
Systems Reference Library

IBM Time Sharing System

FORTRAN IV Library Subprograms

This publication describes the FORTRAN IV library subprograms pro­
vided with IBM T4ne Sharing System (TSS) and provides the informa­
tion necessary to use the subprograms in either a FORTRAN IV or an
assembler-language program.

File No. S360-25
GC28-2026-4

Preface

This publication describes the FORTRAl'\" IV mathemati­
cal, service, and input/output (I/O) subprograms for
both FORTRAN and assembler-language programmers.
Included is detailed information on:
• Algorithms within the mathematical subprograms
• Sizes of the subprograms
• Use of the subprograms by FORTRAN programmers
• Use of the mathematical and service subprograms

by assembler language programmers
• Techniques for replacing the TSS versions of sub­

programs with user-written versions.

Prerequisite Publications
FORTRAN users should be familiar with:

IBM Time Sharing System: IBM FORTRAN IV,

FIFTH EDITIO:\ (May 1876\

Form C28-2007.
IBM Time Sharing System: FORTRAN Program­

mers Guide, Form C28-2025.

A general discussion of TSS, with deSCriptions of
other facilities related to FORTRAN-supplied subpro­
grams, is given in:

IBM Time Sharing System: Concepts and Facilities,
Form C28-2003.

There are also references to:
IBM Time Sharing System: Command System User's

Guide, Form C28-2001.
IBM Principles of Operation, Form A22-6821.

This edition revises. and make, ob,olete C28-2026-3 and Technical
!\ewsletter C:\28-,'3J8:2,

Thi' edition applies to Relea,<: 2,0 of Time Sharing System!370 (TSS/370)
amI to all subsequent releash until otherwise indicated in new editions or
Technical !\c\\sletters,

Requests for copies of IBM publications should be made to your IB~1
representative. or to the IB~f hranch office serving your loeality.

A form is provided at the hack of this publication for reader's comments.
If the fonn hac been removed. comments may be addressed to IBM Cor­
poration, Tillie ShMing Systems - Dept. 80M, 1133 \Vestchester Avenue,
White Plains, Kew York 10604,

© Copyright International Business ~1achines Corporation 1967, 1968, 1970, 1976

Introduction

Section 1: Mathematical Subprograms

Section 2: Service Subprograms
Pseudo Sense Light Subprograms
DUMP and PDUMP Subprograms

Programming Considerations
STOP, EXIT, and PAUSE Subprograms
Overflow and Underflow Subprograms
Divide Check Subprogram

1

2

8
9
9
9
9

10
10

Section 3: I/O Subprograms 11
Overview of the FORTRAN liD Librarv 11

110 Language Control Routines ' 11
liD Operation Control Routines 11
liD List Control Routines 11

Data Conversion Routines 11
Routine Interrelationships 13

Routine Descriptions 19
Attributes 19
\Vork Areas and Register Save Areas 19
Data Conversion Routine Parameter Lists 19
liD Initialization-CHCIA 19
DCB Maintenance-CHCIB 20
liD Control-CHCIC 21
NAMELIST Processor-CHCID 22
List Item Processor-CHCIE 23
FORMAT Processor-CHCIF 23
Integer Output Conversion-CHClH 24
Real and Integer Input Conversion-CHCn 24
Real Output Conversion-CHCI} 24
Complex Input Conversion-CHCIM 24
Complex Output Conversion-CHCIN 25
Alphameric Input Conversion-CHCIO 25
Alphameric Output Conversion-CHCIP 25
Logical Input Conversion-CHCIO 25
Logical Output Conversion-CHCIR 25
General Input Conversion-CHCIS 25
General Output Conversion-CHCIT 26
List Termination-CHCIU 26
Exit-CHCIW 26
Error Message Control-CHCIX 26
1i0 Interruption and Machine Indicator Routine-CHCBD 27
I/O Communication-CHCIY 27

Contents

Appendix A: Replacing FORTRAN
Library Subprograms

Appendix B: Assembler Language Information
Mathematical Subprograms
Service Subprograms
liD Subprograms

Formatted READ with List
FORMAT Conversion and List Processing

Appendix C: FORTRAN Data Management
DCB Use
DCBContenl
DCB Initialization
Combinations of DSORG and RECFM
Unformatted FORTRAN Logical Records

Appendix D: DUMP and PDUMP Storage Printouts

Appendix E: Interruption Procedures.

Appendix F: Algorithms
Explicitly Called Subprograms ..

Absolute Value Subprograms
Arcsine and Arccosine Subprograms
Arctangent Subprograms .
Error Functions Subprograms
Exponential Subprograms
Gamma and Log Gamma Subprograms
Hyperbolic Sine and Cosine Subprograms .
Hyperbolic Tangent Subprograms
Logarithmic Subprograms (Common and Natural)
Sine and Cosine Subprograms
Square Root Subprograms
Tangent and Cotangent Subprograms

Implicitly Called Subprograms.
Complex Multiply and Divide Subprograms
Complex Exponentiation Subprograms
Exponentiation of a Real Base to a

Real Power Subprogram
Exponentiation of a Real Base to all

Integer Power Subprogram
Exponentiation of Integer Base to

Integer Power Subprogram

Index

29

30
30
31
31
31
32

33
33
33
33
33
34

35

36

37
40
40
40
42
44
46
47
49
50
51
53
56
58
60
60
60

61

61

62

63

Illustrations

Tables figures

1. Summary of Directly Referenced Mathematical 1. Functional Flow of FORTRAN I/O Routines
Subprogram Characteristics 3 (Excluding 1/0 Services Control Routines). 12

2. Summary of Indirectly Referenced Mathematical 2. Formatted READ with List. 14 Subprogram Characteristics 6

3. Exponentiation with Integer Base and Exponent 7 3. Formatted READ without List. 14

4. Exponentiation with Real or Double-Precision Base 4. READ with NAMELlST 15
and Integer Exponent. 7

5. Exponentiation with Real or Double-Precision Base 5. Unformatted READ with List 15
and Exponent 7

6. Unformatted WRITE with List. 16
6. Summary of Servic", Subprograms Characteristics 8

7. DUMP and PDUMP Subprogram Format Specification 9 7. Formatted WRITE with List 16

8. Calling Relationships of I/O Routines 13 8. Formatted WRITE without List 17

9. Format of Data Conversion Routine Parameter Lists 19 9. WRITE with NA?-.1ELlST 17

10. Format and Content of DCB Prefix 21
10. Unformatted WRITE with List 18

11. External Names of FORTRAN IV Library Subprograms 29

12. Combinations of DSORG and RECFM Values 33 11. Unformatted WRITE without List 18

13. Sample Storage Printouts 35 12. BACKSPACE, REWIND, and EI'ID FILE 18

Tht' FORTRAN IV library contains three types of subpro­
grams: mathematical, service, and input I output (II 0).
.\Ilhough these subprograms are written specifically
for FORTRAK programmers, they are also available to
assemhler-language programmers who use the correct
linkage and pass the necessary information (see Ap­
pCJldix B). All library subprograms are written in as­
semhler lant,Tuage.

The mathematical subprograms are similar to FUXC­

TIO' subprograms, because they are mathematical or
l'()ll1plllational in nature, and always return one answer
l fnl1ctioll value) to the calling program. Mathematical
slIhprograms can be categorized by use:
1. Direct reference, as in reference to the sine subpro­

gram in the statement

x = SIN (Y)

2. Indirect reference, as in reference to an exponentia­
tion subprogram in the statement

X=Y**I

The service subprograms correspond to a subpro­
gram defined with a SUBROUTINE statement in a FOR­

TIIA:-: source program. These subprograms are called
with a CALL statement or are implicitly called by the
occurrence of certain situations during execution. Serv-

Introduction

ice subprograms test program-simulated machine in­
dicators or perform utility functions.

The FORTHA" II () library consists of twenty routines
that link together ill various ways, depending lIpan tht'
function to he performed. I/O routines are not usuallv
thought of as subprograms, hecause any single I/~)
function depends on a number of routines. Neverthc­
less, the FORTRAN Ilo library can be thought of as three
major subprograms-thc Control Initialization, List
Item Processor, and List Termination routines-and
seventcen supporting subprograms. This categoriza­
tion is bas cd upon the fact that when control is passed
from a FORTRAN program to the FORTRAN I/O library, it
is always one of these three routines that receives
control.

The FORTRAN I/O routines may also be categorized,
by functic)II, into language control routines and data
conversion routines. These groups interact, in fulfilling
an I/O req uest, by means of a communication and work
region called the II 0 Communication Routine.

Any reference by th(' user program to a FORTHAN IV

library subprogram causes a search of SYSLIB for that
program at execution time. Normally this search ob­
tains for the user the subprogram provided as part of
TSS. The user can, however, provide his own version
of the subprogram, as described in Appendix A.

Introduction 1

Section 1: Mathematical Subprograms

The t\\() types of mathematical suhprograms are di­
rectiv rdcrcllcl'd subprograms and indirectly refer­
l'Jl('('{1 suhprograms, TIll' directly referenced subpro­
grams an' called bv the o\Jj('ct program in response to
a statem('nt of the form

x = SIN (Y)

III this statemcnt direct rdelTnce is made to the
ll1atlwlllatic,d sine subprogram, by its entry name: SIl\'o

All example of indirectly rdl'J"('nced subprogram
usage is tIll' call OIl an exponentiation subprogram,
macl(· as thl' result of a statl'ml'nt of the form

X= Y"'"' I

III this statement, no direct rei"crence is mach, to a
Sll bprogram hy the FOHTR\ '-: programmer. The FORTRAN
compiler determincs that a subprogram is required to
perform the exponentiatioll operation, however, and
causes the object program to call the appropriate ex­
ponentiatioJ] subprogram.

The algorithms describing the method of computa­
tion of the mathematical subprograms are given in
App(·ndix F. Other information eOllcerning these sub­
programs is contained in Tables 1, 2, 3, 4, and 5 of this
section and in AppendiX A.

Tables 1 and 2 givc this information:
FUllction: '\ brid description of the type of mathe­

matical <>pcratioll performed.
Entry Name: The mathematical subprograms contain

an entry point corresponding to each name that may be
directly refcrencf'd (such as SIN) and each name that
nwy Iw indirectly referenced (such as CHCBGA, when
raising all I " 4 integer to an I " 4 power). This column
shows all entry points in the mathematical sub pro-
gr~tll)S.

Dcfillition: This column gives a matlwmatical equa­
(iO]) that n'Prcscnts the eomplltation. (It is not meant
to r(,present the way the subprogram is called.) An
alternative equation is given when there is another way
of representing the computation in mathematical nota­
tion. FlIr ('x,lmplc, the square root can be represented
as eilhc'!'

i'lr:!.llIIwllt(S): These columns describe the value (s)
for \\'hich the function value is to be computed.
• Argulllent Nllml)('r--Thc number of arguments (one

or two) that the lIser must supply .
• ArgllIlwnt Typ{'-The type and length of each argu­

llH'nt. I!lleger, real, and complex reprcsent the type

2

of number; the notations "'4, "'8, and "16 represent
the length, in bytes, of the argument.

NOTE: In FORTRA:-': IV, a real argument corresponds
to the REAL"' 4 argument, and a douhle-precision argu­
ment corresponds to the REAL "8 argument. A singlc­
precision complex argument corresponds to the CO:YI­
PLEX"S argnment, and a douMe-precision complex argu­
ment corresponds to the CO:;"IPLEx"'16.argument.

• Argument Range (Table 1 only)-The valid range
for each argument. If an argument is not within its
valid range, an error message is issued and execution
of this load module is terminated. (See the Error
Condition and Error Message column descriptions
below.)

Function Value Returned: This column describes the
function value returned by the subprogram; the nota­
tion is the same as that used for the argument type.

Error Condition: This column describes the argu­
ment ranges not allowed when using the mathematical
subprogram.

Storage Estimates: This column shows the approxi­
mate number of bytes required for each mathematical
subprogram: the approximate, total size of each sub­
program's CSECT and PSECT. (FORTRAl\' IV mathematical
subprograms each contain one public, read-only, re­
enterable CSECf and one PSECf. The length of each of
the control sections is less than 4096 bytes. The subpro­
grams are link edited, and their CSECfS are combined.)

Other Subprograms ReqUired: Many mathematical
subprograms require other mathematical subprograms
to perform their function. The entry names of the other
subprograms are listed in this column. (This column
does not include CHCBZA, which is called by all mathe­
matical subprograms where error exit is possible.)

Routine Name: Each mathematical subprogram is
aSSigned a routine name that is normally of no interest
to FORTRAN programmers. Appendixes A and B describe
use of this name.

Accuracy Figures (Table 1 only): These columns
give accuracy figures for one or more representative
segments within the valid argument range. The accu­
ntcy figures are based upon the assumption that the
arguments are perfect (i.e., without error and, there­
fore, having no error-propagation effect on the an­
swers). The only errors in the answers arc those
introduced by the subprograms. Information given in
the accuracy-figures columns is:

Table 1. Summary of Directly Referenced Mathematical Subprograms

Function

COMMON AND
NATURAL
LOGARITHM

EXPONENTiAL

SQUARE ROOT

ARCSINE
AND
ARCCOSINE

ARCT~NGENT

TRIGONOMETRIC
SINE & COSINE

I

I
Entry I
Nom. I

i
Definition

Ar9urnent(~)

No. Ty""

orgjOO+Oi

COCOS

Rang"

Function
Value
Returned

COMPLEX' 16

6

Error Condition

Argument • 0 + 01

7

StOrCJgC!

btimates

Hex Dttc

IE8 488

Other Subprograms Required

CDABS, DLOO, DATAN2, DSQRT

9

Routil'"
Nome

CHCAP Tho full rang.
excopt (I + Oil

10

Accul"Ocy Figur ••

Sample
f!\J

r.lorill*
M (.) .(.) r(E)

Note 1

2.25 x 10- 16

Section 1: Mathematical Subprograms 3

I
t

!

l_~ __ .~~~_~_ ... _ _~ ... _"._" ... ~.~~.~ __________ ~

Tahle l. SlIlllmary of Directly Referenced :-'lathcmatical Subprograms (cont.)

TR ICONOME TRIC
liNE & COSINE
(COl"!t;nv~)

TRICONOMETRIC
TANCENT

(,,1,,(

r'Jo""f'

(CO\

DIIN

,o~ 10Ig), 019 It">

redian\

T No. !

COMPLEX - 8

ArguMen'lSI

Ronge

I'eolorgl < 'lIS.

I;mag O,gl 5. 174.673

Fund;On

Volwp
Rt"lulfled

COMPlEX' 8

[rro, (ond; 'ion

! ' liReol Argument I ~ 2 18 'W

i !Imoginory Argument!) 174.673

) 10109'"
Es';mat(>~

2F8 760

288 696

IIN.CO\,EXP

Routine
Nome

! CHCAO

CHCAJ

I

Argument

Range

[IXII ~1O'IX21~ I

I

I X I~.!
2

~<IXISIO

U

U

u

10

A(curo'C), Figures

------------.-[----
Absolute

0(.1 M!fl
Relative

o (E)

I
·6 2.50 x 10

i So. Not. 2

_____ +-__ --11---10 .; I X I S 100 U

·~-O;- -r ,O,-I~,:;~-:'9-;~---r~t-EA-L-. -8---+-I-o,--g ,-<-2-5-0-. -- ·----------+-R-EA-L-' -8-----t-I-A·,-g-U-m-en-,-I-~~-5O--.-------·-!----2-S8-+-6-96-ti ----------. C HCA) 0 ~ X S • U 1.79. 10. 16 6. S3. 10. 17

! ,od;on. [I,' I II II I :10< Sx ~ ~OO U 1.75. 10. 16 5.93- 10. 17

4 I I 10 < I X l:i 100 U 2.64.10. 15 1.01.10'15
~--i=:91,0~;n II I ~IR~L"------+~I-o-~~I-<-2-I-e-.--------ill~R-E-A-l-'-'-----I[IA~_~I 22 18 • '~~-8-!----5-~-41---~--------+C-H-C-A-I----+I-x-I-S~'~-----+--U----+-I-_-~-0-1-~-6--+-I-.8-2-.-10-·-7-~~I-.~18-.-IO-·-7-~~4-_5~S~'~IO~--8-~

; radians ~-.. - .. -.------+---f-------+--------+-------+-------~

t:::,::;'~:':':t~ I ",,:;" il"l' ,,,, +~ ,~ ... + . .:::f; ,,,, ... ---+, i ~t-.. ----- .---- CHCAI 1--1 =-~O-I!-:-~~:_~x .. I:_~_;-:-+----~-. ~'.~~ ~~~~ ~~j'~ COl

1~~~--t'li-~-o;-:-:-)-,-o-~-;-n-~II'~I----+I-R-E-A-L-'-8--~-I-.-~-I-<-2-5O-.----~--~I-R-E-A-L-'-8---~~_~1 !25O • I ~81i~I •. -~--------~C-~-A-z--~LI-:-I-:I:ISI00 : 3.41.1~16 6.V.I~17 1.14010~_~1_··_~~0_1_~_8_~
I I "'9u,""nl too cia .. to a S;ngulodly II ;.' <-1-4X-I-~-f----+--U----+-I-.4-3-'-10-.712:;:--t-------+-·---·-

I 1 I (i .•.. tooclo.etoonodd I~ 2.95010. 14

I
I II I' ",ult;pl. ol-rr /2) 1----.------ _______ +S"'e"'e..:.N"'0::;lo=-=,5:-::-_+------+------+---------I

-2'<lxl~IO U 2_78010. 13 15 7.230 10'
I I,' See Nol. ""5"'_+-----___+------

I II I! 10 <I xl Sioo U ~~~~0:~:12 9_50.10. 14

----t--------+--t----+--;--~__:_::__----- ~

DCOTAN ! ,olon (0'91,0'9;n I 1 REAL' 8 10'91 < 250 • -- i R-E-A-l-'-e- I~:~~~enll ~ 250 • 2FS 7~ CHCAZ I X IS ~ U 2.46.10- 10 S.79.IO· 17

I radians L.. Argvment too cioN to 0 Singularity ~ S •• Note 5
! (i_._, too cln ... too ~<lxISJ:2 U 2.78010· IJ

I multiple of,,") I .. See Not. S
i U 5 .• 0. 10·lJ
i ~<lxIS'O 5 •• Noto5

~~N-----l: :,:::' .. " ·-,i-·'I--·-·+-R-e-A-l-'-.--- I o'g I c 2-1-8-.--------J~~~~-.--------- -I-A-,g-Um-::,-;;-IS-.--· - +;;-c-;~ - ... ·--------+-C-H-C-"-y----~~ _1_S_I_00_+-_:_---+~:.:I·"':-':N--'-:0:.::=-:.:~6-13--~:-:-~-I-:-:-:-~7-14-~------+-----___l
-----.-- ----ji-----;---ji--'---'-----f-------t---------I

"('gum.nl too clo •• to 0 Singulority ~ < I X I S ~ U 1.05 0 10-6 3.59 _ 10.7
i .•. , too close tCI on odd .. ~ Se. Note 5 ...

, multiple of -,,/2) .- .. -----------+---+-----;----+------4------+---------1
i U 6_.9. 10'6 7
I ' ; c I X I S_I.0_--+ ___ tS-, • .:.._N_O_'.=-:-.5r-_+3_._3S_'_I_O· __ ~--_---i_---___ _

-.----jl------t--+------f-----------+--------i-------------.----+---+----+--------.. --.--...... -"--
COTAN cotonlorg),argln I REAL"''' lorol<218. REAL"4 IArgUmentl~21e ...

radians

Argument too c\Ole to 0 Singularity
(i.e., too close to a
multiple of 11')

IOclXISlOO U 1.57.10'6
See Note 5
------~-~i---------+-----------t------------I

3_07. 10. 7

CHCAY I X I ~ i U 1.07. 10'6 3.5S. 10.7

r--------+----~----~--+·--------+---------+-----------I
U 1.40,10·6 7 1 <I xiS; Se. NOl. 5 2.56.10'

I------=------I----------+-----::r--+--------+-----+--------l • I I < U 1. 30. 10'·
2 < X .10 See Not. 5

3.15. 10. 7 10<1 Xl ~ 100 U 1.49.10'6

I------t-----t--------t---t-------+-------------~------+-------------.--!-----t---~----.-------~--~-,,---r___--- -----t~~----+--___I-"S:::; •• :..:.;No='.:..;5'__;o_-___+-_-____;c;_-t_-------+------___l
DSINH ,;nh(0'9) I ReAL'S ~,gl< 175.366 REAL'S IA,gum.n.1 ~ 17._673 250 592 DEXP CHCBS I x il>0.8S137 U 2.06.10. 16 3.7 •• 10.17

HYPERBOLIC
51 NE & COSINE

f----t-- -----+--+------I--c--c--- i'-0-.-'-SS-I--3_--7-<-:-IX--'-IS-S---+----;;-· 3_80 x 10. 16.-+-"9"'_2"'1'--'.'-"10'-•• 1'7-+-----
----- .-------------+--.--.. --t--:---. -----+-- ---1--.+-----------+---- .---"'I-·---'--I--=-t-::----I--'=c.:..:~--+..:.:.!:..:..::."--=---4-------+_----

DCOSH <0." (o'g) I REAL'S IO'~<175.366 REAL'S IA,gu::~~r--;-1-74-.;;;;· 250 592 DEXP CHCS8 ·5~X$+5 U 3.63010'16 9.05.10.17

---.. ---t----------+~ -+-------+----------------+------1--------------1----+---+---"-------.-+---- J---------------t--------i----.-t-------- --+----------1----------/
SINH ,;oh(0'9) I REAl'4 ~'91< 175_366 REAL" IA,gumon'l ~ 17 •. 673 IFS I S~ EXP CHCBA -5 ~ X S +5 U 1.26.10.6 2.17.10.7

~----~--~----~~~--------~~- ------r-~-----+~-.. ~---------
COSH , •• " 10'9) 1 REAL'. lo,gl < 175_366 REAL'. IA,gumen. I ~ 17 •. 673 IFS 5~ --;~-P-~----·-----------~C--8·-A·----+---5-S-X-~-.5--+---U----+-I-.2-7-.--1-0:6-r-;-·.·-6-3·-.--10-·-:;7-~------i---------

4

Tahle 1. Sl1mmary of Directly lkfl'rellced \\nthcIl1atical Suhprograms (COIlt.)

Function

HYPERBOLIC
TANGENT

!

Entry

Name

i DTANH

f
I
i TA,NH : tanh (org')

No. Type

• REA L • 8

REAL' 4

.. -t --.~-.- ._-,...--- -.

ABSOLUTE
VALUE

icDABS 'hl
~-.

;CABI

COMPLEX' 16

COMPLEX' 8 10 ;91 +---
x _/

ERROR
fUNCTIOI,

COMPLEMENTED
fRROR ~Ui"KrION

GAMMA (r)

lOG-GAMMA

ERF

DERf

2 f. de
fir 0

,
1 1".-0 do

,foo

REAL' 4

:

I Real" 8

..... t-.

[He I - erf {;o.i 0, REAL' 4

du

I - erf (xl or

DERFC Real· 8

r------' .. -~···---·····--'i, .-.~- .. -.---.--..

ul(-l e-udw DGAMMA REAL' 8

,AI f oo x-I -0
logE' U I! du REAL' 4

o

.--~-.

REAL'
DLGAMA l '" ,-I -u

loge u e du

o

Notes J. Thf: distribution of \Omple or9ument~ upon which
their stotiHics ore b:aed is t':o:.ponentiol radialjy

and i, uniform OfOUM the origin.

2. The maximum re-Ioti e error cited for th~ (COS
function i! bo,,1'!d upon (] -set of 2000 rondom

argvrtlenh within tht ronge-, In the immediate
pro:llimity of the points (n .. 1/2) 'I' + OJ (Wh~H1'

,..:::0, ii, ±2 •• ,., \ thl!' relative error con be
quite high, although the ob\Olure error is vnoll.

Any

Any

Any

See Note 9

Any
See Note 9

Any

Any

Any

x > 2- 252

X < 57.5744

x< 57.5744

X :> 0

X< 4.2913)(1073

x > 0

X < 4.2913. 1073

f, ,",cIlOr'

'~, .,;!i ,J e

Rl'tU! [led

REAl' 8

REAL' 4

REAL' 8

, REAL' 4

+
REAL - 4

! Rea! • 8

REAL - ,

Real· 8

REAL' 4

REAL' 8

REAL' 4

R[AL • 8

I

!

,

Error Condition

,Rfi'oi Argument> 57.57.44

IRf'cl Argum~nt < 2- 252

i
I

3. The mO,1lirnlJm noloti ... ", error citpd for the COCOS
function i~ bo~ed upon a set of 1500 rondom argumenh
within the ror'lge. In the immediate- proKimity of the
poinh{n+l/2) 0; (wheten=O, ±l, i'l, ... ,)
the relative error con be quite high although the
absolute error is \moll.

The mo~im\Jm relotive error ci!1td for the eDSIN
function i~ based vpon a set of 1500 rondom arguments
within thl!'! ronge. In the immediate proximity of the
poinhnw ... Oi (where n ':: -tl, *2, .. ,,) the relotive
error con be quite high although the absolute errOr is $mOIL

Storage
Routine

Nome
E\lim1ol.' -.~

: Hex ,Dec.

I
I 130 304 DEXP , CHeAL

164

C8

328

328

1 356

t 200

EXP

DlaR!

I 192 r SORT

! 520 ! EXP

!

808 DEXP

520 EXP

808 DEXP

! CHCAK

5. Tht! figures cited as the- mOJ{imvm relative error, Clr.
thou!' encountered in a $Omplf: of 2500 rondom argumenh
within th~ re$pective ran9@~. See tht appropriote

section in Appendix F for 0 description of the beho ... io,
of errors when the orgument is near a !ingulority or a
zero of the function.

6. The maximum relative error cit.d for the (SIN function
is oosf'd upon 0 set of '000 ronclom arguments within the
ronge. In the immediate proximity of the point'
n 0; (whrrrn= !I, *2, .•• /) the relative t>rtor
can be quite high although 'hit absolute error is vnalL

10

Accurocy Figures

~~:;~~-.·n-I--·--'rl -so-m-p-I-.~----------~'~.~IO~li~v~.--------·--r----M·-(-E-)---obr.-orlu~t.-----~--;!------)
Ronge : E /U M (•) tt (c)

7. The 101"'I"le orgumenh were tangents of number,
uniformly diShibuti!'d betwun ... /2 ond ... /2.

8. Tht' answer gi en i$ th. principal 011.1., i .• , I

the one who,. ir'l'lGginory port li.~ b.t'wHf'!
~11'ond+1f

9. F lootingwpoitH overflow con occ.ur,

S('dinn 1: \[atJ1('matical SlIhprograms 5

.~'~-----~.~~.--

l

Table ;2, SUllllllarv of lndirectl) RdcfCllccd \/athematical Subprograms

2 5

: Argument(,)
I Funct;on I Entry

f unc tioJ'
I

Nome Drfin;tion Volue
I --

No, Type Returned

6

Error Condition

7

Storage
Estimates

""---,,~

Hex Dec

8

Ot~er Subproglom. Required

10

Routine

Nome

CHCBG I CHCBGA y ~ I •• I 2! INTEGER * 4 II NTEGER • 4 Bose is zerO 1 B4 436

::~if :aN ~,~ If Gf' l~~~~·l-"-'-'~:'=I;~:_,"~fG"']~~ ;~f" " . __ . ~ :::: ~::o;~·:.;-"~;;;: ~ 7 ,~ e-~---~--------------------------,~~,---_+--i~-:-~~~
INTEGER POWER 1 CHCBGC 1 y c i 2 I INTEGER' 2 i INTEGER' 4 Bose Is zero and exponent i, 184 436 CHeBG

i I I I = INTEGER' 4 ! J zero or negative

_' __________ ,, ___ fCHCBG D-F' =Ir' 2~ • i ':~ TI g ~:-:~-~rl'INTEGER-:-4---~-I- ~:;:;~~~-~-I~'-,~-e-~-po-_-,~-e-n-t -i5-_-,-,~-~~~~~B~ __ l436 , _______ -_'~~~~~_'_' _____ +_C_H_C_B_G_--i

,CHCBHA i y = a •• i i 2 a REAL' 4 REAL' 4 I Bose Is zero and exponent i. 144 I 324 CHCBH

:~~SEE T~R!~L ~,L-- 1 ! i INTEGER' 4 L~ __ ~ _______ ~zer~_o~_:~~ti_~e, ________ --+ ___ +-i __ ,-+ _____________ --<1--____ -1

INTEGER POWER i CHCBHB I y = 0 • • I 0" REAL' 4 I REAL' 4 I Bose is zero and exponent i, 144 I 324 CHCBH

"," -,,----,-----l-,~~------~-"-,-,- ,, __ ,+ __ " -l i "~,~~~~.~_2_ -1-----, ~_ zero or n._g~t~~_, ___________ +-,,--L---_i---,- , ____ , _____ , _____ _
; CHCBIA :,' yea' • ; '2 a ". REAL' 8 i REAL' 8 I Ba,e i, zero o,nd e'ponen! i. 1 14C I 332 CHCBI

RAISE A DOUBLE ! INTEGER' 4 I
PRECISION BASE TO ~~_,~,_ ""~ ____ " ____ ---r' ,, __ ,.. ______ -+__ _____ l zero or negot,ve ~ ~ 1--- --i--- c;----
AN INTEGER PO'NER 'CHeBIS I yo' • i ! 0" REAL' 8 I REAL' '8 I 6ase is zerO and exponent i~ '---, 1'4<::--- "'j'32" --------~----" CHCSI

:~\~;!~\A' . C~,"~A~I' "0 ' , b .;~~;e:lil":fl~+A, ; , ·~FEf:~~~·~;o~----ri.CO-e '" fX' ACOG ~--. --I CHU~
POWER _+____ , ___ +-- 1 I I J __ ~___

: CHCBJS i y =; • , b , b = REAL' 4 1 REAL' 4 Bo.e i, zero and exponent is 1 leO I 448 EXP, ALOG , CHCBJ
RAISE AN INTEGER I" I i = INTEGER' 2 zero or negative I t
BASE TO A REAL ,.-----,___+___ I +---------+ +-- --
POWER i CHCBJC i l Y "i' • b I 2 i ~" IR~~ELdE: ' 4 I REAL' 4 "+' ~:;:~~r ~:;O~i: exponenti. 1

11

1(0-1
1

454608
II "DEXEXP 'p,ADLOLOG

G
"" __ -- 'CCHHCCBS-JK

""-""--"-----""1
11
C~C;KA- ;~--;:-:-b---t0" 0b-- = RR-EE"'"AA-LL--:--88""'----+ REAL' 8--- , B~~~'i, z~ro and exponent i. '230' +-----------------, --- """--

- , zerO or negoti v~ 1

RAISE A REAL OR
INTEGER BASE TO
A REAL POWER;
BASE AND/OR
EXPONENT
DOUBLE
PREC ISION

~-~--~-~---~~

RAISE A COMPLEX
BASE TO AN
INTEGER POWER

PRODUCE ERROR
MESSAGE AND
TERMINATE
EXECUTION

b = REAL' 8iR iW~--'--+ Base is zero and exponent is 230 560 -I'"DEXD: DLOG - t -CHCBK--
; = INTEGER * 2 zerO Or negative """ ___ ..1+-------1

2 b = REAL * 8 I REAL' 8 Ba,e is zero and exponent i, 230 560 DEXP, DLOG I CHCBK

-\- ; 0 'N"O," ., ! .1'"- o'".~,,~ -- r . __
f-____ -+ _______ -+1_2_+_: __ ~-~-;~-~-~---~ .-- j:l~~': ... ;~ ~~ ~~~:~~ :;:::: :: :: __ ~~i~:::,~~~~ ___ J:::::

2 0 COMPLEX' 16 I' COMPLEX' 16 Bo .. ,;. zero and exponent I' 274 1 628 I iCHCBM
I = INTEGER' 4 zero or negative -1 ---

-'2-- ~O~-COM'PLEX • \6 I COMPLEX' 16 Ba,e i, zero o,nd ;;;-~;;;;-T;"- ---- r-m' 6281------- - CHCIlM-
i ~ INTEGER' 2 zero or negatlvl I

--;---- t-:-~ COMPL~COMPLEX' 8 Base is zero and exponent;s -;4<: fS88' - - --- 'CHCe'C--

f--____ -+ ______ -+ __ +_i _=_I_N_T_E_G_E_R_'_4 ----.J---- zero or negative i

i CHCBKB y = i •• b

~
1 CHCBKC y = i b

f---'
CHCBKD y ::::: 0" ... b

CHeBKE y = 0 •• b

CHeBMA y ~ a 11' 11 i

2

r- . "."
CHCBMB 1 y = a ' , i
____ 1.. _______ _
CHCBCA ! y = a • , ;

a = COMPLEX' 8 I COMPLEX' 8 I Bose i, zero and exponent is 24C 588 Ii

I = INTEGER' 2 _l,~:.~_~r negotive
-------------+-E8 ··'-I--232I~e~~;i-;-ed'b;-use of ;h~-----CHCBZ

CHCBCB Y ::::: Q ,.. .. i 2

CHCBZA

CHeBC

EXIT macro instruction

NOTE: The REAL'8 function volue returned by CHCBKD is not more accurate thon the REAL'4 bose
given 05 on argument.

6

• Argument rangt.-"-This column gives the argument
range used to obtain the accuracy figures. For each
function, accuracy figures are given more represen­
tative segments within the valid argument range.
These figures are the most meaningful to the. func­
tion and range under consideration.

The maximum relative error and standard deviation
of the relative error are generally useful and reveal­
ing statistics. However, they are useless for the range.
of a function where its'value becomes 0, because the
slightest error in the argument can cause an unpre­
dictable fluctuation in the magnitude of the answer.
When a small argument error would have this effect,
the maximum absolute error and standard deviation
of the absolute error are given for the range. For ex­
ample, absolute error is given for sin (x) for values
of x near1f'.

• Sample-This column indicates the type of sample
used for the accuracy figures; the type depends upon
the function and range under consideration. The sta­
tistics may be based either upon an exponentially
distributed (E) argument sample or a uniformly dis­
tributed (U) argument sample.

• Statistical results:

M(e)=Max I f(x)-g(x)
f(x)

()- . f ~" I f(x,)--g(xl) ,"
u e - \J N L-t I f(xl)

M(E)=Max I f(x)-g(x) I

u(E)= ~ ~ L I I f(xl)-g(x.) I'

Maximum relative error
produced during testing

Standard deviation (root­
mean-square) of the rela­
tive error

Maximum absolute error
produced during testing

Standard deviation (root­
mean-square) of the ab­
solute error.

In the formulas for the standard deviation, N repre­
sents the total number of arguments in the sample; i is
a subscript that varies from 1 to N. Appendix F ex­
plains other symbols used above.

Test ranges, where they do not cover the entire legal
range of a subroutine, were selected so that users may
infer from the accuracy figures presented the trend of
errors as an argument moves away from the principal
range. The accuracy of the answer deteriorates sub­
stantially as the argument approaches the limit of the
permitted range in several of the subroutines. This is
particularly true for trigonometric functions. However,
an error generated by any of these subroutines is, at
worst, comparable in order of magnitude to the effect
of the inherent rounding error of the argument.

Error Message: CHCBZlOO is issued each time an error
occurs. This message gives the error condition, the
entry name, and the address of the call to the math
routine in the user's program.

Table 3. Exponentiation With Integer Base and Exponent

Base (1)

1>1

1=1

1=0

1=-1

1<-1

Table 4.

Base (A)

A>O

A=O

A<O

Exponent (J)

J>O J=O J<O

Compute the Function Function
function value value = 1 value = 0

Compute the Function Function
function value value = 1 value == 1

Function
value = 0

Error message Error message

Compute the Function If J is an odd
function value value = 1 number, function

value =-1
If J is an even
number, function
value = 1

Compute the Function Function
function value value = 1 value = 0

Exponentiation With Real or Double-Precision Base
and Integer Exponent

Exponent(J)

J>O J=O J<O

Compute Function Compute
function value value = 1 function value

Function Error message Error message
value = 0

Compute Function Compute
function value value = 1 function value

Table 5. Exponentiation With Real or Double-Precision Base
and Exponent

Base (A)
Exponent (B)

B>O B=O B<O

A>O Compute Function Compute
function value value = 1 function value

A=O Function
value = 0

Error message Error message

A<O Error message Function
value = 1

Error message

Section 1: Mathematical Subprograms 7

Section 2: Service Subprograms

The service subprograms supplied with FORTRAN IV are:

Pseudo sense light SUbprogL'TIlS (SLITE, SLlTET)
STOP, EXIT, aod PAUSE s\l],programs
Dump subprogr:um (DUtl1F, PDUi\II')
Overflow and underflow suhprograms (OVERFL, DVCHK)
Specification f'xception subprograms

These subprograms are briefly described below and

Table 6, Summary of Service Subprograms Characteristics

1 2

Function Entry Name

Pseudo sense Turn all sense 1
light sub- lights off or one SLITE
programs sense light on

Test a sense
, light or 1'el'ord SLITET

its status

~
I

Overflow Test and record
and undeF- statns of
flaw sub- exponent over-

I
OVERFL

I program flow and under-
I flow indicators

I I

f--- -

I

I Divide check Test and record I suhprogram statm of divide I DVCHK I

check indicator I
I

i I
I

j. ----------+-
i Exception Process arith- I CHCBE3 (exponent overflow) ,

in Tahle'6. In most cases the actual entry point name of
the subprogram is identical to the command name.
However, when the user keys in the EXIT, STOP or
PAUSE command, the compiler translates the com­
mand.name into a separate entry point name to call the
subprogram. Both names are sho'WTl in Table 6. Further
information concerning their usage is given in IBM
FORTRAN IV.

3 4 5

Storage

Error
Estimates Module

Condition HEX DEC Name

Argument
other than 324 804 CHCBE
0,1,2,3,4

Argument
other than

i
CHCBE

1,2,3,4
I

1

I
CHCBE

I
CHCBE

I I i processing metic exceptions CHCBE,'! (exponent underflow) CHCBE I
! subprograms CHCBE5 (divide check)

t
I
I

1

f.------,--
I

1

I
Prol'ess specifl. CHCBE2 (specification) CHCBE
cation

I exceptions
I

I EXIT iCHCIWI]
I----~

Exit sllh- Ten1linate
progr~un execution I STOP (CHCIW2) lAC 428 CHCIW

I
PAUSE (CHCrW3)

rD"mp ,"h~ I Dump specified
program I stor3ge nrca DUMP, PDUMP 48 168 CHCrV

L
with or without
termination

8

Pseudo Sense light Subprograms
The program-simulated machine indicator subpro­
grams test the status of pseudo indicators, and return
a value indicating the result of this test to the calling
program. When the indicator is 0, it is off; when the
indicator is other than 0, it is on. In the following de­
scriptions of the subprograms, i represents an integer
expression, and i represents an integer variable.

The CALL SLITE statement is used to alter the status
of pseudo sense lights; the CALL SLITET statement is
used to test, and! or record their status. The particular
user reference name used in the CALL statement de­
pends upon the operation to be performed.

SLITE is used if the four sense lights are to be turned
off or one sense light is to be turned on. The source­
language statement is

CALL SLITE(i)

where i has a value of 0, 1, 2, 3, or 4.
If the value of i is 0, the four sense lights are turned

off; if the value of i is 1, 2, 3, or 4, the corresponding
sense light is turned on. If the value of i is not 0, 1, 2,
3, or 4, error message 216 is issued, and C'xecution is
tenninated.

SLITET is used if a sense light is to be tested and its
status recorded. The source-language statement is

CALL SLITET (i, ;)

where i has a value of 1, 2, 3, or 4, and indicates which
sense light to test; ; is set to 1 if the sense light is on or
to 2 if the sense light is off.

If the value of i is not 1, 2, 3, or 4, error message 216
is issued and execution is tcnninated.

DUMP and PDUMP Subprograms
The CALL DUMP and CALL PDUMP statements allow the
user to request that data contained within his program
be dumped in one of nine formats. The dumps pro­
duced will be added to the user's SYSOUT.

It is also possible to obtain dumps using the facilities
of the Program Control System (pcs). For information
concerning pcs, see FORTRAN Programmer's Guide
and Command System User's Guide.

The CALL DUMP statement is used if execution is to
be terminated after the dump is taken. The source-lan­
guage statement is

CALL DUMP (al,bdh ... , an,bn,fn)

where a and b are variables that indicate the limits of
storage to be dumped (either a or b may represent the
upper or lower limits of storage). The dump format is
indicated by f and may be one of the integers given in
Table 7. A sample printout for each format is given in
AppendixD.

If execution of the object module is to be resumed
after the dump is taken, the CALL PDUMP statement is
used. The source-language statement is

CALL PDUMP (al,bt.!l, ... ,an,bn,fn)

where a, b, and f have the same meaning as explained
previously.

Table 7. DU1>.IP/PDU~IP Format Specifications

Integer Specified Format

0 hexadecimal
1 logical *1
2 logical *4
3 integer *2
4 integer *4
5 real *4
6 real *8
7 complex * 8
8 complex *16
9 literal (character)

Programming Considerations

1. If the format control integer f is omitted, it is as­
sumed to be equal to 0, and the dump will be hexa­
decimal.

2. The arguments a and b should be defined in the
program in which the DUMP or PDU!\fP statement oc­
curs; otherwise, the compiler will assign arbitrary
addresses to them.

3. If the program in which DUMP or PDU::\IP occurs is
a subprohram, and if a and b are argument names,
a range of storage from the calling program will be
dumped. However, if one is an argument name and
the other is not, unpredictable and probably large
areas of storage will be dumped; this should be
avoided.

4. If one of the limits (a or b) of storage definition
variable names is in COMMO;"; and the other is not
or if it is a different (named) cmI::\W", nnpredict­
able and probahly large areas of storage will be
dumped; this situation should be avoided.

5. The literal format in Table 7 causes the area that is
to he dumped to be treated as a string of alpha­
meric characters.

STOP, EXIT, and PAUSE Subprograms
The STOP, EXIT, and PAUSE subprograms arc called by
the compiled object programs as a result of the source
statements

CALL EXIT
STOP
PAUSE

Section 2: Service Sllbprograms 9

Statements that cause the user's program to be termi­
nated are

CALL EXIT
STOP

If STOP is issued in a conversational task, a message
is written on the user's terminal, and control is returned
to the terminal for entry of the next cornmand by the
user. If STOP is issued by a nonconversational task, the
message is written on the SYSOUT data set, and the next
command is taken from the SYSIN data set. The STOP

statement has the same effect when used in either a
subprogram or main program. The CALL EXIT state­
ment is equivalent to a STOP statement.

A PAUSE statement executed in a program running in
a nonconversational task will result in any associated
messages being written to SYSOUT; the program then
continues execution. In a conversational task the sys­
tem prints, at the terminal, the word PAUSE followed by
00000 or a I-to-5-digit integer constant, or a message,
depending on ho,"v the operand Held of the PAUSE

statement was written. The system then transfers con,
trol to the terminal and awaits the user's input before
resuming program execution.

Overflow and Underflow Subprograms
The CALL Ov'ERFL statement allows a test for prior oc­
currence of an exponent overflow or underflow excep-

10

tion. The value returned by this CALL indicates which
of these two conditions occ~rred last. After testing, the
overflow or underflow indication is no longer available.
The source language statement is

CALL OVERFL (I)

where j is set to 1 if a floating point overflow ccndition
(ie., ~161;:l) exists; is set to 2 if no overflow or under­
flow condition exists; or to 3 if a floating point under­
flow' (i.t'., <16 f",) condition exists. A more detailed
description of each exception is given in Appendix E.

Divide Check Subprogram
The CALL DVCHK statement allows a test for prior oc­
currence of a floating point divide-check exception,
and returns a value that indicates the existing condi­
tion. (Fixed-point divide checks arc ignored by FOR­

TRAN-compiled programs.) After testing, the indication
of a prior divide check is no longer available. The
source-language statement is

CALL DVCHK (f)

where t is set to 1 if the divide-check indicator was on,
or to 2 if the indicator was off. A more detailed de­
scription of the divide-check exception is'given in Ap­
pendix K

This section discusses the functions, entry require­
ments, error checks, and data references of the Tss/360
FORTRAN 110 library in executing the FORTRAN 110 state­
ments: READ, WRITE, REWIND, BACKSPACE, END FILE,
PRINT, and PUNCH.

This section is written for both FORTRAN and assem­
bler-language programmers. The FORTRAN programmer
may be interested in the assumptions that the I/O rou­
tines make, the error conditions that they check for,
and the actions they take in case of error. The assem­
bler-language programmer may be interested in the
advantages of FORTRAN I/O facilities, particularly the
data conversion, list-processing, and DeB-maintenance
routines. The assembler-language programmer should
read this section after reading IBM Time Sharing Sys­
tem: FORTRAN Programmer's Guide, Form C28-2025,
"Appendix E. Specification of Data Set Characteris­
tics," and IBM Time Sharing System: IBM FORTRAN
IV, Form C28-2007, the sections titled "Input/Output
Statements," and "Elements of the Language." Of the
se<:tion on elements of the language, he need only
read the subsections titled "Constants," "Variables,"
and "Arrays."

Overview of the fORTRAN I/O I.ibrary
There are twenty-one FORTIL-\N I/O routines. Only three
routines, Control Initialization (CHCIA), List Item Proc­
essor (CHCIE), or List Termination (CHCIU), can take
control from, or return control to, a FORTRAN object
program. Thus, the FORTRAN 110 library can be re­
garded as three subprograms and a number of sub­
routines of these subprograms.

Since the assembler-language programmer has tech­
niques (described in Appendix B) for linking to any of
the FORTRAN 110 routines, he can look upon anyone of
these routines as a subprogram.

Another way of looking at the FORTRAN 110 Library
is as two main categories of routines: I/O Ian gua ge
control routines and data conversion routines. The rou­
tines of each group interact with one another by means
of a common communication and work region in a
common PSECT.

Section 3: I/O Subprograms

I/O language Control Routines

There are two types of I/O language control routines:
110 operation control and I/O list control. These rou­
tines analyze the user's 110 requests to determine in­
formation such as: the type of I/O operation to be per­
formed; the number and type of list items present, if
any; the type of format control, if any; and the I/O
statement relationships with a user-specified DDEF
command.

I/O Operation Control Routines

These routines control the 110 request by creating, if
necessary, a data control block (DCB). and analyzing
FORMAT and NAMELIST control speCified by the user.
After this information is processed, the 110 operation
control routines interface with the TSS data manage­
ment routines that actually fulfill the I/O request. The
interface with data management is accomplished by
the routines CHCIB and CHCIC, via the data manage­
ment macro instruction facilities.

I/O List Control Routines

These routines examine the list items, if any, in each
110 request to determine the type of conversion to be
performed. After the type of data conversion is deter­
mined, control is given to the 110 operation control
routines which in turn call the appropriate data con-
version routines for final processing. .

Data Conversion Routines

The data conversion routines are subdivided into rou­
tines used for input processing and routines used for
the preparation of output. These routines can process
all the permissible types of FORTRAN-formatted data
speCified in either a FORMAT or NAMELIST statement.

\Vhen converting a user's data, the data conversion
routines interact \'lith each other according to the re­
quirements of the user-specified FORMAT or NAMELIST
control. For example, for input data that is defined by
a G-format conversion code, the General Input Con­
version routine (CHCIS) is called. This routine analyzes
the data type to determine whether it is integer, real,
logical, or alphameric and calls the appropriate data
conversion routine.

Section 3: I/O Subprograms 11

I/O language Contral Routines

I
I
I READ
I WRITE

I PRINT

I PUNCH
User

I
BACKSPACE

Progrom REWIND
I END FILE
I
I

: list

I
Items

Dota Conversion Routines

Output
r- -
!
I
I General -(CHClT) !
I
I
I

'----,---...,-

I
I
I
I
I
I
I
I
I
I
I

Complex
(CHClN)

logical
(CHCIR)

L ____ _

Control

I/O r- --­
Ooeratian I
C~ntrol I

I
I
I DeB
I Maintenonce
I (CHCIB)

I
I
I
I
I
I
I
I
I

Initiolization ~
I/O Control

(CHCIA)
I

(CHCIC)

I
I
l ____ ---

I/O
I

Control I
list

~
I
I
I
L_

---r
List
Termination
(OKIU)

U 11
Input

-

NAMElIST
Processor
(CHCID)

FORMAT
Processor
(CHCIF)

------ !- --

list Item
Process
(CHClE)

I
I
I
I
I
I
I

- J

-.,
I
I ,
I
I
I
I
I

_ J

-,
I

r---- -- -----------,

Integer
(CHCIH)

Reol
(CHCIJ)

Alphameric &
Hexadecimal
(CHctP)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

__ J

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L __

Alphameric &
Hexadecimal
(CHClO)

Logical
(CHCIQ)

Complex
(CHClM)

General
(CHClS)

Integer & Real
(CHCII)

I
I
I

I

I

I
I
I
I
I
I
I
I
I
I

-------------'

Figure 1. Functional Flow of FORTRAN I/O Routines

12

Routine Interrelationships
Table 8 presents the calling relationships between the
user program, the FORTRAN 1/ a routines, Data Manage­
ment, and the Supervisor.

Table 8. Calling Relationships of I/O Houtines

Routines ! Called
I

<: i:Q U 0 '"-l ~. ::r:
t5 t5 t5 t5 t5 t5 t5 Calling U a ::r: ::r: ::r: ::r: ::r: ::t:: ::r:

Routines U 1 U U U U U U

USEH
PROGRAt--! X X

CHCIA X X X X

CHCIB

CHCIC X

CHCID X

CHCIE X X

CHCIF
I
I X X X

CHCIH

CHCll ,
.~

CHCII I

CHCI~f X

CHCIN I

CHClO i
CHCIP

CHCIQ I I

CHCIH

CHCIS X

CHCIT X

CHCIU X X

CHClV X X X

CHCIW X X

CHCBD

The following figures describe the relationships be­
tween routines when fulfilling a particular I/O opera­
tion. Since the relationships vary, depending on the
kind of I/O operation being performed, a separate dia­
gram is presented for each of the basic I/O operations.
Exceptions to the logical Rows presented in this sub­
section are described in detail under the individual
routine descriptions in the following subsection.

The type of 110 operation amI its related figure ref­
erence are:

--. :::2 t5 :=: ::t::
U· U

X

X X

X

z 0 p.. QJ >:e: CJ) !-< ::>
t5 t5 - - t5 - t5 -U U U U ::r: ::r: ::c ::t:: ::t:: ::t:: ::t:: ::t::
U U U U U U U U

X

X X X

X X , , X X X X X

I

i

I X

X X

X

X X X X

TYPE OF OPERATION (FUNCTION)

Formatted READ with List
Formatted READ without List
READ with NAME LIST
Unformatted READ with List
Unformatted READ without List
Formatted WRITE with List
Formatted WRITE without List
WRITE with NAMELIST
Unformatted \VRITE with List
Unformatted WRITE without List
REWIND, BACKSPACE, END FILE

> a: 0
i:Q

U U U
::r: ::t:: ::t::
U U u

X X X

X

X

X

X

X

X

X

15
II) e
II)
bll

l3 ~
t<I t<I

O::E

X

X

FIGURE

2
3
4
5
6
7
8
9

10
11
12

5
.~

~
II)
p...
;::l

en

X

X

X

Section 3: I/O Subprograms 13

CHCII>
Find a DeB Defining
A~.sociated Data Set

Fi,!Hrt' 2. Formatted HEAD with List

CHCIS
fi,=:J; DeB Defining
Assoc ioted Doto Se~

-

Figlllc :3. Formatted HEAD without Li;;t

14

User
Program f41- - - -- --------

y/~
~ o '-'-'-,

~HC1A
! :0 lnitioti::otior

--- .. ,
10
I

CHCIC
Read a
Logi col Record

Read
Subsequent
Records if
Necessary

CHCIA
! /0 !nittonzation

r- - ..
I
I r-

I
I @ _J

User
Program

f----

CHQf
Read a

Log icc J Record

CHCIE
lis~ Processing
Enter For

Each Item ,
CD I

I

CHCIF
FDRNIA T Processor
Process ~ach Item

Accordi:19 to
FOR.MAT specification

0 • I
I

~l'Q.I, 1M, 12, 1.9, ~
.Appropriate Octo

Conversion Routine
For Each Item

CHCIF
FORMAT Processor
Move Data I terns

From Buffer Into
FORMAT

Read
Subsequent
Record If
Necessary

I
I
I

I
I 0 I
I
I
I
i
I
I
I
I

CHCIU
~
Termination

CHCIS
Find a DCB

Fi.c;lllt' 4. I1E.\D with ".\'.!EUST

User
Program

4
CD I

I
~ I

CHCIA
i/Ol r itiolizotion

(]) ~
/

+ / CD /
1 /

" I

CHClC
CHCIB

Read a
Find 0 DCB

Logi co I Record

Read
Subsequent
Records If
Necessary

Figure 5. Unformatted READ with List

User
Program

CHClA
I/o Ir>ltiolizotion

CHCIC
Read a
Logical Record

Read
Subsequent
Records If
Necessary

f4-- --

~- --

r
I
I

~ I@
I

I- __ .J

--

r-

:@
____ ..J

- - -- -

- - -,
I

I

10
I
I
I
I
1
I
I
I
I

CHOE
L i ost Processor.
Enter For
Each Item,

- --

CHCID
Nomelist
Processor

CHCII, 1M, 10,
10,15 - _.

APpr~rlote
Data Conversion
Routine

- - ..,
I
10
I
I
I
!

r I

CHCIU
list
Termination

Section 3: 110 SlIbprograms 15

CHClB
Find a DCB

User Program

CHCIA
I/O Initialization

"
CHCIC
Read a
Logical Record

Figure 6. Unfonnatted READ without List

CHCIB
Find 0 QCB Defining
Associated Data Set

CHClA
I/o Initiol izotion

CHCIC
Initializ.e Pointer
To Buffer In Which
To Construct Data
Record

Write Buffer
In OulpLlI
Data Se t, When
FLlIl

I

I
I
I

User
Program

,- -..
-

t....- ______ _

Figure 7. Formatted WRITE with List

16

14-----------

CHCIE
List Process;ng
Enter For Each
ltern. Put tist
In ELlffer

• I
I

CHCIF

--+

o

CHClU
IT.t

I
I
I
I

FORMAT Processor
Process Each Item
According To Termination
FORMAT Specification

CHCIH, Jl, IN,
IP, IR, IT
App~pr;;;le Doto
Conyers ion Rout ioe
For Each Item

• I
I
I
I
I

_______ J

CHClB
Find a DCB Defining
Associoted Doto Set

--

CHCIA
I/o Initial izotion

Figure 8. Fonnatted WRITE without List

CHCIS
Find a DCB

..­--

Figure 9. WRITE with NAME LIST

User
Program

CHCIC
Initialize Pointers
To Buffer In Which
To Construct Dota
Record

User
Program

CHCIA
J?e)"
Initialization

CHCIC
Initialize .Pt"
To Buffer For
Data Record
Construction

Write Buffer
In Output Data
Set, When
Full

o

Write Buffer
In Output
Data Set,
When Full

1

:®
!

-.1

CHCIF
FO RMA T Processor
Move Dota Items
Inlo Buffer From
FORMAT

CHClD
Name!ist
Processor

CHCIH, IJ, IN,
fI5";IR;" IT -
Appropriate
Dato Con version
Routine For Each Item

Section 3: I/O Subprograms 17

CHCIS
Find a DCB

Figure 10. Unformatted WRITE with List

/

./
./

CHClA
17OTri1tialization

User
Program

CD
CHCIA

- -,
I/o Initialization ~ _______ ~ I

I

CHOB
rr;;;r;;-OCB

CHCIC
Initialize Pointers
To Buffer In Which
To Construct
Dummy Record

Write Buffer
Consisting Of
Two Bytes Of
Zeros

Figure 11. Unformatted WRITE without List

18

I
I
I

--'

User
Program

CHCIC
Initialize Pointers
To Buffer In Which
To Construct Data
Record

Write Buffer
In 0 utput Data
Set, When Full

CHClE
list Processor.
Enter For Each
Item.

I CD /
I

I

/1

CHClB
Find CJ DOl

User
Program

j

0) I

I
I
I

CHCIA
i7C)Tr;"itio! izotion

CHClU
List Termination
I nsure last
Record I.
Written

I
I
I
I
I
I
I
I

_J

~ ,

\~,
CHClC
~ REWIND And
BACKSPACE Operation
EN 0 FILE Is Performed
On Subsequent WRITE

Figure 12. BACKSPACE, REWIND, and END FILE

Routine Descriptions

This subsection identifies the functions, attributes, en­
tries, routines called, error checks and data references
of each of the twenty-one FORTRAN I/O routines. The
assembler-language user should read this subsection
in conjunction with Appendix B.

Certain information is common to most routines; this
information includes: a description of the attributes of
each l'Outil1l' and parameter-list formats common to
data conversion routines.

Attributes

Unless otherwise stated, all FORTRAN I/O routines are
nonprivilcged, rcenterable, dosed routines residing in
SYSLIB. ClIelA, CHCIF, CHCIU, CIICIW (except at CHCIW4),

CIICIV, and CHCBD are entered by standard Type I link­
ag(' with the address of a parameter list in register 1,
and exit is a return to the calling routine. All of the
other 1/0 routines are entered by restricted Type IV
linbg<'. Unless otherwise stated in the description for
a given routine, all routine exits are assumed to be
returns to the calling routine.

Data Conversion Routines' Parameter List

All of the data conversion routines have a common
parameter list in the 1/0 common PSECT. Certain data
conversion routines do not use all the fields of the
parameter list, in \\,hich cast' the fiE-Ids arc' set to zero.
Table 9 shows the format of the data conversion
routines' parameter list and indicates the fields sup­
plied by the appropriate data conversion routine. Note
that in some cases the parameters are supplied as part
of a common setup hut either arc not used by the rou­
tim' itself or are used only to pass on as parameters to
other 1/0 routines.

1/0 Initialization-CHCIA

This routine is the initial FORTRAN 110 Librarv interface
with the user. It manages the disposition C:f each I/O

request by setting information switches about for­
matted and unformatted 1/ a (for use by other I/O
routines), by allocating a buffer area for output re-

quests, and by obtaining a logical record for input
requests.

Every FORTRAN source program I/O statement gener­
ates a call to this routine. On this call, if there is no list,
CHClA supervises the complete execution of an 1/0 re­
quest. If the 1/0 request is a READ, WRITE, PRIl':T, or
PUl\'CH with list, CHCIA simply prepares the I/O library
for compiler-generated cans to List Item Processor
(CHCIE) and List Termination (clIcm).

Table 9. Fonnat of Data Conversion Routines' Parameter List

WORD DATA CONVERSION

LOCATION CONTENTS ROUTINE AFFECTED

\Vord 1 Address of list item 1 All

Byte 1 Format control
character' All

Byte 2 Scale factor3 CHCll and CHCIJ,
only

\\'ord 2 Byte 3 Scale size' CHCll aml CHCI.1,
\only

Bits 1 to 4-Byte
size of list item,

Byte 4 minus one All
Bits 5 to 8--Type
of list item 0

Word 3 Address of input or output All
h\lffer

\\'ord 4 Byte size of buffer, minlls All except CHCIl\1
one

\'lord 5 Decimal fraction width" CHCn, CHCIJ,
CHCU," , CHCIS,
and CHCIT only

NOTES:

1. A list item is the storage area specified hy a list param­
eter in the READ or \VRITE statement.

2. G, E, I, F, D, L, Z, A, H, X, T, or P (N indicates
NAl\tELlST) .

3. CHCn or CHCJJ tests for an EBCDIC minus sign,
which indicates a negative scale factor. Anything else
indicates positive scale factor.

4. The integer preceding the 'P'.

5. \Vhere 01, 0:2, 03, and 04 represent logical, integer,
real, and cOlllplex, respectively.

6. The numher of decimal places to the right of the deci­
mal point.

Section 3: I/O Subprograms 19

Entry: The entry point is CHCIA!. The parameter list
is variable-length and has the following format:

Word 1 Address of a fulIword containing the user-
specified data set reference number.

Word 2 Address of a control byte indicating type of
operation,l

\Vord 3 Address of a control byte indicating whether
a list was present in the I/O statement and
whether any of the following parameters in
this list are i)fesent."

\reml ·1 Addn'ss of a FOIL\IAT string or l\' AMELJST
(OptiOll'll) table, This address is included in this param-

t'ler list onlv if the mer-requested I/O opera-
tiOll had an :lssol'iated FOR\lAT or NA\JE-
LIST source stlltement.3

\\ord :5 Address of an error exit. This address is in-
(Optiollal) duded only if the user-requested I/O opera-

tion had the EHR aperand specified in his
SOlllTl' statement.

\\'ord (j Address of an end-of-file cxit. This address is
(Optional) included ollh· if the user-w'jucstcd I/O oper-

ation has the E!\D operand specified in his
sourer'staU'IlH'IIt.

]'o;OTES;

1. In thaI control h\(<" T\E.-\D = 12,') (X'80'), WRITE =
64 (X'40'), l'HIYf =- ,3:2 (X':2()'), PUKCH = 16
(X'10'), HE\\'I!\,D = S (YOH'), BACKSPACE = 4
(.'\'04'), E,\D FILE == :2 (.\'0;2'),

,~ In lhat control byte, the l'onfic;llr~tion is: Hnnhxx, where
f = FOl\\fAT statcmcnt, Icc: LIST par;llllcter, n =--:
l\A\lELIST statellll'nt, I' = EBB operand, d = E,\D
operand, and \:xx Lit, ;lI'e "]\\,ll\'S sd tn /I'ro. Setting any
of the first five bits to "lit' imli"aks that the correspond­
ing l']"llH'lIls are preSt'lIt.

3. Tlw FOH\IAT strin~ is ill lI:;ef-wriUell form, hc~inl1ing
with thc first p,nl'lIlilc:;cs, Inimh the stall'lIlcnt llumlwr
and the word 'FOB\L\T'. Sl'l' the ClICID routine dc­
Sll'lption i"l!' the tlel:1I1, ni th,· .\.'\ \[1-:1 ,1ST t"hle,

If any optional parameter is missing, any parameters
following it are mo\'ed up in tlw list and the Jist is
shorlened, For cxample, if ther,' is IlO FOH~fAT or

:,\A.'\IFl.lST acldn'ss and no eITor exit address, word -! of
jhl' paralllder list \\'(mld J)(' the enel-oF-file exit addrl'~s,

Rou/i IlCS C ancr!:
• Dell :'.faintenancl' (ClJUB)

• I! (l ('on trol (ClICK;)
• F(lI\\fAT Processor (C! IUF)

• :\·\"H:LIST Processor (ClIem)

• 1'1\\[1'1' (CZATJI)

• E\it (CI!ClW)

Erl'i!r Checks: If the user-specifled data set reference
!Hll1l1wr is negative. an error message is issucd by the
PH"[PT facility, and CHCIW is entered to terminate the
user program,

20

Data References:

• Parameter lists for the modules called by this mod­
ule.

• A chained list of save areas to accommodate all pos­
sible calls to other modules,

• A table of adcons pointing to items in the work areas
of other modules that are to be initialized,

• The DCB prefix (generated by DCB maintenance­
CI,ICIB) to be set with the inpu t parameters from this
module,

DCB Maintenance-CHCIB

This routine finds or initializes the data control block
(DCB) that contains a description of the data to be
transmitted by a user-specified I/O operation, If ,1l1

appropriate DCB is not found, this routine allocates the
necessary space ill the DCB table and constructs a new
DCB, including within it information about the data to
be transmitted that the lISer defined in his DDEF com­
mand,

Entry: The entry point is CHCIBl. The parameter list
in the common PSECT is fixed-length and has the fol­
lOWing format:

Word 1 Address of a fullworcl containing the user-supplied
dat" set refercllce IIIl111ber.

\\. mel :2 The data set rderence numher.

CHCIA stores the address of the llsn-supplif'd data set
rc,fercllC'c ilnml)('r and the data set reference number
its('lf, if present, in the I/O common PSECT,

ROlltines Called:

• Data management routines used to search for and
read J FCBl (CZAEB)

• Data managcment routines used to alloeate storage
for DCB construction (CZCGA)

• 1'1\::\11'T (CZA1'JI)

• Exit (crrcIw)

Error Checks: If the user-specified data set rcferel1ee
number exceeds 99, an error message is issued by the
I'H)'fPT facility (CZATJI) and CHCfW is enkred to termi­
nate the usn program,

If a discrepancy exists in the uscr DDEF command be­
tween permissible RECFl\l, KEYLEK, and DSOHG valut's,
an ('rror message is issued by the PRMPT facility
(CZATJII and CHCIW is called to terminate processing,
A description of the assumption FORTRAN I/O makes in
initializing associated DeBS contained in Appendix C,

1 ThE' Job File Control Block OFCB) is a systf'n1 control hlock constructl'd
for each dL1ta set at DDEF time, It contains information that must be
ft'ferred 1n ,,('('t-''iS method rOl1tine~ or volunH' mounting routines whil('
the datil sl't is OPEN, and provides a hierarchy of pointers defining
JOBLIB. ~ '~EHLlB, and SYSLlB,

Data References:
• Parameter lists for the routines called by CHCIB.

• Pointers to thc DCB table which consists of the DCB

Prefix, the DCB itself, and additionally two DECBS if
the user has specified Basic Sequential Access
Method (BSAM) in his DDEF command.

• A chained list of save areas to accommodate all pos­
sible calls to other routines.
Format and Content of the DC B Prefix: The DCB

prefix is used by the FORTRAN 110 routines, in conjunc-.
tion with the DCB, when performing any type of I/O

operation. The DCB prefix, created by CHCIB, is eight
words long and always immediately precedes the DCB

itself.

Table 10. Format and Content of DCB Prefix

i
!
I
I

'\lord 1 The address of the starting location in
the buffer area for the current logical
record.

Word 2 The address of the current location in
the buffer area for the current logical
record.

Word 3 The address of the end location in the
buffer area for the current logical rec-
ord.

Byte 1: Current operation (READ, WRITE,
etc.) 1

Byte 2: Control flags (FORMAT, NAMELIST,
List, ERR exit, END exit) 2

\\'ord 4
Byte 3: Control flags (Span, GATE, recent

READ, END or ERR encountered)3
Byte 4: Previous operation (byte 1 from

call on eHCIC with this DCB)
last

Word 5 The address of current DECB, if re-
quired (BS1\:\1)

Word 6 The user-specified data set reference
number, plus one.

Word 7 The address of the next DCB.

Wordt! Save area for the address of the previ-
OUS DCB for that data set reference
number.

\\'ord 9 DeB begins here.

NOTES:

1. See parameter list at entry to CHCIA, Note 1.
2. See parameter list at entry to CHCIA, Note 2.
:3. The configuration is: gxdrxxln, where g = GATE I/O,

d = end of data set (END), r = error (ERR), I = span
from last record, or recent READ, and n = span to next
record. The x bits are always set to zero. All hits set to
zero signifies that there is no span. (Spanning is used in
the case of unformatted records, where a physical block
size wns defined. It is the process of jumping from the
L'nd of one record to the beginning of the next.)

o Control-CHCIC

This routine fulfills I/O requests made through other
I/O library routines by using the data management
macro instruction facilities of TSS. The particular data
management facilities to be used are determined

both by the type of If 0 statement issued in the user
program, and by any related DDEF commands, if any,
defining such things as the type of records being trans­
ferred and the manner in which they should be ·proc­
essed.

The following list identifies the more significant
macro instructions used by CIICIC for each of the FOR­

TRAN I/O statements.

FORTAN I/O
STATEMENT

~EAD

WRITE

REW1ND

BACKSPACE

END FILE

CHCIC FUNCTION

Obtains a logical record from a user-specified
input source by using the READ, CATRD, or
GET macro instmction.
Initializes the writing of a logical record by
establishing pointers to the output buffer area.
Subsequent output processing is performed by
using the WRITE, GATWR, or PUT macro
instruction.
Repositions the user-specified volume of one or
more data sets to the first record of the first
data set by using the POINT or SETL macro
instruction.
Hcpositions the user-specified data set to the
previous logical record by using the NOTE,
POINT, SETL, and BSP macro instructions.
Defines the end of the user.specified data set
by using the 'VRITE and STO'V macro in­
structions.

Entry: The entry point is CHCICl.

Routines Called:
• DCB Maintenance (CHCIB)

• Exit (CHCIW)

• Data management routines to perform I/O functions
as determined by the macro instruction issued.

• Error message control (CHCIX)

• PRMPT (CZATJI)

Error Checks: If the 110 operations performed by
data management cause either a SYNAD! or EODAD2 exit,
and if the user provided an ERR or END return point,
CHCIC locates the adcons for these return points in the
work area CHCRWW and locates the register save area
for the user's program registers. Heturn is then made to
the ERR or END return point rather than to the calling
I/O routine.

If the user did not provide return points (or if the
operation was other than a READ statement), an error
message is issued and the program is terminated.

If an invalid character is encountered in hexadecimal
input from a GATE3 read operation performed for an
unformatted READ statement, an error message is issued
and the erroneous character is treated as the termina­
tion of the hexadecimal input. Processing then con­
tinues.

1 SYN AD: synchronous f"Tror exit address~ for automatically transferring
control to a user-supplied routine jf an uncorrectable I/O error occurs.

2 EODAD: end of data set address, for automatically transferring control
to an f"nd-of-data routine when end of an input data set is detected
during processing.

3 GATE I/O is input from SYSIN or output to SYSOUT.

Section 3: I/O Subprograms 21

In addition to the above error checks, error messages
are isslled (PRMPT macro instruction) and the user pro­
gram is terminated by CHCIW for any of the following
reasons:
• The rccord is not format-V for unformatted HEAD

statement.
• Error rc'tllrn code received from the use of the FIND

or STOW macro instruction for a rnember in a VPAM
data set.

• Invalid sequence of 1/ () operations for a user-speci­
fied data set reference number. The invalid se­
quences are: HEAD preccdcd by E;\iD FILE; L'In FILE

preceded by HEAD; and I1EAD preceded by WHITE (ex­
cept when using GATE 1/0).

Data References:
.. Referellces to the standard DCB and its associated DCB

prefix.
• A chained list of save areas to accommodate all pos­

sible calls to other routines needed.

NAMElIST Processor-CHCID

This rolltinc interacts with CHCIC to control the I/O for
each ;\iA~1ELIST record and interacts \vith tLe appropri­
at< data uOllversion routincs to bring about the desired
itelO-bv -i h.·m cOIwcrsion.

F1finr The entry point is CHCID1. TIle parameter list
COllsi,ts of a single \vord:

r----~-----. --,"--,-:-:-"---,----
I \Vnrell :\ddrcss of the NA\lEL1S I tahie generated hy

I.
th" FORT!{AN compiler as part of tbe user obje~t
program. J

Routines Colled:
.. I/O Cuntrol (CllCle)
• Complex I npllt Conv(Tsion (cllen!)
.. Complex Output Conversion (CHCIN)
• General Input Conversion (CHCIS)

• General Ontput Conversion (elICIT)

• l'H}'II'T (CZAqI)
• Exit (cHcnv)

Error Checks: There are no error checks for output.
For input, if errors arc detected in the ;\iA!\IELIST tahle,
a message is issucd via 1'11\11'1' ,mel CllCIW is called to
terminate the llscr program. Other error messages are
generated for any of the conditions listed below. In
these cases, processing continues with the next entry
of the input [('cord.

• Kame exceed, six characters
.. First character of each input record is not blank
• Suh'icripts appear on a name that is not an array

name
.. Incorrect number or range of s!lbscripts

• Subscripting causes array size to be exceeded
• Multiple constants or repeated constants appear with

a name that is not a subscripted array name, or cxc

ceed the size of an array
• An equal sign or left parenthesis is not preceded by

the variable or array name for that item.
.. An invalid character appears in a repeat comtant
• End of a logical record caused an item to be logically

incomplete
• The NAMELIST name is not in the NAMELIST table.

Data References:
• Parameter lists for other I 10 librarv routines called

by this routine. .
• A chained list of save areas to accommodate all pos­

sible calls to other routines needed .

NAMELIST Table: The address of the NAMELIST
table generated by the FOHTHA;\i compiler or by the
assembler-language programmer is communicated in
the call to I/o Initialization (CHUA) and then passed
to this routine. The table is made up of hvo-word en­
tries, each of which contains an identifier in the first
halfword.

NAMELIST NAME ENTRY:
Bytes 0-1: Identifier (X'OlOO')

2-7: Name (left-justified)

VARIABLE NAME E"'Tl{Y:
Bytes 0-1: IdeIltiRer (X'0200')

2-7: Name (Icft- justified)

VARIABLE TYPE A;\iJ) LOCATION ENTRY:
Bytes 0-1: Identifier (X'0300')

2: Length and Type (4 bits each)
Length: Number of bytes minus 1
Type: X'OI'Logical

3: Class:

X'02' Integer
X'03' Real
X'04' Complex
Letter A for array; otherwise,
an S

4-7: Storage Location

ARRAY SIZE. ENTRY:
Bytes 0-1: Identifier (x'0400')

2-3: Not used
4-7: Number of bytes in array

DIME:-1S10N PnODUCT ENTRY:
Bytes 0-1: Identifier (x'0500')

2-3: Not used
4-7; Dimension Product (see explanation

below)

TERl\U;\iAL ENTRY:
Bytes 0-3: Zero

4-7: Not uscd

A dimension is a level of subdivision, or level of sub­
scripting, within an array. For example, an array could
be a string of seven thirty-word elements (first dimen­
sion), each subdivided into six five-word elements
(second dimension), each subdivided into five one­
word elements (third dimension). An array may have
as many as seven dimensions.

For each dimension there is a corresponding dimen­
sion product, which is the product of 1) the byte-size
of the array's smallest element, 2) the number of ele­
ments within all lower dimensions except the first di­
mension, and 3) the number of elements within that
dimension. In the example just given, the dimension
product for the third dimension would be 4 x 6 x 5, or
120. This dimension product would be seven times
greater if there were another dimension before the
seven-element dimension. The dimension product for
the first dimension is always the byte-size of the array's
smallest element-this dimension product is never en­
tered. If there is only one level of subdivision, there
should he no Dimcnsion Product Entry.

Following is a hexademical representation of the
"'A~fELIST table for a three-dimension array such as
that de~crihed above, where the array is named 'C' and
contains real numbers. The NA~~ELIST name is LIST.

01 00 D3 C9
NAME LIST name E2 E3 40 40

02 00 C3 40
Array name 40 40 40 40

03 00 33 Cl
Variable type 00 OE 63 74

oct 00 00 00
00 00 03 48 Array size

OS 00 00 00
Dimension product 00 00 00 18

05 00 00 00
no 00 00 78 Dimension product

00 00 00 00 Terminal entry

ist Item Processor-CHCIE

!~\'I>ry I/O statement in the user's source program gen­
erates one or more calls to this routine if there is a list
as~ociated veith a HEAD, WHITE, PRINT, or PU;\fCH. A list
item may be a simple variable, an array element (a
sl1bscripted variable), or an entire array. If a FORMAT
statement is speCified, this routine calls on Format
Processor (CHCIF) to control any necessary conversion.
II there is no FORMAT statement, CHCIE is directly re­
spomible for filling or emptying the output or input
buller area.

Entry: The entry point is CHCIEl. Register 0 contains
either zeros, if the list item is a single element, or a
number expressing the array length, in bytes, if the list
item is an entire array. The parameter list is fixed­
length and has the follOWing format:

Word 1 Address of a control byte. The first four bits of
the control byte contain the size of the element,
minus one. The second four bits contain a flag
indicating the type of item as follows:

Flag Type of Item
01 logical
02 integer
03 real
04 complex

\Vonl2 Address of a first (or only) element of the list
item.

Routines Called:
• Format Processor (CHCIF)
• I/O Con trol (CHCIC)
• PRMPT (CZATJI)
• Exit (CHCIW)

Error Check: "Vith unformatted input, if a list item is
.requested after the logical record is exhausted, an error
message is transmitted to the user via PR}'IPT, and
CHCIW is called to terminatc the user-program.

Data References:
• Parameter lists for other Ilo library routines called

by CHCIE.
• A chained list of save areas to accommodate all pos­

sible calls to other routines needed.
• A fullword, CHcm~, which is in the CIlCIB work area

and contains the address of the DCB prefix.
• The first fifteen b\tcs of the DCB prefix.

FORMAT Processor-CHCIF

This routine interacts \",ith CHCIC to control the I/o-for
each FORMAT-referenced record, and interacts with the
appropriate data conversion routint's to bring about the
item-by-itcm conversion specified by the FOHMAT state­
ment.

Entry: Before the first entry to CHCIF to process a
reference to a FOR\1AT statement, CHClA (or the assem­
bler-language programmer, if he is bypassing CUCIA)
does the follOWing:
• Store the address of the FORMAT character string in

CHCRWW. The statement number and tht' word
'FORMAT' are omitted from the string.

• Set to zero the second and third words of CHCIFW.
The entry point is CHClFl. The parameter list is fixed­

length and has the following format:

"Vonl 1 Address of the list item, if any.
Zero indicat('s that no list item was specified.

Word 2 Byte size of list item and type in low order byte
of word. (See word 1 of CHCIE parameter list.)

\Vord 3 Address of the start of the format string.

Section 3: I/O Subprograms 23

Routines Called:
e I/O Control (CIlCIC)

.. Error ~kssage Control (CIICIX)

.,. Exi t (CJl(:IW)

.. One of the eleven daLt conversion rontines (cHelH
through CHCIT)

Error Checks: Since FORMAT staten1Ct\ts may he dy­
namicanv modified, certain error conditIOns may arise
dne to tl~e syntax of the FOH:\fAT string. If there 'are no
syntax errors, crrors could ;nise due tel conversion of
the data. In such cases the conversion routines issue
messages describing the errors before returning. All
syntax error checks produce messages describing the
error.

Procl'ssingis t('nninaicd upon encountering invalid
control char:lC'lcrs in the string, that exceed the
maximum, or too many levels ot parentheses. \Vhen it
is possible to aSSUllle vailles other than those speciHed
(as in the case of invalid size of w or d fields after n
control character), processing will continue on the cur­
rent item after the error rm's~;age i~ issued. Otherwise,
the errOlll'OHS FOW,L\T item is skipped and processing
contilllles wi.:h the next control character.

Data References:
4> Parameter lists for the routines called hv CHelF.

ill A chained list of save areas to accommodate all pos­
~ihk calls to other routines.

4> COllllters for any repetition and scalc factors encoun­
ten-d.

Integer Output Conversion-CHCIH

Thi'; routine converts a two-byte or Four-hyte binary
list item to an integer field in the output huffer, accord­
ing to th(> format In, where n is the integer field size.

Entry; Th' entry point is ClICIllL TI\<' pcuameter list
i:·; dcscrilwcl at the beginlling of this subsection, under
CDilta C\}lI\(TsiOll HOl' f iw' Parameter Lists."

nOli tines Cal/ed:
,. Error \fcssagc Coutrol (CllCIX)

Error Checks: If the output buffer an'a is too small
to contain the integer field, the field is filled \vith
:b~(Ti"ks and a me<slgf' is issued by CllCIX.

Datil Hcferences:
<II A paLI!1leler list for CHClX.

.. A sa v(' area ~o acC'omrnochte the call to CHCIX.

,. A work area, CHerHw, to be used by this routine.

Real and Integer input Conversion-CHCII

This rQutine COllverts a daLl Held in an input buffer to
the appropriate lype list ite111. An integer field in the
input buffer is converted to a binary list item. A real
fidd in the input huffr'r is converted to a single- or
douhle-precision floating-point list item. The integer
field has a format 111, where 11 is the field width. The

24

real field has a format Fred, Ew.d, or Dw.d, where IV

is the field ,':idth and d is the \.vidth of the decimal
fraction .

Entry: There arc three entry points: CIlCII, ClICIK,

and eHCIG. The parameter list is described at the bc­
ginning of this subsection under "Data Conversion
Hautine Parameter Lists."

Routines Called:
,. Error ~vlessag(:' Contro1 (CHCIX)

Error Checks: If the format speCification (F, E, D,
or I) is improperly speCified or the data field is greater
than the permissible range, CHCLX is called.

Data References:
• A parameter list for CHCIX.

.. Adcons for the table in Real Output Conversion
(CIICq) that contains powers of ten.

• A work area, CHcmv, containing: two douhleword
areas for calls to CHCIK and CIJCIC, and a 32-byte area
for temporary storage.

Real Output Conversion-CHCIJ

This routine converts a single- or douhlc-precision
floating point list item to a real Held in the output
buffer. The real field has a format of either El1:.d,
Dw.d, or Fw.d where u; is the Held width and d is the
size of the fractional position, in digit positions.

Entr!l: There are two entry points: CHCIJ] and
CHClLl. The parameter list is at the beginning of this
s1111section under "Data Conversion Routine Parameter
Lists."

Routines Called: There are liO calls that can occur
besides the fInaJ return to the caning routine.

Error Checks: If the output lmHer area is too small
to contain the rcal Held, the real field is filled with
asterisks.

Data Hcfcrencr;s:
,. A table of power ol ten in double-precision [joating­

point. It has all cxtnn~\l name CIlCIL2, so that it can
be referred to and 1lSed hy other I! 0 librar) routines.
The tahle structure is:

CHCIL2 DC JYIE1,lE2,1£3,lE4,lE5.lE6,1£7,1£8.1E9,lE10'
DC D'lEll, lE12.1El:3,lElt, 1 E 15,1£16,1£17,lE 18,

1E19,1E20'

DC D' 1E71,1£72, 1£73,1E74,1 E75.1£-76,1£-77,
lE-,8'

Complex input Conversion-CHCIM

This routine converts a complex data field from all

input bufF!"f to a complex list item, consisting of two
real data fields. Each real field is converted to a single­
or double-precision floating-point list item according

to the format Fu:.d, Etc.d, or Dw.d, where w is the
real field width and d is the width of the decimal
fraction.

Entry: The entry point is CHCl~fl. The parameter list
is described at the beginning of this subsection under
"Data Conversion Houtine Parameter Lists."

Rot/tines Called:
• Real and Integer Input Conversion (CHCll)

• PRMPT (CZATJI)

Error Checks: If only one or if no real fields exist in
the complex data field in the input buffer, or if there is
a missing parenthcses or central comma, CHCIM issues
an error message via PRMPT. No further action is taken
and the list items remain unchanged. If either or both
real fields contain invalid characters or exceed the per­
missible magnitude range, CHCll assumes the responsi­
bility for producing an error message.

Data References:
• Parameter lists for routines called by CHClM.

• Adcons for the table produced by CHClJ, containing
powers of ten.

• A chained list of save areas to accommodate all pos­
sible calls to other routines.

Complex Output Conversion-CHCIN

This routine converts a complex list item consisting of
two, single- or double-precision floating point items to
a complex data field in an output buffer. Each floating
point list iteFl is converted to a real data field accord­
ing to the format code Fw.d, EtV.d, Dw.d, or Gw.s,
\\'here 10 is the real field width, d is the width of the
decimal fraction, and s is the number of Significant
digits.

F,ntry: The entry point is CHU;,\l. The parameter list
described at the beginning of this subsection under

"Data Conversion Houtine Parameter Lists."

T?olltines Called:
• General Output COllw'rsioll (CIICIT)

Error Check: If the FORMAT specifications (F, E ,D,
Of C) is improperly specified or the real data field is
greater than the permissible range, the general output
conversion routine (elIcIT) assumes the responsibility
for producing all error message.

Dola References:
• !'" ~\Jndcr list for CIICIT.

• Adcons for the table produced by CHCIJ, containing
powers of ten.

• A chained list of save areas to acommodate all pos­
sible calls to other routines needed.

Alphameric and Hexadecimal Input
Conversion-CHCIO
This routine transfers a specified number of bytes
(alphameric or hexadecimal characters) from an input
buffer area to a list item. The format is Aw (alpha­
meric) or Zw (hexadecimal), where tV, field width, is
the number of characters being transferred.

Entry: The entry points are CHCIOl (alphameric data)
and CHCI02 (hexadecimal data). The parameter list is
described at the beginning of this subsection under
"Data Conversion Routine Parameter Lists."

Routines Called: None.
Error Checks: None.
Data References: None.

Alphameric and Hexadecimal Output
Conversion-CHCIP
This routine transfers a speCified number of bytes (al­
phameriC or hexadecimal characters) to an output
buffer area from a list item. The format is Aw (alpha­
meric) or ZtC (hexadecimal), where w, field width, is
the number of characters being transferred.

Entry: The entry points are CHCIP! (alphameric
data) and CHelP2 (hexadecimal data). The parameter
list is described at the beginning of this subsection
under "Data Conversion Routine Parameter Lists."

Routines Called: None.
Error Checks: None.
Data References: None.

Logical Input Conversion-CHCIQ

This routine converts a logical field in the input buffer
area. The logical field has the format Lw, where 10 is
the logical field width.

Entry: The entry point is CHCIQl. The parameter list
is described at the beginning of this subsection under
"Data Conversion Routine Parameter Lists."

Routines Called: None.
Error Checks: None.
Data References: None.

Logical Output Conversion-CHCIR

This routine converts a list item to a logical field in the
output buffer area. The logical field has the format LtV,
where tV is the logical field width.

Entry: The entry point is CHCIRl. The parameter list
is described at the beginning of this subsection, under
"Data Conversion Routine Parameter Lists."

Routines Called: None.
Error Checks: None.
Data References: None.

General Input Conversion-CHCIS
This routine converts a data field in the input buffer to
a list item according to the format Gw.s, where w is
the field width and s is an optional specification of the
number of significant digits.

Section 3: I/O Subprograms 25

Entry: The entry point is CHCISl. The parameter list
is described at the beginning of this subsection under
"Data Conversion Houtine Parameter Lists."

Routines Called:
• Heal and Integer Input Conversion (CHCll)

• Logical Input Conversion (OfCIQ)

• Alphameric Input COllversi.on (OICIO)

Error Checks: CHCIS performs no error checking.
Error checks, if any, are made by the called data con­
version routines.

Data Refcrences:
• Parameter lists for the routines called by CHCIS.

• A chained list of save areas to accommodate all pos­
sible calls to other routines.

General Output Conversion-CHCIT

The routine converts a list item to a data field in the
output huHcr. according to the format Cw.s, whcre tV

is the field width and s is an optional specification of
the number of significant digits.

Entry: The entry point is CHCITl. The parameter list
is described at the beginning of this subsection under
"Data Conversion Routine Paramcter Lists."

Routines Called:
.. Integer Output Conversion (CIICIII)

• Real Outpllt Conversion (CIICIJ)

• Logical Output Conversion (cHcrn)

Error Checks: CHCIT performs no error checks. Dis­
crepancies hchvecn the size and type speCification of
the list item amI the data field are detected by the
called cOllversion routine.

D(Jtu Rejerence8:
• Parameter lists for the routincs called by CHCIT.

• A chained list of save areas to accommodate all pos­
sible calls to other routines.

List Termination--CHCIU

This rouline terminates li,t processing for a READ,

\VlUTE, PHlNT. or PUNCH statement, and completes any
I/O operation that is pcnding.

Entry: The single cntr;' point is CllClUl. No param­
eters are passed.

Routines Called:
• Format Processor (CHClF)

• J! 0 Control (CIICK:)

The final rehtrn is made with registers unchanged,
except [hat register 1,'3 will be set to the address of the
calling module's PSECT and register 15 will be set to
zero.

Error Check: None

Data Refcrences:
• Parameter lists for other 110 library routines called

Ly CHClU.

26

• A chained list of save areas to accommodate all pos­
sible calls to other routines.

• A control byte within the DCB prefix that describes
the current operation. (See "DCB Maintenance­
CHClB" and Table 10, "Format and Content of the
DCB Prefix," in this section.)

Exit-CHCIW

The ~xit Routine's subprograms, STOP, EXIT, and PAUSE,

are described in Section 2.

Error Message Control-CHCIX

This routine receives the text of error messages from
other 110 library routines during execution, and deliv­
ers those messages as output vi~ the GATE macro in­
struction, to the user's SYSOUT. In conversational mode,
for example, any error message generated is passed to
this routine for transmission to the user's terminal.

Entry: The entry point is CHCLXl. The parameter list
is fixed-length and has the following format:

Word 1 Address of first part of message.

Word 2 Byte length of first part of message, minus one.

';Vord 3 Address of second part of message.

Word 4 Byte length of second part of message, minus one.

The first part of each message is a character string
that never changes for that message, and is therefore
part of the calling routine's CSECT. The second part is
some data item that does change (such as the contents
of a field containing invalid characters), and which,
thcrefore, is in a PSECT (either of the user's problem
program or of the 110 library routines). If only a single
part message is to be transmitted to SYSOUT, word 3 of
the paramcter list is set to zero.

Routines Called:
• GATWR maero instruction

Error Checks: The size of the second part of a mes­
sage must not be greater than 49 bytes. If this limit is
exceeded, only the leftmost 49 bytes of data will be
ohtained from the invalid field. No error message is
generated for this situation.

Data References:
• A lOO-byte buffer area llsed for the crror message.
• Parameter lists for the routines called hy CHCIX.

• A chained list of save areas to accommodate all pos­
sible calls to other routines.

Interruption al)d Machine Indicator Routine-CHCBD

This routine sets bits in the psw so that the fixed­
point overflow and significance exceptions will be ig­
nored, and directs the system interruption handler
where to pass control if any of the following four
exceptions occur:

Exception Subprogram
Specification CHCBE2

Exponent overflow CHCBES

Exponent underflow CHCBE4

Divide check CHCBE5

In addition, this routine initializes the machine indi­
cator flags and the sense light indicators, and clears
any pointers to entries in the DCB table. It then returns
control to the calling program.

Entry: The entry point is CHeBDl. There are no entry
parameters.

I/O Communication-CHCIY

This table contains space for linking register save
areas and an area in which to construct a chain of
DeBs.

The format of CHCIY within the I/O PSEcr communi­
cation region (i.e., save and DCB areas) is:

o

76

152

228

304

380

456

PSECT Communication Region

SAVE 1

SAVE 2

SAVE 3

SAVE 4

SAVE 5

SAVE 6

460 464 468

CHCIY9

472

6 19-Word Save Areas
(Each area has the
address of the next
save area in word 19)

Pointers to work areas
for CHCIA, CHCIE,
CHCIU, CHCIV,
CHCIW

Area for constTlldioll
of DCBs and DCB
prefixes

Section 3: I/O Subprograms 27

(THIS PAGE INTENTIONALLY I.EFT BLANK)

Appendix A: Replacing FORTRAN IV Library Subprograms

This appendix provides a general description of tech­
niques for replacing a FORTRAN IV library subprogram
\vith a "private" version of the same program. The dis­
cussion below does not describe a technique for replac- .
ing the copy of a subprogram in a manner that will
cause all users of FORTRAN IV library subprograms to
use the new version.

It is recommended that a user-written version be
loaded explicitly, with a LOAD command. The FORTRAN

IV mathematical subprograms, service subprograms,
and I I 0 Sll bprograms reside in SYSLIB as six link-edited
modules, and implicit loading of a user-written version
is possible only whcn the corresponding FOR'rnAN IV

library module is not already loaded.
t\1a;IY suhprograms call other subprograms, as shown

in Table 1, Table 8, and Figures 1-11. For example, the
CSQRT subprogram, c;,lled by a FORTRAN program to
find the square root of a CO~[PLEX*8 number, requires
the CABS and SQRT subprograms. If the FORTRAN user
loaded his own version of SQRT, the CSQRT subprogram
would usc this vcrsioll. Note that if the FORTRAN user
wishes the CSQRT subprogram to use his own version of
S(,llrr. he must supply the entire }'IATHLlB (since it is
link-('dited). The USCI' may not supply ol1e routine only
without performing :l new link-edit.

The FORTHAN compiler and the FOHTRAK IV library
subprograms expect a substituted subprogram to sat-

isfy the same references as the original subprogram.
The follOWing table serves as a guide to the external
names of each subprogram.

Table 11. External Names of FORTRAN IV Library
Subprograms .

MATHEMATICAL SERVICE 1/0

SUBPROGHAMS SUlJl'HOGIlAMS SUIJPHOGHAMS

Entry See Tables 1 See Table 6. See Scction 3.
Name and 2.

Routine Scc Tables 1 See Table 6. Sec Section 3.
Namc and 2.

CSECT Houtinc name' CHCBD and Houtine name
Name suffixed by 'W'. CHCBE: Hou- slltTiX('(\ bv 'C'.

tinc name CHC1B and
suffixcd by '\11/'. CIICIC havc
CHCrVand additional
CHCIW: Rou- CSECTS with
tine name routillf' llame
suffi.\:ed by 'C'. suffixed bv ·X'.

l'SECT HOlltinc name CHCBD and noutille namc
Name suffixed hy ·R'. CHCBE: Hou- suffixed by '\V'.

tine name
suffixed bv 'R'.
CHCIV,tnd
CIICrW; Rou- !
tint· name I
s"lfixed by '\V'.

Appendix A: Hcplacing FORTnAN 1\- Library Subprogram, 29

Appendix B: Assembler Language Information

The mathematical, service, and I/O subprograms are
available to the TSS assembler-language programmer.
The following explains the method of calling a library
subprogram from an assembler-language program and
gives other information for the assembler-language
programmer who wants to use these subprograms.
Before reading any subdivision of this appendix, the
assembler-language programmer should become fa­
miliar with the corresponding section of the main text.

NOTE: The examples in this appendix have not been
tested on the current system.

The linkage from ~ORTRAN compiled programs to
FORTRAN IV subprograms is a standard, Type I linkage.
Assembler-language programmers must link to these
subprograms using an identical linkage. The CALL
macro instruction proVides a number of different means
for establishing the correct linkage. (See Assembler
User Macro Instructions.) ~ hand-coded linkage may
also be used, but such linkages should generally be
avoided when macro instructions supply the servIce re­
quired. Regardless of which form of linkage is used,
however, the register usages for linkage are:
1. Register 1 must point to whatever parameter list the

subprogram requires.
2. Hegistcr 13 must point to a 19-word save area in the

calling program.
3. Hegister 14 must contain the address in the calling

program to \vhieh control will be returned by the
called program at the completion of its operation.

4. Hegister lEi must be loaded with the address of the
entry name and this register is used to transfer con-. '
trol to the called program.

Before returning to the calling program, FORTRAN
lihrary suhprograms always restore general registers 1
through 14. General register 0 is restored except
when the result is returned by a mathematical sub­
program and is an integer, in ~hich case the integer is
contained in this register. The Boating registers are not
restored, and should be assumed destroyed. General
register 15 is Hot restored, as future modifications to
th~ FOlURA:-.T library subprograms may make use of this
register for a return code (they do not currently do
so); this register should be assumed destroyed.

Mathematical Subprograms
The parameter list for a mathematical subprogram
must contain the addresses of the arguments in the
proper order:

30

• Directly referenced subprograms. The order is the
same as that in the list of operands within the paren­
theses in the corresponding FORTRAN source state­
ment. For example the source statement

ANS = SIN (RADIAN)

in FORTRAN coding corresponds to an assembler-lan­
guage call containing one add\ess in the parameter
list-the address of RADIAN. The FORTRAN statement

ANS = ATAN2(X,Y)

produces a linkage with a parameter list containing
the addresses of X and Y, in that order. The assem­
bler-language programmer's linkage to ATANZ must
do the same.

• Indirectly referenced subprograms. The order for the
exponentiation subprograms is: address of the num­
ber to be raised to a power and the address of the
power itself.

The arguments pointed to by the parameter list can
be either integer values, or normalized Hoating point
real or complex values, as required by the called pro­
gram. An integer argument occupies four locations of
storage. A real argument occupies either four or eight
locations of storage. An argument occupying eight lo­
cations of storage starts on a doubleword boundary
and occupies two adjacent words. The address of the
first word is the address of the entire argument.

A complex argument occupies either eight or six­
teen locations of storage, starts on a doubleword bound­
ary, and occupies adjacent words. The first half of the
argument contains the real part of the complex argu­
ment; the second half contains the imaginary part. The
address of the real part of the argument is the address
of the entire argument.

Each mathematical subprogram returns a single
answer-either an integer value, a normalized floating
point value, or a complex value. An integer answer is
stored in general register 0, a real answer is stored in
floating paint register 0, and a complex answer is stored
in floating point registers 0 and 2. The real and com­
plex parts of a complex number occupying eight stor­
age locations will be in the high-order four storage
locations of floating point registers 0 and 2.

Examples of the use of the CALL macro instruction
for an assembler-language programmer using the sine
program are:

or

LA

CALL

LA
LA
CALL

SAVE DS
PARLIST DC

13, SAVE

SIN, (RADIAN)

nSAVE
1.5, VCON
(15) :\IF=(E, PARLlST)

19F

Point to a 19-
word save area.

VCON ADCON
A(HADIAN)
I:\IPLICIT, EP=SIN

The above examples produce code equivalent to the
following hand-coded linkages. (Several additional in­
structions are included for greater clarity.) This exam­
ple assumes that appropriate cover registers have been
established, and RADIA~ contains the value, in radians,
for which the sine is to be obtained.

SAVE
PARLIST

VCON
nCON

RADIAN
ANS

LA
LA
L
ST
L

11, SAVE
1, PARLIST
14, RCON
14, 72 (0, 13)
15, VCON

BASH 14. 15

STE 0, At\'S

DS 19F
DC A (HADIAN)

DC V (SIN)
DC H (SIN)

DS F
DS F

Service Subprograms

Point to a I9-word save area.
Point to the parameter list.
Store the R-con in the 19th

... 'ord of the callers save area.
Obtain the address of the entry

point.
Branch to the entry point, set­

ting register 14 to the address
Of the instruction following
the BASR.

Store the result in ANS.

The I9-word save area.
The sine at HADlAN is to be

computed.
The V-R-con pair for the

system entry to the sine
program.

The result is stored here.

The calling sequence for DUMP and PDUMP may specify
a variable number of paramf>tcrs. Forms of the CALL

macro instruction are ,n'ailable for this purpose. The
linkage is identical to that described above, with one
exception: immediately preceding the address of the
first parameter there must be a word containing, in
binary and right adjusted, the number of addresses in
the parameter list. r\ote that this word contains a
count, not the address of a count.

II 0 Subprograms
As with other Ilo, data sets used with the FORTRAN

I/o library must be defined. Unless the program is
using GATE Ii 0, the programmer must give a DDEF com­
rnand. For example:

DDEF DDNA:\IE=FTlOF001,DSOH.G=VS,DSNAr..IE=PAY

Thi'; command is presented in keyword form, for clar-

ity. It could also be written in the shorter, positional
form as follows:

DDEF FTlOFOOl,VS,PAY

Note that the DDN.-\ME is in FOHTRAN format amI con­
tains the data set reference number in the two digits
following the 'FT.'

Having satisfied DDEF requirements, the programmer
is in position to implement thc information given ill
Section 3: I/O Subprograms. The following arc ('xam­
pIes of ways the assemhler-Ianguage programmer
might use FORTRAX 110 facilities.

Formatted READ with List

Assume that the programmer \vants to read an eighty­
byte record containing three integer numbers in the
first half of the record. The first number occupies bytes
three through eight, the second oceupics bytes fifteen
and sixteen, and the third occupies bytes thirty-nine
and forty. The rest of the first forty bytes are blank.
The second forty bytes are to be ignored.

The numbers are to be converted from character to
integer form and placed in storage areas (list items)
labeled A. B, and C, respectively.

The programmer chooses not to construct a DCB,

since CHCIB (DCB t-.Iaintenance) will construct one for
him when it finds that there is no DCB for the data set
reference number given in the DDEF command.

LA l3,SAVE
CALL CHCIAl, (PAHl.ISTO) The linkage shown by arrow

4 of Figure 2, to CHCIA
(I/O Initialization).

At this point, CHCIA (1) causes CHCIB to create the DCB,

(~) causes cnClC (110 Control) to perform the 1/ o. and
(3) passes the FORMAT string to CIlCIE (List Item
Processor) .

SR

CALL

SR
CALL
SH
CALL
CALL

0,0

CHCIE l, (P ARLISTl)

0,0
CHClEl, (F ARLIST2)
0,0

Indicate to CHCIE that the
list item is a Single
element.

The linkage shown by arrow
2 of Figure 2, to CnCIE.
CHCIE will process the
first list item.

The second list item.

CHCIE1, (PARLIST3) Tne thircllist item.
CHCIUl The linkage shown by arrow

7 of Figure 2, to CHCIU
(List Termination) .
There are no parameters.

SAVE DS 191"
* PAHAMETER LIST FOR CHCIA
PARLISTO DC A(DSRN)

DC A(CREAD)
DC A (COPNDS)
DC A(FORMAT)

Appendix B: Assemhler Language Information 31

DSRN

CREAD

COPNDS

DC
DC

DC

DC

DC

DS

A (LA BEL 1) Addresses of the user-
A(LABEL2) written error-handling

and end-of-file routines.
Both parameters are

XL4'OA'

X'80'

XD8'

OF

optional.
The data set reference

number (1010). The I/O
routines expect it to be in
fullword, binary form.

The control byte addressed
by the second word of
the parameter list.
Signfiies READ
operation.

The control byte addressed
by the third word of the
parameter list. Specifies
that there will be list
processing, and that there
are entries in the last
three words of the
parameter list.

Puts FOR:-VIAT string on a
fullword boundary.

Following is the FORMAT string. Note that the fields
are defined in such a way that the numbers are in the
rightmost portions of the fields. This must always be
done \vith integer conversion, since blanks are treated
as zero and would multiply any integer value by ten
for every blank on the right.

FORMAT DC C' (C8,G8, The FOR!\!AT string.

* P AHA METEH
PARLISTI DC

DC
PAHLIST2 DC

DC
PARLIST3 DC

DC
DC

C24),
LISTS FOIl. CHCIE

A(lTD.l)
A(A)
A(ITE"-l)
A(B)
A(IT£:I.1)
A(C)
X'32' The first four bits of this

control hvte inclic.1te that
the list it~m (into which
an integer will be placed)
is four (3+1) bytes long.
The second four hits
indicate that the
characters which the
FOHMAT statement
causes to be read are to
be converted into integer
fonn.

FORMAT Conversion and Lis~ Processing

Assume that the progra;11mer has scanned numbers
into HOLD, a 400-byte area. The nnmbers are in EBCDIC

form, with the format xXX.xxx, where 'x' is any digit.
They occupy contiguous, two-word elements. The pro­
gr;\mn.cr wants to convert them into real form and
move the result into a .sO-word array. (An array is
simply a string of equal-length elements.) The pro­
grammer wants to usc the FOHTRAN I/o library only for
its data conversion and list processing facilities, and is
not requesting 1/ o. Thus, the user program will enter

32

the I/O library at the point shown by arrow 4 in Figure
2. Arrows 4-7 show the linkages that will occur.

Note that each doubleword in HOLD contains a blank.
It does not matter whether the blank is to the right or
to the left, since FORTRAN data conversion will treat it
as a zero. (Though if the nllmhers were whole num­
bers, it would matter.)

To begin with, the user program stores into the
CHCIB work area, at CHClB2, the address of a parameter
list .which substitutes for the first four pointers of the
DCB prefix.

LA 2,PTRS
L 3,VCONl
ST 2,0(0,3)

Next, since the user program is bypassing CHCIA, it
must store the address of the FORMAT character string
into the first word of CHCIFW and zero out the second
and third words of CHCIFW.

LA 2,FORMA'1
L 3,YCON2
ST 2,0(0,3)
SH 4,4
SR 5,5
SDI 4,5,4 (3)

Then comes the usual sequence of code for calling
CHCIE.

LA 0,200(0,0)

CALL CHCIEl, (CITEM,
AHHA)

HOLD DS 400X
ARRAY DS 50F
CITEM DC X'33'

PTRS DC A(HOLD)

DC A(HOLD)

DC A(HOLD+
400)

DC X'80COOOOO'

VCONl DC V(CHCIB2)
VCON2 DC V(CHCIF\V)
FOIl.~fAT DC C'(50F8.3)'

Indicates that the list item
is an array, and that the
arTa y is 200 bytes in
length.

Causes the conversion and
movement of data to be
completed.

List Item
The first four bits of this

control byte indicate that
the elcmcnts of the array
are four bytes long. The
second four bits indicate
that the data in the buller
is to be converted to real
form.

Starting location of raw
data.

Current location. (Same as
starting location.)

End of raw data.

First byte indicates a
READ operation. The
second byte indicates a
FORMAT statement
with a list with the
FORMAT statement
not encoded.

This appendix describes the assumptions that the FOR­

TRA~ 110 hbrary makes in initializing DCBS with infor­
mation concerning record format (RECF:\1) and data
set organization (DSORG). These assumptions are de­
scribed to help reduce a frequent source of eITor en­
countered by the usn when performing I/O.

Some introductory material is presented on thc DCB

describing its general use, contents, and sources of
initialization, before discussing the permissible record
formats and data set organizations.

DCB Use
The Data Control Block (DCB) is created by DCB Man
agement (CHCIB) and is used by certain data manage­
ment routines invoked by macro instruction references
in 110 Control (CHCIC). The DCB is required for all I/o
performed using either BSAM or VAM. However, the DCB

is not required for I/O when using the GATE macro in­
structions.

DCB Content

rhe DeB contains information such as the DD~A:\rE, type
of data set organization, the type and size of records,
block size for blocked data sets, number of buffer

,('as, exits for SYNAD and EODAD, and various control
'Ltg, llsed hy data management.

DCB Initialization

The FORTRAN 110 routines, when processing an input
data set, take advantage of information in the DCB to
adapt to the characteristics of the data set and read it
correctly. Characteristics are based on the parameters
for a DC~ that can be supplied from:
• The user program-type of 110 used and associated

(!':ta format.
• User-supplied DDEF commands-some of the infor­

m:Ition in the DCB can be changed in this manner;
hO\YCVCL the extent of change is limited.

• Input Jata set labels-these override both of the
ahove sources of information, within limits set by
data management.

Appendix C: FORTRAN Data Management

Combinations of DSORG and RECFM
Table 12 gives the permissible combinations of record
formats and data set organizations that may he speci­
fied when using the FORTRA~ 110 library.

Tahle 12, Comhinations of DSORC and RECF\! Valucs

DSORG VALUES
RECFM

VS PS VSI' VI vIP

V A A A A A
VB N A N N N
VT N A N N N
F A A A A A
FB N A N N N
FS N A N N N
FT N A N N N
FBS N A N N N
FBT N A N N N
FBST N A N N N I

FST N A N N

~ U L A L N N

Codes mean:
A - Acceptable
L - Limited Acceptable
N - Not acceptable

DSORG abbreviations mean:
VS - Virtual sequential (direct-access only)
1'S - Physical sequential-BSAl\f-(any devicc

except tr'rminals)
VSP - Virtual sequential partitioned (like VS)
VI - Virtual index sequcntial (like VS)
VIP - Virtl:::l index sequential partitioned (likc VS)

RECFM abbreviations mean:
V - Variahle-lt·ngth unhlocked records
VB - Variahle-Iength blocked records
VT - Variable-length unblocked with track ovcrllo"
F - Fixed-length unLlocked records
FB - Fixed-length blocked records
FS - Same as F, no truncated blocks or unfilled tracks
FT
FBS
FBT
FBST
FST
U

- Same as F, tm('k overflow
- Same as FB, no tll1n('ated blocks or unfilled tLlcks
- Same as FB, track overflow
- Same as FBS, track overflow
- Same as F, no tnmcateJ blocks. track overflow
- Undefined record length

I

Any of the RECF:-l codes shown can be fol1owl'u by
the letter A or M, A indicates that the first character ~f
every logical record is an extended A'\SI F01\TRA,\ l\'

carriage or punch control code. ?vl indicates that the
first character of ever), record is a TSS! 360 machine con­
trol byte. In general, the yI option cannot lx' llsed by
FORTRAN output data sets, since the control codes are
unprintable and do not conform to FORTR·\:\ conVCll­
tions.

AppendiX C: FOHTHAN Data)l.lanagt'llcnt :33

Unformatted FORTRAN Logical Records

Under any of the organization techniques used, an un­
formatted WRITE statement may lead to a lOgical record
that exceeds the length of the maximum record sup­
ported by the access method. Furthermore, it is not
possible to enter the byte size of the entire FORTRAN

logical record into the beginning of the 110 physical
record without the possibility of tying up an indefinite
amount of virtual storage. Therefore, unformatted
FORTRAN logical records may span over data manage­
ment physical records. In the management of unfor­
matted FORTRAN data, the first two bits of every vs

34

physical record or the third byte of every ps phYSical
record is a control byte defined as follows:

X'OO' A FORTRAN logical record does not span into or out of
the data management physical record.

x'or This data management physical record is the first of a
span.

X'02' This data management physical record is the last of a
span.

X'03' This data management physical record is within the
range of a span.

No data management physical record will be written
containing more than one unformatted FORTRAN logical
record.

Appendix D: DUMP and PDUMP Sample Storage Printouts

This appendix contains a sample printout for each
dump format that can be specified for the DUMP and
PDUMP subprogram. The printouts are given in the

Table 13. Sample Storage Printouts

rnNVI="Rc:.TnN rnni'" n _ >-lFlCAI)t=("TMJlI

()()()"IF?:?" r1r?r"lr4 OC6C7CB C9D1D203

--

rONvl="RSTON con~ 1 - I n(;TrAI * 1

order: hexadecimal; lOgical *1, logical *4, integer -2,
integer *4, real *4, real *8, oomplex *8, oomplez -Ie.
and literal.

040506D7 08D9pE3

OOO"lF1P'(\ T F T F L_---L---F F F F

----- --
CONVERSION CODE 2 - LOG T CAL * 4

0003E1 DC' T F T F T F
. *._- _ .. _ •.

CONVERSION CODE 3 - I NTEGf;R * 2 ----.-

O()()~F1RA 1 2 3 4 5 6

- ----
CONVERSION CODE 4 - INTEGER * 4

0,)03E1 F8 1 2 3 4 5 6

CONVFRSION COO"" 5 - REAL * 4 --

0"03E248 1.00000E 00 0.20000E 01 O.3~OOOF 01 O.40000E 01 ,----

r- CONVERSION CODE 6 - REAL * 8

I - ----------
0003E270 1.00000D 00 0.200000 01 0.30000D 01 0.40000D 01

r -----------

~-- CONVERSION CODE 7 - COMPLEX * 8

! '"),)03F2Cc) 1.OGCJOCE ;) () 0.20000E 01 0.2000Q.U1 0.30000E 01 ---

- -- -
CONVERSION CODE 8 - COMPLEX * 16

0003£310 l.OOOOOD 00 0.20000D 01 0.200001") 01 0.300000 01
-,-- ----

CONVERSION CODE 9 - LITERAL ------------

0(;03E220 ABCDEFGrlIJKLMNOPQRSTUV~

Appendix D: DUMP and PDUMP Sample Storage Printouts 3:?

Appendix E: Interruption Procedures

This appendix contains descriptions of the procedures
followed when the user's program is temporarily inter­
rupted due to certain types of interrupts. Interrupts
are hardware-originated breaks in the Row of process­
ing. Program interrupts result from improper specifica­
tion or use of instructions and data. The term exception
is used to refer to these types of interrupts (see Princi­
ples of Operation). Six such exceptions occur fre­
quently enough during normal FORTRAN programming
to warrant special treatment.

1. Fixed pOint overflow exception
2. Significance exception
3. Exponent overflow exception
4. Exponent underflo\v exception
5. Floating pOint-divide exception
6. SpeCification exception

The procedure for handling these exceptions follows.
The compiler generates code at the beginning of all
main programs that calls the CHCBDl entry to module
CHCBD. At CHCBD! these operations are performed:

1. Bits are set in the PSW such that the fixed point
overflow and significance exceptions will be ignored.

2. Initialization is performed such that control will be
pas:ied to an entry in module CHCBD or ClICBE if any
of the remaining four exceptions occur:

36

K,(C! nON

J~HL'J'j: {.\il'IHow
E\,lj(),'l'lll un'1erflow
F;·"c, iI', liviue

, pe,_ ;_,),~ .~iLiun

EXTRY

CHCBD3
CHCBD4
CHCBD5
CHCBEl

At the first three of these entries, flags are set for
later interrogation by routines called as a result of the
CALL OVERFL (tests for exponent overflow or under­
flow. exceptions) and CALL DVCHK (tests for floating
point divide exception) statements.

A specification exception occurs when a variable is
not on a proper word boundary. This condition may
exist in a FORTRAN program if an EQUIVALEKCE or CO~l­
MON statement forces misalignment. The compiler is­
sues a warning diagnostic, but such a misalignment
does not prevent the user from executing the program.
An installation option speCifies that one of two courses
of action is to 1:e taken if a speCification interrupt oc­
curs: (1) terminate the task, or (Z) transfer control to
a program that will perform the desired operation,
using instructions that will not cause an exception (hl('

to incorrect boundary alignment. The routine entered
for either of these eventualities is CIlCBE, \vhich is
entered by the CHCBE! entry. The installation option is
tested, and one of the two above courses of action
taken.

An exponent overflow exception is recognized when
the result of a floating point addition, subtraction, mul­
tiplication, or division is either greater than or equal to
1663 (approximately 7.2 x 1073). An exponent under­
flow exception is recognized when the result of a float­
ing pOint addition, subtraction, multiplication, or divi­
sion is less than 16-65 (approximately 5.4 x 10- 79). A
divide exception is recognized when division by zero
is attempted.

Appendix f: Algorithms

Information about the computations used in the explicitly called mathematical
subprograms is arranged alphabetically in this appendix, according to subprogram
module name. The user entry name associated with each suhprogram is given in
parentheses following the module name.

The information for each subprogram is divided into two parts: a description of
the algorithm used and a description of the effect of an argument error upon the
accuracy of the answer (function value).

The presentation of each algorithm is divided into its major computational
steps; the formulas necessary for each step arc supplied. Some formulas are widely
known; others are derived from common formulas. In tJwse cases, the process
leading from the common formula to the computational formula is sketched in
enough detail that the derivation may be reconstructccP

For the sake of brevity, the needed constants are Ilormally given only svmboli­
cally. (The actual values can be found in the assembly listing of the subprograms.)
Some of the formulas are widely known; those that arc not so widely known arc
cIt'rived from more common formulas. The process leading from the common
formula to the computational formula is sketched in enough detail so that the
tkrivation can be reconstructcd by anyone who h~lS an understanding of collcgl'
mathematics and access to the common kxts on num<Tical analysis. 1 I\Jany approxi­
mations were derived by the so-called "minimax" nll,thods. The approximation
sought by these methods can be charactnizcd as follows. Given a function f(:\'), an
interval I, the form of the approximation (such ,1S the rational form with specified
degre('s.\, alld the type of eITor to be minimized (sHch as tht, lTlative error), there
is nonnally a l111iquc approximation to f(x) whose Iluximllln error over 1 is the
smallcst among all possihle approximations of the givl'lI form. Details of the theory
alld the variolls methods of deriving slIch approximation arc provided in the
rdert'l1cc. 1 The accuracy figures citl'd in the algorithm sectioJls <1]'(' theoretical, and
they do not take l'01111d-off ('!Tors into account. _,i'llor programming techniqul's
u\(,cl to minimize ronnel-off errors arc not lWl't'ssarily dcscrib{'(l he1'('.

The accuracy of an answer produced hy these algorithms is influenced by two
factors: the performance of the subprogram and the accuracy or tht:' argument.
(Pl'J'formance statistics arc givt:'n in Table 1.) The (·ffect of an argument error
upon the accuracy of an answer dcpenels solely upon the mathematical function
involved and not upon the particular codilH; used in the subprogram.

Because argument errors, whether accumulated prior to use of the subprogram
or introduced by newlv converted data, always infim'Jlcc the accuracy of answers,
a gUide to the 'propagational effect of argu~1t'nt errors is provided. This guide
(expressed as a simple formula, where possible) is intt:'nded to assist users in
assessing the effect of an argument error.

1 Any uf the common numerical analysis text'i may ht' l1~c·tl as a n.·ferent:-i.'. One sllch text is F. B. lIildehralH!'s
Introduction to Numerical Analysis (~lcGraw-Hill Book Company, Inc" New York. N ,1'" 19:56). Backgn)und
information for algorithms that use continued fractiolls may b(' found in H. S. VvaU's Aaalytic Theory of
Contin.ued Fractions (D. VanNostrand Co., Inc., Princeton. ~.J .. 1948),

Appendix F: Algorithms 37

38

These symbols are used in this appendix to describe the effect of an argument
error upon the accuracy of the answer:

SYMBOL

g(x)

fix)

"
E

E.'(PLAN ATION

Result given by subprogram

Correct result

f(x)-g(x)
fix)

Relative error of argument

f(x)-g(x)

Absolute error of argument

Relative error of result given by
subprogram

Absolute error of result given
by s.ubprogram

The notation used for the continued fractions in this appendix complies with
the speCifications set by the National Bureau of Standards. For more information,
see Milton Abramowitz and Irene A. Stegun (editors), Handbook of Mathemati­
cal Functions, Applied Mathematics Series-55 (National Bureau of Standards,
vVashington, D.C., 1965).

Although it is not specifically stated below for each subroutine, the algorithms
in this chapter were programmed to conform to the follOWing standards governing
floating-point overflow/underflow.

1. Intermediate underflow and overflows arc not permitted to occur. This prevents
the printing of irrelevant messages.

2. Those arguments for which the answer can overflow are excluded from the
permitted range of the subroutine. This rule does not apply to CDABS and CABS.

3. When the magnitude of the answer is less than 16-65 , zero is given as the
answer. If the floating-point underflow exception mask is on at the time, the
underflow message will be printed.

Contral of Progrum Exceptions in Mathematical Functions

The FORTRAI\ mathematical functions have been coded with careful control of error
I, uatiou;. A [(suL i:; provided whenever the answer is within the range repre­

S :l!ah], in til{; Hoatir-g-p')'nf form. ,cn 0; kr to bc consistent with FORTRAN control
C)i' ".cut m-cr:Lvv/Ul1C1crfl)w eXc:cptivls, th~ follOWing types of conditions are

j'('C'f'gl 'z(,(, ,0 lei La: lcUed sqJ;1J <ttdy.
'/Vhl r1~wni Lctde (j[the [Ul1ctil;'~ dlue is too large to be represented in the

II IOil", lhe- cnnciitiOll i~' (lIed a termin,ll overflow; when the magni-
1:',1, ,,' to:)(rcprc:;c:ol,,(l, a terminal underflow. On the other hand, if the
funel, Jm:; rcprc:,p;1tablc, but if ('{eeutioh of the chosen algorithm causes an
.. ,;,' ",,(ledlm" ie lie !,roce~c;, thi;' -'Olldition is called an intermediate dver-

How or' II iderllc'v

Funrti·~n so broutillCS in the FORTRAN library have been coded to observe the
following [,1"S for tll,;se conditions:

1. Algorithms which can c:ausc an intermediate overflow have been avoided.
Therefore an intermediate overflow should not occur during the execution
of a [ullction subiOutine of the library.

2. ITltenrwdiatc underflows are detected and not allowed to cause an interrupt.
1n other worth spurious underflow signals are not allmved to be givcn, Com­
putation of the function value is successfully carried out.

3. Tcrminal overflow conditions are screened out by the subroutine. The argu­
ment is considered out of range for computation and an error diagnostic is
given.

4. Terminal underflow conditions are handled by forcing a floating-point under­
flow exception. This provides for the detection of underflow in the same
manner as for an arithmetic statement. Terminal underflows can occur in the
following function subroutines: EXP, DEXP, ATAN2, DATAN2, ERFC, and DERFC.

For implicit arithmetic subroutines, these rules do not apply. In this case, both
terminal overflows and terminal underflows will cause respective floating-point
exceptions. In addition, in case of complex arithmetic (implicit multiply and di­
vide), premature overflow lunderflow is possible when the result of arithmetic is
very close to an overflow or underflow condition.

Appendix F; Algorithms 39

Explicitly Called Subprograms

Absolute Value Subprograms

CABS/CDABS

l. Write Ix + iyi = a + ill.
2. Let Vj = max (lxi, :!l1), and V2 = min (lxi, Iyi) .
. 3. If characteristics of Vj and V~ differ by 7 (15 for CDABS) or more, or if v:.! = 0,

then a = VI, b = O.
4. Otherwise,

a = 2" VI" ~% + %(::r ,andb = 0.

If the answer is greater than 1663, the floating-point overflow interruption will
take place (see Appendix C). The algorithms for both complex absolute value
subprograms are identical. Each subprogram uses the appropriate real square root
subprogram (SQRT or DSQHT).

Effect of an Argument Error

1
E-"28.

Arcsine and Arccosine Subprograms

ARSINI ARCOS

Algorithm

1. If 0 ::::; x <:: %, then compute arcsin (x) by a continued fraction of the form:

arcsin (x) ~ x + Xii. F where
ell el2

F= (~)+ (.>+). x- + CI x- C2

The coefficients of this formula were derived by transforming the mlOlmax
rational approximation (in relative error, over the range 0 <:: x2 <:: %) for
arcsi n (x) / x of the following form:

arcsin(x) "' [. al + a2x2]
:=:::: au + x-· b + b 2 + 4 •

X 0 IX X

.\Iill!max was taken under the constraint that al) = 1 exactly. The relative error
of this approximation is less than 2-~·'":l.
If 0 x :s %, arccos (x) is computed as:

arccos(x) = i,"-- arcsin(x).

2. If 1Jz < x::::; 1, then compute arccos (x) essentially as:

40

(. 2 . (_ il - x) arccos x) = . • arcsm 'J-2- .

This case is now reduced to the first case because within these limits,

0<:: _)1 - x <:: I/:
= 'J 2 = 2.

This computation uses the real square root subprogram (SQHT)

If 1Jz < :t" :=:; I, arcsin (x) is computed as:

arcsin (x) = ; - arccos (x).

Implementation of the above algorithms (steps I and 2) were carried out with
care to minimize the round-off errors.

.'3. If - 1 <: x < 0, then arcsin (x) = - arcsin Ix]
and arccos (x) = 71" - arccos I x 1.

This reduces these cases to one of the two positive cases.

Effect of an Argument Error

~ .
E -- 1 ." For small values of x, E - .l. Toward the limits (± 1) of the V - x-

range, a small ~ causes a substantial error in the answer. For the arcsine, t -- 0
if the value of x is small ..

DARSIN/DARCOS

Algorithm

1. If 0 <: x <: lh, then compute arcsin (x) by a continued fraction of the form:

arcsin (x) ::::::: x + x3 • F where
dt d2

F = Cl + (:! +) + (:. +) X C2 X Ca

da d4

+ (x:! + C4) + (x:l + ClI r
The relative error of this approximation is less than 2- 51.2•

The coefficients of this formula were derived by transforming the minimax
rational approximation (in relative error, over the range 0 <: x:! <: %) for
arcsin (x) / x of the following form:

arcsin(x) ~ 2[a1 + a2x:l + a~x4 + a4xll + ai\x~J
=ao+x b b" b 4 b· .. · ~. x () + lX- + :lX + :!A' + X

Minimax was taken under the constraint that ao = 1 exactly.
If 0 <: x <: If.!, arccos (x) is computed as:

arccos(x) = ; - arcsin(x).

2. If lh < x <: 1, then compute arccos (x) essentially as:

arccos(x) = 2' arcsin (~1 ; x).
This case is now reduced to the first case because within these limits,

o <: ~1 ; x <: lh.

This computation uses the real square root subprogram (DSQRT).

If 1f2 < x <: 1, arcsin (x) is computed as:

arcsin(x) = ; - arccos(x).

Implementation of the above algorithms (steps 1 and 2) were carried out with
cafe to minimize the round-off errors.

3. If - 1 <: x < 0, then arcsin(x) = - arcsin lxi, and arccos(x) = 71" - arccos Ix].
This reduces these cases to one of the two positive cases.

Effect 0' an Argument Error
.l

E - VI _ x:! . For small values of x, E - j,. Toward the limits (± 1) of the

range a small j, causes a substantial error in the answer. For the arcsine, f '"'"' S if
the value of x is small.

Appendix F: Algorithms 41

Arctangent Subprograms

ATAN/ATAN2

Algorithm

1. For arctan (x!, x~):
If Xl < 0, use the identity arctan (Xl, X2) = - arctan (-Xl> X2).

Hence we may assume that XI :> O. Then:

If either X2 = 0 or 1*, > 224, the answer = ; .

If x~ < 0 and I~ < 2- 2\ the answer = 71'.

For the general case, if X2 > 0, the answer = arctan (~), and

if x~ < 0, the answer = 71' - arctan (~) .

The remainder of the computation is identical for either one or two arguments.

2. Reduce the computation of arctan (x) to the case 0 < X < 1, by using

arctan (- x) = - arctan (x), or

(1) 71' " arctan txt = 2- arctan Ixl·

3. If necessary, reduce the computation further to the case Ixl < tan 15° by using

(Y3- x - 1)
arctan (x) = 30° + arctan x + Y 3 .

The value of IV;; xy-; 11 < tan 15° if the value of x is within the range,

tan 15° < x ::s 1. The value of (\13 - x-I) is computed as
(y3 - 1) x-I + x to avoid the loss of significant digits.

4. For Ixi < tan 150 , use the approximation formula:

42

arctan (x) 0.55913709
x =::: 0.60310579 - 0.05160454x2 + x~ + 1.4087812

This formula has a relative error less than 2- 27 . 1 and can be obtained by
transforming thc continued fraction

arctan (x) x~
x =1- 3+

5

(~ + x- 2) - tv

. (75 3375) where IV has an approxImate value of - 77 x- 2 +-n 10-4, but the true

4-5

value of tv is

(7 ~:311 + X-:l) +

The original continued fraction can be obtained by transforming the Taylor
series into continued fraction form.

Effect of an Argument Error

E,..., I! x2 ' For small values of x, £ ,.., 8; as the value of x increases, the effect

of 8 upon (diminishes.

DATAN/DATAN2

Algorithm

1. For arctan (xl> X2) :

If Xl < 0, use the identity arctan(xt, x:!) = -arctan (-Xl> X2).

Hence we may assume that Xl :> O. Then:

~l 'IT
If either x:! = 0 or > 2:16, the answer = -2 .

X2

~1
If X:! < 0 and < 2-56, the answer = 'IT:

X2

For the general case, if X1 > 0, the answer = arctan (~), and

if X2 < 0, the answer = 'IT - arctan (~).

The remainder of the computation is identical for either one or tvvo arguments.

2. Reduce the computation of arctan (x) to the case 0 < X < 1 by using

arctan (- x) = - arctan (x) and

1 'IT

arctan Ixl = 2- arctan Ixl·

3. If necessary, reduce the computation further to the case Ixl < tan 15° by using

arctan (x) = 30° + arctan (\"; ~ x ;31).

IV'3' x-I
The value of x + y'3 < tan 15°, if the value of x is within the range tan

15° < x < 1. The value of (y'3 • X - I) is computed as (y'3 - 1) x - I + x
to avoid the loss of significant digits.

The relative error of this approximation is less than 2- 60.7 •

The coefficients of this formula were derived by transforming a mlDlmax
rational approximation (in relative error, over the range 0 < x2 < 0.071797)
for arctan (x) I x of the following form:

arctan (x) ~ :! [co + CIX!! + c:!rt + CaXIi]
x = all + x c4 + d1x2 + d;!rt + Xll •

Minimax was taken under the constraint that ao = 1 exactly.

4. For Ixl < tan 15 0 , use a continued fraction of the form:

arctan (x) ~ :! [. _ . a1 a a]
x = 1 + x bo (bl + x:!) - (b2 + :2) - (b3 ~ x:!) .

Appendix F: Algorithms 43

Effect 01 on Argument Error

E -- -1 t. .,' For small values of x, f ,..., 0, and as the value of x increases, the effect + x-
of f upon 8 diminishes.

Error Functions Subprograms

ERF/ERFC

Algorithm

1. If 0 < X < 1, then compute the error function by the following approximation:

erf(x) ::::::: x(ao + alx~ + a2x4 + .. , + a5x10).

The coefficients were obtained by the minimax approximation (in relative
error) of erf (x) / x as a function of x2 over the range 0 < x2 < 1. The relative
error of this approximation is less than 2- 24 .6 • The value of the complemented
error function is computed as erfc (x) = 1 - erf (x).

2. If 1 < x < 2.040452, then compute the complemented error function by the
following approximation:

erfc (x) ::::::: bo + bIz + b2z2 + ... + h9Z9

where.::. = x - To and To c= 1.709472. The coefficients were obtained by the
minimax approximation (in absolute error) of the function f(z) = erfc(Z +
To) over the range - 0.709472 < z < 0.33098. The absolute error of this
approximation is less than 2- R1 ". The limits of this range and the value of the
origin To were chosen to minimize the hexadecimal round-off errors. The value

1
of the complemented error function \vithin this range is behveen 256 and 0.1573.

The value of the error function is computed as erf (x) = 1 - erfc(x).

:1. If 2.040152 < x < 1:3.306, then compute the complemented error function by
the hllowing approximation:

erfc(x) ~= e-'O • F / x where z = x2 and
c] . c~;::; + C3;::;2

F = Co + I - + i _2 + _:~.
(l~ (2'" N

The coefficients for F were obtained by transforming a mmlmax rational
approximation (in absolute errors, over the range 13.306- 2 < W < 2.040452- 2)

of til<' function f(u;) = erfc (x) • x • e 1 ", tV = x-~, of the following form:

The absolute error of this approximation is less than 2-~6.1. This computation
uses the real exponential subprogram (EXP).

44

If 2.040452 < x < 3.919206, then the error function is computed as
erf(x) = 1 - erfc(x).
If 3.919206 -< x, then the error function is ::::::: l.

4. If 13.306 -< x, then the error function is ::::::: 1, and the complemented error func­
tion is ::::::: 0 (underflow).

5. If x < 0, then reduce to a case involving a positive argument by the use of the
following formulas:

erf(- x) = - erf(x), and edc (- x) = 2 - erfc(x}.

Effec' of an Argument Error.

E -- e -:x' • A. For the error function, as the magnitude of the argument exceeds 1,
the effect of an argument error upon the final accuracy diminishes rapidly. For
small values of x, E ,..... 8. For the complemented error function,if the value of x is

-~ .
greater than 1, erfc (x) ,...., e 2x . Therefore, (,..... 2 x" • 8. If the value of x is negative

or less than 1, then (,...., e- x2 • A.

DERF/DERFC

Algorithm

1. If 0 -< X < 1, then compute the error function by the following approximation: .
erf(x) ::::::: x(ao + alx2 + a2x4 + ... + al1x22).

The coefficients were obtained by the minimax approximation (in relative
error) of erf (x) / x as a function of X2 over the range 0 < x2 < 1. The relative
error of this approximation is less than 2- 56.9 • The value of the complemented
error function is computed as erfc (x) = 1 - erf (x) .

2. If 1 -< x < 2.040452, then compute the complemented error function by the
following approximation:

erfc(x) ::::::: bo + biZ + b2z2 + ... bl8z18

where z = x - To and To::::::: 1.709472. The coefficients were obtained by the
minimax approximation (in absolute error) of the function f(z) = erfc(z + To)
over the range -0.709472 < z -< 0.33098. The absolute error of this approxi­
mation is less than 2- 00 .3 • The limits of this range and the value of the origin
To were chosen to minimize the hexadecimal round-off errors. The value of the

complemented error function within this range is between ~6 and 0.1573. The

value of the error function is computed as erf (x) = 1 - erfc(x).
3. If 2.040452 -< x < 13.306, then compute the complemented error function by

the following approximation:

erfc(x) ::::::: e-Z • Fix where z = X2 and

F _ d l dz do
- Co + (z + cd + (z + C2) + ... (z + co) +

The coefficients for F were derived by transforming a minimax rational approxi­
mation (in absolute errors, over the range 13.306- 2 -< W < 2.040452- 2) of the
fimction f(w) = erfc(x) • x· e J', w = x- 2, of the following form:

() ao + alto + a2w2 + ... + a7w7 f tv =< -;----:--;-----:----;-~--:--___:__;_--::---:----::;
- be} + b1w + b~W2 + ... + bsw6 +to7 '

The absolute error of this approximation is less than 2- 579• This computation
uses the real exponential subprogram (DEXP). If 2.040452 -< x < 6.092368, then
the error function is computed as erf(x) = 1 - erfc(x).
If 6.092368 -< x, then the error function is ::::::: 1.

Appendix F: Algorithms 45

4. If 13 .. '306 S x, then the error function is ~ 1, and the complemented error
function ~ 0 (underHow).

5. If x < 0, then reduce to a case involving a positive argument by the use of the
fonowing formulas:

erf(- x) = - erf(x), and erfc (- x) = 2 - erfc(x).

Effect of an Argument Error

E ~ e-I~, • A. For the error function, as the magnitude of the argument exceeds
1, the effect of an argument error upon the final accuracy diminishes rapidly. For
small values of x, £ ~ o. For the complemented error functioh, if the value of

e- x2

x is greater than 1, erfc(x)--~. Therefore, £ """' 2X2 • o. If the value of x

is negative or less than 1, then £ ~ e-·I~ • D..

Exponential Subprograms

EXP

Algorithm

1. If x < - 180.218, then 0 is given as the answer via Hoating-point underHow.
2. Otherwise. divide x by log .. 2 and write

x
y=--=4a-b-d

log .. 2

\vhere (J and b are integers, 0 < b < 3 and 0 < d < 1.
3. Compute 2- d by the following fractional approximation:

2d
2--<1 =< 1 - 617.97227

0.034657359 d 2 + d + 9.9545948 - d2 + 87.417497

This formula can be obtained by transforming the Gaussian continued fraction

z z z z z z z z
e- Z = 1 - -- -- -- -- -- -- -- -

1+ 2- 3+ 2- 5+ 2- 7+ 2'

The maximum rebtive error of this approximation is 2- 29•

:1. Multiply 2-(/ by 2-".
;). Finally, add the hexadecimal exponent a to the characteristic of the answer.

Effect 01 an Argument Error

(- .' If the magnitude of x is large, even the round-off error of the argument
causes a sub~tantial relative error in the answer because .0. = o' x.

DEXP

Algorithm

1. If x < - 180.2187, then 0 is given as the answer via Hoating-point underflow.
2. Divide x by log .. 2 and write

46

x = (4a - b - :6)· log,,2 - r

where a, b, and c are integers, 0 < b < 3, 0 < c < 15, and the remainder r is
1

within the range 0 < r < 16 . log..2. This reduction is carried out in an extra

precision to ensure accuracy. Then e" = 16a • 2- b • 2- 0 / 16 • e- r •

3. Compute e- r by using a minimax polynomial approximation of degree 6 over

the range 0 <: r < 116 • log..2. In obtaining coefficients of this approximation,

the minimax of relative errors was taken under the constraint that the constant
term lZo shall be exactly 1. The relative error is less than 2-56.87•

4. Multiply e- r by 2- c/ 16• The 16 values of 2- c/ 16 for 0 <: C <: 15 are included in
the subprogram. Then halve the result b times.

5. Finally, add the hexdecimal exponent of lTto the characteristic of the answer.

ERed of ern Argument Error

E ,.., ~. If the magnitude of x is large, even the round-off error of the argument
causes a substantial relative error in the answer because ~ = 8 • x.

CEXP/CDEXP

Algorithm

The value of e",+iy is computed as eX • cos (y) + i . eX • sin(y). The algorithms for
both complex exponential subprograms are identica1. Each subprogram uses the
appropriate real exponential subprogram (EXP or DEXP) and the appropriate real
sine/ cosine subprogram (cos/SIN or DCOS/DSIN).

ERed of ern Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If e",+iy = R· eiH , then H = Y and (R) ,...., ~ (x).

Gamma and Log Gamma Subprograms

GAMMAI ALGAMA

Algorithm

1. If 0 < x <: 2- 252, then compute log-gamma as log.,r(x) ~ - loge(x).
This computation uses the real logarithm subprogram (ALOG).

2. If 2- 252 < X < 8, then compute log-gamma by taking the natural logarithm of
the value obtained for gamma. The computation of gamma depends upon the
range into which the argument falls.

r(x+l)
3. If 2- 252 < X < 1, then use r(x) = to reduce to the next case.

x

4. If 1 <: x <: 2, then compute gamma by the minimax rational approximation (in
absolute error) of the following form:

() z [au + aiZ + a2z~ + a3z3]
r x ::::= Co + --;---:--;--:--;-~--;;--­

bo + bIZ + b 2z2 + Z3

where z = x - 1.5. The absolute error of this approximation is less than 2- 25.9 •

5. If 2 < x < 8, then use r (x) = (x - 1) r (x - 1) to reduce step by step to the
preceding case.

6. If 8 <: x, then compute log-gamma by the use of Stirling's formula:

loger(x) ::::=x(loge(x) -1) - %loge(x) + If.doge(2?r) + G(x).

The modifier term G(x) is computed as
G(x) ::::= doX- I + d 1x- 2 •

These coefficients were obtained by a form of minimax approximation minimiz­
ing the ratio of the absolute error to the value of x. The absolute error is less
than x • 2- 26.2 • Remembering the fact that x < loger(x) in this range, the
contribution of this error to the relative error of the value for log-gamma is less

Appendix F: Algorithms 47

than 2- 26.2. This computation uses the real logarithm subprogram (ALOG).

For gamma, compute r (x) = eY , where y is the value obtained for log-gamma.
This computation uses the real exponential subprogram (EXP).

Effect of an Argument Error

£ .-; f (x) • ,:l for gamma, and E .-; t/J (x) • ,:l for log-gamma, where t/J is the
digamma function.

1
If 2 < x < 3, then - 2 < t/J (x) < 1. Therefore, E ,..., ,:l for log-gamma. How-

ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a sma.11
3 can cause a substantial £ in this range.

If the value of x is large, then t/J (x) ,.... log. (x). Therefore, for gamma,
€ _. 3 x • log ... (x). In this case, even the round-off error of the argument con­
tributes greatlr to the relative error of the answer. For log-gamma with large
values of x. (-' 3.

DGAMMA/DLGAMA

Algorithm

1. If 0 < x::;: 2- 2:;2, then compute log-gamma as loger(x) ::::= - loge(x).
This computation uses the real logarithm subprogram (DLOG).

2. If 2- 252 < X < 8, then compute log-gamma by taking the natural logarithm
of the value obtained for gamma. The computation of gamma depends upon the
range into which the argument falls.

:3 If 2 ."., 1 th () r (x + 1) d h . . - ~ ... - < x < , en use r x = x to re uce to t e next case.

4. If 1 <:: x <:: 2, then compute gamma by the minimax rational approximation (in
absolute error) of the following form:

Z [ao + a]z + ... + a6z6]
r (x) ~. Co + b b b 6 7

I) + lZ + ... + sZ + Z

where z = x - 1.5. The absolute error of this approximation is less than 2-5H3 •

. 5. If 2 < x < 8, then use rex) = (x - 1) rex - 1) to reduce to the preceding
case.

6. If 8 ~ x, then compute lng-gamma by the use of Stirling's formula:

loger(x) <= x(log,,(x) - 1) - Ij2Ioge(x) + % 10ge(27r) + G(x).

The modifier term G(x) is computed as

G(x) =< d ox- 1 + d 1x- 3 + d 2x- 5 + d 3x- 7 + d4x- IJ •

These coefficients were obtained bya form of minimax approximation minimiz­
ing the ratio of the absolute error to the value of x. The absolute error is less
than x • 2 --51>.]. Hemembering the fact that x < loger (x) in this range, the
contribution of this error to the relative error of the value for log-gamma is less
than 2~561. This computation uses the real logarithm subprogram (DLOG). For
gamma, compute r(x) = ell, where y is the value obtained for log-gamma.
This computation uses the real exponential subprogram (DEXP).

Eifed of an Argument Error

€- .p (x) • ~ for gamma, and E ~ .p (x) • ~ for log-gamma, where t/J is the
digamma function.

1
]f '"2 < x < 3, then - 2 < tf;(x) < 1. Therefore, E -' ,:l for log-gamma. How-

ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a small
3 can cause a substantial f in this range.

48

If the value of x is large, then t/I(x) .- loge (x). Therefore, for gamma,
f ,.... 8 • x • lo~(x). In this case, even the round-off error of the argument con­
tributes greatly to the relative error of the answer. For log-gamma with large
values of x, f "'"' 8.

Hyperbolic Sine and Cosine Subprograms

SINH/COSH

Algorithm

1. If Ixl < 1.0, then compute sinh(x) as:
sinh(x) ~ x + CIX3 + C2X5 + CaX7.

The coefficient Ci were obtained by the minimax approximation (in relative
sinh(x)

error) of as the function of x2 • The maximum relative error of this
x

approximation is 2-25.6 •

2. If x > 1.0, then sinh (x) is computed as:
sinh(x) = (1 + 8) [e+10g•v - v2/e+ 1o;:.,,].

1
Here, 1 + 8 = 2v ' so that this expression is theoretically equivalent to

[ex - e- x]/2. The value of v (and consequently those of logev and 8) was so
chosen as to satisfy the following conditions:

a) v is slightly less than ~, so that 8 > 0 and small.
b) logev is an exact multiple of 2-16•

The condition b) insures that the addition x + log~v is carried out exactly. This
maneuver was designed to reduce the round-off errors and also to enlarge the
limits of acceptable arguments. This computation uses the real exponential sub­
program (EXP).

3. If x < - 1.0, use sinh (x) = - sinh([xl) to reduce to case 2 above.
4. If cosh (x) is desired, then for all valid values of arguments use the identity:

cosh(x) = (1 + 8) [e+ 10g." + v:!je+1oge"]. Here the notation and the consid­
eration are identical to case 2 above. This computation uses the real exponential
subprogram (EXP).

Effect of an Argument Error

For the hyperbolic sine, E ,...., ~ • cosh (x) and f ,...., ~ • coth(x).
For the hyperbolic cosine, E ,...., ~ • sinh (x) and f ,...., 8 • tanh (x).

Specifically, for the cosine, £ ,...., ~ over the entire range; for the sine, t: ,...., 8 for
small values of x.

DSINH/DCOSH

Algoritbm

1. If [xl < 0.881374, then compute sinh(x) as:
sinh (x) ::::::: CoX + CIX3 + c:!x5 + ... + C6X13.

The coefficients Cl were obtained by the minimax approximation (in relative
sinh(x)

error) of as the function of x2• Minimax was taken under the constraint x
that Co == 1 exactly. The maximum relative error of this approximation is 2- 55.1•

2. If x >0.881374, then sinh(x) is computed as:
sinh(x) = (1 + 8) [e+ 1o!:." - v2/ex +1o!:.vJ.

Appendix F: Algorithms 49

I
Here, 1 + ;) = -2 ,so that this expression is theoretically equivalent to

v
[e' - ('-.1]/2. The valu(' of v (and consequently those of log.,v and 0) was so
dlO:;en as to satisfy the following conditions:

a) v is slightly less than 1f2, so that 8 > 0 and small.
b) log"v is an exact multiple of 2- 1(;.

The condition b) insures that the addition x + logev is carried out exactly. This
maneuver was designed to reduce the round-off errors and also to enlarge the
limits of acceptable arguments. This computation uses the real exponential sub­
program (DEXP).

:3. If x <: -0.881374, then use sinh(x) = -sinh(Ixl) to reduce to case 2 above.
4. If cosh(x)is desired, then, for all valid arguments use the identity:

cosh(x) = (1 + 8) [e.rtlo!(c" + v2 /e+ 1og.,,]. Here the notation and the consid­
eration are identical to case 2 above. This computation uses the real exponential
subprogram (DEXP).

ERed 01 an Argument Error

For the hyperbolic sine, E - .3. • cosh(x) and € ~ .3. • coth(x).
For the hyperbolic cosine, E ~ .3. • sinh (x) and f - ~ • tanh(x).

Specifkally, for the cosine, { - ~ over the entire range; for the sine, • "'" 8 for
the small values of x.

Hyperbolic Tangent Subprograms

TANH

Algorithm

1. If Ixl<: 2-1~, then tanh(x) ~ x.
2. If 2 --12 < !xl <: 0.7, me the following fractional approximation:

tanh (x) [0.8145651]
x '= 1 - x2 0.0037828 + x2 + 2.471749 .

The coefficients of this approximation were obtained by taking the minimax
of relative error, over the range x2 < 0.49, of approximations of this form under
II: constrain! 'hat the first term shall be exactly 1.0. The maximum relative
error of this approximation is 2- l!f,.4.

, I n.1
2

\< 9.011, thcn use the identity tanh(x) = I - (e)2 + I'

T}w:u.~:put<:tion for this case uses the real exponential subprogram (EXl').
,!, .:fx -~n.Ol1)rhantanh(x)=l.

5. If x < - 0.7, then usc the identity tanh (x) = - tanh (- x).

ERect of an Argument Error

2~
E ,...., (1 - tanh:! x) .3., and €,..., . h (2). For small values of x, f - 0, and as the

5111 x
value of x increases, the effect of 8 upon € diminishes.

DTANH

Algorithm

1. If Ixl < 2-:!", then tanh(x) ~ x.
i 1-

2. If 2- ~s < < 0.54931, use the following fractional approximation:

tanh(x) d1x2 d2 d3

~ Co + 2 + + ., + + 2 • X X Cl x- C2 X + C3

50

This approximation was obtained by rewriting a minimax approximation of the
following form:

tanh (x) au + alx2 + a2x4
x ~ Co + x2

• bo + b1x2 + b2x4 + x6'

Here the minimax of relative error, over the range x2 < 0.30174, was taken
under the constraint that Co shall be exactly 1.0. The maximum relative error of
the above is 2-63•

2
3. If 0.54931 < x < 20.101, then use the identity tanh (x) = 1 - eZ.c + l'

This computation uses the double precision exponential subprogram (DEXP).
4. If x > 20.101, then tanh(x) ~ 1.
5. If x < - 0.54931, then use the identity tanh (x) = - tanh (- x).

Effect 0' an Argument Error

2~
E ,..., (1 - tanh2 x) ~, and E ,..., • For small values of x, £ ,..., I). As the

sinh (2x)
value of x increases, the effect of 0 upon E diminishes.

Logarithm;c Subprograms (Common and Natural)

ALOOf ALOG 1 0

Algorithm

1. Write x = 16P' 2-'1 ° m where p is the exponent, q is an integer, 0 < q < 3,
and m is within the range, 1h < m < 1.

2. Define two constants, a and b (where a = base point and 2 - ~ = a), as follows:

1
If 1/2 < m < V 2' then a = l.h and b = 1.

1
If V 2 < m < 1, then a = 1 and b = O.

m-a l+z
3. Write z = ---. Then, 111 = a ° -1--- and lzl < 0.1716. m+a -z'

1 + Z (1 + Z) 4. Now,x = 24V-Q-IIOl_ z' and log.,(x) = (4]) - q - b) loge 2 + log" 1 _ z .

5. To obtain IOge(1 + Z) first compute u; = 2z = m - a (which is rep-
1 - Z ' O.5m + 0.5a

resented in our system with slightly more significant digits than Z itself), and
apply an approximation of the following form:

log., (11 + Z) ~ tV [cn + CIW2 "J.
- Z . C2 - w~

These coefficients were obtained by the minimax rational approximation of

1 (l+Z) 2z loge 1 _ Z over the range z~ £ (0, 0.02944) under the constraint that Co

shall be exactly 1.0. The maximum relative error of this approximation is less
than 2- 25 .a:l •

6. If the common logarithm is desired, then]oglHX = logliJe· log.,x.

Effect of an AtgumentError

E - o. Specifically, if I) is the round-off error of the argument, e.g., I) ,..., 6 • 10- 8,

then E ,..., 6 • 10-H. Therefore, if the argument is close to 1, the relative error can
be very large because the value of the function is very small.

Appendix F: Algorithms 51

DLOG/DLOG10

Algorithm

1. Write x = 1& • 2-'1 • 111 where 11 is the exponent, q is an integer, 0 <: q <: 3,
and 111 is within the range % <: m < 1.

2. Define two constants, a and b (where a = base point and 2 -II = a), as follows:

1
If % <: 111 < I 2' then a = Vz and lJ.. = 1. - V

I
If 2 <: m· < I, then a = I and b = O. V -

m-a l+z
3. Write z = ---. Then, m = a· -1-- and Iz' < 0.1716.

m + a - z
1 + z

4. Now, x = 24p - q -- IJ • -1--' and log,.x = (4p - q - b) log .. 2 + loge
-z (~). 1 - z

5. To obtain log,. (~ ~ :), first compute 1£ = 2z = 0.5: : ~.5a (which is repre­

sented in our system with slightly more significant digits than z itself), and
apply an approximation of the following form:

log" (~ ~ :) ~ tV [co + C1W~ (tv~ + CO! +.~ C:l C5)J.
tV +C4 + ., +

1£- e(i

These coefficients were obtained by the minimax rational approximation of

I (I + Z) 2z log" 1 _ z over the range Z~ € (0, 0,02944) under the constraint that Co

shall bc exactly 1.0. The maximum relative error of this approximation is less
than 2- liO ."".

6. If the common logarithm is desired, then IogJ"x = 10g1oe • log .. x.

Effect of an Argument Error

E ~ o. Therefore, if the value of the argument is dose to I, the relative error can
be v:~ry large because the value of the function is very small.

CLOG/CDlOG

Algorithm

1. \Vrite log,. (x + if}) = a + ib.
2. Then, (I = Jog .. !x + iU: and b = the principal value of arctan (y, x).
:3. log,. Ix -+- iy! is computed as follows:

. 52

Let VI = max ('4 !!li), and v~ = min (lxi, 11);)·
1

Let t he the exponent of VI, i.e., V j = m· 161, 16:::; m < 1.

~. . ftift<O t
}; mally, let tJ = 't t - 1 if t > 0('

and so = 16',.

Then, log" ix + iyi = 4tl • log,,(2) + 1f21og,. [(~I)~ + (~~ r J.
Computation of viis and v~/ s are carried out by manipulation of the charac­
teristics of VI and V~. In particular, if v~/ so < 1, it is taken to be O. The algor­
ithms for both complex logarithm subprograms are identical. Each subprogram
uses the appropriate real natural logarithm subprogram (ALoe or DLoe) and the
a ppropria te arctangent subprogram (ATAN2 or DA TAN2) .

Ellect of on Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = 1 • elk and log., (x + iy) = a + ib, then h = b
andE(a) = 8(1).

Sine and Cosine Subprograms

SIN/COS

Algorithm
4

1. Define z = - • Ixl and separate z into its integer part (q) and its fraction part
'II'

(1). Then z = q + r, and Ixl = (~ . q) + (~ • 1)-

2. If the cosine is desired, add 2 to q. If the sine is desired and if x is negative,
add 4 to q. This adjustment of q reduces the general case to the computation
of sin (x) for x > ° because

cos (± x) = sin (; + x), and

sin (- x) = sin('II' + x).

3. Let qo == q mod 8.

Then, for qo = 0, sin (x) = sin (~ • T),

qo = 1, sin (x) = cos (~ (1 - r)).

qo = 2, sin (x) = cos (~ • 1),
q 0 = 3, sin (x) = sin (~ (1 - r)),

qo = 4, sin (x) = - sin (~ • 1),
qo = 5, sin (x) = - cos (~ (1 - 1)),

q 0 = 6, sin (x) = - cos (~ • r),

qo = 7, sin (x) = - sin (~ (1 - 1)) .

These formulas reduce each case to the computation of either sin (~ • 11)

or cos (~ • (1) where 11 is either 1 or (1 - 1) and is within the range,

o <11 < 1.

4. If sin (: • 11) is needed, it is computed by a polynomial of the following

form:

sin (~ • 11)~ 11 (ao + a1112 + a2T14 + aaTln).

The coefficients were obtained by the interpolation at the roots of the Chebyshev
polynomial of degree 4. The relative error is less than 2- 28 .1 for the range.

Appendix F: Algorithms 53

5. If cos (~ 0 r1) is needed, it is computed by a polynomial of the following

form:

cos (~ • rl) ~ 1 + b1r12 + b;Jrl4 +b3rI6.

Coefficients were obtained by a variation of the minimax approximation which
provides a partial rounding for the short precision computation. The absolute
error of this approximation is less than 2-24.57,

Effect of an Argument Error

E '-' .6.. As the value of x increases, .6. increases. Because the function value dimin­
ishes periodically, no consistent relative error control can be maintained outside

7r 71"
the principal range, -"2 < x < + 2'

DSIN/DCOS

Algorithm

71"
1. Divide Ix! by 4 and sepa~ate the quotient (z) into its integer part (q) and

4
its fraction part (r). Then, z = Ixl 0 - = q + T, where q is an integer and r

7r

is within the range, 0 < r < 1.
2. If the cosine is desired, add 2 to q. If the sine is desired and if x is negative,

add 4 to q. This adjustment of q reduces the general case to the computation of
sin (x) for x ::2- 0, because

cos (± x) = sin (Ixl + ;),and

sin(-x) =sin(ixl +71").

8. Let f/o ~ q mod 8.

54

TIJcn, forq" = 0, sin (x) = sin (~ or),

C/o = 1, sin (x) = cos (~ (1- r)),

<io = 2, sin (x) = cos (~ 0 1'),
qn = :3, sin (x) = sin (~ (1 - r»),

qo=4,sin(x) -sin(~.r),

qo> = 5, sin (x) - cos (~ (1 - r)),

q" = 6, sin (x) = - cos (~ 0 l'),

q .. = 7, sin (x) = - sin (~ (1 - T)).
These formulas reduce each case to the computation of either sin (~ • rl)

or cos (: • rl); where 1'1 is either r or (1 - r), and is within the range,

o <I'J< 1.

4. Finally, either sin (: "1)or cos (: "1)is computed, using the polynomial

interpolations of degree 6 in '12 for the sine, and of degree 7 in '12 for the cosine.
In either case, the interpolation points were the roots of the Chebyshev poly­
nomial of one higher degree. The maximum relative error of the sine polynomial
is 2-~s and that of the cosine polynomial is 2- 64 .3 •

Effect of an Argument Error

E -- A. As the value of the argument increases, A increases. Because the function
value diminishes periodiqally, no consistent relative error control can be main-

.". .".

tained outside of the principal range, - 2< x< +2'

CSIN/CCOS

Algorithm

1. If the sine is desired, then
sin (x + iy > = sin (x) • cosh (y) + i • cos (x) • sinh (y).

If the cosine is desired, then

cos(x + iy) = cos (x) • cosh(y) - i' sin(x) • sinh(y).

2. The value of sinh (x) is computed within the subprogram as follows.
Assume x > 0 for this, since sinh (- x) = - sinh (x).

3. If x > 0.346574, then use sinh (x) = 1h (ex - ~..,).
4. If 0 < x < 0.346574, then compute sinh (x) by use of a polynomial:

sinh(x)
--- e:: ao + alx2 + a2x4. x

The coefficients were obtained by the mInImaX approximation (in relative
error) of sinh(x)/x over the range 0 <x2 < 0.12011 under the constraint that
ao shall be exactly 1.0. The relative error of this approximation is less than
2- 26.18•

1
5. The value of cosh(x) is computed as cosh (x) = sinhlxl + e l.,"

This computation uses the real expoential subprogram (EXP) and the real
sine / cosine subprogram (SIN / cos) .

Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer, the
programmer must understand the effect of an argument in the SIN/cos, EXP, and
SINH/ COSH subprograms.

CDSIN/CDCOS

Algorithm

1. If the sine is desired, then

sin (x+iy) = sin(x) • cosh(y) + i' cos(x) • sinh(y).

If the cosine is desired, then

cos(x + iy} = cos(x)· cosh(y) - i' sin(x)· sinh(y).

2. The value of sinh(x) is computed within the subprogram as follows.
Assume x > 0 for this, since sinh (- x) = - sinh (x).

3. If x > 0.481212, then use sinh (x) = lk (eX - !).
Appendix F; Algorithms 55

4. If 0 <: x < 0.481212, then compute sinh(x) by use of a polynomial:

sinh(x)
--- :::::= ao + alx~ + a2x4 + aax6 + a4xs + a5x10•

x

The coefficients were obtained by the minimax approximation (in relative
('rror) of sinh (x) I x over the range 0 <: x2 <: 0.23156 under the constraint
that ao shall be exactly 1.0. The relative error of this approximation is less
than 2- 56.07 •

1
5. The value of cosh(x) is computed as cosh (x) = sinhlxl + el.,I'

This computation uses the real exponential subprogram (DEXP) and the real
sine/ cosine subprogram (DSIN/OCOS).

Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer,
the programmer must understand the effect of an argument error in the Dsm/Dcos,
DEXP, and DSINH/DCOSH subprograms.

Square Root Subprograms

SQRT

Algorithm

1. If x = 0, then the answer is O.
2. Write x = lWp-q • m, where 2p - q is the exponent and q equals either 0 or 1;

1
til is the mantissa and is within the range 16 <: m < 1.

3. Then, Vx = 16p • 4- QVm.
4. For the first approximation of yX, compute the following:

(1.288973)
Yo = 16p • 4 -q • 1.681595 - 0.8408065 + m .

This approximation attains the minimax relative error for hyperbolic fits of Vx.
The maximum relative error is 2- 5.748•

[Yo Apply the Newton-Raphson iteration

!In+l = % (Yn + :n)
tWhC. The second iteration is performed as

y~ ;-~ 1Jz (Y1 - -=-) +-=-,
Y1 Y1

with a partial rounding. The maximum relative error of Yz is theoretically
2- 25 ,U.

Effect of an Argument Error

1
f~2°'

DSQRT

Algorithm

1. If x = 0, then the answer is O.
2. Write x = 162p - Q • m, where 2p - q is the exponent and q equals either 0 or 1;

1
m is the mantissa and is within the range 16 <: m < 1.

56

3. Then, yx = 1&· 4-q ym.
4. For the first apprmnmation of yx, compute the following:

Yo = 1&· 41 - q 00.2202 (m + 0.2587).

The extrema of relative errors of this approximation for q = 0 are 2-3 .202 at
1

m = 1,2-3.265 at m = 0.2587, and 2- 2.025 at m = 16' This approximation, rather

x
than the minimax approximation, was chosen so that the quantity - - Ys be-

Y3
low becomes less than 1&,-8 in magnitude. This arrangement allows us to
substitute short form counterparts for some of the long form instructions in the
final iteration.

5. Apply the Newton Raphson iteration

Y~+I = ~ (Yn + :n)
four times to yo, twice in the short form and twice in the long form. The final
step is performed as

Y4 = Ys + ~ (:3 - ys)
with ,an appropriate truncation maneuver to obtain a virtual rounding. The
maximum rel~tive error of the final result is theoretically 2- 8S.23•

Effect of an Argument Error

1
£--8

2

CSQRT /CDSQRT

Algorithm

1. Write y x + iy = a + ib.

Ilxl + Ix + iyl
2. Compute the value z = '\j 2 as k • "1/ WI + W2 where k, Wt and W2

are defined in 3, or 4, below. In any case let VI = max (lxi, lyl) and

V2 = min (lxi, Iyl)·
3. In the special case when either V2 = 0 or VI > V2, let Wt = V2 and W2 = Vt so

that Wt + W2 is effectively equal to Vi'

Also let k = 1 if Vt = Ixl and

k = 1/v'2 if VI = Iyl.
4. In the general case, compute F = ~ ¥4 + ¥4 (::) 2

If Ixl is near the underflow threshold, then take

WI = lxi, W2 = VI 0 2F, and k = I/V2.

If VI • F is near theoverHow threshold, then take

WI = Ixl/4, W2 = Vt of/2, and k = "1/2.
In all other cases, take Wt = Ixl/2, W2 = VI 0 F, and k = 1.

5. If z = 0, then a = 0 and b = O.
If z ¥= 0 and x > 0, then a = z, and

y
b = 2z'

If z ¥= 0 and x < 0, then a = I Y I and
f2zl'

b = (sign y) • z.

Appendix F: Algorithms 57

The algorithms for both complex square root subprograms are identical.
Each subprogram uses the appropriate real square root subprogram (SQRT or
DSQRT).

ERed of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r' eih and V x + iy = R· el.H,

1
then f (R) ,..., "2 13 (r), and d H) '"" 13 (h) .

Tangent and Cotangent Subprograms

TAN/COTAN

Algorithm

71'

1. Divide Ixl by 4 and separate the result into integer part (q) and the fraction

71'

part (r). Then Ixl = 4 (q + r).
2. Obtain the reduced argument (tv) as follows:

if q is even, then tv = r
if q is odd, then w = 1 - r.

The range of the reduced argument is ° < tv < 1.
:3. Let qo = q mod 4.

Then for qo = 0, tan Ixl = tan (~ • w) and cot Ix: = cot (: • tv),

qo = 1, tan Ix i = cot (: • w) and cot Ixl = tan (: • w),

qo = 2, tan Ixl = - cot (~ • tv) and cot Ixl = - tan (~ • tv),

qo = 3, tan Ix! = - tan (: • w) and cot Ixl = - cot (: • w).

,1. The value of tan (: • tV) and cot (~ • tV) are computed as the ratio of two

poly nomials:

(
71') w'P(u)

tan 4· w ~ -Q(11) ,cot (
71') Q(u)

- • tl~ ~

4 "- tV· P(u)

\vhcl,.; II = 1/2W"" <dId

P(1l)" -!~.46090l + u
Q(u) = - 10.772754 + 5.703366' u - 0.159321 • u2 •

These coefficients were obtained by the minimax rational approximation (in
rdative error) of the indicated form. The maximum relative error of this
approximation is 2-~6. Choice of u rather than Ie:! as the variable for P and Q
is to improve the round-off quality of the coefficients.

5. If x < 0, then tan (x) = - tan lxi, and cot(x) = - cot Ixl.
G. Tllis program is provided with two kinds of error controls. One is for arguments

whose magnitude is greater than 211\ • 71'. The other is for arguments which are
very close to a singularity of the function. In either case, the precision of the
argument is deemed insufficient for obtaining a reliable result. More specifically,
the second control screens out the following arguments:
a) Ixl:::; 16-- 63 for COTAN (the result would overflow).
b) x is such that one can find a singularity within eight units of the last digit

58

value of the floating-point representation of the sum q + r. Singularities are
cases when the cotangent ratio is to be taken and w = O.

The test threshold of this control can be dynamically modified by assembler
code programs.

ERed of an Argument Error

A 2
E -- and £ '""" -.-:-:,......,.. cos2 (x) , sm (2x) for tan (x). Therefore, near the singularities

x = (k + ~) 11", where. k is an integer, no error control can be maintained. This

is also true for cotan(x) for x near k1l", where k is an integer.

DTAN/DCOTAN

Algoritlam

11"

1. Divide Ixl bY7 and separate the result into integer part (q) and the .fraction

11'

part (r). Then Ixl =4(q + r).
2. Obtain the reduced argument (w) as follows:

if q is even, then w = r
if q is odd, then w = 1 - r.

J'he range of the reduced argument is 0 < w < 1.
3. Let qo E5 q mod 4.

Then for qo = 0, tan Ixl = tan (~ • w)and cot Ixl = cot (~ • w),
qo = 1, tan Ixl = cot (~ • w)and cot Ixl = tan (: • w),

qo = 2, tan Ixl = - cot (~ • w)and cot Ixl = - tan (~ • w),

qo = 3, tan Ixl = - tan (: • w)and cot Ixl = - cot (~ • w).

4. The value of tan (~ • w) and cot (~ • w) are computed as the ratio of

two polynomials:

(
11") w o P(w2) (11') Q(w2)

tan '4' w ::::::: Q(w2) ,and cot T' w ::::::: W' P(w 2 r
where both P and Q are polynomials of degree 3 in w2• The coefficients of P
and Q were obtained by the minimax rational approximation (in relative error)

of ~ tan (~ w) of the indicated form. The maximum relative error of this

approximation is 2-55.6 •

5. If x < 0, then tan(x) = - tan lxi, and cot(x) = - cot lxl.
6. This program is provided with two kinds of error controls. One is for argu­

ments whose magnitude is greater than 250 • 11'. The other is for arguments which
are very close to a singularity of the function. In either case, the precision of
the argument is deemed insufficient for obtaining a reliable result. More
specifically, the second control screens out the following arguments:
a) Ixl < 16-63 for COTAN (the result would overflow).
b) x is such that one can find a singularity within eight units of the last digit

value of the Hoating-point representation of the sum q + r. Singularities are
cases when the cotangent ratio is to be taken and w = o.

Appendix F: Algorithms 59

The test threshold of this control can be dynamically modified by assembler
code programs.

Effect of an Argument Error
~' 2

E":" 2 ()' and € '-' • (2x) for tan (x). Therefore, near the singularities of cos x sm

x = (k + -{-) 71', where k is an integer, no error control can be maintained.

This is also true for cotan(x) for values of x near k7r, where k is an integer.

Implicitly Called Subprograms
The entry point names of the following implicitly called subprograms are gener­
ated by the compiler.

Complex Multiply and Divide Subprograms

CDVD#/CMPY# (Divide/Multiply for COMPLEX*8 Arguments)

CDDVD#ICDMPY# (Divide/Multiply for COMPLEX*16 Arguments)

Algorithm

iUultiply: (A + Bi) (C + Di) = (AC - BD) + (AD + BC)i
Divide: (A + Hi)/ (C + Di)

1. If iC! < IDI, sct
A = B, B = - A, C = D, D = - C, since

A + Bi B = Ai = before step 2.
C + Di D - Ci

A B D _').. Sc't A' - B' - D' -,. - C ' - C' - C;
then compute
A + Bi A' + B'i A' + B'D B' - A'D'
=----:--=-:- =
C + Di 1 + D'i = 1 + D'Df~ + 1 + D'D' i.

Error Conditions

Partial underflOWS can occur in preparing the answer.

Complex Exponentiation Subprograms

FCDXI# (COMPLEX*16 Arguments)

FCXPI# (COMPLEX*8 Arguments)

Algorithm

The value of!h + y:.?i = (Zl + z~i)j is computed as follows.
K

Let iii = 2: r,,· 2" where ric = 0 or 1 for k = 0, 1, ... , K.
k=(J

Then z iji = 7r z:.?\ and the factors Z:.?k can be obtained by successive squaring.
'k :;£ ()

60

More specifically:
1. Initially: k = 0, n(Ol = Ii!, Yl (H) + y:!(O)i = 1 + Oi,

Zl (0) + z;!(O)i = Zl + z;!i.

2. Raise the index k by 1, and let n\k-l) = 2q + r, where q is the integer
quotient and r = ° or 1.

3. Let n(k) = q.
4. If r = 0, then Yl (k) + Y2(k1 i = Yl (k-l) + YZ(k-l)i.

If r = 1, then Yl (k) + Yz(k)i = (Yl (k-l) + Y2(k-l)i) (Zl (k-l) + ZZ(k-lli).

5. If n(k) =t 0, then ZI (k) + zz(k)i = (Zl (k-l) + Z2(k-l))2, and steps 2
through 5 are repeated until n(k) = 0.

6. When n(k) = 0, and i:> 0, then Yl + Y2i = Yl (k) +Y2(k)i.

If f < 0, then Y1 + Y2i = (1 + Oi) / (Yl (k) + Y2(k)i).

Exponentiation of a leal Base 10 a leal Power Subprograms

FDXPD# (REAL*8 Arguments)

FRXPR# (REAL * 4 Arguments)

Algorithm

1. If a = ° and b < 0, error return.
If a = ° and b > 0, the answer is 0.

2. If a =1= ° and b = 0, the answer is 1.
3. All other cases, compute ao' as eO • lng a. In this computation the exponential sub­

routine and the natural logarithm subroutine are used. If a is negative or if
b • log a is too large, an error return is given by one of these subroutines.

Error estimate

The relative error of the answer can be expressed as (£1 + (2) b • log (a) + £3

where £1, (2, and (3 are relative errors of the logarithmic routine, machine multi­
plication, and the exponential routine, respectively.

For FDXPD#, (1 < 3.5xl0- 16, '2 < 2.2xl0- 16, and (:\ < 2.0xlO- 16. Hence the
relative error < 5.7xl0-16X lb· log a I + 2.0xlO-HI. Note that b • log a is the
natural logarithm of the answer.

For FRXPR#, £1 < 8.3xl0-7,'2 < 9.5xl0-7, and (:\ < 4.7xlO-7. Hence the relative
error < 1.8xl0-6 x lb· log a \ + 4.7xl0-7.

Effect of an Argument Error

[a(1 + od] b(1 + o:.!) == a"(1 + o:.!b • log a + bod. Note that if the answer does
not overflow, Ib • log a\ < 175. On the other hand b can be very large without
causing an overflow of a" if log a is very small. Thus, if a :::::: 1 and if b is very
large, then the effect of the perturbation 01 of a shows very heavily in the relative
error of the answer.

Exponentiation of a leal Base fo an Infeger Power Subprograms

FDXPI# (REAL*8 Arguments)

Algorithm

The value of y = aJ is computed as follows: Let \i\
K

= L fk2" where rl. = 0 or 1
,,= 0

for k = 0, 1, .. " K. Then al.il = 1T a~k and the factors a:!'- can be obtained by sue­
T, oF 0

cessive squaring.
More specifically:
1. Initially: k = 0, n lUj = Iii, y lOi = 1, and ZIO) = a.

Appendix F: Algorithms 61

2. Raise the index k by 1, and decompose n 41. - II = 2q + r, where q is the
integer quotient and r = ° or l.

,'3. Let 11 41,) = q.
4. If r = 0, then yU.; = V"·-I),

If r = 1, then yU., = V'k-ll;:::U,-I).

5. If n<l·) =1= 0, then ;:::(/.l = Z(l,-I);:::II.1-1, and steps 2 through 5 are repeated
until n I!.l = 0.

1
6. \Vhen 11'/" = 0, and i:> 0, then y = yrk).1f i < 0, then Y = y(k)'

Note: The negative exponent is computed by taking the reoiprocal of the posi­
tive power. Thus it is not possible to compute 16.0**-64 because there is a lack
of symmetry for real floating-point numbers - i.e., 16.0** -64 can be represented,
but 16.0**64 cannot. The result is obtained by successive multiplications and is
exact only if the answer contains less than 14 significant hexadecimal digits.

FRXPI# (REAL * 4 Arguments)

Algorithm

This subprogram has the same algorithm as FIXI'I#, which follows.

Exponentiation of Integer Base to Integer Power Subprogram

FIXPI# (INTEGER*4 Arguments)

Algorithm
Kl

Th(' value of L = IJ is computed as follows: Let f = L r" • 2k where rk = 0

or 1 for k = 0, I, .. " K Then Ii = 7T P\ and the factors pk can be obtained by

successive squaring.
~forc spccifically:
1. Initially: k = 0,11'''' = ;, yill! = 1, and mill' = I.
:) Haise the index k. by], and decompose n (I.-I' = 2q + T, where q is the

integer quotient and r = 001' L
:3. Let n 1/. l = q.
4. HI' = O,theny(i·, = y'k-I,.

If r = 1, then V(k) = yil.--l, • Tnll. - Ii.

,5. If ni/"i 0, then m'!.1 = m!/,-I' • m"'-l', and steps 2 through 5 are repeated
untilll li,' = O.

6. \Vhen Il u" = 0, L = LII,'.
Note: The result is obtained by successive multiplications. The result is exact

only if it is less than (2**31) - 1. Hesults arc meaningless when this limit is
l'xc('cded and may even he of changed sign.

62

Ahwlllte error
Absolute value subprograms
Accuracy figmes, mathematical subprograms
Alignment
Alphameric and Hexadecimal Input Conversion

.3-5,7
.. 5,40

.. 2-7,37-62
36

(CHCIO) ... 12-15,25
Alphameric and Hexadecimal Output Conversion

(CHCIP) .. 12,13,16,17,25
Arcsine and arccosine subprograms. .3,40,41
Argument errors, effects of .40-62
Argument ranges, mathematical subprograms .3-7
Arguments, mathematical subprograms ... 2-6,30

(see also paramcter lists r
Arrays

(iee also FORTRAN IV publication)
Assembler language

BACKSPACE request
BSAM

CALL macro instruction
Calling relationships

I/O routines
mathematical subprograms

CHCBD interrupt-handling routine
CHCBE interrupt-handling routine
COMMON

.22,23,32

.. 1, 11,30-32

.11,18,21.
33

.. 30,31

13
2-6, 42-45, 48, 50-53

36
36

9
Common and natural logarithm subprograms

complex . . . 3, 52
single and double precision .3, 51

COMMON statement 36
Complemented error function subprograms 5, 44-46
Complex argument, how passed 30
Complex Input Conversion (CHCIM). . .12-15, 19,24,25
Complex Output Conversion (CHCIN) 12,13, 16, 17,25
Computations of mathematical subprograms 2-6, 35-62
C(l'lallts (see FORTRAN IV publication)
C 'rol Initialization (CHCIA) 11

see also I/O Initialization)
Conversion code (see FORMAT control character)
Cosine subprograms (see trigonometric sine and cosine

subprograms; hyperbolic sinc and cosine subprograms)
CSECT

names
sizes, mathematical subprograms

Data Control Block (DCB) ..
Data conversion

parameter list format

29
2

. .11,20,21,31-33
11
20

(sec also the individual data conversion routines)
Data management .. 11, 13,20,21,33,34
Data set organization (see DSORG values)
Data set reference number (DSRN) .. 20,31
DCB (see data control block; DCB Maintenance)
DCB Maintenance (CHCIB). .11-18,20,21,22

parameter list format. . 21
DCB prefix .. 21,32
DDEF command .. 11, 20, 21, 31, 33
DDNAME 31
Definitions (see computations of mathematical subprograms)
Dimension 24

.1,2,7,30
..... 3-5

8,10
.20,33

Direct-reference mathematical subprograms
table

Divide check indicator
DSORG values

DUMP subprograms
sample storage printouts

DVCHK subprogram ..

END exits by I/O routines
END FILE request
Entry names

mathematical subprograms
service subprogram~

EODAD exit
EQUIVALENCE statement
ERR exits by I/O routines
Error checks

Index

8,9
35

...... 8,10

· ... 19-21
.11,18,20

29
.... 2-6

8
21
36

· ... 19-21

Ii 0 TOutines (see the II 0 routine description)
mathematical subprograms '" .2-6

8,9
5,44-46

26
1

26
.2-6

8
· .8, 10,36
8,9,10,36

36
36

service subprograms
Error function subprograms
Error Message Control (CHCIX)
Error messages

I/O routines
mathematical subprograms
service subprograms

Exceptions
Exit (CRCIW)
Exponent overflow exception ..
Exponent underflow exception
Exponcntial subprograms

complex 3, 44
single and double precision 3,39,40

(see also indirect-reference mathematical subprograms)
External names of library subprograms

Fixed point overflow exception
Floating point-divide exception
Format control integer (DUMP and PDUMP)
FORMAT control

(see also FORMAT processor)
FORMAT control character

29

36
36

9
.. 11, 19ff, 31,32

11,19,25
(see also the individual data conversion routines)

Format of DUMP and PDUMP printout .9, 35
FORMAT Processor (CHCIF) 12-14,16,17,23,24,31,32

parameter list format 25
FORMAT specification (see FORMAT control character)
Formulas for mathematical subprograms ... 37-62
FORTRAN

compiler
data management

(see also data management)
data set characteristics

... 2,29,36
11

33
(see also FORTRAN Programmer's Guide publication)

elements of the language (see FOHTRAN IV publication)
Programmer's Guide publication 11

11
1

1-7
30

FORTRAN IV publication
FUNCTION subprograms
Function value

how returned
Functions

I/O routines (see the 1/0 routine descriptions)
mathematical subprograms 2-6
service subprograms ... 8-10

Gamma subprograms:
DGAMMA (CHCBV)
GAMMA (CHCBT)

(see also log-gamma subprograms)

...... 5,48
.. 5,47

Index 63

GATE operations 21, 26, 31, 33
(see also SYSIN; SYSOUT; macro instructions)

General Input Conversion (CHCIS). . . l1-lS, 26
General Output Conversion (CHCIT) . 12, 13, 16, 17

Hyperbolic sine and cosine subprograms
Hyperbolic tangent subprograms

4,49,50
... 5,50,51

Indirect reference mathematical subprograms 1,2,7,30
tables 6,7

Input data conversion 11, 12
(see also the individual data conversion routines)

Input/output (see I/O)
Integer and Real Input Conversion (CHCIl)

(see Real and Integer Input Conversion)
Integer argument, how passed 30
Integer Output Conversion (CHCIH). 12, 13, 16, 17,24
Interruption and 'viachine Indicator Routine (CHCBD). .. 27
Interrupts 36
I/O Control (CHCIC). .11-19,21,22
I/O Initialization (CHCIA) .1l-20

parameter list format 20
I/O statements 11
I/O subprograms ... 1, 11

Job File Control Block (JFCB)

KEYLEN values

Linkages
I/O routines

20

20

30
19

(see also calling relationships)
Link-edited form of library subprograms
List Item Processor (CHCIE)

29
.11-16,18

23
11

parameter list format
List items
List processing (sec list items; List Item Processor)
List Termination (CHCIU). .11-16,18,19
Literal format (DUMP and PDUMP) ... 9,35
Loading of user-written versions 29
I,og-gamma suhprograms:

ALGAMA (CHCBT)
D1.GA.\IA (CHCBV)

Logic'! Input Conversion (CHCIQ).
Logical Output COllversion (CHCIR).

.5,47

.5,48
.... 12-15,25

. .12, 13, 16, 17,25

MacLine control byte
~hcro illStructioui

CALL
FIND
C.\TWR
STOW

~btl,cmatical subprograms
a,sembler language information
categorized by use

33
11,22,23,33

31-32
23

.22,26
23

30
1

names 2-6
relationship of FUNCTION subprograms 1
replacement rules 29

Maximum absolute error . 3-5, 7
Maximum relative error .3-5,7
Messages for STOP .and PAUSE 10
Modt1I~, names (see routine names)

NAMELIST control
(see also NAMEI.lST Processor)

NAMELIST Processor (CHCID).
parameter list format

NAMELIST table
Newton-Raphson iteration

Output data conversion

...... 11,20

...... 12,13, IS, 17,22,23
22

.... 22,23
56

.. 11-13
(see also the individual data conversion routines)

OVERFL subprogram 8,10

64

Overflow exception indicator

Parameter lists
I/O routines

(see also the II 0 routine descriptions)
mathematical subprograms
service subprograms

PAUSE subprogram
PDUMP subprogram

sample storage printouts
Physical records
Powers of ten table in CHCI}.
PRINT request

(set! also WRITE request)
Printouts (DUMP and PDUMP)
Program Control System (PCS)
Program interrupts
PSECT communication region, I/O

(see also I/O communication)
PSECTs

I/O routines
(see also II 0 communication)

mathematical routines
Pseudo indicators
PUNCH request

(see also WRITE request)

8,10

19,30-32

.. 30-31
31

.8-10
.8,9

35
34
24
11

35
9

36
27

19,27

2
9

11

READ request. 11,14-16, 19ff, 31, 32
Real and Integer Input Conversion (CHCll) .. 12-15, 19ff, 24
Real argument, how passed 30
Real Output Conversion (CHCI}). . 12, 13, 16, 17, 19ff, 24

table of powers of ten 24
RECFM values 20, 33
Record format (see RECFM)
Register usages
Relative error
Return to calling program
REWIND request
Routine names

110 (for list, see table of contents)
mathematical
service

Sample used for accuracy figures
Save areas of I/O routines

(see also I/O Communication)
Sense light subprograms
Service subprogram, definition
Significance exception

.... 30
.. 3-5,7

30
.. 11,19,20

3-6
8

3-7
.... 19,27

8,9
1

36
Sine subprograms (see trigonometric sine and cosine

subprograms; hyperbolic sine arid cosine subprograms)
SLITE subprogram 8,9

8,9
21,34

36

SLITET subprogram
Spanning
Specification exception
Square root subprograms

complex
single and double precision

Standard deviation
absolute error
relative error

Statistical results, given for accuracy figures

.3,57,58
3,56-57

.3-5,7
.3-5,7

7
Stirling's formula 47

.. 8-10 STOP subprograms
Storage estimates

mathematical subprograms
service subprograms

SUBROUTINE statement
Subscripts (see arrays) .
Supervisor
SYNAD exit
SYSLIB
SYSIN
SYSOUT

2-6
8
1

13
21

.... 1,19,29
10

... 10,26

System Messages publication

Tangent subprograms (see trigonometric tangent
subprograms, hyperbolic tangent subprograms)

T ri gonometric sine and cosine subprograms
complex
single and double precision

Trigonometric tangent subprograms

Underflow exception indicator

1

3,4,55,56
.. .4,53,54

.4,58-60

.... 8, 10

Unformatted logical records
USASI control code
User-written subprograms ..

VAM
Variables (see FORTRAN IV publication)

Work areas (see PSECT)
WRITE request

Zero, division by

34
33

.1,29

33

... 11,16-18,19 ,34

36

Index 65

GC28-2026-4

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, While Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
360 Hamilton Avenue, White Plains, New York 10601
(International)

OJ
3:
-i
3
(l)

fJ)
:::T

'" ..,
~

10
fJ)
-<
II>
rl
(l)

3
-n
o
:0
-i
:0
l>
z
<
r
0= ..,
III ..,
-<
fJ)
c
0-

""C
(3
cg
III

3
II>

Cl
(')
N
co
N o
N
O'l
.i::.

