Systems Reference Library

IBM Time Sharing System

Assembler Programmer’'s Guide

This publication explains the use of the Time Sharing System
(7ss) for assembler language programmers. It describes how to
assemble, store, and execute programs in Tss, introduces the com-
mand system, and explains the basic rules of task and data man-
agement. Numerous examples are given showing typical user-
system interaction. The appendixes include information on
assembler options, output, and restrictions, as well as program

File No. §360-21
Order No. GC28-2032-8

SevenTH EpiTioN (April 1976)

This is a revision of, and makes obsolete GC28-3032-5 and Technical News-
letter GN28-3201. This new edition of the Assembler Programmer’s Guide
includes revised user-system interaction examples and editorial changes,
and deletes an outdated appendix.

This edition is current with Release 2.0 of the IBM Time Sharing System/
370 (TSS/370), and remains in eflect for all subsequent versions or modifi-
cations of TSS unless otherwise noted. Significant chancges or additions to
this publication will be provided in new editions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM
represcntative or to the IBM branch office serving yvour locality.

A form is provided at the back of this publication for readers’ comments.
If the form has been removed, comments may be addressed to IBM Cor-
poration, Time Sharing System — Department 80M, 1133 Westchester
Avenue, White Plains, New York 10604.

© Copyright International Business Machines Corporation 1967, 1968, 1970,
1971, 1976

This publication is a guide to the use of the assembler
language facilities of Tss. It is intended for applications
programmers who code in the assembler language.
The publication is divided into four parts.

Part I is an overview of the Time Sharing System,
outlining the major concepts of the system.

Part 11 describes the basic task and data management
information you will need to use the system effectively:
how to execute tasks in conversational and nonconver-
sational mode, and how to name, catalog, store, and
manipulate your data sets. It also explains specific
system facilities available to you as an assembler pro-
grammer.

Part III comprises a series of examples that illustrate
typical activities you will perform while using the sys-
tem. They begin with the most straightforward neces-
sities, such as logging on, and in succeeding examples
progress to increasingly sophisticated concepts. These
examples may be read for instruction or used as models
for accomplishing specific tasks.

Part 1V is a set of appendixes containing additional
information on the use of the system. This reference
material includes descriptions of assembler options,
output, and restrictions, as well as explanations of pro-
gram control system use, interrupt handling, and com-
mand creation.

Prerequisite Publications
You must be familiar with the basic concepts and

terminology of Tss as described in IBM Time Sharing
System: Concepts and Facilities, GC28-2003.

You should be familiar with the Tss assembler lan-
guage, since this book does not describe the language

Preface

but rather the use of the system. The assembler lan-
guage is specified in these publications:

IBM Time Sharing System: Assembler Language,
GC28-2000

IBM Time Sharing System: Assembler User Macro
Instructions, GC28-2004

You will also need to refer to:

IBM Time Sharing System: Command System User’s
Guide, GC28-2001, for a complete description of
the command system.

Associated Publications
Other publications you may wish to refer to for details
not presented in this guide are:

IBM Time Sharing System: Terminal User’s Guide,
GC28-2017, ~for‘instructi0ns on how to operate the
various terminals supported by Tss.

IBM Time Sharing System: Linkage Editor, GC28-
2005, for a description of the linkage editor pro-
gram.

IBM Time Sharing System: Data Management Fa-
cilities, GC28-2056, for a description of access
methods and data management facilities.

Once you begin using the system, you will note
that a number of messages are issued by the system.
For a detailed description of these messages and for
information on any responses you may have to make
to them, consult the publication IBM Time Sharing
System: System Messages, GC28-2037.

Part 1. Introduction
The System and Your Relationship to It.........
Communicating with the System..........
How You Gain Access to the System.
Commands at Your Disposal.,
How Storage is Handled.
Virtual Storage
Sharing Time
Catalog and Library Concepts.
System Catalog .
Program Librares
How to Use This Manual

Part il. How Te Use TSS
Task Management
Conversational Mode . . .
Initiating Your Task
Executing Your Task
Entering Commands
SYSIN and SYSOUT
Assembling and Running a Program.
Checking Out and Modifying Programs.
Multiterminal Task (MTT).
Nonconversational Mode
Initiating Your Task.
Executing Your Task.......
Terminating Your Task.
Mixing Modeso o oL
Remote Job Euntry (RJE)
Task Management Commands.
Data Set Management.
Naming and Cataloging Your Data Sets.
Naming Your Data Sets.
System Catalog
Catalog Structure
Generation Data Groups.
Cataloging Your Data Sets.
Data Set Organization.,
Virtual Storage Data Sets.,
Physical Sequential Data Sets.
Data Set Eesx(éence
Maintaining Program Librariers.
Using Public and Private Volumes.
Volume and Data Set Labels, .
Tailoring 1TSS to Meet Your Needs ..
User Profile
Dpﬁmng Your Data Set.,
Data Control Block.
Identification of Assembler Data Sets.
Data Definition Commands.
System Inquiry Commands.
Data Set Establishment.
The Text Editor.
Prestoring Data in the System.
Data Command
Operator-Assisted Input
Command Procedure Data Set.
Data Card Data Set. .
Sharing and Protecting Your Data Sets
Data Set Manipulation
Copying, Modifying and Erasing Data Sets.
Transferring Data to Standard Output Devices
PRINT Command
W7T Command

RO DO BO DO DO O bS bwd ped pod ot bt

00 00 Q0 00 00 UT UL QU i o i i O G2 WO W2

Contents

PUNCH Command
Assembler Language Facilities.
Input/Output During Program Execution.
Conventional Problem Program Input/ Output
General Service Macro Instructions
DCB Macre Instruction.
DCBD Macro Instruction. . . .
OPEN Macro Instruction
CLOSE Macro Instruction
Duplexing a Data Set...................
Dynamic Input/Output for the Assembler Language . . .
GATRD

COMMAND
Communication with the Operator.
Communication with the System Log
Commands and Macro Instructions

Partlll. Examples
Example 1: Initiating and Terminating a Conversational
Task

Example 2: Assembling and Correcting from the Terminal
Example 3: Assembling and Executing...............
Example 4: Correcting and Reassembling a Prestored

Source Program
Example 5: Writing a Data Set and Printing It.
Example 8: Reading and Writing Cataloged Data Sets. .
Example 7: Multiple Assemblies and Program Linkage. .
Example 8: Use of PCS Immediate Statements..
Example 9: Use of PCS Dynamic Statements.
Example 10: Input and Output on Magnetic Tape
Example 11: Conversational Initiation of Nonconversational

Tasks
Example 12: Preparing a Job for Nonconversational Pro-

CESSIME
Example 13: Storing DDEF Commands for Later Use. . . .

Example 14: Writing and Updating Virtual Index Sequen-
tial Data Sets
Missing Subroutines
Entering Data for Later Use............ ..
Data Set Considerations When Interrupting
Program Execution .
Sharing Data Sets.
Switching Between Terminal and Card
Reader for Input
Anticipating an Interrupt in a Nonconversa-
tional Task
Homd\eepmg
Use of Generation Data Groups. . ..
Creating and Using a User Macro-Library . .
Use of the Linkage Editor

Tape and Disk-Medium Transfers of ertual
Access Method Data Sets.
The Text Editor Facility.
The Text Editor Facility.
Use of Procedure Definition (PROCDEF) . . .
Use of the BUILTIN Procedure.
The User Profile Facility.

Example 15:
Example 16:
Example 17:
Example 18: Sharing Data Sets.
Example 19:

Example 20:
Example 21:
Example 22:
Example 23:
Example 24:
Example 25:

Example 26:
Example 27:
Example 28:
Example 29:
Example 30:

Part IV. Appendixes . .
Appendix A. Use of the TSS Assembler e

Problem-Program Preparatlon .
Language Processing .
Language Processing in (’nmu‘mtmn al Mode . .
Language Processing in Nonconversational Mode
Entry and Correction of Assembler Source Statements. ..
Format of Source Lines = .
Input Sources . . .
Statement B()Uﬂddl’lf s———(1rd Format

Character Sets Card Format..
Statement Boundaries—Xeyboard Format.
Continuation Lines—Keyboard Format .
Character Sets—Keyboard Format.
Mixed Card and Keyboard Input.
Caution When Changing Card-Origin Statements.
Efficient Correction Techniques.
Entry of Keyboard Source Statements for Later Punch-
ing and Recompilation A
Assembler Options and Related QOutput. . ..
Assembler Parameters
Explicity Defaulted ..
Implicity Defaulted . .
Structure and Description of Assembler Listings
Source Program Listing
Object Program Listing . . .
Cross-Reference Listing
Symbol Table Listing
Internal Symbol Dictionary Listing.
Program Module Dictionary Listing.
Destination of Output.
Object Program Module Format.
Program Module Dictionary.
Text
Internal Symbol Dxchonary
Assembling in Express Mode
Assembler Restrictions . . AU
Assembler Diagnostic Action.
Use and Structure of a User Macro Library.
Reasons for Using a User Macro Library
TSS Assembler Processing of Macro Definitions
Detailed Description of User Macro Library Creation
and Format
Index Header
Index Entry .
Control Section Names and Attributes.
Shared Object Program Modules.

Appendix B. Problem Program Checkout and
Modification..

Assembler
Prompting and Diagnostic Facilities.
Conversational Mode, Source Statements from
Terminal . . .
Conversational Mode Source Statements from
Prestored Data Set.
Nonconversational Mode, Source Statements from
SYSIN
Nonconversational Mode, Source Statements from
Prestored Data Set
Program Listings and Related Aids. ..
Linkage Editor .
Prompting and Dlagnostlc Pauhucs .
Program Listings and Related Aids
Object Program Module Linking.
Time Sharing System Program Structure
Symbolic Linkage
Linkage Conventions . .
Linkage Macro Instructions.

. 101

102

o102
. 102

102

103

103
103

.. 103
. 103
.. 104
. 104
. 104
. 104
. 104

107

130

. 131

CALL Macro Instruction. 132
SAVE Macro Instruction. 133
RETURN Macro Instruction. 133

EXIT Macro Instruction. 133
ABEND Macro Instruction........ 133
Object Module Combination 133
Static Linking o 134
Dynamic Linking . T, 135
Program Control System. 136
Program Control Commands 137
Program Control Statements . 137
PCS and the Internal Symbol Dmtxonary 138
Using PCS Without an D 138
Evaluating Expressions _ 139
Floating-Point Constant Conversion 139
PCS Diagnostics 0 139
Miscellaneous Considerations 140
CALL, GO, and BRANCH Commands. 140

AT Command 141
Operational Conmderatums . 141
Conversational Mode 141
Nonconversational Mode 141
Appendix C. Programming Considerations 142
Writing Programs in TSS 142
Creation of Unnamed Control Sections. 147
Pooling of Literals 147
System Macro Instruction Usage. 147
Floating-Point Computations 148
References to Module Names of Link-Edited Modules. . .. 148
EXIT and PAUSE Macro Instructions. 148
Assembler Language Linkage Conventions. 148
Linkage Conventions 148
Proper Register Usage. 148
Reserving a Parameter Area.. 149
Reserving a Save Area. 149

CALL, SAVE, and RETURN Macro Instruction Usage. 149

CALL Macro Instruction 149
SAVE Macro Iastruction. 149
RETURN Macro Instruction. 151
Object Modules Initiated by a CALL Command. 151
Example of Module Interaction..................... 152

. Interroutine Communication 152
Shared Code (PUBLIC) Considerations. 156
Efficient Use of Virtual Storage 157
Guidelines for Efficient Use. 158
Internal Organization of Program Modules. 158
External Organization of Program Modules. 158
Programming Techniques 158
Control Section Rejection and Linking Control Sections. .. 159
Recovering from Errors When Dynamically Loading. 159
Library Management 160
Program Library List Control. 160
Program Versions, 161
Sharing Libraries 161
System Naming Rules.......... 162
User-Assigned Names 162
Reserved Names 162
External Symbols 162
Internal Symbols 0. 162
Reserved Names Associated with Data Sets. 162
Appendix D. Interrupt Considerations 164
Program Interrupts 164
Attention Comnsiderations 165
Interrupting Execution T 165
Levels of Interruption. 165
Resuming Execution 165
The Intervention Prevention Switch (IPS) 165
Writing Interrupt-Handling Programs. 166
Establishing Interrupt Routines.. 166
Processing an Interrupt. 167

Appendix E. Data Set Characteristics 171
Forms of the DDEF Command 175
DCB Parameter Specification. 175
Data Set Definition Rules for Language Processing. 176
Data Set Definition Rules for TSS Commands 176
Secure Requirements for Nonconversational Tasks. 176

Data Definition Considerations for Multiple Executions
in the Same Session

..................... 179

Appendix F, User Defined Procedures 180
Procedure Definition (PROCDEF) 180
Entering Procedure Text. e 180
Figures
Nonconversational Task Imitiation... 5

Nonconversational Task Initiated by PRINT Command 6
Nonconversational Task Initiated by EXECUTE Com-

mand .. 7

Converting a Conversational Task to Nonconversa-
tional Mode Using the BACK Command. 9
................ 11

Flow of Information to and from a Data Control Block 16

1

2

3

4

5 System Catalog Concept
6

7 Data Set Identification, Assembler Language Program 17
8

9

Organization of Command Procedure Data Set. . . . 18
Organization of a Data Card Data Set. 19
10 Sharing of Cataloged Data Sets....... 20
11 Conventional vs Dynamic I/O. 22
12 Conventional 1/0O Facilities. 23

13 Summary of Data Management System Macro Instruc-
tion and Data Set Organizations. 24
14 Language Processing oo o2
15 Assembler Parameters . S 107
16 Source Program Listing. 110
17 Object Program Listing. 111
18 Cross-Reference Listing 113
19 Symbol Table Lxstmg 114
20 ISD Listing . e 115

Tables

1 DCB Operands, Their Specification, Access Methods,
and Altemate Sources. 25

2 SYSIN ERecords Speciﬁed with GATE Macro Instruc-
tions 27

3 SYSouT Records Specxﬁed with GATE Macro In-
structions27
4 Commands and Macro Instructions. 28
5 Macro Instructions Used in Examples. 34
6 Type Attributes 0oL 113
7 Type Code Significance in PMD Lxstmg 116
8 Destination of Qutput. 117
9 Simple Source Program Restrictions. 118
10 Complex Restrictions L oo 119
11 Assembler Diagnostic Action................. ... 124

Terminating Procedure Definition. 180
Nested Procedure Definitions o 180
Object Program Definition (BUILTIN) 181
The User Profile. 181
Index. 183
21 PMD Listing 115
22 Format of an Object Program Module 116
23 Format of a Macro Definition Symbolic Component. . 125
24 Format of a Line in a Symbolic Component. 125
25 Format of Symbolic Library Index. 125
26 Shared Object Program Module 127
27 V- and R-Values of External Symbols. 132
28 Sharing a Module oo 132
29 Program with Implicit and Explicit Linkages 133
30 Object Program Module Combination. 135
31 A Reenterable Routine That Requests its Own Tempo-
rary Storage 136
32 Save Area Format and Word Content. 151
33 Module A Source Listing. 154
34 Module B Source Listing. 155
35 Module C Source Listing. 155

Dynamic Loader Automatic Control Section Rejection 159
Information Available Upon Entry to an Interrupt

Routine 168
Interrupt Control Block (ICB) Format 168
Virtual Program Status Word (VPSW). 169
Hlustration of Interrupts Being Serviced. 170
The DDEF Command. 172

Assembler Statements Used to Name Control Sections

and Describe Their Attributes. . .
Save Area Contents .
Possible Combinations of Operands for Arithmetic and

Relational Opecations 140
Exit and Pause Macro Instructions 148
Linkage Registers 149
Save Area Linkage. 156
Shared Data Set Conmands 163
Types of Program Interrupts. 164
Responding to Attention Interruptions.. -166
Form of DDEF for New Data Sets. 173
Forms of DDEF for Existing Data Sets. 174
Use of DCB Parameters in the DDEF Command. ... 175
Data Set Detinition Requirements for Comamnds. .. 176

This is an overview, for the assembler programmer, of
the major concepts of the Time Sharing System, Each
concept will be described in detail later in this manual.

The System and Your Relationship To It

The Time Sharing System comprises a set of programs
that make it possible for you to use system facilities
concurrently with other users. Your terminal is one of
many that areat users locations. They are all connected
to a computer center, where an operator manipulates
the cards, tapes, disks, and listings that are required
to complete the commands you issue. The system
creates a separate task for each current user to make
all of the system facilities available to him. You are
each allocated brief time intervals during which your
task is executed. Thus it appears that only you are
connected to the system.

Communicating With the System

In 7ss, you may run your programs conversationally
or nonconversationally. When you want direct com-
munication with the system while you are assembling,
debugging, and executing your program, the conver-
sational mode will better suit your needs. When time
does not permit staying at your terminal, or your pro-
gram is already checked out, you can use the noncon-
versational mode.

To assemble and run your program conversationally,
you enter commands and data at your terminal. The
system analyzes each statement as it is received. If an
error is found, you are prompted to correct it. When
the entire program has been entered, it is analyzed as
a whole, and you are again prompted to correct errors.
When your corrected program is assembled, you may
execute it and monitor its progress from your terminal
(see “Conversational Mode” in Part IT).

To assemble and run your program as a nonconver-
sational task, you can either:

e Enter commands and input data (including source
statements) at the terminal and specify that they be
stored as input for a continuing (or separate) task, or

® Submit a card deck or tape containing commands
and input data to the computer center.

In nonconversational mode there is no direct communi-

cation between you and the system. Errors in your

source program could prevent the assembly from being

Partl. Introduction

completed, since there is no way for you to correct
yourself. Any system messages that develop during exe-
cution of the task will be printed out at the computer
center (see “Nonconversational Mode” in Part IT).

You can mix modes of operation, starting out con-
versationally and switching to nonconversational mode;
however, you may not switch from nonconversational
to conversational (see “Switching Modes” in Part IT).

There are two additional means of communicating
with the system; their availability and use will vary
from installation to installation. They are described in
Part IT under “Multiterminal Task (MTr)” and “Remote
Job Entry (ryE).”

How You Gain Access to the System

Before using Tss you must be joined to the system by

your systemn administrator or system manager. When

you are joined, information about your identification

is stored:

e User Identification (userid)—code that uniquely
identifies you to the system.

* Password—code that provides additional protection
against unauthorized use of your yser identification.

account to which your use of the

system is charged.
¢ Priority—code indicating the relative priority of your
work.
* Privilege Class—code identifying you as a user (as
opposed to, say, an operator).
Each time you attempt to communicate with the sys-
tem, whether conversationally or nonconversationally,
you must issue the Locon command, with operands
that have enough information to identify you. The sys-
tem checks the information you have supplied against
the information it has stored about you; when you are
recognized, you can begin entering data. For a detailed
description of the r.ocoN operands, see Example 1 in
Part I11.

Commands at Your Disposal

The time-sharing command system comprises a series

of commands with which you tell the system what you

want it to do. For example:

¢ Task management commands allow you to initiate,
terminate, or change the system’s operation for you.

¢ System inquiry commands request specific informa-
tion from the system about your data ‘sets.

* Data set management commands allow you to estab-
lish, manipulate, and eliminate your data sets.

See Part II for command descriptions.

Introduction 1

How Storage is Handled

Virtua! Storage

You will not be dircctly concerned with the installa-
tion’s physical limitations on mairr storage. Special ad-
dressing techniques, internal to the system, will provide
you with a storage capacity that is theoretically equal
to the total range of addresses that can be specified in
an instruction. The system’s addressing techniques
combine main and secondary storage to create a vir-
tual storage area in which your task will operate. Your
mstalhtlon will inform you of the specific virtual stor-
age limits available for your problem programs and
data sets.

Although you have an extremely large virtual storage
capacity, cfficient programming is important, since per-
formance can be degraded by excessive demands on
the available storage at your installation (see “Efficient
Use of Virtual Storage” in Appendix C).

Each user has his own storage space for program
execution; therefore, other users cannot interfere with
your programs, nor can you interfere with theirs, be-
cause neither of you can refer to the other’s virtual
storage space. You may share another user’s programs
and permit him to share yours; however, specific com-
mands must be issued to accomplish this (see “Sharing
and Protecting Your Data Sets” in Part 1I).

Sharing Time

There may be many users communicating with the sys-
tem at the same time that you are. However, the sys-
tem appears to be serving each of you exclusively, be-
cause, cyclically, it is giving each of you a time slice
during which all the facilities required by your task are
in fact exclusively yours. Unless the system is over-
loaded, its speed will allow it to do your work as well
as that of other users without the intervals being ap-
parent to you.

Catalog and Library Concepts

System Catalog

The system maintains a catalog to give you the means
for recording the locations of data and, later, retriev-

ing that data by name alone. Conceptually the system
Latalog is much like the catalogs in libraries; it is an
index that points to items that reside clsuvhere. You
arc therefore relieved of the responsibility of keeping
track of data-location information. The structure of the
catalog protects your data sets from being accessed by
other users, unless you specifically permit others to
share them (see “Catalog Structure” in Part II).

Program Libraries
When it is assembled, your program can consist of
one or more object modules. All programs in Tss are
stored, in object-module form, in program libraries. A
program consisting of only one object module is stored
within one library; a program that consists of several
object modules may reside in different libraries, de-
pending upon how you have stored them. During link-
age editing and during execution, the system can auto-
matically retrieve all required object modules, if you
have defined the libraries that hold those modules.
There are four categories of program libraries: sys-
tem library (syswis}, user library (useriiB), user-defined
job libraries, and linkage editor libraries. A program
library list, defining the hierarchy of libraries avail-
able to you, is used to store object modules in the speci-
fied library and to search each library for object mod-
ules that must be loaded at execution time. Libraries
and their uses are described in Part II under “Maintain-
ing Program Libraries.”

How to Use This Manual

Parts I and I contain the information you will need to
assemble and run a program at your terminal. If you
are not familiar with the basic rules of task and data
management, you should read Part II before attempt-
ing a terminal session. Running Examples 1 through 4
in Part ITI will give you a basic understanding of how
to assemble and execute a program at your terminal.

The remaining examples in Part TIT illustrate the use
of commands and system facilities for a wide range
of functions. You should scan these examples and the
appendixes initially; they are primarily for reference
when more detailed information on a specific facility
(such as handling interruptions) is required.

Part II presents detailed coverage of the basic task and
data management information that you will need to
know to assemble and run programs in the time-sharing
system. Included are discussions of:

e Conversational and nonconversational modes of oper-
ation

¢ Data set management, supplying only those facts
that are essential for basic use of the system. (Those
assembler programmers requiring more detailed in-
formation on data management should refer to Data
Management Facilities.)

¢ The system catalog and your maintenance responsi-
bilities

e Sharing facilities and the need for protéction

e Facilities available for producing large volume out-
put

¢ The macros available to assembler language pro-
grammers.

At the end of this part is a table showing sample
usages of the commands and macro instructions avail-
able to you, along with a notation of which examples
in Part I1I illustrate their use.

Task Management

Tss tasks may be executed in either of two modes:
conversational or nonconversational. During conversa-
tional task execution you remain in communication
with your task, obtaining intermediate results and mod-
ifying your program while it is executing. There is no
communication however, between you and a noncon-
versational task; no task output is available until the
task has been completed or is terminated by you or the
system. 18s also allows you to switch a conversational
task to nonconversational, when user-task communica-
tion is no longer needed.

Conversational Mode

In conversational mode you communicate with the sys-
tem by means of a typewriter-like terminal. Your ter-
minal may be one of the following:

e The IBM 2741, which is an IBM Selectric typewriter
specially equipped for terminal use.

e The IBM 3277 CRT Display Terminal

Partll. HowtoUseTSS

¢ The IBM 1050 System, which can include both a
typewriter and a card reader. Input can be entered
into the system via the keyboard or the card reader.

® The Teletype Model 33 or 35 KSR.!

Your terminal may be located at the computer center
or at a remote location. In either case terminal opera-
tion is the same: you enter a command directing the
system to do certain work, the system responds, you
enter another command, etc. The system communi-
cates with you by printing out messages and data at
your terminal. Thus you are able to solve problems
which arise and make changes as you receive pro-
cessing results during task execution.

initiating Your Task
To initiate conversational task processing, you either:

¢ Dial up the system, the number being determined by
your installation, or

* Press the attention button on the terminal, if the ter-
minal is “hardwired” (i.e., directly connected to the
computer).

You have thus begun the log-on process and set up a
conversational task in the system. Since you have al-
ready been granted access to the system by being
joined by your system manager or administrator, you
now identify yourself by typing in the LocoN command
with the parameters set up for you at join time. The
system then completes initiation of your task. See Ex-
ample 1 in Part III for a description of the Locon
operands and an example of their use.

Executing Your Task

After you have logged on, the system asks you to enter
your next command and, in effect, enters into a con-
versation with you. Your portion of this dialog consists
of your commands and any source language statements
that you enter during execution of your task, plus your
replies to the messages issued by the system. The sys-
tem’s contribution to this dialog consists of messages,
responses to commands, and requests for the next com-
mand. The system informs you that it is ready to accept
your next command by printing, at your terminal, an
underscore character () beneath the first character
position of a new line.

1 Trademark of Teletype Corporation, Skokie, Illinois. Termi-
nals which are equivalent to those explicitly supported may
also function satisfactorily. The customer is responsible for
establishing equivalency. IBM assumes no responsibility for

the impact that any changes to the IBM-supplied products
or programs may have on such terminals.

How to Use TSS 3

Entering Commands

Every command you enter from the terminal keyboard
starts on a new line. It may begin above the underscore
that requests its entry or at any other point on the line.
Each command has an operation part specifying what
is to be done (as carv), and each may have one or
more operands that qualifies the operation (as NAME=
followed by the name of your object program, say
pRIME. This qualifies the operation to mean “execute
my object program, PRIME”). The end of the command
is indicated by pressing the RETURN key.

Each command is analyzed, when it is entered, to
determine if it is valid; if it is, all the actions requested
by the command are performed before you are re-
quested to enter the next command. If the command is
not complete or valid as entered, the system issues a
message to request you to supply additional informa-
tion before the command is executed. The system issues
three types of messages to the conversational user:
® Prompting messages which ask you to supply omitted

operands or additional information;
¢ Response messages which tell you of the actions the

system has taken in executing a command, and
¢ Diagnostic messages which inform you of command
and source language errors.

SYSIN and SYS0UT

Your task’s input to the system contains the sequence
of commands you issue; this sequence is called sysiN.
Your system input stream can also include data to be
prestored in the system, or actual input records to an
executing program. When you are in the conversational
mode, your terminal is your task’s sysiN device.

Your task’s system output stream, called sysour, is
directed to the terminal. It consists basically of system
messages, and may also contain output from your ob-
ject programs if you so choose. Because the terminal
is thus a combined sysiv/sysouT device, it generates a
copy mixture of the two system streams. You, and every
other user, have your own unique sysimN/sysouT, which
are not recorded by the system in any form other than
as a listing printed at your terminal.

Assembling and Running a Program

Let us suppose that you wish to assemble and run a
simple program named “PRIME” conversationally. Your
entry to the system is achieved by typing in the Locon
command with the appropriate parameters. (See Ex-
ample 1 in Part III for a detailed description of LocoN
operands.) You would then issue the asm command
(which initiates the Assembler) with the desired pa-
rameters to call for assembly of your source program
(see Example 2 in Part III for a detailed description of
asm operands). Your source program may then be

4

entered conversationally from the termnal, instructior
by instruction, or may be a prestored source data set

When your program has been analyzed and assem
bled, the resulting object program is stored in a pro-
gram library. You may then call for its execution by
issuing the caLL command followed by your program
name, or by simply entering your program name. Wher
you have completed your task for this session, you tell
the system to disconnect you by issuing the rLocors
command (no operands), which terminates that termi.
nal session.

For example:

LOGON JONES, JOHN, ,ACCT30
. (system acknowledgment)

ASM PRIME,N (you request assembly of a source pro-
. gram that is not prestored)

(program instructions and, possibly,

system messages)

(system indication of successful assem-

bly)

{you call for program execution)

PRIME
LOGOFF

(end of session)

You can interrupt execution of your conversational
task at any point by pressing the ATTENTION key at your
termnal. This will generally result in your task being
placed in the command mode, giving you the oppor-
tunity to redirect the system. However, the effects of
interrupts will vary depending upon the conditions;
these are described in Table 20 in Appendix D.

"~ When assembling a program, you can also specify
that various types of listings are to be created (see
Example 1 Part I1I). In conversational mode these list-
ings are automatically placed in a list data set unless
you specify that no list data set is to be created. To
have your list data set printed, you must issue the
PRINT command, establishing a separate nonconversa-
tional task that will print your listings on the high
speed printer at the central installation (see “Non-
conversational Task Initiation”). Listings on sysou:
are automatically put out at your terminal. Example
2 in Part 111 illustrates this use of the PRINT command.

Checking Out and Modifying Programs

In addition to the conversational prompting and diag:
nostic facilities that the assembler contains to assist yor
in debugging your source program, you are also pro-
vided the option of requesting an internal symbol dic
tionary (1sp) in your object module. An 1sp allows you
to make full use of the program control system (rcs)
with which you may examine and modify various part:
of your program during execution. You can use pcs
commands and statements to perform one, Or amny
combination, of these:

1. Request display of data fields and instruction loca-
tions within your object program, specifying these
items by their symbolic names as used in the source
language program.

2. Modify variables within your program, specifying
these variables by their symbolic names and specify-
ing the new value for each variable.

3. Specify the statements within your program at which
execution is to be stopped or started. When program
execution has been stopped, you may intervene, as
described in items 1 and 2, before you direct re-
sumption of program execution.

4. Specify the statements within your program at
which the actions described in 1 and 2 are to be
automatically performed.

5. Obtain the values of your program’s variables at a
specified point in its execution, with the variables
formatted according to their types.

6. Establish logical (true or false) conditions which
allow or inhibit the actions described in items 3, 4,
and 5.

The use of program control facilities will greatly
simplify the preparation of source programs, because
many functions previously source-coded can conven-
iently be made available after assembly. Neither the
pcs commands nor the modifications they may make in
your program remain part of the stored object module;
they are removed when the module is unloaded. pcs is
discussed in greater detail in Appendix B.

Multiterminal Task (MTT)

In addition to the single terminal mode of operation
described above, in which you initiate your task, Tss
has a multiterminal mode under which the task is
initiated by an mrT administrator. A multiterminal task
is designed to permit a large number of users at differ-
ent terminals to share the same task. The task must be
specially prepared for execution within the MTT en-
vironment, and should, most appropriately, be an appli-
cation which can be used simultaneously by many
users. Logging on with the intention of connecting to
such an application program requires the use of the
BEGIN command in place of the Locox command. A
complete description of the Mt facility may be found
in IBM Time Sharing System: Multiterminal Task Pro-
gram and Operation, GC28-2034,

Nonconversational Mode

You will probably want to assemble and run some pro-
grams without being in direct communication with the
system while they are being processed; these call for
nonconversational processing. The manner in which

you define what you wish done in these tasks will vary
with the type of nonconversational task you are crcat-
ing.

Initiating Your Task

There are several ways in which you can initiate a non-
conversational task from cither a conversational task or
from another nonconversational task (sce Figure 1).

Te initiate a nonconversational task. . .

i

Y Y Y
from a from o aive
conversational nonconversational Jive

operator
task, use task, use
BACCK cToEmmcnd PRINT command
EXECUTE command PUNCH command Cord duch

PRINT command
PUNCH command
WT command

WT command
EXECUTE command

Mognetic tape

Figure 1. Nonconversational Task Initiation

PRINT, PUNCH, WT—YOu can issue PRINT, PUNCIH and wT
commands in cither a conversational or nonconversa-
tional task. These commands initiate nonconversa-
tional tasks that transfer data between a direet-access
device and a printer, card punch, or tape unit, re-
spectively. Several of these commands may be issuced
within a single task; cach will set up a separate and
independent nonconversational task (sce Figure 2).
Example 2 in Part III illustrates the use of the rrint
command.

EXECUTE—You can issuc the eExecutE command in a
conversational task to initiate a nonconversational
task (sce Example 2 in Part I11). The EXECUTE com-
mand names a prestored sequence of commands that
is to be exccuted as, and acts as the sysiv data set for,
a nonconversational task. This scquence must begin
with a Locox command and end with a Locorr com-
mand, and it must be prestored so that it can be
retricved by name. (The sysix data set used by the
EXECUTE command, or any other nonconversational
task, can contain an ExecvtE command, thus per-
mitting initiation of additional nonconversational
tasks.) The nonconversational task thus initiated is
treated as a separate task, independent of the con-
versational (or nonconversational) one in which you
set it up, and with which you may now continuc
(sce Figure 3).

Back—The Back command is used when you want to
switch a conversational task to nonconversational
mode; it is described under “Mixed Mode.”

How to Usc TSS 5

User !
T LOGON
|
I
5 —
Task 1 (PRINT Data Set A)
i
1
i —
| LOGOFF ’
r
SYSIN
Task 1
SYSOUT
Task 1
3

DAt i SYsOuT

] ; Task 2

| DataSetA |e—r _————

! - 8

F e

=
TSS Task 2
I 1
{ = _7 Data Set A
T
v
—__
Printer

Figure 2. Nonconversational Task Initiated by PRINT Command

4]

User

~ Tiocon
EXECUTE
Task 1 (Procedure A)
Conversational | ——
LOGOFF
\i_____,/
Direct-Access Device
SYSIN —_—
Task 1 SYSOUT Procedure A
Task 1 LOGON
Task 2
Nonconversational
LOGOFF
SYSIN
Task 2
L 4 A
SYSOUT
Task 2
TSS

{ntermediate Storage

Figure 3. Nonconversational Task Initiated by EXECUTE Command

Printer

How to Use TSS

7

Operator-assisted—You can also have the operator ini-
tinte nonconversational tasks for you by supplying
him with a card deck or magnetic tape; the contents
of the deck or tape will depend upon what you want
done. If you want to enter data into the system for
later use, i.c., prestore it, the task set up by the oper-
ator will transfer the data from the input medium to
a direct access device and catalog it so that it is later
available to you by its name. If you want to enter a
card deck command procedure, the task that is set up
by the operator wx}i execute the commands in the
command procedure you have defined (see Example
12 in Part II).

Executing Your Task

Regardless of which method of initiation you use, the

nonconversational task you create is assigned a batch
sequence number and is executed as soon as the re-
quired resources are available. You can issue the Ex-
Hmrr command to determine the status of your previ-
ous!_v initiated nonconversational tasks.

During execution of a nonconversational task, there
is no communication between you and the system. The
system analyzes, in sequence, each command of the
sysiv data set and, if it is valid, executes it. If a com-
mand is invalid, the system terminates the task. When
execution of a nonconversational task begins, it cannot
be interrupted by pressing your ATTENTION key, as your
terminal is not associated with the task.

Any listings you request are automatically written on
sysouT (with no record kept in the system), unless you
have specifically asked for a list data set. When a list
data set is requested, its printing is accomplished, as in
conversational processing, by the issuance of the prRINT
command, which sets up another separate noncon-
versational task.

Terminating Your Task
The execution of noneonversational tasks (except those
initiated by pRINT, PUNCH, and WT commands) is termi-
nated when their Locorr command is executed, The
system then automatically prints out the task’s sysour
data set. For nonconversational tasks, the sysour data
set consists of the commands from sysmv that were
executed, any data that your program writes to sYsouT,
and (if no list data set was specified) diagnostic mes-
sages and whatever listings you requested. If a list data
set was specified, diagnostic messages will be printed
with your listings.

Tasks created by the priNT, PuNcH, and WT com-
mands terminate when the data transfer is complete.
You may also terminate any of your nonconversational

tasks by issuing a CANCEL command, identifying éach -

task to be terminated by its batch sequence number.
Your task may also be cancelled from the operator’s
console via its bat(,h sequence number.

8

Mixing Modes

You can begin a task at your terminal, and then issue a
sack command to have the task’s execution completed
in the nonconversational mode. Before issuing the Back
command, you must have stored a sysiN data set that is
to function as the command procedure and, if desired,
input data for the nonconversational portion of your
task. The sysiv data set must not contain a LOGON com-
mand (because you have already logged on), but it
should end with a LocoFF command.

When you issue a BAck command for a task, the sys-
tem checks that it can provide sufficient resources to
continue your task nonconversationally. If it cannot,
the system will reject your request; you may then try
to initiate the switch later.

You do not initiate a separate task when you issue the
Back command; you still have only one task in the sys-
tem. This task, however, is nonconversational and has
no connection with your terminal (see Figure 4). If the
system accepts your BACK request, it establishes the
nonconversational task, assigns a batch-sequence num-
ber to that task, and writes that number out at your
terminal; after that your terminal is inactive. You must
then log on again if you wish to initiate a new con-
versational task at your terminal.

Remote Job Endry (RIE)

An additional facility for running nonconversational -
tasks in Tss, available at some installations, is the
remote job entry (rye) facility. With r)E it is possible
to enter batch jobs at remote terminals in the same
format as that used at local, on-line card readers.
Printed output is then returned to the originating sta-
tion, unless another station or local high-speed printer
is specified. A complete discussion of this facility may
be found in Time Sharmg System Remote Job Entry,
GC28-2057.

Task Management Commands

These commands allow you to initiate, terminate, or

change the system’s operation in your behalf. In con-

versational mode, communication takes place at your

terminal. In nonconversational mode, the information

is sent to the task’s sysour data set. The facilities pro-

vided are summarized below.

apENp—unloads all modules in your virtual storage and
returns your task to the status that existed immedi-
ately after the LocoN process.

BaCk—chunges the mode of your conversational task to
nonconversational.

BEGIN—notifies the system that you wish to connect to
an MTT application program.

caNcCeEL-—terminates the execution of a nonconversa-
tional task prior to its normal end.

User

ir_—.___... ——— — . — ——
T LOGON
Conversational
BACK
Tak -7 777 -T
Nonconversational
) S— .l_____._.,_____
Conversational Conversational
SYSOUT SYSIN
N
e ,
DIRECT-ACCESS DEVICE
Nonconversational Nonconversational
SYSIN SYSOUT [
- " |
L L \
| =]
=
=l 4
TSS
Printer

Figure 4. Converting a Conversational Task to Nonconversational Mode Using the BACK Command

How to Use TSS

cHerass—notifies the system that you wish to change
your password.

EXECUTE—initiates an independent nonconversational
task using a prestored and cataloged command
stream.

rocorF—notifies the system that you wish to terminate
your task.

LocoN-—identifies you to the system so that you may
begin your task.

secure—identifies and reserves types of input/output
devices needed for private data sets (in noncon-
versational tasks only).

TIME—establishes a time limit in virtual storage for the
execution of a task; it can be changed by you during
your task.

USAGE—requests a summary of system resources avail-
able to you, as well as those you have used since yomn
time and since the current LOGON.

zLocoN—performs a user-defined function immediately
after Locon operations have been completed.

Data Set Management

Tss provides you with facilities for systematic and con-
venient management of your data sets. These data set
management facilities make it possible for you to:
identify your data sets; efliciently store and retrieve
them within the system; share them with other users;
copy, modify, and erase them; and define their exist-
ence and use in the system.

Naming and Cataloging Your Data Sets

Naming Your Data Set

A data set name uniquely identifies a data set. It is in
the form of one or more symbols separated by periods.
For example, the data set name AR.TWO.DESIGN consists
of three components that are delimited by periods to
indicate a hierarchy of categories. Starting from the
left, each symbol of the name is a category within
which the next symbol is a unique subcategory. A fully
qualified name identifies an individual data set. A par-
tially qualified name identifies a group of data sets.

For example: If arR.Two.pESION is a fully qualified
data set name, AR and AR.TWO are partially qualified
names identifying groups of data sets, one of which is
AR.TWO.DESIGN. The group Ar.Two is a subgroup of Ar.

These basic rules are to be observed by you in the
design of data set names:

1. Each component, or simple name, can consist of
from one to eight alphameric characters; the first
must always be alphabetic.

2. A period must be used to separate components.

3. The maximum number of characters (including pe-
riods) in the data set name is 44. For data sets used

10

exclusively within Tss, you are limited to 35 charac-
ters, because the system automatically prefixes each
name with your eight-character user identification
followed by a period. For data sets to be interchanged
with OS or OS/VS, you can employ 44-character data
set names. These data sets, however, cannot be cata-

loged in Tss without being renamed.

4. The maximum number of single-character qualifica-
tion levels to a single-character basic name is 17, for
data sets used in Tss. Normally, however, you will
employ only a few qualification levels.

5. The fully qualified data set names in each user’s data
set name-structure must be unique, and each must
uniquely identify one data set.

System Catalog

The system catalog is a special data set that resides on
one or more direct-access devices. It is used for filing
data set descriptions that must be stored within the
system so that, once a data set is created and cataloged,
it can subsequently be located by using only its name.
To understand the structure and significance of the
system catalog, you must become familiar with the
basic concepts of data sets, their naming and residence.

Catalog Structure: The system catalog is organized
into a hierarchy of indexes: a master index, which con-
sists of a set of user identification codes, one for each
user who has been joined to the system; and a collection
of separate indexes, each of which is subordinate to one
of the user identification codes in the master index.
Geing down the hierarchy, each of the indexes will
correspond to a level of qualification in the data set
name structure you have adopted. In effect, the system
has its own catalog and you have your own.

When your data set is cataloged, the required in-
dexes are established in your user catalog, in accord-
ance with the fully qualified name of the data set (see
Figure 5). An index is established for each level of
qualification. The master index points to the highest-
level index of your catalog. This index, and each index
thereafter, points to the location of the next lower in-
dex. The lowest-level index contains a data set descrip-
tor (psp) which points to the data set control block
(pscs) which, in turn, points to the specific volumes
and pages on which the data set is located.

At the time your user identification is placed in the
master index, another special entry is created in your
catalog called your UsErRLIB. Your USERLIB is your own
private library for object programs. Except for your
USERLIB, you control all entries in your catalog by the
way you name your data sets and by the way you use
the cataloging and uncataloging facilities of the system.

Data Set Name

System

——]

User Supplied ———sf
SuppﬁedT‘— ser Supplie

Master Index

[JOHNDOE. I ENG.PHYSICS.COMAR, TEST2

T Y
JOHNDOE: lFRANKLEG{ l

——

1
| JOHNDOE

e o = - User Cotalog em — — — oy

[ENG PAYRL

il
[

-
O

ENG

[PHYSICS

PHYSICS [

COMAR

[

comar | testt ¢ | mest2 | |

2 pp—

Data Set Control Block

JOHNDOE. ENG. PHYSICS, COMAR.| | | ;

TEST 2 I S T

{ DATA PAGE |'——-
DATA PAGE

Figure 5. System Catalog Concept

Some of these facilities are for entering, removing, and
renaming catalog entries; others are for indicating
which data sets can be shared by others, and to what
extent. These facilities are described later in this part.

Generation Data Groups: The cataloging facilities of
Tss provide an option that assigns numbers to indi-
vidual data sets in a sequentially ordered collection,
thereby allowing you to catalog the entire collection
under a single name. You can distinguish among suc-
cessive data sets in the collection without assigning a

DATA PAGE
DATA PAGE
DATA PAGE

DATA PAGE

new name to cach data sct. Because cach data set is
normally created from the data set created on the pre-
vious run, the new data sct is called a generation, and
the number associated with it is called a generation
number. The entire structure of data sets of the same
name is called a generation data group (cnc). You can
refer to a particular generation by specifying, with the
common namec of the group, either the relative genera-
tion number or the absolute generation name of the
data set. The use of generation data groups is illus-
trated in Example 22 in Part II1.

How to Use TSS 11

Cataloging Your Data Set

You can catalog and uncatalog data sets in several
ways. Sometimes cataloging is automatic; in other
cases, you must issue a caTaLo¢ command to catalog
the data set. All data sets with virtual storage organiza-
tion (van) are automatically cataloged when they are
created.

The cararoc command may be used to catalog a
physical sequential (san) data set, or to alter the entry
ot a previously cataloged data set (e.g., to rename a
cataloged data set or to change the version number of a
generation data group member). If you employ gen-
eration data groups (cpc), you must initially use the
cataroc command to set up the structure for the cpc
name, number of generations to be retained, disposi-
tion of old generations when the specified number of
retentions is exceeded, ete.

When you catalog a data set, you can specify either
read- onlv or unlimited access. You can always erase
your own data set, but if you have cataloged it with
mad«)nly access, you cannot write into it, thus ensur-
ing against accidentally overlaying data.

You can use the peLeETE command to remove a cata-
log entry for a data set if:

1. You want to remove the catalog entry of a data set
from the catalog but not erase it, and the data set
resides on a private volume.

Lo

You want to remove the catalog entry of a data set
you are sharing from your catalog (because you no
longer have a need to share that data set).

The erase command can also be used for uncatalog-
ing. ERASE re mowc% the catalog entry, and erases the
data set as well if it resides on a direct-access volume.
{ Erasing means making the storage space of the data
set available for other use.)

So that you can specity whether you want to be given
one data set name at a time when you enter either the
FRASE Or DELETE command, provision is made to set the
value of peproatpT (a value contained in your User
Profile) to cither yes or No by using the pEFAULT com-
mand (sce “User Profile” in this part). If the value was
sct to ves, and you specify a partially qualified data set
name, the system will issue a prompting message giving
vou the opportunity to specify that all remaining data
sets under that level name are to be erased without
prompting. Otherwise, you will be given one data set
name at a time for disposition. If the value was set to
~o, all data scts grouped under this partially qualified
name will be erased or deleted without individual
presentation. If you specify a fully qualified name, the
data sct will be erased or deleted no matter what was
specified for pEPROAMPT.

You have the option in certain commands, as PRINT
and puncH, if a cataloged data set is involved, of speci-

12

fying whether it is to be erased or not after the output
operation.

Data Set Organization

A data set’s organization defines the overall relation-
ships of the component records into which the data set
is logically subdivided. The component records are
called logical records, because each is a logical entity
containing information for the problem program that is
to process the data set. In Tss, there are two funda-
mentally different types of data set organizations:
virtual storage data sets and physical data sets.

Virtual Storage Data Sets

Data sets with a virtual storage organization reside only
on direct-address volumes; they are automatically cata-
loged by the system when they are created. You create,
read, and process these data sets on the basis of the
logical records they contain. The system, however, uses
the page as the unit of transfer between the direct-
access device and your virtual storage. Virtual storage
data sets may have any of these organizations:

Virtual sequential (vs): In a virtual sequential data
set, the order of logical records is determined solely by
the order in which the records were created. In creat-
ing this type of data set, you provide the system with a
stream of records. The system organizes the data into
pages, and stores the data set on a direct-access device.
After the data set has been created, you can read back
the records in the order in which they were created
merely by requesting one record after another.

Virtual Index sequential (vi): In a vi data sct, the
records are organized in sequence based on a data key
associated with each record. The data key may be a
control field that is part of the record (such as a part
number), or it may be an arbitrary identifier (such as a
line number) that is the beginning of cach logical
record, and is added to each record to give it a unique
key.

One special form of virtual index sequential data set
is the line data set, with a maximum of 132 bytes per
record. A line data set is organized by line number,
where each line is a record and is prefixed with the line
number as its key. Source programs are line data sets.
You can inspect and display these data sets by line
number using the LINE? command. Other commands
enable you to effect replacements, insertions, and de-
letions on line data sets.

Because records in the virtual index sequential or-
ganization have logical and physical relationships, you
can request the system to perform any or all of these
operations:
¢ Retrieve or create (in a manner similar to that for

sequential organization) logical records whose keys

are in ascending collating sequence.

® Retrieve or create individual records whose keys are
in any order. (Processing is, of course, slower here
than if it were being done in the collating sequence,
because a search is required to locate each record’s
position.)

® Add records, with new keys, to the data set. The sys-
tem automatically locates the proper position in the
data set for the new control and makes all necessary
adjustments for subsequent retrieval in logical se-
quence,

¢ Delete existing records from the data set. The system
automatically updates the page locators (and the
page directory if necessary) and makes the space
used by the deleted records available for other uses.

e Update existing rccords in the data set, either ex-
panding or contracting their size.

Virtual Partitioned (ve): A vp data set is used to
combine individually organized groups of data into a
single data set. Each group of data is called a member,
and each member is identified by a unique name. Pro-
gram module libraries are a good example of a ve data
set. Your USERLIB is organized this way, and the com-
piled object modules you store in USERLIB are its mem-
bers.

The partitioned organization allows you to refer to
either the entire data set (via the partitioned data set’s
name) or to any member of that data set (via a name
consisting of the name of the data set qualified by the
member name in parentheses).

Example: A partitioned data set named INVENTORY
whose members consist of monthly data sets such as
JAN, FEB, and MAR, could be referred to in one of the
following manners:

INVENTORY
INVENTORY (JAN)
INVENTORY (FEB)
INVENTORY (MAR)

Entire library of inventory data
January inventory data
February inventory data
March inventory data

The partitioned data set may be composed of vs or v
members or a mixture of both. Individual members,
however, cannot be of mixed organization.

You can assign additional names, called aliases, to
each member, and subsequently locate a member on
the basis of ecither the member name or any of its
aliases. The partitioned data set organization is ideally
suited for storage of libraries of programs or other
groups of data that are frequently referred to together.

Physical Sequential Data Sets

Data sets with a physical sequential organization can
reside on either direct-access or magnetic tape volumes.
The logical records in these data sets have an organiza-
tion which is determined solely on the basis of their
position relative to the beginning of the data set. When
these records are processed in Tss, the block is used

as the unit of transter to and from the device involved.
A block can consist of one or more logical records. Data
sets with physical sequential organization are called prs
data sets. You will use rs data sets each time you proc-
ess magnetic tape in your programs. Volumes contain-
ing data sets with rs organization can be interchanged
among T1ss and B3z OS or OS/VS installations.

Data Set Residence

Maintaining Program Libraries

A program in TSs can consist of one or more object
modules that are linked and are executable. A program
consisting of only one object module is stored entirely
within one library; a program that consists of several
object modules may reside in different libraries, de-
pending on how you have stored them. During linkage
editing and during execution, the system can automati-
cally retrieve all required object modules if you have
defined the libraries that hold them.
There are four categories of program libraries:

System library (sysLis)

User library (userLIB)

User-defined job libraries

Other user-defined libraries
System library, accessible to all users, includes Tss/
s60 programs and the installation’s standard subroutines
and functions.

e & o o

User library is the private library that was assigned
to you when you were joined to the system. This library
is available each time you log on. If you do not employ
job libraries in a task, all the object modules resulting
from your usc of the language processors are placed in
your user library. In addition, if no special library is as-
signed for the output of the linkage editor, the linkage
editor object modules are placed in your user library.

Job libraries are defined for use within one task when
you want to restrict your user library to checked-out
standard object modules that you execute frequently or
that you use frequently in the buildup of other object
modules; or you may want to use a special object
module that will temporarily replace one you normally
would use.

The program library list, a defined hierarchy of those
libraries, is set up at log-on time, and consists of the
user library and sysris. Job libraries designated for a
task are removed from the hierarchy at log-off time.

The library at the top of the list always automatically
receives all object modules resulting from language
processing. If no job libraries are defined, the library
at the top of the list is always the user library. How-
ever, you can specify that a job library be added to the
program library list to receive the output of the lan-
guage processors. You do this by issuing a ppEF com-
mand that defines the job library, and contains the

How to Use TSS 13

JOBLIB opernnd (see Example 7 in Part I11). When this
command is executed, the name of the job library is
placed at the top of the program library list. That li-
brary then receives all subsequent outputs of the lan-
guage processors until another job library is defined
(and it is placed at the top of the list), an existing job
library is moved to the top of the list using the joBLIBS
command, or a RELEASE command is issued for the job
library.
In addition to using the program library list to store
object modules, the system uses this list to control its
order of search when looking for object modules that
must be loaded at execution time. The library at the
top of the list is searched first, then the next, etc.; finally
the user library and sysLis are searched.
The program library list can also be used, during
linkage editing, to define the following for the system:
¢ The library that is to receive the link-edited object
module.

¢ The sequence in which libraries are to be searched
by automatic call if the system must find other ob-
ject modules that will complete the link-edited
object module.

For example, if no other library is specified, the out-
put of the linkage editor is stored in the library cur-
rently at the top of the program library list. If another
library is specified at the time the linkage editor run is
defined, that library receives the link-edited object
module. That library can be the user library, any of the
current job libraries, or a special library defined by a
ppEF command that has no yosLB operand.

Using Public and Private Volumes

When a data set is stored in the system, it resides on
one or more direct-access or magnetic—tape volumes;
the identification of these volumes is available in the
system catalog. A volume can be a removable disk pack
or a reel of tape. It should also be noted that physical
sequential data sets are not cataloged when they are
created (the cataroc command must be used to ac-
complish this), and their residence is restricted to
private volumes.

At system startup time, the system operator desig-
nates each direct-access device and its associated vol-
umes as either public or private. A public volume is a
dircct-access volume that must be mounted prior to
the beginning of system operation, and must remain
mounted during operation; it can be used by many
users concurrently. A private volume can be mounted
or dismounted at any time prior to or during operation;
it is restricted to use in one task at a time. For more
than one of your tasks (say one conversational and one
or more nonconversational) to access the same data set
residing on a private volume at the same time, PERMIT
and sHARE commands must be issued to give your

14

userid sharer status, despite the fact that the userid is
the same. Magnetic-tape volumes are always classified
as private volumes; direct-access volumes can be cither
public or private. Magnetic tape volumes and physical
sequential formatted direct access volumes are always
classified as private volumes; vam (Virtual Access
Method) formatted direct access volumes may be
either public or private.

The system assumes that you desire storage on a pub-
lic volume unless you specifically ask for storage on a
private volume. Public volumes are always mounted
and available for allocation to your task, thus providing
the most efficient type of storage for data sets which
must be retained in the system.

If you employ private volumes, you may need to wait
for devices on which to mount those volumes. Each
time a request is made for a device on which to mount
a private volume, the system must determine whether
or not it can honor the request, based on the current
requirements throughout the system for that device.

Yolume and Data Set Labels

All volumes used to store cataloged data sets must con-
tain standard volume and data set labels to permit the
system to locate the data sets.

All public direct-access volumes automatically con-
tain standard volume and data set labels, which the sys-

tem creates and maintains. Direct-access volumes can

" also contain user’s data set labels, which are processed

by user-written routines.

Magnetic-tape volumes may contain (1) standard
volume and data set labels, or (2) standard volume
and data set labels plus user's data set labels, or
(3) they may be unlabeled. All labels, on magnetic-
tape volumes with standard labels, are also created and
maintained by the system; user’s data set labels are
processed by user-written routines.

Detailed explanations of standard labels and their
use on direct-access and magnetic-tape volumes are
given in Data Management Facilities.

Tailoring TSS to Meet Your Needs

You can tailor the operating environment within which
your task is performed to meet your specific needs with-
out affecting anyone else’s use of the system. You can
rename existing commands and keyword operands, and
provide your own default values for omitted operands;
these alterations can be temporarv or permanent.

User Profile

The system maintains a special data set, called a user
profile, which contains the defaults for operands, syno-
nyms for command names and operand keywords, and
command symbol values. The first time you log on, the
prototype user profile in the system library (sysLi) is
copied into your virtual storage. You can use this pro-

file as it stands, or you can change it with the pEFAULT,

SYNONYM, or SET commands.

e Deraucrr allows you to change system-supplied de-
fault values for command operands.

e skt allows you to define a command symbol that
may be referenced or modified by other commands.

¢ syNoNyM allows you to rename commands, oper-
ands, expressions and values.

The changes made with these commands will affect
only the current task’s operating environment. If you
want these changes to be included in your permanent
user profile, you can issue the PROFILE command to
copy this altered user profile from virtual storage into
your userLIB. Example 30 in Part III illustrates the use
of these commands. For a detailed description of user
profile management, sce Command System User’s
Guide.

Defining Your Data Set

Before a problem program or a command can process
a data set, the system requires complete information
about the data set, including the manner in which it is
to be processed. You can make this information avail-
able from a variety of sources; for example:

DEFINITION OF DEFINITION OF
PROBLEM PROGRAM DATA SETS
1/o PROCESSED

DATA SETS BY COMMANDS

1. ppeF commands
(which in turn may use
information provided

[

. 1/0 source statements
2. ppEF commands or
DDEF macro instructions
(which in turn may use by your user profile)
information provided 2. System catalog
by your user profile) 3. Command itself
. System catalog
. Problem program
. Data set label

U W

The following paragraphs describe how to use these
sources to identify data sets for the system.

Data Control Block

The information required to identify a data set to be
processed by a problem program is contained in the
data set’s data control block (pcB), a group of con-
tiguous fields in your program. The pce contains these
types of information:
¢ The name of the pper command (the ddname) to
be associated with the data set
Type of data set organization
¢ Record-format information (format type, record
length, etc.)
Device-dependent options
Exit addresses:

syxap: synchironous error exit address, for automati-
cally transferring control to a user-supplied routine
if an uncorrectable 1/0 error oceurs.

eopan: end of data set address, for automatically
transferring control to an end-of-data routine when
end of an input data set is detected during process-
ing.

exLstT: address of an exit list in which (in the case
of sequential data sets intended for interchange
with OS or OS/VS you can define the address of
routines for creating and verifying the user data
set labels that can be employed on magnetic-tape
and direct-access volumes; or the address of a rou-
tine to be used at orex Tiate for modifying the data
control block.

¢ Working storage used by the access method rou-
tines.

You request the system to begin construction of a
data control block at assembly or compilation time.
There are various ways in which the ficlds in a data
control block may be filled. For example, some may
be filled in at assembly/compilation time. Others may
be filled in during program exccution from usecr or
system-supplied information. In any cvent, the fields
are filled in according to a fixed priority scheme based
on the source supplying the information. The sources
of information and their prioritics are:

1. Your program

2. pcB macro instruction

3. ppEF command (and system catalog)

4. Data set label
Not every source is valid for every field. These two

general rules apply: (1) When a ficld has been filled

by a higher priority source, it cannot be replaced by
information from a lower priority source. (2) A field
that has not been specified by a higher priority source,
may be filled in by a lower priority source if that source

is valid for that field (see Figure 6).

1. You can include one or more routines in your pro-
gram, to add to or modify the contents of a data con-
trol block. Generally, these routines can be called at
any time during exccution. The restrictions on the
use of a problem program to modify a data control
block are described under the pcB macro instruction
in Assembler User Macro Instructions. Thesc facili-
ties simplify problem program modification of a
data control block in the assembler language:
® A pcep macro instruction (described later) can

be used to symbolically refer to the fields of a
data control block by their field names.

® At orEN time, the system provides a pcs exit dur-

ing which the problem program can, in effect,
call upon a user-written ncB modification routine
that will update the pcB and return control to
OPEN.

How to Use TSS 15

B
DC Creates DCB
Macro — T T
Instruction —1
Assembly
Time
DCBD Symbolically Defines DCB Fields
Macro e e =
instruction
. I Adds to or Modifies DCB
Prior to User's Problem Program e
OPEN
—'ir ————————————————————————————————————— —
MNote: Circled number 1-3 indicote System Catalog 1
order of sampling sources
for inputs to DCB. Boxed DDEF 3 fi\
numbers 1-4 show pricrities Command o/
of sources sampled for
inputs.
2]
DCB
Execution OPEN
Time Time
f Existing Data Set Label 2,
User Madification u_
Routines {BSAM Only) | () I
| |
Data Set] Adds to or Modifies DCB Fields
is Open User's Problem Program ~

.

Figure 6. Flow of Information to and from a Data Control Block

2. The pcB macro instruction can be used to fill in any,
or all, fields at assembly; however, once a field is
specified in this way, it can be changed only by your
problem program.

. At oPEN time, information from the pce operand of
a ppEF command can be, and frequently is, used to
complete the data control block. This process is
shown in Figure 6. Any field that is empty at open
time, and for which the pper is a valid source, can
be filled by ppEr information. If the data set to be
processed is an input data set that was previously
catalogued, its ppEF command will indicate this and
the system will retrieve certain data control block
information (e.g., the data set’s location) from the
system catalog.

Also, at opeEN time a field of the data control block

for an existing data set can be filled with informa-

tion from the data set’s label if this field has not
been specified by any other source and the data set

16

label is a valid source for that field.

This procedure for data control block definition and
modification can be greatly simplified for most appli-
cations; the flexibility is provided for the special case
where data control block changes must be made be-
tween assembly time and the time a data set is actu-
ally processed. In these situations, the facility to mod-
ify allows you to change only the required fields; you
do not have to restate the entire data control block
each time a program is run. To facilitate data control
block modification, you should include in the data
control block only those fields needed for program
execution—others should be left empty for possible
subscquent fill-in. Once the data set is closed, the pcs
is restored to its pre-oPEN state. When the data set is
opened again, the system starts the fill-in procedure
based on the data control block information provided
by the pc macro instruction and any problem pro-
gram modification to the pcs since the last crLosE.

Identification of Assembler Data Sets

A data set, to be processed by a problem program writ-
ten in assembler language, must be identified by a
DCB macro instruction in the source program. The as-
sembler uses the pcB macro instruction to set up the
data control block at assembly time, and, if you have
supplied operands in the pcB macro instruction, to
enter those operands into the data control block.

The number of operands that can be specified in
the pc macro instruction depends upon the organiza-
tion of the associated data set.

The symbolic chain that relates the macro instruc-
tions used for data retrieval and storage (GEr, puT,
READ, WRITE, etc.) to their associated data sets is shown
in Figure 7. It also illustrates how information in the
data control block and pper command identify as-
sembler data sets to the system.

Data Definition Commands

The ppEF command is used to identify a data set during
execution of a task and to define its requirements for
system resources. It may also be used to define a job
library, to define a speaal data set for the pump pro-
gram control command, to complete the data control
block of a program at execution time, and to concate-
nate input data sets (i.e., relate them so that several dif-
ferent data sets can be read in as if they were one).

Any ppEF command you issue during a task remains
in force throughout the task, unless you enter a RELEASE
command for that data set. The RELEASE command is
the opposite of the pper command: the ppEF command
sets up task control information for the data set; the
RELEASE command removes that information. If the
DDEF required a private volume to be mounted, RELEASE
can be used to free it for assignment to another task.

The ppEF commands used in a session or in a com-
mand procedure need not be issued directly during the
session or be included explicitly in the command pro-
cedure. One, or more, or all, of the pper commands
needed can be made available by using the cop (call
data definition) command.

The cop command is used to retrieve one or more
ppEF commands from a data set; you must supply the
name of the data sct. If this is all you specify, the sys-
tem assumes that you want to use all the voer com-
mands in the data sct. If you want to use only selected
ppEF commands, you identify each by its ddname. You
should prestore frequently used pper commands in a
data set and call them in this fashion whercever possi-
ble. cop can be used in either conversational or non-
versational tasks.

In a conversational task, the system analyzes the data
set’s requirements at the time the pper command is is-
sued. It will then attempt to allocate the required re-
sources (and, for private volumes, issue any mounting

Macra Instructions

(GET,PUT,READ, WRITE, etc)

dcb address N

Data Control Block

DDNAME= ddname

ddname
DDEF Command

DSNAME = dsname

dsname in data set label

DATA SET

Figure 7. Data Set Identification

messages that are required) at that time. It the required
space cannot be allocated, or the specified volumes can-
not be mounted, the system will inform you,
allowing you to procced with other work.

The pper command is iHlustrated in the examples,
and is discussed in detail in Appendix L.

thereby

System Inquiry Commands

There are several commands in 1ss with which you
‘an request specific information from the system re-
garding your data sct, catalog, and job librarics. Tf you
issue these commands in a conversational task, the in-
formation is displayced at your terminal; in a noncon-
versational task it is sent to the task’s sysour data set.
The tacilities provided by these commands are sum-
marized below.

The pc? command is used to request the presentation
of a concise listing of all or part of your cataloged data
sets. You will be presented with the data set name, the
access (owner access it owned by you; user access if
owned by someonce clse), and the user identification of
the owner if it is not owned by you. The ve? command
can conveniently be used at regular intervals without
an operand to present the entire catalog listing for help
in housckeeping.

The pss? command is used to request presentation of
the status of one or more cataloged data sets. Informa-
tion is glvvn putammg to shdrmg status, access status,
device type and volume identification, creation and ex-
piration dates, and data set organization. rc? should be
used when a general listing of data sets is required;
pss? should be used only when more detailed informa-
tion is required about the status or organization of
data sets.

How to Use TSS 17

The rop? command is used to request a list of the
member names (and, optionally, the alias names and
other member-oriented data) of individual members of
virtual partitioned data sets, such as your user library
and your cataloged job libraries.

The ppxane? command can be used to request a dis-
play of all ppxanes you have defined within a task or
just those for the job libraries you have defined. Used
with the josLiBs command, it can be used to review
and modify your joBLis chain.

The viNe? command requests presentation of a line
or a series of consecutive lines of a line data set that
vou own or arc now sharing. The data set must either
be cataloged or defined by a previous DDEF in the cur-
rent task.

Data Set Establishment

The Text Editor

The Text Editor is a powerful command repertoire
provided for the 7ss user. These commands provide for
manipulating lines of information, either within an
existing region or line data set, or as they are being
entered dynamically into a region or line data set. With
the text editing facility, you can create and edit data
sets simultancously. You can correct, insert, or delete
lines; or segment a data set. You can transfer lines from
one data set to another. You can also display lines of a
data sct at your terminal and nullify previous changes
that were made by the text editor commands. Com-
mand System User's Guide provides a complete discus-
sion of all the facilities of the Text Editor, including a
description of the commands available.

Prestoring Data in the System

Data that is prestored in the system has been created as
virtual sequential data sets, or virtual index sequential
data sets, or members of partitioned data sets, and then
stored on public direct-access volumes. System operator
initiated commands prestore data on public volumes.
Normally, the para command stores a data set on a
public volume. However, you can cause a data set to be
prestored on a private volume by issuing a DDEF com-
mand (with voLuatE=pPRIvaTE operand) prior to the
pata command. In either case, the data set is automati-
cally cataloged at the time it is created.

Data Command

The pata command prestores data sets entered from
the terminal (conversational mode) or from the sysiN
data set (nonconversational mode). This method is
particularly cffective for relatively small amounts of
data, such as small program input data sets, sysiv data
sets for nonconversational tasks and data sets consist-
ing of ppEF commands. ™

18

The para command builds a virtual sequential or
virtual index sequential data set; or adds to an existing
virtual sequential or virtual index sequential data set.
A detailed description of the use of this command is
contained in Data Management Facilities.

Operator-Assisted Input

You can also enter data by means of nonconversational
tasks that arc initiated by the system operator.
Example: You can have a command procedure entered
(and set up a nonconversational task for execution), or
you can create a virtual sequential or virtual index se-
quential data set and store it on a public direct-access
volume. The tasks are initiated by an Rr command
issued by the operator.

You can submit data sets on punched cards to the

system operator, who can then enter the data into the
system via a high-speed reader designated by the sys-
tem. Two types of input data sets are permitted: com-
mand procedure data sets and data card data sets. The
two types can be interspersed, one following another,
in any order within a single batch of punched cards.
The rules for setting up these data sets are given in the
following paragraphs.
Note: If you want to enter a command procedure to-
gether with the data sets it refers to, you must make
sure the data sets precede the command procedure.
Thesystem, generally, will try to execate the command
procedure as soon as it has been read.

Command Procedure Data Set: This contains all
commands neceds to run a nonconversational task.
Each command is punched on a new card, in cxactly
the format used to enter commands from a terminal.
The first card of the data set must be a LoGoN com-
mand; the last card, Locorr (see Figure 8). A SECURE
command card must immediately follow LocoN if any
private devices are required. Other commands are as
required for the particular task.

When the command procedure data set is read in, it
becomes the sysiv data set of a nonconversational task
and is executed as soon as the necessary system re-

(LOGOFF

i

L

pd
y
ya

(C OMMANDS

LOGON

Figure 8. Organization of Command Procedure Data Set

sources are available. After execution, the sysiN data
set is eliminated. It does not remain cataloged nor does
it remain in system storage.

Data Card Data Set: This contains any information
you want to put into public storage as a cataloged data
set. It may also include commands. You may enter a
command procedure data sct in this way, if you do not
wish to have it set up as nonconversational task after
entry; or you may prestore DDEF commands. When this
type of data sct is read, a virtual sequential or virtual
index sequential data set is created and cataloged in
public storage, where it will reside until it is erased.
Unlike the command procedure data set, it is not exe-
cuted upon being read.

The organization of a data card data set is shown in
Figure 9. The first card of the data set must be a data
descriptor card; the last one a %pENDDs card. Each data
card corresponds to one logical record.

ya

(%ENDDS
i
(DATA CARDS

DATASET command

yd
y

Figure 9. Organization of a Data Card Data Set

The data descriptor record identifies the data set as
a data card data set. It must start in column 3 with the
operand pataset, followed by the user identification
and the data set name under which it is to be cata-
loged. The following information can be supplied to
the system on the same card:
* The code to be used in reading the cards (EBCDIC
or BCD).
e The first card column to be read in creating the
data set. :
The last column to be read.
The organization of the new data set. If LINE is
specified, a visaym data set will be created, each line
prefaced by a seven character line number. If left
unspecified, a vsam data set will be created. The
system assigns 100 as the first line number in a
visam data set and increments by 100. The maxi-
mum number of lines (data records) is 100,000.
® The action to be taken by the system (accept the
record, skip the record, or end reading of the data
set) if an uncorrectable read error occurs.
The terminating card, %0ENDDS, must be punched
starting in column 3.

The format of the data descriptor record is given in
Command System User’s Guide.

Sharing and Protecting Your Data Sets

You cannot guin access to any data sets other than your
own unless j’()u have system authorization to do so, or
have been given authorization by another user who
owns the data sets involved. In rss, cataloged data sets
may be shared or unshared,

A shared data set is cataloged and belongs to one
user, but may he shared with other users on any of
these bases:

1. Read-only access: The sharer may read the data set,
but may not change it in any way.

2. Read-and-write access: The sharer can both read
and write to the data set, but he may not erase it

3. Unlimited access: The sharer, in eflect, can treat the
data set as his own; he may cven erase it

You issue a pervrr command to designate the other
users who may share your data sets, which data scts
they may share, and the type of access those users inay
have. You may also use the vervir command to
chung(- any access authorization you may prvvitmsly
have given. A separate versur command is required
for cach level of access to a data set, but any number
of sharers may be authorized for the sanie level of ac-
cess with a single perair command. Alter issuing the
PERMIT command, you must issuce an ABEND Or LOGOVT
command to update your catalog entry regarding who
may share which data sets and to what level of access.
The sharer will not have access to your data set until
this update has been effected.

To gain access to a data sct for which he has been
previously authorized, the sharer must issue a sitare
command. To sce how this command is used, assume
that the sharer’s user identification is jac200 and that
he has been permitted to share one data sct. The data
set is owned by user rkrioo, and is cataloged by him
under the fully qualificd name Excraysics.conar,
TEST2. Assume also that the sharer wants to name the
data set EnNc.ciEar.NoTaR.TEsTI. He would then issue
the suare command shown at the top of Figure 10. In
response to that command, the system would search
the owner’s catalog to sce if the prospective sharer is
authorized. 1f he is not, the command is ignored and
the user is informed that he may not share the data set;
if he is authorized, the system places in the sharer’s
catalog a pointer to the owner’s(complete) name of the
data set. This is a sharing descriptor that bears the
name by which the sharer refers to the data set, When-
ever the sharer subsequently refers to the data set by
his name, the system locates the data set by the search
procedure shown on Fi gure 10.

The name assigned to a data set by its owner is not
affected in any way by other users who assign their

How to Use TSS 19

tssued by
User JMC200 SHARE | ENG.CHEM.NOTAR.TEST1 | ,RKPIOQ, ENG.PHYSICS.COMAR. TEST2

Sharer's Reference to Dato Set Owner's Identification of Data Set
Data Set's Owner

T
I JMC200 : l ENG, CHEM . NOTAR. TEST1]

Master Index

[Towew T N

@

|

I__ I ‘_JMC‘s User Catalog !_‘ RKP's User Catalog
__________ - —_————
! JMC200 T g ; . |'
R s N S % -
| .] | |
i ENG [! CHEM : } } i ; -ENG [I PHYSICS E {] E
- | | | | |
: CHEM [i NOTAR EJ ‘ 1 % % PHYSICS | l COMAR E | l I {
/ I

| |

g NOTAR { J TEST] g } } % i COMAR [{ TESTI | l TEST2 l l i
| TESTI T | | T |
, { I RKP100. ENG. PHYSICS, COMAR. TEST2 | 1 { | T2 [DATA SET DESCRIPTOR !] }
Lo _ R B

Data Set Control Block

RKPI00. ENG. PHYSICS. COMAR.y | | | | |
JEST2 N

[DATA PAGE

DATA PAGE

B I ——

Figure 10. Sharing of Cataloged Data Sets
20

own names to that data set. Sharers may use the same
name as the owner because user identifications are
unique in the system.

A sharer’s catalog entry is not removed if the owner
erases or uncatalogs a shared data set. Each sharer
must use the pELETE command to update his own cata-
log (i.e., to get rid of sharing descriptor entries). When
deleting a shared data set, the user must enter the com-
plete sharing descriptor; there is no prompting for indi-
vidual data sets under cach sharing descriptor.

If the owner allows another user to share all his data
sets, the sharer can refer to them as a group in the
stare command by specifying his name for the collec-
tion and then specify arL. In this case, the system
places a pointer to the owner’s user identification in
the sharer’s catalog, thereby making all of the owner’s
catalog available to the sharer. Similarly, groups of
data sets with names having common higher-order
components can be specified by using partially quali-
fied names for the owner’s catalog.

To be concurrently accessible by more than one task,
a data set must be cataloged and must be a virtual stor-
age data set.

Data Set Manipulation

Copying, Modifying, and Erasing Data Sets

You can use the cps command to make a copy of any
data sct (or any member of a partitioned data set) to
which you have access except data sets whose records
are in undefined format, such as program module li-
braries. You can also use it to renumber the lines of a
line data set as it is being copied. Both the original and
copy data sets must be defined in your task.

You can use the »MopiFy command to insert, delete,
replace or inspect records of a vr data set, or of a vi
member of a vp data set. You have to identify the
record to be modified (by its key or line number).
You can review modifications, and play back corrected
lines for confirmation of your changes.

You can use the vv, vr, and Tv commands to copy
your data sets depending on their origin and desired
destination. The vv command causes a vaMm data set
to be copied into public storage. The vr command
causes a vaM data set to be reproduced on 9-track
magnetic tape. The Tv command retrieves and writes
into public storage a data set previously written on
9-track magnetic tape by the v command.

You can use the ERASE command to erase data sets
that you own. If you are sharing someone elses data
set, you can remove its entry from your catalog by
issuing the pELETE command, and erase it if you have
unlimited access.

Transferring Data to Standard Output Devices

The three commands used to transfer data sets to
specific output devices are:

PRINT—initiates transfer of a specified data set to the

printer for high-speed printout.

wr—initiates transfer of a specified data set to a

magnctic-tape device for recording in a {format suit-

able for printing cither off-line or via the priNv
command.

runcH—initiates transfer of a specified data set for

ard punching.

You can issue these commands in cither conver-
sational or nonconversational tasks. Each ecommand
requests the system to initiate an independent non-
conversational task to perform the function of the
command. Once that task is sct up, the issuing task
continues.

PRINT Command

The printT command prints data sets on the computer
center’s high-speed printer. It processes data sets that
were created by using basic sequential, virtual sequen-
tial or virtual index scquential access methods.

The data set may or may not be cataloged; if not,
you must define it by a previous pprr command; if
cataloged, you can specity in the rrixt command that
the data sct is to be crased after printing has been
completed. The Pr macro instruction may alse e used
to perform these functions. System programmers can
also invoke the PRINT command to print data scts
written in ASCII' code. Sce IBM Time Sharing Sys-
tem: System Programmer’s Guide (GC28-2008, for a
description of this facility.

WT (Write Tape}) Command

The wr command writes a data set on tape for later
processing, cither off-linc or by the priNt command. Tt
can process, as input, data sets that were created by
using ecither virtual sequential or virtual index sequen-
tial access methods. You must give the name of the
input data set. If the input data set is not cataloged,
you must define it by a previous pper command. If
the input data sei is cataloged, you can specily the
ERASE option of the wr command to crase the input data
set after the wr task is completed. The wr macro in-
struction may also be used to perform these functions.

PUNCH Command

The runcir command punches a data set on cards, us-
ing the installation’s high-speed card punch. It can
process data scts that were created by using either the
virtual sequential or virtual index scquential access
methods. The data set may or may not be cataloged. If
not, you must define it by a previous pper command; if
cataloged, you can use the crase option in the puncu
command to specify that the data set is to be erased

1 The American National Standard for Information Interchange,
ANSI X3.4-1968, hercinafter referred to as ASCII.

How to Use TSS 21

after punching is completed. The pu macro instruction
provides the same options and facilities as the puncu
command.

See Command System User's Guide for a discussion
of commands; Assembler User Macro Instructions for
MAacros.

Assembler Language Facilities

input/Output During Program Execution
188 includes complete program 1/0 facilities for the
conversational and nonconversational modes of opera-
tion. In both modes, conventional 1/0 facilities and
dynamic 1/0 facilities are provided. Depending upon
the application, these dynamic facilities can be used
alone, or in conjunction with those for conventional 1/0.
The principal differences between these two facili-
ties, illustrated in Figure 11, are summarized below.

DYNAMIC 1/0
1. Source program need not con-
tain instructions for conven-
tional 1I/0. All 1/0 can be
achieved via SYSIN/SYSOUT,
using Dynamic 1/0 source
statements, and/or Program
control commands and state-
ments (Conditional dynamic

1/0 is possible).

CONVENTIONAL 1/ 0
1. Source program must con-
tain all instructions re-
quired for 1/0 operations.
In effect, data processing
must be preplanned in
detail.

Conventional I/O

Initiate
3
Read Input
Data Set

End
of Data
?

Compute

Write

Output
Data Set

Figure 11. Conventional vs Dynamic 1/0

22

2. Data to be processed must
be made available and de-
fined for system prior to
program execution,

2. Data to be processed can be
decided upon, based on re-
sults of processing; no predefi-
nition of data for system is
required.

Dynamic 1/o facilities can be used either by issuing
commands and statements at the terminal, or by in-
cluding special source language instructions in the
source program.
® Because program control facilities are equally use-

ful for program checkout and modification, a de-
scription of program control commands and state-
ments is given in Appendix B.

® Dynamic 1/0 facilities peculiar to source language
are described under the summary of the assembler
language’s problem program 1/o facilities.

Conventional Problem Program Input/Output

Assembler language users can apply one or more of the
facilities shown in Figure 12 to control conventional
program 1/o. The access method facilities (vsam,
VISAM, VPAM, BsaM, and QsAaM) permit data sets to be
created and processed, using system macro instructions
that are similar to the 1/0 statements in higher-lever
languages.

1ss also includes the resident terminal access method
(rranm) and the multiple access method (msam).

Oynamic 1/C
Initiate
I]
| Terminal |
Y

[|
¥ SYSIN I

Compute | |
™ SYSOUT |
| I
L e —— I

Conventional Problem Progrom
1/O Focilities for Assembler Language Users

Principal TSS Facilities for Special TSS
1SS Interchange with Facilities for
Facilities GS or OS/VS Device Control

Queved Seguential
Access Method
(QSAM)

Virtual Sequential
Access Method
{VSAM)

Virtual Index
Sequential Access

Method (VISAM)

Basic Sequential
Access Method
(BSAM)

Virtual Partitioned
Access Method
(VPAM)

Input /Output
Request (IOREQ)

Figure 12. Conventional 1/0 Facilities

The applications programmer’s use of the rram facili-
ties is indirect, through the command language. In this
publication, the rram facilities arc considered by de-
scribing the effects of inserting commands and dats,
via sysiN, and of the system’s outputs via SYSOUT. MsaM,
which can be used only by users in privilege-class E,
processes data sets on unit record devices, such as card
readers, card punches, and printers. Full descriptions of
rraM and Msan appear in System Programmer’s Guide;
system programmers generally can use rram facilities
directly. Depending upon the planning for a specific
installation, the Msam facilities for control of card read-
ers and punches, and printers may be available to
users; those facilities are described in Assembler User
Macro Instructions. ‘

The 1/0 request (10rEQ) facility permits the control
of 1/0 devices, using system macro instructions similar
to those used for machine-level programming (i.e.,
10REQ allows you to write your own channel programs).

The virtual storage access methods (vsaM, visam,
and vpam) are specifically designed for the program-
ming environment of 1ss. They are simple to use, vet
they provide a wide range of facilities for data storage
and retrieval.

The basic sequential access method (Bsam) is in-
tended primarily for data set interchange with OS,
0S/VS, or when the data set is to be written on mag-
netic tape. Also, BsaMm can be used for applications
requiring limited device control. For special applica-
tions that call for more direct device control, the 1/0

request (10ReQ) facility can be used.
The relationships between the data-set organization

and the data-management system macro instructions of

cach 1/o facility arc summarized in Figure 13, Com-
plete information on these macros is available in As-
sembler User Macro Instructions. A discussion of aceess
method facilites is contained in Data Management
Facilities,

General Service Macro Instructions

The general service macro instructions (used to iden-

tify and prepare data scts for processing, and to termi-

nate their processing) are essentially the same for all

access methods. The mmemonics and short titles for

these macro instructions arc:

e pcs—Define data control block for1/0 opcrations

* pcep—Provide symbolic names for fields of a pen

® opeN—Prepare a pcs for processing

® crose—Disconnect a data set from user’s problem
program

DCB Macro Instruction

The pcs macro instruction is included in a source pro-

gram to reserve space for a data control block and, if

you desire, to place in that data control block, at as-

sembly time, information describing the characteristics

and intended uses of a data set. Table 1 bricfly de-

scribes each of the operands in a pbes macro instruction.,

Also, it indicates the access methods in which cach

operand can be specified, if the pcs macro instruction

is the source of the information. Table 1 also gives the

valid alternate sources for each operand.

A pcB macro instruction is required for cach data set
processed by the assembler language’s conventional 1/0
facilities.

DCBD Macro Instruction

A pcBp macro instruction is r(*quirvd if you want to
refer to the fields of a data control block by their sym-
bolic names in your program. A dummy control scetion
(psect) will be generated at assembly time to provide
a symbolic name h)r cach ficld that can be specified in
any data control block. By properly initializing your
base registers you can thus refer sy mb() ically to any
or all H(1ds of the data control blocks in your program,
Only one pesp macro instruction may be issued during
an assembly; if you issue more than one the instruction
will be ignored and a diagnostic message will be issued.
OPEN Macro instruction
The orex macro instruction comp]ctes one or morce
specified data control blocks so their associated data
sets can be processed.

opeEN is common to all access methods; however,
other aspects of the opex process (label procussing,
specification of the volume disposition when volume
switching oceurs, identification of the 1/o access char-
acteristics of the data sets involved and the related
DUPOPEN macro instruction) differ with the access
method being used and the intended processing of the
data itself.

How to Use TSS 23

General Service Maocro Instructions
Applicable in Al Access Methods

DCe
DCBD
OPEN
CLOSE
+VSAM ; VISAM VPAM ¢ BSAM l QSAM 1 IOREQ
Virtual Virtual Index Virtual Basic Queved Input/Qutput
Sequential Sequential Partitiored Sequential Sequential Request Facility
Macro Instructions Macro Instructions Moacro Instructions Macro Instructions Macro Instructions Macro Instructions
GET GET FIND GETPOOL GET VCCW
PUT PUT STOW FREEPOOL PUT IOREQ
PUTX READ DUPOPEN GETBUF PUTX CHECK
SETL WRITE DUPCLOSE FREEBUF SETL
DUPOPEN SETL FEOV RELSE
DUPCLOSE ESETL CNTRL TRUNC
DELREC READ
RELEX WRITE
DUPOPEN CHECK
DUPCLOSE NOTE
POINT
BSP
CLOSE (TYPE =T)
DQDECR
f ¥ ¥ ¥ Y Y

Virtual sequential
data set, or

virtual sequential
member of o
partitioned dato set

Virtual index
sequential dota set,
or virtual index se-
quential member of a
partitioned data set

Virtual partitioned data
set, with virtual sequen-
tial or virtual index
sequential members or

a mixture of both

Sequential data set,
usually one with
unblocked records

Sequential
data set

Device oriented

Figure 13. Summary of Data Management System Macro Instruction and Data Set Organizations

CLOSE Macro Instruction

A cLosE macro instruction logically disconnects a data
set from your program and should be issued when a
data set’s processing is completed.

Duplexing a Data Set

Critically important virtual storage (vam organized)
data sets on public volumes may be safeguarded
against loss of data by duplexing them. The puPOPEN
macro instruction links a primary and secondary data
set together such that all changes to the primary data
set are immediately reflected by corresponding changes
in the secondary ddta set. At any instant, therefore, the
data sets shou]d be exact duphcatcs. If read errors
occur in the primary copy, the secondary copy is used
for error recovery. To ensure that the two data sets are
always identical, you should never perform an opera-
tion on either data set without invoking the duplexing
mechanism.

You duplex a data set by issuing a puPOPEN macro
instruction instead of the opEN macro instruction, speci-
fying as operands the addresses of the data control
blocks for the primary and secondary data sets. When-
ever possible the two data sets should be allocated
space on separate physical volumes. The data set prop-
erties specified in both data control blocks, and their

24

corresponding DDEF statements, must be consistent.

The external storage required when duplexing a data
set is exactly double that required by non- duplexed
data sets, and the time required for data output is
almost doubled. To save on time and resources, you
should therefore be judicious in your duplexing re-
quests.

Data sets that have been opened with a purorex
macro instruction are closed with a pupcLosE macro
instruction, with the address of the two data control
blocks as operands.

Dynamic Input/Output for the Assembler Language

In addition to the program control facilities available

to all users, the following macro instructions may be

used for problem program communication with the

system 1/0 streams:

® caTrD (read record from sysiv)

® CcATWR (write record to sysouT)

® Grwrc (write record to sysour with asa carriage
control character)

® ¢TwWAR (write record to sysout and read response
from sysin)

® ¢erwsr (write record on sysout and read record
from sysiv)

Table 1. DCB Operands, Their Specification, Access Methods, and Alternate Sources

APPLICABLE ACCESS METHOD VALID ALTERNATE SOURCES
nen USER’S DDEF DATA SET
OPERAND SPECIFIES vsaM |visam| veanm | BsaM|10REQ] QsaM |Msam|TAM|PROCRAM | cOMMAND LABEL
DDNAME | Symbolic name identical to that used in X X X X X X X
ddname operand of DDEF command asso-
ciated with data set
DSORG Data set organization X X X X X X X X
RECFM Record format information X X X X X X X X X
LRECL Logical record length X X X X X X X X
EODAD Address of user’s end-of-data routine for X X X X X X
input data sets
SYNAD Address of user’s synchronous error exit X X X X X X
routine (entered when an uncorrectable (only for
error occurs in 1/O operation} VISAM
members)
KEYLEN | Key length X X X X X X X
(only for
VISAM
members)
RKP Displacement of key from first byte of log- X X X X
ical record (only for
VISAM)
PAD Space to be left on each page of virtual X X X X X
index sequential data set (to allow subse- -1 {only for
quent insertions) VISAM
members)
MACRF Type of macro instructions used in process- X X X X
ing data set (GET, PUT, READ, WRITE,
ete.)
DEVD Device on which data set resides plus, for X X X X
some device types, device-dependent infor- some some
mation (data code, tape density, etc.) device device
dependent |dependent
informa- informa-
tion tion
OPTCD Optional service desired, write with validity X X X X X
check (for direct-access devices only)
BLKSIZE | Maximum block length X X X X X
IMSK Number code indicating what system error X X X X
recovery and recording procedures (if any)
are to be invoked
EXLST Address of user’s exit list X X X
NCP Number of consecutive READ, WRITE, or X X X X
IOREQ macro instructions issued before
CHECK macro instruction
BUFNO Number of buffers X X X
BFALN Buffer alignment X X X
BUFL Buffer length X X X
EROPT Option to be executed if an error occurs X X X
BFTEK Buffer technique X X X X
PRTSP Print spacing option X X X
STACK Card stacker selection X X X X
MODE Mode of operation X X X
TRTCH Recording technique
for T-track tape X X X
BUFCB Buffer control block
address X X

How to Use TSS

(843
Ut

® pause (switch conversational task from program
mode to command mode)

s conyanp (switch conversational or nonconversa-
tional task from program mode to command mode)

e sysiv (write and/or read a message in SYSIN/
SYSOUT)

GATRD

The catrRD macro instruction reads a line data set rec-
ord from your sysiv and places it in your specified
area. In conversational mode, the system prints an un-
derscore on your terminal typewriter and unlocks your
keyboard. The program containing caTrp then waits
for you to insert a record. If no record is inserted, the
task is terminated.

In nonconversational mode, the system refers to the
sysin data set and reads its next record. You must
arrange the records in the sysiv data set so that the
appropriate record is obtained by the system in re-
sponse to each caTep macro instruction. If the input
record exceeds one line, a caTrRp macro instruction is
required for each line.

GATWR

The cATWR macro instruction writes a record to your
sysout from a user-specified area. In conversational
mode, the record is printed on the terminal typewriter;
in nonconversational mode, the record is stored in the
task’s sysouT data set.

GTWRC

The ¢TwRe macro instruction writes a message on the
user’s sysout, with asa carriage control character.
Either Type I or Type II linkage is used, depending
upon the privilege class of the user’s program.

GTWAR

The cTwar macro instruction writes a record from a
user-specified output area to sysour, and then reads a
record from sysiN into a user-specified input area. In
conversational mode, the output record is printed at
your terminal, and the program issuing GTWAR waits
for you to insert the input record. If no record is in-
serted, the task is terminated.

In nonconversational mode, the system writes the
output record to the task’s sysour data set, and reads
the next record in the sysiv data set. It is your re-
sponsibility to have the appropriate record available
for each crwar macro instruction. If the input record
exceeds one line, a cATRD macro instruction is required
for each additional line.

GTWSR

The cTwsr macro instruction may be used only in the
conversational mode; the system will terminate the

26

task if an attempt is made to execute a GTWSR macro
instruction in the nonconversational mode. The cTwsr
macro instruction prints the output message on your
terminal typewriter and waits for you to provide the
input record, which, when entered, will be stored by
the system in the area specified in the cTwsr macro in-
struction. If the input record exceeds one line, a cATrRD
macro instruction is required for each additional line.

SYSIN

The sysiv macro instruction services the program in
which it appears by providing information about the
current operating task. This is accomplished by re-
trieving input (i.e. either a command or data) from
the Source List or the sysin device for the task. A
user can alter the action of the sysiv routine by enter-
ing the system command prompting string (usually
an underscore followed by a backspace) following the
prompting string of the sYsIN macro routine produced
at the terminal.

PAUSE

The pAUSE macro instruction switches a conversational
task from program mode to command mode, while
still retaining program control. A message specified in
the pause macro instruction is typed at your terminal.
Control is then returned to you, who can then enter
any commands. Any system output generated by a
command issued after the paUSE is typed at your termi-
nal. After each command is executed, the system
prompts you for the next command. To resume a pre-
viously interrupted carL command (one that was exe-
cuting the object module containing pause) you issue
another co command. This ¢o can specify that the
interrupted object module be resumed at the point of
interruption, or at any other point, or a new object
module can be called and its execution begun. If a
PAUSE macro instruction is encountered in a program
executing in the nonconversational mode, the message
is written on sysouT, and program execution continues.

COMMAND

The coMMAaND macro instruction has a function simi-
lar to pauUsE; however, it can be executed in either con-
versational or nonconversational tasks. In a conversa-
tional task, commaxp has the same effect as PAUSE.

In a nonconversational task, the system refers to
the sysin data set when coarman is executed. You can
prestore any commands you want in the sysiv data set,
to subsequently control the system. Any system mes-
sages resulting from the execution of these commands
are sent to the task’s sysour data set. The program
execution is resumed by a co command.

The LINE? command can also obtain output dynam-

ically. One or more lines from a line data set that be-
longs to you. or that you are currently permitted to
share, can be specified in this command. The LiNE?
command can be issued in either the conversational or
nonconversational mode. In conversational mode, the
specified line or group of lines is printed at your ter-
minal; in nonconversational mode, the specified line or
group of lines is written on the task’s sysouT data set.

Table 2 summarizes the processing rules for input
data through use of the input GATE macro instructions
(caTRD, cTwAR, and ¢rwsr). Table 3 summarizes the
processing rules for output data through use of the
output GATE macro instructions (GATWR, GTWAR, and
GTWSR).

Communication with the Operator

These macro instructions may be included in assem-
bler written problem programs to communicate with
the system operator:

Table 2. SYSIN Records Specified with caTe Macro Instructions

® wro (write-to-operator),

® WrOR (write-to-operator-with-reply).

These macro instructions should be used only in pro-
grams with specialized 1/0 routines to request operator
intervention.

Communications with the System Log
The system log is a data set that is maintained by the
system on a direct-access device. Its characteristics are
established according to the needs of an installation,
and are defined at the time that the system is gene-
rated.
Sources of information for the system log are:
¢ The operator, who may enter any noteworthy
events that occurred on his shift (MEessace com-
mand).
® Assembler-written problem programs—wrL (write-
to-log) macro instruction.

SOURCE

DESTINATION

DEVICE RULES

RULES

Terminal keyboard

Each record is terminated by end-of-block charac-
ter (EOB); this character is registered when sys-
tem detects RETURN key has been pressed and
not immediately preceded by hyphen; if necessary
to continue record over more than one line, hyphen
indicates record is being continued; hyphen does
not become part of record; maximum line length:
IBM 1052 and IBM 2741—130 bytes; IBM 3277—
255 bytes; Teletypewriter Model 35KSR—80 bytes

Terminal card reader

Each record is terminated by EOB, which can be
registered in one of two ways:
If terminal’'s EOB switch is ON, EOB code is
registered automatically after card is read or
when EOB code is detected on card
If EOB switch is OFF, an EOB code is trans-
mitted only when detected on card or program

tape
Cards are 80 bytes long

Direct-access

Each input record is a single record of a virtual
sequential or virtual index sequential data set

These macro instructions specify expected length of

input record

Record is placed in area specified in macro instruction

Table 3. SYSOUT Records Specified with caTe Macro Instructions

tion of data to be produced as output

GATWR, GTWSR, GTWRC, and GTWAR are
used for problem program output

SOURCE DESTINATION
RULES DEVICE RULES
These macro instructions specify length and loca- | Terminal In conversational mode, output of these macro instruc-

tions appears on SYSOUT device
Records longer than one line are continued

Maximum line lengths: 1052 and 2741—130 bytes;
IBM 3277—255 bytes; Teletype Model 35—80 bytes

Direct-access

In nonconversational mode, output is written on SYS-
OUT data set for subsequent off-line printing

How to Use TSS 27

Commands and Macro Instructions

The following chart (Table 4) shows the commands
available to you. The commands are grouped under
ten general categories. The chart shows commands

themselves, the corresponding macro instructions (if
any), sample usages, and the examples in Part I11

Table 4. Commands and Macro Instructions (Continued)

which illustrate the command. Positional operand no-
tation is used. The Command System User’s Guide
gives a fuller description of all command formats.

FUNCTION

COMMAND

MACRO
INSTRUC-
TION

SAMPLE
USAGES

EFFECT

ILLUSTRA-
TIVE
EXAMPLES

Task
Management

Attention Button

LOGON

CHGPASS

BEGIN

LOGOFF

BACK

EXECUTE

CANCEL

TIME

USAGE

ZLOGON

(User presses button)

ADUSERID,MYPASS,,
ADACCT29

CHGPASS

CHGPASS
NEWPASWD=WORD
BEGIN CALC

LOGOFF

BACK ALPHA

EXECUTE BETA

CANCEL 4120

TIME 15

USAGE

ZLOGON

Gains attention of the system for log-
ging ‘at the very beginning of the
session.

Thereafter during your conversational
task, halts current activity. See Ap-
pendix D for specific effect.

Identifies you to the system for initia-
tion of your task. Here you enter your
identification, password, and account
number. Confirmation follows and full
messages are standard.

Notifies the system that you wish to
change your password.

Notifies the system that you wish to
change your password to WORD.
Notifies the system that you wish to
connect to an MTT application pro-

gram.

. Notifies system that you want to termi-

nate your task.

Switches your conversational task to
nonconversational mode. Here you
specify the data set ALPHA as the
source of further commands.

Requests the execution in nonconver-
sational mode of a sequence of com-
mands contained in data set BETA,
while you continue in conversational
mode at the terminal.

Terminates execution of nonconversa-
tional task which was assigned batch
sequence number 4120.

Allocates 15 minutes of processing
time to the task before the user is
notified by a message at the terminal if
in conversational mode; by ABEND if
in nonconversational mode.

Presents a summary of system re-
sources available to you as well as
those that have been used by you since
you were first joined and since the cur-
rent LOGON.

The user-defined procedure called
ZLOGON is executed. After initial
LOGON procedures are completed,
this invocation is automatic.

1-11,13-19,
21,22,24-30

All

None

All

11

11

7,19

21

General
Data
Management

CDD

CATALOG

CDD

CAT

CDD MYDDEFS

CATALOG GAMMA, R

Causes execution of all the DDEF
commands that you placed in a data
set named MYDDEFS.

Causes system to create an entry in
your catalog for a physical sequential
data set, or change an entry. Here an
entry is created for the data set
GAMMA. By default, the system will
recognize it as a new data set, with
access = R (read only).

13

4,10, 22

28

Table 4. Commands and Macro Instructions (Continued)

FUNCTION

COMMAND

MACRO
INSTRUC-
TION

SAMPLE
USAGES

EFFECT

ILLUSTRA-
TIVE
EXAMPLES

General
Data
Management

CDS
CLOSE
DELETE

DATA

DDEF

ERASE

EVV

JOBLIBS

MODIFY

PERMIT

RELEASE

RET

CDS

CLOSE

DEL

DDEF

ERASE

OBEY

REL

CATALOG DELTA,U,,
SIGMA

CDS SIGMA,
SIGMA2

CLOSE IOTA,T

DELETE KAPPA

DATA EPSILON

DDEF MYDD,,
MYDATA

ERASE DELTA

ERASE USERLIB
(MYPGM)

EVV 2311,387542

JOBLIBS DDNAME=
OMEGA

MODIFY PHI

OBEY ‘DDEF OUTDD,,
OUTDS’

PERMIT SIGMA2,
ADPAL,RO

RELEASE MYDD

RET OMEGA,TCR

Here you update (U) your catalog so
that the data set STGMA is cataloged
under the name DELTA. The CATA-
LOG command cannot be used for
changing access for a VAM-organized
data set and the access is therefore de-
faulted by a comma.

Copies the data set SIGMA, naming
the copy SIGMAZ2.

Causes the system to temporarily close
the data set, IOTA.

Removes the entry for the data set
KAPPA from your catalog.

Requests the system to build a data
set named EPSILQN from the data or
commands which follow.

Defines a data set and describes its
characteristics to the system for the
current task. The data set exists, or is
being created. Here you define a data
set named MYDATA. The second
comma defaults its organization. The
name of the definition is MYDD. Ap-
pendix E describes the other param-
eters.

Erases dala set (releases direct-access
starage for other use), and if cataloged,
deletes name from catalog. Here you
release the storage space of the data
set DELTA.

Here you erase an object program
module named MYPGM from your
USERLIB.

Causes a catalog entry to be created
for a private VAM volume. Here you
specify the device type and the volume
serial number.

Causes your JOBLIB, OMEGA, to be
moved to the logical top of your lLi-
brary list.

Permits ycu, with subsequent parame-
ters, to insert, replace or delete records
in 2 VISAM data set named PHI.

Causes the system to create a JFCB
with a DDNAME of QUTDD and a
DSNAME of OUTDS.

Authorizes other user to have access to
vour data set(s).

Here vou authorize read-only (RO) ac-
cess to your SIGMAZ2 data set to a user
whose identification is ADPAL.

Revokes the data definition established
by the previously issued DDEF com-
mand named MYDD. '

Causes modification to be made to the
catalog entry for your VAM-organized
data set OMEGA. It will occupy tem-
porary virtual storage (T) and be de-
leted when the CLOSE macro instruc-
tion is executed (C). Access is
changed to read only.

18

21

11,13,16,
20,23

3-11,13-15,
17,18,20,
22,23

4,6,7,14,21

17

4,7

31

18

9,10,17

56

How to Use TSS 29

Table 4. (Continued)

FUNCTION

COMMAND

MACRO
INSTRUC-
TION

SAMPLE
USAGES

EFFECT

ILLUSTRA-
TIVE
EXAMPLES

General
Data
Management

SHARE

SHARE MINE,ADHISID,

HISN

TV ABC,XYZ

VT ONE, TWO

VV FOUR,FIVE

Creates entry in your catalog for data
set for which owner has granted you
authorization with PERMIT com-
mand.

Here you cause an entry to be created
in your catalog under MINE for the
data set HISN belonging to a user
whose identification is ADHISID.
Retrieves data set that was written
onto tape via VT command (ABC)
and writes it on a VAM volume, with
name XYZ.

Copies VAM data set (ONE) to mag-
netic tape as physical sequential data
set (TWO).

Copies VAM data set (FOUR) onto
direct access storage assigning name as
FIVE,

18

25

25

25

Bulk
Output

PUNCH

PRINT

PU

PR

PUNCH SIGMA

PRINT SOURCE.PGM3

WT GAMMA

Causes the data set SIGMA to be
punched 6n cards.

Causes the data set SOURCE.PGM3
to be printed on the high-speed
printer.

Causes the data set GAMMA to be
written on magnetic tape for subse-
quent off-line printing.

21

59

21

Device

Management |

SECURE

SECURE (DA=3, 2311)
(TA=3, 9)

Reserves devices required for private
volumes during execution of noncon-
versational tasks. This command at the
beginning of your sequence of com-
mands for the nonconversational task
secures three 2311 disk units and three
9-track tape units.

20

Program
Management

LOAD

UNLOAD

CALL

GO

BRANCH

LOAD

DELETE

LOAD MAIN2

UNLOAD MAINB

CALL MYPG

GO

BRANCH NEW

Transfers the specified object module
from its containing library to user’s
virtual storage.

Removes object module MAINB from
user’s virtual storage.

Here you cause your object module
MYPG to be loaded and executed.
Your program was interrupted. The
GO command causes execution to be-
gin at the point of interruption.

Your program was interrupted. You de-
cide to branch to another entry point
(NEW) in your current program.

7,15,17,23

5-7,9,10,
11,13,15
89

30

Table 4. Commands and Macro Instructions (Continued)

MACRO ILLUSTRA-
INSTRUC- SAMPLE TIVE
FUNCTION COMMAND TION USAGES EFFECT EXAMPLES

DDNAME? DDNAME?JOBLIB=N Causes printing of all DDNAMES and | 7
DSNAMES currently defined.

DSS? DSS? Causes printing of detailed information] 21
about each of your cataloged data sets.

DSS? PHLSIGMA Here you ask for catalog information
about PHI and SIGMA.

PC? PC? Prints abbreviated descriptions (name,} 21
access and, if shared, owner’s identifi-
cation} of all your cataloged data
sets.

Obtaining PC? IOTA KAPPA Presents information on zll data sets
Information with the qualification JOTA KAPPA.
About POD? POD?JOBLIBA,ALIAS=Y | Requests information about a specified | 21
Data partitioned data set.
Sets Here you ask for the names and aliases
for each member of the partitioned
data set JOBLIBA.

LINE? LINE? SOURCE.MAIN Causes printing of records from the} 89,16
specified line data set. Here you print
the contents of the line data set
SOURCE.MAIN at the terminal.

LINE? MU,800, Here you print line 800 and lines
(1200,1900) 1200-1900 of the line data set MU.

EXHIBIT EXHIBIT UID Causes a display of all active tasks on| 7
the system.

EDIT EDIT DSONE The Text Editor is invoked. DSONE| 26,277
is the data set name associated with
the data set to be edited.

END END - This denotes the completion of editing | 26,27
initialized by an EDIT command.

REGION REGION XYZ This defines region XYZ in the current| 26,27
data set.

DISABLE DISABLE Revisions made to a data set after DIS-{ 27
ABLE are collected in a temporary
area.

ENABLE ENABLE Revisions made since the last DIS-{ 27
ABLE are permanent.

CONTEXT CONTEXT, ABCDEF, The entire data set (current region)| 27

UVWXYZ is searched, replacing ABCDEF with
UVWXYZ.
CORRECT CORRECT 400 Characters from line 400 of the current! 27
stems3770 region are adjusted as requested. SYS-
@ $ *%* TEM 370 is the resultant line.
ys@
Text UPDATE UPDATE Lines entered following UPDATE are| 26
Editor inserted into the current region accord-
Facilities ing to the given line number.
EXCERFPT EXCERPT ABC, Region ABC2 from data set ABC will| 27
ABC2 be inserted into the current data set.

EXCISE - EXCISE-1 The line preceding the current line| 28
pointer location will be deleted, from
the current region.

INSERT INSERT +10 Insertion in the current data set will] 26
begin 10 lines beyond the current po-
sition, with a default increment of 100.

NUMBER NUMBER 100,500, The range of lines (100-500) in the| 27

1000,100 current region will be renumbered, be-
ginning with 1000 (also in increments
of 100). .

LIST LIST 400,700 Lines 400-700 inclusive of the current | 27
region are displayed.

LOCATE LOCATE,,‘ABC’ The entire current region will be| 27
searched for the character string ABC.

How to Use TSS 31

Table 4. Commands and Macro Instructions (Continued)

FUNCTION

COMMAND

MACRO
INSTRUC-
TION

SAMPLE
USAGES

EFFECT

ILLUSTRA-~
TIVE
EXAMPLES

Text
Editor
Facilities

POST

POST

Makes all previous editing changes
permanent.

27

Program
Control

AT

DISPLAY

DUMP

IF

QUALIFY

REMOVE

SET

STOP

AT MAIN.AB100

AT MAIN.AB100;IF
MAIN.AB>MAIN.AC;
STOP

DISPLAY MAIN.AB

DUMP MAIN.AB

IF M.AC > M.AD
SET M.AB =2

QUALIFY MAIN

REMOVE ALL

REMOVE 10

SET .AB = .AC

STOP

Causes notification to be printed on
SYSOUT when program execution
reaches specified location.

Here you request the message when
the program MAIN reaches the in-
struction named AB100.

Here you cause execution to stop at
the instruction named AB100 if AB is
greater than AC.

Prints on SYSOUT the current con-
tents of the data field AB in program
MAIN.

Causes the name and contents of the
data field AB in program MAIN to be
placed in the PCSOUT data set for
later printing.

Defines a logical condition (true or
false) that must be true to cause ex-
ecution of the remainder of the IF
statement,

Here you cause the data field AB in
program M to be set to 2 if the cur-
rent value of AC is greater than AD.
Causes subsequent names to be quali-
fied by MAIN. You can then write
.AB instead of MAIN.AB.

Deletes all previously issued AT com-
mands or PCS statements that include
AT commands.

Here you specify deletion of the state-
ment to which the system assigned the
number 10 when it was first entered.

Causes specified data field in virtual
storage to be changed. Here you set
the qualified field AB equal to AC.
Stops program execution and causes
printing on SYSOUT of current in-
struction location and program status
information.

89

89

User
Profile
Management

DEFAULT

SYNONYM

PROFILE

MCAST

MCASTAB

MCAST

DEFAULT
ACC=R

SYNONYM
SPECIAL=
ZLLOGON
PROFILE

MCAST CONT=@,
CP=///:

MCASTAB INTRAN=Y

Access code for the CATALOG com-
mand will now be defaulted to read-
only.

The ZLLOGON procedure may now be
invoked with either name, ZLOGON
or SPECIAL.

The session profile replaces the user
profile in USERLIB.

The continuation control character is
changed to an @ character; the de-
fault prompt string is replaced with
a series of three slashes and no car-
riage return.

Allows you to replace the system’s
input character translation and switch
table with one which you have written
for your task.

28

32

Table 4. Commands and Macro Instructions (Continued)

NAME=TEST3

written command procedure.

MACHRO ILLUSTRA-
INSTRUC- SAMPLE TIVE
FUNCTION COMMAND TION USAGES EFFECT EXAMPLES
BUILTIN BUILTIN NAME= Defines TEST2 as the name of the |29
TEST2 object program which the user can
invoke as if it were a command.
KEYWORD KEYWORD Causes printing of all the command | 29
names, and their associated parame-
Command ters, currently defined in your USER-
Creation LIB.
KEYWORD Here you ask for the parameter key-
COMNAME=CO words of the command GO to be
printed.
PROCDEF PROCDEF Defines TEST3 as the name of a user- | 28

How to Use TSS 33

Macro Instructions Used in Examples

This table (Table 5) lists the macro instructions whose
use is shown in Part III, grouped by function. Detailed
coding information on these macro instructions is pro-
vided in the publication Assembler User Macro In-
structions.

Table 5. Macro Instructions Used in Examples

FUNC-
TION

MACRO
INSTRUC-
TION

USE

ILLUSTRA-
TIVE
EXAMPLES

MACRO ILLUSTRA-
FUNC- | INSTRUC- TIVE
TION TION USE EXAMPLES
VSAM | DCB Reserves space for a data|5,6,11,14
Data control block (DCB} which
Manage- describes a virtual sequen-
ment tial (VS) data set.
OPEN Initializes a specified DCB| 5,6,11,14

for processing and catalogs
new data sets.

GET Moves a virtual sequential| 6
data set record to a virtual
storage location.

PUT I Includes a record from vir-| 5,6,11,14
tual storage in a virtual
sequential data set.
CLOSE Logically disconnects af 5,6,11,14
specified data set from your
program.

DUPOPEN| Initializes two specified
DCBs for processing in du-
plex mode and causes crea-
tion of a catalog entry if
data set is new.

DUP- Logically disconnects a du-
CLOSE plexed data set from your
program.

VISAM | DCB Reserves space for a data| 14
Data contro} block (DCB} which
Manage- describes a virtual index se-
ment quential (VIS) data set.

OPEN Initializes a specified DCB| 14

for processing and catalogs
new data sets.

PUT Includes the next sequen-| 14
tial record from virtual
storage in a virtual index
sequential data set.

READ Transfers a virtual index| 14
sequential record to a vir-
tual storage location.

DELREC | Deletes a specified record| 14
from a virtual index se-
quential data set.

CLOSE Logically disconnects a| 14
specified data set from your
program.

DUPOPEN]| Initializes two specified
DCB:s for processing in du-
plex mode and causes crea-
tion of a catalog entry if
data set is new.

BSAM
Data
Manage-
ment

DCB

OPEN

READ

WRITE

CHECK

CLOSE

Reserves space for a data
control block (DCB) which
describes a physical se-
quential data set.

Initializes a specified DCB
for processing.

Transfers a block of data
from a physical sequential
data set to a virtual storage
location.

Writes a block of data from
virtual storage in a physical
sequential data set.

Required when processing
physical sequential data
sets to check the 1/0 oper-
ation requested by a READ
or WRITE macro instruc-
tion for 170 completion,
errors, or exceptional con-
ditions.

Logically disconnects a
specified data set from your

program.

10

10

10

10

10

10

SYSIN-
SYSOUT
1/0

GATRD

GATWR

Reads a record from SYS-
IN and places it in a speci-
fied area in your virtual
storage.

Transfers a message from
your program to SYSOUT.

2-4,11,12,
16,19

2-4,6,7,
12, 13, 186,
19,23

Program

_| Linkage

SAVE

RETURN

EXIT

Stores the contents of spec-
ified registers in a save
area.

Restores the contents of
specified registers from a
save area, and returns con-
trol to the location speci-
fied in register 14.
Terminates program execu-
tion and causes the next
command from SYSIN to
be processed.

6,7,10,11,
14, 20

6,7, 20,23

2-5,10,12,
14, 16, 17,
19, 20

Interrupt
Manage-
ment

SPEC

SIR

DIR

Specifies the entry point of
an interrupt-handling rou-
tine to which control is to
pass with the occurrence of
a specified type of program
interrupt.

Informs the system of the
presence of your interrupt-
handling routine.

Terminates possibility of
your interrupt-handling rou-
tine receiving control.

20

20

20

DUP- Logically disconnects a du-
CLOSE plexed data set from your
program.

User-
Defined
Proce-
dures

BPKD

Supplies the linkage be-
tween the assembler object
module and BUILTIN pro-
cedure name.

29

34

Part III is devoted to thirty examples showing user-
system interaction. The dialog between you and the
system appears (along with explanatory comments)
as it would at the terminal. They are typical examples
of system use. Use the examples as a learning device,
and as models for designing your own work.

Commands and concepts are presented in an ordered
sequence: the most necessary and basic ones appear
first, and are reviewed in subsequent examples. The
examples are designed so that the beginner should
read them in sequence. Precise system responses are
not indicated. Instead, short narratives describing
system reactions to your input are given throughout.
The expanded facilities of the Command System such
as the Text Editor, procpeF, BuiLTIN, and User Profile
are depicted for your guidance. Those familiar with
the commands and concepts can use the examples for
reference.

All vsam, visaMm, and veam data sets are automati-
cally cataloged at the time they are created. ppEF time
includes the specific issuance of the command (or
macro) by the user, as well as the implied system issu-
ance of ppEF by such facilities as the pata command
and the asm command. The system creates the initial
catalog entry and provides the user with unlimited ac-
cess. You must deliberately update the initial catalog
entry if this access is not desired. The examples stress
this concept in all of its forms, using a narrative wher-
ever the system will take such automatic action.

Assembler programs are shown where they are
necessary to clarify use of the commands. Only the

Part lll. Examples

relevant staternents are included, and usually do not
show base register usage. Full program linkage and
reenterable programs are shown in the later examples.
Various types of messages are issued to your termi-
nal by the system. The three types are as follows:
Prompting Messages—Request that you supply com-
mand operands or other information. Since the system
does not recognize confinmation mode as such, you
will be prompted only for omitted operands that have
no default option specified.
Information Messages—Either inform you of actions
the system has taken in executing a command, or re-
quest additional information.

Diagnostic Messages—Inform you of errors and
prompt you for corrections.

In these examples, lines typed by the system are
headed sys, lincs you enter are headed you. Lines in
which both the system and you enter something are
headed s, v. Lines printed by your program are headed
peM, and cards entered from the terminal card reader

- and reprinted are headed crp, for card image printout.

The use of the pRiNT command for obtaining lan-
guage processor output listings is illustrated in the
examples as follows:

PRINT LIST.module-name, , ,EpIT
You will automatically be given the latest generation
of your list data set.

Some examples use the Erase option so that un-
wanted data sets may be removed from the system.
This procedure is recommended whenever practical
so that public storage will not be burdened with un-
wanted user data. The format is as follows:

pRINT LIST.module-name, |, ,EDIT,ERASE

Examples 35

Example 1: Initiating and Terminating a Conversational Task

In this example, you initiate a simple conversational task and then terminate it. The commentary explains the
keyboard entries required to converse with the system.

To begin a conversational task, first make sure that the terminal is properly prepared (refer to instructions
provided by your installation or to the Terminal User’s Guide). When you dial up the system or press the
attention button for the first time in your task, the system assumes a log-on operation and the keyboard is unlocked
for you to enter the Locon command along with the appropriate Locon parameters. Since the system will not
prompt for individual Locox operands, all of them must be entered at the same time. You cannot begin a task

until you have logged on properly.
During your dialog with the system, your commands are not entered into the system until you press the return

key.
YOU:

SYS:

SYS:

(press attention button or dial up the system)
From this point on, pressing the attention button halts current activity in most situa-
tions. Consult Appendix D for the specific action taken in each situation. The keyboard
is unlocked to receive your LOGON command and operands.

LOGON ADUSERID,MYPASS*,24,ADACCT30,N,5,P
29,N,5,P
Before pressing the return key, you notice a typing error in the charge number
(ADACCTS0). To correct this error you backspace 8 characters, move the paper up
one line to avoid overtyping, and then enter the proper characters.

TSS/370 RELEASE 2.0
This is the first message you will receive, indicating the system and level you have
dialed, and informing you that your LOGON attempt }%as been recognized by the system.
You must still wait for LOGON acknowledgement before you can begin your task.

TASKID=1111] LOGON AT 15:21 ON 04/12/76
With this message the system acknowledges your LOGON; you may now begin process-

i ing.

Explanation of LOGON Operands

36

ADUSERID User Identification
User identity is the first of the LOGON parameters. You enter your full identification.
It was assigned to you when you were joined to the system. Its first two characters iden-
tify the administrator who authorized your access to the system.

MYPASS* Password
This code word (password) provides protection against unauthorized use of your user
identification. Conversationally it must be used if one was assigned at JOIN time. Non-
conversationally it is optional. The system will prompt you and allow you to overprint it
conversationally to ensure password security.

24 o Adﬂressing

24 or 32 bit addressing may be specified. The present system addressing will be assumed.
(32 bit addressing is valid for System 360 only.)

ADACCTZ29 Charge Number
This is the charge or account number that was assigned to you by your administrator.

N Control Section Packing _
This operand specifies the type of control section packing provided for you by the
Dynamic Loader. Possible values are as follows:
A = pack all control sections
P = pack all prototype control sections only
O = pack only those control sections having neither PUBLIC nor PROTOTYPE
attributes
X = pack all control sections, except prototype
N = no control section packing will be done

SYS:

YOU:
SYS:

LOGoff

Maximum Auxiliary Storage

You may specify the number of pages needed. If not, the system will assume the number
of pages specified at SYSGEN.

Pristine

Permits you to log on with only system supplied defaults and, if you wish, without your
USERLIB, Possible values are:

P=USERLIB is defined but session profile reflects only system defaults, etc.
X=USERLIB is not defined and session profile reflects only system defaults, etc.

ZLOGON will now be invoked, if it has been defined by you. You can continue with

other commands or procedures as soon as the system underscore appears.

After logging you on, the system prints a single underscore and then backspaces; this
is the standard signal that it is ready to receive your next command on the same line.
Here you specify that you want folded mode; that is that certain lower case characters
(as a-z and | “¢) be translated by the system into their upper case equivalents (A-Z
and $ # @, respectively). Thus, with KB, you no longer need to perform many shift-
ing operations.

When you initiate a conversational task, the system automatically assumes folded
mode; hence in this example you need not have specificed KB. However, there are other
character control commands, such as KA, which invoke EBCDIC mode at the keyboard.
Thus, if you specify KA and at a later time in your session wish to return to folded mode,
you must enter KB.

You decide to conclude your session by logging off. The system will respond with an
acceptance message, indicating the date and time your task was terminated. Note that
LOGoff translates to LOGOFF.

Examples 37

Example 2: Assembling and Correcting from the Terminal

In this example, you type in the source statements of a short program and correct several errors while assembling
the program. The assembled object module is stored in your vserLis. The listings you selected are printed as a
separate task, only if requested using the prINT command.

YOU:

SYS:

SYS:

SYS:

S,Y:

S,Y:

(press attention button or dial up the system)
LOGON ADUSERID,MYPASS*, ,ADACCT29

You enter your identification, password; and account number. System defaults are taken
for the remaining operands.

The system will complete the LOGON procedure and invite you to enter the next com-
mand with an underscore.

CHGPASS
At this time you decide to change your password. You thus enter the CHGPASS com-
mand.

ENTER CURRENT PASSWORD

The system will prompt you for your current password with an overprinted line. Because
you have entered the correct password, the system will prompt you to enter your new

password.
ENTER NEW PASSWORD
The system validates your new password and -invites you to enter your next command.

TIME MINS=15
The TIME command establishes a period of time a task will be allowed to run in
virtual memory. Since your task requirements will be small, you decide to override the
SYSGEN value established for “task time,” and set 15 minutes as the upper limit. You
will be alerted when this new interval is exhausted. TIME is useful to monitor tasks
which may inadvertently loop, or otherwise take abnormal actions.

ASM NAME—ATIMESZ2,STORED—=N,ASMLIST=Y,CRLIST—Y,PMDLIST=—Y,LINCR=(1300,100)

The system acknowledges receipt of the ASM command. Language processing com-
mences. :

Explanation of ASM Operands

38

NAME=ATIMESZ2 Object Module Name

You assign the name ATIMES2 to the object module. The object module created by the
assembler is placed in the library at the top of your program library list—in this case,
your USERLIB. This parameter cannot be defaulted.

STORED=N Prestored Source Data Set

The N indicates that you are going to enter source statements rather than assemble from
a prestored source data set. The system creates a data set from your source statements
and automatically creates a name for it by prefixing “SOURCE.” to the name you
supplied as the first assembly parameter (SOURCE.ATIMES?2)

MACROLIB= Macro Library

This parameter permits you to indicate additional macro libraries on which you have
stored macro definitions you created. Your default by omission of this parameter
means that macro definitions are to be obtained only from the system macro library
during assembly.

VERID=

ISD=

SYMLIST=

ASMLIST=Y

CRLIST=Y

STEDIT=

ISDLIST=

PMDLIST=Y

LISTDS=

Version Identification

You may assign an identification to the assembled object module to distinguish it from
other assemblies of the same module name. It will appear on the PMD output listing.
Your default (by omission) of this parameter will yield the current date and time.

Internal Symbol Dictionary

For each source program symbol, the Internal Symbol Dictionary (ISD) shows its type,
length, and the relative internal locations assigned by the assembler. This information
is necessary for tull utilization of the Program Control System (PCS) debugging capabili-
ties.

By default (omission) an ISD is produced.

Source listing

The listings you request with this and the next five parameters will form your listing
data set. (See Appendix A for a detailed explanation of these listings.) The system
creates a name for the listing data set by prefixing “LIST.” to the name you supplied
as the first assembly parameter (LIST.ATIMES2), using generation data group logic.
The source listing will reveal the source input statements.

By default, you will not receive a source statement listing.

Object Listing

The Y indicates you wish to receive the object listing. This listing shows the assembled
object code and the assembler-assigned displacement addresses, both in hexadecimal
form. A separate source listing (SYMLIST) should be requested if continuation of source
input statements is very frequent because statements listed in the object listing are the
concatenated forms of continued source statements. In other words, the SYMLIST shows
how the source statements were received, whereas the ASMLIST shows the form used
in the assembly of the object module.

Cross-Reference Listing

You request the cross-reference listing, which indicates the type, length, and assembled
hexadecimal location for each symbol. It also indicates the hexadecimal location of each
symbol reference.

Edited Symbol Table
The edited symbol table is merely the cross-reference listing without the reference loca-
tions.

By default, it will not be produced.

Internal Symbol Dictionary Listing
To obtain the listing of the Internal Symbol Dictionary (ISD) you must also have re-

quested an ISD above. You omit this parameter; it therefore will not be produced, by
default.

Program Module Dictionary Listing

You specify a listing that shows the entries in the Program Module Dictionary (PMD).
It is helptul in determining the structure of your object module and its relocation
properties.

List Data Set

In nonconversational mode you must specify if vou want vour listings placed in a list
data set. By default they will be placed on SYSOUT, and no record of them retained in
the system after printout. Conversationally, a list data set is automatically created unless
you specify otherwise. In the latter case they will be printed out at your terminal.

Examples 39

SYS:

S,Y:
S5,Y:
S,Y:
S,Y:
SYS:
SYS:
S,Y:
S,Y:
S,Y:
S,Y:
S,Y:
S,Y:
S,Y:
S,Y,
S,Y:
S,Y:
S,Y:
S,Y:
SYS:

40

LINCR=(1300,100) Starting Line Number, increment
The system creates a number for cach line of input as the source data is formed. You
specify that the first line is to be numbered 1300 and that additional line numbers are
to be incremented by 100. Line numbers and increments can consist of three to seven
digits, the last two of which must be zero when the data set is initially formed. Since
the line numbers for a source data set are supplied at the time it is created, this para-
meter has no meaning when assembling from a prestored source data set.

The user is invited to enter source statements.

0001300CST CSECT
You enter your source statements in free form, i.e., by separating the fields with a single
space. Notice that you must leave a space for a null name (label) field.

This basic program reads an integer from the terminal, multiplies it by two, and
writes the product at the terminal. It is limited to integers between 0 and 4.

0001400BEGIN BASR 11,0

0001500 USING *,11 LOCAL BASE REG

0001600 GATRD AREA+3,LENGTH READ FROM SYSIN
0001700 MVZ AREA+3(1)=X'00'CONVERT TO BINARY
0001700 E***QPERAND FIELD IMPROPERLY DELIMITED
0001700 MVZ AREA+3(1)=X'0OO'CONVERT TO BINARY

The assembler examines each statement for syntactical errors. It discovers that you have
omitted a comma and informs you with an error message, then prints out the line requir-
ing correction. See Appendix A for a further explanation of assembler diagnostics.

#
1700, MVZ AREA+3(1),=X'00' CONVERT TO BINARY
The system then prints the nymber sign (#) after which you enter the number of the
erroneous line, a comma, and then the content of the corrected line. Then you press
the return key. ‘
At this point you can make any number of modifications, deletions, or insertions of
new lines.

#(press return key) :
Instead you indicate the end of modifications by pressing the return key.

0001800 L 5,AREAl

The system then prompts you with the line number for the next statement, which you
enter,

0001900 SLA 5,1 MULT BY 2

0002000* RESTRICTED TO INTEGERS FROM O to 4
0002100 ST 5,AREA

0002200 MVZ AREA+3(1),=X'FF' CONVERT TO EBCDIC
0002300 GATWR AREA+3,LENGTH WRITE ON SYSOUT
0002400 EXIT 'PGM FINISHED'

0002500AREA DC F'0' RD/WR AREA

O002800LENGTH DC F'l' LENGTH OF AREA

0002700 END

The END statement identifies the last source statement.

0002700 E *** 'AREAl1l ' UNDEFINED SYMBOL

After the last source statement has been entered, the assembler expands your macro
instructions and searches for global errors. Here it has discovered one. The system in-
vites you to correct your source program, if you so desire. It does not perform a syntac-
tical check on the statements you modify or enter at this point. The line in which the
error was located is first printed out to help you in making corrections.

YOU: Y
S,Y: #
1800, L 5,AREA
You indicate that you wish to modify your source (response of Y), and then enter the
correct statement.,

S,Y: #(press return key to indicate end of modifications)

The system now reassembles vour modified program, rescanning all the statements as
if this were a new assembly. The assembler indicates it has found no errors,

YOU:
Your listings were automatically placed in a list data set since you are operating in

conversational mode. The printing of a list data set is not an automatic function. You
must therefore issue the PRINT command.

S,Y: PRINT LIST.ATIMESZ2,,,EDIT

The system will establish a nonconversational task to print the current generation of
LIST.ATIMES2.

SYS:

The system assigns a batch sequence number (BSN) for your listing data set. It con-
tains the listing you specified earlier (i.e., object, cross-reference, and PMD).

S,¥: ERASE SOURCE.ATIMES2

SYs:
The system confirms the erasure. Since all VAM data sets are automatically cataloged
when created {in this case as a result of the ASM command}, you are urged to erase
data sets for which you have no further use. This allows public storage to be freed for
other purposes.

The list data set is automatically cataloged by the system as the current generation of

LIST.ATIMES2. The assembler has stored your object module in the library at the top of
your program library list (in this case, your USERLIB, which is an automatically cata-
loged data set).

S,Y: LOGOFF
SYS:

The LOGOFF is accepted by the system.

Examples 41

Example 3: Assembling and Executing

In this example, you enter and assemble the same program you assembled in Example 2, but give it a different
name. You cause the resulting object moduie to be stored in a temporary library. After executing the assembled
program, you save the source program for use in a future session.

The terminal is used as sysiv for your program input as well as sysour for your program output.

YOU:

SYS:

nunnunnutthunnnam
P R

-
j3)

R R R e e

e 80 00 04 00 ws se 00 00 s

(press attention button or dial up the system)
LOGON ADUSERID,, ,ADACCT29

ENTER PASSWD
XXXXXXXX

You log on, defaulting your password. If you were joined with a password, the system
will prompt for it with an overprinted line.

After prompting, the carriage is positioned at the first overprinted position, allowing you
to overprint your password. This facility is used to ensure password security.

The system will complete the LOGON procedure and invite you to begin your task.

DDEF DDNAME—TEMPDD,DSORG-—=VP,DSNAME=SCRATCH,OPTION=—JOBLIB

The DDEF command is used to describe a data set to the system. It defines a data set
only during the session in which the command appears. Every data set you use must
be defined for the current session, even if it has been previously cataloged. Some data
sets, such as listing and source data sets, are automatically defined by the system and,
thus, do not require an explicit DDEF on SYSIN.

Here you define a JOBLIB data set. All libraries require virtual partitioned (VP)
organization. Since SCRATCH is the most recently defined library, the system places
it at the top of your program library list. Object modules created by the assembler,
therefore, will be stored in it.)

With KA, you indicate you wish to use the full EBCDIC character set during input.
Both upper and lower case letters will be translated as their respective equivalents.

DEFAULT ASMALIGN=N

You do not want the source code in your program listing aligned in columns 1, 10, and 16.
Instead you want the source code to appear exactly as you entered it.

: ASM ATZ,N,PMDLIST=Y,LINCR={300,100)

A combination of positional and keyword parameter notation is illustrated here. The for-
mat of the module name must be as indicated (see AT2). Since the name used becomes
a member of a virtual partitioned data set when the object module is created, partially-
qualified names and generation data group names cannot be used. Virtual partitioned
data set members must be identified with simple names.

In this and in following examples you press the tab key to separate source statement
fields. You have set terminal tabs at columns 17, 23, and 40, so that the typewriter list-
ing of your input {following the seven-digit line number supplied by the system) con-
forms to standard coding-sheet format. When setting your terminal tab stops during your
task, you will create several spurious tab characters which you want to prevent the
system from interpreting. Therefore, after setting your tab stops, erase the unwanted
line by backspacing and then immediately pressing the return key.

The system now prompts you by printing the number it has assigned to the first
source line.

0000300CST CSECT

0000400BEGIN BASR 11,0

0000500 USING *,11 LOCAL BASE REG
0000600 GATRD AREA+3,LENGTH READ FROM SYSIN
0000700 MVZ AREA+3(1) ,=X'00' CONVERT TO BINARY
00060800 L 5,AREA

0000900 SLA 5,1 MULT BY 2
0001000* RESTRICTED TO INTEGERS FROM O TO 4

0001100 ST 5,AREA

0001200 MVZ AREA+3(1) ,=X'FF' CONVERT TO EBCDIC
0001300 GATWR AREA+3,LENGTH WRITE ON SYSOUT

SYS:

YOU:

PGM:

PGM:

PGM:

0001400 EXIT ‘'pgm finished'

0001500AREA DC

: O001600LENGTH DC

F'o RD/WR AREA
F'1? LENGTH OF AREA

0001700 END

Your source input is scanned and you are told that no errors were found.
The assembler completes the assembly process and your next command is solicited.

PRINT LIST.ATZ2,,,EDIT

AT2

System will establish nonconversational task to print the current generation of LIST.AT2.
Your program has been assembled without error. The listings you have requested (a
PMD listing and, through default, an object listing) form your listing data set. It will
be printed as a separate task.

This command causes your object module to be loaded from your SCRATCH job lib-
rary and executed. Execution begins at the first location in the CSECT.

(unlocks keyboard)

EXIT, RELEASE ALL

pmg finished

LOGOFF

When the GATRD macro instruction in your program is executed, the system unlocks

the keyboard.
Then you enter your input data from the terminal, and press the return key.

GATWR prints program output on SYSOUT (the terminal in a conversational task).

UNNEEDED DEVICES.

The EXIT macro instruction causes this message to be printed. If you had private data

sets you no longer needed, you would issue a RELEASE command to free the devices
on which their volumes were mounted.

The EXIT macro instruction then prints the message you specified and returns control
to the terminal, which is indicated by the underscore. You decide to log off.

The LOGOFF is accepted by the system. Since all VAM data sets are automatically cata-
loged, SOURCE.AT2 remains cataloged for future use. You must spec1ﬁcally issue
ERASE for data sets you no longer desire, prior to entering the LOGOFF command.

Examples 43

Example 4: Correcting and Reassembling a Prestored Source Program

In this example, you modify the source data set you cataloged in Example 3 so that, when it is assembled, the
program will accept input more than once. Then you execute the program and enter the data several times.
Having completed the LocoN procedure, you enter your first command.

S,Y: MODIFY SETNAME=SOURCE.ATZ2

SYS:

SYS:
SYS:

S,Y:

SYS:

#
R,500,600

0000500
0000600

#
550,HERE

630,
#
670,

#
R,1300,1400

0001300
0001400

S,Y: #

44

1350,

You want to modify the source program you created in the previous example. If not
already defined in this current session, the data set named in a MODIFY command must
be cataloged.

The system acknowledges the MODIFY command and invites your input using a #
sign.

The system prompts you with the number sign (#). Before you make any modifications
to your source data set, you review several of its statements. You enter the R (for
review), a comma, and the numbers of the source lines you want to review; then you
press the return key.

USING *,11 LOCAL BASE REG

GATRD AREA-}3,LENGTH READ FROM SYSIN
Since you entered your source data set in tab.format, statement fields are separated
by a tab character. The number of spaces in the tab is not recorded. When printed on
your terminal, fields appear wherever the terminal tabs are now set.

3

EQU * CHECK IF END BRANCH IF YES

After printing the two lines, the system again prompts you with the number sign. You
insert a new statement following the number you assign to it. You can replace an exist-
ing statement with this same procedure.

CLI AREA+3,C'E’

BE LEAVE

You insert two more source statements. They will check for your selected value of E,
indicating end of data.

You review another part of your program.

GATWR AREA+3,LENGTH WRITE ON SYSOUT

EXIT ‘'PGM FINISHED®
The EXIT message is presented by the system in upper case this time, since KB is the
mode by default. '

B THERE
Here you insert a statement. Notice that, within the MODIFY command, no checks
are made for line errors. The incorrect THERE will be discovered later, during assembly.

S,Y:

SYS:

S,Y:

#

1400, LEAVE EXIT 'PGM FINISHED'
You add a name field to the EXIT statement.
To remind you that you changed the source data set, you decide to rename the current
source data set. Before this can be done, the csect name must be changed, even if the
new module will be going into a separate library.

#

R, 300

You review the line containing the csect name.

0000300CST CSECT

#
300,SECT CSECT
You change the name of the csect.

#
%E

You signal the end of modifications to terminate the MODIFY command.

CATALOG DSNAME=SOURCE.ATZ2,STATE=U,NEWNAME =SOURCE, AT2EX4

You use the CATALOG command to rename the current source data set SOURCE.
ATZ2EX4. At assembly time, the associated list data set will be named LIST.AT2EX4 by
the system. The U indicates the updating of an existing catalog entry. This command
corresponds to the CAT macro instruction.

DDEF TEMPDD,VP,SCRATCH,OPTION=JOBLIB

This command defines your job library established in an earlier session. The system
places it at the top of your program library list. Disposition is defaulted by the system to
OLD, since SCRATCH al_ready exists in your catalog.

ASM AT2EX4,Y
The Y specifies that the source data set is prestored.

0001700 E *** 'THERE 'UNDEFINED SYMBOL

This is the error that was rot detected during modification. The line in which the error
was located is printed out to help you in making corrections. The number of the END
statement is given when undefined symbols are encountered.

Your source input is scanned and you are asked if you wish to enter any modifications.

Y
You indicate that you wish to modify your source data set (response of Y).
#
1350, B HERE
#

(press return key to signal end of modifications)
The assembler rescans the source input, and finds no further errors.

The assembly process is completed, without errcrs. The assembled object module now
resides in your job library (SCRATCH), the library at the top of your program library list.

This time you do not issue a PRINT command but the data set still exists as the cur-
rent generation of LIST.AT2EX4. If the listing is later desired, you need only to issue:
PRINT LIST.AT2EX4,, EDIT,Y.

AT2EX4
This command causes the object module which includes the external symbol BEGIN
to be loaded from SCRATCH and executed.

Examples 45

SYS:
YOU:

PGM:

SYS:
YOoU:
PGM:
SYS:
YOU:
PGM:

PGM:

S,

S,
SY

48

Y

Y
S

oe oo

(unlocks keyboard)
4

(unlocks keyboard)
1
2
(unlocks keyboard)
E

You enter a number at the keyboard (SYSIN to be read by GATRD).

GATWR causes the computed results to be printed at the terminal (SYSOUT).

EXIT, RELEASE ALL UNNEEDED DEVICES.

PGM FINISHED

Your program detects the entry in SYSIN of E and branches to the EXIT macro instruc-
tion, which prints its messages and returns control to the keyboard. The system prompts
for the next command with an underscore.

ERASE USERLIB(ATIMESZ2)

LOGOFF

Now that you know that your modified program runs correctly, you decide to erase
from USERLIB the object module you assembled in Example 2. With this form of the
ERASE command, only the module named within the parentheses is erased.

The LOGOFF is accepted by the system. The listing data set (LIST.AT2EX4) will
automatically become the current generation of the pre-established generation data
group. Your new object program module (AT2EX4) resides in SCRATCH, which was
cataloged in a previous session. You cataloged your source data set (SOURCE.AT2EX4)
when you changed its name.

Example 5: Writing a Data Set and Printing It

In this example, you execute a program that you have previously assembled and checked out. Its object module
resides on your useRLIB. Your program causes a data set to be written. You request that it be printed later on the
system high-speed printer as a separate task.

After the LocoN procedure is completed, you begin processing. The program which you are going to run, named
PROGS, includes the following source statements:

CST5 CSECT
ENTRY STRTS
STRI5 EQU *

LA 2,20 SET FOR 20 CYCLES
OPEN (DCBNM, (OUTPUT)) OPEN DCB

LABEL EQU *
{create record at AREA)

PUT DCBNM, AREA PUT RECORD IN DATA SET
BCT 2,LABEL RECYCLE
CLOSE (DCBNM)) CLOSE DCB
EXIT
AREA DS 80C DATA AREA
DCBNM DCB DDNAME=0UTIDD,RECFM=FA
END

Your program will write a data set with 80-character records from the storage area
named AREA. Notice that your DCB macro instruction includes the DDNAME that
is a parameter in the DDEF command, which in turn contains the name of the data set
(OUTS5). The DDEF command relates the correct data set to your program because
every data set name must be unique in your task.

S,Y: DDEF OUTDD,VS,O0UTS, (LRECL=80)
With this command, you define for this session the data set which your program will
write. Record length=80. The DISP field in the DDEF command is defaulted to
existence (i.e., default is NEW if the data set is being created initially in the current
task; default is OLD if data set already exists and is cataloged). Since this data is being
created now, the default for disposition is NEW.
See Appendix E for further details of the DDEF parameters.

S,Y: CALL STRTI5
This command causes the object module defining STRTS5 to be loaded into virtual stor-
age and executed.

PGM: EXIT, RELEASE ALL UNNEEDED DEVICES

Your program completes its work and this message is issued by the EXIT macro instruc-
tion. Control is returned to the terminal.

Examples 47

S,Y:

RET OUT5,R

A public volume was selected for your data set because you defaulted the volume field in
your DDEF command, and it was cataloged for you automatically, with access quali-
fier=U. You decide to protect the data set by updating the access qualifier to read-only,
using the RET command. You can also use the RET command to change a temporary
data set to a permanent one (or vice versa) by specifying P (or T) in the retention code
(and you could have it erased automatically at CLOSE or LOGOFF by specifying C or
L in the code, if it is a temporary data set).

S,Y: PRINT DSNAME=QUTS, PRISP=EDIT

Explanation of PRINT Operands

SYS:

48

DSNAME=0UTS

STARTNO=

ENDNO=

PRTSP=EDIT

ERASE=

ERROROPT=

FORM=

STATION=

: LOGOFF

To print your newly-written data set, this command creates a separate (nonconversa-
tional) task. You could have used the PRINT macro instruction to create the task.

The data set to be printed with this command must either be defined within the cur-
rent task by a DDEF command, as it is in this example, or it must be cataloged. Its
records must be fixed or variable length, and must include a USASI control character
(RECFM=FA or VA).

You want printing to begin with the first byte of each data set record. You can enter
a number consisting of one to six digits. You default this parameter by omission.

This parameter specifies at which byte in each data set record printing is to end. Since
our records are shorter than the default length, your printing will end at the last (80th)
zyte of each record. You default this parameter by omission.

Since you want spacing to be controlled by the control character your program has
supplied in each record, you choose EDIT. The default is 1. Since EDIT was selected,
the values for header, lines per page, and page number will not prevail. However, if
one of the other spacing options (1, 2, or 3) has been selected, these three values would
be required.

This parameter is meaningful only if the data set being printed is cataloged. In that
case, you can specify that the data set be erased after it is printed. By parameter omis-
sion, there will be no data set erasure.

This parameter applies only to data sets on tape. It specifies the action to be taken if
an unrecoverable error is found while a data set record is being read. Since the data set
is on a direct access device, the parameter is ignored by omission (default).

Here you can specify the form number of the printer paper you desire for your output.
The default (STANDARD FORM) is determined by your installation.

This parameter applies only at installations where the user has been given the privilege of
directing print jobs to an RJE station. It permits you to indicate the station at which you
want your output printed.

The system informs you that it has accepted the requested nonconversational task, and
assigned it a batch sequence number (BSN).

The LOGOFF is accepted by the system. Your conversational task is therefore termi-
nated.

Example 6: Reading and Writing Cataloged Data Sets

In this example, you run a previously-assembled program that resides on your userLis. It causes records of a cata-
loged data set to be read. After performing several calculations, your program writes records in two new data sets.
It then issues a message on the terminal indicating that the task was completed.

After the LocoN procedure is completed, you begin processing. The program you are going to run includes the
following source statements:

PST6 PSECT
ENTRY STRT6
ENTRY EOD6

DC F'76" SAVE AREA LENGTH

DC 18F'0" REMAINDER OF SAVE AREA

AREA1 DS 80C DATA

AREA6A DS 80C AREAS

AREA6B DS 80C

DCBIN6 DCB DDNAME=INPDD, EODAD=EOD6

DCBOUT6A DCB DSORG=VS , DDNAME=0UT6A ,RECFM=F , LRECL=80

DCBOUTSB DCB DSORG=VS, DDNAME=0UT6B ,RECFM=F , LRECL=80

CST6 CSECT

STRT® SAVE (14,12) SAVE REGISTERS IN CALLER'S SAVE AREA
L 14,72(0,13) GET RCON FROM CALLER'S SAVE AREA
ST 14,8(0,13) STORE FORWARD POINTER
ST 13,4(0,14) STORE BACKWARD POINTER
LR 13,14 SET PSECT AND SAVE AREA REGISTER
USING PST6,13 PSECT COVER REGISTER
LR 12,15 .
USING STRT6,12 CSECT COVER REGISTER

OPEN (DCBING, ,DCBOUT6A, (OUTPUT) ,DCBOUT6B, (OUTPUT))
ALPHA GET DCBING6,AREAlL - READ IRPUT DATA

{calculations with results to AREAGA and AREA6B)

PUT DCBOUT6A , AREAGA WRITE RECORD
PUT DCBOUT6B, AREAGB WRITE RECORD
B ALPHA LOOP
EOD6 CLOSE (DCBIN6, ,DCBOUT6A, ,DCBOUTER)
GATWR A,L MESSAGE ON SYSOUT
L 13,4(0,13) RELOAD CALLER'S SAVE AREA
RETURN (14,12) RETURN TO CALLER
*
A DC C'FINISHED WRITING TWO DATA SETS' MESSAGE
L DC A(L'A) MESSAGE LENGTH
END

This and the program in the previous example define the entry point by including an
ENTRY statement for it in the PSECT. By this technique, the R-value for the entry
point will be resolved as the location of the PSECT save area.

This program uses the standard SAVE-RETURN linkage. When you execute the
CALL STRT6 command, control is passed to your program by the calling program (in
this example, the system). The SAVE macro instruction and the four instructions that
follow it effect the saving of registers and the establishment of proper linkages. At the

Examples 49

conclusion of your program, the RETURN macro instruction restores the saved registers
and returns control to the system (the caller), which unlocks the keyboard.

It is good coding practice to place all variable data in your PSECT: refer to Appendix
C for a more complete explanation of linkage conventiors and TSS programming
practices. -
~ If the end of input data is reached before 10 cycles, the system transfers control
to the location you specified in the end of data (EODAD) field in your DCB macro
instruction. Your program then executes its normal return.

S,Y: DDEF INPDD,VS,INP8,DISP=—OLD,RET=TLU

You define the data set from which your program reads input. Although the data is
cataloged, you must define it for this task. The system locates it from the information
in the catalog.

Some of the parameters you omitted in both the DCB macro instruction and the
DDEF commands, such as the data set organization, are provided from the catalog
entry. Others, such as RECFM, LRECL, and BLKSIZE, are obtained from the data
set label. Appendix E explains these alternate sources. OLD indicates that the data
set already exists. The retention code, TLU, specified by the RET parameter will cause
the data set to become temporary with erasure at LOGOFF and with read-write access.

S,Y: DDEF OUT6A,VS,0UTBA
S,Y: DDEF OUT6B,VS,0UT6B

S,Y: CALL STRT6

Now you define the data sets your program is to write. You decide to make the DDEF
and data set names identical in each DDEF command. This makes it easy to relate
the name of the DDEF to the output data set it defines. You default the disposition
field by omitting it. NEW (the default) indicates that your two output sets do not
already exist. Since these data sets are VAM organization, cataloging is automatic.

Your object module is loaded and executed. Its output goes to the two output data sets.
There will be no messages at your terminal until your program executes the GATWR
macro instruction in your exit routine. .

PGM: FINISHED WRITING TWO DATA SETS

S,Y: RET OUT6A,R

S,Y: LOGOFF
SYS:

50

This is the message from your GATWR macro instruction. .

Your program contains the standard SAVE/RETURN linkage, so control is returned
to you at the terminal; this is indicated by the underscore. ’

OUT6A was automatically cataloged when opened, with access=U and you desire to
protect it from further modification by issuing a RET command to charige the access to
R (read only). INP6 will be automatically erased at LOGOFF since you specified it as
temporary in your DDEF command, with deletion at LOGOFF.

The LOGOFF is accepted by the system.

Example 7: Multiple Assemblies and Program Linkage

(n this example, vou assemble three programs that refer to one another and then place them on two different
libraries. Two programs are assembled in express mode from prestored source data sets, and the third program
is assembled from the terminal. A control section is rejected during loading of the programs. You correct the
error causing the rejection and run your programs.

After the Locon procedure is completed, you begin processing.

S,Y: DEFAULT LPCXPRSS=Y
You request that your assembly be done in express mode which will allow you to as-
semble a number of source programs consecutively without a possibly time-consuming
return to the Command System after each assembly.

S,Y: ASM MAIN7,Y
The Y specifies the existence of a prestored source data set named SOURCE.MAINT.
All modules that you assemble in the express mode will be governed by the parameters
you specify with your ASM command for the first source module.

SYS:
Your first source program is assembled. When assembly is completed your keyboard is
unlocked and the language processor control will read the next word entered at SYSIN
as the name of the next module to be assembled.

S,Y: SUB7A .
SUBYA is your next module. The language processor control will ignore any parameters
you specify at this point and default to the parameters you specified on your entry into
express mode. SUB7A is therefore assumed to be a prestored source data set.
SUB7A includes the following statements:

Examples 51

*SUBPROGRAM 7A
PST1 PSECT

ENTRY EP1
DC Fr76' SAVE AREA LENGTH
DC 18F'0' REMAINDER OF SAVE AREA

CST74 CéECT
EPl SAVE (14,12) SAVE REGISTERS IN CALLER'S SV AREA

L 14,72(0,13) GET RCON FROM CALLER’S SAVE AREA
ST 14,8(0,13) STORE FORWARD POINTER

ST 13,4(0,14) STORE BACKWARD POINTER

LR 13,14 SET PSECT AND SAVE AREA REGISTER
USING PST1,13 PSECT COVER REGISTER

LR 12,15

USING EP1,12 CSECT COVER REGISTER

L 13,4(0,13) RELOAD SAVE AREA BASE REG

RETURN (14,12) RESTORE REGISTERS

END '

This and your other subroutine are reenterable programs. You use a standard form for
such programs that require a separate PSECT for your variables. See Appendix C for
more details.

SYS: ‘
Your second source program is assembled. When assembly is completed, your keyboard
is unlocked for you to enter the next module name.

YOU: SUB7B
A prestored source data set was expected as a result of the STORED=Y parameter when
you entered express mode. No such prestored module can be found.

SYS:

The language processor control causes an exit from express mode, issues a diagnostic
message and returns to the Command System with an underscore. To return to non-
express mode without causing a diagnostic message you should have typed an underscore
when the keyboard was unlocked, or you could have interiupted the language processor
by pressing the attention button, issued the command DEFAULT LPCXPRSS=, and
then continued processing with the GO command.

You decide to have your two listing data sets printed now as background tasks before
proceeding with the assembly of your third module.

S,Y: PRINT LIST.MAIN7,,,EDIT,Y
SYS:

MAINT7 was successfully assembled, and the printing of its listing data set is assigned as
a separate task (BSN=0624). The MAIN7 object module is stored in the library at the
top of your program library list (in this case, your USERLIB).

The format of the PRINT command as given above is recommended for use when-
ever practical. The EDIT option allows line spacing to be regulated by the print control
character in the first byte of each record. The ERASE option (Y) affords timely public
storage release so that unwanted data is net occupying space in the system.

Note: Example 5 indicates the individual operands of the PRINT command.

S,Y: PRINT LIST.SUB7A,,,EDIT

SYS:
The print task is accepted and assigned a BSN (0625). The object module for SUB7A is
also stored in your USERLIB.

52

S,Y: DDEF DDNAME=LIBADD,DSNAME=LIBA,OPTION=JOBLIB,DISP=0LD

S,Y: ASM SUB7B,N

Now you define a cataloged job library (LIBA), which the system places at the top of
your program library list. Object modules from any successive assembly are placed in it

instead of in your USERLIB. The OLD indicates that LIBA already exists. The omitted

data set organization (VP) is supplied from the catalog entry.

You are now ready to proceed with the assembly of your third module. Since you are
no longer in express mode you must enter the ASM command with all appropriate

parameters.

The N specifies a data set to be entered dynamically (i.e., it does not yet exist). It will
automatically be named SOURCE.SUB7B. You enter your third source program from
the terminal, using tab stops at columns 17, 23 and 25. By default, line numbering will

start at 100, with increments of 100.

0000100* SUBPROGRAM7B

0000200PST2
0000300
0000400
0000500SAVE

0000900EP1
0001000BGN7
0001100
0001200
0001300
0001400
0001500
0001600
0001700

0002200
0002300CST7B
0002400SYMB

0003100
0003200
0003300
0003400AR
0003500LNG
0003600

PSECT

ENTRY BGN7

DC F'76" SAVE AREA LENGTH

DG 18F'0° REMAINDER OF SAVE AREA
CSECT

SAVE (14,12) SAVE REGISTERS -IN CALLER'S SAVE AREA
L 14,72(0,13) GET RCON FROM CALLER'S SAVE AREA

ST 14,8(0,13) STORE FORWARD POINTER

ST 13,4(0,14) STORE BACKWARD POINTER

LR 13,14 SET PSECT AND SAVE AREA REGISTER
USING PST2,13 PSECT COVER REGISTER
LR 12,15

USING BGN7,12 CSECT COVER REGISTER

B SYMB
CSECT
EQU *

-

»

GATWR AR,LNG

L 13,4(0,13) RELOAD SAVE AREA BASE REG
RETURN (14,12) RESTORE REGISTERS

DC C'SUBPROGRAM7B FINISHED'

DC A(L'AR)

END

The assembler scans the source input and finds no errors. The assembly process is com-

pleted and you are invited to enter your next command.

S,Y: PRINT LIST.SUB7B,,,EDIT

SYS:

The print task is accepted for non-conversational processing. If you attempt to assemble a
program with a module, control section, or external entry point name that already exists
in the current library, your assembly will be completed but the module will not be
stowed. You will then be allowed to enter a new joBLIB name, after which the stow will

be performed. Assume BSN=0626.

Because SUB7A and SUB7B object modules reside on different libraries, you don’t

notice that a control section name (EP1) in SUB7B duplicates an entry point name in

SUBT7A.

Examples

53

SYS:

S,Y:

S,Y:

YOU:

SYS:

YOU:

You:

SYS:

S,Y:

SYS:

MAIN7
Here you run MAIN7. It contains V-type address constants that name external entry

points in both SUB7A and SUB7B. During the loading of MAIN7, SUB7A and SUB7B
are loaded.

*** CSECT(EP1) IN MODULE (SUB7B) IS REJECTED BECAUSE PREVIOQUSLY NAMED AS
ENTRY POINT IN MODULE (SUB7A)
Your duplicated name is discovered at load time, This message tells you that, although
SUB7B was loaded, its duplicated control section was not. Execution of MAIN7 is
cancelled.
You decide to change the control section’s name so that it will be loaded when you
again run MAIN7.

CANCEL BSN=0628
First you cancel the separate task that may still be printing the listings from the errone-
ous SUB7B assembly.

UNLOAD NAME=MAIN7
Then you unload the erroneous module from your virtual storage. To do so, you unload
MAINY, which had caused the loading of SUB7B.

DDNAME? JOBLIB=Y
Before you can reassemble, you must either cause a different library to be placed at
the top of your program library list, or erase the erroneous object module. You choose
to move one of your libraries. You request a review of your library chain.

DDNAME DSNAME
LIBADD LIBA
LIBCDD LIBC
SYSULIB USERLIB
LIBEDD LIBE
JOBLIBS DDNAME=SYSULIB
You request that your USERLIB be placed at the top of your program library chain.
DDNAME? Y :
You request that your JOBLIB chain be displayed.
DDNAME DSNAME
SYSULIB USERLIB
LIBADD LIBA
LIBCDD LIBC
LIBEDD LIBE
The system redefines your USERLIB to place it at the top of your JOBLIB chain and
displays the chain. Your reassembled program will be placed in your USERLIB, eliminat-
ing the problem of duplicate entry point names.
MODIFY SETNAME=SOURCE.SUB7B

Using the MODIFY command, you change the duplicate control section name in your
source statement.

Modifications are now solicited using the # sign.

#

900,CST7B CSECT

#

%E
You correct the source statement and then indicate the completion of modification
with %E. Since review was not requested, the original form of the corrected line will
not be presented to you.

S,Y: ASM SUB7B,Y

Now you reassemble the corrected source data set, which already exists.

Note that you never need to issue a DDEF command for a source data set that has
been typed in earlier during the current session.

SYS:
The assembler scans the source input (as updated) and finds no errors. The assembly
process is completed and you are invited to enter your next command.

S,Y: PRINT LIST.SUB7B,,,EDIT

SYS:
The PRINT task is assigned a batch sequence number and accepted for non-conversa-
tional processing. Assume BSN=0627.

S,Y: CALL MAIN7
You run your main program again.

PGM: SUBPROGRAM7B FINISHED

©nwn

g

ae o0

SYS:

This message is printed by the GATWR macro instruction in SUB7B, indicating its
completion (and successful loading of your two subprograms). The RETURN macro
instruction causes control to be returned to the caller (MAIN7). A RETURN macro in-
struction in MAIN7 is eventually executed, causing control to be returned to the termi-
nal. For a more complete discussion of CALL/SAVE/RETURN linkage conventions,
see Appendix C.

ERASE DSNAME=SOURCE.MAIN7
ERASE DSNAME=SOURCE.SUB7A
You no longer need your two prestored source data sets, so you erase them from stor-

age and delete their catalog entries. You decide to retain the source data set named
SOURCE.SUB7B.

EXHIBIT BWQ
Before logging off, you decide to check on the status of your PRINT requests. This com-
mand causes a display of all Batch Work Queue entries assigned to your userid.
BATCH WORK QUEUE STATUS AT 14:55 9/15/70

BSN USERID TID TYPE STAT DEV STAID DSNAME

0625 ADUSERID 18 LIST A UR SUB7A

0627 ADUSERID 18 LIST P UR SUB7B
This display indicates that 0625 is active (A} and that 0627 is awaiting execution and
pending (P). The absence of 0624 from the BWQ tells you that the job has been com-
pleted; 0626 does not appear since you cancelled it earlier.

LOGOFF

The LOGOFF is accepted by the system.

Examples 55

Example 8: Use of PCS Immediate Statements

In this example, you are executing a program for the first time. Since the Program Control System (rcs)

provides complete debugging capability at execution time, you have not included any debugging facilities in your

assembled program. Anticipating the use of pcs, you requested an 1sp when the source program was assembled.
After the LocoN procedure is complcted, you enter your first command.

S,Y: DDEF LIB8SDD,,LIB8,0PTION=JOBLIB,DISP=0LD
You use this command to define the job library data set LIB8, which contains your
assembled object modules. Although LIB8 is cataloged, you must define it with a
DDEF command to make it available during this session.

S,Y: DEFAULT LIMEN=I
You desire all information messages to be presented at your terminal.

S,Y: PGM8
You cause the named object module to be loaded and executed.

When a module name is given as the command, execution begins at the module’s
standard entry point. It is the instruction named by the operand of the assembled END
statement, or, if no operand is given, the first executable instruction in the first CSECT.

YOU: (press attention button)

When you do not receive the expected output after several minutes, you interrupt your
program.

S,Y: !
STOP
The system prints an exclamation mark to indicate its readiness to accept a command
after an attention interrupt. You enter the PCS STOP command to determine the loca-
tion in your program of the next instruction that was to be executed when you inter-
rupted execution.

SYS: STOP AT PGMBS8EXT. (X'DA') PSW 2 O O 00443070

The STOP command causes the display of the symbolic location and the PSW at the
point the interrupt occurred. In this case, the interrupt occurred just prior to the instruc-
tion X'@A’ (hexadecimal) bytes beyond the external symbol PGM8EXT. You can use this
information to determine the corresponding source statement in the object listing.

The location of the interrupt is indicated as a displacement beyond the nearest in-
ternal symbol if you have issued a PCS command such as SET or AT. They make the
ISD (and its internal symbols) available.

The rightmost field of the PSW gives the virtual storage address of the next instruc-
tion to be executed.

S,Y: LINE? DSNAME=SOURCE.PGMS8, (2500,2600)
Suspecting that an undesirable loop has occurred in the convergence portion of your

program, you request a printout of several of the source lines at the end of your con-
vergence.

SYS: 0002500 CP DIFF,EPSILON
0002600 BH RECYCLE
S,Y: DISPLAY PGM8.EPSILON,PGM8.DIFF

You request a printout of the appropriate variables, and you explicitly qualify the in-
ternal symbols (EPSILON and DIFF by the module name (PGMS).

SYS: PGM8.EPSILON=-+.10000000E+04
PGM8.DIFF=+.21301962E-02
S,Y: SET PGM8.EPSILON=1E-4
You decide to reestablish the value of the constant EPSILON to cause your program
to converge more quickly.

56

SYS: PGM8.EPSILON=+.10000000E-03

S,Y: GO

PGM: JOB COMPLETED

S,Y: LOGOFF
SYS:

After each SET is performed, a printout confirming the modification is available. The
message filter code of I must be specified to obtain such information messages.

You issue the GO command to resume execution of the program. Since no operand is
specified, execution resumes at the point of interruption.

Your program issues a message to the terminal to indicate successful completion of the
program. Your program’s RETURN macro instruction causes the typing of an under-
score requesting the next command.

The LOGOFF is accepted by the system.

Examples 57

Example 9: Use of PCS Dynamic Statements

In this example, you use some of the most powerful commands of the Program Control System to de bug a complex
program. pcs provides trace facilities, conditional program interruptions and modification of variables, and dumps.
After completing the Locon procedure, you begin processing.

S,Y: DDEF DDCURR, ,CURRENT,OPTION=JOBLIB,DISP=0LD
This DDEF command causes your job library CURRENT to be placed at the top of
your program library list. CURRENT has been previously cataloged and contains as-
sembled object modules.

S,Y: DDEF PCSOUT,VI,PCSOUT9
With the second DDEF command, you define the data set that will be filled by the
PCS DUMP command, which you may print later. It requires the data definition name
PCSOUT and virtual indexed (VI) organization. You name the data set PCSOUT9. It
is automatically cataloged, since it will reside in public storage. The system defaults
disposition to NEW, since the data set is being created in this task.

S,Y: LOAD MAIN9 .
The CALL command causes an object module to be loaded and then executed. Here you
cause it to be loaded only. You do this so that you can insert AT statements in the
module before executing it.

SYS: *¥*** UNDEFINED REF(FABLE) IN MODULE (MAIN9). ADDRESS FFFFFO0O ASSIGNED.
The system issues a message indicating that MAINO has a reference to an external
symbol (FABLE) that does not exist in the libraries searched. An invalid address had
been assigned for the reference in MAINY that will cause an interrupt if program exe-
cution reaches it.
When you realize that the symbol has been misspelled in the source program, you
enter the necessary commands to correct the situation.

S,Y: LOAD TABLE
You request the object module defining the external symbol TABLE to be loaded into
virtual storage. The module would have been implicitly loaded when MAIN9 was loaded
if the spelling had been correct. Loading the module at this point, however, does not
correct the problem entirely. MAINGS still contains the invalid reference, a V-type adcon.
Before entering a SET command to place the proper value into the adcon, you qualify
your program’s internal symbols.

S,Y: QUALIFY MNAME=MAIN9
After issuing this command, you can refer to internal symbols without the qualifying
module name; they will be automatically qualified with the prefix “MAINS.”

S,Y: SET ADDTAB=A'TABLE'
You request that the adcon defined in your source program by the name ADDTAB be
set to the value of the address of eternal symbol TABLE. If you had not already ex-
plicitly loaded TABLE, you would have been prompted at this point to load the module
containing it.

SYS:
Before it prints a symbol that you have qualified, the system reminds you of the quali-
fication.

SYS: ADDTAB=0084C000

The contents of the modified adcon are displayed in hexadecimal. This is the virtual
storage address of TABLE.

58

SYS:

SYS:

S,Y:

SYS:

SYS:

SYS:

SYS:

SYS:

S,Y:

SYS:
S,Y:

AT LAST;STOP

This statement will cause your program to be interrupted when execution reaches the
address corresponding to the statement named LAST.

00001
The system assigns a number to each statement containing an AT (here 00001) that can
be used for reference in removing the statements.

CALL MAINS
You initiate execution of the module. You must provide an operand in this call com-
mand, since a LOAD command naming another module has been entered after the
loading of MAINS.

E008 FIXED POINT DIVIDE INTERRUPT. PSW = BFCO000S00280A1A

INTERRUPT OCCURRED IN CSECT MAIN9C WITH DISPLACEMENT OOOAlA FROM THE BEGINNING
OF THE CSECT

Your program does not contain a routine for handling this type of interrupt.

LINE? DSNAME=SOURCE.MAIN9, (3200, 3500)

You request a printout of several of your source statements that correspond to the lo-
cation of the interrupt. Tab stops are set at columns 18 and 24.

0003200 DIVRTN L 2,DVND

0003300 SRDA 2,32
0003400 D 2,DVSR
0003500 ST 3,QU0T

Your program does not provide protectlon against division by zero, so you insert the
necessary checking.

AT DIVRIN; IF DVSR=O0;SET 3R=0;BRANCH DIVRTN. (12)

With this statement, you request that the value of DVSR be compared to zero upon
arrival at DIVRTN. Tf it is equal, general register 3 is set to zero, and control transfers
to the instruction twelve bytes beyond DIVRTN.

00002

This is the number the system assigns to your AT command.

BRANCH DIVRTN

You cause your program to begin execution at DIVRTN so that you can immediately
check the effectiveness of the PCS statements.

AT DIVRTN PSW 3 0 O 00280A12 2

The system issues a response to the statement indicating that the IF command has re-
sulted in a “TRUE” comparison. The 2 to the right of the PSW printout is the number
of the AT statement that caused the printout.

RUNNING FROM DIVRTN. (12)
This indicates that the branch has been taken.

STOP AT LAST PSW 2 0 O 00280F02 1

Execution has reached the location corresponding to LAST. The STOP you specified
earlier is executed.

DISPLAY QUOT, RESULT
You request a printout of two key variables in your program.

QUOT=0
RESULT=1726

REMOVE 1

You are convinced that the program is operating correctly, so you remove the dynamic
STOP to prevent future interruption.

Examples 59

S,Y: GO

You cause your execution of your program to resume at the point of interruption.

PGM: JOB COMPLETED

Your program issues a message indicating its successful completion and then returns
control to the keyboard.

S,Y: DUMP MNOPST
- You request a hexadecimal dump of your PSECT by specifying its external name. It
will be written in the PCSOUT?Y data set you defined earlier. If you had used the in-
ternal name of the PSECT (MAIN.MN9PST), you would receive a formatted dump
showing symbols and code in source format.

S,Y: RELEASE DDNAME=PCSOUT)
If you wish to print the data set during this session, you must first issue a RELEASE
command for its data definition. This causes the data set to be closed.

S,Y: PRINT PCSOUTY,,,,Y
Positional operand notation is used. The data set will be erased (Y) after it is printed. The
commas specify options for which you have chosen the default.

SYS:
The data set will be printed as a separate task. A batch sequence number will be as-
signed for system control.

S,Y: LOGOFF .
SYS: '

The LOGOFF is accepted by the system. Remember that the alterations you made to
your program with the PCS commands (SET,AT) exist only in virtual storage. If you
want to make permanent changes to a program, you must reassemble from an altered
source data set. This causes the changes to be incorporated into the object module,
which you would then load.

Changes you make with the SET command remain in effect as long as the program is
loaded. By contrast, changes you make with AT commands in any of your programs are
completely removed if you issue an UNLOAD command, even if the program you un-
load does not contain AT statements and is not linked to other programs. Logging off
causes all of your programs to be unloaded from virtual storage.

Example 10: Input and Output on Magnetic Tape

In the previous examples, all of your data sets resided on direct-access devices (disks). In this example, your data
sets reside on tape.

In Part 1, you execute a program that reads a cataloged data set from tape and writes a data set on a new tape,
which you then catalog.

In Part 2, the same program reads a cataloged data set created on tape by OS or OS/VS and then writes a
data set on the same tape you cataloged in Part 1.

Part 1: Reading a Cataloged Labeled Data Set
You complete the LOGON procedure and begin your task. Your previously-assembled
program includes the following source statements:

MN1OPST PSECT
ENTRY CSTI10
ENTRY EOD1O
ENTRY SYR1O

DC Fr76! SAVE AREA LENGTH
DeC 18F'Q’ REMAINDER OF SAVE AREA
AREA DS 80C '

DCBIN1 DCB DDNAME=IN10DD, EODAD=EOD10,SYNAD=SYN10
DCBOUT1 DCB DDNAME=0UT10DD,RECFM=F, LRECL=80, SYNAD=SYN10
MN10CST CSECT

CST10 SAVE {14,12) SAVE REGISTERS IN CALLER'S SAVE AREA
L 14,72(0,13) GET RCON FROM CALLER'S SAVE AREA
ST 14,8(0,13) STORE FORWARD POINTER
ST 13,4(0,14) STORE BACKWARD POINTER
LR 13,14 SET PSECT AND SAVE AREA REGISTER
USING MN1OPST,13 PSECT COVER REGISTER
LR 12,15 :
USING CST10,12 CSECT COVER REGISTER

[

OPEN (DCBIN1, ,DCBOUT1, (OUTPUT)) OPEN DCBS
AGAIN READ IN1DECB,SF,DCBIN1,AREA READ INPUT RECORD
CHECK IN1DECB

(modify record)

WRITE OUT1DECB,SF,DCBOUT1,AREA WRITE OUTPUT RECORD
CHECK OUT1DECB
B

AGAIN RECYCLE

EOD10O CLOSE (DCBIN1,,DCBOUT1) CLOSE DCBS

LA 1,0KMSG
EXIT EXIT (1) RETURN TO TERMINAL
SYN1O LA 1,SYNMSG

B EXIT .
OKMSG DC ALl (L'M1) MESSAGE LENGTH IN FIRST
M1 DC C'PROGRAM FINISHED OK' ’
SYNMSG DC ALl (L'M2) BYTE OF MESSAGE
M2 DC C'SYN ERROR'

END

Examples 61

The program reads a record from one data set, modifies the record, and then writes it
in a data set on another tape.

The CHECK is required to complete a READ or WRITE 1/0 request. It detects any
errors or exceptional conditions that may occur and, when these arise, transfers control
to the external symbol specified in the EODAD or SYNAD DCB field. When the pro-
gram attempts to read past the last record, control is passed to EOD10 and the DCB’s
are closed.

The EXIT macro instruction causes an appropriate message to be printed, and then
returns control to the terminal. Notice that each DCB contains the name of one of your
DDEF commands, which in turn specifies the data set described by the DCB.

S,Y: DDEF IN10ODD,,IN10,DISP=0LD

SYS:

Since your input data set is already cataloged, you need entry only these parameters.
The omitted information is provided by the catalog entry and by the tape label, which
was created by the system when the data set was written. OLD indicates that the data
set exists.

You will be notified that your task is waiting for the system operator to mount your tape
reel (a private volume). The system obtains its volume serial number from your cata-
log. When the tape volume has been mounted and activated, your task will proceed.

S,Y: DDEF DDNAME=0UT10DD,DSORG=PS,DSNAME=0UT10,UNIT=(TA,S) ,VOLUME=~
(PRIVATE) , LABEL=(, SL)

SYS:

SYS: MAIN1O

You found it necessary to continue your command operands on a second line. Here
you define the output data set your program will write on tape. It is not cataloged and
is not yet created, so you must supply all the necessary parameters in your DCB and
DDEF. Note that the continuation hyphen may occur anywhere so long as it is the
last non-blank character in the line. .

The data set is to have physical sequential {PS) organization, as do all data sets re-
siding on magnetic tape.

The UNIT field of this DDEF command indicates that your data set is to reside on
a 9-track tape.

The DISPOSITION field is defaulted (by omission), indicating that the data set is
NEW (i.e., does not now exist).

The VOLUME field specifies a private volume (all tapes are private). You have not
specified the volume serial number of a tape reel in VOLUME field; so the system in-
structs the operator to choose a tape reel from the installation pool.

The LABEL field specifies that the system is to create standard labels (SL) on the
tape when creating the data set.

You must wait for the operator to select a tape reel, mount it, and inform the system of
its volume serial number. You will then be informed of the selected volume, at your
terminal, for future reference.

Now you run your program.

PGM: EXIT, RELEASE ALL UNNEEDED DEVICES
PROGRAM FINISHED OK

YOU: CATALOG OUT10

S,Y: LOGOFF

62

At the conclusion of your program, EXIT prints the messages and returns control to
the terminal; this is indicated by the underscore.

You catalog your data set. Only VAM data sets are automatically cataloged when created.

SYS:

LOGOFF was accepted by the system. In previous examples, your data sets were all
automatically cataloged on public disks. Public disks remain mounted while the system
is operational; they contain data sets belonging to the users with whom you share the
system.

Your private volumes (all tapes and your own private disks) are dismounted at the end
of your task and later retained. Thus, it is not necessary to catalog them in order to
preserve them. However, cataloging your private volumes (disks and tapes) enables you
to write DCB macro instructions and issue DDEF commands with the minimum re-
quired parameters. The system obtains the missing parameters from your catalog entry.

Part 2: Reading a Cataloged but Unlabeled 0S or 0S/VS Data Set

You complértei?};e' LOGON procedure and enter your first command.

S,Y: DDEF IN10ODD,,*STUFF,DISP=0LD

SYS:

You define your input data set. It differs from the input data set in Part 1 in several

ways:

® It was created under OS or OS/VS. You indicate this by specifying the data set name
with an asterisk preceding.

e It is unlabeled. This means that you cannot use the label to provide any of the DCB
and DDEF parameters. Those not specified in your DCB macro instruction or DDEF
command are taken from the catalog entry. Appendix E provides further details
about these sources and the order in which they are searched.

You will be notified that your task is waiting for the system operator to mount your tape
reel (a private volume). The system obtains its volume serial number from your catalog.
When the tape volume has been mounted and activated, your task will proceed,

S,Y: DDEF 0OUT10DD,PS,0UT10A,UNIT=(TA,S),VOLUME= (,101010) ,LABEL=(2,,)

S,Y: CALL MAIN10

You decide to write your output data set on the same tape reel you used in Part 1.
You indicate that it will be the second data set on the tape with the 2 in the LABEL
field. You previously omitted this parameter (default=1, or first). The data set does not
now exist, so you choose the default for disposition (NEW) and omit the field.

You run the program described in Part 1 of this example. Note that the DDEF com-
mand enables you to supply various data set and volume information at the terminal.

PGM: EXIT, RELEASE ALL UNNEEDED DEVICES
PGM: PROGRAM FINISHED OK

S,Y: RELEASE IN10DD

S,Y: CATALOG OUT1O0A,N

S,Y: LOGOFF
SYS:

This command deletes the DDEF command you issued earlier, thereby withdrawing
definition of the data set. Accordingly, the system instructs the operator to dismount
your tape reel and save it. The unit on which it was mounted is now free for other use.

Positional operand notation is used here. You catalog your new data set, indicating with
the N that the catalog entry to be created for it is new (not currently cataloged). By
default, access will be unlimited.

The LOGOFF is accepted by the system. The label for a data set on tape is similar to
the data set control block (DSCB) provided by the system when a data set on a disk is
first created. Both contain information about the data set that may be required when
the data set is processed. Appendix E provides further details.

Examples 63

Example 11: Conversational Initiation of Nonconversational Tasks

It is often more convenient to have your programs run after you have left the terminal—that is, to have them run
in nonconversational mode. Two ways of doing this are shown in this example.

In Part 1, you begin your task conversationally and then use the Back command to switch its execution to the
nonconversational mode.

In Part 2, you construct a nonconversational task and then use the ExecutE command to cause it to be executed
at a later time.

Part 1: The BACK Command
You complete the LOGON procedure and begin processing.

S,Y: DATA DSNAME=BACKPROG :
With this command, you build the SYSIN data set (named BACKPROG) that will pro-
vide input to your task after you have switched to nonconversational mode. You do not
need to issue a DDEF command for the data set created by a DATA command.

S,Y: #DDEF 0UT1l,,0UIDS,DISP=0LD
The system prompts (with #) for the first command to be executed in your nonconversa-
tional task. This DDEF command defines the cataloged data set that MAIN11 has

previously written and which will be written over when MAINI11 is run. It resides on a
public disk.

S,Y: #CALL MAIN11) .
This program is already assembled and its object module resides on your USERLIB data
set, which never requires a DDEF command. It includes the following statements:

MN11PST PSECT
ENTRY STRT11l

DC Fr76!' SAVE AREA LENGTH
bC 18F'0Q’ REMAINDER OF SAVE AREA
AREA DS 80C DATA AREA

DCBOUT DCB
MN11CST CSECT

DDNAME=0UT11

STRT11 SAVE (14,12) SAVE REGISTERS IN CALLER'S SV AREA
'L 14,72(0,13) GET RCON FROM CALLER'S SAVE AREA
ST 14,8({0,13) STORE FORWARD POINTER
ST 13,4(0,14) STORE BACKWARD POINTER
IR 13,14 . SET PSECT AND SAVE AREA REGISTER
USING MN11PST,13 PSECT COVER REGISTER
LR 12,15
USING STRT11,12 CSECT COVER REGISTER
OPEN (DCBOUT, (OUTPUT)) OPEN OUTPUT DCB
ALPHA GATRD AREA,LNG READ FROM SYSIN
CLI AREA+3,C'E’ REACHED END?
BE FINISH BRANCH IF YES
create a record

PUT DCBOUT, AREA WRITE RECORD

B ALPHA RECYCLE
FINISH CLOSE (DCBOUT) CLOSE DCB
LNG Dé F'80° AREA LENGTH
END

Notice how the DDEF command specifying the same data definition name as specified
in your DCB statement contains the name of the desired output data set.

S,Y: #
PART 0049628-49-11~-MODEL 879

S,Y: #
PART 0078928-49-11 MODEL 127

S,Y: #
PART 0078927-49-10 MODEL 127
. This is part of the data to be read by GATRD.

S,Y: #
E ,
You identify the end of your data with E. Your task will be abnormally terminated if
GATRD attempts to read past the end of SYSIN.
Note that errors made while entering this data and the entire command sequence
under the DATA command are not detected until the nonconversational task is executed.
S,Y: #
LOGOFF
S,Y: #
%E

You enter %E to indicate the end of your BACKPROG data set. The system then
prompts you with the underscore to continue your conversational task.

S,Y: BACK DSNAME=BACKPROG

SYS:
Beginning with the first command in your BACKPROG data set (DDEF OUTI11..),
your task is continued nonconversationally. If the system is not able to accept your
request, the BACK command is rejected. It can be re-issued later during this session.

Your nonconversational task will be abnormally terminated if it attempts to access a
data set on a private volume for which you have not issued a DDEF command prior to
issuing the BACK command. The operator must have mounted any required volumes
before the nonconversational task is created.

The conversational part of the task is now finished. You can leave the terminal or
log on again.

WARNING: The BACK command may not complete its operation if the attention key

is depressed shortly after issuing the command. The result is a non-conversational task
still connected to a terminal. Wait a few seconds before reinitiating LOGON procedures.

Part 2: The EXECUTE Command
You complete the LOGON procedure and begin your task.

Examples 65

S,Y: DATA DSNAME=EXECPROG
You now build the SYSIN for the separate nonconversational task that is to be executed
later. The system prompts for commands and data with the number sign. When the data
set EXECPROG is completed, it will be automatically cataloged. This cataloging is a
function of the DDEF issued when the DATA command is used.

S,Y: #

LOGON ADUSERID,,,ADACCT29

You provide information for the LOGON of the nonconversational task (LOGON starts
in column 3). Except for the inclusion of this command, the tas kis exactly the same as
the one you constructed in Part I of this example. No password is given for a non-
conversational task.

If any private volumes were to be used during the nonconversational task, a SECURE
command would be needed at this point. The command would notify the operator to
secure a unit for your private volume(s) and mount them before the task is initiated.

S,Y: #
DDEF (QUT1ll, ,0UTIDS,DISP=0LD
This command defines the cataloged data set on which your program (MAIN11) will
write its output.
S,Y: #
MAIN11
This program is already assembled and stored on your USERLIB, which doesn’t require
a DDEF command. Its relevant statements are shown in Part 1.
S,Y: #
PART 0049628-49-10 MODEL 879
S,Y: #
PART 0078928-49-11 MODEL 127
S,Y: #
PART 0078927-49-10 MODEL 127
. This is your input data.
S,Y: #
E
S,Y: #
LOGOFF
S,Y: #
%E
S,Y: EXECUTE DSNAME=EXECPROG
SYS:
Your request for a nonconversational task has been accepted by the system. The task is
initiated when system resources are available.

The data set EXECPROG will provide the SYSIN for your nonconversational task. Its
SYSOUT will consist of system messages and any output to SYSOUT generated by your
program. SYSOUT is printed later as a separate nonconversational task, and the listing
is identified as yours. The system prompts you with an underscore (below). You are free
to enter any command sequence to continue your conversational task.

S,Y: LOGOFF
This LOGOFF is for your conversational task.
SYS:

66

LOGOFTF is accepted by the system.

Example 12: Preparing a Job for Nonconversational Processing

It is not always convenient or efficient to use remote terminals to create or initiate nonconversational tasks. In this
example, your task is on punched cards. You submit to the machine room the card deck that contains the com-
mands and data for your task. The operator then enters them into the system.

LOGON ADUSERID,,,ADACCT29
You initiate your nonconversational task with the LOGON command. All LOGON
parameters must be included on one card. For nonconversational tasks, the password
parameter must be omitted. This command must begin in the third column. The first
two columns must be blank.

ASM AT2EX12,N,LISTDS=N
You construct the same program as in Example 4 specifying different external symbols
to avoid duplication when your assembled object module is placed on USERLIB.
Remembering that you cataloged the source data set in Example 4, you use a different
module name so that the source data set created during this assembly will have a
different name. You indicate that you do not want a list data set. Your listings will there-
fore be printed automatically on SYSOUT and no record of them retained after printing.

PST12 PSECT
ENTRY BEGIN12
DC Fr78°
DC 18F'0’ .
AREA DC Fro’ RD/WR AREA
CST12 CSECT
BEGIN12 SAVE (14,12)
L 14,72(0,13)
ST 14,8(0,13)
ST 13,4(0,14)
LR 13,14
USING PST12,13
BASR 11,0
USING *,11 LOCAL BASE REG
HERE EQU *
GATRD AREA+3,LENGTIH READ FROM SYSIN
CLI AREA+3,C'E"’ CHECK IF END
BE LEAVE BRANCH IF YES
MVZ AREA+3 (1) ,=X'00"' CONVERT TO BINARY
L 5,AREA
SLA 5,1 MULT BY 2
* RESTRICTED TO INTEGERS FROM O TO 4
ST 5,AREA
MVZ AREA+3(1) ,=X'FF"' CONVERT TO EBCDIC
GATWR AREA+3,LENGTH WRITE ON SYSOUT
B HERE
LEAVE EXIT 'PGM FINISHED'
LENGTH DC Frl! LENGTH OF AREA
END

You could have assembled from a prestored source data set, just as in conversational
mode.

Examples 67

AT2EX12
2
1
3

LOGOFF

68

When your program is executed, it will attempt to read data from SYSIN, which is this
stream of commands and data. Here you supply the input for three cycles of GATRD.

This entry signals the end of data input and will cause your program to branch to
EXIT, which will return control to SYSIN. The next command in the SYSIN stream
below will then be executed.

At the completion of your task, SYSOUT will be printed as a separate task. It will
contain commands, listings, and the program output generated by GATWR. SYSOUT
will include neither program input (2,1,3) nor assembler parameters (AT2EX12,N). It
will include your listings since you specified in your ASM command that no list data
set was required.

Unlike the LOGON command, LOGOFF permits no parameters. All data set disposition
must be completed before LOGOFF. The data set named SOURCE.AT2EX12 will be
automatically cataloged by the system. No user action is necessary. A DDEF is issued at
ASM time, accommodating the module name AT2EX12, by prefixing SOURCE to the
object module name.

After completion of this task, you may execute AT2EX12 again, since the object
module will be retained on USERLIB.

The LOGOFF command must begin in card column 3.

Example 13: Storing DDEF Commands for Later Use

In this example, you create a data set containing ppeF commands for trequently used data sets. Your ppoErF com-
mands create a library hierarchy that permits you to select various versions of identically named subroutines.
You complete the LocoN procedure and enter your first command.

S,Y: DATA DDPACK,I, (100,100)

Positional parameter notation is used here. The DATA command can be used to store

any data, source statements, or commands you wish to enter through the terminal. Here

you store a set of frequently-used DDEF commands in a data set you name DDPACK.

They are stored as character strings in a line data set, but are interpreted as commands

when they are later retrieved with the CDD command The system prompts you by
typing a line number for each line, since indexing was specified. The data set named

DDPACK will be automatically defined and cataloged by the system.

S,Y: OOOO100DDEF JOB1DD,,JOBl,0PTION=JOBLIB

S,Y: O000200DDEF JOB2DD,,JOB2,0PTION=JOBLIB
A mixture of positional and keyword parameter notation is used here. These two DDEF
commands define the cataloged job libraries that contain the object modules of your
subroutines. They already exist, so you specify their dispositions as OLD, by default.

S,Y: O000300DDEF IN13DD,,IN13,DISP=0LD
Your program is to retrieve its input from the cataloged data set in IN13.

S,Y: 0000400DDEF OUT13DD,VS,0UT13,VOLUME=(,131313) ,UNIT=(DA1,2311)
Your output data set will reside on a private disk whose volume serial number is 131313.

S,Y: 0000500%E
You signal the end of the data set containing your DDEF commands. The system then
prompts for the next conversational command with the underscore.

S,Y: CDD DSNAME=DDPACK, (JOB2DD, IN13DD,0UT13DD)

This command causes the three DDEF statements in DDPACK that you specify to be
entered in SYSIN. If you omit the DDNAME field, all the DDEF commands are
entered in SYSIN.

The data set containing the DDEF commands must be defined for the current session
(which it was when created by the DATA command), or be cataloged.

SYS: DDEF JOB2DD,,JOB2,0PTION=JOBLIB
SYS: DDEF IN13DD, ,IN13,DISP=0LD

Each DDEF command that is issued is printed at the terminal.

SYS: DDEF 0OUT13DD,VS,0UT13,VOLUME=(,131313),UNIT=(DA,2311)

5YS:
You must wait for the operator to mount your private disk. No wait was required for
the two data sets above because they are on public volumes which remain mounted
while the system is operational. A message will advise you of the wait state.

S,Y: CALL MAIN13 .
- Your program, which is stored on your USERLIB, calls two subroutines (SUB13A and
SUBI13B).

You previously assembled a version of SUBL3A and stored it on JOB1. Later you re-
assembled another version and stored it on JOBZ. For this session, you want to use the
version on JOB2, so you issue a DDEF command for JOB2, but not for JOB1 {see CDD
parameters). Thus, your program library list begins with JOB2, then USERLIB, and
then SYSLIB; this is the order in which the loader searches for object modules.

Versions of SUB13B are stored in JOB1 and USERLIB. Since JOB1 job library is not
in your program library list, the version on USERLIB will be loaded.

Examples 69

PGM: MAIN13 FINISHED
Your program prints this message with a GATWR macro instruction and then returns

control to the caller (the system) with a RETURN macro instruction. The system then
prompts with the underscore.

S,Y: LOGOFF

SYS:
The LOGOFF is accepted by the system.

All VAM data sets are automatically cataloged. Your private volume is dismounted by
the operator and retained at the installation.

Example 14: Writing and Updating Virtual Index Sequential Data Sets

In the first part of this example, you run a program that reads a virtual sequential (vs) data set. After reading a
record, the program adds a key to it and then writes the record into a virtual index sequential (v1) data set. The
process is then repeated until all the records have been indexed.

In the second part, another program modifies the visam data set by deleting records.

Both of these data sets are on disks.

Part 1: Writing a VI Data Set

You complete the LOGON procedure and begin processing your task.

You are going to run a program which adds an index to each record of a VS data
set, and then writes the modified records in a VI data set. The program includes the
following statements:

MN14APST PSECT
ENTRY
ENTRY
ENTRY
DC
DC
AREA DS
DCBIN14 DCB
DCBOUT14 DCB

MN14ACST CSECT
MN14 SAVE
L
ST
ST
IR
USING

ALPHA GET

EOD14A CLOSE
EXIT

SYN14A CLOSE
EXIT

OKMSG DC

OK DC

SYNMSG DC

SYN DC
END

MN14

EOD14A

SYN14A

Fr76° SAVE AREA LENGTH
18F'0’ REMAINDER OF SAVE AREA
84C TEMP RECORD STORAGE

DDNAME=IN14DD,EODAD=EQD14A
DDNAME=0UT14DD, SYNAD=SYN14A,LRECL=84,RECFM=F,DSORG=VI,KE-
YLEN=4,RKP=0

(14,12) - SAVE REGISTERS IN CALLER'S SV AREA
14,72(0,13) GET RCON FROM CALLER'S SAVE AREA
14,8(0,13) STORE FORWARD POINTER

13,4(0,14) STORE BACKWARD POINTER

13,14 SET PSECT AND SAVE AREA REGISTER
MN14APST,13 PSECT COVER REGISTER

12,15

MN14,12 CSECT COVER REGISTER

(DCBIN14,,DCBOUT14, (OUTPUT)) OPEN DCB'S

10,0 INITIALIZE KEY VALUE
DCBIN14,AREA+4 GET VSAM RECORD
10,AREA SET KEY VALUE
10,1(10) INCREMENT VALUE
DCBOUT14,AREA PUT VISAM RECORD
ALPHA RECYCLE
(DCBIN14, ,DCBOUT14) CLOSE DCB'S
OKMSG

{(DCBIN14, ,DCBOUT14) CLOSE DCB'S
SYNMSG

A(L'0K)

C*FINISHED OK'

A({L"'SYN)

C'SYN ERROR OCCURRED’

Examples 71

S,Y: DDEF IN14DD, ,MYVSDATA

You define the VS data set which provides input to your program. At execution time, the
parameters that you omitted from the DCB macro instruction and from this command
will be provided from the catalog and the data set’s DSCB. These fields are:
LRECL(80) ,RECFM(F) ,UNIT (DA,2311).

S,Y: DDEF OUT14DD,VI,MYVIDATA,UNIT=(DA,2311),VOLUME=(,141414)

S,Y: MAIN14A

The data set which your program creates is to reside on one of your own disks. Since
there is no DSCB until the data set is created, and no catalog entry, you must specify
all the required parameters in your DCB macro instruction and in this DDEF com-
mand. The DSORG parameter is not necessary, but supplying it prevents the system
from providing a default option that you may not want.

Now you run your program. Entry is at the first byte of the first CSECT since the
operand of the END statement was blank.

PGM: EXIT, RELEASE ALL UNNEEDED DEVICES
FINISHED OK

S,Y: ERASE MYVSDATA

S,Y: LOGOFF

When it has finished, the EXIT macro prints a message and causes control to be re-
turned to the terminal. It then prompts with the underscore.

No longer needing your input data set, you erase it from public storage and delete its
catalog entry. .

LOGOFF is accepted by the system.

Partv 2: Updating a VI Data Set

You complete the LOGON procedure and begin your task.

A program named UPDATER reads records from the data set you saved in part 1.
It deletes any that begin with “A”. It includes the following statements:

UPDPST

DCBDEL
KEYLOC
AREA
UPDCST
START

72

USING

START

EODUPD

SYNUPD

F'76"' SAVE AREA LENGTH

18F'0" REMAINDER OF SAVE AREA
DDNAME=0UT14DD, SYNAD=SYNUPD, EODAD=EODUFD

F

84C

(14,12) SAVE REGISTERS IN CALLER'S SAVE AREA
14,72(0,13) GET RCON FROM CALLER'S SAVE AREA
14,8(0,13) STORE FORWARD POINTER

13,4(0,14) ‘ STORE BACKWARD POINTER

13,14 SET PSECT AND SAVE AREA REGISTER
UPDPST, 13 PSECT COVER REGISTER

12,15

ALPHA

BUMP
EODUPD

LEAVE
SYNUPD

OKMSG
0.4
SYNMSG
SYN

USING

OPEN
LA

ST
READ
CLI
BNE
LA
DELREC
LA

B
CLOSE
LA
EXIT
LA

B

DC

DC

DC

DC
END

START, 12

(DCBDEL, (UPDAT))

4,0

4 KEYLOC
DECBDEL, KY , DCBDEL , AREA , KEYLOC
AREA+4,C'A"

BUMP

0,KEYLOC

DCBDEL, K, (0)

4,1(4)

ALPHA

(DCBDEL)

1,0KMSG

{1)

1,SYNMSG

LEAVE

A(L'0K)

C'FINISHED DATA SET'
A(L'SYN)

C'SYN ERROR OCCURRED'

CSECT COVER REGISTER

OPEN DCB FOR INPUT & UPDATE
INITIALIZE KEY VALUE

SET VALUE IN KEYLOC

READ RECORD AT KEY VALUE
BEGINS WITH A?

BRANCH IF NO

SET KEYLOC ADDRESS
DELETE RECORD

INCREMENT KEY VALUE
RECYCLE

CLOSE DCB

SET OK MESSAGE

EXIT

SET ERROR MESSAGE

S,Y: DDEF OUT140D, ,MYVIDATA

You define the data set which your program reads, and from which it deletes records.
Since it is cataloged, you need provide only the minimum DDEF parameters.

S,Y: UPDATER

You have previously assembled this program. Its object module resides on your

USERLIB.

PGM: EXIT, RELEASE ALL UNNEEDED DEVICES
FINISHED DATA SET

S,Y: LOGOFF

SYS:

After your program is completed, the EXIT macro instruction prints its messages and

returns control to the terminal.

LOGOFF is accepted by the system.

Examples 73

Example 15: Missing Subroutines
In this cxample, vou attempt to exccute a program that refers to a missing subroutine. In Part 1, vou proceed

without the subroutine; in Part 2, you alter your program library list to make the subroutine available,

Part 1: Proceeding Without a Missing Subroutine
You complete the LOGON pmcedure and enter your first command.

S,Y: CALL MAIN15
The CALL command causes the object module to be loaded from your USERLIB and
then executed.

SYS: ##:##=UNDEFINED REF(SUB15) IN MODULE (MAIN15) ADDRESS FFFFF000 ASSIGNED.
(MAIN1S) ERROR IN LOADING MODULE.
STATEMENT REJECTED.

MAINI5 contains a reference to SUB15. During loading, SUB15 could not be found,
so the loader assigned an invalid address that will cause an interrupt if the execution
of MAIN1S5 ever reaches that reference.

The second message indicates that MAIN15 has been loaded but that the execution
part of CALL has been rejected.

S,Y: CALL MAIN15
You know that this reference will not be encountered during execution, so you decide
to run without SUBIS5.

PGM: MAIN15 COMPLETED

Successful completion of your program is indicated by this message.

LOGOFF

0 =<
se e

(2R %]
oy

LOCGOFF is accepted by the system.

Part 2: Supplying the Missing Subroutine
S,Y: MAIN15

After logging on, you again attempt to load and execute your program.

SYS: *****UNDEFINED REF(SUB15) IN MODULE (MAIN1S5) ADDRESS FFFFFOOO ASSIGNED.
(MAIN15) ERROR IN LOADING MODULE.

STATEMENT REJECTED.
And again your subroutine cannot be found. But this time you decide to provide it.

S,Y: UNLOAD MAIN1S
First you must unload MAIN15 from virtual storage, since it contains the invalid
references to SUB15.

S,Y: DDEF LIB15DD,VP,LIB15,DISP=0LD,0PTION=JOBLIB
The object module for SUBIS is stored in your LIB15 job library. Issuing this DDEF
command places the library at the top of your program library list. Now, when MAINIS
is loaded, the reference to SUB15 will be satisfied.

S,Y: MAIN15
- This time when MAIN15 is loaded the reference is satisfied from your LIB15 job library.

PGM: MAIN15 COMPLETED

And your program runs to completion.

S,Y: LOGOFF
SYS:
LOGOFF is accepted by the system.

74

Example 16: Entering Data for Later Use

In this example, you use the terminal keyboard to enter statements of a source data set directly into the system,
rather than keypunching them and then entering the card deck.
After completing the LocoN procedure, you enter your first command.

S,Y: EDIT SOURCE.READER

e 83 su we w4 4y 03

. o0

o e

se e o0

nununununnnhrnttatnntnttntnupn
Rt P 1 e e

nnunnunhnnnn
alla e Tia- o - S

0e 44 00 00 o4

Positional operand notation is used.

You specify the fully-qualified name of the source data set that you are about to enter
at the keyboard. The EDITOR will create a virtual indexed-sequential data set. This
indexing is necessary if you should enter an erroneous line and want to correct your
keyboard input. ASM also requires the line numbering (indexing). The data set is auto-
matically defined, cataloged, and placed on a public disk.

The system prompts for your statements by issuing the next line number it has
assigned.

Seven digit line numbers are shown, to indicate the maximum length of the numbers.

0000100PST18 PSECT

0000200 ENTRY BEGIN16
0000300 DC Fr'76"
0000400 DC 18F'0°

0000500CST16 CSECT
0OO0600BEGIN1S BASR 11,0

0000700 USING *,11 LOCAL BASE REGISTER
0000800 L 13,72(0,13)
8000900 USING PST1l6,13
0001000HERE EQU *
0001100 GATRD AREA+3,LENGTH READ FROM SYSIN
0001200 CLI AREA+3,C'E' CHECK IF END
0001300 BE LEAVE BRANCH IF YES
0001400 MVZ AREA+3 (1) ,=X'00" CONVERT TO BINARY
0001500 L 5,AERA

REA

You notice your typing error before you press the carriage return key. You backspace
three times, move the paper up a line to avoid over-typing, and enter the correct letters.
Then you press the carriage return key.

0001600 SLA 5,1 MULTIPLY BY 2
0001700*RESTRICTED TO INTEGER FROM O TO 4

0001800 ST 5,AREA

0001900 MVZ AREA+3 (1) ,=X'FF' CONVERT TO EBCDIC
0002000 GATWR AREA-+3,LENGTH WRITE ON SYSOUT
0002100 B THERE

O002200LEAVE EXIT 'PGM FINISHED®

0002300AREA DC Fro READ/WRITE AREA
0002400LENGTH DC Fr1 LENGTH AREA

0002500_REVISE 2100

After you are prompted for the number 2500, you notice an error in line 2100. You
enter _ REVISE 2100 and then the new line. To insert a new line, simply give it a
line number that falls between two existing line numbers.

0002500 B HERE
EXCISE 1700

Here you delete line number 1700.

INSERT 0002500
0002500 END
You are again prompted to enter line number 2500 and you do so.

Examples 75

0nwn
ol

%]
o]

[92]
]

0002600_END

The _END indicates completion of your data set. The syqtem then prompts for another

command with the underscore.

EDIT SOURCE.READER

LIST

: 0000450 AREA

EXCISE 2300

_END

LOGOFF

To check on the accuracy of your corrections, you cause your source data set to be
printed at the terminal. (You could also have printed it on the high-speed printer by

issuing a PRINT command; the dsname parameter would be SOURCE.READER).

You notice a modifiable work space named AREA in the CSECT. You decide to follow

S,Y: 0000100 PST16 PSECT

S,Y: 0000200 ENTRY BEGIN16

5,Y: 0000300 bC Fr7e!

5,Y¥: 0000400 DC 18F'0"

S,Y: 0000500 CST16 CSECT

S,Y: 0000600 BEGIN16 BASR 11,0

S,Y: 0000700 USING *,11 LOCAL BASE REGISTER
S,Y: 0000800 L 13,72(0,13)

S,Y: 0000900 USING PST16,13

S,Y: 0001000 HERE EQU *

S,Y: 0001100 GATRD AREA+3,LENGTH READ FROM SYSIN
S,Y: 0001200 CLI AREA+3,C'E’ CHECK IF END

S,Y: 0001300 BE LEAVE BRANCH IF YES
5,Y: 0001400 MVZ AREA+3(1),=X'00" CONVERT TO BINARY
S5,Y: 0001500 L 5,AREA

S,Y: 0001600 SLA 5,1 MULTIPLY BY 2
S,Y: 0001800 ST 5,AREA

S,Y: 0001900 MVZ AREA+3(1) ,=X"'FF' CONVERT TO EBCDIC
5,Y: 0002000 GATWR AREA+3,LENGTH WRITE ON SYSOUT
S,Y: 0002100 B HERE

S,Y: 0002200 LEAVE EXIT 'PGM FINISHED®

S,Y: 0002300 AREA DC F'o’ READ/WRITE AREA
S,Y: 0002400 LENGTH DC Fr1 LENGTH AREA

S.Y: 0002500 END

S,Y: INSERT 450

recommended programming practice and put it in the PSECT.

DC

You have successfully deleted line 2300. This was the AREA entry in the CSECT. Now

F'o"

READ/WRITE AREA

you signal the end of modifications by typing . END.

LOGOFF is accepted by the system.

The data set SOURCE.READER will be available for future use, since it was auto-
matically cataloged. If you decide at a later time to add extensively to the data set numed
SOURCE.READER (line 2500 and beyond), you simply issue a DDEF command for the
data set. After removing the present END statement (using the MODIFY command), :
DATA command with a start line number of 2500 will allow you to continue the buﬂd-
ing of the line data set begun earlier. The DATA command will function with existing
data sets as well as with ones that are being created in the current task.

Example 17: Data Set Considerations When Interrupting Program Execution

In this example you discover that a program you are running is reading the wrong data set. You interrupt it, supply
the correct data set, and continue.
After completing the LocoN procedure, you begin processing your task.

S,Y: EVV 2311,171717
The data set from which your program will receive its information (IN17A) resides on a
private volume which was created originally for another system and has therefore not
been cataloged for your system. You present it to the present system with the Enter Vam
Volumes (EVV) command, specifying device type (2311) and volume number (171717).
All data sets on volume 171717 that have not been previously cataloged for this system
will be automatically cataloged.

S,Y: DDEF IN17DD,,IN17A

The data set was automatically cataloged as a result of the EVV command. Only mini-
mum parameters are now required to describe it in the DDEF command.

SYS:
A message will advise you the task is waiting for the operator to mount your private
" disk volume. Once the volume is mounted, you will be advised that your task is ready
to proceed.

S,Y: MAIN17

PGM: AVERAGE I.Q. OF COMPUTER PROGRAMMERS IS: 0.30103

Your program contains a GATWR macro instruction to print the results of its computa-
tion on the terminal.

YOU: (press attention button)

Noticing slightly incorrect output, you interrupt your task during printout of cutput. See
Appendix D for a discussion of attention interrupt handling.

SYS: !
YOU: UNLOAD MAIN17

The system prompts you with the exclamation point; you can now enter any command.

Suspecting incorrect input data, you decide to select another input data set that resides
on a different disk. The DCB for data set IN17A in your program has been opened. It
contains information that describes the incorrect data set. Unloading your program
closes all of its open Data Control Blocks (DCB).

S,Y: RELEASE IN17DD

Now you release the DDEF for the incorrect data set. The previous DDEF is canceled
and the operator is instructed to remove your private disk. The unit on which it was
mounted is now available for other use.

S,Y: DDEF IN17DD, ,0THER17

You define another data set that is on a public disk. No waiting is necessary since public
volumes remain mounted while the system is operational.

S,Y: MAIN17

You again load your program. This time the DCB for DDNAME=IN17DD is filled in
for the data set named OTHERI17.

PGM: AVERAGE I.Q. OF COMPUTER PROGRAMMERS IS: 198.6

Your program prints correct results, and returns control to the terminal.

S,Y: LOGOFF
SYS:
LOGOFF is accepted by the system.

Examples 77

Example 18: Sharing Data Sets

This example shows how data sets can be shared by several users of the system. Part 1 shows a session during
which another user makes one of his data sets available to you. Part 2, shows how you copy the data set so that
you can make changes to it.

Part 1: Permitting Access to a Data Set
USR: (presses attention button or dials up the system)
LOGON ABPALID,PASSME, ,ABACCT2
Another user’'s LOGON is shown here. His identification is ABPALID.

5YS:
The system will complete the LOGON procedure and invite the user to begin his task.

S,Y: PERMIT DATA,ADUSERID,RO

Positional oierand notation is used here. He makes available to you all of his cataloged
data sets whose left-most name qualifier is DATA. Thus you may share his data sets
below this level of index in the catalog, such as those named DATA.Q1, DATA.Q2,
DATA.QL.AA, DATA.Q1.AB, etc. He could have made only a certain data set available
by specifying its fully qualified name, e.g., DATA.QS5.
Read-only (RO} means that you may only read the specified data sets. He could have
. permitted read/write (RW), or unlimited (U) access. The latter would allow you to
erase the data set. Notice that these access types differ from those of the CATALOG
command.

S,Y: PERMIT INFO,ADUKU,R
With this command the user withdraws the access (R means restrict) to his INFO data
set that he has previously permitted to the user whose identification is ADUKU.

S,Y: LOGOFF
S5YS:
LOGOFTF is accepted by the system.

The LOGOFF command has caused this user’s (ABPALID) catalog entry for the speci-
fied group of data sets to be marked so that you can access them by issuing the proper
SHARE command. An ABEND command could also have been used to update his
catalog.

Part 2: Accessing a Shared Data Set
YOU: (press attention button or dial up the system)
LOGON ADUSERID,MYPASS*,,ADACCT29
* Now you log on to share ABPALID’s data set.

SYS:
The system will complete the LOGON procedure and invite you to begin your task.

S,Y: SHARE MYDATA,ABPALID,DATA
Positional operand notation is used. For each data set the owner has cataloged with the
left-most qualifier “DATA,” an entry will be created in your catalog under the left-most
qualifier “MYDATA.” This command is rejected if the owner has not granted access to
you with the PERMIT command.

Since vou have been permitted read-only-access, you must make your own copy of the
data set MYDATA.QL.AA before vou can modify it. Before issuing the CDS command,
you may define the data set into which the contents of MYDATA.Q1.AA will be copied.
However, if you do not define it, CDS will do it for you.

78

S,Y: CDS DSNAME1=MYDATA.Ql.AA,DSNAME2=MYOWND.Ql.AA

S,Y: LOGOFF

SYS:

To refer to a specific data set to which you have been permitted access, you must append
to the partially-qualified name you have assigned it, the same rightmost name that the
owner has assigned it; in this case Q1.AA.

The name you assign to the new data set (MYOWND.Q1.AA) makes it easy to relate it
to the original data set; you could have assigned any name.

You still have read-only access to the original data set (MYDATA.QL.AA in your
catalog).

The SHARE command caused entries to be created in your catalog for the group of data
sets whose left-most qualifier is MYDATA. They point to the owner’s data sets.

You must remember that if the owner erases or deletes one of his data sets which you
share, its entry in your catalog is not removed. You would then use the DELETE com-
mand to update your catalog.

You should also note that the ERASE command for a shared data set is disregarded if

there are any active users for that data set. Conversationally, a diagnostic will be issued,

to alert you to system action,

LOGOFTF is accepted by the system.

Examples 79

Example 19: Switching Between Terminal and Card Reader for Input

If a card reader is available at your terminal, it can be used for entering commands and data.

In this example, you switch the sysiv of your conversational task from keyboard to card reader. You have pre-
pared a deck of cards that contains part of your command stream, your source program, and input data.

Your card deck is shown below. It includes a source program similar to the one you used in Examples 4 and 12.

ASM ATMS2,N LOGON and
assembler
PST19 PSECT parameters
ENTRY BEGIN19
DC F'76"
DC 18F'0!
AREA DC F'o° READ/WRITE AREA

CST19 CSECT
BEGIN19 BASR 11,0

USING *,11 LOCAL BASE REG
L 13,72(0,13)
USING PST19,13
HERE EQU *
GATRD AREA+3,LENGTH READ FROM SYSIN
CLI AREA+3,C'E! CHECK IF END
BE LEAVE BRANCH IF YES :
MVZ AREA+3(1),=X'00"' CONVERT TO BINARY Source
L 5,AREA : Statements
SLA 5,1 MULT BY 2
* RESTRICTED TO INTEGERS FROM O TO 4
ST 5,AREA
MVZ AREA+3(1) ,=X'FF' CONVERT TO EBCDIC
GATWR AREA+3,LENGTH WRITE ON SYSQUT
B HERE
LEAVE EXIT 'PGM FINISHED'
LENGTH DC Fr1e LENGTH OF AREA
END
PRINT LIST.ATMS2(0),,,EDIT,ERASE
KB Return to keyboard
ATMS2
2 Input
1 data for
3 program ATMS2
E End of data
KB
After completing the LOGON procedure, vou place your card deck in the card reader
and begin your task. The cards must be cut in the upper left corner.
YOU: CB

You switch SYSIN to the card reader. You can do this anytime the system is waiting for
keyboard input if the desired cards are ready in the card reader.

Since the terminal is in send-receive mode, each card image is printed on the terminal
as if it had been typed in at the keyboard.

S,C: ASM ATMS2,N o
Positional operand notation is used. The system prompts for source statements by issuing
a line number. It then reads the statement from the card reader.

80

84 6¢ we ue o8 o4

M W W v e e o

oo an

nununnunnnunnnn

S,Y:

S,Y: C

S,C:

CIP:
PGM:
CIP:
PGM:
CIP:
PGM:

CIP:

S,Y:

S,Y:
SYS:

0000100PST19
0000200

0000300

0000400
0000500AREA
0000600CST19
0000700BEGIN19
0000800

(rest of source

0002200LENGTH
0002300

CANCEL 0137

ATMS2

(NERNVE LN N]

KB

PSECT

ENTRY BEGIN1S

DC F'76°

DC 18F'0°

DC F'o! READ/WRITE AREA
CSECT

BASR 11,0

USING *,11 LOCAL BASE REGISTER
program)

DC F'1t LENGTH OF AREA
END

ERASE SOURCE.ATMS2

LOGOFF

The source input is scanned and you are notified that your assembly has been completed.

: PRINT LIST.ATMSZ2,,,EDIT,Y

Your program has been assembled without error. The printing of its listings has been
assigned to a separate nonconversational task with a unique BSN. You decide to erase
the data set as soon as the printing is completed.

This card causes SYSIN to switch to the keyboard, and the system then prompts with
the underscore. SYSIN is also transferred to the keyboard when you press the attention
button.

You decide that you don’t want your listing data set printed now, so you cancel the
print request. BSN 0137 is assumed here.

You can enter CB to switch SYSIN to the card reader at any time. Your program reads
data from the card reader and prints results (with GATWR) on SYSOUT.

Execution of your program has reached the GATRD macro instruction. The system
prompts you for SYSIN data, which you have included in the card deck.

END of data for program ATMS2.

This card causes SYSIN to be switched to the keyboard, and the system then prompts
with an underscore.

The data set named SOURCE.ATMS2 will have been automatically cataloged by the
system. You have no further need of it, so you erase it.

LOGOFTF is accepted by the system.

Examples 81

Example 20: Anticipating an Interrupt in a Nonconversational Task

In this example, you create a nonconversational task on cards. To prevent your task from being abnormally ended
if a fixed-point overflow occurs during the running of your program, you include in the program an interrupt
handling routine. Your program uses the spec, sik and piR macro instructions. Refer to Appendix D for more
details.

The sysin for your task consists of the cards below.

LOGON ADUSERID,, ,ADACCT29

A nonconversational task is initiated with a LOGON command that must include the
parameters on the same card. The password is not used.

This command must begin in column 3; columns 1 and 2 must be blank.

SECURE (DA=1,2311)

All devices required for private volumes in a nonconversational task must be specified
by a SECURE command. It must immediately follow the LOGON command.

You specify that your task requires one 2311 disk unit.

DDEF JOBLDD,,JOBL,UNIT=(DA,2311) ,VOLUME={(,202020) , 0PTION=JOBLIB
This command will define your job library for this session. It causes the operator to mount
your disk {(volume serial number 202020) on the device secured in the preceding com-
mand. If you do not issue it, your task will be terminated when it reaches this point.

EDIT SOURCE.MYPGM

You specify that a data set is to be constructed from the cards that follow, and is to be
named MYPGM. You plan to assemble from it later in your task.

Your program computes = {A: + B:) where i=10. If a fixed-point overflow occurs, 2 is
set to zero.

Your program includes the following source statements.

PSTMYP PSECT
ENTRY MYSTRT
ENTRY SIGMA

DC F'7e° LENGTH SAVE AREA
DC 18F'0" REMAINDER OF SAVE AREA
DELTA SPEC EP=SIGMA,COMAREA=RHO, INTTYP=IF
RHO DS 4F INTERRUPT COMMUNICATION AREA
ALPHA DS 10F ALPHA VALUES
BETA DS 10F BETA VALUES
CSTMYP CSECT
MYSTRT SAVE (14,12) SAVE REGISTERS IN CALLER'S SV AREA
L 14,72(0,13) GET RCON FROM CALLER'S SAVE AREA
ST 14,8(0,13) STORE FORWARD POINTER
ST 13,4(0,14) STORE BACKWARD POINTER
LR 13,14 SET PSECT AND SAVE AREA REGISTER
USING PSTMYP, 13 PSECT COVER REGISTER
LR 12,15
USING MYSTRT, 12 CSECT COVER REGISTER
SIR DELTA, 127 SPECIFY INTERRUPT ROUTINE
LA 8,4 INCREMENT BY 4
LA 9,40 SET FOR 10 SUMMATIONS
SR 6,6 INITIALIZE SUMMATION REGISTER
SR 5,5 AND BEGINNING DISPLACEMENT
OMEGA L 4 ,ALPHA(0,5) GET ALPH VALUE
A 4,BETA(0O,5) ADD BETA VALUE
AR 6,4 SUM PO R6
BXLE 5,8,0MEGA RECYCLE UNTIL FINISHED

DIR

EXIT

SR

LR

ST
RETURN
END

DELTA

DELETE INTERRUPT ROUTINE

*MYPGM FINISHED'
*INTERRUPT ROUTINE FOR FIXED-POINT OVERFLOW
SIGMA SAVE (14,12)

4,4 SET REG 4 (SUM) T0O ZERO
3,0 SAVE AREA TO REG 3
4,36(0,3) ZERO IN SAVE AREA'S REG 4

(14,12) RETURN

_END

ASM MYPGM,Y

MYPGM

LOGOFF

Since you cannot process from the terminal any interrupts which may occur during the
execution of your nonconversational task, you include in your program a routine to
handle a type of interrupt which may occur. The SPEC macro instruction generates an
interrupt control block (ICB), and specifies the entry point of that routine (SIGMA).
The name specified on the SPEC macro instruction becomes the name of the ICB to
which the SIR and DIR macro instruction will refer.

Control is transferred to the routine beginning at SIGMA when a fixed-point overflow

(interrupt type IF) occurs. The routine sets the value of the register containing the
overflowed sum to zero.

The SIR macro instruction establishes system references to the interrupt routine you
specify in the SPEC macro instruction. When the specified interrupt occurs, your pro-
gram’s registers are stored in a save area to which register zero points. Your interrupt
routine must therefore store in this save area any registers for the interrupted routine it
wishes to alter. After executing the interrupt routine, your program’s registers are re-
stored from the save area, and execution of your program resumes at the next instruction
past the interrupt.

The DIR macro instruction disables the specified SIR macro instruction. It is needed
only when you want the same type of interrupt to be handled by a routine which speci-
fies a lower priority, or by the system.

Execution of the EXIT macro instruction causes the specified message to be printed on
SYSOUT and control to return to the system. The next record will then be read from
SYSIN. '

This card will signal the end of your source data set. SOURCE.MYPGM will be auto-
matically cataloged.

Positional notation is used for ASM operands. This command will activate the assembler
and cause the program named in the parameter card to be assembled from the prestored
source data set.

You are not asked for modification when running in nonconversational mode.

This command will cause your newly-assembled program to be run.

The LOGOFF command must begin in card column 3.

Examples 83

Example 21: Housekeeping

Periodically you should take inventory of your data sets and dispose of the ones you no longer need. In this
example, you delete several old data sets residing on tapes, erase some unneeded data sets residing on public
storage, convert a source data set to punched cards, and copy another data set from a public disk to tape.

After completing the Locox procedure, the system invites you to begin your task.

S,Y: PC?
This command causes brief catalog entries for all of your data sets to be printed at your
terminal. If you had specified a fully qualified data set name as operand, you would be
presented with the status of that data set only; if you had specified a partially qualified
data set name as operand, each data set possessing the same qualification would be
presented.

SYS: DATA SETS IN CATALOG WITH QUALIFIER ADUSERID
ADUSERID.ABLE.1, ACCESS=RW
ADUSERID.ABLE.2, ACCESS=RO
ADUSERID.BAKER, ACCESS=R0O, OWNER=ROGERG**

.

ADUSERID.QUT10, ACCESS=RW
ADUSERID.SOURCE.AT2, ACCESS=RW
ADUSERID.SOURCE.AT2EX12, ACCESS=RW
YOU: (press attention button) .
By pressing the attention button you have terminated the presentation of the catalog.
You need more information about two of your data sets and request this with a DSS?
command.

S,Y: DSS? 0OUT10

SYS: ADUSERID.OUT10
VOLUME :101010 (9-TRACK TAPE)
ORGANIZATION: PS

S,Y: DSS? SOURCE.AT2EX12

SYS: VOLUME: PB8171 (2314)

ORGANIZATION: VI PAGES: 00001

REFERENCE DATE: 195/70 CHANGE DATE: 195/70
RECORD FORMAT: V RECORD LENGTH: 00132
KEY LENGTH: 00007 KEY POSITION: 00004

S,Y: DELETE OUT10
You decide to use tape 101010 as a scratch tape, and to ignore the data set named
OUT10. So you issue this command to delete the entry in your catalog for the data set.

S,Y: PUNCH DSNAME=SOURCE.AT2EX12, STARTNO=9,ENDN0O=88,ERASE=Y
You decide that your AT2EX12 program is used too infrequently to warrant retention on
the system. With this command you cause its source program to be punched on cards
which you will retain. By specifying the ninth character of your terminal line as the first
character to be punched in column 1 (STARTNO=9) vou will cause the suppression of
the system-supplied 7-digit line number and of the input indicator in column 8. Your last
character (ENDNO=88) will be pumched in column 80 on the card. You specify that the
data set is to be erased at the conclusion of the punch task.

84

SYS:

S,Y

S,Y

SYS:

S,Y:

SYS:

SYS:

ERASE SOURCE.AT2

POD? USERLIB,,Y

The system informs you that a nonconversational task has been established for your
PUNCH request. A unique batch sequence number (BSN) will be given to you at the
terminal.

You decide to also erase another source program which is similar to the one you had
punched on cards. It is erased from storage, and its catalog entry is deleted.

Now you request a list of each object module on your USERLIB. You specify that for
each module, the listing of any aliases. An alias is an external name other than the
module name such as CSECT name or external entry point name. Member oriented
data (system and user) is omitted by default.

The requested data for each member of USERLIB will be presented at your terminal.

ERASE USERLIB (AT2EX12)

You erase your AT2EX12 object program module from your USERLIB and delete its
entry from the USERLIB directory. All forms of your AT2EX12 program have been
removed from the system. You retain only the source program on the card deck.

WT DSNAME=SOURCE.ATIMES,DSNAME2=SVATIMES, VOLUME=999999, STARTNO=9,~

ENDN0=88,ERASE=Y

USAGE

LOGOFF

This command causes the creation of a separate nonconversational task to write your
SOURCE.ATIMES data set on one of your tapes (volume number 999999). You specify
start and end column numbers so that the tape can be later used to print or punch the
data set,

The system informs you that a nonconversational task, with a unique BSN, has been
established for your WT (write tape) request.

After the data set is written, its public disk storage is erased and the catalog entry for
SOURCE.ATIMES is deleted (because of the ERASE parameter). A new catalog entry
is created for the data set SVATIMES.

You request a listing of all resources that have been used by you since you were joined
to the system. This will be useful to you for accounting purposes and will show you
whether you are currently using more storage than you reasonably need so that you may
delete unnecessary data sets. The USAGE command will also list your user limits for
each resource as well as the resources you have been using since the current LOGON, a
facility you can use in planning a task and in making sure that you will not exceed the
number of devices allocated to you.

You will receive an accounting for the following resources: permanent storage (in pages
used), temporary storage, direct-access devices, magnetic tapes, printers, card reader-
punches, bulk input, bulk output, TSS tasks, total time that your terminal was con-
nected to the system, and CPU time used.

The system accepts the LOGOFF request.

Examples 85

Example 22: Use of Generation Data Groups

Successive, historically related data sets can be cataloged as a generation data group (cpc)—(for example, similar
payroll records that are created every week). They can be stored and accessed by their relative generation num-
ber (mostly recently stored is 0, next previous is —1, etc.). Or, each data set (called a generation) in the group can
be referred to by its absolute generation name (this is explained in Part 2 of this example).

This example shows the establishment of a cpc and both types of references. It also illustrates the use of
private libraries and tapes.

Part 1: Establishing a Generation Data Group and Relative References
You complete the LoGoN procedure and begin your task.

S,Y: DDEF PAYLIBDD, ,PAYLIB,0PTION=JOBLIB

You define for this session your job library data set which is on your own private disk.
In it resides your program for establishing a GDG for processing payroll records. Since
it is the most recently defined library, the system places it at the top of your program
library list.

SYS:
You will be notified that your task is waiting for the operator to mount the private
volume defined above. The task will proceed when mounting is complete.

S,Y: DDEF CRNTIDD, ,CURRENT

You also define for this session the data set which contains this week’s report for your
payroll program.

SYS:
Your task will wait while the operator is mounting the private volume containing the
data set named CURRENT.

S,Y: CATALOG GDG=PAYROLL,GNO=5,ERASE=Y

This command causes the establishment of a special entry in your catalog to describe
the generation data group named PAYROLL. You specify that a maximum of five data
sets (generations) are to be maintained in the GDG. You will be adding generations in
chronological order, thus retaining only the most recent five. The oldest generation will
be erased when there are more than five.

S,Y: DDEF WK37DD,VS,PAYROLL(+1)
You define the new data set (or generation) which your program will write. It will reside
on public storage by default. The system will automatically catalog it. A positive relative
number (in this case 1) designates a generation about to be created. (0) is used to refer
- to the most recently created generation, (—1) the generation just prior to the most
recent, etc. When a new generation is cataloged, that generation assumes relative num-
ber {0) and all other relative generation numbers are decreased by one.

S,Y: PAYUPDAT
- You cause your payroll updating program to be loaded from your private library, and
run. It reads your data set named CURRENT, processes it, and then writes the data
set (generation) you defined above. Then it prints a message at the terminal.

PGM: 'WEEK37' PAYROLL FINISHED.
A data set which was written during a previous session can be added to this CDG. You
would simply use the CATALOG command to change its data set name to PAYROLL
(+1).

86

S,Y: LOGOFF
SYS:
LOGOFTF is then accepted by the system.

Part 2: Absolute Reference
You complete the LOGON procedure and begin your task.

S,Y: DDEF PAYLIBDD, ,PAYLIB,OPTION=JOBLIB
You define the job library.

SYS:
You will be notified that your task is waiting for the operator to mount the private
volume defined above. The task will proceed when mounting is complete.

S,Y: DDEF CRNTDD, ,CURRENT
You define the cataloged data set which contains payroll information for this week,

.

S,Y: DDEF WK37DD, ,PAYROLL(O)

You also define the data set you wrote and cataloged last week. Your program uses it
for input too.

S,Y: DDEF WK38DD,VS,PAYROLL(+1)
This command defines the data set your program will write for this week, and auto-
matically places the entry in your catalog, as PAYROLL (0).

The data set for last week can now be referred to as PAYROLL (—1).

You may also refer to a data set in a generation data group by its absolute generation
number. The system provides a unique name for each generation (by which it is cata-
loged by appending to the group name the absolute generation number of the form
GxxxxVyy, where xxxx is the generation number and yy indicates the version of a
particular generation,

S,Y: PAYUPDAT
Again you run your payroll updating program.

PGM: 'WEEK38' PAYROLL FINISHED.
And your program prints its message.

The oldest generation in your catalog PAYROLL (—1) has been assigned the absolute
generation name PAYROLL.G0001V00, and the current generation PAYROLL (0) has
been assigned the name PAYROLL.G0002V00.

You can provide gaps in the sequence of absolute generation numbers by specifying a
relative generation number greater than +1 when you define the latest generation.
Thus, if you had specified +3 in the DDEF command above (instead of +1), the
absolute generation names would be PAYROLL.G0001V00 and PAYROLL.G0004VO0O.
However, the relative numbers would be PAYROLL(—1) and PAYROLL(0), respec-
tively. If you now insert a generation with absclute name PAYROLL.G0003V00, the
relative numbers would be adjusted.

Absolute generation names are useful if you want to update a generation with a new

version. The system does not automatically create nonzero version numbers. You can
do so with the CATALOG command, as shown below.

S,Y: DDEF CHNGDD,VS,CHNGWK37
You define a cataloged data set which one of your payroll programs will write.

Examples 87

S,Y: PAYCHNG
This program alters last week’s payroll data set and writes a temporary data set.

S,Y: CATALOG DSNAME=CHNGWK37,STATE=U,ACC=U, NEWNAME=PAYROLL.G0O0O01VO1l
You specify that your catalog entry is to be updated (U) so that it points to the altered
data set, which is identified by a new version number. Since the data set which was
replaced is on public storage, it is automatically erased.

S,Y: LOGOFF

5YS:
LOGOFF is accepted by the system.

88

Example 23: Creating and Using a User Macro-Library

A number of macro definitions are made available to you with 1ss. Examples of these are caLL, save, and reTuns,
These macro are defined on a Tss library termed the “System Macro Library.” You may, if you wish, create a
macro library for your private use, termed a “user macro library.” This example describes how you create and use
such libraries. Appendix A gives more detailed information on user macro libraries.

Since user macro libraries contain many lines, they are usually created in nonconversational mode, as they are

in this example.

LOGON ADUSERID,,,ADACCT40
LOGON and LOGOFF must begin in the third column.

EDIT USERSYM, TOTAL,S8

This command will cause the system to create a REGION data set named USERSYM
from the statements that follow it. These statements will define your macros. The first
region will be called TOTAL. The keys for each region will be 15 bytes long, position
1 to 8 for the name of the region, positions 9-15 for the line counter.

0000100 MACRO
0000200 TOTAL &NUM,®,&AREA

0000300 L ®, &NUM(1)
0000400 A ®,&NUM(2)
0000500 A ®, &NUM(3)

0000600 ST ®, &AREA
0000700 MEND :

The first macro you create is named TOTAIL. The macro definition is given between
the MACRO and MEND statements.

0000800_REGION PREFIX
This command describes the next region of your macro library.

0000100 MACRO
0000200 PREFIX &PSECT
L

0000300 14,72(0,13) GET PSECT POINTER
0000400 ST 14,8(0,13) FORWARD POINTER
0000500 ST 13,4(0,14) BACKWARD POINTER
0000600 LR 13,14 PSECT BASE REG

0000700 USING &PSECT,13

0000800 MEND
Your second macro is named PREFIX. This macro contains code that is generally
executed following a SAVE macro instruction.

0009000_REGION TESTD

This command describes the next region of your macro library.

0000100 TESTD DSECT

0000200 LENGTH - DS F RECORD LENGTH
0000300 LINE DS 7C RETR LINE NO
0000400 CODE DS X INPUT CODE
0000500 INDATA DS 80C INPUT DATA

Your last entry to your macro library is not a macro but a DSECT copy parcel named
TESTD. (Although TESTD is not a macro, it will sometimes be considered one in gen-
eral discussions of your user macro library). The assembler will cause this DSECT to be
brought into your program when it encounters your statement:

COPY TESTD

0000600_END

The _ END will signal entry of the last line of the USERSYM data set—your macro
library.

Examples 89

90

DDEF SOURCE,VI,USERSYM
DDEF INDEX,VS,USERNDX

SYSINDEX

UNLOAD SYSINDEX

These two commands will define for the current task the macro definition and index
data sets. SOURCE and INDEX are data definition names required by the SYSINDEX
service routine. They will be automatically cataloged as new data sets, with access
qualifier="U.

The SYSINDEX routine will scan the data set containing your macro definitions and
copy parcel (USERSYM). It will then create a data set that you named USERNDX
when it was defined in the previous command. This data set will contain the names of
your two macro definitions and the copy parcel.

As the SYSINDEX routine is no longer needed, you may unload it.

ASM TESX,N, (SOURCE, INDEX) ,LISTDS=Y

&NAME
&NAME

TESTP

TEMP
TEMPAREA
MESSAGE
MSGLEN
MSGIN

TEST
TESTE

You will then assemble a program using your newly-defined macro library. (Position
operand notation is used for ASM in this example).

Your assembler parameters provide the module name TESX and specify that source
lines are not prestored (N). SOURCE and INDEX are the ddnames for the definition
and index data sets. In nonconversational mode you must ask for a list data set explicitly.

Note that DDEF commands for SOURCE and INDEX were issued preceding the
execution of SYSINDEX, so you need not issue them again. The data set named
SOURCE.TESX will be automatically defined and cataloged by the system.

MACRO

MOVE
ST

L

ST

L
MEND
PSECT
DC

DC

bC

DS

DC

DC

DC

DC

DC
ENTRY
COPY

CSECT
SAVE

The next 7 source statements show how you may define a macro (named MOVE)
within your source statements. This macro would override a macro of the same name
defined in your macro library.

&T0,&FROM
2,TEMPAREA
2,&FROM
2,&T0
2,TEMPAREA

F'76' LENGTH SAVE AREA
18F'0' REMAINDER OF SAVE AREA
F'o'

CL80 MSG LOCN

F'o’ MSG LEN

Fro2'

€'0000100"

X'00°

CL80C'TEST MOVE EXECUTED'
TESTE

TESTID

The five lines in your macro library with the name TESTD will be copied without
change into your source program at this point.

(14,12)

PREFIX TESTP

The statements that are normally used following a SAVE macro instruction will be

copied here, including a USING TESTP,13 instruction.

USING TESTD,3

USING TESTE,12

LR 12,15 LOAD COVER REG
LA 3,LENGTH COVER DSECT _
MOVE MSGLEN,LENGTH DATA LENGTH

The macro instruction defined in this assembly will be expanded here.

MVC MESSAGE, INDATA MOVE DATA
GATWR MESSAGE,MSGLEN WRITE DATA

L 13,4(13} RESTORE CALLING REG
RETURN (14,12),T

END TESTE

PRINT LIST.TESX,,,EDIT,Y

TESX
LOGOFF

Positional operand notation is used here. The system will establish a nonconversational
task to print the current generation of LIST.TESX. The data set will be erased after
printing is completed.

You run your program and then LOGOFF. SOURCE.TESX has been automatically
cataloged at ASM time. The system issued the necessary DDEF command.

Examples 91

Example 24: Use of the Linkage Editor

In this example, the basic facilities of the linkage editor are shown. Object modules LEMODI, LEMOD?, and LEMODS
are assumed to already exist. You desire to first link these three modules that reside in a library on the program
library list. You then wish to combine two control sections (csecTt and csect2) of a fourth module (EvLEL) and
add it to the output. This example is divided into two parts, to portray the linkage editor use with both dynamic
and prestored control statements.

Part 1: Conversational Linkage Editing: Control Statements Entered from the Terminal Keyboard

You complete the LOGON procedure and begin your task.

Define Libraries: You may then either enter DDEF commands that are required to
identify the libraries to be used during this linkage editor run, or, as shown below,
retrieve the DDEF commands from a previously cataloged line data set.

S,Y: CDD DSNAME=LNKED.DD

5YS:
Retrieves the DDEF commands cataloged under the data set name LNKED.DD, and

prints each on SYSOUT. One DDEF is used to define the library LKLIBI1 used in the
LNK command.

S,Y: LNK NAME=TS2LNK,STORED=N,LIB=LKLIB1,ISD=N,PMD=Y,LINCR=(500,100)

SYS:
Processes the parameters specified. You have told the system that control statements are
not prestored, the control statements will begin at line 500, a special library (LKLIB1)
has been established for the object module produced, you do not want an ISD, you
desire the PMD listing. When the linkage editor is ready for a control statement, you
will receive the first line number at your terminal. You enter the content for the line
and press the return key. The line is then made available to the linkage editor.

0000500INCLUDE {LEMOD1,LEMOD2,LEMOD3)

0000600COMBINE CSECT1,CSECT2
As each control statement is received by the linkage editor, it is analyzed for correctness
and processed according to the particular functions it specifies. If errors are discovered
by the linkage editor, a diagnostic message is typed at the terminal, prompting you to
correct the statement in error. The modules LEMOD1, LEMOD2, and LEMOD3 exist
in USERLIB or in the libraries named in the DDEF commands containing OPTION=
JOBLIB. The CDD command produced these DDEF commands.

mwn
<

S,Y: 0000700INCLUDE, (EYLEL)
SYS: 0000700 E***ILLEGAL DELIMITER

.
700, INCLUDE (EYLEl)

You correct the statement in error.

SYS: #

YOU (press return key)

S,Y: OOOO800END
You signify that all desired linkage editor control statements have been entered by
specifying an END control statement. At this time the linkage editor attempts to resolve
any unresolved external references by an automatic search of the libraries on the pro-
gram library list. It then provides a list, at the terminal, of all finally outstanding un-
resolved external references, distinguishing those that can be resolved from SYSLIB
from those that need resolution from USERLIB or job libraries at execution time.

92

SYS:
The linkage editor finds no errors and completes necessary processing. The output

module is automatically stored in the library with ddname LKLIB1. The names of the
original modules are retained as auxiliary entry points of the link edited module. Linkage
editor processing is thus concluded. The system solicits vour next command.

S,Y: LOGOFF
SYS:
The system accepts the LOGOFF request.

Part 2: Conversational Linkage Editing: Control Statements from o Prestored Data Set
This is identical to Part 1, except that the linkage editor control statements are obtained from a prestored data set.
Thus, correction lines are treated in a slightly different manner.

Statements as shown in Part 1.

S,Y: LNK TSZLNK,Y,LKLIB1,,N,Y, (500,100)

SYS:
Processes the parameters specified. Here, however, you have indicated that control
statements are prestored.

SYS: 0000700 E***ILLEGAL DELIMITER
The diagnostic message appears at the keyboard.
The keyboard is unlocked so that you may make a correction.

S,Y: #
700,INCLUDE (EYLEL) _
You enter the correction line.

SYS: #
YOU: (press return key)
: Statements as shown in Part 1.

Examples 93

Example 25: Tape and Disk-Medium Transfers of Virtual Access Method Data Sets

In this example, three commands provided for manipulation of vam data sets are presented. They are Tv (TAPE to

VAM),

vt (vaM to TAPE), and vv (vaMm to vam). The data sets to be copied are assumed to exist, and are cataloged.

You complete the Locon procedure and begin your task.

SYS:

SYS:

L
(2R

SYS:

SYS:

nwn
nu

94

DDEF DDVTOQUT,PS,COPY1,UNIT=(TA,9),VOLUME=(PRIVATE)

VT DSNAME1=0RIGIN1,DSNAME2—=COPYl
Data set ORIGIN1 already exists as a VAM data set. COPY1 is the name assigned to
the magnetic tape copy of this data set. The installation default for LABEL is assumed.

When the data set is successfully copied, you will receive a message indicating the
names of the input and output data sets, as well as the file sequence numbers and
volume serial numbers used.

RELEASE DDVTOUT
You wish to copy another data set (ORIGIN2) onto another tape. You therefore release
DDVTOUT and issue command again.

DDEF DDVTOUT,PS,COPY2,UNIT=(TA,9),VOLUME=(PRIVATE)

VT ORIGIN2
Here the output data set name is not given. The output data set name will become
ADUSERID.TA000001.ORIGIN2, where TA000001 is an arbitrary number to assure
uniqueness for the fully-qualified data set name,

The system will signify a successful copy. Any failure to copy successfully will result in a
diagnostic message and cancellation of the command.

DDEF DDCOPYB,VS,COPYBACK
TV DSNAME1=ADUSERID.TA000001.0RIGIN2,DSNAME2=COPYBACK

The data set just produced on a 9-track magnetic tape is copied on direct access storage
(public) in VAM format. An appropriate system message will be issued to signify whether
or not the copy attempt was successful. It is assumed that ORICIN2 was a virtual
sequential data set. COPYBACK is thus defined as having VS organization.

DDEF DDCOPY3,VI,COPY3

VV DSNAME1=0RIGIN3,DSNAME2=COPY3
The data set named ORIGINS is copied into public storage, assigning the name COPY3.
It is assumed that ORIGINS has virtual index sequential organization. Therefore COPY3
is so defined.

An appropriate system message will appear, signifying the success or failure of the copy
operation.

DDEF PRIVDD,VI,COPY4,UNIT=(DA,2311) ,VOLUME=(,333333)

YV DSNAME1=0RIGIN4,DSNAMEZ2=COPY4
You desire to copy the data set ORIGIN4 onto a private VAM volume #333333 and
name the output data set COPY4.

An appropriate message will appear, signifying the success or failure of the copy
operation.

LOGOFF

Your LOGOFF request is accepted by the system. Your new data sets were automatically
cataloged.

Example 26: The Text Editor Facility

In this example, the basic use of the Text Editor facility is illustrated. One of the most important applications of
this facility is to create and edit data sets.
You complete the Locox procedure and begin your task.

S,Y: EDIT DSNAME=EX26

S,Y:
S,Y:
S,Y:

SYS:

YOU:

S,Y:

0000100 DEMO1l
0000200 DEMO2
0000300 DEMO3

0000400 _UPDATE

0000150 INSERT1

_INSERT 0000400

0000400 DEMO04
0000500 DEMOS
0000600 _END

EDIT DSNAME=EX26
EXCISE N1=0000200

INSERT 260,10

0000260 INSERT2
0000270 INSERT3
0000280 _END

LOGOFF

You invoked the Text Editor with this command. A DDEF command is not required
unless you are creating a new data set with a format differing from your default values.
You will be prompted with line numbers to enter text.

You enter data lines you wish to be part of the data set named EX26. Each time you
press the return key, the Text Editor prompts with the next line number.

You decide to make a change to the previous entries. By preceding UPDATE with an
underscore, known as a break character (_), the Text Editor immediately executes the
command.

The system will issue a message prompting for line number and data.

You add line number 150 to your data set.

You now want to continue entering data at the point where you left off earlier. INSERT

is preceded by a break character, since the system expects data and not a command
following UPDATE. ‘

You terminate Text Editor processing.

You reinitiate editing on the same data set.

Line number 200 of the data set will be deleted.

You wish to insert additional lines, starting with line 260 and proceeding in increments
of 10.

Text Editor processing is terminated.

You decide to terminate your conversational task. The system accepts the LOGOFF
request.

Examples 95

Example 27: The Text Editor Facility

In this example, the Text Editor is shown using most of the updating capabilities of the facility. It is probably
much more complex than you might wish for a single terminal session, but attempts to portray the flexibility of
the commands available.

After completing the LocoN procedure, you begin your task.

S,Y:

ORGP R R G

*e 04 04 94 ss v se

Lnunnunununununnnnnn

SYS:
YOU:

96

: DEFAULT TRANTAB=Y

EDIT DSNAME=—EX27,RNAME=REGION2,REGSIZE=8
You invoke the Text Editor. A DDEF command is not required. Because you wish to
produce a region data set, you define a region name for EX27 and assign a region
name size.

0000100 LINEA
0000200 LINEB
0000300 LINEC
0000400 LINED
0000500 LINEE
0000600 LINEF
0000700 LINEG
0000800 LINEH
0000900 LINEI
0001000 LINEJ

0001100 _END
You enter the lines you wish to constitute REGION2 of data set EX27. You then termi-

nate Text Editor processing.

You wish to use the ENABLE, DISABLE, POST, or STET commands in editing your
data set. Since no transaction table is normally kept (TRANTAB=N), you must reset
the default to Y.

EDIT DSNAME=EX26
You invoke the Text Editor for data set EX26 which you created in the previous

example.

NUMBER N1=300,N2=500,NBASE=300,INCR=50
DISABLE

: EXCERPT DSNAME=EX27,RNAME=REGION2,N1=600,N2=1000.

These lines will be inserted in the current data set, EX26.

CONTEXT N1=300,N2=500,STRINGL=DEMO, STRING2 =XXXX
The data set is searched for the character string DEMO for occurrence in lines 300 to 500
only. Wherever it is found, XXXX will replace the occurrence.
NOTE: This facility is useful for symbol replacement in source language data sets,

ENABLE
Up to this point, the revisions made since DISABLE was issued above were temporary.
These revisions are now permanent, with the ENABLE command execution.

CORRECT N1=1006,SCOL=0

Standard correction characters are assumred, by default.

DEMO1

£
The result will be DEMO.

S,Y: POST
With this command you make permanent all editing commands issued for the current
data set.

S,Y: END
You terminate Text Editor processing of EX26.

S,Y: EDIT EX27,RNAME=REGIONZ2
You initiate Text Editor processing of EX27. The current region is now REGION2.

S,Y: LOCATE STRING=LINEF
The entire data set EX27 is searched for the character string LINEF.

SYS:
The line in which LINEF is first discovered is displayed at the terminal.

S,Y: LIST N1=100,N2=500,CHAR=H
The first five lines of the current region (REGION2) will be displayed in hexademical
notation.
Text Editor processing is terminated.
S,Y: LOGOFF
The LOGOFF is accepted by the system.

Examples 97

Example 28: Use of Procedure Definition (PROCDEF)

In this example, you are shown how to create a procedure, tailored to your needs, to be called at a later time just
as if it were a system-supplied command. You have also decided to change the system command prompt string
for this terminal session by invoking the MCAST command.

You complete the Locon procedure and enter your first command.

S,Y:

twhhn
g
04 0a oa O

98

MCAST CP=**:

- The initial default for the system command prompt is an underscore and backspace. You
decide to change this prompt to a pair of asterisks with no carriage return. Thus you
issue the MCAST command with the CP (Command Prompt) parameter.

**PROCDEF NAME=ASMPGM

0000100 PARAM MODULE

0000200 ASM MODULE

0000300 PRINT LIST.MODULE,,,EDIT,Y

0000300 _END
This procedure will now be available for calling using the name ASMPGM. It allows
you to define a module name for assembly. By calling the established procedure, and
giving it a unique module name to use, both the assembly and printing of the resulting
Iisting data sets can be accomplished.

** ASMPGM MYMOD
The procedure established above (via PROCDEF) will now be activated. The actual
module name (MYMOD) will replace the dummy module name (MODULE) wherever
it occurs.

**PROCDEF NAME=SETUP
0000100 PARAM STORED=$1, ISD=§2, SYMLIST=$3, CRLIST=§$4, MACROLIB=$5
0000200 DEFAULT STORED=§1, ISD=§2, SYMLIST=$3, CRLIST=$4, MACROLIB=§5
0000300 _END
This procedure will now be available to vary the default values for certain ASM
parameters.

**SETUP Y,N,Y,Y, (SRC,NDX)
Some ASM parameter default values have been adjusted to suit your requirements.

**DDEF SRC,VI,MACSRC; DDEF NDX,VS,MACRNDX
MACSRC and MACRNDX are the DSNAMES for the symbolic and index portions of
a macro library.

: **ASM MOD1

You now proceed with the assembly of MOD1 with the adjusted default values.

*+*PROCDEF ZLOGON
Here the operand (ZLOGON) for the PROCDEF command is shown without the use of
a keyword.

0000100 DDEF STOREIT,VP,MYLIB,0PTION=JOBLIB
0000200 _END
' You decide that each time you LOGON you would like a certain job library defined for
any object modules you may produce. By assigning ZLOGON as the procedure name,
you insure its automatic call as soon as LOGON is accepted. MYLIB is assumed to be
an existing, cataloged data set. Since PARAM was not used you cannot change any of
the values in the DDEF command.

**LOGOFF
The LOGOFF command is accepted by the system.

Example 29: Use of the BUILTIN Procedure

In this example, you are shown the use of BUILTIN, as a user-defined procedure. This facility allows you to invoke
an object program just as if it were a system-supplied command. You choose a program (already containing the
BPKD macro in its psect} which causes a data set to be created. You will later invoke the KEYWORD command
to obtain a listing of all your user-created commands existing in USERLIB.

You complete the LocoN procedure and begin your task. The program which you will later invoke, includes the
tollowing source statements.

PST29 PSECT
ENTRY STRT29 ’

AREA DS 80C DATA AREA
DCBNM DCB DDNAME=0UTDD,RECFM=FA

USER29 BPKD STRTZ29

CST29 CSECT

STRT29 EQU *

LA 2,20 SET FOR 20 CYCLES
OPEN (DCBNM, (OUTPUT}) OPEN DCB
LABEL EQU *

(create record at AREA)

PUT DCBNM,AREA PUT RECORD IN DATA SET
BCT 2,LABEL RECYCLE
CLOSE (DCBNM) CLOSE DCB

EXIT

END

Assuming that the above module was assembled witheut specifying a job library,
your USERLIB will contain it. The sequence to follow indicates how you may invoke
the module which creates a data set containing 80 character records, via BUILTIN.

S,Y: BUILTIN NAME=DOPROG,EXTNAME=USER29

The object program definition via your user-created command (DOPROG) is now
established.

S,Y: DOPROG
- You decide to invoke DOPROG. The program shown earlier will now be retrieved from
your USERLIB, and executed beginning at entry point STRT29. Control will return to
your terminal at EXIT time.

S,Y: KEYWORD
You request a listing of all the command names in your USERLIB.

SYS:
(The command names are printed at your terminal, one command strmg per line. Any
associated parameters will be printed in the same format as they appear in the PROCDEF
or BUILTIN commands.)

S,Y: LOGOFF
SYS:
The LOGOFF command is accepted by the system.

Examples 99

Example 30: The User Profile Facility

In this example, you are shown how to manipulate your copy of the prototype user profile, made available to you
at yoiv time. This prototype profile is a member of your user library (UserLIs).

You complete the LoconN procedure and enter your first command.

S,Y: DEFAULT DSORG=VS
The data set organization field was originally defaulted by the system to VI (indexed
sequential). You will now be using mostly VS organized data sets, so you set the default
va?ue (for the DDEF command} to virtual sequential (VS).

S,Y: DEFAULT DEPROMPT—=YES
At some previous time, the value of DEPROMPT had been set to “no.” For future use,
you decide that all partially qualified names entered for either the ERASE or DELETE
commands should be audited. The value of “yes” will cause individual data set names
to be presented.

S,Y: SYNONYM DOPROG=PRINTDS

The BUILTIN procedure named in Example 29 can now be invoked with either name:
DOPROG or PRINTDS.

S,Y: SYNONYM FINIS=DISPLAY 'TASK COMPLETED’
When FINIS is invoked, the message: TASK COMPLETED will appear on SYSOUT.

S,Y: PROFILE
You decide to make the changes applied to your session profile by the SYNONYM and
DEFAULT commands, a permanent part of your user proﬁle.

S,¥: FINIS

SYS: TASK COMPLETED
The command FINIS was established earlier in the session, using the SYNONYM com-
mand. Since the PROFILE command was later invoked, FINIS may be used in subse-
quent sessions to produce the same message.

S,Y: LOGOFF
SYS:
The LOGOFF is accepted by the system.

Example 31: Use of the OBEY Macro

The 0BEY macro instruction allows the user to execute a command or command statement even though not in
command mode. Upon execution of the oBeEY macro instruction, the command or command statement specified via
the macro instruction operands is executed; control is then returned to the user’s program. oBEY may be used
anywhere in the user’s program.

CST5 CSECT
ENTRY STRTS
STRT5 EQU *
OBEY 'DDEF OUTDD, ,OUTDS'

.

100

LA 2,20
OPEN
LABEL EQU *

(create record at AREA)

-

PUT DCBNM,AREA
BCT 2,LABEL
CLOSE {DCBNM)

EXIT
AREA DS 8a0cC
DCBNM DCB

END

(DCBNM, (OUTPUT))

SET FOR 20 CYCLE
OPEN DCB

PUT RECORD IN DATA SET
RECYCLE
CLOSE DCB

DATA AREA

DDNAME=0OUTDD , RECFM=FA , DSORG=VS

Your program will write a data set with 80-character records from the storage area
named AREA. Notice that your DCB macro instruction includes the DDNAME that
is a parameter in the OBEY of the DDEF command, which in turn contains the name
of the data set (OUTDS). The DDEF command relates the correct data set to your
program because every data set name must be unique in your task.

The Appendixes in this publication give detailed in-

formation on the use of Tss by assembler language
programmmers.

Appendix A, “Use of the Tss Assembler,” describes
the format of assembler statements, correction tech-
niques, diagnostic actions, assembler parameters, as-
sembler output, assembler restrictions, and user macro
libraries.

Appendix B, “Problem Program Checkout and Mod-
ification,” considers the use of the Program Control
System (Ppcs). Prompting and diagnostic facilities, pro-
gram listings, and use of the Linkage Editor are also
discussed. Conceming pcs, only certain aspects are
covered—in particular, diagnostic action. Command
System User’s Guide is the primary reference for the
use of the Program Control System.

Appendix C presents assembler language program-
ming considerations. The initial sections of this ap-
pendix describe programming techniques and sample
programs that allow the programmer to write programs

Part IV. Appendixes

with a minimum of effort. Later sections of this appen-
dix discuss more complex programming considerations.

Appendix D discusses interrupt considerations, in-
cluding use of the terminal attention key and the
various macro instructions provided with Tss/sso for
control of interrupts. The publication Assembler User’s
Macro Instructions gives more detailed information
on interrupt-handling macro instructions.

Appendix E is a guide to the use of ppEr command.

Appendix F describes various user-defined proced-
ures available. Representative examples are given.
Procedure Definition (rrocper), user's own code
procedures (BuiLTiN), and the User Profile Facility
are portrayed.

The commands available in Tss are described in the
examples given in Part II1 and are presented in detail
in Command System User’s Guide.

Appendixes 101

Appendix A. Use of the TSS Assembler

Problem-Program Preparation

In Time Sharing System, a problem program is the
collection of instructions and data that the user speci-
fies for the solution of some well-defined problem.
The term problem program thus differentiates user-
written application programs from system programs.

Problem programs may be in the system as source
programs or object programs. A source program is in
the symbolic form in which it was written by a user.
It consists of a series of statements coded in one of the
source languages available in TSs (FORTRAN 1v, PL/I or
assembler). An object program, in hexadecimal code
or machine language form, is relocatable and can be
loaded and executed by the system.

Language Processing

The operation that converts a source program to an
object program, called language processing, is illus-
trated in Figure 14. Note the terms source program
data set and object program module. A source program
data set is the collection of all source statements sub-
mitted for processing during any single assembly or
compilation. An object program module is the prin-
cipal output of a single assembly or compilation. A
source program data set and its corresponding object
program module may represent all or part of the ac-
tual program required to solve a user’s problem. A
user can thus design his problem program in sections
and, separately, assemble or compile each section. He
can then, if he has supplied the proper symbolic link-
ages between sections, use the system to combine var-
ious sections prior to, or during, program execution.

. ASM

2. Porameters Librory at
the Top of

the Program
Library List

3. Source Program
Data Set

Language
Processor Program
Module
SN
V \
S/ \
 Listing Data Set
yd and/or Source \ Listing
\

Program Data Set Data Set (if requested)
User
N\~ Catalog —

{Optional)

Figure 14. Language Processing

102

Language Processing in Conversational Mode

To initiate assembler language processing in conversa-
tional mode (see Figure 14), the user issues an asm
command with the desired parameters. He must enter
them all at the same time as the system will not prompt
for individual parameters. The parameters to be en-
tered, listed below, are dependenet upon whether the
source program is prestored and on options selected
by the user.

¢ Module name of the object program module being
created: The source data set for the object module
will be named source.module; the associated list-
ing data set will be named rist. module.

* An indication of whether the source program data
set is prestored or is to be made available via sysin:
If the source program is made available via sysIN,
the user can also specify its starting line number
and the value by which the line numbers are to be
incremented (values of 100 and 100 are assumed,
if the starting line number and increment value
are not specified).

® Version identification of the module: This consists
of one to eight user-supplied alphameric characters,
the first of which need not be alphabetic. If a ver-
sion identification is not supplied, the listing is time
stamped.

¢ The ddnames of the symbolic and index portions of
the user-written macro libraries to be used in addi-
tion to the system macro library: If this parameter
is omitted, only the system macro library is as-
sumed.

® An indication of whether these options are wanted:
Internal symbol dictionary
Source data set listing
Object program module listing
Cross reference listing
Edited symbol table
Internal symbol dictionary listing
Program module dictionary listing

When these inputs are provided, language process-
ing of the source program begins. The user can issue
source program statements from his terminal, in re-
sponse to system prompting; or he can make the source
statements available from a prestored data set. When
using a continuation character in statements extending
beyond 80 characters, he must observe the continua-

tion conventions of the source language. An END state-
ment is always included in the source program data
set to indicate the end of the input to the language
processor.

Prompting and diagnostic facilities arc available dur-
ing language processing. These facilities vary with the
way the source program data set is presented to the
system (as part of sysiN or as a prestored data set);
they are described under “Problem Program Checkout
and Modification,” Appendix B.

At the conclusion of language processing, the system
stores the object program module, by its module name,
in the user’s library or in his most recently defined job
library, if there is one. This completes source language
processing in the conversational mode.

Language Processing in Nonconversational Mode

The same commands are used to initiate nonconversa-
tional language processing as in conversational process-
ing; the same outputs can be produced. The user must
store the parameters required by the language proc-
essor in the sysiN data set immediately after the asm
command. However, the user has the option of making
the source program module available in the sysiv data
setorasa prestored data set.

Entry and Correction of Assembler
Source Statementis

This section discusses the format of assembler source
statements entered at the terminal keyboard, the termi-
nal card reader, and in card form for nonconversational
mode processing. If conversational mode, correction of
source statements is frequently performed by insertion
or replacement. Since assembly speed can be influ-
enced by the manner of making such corrections,
guidelines for eficient correction techniques are given.
A discussion of techniques for entering keyboard lines
so that they can be punched and reentered in card
form is also included.

Format of Source Lines

Input Sources

A source program is a sequence of source statements
that have either been punched into cards and entered
by card reader, typed at the keyboard of a remote ter-
minal device, or both. Individual source statements may
also contain card lines, keyboard lines, or both. Source
statements formats differ between the two sources. The
card format is identical to that used in other assembler
languages. The keyboard format has been designed

for ease of operation at typewriter-like terminal de-
vices. A name field, comment line, or continued line
must begin immediately following the line number (no
space). If the line is not one of the above, one or more
blanks must follow the line number.

Statement Bounduries—Card Format

Source statements are normally contained in columns
1-71 of initial cards and columns 16-71 of any continua-
tion cards. Free form may be used, however. Therefore,
columns 1, 71, and 16 are referred to as the “begin,”
“end,” and “continue” columns, respectively. This con-
vention can be altered by use of the input format con-
trol (1ctL} assembler instruction. The continuation
character, if used, always immediately follows the
“end” column.

Continuation Lines—Card Format

When necessary to continue a statement on another
card, the following rules apply:

1. Enter a continuation character (not blank and not
part of the statement coding) in column 72 of the
initial card.

)

Continue the statement on the next card, starting in
column 16. All columns to the left of column 16
are ignored.

3. When more than one card is needed, each card to be
continued must have a character (not blank and not

part of the statement coding) punched in column
72.

4. Not more than two continuation cards can be used
for a statement, except in a macro instruction or
macro prototypc statement, where as many contin-
uation cards may be used as are necessary.

Note: When the nMopiFy command is used to alter
existing source statements, the continuation column
(72) is displaced to the right by as many positions as
the line number and the required comma occupy. For
example, if the following:

DC F70° RESERVE A 19 WORD SAVE -

AREA FOR CALLING PCM

represented two source statements, entered originally
on cards, and the hyphen (-) in the first line appeared
in column 72, alterations by the nMopiFy command will
causc adjustment. The user notices that 707 is not the
correct value and must change the source entry. As-
suming the line number was 400, the entry for »opwry
would be as follows: 400, bC F78° RESERVE A 19 WORD
savE -. The new source entry would now be offset four
positions to the right, relative to the original entry.

Appendix A. Use of the TSS Assembler 103

Character Sets—Card Format

ca and cB can be used to specify the character set used
during 1056 card reader input. With ca, the user indi-
cates he wishes to convert card input from 1057 card
punch code to eBcpic. With cB, the user specifies con-
version from 029 keypunch code to escpic.

Statement Boundaries—Keyboard Format

When entered from a terminal, source statements oc-
cupy the statement area of each keyboard line. The
statement area is that portion of the line between the
column at which the system releases the keyboard to
the user and the right- ‘hand margin setting. This area
may contain more or less than 80 characters, depend-
ing on the type of keyboard being used.

Many terminal keyboards available with Tss con-
tain both upper and lower case forms of the letters A
through Z. The upper case form must be used, except
within character constants or comments. However, if
the system is in xB mode (the default option), the
lower case characters will be translated into their
upper case equivalents, thus eliminating many of the
previously required shifting operations. A good general
practice is to set tab stops and make use of the tab key
to separate the various fields of the source statement.
This practice provides a simple method for formatting
the input program on the terminal paper without ex-
cessive manual spacing. When entering keyboard lines,
a single depression of the tab key is considered the
equivalent of one blank. Thus, when reference is made
to blanks, tab or blank is implied, unless specifically
stated otherwise.

Continuation Lines—Keyboard Format

When it is necessary to continue a statement that is
being entered from a keyboard, a hyphen (the key-
board continuation character) is typed at the point at
which continuation is desired, followed immediately by
a carrier return. The statement is continued at the first
character of the statement area of the next line.

If a line with an asterisk (*) in column 1 follows a
continued line, the * and-following columns will be
considered a continuation of the preceding line, not as
a comment line. For example, if this sequence occurs:

LINE NO. TEXT
0000500 L 2,-(CR}
0000600* COMMENT

the assembler will combine the two lines as follows:
L 2, *COMMENT

There is no restriction on the number of continuation
lines which may be entered in keyboard format. The
only restriction placed on the length of a statement is
that imposed by available assembler working storage.

104

NotEe: 1cTL statements in the source program apply
only to lines in card format and have no cffect on key-
board lines.

Character Sets—Keyboard Format

ka and kB can be used to specify the character set to be
used during keyboard input. With xa, the user indi-
cates he wishes to use the full ercpic character set dur-
ing input. With ks, the user specifies that the lower
case characters (a-z and ! ” ¢) be translated into their
upper case equivalents (A-Z and $ # @). When neither
is specified, kB is assumed.

Mixed Card and Keyboard Input

Assembler language source statements entered at the
terminal may be from the card reader (if one is avail-
able), from the keyboard, or from a mixture of the two,
without restriction,

The procedure for changing input mode is as fol-
lows. The system will expect lines from the keyboard
until the ¢ne of the commands ¢, ca, or ¢B is entered at
the keyboard. Once these characters have been en-
tered, input lines are expected from the card reader.
If a card containing command k, KA, or kB is encoun-
tered, lines are once again expected to be entered from
the keyboard. (See Terminal User's Guide for sysiN
Device Selection and Data Translation.)

Cauvtion When Changing Card-Origin Statements

Source statements from punched cards may later be
changed, using various commands of the Tss Text
Editor (the Text Editor commands are described in
Command System User’s Guide).

On assembly, each source statement of punched
card origin is treated as an 80-character record. Where
the statement has been shortened to fewer than 80
characters by changing it with a Text Editor command
after it has been stored, the assembler, before further
processing, pads the statement to 80 characters with
trailing blanks. Where the statement has been changed
to contain more than 80 characters, the assembler trun-
cates the statement to 80 characters.

Care must be taken in changing a card-origin source
statement so that, after padding or truncation by the
assembler, the statement will still conform to the cod-
ing conventions discussed in this section. (An example
might be a statement containing a sequence number
in the identification sequence ficld, columns 73-80.
The siatement is shortened one character during Text
Editing. The assembler pads with one trailing blank
in column 80, leaving columns 72-79 containing the
sequence number. Since column 72 is normally the
continuation column, an error results if the next source
statement is not a continuation line.)

Efficient Correction Techniques

Conversational correction of assembler statements is
normally made at one of two points in the assembly.
The first, called local correction, is when the user’s
keyboard is unlocked for a new or correction line.
This occurs following the assembler’s scan of the
statement just entered and the printing at the terminal
of any diagnostic messages associated sith that state-
ment. The second point at which corrections are nor-
mally made is when the entire program has been en-
tered (i.e., the Exp line has been entered) and a
message soliciting modifications is typed at the termi-
nal. This occurs only when errors have been detected
by the system. Corrections made at this point are called
global corrections. The distinction between local and
global corrections and between different types of local
corrections is important in that the user can minimize
the amount of processing required for a given assembly
by being aware of the effect of the correction upon the
assembly process. The following paragraphs describe
efficient correction techniques in detail.

After all global corrections are made, all the cor-
rected lines are collected and applied to the source
data set. The assembler then reinitiates the source scan
of each individual statement, beginning with the first
source line of the program. When local corrections are
made, reinitiation of the source scan may or may not
be required, depending upon the type of correction
made. Since it is desirable to minimize the number of
source scans, corrections that reinitiate the source scan
generally should not be made until the time for global
corrections is reached. This rule does not apply, of
course, where failure to make a correction would result
in many other diagnostics, such as an error in defining
a symbol.

A simple correction rule that can be assumed in the
majority of cases is: correction of a statement immedi-
ately following entry of that statement does not cause
reinitiation of the source scan; all other corrections do
cause reinitiation of the source scan. Example 1 below
demonstrates immediate correction; example 2 demon-
strates a correction causing reinitiation of the source
scan.

Example 1:

NOTES

Entry of this statement pro-
duces a diagnostic.

0000600E *** DATA OMITTED FROM DC OPERAND
#600,TABLE1 DS F

LINE NO. TEXT
0000600TABLE1 DC F

Immediate correction, entered
after the system has typed #,
causes the line to be replaced
at once. User presses return key
after #. User can then proceed
without re-scan.

(press return key)
0000700 . . .

Example 2:

LINE NO. TEXT
0000600TABLE1 DC F

NOTES

Entry of this statement pro-
duces a diagnostic.

0000600E *** DATA OMITTED FROM DC OPERAND
(press return key)
0000700TABLE2 DS F

User presses return key after #.

User ignores error by returning
carriage after # has been
printed, causing next line to be
solicited.

0000800% 600, TABLE1 DS F Since line 700 was error free,
line 800 is solicited. The user
now decides to correct line 600,
using % notation. This correc-
tion forces a rescan of the entire
source module.

000800 ... \When the module has been re-

scanned, the user is again solic-
ited for the next line and can
continue.

The position at which the keyboard is unlocked after
the system solicits a new statement corresponds to the
“begin” column in card format; i.e., a name ficld, com-
ment line, or continued line must begin immediately
following the line number. If the line is not a comment,
named line, or continued line, one or more blanks must
follow the line number.

If, after the keyboard has been unlocked for a new
line, the user wishes to correct a statement, he types a
percent sign (%) followed by the number of the state-
ment he is correcting and then the corrected statement.
In example 2 above, after line 800 is solicited, the user
corrects line 600.

If a diagnostic has been issued for a statement, the
system types a number sign (#) and then unlocks the
keyboard. The user may then enter the number of the
statement he is correcting (which is not necessarily the
previous statement) and then the corrected statement.
If the user decides at this point that previous errors in
his assembly would result in excessive diagnostics and
solicitations for corrections, he may respond by typing
the letter I and press the return key. This will inhibit
all further diagnostic messages from being printed at
his keyboard. He may also print the letter C and press
the return key; in that case he will continue to receive
diagnostics but will not be solicited for corrections. If
the error is a minor one, he may ignore the request for
correction by pressing the return key. Example 1 above
shows how the system continues to solicit corrections
until the user ignores the request.

Note that, in a correction.line, a comma must be
used to separate the line number from the corrected
statement.

Discussion of assembler response to more complex
local corrections requires a definition of three terms:

Appendix A. Use of the TSS Assembler 105

1. Partial Statement: A partial statement is the state-
ment currently being entered. Statements are partial
until a line is entered that is not a continued line. An
example of a partial statement is shown below. The
first line is a continued line, but the continuation line
has not yet been entered: (cr) notes carrier return.

ALPHA DC CLIGO'THIS IS AN EXAMPLE-{ CR)

2. Tentative Statement: A tentative statement is the
last statement completely processed by the assem-
bler. Thus, while a new statement is being formed
(i.e., is partial), the previous statement is defined as
being tentative. When a statement has been com-
pletely entered and the next line has not yet begun,
the statement just entered is termed tentative. An
example of a tentative statement is shown below,
where the second line is not a continued line.

DC CL16'0123456789-(CR)
ABCDEF’

HEXCON

The above lines are, of course, equivalent to the
following single line.

HEXCON DC CL16'0123456789ABCDEF’ (CR)

3. Committed Statement: The relation between a com-
mitted statement and a tentative statement is identi-
cal to the relation between a tentative statement
and a partial statement; once a statement becomes
tentative, the preceding statement becomes com-
mitted. In the following example, entrance of the
second statement causes the second statement to
become tentative and causes the first statement to
become committed.

GAMMA CSECT
USING ¥*15

The relation between the above types of statements
and assembler response to corrections is as follows:
1. Tentative and partial statements can be corrected
without causing a reinitiation of the source scan.

TEXT NOTES

MACRO

LINE NO.

0000100

0000200&NAME MACNAME P1,—{(CR)
Line 100 is tentative, Line
200 is partial, due to the
continuation character.

0000300&P2, &P3,—(CR)

0000400% 200, &NAME MACNAME &P1,—(CR)
Line 300 is partial due to the
continuation character. Line
400 is solicited, but program-
mer notices an error. Since
line 200 is still in partial
status, this correction does
not cause reinitiation of the
source scan.

106

0000400&P4,&P5 Entry of this statement
causes line 100 to become
committed and the composite
statement beginning at line
200 to become tentative.

0000500. . . Before the statement begin-
ning with line 500 is com-
pleted, corrections can still
be made to lines 200 through

400 without causing rescan.
2. Correction of committed statements does cause re-
initiation of the source scan.

LINE NO.

0000200RA EQU 125

0000300RB EQU 13

0000400 L RA,ALLPHA Causes a diagnostic due to an
invalid value for symbol RA.

0000400E *** R1 VALUE INVALID FOR FIELD
#200RA EQU 12

TEXT NOTES

Correction of a line prior to the
committed statement (line 300)
causes a reinitiation of the
source scan.

3. Insertion of a new statement between a committed
and a tentative statement does not cause reinitiation
of the source scan of the entire program. For exam-
ple, insertion of line 650 in the following example
requires that line 700 be rescanned, but lines prior
to 650 are not rescanned.

LINE NO. TEXT NOTES

0000600 SAVE (14,12) At completion of this state-
ment, line 600 is tentative.

0000700 EX 0,TAB(1) Line 600 is committed at this

peint, line 700 is tentative.

User elects to insert a line at

0000800% 650, L 1,0(1)
: this point. .

0000800. . .. User continues.

The source and object listings (if requested) are not
created until the entire program has been entered and
all corrections have been made. Thus the conversa-
tional terminal may contain many diagnostic messages,
but the listing contains diagnostics only for source
errors remaining after all corrections have been made.

Entry of Keyboard Source Statements for Later
Punching and Recompilation

It may be desirable to punch out source statements
entered at the keyboard in order to enter these state-
ments later by card reader; this is possible only if no
source statement contains more than one line, because
of the different conventions used in determining the
initial significant character in continuation lines. Key-
board continuation lines always begin in type position
1; card continuation lines begin in column 16 or in a
column specified in the rcrL instruction. (It is not per-
missible to specify that continuation lines begin in
column 1 in the 1cTL instruction.)

OPERATION

ASM

OPERAND

NAME = module name { STORED = {§}]

[LMACROLIB = ({data definition name of symbolic portion,

data definition name of index portion} [, ,. .{)T[,VERID = version identification]
[,ISD = {Y|N}] [SYMLIST = {Y|N}] [, ASMLIST = {Y|N}]

[[CRLIST = {Y|N|E}] [STEDIT = {Y|N}] [ISDLIST = {Y|N}]

[,PMDLIST={Y|N}] [,LISTDS={Y|N}] [LLINCR=(first line number, increment)}]

Figure 15. Assembler Parameters

Terminal lines must contain no more than 80 signifi-
cant characters if they are to be punched.

The means for punching terminal lines is the puncu
command. This command contains two operand fields
(“startno” and “endno”) specifying the character posi-
tions relative to the data set record of the lines to be
punched. Assembler source lines are stored in the data
set as entered by the programmer, with the exception
that the first character of each line entered becomes
the ninth character of the data set record; a 7-byte line
number and a 1-byte format character are provided by
1ss during the formation of the data set. Thus, the
startno operand of the puNcH command should be 9,
not 1. The endno operand is normally 88, but it can be
less if all the keyboard lines contain some number of
significant characters less than 80.

Assembler Options and Related Output

This section discusses three topics:

1. The parameters supplied when the asm command
is given.

2. The listings produced by the assembler when re-
quested by user-supplied parameters. '

3. The destination of all output from the assembly.

Assembler Parameters

When issuing an asm command, the user must enter
parameters providing such items as the module name
for this assembly; the source of the input lines (pre-
stored or to be entered at the terminal), etc. A list of
assembler parameters is given in Figure 15. The nota-
tion used in Figure 15 is explained in Appendix G,
Command Formats.

One of the assembler parameters listed in Figure 15
(module name) must be provided by the user; others
may be left unspecified and system or user default
values will be chosen.

Explicitly Defaulted

A comma is issued immediately following entrance of
the preceding parameter, rather than entering a value
for the new parameter followed by a comma. For ex-
ample, module aLPHA, with prestored source lines, is to
be assembled, explicitly defaulting supplementary

macro libraries and the version identification, but sup-
plying parameters for all other parameters. The proper
parameter description is:

ALPHA,Y,,,Y, Y, Y, Y, Y, Y, ¥
Implicitly Defoufted

In the example above, the user could have pressed the

return key following entrance of the Y specifying that

an 1sp is to be produced. This action implicitly defaults

all parameters following the 1sp option.

The assembler parameters shown in Figure 15 are

defined as follows:

NAME =
specifies the name of the object module to be
created. Since the name used becomes a member
of a virtual partitioned data set when the object
module is created, partially-qualified names and
generation data group names cannot be used.
Virtual partitioned data set members must be
identified with simple names. The source data
set for that module is named source.module by
the system; the listing data set for the module is
named rist.module-name.generation-number to
cause actual printing to be accomplished. The
module name must be unique to the library that
is to include it; i.e., it must not be the same as
any entry point, CSECT name, or externally defined
symbol or module in that library. The name con-
sists of one to eight alphameric characters, the
module name may not be the same as any exter-
nal definition supplied by the module.

STORED =
specifies whether or not the source data set
is prestored; if so, it must have been named
source.module. The allowable values are Y or
N. The system assumes N,

MACROLIB =

The first ddname (ddname;) specifies the sym-
bolic portion of the supplementary macro library
that is to be used. A ppEF for this ddname must
be provided by the user. If a ppeF has not been
entered by a conversational user, he is prompted
for the required definition information; a non-
conversational task is abnormally terminated.

Appendix A. Use of the TSS Assembler 107

Default: Only the system macro library is used.
The second (ddname.) specifies the ddname of
the index portion of the supplementary macro
library that is to be used. A poeF for this ddname
must be provided by the user. If a ppbEr has not
been entered by a conversational user, he is
prompted for the required definition information;
a nonconversational task is abnormally termin-
ated.

Default: Only the system macro library index is
used.

Note: ddname; and ddname. must both be given
if either is given. Up to five more user supple-
mentary macro libraries may be defined for use.
The first additional one would use ddname; for
the symbolic portion and ddname, for the index
portion. The next one would utilize ddname; and
ddnames, and so on until the maximum allowable
number of supplementary macro libraries is
reached. As with ddname; and ddname., a pair
of ddnames must always be specified. User macro
libraries are searched in the reverse order of
specification; the first one defined will be the last
one searched.

VERID =
specifies the version identification to be assigned.
The version identification consists of one to eight
alphameric characters. The version identification
appears in the PMp (and M listing if requested).

"ISD =
specifies whether an Internal Symbol Dictionary
(1sp) is to be produced. An 15D is used by the

Program Control System (pcs) in order to refer

to internal program symbols during checkout.
The allowable values are Y or N. The system
assumes Y,

SYMLIST =
specifies whether a symbolic source program
listing is to be produced. The allowable values
are Y or N. A source listing displays the card or
keyboard images supplied as input to the assem-
bler. The system assumes N.

ASMLIST =
specifies whether an object program listing is to
be produced. The allowable values are Y or N.
An object program listing shows the concatenated
source lines together with the associated absolute
value or location counter assignment. Where re-
quired by the statement, the hexadecimal repre-

108

sentation of the binary text is also displayed.
The system assumes Y.

CRLIST =
specifies whether a cross-reference listing is to be
produced. The allowable values are Y or N. A
cross-reference listing is a table of the defined
symbols and the locations of all references to
those symbols. The system assumes N.

STEDIT =

specifies whether the edited symbol table is to be
listed. The allowable values are Y or N. The sym-
bol table edit displays symbol names, their attrib-
utes, and the absolute or relocatable value as-
signed to each symbol. Either a cross-reference
listing or a symbol table edit may be requested
but not both. The system assumes N.

ISDLIST =
specifies whether an 1sp listing is to be produced.
The allowable values are Y or N. An 1sp listing
displays the internal symbol entries found in the
1sp. The system assumes N.

PMDLIST =
specifies whether a program module dictionary
(pmp) listing is to be produced. The allowable
values are Y or N. A pmp listing displays the
contents of the PMp by control section. The sys-
tem assumes N.

LISTDS =
specifies whether the requested listings are to be
placed in a list data set or placed directly on
sysouT. When listings are placed on sysout, no
record of them is kept in the system after print-
out. The system assumes N for non-conversational
tasks (no list data set), and Y for conversational.

LINcR = first line number
specifies the line number to be assigned to the
first line of the data set. The line number can
contain three to seven digits, the last two of
which must be 00.
Defauli: The first line number is 100.

increment

specifies the increment to be applied to develop
successive line numbers. The increment can con-
tain three to seven digits, the last two of which
must be 00.

Default: The increment is 100.

Although the line number values are explained in
the context of the storep parameter, such values have
meaning only in conjunction with a negative (N) re-
sponse to the sTorep parameter. So that the syntax
analysis for both prestored and non-prestored data sets
may be identical, the rixcr parameter now resides at
the end of the parameter list.

The source code in your object program listing can
appear in cither aligned or unaligned tormat. Aligned
format means that regardless of how you entered your
input, all name fields will appear in column 1, all in-
struction mnemonics will appear in column 10 (or one
blank following the name field, whichever is further
to the right), and all operands will begin in column 16
(or one blank following the mnemonic, again which-
ever is further to the right). Unaligned format means
that the fields of the source code will appear exactly
as you entered them.

If you do not specify otherwise, the source code will
be aligned. To achieve an unaligned format, issue the
pEFAULT command with an operand of AsmaALiGN=N
prior to issuing the asm command. If you have issued
DEFAULT ASMALIGN=N and wish to revert to an aligned
format (the system default), issue DEFAULT ASMALIGN=Y.

Structure and Description of Assembler Listings

The assembler prepares a listing data set if one or more
of the six listing options are requested. In nonconver-
sational mode, if a list data set is not specifically re-
quested, listings are placed on sysouT and no record of
them is retained in the system after printout. In con-
versational mode, a list data set is automatically created
for your listings. You may, however, choose to have
them placed on sysour (printed at your terminal).
The six types of listings are: source program listing,
object program listing, cross-reference listing, symbol
table listing, internal symbol dictionary listing, and
program module dictionary listing. Various combina-
tions of these listing options are possible. Operation
codes are now aligned on output listings from the
Assembler to provide a more orderly presentation.
This applies to both macro expansions and user-
created code. Printing of the listing data sets prepared
by the assembler is not automatic. Each time a unique
module name is encountered, a generation data group
is established, containing two generations. Each time
the limit (two generations) is reached, the oldest
generation is erased. The user may print only when
he desires the output listings, using: PRINT LisT.module-
name.generation (absolute) or vrisT.module-name
(generation) (relative). Command System User’s

Guide, GC28-2001, presents a complete explanation of
the language processor listing data set maintenance
process.

Since a pending BuLk/10 task will be established
when the priNT command is issued for the language
processor listing data set, the user must not attempt to
erase the data set (or otherwise remove it from the sys-
tem) unless the Bsx is canceled first.

The formats of assembler-produced listings are illus-
trated below. The programs were designed so that
diagnostics would be produced and certain assembler
instructions and assembler functions (e.g., literal pool-
ing and reordering of control sections) could be illus-
trated. All types of assembler output are shown; the
circled numbers on the listings correspond to the
numbers in bold face type in the text.

Source Program Listing

The source program listing presents, in the order re-
ceived, the original source language line images sub-
mitted for assembly by the user. Each source line, 2, is
preceded by a decimal statement number, 1. Terminal
input greater than 120 characters is continued on the
next line. Figure i6 is an illustration of a source pro-
gram listing.

Diagnostic messages, 3, are collected and presented
at the end of the listing. Only those messages produced
prior to the text generation phase are listed. Each mes-
sage is preceded by the statement number, 4, of the
line to which it applies. Messages are listed in ascend-
ing order by line number.

Object Program Listing

The object program listing documents, in control sec-
tion order, the hexadecimal representation of the bi-
nary text assembled for each source statement. Con-
tinued source statements are shown in concatenated
form. No characters before the continue column in con-
tinuation lines appear in the object listing. Unless an
ICTL instruction is used to change assembler treat-
ment of card records, column 16 is the continue col-
umn on card records. The first non-blank, non-tab
character is used as the continue column in keyboard
continuation lines. The asmaricn default value may be
used to align the source code in the object program
listing. '

Figure 17 is an illustration of an object program
listing. The sample listing in Figure 17 contains three
control sections, one of which has been written non-
contiguously (for illustrative purposes only) and has

Appendix A. Use of the TSS Assembler 109

®

LINE SOURCE TEXT
0008100 * INDIAN
0000200 INDIANP PSECT
0000300 ENTRY
0000400 DC
0000500 DC
0000600 YEAR DS
0000700 MESSAGE DS
0000800 LENGTH DC
0000900 PRINCP DC
0001000 INT DC
0061100 SHEN DC
0001200 NOW C
0001300 ROUND DC
0001400 TEMP DS
0001500 EDITOR DC
0001600 DC
0001700 DC
0001800 DC
0001900

® ®

SOURCE LANGUAGE LISTING

PROBLEM

INDIAN

F'76! SAVE APEA
18F'0°

D CONVERSION AREA
CL20 MESSAGE LOCATION
F'20* MESSAGE LENGTH
PL7?'+24,00° PPINCIPAL AMT
PL2'+1.04" INTEREST RATE
F*1626"

F'1965"

PL2'50"

PL66

ct s

X'2120°,C*,°
Xx'202020',c',"
x'202020'
X'2020"

bC
0002000 *¥* THE FPOLLOWING INSTRUCTIONS ARF INCLUDED TO CAUSE MODIFIERS TO PRINT
000210C ** ON THE PROGRAM MODULE DICTIONAPY LISTING

6002200 EXTRN ¥YZ

0002300 DC V(AR)

0002400 pC A(XYZ)

0002500 DC RL3 (TEMP)

0002600 *% END OF SPECIAL INSTRUCTIONS

0002700 INDIANC CSECT READONLY

0002800 USING INDIAN,15

0002900 INDIAN SAVE (14,12)

0003000 L 14,72(0,13) GET PSECT COVEP REG
0003100 ST 14,8(0,13) STORE TOPWAPD LINK
0003200 sT 13,4(0,14) STORE BACKWAPD LINK
0003300 LR 13,14 SET REG 13 TO ADDRESS OF PSECT
0003400 USING INDIANP,12

0003500 LR 12,15 LOBD COVEFP PEC

0003600 DROP 15

0003700 USING INDIAN,12

0003800 L 5, NOW SET UP DATE COUNTEP
0003900 L 3, THEN

0004000 L 4,1

0004100 INDIANCL CSECT READONLY

0004200 EDIT MESSAGE+6 (14) ,PRINCP+1 EDIT ANSWER

0004300 cvD 3,YEAR CONVERT YEAR FOR PPINTOUT
0004400 UNPK MESSRGE(4) ,YEAR+5(3

0004500 34 MESSAGE+3,X'F0’ REMOVE SIGN FROM DATE
0004E0D GATWR MESSAGE, LENGTH WRITE ANSWER ON SYSOUT
0064700 L 13,4(0,13) RESTOPE CALLING REG 13
0004800 RETURN (14,12)

0004900 *% THE FOLLOWING INSTRUCTIONS ARE INCLUDED TO ILLUSTPATE CERTAIN TYPES
0005000 ** OF ASSEMBLER INSTRUCTIONS AND THE POOLING OF LITERALS

0005100 THISYEAR EQU NOW
0005200 GBLA &A
SOUPCE LANGUAGE LISTINGC
LINE SOURCE TEXT
G005300 EA SET2 2
0005400 ORG *+100
0005500 MVC YEAR(2) ,=X'U040°
0005600 L 1,=F*123"'
0005700 CCw 2,YEAR,X'48',80
0005800 CNOP 2,8
0005900 HMACRO
0006000 MM £P1, P2
0006100 . MNOTE &P1,'THIS ILLUSTRATES AN MNOTE &P2°
0006200 HEND
46006300 MM 1,DIAGNOSTIC
0006400 MM * COMMENT
0006500 ** END OF ILLUSTRATIONS
0006600 INDIARC CSECT
0006700 LOOP MP PRINCP, INT COMPUTE INTEREST
0006800 AP PRINCP, ROUND : ROUND OFF
06006900 MVN PRINCP+5 (1) ,PRINCP+6 MOVE SIGN
0007000 MvC TEMP , PRINCP EFFECTIVELY SHIPT OFF 2 DIGITS
0007100 ZAP PRINCP, TEMP
0007200 PRINT BXLE 3,4,LOOP
0007300 MYC ~ MESSAGE+4(16) ,EDITOR SET UP EDIT MASK
0007400 END

SOURCE LANGUAGE LISTING

DIAGNOSTIC MESSAGES

0001400 E *** VALUE OF LENGTH MODIFIER INVALID FOR TYPE OF CONSTANT
0004200 E *** ‘EDIT ' UNDEFINED MNEMONIC OPERATION .

PAGE 0001

PAGE 0002

PAGE 0003

Figure 16. Source Program Listing

110

®

LOCATION

© O

01 g0g00
01 00004
01 00050
at 00058
01 00Q6C
9t 80070
01 00077
91 00079
€1 0007C
01 00080
41 00084
01 00086
01 00096
01 00099
01 0009B
8% D0OSC
Gt J0OSF
01 00020
01 00AR3

C1 000AS
01 00CAT
01 Q00AC
01 000BO

01 000BY
41 080BS
01 000BG
61 £00R3
01 004BC
91 000CO
1 000CH
¢1 000C3

02 00000
02 00004
G2 00008
42 8004
02 00610

G2 atnt2

02 00014
n2 00018
52 0001C

LOCRTION

32 50520
22 00026
42 8602C
32 00032
52 600138
G2 GCO3E
02 00042

02 Q0048
062 00o04C

€3 00000
G3 00003
03 0000r

03 0000E
03 00612

03 00016
03 00018

01 0001C
€3 9001C
3 00020

03 00088
03 DOGBC
Q3 00090
03 00038

0001400 T e
0004000 W #e¢
0004200 £ ***
Q006300 W *»%

©

INSTRUCTION

01 00000

0000004C
00000000

00000014

0000000002400C

104C
060000
0D00065A
000007AD
0soc

405840
2120
B
202020
€8
202020
2020

000000
00000000
00000000
000086

01 000B3

0000

0002

000000BY
70000058
0000006C
00000000
00000000
82 00000
02 00000

SO0EC DOOC
58E0 D043
S0EN D008
5000 EOOU4
18pC

01 00000
18CF

92 00000

5850 n080
5830 DO7C
S840 0001

INSTRUCTION

02 00020

FCOY D070
FAGT D070
D100 DOTS
D20OF D086
F86F DOT0
8734 €020
D20F POSC

00000078
4040

03 00000
4E30 DOSO

T332 D058
96F0 DO5SH

G3 0000L

4110 DOBS
41F0 009D
or79

58D0 DOOY

38EC DOOC
O7FE
01 00080

20000002
03 000B6

5077
DOB4
no76
Do?o
ooBE

D096

DOSS

3
R

ADDR 1

ADDR 1

01
o1
o
01
LR}

01

a1
01

00070
00070
00075
0008¢
600740

0005C

00058
00058

@

ADDR 2

01
01

00080
ae07¢C

ADDR 2

01
a1
01
a1
o1

01

01
01

a

-

0

-

0

D201 DOS0 CO4C 01 00050 02

5810 C0u48

02000050 4BOOOOS0

0700

‘FDIT

HIGHEST SEVERITY CODE ENCOUNTERED

02

HNUMBER OF WARNING AND ERROR MESSAGES

00077
00084
00076
06070
00086
00020
00096

00050
00055

000B8

00001

0000C

0004C
00048

i) PAGE 0004
ey @9

STATEMNT SOURCE 07/22/7 08:39:19

00002100 * INDIMN PROBLEM

0000260 INDIANP PSECT

0000160

- FNTRY INDIAN
2000400 @) e Feyer

3 SAVE AREA
0000500 pC 18F'0"
0000600 YEAR DS D

CONVERSION AREA

0000700 MESSAGE DS CLID MESSAGE LOCATION

Q000G LENGTH DC F'20' MESSAGE LENGTH

0000900 . PRINCP BC PL7'+24.00° PRINCIPAL AMT

00c1000(R) INT Dc PLYT41. 08! INTEREST RATE
<

0001100 THER pC FTis2st

0001200 NOW DC F'1965°

0001300 ROUND DC PL2'50'

0001400 F TEMP bs PLEG

0001530 EDITOR DC C' ¢!

0001600 e ¥t2120t,00,t

0053790 e ¥X'202020°,C',°

0007808 nco X*202020°

0001900 oc X'2020"

OOOZOOD(I‘B“ THE FOLLOWING INSTRUCTIONS ARE INCLUDFD TG CAUSE MODIFIERS TO PRINT
0602108 "~ *¢ ON THE PPOGRAM MODULE DICTIONARY LISTING

0002200 EXTPN XYZ
+
0002300 oC V(AR
0002409 nc RIXYZ)
0002500 DC ALJ {TEMP)
0002600 ** END OF SPECIAL INSTRUCTIONS
+ INDIANP PSECT
+ DS ar FULL WORD ALICNMENT
+ pC B0 §1C CODE
+ o Al TYPE CODE
+ CHDOOO2 DC A(*-4)
+ 20 B {MESSFGE)
+ DC A{LENGTH)
+ nc A{D)
+ o o} (G}
6002700 INDIANC CSECT READONLY
0002800 USING INDIAN,1S

0002300 INDIAN SPVE (14,12}
+ INDIAN ST 14,12,12(13) SAVE SPECIFIED REG'S

0003000 L 14,72(0,13) GET PSECT COVER REG
0003100 ST 14,8(0,13) STORE FORWARD LINK
0003200 @ sT 13,8(0,14) STORE BACKWARD LINK
0003300 LR 13,14 SET REG '3 TC ADDRESS OF PSECT
0003400 USING INDIANP,13
00013500 LR 12,15 IOAD COVER PEG
0003600 DPOF 15
9003700 USING INDIRN,12
0003800 L 5 HOR SET UP DATE COUNTER
6003960 L 3, THER
0004000 W L 4,1
PAGE 0005
STATEMNT SOURCE 07/22/71 08:39:19
0006600 INDIANC CSECT
0006700 LOOP 15 PREINCP, INT COMPUTE INTEREST
0006800 ap PPINCP , ROUND POUNE OFF
0006900 @ MVN PRINCP+5(1) ,PRINCP4+§ MOVE SIGN
0007000 MVC TEMP,PFINCP FFFECTIVELY SHIFT OFF 2 DIGITS
0007100 ZAP PRINCF,TEMP
0007200 PRINT BXLE 1,4,LO0P
0@7300 MVC MESSAGE+4({16) ,EDITOR SET UP EDIT MASK
0007430 END
=F'123"*
=X u0un*t
0004100 INDIANCL CSECT READONLY
0004200 E @ EDTT MESSAGE+6({14) ,PRINCP+1 EDIT ANSWER
0004300 < CVD 3,YFAP CONVERT YEAR FOP PRINTOUT
0004408 UNPR MFSSAGE (4) ,YEAP+5(3)
0004500 (17 or MESSAGE+3,Y'T0* PEMOVE SIGN FROF DATE
00064600 GATWP MFSEAGE, LENGTH WRITE ANSWER ON SYSOUT
+ CHDPSFCT CHIX0002
+ INDIANCL CSECT
+ CHDY0002 LP 1,CHDOO02
+ CHDIRNFPA ,, (C7ATCY) ,X'9D° GENEFATE LINKAGE
+ A 15,%°9D" LOAD REG. 15 WITH ENTER CODE
+ ENTER TYPE IT LINKAGE
+ sve 121 SUPEPVISOR CALL
9004700 L 13,4¢0,13) PESTORE CALLING REG 13
0004800 RETURN (186,12
+ DS on
+ M 14,12,12(13)
+ tu

oCo4%00 ** THE FOLLOWING INSTRUCTIONS ARE INCLUDED TO ILLUSTRATE CERTAIN TYPES
0005000 ** OF ASSEMBLER INSTPUCTIONS AND THE POOLING OF LITERALS
0005100 THISYERR EQU NOwW

5005200 GBLA €A
0005300 &N SETA 2
0035400 OPC *s100
0005500 WUC YEAP(2) =7 '4040"
0005600 @ I 1,=F'123"
0005700 COW 2,YEAR,X*UB',80
0005800 CNOP 2,8
0005900 @) racro
0006000 ™ EP1,EP2
0006100 MNOTF &P1, 'THIS JLLUSTRATES AN MNOTE &P2°
0ON0R200 MEND
0006340 e 1,DIAGNOSTIC
MEOTE 1,7'THIS ILLUSTPATES AN MNOTE DIAGNOSTIC'
onueasy MM *,COMENT

+ % THIS ITLLUSTRATES AN MNOTE COVMENT @
0006500 *4& END OF ILLUSTRATTIONS

PRAGE 0006
(5) WARNING AND EPROR MESSAGES

VALUE OF LENGTH MODIFIER INVALID FOR TYPE OF CONSTANT
QPERAND REQUIRES FULL-WORD BOUNDARY

* UNMDEFINED MNEMONIC OPERATION

THIS ILLUSTRATES AN MNOTE DIAGNOSTIC

ooa (8}

002

Figure 17. Object Program Listing

Appendix A. Use of the TSS Assembler

111

been put in order by the assembler. The user should
avoid writing non-contiguous control sections, if pos-
sible, as they assemble much less efficiently.

Warning and error messages, 5, are collected and
presented at the end of the listing. All diagnostic mes-
sages (including MNOTE messages with a severity
code) produced by the assembler will be listed. This
listing differs from the listing presented at the end of
the source language listing. Messages are listed in
ascending order by line number. A count of the num-
ber of messages, 6, and an indication of the highest
severity code encountered, 7, are also presented. The
severity code is 1 it only warning messages were pro-
duced, or 2 if error messages were produced.

The listing contains the following types of lines in
addition to the column heading line: machine instruc-
tions, assembler instructions with related values, as-
sembler instructions without values, ccw instructions,
cNop instructions, constants, literal pools, diagnostic
messages, MNOTE messages, and commentary lines
(i.e., lines which were written as commentary by the
user or which, due to diagnostic action, were made
commentary by the assembler). In addition, a space
for required boundary alignment or a statement gen-
erated by a macro instruction contains a plus sign (+),
8, immediately following the statement field. A source
statement is edited in the following manner: (a) the
name field will begin in column 1; a sequence symbol
in the name field is suppressed; (b) the operation code
is shifted to begin in the location corresponding to
card column 10 or the next available location there-
after; (c¢) the operand is shifted to begin in the loca-
tion corresponding to card column 16 or the first avail-
able location thereafter; and (d) the comment field
will follow the operand field by the number of blanks
coded in the source program. No editing is performed
if the statement is in error. Each type of line is de-
scribed below.

1. Machine Instructions: Under location, 9, the sec-
tion number, 10, and location counter displacement,
11, are listed in hexadecimal. The instruction, 12, addr
1, 13, and addr 2, 14, fields differ according to the type
of instruction. If the instruction type is RR, 15, the first
part of the instruction field contains the hexadecimal
text, and the addr 1 and addr 2 fields are blank. If the
instruction type is RX or RS, 16, the hexadecimal text
for the R1 and R2 fields (R3S, if RS) and the hexadeci-
mal text for the B2 and D2 fields appear under in-
struction heading. The addr 1 field is blank. Under the
addr 2 heading appear the section number and the
location counter displacement of the symbolic S2 field,
it applicable. If the instruction type is SI, 17, the in-
struction field contains the hexadecimal text of the 1
field and the hexadecimal text for the Bl and D1 fields.
The addr 1 field contains the section number and loca-

112

tion counter displacement of the symbolic S1 field, if
applicable. The addr 2 field is blank. If the instruction
type is SS, 18, the three subfields of the instruction
field contain the hexadecimal text of the R1 and R2
fields, the hexadecimal text of the Bl and D1 fields,
and the hexadecimal text of the B2 and D2 fields, re-
spectively. The addr 1 field contains the section num-
ber and location counter displacement of the symbolic
S1 field, if applicable. The addr 2 field contains the
section number and location counter displacement of
the symbolic S2 field, if applicable.

The seven-digit decimal statement number appears
under the statement heading, 19. The number is edited
to contain leading zeros, e.g., line 4200 prints as
0004200. The 80-character source statement is listed
under source, 20, and is preceded by the letter W or E
if a warning or error message has been issued. If a
statement exceeds 80 characters in length, it is con-
tinued on as many lines as necessary, with continuation
lines beginning in the location corresponding to card
column 16.

2. Assembler Instructions With Related Values: This
format description applies to the instructions csecr,
PSECT, DSECT, COM, START, END, EQU, LTORG, ORG, USING.
seta, sETB, and serc. Under the instruction heading,
the value of the instruction is listed. The types of val-
nes are described below. The location, addr 1, and
addr 2 fields are blank. Other fields are as described
under machine instructions.

Relocatable value fields are associated with csecr,
PSECT, DSECT, COM, START, EQU, END, LTORG, ORG, and
usiNG. They contain the section number and location
counter displacement, both in hexadecimal. Absolute
value fields are associated with EQu, usmvg, sETA, and
sETB; they contain the 32-bit value expressed as 8 hex-
adecimal digits. External or complex relocatable value
fields are associated with gou and using, and are blank.
Character-string value fields are associated with serc;
they contain an alphameric character string.

3. Assembler Instructions Without Values: The lo-
cation, instruction, addr 1, and addr 2 fields are blank
for the following instructions: copy, DROP, ENTRY,
EXTRN, AIF, AGO, GBLA, GBLB, GBLC, LCLA, LCLB, LCLC,
PRINT, ICTL, ISEQ, PUNCH, REPRO, and macro instruc-
tions. The remaining fields are as described under ma-
chine instructions.

4. CCW Instructions, 21: The location field contains
the section number and location counter displacement,
both in hexadecimal. The instruction field contains the
text of the command code and data address fields, ex-
pressed as eight hexadecimal digits, followed by the
text of the flag and count fields, also expressed as eight
hexadecimal digits. The addr 1 and addr 2 fields are
blank. The remaining fields are as described under
machine instructions.

5. CNOP Instructions, 22: The location field con-
tains the section number and location counter dis-
placement, both in hexadecimal. The instruction field
contains the hexadecimal text of one, two, or three
NOPR instructions, if required. The addr 1 and addr 2
fields are blank. The remaining fields are as described
under machine instructions.

8. Constants: The location field contains the section
number and location counter displacement, both in
hexadecimal, for a pc, 23, or bs, 24, statement. If pc, up
to eight bytes of the constant are listed on the first
line under instruction. If ps, this field is blank. If the
DATA print option is on, the remainder of the constant
is listed eight bytes per line. If a duplication factor
greater than one is present, each duplication is listed
as if it were a new constant. The addr 1 and addr 2
fields are blank. The remaining fields are as described
under machine instructions.

7. Literal Pools: The location, instruction, addr 1,
and addr 2 fields are as described under constants. The
source text of the literal, beginning with an equal sign
(=), 25, appears in lieu of the 80-character source
statement.

8. Diagnostic Messages: Diagnostic messages are
collected at the end of the listing. Each message is
preceded by the statement number of the line to which
it applies, and its severity code. Messages are listed in
ascending order by line number.

9. MNOTE Messages: MNOTE messages that contain
a severity code, 26, are printed as diagnostic messages.

MNOTE messages that contain an asterisk for the sever-

ity code, 27, are printed as commentary lines.

10. Commentary Lines: Commentary lines are lines
which were written as commentary by the user, 28, or
which, due to diagnostic action, were made commen-
tary by the assembler, 29. The location, instruction,
addr 1, and addr 2 fields of these lines are blank. Other
fields are as described under machine instructions.

Cross-Reference Listing

The cross-reference listing is a presentation in alpha-
betical order of all the symbols defined within the as-
sembly. It includes a list of all hexadecimal program
locations where a reference to the symbol is made in
the source language. Figure 18 is an illustration of a
cross-reference listing.

Each symbol, 30, in an index line is followed im-
mediately by the type attribute (defined in Table 6),
33, and the length attribute, 34, in bytes, of the sym-
bol. Under location, 35, are listed the section number,
31, and displacement, 32, both in hexadecimal, of the
location where the symbol is defined (if relocatable),
or an eight-digit hexadecimal number . (if absolute).
The references field, 36, contains the section number,
37, and displacement, 38, in hexadecimal, of each lo-

Q@ @ @ @ CROSE

SYMBOL TYPE LNG__LOCATION _ REFERENCES

CHDX0002 I 00004 03 0000E @ @
03

CHD0O002 A 00004 071 000BS8 0000E

EDITOR C 000063 01 00096 02 00042

INDIAN M 00004 02 00000 02 00000, 02 00014

INDIANC J 00001 02 00000

INDIANCL J 00001 03 00000

INDIANP J 00001 01 00000 02 Q0012

INT P 00002 0% 00077 02 00020

LENGTH F 00004 01 Q006C 01 000OCO

LOOP I 00006 02 00020 02 J003E

MESSAGE C 00014 01 00058 01 000BC, 02 00042, 03 DOOOH, 03
HOW F 00008 01 00080 02 00014, 03 00022

PRINCP P 00007 01 00070 02 00020, 02 00026, 02 00D2C, 02
PRINT I 00008 02 O003E

ROUND P 00002 01 00084 02 00026

TEMP P 00010 07 20086 01 000BO, 0200032, 02 00038

THEN F 00004 01 0007C 02 00018)
THISYEAR U 00004 071 006080

XYZ T 00001 00 00001 O1 QOOAC

YEAR D 00008 01 00050 03 96000, 03 00004, 03 00086, 03

Figure 18. Cross-Reference Listing

Table 6. Type Attributes

TYPE
ATTRI- DESCRIPTION OF SYMBOL
BUTE REPRESENTED BY ATTRIBUTE

A-type address constant, implied length, aligned.
Binary constant.
Character constant.

TOw»>

Long floating-point constant, implied length,
aligned.

Short floating-point constant, implied length,
aligned.

Full-word fixed-point constant, implied length,
aligned.

Fixed-point constant, explicit length.

Half-word fixed-point constant, implied length,
aligned.

Machine instruction.

=

|

=eilp)

Control section name.

Floating-point constant, explicit length.

Macro instruction.

Self-defining term (inner and outer macro instruc-
tion operands only).

Omitted operand {inner and outer macro instruc-
tion operands only).

Packed decimal constant.

Q-type address constant, implied length, aligned.
A-, Q-, R-, S-, V-, or Y-type address constant, ex-
plicit length.

S-type address constant, implied length, aligned.
External symbol.

Undefined. Used for symbols whose attributes are
not available, and for inner and outer macro
instruction operands that cannot be assigned an-
other attribute. This includes inner macro instruc-
tion operands that are symbols or literals. This
letter is also assigned to symbols that name EQU
statements.

V-type address constant, implied length, aligned.
CCW assembler instruction.

Hexadecimal constant.

Y-type address constant, implied length, aligned.
Zoned decimal constant.

BONW O ZZTAR—-

cH»

TN g <

R-type address constant, implied length, aligned.

Appendix A. Use of the TSS Assembler 113

© © 0 @

SYMBOL TYPE LENGTH VALUE

CHDX0002 T 00004 03 pooor
CHDOOD2 A 00004 a1 DOOBB
EDITOR c 00003 01 00096
INDIAN M 00004 02 00000
INDIANC J oooo1 02 00000
INDIANCL J 00001 03 00000
INDIANP J 00001 01 00000
INT P 00002 01 00077
LENGTH r 00008 61 0806C
Loop I 00006 62 00020
MESSAGE [0001y 61 00058
NOW F Q0004 01 00080
PHINCE P 00007 a1 00070
PRINT I 00004 02 00031
ROUND P 00002 01 00084
TEMP P 00010 01 00086
THEN F 00004 01 0007C
THISYEAR u 00004 01 00080
Y¥Z T 00001 00000000
YEAR b 00008 01 00050

OF PEFINED SYMRBOLED

PAGE 0002

SYMBOIL, TYPE LENGTH VALUE

Figure 19. Symbol Table Listing

cation where a reference is made to the symbol. Refer-
ence locations are listed in ascending order.

Symbol Table Listing

The symbol table listing is a presentation, in alpha-
betical order, of all the symbols, 39, defined within the
assembly. It includes their type, 40, length, 41, and
value, 42, attributes. This listing is similar to the cross-
reference listing but excludes references. This listing
is produced only if the symbol table listing option has
been selected and the cross-reference listing option
has not also been specified. Figure 19 is an illustration
of a symbol table listing,

Each symbol in the listing is followed by its type,
length, and value attributes. The value attribute, in
hexadecimal, is either a section number and Jocation
counter displacement, if relocatable, or an eight-digit
hexadecimal number, if absolute.

Internal Symbol Dictionary Listing
The internal symbol dictionary listing is a presentation
of the symbols and related information placed, on re-
quest, in the 1sp portion of the program module to
assist the program checkout system. Figure 20 is an
illustration of an internal symbol dictionary listing.
Each column after the first presents symbols and
information as described by the first column. The first
line of a column contains the eight-character name of
a symbol, 43. The second line contains the type of
symbol, 44, that is represented by one of the follow-
ing: INSTR, ADCON, BINARY, HEX, SECTION, REAL, INTEGER,
CHAR, ZONED, PACKED, S-CON, or VALUE. The third line
contains a duplication factor, 45, in hexadecimal. The
fourth line contains an eight-digit length, 46, if any, in
hexadecimal. The length is normally the length attrib-
ute of the symbol; if the symbol is the name of a con-
trol section, the length represents the length, in bytes,
of the control section. The fifth line contains an eight-
digit immediate value or an eight-digit section number
and location counter displacement, 47, in hexadecimal.

114

Program Module Dictionary Listing

The program module dictionary (pmMp) listing presents
the contents of the pap. The pyp is created at assem-
bly time and stored as part of the object module. Infor-
mation in the pmp directs the loading of the object
module. The pMp contains external symbol definitions,
references, and relocation information.

The pMp listing is helpful in determining the struc-
ture of the user’s object module and its relocation
properties. Figure 21 is an illustration of a pamp listing.

The initial portion of the pmp listing contains a de-
scription of the program module. The module name is
listed first, 48, followed by the version (or time
stamp), 49, the length of the ram, 50, in hexadecimal,
and the highest severity code encountered, 51 The
severity code is 0 if no diagnostic messages were pro-
duced, 1 if only warning messages were produced,
or 2 if error messages were produced. The succeceding
parts of the pmp listing contain descriptions of the

. control sections in the module. The name of the con-

trol scction is listed first, 52, followed by the type, 53,
which is CONTROL, COMMON, or PROTOTYPE. A time
stamp is always assigned to the version, 54, The attri-
butes, 55, may be one or more of the following:
FIXED, VARIABLE, READONLY, PUBLIC, SYSTEM, OI PRVLGD.
Each attribute, except rixep, prints if it was specified
by the user. FIXED prints if VARIABLE was not specified.
The length in bytes of the control section dictionary,
56, is listed next (in hexademical), followed by the
byte length, 57, in hexadecimal, of the binary text for
the control section.

Following each control section description is a de-
scription of the relocatable, absolute, and complex
definitions, 58, within the control section. These defi-
nitions, for which the name and value are listed, in-
clude only those symbols and csect names that have
been declared entry points by the ENTRY instruction.
The next part of the control section description con-
tains the names of the references, 59, within the con-

INTERNAL SYMBOL DICTIONARY PAGE 0001

nade U3 INDIANP YEAR MESSAGE LENGTH PRINCP INT THEN THISYEAR NOW ROUND TEMP EDITOR
44) TYPE SECTION REAL CHAR INTEGER PACKED PACKED INTEGER INTEGER INTEGER PACKED PACKED CHAR

pupL (43 000000 000000 000000 000000 0000600 000000 060000 000000 000000 000000 000000 680000
16) LENGTH 000060CC 00000008 §00000:4 00000004 00000007 00000002 000CI0RE 00000C0E 00000004 00000002 00000810

00000003

LOC/VALO! 00060 01 00050 O01 00058 01 0006C 01 00070 01 00077 01 0007C Ot Q0080 01 00080 01 00084 O1 00086 01
00056

NAME CHDOOO2 INDIANC INDIAN LOOP PRINT INDIANCL CHDX0002

TYPE ADCON SECTION HEX INSTR INSTR SECTION INSTR

DUPL 000000 000000 000000 000000 000000 0000800 000000

LENGTH 00000004 0000004E 00000004 00000006 00000004 0000009A 0000000k
LOC/ VAL 01 00GRS 52 00000 02 00000 82 00020 02 0003E 03 00000 03 O000E

Figure 20. 1SD Listing

PROGRAM MODULE DICTIONARY LISTING PAGE 0008
MODULE
NAME INDIANX
YERSION 07/22/7 08:39:19
LENGTH 00000200
DIAG SEVERITY ooz@
SECTION 01 &
NAME INDIANP
TYPE PROTOTYPE
VERSION 07/22/7 03:39:19
FTTRIBUTES FIXED
CSD LENGTH 000000EC @
SECT LENGTH 000000CC
COMPLEX mzrnu-rxous
NAME INDIAN
VALUE 00000000
REPERE‘NCES
REF § 0000 0001 0002 0003
HAME AA XYz INDIANP INDIANC

MODIFIERS FOR COMPLEY nzrs
PAGE 00 2 MODIFIERS 0001
61) LENGTH 4
GHreF ¢ 0003

TYPE +

(dsyrE 09c

MODIFIERS FOR TEXT (EXTERNAL REFS, Q-CONS, AND CXDS)
TEXT PAGE 00 VIRTUAL PAGE 00 # MODIFIERS 0002
4

LENGTH &

REF ¢ 0001 0000
TYPE + +
BYTE OnC OA8

MODIFIERS POR TEXT (INTERNAL REFS)
TEXT PAGE 00 VIRTUAL PAGE 00 # MODIFIFRS 0004
4 3

LENGTH 4 4
REF # 0002 0002 0002 0002
TYPE + + + +
BYTE 0co 0BC 0B8 0BO
PAGE 0009
SECTION 02
NAME INDIANC
TYPE CONTROL
VERSION 07/22/7 08:39:19
ATTRIBUTES FIXED, READONLY
CSD LENGTH 00000054
SECT LENGTH 0000004E
SECTION 03
NAME INDIANCL
TYPE CONTROL
VERSION 07/22/7 08:39:19

ATTRIBUTES FIXED, READONLY
CSD LENGTH 00000070
SECT LENGTH 0000009A

REFERENCES
REF § 0000
HAME INDIANP

MODIFIERS FOR TEXT (INTERNAL REFS})
TEXT PAGE 00 VIRTUAL PAGE 00 ¢ MODIPIERS 0001

LENGTH 3
REP ¢ 0000
TYPE +
BYTE 091

END OF MODULE

Figure 21. PMD Listing
Appendix A. Use of the TSS Assembler 115

trol section. The last part within a control section de-
scription contains a description of each modifier with
the control section, 60. Modifiers for definitions are
listed first, followed by modifiers for text, with exter-
nal references preceding internal references. For each
modifier there is an entry for the length, 61, a refer-
ence number (corresponding to the reference listed
above), 62, a type code (+, —, C, Q, or R), 63, and
byte displacement, 64, within the text of the control
section where the reference appears. See Table 7 for
an explanation of the type code.

Table 7. Type Code Significance in PMD Listing

TYPE

CODE SIGNIFICANCE

+ The definition value of the reference at “reference
number” is added to the adcon starting at the indi-
cated byte of the page to which the modifier applies.

— Same as +, except that the value is subtracted.

C Store cumulative external dummy section length (CXD
value) in storage indicated by modifier.

Q Same as “+” but use Q-type constant value associated
with external dummy section named in reference.

R Same as “+4” but use R-value rather than definition
value,

Destination of Qutput

Assembly variations and the destination of output
associated with each variation and shown in Table 8.

Object Program Module Format

Each of the language processors produces object pro-
gram modules that always have a program module
dictionary and text; an internal symbol dictionary is
produced only if specified by the user (see Figure 22).

Program Module Dictionary

The program module dictionary consists of a header

and a series of control section dictionaries.

¢ The header contains the name of the standard entry
point to the module and other information common
to the entire module.

e Each control section dictionary describes its as-
sociated control section so that the system can
produce, from the text, a fully linked, executable
object module.

Text

The text portion of the module contains the instruc-
tions and constants generated by the assembler or
compiler; it is the executable portion of the module.
The text is organized by control sections, the basic
unit of all Tss programs.

A control section is a block of coding whose virtual
storage location assignments may be adjusted inde-

116

Program Module Dictionary

PMD Header
Control Control Control Control
Section Section Section Section
1 2 3 n
Dictionary Dictionary Dictionary Dictionary
Text

Instruction and/or Data (Hexadecimal)

Control Section 1

Control Section 2

Control Section 3

Control Section

Figure 22. Format of an Object Program Module

_ Internal Symbol Dictionary
{Optional)

pendently of other coding at linkage editing or load
time, without altering or impairing the operating logic
of the program. At least one page (4096 bytes) of
virtual storage is assigned to each control section;
a control section may require more than one page.
However, at LoGoN time the user may specify that
control sections with like attributes be packed in
virtual memory. This allows several related control
sections to be collected into less memory space. Con-
trol section packing is encouraged so that the modules
to be executed may be compressed into fewer pages,
thus reducing the time required for paging operations
by the system.

When virtual storage space is allocated to an object
program module at load time, all its control sections
are allocated. The contents of each control section oc-
cupy contiguous virtual storage addresses; however,
the individual control sections may be scattered
throughout virtual storage.

When object program modules are placed in main
storage for execution, they are brought in page-by-
page. The contents of each page occupy contiguous
main storage locations; however, individual pages may
be scattered throughout main storage. Only the pages
required for execution are kept in main storage during
a user’s time slice.

Table 8. Destination of Output

ASSEMBLY VARIATION

OUTPUT

OBJECT
MODULE

SOURCE

LISTINGS

ASSEMBLER
DIAGNOSTICS

Conversational—Input
from terminal key-
board or card reader

Conversational—
Prestored Data Set

Nonconversational—
Prestored Data Set

Latest JOBLIB defined
in task or USERLIB

Data set named
SOURCE.

module name created
by system.

Data set named LIST.
module name unless
printout to terminal

is requested.

Data set named
SOURCE.

module name will be
updated to reflect
modifications.

If a printout of the
listing data is de-
sired, it must be re-
quested using the
PRINT command.

To terminal, and to list
data set if listings
recjuested.

Same as conversational,
if listing data set is
specifically requested.

To SYSOUT data set if
no listing data set re-
quested; otherwise to

To SYSOUT if no list-

list data set only.
ing data set requested.

Nonconversational—
Input After ASM

Same as conversational,
not prestored.

The object program module code contains virtual
storage addresses during execution. These are trans-
lated into actual main storage addresses, based on re-
lationships established between each page’s virtual
storage base address and its main storage base address,
at the time it is placed in main storage. If a page that
is executing is swapped out and then relocated in main
storage, it may well be assigned a new location in
main storage. However, because a new relationship
has been established between the page’s virtual stor-

age base address and its new main storage base ad- -

dress, the system can execute the page in its new main
storage location.

Assembler users can control the organization of text
into control sections.

Internal Symbol Dictionary

The internal symbol dictionary contains information,
such as symbol definitions and data descriptions. It
permits users to write program control system com-
mands, using the same symbolic names for data and
instructions that were used in their source coding.
The internal symbol dictionary should be requested
if the Program Control System is to be used.

Assembling in Express Mode

When a number of modules are to be assembled con-
secutively in one task, time may be saved by assem-
bling in express mode. This will cause the language
processor control to read the name of the next module
from sysiv whenever it would normally have re-
turned to the Command System for a further command.

The express mode is turned on by issuing a command
DEFAULT LPCXPRSS=Y

anywhere in the task before the first assembly. The
Asm command is issued only once, for the first assem-
bly, and the assembly options (operands) are issued
at the same time. The assembly options cannot pe
changed for subsequent assemblies.

The express mode can be turned off by entering an
underscore as first character in a line, which will cause
an exit from the language processing control system
and a return to the command system. It is also possible
to turn off the express mode by pressing the attention
button any time during the assembly process and issu-
ing a command

DEFAULT LPCXPRSS™—=,

Assembly can then be continued in non-express mode
by issuing a co command.

If an invalid module name is entered when the lan-
guage processor control expects a new module name,
the express mode will be turned off and a diagnostic
message will be issued.

Assembler Restrictions

Limitations of virtual storage available to the assem-
bler and of the object programs generated by it impose
a number of restrictions on the size and contents of
source programs capable of being assembled. These
restrictions are categorized dccording to complexity.
The first category, simple source program restrictions,
can easily be applied to individual source statements
or particular types of source statements. Simple pro-
gram restrictions are listed in Table 9.

Appendix A. Use of the TSS Assembler 117

The second category, complex restrictions, is com-
posed of restrictions that generally are too complex to
anticipate in advance of assembly (e.g., the storage
requirements of the various tables internal to the as-
sembler are, in many cases difficult to compute ac-
curately, as the table sizes are complex functions of
the source program). Very few programs are of such a
size or configuration that these complex limitations are
exceeded. Therefore, the assembler user may not wish
to concern himself with the complex restrictions until
he receives a diagnostic message; then he can proceed
to remedy the situation. Complex program restrictions
are listed in Table 10.

The assembler working storage is separated into

three parts. Within each working storage area are col-
lections of file and table entries linked together by
chain words. In the tables that follow, the table en-
tries have been identified by the assembler phase that
produces them.

Some of the more probable causes of working stor-
age overflow are: specifying FULLGEN as an operand in
a PRINT statement; infinite nesting of macro instruc-
tions; infinite looping within a macro expansion; and
too many source statements. If a work area overflows,
the assembler will attempt to dynamically acquire
additional storage. If the storage is either unavailable
or unaddressable, the assembly will terminate with an
appropriate diagnostic message.

Table 9. Simple Source Program Restrictions

ASSOCIATED
DIAGNOSTIC
MESSAGE

USER
CORRECTIVE
ACTION

ASSEMBLER
CONTINUATION
ACTION

MAXIMUM
NUMBER

ITEM OR SIZE
Unique control sections 255
LTORG statements 253
External References 216.1

L}

&SYSNDX 10,000
Unsublisted positional 255
macro instruction
operands
Macro instruction 255

suboperands within
a sublist

MAXIMUM NUMBER
OF CONTROL SEC-
TIONS EXCEEDED

None

None

None

CHARACTER STRING
ACCUMULATION IN
EXCESS OF 255

None

Split assembly in several
parts and assemble each
separately.

Combine literal pools or
split assembly into several
modules.

Reduce external refer-
ences by combining as-
sembly modules or reduc-
ing size of assembly.

Reduct number of inner
and outer level macro in-
structions.

Rewrite macro definition
in order to concatenate
operands longer than 255
characters or change
macro instruction.

Rewrite macro definition
making suboperands op-
erands.

Control section statements for sec-
tions numbered 256 or greater are
made commentary; the associated
coding becomes part of the section
in effect at the time of the error.

‘The 254th and following LTORG

statements are made commentary, Lit-
erals associated with these statements
are pooled by dafult at the end of
the first CSECT and/or PSECT.

A number is assigned to each relo-
catable reference required by the as-
sembly (EXTRN symbol, V-type ad-
dress constant, and control section
name). Reference 65535 is lost, and
the loader resolves reference 85536 as
if it were reference 0, etc., thus pro-
ducing erroneous relocation of the
module.

The assembler continues module
10000 for &SYSNDX values. Macro
expansions not referring to this sys-
tem variable are correct; the first
10000 inner and outer level macro in-
structions generated are not effected.
The 10001st use produces a &SYS-
NDX value of 0001 again; use of this
value may produce duplication or
conflicts with earlier macro-generated
statements.

The length of the character string is
reduced to 255 characters and the
macro expansion continues.

Macro processing continues with the
number attributes (N’) of the posi-
tional operand computed modulo
253.

118

Table 9. Simple Source Program Restrictions (Continued)

for card format input
excluding macro
instruction and
prototype statements

Location counter value ~ 224-2

Number of parenthesis 64
levels per expression

DS length medifier 65,535

SYS symbol prefix —

reserved for system use

UATION LINES

LOCATION COUNTER
EXCEEDS MAXIMUM
SEGMENT ADDRESS

EXPRESSION CON-
TAINS EXCESSIVE
PARENTHESIS

VALUE OF LENGTH
MODIFIER INVALID
FOR TYPE OF
CONSTANT

ENTRY POINT
DECLARED IN
CONTROL SECTION
WITHOUT SYSTEM
ATTRIBUTE

MAXIMUM ASSOCIATED USER ASSEMBLER
NUMBER DIAGNOSTIC CORRECTIVE CONTINUATION
ITEM OR SIZE MESSAGE ACTION ACTION
Number of characters 240 TOO MANY CONTIN- Compact statement. Op- Processing continues with the fourth

erand fields can be con-
tracted by using a varia-
ble character symbol in
lieu of the desired oper-
and. The variable symbol
must, of course, be set
to the desired character
string for the operand.
Comments can be con-
tinned on separate com-
ment statements.

Use multiple control sec-
tions. A symbol with lo-
cation counter value 224-2
may not have a length
attribute greater than 1.

Simplify expression possi-
bly through the use of
nested EQU or SET state-

ments.

Write more than one con-
secutive DS statement,

All external symbols start-
ing with the characters
SYS should be removed
from the nonsystem pro-
gram.

and following cards of the statement
treated as commentary.

The assembly is terminated. No ob-
ject module is created.

Evaluation of the expression noted in
the diagnostic is terminated, causing
incomplete assembly of the statement.

Length of the DS statement is re-
duced to 65,535 and processing con-

The assembly continues normally.

Table 10. Complex Restrictions

ITEM

OVERFLOW CAUSE

COMBMENTS

ASSOCIATED DIAGNOSTIC
MESSAGE

Assembler Work Area 1:
(1% pages = fixed usage
9813 pages = variable usage
as outlined below)

Macro Level Dictionary
52 words + 4 to 16,384 words
per entry (average 7 words
per entry)

Using-Register Tables
(33 words per table) {Over-
lays area occupied by Page
Usage Tables in Phase II-B)

Assembler

Phase 11-A:
Excessive nesting of macro
instructions and/or usage of
variable symbols within each
macro level

Phase II-C:
More than 1500 control sec-
tion, USING, and/or DROP
statements

Initial allocation only. Expan-
sion is possible.

A separate macro level diction-
ary is created fer each macro in-
struction and lasis until the
macro has been expanded as
determined by the macro defi-
nition. Encountering a MEND
or MEXIT statement will cause
the area occupied by the cur-
rent macro level dictionary to
be returned to a scratch status.
A macro level dictionary con-
tains an entry for each positional
macro instruction operand, an
entry for each prototype key-
word operand, and global and
local variable symbol.

A Using-Register Table is cre-
ated for every control section
break, USING, or DROP state-
ment encountered in user level
or macro generated source state-
ments,

ASSEMBLER WORKING
STORAGE EXHAUSTED
—WORK1

Same

Appendix A. Use of the TSS Assembler 119

Table 10. Complex Restrictions (Continued)

ASSOCIATED DIAGNOSTIC

ITEM OVERFLOW CAUSE COMMENTS MESSAGE
Phase III:

Cross Reference Item Too many internal symbolsand A two word sort key is devel- Same

Sort Keys (2 words per entry) references to internal sym- oped for each internal symbol

(Overlays area occupied by bols. (Approximately 20000 and each reference to it if a

Using-Register Tables) cross-references) cross reference listing has been

requested. i

Assembler Work Area 2: Assembler ASSEMBLER WORKING

(255 pages initially }

Main Dictionary Items
(5 to 1025 words per item or
greater (average 7 words per
item))

Logical Order File

(Normally 5 words per source
Or macro generated statement
except DCs, DSs, DXDs, or
CXDs. Ten words per address
constant, 8 words per DS, and
8 words plus the text length
for one occurrence for each
nonaddress constant DC are
reserved }

Global-Section-Macro
Chain (3 words per entry)}

Source statement continuation
lines

Macro Name Dictionary Items
(5 words per item)

Variable Information for Diag-
nostics)

Character string operands from
TITLE and MNOTE instruc-
tions

Logical Order File
(Alignment Entries)
(2 words per entry)

Main Dictionary

(1) Relocatable EQU items (5
words per item)

(2) Literal items plus associ-
ated literal trailer items (8
words per literal item and
5 words for each trailer)

Phase I and II-A:
Too many user local and
global symbols in combina-
tion with other uses of the
‘WORK? area

Too many source statements
or statements resulting from
macro expansions in combina-
tion with other uses of the
WORK2 area

Too many user level control
section, macro instruction,
GBLA, GBLB, GBLC (SETA,
SETB, or SETC associated
with user level global state-
ments), USING, DROP, EN-
TRY, PRINT, and/or LTORG

statements in combination
with other uses of the
WORK2 area

Too many continuation lines

Too many different macro
definitions called by user pro-
gram

Too many diagnostics

Too many TITLE and

MNOTE instructions

Phase I1-B:
Excessive number of DS, DC,
CNOP, CCW, CXD, LTORG,
or machine instructions re-

quiring alignment

Phase II-B:
Excessive number of EQU
statements

Excessive number of nondu-
plicate literals within a literal
pool

Simply relocatable items are
those resolvable into one relo-
catable value plus an absolute
offset.

A literal item is created for the
occurrence of each unique lit-
eral string. A trailer is created
each time a literal with the
same character string appears in
a different literal pool.

STORAGE EXHAUSTED
—WORK2

Same

Same

Same

Same

Same

Same

Same

Same

Same

120

Table 10. Complex Restrictions (Continued)

OVERFLOW CAUSE

COMMENTS

ASSOCIATED DIAGNOSTIC
MESSAGE

Logical Order File
(Diagnostic entries)
(4 words per entry)

Assembler Work Area 3:
Original Source Statements
(20 page blocks are acquired
as needed)

Macro-Generated Statements

Additional Working Storage:
Program Module Dictionary
(2 pages + % page for each
page of Assembled Program
Text + total number of DEFs
and REFs multiplied by 28)

External Name List
(2 pages + number of DEFs
multiplied by 28; two words

per entry)

List Data Set (VISAM)

Assembled Program Text

Internal Symbol Dictionary (253
pages)

Phase III:
Diagnostic messages

Assembler

Phase I:
Source program too large or
referring to a lengthy COPY
element or containing back-
ward ACO and/or AIF state-
ments.

Phase I1I-A:
Macro expansions

Phase 111:
PMD too large. An excessive
number of external definitions
and/or external references
will cause overflow

More than 512 external def-
initions (ENTRY operands,
CSECT, and PSECT names)
were specified.

Listing contributed to exhaus-
tion of virtual storage.

Virtual storage exhausted.

Phase 1V:
ISD ton large; excessive num-
ber of control sections, US-
ING, DROP, control section
breaks, and/or internal sym-
bols

It is impossible to state exactly
what number of statements pro-
duces this overflow condition
since the usage of assembler
working storage is a function of
the type of statement. However,
for an average program this
number is usually larger than
10,000. In addition it should be
noted that the FULLGEN op-
erand of a PRINT statement
will cause all conditional macro
generated statements to be
saved for printing on the output
listing, thus requiring more
WORK3 area than is otherwise
the case.

An infinite loop during macro
expansion may result in virtual
storage exhaustion PRINT state-
ments with a FULLGEN oper-
and may also result in total
usage of virtual storage since
each macro model statement is
retained after string substitution
is performed during the process-
ing of each macro instruction.

Either splitting up the assembly
or removal of external names
should solve the problem.

Problem external to the assem-
bler.

Problem external to the assem-
bler.

Four words are used for each
control section; 31, for each
USING, DROP, or contral sec-
tion break; and 5 to 6, for each

internal symbaol.

Same

VIRTUAL STORAGE EX-
HAUSTED. ASSEMBLER
CANNOT CONTINUE.

Same

PMD FILE OVER-
FLOWED. ASSEMBLY
TERMINATED.

EXT NAME FILE OVER-
FLOWED. ASSEMBLY
TERMINATED.

THE SIZE OF VIRTUAL
MEMORY HAS BEEN
EXCEEDED.

VIRTUAL STORACE EX-
HAUSTED. ASSEMBLER
CANNOT CONTINUE.

ISD FILE OVER-
FLOWED. ISD NOT
PRODUCED.

Appendix A, Use of the TSS Assembler

121

Assembler Diagnostic Action

This section describes the format of diagnostic mes-
sages produced by the Tss assembler. It includes a
description of error severity codes and error levels, and
describes the effect of error severity upon requests to
execute the assembled program. Refer to the publica-
tion System Messages for a description of each diag-
nostic and the source program errors that cause it.

All but a few of the diagnostic messages produced
by the assemblers are issued in response to source pro-
gram errors. In conversational mode, all diagnostics
produced by the assembler appear on the terminal. In
addition, messages from the conversational phases of
the assembler for conditions which have been left un-
corrected and all messages from the nonconversational
phases of the assembler will appear in the output pro-
gram listings, if any list option is selected. In noncon-
versational mode, all messages appear either in the
output program listings or on sysour if listing data set
is not specified.

A few messages pertain to violations of assembler
space and size restrictions and malfunctions in the
assembler’s operating environment. Some of the con-
ditions which produce these messages also cause termi-
nation of the assembly and a return of control to the
command-language level. The assembler does not pro-
duce object modules under conditions of abnormal
termination; it will, however, place the terminating
diagnostic message in the list data set, if one is avail-
able, and/or on sysouT.

The format of a diagnostic message is:

number code ok text

When the assembler is used in conversational mode
with prestored source data set, the actual line in which
the error occurred is printed out immediately before
the diagnostic message. Diagnostic messages produced
after Phase T when running conversationally without
a prestored source data set also eause the error line to
be printed out at the keyboard.

The text for all messages produced by the assembler
itself will be contained on one line. The text portion of
messages produced by macro instructions through the
aNore facility may extend to more than one line.

The “number” parameter is the source program line
number of the first line of the statement to which the
message applics. Messages concerning errors that the
assembler does not associate with any specifie state-
ment carry the line number of the source program exp
statement.

The “code” parameter is a one-letier indicator of the
severity of the crror. The letters used, the severity of
crrors associaled with cach Tetter, and a briel deserip-
tion of assembler action taken are given in Table 11,

122

If a symbol is validly defined in a machine instruc-
tion or in a DC, DS, LTORG, or cCw statement, and the
statement is then discarded for syntactic errors, the
symbol will nevertheless be assigned the relocatable
value it would have had, had the statement been
correct.

Errors occurring in statements that are byvpassed due
to conditional assembly statements (A1r, aco), do not
produce diagnostic messages except in the case of an
improperly formed sequence symbol in the name field.

When an assembled program is to be executed, the
module named, and all modules called by this module,
are inspected during the loading process to see whether
any have been assembled with level-2 errors (severity
code E). Any module containing an error level of 2
causes a diagnostic message naming the module and
the error level to be printed on the user’s sysouT.

Use and Structure of a User Macro Library

This section describes possible uses of a user macro
library, the mechanism by which the Tss assembler
operates on user macro libraries, and a detailed de-
scription of their creation and format. Up to seven
macro libraries may be used in conjunction with the
1ss Assembler. The libraries will be searched in the
hierarchy specified by the ppEF sequence associated
with asn. Example 23 in Part m of this publication
illustrates the procedure for building and using a user
macro library.

Reasons for Using a User Macro Library

There are a number of ways in which user macro li-
braries may be of value. A few of these are listed
below.

1. The same macro instruction is to be made available
to more than one program or programmer. The
macro instruction could be defined in cach pro-
gram. but a change in the macro definition would
then require that each individual copy of the macro
definition be changed rather than just one copy.

2. A modified form of a svstem macro instruction is to
be used. emploving the same macro instruction
name as the svstem library macro instruction name.
As the user macro library will be searched fiest. the
modified form could be placed in the user macro
library.

3. A program that must operate in more than one
operating environment (vss and O8 or OS VS, for
example) is being written. The souvree program mav

be identical in both systems if all code required to
be different is contained in macro definitions.

4. Debugging output code is to be included in a pro-
gram during checkout, and removed when the pro-
gram is complete. The debugging code could, of
course, simply be removed everywhere it appears
in the source program. Another technique is to in-
clude all such code in user macro definitions, then
change the macro definitions when the program is
complete so they no longer produce the debugging
code.

5. A program is being written that must interface with
other programs, but the interface design is not yet
firm. Programs on both sides of the interface may
wish to place code in user macro definitions, so that
when the interface needs changing all code associ-
ated with the change is centralized.

TSS Assembler Processing of Macro Definitions

When the Tss assembler encounters an operation code
" not defined as a machine instruction, the assembler
does not produce a diagnostic labeling the opera-
tion code as invalid until it has been determined that
the operation code is not a macro instruction. If the
assembler is to know that a macro instruction is being
used, a definition of the macro must be in one of three
places. These places are listed below, in the order in
which the assembler will look for them.

1. Macro instructions may be defined in the program
using them.

1o

Macro instructions may be defined in a user macro

library.

3. Such macro instructions as CALL, SAVE, RETURN and
all other macro instructions described in the publi-
cation Assembler User’s Macro Instructions are
defined in a macro library supplied with Tss and
available to all users of this system. These macro
instructions are referred to as “system” macro in-
structions. Macro definitions defined in sources 1 or
2 above will be used prior to any definitions in the
systern macro library.

Detailed Description of User Macro Library Creation
and Format

The following paragraphs describe user macro library
creation and format. This description applies equally
to the system macro library.

A macro and copy library is a collection of macro
definitions and symbolic statements. It is from such a

library that the 7ss assembler retrieves and expands
macro definitions when the corresponding macro in-
struction appears in a source program. The operand
of a cory instruction identifies the section of coding
to be copied and included in the program currently
being assembled.

Associated with cach macro library is a macro li-
brary index. The entries in the index relate the name
of each macro definition and group of coey statements
to its location in the macro library. Thus, source lines
in the macro and copy library can be located by
matching the operation of the corresponding macro
instruction or operand of the corresponding copy
statement to the appropriate entry in the index.

The first card of each macro or group of cory state-
ments in a library must contain a header character
(normally a right parenthesis) as the first character
followed by the macro or copy name. This name has a
maximum of eight characters; if less, it must be left
justified. In source lines to be copied, the symbolic
statements (for example a psect) begin at the second
line. If the source lines are not naturally delimited (as
a MEND statement delimits a macro definition), a de-
limiting statement must appear between items. For
the Tss macro and coey library the delimiter state-
ment contains a right parenthesis in the first position
of the text, It should be noted that the right paren-
thesis may also serve as the header character.

The second card of each macro definition must con-
tain Macro. This is followed by a macro instruction
prototype statement, model statements (if any)
and a macro definition trailer statement, i.e., MEND.

The macro and cory library may be created and
modified by the para and sMoprry commands. Alter-
natively, it may be created or modified by user-sup-
pﬁed routines using VISAM.

The organization and format of the symbolic com-
ponent of the system macro and copy library is shown
in Figure 23. The format of ¢ach symbolic line, which
is shown in Figure 24, follows that described for line
data sets.

The lines of information within the symbolic com-
ponent are ordered by line number. The number of
the first line of each parcel (ie., macro or group of
cory statements) is used to index the symbolic com-
ponent.

Having established the macro and copy library, the
user must create the associated macro library index by
executing either the svsiNpEx or sysxsLp 1Bm-supplied
service routines. Use of the sysinbeEx routine is illus-
trated in Example 23. The svsinpEx routine requires
that the macro definition and index data sets be ex-
plicitly defined for the task with respective ddnames

Appendix A. Use of the TSS Assembler 123

Table 11. Assembler Diagnostic Action

CODE

SEVERITY

DESCRIPTION

ACTION

blank Informational

The expansion of macro instructions may generate diagnostic messages if
an MNOTE statement is encountered within the macro definition. The

message,
Level-0 MNOTE statement allows a severity code to be associated with the mes-
(no error) sage. When the value of the code is zero, the message is treated as a
diagnostic for the purposes of printing at the terminal and inclusion in
the diagnostic portion of the object listing; however, the message is con-
sidered to be informational only and does not contribute to the count of
error messages or the error severity level of the assembled module.
\\Y Warning A message with this code is produced under the following two corditions,
message, which result in the associated actions:)
Level-1 1) The assembler detects a situation that either may not be as the pro-
error grammer intended, or is incompatible with other assemblers.
2} The assembler encounters an MNOTE. statement with a severity code
of 1 during macro expansion.
E Error A message with this code is produced under the following circumstances,
message, which result in the associated actions:
Level-2
error

1) The operation code of any instruction cannot be identified
or
the syntax for the operands of machine instructions cannot be analyzed
or
the syntax for the operand field of assembler instructions cannot be
correctly analyzed.
2) The syntax for the operands of machine instructions is correct but the
values obtained for the various operands are incorrect.

3) The syntax for the operand field of assembler instructions is correct
but the values or definitions for some of the operands are incorrect.

4) An MNOTE statement with a severity code of 2 or greater is encoun-
tered during macro expansion.

2) The

Action is determined by the
design of the individual macro
definition.

1) The statement is assembled
as written

2) Action is determined by the
design of the individual

macro definition

1

~—

Statemnent is not assembled;
however, symbols contained
in name fields of such in-
structions are considered
defined for the assembly.

instruction is assem-
bled but those subfields for
which correct values could
not be obtained are set to
zero in the machine lan-
guage text.

An attempt is made to proc-
cess the correct operands
{(when there are more than
one) and ignore the incor-
rect ones.

3

~—

—

4) Action is determined by the
design of the individual

macro definition.

Note: When an MNOTE instruction is encountered in the source program of a conversational assembly, the assembler will inter-
rupt processing and prompt the user for corrections.

source and impEx. The user must also specify the
header character and the length of the macro name.
The sysiNDEX routine receives the user’s input parame-
ters, prompts him for missing parameters and processes
those parameters. It then calls the svsxBLp routine
which creates the index. Alternatively, the user can set
up the parameters required and pass them directly by
calling sysxBLp in a problem program.

sysxBLp makes a sequential pass through the entire
macro and copy library to determine, based on param-
eters supplied, which statements must have an index
entry. The user-supplied header character will be
compared with the first character of each symbolic
statement to determine whether that statement con-
tains an index entry. Or, the user may supply the name

124

of a routine to be called after each symbolic statement
is obtained. This routine must determine if a state-
ment requires an index entry. If it does, the user rou-
tine returns to the appropriate library service -outine
with a name and associated line number that are to be
placed in the index. If the user routine determines
that a statement does not require an index entry, it
must pass this fact to the service routine and request
the next statement.

For detailed information on the use of sysinpeEx and
sysxpLD, see the publication Assembler User's Macro
Instructions.

Figure 25 shows the format of the symbolic library
index. The index component is a table that relates the
name of each parcel to the number of its first line, It

——————— _— ™

| VISAM Control Y ABC {Macro Name - Maximum

L{nformuﬂon ! of 8 Characters)

|

| MACRD

[

l ABC {Prototype Line) Mc\?ro
| P ! rDeﬁ n-
- " ition
T T T

t,— ________

| MEND

| I J

|

|) XYZ

I

i_ MACRO

' XYz

b
L £ A
T T

o ——

! MEND

| .

Figure 23. Format of a Macro Definition Symbalic Component

LL LN C T

4 Bytes 7 Bytes 1 Byte (LL-12) Bytes
LL is the length of the line including the LL field

C s a code whose values and their meanings are:

Code Meaning
01 The line originated at a terminal keyboard
00 The line was obtained as a card image
Note: C is normally 00 for all lines of the system
macro and COPY library
LN s the line number
T is the text of the symbolic line consisting of LL minus
12 characters

Figure 24. Format of a Line in a Symbolic Component

consists of a single record containing a header and as
many entries as there are parcels in the associated k-
brary. The header contains information describing the
index as a whole; each index entry contains a parcel
name and retrieval information for the corresponding
symbolic parcel in the associated library. Entries ap-
pear in ascending order according to the EBcpIC col-
lating sequence of parcel names. Thus, any parcel in
the system macro and copy library can be located
within the symbolic component by matching the oper-
ation of the corresponding macro instruction or oper-
and of the corresponding copy statement to the ap-
propriate entry in the index.

Index Header

1.

Name Length: a two-byte binary integer specifying
the length, in bytes, of parcel names. In the M-
supplied macro and cory library, this value equals
cight. The two high-order bytes of this word are
reserved for future use and currently are set to zero.
Index Length: the location, relative to byte vero of
the first index entry, of the first unused byte in the
index. This value is used to indicate the length of
the index.

Search Starting Point: the location, relative to byte
zero, of the first index entry. This is the point at
which the routine is to begin its binary search pro-
cedure.

Index Entry

1.

o

Parcel Name: the parcel name, whose length in
bytes is given in the header. It is left-justified and,
if necessary, filled with trailing blanks.

. Retrieval Line Number: the retrieval line number

associated with the corresponding parcel in the
symbolic library. The line number is given in EBCDIC
and is right-justified with leading blanks.

- 8 bytes— >
& —-—4 bytes

—

Name

(Reserved)
Length

Header < Index Length

Binary Search Starting
Point

Parcel Name 1

Index
Entry
Retrieval Line Number 1

Entries

Parcel Nome

2

Retrieval Line Number

2

.
-
.

Porcel Name

Retrievul Line Number
n

Figure 25. Format of Symbolic Library Index

Appendix A, Use of the TSS Assembler

125

Control Section Names and Attributes

Control sections are named to assist the assembler in
assigning consecutive virtual storage locations to them
during assembly. The consecutive assignment of virtual
storage locations, once begun, is continued throughout
assembly. Control section contents may be written in
an intermixed manner. If the assembler detects several
statements defining a particular type of control section,
all containing the same name, it considers the first such
statement as the beginning of the control section; the
rest of the statements are continuations of that control
section.

Only control sections with the psecr attribute (de-
scribed below) need be named. However, there may
only be one unnamed control section in a source pro-
gram module. As with named control sections, the un-
named control section is provided with a location
counter; its contents are assigned consecutive virtual
storage addresses throughout assembly.

In addition to controlling assembler address assign-
ments, the identification of control sections

* Enables symbolic linkages, based on control section
names, to be made between control sections.

* Allows the dynamic loader to allocate noncontigu-
ous storage for different control sections of an object
program module during loading.

¢ Allows dynamic control section rejection at load or
link edit time.

Table 12 summarizes the ways in which control sec-
tions can be named and assigned attributes at source
coding time.

The attributes of control sections describe the char-
acteristics of the instructions and data they contain.
Attributes are described at the control section level be-
cause the linkage editor and dynamic loader operate on
control sections. These attributes can be specified by
assembler users:

READONLY—The control section contains instructions
and/or data that are not to be modified by a user. If
this attribute is not specified, the control section is as-
sumed to have a read/write attribute. READONLY control
sections are allocated storage with a protection key
that prevents the user from storing in the control
section.

rusBLiIc—The control section contains instructions
and/or data that can be shared by other tasks if (1) the
owner of the library containing the object program
module that includes this control section issues an ap-
propriate PERMIT command authorizing its sharing,
(2) each sharer issues a SHARE command updating the
system catalog so that the system can locate that li-
brary by each sharer’s name, and (3) the owner and
sharers define the library by a ppeEr command (by

126

specifying oPTION-JOBLIB in the command operand) in
their respective tasks prior to attempting to use the
object program module involved; the modules may not
contain relocatable address constants.

If the public attribute is not specified, the control
section is assumed to be private.

Note: If two users refer to the same public control
section, both share the saine physical copy. If two users
refer to a private control section, each uses a separate

copy.

rsect—The control section contains modifiable stor-
age (variable program data, save areas, or working
storage areas). Control sections with the psecr attri-
bute are normally used for the modifiable storage
associated with ReaDpONLY, PUBLIC control sections.
Each such control section has its own private copy of
the modifiable storage (psecr) control section.

coM—The contro! section is used as a common stor-
age area by independent assemblies that have been
linked and/or loaded for execution as one overall pro-
gram. The required storage area is allocated at assem-
bly time.

pRVLGD—The control section is to be supplied with a
storage protection key at load time, such that only
privileged system service routines have access to it. If
this attribute is not specified, the control section is
assumed to be nonprivileged. This attribute is reserved
for system routines resident in the sysLis.

variaBLE—The length of the control section may
vary during program execution. If this attribute is not
specified, the fixed-length attribute is assumed. The
number of pages allocated for variable-length control
sections is determined by each installation and is speci-
field at system generation time. Fixed-length control
sections are allocated an integral number of pages (the
minimum number that will contain the bounds of the
control sections).

Norte: The systeM and prvicp attributes may also be
specified by system programmer-users, if the control
section is to be part of a system object program module.
This attribute is never specified for problem programs.
The user should keep in mind that control sections
may be packed on double-word boundaries by the dy-
namic loader at execution time, if control section pack-
ing was designated at LocoN time. Only control sec-
tions with like attributes may be packed, however. This
packing technique more efficiently utilizes virtual stor-
age space, and is encouraged whenever practical.

Shared Object Program Modules

In Tss, shared object program modules normally con-
tain one or more control sections with REApONLY and
puBLIC attributes, and a prototype (PsEcT) control
section for the modifiable storage required by the

READONLY portions.

A simplified format of a shared object program mod-

ule is illustrated in Figure 26.

Modifiable Storage

= PSECT attribute

\

READONLY and PUBLIC

attributes

Figure 26. Shared Object Program Module

Table 12. Assembler Statements Used to Name Control Sections and Describe their Attributes

ASSEMBLER STATEMENT

NAME OPERATION OPERAND
FIELD FIELD FIELD USE REMARKS
Symbol START Self-defining value or blank ~ May be used to identify first (or only) Control section identified this way as-
or control section of object module; may sumed to have fixed-length and read/
blank be used if self-defining value is in- write attributes but not these attri-
cluded in operand to specify initial vir- butes: PRVLGD, PUBLIC, PSECT,
tual storage location counter value for SYSTEM, or COM
first control section
Symbol CSECT READONLY Identifies control section without Assembler assigns control section’s at-
or PUBLIC PSECT or COM attribute; is not a tributes based on specification in oper-
blank PRVLGD DSECT and field
VARIABLE
SYSTEM
blank {none of above)
Symbol PSECT READONLY Identifies control section containing Assembler assigns PSECT attribute to
PUBLIC address constants and save area, and/ control section; also other attributes
PRVLGD or working area specified in operand field
VARIABLE
SYSTEM
blank {none of above)
Symbol COM READONLY Identifies control section serving as Assembler assigns COM attribute to
or PUBLIC common storage area control section; also other attributes
blank PRVLGD specified in operand field
VARIABLE
SYSTEM
blank (none of above)
blank Identifies control section describing
Symbol DSECT layout of storage area; does not actu-

ally reserve storage; storage area re-
served by another statement

Appendix A. Use of the TSS Assembler

127

Appendix B. Problem Program Checkout and Modification

The system elements that contain facilities for simplify-
ing problem program checkout and modification are:

* Assembler

* Linkage editor

® Program control system

Assembler

The assembler includes conversational prompting and
diagnostic facilities to assist the user in debugging his
source program modules as he enters source statements
at his terminal. It also includes optional facilities for:

* Storing and cataloging the source data set and
object program module,

* Providing various listings,

¢ Including an internal symbol dictionary (1sp) in his
object program module.

The 15D allows the user to employ the full capabilities
of the program control system when the object pro-
gram is subsequently checked dynamically during exe-
cution.

Prompting and Diagnostic Facilities

The diagnostic facilities available during source lan-

guage processing vary with the manner in which the

user has specified that source language processing is

to proceed.

e As part of a conversational task in which the user
enters his source statements from the terminal.

* As part of a conversational task in which the source
statements are made available from a prestored
data set specified by the user.

* As part of a nonconversational task in which the
source statements are made available in the sysiv
data set.

® As part of a nonconversational task in which the
source statements are made available from a pre-
stored data set other than sysin, but which is speci-
fied by the user in the sysiv data set.

Note: To be acceptable for language processing, a
prestored source data set must have a line organiza-
tion. If source statements are submitted conversation-
ally, or if they form part of the prestored sysiv of a
task, a source data set will be constructed with line
organization. Each physical line output to the system,

128

whether as a single card or as a single line typed at the
terminal, becomes a physical record of the line data set
(input length is limited to 120 characters). Continua-
tion conventions specified for commands do not apply
to line data sets. Continuation conventions for combin-
ing two or more physical records into a single logical
statement for a language processor are as specified by
that processor.

Conversational Mode, Source Statements from Terminal

When the assembler is ready for a source 'statement,
the system unlocks the user’s keyboard and prints a
line number at his terminal. The user then types in
the contents for the line. The system stores both the
line number and the line and then locks the user’s
keyboard.

If the syntax analysis indicates that the statement is
correct, the system again unlocks the keyboard and
prints the next line number at the terminal, so that the
user can enter his next statement.

If the syntax analysis indicates that one or more
parts of a statement are incorrect, a diagnostic message
identifying each error is sent to the user’s terminal. The
system then types out the line in error and a # sign,
and unlocks the user’s keyboard so that the user can
enter corrections. He can insert required lines between
previously entered lines, replace erroneous lines, or
delete lines.

When a user enters a correction Jine as an insert or a
replacement, the first part of it must be a percent sign
(%), followed by the appropriate line number. He
then types a comma, and enters the correction. The %
identifies the line as a correction rather than as the
contents of the line for which the system entered a
line number. Example: to replace line 500, the correc-
tion line might read

600 % 500, DC A(TRIAL)

If the user wishes to delete one or more lines, he
must type a %D after the system-supplied line number,
then a comma, and then the line number or range of
line numbers to be deleted. Example: the correction
line for a deletion entry might read

[400 %D, 200 j — for a single line

l 1800 %D, 900, 1100 }_for lines 900-1100

The indicated lines are permanenﬁy removed from the
source data set.

Each modification is stored by the system until all
modifications are completed. A user restarting a long
program may, thus, have a long wait before he can
enter his next statement. To signal the system that he
has entered all his modifications, the user enters a
normal line (he does not enter % or %13}, in response
to the system’s prompting. The corrections are then
made by the assembler, after which the just-entered
line is processed. If the assembler must restart, all un-
corrected diagnostics will be reissued.

When the user enters an END statement, the as-
sembler completes its first phase. If any diagnostic
- messages are issued at this point, the user is prompted
for a decision: Does he want to terminate language
processing, make modifications and restart, or continue
language processing? The user may request that all
further diagnostic messages, or solicitations for correc-
tions, be inhibited, by typing T or ‘C’ respectively
when prompted and pressing the return key. Diagnos-
tics will still be issued with the listing after completion
of assembly, but the operation in conversational mode
will not be needlessly impeded by messages and
promptings should the user decide not to effect modi-
fications at the keyboard. If he elects to modify and
restart, the user repeats the above procedure after
making modifications required by the diagnostic mes-
sages just received.

The second phase of the language processor is then
executed. If any errors are detected during this phase,
the assembler indicates the number of an erroneous
line, but does not issue the line itself. If the user wants
to see the actual contents of the line, he follows this
procedure:

1. He presses the ATTENTION key to interrupt source
language processing.

2. When the system prints an exclamation point (1),
he types in the riNe? command and specifies the
source data set name, together with the line num-
ber supplied in the diagnostic message.

3. After the line has been presented, he issues a 6o
command to resume source language processing
from the point of interruption.

At the completion of this phase, the user is informed
whether the assembler found no errors, minor errors,
major errors, or errors that prevented it from producing
an object module. The assembler will continue process-
ing if it can; if it cannot, it will so inform the user.

Note: The user can terminate language processing
at any time by pressing the ATTENTION button.

Conversational Mode, Source Stutements from

Prestored Data Set

in this form of language processing, successive lines of
the source program module are fetched from the speci-
fied prestored data set. Communication, when source
statement errors are detected, takes place between the
user and the system via his terminal. The user’s termi-
nal is locked until diagnostic (or prompting) messages
are produced.

If the system’s syntax analysis indicates that one or
more parts of the statement being processed are in-
correct, the system prints out at the terminal the line
in which the error occurred, followed by the diagnostic
message and a number sign (#) at the beginning of
the next line to prompt corrections. (The line printed
out by the system may happen to be a continuation
line. If the user wants to see the contents of some pre-
vious line he can press the attention key and then type
in the LiNe? command, specifying source data set
name and desired line number(s).) The user may then
proceed to correct his program, based on the diagnos-
tic messages. He can add lines between existing lines,
or replace or delete existing lines.

If he wants to enter a correction line as an insert or
a replacement, he types in the line number of the line
involved, a comma, and the actual correction. For ex-
ample, to insert line 450 {between, say, lines 400 and
500), the insertion line might read:

[# 450, CATRD AREAT3, LENGTH |

The correction line is permanently inserted by the
system in the prestored source data set. The system
then types out another # at the beginning of a new
line, and unlocks the user’s keyboard.

If the user wants to delete one or more lines, he
types a D following the #, then a comma, and the line
number or range of line numbers to be deleted.

l»— te delete line 400

[# D, 400

[# D, 900,1100 | — to delete lines 900-1100

The lines to be deleted are permanently removed from
the prestored source data set.

The user may decide at some point that he has too
many errors in his source program to try correcting
them conversationally but wishes to allow the assem-
bly to continue without further diagnostic messages
coming to his terminal to slow down the process need-
lessly. In that case he can inhibit all further diagnostic
messages by typing the letter T in response to the
number sign (#) and pressing the return key. If he
wishes to continue receiving diagnostic messages but
not be prompted for corrections until the completion
of the source.data set scan, he can type in the letter
‘C’ at the terminal and press the return key. He may
also elect to ignore only the current error message by

Appendix B. Problem Programming Checkout and Modification 129

pressing the return key. In all cases, all unsatisfied
diagnostics are included in the vist.dataset when the
first phase of the assembly process is completed.

To signal the system that he has entered all the cor-
rections required, in response to the diagnostic mes-
sages for the previous statement, the user responds to
the # with a carriage return. The system processes the
correction lines and then retrieves the next line of
the prestored source data set. This may cause further
diagnostic messages and a repetition of all previously
issued messages.

After the EnD statement of the source data set has
been processed, the system and user communicate in
the same way as described about for “Conversational
Mode, Source Statements from Terminal.”

Nonconversational Mode, Source Statements from SYSIN

In this situation, there is no system communication
with the user during language processing. The source
data set is read, one statement at a time, from the
sysiN data set. As each statement is read, a line num-
ber is prefixed to it, to serve as the key by which
the line can be identified later. The new data set cre-
ated in this way can be modified, or otherwise used
after language processing is completed. Any diagnostic
messages are sent to the task’s sysouT data set.

Nonconversational Mode, Source Statements from
Prestored Data Set

This is essentially the same as the previous type of
language processing, except that the source program
module already exists as a line data set. The system
picks up the source statements, line by line, and proc-
esses them. No corrections are made, and any diagnos-
tic messages are written on the task’s sysour data set
for later analysis by the user.

Program Listings and Related Aids

The user can specify that any, or a combination, of the
following be made available as a result of source lan-
guage processing:
1. Listings

Object program module listing

Source data set listing

Cross reference listing

Edited symbol table

Internal symbol dictionary listing

Program module dictionary listing

Internal symbol dictionary
Note: A cross reference listing and an edited symbol
table cannot both be requested.

O e & ¢ 0 0 0

Linkage Editor
In addition to its basic function(static linking of object
program modules), the linkage editor can

130

® Control the libraries from which input object pro-
gram modules are to be obtained, and the order in
which searches occur to satisfy unresolved refer-
ences during linkage edit or input processing.

® Provide an automatic search {of the libraries in the
program library list) at the completion of linkage.
editor input, to satisfy all unresolved external refer-
ences (where resolution has not been explicitly ex-
cluded during linkage editor input).

° Replace, delete or rename control sections within
modules. (Automatic rejection of control sections
occurs when more than one section has the same
name; the first control section received as input is
retained in the object program module; all others
subsequently detected with the same name are ig-
nored.)

¢ Rename or delete entry points within an object pro-
gram module.

® Change the attributes of control sections within an
object program module.

¢ Combine two or more control sections of an object
program module, thus reducing the number of vir- -
tual storage pages required.

* Collect automatically and include a reserved stor-
age area within the output object program module,
for common control sections received as input.

Prompting and Diagnostic Facilities

The linkage editor may be run under the same four
conditions as the language processors. It also issues
prompting and diagnostic messages in the same way,
and the user can correct control statements in the same
manner as for source statements.

Program Listings and Related Aids

The user may optionally specify that either or both of

these be produced by the linkage editor: '

1. Internal symbol dictionary for the output object
module.

2. Program module dictionary listing.

The linkage editor automatically prepares a list of
the symbols that cannot be resolved by automatic calls,
and those symbols whose resolutions are deferred to
the dynamic loader. »

Object Program Module Linking

Time Sharing System Program Structure

In Tss, a problem program, at execution time, may be
a single object program module, or a series of object
program modules that are linked together.

Symbolic Linkage

Symbols may be referred to (used as an operand in a
statement) in one control section, and be defined (used
as the name of a statement) in other control sections to
establish linkages between those control sections.

External References: A control section may contain
external references (the symbols that are referred to
in control sections of one object program module, but
defined in control sections of separately assembled
object program modules). Symbols that are external
references are used in source program modules to
* Identify an entry point in another ohject program

module or
¢ Identify the location of data (as a table) that is con-
tained in another object program module.

External Symbols: Each object module has at least
one external svymbol (a symbol that can be used as an
external reference in another module). These are valid
external symbols in Tss object program modules:

e The module’s name (standard entry point of the
module).

e Name of any control section in the module, includ-
ing common blocks; if blank common is declared,
the name is a name of blanks; if an unnamed con-
trol section is declared, its name is a name of hexa-
decimal 0s.

e Any symbol that is included in an ¥NTRY statement
in the object program module and is used as a name
in any statement, except those in dummy sections.

External Symbol Values: The values associated with
each external symbol are V-value and R-value.

The V-value specifies the location at which execution
of the object program module is to begin when control
is transferred to that object program module. This is
the conventional external symbol value.

These are the V-values for external symbols:

V-VALUE CIVEN CALLING

EXTERNAL SYMBOL PROGRAM

1. Module name 1. Virtual storage location
of expression included in
END statement in called
program module; or, i
END statement is blank,
origin of first CSECT in

called program module

2. CSECT name 2. Virtual storage location of
origin of named CSECT
in called program module

3. Symbol in operand of EN- 3. Actual virtual storage lo-
TRY statement cation of symbol in called
program module

These R-values specify various locations, depending
upon the type of external symbol specified:

Appendix B. Problem Programming Checkout and Mo

R-VALUE GIVEN CALLING

EXTERNAL SYMBOL PROGRAR

1. Module namne 1. Virtual sterage Jocation of
origin of PSECT control
section (if there is one) in
called program module;
if called program module
does not contain PSECT
control section, R-value
gives virtual storage lo-
cation of origin of first
CSECT in called program
module

2. CSECT name 2. Virtual storagze location of
origin of named CSECT

(same as V-valve)

3. Symbol in operand of EN- 3. Virtual storage location of
TRY statement origin of control section
containing ENTRY state-
ment in called program
module; if called program
module contains PSECT
ENTRY statement should
be in PSECT even though
symbol is defined in an-
other control section

An illustration of the rules is given in Figure 27,

Module M consists of two control sections: a csror (%)
and a psect (v). It has a standard entry point (w) and
a deferred point (z).

Note in the references to module M by entry point
(W and Z}, how the V-value indicates the location to
which control is transferred, and the R-value gives the
location of the psect. If module M were od pro-
gram module, csecr X would have reapoxLy and pus-
Lic attributes, and a single copy of this cantrol section
could be used by any task permitted to shave it. Tow-
ever, each ‘»har*nfr task would be given a separate copy
of the rsecr, and for cach copy there would he a sepa-
rate R-value indicating where that task's private copy
of the psect is located. Each calling program could
then pass that address to module M, to be used as its
private variable area, when module M is executed on
its behalf. Example: Assume that module M is shared
by task I and task 2. Also, assume that module A of
task 1 and module B of task 2 are in main storage
simultaneously and both are using module M, with
task 2 making the first reference. Main storage might
appear as in Figure 28,

fhatd

Linkage Conventions

Standard linkage conventions have been defined to
govern the communication between all Tss programs.

* Type I—Between two nonprivileged or between
two privileged programs.

131

Reference Reference Reference Reference

by Module by CSECT by Entry by PSECT

Name M Name X Point Z Name Y
V(M) R(M) V(X) R(X) V{(Z) R(Z) V(Y)Y R(Y)

L[X csect

W (Standard
Entry
Point)

Z (Deferred -~
Entry

Point

1Y PSECT
ENTRY Z
END (W)

Figure 27. V- and R-Values of External Symbols

Module A Module B
M
(of task 1) X (of task 2)
— CSECT /
Y Y
PSECT PSECT

Figure 28. Sharing a Module

e Type II—From a nonprivileged to a privileged
program.
e Type III—From a privileged to a nonprivileged
program.
Only the type-I linkage between nonprivileged pro-
grams is covered here; type-I linkage between privi-
leged programs is described in Assembler User Macro
Instructions. Types-11 and -III linkages are described
in System Programmer’s Guide.
Type-1 linkage conventions include three basic
standards to which the assembler user must adhere:

1. Using the proper registers in establishing a linkage;

2. Reserving a parameter area in the calling program,
to which the called program may refer;

3. Reserving a save area (in the calling program) in
which the called program may save the contents of
the calling program’s registers.

132

Proper Register Use: Four general registers are used
for the type-1 linkage between nonprivileged pro-
grams.
® General register I—Set up by the calling program

to give location of the parameter list to be passed
to the called program.

o General register 13—Set up by calling program to
give location of save area to called program.

* General register 149—Set up by calling program to
give called program the location of standard return
address in the calling program.

® General register 15—Set up by calling program to
indicate location to which control is to be trans-
ferred in the called program (V-value); on return
to the calling program, the called program may
supply a return code to the calling program in this
register.

Reserving a Parameter Area: Every calling program
may reserve a storage area (parameter area) in which
the parameter list used by the called program is lo-
cated. The first entry in a variable-length parameter
area contains the length (in bytes) of the entire param-
eter area. Each succeeding entry contains the address
of an argument to be “passed” to the called program.

Reserving a Save Area: Every calling program must
reserve a storage area (save area) in which certain
registers (those used in the called program and those
used in the linkage to the called program) are saved
by the called program.

The minimum amount of storage needed for the save
area of a program that is both calling and called, is 19
words. Table 13 shows the layout of the save area and
the contents of each word.

Note: It is the responsibility of the called program
to maintain the integrity of general registers 2 through
12, so their contents will be the same at exit as they
were at entry to the called program. It is the calling
program’s responsibility to maintain the floating-point
registers around a call. General registers 0, 1, 13, 14,
and 15 must conform to the indicated conventions.

Linkage Macro Instructions

The cary, save, and RETURN macro instructions provide
linkage between object program modules; the RETURN
and Ex1T macro instructions define the end of program
execution,

CALL Macro Instruction: The forms of the caLL
macro instruction are implicit carL and explicit caLL.
The principal difference between the two forms is the
time at which the called program is brought into virtual

Table 13. Save Area Contents

WORD LOCATION CONTENTS
1 Contains length of save area
2 Address of calling program’s save area; field

is set by called program in its own save area

3 Address of next save area; that is, save area of
program to which this program refers

4 Contents of register 14 containing address to
which return from this program is made; ﬁeld

is set by called program in calling program’s
save area
5 Contents of register 15 containing address to

which entry into this program is made; this
field is set by called program in calling pro-
gram’s save area

6 Contents of register 0
7 Contents of register 1
8 Contents of register 2
. Saved by called program
18 Contents of register 12
19 Address of the called program’s PSECT be-
long to calling program (R-value)
20 # User data

storage. Consider the program illustrated in Figure 29.
An implicit linkage between module A and module B
means that allocatmg A implies allocating B. In other
words, when A is allocated, so is B. Explicit linkage,
between two modules {e.g., B and C in Figure 29)
means that C is not to be loaded unless, in the execu-
tion of B, C is actually (or explicitly) required.
The usefulness of the differentiation of implicit and
explicit linkage is illustrated by Figure 29.
® Linkages are provided so that any combination of
the object modules needed for any conceivable run
can be selected.
® If only A and C, or A, B, and E are needed in a
given run, none of the others need be allocated; C,
B, and E would be allocated with A, each time A
is allocated.

SAVE Macro Instruction: The save macro instruction
may be used as a convenient means of automatically
storing the contents of registers in the calling program’s
save area. It may be written at every entry point of the
called program. An entry point identifier may be speci-
fied in the save macro instruction to 1dent1fy the entry
point to which control is to be transferred.

RETURN Macro Instruction: The RETURN macro in-
struction is placed in called programs at the points
where control is to be transferred back to the calling

A
.1 B C
-~
- N
- !
- §
{
!
C | .
|
|
i
\\ 0
.
\ E
F
- ~
e ~
Ve ~
ya Y
G H
7 AN
Vd ~
s N Implicit Call
I y — -~ —— Explicit Cail

Figure 29. Program with Implicit and Explicit Linkages
14 g P I I

program. Used in this way, RETURN is also a convenient
way of restoring the registers of the calling program
that were saved by the save macro instruction.

The RETUEN macro instruction is used in the first ob-
ject program module of a program to indicate the end
of the program’s exccution.

EXIT Macro Instruction: The ExiT macro instruction
terminates a program and switches the task to com-
mand mode.

ABEND Macro Instruction: System programs use
the ABEND macro instruction to terminate a task when
an uncorrectable error occurs. The user may use ABEND
as an error exit in his program.

A more detailed description of these macros is con-
tained in Assembler User Macro Insiructions.

Object Module Combination

If a program consists of one or more object program

modules (see Figure 30), the user can:

* Statically combine two or more (or all) object pro-
gram modules prior to program execution by using
the linkage facilities of the linkage editor program,
or

® Dynamically link the object program modules dur-
ing execution of the program by making use of the
automatic facilities of the system’s dynamic loader.

Appendix B. Problers Programming Checkout and Modification 133

Static Linking

Static linking, although optional, may be used for ob-
ject program module build-up during program devel-
opment. It may also be used to combine a number of
short object modules together and thereby save on
paging time during program execution. A similar sav-
ing of page space may be achieved by specifying the
control section packing option for the dynamic loader
during rocown, and the user will probably find dy-
namic linking through the dynamic loader more con-
venient than using the linkage editor. He may, how-
ever, find the editing facilities of the linkage editor to
be of value in program development. (Example: He
may want to update object program module informa-
tion without recompiling or reassembling.)

In cases where the linkage editor is used for object
program module combination, the object program
modules to be combined may be in one of the libraries
included in the program library list, or they may be in
other libraries identified in the control statements that
are input to the linkage editor program. On the other
hand, all object modules to be dynamically linked must
be contained in libraries currently identified on the
program library list.

When the linkage editor is to be invoked a number
of times consecutively in one task, time may be saved
by running in express mode. This will cause the lan-
guage processor control to read the name of the next
output module from sysiN whenever it would nor-
mally have returned to the Command System for an-
other command. The express mode is turned on by
issuing a command

DEFAULT LPCXPRSS=Y

anywhere before the LNk command is issued. The LNk
command is issued only once, for the first linkage
edited object program, and all parameters are issued
at the same time. The link editing parameters cannot
be changed for subsequent object modules.

The express mode can be turned off by entering an
underscore as first character in a line; this will cause
an exit from the language processor control and a
return to the command system. It is also possible to
turn off the express mode by pressing the attention
button any time during the link editing process and
issuing a command

DEFAULT LPCXPRSS—,

Link editing can then be continued in a non-express
mode by issuing a co command.

If an invalid module name is entered when the lan-
guage processor control expects a new object module
name, the express mode will be turned off and a diag-
nostic message will be issued.

134

Conversational Linkage Editing: To initiate conver-
sational linkage editor processing, the user issues these
commands (refer to Figure 30):

¢ ppEF or cpp command—Defines each library to be
used during execution of the linkage editor pro-
gram.

¢ 1Nk command—Loads and initiates linkage editor
processing.

When LNK is entered, the necessary parameters must
be included. Parameters not included will assume sys-
tem default values, where applicable. The parameters
available are:

® Name of the object module being created.
e Version identification of the module being created.

¢ An indication of whether the control statement data
set is prestored or is to be made available via sysiv.
If that data set is not prestored, the user can also
specify its starting line number, and the value by
which the lines are to be incremented (values of
100 and 100 are assumed, if the starting line number
and increment value are not specified).

¢ Name of the library in which the new object pro-
gram module is to be stored. If this library is not
specified, the object program is placed in the library
that is currently at the top of the program library
list.

* An indication of whether an internal symbol dic-
tionary (1sp), or a program module dictionary
(pmp) listing is wanted.

When these parameters have been provided, linkage
editor processing of the control statement data set be-
gins. The user can issue the control statements from his
terminal in response to system prompting, or he can
make the control statements available from a prestored
data set. The user must observe the continuation con-
ventions for linkage editor control statements; prompt-
ing and diagnostic facilities are available from the
system to assist him in entering his control statements
correctly.

To combine object program modules, the user speci-
fies the appropriate INCLUDE control statements. Any
external references in the input modules that were not
satisfied (or excluded) by iNcLUDE control statements,
are satisfied at the end of the run by automatic call.
Automatic call searches the program library list to
satisfy the remaining external references. All required
modules, except those in sysLB are placed in the out-
put module. Linkage editor forms one pmp for the
resulting object program module and, if the 1sp option
is specified, a chained 1sp for all input object modules.

Task Libraries

—
- \ Edited Object
Ob\\ Program Module
AN ject
\\ Program \\'\\:\\\ -
S Modules T B
~ T
N
AN
Obiject AN
Program N DDEF LNK
Modules User X Parameters
N Control
N s
~ tatements
AN
AN
AN
AN
o Dynamic DDEF \\ Listing
}— Loader RUN Program \\ Data
! Set
Explicit and N N User Catalog
Inplicit ~ Listing Data
Linkage N St /Control
Requirements ~ Statement
During N Data Set
Execution
; Input Data Sets
i
1 User’s
L———— Virtuadl
Storage
Qutput

Figure 30. Object Program Module Combination

At the conclusion of linkage editing, the system
stores the object program module, by its module name,
in either a library specified in the parameters defined
for the linkage editor run or, if no special library has
been specified, the module is stored in the library cur-
rently at the top of the program library list. The origi-
nal input module names are retained as auxiliary entry
points.

Nonconversational Linkage Editing: The same com-
mands are used to. initiate nonconversational linkage
editing. The user must be careful to store the pper
commands, required to define the libraries, ahead of
the LNk command (which must contain the desired
parameters), in the sysiv data set. However, the user
has the option of making the control statements avail-
able either in the sysiv data set, or as a prestored data
set.

Dynamic Linking
Object program modules are linked dynamically dur-
ing execution by the dynamic loader. To initiate pro-

gram execution, the user issues these commands (see
Figure 30):

Appendix B. Problem Programmming Che

Data Sets

® ppEF or cpp command-—Defines each data set to be
processed by the program.
[]

Either a Loap command followed by cari com-
mand (or an implicit caLL) or merely a carL com-
mand—Loads and initiates execution of the speci-
fied object program module.
LOAD Command: When the user issues a LOAD com-
mand, the first object program module of the user’s
program is explicitly loaded in the user’s virtual stor-
age. The dynamic loader will allocate space in the
user’s virtual storage for the module named in the Loap
command. It then allocates space for all the abject pro-
gram modules implicitly called by that module, and all
other modules implicitly called by them. Modules that
are explicitly called are not known to the loader at
this time.

Note: The Loap command need not be issued prior
to cacL or implicit carr. The Loap command, howévcr,
is useful for placing object modules in virtual storage
to examine them prior to execution.

CALL Command: When the carn command is
issued, the first object program module and all implicit

135

at and Modification

modules are allocated space in the user’s virtual stor-
age, if they have not already been loaded. When exe-
cution begins, pages are loaded into main storage as
needed.

If, during execution of the first object module, a
reference is made to another module and the linkage
is implicit, these events occur:

1. The linkage is completed so that control can be
transferred.

2. The required pages of the new module are brought
into main storage (from its library), relocated (if
necessary), and then are given control.

Explicit linkage to another module is detected when
an explicit caLL macro instruction is executed. Then,
the dynamic loader action is similar to that of the Loap
command (it allocates space for the explicitly called
object module, for all other modules it implicitly calls,
and for all modules they implicitly call). However,
when the allocation is completed, control is transferred
to the explicitly called object program module.

LOAD Macro Instruction: The LoAD macro instruc-
tion allocates object modules during program execution
when a module is loaded; it is not given control. This
procedure is useful for inserting pcs commands and
statements into modules before execution.

UNLOAD Command: The unLoap command deletes
object program modules and all linked modules that
will not be needed by other tasks.

DELETE Macro Instruction: The DELETE macro in-
struction is used during program execution to perform
the same function as the unLoAD command.

Program Control System

The user can employ program control commands and
statements to perform one, or any combination, of
these operations:

1. Request output of data fields and instruction loca-
tions within his program, specifying them by their
symbolic names in the source language program or
by their virtual storage addresses; he can also re-
quest output of machine register contents, specify-
ing the registers by type and number.

2. Moditying variables within his program, specifying
them by their symbolic names or by their virtual
storage addresses, and specifyving the new value for
each variable in standard representation as an in-
teger, floating-point number, or character string.

3. Specity, either symbolically or by virtual storage ad-
dress, instruction locations within his program at
which execution is to be stopped or started. When
program execution has been stopped, the user may
intervene, as described in items 1 and 2, before he
directs resumption of program execution.

4. Specify, either symbolically or by virtual storage ad-
dresses, instruction locations within his program at
which the actions described in items 1 and 2 are to
be performed automatically.

5. Obtain the values of his program’s variables at a
specified point in its execution, with the variables
automatically formatted according to their types.

6. Establish logical (true or false) conditions which
allow or inhibit the actions described in items 3, 4
and 5.

The use of program control system facilities does
not involve any restrictions on the user relative to

Work AREA

— A
— T~

PROGI
CALL \\
PROG2 PROGA
—_ SAVE

CALL —
GETMAIN
FREEMAIN
RETURN

for Use
With PROG1

Work Area
for Use
With PROG2

—
\

Figure 31. A Reenterable Routine that Requests its own Temporary Storage

136

source coding. In general, the use of program control
facilities will greatly simplify the preparation of source
programs, because many functions previously source-
coded may conv empmly be made available after com-
pilation. Typlcal of these: the routines used for debug-
ging programs, and the conventional 1/o statements
usually included in source programs.

Program Control Commands

The program control commands (pisrLay, pump, and
SET; CALL, GO, BRANCH, and stop; AT; and QUALIFY and
REMOVE) may be issued individually, or (except for
QUALIFY and REMOVE) may be combined into program
control statements.
The pispLAY and pump commands allow the user to
obtain the values of variables, the contents of machine
registers, and the contents of specified virtual storage
locations. These two commands differ in that the pis-
pLaY command delivers the designated information to
sysout (the terminal in conversational mode); the
pump command delivers the designated information to
the pcsouT data set which must be subsequently trans-
ferred to an output medium (by the PrRINT command).
The seT command allows the user to change the con-
tents of machine registers, or the values of variables
within his program.
The sTop command interrupts execution of the user’s
program and outputs the instruction location at which
the interruption was honored. Thus, except for this out-
put information, the stop command, used alone, is
equivalent to the operation of the ATTENTION button at
the user’s terminal. The stop command is more useful
when included in a statement that designates the in-
struction locations at which execution is to be inter-
rupted.
The caLL command, used after a LoAp command,
initiates execution of the loaded program, either at its
entry point or any other specified point. The caLL, co,
and BRaNCH commands may also be issued after a sTop
command to perform any of the following:
¢ Resume program execution from the point of inter-
ruption (co).

¢ Resume program execution at a point other than
the point of interruption in the current program
{BRANCH).

¢ Load and initiate execution of another program
(caLL).

The AT command, issued individually, does not inter-
rupt program execution; it simply informs the user
when execution of his program has reached the instruc-
tion locations designated in the command.

When the AT command is included in a program
control statement, it designates the instruction locations
at which the actions specified in the statement are to be
performed. Program control statements that include

one or more AT commands are dynamic statements.

When an at command is acce.pted by the system, it is
assigned a number to identify it uniquely, and that
number is printed at the terminal. This is done whether
the aT command is individually issued, or is the first of
a string in a statement. When an AT command subse-
quently becomes effective, the standard output pre-
sented to the user includes the AT command’s identifi-
cation number.

The Quariry command allows the user to designate,
before he refers to a group of internal or external sym-
bols, the program in which these symbols are defined;
he may, thereafter, refer to these symbols without
m{phclt qualifying them by program name. If the
user does not issue the ouaLiFy command, be must
prefix cach symbol with the program name. If the user
is uncertain of his qualification, he may issue the com-
mand: “pispLay (0, 1)”. PCS will supply the symbol
last named in a QuaLiFy command and display one
byte. If no guaLiry command has been issued during
the task, L0 is the assumed qualification.

The reamtove command enables the user to delete
previously issued dynamic statements (those which in-
clude one or more at commands), thereby terminating
their subsequent execution.

Program Control Statements
The program control commands just described (except
QUALIFY and REMOVE) can be combined into program
control statements, either to request immediate execu-
tion of several pcs commands with one entry, or to re-
quest deferred execution of one or more rcs com-
mands. Deferred execution of the actions specified in
any statement is achieved by including an ar comn-
mand in the statement. The at command makes it a
dynamic statement, in the sense that its execution is
dependent upon arrival at the instruction locations
designated in the ot command.

Execution of a program control statement, either im-
mediate or dynamic, can also be made conditional by
inclusion of an v command. The 1r command defines
a logical expression (two-valued, or true-false) that
must be true to allow execution of the statement’s ac-
tions. When a dynamic statement includes an 1 com-
mand, the 1 command is evaluated only whern centrol
arrives at the instruction locations designated in the av
command.

This is the general format of a

ment
(AT) .. ;(IF)

a program control state-

JDISPLAY) .. 4(DUMP). . 4(SET).. .(BRANCH)
{(STOP)
The rules for the inclusion of program control com-
mands in program control statements are:
None, one, or more than one a1 command may
be included in a statement. If included, the atv com-

mands must be the first entered in the statermnent.

Appendix B. Problem Programming Checkout and Modification 137

1r: The 1r command must be entered after any AT
commands in the same statement. Multiple ¥ com-
mands may be entered in a single statement.

pIsPLAY: None, one, or more than one DISPLAY com-
mand may be included in a statement. If included,
they must follow any AT commands and/or the 1F
command entered in the same statement. The p1spLAY
command is performed (together with any pump com-
mand in the same statement) before any other action
commands specified in that statement.

pump: None, one, or more than one pump command
may be included in a statement. If included, they must
follow any At commands and/or the 1F command, if
present. The pump commands may be entered before
or after other action commands (except BRANCH or
sToP) in the statement. ser commands, if present in a
statement, are performed after any pispLay and pump
commands in the statement, but before BRANCH or sToP.
BRANCH: Only one BRaNCH command may be entered
in a statement; it must be the last command or entry in
the statement. If the BRANCH command is included in a
statement, the sTop command may not be included. If
other action commands are included in the same state-
ment, they are performed before the BrRANCH command
is executed.

seT: The seT command enables the user to change
the contents of a specified data location to a new value.
When the command becomes effective, the new value
of the data location is produced in the same format
that would be produced if the name of the data loca-
tion had appeared in a pispLaY command. The output
is produced from the changed field itself and reflects
the results of all conversions and expression evaluation.

stor: Only one stop command may be entered in a
statement. If included, it must be entered after any AT
commands and/or the ¥ command in the same state-
ment. If the stop command is included in a statement,
the BRaNcH command may not be included. If other
action commands are included in the same statement,
they are performed before the stor command is exe-
cuted.

PCS and the Internal Symbol Dictionary

When the user selects the 1sp option in the asyM param-
eters, the assembler includes the internal symbol dic-
tionary as part of the object module. The 1sp contains
the length and type attributes and the location of each
symbol that appears in the “name” field of a statement
in the source program (note exceptions below).

pcs uses the information in the 1sp to determine the
location of an instruction or data area in virtual stor-
age, to select the proper conversion and format when
a variable is displayed or dumped, and to determine

138

the method of arithmetic to be used in evaluating a
SET OT IF expression.
pcs recognizes the following type attributes:

Immediate values (absolute EQu statements)
Instructions

Character

Integer (halfword and fullword)

Floating point (single- and double-precision)
Address constants

Hexadecimal

Relocatable EQu statements

Names on LTORG statements

All other type attributes are treated as hexadecimal
data. In addition, if the user designates, in his source
program, a length attribute for a type having an im-
plied length (i.e., Hr2), the type attribute for the sym-
bol is recorded in the 1sp as hexadecimal. The reason
for this is that the assembler does not force boundary
alignment when a length attribute is specified. Since
the data area, therefore, may be unaligned, it cannot
be considered as having the characteristics that the
type attribute implies.

When an offset is specified with an internal symbol,
the type is considered hexadecimal, and the length,
unless designated with the offset, is treated as one
byte.

The assembler statements listed below are not in-
cluded in the 1sp; therefore they may not be referred
to in pcs statements.

Complex EQu statements
Local and global variable symbols
Sequence symbols
Names on macro instructions that are not carried
forward in the expansion.
Symbols in psects, although recorded in the 1sp,
should not be referred to in pcs statements. ,
If pcs statements are to refer to internal symbols,
the original object module must have included an 1sp.
When object modules are link-edited and the 1sp
option is selected, the linkage editor automatically re-
tains each module’s 1sp. In addition, a new 1sp is
formed, allowing pcs to trace back from the new com-
posite object module to each original control section.

Using PCS Without an ISD
When an 15D is not selected at assembly time, the user
is restricted to the use of external symbols in his pro-
gram control statements. pcs commands can refer to
lines in the source program by using the control section
name with a hexadecimal offset equal to the location
shown on the object listing.

If pcs statements are to refer to internal symbols,
the original object module must have included an 1sp.

No conversion or formatting is done for variables
that are referred to by external symbols. The type is
considered to be hexadecimal, and, unless an explicit
length is specified, one byte is assumed as the length.

Evaluating Expressions

When two operands are joined by an operator to form
an expression, the length and type attributes of both
are used to determine the method of arithmetic to be
used in performing the operation. Integer, floating-
point, or logical arithmetic is selected. However, logi-
cal (i.e., address) arithmetic is performed only when
requested by the user in response to the system’s
prompting.

When it is not possible to determine the arithmetic
to be used from the type and length of the operands,
the conversational user is prompted to supply the
method. In a nonconversational task, since the expres-
sion cannot be evaluated, the pcs statement is rejected.

References to variables that are not aligned on the
proper boundary result in a warning diagnostic. How-
ever, the operation will be successfully performed
without a specification interrupt. pcs automatically
provides intermediate moves to proper word bound-
aries.

Table 14 illustrates the possible combinations of op-
-erands for arithmetic and relational operations. Logi-
cal operators are not included since they are always
performed in a general register and must be one, two,
or four bytes in length.

Program interrupts can occur any time an expres-
sion in a pcs statement must be evaluated. These in-
terrupts are recognized as being caused by a pcs state-
ment and not by the user’s object program. Five such
interrupts can occur:

. Fixed-point overflow exception

. Fixed-point divide exception

Exponent overflow exception

Exponent underflow exception

Floating-point divide exception

When any of these interrupts occurs, a diagnostic
is issued and the action requested in the pcs statement
is not performed. These interrupts are not recognized
by the user’s program interrupt routine if one has been
specified.

N

Floating-Point Constant Conversion
The assembler and pcs use different methods to con-

vert floating-point constants to their internal binary -

values. As a result, the two processors may develop
two slightly different internal values for the same
floating-point number. Thus, although a single-preci-
sion floating-point number gives up to seven decimal

places of precision, the user should assume only six
decimal places of precision between the two proces-
sors. With double-precision numbers, a maximum of
sixteen decimal places should be assumed instead of
seventeen.

This difference in conversion techniques should also
be kept in mind when using pcs 1 and ser commands
to debug an assembler language program. For exam-
ple, if an 1¥ command were used to test the value of
an object-module variable which was initialized with
an assembled floating-point constant, equality might
not occur because different internal values were ob-
tained by the two processors for the floating-point
number.

To avoid the possibility of such a problem, the user
should take into consideration the allowed variation
between the two numbers being tested. One method
to use when testing two numbers for equality is to
take the absolute value of the difference against the
allowed variation. (A similar problem might develop
when a floating-point variable that is to be used for
comparison by the object program is initialized using
a floating-point number in a seT command.)

If the programmer has access to an assembly that
indicates the internal value to which a floating-point
number has been converted by the assembler, the
problems resulting from different conversion tech-
niques may be avoided by using the hexadecimal
equivalent of the internal value in the 1F or ser com-
mand.

PCS Diagnostics

pcs examines each statement for validity and issues
diagnostics alerting the user to errors.

Diagnostics usually are issued immediately upon re-
ceiving the command. In conversational mode, the
user can reenter the statement with the necessary cor-
rection made. Nonconversationally, the user has no
chance to correct errors; a diagnostic is printed on
sysouT and the pcs statement is simply ignored.

Certain errors are not detected until execution has
begun. These errors are the result of an action the
user has requested in a dynamic pcs statement (i.e.,
one containing an AT command). In a conversational
task, after the diagnostic is issued, the terminal is
placed in command mode. The user can then REMOVE
the erroneous statement, reenter it correctly if he de-
sires, and continue execution with a co. If he wishes
to perform the corrected statement immediately, he
must use the operand of the at statement as the oper-
and of the BRANCH. ,

In a nonconversational task, the diagnostic is writ-
ten on the sysout data set and the next command
is read from sysin. This may result in prematurely
terminating program execution.

Appendix B. Problem Programming Checkout and Modification 139

Miscellaneous Considerations

CALL, GO, and BRANCH Commands

When the caLL command specifies an external symbol
as an operand, the object module defining that symbol
is automatically loaded if it has not been previously
loaded. If, however, there is a serious error in loading
the module, the caLL command is rejected. Serious er-
rors are caused by level 2 errors when the module was
assembled, as described in Appendix A, under “As-
sembler Diagnostic Action”; or dynamic loader errors
as described in Appendix C, under “Recovering from
Errors when Dynamically Loading.”

If the error condition does not preclude execution of
the object module that was loaded, the caLL command
may be reissued to initiate execution. The module
name must be repeated on the second cALL.

If the user anticipates that such errors will occur,
he should first issue a Loap command naming the
module, followed by a caLL with operand. This
method ensures that program execution will always
be initiated. This is most important to the nonconver-
sational user, since it is not always possible to antici-
pate loading errors. The conversational user may use
the Loap and caLL procedure, or a carL followed by a
duplicate caLL command if the first caLL is rejected.

Table 14. Possible Combinations of Operands for Arithmetic and Relational Operations

OPERAND 1 OTHER
OTHER TYPES
TYPES LENGTH
E OR D OR OTHER OTHER LENGTH OTHER OTHER
SINGLE- DOUBLE- TYPES TYPES =4o0n TYPES THAN 1,
PRECISION PRECISION LENGTH LENGTH GENERAL LENGTH 2,4, 0R
OPERAND 2 H F REGISTER REGISTER =1 =2 REGISTER =8 8 BYTES
H 1 1 F703 F048 I 1 I F048 F048
F 1 1 F705 F049 1 1 1 F049 F048
E or Single-Pre- F703 F705 E D F703 F703 E D F048
cision Register :
D or Double- F048 F049 D D ¥048 F048 D D F048
Precision
Register
Other Types 1 1 F703 F048 F703 F703 F703 F048 F048
Length = 1
Other Types 1 1 F703 F048 F703 F703 F703 F048 F048
Length = 2
Other Types 1 1 E D F703 F703 F705 F049 F048
Length =4 or
General Register
Other Types F048 F049 D D F048 F048 F049 a F048
Length — 8
Other Types F048 F048 F048 F048 F048 F048 F048 F048 b
Length Other
Than1,2,40r 8
H = halfword integer
F = fullword integer
1 = integer arithmetic
E = single-precision, floating-point arithmetic
D = double-precision, floating-point arithmetic
F048 = operation cannot be performed because operands are incompatible
F049 = only floating-point arithmetic is possible
F703 = user is prompted to select integer or logical arithmetic
F705 = user is prompted to select integer, logical, or floating-point arithmetic
a = if operation is relational, the user is prompted to select logical or floating-point arithmetic; if the operation is not relational,
diagnostic F048 is issued
b = if operation is relational and the two operands have the same length, a logical compare is made; if not relational or if the

lengths are unequal, diagnostic F048 is issued

140

AT Command

The at command should only refer to instructions in
the user’s own program. at should not be used in a
label-processing or end-of-volume routine.

For each operand in an at command, the instruc-
tion at that location is replaced by an svc causing pcs
to be activated when the svc is executed. For this rea-
son, the user should not designate as an operand in an
At command any instruction location that is the sub-
ject of an Execute {Ex) instruction, or any instruction
residing in a public control section.

The instruction replaced by the svc is moved to an
area of virtual storage remote from the user’s program
and is executed after all rcs actions have been per-
formed. It will, in fact, never be executed if a caLL
is issued that specifies a different restart point.

If a program interrupt should occur when this in-
struction is executed and a user’s interrupt-handling
routine has not been specified, a diagnostic message
is issued. Since the interrupt is recognized as being
caused by an instruction in the user’s object program,
the diagnostic is issued by the system’s program in-
terrupt routine. The control section name and displace-
ment in the message are not shown in this case, since
the instruction does not reside in a user’s csecr. If the
user suspects that this situation has occurred, he can
remove the pcs statement containing the appropriate

- AT operand and enter a CALL to re-execute the instruc-
tion(s). An interrupt at this time isolates the invalid
instruction.

Operational Considerations

The user cannot make full use of the program control

facilities until he has loaded his program; e.g., with a
roap command. After loading his program, the user
can initiate investigatory actions, e.g., he may pisprLaY
the contents of machine registers or of locations in his
virtual storage, or he may issue AT or SET commands.

Even after his program is loaded, the user’s utiliza-
tion of program control facilities will be restricted, if
he failed to request an internal symbol dictionary (1sp)
when his program was assembled or compiled. Lack-
ing the 1sp for a program, the user may refer only to
external symbols in his commands; with the 1sp, he
is free to refer, also, to internal symhols within the
program.

Once the user has loaded, but not initiated execution
of his program, he may input program control com-
mands and statements that refer to his program, and
then initiate execution. If he is operating in conversa-
tional mode, he can interrupt execution of his program
by pressing the aATTEnNTION button at his terminal; then
he may input additional commands and statements or
cancel previous statements.

The user can then resume program execution by en-
tering the co command. Alternatively, he can enter
dynamic statements prior to program initiation, and
specify control points at which execution is to be
stopped. At these points he may enter data, change
program sequence, etc,

When execution of the program is completed, the
user may want to enter more commands. E xample re-
start execution of the program from a specified entry
point by use of the co command.

Program control operations may be continued on an
object program until the program is unloaded by an
uNLoAD command (or, in the case of an assembler-
written program, by a DELETE macro instruction).
When a program referred to in a dynamic pcs state-
ment is unloaded, all dynamic statements are deleted.
The user can reenter any dynamic pcs statements that
refer to programs that are still loaded, if he wants to
reinstate these statements.

Conversational Mode

In the conversational mode, pcs commands received
from the user are checked for valid syntax; the symbols
he refers to are checked against the object program’s
external and internal symbol dictionaries. Syntax errors
and references to undefined symbols are reported to
the user at his terminal together with appropriate mes-
sages to direct his corrective actions. The user is thus
assured of entering only a valid set of program control
commands and statements.

All output is produced at the user’s terminal, except
for the output developed by a pump command. Exam-
ple: A dynamic statement that calls for the interruption
of program execution causes output at the user’s ter-
minal when the statement is executed, to inform the
user of the action taken and its location within his
program.

Nonconversational Mode

Program control facilities may also be used in noncon-
versational mode, but with these differences:

1. Program control commands containing errors pro-
duce diagnostic messages that are sent to the task’s
sYsouT data set; the commands are ignored.

2. No prompting is performed; incompletely entered
commands, which would cause the user to be
prompted in conversational mode, are ignored.

3. Program control output is sent to the nonconversa-
tional tasks’ sysour data set, and may be inter-
spersed with other data that appears there.

4. After object program execution is interrupted by a
stop command (alone, or in a statement), the next
command is taken from the nonconversational task’s
sYsIN data set.

Appendix B. Problem Programming Checkout and Modification 141

Appendix C. Programming Considerations

This appendix describes procedures that the Tss as-
sembler language programmer should follow in the
preparation and execution of his programs. The initial
sections in this appendix describe concepts basic to
the writing of any assembler language program; in-
cluded are discussions of writing programs in Tss assem-
bler language, creation of unnamed control sections,
pooling of literals, system macro instruction usage,
floating-point computations, references to module
names of link-edited modules, use of the exir and
PAUSE macro instructions, assembler language linkage
conventions, shared code considerations, efficient use
of virtual storage, control section rejection and linking
control sections, and recovering from errors when
dynamically loading. '

Next, a discussion is given of library management,
including a description of the libraries available to the
programmer and the use of the program library list.

The final section of this appendix describes those
TSs naming conventions of which the user should be
aware in order to avoid creating names that conflict
with names reserved for system use.

Users writing privileged system programs should
refer to the System Programmer’s Guide for proper
programming procedures.

Writing Programs in TSS

While not all programs need be written in accordance
with the guidelines given here, users of Tss will find-
it easier to use the assembler if these guidelines are
followed. More detailed information concerning as-
sembler language programming is given later in this
Appendix, and in Appendix D, “Interrupt Considera-
tions.”

The programming procedures described in this sec-
tion use two programs for demonstration purposes. The
first will be referred to as peMm. The name pGM is as-
signed as the module name when the asm parameters
are entered. Consistent with TS5 terminology, the out-
put of an assembly will be referred to as 2 “module,”
rather than the more general term “program.”

The assembler instructions for pcm will be shown
completely. It will be seen that poMm initializes two
variables, then calls a second module, sus. The instruc-
tions for sus will be shown only in enough detail to
make clear the details of the linkage between peM
and suB.

The first assembler statement normally written will
be a psecT statement, as, for example:

PGMP PSECT

142

where pomp is the label of the peM psecr. The name of
the psect may not be identical to the module name.
(Here, the p is affixed to the module name pcM as a
convenient notation technique.)

At this point it is pertinent to briefly discuss Tss
naming conventions. A more detailed discussion is
given later in this appendix. The user should not use
names in his program that start with the following
three characters: sys, cHc, or cHp.

Following the psecr statement, an ENTRY statement
is given identifying the point in peM at which execu-
tion begins. In peM, the name of this entry point is
PGME. The entry point name may not duplicate the
module name or psect name. (The manner in which
PGME is used will be shown later.) Execution at PcME
is initiated by use of the caLL command or by an
implicit caLL, as:

CALL PGME

(The caLL command is described in detail in the exam-
ples contained in this publication, as well as various
appendixes, and Command System User’s Guide.)

Following the ENTRY statement are two statements
reserving a 19 word seve area:

PGMP PSECT
ENTRY PGME
DC F76°
DC 18F°0

This save area is required by many of the system
macro instructions (such as Ger, PUT, CALL, SAaVE, and
RETURN). The pc ¥76¢’ statement gives the number of
bytes in the save area (4 x 19); the pc 18F'¢ statement
sets the last 18 words of the 19 word save area to 0.
When the contents of any word in the save area is
altered, the new contents will, in general, not be 0.
Thus, presetting each word to 0 allows one to deter-
mine if a word has been altered or not. This would not
be possible if the statement ps 18F had been used, for
example, as the contents of a storage area defined with
a ps is not predictable.

The next statements to be placed in the psect are
those reserving storage for items whose values may be
changed by the program. This practice is required for
reenterable programming, and is a convenient practice
for all types of programs, as described in the section of
this appendix discussing performance considerations.
Assume that module pcM will be computing a new
value for two words, to be referred to as aLpHA and
BETA:

* PGMP PSECT
& ENTRY PGME
DC F76°
DC 18F°0’
ALFHA DS F
BETA DS F

As stated earlier, rcm will make use of a subroutine
sus. The entry point to sUB is SUBE. The CALL, SAVE,
RETURN group of system macro instructions will be
used to accomplish the linkage to suBg, and from sus
back to pcM. A necessary part of a CALL on SUBE is a
specification in PeM of the entry name of module to be
called. The normal way of specifying that a program
will be called is by use of the Apcon macro instruction.
The implicit form of the apcoN macro instruction will
" be used here:

PGMP PSECT
ENTRY PGME
DC 76
DC 18F¢
ALPHA DS F
BETA DS F
SUBEVR ADCON IMPLICIT,EP=SUBE
SUBEVHR EQU *.12
This and the following two
statements are generated by the
ADCON macro instruction and
will appear in the object listing
with a plus sign to the left of
the generated statement.
DC V(SUBE)
DC R(SUBE)

The apcoN macro instruction defines V- and R-type
address constants for a later caLL to entry point SUBE,
just as a program wishing to caLL module roM at entry
point reME would write, for definition of the V- and
R-type address constants:

PGMEVR ADCON IMPLICIT,EP=PGME

In addition to items varying at object time and V-
and R-type address constants, all other types of address
constants should be placed in the psecr. In module
pcM, assume the addresses of aLpHa and BETA are
required:

PGMP PSECT
ENTRY PGME
DC F'7¢’
DC 18F0
ALPHA DS F

BETA DS F

SUBEVR ADCON IMPLICIT,EP=SUBE

AALPHA DC A(ALPHA)
DC A(BETA)

That part of pem that actually performs computa-
tions—the executable portion of the module—will now
be written. The first statement in this portion of the
module will be a csecr statement. This csect will be
assigned the attribute rReaponLY, as a csect should not
contain information that will be altered at object time.

PGMP PSECT
ENTRY PCME
PGMC CSECT READONLY

The label on the csecr statement was chosen to be
the module name pecM with a C attached, a convenient
notation technique. The cseEcr name (poMmc), the psecT
name (pcMP), the entry name (peMmE), and the mod-
ule name (rcM) must all be different, as all are exter-
nal symbols and external symbols may not be dupli-
cated in a module.

When reM is to be executed, the caLL command is
used to transfer control to the entry point of pcm. The
entry point is PGME, as noted in the ENTRY statement
in the psecr. pGME will be defined at the beginning of
the csecr. The question of base register usage should
also be considered. When pocME is entered, general
register 15 contains the address of peMe. This informa-
tion should be furnished the assembler by a using state-
ment:

PGMP PSECT

ENTRY PGME
PGMC CSECT READONLY

USING PGME, 15
PGME SAVE (14, 12)

STM 14, 12, 12(13)

This statement is generated by
the SAVE macro instruction,
and will store general registers
14, 15 and O through 12 in the
calling program’s save area.

Appendix C. Programming Considerations 143

Note the use of the save macro instruction at the en-
try point PGME above. It is a recommended convention
to use the save as shown to save the contents of the
registers when entered from the carrL command or as
the result of a caLL from another program. The save
allows pcM to restore registers to their value when
PGME was entered with the RETURN macro, as shown
later. (Use of rETURN is also a recommended conven-
tion.)

Following the save of general registers, a sequence
of five instructions will then be given:

PGMP PSECT

PGMC CSECT READONLY
USING PGME, 15

PGME SAVE (14, 12)

L 14, 72(0, 13)

Loads register 14 with the R-
value of PGME, which in this
case is the address of the PGM
PSECT, PGMP. The calling
program placed the R-value of
PGME in the 19th word of its
save area prior to calling PGME.

ST 14, 8(0, 13)

The address of the PGM save
area is placed in the third word
of the PGM save area. This save
establishes the “forward pointer”
in the calling program’s PSECT.

ST 13, 4(0, 14)

The address of the calling pro-
gram’s save area is saved in the
second word of the PGM save
area, PGMP+4-4. This save estab-
lishes the “backward pointer.”

LR 13,14

Register 13 now contains the ad-
dress of the PGM save area (by
convention, its PSECT) as it will
throughout execution of PGM.

USING PGMP, 13

Inform the assembler that any
items referred to in PGMP
should use register 13 as the
base register.

The remainder of the rcM csect will now be written.
In this example, peMm will initialize the two variables
ALpHA and BETA to 12, then execute a caLL on subrou-
tine sus, supplying suB with the address of a parame-
ter list containing address constants for the two pa-
rameters required by sus: ALPHA and BETA.

144

PGMP

PGME

PSECT

SAVE

USING

ST

ST
LA

CALL

LA

ST

(14, 12)

PGMP, 13
0,F12

Set ALPHA to 12.

0,ALPHA

Register 0 is a convenient regis-
ter to use for such temporary
usage, as it is unsuitable for re-
taining the same value over
large parts of a program. Many
macro instructions destroy regis-
ter O contents. Note that F12 is
defined below in the CSECT.
This is not in conflict with ear-
lier suggestions for items to be
placed in a PSECT, as F12 will
not be altered by PGM, and is,
of course, not an address con- -
stant.

0,=F12’

This demonstrates another means

of setting a variable to 12. The
assembler will generate a literal
constant of 12, and place it in
the CSECT, as all non-adcon
literals are placed in the first de-
fined CSECT unless a LTORG
is declared.

0,BETA
15,SUBEVR

(15),MF=(E,AALPHA)

The following five instructions
are generated by the CALL
macro instruction:)

1,AALPHA

Load register 1 with the address
of the parameter list.

14, 16(0, 15)

Load register 14 with the R-
value of the program to be
called.

14, 72(0, 13)

Store the R-value in the 19th
word of the save area to be sup-
plied to the called program.

15, 12(0, 15}

Load register 15 with the V-
value (the entry point) of the
program to be called.

BASR 14,15

Branch to the location in regis-
ter 15, setting register 14 to the
address of the first byte follow-
ing the BASR. The called mod-
ule will return to the address in
register 14.

Note that the LA into register 15, required for this
form of the caLL macro instruction, will destroy any
previous contents of register 15. When rcME was en-
tered, the usinc PGME, 15 statement established a base
register for the pom csect. If a caLL or other use of 15
is made, as in this example, another register should be
used. General register 12 is a good choice, as no sys-
tem macro instructions (such as cair) require that
register 12 be altered. The code following pcME might
- then be:

USING PGME, 15
PGME SAVE (14, 12)

L 14, 72(0, 13)

ST 14, 8(0, 13)

ST 13, 4(0, 14)

LR 13, 14

USING PGMP, 13

LR 12,15
To load register 12 with the ad-
dress of PGME.

DROP 15
This instruction is required prior
to the following USING, or the
assembler would continue to use
register 15 as the PGME base
register.

USING PGME, 12
To inform the assembler that
register 12 is now the base reg-
ister for PGME.,

LA 15,SUBEVR

CALL (15),MF=(E,AALPHA)

Many forms of the carr macro might have been
used to call sue. The form shown above requires that
the V- and R-type address constants be prepared by
the programmer; another form of the caLL would
cause the assembler to generate these two address
constants and place them in the pcMm PsECT.

PcM is now completed, and will use the usual sequence
of statements to return control to the calling program:

L 13, 4(0, 13)

Load register 13 with the ad-
dress of the calling program’s
save area.

RETURN (14, 12)

Restore the remaining registers
to the values they contained
when PGM was called.

LM 14,12, 12(13)
BR 14

These instructions are generated
by the RETURN macro instruc-
tion, and loads registers 14, 15,
and 0 through 12 from the save
area of the calling program, and
then returns control to the call-
ing program.

F12
Required above.

Notes the end of this assembly.

F12 DC

END

The assembler instructions for the entire PcM module
are repeated below.

PGMP PSECT Declare the program PSECT.
ENTRY PGME
Identify the program entry
point.
DC F76
Reserve a 19-word save area.
DC 18FQ
ALPHA DS F
Reserve space for items to be
altered in program execution.
BETA DS F
SUBEVR ADCON IMPLICIT,EP=SUBE
Define V- and R-type adcons
for the CALL of SUBE.
AALPHA DC A(ALPHA)
DC A(BETA)
Address constants of parameters
used by SUBE,
PGMC CSECT READONLY
Declare the program CSECT.
USING PGME,15
The calling program established
register 15.
PGME SAVE (14, 12)
Save the contents of registers.
L 14, 72(0, 13)
Establish the backward and for-
ward chains.
ST 14, 8(0, 13).
ST 13, 4(0, 14)
LR 13, 14

Load PSECT base register and
inform the assembler.

Appendix C. Programming Considerations 145

USING PCMP, 13
LR 12,15

Establish base register for
PGME and inform the assem-

bler.

DROP 15

USING PGME, 12

L 0,=F12
Initialize ALPHA and BETA to
12,

ST 0,ALPHA

L 0,=F12’

ST 0,BETA

LA 15,SUBEVR

Call SUBE, passing the address
of the parameter list.

CALL (15),MF=(E,AALPHA)
L 13, 4(0, 13)

Restore the address of the call-
ing program’s save area.

RETURN (14, 12)
Return to the calling program.

F12 DC F12
END

Module sus, called by pem at the sUBE entry point,
will now be shown. First, the sus psecr.

SUBP PSECT
ENTRY SUBE
DC F76’

DC 18F°0°

Next the initial part of the sus csEct, ENTRY and
save statements and the code establishing the psect
and csecr base registers:

SUBP PSECT
ENTRY SUBE
SUBC CSECT READONLY
USING SUBE, 15
SUBE SAVE (14, 12)
L 14, 72(0, 13)
ST 14, 8(0, 13)
ST 13, 4(0, 14)

146

LR
USING
LR
DROP
USING

13, 14
SUBP, 13
12,15

15
SUBE, 12

Module sus will now move the values of aLpHA and
BETA from the calling program into SUB. Note that:
(1)sus can obtain the values of aLpaA and BETA, as
the caLL of suBe by pem placed the location of address
constants pointing to ALPHA and BETA in general regis-
ter 1; and (2) suB should store the values obtained in
the suB psecr, suBP, in accordance with the practice of
storing items that vary during execution in a PsECT.
The assembler instructions might be:

SUBP

VAR1
VAR2

SUBC

SUBE

PSECT
ENTRY

DS

DS

CSECT
USING

SAVE

DROP
USING
LM

ST

ST

SUBE

F

F

ALPHA and BETA from PCM
will be stored here.

READONLY
SUBE, 15

(14, 12)

15
SUBE, 12
6,7,0(1)

Load the address of ALPHA
into register 6, and the address
of BETA into register 7.

0, 0(0, 8)
Store ALPHA in VARI.

0, VAR1

0, 00, 7)
Store BETA in VAR2.

0, VAR2

Following whatever other instructions might be exe-
cuted, sus returns to pcM. When pcMm is reentered fol-

lowing the caLL to sus, all general registers will con-
tain the same values as when suBe was called.

L 13, 4(0, 13)
RETURN (14, 12)
END

Creation of Unnamed Control Sections
Certain statements within the TSS assembler language
require that a control section be defined when they
are encountered because they assume that a location
counter value is available. If the programmer has not
declared a control section, the assembler defines an
unnamed CSECT which will be the first control section
in the object module produced by the assembler. This
assembler action does not normally need to concern
the programmer, except when
(1) statements generated in this control section will
require a base register which has not been pro-
vided, or when
(2) the programmer expects to call the module by its
name.
The following statements will cause the assembler to
produce an unnamed CSECT if necessary:
» all machine operation instructions
® all system or user macro instructions
¢ CCW

CNOP

CXD

DC, DS, and ORG

EQU

ENTRY

USING and DROP

LTORG
e END

If a module will be called by name and no symbol
is specified on the END statement, then the entry
point for execution of the module will be the first byte
of the first CSECT (if one exists). If the assembler has
defined an unnamed CSECT for the reasons above, the
unnamed CSECT is the assumed execution entry point
(standard entry point) for calls of the module by
name, even though the programmer may have defined
a named CSECT later in the program. This condition
may prevent proper execution of the program. Further,
if the unnamed CSECT has no text, that is, its length
is zero, the address associated with the CSECT is
location 0.

The programmer should define a control section
before coding any of the statements mentioned to
avoid any problems caused by an assembler-produced
unnamed control section. A suggested practice is to

define all control sections to be used with CSECT,
PSECT, COM, or DSECT statements before coding
anything else except comments. For example, the fol-
lowing sequence of statements guarantees that the first
two control sections in the program will be a PSECT
named PS and a CSECT named CS. The assembler
will build the control sections from subsequent state-
ments.

PS PSECT
DC F76°,18A(0) define a save area
CS CSECT
PS PSECT present the program
. in this and following
statements
END

Pooling of Literals

When rroRGs are included in a program, non-adcon
literals are pooled at the first LTorc following their
occurrence. Any non-adcon literals not pooled by the
end of the program are pooled at the end of the first
csect. When no LTORG is present, all non-adcon literals
are pooled at the end of the first csect. When a psect
is present in the program, regardless of whether
LTORGS are present, all adcon literals are pooled at the
end of the first psecr. If there is no psect in the pro-
gram, adcon literals follow the pooling rules used for
non-adcon literals. Finally, if a csecr is not present
and a psEcT is present, all literals are pooled as LTORGS
are encountered or at the end of the first psecT.

System Macro Instruction Usage

There are certain conditions to be met and certain
conventions to be observed when using systemn macro
instructions. The contents of registers 0, 1, 14, and 15
may be destroyved when system macro instructions are
used. Some system macro instructions generate literals
for which base registers must be provided by the user.
With two exceptions, whenever a macro instruction
generates a control section statement, that control sec-
tion is a continuation of one previously declared by the
source program, and the control section in effect at
macro call time is continued before the macro genera-
tion is completed. The two exceptions are pcep and
ADCOND, which cause a unique psect to be generated,
and this control section is in effect when macro genera-
tion is completed. A few macro instructions require
register 13 to be preset to the address of a save area;
cALL, savE, and RETURN are examples of this type of
macro instruction. The publications Assembler User
Macro Instructions and System Programmer’s Guide
contain more detailed discussions of these topics.

Appendix C. Programming Considerations 147

Floating-Point Computations

It must be kept in mind that, unlike integer arithmetic,
floating-point computations are not in general exact,
due to roundoff. This may cause the low-order bits of
a result to be different from the expected value. This is
true of pcs and FORTRAN programs as well as assembler
language programs. Thus, the user should be particu-
larly careful when comparing the results of an assem-
bler language floating-point computation with that
from a rcs computation, etc.

The order in which programs perform floating-point
computations may be important. For pcs, this order
is described in the publication Command System User’s
Guide. For FORTRAN programs, the object listings must
be inspected to determine the order of computation.

References to Module Names
of Link-Edited Modules

When modules are link-edited, the resultant module is
assigned the name specified in the LNk parameters. The
module names for those modules included in the link
edit are retained as auxiliary entry points in the list of
external symbols associated with the link-edited
module.

The module names of link-edited modules are re-
tained in the 1sp of the resultant module, if an 1sp was
requested for the resultant module and the module(s)
being included had been assembled with an 1sp. The
user can, in his pcs commands, refer to internal sym-
bols, including the original module name, in the re-
sultant module. In order to do so, the internal symbol
must be qualified by both the resultant module name
and the original module name, in that order.

EXIT and PAUSE Macro Instructions

Table 15 summarizes the use of the ExiT and PAUSE
macro instructions in both conversational and noncon-
versational mode.

Assembler Language Linkage Conventions

This section discusses the coding practices to be ob-
served when preparing modules to be used as sub-
routines that are called by other object modules and
when preparing linkages to. other object modules. The
section concludes with an example describing the con-
tents of the psects of three modules at various points
in the transfer of control from one to another. For in-
formation regarding the linking of assembler language
programs with FORTRAN and PL/1 subprograms, refer to
the FORTRAN Programmer’s Guide and PL/I Pro-
grammer’s Guide, respectively.

Linkage Conventions

Standard linkage conventions have been defined to
govern the communication between all Tss programs.

148

Five types of standard linkage have been defined: 1
I, ™M/11, 1, 1v. Only type I linkage will be described
here. The other linkage types are described in detail
in the publication System Programmer’s Guide.

Table 15. exrr and pause Macro Instructions

MACRO EFFECT IN EFFECT IN
INSTRUC- CONVERSATIONAL NONCONVERSATIONAL
TION MODE MODE

PAUSEn 1. Prints the message

or PAUSE “PAUSE n” or

‘message’ “PAUSE message” at
the user’s terminal.

PAUSE n or ‘message’
prints on SYSOUT data
set, execution continues
with the statement fol-
lowing the PAUSE.

2. Prints an underscore
at terminal request-
ing a command.

3. Program may be con-
tinued at the state-
ment following the
PAUSE by entering
the RUN command.

EXITn 1. Prints “EXIT, RE- 1. Prints “EXIT, RE-

or EXIT
‘message’

LEASE ALL UN-
NEEDED DE-
VICES,” followed by
n or ‘message’ at the
terminal.

. Prints an underscore

at terminal request-
ing a command.

. Reads the next com-

LEASE ALL UN-
NEEDED DE-
VICES,” followed by
n or ‘message’ in the
SYSOUT data set.

mand from the
SYSIN data set.

Associated with type I linkage conventions are three
areas of concern; these are:

1. Register usage.
2. Parameter lists.
3. Save areas.

Proper Register Usage

1ss has assigned roles to certain registers used in
generating a linkage. The function of each linkage
register is illustrated in Table 16. Note that registers 2
through 12 are not assigned and, thus, are always
available to the programmer for other purposes.

It is the responsibility of the called module to main-
tain the integrity of general registers 2 through 12 so
that their contents are the same at exit as they were
at entry to the called module. It is the calling module’s
responsibility to maintain the floating-point registers
and program mask around a call. General registers 0,
1, and 13 through 15 must conform to the indicated

conventions; 0 and 1 may be destroyed by the called
module.

Table 16. Linkage Registers

GENERAL
REGISTER USAGE
1 Parameter List Reyister—contains the address of a
list ot pointers to input parameters.
13 Save Area Register—contains the address of the
calling module’s save area.
14 Return Register—contains address in calling mod-
ule at which execution resumes upon return.
15 Entry Point Register—contains address of the entry
point in the called module; also Return Code Reg-
ister—contains return code set by called module.

Reserving a Parameter Area

If a called module requires input parameters, the call-
ing module must supply the called module with the
location of a parameter list in general register 1. Each
entry in the parameter list must be on a full-word
boundary and represents the address of a parameter
being passed to the called module. If the parameter
list is variable in length, the length is specified as a
count of the number of addresses that compose the list.
This count is located one word before the first word
in the parameter list. Regardless of whether the pa-
rameter list is of fixed or variable length, the parameter
list register points to the first word of the parameter
list. The caLL macro instruction can be used to gen-
erate the parameter list, as well as to link to the called
module.

Reserving a Save Area

It is the responsibility of the calling module to sup-
ply a 19-word area to be used by the called module.
Figure 32 shows the layout of the save area and briefly
describes the information saved in the area by the call-
ing and called module. Of particular interest in this
save area (for trace purposes) are the following two
words:

Word 2 The “backward pointer.” This word always
points to the save area of the module that
called the module whose save area is being
inspected.

Word3 The “forward pointer.” This word contains
the address of the save area of the module
last called by the program whose save area
is being inspected. The low order bit of this
word is set to zero as the called program is
entered and set to 1 upon exit if the T option
in the RETURN macro is used. This bit is useful
in determining the flow of control during pro-
gram execution.

CALL, SAVE, and RETURN Macro Instruction Usage

The caLL, save, and RETURN macro instructions are
used to provide linkage between object program mod-
ules. Refer to the publication Assembler User's Macro
Instructions for a detailed description of the notation
and options of each macro instruction. In most cases,
additional user-written instructions are necessary to
complete the requirements of the linkage conventions.
The following sections illustrate the points that should
be considered when using the program linkage macro
instructions.

CALL Macro Instruction

The caLL macro instruction generates all the necessary
instructions to set the entry point and return registers,
constructs a parameter list if parameters are specified
and sets the parameter register, and stores the R-value
for the called module in the 19th word of the save area
indicated by register 13. It is the user’s responsibility
to ensure that register 13 is properly set to the address
of the save area.

If the calling module requires the contents of regis-
ters 0, 1, 13, 14, and 15, the calling module must save
and restore these registers around the caLL. (For exam-
ple, register 15 may be used as a base register for
code.) The calling module must also save and restore
the program mask and any floating point registers used
around the carr.

Note: An implicit caLL refers to a V- and an R-type
address constant pair. In order for the loader to prop-
erly resolve the value of the R-type address constant,
the label appearing in the operand of the R-type ad-
dress constant must be an external symbol.

Although the carn macro instruction provides for
specifying parameters that automatically cause a pa-
rameter list to be constructed, there are various other
methods for communicating between object modules.

The user can, of course, construct his own parame-
ter list, setting the parameter list register (1) prior to
the carr. The location of data (such as a table)
can be communicated to the called program by an
ENTRY statement in the calling program. The called
program must then contain an EXTRN statement and
an address constant naming the table.

SAVE Macro Instruction
The saveE macro instruction generates the instructions
for saving the contents of general registers as specified
by the user. Register 13 is never saved and must not
be specified. The user may wish to save all the regis-
ters but 13 (i.e., save (14,12)). This provides full pro-
tection against inadvertently changing a register.

In addition to saving registers, save can be used to
develop a means of checking the program flow. If the
T option is specified, registers 14 and 15 are stored in

Appendix C. Programming Considerations 149

the fourth and fifth words of the save area. Also, if the
first register specification in the macro instruction is 14,
15, 0, 1, or 2, all registers from 14 through the second
register specification are saved. If an entry-point iden-
tifier operand is specified, the entry-point identifier
character string is included in the macro expansion
beginning on a half-word boundary preceding the
entry point.

The entry-point identifier is placed so that either one
or two bytes separate its end from the beginning of the
entry-point. If an extra byte is needed to achieve half-
word alignment, a character blank is added to the end
of the string. A count byte will then follow. The count
byte will always precede the entry-point and contain a
value equal to the number of characters in the string,
plus the blank (if used). The count byte itself is not
included in this tally.

If the entry-point identifier operand is written
as an asterisk, the entry-point identifier is the same as
the symbol in the name field of this macro instruction.
If the name field is blank, the name of the control sec-
tion containing the save macro instruction is used as
the identifier character string.

The additional instructions to be supplied by the
user following the save are dependent on the type of
module being prepared.

If the called module does not perform any further
linkages, the only additional instruction necessary is
one that loads into a base register the psect address
from the nineteenth word of the save area as pointed
to by register 13.

If register 15 is not to be used in further calls, it can
be used as a base register for the code. If register 14
is used by the called module, it should be specified in
the save and RETURN.

A program that does not perform any calls may be
coded as:

SUBIEP SAVE (14,12),.*

Save registers 14-15, 0-12 and
place SUBILEP preceding the
entry point

L 12,72(0,13)
Pick up address of PSECT

USING SUB1P,12
PSECT base register

USING SUBIEP,15
Code base register

RETURN (14,12), T

Restore and return

If the called module does perform further linkages,
additional instructions must be supplied to perform the
following functions:

150

* Establish a save area to be used by the modules
being called.

* Save the contents of registers 13 and 14. Register
14 can be specified in the save macro; the instruc-
tions to save register 13 must be supplied by the
user. The backward pointer in the called module’s
save area is intended for this purpose.

® Establish the forward and backward pointers in the
calling and called module’s save areas. This facili-
tates checking of the flow of control from one ob-
ject module to another.

The following is an example of a module that has
been written so that its save area occupies the first 19
words of its psecr. This is convenient in that the save
area register (13) can also be used as a base register
for the psecr.

SUBIP PSECT

DC F76'

DS 18F

. ENTRY SUBLEP
SUBIC CSECT READONLY
SUBIEP SAVE (14,12)
Save registers 14-15, 0-12
L 14,72(0,13)

Get R-value from calling mod-
ule’s save area

ST 14,8(0,13)
Store forward pointer in calling
module’s save area

ST 13,4(0,14)
Store backward pointer in SUB1
save area; address of calling
module’s save area will be re-
stored to 13 before return

LR 13,14
Set base register for PSECT and
save area

USING SUBIP,13

LR 12,15
Set code register

USING SUBLEP,12

Note that register 14 in the example is used to hold
the psect address temporarily until 13 is saved. This is
safe, since 14 has been specified in the save and is to
be restored on RETURN. Also, since this module is to
caLL another module, register 12 is used as a base
register for code, rather than saving and restoring 15
around each call. Finally, the occurrence of the EnTRY
statement in the sus1 psect identifies the origin of the
PsECT as the R-value for the entry point suBiEP.

SAREA

(word 1) Contains the length of the save area in bytes, a minimum of 76.

SAREA +— 4 >

(word 2 The address of the calling module’s save area. This field is set by the called module in its
own save area.

SAREA + 8 >,

{word 3) The address of the next save area; that is, the save area of the called module. This field is
set by the called module.

SAREA + 12 >

(word 4) The contents of register 14 containing the address to which return from the called module is
made. This field is set by the called module in the calling module’s save ares.

SAREA + 16 >

(word 5) The contents of register 15, containing the oddress to which entry inta the colled module is
made. This field is set by the called module in the calling module’s save area.

SAREA + 20 >

(word 6) The contents of register 0. Value in register 0 set by calling module and saved by called
module.

SAREA 4 24 >

(word 7) The contents of register 1.

SAREA + 28 >

{word 8) The contents of register 2.

SAREA + 32 >

(word 9) The contents of register 3.
Eight words containing the contents of registers 4-11.

SAREA + 68 >

(word 18) The contents of register 12.

SAREA + 72 >

(word 19) The address of the PSECT of the called module. This field must be set by the calling module,
by storing the R-value of the called entry point in it

Figure 32. Save Area Format and Word Content

Although it is convenient to have a save area as
the initial portion of the psecrT, it is not a requirement.
Some alternatives are:

e The save area resides in the psecT but not at the be-
ginning.

o The save area resides in another control section but
is located by an address constant in the psgcT.

® The module contains no psecT; the save area resides
in another control section type and is pointed to by
an address constant in the module.

e The save area is dynamically allocated via cETMAIN
on each entry to the routine and released prior to
RETURN.

While any of these methods is possible, each has dis-
advantages. All require more instructions in locating
the save area. Also, an extra register must be used as
the psecT base register, thus decreasing the number of
registers available for the program.

RETURN Macro Instruction

The RETURN macro instruction expands into the instruc-
tions for restoring the general registers and returning
control to the calling program. Additionally, if the T
option is specified in the macro, the low-order bit in
the third word of the caller’s save area is set on to
facilitate tracing save areas.

Register 13 must be set to the calling module’s save
area prior to the ReTurn. If the contents have been
stored as the backward pointer (word 2) in the called
module’s save area, the register contents can be re-
stored easily by:

L 13,4(0,13)
RETURN (14.12)

If neither register 14 nor the T option has been speci-
fied in the saveE macro instruction, 14 must also be
restored prior to the RETURN.

A return code can be specified in the macro or can
be preset in register 15 by the program. Return codes
can be any value from 0 to 4092. Codes must be as-
signed in multiples of four, so that the calling program
can use them as an index to a branch table.

If the RETURN macro instruction is written with the
T option, when the registers are restored, the low-
order bit of the forward pointer in word 3 of the call-
ing module’s save area is set to 1. This is another means
of tracing the flow of control between modules.

Object Modules Initiated by a CALL Command
Logically, the first module to receive control has the

same: linkage as lower-level routines that it, in turn,

calls. The system, via the carr. command, allocates a

Appenelic € Programming Considerations 151

save area to be used by the modules. On entry, regis-
ters 13, 14, and 15 are set by convention to the save
area, the return point, and the entry point, respectively.
The 19th word of the save area contains the R-value
for the entry point. The return point, in this case, is to
a system routine that conversationally places the termi-
nal back in command mode or nonconversationally
reads the next command from sysin. The contents of
registers 0 through 12 are unpredictable.

If the initial module completes its execution with an
EXIT macro instruction, the registers contain the values
as last changed by the program. If, however, the pro-
gram ends execution with a RETURN macro instruction,
the contents of the registers depend on which registers
were restored in the reTurn. Registers 13 and 14 must,
of course, always contain the save area address and
return point. Registers ¢ through 12 and 15, if not
specified in the ReTURN, contain the values as set by
the program. Register 15, if restored, contains the
entry point. In this case, any investigation of the con-
tents of registers 0 through 12 must be dene prior to
the execution of the rReTURN.

Example of Module Interaction

The interaction of three modules is shown below (Fig-
ures 33, 34, and 35). Module A calls module B which
in turn calls module C. Register 0 is loaded with “1,”
“2,” and “3,” in modules A, B, and C, respectively. The
load is performed prior to the link to the next higher
level. Table 17 shows the contents of the save areas
for all the modules at the points specified. The back-
ward and forward pointers between save area levels
are contained in words 2 and 3. The next higher level
entry point is in word 5, and the return point to the
level being inspected is contained in word 4. The save
area for the highest level will never contain useful in-
formation in words 4 through 18, the general register
save area. This is because it is the responsibility of the
called module to save the environment of the calling
module in the calling module’s save area.

It must also be emphasized that the setting of bit 31,
word 3 in the calling module’s save area results from
the called module using the T option on the RETURN,
As an cxample, see the save area for module B after
control is passed to module A. The setting of this bit
took place at line 2000 in module C.

Thus. by inspecting the save area belonging to a
module, it may be determined whether it was the
highest level executed, where it was called, the location
of the calling module’s save arca and the descending
chain of pointers. the entry point to the next higher
level modnle, if any, and the return point to the level
being inspected if a call was made to a higher level,

152

Interroutine Communication

External dummwv sections provide a direct means of
communication among several different routines. They
are defined by pxp instructions and are located at
execution time by a Q-tvpe address constant naming
the desired external dummy section. The information
present in an cxternal dummy section is available to
all routines which have defined the dummv section
within their code. '

The cxp instruction must be specified in at least one
of the routines. For all modules loaded simultaneously,
the loader will calculate the cumulative byte length of
all external dummy sections and place the sum in the
fullword storage area allocated by the cxp instruction.
Any routine which issued the cxp instruction can then
use the cumulative sum to determine the amount of
virtual storage which must be acquired to contain all
the external dummy sections. The storage will be
obtained dynamically, at execution time, by issuing a
GETMAIN macro instruction. Altemately, storage may
have been reserved earlier with ps, pc, or orc assem-
bler instructions. :

The example which follows illustrates a use of ex-
ternal dummy sections as communications areas for a
main routine and its subroutine. MAINPGM is the main
routine which has been assembled in a program
module. It will call the subroutine suspem which has
been assembled in a separate program module. The
main routine will place the address of the message
‘Sample Message’ in the external dummy section
named PL. The message byte length will be saved in
the external dummy section P2, When susreM gains
control, it can access the two external dummy sections
and write the message to SYSOUT.

The assembler instructions for the module ManpeMm
are shown below. The standard entry and linkage con-
ventions discussed earlier must be followed. This
example, however, will only show the code necessary
tor establishing and manipulating external dummy
sections,

MAINP PSECT

Pl DXD A
External dummy section which
will be set to the address of
MSG.

P2 DXD ¥
External dummy section which
will be set to the length of
MSG.

Q1 e QD

Qr2 DO Qr2)

Q-type address condtants nsed
to Tocate PT and P2 in the ac-
quired virtual ctorage,

CUMLEN CXD

After loading, this fullword in
storage will contain the cumula-
tive byte length of all extermnal
dummy sections defined by the
two routines.

XDPGS DS F
This fullword will save the num-
ber of pages of virtual storage
which must be acquired.

MSG DC
LMSG DC

C'SAMPLE MESSAGE’

A(L'MSG)
Set to the length of MSG.

The executable portion of the main routine is now
shown. mamnecM will calculate the virtual storage re-
quest from the sum stored in cumieN, and issue the

GETMAIN macro instruction.
MAINC CSECT

.

L
LA
SRA

12,CUMLEN
12,4095(0,12)
12,12

The preceding code is necessary
to convert the number of bytes
needed into pages.

ST

12, XDPGS

The page request is stored in

XDPGS for reference when the’

storage is released.

LR 0,12

Register 0 now contains the
number of pages which must be

acquired.

GETMAIN

PAGE,LV =(0)

The GETMAIN macro instruc-
tion is issued to obtain the vir-
tual storage.

LR

.

12,1

Register 12 is established as the
base register for addressing the
external dummy sections.

The main routine will now place the proper values
in the external dummy sections and call suspcm.

L

LA

ST

5,QP1

The displacement of the external
dummy section P1 is loaded into
register 5.

6 MSG

The address of MSG is loaded
into register 6.

6,0(5,12)

The address of MSG is stored in
P1.

ST

CALL

5,QP2

G.LMSG

The displacement of P2 s
loaded into register 5; the byte
length of MSG is loaded into
register 6.

6,0(5.12)

The length of MSG is stored in
P2,

SUBPGM
A call is made to the subroutine
to print out MSG.

After susrcum has completed exccution, it will return
control to the main routine. Since the storage needed
for the external dummy scctions is no longer required,
a FREEMAIN macro instruction can be issued to release
virtual storage.

L

LR

FREEMAIN

END

0,XDPGS

The page request is loaded.

1,12

The address of the external
dummy section block is loaded
into register 1.
PAGE,LV=(0),A=(1)

Virtual storage is released.

The external dummy sections P1 and P2 must also
be defined in the subroutine in order for intcraction
between the two routines to occur. Following is the
necessary code for suBroM:

SUBP

P2
P1

QP2
QP1

LNGAREA
MSGAREA

XX
QXX

PSECT

DXD
DXD

DC

DS
DS

DXD
DC

F
Length of MSG.

A
Address of MSG.

Q(P2)
Q(P1)

Displacements of cxternal
dummy sections within block of
storage.

F

CL256
Areas into which P2 and P1
will be moved.

CL256
QIXX)

The external dummy section XX
is an area which will be used
only by SUBPGM. It has not
been defined in MAINPGM and
is thus not available to the main
routine even though it is repre-
sented in the area secured by
MAINPCM.

Appendix C. Programming Considerations 153

SUBC may not have the PUB-
LIC attribute because the Qcon
for P2 must be resolved by the
dynamic loader.

SECT
SUBC CS] ST 8 LNGAREA
. The message length is stored.
. BCTR 8,0
L 7,QP2 Decrement register contents b
The displacement of P2 within one to prepare for EXECUTE
the block of storage is loaded instruction.
into register 7.
g L 7,QP1
L 8,0(7,12) Load displacement of P1.
SUBPGM assumes that register
- ad f th L 7,0(7,12)
12 points to the address of the Obtain address of MSG
storage block containing the ex- '
ternal dummy sections. By using EX 8,MOVE
register 12 as the base and reg- Move message to MSGAREA in
ister 7 as the index, the message order to write to SYSOUT.
length can be obtained and GATWR MSGAREA,LNCAREA
loaded into register 8. Note that Issue message
if SUBC is not defined with a . :
PUBLIC attribute, the preced- .
ing two lines will be replaced)
with the following:
L 7,0(12) MOVE MVC MSGAREA(0},0(7)
ORG *-2 Move message.
DC QL2(P2) .
These lines will generate one .
LOAD instruction, thus saving .
on the number of source lines. END
VIRTUAL
MEMDRY
LOCATION STATEMNT SOURCE
0000100 * MODULE 'A*
3100000 0000200 SUBRA PSECT
0000300 ENTRY SUBRA21
300000 0000400 oC Fr760 SAVE AREA
300004 0000500 nc 18F 10"
0000600 ADPR1L ADCON IMPLICIT,EP=SUBRB21
30004C + CNOP 0,4
+ ADPR1 EQU 12
10004C + oC V{SUBRB21) v-CON
300050 + hls R{SUBRB21) R-CON
300054 0000700 PLIST ¢ A{PARAM)
300058 GCCOBOD PARAM 0$ F
301000 0000900 SUBRA1l CSECT READONLY
0001000 USING SUBRA21,15
0001100 SUBRA2L SAVE {14,12} SAVE REGS IN CALLER'S SAVE AREA
301000 + SUERA21 DS OH
301000 + STM 14412,121(13)
101004 0001200 L 14,7210,13) GET LOC THIS PROGRAM'S SAVE AREA
301008 0001300 ST 14,8(0,13) SAVE IN CALLER'S SAVE AREA
10100C 0001400 31 13.400,14) SAVE LOC OF CALLER'S SAVE AREA
301016 0001560 LR 13,14 LOC THIS SUBROUTINE'S SAVE AREA
0001400 USING SUBRA,13
301012 0001700 LA Cr1
301016 0001800 LR 12,15 LOAD COVER REG
0cC1900 DROP 15
0002000 USING SUBRA21,12
301018 0002100 LA 15, ADPR1
6002200 CALL (15),MF=(E,PLIST)
30101¢C + ns oH
N CHDINNRA PLIST LOAD POINTER TO PARAM LIST INTO REG 1
30101C + DS oM HALF WORD ALIGNMENT
10101¢C . LA 1,PLIST LOAD PARAM. REG. 1
301020 + L 14,160,151}
301024 + L 15,12(0,15)
301028 + 3 14,7210,13) STORE IN SAVE AREA
30102¢C + BASR 14,15 LINK
0002300 CALLB EQU * RETURN POINT AFTER CALL
0002400 *
0002500 # ADDITIONAL PROCESSING BY SUBRAL
0002600 %
30102 € 5002700 L 13,410,13} RESTORE REG 13 TO CALLER®S SAVE AREA
0002800 RETURN (14,1217 RESTORE REGS AND RETURN
301032 + DS oH
301037 N LM 14412,12(13)
301036 + 01 11013),%*01°
301034 + BR 14
acc2900 END

Figure 33. Module A Source Listing

154

VIRTUAL
MEMORY
LOCATION STATEMNT SOURCE
0000100 * MODULE 4’
350000 0000200 SUBRB1 PSECT
0000300 ENTRY SUBR821
150000 0000400 De Friee SAVE AREA
350004 0000500 oc 1BF¢0"
0000600 ADPR2 ADCON IMPLICIT,EP=SUBRC21
35004 C + CNOP 0,4
+ ADPRZ FQU *-12
35004C + nc VISUBRC21} V—-CON
350050 + oc R(SUBRC21} R-CON
350054 0000700 RISAVE DS F
3151000 0000800 SUBRB2 CSECT READONLY
0000900 USING SUBRB21,15
0001000 SUBRB21 SAVE (14,12) SAVE REGS IN CALLER®S SAVE AREA
351000 + SUBRB21 DS oH
351000 + STM 14412,12(13)
3151004 0001100 L 14,7210,13) GET LOC THIS PROGRAM'S SAVE AREA
351008 0001200 ST 14,8(0,13) SAVE IN CALLER'S SAVE AREA
35100C 0001300 ST 13,4004 14) SAVE LOC OF CALLER'S SAVE AREA
35101C D001400 LR 13,14 LDC THIS SUBROUTINE'S SAVE AREA
2001500 USING SUBRB1,13
351012 0001600 ST 1. RISAVE SAVE ADDRESS OF PARAMETER LIST
151016 0001700 LA 0,2
351014 0001800 LR 12415 LCAD COVER REG
0001900 OROP 15
0002000 USING SUBRB21,12
35101€ 0002100 LA 15, ADPR2
0002200 CALL (15),MF=(E, (1))
351020 + DS OH
N CHDINNRA (1} LDAD POINTER TO PARAM LIST INTO REG 1
351020 + os OH HALF WORD ALIGNMENT
351020 + L 14,1600,15)
351024 + L 15412104153
351028 + ST 14472(0,13) STORE IN SAVE AREA
35102C + BASR 14415 LINK
0002300 CALLC £QU = RETURN POINT AFTER CALL
0002400 *
0002500 * ADDITIONAL PROCESSING BY SUBRB2
0002600 *
35102E 0002700 L 13,4(0,13) RESTORE REG 13 TD CALLER'S SAVE AREA
0002800 RETURN (14,12),7 RESTORE REGS AND RETURN
351032 + DS oH
351032 + LM 14.12,12(13)
351036 + o1 11613},Xx01"
351034 + BR 14
0002900 END
Figure 34. Module B Source Listing
VIR TUAL
MEMORY
LOCATION STATEMNT SOURCE
0000100 * MODULE 'C'
400000 0000200 SUBRCL PSECT
0000300 ENTRY SUBRCZ21
400000 0000400 ne Frier SAVE AREA
400004 0000500 oc 18F*0°
401000 0000600 SUBRC2 CSECT READONLY
0000700 USING SUBRC21,15
0000800 SUBRC21 SAVE (14,12) SAVE REGS IN CALLER'S SAVE AREA
401000 + SUBRC21 DS oH
401000 + STM 14,12,12(13)
401004 0000900 L 14,72(0,13) GET LOC THIS PROGRAM'S SAVE AREA
401008 0001000 ST 14,8(0413) SAVE IN CALLER'S PSECT
40100C 0001100 ST 13,410,014} SAVE LOC OF CALLER'S SAVE AREA
401010 0001200 LR 13, 14 LOC THIS SUBROUTINE®S SAVE AREA
0001300 USING SUBRCL,13
0001400 *
0001500 * AGDITIONAL PRDCESSING BY SUBRC2, USING 15 AS CODE COVER
0001600 # AS NO SYSTEM MACROS USED.
0001700 *
4010120001800 LA 0,3
4610160001900 L 13,400,131 RESTORE REG 13 TO CALLER'S SAVE AREA
0002000 RETURN (14512347 RESTORE REGS AND RETURN
401014 . DS oH
401014 +] 14.12412(13)
40101 F + 01 114131,%X°01°
401022 + BR 14
0002100 £ND

Figure 35. Module C Source Listing

Appendix C. Programming Considerations

155

Table 17. Save Area Linkage

STATE- STATE- STATE- STATE-
MENT MENT MENT MENT
SAVE AFTER A WHERE AFTER B WHERE AFTER C WHERE AFTER B WHERE
AREA |WORD CALLS B SET CALLS C SET RETURNS TO B SET RETURNS TO A SET
1 F76° ¥F76 F76’ F76
2 Xxxx* A-1400 XXXX* Xxxx* xxx1
3 R(SUBRB1) B-1200 R(SUBRB1) R{SUBRB1) R(SUBRB1+1) B-2500
{350000] [350000] [3500001 {350000]
4 V(CALLB) B-1000 V(CALLB) V(CALLB) V(CALLB)
[30102E] [30102E] [30102E] [30102E]
A 5 V(SUBRB21) | B-1000 V{(SUBRB21) V(SUBRB21) V(SUBRB21)
[351000] [351000] [351000] [351000]
6 For’ B-1000 For F01’ For
7 A(PLIST) B-1000 A(PLIST) A(PLIST) A(PLIST)
{300054] [300054] [300054] [3000541]
19 R(SUBRB1) A-2200 R(SUBRBI1) R(SUBRBI) R(SUBRBI)
[3500001 [350000] [350000] [350000]
1 F76’ F76° F76’ F76
2 R(SUBRA) B-1300 R(SUBRA) R(SUBRA) R{(SUBRA)
[3000001 {300000] {300000] [300000]
3 FO R(SUBRC1) C-1000 R(SUBRC1+1) C-2000 R(SUBRC1+1)
[400000] [401001] {401001]
4 V(CALLC) C-0800 V(CALLC) V(CALLC)
[35102E] [35102E] [35102E]
B 5 . V(SUBRC21) C-0800 V{SUBRC21} V(SUBRC21)
. {401000] [401000] {401000]
6 F02 C-0800 F02 F02°
7 A(PLIST) C-0800 A(PLIST) A(PLIST)
[300054] [300054] [300054]
19 FO R(SUBRC1) B-2200 R(SUBRC1}) R(SUBRC1)
{400000] [400000] [400000]
1 F76 F76 F76 F76"
2 Fo R(SUBRB1) C-1100 R(SUBRB1) R{SUBRBI)
[350000] [350000] [3500001
3 FO FO Fo
4
C 5
6
7
19 F0 Fo o FO

*Subroutine ‘A’ inserts the address of its caller’s save area in this word.

Shared Code (PUBLIC) Considerations

The system recognizes a control section as being pri-

available to all tasks that have allocated the control

section to their respective virtual storages.

vate or sharable. The latter type is identified by the
specification of the puBLIC attribute associated with the
control section and the residence of the control section
in a shared data set. Each task is allocated its own
copy of a private control section; however, allocation
of public control sections occurs in such a way as to
make the same physical copy of the control section

156

Sharing object code enhances the efficiency of the
system. Paging is reduced since only one copy need
be in main storage or on the paging device; in addition,
shared routines can be executed simultaneously by
more than one cpu.

A reenterable program is one that can be inter-
rupted at any point during execution, entered by an-

other user, and subsequently, reentered at the point
of interruption by the first user, and produces the
desired results for all users.

The latter type is identified by the specification of
the puBLIC attribute associated with the control section
and the residence of the control section in a shared
data set. Each task is allocated its own copy of a pri-
vate control section; however, allocation of public
control sections occurs in such a way as to make the
same physical copy of the control section available
to all tasks that have allocated the control section to
their respective virtual storages.

In 71ss, a standard reenterable program normally
consists of one or more named, read-only PUBLIC CSECTS
containing instructions and invariant data (relocatable
address constants can never be contained in these
CSECTS), and a PRIVATE PSECT, consisting of save areas,
working storage and variable program data. With this
method, each task using the reenterable program is
supplied a private copy of the psecr, the location of
which is passed to the reenterable program as a link-
age parameter by the calling program.

Other variations of reenterable programs are pos-
sible; for example, temporary working storage can
also be obtained dynamically by the reenterable pro-
gram itself, using the ceTMAIN macro instruction. In
this case, storage is obtained for each task entering
the reenterable program, and is private for that task.

To make the reenterable program sharable, the user
specifies the puBLIC attribute in the control section
declaration. Specifying the READONLY attribute ensures

that the shared code will not in any way modify itself

during execution. If the REaDONLY attribute is not speci-
fied, it is the responsibility of each user to ensure the
integrity of the routine at any stage of execution, pre-
venting mutual interference.

Prior to assembling the module, a ppoeErF must be
issued defining the job library where the object mod-
ule is to be stored. Once the module is assembled, the
user must grant access to the jeb library by issuing a
peErMrT. This, of course, is not necessary if the object
module is stored on a job library previously being
shared.

Each user who has been permitted access must then
issue a SHARE command, to make the appropriate
entry in his catalog for the library. Again, this is not
necessary if the user is already sharing the data set.
Each time the sharer wishes to use the shared pro-
gram, he must issue a ppeF for the joBLIB prior to
loading the object module. The object code actually
is shared only when each user loads the public control
section from the same shared job library. A sharer who
link-edits a public control section onto another library
receives a private copy each time the object module
is loaded from that library.

A program requiring more than 256 shared pages of
storage cannot be loaded in public storage. The pro-
gram will be loaded on private pages, and each user
sharing it will receive a private copy.

Efficient Use of Virtual Storage

This section discusses how to use virtual storage effi-
ciently. To understand the guidelines that are pre-
sented here, the user should be aware of certain
aspects of how the system allocates and manipulates
the virtual storage associated with his task.

1. Control Sections: All psects and csects are allo-
cated virtual storage starting on a page boundary.
Thus, each specification of a new control section
incurs a requirement for a new page.

2. Auxiliary Storage: As a result of task execution,
pages will be brought into real storage as neces-
sary. If the content of a page is altered while it is
in real storage, the system will write the changed
page on auxiliary storage (i.e., the paging drums
and disks) when the real storage space occupied
by this page is released for other use (primarily at
the end of the time slice). Furthermore, the system
will attempt to keep frequently-used pages on the
paging drum and seldom-used pages on the disk.

Pages that are read-only (i.e, not changed dur-
ing execution) will not be placed on auxiliary stor-
age since they can be reloaded from the initial
source.

Once the initial state of a virtual storage page
changes, a copy of this page will be on auxiliary
storage until the task explicitly deletes it (e.g., via
FREEMAIN) or logs off.

3. Sharing: There are two levels of inter-user sharing
available in the system: data set sharing via the
PERMIT and SHARE commands, and control section
sharing via the pusLic attributes of the control sec-
tion declaration. In the latter case, two or more
tasks will share a single real core page to reflect the
status of a page of their respective virtual storages.
Note that the pusLIc attribute of the control section
will not be effective except in the case where the
library originally containing the control. section is
also shared.

A shared page, once brought into real storage,
tends to remain resident there for an extended
period of time (as compared toprivate pages); the
intent is to make it immediately available to other
tasks besides the task that caused the initial load.
Thus, seldom-used control sections should not be
shared internally unless it is a requirement.

Appendix C. Programming Considerations 157

Guidelines For Efficient Use
Internal Organization of Program Modules
1. In general, the following conventions should be

adhered to in setting up the contents of psecrs and

CSECTS:

A csecr should contain:
Executable read-only code
Data constants
Non-relocatable literals
Any other non-modifiable address-free information

A psect should contain:

Save areas

Local temporary storage

Parameter lists

Address constants and relocatable literals

Any other modifiable location-dependent infor-
mation

There are, however, cases where this results in a

less efficient program. For instance, if a module con-
sists of a large psEcT in comparison to the csecr, and
the sum of both is less than 4096 bytes, the csecT can
be incorporated into the psecr, thereby reducing the
page references when the module is executed.

. Segregate code so that seldom-used code is allo-

cated to a csecr which is not in the main flow of
the program logic.

External Organization of Program Modules

1.

Concentrate changeable data (ie., psecrs and

tables) into as few pages as possible—a changed

page requires additional auxiliary storage space.

. If program module A uses program module B, then

attempt to package the read-only csecrs of A and B
together in the same page and the read-write psects
of A and B in another page.

. In general, do not combine cseEcrs or psects such

that they cross a page boundary. Optimally, a con-
trol section or combined control sections should be
4096 bytes in extent,

These combinations of control sections can be effected

by using the combine feature of the linkage editor.

Programming Techniques

1. It is most useful to plan the use of virtual storage

as if it were a one-page overlay environment—
that is, as if only one page of virtual storage could
be used without incurring the overhead of a page
overlay.

. Do not zero out virtual storage areas obtained by

a GETMAIN; they are set to zero automatically.
(Note, however, that the contents of an area re-
served by a ps statement are unpredictable, ie.,
they should not be assumed to be zero.)

158

10.

11.

12.

. Use open (in-line) as opposed to closed {out-of-

line) subroutines. If inereasing the size of the total
program will reduce the page references, do so.

. Perform your own page suballocation on return

from ceETMAIN; ie., use the entire page provided
by the cETMAIN before issuing another GETMAIN.

. Utilize program common for parameters that are

frequently referred to, small work areas, etc.

. For large tables (i.e., greater than four pages),

use GETMAIN to allocate the necessary space. When
the space is no longer needed, the decision as to
whether to reuse it or to release it via a FREEMAIN
should depend on the total table size. If the table
is less than 10 pages in size, it is more efficient to
reuse the space, since the system overhead on a
FREEMAIN-GETMAIN sequence is greater than
the overhead attached to the paging operations
necessary to reuse the space. If the table is greater
than 10 pages in size, a FREEMAIN should be used
to release the old space and a ceTMaIN should be
issued for the new table.

Using cETMAIN-FREEMAIN for space allocation is
of particular importance when the program is not
to be unloaded. For example, initial virtual storage
(1vm) is never unloaded and, if a large table ap-
pears in a psect, once the table is changed, the
changed pages will remain in auxiliary storage
until the owning task logs off.

. Avoid repetitive nonsequential use of subroutines

if data can be blocked into or out of the subrou-
tine in a single call; for example, open all data
sets at the same time.

. Avoid multi-page chained tables if possible—a lin-

ear search in one page is more efficient than a ran-
dom search in two pages even if the cpu execution
time of the former is greater (true virtual storage
execution time is the sum of cpu time and paging
time). If the table is larger than a page, use an
index table to get to the proper table page di-
rectly.

. Avoid the use of “push down” stacks where the

depth of the stack at any time is larger than one
or two pages.

Avoid sequential programs which build large pro-
gram or data virtual storage images and then do
not refer to them for an extended period of time;
use data management (external storage) instead.
This eliminates excessive build-up of inactive pages
in auxiliary storage.

Use job libraries carefully to avoid excessive li-
brary searching for program modules.

In general, implicit loading of a module (via V-
type constants or A-type constants with an EXTRN)

should be used in preference to explicit loading
(via the LoAD command, the Loap macro instruc-
tion, or an explicit caLL). An exception to this
would be when implicit loading causes loading of
many more modules than the program might
actually use.

13. In general, unloading will not noticeably increase

system performance. An exception would be when

a very large number of pages of a program have

been referred to, but will not be referred to again.

Only modules that were explicitly loaded can

be explicitly unloaded. If it is desired to unload a

module that was implicitly loaded, it is necessary

to unload the explicitly-loaded module that caused
the implicit loading.

14. At LocoN time, specify control section packing
whenever possible. This allows control sections
with like attributes to be collected into less memory
space. Modules to be executed may thus be com-
pressed into fewer pages, reducing the time re-
quired for system paging operations.

Control Section Rejection
and Linking Control Sections

During the dynamic linking of object modules, each
control section name is checked against control section
and entry point names that are already loaded in the
task. If a duplication is found, the control section is
rejected. Figure 36 summarizes the loader’s rejection
action.

CONTROL SECTION LOADER REJECTION ACTION

Named CSECTs, Subject to automatic control section rejection if

PSECTs, or name duplicates a control section name or any

COMMON other entry point name already present in the
task.

Unnamed Given a unique internal numeric identification

CSECTs when processed by the loader; it is not subject

to avtomatic rejection.

Unnamed (blank)
COMMON

Subject to automatic rejection: after one un-
named COMMON control section is processed,
any subsequently loaded will be assigned the
same name and therefore rejected.

Figure 36. Dynamic Loader Automatic Control Section Rejection

Control sections may also be rejected because of the
violation of a naming restriction.

Control section rejection may result in other errors,
since none of the entry points defined by the control
section are recorded by the system. References to these
entry points will be unresolved unless they are satisfied
by another control section.

Accidental control section rejection can be avoided
by unloading following each execution. However, in
some cases, it is desirable to allow a control section to
be linked from one execution to the next.

If an unLoADp command is issued after a module has
completed execution all record of control section and
entry names in that module are removed from the
task’s allocated storage. Any subsequent module that is
loaded containing a csect with the same name would
have storage allocated as if it were the first usage.

When the user wishes to pass the contents of the
same named control section from one program to the
next, the unrLoap command should not be entered. In
this case, the second program’s references to the con-
trol section would be resolved to the control section
that was allocated storage with the first program, if
both have the same name.

Recovering from Errors
When Dynamically Loading
If a program consists of more than one object module,
the modules are dynamically linked by the system’s
dynamic loader at execution time. The dynamic loader
takes all of the implicit external references in the mod-
ule that is explicitly loaded or run and resolves them
by searching the program library list. It is possible
that while the loader is linking the object module(s)
into the user’s virtual storage, several error conditions
may arise that affect the eventual execution of that
program.
® Name to be loaded or run not found in library:
Either the user has specified the wrong name in
the Loap or caLL command or the job library con-
taining the object module has not been defined in
the task and, therefore, is not in the program library
list. If the latter is the cause of error, the user in
conversational mode can merely enter the pper de-
fining the job library and reissue the Loap or caLL
command.

e Unresolved references: If an object module has an
external reference that cannot be located in any of
the libraries in the program library list, a diagnostic
is issued specifying the name in the reference. Fur-
ther linking of other object modules is not sus-
pended, however, so that the explicitly-named
object module and, possibly, other object modules
that were referred to implicitly have been placed
in the user’s virtual storage. If the error occurs in a
caLL command, execution of the program is not
initiated. .

If the user wishes to execute his program regard-
less of the error, he may reissue the caLL command.
He must, however, repeat the name of the module
named in the original carr command. This is neces-
sary to define the point at which execution is to be
initiated.

If the user anticipates that an object module will
have unresolved references, he should first issue a

Appendix C. Programming Considerations 159

1.oap command naming the module, followed by a
carL with an operand. This procedure is recom-
mended for a nonconversational task, since the user
can be assured that exccution will be initiated re-
gardless of unresolved references.

If the user does not wish to run the version of
the program that has been loaded into his storage,
he must issue an UNLoAD command. If he does wish
to run this version of the program, he can then
enter a poEF defining a job library that was missing
in the first load attempt. A LoAD or caLL issued at
this point causes the entire linking procedure to
be redone.

* Duplicate entry points: This condition may occur
when dynamically linking an object module from
one library with a module from another library.
In this case, since the second entry point definition
is disregarded, all further references to the ENTRY
name may be erroneously resolved.

The user should take some corrective measures
before attempting to LoaD or cALL again. (A pos-
sinle correction might be to change the ENTRY
name by link-editing the object modules onto an-
other josLms.) To avoid the possibility of such
duplications when working with a new library, the
rop? command can be used to list the directory of
the library. The user can then circumvent the prob-
lem by setting up an appropriate program library
list before he attempts to load his program.

Library Management

Program Library List Control

A program in Tss can consist of one or more object
modules. Al programs in T1ss are stored in object
module form in program libraries that are partitioned
data sets. A program consisting of only one object
module is stored entirely within one library; however,
if a program consists of several object modules, these
modules may reside in different libraries, depending
on how the user has stored them. During linkage edit-
ing and during execution, the system can automati-
cally retrieve all object modules required, if the user
has defined the libraries in which those object mod-
ules are contained. The manner in which the user does
this is described in the following paragraphs.

There are four categories of program libraries:
¢ System library (sysLis)
e User library (UseErLIB)
e User-defined job libraries

e Other user-defined libraries used in linkage-editing

160

1ss does not allow a library to contain more than
ane declaration of any external symbol. In this sense.
named and blank common are not considered external
symbols since they are not listed in the directory of the
library.

The system library contains service routines pro-
vided by the installation. For example, it includes
service programs, and the installation’s standard sub-
routines and functions.

The user library is the private library assigned to
each user when he is joined to the system. This library
is automatically defined for him and an entry made in
his catalog by the system. His user library is thus
available each time he logs on. If the user does not
employ job libraries in a task, all the object modules
resulting from his use of the language processors are
placed in his user library.

The user may wish to restrict his user library to
checked-out, standard object modules that he executes
frequently or that he uses frequently in the buxldup of
other object modules.

The program library list is a defined hierarchy of
program libraries. It is set up at log-on time, and ini-
tially consists of the user library and sysvs.

The library at the top of the list automatically re-
ceives all object modules resulting from language
processing. As noted above, if no job libraries are de-
fined, the library at the top of the list is always the
user library. However, the user can specify that a job
library be added to the program library list to receive
the output of the language processors. He does this
by issuing a ppEr command defining that job library
and containing the operand oprion=jyoBLIB. When this
command is executed, the name of that job library is
added to the top of the program library list. That li-
brary then receives all subsequent module output of
the language processors until another job library is
defined (and is thus at the top of the list) or until a
RELEASE command is issued for that job library. A job
library must always be a partitioned data set and may
be defined on public or private volumes.

In addition to using the program library list to store
object modules, the system uses this list to control its
order of search when looking for object modules that
must be loaded at execution time. The library at the
top of the list is searched first, then the next-to-the-top
library, etc.; finally, the user library and sysLis are
searched.

In summary, the user has the following basic library
setups for handling the object modules produced by
the language processors.

¢ User Library—As this is always available and is
always searched, the user may wish to reserve

this for frequently used checked-out programs.
All user’s userLIBs are kept on public volumes and,
hence, are always mounted on system devices.

® Session yoBLIB—DBy issuing a pprr command for a
new library at the beginning of a session, a user can
create a library to contain all modules assembled
during the session. By not cataloging this new li-
brary during the session (if private), he can discard
modules not to be used again or not yet debugged.

e Cataloged Private Volume joBLIB—A user can di-
rect output to and retrieve from a library of infre-
quently-used modules by issuing a ppEF command
for a cataloged job library that resides on a private
removable disk pack. In a nonconversational task
when using private job libraries, the user must re-
quest (via secure)} a device for that job library.
Modules may be entered in such a library:

Automatically if the library is the latest defined
one in the session.

By link-editing it from his userLiB, session job
Iibrary or public-device job library and specifying
to the linkage editor the desired private device
job library as the output destination. Cataloged
libraries on private volumes may also be shared by
several users,

e Cataloged Public Volume josrms—This type of
library may be useful to the user in setting up (and
using) a library of frequently-used programs whose
names and external symbols conflict with other
programs in USERLIB. A3 an example, versions of
frequently used programs may be set up with one
in vserLB and another in a job library. Cataloged
libraries on public volumes may be shared among
users.

The program library list can also be used, during
link-editing, to define the following for the system:

¢ The library that is to receive link-edited object
module.

* The sequence in which libraries are to be searched
if the system must find other object modules to
define references in the link-edited object module.

The fourth category of libraries may be defined by
a ppeF command with the operand keyword josiis
omitted. Such libraries may be referred to by a specific
link editor INCLUDE statement, but they are not listed in
the program library list, and hence are not included in
the automatic library search, nor are they available to
the dynamic loader.

Refer to Appendix B and to the publication Linkage
Editor for an explanation of link editor program li-
braries.

Program Versions

Since one library cannot contain more than one con-
trol section entry point or module with the same
name, different versions of the same program must
be kept in different libraries. For example, a user
may have a checked-out program in his userLiB and
wish to reassemble the program with modifications,
but retain his original version until the new version
has been checked out. A ppEF with a JoBLIB option
causes the new module to be stored on the job library
rather than userLiB. The user may continue after as-
sembly with his checkout of the new version, since any
subsequent LOAD or cALL command in the task naming
the module retrieves the new version from the job
library. If, when the new version has been successfully
tested, he wishes to replace the old version with the
new version, he may link-edit the new version onto his
UserLIB. He may also use the v, vv, or cps commands
to copy a program module from one library to another.
If he does not wish to retain the new version, he must
either ERasE the module on the job library or ReLEASE
the job library. Releasing the library removes it from
the program library list, automatically causing subse-
quent retrievals of that module to revert to USERLIB.
Erasing the module does not remove the job library
from the program library list, but any subsequent ref-
erences to that module are resolved from userLis after
the job library has been searched unsuccessfully.

To facilitate orderly maintenance of programs within
various job libraries (and usemriB), the pop? com-
mand is available. Pop? enables the user to obtain on
sysouT a list of the member names (and optionally the
alias names and other member-oriented data) of in-
dividual members of cataloged vpam data sets.

Sharing Libraries

A user may allow another user to share (i.e., access)
one or more of his cataloged job libraries. When the
owner permits access to his job library, all of the object
modules on that data set are usable by the sharer.
This facility does not imply that if the owner and/or
one or more sharers use the same program at the same
time they are sharing (co-using) the same copy in real
storage. This aspect is controlled by the pusLIC attri-
bute assigned to a control section at assembly time.

The data set owner issues a PERMIT command to
designate the other users who may share his job library
and indicate the level of access those users may have:

® Read-only access: The sharer may use the object
modules on the library, but may not add, replace,
or erase a module.

¢ Read-and-write access: The sharer may use any
object module on the library and may add or re-

Appendix C. Programming Considerations 161

place modules. He may not use the Erase command
to delete a module from the library.

e Unlimited access: The sharer, in effect, can treat

the library as his own; thus he may even erase
modules.

(Note that the implications of “read-only,” “read-
write,” and “unlimited” are slightly different when
specified by the user for his use of his own data sets
and when specified in a pERMIT command. The owner
of a data set may permit any level of access he wishes
regardless of the access designator in the owner cata-
log. For example, if the owner catalog is marked “read
only”, the owner may not write into his own data set,
but he may permit a higher level of access (read/write
or unlimited) to a sharing user. This Hexibility must
make the data set owner very cautious with critical
data sets he has entered into the system.)

To gain access to a data set for which he has been
previously authorized, the sharer must issue a SHARE
command. The suare command places an entry for
the owner’s data set name in the sharer’s catalog. The
sharer may then enter a pper command for the data
set (with the yoBLB option) in each task where he
wishes to include the library in his program library list.

Groups of job libraries with names having common
higher-order components can be specified by using
partially-qualified names when the pERMIT is issued.
For example, an owner of two job libraries named
TRACK.SUBI and TRack.suBz can allow sharing of both
libraries by using the partially-qualified name TRACK
in the pERMIT command. In this case, the sharer must
also use the partially-qualified name (as the dsname,
parameter) in the sHare command, even though he
only wishes to use one of the job libraries.

Table 18 lists the commands applicable to shared
data sets and the effect of the command on the user’s
catalog.

System Naming Rules

User-Assigned Names

The following names resulting in external symbols are
supplied by the user in his assembler language source
program or during assembly.

e Module name
s Control section names
® ENTRY names

All external symbol definitions in a module, includ-
ing the module name, must be unique. In addition,
since the system does not allow any one library to
contain more than one definition of a particular exter-
nal symbol, each name {except names of comnton con-
trol sections and unnamed csecTs) must be distinet
from any other symbol contained on the library that

162

is to receive the object module. It is valid to have the
same names on different libraries. Since a named or
blank common control section is not listed in the di-
rectory of the library as an external name associated
with the module name, it does not have the preceding
restriction. Also, since it is not listed in the directory,
it cannot be explicitly referred to by name (i.e., it
cannot be loaded by its commoN name).

The pop? command can be used to list the external
symbols in a library to avoid duplication.

Reserved Names

External Symbols

The user must never assign a name beginning with
the characters svs. These letters are reserved for cer-
tain system programs. Any module stored on the user
library or a job library starting with these symbols
can never be retrieved by that name for execution,
since resolution of sys symbols for loading and run-
ning is always attempted from the system library. In
addition, a diagnostic is issued if a module, loaded by
another name, contains an external symbol definition
beginning with svs.

The user should also be careful to avoid accidentally
duplicating the names of Bm-supplied FORTRAN sub-
programs. Generally, he should avoid the use of all
external symbols starting with the characters cuc, or
any ForRTRaN-supplied subprogram name (i.e., siN, cos,
etc.), unless he specifically wishes to use this FORTRAN
subprogram.

Internal Symbols

The user should avoid assigning an internal symbol
beginning with the characters cHp, since system macro
instructions use these characters and might cause a
duplication of internal symbols.

Reserved Names Associated with Data Sets

The following list contains the reserved names which
are assigned to system functions:

RESERVED DDNAMES RESERVED DSNAMES

SYSLIB USERLIB
SYSULIB SYSLIB
SYSIN

SYSOUT

PCSOUT

The following names are assigned to the assembler
output data sets:

source.module—is the data set name assigned to the
line data set of source statements constructed dur-
ing the asserbly. If the input to the assembler
is from a prestored data set, then the user must
assign the name sovrce.module to the data set
prior to the asar command.

vist.module—is the data set name assigned to the data
set created for all the listings optionally selected
by the user. The system automatically catalogs
each new generation. Printed output is optional

Table 18. Shared Data Set Commands

and must be requested via the prINT command.
The listing data set is a generation data group,
established the first time the module name was
encountered during language processing.

COMMAND BY OWNER

BY SHARER

PERMIT Must be issued prior to the SHARE command by the
sharer(s).

Not allowed. A user cannot permit access to a data
set that he does not own.

SHARE Not allowed.

Must be issued prior to any other references to the
data sets. Once issued, the sharer may access the data
set until he issues an ERASE or DELETE. The
SHARE command places an entry in the sharer’s
catalog, so that a further CATALOG command is not
necessary.

ERASE The owner may always erase a member (object mod-
ule) from his job library or erase the entire library. If
he erases the job library, the entry in the sharer’s cata-
log is not removed. The sharer(s) must issue a DE-
LETE command to remove the entry from their own

A sharer may only erase if he has been granted un-
limited access. If he then erases an object module,
neither the sharer’s nor the owner’s catalog is affected.
If he erases the entire job library, both his catalog
entry and the owner’s are removed.

When the owner deletes a shared job library, the
sharer’s catalog entry is not removed.

catalog.

DELETE The owner may delete a library or group of libraries A sharer may delete his catalog entry for a job library
from his catalog. An object module alone cannot be without affecting the owner’s catalog. The sharer
deleted. must reissue a SHARE command if he again wants

to refer to the data set that was deleted.

CATALOG The owner may catalog a fully-qualified data set
name. If that name is a component of a partially-
qualified name that the owner has permitted to be
shared, all sharers have immediate access to the newly
cataloged data set.

If an owner changes the name of a single data set
to which he permitted access using a fully-qualified
name, each sharer must delete his catalog entry and
reissue the SHARE command with the owner’s new
name.

A sharer that has been granted unlimited access may
change or add entries to the owner’s catalog. If he is
permitted to share a group of data sets, he may cata-
log a new data set into the group, but he must in-
clude as part of the name the partially-qualified name
that he used in the SHARE command. If he changes
the name of one of the data sets in the group, the
new name must still contain the partially-qualified
name,

A sharer who has been granted unlimited access to
an individual data set may never change the data set
name.

Appendix C. Programming Considerations 163

Appendix D. Interrupt Considerations

This appendix discusses the more common interrupt
considerations when programming in 1ss. The sections
of this appendix discuss:

1. Tss operation when a program interrupt occurs in
a program where the programmer does not use the
SIR, pIR, and SPEC macros to control interrupts.

2. The effect of an interrupt caused by pushing the
attention button at the terminal, and resuming exe-
cution following the interrupt.

3. 1ss facilities for user-written interrupt handling
routines, and considerations for the processing of
interrupts.

Program Interrupts

If a program interrupt occurs during program execu-
tion and the user has not specified his own interrupt-
handling routine for the interrupt type, the interrupt is
processed by a system service routine.

A diagnostic message appropriate to the cause of the
interrupt and the virtual program status word is issued
to the terminal (or in nonconversational mode, is writ-
ten to sysour) and the task is returned to command
mode. In addition to a diagnostic specifying the type
of interrupt that has occurred, the user is supplied the
following information to locate the source of the
interrupt:

PSW = xxxxxxxxxxxxxxxx. THE INTERRUPT OCCURRED
IN CSECT xxxxxxxx WITH A DISPLACEMENT OF
xxxxxxxx FROM THE BEGINNING OF THE CSECT.

If the interrupt occurs in a conversational task, an
underscore is typed at the terminal requesting that the
user enter a command. The user can then use pcs
statements for problem investigation.

In a nonconversational task, if a data set has been
supplied with a ddname of TskaBEND, this data set be-
comes the task’s new sysiN. This data set can contain
a sequence of pcs commands and statements to obtain
a selective dump of the program before terminating
the task with a Locorr command. If a TskaBenp data
set has not been supplied, the task is terminated.

The following table (Table 19) shows each type of
program interrupt, and the possible causes for the
interrupt.

164

Table 19. Types of Program Interrupts

TYPE OF
INTERRUPT

CAUSE OF
INTERRUPT

Operation
Code
Privileged
Operation

Lxecution

Protection

Addressing

Specification

Data

Fixed-Point
Overflow

Fixed-Point
Divide

Decimal
Overflow

Decimal
Divide

Exponent
Overflow

Exponent
Underflow

Significance

Floating-Point
Divide

The operation code is not valid.

A privileged instruction has been encountered
in a program executing in a nonprivileged
state,

The subject instruction of an Execute (EX) is
another Execute.

The storage key used in an instruction fetch
or a data reference does not match the pro-
tection key in the PSW.

An address specifies a location that has not
been allocated to the task’s virtual storage.

1. Reference has been made to virtual storage
with an address that does not specify an in-
tegral boundary for the unit of information.

2. The R, field of an instruction specifies an
odd register address for a pair of general
registers that contain a 64-bit operand.

3. A floating-point register other than 0, 2, 4,
or 6 has been specified.

4. The multiplier or divisor in decimal arith-
metic exceeds 15 digits and sign.

5. The first operand field in a decimal multiply
or divide is smaller than or equal to the
second operand field.

1. The sign or digit codes of operands in deci-
mal arithmetic, editing operations, or Con-
vert to Binary (CVB) are incorrect.

2. Fields in decimal arithmetic overlap incor-
rectly.

3. The decimal multiplicand has too many
high-order significant digits.

A high-order carry has occurred or high-order

significant bits have been lost in a fixed-point

addition, subtraction, shifting, or sign control
operation.

1. Division by zero has been attempted.

2. The quotient has exceeded the register size
in fixed point division.

3. The result of Convert to Binary (CVB) has
exceeded 31 bits.

The destination field is too small to contain the

result in a decimal operation.

The quotient has exceeded the specified data

field.

The result characteristic has exceeded 127 in

floating-point addition, subtraction, mutltipli-

cation, or division.

The result characteristic is less than zero in

floating -point addition, subtraction, multipli-

cation, or division.

The result of a Hloating-point addition or sub-

traction has an all-zero fraction.

Division by a floating-point number with a

zero fraction has been attempted.

Norte: Fixed-point overflow, decimal overflow, ex-
ponent underflow and significance interrupts can be
masked off by setting the appropriate bits in the pro-
gram mask. Such interrupts are ignored and are not
recognized by the system. These interrupts can also
be processed by the user with the sig, pir, and specC
macro instructions.

Attention Considerations

Interrupting Execution

When an ATTENTION interruption has been en-
countered in a nonprivileged program, the system will
respond with one of the following three characters:
I, ®, or ___. The response character will indicate to the
user the situation at the time the interruption oc-
curred. (Note that the user program may have been
executing a privileged command string when it was
interrupted.) The user may then request a particular
system action by issuing the appropriate command or
pressing the ATTENTION or RETURN key. The
possible user actions and corresponding system re-
sponses are shown in Table 20. If the attention button
is pushed while a pcs pisPLAY response is being typed
on the terminal, it is assumed the user wishes to can-
cel any further lines from the pisPLAY request.

If a user program has invoked a privileged system
program (such as the opex routine) and it is in opera-
tion when the attention button is pushed, the interrup-
tion is not honored until that program has completed
its processing and has returned tc the user program. If
a users program is executing, the interruption is
honored immediately.

Combining the pcs stop command with an AT also
produces an interruption. The symbolic location at
which execution was stopped is printed at the ter-
minal. To find the location when a program is inter-
rupted by an attention, the user may enter a sTop
command.

Once the underscore has been typed, the user may
enter any commands or Pcs statements he wishes. He
may even REMOVE the pcs statement that caused the
interruption, so no subsequent execution of the in-
struction will be interrupted.

Levels of Interruption

Whenever a nonprivileged program is interrupted, and
another user program is invoked, the status registers
and psw of the interrupted program are saved in a
system table called the stack table. The interruption
may have been an ATTENTION, a pcs AT, a cLIC,
CLIP, COMMAND, PAUSE, Or OBEY macro instruction, or a
program interruption. The interrupted program re-
mains active, with its status saved, until such a time

when it again receives control. The rrrN, PUSH, and
ExIT commands, issued after an ATTENTION inter-
ruption, can be used to manipulate the stack table.
The function of these commands and the system re-
sponse are shown in Table 20.

The current level of interruption is an indicator of
how much of the stack table is in use. One level is
taken whenever a program’s status is saved; the level
is freed when the interrupted program regains control.
A maximum of ten levels are available. The user is at
level zero when no program’s status is currently being
saved. The stack command, issued after an ATTEN-
TION interruption, will display the names of all active
programs in the stack table in descending order from
the currently active down. See Command System
User's Guide for a more detailed description of these
commands.

Resuming Execution

The co command is used to resume execution after an
attention interrupt or a pcs stop command. To resume
at the point of interruption, a co command is sufficient;
however, the user can specify an alternate point at
which to resume or restart, using a BRANCH command.
He might, for example, in a two-phase program, want
to skip directly to the second phase to continue proc-
essing. The interrupted program should not be un-
loaded and reloaded as it may not resume execution
at all.

Intervention Prevention Switch (IPS)

The Intervention Prevention Switch (IPS) may be set
by the user to protect a segment of code, preventing
the interruption of his program during the execution
of that segment. Setting and unsetting the switch is
accomplished by means of the following being coded
into his program, surrounding the code he wishes
protected:

L R5,=V (SYSAAA)

USING CHAAAA,R5

AP AAATPC,=P'+1l' Sets the IPS

* {code to be

* protected)

SP AAAIPC,=P'+1' Resets the IPS

EX AAASW Passes control
to the user

COoPY CHAAAA Creates DSECT

for symbols

Appendix D. Interrupt Considerations 165

Table 20. Responding to Attention Interruptions

When the ATTENTION key is pressed, the system
responds with one of three condition symbols:

By these octions, the
user calls for the system
reaction listed in the
block under the
corresponding
condition symbol:

I (to denote the
interruption of
nonprivileged
programs or
commands)

\/

* (to denote the
interruption of
an unfinished,
privi leged
command string)

, or user's
command prompt
(denotes completion
of program or
command string)

\/‘

By issuing the GO
command . . .

the current user
program is
resumed

the most recently interrupted user program is resumed and
intervening command strings are cancelled

By issuing any
command . . .

the command is
executed

the command is
executed and the
current commond
string .is cancelled

the command is
executed

By pressing the
RETURN key . . .

the current user
program is
resumed

the current
command string is
resumed

the system prompts -
the user to enter
a command

By pressing the

the system returns

the system returns

the system prompts

ATTENTION key . . . an exclamation an osterisk the user to enter
point (nothing is {nothing is a command
changed) changed)

By entering STRING the system the system the system retumns

to list remaining displays the displays a diagnostic

commands in an unexecuted unexecuted message
interrupted string . . . command string, commands in the
if it exists current command

string

By entering STACK

to list names of active
nonprivileged programs

(in the order in which

they may be retrieved). . .

the system displays the names of active user programs at every ATTENTION level

By entering EXIT
to end the currently
active program . . .

ends the currently
active program,
resumes command
string if it exists

ends the most recently interrupted program and resumes
its associated command string, cancelling subsequent

command strings

By entering RTRN
to cancel command
strings and user
programs at every
attention level . . .

command strings and user programs are cancelled by the system at every ATTENTION leve!

By entering PUSH
to save the status of
the currently active
program

the system saves the status of the currently active program in ISA Long Save 1 (ISALS1)

166

Where the IPS has been set and the user hits the atten-
tion key, an cxclamation point will be printed out at
his terminal. However, control will be passed to the
user only after the EX AAASW instruction has been
processed. If no interrupt has occurred preceding this
instruction, it will be treated as a no-op and execution
will proceed normally.

If the user wishes to ignore the setting of the IPS,
he may do so by causing a second attention interrupt.
The second attention overrides the IPS setting and
causes the terminal to be opened.

Writing Interrupt-Handling Programs

Time Sharing System provides facilities to enable the
user to write his own interrupt-handling programs.
Interrupt-handling consists of responding to task inter-
rupts. Significant features of the interrupt-handling fa-
cility are priority interrupt control and interrupt delay,
both of which are discussed below.

Refer to the publication Assembler User’s Macro
Instructions for a detailed description of cach interrupt
macro instruction.

There are six types of task interrupts: program,
supervisor call, external, asynchronous, timer, and in-
put/output.

The problem programmer may decide how to re-
spond to any of the six types of interrupts or he may
elect to ignore certain interrupts.

This section discusses:

e How to establish an interrupt handling routine.

¢ Processing the interrupt.

® An illustration of the sequence of events as might
occur when a user specifies interrupt-handling rou-
tines utilizing all of the facilities of Tss interrupt
management.

Establishing Interrupt Routines

When a user wishes to provide an interrupt-handling

routine to service any of the possible task interrupts,

he must specify to the system the conditions for servic-

ing an interrupt and the points at which he wishes to

activate and deactivate his interrupt-handling routine.
The Specify Entry Condition macro instructions de-

fine Interrupt Control Blocks (icBs) which specify

what task interrupts are to be processed, under what

conditions the user’s interrupt routine is to be entered,

and the entry point address of the user’s interrupt rou-

tine. The following Specify Entry Condition macro

instructions are available:

spEC—Program interrupts

ssec—Supervisor calls (svcs)

seec—External interrupts

sagc—Asynchronous interrupts (attention key)

stec—Timer interrupts

stec—Synchronous 1/0 interrupts

When the normal L-type form of the macro instruc-
tion is written, no linkage is performed. The interrupt
control block is built and the name included on the
Spccify Entry Condition macro instruction becomes
the name of the 1cs. This name is referred to in the
sik and pir (Specify and Delete Interrupt Routines)
macro instructions. The E-type form of the macro in-
struction may be used in-line to modify the contents
ot an already existing 1cB.

Along with the macro instruction specifying the
entry condition, the user must reserve 16 bytes of stor-
age for a communication area (coMmarea). This area is
used to communicate with the interrupt-handling rou-
tine and, upon interrupt, will describe the conditions
causing the interrupt.

The s macro instruction makes the interrupt rou-
tine specificd by the 1c8 address available and sets its
priority. Any user interrupt routine can be made un-
available by the pir macro instruction. Another sir
macro instruction will make the interrupt routine avail-
able again.

It should be noted that if the saec macro instruction
is used to get control for interrupts from the attention
key, the usaTT macro instruction must be issued after
the sirR macro instruction. This will cause control for
attention interrupts to be taken away from the system
and given to the user-designated routine. Likewise, the
CLATT macro instruction should be issued before the
DIR macro instruction when making the attention inter-
rupt handling routine unavailable. This returns control
of attention interrupts to the system. The pcs parame-
ter required for the saEc macro instruction to be used
for attention is the system symbol sysinpcB. An EXTRN
statement must also be included for sysinoes.

Processing an Interrupt

When an interrupt occurs, an exit is taken from the
interrupted routine and control is passed to the entry
point of the user-specified interrupt routine. Informa-
tion identifying the type of interrupt that occurs is
made available in a communication area (coMaRea).
Using this information, the interrupt routine written
by the user can perform any calculations necessary,
including issuing input/output macro instructions if
the user should wish to do so, and whatever else is
necessary to respond to the interrupt. The 1NTINQ
macro instruction may be issued in the interrupt rou-
tine. Issuing a RETURN macro instruction causes control
to be returned to the interrupted routine at the instruc-
tion following that which caused the interrupt, or to
another enqueued interrupt routine,

If interrupts are not disabled by an sar macro in-
struction, higher-priority interrupts will interrupt a
routine of lower priority. If more than one interrupt-
handling routine is defined with the same priority and

Appendix D. Interrupt Considerations 167

for the same type of interrupt, the interrupt-handling
routine associated with the first issued sk macro in-
struction will take precedence.

Upon entry to an interrupt handling routine, register
contents are as described below. See Figure 37 for a
description of the items referred to below.

An interrupt-handling routine should be coded with
normal type I linkage conventions. Figure 38 illus-
trates the interrupt control block format. On entry to
the interrupt-handling routine, although it is not neces-
sary to save the contents of the general registers, if a
SAVE is issued, the registers will be saved in an area
provided by the system and pointed to by register 13.
Register 14, however, should always be saved if it is
going to be changed in the interrupt routine, and re-
stored prior to the RETURN.

REGISTER CONTENTS

0 Address of a save area. This save area contains in-
formation on the condition of the interrupted pro-
gram, including the contents of all registers at the
time of the interrupt. The interrupt routine can use
this area to change the return point to the inter-
rupted program (old VPSW), or the contents of any
of the other registers.

1 Address of the appropriate ICB whese first word
contains the address of the COMAREA, and whose
second word contains the address, if applicable, of
the associated DCB.

2-12 Same as at the time of interrupt.

13 Address of the register save area to be used by the
interrupt handling routine. The 19th word of this
save area contains the location of the interrupt rou-
tine’s PSECT.

14 Address of the location in the control program to
which control will be returned after execution of the
interrupt routine, If this is changed by the interrupt
handling routine, it must be reset before the RE-
TURN.

15 Address of the entry point of the interrupt handling
routine. (This register can be used to provide ad-
dressability.)

It is important to remember that, on return to the
interrupted routine, all general and floating-point regis-
ters will be restored to the contents as stored in the
area pointed to by register zero. To illustrate, if an
interrupt-handling routine is to set a particular value
in general register 7, the interrupt routine must store
that value into the appropriate word (in this case, 48
bytes) beyond the address supplied in register zero.
Note that since register zero cannot be used as a base
register, that address must first be transferred to a
valid base register.

On a normal return from an interrupt-handling rou-
tine, once any queued interrupts have been serviced,
execution resumes in the interrupted routine at the in-
struction following the point of interruption. If the user
wishes to modify this return point, he must modify the
old vesw located in the area pointed to by register

168

zero. The address of the desired return point should
be stored in the second word of the double-word vesw.
The condition code and program mask in the first word

64 Word Entry Word
iD 1
Forward Pointer to Next Entry 2
Forward Page Pointer 3
Reg 0 Pointer to Interrupt Conditions 4
[-——-) Length — 120 Bytes 5
Register 13 &
Unused 7
Register 14 8
Register 15 9
Register O 10
Register 1 1
Registers 2-12 12-22
Not used 23
Not used 24
Old VPSW 25-26
Floating Point Register 0 27-28
Floating Point Register 2 28-30
) Floa*ing Point Register 4 - 31-32
Floating Peint Register 6 ' 33.34
Task Monitor RSPRV Flag 35
Reg 13 Pushdown Pointer from ISA 36
r——) Length = 108 Bytes 37
Backward link A 38
Forward Link 39
Register 14 {Return Linkage) 40
Register 15 (Entry Paint) 41
Registers 0-12 42-54
PSECT Address of Called Program 55
Available for Called Progrom 56-63 ‘
Reserved ' 64
Reg 1 Interrupt Control Block (ICB) Comarea
L——) Comarea Address -
DCB Address -4
1
'
1
1
i
L--DCB

Figure 37. Information Available Upon Entry to an Interrupt
Routine

of the vesw may also be modified if desired. The for-
mat of the vpsw is given in Figure 39 for reference.
Note that the preceding procedures apply to non-
privileged interruption-handling routines only. For a
description of privileged interruption-handling pro-
cedures, see the System Programmer’s Guide.

Interrupt delay is accomplished through the sar and
RAE macro instructions, which allow the user to inhibit
or permit further interrupts while his interrupt han-
dling routine is in control. The sar macro instruction
delays interrupts to the task. These interrupts are not
lost, they are queued up in the supervisor. The rAE
macro instruction permits interrupts to the task (in-
cluding those that were queued while the sar was in
effect).

Pointer to Communication Area

Reg l—— 3= 0

4 Pointer to Data Control Block

Format of Timer Number

Timer Interval

e — - ——

Timer Type

Program Interrupt Mask

Attention Mask

12 Pointer to Timer Interval

Pointer to Message Area

16 Entry Point 1—V-value

20 Entry Point 1—R-value

24 Reserved for Use by INTING

Reserved Privileged | Reserved | DE Type
28 Inhibit
Switch

32 Reserved for Use by INTINQ
,36 Program Mask Save Area

40 Reserved

Figure 38. Interrupt Control Block (ICB) Format

The INTING macro instruction allows the user’s inter-
rupt-handling routine to optionally:

1. Relinquish control until a specified interrupt occurs
(MODE=R).

2. Enter a wait-state until a specified interrupt occurs

(MODE=W),

3. Branch conditionally, depending on whether a spec-
ified interrupt has occurred (MobE=c); if the inter-
rupt has occurred, it is dequeued.

4. Delete pending interrupts (MODE=CLEAR).

Figure 40 illustrates the use of all the interrupt-han-
dling facilities. The circled numbers in Figure 40 are
explained below. The example shows the logical se-
quence of events as might occur in a situation where

three interrupt routines are specified, two with equal
priority.

In the psect of this program, the following instruc-
tions are written:

ICB1 SxEC EP=ROUTINEI,COMAREA=CAI,
INTTYP=....
ICB2 SxEC EP=ROUTINE2,COMAREA=CA2,
INTIYP=. ...
ICB3 SxEC EP=ROUTINE3,COMAREA=CAJ,
INTTYP=. ...
CAl DS 4F COMMUNICATION AREA !
CA2 DS 4F COMMUNICATION AREA 2
CA3 DS 4F COMMUNICATION AREA 3

Note that in this illustration the second digit of the
Specity Entry Condition macro instruction (shown as
x), having no significance in the example, is not filled
in. Also, the interrupt type is not specified since this
parameter varies with the particular macro instruction.
1. In the main routine the user has activated interrupt-

handling routines under the conditions described in

the Specify Entry Condition macro instructions. As-
suming that the third sik specifies the same group

of interrupts as the second sy, the third has an im-

plied priority over the second.

2. An interrupt of the type first spccified occurs in the
main routine. The system, recognizing that a user’s
interrupt-handling routine has been specified:

a. Saves the general and floating point registers in
the supervisor area (setting register zero appro-
priately).

b. Saves the interrupt information in the indicated
communication arca (setting register one to the
1cB, the first word of which contains the address
of the communication area).

c. Sets register 13 to a standard TSs save area in
which the address of the rsecr of the interrupt-
handling routine has been stored in the 19th
word.

d. Sets register 15 to the entry point of the inter-
rupt-handling routine, and register 14 to the ad-
dress (in the system) to which the interrupt
routine should return.

3. The user issues a sa1 macro instruction. With this
instruction, the user requests that further interrupts
of any type be delayed (enqucued) until this inter-
rupt-handling routine re-enables them.

4. When the interrupt specified by the second smr
macro instruction occurs, it is not honored immedi-
ately because of the previously issued sai. Instead,
it is enqueued by the system and will be honored
when the user’s interrupt routine issucs a RAE or
returns. The interrupt may, in fact, never be hon-
ored if an INTINQ dequeues it.

Appendix D. Interrupt Considerations 169

. 8 bytes

Interrupt Code

AN

s
@

- 3 e 2le
5 > 2o
e < i C
5 —| 5 o] 3=l o6
= ol = =215l
vy ci< ™~ BN .2

Slojw > QO &=
> olc)lols o) R el
.= ‘“>~ED 0 <
o SZIETE al 2] %2

Wi | [= wiold A

:
01 7 8 910 1 12 15 16 31 32 43
Program
Task Mask Mask
218

Instruction Counter

Figure 39. Virtual Program Status Word (VPSW)

5. This interrupt is treated the same as the interrupt
at 4, except that its priority being higher will cause
it to be honored before 4, unless it is dequeued.

6. This macro requests that the system examine the
1cB for the interrupt types specified. If an interrupt
of the type is queued, the branch will be performed.
If it is not, execution will continue with the next
sequential instruction. When the interrupt is found
to be queued, and the branch is taken, the interrupt
is then removed from the queue.

Main
Routine

SAVE

: %s‘m ICB1, PRIORITY = LOW

1C82, PRIORITY = HIGH
ICB3, PRIORITY = HIGH

(LX)
o~ ®

Interrupt 1___ Interrupt
Occurs Routine 1

SAl Inhibits Interrupts

Interrupt 2 Occurs
ond fs Queued by
System
Interrupt 3 Occurs
ond Is Queved by
System

IR > XN TR R

111

INTING 1C82, Conditional
Branch
No Branch

Branch Executed
Dequeves Interrupt 2

Pemnits Interrupts

Interrupt
Routine 3
.

. .
L— = RETURN RETURN
RETURN J

cee e s
>
m

r
|
|
1
1
t
i

s e s st s s es et seteasss s PEP et esettes bt torre

Figure 40. Illustration of Interrupts Being Serviced

170

7. When the raE macro instruction is issued, all inter-

rupts that have been enqueued since the sar are
honored. In this case, since interrupt 2 was de-
queued by the INTINQ macro instruction, the only
enqueued interrupt in the list is interrupt 3. When
the interrupt 3 routine returns control (to the next
sequential instruction beyond the rRaE in the main
routine), the main routine then returns. The sys-
tem then resets the general and floating-point regis-
ters to the contents of the saved area (as pointed
to by register zero on entry) and resumes execution
at the location specified in the old vesw.

This appendix discusses use of the pper command

(Figure 41) and includes the following topics:

¢ Preparing a ppeF for a new data set (Table 21)

® Preparing a ppEF for an existing data set (Table 22)

. Specifying DCB parameters in a DDEF command
(Table 23)

e pper and data set organization requirements for
language processing

e ppeF and data set organization requirements for
commands (Table 24)

® secuRe command requirements for non-
conversational tasks

* ppEF considerations for multiple executions in
the same session

The purpose of the ppEr command is to allow the user

to specify those data sets that are to be created or proc-

essed during the execution of his program or the com-

mands he has issued. The ppEF command:

e Associates a pcs with a named data set—the ddname
appears in both a pcs and a ppEF.

* Names the data set to be created or processed—
DSNAME parameter

* Requests, when necessary, device and device space
allocation and volume mounting—unrT, SPACE, and
VOLUME parameters.

* Defines labeling conventions to be used and certain
label information if desired—rLABEL parameter

* Declares the disposition of the data set (i.e., whether
a new data set is to be created or an existing one is
to be processed) —pisp parameter

e Allows declaration of data set attributes and char-
acteristics—Dnsorc and pcs parameters

The ppEF command (or macro instruction) causes
the parameters included therein to be recorded in an
entry in a table known as the Task Data Definition
Table (7pT), which is maintained by the system. This
table is not of concern to the user; it is described here
only as an aid to understanding the functions of the
ppEF command. Each entry is the result of one ppEF
command or macro instruction and is identified by the
ddname which appeared in that command or macro
instruction.

The complete ppEF command is shown in Figure 41.
For clarity, the pcs parameter, with all possible sub-
operands is shown separately.

The system locates data set characteristics and attri-
butes by searching the ToT for an entry with the same
ddname as appears in the data control block (pcs)
specified in the user’s program (or system routine),

Appendix E. Data Set Characteristics

The 1ot is discarded ecach time a session is com-
pleted (i.c., log-off time). Ience, a voer command
must be given for cach data set to be processed in
every session. For some data sets, the system itself
effectively issucs the necessary pour (sce Table 21).

All vanr data sets are automatically cataloged when
they are created. sant data sets must be cataloged by
the uscr, using the cararoc command (or macro).
When the user issucs a cararoc command naming a
data set for which a pprr has been given in the carrent
session, label, organization, unit, and volume informa-
tion from the Tor entry are recorded in the system
catalog. A subsequent pprr command which names that
cataloged data sct is significantly simpler, since the svs-
tem will automatically extract that information fvom the
catalog and place it in the Tor entry being buill; e,
for cataloged data sets, the user does not respecily in
the pper the information that is alrcady in the catalog.

When the data sct is written, some of its attributes
(e.g., record length (LrecL), record type (mecrat),
etc.) are recorded in the data sct control block (psci)
on direct access devices or in the tape label. The
system will also extract this information from the
pscB or label when an cxisting data set is being proc-
essed; hence, the user does not respecify that informa-
tion in a ppeEr command or within a pcs within his
program (except for ascrr tapes).

There are three points to consider in providing pper
commands:

1. For a new data sct (and for all ascr tapes), the user
must supply all characteristics and attributes, or
specify only those required and rely upon system-
assigned defaults for the remainder.

2. For an cxisting data set, the user should specify
only that information not rccorded in the pscn or
label.

3. Further, if the cxisting data set is cataloged, the
user should not specify information alrcady in the
catalog.

The following general guidelines and Tables 21 and
22 provide information for the proper use of the pper
command (or macro instruction).

1. If a b is opened (oPEN macro instruction) and no
pperF with the same ddname has previously been
issued and:

Appendix E. Data Set Characteristics 171

DA [,dotype-in'eger}
7

,UNIT= (TA [,!apetype- { 7o }])}

device

~

TRK
CYL

,SPACE= (
rcdlength-integer

r PUBLIC
,VOLUME=(PRIVATE [% PR:VATE
| volseqno volserno, ...
NL
r SL
SLABEL= ([fileseqno—'xnreger] [,Iabelrype- AL
L SUL
AUL
r OoLb
 DISP= { NEW]
MOD

_ fcone
,OFTION gsoeueg]

[,RET=retention code]

L,PROTECT={L}]

Vi
DDEF DDNAME= 3 nome | [DSORG= { VS]
PCSOUT S VP
RX
name
, DSNAME= { *name }
‘Bname'
[, DCB= ([datu definition nome} [,DSORG=code] [,RECFM=code]
[,LRECL=integer] [,KEYLEN=integer]
[,RKP=integer] [,PAD=integer]
[,MACRF=code] [[,DEVD;code]
[,DEN=integer] ,TRTCH=code]
[,ortcp={wlAa}] [,BLKSIZE=integer]
[,IMSK=code] [,NCP=integer]
[,BUFNO=integer] [,BUFL=integer]
[,BFTEK=code] [,PRTSP=code]
{,STACK=code] [,MODE=code]
{ ,EROPT=code] [,BUFOFFflmeger])J

i primary-integer [,secondury—imeger} [,HOLD])]

i)l

] [,RETPD=integer])]

Figure 41. The DDEF Command

a. the session is conversational, the user will be
prompted for all parameters specifiable in the
PDEF command.

b. the session is nonconversational, the session will
be terminated.

2. More than one pper cannot be issued for the same
ddname unless it specifies concatenation (oPTION=
conc) of existing physical sequential (ps) data sets.

3. A data set cannot be referred to by more than one
ddname at a time. If a second ppEF specifies a differ-
ent ddname for a data set, the ddname given in the
earlier ppEF will simply be replaced. This is true
even if the psNAME parameter specifies different
member names of the same partitioned data set.

172

4. With the exception of 10REQ, a data set created with
one access method cannot be processed with a dif-
ferent access method. vs data sets cannot be read
with vI techniques, vi cannot be read with vs, etc.

5. The space parameters should be specified for all
new data sets on direct access devices unless the
installation-assigned defaults are satisfactory. The
HOLD sub-parameter should not be specified unless
the data set is to be extended or modified. The
DSCB maintains secondary space allocation specifica-
tion from the pper issued when the data set was
created, thereby obviating the need to specify this
parameter when extending an existing direct access
data set.

. When creating private volume data sets, the system
will assign the volume to be used if the volume
specification is voLUME=(PRIVATE).

. If no labels (LABEL=(,NL)) are specified for a tape
data set, the data set must not contain a header
label recognizable by Tss.

. For a cataloged data set, if SPACE, UNIT, LABEL, or
VOLUME operands are entered, diagnostics will be
displayed as appropriate. However, the associated
fields will be taken correctly from the existing cata-

log entry.

Table 21. Form of DDEF for New Data Sets

10.

9. When a module has been loaded from the wrong
library, the incorrect version of the module must be
unloaded, a DDEF or RELEASE issued for the job li-
brary affected, and a LoaD or carv issued for the
correct version.

When defining an ascn tape, the ppEF command
(or macro instruction) must always be used to sup-
ply all necessary pcs information; there is no other
source for this information. Ascu tapes cannot be
cataloged.

WHEN APPLICABLE
vaM BSAM OR QASM
Public Private Private
OPERANDS USERLIB | JOBLIB | USERLIB | JOBLIB DISK TAPE COMMENTS
DDNAME=data definition name X X X X X X 1-8 characters (1st alpha-
betic); cannot begin with
SYS; must be same as
DDNAME in macro
instruction.
[,DSORG=data set organization] VS VS
VI vp VI VP PS PS
VP VP
,DSNAME=symbol X X X X X X Maximum of 35 characters
3330 (18 qualifiers).
[,DCB=(,...)] 3338 * * * *
DA 1 ,2311 X X X X Must specify for new VAM
UNIT= 2314 X X X X data set on private volume
4 TAILtape type] X X and uncataloged physical
device X sequential data set. If
nonconversational, obtain
devices with SECURE
command.
- - ({ TRK . X
CYL X
record X
SPACE= | L\ length
Jprimary X X X X X
[,secondary] X X X X X
_LHOLD] i X X X X X
PUBLIC X X In nonconversational, use
,VOLUME=| PRIVATE X X X X SECURE command to
volseqno i obtain private volumes.
{ PRIVATE } 7] X X X X
volserno,... X X i i
= &seqno—mteger] X X
X X Must be specified for ASCII
SL X X tapes.
LABEL= hbe" X
SUL X X
AUL X
RETPD =integer] X X X X X X
[DISP= NEW] X X X X X X Data sets are defaulted to
existence: if cataloged, OLD
is assumed; if uncataloged
NEW is assumed.
[,OPTION=JOBLIB] X X
[,LRET=codes] X X X X X Defaudted to N
- Y - Yefaulted to
[,PROTECT: { N }] X
*See Table 23
**Must be specified here

Appendix E. Data Set Characteristics 173

Table 22. Forms of DDEF for Existing Data Sets

WHEN APPLICABLE

CATALOGED®*® BSAM OR QSAM
VAM CATALOGED UNCATALOGED
OPERANDS USERLIB JOBLIB | DISK TAPE DISK TAPE COMMENTS
DDNAME=data definition name X X X X X X 1-8 characters (1st alpha-
betic); cannot begin with
SYS; must be same as
DDNAME in macro
instruction.
[, DSORG=data set organization] PS PS
X X X X X X Maximum of 35 characters
,DSNAME= § symboli (18 qualifiers).
*symbol For data sets created under
OS or 0OS/VS; maximum
,3330 of 44 characters.
[,LDCB=(,...)] ,333B » o b b bt ®
B 2311 X Must specify for uncata-
UNIT= DA ,2314 X loged physical sequential
’ TA[tape typel X data set. If nonconversa-
| device X tional, obtain devices with
~ SECURE command.
TRK Never specified for
CYL A length DISP=O0OLD data sets.
_ record lengt.
,SPACE= primary
[.secondary}
[LHOLD] X X X X
PUBLIC If nonconversational, use
,VOLUME= PRIVATE SECURE command to
L volseqno X X obtain private volumes.
PRIVATE
volserno,.. X X -
r [ﬁleseqno-integer] X Normally defaulted; file
X sequence number is in
X catalog. However, must be
JLABEL= Jlabeltype AL X specified for ASCII tapes.
SUL X X
AUL X
- [,RETPD=integer]
_{oLDp X X X X X X
[DISP= { MOD } X X X X MOD applies only to
BSAM; positions after last
record of data set.
_ OBLIB X
[’OPTION" { Lone ” Only OLD BSAM data sets
X X X X can be concatenated.
[LRET=codes] X X X X Default wh
Y efault when DISP=
[PROTECT= { N }] X X | MODisN

*See Table 23

¢ Existing uncataloged VAM volumes must be cataloged with an EVV (Enter VAM Volumes) command before they can be accessed.

174

Forms of the DDEF Command

Tables 21 and 22 specify all allowable forms of the
pper command (excliding pcB parameters) for new
and existing data sets, respectively, where the data
set organization is vs, vi, vp, or ps. Standard Tss meta-
language notation (as described in the Command
System User’s Guide) is used. The first column speci-
fies the general structure of each parameter, including
whether parentheses are to be entered or not and the
exact entry for providing default {or specification omis-
sion) entries. 1BM-assigned defaults are underlined and
may be selected by omission of specification in the
pPEF command.

DCB Parameter Specification

It is not required that pce information be specified in
the ppEF command (except for ascu tapes, where it is
always required). It is, however, sometimes desirable
to code a general-purpose program for which the at-

Table 23. Use of DCB Parameters in the DDEF Command

tributes of the data set(s) to be processed are not
known or not specified at assembly time in pcB macro
instructions. In this case, these parameters may be sup-
plied dynamically (i.c., without program reassembly)
from the pcs information maintained in psces, data set
labels, and pes subparameters specified in the ppErF
command.

If a field has been specified in the pce at assembly
time or by the user’s program prior to opex, it will not
be modified by the system if a later specification for
the same field is given; e.g., if there were a LrecL (logi-
cal record length) specification in the pper command
as a pcB subparameter and the pcs also contained an
LRECL specification at assembly time, the ppEF specifi-
cation would be ignored. Any field supplied dynami-
cally by the system is reset when the pcg is closed. This
permits successive dynamic pcB parameter specifica-
tion between successive OPEN-CLOSE executions.

Information is used or filled into a user’s pcs at opEN
time in the following order:

APPLICABLE DSORG IF DISP=OLD WILL
DCB vs Vi VP s X BE FILLED FROM
OPERAND SPECIFIES CATALOG DSCB OR LABEL
DSORG data set organization X x X X b3 X VIP/VSP
RECFM record format X X X x X
LRECL logical record length x X x - X X
KEYLEN | key length x VIP X X
RKP key position x VIP
PAD space to be left on each page X VIP X
of VI(VIP) data set for subse-
quent insertions
MACRF type of macro inst-uctions used X X
DEVD device type x X
DEN tape density X X
TRTCH data conv, parity, translation X X
OPTCD write check or ASCII tape x X x
BLKSIZE | maximum block length X X x
IMSK error recovery procedures X X X
NCP number of consecutive READ, X x X
WRITE or IOREQ macro in-
structions issued before CHECK
BUFNO no. of buffers X b e
BUFL buffer length x X
BFTEK buffer technique x
PRTSP print spacing X
STACK stacker selection X
MODE mode of operation X
EROPT error option X
BUFOFF | buffer offset X

Appendix E. Data Set Characteristics 175

pCB macro instruction assembly time specification
. User’s program prior to orex (can modify above)
. TDT entry containing poer and catalog information
. pscB or data set label (existing data sets only)

The pce parameters applicable to each data set or-
ganization and which are recorded in the system cata-
log or in a pscB or data set label are shown in Table 23.
Refer to the publication Assembler User Macro In-
structions for the actual parameter specifications.

W L D

Data Set Definition Rules

for Language Processing

No pper command is required to define the source and
listing data sets, or the object modules, used in lan-
guage processing. The ppEF command is required when
the job library that is to receive the object module is
not the library at the top of the program library list;
that job library must be defined. Each library referred
to by INCLUDE statements (except UserRLIB), and each
job library used by automatic call, must also be defined
by a ppEF command.

Data Set Definition Rules

for TSS Commands

Table 24 provides information relating to the structure
of and ppEF requirements for data sets processed by
Tss commands.

Secure Requirements

for Nonconversational Tasks

Nonconversational tasks are enqueued until the system
is able to fill the requirements for private devices. The
list of requirements is made available to the system

Table 24. Data Set Definition Requirements for Commands

by means of a secure command, which the user must
include in the task’s command procedure as the first
command after Locon. Then, as each ppEF command is
read and processed, the required devices are allocated
from those that have been reserved for the nonconver-
sational task. Any attempt to allocate more than have
been secured causes the task to be terminated.

In determining the number of devices needed in a
task, the following points should be considered:

¢ The number of devices should be at least equiva-
lent to the number of data sets on different private
volumes that are opened at any one time. Two or
more data sets residing on the same private volume
may require only one device (the exception is de-
scribed below).

o If two different data sets are referred to in sequence
(i.e., the first is closed before the second is opened)
the system can be directed to allocate the same de-
vice to both by including the unrr=AFrF option in
the second pper along with the ddname of the first
ppEF. When the uNIT=AFF option is selected, the
device types of both data sets must be compatible
and neither should be a new data set residing on a
direct access device. If several data sets are to be
serially processed with unit affinity specified, each
data set may have unit affinity with only the most
recently processed data set. Note that unit affinity
may only be specified for physical sequential data
sets.

¢ If two different data sets on private volumes are
referred to by the same ddname, the UNIT=AFF
option cannot be selected. Since the first ppEF must
be released prior to the second ppEF, two devices

COMMAND RELATED DATA SETS DSORG DATA SET DEFINITION
BACK New SYSIN data set that is to control | VS, VI New SYSIN data set must be cataloged, or defined
completion of this task in nonconversa- by previous DDEF command in conversational por-
tional mode. tion of this task.

BUILTIN USERLIB or a virtual partitioned data | VP Virtual partitioned data set does not have to be de-

set specified by DSNAME will contain fined or cataloged when BUILTIN command is

a member named SYSPRO. issued.

Virtual partitioned data set must con- | VP Virtual partitioned data set must be in user’s pro-

tain an object module with entry point gram library hierarchy when command defined by

named by EXTNAME operand. BUILTIN is issued. (DDEF with OPTION=]JOB-
LIB)

CATALOG Data set to be cataloged. PS Data set to be cataloged must be defined by previous
DDEF command in this task, unless UPDATE op-
tion specified. ~

CDD Data set containing only DDEF com- Data set must be cataloged, or defined in current task.

mands.

176

Table 24. Data Set Definition Requirements for Commands (Continued)

COMMAND RELATED DATA SETS DSORG DATA SET DEFINITION
Data set to be copied. Any ex- Data set to be copied must be cataloged or defined

cept RX by previous DDEF command in this task.
{ for user-
con-
trolled
physical
1/0 with
private
devices)

CDs Copy data set. Any ex- VAM-—does not have to be defined or cataloged.
cept RX PS—should be cataloged or defined to insure proper
(for user- volume and unit.
con-
trolled
physical
170 with
private
devices)

CLOSE Data set to be closed. any Data set to be closed must be defined by previous
DDEF command in this task.

DATA! Data set to be entered. VS, VI No DDEF command is required if the data set is to
reside on public storage; data follows this command
in input stream. If the data set is to reside on private
storage a DDEF must be issued before the com-
mand.

DEFAULT User profile data set in USERLIB. VP Data set must be defined in current task.

DELETE Data set whose name is to be removed | any No DDEF command required for this command.

from catalog.
Dss? Data sets whose status is desired. any Each data set whose status is to be presented must
: be cataloged; no DDEF command required for this
command.

DUMP Data set to be printed as a result of | VI DDEF command whose ddname is PCSOUT must

program control command DUMP. be defined prior to execution of DUMP command.
EDIT? Data set to be processed by the Text | VI Data set must be cataloged, or defined in current
Editor. task. This is done automatically.

END? Data set being processed by the Text | VI No DDEF command required for this command.
Editor, or indicates PROCDEF com-
mand completion.

ERASE Data set to be erased. VS, VL, VP | Data set to be erased must be cataloged.

EVV Private data sets whose names are to | VS, VI, VP | No DDEF command required for this command.

be entered in catalog.

EXECUTE SYSIN data set for nonconversational | VS, VI Data set must be cataloged; no DDEF command re-

task set up by this command. quired by this command.

KEYWORD SYSPRO data set in USERLIB, SYS- | VIP Data set must be defined in current task.

PRO data set in SYSLIB.

LINE? Line data set containing lines to be | VI Line data set must be cataloged or defined by pre-

presented. vious DDEF command in this task.

1 1f the DATA command was used to create the data set within the current task, then the data
set is defined as if a DDEF command had been issued by the user directly. If the data set is

also VAM organized and resides in public storage, it is automatically cataloged.

2 These are the basic directive commands of the Text Editor. See Command System User’s Guide
for details concerning the data manipulation commands of this facility.

Appendix F. User Defined Procedures 177

Table 24. Data Set Definition Requirements for Commands (Continued)

tape in print format.

COMMAND RELATED DATA SETS DSORG DATA SET DEFINITION
FTN \2% Object module to be loaded is identified by external
ASM name specified in this command; it must be in a
LNK library in the current program library list.
LOAD PLI
User- Object module to be loaded.
written
problem
program
MCAST User profile data set in USERLIB, | VP, Data set must be defined in current task.
session profile in task virtual memory. | VSP
MCASTAB User profile data set in USERLIB, | VP, Data set must be defined in current task.
session profile in task virtual memory. | VSP

MODIFY Data set to be changed. VI Data set must be cataloged or defined by previous
DDEF command in this task.

PC? Data set whose status is required. any Each data set whose status is to be presented must be
cataloged; no DDEF command required for this
command.

PERMIT Data sets for which sharing is per- | any Data sets for which sharing is permitted must be

mitted. . cataloged; no DDEF command required for this
command.

POD? Virtual partitioned data set for which | VP Virtual partitioned data set must be cataloged, or de-

information about its members is given. fined by previous DDEF command in this task.

PRINT Data set to be printed. PS, VS, VI | Data set must be cataloged or defined by previous
DDEF command in this task. A previous DDEF re-
quired for unlabeled tapes.

PROCDEF USERLIB or virtual partitioned data | VP Virtual partitioned data set does not have to be de-

set named by DSNAME will have a fined or cataloged.
SYSPRO member created to contain
procedure definition.)

PROFILE User profile data set in USERLIB, ses- | VP Data sets must be defined in current task.

sion profile in task virtual memory.

PUNCH Data set to be punched on cards. VS, VI Data set must be cataloged or be defined by previous
DDEF command in this task.

REGION! Data set to be processed by the Text | VI Data set must be cataloged, or defined in current

Editor. task.

RELEASE Data set to be released. any Data set to be released must be defined in previous
DDEF command in this task.

RET VAM data set whose data set de- | VS, VI, VP| Data set must be cataloged.

scriptor is to be changed.
SHARE Data sets for which sharing is re- | any Data sets for which sharing is requested must be
quested. cataloged; no DDEF command required by this
command.
SYNONYM User profile data set in USERLIB, ses- | VP Data sets must be defined in current task.
sion profile in task virtual storage.

TV Physical sequential data set (from a | PS Data set (input) must be cataloged or defined in
VT operation) to be written on a VAM current task.
volume. .

vT VAM data set to be copied to mag- | VS, VL, VP | Data set (input) must be cataloged or defined in
netic tape as a physical sequential current task.
data set.

\'A% VAM data set to be copied into direct | VS, VI, VP | Data set (input) must be cataloged or defined in

access storage. current task.

WT Data set to be recorded on magnetic | VS, VI Data set must be cataloged or defined by previous

DDEF command in this task.

! These are the basic directive commands of the Text Editor. See Command System User’s
Guide for details concerning the data manipulation commands of this facility.

178

must be secured for the data sets even though both
data sets are not open at the same time. Since the
ddname must be unique in each poEr, the first data
set must be released prior to the second DDEF.
Therefore, two devices are necessary since the RE-
LEAsE command removes the device from the task’s
allocation prior to the second ppEF command.

Data Definition Considerations

for Multiple Executions in the Same Session

A poEF command provides the linkage between the

ddname used in the source program pcs and the actual

physical data set. Once a ppEF has been entered, it
remains in effect until log-off time, unless the definition
is released or redefined.

If two programs are executed in succession, the fol-
lowing conditions could arise:

1. Both programs refer to the same data set with the
same ddname. One ppeEF command issued prior to
the execution of the first program is sufficient for
both executions if the data set is read in both pro-
grams or written in the first and read in the second.
If, however, the data set is written in both pro-
grams, the data is not automatically concatenated.
Data written in the first execution would be written
over in the second execution. If the user does not
wish this to occur, he must take the steps outlined
in 3.

2.

#

o o0 o

Both programs refer to the same data set with dif-
ferent ddnames. Each execution must be preceded
by a ppEF command giving the ddname as appropri-
ate for the exccution. Since the second pper will
contain the same psNAME as the first, effectively re-
defining it, the first definition need not be released.

. Each program refers to a different data set with the

same ddname. Each execution must be preceded by
a ppEF command giving the psnaME for the ddname.
In addition, since the second pper has the same
ddname, the first definition must be released prior
to the second poEr. When a data set on a private
volume is released, the input/output device is also
released unless another defined data set resides on
that same volume. In a nonconversational task, if a
device is freed by a RELEAsE command, the user
must account for this when specifying the secure
command. For example, if two programs read dif-
ferent data sets on separate private volumes and
both are referred to by the same ddname, the
following procedure is necessary:

SECURE Two devices—even though only one device
is needed at any one time

DDEF For first data set

CALL First execution

RELEASE First data set

DDEF For second data set

CALL Second execution

Appendix E. Data Set Characteristics 179

Appendix F. User Defined Procedures

This appendix will depict representative uses of the
Procedure Definition (PrRocpEF), BUILTIN, and the User
Profile. These facilities all enable the user to tailor his
task to special situations, while still retaining the gen-
eralized scope provided by the system-supplied com-
mands. Command System User's Guide is the primary
source for explanation of these user-created proce-
dures.

Procedure Definition (PROCDEF)

The ProcpEF command defines a command procedure
which consists of other commands. When issuing
PROCDEF, the user must specify the name to be assigned
to the user-written command procedure. The system
then prompts the user to enter his first line by issuing
the line number 100. If the user wants to build his
command procedure so that he can substitute values
for the operands in the created procedure, the PARAM
line should be incorporated. Without the param line,
the procedure remains fixed, as defined, with no ad-
justment of operand values possible at execution time.
These dummy operands that comprise the pParan line
may be both keyword and positionally specified (see
Example 1 in this appendix).

Entering Procedure Text

After prOCDEF is issued (optionally using the PaRaM
line) all subsequent lines issued without a single pre-
ceding break character (_) will be included in the pro-
cedure text. The system prompts for each line with a
line number, and there is no apparent limit on the num-
ber of lines the user may enter.

The user may enter system-supplied commands (in-
cluding procpEF and/or BUILTIN commands) or other
user-created commands. The commands entered need
not include all of the operands normally associated
with them, but only those necessary for the successful
performance of the functions requested. These oper-
ands may be indicated as variable (dummy names
within a paraM line) or may be fixed with explicit
values. Fixed operand values are not included in the
paraM line, and therefore will be executed exactly as
given in the text when the procedure is called.

A direct call to a language processor-produced ob-
ject module may be produced by entering the name of
the module in the procedure text.

180

Commands preceded by a break character (e.g.,
—END) are executed immediately and do not become
part of the procedure text.

Note: To insert a command requiring a break character
for execution (e.g., 1LisT in the text editor context)
during PROCDEF generation, use two break characters to
insure that one will appear with the command in the
PROCDEF.

Terminating Procedure Definition

The user terminates PROCDEF processing by entering
a break character followed by any one of these items:
an END command, an EprT command, another PROCDEF
command. When the user enters another PROCDEF com-
mand, the same options for terminating its processing
are available. Eventually, the last ProcpEF desired will
have to be terminated with either an END or an EpIT
command.

Nested Procedure Definitions

The text of a procedure, defined by procpEF, may con-
tain other PROCDEF commands, entered just as any other
system-supplied command, without a preceding break
character, These additional ProcpEF commands are said
to be nested in relation to the complete procedure.

Example 1: PROCDEF NAME = MYJOB

100 PARAM DDNAME=ALPHA DSNAME=
DATASET,VOLUME=ANY,$N,STATE=$1,
ACC=$2 NEWNAME=BETA

200 DDEF DDNAME=ALPHA,DSORG=V],
DSNAME=DATASET,VOLUME=ANY $N

300 CATALOG DSNAME=DATASET,STATE=
$1,ACC=$2,NEWNAME=BETA
400 _END

In the param line in Example 1 above ppNAME,
DSNAME, VOLUME, STATE, ACC, and NEWNAME are ex-
ternal strings (keywords) that associate the calling
parameters with the internal strings (in the PARAM
line) ALPHA, DATASET, ANY, $1, $2, and BETA respec-
tively.

ppEF, on line 200, is a system-supplied command
with the variable operands DDNAME, DSORG, DSNAME,
voLuME, and pisp. The keyword pisp is omitted and the
dummy operand $n is supplied positionally. psorc=v1
is a fixed operand value and will be so treated when the
procedure named MyJoB is called. Values for the other
variable operands will be supplied when the procedure
is called.

CATALOG, on line 300, is also a system-supplied com-
mand. Its operands are all variable and will be substi-
tuted when the procedure is called.

The _EnD, line 400, terminates the definition of this
procedure. It can now be executed by the user.

Example 2: MYJOB DDNAME=SETUP,DSNAME=ONE,
VOLUME=131313, OLD, STATE=U,
ACC=U, NEWNAME=TWO

This parameter string associated with myjos will

cause the dataset named oNE to be defined and re-

trieved as an existing (pisp=oLp) data set on private

volume #131313. The catalog entry for onNE will then

be updated, renaming the data set as Two. The access

qualifier of U (unlimited access) is retained.

Example 3: MYJOB SETX,FIRSTPRIVATE NEW,NR,
SECOND
This parameter string associated with myjyos will
~cause the data set named rst to be defined for a
private volume. The data set does not yet exist (p1sp=
NEW). The data set will be cataloged with read-only
access, under the data set name SECOND.

Object Program Definition (BUILTIN)

The suLTIN command defines an object program that
the user can invoke as if it were a command. It is useful
for accomplishing actions not achieved by any current
system-supplied commands. If the user wishes to define
operands for his BurLTIN command, he must supply the
code within his module to handle the parameter values
supplied when the module is called. The BPkD macro
instruction (BUILTIN Procedure Key Identifier) must be
supplied in the object code as part of the psect and
have the expected parameters defined. The BpkDp macro
instruction must also supply the names needed to pro-
vide linkage between the module and the BurLTIN com-
mand defining that module. The following source pro-
gram could be assembled, with the object module
being retained for future use. The program is only a
randomly selected example to indicate the sequence of
events necessary for BUILTIN, and the control features
(BPKkD) necessary for incorporation. Any other se-
quence of executable code would suffice equally as
well.

PST16 PSECT
ENTRY BEGINIS8
DC F76
DC 18F0°
USEREX BPKD BEGINI6
CST16 CSECT
BEGIN16 BASR 11,0
USING *11 LOCAL BASE
REGISTER
L 13,72(0,13)
USING PST16,13

HERE EQU *
GATRD AREA+3,LENGTH READ FROM
SYSIN
CLI AREA+3,CE’ CHECK
IF END
BE LEAVE BRANCH
IF YES
MVZ AREA+3(1),=X00' CONVERT
TO BINARY
L 5,AREA
SLA 51 MULTIPLY
BY 2
ST 5,AREA
MVZ AREA+3(1),=XFF° CONVERT
TO EBCDIC
GATWR AREA+3LENGTH WRITE ON
SYSOUT
B HERE
LEAVE EXIT ‘PGM FINISHED'
AREA DC Fo’ READ/WRITE
AREA
LENGTH DC Fr LENGTH
AREA

END

Assuming that the above module was assembled
without specifying a job library, the task userLs will
contain the object code available via entry point
BEGIN16, Example 4 to follow shows how this code se-
quence may be retrieved.

Example 4: BUILTIN NAME=GETPROG,EXTNAME=
USEREX
The object program definition via a user-created
command (GETPROG) is now established.

GETPROG
The execution of this user-defined command will
now result in the calling and running of the pro-
gram shown earlier. Control will be transferred to
the entry point named BeciN16, with linkage estab-
lished via parameters in the BUILTIN command and
the BPkD macro specification.

The User Profile

The user profile is a specialized data set containing in-
formation pertinent to each user. Stored within this
data set is information regarding the values the user
generates for defaults and synonyms, and optionally,
his command symbols. The user profile is a member of
the partitioned data set named USERLIB.

Initially, the system provides the user with a proto-
type user profile, resident in sysLB, which contains the
default values for system-supplied commands and any
initial synonym values.

When a user is joined to the system, a copy of the
prototype profile in sysLis is made a member of his
user library. He can make changes or add to the proto-
type copy in memory during a terminal session by
issuing a SYNONYM or DEFAULT command, or by using
the sET command to establish command symbols. Such
changes affect only the session profile, unless followed
by the PrROFILE command, which permanently changes
the user profile.

Appendix F. User Defined Procedures 181

When the prototype profile is not permanently
changed during a session, the memory copy is erased
when LocorF is issued. When, during the course of a
session, the user issues a PROFILE command, the entire
profile copy, as it exists in memory, is written into
USERLIB, and given the member name of sysprx.

When the user initiates his task, the system gener-
ates a search through userLs to locate the user’s pro-
file. If it is not found (i.e., the user has erased his user
profile), the system copies the prototype profile from
SYSLIB into memory, where it may be accessed and
used. Unless changed via proFiLE, this memory copy
of the prototype profile is erased at LOGOFF.

The user profile can exist concurrently on three
levels: the prototype profile in sysLs, the user profile
in useRLIB, and the session profile in storage.

Prototype profile resides in SYSLIB as member
SYSLIB SYSPRX. It is copied into storage if there is no

user profile in USERLIB.

User’s profile (member SYSPRX) is copied into
USERLIB | storage from USERLIB every time LOGON com-

mand is issued.

LOGON PROFILE
(every session) (whenever user wishes)

VIRTUAL| Changes made during session are entered on this
MEMORY | copy; PROFILE command causes session profile

to replace the one in USERLIB.

At the user’s first LocoN, the system provides initial
default values for most operands. When the user does
not explicitly define operand values when entering a
command requiring these values, the system will de-
fault to the initial value that it has provided. If the
initial value is null, the user must specify a value. The
default table is a list of default values supplied by the
system (see Command System User’s Guide).

A user can specify his own default values to be used
in place of or in addition to these system-supplied de-
fault values by using the peFavLT command. Any
changes become a part of his user profile for the session
involved and may, of course, be saved for later sessions
by issuing a PROFILE command.

Each user has a separate user library and therefore a
separate user profile. At times the user may find it de-
sirable to share the copy of the profile in his user
library. Since his copy is addressable as a normal mem-
ber, it can be shared by making userLiB shareable.
Normal sharing precautions and procedures should be
used.

The user may erase his copy of the user profile, exer-
cising the normal erasing procedure. He may also log
on without it for a particular session by using the pris--
tine operand of the LocoN command.

Command System User's Guide should be referenced
tor complete details concerning User Profile Manage-
ment. '

%E (see end of modifications indicator)
ZEND (see end-of-data indicator)
%ENDDS (see data card data set)

(see number sign)

ABEND description 8
ABEND macro instruction 133
ABENDREG command, general form 184
absolute generation name 86-88
access
catalog 62, 86, 88
sharing 78-79, 156-157
withdrawal 78
access methods
basic sequential (BSAM) 24-25,34
queued sequential (QSAM) 24-25,34
restrictions 171-180
virtual index sequential (VISAM) 24-25, 34
virtual partitioned (VPAM) 24-25, 34
virtual sequential (VSAM) 24-25, 34
ADCON (see address constant)
ADCON macro instruction 143
address constant 131
addressing interruption 164
aliaz 13
alignment
by program control system 138
source statement 103
virtual storage area 157-159
assembler
data set identification 17
diagnostic action 122
general description 102-106
limitations 117
options (see assembler parameters)
output 107-117
restrictions 117-121
sample coding 142-147
assembler parameters
default 38-39
general 38-39, 107-109, 184
required 38-39, 107
AT command
description 141
example 32,59
ATTENTION button
effect on command execution 56, 165-166
to cause interruption 165-167
tologon 3,28
auxiliary storage 157

BACK command
data set requirements 176
description 5, 8,9
example 28, 64
background mode (see nonconversational mode)
base register 142-148 .
basic sequential access method (see BSAM)
batch sequence number (BSN) 8, 53-55
BEGIN command
description 8
example 28

Index

BFALN (DCB operand) - 25
BLKSIZE (DCB operand) 25,175
boundary (see alignment)
BPKD macro instruction 34
BFTEK (DCB operand) 25,175
BRANCH command

example 30, 59
BSAM access method 22, 24, 34
BSN (see batch sequence number)
BUFCB (DCB operand) 25
BUFL (DCB operand) 25,175
BUFNO (DCB operand) 25, 175
BUFOFF (DCB operand) 175
BUILTIN command

data set requirements 176

example 33,99
bulk i/O 18-19, 21

CA (indicates card reader SYSIN) 104
CALL command
example 30,47,63, 64
CALL macro instruction
efficiency considerations 158-159
example 30
general 132-133, 144, 149
CANCEL command
description 8
example 28,54
card reader example 80-81
card statement format 103
carriage return 36, 105, 130
CAT macro instruction 28
CATALOG command
data set definition requirements 173-174,176
description 12
example 28, 62, 86, 88
generation data group 86-88
renaming option 45
sample usage 28
shared data set 161
catalog
concept 2
effect on DDEF command 171
of library 435
recording of information 171
structure 10-11
system 10
user 10,12
cataloging (automatic system action, VAM) 171
cataloging data sets 12
CB (indicates card reader SYSIN) 80, 81, 104
‘CDD command
data set requirements 176
description 17
example 28, 68
CDD macro instruction 17, 28
CDS command
data set requirements 177
example 29,79
use 21,29
CDS macro instruction 21, 29
character sets
card format 104
keyboard format 104
CHECK macro instruction 34, 61
CHGPASS command

Index

183

description 8
example 28
general form 181
CLATT macro instruction 167
CLOSE COMMAND
data set requirements 177
example 29
sample usage 29
CLOSE macro instruction 24, 29, 34, 61,73
COMAREA (see communication area)
COMMAND macro instruction 26
command procedure data set 18
committed statement 106
COMMON control section 162
communication area 168-169
CONC (for OPTION operand of DDEF command) 172
concatenation of data set 172
CONTEXT command
example 30, 96
continuation line
card format 103 - -
keyboard format 104
continuation of terminal command 61, 104
control section (CSECT)
attributes 126
linking 159
name duplication 45
naming rules 143, 160
packing 36
public 156-157
rejection 159
storage allocation 157
unnamed 147
conversational mode
assembler /O 22
correction of input 105-106
definition of 3
entering commands 4
entering data 34,18
language processing 128
linkage editing 130-136
output 117
PCS 136-141
SYSIN 4
SYSOUT 4
task
execution 3
initiation 3
interruption 4, 164
termination 4
conversion of floating-point constants 139
COPY instruction 123-124
CORRECT command
example 30, 96
correction, error (see error, correction techniques)
cross-reference listing
assembler parameter (CRLIST) 39,108
description 113
example 113
CSECT (see control section)

data card data set 19
DATA command
building a data set at the terminal 75
automatic cataloging 66
. data set requirements 177
description 18
example 29, 64, 66,75
to store DDEF commands 69
data control block (DCB)
DDEF command use 17,171-175

184

general description 15-16

parameter of DDEF command 171, 173-174
data interruption 164
data management

basic sequential 22,24, 34

general 10

virtual indexed sequential 12-13, 22-24, 34

virtual partitioned 13, 22-24

virtual sequential 12, 22-24, 34
data set

cataloging 12, 45, 61-63

closing 24, 29, 34

concatenating 172

copying 21

defining 15-18

for comands 176-178
for problem programs 15-18

deletion 12, 17

identifying 17

list (see list data set)

management 10

modification 21

names 10

organization 12-13

physical sequential (see BSAM)

prestored 18, 44-46

printing 47-48

processing restrictions 171

protection 19-21

reading 49-50

removed 185

residence 13-14

sharing 19-21

source (see source data set)

virtual index sequential (see VISAM)

. virtual partitioned (see VPAM)

virtual sequential (see VSAM)
DATASET command (see data card data set)
data set control block (DSCB) 72,171
DCB (see data control block)
DCB macro instruction

description of use 15-16, 23, 34

EODAD parameter 49

examples 3,47,49,64,71

omitted parameters 49-50

operand list 25
DCB parameters

DDEF command 171,173-174
DCBD macro instruction 23
DDEF command

description 171-176

example 29

multiple executions 179

storing for later use 29
DDEF macro instruction 29

(see also DDEF command)
DDNAME

DCB operand 25

DDEF command parameter 171, 173-174
DDNAME? command

description 18

example 30, 54

use 31
decimal divide interruption 164
decimal overflow interrupt masking 164-165
default

assembler parameters 38-39, 107-109

DDEF parameters 172-175

explicit 107

implicit 107

log-on parameters 36-37

DEFAULT command
data set requirements 177
description 1§
example 32, 100
DEL macro instruction 29
DELETE command
data set requirements 177
example 84
DELETE macro instruction 30, 136
deletion
data set 84
source statement 76
DELREC macro instruction 34
DEN (DCB operand) 175
DEPROMPT 12
DEVD (DCB operand) 25,175
diagnostic action
levels 124
diagnostic messages 4, 35
DIR macro instruction 34, 83
DISABLE command
example 31,96
DISABLE macro instruction 31
DISP (parameter of DDEF command) 173-174
DISPLAY command
example 32,56
DMPRST command
DSECT 127
DSECT copy parcel 89
DSNAME (parameter of DDEF command) 173-174
DSORG 171
DCB operand 25§
DDEF command parameter 173-174,175
DSS? command
data set definition requirements 177
description 17
example 31, 84
DUMP command
data set requirements 177
description 137-138
example 32, 60
duplicate
data set definition names 176, 179
entry point 159-161
symbols in libraries 53
DUPCLOSE macro instruction 24, 34
DUPOPEN macro instruction 24, 34

EDIT command .
data set requirements 177
example 30, 95-97

EDIT feature (assembler) 112

EDIT option of PRINT command 48

edited symbol table (STEDIT assembler parameter) 39, 108

ENABLE command
example 31, 96
END command
data set requirements 177
example 30, 97,98
END statement 40, 52
end of modifications indicator 45
entry point name
duplication 53, 159-161
rules 162
ENTRY statement 49
EODAD
DCB operand 25
ERASE command
action when data set actively shared 79
data set requirements 177
description 12, 21
example 29, 46,72

object module 46
shared data set 162
ERASE macro instruction 29
ERASE operand of PRINT command 47
EROPT (DCB operand) 25,175
error
assembly 38-41
code 122
control section rejection 159
correction techniques 105-106
detection with CHECK 61
during MODIFY command 44
global correction 105-106
incorrect data set 77
incorrect volume 77
local correction 105
module loading 140, 158
program control system 139
source statement 40
syntactical 122
EVV command
data set requirements 177
example 29,77
EXCERPT command
example 30,96
EXCISE command
example 30,95
EXECUTE command
data set requirements 177
description 5, 10
example 28, 65-66
execution interruption 164
EXHIBIT command
exampie 30
EXIT command
EXIT macro instruction 34,43
EXLST (DCB operand) 25
EXPLAIN command 135
exponent overflow 139, 164
exponent underflow 139, 164
express mode 51,117
expression evaluation by program control system 139
external symbols, restrictions 160

fixed-point divide exception 139, 164
fixed-point overflow

general 83, 139

masking interrupt 164, 165
floating-point computations 148
floating-point divide exception 139, 164
format

card statement 103

diagnostic messages 122

keyboard entry 104

macro library 123-125

source statement 103
FREEMAIN macro instruction 136
fully qualified name 10

GATRD macro instruction 26, 34, 44
GATWR macro instruction 26, 34, 44
GDG (see generation data group)
generation data group 11

example B86-88
GET macro instruction 34, 49
GETMAIN macro instruction 136
GO command

example 30,57

interrupt considerations 164 ‘
GTWAR macro instruction 26
GTWRC macro instructions 26
GTWSR macro instructions 26

Index

185

HOLD (parameter of DDEF command) 172-174
housekeeping 84-85
hyphen

command continuation 62

statement continuation 103

ICB (see interrupt control block)
ICTL statements 104
IF' command
description 137
example 32,59
floating-point considerations 139
IMSK (DCB operand) 25,175
index, addition to record 71-73
INDEX data definition name 90
indexed data set organization (see VISAM)
initial virtual storage 157
input
card reader 80
mixing 104
input/output request facility IOREQ) 23, 24
INSERT command
example 31,95
internal symbol, naming restrictions 162
internal symbol dictionary (ISD)
assembler parameter 39, 108
creation 39
link editor use 130
listing (ISDLIST) 39,108
program control system use 137
symbols not included 138
interrupt 164-170
asynchronous 166-167
AT command 141
display of location 56
external 166-167
input/output 166-167
program 77, 164-165, 167
program control system 140
resumption of execution 57, 60, 165
supervisor call 166-167
timer 166-167
types 164
interrupt control block (ICB) 83, 167
interrupt handling
of tasks 82-83
programs 166
routines 164-170
intervention prevention switch (IPS) 165-166
INTINQ macro instruction 168-169
invalid address assignment 58
1/0
assembler 22
bulk 18-19,21
during program execution 22
dynamic 22
IOREQ (see input/output request facility)
IPS (see intervention prevention switch)
ISD (see internal symbol dictionary)
ISDLIST (see internal symbol dictionary)
IVM (see initial virtual storage)

job library
adding 2, 13-14
contents 2, 13-14
creation 41, 53
use 41,53

JOBLIB (see job library)

JOBLIBS command
description 14
example 29

186

K (indicates keyboard SYSIN) 106
KA (indicates keyboard SYSIN) 41, 106
KB (indicates keyboard SYSIN) 37, 106
keyboard entry format 104
KEYLEN (DCB operand) 25,175
KEYWORD command

data set requirements 177

example 33
keyword operand 183

LABEL (parameter of DDEF command) 173-174
language processors
assembler 22
library
concepts 2
display of object module names 84, 160
hierarchy (see program library list)
list (see program library list)
name qualification 161
obtaining information 160
private volume 159
programs 160
public volume 160
search 13-14
sharing 160
limitations (see restrictions)
LINE? command
data set requirements 177
description 18
example 59
general form 31
line data set 75
line number, assembler parameter (LINCR) 108-109
link editor
data set definition 130
example 92-93
internal symbol dictionary use 130
module names 134-135
linkage
control section 159
conventions 131-133, 148-155
dynamic 135-136
editing 130
macro instructions 132-133
static 134
symbolic 131
LIST command
example 31, 97
list data set
assembler parameter (LISTDS) 39
defining (LISTDS) 39, 108
omitting PRINT command 44
LISTDS (see list data set)
listing
cross-reference 113-114
internal symbol dictionary (ISD) 114-115
object 109,111 -113
program module dictionary (PMD) 114-116
source program 109-111
symbol table 114
listing data set (see list data set)
literals
example 145, 146
general 113, 147
LNK command
example 92-93
LOAD command .
data set requirements 177
duplicate entry points 160
duplicate names 53
efficiency considerations 159

errors 159-160
example 30, 58
interrupt considerations 164
missing name 159
missing subroutine 74
object modules 159
undefined reference 74
unsolved reference 159
LOAD macro instruction. 30, 136
loading procedures (see LOAD command)
local correction 108§
LOCATE command
example 31,97
locate mode (see GET and PUT macro instructions)
LOGOFF command
conversational 37
description 10
example 28,37, 41
nonconversational 68
LOGON command
conversational 36
description 10
example 28, 36, 66
nonconversational 66
operands 36-37
LPCXPRSS
example 51
general 117
LRECL (DCB operand) 25,175

MACRF (DCB operand) 25,175
macro instructions (see also macro instructions
listed alphabetically)
assembler process of 123
chart 28-33, 34
creation 89-91
general service 23-24
system 147
macro library
assembler parameter (MACROLIB) 38, 107
creation of 123
format 123
index 125
user 89-91,122
management
data set 10
device 14
virtual storage 155
MCAST command
data set requirements 177
example 32
MCAST macro instruction, example 32
MCASTAB command
data set requirements 178
example 32
message format, diagnostics 122
messages
assembler storage limits 117
conversational output 35
diagnostic 4, 35,113
information 35
MNOTE 112
prompting 4, 35
response 4, 35
source listing 109
warning 124
metasymbol 183
mixed mode 8
mixed input (card and keyboard input) 104
MNOTE statement 113, 124
MODE (DCB operand) 25,175
modification of source statement 40-41, 44, 54

MODIFY command
data set requirements 178
description 21
example 29, 44, 54
termination 45
modifying a data set 21
modifying programs 4-5, 136
module (see also object module)
assembler parameter 38, 107-108
object 38,107-108
source 38, 107-108
module name
assignment 107
duplication 53
link edited 148
multiple execution 179
move mode {see GET and PUT macro instructions)
MSAM (see multiple sequential access method)
MTT (see multiterminal task)
multiple sequential access method (MSAM) 22-23
multiterminal task § '

name
absolute generation 87
assembler parameter 38
list data set 41,45
module 38,107
qualification 10
rules 10
shared data set 78-79, 159, 160
source data set 38, 108
naming
data sets 10
restrictions 162
rules 162)
NCP (DCB operand) 25,175
nonconversational mode
assembler parameters 67
entering data 18-19
general description 5-8
interrupt 82-83
language processing 103
linkage editing 135-136
log off 66, 68
logon 67
output 8
processing 5-8
program execution 68
SECURE requirements 176
SYSIN 64,66
SYSOUT 8, 66-67
task preparation
execution 8
initiation 5
termination 8
NUMBER command
example 31,96
number sign (#) prompt for modifications 40, 44-45

OBEY macro instruction
description 29
example 100

object listing (ASMLIST assembler parameter) 39

object module
combination 133-135
display of names 84
format 116
linkage 133-135
loading 159
naming rules 160
shared 156-157
structure 109,111-112

Index

187

versions 69
object program listing

assembler parameter 39, 108

example 111
object program module {see object module)
OPEN macro instruction

description 23, 34

examples 47,49,64,71
operation code interruption 164
aperator-assisted input 8, 18-19
OPTCD (DCB operand) 25,175
OPTION (parameter of DDEF command) 173-174
options, assembler (see assembler parameters)
OS data setuse 63
output of assembler 107-117
output module (see object module)

PAD (DCB operand) 25,175

page control while printing data set 4748
paging 157

parameter area 132, 149

parameter list 149

parameters
assembler 38-39, 107-109
LOGON 36-37

partial statement 106
partially qualified name 10
partitioned data set (see VPAM)
password 36
PAUSE macro instruction 26, 148
PC? command
data set requirements 178
description 17
example 31, 84
PCS (see program control system)
PCSOUT
requirements for DDEF 58
PERMIT command
access levels 161-162, 163
catalog alteration 19-21
data set requirements 178
description 19
example 29,78
use 159
physical sequential data set (see BSAM)
PMD (see program module dictionary)
POD? command
data set requirements 178
description 18
example 31, 85
positional operand 183
POST command
example 32, 97

pound sign (#) prompt for modifications 40-41, 4445

PR macro instruction 30
PRINT command
data set requirements 178
description 5, 21
EDIT option 48
example 30, 48
interface with LPC listing data set 35
required record format 48
printing a data set 48
print-out (see listing)
PRISTINE (LOGON operand) 37
PRIVATE (option of DDEF command) 173-174
private volume
cataloging 61
job library 161
library 161
mounting 61-64
use of 14

188

volume labels 14
volume sequence number 62-63
volume serial number 62-63
privileged operation interruption 164
problem program
/0 22-23
preparation 102, 142
residence 158-159
PROCDEF command
data set requirements 178
definition 180
example 32,98
PROFILE command
data set requirements 178
example 32, 100
program (see also object module)
execution 4243
interruption 164
library list 13-14
linkage 130-136
maintenance 84-85
module dictionary 114-116
reenterable 51-55, 156-157
program control system (PCS) 136-141
commands 140-141
diagnostics 139
dynamic statements 58-60
errors 139
examples 56-60
expression evaluation 139
floating-point considerations 139
immediate statements 56-57
internal symbol dictionary use 138-139
restrictions 138, 139, 141
statements 137-138
program library list 13-14
program module (see object module)
program module dictionary listing
(PMDLIST) 39,108, 114-116
program status word, display 56
programming practices 142-163
prompting messages 4, 35
PROTECT (parameter of DDEF command) 173-174
protection interruption 164
prototype control section (PSECT)
contents 143
dump 59
general 158
listing 115
name 143
save area 143
PRTSP (DCB operand) 25,175
PS (see BSAM)
PSECT (see prototype control section)
PSW (see program status work)
PU macro instruction 22, 30
public considerations (shared code) 156-157
public volume 14
public volume library 161
PUNCH command
data set requirements 178
description 5, 21-22
“endno” parameter 106
example 30, 84
‘“startno’’ parameter 106
statement entered at keyboard 106
PUT macro instruction 34

QSAM (see queued scquential access method)
qualification

data set name 78-79

internal symbols 162

library name 162
partial 10
QUALIFY command
example 32,58
queued sequential access method 22, 24

R-type address constant (RCON) 143, 149
R-value 49
RAE macro instruction 168
READ macro instruction 34
read-and-write access 78, 161-162
read-only access

cataloged data set 49-50

shared data set 78
RECFM (DCB operand) 25,175

records

deletion 72
reenterable program 156-157
references

listing 113-114
resolving 159
undefined 74
unresolved 159
REGION command
data set requirements 178
example 31
register, base 145-147
register, usage
general 142-152
interrupt-handling routine 165-167
program linking 148
registers, saviing 49, 148-151
rejection, control section 159
REL macro instruction 29
relative generation number 11, 86-87
RELEASE command
data sct requirements 178
description 17
example 29, 60, 63,77
remote job entry 8
removal of a catalog entry 29, 85
removal of a data set 84, 85
REMOVE command
description 137
example 32,59
rename a catalog entry 45
resident terminal access method 22-23
response message 4, 35
restrictions
assembler 117-121
naming 162
punched terminal statements 103-107
statement length 103
virtual storage 156-157
RET command
data set requirements 178
example 29, 48, 50
RET (parameter of DDEF command)
example 48, 50
general form 173-174
return code register 132
RETURN key 27,105
RETURN macro instruction
after an interrupt routine 136, 167
example 34,48, 52,83
general 133,151
RIJE (see remote job entry)
RKP (DCB operand) 25,175
RT command (read tape} 18
RTAM (see resident terminal access method)

SAEC macro instruction 167

SAI macro instruction 167

sample assembler coding 143-147
save area 49-50, 132, 142, 149-151

SAVE macro instruction 34, 133, 136, 149-151

SECURE command
description 10,171, 179
example 30, 82
requirements 179
SEFC macro instruction 167
sequential data set (see VSAM)
SET command
description 137
example 32, 56,58
floating-point considerations 139
severity code 122
SHARE commang
catalog entry 78
data sct definition requirements 178
entry in system 78
example 30,78
use 19-21,157
sharing
considerations 156-157, 161-162
data sets 19-21, 78, 156
descriptor 78-79
library 161-162
SIEC macro instruction 167
significance interrupt masking 164
SIR macro instruction 83, 164
description 34
example 8§82
source data set
" creation 38-41, 75-76
defining 38, 107
display 76
names 38,162
prestored 75
“SOURCE” data set name qualifier
macro library use 90
system creation 38, 107
source listing
assembler parameter (SYMLIST) 39, 108
general 109
sample 110
source module
assembler parameter 38, 107
general 102
source program listing (see source listing)
source statement
changing 40
committed 106
correction 40
display 40, 44, 76
END (see END statement)
format 38,103, 104
keyboard (for later use) 106-107
partial 106
restrictions 103-104
review 44
tentative 106

SPACE (parameter of DDEF command) 173-174

SPEC macro instruction 34, 83, 167
specification interruption 164
SSEC macro instruction 167
STACK (DCB operand) 25,175

start line number (LINCR assembler parameter) 40, 108-109

start line number increment
(LINCR assembler parameter 40, 108-109
statement (see source statement)

Index

189

static linking 134-135

STEC macro instruction 167

STOP command
description 137, 138
example 32, 56, 59
interrupt considerations 138

storage (see also: virtual storage, auxiliary storage}

allocation 156

management 156-157
STORED (assembler parameter) 38, 107
subroutine

missing 74

supplementary macro library (assembler parameter) 38, 107-108

switching modes 8,9, 64-66
symbol table listing
description 113
example 113
symbol type designation on listing 113
symbolic library index 125
SYNAD (DCB operand} 25, 61
SYNONYM command
data set requirements 178
example 32, 100
SYSIN
card reader 80-81
conversational 4
entering source statements 128-129
macro instruction 26
nonconversational 5
SYSLIB (system library) 13, 160
SYSOUT
conversational 4
messages 4, 35
nonconversational 8
system
catalog 10-11
general description 1
library 13, 160
log 27

tab stop
setting 42
use 42,104
TAM (see Terminal Access Method)
tape, magnetic
DDEF command 62-63
task
execution
conversational 3-5
nonconversational 8
initiation
conversational 3
nonconversational 5,8
interruption 4, 164
management 3-10
termination
conversational 4
nonconversational 8
task data definition table (TDT) 171
task identity .
LOGON operand 36
TDT (see task data definition table)
tentative statement 106
terminal entry format 42-43
terminal /O 34, 22-23
termination
modifications of source statement 40
task 37, 164
text, object program module 116
text editor
examples 95-97
general description 18

190

TIME command
description 10
example 28, 38
time-stamp 38, 115
TRTCH (DCB operand) 25,175
TV command
data set requirements 178
example 30, 94
use 30
type I linkage 132, 148

uncataloging {(see DELETE command)

UNIT (parameter of DDEF command) 173-174

unlimited access
cataloged data sets 49-50
shared data sets 78-79, 161-162
UNLOAD command
at LOGOFF 60
efficiency considerations 158
example 30, 54

removal of program control system statement 59

unreferenced programs 159
unresolved references 159
UPDATE command

example 31,95
USAGE command

description 10

example 28,85
USATT macro instruction 167
user

identification 36

library (see user library)
USERLIB (see user library)
user defined procedures

BUILTIN 181

general 180-182

PROCDEF 180-181
user library

general description 13, 160

organization 13
user macro library

creation 122-125

example 89-91

use 122-123
User profile

DEFAULT command 15,177

general 181-182

PROFILE command 15,178

SYNONYM command 15,178
USERSYM data set 89-91

V-type address constant (VCON) 143, 145
VAM (virtual access method)
(sce VISAM, VPAM, VSAM)
VERID (see version identification)
version
general data group 86-88
of program 161
version identification
assembler parameter (VERID) 38, 108
on listing 115
VI (see VISAM)
virtual indexed sequential (see VISAM)
virtual partitioned (sce VPAM)
virtual program status word (VPSW) 169
virtual sequential (see VSAM)
virtual storage
allocation 157
concept 2,12-13
efficiency considerations 157-159
limitations 117-118
management 157-159

VISAM example 30, 94

access method 22-24, 34 use 21,30
dataset 12-13 VV command
volume data set requircments 178
concept 14 description 21
labels 14 example 30, 94
magnetic tape 61-63
mounting 62-63 WRITE macro instruction 34,61
organization of data sets 12-14 WT command
private 14, 161 data set definition requirements 178
public 14, 161 description 5, 21
VOLUME (parameter of DDEF command) 173-174 example 30, 58
VP (see VPAM) WT macro instruction 21, 30
VPAM WTL macro instruction 27
access method 22-24 WTO macro instruction 27
dataset 13 WTOR macro instruction 27
VS (see VSAM)
VSAM
access method 22-24, 34 ZLOGON
dataset 12 example 28
VT command general description 10, 98
data set requirements 178 use 37,98

Index 191

GC28-2032-6

B

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
360 Hamiiton Avenue, White Plains, New York 10601
{international)

9-2€0Z:820D V'S Ul Palulld apING S, JawwelBolg 13|quassy waisAS Bulieys awi | el

