JI Overall Logic
Diagram .« « + ¢ « o « o o o o o
Chart JK. Phase JK Overall Logic
Diagram « « « « « o o « o o « o« &
Chart JP. Phase JP Overall Logic
Diagram « o « o « o o« « « o o o o
Chart 07. Pseudo-Code Logical Phase
Flowchart « . « ¢« + « « « ¢« « o .
Chart LA. Phase LA Overall Logic
Diagram « « « o o o o o « o o o =
Chart LB. Phase LB Overall Logic
Diagram « « « « o o o o o o o o
Chart LD. Phase LD Overall Logic
Diagram « « « o « o o o o o o o
Chart LG. Phase LG Overall Logic
Diagram . « « « o « & « « o o o
Chart LS. Phase LS Overall Logic
Diagram « o « o o o o o o o o .
Chart LV. Phase LV Overall Logic
Diagram . . .« & & & « « o & o+ =
Chart LX. Phase LX Overall Logic
Diagram . « « & & o « « & & «
Chart MB. Phase MB Overall Logic
Diagram « .« « « ¢« o « + o o o o
Chart MD. Phase MD Overall Logic
Diagram . « « « « o o « o« & o «

.128
.156
.157
.158
.159
.160
.16l
162
.163
.lou
.178
179
.180
.181
.182
.184
.185
.192
.193
.194
.195
.200
.201
.202
.203
.204
-205
.206
.207
.208

.209

Chart ME. Phase ME Overall Logic
Diagram . . « . « e e e s o e
Chart MG. Phase MG Overall Logic
Diagram o « ¢ o & o « o o o o
Chart MI. Phase MI Overall Logic
Diagram e e 4 e e e e
Chart MK. Phase MK Overall Logic
Diagram « e s e e e
Chart ML. Phase ML Overall Logic
Diagram « « « o & o « o o o o
Chart MM. Phase MM Overall Logic
Diagram « e e s e e .
Chart MP. Phase MP Overall Logic
Diagram « « o o« & « « o o & o
Chart MS. Phase MS Overall Logic
Diagram e e o o o e o
Chart NA. Phase NA Overall Logic
Diagram . . . e e e e e
Chart NG. Phase NG Overall Logic
Diagram . . P T TR
Chart NJ. Phase NJ Overall Logic
Diagram e e e e e e
Chart NM. Phase NM Overall Logic
Diagram e e o o e o =
Chart NT. Phase NT Overall Logic
Diagram e e e . e
Chart NU. Phase NU Overall Logic
Diagram e v e e e e s
Chart OB. Phase OB Overall Logic

Diagram

Chart OD. Module OD overall Loglc

Diagram . . .

Chart OE. Phase OE Overall Logic
Diagram P
Chart OG. Phase OG Overall Logic
Diagram « e e e e e
Chart OM. Phase OM Overall Logic
Diagram © e e e e e s
Chart OP. Phase OP Overall Logic
Diagram e o s o e e e
Chart OS. Phase OS Overall Logic

Diagram « « o o o « o s o « « o « @
Chart 08. Storage Allocation Logical
Phase Flowchart « « « « .« .

-

.

-

-

.210
.211
.212
.213
. 214
.215
. 216
.217
.218
.219
.220
.221
.222
.223
.224
.225
. 226
227
.228
.229
.230

279

Chart PA.

Chart PD.
Diagram
Chart PH.
Diagram
Chart PL.
Diagram
Chart PP.
Diagram
Chart PT.
Diagram
Chart (F.
Diagram
Chart QJ.
Diagram
Chart QU.
Diagram
Chart (X.
Diagram
Chart 09.

Phase PA Overall Logic
Diagram IEMPA. STATIC DSA'S

Phase PD

Phase PH

.

Phase PL
.Pﬁaee.PP
“Phase PT
.Pﬁaee.QP
"Phase QJ
.Pﬂaee'Qb
"Phase QX

Register

Phase Flowchart .

Chart RA.
Diagram
Chart RF.
Diagram
Chart 10.

Phase RA

Phase RF

Final Assembly Logical

Flowchart

Chart TF.
Diagram
Chart TJ.
Diagram
Chart TO.
Diagram
Chart TT.
Diagram
Chart UA.
Diagram
Chart UD.
Diagram

Phase TF
‘Phase TJ
“Phase TO
.Pﬁaée.Ti
.Pﬁaee-UA

Phase UD

« = e

Overall Logic

overall Logic
6vé;é1i ﬁoéié o

overall Logic
Overall Logic
6vereli'£oéie S
Overall Logic
Overall Logic
Overall Logic

Allocation Logical

Overall Logic
Overall Logic

overall Logic
overall Logic
overall Logic
overall Logic
overall Logic

Overall Logic

Chart UE. Cverall Loglc Dlagram. .« .
Chart UF. Phase UF Overall Logic

Diagram

Chart XA. Phase XA Overall Loglc

Diagram

.280
.281
.282
.283
.284
. 285
.286
.287
.288

.289

PURPOSE_OF THE COMPILER

The Operating System/360 FL/I (F) Com-
piler analyzes and processes source pro-
grams written in PL/I, and translates them
into object programs in lcad module form
suitable for input to the Linkage Editor.
When errors are detected in the source
program, appropriate diagnostic messages
are produced. The compiler functions with-
in Operating System/360 and may be used on

machines where at least 45,056 (44K) Dbytes
of core storage are available for the
compilation (exclusive of storage require-

ments for the Operating System).

THE COMPILER AND_ OPERATING_ SYSTEM/360

The PL/I (F) Compiler is a processing
program of Operating System/360. The com-
piler consists of a number of phases under
the supervision of compiler control rou-
tines. The compiler communicates with the
control program of the Operating System,
for input/output and other services,
through the control routines.

A compilation is introduced as a job
step under the control of the Operating
System, via the JOB statement, the execute

(EXEC) statement, and the data definition
(DD) statements of +the Job Control Lan-
guage, for the input/output data sets.

Cataloged procedures are provided to keep
these statements to a minimum. A discus-
sion of the introduction of a compilation
as a job step, and of the available catal-
oged procedures, is given in the publica-
tion IBM System/360 Operating System, PL/I
(F) Programmer's Guide, Form C28=-6594.

The source program to be compiled
appears as input to the compiler on the
SYSIN data set. The compiler uses SYSUT1
(required if the main storage is insuffi-
cient to contain the program) and SYSUT3
(required if the W48-character set or the
compile-time processor is used) as work
data sets. The SYSPRINT data set is manda-
tory. The SYSPUNCH and SYSLIN data sets
are used, depending on the options speci-
fied by the source programmer, to contain
the output from the compiler.

The overall data flow associated with a
compilation, and the data sets used in the
compilation, are illustrated in Figure 1.

SECTION 1: INTRODUCTION

A compilation is initiated by 1loading
the compiler control routines from the Link
Library. The compiler control routines
then carry out their own initialization,
including 1loading those compiler control
routines which remain in storage throughout
the compilation. These routines perform
the following functions:

as the interface between the com-
piler prhase and the Operating System,
centrolling all input/output, storage
allocation, program interruptiocns,
storage dumping, etc.

1. Act

2. Supervise the 1loading of compiler
phases in accordance with source pro-
gram options and inforration obtained
from the source program by the compil-
er phases.

3. Supervise all workspace used by the
compiler for information concerning
the source program. This includes any
spilling from main storage to backing
storage in order to accormodate large
source programs, the conversion of

symbolic references to absolute
addresses, and the conversion from
aksolute addresses to symbolic ref-
erences.

4, Provide a number of routines to assist
in compiler debugging.

The compiler options specified are
interpreted and the appropriate action
taken. The environmental options, such as
storage size and device type, are used to
calculate the text and dicticnary block
size and the "spill" point (i.e. the point
at which the main storage available is
insufficient to contain the dictionary and
text).

To determine the block size a table
contained in Phase AB is used. The storage
size is used as the argument tc search the
table. When the correct entry is found,
the text Lklock size and the dictionary
block size values are extracted and used
for the compilation.

The options are instructions to the
compiler. Some of these require a phase to
be 1loaded that would not otherwise be
loaded. When an option of this type is
found, a request for the phase required is
inserted into the status byte in the phase
directory. Other options are in the form
of instructions to a phase that 1is always
loaded. These instructions are also placed

Section 1 (Introduction): The Compiler and Operating System/360 15

(== 1
| Source |
I I
| program |
I I
| (SYSIN) |
I |
L qe————- J
I
|
I
v
[r———=————————— -
| Compiler
I
| (SYSUT1 and SYSUT3
|are used as work data sets
| when required)
b Jemmmmm e
|
I
|
v
Fm—————== T———————= To——————= Tm——=——- T——————=-- T=-=
SOURCE | XREF | LIST
option] opticn | option
			I	
I I I I				
v I v	v			
fo=—————-——-—= DT ST T ettt -				
Source			List of	
			identifiers,	
program				I
I I 1	list of			by the P
listing			statement	
			numbers (1
e T S NI T				
SYSPRINT	SYSPRINT	SYSPRINT		
I I				
EXTREF ATR for all				
option option compilati				
I				
I				
l I				
\Y v \%				
[~—————————-=—= 1 [m==——=——————- 1 Fm-T————---				
External		List of		List of
		identifiers,		compiler
Symbol		list of		options u
		attributes	{ and	
Dictionary		assumed by		Diagnosti
		identifiers		Messages
b e 1 I, J b
SYSPRINT SYSPRINT SYSPRINT

®Figure 1.

16

Compiler Data Flow and Data Sets Used

1
I
I
I
|
I
J
----- bttt Skttt |
DECK/MACDCK | LOAD
options | orption
| | I
| | |
[| I
I | I
\Y | \Y
-------- === | fmommmmmmme——
ESD, TXT,RLD || | EsD, TIXT,
END and NAME|| | RLD, END,
cards. PL/I || | and NAME
Source text |] | (if OBJNM
if MACDCK || | specified),
specified. || |
____________ B
SYSPUNCH | SYSLIN
I
SOURCE2
ons option
I
|
|
\%
=y femmmmmmmmee e

|Listing of

sed

C

| processor

SYSPRINT

1
I |
| |
| |input to the |
| |compile-time |
I I
| |

J

in coded form in the commrunications region
of the dictionary, generally in the Control
Code word (see CCCODE in Appendix B).

COMPILER_ORGANIZATION

The PL/I
of logical phases, each of
of several physical phases.

(F) Compiler comprises a number
which consists

The compiler phases and their corres-
ponding functions are indicated in Figure
2, and the organization of the compiler is
shown in Figure 3.

Control is passed between the phases of
the compiler via the control routines.
After each phase has been executed, it
branches to the control phase, which sel-
ects from its load list the next phase to
be executed.

Communication between the
implemented by the following:

phases is

1. The text string. The text string at
the start of the compilation is input
text. This 1is converted by th
compile-time processor, if necessary,
into a string which is PL/I source
text. The characters in this string
are translated into a code internal to
the compiler. The phases of the com-
piler gradually process the text until
the final form is the object program,
consisting of a string of machine
instructions. For the compiler pro-

per, the text code bytes used, and
formats o©f statements at different
stages of the compilation, will ke

found in Appendix D.

The text is broken down intoc a number
of blocks, depending upon the size of
the machine. Each block has a symbol-

ic name which is independent of the
physical location o©f the block in
storage. Thus, the text blocks may be

moved around in core storage under the
supervision of the compiler control
routines, and spilled on to Dbacking
storage if insufficient main storage
is available.

2. The Gictionary. The dictionary con-
sists of a number of klocks, each with
a symbolic name. Part of the first
dictionary block is used as a communi-
cations region (see Appendix F)
between phases, and for this reason
the first block is never spilled, even
when the source program to be compiled
exceeds available storage. The com-
munications region contains such

Section 1 (Introduction):

information as the addresses of the
heads of chains, the symkclic start of
text, etc. The remainder of the dic-
tionary contains all information
relating to identifiers appearing in
the program, temrporary storage areas
required, etc. Fcr the compiler ¢ro-
per, the format of all dictionary
entries will be found in Appendix C.

[r————=——————= B S et 1
|Logical Phase]| Main Functicns |

Compile-time	Executes compile-time
Processor	statements and produces
	input for further compiler
	processing.

4
Read-In	Check source precgram syn-—
	tax; remove superfluous
	characters.
T fmmmmm oo oo 1	
Dictionary {Remove BCD identifiers	
[|attribute declarations;

| |replace Ly symbolic ref-}
	erences to dictionaryl
	entries.
Pretranslator	Rearrange I/O0 statements;
	create temporary variables]
	for procedure argurent
	expressions; convert arrayl
	and structure assignments]
	to DO loops; remove 1iSUB
	expressions.
Convert PL/I syntactical	
	form to internal triple}
	form.

+
|Map all structures and |
|arrays to align elements on|
| |correct storage koundaries. |

|Convert triples to pseudo-|
| |code. |

| Storage |Allocate storage for items |
|allocation jin AUTOMATIC blocks or|
| | STATIC storage area. |

|Register |Allocate physical registers|
|allocation |in place cf syrbolic reg-}|
| jisters requested by earlier|
| |phases. |

|Final |Complete translation to ma-—|
| assemkly |chine code; produce loader|
| |text; produce object code]
| |1listing. |

|Prints out any necessary {
|diagnostic messages. |

Figure 2. Logical Phases of the Compiler
and their Correspcnding Func-
tions

Compiler Organization 17

r —— - 3
| |
| frm————————— |
	08/360	
	CONTROL	PL/I_(F)
	PROGRAM	COMPILER
lemeg et		
I A		
{		
v		
f—————=- Loy		
[COMPILER	
i	CONTROL	-—=—=—=m 1
{ ROUTINES	I	
e Bt 4		
	A	
[
v		
----------- { fmmm——mmdemey		
SYSTEM		
e Rt >		
RESIDENCE		
D 4		{
	PROCESSING	
po———— 1	===	
[PHASES	I
] I		
fr—————————— 1		R it J
SOURCE		
		I
b J	v vV v	
A] v v v		
	[r—————————— 1 fomm—m—————— 1	
Lo $-->	TEXT i	DICTIONARY
i		
[m——————— +-->	BLOCKS	
l		d Jd
v	A A	
[—————— 1		
OBJECT	b L fom—————e J	
I [
I ——— J		
v v		
---------	I	
SPILL		SPILL [
STORAGE		STORAGE
Jd U 4

______ > CPU Control
------ >> Read/Write Communication

e > Input/Output under 0S/360 Control Program
and Compiler Control Supervision

Figure 3. Compiler Organization and Control Flow

18

LOGICAL PHASES

The logical phases of the compiler and
their main functions are summarized in the
following paragraphs.

Compile-time Processor Phase

Processor Phase reads
input text, executes any compile-time
statements contained in it, and modifies
text as directed, producing modified text
for further compiler processing.

The Compile-time

Read-In Phase

The Read-In Phase is
source program syntax

removal, from +the text string, of all
superfluous characters, such as comments

and non-significant blanks.

responsible for
checking, and the

Dictionary Phase

The Dictionary Phase removes all BCD
identifiers and attrikute declarations from
the source string, and replaces them by
symbolic references to dictionary entries.
The dictionary entries contain all the
consistent declared attributes, and all the
attributes specified in +the 1language in
default of source program specifications.
Error messages are generated for all incon-
sistent attributes.

Pretranslator Phase

The Pretranslator Phase processes those
features of the language that are more
easily processed in their original PL/I

form, than when the original syntactic form
has been 1lost in later phases. The Pre-
translator carries out these modifications
which include the rearranging of the order
of certain I/O statements, the creation of
temporary variables for procedure arguments
which are expressions, the conversion of
array and structure assignments to a series
of 'DO' loops surrounding scalar assign-
ments, and the removal of iSUB expressions.

Section 1

Translator Phase

The Translator Phase converts the origi-
nal PL/I syntactic form to an internal
syntactic form, referred to as "triples."

Trigples consist of the original source
program ogperators and orerands, but rearr-
anged so that the operations specified in
the source string may be carried out in
their proper order.

Aggregates Phase

The Aggregates Phase carries out all
structure and array mapping, so that ele-
ments are aligned on the correct storage
boundaries. wWwhen it is not possible to
carry out the mapping at compilation tire,
such as when the aggregates contain string
lengths or array bounds which are specified
by expressions, object code is produced to
do it at object time. This phase also
checks that items DEFINED on arrays and
structures can be mapped consistently.

Pseudo-Code Phase

The Pseudo-Code Phase converts the tri-
ples to a form closely resembling machine
instructions, in which registers are rep-
resented symbolically, and storage 1loca-
tions are represented by dictionary ref-
erences with offsets. The final pseudo-
code version of the text also contains a
nunmber of special pseudo-code items for the
guidance of later phases.

Storage Allocation Phase

The Storage Allocation Phase searches
the dictionary for all entries requiring
storage, and allocates offsets +to each
item, either within its AUTOMATIC block, or
within the STATIC storage area. Code is
compiled to set up dope vectors and
pointers at object time, for allocations of
controlled variakles and temporaries, the
storage for which must be obtained during
the execution of the object program. Pro-
logue <code 1is generated for each block of
the object program.

(Introduction): Compiler Organization 19

Register Allocation Phase

The Register Allocation Phase allocates
physical registers to the symbolic reg-
isters which have been requested by earlier
phases, and also ensures that all the
storage 1location offsets allocated in pre-
vious phases can be addressed by the inser-
tion of additional instructions, where nec-
essary.

Final Assenmbly Phase

The Final Assembly Phase completes the
translation to machine code instructions,
by calculating branch destination addresses
inserted symbolically by earlier phases.
Loader text 1is then produced for the
machine instructions, constants, INITIAL
values in STATIC storage, and all the

20

constant data required for klock initiali-
zation. ESD and RLD cards are produced to
enable the okject program to be edited by

the Operating System/360 Linkage Editor.
The Final Assembly Phase also produces a
listing of the object code produced.

Error Editor Phase

The Error Editor Phase is entered at the
end of every compilation. The dictionary
is examined to determine whether there are
any diagnostic messages to be printed out.
If there are none, the corpilation is
terminated by the compiler control. If
there are diagnostic messages to be printed
out, the error dictionary entries are proc-
essed and the messages are printed. The
texts of all the diagnostic nessages are
|held in modules XG through YY.

SECTICN_2: COMPILER PHASES

| Note: For descriptions of terms and akbreviations used in the text during a compilation
| which are mentioned in this section of the Program Logic Manual, refer to Arpendix D, 11.

COMPILER_CONTROL AND_48-CHARACTER_SET
PREPROCESSOR

COMPILER CONTROL

When the PL/I (F) Compiler is invoked by

the calling program (e.g., the Job
Scheduler) of the Operating \System, the
Compiler Control module IEMAA is loaded and
entered. IEMAA is resident during the
whole compilation; it controls the follow-
ing functions:

Initialization

Character translation

Text and dictionary block control

Scratch storage control

Phase loading

Diagnostic message control

Input/output control

Program check handling

Job termination

Initialization

Initialization is achieved by module AA
linking to module AB. Module AB performs
the detailed initialization of the compil-
er, and provides the following functions:

Opens SYSIN and SYSPRINT data sets

Constructs a phase directory (for details
refer to Appendix B)

Sets up a communications region in the
dictionary (for details refer to Appendix
F)

Scans option list

Obtains space for text blocks and dic-

tionary blocks.
Opens SYSUT3 and SYSPUNCH as necessary

Prints a list of options used in current

compilation

to handle a normal dic-
extended

Loads phase AN
tionary, or phase AL 1if an
dictionary is requested.

On return from module AB, the first compil-
er phase is loaded and entered.

Character Translation Takles

The character translation tables (see

Appendix D.1) provide the facility for
converting external <code to a compiler
internal code, and for «converting the
internal code kack to the external form.

These takles thus prevent the compiler from
becoming character code dependent, and ena-
ble the scanning routines to process the
input source statements more efficiently.

Note that the contents of these tables are
different during compile-time processing
from the contents during compilation pro-
per.

Communications Region

The communications region is an area
specified ky the control routines, and used
to communicate necessary information
between the various phases of the compiler.
The communications region is resident in
the first dictionary block throughout the
compilation.

Entry to the wvarious comrpiler control
routines is via a transfer vector. Details
of the transfer vector and the organization
of the communications region appear in
Appendix F. (Note: The use of the communi-
cations region during compile-time process-
ing is described in Appendix J.)

Text and Dictionary Block Control

Block control is achieved by a syster of
text and dictionary references. If the
program 1in sStorage Lkecomes too large,
blocks are placed on an external file,
SYSUT1. The block control routines contain
the input/output control.

Section 2 (Compiler Phases): Control, U8-Character Preprocessor 21

Scratch Storage Control

Scratch storage of 4K kytes is guaran-
teed to all phases. The control routines
split the 4K-block into discrete sections,
and allocates them as required. The sec-
tions are in multiples of 512 bytes.

Storage Requirements

The (F) Compiler requires main

for the following purposes :

storage

Compiler processing phases
Print buffers

compiler control routines
Dictionary area

Text area

Input/Output buffers
Input/Output routines (QSAM)

The main storage required ky each phase
of the compiler need be contiguous only for
each control section.

During the read-in phases a minimum of
two dictionary blocks and two text blocks
are available in storage simultaneously.

During the rest of the compilation four

dictionary blocks and four text blocks are
available in storage simultaneously.

The dictionary and text klock size is
chosen accorxding to the amount of main
storage available to the compiler. The
SIZE option, interpreted at invocation
time, provides the value used to determine

the block size. A takle ccntained in Phase
AB is searched, using the SIZE option as an
argument. When the correct entry is found,
the block size is extracted.

details of

Appendix E shows

allocation.

storage

Phase Loading

Phase loading routines include phase
marking (where phases are indicated as
wanted or not wanted), phase loading, and
phase deleting facilities. The phase

directory is constructed for this purpose.

22

Phase Directory

Because of the number of phases in the
compiler, the phase directory is split into
halves. The first half is constructed
during the initialization of the compiler;
also a list of names of the phases in the
second half is kept in Phase AA. This 1list
is wused to pass status indications (i.e.,
whether phases are wanted or not wanted)
from the first half to the second half.
Phase JZ uses the list to construct a new
directory for the second half. (The error
message phases have their own rhase direc-
tory, which is kuilt in phase XB and uses
the same space in AA as the rhase directory
proper.)

The rhase directories are ccnstructed by
use of the BLDL macro and a build 1list.
The format of +the build 1list is fully
descriked in the publication IEM System/360
Operating System, Control Program Services,

Form C28-6541, For details «c¢f +the phase
directory see Aprpendix BR.
Diagnostic Message Contrcl

Diagnostic message control routines

cause diagnostic messages to ke placed in a
chain in the dictionary.

Input/Qutput Control

The I/0 control routines involved act as
an interface between the corpiler phases,
and SYSIN, SYSPRINT, SYSLIN, and SYSPUNCH
data sets. (See Figure 4.)

Program Check Handling

The compiler handles all prcgram checks.
Control can be passed to a rhase to enable
it to deal with the check.

Job Termination

The compiler completion code is picked
up and control is returned to the calling
program.

The compiler completion codes are as
follows:

Code Meaning

0 No diagnostic messages issued; com-
pilation completed with no errors

4 Warning messages issued; program
compiled

8 Error messages issued; program com-
piled but with errors; execution
may fail

12

16

Severe error messages issued; com-
pilation may be completed but with
errors, successful execution impro-
barkle. If a severe error occurs
during compile-time processing, a
listing of the PL/I text on SYSUT3
will be printed if the SOURCE
option is specified. The compila-
tion will be terminated.

Terminal error messages issued;
compilation terminated abnormally

Section 2 (Compiler Phases): Control, 48-Character Preprocessor 23

e e e —————— i~ —

WRITE
OPEN
AC1L
AE1 OPEN OPEN
AG
BX READ

As2 READ READ
FY
UA
UD
UF
XB
AE
AK#“
CLOSE

AKS

T
I
+
I
|
|
|
|
|
!
[
|
I
I
|
|
|

READ |
|
|
|
|
I
|
|
|
|
|
|
|
|
I
|
:
| CLOSE
I
|

T
I

+

I |
| |
| !
| |
! |
I I
| |
I I
| !
| |
I |
| I
| |
| |
| CI |
| |
| I
| I
| |
| |
| I
| |
| I
I |
I |
I |
[|
I I
I I
I |
| |
| |
| |
I I
I |
1

_________ b bbby B Bt
SYSPRINT | SYSPUNCH | SYSUT1 | SYSUT3 |
--------- - e
I | | |

| I | I

| | CPEN3 | |

| | | I
OPEN/WRITE | OPENS | OPEN3 | OPEN |
| I I [

| | | WRITE/READ |

I [[I

| OPEN | | [

| | I I

I | | CLOSE/OPEN|

I | | I

| [I I

| | | I

WRITE | | READ/WRITE | WRITE/READ |
I | I I

WRITE | | | WRITE |
I I | I

WRITE | | | |
| | I !

WRITE | [| [
| | | |

| WRITE | | |

| I I |

WRITE | | | |
I | | |

WRITE | | [I
| | I I

I | | CLOSE |

| | | I

| | CLOSE | i

I | | I

CLOSE | CLOSE | CLOSE | |
I I I I

| | | |
_________ L___________1-_________L_______--_4

|taA, AC, and AE are modules of the control phase, and contain actual I/0 routines which]|

| interface with the 0/S access methods

(BSAM, QSAM) .

I/0 activity shown for other

| modules indicates that these modules are utilizing the I/0 routines.
|2AS may read from included data sets in addition to those shown in the takle.

|2If the SIZE option results in 1K text and dictionary blocks,
In the case of other SIZE options,

Module AB.

compiled.

SYSUT1 is opened by
SYSUT1 is opened by Module RA when the

| “AK closes only the spill file SYSUT1 when the batch option is used and a further

| source program is to be compiled.

| 3AK closes all other files upon termination of a single or batch compiler run.
| 8SYSPUNCH is opened if MACDCK option specified.

Figure 4. Input/Output Usage Table

COMPILER CONTROL MODULES

In addition to modules AA and AB, furth-
er modules, AC, AD, AE, AF, AG, AH, AI, AK,
AL, AM, AN, and JZ are used in compiler
control. The functions of these modules
are Dbriefly described in the following
paragraphs.

24

|
|
|
| |
| available main storage is full. The timing depends on the size of program to be |
| I
|
I
|
I

Module AC
Module AC controls reading and writing
operations on SYSUT3, the intermediate

file. It
MACRO option is specified, and is
at the end of the Read-In Phase.

is loaded only if the CHAR4S8 oxr
deleted

Module AD

Module AD performs inter-phase dumping.

All specified active storage 1is dumped
at the end of the phases stated or implied
in the DUMP option. If the DUMP option
includes either I, for the Annotated Dic-
tionary Dump, or E, for the Annotated Text
Dump, or both, then phase AD will load
either phase AH, or phases AI and AJ, or
all three, to produce the required output.

The DUMP Optiom

The DUMP option which is specified in
the PARM field of the EXEC card indicates
where dumping of main storage 1is to take
place. It may be specified in one of the
following ways:

1. DUMP, means a dynamic dump is required
(the dump routine will be called by a
running phase)

2. DUNMP=(AREA,X41,X2,X3ys««s++Xn) means a
dump of the storage after the named
phase.

AREA is any combination of TDPSCIE:

T text blocks
D dictionary blocks
P phases loaded
S scratch storage
C control phase
I annotated dictionary blocks
E annotated text blocks
The general syntax is:

DUMP [=([AREA], {x|(y,2)},...)]

A single phase name indicates dumping of
storage after this single phase. A pair of
phase names indicates a continuous group of

phases after which dumping of storage is to
occur.
The dunmp will appear on SYSPRINT,

inserted into the normal compiler output.

If AREA is omitted the default taken is
DTSP. If a program check occurs and DUMP
has been specified then AREA will be given
the default DTSPC.

Use of the DUMP option may cause the
compiler to use more core than the SIZE
option specifies. This is Dbecause SIZE
specifies the amount of core the compiler
can use for normal compilation and does not
allow for the internal compiler diagnostic
dumps.

Section 2 (Compiler Phases):

|Example of an EXEC card wusing the DUMP

|option:

| //STEP1 EXEC PROC=PL1LFC,
| PARM.PL1L="'DUMP=(TE,QJ) "'

|This statement specifies corpilation using
|the DUMP option to obtain a printout of the
|text blocks, the annotated text blocks, and
|of storage after the completion of compiler
|phase QJ.

Module AE

finalization of the
(See Fig.4, Notel)

Module AE is the
READ-IN Phase control.

Module AF

Module AF is a control section consist-
ing of a table containing the compiler
options which may be used during a compila-
tion. The table is constructed at system
generation time. The control section 1is
brought into storage by the initialization
Module AB at compilation time. A descrip-
tion of the wuse of Module AF is given in
Appendix G.

Module AG

Module AG closes SYSUT3 for output, and

re-opens it for input.

The closing and opening operations are
performed in the following order:

CLOSE
alter macro-type in data control
(DCB)

block

OPEN(INPUT)
switch routine ZURD to point at SYSUT3
DCB

This module produces a dump of the
dictionary. It prints out the communi-
cations region in the first Dblock, and
the offsets takles for each block if the
extended dictionary option is in use.
The remainder of each block is printed
out entry by entry. The BCD is translat-
ed for those entries containing BCD. At
the end of +the dump, a list of all the

Control, 48-Character Preprocessor 25

dictionary codes used is given, with an

explanation for each code.
The module is called by phase AD only

if an I is specified in the AREA field of
the DUMP option.

Modules AI, AJ

Module AI is called if E is specified
in the AREA field of the DUMP option. It
provides an ‘'easy-to-read' text print in
which the triples and pseudo-code items
comprising the text are printed separate-
ly. This option 1is available between
phases IA and OG inclusive.

Module AJ is called if I is specified
in the AREA field of the DUMP option to
produce the Annotated Dictionary Dump.

Module AK

Module AK is the closing routine of
the compiler. Its function is to release
core used for dictionary, text blocks,
scratch storage, and completed phases.
If batch compilation is not specified,
module AK closes all the files used by
the compiler. If a batch compilation is
specified, a check is made to determine
whether any source programs are still to
be compiled. Where there are none module
BK closes all files. Where one or more
programs remain to be compiled, the spill
file only is closed, the batch delimiter
card is scanned for syntax errors, and
control is returned to module AA.

Module AL

This module contains the control rou-
tines for dictionary and text-block han-
dling for the extended dictionary.

Module AM

Module AM marks phases as either wanted
or not wanted, depending upon the compiler
invocation options. Phases that are always
loaded are marked wanted.

AM is the first compiler phase loaded
after compiler initialization. It tests
the relevant bits in CCCODE and marks the
phases accordingly.

26

| This module contains the routines for
|dictionary and text-block handling for the
|normal-sized dictionary.

Module JZ

Module JZ builds the second half phase
directory. A build 1list is constructed
from the second half list held in Module
AA; a BLDL is performed on this list. The
phase directory is then reconstructed in
Module AA for the second half of the
compiler.

48~CHARACTER SET PREPROCESSOR

Phase BX is the 48-character set prepro-
cessor. It is loaded on programmer option
and receives, as input, source text in the
4g8-character syntax.

The preprocessor scans the input text
for occurrences of characters peculiar to
the 48-character set, and converts these to
the corresponding 60-character symbols. It
then puts out the adjusted text onto back-
ing storage ready for Phase CI, the first
pass of the Read-In Phase.

The text is read in record by record.
It 1s then scanned for alphabetic charac-
ters which may be the initial 1letters of
operator keywords, for periods, and for
commas. Items within comments or character
strings are ignored.

When a possible initial letter is disco-
vered, tests are made to determine whether
or not one of the reserved operator key-
words has been found. If one has Dbeen
found, it is replaced by its 60-characterx
set equivalent. Similarly, appearances of
two periods are replaced by a colon, and a
comma-period pair is replaced by a semi-
colon if the comma-period pair is not
immediately followed by a numeric
character.

Allowance 1is made for the possibility
that a concatenation of characters which is
meaningful in the 48-character set mway be
split between two records.

Before the text is processed a copy of
the original input is preserved. The out-
put from the preprocessor is the trans-
formed text, record by record, followed by
the original text. The Read-In Phase proc-
esses transformed text but prints out the

original.

The preprocessor uses Compiler Control
routine ZURD to obtain input, and routine
ZUBW to place its output onto backing
storage.

Note: If the MACRO option is specified, all

above is
processor,

the processing described
done by the compile-time
and phase BX is bypassed.

COMPILE-TIME PROCESSOR_PHASE

processor consists of
Each of these phases
is executed once, unless an INCLUDE data
set is encountered. 1In this case certain
phases will be re-executed.

The compile-time
six physical phases.

The compile-time processor moves source
text that does not contain compile-time
statements directly into text blocks. Dur-
ing this process invalid characters are
replaced by blanks, and line numbers are
encoded and inserted into the text.
Compile-time statements are decoded and
translated into an internal form and then
placed directly into text blocks. An entry
is made into the dictionary for each
compile-time variable, procedure, label, or
INCLUDE identifier.

A second pass is then taken over these
text Dblocks, during which compile-time
statements are executed and the PL/I source
program text is scanned and replacements
are made. The output from this pass is a
PL/I source program contained on SYSUT3
and, optionally, a punched card deck.

If during the second pass, an INCLUDE
data set is processed, the entire procedure
indicated above is executed recursively to
process this text.

Text and dictionary formats used by the

compile-time processor are contained in
Appendix J.

Line Numbering

As the input is being processed a unique
line number is assigned to every logical
record processed. If a 1listing of the
input is requested, these line numbers are
written out beside the appropriate line.
The line numbers are also encoded and
inserted into the text so that diagnostics
can be keyed to them. These 1line numbers
are also output on SYSUT3, to aid the user
in determining from which input 1line a
particular line of output came.

Section 2 (Compiler Phases):

Phase AS

This phase, consisting of one physical
module, is loaded if the option MACRO is
specified. It 1is resident throughout

compile-time processing until the cleanup

phase (BW) is invoked.

This phase controls the loading of the
subsequent compile-time processor phases.
The initialization phase (AV) 1is loaded

only once. The two processing phases (EC
and BG) are loaded and executed once unless
|an INCLUDE data set is processed. In this
case phase AS reloads the processing phases
to process this data set.

In addition, phase AS contains a set of
service routines used by both processing
phases. Access to these routines is via a
transfer vector located at the beginning of
phase AS.

Phase_ AV
This phase consists of o¢ne physical
block. Its purpose is to initialize cer-

tain cells in the communications region for
the compile-time processor phases.

|Phase BC_(BE, BF)

Phase BC consists of
modules, BC, BE, and BF.
tains the control routine.

three physical
Module BE con-

Phase BC accepts input text, moving it
into text Dblocks until a compile-tine
statement is found. (For a description of
the use and layout of text and dictionary
blocks, see Appendix J.) When a compile-
time statement is encountered, it is
encoded into a set of interpretive instruc-
tions and, except for compile-time proce-

dures, added +to the current text block.
Compile-time procedures are similarly
encoded, but are placed 1in separate text

blocks.

As compile-time statements are encoded,
all non-keyword identifiers encountered are
entered into the dictionary, together with
any attributes that are known. Entries are
also made in the dictionary for constants
and iterative DOs.

During phase BC, invalid characters
occurring outside of strings and comments
cause a diagnostic to be printed. They are
converted to Dblanks. Invalid characters
can thus be used for markers of wvarious
sorts in text Dblocks. Diagnostics are

Compile-time Processor Logical Phase 27

errors 1in compile-time
Statements. Line numbers are encoded and
inserted into the text for the use of the
phase BG scan. All input characters are
converted to their EBCDIC representation
before they are processed.

given for syntax

Phase BG (BI, BJ)

Phase BG consists of three physical
modules: BG, BI, and BJ, which contain the
control routine, the macro-code interpret-
er, and the built-in function handler,
respectively.

In general, the input to phase BG is the
set of chained text blocks and dictionary
blocks created by phase BC. The phase BG

execution 1is essentially that of the
compile-time processor described in the
external specifications. That is, its

basic action is to move through text blocks
looking for instances of compile-time vari-
ables or compile-time statements, which it
uses to produce the output text. As line
numbers are encountered in the text, they
are placed into a location containing the
current line number. This is used both for
phase BG diagnostics and by the output
editor.

If a compile-time variakle or procedure

reference is found, the scan cursor is
positioned to scan its value. When the
scan of the value is completed, the cursor

is properly positioned back into the text.
If a compile-time wvariable or procedure
reference 1is found in this value scan, the
process repeats itself. Such nesting can
occur to a depth of 100.

If the scan encounters an encoded
compile-time statement (built by phase BC),
control is passed to an interpreter. This
interpreter executes the statement -- pos-

sibly repositioning the scan cursor -- and
returns to the scan.

The output of +this phase 1is a PL/I
source program contained on SYSUT3, and,

optionally, as a sequenced card deck.

Phase BM (BO)

Phase BM examines the heads of the error
chains in the first dictionary block, and
programmer options which specify the sever-
ity 1level of messages required. If there
are no messages, it passes control to the
clean up phase (BW). TIf diagnostic messa-
ges are required, the phase 1loads BN to
process them after scanning the chains and

28

|indicating where the text is to be found,
|from the message directory block, module
| BO.

|Module BN (BP, BV)

The text of all
error messages 1is

compile-time processor

kept in modules BP
through BV. The messages are ordered by
severity, within these modules. BM will
have 1listed those modules which contain
messages required for a particular pass.
Module BN loads .and releases these modules,
one at a time and extracts the required
messages. When all compile-time error mes-
sages have been processed, module BN
returns control to BM.

Phase BW
The purpose of this phase to set all
tables and communication region cells to

the values required by the compiler proper.
In addition it will release all text and
dictionary bklocks used by the compile-time
processor phases and then pass control to
the next required phase of the compiler.

If a severe or terminal diagnostic has
been produced by the Compile-time processor
a listing of the contents of SYSUT3 will be
printed (provided that the SOURCE option
applies), and compilation will be bypassed.

THE READ-IN LOGICAL_ PHASE

The Read-In Phase is implemented as five
discrete physical phases, each of which
processes a particular group of statement
types. The phase obtains the input text in
the externally coded form by a call to the
compiler read routine, and converts it to
internal code by means of a translate table
provided by compiler control.

The source text is scanned for syntacti-
cal errors. During this time an output
string is built up, which consists essen-
tially of the input text with comments and
insignificant blanks removed. The source
text is scanned and statements are num-
bered, identified, and diagnosed. Any
required substitutions are made, statement
labels are inserted in the dictionary, and
chains are formed (for examrple, BEGIN,
PROCEDURE chains). If +the SOURCE option
|applies, source statements, with their num-
|ber, and optionally, their block levels and
|DO-nest levels, are printed out immediately
|after they have been read.

When the input text provides an end-of-
file indication, processing is terminated.
In ERROR situations this may not occur when
a valid external procedure has Dbeen
completely processed. By keeping a count
of PROCEDURE, BEGIN, DO, END, ON, and IF
statements, the phase can detect when the
logical end-of-program indication is flound.
If there are more records after the end of
the external procedure, they are ignored.

If an end-of-file indication is encoun-
tered before the 1logical end of the pro-
gram, diagnostic messages are issued and
suitable END statements are inserted to
allow compilation to continue.

The output of the Read-In Phase provides
a syntactically correct output string; a
table of entry and statement labels; chains
of coded diagnostic messages; a set of
switches specifying compilation content
details; a set of chains linking statements
of a particular type, to facilitate subse-
quent scanning; and optionally, a listing
of the source text.

Statement Numbering

All statements are given a sequential
number. This includes each compound state-
ment, each statement contained in a com-
pound statement, block and group delimiting
statements, and null statements. The ELSE
clause 1is not regarded as a statement for
numbering purposes. The numbering of the
statement 1is indicated on the source list-
ing. Diagnostic messages also refer to
these statement numbers.

Statement and Entry Labels

Statement and entry labels appearing in
the source text are removed and added to a
label table, which 1is built wup in the
region intended for the dictionary. This
region- may be extended by further blocks as
required. The 1label table entry is an
embryo dictionary entry, with blank regions
to be filled later by the Dictionary Phase
EG.

When a 1label declaration is found, an
entry is made in the 1label table with a
statement label code, the current (updated)
sequential number, and the current block
level and block count.

Statements having multiple labels give
rise to multiple 1label table entries.
These entries are identical except for the
BCD name.

Section 2 (Compiler Phases):

If the statement following a label 1is
subsequently identified as a PROCEDURE or
ENTRY statement, the label table is re-
accessed, and the entries associated with
the statement are modified (see Appendix
c.2).

Chains Constructed by Read-In

To provide rapid scanning in the
dictionary phases, the following chains are
constructed by the Read-In Phase:

The CALL chain
The PROCEDURE-ENTRY-BEGIN chain
The DECLARE chain

The ALLOCATE chain

Errors and Diagnostic Messages

As the source text 1is scanned it is
syntactically analyzed. Keywords are iden-
tified and passed as valid only if they may
legally appear within the type of statement
being diagnosed. However, consistency of
attributes and options within a statement
are not normally analyzed. This is 1left
for Phase EK.

When a syntactical error is detected, an
attempt 1is made to <correct it and an
appropriate diagnostic message 1s generat-
ed. The main aim of the Read-In Phase is
to present syntactically correct text to
subsequent compiler phases. Certain cor-
rections are performed without prejudicing
the complete compilation.

Detected errors cause a diagnostic mwes-
sage to be added to a diagnostic message
chain in the dictionary area. Each message
is in a coded form with parameters (textual
matter, statement numbers, and so on). The
message is decoded and printed out by the
Error Editor.

Where an error makes it impossible for
the scan of a statement to continue, the
statement is terminated correctly at such a
point as to leave the statement syntacti-
cally correct. The text between that point
and the next semi-colon (not in a comment
or character string) is skipped. The diag-
nostic messages produced in these circum-
stances will include at most the first ten
characters of the text that is skipped.

Read-In Logical Phase 29

The Output String

The output string is so arranged that a
complete statement never spans storage
blocks. One of the conditions of a suc-
cessful compilation is that the output
resulting from any statement must not
exceed the block. This restriction, howev-
er, does not apply to DECLARE statements.
Formats of the statements appearing in the
output string are given in Appendix D.2.

Identifiers

All identifiers which are not recognized
as keywords in the source text appear in
the output string.

Constants

All constants appear in the output
string.
Operators

All .operators appear in the output

string.

Initial Labels

Subscripted label variakles which are
initialized by attachment to statements are
placed in pseudo-assignment statements in
text, and then handled as if they were
normal labels.

STRUCTURE OF THE READ-IN LOGICAL PHASE

The Read-In Phase can occupy 16K bytes
of storage for any one pass. A storage map
for this phase is shown in Figure 5.

30

i CA |

L R e e T 4

I cc {

K === T Tm———— T———m——pm————= 1

| CE | CK | CN | CR | CR |

8K fp—————- t——— t-———— o fom——— |

] c6 | ¢cL | co | c¢cs | cv |

12K e fm——— +———-— - f———— 4
| ¢ | ¢ | CP | CT | Cw |

16K tome——— L Lo _ e i J

PASS 1 PASS 2 PASS 3 PASS U4 PASS 5

Figure 5. Storage Map for the Read-In Phase

The Read-In Phase consists of five phas-
es or passes, each containing at most five
modules. Modules CA and CC consist of
common routines which are invcked through-
out the phase by each of the passes, in
turn. Modules CE, CK, CN, and CR contain
separate keyword tables. Details of the
organization of these tables are given in
Appendix B. Control for each pass resides
in modules CI, CL, CO, CS, and CV respec-
tively. The following description refers
to the phases by these names.

Phase CI

During phase CI (the first physical
phase of the Read-In Phase) the source text
is read into storage, and character cocdes
are converted to an internal form. State-
ment types are identified, 1labels are
inserted into the dictionary, and staterent
identifiers are replaced Ly single-byte
codes (see Appendix D.1).

A record is kept of block nesting levels
and counts to enakle a check to be made for
the logical end-of-program indication. In
order to do this, certain statements have
to be either partially or completely ana-
lyzed in this pass.

These statements are:

PROCEDURE-END
BEGIN-END
DO-END
IF-THEN-ELSE
ON

If the SOURCE option has keen requested,
a listing of the source program, with the
statements numbered by the compiler, is
printed out onto the specified output medi-
um.

Phase_ CL

The output from phase CI is processed
and the statement types 1listed below are
analyzed in greater detail:

ENTRY FREE

PROCEDURE WAIT

DO READ

Iterative DO WRITE

RETURN DELETE

GO TO UNLOCK

DELAY LOCATE

DISPLAY REWRITE
If any errors are detected during this

pass, diagnostic messages are inserted into
chains in the dictionary as required.

Phase_CO

The output from phase CL is processed.
In particular, the DECLARE, ALLOCATE, and
CALL statements are analyzed in greater
detail. The syntax of attributes is
checked, but their consistency is analyzed
during phase EK. If the source program
does not contain any of these three state-
ments, this pass is not invoked.

If any errors are detected during this
pass, diagnostic messages are inserted into
chains in the dictionary.

Phase CS

The output
processed. In particular, the
input/output statements is analyzed,
together with the FORMAT statement. If the
source program contains no input/output
statements, this pass is not invoked.

from phase CL or CO is
syntax of

Phase_CV

This phase
earlier phases.

processes the output from
In order to assist subse-
quent processing, chains are constructed
for PROCEDURE, ENTRY, BEGIN, CALL, ALLO-
CATE, and DECLARE statements.

THE _DICTIONARY LOGICAL PHASE

The Dictionary Phase forms a dictionary
of identifiers, by first analyzing PROCE-

Section 2

(Compiler Phases):

DURE, BEGIN, DECLARE, and ENTRY statements.
The text is then scanned for contextual use
of identifiers, constants, and pictures.
Finally, every identifier and constant in
the source text is replaced by a reference
to its respective dictionary entry. Dic-
tionary entries are made during this phase
for all implicitly defined identifiers.
The formats of dictionary entries appear in
Appendix C.

Cconstructing and Accessing the Dictionary

The dictionary, during the construction
stage, comprises two parts, the hash table
and the dictionary proper.

To facilitate a search through the dic-
tionary for an entry with a particular RCD,
a method is used of dividing the dictionary
into areas. Each area is characterized by
a property of the BCD of each entry in it.
In practice, these areas are not contiguous
but are chained lists, each item in the
list being one dictionary entry long.

The start of each list is in a table,
known as the hash table. The association
of a particular identifier with a list,
i.e. the characterization of an area, is
achieved by deriving from a given BCD an
address in the hash table.

"Hashing" is a process of reducing the
length of the internal representation of

the BCD to one word. This is done by
adding successive four-byte lengths of the
BCD into one four-byte register. This is

then divided by 211, and the remainder is
doubled to give the hash table address
associated with the particular BCD. All
identifiers which hash to the same address
are placed in a chain; in particular, all
dictionary entries with the same BCD will
be in the same hash chain.

If TOM, DICK, and HARRY occur in the
same DECLARE statement in that order, and
they all hash to the same address in the
hash table, the address in the hash tabkle
will point to HARRY's entry, which contains
the address of DICK, which, in turn, con-
tains the address of TOM.

When no further BCD entries are to be
made in the dictionary, and all BCD iden-
tifiers in the source text have been
replaced by dictionary references, the hash
table is deleted.

Dictionary Logical Phase 31

Testing for Consistent Attributes

A test is made at the start of each list
of attributes, to ensure that any 1list of
attributes at one level of factoring in a
DECLARE statement is consistent.

Compiler Pseudo-Variables and Functions

Expressions specified for array bounds,
string lengths, and initial value iteration

factors must be evaluated at object time,
or at allocation time if the variable is
controlled. The expressions are placed
temporarily at the end of the text, and are
later moved by Phase FV and rlaced immedi-
ately following the BEGIN, PROCEDURE or
ALLOCATE statement to which the declared

variable belongs. The expression results
are assigned to pseudo-variables generated
by the compiler. These serve two purposes:
first, the assignment Statement appears as
a normal PL/I statement and need not be
treated as a special case; secondly, the
pseudo-variable contains the dictionary
reference of the variable and information
concerning the destination of the expres-
sion. Compiler functions with a format
similar to the pseudo-variables are also
created. The function result is the speci-
fied array bound, or string length. Com-
piler functions are created for two purpos-
es: first, to set bounds for base elements
of structures when the structure bound is
an expression, or to set the bounds of
temporary arrays; and secondly, to set the
storage address of a dynamically defined
item immediately before its use. The for-
mats of all the compiler pseudo-variables
and functions appear in Appendix D.8.

Dictionary Entries for Entry Points

A PROCEDURE or ENTRY statement may have
more than one label. Each label must have
a data description to indicate the type of

data returned when the label is invoked as
a function, and also the type of data to
which the expression in a RETURN

(expression) must be converted. These need
not be the same: there must therefore be
provision for +two data descriptions for
each label. A PROCEDURE or ENTRY statement

32

may specify parameters. The descriptions
of these identifiers, obtained from DECLARE
statements or default rules, are used for
prologue construction, but not for paramet-
er matching. 2Any data description given on
these statements is to be used for conver-
sion at a RETURN (expression), but not for
determining the result returned by a func-
tion reference.

Parameter descriptions for use in param-
eter matching, and data descriptions used
for determining the type of data returned
by a function reference, may be specified
by the source programmer in an ENTRY dec-
laration. If these are not given, default
and implicit rules must be used to build a
data description, but no parameter descrip-
tion can be given.

Given the foregoing requirements, the
dictionary entries describing an internal
entry point are as given in Figure 6.

The set of dictionary entries A, B, C,
D, E is repeated for each label associated
with the PROCEDURE or ENTRY statement. The
entry F will point to entry A for the first
label only. D will point at the label with
which it is associated. It should be noted
that B and C may coincide.

The entries type 1 for PROCEDURE, ENTRY,
and BEGIN statements are chained amongst
themselves in the following way. Each
entry type 1 Dbelonging to a PROCEDURE or
BEGIN statement contains the dictionary
reference of the entry type 1, of the next
PROCEDURE or BEGIN statement in the source
program, and also of the entry type 1 of
the immediately containing block.

The entries type 1 of PROCEDURE and
ENTRY statements belonging to a single
procedure are chained together in a circu-
lar manner. If there are no ENTRY state-
ments the entry type 1 o0f the PROCEDURE
statement points at itself.

External entry points are described by
dictionary entries termed entry type 4.
They contain data descriptions of the value
returned when referenced as a function, and
may contain descriptions of parameters.

Formal parameters which are entry points
are termed entry type 5, and parameter
descriptions which are entry points and are
pointed at by types 3, 4, or 5 are termed
entry type 6.

—
| r-~>| Dictionary entry for entry label |A
=1 |
[1] oo i
(11
I 1
|| L=>] Entry type 2. Used to provide |
|1 | data description of target in |B
|| r~—| RETURN (expression). |
[bmmmm e e .
1]
1] [1
1 I v
N T T 1
|1 t->| Entry type 3. This entry is used | | Second entry type 2.
1 | to point at the data description ¢ | | Used to provide data description |
| t——~| and parameter descriptions for para-|D | of value returned when label A |C
| r—-| meter matching. | | is invoked as a function. This |
| | b Te———————— T ———————— T——-—d | entry may, and usually will, coin- |
([| | | | cide with B. |
I] | | | b .
[| b 7 et 1
I I I |
[v v v
O T -== e 1 [mm—mmmm e m e ———m e 1
| | | Description of | | Description of | | Description of
Fbo |1E | [E1 | |E2
| | | first parameter | | second parameter | | each parameter |
| | e J b J b e d
[]
T R e S T b 1 [e — e —m e 1
| | | Entry type 1 for | | Formal parameter | | Description of para- |
| L->| PROCEDURE or |F | type 1 entry |G | meter used in prologue|H
L-.——~ | ENTRY statement | | | | construction |
b T ——————— J b T————— J b 4
| A [A
| | I |
e J S, J
Note: There is an entry E for each parameter described in D.
Figure 6. Dictionary Entries for an Internal Entry Point
Phase_ED construct chains linking entries of parti-
cular types.
Phase ED simply moves a set of subrou-
tines, which handle certain features of the For PROCEDURE-BEGIN statements, entry
list processing facility, into the communi- type 1 dictionary entries are created (see

cations region and sets a register to point Appendix C.2)

, and block header chains are

at them. The routines will later be used set up to link these entries sequentially.

by phase EL. A containing block chain is alsc set up to
link each entry with that of its containing
block.

Phase EG On the appearance of PROCEDURE state-

ments, circular PROCEDURE-ENTRY chains are

initialized to link the entry type 1 dic-
Phase EG has two main functions. The tionary entries of the PROCEDURE and ENTRY

first is to set up a hash table, and to statements of the same block. The formal
insert the label entries left in the dic- parameter 1list is scanned, and formal par-
tionary by the Read-In Phase into hash ameter type 1 entries are created and
chains. The second function of the phase inserted into the hash chain. Details of
is to create dictionary entries for PROCE- the PROCEDURE-ENTRY chains appear in Appen-

DURE, BEGIN, and ENTRY statements, and to dix C.2.

Section 2 (Compiler Phases):

Dictionary Logical Phase 33

The attribute list 1s scanned and an
options code byte is created in the entry
type 1 (see Appendix C.2). A check is then
made for invalid and inconsistent attri-
butes. CHARACTER and BIT attributes are
processed, and second file statements (see
Appendix D.8) are created if necessary.
Precision data are converted to binary, and
dictionary entries are created for pictures
(see Appendix C.7).

Statement labels are scanned and their
entry type 2 dictionary entries are creat-
ed. The relevant data bytes in the dic-
tionary are completed by default rules (see
Appendix C.3).

For ENTRY statements, entry type 1 dic-
tionary entries are created (see Appendix
C.2), and the circular PROCEDURE-ENTRY
chain is extended. Formal parameters,
attributes, and labels are processed in a
similar manner to those for PROCEDURE
statements, except that the options code
byte is not created.

Phase EI

Phase EI scans the chain of DECLARE
statements set up by the Read-In Phase, and
modifies the statements to assist Phase EK
as follows:

Structure Level Numbers: these are con-

verted to binary.

Factored Attributes: parentheses enclosing
factored attributes are replaced by special
code bytes, so that Phase EK can distingu-
ish them easily. A factored attribute
table is set up. It consists of slots
corresponding to each factored level. Each
slot contains the address of the attribute
list associated with that level, and the
address of the slot for the containing
level.

The following attributes are processed:

DIMENSION: dimension table entries (see
Appendix C.8) are created in the dictionary
and the source text 1is replaced by a
pointer to the entry. Fixed bounds are
converted to binary and inserted in the
table. A second file statement (see Appen-
dix D.8) is created at the end of the text,
for adjustable bounds, and a pointer to the
statement is inserted in +the dimension
table. Identifiers with identical array
bounds share the same dimension table.

constants

PRECISION: precision and scale

are converted to binary.

34

INITIAL: dictionary entries are created

for INITIAL attributes.

INITIAL CALL: second file statements
created for INITIAL CALL attributes.

are

CHARACTER __and BIT: fixed length constants
are converted to binary; a code byte marker
is left for * lengths (see Appendix C.8).
Second file statements (see Appendix D.8)
are created for adjustable 1length con-
stants, and the source text is replaced by

pointers to the statements.,

DEFINED: second file statements (see
Appendix D.8) are created and the source
text 1s replaced by pointers to the state-
ments.

POSITION: the position constant is
verted to binary.

con-

PICTURE:
dix C.7)

a picture table entry (see Appen-
is created and inserted into the
picture chain; similar pictures share the
same picture table. The source text is
replaced by a pointer to each entry.

USES and SETS: USES and SETS attributes
are moved 1into dictionary entries, and
pointers to the entries replace the source
text.

LIKE: BCD entries are created for iden-
tifiers with the LIKE attribute.

LABEL: if the LABEL attribute has a 1list
of statement label constants attached, a
single dictionary entry 1is created. The
dictionary entry contains the dictionary
references of the statement label constants
in the list.

|OFFSET and BASED: Second file statements
l|are made and text references are inserted
|in the DECLARE statements for these attri-
|butes.

|AREA: Fixed-length specifications are con-
|[verted +to Dbinary; second file statements
|are made for expressions; a code byte,
|followed by the length of text reference,
|is inserted in the DECLARE statement text.

All other attributes,
constants are skipped.

identifiers, or

|Phase EL_(EK, EM)

Phase EL, consisting of modules EK, EL,
and EM, scans the chain of DECLARE state-
ments constructed by the Read-In Phase.

attri-

This is

An area of storage known as the
bute collection area is reserved.

used to store information about the iden-
tifiers, and has entries of a similar
format to that for dictionary entries.

Complete dictionary entries are con-
structed for every identifier found in a
DECLARE statement. These identifiers can
be one of the following types:

1. Data Items (see Appendix C.4)

this case, the 'true'
calculated) (see

2. Structures (in
level number is
Appendix C.4)

3. Label Variables (see Appendix C.4)

4. Files (see Appendix C.7)

5. Entry Points (see Appendix C.2)

6. Parameters {(see Appendix C.7)

7. Event Variables

8. Task Variables.

multiple dec-
a diagnostic

Identifiers appearing as
larations are rejected and
message is given.

associated with
in three

The attributes to be
each identifier are picked up
ways.

First, the attributes
lowing the identifier are
attribute collection area.

immediately fol-
stored in the

Secondly, any factored attributes and
structure level numbers are examined.
These are found by wusing the 1list of
addresses placed in scratch core storage by
Phase EI. Each applicable attribute is
marked in the attribute collection area,
and any other information, e.g. dimension
table address, or picture table address, is
moved into a standard location in the
attribute collection area. All conflicting
attributes are rejected and diagnostic mes-
sages are given.

Finally, any attributes which are
required by the identifier, and which have
not been declared, are obtained from the
default rules.

Section 2 (Compiler Phases):

After the dictionary
made, further processing (e.g.
chains, etc.) must ke done in the
ing cases:

entry has been
linking of
follow-
1. DEFINED data

2. Data with the LIKE attribute

3. Files

4. Strings with adjustable lengths

5. Arrays having adjustable kounds

6. GENERIC identifiers

7. Structure membkers

8. Identifiers with INITIAL CALL

9. Identifiers with the INITIAL attribute

list has Lkeen
it is erased.

After the declaration
fully scanned and processed,

Phase_EP

Phase EP first conditionally marks later
phases as 'wanted' or 'not wanted,' accord-
ing to how certain flags in the dictionary
are set on or off. This assists in the
load-ahead technique.

The entry type 1 chain in the dictionary
is then scanned. For each PROCEDURE entry
in the chain, each entry label is examined
for a completed declaration of the type of

data the entry point will return when
invoked as a function. If this has pre-
viously been given in a DECLARE statement

nothing further is done, otherwise entry
type 2 and 3 dictionary entries are con-
structed from default rules (see Appendix
C.2). If this default data description
does not agree with the description derived
from the PROCEDURE or ENTRY statement, a
warning message is generated.

At each PROCEDURE entry, the chain to
the ENTRY statement entry type 1 is fol-
lowed. Each statement 1is treated in a
similar manner +to that for a PROCEDURE
entry type 1.

The CALL chain is then scanned and, at
each point in the chain, the dictionary is
searched for the identifier being called.
If the correct one 1is not found, a dic-
tionary entry for an EXTERNAL rrocedure is
made (see Appendix C.2), wusing default
rules for data description. Before making
the entry, the identifier is checked for
agreement with any of the built-in function
names. If there is agreement, a diagnostic

Dictionary Logical Phase 35

message is generated, and a dummy diction-
ary reference is inserted.

If an identifier is found, it is
examined to see 1f it 1s an undefined
formal parameter. If it 1is, the formal
parameter is made into an entry point,

again using default rules for data descrip-

tion. If it is not, or if the declaration
of the formal parameter is complete, the
type of entry is checked for the legality
of the call. A diagnostic message 1is
generated if the item may not be called.
In all cases, the item called is marked

IRREDUCIBLE if it has not
declared REDUCIBLE.

previously been

Phase EW

loaded
the

Phase EW 1is an optional phase,
only if any LIKE attributes appear in
source program.

This phase scans the LIKE chain which
has been constructed by Phase EK, and
completes the dictionary entry for any
structure containing a LIKE reference.
When a structure in the LIKE chain is
found, its validity is checked, and dimen-
sion data and inherited information are
saved. The dictionary is scanned for the
reference of the "likened" structure and

the entry is checked for validity.

This dictionary entry (see Appendix C.u)
is copied into the dictionary, with altera-
tions if there is a difference between the
original structure and this structure with
regard to dimensioned data. If both struc-
tures have dimensions a straight copy is
made; if the structure with the LIKE attri-
bute has dimensions and the likened struc-
ture has not, the dimension information is
added to the copy; if +the structure with

the LIKE attribute is not dimensioned and
the likened structure is, then +the dimen-
sion data is deleted from the copy. Inher-

ited data is added to the copy. If an
error is found, the structure with the LIKE
attribute is deleted and a base element
copy of the master structure 1is inserted
instead. Where copies of entries occur
which refer to dimension tables with varia-
ble dimensions, the dimension table entry
is copied, and new second file dictionary
entries and statements are created. Simi-
lar entries must be made if the structure
item has been declared to ke an adjustable
length string, or has keen declared with
the INITIAL attribute.

36

Phase EY

Phase EY 1is an optional rphase which

|processes all ALLOCATE statements.

The second file is scanned first and all
pointers +to the dicticnary are reversed.
All ALLOCATE statements using the DECLARE
chain are then scanned, and the dictionary
references of allocated items are obtained
by hashing the respective BCD of each item.
The attributes given on the ALLOCATE state-
ment for an item are collected together.

A copy of the dictionary entry of the
allocated item is then made (see Appendix
C.4), and the ALLOCATE statement is set to
point to it. The dictionary entry 1is
completed by including any attributes given
on the ALLOCATE statement, and copying any
second file statements from +the DECLARE
chain which are not overriden by the ALLO-
CATE statement.

| In the case of an ALLOCATE statement in

|which a based variable is declared, no copy
lof the original dictionary entry is
|required. The BCD 1is replaced by the
|original dictionary reference.

| All pointer qualified references in the
|text are checked to determine that the
|qualified variable is Lased. For every

|occurrence of a variable with a different
|pointer a new dictionary entry is made. If

|the variable is a structure the entire
|structure 1is copied. A PEXP second file
|statement is made for the pointer and the

|'defined’
|is set to point to it
|declared pointer.

slot in the new dictionary entry
instead of to the

| The BCD of +the rpointer and the based
|variable in the text are replaced by the
|[new dictionary reference followed by pad-
|ding of klanks which will ke removed by
|phase FA.

| The based variable can be the qualified
|name of a structure member. If this is so,
|the name is checked for validity. Only the
|first part or lowest level of the qualified
|[name in the text is replaced Ly the dic-
|tionary reference of the wmwember. It is
|preceded by a special marker to tell phase
|FA that a partially replaced name follows.

Phase FA

Phase FA scans the text sequentially.
If, during the scan, qualified names are
found with subscripts attached, they are

reordered so that a single subscript list
appears after the base element name. The

scanned and references
any identifiers which are,
file, event, ©rointer varia-
bles, or programmer-named ON conditions.
If no reference is available, a new dic-
tionary entry is made. The identifier is
then replaced in the text by the dictionary
reference.

dictionary is
obtained for
contextually,

If a constant marker is found, the
dictionary is scanned to check 1if the
constant is present. If it is not, a new

dictionary entry is made (see Appendix C.7)
and the resulting reference replaces the
constant in the text.

FORMAT marker is found, the
dictionary 1is scanned for a picture entry
in agreement. If there 1is no agreeing
entry, a new dictionary entry is made (see
Appendix C.7) and the gpicture <chain is
updated. The dictionary reference replaces
the format marker in the text.

If a P

The CALL
statements.

chain 1is removed from CALL
The appearance of PROCEDURE,
BEGIN, END, and DO statements results in
adjustments to the level and count stacks.
If statement introduction code bytes appear
(such as SN, SL, CL, and SN2), the current
statement number is updated. All data
items associated with the PROCEDURE, BEGIN,
ENTRY, and DECLARE statements are removed,
leaving only the statement identification
and the keyword.

Phase FE

When an identifier is found, the hash
chain is used to scan the dictionary for a
valid entry. If one 1is found, its dic-
tionary reference replaces the identifier
in the output text. If no valid entry is
found, and the BCD does not agree with any
entry in the tables of BCDs of PL/I built-
in functions, then a dictionary entry is
made as if the identifier was declared in
the outermost procedure. However, if the
BCD agrees with a function name, and it is
not in a SETS position, a function entry is
made in the dictionary, and its reference
is used to replace the identifier.

If a left parenthesis 1is found, the
previous dictionary entry is checked for an
array, function, or pseudo-variable. If it
is one of these, the relevant marker is
inserted in the text before the parenthesis
(see Appendix D.1).

Checks are also made for the positions
of function references in assignment
statements. Any dictionary references
encountered in the input file are moved

directly to the output file.

Section 2

(Compiler Phases):

PROCEDURE, REGIN, DO, and END statements
cause the current level count to be updat-
ed.

Phase FI

Phase FI scans the text and checks,
where possible, the validity of dicticnary
references found. References in a GOTO
statement are checked that they refer to
labels or 1label wvariables and that the
subsequent branch is valid. The code byte
for GOTO is changed to GOOB (see Appendix
D.1) 1if the branch is to a label constant
outside the current PROC or BREGIN block.
If the branch is to a label variable, GOOB
is set up unless a lakel wvalue 1list was
given at the declaration, and all members
of the list lie within the current block.

| List processing based variakles in ALLO-
|CATE, FREE, READ, WRITE, and LOCATE state-
|ments are marked as requiring a Record Dogpe
|[Vector (RDV). Variables in TASK and EVENT
|options on CALL statements are checked for
|validity.

References are checked
where a file is expected. Items in data
lists are checked for validity, and Data
Element Descriptors (DEDs) and symbol bits
are set on for all variables found in the
lists.

if they aprear

Any errors which are found cause diag-
nostic messages to be generated and durmy
references to ke placed in the text in
place of erroneous references.

Phase FK

Phase FK scans the attribute collection
area for entries with the SETS attribute.
The SETS 1lists in the dictionary entries
are scanned, and their syntax checked.
Identifiers are counted and replaced by

their dictionary references. Constants are
counted, converted to kinary, and arranged
in ascending order in the dictionary entry.

Phase FO

Phase FO makes a dictionary entry for
each ON condition mentioned inside a block.
For ON CHECK conditions multiple dictionary

entries are made (see Appendix C.7), one
for each BCD. If a similar condition is
mentioned more than once in a block, only
one dictionary entry is made for that

Dictionary Logical Phase 37

condition, except for file conditions, ON
CONDITION, and ON CHECK, when separate
dictionary entries are made for each dif-
ferent BCD name.

SIGNAL and REVERT statements are treated
in a similar manner to ON statements.

The dictionary entries for each BCD name
associated with file or CONDITION condi-
tions are checked and, if in error, the ON,
SIGNAL, or REVERT statement is replaced by
an error statement. A diagnostic message
is generated.

The BCD name of each file entry referred
to in ON, SIGNAL, and REVERT statements is
examined. If the BCD is SYSIN or SYSPRINT,
the dictionary reference of the file entry
is placed in a slot in the communications
region.

made to ensure that formal
parameters do not agpear in CHECK and
NOCHECK 1lists. A single dictionary entry
is created for each CHECK and NOCHECK 1list
and a pointer to the entry is placed in the
relevant entry type 1.

A check 1is

When dictionary entries are made for
CHECK lists, one of three different check
codes 1is used depending on whether the BCD
is an ENTRY LABEL, a LABEL CONSTANT, or a
variable.

List Processing POINTER and OFFSET vari-
ables in CHECK 1lists are treated as data
variables. BASED variables may not apgpear
in CHECK lists.

A dictionary entry is made for the list
processing AREA condition. This condition
is always enabled and may not appear in a
condition prefix.

Dictionary entries are also created for
each ON condition which is disabled for a
particular PROCEDURE or BEGIN block, and
for each ON condition whose status is
changed within the block. Pointers to
these dictionary entries are placed in the
relevant entry type 1.

All dictionary entries for ON conditions
are placed in the AUTOMATIC chain for the
relevant PROCEDURE or BEGIN block.

A further, quite distinct, function of
this phase is to substitute error state-
ments for all statements containing dummy
dictionary references (which have been
inserted by previous phases on detecting a
severe error). If a dummy reference is
found in the second file, the compilation
is aborted.

Wherever
initialized by

an element of a label array is
appearing as a statement

38

label, an assignment to a ccmpiler label
has been inserted by the Read-In phase.
Phase FO checks the validity of each such
assignment; for each array with this type
of initialization, a second file dictionary
entry is made, and all assignments to the
array are chained.

Phase FQ

Phase F¢ checks the wvalidity of each
item in the PICTURE chain in the dictionary
(see Appendix C.7).

The precision for each correct picture
is calculated, together with its apparent
length, and stored in its dicticnary entry.
A data byte is created in the entry for use
by Phase FT.

Invalid pictures cause appropriate diag-
nostic messages to be generated.

Phase FT
Phase FT vperforms certain housekeeping
tasks. These are as fcllows:

The second file entries are scanned
and pointers to each entry are insert-
ed in the associated dictionary entry
(see Appendix C.7).

1.

Each item which has a storage class is
inserted into the approrpriate chain
for that class (see Appendix C.4).

Constants are placed in the constants
chain and their apparent precision is
calculated. Sterling constants are
converted to pence.

Dimension tables are serarated for
items which are not in structures, but
which are arrays having similar
bounds, but with different element
lengths.

Items which are members of structures
and which have "inherited" dimensicns,
i.e. are contained in a structure
which itself is dimensioned, are made
to inherit their dimensions. If a
base element of a structure inherits
dimensions which are not constant,
second file statements (see Appendix
D.8) are set up to initialize the
bounds in the okject time dope vector.

Items which have expressions to be
evaluated at prologue time, e.g. rar-

ameter descriptions for entry points
and defined items, are placed in the

AUTOMATIC chain for the appropriate
block.
7. The dictionary entry for any item

described by a picture is expanded by
the precision and scale or string
length, extracted from the picture
table entry. Identifiers of different
modes sharing the same picture table
are now placed in separate tables.

8. The 'dope vector
Appendix C.5)
sary.

required' Dbit (see
is set on where neces-

9. When a label array is found which has
initial 1label statements for any of

its elements, the chained statements
are moved into the second file. The
original statement is left in the

text, to be removed by Phase FV.

10. Dictionary entries similar to label
BCD entries are made for all TASK
variables.

Phase_FV

Phase FV scans the second file and

reverses the pointers to the dictionary.

Dictionary entries for DEFINED data
completed (see Appendix C.4 and
Overlay and correspondence defining are
differentiated between, as are static and
dynamic defining. A preliminary check of
the validity of defining is also carried
out.

are
C.5).

When PROCEDURE and BEGIN statements are
encountered, any second file statements
associated with data in the AUTOMATIC chain
for that block are inserted in the text
following such statements.

When ALLOCATE statements are found, any
second file statements associated with the
item being allocated are inserted in the
text following the statement.

When a reference to dynamically defined
data is found, the base reference is
inserted into the text following the

defined reference.

statement 1is
not

When an initial label
encountered in the main text, it is
copied into the output string.

a POINTER in

second file
defined slot
If the

The dictionary reference of
a PEXP (pointer expression)
statement is inserted into the
of the associated based variable.

Section 2 (Compiler Phases):

|based variable 1is a structure this ref-
|erence is propagated throughout the struc-
|ture. The PEXP statement is then deleted.

| A similar procedure 1is performed for
|BVEXP (based variable expression) second
|file statements whereby the dictionary ref-
|erence of the AREA 1is inserted into the
|dictionary entry of the associated OFFSET
|variable.

| ADV second file statements referring to
|a BASED variable are checked for compliance
{with the (F) implementation ruvles. If the
|rules are obeyed, the dictionary entty of
|the 'kound' variable 1is inserted in the
|appropriate slot in the multiple table
|entry.

| If an MTF statement refers to a based
|variable the appropriate Lkound slot is
|copied fror one multiple table entry to the
|other.

Phase FX

Phase FX is an optional phase entered
only if the XREF or ATR (cross reference
lister and attribute lister respectively)
options are specified. It scans the STA-
TIC, AUTOMATIC, and CONTROLLED chains, and
the formal parameter lists.

For each identifier it creates an
in scratch text storage of the form:

entry

(m=——————————= B Bttt To——m—m - 1
| Dictionary |Text reference| Text chain |

| reference |to this item | |
I U R 4

a chain of
order

This entry is inserted into
similar entries in the alphabetical
of the BCD of the identifier.

If the XREF option 1is specified, the
text is scanned for dictionary references.
When +the dictionary reference of an iden-
tifier is found in the text, an entry is
created 1in a chain of entries from the
dictionary entry of the identifier.

Each member of the chain which rep-
resents a reference to the identifier, has
the following form:

2 bytes 3 kytes
e B it 1
| Statement number | Text chain |
b ———— e e ————— J

Each reference chain for an identifier

is in scratch text storage.

Dictionary Logical Phase 39

The sorted chain of identifiers is then
scanned, and for each entry in the chain
the following actions take place:

1. The statement number of the DECLARE
statement, if any, in which the iden-
tifier was declared is printed

2. The BCD of the identifijer is printed.
For variables having constant dimen-
sions and/or constant string lengths,
these dimensions and lengths will be
listed.

3. If the ATR option is specified, the
dictionary entry of the identifier is
analyzed and its attributes are print-
ed

4., If the XREF option is specified, the
reference chain for the identifier is
scanned, and the statement number con-
tained in each entry is printed

Finally, all scratch storage is released

and control is passed to the Pretranslator
Phase.

THE PRETRANSLATOR LOGICAL PHASE

The purpose of the Pretranslator Phase
is to expand those statements in the lan-
guage that can be broken down into simpler
statements, and to insert explicitly gener-
ated statements in place of implied ones.

Second level markers (see Appendix D.1)
are removed from internal compiler codes,
and some of the I/0 statements are changed

into a form more suitable for the pseudo-
code phase.

Argument lists are examined and the
matching of arguments with parameter
descriptions takes place, with temporary
variables being created where necessary,
e.g., where data conversions are required.

If the compilation contains ON CHECK

conditions the appropriate calls to the

library routine are provided.

Any structure assignments containing the
BY NAME option are processed.

If any structure assignment statements
or structures in I/0 lists are detected in
the program, they are expanded into scalar
assignments and DO groups.

If the program contains any array
assignments, or array expressions in I/0
lists, these are expanded into DO loops and

scalar assignments or expressions.

40

If the program contains 1SUB references,
the subscripts are computed for the base
array corresponding to the subscripts given
for the defined array.

Additions to the Text

In addition to changing the content of
the text, the Pretranslator introduces some
new symbols and grammatical forms into the
source text. These are as fcllows:

The Umbrella Symkol: this is designat-
ed by the symbol code X'5E', which is
used to introduce a 1literal as an
operand. It is used only as a bound of
a DO loop, or in a <call of the dope
vector pseudo-variable.

Statements within statements: a list
of statements may be introduced within
another statement. In this case the
inserted list is enclosed in parenthe-
ses. Statements in the list are given
no statement number field, but they
have semi-colons at the end.

I/0_statements: the forr cf I/0 state-
ments 1is changed considerably during
the pretranslator phases, as explained
in the description of Phase GB.

BUY _and__SELL Statements: special
statements are introduced for manipula-
ting temporary storage at object time;
they have a form similar to ALLOCATE
and FREE statements.

Storage: Pretranslator phas-
temporary variakles for func-
procedure calls where the
do not match the final param-
where expressions appear as
for control variakles for DC
and structure assign-

Temporary
es create
tion and
arguments
eters,

arguments,
loops in array

ments, and for iSUB defined subscript
lists. The Pretranslator has no mecha-
nism for evaluating expressions.
Therefore, temporaries which have no
data type are created for expression
arguments with no parameter descrip-
tion. The data type of these temporar-

ies 1is completed by the Translator
generic ©phase when the resultant data
type of the expression has been deter-
mined.

When the Pretranslator creates a tem—
porary from an argument which contains
any array with adjustable bounds or
adjustable string length, compiler
functions (see Appendix D.8) are gener-
ated in-line, to set up the adjustable
quantities at obkject time, to enable
storage of the correct size to pe
acquired by means of the BUY statement.

The temporary variables created by the
Pretranslator have dictionary entries
similar to variables declared in the
source program, except that the tempo-

raries do not have BCD names.

Phase GA

phase which
constants

Phase GA 1s an optional
scans the STATIC chain for file
and OPEN control block entries.

For file constants a DECLARE control
block is constructed from the file name and
attributes, while checking the attributes
for consistency. For file constants with
the ENVIRONMENT option a dictionary entry
is constructed, chained from the file con-
stant, containing the core image of the
56-byte DECLARE control block.

For OPEN control block entries an OPEN
control block 1is constructed from the
attributes in the entry, a check is made
for consistency, and another dictionary
entry, chained from the OPEN control block
entry, 1s constructed. This new entry
contains the 8-byte core image of the OPEN

control block.

When the COBOL option is encountered in
the ENVIRONMENT string of a FILE statement,
phase GA sets the low-order bit in the
fifteenth byte of the FILE dictionary
entry. Although this action overwrites the
dictionary reference of the ENVIRONMENT
string, it is permissible since GA 1is the
only phase which processes this string.

The EXCLUSIVE second level marker is
recognised in the file attribute dictionary
entry during the diagnostic check and con-
struction of the DCLCB or the OCB.

Phase GB (GC)

Phase GB, containing Modules GB and GC,
processes 1/0 statements. GB removes all
second level markers from internal charac-
ter codes (see Appendix D.1l). It then
reorders the options so that either EDIT,
DATA, or LIST options appear last.

In data lists the DO
moved so that it precedes

specification is
the relevant

list, and the END statement is added.

In format lists iteration factors are
expanded.

RECORD I/0 statements for which the
COBOL file option is recognized are exam-

Section 2 (Compiler Phases):

lined for wvalidity by GC. Diagnostics are
|put out for LOCATE and READ SET statements
|for which COBOL files are used. A tempora-
|ry variable is created to assist such data
|transfers as occur when a COROCL record is
|read into or written from a structure which
|does not contain either wholly binary or
|wholly character data.

| I/0 activity found within a PROCEDURE or
|BEGIN block causes the bit X'10' to be set

|to one in +the optimizaticn byte of its
|entry type 1.
Phase_ GK

Phase GK scans the source text for
function references. If it finds one, it
inserts a special marker byte before the
argument list, followed by:
| 1. Two code bytes giving information
| akout the type of function, and wheth-

er it was called with the TASK option
2. The current statement numker

3. The current block level and count

This phase also inserts a special argu-
ment marker before each argument in the
list, followed by the reference of the

corresponding parameter and a code byte to
show whether or not the argument is speci-
fied in a SETS list. The number of argu-
ments present is checked against the number
given as required by the corresponding
dictionary entry.

| NULL, NULLO, and EMPTY bkuilt-in func-
|tions are recognised and converted to con-
|stants.
|Phase_ GO
| This phase acts as a pre-processor for
|phase GP.
Phase GP

Phase GP scans the text for procedure

and function calls with arguments. These
are detected by the special markers insert-
ed by Phase GK.

Temporaries (see Appendix C.l) are
created for any arguments which are expres-
sions. (An expression is defined as being
any sequence of variakles and operators,

Pretranslator Logical Phase 41

other than single variables followed only
by a subscript list, or only by a defined
subscript 1list and then a subscript list).
If a parameter description has ©been
declared in an entry declaration, the tem-
porary which is created is of the same type
as the parameter description. Otherwise, a
'*chameleon' temporary of unspecified data
type is created, its type being subsequent-
ly completed when the expression type has

been determined by the Translator generic
phase.

Expressions are scanned for arrays
(including partially subscripted arrays),

structures, or +the end of the expression,
in order to determine the highest form of
aggregate in the expression, so that the
correct type of temporary may be created.

Where the expression contains a partial-
ly subscripted array, a temporary is creat-
ed with a dimensionality equal to the
number of cross sections specified in the
subscript list.

When single arguments are specified
together with parameter descriptions, the
arguments are compared with the parameter
description. If there is a lack of match,
action may be taken in one of two ways.

1. If the data
warning message is
temporary is created

types are compatible, a
printed, and a

2. If the data types are incompatible, an
error message 1is printed, and the
parameter description is ignored

When the argument is a single partially
subscripted array which matches the param-
eter, a special temporary is created which
has the same dimensionality as the number
of cross sections in the subscript 1ist,
and it appears to be defined wupon the
original argument. Code is then generated
to initialize the temporaries, multipliers,
and virtual origin from the dope vector of
the original argument and the subscript
list.

Whenever a
statement contained in
brackets is inserted in the output text,
followed by the assignment of the expres-
sion or non-matching argument to the tem-
porary. After the end of the PROCEDURE or
function call, all the temporaries generat-
ed in the call are released by means of a
SELL statement in nested statement brack-
ets.

temporary is created, a BUY
nested statement

created for constants
func-

Temporaries are
which are specified as arguments to
tions defined by the programmer.

42

| If a TASK, EVENT, or PRIORITY option is
|present in a CALL statement, then any
|temporaries which are created are of the
| 'not sold' type.

If GENERIC entry lakels are specified as
arguments to procedures, a special dic-

tionary entry is made which contains the
argument and parameter description dic-
tionary references, to enable the Transla-

tor generic phase to select the correct

generic member.

A warning message is printed whenever a
temporary is created for an item declared
in a SETS list.

When subscript 1lists for the number of
cross sections are being checked, a severe
error message is printed if a subscript
list contains too many subscripts, and the
statement is deleted.

Phase GU

scans the source text for
and END statements, and
that may raise a possible

Phase GU
PROCEDURE, REGIN,
for statements
CHECK condition.

A list of all items currently checked is
extracted from the CHECK and NOCHECK 1lists
present in PROCEDURE and BEGIN statements.

Items contained in statements that may
raise a CHECK condition are examined and
compared with the list of currently checked
items. If the item aprears in the list, a
SIGNAL CHECK statement is created for it,
either before the statement concerned (for
labels and entry names) or after it (for
variables).

Phase HF

The purpose of phase HF 1is +to detect
structure assignment statements, possible
structure expressions in data lists in GET
and PUT statements, and nested statements,

in particular nested structure assignments.

The leftmost structure in an expression
or assignment 1is wused as a basis for
comparison, and if similar structuring is
not found throughout the expression or
assignment, diagnostic messages are issued.
Any expression containing no structures is
left unchanged.

base elements of the structures are
and if the referenced structures are
temporary is created for

The
found,
dimensioned, a

each dimension. It is then added to the
AUTOMATIC chain for the appropriate block.
Iterative DO 1loops are constructed, with
the temporaries iterating between the upper
and lower bounds of that particular dimen-
sion. Base elements are assigned, with the
temporaries as subscripts, and with scalars

remaining unchanged. END statements are
created for the DO loops, and SELL state-
ments for the temporaries. The statements
which have been created are nested within

the original statement.

Phase HK

The purpose of Phase HK is to detect
array oOr sScalar assignments, possible array
expressions in I/O lists in GET and PUT
statements, and nested statements, in par-
ticular nested assignment. statements.

The leftmost array in an expression, or
the leftmost array or scalar in an assign-
ment is used as a basis for comparison, and
if similar dimensions or bounds are not
found in the array references, diagnostic
messages are issued. Any expression con-
taining only scalars is left unchanged.

For unsubscripted arrays which are
equally spaced in core only one temporary
is bought, but for all other arrays a
temporary is bought for each dimension in
the array. This temporary will be added to
the AUTOMATIC chain for the appropriate
block. If the ON-condition name SUBSCKRIP-
TRANGE is enabled for any statement, a
temporary will be bought for each dimension
in all cases. Iterative DC loops are
constructed: for an unsubscripted array
expression of dimensionality N, the tem-
porary will iterate between the lower bound
of +the Nth dimension and an evaluated
product so that all elements of the array
are processed; while for other arrays the
temporaries will iterate between the lower
and upper bound of the particular dimension
of the array. The assignment statement is
added to the output string with additional
subscripts where necessary. End statements
are created for the DO loops, and SELL
statements for the temporaries. The state-
ments which have been created are nested
within the original statement.

The syntax of pseudo-variables is also
checked.

Phase HP
Phase HP scans the source text for
references to items defined wusing 1SUBs.

Section 2 (Compiler Phases):

For each reference found, the subscripts
are computed for the base array correspond-
ing to the subscripts given for the defined
array.

The subscripts of the defined array are
assigned to temporaries specially created
for this purpose, which are then used to
replace the iSUBs in the defining subscript
list. The base array, with the subscript
list so formed, replaces the defined array
in the text.

THE TRANSLATOR LOGICAL PHASE

The Translator Phase consists of two
physical phases, the stacker rhase and the
generic phase. The purpose of the Transla-
tor 1is to convert the output from the
Pretranslator into a series of T"triples"
(see Appendix D.U4). A “"triple" is in the
form of an operator followed normally by
two operands.

The translaticn 1is achieved by using a
double stack, with one part for operators,
and the other part for operands, and
assigning two weights to each operator.
One weight (the stack weight) applies to
the operator while it is in the stack, and
the other weight (the compare weight)
applies when the operator is oktained from
the input string.

When an operator 1is obtained from the
input string it is compared with the top
stack operator. Depending on the result of
the comparison, one or other of the two
operators is switched on to determine what
action is next to ke performed. Apart from
some special cases, this acticn is usually
either to continue to f£ill the stack, or to
generate a triple. The special cases lead
to various manipulations c¢f the stack
items, after which the translation process
continues.

For the purposes of translation, the
input text to the translator is considered
to consist of operators and operands only.
This means that I/0 options, etc., are
regarded as operators.

After translation, the text string con-
sists of operands and operators. All
Statements start with an operator to indi-
cate a statement number or lakel, followed
by the statement type, which may ke a
single operator, as in the case of RETURN
or STOP, or which may be an operator such
as a function or subscript marker, followed
by a list of arguments. This list may also
include compiler generated statements,
e.g., DO loops for 1I/0 1lists, All 1I/C
options are regarded as ogperators and

Translator Logical Phase 43

require no markers before them. The end of
the source text will be marked by a special
operator, and compiler generated code,
which may follow this end-of-program mark-
er, will appear between the marker and the
special second-end-of-program marker. The
end of a block of text will ke marked by an
EOB operator. The program is now assumed
to be syntactically correct.

Phase IA

Phase IA rearranges the source text into
a prefix form, in which parentheses and
statement delimiters have been removed, and
the operations within a statement have been
so arranged that those with the highest
priority appear first.

As operators and operands are encoun-
tered, they are stored in stacks. Takles
give the priority of each operator as it
appears in the input text and in its stack.

When an operator is found during the
scan of the source text, its compare weight
(see Appendix D.U4) 1is tested against the
stack weight of the top operator in the
stack. If the compare weight is the lesser
of the two, then action is taken according
to the compare operator. This is referred
to as the compare action. Similarly, if
the compare weight for the current operator
found in the scan is greater than or equal
to the stack weight of the top stack
operator, action 1s taken according to the
top stack operator. This is referred to as
the stack action. Normally, the compare
action is to place the compare operator in
the stack, and to continue the scan, plac-
ing any subsequent operand in the stack
until another operator is found. The nor-
mal stack action is to generate a triple,
consisting of the top operator in the stack
and the top two operands, eliminating the
items from the stack, and inserting a
special flag as the operand of the trirle
which is now at the top of the stack. The
source (compare) item is then compared with
the new top stack item.

The output text of the stacking phase is
in the form of a series of triples, i.e.
statement types with no operands, and oper-
ators with one or two operands. If the
result of a triple operaticn is to be used
in a later triple, the aprropriate result
is flagged accordingly.

Certain phases are marked wanted or not
wanted at this stage. If the source text
contains an invocation by CALL or function
reference, Phases IL and IM are marked
wanted. If it does not, Phases IL, IM, IN,
10, 1P, IQ, MG, MH, MI, MJ, MK, MM, MN, and

uy

MO are marked not wanted. Phases MB and 'MC
are marked wanted when the source text
contains pseudo-variables or multiple
assignments; otherwise, they are marked not
wanted. The DO loop processing phases (LG
and LH) are marked in co-operation with the
dynamic initialization phases (LB and 1C).
If LB and LC are requested, the marking of
LG and LE is left wuntil that stage of
compilation; otherwise, LG and LH are
marked by Phase IA independently.

| When ALLOCATE and FREE .statements occur,
|phase NG is marked wanted. When LOCATE
|statements occur, phase NJ is marked want-
|ed.

Phase_1IG

Phase IG is an optional phase which is
loaded to process array and structure argu-
ments to built-in functions. When aggre-
gate arguments are given for built-in func-
tions they are expanded by the structure
and array assignment phases so that the
built-in functions appear as base elements,
subscripted where necessary.

Phase GP examines these
ascertains whether it 1s necessary to
create a dummy. If it is necessary, a
scalar dumrcy is created, but the assignmrent
of the argument expression is not inserted
in the +text, as this would be an invalid
aggregate assignment.

arguments, and

Phase IG examines the text for a BUY
statement for a dummy for an aggregate
argument to a built-in function, and then

inserts an assignment triple in the correct
place in the text.

This phase immediately precedes the main
generic phase. Its function is to obtain a

block of scratch storage and place the
entire built-in function +takle in that
area. The starting address of this table

is then placed in a register, and control
is released to the main generic processor.

Phase_ IM
Phase IM scans the source text for
procedure invocations by a CALL statement,

procedure or library invocations by a func-
tion reference, and assignments to
"chameleon" dummy arguments (see Phase GP).

Any procedure -which is generic and is
invoked by a CALL statement or function
reference 1is replaced Ly the appropriate
family membexr. If the invoked procedure is
non-generic, it is ignored. A generic
library routine invoked by a function ref-
erence is also replaced by the appropriate
family member.

The arguments passed to library routines
are checked for number and type, and a
conversion inserted where necessary and
possible.

The type and location of the result of
all function invocations is placed in the
text which follows the end of the text
which invoked the function. The resulting
type of an expression assigned to a
"chameleon" dummy is determined and set in
the dictionary entry which relates to the
dumnmy .

Phase IT

Phase IT scans the source text for
function triples and, in particular, tke
built-in functions for which code will ke
generated in-line. Further tests are made
to detect the functions which, according to

the method used to generate in-line code,
are optimizable. This applies only to the
SUBSTR, UNSPEC, and INDEX functions. All

references to 'chameleon' temporary assign-
ments within the scope of these functions
are removed subject to certain restrictions
imposed by the function nesting situation.

Phase IX

POINTER and AREA
specified by the

Phase IX checks that
references are used as
language. This phase 1is loaded only if
POINTER or AREA references are found,
declared either explicitly or contextually.
Error messages are produced if errors are
found and the statement in error is erased.

text are
results is

Data type triples in the
scanned and a stack of temporary
created containing the values:

X'40' for POINTER
X'02' for AREA
X'00' for any other data type

The maximum permitted number of tempo-
raries at any one point in a program is
200. The compilation is terminated if this
figure is exceeded.

Section 2 (Compiler Phases):

| Phase JD scans the text for concatena-
|[tion and wunary prefixed triples with ccn-
|stant operands. These are evaluated and
|the results are placed in new dictionary
|entries. The references are passed thrcugh
|a stack into the corresponding result slots
|in the text.

THE AGGREGATES LOGICAL PHASE

The Aggregates Phase consists of two
physical rhases, the structure processor
(phase JK) and the DEFINED chain check
(phase JP).

The structure processor gphase carries

out the mapping of structures and arrays in

order to align elements on their correct
storage koundaries.
The DEFINED chain check ensures that

items DEFINED on arrays and structures can

be mapped consistently.

|Phase JI

| The first function of ©phase JI is to
|obtain scratch storage in which the text
|skeletons contained 1in phase JJ are to be
|held. Phase JJ is then 1loaded, and 1its
|contents are moved to the scratch storage
|for subsequent use by phases JI and JK.

|Phase JJ 1is then released and control is
|returned to phase JI.

| The main function of phase JI 1is to
|expedite data interchange activities. A
|scan of static, automatic, and controlled
|chains is performed. The chains are reor-
|dered so that all data variables appear
|before non-data items. Adjustable PL/I
|structures and arrays are detected. Each

|entry in the COBOL chain is mapped as far
|as possikle at compile-time, removed from
|the chain, and placed in the appropriate
|AUTOMATIC chain.

Phase JK

| This phase scans the AUTOMATIC,
|and CONTROLLED chains for arrays,
|[tures (including COBOL structures), adjus-
|table 1length strings, DEFINED items, AREA,
jand POINTER arrays and structures, TASK and
|EVENT arrays, and TASK and EVENT arrays in
|structures.

STATIC,
struc-

Aggregates Logical Phase 45

For the base elements of structures
without adjustable bounds or string
lengths, the following calculations are
made:

The offset from the start of the major
structure

The padding required to align the ele-
ments on the correct boundary

All multipliers of arrays of struc-
tures.

For all minor structures and major
structures the following calculations are
made:

Size

The offset from the preceding alignment
boundary with the same value as the
maximum appearing in the structure

Where a structure contains adjustable
bounds or string lengths, code is generated
to call the Library at object time.

For arrays, the multipliers are calcu-
lated, unless the array contains adjustable
items, in which case the Library performs
the calculations.

For
strings,

adjustable structures, arrays, or

code is generated to add a symbol-
ic accumulator register into the virtual
origin slot of the dope vector, and the
accumulator register is incremented by the
size of the item.

Calculations are mwmade in a similar
fashion for arrays of strings (in struc-
tures or otherwise) with the VARYING attri-
bute. In addition, code is generated to
set up an array of string dope vectors
which refer to the individual strings in
the array wusing the dope vector. Code is
also generated to convert the original dope
vector to refer to the array of string dope
vectors, instead of to the storage for the
array.

The routine which generates code for
arrays of VARYING strings is also wused to
generate code for the initialization of
arrays of TASK, EVENT, and AREA variables.

DEFINED
lowing way:

items are processed in the fol-

Code is generated to set the multipli-
ers and virtual origin address of cor-
respondence defined arrays without
iSUBs in the dope vector of the DEFINED

items from the defining base dope vec-
tor.
Code 1is generated for overlay DEFINED

46

items if they do not fall into the
class which is to be addressed direct-
ly. The code first maps the DEFINED
item, 1f necessary, calculates the
address of the start of the storage to
be used by the DEFINED item, and final-

ly, relocates the DEFINED item wusing
this address.
| Dope vector descriptor dictionary
lentries and record dope vector dictionary

entries are made for items which need to be
mapped at object time, or which appear in
RECORD-oriented input/output statements.

Phase JP

Phase JP scans the DEFINED chain, and

differentiates between the following:
1. Correspondence defining
2. Scalar overlay defining

3. Undimensioned structure overlay defin-
ing

4. Mixed scalar-array-structure-string
class overlay defining

In correspondence defining, this phase
differentiates between arrays of scalars
and arrays of structures. It also checks

that the
validly overlay the elements of
belong to the same defining class,
the base is contiguous.

elements of the defined item may
the Dbase
and that

In scalar overlay defining, this phase

checks that the defined item may validly
overlay the base.

For undimensioned structure overlay
defining, this phase checks that the ele-
ments of the defined item may validly

overlay the elements of the kase.

For mixed scalar-array-structure-string
class overlay defining, this phase checks
that all elements of the defined item and
all elements of the kase belong to the same
defining class (bit or character), and that
the base is contiguous.

THE PSEUDO-CODE LOGICAL_PHASE

The Pseudo-Code Phase accepts the output
of the Translator Phase, and converts the
triples into a series of machine-like
instructions. The transforration into
pseudo-code 1is achieved by a series of
passes through the text; each pass removes

certain
pseudo-code,

triples and regplaces them by
until +the entire text is in
pseudo-code form. ©n completion of this
phase, control 1is handed +to the Storage
Allocation Phase in the output stage.

Pseudo-Code Design

Pseudo-code is essentially a one-for-one
symbolic representation of machine code,
designed so that it c¢an be transformed
directly into executable machine code by an
assembly process.

basic
stand-

Pseudo-code is constructed in
units, the majority of which have a
ard size of three or five bytes. A varia-
ble sized unit, however, is also available
to allow flexibility, its 1length being
specified by a length code within the unit.
The formats of pseudo-code instructions are
shown in Appendix D.6.

A unit consists of a one-byte operation
code followed by normally, a two- or four-
byte field, or on the other occasions by a
variable 1length field. The bit pattern of
the operation code indicates the type of
unit which it heads.

Pseudo-Code Items

to there being one pseudo-
each machine instruction
generated, there are also
which are produced to

from one phase of the

In addition
code item for
which could be
pseudo-code items
convey information
compiler to another.

These items of information have the same
format as a pseudo-code item, so that the
handling and scanning of the source text is
standardized. They do not, however, appear
in the final object code.

Register Description

In all cases where a general purpose
register appears in pseudo-code, it will be

described symbolically. When conventional
registers are required in, for example,
calling sequences, the registers will be

referred to physically, as they will be in
all cases of floating-point register usage.

Section 2 (Compiler Phases):

The Use of Symbolic Unassigned Registers

Whenever a new register is required
while pseudo-code is being generated, a
symbolic register counter is incremented by
one and, subject to this new value not
being greater than 16,383, it is used as
the symbolic name of the required register.
When this register is no longer required a
DROP pseudo-code item is inserted into the
text to indicate to the Register Allocation
Phase that the physical register allocated
to this symbelic register may be
reassigned.

The Use of Physical Registers

Physical general purpose registers will
be wused either as arithmetic registers or
as parameter registers.

With arithmetic
responsibility of

registers, it is the
the pseudo-code genera-
tion phases to save and restore the reg-
isters as necessary. This will apply both
to the general purpose arithretic registers
(namely i4 and 15) and to the four
floating-point registers. Although this is
of primary interest to the expression
evaluation phases, it should be realised
that all phases which generate calling
sequences must be aware of the current

status of arithmetic registers, and gener-
ate code to save and restcre themr as
necessary.

In the case of vparameter registers,

however, the Register Allocation Phase will

be able to save and restore them as
required.
Temporary Descriptors

As expressions are evaluated, a series

of intermediate temporary results are

obtained. These results, or their address-
es, may bke contained in symbolic or
assigned registers, in a dictionary ref-

erence, with or without an index register,
or in workspace. Temporary descriptor tri-
ples (TMPD) are inserted in the text to
enable the correct pseudo-code instructions
to be generated from the trirles. The
format of TMPD triples is described in
Appendix D.9.

Pseudo-Code Logical Phase 47

Temporary Workspace

A block of temporary workspace 1is used
to store intermediate results obtained in
evaluating expressions at object time.
Pseudo-code phases allocate the next avai-
lable workspace location within the block,
and then update the 1location pointer,
whenever the necessity to save an inter-
mediate result arises. The location of the
intermediate result 1is then described for
later phases by a TMPD in the text. Inter-
mediate results are only required during
the execution of single PL/I statements;
they are never preserved from one statement
to another.

At the end of the pseudo-code phases the
maximum size of the temporary storage
required in each PL/I program block is
placed in a dictionary entry. The required
amount of workspace is then allocated in

each Dynamic Storage Area (DSA) by Phase
PT.
Phase LA

Phase LA 1s a utility phase which
remains in storage during the whole of the
Pseudo-Code Phase. It provides the main
scanning routines to handle input and out-
put text during the Pseudo-Code Phase.

The routine/subroutine directories in
this publication give a complete 1list of
the routines provided, together with brief
descriptions of their functions.

Phase LB

Phase LB scans through the text for
PROCEDURE, BEGIN, and ALLOCATE statement
triples.

Whenever one of these is found, a scan
is made through the immediately succeeding
second file statements; this is for any IDV
(initial dope vector) statement referring
to a variable replicaticn factor in the
array initial string. Processing of these
statements and of the corresponding array
initial strings 1s then carried out.

On completion of this secondary scan,
the action taken depends on which triple
was originally found:

1. For PROCEDURE or BEGIN triples, a scan
is then made of the AUTOMATIC chain in
the dictionary. For any scalar varia-
bles that have been declared INITIAL,

48

a set of triples 1is created and
inserted into the text. For any array
declared INITIAL, the initial string
is scanned, and a mixture of triples
and pseudo-code is generated.

2. For ALLOCATE triples, if the item has
been declared INITIAL, the initial
string 1s scanned, and a mixture of
triples and pseudo-code is generated.

Phase LE also marks Phase LG (DO-groups)

as wanted or not wanted; this is done in
co-operation with Phase IA.

Phase LD

Phase LD scans the STATIC chain for any
variables which have been declared INITIAL.

When a scalar variable is found, the
phase constructs two dictionary entries:
one for the constant, and one for the
converted constant.

For arrays, the phase scans the initial
value string, creating an initialization
table in the dictionary. Replication fac-
tors are converted and inserted into the

table; treatment of the constants is then

as described for scalar variables.

Phase 0S converts the constants to their
specified internal form.

Phase 1G

Phase LG scans the text for DO loops. &
stack is maintained with each entry con-
taining a description of a DC group. The
stacking reflects the nesting of the DO
groups. For each DO or iterative DO triple
a new entry is made at the top of the
stack.

DO specification triples are analyzed
and expressions are assigned to temporar-
les; sukscripts in the control variable are
assigned to Dbinary integer temporaries if
they are themselves variable. At the end
of each specification, pseudc-code and tri-
ples are generated to control the loop.

D.4)
loops

Triple operators (see BAppendix
peculiar to the specification of DO
are removed from the text.

For control variables, other than sirple
scalars, text is placed in the DC stack and
used at every appearance cf the control
variable in the generated text. During
this time, a scan is also made for pseudo-

variables, subscripts, functions, and

argument markers.

Phase LR

The purpose of Phase LR is to save space
during the expression evaluation phase, LS.
It provides the initialization for Phase LS
by obtaining 4,096 bytes of scratch storage
and setting stack pointers. The scan
phase, Phase LA, is initialized and Phase
MP is marked.

The translate table for scanning tri-
ples, and the constants for expression
evaluation are included in this phase and

are moved to the first 1K area of scratch
storage. Subroutines required by phase LS
are also moved into scratch core at this
time. Finally, control is passed to Phase
LS.

Phase LS scans the source text to con-
vert expression triples to pseudo-code. If
a triple produces a result, it is added to
the temporary work stack.

For the arithmetic triples +,-,%,/,%%,
prefix +, and prefix -, the operands are
combined to give the base, scale, mode, and

precision of the result. If conversion is
necessary, an assignment triple, with the
target and source types as operands, 1is
inserted in the text. In-line pseudo-code
is generated for all operators except *#*

and some complex type * and / operators.
In these cases, Library calling sequences
are generated. An intermediate result is

always produced and the triple is removed

from the text.

The operands of comparison triples GT,
GE, equals, NE, LE, and LT are combined and
converted as for +the arithmetic triples.
In-line pseudo-code is generated and the
triple is removed from the text, unless
both operands are string type, in which
case a temporary is created. If the next
triple is a conditional kranch, a mask for
branch-on-false is inserted. Otherwise,
the result is a length 1 bit string.

For the string triples CAT, AND,
NOT, and string comparisons, if an operand
is zero, TMPD triples, containing the
intermediate result from the top of the
stack, are inserted in the text after the
triple. The result is a CHARACTER or BIT
string or a COMPARE operator.

CR,

Section 2

(Compiler Phases):

When subscript triples appear, a symbol-
ic register number is inserted 1in the
triple. The result contains the dictionary
reference of the array and the symbolic
register.

For function triples, a description of
the workspace for the function result is
inserted in the TMPD triples which follow
the function triples. The function result
is added to the intermediate stack.

For add, and divide functions,
the function and argument triples are
removed from the text. Arithmetic type
in-line pseudo-code 1is generated, with
modifications for the precision and scale
factor, and the result is added to the
intermediate stack.

multiply,

With pseudo-variable triples, a special
marker is added to the intermediate result
stack.

Other +triples which may use an inter-
mediate result, are examined. If an oper-
and 1is =zero, two or three TMPD triples,
containing the intermediate result from the
top of the stack, are inserted in the text
after the triple. If both operands are
zero, the TMPDs for the second operand
precede those for the first operand.

Phase LV

Phase LV provides string handling facil-
ities for the pseudo-code phases.

It converts any type of data item to a
CHARACTER or BIT string, and an assignmrent
triple, with the target and source types
used as the operands, is inserted 1in the
text.

A string dope vector
produced from a standard
tion.

description is
string descrip-

|Phase LX (LW, LY)

LX consists of three modules, LW,
Module LW acts as a pre-
LX and LY, moving constants

| Phase
{LX, and LY.

|processor for

|into scratch core prior to 1loading the
|string-handling modules.

| Phase LX scans the source text to
convert string triples to pseudo-code. If

a result is produced it is added to a stack
of intermediate string results.

Pseudo-Code Logical Phase 49

For the comparison triples GT, GE,
equals, NE, LE, AND LT, both operands are
already string type. If one operand is
zero, the operand is obtained from the
associated TMPD +triples. In-line pseudo-
code 1is generated if the operands are
aligned and are of known lengths less than
or equal to 255 bytes; otherwise, Library
calling sequences are generated. The
triple and any TMPD triples are removed
from the text.

In the case of the string triples CAT,
AND, OR, and NOT, the operands are convert-
ed to string type by rhase LV. Zero
operands are obtained from associated TMPD
triples. In-line pseudo-code is generated
when operands are aligned and are of known

lengths 1less than or equal to 255 bytes.
For the CAT operator, the first operand
must be a multiple of 8 bits unless the

strings involved are less than or equal to
32 bits in length. In-line code is also
generated for the following cases involving
non-adjustable varying strings:

1. Character string concatenation of
varying strings with lengths less than
256 bytes.

2. Bit string operations for AND, OR,
NOT, concatenation, and comparison
where the strings are aligned and are
less than 33 bits in length.

Otherwise, Library calling sequences are
generated. The triple and any TMPD triples
are removed from the text, and the string

result is added to the intermediate result
stack.

For TMPD triples, if the intermediate
result described by the TMPD triples 1is a

string, a complete string description is
moved from the top of the intermediate
stack to the TMPD triples. If the TMPD
triples do not describe a string, they are
ignored.

In-line code is generated for the BOOL
functions AND, OR, and EXCLUSIVE OR, when
the third argument is a character or bit

string constant and the first and second

arguments are aligned and of known lengths
less than or equal to 255 bytes. Otherwise
Library calling sequences are generated.

Subscript and function triples may produce
intermediate string results.

Phase MB
Phase MB scans the text for pseudo-
variable markers and multiple assignment

50

markers. A stack of pseudo-variable
descriptions is maintained, together with
the left hand side descriptions of multigle

assignments when they occur. Pseudo-code
and triples are generated for pseudo-
variables and the left hand side
descriptions of multiple assignments are

put out in the correct sequence.

|Phase_MD

| Phase MD uses the SCAN routine LA to
|]scan the text for ADDR built-in functions
|for which it generates in-line code, It
|appears before the normal function proc-
|essor phase and removes all trace of the
|in-line function. The general SCAN routine
|passes control when these functions are
| found.

| For all cases of ADDR the generated code
|establishes the start address of the argu-
|ment. If structure name arguments are
|present the structure chain is hashed for
jthe first base-element. For array names
|the address of the first element is calcu-
|lated.

Phase_ ME

identifies all invocations of
the SUBSTR function and pseudo-variakle,
jall UNSPEC, STATUS, and COMPLETION func-
tions, and those invocations of +the INDEX
function which can ke implemented in-line;
and generates pseudo-code to perform these

Phase NME

functions at okject time. The scan of the
text 1s conducted by the ¢eneral SCAN
|routine, and all trace of the invocaticns

|of these functions is removed before the
normal function processor phase is loaded.
When the end-of-program marker is encoun-
tered the terminating routine is entered.

Bhase MG

Phase MG identifies functions which are
to be coded in-line, and generates, in
their place, the pseudo-code to perform the
relevant function. This rhase appears
before the normal function processor phase
and removes all trace of the in-line func-
tion.

The scan of the text is conducted by the
general SCAN routine, and control is handed

to the present phase when one of the
following functions is found:

ALLOCATION FLOOR BINARY

BIT IMAG DECIMAL

CEIL REAL FIXED

CHAR TRUNC FLOAT

COMPLEX UNSPEC PRECISION

CONJG

Control is also passed to this phase if
ABS 1is found with real arguments. The
arguments are collected, and the appropri-
ate routine 1is entered to generate the
pseudo-code. When the end-cf-program mark-
er is encountered the terminating routines
are entered.

Phase MI

Phase MI identifies functions which are
to be coded in-line, and generates , in
their place, pseudo-code to perform the
relevant function. This phase appears
before the normal function processor phase
and removes all trace of the in-line func-
tion.

The scan of the text is conducted by the

general SCAN routine and control is handed
to the present phase when one of the
following functions is found:

MAX MOD

MIN ROUND

If the number of arguments to the MAX or
MIN functions is greater than three, a
Library call is generated.

Phase MK

Phase MK identifies functions which are

to be coded in-line, and generates, in
their place, pseudo-code to perform the
relevant function. This phase appears

before the normal function processor phase
and removes all trace of the in-line func-
tion.

The scan of the text is conducted by the
general SCAN routine, and control is passed

to the present phase when one of the
following functions is found:

DIM HBOUND

LBOUND SIGN

LENGTH FREE

Section 2 (Compiler Phases):

Phase ML

Phase NL scans the source text fcr
generic entry name arguments to procedure
invocations.

Such entry names may be flcating arith-

metic built-in functions or programmer-
supplied rrocedures with the GENERIC
attribute. When one is found, the correct
generic family memker to be passed is
selected Ly this phase, depending on the
entry description of the invoked procedure.

Phase MM

Phase MM scans through the source text
for procedure invocations by a CALL state-
ment, or for procedure or Library routine
invocations by a function reference.

Procedure invocations are replaced by an
external standard calling sequence, and
Library routine invocations are replaced by

an external or internal standard calling
sequence as appropriate (see Appendix
D.10).

| If a CALL is accompanied by a TASK,

| EVENT, or PRIORITY option, -library module
| IHETSA is loaded rather than IHESA, and the
|parameter 1list is modified to include the
|addresses of the TASK and EVENT variables
fand the relative PRIORITY.

Phase MP

Phase MP reorders the BUY and SELL
statements involved in obtaining Variable
Data Areas (VDAs) for adjustable length

strings or temporaries, which were created
by Phase GK. On entering this phase, the
BUY triples precede the code compiled to
evaluate the length of storage required for
the VDA. This evaluation code is included
between further BUYS and BUY triples, which
themselves are between the BUY triple being
considered and its associated SELL triple.
Phase MP extracts these sections of code
and places them before the BUY triple of
the adjustable string temgcrary. Since
such BUY triples may be nested, the phase
maintains a count to record the nesting
status.

Pseudo-Code Logical Phase 51

Phase MS scans the source text for
references to subscripted array elements.

If references are found, pseudo-code is

generated to calculate the offset of the
subscripted element in relation to the
origin of the array. If necessary, further
pseudo-code is generated tc check the sub-
script range.

Optimization of constant subscript

evaluation is carried out on arrays having
one subscript which is an integer constant,
and all following subscripts declared to
have fixed wupper and lower bounds. This
applies to arrays with fixed-length ele-
ments.

Phase NA

Phase NA generates pseudo-code for the
following triples:

For PROCEDURE' and BEGIN' triples a
Library call 1is generated to the FREEDSA
routine.

For RETURN triples a Library call is
generated, unless a value is to be returned
as the result of a function invocation, in

which case code 1is first generated to
assign the result to the target field, and
then the Library call 1is made. If the

function may return the result as more than
one data type, a switch would have been set
at the entry point to the function, and the
RETURN statement would test the switch
value, so that the data type appropriate to
the entry point is returned.

GOTO triples either will be invalid
branches detected by Phase FI, in which
case they will be deleted, or they will be
branches to statement lakel constants in
the same PROCEDURE or BEGIN block. In this
case, they will be comgiled as one-

instruction branches.

GOLN triples are compiled into one-
instruction branches to the compiler label

number in operand 2 of the trigple.

A GOOB (Go out Of Block) triple is a
branch to a label variable, possibly
subscripted, or to a lakel in a higher

block than the current one (a branch to a
lower block is invalid). A call is gener-
ated to a Library epilogue routine, point-
ing at a double-word slot containing the
address of the label and the Pseudo-
Register Vector (PRV) offset (for a label
constant), or the invocation count (for a
label variable).

52

STOP and EXIT statements are implemented
simply by invocation of the appropriate
Library routine.

For IF triples, if the second operand is
an identifier, or the result of an
expression which is not a comparison, code
is generated to convert it to a BIT string,
if necessary. This BIT string is compared
to zero, either in-line, or by a call to
the Library.

The second operand ray be a mask which
will have been inserted by the expression
evaluation phase as a result of the compar-
ison specified in the IF statement. This
mask 1s put into a generated instruction to
branch if the condition is nct satisfied,
i.e. either to the ELSE clause or to the
next statement.

For ON triples, code is generated to set
flag bits and update the ON-unit address in
the double~word ON slot in the DSA.

in-line code 1is generated to simulate the
condition. For all other conditions, a
Library error routine is called.

REVERT triples generate code to set flag
bits in the double-word ON slot in the DSA.

Phase NG

Phase NG generates the calling sequences

to the Likrary for DELAY and DISPLAY and
WAIT statements.

| It generates code to «call the library
|routines which handle ALLOCATE and FREE

|statements whose arguments are BASED varia-
|bles.

For DELAY statements, the argument has
to be a fixed binary integer, and, if
necessary, code is generated for conver-
sion.

For DISPLAY statements, the message must
be a CHARACTER string, or, if necessary,
converted to one. A parameter 1list is
built up to pass to the Library.

For WAIT statements, the parameter list
is built up in WORKSPACE. It consists of

the address of the scalar expression
(converted to a fixed binary integer),
followed by the addresses of the event-

names that aprear in each WAIT statement.
If the scalar expression option does not
appear, the address of the total number of
event-names is used.

For the tasking option WAIT, whose
argument is an EVENT array, the phase makes
a U-byte entry in the parameter 1list,
containing the number of dimensions
involved, and the address of the EVENT
array dope vector. If the WAIT statement
contains an EVENT array and no scalar

expression, the first byte
list is set to X'FF'.

of the paraweter

For ALLOCATE and FREE statements, with
based -variables as arguments, a parameter
list is built in workspace before a call is
made to one of the entry points to IHELSP.
The parameter 1list 1is an 8-byte RDV fol-
lowed by the address of the AREA variable
from the IN option if present.

For ALLOCATE, the
the SET option is given the value
by IHESLP.

pointer-variable in
returned

Phase_NJ

Phase NJ and its supporting block, NK,
generate the calling sequences to the
library module for the RECORD-oriented
input/output statements: DELETE, LOCATE,
READ, REWRITE, UNLOCK, and WRITE.

the information
of the source
parameter 1list,

For each of these calls,
contained in the options
statement is passed by a
constructed as follows:

DC A(DCLCB)

DC A (RDV|COUNT2 | PNTRZ2|SDV3) |0

DC A(EVENT|LABEL“) | 0

DC A(SDV.KEYTO|SDV.KEYFROM|SDV.KEY) |0
DC A(REQUEST_CODES)

expr in IGNORE (expr)}

pntr in READ SET (pntr)

SDV of varying string in READ INTO
(varying string)

4 Compiler label as result of LOCATE

wN P

Section 2 (Compiler Phases):

REQUEST_CODES is a full-word containing
four control bytes with the following mean-
ings:

Byte 1 Operation code
00 READ
04 WRITE
08 REWRITE
0C DELETE
| 10 LOCATE
| 14 UNLOCK
| Byte 2 Group 1 options code
| 00 SET
| 04 IGNORE
| 08 INTO|FROM
| Byte 3 Group 2 options_code
| 04 KEYTO
| 08 NOLOCK
Byte 4 Group 3 options_code

04 VARY INTO
08 VARY KEYTO
0C BOTH

Note that null argurents in the paramet-
er list or REQUEST_CCDES are indicated by
zeros.

Both the
REQUEST_CODES

parameter list and the
word are constructed in STA-
TIC storage. However, if the argument of
lany of the options refers to AUTOMATIC,
| CONTROLLED, or BASED storage, the parameter
|list is moved to the WORKSPACE storage for
the statement; the argument is then provid-
Jed just before the library call is made.

| In the case of the LOCATE statement, the
|phase is responsible for generating code to
|set the pointer variable with the pointer
|value returned in the first word of the RDV
|by the library. If the BASED variable was
|a structure with a REFER option in an
|extent definition, it is also responsible
|for generating code to initialize the
|extent variable named in the REFER option.

The DCLCB parameter is taken from the
FILE option of the statement; the FILE
option must be either a file constant or

file parameter.

| The record dope vector (RDV) is assumed
to have been constructed by earlier phases,
|except in the case of CONTROLLED or BASED
|variables or CONTROLLED or BRASED aggre-
|gates, when the procedure is as follows:

| 1. For CONTRCLLED or

| Phase NJ creates a litrary call to

| IHESTRA, passing the following argu-
ments through registers:

BASED aggregates,

Register 1 A(D.V)
Register 2 A(DVD)
Register 3 A(RESULT.RDV.SLOT)

Pseudo-Code Logical Phase 53

2. For CONTROLLED or BASED strings, the
phase generates code to construct the
RDV in the WORKSPACE storage of the
statement, using the dope vector of
the string.

The IGNORE expression is taken from the
IGNORE option of the statement and if
necessary, converted to an integer.

The EVENT scalar is taken from the EVENT
option of the statement.

The KEYTO SDV is derived from the KEYTO
option of a READ statement.

The KEY SDV and KEYFROM SDV are derived
from their respective options. If neces-
sary, they are converted to character
strings.

The PNTR is taken from the SET triple of
the statement or from the BASED variable of
the LOCATE triple if no SET triple appears.

Phase NM

Phase NM generates the calling sequences
to the Library modules for OPEN, CLOSE,
GET, and PUT statements.

For OPEN and CLOSE statements, a param-
eter list is constructed from the options
given. The options are first checked for
validity with respect to multiple specifi-
cations. The arguments on the options are
checked and converted, if necessary, to the
correct data. type. If no file is specified

in an OPEN or CLOSE statement, it is
ignored. The parameter lists are as fol-~
lows:
OPEN DC A(DCLCB)
DC A(OCB)
DC A(TITLE.SDV)
DC A(IDENT.SDV)
DC A(IDENT.DED)
DC A(KEYLENGTH)
DC A(LINESIZE)
DC A(PAGESIZE)
CLOSE DC A(DCLCB)

DC A(IDENT.SDV)

DC A(IDENT.DED)

54

Null arguments are indicated by zero

address constants.

For GET and PUT statements, the Library
call is in three parts. The initializa-
tion, data transmission (Phase NU), and the
termination. The initialization call
requires a parameter list to be constructed
from the given opticns. The options are
checked for 1legal comkinations and the
arguments examined.

The parameter list when a file is speci-
fied is :

DC A(DCLCR)
DC Af(next statement)

DC A(binary integer) if SKIP or
LINE is given.

For GET and PUT STRING, the argument to
STRING is checked, and the parameter 1list
formed is:

DC A(SDV of string argurent)

CC A(DED of string argument)
The termination Library call has no
parameters. As for the initialization, the

routine used depends on the ortions given
in the statement,

Phase NT
This phase, which is a preprocessor for

Phase NU, has two functions:

1. 1Initialization of a block of scratch
storage for use by Phase NU

2. ©Setting up of INCLUDE matrix and

Library routine entries for edit-
directed, STREAM-oriented 1/0
statements

The phase contains all pseudo-code skel-
etons used by Phase NU. 4096 bytes of
scratch storage are obtained and the
pseudo-code skeletons are coried into it.
The address of the scratch area is then
passed to Phase NU.

If a flag has been passed from Phase NN,
indicating the presence of edit-directed
I/0, a scan of the text is performed. DUata
and format list items encountered during
the scan are associated as far as possible,
and a sufficient set of Library modules are
identified for the edit-directed. transmis-
sion specified in the prograr. The INCLUDE
matrix is updated and dictionary entries
are made for the required Likrary format-
director routines.

Phase NU
Datas/format lists in I/0 statements
produce an internal Library calling

sequence (see Appendix D.10) for each data
item and format item pair, using registers
to point at the data item, the data item

DED, and the FED for the format item.
Iterations of data items, as in arxray
input or output, and of format items, are

achieved by making DO out of the

iterations.

loops

The data items are transmitted serially,
with program flow going from an item in the
data list, to the corresponding format item
and then to the relevant Library I/0
module. On return from the Library module,
control goes to the code for the next data
item or, in the case of repeated data
items, to another iteration of the DO loop.

Remote format statements are executed in
a similar way. After the R format item is
met, control is passed directly from the
data list to the format statement until the
end of the format statement. Control then

returns to the item in the in-line format
code of the EDIT statement following the
appropriate remote format item. However,

if no format elements remain but some data
list elements are still present, control is
passed back to the beginning of the format
statement.

An R format item referring to a 1label
which is not attached to a format statement
will <cause an object time error condition
to be raised, and the execution to termi-
nate.

Phase OB

Phase text for
compiler
variables

compiler

OB scans through the
functions and compiler pseudo-

(see Appendix D.8). When a
function is found, pseudo-code is
generated to access the operands of the
compiler functions (e.g., string length,
array bound), and to place the operand in
the location specified by the TMPD follow-
ing the function. Assignments to compiler
pseudo-variables are treated in reverse;
the result from +the TMPD following the
assignment 1is stored in the array bound or
string dope vector slot specified in the
compiler pseudo-variable.

Phase OB also scans the text for BUY,
SELL, and BUY ASSIGN statements. The tem-
porary operands of these statements are
examined, and if +they are CAD or short
fixed-length strings, they are allocated

Section 2

(Compiler Phases):

the next available workspace offset, and
the BUY and corresponding SELL statenents
are removed from the text.

Phase OD

This phase contains the translate and
test takle used by SCAN, and other takles
and constants for phase OE. A block of
scratch core 1is obtained into which the
tables, routines, and constants are moved.

beginning of this area is
register.

A pointer to the
passed to OF in a

Phase OE

Phase OE translates the following tri-

ples into pseudo-code:
Assignment
Multiple source assignment
Multiple target assignment
ALLOCATE, FREE, BUY, and SELL

Special assignment

code

In-line is generated for the fol-

1. Floating-point to floating-point
2. Fixed binary to fixed binary
3. Fixed decimal to fixed decimal
4, Numeric field to numeric field, if the
pictures given for the operands are
identical
5. CHARACTER string to CHARACTER string,
if the operands are fixed length and
not more than 256 characters
6. BIT string to BRBIT string, if the
orerands are aligned and not more than
2040 kits
7. Label to label
8. File constant to file parameter
9. POINTER/OFFSET to POINTER/OFFSET
10. FIXED CHARACTER string to VARYING

CHARACTER string and VARYING CHARACTER
string to VARYING CHARACTER string
provided that:

1. The 1length of the source operand
is not greater than 256 bytes

Pseudo-Code Logical Phase 55

2. The length of the target string is
not greater than 256 bytes, if the
maximum length of the source
string is not known.

3. For FIXED CHARACTER string to
VARYING CHARACTER string the
length of the FIXED string is not

greater than 256 bLytes.

Library calling sequences are compiled
for those cases of CHARACTER string to
CHARACTER string and BIT string to BIT

string codes not compiled in-line.

After checking both AREA operands, AREA
assignments are performed by the library.

All other assignment triples are tran-
slated into the CONV pseudo-code macro.

If the source operand is a constant, the
type of the target operand is inserted in
the constant dictionary entry, for process-
ing by the constant conversion phase, and
the assignment is translated assuming the
target type.

MULTIPLE ASSIGNMENT triples produce the
same code as for single assignment, except
that the registers used by the operand
concerned must not be changed or dropped.

Library calling sequences are generated
for ALLOCATE, FREE, EUY, and SELL triples,
and pseudo-code markers are 1left in the
text for insertion of code by Phase QF.

With SPECIAL ASSIGNMENT triples, if the
target is a varying or adjustable string,
storage 1is obtained if the target is AUTO-
MATIC, or allocated if the target is CON-
TROLLED. The assignment is then translat-
ed.

Phase OG converts to pseudo-code all
statement numbers, statement labels, PROCE-
DURE, BEGIN, PROCEDURE', BEGIN', and end-
of-program trigles.

The CONVERT pseudo-code macro is
examined in conjunction with the OPTIMIZA-
TION parameter and pseudo-code is generated
in one of three forms:

1. Code to call the Library conversion
package
2. Code to perform the conversion

"in-line"

3. A modified CONV macro which is passed
to phase OM or OF for processing.

56

| In-line conversion phases which are
not required (OM and/or OP) are marked
| unwanted.

IGN pseudo-code items and JMP trirples
are removed. The amount of temporary work-
ing space required by each block of prograr
is calculated and placed in the workspace
dictionary entry (see Appendix C.7).

The format of the text 1s converted so
that a pseudo-code item does not span
blocks.

The INCLUDE card matrix is formed for

all the conversion modules required.

Phase_OM

Phase OM is called when either optimiza-
tion levels 00 or 01 are specified. This
phase scans the pseudo-code for the CNVC
macros, which phase 0G has placed into the
text as 28-byte entries containing & trans-
fer vector to select the appropriate ccn-
version routine within OM, and replaces any
such macros with in-line code.

The conversions inserted by phase OM are
controlled by phase CG. When OPT=0, cer-
tain of the simpler FIXED DEC to PICTURE,
PICTURE to FIXED DEC, and FIXED DEC to
FIXED BIN conversions are passed to OM.
When OPT=1, the remainder of the feasible
FIXED DEC to or from PICTURE and FIXED DEC

to FIXED BIN conversions are rassed to OM
together with FIXED DEC to CHAR conver-
sions.

Certain FIXED DEC to PICTURE conver-
sions, which phase OG cannot itself effi-
ciently detect to be uneconoric when per-
formed in-line, are recognized by phase OM,
which 1inserts the calls to the appropriate
Library routines.

|Phase_ OP

| Phase OP generates in-line ccde to crer-
|form BINARY to BIT string, BIT string to
|BINARY, and FLCAT to FIXED RINARY conver-
|sions.
Phase 0S

Phase 03 scans through the constant
chain in the dictionary and converts the

constants to the required internal form.
These are then stored in a constants pool,

and the offset of each constant from the
start of the pool is saved in the dictiona-
ry entry for that constant.

To permit the correct alignment of the
constant pool, three scans are made of the
constant chain; first to convert all double
word constants, secondly to convert all
single word constants, and thirdly to con-
vert all unaligned constants.

In the first two sScans only one pool
entry is made for constants having the same
internal form and value.

A fourth scan 1is made of the constant
chain and all constants required to ini-
tialize static are converted, but instead
of inserting these constants in the con-
stant pool, they are moved into special
dictionary entries constructed by Phase LBE.

THE_STORAGE ALLOCATION LOGICAL PHASE

The purpose of the Storage Allocation

Phase 1is to ensure that every item requir-
ing storage in a PL/I object program
obtains a unique location of the correct

size, located on the correct Dboundary.
Items requiring storage include PL/I source
program variables, dope vectors, dope vec-
tor skeletons, temporary variables, work
areas, data descriptors, symbol tables,
addressing slots, register save areas, flag
areas, etc. Storage locations are allocat-
ed to items in order of descending align-
ment requirement to avoid wasting storage
by padding to the required alignment.

The Storage Allocation Phase 1is also
responsible for generating prologues. In
generating the prologues, expressions which
determine size of variables, code generated
by the aggregates phase to initialize dope
vectors, and code generated by the initial
values phase, must be extracted and placed
in the correct sequence in the text. Also,
when a variable depends for its size or
initial wvalue wupon another variable, the
requests for dynamic storage must be
arranged so that the dependant variable
obtains its storage after +the variables
upon which it depends.

Since all AUTOMATIC and CONTROLLED stor-
age is obtained dynamically at object time,
the Storage Allocation Phase generates code
to relocate dope vectors when the allocated
storage address is known.

Section 2

(Compiler Phases):

| The purpose of phase PA is to determine
|the eligikility of the automatic chains of
|any block for STATIC DSAs. Any chain not
|so far found to ke ineligible for a STATIC
|DSA is scanned to determine the DSA size.
| STATIC DSAs are generated for any chains of
|less than 512 bytes.

| Dictionary entries are generated for
|STATIC DSAs. This phase also acts as a
|spill area for routines used in phases PD
|and PH.

Phase PD

Phase PD is the first STATIC storage
allocation phase. It scans the text, and
for every second file statement encountered

sets up a pointer in the associated dic-
tionary which points to the second file
statement. It then sorts the STATIC chain

so that the dictionary entries occur in the
order in which the storage for their items
will be allocated.

for simple non-
variables, RDVs,
and the BCD of

Storage is allocated
structured, non-external
DEDs, SAVE/RESTORE entries,
entry labels and lakel constants. Storage
is also allocated for dope vectors for all
items in the STATIC chain requiring them,
{with the exception of EXTERNAL items. A
|full word address slot is allocated in
| STATIC for each STATIC DSA.

The external section of the sorted
STATIC chain is scanned and a U4-byte
addressing slot is allocated for each entry
label, label constant, external (entry tyge
4) entry, built-in function, or EXTERNAL
item. For each EXTERNAL item the size of
the external control section is calculated
and stored in the dictionary entry.

The constants chain is scanned and the
offsets of the storage and dope vectors for

constants in the constants pool are relo-
cated.
The current size of the STATIC INTERNAL

control section is computed and the result
is passed via the comrunications region to
the next phase.

Phase PH

Phase PH is the second STATIC storage
allocation phase. It scans the AUTOMATIC
chain and CONTROLLED chain for all items

requiring a dope vector.

Storage Allocation Logical Phase 57

For each such item a skeleton dope
vector dictionary entry is generated in the
STATIC chain (see Appendix C.7). This
dictionary entry contains a bit pattern
equal in length to that of the dope vector
and containing all those values which are
known at compilation time. In particular,
it contains as much of the relative virtual
origin as is known at compilation time, the
constant bounds and string lengths, and the
constant multipliers.

Skeleton dope vectors are not put into
the STATIC chain for AUTOMATIC variables in
any block whose DSA is in STATIC, except
when the variable dimensiocns bit is set to
one.

If the item is dynamically DEFINED, then
the dope vector is preceded by one extra
four-byte slot. (In the case of structures
there is one extra slot for each element of
the structure.) if the item is a dynamic
temporary (temporary type 2) or a CON-
TROLLED scalar string, the virtual origin
slot is relocated by the length of the doge
vector.

In all cases the skeleton dope vector
dictionary entry is pointed at by the
dictionary entry of the associated item.

The sorted STATIC chain is scanned from
the first skeleton argument 1list entry.
For each such entry, space is allocated in
the STATIC INTERNAL control section accord-
ing to the assembled length of the argument
list. The offset of each skeleton argument
list 1is stored in the OFFSET1 slot of the
dictionary entry.

RDV and DVD entries are found on this
same .scan of the STATIC chain. RDV entries
are allocated eight bytes; DVD entries are
allocated the specified length.

A scan is made of the section of the
STATIC chain containing STATIC INTERNAL
arrays. Storage is allocated for each
array according to its size (computed by
Phase JK) and the offset of the relative
virtual origin is relocated to the start of
the STATIC INTERNAL control section. If
the array is of the VARYING type and it
needs a dope vector, then storage is allo-
cated for the secondary dope vector. The
number of elements is calculated for INI-
TIAL arrays and stored in the associated
INITIAL dictionary entry.

The section of the STATIC chain contain-

STATIC INTERNAL structures is scanned.
Storage is allocated for each structure
according to the size of the structure
(computed by Phase JK), and this storage is

ing

placed on the correct boundary on informa-
tion supplied by Phase JK. The structure
member chain for each structure is scanned

58

and the relative offset of each member is
relocated to the start of the STATIC INTER-
NAL control section. Further, on the
structure member scan, secondary dope vec-
tors are allocated when required, and the
number of elements is calculated for INI1-
TIAL arrays.

Phase PL

Phase PL scans the STATIC, AUTOMATIC,
CONTROLLED, structure, and PROCEDURE block
chains for variables which require storage
for their symbol tables and/or data element
descriptors.

When a variable is found which requires
a symbol table, the variable is joined onto

the chain of symbol variables for the
particular block. A symbol takle dictiona-
ry entry is created for the variable (see

Appendix C.7), and a chain is set up to and
from the dictionary entry for the variable.
The new dictionary entry is joined onto the
STATIC chain.

The
lated,

size of the symbol takle is calcu-

and its offset from the start of the
STATIC control section is stored in the
symbol table dictionary entry. Throughout
the allocation of STATIC storage a location
counter is maintained to contain the next
free location in STATIC; this counter is
increased appropriately.

All symbol variables require a DED and a
branch is taken to the routine which allo-
cates them.

When a variable is found which requires
a DED, it is determined whether or not the
DED describes a standard type; there are
eight standard types, which consist of the
different kinds of real coded arithmetic

data that can be obtained by the combina-
tion of the attributes FIXED/FLOAT,
BINARY/DECIMAL, LONG/SHORT (default preci-
sions only).

If the DED is of a standard type, a
check is made for an identical DED that may

have already been encountered, so that
there will be only one allocation of stor-
age for any one type of standard DED. If

the DED is not of a standard type, it is
allocated storage of its own.

If +the variakle does not already have a
symbol table dictionary entry (which con-
tains space for DED information), a DED
dictionary entry is constructed; and the
offset of +the DED in the STATIC control
section is stored in it. A pointer in the
new entry in the dictionary entry for the
variable is also set up.

When all data element descriptors and
symbol +tables in the compilation have been
processed, all STATIC storage has been
allocated and the total size of the STATIC
control section is placed in a slot in the
communications region.

Phase PP

Phase PP extracts all ON condition
entries and places them at the head of the
AUTOMATIC chain. It then extracts all
temporary variable dictionary entries from
the AUTOMATIC chain and places them in the
zone following the ON conditions in the
chain.

All dictionary entries which are totally
independent of any other variable are
extracted, and also placed in the zone
following the ON conditions.

The phase
entries which depend upon some other varia-
ble in containing blocks or in the =zones

already extracted, and places them in the
next following zone. Dependency includes
expressions for string lengths, expressions

for array bounds,
iteration factors,

expressions for INITIAL
and defined dependen-

cies., This 1is repeated recursively until
the end of the chain.: If some variable
depends wupon itself, a warning message is
issued.

A special zone delimiter dictionary
entry is inserted between each zone in the
AUTOMATIC chain (see Appendix C.7). A code
byte is initialized in the delimiter to
indicate to Phases PT and (F whether its
following zone contains any variables which

require storage (i.e., it does not consist
entirely of DEFINED items, which do not
require storage), and whether or not the

following zone contains any arrays of VARY-
ING strings.

Phase PT

Phase PT allocates AUTOMATIC storage,
scans the CONTROLLED chain, and determines
the size of the largest dope vector. It
scans the entry type 1 chain, and for each
PROCEDURE block or BEGIN block it allocates
storage for a DSA and compiles code to
initialize the DSA.

A two-word slot in the DSA is allocated
for each ON condition in the block, and
code 1is compiled to initialize the slot.
Space for the addressing vector and work-
space in the DSA is also allocated.

Section 2 (Compiler Phases):

then extracts all dictionary

| Two words are allowed for tasking infor-
|[mation in the DSA if the TASK option is on
|the external PROCEDURE of the compilation.

The AUTOMATIC chain is scanned and dope
vectors are allocated for the items requir-
ing them. Code is compiled to copy the
skeleton dope vector, and to relocate the
address in the dope vector.

| Where there is a klock with its DSA in
|STATIC, dope vector initialization 1is not
|performed for the variables in the first
|region of the AUTOMATIC chain. Address
|slots in dope vectors for variables in the
|remainder of the chain are relccated.

Storage is allocated for addressing tem-
poraries type 2 and for addressing con-
trolled variables, and for the parameters
chained to the entry type 1.

The first region of the AUTOMATIC chain
is scanned and storage allocated for double
precision variables, single precision vari-
ables, CHARACTER strings, and BIT strings,
in that order.

The first region of the AUTOMATIC chain
is scanned and storage allocated for
arrays, relocating the virtual origin. Fox
arrays of strings with the VARYING attri-
bute, the secondary dope vector is also
allocated and code is corpiled to initial-
ize the secondary dope vector. Correctly
aligned storage is allocated for struc-
tures. If a structure contains any arrays
of strings with the VARYING attribute, the
storage for the secondary dope vector is
allocated at the end of the structure.

A pointer is set wup in the AUTOMATIC
chain delimiter to the second file state-
ment which has been created.

The remaining regions of +the AUTOMATIC
chain are scanned and code is compiled to
obtain a Variakle Data Area (VDA) for each
region. code 1is compiled to «copy the
skeletons into the dope vectors and to
relocate the addresses in the dope vectors.
During this pass, any DEFINED items which
are to be addressed directly have the
storage offset and the storage class copied

from the data item specified as the base
identifier.
Phase QF

Phase QF, which constructs prologues,
scans that text which 1is in pseudo-code

form at this time with end-of-text block

markers inserted.

Storage Allocation Logical Phase 59

When a statement label pseudo-code item
is found, it is analyzed and one of three
things happens:

1. The item is saved if it relates to a
PROCEDURE statement

2. The item is omitted if it relates to a
BEGIN or ON block

3. The item is passed if it relates to
neither of the first two conditions

Wwhen a BEGIN statement is found, a
standard prologue of simple form is gener-
ated, and code is inserted from second file
statements (if there are any) to get the
DSA, either dynamically, or in the case of
eligible bottom-level blocks, by using the
supplementary LWS made available at ini-
tialization time. Code is also inserted to
initialize the DSA and to allocate and
initialize any VDAs.

When a PROCEDURE statement is found, it
is first determined whether it heads an ON
block or a PROCEDURE block. If it is an ON
block, a standard prologue (similar to that
for a BEGIN block) is generated. If it is
a PROCEDURE block, a specialized prologue
is generated. This takes account of the
manner of getting the DSA, the number of
entry points, the number of entry labels on
a given entry point, the number of paramet-
ers on each entry point, and whether the
PROCEDURE is a function.

Prologue code is generated for AUTOMATIC
scalar TASK, EVENT or AREA variables, in
order to perform the initialization
required when these variables are allocat-
ed.

The code generated by the prologue con-
struction phase is partly in pseudo-code
and partly in machine code. The machine
code (which is delimited Ly special pseudo-
code items) has the same form as the code
produced by the Register Allocation Phase
(see Appendix D.7).

DSA optimization 1is performed wunder
certain conditions (see Appendix H).
At the end of the prologue, the state-

ment label item saved earlier is inserted
to mark the apparent entry pgoint. Code is
produced to effect linkage to BEGIN blocks
in such a way that general register 15
contains the address of the entry point,
and general register 14 contains the
address of the byte beyond the BEGIN epilo-
gue.

At the end of the text, any text blocks

that are not needed are freed, and control
is passed to the next phase.

60

Phase QJ

Phase QJ scans the text fcr

FREE, and EBUY statements.

ALLOCATE,

On finding an ALLOCATE
routine is called which does a 'look ahead'
for initialization statements associated
with the allocated variable, e.g., adjusta-
ble array bounds or adjustable string
lengths, and places the text references of
each statement in the dictionary entry
associated with each statement.

statement, a

If the allocated item has a dope vector,
code is generated to move the skeleton doge

vector generated by Phase PH into a block
of workspace in the DSA of the current
block.

Any adjustable bound expressions or

string length expressions are then extract-
ed from the text references, and the
expressions are placed in-line in the text.

Any information required from previous
allocations (specified by * in the ALLOCATE
statement) is extracted from the previous
allocation, and copied into the workspace.

Code generated by Phase JK to initialize
multipliers, etc., is extracted and placed
in-line, after first loading the variable
storage accumulator with the dope vector
size. Phase JK generates code to increment
the accumulator register by the size of the
item.

If the
ers, code is
accumulator
pilation time. If
than 4,096,

item has no adjustable paramet-

generated to increment the
by the size calculated at com-
this size 1is greater
Phase JK generates a constant

dictionary entry, which 1s wused in this
code.
If the item has any arrays of varying

strings, the size of the array string dope
vector is added to a second accumulator
register. Code is generated toc add the two
accumulators into the second one, which is

a parameter to a Library routine. A rou-
tine is then called which extracts the
Library call inserted by pseudo-code and

places it in-line in the text.

Code is inserted after the Library call
to initialize the dope vector in workspace
to point to the allocated stcrage. Code is
generated to transfer the dope vector from
the workspace to the allocated storage.

Any initial value statements associated
with the ALLOCATE statement are extracted
and placed in-line. The initialization
statements are then skipped, and the scan
continues.

The action on -encountering a BUY state-
ment is similar to that for the ALLOCATE
statement, with the following exceptions:

1. Bound and string length code is in-
line, bracketed between BUYS and RUY
statements - there is therefore no
look ahead

2. There 1is no initial value code

associated with temporaries

3. A slot in the DSA is updated with the
pointer to the allocated storage for a
temporary

The action on encountering a FREE state-
ment is to generate code to load a paramet-
er register with the pointer to the allo-
cated storage for the FREE VDA Library call
inserted by the pseudo-code.

Phase QX is the 'AGGREGATE LENGTH TABLE'
printing phase. It is entered only if the
ATR (attribute list) option is specified.
It scans the STATIC, AUTOMATIC, CONTROLLED
and COBOL chains, and, for each major
structure or non-structured array that is
found, an entry is printed in the AGGREGATE
length table.

An AGGREGATE LENGTH TABLE entry consists
of the source program DECLARE statement
number, the identifier and the length (in
bytes) of the aggregate. In the case of an
aggregate with the CONTROLLED attripute, no
entry is printed for the DECLARE statement,
but an entry is printed for each ALLOCATE
for the aggregate, the source program ALLO-
CATE statement number being printed in the
'statement number' column.

Where the aggregate length is not known

at compilation the word "adjustable" is
printed in the 'length in bytes' column.
In the case of a DEFINED aggregate, the
word 'DEFINED', and not the aggregate
length, appears in the 'length in bytes '
column.

THE _REGISTER_ALLOCATION LOGICAL_PHASE

of the Register Allocation
insert into the text the
addressing mechanisms for all
and to allocate physical

The purpose
Phase 1is to
appropriate
types of storage,

general registers where symbolic registers
are specified or required as base reg-
isters.

Section 2 (Compiler Phases):

This
es, each with a

phase comprises two physical phas-
specific function. The
first, Phase RA, processes the addressing
mechanisms, while the second ghase, Phase
RF, allocates the physical registers.

Phase RA

Phase RA scans the text fcr dictionary
references, the beginnings and ends of
PROCEDURE a&and BEGIN blocks, and the start-

ing points of the original PL/I statements.

A dictionary reference, when found, is

decoded into a word-aligned dictionary
address and a code. These are used to
determine what is being referenced. The
corresponding object time address as an

offset and base is then calculated.

If the address required has an offset
less than 4,096 and a base which is either
an AUTOMATIC or STATIC data pointer, no
extra instructions are generated. If this
is not so, extra instructions are inserted
in the text stream to calculate the
required address. The calculation of this
address is broken down into logical steps
fin a ‘'step tablel.' On completion, the
table is scanned backwards to deternrine
whether an intermediate result has Leen
previously calculated. The steps which
have not been previously calculated are
then assemkled into the pseudo-code.

The comgpiled code is added either to the
output stream or to a separate file. The
code in the separate file is terminated by
a store instruction to save the calculated
address. The extra "insertion file" is
placed in the prologue of the relevant
block by the next phase. Instructions are
stored in-line if the referenced item 1is
CONTROLLED, if it is a parameter, if fewer
instructions are required to recalculate
the base rather than 1load the stored
address, or if the reference itself is in
the prologue.

If no addressing code 1is generated, a
special item is put in text to tell phase
RF what base to use.

All relevant information for PROCEDURE
and BEGIN blocks is stacked and unstacked

at the start and end of the klccks respec-
tively.
At the start of PL/I statements, code. is

compiled +to keep the required PREFIX ON
slots in the Dynamic Storage Area updated.
On meeting the pseudo-code error marker,
the calling sequence to the Library error
package is generated, and the error marker
removed.

Register Allocation Logical Phase 61

If the STMT option has been specified,
code is generated at the start of each PL/I
statement to keep the statement number slot
in the current DSA up to date.

Phase RF
Phase RF scans the text for register
occurrences, implicit and explicit, and the

start and end of PROCEDURE and BEGIN
blocks. At the beginning of PROCEDURE and
BEGIN blocks all relevant information is
stacked, and 1is later unstacked at the
corresponding end.

classified

Registers are as assigned,

symbolic, or base.

Assigned registers require the explicit-
ly mentioned register to be used. If that
register 1is not free it is stored. Symbol-
ic registers may occupy any register in the
range 1 through 8. An even-odd pair may be
requested. Base registers may occupy any
of registers 1 through 8.

When a register is requested, a table of
the contents of registers is scanned, to
determine whether the register already has
the required value. If it does, that is
used. If it does not, and it is not an
assigned register, a search is made for a
free register and this is allocated if one
is found. Should no register be free, a
look-ahead is performed to determine which
register it is most profitable to free.

If a register contains a base it need
not be stored on freeing. If a register
contains a symbolic or assigned register,
it may require to be stored when freed,
depending upon whether it has had its value
altered since any storage associated with
it was last referenced.

At a BALR (Branch and Link) instruction
it is insured that all the necessary param-
eter registers are in physical registers,
and not in storage.

No flow trace is <carried out by the
compiler. Therefore, the register status
is made zero at branch-in and branch-out
points. An exception is at a conditional
branch. Here the registers are not freed
after having been saved.

Any coded addressing instructions are
expanded when found in-line. At a specific
"insertion point" in a prologue, any

addressing instructions in the "insertion
file" are brought in and expanded.

62

THE FINAL_ ASSEMBLY LCGICAL PHASE

The Final Assembly Phase converts the
pseudo-code output of the register alloca-
tion phase into machine code, the principal
functions keing the substituticn of machine
operation codes for pseudo-code operations,
and the replacement of PL/I and compiler
inserted symbolic lakels by cffset wvalues.

Loader text is generated for program
instructions, DECLARE control Dblocks, and
OPEN file <control ©blocks, initial values
defined in the source program, parameter
lists, skeleton dope vectors, symbol
tables, etc. ESD and RLD cards are gener-
ated for external names and pseudo-
registers. An object listing of +the code
generated by the compiler is produced if
the option has been specified by the source
programmer.

Phase TF

Phase TF scans the text, assigns offsets
to compiler and statement labels, and
determines the code required for instruc-
tions which reference lakels.

The size of each procedure is determined
and stored in the PROCEDURE entry type 1.
A location counter of machine instructions
is also maintained.

Phase TJ

Phase TJ scans the text until no further
optimization can be achieved in the final
assembly.

A location counter is rmaintained for
assembled code, and offsets are assigned to
labels.

The size of each procedure is determined
and stored in the PROCEDURE entry type 1.
The amount of code required for instruc-
tions to reference 1labels is also deter-
mined, while attempting to reduce this from
the amount estimated by the first assermkly
pass.

This phase also attempts to reduce the
number of Move (MVC) instructions by
searching for consecutive MVC instructions
which refer to contiguous locations.

Phase TO (TQ)

Phase TO sets the four byte slot ZPRNAM,
in the communication region, toc contain the
first four characters c¢f the first entry
label of the external procedure, for the
purpose of object deck serialization.

Phase TO also produces ESD cards for the
compiled program. It first makes up six
standard entries for:

1. Program Control Section (CSECT) (SD
type) allowing room for the compiler
subroutines if these are present.

2. STATIC internal CSECT (SD type)

3. Invocation count (PR tyge)

Library
(ER type)

4. Entry points to routines,

IHESADA and IHESADB
5. IHEQERR (PR)
6. IHEQTIC (PR)

If the external procedure has the MAIN
option, an entry for a one-word CSECT (SD
type) is made up. An entry is made for the
CSECT 1H entry and entries are made up for
all entry labels in the external procedure
(LD type).

The entry type 1 chain is scanned and an
entry (PR type) is made up for each Llock
and procedure.

The external section of the STATIC chain
is scanned and entries are made up for:

1. Built-in functions and library func-

tions (ER type)

2. Files (ER type)
3. STATIC external variakles (SD type)

4. External entry names (ER type)

5. Programmer ON condition names (SD
type)
The CONTROLLED chain is scanned and an

entry is made up for each CONTROLLED varia-
ble and task name (PR type).

The
is incremented to
subroutines.

size of the program control section
include the compiler

All STATIC DSAs are put into the STATIC
INTERNAL control section, their combined
sizes being allowed for when the size of
the CSECT is calculated.

Section 2 (Compiler Phases):

Module TQ is used to produce a 1list cof
Library conversion routines required for
execution of the program. ER type entries
are made up for each name in the list.

Phase TT

Phase TIT scans the text and maintains a
location counter for assembled code.

Loader text (TXT) and relocation direc-
tory (RLD) cards for requested combinations
of load and punch files are generated.

Nested procedures are unnested at object
time by suitable manipulaticn of the loca-
tion counter. The offset of each procedure
from the start of text 1is left in the
PROCEDURE entry type 1.

Compiler 1labels are numbered for use by
the object listing phase, and trace infor-
mation is set up at entry points. Phase TIT
also generates +the text for the compiler
|subroutines. These subroutines are put. out
|in one of the following combinations:

| 1. EPILOGUE sukroutine
| DYNAMIC PROLOGUE sukroutine
| STATIC PROLOGUE subroutine
| 2. EPILOGUE subroutine
| DYNAMIC PROLOGUE sukroutine
| 3. EPILOGUE subroutine
| STATIC PROLOGUE subroutine
Phase_UA
Phase UA generates text for the static
internal CSECT; initializes a CSECT for
each static external variable; and, option-

ally (if the LIST option is present), lists
all the text produced for the static inter-
nal CSECT and provides suitakle comments.

The phase first scans to the start of
the external section of the STATIC chain,
generating text for entry labels, 1label
constants, compiler 1labels, file attri-
butes, lakel variakle BCDs, and DEDs for
temporaries. Simple variakles found on
this scan are used, together with the
labels, to mark the start of the character
string section of the chain.

The phase then scans to the end of the
external section of the chain, initializing
address constants for external variables,
external entry names, built-in and Library
functions, programmer-defined ON-condition
names, external files, and label constants.
Text is made up for the constants pool.

Final Assenbly Logical Phase 63

scan of the STATIC chain
at the point left by the previous
scan, and generates text for dope vector
skeletons, argument lists, RDVs and DVDs,
and symbol tables. The scan is terminated
at the end of the chain.

The
starts

third

cards for the
the

Phase UA makes up RLD
address slots for STATIC DSA's and for

address slot of the start of the epilogue
subroutine, if generated.

Text cards are output to initialize all
AREA's, EVENT's, and TASK's. Arrays of
AREA's, will have a text <card for each
element.

Phase UD

Phase UD generates RLD and TXT cards to
set up dope vectors at link-edit and load
time.

TXT cards are generated for each STATIC

DSA, containing its length, which is found

in the STATIC DSA entry.

TXT and RLD cards are generated to set
up the dope vectors for structured items
and any non-structured items appearing in
the AUTOMATIC chains. The TXT cards are
derived from the skeleton dope vector
entries. The RLD cards are generated for
each virtual origin slot.

When the last STATIC DSA has been proc-
essed control is released from phase UD.

Phase UE

Phase UE initializes those items on the
STATIC chain not processed by Phase UA.

The phase first scans to the start of
the external section of the chain, making
up text for simple data, and listing 1label
variables.

The second scan starts at the head of
the character string section of the chain,
and initjalizes dope vectors for all static
internal variables which need them.

The third scan corresponds in extent to
the third scan in Phase UA, but generates
text for arrays, and simple and interleaved
structures. At the end of this scan, a
test 1is made to determine whether the
external procedure of the program has the
MAIN option. If so, a one-word CSECT
(IHEMAIN) is made wup, to contain the
address of the principal entry point to the
compilation.

64

The phase then executes its final scan,
which extends over the external section of
the chain, to initialize a CSECT for each
external variable or external file.

incomplete text and RLD
cards are punched out, and an END card is
produced for the compiled program. If the
OBJNM parameter 1is present for katch compi-
lation, phase UD punches a NAME card to
follow the END card.

Finally, any

|Phase UF_ (UH)

Phase UF scans the text, and lists, in
assembly language format, machine instruc-
tions compiled for the source program. It
inserts comments in the listing for state-
ment numkers, statement labels, entry

points, prologues, and procedure bases.

Phase UF contains module UH which gener-
ates NAME from a dictionary reference. UF
also 1lists the text for the compiler sup-
routine. This is done by releasing UH and
loading module UI which performs this func-
tion. Upon termination of this phase
module UI passes control to phase XA.

THE ERROR EDITOR PHASE

The Error Editor Phase is entered at the
end of all compilations. The first phase,
Phase XA, examines the dicticnary and det-
ermines whether there are any messages to
be printed out. If there are none, this
phase terminates the compilation. If there
are diagnostic messages to ke printed out,
phase XB is loaded and the third section of
the phase directory is completed. Phase XC
is then loaded and this together with phase
XA causes further modules (XF, and blocks
XG to YY) to ke loaded, which process the
error dictionary entries and print out the
appropriate messages.

Phase XA examines the heads of the error

chains in the first dictionary block, and
the programmer options which sgecify the
severity level of messages required. If
there are no diagnostic messages to Dbe

printed, this phase prints out a completion
message and completes the compilation. If
diagnostic messages are reguired, the phase

loads module XB which completes the phase
directory for Compiler Control. Phase XB
is then released and phase XC and the

message address block XF are loaded.

The error editor then scans down the
error message chains and marks each error
dictionary with an indication of where the
associated message is to be found. This
information is obtained from a table in
module XF.

The text of all error messages 1is\ kept
in modules XG through YY. The messages are
ordered, by severity, within these modules.
Module XA will have listed those modules
which contain messages required for a par-
ticular compilation. Module XC loads and
releases these modules, one at a time, and
extracts the required messages. Having
loaded a particular module, the phase scans
down the associated error message chain in
the dictionary for error entries asscciated
with the module. It accesses the error
message text and scans it.

Section 2

The message to be printed is built up in

a print buffer in internal corpiler code.
This involves a translation from EBCDIC
mode, which is used for the rmessage text

The message 1is completed by the
iden-

skeleton.
insertion of a statement number, an

tifier, or a numeric value as specified by
the message dictionary entry. The message
is segmented, where necessary, to avoid

spilling over a print line, translated to
external code, and finally printed out.

message dictionary
entries have been processed, module XB
returns control to phase XA, which passes
control to module AA for termination of the
compilation.

When all error

(Compiler Phases): Error Editor Phase 65

SECTION 3: CHARTS AND_ ROUTINE DIRECTORIES

This section
to the compiler
flowcharts and
tine directories,

provides a complete guide
logic, - in the form of
associated tables and rou-
arranged in phase order.

Flowcharts

The flowcharts are presented at three
levels of detail -- overall, logical phase,
and physical phase. The overall compiler
flowchart (Chart 00) points to the logical
phase flowcharts (Charts 01 through 09),
each of which appears at the head of the
set of physical phase flowcharts to which
it points. The physical phase flowcharts
point (by means of identifiers placed next
to the blocks) to the various routines
used. Entry points to physical phases are
labeled.

Where transfer is effected between
modules within a physical phase, the entry
label into the entered module is shown as
follows:

1. Where the means of transfer is a trans-
fer vector, an asterisk is shown as the
label on the flowchart, and a note at
the foot of the chart states +that the
transfer vector table is located at the
start of the module.

2. When transfer is made from a decision
block, the block representing the entry
is labeled.

With the exception of "fall-through"
branches, all branches from decision blocks
are labeled where possible. Where the
branch is actually a branch table, this
fact 1is indicated on the chart, and the
label of the branch table is given.

additional 1labels have
assist 1in following the

In some cases,
been given, to
program flow.

66

Tables and Routine Directories

For each physical phase, a table is

provided, which 1lists the orerations per-
formed and identifies the routines and
subroutines involved. Where applicable, a

routine directory follows the takle. This
provides an alphanumerically arranged list
of the routines and subroutines contained
in the phase, and states their function.

In some cases, a physical phase compris-
es more than one module; this means that
routines contained in different modules may
be listed together in one <routine direct-
ory. To assist in cross-reference to the
compiler listings, the fcllowing convention
has been adopted: if a routine is contained
in a module whose lakel is not identical to
that of the phase under discussion, the
label of the containing module is inserted
in parentheses after the routine name in
the directory.

In the case of a phase sharing a routine
contained 1in another phase, the label of
the containing module is indicated in
parentheses after the routine name in the
"Subroutines Used" column. The routine
will not then appear in the routine direct-
ory for the phase under discussion, but
will be found in the routine directory for
the containing phase.

Chart and Takle Identification

Identification of takles
phase flowcharts is
label.

and physical
based on the phase

*
*
*
L

RS!‘:mN

(&1

bt YAL L L DL LT
CaMPIL

*
M B W B B

%acescasaX®

*
ANLT

Overall Compiler Flcwchart

-

AEERAD RARRAENRS
ENTRY
SRR RERRERBORY

.
-
L]

Chart 00.

©
z
-
z >
- x
< v -
- uw 4
z T © c
=] w z wa e
< I w w Irr z
. - (=] z @ iaCe
- w > —ciu ——T> x
> = — x w w_ou PIRT<] 1=}
& ez etk <« T ITZow weY £ (=73 Wi
z xu SCux - - o< =2y wy ca
- wx vuw z - < <o I« c
O w v > >z bt > T (== wCz
nZ - ww wo— < S=laz un k=
e OIC o (53 GuwraZ B SZCim
a o= [wi v S o —— < -2 2uC =
Uzt & IOZ o TOW>¢ z]re cuz
oS ezo L=~ —wew a 2. weC
QoICL, u—Zz agqu DT T mn S
e «_« @wlv Z PO-a ZCH
w az xa O C_zuw W-Za s cio
xewy [T oS T VEOT wz _ wC Lo EZ o
ocTe~ —_—— wnza [=1= aucs>a fri) Cvi
@ - Wt o I = wa I¥CZ Wi weL e
v u D= Onac wuxz aw 00 wisv NImZ
ux < < W < CTm ——n0s <& <
s aFu Wers T e ITo I <
Sz w CZ wous axuwv T =C ac— 2oCk
xEX0 5 aToa W Comim Sar —z>
auw e QI Tw s - - w a 5%
1000 <<a aeny Ty Fee OTEZN <<z <ane
wawD P W O CX i O w o> <>
L= gozw a3 e>a — L EZ —_cd —a
a vl > axa BZut- o <Suw or Lol
ax OXnO Cquc Curz> LLa O o S . SxCa
wwTw a < — - —SCZWwer ©Z aZw . IO
rFO LW %4 e —uOd ——ydCE > <
—CF Tuuws cCor > FeZ <y —C xuu vote
= O LO-T —a Zx cuw O AT UK [t} WZi
1 we — 00 QW QO VAT I =& —an .
wuTe WOt Z - Z QO ZaXeqw R e a ou
- Oa > - O> -0 qa M = Q=¥
—_— >~ |oxe — - x<nZwa na-C W OO
coany - Ix Oawl - o wg Sl ZDO- W
E X EAOe A = OZua Wit 0. DX -0 CDxo
QozZ- o= woun —cxow & oW grow OFarCh
Oow, we o O=aaT 8 swuwy - we OO
waln 32 e w532 refes = wEoas
wo wia w
ITXXw TO=Z IXITa Tewwe TwaCrun ITiaa IrZne
oo W [Ty ~COoak Ve ooy OO
Sesesesscvssesesvscsce
. .
m . .
] =
= » oA A 2 22] . sEENaas (3. oAt 2 1 - AREREEE L 350021 EARES
e * e - - . *#01 - 200 - (X3 -3 * tSh * *o1
* » * ¥ * - . Za W #CTg u & * . *laaw & L woa *ow W
° . - . -4 o # . @ 1t e & 1 0%] . % 100 # - u L *# 1w
* Z ® - * »n * xC * . = % _a & # a>a & * Z ® ' < & - xS ¥ * Eu<
* O e O . . w R WOURS ¥ . & 1ZX = & |axX & ¢ UD e O * |4aT ¥ * hDH * * .EM
%* O -z * e %> . R . * #ea # +* wqe @ * w *z * 5.0 # “ #-a @ LR
P WEE o = SDwWOWw ¥ x R % I1Z @ o az o % (0 = % 1< » * i<
o800 exB BU #* 000 exch o # e0s0XHD AU ¥ eeesooxH #* ®oeoooex® 20 8 esev et XC ¥ ooseext BT WeveseeXE #._id % seees et FCOJ
N Tl o wa ° ru>aO ¥ > s i1ad s ® e & o NS . x # ld< # ® jna # 2 Ju<
EE T N =T % X * . o $wo @ N~ RO & N e # « & #aO ¥ N #20 # N fxo
& e © U . Swocra * . W 1 & w oo # O o . e X ik~ & = <= & ¥ les
. O & - * * cow # . IR I & a0 * *<aC # - ¥ 21O 8 @ B ¥ - oo
L) .o o * U ® - 3 s # ioC #) e * 1uc &] * 19C
* = LR * a # . .« % 8 . % o8 LR] . & Moy ¥ * - % - % J
.o .o = » . *) * - 1 » .. « & 10" # .1 - !
S‘ - Fhpnua® . 23RBS REERREE Sl . FERAERRE E 222 T X 2 *ntan
. . . .
we , . we .
> e . > .
- $esestetPessscntenrnge . .
. . . .
. . . -
. . . .
- Qs - .
13 Ze L .
A AT 2 2 4 » (2.2] - ® .
el - o » -4 - - .
scE - * # - » -4 - .
- h.tk - g . . * * * .
4 #ZC » * * »n - - Fws & .
® jrwn e QO o W . - * DD # .
Feo & & =T 8> S xS *COOZwe .
* & Iw & » -C . = & * DE W .
2 BWO ¥ 000 exi S CRTPPppe | > s - OXTE s o0
* 1O #® . v - * - 8 *ZX was
- R # - —c & MR e Ol b
o jaa # (%] T . O « & Ox-Tw #
* STW * * -+ - SoqEx *
* I0x # . . * & * -
M a*02 ® - . ” - - » *
F s LX] - -
Sadaans ¥ sax * »
*

67

ctories

charts and Routine Dire

3

section

»*
HRAARR AR RK

-

Chart 00. Overall Compiler Flcwchart (cont'd)

TEERIAD RRRR RS
l l-. Z.

SEUDU CODE *
t LOGICAL PHASE *

»
##‘.“’!#"li‘ltli

xe o000

81 “w, ' THENRDZMSERe R THE S
ok *, ' nge DICT{DN
NO % ATR *, ‘-ﬁ—'—%l—‘-.-* ALL DE
TION .‘X........* REGIDNS
. * o *

D
R :.aeekgﬂe ailse 3

RARREC | RERRREERER ARG D R THE REG;
* * A CTTT) ‘NALVEI

: zzégg OUE . x:-a-;gz-t-o---c :x : cé :9MVSl AL

3 LENGTR TAbLe sttteeee ALLd GLiffRy AReemeic2 g

b . x LOGICAL RHASE X CEEe)

e e a0 e

bt FA L L 2L L L L]
*
‘FINA ASS HB V *
-
Sl A

WRRREERE R Rk

:tuttﬁzt-nouo.ct.
tOBJECT L?E?luc ‘

t.“ Ll il 2] L] t

esressscessenssnsnnas

eXsoesossenee
.

¥ *.
NO % ANY *
seee®s DIAGNOSTICS o*
g ¥

.

.

. ‘. l.

. * YES

. .

. .

. .

. .

. %

M FAEREH2 AR
* .

Do

. ok HESSAGES :

T PP

. .

sevecesseceXe

X
L]
", .t Pk
* - A%
. . %
. *
.
.
.
X
LR e T TR T
* RETYRN TN *
:CALLING PRDGRAH:
R T e P

68

Chart AA.

Resiient Control Phase Logic Diagram (Modules

AA through AM, ard JZ)

orn
* 81 *
-
Rk
M
.
INIT PNEILE ROP oPTeR .
treren2erenraneny n& glgtttttttttt O N eraakamermmrnn Fe2ikasedeersnenn
Lo esstenin EinrradAl, ot arEN . s M *
LIZAT N YSPRIN BUILN FIRST * NAD TEMAF *
’.C‘lLLING PRQGR‘M“.-.--...X' IEH£B :a-o-oonnK‘§V§U"sbk‘z§u€%c'--onc o..x:““ pAL : ‘.-e--n-nX‘: aéyﬂozROCE'S(% ‘;
Feorrnnnerneren . S DIRECTORY - TONS LIST %
AR AR AR KR Seerreeranennsder
o ok o
* . * * . .
* Hl %*.4. * B3 *X,, * B3 %o,
LI . .
L LU A wxka L NO ke
X *,
REORAD | kR R 82" "%, SEREIRT FRAARRRRAE B4 w,
. « o 'R - . o .
* e ¥ FXTiND D % YES * * . ES *,
* RELEASE IEMAF # sesseX®y DICTIONARY o . * LOAD IEMAN ¥oeoenven X¥e MA DgK < .
* * . *REQUIRED +* . * * X *, SPECIFIED. * X
* . . ., o M o* .
SRUSECRE RN RO RE he ok T REERREERNRRREARE : L .
. . * ° . * YES " *
. . X °
. o
.)
. . . seeee
X « NO \ . . Py " o
o ¥, 0‘0 X . X . °
1’ Tw, . -, CRERRCARRRRRESRAR o RERERC AR : :
ok . . és *e - * . * * . o
o® IS THIS %, NO o SA TVPE *, = . * * o .
-, A BATCH e¥re0e -.eX’oOF glCT%UN RV" € LOAD IEMAL Foaoves & OPEN SYSPUNCH *ceveeo °
o Joe - * X * * .
. o o *, * * . * * °
. . EEESRRR RO ERRSE o PP N
. “at YES ° .
N . . B
ceesesvacsconre N .
.
0008006002000 00000000000n000acasessesestsrstortecnceosotesnsssesarsssctsbortstesecsnsstossosaossersansnas
UMP X
AAERD] RERRASIRE N
.
- .
I -} TR
- "
* . o o Y
AR RN - « - *
N * E2 % * F4 . E5 %
. * - M N
M T eee s
. . o »
. : : .
. o .
NB M X NOMP X LODNFST X X
ARIRNE] shexarenry TexsxEZERRRESORES nnnggnuunc: : F Stk ok ok &
* * .
* DPEN 5';‘)"3 * PRINT LIST * i LOAD TEMAN * * LOAD A *
* FOR OUTPUT %000 «X® OF OPTIDNS '----ooool‘l“'fl‘ T10N ‘..a--.o;l' TO MARK ®ooconsaa XX CDHP[%FR *
* * * ‘ PHAS EMAB & * LATER PHASES * PHASE *
. » . . . * M . *
- RO kR ey
N
.
.
.
BT TR TP L TPy .
. .
-
F1° "w, CEERRE 2 RRAAR R A SRR EL AR AR R PR ST
o ¥ *, EKE UTE * kaE * (éEﬂ‘i IS ANY % TFMXX *
o WAS *, YES 1EMAC TD * * * . *ONE OF T PHY=* it b Sttt et Dk S
, PHASE c‘wqoooooox' OPEN ;UT. Yosaa X® ES @ . * SICAL PHASES * * CALL A *
-, TEMBX o% FOR INPUT * * - . * DESCRIREN IN * *CNOMPILER PHASE %
*o o Ll A . *FOLLOWNG CHRTS)*® * *
-y .‘0 REERARER TR RRR A " ook Rk kR Rk ok AR ke R el Rk R
N . N
. o
. .
.
.
X
¥ 0.0
61" %, FRRRRGE TEEATRAR R 63’ ', HRA ARG 4 R RARR AR
¥ * ECUTE * ok *, * * LT
%" NAS IT %, YES ‘E AG 10 * ok WAS *, YES * RELFA';E b * *
‘o TEMCY o‘wo‘nootox‘ VIDV UP AFTFER ‘c-on.boul" 1EMAC TEM *eooa X ES %
b ¥ READ-IN * *, LOADEOD * * * *
. o+ 'S * - whkw
e ok R AR " ook Ly
* NO * NO
N M T Rk
. - - -
. e XX E5 ¥ * Hy %,,,
() * b .
X T LA
¥ o ¥ END X
H1® “e. ARRARE2 R H3® %, ntumunuuu
L EXECUTE * o % HA *, " SE ?
¥ END 1EMJ2 10 * TNFRE FEN %, YES ? & pyue
*,OF FIRST HALFe®*g00eoeeeX¥ nUgLO FCOND *aeesees- X* A TERMINAL ‘cn-.oovn’("" CKU SFVE‘"YV‘Q.-«
®PHASF LIST. * HALF ASE X o ERROR °
-, ¥ * OTRECTAORY . , ° . *Rolok
e o¥ PETTTI T T R T . % AR R RRARARER * «
*«*NO I NO N * 45 *
. * » o 4 * .
. * H3 » * * 2 LR L L
. * * ca X% J5 * o °
. Ll soveescnesanc .
X nw % %
Jl. .‘. .'*.‘Jz‘.“‘.‘.“ * .., AR A) L kKo ok ok K AEkkk |k KRRk
¥ * LOAD CLOSING * ANV *, * * * [LNSE SYSUT1
. WAS o YES * MOD ! AK * ORE NO * * SCAN BAYCH *
#*, RETURN TO e%eeesscso X¥YPDATE EV ’V‘-:.c'aoa xeo CUHPILAT] ONS n‘o..x * RELEASFE AK *Xonooonao ¥ DELIMITER *
o CZEND ok *C00E FO JTR BATCH - * b + RECORD FOR *
x, . t *, o * . * SYNTAX ERRORS %
e o® AR AR AR KR o ok X SRR R P ST IR INA PP
* NO * YFS Ak KK .
. ° * * °
. . * H4 % S
X X * * .
o R ke '
* . .
* B4 * * H3 * .
* N X
Ll LEL 1] “*‘*Klg‘*..“‘*.
* RETURN
* YO CﬁLl ING "
* RNGRAM
llt‘..‘.*‘*ﬁ.‘.*

Section 3:

Charts and Routine Directories

69

Table AA. Module AA Compiler Control Resident Control Phase

[T T T ————— e —— e T m— e B ittt it

| |Main Processing]

| Statement or Operation Type | Routine | Routine Called
——— e

[Initializes the compiler | ZINIT | LOADW, ABORT

| | [

|Parameters passed: General register 1 points at]

| the passed parameters |

|Entry to 0S/360: GETMAIN(R), TIME, LINK, SPIE | |
___ S S

|Deletes a list of loaded ghases |RELESE | ZUERR, ABORT

| | |

|Parameters passed: PARL -- address of list of | |

|phases to be deleted |

|Entry to 0S5/360: DELETE |
___ S S
|Deletes a list of loaded phases and passes |RLSCTL |Module AD if inter-

|control to either the next requested phase or | |phase dumping is reg-
|the next named phase i |uired; Module AE if it

| | |is end of Read-In

| Parameters passed: PAR1 -- address of list of | | Phase; ZUERR, ABORT

|phases to be deleted; PAR2 -- address of name | |

|of phase to which control is to be given, or | |

|zexro | |

| Parameters returned: PAR1 -- load point of new | |

|phase [1

|Entry to 0S/360: DELETE, LOAD(EPLOC), LOAD(DE),| |

| LINK | |
o - rommommm oo e
|Loads the required phase and returns control to|LOADX | ZUERR, ABORT

|the caller. The phase may be locaded again |

I | |

| Parameters passed: PARL -- address of name of | |

|phase to be loaded | |

|Parameters_returned: PAR1 -- load point of |

|phase | |

|Entry to_0S/360: LOAD (DE) | |
_____ - S S

|Marks phases as 'wanted' and 'not wanted' |RECEST | ZUERR, ABORT

| | |

| Parameters passed: PAR1L -- address of | |

|1ist of phase names to be marked 'wanted;' |

|PAR2 -- address of list of phase names to be | |

|marked "not wanted’ | |

|Entxry to 0S/360: None | |

b= T T o o fommm oo et
|Puts a record out to SYSLIN | ZULF | LFERRX

I | I

|Parameters passed: PAR1 -- address of output | |

|record | |

|Entry to 0S/360: PUT LOCATE (QSAM) | |

b oo o frommmmmmmeeeee e
jPuts a record out to SYSPUNCH |ZUsP | SPERRX

I I |

| Parameters passed: PAR1 -- address of output | |

record | |

|Entxy to 0S/360: PUT LOCATE (QSAM) | |

L D L T e L __ O

70

Table AA. Module AA Compiler Control Resident Control Phase (cont'd)
[~==———-= T T T T T e e e e — e B Sttt B i ettt 1

|Main Processing|

| Statement or Operation Type | Routine |Routine Called

|Deletes currently loaded phases and passes
|control to the Error Editor

|
|Entry to 0S/360:

| specified

|Picks up completion code and returns control to|ZEND
|the program that called compiler

JEntry to 05/360: TIME, FREEMAIN, DELETE

|Handles all program checks

| Parameters passed:
{routine wanting to handle interrupt. ARMASK
|holds mask indicating which interrupts it is

|desired to handle

|
|Entry to _05/360:

LOAD (EPLOC) 1if dump option

None

+
ZABORT, ABORT |[Module AD if dump op-
|tion specified; RLSCTIL

ARINT holds address of

Table AAl. Module AA Routine/Subroutine Directory

|Rout1ne/ ubroutlnel Function

| ABORT |Deletes currently loaded phases, passes control to error editor.

| |

| BLKERR |Enters message "REFERENCED BLOCK NOT IN USE", then terminates compi-
| |lation.

| |

| CONSLD |Takes dictionary reference and points at relevant slot in dictionar
| |contrcl block area (DSLOTS).

[I

| CONSLT |Takes text reference and points at relevant slot in text block con-
| |trol area (TSLOTS).

| I

| DFREE |Finds dictionary block which can be written on disk to make room fo
| |a new block in storage.

[|

| LFERRX |Marks error on SYSLIN data set.

| |

| LOADX |Loads required phase and returns control to caller. The phase may
| |be loaded again.

| |

| LOADW | Loads required phase and returns control to caller.

| |

| PIH |Handles all program checks.

I I

| PLERRX |Prints record on SYSPRINT data set. Pagination (paging action) is
| |performed automatically.

| |

| RDERRX |Marks error on SYSIN data set.

| |

| READX |Reads a block from disk.

I I

| RELESE |Releases all loaded phases.

I |

| REQEST |Marks phases as 'wanted' or 'not wanted.'

| |

|RLSCTL |Releases all loaded phases and passes control to next required or

I

-

|named rhase.

Section 3: Charts and Routine Directories

Y

r

e .~ . . T — — — T— i — e S . —— . — . T i S . Mt s o . e st e, e s

71

Table AAl. Module AA Routine/Subroutine Directory (cont'd)

T T T T T T T T T T T T T T T T T T e e oo - 1
[Routine/Subroutine| Function

| SPERRX |Marks error on SYSPUNCH data set.

| ZABORT |Deletes currently loaded phases and passes control to error editor.

|
9
|
I
f
ZEND |Picks up the completion code for the compilation and returns control|
|to ZINT to continue the batch, or to the operating system at the end|

|of a single or batch compilation. |
[

|

|

[

[

[

4

I

[

|

| |
|

| |
I

|

|

L

ZINIT |Initializes the compiler.
ZULF |Puts record out to SYSLIN data set.
|
ZUSP |Puts record on to SYSPUNCH data set.
__________________ e e

72

eTable AB. Module AB Compiler Control Initialization

[T T T T T T T T T T T T T T T S T T T T T T T e o — e b 1
| |Ma1n Processing| |
| Statement or Operation Type | Routine | Routine Called |
fmm—m e tomm e tomm - 1
Issues a BLDL macro instruction on all phases	PROPEN	None
in compiler, and constructs a compacted rhase		
dictionary		
	[
[[
Entry to 0S/360: BLDL		
b e fo——— Bttt bbbl 1		
Prints initial headlng and performs scan of	OPTPROC	None
option list. Default options are taken where		
necessary		
[I
_ , [[
Parameters passed: General register 1 points to		
option list passed at invocation time		
Entry to 0S/360: TIME, PUT LOCATE (QSAM) I		
—— e Rt		
Makes the initial space allocation for text and	OPENR	None
dictionary blocks. Sets up communication		
region		
I		
Entry to 0S/360: GETMAIN(R)		
e pom— e fommm e 1		
Opens spill file if text and dictionary bklocks	OPENSP	None
are 1K		
Entry_to _0S/360: OPEN		
I T ommmmmmemeeee Fom e e 1		
Obtains the guaranteed 4K of scratch storage	GETSCR	None
	[[
Entry to 0S/360: GETMAIN(R)		
—— R Bttt		
Loads intermediate file writer (Module AC).	NODUMP	ZUPL (AA)
sets buffer sizes for SYSUT3 and opens the datal		
set [[
	I]	
Entry to 0S/360: LOAD(EPLOC), OPEN		
I romm oo mee rmmm oo 1		
Prints out list of options for this compilation	NDMP	2ZUPL (AR)
Entry to 0S5/360: None		
T frmmmmm oo et EEE R 1		
Enters error messages generated when SYSIN,	PJ13	ZUERR (ARA)
SYSPRINT opened	t	
Entry to 0S5/360: None		
—— e e i L		
Reads first card and stores. Uses as heading	RDCD	ZURD, ZUERR, ZUPL

|if required | | tall in AR) |
e m—mmmme ommm oo Frmmmmm oo .
| _ | | |
|Return to pre-initializer in IEMAA | ABOUT | None |
——— G
| Opens SYSPUNCH if MACDCK specified jMCD | ZUERR |
[, | | |
|Entry to 0S/360: OPEN | | |
T T T T e e e o tm—— B bt 1
Loads dictionary handling control routines	LODCNTL	None
(phase IEMAN or IEMAL depending on normal dic-		
tionary or extended dicticnary being specified		
in the options)		
{ [
Entry to 0S/360: LOAD		
__ S S |

Section 3: Charts and Routine Directories 73

Table AB1. Module AB Routine/Subroutine Directory

IRoutlne/Subroutlnel Function

tsovr {Retucne control fo pre-initializer in Module am.
| GETSCR lobtains scratch storage.

:NDMP |Prints lists of options for current compilation.

| NODUMP }Loads intermediate file writer module AC. Sets kuffer sizes for

| SYSUT3 and opens data set.
|

OPENR | Makes initial space allocation for text and dictionary blocks. Sets

|up communications region.

|

I

|

I . .

| OPENSP |Opens spill file.

| I

| OPTPROC |Prints initial heading and performs scan of opticn list.

| |

PJ13 Enters diagnostic messages generated when SYSIN and SYSPRINT data
g

| | sets are ogened.

[I

| PROPEN | Issues BELDL macro instruction and constructs phase directcry.

| |

| RDCD |Reads first card.

A —————— e ——————

Table AC. Module AC Compiler Control Intermediate File Control

e e bty E bt L Sttt
| |Ma1n Processing]|
| Statement or Operation Type | Routine | Routine Called
b oo Fomm e fomomm e
|Writes a record onto SYSUT3 | IEMAC |Ncne
I | |
Parameters passed: PAR1 -- address of output	
record; PAR2 -- length of record	
Entry to 0S/360: PUT LOCATE (QSAM)	
T T e L fommommmmm oo Fomommm oo	
Link to file switching routine (Module AG)	ENDED
I I I	
lEntry to 0S/360: LINK	
___ PRI RS	
Table AD. Module AD Compiler Control Interphase Dumping	
e bt T——— = ———————— B e i	
i	Main Processing
Statement or Operation Type	Routine
___ 1	
Debugging aids. This routine contains a dump-	IEMAD
ing program which is invoked by use of the DUMP	
opt10n {	DUMP
___ A	
Table AD1. Module AD Routine/Subroutine Directory	
oo	
Rout1ne/Subrout1ne	Function
__________________ S	
DUMP	Converts contents of specified area of main storage to hexadecimal,

| lprlnts the result.

74

.
I
i
|
|
|
I
I
|
|
|
I
I
I
I
I
|
I
I
|
!
|
I
|
|
4

-J

Table AE. Module AE Compiler Control Clean-Up Phase

[T T T e e e e e e e e e e e ettt 1
| |Ma1n Processing]|

| Statement or Operation Type | Routine | Rcoutine Called |
o e oo Fom 1
Input and 1ntermed1ate file control. Current	IEMAC	None
input file is closed and IEMAC is deleted if	(Module AC)	
present		
	[I	
{Entry to 0S/360: CLOSE(current input file),		
DELETE i		
b e o fomm oo 4		
Opens SYSLIN and SYSPUNCH data sets if required	{NOT48 { ZUERR (AR)	
I l I		
Entry to 05/360: OPEN		
O fommomom e rm o]		
Expands the number of blocks in storage to four	NOTDCK jNone	
text and four dictionary, if running with the		
44k size option		
Entry to 0S/360: GETMAIN] i i		
b e L A J		
Table AEl. Module AE Routine/Subroutine Directory		
___ 1		
Rout1ne/subrout1ne	Function	
pmmmmmmmm oo e e e 1		
NOT48	Opens SYSLIN and SYSPUNCH data sets as required.	
I I		
INOTDCK	Expands number of blocks in storage.	
___________________ L e		
Table AF. Module AF Compiler Control Sysgen Options		
r————- - e it I e e i 1		
Function	Subroutines	
—— T		
]This module contains no executable instructions. It is	None	
generated at SYSGEN time and passes the default options		
and values to the compiler		
__ R		
Table AG. Module AG Compiler Control Intermediate File Switching		
[T T T T T T T e e e B e 1		
Function	Subroutines	
—— om e		
Switches SYSUT3 from an output file to an input file	None	
I [I		
Entr1es to 0S/360: OPEN and CLOSE		
___ GRS		
Table AK. Module AK Compiler Control Closing Phase		
[T T T T e e oo e 1		
Function	Sukbroutines	
oo o e o m oo 1		
Closes files, frees scratch core and deletes unwanted	ZURC (AR)	
phases		
I		
If batch compiling, scans batch delimiter card for correct]		
syntax and updates completion code.		
I	[
Entries _to 0S/360: TIME, CLOSE, FREEPOOL, DELETE, and		
FREEMAIN I		
__ O
Section 3: Charts and Routine Directories 75

e Table AL/AN. Modules AL/AN Extended Dictionary/Dictionary Phases

-

e — e o —— e o s

|Investigates the dictionary klock control used |DFREE

|tc disk to make space for a different block in |

7

Statement or Operation Type

Parameters passed: PAR1 -- a count of the
number of entries to ZUGC to be released
Entry to_0S/360: FREEMAIN if storage being
replaced 1s outside the guaranteed U4k block

Inserts diagnostic message in the dictionary

Parameters passed: PARS5 -- numeric parameter
(if any); PAR6 -- message number; PAR7 -- add-
ress of text (if any) or dictionary reference
(if any); PAR8 -- length of text (if any)
Entry to 0S/360: None
Takes a dictionary reference and points at the
relevant slot in the dictionary block control
area (DSLOTS)

Parameters passed: PAR1 -- dictionary ref-
erence

Parameters returned: Address of slot in GRA
Entry to 0S/360: None

Takes a text reference and points at the rele-
vant slot in the text block control area
(TSLOTS)

Parameters passed: PAR1 -- text reference
Parameters returned: Address of slot in GRA
Entry to 0S/360: None

Allocates space for a text block

Parameters passed: Relative track address of
the block (if block is on disk) in RDTTR.
Otherwise RDTTR is zero

Parameters returned: Address of block in GRO
Entry to 0S/360: GETMAIN(VC) if storage
available. OPEN if no space left for text
blocks

Allocates space for a dictionary block

Parameters passed: Relative track address of
block (if block is on disk) in RDTTR. Other-
wise RDTTR is zero

Parameters returned: Address cf block in GRO
Entry to 0S/360: GETMAIN(VC) if storage
available. Open if no space left for diction-
ary blocks

(DSLOTS), to find which block can be written on
storage

Parameters passed: Relative track address of
block required in storage in RDTTR. RDTTrR=0
if a block is being created

Parameters returned: Address of block in
storage in BLOKAD

Entry to 05/360: None

6

e ToTTET T T T 'i' ---------------------

|Main Processing Routine Called
| Routine |
fommmm e e EEE L
| ZURC | ZUERR, ABORT
| I
| I
| I
I |
| I
fommmmmmmmmomoe fomm oo
| ZUERR | ZDRFAB, ZDICRF, ZDICAB
I |
I I
| I
| |
I I
| I
fomm oo fommmmmm oo
| CONSLD | None
| |
I I
I |
I |
I I
I [
I |
oo oo frmm e
| CONSLT |
| |
I I
| |
I |
| |
| |
fommmmmmem e fommmmmmmm oo
| TRYMRT |DFREE, TFREE, ZUPL,
| | ARORT
[I
| I
I I
| I
[|
| I
I I
1 e R
| TRYMRD IDFREE, TFREE, ZUPL,
| | ABORT
| |
{ |
| |
I |
| |
| I
| |
Fommmmmm e oo mmmm e oo
|CONSLD, ZUERR, ABORT,
| | WDREAD, WRTRD, WDWRIT
|
| I
| I
| [
| I
| I
| |
I |
| I
O L

e . —— e . — e — e ——— . — e —— e e —— e —— e e e — . ——

—— e e —— e e —— —— ——— e e e — —— . —— — e i

Table AL/AN. Modules AL/AN Extended Dictionary/Dictionary Phases (ccnt'd)

. e . o . . . e ek e o, e, . e s s e, e ki . — . e St st . s e, s s . e . i e s i . e . o, T . . e . .

s i ettt To—ToTTo oo e e B e
| |Main Prccessing| Rcutine Called

| Statement or Cperation Type | Routine
T T T T e P et
[Investigates the text block control area | TFREE |CCNSLD, ZUERR, ABOKT,

| (TSLOT3), to find which block can pe written | | WDREAD, WRTRD, WDWRIT
jonto disk to make space for a different block | |

|in storage | |

I I l

| Parameters_passed: Relative track address | |

| block required in storage in RDTTR. RDTTR=0 | |

| if a block is being created | |

| Parameters returned: TFREE | |

| Entry to 05/360: None | |
__ S B
|Create space in storage ky writing on disk | WDWRIT |WRITEX

| | I

| Parameters passed: RDTTR=0, BLOKAD contains | |

| address of block that can ke written out | |

| Parameters returned: BLCKAD contains address | |

| of block in storage that is now available | |

| Entry to 0S/360: WRITE(BSAM), CHECK, NONE | |
e T Ay Fommmmmmmm oo
|[Writes a block onto disk and reads a seccnd one|WRTRD | READX, WRITEX, ZUERR,
linto its place in storage | | ABORT

I | |

| Parameters passed: RDTTR contains relative | |

| track address of block to ke read. BLOKAD | |

| contains address of block to be written | |

| Parameters returned: NOTTR contains relative |]

| track address of block in storage | |

| Entry to 0S/360: WRITE(BESAM), CHECK, NOTE | |

b o oo e e e R et
|Reads a block from disk into space already | WDREAD | READX

Javailable in storage | |

! | |

| Parameters passed: RDTTR holds relative track | |

| address of block to be read. BLOKAD holds | |

| address of space in storage | |

| Parameters returned: BLOKAD holds address of | |

| block in storage | |

| Entry to 0S/360: None | |
== e EEEEE oo
jWrites a block onto disk | WRITEX | ZUPL, ZEND

[[|

| Parameters passed: TEMP4 holds relative track | |

| address of space on disk | |

| Entry to 0S/360: XDAD(WI), WAIT | |
T Fommmmmm oo Fomm o
|Reads a block from disk | READX | ZUPL, ZEND

| | |

| Parameters passed: TEMPU4 holds relative track | |

| address of block on disk | |

| Parameters returned: PAR1 -- address of input | |

| area | |

| Parameters returned: PAR2 -- record length | |

| Entry to 0S5/360: GET MOVE (QSAM) | |
__ v S
|Reads a record from SYSIN | ZURD | None

| | |

| Parameters vassed: PAR1 -- address of input | |

| area | |

| Parameters returned: PAR2 -- record length | |

| Entry to 0S/360: GET MOVE (CSAM) | |

b L A e

Section 3:

Charts and Routine Directories

77

Table AL/AN. Modules AL/AN Extended Dictionary/

Dictionary Phases (cont'd)

B B 1

. o e e . e

Statement or Creration Type

Puts a record out to SYSPRINT. Pagination
(paging action) is performed automatically

Parameters passed: PAR1 -- address of output
buffer. PAR3 -- address of output buffer
containing page heading (if any)

Entry to 0S/360: PUT LOCATE (CSAM)

Finds a new text block. Optionally chains the
new block to the current block and changes the
status of the current block

Parameters passed: PAR1 -- optionally, a
reference to the current block. PAR2 -- a
status and chain indicator
Parameters returned: PAR1 -- reference to new
block; PAR2 -- absolute address of the
beginning of block
Entry to 0S/360: None
Finds the next text block in the chain.
Optionally, changes the status of the current
block

Parameters passed: PAR1 -- a reference to the
current block; PAR2 -- a status indicator
Parameters returned: PAR1 -- reference of the
next block in the chain. PAR2 ~-- absolute
address of next block in chain

Entry to 05/360: None

Parameters passed: PAR1 -- a reference to the
block. PAR2 + 3 -- required 'status' byte
Entry to 0S/360: None
Cconverts a text reference to an absolute
address and optionally, does not change status
of the block

Parameters passed: PAR1 -- reference to be
converted and option indicator bit
Parameters returned: PAR1 -- the absolute
address

Entry to 05/360: None

Converts an absolute address to a text
reference

Parameters passed: PAR1 -- a text reference to
the block containing the aksolute address;
PAR2 -- the address to be converted
Parameters_returned: PAR1 -- the required text
reference
Entry to 0S/360: None
Enters message 'REFERENCED BLOCK NOT IN USE'
into dictionary and then terminates compilation

78

|Main Processing]| Routine Called
| Routine |

ONSLT, TRYMRT, ZUERR,
BORT, BLKEER

T Q

CONSLT, TRYMRT, BLKERR

CCONSLT, BLKERR

CONSLT, EBLKERR, ZUERR,
ABORT

ZUERR, ABCRT

i

Table AL/AN. Modules AL/AN Extehnded Dictionary/

Dicticnary Phases (cont'd)

[T T T T T T T T T T————m e Tm— T TT T o mmes oo ——— o 1
| |Main Processing]| Routine Calles |
| Statement or Cperation Type | Routine | |
T fommmmmm oo Fomm oo 1
Supplies storage space for scratch purposes.	ZUGC	TRYMRT, ZUERR, ABORT
Allocation is made in 512 bytes at a time		
Parameters passed: PAR1 -- a count of the		
number of 512 byte blocks required		
Parameters returned: PAR1 -- address of the		
allocated storage		
Entry to 05/360: None		
—— e e		
Converts an absolute address to a dictionary	ZDABRF	CCNSLD, ZUERR, ABORT,
reference		BLKERR
Parameters passed: PAR1 -- any reference to		
the block containing the absclute address;		
PAR2 -- the absolute address to be converted		I
Parameters returned: PAR1l -- the required		
dictionary reference		
Entry to 0S/360: None		
o e oo e e oo e foommm e T e 1		
Converts a dictionary reference to an absoclute	ZDRFAB	CCNSLD, TRYMRD, BLKERR
address		
Parameters passed: PAR1l -- the dictionary		
reference		
Parameters returned: PAR1 -- the absolute		
address		
Entry to 0S/360: None		
--- e et		
Makes an unaligned dictionary entry and	ZNALAB	ZDRFAR, ZDAPRF, TRYMRD,
returns an absolute address		ZUPL, ZUERR, ABORT,
	CCNSLD [
Parameters passed: PARL -- address of entry to]
be made; PAR2 -- length of entry		
Parameters returned: PAR1 -- address of entry		
in dictionary. PARU4 —-- some reference to the		
block		
Entry to 05/360: None		
O et e ommmm oo 1		
Makes an aligned dictiocnary entry and returns	ZDICAB	ZDRFAR, ZDARRF, TRYMRD,
jan absolute address		ZUPL, ZUERR, ABORT,
		CCNSLD
Parameters passed: PAR]L -- address of entry toj		
be made; PAR2 -- length of entry		
Parameters returned: PAR1 -- address of entry]	
in dictionary. PARY4 -- some reference to the		
block		
Entry to 05/360: None]		
T T e fomm e		
Makes an unaligned dictionary entry and	ZNALRF	ZDRFAB, ZDAERF, TRYMRD,
returns dictionary reference		ZUPL, ZUERR, ABORT,
		CONSLD
Parameters passed: PAR1 -- address of entry toj		
be made; PAR2 -- length of entry		
Parameters returned: PAR1 -- reference of		
entry in dictionary. FAR4 -- absolute address		
of the entry		
Entry to 05/360: None		
e = = o T fomm oo oo oo 1		
Makes an aligned dictionary entry and returns a	ZDICRF	ZDRFAR, ZDARRF, TRYMRD,
dictionary reference		ZUPL, ZUERR, ABORT,
		CCNSLD
Parameters passed: PAR1 -- address of entry tol		
be made; PAR2 -- length of entry		
Parameters returned: PAR1 -- reference of		
entry in dicticnary. PAR4 -- absolute address		
of the entry)		
Entry to_0S/360: None		
e o e i o J

Section 3: Charts and Routine Directories 79

e Table AL1/AN1. Modules AL/AN Routine/Subroutine Directory

S
|Routine/Subroutine

| TFREE
|

|
| TRYMRD

| TRYMRT

|
| WDREAD

T
I

Function

-------- 1

|

T e e e e e e e ——— e 1
|Finds text block which can be written on disk |
|to make space for a new block in storage. |
|

|Allocates space for a dictionary klock. |
I

|Allocates space for a text block. |
| |
|Reads a klock from disk into storage. |
I I
|Creates space in storage by writing a block on |
|disk. [
I I
|Writes a block on disk. |
I I
|Writes on last block on disk. |
I I
|[Writes a block onto disk, reads a second one |
|into its place in storage. |
I I
|Changes status of referenced text klock. |
I I
|Finds next text block in chain. |
| |
|Converts an absolute address to a dictionary |
|{reference. |
| I
|Converts a dictionary reference to an absolute |
|address. [
| |
|Makes an aligned dictionary entry and returns |
|absolute address. I
| I
|Makes an aligned dictionary entry and returns |
|dictionary reference. |
| I
|Makes unaligned dictionary entry and returns |
|dictionary reference. |
| |
|Makes unaligned dictionary entry and returns |
jabsolute address. |
| I
|Converts text reference to an absolute address. [
I |
|Converts absolute address to a text reference. i
I !
|Inserts diagnostic message in dictionary. |
I |
|Reads a record from SYSIN. |
| [
|Supplies storage space for scratch purposes. |
| |
|Releases scratch storage. {
| |
|Puts record out to SYSPRINT data set. |
| i
