
System/360
Assembler Language Coding
Standard and Decimal Instructions
Text

Programmed Instruction

System/360
Assembler Language Coding
Standard and Decimal Instructions
Text

Programmed Instruction

ACKNOWLEDGEMENT

We wish to express our appreciation to the Field Engineering Division
for providing most of the frames and illustrations used in this course.

In addition, we want to thank the Detroit and Los Angeles DP
Education Centers for the frames and problem statements they provided.

Major Revision (October 1969)

This publication is a revision of Form R29-0232-5 incorporating
changes made on pages 29, 30, 63, 66, 67, and 78. The original
publication is obsoleted.

This material was produced for educational purposes only. The utmost care
has been taken to ensure the accuracy of this publication. No responsibility
is assumed for any inaccuracies that may occur. It should be understood,
however, that changes may occur after this date (10/69) that may cause all
or part of this publication to become obsolete.

Requests for copies of IBM publications should be made to your
IBM representative or to the IBM Branch Office serving your locality.
Address comments concerning this publication to:
DPD Education Development, IBM Education Center, 6 Roosevelt Avenue,
Endicott, New York 13760.

© Copyright International Business Machines Corporation 1966

CONTENTS

SECTION I - INTRODUCTION TO SYMBOLIC CODING AND ASSEMBLY
Review and Terminology 1
Symbolic Coding and Assembly 4

Learning Objectives 4
Self-Evaluation Q u estions... 4
Self-Study Text

Symbolic A d d re ss in g .. 6
Mnemonics and O p era n d s.. 7
The Assembly Process ... 9

SECTION II - INTRODUCTION TO ASSEMBLER LANGUAGE CODING
Assembler Language C o d in g ... 12

Learning Objectives .. *............... 12
Self-Study T e x t ..

" Statements” on the Coding Sheet ... 13
Symbols .. 17
Base Register and Displacement A ssig n m e n t............................ 19
The Start and End Statements ... 22
Defining Storage Areas ... 23
Defining Data C o n sta n ts .. 27

Self-Evaluation Questions .. 33

SECTION III - CODING SAMPLE PROGRAMS
Coding Sample P r o g r a m s ... 37

Learning O bjectives... 37
Self-Study Text

Introduction to Ajax Sample Program # 1 38
Examples from the Standard Instruction Set

Move Characters (M V C)... 43
Move Immediate (M V I) .. 43
Skip Option on Move In stru ction s... 44

End of Skip O p tion ... 46,
Branch and Link Registers (B A L R)...................................... 48
Branch and Link (BAL) ... 48
Skip Option on Branching Operations 49

End of Skip Option .. 51
Pack (PACK) ... 52
Convert to Binary (CVB) .. 53
Skip Option on Packing and Converting to Binary . . . 54

End of Skip O p tion ... 60
Store (ST).. 60
Store Halfword (S T H)... 60
Skip Option on Store In stru ction s.................................. 61

End of Skip O p tion ... 62
Multiply (MR, M) .. 62
Multiply Halfword (MH) .. 62
Skip Option on Multiply Instructions 64

End of Skip O p tion 66
Divide (DR, D) ... 66
Skip Option on Divide Instructions.. 67
End of Skip Option • • • 70
Add (AR, A) 70
Add Halfword (A H) ... 71

Skip Option on Add Instructions ... 71
End of Skip Option... 74

Load (LR,L) ... 75
Load Halfword (L H) .. 75
Skip Option on Load Instructions .. 76

End of Skip O ption ... 77
Convert to Decimal (CVD) 79
Skip Option on The Convert to Decimal Instruction . . 79

End of Skip O ption .. 80
Subtract (S R ,S) .. 80
Subtract H a lfw o rd .. 81
Skip Option on Subtract Instruction-Algebraic 82

End of Skip O ption ... 83
Unpack (U N P K)........................... 84
Skip Option on the Unpack In stru ction 85

End of Skip O ption ... 86
Move Zones (MVZ) ... 86
Branch on Condition (BCR,BC) .. 88
Skip Option on the Branch on Condition Instruction. . . 89

End of Skip O p tion ... 90
The Last E n tr y .. 91
Summary of C o d in g .. 91

Decimal Arithmetic on the System/360 .. 91
Introduction to Ajax Sample Program # 2 92
Examples from the Decimal Instruction Set

Zero and Add (ZAP) ... 94
Skip Option on Zero and A d d .. 96

End of Skip O p tion ... 97
Multiply Decimal (M P) .. 97
Skip Option on Multiply D ecim al.................. 98

End of Skip O p tion ... 100
Divide Decimal (DP) .. 100
Skip Option on Divide D e c im a l... 102

End of Skip O p tion ... 104
Add Decimal (AP) .. 104
Skip Option on Add Decimal .. 105

End of Skip Option 108
Move Numerics (M V N)... 108
Skip Option on Move Numerics ... 109

End of Skip O ption ... I l l
Subtract Decimal (SP) .. 112
Skip Option on Subtract D ecim al.. 113

End of Skip O p tion ... 114
Edit (E D) ... 115

The Source Field ... 116
The Pattern Field ... 116

The Fill Character .. 117
The Digit Select C h a ra c te r 118
The S T rig g e r 120
The Significance Start C h a ra c te r 121
The Field Separator Character...................... 121
E xam ples... 122

Setting Up Patterns in S to ra g e 122
Introduction to Sample Program #3 128

ii

Examples of Branching and Logic In stru ction s......................... 128
Or Instructions (OR, O, OI, OC) .. 129
And Instructions (NR, N, NI, N C .. 130
Skip Option on ’ ’And, Or” Operations 132

End of Skip O p tion ... 135
Test Under Mask (T M) .. 135
Skip Option on Test Under M a s k ... 137

End of Skip O p tion ... 139
Turning a Switch On and O f f ... 139
Compare Decimal (C P).. 145
Skip Option on Compare D e c im a l.. 146

End of Skip O p tion ... 148
Move with Offset (MVO) ... 148
S^ip Option on Move with O f fs e t ... 149
& End of Skip O p tion ... 151

Exclusive OR (XR, X , X I ,X C)•............... 159
Skip Option on Exclusive O R .. 160

End of Skip O p tion ... 162
Compare (C R ,C) ... 165
Skip Option on C o m p a re ... 166
Compare Halfword (CH) ... 166

End of Skip O p tion ... 167
How to Prepare for the T e s t .. 169

iii

SECTION I

INTRODUCTION TO SYMBOLIC CODING AND ASSEMBLY

Coding involves:

• Arranging for input and output of data.
• Establishing "work, areas" in storage.
• Creating constants (e. g . , values used in calculations, symbols used to set

switches and punctuate output).
• Choosing and writing the instructions that move data, perform appropriate tests

and calculations, handle exceptional conditions, and arrange data in a format
specified for output.

Assem bler language allows this to be done with symbolic notation, as you know.

The first section of this book treats symbolic coding in detail. You probably already
know quite a bit about it. Read the following brief review, take the self-evaluation
quiz, and read the indicated pages only if you have trouble answering the correspond­
ing questions.

REVIEW AND TERMINOLOGY

Programming in a symbolic language offers a number of important advantages over
programming in the actual language of the computer:

• Mnemonic operation codes are provided. For instance, the actual operation code
for the instruction Store in hexadecimal is 50; in the assembly language we can
write the mnemonic operation code ST. Most programmers never learn the actual
codes.

• Addresses of data and instructions can be written in symbolic form, and in practice
almost all addresses are so written. The programmer is thereby relieved of
severe problems in the effective allocation of storage, and the resulting program
is far easier to modify. Furthermore, the use of symbolic addresses reduces the
clerical aspects of programming and eliminates many programming errors. If
the symbols are chosen to be meaningful, the program is also much easier to read
and understand than if written with numerical addresses.

• Constants may be introduced into the program structure, and space reserved for
results, by the use of suitable assembler instructions. These are written in some­
what the same form as machine instructions but are treated quite differently by
the assembly program.

• Many other assembler instructions direct the assembler in various other matters
of concern. Among the most important of these are the techniques for letting the
assembler assign base registers and compute displacements.

The sum effect of these advantages is so great that it is virtually out of the question to
program in actual machine language, that is, to write actual operation codes and num­
erical addresses, and, in the case of the System /360, to write actual base register
numbers and displacements.

An assembly language program is not directly executable by the computer. The
mnemonic operation codes and symbolic addresses must be translated into the form
the machine expects of instructions. This is the function of the processor program,
also called the assembly program or simply the assembler.

STATEMENT \

1 8
Operal’ion

10 M 16 20
Opera,

25 30 35 40 45 50 55
Comments \

77 T L E ' /LLU S T R.At / v s d ieo&e* H r ' '
START 2£ $..

FlEGt A/ BAL.R i l , 4
—’— —̂ ~ i

US INC, * , n
L 2j P4 T A______ LOAD RE6 /S ree. z
A_____ APR l

it t h e p c L iouit/y Q SHI F T HAS THE Ë F F P C T O A T /UÜLTJ p/.y i n C, RV 2 J
SLA 2 9L
S g j o a t a +A H O TE GELAT ! / E A DOPES 5 / HGt
S t Z k s U LT
L 6 'yfiJN 4
A 6y B lN 2:
cvt> 6 , o e c CONVB SLT TO DGC.1m Al /
£ O T En d oF SOB /

d a t a DC f ' z s 1 (
DC _ F L iS .L \

T£t4 D C]
R E S U LT 2 1 ____ F J

8 / HI DC F> L2 ’ j

$!N Z DC F '78 '
p e c PS 0 \

FND \

A program to illustrate assembly language concepts.

The assembly process begins with a source program written by the programmer.
Ordinarily, a special coding form is used such as that above. Cards are punched from
this form, one card for each line of coding, making up the source program deck. This
source program deck becomes the primary input to the assembly process, as shown
below.

Schematic presentation of the assembly process.

The assembly is done, in our case, by the System/360 under control of a processor
program. The processor program is supplied by IBM; it consists of many thousands
of machine instructions.

There are two outputs from the processor run. The first is an object program con­
sisting of actual machine instructions corresponding to the source program statements
written by the programmer. In many cases the object program is punched into cards;
in other cases it is left on magnetic tape or magnetic disks. The second output is a
program listing or assembly listing. This important document shows the original
source program statements side by side with the object program instructions created
from them. Many programmers work from the assembly program listing as soon as it
is available, hardly ever referring to their coding sheets again. An example appears
on the next page.

A

£
r \

£ 1 PRINT NCGEN
r ^ f ' 2 * TITLE ILLUSTRATIVE PROGRAM
0 0 0 1 0 0 3 START 256
000 100 0 5 B0 4 BEGIN BALR 11 , 0
0 0 0 1 0 2 5 USING « , 1 1
000 10z 8820 8022 0 01 24 6 L 2 , DATA LOAD KcGISTER 2
OOOlOo 5 A 20 B02A 0012C 7 A 2 , TEN ADD 10

8 * THE FOLLOWING SHIFT HAS THE EFFECT OF MULTIPLYING BY 2
000 L0A 8B20 0001 0CC01 9 SLA 2 , 1
000 10E 5820 8026 0 0 1 2 8 1 0 S 2 , DAT A + 4 NOTE RELATIVE ADDRESSING
0 0 0 1 1 2 5020 8 02 c 001 3 0 11 ST 2 , RESULT
00 0 1 L b 58o0 8032 0 01 34 12 L 6 , 3 INI
000 11A 5A60 8036 001 3 8 13 A 6 , 8 1N2
Q0011L 4060 8030 0 01 40 14 CVD 6 , DEC CONVERT TO DECIMAL

15 EUJ END OF JOB
0 0 0 1 2 4 0 0 0 0 0 0 1 5 18 DATA DC F • 25 '
0 0 0 1 2 8 c oooogcf 19 DC F» 15 '
OOOlcC OOOOOOOA 20 TEN DC F* 10 '
0 0 0 1 3 0 21 RESULT DS F
0 0 0 1 3 4 OOOOOGOC 22 8IN1 DC F 1 12 *
0 0 0 1 3 8 0 0 0 00048 23 BI N2 DC F * 78 *
0 0 0 1 4 0 24 DEC DS D
000 1 0 0 25 END BEGIN

Assembly listing produced by the assembly of the program.

Proceeding from right to left in the example:

• The items listed under A should be exactly the same as the handwritten entries on
the coding sheet. This provides a good check on the accuracy of the keypunching.

• The items under B are a representation, in hex, of the corresponding instructions
and constants.

• C shows the addresses (in hex) of the instructions, constants, and areas of storage
specified by the programmer.

SUMMARY:

• Programs consist of many instructions. Each instruction specifies some operation
and the location of the data to be operated upon.

• The computer will accept only instructions written in the language the engineers
designed for it. This machine language is the binary coding used to represent the
instructions and data.

• Programmers usually write their programs in a near-English language called
symbolic language.

• Symbolic programs are translated into machine language by a machine language
program called a processor, assembly program, or assembler.

• A symbolic language and its associated processor is referred to as a programming
system.

• The symbolic program that is input to the processor is called the source program.
• The object program is the name for the output data from the processor. The object

program is the machine language equivalent for the source program.
• Along with the object program, the processor prints out a program listing which

shows:
a. Your coding, as keypunched into source cards.
b. The hex equivalent of each instruction and constant that you have specified.
c. The address, in hex, of each instruction, constant, and reserved storage area.

• Computers can’t execute source programs. They can only execute machine
language programs such as a processor program or an object program.

SYMBOLIC CODING AND ASSEMBLY

Learning Objectives

When you complete the following test, you will have demonstrated that you can:
• Identify the inputs to and outputs from the assembly process.
• Distinguish between labels and operation codes.
• State the rules for symbolic addressing and identify correct and incorrect examples.
• Describe how the Assembler assigns, and keeps track of, addresses for labels.

SELF-EVALUATION QUESTIONS Reference
Pages in Text

1. Which of the following is a program written in a symbolic language? 6
a. source program
b. object program
c. assembler program
d. processor program

2. Which of the following does not mean a "symbolic address"? 7
a. label
b. operand
c . name
d. symbol

3. The input data during assembly time is the 9
a. object deck
b. coding sheet
c. assembler program
d. source deck

4. The symbolic representation of a machine language op code 7
is called the
a. operand
b. name
c . mnemonic
d. flag

5. Which of the following is generated by phase 1 of a two phase 11
assembly?
a. symbol table
b. program listing
c. object deck
d. location counter

6. Which of the following is used to assign addresses to the 10
source statements?
a. symbol table
b. location counter
c. PSW
d. none of the above

The following program is to be used for question 7.

Reference
Pages in Text

NAME OPERATION OPERAND

BEGIN MVC FIELDA, FIELDA
A 7, FIELDA
ST 7, FIELDB
BC 15, START

FIELDA DC F f4 f
FIELDB DC F f8 f

7. Which of the following symbolic addresses was not defined in 7
the preceding program ?
a. FIELDA
b. FIELDB
c. BEGIN
d. START

8. The machine language program that results from translating a l i
symbolic language program is called the
a. processor program
b. source program
c. assembler program
d. object program

9. A processor program 9
a. is a machine language program.
b. translates symbolic language programs into machine language.
c. resides in main storage during assembly time.
d. All of the above.

10. Which of the following is true? 9
a. During assembly time symbolic statements are converted to

machine language and executed.
b. An object program can be executed once it is loaded into

main storage.
c. The symbol table is a list of instruction mnemonics.
d. Two phase assemblers require that a symbolic address be

defined in a prior statement before it can appear as an operand.

ANSWERS

1. a 6. b
2. b 7. d
3. d 8. d
4. c 9. d
5. a 10. b

Go to Section II "Introduction to Assembler Language Coding"

SYMBOLIC ADDRESSING Go to the next frame.

The first item we encounter is the coding sheet. As part
of your student materials you should have a pad of coding
sheets (Form X 28-6509). Tear off a sheet and refer to
it when necessary during the next few frames. The cod­
ing sheet comes into play after the programmer has
completed the preliminary steps of programming such as
defining his problem and flow charting his solution. He
is then ready to write the instructions of his program.

1. Which of the following is the function of the coding
sheet? Choose the best answer.
a. It is used as a direct means of input to the

processor.
b. It is used as an aid in manually keying the source

program into the computer.
c. It is used for keypunching the source program,

which can then be read by the processor from a
card reader.

• • •

c.

You know that the coding sheet is used by the
programmer to code his symbolic program, and by the
keypunch operator to punch the source deck. Of course,
the programmer may have to become a part-time
keypunch operator. Now let’s see how you would write
a symbolic statement on the coding sheet.

Each line of the coding sheet represents one symbolic
statement. A symbolic statement is used to tell the pro­
cessor to assemble a machine language instruction, a
data constant, or to do something during assembly time.
Approximately 24 statements can be written on each
coding sheet. Normally programs contain hundreds of
instructions. As a result, you would probably use a
number of coding sheets to write a complete program.
The first thing we will be concerned with is writing a
statement to tell the processor to assemble a machine
language instruction. All instructions have an address
in main storage which they will occupy when the object
program is being executed. Instructions also have an
op code and usually the address of one or more data
operands. For instance, take the case of an RR format
instruction which adds the contents of one general
register to those of another. This instruction would
begin at some address in main storage, have an op code
of hex 1A, and contain the addresses of two general
registers. The address of an instruction, its op code,
and the data addresses correspond respectively to the
following fields on the coding sheet: Name, Operation,
Operand. The entries on the coding sheet will be made
symbolically, rather than in machine language. Let’ s
discuss the concept of symbolic addresses first.

Notice that the first eight columns of the coding sheet
are called the name field. This field is used to give ^
symbolic names to the locations referred to by your ^
program. For instance, if your program contains a
routine to handle fixed point overflows, it would be <
simpler if you did not have to remember the machine
address of the routine. After assigning a name to the *
first instruction in this routine, you can then write a
symbolic branch instruction referring to that name. The
processor program, in converting your program to ,
machine language, will take care of remembering the
machine address of your symbolic name and will put it
in your object program whenever you refer to it. Sym­
bolic names are also referred to as either symbols or
labels.

2. Which of the following is most correct?
a. Symbols or labels should be assigned to any

instruction to which you will branch or any data
field on which you will operate, in your program. 1

b. Symbols or labels should be given to every
instruction or data field in your program.

• • •

a.

You understand that the reason for assigning labels is so
you don’t have to remember or compute the machine
location of the instructions or data fields you want to
refer to. As a result, you don’t have to give labels to
every instruction. When branching to some routine,
only the first instruction of that routine needs to have a
label. Another concept concerning labels is that the
symbolic name should be meaningful. You can use any
name you wish when assigning a label to an instruction
or a data field. If the name isn’t meaningful however, it
will be difficult for you or anyone else reading your
program to figure out what you were doing.

3. One of the fields of a data record contains the hours
worked by an employee. Which of the following
would be a more appropriate label for this field?
a. FIELDA
b. HRSWKD

• • •

b.

You could use the name FIELDA to refer to a field
containing the hours worked. It certainly saves you the
trouble of remembering or computing its address.
However, if someone else had to examine your program,
he would have difficulty in knowing what FIELDA
refers to.

6

HRSWKD would be a better name for a field containing
the number of hours worked. You may be wondering why
we abbreviated as we did, rather than writing out both
words for the symbolic name. The reason is that most
processors put a limit on the length of a symbol, and do
not allow the use of blanks or special characters. The
coding sheet you have been looking at was designed for
an assembler provided with an operating system.
Up to eight characters can be used for a label.

4. Referring to the coding sheet you have been looking
at, which of the following labels could be used to
refer to a field containing an employee’s serial
number ?
a. MAN NO
b. MANNO
c. MANNUMBER
d. EMERS*

• • •

b.

MANNO would be a meaningful label for an employee’s
serial number. Unlike the others, it follows all the
rules: It contains eight or less characters, with no
blanks or special characters. Note that although the
name field is eight columns long, the label can be
shorter.

Note: $, # , and @ are not special characters in
System/360.

Remember that the reason for assigning labels is so we
can refer to them later in our program. The processor
cannot remember or compute the machine address for
a symbol if we haven’t assigned the symbol to some
location in our program.

5. Suppose the following instructions represent some
program. If the last instruction is intended to cause
an unconditional branch back to the add instruction,
what must be done ?

NAME OPERATION OPERAND

ADD FIELDA, FIELDB
SUB FIELDA, FIELDC
MULT FIELDA, FUDFAC
BR BEGIN

a. Nothing since the processor will figure out that
we want to branch back to the beginning.

b. BEGIN must be written in the name field of the
Add instruction.

• • •

b.

If you use a symbol as the address of some instruction or
data field, that symbol must appear in the name field on
your coding sheet. In the example in Frame 5, the
symbol BEGIN must be in the name column of the ADD
instruction. Otherwise the processor program won’t
know what address to put in the Branch instruction. We
will discuss how the processor keeps track of symbols
and their associated machine addresses later in this book.

You now know the following concepts concerning the use
of symbols in programs:

• Symbolic names are usually given to instructions or
data fields referred to in programs.

• A symbol cannot be used in the operand field unless
it also appears in the name field of one of your
symbolic statements. That is , you can’t refer to a
symbol in your program unless you have used that
symbol as the name of one of your instructions or
data fields.

• Symbols are usually restricted in length and may not
contain blanks or special characters.

• Within the preceding limitations, any symbol may be
used. However, symbols should be as self-explana­
tory as possible.

• The following terms are used interchangeably:
symbols, labels, names.

MNEMONICS AND OPERANDS

Each line on a coding sheet is one symbolic statement.
A symbolic statement can be an instruction, a data field,
or possibly just some information to the processor for
use during the assembly process. By assembly process,
we mean the time during which the processor translates
your symbolic program into machine language. The
operation field on your coding sheet tells the processor
whether the symbolic statement is an instruction or
something else. Although the name field of a symbolic
statement may be left blank, the operation field must
contain a ’ ’symbol” that is recognizable by the processor
program. If the symbolic statement is an instruction,
the ’’symbol” represents one of the computer’s operation
codes, and is called a mnemonic. The word ’ ’mnemonic”
derives from a Greek word meaning ”to remember” .
That is, it is easier to remember a symbolic op code
than it is to remember its machine language equivalent.

7

1. If L is the mnemonic for the System/360 Load |
instruction while 58 is its machine language op code
in hexadecimal notation, what would have to be put
in the operation field of the following statement ?
The assumption is that you want the processor pro- |
gram to assemble an instruction that will load a
fullword from MANNO into general register 4.

NAME OPERATION OPERAND

BEGIN 4, MANNO

a. 58
b. nothing
c. L

• • •

c.

If nothing is put in the operation field of the symbolic
statement, the processor won’t know if you want an
instruction assembled or a data field. If you want an
instruction, you must tell the processor this by placing
the mnemonic of that instruction in the operation field.

By writing an L you tell the processor to assemble a l
Load instruction. You place the mnemonic for the in­
struction in the operation field of the coding sheet. Each
System/360 instruction has its own unique mnemonic.
You could not use the mnemonic L to load a halfword
into a general register. You would have to use the
mnemonic LH which represents the Load Halfword in­
struction. The letter H in a System/360 mnemonic is
used to distinguish the instructions that process
halfwords from those that process fullwords.

2. If A is the mnemonic for the instruction that adds a
fullword to a general register, which of the
following will add a halfword to a general register ?
a. AH
b. A
c. H

• • •

a.

The mnemonic AH is the unique "sym bol” for the Add
Halfword instruction, just as the mnemonic A is the
unique "sym bol" for the Add instruction. You should
now realize that just as each instruction has a
particular machine language op code, it also has a
particular meaningful mnemonic.

In the preceding fram es, we discussed the use of
mnemonics to tell the processor to assemble an
instruction. By use of "sym bols" other than machine
instruction mnemonics, you can direct the processor
to do other things such as to assemble some data
constant for use in your program. However, the
"sym bol" would have to be something recognizable by
the processor program. Since the processor
"assem bles" machine language object programs from
symbolic statements, we will refer to it from here on
as the assembler program. For now, take a look at
your System/360 Reference card (form # X20-1703).
Note that the card begins with a list of the instructions
making up the System/360 standard instruction set.
Next to the name of each instruction is its mnemonic.

The operand field on the coding sheet is used to write
the remainder of the instruction. That is , the op code
of an instruction is represented in the operation field by
a mnemonic, while the location of the data to be
operated upon is put in the operand field.

3. If you wanted to write an instruction to add the
contents of FIELDA to the contents of general
register 4, the symbol "FIELD A" would be
written in the
a. name field
b. operation field
c. operand field

• • •

c.

The operand field on the coding sheet is used to write
the addresses of the data being operated upon. In our
case, FIELDA is the symbolic address of some data we
wanted to add into register 4. So you were right if you
picked answer c. We can’t go much further into dis­
cussing the operand field without bringing in the partic­
ulars of some specific symbolic language. So we’ll hold
off for now until you begin studying the assembler
language later in this book.

At this point, you know that the programmer writes his
symbolic statements on a coding sheet. Each line on the
coding sheet represents one statement. If the statement
is a machine instruction, you would put the mnemonic
for that instruction in the operation field of the coding
sheet. The addresses of the data to be operated on
would be put in the operand field. These addresses
could be either symbolic or actual. In the following
example, MVC is the mnemonic for the Move
Characters instruction, which is the SS format (Storage
to Storage). HRSWKD is an example of a symbolic
address, and decimal 2048 is an example of an actual
address. Note that the term "actual" does not
necessarily mean machine language, since the System /
360 doesn’t operate with decimal addresses.

NAME OPERATION OPERAND

LABE LX MVC 2 048(6), HRSWKD

If you wanted to branch to this instruction from
someplace else in your program, you would need an
entry in the name field such as LABELX. This symbol
could then appear in the operand field of a branch
instruction.

4. Each of the statements on the coding sheet is
punched into an IBM card. The deck of cards that
results is known as the source program or source
deck. Which of the following is the function of the
source deck?
a. serves as input data for the assembler program.
b. is loaded into the computer to be executed.
c. is translated into machine language by the

assembler one card at a time and executed.

• • •

a.

The sole function of the source deck is to serve as input
data for the assembler program. None of the instructions
in the source program are executed during the assembly
(translation) process. The output data of the assembler
will be a machine language program called the object
deck. The object deck is your program converted into
machine language. It can be loaded, either now or later, fj
into the computer for execution. There is no need to
reassemble your program each time it is executed. The
object deck can be used over and over again until you
make changes in the program. For a discussion of the
assembly process proceed to the next topic.

THE ASSEMBLY PROCESS

This series of frames will help you acquire an under­
standing of the assembly process. In other words, you
will gain an insight as to how source programs are con­
verted to object programs.

To obtain an object (machine language) program from
your source (symbolic) program, a processor
(assembler) program must first be loaded into the
computer’s main storage. As the assembler is being
executed, it will read in the cards of the source deck
and convert them to the machine language program that
will be the object deck. There are actually two outputs
from the assembly process . One is the object program,
while the other is a program listing.

As was mentioned earlier, the computer, while executing
the assembler program, is acting as a super-clerk. One
of the clerical tasks o f the assembler is to assign
machine addresses to symbolic names, and to remember
these addresses and place them in the object program
whenever the symbol is used in the operand of the source
statement.

For instance, when the assembler encounters the follow­
ing source statement, it must assign a machine address
to the symbol BEGIN.

NAME OPERATION OPERAND

BEGIN MVC 88(7),2048

The assembler must remember the address of BEGIN so
that it can insert that address when it encounters the
following branch instruction.

NAME OPERATION OPERAND

BC 15, BEGIN

To be able to assign a machine address to a symbol,
assemblers contain a program counter. This counter
is called the Location Counter, and keeps track of the
addresses in the source program, as it is being assem­
bled. The Location Counter is incremented as each
symbolic statement is processed. The length, in bytes,
of main storage area required by each statement deter­
mines how much the Location Counter is incremented.
For instance, assume that the Location Counter is set to
decimal 1000 when the following symbolic statement is
read by the assembler.

NAME OPERATION OPERAND

BEGIN MVC 88(7), 2048

MVC is the mnemonic for the Move Characters
instruction, which uses the SS format.

9

1. When the assembler encounters the preceding
statement it will
a. assign the address of decimal 1000 to the symbol

Begin, and step the Location Counter to decimal
1006.

b. assign the address of decimal 1000 to the symbol
Begin, and step the Location Counter to decimal
1001.

c. it will place the MVC instruction in location
IOOOiq , and execute the instruction

• • •

Whenever the assembler finds an entry in the name field,
it assigns the setting of Location Counter to that name.
It then increments the counter by the number of bytes
required by the statement. The MVC instruction in our
example is six bytes long, and the Location Counter was
stepped from 1000 to 1006.

2. Which of the following statements is correct?
a. the Location Counter is a register in the

System/360 used to keep track of the instruction
being executed.

b. the Location Counter is a data field in the
assembler used to keep track of the storage
locations assigned to the source statements.

• • •

b.

The instruction address in the PSW (bit 40-63) keeps
track of the instruction being executed.

The Location Counter is just a data area within the
assembler, and is used as a counter. The assembler
will give it some initial setting and step it as required
during the assembly process. It’s main function is to be
able to assign an address to symbols as they are
encountered in the source program. The object program,
when loaded into the computer later on, might actually
reside at locations different than those assigned at
assembly time. This is known as program relocation,
and will be discussed separately later in this book.

For now, you know that the assembler uses its Location
Counter to assign addresses to symbols. However, the
assembler needs to remember what address it assigned
to a symbol. It canTt use the Location Counter to
remember since the counter is being incremented by
each symbolic statement. So what is necessary is
another data area within the assembler program. This
area is referred to as the Symbol Table. When a symbol
is encountered in the name field of a symbolic statement,

I that symbol as well as the Location Counter setting is
| placed in the Symbol Table. The area of storage used
j for the Symbol Table is limited. It is for this reason
I that assemblers put a limit on the length of symbols and

how many symbols may be used in a program.

When the assembler reads the following symbolic state­
ment, it must replace the symbol BEGIN with a machine
address.

NAME OPERATION OPERAND

BC 15, BEGIN

3. The assembler obtains the machine address for
BEGIN from the:

| a. Symbol Table
b. Location Counter

• • •

a.

Whenever the assembler finds a symbol in the operand
field, it goes to the Symbol Table. When it locates the
symbol in the Symbol Table it gets its machine address
and places it in the assembled instruction. Of course,
the symbol BEGIN must have appeared somewhere in
the source program, in the name field.

This is a criterion frame. If you answer this frame
correctly, you have mastered the relationship between
symbols, Location Counter, and the Symbol Table.

Assume that the Location Counter is sitting at
hexadecimal 128. Show the symbols and their
hexadecimal addresses that will be put in the symbol
table as a result of processing the following statements
only. Note: You could use your Reference Data card

- to figure out instruction lengths, but that would take
more time than itTs worth in this case. We have shown
the length (in halfwords) to the right of each instruction.

NAME OPERATION

SANDY CR
BC

NUMB2 CR
BC

NUMB3 CR
BC

OPERAND LENGTH

1,2 1
2 , MVAB 2
1 .3 1
2 , MVAC 2
2 .3 1
2 , MVBC 2

• • •

SYMBOL TABLE

SYMBOL ADDRESS

SANDY 128
NUMB2 12E
NUMB3 134

10

As a result of processing the symbolic statements, the
three symbols shown above were placed in the symbol
table. Their corresponding addresses (shown in hex) i
are also put in the symbol table. Notice that the three
symbols in the operand field (MVAB, MVAC, MVBC) are
not in the answer. Actually, they would have to be put
in the symbol table in order to assemble the symbolic
program. They would be placed in the symbol table
when the assembler processed the symbolic statements
that had those symbols in the name field.

There are two types of assemblers used with IBM
computers: single phase and two phase. The
assemblers you’ll be working with as you program the
System/360 are two phase assemblers. Single phase
assemblers can only process source programs in which
symbols are defined in the name field prior to being
used in the operand at a statement. Two phase
assemblers can process statements which have symbols
in the operand even though that symbol wasn’t in the
name field of an earlier statement. However, even with
two phase assem blers, the symbol must appear in the
name field somewhere in your source program. The
first phase of a two phase assembler does not produce
an object program. It is used to read the source
program and buildup a complete symbol table. It does, ̂
however, have an intermediate output consisting of
partially assembled statements. The intermediate
output from the first phase is used as input data for the
second phase. During this phase, the assembler
program uses the symbol table to complete the assembly
of the statements. The output of the second phase is the j
object program and program listing. |

II
4. What type of assembler is needed to process the

following source program ?

NAME OPERATION OPERAND

START 256
BEGIN BALR 11,0

USING *,11
L 3 , OLDOH
A 3 ,RECPT
S 3 , ISSUE
ST
EOJ

3, NEWOH

OLDOH DC F ’9 ’
RECPT DC F ’4 ’
ISSUE DC F ’6 ’
NEWOH DS F

END BEGIN

a. Single Phase Assembler
b. Two Phase Assembler

• • •

b.

A two phase assembler is needed to assemble the pro­
gram shown in the preceding frame. In the first phase,
the assembler would put the symbols BEGIN, OLDOH,
RECPT, ISSUE, and NEWOH in the symbol table along
with their machine addresses. In the second phase, it
would assemble the object program by obtaining the
addresses from the symbol table. For instance, when
the statement with the mnemonic L is encountered in the
second phase, the assembler would look up the symbol
OLDOH. When the assembler finds it in the symbol
table, it would take the machine address and insert it
in the assembled instruction.

Let’s summarize what we have been discussing about the
assembly process.

• During assembly time, the assembler program is
being executed using a source program as input
data.

• The output data from the assembler consists of an
object program and its program listing.

• A location counter in the assembler is used to keep
track of the storage locations that will be used by
the object program.

• When a source statement contains a name, the
current setting of the location counter is given to
the label.

• Each label and the address assigned to it is placed
in the assem bler’s symbol table.

• System/360 assemblers are two phase assemblers.
• During phase 1, the source program is read, and

the symbol table is generated.
• During phase 2 , the symbol table is used to com­

plete the assembly, and produce the object program
with its program listing.

11

SECTION II

INTRODUCTION TO ASSEMBLER LANGUAGE CODING

There are certain fundamental coding practices that you should learn before you start
reading examples and trying your hand at it. These include such items as:

• Using the coding sheet format.
• Directing the Assembler to establish constants and work areas.
• Assigning a general register as the base register.

Since these practices are assumed to be new to you, the Self-Evaluation Quiz is at
the end of the section. You should read the entire section before taking the test, and
review indicated pages, to correct any errors, before continuing with Section III.

ASSEMBLER LANGUAGE CODING

Learning Objectives

When you have completed this section and have taken the Self-Evaluation quiz, you will
have demonstrated that you can:
• Tell the assembler where (in storage) to start assembling a program.
• Assign a register as the base register for a program segment.
• Define areas of storage to be used for input, output and work.
• Define constants to be operated on by instructions in a program.
• Insert comments, in a program, so that another programmer can easily relate

groups of instructions to blocks in a program flowchart.

’ ’STATEMENTS” ON THE CODING SHEET

Examine one of your coding forms. Notice that columns
1-71 are called the ’ ’statement” . The ’’statement” is the
portion examined by the assembler and used to produce
the object deck and program listing. Column 72 is
always left blank and columns 73-80 are only used to
identify the program and put the source cards in
sequence. This identification-sequence field (cols.
73-80) is not checked by the assembler, although it may
appear in the program listing.

1. Look at your coding form and tell me how many
fields are contained in a statement.__________________

• • •

Four; cols. 1-71 contain the statement

2. As you can see a statement (cols 1-71) has four
fields: name, operation, operand, and comments.
All of these fields usually appear in a program
listing. Three of them are used by the assembler
to produce the object program. From what you
know about symbolic programming, which field
should have no effect on what is put in the object
program ?

• • •

Comments

Comments are used for the program listing, and are an
aid in de-bugging or analyzing a program. Note that the
fields of the statement on your coding form are separated
by a blank column. A blank is used as a de-limiting or
separator character in our assembler language. That is
why you are not allowed to use blanks in a label. The
coding form is a free-form sheet. Although the operation
field begins at column 10 of your form, it can actually
begin in an earlier column as long as one blank column
separates it from the name field.

3. If a four character field is used as a label, the
operation field can begin in column___________ .

• • •

6

As long as you leave one blank column, a statement field
can begin in any column. However, for ease in reading
the program listing, it is recommended that you use the
area shown on the form.

4. You can get comments in your program listing by
leaving at least one blank column between your
comments and th e___________ field.

• • •

Operand

Besides leaving a blank column after the operand field,
there is another way of getting comments in your listing.
An asterisk (*) in column 1 of a statement identifies that
entire statement as a comment field.

Note: For assembly, one card is punched for each
statement on the coding sheet. Column 1 on the card
corresponds to column 1 on the coding sheet, 2 to 2, etc.

5. No object coding is genérated and the comment is
printed on the listing. Figure 1 in your sample
program book shows a listing in which comments
have been included in both ways. Note that where
there are two or more consecutive comment cards,
each one requires an____________in column______ .

• • •

Asterisk; 1

Except for comment cards (those with an * in column 1)
all cards contain statements for use by the assembler.
These statements fall in two main categories: machine
instructions and assembler instructions. A machine
instruction statement is used to tell the assembler to
generate the object (machine language) coding for a
System/360 instruction.

6. For instance, the following statement would tell the
assembler to generate the machine coding for an
unconditional branch instruction. As such, it is
a(n) (machine/assembler) instruction.

RTN1 BC 15, BEGIN

• • •

Machine

Any statement that tells the assembler to generate the
object coding for a System/360 instruction is called a
machine instruction. An assembler instruction on the
other hand is any statement that tells the assembler to
do something other than to generate a System/360
instruction.

13

7. The following (is/is not) an example of an assembler
instruction.

RTN1 BC 15, BEGIN
• • •

Is not

There are many types of assembler instructions just as
there are many machine instructions. Some assembler
instructions cause coding to be generated for the object
program and some do not. The following are some uses
of assembler instructions:

• Generate data constants for the object program.
• Reserve storage locations within the object program

for use as input-output areas or as work areas.
• Control the assembly process; such as setting the

location counter to some value.
• Control the listing by telling the assembler to

overflow to a new form.
• Telling the assembler when you intend to use a label

that is defined in another program, to which you
will link your program.

All statements, whether machine instruction or
assembler instruction, require a mnemonic to be
entered in the operation field.

8. Look at the list of instructions on your System/360
reference data card. Any entry in the operation
field of a source statement that is not shown on the
reference card may be the____________ for some
_____________________ instruction.

• • •

Mnemonic; Assembler

9. The three fields of a statement that can produce
coding in the object program are the name,
operation, and operand. Of these, the only field
that must always be entered is the____________ .

• • •

Operation

A mnemonic in the operation field of a statement tells
the assembler that it represents some specific machine
or assembler instruction. The mnemonics representing
machine instructions are shown on your System/360
reference cards. For assembler instruction
mnemonics, you would have to refer to an Assembler
Language manual.

10. Depending on what mnemonic appears in the
operation field, entries may be required in the
name and/or operand fields. Usually, entries are
not required in the name field unless you want to
define some______________________________ •

• • •

Label or equivalent (such as symbol)

11. All statements require entries in the operation
fields. The name field usually doesnTt require an
entry unless you want to define some label so that
you can refer to it elsewhere in your program.
When a label has been defined by a name entry, the
location of that statement can be used by writing
the label in the_____________ field.

• • •

Operand

A label in the operand field of a statement represents
the symbolic address of the statement which has that
label in its name field. The operand field of a statement
is the body of the machine or assembler instruction.
Most statements require some kind of entry in the
operand. The operand of many machine instruction
statements contains the address of the 1st and 2nd
operands. Note at this point, that the term Moperandn
has two meanings. With respect to System/360
instructions, it means the data that is to be operated
upon. Most System/360 instructions have two
operands. With respect to Assembler Language, an
operand is one of the fields in a source statement.

Let’s get back to machine instruction statements. The
addresses of the data can be represented either by a
symbol, an actual value, or a combination of the two.

12. The following machine instruction statement repre­
sents an RX format instruction. An______ address
is used for the general register and a ____________
address for the data in storage.

A 1, FIELDA

Actual; Symbolic

14

As was stated, the operand of a machine instruction
statement can contain either actual or symbolic
addresses. Your reference card shows you what to
write for any machine instruction when you use actual
addresses. Actual addresses are usually shown
decimally. For instance, the following RR format
instruction shows two actual addresses. Both are
decimal rather than hexadecimal numbers.

AR 10,15

13. In the program listing, however, they would be
shown in hex. Using the information on your
reference card, show how the following machine
language instruction would be coded in Assembler
Language.

5A F 2 A 010

The first thing you would have had to do is search the
list of instructions for an op code of 5A. It is the
second instruction down. You were then able to see its
mnemonic was A. It uses the RX format, and the
operand is written R l, D2(X2,B2). The instruction from
the previous frame can now be written in this fashion.
Note, however, the use of decimal rather than
hexadecimal numbers.

• • •

A 15,16(2,10)

Looking at the operands in the list of standard
instructions on your reference card, there are a couple
of items to note. First, the sequence in which the
fields are written is not the same as in machine
language. For instance, the displacement field is
written prior to the index or base registers. Second,
a field that is ignored during instruction execution is
not written in the symbolic sequence. For instance,
note the Load PSW (mnemonic LPSW). This instruction
takes a doubleword from main storage and makes it the
current PSW. The LPSW instruction uses the SI format,
but the 12 field (the second byte of the instruction) is
ignored. Accordingly, it is not in the symbolic format
on your reference card. It is written:

LPSW D1(B1)

14. Here are a few assembler language instructions of
various formats. Use the reference card to tell
yourself what their machine language formats are.

ALR 6,11
AL 7,16(2,3)
NI 15(4), 21
BXH 3,10,31(1)

• • •
6 B; 5E 7 2 3 010;

86 3 A 1 OIF

You have just noted the relationship of symbolically coded
instructions to the RR, RX, RS, and SI formats. Next,
note the SS format. This is a little different because of
the length code. By referring to the Basic Instruction
Formats chart in your System/360 reference card, you
can see that the SS format can have either an 8-bit length
code (L), or two 4-bit length codes (LI and L2).

15. Here’s an SS instruction. How would it appear in
machine language?

NC 2(17,1),19(1) ______________________
• • •

D4 10 1 002 1 013; OpCode L B D B D
1 1 z z

(Don’t forget that the L code is one less in machine
language.)

When an actual address or number is used, we say that
you are using a self-defining value or self-defining term.
The self-defining values we’ve been using have been
decimal terms such as 10 instead of hex A. In
Assembler Language, a self-defining or actual value can
be used in the operand field and expressed as either a
decimal, hexadecimal or character value.

To express a self-defining value as something other than
decimal, the value is enclosed in single quotation marks
and preceded by a descriptive letter. For instance, to
tell the assembler that a self-defining value is
hexadecimal, we precede the value with the letter X.
A character value is preceded by the letter C.

15

16. The following are some self-defining (actual) values.
Indicate whether they are decimal, hexadecimal, or
character values.
X ’100’ ____________________________
100 _________________________
Cf ? T ____________________________

• • •

Hexadecimal; Decimal; Character

The entries in the operand of your source statement will
be symbolic, self-defining, or a combination of both.
When using a self-defining value, you can express it as
any of the three types: decimal, hexadecimal, or
characters. Your usage of them will usually dictate
which type of self-defining value will be used. For
instance, to add the contents of general register 14 to
those of general register 11, you could write:

AR X ’B ’ ,X ’ET
However, you would probably prefer to write it as:

AR 11,14

Usually hexadecimal self-defining values are used when
you, as a programmer, wish to manipulate individual
bits. You won’t need to do this in the coding problems
for this course, so you needn’t concern yourself with it
at this time. How about character values? When would
you use them ?

Let’s illustrate one case by using the Compare Logical
instruction (SI format). This instruction can be used to
compare EBCDIC information. Suppose that in process­
ing a particular card file, you are only looking for
records which have an asterisk punched in column 1 of
the card. Assume the card input area is labeled CARD
IN. The Compare Logical (SI Format) instruction could
be used as follows:
CLI CARDIN, C’*’ Does column 1 contain an

asterisk?
BC X ’8’ , CDROUT If so, branch to process

card.
BC 15,READCD If not, branch to read

another card.

17. What would you be doing if, instead of the first
instruction shown above, you wrote:

CLI CARDIN, C’C’
• • •

Looking for cards which have a C punched in
column 1.

We have been discussing the coding sheet and its
entries. The coding sheet can be summarized as
follows:

• Columns 1-71 of the coding form are called a
statement.

• The statement has four fields: name, operation,
operand, and comments.

• Although there are specific areas on the coding
sheet, the field can be written free-form by allowing
one blank column between them.

• If there is an * in column 1, the entire statement is
a comment.

• An entry in the name field is optional. A label
(symbol) is put here if you wish to give it a symbolic
address for reference.

• The operation field entry is mandatory (except for
comment cards).

• The operation field is given a mnemonic represent­
ing either a machine instruction or an assembler
instruction.

• The entries in the operand field depend on the
specific type of statement.

• Machine instruction statements may have symbols
or self-defining values as entries.

• Symbols entered in the operand fieldmust be defined
in the name field of a statement.

• Self-defining values may be decimal, hexadecimal
or character values.

• 10 is a decimal self-defining value.
• X ’10’ is a hexadecimal self-defining value.
• C’# ’ is a character (EBCDIC) self-defining value.

16

SYMBOLS

I We have been discussing the use of both symbols and
self-defining values in the operand of a statement. As

r you know, a symbol is a symbolic address, and as a
 ̂ general rule must be defined as the name of some state­

ment in your program. Since you will be using symbols
r in any program you write, you should know which

symbols are valid and which are invalid. The rules for
i symbols are relatively simple.

• Symbols may contain from one to eight alphameric
characters (A -Z , 0 -9 , $, # , and@).

• The first character must be alphabetic.
* • Symbols may not contain any special characters or

imbedded blanks.

Which of the following are not valid symbols ?
a. ALPHA f. 4F
b. Z g. FIVER
c. FIELD1 h. RDACARD
d. RTN#1 i. RTNN04
e. FLD A j. 1DER

• • •

e, f, j

Here's how to determine the address assigned to each
symbol:

The location counter is incremented after each statement §
is processed. The amount that is incremented depends |
on the number of bytes required by the object program
for each statement. For example, a machine instruction ̂
using the RX format would cause the location to be in­
creased by four.

If the statement is named, the setting of the location
counter (before being incremented) is assigned to that
symbol. Then the location counter is increased. The
symbol and the assigned location are recorded in the
assem bler's symbol table. Whenever the symbol is used ::
in the operand of a statement, the assembler will look it
up in its symbol table and obtain the symbol's assigned
address.

2. Assume that the location counter is set at a hexa­
decimal 1000. Given the following list of statements,
state the hex address assigned to the symbols
BEGIN and FINISH.

BEGIN MVC FLDA, FLDB
L 1,FLDB
AR 1,1
STH 1, FLDB

FINISH BC 15, BEGIN

• • •

1000; 1010

| Besides placing the address "attribute" of a symbol in
the symbol table, the assembler also puts in its length
"attribute". That is , when the assembler encounters
the statement named BEGIN (see above), it will put the
following in its symbol table:

; • The symbol itself - BEGIN
• Its address "attribute", the current location counter

setting - 1000
• Its length "attribute" - six bytes (because of SS

format)

3. What is the length "attribute" of the symbol
FINISH ? _______________________________________

• • •

4 bytes (because of RX format)

What happens now when the assembler finds a symbol in
the operand of a statement? W ell, it goes to the symbol
table and gets its address. If the length of the field
named by that symbol is necessary (SS format), it too
can be obtained by the assembler program. There are
two more concepts concerning symbolic addressing that
you must master before proceeding in this course. They
are: the significance of an * as a special symbol and the
meaning of relative addressing. First, let's look at the
asterisk. When the asterisk is used in the operand rather
than a symbol or self-defining value, the assembler
treats it as a special symbol whose value is the current
setting of the location counter. For example:

BC 1 5 ,*

17

The previous instruction is recognized by the assembler
as a machine instruction. The asterisk is recognized as
a special symbol meaning the current Location Counter
setting. Since this setting will be the assumed location
of the BC op code, the assembler will assemble an
unconditional branch to itself in the object program.

To illustrate this point further, assume that the location
counter is set to 2884, and the next instruction to be
assembled is

BC 1 5 ,*

The location of the op code of this instruction is , there­
fore, 2884. Since the * assumes the value of the location
counter, the instruction becomes, in effect,

BC 15,2884

This is an unconditional branch to location 2884 (op code
BC), and thus the instruction is branching to itself. This
will create an endless loop until some event, perhaps an
interrupt, causes us to leave the problem state.

4. Assume the location counter is set to 1112. What is
the equivalent form of

L 1 ,*

• • •

L 1, 1112

5. What will this load instruction do?

• • •

It will load itself into Reg. 1 (This example has
little practical use. It is used only to illustrate a
point.)

An asterisk in the operand of a statement is always
assumed to represent the current setting of the Location
Counter. For machine instructions, this always means
the location of its op code.

6. What value will the * assume when this sequence of
instructions is executed ? Note that you are asked
to assume that the program has been assembled and
loaded back into the computer as an object program.

Current setting of Location Counter is X ’ lOO’ .

LH 1,FLDA
AH 1, F LDB
L 2 ,*

• • •

The Load instruction in the preceding frame will load
itself into general register 2. Since the original setting
of the location counter is 100 and the first two instruc­
tions are 4 bytes each, register 2 will be loaded with
the data found at address 108, which is the load instruc­
tion itself.

The asterisk is often used with a plus or minus value
such as:

BC 1 5 ,*+ 8 (RX format: 4 bytes)
A 1,FIELDA (RX format: 4 bytes)
ST 1,FIELDB (RX format: 4 bytes)

7. If an asterisk refers to the value in the location
counter (the op code of the BC instruction), *+ 8
would refer to a value eight bytes higher. The BC
instruction in the above example would cause an
unconditional branch to the instruction whose
mnemonic i s ________________ .

• • •

ST

The use of a plus or minus value with an asterisk or
symbol is called relative addressing. Relative address­
ing reduces the number, of symbols that you must have
in a program. The assembler program has a limit
(depending on storage availability) on the number of
symbols used. The use of symbols in a program also
increases assembly time because of the need to look up
the symbols in the symbol table. There is also the
time required to write it out at the end of phase 1.
Symbols are still needed to refer to locations that are
quite far apart in your program. But where you want to
refer to a location just a few bytes away, relative
addressing can save you labels.

8. Write the necessary operand to cause the BC
instruction to branch back to the MVC instruction
without the use of a defined symbol.

MVC FLDA,FLDB
L 1, F LDB
AR 1,1
STH 1,FLDB
BC 15,

• • •

*-1 6

Relative addressing can be used with symbols as well
as with the asterisk.

108

18

9. With the use of symbol BEGIN and relative
addressing, write the necessary operand for the
BC instruction to branch to the L instruction.

BEGIN MVC FLDA, FLDB
L 1,FLDB
AR 1,1
STH 1, F LDB
BC 15,

• • •

BEGIN+ 6

LetTs summarize our discussion of symbols:

• Symbols are defined in the name field using from
one to eight alphameric characters (A -Z , 0 -9 and
$, # and@).

• The first character of a symbol begins in column 1
and must be an alphabetic character.

• Symbols may not contain special characters or
imbedded blanks.

• When a symbol is defined, the setting of the location
counter becomes its address value.

• Symbols are recorded in the assem bler’s symbol
table with their address and length values.

• Undefined symbols cannot be used.
• The asterisk is used as a special symbol whose

value is the current setting of the Location counter.
• Relative addressing can be used with either the

asterisk or symbols.
• FIELDA+ 8 is an example of relative addressing.
• Relative addressing reduces the number of symbols

used in a program.

BASE REGISTER AND DISPLACEMENT ASSIGNMENT

In the System Review text, you learned that one of the
important features of System/360 was program repeat­
ability. This, in turn, was due to the fact that the ad­
dress of each instruction is composed of a base address
and a displacement, and the base address is contained in
a general register. In order to locate a program in a
different area of storage from that assigned at assembly
time, all we need to do is start it off with a different
base address.

In this section you will learn how a base address is
specified, and how a general register is assigned as the
base register for the program.

The first instruction that you need to learn about is an
assembler instruction called USING. The second oper­
and of this instruction gives the number of a general
register, and the instruction tells the assembler that
you are using that register as the base register.

The other operand tells the assembler what base address
to use as the contents of the specified register. Thus,
the assembler can calculate displacements and assign
addresses to the symbols in the symbol table, as it
assembles the program.

For the moment, we will leave the first operand of the
USING instruction blank, and only show the one that
specifies the base register:

USING , 4

1. This instruction tells the assembler that you are
using general register 4 as the base register.
Which register is specified by the following
(incomplete) assembler instruction:

USING , 11

• • •

General register 11

Now for the first operand of the USING instruction. If
we specify it (e. g. , X ’800T or 2048) by a self-defining
value, it is the address that the assembler will assume
to be the base address: Every label will be given an
address based on this fixed value (plus a displacement)
and our program will not be relocatable.

19

We need a way to specify a base address that is not a
fixed value, but rather depends on the location of the
program in storage when it is loaded at object time:
This value is the setting of the location counter,
specified by *.

If we write USING *, 7 we will be telling the assembler
to assume that the value of the location counter setting
is to be the base address, and that the general register
7 is to be the base register.

So far, so good. Regardless of where in storage our
program is loaded (located), we have arranged for the
setting of the location counter (the beginning of the pro­
gram) to be the base address and have specified the
register that holds it. Incidentally, since USING is an
assembler instruction, it does not become a part of the
object program, and, therefore, does not take up any
room in storage.

The USING instruction merely tells the assembler that a ,
certain register is the base register and to assume that
it contains a certain value (such as the setting of the
location counter).

We havenTt actually arranged for the setting of the
location counter to be placed in a register. We do it with
a machine instruction, called "Branch and Link" (regis­
ters), whose mnemonic is BALR.

The effect of BALR is to store the address of the next
machine instruction in one register (specified by the R1
operand) and branch to an address contained in another
register (specified by the R2 operand).

But if the R2 operand is 0, no branch occurs: the effect
of the BALR in that case is simply to store the address
of the next machine instruction in the register specified
by R l.

For example, BALR 2 ,0 stores the address of the next
machine instruction in general register 2, with no
branching.

2. What would BALR 5 ,0 do ?
I

• • •

Store the address of the next machine instruction in /
general register 5 and would not branch.

Note: When the BALR instruction is being assembled
the address of the next machine instruction is the setting
of the location counter. Thus, if we follow BALR 5 , 0
with USING * ,5 we place the setting of the location
counter in register 5, and we tell the assembler that
the setting is the base address and that we are using
register 5 as the base register.

Here is another example:

BALR 2 ,0
USING *, 2
L 4, FIELDA
A 4,FIELDB
ST 4, FIELDC
BC 15, BEGIN

3. The BALR places the address of the next machine
instruction in general reg iste rs . Since USING is
an assembler instruction, not a machine instruction,
which instruction’s address will become the base
address for the program?

• • •

The address of the L 4,FIELDA instruction
labelled BEGIN.

In the above example, the address of the Load
instruction at BEGIN is placed in register 2, no branch
is taken, and the computer will execute the Load
instruction next. This occurs at object time. At
assembly time, the USING statement tells the assembler
to assume that register 2 will contain the current setting
of the Location counter.

4. Suppose that the location counter is initially set at
X T1000f; the assembly of the BALR instruction,
itself, will cause the location counter to step up 2
bytes, and the setting will b e ____________ .

• • •

X f1002T

5. Since the location counter was increased by two
after processing the BALR statement, it is sitting
at X f1002f when the USING statement is being pro­
cessed. Since the USING statement doesn’t affect
the location counter, the symbol BEGIN is assigned
an address value of X f_______ ’ .

• • •

X ’1002’

Note that we said that the assembler was told to assume
that X ’1002’ would be in register 2. Depending on
where the object program is subsequently loaded, the
value that is put in register 2 by the BALR instruction
may vary. Regardless, however, of what actual value
is loaded into register 2 by the BALR, it will always be
the address of the next instruction. Since displacement
value is always relative to the base address, it doesn’t
make any difference what actual value is placed in the
base register. The use of the BALR instruction will
always allow us to relocate programs without having to
change displacement values.

20

Since displacement values are always positive numbers,
we can’t expect the assembler to compute the displace­
ment for any symbol whose storage address is less than
the assumed base address. For instance, you can’t do
this:

BEGIN BALR
USING
L
A
ST
BC

4 ,0
* ,4
1,FIELDA
1 jFIELDB
1,FIELDC
15, BEGIN

You can’t use the symbol BEGIN in the BC instruction
because BEGIN has an address value that is two less
than the base address you told the assembler you were
using. Of course, there shouldn’t be any reason for
ever wanting to branch back to BEGIN. The base ad­
dress only needs to be loaded once.

Sometimes you may be involved with a program that
uses more than 4096 bytes. In this case, you will need
more than one base register. With several USING
statements and relative addressing, you can tell the
assembler which registers to use and what will be their
contents.

For instance:

Assume the location counter is initially set to X ’ 1000’ .

BALR
USING
USING

BEGIN L

4,0
* ,4
*+ X ’1000’ ,5
1 jFIELDA

loaded at object time in the previous example.
Register 5 could be loaded with an address 4096 bytes
higher than that in register 4 by the following:

BALR 4 ,0
USING * ,4
USING * + X ’1000’ ,5

Register 5 would be loaded with a value of X ’800’ by
this instruction:

LA 5 , 2048

Register 5 would be loaded with a value of X ’2002’ by
this instruction: (Assume registers 4 and 5 contain
X ’1002’ and X ’800’ respectively, prior to the instruction.
Note that calculation of the final address involves adding
the D 2, X 2 , and B2 components, of the instruction.)

LA 5 , 2048(4,5)

Let’s summarize our discussion of base register and
displacement assignment:

• The assembler cannot assign base registers and
compute the necessary displacement values for your
symbolic addresses unless you provide the
necessary information.

• The USING statement provides the assembler with
the address of your base register and the value of
the base address.

• The following statement tells the assembler that the
address of the next sequential byte in the object
program will be in register 7, which can be used as
a base register.

USING * , 7

6. The first USING statement tells the assembler to
assume the address of the Load instruction will be
(at object time) in register__________ . The second
USING statement tells the assembler that register 5
will contain an address of X]_____ ’ .

• • •

It is up to you to see to it that the base register is
loaded at object time.
The BALR instruction is normally used to load the
base register.
The following statements will provide the necessary
information at assembly time and take the necessary
action at object time:

4; X ’2002’

Since the location counter was initially set to X ’1000’ ,
it will be at X ’1002’ as the two USING statements are
processed. The first one says that register 4 will
contain X ’ 1002’ . The second USING statement says
that register 5 will contain * + X ’1000r
(X ’1002’+ X ’1000’). Notice that only register 4 will be

BALR 7, 0 Loads base register at object
time.

USING * ,7 Tells assembler at assembly
time.

You will be seeing the USING statement in every
program listing throughout this course. As a result,
you will become quite familiar with it.

21

THE START AND END STATEMENTS

Two more statements that you should understand before
you can write a program or analyze a listing are the
START and END statements. Both of these are assem­
bler instructions and produce no coding in the object
program. Up to this time, we've been telling you to
assume that the location counter has a particular value.
Now you will see how the location counter is initially set.

Let's take a look at the first of these assembler instruc­
tions: the START statement. This card is usually the
first card in the source deck. Besides indicating the
beginning of the source deck, the START statement card
is used to:

Another reason for using the START statement is to
give your program a name. There are two reasons for
this:

• To provide a means of branching to the beginning of
your object program after it has been loaded.

• To provide a way for another program or program
segment to link to your program.

Just as the START statement is the first card of your
source program, the END statement will be the last
card. The mnemonic of END tells the assembler that
the assembly is finished.

• Give a name (symbol) to the program.
• Provide the initial setting to the location counter.

If the operand of a START statement is blank, the location
counter is initially set to zero by the assembler. Since
the lower storage locations are permanently assigned
locations for such things as old and new PSW's, it is
necessary to set the Location counter to a higher value
(See the Permanent Storage Assignment chart on your
System/360 reference card).

* * *
1. Given the following, the assembler will assume that

register 7 will contain a base address value of
X'

PROGA START X'FOO'
BALR 7,0
USING *, 7
L 4,FIELDA

• • •

X'F02'

The operand of the END statement usually contains the
address of the first instruction you wish executed. It
may be left blank. In this case, control will pass to the
first byte in your program.

instance:

BEGIN START X'1000'
BALR 4,0
USING *,4
L 2, FIELDA

$
f

END
r

BEGIN

Since BEGIN will be the beginning of this program
did the END statement require an operand ? Yes
or No.

• • •

No

2. Write the necessary statements to:
1. Initially set the location counter to decimal 2048.
2. Tell the assembler to use register 4 as a base

register.
3. Load the base register at object time.

4. You have not yet seen how data fields or data con­
stants are defined. However, it is entirely possible
that you might want to put some data ahead of the
instructions of your program. In this case, would
you want to leave the operand of the END statement
blank? Yes or No.

• • •

Either of the following could be the correct answer.
START 2048 START X'800
BALR 4,0 BALR 4,0
USING *,4 USING * 4

• • •

No

If you have data preceding the instructions in your pro­
gram, you would want to define a symbol as the name of
the first instruction you wanted executed after load time.
That symbol should then be written as the operand of
your END statement.

22

5. What should be entered as the operand of the END
statement? Choose one:
a. BEGIN
b. LETSGO
c. COMEON
d. Left blank

BEGIN START 2048
DS CL100 This reserves

LETSGO BALR 4 ,0 100 bytes of
USING * ,4 storage.

COMEON L

$

2.FIELDA

$

7
END

• • •

LETSGO

You haven't studied the DS statement. But, the comment
above stated that 100 bytes of storage were reserved. In
other words, BEGIN has an address value of decimal 2048
and LETSGO will have an address value of decimal 2148.
If you had left the operand blank or had written BEGIN,
the loader would have passed control to your object
program at the first byte of the storage area. I’m sure
that's not where you wanted to be. If you had written
COMEON, the loader would have put you at the Load
instruction. This is okay except you would have missed
loading your base register.

The use of the START and END statements is fairly
simple. Let’ s summarize. •

• The START statement is the first card in your
source deck.

• The START statement is used to provide the initial
setting of the location counter.

• If the operand of the START statement is left blank,
the location counter will be initially set to zero.

• The START statement should be named to provide
an entry point from some other program.

• If the END statement contains an operand entry,
the loader will pass control to that location in
your program.

• If the END statement is left blank, the loader will
pass control to the first byte of your object
program. This should necessarily be the first
instruction you wanted executed.

• A s a general rule, you should play it safe by putting
in the operand of the END statement the symbol of
the first instruction you want executed.

• The END statement terminates the assembly
operation.

DEFINING STORAGE AREAS

You have learned a good deal about the fundamentals of
the Assembler Language. You have examined the coding
sheet and the entries you must make on it. The use of
symbols and how to write valid ones has been explored.
You've seen that the operation field must always contain
the mnemonic for either a machine instruction or an
assembler instruction. By using the System/360
reference card, you can code machine instructions
using actual (self-defining) values. By means of the
USING statement, you were able to give the assembler
the necessary information for automatically computing
base register and displacements. This allowed you to
use symbolic addresses instead of actual values. By
means of the START statement, you were able to
initially set the value of the assem bler’s location
counter. With the END statement, you were able to
provide for a branch to the correct starting point in
your program after load time.

However, there is one more topic to be discussed
before you can begin to code source programs or
analyze a program listing. You know that a program
consists of more than just machine instructions.
Instructions are no good unless they have data to
operate upon.

There are three kinds of data used in a program. There
are (1) the constants which remain relatively unchanged
in storage (2) the data which is brought in from an I/O
device and placed in an input-output area in main
storage, and (3) intermediate results of calculations or
logical operations. For instance, in a payroll job the
withholding rates may be constants in main storage
while the employee's records would probably be read
into a storage area from some I/O device.

First let’ s see how data areas are defined. A data area
is not necessarily an input-output area. It could for
instance, be a work area. The number and types of
data areas required depends on the complexity of the
particular program. For instance, in a simple job, a
record might be read into an input area, processed in
that area, and written out from the same area. In a
more complicated program, we might want to use two
input areas so we could overlap processing with input.

For instance, if we have two input areas for a given
file, we could read into input area 1, and then process
that record as the next record from the file is being
read into input area 2. To allow output operation to be
overlapped with processing and input operations, it is
also desirable to have two output areas. Figure 2 in
your sample program book illustrates this point.

23

Sometimes several data records are written on
magnetic tape as one tape record. We call this
Mblocking records'’. When our input file consists of
blocked records from tape, each data record can be
moved from its input area to a separate work area for
processing. After the data record is processed, it can
be moved to one of the output areas. Figure 3
illustrates this type of processing.

We are not attempting to teach you the various methods
of input-output data processing. We are trying to point
out the need for defining storage areas in our program
for use as input areas, output areas, and work areas.
We need to reserve some storage location for these
areas and we would like to be able to refer to them with
symbolic addresses, such as INAREA or HRSWKD. We
can’t define the value of the data because it is unknown
and will be coming from an input file or will be the
result of our processing. We can, however, define the
length of the storage area. To define these areas, an
assembler instruction with a mnemonic of DS (define
storage) is used.

* * *

1. The following DS statement will define a storage
area of 80 bytes whose symbolic address is

INAREA DS CL80
• • •

INAREA

2. You are already familiar with the use of the letter
C to indicate a character value such as C’ABC’ .
With the DS you can’t define the character value,
but you can state the number of characters for
which you want storage reserved. This is done
with the letter L followed by some decimal value.
The following DS statement will reserve a storage
area o f_________ bytes.

OUTPUT DS CL100
• • •

100

3. Assume that the location counter is at a hexadeci­
mal 1000. What addresses (in hex) will be assigned
by the assembler to the symbols OUTPUT and
INAREA respectively?__________ , _____________.
What will be their length values (in decimal) ?

OUTPUT DS CL16
INAREA DS CL80

• • •

1000; 1010; 16; 80

It should be noted that the DS statement does not cause
any data to be generated. It simply reserves storage.
During assembly time, it causes the following action:

• The location counter setting is assigned as the value
of the symbol in the name field.

• The length of the storage area (given in the operand
of the DS) is assigned as the length value of the
symbol. This value is also used to step the location
counter.

The length value given in a DS may be defined by means
of a decimal number or may be calculated by the
assembler. The latter occurs when no length is
specified, but a constant is described. In this case,
the assembler determines the length of the field and
reserves the appropriate amount of storage, but does
not assemble the constant.

4. Which of the following is/are valid DS statement(s) ?
a. INAREA DS C80
b. OUTPUT DS CL800
c. WKAREA DS C’123456’
d. AREA1 DS

• • •
CLX’ 80’

b;c

Answer a is invalid because L was left out. Answer d
did not have a decimal number for the length value.

In the preceding examples, a C was used to describe
the area as storage for characters of data.
It is also possible to write a DS with an X, describing
the area as storage for hexadecimal data.

For example:
HEXNUM DS XL15

This instruction assigns an address and a length attribute
(of 15 bytes) to the label HEXNUM. It also causes the
location counter to be advanced by 15.

5. Does the instruction cause data to be stored at
location HEXNUM?

• • •

No. A DS only reserves storage.

You have seen how storage can be reserved for one data
field. It is also possible to reserve more than one
identical storage area (useful for blocked records). For
instance, if 5 data records of 80 characters are written
as one tape record, the following DS statement will
reserve the necessary storage area for input purposes.

INAREA DS 5CL80

24

The DS statement can also be used to reserve fixed
length storage areas such as halfwords, fullwords, or
doublewords. In these cases, the length is fixed and no
length value is written. The basic format of the DS
operand is d t Ln where:

d is the number of consecutive storage areas,
t is the type of area such as C for characters, H

for halfwords, F for fullwords and D for
doublewords.

Ln is the length of character fields in decimal.

The following would reserve 4 words of main storage.
FIELDA would be the name of the first word and would
have a length value of 4 bytes.

FIELDA DS 4F

6. Assume the location counter is initially at hexa-
decimal 1000. Show the location counter
(in hex) for each of the following:

settings

LOCATION CTR. NAME OPERATION OPERAND

1000 A DS 2H
B DS 3F
c DS D
D DS 2CL16
E DS CL80

• • •

1004; 1010; 1018; 1038 gj

Notice that when one storage area is wanted, the number -
1 does not need to be written.

Sometimes you only want to define a symbol without 1!
reserving storage. This can be done by specifying zero
areas such as: |

INAREA DS 0CL80

In this case, the location counter setting will be given
to the symbol INAREA and the counter will not be
stepped. The INAREA will be assigned a Length attribute
of 80. You are probably wondering why you would want
to do this. The following should explain it.

Many data records contain descriptive fields which are
not used in processing. For example, a payroll record
would contain both the employee’s name and his number.
Since two employees might have the same name, the
employee number is used for processing. The name is
carried along for descriptive information so it can be j
printed. In such a case, you might want to give a name
to the entire record area (such as INAREA) and to the
fields within that record to which you might refer (such
as HRSWKD). To do this you would want to define the
area with a symbol (INAREA) and state that it consists of j

80 characters (CL80). However, you don’t want to step
the location counter since you want to name some of the
fields within the record. So you write the operand as
0CL80. Since the location counter didn’t step, you can
now name the necessary fields and state their length.

7. Given the following, check the address values of the
symbols (in hex). Which one is wrong? Assume the
location counter is initially at hexadecimal 1000.

LOCATION CTR. NAME OPERATION OPERAND

1000 RD DS 0CL80
AREA DS CL20

1014 MANNO DS CL6
101A HRSWKD DS CL4
101E DATE DS 0CL6
101F DAY DS CL2
1020 MONTH DS CL2
1022 YEAR DS CL2

DS CLIO
102E GROSS DS CL8
1036 FEDTAX DS CL8

DS CL18

• • •

DAY should be at 101E, since the instruction DATE
DS 0CL6 would not change the location counter

There is a reason you are being asked to use hexadeci­
mal rather than decimal values when computing
addresses:
The location counter values on your program listings
will be shown in hexadecimal. By using hexadecimal
now, you will find it much easier to work with these
listings.

You have seen how you can reserve storage areas for
use in your program. Note that the DS only reserves
storage. It does not clear the storage areas. That will
be up to you. You have also seen that by using a
duplication factor of zero (e .g . 0CL80), you can name
a storage area and give the symbol a length value without
stepping the location counter. This allowed you to
define fields within the storage area.

There is another use for a duplication factor of zero
which has nothing to do with reserving storage. It has
to do with boundary alignment. When fixed length
fields (such as doublewords or instructions) are used,
they must reside in storage on an address that is
divisible by the number of bytes in the field. For
instance, the leftmost byte of a doubleword must have
an address divisible by eight such as 0018, 0F0, F00.
Instructions are considered halfwords. An instruction’s
address must be divisible by two, even though instruc­
tions are two, four, and six bytes in length. To ensure

25

boundary alignment, the DS statement with a zero
duplication factor should be used with the type of
alignment desired. For instance, to step the location
counter so that it will be at an even address, do the
following:

DS OH

An area of storage can be named and reserved and the
location counter can be aligned on the appropriate
boundary, by using an assumed duplication factor of 1:

FLDA DS H reserves a 2 byte area of storage named
FLDA and aligns it on a halfword integral boundary.

Now I know you were told that the location counter didnTt
step when zero duplication factor was used. This was
true when the zero duplication factor was used for a
character area such as 0CL80. When the type of field
is fixed length such as 0fE , OF, OD, the location counter
will step if it isn’t on the correct boundary.

8. Assume the location counter is set at 1001. Where
will it be after the following?

DS OH

• • •

1002

The location counter stepped to the next even address.
Now try this one.

9. The location counter is sitting at hex 1001. Where
will it be after the following ?

DS 0D

• • •

1008

Notice that the location counter stepped to the next ad­
dress that was divisible by eight. The location counter
only steps to get on the correct boundary. If the location
counter is already on the right boundary, it doesn’t
step. Try this one:

10. Assume the location counter is sitting at hex 1000.
Where will it be after the following?

DS OH

• • •

1000

Right again. Hex 1000 is divisible by two. As a result,
the location counter did not have a step to get on the
correct boundary.

Note, again, that OH simply allows us to name a half­
word of storage that begins on a halfword integral
boundary.

1
H

FLDB DS F reserves a labelled fullword of storage,
aligned on a fullword integral boundary.

FLDC DS D reserves an 8 byte area of storage named
FLDC and aligns it on a doubleword integral boundary.

So much for the DS statement. Let’ s wrap it up ’.

• To reserve storage without defining the data that
will be in it, the DS statement is used.

• The symbol used to name the DS statement will
have an address value equal to the setting of the
location counter.

• The length value associated with the name of the DS
statement is affected by the type of defined storage
area.

• The DS statement can be used to reserve storage
for a variable number of characters or for the
following fixed length fields: halfwords, words,
doublewords.

• The operand format of the DS statement is d t Ln
where:
d is the duplication factor.
t is the type of data that the area will be used for

such as:
C = characters
X = hexadecimal
H = halfword
F = fullword
D = doubleword

Ln is the number of bytes reserved.
• A duplication factor of zero is used to align the

location counter (when t is H, F; or D) or to name a
storage area and give the symbol a length value
(when t is C). For example:

DS

INAREA DS

0D aligns the location
counter on a doubleword
boundary.

0CL80 defines the symbol
INAREA and gives it a
length value of 80, with­
out stepping the location
counter.

26

Just a reminder:

a. A "halfword integral boundary" is a storage address
that is divisible by 2.

b. A "fullword integral boundary" is a storage address
that is divisible by 4.

c. A "doubleword integral boundary" is a storage
address that is divisible by 8.

If you are trying to determine which type of boundary is
represented by an address in hex, convert the last hex |
digit to binary, and apply the following rule:

a. If the binary number has 1 low order zero, the
address lies on a halfword boundary.

b. If the binary number has 2 low order zeros, the
address lies on a fullword boundary.

c. If the binary number has 3 low order zeros, the
address lies on a doubleword boundary.

DEFINING DATA CONSTANTS

You have just seen how to reserve storage for your
input-output operations, as well as for work areas.
Your program will probably also use some constants.
A constant by definition is a fixed data value which
comes into storage as part of your program. Constants
are used for many purposes. Sometimes you might
want a constant as a means of incrementing a program­
med counter. At other times constants are used in the
actual processing of data. One example would be the
use of withholding rates (constants) when computing the
amount of withholding tax for each em ployees record.

The assembler instruction with a mnemonic of DC is
used for defining constants. The operand format of a
DC statement is quite similar to that of a DS statement.
It is dtLn’c ’ where:

d is the duplication factor (number of identical
constants).

t is the type of data such as:
C for characters
H for halfword binary data
F for fullword binary data
X for hexadecimal data

Ln i s the length value
?c f is the constant itself

For instance, suppose that an area of your program is
to be used for an operator message. If the beginning of
the message is constant, you might want to define it
and reserve storage for the rest as follows:

MESAGE DS 0CL22
DC C ’MOUNT INFILE ON
DC C ’TAPE#’

MES1 DS CL1

Note the following concerning the DC statement as used
in the preceding example.

• duplication factor can be left out if you want only
one constant.

• the length value can be left out. The number of
characters, including blanks, will become the
length of the field.

• the character constant is enclosed with single
quotation marks.

* * *

1. Write the statement necessary to define the follow­
ing constant.

THEbANSWERbISb -------- b is a blank space

• • •

If you wrote it correctly, it would look like this:

DC C ’THEbANSWERbISb ’

When characters are defined as constants, they will
be included in your object program as bytes of
EBCDIC information. See your Reference Data
card for the coding of any character. Notice that
most of the 256 possible characters do not have a
printer graphic. In this case, you would show the
actual machine language (bit coding) using hexa­
decimal notation. Each character would be repre­
sented by two hexadecimal digits.

For instance, this constant:

DC C ’DObITbNOW’

could also be defined this way:

DC X ’C4D640C9E340D5D6E6’

t t t t tttft
D O b I T b N O W

27

2. Write the DC statement that will define THINK as a
hexadecimal constant.

• • •

By using your card, you should have been able to
define THINK as:

DC X'E3C8C9D5D2'

Assume the location counter is initially at hex 1000.

LOC. CTR. MACHINE

_________________________ DC X L 4 ’42'
_________________________ DC CL5TNT
_________________________ DS 0D

• • •

LOC. CTR. MACHINE

In the examples so far, a length value wasn't used.
The maximum number of characters that can be
defined with either C or X , and no length value, is
120. Because it takes twice as much space on the
coding sheet to write characters in the form of
hexadecimal digits, the maximum is 60 using hex
digits. If a length value is used and it is smaller
than the number of characters defined, the leftmost
characters (for X constants) or the rightmost
characters (for C constants) will be dropped. For
example:

DC CL4'THINKf will generate THIN
DC XL4'E3C8C9D5D2f will generate HINK

I don't know why anyone would want to specify a
length that is less than what he defined for constant. ̂
But, if he did, the constant would be shortened as ’V
shown above.

Note: The maximum length that may be specified
for a "C " type or "X " type constant is 256
bytes.

£
However it is feasible that you, as a programmer, |
would want to specify a length greater than the &
defined constant.

You would do this when you want the assembler to
pad the constant (extend it with either blanks or
zeros). Character ("C " type) constants are padded J
with blanks (hex 40 is used) in the rightmost bytes. |
Hexadecimal ("X " type) constants are padded with s
zeros (00) in the leftmost bytes. For example: j

3.

DC C L 8'THINK' generates THINKbbb
DC X L 5 '478341' generates 0000478341

hex digits , two
per byte

Given the following:
1. Show the location counter setting for each state­

ment (in hex).
2. Show the machine language (2 hex digits for each

byte). Use hex 40 for blanks.

1000 00000042 DC X L 4 ’42
1004 C9D5404040 DC CL5TN
1010 Nothing is DS 0D

generated

Note that besides the padding, the location counter
was also aligned on a doubleword boundary. The
second DC statement stepped the location counter
from 1004 to 1009. 1009 is not divisible by eight.
A s a result, the DS statement caused the assembler
to step the location counter 7 positions to location
1010 (in hex).

Because of the difference in the ways character and
hexadecimal constants are shortened or extended,
you may have guessed that the hexadecimal constant
is used for purposes other than just defining un­
printable EBCDIC characters. Often times you may
want to define a stream of bits for use in your pro­
gram. Since hexadecimal notation is a shorthand
method of writing a long stream of bits, the hexa­
decimal constant is used in these situations. The
hexadecimal constant is used for such purposes as
mask fields, pattern fields for use in editing and
in defining constants for use in the PSW.

We have been using the DC statement to write either
character or hexadecimal constants. You have seen
that these constants could have either an implicit
length or an explicit length. When there is no length
value (C’AB C’ rather than CL4’AB CT), we say there
is an implicit length which is equal to the number of
bytes required by the written constant. An explicit
length has the effect of either extending or shorten­
ing the constant. This occurs when the written
length value is different from the implied length of
the constant. For instance, the following DC state­
ment has an explicit length of four and an implied
length of three:

DC CL 4'ABC'

Since explicit values always override implied
values, the preceding constant would be extended
with a blank in the rightmost of the four bytes.

28

►
4. What characters would be included in a program as

a result of the following:

b DC CL 2 ’THINKf

► • • •

f TH

f Two more types of constants that can be defined in the
Assembler Language are halfword binary operands and
fullword binary operands. The codes used for these
constants are H and F respectively.

> The following will define a storage constant consisting
of a halfword binary operand equal to a decimal value
of 7.

DC H’7 ’

Since halfwords and fullwords define binary information,
they should not be given an explicit length value. These
two constants are very useful in that you can define
binary operands without having to convert decimal
values to binary. The following will generate a fullword
binary operand equal to a decimal value of 103. Hexa­
decimal notation is used to show the generated machine
language.

source statement DC F ’103T

Object coding generated by the above DC statement is:

00 00 00 67

This is a 32 bit signed binary operand equal to a decimal
value of +103.

5. Write a statement named CONI that will generate a
fullword signed binary operand equal to a decimal
value of 2400.

• • •

An unsigned value is assumed to be plus. You
could have written the preceding with or without a
plus sign as follows:

CONI DC F '2400'
or

CONI DC F'+ 2400

6. Write a statement that gives you a halfword binary
operand equal to a value of -2 .

• • •

Negative operands must always be signed. The
preceding would be written:

DC H’- 2 ’

Note that these binary operands are always written
using the decimal value in the operand. The
preceding is a negative binary operand. Negative
binary operands in the System/360 are in
complement form. The machine language
generated by the preceding DC statement is:

FFFE (hexadecimal notation)

7. The following are some DC constants. Write the
generated machine language for each constant using
hexadecimal notation. Use the hexadecimal-
decimal conversion chart on your Reference Data
card.

______________________ DC F ’ 0’
_______________________ DC F T2400
_______________________ DC HT+ 15’
_______________________ DC H’100’
__________ ____________ DC H’-1 5 ’

• • •

00000000; 00000960; 000F; 0064; FFF1

So far you have seen four types of constants that can be
generated with a DC statement: characters,
hexadecimal or unsigned binary constants, halfword
signed binary operands and fullword signed binary
operands. These were defined using the codes C, X ,
H, and F respectively. More types of constants can be
defined in Assembler Language. Two of these types of
constants (codes E and D) have to do with floating point
operands and we will not be concerned with them. The
third (code A) has to do with defining an address for a
constant. In this case, a symbolic address with or
without relative addressing is usually used. Constants
of this type are called address constants or ’ ’adcons” .
Adcons differ from other constants in that the address
constant is enclosed in parentheses rather than in
single quotation marks. The following are examples
of adcons.

DC A(FIELDA)
DC A(INAREA+16)

29

Adcons can be rather tricky if you have had no past
experience using them. It is very easy to confuse data
with the address of the data. So, letfs take a look at
an adcon in usage.

Suppose that somewhere in your program, you want to
branch unconditionally to an instruction named RTNE1.
This could be written as.*

BC 15 ,RTNE1

From the preceding statement, the assembler would
produce a Branch on Condition instruction using the RX
format. Assuming that RTNE1 has a displacement value
of hex 100 and register 4 is the base register, the
object language instruction would look like this:

47 F 0 4 100

The RR format can also be used for the Branch on Con­
dition instruction. In this case, the register specified
by the R2 field must contain the address you wish to
branch to. For instance, if register 7 contained the
address of RTNE1, you could write your unconditional
branch like this:

BCR 15,7

Well, now, how do you get the address of RTNE1 into
register 7 ? Can you do it this way? Take your time
in answering this.

L 7,RTNE1
BCR 15,7

The Load instruction puts in a register the data which is
located at some address. In the preceding paragraph
there is an instruction which is located at some address
(RTNE1). It is the instruction itself which is placed in
register 7 rather than its address. This is not what you
wanted to do. You wanted to load the address of the in­
struction. Can you do it with this ?

LA 7,RTNE1

Yes, this instruction (Load Address) would load the
address of the instruction at RTNE1 into register 7.
However, there is another way to do it, using an adcon.

You know that the following statement would not load the
address of some instruction into register 7.

L 7, RTNE1

It was the instruction itself that was loaded and not its
address. We could load the address by using the Load
Address instruction as follows:

LA 7 ,RTNE1

We can also load the address of the instruction at RTNE1
by using an adcon. Since adcons are what we are in­
terested in at the present time, let’s see how one can
be used.

8. First, letTs define the address constant. Write the
statement that will generate the address (RTNE1)
as a data constant.

Yes Go to the next paragraph.
No Skip the next two paragraphs.

You said yes. You are wrong, but don’t feel upset about
it. This is a very common error. Let’s see why the
preceding example was wrong.

L 7,RTNE1
BCR 15,7

RTNE1 is the symbolic address of an instruction. What
was placed in register 7 by the preceding Load instruc­
tion?
a. The address of an instruction Go to the next

paragraph.
b. The instruction itself Skip the next

paragraph.

• • •

The address of the data at RTNE1 (which we are
assuming is an instruction) can be generated as a
constant in this fashion.

DC A(RTNEl)

A constant isn’t of any value unless we can refer
to it. Let’s give it a name.

ADCON1 DC A(RTNEl)

We will now have a constant located at ADCON 1.
This constant will be an address. It will be the ad­
dress of an instruction located at RTNE1.

30

9. With this in mind, write the instruction that will
load this address into register 7.

• • •

Okay, let's see the entire picture including the
correct answer to the preceding question. The
correct answer is the first of the following state­
ments:

NAME OPERATION OPERAND

L
BCR

7, ADCON1
15,7

RTNE1 LH
AH
STH

4,FIELDA
4, FIELDB
4, FIELDC

This is the
instruc­
tion we
wanted to
branch ta

FIELDA
FIELDB
FIELDC
ADCON1

DC
DC
DC
DC

H'100'
H'200'
HT0r
A(RTNEl)

The preceding is not necessarily the best way to
use adcons. However, it serves our purpose of
explaining an adcon and how it can be used.

The operand format of a DC statement is dtLn’c'
where
d is the duplication factor (number of identical

constants)
t is the type of constant, such as characters,

binary operands written hexadecimally, half­
word and fullword signed binary operands, and
address constants.

Ln is the explicit length value of the constant.
'c ' is the constant itself. Adcons are enclosed by

parentheses.
An explicit length value (Ln) is optional and is used
to override the implied lengths of character, hexa­
decimal, and address constants.
The following codes are examples used to define the
type (t) of constant.
C - characters
X - hexadecimal
H - halfword signed binary operand
F - fullword signed binary operand
A - address constant (adcon)

CL3'TIM E' becomes TIM
CL5rTIM Ef becomes TIMEb

XL3'47FA4D0F' becomes FA4D0F
XL5 T47FA4D0Ff becomes 0047FA4D0F
The halfword and fullword constants are useful for
generating signed binary operands while writing
the decimal value.

10. Suppose that instead of branching to the LH instruc­
tion at RTNE1, you wanted to branch to the AH in­
struction that follows it. How would you write the
necessary adcon? Hint: use relative addressing.

NAME OPERATION OPERAND

• • •

H '17’ becomes 0011
F ’- 4 ’ becomes FFFFFFFC

• Adcons are useful for defining the address of some
instruction or data as a data constant.
Given the following:

FIELDA DC F '103'
The DC statement below will generate the address
of the above constant:

If you wanted to branch to the instruction following
the one at RTNE1, you could do it with relative
addressing like this:

ADCON DC A(RTNE1+ 4)

Let's summarize our discussion of defined constants.

• A constant is data which is read into and resides in
storage along with the instructions of your program.

• The assembler instruction with a mnemonic of DC
is used to define constants.

ADCON DC A (FIELDA)
• Adcons have an implied length of one fullword (4

bytes). If an explicit length is used with an adcon,
the leftmost bits are dropped.

ADCON1 DC A L2 (FIELDA)
In this adcon, the rightmost 16 bits of the address
are generated as a constant. This is useful on
models of System/360 which have 64K bytes or less
of main storage. Any decimal location from
0000-65,535 can be addressed with 16 bits.

31

So far, you have learned how:

• to code machine instructions using the System/360
reference card.

• to reserve storage areas (DS statement) for use in
your program.

• to define constants (DC statement) for use in your
program.

• to load the base register at object time so that the
program is relocatable (BALR instruction).

• to tell the assembler what will be the base register
and its contents relative to your program (USING
statement).

• to initially set the location counter at the beginning
of assembly time (START statement).

• to tell the assembler which instruction you intend
to execute first (END statement).

We have finished our discussion on the fundamentals of
the basic assembler language. You have not learned all
there is to know about this language. There are a num­
ber of assembler statements which haven’t yet been
discussed. All of these points will be brought out in the
following sections as you startte analyze some -pro­
grams as well as develop some of your own pro­
gramming.

However, you have learned enough about the basic
assembler language so that you can evaluate a source
program with instructions, constants, data areas, and
the necessary assembler instructions for a successful
assembly. This is your opportunity to test your prog­
ress in these areas.

Attempt to answer as many of the following questions as
possible, without using reference material except the
System/360 reference card. Answer the remaining
questions by referring back to the indicated pages.

32

SELF-EVALUATION QUESTIONS Reference
Pages in Text

Use the following program to answer the questions.

BEGIN

A
B
C
D

START
BALR
USING
MVC
L
A
ST
BC
DS
DC
DC
DS
END

X f190’
11,0
* ,11
A ,B
1,C
1 ,A
1,D
1 5 ,* -4
CL4
F f10f
F f4 f
4C
BEGIN

1. At assembly time, the asterisk in the USING statement has 19
a hexadecimal value of
a. 190
b. 192
c. 194
d. none of the above

2. What is the mnemonic of the statement which loads the 20
base register ?
a. START
b. BALR
c. USING
d. END

3. What is the effect of the BC statement at object tim e? 17
a. causes an unconditional branch to itself.
b. causes an unconditional branch to the ST instruction.
c. causes a branch if the PSW condition code is set to 15.
d. none of the above.

4. What is the effect of the DS statement named A ? 23
a. generates a field of four blanks.
b. generates a field of four zeros.
c. reserves four storage bytes without generating any coding.
d. none of the above.

5. Which of the following is the generated object coding (two hex 26
digits per byte) of the DC statement named B ?
a. 0000000A
b. 00000010
c. 00000002
d. FIFO

Reference
Pages in Text

6. What is the net effect of the END statement? 22-23
a. tells the assembler that this is the last source card.
b. tells the loader to pass control to the instruction identified by

its operand.
c. causes a branch to the BALR instruction at the end of load time.
d. all of the above.

7. Which of the following is not put in the symbol table when 17
the BALR is processed by the assembler?
a. the symbol BEGIN
b. an address value of hexadecimal 190
c. a length value of 2
d. the mnemonic BALR

8. Given the instruction AR X !B ’ ,10. The first operand 15
entry is in
a. machine language
b. symbolic language
c. neither a. or b.
d. both a. and b.

9. The first operand entry in the instruction in question 8 15
represents which sort of value:
a. hexadecimal
b. decimal
c. character
d. none of the above

10. An asterisk in the operand of an instruction stands for 17
a. The setting of the location counter as of this point in

the assembly.
b. The address of the instruction in which it appears.
c. neither a. or b.
d. both a. and b.

11. What will be set up by the following instruction: DS 5CL80: 26
a. An area of storage 400 bytes long.
b. 5 areas of storage each of which is 80 bytes long.
c. 80 areas of storage each of which is 5 bytes long.
d. none of the above.

34

12. We might use a series of instructions such as the following: 25

Reference
Pages in Text

INAREA DS 0CL80
DS CLIO

BRANCHNO DS CL3
DEPARTNO DS CL5
EMPLOYNO DS CL7
DATE DS 0CL6
MONTH DS CL2
DAY DS CL2
YEAR DS CL2

DS CL49

a. To define areas in storage which, in all, take up
166 bytes.

b. To identify ten fields for use by the program.
c. To identify fields within fields.
d. None of the above.

13. The instruction DS OD always causes the location counter 25
to be set to an address that is a
a. halfword boundary
b. word boundary
c. three halfword boundary
d. doubleword boundary

14. What constant does DC X L 4f1492? generate? 27
a. 1492
b. 001492
c. 0001492
d. 00001492

ANSWERS Reference
Pages in Text

1. b 19
2. b 20
3. b 17
4. c 29
5. a 26
6. d 22
7. d 17
8. c 15
9. a 15

10. d 17
11. b 26
12. c 25
13. d 25
14. d 27

36

SECTION III

CODING SAMPLE PROGRAMS

Now we begin the payoff on all that you have learned so far. As you are shown
sample programs, you will be brought gradually into the activity of coding instruc­
tions for them.

CODING SAMPLE PROGRAMS

Learning Objectives

When you complete this course, you will have demonstrated that you can:
• Given a problem statement, a program flowchart, and instructions for linking

your program to existing I/O routines,
a. Identify the specific requirements for linking to the I/O routines and the

constraints that they place on your program.
b. Find and use information describing the functions of Assembler Language

instructions. You should not try to memorize them.
c. Code an Assembler Language source program for the solution of the problem.

The problem statement for the first coding
demonstration is in Figure 4 of your sample problem
book, and the flowchart is on the facing page.

Read the problem statement and scan the flowchart,
before you answer the following questions.

1. How many lines of output data will we print for each
transaction card?

• • •

one line of data per card

2. How many fields are there in each output line?
t • t

6

3. Are we punctuating the output fields with $ or
decimal points ?

• • •

no

4. The output fields are identified by fields in the____
lines.

• • •

heading

5. Do we read the heading fields from heading cards?
• • #

no

6. We will need to establish the words for the heading
fields as_________ _in storage.

• • •

constants

7. Is the formula printed alongside block E2 correct,
according to the problem statement?

• • •

yes

8. When we perform the operations required to
calculate monthly interest, how many (implied)
decimal positions will the result contain? (Work
it out, on scratch paper.)

• t t

6 decimal positions (The rule is the product will
have a number of decimal positions equal to the sum
of the decimal positions in the two factors.
Principal has two decimal positions; Rate has
four. 2+4=6.)

If you have performed the operation called Mhalf
adjusting” , in a computer program or other series of
calculations, skip the following two paragraphs.

When an arithmetic operation results in a number with
more decimal positions than necessary, we must
"round it off” . We remove the unwanted positions. But
we want our rounded figure to be accurate; we can’t just
knock digits off of the low order end of the field. For
example, we often round off to the nearest cent:

a. 1734.506 is 1734.51, to the nearest cent, not
1734.50.

b. 84. 002 is 84. 00, to the nearest cent, not 84. 01.
In this case, our rounding operation must
produce the same result as if we had simply
removed the right-most digit.

Here is the rule: Add 5 (followed by an appropriate
number of zeros) to the digit position to the right of the
one that you want to keep. Then truncate (knock off
unwanted positions).

a. Half-adjust and truncate 17. 5683 to the
nearest cent.
17.5683
+ 50 half-adjusting

17.5733
17.57 rounded answer

b. Half-ad just and truncate 387. 764001 to three
decimal positions.
387.764001

+ 500
387. 764501 half-adjusted
387. 764 rounded answer

38

9. Now you try one. Half-adjust and truncate
18.068621 to the nearest cent.

• • •

half-adjusting
18.068621
+ 5000
18.073621

rounded answer 18. 07

10. Assuming an interest field of XX.XXXXXX at the end
of the calculation, into which position will we add 5
(to half-adjust to the nearest cent) ?

• • •

XX.XXXXXX
I

11. Remember that the decimal point is implied. In
order to add 5 to this position, we must add
(50/500/5000)_____ to the field.

• • •

5000
XX.XXXXXX

+ 5 0 0 0

12. The rest of the arithmetic on the flowchart is self-
evident. The only other point is that we need to
"assemble a line" by bringing together six_______
fields, before we can print a transaction. •

• • •

That’s all there is to the basic analysis of the problem
statement and flowchart. Now we turn to the coding
considerations.

The coding sheets for this problem are reproduced on
the next three pages of your sample program book. Leaf
through them and then turn back to Figure 6. Note the
page numbers at the upper right of each coding sheet, as
we will refer to the sheets both by Figure numbers
and page numbers.

Did you notice that the programmer used asterisks,
with no comments, on some of the lines? This will
produce corresponding spaces in the program printout
and, by isolating instructions into functional groups,
makes the program’s logic much easier to follow.

The first thing you need to learn is which instructions to
ignore in these sample programs. They are the ones
which tell the Assembler to produce routines that
perform input, output, and end of job operations.

The program that you write at the end of the course will
be able to be linked to pre-written routines that will
perform the 1/O for you. All that you need is
information on how to make the system use those
routines, at appropriate points in your program.

output

IBM
PROGRAMMER

IBM System/360 Assembler Coding Form

PAGE OF/
" CARD ELECTRO NUƒ

S T A R T 2 5 6 \
* ; , j]
C A R D I N D T F C D : j i I : M M C /

D E V A D D R = S Y S R D R . [g \ C l
E O F A D D R * E O J , c \
1 O A R E A 1 * 1 N P U T J

* , i j /
C D MO D J

* •1

A L I N E D T F P R c \
B L K S 1 Z E * 1 3 2 . c \
D E V A D D R * S Y S L S T , c)
1 O A R E A 1 * 0 U T P U T j : j ! , j__i__ /

* ; /
P R M O D M M ! ! ; ! M M {

* \

B E G I N B A L R 1 1 . 0
U S 1 NG V n
O P E N C A R D 1 N . A L 1 N E __1__I__:__i__ i i 1 j J
B C 1 5 , S T A R T i | ! | i

* 1 ; : | , ; i | ~ I 1
E 0 J C L O S E C A R D 1 N V A L 1 N E E N D 0 F J O B R O U T 1 N E ! \

E O J !
*

R E A D G E T C A R D 1 N R E A D S U B R O U T 1 N E
B C R 1 5 , 1 0

* ; : ; I . ! | j j ! 1 ! i ! M Mi | . ; I i
WR 1 T E P U T A L 1 N E ■ ! WR 1 T E S U B R O U T 1 N E

B C R 1 5 , 1 0 ! i ! : ! 1 | !

40

Let’ s suppose, for a moment, that this is the case with
programming example 1: Someone else has coded the
I/O subroutines and the other instructions shown at the
left, and you are to code the rest.

A brief description of what these instructions do will
show you what to look fo r , when you begin your part of
the coding.

• DTF means ’’define the file” , and the DTFCD
macro (at A) describes the card input file to the
Assem bler. It also tells the Assembler that you
are going to define a main storage area called
’ ’input” . (IOAREA 1=INPUT). Only this latter
information affects your coding.

• CDMOD tells the assembler to produce a card
input module (routine) using the file description
provided by DTFCD.

• By now you may have guessed that DTF PR (at B)
describes the printer output file and promises the
Assembler that you are going to define a main
storage area called OUTPUT. This affects your
coding.

• PRMOD tells the Assembler to produce a printer
output routine.

• OPEN tells the Assembler to produce a routine that
makes the files available for processing. Notice
that its operands, CARDIN and ALINE are the
labels for the file definitions.

• GET and PUT generate instructions to use the
input and output routines, respectively. Their
labels tell the Assembler that you will use READ or /
WRITE, as an operand in your program, when you
want to link up with one or the other of the I /O /
subroutines. The BCR instruction, which follows
each of these, is a branch on condition instruction
with a mask field value of 15. If you remember
what you read about this instruction in System Review
you know that this mask field will cause a branch \
under all conditions. The R2 operand is register ;
10, so the branch will be to some address, in the
main part of the program, which was placed in ■
register 10 when the branch to the READ or
WRITE subroutine was issued.

• EOJ (at C) is a label for a routine to which the
program will branch, when there are no more
cards to be read. It will:
a. Close the files (make the card reader and the

printer unavailable to the system.)
b. Signal to the Supervisor program that the job ;

has been completed so that it can initiate a
transition to the next job.

So much for I /O subroutines. The assembler
instructions should be familiar to you by now:

• With his first instruction, the writer told the
Assembler to start putting these routines together
at location 256 (hex 100).

• BALR and USING established register 11 as the
base register, and set the location counter to the
address of the next instruction, which is the first
instruction of the OPEN routine.

At this point we need to emphasize a distinction between
events at assembly time and those at the actual
execution of the program:

a. As we have said, the macro OPEN tells the
Assembler to produce a routine that makes the
input and output files available. This routine
is produced at assembly time.

b. The machine instruction BC 15, START, which
follows, is assembled as a link from the OPEN
routine to the main section of the program.

c. When the program is executed, the system
starts at the instruction labelled BEGIN. When
it reaches the first instruction produced by the
OPEN macro, it branches to the routine that
makes the card reader and printer available for
I/O operations. Now data processing can begin,
so the system executes the branch (under all
conditions) specified by the BC 1 5 ,START.

It goes directly to an instruction named START, which
would be the first instruction in your part of the
program.

Refer to the coding sheet pages to review the preceding
information, before continuing.

Now that we have gotten to a part of the program like
the one you, eventually, will be coding, let’s
summarize what you would need to keep in mind:

a. You will define storage areas called INPUT and
OUTPUT.

b. You will use READ or WRITE, as an operand,
when you want to read a card or print a line of
output.

c. Register 11 has been specified as the base
register, so you must not use it in any of your
instructions.

d. You will use register 10 to hold the address to
which the system will branch, after it reads a
card or prints a line.

e. You will label your first machine instruction
with START.

41

Now we'll go through the coding process as it was |
actually done, explaining each instruction as we come
to it. You will have an opportunity to practice using the
information about each instruction, both in and out of
the context of the sample problem.

The first instructions that we code are not machine
instructions. We know that we must define input and
output areas, and it is good to do this first. Therefore,
the coding sheet that we start with turns out to be page
#5 by the time we’re finished coding. Turn to Figure 10
in your sample program book.

Ill
IS

First we define our input area. From what you have
already learned about this, you should easily
understand the following statements:

a. We define INPUT as a storage area 80 bytes
long, one for each column in a transaction
card.

b. The leftmost 0, in the operand 0CL80, allows
us to name, and use, each of the input card
fields (independently).

c . Now we start specifying each of the fields,
according to the information given in the
problem statement:
(1) Account Number, columns 1 -6 , is

labelled ACCTNO and is defined as a 6
byte field with DS CL6.

(2) Principal, columns 7-13, is labelled
PRIN and is defined as a 7 byte field with
DS CL7. You should be able to relate
the other input fields to the problem
statement.

d. We aren't interested in using any data that
might be punched in card columns 22-30 , but
we must account for the bytes it takes up.
Therefore, we write an unlabelled DS CL59.

Now we do something a bit different. Thinking ahead to
the time that we want to clear any leftover data from
our output area, we specify a constant that is one blank
b y t e . Note the DC that does it. Shortly, you will see
how we will use that blank.

13. After an asterisk for spacing we continue, by
defining our output area. Our printer prints a 132
character line, so our area has_____bytes.

• • •

132

14. After writing the DS for the total area, we put in a
DS that simply creates space for a left hand margin
on our report. Which instruction does this?

DS CL33

• • •

Now we label the area which will contain all of our
output fields. In order to determine its length, we:

a. Add up the lengths of the fields as shown on the
problem statement.

b. Add a number of bytes for spaces between the
fields, so that they will be positioned properly
with respect to the heading field.

The total comes to 56. Note how the six fields within
this area were labelled and specified.

15. We still have a few bytes to account for in our
entire output area. They will simply provide space
to the right of each line. We define this area with
the instruction___________ .

• • •

DS CL43

16. Now we are ready to write our first machine
instruction. Remembering what we noted earlier,
when we were examining the I/O coding, we label
this instruction________ .

• • •

START

Turn to Figure 7 (coding page 2). Since you are not
concerned with I/O coding, you would start coding on a
new sheet. However, the person who coded program 1
simply continued after he was done with I/O .

17. According to the comment alongside the instruction
labelled START, our first task is to--------------------------

• • #

clear the output area

Read the following information on the move instruction.
A lso, locate the group of move instructions, that
includes MVT and MVC, on your Reference Data card.

Move
MVI Dj fB j) , l2 [S I]

9 2 ' 2 D ,
0 7 8 15 16 19 20

MVC Bj) , D2(B2) [S S]

31

D 2 L B , 1 L B 2
0 7 8 15 16 19 20 31 32 35 36 47

42

In the execution of either MVC or MVI, the second
operand is placed in the first operand location.

MVC (Move Characters)
• The bytes are moved one at a time in each field.
• Movement is left to right.
• The number of bytes moved is determined by the

implicit or explicit length of the first operand.

MVI (Move Immediate)
• One byte of immediate data is stored in the first

operand location. Immediate data is data supplied
by the instruction itself, and in this case is the
second operand.

Condition Code:
The code remains unchanged.

Program Interruptions:
Protection
Addressing

Programming Note:

It is possible to propagate one character through an
entire field by having the first operand field start one
character to the right of the second operand field.

EXAMPLES:

Nome Operation Operand
1 8 10 14 16 20 25

I s i i i T
V 1 s W 1 T C H t X 1

0 i

MVC j 0 L D , NE W

L - ■ 1. t. ~J m 3 ___ l r i . . i _ l c 1 'A-™

18. Both MVI and MVC are called .
instructions.

• • •

move

The effect of the first example would be to move a hex
01 into a storage area named SWITCH.

20. Reread the programming note, and then look at the
operands of our first MVC. Is OUTPUT one
character (byte) to the right of OUTPUT-1?

• • •

yes

Here is a reprint of a section of the coding sheet on
which we defined storage.

r... r r ;. .:t rT ~ *■ ^£5 * MBSaSES! ! ■ ! 1 f ' * ! :L...MH 1__1_
P A Y DS C L 4 i

; DS C L 5 9 1 !
*

j 1— — — — .— ,—
1 ! ' ! 1 0 c C L i m 1

m ; .
. , 4 1 - -

; ‘ji i 1■i
QUIT PiU t i p Ds i ri-ri 0 C L i 3 2, L

DS j | C L 3 3 i i j

H E A D E R DS 0 CL 5!6 : j

i
i

21 . As you probably remember, the * only affects the
assembly listing; it does not become a part of the
program in storage. This means that the field we
have called OUTPUT starts one byte to the right of
a character which we defined as a_______ .

• • •

Blank

22 . According to the programming note you read a
moment ago, the effect of our MVC OUTPUT,
OUT PUT-1 instruction would be t o _____________
(your own words)__________________________________

• • •

propagate (reproduce) the blank throughout the
field named OUTPUT

Neat, isn’t it? Instead of defining constants with a
total of 132 blanks and moving them into OUTPUT, we
can clear the area by using one blank byte, next door.
That’ s why we put it there.

19. The effect of the second example would be to move
the contents of an area called_______into an area
called OLD.

• • •

NEW

43

Now you, as a reader, come to a branching point. If
you doubt that you can predict the result of executing
either an MVI or an MVC instruction, regardless of the
operands, you should study the frames on the next three
pages. If you don't feel doubtful, skip the frames and
we’ll continue with our first programming example.

Hereafter, we'll refer to these branch points as
"Skip Options".

MOVE INSTRUCTIONS

Given the following (in hex) show the contents of main
storage after the MVI instruction is executed.

M VI

92 F A 0 1 00

LOCATION SPECIFIED BY 1ST OPERAND

B E F O R E t

00 00 00 00 00

Mnemonic Op Code Format * 1 Descriptive Title
MVI 92
MVC D2

SI Move Immediate
SS Move Characters

1. The "move immediate" instruction uses the SI
format. Label the fields of the SI format.

6 . A F T E R ___ M AIN S T O R A G E

• • •

0 0 F A 0 0 0 0 0 0

• • •

OP CO D E 12 B 1 D 1

2. Operands that are carried in the instruction itself
are called___________operands.

• • •

immediate

3. In the MVI instruction, the immediate operand is
one long and is the________ (1st/2nd) operand.
The instruction will move the byte of immediate
data to main_________.

• • •

byte; 2nd; storage

4. The MVT instruction will cause the byte in main
storage to be replaced by a byte from the
__________ . The main storage address-------------
(does/does not) have to be even.

• • •

instruction; does not; Any byte in main storage can
be addressed.

7. MVT is the mnemonic for the move immediate.
MVC is the mnemonic for___________ ___________.

• • •

move characters

8. The MVC instruction uses the SS format because
both operands are __________ (fixed/variable)
length fields in main storage.

• • •

variable

9. The MVC instruction moves bytes (characters) from
one area of main storage to another. The number
of characters is determined by the 2nd byte of the
MVC instruction. This byte is called the___ field.

• • •

length or L

10. The length code byte can represent a count of from
0 to 255. Since the number of bytes in a field is
equal to the length code +1, a length code of zero
would mean_______byte.

• • •

one

5. The MVI instruction can move_____________ (more
than one/only one) byte of data.

• • •

only one; Only the immediate byte in the instruction.

44

11. A length code of 255 in the MVC instruction would
cause______ bytes to be moved.

• • •

256

MVC

1 - F F O 8 0 0 O FOO

2 5 5 2 0 4 8 3 8 4 0

As in most System/360 operations, the 1st operand
receives the results.

12. In the above MVC instruction, ______ bytes would be
moved from location 3840 to location_______ .

• • •

c; The bytes that are moved are not checked for
coding. The title of the instruction (move
characters) implies, however, that this instruction
could be used to move EBCDIC characters from one
area of storage to another. For instance, data could
be moved from an input area to a work area without
being changed. After the data has been processed
in a work area, it could be moved to an output area.

The following drawing illustrates this point.

i— ---1
| M AIN S T O R A G E |
I--- 1
| M AIN S T O R A G E |

l I
I--J

256; 2048

13. Given the following, show the contents of the indicated
storage area after the MVC instruction is executed.
Everything is shown in hex.

D2 07 O 8 0 0 O FOO

15. Because the bytes are moved one at a tim e, in a left to
right direction, the MVC instruction can also be used to
propagate one character throughout an area. Given the
following, show the resulting storage contents.

MVC

0 7 0 8 01 0 8 0 0

C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C A

2 0 4 8 (befoi•e)

FO FO FO F O FO FO FO FO FO FO

3 8 4 0 (before)

2 0 4 8 (after)

• • •

0 0 F 1 F 2
11-----------

F 4 F 5 F 6 F 7 F 8

♦2 0 4 8
*

0 0

• • •

I 00 00 00 00 00 00 00 00 00
• 1. - J

8 B Y T E S M O V ED IN In the preceding problem, the following occurred:

14. The bytes moved by the MVC instruction are not
checked for any particular data format. Therefore
they: (choose one)

a. Must be packed decimal data.
b . Must be in the halfword signed binary format.
c. Can be in any format.
d. Must be EBCDIC characters.

• • •

$i
I

1st; The instruction looks at the first location
(2048) , finds the 00 and moves it to 2049
where it replaces the FI.

2nd; The instruction looks at the next location
(2049) , finds the 00 and moves it to 2050.

3rd; The leftmost byte continues to be moved
(propagated) to the right.

45

Now for the second machine instruction. Our output
area has been cleared, and the comment shows that we
want to move the first header (line) to the output area.

1. From what you know of MVC, what will be the result
of the second move instruction?

• • •

The contents of a field named HDR1 will be moved
into the part of the output area that we have called
HEADER

But we haven’t defined HDR1 yet, so we had better take
care of it. Turn to Figure 11 in your sample program
book.

Again we start a new coding sheet, to follow the one with
our input and output area DS instructions.

END O F SKIP O P TIO N 2. Our first DC is for HDR1, the first header line.
Since this entire constant will be moved into the
area called HEADER in one operation, how long-
must it be? (If necessary, check the DS for
HEADER.)

• • •

66 bytes (or characters)

When you first learned to define constants, you were
told that you can define a constant containing as many as
120 characters (assuming no duplication factor and no
length value specified). You didn’t see any long
constants then, but you do now.

The key to defining a constant of this size is the C in
column 72. This signals the Assembler that the next
source card is for a line of coding that continues to
specify the same constant.

Only one continuation line is allowed for any given DC.

46

If you’re wondering how we could define a constant 120
characters long, here is an example (remember that the
Assembler coding sheet allows free form coding):

Note that the characters on the continuation line must
begin in column 16.

Now back to our program. Although we have been
concerned only with HDR1, you should know that the
author of the program wrote the DC for HDR2, also,
before continuing to code the machine instructions. He
did this because he wanted to set up the vertical
relationship between the words, at this time.

The arrows in the following illustration show that he
positioned ACCOUNT directly over NUMBER, but that
he indented OLD and NEW (in HDR1) one space,
compared to their counterparts in HDR2.

IBM System/360 Assembler Coding Form

PROGRAM PUNCHING
INSTRUCTIONS

GRAPHIC PAGE C

PROGRAMMER DATE PUNCH CARD ELECTRO Nl

STATEMENT

AName Operation Operand Comments
1 8 10 14 16 20 25 30 35 40 45 50 55 60 • 65 71

*
_ j f c —

H D R 1 D C C * A C C O U N T O L D N E w M O N T H L Y MO N T H L Y A MO c /
U N T '

i ! '
H D R 2 D C C ’ NU M B E R P R 1 N C 1 P A L P R 1 NC 1 P A L P A Y M E N T 1 N T E R E S T A P P c

L I E D T O P R 1 N 1

This is just a matter of style: You could line up the
first letter of each word in HDR1 with the first letter of
the corresponding word in HDR2, or you could indent
more, whatever you wish. The important consideration
is the spacing of words with respect to the
numerical fields which will be printed below them,
later. Also (including blanks) each header line must
be 66 characters long.

47

Now back to Figure 7. Having moved the first header
line into the output area, we want to print it . Remember
that there is an output routine to which we will branch,
for printing, by using the operand WRITE in a branch
instruction. After the output routine is over, we want to
get back to the next instruction, after our branch, in
this part of the program.

Remember a lso , that the output routine already ends
with a branch to the address held in register 10.

3. We have to write a branch instruction which will
also store the address of th e______________________
in register___ .

• • •

next instruction; 10

Read the following information on branch instructions.
A lso , locate the group of branch instructions, which
include BALR and BAL, on your Reference Data card.

Branch and Link
BALR Rlf Ro [RR]

05 I R1 I R2
0 7 8 11 12 15

BAL Rj, DgfXg, B2) [RX]

45 Ri X2 B2
0 7 8 11 12 15 16 19 20 31

The address of the next sequential instruction (nsi) is
stored in the first operand and a branch is taken to the
address stored in the second operand.

BALR (Branch and Link)
• If the second operand is 0 (zero), no branch is

taken.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing.

Examples:

Nome Operation Operand

T
d p i

f
i !

S 1 DEROAD B A L 9 . ROUT 1NE
N E X T D A T A MVC OLD , NEW

1 1 ! i '1] Ï
4 -

The first of the examples shows our old friend BALR.
In fact it shows the instruction that was written, in our
current programming example, to store the programrs
base address in register 11.

If you look back at Figure 6 for a moment, and
remember what you learned about the effect of the
USING instruction, you can note that register 11 will
contain the address of the first instruction produced
by the OPEN macro.

4. In the second example printed above, BAL is used
to branch to an instruction named ROUTINE. What
is the instruction whose address will be stored in
register 9?

• • •

The next sequential instruction: the MVC called
NEXTDATA

5. Back to our current program, in Figure 7. What
will be the effect of the BAL 10, WRITE
instruction ?

• • •

The address of the next sequential instruction
(MVC HEADER, HDR2) is placed in register 10.
The address of WRITE is placed in the PSW, so
that the system can branch to that routine.

48

6. Look at the WRITE routine in Figure 7. What
instruction at the end of the output routine, will
cause a branch back to the address of the MVC
HEADER, HDR2 instruction in the main part of the
program ?

• • •

The ’ ’conditional” branch BCR 15,10 which will
branch to the address stored in register 10,
regardless of the condition code in the PSW.

SKIP OPTION

After an instruction has been fetched, information in
its Op code is used to update the instruction address
portion of the PSW. Updating this instruction
address portion of the PSW consists of increasing
it by______, _______, ________ .

• • •

2; 4; 6

If the information in the ’ ’current” instruction’ s Op
code indicates an RR format, the instruction
address is increased b y _______.

• • •

If you doubt that you can predict the result of a BAL or
BALR instruction, read the frames on the following two
pages. If you feel sure about the use of these
instructions, skip over those frames and we’ll continue
with the programming example.

BRANCHING OPERATIONS

You have previously learned how the PSW is used to
control the sequence of instruction fetching and
execution. You have also learned how the normal
sequence of instruction fetching can be changed by (a) a
interrupt, (b) the ’’load PSW” instruction and, (c) a
’ ’branch” instruction. You have also studied one of the
"branch” instructions: ’ ’branch on condition.”

4. Given the following symbolic program, indicate
(decimally) the contents of the address portion of the
PSW after the program is executed. All of these
instructions use the RX format and are four bytes long.

£
B IT S 4 0 —S 3 O F PSW

A T S T A R T O F PROGRAM

2 0 4 8

B IT S 4 0 - 6 3 O F PSW
A T EN D OF PROGRAM

£

T H IS IS T H E A D D R E S S OF
T H E 1 S T IN S T R U C T IO N .

L 3,0(0 ,1)
AH 3,4(0 ,1)
MH 3,6(0 ,1)
S 3 ,8(0 ,1)
ST 3,12(0 ,1)

• • •

2068; Each instruction increased the address by 4.

1. The address of the next instruction to be fetched is
contained in the ______ _______ _______ . •

• • •

PSW

5. The sequential manner of instruction fetching can be
changed by means of a ’’branch” instruction. When
a branch is taken, the address of the ’’branch to”
location replaces _______________________________.

• • •

The instruction address (bits 40-63) in the PSW.

49

1. The "branch and link" instruction can be either of
the RR format or the RX format. The mnemonic
used for the RR "branch and link" i s _________ .

• • •

BALR

2. The BAL instruction always results in a branch.
The BALR instruction Will not result in a branch if
the R2 field i s ______ .

• • •

zero

3. In all cases (even when the R2 field is zero), the
address information in the PSW is stored in the
register specified by the____ field.

• • •

R1

The address that is stored by a "branch and link"
instruction is the address of the instruction that would
have been executed if the branch were not taken.

BRANCH AND LINK INSTRUCTION

4. Given the following symbolic program, show
decimally what address will be put in register 2
when the BALR instruction is executed.

s .

4 0 63

2 0 4 8

D E C IM A L C O N TEN T S OF PSW
A D D R E S S OF 1ST IN STR U C TIO N

D E C IM A L R E S U L T IN REG 2

LH 0,0(0 ,7) NOTE: Refer to
AH 0,2(0 ,7) System/360 Reference
BALR 2 ,3 Data Card (X20-1703)
STH 0,4(0 ,7)

• • •

Reg 2 = 2058

The reason for storing the address of the next
sequential instruction during a "branch and link"
operation is to provide a linkage between routines. This
is illustrated as follows:

LO CA TIO N
2 0 4 8 ------- oooX , LO CA TIO N

4 0 9 6 --------- SH 0 ,6 (0 ,7)
AH 0 , 2 (0 , 7) IN STR U CTIO N

B A L R 2 , 3 --------^ ^ IN STR U CTIO N '
STH 0 , 4 (0 , 7) B CR 1 5 ,2
IN STR U C TIO N

^ IN STR U C TIO N
R O U TIN E A R OU TIN E B

As you can see above, the "branch and link" instruction
will:

• Cause the address of the STH instruction of routine
A to be stored in register 2.

• A branch will be taken to the SH instruction in
routine B (assumed as the contents of register 3).

• The last instruction in routine B is an unconditional
branch (because the mask field contains 15) back to
the STH instruction in routine A.

• The address of the STH instruction was obtained
from register 2 where it was stored from the
preceding BALR instruction.

6. BALR 1,0

In the above example, the BALR instruction will
cause the address information in the PSW to be
stored in register______ , and a branch____________
(is /is not) taken.

• • •

1; is not

The BALR instruction, with an R2 field of zero, may be
used to load a base address into a general register.
Examine the following program; then read the following
frames.

D E C IM A L C O N T E N T S O F PSW
A D D R E S S O F 1 S T IN S T R U C T IO N

BALR
LH
AH
SH
STH
BCR

11,0
1,1000(0,11)
1 , 1002(0 , 11)

1,1004(0,11)
1,1006(0,11)
15,11

5. Write the mnemonic of the instruction whose address
was stored in register 2 in the previous problem___ . Assuming that 2000 is the address of the BALR

instruction, what address will be placed in register
• • • 1 1 ?_________

STH • • •

2002

50

8 . END OF SKIP OPTIONBecause the R2 field of the BALR instruction is
zero, a branch________ (will/will not) be taken.

• • •

will not

9. The second operand of the LH instruction will have
a base address of______and a displacement o f_______.

• • •

2002 ; 1000

10. The second operands of the second through the fifth
instructions will all have a base address of________ .

• • •

2002

11. The last instruction (BCR) will cause an
’’unconditional branch to” location________ .

• • •

2002

12. Write the mnemonic of the instruction at location
2002. ______

• • •

LH; Actually this program will never end because of
the ’’unconditional branch back to” the LH
instruction.

13. Thus far you have seen two main uses for the
’ ’branch and link” instruction. It can be used to:

1. Branch to some routine and automatically
provide the programmer with an_______ to
branch back to. Hence, the name of the
instruction: ’ ’branch and link. ”

2. Provide the programmer with a way to load his
initial base address into a g_______ r__________.

• • •

address; general register

1. Now we continue with programming example 1. We
have printed the first header line, so now we need
t o __

• • •

Move the second header line into the output area

2. Which instruction accomplishes this?

• • •

MVC HEADER, HDR2

3. What happens and what MVC instruction does the
system branch back to, as a result of executing the
second BAL 10, WRITE?

• • •

The address of the next sequential instruction is
stored in register 10, the system branches to the
WRITE routine, prints the second header line, and
branches back to the address of MVC OUTPUT,
OUTPUT-1.

4. Now we want to clear the words of the second
header line from the output area, to ready it for our
numerical output fields. How does the MVC
instruction accomplish this?

• • •

It propagates a blank in byte after byte until the
entire output area contains blanks.

5. We see a comment on the coding form which tells us
that we will read the transaction cards. For each
line of output, how many cards will be read?

• • •

One

6. How does the BAL instruction accomplish this?

• • •

It places the address of the next instruction, PACK,
in register 10 and causes a branch to the first
instruction of the routine called READ. After one
card is read, the system branches back to the
PACK instruction.

51

1. Let's see if you can recall what you read about
input operations and data format in System*Review:
Numerical data, read in from a punched card, is in
the ____________ _________________ format.

• • •

zoned decimal (or unpacked)

2. When the computer performs an arithmetic
operation, however, we want to save time and
storage space; we ___________ the data before
beginning calculations.

• • •

pack

3. Let’s look ahead a bit: Since we are going to use
standard instructions, not decimal, to perform the
calculations in this first program, we must both
pack the data and convert it t o ____________ .

• • •

binary

Read the following description of the PACK instruction,
and locate it on your Reference Data card.

FORMAT OF INPUT DATA Condition Code:
The code remains unchanged.

Program Interruptions:
Protection
Addressing

EXAMPLE:

This instruction places the contents of a storage area
called " ZONED” into a storage area called ’’SIGNED” .
The result in SIGNED is in packed format and the
rightmost 4 bits represent the sign of the low order digit.
The sign of the low order digit in the zoned field will be
given to the packed field. An unsigned zoned field
(containing hex Fs in the zone portions) will be assumed
to be positive.

Refer to the description of the instruction, if necessary
while answering the following question about the
example:

Pcsck

PACK D ,(L „ B t), D2(L2, Bo) [SS]

F2 Li L2 bi J t i 82 r v
0 7 8 11 12 15 16 1920 31 32 35 36 47

4. Would ZONED be cleared, after execution of PACK,
or would the same data still be there ?

• • •
The description says nothing about clearing: The
same data would still be there.

The signed or unsigned number in the zoned format at
the second operand location is changed to packed format
and stored in the first operand location.

5. Here is a zoned decimal field:

1 ooo 11 1 1 0 0 1 1 1101 oooi

• The fields are processed one byte at a time, from
right to left. They are not checked for valid sign or
digit combinations.

• If the first operand field is too long, it will be filled |
with high order zeros.

• If the first operand field is too short, any remaining
high order digits in the second operand will be
ignored.

• The maximum size of the second operand (zoned
field) is 16 bytes.

1. Its sign is ______________ .
2. In order to pack it , we need to specify an area

of storage with at lea st__bytes.

• • •

minus (1101); 2

This is a good point to show you the convert to binary
; instruction also (CVB), since we will use it with our

(packed data.

I

1

52

You will remember that unless we are using instructions
from the decimal set, we cannot perform arithmetic
operations on packed data. We must convert packed
data to binary, since we are using arithmetic
instructions from the standard set.

Locate it on your Reference Data card, then read the
following information.

Convert to Binary
CVB Rl t D2(X2, B 2) [*X]

4F R,

CM
X

B2 ° 2
0 7 8 11 12 15 16 19 20 31

A doubleword of packed decimal data at the second
operand location is converted to a 31 bit binary number
and sign in the register specified by the first operand.

• The second operand must be on a doubleword
integral boundary.

• The data is right aligned and signed in both
locations.

• The maximum number that may be converted is
+ 2 ,147 ,483 ,647 .

• The minimum number that may be converted is
-2 ,1 4 7 ,4 8 3 ,6 4 8 .

• Exceeding these values will result in a fixed point f;
divide exception and a program interrupt follows. ~

• During execution, the packed data is checked for
valid sign and digit codes. An invalid code causes J
a data exception.

j
Condition Code:

The code remains unchanged.
Program Interruptions:

Addressing
Specification
Data
Fixed point divide

EXAMPLE:

tij
&

6. Use the descriptive information to answer the
following questions about the example:
1. Briefly, what does CVB 3,PDEC do?
2. What must be true of the address of PDEC?

• • •

1. It changes the format of the data in an area
called PDEC to binary, and puts it in register 3.

2. It must be on a doubleword boundary.

7. Look at the first PACK instruction in Figure 7. The
area in storage into which we will pack PRIN (the
Principal amount) is called_____________ .

• • •

PPRIN

Now look at Figure 11.

8. We specify the storage area called PPRIN with a
DS D. Will the doubleword so specified be large
enough to hold PRIN after it is packed?

• • •

Yes: Double word=8 bytes. Prin=7 bytes; when
packed, it requires 4 bytes (7 digits and a sign).

In fact, a doubleword is twice as long as necessary; you
may be wondering why we used a DS D.

Look at the other PACK instructions in Figure 7. Note
that RATE and PAY will also be packed, so that they
can be converted to binary for the calculations.

9. Now think back to the information on defining
storage, earlier in this volume: The DS D
instruction defines a doubleword, and it also steps
the location counter so that the doubleword is
aligned (where?)____________ .

• • •

On an integral doubleword boundary.

10. If necessary, look back, in this text, to the note
below the example of a Convert to Binary
instruction. Then use your own words to tell why
we used DS D instructions to specify PPRIN,
PRATE, and PPAY, even though doublewords are
much larger than necessary for the packed fields.

• • •

DS D automatically starts each of these fields on an
integral doubleword boundary. This is where each
of these fields must be located, if we are to convert
them to binary.

53

CONVERTING DATA TO BINARY11. Figure 7 shows that we continue, after the PACK
instructions , by converting _________ and______
to binary.

• • •

The contents of PPRIN.
The contents of PRATE.

12. Where will the binary equivalents of these two
fields be placed?

• • •

PPRIN into general register 3.
PRATE into general register 7.

13. When PRIN was packed, the high order 4 bytes of
the doubleword PPRIN were filled with_________.

• • •

zeros

14. Which bytes from PPRIN are converted to binary
and placed in general register 3 as a result of the
CVB instruction?

• • •

The low order (rightmost) 4 bytes

15. What happens to the zeros in the high order 4 bytes
of PPRIN?

• • •

They are checked and, since they are not
significant, they are ignored.

SKIP OPTION

You have demonstrated a knowledge of binary data
formats.. You know that positive numbers are
represented in true form and that negative numbers are
represented in complement form. You also know that
these binary numbers appear in main storage as half­
words or fullwords. You are probably wondering,
however, how data from a punched card gets into main
storage in these binary formats. You should know the
standard card code (hollerith). So let’s start at that
point.

1. To punch the decimal number 1234 in an IBM card
would require______ columns.

• • t

four

2. Each column of a card read into a System/360
usually occupies one b_____of main storage.

• • •

byte

3. Data from a card reader is usually represented in
main storage in the Extended ___________________
Interchange Code.

• • •

Binary Coded Decimal (BCD)

4. The Extended Binary Coded Decimal Interchange
Code is usually called_______ . The code uses___
bits to represent a card column.

• • •

EBCDIC; 8

If you doubt that you can state the reasons for, and the
results of, the PACK and CVB instructions, read the
frames on the following five pages.

Otherwise, skip to the point where we resume
discussion of our first sample program.

5. The 8 bits of EBCDIC have two parts: zone and
numeric. The zone part consists of bits ______
and the numeric part consists of bits__________

• • •

0-3; 4-7

54

1

Bit positions in the EBCDIC byte

0 1 2 3 4 5 6 7

R E P R E S E N T V A L U E S O F 8 , 4 , 2 , 1

0 0 A -1
L 01 J - R

10 S - Z
1 1 N U M ER IC

1 1 U P P E R C A S E A L P H A B E T IC AND N U M ER IC
10 L O W E R C A S E A L P H A B E T IC
0 1 S P E C I A L C H A R A C T E R
0 0 NO C H A R A C T E R S A S S IG N E D

6. As can be seen on the EBCDIC chart on your
Reference Data card* * a numeric "1 " punch would be
represented by a combination of 8 bits in EBCDIC
a s __________________.

• • •

11110001

7. The letter A (12 and 1 hole punches) would be
represented a s _____________ .

• • •

11000001

8. The character "J " is represented on a card by
a n _____ zone punch and a __digit punch. It is
represented in main storage as the following byte:

• • •

11; 1 ; 11010001

9. A lower case " j " would be represented in a card by
a digit punch of 1 and zone punches of_____and____ .
It would be represented in storage a s ______________ .

• • •

12; 11; 10010001

10. The special character % would be represented by
a ____ zone punch and digit punches of___ and____ .
It would be represented in storage a s _____________

• • •

0; 8; 4; 01101100

11. To get the bit combination 01101100 into storage
would require a zone punch of___and digit punches
o f____and_____.

• • •

0; 8; 4

12. A blank column on a card ("no punches" under
Punched Card Code) would be represented* in
storage as ,______________ .

• • •

01000000

13. To get a bit combination of 00000000 would require
zone punches o f_____, ______ and digit punches of

• • •

12; 0; 9; 8; 1

Usually cards are punched in the standard hollerith card
code. That is , only decimal and alphabetic information
is punched in the card. Then after the data is brought
into storage, it can be converted (via instructions) to
binary and processed with the fixed point instructions.

14. Given the following card record:

The card contains + 0001234567 in columns 71-80.
Assuming that the entire card record has been read
into main storage starting at location 2048,
columns 71-80 will be in byte locations --------------------
through___________.

• • •

2118, 2127; locations 2048-2117 would contain
card columns 1-70

55

15. Numeric fields in EBCDIC are said to be in the
 (zoned/packed) decimal format.

• • •

zoned

16. Show (in hex) the zoned decimal data from columns
71-80 of the card.

B Y T E L O C A T IO N
2 1 1 8

B Y T E L O C A T IO N
2 1 2 7

J
• • •

F 0 F 0 F 0 F 1 |f 2 F 3 F 4 F 5 F 6 C 7

1 \ _TTrr oooo
t \

1111 0011
_ / !
1100 0111

+ 7

17. The sign of a zoned decimal data field is in bits
____of th e ______ (low/high) order byte.

• • •

0 -3 ; low

3. Show (in hex) how the data in columns 71-80 would
look if it were packed into eight bytes.

• • •

0 0 0 0 0 0 0 0 12 3 4 5 6 7C

4. The instruction "pack" is of the SS format. Label
the fields.

S S FO RM A T

• • •

1 L2 B1

5. Reread the description of the "pack" instruction. In
the "pack" instruction, the 2nd operand contains
th e______ (packed/zoned) decimal data.

• • •

zoned

PACK INSTRUCTION

1. Decimal data must be in the packed format before it
can be converted to binary. Zoned decimal fields
can be changed to the packed decimal format by an
instruction called " ________ " .

• • •

"pack"

2. Packed decimal data consists of two_ . per byte
with the low-order byte containing one digit and
the______ . The sign of a packed decimal field is in
bits_____ of the low-order byte.

• • •

digits; sign.; 4 -7

6. The low-order byte of the 1st operand receives the
low-order byte from the zoned data field. The
zone bits of this byte are______________________________
(assumed to be the sign/ignored).

• • •

assumed to be the sign

7. The zone and digits bits from the low-order byte of
the zoned decimal field are_____________before being
placed in the 1st operand.

• • •

reversed or swapped as shown below
- 3 4 -

ZO N ED

PACKED

LOW O R D ER B Y T E

56

8. Each remaining byte of the 1st operand receives
the_______ (zone/digit) bits from two successive
bytes of the zoned decimal field.

• • •

digit; As shown below

o ---------------------------- 7 o -

ZO N ED £ ZONE D IG IT ZO N E D IG IT

C D I G I T D I G IT S

14. If the length codes are such that the 1st operand is
long (compared to the 2nd operand), the packed
decimal field will be extended with high-order

• • •

zeroes

15. If the length codes are such that the 1st operand
cannot contain all the digits from the zoned field,
the remaining digits a r e ________________ .

• • •

ignored

9. The zone bits from the 2nd operand in the preceding
example are_________ .

16. Given the following "pack" instruction, show the
resulting packed decimal field. Instructions and
data are shown in hex.

• • • PACK

ignored

10. The bytes from the zoned decimal field (2nd
operand)_________ (are/are not) checked for valid
sign or digit combinations.

F 2 7 9 0 8 0 0 0 COO

B YT E LO CA TIO N
3 0 7 2

LO C
2048

LOC
3 0 7 2

• • •

are not

11. The zoned decimal field (2nd operand) and the
resulting packed decimal field (1st operand)
_______ (can/cannot) be of different lengths.

• • •

B Y T E LO CA TIO N
2 0 4 8

B Y T E LO CA TIO N
2 0 5 7

• • •

can

12. The 2nd byte of the "pack" instruction contains the
___________ codes of the two operands. The number
in the length code is _________________ (equal to/one
less than) the number of bytes in the operand.

• • •

length; one less than

13. The maximum number of bytes in either operand of
a "pack" instruction is_________ .

• • •

00 00 00 00 12 3 4 56 7C F F F F

t t
B YT E
LOCA TION
2 0 4 8

B Y T E
LOCATION
2 0 5 7

17. Just as with the previous instructions dealing with
fixed length operands, the operands of the "pack"
instruction are addressed by th e ir_____________
(high/low) order byte location.

• • •

high

16; As shown below
1

5
t t

2N D B Y T E O F P A C K IN S T R U C T IO N

1111 1111 B IN A R Y 15

ON E L E S S
TH A N R E S U L T IN G
P A C K E D F I E L D
L E N G T H

l _ O N E L E S S T H A N Z O N ED
F I E L D L E N G T H

18. The address of the low-order byte of either
operand in the "pack" instruction can be
determined by adding its_______ _code to its
generated effective address.

• • •

length

57

19. Given the following ’’pack” instruction, show the
resulting packed decimal field. Everything is
shown in hex.

PACK

F 2 9 9 0 8 0 0 0 8 0 0

t________ ±_ -LO CA TIO N 2 0 4 8

ZONED FO FO FO F I F2 F3 F 4 F5 F6 C7

PACKED

LOCATION
2 0 4 8 LOCATION

2 0 5 7

I

• • •

Notice that the original zoned data field was used to
contain the resulting packed decimal field.

CONVERT TO BINARY INSTRUCTION

You have now seen how the ’’pack” instruction can
change a zoned decimal field to a packed decimal field.
The packed decimal data can now be changed to a word
of binary data by use of the instruction: ’ ’convert to
binary. ” This instruction will not only convert the data
to binary, it will also load it into a general register.
Reread the description of the ’’convert to binary”
instruction. 1

1. In the CVB (’ ’convert to binary”) instruction, the
2nd operand contains a ___________ ________ (zoned
decimal/packed decimal/binary) data field.

• • •

packed decimal

2. To use the CVB instruction, the packed decimal
field must consist o f ________ bytes. The specified
address of the high-order byte must be divisible by
______ or a __________________ exception will occur.

• • •

eight; 8; specification

3. The results of the CVB instruction will be a binary
word and will be loaded into a ________ ____________,

general register

4. The data in the packed decimal field is checked for
valid sign and digit codes. If any codes are
improper, a _________exception will be recognized.

• • •

data

5. 0000-1001 are valid digit codes. If any of the digits
of the packed decimal field are coded from 1010-
1111, a _________ exception will be recognized.

• • •

data

6. Valid sign codes are 1010-1111. If the sign of the
packed decimal field (low-order four bits) contains
any of the valid digit codes, a ________ exception
will be recognized.

• • •

data

7. Since a twelve hole punch is used to indicate a plus
field on a card, the usual EBCDIC plus sign will
b e_________ . (Refer to the EBCDIC chart on your
card opposite 12-0 , 12-1 , 12-2 , 12-3 , etc.).

• • •

1100; These are the zone bits for the letters A -I

8. Since an eleven hole punch is used to indicate a
minus field on a card, the usual EBCDIC minus
sign will be___________.

• • •

1101; These are the zone bits for the letters J-R

9. Sometimes plus fields in a card do not have a twelve
hole punch. In these cases, the expected EBCDIC
plus sign would be_________ .

• • •

1111; These are the zone bits for the numbers 0-9

10. Either 1101 or 1011 are acceptable as minus signs.
All other bit combinations of 1010-1111 are
acceptable a s___________ signs.

• • •

plus

58

1

11. If the sign of the packed decimal field is plus, the
binary equivalent of the field will be loaded into a
register i n ____________ (true/complement) form.

• • •

true

12. If the sign of the packed decimal field is minus,
the binary equivalent of the field will be loaded into
a register in _______________ (true/complement) form.

• • •

complement

Example of conversion from packed decimal format to
binary format.

0 0 0 0 0 0 0 0 0 0 01 2 4 3 +
P A C K E D D E C IM A L
F I E L D IN S T O R A G E

I ,
I D E C IM A L 1 2 4 3 = H EX 4D B
j (R E F E R T O H E X - D E C c o n v e r s i o n t a b l e) ,

1 H EX 4 D B !
I__ I J

V

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 00 110 1 10 11
R E S U L T IN G B IN A R Y
D A T A IN G EN R E G

13. Given the following packed decimal field, describe
the converted results in binary bits in the general
register.

PACKED D EC IM A L IN
STORAGE --------

R ESU LT IN G BINARY
DATA IN GEN REG -

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 10 11 ___ ____ I___ ____ I___ ____ I___ ____

The binary value of 107 is loaded, and the high
order bit is set to 0 to denote a positive number.

14. Given the following packed decimal field, describe
the binary results in the general register.

PACKED D EC IM A L
IN STORAGE -----

R ESU LT IN G BINARY
DATA IN GEN REG _ • I

• • •

In the preceding example, the conversion was made by
first changing the decimal data to hex data and then the
hex data to binary data. We go through the hex step
simply because it makes decimal to binary conversion
easier. Of course, the System/360 does not go through
this hex step. It converts directly from decimal to
binary.

, , ' i ■ i '
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 1 0 1 0 1 I____ _____ I____ I____ I____ ____

The -107 is loaded as the complement of the value
107, and the high order bit is set to 1, to denote a
negative number.

59

1. We have almost arrived at the point, in our first
programming example, where we can perform the
first arithmetic operation. According to the
flowchart in Figure 5, this will be the calculation
o f_________ ___________.

• • •

monthly interest

2. According to the comment alongside the block for
this calculation, we will f ir s t__________Principal
and Rate, then we w ill_______ the result by 12.

• • •

multiply; divide

We are going to arrange for this first calculation in an
unusual way, and you deserve a note of explanation.

Assembler language instructions can be grouped by type
of function: For example, your Reference Data card
shows eight different branch instructions, in the
Standard Set, but they all have the same basic function -
altering the sequence of execution of instructions in a
program. Similarly, there are seven different
compare instructions, but they all share the function of
setting a condition code.

In determining the content of the sample programs for
this course, the authors discarded two unworkable
approaches:

• Trying to design one data processing problem (or
two, or three) which would demonstrate all of the
instructions.

• Designing a large number of small routines - with
two or three instructions in each - to encompass
the entire instruction set.

Both of these approaches were discarded for the same
reason: The sample programs would not represent
anything like the real-world of data processing with
which you will be dealing.

We decided to design sample programs which, if they did
not use every instruction, would use at least one
instruction of each type. Through learning to use, for
example, one of the compare instructions, you will have
learned most of what you need for coding the others.
The remainder of what you need to learn can be found in
the Appendix to this course• *

END OF SKIP OPTION We started with realistic data processing problems and
found, when we had the first three coded, that we had
used every type of instruction but one: STORE.
Accordingly, we found a way to include it in the first
sample program, so you would have a chance to see how
this type of instruction works.

Read the following information, and locate the group of
store instructions on your Reference Data card.

Store
ST A,, D2(X2, B2) [AX]

50 Ri X2 B2 D2
0 7 8 11 12 15 16 1920 31

32 bits from the general register specified in the first
operand are stored at the second operand fullword
location.

• The second operand must be on fullword integral
boundary.

Condition Code:
The code remains unchanged.

Program Interruptions:
Protection
Addressing
Specification

Name Operation Operand
1 8 10________________14 16________________20 25TTT1 '. t. ,

||g§|
sT 6 tNEWi.0c

111 i :

Store Halfword
STH Aif D2(X o, B2) [AX]

40 R, X2 B2 °2
0 7 8 11 12 15 16 19 20 31

16 low order bits (bits 16-31) from the general register
specified in the first operand are stored at the second
operand halfword location.

• The second operand must be on a halfword integral
boundary.

60

Condition Code:
The code remains unchanged.

Program Interruptions:
Protection
Addressing
Specification

Nome Operation Operand
8 10 14 16________________20_____________________25

j
:
111 ■'! i | :vvf'S l;

t
.......4 S T h ! i 7, i T E 1 i
IfifE'IBIS i l l l l f l !

I

Note: The four store type instructions are unusual in
that the direction of activity is from the first operand to
the second.

You should make a note of th is, on your Reference Data
card, by showing an arrow-----► to the left of the TYPE
(RX, or RS) designation for each of these instructions.

We thought we might as well show you two of the store
instructions, since they differ, mainly, only in the
amount of data stored. The other point which we need
to note is that ST (which might be called ’’Store
Fullword”) requires a storage location that begins on an
integral fullword boundary.

3. In our sample program, we are going to store the
binary equivalent of RATE (which is in general
register 7) in an area called BRATE. How do you
know, from Figure 11, that BRATE is aligned on
the proper boundary?

• • •

It was specified by a DS F , which both reserves a
fullword of storage and aligns it on a fullword
boundary.

STORE INSTRUCTIONS

Besides the ability to put data into the registers,
System/360 also needs the ability to put data from the
registers back into main storage.

1. The last type of operation is accomplished by a
”___________” instruction.

• • •

’’store”

Mnemonic Hex Op Code Data Flow

ST 50 Fullword,
storage

register to

STH 40 Halfword, low-order of
register to storage

2. You have learned that, as a general rule, most
instructions cause the results to replace the _______
(lst/2nd) operand. The ’’store” instructions are an
exception to the preceding rule. In the ST and
STH instructions, the_______(lst/2nd) operand
replaces the____ (lst/2nd) operand.

• • •

1st; 1st; 2nd

3. In the case of the STH instruction, the 2nd operand
in main storage is replaced by bits ____ through____
of the general register.

• • •

16; 31

4. The ST and STH instructions ________ ______________
(change/do not affect) the condition code.

• • •

do not affect

SKIP OPTION

If you doubt that you can predict the results of a store
instruction, read the following frames. Otherwise,
skip to the next page.

5. Write the instruction that will store the contents of
general register 7 in a location called FULLWORD.

• • •

ST 7, FULLWORD

61

END OF SKIP O PTIO N

The group of store type instructions is a small one.
The only ones remaining are:

• The multiplicand is right aligned in the odd register
of the even-odd pair.

• The product is right aligned in the even-odd register
pair.

Name of
Instruction Mnemonic
Store STC
Character

Store Multiple STM
Register

Basic Function
Places the low-order byte,
from a specified register,
into a specified storage
location.
Places the contents of a
specified series of
registers into a specified
storage location.

MR only:
• The even register may contain the multiplier.

M only:
• The multiplier (second operand) is a fullword right

aligned signed integer.
• The multiplier must be on a fullword integral

boundary.
• The even register is used only in developing the

product.

Self-Study material on these instructions can be found
in the Appendix to this course#

1. Figure 8 shows the calculation steps in the
program. The first instruction is the store that
we’ve been talking about. The next operation that
we must perform is the calculation of annual
interest. We will do that, by multiplying_________
by.__________.

• • •

Principal; Rate

Read the following descriptions of Multiply and Multiply
Halfword. Also, locate them on your Reference Data
card.

Multiply
M R R„ R 2 [RR]

ic R, R2
0 7 8 1112 15
M R u D 2(X 2, B 2) [RX]

5C X2 B2 D2
0 7 8 1112 1516 19 20 31

M and MR:
The first operand (multiplicand) is multiplied by the
second operand (multiplier) and the product replaces the
multiplicand.
• The multiplier and the multiplicand are 32 bit

signed integers.
• The resulting product is a 64 bit signed integer.
• The first operand must refer to the even register of

an even-odd register pair.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing (M only)
Specification

Name Operation Operand
1 8 10 14 16 20 25~i—7-i— !— r—— !— — — —!—I— I— — ---------r—i— —n —i— —-1------:------n

.. { || !
■ ' ! i

i. j . M R! 2 j , j 5 L 1 j * 1

i i i
____:____ 1____1___J ____ i___

j
j 1 ..1..

M 4 , NUM B E R

Multiply Halfword
M H R lf D 2(X 2, B 2) [RX]

4C Ri X2 B2 °2
0 7 8 1112 15 16 19 20 31

The first operand (multiplicand) is multiplied by the
halfword second operand (multiplier) and the product
replaces the multiplicand.

• The multiplicand is a 32 bit signed integer.
• The multiplier is a 16 bit signed integer.
• The resulting product is a 32 bit signed integer.
• The multiplicand (first operand) may be any register.

The product is developed in that register.
• The multiplier (second operand) is a halfword right

aligned signed integer.
• The multiplier must be on a halfword integral

boundary.

62

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing
Specification

Operation
10 14

Operand
25

ISIS . T T ~ H > • 1
H 9 ,|H A L f [,

i Ju

Suppose that register 9 contains the binary equivalent of
555, and a fullword named MULT contains 2.

2. What would you write if you wanted to multiply
them ?

• • •

M 8, MULT

3. What would be the contents of the even-odd register
pair, 8 and 9 , after the operation? Show it in
decimal.

• • •

There are two points about the M instruction that need
to be emphasized:

• The product of the multiplication operation is
placed in our even-odd register pair. The even
numbered register of this pair is R^ (the first
operand) in the instruction, but the multiplicand
must be in the odd numbered register.

• The multiplier (the second operand in the
instruction) must be aligned on a fullword boundary.

Thus, in the example M 4 ,NUMBER, the contents of
register _5 will be multiplied by the contents of a field
called NUMBER, and the product will be placed in
registers 4 and 5.

Picture it this way (fields are shown in decimal):

BEFORE

AFTER

We donTt care what was in register 4 before the
operation, because all of the positions to the left of the
first significant digit (in the product) will be filled with
zeros.

REGISTER 4 REGISTER 5
I XX ' XX ' XX ' XX1______________1______________1_____________ L____________

00 ’ 60 ' 00 ' 00

A STORAGE AREA CALLED "NUMBER"
| 00 | 00 | 07 | 00

REGISTER 4 REGISTER 5

OOooooo
20 00 00 ' 00

REGISTER 8 REGISTER 9

oo
00

i
00 001 00 00

1
11 ' 10

Now back to our sample program. Remember that the
contents of register 3 are the binary equivalent of PRIN,
a 7 digit number XXXXX. X X with the decimal point im­
plied; BRATE contains the binary equivalent of RATE, a
four digit number . XXXX with the decimal point implied.

4. Which registers will hold the product of
M 2 ,BRATE?

• •

Registers 2 and 3

5. Using X s , show their contents (as if they were
decimal digits) and show where the implied decimal
point would be.

• • •

REGISTER 2
~r~

00 00
n -a...

OX XX
REGISTER 3

XX ' X X ' XX ' XX
1 1

I
Implied decimal
point

63

SKIP O P TIO N

If you doubt that you can predict the results of a multiply
operation, read the frames on the following three pages.
Otherwise, skip to the point where we resume discus­
sion of our sample program.

MULTIPLY INSTRUCTIONS

1. The ’’multiply halfword” instruction, like all in­
structions involving halfwords in main storage, has
a mnemonic which ends with the letter____ .

• • •

H

2. In the MH instruction, the multiplicand is in a gen­
eral register while a halfword in main storage is
the___________ . The halfword from storage is ex­
panded to a ________ before the multiplication.

• • •

multiplier; fullword

3. In the MH instruction, the multiplicand is_____ bits
long.

• • •

32; The entire register is multiplied by the multi­
plier. Normally, the register will only be holding a
halfword and therefore the register ’s 16 high-order
positions will not affect the product. The net result
is that a halfword will be multiplied by a halfword.

Binary multiplication can be quite lengthy if done by hand.
The following is an example of an 8-bit multiplicand
being multiplied by a 4-bit multiplier.

Binary
01101011

x 0111
01101011

01101011
01101011

00000000
01011101101 ------------ ► Product

Multiplicand
Multiplier

Partial Products

4. The MH instruction follows the rules of algebra.
That is, if both operands are plus the product will
be a ______________ (positive/negative) number.

• • •

positive

5. If both operands are negative, the product will again
be a_____________ (positive/negative) number.

• • •

positive; multiplication of like signs always results
in a positive answer. For example:
(+2) x (+7) = +14; (-2) x (-7) = + 14

6. If multiplication of like signs results in a positive
product, multiplication of unlike signs should result
in a____ _________ (positive/negative) product.

• • •

negative

Another rule of multiplication is that the maximum num­
ber of significant bits in the product is equal to the total
number of significant bits in multiplicand and multiplier.

For example: 0111 ------- ►- 3 significant bits
x 0111 ------- ^ 3 significant bits0111011101110000
0110001 -------- 6 significant bits

MH

MH INSTRUCTION

1ST OPERAND 2ND OPERAND
M U L T IP L IC A N D M U L T IP L IE R

_________________3 1

HALFWORD HALFWORD

EXPANDED

\

PRODUCT

HALFWORD

J

J

Judging from the preceding example you can see that
binary multiplication is quite lengthy. If it is necessary
to determine the results of a ’ ’multiply” instruction, you
should convert the numbers to decimal and then multiply.

64

7. The preceding example shows that the MH instruction ;
is normally used to multiply one h_________(1st oper-
and) by another h_____________ (2nd operand.) The
maximum product that could result would be a
f_____________ and would replace the contents of the
1st operand r________________ .

• • •

halfword; halfword; fullword; register

8. If the MH instruction is used with a multiplicand that
has 15 significant bits and a multiplier that has 15
significant bits, the product would contain_________
significant bits and would replace the m______________ .

• • •

30; multiplicand

1 S T O P ER A N D
M U L T IP L IC A N D

H A LFW O R D

2ND O P ER A N D
M U L T IP L IE R

15
C O M P L E T E
H A LFW O R D

M O RE
THAN P R O D U C T ^

S i F U L L W O R D

C O M P L E T E
H A LFW O R D

The example above shows that the 1st operand regis­
ter contains more than a __________________ . The 2nd
operand contains a complete (16 significant bits) * •

• •

halfword; halfword
ii

10. If the MH (multiply halfword) instruction is used,
the product will be more than_______bits long. The
entire product will not fit in the 1st operand _r_______ .

• • •

32; register

11. In the preceding example, the resulting product in
the 1st operand register contained only th e ______
low-order bits of the actual product. The high-order
bits of the actual product were ____________.

• • •

32; lost

12. The preceding exam ple___________ (is /is not) a nor­
mal application of the MH instruction.

• • •

is not

13. The product of the 32-bit multiplicand and the 16-bit
multiplier may exceed 32 bits but only the low-order
 bits of the product replace the 1st operand.

• • •

32

14. Although the register containing the 1st operand may
not contain the entire product, a fixed point overflow
will not occur and the condition code rem ains______.

• • •

unchanged.

In summary, the MH instruction multiplies the contents
of a general register by a halfword from main storage.
The low-order 32 bits of the product replace the
multiplicand. No fixed point overflow is possible and
the condition code remains unchanged.

15. The mnemonic MR denotes a multiply instruction of
the_________format. The instructions MH, M, and
MR cause the ________ (lst/2nd) operand to be
multiplied by the_______(lst/2nd) operand. The
product of the MH, MR, or M instruction replaces
the_________ (lst/2nd) operand.

• • •

RR; 1st; 2nd; 1st

16. The R1 field in both the M and MR instructions must
contain the address of an______(even/odd) numbered
register. If the R1 field of an M or MR instruction
has an odd address, a program interrupt will be
caused by a ______________ exception.

• • •

even; specification

17. A specification exception of an M instruction can
also be caused by a 2nd operand address that is not
divisible b y__________ .

• • •

4; The 2nd operand must be a fullword in storage.

I
I

65

18. Although the R1 field contains the address of an
even-numbered register, the 1st operand
(multiplicand) is actually in a n _______ (even/odd)

Notice that in the preceding instruction, register 4 was
zeroed out even though the product was small enough to
be fitted into reg 5.

numbered register. E V E N R E G IS T E R ODD R E G IS T E R

• • • B E F O R E IG N O R ED S IN T E G E R

odd

19. If the R1 field of an M instruction contains a 4, the A F T E R S IN T E G E R IN T E G E R

M U L T IP L IC A N D

PR O D U CT

contents of register 4 are ignored and the
multiplicand is brought out of register____

• • •

5

20. MR

ic

In the above MR instruction, the multiplicand is in
register_____and the multiplier in register_____.

• • •
5; 7

21. MR

ic

In the above MR instruction, the multiplicand is in
re g iste r_______and the multiplier is in register____

• • •
5; 4

22. In the preceding MR instruction, both the multipli­
cand and the multiplier were wiped out by the
product which is placed in register_____and_____ .

• • •
4; 5

23. Show the register contents (expressed decimally)
after the following MR instruction is executed.

MR

1C 4 7

BE5"T"

• • •

Reg 4 = Zero; Reg 5 = + 1 4 ; Reg 7 = +2

HIGH O R D ER LOW O R D ER

24. The example above shows that the product of an MR
or M instruction is always developed as a
doubleword with the high-order in the_____ register
and the low-order in the_______ register.

• • •
even; odd

END OF SKIP OPTION

1. Now back to our program.
At the end of the multiplication step, you noted that
registers 2 and 3 contained yearly interest. Accord­
ing to the flowchart, what will we do next ?

• • •

divide by 12

Read the following information about the divide
instruction, and locate it on your Reference Data card.

Divide

DR R j f R2 [**]

ID R, R2
0 7 1 11 12 15

D R u D2(X2, B 2) [*X]

50 Ri X2

CM
CO

°2
71 11)2 15 16 1920

D and DR:
The dividend (first operand) is divided by the divisor
(second operand) and the quotient and the remainder
replace the dividend. •

• The dividend (first operand) is a 64 bit signed integer.
• The dividend occupies an even-odd pair of general

registers.

6 6

• The first operand refers to the even register of an
even-odd pair.

• The divisor (second operand) is a 32 bit signed
integer.

• All factors are right aligned signed integers.
• After the division, the quotient is in the odd register

of the even-odd pair as a 32 bit signed integer.
• The remainder is in the even register of the even-

odd pair as a 32 bit signed integer.

D only:
• The divisor (second operand) is a fullword right

aligned signed integer.
• The divisor must be on a fullword integral boundary.

Condition Code:
The code remains unchanged.

Program Interruption:
Addressing (D only)
Specification
Fixed-point divide

Now we have everything set for our calculation of
monthly interest.

At this point, we will introduce a special sort of self­
defining value that you haven’t seen before: It is
called a ’ ’literal".

You specify it, in an operand, by using an equal sign,
a type symbol (for halfword, fullword, or doubleword)
and the value that you want (in quotes). For example:
= H ’100’ would specify a halfword binary operand with
a value of 100, and would place it on an integral half­
word boundary. This has the same effect as if you had
defined a constant and labelled it, but this way saves
time and eliminates one label.

1. What would = F ’50 ’ specify?

• • •

A fullword binary operand, with a value of 50,
starting on an integral fullword boundary.

From the preceding, answer the following questions
about the divide instruction D 2 ,= F ’12’ in Figure 8.

2. What is the dividend?

• • •

3. What is the divisor?

• • •

The divisor is a fullword binary number with a
value of 12.

4. What is the form of the quotient, what does it
represent, and where is it after the instruction
has been carried out?

• • •

The quotient is a 32 bit signed integer (a fullword)
which represents monthly interest. It is in
register 3.

5. How many implied decimal positions does it have?

• • •

6, same as yearly interest.

SKIP OPTION

If you doubt that you can predict the result of a divide
operation, read the frames on the following two pages.
Otherwise, skip to the point where we resume discussion
of our sample program.

DIVIDE INSTRUCTIONS

Let’ s consider the instructions that will divide fixed
length binary numbers. But first, let’ s review some
information concerning division.

120
12) 1440

1. The problem above shows a division of decimal
numbers. The number 12 is called th e_________
and the number 1440 is th e_____________ . The
answer is called the....................... . .

• • •
divisor; dividend; quotient

12) 1443

The dividend is the 64 bit signed binary integer 2. The divide problem above has a _______________ of 120
that represents yearly interest. and a________________ _ of 3.
It is in registers 2 and 3. #

quotient; remainder

67

3. The sign of the quotient follows the rules of algebra.
If both the divisor and dividend have plus signs, the
quotient will also have a __________ sign.

• • •

plus

4. If both the divisor and dividend have negative signs,
the quotient will have a ___________ sign.

• • •

plus

To illustrate the preceding rules, consider the following:

+ 12
-12) -144

To check, multiply the quotient and divisor.

+ 12 x -12 = -144

5. If the divisor and dividend have opposite signs, the
quotient will have a ____________sign.

• • •

minus

To illustrate the preceding rule, consider the following:

- 12
-12) +144

To check, multiply the quotient and divisor.

-12 x -12 = +144

6. What about the sign of the remainder? By definition,
the remainder is what is left from the dividend. As
a result, the sign of the remainder should be
__________________(the same as/different from) that
of the dividend.

• • •

the same as

To illustrate the preceding rule, consider the following:

+ 120 with a remainder of -3
-12) -1443

To check the above, multiply the quotient and divisor and
add the remainder.

7. Show the quotient and remainder.

-12)+ 1 4 4 3

• • •

- 120 with a remainder of + 3
-12) +1443

To check: -12 x -120 = +1440
+ 1440 + (+ 3) = + 1443

8. There are two binary divide instructions. Their
mnemonics a r e _____ and_______ .

• • •

D, DR; Notice that there is no DH instruction.

9. The R1 field of the D and DR instructions must
contain the address of an__________(odd/even) register
or a program interrupt will be caused by a __________
exception.

• • •

even; specification

10. The even-odd pair of registers addressed by the R1
field of the divide instruction contains a doubleword
that is th e ___________________(divisor/dividend).

• • •

dividend

11. In the DR instruction, the R2 field has the address
of the register containing th e________________ .

• • •

divisor

12. In the D instruction, the divisor is a word from

• • •

main storage

13. The quotient and remainder from a D or DR in­
struction replaces th e_______ (dividend/divisor).

• • •

dividend

-12 x + 120 = -1440
-1 4 4 0 + (-3) = -1443

6 8

14. DR

ID

In the above DR instruction, the dividend is in

• • •

Registers 2 and 3 as shown below

O t 31 O 31
n -------------------- ^ ---------------------------S | DIVIDEND

REG 2. R EG 3

15. DR

In the above DR instruction, the divisor is in

17. Given the following DR instruction, show the
contents (in hex) of registers 2 and 3 after the
instruction has been executed. Assume the
dividend is -1443 and the divisor is -12 . Identify
the location of the quotient and remainder.

DR

• • •

REG 2 REG 3

F F F F F F F D 0 0 0 0 0 0 7 8

i i t
I I 0 1 1 1 1 0 0 0
I CONTAINS Q UOTIENT OF + 1 2 0

CONTAINS REM AIN DER OF - 3

• • •

Register 4 as shown below

o 3 1

s D IV ISO R

REG 4

16. DR
ID

In the above instruction, the quotient will be in
_____________ and the remainder will be in _______

• • •

Reg 3
Reg 2 as shown below

0 1 31 0 1 31

s REM AIN DER S Q UOTIENT

REG 2 REG 3

You have already learned some of the exceptions that
can cause program interrupts. They are as follows:

• Fixed point overflow
• Specification
• Addressing

An additional exception is fixed point divide. A fixed
f point divide occurs any time the quotient cannot be

contained as a 32-bit signed integer.

18. When the divisor is zero, a program interrupt
will be caused by a _______ _______________ exception.

• • •

fixed point divide

19. No division takes place and the dividend is left
undisturbed any time the System/360 recognizes
a _______ _ __________ ___________ exception.

• • •

fixed point divide

20. The System/360 would recognize a divisor of
 as a fixed point divide exception.

• • •

zero

69’

21. DR

DR

D IV ID EN D

In the above problem:
Will a fixed point divide be recognized?.
Will the contents of registers 4 and 5 be

changed ? _________

• • •

Yes. The quotient cannot be contained in reg 5
because it is too large.
No. A fixed point divide exception will occur
instead.

4. Having arranged for the constant, we turn to the
coding sheet shown in Figure 8. We will round-off
our monthly rate by (adding/subtracting)___________
HAFADJ.

• • •

adding

Read the following descriptions of Add and Add Halfword,
and locate them on your Reference Data card.

Add
A ft ftu ft2 m

1A R , R2
0 7 8 11 12 15

A * Jf D 2(X 2f B 2) [RX]

5A R ,

CM
X

B2 D2
o 7 8 11 12 15 16 19 20 31

22. If that portion of the dividend that is in the even
register is equal to or greater than the divisor,
the system (will/will not) recognize a
fixed point divide exception.

• • •
will

END OF SKIP OPTION

1. Back to our sample program. We have calculated
the monthly interest to six decimal positions. In
order to have it represent an amount of money to
the nearest cent, we need t o ____________ and truncate.

• • •

half-adjust

2. Earlier in this volume, you answered a frame by
saying that the programmer would add 5000 to the
field to half-adjust. Have we discussed the DC that
would specify this constant?

• • •

No.

3. Look at the DC called HAFADJ in Figure 11. Note
the F before the specification of the value. What
will be placed in storage ?

• • •

A fullword binary operand with a value of 5000

Since this type of DC automatically provides the needed
constant in binary form , there is no need to convert: It
is ready to be used in calculations.

A and AR:
The second operand is added to the first operand and the
sum is placed in the first operand.

• Both operands and the sum are 32 bit signed
integers.

A only:
• The second operand is a fullword 32 bit signed

integer*.
• The second operand must be on a fullword integral

boundary.

Condition Code:
0 Sum is zero
1 Sum is less than zero
2 Sum is greater than zero
3 Overflow

Program Interruptions:
Addressing (A only)
Specification (A only)
Fixed-point overflow

EXAMPLES:

Noma Operation Operand

rTT̂ 1 71" T Sill j
■ '4 | A t

1
; 5 8 j

. j '

A 7 . AMO U N T

—r—n—r—i—n —i j

70

Add Halfword SKIP OPTION
AH R1, D 2(X2, B 2) [«X]

4A Ri X2 B2 D2
0 7 8 11 12 15 16 19 20 31

The halfword second operand is added to the first
operand and the sum is placed in the first operand.

• The second operand is a 16 bit signed integer.
• The second operand must be on a halfword integral

boundary.
• The first operand is a 32 bit signed integer.
• The sum is a 32 bit signed integer.

Condition Code:
0 Sum is zero
1 Sum is less than zero
2 Sum is greater than zero
3 Overflow

Program Interruptions:
Addressing
Specification
Fixed-point overflow

EXAMPLE:

5. The examples show that we can add either
register-to-register or storage-to-register.
Which are we going to do in our sample program ?

• • •

storage-to-register

6. Where will the sum be ?

• • •

in register 3

7. How do we know that HAFADJ is on an integral
fullword boundary ?

• • •

It was defined by a DC with an F operand.

This not only reserves a fullword of storage but also
aligns it on an integral fullword boundary.

If you doubt that you can predict the results of an add
instruction, read the frames on the following four
pages. Otherwise, skip to the point where we resume
discussion of our sample program.

ADD INSTRUCTIONS - ALGEBRAIC

Shown below are three instructions which can be used
to add the binary data formats that you have learned.

Mnemonic Hex Op Code Data Flow

AH 4A Halfword storage to register
A 5A Fullword storage to register
AR 1A Fullword register to register

It is assumed that you know that a mnemonic is a
symbolic method of representing an Op code. Notice
that the letter "A " is used to indicate an add instruction.
An ending letter of "H " is used to indicate a halfword
operand length while an ending letter of "R " is used to
indicate an RR type instruction.

In each of the above instructions, the 2nd operand is
added to the 1st operand and the sum replaces the 1st
operand.

That i s , there is no need to analyze the signs and then
to complement one of the operands if they were
different. This is because negative operands are
already in complement form.

For example, the addition of a value of -1 to a value
of + 7 should produce a sum of + 6.

0 0 0 7 +7
+ F F F F -1 (already in complement form)

0 0 0 6 sum of + 6

1. Write (using "hex") the complete instruction to
add field A to field B. Assume field A is in
register 5 and field B is in register 2.

RR FO R M A T

AR

• • •

1A 2 5

71

Notice that since we are adding to field B, field B (reg 2)
is implied to be the 1st operand.

2. Show the contents of registers 2 and 5 as a result of
the preceding instruction.

Reg 2 0 0 4 8 7 A 0 1

Reg 5 F F F F A A A A

• • •

Reg 2 0 0 4 8 2 4 A B

Reg 5 F F F F A A A A

Notice that the 2nd operand is unchanged by the addition.
The 1st operand (in reg 2) is replaced by the sum.

Example of how the System/360 executes the instruction
using the actual binary operands:

6. The mnemonic nA TT is used to indicate a fullword add
of storage to register. This instruction, whose Op
code is a hex 5A, is of t h e ________ format.

• • •

RX

7. Assuming that the base address is in reg 5 and that
there is no index address, write the instruction that
would add a fullword in storage to a fullword in reg 7.

R X F O R M A T

A

i• • •

5 A 7 0 5 X X X

O P C O D E R 1 X 2 B 2 D 2 - 4 --------------[D I S P L A C E M E N T

Reg 2 = 0000 0000 0100 1000 0111 1010 0000 0001

Reg 5 - 1111 1111 1111 1111 1010 1010 1010 1010

0000 0000 0100 1000 0010 0100 1010 1011

1 t I t t I t t
0 0 4 8 2 4 A B

3. In the preceding example, reg 2 contained a
_____________ (positive/negative) number and reg 5
contained a __________ (positive/negative) number.

• • •

positive; - negative

4. As a result of adding the above numbers, the sum
was _______________ (positive/negative).

8. Given the following, show the contents after execution
of the preceding instruction.

Before After

Reg 7 0 F 0 F 0 F 0 F

Storage F F F F F F F F

• • •

Reg 7 0 F 0 F 0 F 0 E

Storage F F F F F F F F

The resulting sum which replaces the original operand
in reg 7 can be determined either by converting the oper­
ands to binary and then adding, or simply by adding the
hex numbers. Of course, as far as the System/360 is
concerned, these are binary operands.

• « • H ex Addition Binary Addition

positive

After an "add" instruction, the condition code is set to
indicate one of the four possible arithmetic results. See
page 5 of your System/360 Reference Data Card (X20-
1703).

5. Indicate the condition code setting for each of the
following arithmetic results.

Result

Zero ---------
< Zero or Negative ___ _
> Zero or Positive ______
Overflow ______

F F F F F F F F

0 F 0 F Q F 0 F

0 F 0 F 0 F 0 E

m i m i m i nil nil nil nil nil
oooo m i oooo nil oooo nil oooo nil

9. The preceding instruction___________(did/did not)
result in a fixed point overflow.

• • •

did not

10. The condition code setting as a result of the above
instruction would b e ________.

• • •
• • •

0 ; 1 ; 2 ; 3
2; The final sum was positive or greater than zero.

72

11. Using the following instruction, show the contents of
reg 7 and storage after instruction execution.

A

5 A 7 O 2 X X X

Before After

Storage F 0 F 0 F 0 F 0 ----------------- ------ _
Reg 7 F F F F F F F F _________________

• • •

Storage Unchanged i
Reg 7 F0F0F0EF

F F F F F F F F 1111 1111 1111 1111 1111 UJ1 1111 m i

FOFOFOFO 1111 0000 1111 0000 n i l 0000 1111 0000

F 0 F 0 F 0 E F n i l 0000 1111 0000 1111 0000 1110 1111

12. Notice that the final sum was negative and as such is
in Mtwos" complement form. The condition code
setting will b e________ .

• • •

1

If the operand in storage is a halfword, the Op code "4 A " ;
(mnemonic: AH) can be used. It also is of the RX format. £

13. Write the instruction that will add the following
binary operands. Assume reg 1 has a base address 5
of 2048.

14. Show (in hex) the contents of reg 2 after adding the
indicated halfword. Don't forget to propagate the
sign of the halfword.

Before After

Reg 2 8 0 0 0 0 0 0 0 _________________________
Storage F F F F

Reg 2 7FFFFFFF

15. In the preceding problem, the condition code would
be set to ______ indicating a __________________________

• • •

3; fixed point overflow

Remember now, that in the AH instruction, only the
storage operand is considered to be a halfword. It is
expanded to a fullword by sign bit propagation before
being added to the fullword in the register.

16. In review then, there are three instructions to
algebraically add binary operands. List their
mnemonics. ______ _______ ________

• tt

AR ; A ; AH

17. A mnemonic which ends in the letter R (such as AR)
indicates an instruction of th e ________ format. If the
mnemonic (of the RX type) ends in the letter H (such
as AH), it indicates that the second operand is a

REG 2 O F F F F F F F

S T O R A G E --------- OO O 1

B Y T E LO CA TIO N

2 0 4 9 —

IN STR U CT IO N —

• • •

AH 2 ,0 (0 ,1)

OR: 4A 2 O 1 0 0 0

OP CO D E R 1 X2 B2 D2

In the add halfword instruction, the entire register con­
tents are used. The halfword from storage is expanded
to a fullword by propagating the sign bit to the left. The
operands' are then added and the result goes back into the
register.

• • •

RR; halfword

t 18. Given the following, what would be the contents of
reg 0 after the instruction is executed ? What would
be the condition code ?

AR
Instruction

Mnemonic is AR 1A 0 8

4
Reg 0 Before 0 A 4 3 F 8 7 6

Reg 8 Before 0 0 0 3 2 1 F 9
I

Reg 0 After _________________

PSW Condition Code ______
§§i
* • • •
.

Reg 0 = 0 A 4 7 1 A 6 F ; Condition Code = 2

73

19. The hexadecimal Op code for the mnemonic A is 5A.
Assuming that the 1st operand is in reg 6 and that
the 2nd operand has a displacement of zero, with a
base address in reg 5 and no index factor, write the
instruction (in hex) that would add these operands. ^

A

• • <•

5 A 6 0 5 0 0 0

M N EM O N IC IS R 1 X 2 B2 D2

20. Referring to the preceding instruction and given the
following, what will be the contents of reg 6 after
the instruction is executed? What will be the con­
dition code ?

5A 6 O 5 O O O

1st Operand Before

2nd Operand Before

Reg 6 After

PSW Condition Code

• • •

Reg 6 = A 7 D 1 F C A D ;

A 0 8 7 F A 7 6

0 7 4 A 0 2 3 7

Condition Code = 1

To save main storage space, smaller binary numbers
can be kept in main storage as halfwords. The
mnemonic to add a halfword in storage to a fullword in
a register is AH. The hexadecimal Op code is 4A.

21. Assuming that reg 12 has a base address of 2048,
write the instruction that will add the following
halfword to the word in reg 5.

STORAGE HALFW ORD OPERAND

6 4 A 7

1 1
LOCATION

2 0 5 7
LOCATION

2 0 5 6

AH 5,8(0 ,12)

OR:

• • •

4A 5 0 C

B A S E A D D R E S S IS IN REG 12

Notice the displacement of 008. This is because
location 2056 is eight bytes away from location 2048.

22. Given the following, show the contents of reg 5 and
the condition code after the instruction is executed.

AH

4A 5 0 C 0 0 8

1st Operand

2nd Operand

Reg 5

Before

Before

After

0 7 4 A A 4 3 F

6 4 A 7

PSW Condition Code

• • •

Reg 5 = 074B08E6; Condition Code 2

END OF SKIP OPTION

Other add instructions, not illustrated by the sample
programs, are:

Name of Instruction Mnemonic Basic Function

Add Logical ALR The contents of a
specified register are
added to the contents
of another specified
register.

AL The contents of a
specified storage
location are added to
the contents of a
specified register.

Self-study material on these instructions can be found in
the Appendix.

1. The half adjusted quotient that was produced by
our first divide operation becomes the (dividend/
divisor)____________ when we want to set the
decimal point.

dividend

• • •

But, according to the information on the divide instruc­
tion, the dividend is a 64 bit signed integer. This
means that the computer considers the contents of both
registers, in the even-odd pair, to be the dividend.

74

2. Our intended dividend is in register 3: We have
to get rid of the ,_______that is still sitting in
register 2.

• • •

remainder (from the first divide)

According to Figure 8, after we ’ ’calculate monthly
interest” with our fir&t divide instruction, and half­
adjust, we ’’clear the even G(eneral) R(egister)for
division” .

3. What instruction does this?

• • •

L 2 , ZEROS

Read the following information and locate the group of
load instructions on your Reference Data card.

Load

LR Rlt R2 [RA]

LR and L:
The fullword second operand data is placed in the
register specified by the first operand.

L only:
• The second operand must be on a fullword integral

boundary.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing (L only)
Specification (L only)

EXAMPLES:

Load Halfword
LH R1§ D2(X2i B2) [AX]

48 Ri X2 B2 °2
0 7 8 11 12 15 16 1920 31

The halfword second operand data is placed in bit
locations 16-31 of the register specified in the first
operand.

• Bit locations 0-15 of the first operand contain the
same bit value as bit 16. (The sign bit is propa­
gated through the high order bit positions.)

• The second operand must be on a halfword integral
boundary.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing
Specification

EXAMPLE:

Nome Operation Operand
1 8 10 14 16 20 __________________25

!' Tp it j !| !

LHi,’- t #HAi k j r
I----H|

ill '■ j -' f ' ___Jl l ' j

Since Load and Load Halfword are so similar, we
decided to give you the information on both of them.

4. In the second example under Load, suppose that
NUMBERS is a fullword with a value of + 15. What
will the leftmost bit position in register 7 contain,
as a result of the load operation?

0 (signifying a positive number)

5. We want the sign bit in the even-numbered register
(of our even-odd pair) to indicate a positive num­
ber, but we do not want any of the other bit posi­
tions in that register to have a numerical value.
We will load register 2 w ith _______________.

• • •

zeros

6. Have we defined a constant for these zeros yet ?

• • •

No

75

7. Write the constant on a coding sheet, label it
ZEROS, and check the way it is shown on Figure
11. We have defined a fullword with a value of
zero, thus all of its bit positions will be set to
zero. Your answer should be equivalent.

If this is register 3,

00 01 09 11i i i

what will registers 2 and 3 look like after the
load operation ?

• • #

00 00 00 00 00 , 01 , 09 11

REGISTER 2 REGISTER 3

SKIP OPTION

If you doubt that you can predict the result of a load
operation, read the following frames on this page.
Otherwise, skip to the point where we resume dis­
cussion of our sample problem.

1. A "load" operation is specified by the letter;____
in its mnemonic. Just like the "add/subtract"
instructions, the mnemonics of the "load" in­
structions to denote RR format or halfword use
ending letters o f _______ o r ________ .

• • •

L; R; H

2. The condition code in the PSW_______ (is /is not)
changed by the LR, L, or LH instructions.

• • •

is not

3. The L and LH instructions load a register with
data from main storage. The LR instruction loads
a register from a register. Write the instruction
(in hex) that will load reg 1 from reg 5.

• • •

LR

18 1 5

LOAD INSTRUCTIONS

As you know, all input data must come into main stor­
age before it can be processed. In turn, processed
data must be in main storage before it can be sent to
an output unit. As a result, there must be instructions
to take data out of main storage and place it in a general
register and later to put the processed binary data back
in storage. These instructions are the "load" and
"sto re " instructions. "Load" instructions put data in
a register, while "sto re " instructions put data back
in main storage.

There are three "load" instructions which do no
more than place data in a general register. These
instructions have no effect on the PSW condition code
and do not change the 2nd operand.

Mnemonic Hex Op Code Data Flow

LR 18 Fullword register to
register

L 58 Fullword storage to
register

LH 48 Halfword storage to
register

4. The LH instruction loads a halfword from storage
into bits_____ through_____ of a general register.

• • •

16; 31

5. As a result of the LH instruction, bits 0-15 of the
register a r e _____________ (changed/unchanged).

• • •

changed

6. The following halfword is placed in a register by
use of the LH instruction. Show (in hex) the result­
ing contents of the register.

Storage A 7 B 6

Register after execution
of LH instruction _______________________

• • •

F F F F A 7 B 6 ; The halfword is expanded to a
fullword by propagating the sign bit to the left.

76

7. In the preceding example, the result in the
register is a _____________ (positive/negative)
number.

• • •

negative: As a reminder, don’t forget that
negative binary numbers are carried in their
complement form.

Load Negative LNR

Load Address LA

8. The two programming errors that are possible
when using the L and LH instructions are
 and____________ exceptions.

• • •

specification; addressing

END OF SKIP OPTION

Other instructions of this type, not illustrated by th^
sample programs are:

Name of Instruction Mnemonic Basic Function

Load and Test LTR The contents of a
specified register are
placed in another
specified register.

A condition code is
set, indicating that
the contents are zero,
negative (< 0), or
positive (> 0).

Load Complement LCR The complement of
the contents of a speci­
fied register is placed
in another specified
register. A condition
code is set, as in
LTR (above).

Load Positive LPR The absolute value of
the contents of a
specified register is
placed in another
specified register. If
the contents of the
former are negative,
they are complemented
before being placed in
the latter register.

The complement of
the absolute value of
the contents of a
specified register is
placed in another
specified register.

The address of a
specified storage
location is placed in
a specified register.

Load Multiple LM A specified series of
registers is loaded
with the contents of
a specified storage
location.

Self-study material on these instructions can be found
in the Appendix.

Back to our program:
At this point, it ’s necessary to picture what the contents
of registers 2 and 3 look like.

Suppose that, as a result of the multiply operation, the
following decimal amount is in registers 2 and 3
(decimal point implied):

tHooooooo --------- 1---------
09 10i 54 001 i

implied 1
decimal 1

After we divide by 12, we have:

I 66 ' 66 ' 66 ’ 66 09 ' 09• i 21 1 16

After we half-adjust, we have:

66 66 66 66 09 09 71 16

After we load zeros, we have:

00 00 00 00 09 09 71 16

We have to truncate the contents of the registers so that
they contain an implied 9. 09.

All along, we have kept track of the decimal; the com­
puter hasn’t. So far as it is concerned, the value of the
contents is 9 ,0 9 9 ,1 1 6 . We must divide this by another
whole number, some power of 10, to get a quotient which
(to the computer) is 909.

77

Suppose that, in the statement D 6, TEN registers 6 and
7 contain 1377045, and the content of TEN is a binary
fullword with a value of 10.

1. What would be in each of the registers as a result of
the divide operation?

• • •

REGISTER 6
I 00 O O O O 05

REGISTER 7
I 00

—i---------- 1 i
13 77 04

2. The quotient shows that division by 10 effectively
removes one low-order digit. If the divisor were
100, it would remove ____________________

• • •

two low order digits

3. In our sample program, we want to remove four low
order digits. We will divide b y ____________ .

• • •

10000

4. DonTt look at Figure 11, for a moment. Have we
set up a constant to use as a'divisor?

• • •

Not yet

5. We want to define a constant which will be a binary
operand. What about its location (alignment) if it is
to be used with the divide instruction ?

• • •

It must be located on an integral fullword boundary.

6. Write the type of DC that will give us this operand
(use a line on a coding form).

• • •

DC F 1 1 0 0 0 0

7. Now look at Figure 11 and see what we’re going to
call this constant.

DECPT

• • •

8. Now that we have the divisor, we can perform the
divide operation. What (in terms of quotient and
remainder) will be in which registers after our
D 2 ,DECPT?

• • •

The quotient will be in register 3 and the remainder
will be in register 2.

9. Monthly Interest Amount, half-adjusted and truncated
is represented by the contents o f ____________ .

• • •

register 3

10. Do we want to print it as output ?

• • •

yes

78

In order for us to print data, it must be in decimal
form, in storage. We will take the first step in this
direction, with the Interest field, at this point.

Read the following information about the convert to
decimal instruction, and locate it on your Reference
Data card.

Convert to Decimal
CVD Rlt D2(X2f B2) [RX]

4E R, X2 B2 °2
0 7 8 11 12 15 16 1920 31

The binary data stored in the register specified by the
first operand is changed to a packed decimal signed
integer and stored in the second operand.

• The second operand is a right aligned doubleword
packed decimal signed integer.

• The second operand must be on a doubleword
integral boundary.

Condition Code:
The code remains unchanged.

Program Interruptions:
Protection
Addressing
Specification

EXAMPLE:

Name Operation Operand
1 8 10_______________14 16________________20_____________________25

. 1' 1 !
c Vf i l l i0, 0ECi iffAki ; Mr

Note: Since this is another instruction for which the
direction of activity is from the first operand to the
second, show an arrow ------------- ► in the space on the
left of its type designation (RX) on your Reference
Data card.

6. The register contains a fullword; the second
operand must be a doubleword. In the example
above, what is done to the data in register 10,
and where is it placed?

• • •

It is converted to a signed integer in packed
decimal form and is right-aligned (placed in the
rightmost bytes) of the doubleword called
DECIMAL.

7. In our sample program, the instruction
CVD 3 , PINT puts the monthly rate into an area
of storage, in packed decimal form. Is PINT the
right sort of storage area to receive it? Check
Figure 11, if necessary.

• • •

Y es; PINT is a doubleword on an integral double-
word boundary.

SKIP OPTION

If you doubt that you can predict the result of a convert
to decimal instruction, read the frames on the following
two pages. Otherwise, skip to the point where we
resume discussion of our sample program.

CONVERT TO DECIMAL INSTRUCTION

After the data has been processed, it may be desirable
to change it back to the zoned decimal format (EBCDIC).
This would be necessary if we wished to print the data
out in recognizable form or punch the data out in stand­
ard card code. This can be done by use of two instruc­
tions. The "convert to decimal" instruction will convert
the contents of a general register to the packed decimal
format and place it in main storage. This packed deci­
mal field can then be changed to the zoned format by
use of the "unpack" instruction.

1. The first step in changing a binary result to
EBCDIC is to use the CVD instruction. This
instruction will change the binary word to a
doubleword o f_____________ decimal data.

• • •

packed

2. If the address of the 2nd operand (packed decimal
result) in the CVD instruction is not on a double-
word boundary, a _______________ exception will be
recognized.

• • •

specification

79

3.

4.

5.

6.

The coding of the sign bits of the packed decimal
result will depend on the sign of the binary word
and bit position 12 of the PSW. If bit 12 of the
PSW is 0, the EBCDIC plus sign o f________or minus
sign o f_______ will be generated. (Refer to EBCDIC
chart.)

• • •

1100; 1101

If bit 12 of the PSW is set to 1, the standard
EBCDIC signs will not be generated. Instead, the
generated signs will be those of the extended
______________ code.

ASCII

The generated sign is placed in the. .(low/high)
order four bits of the doubleword in storage. The
remaining bits of the doubleword will contain a
total o f_______BCD digits.

• • •

low; 15

Given the following CVD instruction, show the
resulting packed decimal field.

CVD

L, L
- CVD

BINARY CONTENTS OF GEN REG 1

EFFEC TIV E ADDRESS IS 2048

"T “ I
10 0 0 0 0 O 0 0 , 0 O O O O O O 0 , 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
I---------1---------1--------- 1-------Li-______ I_______I_______ I_______

(1ST CONVERT THE BINARY TO HEX. USE THE
HEX-DEC CONVERSION TABLE TO FIND THE
DECIMAL RESULT.)

RESULTING PACKED DECIMAL DATA

LOCATION
2048

LOCATION
2055

• •

1. According to the flowchart for the program, the
next arithmetic operation after calculating, and
rounding interest is to calculate____________________
.___________________________ (your own words).

• • •

the amount paid on the principal

2. We find this amount, by subtracting_______________
from_______________ .

• • •

interest; payment

3. Look at Figure 7. Did we convert the field called
PAY (Payment) to binary after we packed it into
PPAY?

• • •

No

4. A s other arithmetic operations do, the subtract
operation in the standard instruction set uses
binary fields. Which instruction in Figure 8 puts
PPAY in the correct format, and where is the
result placed?

END OF SKIP OPTION

• • •

CVB 2 , PPAY; general register 2

Read the following information on the subtract and sub­
tract halfword instructions, and locate them on your
Reference Data card.

Subtract
SR R „ R2 [RR]

S and SR:
The second operand is subtracted from the first oper­
and and the difference is placed in the first operand
location.

• Both operands and the difference are 32 bit signed
integers.

80

S only:
• The second operand is a fullword 32 bit signed

integer.
• The second operand must be on a fullword integral

boundary.

Condition Code:
0 Difference is zero
1 Difference is less than zero
2 Difference is greater than zero
3 Overflow

Program Interruptions:
Addressing (S only)
Specifications (S only)
Fixed-point overflow

EXAMPLE:

Subtract Halfword
5H Rlt D2(X2, Bo) [RX]

4B R1 X2 *2 D2
0 7 8 11 12 15 16 1920 31

The halfword second operand is subtracted from the
register specified in the first operand and the differ­
ence is placed in the register.

• The second operand is a 16 bit signed integer.
• The second operand must be on a halfword

integral boundary.
• The first operand is a 32 bit signed integer.
• The difference is a 32 bit signed integer.

Condition Code:
0 Difference is zero
1 Difference is less than zero
2 Difference is greater than zero
3 Overflow

Program Interruptions:
Addressing
Specification
Fixed-point overflow

EXAMPLE:

Name Operation Operand
1________________________________ 8 10________________14 16________________20_____________________25i IP 1 : I .

1': , ■ 5 H
1 "! ; l 0 i H A L Fe

;

When we earlier converted our monthly interest pay­
ment to packed decimal form, we did not destroy the
contents of register 3. The same field is still sitting
there as a 32 bit signed integer.

5. We will use an (SR /S /SH)______to subtract it from
payment (in register 2).

• • •

SR

6. Try to write the instruction to calculate the
amount paid on the principal, before checking
with Figure 8.

• • •

SR 2 ,3

7. Where was the difference placed?

• • •

register 2

8. This wiped out the binary fullword representing

• • •

Payment (or PPAY)

81

SKIP OPTION

If you have any doubt that you can predict the results
of a subtract instruction, read the following 14 frames.
Otherwise, skip to the point where we resume our
sample program.

SUBTRACT INSTRUCTIONS - ALGEBRAIC

Just as there are three Op codes for algebraic addition
of binary operands, there are three Op codes for
algebraic subtraction.

Notice that since we are subtracting field B (reg 7)
from field A (reg 0), register 0 contains the 1st
operand. Also note that register 0 can be used as
an accumulator. A s you have previously seen,
register 0 could not be used as a base or an index
register.

5. Because the preceding instruction says to sub­
tract binary operands, the 2nd operand will be
complemented and then__________ to the 1st
operand.

• • •

added

Algebraic Subtraction

Mnemonic Hex Op Code Data Flow

SH 4 B Halfword storage
from register

S 5 B Fullword storage
from register

SR 1 B Fullword register
from register

1. "A " is the mnemonic for add while "S n is the
mnemonic for________________.

• • •

subtract

2. A mnemonic ending in "H " (such as AH or SH)
indicates that the second operand is a __________.

• • #

halfword

3. A mnemonic ending in "R " (such as AR or SR)
indicates that the instruction is of the___ format.

• • •

RR

4. Write the complete instruction that will subtract
field B from field A. Both fields are binary
operands. Field A is in register 0 and field B
is in register 7.

• • •

R2

SR 0 ,7

OR

6 . SR

IB 0 7

In the SR instruction above, the register that will
have its contents complemented is register_______

• • •

7

7. In the preceding instruction, the complementing
of the 2nd operand (reg 7) during a binary subtract
operation__________ (does/does not) change the
contents of the 2nd operand (reg 7).

• • •

does not; In other words, the 2nd operand will be
brought out to the ALU without changing the regis­
ter. In ALU, the 2nd operand is complemented
ahd added to the 1st operand which has also been
brought out to ALU. The resulting answer is
then put back in the location of the 1st operand.
The actual mechanics of how the ALU does the
complementing or adding may vary from one model
of System/360 to another. Such topics will not be
covered here.

8. SR
II
1 IB 6 6

The SR instruction will subtract the contents of one
register from another. It can also be used to sub­
tract the contents of a register from itself. In the
instruction above, the contents of register 6 after
instruction execution will be____________.

• • •

zero; The preceding instruction is a good example
of how a register may be cleared out.

82

OP CODE

9. In the preceding example, the condition code was
set t o _____________.

• • •

0

Other subtract instructions, not illustrated by the
sample programs, are:

Instruction Name Mnemonic Basic Function

END OF SKIP OPTION

10. The SR instruction used the RR format. The S and
SH instruction use t h e __________format. These
S and SH instructions are identical to the A and AH
instructions with the following exception. In the S
and SH instructions, the 2nd operand (main storage)
is added to the 1st operand after it (2nd operand)
has b e en _______________________________ .

• • •

RX; complemented

11. Just as in the A and AH instructions, the main
storage operands specified by the S and SH in­
structions must reside on the correct fixed length
boundaries. If not, a program interrupt will
result and a ____________ exception will be indi­
cated in the " ____________ " PSW.

• • •

specification; "o ld "

12. If the address of the main storage operand is not
available on the particular System/360 (such as
address 16,000 on an 8K machine), an addressing
exception will cause a ____________ _______________.

• • •

program interrupt

13. A fixed point overflow can cause a

• • •

program interrupt

14. For the following mnemonics, indicate the instruc­
tion formats and the length of the 2nd operand.

Mnemonic Format Length of 2nd Operand

SR __________ —------------------------------------
S __________ __________________________
SH __________ __________________________

Mnemonic

SR
S
SH

• • •

Format Length of 2nd Operand

RR Fullword
RX Fullword
RX Halfword

Subtract Logical SLR The contents of a
specified register are
subtracted from the
contents of another
specified register.

SL The content of a
specified location in
storage is subtracted
from the content of a
specified register.

Self-study material on these instructions can be found
in the Appendix.

\

1. Now back to our sample program. Do we want the
amount applied to the principal to be printed as an
output field ?

• • •

Yes

2. What location in storage did we set up for it, in
packed form ? Check Figure 11, if necessary.

• • •

a doubleword called PAMT

3. What happens as the result of the instruction
following the first subtraction instruction, in
Figure 8 ?

• • •

The 32 bit signed integer representing the amount
paid on the principal is converted to a signed,
packed decimal integer and placed in the doubleword
called PAMT.

4. We converted the packed decimal equivalent of the
Principal Amount to binary once (CVB 3, PPRIN)
in order to calculate the annual interest. What
happened to the binary word in register 3 ?

• • •

It was destroyed, when the result of the multi­
plication operation was placed in registers 2 and 3.

Now we want to subtract the amount applied to the
principal from the principal, to calculate the new
principal amount.

In all the above instructions, the 1st operand is a
word in length.

83

5. Is the packed version of the original principal
amount still in the area called PPRIN?

• • •

Yes. We have done nothing to destroy PPRIN.

6. With the CVB 3 , PPRIN instruction, w e_______

(in your own words).

• • •

Convert the packed decimal field PPRIN to binary,
again, and place it in general register 3.

7. Could we have specified a different general register,
if we wanted to ?

• • •

Yes, except for GR 2, which contains the binary
equivalent of the amount to be applied to (sub­
tracted from) the principal.

8. What does the next instruction in Figure 8 do?

• • •

It calculates the new Principal Balance by sub­
tracting the amount applied to the Principal from
the Principal, and by placing the difference in
register 3.

9. In what form, and where, is the new principal
stored by the CVD instruction that follows?

• • •

It is stored in packed decimal form in a double-
word called PNEWPR.

LetTs see where we stand, in terms of our output fields.

10. Review the coding sheets to check on the
preceding. All but three of the desired fields
are in zoned decimal form, and need only to be
_________________to the respective output field
areas to be ready for printing.

• • •

moved

11. The three fields that are in packed decimal form
a r e ____________ , _____________ , and_____________

• • •

PNEWPR; PINT; PAMT

Read the following information on the unpack instruc­
tion, and locate it on your Reference Data card.

Unpack
U N P K D ,(L]f B j) , D ;,(L2, B>) [SS]

F3 Li 4 B, J h . 4 i A _
0 7 8 11 12 15 16 19 20 31 32 35 36 47

The packed format second operand location is changed
I to signed zoned format and is placed in the first

operand location.

• The fields are processed from right to left.
• If the first operand field is too long, it will be

filled with high order zeros.
• If the first operand field is too short, any remain­

ing high order digits will be ignored.
• The maximum size of the first operand (zoned

field) is 16 bytes.
• A standard plus (1100) or minus (1101) sign will be

attached to the low order digit of the first operand,
depending upon the sign of the packed field.

We want data in the
following output fields:

ACTNUM (Account Number)

We have the data in the
following fields (P
means in packed deci­
mal format):

ACCTNO

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing
Protection

OLDPRI (Old Principal PRIN
Balance)

NEWPRI (New Principal PNEWPR
Balance)

MONPAY (Monthly Payment) PAY

MONINT (Monthly Interest) PINT

MONAMT (Amount Applied PAMT
to Principal)

EXAMPLE:

Name Operation Operand
1 8 10 14 16 20 25

, , ;
1

: (1 ■.
■ j j | j - I 1.-

1 \ . L :
,■ | 4 j } ; ;

! i i ■ ,
[[■

1 j
U NlP K Z O N E D . P A C K E D

J - i L , ..;1..

!
l l : r 1____i— -j— l.—

I
- J —

84

looks like this:
Now that the binary results of the processed data have
been placed back in main storage as packed decimal
data, the "unpack” instruction can be used to change
the data to the zoned decimal format.

12. Assuming that the three byte field called PACKED UNPACK INSTRUCTION

120 ' 55 3+
I ■ I ...

How would the six byte field called ZONED look,
after the instruction is executed? Use hex.

• • •

I F0 F2 ' F0 ' F5 ' F5 ' C3
1 ■ ' ■---------1 h...

Note that a plus sign of 1111 (hex F) was placed in the
zone portion of every byte except the low order byte.

Now you have all the information you need to understand
the instructions under the comment "Assem ble and
Print a Line" in Figure 9.

Let’s run through them*.

13. Account Number and Principal Amount are moved
to their respective output areas. New Principal
is unpacked and moved to its output area by the
instruction_____________________________ .

• • •

UNPK NEWPRI, PNEWPR

14. Next, Monthly Payment i s __________to its output
area.

• • •

moved

15. Both Monthly Interest and Amount Applied to
Principal are __

(your own words).

• • •

unpacked and moved to their respective output
areas

SKIP OPTION

If you doubt that you can predict the results of an
unpack instruction, read the following frames on this
page. Otherwise, skip to the point where we resume
discussion of our sample program.

1. The 2nd operand of the "unpack" instruction is
assumed to be in th e__________ (zoned/packed)
format.

• • •

packed

2. Bits 4 -7 of the 2nd operand's low-order byte are
placed unchanged in b its_______ of the 1st operand’s
low-order byte.

0 -3 ; These bits

PACK DECIMAL

ZONED DECIMAL

• • •

represent the sign as shown below.

O 3 4 7

LOW ORDER BYTE

LOW ORDER BYTE

3. The remaining bits of the packed decimal field
represen t____________ . These digits are placed
in bits_______of the bytes of the 1st operand.

• • •

digits; 4 -7 ; As shown below.

Bits 0-3 of the zoned decimal field represents the zone

In review, then, once data has been processed with the
fixed point instructions, it can be converted back to the
zoned decimal format. This would allow the data to be
punched out in the standard card code or printed out in
readily readable form. To convert binary data to
zoned decimal data requires using the "convert to
decimal" instruction and the "unpack" instruction. The
"convert to decimal" instruction will take the binary
contents of a general register and place it in main
storage as a doubleword of packed decimal data. The
"unpack" instruction will change the packed decimal
data to zoned decimal data.

85

1. Back to our sample program. Our output fields
are all lined up, but the comment by the MVZ
instructions says that we must rem ove______________
before we can print.

• • •

signs from numbers

When the data was read in originally, every character
was given the sign value 1111 (hex F) in the zone portion
of each byte. Those fields which were simply moved
from their input areas to the corresponding output
areas, (Account Number, Principal, and Payment)
still carry those zones. They would print as numerical
fields.

But the three fields that had to be unpacked to get them
to the output area in zoned decimal form would not
print properly: The zone portion of each low order
byte contains a plus sign (1100) because the packed
fields were positive, and the unpack operation places
the sign in the zone portion.

Because of the sign, the low order digit in each of these
fields (New Principal, Monthly Interest, and Amount
Applied to Principal) would be printed as some other
character. Or it might not print at all.

We have to (effectively) remove the signs given to those
bytes, by changing their zone portions to 1111.

Read the following information on the move zone in­
struction, and locate the group of instructions that
includes it, on your Reference Data card.

END OF SKIP OPTION

Move Zones

MVZ DJL, B}), D2(B2) [SS]

D3 L B1 1 L B2]pT
0 7 8 15 16 19 20 31 32 35 36 47

The high order 4 bits (zone portion) of each byte of the
second operand are placed in the high order 4 bits of
the corresponding bytes in the first operand field. •

• Movement is from left to right.
• Movement is one byte at a time.
• The number of zone portions moved is determined

by the implicit or explicit length of the first
operand.

Condition Code:
The code remains unchanged.

Program Interruptions:
Protection
Addressing

EXAMPLE:

Nome Operation Operand
M I ; I i j j ; M [! i ■ j 1 I'j, |
: 1 1 MV z ZNUM B Ef»,+ 4i< i) t :Z|N UMB E R + 3
M i 1 1 M T r y '_ L L

i 1

In the example, ZNUMBER is the label of a five byte
field. Assume that it was just unpacked and that it
carries a positive sign.

The field is shown below, in binary. The zone, digit,
and sign bits are indicated.

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5
m i oooo 1 m i l o o i ' m i oooi ’ m i o o i i ' n o o 0 1 0 1» . ■ i . . ----

Z D Z D Z D S D
(sign)

The way that we replace the sign bits (1100 in the
rightmost byte) with 1111, is to move a zone in from
one of the other bytes.

Look at the example again. The second operand (from
which the zone bits will be moved) has been specified
with an address adjustment of + 3 . This means that the
move operation will begin at an address three bytes to
the right of ZNUMBER, as shown below.

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5
1111 0000 ‘ 1111 1001 ' 1111 0001 ‘ 1111 0011 ' 1100 0101~
—.1....................l, — i ■■■..............1 ,„..1

TAddress M ove f
o f Starts
ZNUMBER from here

2. Look again at the example and notice how the first
operand was specified. Not only was its address
adjusted with a + 4, but it was also defined as
having an explicit length of_________ ,(how many?)
byte(s).

• • #

One

86

3. The information on the move instruction stated that
the number of zone portions moved is determined
by the implicit or explicit length of the first
operand. In the example, __________ (how many ?)
zone portion(s) will be moved.

• • •

One

4. MVZ ZNUMBER+ 4(1), ZNUMBER+ 3 will move the
1111 zone bits fr o m _____________ ______________________
to _____________________________________(your own words).

• • •

the zone portion of the next-to-last byte;
the zone portion of the last byte.

5. In our sample program, what will

MVZ NEWPRI+ 6(1), NEWPRI+ 5

do?

• • •

It will move the zone portion of the next-to-last
byte of NEWPRI (NEWPRI+ 5) into the zone portion
of the last byte of NEWPRI

6. Will the New Principal Amount field then be ready
to be printed?

• • •

Yes

7. The next two MVZ instructions do the same thing
for the Monthly Interest and_________________________
(full name of field, not the label).

• • •

Amount Applied to Principal

8. If Amount Applied to Principal were a five byte
zoned decimal field, instead of a four byte one,
how would you write the MVZ instruction? Use
the labels used in the program.

• • •

MVZ MONAMT+ 4(1), MONAMT+ 3

NOTE: Our use of an explicit length of 1 byte, for
each of the 1st operands, was extremely important
and needs to be emphasized.

The description of the MVZ instruction noted that the
number of zone portions moved is determined by the
implicit or explicit length of the first operand.

Let’ s see what would happen if we mistakenly left the
(1) off the first MVZ instruction, giving:

MVZ NEWPRI+ 6, NEWPRI+ 5

The implicit (sometimes called ’’implied”) length of an
operand is the number of bytes in the storage area that
was defined for that operand. Thus, the computer
would look up NEWPRI in the symbol table and assume
that it occupies 7 bytes of storage.

The fact that we used an address adjustment of + 6
would not alter the number of bytes affected by the MVZ
operation: The symbol table says 7 bytes, so the
computer moves the zone portion of NEWPRI+ 5 into
NEWPRI+ 6, then from NEWPRI+ 6 (which is the last
byte of NEWPRI) into the first byte of the adjacent
storage area, and so on, until it completes seven
moves.

This kind of thing can really mess up data in storage.

There are other instructions that have a length value
implied in their first operand. One of them, MVC,
you have already seen. If you glance down the operand
column on your Reference Data Card, looking for an
L in operand 1 only, you will see the others.

Some other instructions show an LI in the 1st operand
and an L2 in the 2nd. Depending on the instruction,
the number of bytes affected by the operation is
controlled by LI or L2.

Although you haven’t used most of these instructions
yet, you should be able to complete the following rule:

9. ’ ’When using an instruction whose execution depends
on the length of one of the operands, if you do not
want the implied number of bytes affected, you must
(use your own words to state how you must code
that operand)__ ” .

• • •

code the operand with an explicit length expressed
as a number (of bytes) in parentheses.

You should note that the explicit length (coded in paren­
theses) is an entirely different thing than address
adjustment (coded by a plus sign). Explicit length
specifies the number of bytes to be used in the opera­
tion, while address adjustment specifies where in
storage the operation should begin.

Let’ s review the points just made, about address adjust­
ment and explicit length, before we continue.

87

If an operand is coded as FIELDA+ 4(3), we know that
we want the operation (whatever it is):

a. to begin with the 5th byte of FIELDA.
b. to affect three bytes of data.

10. What can we tell about an operation if an operand
is coded FIELDX+ 7(5) ?

• • •

a. We want the operation to begin with the 8th
byte of FIELDX.

b. We want the operation to affect 5 bytes of data.

11. W e’re ready to print a line ! Briefly, what does
the BAL instruction do ?

• • •

It stores the address of the next instruction in
register 10 and branches to a routine called
WRITE.

12. After a line is printed, the computer branches
back to (which instruction?)_________________________ .

BC 15, NEXT

Read the following material.

Branch On Condition
BCR M lt R2 [RR]

A branch to the address specified in the second operand
is taken whenever the condition code matches a con­
dition specified in the first operand (M l).

To code this instruction.

• Place the mask value corresponding to the desired
condition code in the first operand.

Condition Code
Mask Value

Example:
A . Desired Condition Code is 1.
B. Coding is BC 4 ,BRANCH.

• To test for more than one condition code, place
the sum of the mask values corresponding to the
desired condition codes in the first operand.

0 1 2 3
8 4 2 1

Example:
A . Desired Condition Codes are 0 and 2.
B. Coding is BC 1 0 ,BRANCH.

t
(8 + 2)

Note: Either condition code 0 or condition code 2
will cause a branch to be taken.

• When the first operand is 15, the branch is always
taken (unconditional branch).

Example:
A . BC 15, BRANCH

t
(8+ 4+ 2+ 1)

B. Any condition code (0, 1, 2 , or 3) will cause
the branch to be taken.

• When the first operand is 0, no branch is taken
(a no-operation or "n o-op" equivalent).

Example:
A . BC 0 ,BRANCH
B. None of the condition codes will cause a

branch to be taken.

; 13. For which condition code will the BCR example
not cause a branch?

• • •

Condition code 2

14. What will happen when the BC example
; BC 1 5 ,ALWAYS is executed?

• • •

Regardless of which condition code is set, the
computer will branch to the address labelled
ALWAYS.

Ü
j 15. In our sample program, what will be the result of

the execution of the branch instruction
BC 15, NEXT?

i
• • •in

The computer will branch to the instruction
labelled NEXT, which is a BAL to the input routine
called READ.

£ And so the execution of the program goes, until there
I are no more cards to be read.

88

SKIP OPTION

If you doubt that you can predict the results of a BC
instruction, for any condition code setting, read the
frames on the following two pages. Otherwise, skip
to the point where we continue discussion of our
program.

5. The high order bit position is used to test for a
condition code setting o f _________ .

• • •

0

6. The next bit position to the right tests for a
condition code setting o f _________ .

• • •

BRANCH ON CONDITION INSTRUCTION - REVIEW

1. The second operand fields in all "branch" instruc­
tions indicate the "branch to" location. Given the
following BCR instruction, the address portion of
the PSW will be replaced by bits 8-31 of
register_________ .

BCR
07 F A N HEX

• • •

10

2. Given the following BC instruction, the address
portion of the PSW will be replaced by _________
_________________________(the effective generated
address/the contents of the storage area at
location FFF).

BC
47 F 0 0 F FF

• • •

the effective generated address

3. In the "branch on condition" instruction, the
condition code is tested against the R1 field or (as
it is referred to) the___________________field.

1

7. The 3rd position to the right tests for a condition
setting o f______and the low order position is used
to test for a condition code setting o f _________.

• • •

2; 3

8. More than one condition code setting can be tested
for at the same time by setting the appropriate bits
of the mask field. Show the mask field bits that
will test for a condition code setting of 2 or 3.

8

BC INSTRUCTIO N M A S K F IE L D

• • •

0011

9. Show the mask field bits that are necessary to
branch on an equal or high indication after a
"com pare" instruction.

8 1 1

BC INSTRUCTIO N M A S K F IE L D

• • •

1010

M l or Mask

4. Each bit of the mask field (bits 8-11 is used to
test for a specific setting of th e ________________

• • •

condition code

89

10. The "branch on condition" instruction can be used
as an "unconditional branch" instruction. Show
the mask field bits that would accomplish this.

f l U B BC INSTRUCTION M A SK F IE L D

• • •

1111 (expressed hexadecimally as F)

11. The "branch on condition" instruction will never
result in a branch if the mask field contains_____

• • •

0000

12. If the R2 field of a BCR (not BC) instruction is 0,
a branch______________ (can/cannot) occur.

• • •

cannot

13. Which of the following "branch" instructions will
not result in a branch? (Circle one or m o re .)

BCR

a.

b.

d.

• • •

b. because the mask field is zero;
c. because the R2 field is zero
Answers a and d above will result in a branch if
the condition code is 3.

Other branch instructions, not illustrated in these
sample programs are:

Name of Instruction Mnemonic Basic Function

END OF SKIP OPTION

Branch on Count BCT

BCTR

Branch on
Index High

BXH

A "one" is subtracted
from the contents of a
specified register. If
the result is not zero,
the computer branches
to a specified address
in storage.

Same as above, except
that the branch-to
address is contained in
another specified
register.

The contents of a speci­
fied register are in­
creased by a certain
amount. This sum is
compared to the
contents of another
specified register. If
the sum has a higher
value, the computer
branches to a
specified address.

Same operation as
above, but the branch
occurs if the sum is
equal to, or lower
than, the contents of a
specified register.

Self-Study material on these instructions can be found
in the Appendix.

Branch on Index
Low or Equal

BXLE

90

THE LAST ENTRY

1. There is just one more instruction to be mentioned
It is an assembler instruction, written at the end
of the program. Can you guess what it is , before
checking Figure 11?

• • •

END BEGIN

2. Do you remember what this instruction tells the
Assem bler?

It notifies the assembler that the last source card,
for this program, has been read.

SUMMARY OF CODING

There has been a lot of information presented, and it
is possible that you may have lost sight of how the
programmer proceeded, in coding this program.

Look back at Figures 4 and 5, and weTll review the
steps.

• The programmer wrote D TFfs and I/O macros
and established a starting point, a base register,
and a linking register.

• He saw, from the description of the job in Figure
4, what the input and output areas must be like,
and he wrote the DSfs for them.

• After arranging for the output area to be cleared,
, he wrote the DCfs for his header lines (on a

separate coding sheet).
• Returning to the coding sheet for the machine

instructions, he arranged to have his header lines
moved in and printed and for the output area to
be cleared.

• Next he caused a card to be read, data required
for calculations to be packed and converted to
binary, and all of the calculations to be performed.
He interrupted the coding of machine instructions,
to define work areas and constants used in the
calculations, whenever necessary. The use of
separate sheets for coding machine instructions,
constants, and storage areas helped in this.

• He converted the results of his calculations to
decimal, unpacked them, moved them to the output
area and put them in the correct form for printing.

• He arranged to have a line of output printed and
another card read.

GO ON TO THE SECOND SAMPLE PROGRAM.

DECIMAL ARITHMETIC ON THE SYSTEM/360

1. The coding you have just studied for the Ajax Com­
pany problem uses the System/360 Standard instruc­
tion set. Numeric data being processed by the
Standard instruction set must be (packed/unpacked)
______________ and (does/does not)____________ have to
be converted to binary before arithmetic operations
are performed on it.

• • •
packed; does

2.
11
ï

In packed form, a byte will contain (how many)
------------------digit(s).

• • •

Two

There is available for the System/360 a set of instruc­
tions which will perform arithmetic operations on data
in packed decimal form, without first converting it into
binary form. To have these instructions the System/360
must include a feature known as the decimal feature.

3. Numeric data processed by instructions provided by
the decimal feature will be in (packed/unpacked)
_______________ decimal form. It (does/does not)
______________ have to be converted to binary before
arithmetic operations are performed on it.

• • •

packed; does not

A System/360 which has both the standard instruction
set and the decimal feature is said to have a Commercial
instruction set.

4. W ill the Commercial instruction set process data in
both packed decimal and binary fo r m s?___ _______

• • •

Yes. The standard set will pack numeric data, con­
vert it to binary, and process it in that form. The
decimal feature permits processing numeric data in
packed decimal form , without converting it to
binary.

The standard instruction set uses instructions of the RR
and RX formats. This means that data processed by the
standard instruction set must be in fixed-length format,
occupying a 32 - bit word or a 16 - bit halfword. A lso,
these words and/or halfwords are located on integral
storage boundaries.

91

By contrast, the decimal feature provides instructions
that are of the SS format. Data processed by these
instructions may be in fields of varying lengths,
starting at any address in storage. (That is , not
aligned to integral storage boundaries.)

Don’t forget that every unused high order position of a
packed field will contain a zero. If a field of 3 digits plus
sign (2 bytes) is packed into one that can hold five digits
plus sign (3 bytes), zeros will automatically be inserted
in the high order byte.

5. The lengths in bytes of data fields used in SS
(storage-to-storage) operations are indicated
where ? (Your own w ords.) ___________________

• • •

In the instructions that process the data

Read the following statements carefully:

• In packed decimal format two decimal digits are
placed in each byte.

• Data is right-aligned in its field. High order bytes
not containing significant digits will contain zeros.

• Each field has a sign in the four low order bit
positions (bits 4-7) of the right-most byte.

• Processing takes place right-to-left between main
storage data fields.

6. Assume a four byte field contains packed data on
which arithmetic operations are being performed.
What is the maximum number of digits the field can
hold?

• • •

9.

1
i

If the fields below are to be added, the first digits
to be operated on are the 4 and the 6. The next
two are the 8 and the 3. You can see that SS proc­
essing takes place (right-to-left, left-to-right)

0 0 ___ 1___ 1 3 _ 6 C

5 8 4 C

• • •

right-to-left

The program flowchart and problem statement for the
Ajax Company Mortgage Payment Job are shown in
Figure 12 and Figure 13 respectively.

Take a coding sheet from the pad, and define the input
areas. They are the same as they were for the first
program:

The fields within the main area called INPUT are
labelled ACC TNO, PRIN, RATE, and PAY. Find the
lengths of the fields from the problem statement.

7. If you answered 8, you forgot that packed decimal
fields have a sign in the four low-order bit positions
of the right-most byte. Where is the sign in the
packed decimal field below ?

Bit Positions 0-3 4 -7 0-3 4 -7 0-3 4 -7

8.

Byte 1 Byte 2 Byte 3

• • •

Bit positions 4 -7 of byte 3

A field of 4 decimal digits is packed into a three
byte field. Keeping in mind that packed data always
is right-aligned, show the contents of the field.

• • •

I2JL X X X s

After you have accounted for all of the bytes in INPUT,
define the blank byte that will be used to clear the output
area. (You may use the asterisk in column 1 to
separate entries on your coding sheet as you w ish .)

Next define the 132 byte output area, define an
unlabelled 33 bytes of storage for spacing, and define
a 66 byte HEADER area. Later you will see how the
fields within the HEADER area have been labelled.

This is about all you can define at the moment, because
the editing of individual output fields, in this program,
requires that some be longer than they were in the first
program. W e’ll come to that, later.

Check your coding sheet against the one in Figure 14.

10. We shall now consider the coding for the Ajax Com­
pany’s problem, using the Commercial instruction
set. The Commercial instruction set is composed
of (your own w ords)___________________________________

• • •
The standard instruction set plus the decimal
feature.

92

Remember that the decimal feature doesn’t replace any
standard instructions. It merely adds some new ones
which increase the power of the system by enabling it
to work with packed decimal data.

11. Decimal feature instructions are listed on page 2
of your Reference Data card. There are (how
many) __________ decimal feature instructions ?

8

12. Two of the decimal feature instructions, the Edit
and the Edit and Mark instructions, are used to
prepare data for printing. From your Reference
Data card you can tell that the other six decimal
feature instructions are used for (what kind)
 operations.

• • •

arithmetic and compare

We will use these decimal feature instructions to
perform the arithmetic processing steps in the Ajax
Company problem. For the other steps we will use
the same standard set instructions as before.

13. Look at the flowchart for the Ajax Company
problem. (Fig. 12). At which block do you think
we will start using the decimal feature instructions ?

• • •

E2

E2 is the first block that calls for arithmetic process­
ing. We will use decimal set instructions for the
arithmetic processing called for at E2 and certain
other blocks, but we will use standard set instructions
for all other processing.

You have learned the standard set instructions used for
the other blocks; now you will have an opportunity to
use them. As you read the following fram es, you will
write the instructions for blocks A 2, B2, C2, and D2.
You will need a coding sheet and your Reference Card.

Read the frames carefully - they will guide and advise
you. Don’t look back at the coding you already have
studied. Don’t look at the answers to the frames until
you have made an honest effort to write the desired
instruction. And don’t be afraid to make mistakes.
You will learn from your mistakes; you will not learn
by copying the answers.

Our first step is to clear the print area. You will recall
that this was done by moving the contents of the byte just
preceding the print area into the first position of the
print area, using an instruction with operands that will
not only move the contents of the byte, but also will
propagate them through the entire print area. You will
recall that the byte just preceding the print area con­
tained a blank; thus the print area is cleared to blanks
by this instruction.

14. Write this instruction. Give it the name START.
The symbolic name for the print area is OUTPUT.

• • •

START MVC OUTPUT,OUTPUT-1

15. Your next instruction will move the first of two
header lines to the print area. You will recall that
these header lines are defined as constants, using
the DC assembler instruction. Find the correct
constant in your list of DC’s and DS’s in Figure 15
and, using its name, write the instruction that
moves it to the print area. You have defined the
portion of the print area into which the header line
goes on the other coding sheet.

• • •

MVC HEADER, HDR1

We will not ask you to code the DC’s for header lines or
the DS’s for work areas (but you can try it on your own).
It is most important for you to recognize that you need
them, and, at appropriate points in our discussion of the
program, check Figure 15.

16. Having placed the first header line in the print area,
it must be printed. This calls for a branch to a print
routine called WRITE. This routine, plus a similar
one used for reading in input records, are shown in
Figure 16. They are the same routines you used in
the previous version of the Ajax Company problem.
It is necessary only to branch to the routine, using
the correct register to establish the linkage. The
routine branches back to the correct point in your
routine automatically. General Register 10 is used
in this operation. Write the instruction.

BAL 10, WRITE

17. Now write the instruction that will move the next
header line into the print area.

Take another coding sheet. MVC HEADER, HDR2

93

18. Write the instruction that will branch to an I/O
routine, to print this line.

• • •

BAL 10, WRITE

19. Write the instruction that will move the character in
the byte immediately preceding the area called
OUTPUT into the first byte of OUTPUT and
propagate it throughout the area, thus clearing
the OUTPUT area.

• • •

MVC OUTPUT, OUTPUT-1

20. You have coded blocks A2 andB2 of the Ajax problem
flowchart. The next block, C2, calls for us to get an
input record. The procedure is the same as for
writing the header lines, except that the special
routine is called READ, and brings data into the
computer instead of putting it out. Write the
instruction and give it the name NEXT.

• • •

NEXT BAL 10, READ

21. According to the flowchart, what is the first thing
we must do to get our input data ready for the
arithmetic operations ? _______________ ____

• • •

Pack it

In our previous coding for the Ajax problem, using only
the standard instruction set, we first changed the input
data to packed decimal, then converted it to binary for­
mat. This was necessary to get the data into process-
able form.

22. The decimal feature gives us instructions that make
it unnecessary for us to do both of these operations.
Which is unnecessary?_________________ _________

• • •

Conversion to binary

23. We do not have to convert our data to binary format
but we still have to pack it. Write the instructions
that will pack the principal, interest rate, and pay­
ment amount into the areas reserved for this
purpose. See your list of DS’s (Figure 15) for the
symbolic names of these areas.

• • •

PACK PPRIN, PRIN
PACK PRATE, RATE
PACK F PAY, PAY

24. We are now ready to use the first of the decimal
set instructions. Decimal set instructions are of
the (RX, SS, RR)________________ format.

• • •

SS

Since instructions of the SS format do not use general
registers, we sometimes find it necessary to set up
special areas in storage to act as "accumulators". In
these "accumulators" we do our arithmetic operations.
We can add and subtract factors in the accumulator, and
perform multiplication and division on its contents.

We use a regular DS declarative to reserve the accumu­
lator area, making sure it is of the right size to handle
the factors with which we are working.

25. For our problem we have set aside an area called
PINT, (Figure 15), to be used as an accumulator.
According to the list of DS’s for this problem,
PINT is (how m any)_______________bytes long.

• • •

7

26. Where is the area called PINT located?______________

• • •

In main (or primary) storage

27. What is the purpose of the area called PINT?

• • •

It is used as an accumulator for arithmetic opera­
tions performed by decimal set instructions.

We want to get one of the factors in our arithmetic
operation into the storage accumulator called PINT. But
before we use a storage accumulator we must be sure
that it is cleared of data. Our first decimal set instruc­
tion is designed to clear the accumulator and put in the
first factor in our arithmetic operation.

Read about this instruction in the following m aterial.

Zero and Add
ZAP D}(L]tBj)f D2(L2,B 2) [SS]

F8 h L2 bi 1P7 B2 JJ °2
0 7 8 11 12 15 16 19 20 31 32 35 36 47

94

The storage location specified by the first operand is
cleared to zero and then the second operand data (packed
format) is added to the first operand.

• If the first operand field is too short to contain all
the significant digits of the second operand, overflow
will occur.

Condition Code:
0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Interruptions:
Operation
Protection
Addressing
Data
Decimal Overflow

EXAMPLE:

Name Operation Operand1 ____ 8 10 ____ 14 16 ______ 20 ̂____ 25■ f 1l j j ; ! 1
f I
1 r
! . j ... zAP WORK], PDATA

1 1 ! l i t | | j j

Block E2 of the Ajax problem flowchart calls for calcu­
lation of the monthly interest by multiplying the principal
by the interest rate. We want to get one of the two
factors involved in this multiplication into the accumu­
lator called PINT. We will move the principal into the
accumulator, and designate it as the multiplicand.

28. Write the Zero and Add instruction that begins the
arithmetic processing in our Ajax problem.

• • •

ZAP PINT, PPRIN

If your answer wasn’t correct, cross it out and write it
correctly.

29. What is the result of this instruction?_______________

• • •

The area called PINT is set to zero and the contents
of the field called PPRIN are placed in PINT.

30. Where are the digits making up the amount of
PPRIN located in PINT. ___________________________

• • •

They are right aligned.

31. Is there a sign in PINT after the operation, and if
so, where is it located?

• • •

Yes. In bit positions 4 -7 of the right-most byte
of PINT.

32. If the number of significant digits in PPRIN do not
occupy all the available bytes in PINT, what will be
in the high-order bytes of PIN T?_____________________

• • •

zeros

95

SKIP OPTION 6.

If you have any doubt about your ability to predict the
results of a ZAP instruction, regardless of the symbolic
names and field lengths of the operands, you should read
the frames on the following pages. Otherwise, you may
skip to the point where we resume discussion of our
program.

ZERO AND ADD INSTRUCTION

Refer to the description of this instruction, which you
read a few frames back.

If the 1st operand is too short to contain all of the
significant digits from the 2nd operand, a _________

_________will be recognized.

• • •

decimal overflow

7. Given the following ZAP instruction, show the
resulting contents of the 1st operand and the
condition code.

WUNCMOR ZAP SET1, SET2

SET1 (Before) | 99 ’ 88 ’ 7D
------ ,-------.-----

,

SET2 | 78 | 42 ‘ 9C

Condition Code ____

• • •

1. The ZAP instruction will replace the______________
(lst/2nd) operand.

• • •

1st

2. Does the data in the 1st operand location affect the
ZAP instruction?_____________

• • •

SET1 (After); Condition Code 2

78 42 9C

8. Given the following ZAP instruction, show the re­
sulting contents of the 1st operand and the condition
code.

MORE1 ZAP ONE, TWO

No; it is ignored.

3. Does the 2nd operand need to be in the packed deci­
mal format or can any type of data be moved by the
ZAP instruction?______________________________________

I— — i------->------ '— i
ONE (Before)| 98 , 76 , 54 , 32 , 1C

ONE (After) \ \ \ \ \

TW pJ 50 ' 07 ’ 6D

Condition Code ______

• • •

• • •

The 2nd operand must be valid packed decimal data
or a data exception will be recognized and cause a
program interrupt.

4. Do both operands on a ZAP have to be of equal
length ? __________

• • •

No.

5. What happens to the extra bytes of the 1st operand
when the 1st operand is longer than the 2nd operand?

• • •

They are zeroed out.

ONE (After);

00 00 , 50 07 6D Condition Code 1

9. Given the following ZAP instruction, show the re­
sulting contents of the 1st operand and the condition
code.

MORE2 ZAP DATA1,DATA2

DATAl

DATA1

(Before){~ 17 [88 | 9C

(A f te r) I I

DATA2 | 00 | 00 ' 23 *71 | PC

Condition Code _______

• • •

DATAl (After);
23 ‘ 71 ' 0C Condition Code 2

96

10. In the previous problem, the 2nd operand was longer
than the 1st operand. Why wasn’t a decimal over­
flow indicated in the condition code ? (If you are
uncertain about what causes a decimal overflow,
re-read the material about the ZAP instruction.)

• • •

All significant digits from the 2nd operand were
able to fit in the 1st operand.

11. Given the following ZAP instruction, show the re­
sulting contents of the 1st operand and the condition
code.

MORE 3 ZAP SET1,SET2

SETl (Before)I 77 77 * 7D

SETl (After) | '

SET2 I 98 ' 76 '"~54 3C
ill I I I I J ...Mil II .11 1...........

Condition Code

• • •

SETl (After);
| 76 | 54 * 3C Condition Code 3

12. W ill a program interrupt occur after the preceding
instruction is executed?_________

• t •
Yes, because the first operand field is too short to
contain all significant digits of the second operand.
This causes a decimal overflow, resulting in a
program interruption.

Remember that for all decimal feature instructions, a
program interrupt is caused by exceptional operation
codes, operand designations, data or results.

13. Besides the data and decimal overflow exceptions,
the ZAP instruction is subject to other exceptions.
They are :__ ,
___________________________ , and_______________________

• • •

Operation (if the Decimal feature is not installed);
Addressing; Protection

You will learn more about decimal arithmetic exceptions
later.

1. Returning to our Ajax Company problem, we find we
have the principal in the accumulator called PINT.
The next step in calculating the monthly interest is
to multiply the principal by the interest rate. From
your Reference Data card you can deduce that the
decimal instruction we will use i s ____________________

• • •

Multiply Decimal (MP)

END OF SKIP OPTION

Read about this instruction in the following material.

Multiply Decimal
MP Djflj, D2(L2, B2) [SS]

FC L, L2 Jb. B2 n r
0 7 8 11 12 15 16 1920 31 32 35 36 47

The first operand (multiplicand) is multiplied by the
second operand (multiplier) and the signed product is
placed in the first operand location.

• Both the multiplicand and the multiplier must be in
packed format.

• The product is in packed format.
• The length of the first operand in bytes, must be

equal to or greater than the number of bytes
required to contain all the significant digits of the
multiplicand plus the total number of bytes in the
multiplier (second operand) field.

Example:

Multiplier = xxxx | Ox | xx | xS | (3 bytes)
Largest multiplicand = xxxxxxx { xx | xx | xx j xS | (4 bytes)
The product field length must then be 7 bytes (3+4) or
larger in length. 1 xxlxxlxxlxxjxxjxxlxS 1

• The multiplier may not exceed 15 digits and sign
(8 bytes) in length.

• The maximum product size is 31 digits and sign
(16 bytes).

Condition Code:
The code remains unchanged.

Program Interruptions
Operation
Protection
Addressing
Specification
Data

j§

97

EXAMPLE:

2. Now write the instruction that will multiply the
principal (placed in the accumulator called PINT by
the ZAP instruction) times the interest rate.

• • •

MP PINT, PRATE

If necessary, correct your answer.

3. Where will the product be located after the operation?

• • •

In PINT, right aligned.

4. The product (will/will not)____________ be signed.

• • •

will

5. How will the sign be arrived at, and where will it
be located?__

• • •

If you have any doubts about your ability to predict the
results of a decimal multiply operation, regardless of
the symbolic names, field lengths, and signs of the
multiplier and multiplicand, you should read the frames
on the following pages. Otherwise, you may skip to the
point where we resume discussion of our program.

SKIP OPTION

MULTIPLY DECIMAL INSTRUCTION

Re-read the description of this instruction; then let’s
take a few simple examples.

1. In the MP instruction, the 1st operand is the multi­
plicand. The 2nd operand is the multipler. The
product will replace the --- —
(multiplicand/multiplier)

• • •

multiplicand; It is the 1st operand.

2. Given the following MP instruction, identify the
multiplier and multiplicand.

AGAIN 1 MP FLD1,FLD2

FLD1E00 11 2C FLD2 1 01 , PC

6.

7.

By the rules of algebra. In bit positions 4-7 of the
right-most byte of PINT.

Where will the original multiplicand (PPRlN) be
located in PINT ? _____________________________ _________

• • •

Nowhere. It will have been lost in the multiply
operation.

The problem statement for the Ajax problem gives
the size of the input data fields and the number of
decimal places, if any, in each. The product in
PINT will have (how many) _________decimal places

• • •

6

A .. B.

• • •

A. multiplicand; B. multiplier

For the preceding MP instruction, show the resulting
contents of the multiplicand:

FLDl | !]
T----------

1 • 1> •1 1 00 I 01 | 12 ’ 0C
ll
1 The contents of FLD l are 112, with a plus sign,
m The contents of FLD2 are 10, with a plus sign.|The product is 112 +
B
1 x 10 +

l 1120 +

*
98

4. Show the resulting product for the following MP
instruction.

AGAIN2 MP SET1,SET2

SETl(Before) | 00 ' 09 ' 9D SET2 I 9D

SETl(After) | '

• • •

SET1: 00 89 1C
— - 1......... L . . ■

AGAIN3 MP TOT 1, TOT2

5. If the amounts in TOT 1 and TOT 2 both have positive
signs, will the product be positive or negative ?

To prevent the product from overflowing the multiplicand
field on a "multiply decim al", the System/360 has the
following restriction on the multiplicand.

The number of high-order bytes containing zeroes in the
multiplicand must be at least equal to the number of
bytes containing significant digits in the multiplier. For
example:

---------j----------r
01 J . 23 . 4D-L there must be 3

high-order bytes with zeroes in the multiplicand such as:

00 00 00
■.... li l

01 07 32 ID
ii

AGAIN4 MP SETA, SETB

SETA 101 07 32 ID SETB j 01 | 23 4D

• • •

Positive. Like signs give a positive product.

TOTl (Before)]~01 ' 07 | 32 | ID TOT2 I 01 , 23 , 4D

TOTl(After) £

7. The above MP instruction will result in a ----------------
exception and cause a program interrupt.

• • •

data; because the number of high-order zeroes in
the multiplicand is less than the size of the multi­
plier.

6. Can the resulting product for the above MP instruc­
tion fit into the multiplicand field ? ___________________

• • •

No; the rule of thumb is that the number of digits
in the product is equal to the sum of the number of
significant digits in both operands.

8. What must be done to prevent a specification
exception on an MP instruction ? ______________

• • •

The multiplier must be shorter than the
multiplicand and cannot have a length code greater
than 7 (15 digits and a sign).

99

END OF SKIP OPTION

1. Returning to the Ajax Company problem, we see
that we have calculated the yearly interest by
multiplying the principal times the yearly interest
rate. The result is in the ’’accumulator” called
PINT. To get the monthly interest, we must
divide the yearly interest amount in PINT by 12.
From your Reference Card, select the decimal
instruction that will perform this operation.

• • •

Divide Decimal (DP)

Read about this instruction in the following material.
Divide Decimal
DP Dj(Llt Bj), D,(L2, B2) [SS]

FD L, L2 B! 121 B2 LX
0 7 8 n 12 15 16 1920 31 32 35 36 4 7

The first operand (dividend) is divided by the second
operand (divisor) and quotient and remainder are
placed in the first operand.

• The dividend and the divisor must be in packed
format.

• The quotient and the remainder are in packed
format.

• The dividend field (first operand) length in bytes
must be equal to or greater than the total length
in bytes of the divisor (second operand) plus the
length in bytes of largest quotient expected in the
problem.

• The remainder will be a signed integer right
aligned in the right-most portion of the first
operand field and has a length in bytes equal to
the length of the divisor. The sign of the
remainder is the same as that of the dividend.

• The quotient will be a signed integer and will occupy
the remaining left-m ost bytes of the first operand
field. The sign of the quotient is determined by
algebraic rules from dividend and divisor signs.

Example:
If the divisor is 4 bytes long and the dividend is 6
bytes long, after the divide operation, the remainder
will occupy the right-most 4 bytes of the dividend
field and the quotient will occupy the rest of the
dividend field.
Dividend |XX|XX|XX|XX|XX|XS| (6 bytes)

Divisor | OX | XX | X X | XS | (4 bytes)

Result (In |XX|XS | OX |XX | X X |XS |
dividend

*-ie^ — Quotient |-«— Rem ainder-^

• The maximum size of the divisor (second operand)
is 15 digits and sign (8 bytes).

• The maximum size of the dividend (first operand) is
31 digits and sign (16 bytes).

| Condition Code:
The code remains unchanged.

Program Interruptions:
Operation
Protection
Addressing
Specification
Data
Decimal Divide

| Programming Note:

I It is often desirable to obtain a quotient of more decimal
places than are represented by the dividend. The result
may be readily obtained by multiplying the dividend,
prior to the divide operation, by the proper power of
10, e. g. , 10, 100 or 1000 for 1, 2 or 3 more decimal
places respectively, in the results. The Multiply
effectively shifts the dividend the desired number of
places to the left.

For example, assume that the sum of 7 numbers is 53
and that we wish to find the average of these numbers to
2 decimal places. Dividing 53 by 7 using the DP
instruction would result in a quotient of 7 and a
remainder of 4. However, if the dividend is multiplied
by 100 before dividing by 7, the quotient (with decimal
point inserted for clarity) will be 7. 57 and a remainder
of 1 after the DP operation.

In defining the length of the dividend field, one additional
byte must be added to the calculated length for every two
additional decimal places or fraction thereof.

For example, if the length of the dividend field was
calculated to be 8 bytes and an additional 4 decimal
places were required in the quotient, two more bytes
would have to be added to the calculated field length
giving a total of 10 bytes. Note that because this is a
packed field, 3 additional decimal places would also
require two more bytes.

EXAMPLE:

Name Operation Operand
1____________________________________8 10__________________U 16_________________ 20_______________________ 25

1' P w0RK i 8P1 52 '
—2

100

During the first sample program you were introduced to
the use of a literal as an operand. As you may recall,
it was in the instruction:

D 2, = F !12f

During assembly, this instruction would establish a
binary value of 12 in a fullword (as required for the
divide operation).

In this second sample program we will again use a
literal to divide yearly interest by 12 but, since we are
working with packed decimal data, we will specify the
literal accordingly.

Look at the coded example above. The contents of
WORK will be divided by 52, when this instruction is
executed. We tell the Assembler to establish the
literal as a packed decimal value, by using the type
code P.

2. With this in mind, write the instruction that will
divide the yearly interest in PINT by a constant of
12 to give monthly in terest:________________________

• • •

DP PINT, = P !12T

Correct your answer, if necessary.

3. The operand = P T12T causes the number 12 to be
established in storage as a constant in packed
decimal form. The constant will have a plus sign.
Show how the constant will look in storage.

__i______ i
Byte 1 Byte 2

• t t

6. A s a result of the divide operation, where will the
remainder, if any, be positioned? _________________

• • •

It will be right justified in PINT

7. The remainder (will/will not)________ have a sign.

• • •

will

8. What will be the size of the rem ainder?____________

• • •

2 bytes. Remainder area is always equal in size
to the size of the divisor.

9. Where will the quotient be located?_________________

• • •

In PINT, to the left of the remainder.

10. Is there any space in PINT between quotient and
remainder? _______

• • •
No.

11. Is the quotient signed, and if so, where is the sign
located? _________________ _ ____________

• • •

Yes. Quotient sign is in bits 4 -7 of the right-most
byte of the quotient area in PINT.

12. In a decimal divide operation, how is the minimum
size of the dividend field determined?______________

Byte 1 Byte 2

4. The second operand of a divide instruction is the
(divisor /dividend)________________________.

• • •

divisor

• • •

By adding the length, in bytes, of the divisor to the
length, in bytes, of the largest quotient expected in
the problem.

13. If you wanted the quotient to 5 additional decimal
places, ___________ additional bytes would be
required in the dividend field.

5. The divisor in our instruction is (your own words) 3
• • •

• • •

A constant of 12 in packed decimal form

14. Now, multiply the dividend b y ___________ to obtain
the desired result in the quotient.

• • •

100,000

101

If you have any doubts about your ability to predict the
results of a decimal divide operation, regardless of the
symbolic names, field lengths, and signs of the factors
involved, you should study the fram es, in the following
two pages. Otherwise, you may skip to the point where
we resume discussion of our program.

SKIP OPTION

DIVIDE DECIMAL INSTRUCTION

LABEL DP D 1(L 1,B 1),
Op code location of

dividend

D2(L2,B2)
location of
divisor

1. A s you can see above, the dividend is the
(lst/2nd) operand and the divisor is the _
operand.

• • •

1st; 2nd

6. Given the above DP instruction, a value of
will be divided by a value o f ____________ .

• • •

+ 2560; +16

The DP instruction will have as a result both a quotient
and a remainder. These two results will be in the
packed decimal format and will replace the dividend.
The quotient will replace the high order and the
remainder will replace the low order of the dividend.
The following example will illustrate this:

PROCES DP SET(4), SET+ 4(2)

SET (before)

SET (after)

00 02
1--------
, 56 V _ !oi l

. 6C

1 1 6 1 oc 1 ° °
i
. oc l2L .

quotient remainder unchanged

Note: The remainder is always the same size as the
divisor l

2. As in the other instructions you have studied, the
generated effective storage addresses refer to the
 (high/low) order byte of the data fields.

• • •

high

3. The mnemonic for the "divide decimal" instruction
is DP. This indicates that the divide instruction
operates o n __________(packed/zoned) decimal data.

• • •

packed

7. Given the following "divide decimal" instruction,
show the resulting contents of the dividend field.

AGAIN DP

SET (before)

SET (after)

SET(4), SET+ 4(2)

I 00 ' 01 ' 44 ' PC 01 2C

t
Location 2048

DP SET1(16), SET2(7) • • •

4. The above DP instruction has a dividend that is
________ bytes in length.

• • •

16

5. Sixteen bytes of packed decimal data can contain
 digits and a sign.

• • •

31

FIGURE DP SUBTOT(4), SUBTOT+ 4(2)

SUBTOT I 00 ' 02 '56 0C ' 01 ' 6C
1 I I l

SET | 12 ' PC | 00 I PC ~

8. The remainder is placed in the low order of the
dividend field and always contains the same number
of bytes as the____________________________________ .

• • •

divisor or 2nd operand

9. The quotient is placed in the dividend field just to
the left of th e ___________________ .

remainder

• • •

102

Re-read the description of the "divide decimal" instruc­
tion, which you read earlier in this series of frames.

10. The address of the quotient of a DP instruction will
be the same as the original___________________________.

• • •

dividend or 1st operand

15. The preceding DP instruction will result in a
specification error because __________________________

• • •

The divisor is not shorter than the dividend.

Let's summarize what we have learned about the divide
decimal operation.

11. The size of the quotient will be equal to the dividend
size minus the____________ size.

• f t
divisor

12. If the quotient cannot be fitted into its area, a
___________ ____________exception will be recognized.

• • •

decimal divide

13. When a decimal divide exception is recognized, the
dividend field will ________________ (remain unchanged/
contain part of the quotient).

• • •

remain unchanged

Another programming rule that applies to the "divide
decimal" instruction is this:

The divisor must be shorter than the dividend and cannot
exceed eight bytes. That is , L 2< L 1 and L 2< 8 .

DP
1 FD ’ 9 1 9 ’ 0 ' 800 ’ 0 ’ 810 in hex

t 1 f t t 11 ' f t
OP LI L2 B1 D1 B2 D2

14. The above DP instruction will result in a
specification error because the divisor’s length
code is greater than

• • •

7

DP
| FD ‘ 3 ' 3 ' 0 1 800 1 0 r804_ in hexr r mrt

OP LI L2 B1 D1 B2 D2

• The Dividend
a. The 1st operand is the dividend.
b. The dividend has a maximum size of 31 digits

and a sign.
c. The dividend will be replaced by the quotient and

remainder.
d. The dividend must have at least one high-order

zero digit.
• The Divisor

a. The 2nd operand is the divisor.
b. The divisor has a maximum size of 15 digits and

a sign.
c. In all cases, the divisor must be shorter than

the dividend.
• The Remainder

a. The remainder replaces the low order bytes of
the dividend field.

b. The remainder has the same length as the
divisor.

c. The sign of the remainder is the same as the
sign of the original dividend.

• The Quotient
a. The quotient replaces the high order bytes of the

dividend field.
b. The size of the quotient is equal to the dividend

size minus divisor size (L1-L2).
c. Since the quotient is placed in the high order

bytes of the dividend field, its address will be
the same as the dividend's.

d. The sign of the quotient follows the rules of
algebra:
(1) Like signs = +
(2) Unlike signs = -

• Decimal Divide Exception
a. This exception indicates that the quotient would be

too large to be fitted into its allotted field.
b. The decimal divide exception is recognized prior

to any division. The dividend field is left
unchanged and a program interrupt is taken.

• Specification Exception
This exception is recognized on a "divide decimal"
instruction whenever:
a. The divisor is longer than eight bytes.
b. The dividend is not longer than the divisor.

103

Returning to the Ajax Company problem, we find that the
monthly interest rate is in the 5 leftmost bytes of our
7 - byte storage " accumulator” called PINT. (The two
rightmost bytes of PINT contain the remainder of the
divide operation; we are not interested in them .)

1. Since our dividend (the yearly interest) contained
six decimal positions and the divisor (constant of 12)
contained no decimal positions, the quotient contains
(how many) ______________ decimal positions.

• • •

6

Here is a picture of how PINT looks at this point:

Quotient Remainder

END OF SKIP OPTION

PINT 1 x.x 1 x̂ x 1 x,x 1 x,x 1 x,s 1 X.X 1 xg I
implied
decimal
point

2. We will be working with the (quotient/remainder)
______________ which is in the (how many?) _________
leftmost bytes of PINT.

• • •

quotient; 5

3. We want to round off our monthly interest figure to
two decimal positions. We will half adjust by adding
a 5 into the thousandths position of the quotient in
PINT. Where is this? (your own w ords)___________

From your Reference Card you can determine that
the instruction we will use i s ________________________

• • •

The rightmost bit positions (4-7) of the 3rd byte of
PINT. ; Add Decimal (AP)

Add Decimal
AP Dj(L]f Bj), D2(L2, B2) [SS]

FA Li L2 B, JLl B2 p r
0 7 8 11 12 15 16 19 20 31 32 35 36 47

The second operand is added to the first operand and the
sum is placed in the first operand storage location.

• Both operands must be in packed format.
• The sum is in packed format.
• If the first operand is too short to contain all the

significant digits of the sum, overflow occurs.
• If the second operand is shorter than the first

operand, addition will take place normally.
• A field may be added to itself.

Condition Code:
0 Sum is zero
1 Sum is less than zero
2 Sum is greater than zero
3 Overflow

Program Interruptions:
Operation
Protection
Addressing
Data
Decimal overflow

EXAMPLE:

Name Operation Operand
1_________________________________8 10________________ 14 16________________ 20_____________________ 25_____________________ 30

M : ; M i ; : — I— i— i— i—

A p W O R K (3 1 . N E A R C E N T

M M M i l j ! (

In the example shown above, a constant called
NEARCENT is added to WORK. The explicit length
parameter (3) in the instruction limits the addition
operation to the 3 leftmost bytes of WORK.

4. Write the instruction that will add a constant called
HAFADJ to the monthly interest amount in the 5
leftmost bytes of PINT.

• • •

AP PINT (5), HAFADJ

Correct your answer, if necessary.

5. The symbolic name HAFADJ can be found in the list
of DCTs for this version of the problem. (Figure 15).
It refers to a signed constant in (packed/unpacked)
_______________form, whose value i s ________________.

packed; 5000

104

6. Show how this packed decimal constant of 5000 looks
in storage.

• • •

The add decimal instruction rounds off the monthly
interest amount by adding the constant of 5000 at the
appropriate place in PINT. Study the add decimal
instruction carefully. For this step the length in
bytes of PINT will b e __________ _.

• • •

PINT will be 5 bytes long for this step because of the
explicit length indicator (the digit 5 in parentheses) in the
add instruction. These are the 5 leftmost bytes of the
original 7 making up PINT.

8. Remembering that in SS instructions, processing
takes place from right to left, the constant of 5000
will be added to bytes___ ___________ of the 5 bytes
we are working with on this step.

• • •

5, 4, 3

9. The digit 5 from the constant will be added to the
(tenths, hundredths, thousandths)_________________
decimal position.

• • •

thousandths

10. Adding the constant of 5000 into the appropriate
place in PINT, half-adjusts the monthly interest
amount. What will the condition code be, after this
operation ? _______

• • •

2 (the sum is positive)

If you have any doubt about your ability to predict the
results of an ADD Decimal instruction, regardless of the
symbolic names, field lengths, (implicit or explicit) and
algebraic signs of the factors involved, you should read
the frames on the following four pages. Otherwise, you
may skip to the point where we resume discussion of
our program,

ADD DECIMAL INSTRUCTION

Refer to the description of this instruction which you
read earlier in this series of frames.

SKIP OPTION

AP is the mnemonic for the

• • •

3.

"add decimal” ; the ending letter of P tells us that
both operands must be in the packed decimal format.

In the ”add decimal” instruction, the sum of the 1st
and 2nd operands replaces the _________ operand.

• • •

1st

Since all packed decimal numbers are in true form ,
the signs of the field must be analyzed prior to any
addition. If the signs are different (one plus and one
minus), the 2nd operand i s ______________________
(added to/subtracted from) the 1st operand.

• • •

subtracted from

Subtraction on a computer is done by means of
addition.

• • •

complement

105

5. Given the following AP instruction, show the
resulting contents of the 1st operand.

SUBTOTl
(After) £

nlm J-

• • •

SUBTOTl: j 11 ‘ 74 28 8C

Notice that the sign bits weren't added.

6. The 2nd operand ' (was/was not) changed
by the preceding problem.

• • •

was not

7. In the preceding problem, two positive numbers
were added together. The resulting positive sum
would set the condition code t o ________ .

• • •

2

8. Given the following AP instruction, show the
resulting 1st operand field and the condition code.

GOAGIN AP FLDA, FLDB

FLDA FLDB
(Before) | 47 | 44] 96 j 7D [o i ' 47 8D

FLDA |-
(After) L Condition Code

FLDA (After);

47 46 44 5D.......... t.....■■„■i,-—

• • •

Condition Code

9. In the preceding problem, two (positive/

GO AP SUBTOTl, SUBTOT2

SUBTOT2 DS PL4

SUBTOTl DS PL4

SUBTOTl SUBTOT 2
(Before) 1 07 ' 42 '5 6 ' 7C 1 04 f 31 72 t 1C

negative) numbers were added together and the sum
(positive/ negative).was

• • •

negative; negative

10. If the signs of the two operands are different, the
2nd operand is effectively subtracted from the 1st
operand. Given the following AP instruction, show
the resulting 1st operand and condition code.

GOl AP FLDA, FLDB

Field A
(Before) | 3 2 1 76) 1C Field b | 47 '52 '7D l i l

A
Condition Code(After) | , ,

• • •

Condition CodeField A ; | l 4 ' 7 6 ' 6 D

As you previously learned, subtraction in a computer
is usually done by means of complement addition.

11. Given the following AP instruction, show the
resulting 1st operand and condition code.

G02 AP FLDA, FLDB

FLDA

FLDA
(After)

|47 01 9C

L .

FLDB I 31 99 9D

Condition Code

• • •

FLDA: | 15 | 02 0C
(After)

Condition Code 2

12. Given the following "add decimal" instruction with
operands that have different signs, find the final
result.

G04 AP FIRST, SECOND

f i r s t ! 32] 76 | 1C SECOND I 49 . 52 . 7D

Final Result p
(FIRST) L

• • •

16 t 7 6 , 6D (FIRST)

106

13. Since decimal data is always carried in true form,
the signs must be analyzed for arithmetic
operations. Given the following signs, indicate
whether the fields are true or complement added.
The instruction is Madd decimal” . (Choose the
correct answer for each set of sign s.)

1st Operand 2nd Operand

a. + + True add/Complement add

b. + - True add/Complement add

c. - - True add/Complement add

d. - + True add/Complement add

• • •

a.
d.

True add; b. Complement add; c. True add;
Complement add

14. Given the following AP instruction, show the
resulting contents of the 1st operand and the
condition code.

G05 AP FIRST, SECOND

FIRST(Before) | O O ^ ^ D SECONd | 67 | 9C

FIRST(After) 1 ' '
1 l l Condition Code

• • •

Condition Code 0FIRST(After) | 00 [0 0 ' 0C

17. A decimal overflow_______(can/cannot) cause a
program interrupt.

• • •

can

18. What else can cause a decimal overflow besides a
high-order carry? _________________________________

• • •

The number of significant digits in the 2nd operand
exceeding the length of the 1st operand.

i 19. Which of the following can cause a decimal overflow
on an AP instruction ? (Select one of the following.)

1st Operand 2nd Operand

a. 47 9C 52 oc
b. 98 1C 22 7D
c. 47 2C 00 37 6C
d. None of the above.

• • •

d

120. Which of the following can cause a decimal overflow
on an AP instruction ? (Select one of the following.)

1st Operand 2nd Operand

a. 22 7C 00 90 7C
b. 50 0D 50 0D
c. 04 7C 01 00 1C
d. All of the above.

In the previous problem, there are two equal values
with different signs. Since one quantity would be
subtracted from the other, the result would be zero as
indicated by the condition code setting. A zero result
is always plus. That is the reason for changing the
sign of the 1st operand from minus to plus.

• • •

d

Besides a decimal overflow, there are other program­
ming exceptions that can occur on an ”add decimal”
instruction. They are:

• Operation— If the decimal feature is not installed on
a system, any of the eight decimal instructions are
considered illegal.
Protection— Since the result of the instruction
replaces the contents of main storage, this
instruction is subject to a storage protection
violation.
Addressing—Any instruction which addresses main
storage for an operand is subject to an addressing
exception. This exception occurs when the address
is not available on a particular system (such as an
address 16000 on an 8K system).
Data—All packed decimal operands are checked for
valid digits and sign. All of the digit positions
must be coded from 0000-1001. The sign position
must be coded from 1010-1111.

15. The original length of the 1st operand will never be
exceeded regardless of the result. Carries beyond
the 1st operands high order byte are lost. When
there is a high-order carry, the condition code is
set to _______________ .

• • •

16. A carry out of the high order during an AP
instruction is called a

decimal overflow

107

21. What would happen if the ”add decimal” instruction
were used to add two zoned decimal fie ld s?________

i • •

A data exception would be recognized and a
program interrupt would occur.

22. The decimal feature is optional on models 30 and 40
of System/360. What would happen if an ”add
decimal” instruction was fetched on a model 30
which doesn’t have the decimal feature installed?__

• • •

An operation exception would be recognized and a
program interrupt would occur.

The instruction we will use to move the quotient sign
from byte 5 to byte 3 is the Move Numerics instruction.
Read about this instruction in the following material.

Move Numerics

MVN D^L, Bp, D,(B2) [SS]

D l L B , B2 l l A _
0 7 8 15 16 19 20 31 32 35 36 4 7

The numeric portion (low order four bits) of each byte in
the second operand are placed in the numeric portion of
the corresponding bytes in the first operand.

• The number of bytes in the operation is determined
by the implicit or explicit length of the first operand.

• Movement is from left to right through each field.
• Movement is one byte at a time.
• Zones remain unchanged.

END OF SKIP OPTION

1. Returning to our Ajax Company problem, we see that
the monthly interest amount, half adjusted with two
decimal positions, is in the leftmost 2 1 /2 bytes of
our accumulator PINT. We will want to extract this
figure from the accumulator and use it in further
arithmetic operations. Rut we know that decimal
operations require factors to be signed. So we see
that we must attach a sign to the monthly interest
amount. Where do you think the sign should be
placed ? __

• • •

In bit positions 4 -7 of the third byte of PINT.

Condition Code:
The code remains unchanged.

Program Interruptions:
Protection
Addressing

, N° ™ 8 1Q u , a ?0 , Q

MVN P 1 NT + 2 (1) , P 1 N T + 4

The instruction shown above will cause our monthly
interest amount to have the proper sign, in the proper
place.

2. The monthly interest amount was developed as the
quotient of a divide operation; thus its sign is the
sign of the quotient. Where is the sign of the
original quotient?_______________________________ _

• • •

In bit positions 4 -7 of the fifth byte of PINT.

Copy this instruction onto your coding sheet.

Here’s how this instruction works:

PINT jx ,X [x ,x [x ,x [x ,x 1^(5) lx ,X I X,S I

implied
decimal
point

108

A s a result of the Move Numerics instruction, the
original quotient sign is moved from bit positions
4 - 7 of the fifth byte in PINT to bit positions 4 - 7
of the third byte in PINT. How does the first
operand of the move numerics instruction specify
the address of the third byte in PINT ?

• • •

The address of PINT (leftmost byte address) is
increased by 2 to get the address of the third byte.

4. The field length of the first operand i s _____________

• • •

If you are sure you can predict the results of a move
numerics instruction regardless of the symbolic names,
field lengths (implicit or explicit) and relative addressing
involved, you may skip the following two pages. If you
are not sure you can predict the results of move numeric
instructions, you should read the following frames.

SKIP OPTION

MOVE NUMERICS INSTRUCTION

Refer to the description of the "move numerics"
instruction, which you already have read in this series
of frames.

5. The field length of the first operand is specified by

• • •

The digit 1 in parentheses.

6. The address of the fifth byte in PINT, where the
original quotient sign is located, is specified by

• • •

adding 4 to the address of PINT.

7. Why arenft the contents of the entire fifth byte
transferred by this instruction ? ______________

• • •

The move numerics instruction operates only on
bits 4 -7 of the designated byte(s).

1. MVN is the mnemonic for the
instruction.

• • •

"move numerics"

The MVC ̂instruction moved the entire byte from the
2nd operand.

The MVN instruction only moves bits
(0 -3 /4 -7) .

• • •

4 -7

3. The MVN instruction moves bits 4 -7 of each byte
from the__________(lst/2nd) operand to bits 4 -7 of
th e __________ (lst/2nd) operand.

• • •

2nd: 1st

109

4.

5.

Given the following, show the resulting contents of
the 1st operand.

MPLIER C l C2 C3 C4 C5 C6 C7 C8• l i t i i

MPLIER
QUOTIENT

MVN QUOTIENT, MPLIER
DS CL8
DS CL8

QUOTIENT
(Before)

QUOTIENT
(After)

QUOTIENT

Given the following, show the resulting contents of
the main storage area.

What is usually necessary is shifting the product to the
right in order to re-establish the proper place for the
decimal point. There are no Mshiftn instructions for the
storage-to-storage operations. However, the "m ove"
instructions can be used to effectively shift storage data.

In our previous example, the product had to be shifted
two places to the right in order to maintain the decimal
point. For instance:

00011.20C
x 0. 10C

0 0 1 .1200C

Assuming we are not interested in the third and fourth
decimal places, the above product should look like this:
00001. 12C. This can be accomplished by use of the
"move numerics’’ (MVN) instruction followed by a ’ ’zero
and add” (ZAP). See the example below.

Program to Multiply and to Position
MVN QTYOH+ 1(7), QTYOH the Decimal Point

QTYOH DS CL8
MORE MP TOTAL, MPLR

QTYOH I F l ’ C2 ' F3 ' C4 * F5 ' C6 * F7 ' C8 MVN TOTAL+ 2(1), TOTAL+ 3
(Before) ZAP TOTAL(4), TOTAL(3)

QTYOH ■-------1------ 1------1------ 1------ 1------1------1------- TOTAL DS PL4
(After) MPLR DS PL2

QTYOH
(After)

• • •

I n Cl ' F l ' C l ' F l ' Cl ' FI ' Cl
I1 I i I I. i-------L—

The numeric portion of the leftmost byte was moved
(propagated) to the right, byte by byte.

Storage Contents Before Execution of the
Above Instructions

TOTAL

MPLR

0 0 ' 0 1 ' 1 2 10C
___ I___ I____I___

01 oc

One problem that is often encountered after a multiply
operation is the placement of the decimal point. For
instance, 0001120C multiplied by 00010C equals
0011200C. However, suppose these numbers
represented dollars and cents, such as:

$ 11.20
. 10

0000
1120

$ 1. 1200

As you can see, the multiplication resulted in a product
with 4 decimal places.

Storage Contents

TOTAL (After MP)

TOTAL (After MVN)

TOTAL (After ZAP)

Any time a packed decimal field is to be shifted an
even number of places to the right, the MVN instruction
can be used to place the sign next to the low-order digit.
As shown previously, the packed decimal field can then
be shifted to the right by use of the ZAP instruction.

110

END OF SKIP OPTION

Returning to the Ajax problem, we see that we have
calculated the monthly interest amount, half adjusted
it, and given it the proper sign in the proper location.

1. The next block in the flowchart, G2, tells us to
calculate the amount of the payment which is to be
applied to the principal. We know the amount of
the principal and the amount of the payment, and
we know how much of the payment goes for
interest. We can determine how much of the
payment is left to be applied to the principal by
(your own words)_____________________________________

• • •

subtracting the monthly interest amount from the
payment amount. The remainder is the amount
paid on the principal.

The first thing to be done in setting up a subtract
operation is to get the number being subtracted from
(the minuend) into an accumulator.

2. We could use PINT as the accumulator for the
subtract operation and ZAP the minuend into it.
However, PINT still contains the monthly interest
amount. What happens to the contents of a field
when we ZAP another quantity into that field?

• • •

They are destroyed.

We need the monthly interest amount which still is in
PINT. Therefore, if we use PINT as our accumulator
we must first store its contents somewhere else. As
we will see later, this would require an extra step
which is not really necessary.

3. The most efficient way to perform this step is to
set up another accumulator. In the list of DCfs for
the problem you will find a storage area called
PAMT. (Figure 15.) This area has been reserved
for use as an accumulator. It is (how many)_______
bytes long.

• • •

3

4. We will perform our subtract operation in a 3 byte
accumulator called__________________ .

• • •

PAMT

5. The first step in subtracting is to get the minuend
into an accumulator. We are subtracting the
monthly interest amount from the payment amount.
The_____________________ is the minuend.

• • •

payment amount

6. The symbolic name of the payment amount (in
packed form) i s _________. (Consult Figure 15, if
necessary.)

• • •

PPAY

7. We want to get the payment amount, PPAY, into
the accumulator called ______________ .

• • •

PAMT

8. For this operation, we should use a (Z A P /A P /
M VC)____________________ instruction. Why? _______ * •

• • •

ZAP; To clear the accumulator of old data before
putting in the new data.

9. Write the instruction that will put the minuend into
the accumulator.______________________________________

• • •

ZAP PAMT, PPAY

10. The payment amount, whose symbolic name is
_______________ , is (where) _____________________________
after the instruction is executed.

• • •

PPAY; in an accumulator called PAMT

11. Our next step is to actually subtract the monthly
interest amount from the payment amount, PPAY,
which is in the accumulator called PAMT. Consult
your Reference Data card and select an instruction
that will do this. The instruction i s ______________ .

• • •

Subtract Decimal (SP)

111

Read about this instruction in the following material.

Subtract Decimal

12. The field length of the second operand is stated
explicitly. The second operand is (how many)
bytes long.

SP D,(LU B,)r D,(L,r Bo) [SS] • • •

FB L, 4 Ih _ B2 P T
0 7 8 1 1 12 15 16 19 20 3132 35 36 47

The second operand is subtracted from the first operand
and the difference is placed in the first operand.

3

13. The second operand comes from the accumulator
called

• • •

• Both operands must be in packed format.
• The difference is in packed format.
• If the first operand is too short to contain all the

significant digits of the difference, overflow occurs.
• If the second operand is shorter than the first,

subtraction will take place normally.
• A field may be subtracted from itself.

Condition Code:
0 Difference is zero
1 Difference is less than zero
2 Difference is greater than zero
3 Overflow

Program Interruptions:
Operation
Protection
Addressing
Data
Decimal Overflow

Nome Operation Operand________ 8 10______ 14 16____ 20 25

! M M

S P PAMT , P 1 NT (3)

The instruction above will perform the subtract operation
for the Ajax problem.

PINT

14. The first three bytes of PINT contain what quantity?

• • •

The monthly interest amount.

15. We have subtracted the monthly interest amount
from the monthly payment. The difference is in the
accumulator called ___________ .

• • •

PAMT

16. The quantity in PAMT is the amount of the monthly
payment that is applied to the (principal/interest)

• • •

principal

17. Since the signs of both factors in this operation were
positive and the absolute value of the subtrahend was
smaller than the absolute value of the minuend, the
sign of the result is (positive/negative)

• • •

positive

Copy this instruction on your coding sheet. 18. The condition code will be set to

• • •

2

112

If you have any doubts about your ability to predict the
results of Subtract Decimal operations, regardless of
the symbolic names, field lengths (implicit or explicit)
and algebraic signs of the factors involved, you should
read the frames on this page. Otherwise, you may skip
to the point where we continue with our program.

SKIP OPTION 4.

SUBTRACT DECIMAL INSTRUCTION

Refer to the description of the SP instruction, which you
read earlier in this series of frames.

5.
1. The mnemonic for the "subtract decimal" instruction

i s ______________

• • •

The operation of "subtract decimal" instruction is
similar in all respects to the "add decimal" instruction.
The only difference is that the AP instruction adds and
the SP instruction subtracts.

i
You may want to refer to pages 108-112 in this volume,
if you have any difficulty answering the next few frames. >

2. Given the following signs, indicate whether the
fields will be true or complement added on an AP \
instruction. (Select the answ ers.)

1st Operand 2nd Operand

a. + - True add/Complement add
b. + + True add/Complement add
c. - True add/Complement add
d. + True add/Complement add

One use of the "subtract decimal" instruction is to
zero out a packed decimal field. Show the resulting
contents of the 1st operand for the following SP
instruction.

AGAIN1 SP STORE, STORE

STORE (Before) | 42 ' l o ' 7D

STORE(After) 1 ' '

• • •

STORE fob | 0 0 1 0C~ Notice that a zero

difference results in a plus sign.

The SP instruction can also be used to zero out the
low order bytes of a field. Show the result of the
following instruction.

AGAIN2 SP

SET (Before)

SET (After) [

SET,SET+ 1(3)

| 4 1 ' 6 7 ' 4 2 ,7D

• • •

SET |41 , 0 0 , 0 0 0D Notice that since only

part of the field was zeroed out, the sign remained
minus.

What would happen on the following instruction ?

AGAIN3 SP LUMP, LUMP(3)

LUMP | 65* 4 3 ' 2 l ' PC

Your response:

• • •

a. Complement add; b. True add; c. True add;
d. Complement add

3. Given the following signs, indicate whether the
operands will be true or complement added on an
SP instruction. (Select the answ ers.)

1st operand 2nd operand

a. + + True add/Complement add
b. + - True add/Complement add
c. + True add/Complement add
d. - True add/Complement add

a. Complement add; b. True add; c. True add;
d. Complement add

A data exception would be recognized and a program
interrupt would occur. This occurs because the 2nd
operand’s low-order byte contains 21. Bits 4 -7 of
this byte would be recognized as an invalid sign code.

1st operand

LUMP I 65 ^43 W o el . I 1 — 1— I

2nd operand

I 65| 4 3 '21

113

END OF SKIP OPTION

Earlier we said that we could have used PINT as our ac­
cumulator for the preceding subtract operation, but that
it would have required an extra step. We should avoid
unnecessary program steps. Each instruction requires a
certain amount of time, however small, for execution.
The sum of the execution times for a large number of
unnecessary instructions can be significant, costing
valuable computer time.

To use PINT as the accumulator we would have to:

• Move the monthly interest amount from PINT to
another location in storage.

• ZAP the monthly payment amount into PINT.
• Subtract the monthly interest amount from PINT.

By setting up another accumulator we eliminated the
first step above. Our program would be:

• ZAP monthly payment amount into a different
accumulator.

• Perform the subtraction.

1. Returning to the Ajax Company problem we find we
have, in the accumulator called PAMT, the amount
of the payment that is to be applied to the principal.
Our next step is indicated in block H2 of the
flowchart. It is to________________________________ .

• • •

calculate the new principal.

2. To calculate the new principal we must subtract from
the old principal the amount of the monthly payment
that is to be applied to the old principal. Where is
this am ount?___

• • •

In accumulator PAMT

3. PAMT, in this case, contains th e________________
(minuend/subtrahend) of the subtract operation we
must perform.

• • •

subtrahend

4. The (subtrahend/minuend)__________________goes into
the accumulator first.

• • •

minuend

5. The minuend in this operation will be (symbolic
name)____________________.

• • •

PPRIN

6. To perform this subtraction it will be most efficient
to (choose one):
1. Store the contents of PAMT in another location

and use PAMT as the accumulator.
2. Set up another accumulator.

7. Your list of DSTs in Figure 15 shows a storage area
called PNEWPR which we will use for an
accumulator. Write an instruction that will place
the minuend of this subtraction into PNEWPR.

• • •

ZAP PNEWPR, PPRIN

j 8. Now write the instruction that will subtract the
subtrahend.____________________________

• • •

SP PNEWPR, PAMT

9. We have completed the arithmetic operations in the
Ajax problem. The next block in the flowchart, J2
tells us t o __ .

• • •

assemble a line

10. The format of the printed line is not quite the same
as in the previous version of the problem. Look at
the DS statements in Figure 14 that specify the out­
put area. The first item to be printed in the line is
_________ ____________, for which the symbolic name
i s ____________________ .

• • •

account number; ACTNUM

114

11. This involves a direct move of a data item from the
input area to the output area. The data item has the
symbolic name in the input area.

• • •

ACCTNO

12. Write an instruction that will move this data item
from the input area to the output area. If necessary,
consult your Reference Data card for the correct
instruction.

• • •

MVC ACTNUM, ACCTNO

13. The next item in the printed line is called___________ .

• • •

OLDPRI

OLDPRI is the symbolic name of the field in the output
area from which the original principal will print. It is a
quantitative figure that we want printed with appropriate
punctuation. But numeric quantities in storage do not
carry any punctuation - the punctuation is only implied.
So we must supply it at the time a quantity is printed. ?

To simplify the punctuation of data that is to be printed,
a decimal instruction called Edit is used. Before you
read about this instruction you should know the following
terms: ? •

• Source - the data being edited.
• Pattern - an arrangement of characters in a field in

storage, that determines what will be done with each f
character in the data being edited. It also specifies
what punctuation will be inserted in the data, and
where.

Now read about the Edit instruction in the following
material. In addition, read the frames that discuss the
Edit instruction further.

Edit

ED DrfL, Bp, D2(B2) [SS]

DE L Bi J h . B2 1U L
0 7 8 15 16 19 20 31 32 35 36 47

The format of the second operand (source) is changed
from packed to zoned and is edited into the pattern in the
first operand.

• The second operand (source) must be in packed
format.

• Editing proceeds left to right one character at a
time.

• The edited result replaces the pattern.

Condition Code:
0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Interruptions:
Operation
Protection
Addressing
Data

EXAMPLE:

115

EDIT INSTRUCTION

The purpose of edit operations is to produce easy-to-
read documents by inserting the proper punctuation
into a data record. The data to be edited is called the
source field and must be in the packed decimal format.
Consider the following source field

loo '12 '49 ' 07 ’ lO 17 C
8 » 1 ■ » 1

Source Field

In its present format, the preceding field cannot be
printed. The data must be in zoned format before
being printed.

1. One of the functions of the edit operation is to
change a source field from the format to
the_____________ decimal format.

• • •

packed; zoned

If changing from the packed to the zoned format were
all that was necessary to produce a meaningful report,
the "edit” instruction wouldn’t be necessary. The
"unpack” instruction, which you previously studied,
would be sufficient. For instance, if the previous
packed decimal operand were changed to the zoned
format, it would look like this:

Packed fOo ' 12 ' 49 ' 07 *10 '7C
L- 1 1 1 1 ■

Zoned If O ' F0 'F I ' F2 ' f 4 ' F9 ' F0 ' f 7 ' FI ' F0 ' C71---- ■ 1 1 1 1 1 ■ 1 1 1 1

If the above zoned decimal field were printed, it would
look like this:

0 0 1 2 4 9 0 7 1 0 G

By examining the printed document, you could tell by
looking at the low-order character (G) that it was a
positive number with a low-order digit of 7. However,
the printed document is still not too meaningful.
Perhaps the number represents money. It would be
better if it could look like this:

$1 ,249 ,071 . 07

Along with other changes to the data, this would require
inserting the commas and decimal points in the right
places. This is another function of the edit operation.

2. The edit operation will change a packed decimal
field which is called the____________ field, into the
zoned format and insert the necessary punctuation
characters.

• • •

source

The edit operation consists of moving the source field
(the data to be edited) into a pattern field. The pattern
field will be made up of ZONED characters that will
control the editing. The final edited result will replace
the PATTERN field.

3. During an edit operation, the field is edited
under control of th e_______________field.

• • •

source; pattern

4. The source field contains packed decimal data while
the pattern field contains characters.

• • •

zoned

5. The edited result will replace th e _____________field.

• • •

pattern

The pattern to be used normally is set up as a
hexadecimal constant by a DC statement. It is given a
symbolic name and is kept in storage. If the pattern
field is to be used more than once, it must be moved to
a storage work area before each use. The Move
Characters instruction can be used for this purpose.

The reason the pattern field must be moved to a work
area before each use is that it is destroyed during the
edit operation.

116

6. Although the pattern field is destroyed by the edited
result, the original pattern is retained as a constant
in another location o f ____________________ .

• • •

storage

7. For edit opéamtions the pattern field should be moved
to a ________ area if it is to be used more than once.

• • •

The pattern field, which is the first operand of the edit
instruction, is made up of certain characters. Each of
these characters serves a specific purpose in the edit
operation. You will learn later what these characters
are and the purpose of each.

As the edit operation proceeds, each of the characters
in the pattern is examined. Depending on what the
character is, it will be treated in one of three ways.
The first of these three ways is this:

work

The MVC instruction can be used to move the
to a work area before the edit

operation begins.

pattern field

9. The pattern field should be moved to a work area by
the MVC instruction prior to doing the actual edit
operation. This is because the pattern field is

by the edit operation.

destroyed

The edit instruction uses the SS format as shown below:

D1(L, B l), D2(B2)LABEL ED

T
Edit

i \
Location of Location of
Pattern field Source Field

The pattern character may be replaced by a
special pattern character called the fill
character. The fill character is located in the
high order (leftmost) byte of the pattern field.

13. A pattern character can be treated in one of (how
many) ways.

three

14. One of these is replacement by th e ______ character.

• • •

fill

The fill character is located in the high order (leftmost)
byte of the pattern. Replacement by the fill character is
one of three ways a pattern character can be treated
during the edit operation.

15. The fill character (is /is not)
pattern itself.

located in the

10. As you can see above, the source field is the
(1st/2nd) operand.

• • •

is

16. The fill character is located in the
byte of the pattern.

2nd • • •

11. Like most instructions, the results of the edit
operation replace the 1st operand, which is the
__________ field.

• • •

pattern

12. Prior to the edit operation, the pattern field should
be moved into a work area. This work area then
becomes the (lst/2 n d)____________ operand in the
edit instruction.

high-order/leftmost

The characters in the pattern field determine the editing
that will take place. The high-order (leftmost)
character in the pattern field is called the fill
character. The fill character will be substituted in the
pattern for any source or pattern character we donft
want to print.

17. The fill character is in th e_________________
byte of the_______________field.

• • • • • •

1st leftmost (high-order); pattern

117

18. Suppose there are some high-order zeroes in the
source field that we don’t want to print. The
high-order byte in the pattern field contains a
blank. We will get (blanks/zeroes)_________ in the
printed output.

• • •

blanks

For many edit operations the blank is used as a fill
character. The bit structure for a blank is 0100 0000.
This also is the bit structure of the hexadecimal
number 40.

19. Any of the 256 possible characters can be used as a
fill character. However, in many operations the
fill character is the hexadecimal number________,
whose bit structure i s _______________ .

• • •

40; 0100 0000

20. When the fill character in an edit pattern is the
hexadecimal number 40 (bit pattern 0100 0000), a
_____________ will be substituted in the pattern field
for any source or pattern character we don’t want
to print.

• • •

blank

By using a blank (hex 40) as a fill character, high-order
zeroes in the source field can be blanked out and will
not print.

21. As mentioned previously, any character can be
used as a fill character. The asterisk (*) often is
used as a fill character, to afford check protection.
If the asterisk is used, all high-order zeroes in the
source field will be replaced b y _____________ .

• • •

asterisks

Asterisks commonly are printed on checks in place of
high-order zeroes. This makes the amount of the
check easy to read and at the same time prevents the
insertion of high-order digits on the check to change
its value.

In the following frames we will represent a blank in an
edit pattern by the hexadecimal number 40. Other
characters in the pattern also will be represented by
their hexadecimal number equivalents.

22. The hexadecimal number 40 in an edit pattern
represents a _____________ .

• • •

blank

Besides the fill character, there are three more
characters used in edit patterns. Each has a special
meaning. These characters are:

• The Digit Select character.
• The Significance Start character.
• The Field Separator character.

These three characters can appear anywhere in the
pattern field.

The digit select character has a bit structure of
0010 0000. This is the bit structure of the hexadecimal
number 20.

23. A hex number 20 (bit structure 0010 0000) in an
edit pattern represents the d_____ s_______
character.

• • •

_digit ^select

24. In the following frames we will represent the digit
select character by the hexadecimal number 20.
The hexadecimal number 20 and the digit select
character have (the same/different)__________ bit
structure(s).

• • •

the same

25. An edit pattern containing the hexadecimal number
40 in its leftmost byte and the hexadecimal number
20 in its remaining bytes is composed of what
pattern characters?

• • •

the fill character; the digit select character

Digit select characters in the pattern are always
replaced. They will be replaced by either the fill
character or by a digit from the source field.

26. Assume a given pattern contains six digit select
characters. After the edit operation (how many)
___________digit select characters will remain in the
pattern.

no

• • •

118

Digit select characters are replaced either by the fill
character or a digit from the source field.

32. Name two ways a digit select character in a pattern
field can be treated during an edit operation._______

For each digit select character in the pattern field there
is a corresponding digit in the source field. When,
during the edit operation, a digit select character is
encountered, it will be replaced by the corresponding
source field digit, unless we do not want the source
digit to print.

27. If the source digit is not to print, the digit select
character is replaced by ____ ____ ______________ .

• • •

the fill character

28. If the source digit is to print, the digit select
character is replaced b y _________________________ .

• • •
the source digit

29. What two characters can replace a digit select
ch aracter?_______________________ _____________________

• • •

a digit from the source field; the fill character
from the pattern

Replacement by the source digit is the second of three
ways in which a pattern character can be treated during
the edit operation. The first is replacement by the fill
character.

30. Suppose the fill character is a blank and the source
field has three high-order zeroes that we want to
suppress; that is , we do not want them to print.
Following the fill character in the pattern there are
three digit select characters, so that for each
high-order zero in the source field there is a
corresponding digit select character in the pattern.
These digit select characters will be replaced by
___ ____ __________ and the printed output will have
____________ in the three high-order positions.

• # •

the fill character; blanks

31. Suppose there are two high order zeroes followed
by two significant digits in the source field. The
pattern fill character is a blank and there are four
digit select characters immediately following it.
The first two digit select characters will be
replaced b y ______ and the next two b y _____________

• • •

blanks; significant digits from the source field.

• • •

It can be replaced by the fill character. It can be
replaced by a digit from the source field.

Let’s look at an example of the use of the fill character
and the digit select character.

Source Field | 00] 10 | 26""^ In Packed Decimal Format

Pattern Field
Before Edit

| 401 20 [20 20 20 20 20 Brought out from
Storage to this

Pattern Field
After Edit

b b 1 0 2 6

b = blank

Zoned Format Ready
to be Printed

33. Prior to the edit instruction, the pattern was
brought out of the constant storage area and put in
the 2____________ f___________ •

• • •

pattern field

34. The leftmost position of the pattern field contains
the fill character which in this example is a_________.
The remaining positions of the pattern field contain
______ __ _________________ characters.

• • •

blank; digit select

35. The source field contains high-order zeroes which
must be edited out. This field is in the (packed/
zoned) format.

• • •

packed

36. The edit operation begins by examining the fill
character. After determining what the fill character
is , the edit operation leaves the fill character in the
pattern and moves to the second pattern character.
The second pattern character in our example is a
__________ _____________ character.

• • •

digit select

119

The S trigger is part of the system circuitry.37. Since the first digit in the source field is a
nonsignificant (zero) digit, the first digit select
character in the pattern will be replaced by_________ The S trigger can be set to one of two states: the zero

__ (0) state or the one (1) state.

• • •

the fill character (a blank)

38. Next, the edit instruction looks at the third position
of the pattern field. The previous operation is
repeated. The third position of the pattern field
ends up with a (blank/digit)

• • •

blank

39. The edit instruction looks at the pattern field’ s fourth
position, finds another________ _________ character,
which tells it to look at the source field. A signifi­
cant digit is found and moved into the pattern field.

40. The S t r ig g e r te l ls the sy s te m to supply e ith e r the
______ ____ ______ o r t h e ____

• • •

fill character; source digit

When set to 1, the S trigger indicates that all unexamined
digits from the source field are significant. As a result,
the digit select characters in the pattern field are
replaced with the digits from the source field.

At the beginning of the edit operation, the S trigger is set
to 0. As long as the S trigger is 0, the digit select
characters in the pattern field are replaced with the
fill character.

• • •

digit select

oo

40 FI 20 20

The first four bytes of the pattern field now contain
blank - blank - blank - 1. The first blank is the original
fill character, still in place. The next two blanks are
fill characters that replaced two digit select characters.
The 1 is a significant digit from the source field that
replaced a digit select character in the pattern.

41. What determines whether a digit select character
is replaced with a source digit or with the fill
character ?

• • •

The S Trigger

42. At the beginning of the edit operation, the S trigger
is set to ___________ (1/0).

• • •

0

Note that digit select characters in the pattern have been
eplaced by both the fill character and by a significant
.it from the source. This demonstrates the two ways
which a digit select character can be replaced.

43. When the S trigger is set to 0, a digit select
character in the pattern field is replaced with

• • •

The fact that a significant digit was found must be
remembered by the system so that all remaining digits
in the source field, including zeroes, can be put into
the pattern field.

the fill character

44. When the S trigger is set to 1, a digit select
character in the pattern field is replaced with •

We know that digit select characters are replaced by
either a source digit or the fill character. We also know

t after the first significant digit has been encountered
the source field we normally want all remaining source
Its to print. This includes zeroes.

Obviously, the system needs some way of knowing which
choose: the source digit or the fill character.

• • •

the digit from the source field

Both the source field and the pattern field are processed
left to right, a character or a digit at a time. Each
time the digit from the source field replaces a digit
select character, the 4-bit digit has the proper zone
bits inserted.

is is determined by a remembering device called the
.rigger.

The S trigger is set to 0 at the beginning of the edit
operation. It is set to 1 by one of two methods.

• A significant (non-zero) digit in the source field.
• A significance start character in the pattern field.

The significance start character has a bit pattern of
00100001 (hex 21). This bit pattern has no character
symbol. In the following frames we will use the
hexadecimal number 21 to represent the significance
start character in edit patterns.

The edit operation begins by examining the fill
character, which is left in place in the pattern field.
Then the next pattern character is examined. In the
previous example, this was a significance start
character. The high-order source digit is then
examined. Because the source digit is zero and the S
trigger is 0 (at this time), the significance start
character does set the S trigger to 1 so that all
subsequent source digits are significant. The
remaining pattern characters in our example are digit
select characters which are replaced with source digits.

45. Which hexadecimal number is used to represent
each of the following ?
Blank = _____
Significance Start Character = ____
Digit Select Character = _____

• • #

Blank = 40; Significance Start Character = 2 1 ;
Digit Select Character = 20

46. What two characters can set the S trigger to 1 ?
1 .__
2 .

47. Given the first few characters of a source and
pattern field below, show the resulting contents of
the pattern field after editing.

I 0 0 '1 2 *49 ’ 07 ’ 1 0 '7C Source Field

140 20 20 20 20 20 *) Pattern Field

c S Result

• • • • • •

1. A non-zero digit from the source field.
2. A significance start character in the pattern

field.

A significance start character is replaced (as was the
digit select character) by either a digit from the source
field or the fill character.

b b b 1 2 4

In the previous problem, there was no significance start
character. As a result, the two high-order zeroes from
the source field did not go into the pattern field. The fill
character was used instead. Once significance was
started, the remaining pattern characters were replaced
by source digits.

For example:

Source Field
(Two Dig its/Byte)

Pattern Field
(One Character/Byte)

00 12 49 07 10

21 20

oCMOCM 20

Once significance is started, the S trigger will remain
on until one of two things happen: •

• The sign of the source field is examined and is plus.
• A field separator character (00100010) is

recognized. This is the bit structure of the
hexadecimal number 22.

Result nr b 0 1 2 4
(One Character/Byte)

Beginning of Cycle

S Trigger

End of Cycle

le

\ v ^ \ « A 11/ 1 11 /* I j / 1 1 i7 r T)

Set by Significance Start Character

The field separator character is used when two or more
packed decimal source fields are to be edited into a
pattern with one instruction field. W efll examine this
later. For now, let’s discuss the handling of the sign.

121

Since the sign is in the right half of the source field’s
low-order byte, it can be examined at the same time as
the low-order digit is examined. The sign itself is
skipped over but, if plus, the S trigger is set to zero.
The following will illustrate this:

Source loo; 12 4 9 07 1 0 7D

Edited Result b b b l , 2 4 9, 0 7 1. 0 7 b C R

Note that the pattern which produces this edited result
must have commas and a decimal point, as well as the
letters CR and the special control characters.

The original pattern would look like this:

Pattern:

[40 | 20 | 20 | 20 1 6B | 2 0 1 201 20 | 6B | 20 | 20 | 20 |4B [20 [20 140 [C3 | D9

Pattern Field (1 Character/Byte)
48.

b b b 1 2 4 9 0 7 1 , 0 7
i

Result

0/0 o/c» 0/1.111L l/L 1l/ 1 : i A . l A

S Trigger

When a pattern character is examined and is not one of
the three special control characters, the source field is
not examined and the pattern character is left in place if
the S trigger is 1. Otherwise, it is replaced by the fill
character.

For example, a common method of indicating a negative
quantity in a printed report is with the letters nCRTf. If
we take another look at the previous example and add the
CR symbol (hex numbers C3 and D9), this would be the
result:

Source
lOO 12 49 07 10 7C 6 Bytes 14 Bytes-

Patte rn
Uo 20 20 20 20 20 20 20 20 20 20 20 C3 D9

R€;sult

l b b b 1 2 4 9 0 7 1 0 7 b b

Because the plus sign sets the S trigger to 0, the
remaining pattern characters (CR) were replaced by
the fill character. If the sign of the source field had
been minus, the fTCRn would have been left in the
pattern field.

Let’ s take the following source field and produce the
edited result.

You know that each of the numbers in an edit
pattern is a hexadecimal number whose bit
structure represents one of the pattern characters.
Compare the pattern above with the edited results
it produced in the previous frame. Which of the
hexadecimal numbers represents the com m a?_____
The p erio d ?_______

• • •
6B; 4B

Notice that the commas, decimal point, and the CR were
left in the pattern and not replaced by source characters.
This occurred because the S trigger was set to 1 and re­
mained there.

Previously we said there were three ways a pattern
character could be treated during the edit operation.
Two of them were replacement by the fill character
and replacement by a source digit. You have just seen
the third. It is: the pattern character is left
undisturbed in the pattern to print as itself.

49. Name the three ways a pattern character can be
treated during an edit operation. _____________________

50.

• • •

replacement by a source digit; replacement by the
fill character; left undisturbed to print as itself.

The hexadecimal number used to represent the
comma in edit patterns is 6B. The period is repre­
sented by 4B. The following pattern is used to edit
a dollar and cents field. It will have (how many)
___ commas and (how many)______decimal points in
the edited result. (Assume no high-order zeroes
in the source fie ld .)

40 20 20 20 6B 20 20 20 6B 20 20 21 4B 20 20

• • •

122

51. The comma is represented by the hex number
The period by the hex number______ .

• • •

6B; 4B

52. Given the following, show the edited result.

Source |oQ| 14̂ 7 iy ic

Pattern 20 20 6B 20 20 20 4B 20 20 40 C3 D9

Result

• • •

b b b b 1 4 7 . 1 3 b b b

Of course, the blanks in the previous answer won?t print
in the final printed report which would look like this:

147.13

53. L et's review the settings of the S trigger during edit
operations. When the trigger is set to zero, high-
order zeroes in the source field (will/will not)
 be printed.

• • •

will not

54. If the S trigger is off, the first significant (non-zero)
character encountered in the source field (will/will
not)___________turn the trigger on.

will I

55. If a significance start character is encountered in
the pattern before the first non-zero character is 1
encountered in the source, the S trigger (will/will
not) ___________ be turned on.

• • •

will I

56. Assume a plus amount is being edited into a pattern
which includes the characters CR. The CR, you
recall, prints if the source is minus. The S trigger
will be (o n /o ff)_______at the time the CR is encoun­
tered in the pattern._______________________________________1

• • •

off

57. Assuming that, in the previous example, the S trigger
was turned on by either a significance start charac­
ter in the pattern or a significant character in the
source, what turned it off before the CR was reached?

• • •

The + sign of the source

58. A + sign in the source field turns the S trigger off to
prevent printing the CR. The CR normally prints
for __ amounts.

• • •

negative, minus, (-)

59. Assume two contiguous source fields are to be
edited for printing. A single pattern can be set up
and a single edit instruction used to perform the
operation. The two parts of the pattern would be
separated by a (field separator/digit selector)
________ _____________ character.

• • •

field separator

60. Since the S trigger should be set to zero (off) for
each source field being edited, you can deduce that
the field separator character will set the S trigger
(on/off) __________ .

• • •

off

The field separator character has the bit structure
0010 0010. This is also the bit structure for the
hexadecimal number 22. There is no character for
this bit pattern on any of the System/360 printers. The
field separator character will be replaced by the fill
character whenever it is encountered in a pattern.

61. In the following pattern, which is the field separator
character ?

|401 20|20 20 4B 20 20 22 40 20 20 6B 20 20 20 41 . 20 20

• • •

22

62. Which pattern character replaces the field separator
character ?

• • •

the fill character

123

63. Which of the following can set the S trigger to 1
(on) ? ________ To 0 (off) ? _______
a. Digit Select Character
b. Significance Start Character
c . Plus sign in source field
d. 1st non-zero character in source field
e. Field Separator Character

• e #

b, d; c, e

64. A digit select character in the pattern is replaced
by the ______ _____________ _ if the S trigger is 0 or
by a __________ ______ _ if the S trigger is 1.

• • •

fill character; source digit

65. A significance start character in the pattern is
replaced b}̂ the___ ________ _____ if the S trigger is
0 or by a_______ ______ if the S trigger is 1.

• • •

fill character; source digit

66. A field separator character always sets the S trigger
to 0 and is replaced by the ________ ___________________ .

• • #

fill character

67. Characters in the pattern other than the control
characters are either replaced by th e____ _________
if the S trigger is 0 or are_____________________.

• • •

fill character; left in place

68. Show the results of the following ’ ’edit" instruction.

EDIT1 ED PATTERN(13), SOURCE

P A T 1 ERN 40 20 6 B [20[20" 21 [433] 2o] 2Ö]4Ö|c 3|d 9 (characters)

(digits and sign)

69. Show the result of the following "edit" instruction.

EDIT2 ED PATTERN(13), SOURCE

PATTERN 14 0 12 0120 [6 B12012 (T[21~|4B|~2 0 |2 0 |4 0 |C3 |D9 | (characters)

SOURCE [~0 V o V o V o 'd j (digits and signs)

PATTERN (after) _______________________

• • •

b b b b b b b . 6 9 b C R

70. Referring to the previous problem, show the result
for the following pattern.

Pattern 40 20 20 6B 20 20 20 4B 20 20 40 C3 D9

Pattern (after)

• • •

b b b b b b b b 6 9 b C R ; Note that a significance
start character should be in the pattern to protect
the decimal point in case the amount is less than a
dollar.

71. Show the result of the following "edit" instruction.
Note that 5C is the hex number whose bit structure
is the same as an asterisk.

EDIT3 ED PATTERN(13), SOURCE

Pattern 15C 20 20 6B 20 20 21 4B 20 20 40 C3 D9

Source I0V 00 o Y o ' c 1 1 1 1 1 1 1 1

Pattern (after)

* * * * * * * # 6 9 * * * ; Note that the use of an
asterisk as the fill character will provide asterisk
check protection.

PATTERN (after)

• • •

b b 7 , 9 4 7 . 6 9 b b b

124

72. You will remember that the bit structure of the hex
number 22 is used as the field separator character
in edit patterns. The following edit instruction will
edit multiple adjacent source fields. Show the
result.

EDIT4 ED PATTERN(20), SOURCE

Pattern 140120 |2o|21 |4B |20 |2ol4Q |c3|d9|22 |20 [20120 [4B|20 (20140 |C3|P91

Source 10̂ 1'7 7 6 C 0 0 0 0 0 D I I I I Ini7l ,̂ i i i.

There is one other instruction of this type, but it is not
illustrated by the sample programs. It is:

Instruction Name Mnemonic Basic Function

Edit and Mark EDMK Same as for Edit. In
addition, the address of
the first significant digit
is placed in register 1.

Self-study material on this instruction can be found in
the Appendix.

Pattern (after)

• • •

b b 1 7 . 7 6 b b b b b b b b b b b b b
Note that the field separator character again sets
the S trigger to zero. No significant digits were
found in the 2nd source field. As a result, the
pattern characters were replaced by the fill
character (blanks).

1

IIf

75.
I

Up to this point you have seen that the "ed it" instruction ! <
can be used to: |

• Eliminate high-order zeroes. |
• Provide asterisk protection. I
• Handle sign control (CR). |
• Provide punctuation.
• Blank out an all-zero field. |
• Edit multiple adjacent fields via the field separator 1

character.
• Protect the decimal point by use of the significance 1

start character. This character can also be used to 1
retain the high-order zeroes when desired.

In Figure 15 there are two DC statements that set up
hexadecimal constants for use as edit patterns.
These statements are (define storage (DS)/define
constant (DC))______________________________ statements.

• • •

define constant (DC)

The DC statements that set up hexadecimal constants
have a series of hexadecimal numbers in their oper­
ands. These numbers are enclosed in (parentheses/
single quote marks) __________________________________ .

• • •

single quote marks

A hexadecimal constant is set by a DC statement
having as its operand a series of hexadecimal
numbers enclosed in single quote marks. These
numbers are preceded by the letter_______ .

• • •

X

We have seen that every character in an edit pattern can
be expressed as a hexadecimal number. For example,
the bit structure for a blank is 0100 0000; this is also
the hexadecimal number 40. The bit structure for a
comma is 0110 1011; this is also the bit structure for
the hex number 6B.

73. You can deduce that a convenient way to set up edit
patterns in storage is as (character/hexadecimal/
packed decimal) _________________________ constants.

• • •

hexadecimal

77. A hexadecimal constant is set up by a ______ state­
ment having as its operand a series of_______________
numbers, enclosed in ____________________________ and
preceded by the letter_____.

• • •

DC; hexadecimal; single quote m arks; X

40 = blank 4B
20 = digit select character 5C
21 = significance start character C3
6B = comma D9

period
asterisk
C
R

1

125

78. Using the above hexadecimal numbers, write the
statement that will set up the edit pattern that
produced the following edited result from a source
field of 11 digit positions and sign:

82. We do not want to lose the pattern because we will
use it for every record that is processed by this
program. What should we do to preserve the
pattern in its original form ? ________________________

b b b b b l 4 8 , 9 6 3 . 4 2

Assume the source data will never be negative. Any
position in the source field may contain a significant
digit. The fill character in the edit pattern should
be a blank. The edit pattern should force the
printing of the decimal point and the two following
digits, even when they are zeroes. No dollar
sign should be printed.________________________________

DC X T40 20 20 20 6B 20 20 20 6B 20 20 21 4B 20 20 ’

79. Write the statement that will set up the edit pattern
for this dollar and cents field, which can have a
negative sign:

0 0 0 2 2 4 7

The fill character should be a blank. We will not
print a dollar sign. Print the decimal point and the
last two digits of the source.

DC X ’40 20 20 6B 20 20 21 4B 20 20 40 C3 D9’

80. W rite the statement that will set up the edit pattern
for the following dollar and cents field:

0 0 0 0 4 2 9 6 5

Use an asterisk as the fill character. The field will
not be negative. Show the edited result as it will
print. We will not print a dollar sign.

• • •

DC X ’5C 20 20 20 20 6B 20 20 21 4B 20 20 ’
* * * * * * 4 2 9 . 6 5

In the list of DC’s in Figure 15 you will find a
hexadecimal constant called PATRN1. This constant is
the pattern we will use to control the editing of the old
principal, PPRIN, into its place in the printed line.

81. The Edit instruction moves the source into the
pattern. If we edit our source, PPRIN, into the
pattern where the pattern now is stored, what will
happen to the pattern ? _______________________________

• • •

It will be replaced by the edited result.

• • •

Move it to another area and do the editing in that
area.

83. Which of the following is the more efficient?
1. Move the pattern to another area.
2. Edit the source data into that area.
3. Move the edited results to the output line.

or:

1. Move the pattern to the field in the output area
from which the edited data is to print.

2. Edit the source data into the pattern in this field.

• • •

The second alternative is the more efficient.

84. The field in the output area, from which the old
principal will print, is called OLDPRI. Write the
instruction that will move the pattern into this field
in the output area.

• • •

MVC OLDPRI, PATRN1

85. The pattern now is in the output area, in the field
called OLDPRI. Write the instruction that will edit
the old principal into the pattern in the output area.

• • •

ED OLDPRI, PPRIN

Correct your answer, if necessary.

86. Assuming that PPRIN contains the following quantity:

0 3 1 7 5 2 5 C

show the edited result. __________________________

• • •

b b 3 , 1 7 5 . 2 5

87. If PPRIN contained all zeroes, the edited result
would be _________.

b b b b b b b . 0 0

126

The old principal is now in the output area, correctly r
punctuated for printing. Note that once we have moved
the edit pattern (PATRN1) into the output field called
OLDPRI we must use the name OLDPRI in the edit &
instruction. Even though OLDPRI contains data which
is elsewhere in storage with its own unique name, if we
want to use that data while it is stored in OLDPRI we
must use the name OLDPRI. If we were to use the name
PATRN1 we would address the pattern in its original I'
location and it would be destroyed. We must always
address fields in storage by the names assigned to them *
when they were defined.

88. Incidentally, the old principal is in storage in
another location, the input area, where it has the
symbolic name PRIN. Why could we not have used &
this field as the source data?________________________ *

. . . :

Data being edited must be in packed form. PRIN is ̂
not packed. |

89. The next field in the output area is called_________
(Refer to the output area DS statement.)

• • •
NEWPRI

90. You can guess that the amount being printed from
this field is the ______ _____________________ .

• • •

new principal

91. Where is the new principal stored? (Refer to
previous instructions if you have forgotten.)

• • •

In the accumulator called PNEWPR

92. The old and new principal amounts are both dollar
and cents quantities. You can guess that they will be
punctuated (the sam e/differently)______________and
that we will use (the sam e/a different)________________
pattern.

• • •

the same; the same

93. Write the instructions that will move PATRN1 into
the output field for the new principal, and edit the
new principal amount into it.

• • •

MVC NEWPRI, PATRN1
ED NEWPRI, PNEWPR

Each of the remaining data items that will print from the
output area are to be edited using another pattern. The
symbolic name of this pattern is PATRN2. We will
follow the same procedure as before, which is to move
the pattern into the output field and edit the source data
into it.

94. The next output field is called _____________________ .

• • •

MONPAY

95. Write the instruction that will put PATRN2 in
MONPAY.

• • #

MVC MONPAY, PATRN2

96. MONPAY is the symbolic name for monthly payment,
which is in storage under another symbolic name.
Locate this field and write the instruction that will
edit it into the output field.

• • •

ED MONPAY, PPAY

97. Assume the amount of the monthly payment is
$49. 95. Show the edited result after the previous
instruction has been executed.

• • •

b b 4 9 . 9 5

98. The two remaining fields in the output area are
MONINT (monthly interest amount) and MONAMT
(the amount of the payment applied to the principal).
Write the instructions necessary to move PATRN2
into these fields and edit the appropriate data items
into them.

• • •

MVC MONINT, PATRN2; ED MONINT, PINT;
MVC MONAMT, PATRN2; ED MONAMT, PAMT

99. We have completed all the processing steps for the
Ajax problem and have only to write the printed
record out. Write the instruction that does this.

• • •

BAL 10, WRITE

100. Now the flowchart tells us to branch back to the
instruction that obtains another input record. This
is an unconditional branch. Write this instruction.

• • •

BC 15, NEXT

127

Let’s review briefly what you have done in coding the
Ajax Company problem, using the decimal instructions.
Refer to your coding sheets, as we go along.

• You learned that data can be processed in packed
format, using decimal feature instructions. Such
data need not be converted into binary after being
packed.

• You defined the input and output areas required, and
named the data fields within those areas.

• You wrote the move instructions (MVC), which you
already had learned, to move header lines into the
output area. You wrote the branch instructions that
sent the program to the write routine to print the
header lines.

• You wrote instructions to pack the input data.
• You wrote assembler instructions to set up work

areas (for use as accumulators) as needed.
• You learned about specific decimal feature

instructions that operate on data in packed decimal
form , and were shown how the appropriate
instruction operated on the data for the Ajax
Company problem. These instructions included:

ZAP - Zero and Add
MP - Multiply Decimal
DP - Divide Decimal
AP - Add Decimal
SP - Subtract Decimal
ED - Edit

• You learned that good housekeeping in coding is
important. Machine instructions should be written
sequentially on one set of coding sheets; assembler
instructions on another set.

• It was demonstrated to you that the coding you write
must follow the program flowchart exactly. The
specific operations called for by the flowchart, in
the sequence it specifies, must be reflected in the
instructions you write.

GO ON TO THE THIRD SAMPLE PROGRAM

SOME ADDITIONAL BRANCHING AND LOGIC INSTRUC­
TIONS IN SYSTEM/360 ASSEMBLER LANGUAGE

You have learned and used many of the instructions in the
System/360 commercial instruction set. In the next
series of frames you will learn some additional
instructions in the standard set, and you will use
some of the instructions you already have learned.

Read the problem statement in Figure 17 of the Sample
Program Book, scan the I/O Coding in Figure 18, and
study the program flowchart in Figure 19.

Look back at Figure 18. This group of assembler and
machine instructions precedes those you are going to
write. The macro instructions DTFCD and DTFPR are
declaratives that describe the input and output files.

1. The name of the input file i s ___________ . Data in
this file is recorded on (tape/disk/cards)__________.

• • •

CARDIN; cards

2. The output file is (printed/punched)____________ . Its
symbolic name i s _______________ .

• • •

printed; ALINE

3. The machine instructions starting with BEGIN
establish general register_________ as the base
register for the program.

• • •

11

4. After the files are opened, the program branches to
an instruction named _______________ .

• • •

START

128

5. Your first instruction will be called START.
According to the flowchart in Figure 19, the function
of the instruction is to (your own words)

• • •

Turn on a switch.

6. You will recall that a computer program may have
both mechanical and programmed switches.
Mechanical switches require manual action to set
them. Since we will use an instruction to set the
switch, it will be a _______________ switch.

• • •

programmed

7. Programmed switches are reserved storage
locations whose contents are changed according to
the setting desired, and then tested at the
appropriate points in the program. To be sure that
the switch location will not be used for any other
purpose, we must (your own words)__________________
the location.

• • •

reserve

8. You know that storage areas may be reserved by
writing a DS, which simply reserves the storage,
or a DC, which not only reserves it but establishes
its initial contents. On a separate coding sheet,
write a DC or a DS, whichever you choose, to set
aside a one byte location. The symbolic name for
the switch is in the list of work areas and constants
in the problem statement.

• • •

SW DS CL1 or SW DC C L lf T
Note that if a DC is used, the initial switch content
will be whatever character you enclose in single
quote marks in the operand.

We have reserved a switch location called SW. The
instruction we will use to set the switch has the
mnemonic operation code OI. It is one of several
similar instructions some of which use MAND’T logic,
and some of which use "O R " logic. Read about the OI
instruction in the following material and locate the group
that contains it on your Reference Data card.

OR
OR R]r R2 [RR]

All of above:
The first and second operands are examined on a
corresponding bit by bit basis.

• If either or both of the corresponding bits are ones,
the result is a one and replaces the bit in the first
operand.

• If both bits are zeros, the result is a zero and
replaces the bit in the first operand.

0 only:
• The second operand is a fullword and must be on a

fullword integral boundary.

01 only:
• The second operand is one byte (8 bits) of immediate

data which operates with one byte of data at the first
operand storage location.

OC only:
• The number of bytes taking part in the operation is

determined by the implicit or explicit length of the
first operand.

Condition Code:
0 Result is zero
1 Result is not zero
2
3

Program Interruptions:
Protection (OI and OC only)
Addressing (O, OI and OC only)
Specification (O only)

Programming Note:
The OR may be used to set a bit to one.

129

EXAMPLES:

Name Operation Operand
1 8 10 14 16 20 251 .[• | ■ • t - f ' i1 T — — — — —— — — — —p——r ■■■ r"■

. i . 1
II III 0 R 1__ 9 1 z

1 j •• Yimi

0 3 , M A S K

1j;PIU p !
T

0 1 S w ,1 X * •i:
i

s
j 1 11 S 1 lip

o c O N E , T W O

You have just read about the OR instructions. Now you
will read about the AND instructions in the following
material.

AND
NR Rlf R2 [RR]

0 7 8 11 12 15

N Rlr D2(X2, B2) [RX]

54 Ri X2 B2 °2
0 7 8 11 12 15 16 1920 31

NI DjfBj), l2 [»]

94 '2 B1 D1
0 7 8 15 16 1920 31

NC Dj(L, B,), D ^) [«]

D4 L B, Jh . CM
CQ

1 L ^ _
0 7 8 15 16 1920 31 32 35 36 47

N only:
• The second operand is a fullword and must be on a

fullword integral boundary.

NI only:
• The second operand is one byte (8 bits) of immediate

data which operates with one byte of data, at the
first operand location.

NC only:
• The number of bytes taking part in the operation is

determined by the implicit or explicit length of the
first operand.

Condition Code:
0 Result is zero
1 Result is not zero
2
3

Program Interruptions:
Protection (NI and NC only)
Addressing (N, NI and NC only)
Specification (N only)

Programming Note:
The AND may be used to set a bit to zero.

EXAMPLES:

Name Operation Operand
J___________________________ 8 10_____________ 14 16_____________ 20 ____ 25Hi''. 1 ■ . i j !

g\|iy N R P'.i,i- 4 M
i P ll'l

N 3 , S E Tf

M P H ■j" i l l i | ; i! ■■j-' 1
N S WdmX 1 0 0 1

i i !i • 1i

N C F I E L D . P A T T R N
1---1---r...1------ T” T--"i...ll|f,'A' :'7.' i’-:1..-"'-1:''1

All of above:
The first and second operands are examined on a
corresponding bit by bit basis.

• If both of the corresponding bits are ones, the result
is a one and replaces the bit in the first operand.

• If either or both of the corresponding bits are zeros,
the result is a zero and replaces the bit in the first
operand.

Here is the instruction we will use to set the switch:

oi sw,xfor
Copy this instruction onto a separate coding sheet.
Don’t use the one you are using for assembler
instructions.

130

9. Consult your Reference Data card. The 01
instruction is of the (RR/SI/SS)_________ format.

14. The second operand of your OI instruction will have
what bit structure ?

• • • • • •

SI 0000 0001

10. The second operand q i this instruction is (your own
words)______ __ .

• • •

the hexadecimal number 01.

11. Note that the second operand in the instruction is not
preceded by an equal sign. This means that when the
instruction is assembled, the second operand will be
(choose one)
1. The address of a hexadecimal constant of 01.
2. The hexadecimal number 01, incorporated into

the instruction.

• • •

2 .

12. SI instructions have, as their second operands, the
actual data to be used in the operation. The actual
data to be used in this operation is __________________ .

• • •

The hex number 01.

15. When the immediate data in the instruction (the
second operand) is ORed with the contents of our
switch, SW, the value of bit number 7 in the switch
will be (0/1) __________ .

• • •

1

16. Bit #7 will be a 1 bit because if either the specified
bit of the first operand, or the corresponding bit of
the second operand, or both, is a one, the result is
a one and is stored in the first operand. Which oper­
and do we know has a one bit in position 7 ? ________
________________________ W h y ?_________________________ .

• • •

The second operand. It is the hex number 01, whose
bit structure is 0000 0001.

17. A s you will see later where we consider the instruc­
tion that tests the switch, bit position 7 actually is
the switch. We do not use the other bit positions in
SW. For experience in predicting the results of the
OI instruction, however, perform this exercise:

13. The hex number 01 has what bit structure? (If
necessary, consult your Reference Data card)

• • •

SW before OI instruction executed:
Second operand of OI instruction:
SW after OI instruction executed:

0011
0000
[

1110
0001

• • •
0000 0001

0011 1111

SKIP OPTION

If you are sure of your ability to predict the results of
OR and AND instructions 5 you may skip to the point at
which we resume discussion of the sample program. If
you are not sure, you should read the frames on the
following four pages.

AND, OR OPERATIONS

The ’ ’and” instruction is used to mix two operands on a
logical AND basis. The definition of an AND condition
is this: If both bits are 1, the resulting bit is 1. Other­
wise, it is zero.

In a typical user’s program, the programmer will
occasionally use data as a programmable switch. That
is, in a flowchart, a branch decision will occasionally
be based on whether a switch is on or off.

For example:

S W I T C H A IS I N I T I A L L Y O F F

The following will illustrate the result of ANDing two
bytes together.

BIT POSITIONS

0 1 2 3 4 5 6 7

1st Operand 1 0 1 0 1 0 1 0

2nd Operand 1 0 0 1 1 1 0 0

Result 1 0 0 0 1 0 0 0

Notice that switch A is used to determine whether to
read a card or punch a card. A lso, notice that the
flowchart assumes that there is a method of turning the
switch on and off.

One use of the ’ ’and” instruction is to turn off program
switches.

0 1 0 0 0 0 1 1

Notice that only in bit positions 0 and 4 were both bits
set to 1. As a result, only bits 0 and 4 of the result are
1. A s in most System/360 operations, the result will
replace the 1st Operand.

1. Given the following two bytes, show the result after
they are ANDed together.

1st Operand 0 1 1 1 0 1 1 0

2nd Operand 1 1 0 0 1 1 0 0

Result

• • •

0 1 0 0 0 1 0 0 ; Notice again that the operands are
ANDed together on a bit-by-bit basis. There is no
connection (carry) from one bit position to another.

2. Show the result of the following AND operation.

1st Operand 1 1 0 0 0 0 1 1

3. Assume that bit position 7 of the byte shown above
represents a program switch. In order to turn off
this program switch, bit position 7 of the second
operand must b e ________ (1/0).

• • •
0; See below.

1st Operand 0 1 0 0 0 0 1 1
2nd Operand 1 1 1 1 1 1 1 0
Result 0 1 0 0 0 0 1 0

4. Since a byte contains 8 bits it can hold_____
program switches.

• • •
8

5. It is desired to turn off one program switch in a byte
without affecting the other switches. Show the 2nd
operand necessary to turn off only the switch in bit
position 6.

1st Operand 1 0 1 1 0 1 1 0

2nd Operand ________________

2nd Operand 1 0 0 0 0 0 0 1 Result 1 0 1 1 0 1 0 0

Result
1 1 1 1 1 1 0 1 ; Notice that only bit position 6 was

changed. This 2nd operand would work with any 1st
1 0 0 0 0 0 0 1 operand and still turn off only position 6.

132

6. It is desired at the beginning of the program to be
sure that all of the program switches are off. Show
the necessary 2nd operand.

1st Operand 0 1 1 0 0 0 1 0 8 program
0 , ~ , switches2nd Operand ________________

9.

• • •

0 0 0 0 0 0 0 0

Now that you can turn off program switches, how about
turning them on ?

The "and" instructions can be used to turn off program
switches. The "o r " instructions can be used to turn on
program switches. The definition of an OR condition is
this: If either bit is 1, the resulting bit is 1. Otherwise,
it is zero.

The following will illustrate the result of ORing two bytes
together.

1st Operand

2nd Operand

Result

1 0 1 0 1 0 1 0

1 0 0 1 1 1 0 0

1 0 1 1 1 1 1 0

Notice that only in bit positions 1 and 7 neither bit was
set to 1. Consequently, only bits 1 and 7 of the result
are set to 0. The remaining bits contain a 1.

7. Given the following operands, show the result if they
are ORed together.

1st Operand

2nd Operand

Result

1 1 1 1 1 1 1 0

0 1 1 1 0 1 1 0

1 1 0 0 1 1 0 0

• • •

8. Show the result of the following OR operation.

1st Operand 1 1 0 0 0 0 1 1

2nd Operand

Result

1 0 0 0 0 0 0 1

• • •

O I O O O O I O

Assume that bit position 7 of the byte shown above is
a program switch. In order to turn on this program
switch, bit position 7 of the 2nd operand must be
________ (0/1).

1; See below.
1st Operand
2nd Operand
Result

• • •

0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 1

10. It is desired to turn on one program switch in a byte
without affecting the others. Show the necessary
2nd operand to turn on only the switch in bit position
2 .

1st Operand 1 1 0 1 0 1 1 0

2nd Operand ________________

• • •

0 0 1 0 0 0 0 0

11. Show the result of ORing the previous answer with
the 1st operand.

1st Operand

2nd Operand

Result

1 1 1 1 0 1 1 0

1 1 0 1 0 1 1 0

0 0 1 0 0 0 0 0

• • •

12. It is desired at the beginning of a program to be sure
that all of the program switches are initially on.
Show the necessary 2nd operand.

1st Operand

2nd Operand

1 1 1 1 1 1 1 1

0 1 1 0 0 0 1 0

• • •

8 program
switches

1 1 0 0 0 0 1 1

133

AND INSTRUCTION - OR INSTRUCTION

1. The mnemonic of the "and" instruction uses the
letter

• • •
N

2. The mnemonic of the "o r " instruction uses the
letter__________.

• • •
O

3. Both the "and" and "o r " instructions can use four
formats. Use the following mnemonics and indicate
the instruction format and whether it is an "and" or

all zeroes

6. If the result is not zero, the condition code will be
set to _________0 /1 .

7. The two possible settings of the condition code after
an "and" or "o r " instruction a re :_______ _________

• • •

"o r " instruction.

Mnemonic Format Instruction

NR
NC
OI
N
OR

• • •

Mnemonic Format Instruction
NR RR "and"
NC SS "and"
OI SI "o r "
N RX "and"
OR RR "o r "

After executing an "and" or "o r " instruction, the
condition code can be set to one of possible
settings.

• • •

two

A condition code of 00 would indicate a result of
(all zeroes/all ones).

• • •

0; 1

3. The "branch on condition" instruction can be used
after an "and" or "o r " instruction to: (Circle one
of the following.)
a. Check if all program switches are set to 0.
b. Check if one specific switch is on or off.

• • •

a; The condition code reflects the status of the
entire result. It can either be zero or non-zero.

9. Given the following "and" instruction, show the
contents of the instruction and the storage byte
after the instruction is executed.

Nl

94 4A 0 800 H□
• • •

NI

94 4A O 800

10. Given the following, show the storage contents after
the instruction is executed.

0 3 0 8 0 0 0 8 0 4

Location Before
2048 DE
2049 A0
2050 7F
2051 8B
2052 9E
2053 01
2054 72
2055 F I

•

Location After
2048 DE
2049 A1
2050 7F
2051 FB
2052 9E
2053 01
2054 72
2055 F I

After

134

11. Given the following "o r " instruction, show the
contents of register 0 and the condition code after
the instruction is executed.

IN H EX

LOCATION CONTENTS

2048 80
2049 7E
2050 01
2051 F0

Condition Code =

2.

3.

• • •
REG 0

80 7F B1 FF AFTER

Now that we have defined our input area we are
ready to read a card. You will recall that we can
do this by branching to a pre-coded routine that
actually performs the read operation, and then
branches back to your routine. The name of the
routine is READ. Using register 10 as the linking
register, write the instruction that branches to the
READ routine. Name your instruction READCD.

• • •

READCD BAL 10, READ

According to the flowchart, the next step is to test
the switch. If it is O FF, we check the sequence of
the card just read; if ON, we turn it OFF and
bypass the sequence check. When would we not want
to check sequence ? ______________________________________
W h y?__

Condition Code = 1

END OF SKIP OPTION

Returning to our problem we see that the next step on I
the flowchart is to read a card. At this point in coding |
a program, we usually write the assembler instructions
that reserve the input record area and indicate the sizes
and symbolic names of the data fields within this area.

1. The problem statement, Figure 17, gives the
symbolic names you will u se, and indicates the
sizes of the data items that will read into the
input area. Using this information, write the
assembler instructions that will reserve a
storage area for the input card, and define the
data fields within the area.

• • •

Name Operation Operanc1 8 10_____________ 14 16_____________ 20_________________ 25

1NPUT 0 5 1. 0
1c L80

ENAm 0 s j C L $ 5
EMPNjo __]L_ a s CL '1 ,|,11.?1 ;■ l.-_*i
TAXCL 0 s C L 2
YTD6RS OS I C L 7 I
YTDWH d si : CL 6 |
Y
6

T
n

0
O

Fl
s|s

CA ojs
ok
m ! i-

1
C

L6W-
w m

I I 1

f
Ü

5

i

• • •

When the first card is read. There is no preceding
card to check it against.

To test the switch we will use an instruction called Test
Under Mask. Its mnemonic is TM. Read about this in­
struction in the following material and locate the group
that contains it on your Reference Data card.

Test Under Mask
TM D M) , l2 [SI]

91 *2 B ! D ,

0 7 8 15 16 1920 31

The state of the first operand bits selected by a mask
(second operand) is used to set the condition code.

• 1 - 8 bits may be tested.
• The mask is one byte (8 bits) of immediate data

(second operand).
• A mask bit of one indicates that the corresponding

storage bit is to be tested.
• A mask bit of zero indicates that the corresponding

storage bit is to be ignored.

Condition Code:
0 Selected bits or mask, all-zero
1 Selected bits mixed zero and one
2
3 Selected bits all-one

Program Interruptions:
Addressing

135

EXAMPLE:

Operotior
10 14 16

Operand
25

! i : !
! _ J _ i

j K Ip

| i T M $ W 2 I X 4 i i ts-
I i I

l

i J . . .

B C 1 , O F F

4. In the above example, the mask byte is 0000 0011 (as
determined by the hex operand X f03!). Suppose that
the first operand, SW2, contains 0000 0001. After
the TM instruction is executed what condition code
will be set, and why?

• • •

1 (selected bits mixed 0 and 1) because positions
6 and 7 of SW2 are tested; 6 contains a 0 and 7
contains a 1.

5. With this condition code, what will be the result of
the instruction BC 1, OFF ?

• • •

The program will not branch. If necessary, check
your Reference Data card. A first operand of 4 is
needed in the BC instruction in order to test for a
condition code of 1.

6. Now back to the sample program:
You will recall from our discussion of the OI
instruction that if the second operand of the
source language instruction is an X T01f, the
operand of the assembled instruction will have the
bit structure _____________________

• • •

9. Bit position 7 in SW functions as (your own words)
____________________________________in our program.

• • •

A programmed switch.

The second operand of the TM instruction is called a
mask. If a mask bit is one, the corresponding bit in the
character specified by the first operand will be tested.

10. If the mask of our TM instruction has the bit
structure 0000 0001, which bits in SW will be
tested?_________ W h y?_________________________________

• • •

the low-order bit. Only mask bits of one cause
testing. Mask bits of zero do not.

11. What is the setting of the low-order bit in SW ? * •

• •

It is a 1.

12. Write the TM instruction that will test only the low-
order bit in S W .___________________

• • •

TM S W ,X ’01f

Change your answer, if necessary.

13. The setting of the condition code as a result of the
TM instruction will be (0 /1 /2 /3) ________.

• • •
3

The condition code will be 3 because the selected bits in
the position under test are all-one. In this case only a
single position was tested, but since it contained a one-
bit, the all-one condition is met and the condition code
is 3.

0000 0001

7. A byte with bit structure 0000 0001 has the one bit
in the (position number)__________ position.

• • •

7

14. In the following example, which bit positions will be
tested?______________

TEST MASK

BYTE UNDER TEST

0 7

0 0 1 1 0 1 0 1

1 1 0 1 1 0 0 1

8, A TM instruction whose second operand has the bit
structure 0000 0001 will test the (position number)
_________ bit in the byte being tested.

• • •

7

• • •

2 , 3 , 5 , 7

15. The condition code will be (0 /1 /2 /3)

1
• • •

136

SKIP OPTION

If you are sure you can predict the results of Test Under
Mask instructions, regardless of the bit structures
involved, you may skip to the point at which we resume
discussion of our sample program. If you are not sure,
you should read the frames on the following three pages.

Note that in these fram es, the Mask is referred to as 12
(second operand) while the storage address of the
character under test is given in hexadecimal notation.
Instruction operation codes, and bit structure of masks
and test characters, are given in hex numbers. Consult
your Reference Data card for the necessary conversion
values.

TEST UNDER MASK INSTRUCTION

So far, you can turn on, or change a program switch by
use of "logical" instructions. However, you still can’t
test them. The "branch on condition" instruction is not
sufficient. This instruction will only let you find out if
all switches are either on or off. To be able to test a
specific switch (or some but not all switches) will
require another instruction. This instruction is known
as "test under m ask". The "test under m ask" instruction
will let you examine specific bits (program switches) and
set the condition code accordingly. Then the "branch on
condition" instruction can be used effectively.

Reread the description of the "test under m ask"
instruction.

1. TM is the mnemonic for " ______ _______ _________ " . ;

• • •

"test under m ask" -

2. The TM instruction uses the___ ___ format. The
instruction can be used to test program switches.
These switches must be in __________________ (main
storage/general registers). *

• • •

SI; main storage

3. The "test under m ask" instruction will test one
___________ (byte/halfword/word). |

• • •

byte >

4. A byte can contain 8 program switches. The TM
instruction can test___________ (only one/all) of them
at one time.

• • •

all

5. The TM instruction can, if desired, test as few as
___________program switch(es) at a time.

• • •

one

6. The bits (program switches) to be tested with the TM
instruction are determined by the instruction’s ______
field.

• • #

12

7. The 12 field corresponds bit-by-bit with the main
storage byte to be tested. If all bits in the main
storage byte are to be tested, the 12 field must
contain________ (in hex).

• • •

FF

8. To test only bit position 0, the 12 field of the TM
instruction must contain________ (in hex).

• • •

80

9. The function of the TM instruction is to set the
condition code. A condition code of 0 would
indicate that all of the selected bits are zero.
Assume that the 12 field of a TM instruction is FF.
A condition code of 0 would indicate that the
storage byte contains________ (in hex).

• • •

00; An 12 field of FF would test all bits. A
condition code of 0 would then indicate that all
bits of the byte are zero.

10. If a TM instruction results in a condition code of 3,
it would indicate that all of the selected bits are
one. If the 12 field of the instruction used contained
F F , it would mean that the storage byte contains
 (in hex).

FF

• • •

137

11. A condition code of 1 is also possible after
executing a TM instruction. This condition code
(1) would indicate that some but not all of the
selected bits contain a one. Given the following,
what would the resulting condition code be?

L O C A T IO N 2 0 4 8 I A 6

Condition Code

• • •

12. After executing a TM instruction, it is not possible
to have a condition code o f _______

• • •

2

13. TM

1 AO 8 0 0 L O C A T IO N 2 0 4 8 I OF

The above ntest under mask” instruction would
result in a condition code of

• • •

0

14. TM

L O C A T IO N 2 0 4 8 I F F

The above TM instruction would result in a condition
code o f ______.

• • •

16. TM

91 4D 0 80 0

The above TM instruction would r<
code of •

| 1i • •
0

17. TM

91 10 0 8 0 0

L O C A T IO N 2 0 4 8 B

L O C A T IO N 2 0 4 8 B
The above TM instruction would result in a
condition code o f ________ .

a t •

0

At this point, you can turn program switches on and
off. You can also test them. The instructions that you
have been using can be used for purposes other than
program switches.

Logical instructions can also be used to examine
records for specific requirements. Consider the case
of a program where it is desired to find all employees
whose qualifications fit a particular job description.
The following byte will show the minimum requirements
for the job.

1 1 1 0 0 1 0 0

i l l !
8TH GRADE ---

HIGH SCHOOL-

COLLEGE —

ENGINEER-----

L NO MILITARY OBLIGATION

ACTIVE RESERVE

VETERAN

ACCOUNTANT

18. According to the preceding requirements, the
employee must have a _________ degree. However,
he does not need to be an ______________ or an

15. TM

L O C A T IO N 2 0 4 8 I 6 A

The above ntest under mask” instruction would
result in a condition code o f _________ .

• • •

• • •

college; engineer; accountant

Assume that a card column in each employee’s record
is punched to show his qualifications. The following
byte shows the qualifications of one such employee.

1 1 1 0 1 0 0 0 E M P L O Y E E A

138

19. Examine the preceding employee's qualifications
and refer back to the requirements for the job.
Employee A is not qualified because he is not a

• • •

veteran

The question now is: How can logical instructions be
used to determine whether an employee meets the
requirements ?

To determine whether an employee meets the minimum
requirements, the "test under m ask" instruction could
be used. This is shown as follows:

TM

1___*1__ E 4 0 800

' t ”
XM m i n i m u m l o c a t i o n o f

R EQ U IR EM EN TS E M P L O Y E E ' S
Q U A LIFICA TIO N S

20. With the TM instruction, the condition code is set
according to the status of the selected bits. To
meet the minimum requirements, the selected bits
in the employee's qualifications must be a l l_________
(ones/zeroes).

• • •

ones

21. If the selected bits are all ones, the TM instruction
would cause the condition code to be set to _____(0 /3).

• • •

3

END OF SKIP OPTION

Returning to our sample problem we find we have tested
the switch by using the TM instruction, and as a result
of this test the condition code in the PSW is set to 3.

i

1. In setting the switch ON, we put a one in bit position
7 of the SW , using the 01 instruction. The TM
instruction tested that bit position of SW, and put a
3 in the condition code of the PSW. Therefore, a
condition code of 3 means the switch was (OFF/ON).
—

• • •

ON

2. You previously learned an instruction that will test
the PSW for one or more possible condition codes,
and branch if any one of those tested for exists.
Write an instruction that will branch to a location
called OFF if the condition code is 3 . ________________

• • •

I BC 1, OFF

I 3. The conditional branch instruction you just wrote will
branch to OFF if our programmed switch is ON.
(Condition code is 3). From the flowchart you can
deduce that OFF is the name of the first instruction
in block (D 3/E 2)________ .

• • •

D3

The instructions for D3 and E3 are said to be "out-of­
lin e", that is , the program branches out of its primary
sequence of instructions, executes the out of line
instructions, and then rejoins the primary sequence at
some point further on.

4. The block of instructions that will end with a branch
back to the primary sequence is (E2/E3) ________ .

(• • •

E3

You will find it convenient to code "out-of-line"

« instructions on a separate coding sheet. This makes
the final source program easier to follow. We will
write the instructions for block D3 and E3 on a

| separate sheet.

139

We used logical instructions to turn ON and test the
switch; we will also use a logical instruction to turn it
OFF. The instruction we will use employs AND logic.
Its mnemonic is NI. You read about the NI instruction
previously, along with other AND logic instructions. If
you are in doubt about how the NI instruction works you
should review that material.

Here is the instruction that will turn the switch OFF:

NI S W ,X '0 0 f

Copy this instruction onto a separate coding sheet.

5. From the previous instruction you wrote you can
determine the name of this instruction. Write this
name in the name fie ld .___________

• • •

OFF

6. LetTs consider the result of this NI instruction. It
is of the (R R /R X/SI/SS)___________ format.

• • •

SI

7. The second operand of an SI instruction is the actual
data to be used in the instruction. The second
operand of our NI instruction will b e ______________ .

• • •

a hexadecimal zero

8. The bit structure of a hex zero i s ___________ .

• • •

0000 0000

In an NI operation if only one, or neither, of the bits is a
one, the result is a zero and is stored in the first
operand.

9. The bit structure in SW, when the switch is ON, is

• • •

0000 0001

10. The result in SW after the NI operation, will be

0000 0000

• • •

We have set our switch off. Returning to the flowchart
we see that the next block in the out of line routine is to
store the employee number from the first card, so it can
be used for sequence checking.

There are several ways we could set up the employee
numbers for the sequence check. We could convert them
to binary form and compare storage-to-storage, register-
to-register, or register to indexed storage. Or we could
pack them and compare storage-to-storage.

11. To give you the widest possible experience, we will
convert to binary, and compare register-to-register.
Our first step then will be to (pack/unpack) __________
the employee number from the first card.

• • •

pack

To pack a data item we must provide a field in storage
that is st least half as long in bytes as the data item.
We will call the field NUM.

12. Write an assembler instruction that will reserve a
work area called NUM into which we can pack the
employee number. The statement that defines the
input field indicates how long NUM should be.
Remember that the employee number will be
converted to binary format after it is packed.

• • •

NUM DS D (Remember that the second operand of
a CVB must be a doubleword.)

13. Write the instructions that will pack the employee
number and convert it to binary, using work area
NUM and register number 2.

• • •

PACK NUM, EMPNO; CVB 2 ,NUM

14. You have coded the out of line blocks in the flowchart.
To return to the primary sequence requires a (con-
ditional/unconditional)______________ _____ branch.

• • •

unconditional

15. Write the instruction to branch back to an instruction
called PACK in the primary sequence.

BC 15, PACK

• • #

140

The next instructions you will write will be in the
primary sequence, so use the appropriate coding sheet.

16. The flowchart block to which the program returned
from the out of line instruction is _______________ .

• • •

F3

You will code the instructions for F3 now. But since one
block preceding F3 has not been coded, you should leave
space for those instructions on the coding sheet. Since
you donTt know exactly how many instructions will be
needed, you will have to estimate the number. There is
no sure way of doing this. Leave 7 or 8 lines blank.

17. The first instruction of the next block is the one you
branched to from the out of line instructions. Its
name is __________ .

• • •

PACK

18. We are going to do all the arithmetic steps in the
payroll using data in packed decimal form. There
are several fields in the input area containing data
that must be packed. From the description of the
required computations, in the problem statement,
you know that these fields are (symbolic names)

• • •

TAXCL, YTDGRS, YTDWH, GROSS, YTDFICA

19. Normally when it is necessary to pack data, the
data is packed into a special work area set up for
the purpose. However, when storage space is
limited the data can be packed right back into the
field from which it came. To give you experience
in this, we will pack our data back into its own
locations. Write the instruction to pack the input
fields you previously selected into their own
locations. Remember that the first of these
instructions has a name that you already have
identified. Be sure you have left 7 or 8 coding
lines blank.

• • •

PACK PACK TAXCL, TAXCL
PACK YTDGRS, YTDGRS
PACK YTDWH, YTDWH
PACK GROSS, GROSS
PACK YTDFICA, YTDFICA

Note that when data is packed back into its own location
it is right-justified; that i s , the packed digits occupy the
rightmost (low order) bytes of the field. Note also that
the rightmost half byte holds the sign.

UNPACKED |F 1

PACKED

F 2
- J L .

F 3 F,4 L I F 6 F 7

0,0 112 K 5i 6 7 S

20. Block F3 of the flowchart tells us to

• • •

Calculate new YTD Gross.

21. We have the YTD gross and the current gross in
packed decimal form in storage. New YTD gross
equals YTD gross and current gross. Write the
instruction.

• • •

AP YTDGRS, GROSS

If you had your operands reversed in the instruction you
would develop a new YTD gross in the gross field. Since
we packed these fields back into their own locations,
gross would be lost for good. As the problem statement
indicated, we will use gross in further calculations.
Thus the operands should be as shown.

22. The instruction you just wrote resulted in (choose
one):
1. Two YTD gross amounts, one larger than the

other by the amount of gross.
2. An updated YTD gross amount and a gross

amount, both in separate fields.
3. No change in the YTD gross and gross fields.

• • •

2 .

23. To show the required payroll calculations in greater
detail, we have developed more detailed versions of
certain sections of the flowchart. One of these is
in Figure 20. It shows the detailed steps required to
compute___

• • •

Current and YTD Withholding tax.

141

24. A s the problem statement points out, a number of
calculations are involved in computing withholding
tax. Each will develop a specific figure to be
included in the output. Since our input data is in
packed decimal form , we can work on it using
decimal instructions. This means we must
reserve some storage areas to serve as
accumulators and____________ areas.

• • •

work

One of the amounts we must calculate is the current
withholding tax. The formula for computing it is
opposite block G3. We will need a work area in which
to develop the current withholding figure.

In setting up work areas to serve as accumulators for
decimal arithmetic operations, it is good practice to
follow this rule:

Set up the area as a constant of packed zeroes,
sufficiently long to accommodate the results of
any decimal arithmetic operation you plan to
do in the area.

Observance of this rule will yield two desirable results:

• The area is at zero the first time you use it;
hence there is no danger of including data left in
the area from a previous job.

• The area has a sign in the four low-order bits of
the rightmost byte. This is essential, since all
decimal instructions require that both operand
fields be signed.

25. Check the sizes of the factors involved in
computing current withholding tax, and the kind of
arithmetic operations required. Now write an
assembler instruction that will reserve a packed
work area large enough to handle the operation.
Name the area CURW H.__________________________

• • •

CURWH DC PL 6f0f

CURWH now is correctly initialized for decimal
arithmetic operations. However, as you will see when
the coding for this problem is complete, it will be
convenient to do some additional initializing on this
particular accumulator. The following frames explain
what needs to be done to CURWH.

26. From the other formulas on the flowchart you
can tell that we will do a(n) (add/divide/multiply/
subtract)____________________ in computing with­
holding tax.

• • •

multiply

27. The product of the multiplication will have (how
many)_________ decimal positions.

28. A product with more than two decimal points
usually i s _______________________before printing.

• • •

rounded, half-adjusted

You will recall that the results of decimal arithmetic
operations are always signed, and that when the product
of a multiply operation has been half-adjusted it is
necessary to move the sign to the correct location in
the product field:

1 2 3 4 5 6

|X |X X X X X X X X X X S

i
implied
decimal
position

29. Assume the above is a product to be half-adjusted.
We want two decimal positions in the final result.
In what position do we half-adjust?________________ _

• • •

The low-order half of byte 4.

30. To which position will we move the sign?__________

• • •

The low-order half of byte 4.

A s you will see, there will be an operation performed
in your program in which it will be desirable to have
the sign of the data in CURWH located in the rightmost
half of byte 5.

142

31. By using a packed decimal literal with a value of
zero as the second operand of a ZAP instruction,
we can put a sign into any byte in CURWH. The
literal will be kept in storage in a single byte, with
the zero being in the four leftmost bits and the
sign in the four rightmost bits. The ZAP
instruction will use the literal each time it (the
ZAP instruction) is executed. Note that an explicit
length is necessary in the ZAP instruction to put
the literal into the desired byte. Write the
instruction.

• • •

ZAP CURWH(5), = P ’0 ’

We will see later why it is beneficial to do this
operation now.

32. The first thing to be done in computing the current
and new YTD withholding tax i s _______________________
(See block B2, Figure 20 .)

• • •

Compute exempt amount.

The exempt amount to be computed is that amount of
earnings which is not taxable. The formula for this
computation is printed beside block B2 on the flowchart.
Since this is an arithmetic operation we will need a
work area to serve as an accumulator in which the
exempt amount can be developed.

33. Check the sizes of the factors that will be involved,
and the number of bytes required for each in
packed format. Then write an assembler
instruction to reserve a packed field large enough
to hold the exempt amount and initialize it with
zeroes. Name it EXAMT.

• • •

EXAMT DC P L 5T0 r

34. Refer to the formula beside block B2 on the
flowchart and write the instructions that will
compute the exempt amount. Note that you will
need a packed decimal constant of $28. 00.

jj
• • •

ZAP EXAM T,TAXCL
MP EXAMT, = P ’2800’ |

Now we know how much of the employee’s earnings he
doesn’t have to pay tax on. The next step is to find out \
how much he does have to pay tax on. The formula for
this is beside block C2 in the flowchart (Figure 20).

35. We find we need another accumulator. Determine
the size of the factors (in terms of packed, signed
fields) and write the assembler instruction to
reserve the storage for one. You will find the
symbolic name in the problem statement list of
work areas you will need. This accumulator
needs no initializing value.

• • •

TXBLGR DS PL4

36. Write the instructions to calculate the taxable gross
amount, using the correct factors.

• • •

ZAP TXBLGR, GROSS
SP TXBLGR, EXAMT

Now we have, in TXBLGR, the amount of earnings on
which the employee owes tax. But it’ s possible he owes
no tax. If the exempt amount is equal to or greater than
his gross, the tax calculations are bypassed (see
flowchart).

37. A s a result of every add or subtract instruction,
the c______________ c____________is set in the PSW.

• • •

condition code

The condition code will reflect whether the result of a
subtract operation is positive, minus, or zero.

38. The flowchart in Figure 20 indicates that the
program is to bypass the income tax calculations if
the results of our calculations a re _____ __ ____ .

• • •

zero or minus

39. Use your Reference Data card to find the conditions,
and write an instruction that will test for these two
conditions and branch to an instruction named A30.

• • •

BC 12, A30

The block of instructions to which the program branches
has not been coded. You will code it later. For now,
place a mark, such as a check or asterisk, opposite the
branch instruction at the edge of the coding sheet.
Later on, when you check your program for complete­
ness, these marks will signal any unfinished coding.

143

40. If the result of the previous subtract operation is
plus, the program (does/does not)________branch
and withholding tax (is /is not)______ calculated.

• • •

does not; is

41. We already have set up a storage accumulator in
which to calculate current withholding tax. Its
symbolic name i s _________________ .

• • •

CURWH

42. Write the instructions that will compute current
withholding tax in CURWH and half-adjust the
result to two decimal positions. The formula in
Figure 20 indicates the value of one of the
constants you will need. The other will be used in
half-adjusting. You should be able to establish
its exact value. It may help you to draw a picture
of CUBWH to establish the bytes you want to
work with.

• • •

ZAP CUBWH, TXBLGR; MP CURWH, = P ’14’ ;
AP CURWH, = P ’50 ’

46. A30 is the name of the first instruction of a group
of instructions whose function is t o ________________
_______________________ . (Consult Figure 20.)

• • •

Compute new YTD FICA

47. The processing steps required to compute new
YTD FICA are shown in the detailed flowchart in
Figure 21. The first step in this series of
calculations i s ___________________________________ _ .

• • •

Zero Current FICA

48. You have written the instructions to calculate
current withholding tax, the exempt amount, and
the taxable gross. In each case it was necessary
to write an assembler instruction. What do those
assembler instructions accomplish (your own
words) ? ___

• • •

They set up storage accumulators in which the
desired amounts are developed.

43. We want two decimal positions in the result. Move
the sign of the product to the proper position.
Remember the instruction that moves only the
rightmost half of a byte.

• • •

MVN CUBWH + 4(1), CUBWH + 5

44. You have calculated the current withholding tax.
Write an instruction to update YTD withholding
tax. Remember you want only part of the contents
of CUBWH.

• • •

AP YTDWH, CURWH(5)

45. You have coded blocks E3, F3 and G3 in the
flowchart in Figure 20. Since H2 is the block to
which you branched when there was no taxable
gross, you know the first instruction of this block
will be named_______ . (Look for check marks or
asterisks along the margins of your coding sheets .)

A30

Before you set up this accumulator, there is one thing
you should consider. The FICA percentage at this
time is 4. 4, and in packed form requires only 2 bytes.

\h± h i
49. In the future, however, the number of decimal

positions in the FICA percentage may increase.
If the percentage was, say, 4 .455 , it would
require (how many?)_____________ bytes.

3 04 45 5S

• • •

The FICA percentage has included as many as three
decimal positions in the past, and may become that
size again. It is good planning, therefore, to allow
for this expansion now and set up our storage
accumulators and constants accordingly. For this
reason, we will assume the FICA percentage to have
three decimal positions and one integer.

Note that when we perform the calculation we change
the FICA percentage to a decimal fraction. Thus,
4. 455% becomes . 04455.

144

50. The accumulator for a packed decimal multiply
operation in which the factors are XXXX. XX and
. OXXXX must be (how many)__________ bytes long?

• • •

7

51. Sometimes it is possible to use an accumulator that
was set up for another purpose, providing, of
course, that we no longer need the data it contains.
In this case we do need the data in the accumulators
we have set up. The next step, then, is to (your
own words) ___________________________________ _ •

• • •

Set up another storage accumulator.

52. For what purpose will this accumulator be used?

• • •

To compute and store current FICA.

53. Consult the formula for computing current FICA
and the sizes of the factors. DonTt forget that we
are allowing for future expansion of one of these
factors. Set up an accumulator of the correct
size, with an initial value of zero. Name the
accumulator CUB,FICA.

• •

CURFICA DC PL7’ 0T

54. Although the accumulator is initialized to zero,
it will contain some figure each time it is used in
a FICA calculation. However, under certain
conditions the FICA calculations are not made,
and we will want the accumulator to contain zeroes
again. At this point in the program, then, we need
an instruction that will replace the contents of this
accumulator with zeroes. Write the instruction.

• • •

ZAP CURFICA, = P T0f

Later you will see the reason for putting zeroes in the
accumulator at this particular point in the program.
Just now you are ready to write the instructions that
will perform the FICA calculations.

At this point you may want to review the explanation of
FICA calculations in the problem statement. They will
help you to understand the reasons for the next group
of instructions you will write.

55. Block B2 in Figure 21 is a decision block. Two
factors are compared and the result determines
(your own w ords)___________________________________ .

• • •

whether or not we compute FICA.

56. The decision block calls for instructions that com­
pare year-to-date FICA with a figure of $290. 40.
What does the figure of $290. 40 represent?________

• • •

The maximum FICA that any employee can pay.

57. So we see we must compare YTDFICA with the
maximum FICA. Since both quantities to be
compared are in packed decimal form , we will use
a decimal feature instruction for the compare
operation. From your Reference Data card select
a decimal instruction that we can u s e _______________

• • •

The instruction is Compare Decimal. Its mnemonic
is CP.

Read about this instruction in the following material.

Compare Decimal
CP Dj(Llf Bj), D.JLo, Bo) [SS]

F9 Li L2 B, i i D> B2 j p T
0 7 8 11 12 15 16 19 20 31 32 35 36 47

The first operand is compared algebraically with the
second operand and the result determines the setting
of the condition code.

• Both operands are in packed decimal format.
• Comparison proceeds from right to left taking

into account the sign as well as all the digits of
each field.

• Fields of unequal length can be compared.
• The shorter field in effect will be extended with

high-order zeroes.
• Plus zero and minus zero compare equal.

\ Condition Code:
0 Operands are equal
1 First operand is low
2 First operand is high

; 3

145

SKIP OPTIONProgram Interruptions :
Operation
Addressing
Data

Note: If both fields are not packed, a data exception
will occur.

EXAMPLE:

Name Operation Operand______ 8 10 ___ 14 16____ 20______ 25 ____30

c
q i Jv.
. : 1 ’ L ’

! ! :

CE5 ! Y T DF‘ 1 C l V. ■ i p ' 219 014 0

BC5 / i : 4 i • L I M 1 T O 1
1

«! j :

The CP instruction shown above will compare YTDFICA
with maximum unpaid FICA.

Copy this instruction onto your coding sheet.

The setting of the condition code in the PSW, after a
compare operation, is determined by the relationship
of the first operand to the second. Note that the
Reference Data card designates first operands of
compare instructions as "A " , second operands as "B " .
Resulting condition codes thus reflect the relationship
of A to R , on the Reference Data card.

58. Fill in the right-hand column below:

Operand Relationship Resulting Condition Code

YTDFICA = 290.40
YTDFICA > 290. 40 _ _ _
YTDFICA < 290. 40 _______

• • •

0 ; 2 ; 1

59. Assume FIELDA is three bytes long and FIELDB
is five bytes long. Can the fields be compared
with the CP instruction ? ___________

• • •

yes

60. What happens to the shorter field?

• • •

It is extended with high-order zeroes.

61. FIELDA has a plus sign, FIELDB a minus. Both
are of the same length. FIELDB has a larger
absolute value than FIELDA. The resulting
condition code will be (0 /1 /2) _ _ _ _ _ _ .

• • •

2

If you are sure you can predict the results of compare
decimal operations you may skip to the part at which we
resume discussion of the sample problem. If you are
not sure, you should read the frames on the following
two pages.

COMPARE DECIMAL INSTRUCTION

The Compare Decimal instruction makes an algebraic
comparison of two packed decimal fields. It does not
compare alphameric information. Re-read the
description of the Compare Decimal instruction.

1. If the fields addressed by a CP instruction are not
in the packed decimal format, a _________
exception will be recognized.

• • •

data

2. The result of the comparison is recorded into the

• • •

condition code

3. A condition code of 0 would indicate that the
operands w ere_______ _ .

• • •

equal

4. A condition code of 1 would indicate that the
(lst/2nd) operand was low.

• • •

1st

5. A condition code of 2 would indicate that the
(lst/2nd) operand was high.

• • •

1st

6. The ''compare decimal" instruction__________(does/
does not) change the operands.

• • •

does not

146

7. Show the resulting condition code for the following
’ ’compare decimal” instruction.

GOl CP FLDA, FLDB

FLDA 79 18 2C FLDB 79 18 2C

Condition Code

• • •

0; Both operands were equal.

8. Show the resulting condition code for the following
CP instruction.

G02 CP SETA, SETB

SETA [98 76 5C SETB [&T 76 4D

Condition Code

• • •

2; Since the 1st operand is positive, it is high.

9. Show the resulting condition code for the following
’ ’compare decimal” instruction.

GO3 CP FLD1, FLD2

FLD1 h i 79 84 7C FLD2

o00 06 1C

Condition Code

• • •

10. Show the resulting condition code for the following
’’compare decimal” instruction.

G04 CP SET1, SET2

SET 1 [98 22 57 18 9D SET2 99 99 99 9D

Condition Code

1; The numeric value of the 1st operand is greater;
however, both operands are negative. Algebraically,
a small negative number is greater than a large
negative number as shown below.

L o w --- High

Minus Plus

5 4 3 2 1 0 1 2 3 4 5

11. Show the resulting condition code for the following
’ ’compare decimal” instruction.

GO 5

Data 1

CP DATA1, DATA2

fo i 23 4D Data 2 98 76 5D

Condition Code

• • •

1; Even though the 1st operand is longer, its
algebraic value is less than that of the 2nd operand.

147

END OF SKIP OPTION

I
1. Returning to the sample problem we see that we

have compared YTDFICA with maximum FICA. As f
a result of this compare operation the condition
code in the PSW has been set. The setting of the
condition code will determine the path taken by the
program; therefore we must test the condition code. %
Write the instruction that will test the condition
code and branch to an instruction called B if
YTDFICA is greater than or equal to $290.40.

• • •

BC 1 0 ,B

Since this instruction branches the program to a routine |
not yet coded, place a mark beside it at the edge of the |
coding sheet. r-

2. Block C2 in Figure 21 tells us to compute current
FICA. Consult the formula, determine the size ft
of the factors involved, and, using the accumulator
you set up for this purpose, write the instructions
to compute current FICA and half-adjust it to two
decimal places. Remember that we are allowing
for future expansion of the number of decimal
places in the FICA percentage — this will influence j
the size of your constants.

• • •

ZAP CURFICA, GROSS
MP CURFICA, =PT4400’
AP CURFICA, =P.' 50000' f

3. The product of this multiplication has 7 decimal
places. We are interested in only two, and half-
adjusted accordingly. What must we do next to
prepare the desired result for further use?

• • •

Place the sign in the correct position.

Previously you used the Move Numerics instruction to
reposition the sign after a multiply operation. But
there are other ways to achieve the same effect, one of
which you will learn now. The instruction we will use
is the Move with Offset. Read about the instruction in
the following material. 01

Move with Offset
MV O Dj(Lu Bj), D2(L2r B2) [SS]

FI h L2 B, 8 Di B2 0
0 7 8 11 12 15 16 1920 31 32 35 36 47

The second operand is placed in the first operand
location, to the left of and adjacent to the low-order
four bits of the first operand.

• The fields are processed right to left.
• If the second operand field is shorter than the first

operand, it is extended with high-order zeroes.
• If the first operand field is shorter than the

second operand, the remaining information is
ignored.

Condition Code:
The code remains unchanged.

Program Interruptions:
Protection
Addressing

NOTE: Any type of data can be moved with this
instruction. The instruction does not check the type.

Programming Note:

A very common usage of the move numeric (MVN) and
move with offset (MVO) instructions, is the correct
positioning of the sign in decimal rounding.

Rule:

• If the packed decimal number is to be truncated
after an ODD number of digits (thus ending in the
middle of a byte), move the sign to the number
with a move numeric (MVN) instruction.

• If the packed decimal number is to be truncated
after an EVEN number of digits (thus ending on a
complete byte), move the number to the sign with
a move with offset (MVO) instruction.

Examples:

Assume that we are working with dollars and cents. If
the assumed decimal point is as shown, the operation
would be as follows:

0 1 2 0 4 5 6
------- A —

Assumed
Decimal
Point

7 8 S

Truncate here
for dollars and
cents.

01 20 4^56 contains an ODD number of digits and the
sign would be moved to the number with a MVN
with the following result:

0 1 2 0 4 5 6 S 8S

This is the desired result in valid packed decimal
format and would represent an amount of $1204.56.

148

1 0 1 | 2 3 4 5 6 7 | 8 S|
A

As sum
L
ed Truncate here

Decimal for dollars and
Point cents.

01 23^45 contains an EVEN number of digits and the
number would be moved to the sign with a MVO
with the following result:

|oo|oo|l2|34|5s|L—j

This is the desired result in valid packed decimal
form and would represent an amount of $123.45.

EXAMPLE:

Nome Operation Operand;
8 10 14 16_______________ 20____________________ 25_____________________30

r |, 1 1 r -1 f^ - r r
'

! j P 0 ClJR f u]% CA;. u ft m I pA t 4 1
n§ T i

i*vy
i i 1 n

The instruction shown above will sign the half-ad justed
product in CURFICA.

If you are sure you can predict the results of Move with
Offset instructions, you may skip to the point at which
we resume discussion of our sample program. If you
are not sure, you should read the frames on the
following two pages.

SKIP OPTION

MOVE WITH OFFSET INSTRUCTION

Re-read the first material on the MVO instruction.

Here is an example of moving with offset:

The following packed decimal field represents a
product with seven decimal positions:

FIELDA P v 7 5 6 8 1 7 9 3___i_______ i_______ i___ 4 . S

implied decimal point

Copy this instruction onto your coding sheet.

4. You can see that instead of moving the sign to the
data we have moved the data to the sign, getting
rid of any unwanted decimal positions in the
process. The data we wanted was effectively
shifted (left/right)___________ .

• • •

right

5. Show the results of this instruction

MVO COUNT, COUNT(4)

COUNT (before) foo 0 8 3 7 |l 9 8 3 7 C

COUNT (after) | |

• • •

0 0 0 0 8 3 7 1 9 C

Assume we want only two decimal positions in the final
result. To eliminate the five unwanted decimal positions
and to position the remaining data next to the sign, the
following MVO instruction could be used:

MVO FIELDA, FIELDA(3)

Note that the first operand consists of the entire 6 bytes
of FIELDA, whereas the second consists of only the
first three bytes of FIELDA plus as many high-order
zeroes as may be required. The zeroes are supplied
automatically. The following shows the results of the
instruction:

FIELDA (3) po 0 Ö 0 0 Ö 3 4 7 5 6 8

J J / / / / / / / / T
FIELDA j 3 4 7 5 6 8 1 7 9 3 4 SFIELDA jl1 41 r1 ij (> i3 1 1i 9 :3 41 S

|0 0 0 0 0 3 4 '1 i5 (3 8 S
FIELDA
(after MVO)

Note the offset. The second operand is placed to the
left of and adjacent to the low-order four bits of the
first operand.

This effectively eliminates the unwanted decimal
positions and places the wanted data next to the sign.

149

The MVO instruction is normally used to align or shift
a packed decimal number to a sign.

6 . Show the contents of the field DOLLARS after the
MVO operation.

DOLLARS 124 | 68 | 051 79 1 SS |

1. Assume that the amount we wish to preserve in the
field called DOLLARS is $2468.05. The symbolic
address for this amount is

DOLLARS(3)

2. Since we wish to align the amount to the sign, the
symbolic address of this field i s ___________________.

• • •

DOLLARS; the implied length of DOLLARS is 5
bytes so that no explicit length need be specified.

3. The complete instruction i s _________________________ .

• • •

MVO DOLLARS, DOLLARS(3)

4. The field DOLLARS(3) has a length o f _______________
bytes and after the execution of the MVO instruction
will b e _________ half a byte to the left and placed
adjacent to the sign.

• • •

three; offset

5. The second operand i s ___________ (shorter/longer)
than the first operand and the resulting field (first
operand) will contain __________ in the high positions
after the operation.

• • •

shorter; zeroes

DOLLARS 124 68 05 79 3S
(before)

DOLLARS I
(after)

• • •

02 46 80 5S

7. Given the following MVO instruction, show the
resulting contents of the 1st operand.

MVO HASH (3), HASH (2)

HASH DS PL4

HASH (before) 100 54 10 7C

HASH (after) 1

• • •

HASH (after) | 00 05 40 7 C

8. Is the data moved by the MVO instruction checked
to see if it is valid packed decimal d ata?__________

• • •

No. You have seen it being used to right shift
packed decimal data an odd number of places.
However, any type of data can be moved by this
instruction.

150

Returning to the payroll problem, we see that the next
block to be coded is E2 (Figure 21).

See if you can code this block without detailed prompting.

One hint: if you need a symbolic name for a storage
accumulator check the list in the problem statement.

You should have written an assembler instruction to
reserve a storage accumulator. Either of these would
do:

END OF SKIP OPTION

UNPDFICA DC PL3'0

UNPDFICA DS CL3

The instructions to calculate unpaid FICA are:

ZAP UNPDFICA, =P’29040!

SP UNPDFICA, YTDFICA

Note that although we are writing decimal instructions, \
it is possible to set up the accumulator with a DS
statement. The accumulator is not initialized to a
particular value, nor is it given a sign. The ZAP
instruction, however, checks only its second operand
data for a sign; thus it is not necessary for the ?
accumulator to be signed.

1. The unpaid FICA you have just calculated is (select ̂
one): |

1. The total FICA the employee must pay in |
one year.

2. The FICA he must pay this period.
3. The remaining FICA he must pay this year, ~

if any.

3.

2. Having calculated the unpaid FICA, if any, we now
must determ ine_________________________ _ _ _ _ _______

(See Figure 21)

• • •

If current FICA is greater than the unpaid FICA.

3. If current FICA is greater than the unpaid FICA,
the employee owes (how m uch)____________________

________________ FICA.

• t •

4. If current FICA is not greater than the unpaid
FICA, the employee owes (how much)_____________
___ FICA.

• • •

The full amount of FICA previously calculated on
his current earning. This is current FICA.

So we see that we must compare current FICA to unpaid
FICA. The result of this comparison will determine
exactly how much FICA the employee will pay this time.

5. Write the instruction that will compare current
FICA with unpaid FICA. _______________ _______________

• • •

CP CURFICA, UNPDFICA

6. As a result of this compare operation, the condition
code in the PSW has been set. We do not at this
moment know what the setting is . Since the path
the program takes depends on the condition code,
the next instruction must (your own words)__________

• • •

Test the condition code and, depending on its
setting, go to the appropriate routine.

After the condition code in the PSW has been set, we
can test it in one of two ways:

• We can test for one or more of the possible
settings, or

• We can test for all possible alternate settings.

For example:

In the last compare instruction the setting would be 2 if
the first operand was high. It would be 1 or 0 if the
first operand was not high.

So we could test for 2 , or we could test for the
alternatives to 2 , which are 1 and 0.

7. Write an instruction that will test for the
alternatives to the condition code setting of 2 , as
a result of the previous compare instruction. Go
to an instruction named A50 if the alternative
conditions ex ist.__________________________

• • •

BC 12, A50

The difference between YTD FICA and $290.40.
This is the unpaid FICA.

151

In the next few frames you will see an example of how
imaginative programming can save steps. The
following flowchart is a modification of blocks G2 and
G3, in Figure 21.

8. The above flowchart has (how m any?)_______ blocks
in which a quantity is added to YTDFICA.

• • •

1 (G2)

9. Look at Figure 21. There are (how m any?)________
blocks in which a quantity is added to YTDFICA.

• • •

2 (G2 and G3)

At first glance it may appear from the above flowchart
that we will always add current FICA to YTDFICA.

But consider this: CURFICA is actually just the
symbolic name of an area in storage. True, its name
is an abbreviation of current FICA, but there is no
reason why we canTt put other quantities into it.

10. If we do put something other than current FICA into
the area called CURFICA, what name must we use
to address the data in that a r e a ? _______________

• • •

CURFICA

We must always address data by the symbolic name of
the area in which it is stored.

11. Suppose we put the employee’s net pay into
CURFICA. To work with the net pay in that area
we would use the n am e_________ __ •

• • •

CURFICA

12. If YTD gross were stored in EMPNAME, we would
address it a s __________in future instructions.

• • •

EMPNAME

So, although the names of storage areas often indicate
their contents, we are not restricted as to what data
can be placed in those areas.

Look at the previous flowchart. The key to making a
single add instruction do the job of updating YTDFICA
is to place the proper amount in CURFICA before the
add instruction is executed.

13. If the program takes the NO path from F2 what data
will be in CURFICA when block G2 is executed?

• • •

current FICA

14. If the program takes the YES path from F2, what
data will be in CURFICA when block G2 is executed?

• • •

unpaid FICA

When we branch (take the YES path) we simply ZAP
unpaid FICA into the area called CURFICA, then add
CURFICA to YTDFICA.

15. You can see that in either case, a single add
instruction will add the proper amount into year
to date FICA. See if you can write the instructions
to do this. One will be named A50.

• • •

ZAP CURFICA, UNPDFICA
A50 AP YTDFICA, CURFICA

If you had difficulty in understanding this logic, you
should re-read the past few fram es. This is illustrative
of the kinds of programming that yields the greatest
efficiency.

16. The formula for computing net pay is in Figure 19.
Set up an accumulator and write the instructions.

• • •

NETPAY DS CL4
ZAP NETPAY, GROSS
SP NET PAY, CURFICA
SP NET P A Y, C URWH(5)

17. Figure 21 indicates that a previous instruction
branches to the first instruction in the routine that
computes net pay. Locate the previous instruction
on your coding sheet and assign the correct name
to the first instruction in the net pay routine.

• • •

B ZAP NET PAY, GROSS

Now we’re ready to print a line on the payroll report.
However, before we do, there are a couple of loose
ends to be tied up.

18. You remember that we wrote an instruction that
zeros the field called CURWH and puts a sign in the
right most half of byte 5. This instruction precedes
the current withholding tax calculations. Look at
your coding sheet and find the instruction. It is

• • •

ZAP CURWH(5), =P’0 ’

We said we would see later why it is beneficial to do the
operation at this particular point in the program. The
reason is this: not all employees will pay income tax.
To determine whether or not the employee owes any
tax, the program subtracts his exempt amount from his
taxable gross; if the result is zero or minus, no tax is
due.

19. The instruction that tests for the "no tax due"
condition i s ____________________ .

• • •

BC 12, A30

If no tax is due, the program bypasses the instructions
that calculate the amount of the tax. This means that
CURWH is not used and its contents, whatever they are,
will be undisturbed.

20. The contents of CURWH, if no tax is due, will be

• • •

all zeros, with a sign in the rightmost half of byte 5.

21. Looking at Fig. 26, we see that when we compute
net pay we subtract the five high-order bytes of
CURWH from NETPAY. Is this calculation ever
bypassed?

• • •

No, it is executed for all employees, regardless of
whether or not any income tax or FICA is due.

22. Perhaps you can begin to see why we prepare
CURWH beforehand. If we didn!t, it would have in
it the current withholding tax amount for the
preceding employee. Now, if the employee we
currently are processing has no withholding tax due,
and if CURWH contains the tax amount for the
preceding employee, what will happen when we
compute net pay?

• • •

The current withholding tax amount for the preced­
ing employee will be subtracted from the gross pay
of the current employee, who has no tax due.

Foreseeing the possibility of this, we simply zero out
CURWH and arrange for a sign to be placed in the
proper position; then, if we don’t calculate withholding

| tax for the employee, we still can go through the Net
1 Pay calculations just as if withholding were due.

Otherwise we would have to modify the Net Pay routine,
to prevent developing incorrect data.

■
23. Why do we need a sign in the rightmost half of byte

five ?

• • •

Because we use only the first five bytes of CURWH
in computing Net Pay. The computation involves a
subtract packed (SP) operation, for which both
factors must be in packed decimal format. This
means each must be signed.

24. At another place in the program we wrote an
instruction to zero out the field called CURFICA
before starting FICA calculations. Look at the
coding in Fig. 26 and try to determine why we did
this.

• • •

The reason is exactly the same as for CURWH. If
the employee owes no FICA, nothing is stored in
CURFICA. But, because CURFICA was zeroed out
in advance (and signed in the rightmost half-byte)
the Net Pay calculations can proceed normally.

Look at the flowchart in Figure 19.

153

Having calculated net pay the next step is to print a line.
This means that we must set aside an output area in
which all the data that will print on the line can be
positioned before the line is printed.

25. Refer to the problem statement for the symbolic
name and size of the output area. The name is
 and the size in bytes i s ________

• • •

OUTPUT; 132

OUTPUT

• • •

DS 0CL132

26. Write an assembler instruction that will give the
name OUTPUT to a storage area of 132 consecutive
bytes.

Remember that the statement you have just written does
not actually reserve the storage area. Further
assembler instructions are necessary to reserve and
name the individual fields that make up the output area.

The names and sizes of these individual data fields in
the output area will be indicated by assembler
instructions that follow the one you just wrote.

There are several considerations in setting up data
fields in an output area. Some important ones are:

• Where in the output area is the field to go?
• How long must the field be in bytes?
• How many bytes should there be, if any, between

this field and the adjacent ones?
• Will the data in the field be edited ?
• What punctuation is required, if any?
• If a character constant is shorter or longer than the

length specified for it , the right end of the constant
will be truncated (dropped) or extended with blanks.

• If a hexadecimal constant is shorter or longer than
the length specified for it, the left end of the
constant will be truncated or extended with zeros.

The next frames will show you how to deal with these
considerations in setting up data fields in the output
area.

27. The output from this program will be in (the
recording medium)____________ form.

Look at Figure 22.

28. This is the printer spacing chart for the output from
our problem. A printer spacing chart is a planning
aid that shows the sizes of the data fields, the
punctuation required for specific data items, the •
location of the fields on the report, the spacing
between adjacent fields, and other valuable
information. You can deduce that a printer spacing
chart should be prepared (before/after)_______________
the output area is set up in the source program.

• • •

before

The printer spacing chart should be carefully laid out
and checked to insure that it accurately reflects the
distribution and appearance of the output data items on
the report form.

We will not discuss the techniques of laying out a
printer spacing chart. They are fairly self-evident.
However, as you will see, the spacing chart provides
valuable information that assists you in determining
the lengths of the fields in the output area.

29. Figure 22 shows the p s c for
our problem.

• • •

printer spacing chart

Look at Figure 22.

30. How many data items on the report do not require
editing?_______________ How many do require
editing ? _____________

• • •

2; 5

As you will see, the considerations for setting up data
fields in the output area, for edited data, are different
in several ways from those for unedited data. We will
consider first how to set up fields for unedited data.

31. The leftmost field to be printed on the report is
called____________ . It requires (how many)
printing positions. _________

• • •
• • •

printed
employee number; 6

154

32. Employee number requires six printing positions;
therefore it consists of six digits. Since this data
was never packed, it occupies (how many)_________
bytes in storage.

33.

• • •

To place employee number in the output area we
will simply move it from its present location in
storage to the appropriate field in the output area.
You can deduce that the output area field must be
(how many)_________bytes long.

• • •

To obtain the correct spacing between adjacent unedited
fields on a report, the data that will print in those
fields must be positioned in the output area so that the
desired number of spaces exists between the data
items. This means that we must define not only the data
fields in the output area, but the space areas between
them in the output area.

39. We know that we want two spaces between the first
and second data fields on the report'. Write an
assembler instruction that will reserve an
unnamed field of two bytes immediately following
the field called LNO.

• • •

DS CL2

34. There are 132 printing positions on the printer.
The first digit of employee number prints in the
________printing position. (Consult the printer
spacing chart.)

• • •

first

40. What effect will this field have on the printed
report ? (your own w ords)______________________ •

• • •

It will cause the first and second fields to be
separated by two printing positions (spaces).

35.

36.

37.

Since the first digit in employee number prints in
the first printing position, and since employee
number is six digits long, the data field for
employee number will occupy which positions in the
output area ? ____ ________ _______

• • •

the first six

Write an assembler instruction that will reserve the
first six digits of the output area. Consult the
problem statement for the symbolic name to be
assigned to this field. Remember that this
instruction must follow the one that named the
entire output area.

• • •

LNO DS CL6

The spacing chart in Figure 22 specifies (how many)
________spaces (printing positions) between the first
and second fields on the report.

• • •

38. The field that prints immediately to the right of
employee number is (edited/unedited)____________

• • •

unedited

You have reserved and named an output data field for
employee number, and have provided for the spacing
between it and the next field.

41. The next field will contain (edited/unedited)
data.

• • •

unedited

42. Write the assembler instruction that will reserve
the next (second from left) data field in the output
area. The name for this field is in the problem
statement.

• • •

LNAME DS CL15

Look at Figure 22.

43. The next data field on the report (third from left)
will contain (edited/unedited)___________ data.

• • •

edited

There are several things that influence the lengths of
output data fields for edited data. Each must be
considered before the assembler instructions defining
such fields can be written.

155

44. With which printing position does the fill
character in the edit pattern correspond? (Your
own words)__

• • •

The space immediately preceding the YTD Gross
field on the report.

45. The spacing chart indicates that two spaces are
wanted between the employee name and YTD Gross
fields. From the above frame you can deduce that
one of these two spaces will be provided by________

• • •

the fill character in the edit pattern

46. You have learned that when the fill character is a
blank the edit pattern for a data field must be at
least one byte longer than the number of significant
digits and punctuation marks in the edit result.
This extra byte is occupied b y _____________________.

• • •

the fill character

47. You have also learned that if the fill character is
a blank it will provide a __________immediately
preceding the printed data on the report.

• • •

space

You may wonder what would happen if the fill character
were other than a blank. Would it still provide a
space, that is , would the printing position immediately
preceding the data on the report print nothing? The
answer depends on whether or not the fill character is
printable; that is, does the printer have a graphic
character that will print in response to the presence of
the fill character in the pattern.

48. Your Reference Data card shows many bit
configurations for which no graphics (printable
characters) exist. These ’’characters” if used as
fill characters, (would/would not)_______ produce
a blank on the report.

• • •

would

49. The asterisk (* •) often is used as a fill character.
It (will/will not)________________ produce a blank.

• • •

will not

50. The asterisk will not produce a blank when used as
a fill character, because an asterisk is printable.
For a fill character to provide a space beside the
printed data it (the fill character) must (your own
w ords)___________________________________ ____________ .

• • •

NOT be printable

51. Look at the second and third fields to be printed on
the report. (Spacing chart, Figure 22 .) There
are (how many)_________spaces between these
fields on the report.

• • •

j 2

4 We know that the third field on the report (YTD Gross)
" will contain edited data. Therefore, to determine the
> exact number of positions that we must reserve for
Z this data in the output area, we must determine
? exactly how many characters will print on the report.

| 52. By counting the punctuation marks and the X Ts you
I can determine that the YTD Gross field will print a

maximum o f ___________ characters.

• • •

1 53. The first step in editing data is to move a pattern
into the output data field. The pattern for YTD
Gross must provide for (how m any)_______________
punctuation marks.

• • •

2 (comma and period)
'
I 54. It must provide for (how many)______ significant

digits. (Count the X ’s on the spacing chart.)

• • •

7

55. It must provide for one extra character, the fill
character, which in this case will be a blank. The
total number of characters in the edit pattern
will b e ____________________.

• • •

10 (7+2+ 1)

The edit pattern will be 10 bytes long. But a maximum
of 9 characters (digits and punctuation) is wanted on the
printed report.

156

The nine rightmost bytes in the pattern correspond with
the nine positions in which YTD Gross will print:

The larger quantity does not need a fill-in zero since
the quantity itself fills all bytes in the field.

Edit Pattern
in Output Field

Report

4 0 2 0 2 0 6 B 2 0 2 0 2 1 4 B 2 0 H
V j---

__-«N*___t \
X X X X X X X

Now let's build the edit pattern fo r these two fie ld s .
Using a blank as the fill ch aracter the pattern for the
first quantity looks like this:

2 0 2 0 6 B 2 0 2 0 2 1 4 B 2 0 2 0

You have learned that if the fill character is a blank we
m ust define a field in the output area one byte longer
than the number of positions in the printed data. Also
you have learned that the blank fill character will
provide a space immediately preceding the printed data
on the report.

N ote : It is possible to use a digit select character or a
s ig n if ic a n c e start character a s a fill character. This
r n s the effect of having no fill character at all,
U m u se if the first digit in the source field is a
S ign ifican t digit, it is placed in the fill character
i- -eution and printed.

56. Look back at the field layouts just shown you. This
pattern contains (how m any)________ more ch aracters
than the maximum number that will print on the
report.

0 0 •

one

57. The extra character in the pattern is _______ _ .

0 0 •

the fill ch aracter

H ere is the edit pattern for the second field :

T here is another factor that will influence the size of
the data field in the output area from which the edited
data will print. It is the size of the source field.

Assume the two following fields are laid out on a
spacing chart:

X X , X X X . X X

X , X X X . X X

Sample data for these two fields might be:

3 7 4 1 3 9 6

2 5 9 2 8 2

Since data being edited must be in packed format these
amounts would look like this in storage:

3 7
i _ J ___

CO 6 Si

LLlLJ 5 9 JLlJL 2 S

Zero! supplied
autom atically during pack operation

Note that thé smaller amount has a high order zero that
was automatically supplied during the PACK operation,
to fill out the extra half byte in the packed field.

4 0 2 0 2 0 6 B 2 0 2 0 2 1 4 B 2 0

58. This pattern contains (how m a n y) ___more
characters than the maximum that will print on the
report.

• • •

two

59. The extra pattern characters a re the _ _ _ _ _
____ _______________ and the _________________ __ ■

0 0 #

f i ll ch a ra cter ; first digit se le c t character

60. An additional pattern character is requ ired to edit
the high order zero in the sou rce fie ld of the second
data item. This zero (was/was not) ________ in the
source field before the field was packed.

0 0 0

was not

61. The first sou rce field has an (odd/even) _ _ _ _ _
number of digits. It (does/does not)
require a fill-in zero when it is packed.

0 0 0

odd; does not

62. The second source field has an (odd/even)_______
number of digits. It (does/does not)_____ require
a fill-in zero when it is packed.

Let's determine the size of the data field in the output
area from which the next field on the report will print.
This is the YTD Gross field.

• • •

even; does

63. If a source field has an even number of digits its
edit pattern will have (how many)_________
characters more than the maximum that will print
on the report.

• • •

two

64. If a source field has an odd number of digits its
edit pattern will have (how many)______ characters
more than the maximum that will print on the
report.

• • •

66. Look at Figure 22. The maximum number of digits
and punctuation marks that will print in the YTD
Gross field i s _________.

• • •

9

67. Consult the problem statement (Figure 17). The
YTD Gross amount in the input record contains an
(even/odd)______________number of digits.

• • •

odd

68. When the YTD Gross amount was packed a fill-in
zero (was/was not)_______________ inserted.

one

When the source field has an odd number of digits there
is no need for a fill-in zero from the pack operation
because the data occupies all positions in the field.
Hence the edit pattern contains only one extra character
(the fill character) and provides one space immediately
preceding the printed data.

65. When the source field has an even number of digits
a fill-in zero is supplied during the PACK operation
because the data does not occupy the leftmost half
byte in the field. Hence the edit pattern contains
(how many)_____extra character(s) that provide(s)
(how many)_______ extra space(s) immediately
preceding the printed data.

• t •

tW O; tWO

So you can see that before we can define the fields in
the output area we must know the sizes of the edit
patterns.

To determine the sizes of the edit patterns we must
know how many bytes there are in the source fields,
how much punctuation is required and the specific
character to be used as a fill character.

To determine the number of spaces for which we must
write assembler instructions we must know whether
the fill character in the edit pattern will provide a
space, and whether there is an additional digit select
character in the pattern to compensate for a fill-in
zero in the source field, which will provide an
additional space.

was not

• • •

69. The edit pattern will consist of (how many)_________
characters, including the fill character.

• • •

10

70. There should be two spaces between the employee
name field and the YTD Gross field on the report.
How will the one preceding YTD Gross be
supplied ? __

• • •

By the fill character in the YTD Gross edit pattern.

71. How will we provide the other sp ace?_______________ •

• • •

By writing an assembler instruction that will
reserve one byte immediately following the
employee name field in the output area.

72. Write an unnamed assembler instruction that will
reserve one byte immediately following the
employee name data field in the output a re a ._____

• • •

DS CL1

I

158

73. Now write an assembler instruction that will
reserve a data field in the output area that will hold
the edit pattern for the YTD Gross amount. The
name of this field is given in the problem statement.

• • •

LGROSS DS CLIO

There are four more amounts for which data fields
must be set up in the output area. Each of these four
will be edited, therefore the data fields in the output
area must be large enough to hold the edit patterns for
those amounts. A lso , each printed field is spaced a
certain number of positions from the adjacent fields.

74. Write the assembler instructions that will reserve
the data fields in the output area for the remaining
amounts that are to print on the report. A lso,
write the assembler instructions that are required
to provide the correct amount of spaces between
adjacent fields.

Do not develop the edit patterns at this time, just
determine the number of characters each must
have. Check each source field to see if a fill-in
zero was supplied during the PACK operation -
this will call for an extra pattern character (a digit
select) that will in turn influence the spacing
between fields.

• • •

DS CL1
LFEDWH DS CLIO

DS CL1
LFICA DS CL7

DS CL1
LCURGR DS CLIO

DS CL1
LNPAY DS CL7

75. Now add up the total of bytes you have reserved in
the output area and write an additional assembler
instruction that will reserve the remainder of the
132 bytes allocated to the area.

• • •

DS CL60

Now that we have defined the output area and the
individual fields that make it up, we are ready to put it
to use. The first thing that should be done prior to
using an output area is to clear it of previous data.

The instruction that you will use this time to clear the
output area before putting in new data is called
Exclusive OR. Read about this instruction in the
following material.

Exclusive OR
XR Rlf R2 [RR]

The first and second operands are examined on a
corresponding bit by bit basis.

All of above:
• either, but not both, of the corresponding bits is

a one, the result is a one and replaces the bit in the
first operand.

;; • If both bits are ones or if both bits are zeroes, the
result is a zero and replaces the bit in the first
operand.

> X only:
% • The second operand is a fullword and must be on a

fullword integral boundary.

f XI only:
% • The second operand is one byte (8 bits) of

immediate data which operates with one byte of
data at the first operand storage location.

'
| XC only:
I • The number of bytes taking part in the operation is

determined by the implicit or explicit length of the
first operand.

■ Condition Code:
0 Result is zero

1 Result is not zero
I 2

3

159

Program Interruptions:
Protection (XI and XC only)
Addressing (X, XI and XC only)
Specification (X only)

EXAMPLES:

Nome Operation Operand
8 10 __ 14 16 20________25' r 11] .i 11 s'"" ! .— H~r““

....., . .1......
"r T T ’.. i » ■

X R : 7 , 1' j ; 1 j
1 | ^ r i ■ 'P __.1.......I.,.L

X 4 , S E A R C H

* ' ; M j ! I/.- ■ ; i N
_______ __^ - _ - L X I s w

1 -
I T C H . X ' 7 2 '

i j

X C O U T P U T , O U T P U T

Here is the instruction you will use to clear the print
area of old data:

XC OUTPUT, OUTPUT

Copy this instruction on your coding sheet.

76. Assuming that a given bit in the first operand is a
one and the corresponding bit of the second operand
is also a one, the resulting bit in the first operand
will be a (0/1)________ _ .

0

77. Give the results of the following combinations:

1st Operand 2nd Operand Resulting 1st
bit bit Operand bit

1 0
0 0
0 1

• • •

1; 0; 1

If we execute the XC instruction with both operands the
same, corresponding bit positions in the two operands
are always identical. Since, if neither bit is a one, or
if both bits are ones, the resulting bit is zero, the
operand is effectively zeroed out.

If 3̂ ou are sure you can predict the results of XC
instructions you may skip to the point at which we
resume discussion of the sample program. If you are
not sure, you should read the frames on this and the
following page.

SKIP OPTION

EXCLUSIVE OR INSTRUCTION

So far you have had a good look at the "and" and MorM
instructions. You have seen how they can be used to
turn on and turn off program switches. Another
instruction that can be used to alternately turn on and
turn off a program switch is the "exclusive or"
instruction. The definition of an Exclusive OR
condition is this:

If one and only one of the bits is 1, the result is 1. * 1 2
Otherwise, it is zero.

The following will illustrate the result of Exclusive
ORing two bytes.

1st Operand 1 0 1 0 1 0 1 0

2nd Operand 1 0 0 1 1 1 0 0

Result 0 0 1 1 0 1 1 0

Notice that in bit positions 2 , 3, 5 and 6 one and only
one of the bits was a 1. So only these positions of the
result have a 1. In bit position 0, both bits were 1 and
the result was 0. In bit position 1, both bits were 0 and
the result was 0.

1. Given the following operands, show the result of
Exclusive ORing them.

1st Operand 0 1 1 1 0 1 1 0

2nd Operand 1 1 0 0 1 1 0 0

Result

• • •
1 0 1 1 1 0 1 0

2. Show the result of the following Exclusive OR
operation.

1st Operand 1 1 0 0 0 0 1 1

2nd Operand 1 0 0 0 0 0 0 1

Result

• • •
0 1 0 0 0 0 1 0

160

5.

6.

It is desired to change only one program switch in
a byte without affecting the others. Show the 2nd
operand necessary to change only the switch in bit
position 3.

1st Operand 1 1 0 1 0 0 1 1

2nd Operand

• • •

0 0 0 1 0 0 0 0

4. It is desired to change all of the program switches
in a byte. Show the necessary 2nd operand and the
expected result.

1st Operand 1 0 1 1 0 1 1 1

2nd Operand ________________

Result ________________

• • •

2nd Operand 1 1 1 1 1 1 1 1
Result 0 1 0 0 1 0 0 0

Assume that bit position 7 of a byte is a program
switch. In order to change the setting of this
program switch, bit position 7 of the 2nd operand
must b e _______ (0 /1).

1; See below.

1st Operand
2nd Operand
Result

• • •

0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0

The letter X is used for the mnemonic of an
"e o " instruction.

• • •

"exclusive or'1

Like the "and" and "o r " instructions, the "exclusive orT
instruction uses four formats.

7. Given the mnemonics, indicate the formats of the
four "exclusive o r " instructions.

Mnemonic

XR
X
XI
xc

Mnemonic

XR
X
XI
xc

Format

• • •

Format

RR
RX
SI
ss

Just like the "and" and "o r " instructions, the
"exclusive o r" instruction will cause the condition
code to be set to_______ (0 /1 /2 /3) for an all-zero
result.

• • •

0

For a non-zero result, the "exclusive o r"
instruction will set the condition code to

• • •

161

Returning to the sample problem we find that we are
ready to move the required data items into their
respective fields in the output area. This involves
instructions you already have learned.

END OF SKIP OPTION 7. How do we keep this from happening, since
obviously we want to use the pattern many times

(your own words) ? __________________________________

• • •

Move the pattern into a work area and edit the
data into that area.

1. Which output fields do not require editing?
(Symbolic Names). _______________________________

• • •

LNO; LNAME

2. Move the proper data items to these output fields.
If you have forgotten where these data items are
located, check your list of assembler instructions
(DCTs and DSTs).

• • •

MVC LNO, EMPNO
MVC LNAME, ENAME

3. All the other fields to be printed will contain
quantitative data items that are more readable if
they contain punctuation. Therefore, they must
b e ______________ as they are moved into the output
area.

• • •

edited

4. How are punctuation and suppression of high-order
zeroes accomplished in an edit pattern (your own
words) ? __ ____

• • •

By an edit mask called a pattern.

5. A pattern is a special edit mask that punctuates and
suppresses high-order zeroes in a data field to be
printed. Which is true ?

1. The pattern field is moved into the data field.
2. The data field is moved into the pattern field.

• • •

The data field is moved into the pattern field.

6. Moving the data into the pattern field (does/does
not)__________________ destroy the pattern.

• • •

does

8. Using the following hexadecimal numbers to provide
the desired characters, set up the pattern for
editing the year-to-date gross figure into LGROSS
in the output area. Call it PATRN1. Donft forget
to check the source field for a fill-in zero that is
supplied during the PACK operation if the number
of source digits is even.

Fill Character hexadecimal 40
Digit Select Character hexadecimal 20
Significance Start Character hexadecimal 21
Comma hexadecimal 6B
Period hexadecimal 4B

The significance start character should precede
the decimal point. The edited data will never be
negative.

• • •

PATRN1 DC X T40 20 20 6B 20 20 21 4B 20 20f

9. You will recall that you made the output area fields
large enough to hold the edit patterns. You can
deduce that, to preserve the edit patterns we will
do the editing in _____ ________________ _________ _ .

• • •

the output fields.

10. Write the instruction to move PATRN1 to LGROSS
in the output area.

• • •

MVC LGROSS, PA TRN1

The next step is to edit the year-to-date gross amount
into the output area.

Before you write the edit instruction, remember these
points:

• Year-to-date gross was packed back into its
original field.

• We are concerned with only that part of the
original field that contained the packed data.

• Address adjustments will be necessary to address
the byte in which the first digit(s) of the packed
data are located.

162

• Data packed into its original location will be
right-justified; that is , it will occupy the
rightmost bytes in the field .

• The high-order (leftmost) byte that contains
packed data will have a fill-in zero in its leftmost
four bit positions if the original amount contained
an even number of digits. It will not contain a
fill-in zero if the original amount contained an
odd number of digits.

11. Write the edit instruction that will edit year-to -
date gross into the pattern in the output area.

• • •
ED LGROSS, YTDGRS+ 3

If you had trouble determining the correct amount of
address adjustment to use in addressing YTDGRS,
consider the following:

YTDGRS is 7 bytes long. The input data field is 7 bytes
long also. After data is read in, YTDGRS looks like
this:

\f x \FX FX FX FX FX FX

We packed the contents of YTDGRS back into YTDGRS.
After packing, YTDGRS looked like this:

00mmim 00 00 XX X X XX XS

None of the subsequent operations on YTDGRS changed
its format.

LGROSS, the output field, is 10 bytes long. PATRN1
also is 10 bytes long. LGROSS looked like this after
the pattern was moved in:

14. The problem statement has the edited format of
all output data fields. Is LFEDWH punctuated the
same as LGROSS or differently?_____________________

• • •

The same. (They both have a comma and a
decimal point.)

15. The YTD Federal withholding tax, which will print
in LFEDWH, contains an (even/odd)_________
number of digits ?

• • •

even

16. Develop the pattern necessary to edit the YTD
Federal withholding tax amount into the output area,
keeping in mind the fill-in zero in the source field.

• • •

R Ö

17. Compare the pattern you have just developed with
PATRN1. They are (the same/different)________.

• • •

the same

18. Since they are the same, you can use PATRN1 to
edit YTD Federal withholding tax into the output
area. Can you explain why the edit patterns are
the same even though the YTD Federal withholding
tax field is one digit shorter than the YTD Gross
field?

20 20 6B 20 20 21 4B 20 20

• • •

20 20 6B 20 20 21 4B 20 20

By addressing YTDGRS+ 3 we got this result:

YTDGRS 00 00 00 X X XX XX XS

LGROSS b X X , X X X . X X

t
Fill Character

12. The next field to be printed i s _________________

• • •

The em ployees Federal Withholding Tax
(LFEDWH)

PATRN1 contains two digit select characters
preceding the comma, to edit the two high order
digits in the source field. The pattern for YTD
Federal withholding tax must also contain two
digit select characters preceding the comma; one
to edit the fill-in zero and one for the first
significant digit in the source.

You will remember that patterns containing a fill
character, and a digit select character to edit a
fill-in zero, will result in two spaces preceding the
printed data on the report.

Look at the printer spacing chart.

13. Is LFEDWH a numerical fie ld ?________ Will it
require editing?__________ .

^ 19. How many spaces do we want between YTD Gross
and YTD Federal Withholding ta x ? ____________

yes; yes
• • •

3
• • •

163

20. We arranged for one of these spaces by writing an
assembler instruction to reserve a byte in the
output area. The other two are obtained from
(your own words)_____________________________________

• • •

the fill character and the first digit select
character in PATRN1

You can see that by spacing the printed fields
appropriately we can use the same edit pattern for
more than one field.

21. Write the instructions to edit the employee’s
Federal Withholding Tax into the correct location
in the output area.

• • •

MVC LFEDWH, PATRN1
ED LFEDWH, YTDWH+2

22. By looking at the output area DS, you can see that
there are three more fields into which data is to be
edited. They are (symbolic nam es)_________________ * •

• • •

LFICA, LCURGR, LNPAY

23. See if you can write the instructions that will edit
the correct data into these fields. Consult the
problem statement for the names of accumulators
in which edit data is stored. If you need additional
edit patterns, create them. Don’t look at the
answers to this question until you have written all
the instructions you believe are necessary.

• • •

You need one additional edit pattern:

PATRN2 DC X ’ 40 20 20 21 4B 20 20 ’

These six instructions will accomplish the
remaining editing:

24. Now you are ready to write the line you have just
set up. Write the instruction. Remember that
register 10 is the linking register.

• • •

BAL 10, WRITE

25. Check Figure 19 to determine the next step, then
write the appropriate instruction.

• • •

BC 15 ,READCD

26. You have written the bulk of the instructions for the
sample problem. However, there are still a couple
of short subroutines to be coded. You will recall
that you left some lines blank on your coding sheet.
You must now write the coding for (block number 5,
Figure 19)____________ on these lines.

• • •

E2

27. The instruction preceding the first line you skipped
i s _____________ _ .

• • •

BC 1, OFF

You will recall that this instruction branches to an out
of line routine that turns off the switch. We said the
purpose of the switch is to bypass the sequence check
on the first card.

For all cards following the first card the program will
not branch, because it never repeats the instruction
that turns the switch ON.

28. Look at the instructions you wrote for block E3,
Figure 19. What do they d o ?______________________ _

• • •

Pack and convert to binary the employee number
from the input record, and place it in general
register 2.

MVC LFICA, PATRN2
ED LFICA, YTDFICA+ 2
MVC LCURGR, PATRN1
ED LCURGR, GROSS+ 2
MVC LNPAY, PATRN2
ED LNPAY, NETPAY+ 1

29. Why did we do this?

• • •

To set up the employee number so it can be
compared to the employee number from the next
card.

164

Now that we have processed the first card and have
read the next one, we are ready to sequence check.
You will recall that we said we will do this by comparing
the employee numbers register-to-register.

30. What must be done to the employee number from
the second card to prepare it for register-to-
register comparison?

• • •

It must be packed, converted to binary, and stored
in a general register.

31. Write the instructions to ready the employee
number from card two for comparing. You may
use the same work area you used to pack the
employee number from the first card. Put the
number in general register 3.

• • •

PACK NUM, EMPNO; CVB 3,NUM

We are now ready to compare the contents of registers
2 and 3 , to check the sequence of the input file.

The instruction you will use is called Compare.

The compare instruction differs from the previous
compare instruction you learned, in that the fields to
be compared are in binary form rather than packed
decimal. Read about the instruction in the following
material.

Compare
CR Rlf R2 [ft*]

19 R , R2
0 7 8 11 12 15

C Ru D2(X2, B2) [*X]

59 R , X2 B2 °2
0 7 8 11 12 15 16 1920 31

CR and C:
The first operand is compared algebraically with the
second operand and the result determines the setting of
the condition code.

• Both operands are 32 bit signed integers.

C only:
• The fullword second operand must be on a fullword

integral boundary.

Condition Code:
0 Operands are equal
1 First operand is low
2 First operand is high
3

Program Interruptions:
Addressing (C only)
Specification (C only)

EXAMPLES:

32. Write the instruction that will compare the employee
number from the second card to that from the first
card.

• • •

CR 3 ,2

33. If the cards are in sequence (second employee
number greater than first employee number) the
condition code setting is (0 /1 /2) __________ .

34. If we had reversed the order of the operands in the
compare instruction and the cards are in sequence,
the condition code setting would be (0 /1 /2)_______.

• • •

1

Assume the following values in registers 2 and 3

Reg 2 14987+
Reg 3 14693-

35. What is the condition code setting if this instruction
is executed?

CR 3 ,2

• • •

1

165

SKIP OPTION COMPARE INSTRUCTIONS

If you are sure you can predict the results of compare *
register instructions regardless of the absolute values I
and algebraic signs of the factors involved, you may f
skip to the point at which we resume discussion of our
program. If you are not sure, you should read the
following frames. A related instruction, Compare I
Halfword, also is discussed here. |

Compare Halfword
CH RJf D2(X2, B o) [*X]

49 R! X2 B2 °2
7 8 11 12 15 16 1920 31

The first operand is compared algebraically with the
halfword second operand and the result determines the
setting of the condition code.

• The first operand is a 32 bit signed integer.
• The second operand is treated as a 32 bit signed

integer by propagating the sign value through the
16 high-order positions (16 zeroes for a positive
number and 16 ones for a negative number).

• The second operand must be on halfword integral
boundary.

Condition Code:
0 Operands are equal
1 First operand is low
2 First operand is high
3

Program Interruptions:
Addressing
Specification

EXAMPLE:

Name Operation Operand
1 8 10 U 16 20 25-----1

CH
■

-

I'M

■

■

1. To indicate a "com pare" instruction, the mnemonic
uses the letter_______. To compare a halfword in
storage to the contents of a general register you
would use the mnemonic_______ . To compare the
contents of one register to another, you would use
the mnemonic_______ .

• • •

C; CH; CR

2. The 1st and 2nd operands a r e ____________ (changed/
unchanged) by the compare operation. The
operation is used to set the PSW_________ _______ .

• • •

unchanged; condition code

3. A "com pare" instruction would usually be followed
by the instruction " ______________________ . "

• • •

"branch on condition"

4. If a compare operation shows that both operands
are equal, the condition code would be set t o ___ .

5. A condition code of 1 indicates a low compare. In
other words, th e_________ (lst/2nd) operand is
less than th e ________ (lst/2nd) operand.

• • •

1st; 2nd

6 . A condition code of 3 is impossible after a
compare but a code of 2 would indicate that the
 (lst/2nd) operand is high.

• • •

1st

166

7. The comparison is algebraic. In other words, the
operands are considered as signed integers. A
negative operand would b e _____________(le s s /
greater) than a positive integer.

• • •

Returning to the sample problem, we see that,
according to Figure 19, we want to branch out of the
primary sequence and print a message if the input
records are out of sequence.

END OF SKIP OPTION

less

8. Given the following CR instruction, indicate the
condition code setting.

CR

19

Reg 4 A 0 F 1 0 F F F

Reg 7 7 F F F F F F F

Condition Code ________

• • •

1; The 1st operand (reg 4) is low because it is a
negative number which is algebraically less than
a positive number.

9. Given the following CH instruction, indicate the
condition code setting.

1. To be in sequence, the employee number from
the second card must be greater than the one
from the first card. What other relationships
are possible?

• • •

The second card employee number could be equal
to or less than the first card employee number.

2. You will recall that we wrote an instruction that,
rather than test for one set of conditions, tests
for the alternatives. Write an instruction that
will test for the alternatives to the second
employee number being greater than the first.
Branch to an instruction called SEQ if either of
the alternatives exist.

• • •

BC 12, SEQ

CH

49 4 0 1 OOF

SEQ is the name of the first instruction in a routine
that prints a message indicating an out of sequence
condition. You will code that routine shortly.

Reg 4 7 F F F 7 F 7 0

Main Storage 7 F F F

Condition C o d e ________

• • •

3. Meanwhile assume that card number 2, the one
just read, is in sequence. It will be processed,
and then another card, number 3, will be read.
Card number 3 must be sequence checked. It
should be checked against card number (l /2) ___

2; The halfword is expanded to a fullword by sign
propagation. Then the two fullword operands are
algebraically compared.

• • •
2

Each card must be checked against the card
immediately preceding it. Therefore, we must set up
register 2 and 3 so the employee numbers will be
correctly compared.

167

4. F o r any g iven c o m p a r is o n , the n u m ber fr o m the
p r e ce d in g c a r d is in r e g is t e r (2 /3) T h e
n u m ber fr o m the c a r d ju s t r e a d is in r e g is t e r
(2 /3)

• « •

2 ; 3

5. T o se t up fo r the n ext c o m p a r is o n , then , w e m u st
m o v e the e m p lo y e e n u m ber fr o m ea ch c a r d , a s it
is r e a d and fou nd to b e in se q u e n ce , fr o m (r e g is te r
3 to r e g is t e r 2 / r e g i s t e r 2 to r e g is t e r 3)

• • •

r e g is t e r 3 to r e g is t e r 2.

6, W r ite an in s tru ct io n that w ill se t up the r e g is t e r s
c o r r e c t ly fo r the n ext c o m p a r is o n . _ _ _ _ _ _ _ _ _ _ _

• • •

LR 2 ,3

w oaeh c a r d is r e a d , the e m p lo y e e n u m ber is r e a d
hito r e g is t e r 3 fo r c o m p a r is o n . A fte r the c o m p a r is o n ,

w ■mpioyee n u m ber is then p la ce d in r e g is t e r 2 , so
* >' next c a r d r e a d can b e c o m p a re d aga in st it.

One o th er rou tin e re m a in s to b e co d e d . If a c a r d is
m. o f s e q u e n ce , w e w ant to b y p a ss p r o c e s s in g it and

p r in t a m e s s a g e id en tify in g the c a r d and stating that
it is ou t o f se q u e n ce . (B lo ck E l , F ig u r e 1 9 .)

7, T h e f i r s t in s tru ct io n o f th is rou tin e w ill be
n am ed _ _ _ _ _ . (See the in stru ction that te s ts
the con d ition co d e a fte r the co m p a re o p e r a t io n .)

• • •

SEQ

8, W hat is the f i r s t th ing to b e done in p re p a r in g fo r
a p r in t o p e r a t io n ? __________________ _______

• • •

C le a r the p r in t a re a .

R em em ber that th is is an o u t -o f - l in e rou tin e . It should
b e co d e d on a separate co d in g sheet, n ot in the p r im a ry
sequence o f in s tru ct io n s .

9. W rite an in s tru ct io n that w ill c le a r the output area.
You p r e v io u s ly w ro te th is sam e instruction
e ls e w h e r e in the p r o g r a m . G ive th is instruction
the c o r r e c t n am e.

• • •

SEQ X C O U T P U T ,O U T P U T

10. T he out o f seq u en ce c a r d m u st b e identified.
S elect the data item from the c a r d , that serves
to id en tify it , and m ove it to its position in the
output a re a ,

• • •

MVC LN O , EM PN O

Having id e n tifie d the out o f seq u en ce c a r d , we m ust
p rin t a m e s s a g e in d ica tin g the out o f seq u en ce
condition. T h is m e s s a g e co u ld b e o f any length that
would fit into the re m a in in g output a re a . F o r
co n v e n ie n ce , h o w e v e r , w e can m ake it f it into one o f
the e x is t in g output f ie ld s .

11. W r ite an a s s e m b le r in s tru ct io n that w ill se t up a

con stan t that sa y s OUT OF SEQ U EN CE. Name
the con stan t SEQ E R R .

• t t
SE Q E R R DC C'OUT OF SE Q U E N C E T

12. D e te rm in e w h ich output f ie ld w ill h o ld the
m e s s a g e , and m o v e the m e s s a g e into the fie ld .

• • •

M VC L N A M E , SEQ ER R

13. W r ite the in s tru ct io n s that w il l ca u se a b ra n ch to
a rou tin e to p r in t the in fo rm a tio n and then b ra n ch
b a ck to the a p p ro p r ia te poin t in the p r o g r a m .

• 9 •

B A L 10, WRITE; BC 15 ,R E A D C D

168

You have coded the payroll program. The only
remaining thing to do is to check the margins of all
coding sheets to determine if there are any uncoded
out-of-line routines, or branch instructions which have
NOT yet had the branch address included. Since there
are none in your program, you may erase all margin
checks.

Now that you have completed the coding for the Ajax
payroll problem you will want to check your coding
sheets against a set on which the coding is known to be
accurate. Figures 23 through 30 show the coding as
you should have written it. Compare your coding sheets
against these illustrations. If any serious
discrepancies exist, consult your advisor.

Note that Figure 23 shows the 1 -0 coding for the
problem, which you were not required to write. You
have no coding sheet with entries that match Figure 23.

You have completed the System/360 Assembler
Language self-study course. You should now contact
your advisor and make arrangements to take the final
examination.

The final examination is a coding exercise that asks you
to demonstrate your knowledge of Assembler Language
by coding portions of a problem that already has been
flowcharted. You will not be required to program the
1 -0 routines, and for the most part you will be told
what coding strategy to use and the nature of the
instructions that are to be coded.

I
1

HOW TO PREPARE FOR THE TEST

If you are uncertain of your understanding of any of the
topics and instructions you have studied it would be
wise to review them before taking the examination.
In addition, you should review these topics:

• The definition of input and output areas, with
emphasis on the space that must be allowed when
an output field is edited.

• The methods of specifying "immediate data" in the
second operand of an SI type instruction. Be sure
that you know how to code it as a self-defining
constant (a "literal") in hexadecimal, in binary
or decimal, and as a character.

• The methods that you used for clearing storage.
• The setting on, testing, and turning off of a

switch.
• Rounding, with emphasis on address adjustment

and control of a move type operation by the use of
explicit operand lengths.

You need not, and should not, try to memorize the
functions of machine instructions. This information
will be provided for you, for every instruction
illustrated by the sample programs, when you take the
test. You will also have free use of your Reference
Data card, with your notes on it.

Overall, the best way to prepare for the test is to
review the kinds of operations on data that the problems
required. Use those operations as reminders of the
machine instructions that performed them.

169

m
i

T

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York 10601
(USA only)

IBM World Trade Corporation
821 United Nations Plaza, New York, N.Y. 10017
(International)

S
ystem

/360 A
ssem

bler Language C
oding Standard and D

ecim
al Instructions

Printed in U
SA

R

29-0232-6

