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Preface 

This publication describes the FORTRAl'\" IV mathemati­
cal, service, and input/output (I/O) subprograms for 
both FORTRAN and assembler-language programmers. 
Included is detailed information on: 
• Algorithms within the mathematical subprograms 
• Sizes of the subprograms 
• Use of the subprograms by FORTRAN programmers 
• Use of the mathematical and service subprograms 

by assembler language programmers 
• Techniques for replacing the TSS versions of sub­

programs with user-written versions. 

Prerequisite Publications 
FORTRAN users should be familiar with: 

IBM Time Sharing System: IBM FORTRAN IV, 

FIFTH EDITIO:\ (May 1876\ 

Form C28-2007. 
IBM Time Sharing System: FORTRAN Program­

mers Guide, Form C28-2025. 

A general discussion of TSS, with deSCriptions of 
other facilities related to FORTRAN-supplied subpro­
grams, is given in: 

IBM Time Sharing System: Concepts and Facilities, 
Form C28-2003. 

There are also references to: 
IBM Time Sharing System: Command System User's 

Guide, Form C28-2001. 
IBM Principles of Operation, Form A22-6821. 

This edition revises. and make, ob,olete C28-2026-3 and Technical 
!\ewsletter C:\28-,'3J8:2, 

Thi' edition applies to Relea,<: 2,0 of Time Sharing System!370 (TSS/370) 
amI to all subsequent releash until otherwise indicated in new editions or 
Technical !\c\\sletters, 

Requests for copies of IBM publications should be made to your IB~1 
representative. or to the IB~f hranch office serving your loeality. 

A form is provided at the hack of this publication for reader's comments. 
If the fonn hac been removed. comments may be addressed to IBM Cor­
poration, Tillie ShMing Systems - Dept. 80M, 1133 \Vestchester Avenue, 
White Plains, Kew York 10604, 
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Tht' FORTRAN IV library contains three types of subpro­
grams: mathematical, service, and input I output (II 0). 
.\Ilhough these subprograms are written specifically 
for FORTRAK programmers, they are also available to 
assemhler-language programmers who use the correct 
linkage and pass the necessary information (see Ap­
pCJldix B). All library subprograms are written in as­
semhler lant,Tuage. 

The mathematical subprograms are similar to FUXC­

TIO' subprograms, because they are mathematical or 
l'()ll1plllational in nature, and always return one answer 
l fnl1ctioll value) to the calling program. Mathematical 
slIhprograms can be categorized by use: 
1. Direct reference, as in reference to the sine subpro­

gram in the statement 

x = SIN (Y) 

2. Indirect reference, as in reference to an exponentia­
tion subprogram in the statement 

X=Y**I 

The service subprograms correspond to a subpro­
gram defined with a SUBROUTINE statement in a FOR­

TIIA:-: source program. These subprograms are called 
with a CALL statement or are implicitly called by the 
occurrence of certain situations during execution. Serv-

Introduction 

ice subprograms test program-simulated machine in­
dicators or perform utility functions. 

The FORTHA" II () library consists of twenty routines 
that link together ill various ways, depending lIpan tht' 
function to he performed. I/O routines are not usuallv 
thought of as subprograms, hecause any single I/~) 
function depends on a number of routines. Neverthc­
less, the FORTRAN Ilo library can be thought of as three 
major subprograms-thc Control Initialization, List 
Item Processor, and List Termination routines-and 
seventcen supporting subprograms. This categoriza­
tion is bas cd upon the fact that when control is passed 
from a FORTRAN program to the FORTRAN I/O library, it 
is always one of these three routines that receives 
control. 

The FORTRAN I/O routines may also be categorized, 
by functic)II, into language control routines and data 
conversion routines. These groups interact, in fulfilling 
an I/O req uest, by means of a communication and work 
region called the II 0 Communication Routine. 

Any reference by th(' user program to a FORTHAN IV 

library subprogram causes a search of SYSLIB for that 
program at execution time. Normally this search ob­
tains for the user the subprogram provided as part of 
TSS. The user can, however, provide his own version 
of the subprogram, as described in Appendix A. 

Introduction 1 



Section 1: Mathematical Subprograms 

The t\\() types of mathematical suhprograms are di­
rectiv rdcrcllcl'd subprograms and indirectly refer­
l'Jl('('{1 suhprograms, TIll' directly referenced subpro­
grams an' called bv the o\Jj('ct program in response to 
a statem('nt of the form 

x = SIN (Y) 

III this statemcnt direct rdelTnce is made to the 
ll1atlwlllatic,d sine subprogram, by its entry name: SIl\'o 

All example of indirectly rdl'J"('nced subprogram 
usage is tIll' call OIl an exponentiation subprogram, 
macl(· as thl' result of a statl'ml'nt of the form 

X= Y"'"' I 

III this statement, no direct rei"crence is mach, to a 
Sll bprogram hy the FOHTR\ '-: programmer. The FORTRAN 
compiler determincs that a subprogram is required to 
perform the exponentiatioll operation, however, and 
causes the object program to call the appropriate ex­
ponentiatioJ] subprogram. 

The algorithms describing the method of computa­
tion of the mathematical subprograms are given in 
App(·ndix F. Other information eOllcerning these sub­
programs is contained in Tables 1, 2, 3, 4, and 5 of this 
section and in AppendiX A. 

Tables 1 and 2 givc this information: 
FUllction: '\ brid description of the type of mathe­

matical <>pcratioll performed. 
Entry Name: The mathematical subprograms contain 

an entry point corresponding to each name that may be 
directly refcrencf'd (such as SIN) and each name that 
nwy Iw indirectly referenced (such as CHCBGA, when 
raising all I " 4 integer to an I " 4 power). This column 
shows all entry points in the mathematical sub pro-
gr~tll)S. 

Dcfillition: This column gives a matlwmatical equa­
(iO]) that n'Prcscnts the eomplltation. (It is not meant 
to r(,present the way the subprogram is called.) An 
alternative equation is given when there is another way 
of representing the computation in mathematical nota­
tion. FlIr ('x,lmplc, the square root can be represented 
as eilhc'!' 

i'lr:!.llIIwllt(S): These columns describe the value (s) 
for \\'hich the function value is to be computed. 
• Argulllent Nllml)('r--Thc number of arguments (one 

or two) that the lIser must supply . 
• ArgllIlwnt Typ{'-The type and length of each argu­

llH'nt. I!lleger, real, and complex reprcsent the type 

2 

of number; the notations "'4, "'8, and "16 represent 
the length, in bytes, of the argument. 

NOTE: In FORTRA:-': IV, a real argument corresponds 
to the REAL"' 4 argument, and a douhle-precision argu­
ment corresponds to the REAL "8 argument. A singlc­
precision complex argument corresponds to the CO:YI­
PLEX"S argnment, and a douMe-precision complex argu­
ment corresponds to the CO:;"IPLEx"'16.argument. 

• Argument Range (Table 1 only)-The valid range 
for each argument. If an argument is not within its 
valid range, an error message is issued and execution 
of this load module is terminated. (See the Error 
Condition and Error Message column descriptions 
below.) 

Function Value Returned: This column describes the 
function value returned by the subprogram; the nota­
tion is the same as that used for the argument type. 

Error Condition: This column describes the argu­
ment ranges not allowed when using the mathematical 
subprogram. 

Storage Estimates: This column shows the approxi­
mate number of bytes required for each mathematical 
subprogram: the approximate, total size of each sub­
program's CSECT and PSECT. (FORTRAl\' IV mathematical 
subprograms each contain one public, read-only, re­
enterable CSECf and one PSECf. The length of each of 
the control sections is less than 4096 bytes. The subpro­
grams are link edited, and their CSECfS are combined.) 

Other Subprograms ReqUired: Many mathematical 
subprograms require other mathematical subprograms 
to perform their function. The entry names of the other 
subprograms are listed in this column. (This column 
does not include CHCBZA, which is called by all mathe­
matical subprograms where error exit is possible.) 

Routine Name: Each mathematical subprogram is 
aSSigned a routine name that is normally of no interest 
to FORTRAN programmers. Appendixes A and B describe 
use of this name. 

Accuracy Figures (Table 1 only): These columns 
give accuracy figures for one or more representative 
segments within the valid argument range. The accu­
ntcy figures are based upon the assumption that the 
arguments are perfect (i.e., without error and, there­
fore, having no error-propagation effect on the an­
swers ). The only errors in the answers arc those 
introduced by the subprograms. Information given in 
the accuracy-figures columns is: 



Table 1. Summary of Directly Referenced Mathematical Subprograms 

Function 

COMMON AND 
NATURAL 
LOGARITHM 

EXPONENTiAL 

SQUARE ROOT 

ARCSINE 
AND 
ARCCOSINE 

ARCT~NGENT 

TRIGONOMETRIC 
SINE & COSINE 

I 

I 
Entry I 
Nom. I 

i 
Definition 

Ar9urnent(~) 

No. Ty"" 

orgjOO+Oi 

COCOS 

Rang" 

Function 
Value 
Returned 

COMPLEX' 16 

6 

Error Condition 

Argument • 0 + 01 

7 

StOrCJgC! 

btimates 

Hex Dttc 

IE8 488 

Other Subprograms Required 

CDABS, DLOO, DATAN2, DSQRT 

9 

Routil'" 
Nome 

CHCAP Tho full rang. 
excopt (I + Oil 

10 

Accul"Ocy Figur •• 

Sample 
f!\J 

r.lorill* 
M (.) .(.) r(E) 

Note 1 

2.25 x 10- 16 
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Tahle l. SlIlllmary of Directly Referenced :-'lathcmatical Subprograms (cont.) 

TR ICONOME TRIC 
liNE & COSINE 
(COl"!t;nv~) 

TRICONOMETRIC 
TANCENT 

(,,1,,( 

r'Jo""f' 

(CO\ 

DIIN 

,o~ 10Ig), 019 It"> 

redian\ 

T No. ! 

COMPLEX - 8 

ArguMen'lSI 

Ronge 

I'eolorgl < 'lIS. 

I;mag O,gl 5. 174.673 

Fund;On 

Volwp 
Rt"lulfled 

COMPlEX' 8 

[rro, (ond; 'ion 

! ' liReol Argument I ~ 2 18 'W 

i !Imoginory Argument! ) 174.673 

) 10109'" 
Es';mat(>~ 

2F8 760 

288 696 

IIN.CO\,EXP 

Routine 
Nome 

! CHCAO 

CHCAJ 

I 

Argument 

Range 

[IXII ~1O'IX21~ I 

I 

I X I~.! 
2 

~<IXISIO 

U 

U 

u 

10 

A(curo'C), Figures 

------------.-[----
Absolute 

0(.1 M!fl 
Relative 

o (E) 

I 
·6 2.50 x 10 

i So. Not. 2 

_____ +-__ --11---10 .; I X I S 100 U 

·~-O;- -r ,O,-I~,:;~-:'9-;~---r~t-EA-L-. -8---+-I-o,--g ,-<-2-5-0-. -- ·----------+-R-EA-L-' -8-----t-I-A·,-g-U-m-en-,-I-~~-5O--.-------·-!----2-S8-+-6-96-ti ----------. C HCA) 0 ~ X S • U 1.79. 10. 16 6. S3. 10. 17 

! ,od;on. [I,' I II II I :10< Sx ~ ~OO U 1.75. 10. 16 5.93- 10. 17 

4 I I 10 < I X l:i 100 U 2.64.10. 15 1.01.10'15 
~--i=:91,0~;n II I ~IR~L"------+~I-o-~~I-<-2-I-e-.--------ill~R-E-A-l-'-'-----I[IA~_~I 22 18 • '~~-8-!----5-~-41---~--------+C-H-C-A-I----+I-x-I-S~'~-----+--U----+-I-_-~-0-1-~-6--+-I-.8-2-.-10-·-7-~~I-.~18-.-IO-·-7-~~4-_5~S~'~IO~--8-~ 

; radians ~-.. - .. -.------+---f-------+--------+-------+-------~ 

t:::,::;'~:':':t~ I ",,:;" il"l' ,,,, ... .. .. .. +~ ,~ ... + . .:::f; ,,,, ... ---+, i ~t-.. ----- .---- CHCAI 1--1 =-~O-I!-:-~~:_~x .. I:_~_;-:-+----~-. ~'.~~ ~~~~ ~~j'~ COl 

1~~~--t'li-~-o;-:-:-)-,-o-~-;-n-~II'~I----+I-R-E-A-L-'-8--~-I-.-~-I-<-2-5O-.----~--~I-R-E-A-L-'-8---~~_~1 !25O • I ~81i~I •. -~--------~C-~-A-z--~LI-:-I-:I:ISI00 : 3.41.1~16 6.V.I~17 1.14010~_~1_··_~~0_1_~_8_~ 
I I "'9u,""nl too cia .. to a S;ngulodly II ;.' <-1-4X-I-~-f----+--U----+-I-.4-3-'-10-.712:;:--t-------+-·---·-

I 1 I (i .•.. tooclo.etoonodd I~ 2.95010. 14 

I
I II I' ",ult;pl. ol-rr /2) 1----.------ _______ +S"'e"'e..:.N"'0::;lo=-=,5:-::-_+------+------+---------I 

-2'<lxl~IO U 2_78010. 13 15 7.230 10' 
I I,' See Nol. ""5"'_+-----___+------

I II I! 10 <I xl Sioo U ~~~~0:~:12 9_50.10. 14 

----t--------+--t----+--;--~__:_::__----- ~ 

DCOTAN ! ,olon (0'91,0'9;n I 1 REAL' 8 10'91 < 250 • -- i R-E-A-l-'-e- I~:~~~enll ~ 250 • 2FS 7~ CHCAZ I X IS ~ U 2.46.10- 10 S.79.IO· 17 

I radians L.. Argvment too cioN to 0 Singularity ~ S •• Note 5 
! (i_._, too cln ... too ~<lxISJ:2 U 2.78010· IJ 

I multiple of,,") I .. See Not. S 
i U 5 .• 0. 10·lJ 
i ~<lxIS'O 5 •• Noto5 

~~N-----l: :,:::' .. " ·-,i-·'I--·-·+-R-e-A-l-'-.--- I o'g I c 2-1-8-.--------J~~~~-.--------- -I-A-,g-Um-::,-;;-IS-.--· - +;;-c-;~ - ... ·--------+-C-H-C-"-y----~~ _1_S_I_00_+-_:_---+~:.:I·"':-':N--'-:0:.::=-:.:~6-13--~:-:-~-I-:-:-:-~7-14-~------+-----___l 
-----.-- ----ji-----;---ji--'---'-----f-------t---------I 

"( 'gum.nl too clo •• to 0 Singulority ~ < I X I S ~ U 1.05 0 10-6 3.59 _ 10.7 
i .•. , too close tCI on odd .. ~ Se. Note 5 ... 

, multiple of -,,/2) .- .. -----------+---+-----;----+------4------+---------1 
i U 6_.9. 10'6 7 
I ' ; c I X I S_I.0_--+ ___ tS-, • .:.._N_O_'.=-:-.5r-_+3_._3S_'_I_O· __ ~--_---i_---___ _ 

-.----jl------t--+------f-----------+--------i-------------.----+---+----+--------.. --.--...... -"--
COTAN cotonlorg),argln I REAL"''' lorol<218. REAL"4 IArgUmentl~21e ... 

radians 

Argument too c\Ole to 0 Singularity 
(i.e., too close to a 
multiple of 11') 

IOclXISlOO U 1.57.10'6 
See Note 5 
------~-~i---------+-----------t------------I 

3_07. 10. 7 

---
CHCAY I X I ~ i U 1.07. 10'6 3.5S. 10.7 

r--------+----~----~--+·--------+---------+-----------I 
U 1.40,10·6 7 1 <I xiS; Se. NOl. 5 2.56.10' 

I------=------I----------+-----::r--+--------+-----+--------l • I I < U 1. 30. 10'· 
2 < X .10 See Not. 5 

3.15. 10. 7 10<1 Xl ~ 100 U 1.49.10'6 

I------t-----t--------t---t-------+-------------~------+-------------.--!-----t---~----.-------~--~-,,---r___--- -----t~~----+--___I-"S:::; •• :..:.;No='.:..;5'__;o_-___+-_-____;c;_-t_-------+------___l 
DSINH ,;nh(0'9) I ReAL'S ~,gl< 175.366 REAL'S IA,gum.n.1 ~ 17._673 250 592 DEXP CHCBS I x il>0.8S137 U 2.06.10. 16 3.7 •• 10.17 

HYPERBOLIC 
51 NE & COSINE 

f----t-- -----+--+------I--c--c--- i'-0-.-'-SS-I--3_--7-<-:-IX--'-IS-S---+----;;-· 3_80 x 10. 16.-+-"9"'_2"'1'--'.'-"10'-•• 1'7-+-----
----- .-------------+--.--.. --t--:---. -----+-- ---1--.+-----------+---- .---"'I-·---'--I--=-t-::----I--'=c.:..:~--+..:.:.!:..:..::."--=---4-------+_----

DCOSH <0." (o'g) I REAL'S IO'~<175.366 REAL'S IA,gu::~~r--;-1-74-.;;;;· 250 592 DEXP CHCS8 ·5~X$+5 U 3.63010'16 9.05.10.17 

---.. ---t----------+~ -+-------+----------------+------1--------------1----+---+---"-------.-+---- J---------------t--------i----.-t-------- --+----------1----------/ 
SINH ,;oh(0'9) I REAl'4 ~'91< 175_366 REAL" IA,gumon'l ~ 17 •. 673 IFS I S~ EXP CHCBA -5 ~ X S +5 U 1.26.10.6 2.17.10.7 

~----~--~----~~~--------~~- ------r-~-----+~-.. ~---------
COSH , •• " 10'9) 1 REAL'. lo,gl < 175_366 REAL'. IA,gumen. I ~ 17 •. 673 IFS 5~ --;~-P-~----·-----------~C--8·-A·----+---5-S-X-~-.5--+---U----+-I-.2-7-.--1-0:6-r-;-·.·-6-3·-.--10-·-:;7-~------i---------
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Tahle 1. Sl1mmary of Directly lkfl'rellced \\nthcIl1atical Suhprograms (COIlt.) 

Function 

HYPERBOLIC 
TANGENT 

! 

Entry 

Name 

i DTANH 

f 
I 
i TA,NH : tanh (org') 

No. Type 

• REA L • 8 

REAL' 4 

.. -t --.~-.- ._-,...--- -. 

ABSOLUTE 
VALUE 

icDABS 'hl 
~-. 

;CABI 

COMPLEX' 16 

COMPLEX' 8 10 ;91 +---
x _/ 

ERROR 
fUNCTIOI, 

COMPLEMENTED 
fRROR ~Ui"KrION 

GAMMA (r) 

lOG-GAMMA 

ERF 

DERf 

2 f. de 
fir 0 

, 
1 1".-0 do 

,foo 

REAL' 4 

: 

I Real" 8 

..... t-. 

[He I - erf {;o.i 0, REAL' 4 

du 

I - erf (xl or 

DERFC Real· 8 

r------' .. -~···---·····--'i, .-.~- .. -.---.--.. 

ul(-l e-udw DGAMMA REAL' 8 

,AI f oo x-I -0 
logE' U I! du REAL' 4 

o 

.--~-. 

REAL' 
DLGAMA l '" ,-I -u 

loge u e du 

o 

Notes J. Thf: distribution of \Omple or9ument~ upon which 
their stotiHics ore b:aed is t':o:.ponentiol radialjy 

and i, uniform OfOUM the origin. 

2. The maximum re-Ioti .... e error cited for th~ (COS 
function i! bo,,1'!d upon (] -set of 2000 rondom 

argvrtlenh within tht ronge-, In the immediate 
pro:llimity of the points (n .. 1/2) 'I' + OJ (Wh~H1' 

,..:::0, ii, ±2 •• ,., \ thl!' relative error con be 
quite high, although the ob\Olure error is vnoll. 

Any 

Any 

Any 

See Note 9 

Any 
See Note 9 

Any 

Any 

Any 

x > 2- 252 

X < 57.5744 

x< 57.5744 

X :> 0 

X< 4.2913)(1073 

x > 0 

X < 4.2913. 1073 

f, ,",cIlOr' 

'~, .,;!i ,J e 

Rl'tU! [led 

REAl' 8 

REAL' 4 

REAL' 8 

, REAL' 4 

+ 
REAL - 4 

! Rea! • 8 

REAL - , 

Real· 8 

REAL' 4 

REAL' 8 

REAL' 4 

R[AL • 8 

I 

! 

, 

Error Condition 

,Rfi'oi Argument> 57.57.44 

IRf'cl Argum~nt < 2- 252 

i 
I 

3. The mO,1lirnlJm noloti ... ", error citpd for the COCOS 
function i~ bo~ed upon a set of 1500 rondom argumenh 
within the ror'lge. In the immediate- proKimity of the 
poinh{n+l/2) .... 0; (wheten=O, ±l, i'l, ... ,) 
the relative error con be quite high although the 
absolute error is \moll. 

The mo~im\Jm relotive error ci!1td for the eDSIN 
function i~ based vpon a set of 1500 rondom arguments 
within thl!'! ronge. In the immediate proximity of the 
poinhnw ... Oi (where n ':: -tl, *2, .. ,,) the relotive 
error con be quite high although the absolute errOr is $mOIL 

Storage 
Routine 

Nome 
E\lim1ol.' -.~ 

: Hex ,Dec. 

I 
I 130 304 DEXP , CHeAL 

164 

C8 

328 

328 

1 356 

t 200 

EXP 

DlaR! 

I 192 r SORT 

! 520 ! EXP 

! 

808 DEXP 

520 EXP 

808 DEXP 

! CHCAK 

5. Tht! figures cited as the- mOJ{imvm relative error, Clr. 
thou!' encountered in a $Omplf: of 2500 rondom argumenh 
within th~ re$pective ran9@~. See tht appropriote 

section in Appendix F for 0 description of the beho ... io, 
of errors when the orgument is near a !ingulority or a 
zero of the function. 

6. The maximum relative error cit.d for the (SIN function 
is oosf'd upon 0 set of '000 ronclom arguments within the 
ronge. In the immediate proximity of the point' 
n ...... 0; (whrrrn= !I, *2, .•• /) the relative t>rtor 
can be quite high although 'hit absolute error is vnalL 

10 

Accurocy Figures 

~~:;~~-.·n-I--·--'rl -so-m-p-I-.~----------~'~.~IO~li~v~.--------·--r----M·-(-E-)---obr.-orlu~t.-----~--;!------) 
Ronge : E /U M ( • ) tt ( c) 

7. The 101"'I"le orgumenh were tangents of number, 
uniformly diShibuti!'d betwun ... /2 ond ... /2. 

8. Tht' answer gi .... en i$ th. principal .... 011.1., i .• , I 

the one who,. ir'l'lGginory port li.~ b.t'wHf'! 
~11'ond+1f 

9. F lootingwpoitH overflow con occ.ur, 

S('dinn 1: \[atJ1('matical SlIhprograms 5 
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Table ;2, SUllllllarv of lndirectl) RdcfCllccd \/athematical Subprograms 

2 5 

: Argument(,) 
I Funct;on I Entry 

f unc tioJ' 
I 

Nome Drfin;tion Volue 
I --

No, Type Returned 

6 

Error Condition 

7 

Storage 
Estimates 

""---,,~ 

Hex Dec 

8 

Ot~er Subproglom. Required 

10 

Routine 

Nome 

CHCBG I CHCBGA y ~ I •• I 2! INTEGER * 4 II NTEGER • 4 Bose is zerO 1 B4 436 

::~if :aN ~,~ If Gf' l~~~~·l-"-'-'~:'=I;~:_,"~fG"']~~ ;~f" " . __ . ~ :::: ~::o;~·:.;-"~;;;: ~ 7 ,~ e-~---~--------------------------,~~,---_+--i~-:-~~~ 
INTEGER POWER 1 CHCBGC 1 y c i 2 I INTEGER' 2 i INTEGER' 4 Bose Is zero and exponent i, 184 436 CHeBG 

i I I I = INTEGER' 4 ! J zero or negative 

_' __________ ,, ___ fCHCBG D-F' =Ir' 2~ • i ':~ TI g ~:-:~-~rl'INTEGER-:-4---~-I- ~:;:;~~~-~-I~'-,~-e-~-po-_-,~-e-n-t -i5-_-,-,~-~~~~~B~ __ l436 , _______ -_'~~~~~_'_' _____ +_C_H_C_B_G_--i 

,CHCBHA i y = a •• i i 2 a REAL' 4 REAL' 4 I Bose Is zero and exponent i. 144 I 324 CHCBH 

:~~SEE T~R!~L ~,L-- 1 ! i INTEGER' 4 L~ __ ~ _______ ~zer~_o~_:~~ti_~e, ________ --+ ___ +-i __ ,-+ _____________ --<1--____ -1 

INTEGER POWER i CHCBHB I y = 0 • • I 0" REAL' 4 I REAL' 4 I Bose is zero and exponent i, 144 I 324 CHCBH 

_",_" -,,----,-----l-,~~------~-"-,-,- ,, __ ,+ __ " -l i "~,~~~~.~_2_ -1-----, ~_ zero or n._g~t~~_, ___________ +-,,--L---_i---,- , ____ , _____ , _____ _ 
; CHCBIA :,' yea' • ; '2 a ". REAL' 8 i REAL' 8 I Ba,e i, zero o,nd e'ponen! i. 1 14C I 332 CHCBI 

RAISE A DOUBLE ! INTEGER' 4 I 
PRECISION BASE TO ~~_,~,_ ""~ ____ " ____ ---r' ,, __ ,.. ______ -+__ _____ l zero or negot,ve ~ ~ 1--- --i--- c;----
AN INTEGER PO'NER 'CHeBIS I yo' • i ! 0" REAL' 8 I REAL' '8 I 6ase is zerO and exponent i~ '---, 1'4<::--- "'j'32" --------~----" CHCSI 

:~\~;!~\A' . C~,"~A~I' "0 ' , b .;~~;e:lil":fl~+A, ; , ·~FEf:~~~·~;o~----ri.CO-e '" fX' ACOG ~--. --I CHU~ 
POWER _+____ , ___ +-- 1 I I J __ ~___ 

: CHCBJS i y =; • , b , b = REAL' 4 1 REAL' 4 Bo.e i, zero and exponent is 1 leO I 448 EXP, ALOG , CHCBJ 
RAISE AN INTEGER I" I i = INTEGER' 2 zero or negative I t 
BASE TO A REAL ,.-----,___+___ I +---------+ +-- --
POWER i CHCBJC i l Y "i' • b I 2 i ~" IR~~ELdE: ' 4 I REAL' 4 "+' ~:;:~~r ~:;O~i: exponenti. 1

11

1(0-1
1 

454608 
II "DEXEXP 'p,ADLOLOG

G 
"" __ -- 'CCHHCCBS-JK 

""-""--"-----""1
11 
C~C;KA- ;~--;:-:-b---t0" 0b-- = RR-EE"'"AA-LL--:--88""'----+ REAL' 8--- , B~~~'i, z~ro and exponent i. '230' +-----------------, --- """--

- , zerO or negoti v~ 1 

RAISE A REAL OR 
INTEGER BASE TO 
A REAL POWER; 
BASE AND/OR 
EXPONENT 
DOUBLE 
PREC ISION 

~-~--~-~---~~ 

RAISE A COMPLEX 
BASE TO AN 
INTEGER POWER 

PRODUCE ERROR 
MESSAGE AND 
TERMINATE 
EXECUTION 

b = REAL' 8iR iW~--'--+ Base is zero and exponent is 230 560 -I'"DEXD: DLOG - t -CHCBK--
; = INTEGER * 2 zerO Or negative """ ___ ..1+-------1 

2 b = REAL * 8 I REAL' 8 Ba,e is zero and exponent i, 230 560 DEXP, DLOG I CHCBK 

-\- ; 0 'N"O," ., ! .1'"- o'".~,,~ -- r . __ 
f-____ -+ _______ -+1_2_+_: __ ~-~-;~-~-~---~ .-- j:l~~': ... ;~ ~~ ~~~:~~ :;:::: :: :: __ ~~i~:::,~~~~ ___ J::::: 

2 0 COMPLEX' 16 I' COMPLEX' 16 Bo .. ,;. zero and exponent I' 274 1 628 I iCHCBM 
I = INTEGER' 4 zero or negative -1 ---

-'2-- ~O~-COM'PLEX • \6 I COMPLEX' 16 Ba,e i, zero o,nd ;;;-~;;;;-T;"- ---- r-m' 6281------- - CHCIlM-
i ~ INTEGER' 2 zero or negatlvl I 

--;---- t-:-~ COMPL~COMPLEX' 8 Base is zero and exponent;s -;4<: fS88' - - --- 'CHCe'C--

f--____ -+ ______ -+ __ +_i _=_I_N_T_E_G_E_R_'_4 ----.J---- zero or negative i 

i CHCBKB y = i •• b 

~ 
1 CHCBKC y = i ..... b 

f---' 
CHCBKD y ::::: 0" ... b 

CHeBKE y = 0 •• b 

CHeBMA y ~ a 11' 11 i 

2 

r- . "." 
CHCBMB 1 y = a ' , i 
____ 1.. _______ _ 
CHCBCA ! y = a • , ; 

a = COMPLEX' 8 I COMPLEX' 8 I Bose i, zero and exponent is 24C 588 Ii 

I = INTEGER' 2 _l,~:.~_~r negotive 
-------------+-E8 ··'-I--232I~e~~;i-;-ed'b;-use of ;h~-----CHCBZ 

CHCBCB Y ::::: Q ,.. .. i 2 

CHCBZA 

CHeBC 

EXIT macro instruction 

NOTE: The REAL'8 function volue returned by CHCBKD is not more accurate thon the REAL'4 bose 
given 05 on argument. 
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• Argument rangt.-"-This column gives the argument 
range used to obtain the accuracy figures. For each 
function, accuracy figures are given more represen­
tative segments within the valid argument range. 
These figures are the most meaningful to the. func­
tion and range under consideration. 

The maximum relative error and standard deviation 
of the relative error are generally useful and reveal­
ing statistics. However, they are useless for the range. 
of a function where its'value becomes 0, because the 
slightest error in the argument can cause an unpre­
dictable fluctuation in the magnitude of the answer. 
When a small argument error would have this effect, 
the maximum absolute error and standard deviation 
of the absolute error are given for the range. For ex­
ample, absolute error is given for sin (x) for values 
of x near1f'. 

• Sample-This column indicates the type of sample 
used for the accuracy figures; the type depends upon 
the function and range under consideration. The sta­
tistics may be based either upon an exponentially 
distributed (E) argument sample or a uniformly dis­
tributed (U) argument sample. 

• Statistical results: 

M(e)=Max I f(x)-g(x) 
f(x) 

( )- . f ~" I f(x,)--g(xl) ," 
u e - \J N L-t I f(xl) 

M(E)=Max I f(x)-g(x) I 

u(E)= ~ ~ L I I f(xl)-g(x.) I' 

Maximum relative error 
produced during testing 

Standard deviation (root­
mean-square) of the rela­
tive error 

Maximum absolute error 
produced during testing 

Standard deviation (root­
mean-square) of the ab­
solute error. 

In the formulas for the standard deviation, N repre­
sents the total number of arguments in the sample; i is 
a subscript that varies from 1 to N. Appendix F ex­
plains other symbols used above. 

Test ranges, where they do not cover the entire legal 
range of a subroutine, were selected so that users may 
infer from the accuracy figures presented the trend of 
errors as an argument moves away from the principal 
range. The accuracy of the answer deteriorates sub­
stantially as the argument approaches the limit of the 
permitted range in several of the subroutines. This is 
particularly true for trigonometric functions. However, 
an error generated by any of these subroutines is, at 
worst, comparable in order of magnitude to the effect 
of the inherent rounding error of the argument. 

Error Message: CHCBZlOO is issued each time an error 
occurs. This message gives the error condition, the 
entry name, and the address of the call to the math 
routine in the user's program. 

Table 3. Exponentiation With Integer Base and Exponent 

Base (1) 

1>1 

1=1 

1=0 

1=-1 

1<-1 

Table 4. 

Base (A) 

A>O 

A=O 

A<O 

Exponent (J) 

J>O J=O J<O 

Compute the Function Function 
function value value = 1 value = 0 

Compute the Function Function 
function value value = 1 value == 1 

Function 
value = 0 

Error message Error message 

Compute the Function If J is an odd 
function value value = 1 number, function 

value =-1 
If J is an even 
number, function 
value = 1 

Compute the Function Function 
function value value = 1 value = 0 

Exponentiation With Real or Double-Precision Base 
and Integer Exponent 

Exponent(J) 

J>O J=O J<O 

Compute Function Compute 
function value value = 1 function value 

Function Error message Error message 
value = 0 

Compute Function Compute 
function value value = 1 function value 

Table 5. Exponentiation With Real or Double-Precision Base 
and Exponent 

Base (A) 
Exponent (B) 

B>O B=O B<O 

A>O Compute Function Compute 
function value value = 1 function value 

A=O Function 
value = 0 

Error message Error message 

A<O Error message Function 
value = 1 

Error message 

Section 1: Mathematical Subprograms 7 



Section 2: Service Subprograms 

The service subprograms supplied with FORTRAN IV are: 

Pseudo sense light SUbprogL'TIlS (SLITE, SLlTET) 
STOP, EXIT, aod PAUSE s\l],programs 
Dump subprogr:um (DUtl1F, PDUi\II') 
Overflow and underflow suhprograms (OVERFL, DVCHK) 
Specification f'xception subprograms 

These subprograms are briefly described below and 

Table 6, Summary of Service Subprograms Characteristics 

1 2 

Function Entry Name 

Pseudo sense Turn all sense 1 
light sub- lights off or one SLITE 
programs sense light on 

Test a sense 
, light or 1'el'ord SLITET 

its status 

~ 
I 

Overflow Test and record 
and undeF- statns of 
flaw sub- exponent over-

I 
OVERFL 

I program flow and under-
I flow indicators 

I I 

f--- -

I 

-------

I Divide check Test and record I suhprogram statm of divide I DVCHK I 

check indicator I 
I 

i I 
I 

j. ----------+-
i Exception Process arith- I CHCBE3 (exponent overflow) , 

in Tahle'6. In most cases the actual entry point name of 
the subprogram is identical to the command name. 
However, when the user keys in the EXIT, STOP or 
PAUSE command, the compiler translates the com­
mand.name into a separate entry point name to call the 
subprogram. Both names are sho'WTl in Table 6. Further 
information concerning their usage is given in IBM 
FORTRAN IV. 

3 4 5 

Storage 

Error 
Estimates Module 

Condition HEX DEC Name 

Argument 
other than 324 804 CHCBE 
0,1,2,3,4 

Argument 
other than 

i 
CHCBE 

1,2,3,4 
I 

1 

I 
CHCBE 

I 
CHCBE 

I I i processing metic exceptions CHCBE,'! (exponent underflow) CHCBE I 
! subprograms CHCBE5 ( divide check) 

t 
I 
I 

1 

f.------,--
I 

1 

I 
Prol'ess specifl. CHCBE2 (specification) CHCBE 
cation 

I exceptions 
I 

I EXIT iCHCIWI] 
I----~ 

Exit sllh- Ten1linate 
progr~un execution I STOP (CHCIW2) lAC 428 CHCIW 

I 
PAUSE (CHCrW3) 

rD"mp ,"h~ I Dump specified 
program I stor3ge nrca DUMP, PDUMP 48 168 CHCrV 

L 
with or without 
termination 
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Pseudo Sense light Subprograms 
The program-simulated machine indicator subpro­
grams test the status of pseudo indicators, and return 
a value indicating the result of this test to the calling 
program. When the indicator is 0, it is off; when the 
indicator is other than 0, it is on. In the following de­
scriptions of the subprograms, i represents an integer 
expression, and i represents an integer variable. 

The CALL SLITE statement is used to alter the status 
of pseudo sense lights; the CALL SLITET statement is 
used to test, and! or record their status. The particular 
user reference name used in the CALL statement de­
pends upon the operation to be performed. 

SLITE is used if the four sense lights are to be turned 
off or one sense light is to be turned on. The source­
language statement is 

CALL SLITE(i) 

where i has a value of 0, 1, 2, 3, or 4. 
If the value of i is 0, the four sense lights are turned 

off; if the value of i is 1, 2, 3, or 4, the corresponding 
sense light is turned on. If the value of i is not 0, 1, 2, 
3, or 4, error message 216 is issued, and C'xecution is 
tenninated. 

SLITET is used if a sense light is to be tested and its 
status recorded. The source-language statement is 

CALL SLITET (i, ;) 

where i has a value of 1, 2, 3, or 4, and indicates which 
sense light to test; ; is set to 1 if the sense light is on or 
to 2 if the sense light is off. 

If the value of i is not 1, 2, 3, or 4, error message 216 
is issued and execution is tcnninated. 

DUMP and PDUMP Subprograms 
The CALL DUMP and CALL PDUMP statements allow the 
user to request that data contained within his program 
be dumped in one of nine formats. The dumps pro­
duced will be added to the user's SYSOUT. 

It is also possible to obtain dumps using the facilities 
of the Program Control System (pcs). For information 
concerning pcs, see FORTRAN Programmer's Guide 
and Command System User's Guide. 

The CALL DUMP statement is used if execution is to 
be terminated after the dump is taken. The source-lan­
guage statement is 

CALL DUMP (al,bdh ... , an,bn,fn) 

where a and b are variables that indicate the limits of 
storage to be dumped (either a or b may represent the 
upper or lower limits of storage). The dump format is 
indicated by f and may be one of the integers given in 
Table 7. A sample printout for each format is given in 
AppendixD. 

If execution of the object module is to be resumed 
after the dump is taken, the CALL PDUMP statement is 
used. The source-language statement is 

CALL PDUMP (al,bt.!l, ... ,an,bn,fn) 

where a, b, and f have the same meaning as explained 
previously. 

Table 7. DU1>.IP/PDU~IP Format Specifications 

Integer Specified Format 

0 hexadecimal 
1 logical *1 
2 logical *4 
3 integer *2 
4 integer *4 
5 real *4 
6 real *8 
7 complex * 8 
8 complex *16 
9 literal (character) 

Programming Considerations 

1. If the format control integer f is omitted, it is as­
sumed to be equal to 0, and the dump will be hexa­
decimal. 

2. The arguments a and b should be defined in the 
program in which the DUMP or PDU!\fP statement oc­
curs; otherwise, the compiler will assign arbitrary 
addresses to them. 

3. If the program in which DUMP or PDU::\IP occurs is 
a subprohram, and if a and b are argument names, 
a range of storage from the calling program will be 
dumped. However, if one is an argument name and 
the other is not, unpredictable and probably large 
areas of storage will be dumped; this should be 
avoided. 

4. If one of the limits (a or b) of storage definition 
variable names is in COMMO;"; and the other is not 
or if it is a different (named) cmI::\W", nnpredict­
able and probahly large areas of storage will be 
dumped; this situation should be avoided. 

5. The literal format in Table 7 causes the area that is 
to he dumped to be treated as a string of alpha­
meric characters. 

STOP, EXIT, and PAUSE Subprograms 
The STOP, EXIT, and PAUSE subprograms arc called by 
the compiled object programs as a result of the source 
statements 

CALL EXIT 
STOP 
PAUSE 

Section 2: Service Sllbprograms 9 



Statements that cause the user's program to be termi­
nated are 

CALL EXIT 
STOP 

If STOP is issued in a conversational task, a message 
is written on the user's terminal, and control is returned 
to the terminal for entry of the next cornmand by the 
user. If STOP is issued by a nonconversational task, the 
message is written on the SYSOUT data set, and the next 
command is taken from the SYSIN data set. The STOP 

statement has the same effect when used in either a 
subprogram or main program. The CALL EXIT state­
ment is equivalent to a STOP statement. 

A PAUSE statement executed in a program running in 
a nonconversational task will result in any associated 
messages being written to SYSOUT; the program then 
continues execution. In a conversational task the sys­
tem prints, at the terminal, the word PAUSE followed by 
00000 or a I-to-5-digit integer constant, or a message, 
depending on ho,"v the operand Held of the PAUSE 

statement was written. The system then transfers con, 
trol to the terminal and awaits the user's input before 
resuming program execution. 

Overflow and Underflow Subprograms 
The CALL Ov'ERFL statement allows a test for prior oc­
currence of an exponent overflow or underflow excep-

10 

tion. The value returned by this CALL indicates which 
of these two conditions occ~rred last. After testing, the 
overflow or underflow indication is no longer available. 
The source language statement is 

CALL OVERFL (I) 

where j is set to 1 if a floating point overflow ccndition 
(ie., ~161;:l) exists; is set to 2 if no overflow or under­
flow condition exists; or to 3 if a floating point under­
flow' (i.t'., <16 f",) condition exists. A more detailed 
description of each exception is given in Appendix E. 

Divide Check Subprogram 
The CALL DVCHK statement allows a test for prior oc­
currence of a floating point divide-check exception, 
and returns a value that indicates the existing condi­
tion. (Fixed-point divide checks arc ignored by FOR­

TRAN-compiled programs.) After testing, the indication 
of a prior divide check is no longer available. The 
source-language statement is 

CALL DVCHK (f) 

where t is set to 1 if the divide-check indicator was on, 
or to 2 if the indicator was off. A more detailed de­
scription of the divide-check exception is'given in Ap­
pendix K 



This section discusses the functions, entry require­
ments, error checks, and data references of the Tss/360 
FORTRAN 110 library in executing the FORTRAN 110 state­
ments: READ, WRITE, REWIND, BACKSPACE, END FILE, 
PRINT, and PUNCH. 

This section is written for both FORTRAN and assem­
bler-language programmers. The FORTRAN programmer 
may be interested in the assumptions that the I/O rou­
tines make, the error conditions that they check for, 
and the actions they take in case of error. The assem­
bler-language programmer may be interested in the 
advantages of FORTRAN I/O facilities, particularly the 
data conversion, list-processing, and DeB-maintenance 
routines. The assembler-language programmer should 
read this section after reading IBM Time Sharing Sys­
tem: FORTRAN Programmer's Guide, Form C28-2025, 
"Appendix E. Specification of Data Set Characteris­
tics," and IBM Time Sharing System: IBM FORTRAN 
IV, Form C28-2007, the sections titled "Input/Output 
Statements," and "Elements of the Language." Of the 
se<:tion on elements of the language, he need only 
read the subsections titled "Constants," "Variables," 
and "Arrays." 

Overview of the fORTRAN I/O I.ibrary 
There are twenty-one FORTIL-\N I/O routines. Only three 
routines, Control Initialization (CHCIA), List Item Proc­
essor (CHCIE), or List Termination (CHCIU), can take 
control from, or return control to, a FORTRAN object 
program. Thus, the FORTRAN 110 library can be re­
garded as three subprograms and a number of sub­
routines of these subprograms. 

Since the assembler-language programmer has tech­
niques (described in Appendix B) for linking to any of 
the FORTRAN 110 routines, he can look upon anyone of 
these routines as a subprogram. 

Another way of looking at the FORTRAN 110 Library 
is as two main categories of routines: I/O Ian gua ge 
control routines and data conversion routines. The rou­
tines of each group interact with one another by means 
of a common communication and work region in a 
common PSECT. 

Section 3: I/O Subprograms 

I/O language Control Routines 

There are two types of I/O language control routines: 
110 operation control and I/O list control. These rou­
tines analyze the user's 110 requests to determine in­
formation such as: the type of I/O operation to be per­
formed; the number and type of list items present, if 
any; the type of format control, if any; and the I/O 
statement relationships with a user-specified DDEF 
command. 

I/O Operation Control Routines 

These routines control the 110 request by creating, if 
necessary, a data control block (DCB). and analyzing 
FORMAT and NAMELIST control speCified by the user. 
After this information is processed, the 110 operation 
control routines interface with the TSS data manage­
ment routines that actually fulfill the I/O request. The 
interface with data management is accomplished by 
the routines CHCIB and CHCIC, via the data manage­
ment macro instruction facilities. 

I/O List Control Routines 

These routines examine the list items, if any, in each 
110 request to determine the type of conversion to be 
performed. After the type of data conversion is deter­
mined, control is given to the 110 operation control 
routines which in turn call the appropriate data con-
version routines for final processing. . 

Data Conversion Routines 

The data conversion routines are subdivided into rou­
tines used for input processing and routines used for 
the preparation of output. These routines can process 
all the permissible types of FORTRAN-formatted data 
speCified in either a FORMAT or NAMELIST statement. 

\Vhen converting a user's data, the data conversion 
routines interact \'lith each other according to the re­
quirements of the user-specified FORMAT or NAMELIST 
control. For example, for input data that is defined by 
a G-format conversion code, the General Input Con­
version routine (CHCIS) is called. This routine analyzes 
the data type to determine whether it is integer, real, 
logical, or alphameric and calls the appropriate data 
conversion routine. 

Section 3: I/O Subprograms 11 



I/O language Contral Routines 

I 
I 
I READ 
I WRITE 

I PRINT 

I PUNCH 
User 

I 
BACKSPACE 

Progrom REWIND 
I END FILE 
I 
I 

: list 

I 
Items 

Dota Conversion Routines 

Output 
r- -
! 
I 
I General -(CHClT) ! 
I 
I 
I 

'----,---...,-

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Complex 
(CHClN) 

logical 
(CHCIR) 

L ____ _ 

Control 

I/O r- --­
Ooeratian I 
C~ntrol I 

I 
I 
I DeB 
I Maintenonce 
I (CHCIB) 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Initiolization ~ 
I/O Control 

(CHCIA) 
I 

(CHCIC) 

I 
I 
l ____ ---

I/O 
I 

Control I 
list 

~ 
I 
I 
I 
L_ 

---r 
List 
Termination 
(OKIU) 

U 11 
Input 

-

NAMElIST 
Processor 
(CHCID) 

FORMAT 
Processor 
(CHCIF) 

------ !- --

list Item 
Process 
(CHClE) 

I 
I 
I 
I 
I 
I 
I 

- J 

-., 
I 
I , 
I 
I 
I 
I 
I 

_ J 

-, 
I 

r---- -- -----------, 

Integer 
(CHCIH) 

Reol 
(CHCIJ) 

Alphameric & 
Hexadecimal 
(CHctP) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

__ J 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L __ 

Alphameric & 
Hexadecimal 
(CHClO) 

Logical 
(CHCIQ) 

Complex 
(CHClM) 

General 
(CHClS) 

Integer & Real 
(CHCII) 

I 
I 
I 

I 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-------------' 

Figure 1. Functional Flow of FORTRAN I/O Routines 
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Routine Interrelationships 
Table 8 presents the calling relationships between the 
user program, the FORTRAN 1/ a routines, Data Manage­
ment, and the Supervisor. 

Table 8. Calling Relationships of I/O Houtines 

Routines ! Called 
I 

<: i:Q U 0 '"-l ~. ::r: .... 
t5 t5 t5 t5 t5 t5 .... t5 Calling U a ::r: ::r: ::r: ::r: ::r: ::t:: ::r: 

Routines U 1 U U U U U U 

USEH 
PROGRAt--! X X 

CHCIA X X X X 

CHCIB 

CHCIC X 

CHCID X 

CHCIE X X 

CHCIF 
I 
I X X X 

CHCIH 

CHCll , 
.~ 

CHCII I 

CHCI~f X 

CHCIN I 

CHClO i 
CHCIP 

CHCIQ I I 

CHCIH 

CHCIS X 

CHCIT X 

CHCIU X X 

CHClV X X X 

CHCIW X X 

CHCBD 

The following figures describe the relationships be­
tween routines when fulfilling a particular I/O opera­
tion. Since the relationships vary, depending on the 
kind of I/O operation being performed, a separate dia­
gram is presented for each of the basic I/O operations. 
Exceptions to the logical Rows presented in this sub­
section are described in detail under the individual 
routine descriptions in the following subsection. 

The type of 110 operation amI its related figure ref­
erence are: 

--. :::2 .... t5 :=: ::t:: ..... 
U· U 
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X X 
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z 0 p.. QJ >:e: CJ) !-< ::> 
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U U U U U U U U 

X 

X X X 

X X , , X X X X X 

I 

i 

I X 

X X 

X 

X X X X 

TYPE OF OPERATION (FUNCTION) 

Formatted READ with List 
Formatted READ without List 
READ with NAME LIST 
Unformatted READ with List 
Unformatted READ without List 
Formatted WRITE with List 
Formatted WRITE without List 
WRITE with NAMELIST 
Unformatted \VRITE with List 
Unformatted WRITE without List 
REWIND, BACKSPACE, END FILE 

> a: 0 
i:Q .... .... 

U U U 
::r: ::t:: ::t:: 
U U u 

X X X 

X 

X 

X 

X 

X 

X 

X 
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Routine Descriptions 

This subsection identifies the functions, attributes, en­
tries, routines called, error checks and data references 
of each of the twenty-one FORTRAN I/O routines. The 
assembler-language user should read this subsection 
in conjunction with Appendix B. 

Certain information is common to most routines; this 
information includes: a description of the attributes of 
each l'Outil1l' and parameter-list formats common to 
data conversion routines. 

Attributes 

Unless otherwise stated, all FORTRAN I/O routines are 
nonprivilcged, rcenterable, dosed routines residing in 
SYSLIB. ClIelA, CHCIF, CHCIU, CIICIW (except at CHCIW4), 

CIICIV, and CHCBD are entered by standard Type I link­
ag(' with the address of a parameter list in register 1, 
and exit is a return to the calling routine. All of the 
other 1/0 routines are entered by restricted Type IV 
linbg<'. Unless otherwise stated in the description for 
a given routine, all routine exits are assumed to be 
returns to the calling routine. 

Data Conversion Routines' Parameter List 

All of the data conversion routines have a common 
parameter list in the 1/0 common PSECT. Certain data 
conversion routines do not use all the fields of the 
parameter list, in \\,hich cast' the fiE-Ids arc' set to zero. 
Table 9 shows the format of the data conversion 
routines' parameter list and indicates the fields sup­
plied by the appropriate data conversion routine. Note 
that in some cases the parameters are supplied as part 
of a common setup hut either arc not used by the rou­
tim' itself or are used only to pass on as parameters to 
other 1/0 routines. 

1/0 Initialization-CHCIA 

This routine is the initial FORTRAN 110 Librarv interface 
with the user. It manages the disposition C:f each I/O 

request by setting information switches about for­
matted and unformatted 1/ a (for use by other I/O 
routines), by allocating a buffer area for output re-

quests, and by obtaining a logical record for input 
requests. 

Every FORTRAN source program I/O statement gener­
ates a call to this routine. On this call, if there is no list, 
CHClA supervises the complete execution of an 1/0 re­
quest. If the 1/0 request is a READ, WRITE, PRIl':T, or 
PUl\'CH with list, CHCIA simply prepares the I/O library 
for compiler-generated cans to List Item Processor 
( CHCIE) and List Termination (clIcm). 

Table 9. Fonnat of Data Conversion Routines' Parameter List 

WORD DATA CONVERSION 

LOCATION CONTENTS ROUTINE AFFECTED 

\Vord 1 Address of list item 1 All 

Byte 1 Format control 
character' All 

Byte 2 Scale factor3 CHCll and CHCIJ, 
only 

\\'ord 2 Byte 3 Scale size' CHCll aml CHCI.1, 
\only 

Bits 1 to 4-Byte 
size of list item, 

Byte 4 minus one All 
Bits 5 to 8--Type 
of list item 0 

Word 3 Address of input or output All 
h\lffer 

\\'ord 4 Byte size of buffer, minlls All except CHCIl\1 
one 

\'lord 5 Decimal fraction width" CHCn, CHCIJ, 
CHCU," , CHCIS, 
and CHCIT only 

NOTES: 

1. A list item is the storage area specified hy a list param­
eter in the READ or \VRITE statement. 

2. G, E, I, F, D, L, Z, A, H, X, T, or P (N indicates 
NAl\tELlST) . 

3. CHCn or CHCJJ tests for an EBCDIC minus sign, 
which indicates a negative scale factor. Anything else 
indicates positive scale factor. 

4. The integer preceding the 'P'. 

5. \Vhere 01, 0:2, 03, and 04 represent logical, integer, 
real, and cOlllplex, respectively. 

6. The numher of decimal places to the right of the deci­
mal point. 
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Entry: The entry point is CHCIA!. The parameter list 
is variable-length and has the following format: 

Word 1 Address of a fulIword containing the user-
specified data set reference number. 

Word 2 Address of a control byte indicating type of 
operation,l 

\Vord 3 Address of a control byte indicating whether 
a list was present in the I/O statement and 
whether any of the following parameters in 
this list are i)fesent." 

\reml ·1 Addn'ss of a FOIL\IAT string or l\' AMELJST 
(OptiOll'll) table, This address is included in this param-

t'ler list onlv if the mer-requested I/O opera-
tiOll had an :lssol'iated FOR\lAT or NA\JE-
LIST source stlltement.3 

\\ord :5 Address of an error exit. This address is in-
(Optiollal) duded only if the user-requested I/O opera-

tion had the EHR aperand specified in his 
SOlllTl' statement. 

\\'ord (j Address of an end-of-file cxit. This address is 
(Optional) included ollh· if the user-w'jucstcd I/O oper-

ation has the E!\D operand specified in his 
sourer'staU'IlH'IIt. 

]'o;OTES; 

1. In thaI control h\(<" T\E.-\D = 12,') (X'80'), WRITE = 
64 (X'40'), l'HIYf =- ,3:2 (X':2()'), PUKCH = 16 
(X'10'), HE\\'I!\,D = S (YOH'), BACKSPACE = 4 
(.'\'04'), E,\D FILE == :2 (.\'0;2'), 

,~ In lhat control byte, the l'onfic;llr~tion is: Hnnhxx, where 
f = FOl\\fAT statcmcnt, Icc: LIST par;llllcter, n =--: 
l\A\lELIST statellll'nt, I' = EBB operand, d = E,\D 
operand, and \:xx Lit, ;lI'e "]\\,ll\'S sd tn /I'ro. Setting any 
of the first five bits to "lit' imli"aks that the correspond­
ing l']"llH'lIls are preSt'lIt. 

3. Tlw FOH\IAT strin~ is ill lI:;ef-wriUell form, hc~inl1ing 
with thc first p,nl'lIlilc:;cs, Inimh the stall'lIlcnt llumlwr 
and the word 'FOB\L\T'. Sl'l' the ClICID routine dc­
Sll'lption i"l!' the tlel:1I1, ni th,· .\.'\ \[1-:1 ,1ST t"hle, 

If any optional parameter is missing, any parameters 
following it are mo\'ed up in tlw list and the Jist is 
shorlened, For cxample, if ther,' is IlO FOH~fAT or 

:,\A.'\IFl.lST acldn'ss and no eITor exit address, word -! of 
jhl' paralllder list \\'(mld J)(' the enel-oF-file exit addrl'~s, 

Rou/i IlCS C ancr!: 
• Dell :'.faintenancl' (ClJUB) 

• I! (l ('on trol (ClICK;) 
• F(lI\\fAT Processor ( C! IUF) 

• :\·\"H:LIST Processor (ClIem) 

• 1'1\\[1'1' (CZATJI) 

• E\it (CI!ClW) 

Erl'i!r Checks: If the user-specifled data set reference 
!Hll1l1wr is negative. an error message is issucd by the 
PH"[PT facility, and CHCIW is entered to terminate the 
user program, 

20 

Data References: 

• Parameter lists for the modules called by this mod­
ule. 

• A chained list of save areas to accommodate all pos­
sible calls to other modules, 

• A table of adcons pointing to items in the work areas 
of other modules that are to be initialized, 

• The DCB prefix (generated by DCB maintenance­
CI,ICIB) to be set with the inpu t parameters from this 
module, 

DCB Maintenance-CHCIB 

This routine finds or initializes the data control block 
(DCB) that contains a description of the data to be 
transmitted by a user-specified I/O operation, If ,1l1 

appropriate DCB is not found, this routine allocates the 
necessary space ill the DCB table and constructs a new 
DCB, including within it information about the data to 
be transmitted that the lISer defined in his DDEF com­
mand, 

Entry: The entry point is CHCIBl. The parameter list 
in the common PSECT is fixed-length and has the fol­
lOWing format: 

Word 1 Address of a fullworcl containing the user-supplied 
dat" set refercllce IIIl111ber. 

\\. mel :2 The data set rderence numher. 

CHCIA stores the address of the llsn-supplif'd data set 
rc,fercllC'c ilnml)('r and the data set reference number 
its('lf, if present, in the I/O common PSECT, 

ROlltines Called: 

• Data management routines used to search for and 
read J FCBl (CZAEB) 

• Data managcment routines used to alloeate storage 
for DCB construction (CZCGA) 

• 1'1\::\11'T (CZA1'JI) 

• Exit (crrcIw) 

Error Checks: If the user-specified data set rcferel1ee 
number exceeds 99, an error message is issued by the 
I'H)'fPT facility (CZATJI) and CHCfW is enkred to termi­
nate the usn program, 

If a discrepancy exists in the uscr DDEF command be­
tween permissible RECFl\l, KEYLEK, and DSOHG valut's, 
an ('rror message is issued by the PRMPT facility 
(CZATJII and CHCIW is called to terminate processing, 
A description of the assumption FORTRAN I/O makes in 
initializing associated DeBS contained in Appendix C, 

1 ThE' Job File Control Block OFCB) is a systf'n1 control hlock constructl'd 
for each dL1ta set at DDEF time, It contains information that must be 
ft'ferred 1n ,,('('t-''iS method rOl1tine~ or volunH' mounting routines whil(' 
the datil sl't is OPEN, and provides a hierarchy of pointers defining 
JOBLIB. ~ '~EHLlB, and SYSLlB, 



Data References: 
• Parameter lists for the routines called by CHCIB. 

• Pointers to thc DCB table which consists of the DCB 

Prefix, the DCB itself, and additionally two DECBS if 
the user has specified Basic Sequential Access 
Method (BSAM) in his DDEF command. 

• A chained list of save areas to accommodate all pos­
sible calls to other routines. 
Format and Content of the DC B Prefix: The DCB 

prefix is used by the FORTRAN 110 routines, in conjunc-. 
tion with the DCB, when performing any type of I/O 

operation. The DCB prefix, created by CHCIB, is eight 
words long and always immediately precedes the DCB 

itself. 

Table 10. Format and Content of DCB Prefix 

i 
! 
I 
I 

'\lord 1 The address of the starting location in 
the buffer area for the current logical 
record. 

Word 2 The address of the current location in 
the buffer area for the current logical 
record. 

Word 3 The address of the end location in the 
buffer area for the current logical rec-
ord. 

Byte 1: Current operation (READ, WRITE, 
etc.) 1 

Byte 2: Control flags (FORMAT, NAMELIST, 
List, ERR exit, END exit) 2 

\\'ord 4 
Byte 3: Control flags ( Span, GATE, recent 

READ, END or ERR encountered)3 
Byte 4: Previous operation (byte 1 from 

call on eHCIC with this DCB) 
last 

Word 5 The address of current DECB, if re-
quired (BS1\:\1) 

Word 6 The user-specified data set reference 
number, plus one. 

Word 7 The address of the next DCB. 

Wordt! Save area for the address of the previ-
OUS DCB for that data set reference 
number. 

\\'ord 9 DeB begins here. 

NOTES: 

1. See parameter list at entry to CHCIA, Note 1. 
2. See parameter list at entry to CHCIA, Note 2. 
:3. The configuration is: gxdrxxln, where g = GATE I/O, 

d = end of data set (END), r = error (ERR), I = span 
from last record, or recent READ, and n = span to next 
record. The x bits are always set to zero. All hits set to 
zero signifies that there is no span. (Spanning is used in 
the case of unformatted records, where a physical block 
size wns defined. It is the process of jumping from the 
L'nd of one record to the beginning of the next. ) 

o Control-CHCIC 

This routine fulfills I/O requests made through other 
I/O library routines by using the data management 
macro instruction facilities of TSS. The particular data 
management facilities to be used are determined 

both by the type of If 0 statement issued in the user 
program, and by any related DDEF commands, if any, 
defining such things as the type of records being trans­
ferred and the manner in which they should be ·proc­
essed. 

The following list identifies the more significant 
macro instructions used by CIICIC for each of the FOR­

TRAN I/O statements. 

FORTAN I/O 
STATEMENT 

~EAD 

WRITE 

REW1ND 

BACKSPACE 

END FILE 

CHCIC FUNCTION 

Obtains a logical record from a user-specified 
input source by using the READ, CATRD, or 
GET macro instmction. 
Initializes the writing of a logical record by 
establishing pointers to the output buffer area. 
Subsequent output processing is performed by 
using the WRITE, GATWR, or PUT macro 
instruction. 
Repositions the user-specified volume of one or 
more data sets to the first record of the first 
data set by using the POINT or SETL macro 
instruction. 
Hcpositions the user-specified data set to the 
previous logical record by using the NOTE, 
POINT, SETL, and BSP macro instructions. 
Defines the end of the user.specified data set 
by using the 'VRITE and STO'V macro in­
structions. 

Entry: The entry point is CHCICl. 

Routines Called: 
• DCB Maintenance ( CHCIB ) 

• Exit (CHCIW) 

• Data management routines to perform I/O functions 
as determined by the macro instruction issued. 

• Error message control (CHCIX) 

• PRMPT ( CZATJI) 

Error Checks: If the 110 operations performed by 
data management cause either a SYNAD! or EODAD2 exit, 
and if the user provided an ERR or END return point, 
CHCIC locates the adcons for these return points in the 
work area CHCRWW and locates the register save area 
for the user's program registers. Heturn is then made to 
the ERR or END return point rather than to the calling 
I/O routine. 

If the user did not provide return points (or if the 
operation was other than a READ statement), an error 
message is issued and the program is terminated. 

If an invalid character is encountered in hexadecimal 
input from a GATE3 read operation performed for an 
unformatted READ statement, an error message is issued 
and the erroneous character is treated as the termina­
tion of the hexadecimal input. Processing then con­
tinues. 

1 SYN AD: synchronous f"Tror exit address~ for automatically transferring 
control to a user-supplied routine jf an uncorrectable I/O error occurs. 

2 EODAD: end of data set address, for automatically transferring control 
to an f"nd-of-data routine when end of an input data set is detected 
during processing. 

3 GATE I/O is input from SYSIN or output to SYSOUT. 
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In addition to the above error checks, error messages 
are isslled (PRMPT macro instruction) and the user pro­
gram is terminated by CHCIW for any of the following 
reasons: 
• The rccord is not format-V for unformatted HEAD 

statement. 
• Error rc'tllrn code received from the use of the FIND 

or STOW macro instruction for a rnember in a VPAM 
data set. 

• Invalid sequence of 1/ () operations for a user-speci­
fied data set reference number. The invalid se­
quences are: HEAD preccdcd by E;\iD FILE; L'In FILE 

preceded by HEAD; and I1EAD preceded by WHITE (ex­
cept when using GATE 1/0). 

Data References: 
.. Referellces to the standard DCB and its associated DCB 

prefix. 
• A chained list of save areas to accommodate all pos­

sible calls to other routines needed. 

NAMElIST Processor-CHCID 

This rolltinc interacts with CHCIC to control the I/O for 
each ;\iA~1ELIST record and interacts \vith tLe appropri­
at< data uOllversion routincs to bring about the desired 
itelO-bv -i h.·m cOIwcrsion. 

F1finr The entry point is CHCID1. TIle parameter list 
COllsi,ts of a single \vord: 

r----~-----. --,"--,-:-:-"---,----
I \Vnrell :\ddrcss of the NA\lEL1S I tahie generated hy 

I. 
th" FORT!{AN compiler as part of tbe user obje~t 
program. J 

Routines Colled: 
.. I/O Cuntrol (CllCle) 
• Complex I npllt Conv(Tsion (cllen!) 
.. Complex Output Conversion (CHCIN) 
• General Input Conversion (CHCIS) 

• General Ontput Conversion (elICIT) 

• l'H}'II'T (CZAqI) 
• Exit (cHcnv) 

Error Checks: There are no error checks for output. 
For input, if errors arc detected in the ;\iA!\IELIST tahle, 
a message is issucd via 1'11\11'1' ,mel CllCIW is called to 
terminate the llscr program. Other error messages are 
generated for any of the conditions listed below. In 
these cases, processing continues with the next entry 
of the input [('cord. 

• Kame exceed, six characters 
.. First character of each input record is not blank 
• Suh'icripts appear on a name that is not an array 

name 
.. Incorrect number or range of s!lbscripts 

• Subscripting causes array size to be exceeded 
• Multiple constants or repeated constants appear with 

a name that is not a subscripted array name, or cxc 

ceed the size of an array 
• An equal sign or left parenthesis is not preceded by 

the variable or array name for that item. 
.. An invalid character appears in a repeat comtant 
• End of a logical record caused an item to be logically 

incomplete 
• The NAMELIST name is not in the NAMELIST table. 

Data References: 
• Parameter lists for other I 10 librarv routines called 

by this routine. . 
• A chained list of save areas to accommodate all pos­

sible calls to other routines needed . 

NAMELIST Table: The address of the NAMELIST 
table generated by the FOHTHA;\i compiler or by the 
assembler-language programmer is communicated in 
the call to I/o Initialization (CHUA) and then passed 
to this routine. The table is made up of hvo-word en­
tries, each of which contains an identifier in the first 
halfword. 

NAMELIST NAME ENTRY: 
Bytes 0-1: Identifier (X'OlOO') 

2-7: Name (left-justified) 

VARIABLE NAME E"'Tl{Y: 
Bytes 0-1: IdeIltiRer (X'0200') 

2-7: Name (Icft- justified) 

VARIABLE TYPE A;\iJ) LOCATION ENTRY: 
Bytes 0-1: Identifier (X'0300') 

2: Length and Type (4 bits each) 
Length: Number of bytes minus 1 
Type: X'OI'Logical 

3: Class: 

X'02' Integer 
X'03' Real 
X'04' Complex 
Letter A for array; otherwise, 
an S 

4-7: Storage Location 

ARRAY SIZE. ENTRY: 
Bytes 0-1: Identifier (x'0400') 

2-3: Not used 
4-7: Number of bytes in array 

DIME:-1S10N PnODUCT ENTRY: 
Bytes 0-1: Identifier (x'0500') 

2-3: Not used 
4-7; Dimension Product (see explanation 

below) 

TERl\U;\iAL ENTRY: 
Bytes 0-3: Zero 

4-7: Not uscd 



A dimension is a level of subdivision, or level of sub­
scripting, within an array. For example, an array could 
be a string of seven thirty-word elements (first dimen­
sion), each subdivided into six five-word elements 
(second dimension), each subdivided into five one­
word elements (third dimension). An array may have 
as many as seven dimensions. 

For each dimension there is a corresponding dimen­
sion product, which is the product of 1) the byte-size 
of the array's smallest element, 2) the number of ele­
ments within all lower dimensions except the first di­
mension, and 3) the number of elements within that 
dimension. In the example just given, the dimension 
product for the third dimension would be 4 x 6 x 5, or 
120. This dimension product would be seven times 
greater if there were another dimension before the 
seven-element dimension. The dimension product for 
the first dimension is always the byte-size of the array's 
smallest element-this dimension product is never en­
tered. If there is only one level of subdivision, there 
should he no Dimcnsion Product Entry. 

Following is a hexademical representation of the 
"'A~fELIST table for a three-dimension array such as 
that de~crihed above, where the array is named 'C' and 
contains real numbers. The NA~~ELIST name is LIST. 

01 00 D3 C9 
NAME LIST name E2 E3 40 40 

02 00 C3 40 
Array name 40 40 40 40 

03 00 33 Cl 
Variable type 00 OE 63 74 

oct 00 00 00 
00 00 03 48 Array size 

OS 00 00 00 
Dimension product 00 00 00 18 

05 00 00 00 
no 00 00 78 Dimension product 

00 00 00 00 Terminal entry 

ist Item Processor-CHCIE 

!~\'I>ry I/O statement in the user's source program gen­
erates one or more calls to this routine if there is a list 
as~ociated veith a HEAD, WHITE, PRINT, or PU;\fCH. A list 
item may be a simple variable, an array element (a 
sl1bscripted variable), or an entire array. If a FORMAT 
statement is speCified, this routine calls on Format 
Processor (CHCIF) to control any necessary conversion. 
II there is no FORMAT statement, CHCIE is directly re­
spomible for filling or emptying the output or input 
buller area. 

Entry: The entry point is CHCIEl. Register 0 contains 
either zeros, if the list item is a single element, or a 
number expressing the array length, in bytes, if the list 
item is an entire array. The parameter list is fixed­
length and has the follOWing format: 

Word 1 Address of a control byte. The first four bits of 
the control byte contain the size of the element, 
minus one. The second four bits contain a flag 
indicating the type of item as follows: 

Flag Type of Item 
01 logical 
02 integer 
03 real 
04 complex 

\Vonl2 Address of a first (or only) element of the list 
item. 

Routines Called: 
• Format Processor (CHCIF) 
• I/O Con trol (CHCIC) 
• PRMPT (CZATJI) 
• Exit ( CHCIW ) 

Error Check: "Vith unformatted input, if a list item is 
.requested after the logical record is exhausted, an error 
message is transmitted to the user via PR}'IPT, and 
CHCIW is called to terminatc the user-program. 

Data References: 
• Parameter lists for other Ilo library routines called 

by CHCIE. 
• A chained list of save areas to accommodate all pos­

sible calls to other routines needed. 
• A fullword, CHcm~, which is in the CIlCIB work area 

and contains the address of the DCB prefix. 
• The first fifteen b\tcs of the DCB prefix. 

FORMAT Processor-CHCIF 

This routine interacts \",ith CHCIC to control the I/o-for 
each FORMAT-referenced record, and interacts with the 
appropriate data conversion routint's to bring about the 
item-by-itcm conversion specified by the FOHMAT state­
ment. 

Entry: Before the first entry to CHCIF to process a 
reference to a FOR\1AT statement, CHClA (or the assem­
bler-language programmer, if he is bypassing CUCIA) 
does the follOWing: 
• Store the address of the FORMAT character string in 

CHCRWW. The statement number and tht' word 
'FORMAT' are omitted from the string. 

• Set to zero the second and third words of CHCIFW. 
The entry point is CHClFl. The parameter list is fixed­

length and has the following format: 

"Vonl 1 Address of the list item, if any. 
Zero indicat('s that no list item was specified. 

---

Word 2 Byte size of list item and type in low order byte 
of word. (See word 1 of CHCIE parameter list.) 

\Vord 3 Address of the start of the format string. 
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Routines Called: 
e I/O Control (CIlCIC) 

.. Error ~kssage Control (CIICIX) 

.,. Exi t (CJl(:IW) 

.. One of the eleven daLt conversion rontines (cHelH 
through CHCIT ) 

Error Checks: Since FORMAT staten1Ct\ts may he dy­
namicanv modified, certain error conditIOns may arise 
dne to tl~e syntax of the FOH:\fAT string. If there 'are no 
syntax errors, crrors could ;nise due tel conversion of 
the data. In such cases the conversion routines issue 
messages describing the errors before returning. All 
syntax error checks produce messages describing the 
error. 

Procl'ssingis t('nninaicd upon encountering invalid 
control char:lC'lcrs in the string, that exceed the 
maximum, or too many levels ot parentheses. \Vhen it 
is possible to aSSUllle vailles other than those speciHed 
(as in the case of invalid size of w or d fields after n 
control character), processing will continue on the cur­
rent item after the error rm's~;age i~ issued. Otherwise, 
the errOlll'OHS FOW,L\T item is skipped and processing 
contilllles wi.:h the next control character. 

Data References: 
4> Parameter lists for the routines called hv CHelF. 

ill A chained list of save areas to accommodate all pos­
~ihk calls to other routines. 

4> COllllters for any repetition and scalc factors encoun­
ten-d. 

Integer Output Conversion-CHCIH 

Thi'; routine converts a two-byte or Four-hyte binary 
list item to an integer field in the output huffer, accord­
ing to th(> format In, where n is the integer field size. 

Entry; Th' entry point is ClICIllL TI\<' pcuameter list 
i:·; dcscrilwcl at the beginlling of this subsection, under 
CDilta C\}lI\(TsiOll HOl' f iw' Parameter Lists." 

nOli tines Cal/ed: 
,. Error \fcssagc Coutrol (CllCIX) 

Error Checks: If the output buffer an'a is too small 
to contain the integer field, the field is filled \vith 
:b~(Ti"ks and a me<slgf' is issued by CllCIX. 

Datil Hcferences: 
<II A paLI!1leler list for CHClX. 

.. A sa v(' area ~o acC'omrnochte the call to CHCIX. 

,. A work area, CHerHw, to be used by this routine. 

Real and Integer input Conversion-CHCII 

This rQutine COllverts a daLl Held in an input buffer to 
the appropriate lype list ite111. An integer field in the 
input buffer is converted to a binary list item. A real 
fidd in the input huffr'r is converted to a single- or 
douhle-precision floating-point list item. The integer 
field has a format 111, where 11 is the field width. The 
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real field has a format Fred, Ew.d, or Dw.d, where IV 

is the field ,':idth and d is the \.vidth of the decimal 
fraction . 

Entry: There arc three entry points: CIlCII, ClICIK, 

and eHCIG. The parameter list is described at the bc­
ginning of this subsection under "Data Conversion 
Hautine Parameter Lists." 

Routines Called: 
,. Error ~vlessag(:' Contro1 (CHCIX) 

Error Checks: If the format speCification (F, E, D, 
or I) is improperly speCified or the data field is greater 
than the permissible range, CHCLX is called. 

Data References: 
• A parameter list for CHCIX. 

.. Adcons for the table in Real Output Conversion 
(CIICq) that contains powers of ten. 

• A work area, CHcmv, containing: two douhleword 
areas for calls to CHCIK and CIJCIC, and a 32-byte area 
for temporary storage. 

Real Output Conversion-CHCIJ 

This routine converts a single- or douhlc-precision 
floating point list item to a real Held in the output 
buffer. The real field has a format of either El1:.d, 
Dw.d, or Fw.d where u; is the Held width and d is the 
size of the fractional position, in digit positions. 

Entr!l: There are two entry points: CHCIJ] and 
CHClLl. The parameter list is at the beginning of this 
s1111section under "Data Conversion Routine Parameter 
Lists." 

Routines Called: There are liO calls that can occur 
besides the fInaJ return to the caning routine. 

Error Checks: If the output lmHer area is too small 
to contain the rcal Held, the real field is filled with 
asterisks. 

Data Hcfcrencr;s: 
,. A table of power ol ten in double-precision [joating­

point. It has all cxtnn~\l name CIlCIL2, so that it can 
be referred to and 1lSed hy other I! 0 librar) routines. 
The tahle structure is: 

CHCIL2 DC JYIE1,lE2,1£3,lE4,lE5.lE6,1£7,1£8.1E9,lE10' 
DC D'lEll, lE12.1El:3,lElt, 1 E 15,1£16,1£17,lE 18, 

1E19,1E20' 

DC D' 1E71,1£72, 1£73,1E74,1 E75.1£-76,1£-77, 
lE-,8' 

Complex input Conversion-CHCIM 

This routine converts a complex data field from all 

input bufF!"f to a complex list item, consisting of two 
real data fields. Each real field is converted to a single­
or double-precision floating-point list item according 



to the format Fu:.d, Etc.d, or Dw.d, where w is the 
real field width and d is the width of the decimal 
fraction. 

Entry: The entry point is CHCl~fl. The parameter list 
is described at the beginning of this subsection under 
"Data Conversion Houtine Parameter Lists." 

Rot/tines Called: 
• Real and Integer Input Conversion (CHCll) 

• PRMPT (CZATJI) 

Error Checks: If only one or if no real fields exist in 
the complex data field in the input buffer, or if there is 
a missing parenthcses or central comma, CHCIM issues 
an error message via PRMPT. No further action is taken 
and the list items remain unchanged. If either or both 
real fields contain invalid characters or exceed the per­
missible magnitude range, CHCll assumes the responsi­
bility for producing an error message. 

Data References: 
• Parameter lists for routines called by CHClM. 

• Adcons for the table produced by CHClJ, containing 
powers of ten. 

• A chained list of save areas to accommodate all pos­
sible calls to other routines. 

Complex Output Conversion-CHCIN 

This routine converts a complex list item consisting of 
two, single- or double-precision floating point items to 
a complex data field in an output buffer. Each floating 
point list iteFl is converted to a real data field accord­
ing to the format code Fw.d, EtV.d, Dw.d, or Gw.s, 
\\'here 10 is the real field width, d is the width of the 
decimal fraction, and s is the number of Significant 
digits. 

F,ntry: The entry point is CHU;,\l. The parameter list 
described at the beginning of this subsection under 

"Data Conversion Houtine Parameter Lists." 

T?olltines Called: 
• General Output COllw'rsioll (CIICIT) 

Error Check: If the FORMAT specifications (F, E ,D, 
Of C) is improperly specified or the real data field is 
greater than the permissible range, the general output 
conversion routine (elIcIT) assumes the responsibility 
for producing all error message. 

Dola References: 
• !'" ~\Jndcr list for CIICIT. 

• Adcons for the table produced by CHCIJ, containing 
powers of ten. 

• A chained list of save areas to acommodate all pos­
sible calls to other routines needed. 

Alphameric and Hexadecimal Input 
Conversion-CHCIO 
This routine transfers a specified number of bytes 
( alphameric or hexadecimal characters) from an input 
buffer area to a list item. The format is Aw (alpha­
meric) or Zw (hexadecimal), where tV, field width, is 
the number of characters being transferred. 

Entry: The entry points are CHCIOl (alphameric data) 
and CHCI02 (hexadecimal data). The parameter list is 
described at the beginning of this subsection under 
"Data Conversion Routine Parameter Lists." 

Routines Called: None. 
Error Checks: None. 
Data References: None. 

Alphameric and Hexadecimal Output 
Conversion-CHCIP 
This routine transfers a speCified number of bytes (al­
phameriC or hexadecimal characters) to an output 
buffer area from a list item. The format is Aw (alpha­
meric) or ZtC (hexadecimal), where w, field width, is 
the number of characters being transferred. 

Entry: The entry points are CHCIP! (alphameric 
data) and CHelP2 (hexadecimal data). The parameter 
list is described at the beginning of this subsection 
under "Data Conversion Routine Parameter Lists." 

Routines Called: None. 
Error Checks: None. 
Data References: None. 

Logical Input Conversion-CHCIQ 

This routine converts a logical field in the input buffer 
area. The logical field has the format Lw, where 10 is 
the logical field width. 

Entry: The entry point is CHCIQl. The parameter list 
is described at the beginning of this subsection under 
"Data Conversion Routine Parameter Lists." 

Routines Called: None. 
Error Checks: None. 
Data References: None. 

Logical Output Conversion-CHCIR 

This routine converts a list item to a logical field in the 
output buffer area. The logical field has the format LtV, 
where tV is the logical field width. 

Entry: The entry point is CHCIRl. The parameter list 
is described at the beginning of this subsection, under 
"Data Conversion Routine Parameter Lists." 

Routines Called: None. 
Error Checks: None. 
Data References: None. 

General Input Conversion-CHCIS 
This routine converts a data field in the input buffer to 
a list item according to the format Gw.s, where w is 
the field width and s is an optional specification of the 
number of significant digits. 
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Entry: The entry point is CHCISl. The parameter list 
is described at the beginning of this subsection under 
"Data Conversion Houtine Parameter Lists." 

Routines Called: 
• Heal and Integer Input Conversion (CHCll) 

• Logical Input Conversion (OfCIQ) 

• Alphameric Input COllversi.on (OICIO) 

Error Checks: CHCIS performs no error checking. 
Error checks, if any, are made by the called data con­
version routines. 

Data Refcrences: 
• Parameter lists for the routines called by CHCIS. 

• A chained list of save areas to accommodate all pos­
sible calls to other routines. 

General Output Conversion-CHCIT 

The routine converts a list item to a data field in the 
output huHcr. according to the format Cw.s, whcre tV 

is the field width and s is an optional specification of 
the number of significant digits. 

Entry: The entry point is CHCITl. The parameter list 
is described at the beginning of this subsection under 
"Data Conversion Routine Paramcter Lists." 

Routines Called: 
.. Integer Output Conversion ( CIICIII) 

• Real Outpllt Conversion (CIICIJ) 

• Logical Output Conversion (cHcrn) 

Error Checks: CHCIT performs no error checks. Dis­
crepancies hchvecn the size and type speCification of 
the list item amI the data field are detected by the 
called cOllversion routine. 

D(Jtu Rejerence8: 
• Parameter lists for the routincs called by CHCIT. 

• A chained list of save areas to accommodate all pos­
sible calls to other routines. 

List Termination--CHCIU 

This rouline terminates li,t processing for a READ, 

\VlUTE, PHlNT. or PUNCH statement, and completes any 
I/O operation that is pcnding. 

Entry: The single cntr;' point is CllClUl. No param­
eters are passed. 

Routines Called: 
• Format Processor (CHClF) 

• J! 0 Control (CIICK:) 

The final rehtrn is made with registers unchanged, 
except [hat register 1,'3 will be set to the address of the 
calling module's PSECT and register 15 will be set to 
zero. 

Error Check: None 

Data Refcrences: 
• Parameter lists for other 110 library routines called 

Ly CHClU. 
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• A chained list of save areas to accommodate all pos­
sible calls to other routines. 

• A control byte within the DCB prefix that describes 
the current operation. (See "DCB Maintenance­
CHClB" and Table 10, "Format and Content of the 
DCB Prefix," in this section. ) 

Exit-CHCIW 

The ~xit Routine's subprograms, STOP, EXIT, and PAUSE, 

are described in Section 2. 

Error Message Control-CHCIX 

This routine receives the text of error messages from 
other 110 library routines during execution, and deliv­
ers those messages as output vi~ the GATE macro in­
struction, to the user's SYSOUT. In conversational mode, 
for example, any error message generated is passed to 
this routine for transmission to the user's terminal. 

Entry: The entry point is CHCLXl. The parameter list 
is fixed-length and has the following format: 

Word 1 Address of first part of message. 

Word 2 Byte length of first part of message, minus one. 

';Vord 3 Address of second part of message. 

Word 4 Byte length of second part of message, minus one. 

The first part of each message is a character string 
that never changes for that message, and is therefore 
part of the calling routine's CSECT. The second part is 
some data item that does change (such as the contents 
of a field containing invalid characters), and which, 
thcrefore, is in a PSECT (either of the user's problem 
program or of the 110 library routines). If only a single 
part message is to be transmitted to SYSOUT, word 3 of 
the paramcter list is set to zero. 

Routines Called: 
• GATWR maero instruction 

Error Checks: The size of the second part of a mes­
sage must not be greater than 49 bytes. If this limit is 
exceeded, only the leftmost 49 bytes of data will be 
ohtained from the invalid field. No error message is 
generated for this situation. 

Data References: 
• A lOO-byte buffer area llsed for the crror message. 
• Parameter lists for the routines called hy CHCIX. 

• A chained list of save areas to accommodate all pos­
sible calls to other routines. 



Interruption al)d Machine Indicator Routine-CHCBD 

This routine sets bits in the psw so that the fixed­
point overflow and significance exceptions will be ig­
nored, and directs the system interruption handler 
where to pass control if any of the following four 
exceptions occur: 

Exception Subprogram 
Specification CHCBE2 

Exponent overflow CHCBES 

Exponent underflow CHCBE4 

Divide check CHCBE5 

In addition, this routine initializes the machine indi­
cator flags and the sense light indicators, and clears 
any pointers to entries in the DCB table. It then returns 
control to the calling program. 

Entry: The entry point is CHeBDl. There are no entry 
parameters. 

I/O Communication-CHCIY 

This table contains space for linking register save 
areas and an area in which to construct a chain of 
DeBs. 

The format of CHCIY within the I/O PSEcr communi­
cation region (i.e., save and DCB areas) is: 

o 

76 

152 

228 

304 

380 

456 

PSECT Communication Region 

SAVE 1 

SAVE 2 

SAVE 3 

SAVE 4 

SAVE 5 

SAVE 6 

460 464 468 

CHCIY9 

472 

6 19-Word Save Areas 
(Each area has the 
address of the next 
save area in word 19) 

Pointers to work areas 
for CHCIA, CHCIE, 
CHCIU, CHCIV, 
CHCIW 

Area for constTlldioll 
of DCBs and DCB 
prefixes 
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Appendix A: Replacing FORTRAN IV Library Subprograms 

This appendix provides a general description of tech­
niques for replacing a FORTRAN IV library subprogram 
\vith a "private" version of the same program. The dis­
cussion below does not describe a technique for replac- . 
ing the copy of a subprogram in a manner that will 
cause all users of FORTRAN IV library subprograms to 
use the new version. 

It is recommended that a user-written version be 
loaded explicitly, with a LOAD command. The FORTRAN 

IV mathematical subprograms, service subprograms, 
and I I 0 Sll bprograms reside in SYSLIB as six link-edited 
modules, and implicit loading of a user-written version 
is possible only whcn the corresponding FOR'rnAN IV 

library module is not already loaded. 
t\1a;IY suhprograms call other subprograms, as shown 

in Table 1, Table 8, and Figures 1-11. For example, the 
CSQRT subprogram, c;,lled by a FORTRAN program to 
find the square root of a CO~[PLEX*8 number, requires 
the CABS and SQRT subprograms. If the FORTRAN user 
loaded his own version of SQRT, the CSQRT subprogram 
would usc this vcrsioll. Note that if the FORTRAN user 
wishes the CSQRT subprogram to use his own version of 
S(,llrr. he must supply the entire }'IATHLlB (since it is 
link-('dited). The USCI' may not supply ol1e routine only 
without performing :l new link-edit. 

The FORTHAN compiler and the FOHTRAK IV library 
subprograms expect a substituted subprogram to sat-

isfy the same references as the original subprogram. 
The follOWing table serves as a guide to the external 
names of each subprogram. 

Table 11. External Names of FORTRAN IV Library 
Subprograms . 

MATHEMATICAL SERVICE 1/0 

SUBPROGHAMS SUlJl'HOGIlAMS SUIJPHOGHAMS 

Entry See Tables 1 See Table 6. See Scction 3. 
Name and 2. 

Routine Scc Tables 1 See Table 6. Sec Section 3. 
Namc and 2. 

CSECT Houtinc name' CHCBD and Houtine name 
Name suffixed by 'W'. CHCBE: Hou- slltTiX('(\ bv 'C'. 

tinc name CHC1B and 
suffixcd by '\11/'. CIICIC havc 
CHCrVand additional 
CHCIW: Rou- CSECTS with 
tine name routillf' llame 
suffi.\:ed by 'C'. suffixed bv ·X'. 

l'SECT HOlltinc name CHCBD and noutille namc 
Name suffixed hy ·R'. CHCBE: Hou- suffixed by '\V'. 

tine name 
suffixed bv 'R'. 
CHCIV,tnd 
CIICrW; Rou- ! 
tint· name I 
s"lfixed by '\V'. 
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Appendix B: Assembler Language Information 

The mathematical, service, and I/O subprograms are 
available to the TSS assembler-language programmer. 
The following explains the method of calling a library 
subprogram from an assembler-language program and 
gives other information for the assembler-language 
programmer who wants to use these subprograms. 
Before reading any subdivision of this appendix, the 
assembler-language programmer should become fa­
miliar with the corresponding section of the main text. 

NOTE: The examples in this appendix have not been 
tested on the current system. 

The linkage from ~ORTRAN compiled programs to 
FORTRAN IV subprograms is a standard, Type I linkage. 
Assembler-language programmers must link to these 
subprograms using an identical linkage. The CALL 
macro instruction proVides a number of different means 
for establishing the correct linkage. (See Assembler 
User Macro Instructions.) ~ hand-coded linkage may 
also be used, but such linkages should generally be 
avoided when macro instructions supply the servIce re­
quired. Regardless of which form of linkage is used, 
however, the register usages for linkage are: 
1. Register 1 must point to whatever parameter list the 

subprogram requires. 
2. Hegistcr 13 must point to a 19-word save area in the 

calling program. 
3. Hegister 14 must contain the address in the calling 

program to \vhieh control will be returned by the 
called program at the completion of its operation. 

4. Hegister lEi must be loaded with the address of the 
entry name and this register is used to transfer con-. ' 
trol to the called program. 

Before returning to the calling program, FORTRAN 
lihrary suhprograms always restore general registers 1 
through 14. General register 0 is restored except 
when the result is returned by a mathematical sub­
program and is an integer, in ~hich case the integer is 
contained in this register. The Boating registers are not 
restored, and should be assumed destroyed. General 
register 15 is Hot restored, as future modifications to 
th~ FOlURA:-.T library subprograms may make use of this 
register for a return code (they do not currently do 
so); this register should be assumed destroyed. 

Mathematical Subprograms 
The parameter list for a mathematical subprogram 
must contain the addresses of the arguments in the 
proper order: 
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• Directly referenced subprograms. The order is the 
same as that in the list of operands within the paren­
theses in the corresponding FORTRAN source state­
ment. For example the source statement 

ANS = SIN (RADIAN) 

in FORTRAN coding corresponds to an assembler-lan­
guage call containing one add\ess in the parameter 
list-the address of RADIAN. The FORTRAN statement 

ANS = ATAN2(X,Y) 

produces a linkage with a parameter list containing 
the addresses of X and Y, in that order. The assem­
bler-language programmer's linkage to ATANZ must 
do the same. 

• Indirectly referenced subprograms. The order for the 
exponentiation subprograms is: address of the num­
ber to be raised to a power and the address of the 
power itself. 

The arguments pointed to by the parameter list can 
be either integer values, or normalized Hoating point 
real or complex values, as required by the called pro­
gram. An integer argument occupies four locations of 
storage. A real argument occupies either four or eight 
locations of storage. An argument occupying eight lo­
cations of storage starts on a doubleword boundary 
and occupies two adjacent words. The address of the 
first word is the address of the entire argument. 

A complex argument occupies either eight or six­
teen locations of storage, starts on a doubleword bound­
ary, and occupies adjacent words. The first half of the 
argument contains the real part of the complex argu­
ment; the second half contains the imaginary part. The 
address of the real part of the argument is the address 
of the entire argument. 

Each mathematical subprogram returns a single 
answer-either an integer value, a normalized floating 
point value, or a complex value. An integer answer is 
stored in general register 0, a real answer is stored in 
floating paint register 0, and a complex answer is stored 
in floating point registers 0 and 2. The real and com­
plex parts of a complex number occupying eight stor­
age locations will be in the high-order four storage 
locations of floating point registers 0 and 2. 

Examples of the use of the CALL macro instruction 
for an assembler-language programmer using the sine 
program are: 



or 

LA 

CALL 

LA 
LA 
CALL 

SAVE DS 
PARLIST DC 

13, SAVE 

SIN, (RADIAN) 

nSAVE 
1.5, VCON 
(15) :\IF=(E, PARLlST) 

19F 

Point to a 19-
word save area. 

VCON ADCON 
A(HADIAN) 
I:\IPLICIT, EP=SIN 

The above examples produce code equivalent to the 
following hand-coded linkages. (Several additional in­
structions are included for greater clarity.) This exam­
ple assumes that appropriate cover registers have been 
established, and RADIA~ contains the value, in radians, 
for which the sine is to be obtained. 

SAVE 
PARLIST 

VCON 
nCON 

RADIAN 
ANS 

LA 
LA 
L 
ST 
L 

11, SAVE 
1, PARLIST 
14, RCON 
14, 72 (0, 13) 
15, VCON 

BASH 14. 15 

STE 0, At\'S 

DS 19F 
DC A (HADIAN) 

DC V (SIN) 
DC H (SIN) 

DS F 
DS F 

Service Subprograms 

Point to a I9-word save area. 
Point to the parameter list. 
Store the R-con in the 19th 

... 'ord of the callers save area. 
Obtain the address of the entry 

point. 
Branch to the entry point, set­

ting register 14 to the address 
Of the instruction following 
the BASR. 

Store the result in ANS. 

The I9-word save area. 
The sine at HADlAN is to be 

computed. 
The V-R-con pair for the 

system entry to the sine 
program. 

The result is stored here. 

The calling sequence for DUMP and PDUMP may specify 
a variable number of paramf>tcrs. Forms of the CALL 

macro instruction are ,n'ailable for this purpose. The 
linkage is identical to that described above, with one 
exception: immediately preceding the address of the 
first parameter there must be a word containing, in 
binary and right adjusted, the number of addresses in 
the parameter list. r\ote that this word contains a 
count, not the address of a count. 

II 0 Subprograms 
As with other Ilo, data sets used with the FORTRAN 

I/o library must be defined. Unless the program is 
using GATE Ii 0, the programmer must give a DDEF com­
rnand. For example: 

DDEF DDNA:\IE=FTlOF001,DSOH.G=VS,DSNAr..IE=PAY 

Thi'; command is presented in keyword form, for clar-

ity. It could also be written in the shorter, positional 
form as follows: 

DDEF FTlOFOOl,VS,PAY 

Note that the DDN.-\ME is in FOHTRAN format amI con­
tains the data set reference number in the two digits 
following the 'FT.' 

Having satisfied DDEF requirements, the programmer 
is in position to implement thc information given ill 
Section 3: I/O Subprograms. The following arc ('xam­
pIes of ways the assemhler-Ianguage programmer 
might use FORTRAX 110 facilities. 

Formatted READ with List 

Assume that the programmer \vants to read an eighty­
byte record containing three integer numbers in the 
first half of the record. The first number occupies bytes 
three through eight, the second oceupics bytes fifteen 
and sixteen, and the third occupies bytes thirty-nine 
and forty. The rest of the first forty bytes are blank. 
The second forty bytes are to be ignored. 

The numbers are to be converted from character to 
integer form and placed in storage areas (list items) 
labeled A. B, and C, respectively. 

The programmer chooses not to construct a DCB, 

since CHCIB (DCB t-.Iaintenance) will construct one for 
him when it finds that there is no DCB for the data set 
reference number given in the DDEF command. 

LA l3,SAVE 
CALL CHCIAl, (PAHl.ISTO) The linkage shown by arrow 

4 of Figure 2, to CHCIA 
(I/O Initialization). 

At this point, CHCIA (1) causes CHCIB to create the DCB, 

( ~) causes cnClC (110 Control) to perform the 1/ o. and 
(3) passes the FORMAT string to CIlCIE (List Item 
Processor) . 

SR 

CALL 

SR 
CALL 
SH 
CALL 
CALL 

0,0 

CHCIE l, (P ARLISTl ) 

0,0 
CHClEl, (F ARLIST2) 
0,0 

Indicate to CHCIE that the 
list item is a Single 
element. 

The linkage shown by arrow 
2 of Figure 2, to CnCIE. 
CHCIE will process the 
first list item. 

The second list item. 

CHCIE1, ( PARLIST3) Tne thircllist item. 
CHCIUl The linkage shown by arrow 

7 of Figure 2, to CHCIU 
( List Termination) . 
There are no parameters. 

SAVE DS 191" 
* PAHAMETER LIST FOR CHCIA 
PARLISTO DC A(DSRN) 

DC A(CREAD) 
DC A ( COPNDS ) 
DC A( FORMAT) 
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DSRN 

CREAD 

COPNDS 

DC 
DC 

DC 

DC 

DC 

DS 

A (LA BEL 1 ) Addresses of the user-
A( LABEL2) written error-handling 

and end-of-file routines. 
Both parameters are 

XL4'OA' 

X'80' 

XD8' 

OF 

optional. 
The data set reference 

number ( 1010). The I/O 
routines expect it to be in 
fullword, binary form. 

The control byte addressed 
by the second word of 
the parameter list. 
Signfiies READ 
operation. 

The control byte addressed 
by the third word of the 
parameter list. Specifies 
that there will be list 
processing, and that there 
are entries in the last 
three words of the 
parameter list. 

Puts FOR:-VIAT string on a 
fullword boundary. 

Following is the FORMAT string. Note that the fields 
are defined in such a way that the numbers are in the 
rightmost portions of the fields. This must always be 
done \vith integer conversion, since blanks are treated 
as zero and would multiply any integer value by ten 
for every blank on the right. 

FORMAT DC C' (C8,G8, The FOR!\!AT string. 

* P AHA METEH 
PARLISTI DC 

DC 
PAHLIST2 DC 

DC 
PARLIST3 DC 

DC 
DC 

C24), 
LISTS FOIl. CHCIE 

A( lTD.l) 
A(A) 
A(ITE"-l) 
A(B) 
A( IT£:I.1) 
A(C) 
X'32' The first four bits of this 

control hvte inclic.1te that 
the list it~m (into which 
an integer will be placed) 
is four (3+1) bytes long. 
The second four hits 
indicate that the 
characters which the 
FOHMAT statement 
causes to be read are to 
be converted into integer 
fonn. 

FORMAT Conversion and Lis~ Processing 

Assume that the progra;11mer has scanned numbers 
into HOLD, a 400-byte area. The nnmbers are in EBCDIC 

form, with the format xXX.xxx, where 'x' is any digit. 
They occupy contiguous, two-word elements. The pro­
gr;\mn.cr wants to convert them into real form and 
move the result into a .sO-word array. (An array is 
simply a string of equal-length elements.) The pro­
grammer wants to usc the FOHTRAN I/o library only for 
its data conversion and list processing facilities, and is 
not requesting 1/ o. Thus, the user program will enter 
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the I/O library at the point shown by arrow 4 in Figure 
2. Arrows 4-7 show the linkages that will occur. 

Note that each doubleword in HOLD contains a blank. 
It does not matter whether the blank is to the right or 
to the left, since FORTRAN data conversion will treat it 
as a zero. (Though if the nllmhers were whole num­
bers, it would matter.) 

To begin with, the user program stores into the 
CHCIB work area, at CHClB2, the address of a parameter 
list .which substitutes for the first four pointers of the 
DCB prefix. 

LA 2,PTRS 
L 3,VCONl 
ST 2,0(0,3) 

Next, since the user program is bypassing CHCIA, it 
must store the address of the FORMAT character string 
into the first word of CHCIFW and zero out the second 
and third words of CHCIFW. 

LA 2,FORMA'1 
L 3,YCON2 
ST 2,0(0,3) 
SH 4,4 
SR 5,5 
SDI 4,5,4 (3) 

Then comes the usual sequence of code for calling 
CHCIE. 

LA 0,200(0,0) 

CALL CHCIEl, (CITEM, 
AHHA) 

HOLD DS 400X 
ARRAY DS 50F 
CITEM DC X'33' 

PTRS DC A(HOLD) 

DC A(HOLD) 

DC A(HOLD+ 
400) 

DC X'80COOOOO' 

VCONl DC V(CHCIB2) 
VCON2 DC V(CHCIF\V) 
FOIl.~fAT DC C'(50F8.3)' 

Indicates that the list item 
is an array, and that the 
arTa y is 200 bytes in 
length. 

Causes the conversion and 
movement of data to be 
completed. 

List Item 
The first four bits of this 

control byte indicate that 
the elcmcnts of the array 
are four bytes long. The 
second four bits indicate 
that the data in the buller 
is to be converted to real 
form. 

Starting location of raw 
data. 

Current location. (Same as 
starting location.) 

End of raw data. 

First byte indicates a 
READ operation. The 
second byte indicates a 
FORMAT statement 
with a list with the 
FORMAT statement 
not encoded. 



This appendix describes the assumptions that the FOR­

TRA~ 110 hbrary makes in initializing DCBS with infor­
mation concerning record format (RECF:\1) and data 
set organization (DSORG). These assumptions are de­
scribed to help reduce a frequent source of eITor en­
countered by the usn when performing I/O. 

Some introductory material is presented on thc DCB 

describing its general use, contents, and sources of 
initialization, before discussing the permissible record 
formats and data set organizations. 

DCB Use 
The Data Control Block (DCB) is created by DCB Man 
agement (CHCIB) and is used by certain data manage­
ment routines invoked by macro instruction references 
in 110 Control (CHCIC). The DCB is required for all I/o 
performed using either BSAM or VAM. However, the DCB 

is not required for I/O when using the GATE macro in­
structions. 

DCB Content 

rhe DeB contains information such as the DD~A:\rE, type 
of data set organization, the type and size of records, 
block size for blocked data sets, number of buffer 

,('as, exits for SYNAD and EODAD, and various control 
'Ltg, llsed hy data management. 

DCB Initialization 

The FORTRAN 110 routines, when processing an input 
data set, take advantage of information in the DCB to 
adapt to the characteristics of the data set and read it 
correctly. Characteristics are based on the parameters 
for a DC~ that can be supplied from: 
• The user program-type of 110 used and associated 

(!':ta format. 
• User-supplied DDEF commands-some of the infor­

m:Ition in the DCB can be changed in this manner; 
hO\YCVCL the extent of change is limited. 

• Input Jata set labels-these override both of the 
ahove sources of information, within limits set by 
data management. 

Appendix C: FORTRAN Data Management 

Combinations of DSORG and RECFM 
Table 12 gives the permissible combinations of record 
formats and data set organizations that may he speci­
fied when using the FORTRA~ 110 library. 

Tahle 12, Comhinations of DSORC and RECF\! Valucs 

DSORG VALUES 
RECFM 

VS PS VSI' VI vIP 

V A A A A A 
VB N A N N N 
VT N A N N N 
F A A A A A 
FB N A N N N 
FS N A N N N 
FT N A N N N 
FBS N A N N N 
FBT N A N N N 
FBST N A N N N I 

FST N A N N 

~ U L A L N N 

Codes mean: 
A - Acceptable 
L - Limited Acceptable 
N - Not acceptable 

DSORG abbreviations mean: 
VS - Virtual sequential (direct-access only) 
1'S - Physical sequential-BSAl\f-( any devicc 

except tr'rminals ) 
VSP - Virtual sequential partitioned (like VS) 
VI - Virtual index sequcntial (like VS ) 
VIP - Virtl:::l index sequential partitioned (likc VS) 

RECFM abbreviations mean: 
V - Variahle-lt·ngth unhlocked records 
VB - Variahle-Iength blocked records 
VT - Variable-length unblocked with track ovcrllo" 
F - Fixed-length unLlocked records 
FB - Fixed-length blocked records 
FS - Same as F, no truncated blocks or unfilled tracks 
FT 
FBS 
FBT 
FBST 
FST 
U 

- Same as F, tm('k overflow 
- Same as FB, no tll1n('ated blocks or unfilled tLlcks 
- Same as FB, track overflow 
- Same as FBS, track overflow 
- Same as F, no tnmcateJ blocks. track overflow 
- Undefined record length 

I 

Any of the RECF:-l codes shown can be fol1owl'u by 
the letter A or M, A indicates that the first character ~f 
every logical record is an extended A'\SI F01\TRA,\ l\' 

carriage or punch control code. ?vl indicates that the 
first character of ever), record is a TSS! 360 machine con­
trol byte. In general, the yI option cannot lx' llsed by 
FORTRAN output data sets, since the control codes are 
unprintable and do not conform to FORTR·\:\ conVCll­
tions. 
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Unformatted FORTRAN Logical Records 

Under any of the organization techniques used, an un­
formatted WRITE statement may lead to a lOgical record 
that exceeds the length of the maximum record sup­
ported by the access method. Furthermore, it is not 
possible to enter the byte size of the entire FORTRAN 

logical record into the beginning of the 110 physical 
record without the possibility of tying up an indefinite 
amount of virtual storage. Therefore, unformatted 
FORTRAN logical records may span over data manage­
ment physical records. In the management of unfor­
matted FORTRAN data, the first two bits of every vs 

34 

physical record or the third byte of every ps phYSical 
record is a control byte defined as follows: 

X'OO' A FORTRAN logical record does not span into or out of 
the data management physical record. 

x'or This data management physical record is the first of a 
span. 

X'02' This data management physical record is the last of a 
span. 

X'03' This data management physical record is within the 
range of a span. 

No data management physical record will be written 
containing more than one unformatted FORTRAN logical 
record. 



Appendix D: DUMP and PDUMP Sample Storage Printouts 

This appendix contains a sample printout for each 
dump format that can be specified for the DUMP and 
PDUMP subprogram. The printouts are given in the 

Table 13. Sample Storage Printouts 

rnNVI="Rc:.TnN rnni'" n _ >-lFlCAI)t=("TMJlI 

()()()"IF?:?" r1r?r"lr4 OC6C7CB C9D1D203 

--

rONvl="RSTON con~ 1 - I n(;TrAI * 1 

order: hexadecimal; lOgical *1, logical *4, integer -2, 
integer *4, real *4, real *8, oomplex *8, oomplez -Ie. 
and literal. 

040506D7 08D9pE3 

OOO"lF1P'(\ T F T F L_---L---F F F F 

----- --
CONVERSION CODE 2 - LOG T CAL * 4 

0003E1 DC' T F T F T F 
_. *_._- _ .. _ •. 

CONVERSION CODE 3 - I NTEGf;R * 2 ----.-

O()()~F1RA 1 2 3 4 5 6 

- ----
CONVERSION CODE 4 - INTEGER * 4 

--------
0,)03E1 F8 1 2 3 4 5 6 

CONVFRSION COO"" 5 - REAL * 4 --

0"03E248 1.00000E 00 0.20000E 01 O.3~OOOF 01 O.40000E 01 ,----

r- CONVERSION CODE 6 - REAL * 8 

I - ----------
0003E270 1.00000D 00 0.200000 01 0.30000D 01 0.40000D 01 

r -----------

~-- CONVERSION CODE 7 - COMPLEX * 8 

! '"),)03F2Cc) 1.OGCJOCE ;) () 0.20000E 01 0.2000Q.U1 0.30000E 01 ---

- -- -
CONVERSION CODE 8 - COMPLEX * 16 

0003£310 l.OOOOOD 00 0.20000D 01 0.200001") 01 0.300000 01 
-,-- ----

CONVERSION CODE 9 - LITERAL ------------

0(;03E220 ABCDEFGrlIJKLMNOPQRSTUV~ 
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Appendix E: Interruption Procedures 

This appendix contains descriptions of the procedures 
followed when the user's program is temporarily inter­
rupted due to certain types of interrupts. Interrupts 
are hardware-originated breaks in the Row of process­
ing. Program interrupts result from improper specifica­
tion or use of instructions and data. The term exception 
is used to refer to these types of interrupts (see Princi­
ples of Operation). Six such exceptions occur fre­
quently enough during normal FORTRAN programming 
to warrant special treatment. 

1. Fixed pOint overflow exception 
2. Significance exception 
3. Exponent overflow exception 
4. Exponent underflo\v exception 
5. Floating pOint-divide exception 
6. SpeCification exception 

The procedure for handling these exceptions follows. 
The compiler generates code at the beginning of all 
main programs that calls the CHCBDl entry to module 
CHCBD. At CHCBD! these operations are performed: 

1. Bits are set in the PSW such that the fixed point 
overflow and significance exceptions will be ignored. 

2. Initialization is performed such that control will be 
pas:ied to an entry in module CHCBD or ClICBE if any 
of the remaining four exceptions occur: 
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K,(C! nON 

J~HL'J'j: {.\il'IHow 
E\,lj(),'l'lll un'1erflow 
F;·"c, iI', liviue 

, pe,_ ;_,),~ .~iLiun 

EXTRY 

CHCBD3 
CHCBD4 
CHCBD5 
CHCBEl 

At the first three of these entries, flags are set for 
later interrogation by routines called as a result of the 
CALL OVERFL (tests for exponent overflow or under­
flow. exceptions) and CALL DVCHK (tests for floating 
point divide exception) statements. 

A specification exception occurs when a variable is 
not on a proper word boundary. This condition may 
exist in a FORTRAN program if an EQUIVALEKCE or CO~l­
MON statement forces misalignment. The compiler is­
sues a warning diagnostic, but such a misalignment 
does not prevent the user from executing the program. 
An installation option speCifies that one of two courses 
of action is to 1:e taken if a speCification interrupt oc­
curs: (1) terminate the task, or (Z) transfer control to 
a program that will perform the desired operation, 
using instructions that will not cause an exception (hl(' 

to incorrect boundary alignment. The routine entered 
for either of these eventualities is CIlCBE, \vhich is 
entered by the CHCBE! entry. The installation option is 
tested, and one of the two above courses of action 
taken. 

An exponent overflow exception is recognized when 
the result of a floating point addition, subtraction, mul­
tiplication, or division is either greater than or equal to 
1663 (approximately 7.2 x 1073 ). An exponent under­
flow exception is recognized when the result of a float­
ing pOint addition, subtraction, multiplication, or divi­
sion is less than 16-65 (approximately 5.4 x 10- 79 ). A 
divide exception is recognized when division by zero 
is attempted. 



Appendix f: Algorithms 

Information about the computations used in the explicitly called mathematical 
subprograms is arranged alphabetically in this appendix, according to subprogram 
module name. The user entry name associated with each suhprogram is given in 
parentheses following the module name. 

The information for each subprogram is divided into two parts: a description of 
the algorithm used and a description of the effect of an argument error upon the 
accuracy of the answer (function value). 

The presentation of each algorithm is divided into its major computational 
steps; the formulas necessary for each step arc supplied. Some formulas are widely 
known; others are derived from common formulas. In tJwse cases, the process 
leading from the common formula to the computational formula is sketched in 
enough detail that the derivation may be reconstructccP 

For the sake of brevity, the needed constants are Ilormally given only svmboli­
cally. (The actual values can be found in the assembly listing of the subprograms.) 
Some of the formulas are widely known; those that arc not so widely known arc 
cIt'rived from more common formulas. The process leading from the common 
formula to the computational formula is sketched in enough detail so that the 
tkrivation can be reconstructcd by anyone who h~lS an understanding of collcgl' 
mathematics and access to the common kxts on num<Tical analysis. 1 I\Jany approxi­
mations were derived by the so-called "minimax" nll,thods. The approximation 
sought by these methods can be charactnizcd as follows. Given a function f(:\'), an 
interval I, the form of the approximation (such ,1S the rational form with specified 
degre('s.\, alld the type of eITor to be minimized (sHch as tht, lTlative error), there 
is nonnally a l111iquc approximation to f( x) whose Iluximllln error over 1 is the 
smallcst among all possihle approximations of the givl'lI form. Details of the theory 
alld the variolls methods of deriving slIch approximation arc provided in the 
rdert'l1cc. 1 The accuracy figures citl'd in the algorithm sectioJls <1]'(' theoretical, and 
they do not take l'01111d-off ('!Tors into account. _,i'llor programming techniqul's 
u\(,cl to minimize ronnel-off errors arc not lWl't'ssarily dcscrib{'(l he1'('. 

The accuracy of an answer produced hy these algorithms is influenced by two 
factors: the performance of the subprogram and the accuracy or tht:' argument. 
(Pl'J'formance statistics arc givt:'n in Table 1.) The (·ffect of an argument error 
upon the accuracy of an answer dcpenels solely upon the mathematical function 
involved and not upon the particular codilH; used in the subprogram. 

Because argument errors, whether accumulated prior to use of the subprogram 
or introduced by newlv converted data, always infim'Jlcc the accuracy of answers, 
a gUide to the 'propagational effect of argu~1t'nt errors is provided. This guide 
(expressed as a simple formula, where possible) is intt:'nded to assist users in 
assessing the effect of an argument error. 

1 Any uf the common numerical analysis text'i may ht' l1~c·tl as a n.·ferent:-i.'. One sllch text is F. B. lIildehralH!'s 
Introduction to Numerical Analysis (~lcGraw-Hill Book Company, Inc" New York. N ,1'" 19:56). Backgn)und 
information for algorithms that use continued fractiolls may b(' found in H. S. VvaU's Aaalytic Theory of 
Contin.ued Fractions (D. VanNostrand Co., Inc., Princeton. ~.J .. 1948), 
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These symbols are used in this appendix to describe the effect of an argument 
error upon the accuracy of the answer: 

SYMBOL 

g(x) 

fix) 

" 
E 

E.'(PLAN ATION 

Result given by subprogram 

Correct result 

f(x)-g(x) 
fix) 

Relative error of argument 

f(x)-g(x) 

Absolute error of argument 

Relative error of result given by 
subprogram 

Absolute error of result given 
by s.ubprogram 

The notation used for the continued fractions in this appendix complies with 
the speCifications set by the National Bureau of Standards. For more information, 
see Milton Abramowitz and Irene A. Stegun (editors), Handbook of Mathemati­
cal Functions, Applied Mathematics Series-55 (National Bureau of Standards, 
vVashington, D.C., 1965). 

Although it is not specifically stated below for each subroutine, the algorithms 
in this chapter were programmed to conform to the follOWing standards governing 
floating-point overflow/underflow. 

1. Intermediate underflow and overflows arc not permitted to occur. This prevents 
the printing of irrelevant messages. 

2. Those arguments for which the answer can overflow are excluded from the 
permitted range of the subroutine. This rule does not apply to CDABS and CABS. 

3. When the magnitude of the answer is less than 16-65 , zero is given as the 
answer. If the floating-point underflow exception mask is on at the time, the 
underflow message will be printed. 

Contral of Progrum Exceptions in Mathematical Functions 

The FORTRAI\ mathematical functions have been coded with careful control of error 
I, uatiou;. A [( suL i:; provided whenever the answer is within the range repre­

S :l!ah], in til{; Hoatir-g-p')'nf form. ,cn 0; kr to bc consistent with FORTRAN control 
C)i' ".cut m-cr:Lvv/Ul1C1crfl )w eXc:cptivls, th~ follOWing types of conditions are 

j'('C'f'gl 'z(,(, ,0 lei La: lcUed sqJ;1J <ttdy. 
'/Vhl r1~wni Lctde (j[ the [Ul1ctil;'~ dlue is too large to be represented in the 

II IOil", lhe- cnnciitiOll i~' ( lIed a termin,ll overflow; when the magni-
1:',1, ,,' to:)( rcprc:;c:ol,,(l, a terminal underflow. On the other hand, if the 
funel, Jm:; rcprc:,p;1tablc, but if ('{eeutioh of the chosen algorithm causes an 
.. ,;,' ",,(ledlm" ie lie !,roce~c;, thi;' -'Olldition is called an intermediate dver-

How or' II iderllc'v 

Funrti·~n so broutillCS in the FORTRAN library have been coded to observe the 
following [,1"S for tll,;se conditions: 

1. Algorithms which can c:ausc an intermediate overflow have been avoided. 
Therefore an intermediate overflow should not occur during the execution 
of a [ullction subiOutine of the library. 

2. ITltenrwdiatc underflows are detected and not allowed to cause an interrupt. 
1n other worth spurious underflow signals are not allmved to be givcn, Com­
putation of the function value is successfully carried out. 

3. Tcrminal overflow conditions are screened out by the subroutine. The argu­
ment is considered out of range for computation and an error diagnostic is 
given. 



4. Terminal underflow conditions are handled by forcing a floating-point under­
flow exception. This provides for the detection of underflow in the same 
manner as for an arithmetic statement. Terminal underflows can occur in the 
following function subroutines: EXP, DEXP, ATAN2, DATAN2, ERFC, and DERFC. 

For implicit arithmetic subroutines, these rules do not apply. In this case, both 
terminal overflows and terminal underflows will cause respective floating-point 
exceptions. In addition, in case of complex arithmetic (implicit multiply and di­
vide), premature overflow lunderflow is possible when the result of arithmetic is 
very close to an overflow or underflow condition. 
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Explicitly Called Subprograms 

Absolute Value Subprograms 

CABS/CDABS 

l. Write Ix + iyi = a + ill. 
2. Let Vj = max ( lxi, :!l1 ), and V2 = min ( lxi, Iyi ) . 
. 3. If characteristics of Vj and V~ differ by 7 (15 for CDABS) or more, or if v:.! = 0, 

then a = VI, b = O. 
4. Otherwise, 

a = 2" VI" ~% + %(::r ,andb = 0. 

If the answer is greater than 1663, the floating-point overflow interruption will 
take place (see Appendix C). The algorithms for both complex absolute value 
subprograms are identical. Each subprogram uses the appropriate real square root 
subprogram (SQRT or DSQHT). 

Effect of an Argument Error 

1 
E-"28. 

Arcsine and Arccosine Subprograms 

ARSINI ARCOS 

Algorithm 

1. If 0 ::::; x <:: %, then compute arcsin (x) by a continued fraction of the form: 

arcsin (x) ~ x + Xii. F where 
ell el2 

F= (~ )+ (.>+ ). x- + CI x- C2 

The coefficients of this formula were derived by transforming the mlOlmax 
rational approximation (in relative error, over the range 0 <:: x2 <:: %) for 
arcsi n (x) / x of the following form: 

arcsin(x) "' [ . al + a2x2 ] 
:=:::: au + x-· b + b 2 + 4 • 

X 0 IX X 

.\Iill!max was taken under the constraint that al) = 1 exactly. The relative error 
of this approximation is less than 2-~·'":l. 
If 0 x :s %, arccos ( x) is computed as: 

arccos(x) = i,"-- arcsin(x). 

2. If 1Jz < x::::; 1, then compute arccos (x) essentially as: 
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( . 2 . (_ il - x) arccos x) = . • arcsm 'J-2- . 

This case is now reduced to the first case because within these limits, 

0<:: _ )1 - x <:: I/: 
= 'J 2 = 2. 

This computation uses the real square root subprogram (SQHT) 

If 1Jz < :t" :=:; I, arcsin ( x) is computed as: 

arcsin ( x) = ; - arccos ( x ). 

Implementation of the above algorithms (steps I and 2) were carried out with 
care to minimize the round-off errors. 



.'3. If - 1 <: x < 0, then arcsin (x) = - arcsin Ix] 
and arccos ( x) = 71" - arccos I x 1. 

This reduces these cases to one of the two positive cases. 

Effect of an Argument Error 

~ . 
E -- 1 ." For small values of x, E - .l. Toward the limits ( ± 1) of the V - x-

range, a small ~ causes a substantial error in the answer. For the arcsine, t -- 0 
if the value of x is small .. 

DARSIN/DARCOS 

Algorithm 

1. If 0 <: x <: lh, then compute arcsin (x) by a continued fraction of the form: 

arcsin ( x) ::::::: x + x3 • F where 
dt d2 

F = Cl + ( :! + ) + ( :. + ) X C2 X Ca 

da d4 

+ (x:! + C4) + (x:l + ClI r 
The relative error of this approximation is less than 2- 51.2• 

The coefficients of this formula were derived by transforming the minimax 
rational approximation (in relative error, over the range 0 <: x:! <: %) for 
arcsin ( x ) / x of the following form: 

arcsin(x) ~ 2[a1 + a2x:l + a~x4 + a4xll + ai\x~J 
=ao+x b b" b 4 b· .. · ~. x () + lX- + :lX + :!A' + X 

Minimax was taken under the constraint that ao = 1 exactly. 
If 0 <: x <: If.!, arccos ( x) is computed as: 

arccos(x) = ; - arcsin(x). 

2. If lh < x <: 1, then compute arccos (x) essentially as: 

arccos(x) = 2' arcsin ( ~1 ; x). 
This case is now reduced to the first case because within these limits, 

o <: ~1 ; x <: lh. 

This computation uses the real square root subprogram (DSQRT). 

If 1f2 < x <: 1, arcsin ( x) is computed as: 

arcsin(x) = ; - arccos(x). 

Implementation of the above algorithms (steps 1 and 2) were carried out with 
cafe to minimize the round-off errors. 

3. If - 1 <: x < 0, then arcsin(x) = - arcsin lxi, and arccos(x) = 71" - arccos Ix]. 
This reduces these cases to one of the two positive cases. 

Effect 0' an Argument Error 
.l 

E - VI _ x:! . For small values of x, E - j,. Toward the limits (± 1) of the 

range a small j, causes a substantial error in the answer. For the arcsine, f '"'"' S if 
the value of x is small. 
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Arctangent Subprograms 

ATAN/ATAN2 

Algorithm 

1. For arctan (x!, x~): 
If Xl < 0, use the identity arctan (Xl, X2) = - arctan ( -Xl> X2). 

Hence we may assume that XI :> O. Then: 

If either X2 = 0 or 1*, > 224, the answer = ; . 

If x~ < 0 and I~ < 2- 2\ the answer = 71'. 

For the general case, if X2 > 0, the answer = arctan (~), and 

if x~ < 0, the answer = 71' - arctan (~) . 

The remainder of the computation is identical for either one or two arguments. 

2. Reduce the computation of arctan (x) to the case 0 < X < 1, by using 

arctan ( - x) = - arctan (x), or 

( 1) 71' " arctan txt = 2- arctan Ixl· 

3. If necessary, reduce the computation further to the case Ixl < tan 15° by using 

( Y3- x - 1) 
arctan (x) = 30° + arctan x + Y 3 . 

The value of IV;; xy-; 11 < tan 15° if the value of x is within the range, 

tan 15° < x ::s 1. The value of ( \13 - x-I) is computed as 
( y3 - 1) x-I + x to avoid the loss of significant digits. 

4. For Ixi < tan 150 , use the approximation formula: 
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arctan (x) 0.55913709 
x =::: 0.60310579 - 0.05160454x2 + x~ + 1.4087812 

This formula has a relative error less than 2- 27 . 1 and can be obtained by 
transforming thc continued fraction 

arctan (x) x~ 
x =1- 3+ 

5 

( ~ + x- 2 ) - tv 

. (75 3375) where IV has an approxImate value of - 77 x- 2 +-n 10-4, but the true 

4-5 

value of tv is 

( 7 ~:311 + X-:l) + 

The original continued fraction can be obtained by transforming the Taylor 
series into continued fraction form. 



Effect of an Argument Error 

E,..., I! x2 ' For small values of x, £ ,.., 8; as the value of x increases, the effect 

of 8 upon ( diminishes. 

DATAN/DATAN2 

Algorithm 

1. For arctan ( xl> X2) : 

If Xl < 0, use the identity arctan(xt, x:!) = -arctan (-Xl> X2). 

Hence we may assume that Xl :> O. Then: 

~l 'IT 
If either x:! = 0 or > 2:16, the answer = -2 . 

X2 

~1 
If X:! < 0 and < 2-56, the answer = 'IT: 

X2 

For the general case, if X1 > 0, the answer = arctan (~), and 

if X2 < 0, the answer = 'IT - arctan (~). 

The remainder of the computation is identical for either one or tvvo arguments. 

2. Reduce the computation of arctan (x) to the case 0 < X < 1 by using 

arctan ( - x) = - arctan ( x) and 

1 'IT 

arctan Ixl = 2- arctan Ixl· 

3. If necessary, reduce the computation further to the case Ixl < tan 15° by using 

arctan ( x) = 30° + arctan (\"; ~ x ;31). 

IV'3' x-I 
The value of x + y'3 < tan 15°, if the value of x is within the range tan 

15° < x < 1. The value of ( y'3 • X - I) is computed as (y'3 - 1) x - I + x 
to avoid the loss of significant digits. 

The relative error of this approximation is less than 2- 60.7 • 

The coefficients of this formula were derived by transforming a mlDlmax 
rational approximation (in relative error, over the range 0 < x2 < 0.071797) 
for arctan ( x) I x of the following form: 

arctan ( x) ~ :! [co + CIX!! + c:!rt + CaXIi] 
x = all + x c4 + d1x2 + d;!rt + Xll • 

Minimax was taken under the constraint that ao = 1 exactly. 

4. For Ixl < tan 15 0 , use a continued fraction of the form: 

arctan ( x) ~ :! [. _ . a1 a a] 
x = 1 + x bo (bl + x:!) - (b2 + :2) - (b3 ~ x:!) . 
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Effect 01 on Argument Error 

E -- -1 t. .,' For small values of x, f ,..., 0, and as the value of x increases, the effect + x-
of f upon 8 diminishes. 

Error Functions Subprograms 

ERF/ERFC 

Algorithm 

1. If 0 < X < 1, then compute the error function by the following approximation: 

erf(x) ::::::: x(ao + alx~ + a2x4 + .. , + a5x10). 

The coefficients were obtained by the minimax approximation (in relative 
error) of erf ( x ) / x as a function of x2 over the range 0 < x2 < 1. The relative 
error of this approximation is less than 2- 24 .6 • The value of the complemented 
error function is computed as erfc ( x) = 1 - erf ( x ). 

2. If 1 < x < 2.040452, then compute the complemented error function by the 
following approximation: 

erfc (x) ::::::: bo + bIz + b2z2 + ... + h9Z9 

where.::. = x - To and To c= 1.709472. The coefficients were obtained by the 
minimax approximation (in absolute error) of the function f(z) = erfc( Z + 
To) over the range - 0.709472 < z < 0.33098. The absolute error of this 
approximation is less than 2- R1 ". The limits of this range and the value of the 
origin To were chosen to minimize the hexadecimal round-off errors. The value 

1 
of the complemented error function \vithin this range is behveen 256 and 0.1573. 

The value of the error function is computed as erf ( x) = 1 - erfc( x). 

:1. If 2.040152 < x < 1:3.306, then compute the complemented error function by 
the hllowing approximation: 

erfc( x) ~= e-'O • F / x where z = x2 and 
c] . c~;::; + C3;::;2 

F = Co + I - + i _2 + _:~. 
( l~ ( 2'" N 

The coefficients for F were obtained by transforming a mmlmax rational 
approximation (in absolute errors, over the range 13.306- 2 < W < 2.040452- 2 ) 

of til<' function f( u;) = erfc (x) • x • e 1 ", tV = x-~, of the following form: 

The absolute error of this approximation is less than 2-~6.1. This computation 
uses the real exponential subprogram (EXP). 
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If 2.040452 < x < 3.919206, then the error function is computed as 
erf(x) = 1 - erfc(x). 
If 3.919206 -< x, then the error function is ::::::: l. 

4. If 13.306 -< x, then the error function is ::::::: 1, and the complemented error func­
tion is ::::::: 0 (underflow). 

5. If x < 0, then reduce to a case involving a positive argument by the use of the 
following formulas: 

erf( - x) = - erf(x), and edc (- x) = 2 - erfc(x}. 

Effec' of an Argument Error. 

E -- e -:x' • A. For the error function, as the magnitude of the argument exceeds 1, 
the effect of an argument error upon the final accuracy diminishes rapidly. For 
small values of x, E ,..... 8. For the complemented error function,if the value of x is 

-~ . 
greater than 1, erfc ( x) ,...., e 2x . Therefore, ( ,..... 2 x" • 8. If the value of x is negative 

or less than 1, then ( ,...., e- x2 • A. 

DERF/DERFC 

Algorithm 

1. If 0 -< X < 1, then compute the error function by the following approximation: . 
erf(x) ::::::: x(ao + alx2 + a2x4 + ... + al1x22). 

The coefficients were obtained by the minimax approximation (in relative 
error) of erf (x) / x as a function of X2 over the range 0 < x2 < 1. The relative 
error of this approximation is less than 2- 56.9 • The value of the complemented 
error function is computed as erfc ( x) = 1 - erf ( x ) . 

2. If 1 -< x < 2.040452, then compute the complemented error function by the 
following approximation: 

erfc( x) ::::::: bo + biZ + b2z2 + ... bl8z18 

where z = x - To and To::::::: 1.709472. The coefficients were obtained by the 
minimax approximation (in absolute error) of the function f( z) = erfc( z + To) 
over the range -0.709472 < z -< 0.33098. The absolute error of this approxi­
mation is less than 2- 00 .3 • The limits of this range and the value of the origin 
To were chosen to minimize the hexadecimal round-off errors. The value of the 

complemented error function within this range is between ~6 and 0.1573. The 

value of the error function is computed as erf (x) = 1 - erfc( x ). 
3. If 2.040452 -< x < 13.306, then compute the complemented error function by 

the following approximation: 

erfc(x) ::::::: e-Z • Fix where z = X2 and 

F _ d l dz do 
- Co + (z + cd + (z + C2) + ... (z + co) + 

The coefficients for F were derived by transforming a minimax rational approxi­
mation (in absolute errors, over the range 13.306- 2 -< W < 2.040452- 2 ) of the 
fimction f( w) = erfc( x) • x· e J', w = x- 2, of the following form: 

() ao + alto + a2w2 + ... + a7w7 f tv =< -;----:--;-----:----;-~--:--___:__;_--::---:----::; 
- be} + b1w + b~W2 + ... + bsw6 +to7 ' 

The absolute error of this approximation is less than 2- 579• This computation 
uses the real exponential subprogram (DEXP). If 2.040452 -< x < 6.092368, then 
the error function is computed as erf(x) = 1 - erfc(x). 
If 6.092368 -< x, then the error function is ::::::: 1. 
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4. If 13 .. '306 S x, then the error function is ~ 1, and the complemented error 
function ~ 0 (underHow). 

5. If x < 0, then reduce to a case involving a positive argument by the use of the 
fonowing formulas: 

erf( - x) = - erf(x), and erfc (- x) = 2 - erfc(x). 

Effect of an Argument Error 

E ~ e-I~, • A. For the error function, as the magnitude of the argument exceeds 
1, the effect of an argument error upon the final accuracy diminishes rapidly. For 
small values of x, £ ~ o. For the complemented error functioh, if the value of 

e- x2 

x is greater than 1, erfc(x)--~. Therefore, £ """' 2X2 • o. If the value of x 

is negative or less than 1, then £ ~ e-·I~ • D.. 

Exponential Subprograms 

EXP 

Algorithm 

1. If x < - 180.218, then 0 is given as the answer via Hoating-point underHow. 
2. Otherwise. divide x by log .. 2 and write 

x 
y=--=4a-b-d 

log .. 2 

\vhere (J and b are integers, 0 < b < 3 and 0 < d < 1. 
3. Compute 2- d by the following fractional approximation: 

2d 
2--<1 =< 1 - 617.97227 

0.034657359 d 2 + d + 9.9545948 - d2 + 87.417497 

This formula can be obtained by transforming the Gaussian continued fraction 

z z z z z z z z 
e- Z = 1 - -- -- -- -- -- -- -- -

1+ 2- 3+ 2- 5+ 2- 7+ 2' 

The maximum rebtive error of this approximation is 2- 29• 

:1. Multiply 2-(/ by 2-". 
;). Finally, add the hexadecimal exponent a to the characteristic of the answer. 

Effect 01 an Argument Error 

(- .' If the magnitude of x is large, even the round-off error of the argument 
causes a sub~tantial relative error in the answer because .0. = o' x. 

DEXP 

Algorithm 

1. If x < - 180.2187, then 0 is given as the answer via Hoating-point underflow. 
2. Divide x by log .. 2 and write 
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x = (4a - b - :6)· log,,2 - r 

where a, b, and c are integers, 0 < b < 3, 0 < c < 15, and the remainder r is 
1 

within the range 0 < r < 16 . log..2. This reduction is carried out in an extra 

precision to ensure accuracy. Then e" = 16a • 2- b • 2- 0 / 16 • e- r • 



3. Compute e- r by using a minimax polynomial approximation of degree 6 over 

the range 0 <: r < 116 • log..2. In obtaining coefficients of this approximation, 

the minimax of relative errors was taken under the constraint that the constant 
term lZo shall be exactly 1. The relative error is less than 2-56.87• 

4. Multiply e- r by 2- c/ 16• The 16 values of 2- c/ 16 for 0 <: C <: 15 are included in 
the subprogram. Then halve the result b times. 

5. Finally, add the hexdecimal exponent of lTto the characteristic of the answer. 

ERed of ern Argument Error 

E ,.., ~. If the magnitude of x is large, even the round-off error of the argument 
causes a substantial relative error in the answer because ~ = 8 • x. 

CEXP/CDEXP 

Algorithm 

The value of e",+iy is computed as eX • cos (y) + i . eX • sin( y). The algorithms for 
both complex exponential subprograms are identica1. Each subprogram uses the 
appropriate real exponential subprogram (EXP or DEXP) and the appropriate real 
sine/ cosine subprogram (cos/SIN or DCOS/DSIN). 

ERed of ern Argument Error 

The effect of an argument error depends upon the accuracy of the individual 
parts of the argument. If e",+iy = R· eiH , then H = Y and ( R) ,...., ~ (x). 

Gamma and Log Gamma Subprograms 

GAMMAI ALGAMA 

Algorithm 

1. If 0 < x <: 2- 252, then compute log-gamma as log.,r(x) ~ - loge(x). 
This computation uses the real logarithm subprogram (ALOG). 

2. If 2- 252 < X < 8, then compute log-gamma by taking the natural logarithm of 
the value obtained for gamma. The computation of gamma depends upon the 
range into which the argument falls. 

r(x+l) 
3. If 2- 252 < X < 1, then use r( x) = to reduce to the next case. 

x 

4. If 1 <: x <: 2, then compute gamma by the minimax rational approximation (in 
absolute error) of the following form: 

( ) z [au + aiZ + a2z~ + a3z3] 
r x ::::= Co + --;---:--;--:--;-~--;;--­

bo + bIZ + b 2z2 + Z3 

where z = x - 1.5. The absolute error of this approximation is less than 2- 25.9 • 

5. If 2 < x < 8, then use r ( x) = (x - 1) r (x - 1) to reduce step by step to the 
preceding case. 

6. If 8 <: x, then compute log-gamma by the use of Stirling's formula: 

loger(x) ::::=x(loge(x) -1) - %loge(x) + If.doge(2?r) + G(x). 

The modifier term G( x) is computed as 
G(x) ::::= doX- I + d 1x- 2 • 

These coefficients were obtained by a form of minimax approximation minimiz­
ing the ratio of the absolute error to the value of x. The absolute error is less 
than x • 2- 26.2 • Remembering the fact that x < loger( x) in this range, the 
contribution of this error to the relative error of the value for log-gamma is less 
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than 2- 26.2. This computation uses the real logarithm subprogram (ALOG). 

For gamma, compute r (x) = eY , where y is the value obtained for log-gamma. 
This computation uses the real exponential subprogram (EXP). 

Effect of an Argument Error 

£ .-; f (x) • ,:l for gamma, and E .-; t/J (x) • ,:l for log-gamma, where t/J is the 
digamma function. 

1 
If 2 < x < 3, then - 2 < t/J (x) < 1. Therefore, E ,..., ,:l for log-gamma. How-

ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a sma.11 
3 can cause a substantial £ in this range. 

If the value of x is large, then t/J (x) ,.... log. (x). Therefore, for gamma, 
€ _. 3 x • log ... (x). In this case, even the round-off error of the argument con­
tributes greatlr to the relative error of the answer. For log-gamma with large 
values of x. ( -' 3. 

DGAMMA/DLGAMA 

Algorithm 

1. If 0 < x::;: 2- 2:;2, then compute log-gamma as loger(x) ::::= - loge(x). 
This computation uses the real logarithm subprogram (DLOG). 

2. If 2- 252 < X < 8, then compute log-gamma by taking the natural logarithm 
of the value obtained for gamma. The computation of gamma depends upon the 
range into which the argument falls. 

:3 If 2 ."., 1 th () r (x + 1) d h . . - ~ ... - < x < , en use r x = x to re uce to t e next case. 

4. If 1 <:: x <:: 2, then compute gamma by the minimax rational approximation (in 
absolute error) of the following form: 

Z [ao + a]z + ... + a6z6] 
r ( x) ~. Co + b b b 6 7 

I) + lZ + ... + sZ + Z 

where z = x - 1.5. The absolute error of this approximation is less than 2-5H3 • 

. 5. If 2 < x < 8, then use rex) = (x - 1) rex - 1) to reduce to the preceding 
case. 

6. If 8 ~ x, then compute lng-gamma by the use of Stirling's formula: 

loger(x) <= x(log,,(x) - 1) - Ij2Ioge(x) + % 10ge(27r) + G(x). 

The modifier term G( x) is computed as 

G(x) =< d ox- 1 + d 1x- 3 + d 2x- 5 + d 3x- 7 + d4x- IJ • 

These coefficients were obtained bya form of minimax approximation minimiz­
ing the ratio of the absolute error to the value of x. The absolute error is less 
than x • 2 --51>.]. Hemembering the fact that x < loger (x) in this range, the 
contribution of this error to the relative error of the value for log-gamma is less 
than 2~561. This computation uses the real logarithm subprogram (DLOG). For 
gamma, compute r( x) = ell, where y is the value obtained for log-gamma. 
This computation uses the real exponential subprogram (DEXP). 

Eifed of an Argument Error 

€- .p (x) • ~ for gamma, and E ~ .p ( x) • ~ for log-gamma, where t/J is the 
digamma function. 

1 
]f '"2 < x < 3, then - 2 < tf;( x) < 1. Therefore, E -' ,:l for log-gamma. How-

ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a small 
3 can cause a substantial f in this range. 
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If the value of x is large, then t/I( x ) .- loge (x). Therefore, for gamma, 
f ,.... 8 • x • lo~(x). In this case, even the round-off error of the argument con­
tributes greatly to the relative error of the answer. For log-gamma with large 
values of x, f "'"' 8. 

Hyperbolic Sine and Cosine Subprograms 

SINH/COSH 

Algorithm 

1. If Ixl < 1.0, then compute sinh(x) as: 
sinh(x) ~ x + CIX3 + C2X5 + CaX7. 

The coefficient Ci were obtained by the minimax approximation (in relative 
sinh(x) 

error) of as the function of x2 • The maximum relative error of this 
x 

approximation is 2-25.6 • 

2. If x > 1.0, then sinh ( x) is computed as: 
sinh(x) = (1 + 8) [e+10g•v - v2/e+ 1o;:.,,]. 

1 
Here, 1 + 8 = 2v ' so that this expression is theoretically equivalent to 

[ex - e- x ]/2. The value of v (and consequently those of logev and 8) was so 
chosen as to satisfy the following conditions: 

a) v is slightly less than ~, so that 8 > 0 and small. 
b) logev is an exact multiple of 2-16• 

The condition b) insures that the addition x + log~v is carried out exactly. This 
maneuver was designed to reduce the round-off errors and also to enlarge the 
limits of acceptable arguments. This computation uses the real exponential sub­
program (EXP). 

3. If x < - 1.0, use sinh ( x) = - sinh( [xl) to reduce to case 2 above. 
4. If cosh (x) is desired, then for all valid values of arguments use the identity: 

cosh(x) = (1 + 8) [e+ 10g." + v:!je+1oge"]. Here the notation and the consid­
eration are identical to case 2 above. This computation uses the real exponential 
subprogram (EXP). 

Effect of an Argument Error 

For the hyperbolic sine, E ,...., ~ • cosh (x) and f ,...., ~ • coth( x). 
For the hyperbolic cosine, E ,...., ~ • sinh ( x) and f ,...., 8 • tanh ( x). 

Specifically, for the cosine, £ ,...., ~ over the entire range; for the sine, t: ,...., 8 for 
small values of x. 

DSINH/DCOSH 

Algoritbm 

1. If [xl < 0.881374, then compute sinh(x) as: 
sinh (x) ::::::: CoX + CIX3 + c:!x5 + ... + C6X13. 

The coefficients Cl were obtained by the minimax approximation (in relative 
sinh(x) 

error) of as the function of x2• Minimax was taken under the constraint x 
that Co == 1 exactly. The maximum relative error of this approximation is 2- 55.1• 

2. If x >0.881374, then sinh(x) is computed as: 
sinh(x) = (1 + 8) [e+ 1o!:." - v2/ex +1o!:.vJ. 
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I 
Here, 1 + ;) = -2 ,so that this expression is theoretically equivalent to 

v 
[e' - ('-.1]/2. The valu(' of v (and consequently those of log.,v and 0) was so 
dlO:;en as to satisfy the following conditions: 

a) v is slightly less than 1f2, so that 8 > 0 and small. 
b) log"v is an exact multiple of 2- 1(;. 

The condition b) insures that the addition x + logev is carried out exactly. This 
maneuver was designed to reduce the round-off errors and also to enlarge the 
limits of acceptable arguments. This computation uses the real exponential sub­
program (DEXP). 

:3. If x <: -0.881374, then use sinh(x) = -sinh( Ixl) to reduce to case 2 above. 
4. If cosh( x )is desired, then, for all valid arguments use the identity: 

cosh(x) = (1 + 8) [e.rtlo!(c" + v2 /e+ 1og.,,]. Here the notation and the consid­
eration are identical to case 2 above. This computation uses the real exponential 
subprogram (DEXP). 

ERed 01 an Argument Error 

For the hyperbolic sine, E - .3. • cosh( x) and € ~ .3. • coth( x). 
For the hyperbolic cosine, E ~ .3. • sinh (x) and f - ~ • tanh( x). 

Specifkally, for the cosine, { - ~ over the entire range; for the sine, • "'" 8 for 
the small values of x. 

Hyperbolic Tangent Subprograms 

TANH 

Algorithm 

1. If Ixl<: 2-1~, then tanh(x) ~ x. 
2. If 2 --12 < !xl <: 0.7, me the following fractional approximation: 

tanh ( x ) [ 0.8145651 ] 
x '= 1 - x2 0.0037828 + x2 + 2.471749 . 

The coefficients of this approximation were obtained by taking the minimax 
of relative error, over the range x2 < 0.49, of approximations of this form under 
II: constrain! 'hat the first term shall be exactly 1.0. The maximum relative 
error of this approximation is 2- l!f,.4. 

, I n.1 
2 

\< 9.011, thcn use the identity tanh( x) = I - (e)2 + I' 

T}w:u.~:put<:tion for this case uses the real exponential subprogram (EXl'). 
,!, .:fx -~n.Ol1)rhantanh(x)=l. 

5. If x < - 0.7, then usc the identity tanh (x) = - tanh ( - x). 

ERect of an Argument Error 

2~ 
E ,...., (1 - tanh:! x) .3., and €,..., . h (2 ). For small values of x, f - 0, and as the 

5111 x 
value of x increases, the effect of 8 upon € diminishes. 

DTANH 

Algorithm 

1. If Ixl < 2-:!", then tanh(x) ~ x. 
i 1-

2. If 2- ~s < < 0.54931, use the following fractional approximation: 

tanh( x) d1x2 d2 d3 

~ Co + 2 + + ., + + 2 • X X Cl x- C2 X + C3 
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This approximation was obtained by rewriting a minimax approximation of the 
following form: 

tanh ( x) au + alx2 + a2x4 
x ~ Co + x2

• bo + b1x2 + b2x4 + x6' 

Here the minimax of relative error, over the range x2 < 0.30174, was taken 
under the constraint that Co shall be exactly 1.0. The maximum relative error of 
the above is 2-63• 

2 
3. If 0.54931 < x < 20.101, then use the identity tanh ( x) = 1 - eZ.c + l' 

This computation uses the double precision exponential subprogram (DEXP). 
4. If x > 20.101, then tanh(x) ~ 1. 
5. If x < - 0.54931, then use the identity tanh (x) = - tanh ( - x). 

Effect 0' an Argument Error 

2~ 
E ,..., (1 - tanh2 x) ~, and E ,..., • For small values of x, £ ,..., I). As the 

sinh (2x) 
value of x increases, the effect of 0 upon E diminishes. 

Logarithm;c Subprograms (Common and Natural) 

ALOOf ALOG 1 0 

Algorithm 

1. Write x = 16P' 2-'1 ° m where p is the exponent, q is an integer, 0 < q < 3, 
and m is within the range, 1h < m < 1. 

2. Define two constants, a and b (where a = base point and 2 - ~ = a), as follows: 

1 
If 1/2 < m < V 2' then a = l.h and b = 1. 

1 
If V 2 < m < 1, then a = 1 and b = O. 

m-a l+z 
3. Write z = ---. Then, 111 = a ° -1--- and lzl < 0.1716. m+a -z' 

1 + Z (1 + Z) 4. Now,x = 24V-Q-IIOl_ z' and log.,(x) = (4]) - q - b) loge 2 + log" 1 _ z . 

5. To obtain IOge( 1 + Z) first compute u; = 2z = m - a (which is rep-
1 - Z ' O.5m + 0.5a 

resented in our system with slightly more significant digits than Z itself), and 
apply an approximation of the following form: 

log., (11 + Z) ~ tV [cn + CIW2 "J. 
- Z . C2 - w~ 

These coefficients were obtained by the minimax rational approximation of 

1 (l+Z) 2z loge 1 _ Z over the range z~ £ (0, 0.02944) under the constraint that Co 

shall be exactly 1.0. The maximum relative error of this approximation is less 
than 2- 25 .a:l • 

6. If the common logarithm is desired, then ]oglHX = logliJe· log.,x. 

Effect of an AtgumentError 

E - o. Specifically, if I) is the round-off error of the argument, e.g., I) ,..., 6 • 10- 8, 

then E ,..., 6 • 10-H. Therefore, if the argument is close to 1, the relative error can 
be very large because the value of the function is very small. 
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DLOG/DLOG10 

Algorithm 

1. Write x = 1& • 2-'1 • 111 where 11 is the exponent, q is an integer, 0 <: q <: 3, 
and 111 is within the range % <: m < 1. 

2. Define two constants, a and b (where a = base point and 2 -II = a), as follows: 

1 
If % <: 111 < I 2' then a = Vz and lJ.. = 1. - V 

I 
If 2 <: m· < I, then a = I and b = O. V -

m-a l+z 
3. Write z = ---. Then, m = a· -1-- and Iz' < 0.1716. 

m + a - z 
1 + z 

4. Now, x = 24p - q -- IJ • -1--' and log,.x = (4p - q - b) log .. 2 + loge 
-z (~). 1 - z 

5. To obtain log,. (~ ~ :), first compute 1£ = 2z = 0.5: : ~.5a (which is repre­

sented in our system with slightly more significant digits than z itself), and 
apply an approximation of the following form: 

log" (~ ~ :) ~ tV [co + C1W~ (tv~ + CO! +.~ C:l C5 )J. 
tV +C4 + ., + 

1£- e(i 

These coefficients were obtained by the minimax rational approximation of 

I (I + Z) 2z log" 1 _ z over the range Z~ € (0, 0,02944) under the constraint that Co 

shall bc exactly 1.0. The maximum relative error of this approximation is less 
than 2- liO ."". 

6. If the common logarithm is desired, then IogJ"x = 10g1oe • log .. x. 

Effect of an Argument Error 

E ~ o. Therefore, if the value of the argument is dose to I, the relative error can 
be v:~ry large because the value of the function is very small. 

CLOG/CDlOG 

Algorithm 

1. \Vrite log,. (x + if}) = a + ib. 
2. Then, (I = Jog .. !x + iU: and b = the principal value of arctan (y, x). 
:3. log,. Ix -+- iy! is computed as follows: 
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Let VI = max ('4 !!li), and v~ = min (lxi, 11);)· 
1 

Let t he the exponent of VI, i.e., V j = m· 161, 16:::; m < 1. 

~. . ftift<O t 
}; mally, let tJ = 't t - 1 if t > 0(' 

and so = 16',. 

Then, log" ix + iyi = 4tl • log,,(2) + 1f21og,. [( ~I )~ + (~~ r J. 
Computation of viis and v~/ s are carried out by manipulation of the charac­
teristics of VI and V~. In particular, if v~/ so < 1, it is taken to be O. The algor­
ithms for both complex logarithm subprograms are identical. Each subprogram 
uses the appropriate real natural logarithm subprogram (ALoe or DLoe) and the 
a ppropria te arctangent subprogram (ATAN2 or DA TAN2 ) . 



Ellect of on Argument Error 

The effect of an argument error depends upon the accuracy of the individual 
parts of the argument. If x + iy = 1 • elk and log., (x + iy) = a + ib, then h = b 
andE(a) = 8(1). 

Sine and Cosine Subprograms 

SIN/COS 

Algorithm 
4 

1. Define z = - • Ixl and separate z into its integer part (q) and its fraction part 
'II' 

( 1). Then z = q + r, and Ixl = (~ . q ) + (~ • 1 )-

2. If the cosine is desired, add 2 to q. If the sine is desired and if x is negative, 
add 4 to q. This adjustment of q reduces the general case to the computation 
of sin (x) for x > ° because 

cos ( ± x) = sin ( ; + x ), and 

sin (- x) = sin('II' + x). 

3. Let qo == q mod 8. 

Then, for qo = 0, sin (x) = sin (~ • T ), 

qo = 1, sin (x) = cos (~ (1 - r) ). 

qo = 2, sin (x) = cos (~ • 1), 
q 0 = 3, sin (x) = sin (~ (1 - r) ), 

qo = 4, sin (x) = - sin (~ • 1), 
qo = 5, sin (x) = - cos (~ (1 - 1) ), 

q 0 = 6, sin (x) = - cos ( ~ • r ), 

qo = 7, sin (x) = - sin (~ (1 - 1) ) . 

These formulas reduce each case to the computation of either sin (~ • 11 ) 

or cos (~ • (1) where 11 is either 1 or (1 - 1) and is within the range, 

o <11 < 1. 

4. If sin ( : • 11 ) is needed, it is computed by a polynomial of the following 

form: 

sin (~ • 11)~ 11 (ao + a1112 + a2T14 + aaTln). 

The coefficients were obtained by the interpolation at the roots of the Chebyshev 
polynomial of degree 4. The relative error is less than 2- 28 .1 for the range. 
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5. If cos (~ 0 r1 ) is needed, it is computed by a polynomial of the following 

form: 

cos (~ • rl ) ~ 1 + b1r12 + b;Jrl4 +b3rI6. 

Coefficients were obtained by a variation of the minimax approximation which 
provides a partial rounding for the short precision computation. The absolute 
error of this approximation is less than 2-24.57, 

Effect of an Argument Error 

E '-' .6.. As the value of x increases, .6. increases. Because the function value dimin­
ishes periodically, no consistent relative error control can be maintained outside 

7r 71" 
the principal range, -"2 < x < + 2' 

DSIN/DCOS 

Algorithm 

71" 
1. Divide Ix! by 4 and sepa~ate the quotient (z) into its integer part (q) and 

4 
its fraction part (r). Then, z = Ixl 0 - = q + T, where q is an integer and r 

7r 

is within the range, 0 < r < 1. 
2. If the cosine is desired, add 2 to q. If the sine is desired and if x is negative, 

add 4 to q. This adjustment of q reduces the general case to the computation of 
sin (x) for x ::2- 0, because 

cos (± x) = sin (Ixl + ; ),and 

sin(-x) =sin(ixl +71"). 

8. Let f/o ~ q mod 8. 
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TIJcn, forq" = 0, sin (x) = sin (~ or), 

C/o = 1, sin (x) = cos (~ (1- r)), 

<io = 2, sin (x) = cos (~ 0 1'), 
qn = :3, sin (x) = sin (~ (1 - r»), 

qo=4,sin(x) -sin(~.r), 

qo> = 5, sin (x) - cos (~ (1 - r) ), 

q" = 6, sin (x) = - cos ( ~ 0 l' ), 

q .. = 7, sin (x) = - sin (~ (1 - T)). 
These formulas reduce each case to the computation of either sin (~ • rl ) 

or cos (: • rl ); where 1'1 is either r or (1 - r), and is within the range, 

o <I'J< 1. 



4. Finally, either sin ( : "1 )or cos (: "1 )is computed, using the polynomial 

interpolations of degree 6 in '12 for the sine, and of degree 7 in '12 for the cosine. 
In either case, the interpolation points were the roots of the Chebyshev poly­
nomial of one higher degree. The maximum relative error of the sine polynomial 
is 2-~s and that of the cosine polynomial is 2- 64 .3 • 

Effect of an Argument Error 

E -- A. As the value of the argument increases, A increases. Because the function 
value diminishes periodiqally, no consistent relative error control can be main-

.". .". 

tained outside of the principal range, - 2< x< +2' 

CSIN/CCOS 

Algorithm 

1. If the sine is desired, then 
sin (x + iy > = sin ( x) • cosh ( y) + i • cos ( x) • sinh ( y ). 

If the cosine is desired, then 

cos(x + iy) = cos (x) • cosh(y) - i' sin(x) • sinh(y). 

2. The value of sinh (x) is computed within the subprogram as follows. 
Assume x > 0 for this, since sinh ( - x) = - sinh (x). 

3. If x > 0.346574, then use sinh (x) = 1h (ex - ~..,). 
4. If 0 < x < 0.346574, then compute sinh ( x) by use of a polynomial: 

sinh(x) 
--- e:: ao + alx2 + a2x4. x 

The coefficients were obtained by the mInImaX approximation (in relative 
error) of sinh(x)/x over the range 0 <x2 < 0.12011 under the constraint that 
ao shall be exactly 1.0. The relative error of this approximation is less than 
2- 26.18• 

1 
5. The value of cosh(x) is computed as cosh (x) = sinhlxl + e l.," 

This computation uses the real expoential subprogram (EXP) and the real 
sine / cosine subprogram (SIN / cos) . 

Effect of an Argument Error 

To understand the effect of an argument error upon the accuracy of the answer, the 
programmer must understand the effect of an argument in the SIN/cos, EXP, and 
SINH/ COSH subprograms. 

CDSIN/CDCOS 

Algorithm 

1. If the sine is desired, then 

sin (x+iy) = sin(x) • cosh(y) + i' cos(x) • sinh(y). 

If the cosine is desired, then 

cos(x + iy} = cos(x)· cosh(y) - i' sin(x)· sinh(y). 

2. The value of sinh(x) is computed within the subprogram as follows. 
Assume x > 0 for this, since sinh ( - x) = - sinh ( x ). 

3. If x > 0.481212, then use sinh ( x) = lk ( eX - !). 
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4. If 0 <: x < 0.481212, then compute sinh( x) by use of a polynomial: 

sinh(x) 
--- :::::= ao + alx~ + a2x4 + aax6 + a4xs + a5x10• 

x 

The coefficients were obtained by the minimax approximation (in relative 
('rror) of sinh ( x ) I x over the range 0 <: x2 <: 0.23156 under the constraint 
that ao shall be exactly 1.0. The relative error of this approximation is less 
than 2- 56.07 • 

1 
5. The value of cosh(x) is computed as cosh (x) = sinhlxl + el.,I' 

This computation uses the real exponential subprogram (DEXP) and the real 
sine/ cosine subprogram (DSIN/OCOS). 

Effect of an Argument Error 

To understand the effect of an argument error upon the accuracy of the answer, 
the programmer must understand the effect of an argument error in the Dsm/Dcos, 
DEXP, and DSINH/DCOSH subprograms. 

Square Root Subprograms 

SQRT 

Algorithm 

1. If x = 0, then the answer is O. 
2. Write x = lWp-q • m, where 2p - q is the exponent and q equals either 0 or 1; 

1 
til is the mantissa and is within the range 16 <: m < 1. 

3. Then, Vx = 16p • 4- QVm. 
4. For the first approximation of yX, compute the following: 

( 1.288973 ) 
Yo = 16p • 4 -q • 1.681595 - 0.8408065 + m . 

This approximation attains the minimax relative error for hyperbolic fits of Vx. 
The maximum relative error is 2- 5.748• 

[Yo Apply the Newton-Raphson iteration 

!In+l = % (Yn + :n) 
tWhC. The second iteration is performed as 

y~ ;-~ 1Jz (Y1 - -=-) +-=-, 
Y1 Y1 

with a partial rounding. The maximum relative error of Yz is theoretically 
2- 25 ,U. 

Effect of an Argument Error 

1 
f~2°' 

DSQRT 

Algorithm 

1. If x = 0, then the answer is O. 
2. Write x = 162p - Q • m, where 2p - q is the exponent and q equals either 0 or 1; 

1 
m is the mantissa and is within the range 16 <: m < 1. 
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3. Then, yx = 1&· 4-q ym. 
4. For the first apprmnmation of yx, compute the following: 

Yo = 1&· 41 - q 00.2202 (m + 0.2587). 

The extrema of relative errors of this approximation for q = 0 are 2-3 .202 at 
1 

m = 1,2-3.265 at m = 0.2587, and 2- 2.025 at m = 16' This approximation, rather 

x 
than the minimax approximation, was chosen so that the quantity - - Ys be-

Y3 
low becomes less than 1&,-8 in magnitude. This arrangement allows us to 
substitute short form counterparts for some of the long form instructions in the 
final iteration. 

5. Apply the Newton Raphson iteration 

Y~+I = ~ (Yn + :n) 
four times to yo, twice in the short form and twice in the long form. The final 
step is performed as 

Y4 = Ys + ~ (:3 - ys) 
with ,an appropriate truncation maneuver to obtain a virtual rounding. The 
maximum rel~tive error of the final result is theoretically 2- 8S.23• 

Effect of an Argument Error 

1 
£--8 

2 

CSQRT /CDSQRT 

Algorithm 

1. Write y x + iy = a + ib. 

Ilxl + Ix + iyl 
2. Compute the value z = '\j 2 as k • "1/ WI + W2 where k, Wt and W2 

are defined in 3, or 4, below. In any case let VI = max (lxi, lyl) and 

V2 = min (lxi, Iyl)· 
3. In the special case when either V2 = 0 or VI > V2, let Wt = V2 and W2 = Vt so 

that Wt + W2 is effectively equal to Vi' 

Also let k = 1 if Vt = Ixl and 

k = 1/v'2 if VI = Iyl. 
4. In the general case, compute F = ~ ¥4 + ¥4 ( :: ) 2 

If Ixl is near the underflow threshold, then take 

WI = lxi, W2 = VI 0 2F, and k = I/V2. 

If VI • F is near theoverHow threshold, then take 

WI = Ixl/4, W2 = Vt of/2, and k = "1/2. 
In all other cases, take Wt = Ixl/2, W2 = VI 0 F, and k = 1. 

5. If z = 0, then a = 0 and b = O. 
If z ¥= 0 and x > 0, then a = z, and 

y 
b = 2z' 

If z ¥= 0 and x < 0, then a = I Y I and 
f2zl' 

b = (sign y) • z. 
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The algorithms for both complex square root subprograms are identical. 
Each subprogram uses the appropriate real square root subprogram (SQRT or 
DSQRT). 

ERed of an Argument Error 

The effect of an argument error depends upon the accuracy of the individual 
parts of the argument. If x + iy = r' eih and V x + iy = R· el.H, 

1 
then f (R) ,..., "2 13 ( r ), and d H) '"" 13 ( h ) . 

Tangent and Cotangent Subprograms 

TAN/COTAN 

Algorithm 

71' 

1. Divide Ixl by 4 and separate the result into integer part (q) and the fraction 

71' 

part (r). Then Ixl = 4 (q + r). 
2. Obtain the reduced argument ( tv) as follows: 

if q is even, then tv = r 
if q is odd, then w = 1 - r. 

The range of the reduced argument is ° < tv < 1. 
:3. Let qo = q mod 4. 

Then for qo = 0, tan Ixl = tan (~ • w) and cot Ix: = cot (: • tv ), 

qo = 1, tan Ix i = cot (: • w ) and cot Ixl = tan (: • w ), 

qo = 2, tan Ixl = - cot (~ • tv ) and cot Ixl = - tan (~ • tv ), 

qo = 3, tan Ix! = - tan (: • w ) and cot Ixl = - cot (: • w ). 

,1. The value of tan (: • tV) and cot (~ • tV ) are computed as the ratio of two 

poly nomials: 

(
71' ) w'P(u) 

tan 4· w ~ -Q( 11) ,cot (
71' ) Q(u) 

- • tl~ ~ 

4 "- tV· P( u) 

\vhcl,.; II = 1/2W"" <dId 

P( 1l)" -!~.46090l + u 
Q(u) = - 10.772754 + 5.703366' u - 0.159321 • u2 • 

These coefficients were obtained by the minimax rational approximation (in 
rdative error) of the indicated form. The maximum relative error of this 
approximation is 2-~6. Choice of u rather than Ie:! as the variable for P and Q 
is to improve the round-off quality of the coefficients. 

5. If x < 0, then tan ( x) = - tan lxi, and cot( x) = - cot Ixl. 
G. Tllis program is provided with two kinds of error controls. One is for arguments 

whose magnitude is greater than 211\ • 71'. The other is for arguments which are 
very close to a singularity of the function. In either case, the precision of the 
argument is deemed insufficient for obtaining a reliable result. More specifically, 
the second control screens out the following arguments: 
a) Ixl:::; 16-- 63 for COTAN (the result would overflow). 
b) x is such that one can find a singularity within eight units of the last digit 
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value of the floating-point representation of the sum q + r. Singularities are 
cases when the cotangent ratio is to be taken and w = O. 

The test threshold of this control can be dynamically modified by assembler 
code programs. 

ERed of an Argument Error 

A 2 
E -- and £ '""" -.-:-:,......,.. cos2 ( x) , sm ( 2x ) for tan ( x ). Therefore, near the singularities 

x = (k + ~ ) 11", where. k is an integer, no error control can be maintained. This 

is also true for cotan(x) for x near k1l", where k is an integer. 

DTAN/DCOTAN 

Algoritlam 

11" 

1. Divide Ixl bY7 and separate the result into integer part (q) and the .fraction 

11' 

part (r). Then Ixl =4(q + r). 
2. Obtain the reduced argument ( w) as follows: 

if q is even, then w = r 
if q is odd, then w = 1 - r. 

J'he range of the reduced argument is 0 < w < 1. 
3. Let qo E5 q mod 4. 

Then for qo = 0, tan Ixl = tan (~ • w )and cot Ixl = cot (~ • w), 
qo = 1, tan Ixl = cot ( ~ • w )and cot Ixl = tan (: • w ), 

qo = 2, tan Ixl = - cot (~ • w )and cot Ixl = - tan (~ • w ), 

qo = 3, tan Ixl = - tan (: • w )and cot Ixl = - cot (~ • w ). 

4. The value of tan (~ • w ) and cot (~ • w ) are computed as the ratio of 

two polynomials: 

(
11" ) w o P(w2 ) (11') Q(w2 ) 

tan '4' w ::::::: Q( w2) ,and cot T' w ::::::: W' P( w 2 r 
where both P and Q are polynomials of degree 3 in w2• The coefficients of P 
and Q were obtained by the minimax rational approximation (in relative error) 

of ~ tan ( ~ w) of the indicated form. The maximum relative error of this 

approximation is 2-55.6 • 

5. If x < 0, then tan( x) = - tan lxi, and cot( x) = - cot lxl. 
6. This program is provided with two kinds of error controls. One is for argu­

ments whose magnitude is greater than 250 • 11'. The other is for arguments which 
are very close to a singularity of the function. In either case, the precision of 
the argument is deemed insufficient for obtaining a reliable result. More 
specifically, the second control screens out the following arguments: 
a) Ixl < 16-63 for COTAN (the result would overflow). 
b) x is such that one can find a singularity within eight units of the last digit 

value of the Hoating-point representation of the sum q + r. Singularities are 
cases when the cotangent ratio is to be taken and w = o. 
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The test threshold of this control can be dynamically modified by assembler 
code programs. 

Effect of an Argument Error 
~' 2 

E":" 2 ( )' and € '-' • (2x) for tan ( x ). Therefore, near the singularities of cos x sm 

x = (k + -{-) 71', where k is an integer, no error control can be maintained. 

This is also true for cotan( x) for values of x near k7r, where k is an integer. 

Implicitly Called Subprograms 
The entry point names of the following implicitly called subprograms are gener­
ated by the compiler. 

Complex Multiply and Divide Subprograms 

CDVD#/CMPY# (Divide/Multiply for COMPLEX*8 Arguments) 

CDDVD#ICDMPY# (Divide/Multiply for COMPLEX*16 Arguments) 

Algorithm 

iUultiply: (A + Bi) (C + Di) = (AC - BD) + (AD + BC)i 
Divide: (A + Hi)/ (C + Di) 

1. If iC! < IDI, sct 
A = B, B = - A, C = D, D = - C, since 

A + Bi B = Ai = before step 2. 
C + Di D - Ci 

A B D _').. Sc't A' - B' - D' -,. - C ' - C' - C; 
then compute 
A + Bi A' + B'i A' + B'D B' - A'D' 
=----:--=-:- = 
C + Di 1 + D'i = 1 + D'Df~ + 1 + D'D' i. 

Error Conditions 

Partial underflOWS can occur in preparing the answer. 

Complex Exponentiation Subprograms 

FCDXI# (COMPLEX*16 Arguments) 

FCXPI# (COMPLEX*8 Arguments) 

Algorithm 

The value of!h + y:.?i = (Zl + z~i)j is computed as follows. 
K 

Let iii = 2: r,,· 2" where ric = 0 or 1 for k = 0, 1, ... , K. 
k=(J 

Then z iji = 7r z:.?\ and the factors Z:.?k can be obtained by successive squaring. 
'k :;£ () 
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More specifically: 
1. Initially: k = 0, n(Ol = Ii!, Yl (H) + y:!(O)i = 1 + Oi, 

Zl (0) + z;!(O)i = Zl + z;!i. 



2. Raise the index k by 1, and let n\k-l) = 2q + r, where q is the integer 
quotient and r = ° or 1. 

3. Let n(k) = q. 
4. If r = 0, then Yl (k) + Y2( k1 i = Yl (k-l) + YZ(k-l)i. 

If r = 1, then Yl (k) + Yz(k)i = (Yl (k-l) + Y2(k-l)i) (Zl (k-l) + ZZ(k-lli). 

5. If n(k) =t 0, then ZI (k) + zz(k)i = (Zl (k-l) + Z2(k-l) )2, and steps 2 
through 5 are repeated until n(k) = 0. 

6. When n(k) = 0, and i:> 0, then Yl + Y2i = Yl (k) +Y2(k)i. 

If f < 0, then Y1 + Y2i = (1 + Oi) / (Yl (k) + Y2(k)i). 

Exponentiation of a leal Base 10 a leal Power Subprograms 

FDXPD# (REAL*8 Arguments) 

FRXPR# (REAL * 4 Arguments) 

Algorithm 

1. If a = ° and b < 0, error return. 
If a = ° and b > 0, the answer is 0. 

2. If a =1= ° and b = 0, the answer is 1. 
3. All other cases, compute ao' as eO • lng a. In this computation the exponential sub­

routine and the natural logarithm subroutine are used. If a is negative or if 
b • log a is too large, an error return is given by one of these subroutines. 

Error estimate 

The relative error of the answer can be expressed as (£1 + (2) b • log (a) + £3 

where £1, (2, and (3 are relative errors of the logarithmic routine, machine multi­
plication, and the exponential routine, respectively. 

For FDXPD#, (1 < 3.5xl0- 16, '2 < 2.2xl0- 16, and (:\ < 2.0xlO- 16. Hence the 
relative error < 5.7xl0-16X lb· log a I + 2.0xlO-HI. Note that b • log a is the 
natural logarithm of the answer. 

For FRXPR#, £1 < 8.3xl0-7,'2 < 9.5xl0-7, and (:\ < 4.7xlO-7. Hence the relative 
error < 1.8xl0-6 x lb· log a \ + 4.7xl0-7. 

Effect of an Argument Error 

[a( 1 + od] b( 1 + o:.!) == a"( 1 + o:.!b • log a + bod. Note that if the answer does 
not overflow, Ib • log a\ < 175. On the other hand b can be very large without 
causing an overflow of a" if log a is very small. Thus, if a :::::: 1 and if b is very 
large, then the effect of the perturbation 01 of a shows very heavily in the relative 
error of the answer. 

Exponentiation of a leal Base fo an Infeger Power Subprograms 

FDXPI# (REAL*8 Arguments) 

Algorithm 

The value of y = aJ is computed as follows: Let \i\ 
K 

= L fk2" where rl. = 0 or 1 
,,= 0 

for k = 0, 1, .. " K. Then al.il = 1T a~k and the factors a:!'- can be obtained by sue­
T, oF 0 

cessive squaring. 
More specifically: 
1. Initially: k = 0, n lUj = Iii, y lOi = 1, and ZIO) = a. 
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2. Raise the index k by 1, and decompose n 41. - II = 2q + r, where q is the 
integer quotient and r = ° or l. 

,'3. Let 11 41,) = q. 
4. If r = 0, then yU.; = V"·-I), 

If r = 1, then yU., = V'k-ll;:::U,-I). 

5. If n<l·) =1= 0, then ;:::(/.l = Z(l,-I);:::II.1-1, and steps 2 through 5 are repeated 
until n I!.l = 0. 

1 
6. \Vhen 11'/" = 0, and i:> 0, then y = yrk).1f i < 0, then Y = y(k)' 

Note: The negative exponent is computed by taking the reoiprocal of the posi­
tive power. Thus it is not possible to compute 16.0**-64 because there is a lack 
of symmetry for real floating-point numbers - i.e., 16.0** -64 can be represented, 
but 16.0**64 cannot. The result is obtained by successive multiplications and is 
exact only if the answer contains less than 14 significant hexadecimal digits. 

FRXPI# (REAL * 4 Arguments) 

Algorithm 

This subprogram has the same algorithm as FIXI'I#, which follows. 

Exponentiation of Integer Base to Integer Power Subprogram 

FIXPI# (INTEGER*4 Arguments) 

Algorithm 
Kl 

Th(' value of L = IJ is computed as follows: Let f = L r" • 2k where rk = 0 

or 1 for k = 0, I, .. " K Then Ii = 7T P\ and the factors pk can be obtained by 

successive squaring. 
~forc spccifically: 
1. Initially: k = 0,11'''' = ;, yill! = 1, and mill' = I. 
:) Haise the index k. by ], and decompose n (I.-I' = 2q + T, where q is the 

integer quotient and r = 001' L 
:3. Let n 1/. l = q. 
4. HI' = O,theny(i·, = y'k-I,. 

If r = 1, then V(k) = yil.--l, • Tnll. - Ii. 

,5. If ni/"i 0, then m'!.1 = m!/,-I' • m"'-l', and steps 2 through 5 are repeated 
untilll li,' = O. 

6. \Vhen Il u" = 0, L = LII,'. 
Note: The result is obtained by successive multiplications. The result is exact 

only if it is less than (2**31) - 1. Hesults arc meaningless when this limit is 
l'xc('cded and may even he of changed sign. 
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Ahwlllte error 
Absolute value subprograms 
Accuracy figmes, mathematical subprograms 
Alignment . ...... . . . . . . . . .. . .. 
Alphameric and Hexadecimal Input Conversion 

.3-5,7 
.. 5,40 

.. 2-7,37-62 
36 

(CHCIO) ... 12-15,25 
Alphameric and Hexadecimal Output Conversion 

(CHCIP) .. 12,13,16,17,25 
Arcsine and arccosine subprograms. .3,40,41 
Argument errors, effects of .40-62 
Argument ranges, mathematical subprograms .3-7 
Arguments, mathematical subprograms ... 2-6,30 

( see also paramcter lists r 
Arrays 

(iee also FORTRAN IV publication) 
Assembler language 

BACKSPACE request 
BSAM 

CALL macro instruction 
Calling relationships 

I/O routines 
mathematical subprograms 

CHCBD interrupt-handling routine 
CHCBE interrupt-handling routine 
COMMON 

.22,23,32 

.. 1, 11,30-32 

.11,18,21. 
33 

.. 30,31 

13 
2-6, 42-45, 48, 50-53 

36 
36 

9 
Common and natural logarithm subprograms 

complex . . . 3, 52 
single and double precision .3, 51 

COMMON statement 36 
Complemented error function subprograms 5, 44-46 
Complex argument, how passed 30 
Complex Input Conversion (CHCIM). . .12-15, 19,24,25 
Complex Output Conversion (CHCIN) ..... 12,13, 16, 17,25 
Computations of mathematical subprograms 2-6, 35-62 
C(l'lallts (see FORTRAN IV publication) 
C 'rol Initialization (CHCIA) 11 

see also I/O Initialization) 
Conversion code (see FORMAT control character) 
Cosine subprograms (see trigonometric sine and cosine 

subprograms; hyperbolic sinc and cosine subprograms) 
CSECT 

names 
sizes, mathematical subprograms 

Data Control Block (DCB) .. 
Data conversion 

parameter list format 

29 
2 

. .11,20,21,31-33 
11 
20 

( sec also the individual data conversion routines) 
Data management .. 11, 13,20,21,33,34 
Data set organization (see DSORG values) 
Data set reference number (DSRN) .. 20,31 
DCB (see data control block; DCB Maintenance) 
DCB Maintenance (CHCIB). .11-18,20,21,22 

parameter list format. . 21 
DCB prefix .. 21,32 
DDEF command .. 11, 20, 21, 31, 33 
DDNAME 31 
Definitions (see computations of mathematical subprograms) 
Dimension 24 

.1,2,7,30 
..... 3-5 

8,10 
.20,33 

Direct-reference mathematical subprograms 
table 

Divide check indicator 
DSORG values 

DUMP subprograms 
sample storage printouts 

DVCHK subprogram .. 

END exits by I/O routines 
END FILE request 
Entry names ...... ... .. 

mathematical subprograms 
service subprogram~ 

EODAD exit 
EQUIVALENCE statement 
ERR exits by I/O routines 
Error checks 

Index 

8,9 
35 

...... 8,10 

· ... 19-21 
.11,18,20 

29 
.... 2-6 

8 
21 
36 

· ... 19-21 

Ii 0 TOutines (see the II 0 routine description) 
mathematical subprograms '" .2-6 

8,9 
5,44-46 

26 
1 

26 
.2-6 

8 
· .8, 10,36 
8,9,10,36 

36 
36 

service subprograms 
Error function subprograms 
Error Message Control (CHCIX) 
Error messages 

I/O routines 
mathematical subprograms 
service subprograms 

Exceptions 
Exit (CRCIW) 
Exponent overflow exception .. 
Exponent underflow exception 
Exponcntial subprograms 

complex 3, 44 
single and double precision ............. . 3,39,40 

(see also indirect-reference mathematical subprograms) 
External names of library subprograms 

Fixed point overflow exception 
Floating point-divide exception 
Format control integer (DUMP and PDUMP) 
FORMAT control 

(see also FORMAT processor) 
FORMAT control character 

29 

36 
36 

9 
.. 11, 19ff, 31,32 

11,19,25 
(see also the individual data conversion routines) 

Format of DUMP and PDUMP printout .9, 35 
FORMAT Processor (CHCIF) 12-14,16,17,23,24,31,32 

parameter list format . ....... ........... .. . 25 
FORMAT specification (see FORMAT control character) 
Formulas for mathematical subprograms ... 37-62 
FORTRAN 

compiler 
data management 

(see also data management) 
data set characteristics 

... 2,29,36 
11 

33 
(see also FORTRAN Programmer's Guide publication) 

elements of the language (see FOHTRAN IV publication) 
Programmer's Guide publication 11 

11 
1 

1-7 
30 

FORTRAN IV publication 
FUNCTION subprograms 
Function value 

how returned 
Functions 

I/O routines (see the 1/0 routine descriptions) 
mathematical subprograms .. . . .......... 2-6 
service subprograms ... 8-10 

Gamma subprograms: 
DGAMMA (CHCBV) 
GAMMA (CHCBT) 

(see also log-gamma subprograms) 

...... 5,48 
.. 5,47 
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GATE operations . .... . ........... . .... 21, 26, 31, 33 
( see also SYSIN; SYSOUT; macro instructions) 

General Input Conversion (CHCIS). . . l1-lS, 26 
General Output Conversion (CHCIT) . 12, 13, 16, 17 

Hyperbolic sine and cosine subprograms 
Hyperbolic tangent subprograms 

4,49,50 
... 5,50,51 

Indirect reference mathematical subprograms 1,2,7,30 
tables .... 6,7 

Input data conversion ....... 11, 12 
(see also the individual data conversion routines) 

Input/output (see I/O) 
Integer and Real Input Conversion (CHCIl) 

(see Real and Integer Input Conversion) 
Integer argument, how passed 30 
Integer Output Conversion (CHCIH). . .. . .. 12, 13, 16, 17,24 
Interruption and 'viachine Indicator Routine (CHCBD). .. 27 
Interrupts 36 
I/O Control (CHCIC). .11-19,21,22 
I/O Initialization (CHCIA) .1l-20 

parameter list format 20 
I/O statements 11 
I/O subprograms ... 1, 11 

Job File Control Block (JFCB) 

KEYLEN values 

Linkages 
I/O routines 

20 

20 

30 
19 

( see also calling relationships) 
Link-edited form of library subprograms 
List Item Processor (CHCIE) 

29 
.11-16,18 

23 
11 

parameter list format 
List items 
List processing (sec list items; List Item Processor) 
List Termination (CHCIU). .11-16,18,19 
Literal format (DUMP and PDUMP) ... 9,35 
Loading of user-written versions 29 
I,og-gamma suhprograms: 

ALGAMA (CHCBT) 
D1.GA.\IA (CHCBV) 

Logic'! Input Conversion (CHCIQ). 
Logical Output COllversion (CHCIR). 

.5,47 

.5,48 
.... 12-15,25 

. .12, 13, 16, 17,25 

MacLine control byte 
~hcro illStructioui 

CALL 
FIND 
C.\TWR 
STOW 

~btl,cmatical subprograms 
a,sembler language information 
categorized by use 

33 
11,22,23,33 

31-32 
23 

.22,26 
23 

30 
1 

names ................... 2-6 
relationship of FUNCTION subprograms 1 
replacement rules 29 

Maximum absolute error . 3-5, 7 
Maximum relative error .3-5,7 
Messages for STOP .and PAUSE .......... 10 
Modt1I~, names (see routine names) 

NAMELIST control 
( see also NAMEI.lST Processor) 

NAMELIST Processor (CHCID). 
parameter list format 

NAMELIST table 
Newton-Raphson iteration 

Output data conversion 

...... 11,20 

...... 12,13, IS, 17,22,23 
22 

.... 22,23 
56 

.. 11-13 
( see also the individual data conversion routines) 

OVERFL subprogram .... 8,10 

64 

Overflow exception indicator 

Parameter lists 
I/O routines 

(see also the II 0 routine descriptions) 
mathematical subprograms 
service subprograms 

PAUSE subprogram 
PDUMP subprogram 

sample storage printouts 
Physical records 
Powers of ten table in CHCI}. 
PRINT request 

( set! also WRITE request) 
Printouts (DUMP and PDUMP) 
Program Control System (PCS) 
Program interrupts 
PSECT communication region, I/O 

( see also I/O communication) 
PSECTs 

I/O routines 
(see also II 0 communication) 

mathematical routines 
Pseudo indicators 
PUNCH request 

(see also WRITE request) 

8,10 

19,30-32 

.. 30-31 
31 

.8-10 
.8,9 

35 
34 
24 
11 

35 
9 

36 
27 

19,27 

2 
9 

11 

READ request. 11,14-16, 19ff, 31, 32 
Real and Integer Input Conversion (CHCll) .. 12-15, 19ff, 24 
Real argument, how passed 30 
Real Output Conversion (CHCI}). . 12, 13, 16, 17, 19ff, 24 

table of powers of ten 24 
RECFM values 20, 33 
Record format (see RECFM ) 
Register usages 
Relative error 
Return to calling program 
REWIND request 
Routine names 

110 (for list, see table of contents) 
mathematical 
service 

Sample used for accuracy figures 
Save areas of I/O routines 

(see also I/O Communication) 
Sense light subprograms 
Service subprogram, definition 
Significance exception 

.... 30 
.. 3-5,7 

30 
.. 11,19,20 

3-6 
8 

3-7 
.... 19,27 

8,9 
1 

36 
Sine subprograms (see trigonometric sine and cosine 

subprograms; hyperbolic sine arid cosine subprograms) 
SLITE subprogram 8,9 

8,9 
21,34 

36 

SLITET subprogram 
Spanning 
Specification exception 
Square root subprograms 

complex 
single and double precision 

Standard deviation 
absolute error 
relative error 

Statistical results, given for accuracy figures 

.3,57,58 
3,56-57 

.3-5,7 
.3-5,7 

7 
Stirling's formula ........ . 47 

.. 8-10 STOP subprograms 
Storage estimates 

mathematical subprograms 
service subprograms 

SUBROUTINE statement 
Subscripts (see arrays) . 
Supervisor 
SYNAD exit 
SYSLIB 
SYSIN 
SYSOUT 

2-6 
8 
1 

13 
21 

.... 1,19,29 
10 

... 10,26 



System Messages publication 

Tangent subprograms (see trigonometric tangent 
subprograms, hyperbolic tangent subprograms) 

T ri gonometric sine and cosine subprograms 
complex 
single and double precision 

Trigonometric tangent subprograms 

Underflow exception indicator 

1 

3,4,55,56 
.. .4,53,54 

.4,58-60 

.... 8, 10 

Unformatted logical records 
USASI control code 
User-written subprograms .. 

VAM 
Variables (see FORTRAN IV publication) 

Work areas (see PSECT) 
WRITE request 

Zero, division by 

34 
33 

.1,29 

33 

... 11,16-18,19 ,34 

36 
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