360 INTRODUCTORY PROGRAMMING

360PGH

STUDENT _HORKBOOK

CAI #48 - REVISION 1
| 8/25/70

PAGE
1-1

1-16
1-26
3-1

3-9

3-13
3-18
3-23
3-25
3-28
3-31
3-34
3-41

3~45

3-48
41

46

4-11
4-21
4-23
4-27
4-32

434

INDLX

TITLE
FIXED-POINT INST.
LOGICAL INST. -
BRANCHING INST.
STATUS SWITCHING
LOAD

STORE

ADD

SUBTRACT

BRANCH ON CONDITION
COMPARE
MULTIPLY

DIVILE

SHIFT

FIXED-POINT DATA FORMATS (PACK AND
’ UNPACK)

CONVERT TO BINARY
CONVERT TO DECIMAL
MOVE

AND

OR

TEST UNDER MASK
COMPARE LOGICAL

- SHIFT LOGICAL

LOAD ADDRAéS
TRANSLATE

PAGL

4=37
4-ll

=iyl

9=14
917
9-19
9-22
g-2u

9-41

ﬁw&mzmnmw
EXECUTE |
INSERT CHARACTER
STORE CHARACTER
BRANCH ON COUNT
BRANGI ON INIEX
BRANCH AND LINK
SUPERVISOR CALL
SET PROGRAM MASK
SET SYSTEM MASK

LOAD PSW

- STORAGE KEYS (SSK AND ISK)

TEST AND SET
DECIMAL INST.
ADD DECIMAL
ZERO' AND ADD
SUBTRACT DECIMAL
MULTIPLY DECIMAL
DIVILE DECIMAL
COMPARE DECIMAL
EDIT

EDIT AND MARK

PAGE | | . TITLE

11-1 - | ~ 1/0 INST.
11-16 | 'START 1/0
11-19 » ' . TEST I/0
nwa HALT 1/0

12-1 | o 1/0 PROGRAMMING PROJECT

FIXED-POINT INSTRUCTIONS
FIXED-POINT

The fixed-point inntruatian sat performs binary &rithmatic on
operands serving as\adaiésses, index quanqities, and counts,
as well as fixed-point data. In general, both operands are.
signed and 32 bits long. Negative quantitiesvare held in
two's-éomplement fdrm, 1; One operand is always ih one of the
16 general registers; the-other operand may be in main

storage or in a general register.

The instruction set provides for loading, adding, subtracting,
.comparing,'multiplying,,dividing, and storing, és well as for
the sign control, radix (base) conversion, and shifting of fixed-
point operands. The entire instruction set is included in the

standard instruction set.

The condition code is set as a result of all sign control, add,

subtract, compare, and shift operations.

DATA FORMAT

' Fixed-point numbers occupy a fixed-length format consisting of

a one-bit sign followed by the integer field. When held in one
of the general registefs,,a fixed-point quén;ity has av31-bi£
integer field and.dccupies all 32 bits of the register. Some
multiply, divide, and shift operations use an operand consisting
of 64 bits with a 63-bit integer field. These operands are lo-
cated in a pair of adjacént general registeré and are addressed
by an even address referring to the leftmost register of the

pair. The sign-bit position of the rightmost register contains

. of the integer. 1In regiéter-toéregister operations the
same regiéter may be specified for both operand locations.

Full Word Fixed-Point Number

lSJ Integer . :]
o1 N,
Halfword Fixed-Point Number

S . Integer]

(20| 13

Fixed-point data in main storage occupy a 32-bit word or a
l6-bit halfword, with.a bihary integer field of 31 or 15
bits, respectively. Thé canersion instructions_use a 64?
bit decimal field. These data.must be located on integral
storage boundaries for these units of information, that is,
double word, fullword,'or halfword operands must be address-
ed with three, two, or one low-order address bit(s) set to

Zero.

A halfword operand in main storage is extended to a full-
woxrd as the operand is fetched from storage. Subsequently,

the operand participates as a fullword operand.

In al1 discussions of fixed-point numbers in this publication,
the expression "32-bit signed integer" denotes a 31l-bit in-
teger with a sign bit, and the expression "64-bit signed

integer" denotes a 63-bit integer with a sign bit.

NUMBER REPRESENTATION

All fixed-pbint operands are treated as signed integers.

Positive numbers are represented in true'binary notation

1-2

with the sign bit set to zero. Negative numbers are represented

in two's-complement notation with a one in the sign bit.

Two's-complement notation does not iﬁciude a negative zero. It
has a humber range in which the set of negative'numbe;s is one
larger than the set of positive numbers. The maximum positive
number consists of an all-one integer field with a sign bit of
zero, whereas the maximum negative number (the negative number
with the greatest absolute value) consists of an all-zero in-

teger field with a one-bit for sign.

The CPU cannot represent the compiement of the maximum negative
number. When an operation, such as subtraction from zero, pro-
duces the éomplement of the maximum négative number, the number
remains unchanged, and a fixed~-point overflow exception is
recognized. An overflow dogs not result; however, when the
number is complemented and the finél result is within the re-
presentable range. An example of this case is a subtraction
from minusvone. The product of two maximum negative numbers

is representable as a double-length positive number.

The sign bit is leftmost in a number. In an arithmetic oper-
ation, a carry out of the integer field changesxthe sign. How-
ever, in algebraic left-shifting the sign bit does not change ;
even if significant high-ordér bits are shifted out of the

integer field.

INSTRUCTION FORMAT

Fixed-point instructions use the following three formats:

'RR Format

 Op Code l R] l R2]

° 78 na2 13

RX Format

OpCode | Ry | % | By | D,
[+] 78 nai2 1516 1920 n
RS Format

OpCode | /i [R | By | Dy

1] 78 1"z 1516 19 20 n
- In these formats, Rl specifies the general register con- -
taining the first operand. The second operand 1ocation,;if

any, is defined differently for each format.

In the RR format, the R2 field specifies the general register
containing the second operand. The same register may be

specified for the first and second operand.

In the RX -format, the contents of the general registers
specified by the X2 and B2 fields are added to the content
of the D2 field to form an address designating the storage

location of the second operand.

In the RS format, the content of the general register speci-
fied by the B2 field is added to the content of the D2 field.
This sum designates the storage location of the second operand
in LOAD MULTIPLE and STORE MULTIPLE. In the shift operations,
the sum specifies the number of bits of the shift. The R3
field specifies the address of a general register in LdAD.
MULTIPLE and STORE MULTIPLE and is ignored in the shift oper-

aticns.

A zero in an X2 or B2 field indicates the absence of the

corresponding address component.

An instruction can specify the same general register both
for add:ess modification and for operand location. Address

modification is always completed before operation execution.

Results replace the‘first'operand; except for STORE and
CONVERT TO DECIMAL, where the result replaces the second

operand.

The contents of all_gene:al registers and storage locations
participating in the addressing or execution part of an
operation remain unchanged, except for the storing of the

final result.

' NOTE: In the detailed descriptions of the individual in-
structions, the mnemonic and the symbolic operand designation
for thedIBM System/360 assembley lénguage are shown with each
inétruction. For LOAD AND TEST, for example, LTR is the

mnemonlc and Rl, R2 the operand de51gnatlon.

FIXED-POINT PROGRAM INTERRUPTIONS

Exceptional operand de31gnatlons, data, or results cause a
program interruption. When a program interruption occurs,
the current PSW is stored as an old Psw,landna new PSW is
obtained. The interruption code in the old PSW identifies
the cause of the interruption. The following exceptions

" cause a program interruption in fixed-point arithmetic.

1-5

Protection: The key of an operand in storage does not match
the protection key in the PSW.V The oﬁération is suppressed
for a store violation. Therefore, the condition code and .
data in‘registers and storage remain unchanged. The only
exception is STORE MULTIPLE, which is terminated; the amount
of data stored is unpredictable and should not be used for
further computation. The operation is terminated on any

fetch violation.

Addressing: An address designates an operand location out-
side the available storage for a particular installation. In
most cases, the operation is terminated. Therefore, ﬁhe re-
sult data are unpredictable and should not be'ﬁsed for further
computation. The exceptions are STORE, STORE HALFWORD, and
CONVERT TO DECIMAL, which are suppressed. Operand addresses
are tested only when used td address storage. Addresses used
as a shift amount are not tested. The address restrictions

do not épply to the éomponents from which an address is gen-
erated - the céntent of the D2 field and the contents of the

registers specified by X2 and B2.

Specification: A double-word operand is not_;ocated on a
64-bit boundary, a fullword operand is not located on a

- 32-bit boundary, a halfword operand is not located on a-
lG-bit‘boundary, 6r én instruction specifies an odd register
address for a pair of general registers containing a 64-bit
operand. The operation is suppressed. Therefore, the con-

dition code and data in registers and storage remain unchanged.

Data: A sign or a digit code of the decimal operand in
CONVERT TO BINARY is incorrect. The operation is suppressed.
Therefore, the condition code and data in registers and stor-

age remain unchanged.

Fixed-Point Overflow: The result of a sign-control add,
subtract, or shift operation overflows. The interruption
occurs only when the fixed-péint overflow mask bit ié one.
The operation is completed by placing the truncated low-order
result in the register and setﬁing the condition code to 3.
The overflow bits are lost. In add~type operations the sign
stored in the register is the opposite of the sign of the sum
or difference. In shift operations the sign of the shifted
number temains.unchanged. Tﬁe state of the mask bit does

not atfect the result.

Fixed-Point Divide: The quotient of a division exceeds the»
registervsize, including divisibn by zero, or the result in

‘CONVERT TO BINARY exceeds 31 bits. Division is suppressed.

Therefore, data in the registers remain unchanged. The con-
version is completed by recordingvthe truncated low-order

result in the register.

LOGICAL INSTRUCTIONS

A set of instructions is provided for the logical manipula-
tion of data. Generally, the operands are treated as eight-
'bit bytes. In a few cases the left or right four bits of a
byte are treated separately or operands are shifted a bit
at a time. The operands aﬁe either in stqrage'or in general

registers. Some operands are introduced from the instruction

stream.

Processing of data in storage proceeds left to right through
fields which may start at any byte position. 1In the general
registers, the processing, as a rule, involves the entire

register contents.

The set of logical operations includes moving, comparing,
bit testing, translating, and shift operations. All logical

operations are part of the standard instruction set.

The condition code is set as a result of all logical cqmparing,

connecting, testing, and editing operations.

DATA FORMAT

Data reside in general registers or in storage or are intro-
duced from the instruction stream. The data size may be a
single or doubleword, a single character, or variable length.

When two operands participate they have equal length; -

Fixed-Langth Logical Information .

Logical Data -
0 ’ " -I

Data in dgeneral registers normally occupy all 32 bits, Biﬁs
are treated uniformly, and no distinction is made between
sign .and numeric bits."In a few operations, only the low-
order eight bits of a register partiéipate,»leaving the re-
mainingA24 bits unchahged. 'In some shift oﬁerations, 64

bits of an even/odd pair of registers participate.

The LOAD ADDRESS introduces a 24-bit address into a general
register. The high-order eight bits of the register are

made zero.

In storageFto-register operations, the storage data occupy
either a word of 32 bits or a byte of eight bits. The word
must be located on word boundaries, that is, its address

must have the»two low=order bits zero.

Variable-Length Logical Information

[Character T Charccterj ‘ Character I
3 P

16

In storage-to-storage operations, data have a variable field-
length format, starting at any byte address_gnd continuing
for up to a total of 256 bytes. Processing‘is left‘to

right.

0peratidna introducing data from the instruction stream into
into storage, as immediate data, are restricted to an eight-
bit byte. FOnly one byte is introduéed from the instruction

stream, and only one byte in storage participates.

1-9

Use of general register 1 is implied in TRANSLATE AND TEST.
A 24-bit address may be placed in this register duriﬁg oper-
ation. The TRANSLATE AND TEST also implies general register
2. The lbw—order eight bité of register 2 may be replaced by
a funétion byte during a tranSléte-and—test operaﬁion.

The translating operations use a list of arbitrary'valﬁes.
A list provides a relation between an argument (the gquantity
used to reference the'list) and the function (the content of
the location related to the argument). The purpose of the
translation may be to convert déta from oné codé to.another

code or to perform a control function.

A list is specified by an initial address - the address
designating the leftmost byte location of the list. The
byte from the operand to be translated is the argument. The
actual address used to address the list is obtained by add-
ing the argumenﬁ to the low-order positions of the initial
address. As a consequence, the list contains 256 eight-bit
function bytes. In cases where it is known that not all
eight-bit argument values will occur, it may be possible

to reduce the size of the list.

In a storage-to—sﬁorage operation, the operand fields méyv
be defined in such a way that they overlap. The effecﬁ‘of
this overlap depends upon the operation. When the opeﬁands
remain unchanged, as in the COMPARE or TRANSLATE AND TEST,

.overlapping does not affect the execution of the operation.

In the case of MOVE, and TRANSLATE, one opérand is replaced by
new data, and the execution of the operation may be affected
by the amount of overlap and the manner in which data are
fetched or stored. For purposes of évaluating the effect of
overlapped operands, consider that daté are handled one eight-

‘bit byte at a time. All overlapping fields are considered"

valid.

INSTRUCTION FORMAT

Logical instructions use the following fi?e formats:

RR Format

Op. Code] R] l‘RQ !

RX Format

OpCode | Ry | X5 [By | D, |
]) 78 nia 1516 1920 N
RS Format |
[‘ Op Code I R, I Rs l B, L D2]
[78 12 1516 3920 ki
S! Format :
[Op Code J |2 I B] 1 D]'
0 78 1516 19 20 N
SS Format i
[O Code L [B g0] B [} %)
1] 78 1516 1920 3132 35 38 . A7

In the RR, RX, and RS formats, the content of the register

specified by Rl is called the first operand.

In the SI and SS formats, the contents of the general regis-
ter specified by Bl is added to the content of the D1 field
to form an address. This address designates the leftmost

byte of the first operand field. The number of bytes to the

1-11

right of this first byte is specified by the L field in the

SS format. 1In the SI format the operand size is one byte.

In the RR format, the R2 field specifies the register contain-
ing the second operand. The same register may be specified

for the first and second operand.

In the RX format, the contents of the general registers speci-
fied by the X2 and B2 fields are added to the content of the

D2 field to form the address of the second operand.

In the RS format, used for shift bperations, the conténts of

the general register specified by the B2 field is added to

the content of the’Dz field. This sum is not used as aﬁ address
but specifies the number of bits of the shift. The R3 field is

ignored in the shift operations.

In the SI format, the second operand is the eight-bit immediate

data field, I2, of the instruction.

In the SS format, the content of the general register specified
by B2 is added to the content of the D2 field to form the ad-
dress of the second operand. The second operand field has the

same length as the first operand field.

A zero in any of the X2, Bl, cor B2 fields indicates the absence
of the corresponding address or shift-amount component. An

instruction can specify the same general register both for

address modification and for operand location. Address modi-

fication is always completed prior to operatibn execution.

Results replace the first operand, except in STORE CHARACTER,
where the result replaces the second operand. A variable-
length result is never stored outside the field specified by .

the address and length.

The contenﬁs of all general registers and storage loéatiohs
participating in the addressing or execution of an operation
generally remaih unchanged. Exceptions are the result loc#-
tions, general register 1 in EbIT AND MARK, and general regis-

ters 1 and 2 in TRANSLATE AND TEST.

4“Nb§ﬁ¥v’1h the detailed descriptions of the individual instruc-
fibns,zthe mnemonic’and Ehe symbolic operand designation for
the new IBM:System/360 assembly language are shown with each
instruction: For MOVE NUMERICS, for example, MVN is the

mnemonic and'Dl (L,Bl), D2 (B2) the operand designation.

LOGICAL OPERATION EXCEPTIONS

Eicéptional operation codes, operand designations, data, or
results cause a program interruption. When the interruption
oééurs, thé current PSW is stored in an old PSW and a new PSW‘
is obtained. The interruption code in the old PSW identifies
the céuse of the interruption. The following exceptions cause

a'program interruption in logical operations.

1-13

.Protection: The key of an operand in storage does not match
the protection key in the PSW. The operation is suppressed
on a store violation. Therefore, the condition code and data

in registers and storage remain unchanged. The only excep-
tions are the Variable length, storage—tb—storage operations
(those containing a length specification), which are te:min—'
ated. The operation is terminated on any fetch violation.

For terminated operations, the result data and condition code,

if affected, are unpredicatable and should not be used for

further computation.

Addressing: An address designates an operand location outside
the available Storage'for the installation: In most cases,

the operation is terminated. The result data and the‘condition
‘code, if affected, are unpredictable and should not be used for
further computation. The exceptions are the immediate opéra—
tions; AND (NI), EXCLUSIVE OR (XI), OR (OI) and MOVE (MVi) plus

the STORE CHARACTER (STC), which are suppressed.

Specificatioﬁ: A fullword operand in a storage—to—register.
operation is not located on a 32-bit boundary or an odd regis-
ter address is specified for a pair of general registers con-
taining a 64-bit operand. The operation is suppressed. There-
fore, the condition cbde and data in registers and storage

remain unchanged.

Data: A digit code of the second operand in EDIT or EDIT AND
MARK is invalid. The operation is terminated. The result data

and the condition code are unpredictable and should_ndt be used

1-14

for further computation.

Operand addresses are tested only when used to address storage.
Addresses used as a shift amount are not tested. Similarly, the
address generated by the use of LOAD ADDRESS is not tested. The
address restrictions do not apply to the components from

which an address is generatéd - the contents of the D1

and D2 fields, and tﬁe contents of the registers specified

by X2, Bl, and B2.

BRANCHING INSTRUCTIONS

Instructions are performed by the central processing.unit
primarily in thé'sequential order of their locations. A
departufe from this normal sequential operation may occur
when branching is performed. The branching instructions
provide a means for making a two-way choice, to reference

a subroutine, or to repeat a segment of coding, such as a

loop.

Branching is performed by introducing a branch address as

a new instruction address.

The branch address may be obtained from one of the general
registers or it may be the address specified by the instruc-
tion. The branch address is independent of the updated

‘instruction address.

The detailed operation of branching is determined by the
condition code which is part of the program status word
(PSW) or by the results in the general registers which are

specified in the loop-closing operations.

During a branching operation, the rightmost half of the PSW,
including the updated instruction address, may be stored be-
fore the instruction address is replaced by the branch a@dress.
The stored information may be used to link the new instruction

sequence with the preceding sequence.

The instruction EXECUTE is grouped with the branching instruc-
tions. Thé branch address of EXECUTE designates a single in-
instruction to be inserted in the instruction sequence. The
”updated instruction address normally is not changed in this
operation, and only the instruction located at the branch

address is executed.

All branching Opefations are provided in the standard instruc-

tion set.

NORMAL SEQUENTIAL OPERATION

Normally, operatiqn of the CPU is controlled by instructions
t#ken in sequence. An instruction is fetched from a location
specified by the instruction-address field of the PSW. The
‘instructioh address is increased by the number of bytes of
the instruction to address the next instruction in sequence.
This new insﬁruction, replaces the previous contents of the
instruction-address field in the PSW. The current instrué-
tion is executed, and the same steps are repeated, using the

updated instruction address to fetch the next instruction.

Conceptually, an instruction is fetched from storage after
the preceding operation is completed and before execution

of the current operation.

A change in the sequential operation may be caused by
‘branching, status switching, interruption, or manual inter-
vention. Sequential operation is initiated and terminated

from the system control pgnel.

1-17

Programming Note
It is possible to modify an instruction in storage by means

of the immediatély preceding instruction.

SEQUENTIAL OPERATION EXCEPTIONS

Exceptional instruction addresses or operation codes cause

a program interruption. When the interruptién occurs, the
current PSW is stored as an old PSW, and a new PSW is obtained.
The interruption code in the old PSW identifiés the cause of
the interruption. (In this ménual, part of the descriptidn

of each claés of instructions is a list of the program inter-
ruptions that may occur for these instructions.) The new PSﬁ
is not chécked for exceptions when it becomes current. These
checks occur when the next instruction is executed. The fol-
lowing program interruptions may occur in normal instruction

- sequencing, independently of the instruction performed.

Operation: An operation exception occurs when the CPU
attempts to decode an operation code that is not assigned.

The operation exception can be ac;ompanied by an addressing

or specification exception if the instruction class associated
with the undefined operation has uniform requirements or
operand designation. An instruction class is a group of in-

structions whose four leftmost bits are identical.

Protection: A protection exception occurs when an attempt is
made to fetch an instruction halfword from a fetch-protected
location. This error can occur when normal instruction se-

guencing goes from an unprotected region into a protected

1-18

region, or following a branching or load-PSW operation or an

interruption.

Addressing: An addressing exception occurs when an instruc-
tion halfword is located outside the available storage for

the particular installation.

Specification: A specification exception occurs when the
instruction address in the PSW is odd. This odd address
error can occur only after a branching or load PSW operation

or after an interruption.

A gpecification exception»wiil occur when the protection key
is nonzero and the protection feature is not installed. This
error can occur after a PSW is loaded or after an interrup-

In each case, the instruction is suppressed; therefore, the
condition‘codé and data in storage and register remain un-
changed. The instruction.address stored as part of the old
- PSW has been updated by the number of halfwords indicated by

the instruction length code in the old PSW.

Programming Notes

When a program interruptionvoccurs, the current PSW is stored
in the old PSW location. The instruction address stored as
part of this old PSW is thus the updated instruction address,
ﬁaving been updated by the number of halfwords indicated in

the instruction-length code of the same PSW. The interruption

1-19

code in this old PSW identifies the cause of the interruption

and aids in the programmed interpretation of the old PSW.

If the new PSW for a program interruption has an unacceptable
instruction address, another program interruption o&curs.
Since this second program interruption introduces the same
unacceptable instruction address, a string of program inter-
ruptions is established which may be broken only by an ex-
ternal or I/d interruption. If these interruptions also

have an unacceptable new PSW, new supervisor information
must‘be introduced by initial program loading or by manual

intervention.

DECISION-MAKING

Branching may be conditional or unconditional. Uncondi-
tional branchés replace the updated instruction address
with the branch address. Conditional branches may use the
branch address or may leave the updated instruction address
unchanged. When branching takes place, the instruction is

called successful; otherwise, it is called unsuccessful.

™

-

Whether a conditional branch is successful‘depends on the
result of operations concurrent with the branch or preceding
the branch. The former case is represented by BRANCH ON
COUNT and the branch-on-index instructions. The latter

case is represented by BRANCH ON CONDITION, which inspecﬁs
the condition code that reflects the result of a previous

arithmetic, logical, or I/0 operation.

1-20

\ ‘ - . .
The condition code provides a means for data-depended

decision—making. The code is inspected to qualify the
execution of the condition-branch instructions. The code

is set by some‘operationé to refléct théﬁresult'of the opera-
tion, independently 6fvthe preVious setting of the code.

The code remains unchanged for all other .operations.

The conditidn codeyoqcuéies bit positions 34 and 35 of the
PSW. When the PSW is stored during status switching, the
condition éode is preserved as part of the PSW. Similarly,
the condition code is stored as part of the rightmost half
of the PSW in a branch-and-link operation. A new condition
code is obtained by a LOAD PSW OR SET PROGRAM MASK or by the

new PSW loaded as a result .of an ihterruption.

The condition.code,indicafes the outcome of some of the
arithmetic, logical, or I/O operations. It is not changed
fér‘any branching operation, except for EXECUTE. In the
case of EXECUTE, the condition code is set or left uhchanged
by the subject instruction, as would have been the case had

the subject instruction been in the normal instruction stream.

1-21

INSTRUCTION FORMATS

Branching instructiohs use the following three formats:

RR Format

| OpCode [R/My] Ry | |

0 78 ni2 1}

RX Format

| Opcode [M/Mi| X | B | b,
. 78

] naz 1516 1920 . N

RS Format

[(oer[m®w%] 5%]

0 78 a2 1516 1920 n

In these formats‘Rlvspecifies the address of a general register.
In BRANCH ON CONDITION a mask field (Ml) identifies the bit
values of the condition code. The branch address ié_define&v

differently for the three'fofmats.

In the RR format, the R2 field specifies the address of a
general register containing thé branch addreés,}except'when,“
R2 is zero, which indicates no branching. The same register

may be specified by Rl and R2.

In the RX format, the contents of the general registers
specified by the X2 and B2 fields are added to the content

of the D2 field to form the branch address.

In the RS format, the content of the general register
specified by the B2 field is added to the content of the
D2 field to form the branch address. The R3 field in this

format specifies the location of the second operandkand

implies the location of the third operand. Thé first operand
is specified by the Rl field. The third operation location
is always odd. -If the R3 field specifies and even register,
the third operand ié obtained from the next higher addressed
register. If the R3 field specifies an odd.register, the
third operand location coincides with the sécond‘operand

location.

A zero in a B2 or X2 field indicates the absence of the cor-

responding address component.

An instruction can speéify the same general registér for both
addressqudification and operand location. The order in which
' the'coﬁtents of the general register are used for ‘the differené
~parts of an operation is;.

1. Address computation.

2. Arithmetic or link information storage.

3. Replacement of the instruction address by the
branch address obtained undexr step 1.

Results are placed in the general register specified by R1.
Except for the storing of the final results, the contents bf
ball genéral registers and storage locations participating in
the addressing or execution part of an operation remain un-

changed.

NOTE: In the detailed descriptions of the individual instruc-

tions, the mnemonic and the symbolic opefand designation for

1-23

the IBM System/360 assembly language are shown with each
instruction. For BRANCH ON INDEX HIGH, for example, BXH is

the mnemonic and Rl, R3, D2(B2).the operand designation.
Programming Note

In several instructions the branch address may be specified

in two ways: in the RX format, the branch address is the
address specified by X2, B2, and D2; in the RR format, the
branch address is in the ldw-ordef.24 bits of the register
specified by R2. Note that~the relation of the two formats

in branch-address specification is not the same as in operand-
add:esé specificafion. For operands, the address specified by
X2, B2, and D2 is the operand address;_but thé régister speci-

fied by R2 contains the operand itself.

EXECUTE EXCEPTIONS

Exceptional operand designations and a subject-instruction
operation code specifying EXECUTE cause a program interruption.
Wﬁen the interruption occurs, the current PSW isvstorad as an
old PSW, and a new PSW is obtained. The interfuption code in |
the old PSW identifies the cause. Exceptions that cause a

program interruption in the use of EXECUTE are:

Execute: An EXECUTE instruction has as its subject instruc-

tion another execute.

Protection: An EXECUTE specifies a subject instruction. half-

word in a fetch-protected area.

1-24

Addressing: The branch address of EXECUTE designatés an
instruction-halfword location outside the available sﬁor&ge-
for the particular installation.-

Specification: - The~branchwaddresS~6f~EXECUTEvis odd.

These four execptions occur-only for -EXECUTE. The instrudtion
is suppressed. Therefore, the condition code and data in

. registers‘and‘storage*remain%uhchangedfv

Exceptions afising for the 'subject instruction of EXECUTE

are .the same as;wOuldfhaVeﬁarisen*had“the‘subject instruction
been in’the~normal~instru¢tion*stream;v However} the instruc-
tion address stored in the-old -PSW is the address of the in-
struétibn~f61iowing%ExEéGTEéw-Similarly, the instruction-length

code,iﬁ the~old‘PSW”isﬁthé*inéthGtion~length code (2) of EXECUTE.
The address—reStriétiOnéwdéﬁnOﬁﬁapply'toﬂtheécomponents from
which an-address -is-generated-- the ‘content of the Dl field

and -the ‘content ‘of “the -register-specified by Bl.

Programming Note -

An unavailable or-odd branch-addréss: of ‘a-successful branch

is detected ‘during the-execution--of- the -next -instruction and

not as part-of -the-branch.-

25

[
p

STATUS SWITCHING. INSTRUCTIONS

A set of operations is provided to switch the status of the CPU,

of storage, and of communications between systems.

The overall CPU‘stagus is determined by several program?state
‘alternatives,.each of whigh'dan be changed independently to its
opposite and most of which are indicated by a bit in the program
status word (PSW). The CPU status is further defined by the
instructidn addreés;‘the condition codé, the instruction-length
code, the storage-pfotéction key, and the'interruption code.

These all occupy fields in the PSW.

Protectipn of main storage is achieVed by matching é key in
storage with a protéction key in the PSW or in a channel.x

The protection status of storage may,be»changed'by intrpducing
‘new storage keys, using SET STORAGE KE!. The storage kefs may'

be inspected by using -INSERT STORAGE KEY.

PROGRAM STATES

The four types of program-state alternatives, which detgrmine
the overall CPU status, are named Problem/Supervisor, Wait/
Runningp‘Masked/Interfuptible, and Stopped/Operating. These
states differ in the way they affect the CPU functions and in
the way their status is indicated and switched. The masked
states have severél alternaﬁives; all other étates have only

one alternative.

All program states are independent of each other in their

function, indication, and status switching. Status switching

1-26

does not affect the contents of the arithmetic registers or the

execution of I/0 operations but may affect the timer operation.

PROBLEM STATE

The choice between supetViSprbahd problem state determines
whether the full set.of instructions is valid. The names ofi
these states:fefleCt«their~normaleuSe. |

in the problem state all-I/O, protection, and'direct-eontrol
instructionsrare'inValid,-aS‘Wellfas;LOAD.PSW, SET SYSTEM MASK,
and DIAGNOSE. These are called priviledged instructions. A
priviledged instruCtiOn~enCOunterediin-the problem state con-
stitutes a ptiviledge-bperétiOh'exception and eauses a program
interrﬁption. In the.superVisQrvState 511 instructions are

valid.

When bit leof,the PSW .is.zero, the CPU is in the supervisor
state. When bit 15 .is one, the CPU is in the problem state.
The Supervisor.state iS'nOtwindicated<0n‘the operator sections

of the system control panel.

The CPU is.ewitched between ﬁroblem“and-superVisor stete by
changing bit lSVdf the“PSW. uThis bit can be c¢hanged only by
introducing a new‘PSW Thus status. sw1tch1ng may be performed
by LOAD PSW, using a new PSW w1th the desired ‘value of bit 15.
Since LOAD PSW is a prlvxledgedxlnstructlon, the CPU must be

in the supervisor state priorltO»the switch. A new PSW is also

introduced when .-the CPU is interrupted. The SUPERVISOR CALL

127

causes an interruption and thus may change the CPU state.
Similarly, initial‘pfogram'lqading introduces a new'PSW and
with it a new CPU state. The new PSW may introduce the
problem or gupervisor state-regardless of the preceding
state. No explicit operator cdnt:él is provided for chang-

ing the supervisor state.

WAIT STATE

In the wait state no instructions are processed,'and stofage
is not addressed repéatedly,.whereas in the running state,
instruction fetching and execution proceed in the normal

manner.

When bit 14 of the PSW is one, the CPU is'waiting. When
bit 14 is zero, the CPU is in the running state. The wait
state is indicated on the Qperator'cohtrol section of the

system control pahel by the wait light.

The CPU is sWitched between wait and running state by chang-
ing bit 14 of the PSW. This bit can be changed only be in- |
troducing an entire new PSW, as is the case with the problem-
state bit. Thus, switching from the running state may be
achieved by the priviledged instruction LOAD PSW, by an
interruption such as for SUPERVISOR CALL, or by initial pro-
gram loading. Switching from the wait state may be achieved
by an I/0 or external interruption, or again, by initial
program loading. The new PSW may introduce the wait or run-
ning state regardless of the preceding state. No explicit

operator control is provided for changing the wait gtate.

1-28

70 leave the wait state without manual intervehéion, the CPU
ghould be interruptible for some active I/0 oxr ekternal,in-

terruption source.

MASKED STATES

The CPU may be masked or interruptible for all 1/0, external,
and machine-check interruptions and for some program inter-
ruptions. When the CPU is ihterruptible fof a class of interxr-
ruptions, these interruptions are accepted. When the CPU is
masked, the system interruptions remain pending, while the

program and machine-check interruptions are ignored.

The system mask bits (PSW bits 0-7), the program mask bits

(PSW bits 36-38), and the machine-check mask bit (PSW bit 13)
indicate as a group the masked state of the CPU. When a mask
bit is one, the CPU is interfuptible for the éorresponding
interruptions. When the mask,bit is zero, these interruptions
are masked off,‘ The system:mask bits indicate the masked state
‘of the CPU for multiplexor and selector.channels and the ex-
ternal signals. The program mask bits indicate the masked
‘state for four of the 15 types of program exceptions. The
machine-check mask bit pertainsrto all machine checks. Program
interruptions'npt maskable, as well as the supervisor-call in-
terruption, are always taken. The masked states are not

indicated on the operator sections of the system control panel.

Most mask bits do not affect the execution of CPU operations.
The only exception is the significance mask bit, which deter-
mines the manner in which a floating-point operation is completed

when a significance exception occurs.

1-29

The interruptible state of the CPU is éwitched by changing
ihe mask bits‘in the'PSW. The program mask‘may be changed
separately by SET PROGRAM MASK, ahd the system mask may be
changed separately by the privileged instruction SET SYSTEM
MASK. The machine—chegk'bit can be changed only by intro- .
ducing an entire new PSW, as ih the case with the problem-
state and wait-state bits, Thus, change in the entire
masked status may be achieved by the privileged instruction
LOAD PSW, by an interruption such as for SUPERVISOR CALL,
or by initial program loading. The new PSW may introduce

a new masked State regardless of the preceding state. No
explicit 6peratc:}control is provided for changing the

masked state.

To prevent an interruption-handling routine from being in-
terrupted before necessary housekeeping steps are performed,
the new PSW for that interruption should mask the CPU for

further interruptions of the kind that caused the interrup-

tion.

PROTECTION

Protection is‘provided to protect the contehts of certain
areas of main storage from destructibn (or misuse) caused
by erroneous storing (or storing and fetching) of infdrma-
tion during the execution of a program. Locations may be |
protected against store violations or against store and
fetch violations ﬂﬁt never against fetch violations alone.
This protection is achieved by identifying blocks of stor-

~age with a key and comparing this key with a protection key

1-30

supplied with the data to be stored. The detection of a
mismatch causes the access to be suppressed, and a protec-

tion exception is recognized.

The key in'stdraqe is not part of»addressable storage.
The key is changed by SET éTORAGE KEY and is inspeéted by
INSERT STORAGE KEY. The protection key of the.CPUvocéupies
bits 8-11 of the PSW. |

The protection system is”always active. It is independent
of the problem, supervisor, or masked state of the CPU and

of the type of instruction or I/0 command being executed.

When an instruction causes a protection mismatch, the pro-

tected main-storage location remains unchanged.

PROGRAM STATUS WORD

The PSW contqins all information not §ontained in storage
or registers but required for proper program execution. By
stoﬁing the PSW, the program can preserve the detailed
status of the CPU for‘subsequent inspection. By loading

a new PSW or part of a PSW, the state of the CPU may be

changed.

In certain circumstances all of the PSW is stored or
loaded; in others, only part of it. The entire PSW is
stored, and a new PSW is introduced when the CPU is in-
terrupted. The rightmost 32 bits are stored in BRANCH
AND LINK. The LOAD PSW introduces a new PSW; SET PROGRAM-

1-31

MASK introduces a new condition code and program-mask
field in the PSW; SET SYSTEM MASK introduces a new systém~

mask field.

The PSW has the following format:

Program Status Word
l System Mask l Key I AMWPl " lnterruption Code I
0 78

Wiz 1516 v] 3

[ILClCC l pm;ﬁm I Instruction Address ‘ J

32 3334 3536 3940 . 83

INSTRUCTION FORMAT

Status-switching instfuctions,use the following two formats:
RR Format '

[orcoe [& [%]
[} ' 78

niz 15

Si Format

L OpCoéo . |2 I B].I D] ﬁl

78 1516 1920 : n

In the RR format, the Rl field specifies a generél register,
except for SUPERVISOR CALL. The R2 field specifies a gen-
eral register in SET STORAGE KEY and INSERT STORAGE KEY.

The R1 and R2 fields in SUPERVISOR CALL contain an identi-

fication code. - In SET PROGRAM MASK the R2 field is ignored.

In the SI format the eight-bit immediéte field (IZ) of the.
instruction contains an identification code. The I2 field
is ignored in LOAD PSW, SET SYSTEM MASK, and TEST AND SET.
The content of the general register specified by Bl is
added to the contént of the D1l field to form an address
designating the location of an operand in storage. Oniy
one_operand location is required in status-switching

operations.

A zero in the Bl field indicates the absence of the correspon-

ding address component.

NOTE: 1In the detailed descriptions of the individual inétruc-
tions, the mnemonic and the symboliq operand designation for

the IBM System/360 assembly language are shown with each in- |
- gtruction. For LOAD PSW, for example; LPSW i@:thé mnemonic

and D1(Bl) the operand designation.

STATUS-SWITCHiNG EXCEPTIONS

‘Exceptional instruC£ions, operand designations,kér datawcause
a program.interruption. When the interruption occurs, the
current PSW is stored as an old PSW, and a new PSW identifies
the cause of the intérruption. The following exception con-
ditions cause a program interruption in status-switching

operations.

Operation: The protection feature is not installed and the

instruction is SET STORAGE KEY OR INSERT STORAGE KEY.

‘Privileged Operation: A LOAD PSW, SET SYSTEM MASK, SET
STORAGE KEY, INSERT STORAGE KEY, or DIAGNOSE is encountered

while the CPU is in the problem state.

Protection: The key of an operand in storage does not match
the protection key in the PSW. The instruction is suppressed
on a store violation, except for TEST AND SET, which is ter-

minated. The operation is terminated on a fetch violation.

Addressing: An address designates a location outside the
available storage for the installétion. The operation is

terminated, except for DIAGNOSE, which is suppressed.

Specification: The operand address.of a LOAD PSW does ndt
have all three low-brder bits zero; the 0perand_address of
DIAGNOSE does not have as many low-order zero bits as re—:
quired for the pa#ticular CPU; the block address specified
by SET STORAGE KEY OR INSERT STORAGE KEY does not have the
four low-order bits all zero; or the protection feature is
not installed and a-PSW with a nonzéro'protection key is

‘introduced.

When an instruction is suppresséd, storage and external
- signals remain unchanged,'and the PSW is not changed by

information from storage.

When an interruption is taken, the instruction address
stored as part of the old PSW has been updated by the
number of halfwords indicated by the instruction-length

code in the old Psw.

Cperand addresses are‘tested only when used to address
storage. The address testrictions do not apply to the
components ftom which an address is generated: the con-
tent of the D1 field and the wontent of the register

specified by Bl.

1-34

FIXED POINT FAMILY

LOAD

The primary ourpose‘of the LOAb instruction is to transfer
the contents of anyllocaﬁion to that of another location.
The location of the data to be transferred is specified by
the second address field. The first address field speci-
fies the location ﬁo whioh.the data will be transferred. The

second operand remains unchanged.

The term "Operand" refers to the data that is operated on
by the instruction. The location of the Operand’is soeci—
fied by the "address field.“ The "flrst address field" has
.a subscript 1 attached as; Rl or Dl (Bl) VThe second
address field" is also described by 1ts ‘subscripts as;

R2 or D2 (X2,B2).

The following LOAD instructions eXhlblt additional charac-
teristics: .

LH Expands a halfword operand to a fullword operand by

propagating the sign bit to the left through the 16
high-order bit p031t10ns.

LTR "Sets the Condition Code as a result of the data con-

tained in the second operand.

LCR The second operand 1s changed to the two's complement
form when transferred.

LPR The second operand is changed to a positive number (IF
NEGATIVE)

LNR The second operand is changed to a negative number (IF
POSITIVE)

LM Allows more than one register to be loaded at a time.

3-1-

1.

2.

EXAMPLES

1.

Load »
IR R,R, [RR]

L1 [K] |
0 78 - 112 ‘ 15
L Ry, DyfXy By) [RX] |
s8 | Ry | X B | Dy |
1] 78 nn } 1516 1920) n

The fullword specified by the second address field
[R2 or D2(X2,B2)] is placed in the register spec-
ified by the first address field (R1l).

The second operand remains unchanged.

LR , (Load Register)
Load the contents of register 5 into register 3.
SYMBOLIC LR 3,5 MACHINE 18 35
' Before After
GPR 3 F1 96 0ACD 7F 00 19 86
GPR .5 - 7F 00 19 86 7F 00 19 86
L (Load)

Load the contents of storage address 1000 (FIELD1)
into register 7. (GPR F = 00 00 10 00)

SYMBOLIC L 7,FIELDL '~ MACHINE 58 70 FO 00

Before ‘After
GPR, 7 00 00 00 00 00 00 FC DE

Storage 1000 00 00 FC DE 00 00 FC DE

CONDITION CODE

lO

Remains unchanged

PROGRAM INTERRUPTIONS

l.
2.

Protection (fetch T, only)
Addressing (L only)

3. Specification (L onlY)

Lload Halfword »
LH Ry, DyfX,, By) [RX]

L s [8M1%]%] %]

0 78 1mn 1516 1920 N

1. The halfword second operand [D2(X2,B2)] is placed
in the register specified by the first address B
field (R1).

2. The halfword operand is expanded to a fullword by

propagating the sign bit through the 16 high-order:
bit positions.

3. The second operand remains unchanged.
EXAMPLES

l. LH
Load the halfword contents of storage location 1002
(FIELD1+2) into register C. (GPR F = 00 00 10 00)

SYMBOLIC LH 12,FIELD1+2 MACHINE 48 C0 FO 02
Before After
GPR C 00 00 00 00 FF FF 9F 10

Storage 1000 FO. 80 9F 10 FO 80 9F 10
CONDITION CODE
1. Remains unchanged
PROGRAM INTERRUPTIONS
1. Protection (fetch only)

2. Addressing
3. Specification

Load and ‘Tegﬁ
LTR Ry, R, [RR]

I lkllel

0 78 "2 15

1. The contents of the register specified by the second
operand (R2) are placed in the location specified by
the first operand (Rl).

2. The sign and value of the second operand determines
thée setting of the Condition Code.

3. The second operand remains unchanged.

3-3

EXAMPLES

1. LTR (Load and Test Register)
Load the contents of register 1 into register A and set the
Condition Code. :

SYMBOLIC LTR 10,1 o MACHINE 12 Al
| Before | After

GPR 1 0C 1000 00 0C 10 00 00

GPR A AB 19 24 35 0C 10 00 00

Condition Code

2. LTR '
Test the contents of reglster 2 w1thout loading into another
location.-
SYMBOLIC LTR 2,2 : ' MACHINE 12 22
Before After
GPR 2 | 91 23 45 6A 91 23 45 6A
Condition Code 1
CONDITION CODE
Operand is zero

Operand is negative
Operand is positive-

WO

" PROGRAM INTERRUPTIONS

l. None

Load Complement

ECR R, R, [RR]

T Th W]

[) i 112

1. The contents of the register spe01fled by the second
address field (R2) are placed in the reglster designated
by the first address field (R1l).

2. The second operand is complemented prlor to placing in
the first operand location.

3. A second operand containing a value of zero would remain
unchanged.

4. A second operand containing the maximum negative number
will not be complemented and will cause a fixed point
overflow. The Condition Code is set to 3.

5. Both positive and negative values are complemented.

3-4

EXAMPLES
1.

CONDITION

Wwive~ O

LCR (Load Complement Register) ,
Complement and load the contents of register § into
register 8. ‘

SYMBOLIC 1ICR 8,6 MACHINE 13 86

Before . Afterxr
GPR 6 FF FF FF FF FF FF FF FF
GPR 8 00 00 00 00 00 00 00 01

Condition Code 2

ggﬁplement the contents of register D.
SYMBOLIC LCR 13,13 MACHINE 13 DD
| Before Aftex

GPR D - 00 00 00 AC FF FF FF 54

Condition Code 1
CODE

Result is zero
Result is negative
Result is positive
Overflow

PROGRAM INTERRUPTIONS

1.

EXAMPLES

l.

Fixed Point Overflow.

Load Pesitive

PR Ry, R, [RR]

RS

The absolute value contained in the register speci-
fied by the second address field (R2) is placed in

the register specified by the first address field (Rl).
Negative numbers are complemented while positive
numbers remain unchanged.

‘A second operand containing the value of zero remains

unchanged.

A second operand containing the maximum negative num-
ber will not be complemented and will cause a fixed
point overflow. The Condition Code is set to 3.

LPR (Load Positive Registers)
Load the absolute value of register E into register 0.

v

- 3-5

SYMBOLIC LPR 0,14 - MACHINE 10 OE

_ Before - After
GPR 0 79 OA 05 63 3A FC 19 A8
GPR - E ~ 3A FC 19 A8 3A FC 19 A8
Condition Code 2
2. LPR
Change the contents of reglster 9 to its absolute
value. | _
'SYMBOLIC LPR 9,9 MACHINE 10 99
’ Before - After
GPR. 9 8000 00 01 7F FF FF FF

Condition Code 2
CONDITION CODE

0 Result is zero

1 - .
2 Result is positive
3 Overflow

_PROGRAM INTERRUPTIONS ,
l. Fixed Point overflow

Load Negative -

INR R, R, . [RR]

1. The two's complement of the absolute value contained
in the register specified by the second address field
(R2) is placed in the register specified by the first
address field (R1l).

2. Positive numbers are complemented while negative num-
bers remain unchanged.

3. A second operand containing the value of zero remains
unchanged.

EXAMPLES

i. LNR

Complement the absolute value contalned in register 3
and place in register 7.

SYMBOLIC LNR 7,3 MACHINE 11 73
Before After
GPR 3 70 00 00 10 70 00 00 10
GPR 7 00 00 00 0O 8F FF FF FO

Condition Code 1

3-6

2. LNR ,
Complement the absolute value contained in register

8.
SYMBOLIC LNR 8,8 MACHINE 11 88
Before - . After
GPR 8 ‘ %0 00 00 00 90 00 00 00

Condition Code 1
CONDITION CODE

0 Result is zero ,
1 Result is negative
2 —
3 -

PRCGRAM INTERRUPTIONS

l. None
Loud Multiple
LM R, Ry DyBy) ' [RS]

| s J:Rll Ry | By | 9

0 2 1316 1920 31

1. The general registers starting with the register
gpecified by the first address field (Rl) and ending
with the register specified by the third address field
(R3) are loaded from the locations designated by
the second address field (B2,D2).

2. The registers are loaded from storage beginning
at the address specified by the second address field
and continuing in increments of four bytes until all
specified registers are loaded.

3. The registers are loaded in ascending order be-
ginning with the register specified by R1 and
continuing up to and including the register
specified by R3.

4., All combinations of register addresses specified

... .by Rl and R3 are valid.

5. When the address specified by R3 is less than R1,
the register addresses wrap around from F to 0.

6. The second operand remains unchanged.

EXBMPLES
1. 1M
Load registers 9 through B from storage locations
1000 (DATA) through 100B. (GPR F = 00 00 10 00)

SYMBOLIC 1M 9,11,DATA 'MACHINE 98 9B FO 00

Before After

GPR 9 - 00 00 00 00 00 00 02 00

GPR A 00 00 00 00 00 00 00 04
GPR B 00 00 00 00 00 00 FC DE
Storage 1000 - 00 00 02 00 00 .00 02 00
: 1004 ~ 00 00 00 04 .00 00 00 04.
1008 - 00 00 FC DE 00 00 FC DE

Load register E through 1 from storage locations
1000 (DATA) through 100F. (GRP F = 00 00 10 00)

SYMBOLIC LM 14,1,DATA ‘ MACHINE 98 E1 FO 00
Before | 'After
GPR E 00 00 00 05 12 34 56 AC
GPR F. - 00 00 10 00 00 00 10 00
GPR 0 23 1C 1A 23 AB CD EF 01
GPR 1 5 7C 00 00 13 72 A2 19
Storage 1000 - 12 34 56 AC 12 34 56 AC
“1004 00 00 10 00 00 00 10 00
1008 AB CD EF 01 AB CD EF 01

100C 13 72 2219 13.72 A2°19
CONDITION CODE
1. Remains unchanged

PROGRAMMING INTERRUPTIONS

1. Protection (fétch only)
2. Addressing
3. Specification

FIXED POINT FAMILY

STORE

The STORE instruction is used to transfer thevgontents of the
General Purpose Registers to main storage. The location of
the data to be transfepred,is,specified'by the first and
third (when applicable) address fields. The second address
field designates the beginning address in‘maip storage where
the déta will be pléced. ‘

The following STORE instructions exhibit additional character-

istics:
STH Stores the low-order 16 bits of a register.
STM Stores more than one register at a time.

3-9

Store - -
ST Ry, Du(X;, By) '[RX]

s0 | R | X% |8 '| D,

0 78 12 1514 1920 3

1. The contents of the register specified by the first .
. address field (Rl) are stored at the locatlon designated
by the address field [D2(X2,B2)]. :

EXAMPLES

l. ST (Store)
' Store the contents of register D into storage lo-
cation 1004 (DATA+4). (GPR F = 00 00 10 00)-

SYMBOLIC ST 13,DATA+4 MACHINE 50 DO FO 04
Before After
GPR D 0ACl 8569 O0ACL 85 69

Storage 1004 OF FO 16 72 O0A Cl 85 69
CONDITION CODE

1. Remains unchanged
PROGRAMMING INTERRUPTIONS

1. Protection (store only)
2. Addressing
3. Specification

Store Malfwerd
STH Ry, Dy(X,, B,) [RX]

40 | EREN Dy

[nn 1516 1920 . > 3t

1. The low-order 16 bits of the register specified by
the first address field (Rl) are stored at location
designated by the address field [D2(X2,B2)].

EXAMPLE
l. STH (Store Halfword)
Store the low order two bytes of register 0 into
storage location 1000 (DATA). (GPRF = 00 00 10 00)

SYMBOLIC STH 0,DATA MACHINE 40 00 FO 00

3-10

Before After

. GPR 0 00 FC 04 50 00 FC 04 50

Storage 1000 FE D9 16 25 04 50 16 25

CONDITION CODE

1.

Remains unchanged.

PROGRAM INTERRUTPIONS

1.
2.
3.

EXAMPLES

1.

Protection (store only)
Addressing
Specification

Store Multiple
STM Ry, Ry, D(B,) [RS]

[J8]fs]%] 5]

0 78 1112 1518 . 1920 N

The general register starting with the register
specified by the first address field (R1l) and ending

.with the register specified by the third address field

(R3) are stored in the location designated by the
second address field (D2,B2).

The registers are stored in ascending order begin-

ning with the register specified by the first address

field and continuing until all specified registers
are stored.

The beginning storage address is incremented by 4
bytes after each register is stored. This continues
until all specified registers have been stored.

All combinations of register address sPecified by

Rl and R3 are valid.

When the address specified by R3 is less than R1,
the register addresses wrap around from F to 0.

1

STM (Sstore |Multiple)
Store the contents of register 4 and 5 into storage
locatlon 1000 (DATA) through 1007. (GPR F = 00 00 10 00)

SYMBOLIC STM 4,5 ,DATA | MACHINE 90 45 FO 00
Before After
GPR 4 46 00 00 ALl 46 00 00 Al
GPR 5 00 01 1a 23 00 01 1A 23
- Storage 1000 27 AE FC D4 46 00 00 Al

1004 00 00 00 02 00 01 1A 23

2. STM o :
Store the content of registers F and 0 into storage ,
location 1008 (DATA+8) through 100F. (GPR F = 00 00 10 00)

'SYMBOLIC STM 15,0,DATA+8 MACHINE 90 FO FO 08
Before After
~ GPR 0 00 00 00 04 00 00 00 04
GPR F . 0000 10 00 00 00 10 00

‘Storage 1008 00 00 00 .08 00 00 10 00
' 100C 00 00 20 00 00 00 00 04

CONDITION CODE
1. Remains unchanged,

PROGRAM INTERRUPTIONS

1. ~ Protection (store only)
2. - Addressing

3. Specification.

FIXED POINT FAMILY

The ADD instruction is used to perform the addition of two
operands; The second operand is added to the first operand

and the result replaces .the contents of the first operand.

The following ADD instructions exhibit additional character-
istics: ’ '

AH Prior to the addition, it expands a halfword operand

to a fullword by propagating the .sign bit through the
the 16 high-order bits positions.

AL ‘Following the add, it records the occurrence'of a
carry out of the sign position in the Condition Code.

Add

AR R, R, [RR]

e TR

0 7e "z 18

A Ry, DyX,, By) [RX]

Losa [8]%]° 1%]

0 ’ 1112 15 le 1920 n

The contents of the location specified by the second

1. ,
address field (R2 or D2(X2,B2)) are added to the
contents of the reglster specified by the first
address field (R1). :
2. The sum replaces the first operand (R1).
3. Addition is performed by adding all 32 bits of both
operands.
4. If the carry out of the sign-bit position and the
high~order numeric bit position agree, the sum is
-satisfactory. If they disagree, an overflow occurs.
5. A positive overflow results in a negative sum.
6. A negative overflow results in a positive sum.
7. A register may be added to itself.
EXAMPLES
1. AR - (Add Registers)
Add the contents of register 4 to the contents of
register 7 and have the result placed in register 7.
SYMBOLIC AR 7,4 .~ MACHINE 1A 74
| Before ' After
GPR © 4 70 00 12 3C 70 00 12 3C
GPR 7 00 00 0OA 81 70 00 1C BD
Condition Code 2
2. A (add)

Add the fullword contents of storage location 1000 (OPER1)
to register 3. (GPR F = 00 00 10 00)

SYMBOLIC A 3,0PERl MACHINE 5A 30 FO 00
 Before After
GPR 3 00 60 00 04 00 00 00 03
storége 1000 FF FF FF FF FF FF FF FF.

Condition Code 2

CONDITION CODL

" PROGRAM

EXAMPLLES

WO

S W P

Sum is zero

Sum is negative
Sum is positive
Overflow

INTERRUPTIiONS

Protection (fetch A only)
Addressing (A only)
Specification (A only)
Fixed-point overflow

Add Halfword v

AN Ry, Do(X., By) [RX]

A Y N

] 78 112 7 7 as1s 1920 T n

The halfword designated by the second address field

(D2 (X2,B2)) is added to the register specified by

the first address field (R1).

The halfword second operand is expanded to a fullwoxd
prior to addition, by propagating the sign-bit value:
through the 16 high-order bit positions.

The sum replaces the contents of the reglster S“GCliled
by the first address field (R1).

Addition is performed- by adding all 32 bits of both
operands.

If the carry out of the sign-bit position and the high-
order numeric bit position agree, the sum is satisfactory.
If they disagree’, an overflow occurs.

A positive overflow results in a positive sum.

AH . (Add Halfword)

Add the halfword contents of storage location 1002
(OPER1+2) to register 5.

SYMBOLIC AH 5,0PERL+2 MACHINE 4A 50 FO 02
Before - After

GPR 5 | 80 00 00 01 80 00 00 00

Storage 1000 00 00 FF FF 00 00 FF FF

Condition Code v 1 |

CONDITION CODE.

0 Sum is zero

‘1 Sum is negative
2 Sum is positive
3 Overflow

PROGRAM INTERRUPTIONS

1. Protection (fetch only)
2. Addressing

3. Specification

4, leed—pOLnt overflow

Add Logical

AR R, R, [RR]

1E I’%.[R{1.

) 78 "2 [

AL Ry, DyfX,, B,) [RX]

= [7[%l%] %]

o 78 12 1516 1920 n

1. The contents of the second address field [R2 or D2
(X2,B2)] are added to the register specified by the
first address field (R1l).

2. The sum replaces the first operand (R1l).

3. Logical addition is performed by adding all 32 bits
of both operands w1thout further change to the re-
sulting sign bit.

4, An overflow condition is not indicated.

5. A carry out of the sign p051tlon is recorded in the
the Condition Code._

EXAMPLES
i. ALR " (Add Logical Register)
Logically add the contents of register 9 to
register 7 and place the sum in register 7.
SYMBOLIC ALR 7,9 MACHINE 1E 79

Before -~ After

GPR 7 00 00 00 30 00 00 01 30
GPR -9 06 00 01 00 00 00 01 00

Condition Code 1

3-16

AL (Add Logical)

storage location 1004 (OPER1+4).
00 00 10 00)

SYMBOLIC AL 9,0PER1+4
- Before
GPR . 9 80 00 00 00
Storage 1004 80 00 00 01

Condition Code 3

CONDITION CODEL

Wt = C

Sum is zero (no carry) '
Sum is not zero (no carry)
Sum is zero (carry)

Sum is not zero (carry)

PROGRAM INTERRUPTIONS

[N
o .

Protection (fetén‘AL oni})
Addressing (AL only)
Specification (AL only)

3-17

" Logically add the contents of registcr Y to

(GPR F =

MACHINE SE 90 FO 04
After
00 00 00 01

80 00 00 01

FIXED POINT FAMILY

SUBTRACT

The primary purpose of the SUBTRACT instruction is to £ind

the differ2nce between two operands. 'The location specified

by the second addréss field contains the subtrahend. The ﬁinﬁend
is contained in the register specified by the first address field.

The first operand is replaced by the difference.

The follow1ng SUBTRACT 1nstructlons exhlblt additional
characteristics: '

SH “410? to subtraction the halfword operand is expanded
to & full word by propagating the s;gn bit through the
high-order 16 bit p051t10ns.

SL Following the subtraction it records the occurrence of
& carry out of the sign position in the Condition Code.

Subtract

SR R, R, [RR]

ENEE

ERIRD

1B

S Ry, Dyf¥y By

L [N]%

0 112

[RX]

2 [

1516 1920

n

The contents of the location specified by the

- second address field [R2 or D2(X2,B2)] are sub- :
tracted from the contents of the register spec1fled
by the first address field (Rl).
The difference replaces the first (R1l).
Subtraction is performed by complement addition.
If the carry out of the sign-bit position and
the high-order numeric bit position agree, the
difference is satisfactory. If they disagree,
an overflow occurs.
A reglster may be cleared by . subtractlng 1t from
‘itself.

EXAMPLES

SR (Subtract Register)
Subtract the .contents of reglster 7 -£rom the
contents of register D

1.

SYMBOLIC SR 5,7 MACHINE 1B 57

Before After

GPR
GPR

5
7

00 00 2F ED
00 00 .01 CE

00 00 2E 1F
.00 00 01 CE
Condition Code 2

SR _
Clear register 7 by subtraction..

SYMBOLIC SR 7,7

GPR 7

Condition Code

MACHINE 1B 77
Before After
00 00 01 CE 00 00 00 00

°

3.

CONDITION

WNHEO

S (Subtract) ‘ :
Subtract the fullword contents at storage location 200C

- (HOURS+12) from register C. (GPR F = 00 00 20 00)

 SYMBOLIC § 12,HOURS+l2 'MACHINE 5B CO FO OC
GPR C 80 00 00 00 . 00 00 00 00 |
Storage 200C 80 80 00 00 80 00 00 00
Condition Code 0 | '

CODE

Difference is zero
Difference is negative
Difference is positive
Over flow

PROGRAM INTERRUPTIONS

e« © e @

WM

Protection (fetch S only)
Addressing (S only)
Specification (S only)
Fixed-point overflow

Subtmd Halfword

SH Ry, DXy, By) . [RX]
IEEREY Y P2

[78 112 1516 1920 n

The halfword designated by the second address field
(D2(x2,B2)) is subtracted from the contents of

the register specified by the first address field

(R1) .

The halfword operand is expanded to a fullword, prior
to subtraction, by propagating the sign-bit value through
the 16 high-order bit positions.

The difference replaces the first operand.

Subtraction is performed by complement addition of all
32 bits of both operands. :

If the carry out of the sign-bit position and the
high-order numeric bit position agree, the difference
is satisfactory. If they disagree, an overflow occurs.

EXAMPLES

1. SH (Subtract Halfword)
Subtract the halfword operand at storage location
2000 (HOURS) from the contents of register E.
(GPR F = 00 00 20 00)

SYMBOLIC SH 14,HOURS MACHINE 4B EO0O FO 00
Before - ' After

GPR E .06 17 FC 10 06 18 1C 00

Storage 2000 EO 10 FC D8 E0 10 FC D8

"Condition Code 2

CONDITION CODE

Difference is zero
Difference is negative
Difference is positive
Overflow

W= O

PROGRAM INTERRUPTIONS

1. Protection (fetch only)
2. Addressing
3. Specification
4. Fixed-Point Overflow
:Sub"aceiogkal
SIR R, R, [RR]
RN
[78 AR)
SL Ry, DyfX, B,) [RX]
5F l Ry 1 X, ‘[B, [. D,]

0 78 n 1516 1920 n

1. The contents of the second address field (R2 or D2(xX2,B2))
are subtracted from the register specified by the first
address field (R1l).

2. The difference replaces the first operand (R1).

3. Logical subtraction is performed by complement addition.
All 32 bits of both operands are complement added with-
out further change to the resulting sign bit.

" An overflow condition is not indicated.

A carry out of the sign p051tlon is recorded in the
Condition Code.

U
L)

EXAMPLES
1.

SLR (Subtract Logical Register)

‘Logically subtract the contents of’ reglster E from

the contents of register 3 and place the difference

in register 3.

SYMBOLIC SLR_B,E' MACHINE 1F 3E

Before After
GPR 3 i 00 00 00 1E - 00 00 00 29
GPR E ' FF FF FF F5 FF FF FF F5
Condition dee ' 1 | '
sL (Subtract Loglcal)

' Logically subtract the fullword contents at storage

location 2000 (HOURS) from reglster 6.
(GPR F = 00 00 20 00)

SYMBOLIC SL 6,HOURS MACHINE 5F 60 FO 00
Before = After

GPR 6 0000 00 FE 00 00 00 00

Storage 2000 00 00 00 FE 00 00 00 FE

Condition Code - | 2

CODE | |

CONDITION

wNEeo

Difference is not zero (no carry)
Difference is zero (carry)
Difference is not zero (carry)

PROGRAM INTERRUPTIONS

l.
2.
3.

Protection (fetch SL only)

- Addressing (SL only)

Specification (SL only)

BRANCHING FAMILY

BRANCH ON CONDITION

The BRANCH on CONDITION instruction provides a means of
leaving,éhe normalfinstruction sequence. Tﬁe effective
address of the second address field ié the branch address.
This branch address will‘be used to replaée thevnext in-
struction address if the Mask Field matches the Condition
Code. The first operand is a 4-bit Mask Field contained in

bits 8-11 of the instruction.

3-23

Branch Oa Condition
BCR M, R; [RR]

0

8C

o 1M 1%]

78 ni2 1

M‘, D-_:{X._,, 82) [RX]

a7 [M X8 D |

’6.
7.

EXAMPLES

1.

CONDITION

1.

78 12 1516 1920 n

The Mask Field (Ml) is compared to the Condition Code
to determine if the branch will occur. .
This is performed by comparing the Condition Code to
itS corresponding Mask Field bit as follows:

INSTRUCTION BIT (M1), | . CONDITION CODE"
. _
9
10
11

W H-HO

" The existing Condition Code determines which Mask

Field bit is checked. 1If that Mask bit is a one,

the branch will occur. '

The updated instruction address is replaced with the
contents of the location designated by second address
field [R2 or D2(X2,B2)] when the Condition Code and the
Mask Field match. ‘ : _

Normal instruction sequencing begins at the new

address [contents of R2 or D2(X2,B2)] when the

branch is taken. :

When a match condition does not exist, this instruction
performs no action; and the updated instruction address
will determine the next sequential instruction. .

The first and second operands remain unchanged. .

If R2 is zero, no branch is taken (no-op).

BCR , (Branch on Condition Register)

Branch to the location specified by register 6 if the
Condition Code is 0 or 1.

SYMBOLIC BCR 12,6 v MACHINE 07 Cé6

BC v(Branchdon Condition)

Unconditionally branch to location 41CE (TEXT+2) .
(GPR F = 00 00 40 00)

SYMBOLIC ‘BC 15,TEST+2 vMACHINE 47 F¥0 F1 CE
CODE o

Remains unchanged

PROGRAMMING INTERRUPTIONS

- 1.

None

FIXED POINT FAMILY
COMPARE -

The COMPARE inst:uction is used to determine the aimilarity_br
diffe:ence between two operands. The contents of the register
specified by the fi£st address,field‘are compared to the contents
of the location designated. by the second address field. The
Condition Code is set to reflect.thelsimilarity or difference

between the two operands.

The following COMPARE instruction. exhibits an additional
characteristic; ‘

CH Expands a halfword second operand to a fullword by pro-

pagating the sign bit through the 16 high-order bit
positions prior to comparing.

3-25

Compare

CR R, R, [RR]
HRERER
(] 786 1" 15
C R, DylX,, B,) [RX]
® N[B[% |
0 78 112 1516 1920) n

1. The contents of the register specified by the first

' address field (R1l) are compared to the contents of the
location designated by the second address field (R2 or

. D2 (X2,B2)) . S

2. Comparison is algebraic, treating both operands as
32-bit signed integers.

3. The result of the comparison determines the Condition
Code.

4. Both operands remain unchanged.

EXAMPLES
1. CR (Compare Registers) o '
- Compare the contents of register A to the contents
of register B.
SYMBOLIC CR 10,11 © MACHINE 19 AB
Before : After
GPR A 07 00 10 0C 07 00 10 OC
GPR B 87 00 00 0C 87 00 00 oOC
Condition Code 2
2. C. (Compare)

_Cdmpare'the contents of register 1 to a fullword operand
storage location 4000 (TEXT). (GPR F = 00 00 40 00)

SYMBOLIC C 1,TEXT MACHINE 59 10 F0 00
o Before .After

GPR 1 1A 23 1A 12 1A 23 1A 12

Storage 4000 1A 23 1B 33 1A 23 1B 33

Condition Code 1

CONDITION CODE

Operands are equal
First operand is low
First operand is high

o 3-26

W N= O

PROGRAMMING INTERRUPTIONS

1. Protection (fetch C only)

2. ‘Addressing (C only)

3. Specification (C only)

Compare Malfword
CH Ry, DyXy, B,) [RX]

| R %] 8| D |
) 70 1"z 1518 1920 k1)

l. The contents of the register specified by the first
address field (Rl) are algebraically compared to the -
halfword designated by the second address field [D2
(X2,B2)1].

2. The halfword operand is expanded to‘'a fullword by
propagating the sign bit value through.the high-
order 16-bit positions prior to the compare.

3. The result of the compare is 1ndlcated by the
Condition Code.

EXAMPLES
1. CH (Compare Halfword)

Compare the contents of register 2 to a halfword
operand at storage location 400C (TEXT+12).
(GPR F = 00 00 40 00)

 SYMBOLIC CH 2,TEXT+12 MACHINE 49 20 FO 0C
| Before After
GPR 2 FF FF 80 00 FF FF 80 00
Storage 400C 80 00 CD EF 80 00 CD EF
Condition Code | 0

CONDITION CODE

WO

Operands are equal
First operand is low
First operand is high

PROGRAMMING INTERRUPTIONS -

l.
2.

3.

Protection (fetchvonly)
Addressing
Specification

FIXED POINT FAMILY

MULTIPLY

The MULTIPLY -iiisfruction is used to find the product of two |
integers (numbers). The first address fleld must spec1fy an
even address Iegiéfer, The multlpllcand is located at a reglster
address of one greater than the even mglster spec1f1ed by

the first operand.' Multiplicands would always be contained

in an odd address register (1, 3, 5, 7, 9, B, D or E).

, Tﬁe product of ﬁ1ese two integers is 64 bits long. It is

placed in the even register desigrmted by the first address field

' and the odd _register’which contained the multiplicand. This
'regi'ster pa;\.r will be zéfer'red' to as the EVEN-ODD register

. pair. |

The follw:mg MULTIPLY instruction exhibits an additicnal

characteristic:

MH Expands a halfword second operand to a fullword by

propagating the sign bit value through the 16 high-
order bit positions prior to multiplication.

3-28

Muliiply

MR R, R, [RR]

L e &R |

[} 78 nn 15

B Ry, DAX,, By) [RX]

(TR %1%] 5%]

0 79 1n2 1516 1920 N

1. The first address field (R1l) must contain an EVEN
register address.

2. This address spe01f1es an EVEN-ODD register pair.

3. The contents of the ODD register (multiplicand) are
multiplied by the second operand (R2 or D2 (X2,B2)).

4, The product of this multlpllcatlon is 64 bits and is
placed in the EVEN-ODD reglster pair.

5. The sign of the product is determined by the rules

of algebra.
6. A specification exception will occur if the register
specified by the first operand is at an odd address.
EXAMPLES
1. MR (Multiply Register)
Multiply the contents of register 5 by the contents
. of register 9. 7 ‘
SYMBOLIC MR 4,9 ©_ MACHINE 1C 49
Before After
'GPR 4 9C 01 04 66 00 00 00 EO
GPR 5 70 00 00 0O 00 00 00 0O
' GPR 9 00 00 02 00 00 00 02 00
2. M (Multiply)

Multiply the contents of register B by the fullword
contents at storage location 3004 (MULT+4). (GPR F=00 00 30 00)

SYMBOLIC M 10,MULT+4 _ MACHINE 5C A0 FO 04
Before - After

GPR P 12 AC 1F 60 00 00 00 00

GPR B FF FF FF FE : 00 00 00 02

Storage 3004 FF FF FF FF FF FF FF FF

CONDITION CODE

1. Remains unchanged.

PRQGRAM.INTERRUPTIONS
1. Protection (fetch M only)

2. Addressing (M only)
3. Spe01flcatlon S

Multiply Halfword

' MH Ry, DuX, By) " [RX]
PR

>y

0 78 " 1316 1920 N

1. The register spe01f1ed by the flrst address field (Rl) is

; multiplied by the halfword de51gnated by the second

~address field [D2(X2, B2)1].

2. The halfword Operand is expanded to a fullword by
propagating the sign bit value through the 16 hlgh-
order bit pOSltlonS prior to multiplication. _

3. The product is 32 bits and replaces the multlpllcand
in the register spe01f1ed by R1l. '

4. The sign of the product is determlned by the rules

' of algebra.

5. All register addresses are valid.

6. If the product exceeds 32 bltS the: hlgh-order blts
are lost.

EXAMPLES
o “l.’vMH (Multlply Halfword)

Multlply the contents of register 3 by the halfword '
at storage locatlon 3000(MULT) (GPR F = 00 00 30 00)

SYMBOLIC MH 3, MULT MACHINE 4C 30 FO 00
Before ‘After
GPR 3 00 00 00 21 00 00 00 A5

Storage 3000 00 05 CF 0L 00 05 CF 0L
CONDITION CODE |
~‘l.‘ Remains unchanged d
PROG?AM INTERRUPTIONS |
1. Protection (fetch only)

2. Addressing
3. Specification

13-30

FIXED POINT FAMILY -

DIVIDE

The DIVIDE instruction will produce the quotient of a 64-bit
integer (number). The first.operand must always be an even
numbered fegistérv(o,.z, 4, etc.). This even register and
the registér whose address.ié.onehgreatef-formmah EVE&-ODD
register‘pair. fThe‘div;Qendfié,a 64'bit-signed‘ihteger‘that

cccupies this EVEN-ODfoegister pair.

The contents. of the EVEN-ODD register is divided by the con-
tents of the location_specifiéd;by the second address field.
The quotient is placed in the ODD register of the EVEN-ODD

pair.' The remainder~is.placedvin the EVEN regiSter.

3=-31.

DR R, R, [RR]

TH[%]

o -78 - N 3

D Ry, D’z{xg, B). [RX]

J S é%]: _ °2; g

0 n2 1518 1920 .n

1. The first'address field (Rl) must contain an even- -
address register. -

2. This address specifies an EVEN-ODD reglster palr Wthh
contains the 64-bit dividend.

3. The contents of the EVEN-ODD register pair are lelded
by the second operand (R2 or D2(X2,B2)).

4. The quotient will be placed in the ODD reglster, and
the EVEN register will be used to contain the remainder.
5. The sign of the quotient is determined by the rules

of algebra while the remalnder will have the sign of
the dividend.

6. When the size of the dividend and’ ‘divisor is such that
the quotient cannot be contained in a 32-bit register, -
a fixed point divide exception occurs and the instruction
is aborted. .

7. A specification exceptlon will occur if the register .

, specified by the first operand is at an odd address.

8. The D instruction must specify an operand located on
a fullword boundary.

EXAMPLES

1. DR (DlVlde Reglster)
Divide the contents of registers 6 and 7 by the contents
of register 5.
SYMBOLIC DR 6,5 ~ . = 'MACHINE 1D 65

Before - After

GPR =~ 5 00 00 02 BC 00 00 02 BC
GPR 6 . 00 00 00 A3 - 00 00 01 8B
GPR 7 ~ EC D5 3E 83 '38 F3 23 3A

2. D ' (Divide)

Divide the contents of registers 8 and 9 by the £ullword
contents at storage. locatlon 3500° (DTA) (GPR F = .
00 00 30 00) _ SRR

SYMBOLIC D 8,DTA . MACHINE 5D 80 F5 00

| Befofe‘ o After
GPR 8 .00 00 00 00 00 00 00 00
GPR 9 00 A0 00 00 00 50 00 00

Storage 3500 00 00 00 02 00 00 00 02
3-32 ' ’

CONDITION CODE

1. Remains unchanged
PROGRAM INTE_RRUPTIONS

l. Protection (fetch D only)
2. Addressing (D only)
3. Specification ==
4. TFixed-point divide

3-33

" FIXED POINT FAMILY

. SHIFT:

There are two main purposes of the shift instrudtibns, editing
of register data and érithmatic'opetatiéns. Editing is normally
done in the four "LOGICAL SHIFT"‘inStructions which will be

covered later.

The arithmatic-operations of a SHIFT instruction is to multiply or
divide.an integer.by some multiple of 2. 'The"first addréss field
specifies a.régiStér or an EVEN-ODD registér pair that contains

this inﬁeger. The second address field does not reference a
storage location bﬁt is used to generate an effective address.

The low-o:de: 6 bit positiohé'bf'this effective address dgte:mihe by

what multiple of 2 the interger will be divided or multiplied.

Multiplication:iS’accompiishéd by shifting the specified register(s)
~contents to the left. The number of bit positions that the

integerxr is shi£ted‘i$ determined by the low-order 6-bit positions
of the effective address. Eéch bit‘positioﬁ that thé integer is

shifted is equivalent to a mdltiplication by 2.

Division'is accomplished by shifting the specified register(s)

contents to ﬁhe'right., The number of bit positions that the in-
teger is shifted is determinedvby~the low~-order 6-bit positions |
of the effective address. Each bit poSition that the integer is

shifted is equivalent to a division by 2.

3-34

Shife Left Singlo
SLA R, Dy8.) [RS)

18

SN AN/

112 1518 1920 N

‘The contents of the register specified by the first
address field (Rl) are shifted to the left. ,
The low-order 6 bits of the effective address [D2(B2)]

" specify the number of positions that the first operand

4.

5..
6.
. 7‘

EXAMPLES

1.

CONDITION

wihhHO

will be shifted.

All 31 1nteger bits participate in the shift and 0's are
placed in the vacated low order bit positions of the
first operand.

Each bit position that the integer is shlfted equates -to
a multiplication by 2.

When the low order 6 bits of the effective address ex-
ceed a decimal value of 30, the entire integer will be
shifted out of the specified register.

The entire 1nteger being shifted out of the spec1f1ed
register results in the value of 0 for a positive in-' .
teger and minus 2,147,486,648 for a negative 1nteger.
When a bit unlike the sign is shifted out of bit posi-
tion 1, an overflow will occur.

SLA | (Shift Left Algebralc)
Multiply the contents of register 9 by 4 using the Shlft
instruction and without specifying a base register.

SYMBOLIC SLA 9,2(0) MACHINE 8B 90 00 02
Be fore After
"GPR 9 ~ 00 00 0A 00 00 00 28 00

Condition Code 2
CODE
Result is 0
Result is less than 0

Result is greater than 0
Overflow

PROGRAM INTERRUPTIONS

1.

- Fixed point overflow

4.

5,

EXPMPLES
1.

Shift Right Single .
SRA R, DB, [RS]

:

N7/ RAR

niz 1316 1920 : N

The contents of the register specified by the first
address field (Rl) are shifted to the right.

The low-order 6 bits of the effective address [D2(BZ)].
specify the number of positions that the flrst operand
will be shifted.

All 31 integer bits part1c1pate in the shift and bits

like the sign are placed in the vacated high order

bit posxtions of the first operand.

Each bit position that the integer is shlfted equates

to a division by 2.

When the low order 6 bits of the effective address ex-
ceed a decimal value of 30, the entire integer will be
shifted out of the specified register.

The entire 1nteger belng shifted out of the spec1f1ed

register results in ‘the value of 0 for a positive in-

teger and -1 for a negative integer.

Low~order bits are shifted out without 1nspectlon and

are lost.

SRA (Shlft Right Algebralc) _
Divide the contents of register 4 by 2 using the shift

~ instruction and without spe01fy1ng a base reglster.

SYMBOLIC SRA 4,1(0) : MACHINE 8A 40 00 01
| Before . After

GPR 4 00 00 00 FB 00 00 00 7D
Condition Code 2 | |
SRA (Shift Right Algebralc).
Divide the contents of register A by 2 using the shift

instruction and specifying a base register of 4.
(GPR 4 = 00 00 00 01)

SYMBOLIC SRA 10,0 (4) MACHINE 8A A0 40 00
Before After
GPR A FF FF FF FB FF FF FF. FD

Condltlon Code 1l

3-36

CONDITION CODE

wn = o

Result is 0
Result is less than 0
Result is greater than O

PROGRAM INTERRUPTIONS

l.

EXAMPLES

l.

None

‘Shift Left Double

SLDA R, Dy(B,) [RS]

| NVj) el %

0 78 (R ¥) 1516 1920 n

The contents of the EVEN-ODD register pair specified
by the first address field (Rl) are shifted to the
left.

The low-oxder 6 bits of the effective address D2 (B2)
specify the number of the positions of the first operand
will be shifted.

The operand is treated as a number with 63 integer

bits and a sign in a sign position of the even register.
The high-order p051t10n of the ODD REGISTER contains an
integer bit in the sign bit p051t10n.

All 63 1nteger bits participate in a shift and 0's are
placed in the vacated low-order bit positions of the
EVEN-ODD register pair.

Each bit position that the integer is shifted equates
to a multiplication by 2.

When the low-order 6 bits of the effective address
exceed a decimal value of 62, the entire integer will
be shifted out of the spec1f1ed registers.

When a bit unlike the sign is shifted out of bit
position 1 of the even register, an overflow will occur.
A specification exception will occur if the register
address specified by the first operand is odd.

SLDA (Shift Left Double Algebraic)
Using the shift instruction, multiply the contents of

register pair A and B by 8. Do not specify a base
register. '

. SYMBOLIC SLDA 10,3(0) MACHINE 8F A0 00 03

3-37

Before - After

GPR A 0000 00 00 00 00 00 04
GPR B _ 80 00 01 20 00 00 09 00
Condition Code . 2 v

2. SLDA (shift Left Double Algebraic) .

Using the shift instruction multlply the contents of
register pair C and D by 4 u51ng base register 6.
(GPR 6 = 00 00 00 02)

SYMBOLIC SLDA 12,0 (6) _ MACHINE 8F CO 60 00"
Before | After

GPR - .c 80 00 00 00 80 00 00 01

GR D ~7C 00 00 00 FO 00 00 00

Condition Code 3

ONDITION CODE

Result is 0 B o

Result is less than 0.

Result is greater than 0
- Overflow

WN O

ROGRAM INTERRUPTIONS

1. "~Specification
2. Fixed point overflow

Shift Right Double
SRDA Ry, Ds(B,) [RS]

8E Ry //% B,) D,

o 78 1m2 1318 1920 N .

1. The contents of the EVEN-ODD register pair specified
by the first address field (R1l) are: shifted to the ‘

- right. v

2. The low-order 6 bits of the effective address D2(B2)

- specify the number of positions that the first operand
will be shifted.

3. The operand is treated as a number with 63 integer
bits and a sign in the sign position of even register.

4. The high-order position of the ODD register contains
an integer bit in the sign bit position.

5. All 63 integer bits participate in the shift and
bits like the sign are placed in the vacated high—'
order bit positions of the EVEN-ODD register pair .

6. Every bit position that the integer is shifted equates
to a division by 2.

7. When the low-order 6 bits of the effective address
exceeds a decimal value of the specified registers.

8. A specification exception will occur if the reigster
address specified by the first operand is ODD.

EXAMPLES
1. SRDA (shift Right Double Algebraic)

: Using the shift instruction, divide the contents of
register pair 2 and 3 by 16. Do not specify a base
register. .

SYMBOLIC SRDA 2,4(0) MACHINE 8E 20 00 04
Before - . After
GPR 2 00 OC 1F 39 00 00 Cl F3
GPR 3 FC 2A 67 49 9F C2 A6 74 .
Condition Code 2
2. SRDA | (Shift Right Double Algebraic)

Using the shift instruction, divide the contents of
register pair 4 and 5 by 8 using a base register.
(GPR 1 = 00 00 00 02) '

SYMBOLIC SRDA 4,1(1) MACHINE 8E 40 10 01
Before : After

GPR 4 FF FF FF FF FF FF FF FF

GPR 5 FF FF FF 00 .FF FF FF EO

Condition Code . 1
CONDITION CODE

Result is 0 :
Result is less than 0
Result is greater than 0

W M=o

PROGRAM INTERRUPTIONS

1. Specification

FIXED POINT FAMILY

DATA FORMATS

Arithmetic data éntering~a system from an I/0 (Input/Output)
device normally occupies the‘zoned data fdrmat. When zoned
data is to be used‘by-either fixed-point or decimal instruéé
tions it must be converted into the data"fbrmat used by these
instfuctions. The PACK insﬁruction will convert the ihéoming

- zoned data to'packed decimal data.

The packed decimal data is used by decimal instructions,‘but'
‘must again be converted for use by fixed-point instructions.
The CONVERT TO BINARY instruction performs the task of con-

verting packed decimal data into fixed-point data. .

When arithmetic data is to be taken from the system and sent

to a formatted I/0 device (card'puﬁch, printer,_typewriter,"
etc.), it.must be in the zoned data format. If the data is in
the packed decimal data format, the UNPACK instruction will
change it into the zoned format. Data in the fixed-point format
must_frist be changed to thé packed decimal format by uSing the
CONVERT TO DECIMAL instruction prior to conversion by the UNPACK

ihstruction.

'PACK
Thg'Pack instruction converts data in the zoned format to packed
decimal data. The starting address and length of the zoned data

field to be converted are specified by the second operand.

3-40

The packing of zomned data is accomplished in a right-to-
left sequence. The first step'is‘placing the zone of the
low-order zoned digit in the low-order 4 bits of the packed
data field designated by the first opeiand. The digits
contained in the zoned data field are now placed right-
to-left, adjaéent to each other and these 4 bits that bé-

come the sign of the packedédecimél nunber.

~ UNPACK |

The Unpack instructioﬁ converts data from the packed deci-
mal format to the zoned format. The.staxting address and
length of the packed decimal,field are specified by the

second operand.

The unpacking of data is‘accomplished by placing, right-
to-left, the digits of the packed-decimal data into the
low-order 4 bits¢of-each‘byteﬂcontainedain-the.first op-
"erand’s field. The 2zone (high-order-4 biés) supplied to
these bytes is 1111 (0101 for USASCII-8) except the zone
of the low-order byte which is set to the sign of thé

packed decimal data.

-41

w
1

Pack

PACK DL, B), Dy(L,, 132‘).) [SS]

GRS B [P °® m 2J

[} 78 LLRY 1516 1920 3132 35 36 -

1. The second address field [D2(L2,B2)] defines a field
in storage that contains zoned-arithmetic data.

2. The first address field [D1(L1,Bl)] defines a field
in 'storage where the contents of the second
operands will be placed after being converted

- to the packed decimal data format. ~
3. The sign of the zoned data field (zone of the
- low-order byte) becomes the sign of the packed
decimal data and is placed in the low-order 4
bits of the first operand field.

4. The digits of the zoned field are fetched one
at a time and placed adjacent to the 31gn of

_ the packed field and each other.

5. Fetching is performed in a right-to-left se-
quence and neither the sign or digit are
checked for wvalidity.

6. A first operand field larger than the resultant

’ packed decimal number is supplied with zeros in

- the high-order unused positions.

7. 1If the first operand field is exhausted prior
to completing the transfer of all the zoned
digits the remaining zoned digits will be

" ignored.

8. First and second operand fields may overlap in

~any desired manner.

EXAMPLES

1. PACK (Pack)
‘Convert the zoned eight byte field located at

storage location 4200 (ZONE) to a packed decimal
operand and place in a five-byte field beginning
at storage location 4350 (DEC). (GPR F = 00 00 40 00)
SYMBOLIC PACK DEC(5) ,ZONE(8)
MACHINE F2 47 F3 50 F2 00

Before After

Storage 4200 F2 F5 F6 F3 F2 F5 F6-F3
4204 F7 FO F1 D4 F7 FO Fl D4

4350 FF FF FF FF 02 56 37 01
4354 FF FF FF FF 4D FF FF FF

PACK (Pack)

Switch the two packed-decimal digits at storage
location 4351 (DEC+l). (GPR F = 00 00 40 00)
SYMBOLIC PACK DEC+1(l) ,DEC+1(l)

MACHINE F2 00 F3 51 F3 51

Before After

Storage 4350 02 56 37 01 02 65 37 01

CONDITION CODE

1.

Remains unchanged

PROGRAM INTERRUPTIONS

l‘o
2.

Protection
Addressing

Unpack

UNPK DL, B,), DyfLy, By) s8] -

L

BRI Y

0

78 1"z 1516 1920 3132 35 36 47

The second address field [D2(L2,B2)] defines a field
in storage that contains packed-decimal data

that will be converted to zoned data.

The first address field [D1(L1l,Bl)] spe01f1es a field

'in storage where the result of the conversion

(zoned data) will be placed.

The sign of the packed-decimal field (low-order
4 bits of the low-order packed byte) becomes the
zone of the low-order zoned data byte.

The packed data is transferred a byte at a time
in a right-to-left sequence and are not checked
for valid digit or sign codes. ;
A packed digit is placed in the low-order 4 bits
of each byte in the first operands field and is
supplied with a zone of 1111 (0101 for USASCII-8
mode) .

Zeros are supplied as high-order digits to be
unpacked when the first-operand field is larger
than the unpacked result.

If the first operand field is shorter than the
unpacked result the high-order packed digits are
ignored.

Overlapping of fields, greater than two bytes,
requires the first operand field. to begin at an
address greater than the low-order byte of the
second operand field. The number of bytes greater
is equal to the second operand's length minus two.

3-43

EXAMPLE
1. UNPK (Unpack) . .
Unpack the 6-byte field at storage location 4600
(DEC1l) and place in a 1l2-byte field located at:
4800 (ZONE1). (GPR F = 00 00 45 00)
SYMBOLIC UNPK ZONEL (12),DEC1(6)
MACHINE F3 BS F3 00 F1 00
‘ Before . After

Storage 4600 12 34 56 78 12 34 5678
' 4604 90 0C 23 45 90 OC 23 45

4800 00 00.00 00 FO Fl F2 F3
4804 00 00 00 00 ~F4 F5 F6 F7
4808 - 00 00 00 FF F8 F9 FO CO
CONDITION CODE | |
1. Remainsvunchanged_
PROGRAM INTERRUPTIONS

1. Protection
2. . Addressingv

FIXED POINT FAMILY

CONVERT TO BINARY

The CONVERT TO BINARY instruction wili convert a decimal
number (Base 10) to its equivalent binary number (Base 2).
The second address field desiqnates a doubleword in storage,
whose data is in the packed decimal data fbtmat. The contents
- of this storage location will be converted and placea in the

register specified,byvthe.fifst‘address.field.

A

8.

EXAMPLES

1.

Coavor? to Binary ‘
CcvB R', bz‘xb 53, [RX]

4F R I Xy | By I, - Dy AJ

0 78 uw 151 1920 : n

The decimal contents of the storage location desig-
nated by the second address field [D2(X2,B2)] are
changed to binary and are placed in the register
specified by the first address field (R1).

The second operand must be a doubleword in storage
whose contents are in the packed decimal data format.
This doubleword is checked for valid sign and dlglt

. codes. A data exception will occur if either is.

invalid.

The second operand must be located on a double word
boundary.

The maximum positive -decimal number that can be con-

- verted is 2, 147, 483, 647. The maximum negative num-

ber is. 2, 147, 483, 648.

If the maximum pOSltlve or negative number is exceeded,
the low-order 32 binary bits are placed in the regis-

ter specified by Rl and a fixed point divide exception

will occur.

The number is located as a right aligned 31qned 1nteger
before and after conversion.

The contents of the second operand remain unchanged

CvB (Convert Binary) .
Convert the decimal number at storage address 1020

(DATA+32) to binary and place in register C. (GPR F =
00 00 10 00) ' :

SYMBOLIC CVB 12,DATA+32 MACHINE 4F CO FO 20
Before After
GPR c 00 00 FF FF OE 00 00 00

Storage 1020 . 00 00 00 23 00 00 00 23
1024 48 81 02 4C 48 81 02 4C

3-46

CVB (Convert Binary)

Convert the decimal number at storage address 1028

(DATA+40) to binary and place in register 3. (GPR F =

00 00 10 00)
SYMBOLIC CVB 3,DATA+40'
Before
GPR 3 co 16 00 12
Storage 1028 00 00 00 Oi

102¢ 39 86 12 1D

CONDITION CODE

1.

Remains unchanged

PROGRAM INTERRUPTIONS

1.
2.
3.
4 *
5..

Protection (retch only)
Addressing
Specification

Data

Fixed-point divide

3?47

MACHINE 4F 30 FO 28

After
FF 2A 96 B7

00 00 00 01
39 86 12 1D

FIXED POINT FAMILY

CONVERT ‘'TO DECIMAL

The CONVERT TO DECIMAL instruction will convert a binary number
(BaseIZ) to its eqﬁivalent decimal number (Base 10). The first
address field specifieé_the tegistef thch contains the bih&ry
number. The second add:ess}field designétes.a doubleword in
.storage where the décimai result will be placed after the

¢onversion.

© 3-48

Convert to Decimal

CVD R,, DyX,, B)) [RX]

& A% %] 5,]

o 78 na 1316 1920 N

1. The binary contents of the register specified by the
first address field (Rl) are changed to packed decimal
and are placed in the doubleword storage location
designated by the second address field [D2(X2,B2)].

2. The second operand must be located on a doubleword
boundary .
3. The result placed in the second operand location will

: be a rlght allgned packed decimal integer.

4. The sign placed in the low order hex digit will be C
" or A for plus and D or B for minus. '
5. The choice between the two sign representatlons is
determined by the state of PSW bit 12.

6. Any binary value contained in a register can be con-
verted and will not exceed the doubleword length -that
the second operand designates. .

7. The contents of the first operand remain unchanged.

EXAMPLES

1. CvD v (Convert Decimal) ,
Convert the binary contents of register C to de01ma1 .
and place at storage location 1020(DATA+32) (GPR F =

00 00 10 00)
SYMBOLIC CVD 12,DATA+32 MACHINE 4E CO FO 20
| Before After
GPR C " 0E 00 00 00 OE 00 00 00

‘Storage 1020 00 00 00 00 00 00 00 23
: 1024 00 00 00 00 48 81 02 4C

2. CVD " (Convert: Decimal) ,
Convert the binary contents of register 3 to decimal
and ‘place at storage location 1028 (DATA+40). (GPR F =

.00 00 10 00) |
SYMBOLIC' CVD 3,DATA+40 MACHINE 4E 30 FO 28
- | Before After |
GPR 3 FF 2A 96 B7 FF 2A 96 BY

Storage 1028 00 00 00 20 00 00 00 01
' 102c €9 99 99 99 39 86 12 1D

CONDI?ION CODE
1. Remains unchanged
PROGRAM INTERRUPTIONS
Y Protection (store only)

2. Addressing
3. Specification

3-50.

 LOGLCAL FAMILY

MOVE

- The MOVE insfruction is used to transfer dafa ffom"ohe location
to another. The location of the data to be moved is spec1f1ed.“
by the second address field. Thc first address field desxgnatcs
the location to which the data will be moved. ‘The data is con-
tained either in storage or within the instruction. The
general-purpose registers are notvused to reéeiﬁevor Supply>

this data.

The following MOVE instructions exhibit additional character-
istics:

MVN This permits the moving of the low-order 4 bits contained
in- any one byte or group of bytes.

MvVZ Allows the moving of the high order 4 bits contalned in
any one byte or group of bytes.

MVO Provides a means of shifting data in the packed decimal
data format and changing the sign of a packed decimal

field.

4-1

Meove ,
RV Dy(B)), 1, [sn

92 1 s l 2 ‘ O,

] 78 1816 1920 n

1. The second operand (I2) is contained within the
instruction.
2. This one byte of data is placed at the location
designated by the first address field [D1(Bl1l)].
3. The second operand, contained Wlthln the instruc-
tion, is unchanged.

EXAMPLES

1. MVI (Move Immediate)
- Place the data FA into storage location 1001
(DATA+1) using the MOVE IMMEDIATE instruction.
(GPR F = 00 00 10 00)

 SYMBOLIC MVI DATA+L,X'FA' MACHINE 92 FA FO 01
Before After

~Storage 1000 00 00 00 00 00 FA 00 00
CONDITION CODE
‘1. Remains unchanged
PROGRAM INTERRUPTIONS

l. Protection
2. Addressing

MVC Dy(L, B,), Dy(B,) [55)

[T Ta el e o]

0 78 1518 1920 3132 3% 36

1. The length field (L) specifies the length in bytes
of the first and second operands.

2. The maximum number of bytes that can be spec;fled

~ by the length field is 256,

3. The hexidecimal value of this field is always one
less than the number of bytes actually transferred.

4, The second address field [D2(B2)] specifies a
starting address in storage where the data is
located. :

4-2

5. Tha first address field [D1(Bl)] designates a starting
address in storage where the data will be placed.

6. The data io woved left to right through each field
one byte at a time.

7. The data being transferred in a left to right

sequence, a byte at a time, allows: the propogation
of a byte through storage.

8. This continues.-until all spec1f1ed bytes are

transferred.
EXAMPLES
1. M™MVC (Move Characters) ' _
Move the contents of storage location 1000 (DATA
through 1007 to storage locations 1100 (DATA+256)
through 1107. (GPR F = 00 .00 10 00) _
© SYMBOLIC MVC‘DATA+256(8)1DATA MACHINE D2 07 1 00 FO OU
| ~ Before After
Storage 1000 00 33 33 33 00 33 33>33"
1004 .22 22 22 22 22 22 22 22
-1008 11 11 11 11 11 11 11 11
1100 00 00 00 0O 00 33 33 33
1104 CE 1F 00 00 22 22 22 22
1108 39-12 1A BC 39 12 1A BC
2. MVC '(Move Characters)

Propogate the byte located at storage location
1000 (DATA) through storage to location 100B.
(GPR F- = 00 00 10 00)

SYMBOLIC MVC DATA+1(l1l),DATA MACHINE D2 OA FO 01 F0 00
"Before -After
‘Storage 1000 00 33 33 33 00 00 00 00

1004 22 22 22 22 0000 00 OO
1008 11 11 11 11 0000 00 00

CONDITION CODE
1. Reamains unchanged
PROGRAM . INTERRUPTIONS

1. Pfotection‘
2. Addressing

Move Numerics

MVN DL, B), B,(B:) [551

o T oy 'ﬂ?{f_]

] 78 X 1518 l920 3132 35 36 47

1. The length field (L) specifies the length in bytes
- of the first and second operands.
2. The maximum number of numerics (low order 4 bits of
- a byte) that can be specified by the length field is
- 256.
3. The hexadecimal value of the length field is always
- one less than the numeric actually moved.
4. The first address field D1(Bl) specifies a starting
address in storage where the numeric is placed.
5. The second address field D2(B2) designates a starting
address in storage where the numeric .is located.

-6, The low-order 4 bits of the byte specified by the
second address field are moved left to right one numeric
at a time.

7. They are placed inthe low-order 4 bits of the byte
specified by the first address field.
8. The fields may overlap in any desired manner.

EXAMPLES
1. ,MVN (Move Numerics)
- Move the numeric portion of storage address lOOC
(DATA+12) through 100F to location 1020 (DATA+32)
through 1023 (GPR F = 00 00 10 00).

SYMBOLIC MVN DATA+32(4) ,DATA+12 MACHINE D1 03 FO 20 FO 0C

Before : After

Storage 100C ~ Fl F2 F3 F4 Fl F2 F3 F4

1020 ~ F9 F8 F3 C1 Fl F2 F3 C4
CONDITION CODE |
1. Remains unchanged’
PROGRAM INTERRUPTION

1. Protection
2. Addressing

4-4

Movo Zonos

MYZ DL, B,), Dy [551

[o | [% T4 %] %

[} 78 1816 1920 nn 35 36

—

1. The length field (L) specifies the length.in bytes
of the first and second operand.

2. The maximum number of zones (high order 4-bits of
a byte) that can be specified by the length field
is 256.

3. The hexidecimal value of the length field is always
cne less that the number of zones actually moved.

4. The first address field [D1(Bl)] specifies a starting

- address in storage where the zones will be placed.:

5. The second address field [D2(B2)] deslgnates a startlng
address in storage where the zones are located.

6. The high-order 4 bits of the byte specified by the
second address field are moved left to right one zone
at a time.

7. They are placed in the high-order 4 bits of the byte

, specified by the first address field.
8. The fields may overlap in any desxred manner.

EXBMPLES
1. MvZ (Move Zones) :
Move the zone portion of storage address 100F (DATA+15)
to location 1023 (DATA+35) (GPR F = 00 00 10 00)

. SYMBOLIC MVZ DATA+35(1) ,DATA+15
MACHINE D3 00 FO 23 FO OF

"Before After
Storage 100C Fl F2 F3 F4 Fl F2 F3 F4

1020 Fl F2 F3 C4 Fl F2 F3 F4
CONDITION CODE

1. Remains unchanged
PROGRAM INTERRUPTIONS

l.' Protection
2. Addressing

Move with Ofset
MVO DL, B,), DL, B,) (5]

T o o o]

'0-‘ HI? 1516 1920 - 3132 3536 47

1. The second operand [D2 (L2,B2] is placed 1n the

_ first operand :([P1(Ll,Bl] location.

2. The second operand is placed to the left of and

. adjacent to the low-order four bits of the first
opezand's field.

3. The resultant field is a combination of the second
operand and the low-order four bltS of the first
operand.

4. The fields are processed rlght to- left and may
overlap in any desired manner.

5. A first operand field length greater than, can be

‘ occupied by the second operand, is supplled with

_ high-order zeros.

6. A second operand field length greater than the

first operand field causes the remaining bytes to
be 1gnored.

1. Move the 6-byte data field beginning at storage
'~ ‘location 4200 (NUMB) to the 9-byte field at stor-
- age location 4600 (PLUS) and allot a position
.value to the resultant field. (GPR F = 00 00 40 00)

SYMBOLIC. MVO PLUS (9),NUMB(6)

MACHINE F1 85 F6 00 F2 00

Before - "After
storage 4200 1234 56 78 12 34 56 78
4204 90 09 8D 0C 90 09 8D 0C
4600 55 44 33 22 00 00 01 23
4604 11 00 11 22 45 67 89 00
4608 3C 13 79 26 9C 13 79 26

CONDITION CODE
1. Remains unchanged
PROGRAM INTERRUPTIONS

1. Protection
2. Addressing

- 4-5A

LOGICAL FAMILY

AND |

The AND instruction finds the'}ogical product of the bits
contained in the locations specified by the first and éecond
address fields. The cperands are tréated as unstructured |
logical quantities, and the AND.is applied bit by bit. &
bit position in the result will be made equal to one if the
corresponding bit positions in both dperands are egual to one.
If these conditions aréknOt met, that bit position wiil be’
made a zero. Thé bit-by-bit result is plaéed in 1bcation

specified by thelfirst~address field.

4-6

2.
3.

4.

EXAMPLE
1.

NR R‘l R2 [RR]

R]

[rTs 12 18

The contents of the register specified by the second
address field (R2) are ANDED with the contents of the

‘register specified by the first address field (R1).

The result replaces the first operand

ANDING is performed one bit at a time unt11 all bits
have been ANDED.

ANDING is commonly used to set any one bit or a
group of bits to zero.

NR (AND Regzsters)

AND the contents of register 6 to the contents of
register A. :

SYMBOLIC NR 10,6 = MACHINE 14 A6

Before After
GPR 6 " AF AF AF AF AF AF AF AF
GPR A S5F 5F SF 0OC OF OF OF OC
Condition Code 1
CONDITION CODE
0 Result is 0
1 Result not 0
2 -—
3 -
PROGRAM INTERRUPTIONS
l., None
N R, DyX,, By) [’X]
IR RN Dy |
0 78 12 1516 1920 . n
l. The contents of the location d851gnated by the second

address field [D2(X2,B2)] are ANDED with the contents
of the reglster spec1f1ed by the first address field

(R1).
4-7

2. The result replaces the first operand.
3. ANDING is performed one bit at a time untll all
bits are ANDED.

4. ANDING is commonly used to set any one bit or
group of bite to 0.

- EXAMPLES

1. N (AND)
.~ AND the contents of location 5000 (Bits) to
register 8 (GPR F = 00 00 50 00)

SYMBOLIC N 8,Bits MACHINE 54 80 FO 00
| _N‘Befbre After“
GPR 8 3C 3C 3CC3 00 00 00 C3

Storage 5000 €3 C3 €3 C3 C3 C3 C3C3
Condition Code 1
CONDITION CODE

Result is 0
Result not 0

WO

PROGRAM INTERRUPTIONS

1. Protection. (Fetch only)
2. Addressing
3. Specification

N DB, [sn

I T S

0 78 1516 1920 N

1. The second operand (I2), contained within the
instruction, is ANDED with the single byte
designated by the first address field. ([D1l(Bl)}.

2. The result replaces the byte specified by the
first address field.

3. ANDING is performed one bit at a time until all
bits have been ANDED. _

4. ANDING is commonly used to set any one bit or
group of bits to 0.

EXAMPLES
1.

NI : (AND Immediate)
Set bit 5 at location 5006 (Bits+6) to 0.
(GPR F = 00 00 50 00) :

SYMBOLIC NI Bit8+6,x FB' MACHINE 94 FB FO 06

Before o After
Storage 5004 CB 91 FE 01 CB 91 FA 01
Condition Code 1

CONDITION CODE

WN O

Result is 0
Result not 0

PROGRAM INTERRUPTIONS |

1. Prctéction.(store only)
2. Addressing
NC b;ll, B,), D(B,) [ss]
[oo [v [&] (Dl “gjﬁ___J
0 78 1516 1920 N 38 36
1. The contents of the location designated by the second
address field [D2(B2)] are ANDED with the contents of the
location designated by the first address field [D1(Bl)]
2. The number of bytes ANDED is specified by the length
field (L).
3. The result replaces the first operand.
4. ANDING is performed one bit at a time until all blts
have been ANDED.
5. ANDING is commonly used to set any one bit or group
of bits to 0.
BXAMPLES
1. NC (AND Characters)

AND the contents of storage location 5008 (Bits+8)
through 500B to 500C (Bits+12) through 500F (GPR
F = 00 00 50 00) ‘

4-9

SYMBOLIC KNC Bits+12(4),Bits+8
MACHINE D4 03 FO OC FO 08
Before After

Storage 5008 00 00 00 FC 00 00 00 FC
©500C 1A 23 96 4D 00 00 00 4C

Condition Code 1
CONDITION CODE

" Result is 0
Result not 0

WNFO

PROGRAM INTERRUPTIONS

1. Protection -
2. Addressing

4~10

LOGICAL FAMILY
o | | |
~ The ok instruction computes the logical sum of.the bits cbntained
in theilocétions specified by the first and second address fields.
Operands are treated as unstructured logical quantities, and the
inclusive OR is applied bit by bit. A bit position in the result
will be made}a one (1) if tﬁe corresponding bit position in either
éperand_is equal to one (1). Both bit positibns being equal to zero
set that result bit to’a'zero; The bit-by-bit result is placed

in location specified by the first address field.

4-11

OR R, R, [RR]

L6 [R [® |

1. The contents of the register specified by the second
address field (R2) are OR'ED with the contents of the
register specified by the first address field (Rl).

2. The result replaces the first operand.

3. The corresponding bit position in the result will be

made a one if either of the bit positions in the op-
erands is equal to a one.

4. If neither of the bit p051t16ns in the operands is

- equal to one, the corresponding bit position in the.
result will be made a zero.

5. OR'ING is performed a bit at a time untll all bits
have been OR'ED.

6. OR'ING is commonly used to set- any one bit or group
of bits to a one.

1. OR (OR Reglsters)
" OR the contents of register 4 to the contents of
register 1.

SYMBOLIC OR 1,4 o MACHINE 1614
' | Before After
GPR 1 A5 A5 A5 A5 FF FF FF FF

GPR 4. . SA 5A S5A S5A° 5A 5A 5A 5A
Condition Code 1 .

CONDITION CODE

- Result is O

Result not 0

(0 SN

PROGRAM INTERRUTPION

1. DNone

' O Ry, DyX, By) [RX]

Lose Jh]*%]%] ©%]

] 78 " 1518 19 20 n

1. The contents of the storage locations specified by
the second address field [D2(X2,B2)] is OR'ED with the
contents of the register specified by the first
address field (Rl).

2. The result replaces the first operand (Rl)

3. The corresponding bit position in the result will
be made a one if either of the bit positions in

- the operand is equal to a one.

4. If neither of the bit positions in the operands
is equal to one, the corresponding bit position
in the result will be made a zero.

5. OR'ING is performed a bit at a time until all
bits have been OR'ED. -

6. OR'ING is commonly used to set any one bit or

- group of bits to a one.

EXAMPLES

1. 0 (OR)
OR the contents of storage location 5010 (Bits+16)
to the contents of register 0. (GPR F = 00 00 50 00)

SYMBOLIC O 0,Bits+l16 MACHINE 56 00 FO 10
Before After
GPR 0 01 02 03 04 11 43 6F OE

Storage 5010 10 43 6C OE 10 43 6C OE
Condition Code 1
CONDITION CODE

Result is 0
Result not 0O

WO

PROGRAM INTERRUPTIONS

1. Protection (fetch only)
2. Addressing
3. Specification

or DByt [SI]

2.
3.

EXAMPLES

o 1 % I&51 &]

[] 78 1516 1920 I N .

-The second operand (I2), contained within the -
instruction, is OR'ED with the contents of the
storage location specified by the flrst address.
field [D1(Bl)).

The result replaces the first operand.

The corresponding bit position in the result will
be made a one if either of the bit p031tions in
the operands is equal to a one.

If neither of the bit positions in the operands

is equal to one, the corresponding bit p051t10n in
the result will be made a zero.

OR'ING is performed a bit at a time until all of
the bits have been OR'ED.

OR'ING is commonly used to set any one bit or
group of bits to a one.

01 (OR Immediate) :
Set bit 5 of storage location 5017 (Bits+23) to

a one. (GPR F = 00 00 50 00)
SYMBOLIC ©OI Bite+23,4 'MACHINE 96 04 FO 17
_ - Before = - After |
Storage 5014’ .00100 00 C3 00 00 00 C7

Condition Code 1

CONDITION CODE

Wi e~o

Result is O
Result not 0

PROGRAM INTERRUPTION

1'
2.

Protection
Addressing

OC DL, 8)), Dy(By) |55}

I

oa T

0 .

EXAMPLES

1.

78 1514 A4 20 nn 33 3¢

" The contents of the storage location specified by

the
the
the first address field [Dl(Bl)].

The number of bytes to be OR'ED is sgpecified by
the length field (L).

The result replaces the first operand.

second address field [D2(B2)] are OR'ED with

The corresponding bit position in the result will

be made a one if either of the bit positions in
the operand is equal to a one.
1f neither of the bit positions in the operands

is equal to a one, the corresponding bit posxtloh

in the result will be made a zero.

OR'ING is performed a bit at a time until all
bits have been OR'ED.

OR'ING is commonly used to set any one blt oxr
group of bits to a one.

oC (OR Characters)

OR 6 bytes starting at storage location 5020
(Bits+32) to 6 bytes beginning at location 5028
(Bits+40). (GPR F = 00 00 50 00)

SYMBOLIC OC Bits+40(6) ,Bits+32
MACHINE D6 05 FO 28 FO 20
Before After

Storage 5020 80 00 00 02 80 00 00 02

5024 00 00 FC 3E 00 00 FC 3E
5028 40.00 00 01 CO0 00 00 03
502C 00 00 13 29

00 13 29 00

Condition Code 1

CONDITION CODE

WO

Result is O
Result not O

PROGRAM INTERRUPTIONS

- l L]
2.

Protection
Addressing

4-]15

contents of the storage location designated by

LOGICAL FAMILY
EXCLUSIVE OR |
The EXCLUSIVE OR'instruction is used'to find the,modulo two
sum of the bits of two Qperands. The second address field
specifies the location of data that will be EXCLUSIVE OR'ED
with data at the locétionvspecified by the first address
field. Operands are treated as unstructured logiCal quanti-
ties, and the EXCLUSIVE OR is applied bit by bit. A.bit
position in the result will be..made a i if either (not
both) of the corresponding bit positions in the operands
is equal to a one. Both bit positions being eqﬁal to zero
or one set the result bit position to a 0. The bit-by- |

bit result replaces the first operand.

The expression, "modulo two sum," means (to us) "What is
left when any two is cast out."' The following table shows

the.modulovtwo sum (exclusive OR).

0+0=0 1001 1111
0+1=1 +1010 +0111
1+0=1 0011 1000

The strange part is that one plus one is zero.

EXAMPLES
1.

The contents of the register specified by the
second address field (R2) are EXCLUSIVE OR'ED

with the contents of the register spec;fled by

the first address field (Rl).

The result replaces the first operand.

The corresponding bit position in the result will
be made a one if either (not both) of the bit
positions in the operands is equal to a one.

If both bit positions are equal to a one or zero,
the corresponding bit positions in the result

will be made a zero.

The EXCLUSIVE OR'ING is performed one bit posxtlon
at a time until all bits have been Exclusive OR'ED.
Any field EXCLUSIVE OR'ED with itself becomes all
zZeros. -

EXCLUSIVE OR'ING is commonly used to 1nvert any one -
bit or group of bits. :

XR (EXCLUSIVE OR Reg1sters)
EXCLUSIVE OR the contents of register 9 to the con-
tents of register C.

SYMBOLIC XR 12,9 MACHINE 17 c9
Before | After
GPR 9 FF 11 CC 55 FF 11 CcC 55
GPR o) 11 22 88 AA EE 33 44 FF

Condition Code 1

CONDITION CODE

whH-=o

Result is 0
Result not 0

vaROGRAM~INTERRUTPIONS'

1.

None

5.
6.

EXAMPLE

X Ry, DyXy By [RX]

BEEEEREYNER ®2 J

78 M2 1318 1920 n

The contents of the storage location specified by
the second address field [D2(X2,B2)] are EXCLUSIVE
OR‘ED with the contents of register specified by
the first address field (Rl).

The result replaces the first operand. :

The corresponding bit positions in the result will
be made a one if either (not both) of bit positions
in the operands is equal to a one.

If both bit positions are equal to a one or zero,
the corresponding bit positions in the result will
be made a 0.

The EXCLUSIVE OR'ING is performed one bit position
at a time until all bits have been EXCLUSIVE OR'ED.
Any field EXCLUSIVE OR'ED with itself becomes all
zeros.

EXCLUSIVE OR'ING is commonly used to invert any one
bit or group of bits.

X (EXCLUSIVE OR)
EXCLUSIVE OR the contents of storage locatlon 5050
(Bits+80) to register 1. (GPR F = 00 00 50 00)

SYMBOLIC X 1,Bits+80 MACHINE 57 10 FO 50
Before After |
GPR 1 FF 00 FF 00 FF 00 00 FF
Storage 5050 00 00 FF FF 00 00 FF FF

Condition Code 1

CONDITION CODE

wNnH=Oo

Result is 0
Result not 0

PROGRAM INTERRUPTIONS

l’
3.
3.

Protection (fetch only)
Addressing
Specification

4-18

X

.Dy(By), I (s

[

7 | 2 | B | o, |

2.
3.

N
78, 1516 1920

The second operand (I2,) contained within the in-
struction, is EXCLUSIVE OR'ED with the contents of
the storage location designated by the first
address field [D1(Bl)].

The result replace the first operand.

The corresponding bit position in the result will
be made a one if either (not both) of the bit
positions in the operands is equal to a one.

If both bit positions are equal to a one or zero
the corresponding bit position in the result will
be made a zero.

The EXCLUSIVE OR'ING is performed one bit position
at a time until all bits have been EXCLUSIVE OR'ED.-
Any field EXCLUSIVE OR'ED with itself becomes all
zeros.

EXCLUSIVE OR'ING is commonly used to invert any
one bit or group of bits.

XI (EXCLUSIVE OR Immediate) ’
Invert bit (0 and 3 of storage location 5056
(Bits+86). (GPR F = 00 00 50 00)
SYMBOLIC XI Bits+86,X'90" MACHINE 97 90 FO 56
Before , After
Storage 5054 C3 01 OF 23 C3 01 9F 23

Condition Code 1

CONDITION CODE

WO

Result is 0
Result not 0

PROGRAM INTERRUPTIONS

1.

2.

Protection (store only)

~Addressing

XC DL, B,), Dy(B,) [55]

I S Y 0 Y

[} 78 1516 1920 3132 33 38

1. The contents of the storage locations specified by
the second address field [D2(B2)] are EXCLUSIVE'
OR'ED with the contents of storage location desig-
nated by the first address field [D1(Bl1l)].

2. The number of bytes that will be EXCLUSIVE OR'ED
is designated by the length field (L).

3. The result replaces the first operand.

4., The corresponding bit position in the result will
be made a one if either (not both) of the bit posi-
tions in the operands is equal to a one.

5. If both bit positions are equal to a one or zero,
the corresponding blt positions in the result will
be made a zero.

6. The EXCLUSIVE OR'ING is performed one bit position
at a time until all bits have been EXCLUSIVE OR'ED.

7. Any field EXCLUSIVE OR'ED with itself becomes all
zZeros.

8. EXCLUSIVE OR'ING is commonly used to invert any one
bit or group of bits.

EXAMPLE
l. XC (EXCLUSIVE OR Character)
EXCLUSIVE OR storage locations 5050 (Bits+80 through
5057 with itself. (GPR F _ 00 00 50 00)
SYMBOLIC XC Bits+80(8),Bits+80
MACHINE D7 07 FO 50 FO 50

Before After

Storage 5050 00 00 FF FF 00 00 00 00
5054 C3 01 9F 23 00 00 00 00

Condition Code 0
CONDITION CODE

Result is 0
Result not O

WO

PROGRAM INTERRUPTIONS

1. Protection
2. Addressing

LOGICAL FAMILY

TEST UNDER MASK

The TEST UNDER MASK instruction is normally used to test
the condition of a ﬁit or group of bits within a byte. The
byte to be tested is speéifiéd by the first address fie;d.
The bits to bé tested are designated by the mask field. The

result of this'test is used to set the Condition Code.

Storage remains unchanged as a result of the TM instruction.

21

>
1

Test Under Mask
TM DB, I, [s1]

L 1 2 %] R

] 78 1516 1920 n

1. The location of the byte to be tested is gpecified
by the first address field (D1,Bl).

2. The second operand (I2) is a mask field contalned
within the instruction.

3. This mask field determines the bits of the byte
to be tested.

4, The result of this test determines the setting of
the Condition Code.

EXAMPLES
1. T™ (Test Under Mask)
Using this instruction, test bits 4 through 7 of
storage location 4500 (SWTH). (GPR F = 00 00 45 00)
SYMBOLIC TM 0(15) ,X'0F" 91 OF FO 00
‘ - Before After
Storage 4500 | 08 04 8C 0D 08 04 8C 0D
Condition Code 1 |
2.‘ ™

Test Bits 28 and 29 of storage location 4500 (FWTH).
(GPR F = 00 00 45 00)

SYMBOLIC TM 3(15),X'0C"' MACHINE 91 0C FO 03
| Before After
Storage 4500 07 04 AC OD 07 04 AC 0D
Condition Code 3
CONDITION CODE

Selected bits all 0; mask result 0
Selected bits mlxed 0 and 1

WO

Seleched bits all l
PROGRAM INTERRUPTIONS

1. Protection (fetch only)
2. Addressing

LOGICAL FAMILY

COMPARE LOGICAL

 The COMPARE~-LOGICAL instruction is used to determine the simi-.
larity or difference between two operands. The contents of a
location specified by the first address field are compared to
the contents of the location designated by the second address
field. The Condition Code is set to reflect the similarity or

difference between the two operands.

CONDITION

(V1N Sy Sl an)

Compare Logical
CIR Ry, R, [RR)

s LM 1%

] 78 niz:

CL Ry, Dy(X,, B,) [RX]

s [N1%]%] %]

[} 1mI12 1516 1920 n

The contents of the register specified by the first
address field (R1l) is compared to the contents of the
location designated by the second address field (R2 or
D2 (X2,B2)).

The logical comparison is left to right a bit at a
time until an inequality is found or the field are
completed.

The result of the comparison determlnes the setting

of the Condition Code. -

Both operands remain unchanged.

CLR (Compare Logical Registers)
Logically compare the contents of register 6 to
the contents of register 1.

SYMBOLIC CLR 6,1 . MACHINE 1561
Before After

GPR 1 _ 07 3C 1A 28 07 3C 1A 28"

GPR 6 00 OF 1C 29 00 OF 1C 29

Condition Code 1

CL (Compare Logical)

Logically compare the contents of register 1 to the
contents of storage location 4000 (TEST). (GPR F =
00 00 40 0Q0)

SYMBOLIC CL 1,TEST - MACHINE 55 10 FO 00
Before After

GPR 1 07 3D 1D 2F 07 3D 1D 2F

Storage 4000 - F7 3E 50 00 F7 3E 50 00

Condition Code 2 _

CODE

Operands are equal
First operand is low.
First operand- is high

L —

PROGRAM INTERRUPTIONS

1., Protection (fetch CL only)

2. Addressing (CL only)

3. Specification (CL only)

CLI Dy(B)), I, (1]
s | b &1 °

o 78 1516 1920 n

1. The contents of the storage locatioh designated by the first
address field (D1 (B1)) 1is compared to the second operand (I2).

2. The logical comparison is left to right a bit at a time until
an inequality is found or the fields are completed.

3. The result of the comparison determines the setting of the
Condition Code.

4, Both operands remain unchanged.

EXAMPLES
1. CL1 (Compare Logical Immedlate)

Logically compare bits O - 9 of storage location 4007(TEXT+7)
to OE (GPR F = 00 00 40 00)

SYMBOLiC CLI TEXT+7,X'OE'. MACHINE 95 OE FO 07
Before After

Storage 4004 FC 23 0L 16 FC 23 OE 1o

Condition Code 2

CONDITION CODE

W~ C

PROGRAM

ll
2.

Uperands are equal
First operand is low
First operand is high

INTERRUPTIONS

Protection (fetch only)
Addressing

4-25

CLC - D(L, By), Dy(By) |55]

C T Y Y

78 1516 1920 3132 35 36

o1

1. The contents of storage locations beginning with the
location designated by the first address field (D1(B1))
are compared to the contents of the storage locations
beginning with the location deslgnated by the second
address field (DZ(BZ2)).

2. The number of bytes compared is determined by the
length field (L) in the instruction.

3. The logical comparlson is left to right a b1t at a time
until an inequality is found or the fields are completed.

4., The result of the comparison determines the setting of
the Condition Code. .

5. Both operands remain unchanged.

EXAMPLE

1. CLC (Compare Logical Character) ,
Logically comparec the contents of storage location
4000 (Text) through 4007 with storage locations
4022 (Text+34) through 4029, (GPR F = 00 00 40 00)

SYMBOLIC CLC TEXT(8),TEXT+34 MACHINE DS 07 FO 00 FO 22
v Before After
Storage 4000 07 3C SF FF 07 3C SF FF
4004 FC 23 0k 16 . FC 23 0E 16
4020 36 47 07 3C 36 47 07 3C
4024 5F FF FC 23 SF FF FC 23
4028 0L 16 37 2A OE 16 37 2A
Condition Code 0

CONDITION CODE

Operands are equal
First operand is low
First operand is high

[RESE N e

PROGRAM INTERRUPTIONS

1. Protection (fetch only)
2. Addressing

4-7246

LOGICAL FAMILY

SHIFT LOGICAL

The LOGICAL SHIFT is used primarily to move logicalvdata
within a register or an EVEN-ODD register pair. ’The’differ—
ences between the logical and the algebraic shift is the |
absence of the Condition Code setting and the participation

of the sign-bit position in all logical shifts.

The first address field specifies a register‘or an EVEN-DDD
register pair that contains the data‘to be shifted. The,sééond
address field does not reference a storage location, but is used
to generate an effective address. The decimal value of the
low-order 6 bits of this address determines the number of bit

positions the data will be shifted.

Register data can be edited by using the shift instructions.
Extraneous data can be deleted and/or relevant data can be

positioned in single or double registers.

CONDITION

1.

SLL R, Dy(B,) [RS]

I 77 RN

78 naz 1516 1920

N

The contents of the register specified by the first
address field (Rl) are shifted to the left.

The low order 6 bits of the effective address [D2(B2)]
specifies the number of positions that the first op-
erand will be shifted.

All 32 bits participate in the shift and 0's are

placed in the vacated low-order bit positions of
the first operand.

When the low order 6 bits of the effective address ex-

ceed a decimal value of 31, the entire integer will be
shifted out of the specified register.

The entire integer being shifted out of'the specified
register results in all 0°'s.

SLL (shift Left Logical) ,
Shift the entire contents of register 3 6 positions
to the left. '
SYMBOLIC SLL 3,6(0) MACHINE 89 30 00 06
bBefore : After
GPR 3 80 03 16 28 00 C5 8A 00
CODE

Remains unchanged.

PROGRAM INTERRUPTIONS

l.

None

SRL R, D,(8,) (RS}

B

[

N7/ .

78 naz 1516 1920

4-28

l.
2.

5.
6.

EXAMPLES

1.

The contents of the register specified by the first
address field (Rl) is shifted to the right.

The low-order 6 bits of the effective address [D2(B2)]
specifies the number of positions that the first op-
erand will be shifted.

All 32 bits participate in the shift and zeroes are
placed in the vacated hxgh-order bit posxtxons of

the first operand. :

When the low-order 6 bits of the effective address ex-
ceed a decimal value of 31, the entire integer will be
shifted out of the specified register.

The entire 1nteger being shifted out of the spec1f1ed

'register results in that register containing all 0°'s.

Low-order bits are shifted out without inspection and
are lost. :

SRL (Shift Right Logical)

Using register 4 as a indirect shift specification, .
perform a SRL on register C.

SYMBOLIC SRL 12,0(4) MACHINE 88 C0 40 00
Before After
GPR 4 00 00 00 20 00 00 00 20
GPR C 96 ‘42 AA AE 00 00 00 00

CONDITION CODE

1.

Remains unchanged.

PROGRAM INTERRUPTIONS

1. ©None
SLDL R,, Dy(B,) [RS]
b)
80 l NV B L 2]
o 1112 1516 19 20 k1]
1. The contents of the EVEN-ODD register pair specified

by the first address field (Rl) are shifted to the
left.

The low-order 6 bit of the effective address [D2(B2)]
specify the number of positions that the first operand
will be shifted.

The operand is treated as 64 logical bits.

All 64 bits participate in a shift and 0's are placed
in the vacated low-order bit positions of the EVEN-ODD
register pair.

4-29

5. When the low order 6 bits of the effective address -
exceed a decimal value of 63 the entire integer will

. be shifted out of the specified registers.
6. A specification exception will occur if the register
address specified by the first address field is ODD.

1. SLDL (shift Left Double Logical)
Shift the contents of register pair 8 and 9 two
positions to the left.

SYMBOLIC SLDL 8,2(0) ' MACHINE 8D 80 00 02
| ‘Before After
GPR 8 0L 22 33 44 04 88 cp 11

GPR 9 55 66 77 88 55 99 DE 20
CONDITION CODE ’

1. Remains unchanged.
PROGRAM INTERRUPTIONS

-1. Specification

SRDL R;, D,(B;) {RS]

[| & V) % | 52 l

78 , w2 1516 19 20 3

1. The contents of the EVEN-ODD register pair specified
by the first address field (Rl) are shifted to the
2. The low-order 6 bits of the effective address [D2(B2)]

gspecify the number of positions that the first operand
will be shifted.

3. The operand is treated as 64 bits of loglcal data.

4. All 64 bits participate in a shift and 0's are
placed in the vacated high-order bit positions of
the EVEN-ODD register pair.

5. When the low order 6 bits of the effective address
exceed a decimal value of 63, the entire integer will
be shifted out of the specified registers.

6. A specification exception will occur if the register
address specified by the first operand is ODD.

EXAMPLE
1. SRDL (Sshift Right Double Loglcal)
Shift the contents of register pair E and F the
number of positions specified by the contents of
register 1.

SYMBOLIC SRDL 14,0(1) MACHINE 8C EO 10 00
Before After
GPR 1 00 00 00 04 00 00 00 04
GPR E 86 00 00 07 08 60 00 00
GPR F 2F C1 39 04 72 FC 13 90

CONDITION CODE
l. Remains unchanged.
PROGRAM INTERRUPTIONS

1. sSpecification

31

b
B |

LOGICAL FAMILY

LOAD ADDRESS

The LOAD ADDRESS instruction provides an efficient method for

placing a constant into one of the generai registers.

The first address field specifies the destination of the constant.
The second address field does not provide an address, but is instead
used to supply the desired constant by loading the effective

address (low-order 24 bits) into the registers specified by the

first operand.

LA R, Dy(Xy, B [RX]

RN ER P2

0 78 [ARY? 1516 . 1920

L -

l. The low-order 24 bits of the generated-effective .
address [D2(X2,B2)] are loaded into the register
specified by the first address field (R1l).

2. The high-order 8 bltS of the register are made
equal. to zero.

l. 1A (Load Address)
Load a constant of 4 into reglster 1 without
specifying a base or index register.

SYMBOLIC LA 1,4(0,0) MACHINE 41 10 00 04
’ Before . After
GPR 1 31 8C 1A 06 00 00 00 04

CONDITION CODE

1. Remains unchanged
PROGRAM INTERRUPTIONS

l. None

LOGICAL FAMILY

'TRANSLATE

The TRANSLATE instruction provides a means of easily con-
verting one code or set of characters into another codevor
set of characters. This is accomplished by use of a table
in storage and a knowledge of the collating sequence. The

table must be constructed prior to the use of the Translate

Instruction by the programmer.

" The collating sequenée is the decimal vaiue of all charac-

ters arranged in sequence by their values. This value, whigh
is directly taken from its binary bit configuration, is used
tg_place that character in its alpha-numericél order. This .

‘alpha-numerical order is the collating sequence.

The table is constructed using the collating sequence of

the code or characters‘yqu are translating (argument bytes).

The table contéins the code or characters into which you are

translating (function bytes). The table is formed by placing

the correct function byte at the collating value of each arg-

ument byte.

The table is completed when each argument byte or character
combination has the desired function byte at its collating
value in the table. This table's starting address is speci-

fied by the second address field.

The argument bytes are added to the starting address of the
‘table a byte at a time. The'function byte located at the
resultant address replaces the argument‘byte. This continues

until the value specified by the length field is reached.

l‘
- 2.
3.

4.

6.

7.

EXAMPLE

TR D,(t, B,), DAB,). [55]

L | ¢ l“lZ%wl“ﬂ?Lzl

78 1516 3132 35 36

Construct a table in storage of the function bytes
using the argument bytes collating sequence.

The second address field (B2,D2) specifies the
starting address of the table.

The first address field (B1,Dl) designates the
starting address of the argument bytes.

The number of bytes to be translated is specified
by the length field (L).

An argument byte is fetched and added to the
starting address of the table. '

The function byte at the resultant address replaces
the argument byte.

This continues until the number of bytes processed
equals the value specified by the length field (L).

TR (Translate)

Translate 8 EBCDIC bytes into USASCII-8 equivalent.

The bytes are located at location 1500 (BCD) and the
table is located at location 1000 (TABLE). (GPR F = .
00 00 10 00)

SYMBOLIC TR BCD(S),TABLE.
MACHINE DC 07 ¥5 00 FO 00
Before After

Storage 1500 40 D7 E8 D7 40 BO B9 BO
6l F3 F6 FO 4F 53 56 50

CONDITION CODE

1.

Remains unchanged

PROGRAM INTERRUPTIONS

1.
2.

Protection
Addressing

LOGICAL FAMILY -

TRANSLATE AND TEST

The TRANSLATE AND TEST instruction is used to scan a field for
delimiters or any character that has been assigned a special
meaning by the programmer. It is not used to translate data

as the name implies.

A table is constructed by the programmer prior to issuing this
instruction. This table contains non-zero function bytes —
which are placed in the collating sequence of the speciai

characters. All other‘positions of the tablé“a:e made zero.

The starting address of the argument bytes is designated by the
first address field. The second address field specifies the'

starting address of the table.

The numerical value of the argument byte is added to the
starting address of the table. If the function byte at that
location is zero, the operation continues by fetching the next
argument byte and adding the value of that byte to the starting
address of the table. This continues until a functipn byte
containing non-zeros is encountered. When this occurs, the
address of the argument byte that encountered a non-zero in ‘the
table is inserted in the low-order 24 bits of registef;l. The
high-order 8 bits of the register remain unchanged. The non-
zero function byte is placed in the low-order 8 bits of
regiéter 2. The high-order 24 bits of this address remain
unchanged. The Condition Code would be set to»l if the scan
did not complete, or 2 if it did complete.

4-37

If the scan completes (length field exhausted) and no non-zero
function bytes are endountered, the Condition Code will be éetl

to 0.

The address in register 1 is used to determihe.the number of
argument bytes that have been scanned. The low-order 8 bits

in register 2 can be tested to see what special characters had

been encountered.

This means that we can, with a single instruction, inspect a
complete field of argument bytes, looking for whatever intefests

us: error characters, end-of-message codes, blocks, commas, de-

limiters or whatever.

4-38

EXAMPLE

1.

TRT D|(L, B,), Dx(B2) [55]

o T v [afgalnfe]

o 78 1516 114 n3a 38 36

Construct a table in storage of the special

characters, using the argument bytes collatlng
sequence.

' The second address field (B2,D2) spec1f1es the start-

ing address of the table.

The first address field (Bl1,Dl) designates the start-
ing address of the argument bytes.

The number of bytes to be scanned is sp901fled
by the length field.

An argument byte is fetched and added to the
starting address of table. ,
If the function byte at the resultant location

is zeros, the next argument byte is fetched.and
the operation continues.

If a function byte of non-zeros is encountered,
that byte is placed in the low-order eight posi-
tions of register 2. The argument byte's address
is loaded into the low-order 24-bit p051t10ns of
register 1. :

TRT (Translate and Test) _

Scan 8 argument bytes beginning at 2500 (BYTES).
The starting address of the table is 2000 (TABLEl)
(GPR F = 00 00 20 00)

SYMBOLIC TRT BYTES (8) ,TABLEl

MACHINE DD 07 F5 00 FO 00

Before After

GPR 1 FF FF FF FF FF FF FF FF
GPR 2. - FF FF FF FF FF FF FF FF

Storage 2500 B2 C3 B4 63 B2 C3 B4 63
E4 C8 F2 07 E4 C8 F2 07

Translate and Test Table

2000 {00 |00 [00;00{00|CO|00|CO|O|CO| 0O} 00|00} 00! 00|00
2010 {00/ 00[0C0O{00|00O|[GO}00|0D!0G0]|0O| COJ]O0[00]00]|00]|CO
2020 [00 |60 00|00 |00]0o]|c0|00{oo|co] 00foo{oo|oofoo|o0
2030 |00 (00| 00|00 [00|CO CO[00|00 0GO| 00|00 00 |00[O00]|00
2040 |00 {00 |00O|(CO[00!00|CO|(00]|00 00! 00{O0O|10]20]|25]00
2050 (90|00 [00[00]|00{00[{C0|00|00|00f00]30]35/|{40| 45|00
meoasoooooooooooooooooo&ou‘oooooo
2070 |00 ;00 00|00 | 00|00 (00 |00|00 |0CO| 00|60 |85! 70| 75] 00
2030 {00 {00 |00|00|CO(00{00| 00|00 00| CO|O00|0O| 0O} 00|00
2090 {00 {00/00|G0{00|00{00{ 00|00 | 00| 00f0O0|00]|O00]|OCO|O0
20A0 100 | 0000 | 00| 00|00 (00} 00|00 |00} CO|00j00(00] 0000
2080 |00 | C0 |00 | 00| 0O| 00|00 {0000 |00 00! 00|00 |0O|O0O|O0O
20C0 |00 | 00|00} 00| 00({00 |00 00{00|00| 00|00 [N |O0O|00[O0O
2000 00| 00| 00!{00({00{0C0;00|00(00}!0CO| 0Of 00|00 00| 00](O00
2060 {00100 | 00[00]00[00}|CO|00|00!/00] 00] 00|00 |00 00|00
20F0 {00 |00 | 00 |00 {00 |00 |00) 00|00 |00} 00| 00|00-|00]|00]00
’ 20FF
Note: If tha character codas in the stat 1t being ¢ lated
a range smaller than 0016 through FFis, a table less than 236 byfu
can be used.
Condition Code 0
2. TRT _
U51ng the same table scan 8 argument bytes be-
ginning at location 2508. (GPR F = 00 00 20 00)
SYMBOLIC TRT Bytes+8 (8) ,TABLE l
MACHINE DD 07 F5 08 FO 00
Before . After
GPR 1 FF FF FF FF FF 00 25 0OD
GPR 2 FF FF FF FF FF FF FF 55_
Storage 2508 23 F2 C3 74 23 F2 C3 74
51 6C D7 DA 51 6C D7 DA
Condition Code 1
CONDITION CODE
0 All function bytes are zero
1 Non-zero function byte before
first operand field was exhausted
2 Last function byte is non-zero
3 -

PROGRAM INTERRUPTIONS

1.
2.

Protection (fetch only)
Addressing

BRANCHING FAMILY

EXECUTE
The EXECUTE instruction provides a means of performing an
instruction outside of the normal instruction stream. The

address of the instruction to be performed is spécifiéd by

the second address fiéld.

The first address field specifies a register whose low-order

8 bits are ORED with bits 8-15 of the instruction to be
performed.If the first address field is zero, no ORING takes
place. This feature gives the EXECUTE instruction great power aﬁd
versatility and is commonly used with TRANSLATE and MOVE in-
structions to change or se£ their iengthvfields. It can also

be used to Ehange index, mask, imﬁediate dafa and arithmetic
register values of the instruction specified by the second

operand.

The specified instruction is then performed and upon completion,

the program returns to the normal instruction sequence.

4-41

EXAMPLE

1..

Exocute
EX R, Dy(X,, B,) [RX]

s I8N 1%] % |

0 m2 13 ld 1920 N

The instruction is usded as a p01nter to the 1nstruc-
tion you wish to perform.

The instruction to be performed is spec1f1ed by the
second address field [D2(X2,B2)].

Bits 8-15 of that instruction are OR'ED with the
low-order 8 bits of the register spec1f1ed by the
first address field (R1l).

The instruction designated by the second address
field is then performed and upon completion, the
normal instruction sequencing continues.

The execution and exception handling of the des-
ignated instructions are exactly as if the instruc-
tion were obtained in normal sequential operation,
except for instruction address and instruction length.
The instruction designated by the second address

field remains unchanged in storage.

EX . (Execute)

Execute the instruction at locatlon 9000 (TRANS)
and modify bits 8-15 with the low-order 8 bits
of register C. (GPR F = 00 00 90 00)

SYMBOLIC EX 12, TRANS MACHINE 44 CO FO 00
GPR C = 26 47 3C 1E
Ihstruction Addressed » Instructibn Performed
DC 00 F3 18 F500 ' DC 1lE F3 18 F500

Condition Code - Set by the translate instruction
after execution. :

EX

Execute the instruction at location 9006 (TRANS+6)
and modify bits 8-15 with the low order 8 bits of
register 9. (GPR F = 00 00 90 00)

SYMBOLIC EX 9, TRANS+6 MACHINE 44 90 FO 06
GPR 9 = 01 46 AA 16
Instruction Addressed | Instruction Performed
- 1a24 . 1A36

4-42

Condition Code - Set by the ADD instruction
after completion. '

CONDITION CODE

1. May be set by the designated instruction.
PROGRAM INTERRUPTIQNS ' |

1. Execute L . v

2. Protection (fetch only)

3. Addressing
4. Specification

LOGICAL FAMILY

INSERT CHARACTER

We have discussed instructions which use the low-order eight bits
of a register. The INSERT CHARACTER instruction provides the
means for placing these eight bit characters in the low-order

eight bits of a register.

The second address field designates the characters to be inserted.
This character is inserted in the low-order eight bit positions of

the register specified by the firstvoperand.

This instruction is commonly used prior to the EXECUTE instruction

to seﬁ the desired OR'ING field.

IC R, DufX, B} [RX]

43 IERE IE

78 n 1518 1920 n
'

The character designated.by the second address field
[D2(X2,B2)] is placed in the low-order 8 bits of the
register specxfled by the first address field (R1l).
The remaining bits of the specxfled reglster are

not changed. :

Ic (Insert Character)
Place the character located at 6500 (CHAR) into
bits 24-31 of register 4. (GPR F = 00 00 00 00)
SYMBOLIC IC 4,CHAR MACHINE 43 40 F5 00
Before Aftef
GPR 4 EF 2C 04 7B EF 2C 04 1F

Storage 6500 1F 37 2A ED 1F 37 2A ED

CONDITION CODE

l.

Remains unchanged.

PROGRAM INTERRUPTIONS

1.
2.

Protection (fetch only)

Addressing

LOGICAL FAMILY

STORE CHARACTER

The STORE CHARACTER instruction enabieé a programmer to place

the low-order 8 bits of any rggister into storage. This in-
struction can be particularly useful for the further examination
of the function byte th#t is stored in low-order 8 bits of tegis—

ter 2 when performing a TRANSLATE AND TEST instruction.

The character to be stored is located in the low-order 8 bits of
the register specified by the first address field. The second -
address field designates the location where the character will

" be stored.

4-46

STC R, Dy(X,, B,) [RX]

2 | h1% 1%]]

1ni 1516 1920 3N

o]

1. The low-order 8 bits of the register specified by
the first address field (Rl) are stored at the

location designated by the second address field
[pD2(X2,B2)].

2. The first operand remains unchanged.
EXAMPLE
l, STC (Store Character)

Store the low-order 8 bits of reglster 2 into lo-
cation 1400 (MATCH). (GPR F = 00 00 12 00)

SYMBOLIC STC 2,MATCH _ MACHINE_42 20 F200
Before After:
GPR 2' 29 00 14 27 29 00 14 27

Storage 1400 34 FE 12 9A 27 FE 12 9A
CONDITION CODE o |

1. Remains unchanged.

PROGRAM INTERRUPTIONS

1. Protection (store only)
2. Addressing

4-44

BRANCHING FAMILY
BRANCH ON COUNT

The BRANCH ON COUNT instruction permits the construction of program
loops that avoid repetitive instruétion_sequences. |

\
The 32-bit contents of the register specifiéd by:the first address
field are algebraically reduced by 1. If the result is not 0, the
program will branch to the address specified by the second address

field. A result of zero permits normal instruction sequehcing and

no branching takes place.

" The RR version of this instruction permits counting without branching

if the second address field is given a value of zero.

BCTR R, R; [RR]

© [R [R|

o 78 w18

BCT R" ﬁ;‘xle Bz) . ‘Rx‘

eI \ 5 |

o 78 W12 . 1516 1920 n

1. The fullword contents of the register specified by
the first address field (Rl) are algebracially
reduced by 1.

2. If the result of this subtraction is zero, the pro-
gram continues with normal instruction sequencing.

3. A non-zero result (+ or-) will cause the program to
branch to the location designated by the second
[R2 or D2(X2,B2)].

4. If the second address field of the RR format specmfles
register 0, countlng is performed, but no branching
will occur.

5. An overflow occurring on the transition from the max
negative number to the max p051t1ve number would be

ignored.
EXAMPLE
1. BCTR (Branch on Count Register) -
Branch* to the location in register 4 when the
count in register 5 is not equal to zero.
SYMBOLIC BCTR 5,4 : MACHINE 06 54
Before After
GPR 4 00 00 F1 04 00 00 F1 04
GPR 5 00 00 00 04 00 00 00 03
* In the above‘eXample, branching would occur.
2, BCTR (Branch on Count Register)

Perform a counting function without a branch.
Register 6 will contain the count.

SYMBOLIC BCTR 6,0 MACHINE 06 60
Before After
GPR 6 00 00 00 00 FF FF FF FF

BCT (Branch on Count)
Branch®* to location 2000(LOOP) when the contents of
register 8 do not equal zero. (GPR F = 00 00 20 00)

SYMBOLIC BCT 8,LOOP MACHINE 46 80 FO 00

' . Before . Aftér
GPR 8 0000 00 0L 00 00 00 00

In the above example the branch would not occur.

CONDITION CODE .

1.

Remains unchanged.

PROGRAM INTERRUPTIONS

1.

None

BRANCHING FAMILY

BRANCH ON INDEX

The incrementing and testing of the index value is the major purpose

of the BRANCH ON INDEX instructions.

An increment contained in the regiéter specified by the third address
field is added to the contents of the register specified by the first
address field. The result of this addition replaces the first

operand.

The first operand is now compared to the third‘bperand if the third
operand is an odd register. If the third operand is an even registér,
the contents of the register whose address is one greater, will be

used.

BRANCH ON INDEX HIGH

If the result of the comparison shows the sum to be greater, the next
instruction address is replaced with the address specified by"the'sec-

ond address field. The sum being low or equal results in normal

instruction sequencing.

BRANCH ON INDEX LOW OR EQUAL

This instruction will continue with normal instruction sequencing if
the result of the comparison shows the sum to be greater. A comparison
of low or equal causes the updated instruction address’ to be replaced

by the address specified by the second address field.

5-4

Branch On Index High
BXH R, R, D,(8B)) [RS]

I N A N

112 1516 - 1920 3

1. The contents of register specified by the third
address field (R3) are added to the contents of the
register specified by the first address field (Rl).
. The sum replaces the first operand.

3. The first operand is now compared to the third op-
erand, if the address of the third operand is an
odd register. A third operand address specifying
an even register causes the comparison to be made
with the register whose address is one greater.

4. The sum being lower or equal to the comparand re-
sults in normal instruction sequencing.

5. If the sum is greater than the comparand, the up-
dated instruction address is replaced with the
effective address specified by the second address
field (B2,D2).

6. The addition and comparison are performed u51ng

v normal fixed point arithmetic.

7. When both the first and the comparand specifies
the same location, the original contents are used
for the comparand.

8. The second operand remains unchanged.

EXAMPLE
l. BXH (Branch on Index High)
Branch to location 6500(LOC) if the sum of register
4 and the index register 1 is greater than the con-
tents of the comparand register. The following in-
struction will result in a branch. (GPR F = 00 00 65 00)
SYMBOLIC BXH 4,1,LOC - MACHINE 86 41 FO 00
Before Aftér
GPR 1 00 00 00 04 00 00 00 04
GPR" 2 01 AC OF 23 01 AC OF 23
GPR 4 .00 00 65 30 00 00 65 34
2. BXH (Branch on Index High)

Branch to location 6500(LOC) if the sum of reglster
4 and the index register 6 is greater than the com-

parand. The following instruction will not result in
a branch. (GPR F = 00 00 65 00)

SYMBOLIC 4,6,LOC MACHINE 86 46 FO 00

Before After

GPR 4 00 00 65 80 00 00 65 84
GPR 6 00 00 00 04 00 00 00 04

GPR 7 00 00 65 A0 00 00 65 AO

CONDITION CODE

1.

Remains unchanged.

PROGRAM INTERRUPTIONS

1.

2.
3.

EXAMPLE

None
'BXLE. R, Ry, DyB,) (Rs]
N N N

] . 78 na 1516 1920 N

- The contents of register specified by the third

- address field (R3) are added to the contents of the
' register specified by the first address field (Rl).
- The sum replaces the first operand.

. The first operand is now compared to the third- op-
‘erand, if the third operand is in an odd register.

The third operand being in an even register causes

~ the comparlson to be made with the register whose

address is one greater. !
If the sum is lower or equal to the comparand, the
updated instruction address is replaced with the
effective address specified by the second address
field (B2,D2).

The sum being greater than the comparand results
is normal instruction sequenc1ng.

The addition and comparison are performed using
normal fixed point arithmetic.

When both the first and the comparand specifies

the same location, the orlg1na1 contents are used

for the comparand.
The second operand remains unchanged.

BXLE (Branch on Index Low or Equal)

Branch to location 3200(THERE) if the sum of -
register 9 and the index register 2 is lower or
equal to the comparand. The following instruc- :
tion will result in a branch. (GPR F = 00 00 30 00)

SYMBOLIC BXLE 9,2,THERE MACHINE 87 92 F2 00

Before

GPR 2 00 00 00 04
GPR 3. 00 00 30 58

CONDITION CODE
| 1. Remains unchanged.
PROGRAM INTERRUPTIONS

1. None

5-7

GPR 9 00 00 30 54

00

00

00

After

00 00 04
00 30 58
00 30 58

BRANCHING FAMILY

BRANCH AND LINK

Routines are commonly used to,perforﬁ repetitive tasks in pro-
gramming. Maximum flexibility if} utilizing these routines can
only be achieved by allowing the routines té be isolated-from
the program. This isolated routine must be readily available
to the program and assure the program that'the same condition

will exist within the system upon completion-of the routine.

To satisfy these conditions we must have aﬁ instruction perform
the following: .
1. Branch to a routine specifiéd by an a&dress.
2. éaveithe updated instruction address 56 that
we may return to the program;
3. Save the Program Mask and the Condition Code
so that it may be reloaded‘if changed at thé
end of the routine. V ‘
The BRANCH AND LINK instruction satisfies ‘all the abové con-
ditions. The second add;ess field specifies the branch addreés.
The updated instruction address, Cohdition Code, Instrpction
Length Code, and Program Mask are placed in the register‘specified
by the first address field. This is accomplished by loading the

designated register with the rightmost 32 bits of the PSW.

Leaving a routine and returning to the program can easily be accom-
plished by utilizing two instructions. The Set Program Mask* is

used to reload the program mask and the Brancnh on Condition Register

*The SET PROGRAM MASK is to be explained.

5-8

to branch to the correct point-ihvthe program.

These two instructions

are normally the final two instructions of a routine.

The following is in the sequence of performance.

PROBLEM PROGRAM ' ROUTINE

STORGE 1000 AR 3,4
1002 S 3,TEN o 2500
1006 BAL 2 ,ROUTNE _ , 2504
. _ ROUTNE 2506
: 2508
250C
250E
: 2510
100A C,9,CNST '
100E etc.

L 1,PMRTNX
SPM 1

LR 3,4

L 5,DATA
SR 4,5

SPM 2

BCR 15,2

The above should clarify the use of a BRANCH AND LINK, the entry

into a routine and the departure from a routine.

 5-9

Branch and Link

BALR R,,R; [RR)
o5 | Ry [Ry |
0 78 1112 15
BAL R,, DX, B,) [RX]
45 Ry [X | 8y | Dy

0 78 [AR} 1518 1920 N

1. The rightmost 32 bits of the PSW are placed in the.
register specified by the first address field (R1l).

2. The program branches to the address specified by

’ the second address field [R2 or D2 (X2,B2)]. :

3. A branch will not occur if the register specified
by the second operand is GPR 0 when using the
BALR instruction.:

4. The Instruction Length Code will be set to 2 if the
BAL is the subject instruction of an EXECUTE.

- EXAMPLE

l. BALR "~ (Branch and Link Registers)
Branch to storage location contained in Register 4.
Save the updated instruction address and the Program
Mask in register 7. The PSW before executing the BALR
is FE060000B9001052. ' - _
SYMBOLIC BALR 7,4 ~ MACHINE 05 74

Before ' . After

GPR ' 4 00 00 16 00 00 00 16 00
GPR ; -7 00 14 00 00 B9 00 10 54

2. BAL (Branch and Link)

Branch to storage location 2500 (RTNl). Save the.
Program Mask and the updated instruction address

in Register 1. (GPR F = 00 00 20 10) The PSW before
executing the BAL is 81060000C40014FC.

SYMBOLIC BAL 1, RTNl MACHINE -~ 45 10 F4 FO
Before | After
GPR 1 01 CA 46 29 C4 00 15 00

CONDITION CODE

1. Remains unchanged
PROGRAM INTERRUPTIONS
1. None

5-10

STATUS SWITCHING FAMILY

SUPERVISOR CALL

A SUPERVISOR CALL is a gpecial instruction used by the problem
programmer to force an interrupt. A SUPERVISOR CALL interrupt
differs from the other classes of interrupts in that the problem

program initiates the interrupt to return control of the system

to the control program.

This instruction is ndrmally issued if the problem program: has
need of a common supervisor routiné; has need of the con£r01
program to issue a privileged 6peration; has ended. A privi-
leged oberation is any instruction that, if madé available to
the problem programmer, would disrupt the-nofmal control

‘and sequencing of the system. PriVileged instructions will be
examined later in this course, they include Input/Output opera-

tions, protection control, and PSW controls.

The SUPERVISOR CALL instruction sends an interrupt code to the:
control program. The contfol program analyzes this interrupt code
aﬁd is able to determine the ?articular action the problem program
réquires. The number and variety of these request codes (interrupt
codes) that are available to the problem programmer depends entirely
upon the particular control prbgram under which the problem program

will be executed.

The SUPERVISOR CALL is of the RR format, but the register'fields
are combined and labeled I. This field contains the interrupt code

which is sent to the control program for analysis and action.

1.
2.

4.

EXAMPLE

CONDITION
1.

sve 1 [RR]

This instruction forces a supervisor call interrupt.
The contents of the I Field are placed in bits 24-31
of the SVC old PSW.

The control program examines the 1nterrupt code to
determine the action requested by this code.

The control program then performs the specified action
and if the problem program has not completed, it will
return control of the system to the problem program.

svc (Superv1sor Call)
Issue a supervisor call using an interrupt code of
HEX 47.
SYMBOLIC SVC X'47' MACHINE 0A 47
Before After
PSW Bits 0-31 E1l 71 00 00 El 71 00 47
CODE

Remains unchanged in the old PSW.

PROGRAM INTERRUPTIONS

1.

None

5-12

'STATUS SWITCHING FAMILY

SET PROGRAM MASK

The SET PROGRAM MASK instruction is used to set bits 34-39 of the
PSW. This includes both the Program Magk and the Condition Code.
This instruction is the only means by which a problem programmer

can change the Program Mask and Condition Code.

The first operand specifies the registerbwhich contains the new
Program Mask and Condition Code. This instruction ignores the

'second operand.

5-13

Sot Program Mask
SPM R, [RR]

e/

"z

Bits 2-7 of the register specified by the first
address field (R1l) replace bits 34-39 of the PSW.
Bits 0, 1 and 8-31 of this register are ignored.
The second operand field is not used.

SPM ‘(Set Program Mask) '
Set bits 34-39 of the PSW to the contents of blts
2-7 of register 2. .

SYMBOLIC SPM 2 : MACHINE 04 20
Before : After
GPR . 2 D2 00 54 04 D2 00 54 .04

PSW 32-63 B4 00 59 46. 92 00 59 48

CONDITION CODE

&.

The code is set according to bits 2-3 of the
register specified by the first address field.

PROGRAM INTERRUPTIONS

1.

None

STATUS SWITCHING FAMILY

SET SYSTEM MASK

The SET SYSTEM MASK is a priViléged instruction used by the con-
trol program to change the system mask of the PSW. This is done
to allow or disallow interrupts from Input/Output devices or ex-

ternal sources.

The byte at the location designated by the first address field

replaces the system mask of the current PSW. The second address

field of this instruction is ignofed.~

5-15

SSM D(B,) (s

(= AT o]

15 w20 Nn

l. The first address field (Dl, Bl) specifies a byte in
storage that replaces the system mask of the
current PSW. '

2. The second address field is ignored.

3. This is a privileged instruction and only be
executed while in the supervisor state.

EXAMPLE |
1. SSM (Set System Mask)
Set the system mask from storage location 2504
(MASK). This will allow interrupts from channels
0, 1, and 4. (GPR F = 00 00 25 00)
SYMBOLIC §SSM MASK MACHINE 80 00 FO 04
Before After |
Storage 2504 C8 D1 FF 00 C8 Dl FF 00
PSW Bits 0-31 F1 41 00 00 C8 40 00 00
CONDITION CODE
1. Remains unchanged
PROGRAM INTERRUPTIONS
1. Privileged operation

2. Protection (fetch only)
3. Addressing

5-16

STATUS SWITCHING FAMILY

LOAD PSW

When anyinterrupt occurs, the CURRENT PSW is stored at the
permanent assiéned stofage location for the OLD PSW of that
particular interrupf. A NEW PSW is loaded by‘circuitry>and
the sfstem will enter the SUPERVISOR state. This PSW will.

address an interrupt handling routine to clear the interrupt

and take action as required.

Upon cdmpletion of this interrupt routine, the processing cap-
abilities of the system are usually returned to the problem pro-
gram. This is done by the privileged instruction LOAD PSW.which
is the final instruction of the interrupt routine. The

first operand of this instruction contains the doubleword address
of the permanent assigned storage location for the OLD PSW of the
particular interrupt that initiated the above sequence. Bits 16-
33 of this doubleword location are not loaded as the CURRENT PSW
(The interrupt code and ILC aré made 0). The remainder of the
doubleword becomes the CURRENT PSW and ins;rﬁction sequencing
proceeds with the instruction address. This inétruction does.noﬁ

use the second operand field.

5-17

LPSW - D(B)) {51

777/ R

- 1l. The doubleword located at the address specified by
the first address field (D1,Bl) replaces the current PSW.
2. The first operand must be on a doubleword boundary.
3. Bits 16-33 of this doubleword are not transferred
to the current PSW.
4. This instruction is: pr1v11eged and cannot be issued
by a problem program.

EXAMPLE

l. LPSW (Load Program Status Word) .
Load a Program Status Word from the Input/Output
OLD PSW location as the CURRENT PSW.

SYMBOLIC LPSW 56 MACHINE 82 00 00 38
Before After

CURRENT PSW 0-31 00 00 00 00 F1 41 00 00
" 32-63 40 00 34 60 60 00 94 26

Storage 0038 Fl 41 00 10 Fl 41 00 10
- 003C AQ 00 94 26 A0 00 94 26

CONDITION CODE ,

1. Set by bits 34 & 35 of the LOADED PSW.
PROGRAM INTERRUPTIONS

1. Privileged operation

2. Protection (fetch only)

3. Addressing
4. Specification

STATUS SWITCHING FAMILY

STORAGE KEYS

The main storage sizes aﬁailable with a system are always divis-

able by 2,048. The guotient of this.number divided into the ﬁéin
storage size determines the number of storage Slocks within any

given system. Storage blocks are a convienent means by which

storage can be sectioned for use with the storage and fetch pro-

tection feature.

When a problem program is loaded, ‘it informs the control program
of its storage requirements. The control progr&m then assigns
the problem program the number of storage blocks needed for ex-
ecution. The storage blocks are assighed a storage key and the
problem program PSW is given the pfotection key to match the

storage key.

SET STORAGE KEY

The SET STORAGE KEY instruction allows the control program to
assign the storage blocks a storage key that will corréspond

with the protection key of the problem program's PSW.

The storage block to be assigned a key is specified by bits 8-20

of the register designated by the'second address field. The con-
tents of the first operand, bits 24-27 (24-28 for fetch protection),
contain the key assigned to the storage block designated

by the second operand.

5-19

INSERT STORAGE KEY

The INSERT STORAGE KEY instruction is the only means by which a

' storage key can be inspected.

Bits 8-20 of the second operand specify the étoragé

. key to be inspected. The first address field designates the
~register where the key will be placed for inspection. . The'key
will occupy bits 24-27 (24-28 for fetch prdtect)}of the register

specified by the first operand.

5-20

SSK R, R, [RR]

T [N |

° 78 na \t]

l. The storage block'addreséed by bits 8-20 of the

register specified by the second address field (R2)
will be given a key.

2. Bits 0~-7 and 21-27 are ignored but bits 28-31 must
contain zeros or a specification error will occur.
3. The key is taken from bits 24-27 (24-28 when fetch

" protect is installed) of the register specxfled by
the first address field (Rl).

4. The remainder of the bits in this register are ig-
nored.

5. This is a privileged instruction that can only be
issued by the control program.

EXAMPLE

1. SSK (Set Storage Key)

Agsign the storage key in register 3 to the storage'
address of 800-FFF. (GPR E = 00 00 08 00)

SYMBOLIC SSK 3,14 . MACHINE 08 3E
Before =~ After
GPR 3 1C 23 46 7B 1C 23 46 7B
GPR 14 00 00 08 00 00 00 08 00
Storage Key 800-FFF 4 : 7

CONDITION CODE
l. Remains unchanged

PROGRAM INTERRUPTIONS

1. Operation (protection feature not installed).
2. Privileged operation

3. Addressing
"4, Specification

5-21

Insort Storage Key
_ISK R, R, [RR]

© MR |

[78 [IRY] [P

The storage block addressed by bits 8-20 of the
second operand (R2) supplies its key for Lnspectlon;
Bits 0-7 and 21-27 are ignored, but bits 28-31,

must contain zeros or a specification error will
occur.

The key is placed in bits 24-27 (24-28 when fetch
protection is installed) of the first operand (R1l).
The low-order 4 (3 if fetch protection is installed)
bits of this register are set to zero and the re-
mainder ignored.

This is a privileged instruction that can only be
executed by the Control Program.

ISK (Insert Storage Key)

Take the storage key from the storage block
3000 -37FF and place in register 1. ' (GPR 9 =
00 00 35 00 and fetch protect not installed)

SYMBOLIC ISK 1,9 . MACHINE 09 19

‘ ’Before After
GPR 1 ' FF FF FF FF Ff Fé FF FF
GPR 9 00 00 35 00 - 00 00 35 00
Storage Key 300C -37FF 5 | a 5

CONDITION CODE

l.
PROGRAM

1.
2.
3.
4.

- Remains unchanged.
INTERRUPTIONS

Operat*on (protection feature not ‘installed)
Privileged operatlon

Addressing

Specification

STATUS SWITCHING FAMILY

TEST AND SET

When a system is loaded with, and operating on, two or more programs;
the assignment of available storage space to any one program becomes
difficult. Allowing more than one program the use of the same stor-

age area would alleviate much of this problem.

Assigning the same area to different programs requires a method of
determining the "in use"_Status of a particular storage area. This

function is the prime purpose of the TEST AND SET instruction.

The TEST AND SET instruction can perform this task by tésting a

' cbntrol byte. This control byte is deterﬁined by the programmer'
and is usually the first byte of the common storage area. The
Condition Code will be set to the value of the leftmost bit in a
control byte as a result of ;his test. If this bit contains a
value of one, the common storage‘area‘is being used by another
program. A bi£ value of zero indicates that this storagevarea is

free for use.

Prior to setting the Condition Code the control byte is set to all
ones to prevent the possibility of two programs testing the common
storage area at the same time and finding it to be free for their

use.

When a program finishes with a common storage area, it must reset

the first bit of the control byte so that the area is again available

to other programs.

The address of the control byte is specified by the first operand.

The second operand field of the instruction is ignored.

K22

TS D,(8,) [s1)

I/ R

0 . 78 ' 1316 9?20 k1)

1. The first address field (D1,Bl) specifiés theubyte in
storage whose leftmost bit will be set into the
Condition Code.

2. Prior to setting this bit into the Condition Code
the addressed byte is set to all ones.
3. If the instruction is a protection violation, the
Condition Code results are unpredictable.
L1 :

1. TS (Test and Set)

Test storage address 2301 (SAREA) to see if the
common storage area is in use. (GPR F = 00 00 23 00)

SYMBOLIC TS SAREA ' 1 MACHINE 93 OO FO 01
Before After |
Storage 2300 1C 00 23 16 1C FF 23 16
Conditipn Code 0 o

CONDITION CODE

' Leftmost bit of byte specified is =zero.
Leftmost bit of byte specified is one.

WO

PROGRAM INTERRUPTIONS

1. Protection
2. Addressing

5-24

DECIMAL INSTRUCTIONS

Dgéimallarithmetic operates on data in the packed format. 1In

this- format, two decimal digits are placed in one eight-bit

' byte .

Data are inéerpreted as integers, right-aligned in their
fields. They are kept in true notation with a sign in the

right four bits of the low-order eight-bit byte.

Processing takeé place right to left between main—storage
locations. All decimal arithmetic instructions use a two-
address format. Each address specifies'the leftmost byte of
an bperand. Associated with thié addréés is a length field;‘
indicating the number of additional bytes that'the_operand

extends beyond the first byte.

The decimal arithmetic instruction set provides for adding,

subtracting, comparing, multiplying, and dividing, as well

~as the format conversion of variable length operands.

The condition code is set as a result of all arithmetic and

comparison operations.

DATA FORMAT

Decimal operands reside in main storage only. They occupy

fields that may start at any byte address and are cOmpdsed

of one to 16 eight-bit bytes.

Lengths Of-the two opeﬁands specified in an instruction need
not be the éame. If necessary they are considered,to.be ex-
tended'with.zeros to the left of the hiéh-order_digits. Re-
sults heVer‘exceed thé limits set by addéess and length

- specification. Lost carries or lost digits from arithmetic

operations are signaled as a decimal overflow exception.

5

In the packed format, two decimal digits norﬁally are'placed-
adjacent in a byte, except for the rightmos£ byte of the
field. In the rightmost byte a sign is piaced to the right
of the decimal digit. Both digits and a sign%are eﬁcodedvand

occupy four bits each.

NUMBER . REPRESENTATION

. Numbers are represented as right-aligned true integers with

a plus or minus sign.

The digits 0-9 have the binary encoding 0000-1001. The codes
1010-1111 are invalid as digits. This set of codes is inter-
preted as sign codes, with 1010, 1100, 1110, and 1l1lll recog-

nized as plus and with 1011 and 1101 recognized as minus. The

codes 0000-1001'ate invalid as sign codes.

The sign and zone codes generated for all decimal arithmetic

results differ for the Extended Binary-Coded-Decimal Interchange

9-2

Code (EBCDICj and the USA Standard Code for Information
Interchange (USASCII-8). The choice between the two codes
is determined.by bit 12 of the PSW. Whén bit 12 is zero,
the preferred EBCDIC codes are generated; these are-plué,‘
1100} minus, 1101; and zone, 111l1. ‘Wheh bit 12 is one, the
preferred USASCII-8 codes are generated; thése»are plus,

1010; minus, 1011l; and zone, 01l01.

CONDITION CODE

The results of all add-type and comparison operations are

used to set the condition code. All other decimal arith-
metic'opérations leave the code unchanged. The condition
code can be used for decision—making by subsequent branch-

on-condition instructions.

The condition code can be set to reflect two types of re-
sults for decimal arithmetié. For most operations the
states 0, 1, and 2 inaicate a zero, less than zero, and
gteater than zéro content of the résult field; the state

3 is used when the result of the operation overflows.

For the comparison operation, the states 0, 1 and 2 indi-
cate that the first operand ¢omparedvequal, low, or high.

CONDITION CODE SETTING FOR DECIMAL ARITHMETIC

0 1 2 3
-~ Add Decimal zero Lzero zero overflow
Compare Decimal equal low high | —~4
Subtract Decimal zero < zero > zero overflow
Zero and Add zero <<zero ‘:>zero overflow

INSTRUCTION FORMAT

Decimal instructions use the following format:

S5 Format

ITOpCode IERIEN Bl”ﬁ’l[-%_m D, |

79 na 1518 1920 3132 35 36 47

-For this format, the content of the géneral register specified
by Bl is added to the.content of Dl field to form an address.
This address spécifies the leftmost byté bf the first oper-
andvfie;d. The number of operand bytes to the right of th?s
'}byte is specified by the L1 field of the instruction. There-
fore, the length in bytes of the first operand field is 1-16,
corresponding td a length codb in L1 of 0000-1111. The sec-
ond operand field is specifiechimilarly by the L2, Bz;_and

D2 instruction fields.

A zero in the Bl or B2 field indicates the absence of the

corresponding addreSs_component.

Results of operations are always placed in the first operand
field. The result is never stored outside the field specified
by the address and length. In the event'the first operand is
longer than the second, the second operand is extended with
high-order zeros up to the length of the first bperand. Such
extension never modifies storage. The second operand field

and the contents of general registers remain unchanged.

NOTE: In the detailed descriptions of the individual.instruc—
tions, the mnehonic and the symbolid operand_designation for
the IBM System/360 assembly language are shown with each_in-
struction. For ADD DECIMAL, for example, AP is the mnemonic

9~-4

and D1(L1,Bl),D2(L2,B2) the operand designation.

INSTRUCTIONS

The decimal arithmetic instructions and their mnemonics

and operand codes follow. All instructions use the SS format

- and assume packed operands and results. The table indicates

when the condition code is set and the exceptions in operand

designation, data, or results that cause a program interrup-

tion. ‘

~ NAME MNEMONIC TYPE EXCEPTIONS
Add Decimal AP ss,c P,A, D,DF
Subtract Decimal SP ss T,C p,A, D,DF
Zero and Add zap sSsT,C P,A, D,DF
Compare Decimal CP ss T,C P,A, D
Multiply Decimal MP SS T P,A,S,D
Divide Decimal DP SS T - P,A,S,D,DK
Notes:

A Addressing exception

C Condition Code is set

D Data exception

DF Decimal-overflow exception
DK Decimal-divide exception

P Protection exception

S Specification exception:

T Decimal feature

PROGRAMMING NOTE

CODE
FA
FB
F8
F9
FC

FD

The moving, editing, and logical comparing instructions may

also be used in decimal calculations.

9-5

DECIMAL PROGRAM INTERRUPTIONS

Exoeptiohal operation codes, operand designations, data, oi
results cause a program interruption. When the interroption
. occurs, the current PSW is stored as an old PSW, and a new
PSW is obtained. The‘interruption code in the old PSW
identifies the cause of the interruption. The following

exceptions cause a program interruption in decimal arithmetic:

Operation: The decimal feature is not installed, and the

instruction is ADD DECIMAL, SUBTRACT DECIMAL, ZERO AND ADD,
COMPARE DECIMAL, MULTIPLY DECIMAL, DIVIDE DECIMAL, EDIT, ‘OR’
EDIT AND MARK. The insﬁruction is suppressed. Therefore,
the condltlon code and data in storage .and reglsters remain

unchanged.

Protection: The key of an operand in storage does not match

_the protection key in the PSW.

The operatlon is termlnated for either a store or a fetch
violation by a decimal instructlon, the result data and

" condition code are unpredlctable.

Addressing: An address designates an operand locatidh_out—

 side the available storage for the installation.'

The operation is terminated. The result data and the con-
dition code are unpredictable and should‘not be used for

- further computation.

These addréss exceptions do not apply to the components frqm
which an address is_genérated:‘i.e. The base of index |
register may have a value larger than the storage size, but ‘>
the effective addreﬁg (EA) may ﬁot, For examplé,.if a base
register or index registér,contained 6A FF FF FF and the dis-.

placement was 079, the EA would be 00 0078.

Spécifications: A multiplier'or a divisor size exceeds 15

digits and sign or exceeds the multiplicand or dividend size.
The instruction is suppressed; therefore, the condition code

and data in storage and registers remain unchanged.

Qggét A sign or digit code of an operand in ADD DECIMAL,
'éUBTRACT DECIMAL, ZERO AND ADD,YCOMPARE.DECIMAL, MULTIPLY
DECIMAL, DIVIDE DECIMAL, EDIT, OR EDIT AND MARK is incor;ect,'a
.mulﬁiplicand has insufficient high-order zeros, 6: the operand
~ fields in théseréerations overlap incorrectly. The operation
'is terminated. The result data and the‘condition code are

unpfeaictable and should not be used for further domputation..

Decimal Overflow: The result of ADD DECIMAL, SUBTRACT
DECIMAL, or ZERO AND ADD overflows. The program interrﬁption
occurs'only when the decimal-over-flow mask'bit is one. fhe
obefation is completed by placing the truncated low-order
reéult in the result field and setting the condition code to
3. The sign and low-order digits contained in thé result
field are the same as they would have been for an infinitely

long result field.

Decimal Divide: ‘The quotient exceeds the specified data
field, indluding division by zero. Division is suppressed.
Therefore, the dividend and divisor remain unchanged in storage.

9-7

DECIMAL FAMILY

-ADD DECIMAL

The Add Decimal instruction provides a means by which two
packed decimal operands can be algebraically added. The
packed decimal data fiéld specified by the second operand
is added to the packed decimal data field designated by

the first operand. The sum replaces the first operand.

2.

3.
4.

EXAMPLES

1.

AP DL, B)), Dyfl,, By) [55]

N N R LR R Y

0 78 AR} 1516 1920 N 35 36

The packed decimal field spec1f1ed by the
second address field [D2(L2,B2)] is algebralcally
added to the packed decimal field designated
by the first address field [D1(L1,Bl)].

All digits and signs are checked for validity
prior to the addition.

The sum replaces the first operand.

Decimal overflow may be caused by either a
carry out of the high-order digit position

or a first operand field shorter than the
resultant sum.

PSW bit 37 will allow a de01mal overflow to
be masked. :

First and second operand fields may overlap
in any desired manner.

AP {Add Packed)

-Add the contents of a 5 byte field at storage

location 2010 (FIELDl) to a 7 byte field at
location 2131 (FIELD2). (GPR F = 00 00 20 00)

SYMBOLIC AP FIELD2(7),FIELD1(5)

MACHINE FA 64 Fl1 31 FO 10

Before After

Storage 2010 22 44 66 88 22 44 66 88
2014 9C 12 34 56 9C 12 34 56

2130 1D 00 55 44 1D 00 55 66
2134 33 22 11 3C 77 89 00 2C

Condition Code 2
AP (Add Packed) »
Add the contents of a 4 byte field at storage
location 2200 (FIELD3) to a 4 byte field at
location 2204. (GPR F = 00 00 22 00)
SYMBOLIC AP FIELD3+4(4),FIELD3(4)

MACHINE FA 33 FO 04 FO 00

9-9

Befdre Aftér

Storage 2200 76 54 32 1D 76 ‘54 32 1D
2204 12 34 56 7C 64 19 75 4D

Condition Code 1

CONDITION CODE

whhH~Oo

Sum is zero

Sum is negative
Sum is positive
Overflow

PROGRAM INTERRUPTIONS

1.
2.
3.
4.
5.

Operation (decimal feature not installed)
Protection :
Addressing

Data '

Decimal overflow .

DECIMAL FAMILY .

ZERO AND ADD -

The Zero and Add instruction performs the equivalent of
adding a packed decimal number to zero; This instruction
is very flexible and:can be used to accomplish any of the
following:
1. Expand or reduce the field size of an
operand.
2. Move a field from one location to another.
3. Assure that a field is zero prior to add-
ing a value to it.
The packed decimal data field of the second operaﬁd is,placed

in the field of the first operand.

ZAP DL, B), D,(L,, By) (58]

2 N N N Y

0 iz 1516 1920 32 35 Jo

1. The field specified by the first address field
[D1(L1,Bl)] is loaded with packed decimal
data designated by the second address fleld
(D2(L2,B2)].

2. This operation is the equlvalent_of addlng
the second operand to a zero first operand.

3. The second operand is checked for valid sign

-and digit codes.
4. Decimal overflow will occur if the contents
- of the second operand cannot be contained
within the field of the first operand‘

5. Decimal overflow may be masked by b1t 37
of the PSW.

6. First and second operand fields may over-
lap in any desired manner.

EXAMPLE

1. 2zAap (Zero and Add Packed)
Zero and add to storage locations 2500
(FIELD6) through 2507, the contents of
a two-byte field beginning at location
2508. (GPR F = 00 00 23 00)

SYMBOLIC 2AP FIELD6 (8),FIELD6+8(2)
MACHINE F8 71 F2 00 F2 08
. Before After ¥
Storage 2500 16 23 48 97 00 00 00 00
2504 26 11 55 3D 00 00 86 4C
2508 86 4C 27 1C 86 4C 27 1C
Condition Code 2
CONDITION CODE
Result is zero
Result is negative

Result is positive
Ooverflow

WO

PROGRAM INTERRUPTIONS

1. Operation (decimal feature not installed)
2. Protection

9-12

3.
4.
5.

Addressing
Data
Decimal overflow '

13

DECIMAL FAMILY

SUBTRACT DECIMAL

The Subtract Decimal instruction will find the algebraic
difference between two pécked decimal data fields. The first
operand is the minuend and the subtrahend is the second oéerand;
The difference will replace the fi:st ppe#and. This ihstruction
can also be used to zero a field by specifying identical first

and second operand starting addresses and lengths.

SP DL, B)), D,L,, B,) 581

B RSN Y

[78 ni 1516 1920 N 35 36

1. The packed decimal data field spec1f1ed by the
second address field [D2(L2,B2)] is subtracted from
the packed decimal data field designated by
the first address field (D1(Ll,Bl)].

2. All digits and signs are checked for validity
prior to the algebraic subtraction.

3. The difference replaces the first operand's field.

4. Decimal overflow will occur if the difference
cannot be contained in the first operand's
field.

5. PSW bit 37 allows the masklng of decimal over-
flow.

6. First and second operand flelds may overlap in

' any desired manner. :

EXAMPLES
l. Sp (Subtract Packed)
Zero storage locations 2500 (FIELD6) through
250B. (GPR F = 00 00 23 00)
SYMBOLIC &SP FIELDG(lZ),FIELDG(lZ)
MACHINE FB BB F2 00 F2 00
Before After
Storage 2500 00 00 00 00 . 00 00 00 00
2504 00 00 86 4C 00 00 00 00
2508 86 4C 27 1cC 00 00 00 OC
~ Condition Code 0
2. §Ssp (Subtract Packed)

Subtract storage locations 3114 (SUB) through
.311A from locations 3100 (MIN) through 3107.
(GPR F = 00 00 31 00)

SYMBOLIC SP MIN(B),SUB(7)

MACHINE FB 76 FO 00 FO 14

Storage 3100

3

3
3

Before

114 77 66 55 44
118 33 22 1D 0OC

Condition Cdde 1l

CONDITION CODE

0
1l
2
3

Difference
Difference
Difference
Overflow

PROGRAM INTERRUPTIONS

lo
2.
. 3.
4.
50

is zero
is negative

is positive

99 99 99 99
104 99 99 99 9D

After

99 22 33 44
55 66 77 8D

77 66 55 44
33 22 1p 0C

Operation (decimal feature not installed)

Protection
Addressing
Data ‘
Decimal Ove

rflow

DECIMAL FAMILY

MULTIPLY DECIMAL

To find the product of two packed decimal data'fieids the
programmer would issue a Mg}tiply Decimél instructién; The
first operand is the multiplicand and the multiplier is

the second operand. The product will replace the multiplicand

upon completion of the instruction. -

MP Dy(L;, B,), Dy(L;, B,) (53]

l

0

3.

CONDITION CODE

1.

< o [w o el]

78 nn 1516 1920 3132 35 36

The multiplicand [D1(Ll1l,Bl)] is algebraically
multiplied by the multiplier [D2(L2,B2)] and
the product replaces the multiplicand.

The length of the multiplier must be less than
the length of the multiplicand and cannot ex-
ceed 15 digits plus sign or a specification
exception will occur.

- To prevent product overflow a data exception

will occur if the multiplicand field does not
contain high-order zeros equal to or greater
than the length of the multipller.

The maximum product size is 31 digits and at
least one high-order digit of the product is
zero.

The multiplier and product fields may overlap
when their low-order bytes coincide.

MP - Multiply Packed)
Multiply the 6-byte field at storage 1ocat10n
5010 (CAND) by the 3-byte field at location
5018 (PLIER). (GPR F = 00 00 50 00)
SYMBOLIC MP CAND(6) ,PLIER(3)
MACHINE - FC 52 FO 10 FO 18
Before After
Storage 5010 00 00 00 27 00 00 69 20

5014 35 4D 12 8D 56 2C 12 8D
5018 00 25 3D 2C 00 25 3D 2C

Remains unchanged

PROGRAM INTERRUPTIONS

l.
2.
3.
4.
s.

Operation (decimal feature not installed)
Protection

Addressing
Specification
Data

' DECIMAL FAMILY

'DIVIDE DECIMAL

The bivide ﬁgcimaliinétruction will find the quotient of
two packed decimal data fields. The dividend field is
the first oﬁerand and the divisor is the secondnoperand.'
The qﬁotién£ and remainder'rgplaces the dividend upon ex~

 ecution of the instruction.

DP Dy(L,, B,), DyLy, B.) [55]

L |t 2] % (80 % o]

0 78 2 1516 1920 N 35 36 47

l. The packed decimal data field (dividend)

'~ specified by the first address field [D1(L1,Bl)]
is divided by the packed decimal data field
(divisor) designated by the second address field
[D2(L2,B2)].

2. The remainder replaces - the rightmost
portion of the dividend and occuppies the'
same number of digits as the divisor.

3. The quotient replaces the leftmost remaining
positions of the dividend.

4. A divisor which exceeds 15 digits and sign
or is greater than or equal to the length
of the dividend will cause a specification
exception.

5. The dividend, divisor, quotient, and remain-
der are all signed numbers, right allgned in
their assigned field.

6. Division and signs are controlled by the rules
of algebra.

7. Overflow cannot occur, but a quotient that
cannot be contained in its assigned field wxll
cause a decimal d1v1de exception.

EXAMPLE
1. DP (Divide Packed)
Divide the twelve-byte field at storage
location 4130 (DEND) by the one-byte field
at location 4A2C(ISOR). (GPR F = 00 00 41 00)
SYMBOLIC DP DEND (12),ISOR(1)
MACHINE FD BO FO 30 F9 2C

Before . After

Storage 4130 00 88 44 66 44 22 33 11
4134 22 44 66 88 22 33 44 00
4138 00 88 44 OC 44 22 0D OD
422C 2D 13 26 79 2D 13 26 79
CONDITION CODE

1. Remains unchanged

PROGRAM INTERRUPTIONS

1. Operation (decimal feature not installed)
2. Protection -

3. Addressing

4. Specification

5. Data _

6. Decimal divide

DECIMAL FAMILY

COMPARE DECIMAL

This instruction performs a numeric comparison between
two packed decimal data fields. The first operand is
compared to the second operand and the result of the

cdmparison«determines the setting of the Condition Code.

CP D,(L,, B,), Dufl,, By) [s5]

L_p [N]t]®|g0]®%o]

] 78 nn 1516 1920 3132 33 36 47

1. The packed decimal field designated by the
first address field [D1(Ll1,Bl)] is compared to the
field specified by the second address fleld (D2(L2,
B2)].

2. The result of the Comparison is indicated by
the setting of the Condition Code.

3. Comparison is right to left and all signs
and digits are checked for valldlty.

4. If the fields compared are unequal in length,
the shorter field is expanded with high=-order
zeros prior to the comparisons. _

5. Operands may overlap in any desired manner.

EXAMPLE

1. cp (Compare Packed)
Compare the one-byte field at location 2508 .
(FIRST) to the two-byte field at location
250B(SND). (GPR F = 00 00 25 00)
SYMBOLIC CP FIRST(1l),SND(2)
MACHINE F9 01 FO 08 FO OB
Before After

Storage 2508 7C 4C 2D 00 7C 4C 2D 00
250C 7C 21 6D 14 7C 21 6D 14

Condition Code 0
CONDITION CODE
Operands are equal

First operand is lower
First operand is higher

WO

PROGRAM INTERRUPTIONS

1. Operation (decimal feature not installed)
2. Protection :

3. Addressing
4. Data

9-23 \

DECIMAL FAMILY

EDIT

EDIT

The Edit instruction is use&~in the preparation ofjprinted
reports to give them a high degreé of légibility,and there-
fore greater uéefulness. With proper planning, it is possible
to suppress nonsignificant zeros, insert commas and decimal |
points, insert minus signs or credit symbols, and specify.
where supéression'of iéading zeros should stop for small num-
bers. All of these actions are done by the machine in one

left-to-right pass.

We begin with a simple requirement to suppress leading zeros;
no punctﬁation is to be inserted. We have a field to be
edited, called DATA. It is four bytes long, and the decimal
data is in packed format; the packed format for data to be

edited is a requirement of the EDIT instruction.

The data to be edited is designated by the second operand
and the first operand must specify_a field containing a
"pattern” of characters that controls the editing. After
execution of the instruction, the location specified by the
first operand contains the edited result. (The original
pattern is destroyed by the‘editing process.) The pattern

is in zoned format, as is the result; the Edit instruction
.causes the conversion of the data to be edited from packed

to zoned format.

We said that in our example the data field ﬁo be edited was
four bytes long, that is, seven decimal digits, And sigh,
which we shall assume to be plﬁs. The pattern must accord-
ingly be at least eight bytes long: seven for the digits
and one at the left to designate the "fill character.® The
fiil character may be ahy chéracter, but is usually a blank.
This is the character that is'substituﬁed for nonsignificant

zZeros. -

The ieftmost charécter of the pattern in our case will be

. the character blank (hexadecimal 40). The other seven char-
acters will contain a special coding, hexadecimal 20, called
a digit selector, which is used to indicate to the Edit in-
struction that a digit-from'thé source data may go into fhe

corresponding position.

Let us see how all this works out in our example. Suppose
we set up an eight-byte working storage field named WORK in-
to which we move the pattern (located in an area called
PATTRN). Then we will pgrform our edit using WORK and DATA
as the two operands. The two‘instruétions'neceSsary to do
the job are: |

MVC ~WORK,PATTRN

ED WORK,DATA
After execution of £he two instructions, WORK contains our
edited result. PATTRN still contains the original pattern
and can transmit that otiginal pattern to WORK for the editing

of any new value in DATA. At PATTRN there should‘be the

9-25

following charécters, written here invhexadecimalz

40 20 20 20 20 20 20 20
The 40 is the hexadecimal code for a blank.. The 20 is the
hexadecimal code for the digit selector. Suppose now that
at DATA there is

00 01 00 O+
The edited result would be

bbb1l00O |

where the b's stand for blanks. All zeros to the left of‘
 the first nonzero digit have been replaced by blanks;.but
zerds to the right of the first nonzero digit'héve been
moved to WORK without change. This is the desired action.
Fiéuré 1 shows a series of values for DATA and the resultant
edited resulfs in WORK, using the pattern stated; Note that
the high-order position of WORK contains the fill character,
a blank. The values of DATA are packed decimal; the edited
results are changed during execution of the Edit 1nstructiqn
to zoned decimal format.

BDDDDDDD
+40 20 20 20 20 20 20 20

1234567 = 1234567
0120406 120406

0012345 12345
0001000 1000
0000123 123
0000012 12
0000001 1
0000000 §
Figure 1

Examples of the application of the Edit instruction.
The first line gives the editing pattern used, first
in a symbolic form and then in hexadecimal coding.
In the symbolic form, B stands for blank and D for

digit selector. 9-26

The fill character that we supply as the leftmost charadter
of the pattern may be any character that we wish. ‘Iﬁ is |
fairly common praéticé to print dollar amounts of asterisks
to the left of the first significant digit in orxder to protect
againét fraudulent alteration. This is usally called asterisk

protection.

To do this, we need only change the leftmost character of the

pattern of the previous example. The hexadecimal code for an

asterisk is 5C; hence the new pattern is

. 5C 20 20 20 20 20 20 20

Figure 2 shows the editedviesults for the same DATA values.

*DDDDDDD s : -
'5C 20 20 20 20 20 20 20
1234567 *1234567
0120406 **120406
0012345 ***]1234S
0001000 ****31000
0000123 ****%x]123

. 0000012 ***kkkx]10
0000001 #*wdkdad]
0000000 Ahkhkhkhkhkdkih
Figure 2

Examples of the application of the Edit instruction

with an asterisk as the fill chatacter.

Any characters in the pattern other than the digit selector

and two other control characters that we shall study later

are called message characters.

digits from the data.

They are not replaced by

Instead, they are either replaced by

the fill character (if a significant digit has not been

encountered yet), or left as they are (if a significant

digit has been found). Suppose, for instance, that we set

up a PATTRN as follows:

40 20 6B 20 20 20 6B 20 20 20

9-27

The 6B is hexadecimal coding for a comma, and it is a message
character. The edited result will contain commas in the two
positions shown, unless they are to the left of the first
nonzexro digit, in which case they are suppressed; Figure

3 shows the result of the same data values.

BD,DDD,DDD .
40 20 6B 20 20 20 6B 20 20 20

1234567 1,234,567

0120406 120,406
0012345 12,345
0001000 1,000
0000123 123
0000012 12
0000001 1l
0000000

Figure 3

Examples of the aﬁplication of thé Edit

instruction with biank'fill and the in-

sertion of commas.
The message characters inserted are, nat';urally,v not limited
to commas. A frequent applicétion is to insert a decimal
point as well as commas. Let us assume that the data values
we have been using are to be interpreted as dollars-and-
cents amounts. We need to arrange for a comma.to set off
the thousands of dollars, and a decimal point to designate
cents. The characters in PATTRN, where 6B is a comma and |
4B is a decimal point, should be as follows:

40 20 20 6B 20 20 20 4B 20 20

The edited results this time are in Figure 4.

BDD,DDD.DD : :
40 20 20 6B 20 20 20 4B 20 20

1234567 12,345.67
0120406 1,204.06

0012345 123.45
0001000 10.00
0000123 1.23
0000012 12
6000001 1
0000000

Figure 4

Examples of the application of the Edit

instructidn with blank £ill and the in-

sertion of comma and decimal point.
We see here something that would normally not be desired:
amounts under one dollar have been edited with the decimal
point suppressed. We would oridinarily prefer to have the
decimal point. This can be done by placing a significancé

starter in the pattern.

The control character, whiéh has the'hexadecimal code 21, is
either replaced by a digit from the data_of replaced by the
fill character, just as a digit selector is. The difference
is that the operation proceeds as thdugh a significant digit
had been found in the position occupied by the significance
starter. In other words, succeeding characters to the right
will not be suppressed. (An exception to this generalization
may occur when we want to print sign indicators, a subject'

that will be explored later.)

The pattern for this action, assuming we still want the comma
and decimal point as before, should be

40 20 20 6B 20 20 21 4B 20 20

The effect is this: if nothing but zeros has been found by
the time we reach the significance starter (code 21) in a
left-to-right scan, the signficance starter will turn on the
significance indiéator. This indicator will céuse succeeding
characters tb be treaﬁéd as though a nonzero digit had been
found. The result is that the decimal point will alWays be

' left in the result, as will zeros to the right of the dec1mal

point. The edited results thls time are shown in Figure 5.

One useful point to remember is that the total number of digit
selectors plus significance starters in the pattern_must‘eQual
the number of digits in the field to be edited. Note that this
is the céae in all our examples.

BDD,DDS .DD
40 20 20 6B 20 20 21 4B 20 20

1234567 12,345.67
0120406 1,204.06

0012345 123.45
0001000 10.00
0000123 1.23
0000012 .12
0000001 - .01
0000000 .00
Figure 5

Examples of the application of the Edit

instruction with blank £ill, comma and

decimal point insertion, and signifi-

cance starter. In the symbolic pattern,

S stands for significance starter.
We can begin to get a little idea of how the machine does its
work on this instruction by noting that the significancé indi-
cator is initially in the off state before the scan begins.
Scanning proceeds source digit by source digit. The signi-
ficance indicator stays off until a nonzero data digit is

found, or until the significance starter is encountered;

either even causes the indicator to be turned on.
9~-30

Source digits 1-9 always replace a digit selector or signi-
ficanca starter, but whether a zero source digit will do so
depends upon the state of the significance indicator. If the
significance digit was found at some previous character posi-
tion, or a_significance'indicator is off, you know that no
significant digit has been found so far during the scan; there-
fore, the £fill character appears in the'resﬁlt, rather_thén é'

zero from the data.

It may be useful to refer to the Table, which includes a summary
of how the{state of the significance indicator affects the edit-
ing operation under all conditions of consequencé that you-may

encounter. The table also shows how the significance indicatork

itself is affected.

In the table, the four columns at the left list all the signi-
ficant combinations of the four conditions that can be encount-
ered in the execution of the editing operation. The two columns
at the right under Results show the action taken for each case -
that is, the type of character placed in the result field and
the new type of character placed in the result field and the
new setting of the significance.indicator. Use of the field

separator will be discussed in a later paragraph.

PATTERN
CHARACTER

Digit selector

Significance starter

'Field separator
Message character

°No effect on result character and new state of significance indicator.

CONDITIONS

PREVIOUS STATE
OF SIGNIFICANCE
INDICATOR

off

on

off

on

off
on

soNot applicable because source digit not examined.

SOURCE
DIGIT

1-9
1-9
0-9
0-9

1-9
1-9
0-9
0-9
oo
oo
ae

LOW-ORDER

SOURCE DIGIT

IS A PLUS SIGN
°

‘no
yes
no
yes
no
yes
no
yes
no
yes
ao
a0
o0

TABLE

RESULTS

- RESULT .
CHARACTER

fill character
source digit
source digit
source digit
source digit
fill character
fill character
source digit
source digit
source digit -
source digit
fill character

fill character _
message character

STATE OF
SIGNIFICANCE
INDICATOR AT
END OF DIGIT
EXAMINATION

off
on
off
on
off
on
off
on
off
on
off
off

off
on

We have so far ignored the sign portion of the source data,
which (in. the packed dféimal format is required for the Edit
instruction) is in the four low-order bits of the,rightmost.
byte. These bits are”examined-each time the Edit instruction
is executed. If the sign is plus, the significance indicator
will then be turned off, as shown in the table; if the sign
is minus, the significance indicator will be left on. Thekb
information will not appear in the resuit, however, if there
are no further pattern characters to be scanned. As a matter
of‘facﬁ, if any of the source fields in the examples above
had been negétive, the tesuits shOwn wouldihéve been exactly

the same.

Suppose, however, that pattern characters remain after the
sign position has been examined. The action of the signifi-
cance indicator in controlling the instruction continues just
as before, although the setting‘of'the significance indicator
was accomplished by é difference condition. There are, of
course, no more digits to move. Hence we will not want to
place digit selectors in the pattern in this position, but,
rather, sign indicatofs, such as a minus sign of CR for
credit. The action taken with the characters in the pattern
is the same now as it was before: they remain unchanged if
the significance indicatorlis on,bbut are replaced by the

fill character if the significance indicator is off.

What we do, then, is to place the pattern the characters we
want to print if the quantity is negative. If the data is
indeed negative, our sign will be left, but if the data is

positive, the sign will be replaced by the fill character.

9-33

Let us.set up a suitable pattern for thé example‘data. Let
us print thehletters.CR for negative numbers, with oné blank
between the rightmost digit and the C. in hexadecimal, CR
is C3 D9, so the pattern becomes:

40 20 20 6B 20 20 21 4B 20 20 40 C3 D9
Figure 6 shows the results for sample data values as before,
together with two negative values.

BDD, DDS . DDBCR .

40 20 20 6B 20 20 21 4B 20 20 40 C3 D9
1234567 12,345.67
0120406 1,204.06

0012345 - 123.45
0001000 10.00
0000123 1.23
0000012 .12
0000001 4 .01

- 0000000 . .00
-0098765 987.65 CR
-0000000 .00 CR
Figure 6

Examples of the application of the Edit

instruction with blank f£ill, comma and

decimal point insertion, significance

starter and CR symbol for negative num-

bers. 1In the symbolic pattern, C and R

are themselves.
If we use an asterisk now as the fill character, positive
quahtities will have three asterisks following the cents,
as shown in Figure 7. This may or may not be desired.
. There are other ways to handle the signs, as we shall see

next.

We have seen above that an amount of zero prints in the
general form .00 when a significance starter is used. It

may in some cases be desirable to make such an amount print .

9-34

as all blanks or all asterisks. This is very easily done by
making use of the way the condition code is sat by execution

of the Edit instruction:

Code h Instruction
0 Result field is zero
1 Result field is less than zero

2 Result field is greater than zero

*DD,DDS. DDBCR
5C 20 20 6B 20 20 21 4B 20 20 40 C3 D9
1234567 *12,345.67%%%
0120406 *%1,204.06%***
0012345 ****123 45%%k%
0001000 *##*=%]Q,QQ0%**
0000123 w#*#*k«x] 23%%%
0000012 “%enkad J2hkuk
0000001 ##%Raax (] #%%
0000000 @ ®*kamkw QQ%%k*
-0098765 ®%%%987.,65 CR
-0000000 #**%Xk&% (00 CR

Figure 7

Examples of the application of the Edit

instruction using asterisk fill.
This means that after completion of the Edit we can make a
simple Branch on Condition test of the condition code and
move blanks or asterisks to the result field if it is zero.
The movement is particularly simple because the f£fill char-
acter is still there in the field and an overlapped Move
Characters instruction can be used as follows:

BC 6,SKIP
MVC WORK+1(12) ,WORK

SKIP
The expiicit length of 12 is based on the most recent pattern}

which has a total of 13 characters. The MVC, written, picks

up .the leftmost character and moves it to the leftmost-plus-
one position. It then picks up the leftmoét-plus-one char-
acter and moves it to the leftmdst-plus-two position,:etc.,
in effect propégating fhe'leftmost character through the
field. This is precisely what we want if the £fill character
is the one to be substituted. (If some other character is
desired, a suitable Move Characférs instruction can, of

course, be written.)

Figure 8 shows.our familiar data values with zero fields
blanked, and Figure 9 shows them with-zero fields filled
with asterisks. Only the fili character differs in the two
programs that would produce the results,shown in Figure 8
and 9; the Edit, the Branch on Condition, and the Move

Characters afe the same in both case.

The condition code can also be used‘to;distinguish between
positive and negative numbersbwhen it is necessary to pre-
sent the sign in some manner that is not possible by using
the automatic features of the Edit. We might, for instance,
wish to test the condition code and use the results of the
test to place a plus sign or minus sign to the iéft of.the

edited result.

The Edit_instruction‘dan be used to edit several fields with
one instruction. Doing so uses a final control character,

the field'separator (hexadecimal 22). This charactér is re-
placed in the pattern by the fill character))and'causes the

significance indicator to be set to the off state. The

characters following, both in the pattern and in the source
' 9-36

data, are handled as described for a single field. in other
words, it is possible to set up a pattern ﬁo edit a whole
series of quantitiés, even an entire line, with one instfuc-
tion. The packed source fields must, of course, be contiguous
in storage, but this is often no inconvenience. One limita-
tion is that the condition code, upon completion of such an
instruction, gives information only about the lasﬁ field en-
countered after a field separator.

BDD, DDS . DDECR ' |

40 20 20 6B 20 20 21 4B 20 20 40 c3 D9
1234567 12,345.67

0120406 1,204.06
0012345 - 123.45
0001000 ' 10.00
0000123 1.23
0000012 .12
0000001 .01
0000000
-0098765 987.65 CR
-0000000
Figure 8

"Examples of the application of the Edit
instruction, showing the blanking of
zero fields by the use of two additional
- instructions.

*DD ,DDS .DDBCR
5C 20 20 6B 20 20 21 4B 20 20 40 C3 D9

1234567 *12,345.67%%%
0120406 **1,204.06%%*
0012345 %*#%%]23 45%%%
0001000 **#%%]Q, QO%%%
0000123 #a%k%x] 23%u%
0000012 wx&%k®s]o%w%
0000001 #%wadad (Qéw%
0000000 SoRasrvhkdkdk

-0098765 =®**%987,65 CR
-0000000 #Evdukkdkkhk

Figure 9

Examples of the application of the Edit
instruction with asterisk f£ill and zero
filled with asterlsks 1nstead of being
blanked.

9-37

Let us consider thé example shown in Figure 10. 'SuppOSevthat
at DATA we have a sequence of three fields. The leftmﬁéﬁ 6f
the fields has four bytes, the next hésvthree; and»ther:ight-
most has five bytes. The first is ﬁo be printed with cbmmaé
separating groups of three digits. .The values are always
positive and, therefore, no sign control is desired. Zero

values will be blank since we shall not use a significance

starter.

1234567C12345C123456789C _1,234,567' 12.345 1,234,567.89

0123456C012340012345678C 123,456 1.234 | | 123,456.78
0010009C00123C001000006C‘:' 10,009 0.123 10,000.00
0004502C98007D000001210C 4;502. 98.007- ‘ 12.10
0000800C00012C000000006C 800 0.012 . .06
YOOOOOOlCOOOOIDOOOOOOOOlC 1 0.001- - .01
OOOOOOOCOOOOOCOOOOOOOOOC | ': . 0.000

Figure 10 |

Examples of multiple edits. On each line the first
field is a combination of three items; all three
were edited with one Edit, giving the three results
shown to the right. The editing pattern and addi-
tional instructions are shown in the text.
The second field is to be printed with three digits'td the
right of the decimal point, with a significance starter to
force amounts less than 1 to be printed with a zero before -
the decimal point. Positive quantities are to be printed
without a sign, and negative quantities are to be printed

with a minus sign immediately to the right of the number.

The third number is a dollar amount that could be as great

as $9,999,999.99. Commas and decimal point are needed just

as shown. Amounts less than $1 are to be printed with the
decimal point as the leftmost character. Zero amounts are

to be blanked. Signs are not to be printed.

There is to be at leasﬁ'one blank between the first and
second edited result,’and at least three between the second

Let us write out the necessary pattern in shorthand form,
with b standing for a blank, d for digit selectoi; f for
field separator, s for significance starter, and other

- characters for themselves:
bd,ddd,dddfsd.ddd-£fbbd,ddd ,dds.dd

The required blank betweeﬁ the first and second edited re-
sult will be placed thefe by the replacément of the field
separator with the £fill character. The significance starter
in the part of £hé pattern co:responding to the second field
~ will give' the required handling‘of quantities less than 1.
The extra two blanks between the second and third results

are provided by the blanks in the part of the pattern corres-
‘ponding to the third data item. (These are not treated as new
£fill characters; only the leftmost character in the entire
pattern is so regarded.) Notice that the total of digit
selectors plus significance starters is equal to the number

of digits in each field to be edited.

Instructions to do the required actions at Figure 10 are as

follows:

MVC WORK , PATTRN

ED WORK, DATA

BC- 6,SKIP |

MVC WORK+30(3) ,WORK+18
SKIP '
The choice of addresses in the final MVC that blanks a zero
field is somewhat arbitraty. We reason that if the entire
field is zero, the first three positions of it are surely
blank by now; hence a three-character MVC from there to the

last three positions of the field will be correct. -
Figure 10 shows initial source data values and edited re-

sults. The packed source fields must be adjacent as shoWn;

we address the leftmost character.

9-40

EDIT AND MARK

- The Edit and Mark instruction (EDMK) makes possible the
insertion of floating currency symbols. By this we mean
the élacement in thevedited result of a dollar sign (or
pound sterling symbolfAin the character position immedi-
ately to the left of the first significant digit. This
serves as’protection against aiteration, since it leaves
no blank spaces. It is a somewhat more attractive way to

provide protection than thé asterisk fill.

The operation of the instruction is precisely the same as
the Edit instruction, with one additional action. The
execution of the Edit and Mérk places invrégisﬁer 1l the
address of the first_significant;digit. The cﬁrfency sym-.
bol is needed one position to the left of the firstvsigni-
ficant digit. Consequently, we subttact one from the con-
tents of register 1 after the execution of the Edit and

Mark and place a dollar sign in that position.

There is one complication; if significance is forced by a
significance starter in the pattern, nothing is done with
register 1. Before going into the Edit énd Mark, therefore,

we place in register 1 the address of the éignificance start-
er plus one. Then, if nothing happens to register 1, we stillr
get plus one. Then, if nothing happens to register 1, we still
get the dollar sign in the desired position by using the pfo—

cedure described above.

Let us suppose that we are again working with a four-byte

9-41

source data field, which we are to edit with a comme, a

decimal point, and CR for negative numbers. ‘Accordingly,'

the pattern (in shorthasd.form) should be | |
bdd,dds.ddbCR

The significance starter ﬁere is six positions to the right

of the leftmost character of the pattern. The complete pro-

gram to give the required editing and the floating dollar

- sign is as follows: |

MVC WORK , PATTRN

LA 1, WORK+7
EDMK WORK,DATA
BCTR 1,0
| Mve o(1, 0),DOLLAR
DOLLAR DC c's'

The Load Address instruction es Qritten, places in register
1 the address of the position one beyond the significance
starter. If significance is forced, this address remains’
in register 1, but otherw1se the address of the flrst signi-
ficant digit is placed in reglster 1 as part of the executzon
of the Edit and Mark. The Branch on Count Register ;nstruc-.
tion with a second operand of zero reduces the lst operand
register contents by 1 and does’not branch. }There are; of'
course, other ways to subtract 1 from the contents of register
1, but this is the easiest and fastest. In. the Move Characters
_‘instruction we_ﬁrite‘an explicit displacement of zero, an
explicit 1ength of l, and an explicit base register oumberfof»
1. The net effect is to move a one-character" fleld from DOLLAR
" to the address spec;fed by the base register 1. This is the

‘de81red action.

\Figure 11 shows the effect on sample‘daté values, Zero fields

“could be blanked by methods we have seen above.

9-42

BBD,DDS . DDBCR '
40 20 20 6B 20 20 21 4B 20 20 40 C3 D9

1234567 $12,345.67
0120406 $1,204.06

0012345 $123.45
0001000 $10.00
0000123 = §l.23
0000012 $.12
0000001 - $.12
- 0000000 $.01 ‘
-0098765 $987.65 CR
© =0000000 - $.00 CR
Figure 11

 Examples of the application of the Edit
and Mark instruction to get a floating
"‘currency symbol.

9-43

ED DL,

By), D2(B;) [55]

| 5 [§2] *2 [} %]

fﬁ DE .
[+]

78 1516 1920 N2 35 36

The packed decimal data beginning at the address'
specified by the second address field (D2,B2) is
converted to zoned data and placed in storage be-
ginning at the location designated by the flrst
address field ([D1l(Ll1l,Bl)].

The placement of a decimal digit in the first
operand's field is controlled by a pattern con-
tained within that field.. ;
The pattern is a combination of special charac-
ters which allows the suppressxon of non-signi-
ficant zeros and the insertion of punctuation
into resultant field.

This pattern must be established prior to

‘issuing the EDIT instruction.

6.
7.
8.

EXAMPLE

The pattern is destroyed when the source digits
(packed decimal digits) ‘are transferred to the
first operand's field.

Operands are processed left to right a byte at
a time.

The packed data is checked for valld 81gn and

digit codes.

Overlapping fields will result in an unpredic-
table outcome. ,

ED (Edit)

Edit the four-byte field located at storage
address 1040 (DEK) and place in the 1l0-byte
pattern field located at 1000 (RESULT).
(GPR F = 00 00 10 00)

SYMBOLIC ED RESULT(10),DEK

DE 09 FO 00 FO 40

MACHINE
Before After
Storage 1000 40 20 20 6B 40 F2 F2 GB
1004 20 20 21 4B F4 F4 F6 4B
1008 20 20 56 20 F6 F7 56 20
1040 22 44 66 7C 22 44 66 7C
Conditidn»Code 2

CONDITION CODE

.Source digits all zeros
Source digits are negative
- Source digits are positive

WNHO

"PROGRAM INTERRUPTIONS

1. Operation (decimal feature not installed)
2. Protection
3. Addressing
4. Data
Edit and Mark

EDMK D(L, B,), Do(B,) [55]

oF | v |5 [&P] P [} O
] 78 1518 1920 3132 35 36 47

1. The packed decimal data beginning at
the address specified by the second address
field (D2, B2) is converted to zoned data and
placed in storage beginning at the location

- desginated by the first address field [D1 (Ll1,Bl)].

2. The placement of a decimal digit in the first
operand's field is controlled by a pattern
contained within that field.

3. The pattern is a combination of spec1al char»>
acters which allows the suppression of non-
significant zeros and the insertion of punc-
tuation into resultant fields.

4. The address of the first significant dlglt

. encountered is stored in bits 8-31 of register
1.

5. This pattern must be established prior to
issuing the EDIT and MARK instruction.

6. The pattern is destroyed when the source

 digits (packed decimal digits) are transferred
to the first operand's field.

7. Operands are’processed left to right, a byte ar
a time.

8. The packed data is checked for valid sign and
digit codes.

9. Overlapping fields will result in a unpredic-
table outcome.

1. EDMK (Edit and Mark)
Edit and Mark the five-byte field located at
storage address 1020 (FIELD) and place in the
thirteen-byte pattern field located at 1100
LOTPT). (GPR F = 00 00 10 00)

9-45

SYMBOLIC EDMK OTPT(13) ,FIELD

MACHINE DF OC F1l 00 FO 20
Before After
Storage 1100 40 20 6B 20 40 40 40
1104 20 20 6B 20 F7 F5 6B
1108 20 21 4B 20 F6 FO 4B
llo0C 20 40 21 20 FO 40 21
1020 00 75 36 02 00 75 36
1024 0C 22 42 16 0C 22 42
GPR . 1 00 00 00 00 00 00 1%
Condition Code |

CONDITION CODE

WO HO

.

Source digits all zeros
Source digits are negative
Source digits are positive

PROGRAM INTERRUPTIONS

1.
2.
3.
4.

Operation (decimal feature not installed)

Protection
Addressing
Data

46

40
F3
F2
20

02
16

04

INPUT/OUTPUT INSTRUCTIONS

The transferring of information between a system and its de-

 vices is accomplished through-an Input/Output Operation.

An input/output I/O operation involves the use of an input/
output device. Input/output devices perform 1/0 operations
under control of control units, which are attached to the

central processing unit .(CPU) by means of channels.

Input/Output devices include such equipment as card read
punches, magnetic tape units, direct-access-storage devices
(disks and drums), typewriter-keyboard devices. printers,

teleprocessing, devices, and process control equipment.

‘Input/output operations are initiated and controlled by in-
formation with three types of formats: instructions, com-
mands, and orders. Instructions ate decoded by the CPU and
are part of the CPU program. Commands are decoded and ex-

ecuted by the channels and I/0 devices. One or more com-

mands arranged for sequential execution form a channel pro-

gram.

Functions peculiar to a device, such as rewinding tape or
positioning the access mechanism on a disk drive, are
specified by orders. Orders are decoded and executed by
I/0 devices. The CPU controls I/0 operations by means of
four I/0 instructions: START 1/0, TEST I/0, HALT I/0, and
TEST CHANNEL.

11-1

The instruction TEST CHANNEL addresses a channel; it does not
address an I/0 device. The other three I/o.instructions ad-

dress ‘a channel and a device on that channel.

INPUT/OUTPUT DEVICE ADDRESSING

The first operand of and I/O instruction designates an effec-
tive storage address. The low-order 16 bits of this effective |

address become the I/0 address.

An I/O device is designated by the 16-bit I/O address. The
high-order 8 bits of this I/0 address specify a channel to
'whichlthe desired I/0 device is attached. The low=-order 8

' bits of this I/0 address specify the actual device.

The channel-address field provides for identifying up to .

256 channels, out of which onlj channels 0-6 may be installed;
channel-address 7'and up_are considered invalid. Channel 0 is

a multiplexor channel; channels numbéred 1-6 may be either
multiplexor or selector channels, as showh below. The number
and type of channels available, as well as their address assign-
ment, depend on the system model and the particular instaliation.,

ADDRESS

CHANNEL ‘ DEVICE ASSIGNMENT
0000 0000 XXXX XXXX : Devices on channel 0
0000 0001 XXXX XXXX , Devices on channel 1
0000 0010 - XXXX XXXX Devices on channel 2
- 0000 0011 XXXX XXXX ' Devices on channel 3
00000100 . XXXX XXXX 1 Devices on channel 4
0000 0101 XXXX XXXX N - Devices on channel 5
0000 0110 XXXX XXXX - Devices on channel 6

0000 0111 XXXX XXXX ‘ '

TO INVALID

‘1111 1111 XXXX XXXX

The device address identifies the pafticular I/0 device’and
control unit on the designated channel. The address identi-
fies, for example, a particular magnetic tape drive, disk
access.mechanlsm, or transmission line. Any number in the
range 0-255 can be used as a device address, providing

facilities for addressing up to 256 devices per channel.

Devices. that do not share a control unit with other devices
may be assignedvanyfdevice address in the range 0-255, pro-
vided the address is hot recognized by any other control |
unit.’ Logically; such devices are not distinguishable from
their control unit, and both are identified by the same

address.

Devices sharlng a control unit (1 e., magnetic tape drives

- or disk access mechanzsms) are assigned addresses within sets

of sequential numbers.'

Except”fci the rules described, the assignment of channel
and drive device addresses is arbitrary. The assignmeht is
made at the time of installat1on, and the addresses normally

remain flxed thereafter.

'STATES OF THE INPUT/OUTPUT SYSTEM

The state of the I/0 system identified by an 1/0 addrees
depends on the collective state of the channel, subchannel,
and- I/o device. Each of these components of the I/0 system
can-haveeup to fcur'states, as far as the respcnSe to an I/0

insttuctionfis ccncerned. These states are listed in the'

11-3

following table. The name of the state is followed by its
abbreviation and a brief definition.

CHANNEL ABBREV DEFINITION

‘Available . A None of the following states

Interruption Pending I Interruption immediately available
’ , . from. channel i

~Working , o W Channel operating in burst mode

Not operational N Channel not operational

SUBCHANNEL ABBREV DEFINITION

Available A . None of the following states

Interruption Pending I Information for CSW available in
, o subchannel :

Working - W Subchannel executing an operation

Not operational N . Subchannel not operational

I/0 DEVICE ABBREV DEFINITION

Available A None of the following states

Interruption Pending I Interruption condition pending in

device '
Working W . Device executing an operation
Not operational N Device not operational

A channel, subchannel,-or I/0 devicelﬁhat is available, that
contains a pending inteiruption condition, or that is working,
is said to be OPERATIONAL. The étates of containing an»iﬁtér-
ruption condition, working, or being nbt operational aré col-

lectively referred to as NOT AVAILABLE.

The device referred to in the preceding table includes both
the device proper and its control unit. For some types of
devices, such as magnetic tape uhits, the working and the
interruption-pending states can be caused by éctiQity in the
addressed device or control.unit. A shared control unit im-
- poses its state on all devices attached to the control unit.
The states of the devices are not related to those of the

channel and subchannel.-

When the ravpepge to an 1/0 instruction io detemmined on the
b&sio of the states of the chaannel and gubchannel, the DEVICES
are not interrogated. Thus, ten composite sgtates are idénti-
fied as conditions for the execution of the I/0 instruction.
Each composite state is identified in the following discuasion
by three alphabetic characters; the flrst character position
identifies the state of the channel, the second identifies

the state of the gubchannel, and the third refers to the sﬁate‘
of the device. Each'character position cao contain A, I, W,

or N, denoting the state of the_COmponeht. The symbol X in
place of a letter indicates that the staté of the correspondiﬂg
component is noﬁ gignificant for the execution of the instruc-

tion.

Available (AAR): The addressed channel, subchannel, control
unit, and I/0 device are operational, are not engaged in the
execution of any previously initiated operations, and do not

contain any pending interruption conditionmns.

Interruption Pending in Device (AAI) or Device Working (AAW):
The addressed Chénnel and. subchannel are available. The ad-
dressed control unit or.I/O device is éxebutiﬁg a-previousiy
initiated opcratibn or contains a pendihg'interruptioh con-
dition. These situations'afe possible: |

1. The device is executing an operation after
signalihg the chanoelfend_condition, such as rewinding
.‘tape'o: éeeking'oﬂ a disk file. '
2. The control unit associated with the ﬂcvice.
'cjis executing an operation after 91gnaling the channel-

a; end condition, such as. backspaclng file on a magnetic tape unit.

11-5

3; The device or control unit is executing an
operation on another subchannel or channel.

4. The device or control unit contains the device-
end, control-unit—end, or attention condition or, on the
selector channel, the channel-end condition associated with

an operation terminated by HALT I/O.

Device Not Operational (AAN): The addressed channel and sub-
channel are available. The add;essed I/0 device is not oper-
‘ational. A device appears not operational when no control
unit recognizes the address. This occurs when the control
unit is not provided in the system, when power is off in the |
unit, or whén the control unit has been 1ogicaliy switched
off the I/O interface. The not-operational state is indi-
cated also when the control unit is provided and is designed
to attach the device, but the device has not been installed

and the address has not been assigned to the control unit.

If the addressed device is not installed or has been logically
removed from the control unit, but the associatéd control unit
is operational and the address has been assigned to the control
unit, the device is said to be not-ready. When an instruct;on
is addressed to a device in Ehe not-ready state, the control :
unit responds to the selection and indicates unit check when-

'

ever the not-ready state precludes a successful execution of

the operation.

Interruption Pending In Subchannel (AIX): The addressed

channel is available. An interruption condition is bénding

11-6

in the addressed subchannel because of the termination of-the;
portion of the operation involving the use of channel facili- ,}
ties. The subchannel is in é position to provide information
for a complete CSW. The interruption condition can indicate
termination of an operation at the addressed I/0 device or at
another device on the subchannel.' The state of the'addreésed i
device ig not significant, except when TEST I/0 is addressed
to the device associéted with the terminated operation, in
which case the CSW contains sﬁatﬁs information provided by the

device.

‘The state AIX does not occur on the selector channel. On the
selector channel, the existence of an interruption condition

in the subchannel immediately causes the channel to assign to
£his condition the highest priority for I/0 interruptions and,

hence, leads to the state IIX.

Subchannél Working (AWX): The addressed channel is available;
The addressed subchannel is executing a previously initiated
operation or chain of operations in the multiplex mode and_has
not yet reached the chaﬁnel end for the last operation. The
state of the addressed device is not sighificant, except &hen
HALT I/0 is issued, in which the case the CSW contains status

provided by the device.

The subchannel-working state does not occur on the selector
channel since all operations on the selector channel are ex-
ecuted in the burst mode and cause the channel to be in the

working state (WWX).
11-7

Subchannel Not Operational (Aﬁx): The addréssed channel is
available. The éddressed subchannel on the multiplexor
channel is not opefational. A subchannel is not operatiohal
wheﬂ it is not provided in the systém...This state cannot

occur on the selector channel.

Interruption Pénding in Channel (IXX): The addressed channel
is not working and has established which device will cause the
Aext I/0 interruption from this-channel.. The state &hére_the
channel contains a pending interruption TEST CHANNEL. This
instruction does not cause the subchannel and I/O.device to

be interrogated. The other I/O0 instructions consider the
channel available when it contains a pending interruptiop
condition. When the channel aSsigns priotity fbr interruption
among devices, the inter;uption condition is preserved in the

I/0 device or subchannel.

Channel Working (WXX): The addressed channel is operating in
the burst mode. 1In the case of the multiplexor channel, a
burst of bytes is currently being handled. 1In the case of
the selector channel, an operation or a chain of oﬁefations
is'currently'being executed, and the channel end for the last
operation has not yét been reached. The states of the‘addressed.,
device and, in the case of the multiplexor channel, of the sub-

channel are not significant.

Channel Not Operational (NXX): The addressed channel is not
operational, or the channel address in the instruction is in-
valid. - A channel is not operational when it is not provided in

11-8

the system, when power is off in the channel, or when it has
been switched to the test mode. The states of the addressed

I/O device and subchannel are not significant.

CONDITION CODE

The results of certain tests by the channel and de?ice, and
the origindl state of the addressed part of the I/O system
are used during the execution of an I/O instruction to set
one of four condition codes in bit positions 34 and 35 of the
PSW. The condition code is set a£ the time the e#ecution of
the instruction is completed, ﬁhat is, the time the CPU is
released to proceed with the next instruction. The condition
code indicates whether or not the channel has performed fhe
function'speCified.by the instructioh and, if not, the reason
for the rejection. Immediately following branch-on-condition

operations can use the code for decision-making.

The following table lists the conditions and the corresponding
Condi;ion Codes for each instruction. The digits in the table
represent the numeric value of the code. The instruction start
I/0 can set code 0 or 1 for the AAA state, depéﬁding on the type

of operation that is initiated.

11-9

CONDITION CODE FOR
START TEST HALT TEST

CONDITIONS 1/0 1/0 1/0 CHAN

Available . AAAOLI* 0 1* O
Interruption pend. in device AAl 1* 1* 1* O
Device working AAW 1° 1°* 1° 0.
Device not operational AAN 3 3 3 0
Interruption pend. in subchannel A I X +

For the addressed device 2 1* 0 0

For another device 2 2 0 0
Subchannel working AWX+t2 2 1° 0
Subchannel not operational ANX+3 3 3 0
Interruption pend. in channel I X X 7 see note below 1
Channel working wXXt2 2 2 2
Channel not operational NXX+$%3 '8 3 3
Error : . .

Channel equipment error . 1* 1° 1° -~

Channel programming error 1* - - -

Device error 1° 1* - =

" *The CSW or its status portion is stored at location 84 during -
execution of the instruction.

$+The symbol X stands for A, I, W, and N, and indicates that
the state of the corresponding component .is not significant,
As an example, AIX denotes the states AIA, AIl, AIW, and
AIN, while IXX represents a total of 16 states, some of which
do not occur.

—The condition cannot be identified during execution of the in-
struction.

Note: For the purpose of executing START 1/0, TEST 1/0,
and HALT 170, a channel containing a pending interruption
condition appears the same as an available channel, and the
condition-code setting depends upon the states of the sub-
channel and device. The condition cades for the IXX states are
the same as for the AXX states, where the X's represent the
states of the subchannel and the device. As an exampie, the
condition-code for the IAA state is the same as for the AAA
state, and the condition code for the IAW state is the same as
for the AAW state. .

11-10

The AVAILABLE condition is indicated only'when no errors are de-~
" tected during the execution of‘the i/o ihstruction. When a pro-
gramming error occurs'in.the'information plaCed_in the CAW or

CCW and the addressed channel or subchannel is working, either

Condition Code 1 or 2 may be set, depending upon the model. Simi-

larly, either code 1 or 3 may be set when a programming error

occurs and a part of the addressed I/O system is not opérationalf

When a subchannel on the muitipléxor channel contains a pending
interruption condition (state AIX), the I/O device associated

with the terminated operation ndrmally is in the interruptioné

pending state. When the channel detects during executiqh of TEST
I/0 that the device is not operational, condition code 3 is set.
Similarly; Condition Code 3 is set when HALT I/0 is addressed to
a subchannel in the working state and operating in the multiplex
mode (state AWX), but the device turns out to be not operational.j
The not-operational state in both situations can be caused by

operator intervention or by machine malfunctioning.

The error conditions listed in the preceding table include all
equipment or programming errors detected by the channel or the
I/0 device during execution of the I/O instructionQ Except.fdr
channel equipment errors, in which case, depénding on the model,
machine_check may be indicated and no CSW may be stored, the_

status portion of the CSW identifies the error. Three types of

errors can occur:

Channel Equipment Error: The channel can detect the following

equipment errors during execution of START I/0, TEST I/0, and

HALT I/0:
11-11

1. The device address that the-channel received on the
interface during initial selection‘eithe: has.a parity‘errOI or
~ is not the same as the one the channel sent 6ut. _Somé'device.
other than the one addressed may be malfunctioning.

2. The unit-status byte that the channel received on
the interface during initial selection has a‘parity error.

v‘ 3. A signal from the'I/O device occurred duriﬁg
initial selection at an invalid time or had invalid duration.

4. The channei detected an error in its-cOntrqi'équip-
ment. |
The channel may perform the malfunction-reset function, depend-
ing on the type of error and the model. If a CSW is stored, .
channel cohtrol check or inte:face éontrol check is indigatéd,

depending on the type of error.

Channel Programminngrror: The channel can detect the £bl1owing
programming errors during execution of START I/0.
| l. 1Invalid CCW address in CAW

2. 1Invalid CCW address specification in CaW

3. 1Invalid storage protection key in CAW

4. Invalid CAW format

5. Location of first CCW protectedbfor fetching

6. First CCW specifies transfer in-chénnel

7. Invalid command code in first CCW |

8. Initial data address exceeds addressing capacity

of Model (seé "Definition of Storage Area®)

9. Invalid count in first CCW

10. Invalid format of first CCW
The CSW indicates program check, except for coﬁditionvs,bin

which case protection check is i?dicated.
S 11412

Device Error: Programming or equipment errors detected by the
device during the execution of START I/O are indicated by unit

check or unit exception in the CsWw.

The conditions responsible for unit check and unit exception

for each type of 1I/0 device are detailed in the SRL publicatiOn

for the device.

INSTRUCTION FORMAT

All I/0 instructions use the following SI format:

(oo Y705 T o]

[1516 19 20 N

Bit positions 8-15 of the instruction are ignored. The content
of ﬁhé Bl field designates a register. The sum obtained by the
addition of the content of register Bl and content of the D1
_ field identifies the channel and‘the.I/b device. The sum has

the format:

= T

0 1516 2324 N

Bit positions 0-7 are not part of the address. Bit positions
8-15, which constitute the high-order portion of the address,
are ignored. Bit positions 16-23 of the sum contain the channel
address, while bit positions 24-31 idenﬁify the device on the
channel and, additionally in the casé of the multiplexor chan-

nel, the subchannel.:

NOTE: In the detailed descriptions of the individual instruc-

tions, the mnemonic and the symbolic operand designation for

11-13

the IBM System/360 assembly language are shown with each in-
struction. 1In the case ‘of START I/0, for examplé; SIO is the

mnemonic and D1(Bl) the operand designation.

INSTRUCTIONS

The mnemonics, format, and operation codes of the I/0 instruc-
tions follow. The table also indicates that all I/0 ihétrdc-
tions cause program interruption when they aie encountered ih
the problem state, and that all I/O instructions set the con-

~dition code.

NAME MNEMONIC TYPE EXCEPTION CODE
~ Start I/0 : SI0 sI,C M 9C
Test I/0 ' TIO . 's1,C - M - 9D
Halt 1/0 HIO si,C M 9E
Test Channel TCH sI1,C M 9F

NOTES
C Condition code is set
M Privileged-operation exception

INPUT/OUTPUT INSTRUCTIONEXCEPTION HANDLING

Before the channel is signaled to execute an I/0 ihstructioh,
the instruction is tested for validity by the CPU. Exceptibnal
conditions detected at this time cause a program interruption.
When the interruption occurs, the current PSW is stored as the
progtam old PSW and is replaced by the program new PSW. The
interruption code in thé'old PSW identifies the‘cause of fhe

‘interruption.
- The following exception may cause a program interruption: -

Privileged Operation: An I/O instruction is encountered when

the CPU is in the problem state. The instruction is suppressed

11-14

before the chahnel has been signaled to execute it. The Csw,
the condition code in the PSW, and the state of the addressed
subchannel and I/O device are not affected by the attempt to,

‘execute an I/O instruction while in the problem state.

11-15

INPUT /OUTPUT FAMILY

START 1/0

The Start I/0 instruction provides a means by which an I/0
operation may be initiated. A write, read, readbackword, -
control or sense operation will begin at the device speci-

fied by the low-order 16 bits of the effective address.

The initiation of a Start I/O to an available device re-
sults in the Channel Address Work (CAW) being sent to the
channel that was addressed. The channel utilizes the pré-
tection key of the CAW and fetches the Channel Command Word

(CCW) from the storage location-specified by the CaAW.

This CCW specifies the operation to be performed, the main-
storage area to be used, and the action to be taken whgn
the operation is completed. The contents of the CCW aha
CAW must be established by the programmer prior to iséuing'

a Start I/0.

' If the addressed device was not available when interrogated
by the Start I/0 instruction, the entire operation is abort-
ed and the Condition Code is set to reflect the cause of the

abortion.

1l1-16

1.
2.
3.

6'
7.
8.

EXAMPLES
1.

sio o) [SN

[: 9C ’}:7///////,%"“ B, wl“ b j

The low-order 16 bits of the effective address
(D1,Bl) form the I/0 address.

The CAW is sent to the channel 1ndlcated by
the I/0 address.

The protection key contained in the CAW is
assumed by the channel and the effective ad-
dress is used to fetch the CCW.

The CCW is decoded to provide the types of
operation, the next sequential action to be
taken, and if necessary, the number of bytes,
and a storage.

The contents of the CAW and CCW must be for-
mulated by the programmer prior to issuing
the Start I/0 instruction.

This instruction is a privileged operation
and may only be issued by the control program.
A Condition Code other than 0 results in the
instruction be aborted.

The CSW is stored at the end of an operatlon
for a Condition Code of 0 or 1.

sIO (Start Input/Output)

The following example consists of three in-
structions. The Load Address and Store in-
struction will be used to establish the ad-
dress of the CCW at location 5400 (CCW1l) in
the CAW. The protection key will be zero

and this example will perform a write oper-
ation of 10 bytes from location 5000 (STOR).
The device is a tape drive on channel 2 with
a device address of 80. (GPR F = 00 00 50 00)

SYMBOLIC MACHINE
LA 1,CCWl ~ 41 10 F4 00
ST 1,72(0) : 50 10 00 48
SIO X'280'(0) 9C 00 02 80
Before After
STOR 5000 . FF FF FF FF FF FF FF FF

5004 FF FF FF FF FF FF FF FF
5008 FF FF FF FF FF FF FF FF

11-17

Befote After

cCwWl 5400 01 00 50 00 01 00 50 00
5404 00 00 00 OA 00 00 00 0A

CSW 00 00 54 08 OC 00 00 00
Condition Code 0

2. sIo . (start Input/Output)
This example will perform a read operation of
80 bytes into storage location 5500 (DATAIN). -
The input device is card reader located on the
multiplexor channel at address 0C. The CCW is
located at storage location 5408 (CCW2). (GPR
F = 00 00 50 00)

SYMBOLIC : ' MACHINE -

LA 1,CCwW2 ' 41 10 F4 08

ST 1,72(0) o 50 10 00 48

»SIO 12(0)] 9C 00 00 OC
Before Aftef

" CCW2 5408 02 00 55 00 02 00 55 00
540C 00 00 00 50 00 00 00 50

DATAIN 5500 . 00 00 00 00 Fl F2 F3 F6
. 5546 00 00 00 00 C6 F3 F5 F7

CSW - 00 00 54 10 oc o0 00 00
' Condition Code 0
CONDITION CODE
0 Channel executing operation
1 CSW has been stored
2 Channel or subchannel busy
3 Channel or device not operationalv

PROGRAM INTERRUPTIONS

1. Privileged operation

‘11-18

INPUT/OUTPUT FAMILY

TEST 1/0

The channel and'device,specified by the low-order 16 bits of
the effgctive address are ipterrogated. The result of this
ihterrogation is refiecﬁed in the setting of the Condition
Code. If this setting is 1; more detailed information con-
serning the staﬁus of this,éhannel'and device can be found

in the CSW. This instruction also petmits a p:ogram to clear

“an interrupt at a selective I/0 device.

11-19

2.

3.

k4.

5.

EXAMPLE

110 DBy (sn

[w :EZ%Z%Z%%a‘“,‘ i J

20
° i

The low-order 16 bits of the effective address
(D1,Bl) form the I/0 address.
The exact status of the addressed channel and

-device is reflected by the Condition Code.

A Condition Code of 1l indicates that further
status information has been placed in the CSW.
Issuing this instruction will clear pending

-interrupts on the majority of I/O devices.

This instruction is a privileged operation
and may only be performed by the control
program. : : '

TIO (Test Input/Output)

Test the device at address 82 on channel .l
to determine its status. This device being
tested will show a busy condition. (GPR C =
00 00 01 82)

SYMBOLIC TIO 0(12) MACHINE 9D 00 CO 00

, Condition Code 1

CSW 00 00 00 00 10 00 00 00

CONDITION CODE

WO

Available

CSW has been stored

Channel or subchannel busy
Channel or device not operational

PROGRAM INTERRUPTIONS

1.

Privileged operation

11-20 S

INPUT/OUTPUT FAMILY

HALT 1/0°
. The inst:uction HALT I/d-provides the program with a means of
terminatiﬁg an I/0 Operatioh before all data specified by thé
operation has been transférred or before the operation at the
device had reached its normal énding point. This woﬁld'per-
mitva program to immediately‘free a selector'channelvfor an
operation of higher priority. The device to be halted is

specified by the 1oﬁ-9rder,16 bits of the effective address.

11-21

l.
2.
3.

EXAMPLE

HIO DyB,) - [S1]

[= EZZZ%Z%%NB‘JQ Y

]

The low-order 16 bits of ﬁhe effective address

-(D1,Bl) form the I/O address.
- The device specified by the I/O address is se-

lected and its operation terminated.

This instruction has no effect on devices that
are not in the working state or are executing
an operation of a fixed duration, such as re-
winding a tape.

The status portion of the CSW is updated if a
device terminated an operation, the control
unit was busy and would not accept the HALT
I/0, or an equipment malfunction occurred
during execution of this instruction.

The termination of operation on the selector
channel causes the channel and subchannel to
be placed in the interrupt-pending state.
This operation is not terminated on the mul-
tiplexor channel until all outstanding re-
quests for data have been serviced.

The instruction is a privileged operatlon and
may only be issued by the control program.

HIoO (Halt Input/Output)
Halt the disk drive (address 31) on channel 2.‘

- SYMBOLIC HIO X'231'(0)

MACHINE 9E 00 02 31

Before ‘After
CSW 00 00 46 08 00 00 46 08

00 00 00 50 .00 00 00 22
Condition Code 2 |

- CONDITION CODE

[P S)

Interrupt pending in subchannel
CSW has been stored

Burst operation terminated

Not operational

PROGRAM INTERRUPTIONS

1.

Privileged operation

11-22

INPUT/OUTPUT FAMILY

TEST CHANNEL

The channel specified by bits 16~23 of the effective address
are teéted and the result of the test is indicaﬁed in.the |
Condition Code. This is very similar to the Test I/0 but
only involves the channel and it is not concerned with the

subchannel or devices.

11-23

EXAMPLE

TCH D,(B)) (s

9F '“W///////%m‘ B, "l” _ D ..]

-

Bits 16-23 of the effective address specify the
channel to be tested.

The result of this test is used to set the Con-
dition Code.

No device is selected or subchannel lnterrogated..
This is a privileged instruction and can only be
issued by the Control ‘Program.

TCH (Test Channel)
Determine the status of channel 4.

SYMBOLIC TCH X'400'(0)
MACHINE 9F 00 04 00

Condition Code 2

CONDITION CODE

WO

Channel available

Interrupt pending in channel
Channel operating in burst mode
Channel not operatlonal

PROGRAM INTERRUPTIONS

1.

Privileged operation

11-24

'SECTION 12

PROJECT
1. Construct PSW's and CCW's for specified condltlons.
2. Translate a problem program flowchart into a
, program.
3. Translate an SVC routlne flowchart into
instructions. :
4. Translate an I/0O 1nterrupt routlne flowchart into

lnstructlons. :

|

THE PROBLEM

v

We have a tape on drive #180 with 80-character records. Some
key records are identified by an X'FF' as their first byte. We
wish to transfer the X'FF' records to cards on punch #00D. Since
we are to work in the problem state, we will need to use an SVC
to do both Start I/O's. At the end of our tape file we will read
a TAPE MARK which will set status bit 39 on.in the CSW. At this
time we will place the machine in the wait state with all ones in
the IC.

GENERAL - FLOWCHART

PROBLEM._PROGRAM

CUNSTRUCT 600 SI0 500 | READ THE
CONTROL SvC | o . THE
WORDS : ROUTINE RECORD

700 1/0
INTERRUPT
ROUTINE Ces
PUNCE
THE
RECORD

12-1

CONTROL WORD CONSTRUCTION (IN HEX)

IPL PSW

(Problem State PSW)

CsSw

CAW

SVC New PSW
I/0 New PSW

CCw 1
(Read Tape)

CCW 2
"(Punch Card)
55C

Wait PSW
(For Interrupt)

End PSW
(When Tape Mask)

Error PSW

Record Area

000
004

040

044
048

060

064

078

07C

550
554

558
55C

560
564

568
56C

570
574

- 5A0

5EF

12-2

01020000
00FFFFFF

01020000

OOFOFOQFO

000500

- 00050=

000512

THE PROBLEM PROGRAM

LOAD ADR
CCW 1
GPR 0

STORE
GPR 0
AT CAW

LOAD ADR
180
GPR 12

SvC 1
READ
TAPE

COMPARE :
1st Char
RECORD

12-3

000516

00524

' LOAD ADR

CCW 2
GPR 0

STORE
GPR 0
AT CAW

LOAD ADR
00D
GPR 12

SvVC 1
PUNCH
CARD

RETURN
PGINT.
GO-TO A

' SVC ROUTINE

000600 COMPARE ~80060C | TEST I/0
| INTERRUPT | INSURE
CODE N :] ok

START I/0
OF

' LPSW
-00061C .| WAIT FOR
' - INTERRUPT

LPSW
SVC OLD
RETURN -

- 12-4

I/0 INTERRUPT ROUTINE

12-5

000700 COMPARE 00071C | TURN OFF
GPR ‘12 WAIT BIT .
INT. CODE 'I/0 OLD
LPSW
I/0 OLD
~ RETURN
TEST FOR
UNIT EXCP -
STATUS °
| tEST FOR 000724 LPSW
STATUS o FFFFFF
S oc END
%
000718 LPSW
N ERROR
* "OC" not always valid - See pagé 12-17.

THE PROBLEM PROGRAM

CODING

000500
'594
508
50C
50E
512
516
51A
51E
522

000524

12-6

THE SVC ROUTINE

- CODING

- 000600

604

608
‘eoc.f

610

614

vsi‘s

61Cc

000620

- 12-7

THE I/0 ROUTINE
 copInGg
000700
704
708
70C
710
714
718 -
71C
720

000724

12-8

CONSTRUCT CONTROL WORDS

Our first step is to bulld the PSW's and CCW's that we will use
- in our program. The IPL PSW is used to change the CPU from a
program loading state to a running state. It will become our
current PSW for our problem program.

The IPL PSW is to have the follow1ng characterlstlcs-
1. Machine Check on
2. Problem state on
3.. Instruction address of X'000500'
4. All other fields zero. '
'Enter the first half of thlS PSW. (8 hex digits)

’ 27101 " " " g ytan N N . LI - 2 " .

- Record your first half of the IPL PSW on page 12- 2 of your book
of figures. As we continue, record your answers on page. 12 -2
and you will have a ready reference.

Enter. the second half of the IPL PSW. (8 hex digits)

27102 ‘ ' .
The SVC new PSW is to have these characterlstlcs.
L. Machine Check on
2. Superv1sory state -
3. Instruction address of X'000600'

4. All other fields zero.
Enter the flrst half of SVC new PSW (8 hex dlglts)

27103 . ‘ T s
Enter the second half of the SvC new PSW

27104 > '
The I/O new PSW is to have these characterlstlcs.
1. Machlne check on
2. Supervisory state
3. Instruction address of X'000700'
: 4. All other fields zero.
Enter the first half of I/O new PSW.

57105 — - — —
Enter the second half of I/0 new PSW.
27106 S ‘
The "Wait" PSW will have the follow1ng'
1. Permit channel 0 and 1 interrupts.
2. Machine check on :
3. Wait bit on
4. Supervisory state

5. Instruction address X'000620"'
6. All other fields zero ‘
Enter the first half of the "Wait" PSW.

Enter the second half of the "Waitf PSW.

27110 ‘
CCW1l will be used to give a Read command to our tape drive. The
CCW format is at the top of Reference Card 11 and the 2400 Tape
Drive commands are at the bottom of Reference Card 12. CCW1 must
.have: '

1. Command Code for a Read

" 2. - Data Address at X'0005A0'" ’

3. Only the SILI flag on. (Bit 34)

4. Count to be 80 decimal bytes.
Enter the first half of CCWl.

- 27111
Enter the second half of CCWl.

27112
CCW2 is to have the following.

1. 2540 Punch Command (Reference Card 12)

Type BB, SS=00; D=0
- 2. Data Address at X'0005A0"

3. No Flags

4. Count to be 80 decimal bytes.
Enter the first half of CCW2.

27113
Enter the second half of CCW2

27114 o '

The CAW is set up by the Problem programmer. The CSW will be
set up by hardware after the I/O interrupt. See 12-17 for more
information on the CSW. :

At the "END" (after the tape mark), the IAR or IC (instruction
counter) will contain all ones due to the END PSW. If an error
occurs, the IC will contain FOFOF0 due to the Error PSW. This
is a common way to signal the operation of machine conditions.

No'Question.> Just EOB.

12-10

27120 ' ' .

Now we will deal with the Problem program (12-3). The first .
instruction is a Load Address of CCWl into GPRO. CCWl location
is specified on 12-2. Enter the instruction.. : B

TR o
Now sStore- the CCW1 address at X'000048.

27122 ’ . ~ : ;
CCW1l says Read, 80 bytes into location X'0005A0. The CAW points
to CCWl. This information will tell the channel what we want to
- do, where the data will go and how much, The only thing left is
"Who" supplies the data. We will use GPR 12 to tell the SVC
routine the device address. Enter: the command to Load Address,
X'180', into GPR 12. : ’

37123

You can record your answers to the problem program on page 12- 6.
Enter the instruction for an SVC with a code of X'0l'.

27124 ' ' ‘

This will be all that is required of the problem programmer as
to getting the tape record. The next problem program instruc-
tion will be the compare for X'FF' as the first byte of the
record. But there will be a considerable delay while the SVC
interrupt and a subsequent I/O interrupt takes place. Never-
theless, the next instruction of the problem program will be a

compare (CLI) of the flrst byte of the tape record. Enter that
instruction. : _ R

27125 ' ‘ o
The CC will now reflect the result of the above CLI. If the
first byte is X'FF';we will have to deal further with this
record. Since this was a logical compare, the result must be.
"equal” or "A Low ." If it is not equal, we will get’the'next,

- tape record and test that, etc. Enter a BC 1nstructlon ‘to_go

to connector A if the byte 1s not X'FF.'

27126

It may appear that our branch could go to location X'00050C'
(in this case it could have) rather than X'000500.' But since
we do not. insure the integrity of our GPR's and CAW could

(it doesn t) change we do it this way. No Question. EOB.

12-11

27130 '

It may appear that the next 1nstructlon should be a branch to
connector "B" but it is not necessary. Connector "B" will be

- our next sequential address. We get there only i1f our records
first byte was X'FF.' The instruction at X'000516' is to LA of
CCW2 into GPR 0. Enter it. : ‘

27131
Now store it at "Caw".

27132 .
'Place the address of the punch in GPR 12,

27133
Do an SVC with code X' 01' agaln.

27134

This demonstrates that the SVC routine does not care about the
kind of device (tape or card punch) or which command is used
(read or write). The SVC routine issues the SI/0O. The CAW
points to the CCW who has the order. GPR 12 has the device
address. After the SVC and I/0 interrupts, control will be
given to the instruction following the SVC. That instruction
will be a BC, unconditionally, to connnector A. Enter it.

-v27135

Now you will return to location X' 000500' and . get the next
card. That completes the coding for the problem program.
- The next step will be the SVC program. No Question. EOB.,

12-12

27140

' THE SVC ROUTINE
The SVC routine is to start at location X'000600.' 1Its major
function is to Start I/0 and to return control to the instruc-
-tion following the instruction that called for it. That is the
instruction whose address is in SVC old PSW. First we will
check that the call is for routine #01l. We will do this with
a CLI instruction whose immediate field is X' 0l1' against the
fourth byte of SVC old PSW. Enter it. '

37131 -
Record the. SVC coding on page 12-7.

Your next lnstructlon is to be a BC on equal to 1ocatlon
X'OOOGOC. Enter it.

37142

Usually. there are many SVC routines and we would select the

~ correct one by examining the interrupt code. 1In dur case we
are going to recognize any code other than X'0l' as an error.
. We will LPSW of our error PSW if the code is not X'0l'. The
error PSW locatlon is noted on page 12-2. Enter the instruc-
tion. 4 .

37143

We expect to bypass the LPSW instruction at X'000608' and do
the instruction at connector 01 which is to be a Test I/0.
Enter the coding for the TI/O instruction. (don't forget
where we placed the device address).

27144 .
We expect that the CC after the TI/O will be 0 (available). On
any condition other than 0 you are to branch to the instruction
at X'000608' (Load error PSW). Enter that BC instruction.

27145 _)

The next instruction is a Start I/0. Enter it.

27146 ‘

The instruction at x 000618' is to be identical to the instruc-
tion at X'000610. It may be redundant, but I like it. EOB.
37137 '

We will now go into the wait state while the device is operatlng.
Enter the LPSW instruction to activate the "Wait" PSW. (See -
S 12-2) ; _

12"13

27150

We are going to "wait" (the computer will hang) while the device
is reading tape or punching the card. When the device is com-
pleted an interrupt will be generated and the device status will
be' examined. If the status is OK control will be returned to

the instruction whose address is in the "wait" PSW. The instruc-
tion that loaded the "wait" PSW is at X'00061C' and the PSW points
to X'000620'. The last instruction of the interrupt routine must
do an LPSW of the I/O old PSW ("wait" PSW). But just before the
"wait" PSW is loaded something must be done or we will again go
'into the WAIT STATE. Which bit of the "wait" PSW must be
changed? '

27151 .

The I/O routine has returned us to the SVC routine by loading
the "wait" (I/0 old) PSW. We must now return to the Problem

program. The Problem program PSW is at location X' '.

27152 : ' ,
Enter the instruction that will load the Problem PSW.

27153 . - . _

The Problem PSW will return us to address X'000S50E or X'000524'
depending on which SVC instruction was issued. 1In either case
the SVC routine is ended. EOB. ‘

12-14

27160
THE I/O INTERRUPT ROUTINE

" We reach this routine due to an I/O interrupt. The sequence of
events is: The Problem Program issues an SVC, the SVC routine

issued a Start I/0 and then went-into the Wait State. The I/O

interrupt routine is flowcharted on 12-5 and you can record the
machine code instructions on 12 8.

The device that caused the interrupt must be (in our simple pro-
gram) the same device that was started. The address of the
started device is in GPR 12 and the interrupting device's ad-
dress is in I/O old PSW's interrupt code. To compare these we
will use a . (c, CR, CH, CLR, CL, CLC, CLI)

27161
Enter the compare: 1nstructlon for the above.

27162 ' '
Enter a BC instruction (for any condltlon except equal) to
address X'000718"'.

27163 ,
The device and channel status are contalned in the CSW. The
CSW is at address . '

27164 '

The 3rd HW of the CSW contains the status (see Reference Card 11).
We will ignore the channel status byte (bits 40-47) and examine °
the device status byte. What is the address of the device

status byte? : o '

27105 :
Enter a TM instruction to check for Unit Exceptlon only. Unit
Exception means that we have read the Tape Mark.

27166
Enter a BC 1nstructlon for condition "one" to branch to address
X'000724. '

27167

If the device status was not "UE" we will check for Channel End
and Device End. This test should be more complicated than shown
but we will test as though both conditions were always presented
simultaneously (See 12-17 for explanation). Enter a CLI instruc-
tion for the above.

12-15

27170

Enter a BC instruction to branch to address X' 0007lC' if the CC
is zero. (status equal X'0OC')

27171 .

If the status was not X'0C' we have an error condition. In this
case we will load the Error PSW. Enter the LPSW instruction

. {(the error PSW is at X'000570).

27172

We expect to Sklp the error PSW by branching from address

- X'000714' to X'00071C’'.

Our interrupt status was OK so we may return to our SVC routlne.
This could be done in our program by a simple branch to address
X'000620'. But in order to show a more common method we will
load the I/0O old PSW. If there were more ways to enter the

Wait State we would have 'to load the I/O old PSW to insure we
returned to the correct SVC routine. Another point, the wait

- PSW had, naturally, bit 14 set on. Before we load the 1I/0 old
PSW we must turn bit 14 off. In turning off bit 14 we must
insure that we do not change bits 8-13 and 15 as they may, ‘in
general, contain other bit on. The simplest way of doing this
is with an AND or an Exclusive Or instruction in the SI type

(NI or XI). Enter the instruction to turn off bit 14 and no
other of the I/O old PSW. (Use either a NI or an XI instruction)

27173

Now enter the instruction to load the I/O old PSW as the current
PSW. ,

27174 ' '

The above instruction will take us to address X 000620" (return
us to the SVC routine).

Location X'000620' of the SVC routine is a LPSW of SVC old PSW
which returns us to either location X'00050E' or to X'000524°'
depending on which SVC instruction was 1ssued in the Problem
program. EOB.

27175 ‘
The last instruction of the I/O interrupt routine is at connec-
" tor "D". This instruction is to load the "END" PSW when we read

the Tape Mark (unit exception). Enter that instruction.

12-16

CHANNEL END - DEVICE END

The flowchart on 1l2-5, Compare Status 0C, is not wvalid for a 2540
card reader-punch. The Control Unit of the 2540 contains a buf-
fer that will hold 80 characters and as soon as the channel has
sent over the 80 characters, the Control Unit will signal Chan-
nel End without a Device End. The 2540's Control Unit will then .
transfer the buffer data to "Punch Magnets" that will permit the
punch dies to punch the correct holes in the card. The punching -
is done a row at a time until all twelve rows are punched and

the card is moved out of the punch station. Now the device is
ready to accept a new order and the control unit will signal

the channel with another status condition, Device End. There
would actually be two interrupts and the interrupt routine would
have to have a scheme to keep track of the status.

We have ignored this on our little program for purpbsés‘off
simplicity. ‘

Oon the other hand the test of "0C''is valid on a read tape because
the tape is an unbuffered device. The channel is connected to

the control unit until all data is transferred and until the tape
is stopped in the IRG. At this time the control unit sends a
Channel End and Device End in one status byte which becomes
bits 32 to 39 (B'00001100' = X'0C') of the CSW. '

12-17

	001
	002
	003
	004
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	04-01
	04-02
	04-03
	04-04
	04-05
	04-05A
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17

