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Preface

This publication describes the FORTRAN v mathemati-

cal, service, and input/output (1/0) subprograms for

both FoRTRAN and assembler-language programmers.

Included is detailed information on:

¢ Algorithms within the mathematical subprograms

Sizes of the subprograms

Use of the subprograms by FORTRAN programmers

Use of the mathematical and service subprograms

by assembler language programmers

¢ Techniques for replacing the Tss versions of sub-
programs with user-written versions.
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The rorTrRan 1v library contains three types of subpro-
urams: mathematical, service, and input/output (1/0).
Although these subprograms are written specifically
for rorTRAN programmers, they are also available to
assembler-language programmers who use the correct
linkage and pass the neccssary information (see Ap-
pendix B). All library subprograms are written in as-
sembler language.

The mathematical subprograms are similar to Fuxc-
110N subprograms, because they are mathematical or
computational in nature, and always return one answer
( function value) to the calling program. Mathematical
subprograms can be categorized by use:

1. Direct reference, as in reference to the sine subpro-
gram in the statement

X = SIN (Y)

2. Indirect reference, as in reference to an exponentia-
tion subprogram in the statement

X=Y**]
The service subprograms correspond to a subpro-
gram defined with a SUBROUTINE statement in a FOR-
rRAN source program. These subprograms are called

with a caLL statement or are implicitly called by the
occurrence of certain situations during execution. Serv-
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ice subprograms test program-simulated machine in-
dicators or perform utility functions.

The rorTRAN 1/0 library consists of twenty routines
that link together in various ways, depending upon the
function to be performed. 1/0 routines are not usually
thought of as subprograms, because any single 1/0
function depends on a number of routines. Neverthe-
less, the FORTRAN 1/0 library can be thought of as threc
major subprograms—the Control Initialization, List
Item Processor, and List Termination routines—and
seventeen supporting subprograms. This categoriza-
tion is based upon the fact that when control is passed
from a FORTRAN program to the FORTRAN 1/0 library, it
is always one of these three routines that receives
control.

The rorTRAN 1/0 routines may also be categorized,
by function. into language control routines and data
conversion routines. These groups interact, in fulfilling
an 1/0 request, by means of a communication and work
region called the 1/0 Communication Routine.

Any reference by the user program to a FORTRAN 1v
library subprogram causes a search of sysris for that
program at execution time. Normally this search ob-
tains for the uscr the subprogram provided as part of
1ss. The user can, however, provide his own version
of the subprogram, as described in Appendix A.

Introduction 1



Section 1: Mathematical Subprograms

The two tvpes of mathematical subprograms are di-
rectlv referenced subprograms and indirectly refer-
The directly referenced subpro-
grams are called by the object program in response to
astatement of the form

X=SIN(Y)

In this statement, direct reference is made to the
mathematical sine subprogram, by its entry name: siv.

An example of indirectly referenced  subprogram
usage is the call on an exponentiation subprogram,
madc as the result of a statement of the form

X=Y**"1I

In this statement, no dircet reference is made to a
subprogram by the ForTRAN programmer. The FORTRAN
compiler determines that a subprogram is required to
perform the exponentiation operation, however, and
causcs the object program to call the appropriate ex-
poncntiation subprogram.

The algorithms describing the method of computa-
tion of the mathematical subprograms are given in
Appendix F. Other information concerning these sub-
programs is contained in Tables 1, 2,3, 4, and 5 of this
section and in Appendix A.

Tables 1 and 2 give this information:

Function: A brief description of the type of mathe-
matical operation pertormed.

Entry Name: The mathematical subprograms contain
an entry point corresponding to each name that may be
directly referenced (such as siv) and each name that
may be indirectly referenced (such as crcsea, when
raising an [ * 4 integer to an I ® 4 power ). This column
shows all entry points in the mathematical subpro-
grams.

Decfinition: This column gives a mathematical equa-
tion that represents the computation, (It is not meant
to represent the way the subprogram is called.) An
alternative equation is given when there is another way
of representing the computation in mathematical nota-
tion. For example, the square root can be represented
as cither

L‘Il(’(‘(l sul Jprogrmns.

VX or x172
Argument(s): These columns describe the value(s)
for which the function value is to be computed.
e Argument Number—The number of arguments (one
or two) that the user must supplv
e Argnment Type—The type and length of each argu-
ment. Integer, real, and complex 1cpresent the type

of number; the notations *4, *8, and ®16 represent

the length, in bytes, of the argument.

Note: In FORTRAN v, a real argument corresponds
to the rEAL®4 argument, and a double-precision argu-
ment corresponds to the REAL®s argument. A single-
precision complex argument corresponds to the coM-
PLEX 8 argument, and a double-precision complex argu-
ment C()rresponds to the coarpLEX "m.algument.

e Argument Range (Table 1 only)—The valid range
for each argument. If an argument is not within its
valid range, an error message is issued and execution
of this load module is terminated. (See the Error
Condition and Error Message column descriptions
below.)

Function Value Returned: This column describes the
function valuc returned by the subprogram; the nota-
tion is the same as that used for the argument type.

Error Condition: This column describes the argu-
ment ranges not allowed when using the mathematical
subprogram.

Storage Estimates: This column shows the approxi-

mate number of bytes required for each mathematical
mbprogram the approximate, total size of each sub-
program’s csecT and PSECT. (FORTRAN 1Iv mathematical
subprograms each contain one public, read-only, re-
enterable csect and one psect. The length of each of
the control sections is less than 4096 bytes. The subpro-
grams are link edited, and their csects are combined.)

Other Subprograms Required: Many mathematical
subprograms require other mathematical subprograms
to perform their function. The entry names of the other
subprograms are listed in this column. (This column
does not include cucsza, which is called by all mathe-
matical subprograms where error exit is possible. )

Routine Name: Each mathematical subprogram is
assigned a routine name that is normally of no interest
to FORTRAN programmers. Appendixes A and B describe
use of this name.

Accuracy Figures (Table 1 only): These columns
give accuracy figures for one or more representative
segments within the valid argument range. The accu-
racy figures are based upon the assumption that the
arguments are perfect (ie., without error and, there-
fore, having no error-propagation cffect on the an-
swers). The only crrors in the answers are those
introduced by the subprograms. Information given in
the accuracy-figures columns is:



Table 1. Summary of Directly Referenced Mathematical Subprograms

) 2 3 4 5 6 7 8 9 10
. Storage .
Argument(s) Function A Routine Accuracy Figures
. Entr N vat Estimates he b i
Function Naf:e Definition ::'l::‘ed Error Condition Other Subprograms Required Naome Argument Sample ralative absolute
No. Type Range Hex Dec Range e M (¢) e (¢} M(g) o (E)
Ln (arg) or Log, (arg) . 0+0i PLEX * 16 |A -0+ 1E8 | 488 |CDABS, DLOG, DATANZ, DSQRT | CHCAp | The full range Note | -
COLOG | ote 8 © 1| compLix s ) om0 compLEe rument =0+ 01 ’ ' except (1 + 0) ore 2722107 | s5.mx107"
Ln {org) or Loge (arg) PLEX * 0+0i FCOMPLEX * 8  |A ¢ =0+ O 10 | 454 [CABS, ALOG, ATANZ, SQR The full range
CLOG See Note 8 ] COMPLE 8 arg # rgumen B . ' T CHCAO except (1 +07) Note 1 7.15 10‘7 1.3 x ‘0-7
COMMON AND 0.58 xS 1 -17 -17
NATURAL DLOG Ln (arg) or Loge(org) ! REAL * 8 arg > 0 REAL * 8 Argument € 0 21A | 538 CHCAF S3XsS13 Y 4.60x 10 2.09x 10
LOGARITHM X<0.5, X>1.5 E 3.32x 10718 s5.52x 107"
<xg .17 177
DLOGIO | Log,q fore) ! REAL * 8 arg » 0 REAL * 8 Argument < 0 21a | 538 cHcap |9 SX31S v 2.73x 10 1.07x 10"
X<0,5 X>1,5 E 3.02x 107" 6.65x 10"V
ALOG Ln (org) or Log, (org) | REAL * 4 arg > 0 REAL * 4 Argument < 0 100 | 464 CHCAE  [0.58x 815 v 6.8 x 10°° 2.33x10°
- . X<0.,5 X>1.5 E 8.32x 107 1.19x 107
0.58X$1.5 u 713,00 2.26 x 1070
ALOGI10 Lag‘o {org) 1 . REAL " 4 arg > 0 REAL * 4 Argument € 0 100 464 CHCAE X« 05 X>1.5 [ i .
BSOS SP S - U . : . 1.05 % 10 2.17x 107"
otxr | I | COMPLEX *16 | reol arg € 174.673 COMPLEX * 16 |Real Argument > 174673 270 | 624 | DEXP, DSIN, DCOS cHeaN  [[ifst xdsE| 3.76x107"% | 1904107
) 50 X
| limagargj < 27w Imoginary Argument] 2 297 [Xi| S 20, [XdS20] U 2.74x 107" 9.64x 107 '8
CEXP earg | COMPLEX * 8 real arg 174673 COMPLEX * 8 |Real Argument > 174,673 250 | 592 |EXP, SIN, COS cHCam XS0, [xASE] 9.93x 107 2.67x 1077
. 18
fimog arg| < 2'S fimaginary Argument| 2 219% Xy §170,
Ix 4 v -6 7
EXPONENTIAL i S— - § < |xBs20 1.07x 10 2.73x 107
M T
DEXP | earg 1 1 REAL* 8 arg < 174.4673 REAL * 8 Acgument > 174.673 2€0 704 CHCAD | i £ u 2.04x 10718 5.43x |o"7
‘ ! ‘ 1< |x] 520 u 2.03x 108 | 47,1077
| .
| 7 - 20 < | x| §170 u 197210 1 4 0n 41077
[Exp o9 \ REAL * 4 arg < 174.673 REAL * 4 Argument 2 174,673 1A8 | 424 CHCAC | x| 81 U 4.65x 107 1.28 %107
| 1< x| $170 U 4.42¢ 107 15 x 107
COSORT | lorg) " Zor  [arg ! COMPLEX * 16 | Any COMPLEX * 16 | None 148 | 328 | CDABS, DSGRT CHCAT | The full range Note | | 1.76x107'% .06x 107"
CSQRT torg)Zor ../ arg 1 COMPLEX * 8 | Any COMPLEX "8 |None 138 | 312 | CABS, SQRT CHCAS  |The full range Note | | 7.00x 107 171w 1077
SQUARE ROOT = =
DSQRT (org)"/2or ./ arg 1 REAL * 8 arg #0 REAL * 8 Negative Argument 160 | 352 CHCAB  |The full range £ 1.06x 10 2.16x% 107
SORT (arg)]/zm arg \ REAL * 4 arg #0 REAL * 4 Negative Argument 158 344 CHCAA The full ronge 3 4.45 x |o'7 8.43 x 10-8
DARSIN arcsine (arg) | REAL * 8 arg| €1 REAL * 8 [Argument| > ) 288 648 | DSQRT CHCAX  |=1 S X £+) u 2.04x 10716 5.05x 1077
ARCSINE DARCOS  forccosine farg) 1 | ReaL- e lora] <1 REAL * 8 largument| > 1 288 | 648 |DSQRT CHEAX |1 S X § 41 v | 207x0 )y
AND [ B S . | S -
ARCCOSINE ARSIN arcsine (arg) 1 REAL * 4 larg| <1 REAL * 4 |Argument] > 1 IFO | 496 FSQRT CHCAW  |-1 S X §41 u 9.34x 107 2.06x 1077
ARCOS arccosine (arg) 1 REAL * 4 “urg" < REAL * 4 ! !Argumemi > 1F0 496 | SQRT CHCAW  |-1 §X S+ u 8.85x 107 3.09x 1077
DATAN orctan farg) 1 REAL * 8 Any REAL * 8 None 288 648 CHCBR The full range Note 7 2.18 x YO.M 7.04 x 10.‘7
S DO . S S U IR S R . —
DATAN2  |arctan (argy ‘argp) 2 REAL * 8 arg #£0 REAL * 8 Xy =Xy =0 288 648 CHCBR The full range Note 7 | 2.18x 10 7.04x 10
ARCTANGENT e . -
ATAN arcton (org) V| ReAL -4 Any LREAL* 4 | None e8| 488 CHCBQ  [The full range Note 7 | 1.01x 107 4.68x 107
ATAN?2 orcton (arg) "urg?) 2 REAL * 4 arg #0 REAL * 4 X = X2 =0 1E8 488 CHCBQ The full range Note 7 1.01 x |0-6 4.68 x 10-7
CDSIN Zin (org), arg in ! COMPLEX * 16 | |real org| < P COMPLEX * 16 | [Reol Argument| 2 . 340 | 832 |DSIN, DCOS, DEXP CHCAR I §10,xg €1 | U 2.25x 1077 2.25x 1078
rodians ]imog mgj < 174,673 !lmcginury Argumem‘ > 174 673 See Note 4
CDCOS | cos targ), org in | COMPLEX * 16 | |cealarg| < 2 COMPLEX * 16 | |Real Argument| 2 27 340 | 832 |DSIN, DCOS, DEXP CHCAR (x| §10xg 1 [ U 3.98x10 " 2.50%10°'8
;T:\AC‘E%Nc%AgfLRE'C rodions Wimag mg\ < 174,673 ‘Imngincry Avgumenr: > 174,673 See Note 3
]
CSIN vin farg), arg in | COMPLEX * 8 {ieol arg] < 28w | COMPLEX - & [Real Argument| 2 2! 7 28 | 760 |SIN, COS, EXP CHCAO  {|x)| S 10,%g SV | U 1.92 x 107 7381077
rdians . | Jimog arg] < 174.673 ! ! [imeginary Aigument| > 174,673 See Note 6
‘ ! |
l 1 A
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Table 1. Summary of Directly Referenced Mathematical Subprograms (cont.)

| ? 3 4 5 s 7 8 9 10
* T | .
! ) . F
Argumentiy) { Function E;z:z:ﬂ ' Routine |- - o Accuracy Figures
Function Enny Definition i Value Erior Condition Other Subprogroms Required Nome ! Argument Sample Relative Absolute
H t - n 1 M (E ot
o No, T Type f Ronge | Retuined Hex ‘ Dec Range EY Mo to (e 2
. i | < < -6 -7
! ! . HCAQ  [|Xy] $10,[x9|€ 1 v 2.50 % 10 7.66x% 10
ccos cos 1arg), org in ! COMPLEX * 8 |,¢o| arg] < 218w COMPLEX "8 | jamn Argumeml 2218, #8760 SIN, COS, EXP CHC x| 2| 250 10,
rodians Iimog nrg’ < 174,673 i .'m“Qi"ﬂ’Y Argument| > 174.673
1
e t 50 i > 2507 8 | e cHeas || x|s g U | as0xi07' | aszx0” 7.74x10"7F 1emx0”
DSIN sin larg), arg in . REAL - 8 'urg <%0 REAL * 8 \A(gumenl 22 P 6 <1 .
radians | - -
| £ o|x|s0 Y 1.6ax 107" s.49x 107"
10 <[x][s100 | v 2.68x107" | 1.03x 007"
N 1 50 } 50 88 | 6% CHCAJ 0EXE 1,79 107 65951077
S ‘ ( , i 1 REAL * 8 arg| < 2V REAL * 8 Argument| 2 27°7 - -
riconomenic °¢© j €03 lerg), arg in o] | =10 %X <0 u 175107 | s.93u107"7
SINE & COSINE | * <XS$10
{Continued) J 0 c|x|Sw00 | U 2.64x 10" | 101,007
N - _ -7 -7 -8
1 6
SSIN sin farg), org in 1 REAL * 4 [mg| <218y REAL * 4 ‘Avgumeml 2 7'8x 8 | 504 CHeAl  |x|s ¥ v 1.32x 10 1.82x 10 1.18x 10 4.55% 10
rodiom 7 "
X <|x|st0 u 1.5 % 10 4.64 %10
: 7
} 10 <[x[Sw00 | U 1.28 % 10° 4.52x 107
’ T o < xS 119 x 107 4.60x10°
j 18 . > 718+ F8 | 504 CHCAI 03X3~ u . .
cos cos lorg), arg in 1 REAL * 4 nrg! <2 REAL * 4 Argumen'l 22 . 7 -5
; radians -10 -x%<<‘g U 1.28x 10 4.55x 10
r < -
1’ 10<| x| £100 v 1ax0” 4.60x 108
S [
50 <
DTAN tan (arg), arg in 1 REAL * 8 lnrgl < %0r REAL * 8 IA.gumm} 2 2V 2F8 760 CHCAZ ]x{- } u 341510718 6275107
| radions . .
! Argument too close fo a Singularity -12 .
(i.e., too close to an odd ‘! <[x]ﬁ ; v ;.“f: "05 2.95x 10 1
multiple of 7 /2) ¢e Note 3
r<|x| S0 v 2.78x 107 -15
: ? | | See Note 5 7 8x 10
‘ -T2
10 <f x]$100 U 3.79x 10 -14
: | ‘ See Note 5 9:50x 10
. ars
’ . .17
[DCOTAN | cotan org), argin | 1 REAL * 8 iarg] <« 250y REAL * 8 |argumens| 2 20 8 | 780 CHCAZ  lix)s x U g.:"h;")"f’s 8.79x 107
i rodians
Argument too close to a Singularity < U 2.78 x ‘0-13 15
(i.e., too clnse to a ‘1<| )(|--2t See Note § 8.61x 10
multiple of ) 3
| < U |5.40x10 14
j 5<|X]-10 See Note 5 1.13x 10
w<[x|$00 | U Jasrxio" 14
4.6 x 10
TRIGONOMETRIC o See Note 5
TANGENT 18 > 218 288 48 CHCAY || x|& x u -6 -7
TAN an (arg), arg in 1| mearc s Jorg| < 2'8% REAL * 4 |Argument| 2 2 6 51 71 x 10 260 x 10
rodians -4
Argument too close to a Singularity < U 1.06 x 10 -7
(i.e., too close to on odd §<IX|-5 See Note 5 3.59x 10
multiple of 7 /2) R s
- < u 6.49x 10 -7
; </ x| %10 Soe Note 5 3.38x 10
Ls L. =
10<)x]$100 U 1.57x 10 -7
1 | See Note 5 3.07x 10
COTAN | coton (org), arg in 1 REAL * 4 !0.4 < '8y REAL * 4 tArg\JMen'. 2 2'8x 848 cHeay || x|S x I P 3.58 107
rodians
. ) )
Argument too close to a Singularity < U 1.40x 10 -7
(i.e., too close to a ;<|X|-5 See Note 5 2.56x 10
multiple of ) - o T 70 ‘0—6 )
¥ s . -
5<|x| 10 See Note 5 3.11x 10
10<| x| $100 U liasxi0® 305x 107
See Note 5
< 216 517
x| € 0.88137
OSINH | sinh (arg) V| ReAL"8 lorg| < 175.366 REAL * 8 |argument| 2 174.673 | 250 | s92 |oexe cess X 2.0000 - L0.T4x W0
0.88137 <| x|$ 5 U  [3.80x10 9.21 x 10
HYPERBOLIC DCOSH cosh (org) 1 REAL* 8 I°’4< 175.366 REAL * 8 |Argumenv 2 174,673 250 592 | DEXP CHCBB 55X S +5 U 3.63 x Io*lé 9.05 x 10-17
SINE & COSINE " 5 -
SINH sinh {arg) ! REAL * 4 lavai < 175.366 REAL * 4 ‘Argumenv 2 174,673 IF8 504 | EXP CHCBA -5 8 X $ 45 U 1.26 x 10 2.17x 10
COSH cosh (org) 1 REAL " 4 lors] < 175.366 REAL * 4 IA'EU"‘em 2 174,673 1F8 | 504 | Exp CHCBA  |-5 § X & 45 u 1,27 x 107 2.83x 107




Table 1. Summary of Directly Referenced Mathematical Subprograms (cont.)

! 2 3 4 5 6 7 8 9 10
] T T . ‘ N 3 A Fi
Entr : L | Argumentisi Function ; torage | . ccuracy Figures
Function Namye | Definition ’ ) | Value Error Condition  Estir Other Subprograms Requiied ?\cjunne . o o
! | H Returned r ame Argument ‘ Sample ; . M (E el
Mo, ! Type / Range i i Range Ve M (€) | (e) (E) {
1 ! ' | ; < 16 17
H i | X| 5 0,54930 u 1.91 % 10° 3 1
DTANH | tonh fargi | REAL* 8 Any REAL * 8 : 130 | 304 |pexe L CHCAL I € osa0m i _,..‘_Iw-;xz‘“‘-»_J’ﬁ.{.,‘?,_v, -
HYPERBOLIC R S SO S . . | ] - { , 0.549% < [x| § 5 U 1.54x 10 1.87 % 10
TANGENT i f —1 e F— - 7
! 1 | 48 x 10 1.48x 10
TANH tanh (arg) I REAL* 4 Any REAL * 4 ! 164 | 356 | EXP CHCAK s 0.7 Y 8.48 x - x ;
R R . | I S | o lor<ixss | U 244x10 4.23% 10
1oy Any : ! \
ABS 1 COMPLEX * 1 ’ . ! c8 | CHCAV | The full range Note | . .
ABSOLUTE E?‘j“ ) ol o i VC B ° See Note 9 REAL " 8 | ¢ 9 © L 2.03x10 1 4.83x 10 17
VALUE 1 i i ) : Any o B ’ T T ! - ! ‘
13 i 0 * ! -~ 1 I
CABS ik ! [ COMPLEXTE See Note 9 | REAL* 4 | Co | 192 [SORT CHCAU - TThe full range Nete b g 15w 1077 2.00 1077
. . } } — e R IS R ‘ I S - 5
RF o f" ‘UZd I REAL" 4 Any REAL * 4 ‘ 208 | 520 |Exp chesu (X $Y U 8.16x 10 1.10x 10
e U I S - -
7 7o ‘ | ‘ j T $2.04 U | 1a3x107 3.70x10°°
i | | [— - -
| | 2,04<|x|$3.9192) U 5.95% 1078 3.41x 108
ERROR - | , . i SRS . -
FUNCTION : ‘ : ) : | x5 U 1.89 x 10 2.60% 10
| 1 H * ! ; i | CHCBW S, S - -
}DERF ] Real * 8 : Any | Real * 8 } 328 808 DEXP | CHCB 1< ‘Xlg 2.04 u 2.87x 10 17 9.84x 10 18
l ‘ ‘ 2.06<|x|<6.092] U 1.0 | gozx10®
; . . I - R
| i ; | I i -7 -7
[ERFC ! ‘ REAL * 4 Any CREAL * 4 i 208 520 | ExP CHCBU -3.8<x< 0 u (910« 10 2.96x 10
{ i | H i r - -
[ | ‘ | i ELES U 7.42x 107 V.27 %1077
i H R = - -
| ‘ | : 1ex$2.04 | U 154s 107¢ 3.78x 107
‘; | | ; U 2:x10 3.70x 107
COMPLEMENTED : | | | i ; | S S S
ERROR FUNETION | — S — i . | i LMo prssxio : | 8.57x10 -
| Ve ef {x) or i i Y 1203‘10-6 6.52x 10
i : ; | i3 . 2
‘ [ i : U 14ox107'® 2.59x 10 V7
| DERFC 2 [ Cla 1 Realvs " Any [ Real * 8 f 328 | 808 | DEXP U lenx10% T agexi0”
S i ; ; ‘ 204 < 16 ‘ V7
| i | | | . X<4 U 3.26x 10 8.65x 10
i ! ‘ ! . B
L | | | 4 € %<3 u [3.51x 10 3 1.96 x 10 15
| ® ) | ! e | I ! D¢ X< U logex10” . 10”7
GAMMA f S e Vg I I REAL* 4 x> 27232 [ REAL * 4 [Real Argument > 57.5744 350 848 | EXP, ALOG CHCBY . s 3.66 x -
i 0 I | ! 252 1§ Xg2 u 1.13x 107 3.22x 10
| “ X ¢ 575744 ; Real Argument < 2 7 3
! ; I ! 2<X§ 4 U 9.47 x 10 3.79x 10
i ! - -7
5 | | ; 4<Xcs u | 2.26x107° 8.32x 10
| - -
| } i 85 X <8 U z,muos 7.51.‘106
camma (1) | ‘ | ‘ j 165 X < 57 U J4s2x007 151107
5 ’ l T T ! ‘1 16 17
| ® ol -u. | | 252 ‘ ‘ ches 0< X< U 2.14x 10 7.84x 10
IDGAMMA - o | REAL * X » 2 REAL * Real A 7.5744 DEXP, DLOG HCBY - B
IDGAMM fo G e Ve REAL“8 2 REAL" 8 eal Argument > 5 2:2 420 | 105 , Tt xs2 0 Taszai0 corn10
| i | N | . 4 2. :
I ’ | X ¢ 57,5744 iReal Argument < 2 2¢X <4 U 2.21x 10 14 8.49x 10 7
! \ i ‘ 1% 18
i ! 4¢ x< 8 U 5.05x 10 1.90x 10
| | - -
‘[ | ; ! i BE X6 U |e.02x10"" 1.78x 107"
| | i i z B
| ‘: - Sl | 16 § X< 57 U raex0 e’
® el -u | ’ , 3 » 250 ExXP ALOG onenr | PSX <08 U 1aexi0® 3.54 5107
Aronma ‘cgef R L b >0 73 | REAL * 4 [Real Argument > 4.2937 x 10 848 . 05<X <3 U 9.43x 107 3.425 107
i i K i i -
L | | X< 42913 10 lReal Argument < 0 15X< 8 U lrase0 [ a.0e0”
| I ; | »
| | t BEXclb U iasxi0® 3,80 1077
i 55 7
<
LOG - GAMMA | i L - ) - T‘ 16§ X < 500 v 9.85x 10 . 1.90x 10 =
| . < - ) -
DLGAMA || @01 -y | ; REAL * 8 X >0 N | REAL * 8 {Real Argument > 4.2937 <1073 420 1056 | DEXP, DLOG CHCBY 0<x%505 v 2.77x 10 9:75x 10 . -
! °9ef vooe av | X < 4.2913 x 10 | ; 0.5¢<Xx<3 U 2.24% 10 7.77 x 10
‘ 0 ! i {Real Argument < 0 TS e
i | | 1S xc 8 u 2.89x 10 8.80x 10
[ 1 8BS X<16 U l2.86x107" 8.92x 107"
‘ i : N 17
| | | 165 X < 500 U {1.99x107"  [3.93x10
Notes 1. The distribution of sample orguments upon which 3. The maximum relative error cited for the CDCOS 5. The figures cited as the moximum relative errors are 7. The sample arguments were tangents of numbers
these statistics are bosed is exponential rodiatly function is based upon o set of 1500 random arguments those encountered in a sample of 2500 rondom arguments uniformly distributed between - v /2 ond + ¥ /2,
and is uniform around the origin. within the range. In the immediate proximity of the within the respective ranges, See the oppropriate
points (n + 1/2)w +0i (wheren=0, t1, 2, ,..,) section in Appendix F for o description of the behavio: 8. The answer given is the principal value, i.e.,
2. The maximum relative error cited for the CCOS the relative error can be quite high although the of errors when the argument is near a singularity or o the one whose imaginary part lies between
function is based upon a set of 2000 random absolute error is small. zero of the function. ~maond + .
arguments within the range. In the immediate
proximity of the points (n + 1/2)w + 0i {where 4, The maximum relative error cited for the CDSIN 6. The maximum relotive error cited for the CSIN function X .
n=0,£1, £2, . .,) the relative error con be function is based upon a set of 1500 random arguments is based upon o set of 2000 random arguments within the 9.  Flogting-point overflow can occur.
quite high, although the obsolute error is small. within the range. I the immediate proximity of the range. In the immediate proximity of the points
points ny + 0i (where n = +1, £2, . .,) the relative ne +0i (wheren=:1, 12, ,..,) the relative error
enor can be quite high afthough the absolute error is smoll. can be quite high although the absolute error is small.
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Table 2. Summary of Indirectly Referenced Mathematical Subprograms

2 3 4 5 6 7 8 10
! . Storage
g Entry Argument(s) Function Estimates Routine
Function | Name Definition Volue Error Condition Other Subprograms Required Name
No, Type Returned Hex Dec
CHCBGA =i 2 i = INTEGER * 4 | INTEGER * 4 Bose is zero 184 434 o CHCBG
|
o e 2 S INTEGER * 2 INTEGER * 2 Baose is zero and exponent is 1B4 436 —_— CHCBG
gilSSEET?)N INTEGER CHCBGB ! I P zero or negative
AN T -
INTEGER POWER ! CHCBGC St 2 j=INTEGER * 2 INTEGER * 4 Base is zero and exponent is 184 436 CHCBG
i L= INTEGER * 4 zero or negative
[CHCBGD  |y=i**i | 2 Ti-INTEGER*4 |INTEGER * 4 Bose is zero and exponent is 84 | 43 CHCBG
; i INTEGER * 2 zero or negative :
CHCBHA ot 2 | a éEAL * 4 REAL * 4 Base is zero and exponent is 144 324 CHCBH
RAISE A REAL fi = INTEGER * 4 zero or negative
BASE TO AN e e
INTEGER POWER CHCBHB =g’ " 2 | a=REAL* 4 REAL * 4 Base is zero and exponent is 144 324 CHCBH
= INTEGER * 2 zero or negative
CHCBIA =a* ] 2 ! a=REAL* 8 REAL * 8 Base is zero and exponent is 14C 332 CHCBI
RAISE A DOUBLE S INTEGER * 4 zero or negative _
PRECISION BASE TO ;
AN INTEGER POWER | CHCBIB ot 2 a=REAL* S8 REAL * 8 Base is zero and exponent is 14C 332 CHCBI
i ] = INTEGER * 2 zero or negative —
RAISEAREAL | CHCBJA et 2 o -REAL*4 REAL * 4 Base is zero and exponent 15 1Co | 448 | EXP ALOG CHCB)
BASE TO A REAL 'b=REAL* 4 zero or negative
POWER !
L CHCBUB =i**b 2 b= REAL * 4 REAL * 4 Base is zero and exponent is 120 448 EXP; ALOG CHCBJ
RAISE AN INTEGER | i= INTEGER * 2 zero or negative
BASE TO A REAL b - — - S
POWER | CHCBJC =i**b 2 b = REAL * 4 REAL * 4 Base is zero and exponent is 1CO 448 EXP, ALOG CHCBJ
i = INTEGER * 4 zero or negative
CHCBKA =a**b 2 a = REAL * 8 REAL * 8 Base is zero and exponent is 230 560 DEXP, DLOG CHCBK
b = REAL * 8 zero or negative
RAISE A REAL OR CHCBKB =i**b 2 | b=REAL *8 |REAL * 8 Base is zero and exponent is 230 | 560 | DEXD, DLOG " CHCBK |
INTEGER BASE TO i= INTEGER * 2 zero or negative
A REAL POWER, - , SO
BASE AND/OR CHCBKC =ji**h 2 b =REAL * 8 REAL * 8 | Base is zero and exponent is 230 560 P, DLOG CHCBK
EXPONENT i = INTEGER * 4 | zero or negative
DOUBLE CHCBKD =a**b 2 o =REAL * 4 REAL * 8 Base is zero and exponent is 230 560 DEXPH, DLOG TCHCBK
PRECISION b =REAL * 8 See Note. zero or negative
CHCBKE =a**b 2 a=REAL*8 REAL * 8 Base is zero and exponent is 230 560 DEXP, DLOG CHCBK
b = REAL * 4 zero or negative
CHCBMA =a**i 2 a = COMPLEX * 16 | COMPLEX * 14 Base is zero and exponent is 274 628 CHCBM
i = INTEGER * 4 2ero or negative T
CHCBMB =a 2 | 9=COMPLEX * 16 | COMPLEX * 16 Base is zero and exponent is 274 628 | CHCam
RAISE A COMPLEX i = INTEGER * 2 zero or negative "
BASE TO AN
INTEGER POWER CHCBCA =a**i 2 a = COMPLEX * 8 | COMPLEX * 8 Base is zero and exponent is 24C 588 CHCBC
i = INTEGER * 4 zero or negative
CHCBCB =a** 2 a=COMPLEX * 8 | COMPLEX * 8 Base is zero and exponent is 24C 588 CHCBC
i = INTEGER * 2 zero or negative R
PRODUCE ERROR CHCBZA E8 | 232 | Asrequired by use of the CHCBZ
MESSAGE AND EXIT macero instruction
TERMINATE
EXECUTION

NOTE: The REAL*8 function value returned by CHCBKD is not more accurate than the REAL*4 base
given oy an argument,
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® Argument range—This column gives the argument
range used to obtain the accuracy ﬁgures. For each
function, accuracy ﬁgures are given more represen-
tative segments within the valid argument range.
These figures are the most meaningful to the func-
tion and range under consideration.

The maximum relative error and standard deviation
of the relative error are generally useful and reveal-

ing statistics. However, they are useless for the range -

of a function where its value becomes 0, because the
slightest error in the argument can cause an unpre-
dictable fluctuation in the magnitude of the answer.
When a small argument error would have this effect,
the maximum absolute error and standard deviation
of the absolute error are given for the range. For ex-
ample, absolute error is given for sin (x) for values
of x near .

¢ Sample—This column indicates the type of sample
used for the accuracy figures; the type depends upon
the function and range under consideration. The sta-
tistics may be based either upon an exponentially
distributed (E) argument sample or a uniformly dis-
tributed (U) argument sample.

e Statistical results:

f(x)—g(x)
f(x)

_ __1_ f(xi)—g(Xa) 3
ole)= \/ NZ' ’ fx.) l

M(E)=Max | f(x)—g(x} |

ENES )

In the formulas for the standard deviation, N repre-
sents the total number of arguments in the sample; i is
a subscript that varies from 1 to N. Appendix F ex-
plains other symbols used above.

Maximum relative error

M(e)=Max l produced during testing

Standard deviation (root-
mean-square) of the rela-
tive error

Maximum absolute error
produced during testing

2 Standard deviation (root-
mean-square) of the ab-
solute error.

f(Xl)—'g(X-)

Test ranges, where they do not cover the entire legal
range of a subroutine, were selected so that users may
infer from the accuracy figures presented the trend of
errors as an argument moves away from the principal
range. The accuracy of the answer deteriorates sub-
stantially as the argument approaches the limit of the
permitted range in several of the subroutines. This is
particularly true for trigonometric functions. However,
an error generated by any of these subroutines is, at
worst, comparable in order of magnitude to the effect
of the inherent rounding error of the argument.

Error Message: cHcBZ100 is issued each time an error
occurs. This message gives the error condition, the
entry name, and the address of the call to the math

routine in the user’s program.

Table 3. Exponentiation With Integer Base and Exponent

Exponent (
Base (I) xponent (J)
J>0 j=0 J<o
I>1 Compute the Function Function
function value | value =1 value = 0
I=1 Compute the Function Function
function value | value =1 value = 1
I=0 Function Error message | Error message
value = 0
I=—1 |Compute the Function If J is an odd
function value | value=1 number, function
value = —1
If J is an even
number, function
value =1
1 < —1 |Compute the Function Function
function value | value=1 value = 0
Table 4. Exponentiation With Real or Double-Precision Base
and Integer Exponent
(A) Exponent (J)
Base (A
i ]>0 J=0 J<O0 .
A >0 [Compute Function Compute
function value | value = 1 function value
A = 0 |Function Error message | Error message
value = 0
A <0 |{Compute Function Compute
function value | value = 1 function value
Table 5. Exponentiation With Real or Double-Precision Base
and Exponent
Exponent (B)
B A
ase (3370 B=0 B <0
A > 0 |Compute Function Compute
function value | value = 1 function value
A = 0 jFunction Error message | Error message
value = 0
A < 0 {Error message | Function Error message
value =1
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Section 2: Service Subprograms

The service subprograms supplied with ForTrAN IV are:

Pseudo sense light subprograms (SLITE, SLITET)

STOP, EXIT, and PAUSE subprograms

Dump subprograms (DUMP, FDUMP)

Overflow and underflow subprograms (OVERFL, DVCHK)
Specification exception subprograms

in Table 6. In most cases the actual entry point name of
the subprogram is identical to the command name.
However, when the user keys in the EXIT, STOP or
PAUSE command, the compiler translates the com-
mand name into a separate entry point name to call the
subprogram. Both names are shown in Table 6. Further
information concerning their usage is given in IBM

These subprograms are briefly described below and FORTRAN IV,
Table 6. Summary of Service Subprograms Characteristics
i 2 3 4 5
Storage
Error Estimates Module
Function Entry Name Condition HEX | DEC Name
Pseudo sense | Turn all sense Argument
light sub- lights off or one SLITE other than 324 804 CHCBE
programs sense light on 0,1,2,3, 4
Test a sense Argument
light or record SLITET other than CHCBE
its status 1,2,3,4
Overflow Test and record
and under- status of
flow sub- exponent over- OVERFL CHCBE
program flow and under-
flow indicators
Divide check | Test and record
subprogram status of divide DVCHK CHCBE
check indicator
Exception Process arith- CHCBES (exponent overflow)
processing metic exceptions CHCBE4 (exponent underflow) CHCBE
subprograms CHCBES (divide check)
Process specifi- CHCBE2 (specification) CHCBE
cation
exceptions
Exit sub- Terminate EXIT (CHCIW1)
program execution STOP (CHCIW2) 1AC 428 CHCIW
PAUSE (CHCIW3)
Dump sub- Dump specified
program storage area DUMP, PDUMP 48 168 CHCIV
with or without
termination




Pseudo Sense Light Subprograms

The program-simulated machine indicator subpro-
grams test the status of pseudo indicators, and return
a value indicating the result of this test to the calling
program. When the indicator is 0, it is off; when the
indicator is other than 0, it is on. In the following de-
scriptions of the subprograms, i represents an integer
expression, and j represents an integer variable.

The carLL sLITE statement is used to alter the status

of pseudo sense lights; the caLL SLITET statement is
used to test, and/or record their status. The particular
user reference name used in the caLL statement de-
pends upon the operation to be performed.

sLItE is used if the four sense lights are to be turned
off or one sense light is to be turned on. The source-
language statement is

CALL SLITE(i)

where i has a value of 0, 1, 2, 3, or 4.

If the value of i is 0, the four sense lights are turned
off; if the value of i is 1, 2, 3, or 4, the corresponding
sense light is turned on. If the value of i is not 0, 1, 2,
3, or 4, error message 216 is issued, and execution is
terminated.

sLITET is used if a sense light is to be tested and its
status recorded. The source-language statement is

CALL SLITET (i, j)

where i has a value of 1, 2, 3, or 4, and indicates which
sense light to test; j is set to 1 if the sense light is on or
to 2 if the sense light is off.

If the value of i is not 1, 2, 3, or 4, crror message 216
is issued and execution is terminated. '

DUMP and PDUMP Subprograms

The caLL pump and cALL ppump statements allow the
user to request that data contained within his program
be dumped in one of nine formats. The dumps pro-
duced will be added to the user’s sysour.

It is also possible to obtain dumps using the facilities
of the Program Control System (»cs). For information
concerning pcs, see FORTRAN Programmer’s Guide
and Command System User’s Guide.

The caLL pump statement is used if execution is to
be terminated after the dump is taken. The source-lan-
guage statement is

CALL DUMP (alzbl)fly ey an,bmfn>

where a and b are variables that indicate the limits of
storage to be dumped (either a or b may represent the
upper or lower limits of storage). The dump format is
indicated by f and may be one of the integers given in
Table 7. A sample printout for each format is given in
Appendix D.

If execution of the object module is to be resumed
after the dump is taken, the caLL ppumP statement is
used. The source-language statement is

CALL PDUMP (01,b1,f1, Ceay an,b,,,f,,)

where a, b, and f have the same meaning as explained
previously.

Table 7. DUMP/PDUMP Format Specifications

Integer Specified Format

0 hexadecimal
logical *1

logical *4

integer *2
integer *4

real *4

real *8

complex *8
complex *16
literal (character)

O 00 ~1GQ Utk OO -

Programming Considerations

1. If the format control integer f is omitted, it is as-
sumed to be equal to 0, and the dump will be hexa-
decimal.

2. The arguments a and b should be defined in the
program in which the pump or poUMP statement oc-
curs; otherwise, the compiler will assign arbitrary
addresses to them.

3. If the program in which pump or ppumMP occurs is
a subprobram, and if a and b are argument names,
a range of storage from the calling program will be
dumped. However, if one is an argument name and
the other is not, unpredictable and probably large
areas of storage will be dumped; this should be
avoided.

4. If onc of the limits (@ or b) of storage definition
variable names is in commox and the other is not
or if it is a different (named) coaraoxn, unpredict-
able and probably large areas of storage will be
dumped; this situation should be avoided.

5. The literal format in Table 7 causes the arca that is
to be dumped to be treated as a string of alpha-
meric characters.

STOP, EXIT, and PAUSE Subprograms

The sror. exit, and PAUSE subprograms arc called by
the compiled object programs as a result of the source
statements

CALL EXIT
STOP
PAUSE

Section 2: Secrvice Subprograms 9



Statements that cause the user’s prograim to be termi-

nated are
CALL EXIT
STOP

If stop is issued in a conversational task, a message
is written on the user’s terminal, and control is returned
to the terminal for entry of the next cornmand by the
user. If stor is issued by a nonconversational task, the
message is written on the sysout data set, and the next
command is taken from the sysin data set. The stop
statement has the same effect when used in either a
subprogram or main program. The cair Exit state-
ment is equivalent to a stor statement.

A pAUSE statement executed in a program running in
a nonconversational task will result in any associated
messages being written to sysour; the program then
continues execution. In a conversational task the sys-
tem prints, at the terminal, the word pause followed by
00000 or a 1-to-5-digit integer constant, or a message,
depending on how the opcrand field of the pausk
statement was written. The system then transfers con-
trol to the terminal and awaits the user’s input before
resuming program execution.

Overflow and Underflow Subprograms

The caLL overrL statement allows a test for prior oc-
currence of an exponent overifow or underflow excep-

10

tion. The value returned by this caLL indicates which
of these two conditions occurred last. After testing, the
overflow or underflow indication is no longer available.
The source language statement is

CALL OVERFL (j)

where j is set to 1 if a floating point overflow cendition
(i.e., =16%) exists; is set to 2 if no overflow or under-
flow condition cxists; or to 3 if a flcating point under-
How' (i.e., <16-%) condition exists. A more detailed
description of cach exception is given in Appendix E.

Divide Check Subprogram

The carL pvcnk statement allows a test for prior oc-
currence of a floating point divide-check exception,
and returns a value that indicates the existing condi-
tion. (Fixed-point divide checks are ignored by ror-
TrRAN-compiled programs.) After testing, the indication
of a prior divide check is no longer available. The
source-language statement is

CALL DVCHK (j)

where f is set to 1 if the divide-check indicator was on,
or to 2 if the indicator was off. A more detailed de-
scription of the divide-check exception is-given in Ap-
pendix E.



This section discusses the functions, entry require-
ments, error checks, and data references of the 1ss/ss0
FORTRAN 1/0 library in executing the FORTRAN 1/0 state-

ments: READ, WRITE, REWIND, BACKSPACE, END FILE, -

PRINT, and PUNCH.

This section is written for both FORTRAN and assem-
bler-language programmers. The FORTRAN programmer
may be interested in the assumptions that the 1/0 rou-
tines make, the error conditions that they check for,
and the actions they take in case of error. The assem-
bler-language programmer may be interested in the
advantages of FORTRAN 1/0 facilities, particularly the
data conversion, list-processing, and pcs-maintenance
routines. The assembler-language programmer should
read this section after reading IBM Time Sharing Sys-
tem: FORTRAN Programmer’s Guide, Form C28-2025,
“Appendix E. Specification of Data Set Characteris-
tics,” and IBM Time Sharing System: IBM FORTRAN
IV, Form C28-2007, the sections titled “Input/Output
Statements,” and “Elements of the Language.” Of the
section on elements of the language, he need only
read the subsections titled “Constants,” “Variables,”
and “Arrays.”

Overview of the FORTRAN 1/ O Library

There are twenty-one FORTRAN 1/0 routines. Only three
routines, Control Initialization (cucia ), List Item Proc-
essor (cHCIE), or List Termination (cuciu), can take
control from, or return control to, a FORTRAN object
program. Thus, the FORTRAN 1/0 library can be re-
garded as three subprograms and a number of sub-
routines of these subprograms.

Since the assembler-language programmer has tech-
niques (described in Appendix B) for linking to any of
the FORTRAN 1/0 routines, he can look upon any one of
thesc routines as a subprogram.

Another way of looking at the rorrran 1/0 Library
is as two main categories of routines: 1/o languagé
control routines and data conversion routines. The rou-
tines of each group interact with one another by means
of a common communication and work region in a
common PSECT.

Section 3: 1/0 Subprograms

1/0 Language Control Routines

There are two types of 1/0 language control routines:
1/0 operation control and 1/0 list control. These rou-
tines analyze the user’s 1/o requests to determine in-
formation such as: the type of 1/0 operation to be per-
formed; the number and type of list items present, if
any; the type of format control, if any; and the 1/0
statement relationships with a user-specified DDEF
command,

1/ 0O Operation Control Routines

These routines control the 1/0 request by creating, if
necessary, a data control block (pcB), and analyzing
FOoRMAT and NAMELIST control specified by the user.
After this information is processed, the 1/o operation
control routines interface with the Tss data manage-
ment routines that actually fulfill the 1/0 request. The
interface with data management is accomplished by
the routines cacm and cucic, via the data manage-
ment macro instruction facilities.

{/ O List Control Routines

These routines examine the list items, if any, in each
1/0 request to determine the type of conversion to be
performed. After the type of data conversion is deter-
mined, control is given to the 1/0 operation control
routines which in turn call the appropriate data con-
version routines for final processing. '

Data Conversion Routines

The data conversion routines are subdivided into rou-
tines used for input processing and routines used for
the prepamtion of output. These routines can process
all the permissible types of rFORTRAN-formatted data
specified in either a FORMAT or NAMELIST statement.

When converting a user’s data, the data conversion
routines interact with each other according to the re-
quirements of the user-specified FORMAT or NAMELIST
control. For example, for input data that is defined by
a G-format conversion code, the General Input Con-
version routine {crcrs) is called. This routine analyzes
the data type to determine whether it is integer, real,
logical, or alphameric and calls the appropriate data
conversion routine.

Section 3: 1/0 Subprograms * 11



1/Q Longuage Control Routines

o TTTT T T T T T TT ST oo
Operation | l
Control l 1
: !
|
! DCB NAMELIST |
| Maintenance Processor
I (CHCIB) (CHCID) l
| |
: |
| |
| |
1
! I
! I
|
T Control | /O Control FORMAT !
Initiolization - ontro Processor |
: > (CHCIA) | (CHCIC) {CHCIF) ]
READ
I
1 WRITE I
|
| PRINT ! [
| PUNCH R P —— e - — — — _ =
User I BACKSPACE
Program | REWIND _——— e b - -~ — ——— -
END FILE ! ]
' o | !
[ List ! |
e Control | List List Irem ‘
| | s Termination Process
\ tems | (CHCIV) (CHCIE) :
|
{ |
{ |
o o e e e e J
Dato Conversion Routines V ﬁ
Oﬂpnﬁ ______________ input
r 1I r—--———+——"""T—T=—"—=—=7—77—77— B
! I |
| ! | |
I 1
! General Integer ; | :lPthef*C ;5- |
CHC‘ CH exaagecima
: ({CHCIT) | (CHCIH) | : (CHCIO) |
n b '
| ! i |
| |
| | | ]
] | | ]
| Complex Real | | Logical General |
| {CHCIN) (CHCL)) | ! (CHCIQ) (CHCIS) i
| ! |
I : ' !
| i I !
I |
| Alphameric & !
Logical phameric | ! Complex Integer & Real I
: (CHCIR) = (”Ce;‘(’:‘:;;'m' ; : cHamy [ cHam |
|
! I l |
L e e J L e e

Figure 1. Functional Flow of FORTRAN 1/0 Routines
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Routine Interrelationships

Table 8 presents the calling relationships between the
user program, the FORTRAN 1/0 routines, Data Manage-
ment, and the Supervisor.

Table 8. Calling Relationships of I/0 Routines

Routines <
Called E|S
slglelelglelElalslZlElelalelselsl2|B|Bl %3
Calli glerglelgrerglelelelelg|gloiclg|olclelo|Qlasdlg
aling ZIEE:EEE:EEZIIIEEEmEEN“;
Routines CERCRECR RS RS RCENCANCEANCANCE RSN RCARCENSERSE RS NSENSE RSN SE RS Ra D] IS
USER
PROGRAM X X X| x| x| x
CHCIA XXX X X
CHCIB X X
CHCIC X X X
CHCID X XX X| X X
CHCIE ] X X
CHCIF X XX XXX XXXy X X X X
CHCIH
CHCII
CHCIJ
CHCIM X
CHCIN X
CHCIO
CHCIP
CHCIQ
CHCIR
CHCIS X X X
CHCIT X X X
CHCIU X X
CHCIV X X X X X X X X
CHCIW XX X
CHCBD
The following figures describe the relationships be- TYPE OF OPERATION ( FUNCTION ) FIGURE
tween routines when fulfilling a particular 1/0 opera- . 4 READ with List 9
i i ionchi e N 1 “ormatte with Lis
tion. Since the re'latlons.hlps vary, depending on the Formatted READ without List 3
kind of 1/0 operation being performed, a separate dia- READ with NAMELIST 4
gram is presented for each of the basic 1/0 operations. Ungormatteg gglzg witg ListL , 2
st : , . : Unformatte without Lis
Exc§ptlons to the' loglc‘al ﬂu\\-s presented in th.ls.sub- Formatted WRITE with List 7
section are described in detail under the individual Formatted WRITE without List 8
routine descriptions in the following subsection. WI;JTE Witél NAMTI%USE L 18
b . Unformatted WRITE with List
The type of 1/0 operation and its related figure ref- Unformatted WRITE without List 11
erence are: REWIND, BACKSPACE, END FILE 12
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Routine Descriptions

This subsection identifies the functions, attributes, cn-
tries, routines called, error checks and data references
ot cach of the twenty-one FORTRAN 1/0 routines. The

asscmbler-language user should read this subsection

in conjunction with Appendix B.

Certain information is common to most routines; this
information includes: a description of the attributes of
cach routine and parameter-list formats common to
data conversion routines.

Attributes

Unless otherwise stated, all ForRTRAN 1/0 routines are
nonprivileged, reenterable, closed routines residing in
SYSLIB. CHICIA, CHCIE, CHCIU, CHCIW ( except at CHCIW4 ),
cHerv, and cHCBD are entered by standard Type I link-
age with the address of a parameter list in register 1,
and cxit is a rcturn to the calling routine. All of the
other 170 routines are entered by restricted Type 1V
linkage. Unless otherwise stated in the description for
a given routine, all routine exits are assumed to be
returns to the calling routine.

Data Conversion Routines’ Parameter List

All of the data conversion routines have a common
parameter list in the 1/0 common psect. Certain data
conversion routines do not use all the fields of the
parameter list, in which case the fields are set to zero.
Table 9 shows the format of the data conversion
routines’ parameter list and indicates the fields sup-
plied by the appropriate data conversion routine. Note
that in some cases the parameters are supplied as part
of a common setup but either are not used by the rou-
tine itsclf or are used only to pass on as parameters to
other 1/0 routines.

1/0 Initialization—CHCIA

This routine is the initial FoRTRAN 1/0 Library interface
with the user. It manages the disposition of each 1/0
request by setting information switches about for-
matted and unformatted 1/0 (for use by other 1/o
routines), by allocating a buffer area for output re-

(uests, and by obtaining a logical record for input
requests.

Every FORTRAN source program 1/0 statement gener-
ates a call to this routine. On this call, if there is no list,
cHCIA supervises the complete execution of an 1/0 re-
quest. If the 1/0 request is a READ, WRITE, PRINT, Or
runch with list, cricta simply prepares the 1/0 library
for compiler-generated calls to List Item Processor
{cHcir) and List Termination { ciiciu).

Table 9. Format of Data Conversion Routines’ Parameter List

WORD DATA CONVERSION
LOCATION CONTENTS ROUTINE AFFECTED
Word 1 Address of list item? All
Bytel Format control
character® All
Byte 2 Scale factor? CHCII and CHCI]J,
only
Word 2 | Byte3 Scale size* CHCII and CHCI],
only
Bits 1 to 4—DByte
size of list item,
Byte4 minus one All
Bits 5 to 8—Type
of list item®
Word 3 Address of input or output|{All
buifer
Word 4 Byte size of buffer, minus |All except CHCIM
one
Word 5 Decimal fraction width® |CHCII, CHCI]J,
CHCIN, CHCIS,
and CHCIT only
NOTES:

1. A list item is the storage area specified by a list param-
eter in the READ or WRITE statement.

2.G E, I, F, D, L, Z, A, H, X, T, or P (N indicates
NAMELIST).

3. CHCIL or CHCIJ tests for an EBCDIC minus sign,
which indicates a negative scale factor. Anything else
indicates positive scale factor.

4. The integer preceding the ‘P’.

5. Where 01, 02, 03, and 04 represent logical, integer,
real, and complex, respectively.

6. The number of decimal places to the right of the deci-
mal point.
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Entry: The entry point is cucial. The parameter list
is variable-length and has the following format:

Word 1 Address of a fullword containing the user-

specified data set reference number.

Word 2 Address of a control byte indicating type of

operation.!

Word 3 Address of a control byte indicating whether
a list was present in the 1/0 statement and
whether any of the following paramcters in

this list are present.*

Word 4
(Optional)

Address of a FORMAT string or NAMELIST
table. This address is included in this param-
eler list only if the user-requested 170 opera-
tion had an associated FORMAT or NAME-
LLIST source statement.®

Word 5
(Optional)

Address of an error exit. This address is in-
cluded only if the user-requested 1/O opera-
tion had the ERR aperand specified in his
source statement.

Word 6
{Optional)

Address of an end-of-file exit. This address is
included only if the user-requested 1/0 oper-
ation has the END operand specified in his
source statement.

NOTES:

1. In that control byte, READ == 125 (X'80"), WRITE —=
64 (NX40), PRINT =: 32 {X'20"), PUNCH = 16
(X'107), REWIND = 8 {N'08"), BACKSPACE = 4
(N'047), EXD FILE — 2 (N'02).

to

In that control byte, the configuration is: flnrdxxx, where
f = FORMAT statement, 1 = LIST parameter, n =
NAMELIST statement, r = ERR operand, d = END
operand, and xxx bits are alwavs set to zero. Setting any
of the first five bits to one indicates that the correspond-
ing elements are present.

3. The FORMAT string is in user-written form, beginning
with the first parentheses, minus the stalement number
and the word "FORNMAT, Sece the CHCID routine de-
scription for the details of the NAMELIST table.

If anyv optional parameter is missing, anv paramecters
following it are moved up in the list and the list is
shortened. For example, if there is no rornat or
~NaviiLisT address and no error exit address, word 4 of
the parameter list would he the end-ot-file exit address.

Routines Called:

pcB Maintenance (cuers)
1/0 control (crcic)

rORMAT Processor (CHcir)
NAMELIST Processor (crcin)
PHAPT ( CZATJI)

Exit {cniciw)

Error Checks: If the user-specified data set reference
number is negative, an error message is issucd by the
prarpt facility, and cnerw is entered to terminate the
user progran,
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Data References:

¢ Parameter lists for the modules called by this mod-
ule.

* A chained list of save areas to accommodate all pos-
sible calls to other modules.

* A table of adcons pointing to items in the work areas
of other modules that are to be initialized.

* The pce prefix (generated by pce maintenance—
cHGrs) to be set with the input parameters from this
module.

DCB Maintenance—CHCIB

This routine finds or initializes the data control block
(pce) that contains a description of the data to be
transmitted by a user-specified 1/0 operation. If an
appropriate pcs is not found, this routine allocates the
necessary spacc in the pcs table and constructs a new
pcs, including within it information about the data to
be transmitted that the user defined in his ppEr com-
mand.

Entry: The entry point is cucisl. The parameter list
in the common psecr is fixed-length and has the fol-
lowing format:

Word 1| Address of a fullword containing the user-supplied
data set reference number.
Word 2| The data set reference number.

cucra stores the address of the user-supplied data set
reference number and the data set reference number
itself, if present, in the 1/0 common psECT.

Routines Called:

® Data management routines used to search for and
read JrcB! (CzAEB)

* Data management routines used to allocate storage
for pce construction (czcca)

® PRAMDPT {CZATJI)

* Exit (crciw)

Error Checks: If the user-specified data set reference
number cxceeds 99, an error message is issued by the
varpr facility (czatyn) and crcrw is entered to termi-
nate the user program.

If a discrepancy exists in the user pprF command be-
tween permissible RECFM, KEYLEN, and psorc values,
an error message is issucd by the prmpr facility
(czary1} and crniciw is called to terminate processing.
A description of the assumption FORTRAN 1/0 makces in
initializing associated pces contained in Appendix C.
1 The Job File Control Block (JFCB) is a system contirol block constructed

for each data set at DDEF time. It contains information that must be
referred by access method routines or volume mounting routines while

the data sct is OPEN, and provides a hierarchy of pointers defining
JOBLIB, USERLIB, and SYSLIB.



Data References:

¢ Parameter lists for the routines called by cucis.

® Pointers to the pcs table which consists of the pcs
Prefix, the pcs itself, and additionally two pEcss if
the user has specified Basic Sequential Access
Method (Bsam) in his ppEF command.

* A chained list of save areas to accommodate all pos-
sible calls to other routines.
Format and Content of the DCB Prefix: The pcs

prefix is used by the FORTRAN 1/0 routines, in conjunc-.

tion with the pcs, when performing any type of 1/o
operation. The pcs prefix, created by cucrs, is eight
words long and always immediately precedes the pcs
itself.

Table 10. Format and Content of DCB Prefix
Word 1

The address of the starting location in
the buffer area for the current logical
record.

Word 2 The address of the current location in
the buffer area for the current logical

record.

Word 3 The address of the end location in the
buffer area for the current logical rec-

ord.

Byte 1:| Current operation (READ, WRITE,
etc.)?
Control flags (FORMAT, NAMELIST,

List, ERR exit, END exit)?

Byte 2:

Word 4
Byte 3: | Control Hlags (Span, GATE, recent
READ, END or ERR encountered )3

Previous operation {byte 1 from last

call on CHCIC with this DCB)

Byte 4:

Word 5 The address of current DECB, if re-

quired (BSAM)

The user-specified data set reference
number, plus one.

Word 6

Word 7 The address of the next DCB.

Word 8 Save area for the address of the previ-
ous DCB for that data set reference

number.

Word 9 DCB begins here.

NOTES :

1. See parameter list at entry to CHCIA, Note 1.

2. See parameter list at entry to CHCIA, Note 2.

3. The configuration is: gxdrxxln, where g = GATE 1/0,
d = end of data set (END), r = error (ERR), ] = span
from last record, or recent READ, and n = span to next
vecord. The x bits are always set to zero. All bits set to
zero signifies that there is no span. {Spanning is used in
the case of unformatted records, where a physical block
size was defined. It is the process of jumping from the
end of one record to the beginning of the next.)

IO Control—CHCIC
This routine fulfills 1/0 requests made through other
1/0 library routines by using the data management

macro instruction facilities of Tss. The particular data
munagement facilities to be used are determined

both by the type of 1/0 statement issued in the user
program, and by any related ppEF commands, if any,
defining such things as the type of records being trans-
ferred and the manner in which they should be proc-
essed.

The following list identifies the more significant
macro instructions used by crcic for each of the ror-
TRAN I/ 0 statements.

FORTAN 1/0
STATEMENT

READ

CHCIC ruNcTION

Obtains a logical record from a user-specified
input source by using the READ, GATRD, or
GET macro instruction.

WRITE Initializes the writing of a logical record by
establishing pointers to the output buffer area.
Subsequent output processing is performed by
using the WRITE, GATWR, or PUT macro
instruction.

REWIND Repositions the user-specified volume of one or
more data sets to the first record of the first
data set by using the POINT or SETL macro

instruction.

Repositions the user-specified data set to the
previous logical record by using the NOTE,
POINT, SETL, and BSP muacro instructions.
Defines the end of the user-specified data set
by using the WRITE and STOW macro in-
structions.

BACKSPACE

END FILE

Entry: The entry point is CHCICI.

Routines Called:

® pcB Maintenance ( cHCIB)

¢ Exit (cHCIW)

® Data management routines to perform 1/o functions
as determined by the macro instruction issued.

¢ Error message control (cHCIx )

® PRMPT {CZATJI)

Error Checks: If the 1/0 operations performed by
data management cause either a syNap! or EopAD® exit,
and if the user provided an ERR or END return point,
cHcic locates the adcons for these return points in the
work area cHcRww and locates the register save arca
for the user’s program registers. Return is then made to
the ERr or END return point rather than to the calling
1/o routine.

If the user did not provide return points (or if the
operation was other than a reap statement), an error
message is issued and the program is terminated.

If an invalid character is encountered in hexadecimal
input from a caTe® read operation performed for an
unformatted READ statement, an error message is issued
and the erroneous character is treated as the termina-
tion of the hexadecimal input. Processing then con-
tinues.

1 SYNAD: synchronous error exit address, for automatically transferring
control to a user-supplied routine if an uncorrectable I/0 error occurs.

2 EODAD: end of data set address, for automatically transferring control
to an end-of-data routine when end of an input data set is detected
during processing.

3 GATE 1/0 is input from SYSIN or output to SYSOUT.
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In addition to the above error checks, error messages
are issucd ( PRMPT macro instruction ) and the user pro-
gram is terminated by cucrw for any of the following
reasons:
® The record is not format-V for unformatted nEap

statement.

® Error return code received from the use of the Finp
or sTOwW macro instruction for a member in a vean
data set.

e Invalid sequence of 1/0 operations for a user-speci-
fied data set reference number. The invalid se-
quences are: READ preceded by END FILE; END FILE
preceded by reaD; and reaD preceded by wriTE (ex-
cept when using GATE 1/0).

Data References:
¢ References to the standard pes and its associated pes

prefix.

® A chained list of save areas to accommodate all pos-
sible calls to other routines needed.

NAMELIST Processor—CHCID
This routine interacts with cucic to control the 1/0 for
each nanteList record and interacts with the appropri-
ate data conversion routines to bring about the desired
itcnl—})ydlvm conversion,

Entry: The entry point is cacmi. The parameter list
consists of a single word:

Address of the NAMELIST table generated by
the FORTRAN compiler as part of the user object
program,

Word 1

Routines Called:

e 1/0 Control (cicic)

e Complex Input Conversion (crenr)
e Complex Output Conversion { cHCIN)
e General Inpnt Conversion (cricis )

¢ Genceral Output Conversion (oicr)
® PRAMPT (CZATII)

e Exit (cnciw)

Error Checks: There are no error checks for output.
For input, if errors are detected in the naniLisT table,
a message is issued via prvrr and cuciw s called to
terminate the user program. Other error messages are
gencrated for any of the conditions listed below. In
these cases, processing continues with the next entry
of the input record.

e Name exceeds six characters

» First character of each input record is not blank

® Subscripts appear on a name that is not an array
name

e Incorrcet number or range of subscripts
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e Subscripting causes array size to be exceeded

* Multiple constants or repeated constants appear with
a name that is not a subscripted array name, or ex-
ceed the size of an array

® An equal sign or left parenthesis is not preceded by
the variable or array name for that item.

® An invalid character appears in 4 repeat constant

* End of a logical record caused an item to be logically
incomplete

® The NAMELIST name is not in the nvanMEeLIST table.

Data References:

® Parameter lists for other 1/0 library routines called
by this routine.

® A chained list of save areas to accommodate all pos-
sible calls to other routines needed.

NAMELIST Table: The address of the NamMELIST
table generated by the rorrran compiler or by the
assembler-language programmer is communicated in
the call to 1/0 Initialization (cucia) and then passed
to this routine. The table is made up of two-word en-
tries, each of which contains an identifier in the first
halfword.

NAMELIST NaME ENTRY:
Bytes 0-1: Identifier (X'0100")
2-7: Name (left-justified )

VArIaBLE NaAME ENTRY:
Bytes 0-1: Identifier { X'0200")
2-7: Name (left- justified)

VariasLE Type axp LocaTioNn ENTRY:
Bytes 0-1: Identifier (X'0300")
2: Length and Type (4 bits cach)
Length: Number of bytes minus 1

Type: X'01' Logical
X'02" Integer
X’03" Real
X'04" Complex
3: Class: Letter A for array; otherwise,

an S
4-7: Storage Location

ARrrAY Size ENTRY:
Bytes 0-1: Identifier (x'0400)
2-3: Notused
4-7: Number of bytes in array

Dinvension Provpuct ENTRY:
Bytes 0-1: Identifier (x'0500")
2-3: Not used
4-7: Dimension Product (see explanation
below)

TeErMzMINAL ENTRY:
Bytes 0-3: Zero
4-7: Not used



A dimension is a level of subdivision, or level of sub-
scripting, within an array. For example, an array could
be a string of seven thirty-word elements (first dimen-
sion), each subdivided into six five-word elements
(second dimension), each subdivided into five one-
word elements (third dimension). An array may have
as many as seven dimensions.

For each dimension there is a corresponding dimen-
sion product, which is the product of 1) the byte-size
of the array’s smallest element, 2) the number of ele-
ments within all lower dimensions except the first di-
mension, and 3) the number of elements within that
dimension. In the example just given, the dimension
product for the third dimension would be 4 x 6 x 5, or
120. This dimension product would be seven times
greater if there were another dimension before the
seven-element dimension. The dimension product for
the first dimension is always the byte-size of the array’s
smallest element—this dimension product is never en-
tered. If there is only one level of subdivision, there
should be no Dimension Product Entry.

Following is a hexademical representation of the
NAMELIST table for a three-dimension array such as
that described above, where the array is named ‘C” and
contains real numbers. The NAMELIST name is LIST.

01 00 D3 C9

02 00 C3 40
40 40 40 40 Array name

03 00 33 Cl

00 0E 63 74 Variable type
04 00 00 00 ]
00 00 03 48 Array size

03 00 00 00
00 00 00 18

05 00 00 00
00 00 00 78

00 00 00 00

Dimension product

Dimension product

Terminal entry

ist tem Processor—CHCIE

lvery 1f/o statement in the user’s source program gen-
erates one or more calls to this routine if there is a list
associated with a READ, WRITE, PRINT, or PUNCH. A list
item may be a simple variable, an array element (a
subscripted variable), or an entire array. If a FORMAT
statement is specified, this routine calls on Format
Processor {cHCIF) to control any necessary conversion.
It there is no ForMmaT statement, cucie is directly re-
sponsible for filling or emptying the output or input
bufier area.

Entry: The entry point is crciel. Register O contains
cither zeros, if the list item is a single element, or a
number expressing the array length, in bytes, if the list
item is an entire array. The parameter list is fixed-
length and has the following format:

Word 1 | Address of a control byte. The first four bits of
the control byte contain the size of the clement,
minus one. The second four bits contain a flag
indicating the type of item as follows:
Flag Type of Item

01 logical

02 integer

03 real

04 complex

Word 2 | Address of a first (or only) element of the list

item.

Routines Called:

Format Processor ( CHCIF)
1/0 Control (cucic)
PRMPT (CZATJI)

Exit {cHOIW)

Error Check: With unformatted input, if a list item is

-requested after the logical record is exhausted, an error

message is transmitted to the user via prypr, and
cucrw is called to terminate the user-program.

Data References:

® Parameter lists for other 1/o library routines called
by cHcIE.

* A chained list of save areas to accommodate all pos-
sible calls to other routines needed.

e A fullword, cucisz, which is in the cucis work area
and contains the address of the pcs prefix.

¢ The first fifteen bytes of the pes prefix.

FORMAT Processor—CHCIF

This routine interacts with cucic to control the 1/o-for

each rorMmaT-referenced record, and interacts with the

appropriate data conversion routines to 1)1‘ing about the
item-by-item conversion specified by the FormaT state-
ment,

Entry: Before the first entry to cCIF to process a
reference to a rorRMAT statement, cacia (or the assem-
bler-language programmer, if he is bypassing cucia)
does the following:

* Store the address of the rormAT character string in
cucrww, The statement number and the word
‘FORMAT are omitted from the string.

e Set to zero the second and third words of ccirw.
The entry point is cucrri. The parameter list is fixed-

length and has the following format:

Word 1 | Address of the list item, if any.

Zero indicates that no list item was specified.

Word 2 | Byte size of list item and type in low order byte

of word. (See word 1 of CHCIE parameter list.)

Word 3

Address of the start of the format string.
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Routines Called:
¢ 1/0 Control (cucic)
¢ Lrror Message Control {cncix)

e Iixit {cHCIW)
e One of the eleven data conversion routines ( cHCIH
through crcrr)

Error Checks: Since rormat statements may be dy-
namically modified, certain error conditions may arise
due to the syntax of the rorvat string. If there are no
syntax errors, errors could arise due to conversion of
the data. In such cases the conversion routines issue
messages describing the errors before returning. All
syntax error checks produce messages describing the
erTor.

Processing is terminated upoun cucountering invalid
control characters in the string, strings that exceed the
maximum, or too many levels of parentheses. When it
is possible to assume values other than those specified
(as in the case of invalid size of w or d fields after a
control character ), processing will continue on the cur-
rent item after the error message is issued. Otherwise,
the erroncous vorvat item is skipped and processing
continues with the next control character.

Data References:

o Parameter lists for the routines called by crerr.

e A chained list of save areas to accommodate all pos-
sible calls to other routines.

¢ Counters for any repetition and scale fictors encoun-
tered.

Integer Output Conversion—CHCIH

This routine converts a two-byte or four-byte binary
list item to an integer field in the output buffer, accord-
ing to the format In, where n is the integer field size.

Entry: The cniry point is cncsti. The parameter list
is described at the beginning of this subsection, under
“Pata Conversion Routine Parameter Lists.”

Routines Called:
s Jorror Message Control (cncax)

Error Checks: Tt the output buffer area is too small
to contain the integer field, the field is filled with
asterisks and a message is issued by cHers.

Data References:

& A parameter list for cuorx.
® A save area to accommodate the call to crcoa
® A work arca, cuciHw, to be used by this routine.

Real and Integer Input Conversion—CHCII

This routine converts a data field in an input buffer to
the appropriate type list item. An integer field in the
input buffer is converted to a binary list item. A real
ficld in the input buffer is converted to a single- or
double-precision floating-point list item. The integer
ficld has a format In, where n is the field width. The
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real field has a format Fuw.d, Ew.d, or Dw.d, where 1
is the field width and d is the width of the decimal
fraction.

Entry: There are three entry points: CHCII, CHCIK,
and cucic. The parameter list is described at the be-
ginning of this subsection under “Data Conversion
Routine Parameter Lists.”

Routines Called:

» Error Message Control (cremx)

Error Checks: If the format specification (F, E. D,
or I) is improperly specified or the data field is greater
than the permissible range, cucix is called.

Data References:
¢ A parameter list for cucix.

# Adcons for the table in Real Output Conversion

(cuciy) that contains powers of ten.
® A work area, cacnw, containing: two doubleword

areas for calls to crcix and cucre, and a 32-byte arca

for temporary storage.

Real Output Conversion—CHCU

This routine converts a single- or double-precision
floating point list item to a real field in the output
buffer. The real field has a format of either Ew.d,
Dw.d, or Fw.d where 1w is the field width and d is the
size of the fractional position, in digit positions.

Entry: There are two entry points: cucipz and
cieiLt. The parameter list is at the beginning of this
subsection under “Data Conversion Routine Parameter
Lists.”

Routines Called: There are no calls that can occur
besides the final return to the calling routine.

Error Checks: If the oulput bufter arca is too small
to contain the rcal field, the real field is filled with
asterisks.

Data References:
® A tuble of power of ten in double-precision floating-

point. It has an external name cucite, so that it can

be referred to and used by other 1/0 library routines.

The table structurce is:

CHCIL2 DC D'1E1,1E2,1E3,1E4,1E5,1E6,1E7,1E8,1E9,11210°
DC D1E11,1E12,1E13,1E14,1E15,1E16,1E17,1E18,
1E19,1E20°

DC D1ET1,1E72,1E73,1E74,1E75,1E-76,1E-77,
1E-78

Complex input Conversion—CHCIM

This routine converts a complex data field from an
input buffer to a complex list item, consisting of two
real data fields. Each real field is converted to a single-
or double-precision floating-point list item according



to the format Fuw.d, Ew.d, or Dw.d, where w is the
real field width and d is the width of the decimal

fraction.

Entry: The entry point is cacrMi. The parameter list
is described at the beginning of this subsection under
“Data Conversion Routine Parameter Lists.”

Routines Called:
* Real and Integer Input Cenversion (crcir)
® PRAMPT (CZATJI)

Error Checks: If only one or if no real fields exist in
the complex data field in the input buffer, or if there is
a missing parentheses or central comma, cHCIM issues
an error message via PRMPT. No further action is taken
and the list items remain unchanged. If either or both
real fields contain invalid characters or exceed the per-
missible magnitude range, caci assumes the responsi-
bility for producing an error message.

Data References:

® Parameter lists for routines called by cacm.

® Adcons for the table produced by crcry, containing
powers of ten.

* A chained list of save areas to accommodate all pos-
sible calls to other routines.

Complex Output Conversion—CHCIN

This routine converts a complex list item consisting of
two, single- or double-precision floating point items to
a complex data field in an output buffer. Each floating
point list item is converted to a real data field accord-
ing to the format code Fw.d, Ew.d, Dw.d, or Guw.s,
where w is the real field width, d is the width of the
decimal fraction, and s is the number of significant
Adigits.

fntry: The entry point is cuciNi. The parameter list
is described at the beginning of this subsection under
“Data Conversion Routine Parameter Lists.”

Routines Called:
¢ General Output Conversion (cherr)

Error Check: If the ForMaT specifications (F, E ,D,
or G) is improperly specified or the real data field is
greater than the permissible range, the general output
conversion routine {cucrr) assumes the responsibility

for producing an error message.

Duata References:

e Pameter list for cricrr,

* Adcons for the table produced by cucrj, containing
powers of ten.

¢ A chained list of save areas to acommodate all pos-
sible calls to other routines needed.

Alphameric and Hexadecimal Input
Conversion—CHCIO

This routine transfers a specified number of bytes
(alphameric or hexadecimal characters) from an input
buffer area to a list item. The format is Aw (alpha-
meric) or Zw (hexadecimal), where w, field width, is
the number of characters being transferred.

Entry: The entry points are cuciol (alphameric data)
and cHcioz (hexadecimal data). The parameter list is

- described at the beginning of this subsection under

“Data Conversion Routine Parameter Lists.”
Routines Called: None.
Error Checks: None.
Data References: None.

Alphameric and Hexadecimal Output
Conversion—CHCIP

This routine transfers a specified number of bytes (al-
phameric or hexadecimal characters) to an output
buffer area from a list item. The format is Aw (alpha-
meric) or Zw (hexadecimal), where w, field width, is
the number of characters being transferred.

Entry: The entry points are cHcrel (alphameric
data) and cucrpa (hexadecimal data). The parameter
list is described at the beginning of this subsection
under “Data Conversion Routine Parameter Lists.”

Routines Called: None.

Error Checks: None.

Data References: None.

Logical input Conversion—CHCIQ

This routine converts a logical field in the input buffer
area. The logical ficld has the format Lw, where w is
the logical field width.

Entry: The entry point is cuciQl. The parameter list
is described at the beginning of this subsection under
“Data Conversion Routine Parameter Lists.”

Routines Called: None.

Error Checks: None.

Data References: None.

Logical Output Conversion—CHCIR

This routine converts a list item to a logical field in the
output buffer area. The logical field has the format L,
where w is the logical field width.

Entry: The entry point is caciri. The parameter list
is described at the beginning of this subsection, under
“Data Conversion Routine Parameter Lists.”

Routines Called: None.

Error Checks: None.

Data References: None.

General Input Conversion—CHCIS

This routine converts a data field in the input buffer to
a list item according to the format Gw.s, where w is
the field width and s is an optional specification of the
number of significant digits.
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Entry: The entry point is cacisi. The parameter list
is described at the beginning of this subsection under
“Data Conversion Routine Parameter Lists.”

Routines Called:

e Real and Integer Input Conversion ( cucix)
¢ Logical Input Conversion (cuciQ)
® Alphameric Input Conversion (cHCIO )

Error Checks: cucis performs no error checking.
Error checks, if any, are made by the called data con-
version routines.

Duata References:

e Parameter lists for the routines called by cucs.
¢ A chained list of save arcas to accommodate all pos-
sible calls to other routines.

General Output Conversion—CHCIT

The routine converts a list item to a data field in the
output buffer, according to the format Gw.s, where w
is the field width and s is an optional specification of
the number of significant digits.

Entry: The entry point is cucrri. The parameter list
is described at the beginning of this subsection under
“Data Conversion Routine Parameter Lists.”

Routines Called:

o Integer Output Conversion (cucri)
¢ Real Output Conversion (cucry )
¢ Logical Output Conversion (cncin)

Error Checks: cucrr performs no error checks. Dis-
crepancies between the size and type specification of
the list item and the data field are detected by the
called conversion routine.

Data References:

e Paramcter lists for the routines called by cucrr.
o A chained list of save areas to accommodate all pos-
sible calls to other routines.

List Termination-—CHCIU
This routine terminates list processing for a reap,
WRITE, PRINT, Or PUNCH statement, and completes any
1/0 operation that is pending.
Entry: The single entry point is crcrul. No param-
cters are passed.
Routines Called:
e Format Processor ( cHCIF)
® 1/0 Control {cHcIC)
The final return is made with registers unchanged,
except that register 13 will be set to the address of the
calling module’s psect and register 15 will be set to
ZETO.
Error Check: None
Data References:
¢ Parameter lists for other 1/0 library routines called
Ly cucru.
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® A chained list of save areas to accommodate all pos-
sible calls to other routines.

® A control byte within the pce prefix that describes
the current operation. (See “DCB Maintenance—
CHCIB” and Table 10, “Format and Content of the
DCB Prefix,” in this section. )

Exit—CHCIW

The Exit Routine’s subprograms, stop, EXIT, and PAUSE,
are described in Section 2.

Error Message Control—CHCIX

This routine receives the text of error messages from
other 1/0 library routines during execution, and deliv-
ers those messages as output via the GATE macro in-
struction, to the user’s sysout. In conversational mode,
for example, any error message generated is passed to
this routine for transmission to the user’s terminal.

Entry: The entry point is cacixi. The parameter list
is fixed-length and has the following format:

Word 1 | Address of first part of message.

Word 2 | Byte length of first part of message, minus one.

Word 3 | Address of second part of message.

Word 4 | Byte length of second part of message, minus one.

The first part of each message is a character string
that never changes for that message, and is therefore
part of the calling routine’s csecr. The second part is
some data item that does change (such as the contents
of a field containing invalid characters), and which,
therefore, is in a psect (either of the user’s problem
program or of the 1/0 library routines ). If only a single
part message is to be transmitted to sysour, word 3 of
the parameter list is set to zero.

Routines Called:
® GATWR macro instruction

Error Checks: The size of the second part of a mes-
sage must not be greater than 49 bytes. If this limit is
exceeded, only the leftmost 49 bytes of data will be
obtained from the invalid field. No error message is
generated for this situation.

Data Refercnces:

¢ A 100-byte buller area used for the error message.

* Parameter lists for the routines called by cacix.

* A chained list of save areas to accommodate all pos-
sible calls to other routines.



Interruption and Machine Indicator Routine—CHCBD

This routine sets bits in the psw so that the fixed-
point overflow and significance exceptions will be ig-
nored, and directs the system interruption handler
where to pass control if any of the following four
exceptions occur:

Exception Subprogram
Specification CHCBE2
Exponent overflow CHCBE3
Exponent underflow CHCBE4
Divide check CHCBES5

In addition, this routine initializes the machine indi-
cator flags and the sense light indicators, and clears
any pointers to entries in the pcs table. It then returns
control to the calling program.

Entry: The entry point is cacep1. There are no entry
parameters.

1/0 Communication—CHCIY

This table contains space for linking register save
areas and an area in which to construct a chain of
DCBs.

The format of cuciy within the 1/0 PsECT communi-
cation region (i.e., save and DCB areas) is:

76

152

228

304

380

456

PSECT Communication Region

SAVE 1

SAVE 2

SAVE 3

SAVE 4

SAVE 5

SAVE 6

460 464 468 472

CHCIY9

6 19-Word Save Areas
{Each area has the
address of the next
save area in word 19)

Pointers to work areas
for CHCIA, CHCIE,
CHCIU, CHC1V,
CHCIW

Area for construction
of DCBs and DCB
prefixes

Section 3: 1/0 Subprograms
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Appendix A: Replacing FORTRAN IV Library Subprograms

This appendix provides a general description of tech-
niques for replacing a FORTRAN 1v library subprogram
with a “private” version of the same program. The dis-

cussion below does not describe a technique for replac- .

ing the copy of a subprogram in a manner that will
cause all users of rForTRaN 1v library subprograms to
use the new version.

It is recommended that a user-written version be
loaded explicitly, with a Loap command. The FORTRAN
v mathematical subprograms, service subprograms,
and 1/0 subprograms reside in sysLiB as six link-edited
modules, and implicit loading of a user-written version
is possible only when the corresponding FORTRAN 1v
library module is not already loaded.

Many subprograms call other subprograms, as shown
in Table 1, Table 8, and Figures 1-11. For example, the
csQrT subprogram, culled by a FOrRTRAN program to
find the square root of a corpPLEX*s number, requires
the cass and sQrr subprograms. If the FORTRAN user
loaded his own version of sQrT, the csort subprogram
would use this version. Note that if the FORTRAN user
wishes the csorT subprogram to use his own version of
sort, he must supply the entire MaTHLIB (since it is
link-edited). The user may not supply one routine only
without performing a new link-edit.

The rortraN compiler and the rorTraN 1v library
subprograms expect a substituted subprogram to sat-

isfy the same references as the original subprogram.
The following table serves as a guide to the external
names of each subprogram.

Table 11.  External Names of FORTRAN 1V Library
Subprograms
MATHEMATICAL SERVICE 1/0
SUBPROGRAMS | SUBPROGRAMS SUBPROGRAMS
Entry See Tables 1 Sec Table 6. Sce Section 3.
Name and 2.
Routine | See Tables 1 See Table 6. See Section 3.
Name and 2.
CSECT | Routine name |CHCBD and Routine name
Name suffixed by ‘W’. | CHCBE: Rou- | suffixed by "C’.
tine name CHCIB and
suffixed by "W, | CHCIC have
CHCIV and additional
CHCIW: Rou- | CSECTS with
tine name routine name
suffixed by ‘C". | suffixed by "X
PSECT | Routine name {CHCBD and Routine name
Name suffixed by 'R’. |CHCBE: Rou- | suffixed by "W’
tine name
suffixed by R’.
CHCIV and
CHCIW: Rou-
tine name
sulfixed by ‘W’
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Appendix B: Assembler Language Information

The mathematical, service, and 1/0 subprograms are

available to the Tss assembler-language programmer.

The following explains the method of calling a library

subprogram from an assembler-language program and

gives other information for the assembler-language
programmer who wants to use these subprograms.

Before reading any subdivision of this appendix, the

assembler-language programmer should become fa-

miliar with the corresponding section of the main text.

Note: The examples in this appendix have not been
tested on the current system.

The linkage from rorTRaN compiled programs to
FORTRAN Iv subprograms is a standard, Type I linkage.
Assembler-language programmers must link to thesé
subprograms using an identical linkage. The caLL
macro instruction provides a number of different means
for establishing the correct linkage. (See Assembler
User Macro Instructions.) A hand-coded linkage may
also be used, but such linkages should generally be
avoided when macro instructions supply the service re-
quired. Regardless of which form of linkage is used,
however, the register usages for linkage are:

1. Register 1 must point to whatever parameter list the
subprogram requires.

2. Register 13 must point to a 19-word save area in the
calling program.

3. Register 14 must contain the address in the calling
program to which control will be returned by the
called program at the completion of its operation.

4. Register 15 must be loaded with the address of the
entry name, and this register is used to transfer con-
trol to the called program.

Before returning to the calling program, rFORTRAN
library subprograms always restore general registers 1
through 14, General register 0 is restored except
when the result is returned by a mathematical sub-
program and is an integer, in which case the integer is
contained in this register. The floating registers are not
restored, and should be assumed destroyed. General
register 15 is not restored, as future modifications to
the rorTrAN library subprograms may make use of this
register for a return code (they do not currently do
s0); this register should be assumed destroyed.

Mathematical Subprograms

The parameter list for a mathematical subprogram
must contain the addresses of the arguments in the
proper order:
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® Directly referenced subprograms. The order is the
same as that in the list of operands within the paren-
theses in the corresponding FORTRAN source state-
ment. For example the source statement

ANS = SIN (RADIAN)

in FORTRAN coding corresponds to an assembler-lan-
guage call containing one address in the parameter
list—the address of rapian. The FORTRAN statement

ANS = ATAN2(X,Y)

produces 2 linkage with a parameter list containing
the addresses of X and Y, in that order. The assem-
bler-language programmer’s linkage to ATANz must
do the same.

¢ Indirectly referenced subprograms. The order for the
exponentiation subprograms is: address of the num-
ber to be raised to a power and the address of the
power itself.

The arguments pointed to by the parameter list can
be either integer values, or normalized floating point
real or complex values, as required by the called pro-
gram. An integer argument occupies four locations of
storage. A real argument occupies either four or eight
locations of storage. An argument occupying eight lo-
cations of storage starts on a doubleword boundary
and occupies two adjacent words. The address of the
first word is the address of the entire argument.

A complex argument occupies either eight or six-
teen locations of storage, starts on a doubleword bound-
ary, and occupies adjacent words. The first half of the
argument contains the real part of the complex argu-
ment; the second half contains the imaginary part. The
address of the real part of the argument is the address
of the entire argument.

Each mathematical subprogram returns a single
answer—either an integer value, a normalized floating
point value, or a complex value. An integer answer is
stored in general register 0, a real answer is stored in
floating point register 0, and a complex answer is stored
in floating point registers 0 and 2. The real and com-
plex parts of a complex number occupying eight stor-
age locations will be in the high-order four storage
locations of floating point registers 0 and 2.

Examples of the use of the CALL macro instruction
for an assembler-language programmer using the sine
program are:



LA 13, SAVE Point to a 19-
word save area.
CALL SIN, (RADIAN)
or
LA 13, SAVE
LA 13, VCON
CALL (15), MF=(E, PARLIST)
SAVE DS 19F
PARLIST DC A(RADIAN)
VCON ADCON INMPLICIT, EP=SIN

The above examples produce code equivalent to the
tollowing hand-coded linkages. (Several additional in-
structions are included for greater clarity.) This exam-
ple assumes that appropriate cover registers have been
established, and rRabian contains the value, in radians,
for which the sine is to be obtained.

LA 13, SAVE
LA I, PARLIST
L 14 RCON

ST  14,72(0,13)
L 15, VCON

Point to a 19-word save area.

Point to the parameter list.

Store the R-con in the 19th
word of the callers save area.

Obtain the address of the entry
point.

Branch to the entry point, set-
ting register 14 to the address
of the instruction following
the BASR.

Store the result in ANS.

BASR 14, 15
STE 0, ANS

SAVE DS 19F
PARLIST DC

The 19-word save area.

A (RADIAN) The sine at RADIAN is to be
computed.

The V-R-con pair for the
system entry to the sine
program.

VCON  DC  V(SIN)
RCON  DC R (SIN)

RADIAN DS F

ANS DS T The result is stored here.

Service Subprograms

The calling sequence for pump and ppump may specify
a variable number of parameters. Forms of the carn
macro instruction are available for this purpose. The
linkage is identical to that described above, with one
exception: immediately preceding the address of the
first parameter there must be a word containing, in
binary and right adjusted, the number of addresses in
the parameter list. Note that this word contains a
count, not the address of a count.

1/0 Subprograms

As with other 1/0, data sets used with the FORTRAN
1/o library must be defined. Unless the program is
using GATE 1/0, the programmer must give a DDEF com-
mand. For example:

DDEF  DDNAME=FT10F001,DSORC=VS DSNAME=PAY

This command is presented in keyword form, for clar-

ity. It could also be written in the shorter, positional
form as follows:

DDEF FTI10F001,VS,PAY

Note that the ppNaME is in rorTRAN format and con-
tains the data set reference number in the two digits
following the Fr.

Having satisfied ppEF requirements, the programmer
is in position to implement the information given in
Section 3: 1/O Subprograms. The following arc cxam-
ples of ways the assembler-language programmer
might use FORTRAN 1/0 facilities.

Formatted READ with List

Assume that the programmer wants to read an eighty-
byte record containing three integer numbers in the
first half of the record. The first number occupies bytes
three through eight, the second occupies bytes fifteen
and sixteen, and the third occupies bytes thirty-nine
and forty. The rest of the first forty bytes are blank.
The second forty bytes are to be ignored.

The numbers are to be converted from character to
integer form and placed in storage areas (list items)
labeled A, B, and C, respectively.

The programmer chooses not to construct a pcs,
since cacis (pcB Maintenance) will construct one for
him when it finds that there is no pce for the data set
reference number given in the ppEr command.

LA 13.SAVE

CALL CHCIAL, (PARLISTO) The linkage shown by arrow

4 of Figure 2, to CHCIA
(1/0 Initialization).
At this point, cucia (1) causes cucis to create the nes,
(2) causes crcrc (1/0 Control) to perform the 1/o, and
(3) passes the rormar string to cricie (List Item
Processor).

SR 0,0 Indicate to CHCIE that the
list item is a single
element.,

CALL CHCIEL, (PARLIST1) The linkage shownbyarrow

2 of Figure 2, to CHCIE.
CHCIE will process the
first list item.

SR 0,0

CALL CHCIEL, (PARLIST2) The second list item.

SR 0,0

CALL CHCIE]L, (PARLIST3) The third list item.

CALL CHCIU1 The linkage shown by arrow
7 of Figure 2, to CHCIU
(List Termination).
There are no parameters.

SAVE DS 19F

* PARAMETER LIST FOR CHCIA
PARLIST¢ DC  A(DSRN)
DC  A(CREAD)
DC  A(COPNDS)
DC  A(FORMAT)

Appendix B: Assembler Language Information 31



DC A(LABEL1)
DC A(LABELZ2)

Addresses of the user-
written error-handling
and end-of-file rontines.
Both parameters are
optional.

The data set reference
number (104 ). The 1/0
routines expect it to be in
fullword, binary form.

The control byte addressed
by the second word of
the parameter list.
Signfiies READ
operation.

The control byte addressed
by the third word of the
parameter list. Specifies
that there will be list
processing, and that there
are entries in the last
three words of the
parameter list.

Puts FORMAT string on a
fullword boundary.

DSREN DC XL4°0A”

CREAD DC X80’

COPNDS DC XDg

DS OF

Following is the FormaT string. Note that the fields
are defined in such a way that the numbers are in the
rightmost portions of the fields. This must always be
done with integer conversion, since blanks are treated
as zero and would multiply any integer value by ten
for every blank on the right.

FORMAT DC C(G8,G8, The FORMAT string.
124)
* PARAMETER LISTS FOR CHCIE
PARLIST1 DC A(ITEM)
DC  A(A)
PARLIST2 DC A(ITEM)
DC A(B)
PARLIST3 DC A(ITEM)
DC A(C)
Ireng DC X3 The first four bits of this

control byte indicate that
the list item (into which
an integer will be placed)
is four (3+1) bytes long.
The second four bits
indicate that the
characters which the
FORMAT statement
causes to be read are to
be converted into integer
form.

FORMAT Conversion and Lis* Procassing

Assume that the programmer has scanned numbers
into HoLp, a 400-byte area. The numbers are in EscpIC
form, with the format xxx.xxx, where % is any digit.
They occupy contiguous, two-word elements. The pro-
grammer wants to convert them into real form and
move the result into a 50-word array. (An array is
simply a string of equal-length elements.) The pro-
grammer wants to use the rorTraN 1/0 library only for
its data conversion and list processing facilities, and is
not requesting 1/0. Thus, the user program will enter
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the 1/0 library at the point shown by arrow 4 in Figure
2. Arrows 4-7 show the linkages that will occur.

Note that each doubleword in #oLp contains a blank.
It does not matter whether the blank is to the right or
to the left, since FortTrAN data conversion will treat it
as a zero. (Though if the numbers were whole num-
bers, it would matter.)

To begin with, the user program stores into the
cHcIB work area, at cHciBe, the address of a parameter
list .which substitutes for the first four pointers of the
ncB prefix.

LA  2PTRS
L 3,VCON1
ST  20(0,3)

Next, since the user program is bypassing cucra, it
must store the address of the rormar character string
into the first word of cucirw and zero out the second
and third words of cucrrw.

LA 2,FORMAT

L 3,VCON2
ST  2,0(0,3)
SR 44

SR 55

STM  4,5,4(3)
Then comes the usual sequence of code for calling
CHCIE.
Indicates that the list item
is an array, and that the

array is 200 bytes in

length.

LA 0,200(0,0)

CALL CHCIE1l, (CITEM, Causes the conversion and
ARRAY) movement of data to be
completed.
HOLD DS 400X
ARRAY DS 50F List Ttem

The first four bits of this
control byte indicate that
the elements of the array
are four bytes long. The
second four bits indicate
that the data in the buffer
is to be converted to real
form.

Starting location of raw
data.

Current location. (Same as
starting location.)

End of raw data.

CITEM DC X33

PTRS DC  A(HOLD)

DC A(HOLD)

DC  A(HOLD+
400)
DC X‘80C00000”  First byte indicates a
READ operation. The

second byte indicates a

FORMAT statement
with a list with the
FOBRMAT statement
not encoded.

VCONI1 DC V(CHCIB2)

VCON2 DC V(CHCIFW)

FORMAT DC C'(50F8.3)’



This appendix describes the assumptions that the For-
TRAN 1/0 library makes in initializing pces with infor-
mation concerning record format (Recrm) and data
set organization (psorc). These assumptions are de-
seribed to help reduce a frequent source of error en-
countered by the user when performing 1/0.

Some introductory material is presented on the pcs
describing its general use, contents, and sources of
initialization, before discussing the permissible record
formats and data set organizations.

DCB Use

The Data Control Block (pce) is created by nce Man
agement {cHci) and is used by certain data manage-
ment routines invoked by macro instruction references
in 1/0 Control (cHcic). The pcs is required for all 1/0
performed using either Bsam or vam. However, the pcs
is not required for 1/o when using the cATE macro in-
structions.

DCB Content

The pe contains information such as the ppNAME, type
of data set organization, the type and size of records,
block size for blocked data sets, number of buffer
ceas, exits for synap and Eopap, and various control
Aags used by data management.

DCB Initialization

The rorTRAN 1/0 routines, when processing an input

data set, take advantage of information in the pcs to

adapt to the characteristics of the data set and read it
correctly. Characteristics are based on the parameters
for a pcs that can be supplied from:

¢ The user program—type of 1/0 used and associated
csta format.

» User-supplied ppeEr commands—some of the infor-
mation in the pce can be changed in this manner;
however, the extent of change is limited.

e Input data set labels—these override both of the
above sources of information, within limits set by
data management.

Appendix C: FORTRAN Data Management

Combinations of DSORG and RECFM

Table 12 gives the permissible combinations of record
formats and data set organizations that may be speci-
fied when using the rorrRaN 1/0 library.

Table 12. Combinations of DSORG and RECF\I Values

DSORG VALUES
RECFM vs PS vsp Vi vip
\Y% A A A A A
VB N A N N N
vT N A N N N
F A A A A A
FB N A N N N
FS N A N N N
FT N A N N N
FBS N A N N N
FBT N A N N N
FBST N A N N N
FST N A N 1 N
U L A L N N
Codes mean:
A — Acceptable
L. — Limited Acceptable
N — Not acceptable
DSORG abbreviations mean:
VS — Virtual sequential ( direct-access only)
PS — Physical sequential—BSAM—(any device
except terminals)
VSp — Virtual sequential partitioned (like VS)
A% 1 — Virtual index sequential (like VS)
ViP ~— Virtue! index sequuential partitioned (like VS)
RECFM abbreviations mean:
\' — Variable-length unblocked records
VB ~— Variable-length blocked records
VT — Variable-length unblocked with track overllow
F — Fixed-length unblocked records
FB ~— Fixed-length blocked records
FS Same as F, no truncated blocks or unfilled tracks
FT — Same as F, track overflow
FBS Same as I'B, no truncated blocks or unfilled tracks
FBT — Same as FB, track overflow
FBST Same as FBS, track overflow
FST — Same as F, no truncated blocks, track overflow
U ~— Undefined record length

Any of the recky codes shown can be followed by
the letter A or M. A indicates that the first character of
every logical record is an ¢xtended ANSI FORTRAN 1v
carriage or punch control code. M indicates that the
first character of every record is a Tss/s60 machine con-
trol byte. In genceral, the M option cannot be used by
FORTRAN output data sets, since the control codes are
unprintable and do not conform to FORTRAN conven-
tions.

Appendix C: FORTRAN Data Management 33




Unformatted FORTRAN Logical Records

Under any of the organization techniques used, an un-
formatted WRITE statement may lead to a logical record
that exceeds the length of the maximum record sup-
ported by the access method. Furthermore, it is not
possible to enter the byte size of the entire FORTRAN
logical record into the beginning of the 1/0 physical
record without the possibility of tying up an indefinite
amount of virtual storage. Therefore, unformatted
FORTRAN logical records may span over data manage-
ment physical records. In the management of unfor-
matted FORTRAN data, the first two bits of every vs
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physical record or the third byte of every ps physical
record is a control byte defined as follows:

X‘00° A FORTRAN logical record does not span into or out of
the data management physical record.

X01’ This data management physical record is the first of a

span.

X‘02" This data management physical record is the last of a
span.

X'03" This data management physical record is within the

. range of a span.

No data management physical record will be written

containing more than one unformatted ForTRAN logical

record.



Appendix D: DUMP and PDUMP Sample Storage Printouts

This appendix contains a sample printout for each
dump format that can be specified for the pump and
ppuMp subprogram. The printouts are given in the

Table 13. Sample Storage Printouts

order: hexadecimal, logical *1, logical *4, integer *2,
integer *4, real *4, real *8, complex *8, complex *16,
_and literal.

CONVERSION CONF O = HEXADFCIMAL
-’)')01[:25') CAC2C3aCYy C5CHCTICR  C9DID2N3  D4DSDEDT D8DQF2ER
CONVERSION CODE 1 - 1OGICAL * 1
0Q03F1RQ T E T E I E _F F £ E
CONVERSION CODE 2 - LOGTCAL * 4
0003E1DC T F T F T F
CONVERSION CODE 3 - INTEGFR % 2
NON3E1RA 1 2 3 4 5 6
CONVERSION CODE 4 - INTEGER * &4
0NN3E1F8 1 2 3 4 5 6
b CONVERSION CODE 5 ~ REAL * &
. _0N03E248 1.,00000E 0C 0.20000EF 01 0,30000F 01 0.40000E 01
i
CONVERSION CODE 6 - REAL * 8
0D03E270 1.,000C0CD 0G 0.20000D0 01 0.30000p 01 0.40000D G1
CONVERSION CODE 7 — COMPLEX * 8
N503E2C0 1.0000CE D0 0+20000E 01 0+20000F 01 U.30000E ©O1
CONVERSION CODE 8 =~ COMPLEX ¥ 16
N0N3E310 1.C0C00D 00 0.20000D O1 0.20000M O1 0.30000D O1
CONVERSION CODE 9 ~ LITERAL _
DCO3E220  ABCDEFGHIJKLMNOPQRSTUVW
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Appendix E: Interruption Procedures

This appendix contains descriptions of the procedures
followed when the user’s program is temporarily inter-
rupted due to certain types of interrupts. Inferrupts
are hardwarc-originated breaks in the flow of process-
ing. Program interrupts result from improper specifica-
tion or use of instructions and data. The term exception
is used to refer to these types of interrupts (see Princi-
ples of Operation). Six such exceptions occur: fre-
quently enough during normal FORTRAN programming
to warrant special treatment.

Fixed point overflow exception
Significance exception
Exponent overflow exception
Exponent underflow exception
Floating point-divide exception
Specification exception

& QU LN~

The procedure for handling these exceptions follows.
The compiler generates code at the beginning of all
main programs that calls the cicepr entry to module
cHCBD. At cHeBp! these operations are performed:

1. Bits are set in the PSW such that the fixed point
overflow and significance exceptions will be ignored.

2. Initialization is performed such that control will be
passed to an entry in module cHcBp or cncse if any
of the remaining four exceptions occur:

EXCT T TION ENTRY
Panonent overflow CHCBLJ
Fvneent urslerflow CHCBD4
g g Livide CHCBDS
Cpeciication CHCBEL
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At the first three of these entries, flags are set for
later interrogation by routines called as a result of the
CALL OVERFL (tests for exponent overflow or under-
flow. exceptions) and carLL pvcek (tests for floating
point divide exception) statements.

A specification exception occurs when a variable is
not on a proper word boundary. This condition may
éxist in a FORTRAN program if an EQUIVALENCE Or COM-
MoN statement forces misalignment. The compiler is-
sues a warning diagnostic, but such a misalignment
does not prevent the user from executing the program.
An installation option spcciﬁes that one of two courses
of action is to be taken if a specification interrupt oc-
curs: (1) terminate the task, or (2) transfer control to
a program that will perform the desired operation,
using instructions that will not cause an exception duc
to incorrect boundary alignment. The routine entered
for either of these eventualities is cricee, which is
entered by the cucsel entry. The installation option is
tested, and one of the two above courses of action
taken.

An exponent overflow exception is recognized when
the result of a floating point addition, subtraction, mul-
tiplication, or division is either greater than or equal to
16% (approximately 7.2 x 107%). An exponent undecr-
flow exception is recognized when the result of a float-
ing point addition, subtraction, multiplication, or divi-
sion is less than 16=% (approximately 5.4 x 10-7), A
divide exception is recognized when division by zero
is attempted.



Appendix F: Algorithms

Information about the computations used in the explicitly called mathematical
subprograms is arranged alphabetically in this appendix, according to subprogram
module name. The user entry name associated with each subprogram is given in
parentheses following the module name.

The information for each subprogram is divided into two parts: a description of
the algorithm used and a description of the effect of an argument error upon the
accuracy of the answer (function value).

The presentation of each algorithm is divided into its major computational
steps; the formulas necessary for cach step are supplied. Some formulas are widely
known; others are derived from common formulas. In these cases, the process
leading from the common formula to the computational formula is sketched in
enough detail that the derivation may be reconstructed.?

For the sake of brevity, the needed constants are normally given only symboli-
ally. (The actual values can be found in the assembly listing of the subprograms. )
Some of the formulas are widely known; those that are not so widely known are
derived from more common formulas. The process leading from the common
formula to the computational formula is sketched in enough detail so that the
derivation can be reconstructed by anyone who has an understanding of college
mathematics and access to the common texts on numerical analysis.! Many approxi-
mations were derived by the so-called “minimax” methods. The approximation
sought by these methods can be characterized as follows. Given a function f(x). an
interval I the form of the approximation (such as the rational form with specified
degrees), and the type of error to be minimized (such as the relative error), there
is normally a unique approximation to f(x) whosc maximum crror over I is the
smallest among all possible approximations of the given form. Details of the theory
and the various methods of deriving such approximation are provided in the
reference.! The accuracy fignres cited in the algorithm sections are theoretical, and
thev do not take rommd-off crrors into acconnt. simor programming techniques
used to minimize round-off errors are not necessarily deseribed here.

The accuracy of an answer produced by these algorithms is influenced by two
tactors: the performance of the subprogram and the accuracy of the argument.
(Performance statistics are given in Table 1.) The cffect of an argument error
upon the accuracy of an answer depends solely upon the mathematical function
involved and not upon the particular coding used in the subprogram.

Because argument errors, whether accumulated prior to use of the subprogram
or introduced by newly converted data, always influence the accuracy of answers,
a guide to the propagational effect of argument errors is provided. This guide
(expressed as a simple formula, where possible) is intended to assist users in
assessing the effect of an argument error.

1 Any of the comynon numerical analysis texts may be used as a reference. One such texst is F. B. Hildebrand’s
Introduction to Numcrical Analysis (McGraw-Hill Book Company, Inc.,, New Ywrk, N.Y., 1956). Background
information for algorithms that use continued fractions may be found in H. S. Wall’s Analytic Theory of
Continued Fractions (D. VanNostrand Co., Inc., Princeton, N.J., 1948).

Appendix F: Algorithms
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These symbols are used in this appendix to describe the effect of an argument
error upon the accuracy of the answer:

SYMBOL EXPLANATION
g(x) Result given by subprogram
f(x) Correct result
f(x)—g(x) Relative error of result given by
€ T subprogram
1) Relative error of argument
E f(x)—g(x) Absolute error of result given
by subprogram

A Absolute error of argument

The notation used for the continued fractions in this appendix complies with
the specifications set by the National Bureau of Standards. For more information,
see Milton Abramowitz and Irene A. Stegun (editors), Handbook of Mathemati-
cal Functions, Applied Mathematics Series-55 (National Bureau of Standards,
Washington, D.C., 1965).

Although it is not specifically stated below for each subroutine, the algorithms
in this chapter were programmed to conform to the following standards governing
floating-point overflow/underflow.

1. Intermediate underflow and overflows are not permitted to occur. This prevents
the printing of irrelevant messages.

2. Those arguments for which the answer can overflow are excluded from the
permitted range of the subroutine. This rule does not apply to cpass and cass.

3. When the magnitude of the answer is less than 16—%, zero is given as the
answer. If the floating-point underflow exception mask is on at the time, the
underflow message will be printed.

Contrel of Program Exceptions in Mathematical Functions

The rorTRAN mathematical functions have been coded with careful control of error
snations, A resull is provided whenever the answer is within the range repre-
s atabl s in we doating-point form. in o:ler to be consistent with FORTRAN control
o expoanent overtlow/underflow exceptivas, the following types of conditions are
recogrized ¢ ad Landled seporately.

Vheo & magnitude of the furctics. alee is too large to be represented in the
o -0 Horm, che oondition i ¢ lled a terminal overflow; when the magni-
tind sl to he represented, a terminal underflow. On the other hand, if the
funci. + lve s representable, but if execution of the chosen algorithm causes an

Ci -+ ederflovs v he process, thic condition is called an intermediate dver-

How or rmdertow

Funetion subroutines in the rorTrAN library have been coded to observe the

following r."»s for these conditions:

1. Algorithms which can causc an intermediate overflow have been avoided.
Therefore an intermediate overflow should not occur during the exccution
of a funiction subroutine of the librarv.

2. Intermediate underflows are detected and not allowed to cause an interrupt.
In other words, spurious undertlow signals are not allowed to be given. Com-
putation of the function value is successfully carried out.

3. Terminal overflow conditions are scrcened out by the subroutine. The argu-
ment is considered out of range for computation and an error diagnostic is
given.



4. Terminal underflow conditions are handled by forcing a floating-point under-
flow exception. This provides for the detection of underflow in the same
manner as for an arithmetic statement. Terminal underflows can occur in the
following function subroutines: EXP, DEXP, ATANZ, DATAN?2, ERFC, and DERFC.

For implicit arithmetic subroutines, these rules do not apply. In this case, both

terminal overflows and terminal underflows will cause respective floating-point
exceptions. In addition, in case of complex arithmetic (implicit multiply and di-
vide), premature overflow/underflow is possible when the result of arithmetic is
very close to an overflow or underflow condition.

Appendix F: Algorithms 39



Explicitly Called Subprograms
Absolute Value Subprograms

CABS/CDABS

1. Write |x + iy| = a + ib.

2. Let v, = max ( ||, ly| ), and v, = min ( |x|, \y| ).

3. If characteristics of v, and v, differ by 7 (15 for cpass) or more, or if v, = 0,
thena = v, b = 0.

4, Otherwise,

V2 \2
a=2+v " \}1/4-‘}-1/5;(“0—) ,and b = 0.
1

If the answer is greater than 16%, the floating-point overflow interruption will
take place (see Appendix C). The algorithms for both complex absolute value
subprograms are identical. Each subprogram uses the appropriate real square root
subprogram ( SQRT or DSQRT ).

Effect of an Argument Error
1
€~ _2‘8.
Arcsine and Arccosine Subprograms

ARSIN/ARCOS
Algorithm
1. If 0 =< x =< %, then compute arcsin (x) by a continued fraction of the form:
arcsin {(x) = x + 2% « F where
d, ds
(24 )+ (*+c)’
The coefficients of this formula were derived by transforming the minimax
rational approximation (in relative error, over the range 0 =22 = %) for
arcsin (x)/x of the following form:
arcsin(x) . a, + ax*
T T [z"rz;——r‘]
Minimax was taken under the constraint that a, = 1 exactly. The relative error
of this approximation is less than 2—32%3,
If 0 = x = %, arccos(x) is computed as:

F=

™ .
arccos{x) = -5 = aresin(x).
2. If %2 < x= 1, then compute arccos(x) essentially as:
ﬁ

arccos(x) = 2+ arcsin (\/1 _9: x).

This case is now reduced to the first case because within these limits,

S
Oé\ll 'xgl/z.

2

This computation uses the real square root subprogram (sQrt)
It %2 < x = 1, arcsin(x) is computed as:
. m
arcsin(x) = - arccos{x).

Implementation of the above algorithms (steps 1 and 2) were carried out with
care to minimize the round-off errors.
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3. If — 1 =x <0, thenarcsin(x) = — arcsin |x]
and arccos(x) = = — arccos |x.

This reduces these cases to one of the two positive cases.

Effect of an Argument Error
A .
E ~ ‘{/'21—_———; For small values of x, E ~ A. Toward the limits ( £ 1) of the
range, a small A causes a substantial error in the answer. For the arcsine, e ~ 8
if the value of x is small.

DARSIN/DARCOS

Algorithm ;
1. If 0 = x < 14, then compute arcsin{x) by a continued fraction of the form:
arcsin(x) == x + x® « F where
dl d2 d3 (14

Pt Tt Era) f Bt + (E+a)

The relative error of this approximation is less than 2572,

The coefficients of this formula were derived by transforming the minimax
rational approximation (in relative error, over the range 0 =x*=%) for
arcsin(x )/x of the following form:

arcsin{x) a; + a,x* + azx* + ax® + a;,x“]

x =t X e T b F b F

Minimax was taken under the constraint that a, = 1 exactly.
If 0 = x = Y, arccos(x) is computed as:

arccos(x) = —g—— — arcsin(x).

2. If %2 < x = 1, then compute arccos {x) essentially as:
l —
arccos{x) = 2+ arcsin (\/1 x\‘
2
This case is now reduced to the first case because within these limits,
M —
0= \}1 <,
= 2 ==
This computation uses the real square root subprogram (psQRT).
It Y2 < x = 1, arcsin(x) is computed as:
. m
arcsin(x) = - arccos(x).
Implementation of the above algorithms (steps 1 and 2) were carried out with
care to minimize the round-off errors.
3. If = 1 = x < 0, then arcsin(x) = — arcsin |x|, and arccos(x) = = — arccos x/.

This reduces these cases to one of the two positive cases.

Effect of an Argument Error

E ~ “/=—— . For small values of x, E ~ A. Toward the limits ( = 1) of the

V1—x
range a small A causes a substantial error in the answer. For the arcsine, ¢ ~ § if
the valuc of x is small.
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Arctangent Subprograms

ATAN/ATAN2

Algorithm

1. For arctan {xy, x2):
If x; < 0, use the identity arctan (x;, x,) = —arctan ( =, £2).
Hence we may assume that x, = 0. Then:

x
If either x, = O or H > 2% the answer =_‘§_.

If x, < 0 and

Xy .
_{’r < 27 the answer = .
X2

Xy
, and
X2
X
if x, < 0, the answer = » — arctan . .
2

The remainder of the computation is identical for either one or two arguments.

For the general case, if xo > 0, the answer = arctan (

2. Reduce the computation of arctan (x) to the case 0 = x = 1, by using

arctan (— x) = — arctan (x), or
arctan (—’1—) =_-— arctan |x].
|| 2

3. If necessary, reduce the computation further to the case |x| = tan 15° by using

| =

V3rx—1
arctan (x) = 30° + arctan (T\/‘—g‘)
u‘:‘l = tan 15° if the value of x is within the range
x+ V3| ™ . i
tan 15° < x = 1. The value of ( v/ 3+ x — 1) is computed as

(V3 —1)x — 1+ xtoavoid the loss of significant digits.

The value of

4. Tor |x| = tan 15°, use the approximation formula:

arctan (x) Y 0.55913709
— = 0.60310579 — 0.05160454x* + = + 14087812 "

This formula has a relative error less than 2-27! and can be obtained by
transforming the continued fraction

xl!
arctan (x) . 52 5
X - 3+ (5 + _“)
—7" X - W
wherc w has an approximate value of ( ——77—31:—2 +§73—';—5 104, but the true
4+5
779

value of w is 5 R
(7—-'1‘1 + x“) +

The original continued fraction can be obtained by transforming the Taylor
series into continued fraction form.
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Effect of an Argument Error

E~

1 -ﬁx”' For small values of x, e ~ §; as the value of x increases, the effect

of 8 upon ¢ diminishes.

DATAN/DATAN2
Algorithm

1.

For arctan(x;, x):
If x, < 0, use the identity arctan(x;, x») = —arctan { —x,, X2).
Hence we may assume that x; = 0. Then:

x
If either x, = O or H > 250 the answer =

X
If x. < Oand ’—1
X2

x
For the general case, if x, > 0, the answer = arctan ( H), and
2

of4

< 2-% the answer = =:

X1
if x, < 0, the answer = = — arctan ( p )
2

The remainder of the computation is identical for either one or two arguments.

. Reduce the computation of arctan (x) to the case 0 = x = 1 by using

arctan( —x) = — arctan(x) and

arctan f’lf! =—72r—-— arctan |x].

. If necessary, reduce the computation further to the case |x| = tan 15° by using

arctan(x) = arctan { — V3 )

V3ex—1 o .
‘x—_:vg_l =< tan 15°, if the value of x is within the range tan

15° < x = 1. The value of (/3 +x — 1) is computedas (V3 — 1) x — 1 + x
to avoid the loss of significant digits.

The value of

The relative error of this approximation is less than 2—%-7,

The coefficients of this formula were derived by transforming a minimax
rational approximation (in relative error, over the range 0 < x* = 0.071797)
for arctan(x)/x of the following form:

arctan(x) Cco +ox? + coxt + c;x“]

x =0+ X do + dix2 + dux* + x

Minimax was taken under the constraint that a, = 1 exactly.

4. For |x| = tan 15°, use a continued fraction of the form:

arctan(x)

. _ a; az as
X =1+x[b0 (by + x2) — (bs + x%) — (b3+x‘-’)]'
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Effect of an Argument Error

E

A
1+ x

For small values of x, e ~ §, and as the value of x increases, the effect

of e upon 8 diminishes.

Error Functions Subprograms

ERF/ERFC

Algorithm

1.

o

]

If 0 = x = 1, then compute the error function by the following approximation:
erf(x) = x(ay + a1x* + axx* + ... + azx'?).

The coefficients were obtained by the minimax approximation (in relative
error ) of erf(x)/x as a function of x* over the range 0 = x> =< 1. The relative
error of this approximation is less than 2246, The value of the complemented
error function is computed as erfc(x) = 1 — erf(x).

CIf 1 < x < 2.040452, then compute the complemented error function by the

following approximation:
erfc (x) = by + bz + bz + ... + bgz?

where z = x — Ty and T, == 1.709472. The coefficients were obtained by the
minimax approximation (in absolute error) of the function f(z) = erfc(z +
Ty) over the range — 0.709472 = z = 0.33098. The absolute error of this
approximation is less than 235, The limits of this range and the value of the
origin T, were chosen to minimize the hexadecimal round-off errors. The value

1
of the complemented error function within this range is between 356 and 0.1573.

The value of the error function is computed as erf(x) = 1 — erfe(x).

. T 2.040452 = 1 < 13.306, then compute the complemented error function by

the following approximation:
(e
crfe{x) = ¢e~*+ F/x where z = x2 and

P + (o TR oS S et
=0y m o
diz + doz? + 23

The coeflicients for F were obtained by transforming a minimax rational
approximation (in absolute errors, over the range 13.306—* = w = 2.040452—2)
of the function f(1c) = erfc{x) * x * ¢, w = x 2, of the following form:

a, + a;w + aw* + az;w?
b() + b]u) + w*

flw) =

The absolute error of this approximation is less than 2-261, This computation
uses the real exponential subprogram (exp).
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If 2.040452 < x < 3.919206, then the error function is computed as
erf(x) = 1 — erfc(x).
If 3.919206 = «x, then the error function is == 1.

4, If 13.308 < x, then the error function is == 1, and the complemented error func-
tion is == 0 (underflow). ‘

5. If x < 0, then reduce to a case involving a positive argument by the use of the
following formulas:

erf(— x) = — erf(x),and erfc { — x) = 2 — erfc(x).

Effect of an Argument Error,

E ~ e —=+ A. For the error function, as the magnitude of the argument exceeds 1,
the effect of an argument error upon the final accuracy diminishes rapidly. For
small values of x, ¢ ~ 8. For the complemented error function, if the value of x is

greater than 1, erfc(x) ~ —62——:-. Therefore, ¢ ~ 2 x* + 8. If the value of x is negative

or less than 1, then ¢« ~ =" ¢ A,

DERF/DERFC

Algorithm
1. If 0 = x < 1, then compute the error function by the following approximation:

erf(x) = x(a(} + 0112 + 02x4 +... + 011’.\:22)-

The coefficients were obtained by the minimax approximation (in relative
error) of erf(x)/x as a function of x2 over the range 0 < x2 =< 1. The relative
error of this approximation is less than 2569, The value of the complemented
error function is computed as erfc(x) = 1 — erf(x).

2. If 1 =x < 2040452, then compute the complemented error function by the
following approximation:

erfc(x) = by + bz + boz® + ... bygz'8

where z = x — T, and T, == 1.709472. The coefficients were obtained by the
minimax approximation (in absolute error) of the function f(z) = erfc(z + Ty)
over the range —0.709472 =< z < 0.33098. The absolute error of this approxi-
mation is less than 2-°3, The limits of this range and the value of the origin
T, were chosen to minimize the hexadecimal round-off errors. The value of the

complemented error function within this range is between _éé—s and 0.1573. The

value of the error function is computed as erf(x) = 1 — erfe(x).
3. If 2.040452 = x < 13.306, then compute the complemented error function by
the following approximation:
erfc(x) == e~7+ F/x where z = x2 and
dl dz ds d7

F =
C°+('z+c])+ (z+c)+ "T(z+c)+ (z+¢)

The coefficients for F were derived by transforming a minimax rational approxi-
mation (in absolute errors, over the range 13.306—2 < w < 2.040452—2) of the
function f(w) = erfc(x) * x + e **, w = x~2, of the following form:
f(w) ao + aw + aw? + ... + a;0”
w) =
by + byw + baw? + ... + bew® +w™"

The absolute error of this approximation is less than 2-37-%, This computation
uses the real exponential subprogram (pexe). If 2.040452 < x < 6.092368, then
the error function is computed as erf(x) = 1 — erfc(x).

If 6.092368 = «x, then the error function is == 1.
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4. If 13.306 < x, then the error function is == 1, and the complemented error
function == 0 (underflow ).

5. If x < 0, then reduce to a case involving a positive argument by the use of the
following formulas:

erf(— x) = — erf(x),and erfc (— x) = 2 — erfe(x).

Effect of an Argument Error

E ~e—2+ A, For the error function, as the magnitude of the argument exceeds
1, the effect of an argument error upon the final accuracy diminishes rapidly. For
small values of x, ¢ ~ 8. For the complemented error function, if the value of

x2

2x
is negative or less than 1, then e ~ e—%% » A,

. Therefore, ¢ ~ 2x2 » 8. If the value of x

. e
x is greater than 1, erfc(x) ~

Exponential Subprograms

EXP
Algorithm
1. If x << — 180.218, then 0 is given as the answer via floating-point underflow.
2. Otherwise, divide x by log.2 and write
x
y = Ton.? =40—-b—d

where ¢ and b are integers, 0 < b <3and 0= d < 1.
3. Compute 2—7 by the following fractional approximation:

2d

617.97227
d? + 87.417497

This formula can be obtained by transtorming the Gaussian continued fraction

0.034657359 d* + d + 9.9545948 —

1+ 2—- 3+ 2— 5+ 2— 7+ 2°

The maximum relative error of this approximation is 229,
4. Multiply 2-%by 2—".

5. Finally, add the hexadecimal exponent a to the characteristic of the answer.

Effect of an Argument Error

¢ ~ & If the magnitude of x is large, even the round-off error of the argument
causes a substantial relative error in the answer because A = § * x.

DEXP

Algorithm
1. If x < — 180.2187, then 0 is given as the answer via floating-point underflow.
2. Divide x by log,2 and write
c
x=f0da—-b—-)elogo —
x ( a 16 log2 — r
where a, b, and ¢ are integers, 0 < b < 3, 0 =< ¢ < 15, and the remainder r is

within the range 0 = r < =% + log,2. This reduction is carried out in an extra

16
precision to ensure accuracy. Then e* = 162+ 2—b ¢ 2—¢/18 4 g—r,
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3. Compute e—" by using a minimax polynomial approximation of degree 6 over

* log.2. In obtaining coefficients of this approximation,

therange 0 = r < 16

the minimax of relative errors was taken under the constraint that the constant
term a, shall be exactly 1. The relative error is less than 2-56-87,

4. Multiply e—" by 2—¢/1¢. The 16 values of 2—°/1% for 0 = ¢ = 15 are included in
the subprogram. Then halve the result b times.

5. Finally, add the hexdecimal exponent of & to the characteristic of the answer.

Effect of an Argument Error

E ~ A. If the magnitudé of x is large, even the round-off error of the argument
causes a substantial relative error in the answer because A = § + x.

CEXP/CDEXP

Algorithm

The value of e*+# is computed as e” * cos(y) + i * e® * sin(y). The algorithms for
both complex exponential subprograms are identical. Each subprogram uses the
appropriate real exponential subprogram (Exp or pExr) and the appropriate real
sine/ cosine subprogram (cos/sIN or pcos/DsIN ).

Effect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If e+% = R+ ¢, then H = yand «(R) ~ A (x).

Gamma and Log Gamma Subprograms

GAMMA/ALGAMA

Algorithm

L. If 0 < x = 2-2%2, then compute log-gamma as log.I'(x) = — log.(x).
This computation uses the real logarithm subprogram (aLoc).

2. If 27252 < x < 8, then compute log-gamma by taking the natural logarithm of
the value obtained for gamma. The computation of gamma depends upon the
range into which the argument falls.

_ (x+1)

3. If2-22 < x < 1, thenuse T'(x) = to reduce to the next case.

4. If 1 = x = 2, then compute gamma by the minimax rational approximation (in
absolute error) of the following form:
z[a + a1z + asz® + as2?]
by + bz + byz® + 23
where z = x — 1.5, The absolute error of this approximation is less than 2—25-9,
5. 1f2 < x < 8 thenuse I'(x) = (x — 1) I'(x — 1) to reduce step by step to the
preceding case.
6. If 8 < x, then compute log-gamma by the use of Stirling’s formula:
log.I'(x) == x(log.(x) — 1) — Y% log.(x) + % log.(2r) + G(x).
The modifier term G(x) is computed as
G(x) =dx—1 + d;x—2.
These coefficients were obtained by a form of minimax approximation minimiz-
ing the ratio of the absolute error to the value of x. The absolute error is less
than x » 2-202, Remembering the fact that x < log.I'(x) in this range, the
conlribution of this error to the relative error of the value for log-gamma is less

I'(x) =cy+
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than 2—26-2, This computation uses the real logarithm subprogram (aLoc).
For gamma, compute T'(x) = e?, where y is the value obtained for log-gamma.
This computation uses the real exponential subprogram (Exp).

Effect of an Argument Error
e ~ ¢ (x) * A for gamma, and E ~ ¢ (x) * A for log-gamma, where y is the
digamma function.

1
If - <x< 3, then —2 < y (x) < 1. Therefore, E ~ A for log-gamma. How-

ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a small
3 can cause a substantial ¢ in this range.

If the value of x is large, then ¢ (x) ~ log, (x). Therefore, for gamma,
e ~ 8 x » log. (x). In this case, even the round-off error of the argument con-
tributes greatly to the relative error of the answer. For log-gamma with large
values of x, ¢ ~ 8.

DGAMMA/DLGAMA

Algorithm

1. If 0 < x = 2252, then compute log-gamma as log.,T'(x) = — log.(x).
This computation uses the real logarithm subprogram (prog).

2. If 2722 < x < 8, then compute log-gamma by taking the natural logarithm
of the value obtained for gamma. The computation of gamma depends upon the
range into which the argument falls.

or r'(x+1)
3. If2-252 < x < 1, then use T'{x) = — to reduce to the next case.

4. If 1 = x = 2, then compute gamma by the minimax rational approximation (in
absolute error) of the following form:
zlay + aiz + ... + agz®]
b+ biz+ ...+ bez® + 27
where z = x — 1.5. The absolute error of this approximation is less than 2—5-2,
5. M2 < x <8 thenuse I'(x) = (x — 1) I'{x — 1) to reduce to the preceding
case.
6. If 8§ = «x, then compute lInog-gamma by the use of Stirling’s formula:
log.T(x) = x(log.(x) — 1) — Yo log.(x) + Y log.(2x) + G(x).
The modifier term G(x) is computed as
G(x) =dx ' +dix® + dox % + dyx—7 + dx—*,

These cocfficients were obtained by a form ef minimax approximation minimiz-
ing the ratio of the absolute error to the value of x. The absolute error is less
than x « 2561 Remembering the fact that x < log.I'(x) in this range, the
contribution of this error to the relative error of the value for log-gamma is less
than 2361, This computation uses the real logarithm subprogram (proc). For
gamma, compute T'(x) = ¢¥, where y is the value obtained for log-gamma.
This computation uses the real exponential subprogram (pExr).

T'(x) =co+

Efect of an Argument Error

e ~ ¢(x) » A for gamma, and E ~ y(x) * A for log-gamma, where y is the
digamma function.

1
If 5 <x< 3, then —2 < ¢(x) < 1. Therefore, E ~ A for log-gamma. How-

cver, because x = 1 and x = 2 are zeros of the log-gamma function, even a small
8 can cause a substantial ¢ in this range.
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If the value of x is large, then y(x) ~ log.(x). Therefore, for gamma,
e ~ 8+ x * log.(x). In this case, even the round-off error of the argument con-
tributes greatly to the relative error of the answer. For log-gamma with large
values of x, ¢ ~ 8.

Hyperbolic Sine and Cosine Subprograms

SINH/COSH

Algorithm
1. If |x| < 1.0, then compute sinh(x) as:
sinh(x) == x + ¢x® + c2x® + cax".

The coefficient ¢; were obtained by the minimax approximation (in relative

sinh(x .
(x) as the function of x2. The maximum relative error of this

error) of

approximation is 2—25-8,
2. If x = 1.0, then sinh(x) is computed as:
sinh(x) = (]_ + 8) [ew+logev — 02/e.r+loge1;]‘

1
Here, 1 + § = 35 > 5O that this expression is theoretically equivalent to

[er — e—%]/2. The value of v (and consequently those of log.v and §) was so
chosen as to satisfy the following conditions:
a) v is slightly less than 2, so that § > 0 and small.
~b) log.vis an exact multiple of 214,

The condition b) insures that the addition x + log.v is carried out exactly. This
maneuver was designed to reduce the round-off errors and also to enlarge the
limits of acceptable arguments. This computation uses the real exponential sub-
program (EXP).

3. If x = — 1.0, use sinh(x) = — sinh(x|) to reduce to case 2 above.

4. If cosh (x) is desired, then for all valid values of arguments use the identity:
cosh(x) = (1 + 8) [e*+&? + p¥[/e?t1¢.7], Here the notation and the consid-
eration are identical to case 2 above. This computation uses the real exponential
subprogram (Exp).

Effect of an Argument Error

For the hyperbolic sine, E ~ A * cosh (x) and ¢ ~ A * coth(x).
For the hyperbolic cosine, E ~ A « sinh(x) and ¢ ~ & » tanh{x).

Specifically, for the cosine, ¢ ~ A over the entire range; for the sine, ¢ ~ 8 for
small values of x.

DSINH/DCOSH

Algorithm
L. If |x| < 0.881374, then compute sinh(x) as:
sinh (x) == cox + ¢12® + cox® + ... + cex!3.

The coefficients ¢; were obtained by the minimax approximation (in relative
sinh(x)

error ) of as the function of 2. Minimax was taken under the constraint

that ¢y = 1 exactly. The maximum relative error of this approximation is 2557,
2. If x = 0.881374, then sinh(x) is computed as:

Slnh(x) = (1 + 8) [e-z‘+10geﬂ — 02/ea:+logev].
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1 .
Here, 1 + § = 55 5O that this expression is theoretically equivalent to
)

[er — e=*]/2. The value of v (and consequently those of log.v and §) was so
chosen as to satisfy the following conditions:
a) v is slightly less than 24, so that § > 0 and small.
b) log.v is an exact multiple of 2—1°.
The condition b) insures that the addition x + log.v is carried out exactly. This
mancuver was designed to reduce the round-off errors and also to enlarge the
limits of acceptable arguments. This computation uses the real exponential sub-
program (DEXP). :
3. If x = —0.881374, then use sinh(x) = —sinh(|x|) to reduce to case 2 above.
4. If cosh(x)is desired, then, for all valid arguments use the identity:
cosh(x) = (1 + 8§) [erter 4+ p?/er+l2r] Here the notation and the consid-
eration are identical to case 2 above. This computation uses the real exponential
subprogram (DEXP).

Effect of an Argument Error
For the hyperbolic sine, E ~ A * cosh(x) and e ~ A * coth(x).
For the hyperbolic cosine, E ~ A « sinh(x) and ¢ ~ A « tanh(x).
Specifically, for the cosine, ¢ ~ A over the entire range; for the sine, ¢ ~ § for
the small values of x.

Hyperbolic Tangent Subprograms

TANH

Algorithm

L If jx|< 2~ then tanh(x) = x.

2. If 271 < |x| = 0.7, use the following fractional approximation:

tanh(x)
x

0.8145651
= 1 — x*} 0.0037828 + ]

x? + 2.471749

The coefficients of this approximation were obtained by taking the minimax
of relative error, over the range x* < 0.49, of approximations of this form under
th constraint that the first term shall be exactly 1.0. The maximum relative
error of this approximation is 2264,
2
The soiuiputation for this case uses the real exponential subprogram (exp).
4. Hx =001, than tanh(x) == 1.

Lo 107 < x< 9.011, then use the identity tanh(x) =1 —

5. If x < —0.7, then use the identity tanh(x) = —tanh( —x).
Effect of an Argument Error
. . N 2a
E ~ (1 — tanh®x) A, and € ~ ————— For small values of x, ¢ ~ §, and as the
sinh (2x) -
value of x increases, the effect of § upon e diminishes.
DTANH
Algorithm

1. If |x| = 22 then tanh(x) == x.
2. 1f 27*% < jx| < 0.54931, use the following fractional approximation:
tanh(x) dix2 ds ds
' ST Y Yo+ 2 tat 2ta




3.

This approximation was obtained by rewriting a minimax approximation of the
following form:
tanh(x) ) a, + a;x* + axx?

~ 2 o
xS ht e T b T

Here the minimax of relative error, over the range 2 = 0.30174, was taken
under the constraint that ¢, shall be exactly 1.0. The maximum relative error of
the above is 2%,

2
e + 1’
This computation uses the double precision exponential subprogram (peExp).

If 0.54931 < x < 20.101, then use the identity tanh(x) = 1 —

4. If x = 20.101, then tanh(x) = 1.

5. If x = — 0.54931, then use the identity tanh(x) = — tanh( — x).

Effect of an Argument Error

E ~ (1 — tanh®x) A, and ¢ ~ __.2.'_%.__. For small values of x, ¢ ~ 8. As the
’ sinh {2x)

value of x increases, the effect of § upon e diminishes.

Logarithmic Subprograms (Common and Natural)

ALOG/ALOG10
Algorithm
1. Write x = 167 » 2—¢ « m where p is the exponent, ¢ is an integer, 0 = q = 3,

2.

6.

1
. Now, x = 2—a—b. i

. 1+2z
. To obtain logn(l—:—;), first compute w = 2z =

and m is within the range, %6 < m < 1.
Define two constants, a and b (where a = base point and 2-? = a), as follows:

If Yo =m <« —=,thena = % andb = 1.

\/2
1
—_— << = =
vaz_m<1thena land b = 0.
Writ "‘m—aTh = tz dlz! < 0.1716
. Writez = + o Then,m =a* 3——an |zl < 0. .

z 142z
,and log.(x) = (4p — g — b) log. 2 + log(.( )
-z 1 - 2z/.
m —

0.5m + 0 Sa
resented in our system with slightly more significant digits than z itself), and
apply an approximation of the following form:

1+ =z cw?
log. ( ) w [c., — q].

These coefficients were obtained by the minimax rational approximation of

(which is rep-

1+ =z
57 Ioge(—_——z) over the range z* ¢ (0, 0.02944) under the constraint that ¢,

shall be exactly 1.0. The maximum relative error of this approximation is less
than 2——25.33'
If the common logarithm is desired, then log,;x = logige * logex.

Effect of an Argument Error

E ~ 8. Specifically, if § is the round-off error of the argument, e.g., 5§ ~ 6 » 10~5,
then E ~ 6 « 10—®, Therefore, if the argument is close to 1, the relative error can
be very large because the value of the function is very small.
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DLOG/DLOG10

Algorithm

1.

2.

6.

Write x = 162 « 2-¢ = m where p is the exponent, g is an integer, 0 = g = 3,
and m is within the range Y2 = m < 1. ,
Define two constants, @ and b (where a = base point and 2-% = a), as follows:

If1/g<m<\/2 thene = Y2 and b= 1.
If%ﬁm<1thena land b = 0.
. m-—a z (
Write z = e Then,m =a-* - and |z! < 0.17186.
1+ =z 1+z
Now, x = 2#p—a-b 1= z,andlo&.x = (4p — q — D) log.2 + log. (l — z)’

m—a hich i
05m + 054 (which is repre-

sented in our system with slightly more significant digits than z itself), and
apply an approximation of the following form:

) Cy
co ot f w4+ p .
o 5
w® +ecy +

1+2
To obtain log, (1—_: , first compute w = 2z =

log. =1

w? + ¢q

Thcsu codﬁcients were obtained by the minimax rational approximation of

( ) over the range z* € {0, 0.02944) under the constraint that ¢,

shan be exactly 1.0. The maximum relative error of this approximation is less
than 2-60-5%,
If the common logarithm is desired, then log;ox = log;e * log,x.

Effect of an Argument Error

E ~ 8. Therefore, if the value of the argument is close to 1, the relative error can
be very large because the value of the function is very small.

CLOG/CDLOG

Algorithm

1. Write log. (x + iy) = a + ib.

2. Then, o = log, |x -+ iyl and b = the principal value of arctan (y, x).
3. log, |x + iy| is computed as follows:

52

Let oy = max (x|, y|), and v, = min (|x|,

¥,)-

1
Let t be the exponent of vy, ie., v; = m * 16, 16 =m<L
)t ift=<0
Finally, let ¢, = V- Lif¢ > 0(
and s = 16'.

Then, log, [x + iy| = 4¢, + log.(2) + % log. [( ) (UT)]

Computation of vi/s and v.fs are carried out by manipulation of the charac-
teristics of v; and v.. In particular, if v./s < 1, it is taken to be 0. The algor-
ithms for both complex logarithm subprograms are identical. Each subprogram
uses the appropriate real natural logarithm subprogram (avroc or pLoc) and the
appropriate arctangent subprogram ( ATAN2 Or DATAN? ).



Effect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r* e* and log. (x + iy) = a + ib,thenh = b
and E(a) = 8(r).

Sine and Cosine Subprograms

SIN/COS

Algorithm

4
1. Define z = — « |x| and separate z into its integer part (g ) and its fraction part
ks

(r). Thenz = g + r, and |x| =(;r 'q)+({—'r)-

2. If the cosine is desired, add 2 to q. If the sine is desired and if x is negative,
add 4 to q. This adjustment of ¢ reduces the general case to the computation
of sin (x) for x = 0 because

cos (*x) = sin (-%—+ x), and
sin ( — x) = sin(= + x).

3. Letgo=q mod 8.

Then, for g = 0, sin (x) = sin

(5
go = 1,sin (x) = cos (—Z-(l - r)),

go = 3, sin (x) = sin (Z (1 -f)),

-n),
go = 6,sin (x) = — cos ( 7] -r),

%=1gnu)=—ﬁn(%41—n)

go = 4,sin (x) = — sin (-z-—-r

qo = 3,sin (x) = — cos %—(1
ks

k.8
These formulas reduce each case to the computation of either sin (T . rl)

mw
or cos ( T’ r1) where ry is either r or (1 — r) and is within the range,

0=n=<1

4. If sin ( Z °r )is needed, it is computed by a polynomial of the following

form:

. kg
sin 4

The coeflicients were obtained by the interpolation at the roots of the Chebyshev
polynomial of degree 4. The relative error is less than 2—281 for the range.

. rl)g ry (ap + a2 + apr? + asrl®).
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5. If cos (j} 1 )is needed, it is computed by a polynomial of the following
form:

mw
.

cos ( 1 rl)z 1+ b2 + baryt +bari®

Cocflicients were obtained by a variation of the minimax approximation which
provides a partial rounding for the short precision computation. The absolute
error of this approximation is less than 2—2457.

Effect of an Argument Error

E ~ A. As the value of x increases, A increases. Because the function value dimin-
ishes periodically, no consistent relative error control can be maintained outside

the principal range, — % ==+ %

DSIN/DCOS

Algorithm

1. Divide [x! by':;— and separate the quotient (z) into its integer part (g) and

its fraction part (r). Then, z = /x| ¢ = g + r, where ¢ is an integer and r
is within the range, 0 = r < 1.

2. If the cosine is desired, add 2 to g. If the sine is desired and if x is negative,
add 4 to q. This adjustment of g reduces the general case to the computation of
sin (x) for x == 0, because

cos (£ x) = sin ([‘d + —;—),and

sin (= x) = sin (|x] + =).

3. Let ¢, =g mod 8.

Then, for g, = 0, sin (x) = sin

(
go = 1,sin (x) = cos (
(
(

qy = 2,8in (x) = cos

qy = 3,sin (x) = sin

),

gy = 4,sin (x) = — sin ( Z . r),
go = 5,sin (x) = — cos ('—Z——(l — r)),
go = 6,sin (x) = — cos ( Z . r),
qgo = T,sin (x) = — sin (%(1 - r)).

. kid
These formulas reduce each case to the computation of either sin (_Z . rl)

Kid
or cos ( 7N ); where 1, is either r or (1 — r), and is within the range,

0=n=1
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4 4
interpolations of degree 6 in r,2 for the sine, and of degree 7 in r,2 for the cosine.
In either case, the interpolation points were the roots of the Chebyshev poly-
nomial of one higher degree. The maximum relative error of the sine polynomial
is 258 and that of the cosine polynomial is 2—%3,

4. Finally, either sin(:— ' )or cos (-Zr- o1y )is computed, using the polynomial

Effect of an Argument Error

E ~ A. As the value of the argument increases, A increases. Because the function

value diminishes periodically, no consistent relative error control can be main-
b k4

tained outside of the principal range, — ~—2—§ 2= +—2—.

CSIN/CCOS

Algorithm
1. If the sine is desired, then
sin(x + iy) = sin(x) * cosh(y) + i* cos(x) * sinh(y).
If the cosine is desired, then
cos(x + iy) = cos (x) * cosh(y) — i+ sin(x) * sinh(y).
2. The value of sinh(x) is computed within the subprogram as follows.
Assume x = 0 for this, since sinh( — x) = — sinh(x).

1
3. If x = 0.346574, then use sinh (x) = % (ez - -é;).
4. If 0 = x < 0.346574, then compute sinh(x) by use of a polynomial:
sinh(x)

X

=gy + a;x% + a.x.

The coefficients were obtained by the minimax approximation (in relative
error) of sinh(x)/x over the range 0 =< x? < 0.12011 under the constraint that

a, shall be exactly 1.0. The relative error of this approximation is less than
2—-28.18’

5. The value of cosh(x) is computed as cosh (x) = sinh|x| + P

This computation uses the real expoential subprogram (Exe) and the real
sine/cosine subprogram (sin/cos).
Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer, the
programmer must understand the effect of an argument in the siN/cos, Exp, and
SINH/COsH subprograms.

CDSIN/CDCOS
Algorithm
1. If the sine is desired, then
sin (x+iy) = sin(x) * cosh(y) + i* cos(x) ¢ sinh(y).
If the cosine is desired, then
cos{x + iy) = cos(x) * cosh(y) — i+ sin(x) * sinh(y).
2. The value of sinh(x) is computed within the subprogram as follows.
Assume x = 0 for this, since sinh( — x) = — sinh(x).

3. If x = 0.481212, then use sinh(x) = % (e’ - —1—)
eI
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4. If 0 = x < 0.481212, then compute sinh(x) by use of a polynomial:
sinh{x)

=a, + a1x® + ax* + azx® + ax® + asx'C.

The coefficients were obtained by the minimax approximation (in relative
crror) of sinh(x)/x over the range 0 = «? = 0.23156 under the constraint '
that a, shall be exactly 1.0. The relative error of this approximation is less
than 2—56.07,

1
5. The value of cosh(x) is computed as cosh (x) = sinh|x| + o

This computation uses the real exponential subprogram (bexp) and the real
sine/ cosine subprogram (DSIN/DCOS ).
Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer,
the programmer must understand the effect of an argument error in the psmv/pcos,
DEXP, and DSINH/DCOSH subprograms.

Square Root Subprograms

SQRT

Algorithm

1. If x = 0, then the answer is 0.
2. Write x = 16**—¢ + m, where 2p — q is the exponent and g equals either 0 or 1;

1
m is the mantissa and is within the range 6 =m<L

3. Then, vVx = 162 « 4—2/ 1.
4. For the first approximation of \/x, compute the following:
1.288973
0.8408065 + m /J*
This approximation attains the minimax relative error for hyperbolic fits of v/x.

The maximum relative error is 2—5-748,
5. Apply the Newton-Raphson iteration

%( + = )
UYn = " o
+1 Y Un

twice. The second iteration is performed as
y ( x + x
l 2 i 2 - ——7
Y Y1 v "

with a partial rounding. The maximum relative error of y, is theoretically
9—25.9,

Yo =167+ 47+ (1.681595 -

Effect of an Argument Error
1

€ ~— 4.

2

“

DSQRT

Algorithm
1. If x = 0, then the answer is 0.
2. Write x = 16%—%+ m, where 2p — q is the exponent and q equals either 0 or 1;

1
m is the mantissa and is within the range 16 =m<L
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3. Then, Vx = 167+ 4-7\/m.
4. For the first approximation of \/x, compute the following:
Yo = 167« 4179+ 0.2202 (m + 0.2587).

The extrema of relative errors of this approximation for ¢ = 0 are 23202 at

1
m=1,2-325 gt m = 02587, and 2—29% at m = 16 This approximation, rather

x
than the minimax approximation, was chosen so that the quantity 7 — y3 be-
3

low becomes less than 16°—8 in magnitude. This arrangement allows us to
substitute short form counterparts for some of the long form instructions in the
final iteration.

5. Apply the Newton Raphson iteration

x
n =%(,,+—)
Yn+1 Y n

four times to yo, twice in the short form and twice in the long form. The final
step is performed as
x
yu=ys+ % ("““ys)
Ys
with an appropriate truncation maneuver to obtain a virtual rounding. The
maximum relative error of the final result is theoretically 29323,

Effect of an Argument Error
1

e~—>3

2

CSQRT/CDSQRT
Algorithm
1. Write vVx + iy = a + ib.

x|+ jx + 4 —
2. Compute the value z = \ )————2——!/— as k* vV w; + wy; where k, w, and w»

are defined in 3, or 4, below. In any case let v, = max (||, |y|) and
Uy = min (lx!7 ‘yl )'
3. In the special case when either v, = 0 or v; > v,, let w; = v, and w, = v, 50

that w, + w;, is effectively equal to v,.
Alsoletk = 1ifv, = || and

k=1/v2ifv, = Jy|.

P3
4. In the general case, compute F = \} Yy + Y (_Z_z_) .
1
If |x| is near the underflow threshold, then take
w, = ]x[, we =v,*2F,and k = 1/V/2.
If v, * F is near the overflow threshold, then take
w, = [x]/4, w; = v, *F/2,and k = V2.

In all other cases, take w; = |x]/2,w; = vy * F,and k = 1.
S.lfz=0,thena=0and b = 0.
Ifzs<0and x = 0, then a = z, and

=7
b= %
Hz<0andx < 0, thena = 'gz-‘,and
b = (signy) * z.
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The algorithms for both complex square root subprograms are identical.
Each subprogram uses the appropriate real square root subprogram (SQRT or
DSQRT ).

Effect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r+ e*and Vx + iy = R+ &',

thene(R) ~ é‘ 8(r),and (H) ~ 8(h).

Tangent and Cotangent Subprograms

TAN/COTAN
Algorithm

1. Divide |x| by —;L and separate the result into integer part (g) and the fraction

part (r). Then |x| = —;—r— (g + ).

2. Obtain the reduced argument (w) as follows:
if g is even, thenw = r
if gisodd, thenw =1 — r.
The range of the reduced argument is 0 = w = 1.
3. Let gy = g mod 4.

)
)

qu=2,tan}x[=—cot(z °w)andcot}x§=—tan(w )

<)

. w) are computed as the ratio of two

Then for g, = 0, tan |x| = tan (—g— . w) and cot [x| = cot (

4

n mw
qo = 1, tan |x! = cot ( . w) and cot |x| = tan

™
qo = 3, tan [x! = — tan ( T w) and cot |x| = — cot (
4. The value of tan (

w m
1" w)andcot( 1
polynomials:

a (l‘;*.w)gg%;ﬁ’ ( )Nw-(;&

wher: # = Yaw" and

Flu) = -- 8460901 + u
Qlu) = — 10.772754 + 5.703366 » u — 0.159321 + u2.

These cocfficients were obtained by the minimax rational approximation (in
relative error) of the indicated form. The maximum relative error of this
approximation is 2—2%, Choice of u rather than 1> as the variable for P and Q
is to improve the round-off quality of the coefficients.

5. If x < 0, then tan(x) = — tan [x|, and cot(x) = — cot |z].

6. This program is provided with two kinds of error controls. One is for arguments
whose magnitude is greater than 2'% » . The other is for arguments which are
very close to a singularity of the function. In either case, the precision of the
argument is deemed insufficient for obtaining a reliable result. More specifically,
the second control screens out the following arguments:

a) |x| = 16~ % for cotan (the result would overflow ).
b) x is such that one can find a singularity within eight units of the last digit
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value of the floating-point representation of the sum g + r. Singularities are
cases when the cotangent ratio is to be taken and w = 0.
The test threshold of this control can be dynamically modified by assembler
code programs.

Effect of an Argument Error

and ¢ ~ for tan(x). Therefore, near the singularities

2
E~ cos”(x) sin(2x)
x = (k +— ) «, where k is an integer, no error control can be maintained. This

is also true for cotan(x) for x near kx, where k is an integer.

DTAN/DCOTAN
Algorithm

1. Divide |x| by% and separate the result into integer part (g) and the fraction

part (7). Then |x| =—Z—(q + ).

2. Obtain the reduced argument (w) as follows:
if giseven, thenw = r
ifgisodd,thenw =1 — 1.
The range of the reduced argumentis0 < w < 1.
3. Letgo=q mod 4.

w
4 '“’)'
m
4 '“’)’

Then for go = 0, tan |x| = tan ( Z . w)and cot |x| = cot (

. w)and cot |x| = tan (

ki3
go = 1, tan |x| = cot (4

| k T
Go = 2,tan |x| = — cot ( e w)and cot [x] = — tan (—‘—1— . w),
w T
go = 3,tan |x| = — tan (.Z_ . w)andcot |x| = — cot (_4_ . w).
4. The value of tan (% . w) and cot ( Z . w) are computed as the ratio of
two polynomials:
1r w e P(w?) Q(w?)
tan(4 w)_———-——Q(w2) ,andcot( w) —_—_w'P(w2)

where both P and Q are polynomials of degree 3 in w2 The coefficients of P

and Q were obtained by the minimax rational approximation (in relative error)

1
of vy tan ( % w ) of the indicated form. The maximum relative error of this

approximation is 2—55-6,

. If x < 0, then tan(x) = — tan ||, and cot(x) = — cot [x].

. This program is provided with two kinds of error controls. One is for argu-
ments whose magnitude is greater than 25° « «. The other is for arguments which
are very close to a singularity of the function. In either case, the precision of
the argument is deemed insufficient for obtaining a reliable result. More
specifically, the second control screens out the following arguments:

a) |x| = 16— for cotan (the result would overflow).

b) x is such that one can find a singularity within eight units of the last digit
value of the floating-point representation of the sum g + r. Singularities are
cases when the cotangent ratio is to be taken and w = 0.

[« I
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The test threshold of this control can be dynamically modified by assembler
code programs.

Effect of an Argument Error

and e for tan(x). Therefore, near the singularities of -

~ cos*(x) ™ sin(2x)
1
x = (k + —2—) =, where k is an integer, no error control can be maintained.

This is also true for cotan(x) for values of x near kr, where k is an integer.

Implicitly Called Subprograms

The entry point names of the following implicitly called subprograms are gener-
ated by the compiler.

Complex Multiply and Divide Subprograms

CDVD £ /CMPY # (Divide/Multiply for COMPLEX*8 Arguments)
CDDVD # /CDMPY # (Divide/Multiply for COMPLEX*16 Arguments)

Algorithm
Multiply: (A + Bi) (C + Di) = (AC — BD) + (AD + BC)i
Divide: (A + Bi)/(C + Di)

1. If |C §|D], set
A=B B=—AC=D,D = — (C,since
A + Bi B=

= Ai before step 2.
C+Di D-Ci

o] AI’ — A Y J— B [ D

2. Set ~—“C—;B—C,D——E";

then compute

A + Bi A"+ B'i A"+ B'D B — A'D

C+Di-1%Di - 1¥pD-T 1T¥DD *©

Error Conditions

Partial underflows can occur in preparing the answer.

Complex Exponentiation Subprograms

FCDXI14£ (COMPLEX*16 Arguments)
FCXPl# (COMPLEX*8 Arguments)

Algorithm

The value of y, + yui = (2, + z.i)’ is computed as follows.
K

Let lj| = E 7. * 2" wherer, = Qorlfork=0,1,..., K.
k=0

Then z [i} = 7 z¥*, and the factors z** can be obtained by successive squaring.
. A0

More specifically:
1. Inmitially: k = 0, n'” = |jl, 4, " + y. Vi =1 + 04,

2™+ 2, =z, + Zol.
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2. Raise the index k by 1, and let n*~» = 2q + r, where q is the integer
quotientand r = O or 1.
. Letn®® = gq.
Ifr=0,theny, ® + y.,®i = y, *—V + y, (=14,
Ifr = 1, theny, @ + yo i = (y, = + yo k=) (2, %D + 25— 1g),
5. If n® == 0, then 2, + z,®i = (2%~ + z,'*~1 )2, and steps 2
through 5 are repeated until nt®*» = 0.
6. Whenn® = 0,andj = 0, theny; + y.i = y* +y¥i.
Ifj <0 theny; + ysi = (14 0) / (1™ + y2Wi).

= o

Exponentiation of a Real Base to a Real Power Subprograms

FDXPD# (REAL*8 Arguments)
FRXPR# (REAL*4 Arguments)

Algorithm

1. Ifa = 0and b =< 0, error return.
Ifa=0and b > 0, the answer is 0.

2. Ifa=<0and b = 0, the answer is 1.

3. All other cases, compute a? as e? * ° ¢, In this computation the exponentxal sub-
routine and the natural logarithm subroutine are used. If a is negative or if
b « log a is too large, an error return is given by one of these subroutines.

Error estimate

The relative error of the answer can be expressed as (¢ + ) b * log (a) + e
where ¢, €, and e are relative errors of the logarithmic routine, machine multi-
plication, and the exponential routine, respectively.

For FDXPD¥, ¢ =< 3.5x10-16 ¢, =< 2.2x10-1% and & = 2.0x10-1%. Hence the
relative error = 5.7x10~%x | b+ log @ | + 2.0x10~'%. Note that b * log a is the
natural logarithm of the answer.

For FRXPR¥, ¢; = 8.3x1077, ¢, =< 9.5x10~7, and ¢; = 4.7x10-7. Hence the relative
error = 1.8x10-%x | b » Ioga | +4.7x10-7.

Effect of an Argument Error

[a(l 4+ 8)]b(1+ &) ==a’(1 + 8:b *loga + bs,). Note that if the answer does
not overflow, |b * log a} < 175. On the other hand b can be very large without
causing an overflow of a® if log ¢ is very small. Thus, if ¢ = 1 and if b is very

large, then the effect of the perturbation 8, of a shows very heavily in the relative
error of the answer,

Exponentiation of a Real Base to an Integer Power Subprograms

FDXPi{# (REAL*8 Arguments)

Algorithm
K
The value of y = a' is computed as follows: Let |j| = E r:2* where r, = Oor 1
k=20
fork = 0,1, ..., K Then d\l = g and the factors a** can be obtained by suc-
. 7. #0

cessive squaring.

More specifically:

L. Initially: k = 0,0 = |j|, y'® = 1,and 2® = a.
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2. Raise the index k by 1, and decompose n'* =1 = 29 + r, where q is the
integer quotient and r = Qor 1.

3. Letn'™ = q.

4. Ifr = 0, then y™) = y'—D,
Ifr = 1’ then y(m = yll.»—lsz{k«l)_ )

5. It n") 5= 0, then 3% = z—1z01-) and steps 2 through 5 are repeated
until n'*' = Q.

1
6. Whenn'' = 0,andj = 0,theny = y™ . Ifj < 0, theny = W

Note: The negative exponent is computed by taking the reciprocal of the posi-
tive power, Thus it is not possible to compute 16.0**—64 because there is a lack
of symmetry for real floating-point numbers — i.e., 16.0**—64 can be represented,
but 16.0%*64 cannot. The result is obtained by successive multiplications and is
exact only if the answer contains less than 14 significant hexadecimal digits.

FRXPI# (REAL*4 Arguments)

Algorithm
This subprogram has the same algorithm as Fixpi#, which follows.

Exponentiation of Integer Base to Integer Power Subprogram

FIXPI# (INTEGER*4 Arguments)

Algorithm

K,
The value of L = I/ is computed as follows: Let j = 2 r. * 2% where r, = 0
k=20
orlfork =01 ... K Then I’ = & I?*, and the factors I?* can be obtained by
7. #0
successive squaring.
More specifically:
1. Initially: k = 0, n' =4,y = 1, and m™ = L
2. Raise the index k by 1, and decompose n'*="" = 2q + r, where ¢q is the

integer quotient and r = Qor 1.
3. Letn™ = gq.
4. It r =0, theny™ =y -1,
It r=1,theny™ = y*—1 e« pti-1,
5. If nt#r -k 0, then m'™ = m¥* =1 « ;=1 and steps 2 through 5 are repeated

until n'*: = (),
6. Whenn = 0, L = L',
Note: The result is obtained by successive multiplications. The result is exact
only if it is less than (2%*31) — 1. Results are meaningless when this limit is

cxceeded and may even be of changed sign.
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