
Systems Reference Library

IBM Time Sharing System

Assembler Programmer's Guide

This publication explains the use of the Time Sharing System
(TSS) for assembler language programmers. It describes how to
assemble, store, and execute programs in TSS, introduces the com­
mand system, and explains the basic rules of task and data man­
agement. Numerous examples are given showing typical user­
system interaction. The appendixes include information on
assembler options, output, and restrictions, as well as program

File No. S360-21
Order No. GC28-2032-6

SEVENTH EDITION (April 1976)

This is a revision of, and makes obsolete GC28-3032-5 and Technical News­
letter GN28-320L This new edition of the A,scillbler Programmer's Guide
includes revised user-system interaction examples and editorial changes,
and deletes an outdated appendi,.

This edition is current with Rele<l'" 2.0 of the IB~I Time Sharing System!
370 (TSS;370), and remains in eRect for all subsequent \ersions or modifi­
cations of TSS unless othen\ise noted. Significant changes or additions to
this publication will be prodded in IH~\\ t'ditions or Technical l'\ewsletters.

Requests for copies of IB\I publications should he made to your IS\\
repre,cntati\e or to the IS!>.I hr.mch office serving your locality.

A form is provided at the baek of this publication for readers' comments.
If the form has been remowd, c-ommt'nh may be addressed to IB\I Cor­
poration, Time Sharing System - Dep'lrtment 80\!, 113.1 \\'estchester
Avenue, \Vhite Plains, :\ew York 1060-1.

:e Copyright International Busill{,SS \bchill'" Cmporation 1967, 1968, 1970,
1971,1976

This publication is a guide to the use of the assembler
language facilities of TSS. It is intended for applications
programmers who code in the assembler language.
The publication is divided into four parts.

Part I is an overview of the Time Sharing System,
outlining the major concepts of the system.

Part II describes the basic task and data management
information you will need to use the system effectively:
how to execute tasks in conversational and nonconver­
sational mode, and how to name, catalog, store, and
manipulate your data sets. It also explains specific
system facilities available to you as an assembler pro­
grammer.

Part III comprises a series of examples that illustrate
typical activities you will perform while using the sys­
tem. They begin with the most straightforward neces­
sities, such as logging on, and in succeeding examples
progress to increasingly sophisticated concepts. These
examples may be read for instruction or used as models
for accomplishing specific tasks.

Part IV is a set of appendixes containing additional
information on the use of the system. This reference
material includes descriptions of assembler options,
output, and restrictions, as well as explanations of pro­
gram control system use, interrupt handling, and com­
mand creation.

Prerequisite Publications
You must be familiar with the basic concepts and
terminology of TSS as described in IBM Time Sharing
System: Concepts and Facilities, GC28-2003.

You should be familiar with the TSS assembler lan­
guage, since this book does not describe the language

Preface

but rather the use of the system. The assembler lan­
guage is specified in these publications:

IBM Time Sharing System: Assembler Language,
GC28-2000

IBM Time Sharing System: Assembler User Macro
Instructions, GC28-2004

You will also need to refer to:

IBM Time Sharing System: Command System User's
Guide, GC28-2001, for a complete description of
the command system.

Associated Publications
Other publications you may wish to refer to for details
not presented in this guide are:

IBM Time Sharing System: Terminal User's Guide,
GC28-20l7, for instructions on how to operate the
various terminals supported by TSS.

IBM Time Sharing System: Linkage Editor, GC28-
2005, for a description of the linkage editor pro­
gram.

IBM Time Sharing System: Data Management Fa­
cilities, GC28-2056, for a description of access
methods and data management facilities.

Once you begin using the system, you will note
that a number of messages are issued by the system.
For a detailed description of these messages and for
information on any responses you may have to make
to them, consult the publication IBM Time Sharing
System: System Messages, GC28-2037.

Part I: Introduction .
The System and Your Relationship to It
Communicating with the System

How You Gain Access to the System.
Commands at Your Disposal ..
How Storage is Handled.

Virtual Storage
Sharing Time

Catalog and Library Concepts.
System Catalog
Program Libraries

How to Use This Manual.

Part n. How To Use TSS
Task Management

Conversational Mode
Initiating Your Task
Executing Your Task
Entering Commands
SYSIN and SYSOUT
Assembling and Running a Program
Checking Out and Modifying Programs ..
Multitcrminal Task (MIT).

Nonconversational Mode
Initiating Your Task.
Executing Your Task
Terminatin(! Your Task.

Mixing Modes'
Remote Job Entry (RJE)
Task Management Commands ..

Data Set Management.
Naming and Cataloging Your Data Sets.

Naming Your Data Sets ...
System Catalog

Catalog Structure
Generation Data Groups.

Cataloging Your Data Sets.
Data Set Organization.

Virtual Storage Data Sets.
Physical Sequential Data Sets.

Data Set Residence
Maintainmg Program Librariers
Using Public and Pnvate Volumes
Volume and Data Set Labels

Tailorjng TSS to Meet Your Needs
User Profile

Defining Your Data Set.
Data Control Block.
Identification of Assembler Data Sets
Data Definition Commands.
System Inquiry Commands ..

Data Set Establishment.
The Text Editor

Prestoring Data in the System.
Data Command
Operator-Assisted Input
Command Procedure Data Set
Data Card Data Set
Sharing and Protecting Your Data Sets

Data Set lIfanipulation
Copying, Modifying and Erasing Data Sets ..

Transferring Data to Standard Output Devices
PRINT Command
~'T Command

1
1
1
1
1
2
2
2
2
2
2
2

3
3
3
3
3
4
4
4
4
5
5
5
8
8
8
8
8

10
10
10
10
10
11
12
12
12
13
13
13
14
14
14
14
15
15
17
17
17
18
18
18
18
18
18
19
19
21
21
21
21
21

Contents

PUNCH Command .
Assembler Language Facilities

Input/Output During Program Execution ..
Conventional Problem Program Input/Output ..

General Service Macro Instructions
DCB Macro Instruction.
DCRD Macro Instruction.
OPEN Macro Instruction
CLOSE .Macro Instruction.

Duplexing a Data Set.
Dynamic Input/Output for the Assembler Language ..

GATRD
GAT\VR
CT\VRC
GTWAR
GTWSR
SYSIN
PAUSE
COMMAND

Communication with the Operator.
Communication with the System Log

Commands and Macro Instructions
Macro Instructions Used in Examples ..

Part III. Examples
Example 1: Initiating and Terminating a Conversational

21
22
22
22
23
23
23
23
24
24
24
26
26
26
26
26
26
26
26
27
27
28
34

35

Task 36
Example
Example

.Example

2: Assembling and Correcting from the Terminal 38
3: Assembling and Executing. . .. 42
4: Corrccting and Reassembling a Prestored

Example 5:
Example 6:
Example 7:
Example 8:
Example 9:
Example 10:
Example 11:

Source Program
Writing a Data Set and Printing It.
Reading and Writing Cataloged Data Sets.
Multiple Assemblies and Program Linkage ..
Use of PCS Immediate Statements
Use of pes Dynamic Statements.
Input and Output on Magnetic Tape
Conversatilmal Initiation of Nonconversational
Tasks

Example 12: Preparing a Job for Nonconversational Pro-
cessing

Example 13: Storing DDEF Commands for Later Use
Example 14: Writing and Updating Virtual Index Sequen­

Example 15:
Example 16:
Example 17:

tial Data Sets
Missing Subroutines
Entering Data for Later Use.
Data Set Considerations When Interrupting
Program Execution

Example 18: Sharing Data Sets
Example 19: SWitching Between Terminal and Card

Reader for Input
Example 20: Anticipating an Interrupt in a Nonconversa­

Example 21:
Example 22:
Example 2:}:

Example 24:
Example 25:

Example 26:
Example 27:
Example 28:
Example 29:
Example 30:

tional Task
Housekeeping
Use of Generation Data Groups.
Creating and Using a User Macro~Library.
Use of the Linkal!e Editor
Tape and Disk-Medium Transfers of Virtual
Access Method Data Sets.
The Text Editor Facility.
The Text Editor Facilitv.
Use of Proccdure Definition (PROCDEF).
Use of the BUILTIN Procedure
The User Profile Facility.

44
47
49
51
56
58
61

64

67
69

71
74
75

77
78

80

82
84
86
89
92

94
95
96
98
99

100

Part IV. Appendixes.

Appendix A. Use of the TSS Assembler
Problem-Program Preparation
Language Proce;,sing. . .

Langnage Processing in Conversational Mode
Language Processing in Nonconversational Mode .

Entry and Correction of Assembler Souree Statements
Format of Source Lines

Input Sources
Statement Boundaries--Card Format
Continuation Lines-Card Format.
Character Sets-Card Format
Statement Boundaries-Keyboard Format.
Continuation Lines-Kevb';ard Format ..
Character Sets-Keyboa~d Format
I\Hxed Card and Keyboard Input
Caution When Changing Card-Origin Statements .

Efficient Correction Techniques
Entry of Keyboard Souree Statements for Later Punch­

ing and Recompilation
Assembler Options and Related Output ..

Assembler Parameters
Explicity Defaulted
Implicity Defaulted

Structure and Description of Assembler Listings ..
Source Program Listing
Object Program Listing
Cross-Reference Listing .. .
Symbol Table Listing .. .
Internal Symbol Dictionary Listing ..
Program Module Dictionary Listing.
Destination of Output.

Object Program Module Format.
Program Module Dictionary ..
Text..
Internal Symbol Dictionary ..

Assembling in Express Mode .. .
Assembler Restrictions
Assembler Diagnostic Action.
Use and Structure of a User Macro Library.

Reasons for Using a User Macro Library
TSS Assembler Processing of Macro Definitions
Detailed Description of User Macro Library Creation

and Format
Index Header
Index Entry

Control Section Names and Attributes.
Shared Object Program Modules.

Appendix B. Problem Program Checkout and
Modification . .

Assembler
Prompting and Diagnostic Facilities.

Conversational Mode, Source Statements from
Terminal

Conversational Mode, Source Statements from
Prestored Data Set.

Nonconversational Mode, Source Statements from
SYSIN

Nonconversational Mode, Source Statements from
Presto red Data Set

Program Listings and Related Aids.
Linkage Editor

Prompting and Diagnostic Facilities.
Program Listings and Related Aids

Object Program Module Linking.
Time Sharing System Program Structure

Symbolic Linkage
Linkage Conventions
Linkage Macro Instructions ...

101

102
102
102
102
103
103
103
103
103
103
104
104
104
104
104
104
105

106
107
107
107
107
109
109
109
113
114
114
114
116
116
116
116
117
117
117
122
122
122
123

123
125
125
126
127

128
128
128

128

129

130

130
130
130
130
130
130
130
131
131
132

CALL Macro Instruction.
SAVE Macro Instruction
RETURN Macro Instruction.
EXIT Macro Instruction.
ABEND Macro Instruction ..

Object Module Combination
Static Linking
Dynamic Linking

l'rogram Control System.
Program Control Commands
Program Control Statements
PCS and the Internal Symbol Dictionary
Using PCS Without an ISD.
Evaluating Expressions
Floating-Point Constant Conversion
pes Diagnostics
Miscellaneous Considerations

CALL, GO, and BRANCH Commands.
AT Command
Operational Considerations

Conversational Mode
Nonconversational Mode

Appendix C. Programming Considerations.
Writing Programs in TSS
Creation of Unnamed Control Sections.
Pooling of Literals
System Macro Instruction Usage
Floating-Point Computations
References to Module Names of Link-Edited Modules.
EXIT and PAUSE Macro Instructions
Assembler Language Linkage Conventions ..

Linkage Conventions
Proper Register Usage.
Reserving a Parameter Area.
Reserving a Save Area ..
CALL, SAVE, and RETURN Macro Instruction Usage

CALL Macro Instruction.
SAVE Macro Instruction
RETURN Macro Instruction ..

Object Modules Initiated by a CALL C~~~~nd'
Example of Module Interaction
Interroutine Communication

Shared Code (PUBLIC) Considerations.
Efficient Use of Virtual Storage

Guidelines for Efficient Use
Internal Organization of Program Modules ..
External Organization of Program Modules.

Programming Techniques
Control Section Rejection ~nd Linking Control Sections ..
Recovering from Errors When Dynamically Loading.
Library Management

Program Library List Control.
Program Versions
Sharing Libraries

System Naming Rules.
User-Assigned Names
Reserved Names

External Symbols
Internal Symbols . .'.
Reserved Names Associated with Data Sets ..

Appendix D. Interrupt Considerations
Program Interrupts
Attention Considerations

Interrupting Execution
Levels of Interruption.

Resuming Execution
The Intervention Prevention Switch (IPS)

Writing Interrupt-Handling Programs ..
Establishing Interrupt Routines .'.
Processing an Interrupt.

132
133
133
133
133
133
134
135
136
137
137
138
138
139
139
139
140
140
141
141
141
141

142
142
147
147
147
148
148
148
148
148
148
149
149
149
149
149
151
151
152
152
156
157
158
158
158
158
159
159
160
160
161
161
162
162
162
162
162
162

164
164
165
165
165
165
165
166
166
167

Appendix E. Data Set Characteristics·
Forms of the DDEF Command ..
DCB Parameter Specification.
Data Set Definition Rules for Language Processing
Data Set Definition Rules for TSS Commands
Secure Requirements for ;-.Jon conversational Tasks.
Data Definition Considerations for Multiple Executions

in the Same Session

Appendix F. User Defined Procedures
Procedure Defiuition (PROCDEF).

Entering Procedure Text.

Figures

171
175
175
176
176
176

179

180
180
180

1 Nonconversational Task Initiation. ·5
2 Nonconversational Task Initiated by PRINT Command 6
3 Nonconversational Task Initiated by EXECUTE Com-

m~ . 7
4 Converting a Conversational Task to Nonconversa-

tional ~lode Using the BACK Command. . 9
5 System Catalog Concept 11
6 Flow of Information to and from a Data Control Block 16
7 Data Set Identification, Assembler Language Program 17
8 Organization of Command Procedure Data Set. 18
9 Organization of a Data Card Data Set 19

10 Sh~ring of Cataloged Data Sets. 20
] 1 Conventional vs Dynamic I/O. . . 22
12 Conventional I/O Facilities 23
13 Summary of Dolta Management System Macro Instruc-

tion and Data Set Organizations. 24
14 Language Processing 102
15 Assembler Parameters 107
16 SOllrce Program Listing 110
17 Object Program Listing III
18 Cross-Heference Listing 113
19 Symbol Table Listing.- 114
20 ISD Listing 115

Tables
I DCB Operands, Their Specification, Access Methods,

and Alternate Sources.
2 SYSIN Records Specified with GATE Macro Instruc­

tions
3 SYSOUT Records Specified with GATE Macro In-

structions
4 Commands and Macro Instructions
5 Macro Instructions Used in Examples.
6 Tvpe Attributes
7 Type Code Significance in PMD Listing
8 Destination of Output.
9 Simple Source Program Restrictions.

10 Complex Restrictions
11 Assembler Diagnostic Action

25

27

27
28
34

113
116
117
lIB
119
124

Terminating Procedure Definition
Nested Procedure Definitions

Object Program Definition (BUlL TIN).
The User Profile.

Index

180
180
181
181

183

21 PMD Listing 115
22 Format of an Object Program Module 116
23 Format of a Macro Definition Symbolic Component 125
24 Format of a Line in a Symbolic Component 125
25 Format of Symbolic Library Index. 125
26 Shared Object Program Module 127
27 V- and R-Values of External Symbols. 132
28 Sharing a Module 132
29 Program with Implicit and Explicit Linkages . 133
30 Object Program Module Combination. 135
31 A Reenterable Routine That Requests its Own Tempo-

rary Storage 136
32 Save Area Format ann Word Content. 151
33 Module A Source Listing 154
34 Module B Source Listing. 155
35 Module C Source Listing . > ••• > • 155
36 DynamiC Loader Automatic Control Section Rejection 159
37 Information Available Upon Entry to an Interrupt

Routine 168
38 Interrupt Control Block (ICB) Format 168
39 Virtual Program Status Word (VPSW). 169
40 Illustration of Interrupts Being Serviced. . . 170
41 The DDEF Command.. 172

12 Assembler Statements Used to Name Control Sections
and Describe Their Attributes ..

13 Save Area Contents
14 Possible Combinations of Operands for Arithmetic and

Relational Opecations
15 Exit and Pause Macro Instructions.
16 Linkage Registers
17 Save Area Linkage.
18 Shared Data Set Commands.
19 Types of Program Interrupts.
20 Responding to Attention InterruptiOns
21 Form of DDEF for New Data Sets.
22 Forms of DDEF for Existing Data Sets.
23 Use of DCB Parameters in the DDEF Command
24 Data Set Definition Requirements for Comamnds

127
133

140
148
149
156
163
164
166
173
174
175
176

This is an overview, for the assembler programmer, of
the major concepts of the Time Sharing System, Each
concept will be described in detail later in this manual.

The System and Your Relationship To It
The Time Sharing System comprises a set of programs
that make it possible for you to use system facilities
concurrently with other users. Your terminal is one of
many that areat users' locations. They are all connected
to a computer center, where an operator manipulates
the cards, tapes, disks, and listings that are required
to complete the commands you issue. The system
creates a separate task for each current user to make
all of the system facilities available to him. You are
each allocated brief time intervals during which your
task is executed. Thus it appears that only you are
connected to the system.

Communicating With the System
In TSS, you may mn your programs conversationally
or nonconversationally. \.\"hen you want direct com­
munication with the system while you are assembling,
debugging, and executing your program, the conver­
sational mode will better suit your needs. When time
does not permit staying at your terminal, or your pro­
gram is already checked out, you can use the non(.'()ll­
versationaI mode.

To assemble and nm your program conversationally,
you enter commands and data at your terminal. The
system analyzes each statement as it is received. If an
error is found, you are prompted to correct it. When
the entire program has been entered, it is analyzed as
a whole, and you are again prompted to correct errors.
When your corrected program is assembled, you may
execute it and monitor its progress from your terminal
(see "Conversational Mode" in Part II).

To assemble and mn your program as a nonconver­
sational task, you can either:
• Enter commands and input data (including source

statements) at the terminal and specify that they be
stored as input for a continuing (or separate) task, or

• Submit a card deck or tape containing commands
and input data to the computer center.

In nonconversational mode there is no direct communi­
cation between you and the system. Errors in your
source program could prevent the assembly from being

Part I. Introduction

completed, since there is no way for you to correct
yourself. Any system messages that develop during exe­
cution of t~le task will he printed out at the computer
center (sec "N onconvcrsational Mode" in Part II).

You can mix modes of operation, starting out con­
versationally and switching to nonconvprsational mode;
however, you may not switch from nonconversational
to conversational (see "Switching Modes" in Part II).

There are two additional means of communicating
with the system; their availability and use will vary
from installation to installation. They are described in
Ilart II under "Multiterminal Task (MTI)" and "Remote
Job Entry (RJE)."

How You Gain Access to the System

Before llsing 1'SS you mllst be joined to the system by
your system administrator or system manager. \\Then
you are joined, information about your identification
is stored:
• User Identification (userid)-code that uniquely

identifies you to the system.
• Password--code that provides additional protection

against unauthorized use of your qser identification.
• Charge Number-account to which your use of the

systcm is charged.
• Priority-code indieating the relative priority of your

work.
• Privilege Class--code identifying you as a. user (as

opposed to, say, an operator).
Each time you attempt to communicate with the sys­
tem, whether conversationally or nonconversationally,
you must issue the LOGON command, with operands
that have enough information to identify you. The sys­
tem checks the information you have supplied against
the information it has stored about you; when you are
recognized, you can begin entering data. For a detailed
description of the LOGON operands, see Example 1 in
Part III.

Commands at Your Disposal
The time-sharing command system comprises a series
of commands with which you tell the system what you
want it to do. For example:
• Task management commands allow you to initiate,

terminate, or change the system's operation for you .
• System inquiry commands request specific informa­

tion from the system about your data 'sets.
• Data set management commands allow you to estab­

lish, manipulate, and eliminate your data sets.
See Part II for command descriptions.

Introduction 1

How Storage is Handled

Virtual Storage

YOll ",ill not be directly concerned with the installa­
tiotl'~ physicallimitatio~s on main storage, Special ad­
dressing technicjues, internal to the system, will provide
you with a storage capacity that is theoretically equal
to the total range of addresses that can be specified in
an instruction. The system's addressing techniques
combine main and secondary storage to create a vir­
tual storage area in which your task will operate. Your
installation will inform you of the specific virtual stor­
age limits available for your problem programs and
data sets.

Although you have an extremely large virtual storage
capacity, efficient programming is important, since per­
formance can be degraded by excessive demands on
the availahle storage at your installation (see "Efficient
Use of Virtual Storage" in Appendix C).

Each user has his own storage space for program
execution; therefore, other users cannot interfere with
your prof.,rrams, nor can you interfere with theirs, be­
cause neither of you can refer to the other's virtual
storage space. You may share another user's programs
and permit him to share yours; however, specific com­
mands must be issued to accomplish this (see "Sharing
and Protecting Your Data Sets" in Part II).

Sharing Time

There may be many users communieatirlg with the sys­
tem at the same tim!" that you are. However, the sys­
tem appears to be serving each of you exclUSively, be­
l'anse, cyclically, it is giving each of you a time SllC"C

during which all the facilities required by your task are
in fact exclUSively yours. Unless the system is over­
loaded, its speed will allow it to do your work as well
as that of other users without the intervals being ap­
parent to you.

Catalog and Library Concepts

System Catalog

The system maintains a catalog to give you the means
for recording the locations of data and, later, retriev-

2

ing that data by name alone. Conceptually the system
catalog is much like the catalogs in libraries; it is an
index that points to items that reside elsewhere. You
are therefore relieved of the responsibility of keeping
track of data-location information. The structure of the
catalog protects your data sets from being accessed by
other users, unle~s you specifically permit others to
share them (see "Catalog Structure" in Part II).

Program Libraries

\Vhen it is assembled, your program can consist of
one or more object modules. All programs in TSS are
stored, in object-module form, in program libraries. A
program consisting of only one object module is stored
within one library; a program that consists of several
object modules may reside in different libraries, de­
pending upon how you have stored them. During link­
age editing and during execution, the system can auto­
matically retrieve all required object modules, if you
have defined the libraries that hold those modules.

There are four categories of program libraries: sys­
tem library (SYSLIB), user library (USEru.m), user-defined
job libraries, and linkage editor libraries. A program
library list, defining the hierarchy of libraries avail­
able to you, is used to store object modules in the speci­
fied library and to search each library for object mod­
ules that must be loaded at execution time. Libraries
and their uses are described in Part II under "Maintain­
ing Program Libraries."

How to Use This Manual
Parts I and II contain the information you will need to
assemble and run a program at your terminal. If you
are not familiar with the basic rules of task and data
management, you should read Part II before attempt­
ing a terminal sessioI}. Running Examples 1 through 4
in Part III will give you a basic understanding of how
to assemble and execute a program at your terminal.

The remaining examples in Part III illustrate the use
of commands and system facilities for a wide range
of functions. You should scan these examples and the
appendixes initially; they are primarily for reference
when more detailed information on a specific faCility
(such as handling interruptions) is required.

Part II presents detailed coverage of the basic task and
data management information that you will need to
know to assemble and run programs in the time-sharing
system. Included are discussions of:

• Conversational and nonconversational modes of oper­
ation

• Data set management, supplying only those facts
that are essential for basic use of the system. (Those
assembler programmers requiring more detailed in­
formation on data management should refer to Data
Management Facilities.)

• The system catalog and ypur maintenance responsi­
bilities

• Sharing facilities and the need for protection

• Facilities available for producing large volume out­
put

• The macros available to assembler language pro­
grammers.

At the end of this part is a table showing sample
usages of the commands and macro instructions avail­
able to you, along with a notation of which examples
in Part III illustrate their use.

Tasle Management
TSS tasks may be executed in either of two modes:
conversational or nonconversational. During conversa­
tional task execution you remain in communication
with your task, obtaining intermediate results and mod­
ifying your program while it is executing. There is no
communication however, between you and a noncon­
versational task; no task output is available until the
task has been completed or is terminated by you or the
system. TSS also allows you to switch a conversational
t:lsk to nonconversational, when user-task communica­
tion is no longer needed.

Conversational Mode

In conversational mode you communicate with the sys­
tem by means of a typewriter-like terminal. Your ter­
minal may be one of the following:

• The IBM 2741, which is an IBM Selectric typewriter
specially equipped for terminal use.

• The IBM 3277 CRT Display Terminal

Part II. How to Use TSS

• TIle IBM 1050 System, which can include both a
typewriter and a ~,ard reader. Input can be entered
into the system via the keyboard or the card reader.

• The Teletype Model 33 or 35 KSRl

Your terminal may be located at the computer center
or at a remote location. In either case terminal opera­
tion is the same: you enter a command directing the
system to do certain work, the system responds, you
enter another command, etc. The system communi­
cates with you by printing out messages and data at
your terminal. Thus you are able to solve problems
which arise and make changes as you receive pro­
cessing results during task execution.

Initiating Your Tasle

To initiate conversational task processing, you either:

• Dial up the system, the number being determined by
your installation, or

• Press the attention button on the terminal, if the ter­
minal is "hardwired" (i.e., directly connected to the
computer).
You have thus begun the log-on process and set up a

conversational task in the system. Since you have al­
ready been granted access to the system by being
joined by your system manager or administrator, you
now identify yourself by typing in the LOGON command
,vith the parameters set up for you at jOin time. The
system then completes initiation of your task. See Ex­
ample 1 in Part III for a description of the LOGON

operands and an example of their use.

Executing Your Task

After you have logged on, the system asks you to enter
your next command and, in eHect, enters into a con­
versation with you. Your portion of this dialog consists
of your commands and any source language statements
that you enter during execution of your task, plus your
replies to the messages issued by the system. The sys­
tem's contribution to this dialog consists of messages,
responses to commands, and requests for the next com­
mand. The system informs you that it is ready to accept
your next command by printing, at your terminal, an
underscore character (_) beneath the first character
position of a new line.

1 Trademark of Teletype Corporation, Skokie, Illinois. Termi­
nals which are equivalent to those explicitly supported may
also function satisfactorily. The customer is responsible for
establishing equivalency. IBM assumes no responsibility for
the impact that any changes to the IBM-supplied products
or programs may have on such terminals.

How to lls(' TSS :3

Entering Commands

Every command you enter from the terminal keyboard
starts on a new line. It may begin abovl' the underscore
that requests its entry or at any other point on the line.
Each command has an operation part specifying what
is to be done (as CALL), and each may have one or
more operands that qualifies the operation (as NAME=

followed by the name of your object program, say
PRIME. This qualifies the operation to mean "execute
my object program, PRIME"). The end of the command
is indicated by pressing the RETURN key.

Each command is analyzed, when it is entered, to
determine if it is valid; if it is, all the actions requested
by the command are performed before you are re­
quested to enter the next command. If the command is
not complete or valid as entered, the system issues a
message to request you to supply additional informa­
tion before the command is executed. The system issues
three types of messages to the conversational user:
• Prompting messages which ask you to supply omitted

operands or additional information;
• Response messages which tell you of the actions the

system has taken in executing a command, and
• Diagnostic messages which inform you of command

and source language errors.

SYSlN and SYSOUT

Your task's input to the system contains the sequence
of commands you issue; this sequence is called SYSIN.
Your system input stream can also include data to be
prestored in the system, or actual input records to an
exeeuting program. \Vhen you are in the conversational
mode, your terminal is your task's SYSIN device.

Your task's system output stream, called SYSOUT, is
directed to the terminal. It consists baSically of system
messages, and may also contain output from your ob­
ject programs if you so choose. Because the terminal
is thus a combined SYSIN!SYSOUT device, it generates a
copy mixture of the two system streams. You, and every
other user, have your own unique SYSIN/SYSOUT, which
are not recorded by the system in any form other than
as a listing printed at your terminal.

Assembling and Running a Program

Let us suppose that you wish to assemble and run a
simple program named "PRIME" conversationally. Your
entry to the system is achieved by typing in the LOGON
command with the appropriate parameters. (See Ex­
ample 1 in Part III for a detailed description of LOGON
operands.) You would then issue the ASM command
(which initiates the Assembler) with the desired pa­
rameters to call for assembly of your sOurce program
(see Example 2 in Part III for a detailed deSCription of
ASM operands). Your source program may then be

4

entered conversationally from the termnal, instructior.
by instruction, or may be a prestored source data set

When your program has been analyzed and assem
bled, the resulting object program is stored in a pro·
gram library. You may then call for its execution by
issuing the CALL command followed by your prograrr
name, or by simply entering your program name. Wher
you have completed your task for this session, you tel)
the system to disconnect you by issuing the LOGOFF

command (no operands), which terminates that tenni
nal session. .

For example:

LOGON JONES,JOHN,.ACCT30
(system acknowledgment)

ASM PRIME. N (you request assembly of a source pro­
gram that is not prestored)

PRIME

LOGOFF

(program instructions and, possibly_
system messages)
(system indication of successful assem­
bly)

(you call for program execution)

(end of session)

You can interrupt execution of your conversational
task at any point by pressing the ATI"ENTION key at your
!ermnal. This will generally result in your task being
placed in the command mode, giving you the oppor­
tunity to redirect the system. However, the effects of
interrupts will vary depending upon the conditions;
these are described in Table 20 in Appendix D.

"When assembling a program, you can also specify
that various types of listings are to be created (see
Example 1 Part III). In conversational mode these list­
ings are automatically placed in a list data set unless
you specify that no list data set is to be created. To
have your list data set printed, you must issue the
PRINT command, establishing a separate nonconversa­
tional task that will print your listings on the high
speed printer at the central installation (see "Non·
conversational Task Initiation"). Listings on SYSOV
are automatically put out at your terminal. Exampl£
2 in Part III illustrates this use of the PRINT command.

Checking Out and Modifying Programs

In addition to the conversational prompting and diag.
nostic facilities that the assembler contains to assist yor
in debugging your source program, you are also pro·
vided the option of requesting an internal symbol die·
tionary (ISD) in your object module. An ISD allows yot.
to make full use of the program control system (pcs)
with which you may examine and modify various paro
of your program dllring execution. You can use pc;

commands and statements to perform one, or an}
combination, of these:

1. Request display of data fields and instmction loca­
tions within your object program, specifying these
items by their symbolic names as used in the source
language program.

2. Modify variables within your program, specifying
these variables by their symbolic names and specify­
ing the new value for each variable.

3. Specify the statements within your program at which
execution is to be stopped or started. When program
execution has been stopped, you may intervene, as
described in items 1 and 2, before you direct re­
sumption of program execution.

4. Specify the statements within your program at
which the actions described in 1 and 2 are to be
automatically performed.

5. Obtain the values of your program's variables at a
specified point in its execution, with the variables
formatted according to their types.

6. Establish logical (tme or false) conditions which
allow or inhibit the actions described in items 3, 4,
and 5.

The use of program control facilities will greatly
simplify the preparation of source programs, because
many functions previously source-coded can conven­
iently be made available after assembly. Neither the
pes commands nor the modifications they may make in
your program remain part of the stored object module;
they are removed when the module is unloaded. pcs is
discussed in greater detail in Appendix B.

Multiterminal Task (MTT)

In addition to the single terminal mode of operation
described above, in which you initiate your task TSS
has a 1l1l1ltiterminal mode under which the task is
initiated by an MTT administrator. A multiterminal task
is designed to permit a large number of users at differ­
ent terminals to share the same task. The task must be
specially prepared for execution within the :MTT en­
vironment, and should, most appropriately, be an appli­
cation which can be used Simultaneously by many
users. Logging on with the intention of connecting to
such an application program requires the usc of the
BEGIN command in place of the LOGO", command. A
complete description of the MTT facility may be found
in IE;\1 Time Sharing System: Multiterminal Task Pro­
gram and Operation, GC28-2034.

Nonconversational Mode

You will probably want to assemble and mn some pro­
grams without being in direct communication with the
system while they are being processed; these call for
nonconversational processing. The manner in which

you define what YOIl wish done' in these tasks ,,,ill \'arv
with the type of nOllcoI1versationaI task yon arc cn'at­
ing.

Initiating Your Task

There arc several ways in whieb you call initiatl' a 1l01l­

conversational task from either a conVl'l"sational task or
from another nonconvcrsational task (sec Figure 1).

I To initialc a nonconvers.ationot tosk..

1
from a

-ersotional COO""

tas.k use

command BACK
EXECU
PRINT
PUNC
WT co

TE command

command

H command

mmand

froln Q

nonccnversotional

tosk r use

PRI NT command
PUNCH command
WT command
E XE CU TE command

Figure 1. . Nonconversationai Task Initiation

, ' I
!
I
~

q! Vi"

OJ-,'_'ILltOI

-

Cord (Jt.d

Magnetic t

PRINT, PUNCH, wT-You can issue PHINT, PUNCH and WT
commands in either a conversational or nonconvcrsa­
tional task. Thcse commands initiate nonconvcrsa­
tional tasks that transfer data bctween a direct-access
device and a printer, card punch, or tape unit, re­
spectively. Several of these commands may be issued
within a single task; each will set np a separate and
independent nOllconvcrsational task (sec Figure Z).
Example 2 in Part III illustrates the usc of the Pl\l:--;T
command.

EXECUTE-YOU can issue the EXECUTE command in a
conversational task to initiate a nonconvcrsational
task (see Example 2 in Part III). The EXECUTE com­
mand names a prcstorcd sequence of commands that
is to be executed as, and acts as thc SYS!:\, data set for,
a nonconvcrsational task. This sC(lucnc(' must h('gin
with a LOGO:\' command and end with a LOGOFf' com­
mand, and it mnst be prestored so that it can be
retrieved hy name. (The sysrx data set used hy the
EXECUTE command, or any other noneonvl'rsational
task, can contain an EXE~;UTE command, thus per­
mitting initiation of additional nonconversational
tasks.) The nonconversational task thus initiated is
trcated as a separate task, independcnt of the con­
versational (or noncoI1v('rsational) one in which you
set it up, and with which you may now continue
(see Figure 3).

BACK-The BACK command is used when you want to
switch a conversational task to nonconversational
mode; it is described under "Mixed Mode."

How to Usc TSS .'5

r -----

Task 1
I ,
I
I
I
I
I

User

LOGON

{PRI NT Dolo Set A}

LOGOFF .L _____ 1-. ___ ..,...-___ ---'

SYSIN
Task 1

SYSOUT
Task 1

-------L
I : Task 2 I Data Set A .,,-... 1------t-----
1- ___ -,- ___ " IIIB

1

TSS

w:

Printer

Figure 2. Nonconversational Task Initiated by PRINT Command

6

1\1 11 1 ---1
~

Task 2

~

l:::::J
I-

~ f-T
- --.....;

User

r LOGON ------
i'-- / EXECUTE

Task 1 (Procedure A)
Conversational ---

1 ------
LOGOFF

t--

Direct-Access Oevi ce

SYSIN --
Task 1 SYSOUT Procedure A

Task 1 LOGON ---

--- Task 2

--- None onversational

LOGOFf

--J
SYSIN
Task 2

/ Y ra III II I
~

SYSOUT
Task 2

TSS £3 = .. to:'

I ntermediate Storage
lL:
-=- c

~ -1 P"

Printer

Figure 3. NonconversationaI Task Initiated by EXECUTE Command

How to Use TSS 7

Opnator-assisted-Yoll can also have the operator ini­
tiate noncoIlvCfsational tasks for you by supplying
him "dth a card deck or magnetic tape; the contents
of the deck or tape will depend upon 'what you wan!
done. If vou Vl'ant io enter data into the system for
later use: i.e., prcstore it, the task set up by the oper­
ator will transfer the data from the input medium to
a direct access device and catalog it so that it is later
available to vou bv its name. If you want to enter a
card deck cO~1fnaI;d procedure, the task that is set up
by the operator will exccute the commands in the
command procedure you have denned (see Example
12 in Part III).

Exec~ting 'four Task

Regardless of which method of initiation you use, the
nonconversational task you ereate is assigned a batch
sequence number and is executed as soon as the re­
quir<~d resources are available. You can issue the EX­

HIBIT command to detcnnine the status of your previ­
ously initiated nonconvcrsational tasks.

n"uring execution of a nonconversational task, there
is no communication ix,tween you and the system. The
system analyzes, in sequence, each command of the
SYSI"< data set and •. if it is valid, executes it. If a com­
mand is invalid, the system tenninates the task. \Vhen
execution of a nonconversational task begins, it cannot
be interrupted by pressing your ATTENTION key, as your
temlinai is not associated with the task.

Any listings you request are automatically written on
SYSOUT (with no remrd kept in the system), unless you
have specifically asked for a list data set. When a list
data set is requested, its printing is accomplished, as in
conversational processing, bv the issuance of the PRIr-..'"T

command, whi~h sets up ~nother separate noncon­
versational task.

Terminating YOU! Task

The exC'cution of noneonversational tasks (except those
initiated by l'RINT, PUNCH, and wr commands) is termi­
nated when their .LOGOFF command i'> executed. The
system then automatically prints out the task's sysoU'r
data set. For nonconversational tasks, the SYSOUT data
set consists of the commands from SYSlN that were
executed, any data that your program writes to SYSOUT,
and (if no list data set was specified) diagnostic mes­
sages and whatever listings you requested. If a list data
set was specificd, diabrnostic messages will be printed
with your listings.

Tasks created by the PRINT, PUNCH, and WT com­
mands tenninate when the data transfer is complete.
You mav also tenninatc any of vour nonconversational
tasks by issuing a CANCEL 'com~land, identifying each
task to be terminated by its batch sequence number.
Your task may also be cancelled from the operator's
console via its butch s{'quencc number.

8

Mixing Modes

You can begin a task at your tenninal, and then issue a
BACK command to have the task's execution completed
in the noneonversational mode. Before issuing the BACK
command, you must have stored a SYSIN data set that is
to function as the command procedure and, if desired,
input data for the nom.,'Onversational portion of your
task. l11e SYSIN data set must not contain a LOGON com­
mand (because you have already logged on), but it
should end with a LOC,oFF mmmand.

VVhen you issue a BACK command for a task, the sys­
tem checks that it can proVide sufficient resources to
continue your task nonconversationally. If it cannot,
the system will reject your request; you may then try
to initiate the switch later.

You do not initiate a separate task when you issue the
BACK command; you still have only one task in the sys­
tem. This task, however, is nonconversational and has
no mnnection with your terminal (see Figure 4). If the
system accepts your BACK request, it establishes the
nonconversational task, assigns a batch-sequence num­
ber to that task, and writes that number out at your
tenninal; after that your tenninal is inactive. Yon must
then log on again if you wish to initiate a new con­
versational task at your termiruil.

Remote Job EnIry (IU£)

An additional facility for runnmg nonconversational .
tasks in TSS, available at some installations, is the
remote job entry (RJE) facility. With RJE it is possible
to cnter batch jobs at remote tenninals in the same
fonnat as that used at local, on-line card readers.
Printed output is then returned to the originating sta­
tion, unless another station or local high-speed printer
is specified. A complete discussion of this facility may
be found in Time Sharing System: Remote Job Entry,
GC28-2057.

Task Management Commands

These commands allow you to initiate, terminate, or
change the system's operation in your behalf. In con­
versational mode, communication takes place at your
tenninal. In nonc..'Onversational mooe, the information
is sent to the task's SYSOUT data set. The facilities pro­
vided are summarized below.
ABEND-Unloads all modules in your virtual storage and

returns your task to the status that existed immedi­
ately after the LOGON process.

BACK-changes the mode of your conversational task to
nonconversational.

BEGIN-notifies the system that you \vish to connect to
an MTT application program.

CANCEL--tenninates the execution of a nonconversa­
tional task prior to its nonnal end.

0l'I01

- ---

ional

Con-..t
SYSO UT

ional

-
LOGON ---

BACK --

1 ----- -- ----------
LOGOFF

-----~

"---

Con sational
SYSIN

"- -

Nonconwnational
SYSIN

//

TSS

/

.

DIRECT-ACCESS DEVICE

Nonconve,....tional
SYSOUT

V ...

/ ~
...... 1

Figure 4. Converting a Conversational Task to Nonconversational Mode Using the BACK Command

1\ 1
~

"""""

'I-
j FT

Printer

How to Use TSS 9

CHGl'ASs--notifics the system that you wish to change
your password.

EXECUTE-initiatcs an independent nonconversational
task using a prestored and cataloged command
stream.

LOGOFF-notifies the system that you wish to terminate
your task.

LOGON-identifies you to the system so that you may
begin your task.

SECuRE-identifies and reserves types of input! output
devices needed for private data sets (in noncon­
versationaJ tasks only).

TI~1E--{~stablishcs a time limit in virtual storage for the
execution of a task; it can be changed by you during
your task.

USAGE-requests a summary of system resources avail­
able to you, as well as those you have used since JOIN
time and since the current LOGON.

ZLOGON-performs a user-defined function immediately
after LOGON operations have been completed.

Data Set Management
TSS provides you with facilities for systematic and con­
venient management of your data sets. These data set
management facilities make it possible for YOIl to:
identify your data sets; efficiently- store and retrieve
them within the system; share them with other users;
copy, modify, and erase them; and define their exist­
ence and use in the system.

Naming and Cataloging Your Data Sets

Naming Your Data Set

A data set name uniquely identifies a data set. It is in
the form of one or more symbols separatcd by periods.
For example, the data set name AR.TWO.DESIGN consists
of three components that are delimited by periods to
indicate a hierarchy of categories. Starting from the
left, each symbol of the name is a category within
which the next symbol is a unique subcategory. A fully
qualified name identifies an individual data set. A par­
tially qualified name identifies a group of data sets.

For example: If AR.TWO.DESIGN is a fully qualified
data set name, All and AR.TWO are partially qualified
names identifying groups of data sets, one of which is
AR.TWO.DESIGN. The group AR.TWO is a subgroup of AR.

These basic rules are to be observed by you in the
design of data sct names:
1. Each component, or simple name, can consist of

from one to eight alphameric characters; the first
must always be alphabetic.

2. A period must be used to separate components.
3. The maximum number of characters (including pe­

riods) in the data set name is 44. For data sets used

10

exclusively within TSS. you are limited to 35 charac­
ters, because the system automatically prefixes each
name with your eight-character user identification
followed by a period. For data sets to be interchanged
with OS or OS/VS, you can employ 44-character data
set names. These data sets, however, cannot he cata­
loged in TSS without bcing renamed.

4. The maximum number of single-character qualifica­
tion levels to a single-character basic name is 17, for
data sets used in TSS. Normally, however, you will
employ only a few qualification levels.

5. The fully quali6ed data set names in each user's data
set name-structure must be unique, and each must
uniquely identify one data set.

System Catalog

The system catalog is a special data set that resides on
one or more direct-access devices. It is used for filing
data set deSCriptions that must be stored within the
system so that, once a data set is created and cataloged,
it can subsequently be located by using only its name.
To understand the structure and significance of the
system catalog, you must become familiar with the
basic concepts of data sets, their miming and residence.

Catalog Structure: The system catalog is organized
into a hierarchy of indexes: a master index, which con­
sists of a set of user identification codes, one for each
user who has been joined to the system; and a collection
of separate indexes, each of which is subordinate to one
of the user identification codes in the master index.
Going down the hierarchy, each of the indexes will
correspond to a level of qualification in the data set
name structure you have ad.opted. In effect, the system
has its own catalog and you have your own.

When your data set is cataloged, the required in­
dexes are established in your user catalog, in accord­
ance with the fully qualified name of the data set (see
Figure 5). An index is established for each level of
qualification. The master index points to the highest­
level index of your catalog. This index, and each index
thereafter, points to the location of the next lower in­
dex. Thc lowest-level index contains a data set deSCrip­
tor (DSD) which points to the data set control block
(DSCB) which, in tum, points to the specific volumes
and pages on which the data set is located.

At the time your user identification is placed in the
master index, another special entry is created in your
catalog called your USERLIB. Your USERLIB is your own
private library for object programs. Except for your
USERLIB, you control aU entries in your catalog by the
way you name your data sets and by the way you use
the catalOging and uncataloging facilities of the system.

Data Set Name ~
Sy$te~ -I User Supplied
Supplied

Master Index

r­
I

- ---UserCatalog-- - - ---,

I JOHNDOE
I
I
I
I ENG

I
I

PHYSICS

1 COMAR

I

I ~
: TEST2
I

ENG PAYRl I I

PHYSICS I I CHEM ! I

COMAR ! I

TEST! : I TEST2 l

DATA SET DESCRIPTOR
L ______________ _

---'

Data Set Control Block

JOHNDOE •• ENG. PHYSICS. COMAR.,
TEST 2

i4---------/ DATA PAGE

DATA PAGE

~----------i DATA PAGE /-----'

-----------fD~A;T~A~PA~G~E~------~
--------i~D~A~T~A~P~A~G~E~------~

Figure 5. System Catalog Concept

Some of these facilities are for entering, removing, and
renaming catalog entries; others are for indicating
which data sets can be shared by others, and to what
extent. These facilities are described later in this part.

Generation Data Groups: The cataloging facilities of
TSS provide an option that assigns numbers to indi­
vidual data sets in a sequentially ordered collection,
thereby allowing you to catalog the entire collection
under a single name. You can distinguish among suc­
cessive data sets in the collection without assigning a

DATA PAGE

new name to each data set. Because each data set is
normally created from the data set created on the pre­
vious run, the new data set is called a generation, and
the number associated with it is call(~d a generation
number. The entire structure of data sets of the same
name is called a generation data group (GDG). You can
refer to a particular generation by specifying, with the
common name of the group, either the relative genera­
tion numher or the ahsolute generation name of the
data set. The use of generation data groups is illus­
trated in Example 22 in Part III.

How to Use TSS 11

Cataloging Your Data Set

You em catalog and uncatalog data sets in several
\vays. Sometimes cataloging is automatic; in other
cases, yon must issue a CATALOG command to c'ltalog
the data set. An data sets with virtual storage organiza­
tion (YAM) are automatically cataloged when they are
created.

The CATALOG command may be used to catalog a
physical sequential (SA1\I) data set, or to alter thc entry
of a previously cataloged data set (e.g., to rename a
cataloged data set or to change the version number of a
g("ncration data group member). If you employ gen­
(Tation data groups (CDG), you must initially use the
C\TALOG command to set up the structure for the CDG

lIame, number of generations to be retained, disposi­
tion of old generations when the speCified number of
retentions is exceeded, etc.

\Vhen you catalog a data set, you can specify either
read-only or unlimited access. You can always crase
your own data set, but if you have cataloged it '>vith
read-ollly access, you cannot write into it, thus ensur­
ing against accidentally overlaying data.

You can usc the DELETE command to remove a cata­
log entry for a data set if:

1. You want to removc the catalog entry of a data set
from the catalog but not crase it, and the data set
resides on a private volume.

2. You want to 1"('move the catalog entry of a data set
you are sharing from your catalog (because you no
longe"!" have a need to share that data set).
The EfI'\5£ command can also be used for uncatalog­

ing. ERASE [('moves the catalog entry, and erases the
data set as wcll if it resides on a direct-access volume.
(Erasing means making the storage spaec of the data
set available for other use.)

So that YOli can specify whether you want to be given
one data sct name at a time when you enter either the
ERASE or DELETE command, provision is made to set the
yuIlle of DEPHOMPT (a value contained in your User
Profile) to either YES or xo by using the DEFAULT com­
mand (see "u scr Profile" in this part). If the value was
set to YES, and you speCify a partially qualified data set
name, the system will issue a prompting message giving
you the opportunity to specify that all remaining data
sets undvr that level llame are to be erased without
prompting. Otherwise, yOLl will be given one data set
name at a time for disposition. If the value was set to
xo, all data sds grouped under this partially qualified
name will he erased or deleted without individual
presentation. If you specify a fully qualified name, the
data set \vill be erased or deleted no matter what was
specific·d for DEPHOMPT.

You have the option in certain commands, as PRINT

and PU~CH, if a cataloged data set is involved, of speci-

12

fying whcther it is to be erased or not after the output
operation.

Data Set Organization

A data set's organization defines the overall relation­
ships of the component records into which the data set
is logically subdivided. The component records are
called logical records, because each is a logical entity
containing information for the problem program that is
to process the data set. In TSS, there are two funda­
mentally different types of data set organizations:
virtual storage data sets and physical data sets.

V irtual Storage Data Sets

Data sets with a virtual storage organization reside only
OIl direct-address volumes; they arc automatically cata­
loged by the system when they are created. You create,
read, and process these data sets on the basis of the
logical records they contain, The system, however, uses
the pagc as the unit of transfer between the direct­
access device and your virtual storage. Virtual storage
data sets may have any of these organizations:

Virtual sequential (vs): In a virtual sequential data
set, the order of logical reeords is determined solely by
the order in which the records "vere created. In creat­
ing this type of data set, you proVide the system with a
stream of records. The system organizes the data into
pages, and stores the data set on a direct-access device.
After the data set has been created, you can read back
the records in the order in which they were created
merely by requesting one record after another.

Virtual Index sequential (VI): In a \"I data set, the
records are organized in sequence based on a data key
associated with each record. The data key may be a
control field that is part of the record (such as a part
number), or it may bc an arbitrary identifier (such as a
line number) that is the beginning of each logical
record, and is added to each record to give it a unique
key.

One special form of virtual index sequential data set
is the line data set, with a maximum of 132 bytes per
record. A line data set is organized by line number,
where cach line is a record and is prefixed with the line
numlwr as its key. Souree programs an' line data sets.
You can inspect and display these data sets by line
number llsing the LINE? command. Other commands
enable you to effect replacements. insertions, and de­
letions on line data sets.

Because records in the virhwl index sequential or­
ganization have logical and physical relationships, you
can request the system to perform any or all of these
opera tions:
• Retrieve or create (in a manner similar to that for

sequential organization) logical records whose keys
are in ascending collating sequence.

• Retrieve or creak lildiddual records whose keys are
in any order. (Prol'l'ssing is, of course, slower here
than if it were being dOlle in the collating sequcnce,
hecause a search is n'quired to locate each record's
position.)

• Add records, with new keys, to the data set. The sys·
tem automatically locates the proper position in thc
data set for the nl'W control and makes all neccssary
adjustments for subsequent retrieval in logical se­
quence.

• Delete existing records from the data set, The system
automatically updates the page locators (and the
page directory if necessary) and makes the space
used bv the deleted records available for other uses,

• Updat~ existing records in the data set, either ex­
panding or contracting their size.

Virtual Partitioned (vp): A VP data set is used to
combine individually organized groups of data into a
Single data set. Each group of data is called a member,
and each member is identified by a unique name. Pro­
gram module libraries are a good example of a VP data
set. Your USER LIB is organized this way, and the com­
piled object modules you store in USERLIB are its mem­
bers.

The partitioned organization allows you to refer to
either the entire data set (via the partitioned data set's
name) or to any member of that data set (via a name
consisting of the name of the data set qualified by the
member name in parentheses).

Example: A partitioned data set named INVENTORY

whose members eonsist of monthly data sets such as
JAN, FEB, and MAR, could be referred to in one of the
following manners:

INVENTORY Entire library of inventory data
INVENTORY (JA"l) January inventory data
INVENTORY (FEB) February inventory data
mVENTORY (MAR) March inventory data

The partitioned data set may he c'Omposed of vs or VI

members or a mixture of both. Individual members,
however, cannot be of mixed organization.

You can assign additional names, called aliases, to
each member, and subsequently locate a member on
the basis of either the member name or any of its
aliases. The partitioned data set organization is ideally
suited for storage of libraries of programs or other
groups of data that are frequently referred to together,

Physical Sequential Data Sets

Data sets with a physical sequential organization can
reside on either direct·access or magnetic tape volumes.
The logical records in these data sets have an organiza­
tion which is detennined solely on the basis of their
position relative to the beginning of the data set. \\'hen
these records are processed in TSS, the block is used

as thl' unit of trallsfn tu and from the device invoked,
A block can consist Df Oil!' or more logical records. Data
sets with physical '('qncl1tial organization are calleel I'S

data sets. You willust, I'S data sets each time you proc­
ess magnetic tapc ill YOllr programs. Volumes contain­
ing data sets with PS organization can he interchanged
among TSS and IB\r OS or OS/VS installations.

Data Set Residence
Maintaining Program Libraries

A program in TSS can consist of one or more ohject
modules that are linked amI are executahle. A program
consisting of only one object module is stored entirely
within one library; a program that consists of several
object modules may reside in different libraries, de­
pending on how yon have stored them. During linkage
editing and during execution, the system can automati­
cally retrieve all required object modules if you have
defined the libraries that hold them.

There are four categories of program libraries:
• System library (SYSLlB)

• User library (lJSERLIB)

• User-defined job libraries
• Other user-defined libraries

System library, accessible to all users, includes TSS/

360 programs and the installation's standard subroutines
and functions,

User library is the private library that was assigned
to you when you were joined to the system. This library
is available each time you log on. If you do not employ
job libraries in a task, all the object modules resulting
from your use of the language processors are placed in
your user library, In addition, if no special library is as­
signed for the output of the linkage editor, the linkage
editor object modules are placed in your user library.

Job libraries are defined for use within one task when
you want to restrict your user library to checked-out
standard object modules that you execute frequently or
that you use frequently in the buildup of other object
modules; or you may \vant to use a special object
module that will temporarily replace one you nann ally
would use.

The program library list, a defined hierarchy of those
libraries, is set up at log-on time, and consists of the
user library and SYSLIB. Job libraries designated for a
task are removed from the hierarchy at log-off time.

The library at the top of the list always automatically
receives all object modules resulting from language
processing. If no joh libraries are defined, the library
at the top of the list is always the user library. How­
ever, you can specify that a job library be added to the
program library list to receive the output of the lan­
guage processors. You do this by issuing a DDEF com­
mand that defines the job library, and contains the

How to Use TSS 1.'3

JOBLIB operand (see Example 7 in Part III). ",",'hen this
command is executed, the name of the job library is
placed at the top of the program library list. That li­
brary then receives all subsequent outputs of the lan­
guage processors until another job library is defined
(and it is placed at the top of the list), an existing job
library is moved to the top of the list using the JOBLIDS

command, or a RELEASE command is issued for the job
librarv.

In ~ddition to using the program library list to store
object modules, the system uses this list to control its
order of search when looking for object modules that
must be loaded at execution time. The library at the
top of the list is searched first, then the next, etc.; finally
the user library and SYSLIB are searched.

The program library list can also be used, during
linkage editing, to define the following for the system:
• The library that is to receive the link-edited object

module.
• The sequence in which libraries are to be searched

by automatic call if the system must find other ob­
ject modules that will complete the link-edited
object module.

For example, if no other library is specified, the out­
put of the linkage editor is stored in the library cur­
rently at the top of the program library list. If another
library is specified at the time the linkage editor run is
defined, that library receives the link-edited object
module. That library can be the user library, any of the
current job libraries, or a special library defined by a
DDEF command that has no JOBLIB operand.

Using Public and Private Volumes

When a data set is stored in the system, it resides on
one or more direct-access or magnetic-tape volumes;
the identification of these volumes is available in the
system catalog. A volume can be a removable disk pack
or a reel of tape. It should also be noted that physical
sequential data sets are not cataloged when they are
created (the CATALOG command must be used to ac­
complish this), and their residence is restricted to
private volumes.

At system startup time, the system operator desig­
nates each direct-access device and its associated vol­
umes as either public or private. A public volume is a
direct-access volume that must be mounted prior to
the beginning of system operation, and must remain
mounted during operation; it can be used by many
users concurrently. A private volume can be mounted
or dismounted at any time prior to or during operation;
it is restricted to use in one task at a time. For more
than one of your tasks (say one conversational and one
or more nonconversational) to access the same data set
residing on a private volume at the same time, pimMIT

and SHARE commands must be issucd to give your

14

userid sharer status, despite the fact that the merid is
the same. Ma!,rnetie-tape volumes are always classified
as private volumes; direct-access volumes can be either
public or private. Magnetic tape volumes and physical
sequential formatted direct access volumes are always
classified as private volumes; VAM (Virtual Access
Method)--formatted direct access volumes may be
either public or private.

The system assumes that you desire storage on a pub­
lic volume unless you specifically ask for storage on a
private volume. Public volumes are always mounted
and available for allocation to your task, thus prOviding
the most efficient type of storage for data sets which
must be retained in the system.

If you employ private volumes, you may need to wait
for devices on which to mount those volumes. Each
time a request is made for a device on which to mount
a private volume, the system must determine whether
or not it can honor the request, based on the current
requirements throughout the system for that device.

Volume and Data Set Labels

All volumes used to store cataloged data sets must con­
tain standard volume and data set labels to pennit the
system to locate the data sets.

All public direct~acces!i volumes automatically con­
tain standard volume and data set labels, which the sys­
tem creates and maintains. Direct-access volumes can
also contain user's data set labels, which are processed
by user-written routines.

Magnetic-tape volumes may contain (1) standard
volume and data set labels, or (2) standard volume
and data set labels plus user's data set labels, or
(3) they may be unlabeled. All labels, on magnetic­
tape volumes with standard labels, are also created and
maintained by the system; user's data set labels are
processed by user-written routines.

Detailed explanations of standard labels and their
use on direct-access and magnetic-tape volumes are
given in Data Management Facilities.

Tailoring TSS to Meet Your Needs

You can tailor the operating environment within which
your task is performed to meet your specific needs with­
out affecting anyone else's use of the system. You can
rename existing commands and keyword operands, and
provide your own default values for omitted operands;
these alterations can be temporary or permanent.

User Profile

The system maintains a special data set, cailed a user
profile, which contains the defaults for operands, syno­
nyms for command names and operand keywords, and
command symbol values. The first time you lo~ on, the
prototype uscr profile in the system library (SYSLIB) is
copied into your virtual storage. You can use this pro-

file as it stands, or you can change it with the DEFAULT,
SYNONYM, or SET commands.
• DEFAULT allows you to change system-supplied de­

fault values for command operands.
• SET allows you to define a command symbol that

may be referenced or modified by other commands.
• SYNONYM allows you to rename commands, oper­

ands, expressions and values.
The changes made with these commands will affect

only the current task's operating environment. If you
want these changes to be included in your permanent
user profile, you can issue the PROFILE command to
copy this altered user profile from virtual storage into
your USERLIB. Example 30 in Part III illustrates the use
of these commands. For a detailed description of user
profile management, see Command System User's
Guide.

Defining Your Data Set

Before a problem program or a command can process
a data set, the system requires complete information
about the data set, including the manner in which it is
to be processed. You can make this information avail­
able from a variety of sources; for example:

DEFIl'\ITION OF
PROBLEM PROGRAM

I/O
DATA SETS

1. I/O source statements
2. DDEF commands or

DDEF macro instructions
(which in tum may use
information provided
by your user profile)

3. System catalog
4. Problem program
5. Data set label

DEFINITION OF
DATA SETS
PROCESSED

BY COMMANDS

1. DDEF commands
(which in turn may usc
information provided
by your user profile)

2. System catalog
3. Command itself

The following paragraphs describe how to use these
sources to identify data sets for the system.

Data Control Block

The information required to identify a data set to be
processed by a problem program is contained in the
data set's data control block (DCB), a group of con­
tiguous fields in your program. The DCB contains these
types of information:
• The name of the DDEF command (the ddname) to

be associated with the data set
• Type of data set organization
• Record-format information (format type, record

length, etc.)
• Device-dependent options
• Exit addresses:

SY:\AD: synchronous error exit address, for automati­
cally transferring control to a user-supplied routine
if an tlllCOrrccta hIe 110 error OCC11 rs.
EODAD: end of data set address, for automatically
transferring control to an cnd-of-data routinc whell
end of an input data set is detected during process­
ing.
EXLST: address of an exit list ill which (in the case
of scquential data sets intended for interchange
with OS or OS/VS you can define the address of
routines for creating and verifying tIl(' IlSI'!" data
set lahels that can he employed Oil magnetic-tape
and direct-access volumes; or the address of a rtlll­

tine to be llsed at OPEN TL\IE for modifying till' data
control block.

• \Vorking storage used by the access method rOll­

tines.
You request the system to begin construction of a

data control bloek at assembly or compilation time.
There arc various ways in which the fields in a data
control block may be filled. For example, some may
be filled in at assembly! compilation time. Others may
be filled in during program execlltion from IIser or
system-supplied information. In any ('vent, the fields
arc filled in according to a fixed priority scheme based
on the source supplying the illfonnation. The sources
of infonnation and their priorities arc.
I. Your program
2. DCB macro instruction
3. DDEF command (and system catalog)
4. Data set label

Not every source is valid for pverv field. These two
general rul~·s apply. (1) VI/hen a fi(';ld has bccl} filled
by a higher priority source, it cannot be rcplac'('{l by
infonnation from a lower priority source. (2.) A field
that has not been speCified by a higher priority source,
may be filled in by a lower priority source if that source
is valid for that field (see Figure 6).
1. You can include one or more routines in your pro­

gram, to add to or modify the contents of a data con­
trol block. Generally, these routines can be called at
any time during execution. The restrictions on the
use of a problem program to modify a data control
block arc described under the DCB macro instruction
in Assembler User Macro Instructions. Thcse facili­
ties simplify problem program modification of a
data control block in the assembler language:
• A DCBD macro instruction (described later) can

be used to symbolically refer to the fields of a
data control block by their field names.

• At OPEN time, the system provides a DCB exit dur­
ing which the problem program can, in effect,
call upon a llser-written DCB modification routine
that will update the DCB and return eontrol to
OPEN.

How to Use TSS 1.5

-.------- ----- --- --- -- -- - - -- --- --- -----------------------

Execution
Time

OPEN
Time

Note: Circled number 1-3 indicate
order of sampling source~
for inputs to DeB. Boxed
numbers T-4 ... how priorities
of 50urces sampled for

inputs.

Create:; DeB

System Catalog

DDEF
Command

Existing Data Set Label

User Modification
Routi.n., (BSAM Only)

i

-°1 ' tG
---cJ

i
--G>-----t

I

--- - ---- -- -- ---- - --- -- -------------- ----l

! ~o~p:~t Gser" Problem progrom~ddS to or.00difie-'--~C!.F;eld, -J
_J _______ l __ ---

Figure 6. Flow of Information to and from a Data Control Block

2. The DCB macro instruction can be used to fill in any,
or all, fields at assembly; however, once a field is
specified in this way, it can be changed only by your
problem program.

3. At OPEN time, information from the DCB operand of
a DDEF command can be, and frequently is, uscd to
complete thc data control block. This process is
shown in Figure 6. Any field that is cmpty at OPEN
time, and for which the DDEF is a valid source, can
be filled by DDEF information. If the data sct to be
processed is an input data set that was previously
catalogucd, its DDEF command will indicate this and
the system will retrieve certain data control block
information (e.g., the data set's location) from the
system catalog.

4. Also, at OPEN time a field of the data control block
for an existing data set can be filled with informa­
tion from the data set's label if this field has not
been specified by any other source and the data set

16

label is a valid source for that field.
This procedure for data control block definition and

modification can be greatly simplified for most appli­
cations; the flexibility is provided for the special case
where data control block changes must be made be­
tween assembly time and the time a data set is actu­
ally processed. In these situations, the facility to mod­
ify allows you to change only the required fields; you
do not have to restate the entire data control block
each time a program is run. To facilitate data control
block modification, you should include in the data
control block only those fields needed for program
execution---others should be left empty for possible
subsequent fill-in. Once the data set is closed, the DCB
is restored to its pre-oPEN state. \Vhcn the data set is
opened again, the system starts the fill-in procedure
based on the data control block information provided
by the DCB macro instruction and any problem pro­
gram modification to the DCB since the last CLOSE.

Identification of Assembler Data Sets

A data set, to be processed by a problem program writ­
ten in assembler language, must be identified by a
DCB macro instmction in the source program. The as­
sembler uses the DCB macro instmction to set up the
data control block at assembly time, and, if you have
supplied operands in the DCB macro instmction, to
enter those operands into the data control block.

The number of operands that can be specified in
the DCB macro instmction depends upon the organiza­
tion of the associated data set.

The symbolic chain that relates the macro instruc­
tions used for data retrieval and storage (GET, PUT,

HEAD, WRITE, etc.) to their associated data sets is shown
in Figure 7. It also illustrates how infom1ation in the
data control block and DDEF command identify as­
sembler data sets to the system.

Data Definition Commands

The DDEF command is used to identify a data set during
execution of a task and to define its requirements for
system resources. It may also bc used to define a job
library. to define a spccial data set for the DUMP pro­
gram control command, to complete the data control
block of a program at execution time, and to concate­
nate input data sets (i.e., relate them so that several dif­
ferent data sets can be read in as if they were one).

Any DDEF command you issue during a task remains
in forc(, throughout the task, unless you enter a HELEASE

command for that data set. The HELEASE command is
the opposite of the DDEF command: the DDEF command
sets up task control information for the data set; the
RELEASE command removes that information. If the
DDEF required a private volume to be mounted, HELEASE

can be used to free it for assignment to another task.
The DDEF commands used in a session or in a com­

Immd procedure need not be issued directly during the
session or be included explicitly in the command pro­
cedure. One, or more, or all, of the DDEF commands
needed can be made available by using the CDD (call
data definition) command.

The CDD command is used to retricVl' one or more
DDEF commands from a data set; you must supply the
name of the data set. If this is all you specify, the sys­
tem assumes that you want to use all the DDEF com­
mands in the data set. If 'lOU want to usc onlv selected

; "
DDEF commands, you identify each by its ddname. Yon
should prestort' frequently used DDEF commands in a
data set and call them in this fashion wherever possi­
ble. CDD can be used in either conversational or nOIl­
versational tasks.

In a conversational task, the system analyzes the data
set's requirements at the time the DDEF command is is­
sued. It will then attempt to allocate the required re­
sOllrces (and, for private volumes, issue any mounting

Macro Instructions
(GET,PUT,REAO,WRITE, etc)

deb address "

Data Control Block

DDNAME~ ddnome

ddname

DDEF Command

OS NAME c- dsnome

dsnome in data 5.et lobel

DATA SET

Figune 7. Data Set Idelltifi('ation

messages that arc required) a t that tim('. If the required
space cannot be allocakd, or the specified volumes can­
not be mountt'd, tlw systc·m will inform you, thl'J'chy
allowing you to procced with olh('1' work.

'111(' DDEF command is illustrated ill tIl(' ('xampl('s,
and is discussed ill detail ill AppendiX E.

System Inquiry Commands

There are several commands 1I1 TSS with which you
can request specific information from the system 1'('­

garding your data set, catalog, and job librari('s. If you
issue these commands ill a convL'rsational task. the in­
formation is display(·d at your terminal; ill a 11011('011-

v(TsationaJ task it i:; sent to the task's SYSOl;T data set.
The facilities provil1cd by these commands arc sum­
marized below.

The FC'~ cOlllmand is used to j'('!jut'st the presentatioJl
of a concise listing of all or par-t of your cataloged data
sets. You \vill he presented \vith the data set name, the
access (owner access if owned by you; USCI' access if
owned by someone else), and the user identification of
the owner if it is not owned by yon. The pc'~ command
can conveniently he used at regular intervals without
an operand to prest'nt the entire catalog listing for help
in housekeeping.

The Dssr command is used to requcst presentation of
the status of one or rnorc cataloged data sets. Infomla­
tion is given pertaining to sharing stahls, access status,
device type and volume identification, creation and ex­
piration dates, and data set organization. pc? should Iw
used when a general listing of data scts is required;
DSS? should be used only when morc detailed informa­
tion is required about the status or organization of
data sets.

How to Use TSS 17

The POD';> command is used to rcquest a list of thc
member names (and, optionally, thc alias names and
other llwmber-oricnted data) of individual members of
virtual partitioned data sets, such as your user library
and)'01lr cataloged job libraries.

The DDX\.l\U:? command can be used to request a dis­
play of all DD:\A"l\{ES you have defined within a task or
just those for the job libraries you havc defined. Used
with the JOBLIBS command, it can be llsed to revicw
and modify your JOBLIn chain.

The LI:\E? command requests presentation of a linc
or a snics of consecutive lines of a linc data set that
you own or arc now sharing. The data set must either
be cataloged or defined hy a previous DDEF in thc cur­
rent task.

Data Set Establishment

The Text Editor

The Text Editor is a powerful command repertoire
provided for the TSS lIser. These commands provide for
manipulating lim's of information, either within an
existing ITgion or line data set, or as thcv arc being
entcn,d dy~arnically into a region or line d:ta set. \Vith
the text editing facility, you can create and edit data
sds simultaneouslv. You can correct, insert, or delete
linL's: or segment ;; data set. You can transfer lines from
one data St~t to another. You can also display lines of a
data set at yo Ill' terminal and nullify previous changes
that \\'('rt' made by thE:' text editor commands. Com­
rlwlld System L'ser's Guide provides a complete discus­
sion of dB the facilities of the Text Editor, including a
description of the commands available.

Prestoring Data in the System

Data that is prestored in the system has been created as
virtual ';c(111('ntial data sets, or virtual index sequential
data sets, or mcmbcrs of partitioned data sets, and then
stored on public dircct-access volumes. System operator
initiateu commands prestore data on public volumes.
r\ormallv. thc DATA command stores a data set on a
public volume, However, you can cause a data set to be
prcstored on a priuate volume by issuing a DDEF com­
mand (\vi th "OLU:\ IE = PRI\' A TE operand) prior to thc
DATA command. In either case, the data set is automati­
call:' ('~,talogl'd at the time it is created.

Data Command

The DATA command prestores data sets entered from
the terminal (conversational modc) or from thc SYSIN

data sd (nonconversational mode). This method is
particularly effective for relatively small amounts of
data, sllch as small program input data sets, SYSIN data
sets for llOl1conversational tasks and data sets consist-
illg of DDEF commands.

18

The DATA command builds a virtual sequential or
virtual index sequential data set; or adds to an existing
virtual sccplCntial or virtual index sequential data set.
A detailed descliption of thc use of this command is
contained in Data l'vlanagement Facilities.

Operator-Assisted Input

You can also entcr data by means of nonconversational
tasks that arc initiated by the system operator.
Example: You can have a command procedure entered
(and set up a nonconversational task for execution), or
you can create a virtual sequential or virtual index se­
quential data set and store it on a public direct-access
volume. The tasks are initiated by an RT command
issued by the operator.

You can submit data sets on punched cards to the
system operator, who can then enter the data into the
system via a high-speed reader designated by the sys­
tem. Two types of input data sets are permitted: com­
mand procedure data sets and data card data sets. The
two types can be interspersed, one following another,
in any order \vithin a single batch of punched cards.
The rules for setting up these data sets are given in the
following paragraphs.
NOTE: If you want to enter a command procedure to­
gether \vith the data sets it refers to, you must make
sure the data scts precede the command procedure.
The"system, generally, will try to execute the command
procedure as soon as it has been read.

Command Procedure Data Set: This contains all
commands needs to rtm a nonconversational task.
Each command is punched on a nc\v card, in exactly
the f0n11at used to enter commands from a terminal.
The first card of the data set must be a LOGON com­
mand; the last carel, LOGOFF (see Figure 8). A SECURE

command eard must immediately follow LOGO=" if any
private devices arc requircd. Other commands are as
rC(luircd for the particular task.

\\Then the command procedure data set is read in, it
becomes the SYSIN data set of a nonconversational. task
and is executed as soon as the necessary system re-

(lOGOFF

/
L

L
/ f---

./
/

(COMf'.MN[}S I-

/
LOGON

l-
f--

Figure 8. Organization of Command Procedure Data Set

sources are available. After execution, the SYSIN data
set is eliminated. It docs not remain cataloged nor does
it remain in system storage.

Data Card Data Set: This contains any information
you want to put into public storage as a cataloged data
set. It may also include commands. You may enter a
command procedure data set in this way, if you do not
wish to have it set up as nonconversational task after
entry; or you may prestore DDEF commands. \Vhcn this
type of data set is read, a virtual sequential or virtual
index sequential data set is created and cataloged in
public storage, where it will reside until it is erased.
Unlike the command procedure data set, it is not exe­
cuted upon being read.

The organization of a data card data set is shown in
Figure 9. The first card of the data set must be a data
descriptor card; the last onc a %ENDDS card. Each data
card corresponds to one logical record.

(%ENDDS

/

/
/ -

(DATA CARDS

DA T ASET command -

Figure 9. Organization of a Data Card Data Set

The data descriptor record identifies the data set as
a data card data set. It must start in column 3 with the
operand DATASET, followed by the user identification
and the data set name under which it is to be cata­
loged. The following information can be supplied to
the system on the same card:
• The code to be used in reading the cards (EBCDIC

or BCD).

• The first card column to be read in creating the
data set.

• Thc last column to be read.
• The organization of the new data set. If LINE is

specified, a VISA?>.I data set \vill be creatcd, each line
prefaced by a seven character line number. If left
unspecified, a VSA?>.I data set will be created. The
system assigns 100 as the first line number in a
VISAM data set and increments by 100. The maxi­
mum number of lines (data records) is 100,000.

• The action to be taken by the system (accept the
record, skip the record, or end reading of the data
set) if an uncorrectable read error occurs.

The terminating card, %ENDDS, must be punched
starting in column 3.

The format of the daLl descriptor record is given in
Comllland System User's Guide.

Sharing and Protecting Your Data Sets

YOll cannot gain acct'ss to any datil sds otlH'r thall vour
own unless JOu hav(' system authorizatioll to do so, or
have been giv(,lI ;H1thorizatioll hy another llsn who

owns the data sds involvcd. In TS,< catalogl'd data sets
Hlay he shared or lInshared.

A siJan'd data v·t is cataloged and \)(,)O!lgs to OIl('

Hscr, but may \)(' shared with other users on any of
these bases:
1. Rearl-only access: The sharer Illay n'ad thl' datil set,

hut may !lot change it in ;lny way.
2. Read-(lnrl-Icrite (lccess: The sharer can both read

alld write to the data sd, hut he Illay }lot eras!' it.

3. Unlimited access: The sharer, in !'lit-ct, call trcat the
data sd as his own; II(' may (,\'l'll crase it.

Yon issue ;1 PEHMlT command to designate thl' other
lIsers who rnav share your data sets, which data sds . .
they may share, alld th(' tyP!' of access thos!' users IIlay
have. You may also usc the PEH\f1T command to
chang!' allY aeees>; authorization you rnay previollsly
have given. A separate l'ElL\lIT ('olllllland is retjnin·d
for each level of access to a data sd, hilt any 11llll1\wr

of sharers nul' be authorized for tlw sallie lev!'l of ac­
c('ss with a singl!· I'EH:\ll'l' COlllmalltl. After iSSllill,~ the
PEHMlT command, you must issue <til AlIE,,]) or LOCOl'I'

COInIlIalld to upcbtc your catalog cntry regarding who
may share which data sets and to what level of access.
The sharer "vill not have acc!'ss to \'OUI" data set until

~

this update has been effected.
To gain access to a data set for which he has been

previously allthorizctl, the sllilrcf must issue a SlIAHle

command, To SCI' how this command is used, aSSllme
that the sharer's uscr identification is .f \1(200 and that
he has lwen permitted to share Olle data sc·t. The data
set is O\vned by llscr HKl'lOO, and is cataloged by him
under the fully qualified name E:\C.PHYSICS.CO:\,IAH.

TEST2. Assume also that the sharer wants to name the
data set E:\C.C!IE\L"lOTAH.TESTl. He would then issue
the SHAHE command shown at the top of Figure 10. In
response to that command, the system would search
the' owner's catalog to see jf the prospective sharer is
authorized. If he is not, the command is ignored and
dl<' user is informed tbat he may not share the data set;
if he is authorized, the systc~ places in the sharer's
catalog a pomtc'l" to the Otcner's(coI7lJdetc) name of the
data set. This is a sharing descriptor that bears the
name by which the sharer rders to the data set. \Vhcn­
ever the sharer subsequently refers to the data sct by
his name, the system locates the data set by thc search
procedure shown on Figure 10.

The name assigned to a data set by its o\VTwr is not
affected in any way by other users who assign their

How to Use TSS 19

ENG.PHYSICS.COMAR. TEST2 Issued by
User JMC200 L-__ ~ ______ -..-______ L--, __ ~ __________ .-________ ~

Shorer's Reference to Data Set
Data Set IS Owner

ENG.CHEM. NOTAR. TEST!

JMC's User Catalog

r
I JMC200

I I I ENG ! 1

I r
I H,G

1 I
CHEM i I I

I
I

~~------------~~
CHEM 1~~I ______ N __ O_TA_R ______ ~i~I--~

I
NOTAR I I

RKPIOO

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~--- I
.-~--------------------------~

TEST! ;;;

I TESTI RKPIOO. ENG. PHYSICS.COMAR. TEST2 I I
L ____________________ ~

Figure 10. Sharing of Cataloged Data Sets

20

ONner's Identification of Data Set

4

RKP's User Catalog -------------- ---,
I

l RKPlOO I I ENG : I
I L-L---------------~l~----~

I r
: • ENG I I PHYSICS 1 I
I ~----------~~------~

I
I
I
I

~~------------~---~
PHYSICS LI I _____ C_O_M_A_R ____ ..J.: -,-JIL.-____ ---..J

I
! "r-" ! CO~. I"--'--T-E-ST-I --.,-1-,1r---TE-s-T2---.:-I ... I--,

I TEST2

t

DATA SET DESCRIPTOR

L _______________________ __

Dato Set Control Block

RKPIOO. ENG. PHYSICS. COMAR' I
TE5T2

DATA PAGE

DATA PAGE

DATA PAGE

DATA PAGE

I
I

own names to that data set. Sharers may use the same
name as the owner because user identifications are
unique in the system.

A sharer's catalog entry is not removed if the owner
erases or uncatalogs a shared data set. Each sharer
must use the DELETE command to update his own cata­
log (i.e., to get rid of sharing descriptor entries). When
deleting a shared data set, the user must enter the com­
plete sharing descriptor; there is no prompting for indi­
vidual data sets under each sharing descriptor.

If the owner allows another user to share all his data
sets, the sharer can refer to them as a group in the
SHARE command by specifying his name for the collec­
tion and then specify ALL. In this case, the system
places a pointer to the owner's user identification in
the sharer's catalog, thereby making all of the owner's
catalog available to the sharer. Similarly, groups of
data sets with names having common higher-order
components can be specified by using partially quali­
fied names for the owner's catalog.

To be concurrently accessible by more than one task,
a data set must be cataloged and must be a virtual stor­
age data set.

Data Set Manipulation

Copying, Modifying, and Erasing Data Sets

You can use the CDS command to make a copy of any .
data set (or any member of a partitioned data set) to
which you have access except data sets whose records
are in undefined format, such as program module li­
braries. You can also use it to renumber the lines of a
line data set as it is being copied. Both the original and
copy data sets must be defined in your task.

You can use the MODIFY command to insert, delete,
replace or inspect records of a VI data set, or of a VI

member of a VP data set. You have to identify the
record to be modified (by its key or line number).
'fou can review modifications, and play back corrected
lines for confirmation of your changes.

You can use the vv, VT, and 1V commands to copy
your data sets depending on their origin and desired
destination. The vv command causes a VA~f data set
to be copied into public storage. The V1' command
causes a VA}'! data set to be reproduced on 9-track
magnetic tape. The 1V command retrieves and writes
into public storage a data set previously written on
9-track magnetic tape by the VT command.

You can use the ERASE command to erase data sets
that you own. If you arc sharing someone elSl'S data
set, you can remove its cntry from vour catalog bv
issui~g the DELETE command, and cra~e it if you hav~
unlimited access.

Transferring Data to Standard Output Devices

The three commands used to transfer data sets to
speCific output devices are:

rHlKT-initiates transfer of a speCified data set to the
prinkr for high-speed printout.
wT-initiates transfer of a specified data set to a
magll('tic-tape device for l'l'cordin<f in a format slIit­
abl~ for printillg either off-line '~>r via the I'HlNT

cOlllmand.
pur-;cIl-initiatcs transfer of a specified data set for
card p1lnching.
You can issue these commands in cither conver­

sational or 1l001conversational tasks. Each command
requests the system to initiate an indqwlHknt Ilon­
conversational task to perform the fund iOIl of the
command. Once that task is set up, the issuing task
continues.

PRINT Command

The PRINT conllnand prints data sets on tll<' compllter
centn's high-sp{'('d prill/n. It pl'O('('SS('s data sds that
W('l'C created by w:ing hasic sl'qul'ntial, virtual S['(I'1<'11-

tial or virtual index sequential acc['ss methods.
The data sd mayor may not be cataloged; if Ilot,

you must ddhH' it by a previous DDE!' command; if
catalogcd, you can specify jJl tll(' I'm.,'!' cOlnllland that
the data set is to he erased afhT printing has lll't'll

completed. 11l<' PR macro instruction Illay aho Iw llsed
to perform these functions. System programm(,rs call
also invoke tlle PHJI\T command to print data sds

written in ASCIIl cod('. Scc TBM Time Sft(l/in'!, S,/s­
tern: S!Jstcm l'ro!!.1'ammcr's Gllide CC2R-20()S, for a

dcscriptinn of this facility.

WT (Write Tape) Command

The WT command \\'lites a data set on tapc for later
processing, either off-line or hy the I'IU:\'J' command. It
can proct'ss, as in]Hlt, data sets that were cr(,ated hv
Ilsing either virtu;d s('qll('ntial or virtual index SCljll('I;­

tia1 access metllods. You must give the name of the
input data set. If the input data sd is !lot cataloL;cd,
you must (knne .it hy a previolls nDEF command. If
the input data set is cataloged, YOll can specify the
EHASE option of lIt(' \\,T command to ('rase the input data
set after the WT task is completed. The WT macro in­
struction may also he used to perform these functions.

PUNCH Command

The P1J~CIl command punches a data set on cards, us­
ing the installation's high-speed card punch. It can
process data sets that were created by llsing either the
virtual sequential or virtual index sequential access
methods. The data set mayor may not be cataloged. If
not, you must define it by a previous DDEF command; if
cataloged, you can use the erase option in the PUKCH

command to specify that the data set is to be erased

J The American National Stanuard for Informatioll Interchange,
ANSI X.3.4-19G8, hereinafter referred to as ASCII.

How to Use TSS 21

after punching is completed. The PU macro instruction
provides the same options and facilities as the PUNCH

command.

See Command System User's Guide for a discussion
of commands; Assembler User Macro Instructions for
macros.

Assembler Language Facilities

Input/Output During Program Execution

'ISS includes complete program I/O facilities for the
conversational and noneonversational modes of opera­
tion. in both modes, conventional I/O facilities and
dynamic I/O facilities are provided. Depending upon
tile application, these dynamic facilities can be used
alone, or in conjllnction with those for conventional 1/ o.

The principal differences between these two facili­
ties, illustrated in Figure 11, are summarized below.

CON\'ENTIONAL I/O

1. Source program must con­
tain all instructions re­
quired for I/O operations.
In effect, data processing
must be preplanned in
detail.

Initiate

Read

Compute

Write

Yes

DYNAMIC I/O

1. Source program need not con­
tain instructions for conven­
tional I/O. All I/O can be
achieved via SYSIJ\'/SYSOUT,
using Dynamic I/O source
statements, and/or Program
control commands and state­
ments (Conditional dynamic
I/O is possible),

Input
Data Set

Output
Data Set

Figure 11. Conventional vs Dynamic I/O

22

2. Data to be processed must
be made available and de­
fined for system prior to
program execution.

2. Data to be processed can be
decided upon, based on re­
sults of processing; no predefi­
nition of data for svstem is
required. ~

Dynamic I/o facilities can be used either by issuing
com~ands and statements at the terminal, or by in­
cluding special source language instructions in the
source program.
• Because program control facilities arc equally use­

ful for program checkout and modification, a de­
scription of program control commands and state­
ments is given in Appendix B.

• Dynamic I/O facilities peculiar to source language
are described under the summary of the assembler
language's problem program I/O facilities.

Conventional Problem Program Input/Output

Assembler language users can apply one or more of the
facilities shown in Figure 12 to control conventional
program I/o. The access method facilities (VSAM,

VISAM, VPAM, BSAM, and QSAM) permit data sets to be
created and processed, using system macro instructions
that are similar to the I/O statements in higher-lever
languages.

'ISS also includes the resident terminal access method
(RTAM) and the multiple access method (MSAM).

Initiate

Compute

uynomic I/o

r----------
I
I Terminal

I

I
SYSIN

SYSOUT I

"\
I
I
I
I
!

I I L ________ --.J

-.------

Conventional Problem Program

I/O Facilities for Assembler Language Users

Principal TSS Facilities for Special TSS
TSS Interchange with Facilities for

Facilities OS or OSNS Devi ce Control

Virtual Sequential Queued Sequential

Access Method Access Method
(V5AM) (OSAM)

Virt-uat index Basic S-equential
Sequential Access Access. Method
Method (VISAM) (BSAM)

Virtual Partitioned
Input/Output Access Method

(VPAM) Request {I0REO}

Figure 12. Conventionall/O Facilities

The applications programmer's use of the RTAM facili­
ties is indirect, through the command language. In this
publication, the RTAM facilities arc considered by de­
scribing the effects of inserting commands and datq.,
via SYSIN, and of the system's outputs via SYSOUT. MSA~l,
which can be used only by users in privilege-class E,
processes data sets on unit record devices, such as card
readers, card punches, and printers. Full descriptions of
RTAM and MSAM appear in System Programmer's Guide;
system programmers generally can use RTAM facilities
directly. Depending upon the planning for a speCific
installation, the MSAM facilities for control of card read­
ers and punches, and printers may be available to
users; those facilities are described in Assembler User
Macro Instructions.

The I/O request (IOREQ) facility permits the control
of I/O devices, using system macro instructions similar
to those used for machine-level programming (i.e.,
IOREQ allows you to write your own channel programs).

The virtual storage access methods (VSA~I, VISAM,

and VPAM) are specifically deSigned for the program­
ming environment of TSS. They arc simple to use, yet
they provide a wide range of facilities for data storage
and retrieval.

The basic sequential access method (BSAM) is in­
tended primarily for data set interchange with as,
OS/VS, or when the data set is to be written on mag­
netic tape. Also, BSA~[can be used for applications
requiring limited device control. For special applica­
tions that call for more direct device control, the r/o
request (IOREQ) facility can be used.

The relationships between the data-set organization
and the data-management system macro instructions of

each I/O facHit\' arc s1ll1lm~l1'iz{'d in Figure 18. Com­
plete information on these macros is availahle in As­
sembler User Macro I mdl'llcliolls. A disclIssion of access
method facilitcs is contailH'd in Data jl11Il11I!.Cnll'llt

Facilities.

General Service Macro Instructions

The general service macro instructions (llsed to iden­
tify and prepare data sets for processing, and to kTllli­
nate their processing) arc essentially til(' samc for all
access methods. The mncmonics and sllOrt titles for
these macro instnletions arc:
• DCB--Define data control block for I/O operations
• DCBD-Provide symbolic names for fields of a DCU

•
•

OPEN-Prepare a OCB for processing
CLOSE-Disconnect a data set from user's problem
program

DeB Macro Instruction

The DCB maero instruction is included in a source pro­
gram to reserve space for a data control block and, if
you desire, to place in that uata control hlock, at as­
semhly time, infonnation describing the characteristics
and intended uses of a data sct. Table 1 brieflv de­
scribes each of the operands ill a nCB m:lcro iIlstnl~tion.
Also, it indicates the access methods in which each
operand can be specified, if the DCB macro illstl'llctioll
is the source of the information. Table 1 also gives the
valid alternate sources for each operand_

A DCB macro instruction is rcquired for each data s~,t
processed by the assembler language's conventiollal I/O

facilities.

DeBD Macro Instruction
A DCBD macro instruction is r(''111ir('d if yon want 10

refer to the fields of a data control hlock II)' their sym­
bolic names in your program. A dummy control section
(DsEel') will be generated at assemhly tillle to provide
a symbolic Hamc for each field that can he specified ill

any data control block. By properly initializing your
base registers you can thus reler symbolically 10 any
or all fields of the data control hlocks in your program.
Only Olle DCBD macro instrnction may he issued during
an assembly; if you isslle more than OIW the instrnctioll
will he ignored and a diagnostic message \vill he issued.
OPEN Macro Instruction

The OPEN macro instruction completes one or more
specified data control blocks so their associated data
sets can be processed.

OPEN is common to all access methods; however,
other aspects of the OPE:" process (la1)('1 processing,
speCification of the volume disposition when volume
switching oC'cu;-s, identification of the Ilo access char­
acteristics of the data sets involved and the related
DUPOPEN macro instruction) differ with the access
method being used and the intended processing of t.~e
data itself.

How to Use TSS 23

~'-~'---~---"'----.--

VSAM
Virtual
Sequential
Macro Instructions

GET
PUT
PUTX
SETl
DUPOPEN
DUPClOSE

v {SAM

Virtual Index
Sequential
Macro instruc tions

GET
PUT
READ
WRITE
SETL
ESETl
DELREC
RElEX
DUPOP
DUPClO

EN
,E

to set,
ex se-

Genera! Service i\1\,ocro Instructions
Applicable in .1\11 Access Methods

DCB
DCBD
OPEN
ClOSE

-i~M
Virtuol
Partitioned
Macro Instructions

I FIND
STOW
DUPOPEN
DUPCL05E

t
Virtual partitioned doto
set I wi th virtual sequen-
tia! or virtual index

Virtual sequent ial
data set, or
virtual sequewlc\
member of a

Virtual index
sequential do
or virtual ind
quential memb
partitioned do

er of 0 sequential members or
parti tioned dote set to sel a mixture of both

~

BSAM
Basic
SequE' ntiai

Instructions Macro

GET POOL
POOL
BUF

FREE
GET
FREE BUF
FEO V

RL
D

CNT
REA
WRIT E

CK
E

CHE
NOT
POI NT
asp
ClO SE (TYPE = T)

fCB DOD

Sequen tial dato set,
one with

ked records
usually
unbloc

t OSAM t IOREQ
Queued Input/Output
Sequential Request Facility
Macro Instructions Macro Instructions

GET VCCW
PUT IOREQ
PUTX CHECK
SETL
RElSE
TRUNC

t t

Sequential
Device oriented

data set

Figure 1.3. Summary of Data ?vlanagement System :\tacro lnstrnction and Data Set Organizations

CLOSE Macro Instruction

A CLOSE macro instruction logically disconnects a data
set from your program and should be issued when a
data set's rrocessing is completed.

Duplexing a Data Set

Critically important virtual storage (VA1\1 organized)
data sets on public volumes may be safeguarded
against loss of data by duplcxing them. The DUPOPE:\I

macro instruction links a primary and secondary data
set together such that all changes to the primary data
set arc immediately reflected by corresponding changes
in the secondary data set. At any instant, therefore, the
data sets should be exact duplicates. If read errors
occur in the primary copy, the secondary cop)' is used
for error rccoven'. To ensure that the two data sets are
always identical, you should never perform an opera­
tion on either data set \vithout invoking the duplexing
mechanism.

You duplex a data sct by issuing a fH.JPOPEN macro
instruction instead of the OPEN macro instruction, speci­
fying as operands the addresses of the data control
blocks for the primary and secondary data sets. When­
ever possible the two data sets should be allocated
space OIl separate physical volumes. The data set prop­
erties specified in both data control blocks, and their

24

corresponding DDEF statements, must be consistent.
The cxtcrnal storage required when duplexing a data

set is exactly double that required by non-duplexed
data sets, and the time required for data output is
almost doubled. To save on time and resources vou
should therefore be judicious in your duplexing J re­
quests.

Data sets that have bcen opened with a DUPOPE:\I

macro instruction are closed with a DUPCLOSE macro
instruction. \vith the address of the two data control
blocks as operands.

Dynamic Input/Output for the Assembler Language

In addition to the program control facilities available
to all Hscrs, the following macro instructions may be
Ilsed for problem program communication with the
system 1/0 streams:

•
•
•

•

•

GA TRD (read rccord from SYSI:\l)

GA TWR (write record to SYSOUT)

GTWRC (write record to SYSOUT with ASA carriage
eontrol character)

GTW AR (write record to SYSOUT and read response
from SYSIN)

GTIVSR (write record on SYSOUT and read record
from SYSIN)

Table I DeB Operands Their Specification, Access Methods, and Alternate Sources

APPLICABLE ACCESS !.1ETHOD VALID ALTERNATE SOURCES

OCB
USER'S DDEF DATA SET

OPERAND SPECIFIES VSAM VISAM VPAl\1 BSAM IOREQ QSAM MSA~f TAM PROCHAM COM~'lAND LABEL

DDNAME Symbolic name identical to that used in X X X X X X X

ddname operand of DDEF command asso-
ciated with data set

DSORG Data set organization X X X X X X X X

RECl<'M Record format information X X X X X X X X X

LRECL Logical record length X X X X X X X X

EODAD Address of user's end-of-data routine for X X X X X X

input data sets

SYNAD Address of user's synchronous error exit X X X X X X

routine (entered when an uncorrectable (only for
error occurs in I/O operation) VISA~1

members)

KEYLEN Key length X X X X X X X
(only for
VISAM

members)

RKP I Displacement of key from first byte of log- X X X X

ical record (only for
VISAM)

PAD Space to be left on each page of virtual X X X X X
index sequential data set (to allow suhse- - (only for
quent insertions) VISAM

members)

MACRF Type of macro instructions used in process- X X X X
ing data set (GET, PUT, READ, WRITE, I I etc.)

DEVD Device on which data set resides plus, for X X X I X
some device types, deVice-dependent infor- ! some sonle
mation (data code, tape density, etc.) i device device

I dependent dependent
inform a- informa-
tion tion

OPTCD Optional service desired, write with validity X

I
i X X X X

I check (for direct-access devices only)
I

BLKSlZE Maximum block length X i X X X X

HISK Number code inuicating what system error X X

I
X X

recovery and recording procedures (if any) I

! are to he invoked I

EXLST Address of user's exit list X X X

NCr I "umber of consecutive READ, WRITE, or X X X X

I IOREQ macro instructions issued before I
I CRECK macro instruction I I

BUFNO Number of huffers X ! X X

BFALN Buffer alignment X X X

BUFL Buffer length X X X

EHOPT Option to be executed if an error occurs X X X

BFTEK Buffer technique X X X X

PRTSP Print spacing option X X X

STACK Card stacker selection X X X X

"roDE "lode of operation X X X X ,
1--.

TETCR Recording techniclue
fm 7 -track tape X X X

-'~~

BUFCB Buffer control block
mldress X X

How to U,c TSS 2.5

• PAUSE (s\vitch conversational task from program
mode to command mode)

• COl\f\fA'\lO (switch conversational or nonconversa­
tional task from program mode to command mode)

• SYSI"! (write andlor read a message in SYSIN I
SYSOUT)

GATRD

The GAI1ID macro instruction reads a line data set rec­
ord from yOUI' SYSIN and places it in your specified
area. In conversational mode, the system prints an un­
derscore on your terminal typewriter and unlocks your
keyboard. The program containing GATRD then waits
for you to insert a record. If no record is inserted, the
task is terminated.

In nonconversationalmode, the system refers to the
SYSIN data sct and reads its next record. You must
arrange the records in the SYSIN data set so that the

b

appropriate record is obtained by the system in re-
sponse to each GATRD macro instruction. If the input
record exceeds one line, a GATRD macro instnlCtion is
required for each line.

GATWR

The GA TWR macro instnlCtion writes a record to your
SYSOUT from a user-specified area. In conversational
mode, the record is printed on the terminal typewriter;
in non conversational mode, the record is stored in the
task's SYSOUT data set.

GTWRC

The CT\~RC macro instruction writes a message on the
user's SYSOUT, with ASA carriage control character.
Either Type I or Type II linkage is used, depending
upon the privilege class of the user's program.

GTWAR

The GTW AR macro instruction writes a record from a
user-specified output area to SYSOUT, and then reads a
record from SYSIN into a user-specified input area. In
conversational mode, the output record is printed at
your terminal, and the program issuing GTWAR waits
for you to insert the input record. If no record is in­
serted, the task is terminated.

In nonconversational mode, the system writes the
output record to the task's SYSOUT data set, and reads
the next record in the SYSIN data set. It is your re­
sponsibility to have the appropriate record available
for each GTWAR macro instmction. If the input record
exceeds one line, a GATRD macro instruction is required
for each additional line.

GTWSR

The GTWSR macro instnlction may be used only in the
conversational mode; the system will terminate the

26

task if an attempt is made to execute a GTWSR macro
instmction in the nonconversational mode. The GTWSR

macro instmction prints the output message on your
terminal typewriter and waits for you to provide the
input record, which, when entered, will be stored by
the system in the area speCified in the GTWSR macro in­
stmction. If the input record exceeds one line, a GATRD

macro instmction is required for each additional line.

SYSIN

The SYSIN macro instruction services the program in
which it appears by providing information about the
current operating task. This is accomplished by re­
trieving input (Le. either a command or data) from
the Source List or the SYSIN device for the task. A
user can alter the action of the SYSIN routine by enter­
ing the system command prompting string (usually
an underscore followed by a backspace) follOWing the
prompting string of the SYSIN macro routine produced
at the terminaL

PAUSE

The PAUSE macro instmction switches a conversational
task from program mode to command mode, while
still retaining program control. A message speCified in
the PAUSE macro instmction is typed at your terminal.
Control is then retumed to you, who can then enter
any commands. Any system output generated by a
command issued after the rAUSE i~ typed at your termi­
naL After each command is executed, the system
prompts you for the next command. To resume a pre­
viously intermpted CALL command (one that was exe­
cuting the object module containing PAUSE) you issue
another GO command. This GO can specify that the
intermpted object module be resumed at the point of
intermption, or at any other pOint, or a new object
module can be called and its execution begun. If a
PAUSE macro instruction is encountered in a program
executing in the nonconversational mode, the message
is written on SYSOUT, and program execution continues.

COMMAND

The COMMAND macro instruction has a function simi­
lar to PAUSE; however, it can be executed in either con­
versational or nonconversational tasks. In a conversa­
tional task, COMMA?\D has the same effect as PAUSE.

In a nonconversational task, the system refers to
the SYSIN data set when CO-"IMAND is executed. You can
prestore any commands you want in the SYSIN data set,
to subsequently control the system. Any system mes­
sages resulting from the execution of these commands
are sent to the task's SYSOUT data set. The program
execution is resumed by a GO command.

The LINE? command can also obtain output dynam-

ieally. One or more lines from a line data sct that be­
longs to you. or that you are currently permitted to
share, can be specified in this command. The LINE?

command can be issued in either the conversational or
nonconversational mode. In conversational mode, the
specified line or group of lines is printed at your ter­
minal; in non conversational mode, the specified line or
group of lines is written on the task's SYSOUT data set.

Table 2 summarizes the processing mles for input
data through llse of the input CATE maero instructions
(GATRD, CTWAR, and GTWSR). Table 3 summarizes the
processing mles for output data through use of the
output GATE macro instructions (GATWR, GTWAR, and
GTWSR).

Communication with the Operator

These macro instmctions may be included in assem­
bler written problem programs to communicate with
the system operator:

Table 2. SYSIN Hecords Specified with GATE Macro Instructions

SOURCE

• \VTO (write-to-operator),

• WTOR (write-to-operator-with-reply).
These macro instructions should he used only in pro­

grams with specialized I/O routines to request operator
intervention.

Communications with the System Log

Th{' system log is a data set that is maintained by the
system on a direct-access device. Its characteristi~s ar{'
established according to the needs of an installation,
and are defined at the time that the system is gene-
rated. .

Sources of infomlation for the system log are:

• The operator, who may ent{'r any noteworthy
{'vents that occurred on his shift (MESSAGE com­
mand).

• Assembler-written problem programs-wTL (write­
to-log) macro instmction.

DESTINATION

DEVICE RULES RULES

Terminal keyboard Each record is terminated by end-of-block charac- These macro instructions specify expected length of
ter (EOB); this character is registered when sys- input record
tern detects HE TURN key has been pressed and
not immediately preceded by hyphen; if necessary Hecord is placed in area specified in macro instruction
to continue record over more than one line, hyphen
indicates record is being continued; hyphen does
not become part of record; maximum line length:
IBM 1052 a~d IBM 2741-130 bytes; IBM 3277-
255 bytes; Teletypewriter Model 35KSR-BO bytes

Terminal card reader Each record is terminated by EOB, which can be
registered in one of two ways:

If terminal's EOB switch is ON, EOB code is
registered automatically after card is read or
when EOB code is detected on card
If EOB switch is OFF, an EOB code is trans­
mitted only when detected on card or program
tape

Cards are 80 bytes long

Direct-access Each input record is a Single record of a virtual
sequential or virtual index sequential data set

Table 3. SYSOUT Records Specified with GATE Macro Instructions

SOURCE DESTINATION

RULES DEVICE RULES

These macro instructions specify length and loca- Terminal In conversational mode, output of these macro instruc-
tion of data to be produced as output tions appears on SYSOUT device

GATIVH, GTIVSH, GTWHC, and GTIVAH are Hecords longer than one line are continued
used for problem program output

Maximum line lengths: 1052 artd 2741-130 bytes;
IBM 3277-255 bytes; Teletype Model 35-80 bytes

Direct-access In nonconversational mode, output is written on SYS-
OUT data set for subsequent off-line printing

How to Use TSS 27

Commands and Macro Instructions

The following chart (Table 4) shows the commands
available to you. The commands are grouped under
ten general categories. The chart shows commands

themselves, the corresponding macro instructions (if
any), sample usages, and the examples in Part III
which illustrate the command. Positional operand no­
tation is used. The Command System User's Guide
gives a fuller description of all command formats.

Table 4. Commands and Macro Instructions (Continued)

FUNCTION COMMAND

Attention Button

LOGON

CHGPASS

BEGIN

LOGOFF

BACK

Task EXECUTE
Management

CANCEL

TIME

USAGE

ZLOGON

CDD

General CATALOG
Data

Management

28

MACRO

INSTRUC­

TION

CDD

CAT

SAMPLE

USAGES

(User presses button)

ADUSERID,MYPASS"
ADACCT29

CHGPASS

CHGPASS
NEWPASWD=WORD
BEGIN CALC

LOGOFF

BACK ALPHA

EXECUTE BETA

CANCEL 4120

TIME 15

USAGE

ZLOGON

CDD MYDDEFS

CATALOG GAMMA"R

EFFECT

ll.LUSTRA­

TIVE

EXAMPLES

Gains attention of the system for log- 1-11 ,13-19,
ging at the very beginning of the 21,22,24-30
session.
Thereafter during your conversational
task, halts current activity. See Ap­
pendix D for specific effect.
Identifies you to the system for initia- All
tion of your task. Here you enter your
identification, password, and account
number. Confirmation follows and full
messages are standard.
Notifies the system that you wish to 2
change your password.
Notifies the system that you wish to
change your password to \VORD.
Notifies the system that you wish to None
connect to an MTT application pro-
gram.
Notifies system that you want to term i- All
nate your task.
Switches your conversational task to 11
nonconversational mode. Here you
speCify the data set ALPHA as the
source of further commands.
Requests the execution in nonconver- 11
sational mode of a sequence of com­
mands contained in data set BETA,
while you continue in conversational
mode at the terminal.
Tenninates execution of nonconversa- 7,19
tional task which was aSSigned batch
sequence number 4120.
Allocates 15 minutes of processing 2
time to the task before the user is
notilled by a message at the terminal if
in conversational mode; by ABEND if
in nonconversational mode.
Presents a summary of system re- 21
sources available to you as well as
those that have been used by you since
you were first joined and since the cur­
rent LOGO:-.l".
The user-defined procedure called 1
ZLOGON is executed. After initial
LOGON procedures are completed,
this invocation is automatic.

Causes execution of all the DDEF 13
commands that you placed in a data
set named MYDDEFS.
Causes system to create an entry in 4, 10, 22
your catalog for a physical sequential
data set, or change an entry. Here an
entry is created for the data set
GAMMA. By default, the system will
recognize it as a new data set, with
access = R (read only).

Table 4. Commands ;mel Macro Instructions (Continued)

FUNCTION

General
Data

Management

I

COMMAND

CDS

CLOSE

DELETE

DATA

DDEF

ERASE

EVV

JOBLIBS

-'lODIFY

PERMIT

RELEASE

RET

~IACRO

INSTRUC­

TION

CDS

CLOSE

DEL

DDEF

ERASE

OBEY

REL

SAMPLE

FSAGES

CATALOC DELTA,U"
SIGMA

CDS SIGMA,
SIGMA2

CLOSE IOTA,T

DELETE KAPPA

DATA EPSILON

DOEF ~lYDD"
MYDATA

ERASE DELTA

ERASE USERLIB
(MYPGM)

EVV 2311,387542

JOBLIBS DDNAME=
OMEGA

MODIFY PHI

OBEY 'DDEF OUTDD"
OUTOS'

r PERMIT SIGMA2,
ADPAL,RO

RELEASE MYDD

RET OMECA,TCR

I ,

I

I

EFFECT

[-lere YOU llpd:.te (U) your catalog so
that. the d:lla set SIC,\!A is cataloged I
under the name DELTA. The CATA­
LO(; cO"Hliand cannot be Ilsed for.
changing access for a VAl\f-organized
data set and thr' access is therefore de­
fau\t"d Ly a comma.

ILLUSTRA­

TIVE

EXAMPLES

Copi!'s the data set SIGMA, naming 18
the copy SIC,\IA2. I

Causes the system to temporarily close
the data set, IOTA.

Removes the entry for the data set 21
KAPPA from your catalog.

Rp'luests .the system to build a data!1l,13,16,
set nanwd EPSfLQN from the data or 20,23
cOlllmands which follow. I
Defines a data set and describes its 3-11,13-15,
charactt'ristics to the system for the 17,18,20,
CIlrT"nt task. The data set exists, or is 22,23
being created. Here you define a data
set named tvIYDATA. The second
comma defaults its organization. The
name of the definition is MYDD. Ap-
pendix E describes the other param- i
elers.

Erast's rlata set (releases direct-access 4,6,7,14,21
storage for other use), and if cataloged,
deletes name from catalog. Here you
release the storage space of the data
set DELTA.

Here V011 erast' an object program
module named "IYPGM from your
USEHLIB.

Causes a catalog entry to be created 17
for a private VA1>I volume. Here you I
specify the device type and the volume
serial number.

Causes your JOBLIB, OMEGA, to be 7
moved to tlw logical top of your li­
brary list.

Permits YCtI, with subsequent parame- 4,7
ters, to insert, replace or delete records
in a VISAlvI data set named PHI.

Causes the syst{'m to create a JFCB 31
with a DDNAME of OUTDO and a
DSNAME of OUTDS.

Authorizes other user to have access to 18
your data sd(s).
Here '"OU authorize read-only (RO) ac­
cess t'; your SICi\lA2 data s~t to a user
who:;e 'identification is ADPAL. I

I
Hevokes the data definition established 9,10,17
by the previollsh, issued DDEF com-
mand narnedMYDD.

CallSPS modification to be made to the 5,6
catalog entry for your V AM-organized
data set O\fEGA. It will occupy tem­
porarv ,'jrtual storage (1') :md be de­
leted when the CLOSE macro instruc-
tion is executed (C). Access is
('hanged to rpad only.

How to Use TSS 29

Table 4. (Continued)

FUNCTION

Bulk
Output

Device
Management

Program
Management

30

COMMAND

SHARE

PUNCH

PRINT

WT

SECURE

LOAD

UNLOAD

CALL

GO

BRANCH

MACRO

INSTRUC­

TION

PU

PR

WT

LOAD

DELETE

SAMPLE

USAGES

SHARE MINE,ADHISID,
HISN

PUNCH SIGMA

PRINT SOURCE.PGM3

WTGAMMA

SECURE (DA==3, 2311)
(TA=3,9)

LOADMAIN2

UNLOAD MAINB

CALL MYPG

GO

BRANCH NEW

EFFECT

ILLUSTRA­

TIVE

EX.';'MPLES

Creates entry in your catalog for data 18
set for which owner has granted you
authorization with PER1I,IIT com­
mand.
Here you cause an entry to be created
in your catalog under MINE for the
data set HISN belonging to a user
whose identification is ADHISID.
Retrieves data set that was written 25
onto tape via VT command (ABC)
and writes it on a V AM volume, with
name XYZ.
Copies V AM data set (ONE) to mag- 25
netic tape as physical sequential data
set (TWO).
Copies V AM data set (FOUR) onto 25
direct access storage assigning name as
FIVE.

Causes the data set SIGMA to be 21
punched on cards.
Causes the data set SOURCE.PGM3 5,9
to be printed on the high-speed
printer.
Causes the data set GAMMA to be 21
written on magnetic tape for subse-
quent off-line printing.

Reserves device;; required for private 20
volumes during execution of noncon­
versational tasks. This cOr.1mand at the
beginning of your sequence of com­
mands for the nonconvcrsational task
secures three 2311 disk units and three
9-track tape units.

Transfers the specified object module 9
from its containing library to user's
virtual storage.

Removes object module MAINB from 7,15,17,23
user's virtual storage.
Here you cause your object module 5-7,9,10,
MYPG to be loaded and executed. 11,13,15
Your program was interrupted. The
GO command causes execution to be-

8,9

gin at the point of interruption.
Your program was interrupted. You de- 9
cide to branch to another entry point
(NE\V) in your current program.

Table 4. Commands and Macro Instmctions (Continued)

FUNCTION

Obtaining
Information

About
Data
Sets

Text
Editor

Facilities

COMMAND

DDNA~1E?

DSS?

PC?

POD?

LINE?

EXHIBIT

EDIT

END

REGION

DISABLE

ENABLE

CONTEXT

CORRECT

UPDATE

EXCERPT

EXCISE·

INSERT

NUMBER

LIST

LOCATE

MACHO

INSTRUC­

TION

SAMIlLE

USAGES

DDNA1\1E?JOBLIB=N

DSS?

DSS? PHI,SIG1\lA

PC?

PC? lOT A.KAPP A

POD?JOBLIBA,ALIAS=Y

LINE? SOURCE.MAIN

LINE? MU,800,
(1200,1900)

EXHIBIT UID

EDIT DSONE

END

REGIONXYZ

DISABLE

ENABLE

CONTEXT"ABCDEF,
UVWXYZ

CORRECT 400
s t e ms 3 770

@" $ "%.
ys@

UPDATE

EXCERPT ABC,
ABC2
EXCISE-l

INSERT +10

NUMBER 100,500,
1000,100

LIST 400,700

LOCATE,,'ABC'

EFFECT

ILLUSTHA­

TIVE

EXAMPLES

Causes printing of all DD"ll\.}'IES and
DSNAMES currenth defined.

7

Causes printlllg of detailed information 21
about each of your cataloged data sets.

I
Here you ask for catalog information
abollt PHI and SlC.i\fA.
Prints abbreviatcd clescriptions (name, 21
access and, if shared, owncr's identifi­
cation) of all your cataloged data
sets.
Presents information on all data sets
with the qualification IOTA.KAPPA.
Bequests information about a specified 21
partitioned data set.
Here you a.>k for the names and aliases
for e'lch mewber of the partitioned
data sct JOflLIBA.
Causes printing of records from the 8,9,16
specified linE' data sct. Here you print
the contellts of the line data set
SOUnCE.MAIN at thc terminal.
Here you print line 800 and lines
1200-lflOO of the line data set \1U.
Causes a display of all active tasks on 7
the system,

The Text Editor is invoked. DSONE 26,27
is the data set namc associated with
the data set to he edited.
This denotes the completion of editing 26,27
initialized by an EDIT command.
This define~ region XYZ in the current 26,27
data set.
Revisions made to a data set aftcr DIS- 27
ABLE are collectcd in a temporary
area.
Revisions made since the last D1S- 27
ABLE are permanent.
The cntin: data set (current region) 27
is searched, replacing ABCDEF with
UVWXYZ.

Characters from line 400 of the current 27
region are adjusted as requestcd. SYS­
TEM 370 is the resultant line.

Lines entered following UPDATE are 26
inserted into the current. region accord-
ing to the given line number.
Region ABC2 from data set ABC will 27
he jnserted into the current data set.
The line preceding the current line 26
pointer loeation will be deleted, from
thc current region.
Insertion in the current data 5(>t will 26
begin 10 lines beyond the currcnt po­
sition, with a default increment of 100.
The rang£' of lines (100-500) in the 27
current reg;on will be renumbered, be­
ginning with 1000 (also in increments
of 100).
Lines 400-700 inclusive of the current 27
region are displayed.
The entire current region will be 27
searched for the character string ABC.

How to Use TSS 31

Table 4. Commands and Macro Instructions (Continued)

FUNCTION

Text
Editor

Facilities

Program
Control

User
Profile

~anagement

32

COMMAND

POST

AT

DISPLAY

DUMP

IF

QUALIFY

REMOVE

SET

STOP

DEFAULT

SYNONYM

PROFILE

~ICAST

MCASTAB

MACRO

INSTRUC­

TION

MCAST

POST

SAMPLE

USAGES

AT MAIN.ABlOO

AT MAIN.ABlOO;IF
MAIN.AB>MAIN.AC;
STOP

DISPLAY MAIN.AB

DUMP MAIN.AB

IF M.AC > M.AD
SET M.AB = 2

QUALIFY MAIN

RE~lOVE ALL

REMOVE 10

SET .AB = .AC

STOP

DEFAULT
ACC=R

SYNONYM
SPECIAL=
ZLOGON
PROFILE

1fCAST CONT=@,
CP=II/:

MCAST AB INTRAN = Y

EFFECT

ILLUSTRA­

TIVE
EXAMPLES

Makes all previous editing changes 27
permanent.

Causes notification to be printed on 9
SYSOUT when program execution
reaches specified location.
Here you request the message when
the program MAIN reaches the in­
struction named ABlOO.
Here you cause execution to stop at
the instruction named ABlOO if AB is
greater than AC.
Prints on SYSOUT the current con- 8,9
tents of the data field AB in program
MAIN.
Causes the name and contents of the 9
data field AB in program MAIN to be
placed in the PCSOUT data set for
later printing.
Defines a logical condition (true or 9
false) that must be true to cause ex­
ecution of the remainder of the IF
statement.
Here you cause the data field AB in
program M to be set to 2 if the CUf­

rent value of AC is greater than AD.
Causes subsequent names to be quali- 9
fied by MAIN. You can then write
.AB instead of MAIN.AB.
Deletes aIr previously issued AT com­
mands or PCS statements that include
AT commands.
Here you specify deletion of the state- 9
ment to which the system assigned the
number 10 when it was first entered.
Causes specified data field in virtual 8,9
storage to he changed. Here you set
the qualified field AB equal to AC.
Stops program execution and causes 8
printing on SYSOUT of current in­
struction location and program status
information.

Access code for the CATALOG com- 30
m~nd will now be defaulted to read­
only.
The ZLOGON procedure may now be 30
invoked with either name, ZLOGON
or SPECIAL.
The session profile replaces the user 30
profile in USERLIB.
The continuation control character is 28
changed to an @ character; the de­
fault prompt string is replaced with
a series of three slashes and no car­
riage return.
Allows you to replace the system's
input character translation and switch
table with one which you have written
for your task.

Tahle 4. Commands and Macro Instructions (Continlled)

MACHHO ILLUSTRA-

INSTHUC- SAMPLE TIVE

FUNCT!ON CO~ll\IA1\"D TION OSAGES EFFECT EXA1'.-IPLES

BUILTIN BClLTIN NAII.1E= Defines TEST2 as the name of the 28
TEST:2 ohject progranl which the user can

invoke as if it were a command.
I-.:EYWORD KEYWORD Causes IHillting of all the command 29

names, and their associated parame-
Command teTs, currently defined in your USER-
Creation LIB.

KEYWORD Here you ask for the parameter key-
COI\1NAI\1E=GO words of the command GO to be

printe,!.
PROCDEF PHOCDEF Defines TEST;3 as the name of a user- 28

NAME=TEST3 writtl'll command procedure.

How to Use TSS 33

Macro Instructions Used in Examples
This ta bIe (Table 5) lists the macro instructions whose
use is shown in Part III, grouped by function. Detailed
coding information on these macro instructions is pro­
vided in the publication Assembler User Macro In­
structions.

Table 5. Macro Instructions Used in Examples

FUNC­

TION

MACRO

INSTRUC­

TION

VSAM DCB
Data
Manage-
ment

OPEN

GET

PUT

CLOSE

DUPOPEN

DUP­
CLOSE

VISAM DCB
Data
Manage-
ment

34

OPEN

PUT

READ

DELREC

CLOSE

DUPOPEN

DUP­
CLOSE

USE

ILLUSTRA­

TIVE

EXAMPLES

Reserves space for a data 5,6,11,14
control block (DCB) which
describes a virtual sequen-
tial (VS) data set.
Initializes a specified DCB 5,6,11,14
for processing and catalogs
new data sets.
Moves a virtual sequential 6
data set record to a virtual
storage location.
Includes a record from vir- 5,6,11,14
tual storage in a virtual
sequential data set.
Logically disconnects a 5,6,11,14
specified data set from your
program.
Initializes two specified
DCBs for processing in du­
plex mode and causes crea­
tion of a catalog entry if
data set is new.
Logically disconnects a du­
plexed data set from your
program.

Reserves space for a data 14
control block (DCB) which
describes a virtual index se­
quential (VIS) data set.
Initializes a specified DCB 14
for processing and catalogs
new data sets.
Includes the next sequen- 14
tial record from virtual
storage in a virtual index
sequential data set.
Transfers a virtual index 14
sequential record to a vir­
tualstorage location.
Deletes a specified record 14
from a virtual index se­
quential data set.
Logically disconnects a 14
specified data set from your
program.
Initializes two specified
DCBs for processing in du­
plex mode and causes crea­
tion of a catalog entry if
data set is new.
Logically disconnects a du­
plexed data set from your
program.

MACRO

F'UNC- INSTRUC-

TION TION

BSAr-f DCB
Data
Manage-
ment

OPEN

READ

WRITE

CHECK

CLOSE

SYSIN- GATRD
SYSOUT
I/O

GATWR

Program SAVE
Linkage

RETURN

EXIT

Interrupt SPEC
Manage-
ment

SIR

DlR

User- BPKD
Defined
Proce-
dures

ILLUSTRA­

TIVE

USE EXAMPLES

Reserves space for a data 10
control block (DCB) which
describes a physical se­
quential data set.

bitializes a specified DCB 10
for processing.

Transfers a block of data 10
from a physical sequential
data set to a virtual storage
location.

\Vrites a block of data from 10
virtual storage in a physical
sequential data set.

Required when processing 10
physical sequential data
sets to check the I/O oper­
ation requested by a READ
or WRITE macro instruc-
tion for I/O completion,
errors, or exceptional con­
ditions.

Logically disconnects a 10
specified data set from your
program.

Reads a record from SYS- 2-4,11,12,
IN and places it in a speci- 16, 19
lied area in your virtual
storage.

Transfers a message from 2-4,6,7,
your program to SYSOUT. 12, 13, 16,

19,23

Stores the contents of spec- 6,7,10,11,
ified registers in a save 14, 20
area.

Restores the contents of 6,7,20,23
speCified registers from a
save area, and returns con-
trol to the location speci-
fied ill register 14.

Terminates program execu- 2-5,10,12,
tion and causes the next 14, 16, 17,
command from SYSIN to 19, 20
be processed.

Specifies the entry point of 20
an interrupt-handling rou-
tine to which control is to
pass with the occurrence of
a specified type of program
interrupt.

Informs the system of the 20
presence of your interrupt­
handling routine.

Terminates possibility of 20
your interrupt-handling rou-
tine receiving control.

Supplies the linkage be- 29
tween the assembler object
module and BUILTIN pro­
cedure name.

Part III is devoted to thirty examples showing user­
system interaction. The dialog between you and the
system appears (along with explanatory comments)
as it would at the terminal. They are typical examples
of system use. Use the examples as a learning device,
and as models for designing your own work.

Commands and concepts are presented in an ordered
sequence: the most necessary and basic ones appear
first, and are reviewed in subsequent examples. The
examples are deSigned so that the beginner should
read them in sequence. Precise system responses are
not indicated. Instead, short narratives describing
system reactions to your input are given throughout.
The expanded facilities of the Command System such
as the Text Editor, PROCDEF, BUILTI"" and User Prome
are depicted for your guidance. Those familiar with
the commands and concepts can use the examples for
reference.

All VSAM, VISAM, and VPAM data sets are automati­
cally cataloged at the time they are created. DDEF time
includes the specific issuance of the command (or
macro) by the user, as well as the implied system issu­
ance of DDEF by such facilities as the DATA command
and the ASM command. The system creates the initial
catalog entry and provides the user with unlimited ac­
cess. You must deliberately update the initial catalog
entry if this access is not desired. The examples stress
this concept in all of its forms, using a narrative wher­
ever the system will take such automatic action.

Assembler programs are shown where they are
necessary to clarify use of the commands. Only the

Part III. Examples

relevant statements are incluued, and usually do not
show base register usage. Full program linkage anu
reenterable programs are shown in the later examples.

Various types of messages are issued to your termi­
nal by the system. The three types are as follows:
Prompting Mcssages--Request that you supply com­
mand operands or other information. Since the system
does not recognize confinnation mode as such, vou
will be prompted only for omitted operands that have
no default option speCified.
Information i\Jessages--Either inform you of actions
the system has taken in executing a command, or re­
quest auditional information.

Diagnostic AI essagcs-lnform you of errors and
prompt you for corrections.

In these examples, lines typed by the system are
headed SYS, lines yon enter are headed YOU. Lines in
which both the system and you enter something are
headed s, Y. Lines printed by your program are headed
PCl ... f, and cards entered from the terminal card reader

. and reprinted are headed elP, for card image printout.
The use of the PRNT command for obtaining lan­

guage processor output listings is illustrated in the
examples as follows:

PRLYf LIsT.module-name, , ,EDIT

You will automatically be given the latest generation
of your list data set.

Some examples use the ERASE option so that un­
wanted data sets may be removed from the system.
This procedure is recommended whenever practical
so that public storage will not be burdened with un­
wanted user data. The format is as follows:

PRl",T LIsT.module-name, , ,EDIT,ERASE

Examples 35

Example 1: Initiating and Terminating a Conversational Task

In this example, you initiate a simple conversational task and then terminate it. The commentary explains the
keyboard entries required to converse with the system.

To begin a conversational task, first make sure that the terminal is properly prepared (refer to instructions
provided by your installation or to the Terminal User's Guide). 'Vhen you dial up the system or press the
attention button for the first time in your task, the system assumes a log-on operation and the keyboard is unlocked
for you to enter the LOGON command along with the appropriate LOGON parameters. Since the system will not
prompt for individual LOCON operands, aU of them must be entered at the same time. You cannot begin a task
until you have logged on properly.

During your dialog with the system, your commands are not entered into the system until you press the return
key.

YOU: (press attention button or dial up the system)
From this point on. pressing the attention button halts current activity in most situa­
tions. Consult AppendiX D for the specific action taken in each situation. The keyboard
is unlocked to receive your LOGON command and operands.

LOGON ADUSERID,MYPASS*,24,ADACCT30,N,5,P
29,N.5,P

Before pressing the return key, you notice a typing error in the charge number
(ADACCT30). To correct this error you backspace 8 characters, move the paper up
one line to avoid overtyping, and then enter the proper characters.

SYS: TSS/370 RELEASE 2.0
This is the first message you will receive, indicating the system and level you have
dialed, and informing you that your LOGON attempt has been recognized by the system.
You must still wait for LOGON acknowledgement before you can begin your task.

SYS: TASKID= 1111 LOGON AT 15 :21 ON 04/12/76

Explanation of LOGON Operands

ADUSERID

MYPASS*

24

ADACCT29

N

36

With this message the system acknowledges your LOGON; you may now begin process­
ing.

User Identification

User identity is the first of the LOGON parameters. You enter your full identification.
It was assigned to you when you were joined to the system. Its first two characters iden­
tify the administrator who authorized your access to the system.

Password

This code word (password) provides protection against unauthorized use of your user
identification. Conversationally it must be used if one was assigned at JOIN time. Non­
conversationally it is optional. The system will prompt you and allow you to overprint it
conversationally to ensure password security.

Addressing

24 or 32 bit addressing may be specified. The present system addressing will be assumed.

(32 bit addressing is valid for System 360 only.)

Charge Number

This is the charge or account number that was aSSigned to you by your administrator.

Conlrol Section Packing

This operand specifies the type of control section packing provided for you by the
Dynamic Loader. Possible values are as follows:

A = pack all control sections
P = pack all prototype control sections only
o = pack only those control sections having neither PUBLIC nor PROTOTYPE

attributes
X = pack all control sections, except prototype
N = no control section packing will be done

p

SYS:

StY: KB

YOU: !!OGoff
SYS:

Maximum Auxiliary Storage

You may specify the number of pages needed. If nor, lhe system will assume the number
of pages specified at SYSGEN.

Pristine

Permits you to log on with only system supplied defaults and, if you wish, without your
USERLIB. Possible values are:
P=USERLIB is defined but session profile reflects only system defaults, etc.
X=USERLIB is not defined and session profile reflccts only system defaults, etc.

ZLOGON will now be invoked, if it has becn defined by you. You can continue with
other commands or procedures as soon as the system underscore appears.

Mter logging you on, the system prints a single underscore and then backspaces; this
is the standard signal that it is ready to receive your next command on the same line.
Here you specify that you want folded mode; that is that certain lower case characters
(as a-z and ! "¢) be translated by the system into their upper case equivalents (A-Z
and $ # @, respectively). Thus, with KB, you no longer need to perform many shift­
ing operations.

When you initiate a conversational task, the system automatically assumes folded
mode; hence in this example you need not have specificcd KB. However, there are other
character control commands, such as KA, which invoke EBCDIC mode at the keyboard.
Thus, if you specify KA and at a later time in your session wish to return to folded mode,
you must enter KB.

You decide to conclude your session by logging off. The system \-vill respond with an
acceptance message, indicating the date and time your task was terminated. Note that
LOGoff translates to LOGOFF.

Examples 37

Example 2: Assembling and Correcting from the Terminal

In this example, you type in the source statements of a short program and correct several errors while assembling
the program. The assembled object module is stored in your USERLIB. The listings you selected are printed as a
separate task, only if requested using tbe PRINT command.

YOU: (press attention button or dial up the system)
LOGON ADUSERID.MYPASS*"ADACCT29

SYS;

S,Y: QHGPASS

You enter your identification, password, and account number. System defaults are taken
for the remaining operands.

The system will complete the LOGON procedure and invite you to enter the next com­
mand with an underscore.

At this time you decide to change your password. You thus enter the CHGPASS com­
mand.

SYS: ENTER CURRENT PASSWORD

SYS: ENTER NEW PASSWORD

S,Y: !IME MINS=15

The system will prompt you for your current password with an overprinted line. Because
you have entered the correct password, the system will prompt you to enter your new
password.

The system validates your new password and ·invites you to enter your next command.

The TI ME command establishes a period of time a task will be allowed to run in
virtual memory. Since your task requirements will be small, you decide to override the
SYSGEN value established for "task time," and set 15 minutes as the upper limit. You
will be alerted when this new interval is exhausted. TIME is useful to monitor tasks
which may inadvertently loop, or otherwise take abnOimal actions.

S, Y: ASM NAME=ATlMES2. STORED=N ,ASMLIST=Y .CRLIST=Y ,PMDLIST=Y .LINCR= (1300,100)

Explanation of ASM Operands

NAME=ATIMES2

STORED=N

MACROLIB=

38

The system acknowledges receipt of the ASM command. Language processing com­
mences.

Ob;ed Module Name

You assign the name ATIMES2 to the object module. The object module created by the
assembler is placed in the library at the top of your program library list-in this case,
your USERLIB. This parameter cannot be defaulted.

Prestered Source Data Set

The N indicates that you are going to enter source statements rather than assemble from
a presto red source data set. The system creates a data set from your source statements
and automatically creates a name for it by prefixing "SOURCE." to the name you
supplied as the first assembly parameter (SOURCE.ATIMES2)

Macre library

This parameter permits you to indicate additional macro libraries on which you have
stored macro definitions you created. Your default by omission of this parameter
means that macro definitions are to be obtained only from the system macro library
during assembly.

VERID=

ISD=

SYMLIST=

ASMLIST=Y

CRLIST=Y

STEDIT=

ISDLIST=

PMDLIST=Y

LISTDS=

Version Identification

You may assign all identification to the assembled object module to distinguish it from
other assemblies of the same module name. It will appear on the Pl\lD output listing.
Yom default (by omission) of this parameter will yield the current date and time.

Internal Symbol Dictionary

For each source program symbol, the Internal Symbol Dictionary (ISD) shows its type,
length, and the relative internal lo('ations assigned by the assembler. This information
is necessary for full utilization of the Program Control System (peS) debugging capabili­
ties.

By default (omission) an ISD is produced.

Source Listing

The listings you request with this and the next five parameters will form your listing
data set. (See Appendix A for a detailed explanation of these listings.) The system
creates a name for the listing data set by prefixing "LIST." to the name you supplied
as the first assembly parameter (LIST.ATIMES2), using generation data group logic.
The source listing will reveal the source input statements.

By default, you will not receive a source statement listing.

Object Listing

The Y indicates you wish to receive the object listing. This listing shows the assembled
object code and the assembler-assigned displaeement addresses, both in hexadecimal
form. A separate source listing (SYMLIST) should be requested if continuation of source
input statements is very frequent because statements listed in the object listing are the
concatenated forms of continued source statements. In other ",vords, the SYMLIST shows
how the source statements were received, whereas the ASMLIST shows the form used
in the assembly of the object l'nodule.

Cross-Reference Listing

You request the cross-referenee listing, which indicates the type, length, and assembled
hexadecimal location for each svmbol. It also indieates the hexadecimal location of each
symbol reference. '

Edited Symbol Table

The edited symbol table is merely the cross-reference listing without the reference loca­
tions.

By default, it will not be produced.

Internal Symbol Dictionary listing

To obtain the listing of the Internal Symbol Dictionary (ISD) you must also have re­
quested an ISD above. You omit this parameter; it therefore will not be produced, by
default.

Program Module Dictionary listing

You specify a listing that shows the entries in the Program :Module Dictionary (PI\.ID).
It is helpful in determining the strueture of your object module and its relocation
properties.

List Data Set

In nonconversational mode you must specify if you want your listings pIacpd in a list
data set. By default they will be placed on SYSOUT, and no record of them retained in
the system after printout. Convt'TsationaIlv, a list data set i~ automatically created unlt'ss
you specify otherwise. In the latter case they will be printed out at yom terminal.

Examples 39

LINCR= (1300,100) Starting Line Number, Increment

SYS:

S,Y: 0001300CST CSECT

The system creates a I1l1fnber for each line of input as the source data is formed. You
specify that the first line is to be numhered 1:300 and that additional line numbers are
to be incremented by 100. Line numbers and increments can consist of three to seven
digits, the last two ~f which must be zero when the data set is initially formed. Since
the line numbers for a source data set are supplied at the time it is created, this para­
meter has no meaning when assembling from a prestored source data set.

The user is invited to enter source statements.

You enter your source statements in free form, i.e., by separating the fields with a single
space. Notice that you must leave a space for a null name (label) field.

This basic program reads an integer from the terminal, multiplies it by two, and
writes the product at the terminal. It is limited to integers between 0 and 4.

S,Y: 0001400BEGIN BASR 11,0
S,Y: 0001500 USING *,11 LOCAL BASE REG
S,Y: 0001600 GATRD AREA+3,LENGTH READ FROM SYSIN
S,Y: 0001700 MVZ AREA + 3 (1) =X'OO' CONVERT TO BINARY
SYS: 0001700 E***OPERAND FIELD IMPROPERLY DELIMITED
SYS: 0001700 MVZ AREA+3(1) =X'OO' CONVERT TO BINARY

S,Y: #

The assembler examines each statement for syntactical errors. It discovers that you have
omitted a comma and informs you with an error message, then prints out the line requir­
ing correction. See Appendix A for a further explanation of assembler diagnostics.

1700, MVZ AREA-~3(1),=X'00' CONVERT TO BINARY
The system then prints the m,unber sign (#) after which you enter the number of the
erroneous line, a comma, and then the content of the corrected line. Then you press
the return key.

At this point YOll can make any number of modifications, deletions, or insertions of
new lines.

S,Y: #(press return key)

S,Y: 0001800 L 5,AREAl

Instead you indicate the end of modifications by pressing the return key.

The system then prompts you with the line number for the next statement, which you
enter.

S,Y: 0001900 SLA 5,1 MULT BY 2
S,Y: 0002000* RESTRICTED TO INTEGERS FROM a to 4
S,Y: 0002100 ST 5,AREA
S,Y: 0002200 MVZ AREA+3(1) ,=X'FF' CONVERT TO EBCDIC
S,Y. 0002300 GATWR AREA+3,LENGTH WRITE ON SYSOUT
S,Y: 0002400 EXIT 'PGM FINISHED'
S.Y: 0002500AREA DC F'O' RD/WR AREA
S.Y: 0002600LENGTH DC F'l' LENGTH OF AREA
S,Y: 0002700 END

The END statement identifies the last source statement.

SYS: 0002700 E ,,* * 'AREAl 'UNDEFINED SYMBOL

40

After the last source statement has been entered, the assembler expands your macro
instmctions and searches for global errors. Here it has discovered one. The system in­
vites you to correct your source program, if YaH so desire. It does not perform a syntac­
tical check on the statements you modify or enter at this point. The line in which the
error was located is first printed out to help you in making corrections.

YOU: Y
S,Y: #

1800, L 5,AREA
You indicate that you wish to modify your source (response of Y), and then enter the
correct statement.

S,Y: #(press return key to indicate end of modifications)

YOU:

The system now reassembles \'our modified program, rcscanning all the statements as
if this were a new assembly. The assembler indicates it lJas fOllnd no errors.

Your listings were automatically placed in a list data set since you are operating in
conversational mode. The printing of a list data set is not an automatic function. You
must therefore issue the PRINT command.

S,Y: PRINT LIST.ATIMES2",EDIT

SYS:

The system will establish a noncollversational bsk to print the current generation of
LIST.ATIMES2.

The system assigns a batch sequence number (BSN) for your listing data set. It con­
tains the listing you specified earlier (Le., object, cross-reference, and PMD).

S,Y: ERASE SOURCE.ATIMES2
SYS:

StY: LOGOFF
SYS:

The system confirms the erasure. Since all V AM data sets are automatically cataloged
when created (in this case as a result of the ASM command), you are urged to erase
data sets for which you have no further use. This allows public storage to be freed for
other purposes.

The list data set is automatically cataloged by the system as the current generation of
LIST.ATIMES2. The assembler has stored your object module in the library at the top of
your program library list (in this case, your USEHLIB, which is an automatically cata­
loged data set).

The LOGOFF is accepted by the system.

Examples 41

Example 3: Assembling and Executing

In this example, you enter and assemble the same program you assembled in Example 2, but give it a different
name. You cause the resulting object module to be stored in a temporary library. After executing the assembled
program, you save the source program for use in a future session.

The terminal is used as SYSIN for your program input as well as SYSOUT for your program output.

YOU: (press attention button or dial up the system)
LOGON ADUSERID,.,ADACCT29

SYS: ENTER PASSWD
XXXXXXXX

SYS:

You log on, defaulting your password. If you were joined with a password, the system
will prompt for it with an overprinted line.

After prompting, the carriage is positioned at the first overprinted position, allowing you
to overprint your password. This facility is used to ensure password security.

The system ,,,,iIl complete the LOGON procedure and invite you to begin your task.

S, Y: QDEF DDNAME=TEMPDD,DSORG=VP,DSNAME=--=SCRATCH,OPTION=JOBLIB

S,Y: KA

The DDEF command is used to describe a data set to the system. It defines a data set
only during the session in which the command appears. Every data set you use must
be defined for the current session, even if it has been previously cataloged. Some data
sets, such as listing and source data sets, are automatically defined by the system and,
thus, do not require an explicit DDEF on SYSIN.

Here you define a JOBLIB data set. All libraries require virtual partitioned (VP)
organization. Since SCRATCH is the most recently defined library, the system places
it at the top of your program library list. Object modules created by the assembleI,
therefore, win be stored in it. .

With KA, you indicate you wish to use the full EBCDIC character set during input.
Both upper and lower case letters will be translated as their respective equivalents. .

S,Y: DEFAULT ASMALIGN=N
You do not want the source code in your program listing aligned in columns 1, 10, and 16.
Instead you want the source code to appear exactly as you entered it.

S,Y: !SM AT2,N,PMDLIST=Y,LINCR=(300,100)

S,Y:
S, Y:
S,Y:
S,Y:
S.Y:
S, Y:
S.Y:
S,Y:
S,Y:
S,Y:
S,Y:

42

0000300CST
0000400BEGIN
0000500
0000600
0000700
0000800
0000900

A combination of positional and keyword parameter notation is illustrated here. The for­
mat of the module name must be as indicated (see A T2). Since the name used becomes
a member of a virtual partitioned data set when the object module is created, partially­
qualified names and generation data group names cannot be used. Virtual partitioned
data set members must be identified with simple names.

In this and in follOWing examples you press the tab key to separate source statement
fields. You have set terminal tabs at columns 17, 23, and 40, so that the typewriter list­
ing of your input {following the seven-digit line number supplied by the system) con­
forms to standard coiling-sheet format. When setting your terminal tab stops during your
task, you will create several spurious tab characters which you want to prevent the
system from interpreting. Therefore, after setting your tab stops, erase the unwanted
line by backspacing and then immediately pressing the return key.

The system now prompts you by printing the number it has assigned to the first
source line.

CSECT
BASR 11,0
USING *.11 LOCAL BASE REG
GATRD AREA+3.LENGTH READ FROM SYSIN
MVZ AREA+3(1) ,=X'OO' CONVEHT TO BINARY
L 5,AREA
SLA 5,1 MULT BY 2

0001000* RESTRICTED TO INTEGERS FROM 0 TO 4
0001100 ST 5,AREA
0001200 MVZ AREA+3{1) ,=X'FF' CONVERT TO EBCDIC
0001300 GATWR AREA+3,LENGTH WRITE ON SYSOUT

S.Y: 0001400
S,Y: 0001500AREA
S,Y: 0001600LENGTH
S,Y: 0001700

SYS:

EXIT
DC
DC
END

'pgm finished'
F'O'
F'I'

RDjWR AREA
LENGTH OF AREA

Your source input is scanned and you are told thilt no errors were found.
The assembler completes the assembly process and vour next command is solicited.

S,Y: PRINT LIST.AT2",EDIT

S,Y: AT2

SYS: (unlocks keyboard)

YOU: :3

PGM: 6

System will establish noncol1versational task to print the current generation of LIST.AT2.
Your program has been assembled without error. The listings you have requested (a
PMD listing and, through default, an object listing) form your listing data set. It will
be printed as a separate task.

This command causes your object module to be loaded from your SCRATCH job lib­
rary and executed. Execution begins at the first location in the CSECT.

When the GATRD macro instruction in your program is executed, the system unlocks
the keyboard.

Then you enter your input data from the terminal, and press the return key.

GATWR prints program output on SYSOUT (the terminal in a conversational task).

PGM: EXIT, RELEASE ALL UNNEEDED DEVICES.

PGM: pmg finished

S.Y: ~OGOFF
SYS:

The EXIT macro instruction causes this message to be printed. If you had private data
sets you no longer needed, you would issue a HELEASE command to free the devices
on which their volumes were mounted.

The EXIT macro instruction then prints the message YOll specified and returns control
to the terminal, which is indicated by the underscore. You decide to log off.

The LOGOFF is accepted by the system. Since an V AM data sets are automatically cata­
loged, SOURCE.AT2 remains cataloged for future use. You must specifically issue
ERASE for data sets YOll no longer desire, prior to entering the LOGOFF command.

Examples 43

Example 4: Correcting and Reassembling a Prestored Source Program

In this example, you modify the source data set you cataloged in Example 3 so that, when it is assembled, the
program will accept input more than once. Then you execute the program and enter the data several times.

Having completed the LOGON procedure, you enter your first command.

S,Y: MODIFY SETNAME=SOURCE.AT2

SYS:

S,Y: #
R,500,600

SYS: 0000500
SYS: 0000600

S,Y: #
550 ,HERE

S,Y: #
630,

S,Y: #
670,

S,Y: #
R,1300,1400

SYS: 0001300
0001400

S, Y: #
1350,

44

You want to modify the source program you created in the previous example. If not
already defined in this current session, the data set named in a MODIFY command must
be cataloged.

The system acknowledges the MODIFY command and invites your input using a #
sign.

The system prompts you with the number sign (#). Before you make any modifications
to your source data set, you review several of its statements. You enter the R (for
review), a comma, and the numbers of the source lines you want to review; then you
press the return key.

USING *,11 LOCAL BASE REG
READ FROM SYS IN GATRD AREA-t-3,LENGTH

Since you entered your source data set in tab. fonnat, statement fields are separated
by a tab character. The number of spaces in the tab is not recorded. When printed On
your terminal, fields appea,r wherever the terminal tabs are now set.

EQU * CHECK IF END BRANCH IF YES
After printing the two lines, the system again prompts you with the number sign. You
insert a new statement folIowing the number you assign to it. You can replace an exist­
ing statement with this same procedure.

eLI

BE

AREA+3,C'E'

LEAVE
You insert two more source statements. They will check for your selected value of E.
indicating end of data.

You review another part of your program.

GATWR AREA+3,LENGTH WRITE ON SYSOUT
EXIT 'PGM FINISHED'

B

The EXIT message is presented by the system in upper case this time, since KB is the
mode by default.

THERE
Here you insert a statement. Notice that, within the MODIFY command, no checks
are made for line errors. The incorrect THERE will be discovered later, during assembly.

S,Y: #
1400,LEAVE

S,Y: #
R.300

SYS: 0000300CST CSECT
S.Y: #

300.SECT CSECT

S,Y: #
%E

EXIT 'PGM FINISHED'
You add a name field to the EXIT statement.
To remind you that you changed the soun'e data s<:'t, you oecide to rename the current
source data set. Before this can be done, the csed name must be changed, even if the
new module will be going into a separate library.

You review the line containing the csect name.

You change the name of the csect.

You signal the end of modifications to terminate the MODIFY command.

S,Y: QATALOG DSNAME=SOURCE.AT2,STATE=U,NEWNAME=SOURCE.AT2EX4
You use the CATALOG command to rename the current source data set SOURCE.
AT2EX4. At assembly time, the associated list data set will be named LIST.AT2EX4 by
the system. The U indicates the updating of an existing catalog entry. This command
corresponds to the CAT macro instruction.

S,Y: ~DEF TEMPDD.VP,SCRATCH.OPTION=JOBLIB

S.Y: !SM AT2EX4,Y

This command defines your job library established in an earlier session. The system
places it at the top of your program library list. Disposition is defaulted by the system to
OLD, since SCRATCH al~eady exists in your catalog.

The Y specifies that the source data set is prestored.

SYS: 0001700 E *** 'THERE 'UNDEFINED SYMBOL

SYS:

YOU: Y

S.Y: #
1350,

S,Y: #
(press

SYS:

S.Y: AT2EX4

This is the error that was not detected during modification. The line in which the error
was located is printed out to help you in making corrections. The number of the END
statement is given when undefined symbols are encountered.

Your source input is scanned and you are asked jf you wish to enter any modifications.

You indicate that you wish to modify your source data set (response of Y).

B HERE

return key to signal end of modifications)
The assembler rescans the source input, and finds no further errors.

The assembly process is completed, without errers. The assembled object module now
resides in your job library (SCRATCH), the library at the top of your program library list.

This time you do not issue a PRINT command but the data set still exists as the cur­
rent generation of LIST.AT2EX4. If the listing is later desired, you need only to issue:
PRINT LIST.AT2EX4,,,EDIT,Y.

This command causes the object module which includes the external symbol BEGIN
to be loaded from SCRATCH and executed.

Examples 45

5Y5: (unlocks keyboard)
YOU: 4

PGM: 8

5YS: (unlocks keyboard)
YOU: 1
PGM: 2
5YS: (unlocks keyboard)
YOU: E

You enter a number at the keyboard (SYSIN to be read by GATRD).

GATWR causes the computed results to be printed at the terminal (SYSOUT).

PGM: EXIT, RELEASE ALL UNNEEDED DEVICES.

PGM: PGM FINISHED

S.Y:

Your program detects the entry in SYSIN of E and branches to the EXIT macro instruc­
tion, which prints its messages and returns control to the keyboard. The system prompts
for the next commalld with an underscore.

ERASE USERLIB(ATIMES2)
- Now that you know that your modified program runs correctly, you decide to erase

from USERLIB the object module you assembled in Example 2. With this form of the
ERASE command, only the module named within the parentheses is erased.

S,Y: !!OGOFF
5YS:

46

The LOGOFF is accepted by the system. The listing data set (LIST.AT2EX4) will
automatically become the current generation of the pre-established generation data
group. Your new object program module (AT2EX4) resides in SCRATCH, which was
cataloged in a previous sessiQn. You cataloged your source data set (SOURCE.AT2EX4)
when you changed its name.

Example 5: Writing a Data Set and Printing It

In this example, you execute a program that you have previously assemhled and checked out. Its object module
resides on your USERLIB. Your program causes a data set to be ,vritter. You request that it be printed later on the
system high-speed printer as a separate task.

After the LOGON procedure is completed, you begin processing. The program which you are going to run, named
PROG5, includes the following source statements:

CST5 CSECT
ENTRY STRT5

STRT5 EQU *

LA 2,20
OPEN (DCBNM,(OUTPUT»)

LABEL EQU *
SET FOR 20 CYCLES
OPEN DCB

(create record at AREA)

PUT DCBNM,AREA
BCT 2,LABEL
CLOSE (DCBNM)

PUT RECORD IN DATA SET
RECYCLE
CLOSE DCB

EXIT
AREA DS
DCBNM DCB

END

80C
DDNAME=OUTDD,RECFM=FA

DATA AREA

Your program will _wite a data set with 80-character records from the storage area
named AREA. Notice that your DeB macro instru2tion includes the DDNAME that
is a parameter in the DDEF command, which in turn contains the name of the data set
(OUT5). The DDEF command relates the correct data set to your program because
every data set name must be unique in your task

S,Y: QDEF OUTDD,VS,OUT5,(LRECL=80)

S,Y: .£ALL STRT5

With this command, you define for this session the data set which your program will
write. Record length=80. The DISP field in the DDEF command is defaulted to
existence (i.e., default is NEW if the data set is being created initially in the current
task; default is OLD if data set already exists and is cataloged). Since this data is being
created now, the default for disposition is NEW.

See Appendix E for further details of the DDEF parameters.

This command causes the object module defining STRT5 to be loaded into virtual stor­
age and executed.

PGM: EXIT, RELEASE ALL UNNEEDED DEVICES
Your program completes its work and this message is issued by the EXIT macro instruc­
tion. Control is returned to the terminal.

Examples 47

S,Y: RET OUT5,R
A public volume was selected for your data set because you defaulted the volume field in
your DDEF command, and it was cataloged for you automatically, with access quali­
fier=U. You decide to protect the data set by updating the access qualifier to read-only,
using the RET command. You ean also use the RET command to change a temporary
data set to a permanent one (or vice versa) by specifying P (or T) in the retention code
(and you could have it erased automatically at CLOSE or LOGOFF by specifying C or
L in the code, if it is a temporary data set).

S.Y: PRINT DSNAME=OUT5, PRTSP=EDIT

Explanation of PRINT Operands

DSNAME=OUT5

STARTNO=

ENDNO=

PRTSP=EDIT

ERASE=

ERROROPT=

FORM=

STATION=

SYS:

S.Y: !!OGOFF
SYS:

48

To print your newly-written data set, this command creates a separate (nonconversa­
tional) task. You could have used the PRINT macro instruction to create the task.

The data set to be printed with this command must either be defined within the cur­
rent task by a DDEF command, as it is in this example, or it must be cataloged. Its
records must be fixed or variable length, and must include a USASI control character
(RECFM=F A or VA).

You want printing to begin with the first byte of each data set record. You can enter
a number consisting of one to six digits. You default this parameter by omission.

This parameter specifies at which byte in each data set record printing is to end. Since
your records are shorter than the default length, your printing will end at the last (80th)
byte of each record. You default this parameter by omission.

Since you want spacing to be controlled by the control character your program has
supplied in each record, you choose EDIT. The default is 1. Since EDIT was selected,
the values for header, lines per page, and page number will not prevail. However, if
one of the other spacing options (1, 2, or 3) has been selected, these three values would
be required.

This parameter is meaningful only if the data set being printed is cataloged. In that
case, you can specify that the data set be erased after it is printed. By parameter omis­
sion, there will be no data set erasure.

This parameter applies only to data sets on tape. It specifies the action to be taken if
an unrecoverable error is found while a data set record is being read. Since the data set
is on a direct access device, the parameter is ignored by omission (default).

Here you can specify the form number of the printer paper you desire for your output.
The default (STANDARD FORM) is determined by your installation.

This parameter applies only at installations where the user has been given the privilege of
directing print jobs to an RJE station. It permits you to indicate the station at which you
want your output printed.

The system informs you that it has accepted the requested nonconversational task, and
assigned it a batch sequence numLer (BSN).

The LOGOFF is accepted by the system. Your conversational task is therefore termi­
nated.

Example 6: Reading and Writing Cataloged Data Sets

In this example, you run a previously-assembled program that resides on your USERLIB. It causes records of a cata­
loged data set to be read. After performing several calculations, your program \vrites records in two new data sets.
It then issues a message on the temlinal indicating that the task was completed.

After the LOGOl\' procedure is completed, you begin processing. The program you are going to run includes the
folloWing source statements:

PST6

AREAl
AREA6A
AREA6B
DCBIN6
DCBOUT6A
DCBOUT6B
CST6
STRT6

ALPHA

EOD6

*
A
L

PSECT
ENTRY
ENTRY
DC
DC
DS
DS
DS
DCB
DCB
DCB
CSECT
SAVE
L
ST
ST
LR
USING
LR
USING

OPEN
GET .

STRT6
EOD6
F'76'
18F'O'
BOC
80C
BOC

SAVE AREA LENGTH
REMAINDER OF SAVE AREA
DATA
AREAS

DDNAME=INPDD,EODAD=EOD6
DSORG=VS,DDNAME=OUT6A,RECFM=F,LRECL=BO
DSORG=VS,DDNAME=OUT6B,RECFM=F,LRECL=80

(14,12)
14,72(0,13)
14,8{0,13)
13,4(0,14)
13,14
PST6,13
12,15
STRT6,12

SAVE REGISTERS IN CALLER'S SAVE AREA
GET RCON FROM CALLER'S SAVE AREA
STORE FORWARD POINTER
STORE BACKWARD POINTER
SET PSECT AND SAVE AREA REGISTER
PSECT COVER REGISTER

CSECT COVER REGISTER

(DCBIN6"DCBOUT6A,(OUTPUT),DCBOUT6B. (OUTPUT»
DCBIN6,AREAl READ INPUT DATA

(calculations with results to AREA6A and AREA6B)

PUT
PUT
B ALPHA
CLOSE
GATWR
L
RETURN

DC
DC
END

DCBOUT6A,AREA6A
DCBOUT6B,AREA6B

WRITE RECORD
WRITE RECORD
LOOP

(DCBIN6,.DCBOUT6A,.DCBOUT6B)
A,L MESSAGE ON SYSOUT
13,4(0,13) RELOAD CALLER'S SAVE
(14,12) RETURN TO CALLER

C'FINISHED WRITING TWO DATA SETS' MESSAGE

AREA

A(L'A) MESSAGE LENGTH

This and the program in the previous example, define the entry point by including an
ENTRY statement for it in the PSECT. By this technique, the R-value for the entry
point will be resolved as the location of the PSECT save area.

This program uses the standard SAVE-RETURN linkage. \Vhen you execute the
CALL STRT6 command, control is passed to your program by the calling program (in
this example, the system). The SAVE macro instruction and the four instructions that
follow it effect the saving of registers and the establishment of proper linkages. At the

Examples 49

S. Y:

S,Y:
S, Y:

conclusion of your program, the RETURN macro instruction restores the saved registers
an.d returns control to the system (the caller), which unlocks the keyboard.

It is good coding practice to place all variable data in your PSECT: refer to Appendix
C for a more complete explanation of linkage conventioHs and TSS programming
practices.
- If the end of input data is reached before 10 cycles, the system transfers control
to the location you specified in the end of data (EODAD) field in your DCB macro
instruction. Your program then executes its normal return.

DDEF INPDD.VS.INP6,DISP=OLD,RET=TLU
- You define the data set from which your program reads input. Although the data is

cataloged, you must define it for this task. The system locates it from the information
in the catalog.

Some of the parameters you omitted in both the DCB macro instruction and the
DDEF commands, such as the data set organization, are provided from the catalog
entry. Others, such as RECFM, LRECL, and BLKSIZE, are obtained from the data
set label. Appendix E explains these alternate sources. OLD indicates that the data
set already exists. The retention code, TLU, specified by the RET parameter will cause
the data set to become temporary with erasure at LOGOFF and with read-write access.

DDEF OUT6A,VS,OUT6A
~DEF OUT6B,VS,OUT6B

Now you define the data sets your program is to write. You decide to make the DDEF
and data set names identical in each DDEF command. This makes it easy to relate
the name of the DDEF to the output data set it defines. You default the disposition
field by omitting it. NEW (the default) indicates that your two output sets do not
already exist. Since these data sets are V AM organization, cataloging is automatic.

S,Y: QALL STRT6
Your object module is loaded and executed. Its output goes to the two output data setS.
There will be no messages at your terminal until your program executes the GA 1WR
macro instruction in your exit routine.

PGM: FINISHED WRITING TWO DATA SETS

S.Y: RET OUTSA,R

S,Y: WGOFF
SYS:

50

This is the message from your GA TWR macro instruction.
Your program contains the standard SAVE/RETURN linkage, so control is returned

to you at the terminal; this is indicated by the underscore.

OUT6A was automatically cataloged when opened, with access = U and you desire to
protect it from further modification by issuing a RET command to change the access to
R (read only). INP6 will be automatically erased at LOGOFF since you specified it as
temporary in your DDEF command, with deletion at LOGOFF.

The LOGOFF is accepted by the system.

Example 7: Multiple Assemblies and Program Linkage

In this example, you assemble three programs that refer to one another and then place them on two different
libraries. Two programs are assembled in express mode from prestored source data sets, and the third program
is assembled from the terminal. A control section is rejected during loading of the programs. You correct the
error causing the rejection and run your programs.

After the LOGON procedure is completed, you begin processing.

S.Y: DEFAULT LPCXPRSS=Y

S,Y: ~SM MAIN7,Y

SYS:

S,Y: SUB7A

You request that your assembly be done in express mode which will allow you to as­
semble a number of source programs consecutively without a pOSSibly time-consuming
return to the Command System after each assembly.

The Y specifies the existence of a prestored source data set named SOURCE.MAIN7.
All modules that you assemble in the express mode will be governed by the parameters
you specify with your ASM command for the first source module.

Your first source program is assembled. \Vhen assembly is completed your keyboard is
unlocked and the language processor control will read the next word entered at SYSIl':
as the name of the next module to be assembled.

SUB7 A is your next module"'. The language processor control will ignore any parameters
you specify at this point and default to the parameters you specified on your entry into
express mode. SUB7 A is therefore assumed to be a prestored source data set.

SUB7 A includes the following statements:

Examples 51

SYS:

'~SUBPROGRAM 7 A
PST1 PSECT

ENTRY
DC

CST7A
EP1

DC

CSECT
SAVE
L
ST
ST
LR
USING
LR
USING

L
RETURN
END

YOU: SUB7B

SYS:

EP1
F'76' SAVE AREA LENGTH
18F'O' REMAINDER OF SAVE AREA

(14,12) SAVE
14,72(0,13)
14,8(0,13)
13,4(0,14)
13,14
PST1,13
12,15
EP1,12

13,4(0,13)
(14,12)

REGISTERS IN CALLER'S SV AREA
GET RCON FROM CALLER'S SAVE AREA
STORE FORWARD POINTER
STORE BACKWARD POINTER
SET PSECT AND SAVE AREA REGISTER
PSECT COVER REGISTER

CSECT COVER REGISTER

RELOAD SAVE AREA BASE REG
RESTORE REGISTERS

This and your other subroutine are reenterable programs. You use a standard fonn for
such programs that require a separate PSECT for your variables. See Appendix C for
more details.

Your second source progr~m is assembled. 'When assembly is completed, your keybo~rd
is unlocked for you to enter the next module name.

A prestored source data set was expected as a result of the STORED=Y parameter when
you entered express mode. No such prestored module can be found.

The language processor control causes an exit from express mode, issues a diagnostic
message and returns to the Command System with an underscore. To return to non­
express mode without causing a diagnostic message you should have typed an underscore
when the keyboard was unlocked, or ynu cnuld have intenupted the language processor
by pressing the attention button, issued the command DEFAULT LPCXPRSS=, and
then continued processing with the GO command.

You decide to have your two listing data sets printed now as background tasks before
proceeding with the assembly of your third module.

S,Y: PRINT LIST.MAIN7",EDIT,Y
SYS:

MAIN7 was successfully assembled, and the printing of its listing data set is assigned as
a separate task (BSN =0624). The MAIN7 nbject mndule is stored in the library at the
top of your program library list (in this case, your USERLIB).

The format of the PRINT command as given above is recommended for use when­
ever practical. Thc EDIT option allows line spacing to be regulated by the print control
character in the first byte of each record. The ERASE option (Y) affords timely public
storage release so that unwanted data is not occupying space in the system.

Note: Example 5 indicates the individual operands of the PRINT command.

S,Y: PRINT LIST.SUB7A",EDIT
SYS:

52

The print task is accepted and assigned a BSN (0625). The object module for SUB7A is
also stored in your USERLIB.

S, Y: QDEF DDNAME=LIBADD, DSNAME=LIBA, OPTION=JOBLIB, DISP=OLD
Now you define a cataloged job library (LIB A), which the system places at the top of
your program library list. Object modules from any successive assembly are placed in it
instead of in your USERLIB. The OLD indicates that LIBA already exists. The omitted
data set organization (VP) is supplied from the catalog entry.

You are now ready to proceed with the assembly of your third module. Since you are
no longer in express mode you must enter the ASM command with all appropriate
parameters.

S,Y: !SM SUB7B,N

S. Y:

SYS:

The N specifies a data set to be entered dynamically (Le., it does not yet exist). It will
automatically be named SOURCE.SUB7B. You enter your third source program from
the terminal, using tab stops at columns 17, 23 and 25. By default, line numbering will
start at 100, with increments of 100.

0000100* SUBPROGRAM7B
0000200PST2 PSECT
0000300 ENTRY BGN7

F'76'
18F'0'

0000400 DC SAVE AREA LENGTH
REMAINDER OF SAVE AREA 0000500SAVE DC

0000900EPl
0001000BGN7
0001100
0001200
0001300
0001400
0001500
0001600
0001700

0002200
0002300CST7B
0002400SYMB

0003100
0003200
0003300
0003400AR
0003500LNG
0003600

CSECT
SAVE (14.12)
L 14,72(0,13)
ST 14.8(0,13)
ST 13,4(0,14)
LR 13.14
USING PST2,13
LR 12,15
USING BGN7,12

B SHB
CSECT
EQU *

GATWR AR,LNG

SAVE REGISTERS IN CALLER'S SAVE AREA
GET RCON FROM CALLER'S SAVE AREA
STORE FORWARD POINTER
STORE BACKWARD POINTER
SET PSECT AND SAVE AREA REGISTER
PSECT COVER REGISTER

CSECT COVER REGISTER

L 13,4(0,13) RELOAD SAVE AREA BASE REG
RETURN (14,12) RESTORE REGISTERS
DC C'SUBPROGRAM7B FINISHED'
DC A(L'AR)
END

The assembler scans the source input and finds no errors. The assembly process is com­
pleted and you are invited to enter your next command.

S,Y: ~RINT LIST.SUB7B",EDIT
SYS:

The print task is accepted for non-conversational processing. If you attempt to assemble a
program with a module, control section, or external entry point name that already exists
in the current library, your assembly will be completed but the'module will not be
stowed. You will then be allowed to enter a new JOBLIB name, after which the stow will
be performed. Assume BSN=0626.

Because SUB7 A and SUB7B object modules reside on different libraries, you don't
notice that a control section name (EP1) in SUB7B duplicates an entry point name in
SUB7A.

Examples 53

S.Y: MAIN7
Here you run MAIN7. It contains V-type address constants that name external entry
points in both SUB7 A and SUB7B. During the loading of MAIN7, SUB7 A and SUB7B
are loaded.

SYS: *** CSECT(EPI) IN MODULE (SUB7B) IS REJECTED BECAUSE PREVIOUSLY NAMED AS
ENTRY POINT IN MODULE (SUB7A)

Your duplicated name is discovered at load time. This message tells you that, although
SUB7B was loaded, its duplicated control section was not. Execution of MAIN7 is
cancelled.

You decide to change the control section's name so that it will be loaded when you
again run MAIN7.

S.Y: QANCEL BSN=0626
First you cancel the separate task that may still be printing the listings from the errone­
ous SUB7B assembly.

S • Y: 1!NLOAD NAME=MAIN7
Then you unload the erroneous module from your virtual storage. To do so, you unload
MAIN7, which had caused the loading of SUB7B.

YOU: DDNAME? JOBLIB=Y
Before you can reassemble, you must either cause a different library to be placed at
the top of your program library list, or erase the erroneous object module. You choose
to move one of your libraries. You request a review of your library chain.

SYS: DDNAME DSNAME
LIBADD LIBA
LIBCDD LIBC
SYSULIB USERLIB
LIBEDD LIBE

YOU: IOBLIBS DDNAME=SYSULIB

YOU: DDNAME? Y

SYS: DDNAME
SYSULIB
LIBADD
LIBCDD
LIBEDD

You request that your USERLIB be placed at the top of your program library chain.

You request that your JOBLIB chain be displayed.

DSNAME
USERLIB
LIBA
LIBC
LIBE

The system redefines your USERLIB to place it at the top of your JOBLIB chain and
displays the chain. Your reassembled program will be placed in your USERLIB, eliminat­
ing the problem of duplicate entry point names.

S.Y: MODIFY SETNAME=SOURCE.SUB7B

SYS:

S,Y: #

54

900.CST7B CSECT

%E

Using the MODIFY command, you change the duplicate control section name in your
source statement.

Modifications are now solicited using the # sign.

You correct the source statement and then indicate the completion of modification
with %E. Since review was not requested, the original form of the corrected line will
not be presented to you.

S,Y: ASM SUB7B.Y

SYS:

Now you reassemble the corrected source data set, which already exists.
Note that you never need to issue a DDEF command for a source data set that has

been typed in earlier during the current session.

The assembler scans the source input (as updated) and finds no errors. The assembly
process is completed and you are invited to enter your next command.

S,Y: PRINT LIST.SUB7B, •• EDIT
SYS:

S.Y: CALL MAIN7

The PRINT task is assigned a batch sequence number and accepted for non-conversa­
tional processing. Assume BSN =0627.

You run your main program again.

PGM: SUBPROGRAM7B FINISHED
This message is printed by the GATWR macro instruction in SUB7B, indicating its
completion (and successful loading of your two subprograms). The RETURN macro
instruction causes control to be returned to the caller (MAIN7). A RETURN macro in­
struction in MAIN7 is eventually executed, causing control to be returned to the termi­
nal. For a more complete discussion of CALL/SAVE/RETURN linkage conventions,
see Appendix C.

S,Y: ERASE DSNAME=SOURCE.MAIN7
S,Y: ERASE DSNAME=SOURCE.SUB7A

S,Y: EXHIBIT BWQ

SYS:

BSN USERID TID
0625 ADUSERID 18
0627 ADUSERID 18

S.Y: !!OGOFF
SYS:

You no longer need your two presto red source data sets, so you erase them from stor­
age and delete their catalog entries. You decide to retain the source data set named
SOURCE.SUB7B.

Before logging off, you decide to check on the status of your PRINT. requests. This com­
mand causes a display of all Batch \Vork Queue entries assigned to your userid.

BATCH WORK QUEUE STATUS AT 14:55 9/15/70
TYPE STAT DEV STAID DSNAME
LIST A UR SUB7A
LIST P UR SUB7B
This display indicates that 0625 is active (A) and that 0627 is awaiting execution and
pending (P). The absence of 0624 from the BWQ tells you that the job has been com­
pleted; 0626 does not appear since you cancelled it earlier.

The LOGOFF is accepted by the system.

Examples 55

Example 8: Use of pes Immediate Statements

In this example, you are executing a program for the first time. Since the Program Control System (pes)
provides complete debugging capability at execution time, you have not included any debugging facilities in your
assembled program. Anticipating the use of pes, you requested an ISD when the source program was assembled.

After the LOGON procedure is completed, you entcr your 6rst command.

S, Y: DDEF LIBBDD"LIBB,OPTION=JOBLIB,DISP=OLD
- You use this command to define the job library data set LIE8, which contains your

assembled object modules. Although LlBB is cataloged, you must define it with a
DDEF command to make it available during this session.

S,Y: DEFAULT LIMEN==I

S,Y: PGMB

You desire all information messages to be presented at your terminal.

You cause the named object module to be loaded and executed.
When a module name is given as the command, execution begins at the module's

standard entry point. It is the instruction named by the operand of the assembled END
statement, or, if no operand is given, the first executable instruction in the first CSECT.

YOU: (press attention button)

S, Y:
STOP

When you do not receive the expected output after several minutes, you interrupt your
program.

The system prints an exclamation mark to indicate its readiness to accept a command
after an attention interrupt. You enter the PCS STOP command to determine the loca­
tion in your program of the next instruction that was to be executed when you inter­
rupted execution.

SYS: STOP AT PGMBEXT.(X'DA') PSW 2 0 0 004A3070
The STOP command causes the display of the symbolic location and the PSW at the
point the interrupt occurred. In this case, the interrupt occurred just prior to the instruc­
tion X'0A' (hexadecimal) bytes beyond the external symbol PGMBEXT. You can use this
information to determine the corresponding source statement in the object listing.

The location of the interrupt is indicated as a displacement heyond the nearest in­
ternal symbol if you have issued a pes command such as SET or AT. They make the
ISD (and its internal symbols) available.

The rightmost field of the PSW gives the virtual storage address of the next instruc­
tion to be executed.

S,Y: ~INE? DSNAME=SOURCE.PGMB,(2500,2600)
Suspecting that an undesirable loop has occurred in the convergence portion of your
program, you request a printout of several of the source lines at the end of your con­
vergence.

SYS: 0002500 CP DIFF,EPSILON
0002600 BH RECYCLE

S,Y: QISPLAY PGMB.EPSILON,PGMB.DIFF
You request a printout of the appropriate variables, and you explicitly qualify the in­
ternal symbols (EPSILON and DIFF by the module name (PGM8).

SYS: PGM8.EPSILON=+.10000000E+04
PGMB.DIFF=+.21301962E-02

S,Y: §ET PGMB.EPSILON=lE-4

56

You decide to reestablish the value of the constant EPSILON to cause your program
to converge more quickly.

SYS: PGM8.EPSILON=+.lOOOOOOOE-03

S,Y: go

PGM: JOB COMPLETED

S,Y: !!OGOFF
SYS:

After each SET is performed, a printout conllrming the modillcation is available. The
message filter code of I must be specified to obtain such information messages.

You issue the GO command to resume execution of the program. Since no operand is
specified, execution resumes at the point of interruption.

Your program issues a message to the terminal to indicate successful completion of the
program. Your program's RETURN macro instruction causes the typing of an under­
score requesting the next command.

The LOGOFF is accepted by the system.

Examples 57

Example 9: Use of pes Dynamic Statements

In this example, you use some of the most powerful commands of the Program Control System to debu~ a complex
program. pes provides trace facilities, conditional program interruptions and modification of variables, and dumps.

After completing the LOGON proccdur!', you begin processing.

StY: ~DEF DDCURR"CURRENT,OPTION=JOBLIB,DISP=OLD
This DDEF command causes your job library CURRENT to be placed at the top of
your program library list. CURRENT has been previously cataloged and contains as­
sembled object modules.

S.Y: ~DEF PCSOUT,VI,PCSOUT9

S,Y: !!OAD MAIN9

With the second DDEF command, you define the data set that will be filled by the
PCS DUMP command, which you may print later. It requires the data definition name
PCSOUT and virtual indexed (VI) organization. You name the data set PCSOUT9. It
is automatically cataloged, since it will reside in public storage. The system defaults
disposition to NEW, since the data set is being created in this task.

The CALL command causes an object module to be loaded and then executed. Here you
cause it to be loaded only. You do this so that you can insert AT statements in the
module before executing it.

SYS: ***** UNDEFINED REF(FABLE) IN MODULE (MAIN9). ADDRESS FFFFFOOO ASSIGNED.

S.Y: !!OAD TABLE

The system issues a message indicating that MAIN9 has a reference to an external
symbol (FABLE) that does not exist in the libraries searched. An invalid address had
been assigned for the reference in MAIN9 that will cause an interrupt if program exe­
cution reaches it.

\Vhen you realize that the symbol has been misspelled in the source program, you
enter the necessary commands to correct the situation.

You request the object module defining the external symbol TABLE to be loaded into
virtual storage. The module would have been implicitly loaded when MAIN9 was loaded
if the spelling had been correct. Loading the module at this point, however, does not
correct the problem entirely. MAIN9 still contains the invalid reference, a V-type adcon.
Before entering a SET command to place the proper value into the adcon, you qualify
your program's internal symbols.

S. Y: g.UALIFY MNAME=MAIN9
Mter issuing this command, you can refer to internal symbols without the qualifying
module name; they will be automatically qualified with the prefix "MAIN9."

S,Y: ~ET ADDTAB=A'TABLE'

SYS:

SYS: ADDTAB=0084COOO

58

You request that the adcon defined in your source program by the name ADDTAB be
set to the value of the address of eternal symbol TABLE. If you had not already ex­
plicitly loaded TABLE, you would have been prompted at this point to load the module
containing it.

Before it prints a symbol that you have qualified, the system reminds you of the quali­
fication.

The contents of the modified adcon are displayed 111 IH>xadecimal. This is the virtual
storage address of TABLE.

S,Y: AT LAST;STOP

SYS: 00001

S,Y: QALL MAIN9

This statement will cause your program to be interrupted when execution reaches the
address corresponding to the statement named LAST.

The system assigns a number to each statement containing an AT (here 00001) that can
be used for reference in removing the statements.

You initiate execution of the module. You must provide an operand in this call com­
mand, since a LOAD command naming another module has been entered after the
loading of MAIN9.

SYS: E008 FIXED POINT DIVIDE INTERRUPT. PSW = BFC000900280A1A
INTERRUPT OCCURRED IN CSECT MAIN9C WITH DISPLACEMENT OOOAIA FROM THE BEGINNING
OF THE CSECT

Your program does not contain a routine for handling this type of interrupt.

S.Y: LINE? DSNAME=SOURCE.MAIN9,(3200,3500)

SYS: 0003200 DIVRTN
0003300
0003400
0003500

You request a printout of several of your source statements that correspond to the 10-
eation of the interrupt. Tab stops are set at columns 18 and 24.

L 2,DVND
SRDA 2,32
D 2,DVSR
ST 3,QUOT

Your program does not provide protection against division by zero, so you insert the
necessary checking. .

S,Y: AT DIVRTN; IF DVSR=O;SET 3R=0;BRANCH DIVRTN. (12)

SYS: 00002

S,Y: BRANCH DIVRTN

With this statement, you request that the value of DVSR be compared to zero upon
arrival at DIVRTN. If it is equal, general register 3 is set to zero, and control transfers
to the instruction twelve bytes beyond DIVRTN.

This is the number the system assigns to your AT command.

You cause your program to begin execution at DIVRTN so that you can immediately
check the effectiveness of the pes statements.

SYS: AT DIVRTN PSW 3 0 0 00280A12 2
The system issues a response to the statement indicating that the IF command has re­
sulted in a "TRUE" comparison. The 2 to the right of the PSW printout is the number
of the AT statement that caused the printout.

SYS: RUNNING FROM DIVRTN.(12)
This indicates that the branch has been taken.

SYS: STOP AT LAST PSW 2 0 0 00280F02 1
Execution has reached the location corresponding to LAST. The STOP you specified
earlier is executed.

S,Y: QISPLAY QUOT, RESULT

SYS: QUOT=O
RESULT=1726

S,Y: BEMOVE 1

You request a printout of two key variables in your program.

You are convinced that the program is operating correctly, so you remove the dynamic
STOP to prevent future interruption.

Examples 59

S,Y: go

PGM: JOB COMPLETED

S,Y: DUMP MN9PST

You cause your execution of your program to resume at the point of interruption.

Your program issues a message indicating its successful completion and then returns
control to the keyboard.

You request a hexadecimal dump of your PSECT by specifying its external name. It
will be written in the PCSOUT9 data set you defined earlier. If you had used the in­
ternal name of the PSECT (MAIN.MN9PST), you would receive a formatted dump
shOwing symbols and code in source format.

S,Y: RELEASE DDNAME=PCSOUT

SYS:

S,Y: ~OGOFF
SYS:

60

If you wish to print the data set during this session, you must first issue a RELEASE
command for its data definition. This causes the data set to be closed.

The data set will be printed as a separate task. A batch sequence number will be as­
signed for system control.

The LOGOFF is accepted by the system. Remember that the alterations you made to
your program with the PCS commands (SET.,AT) exist only in virtual storage. If you
want to make permanent changes to a program, you must reassemble from an altered
source data set. This causes the changes to be incorporated into the object module,
which you would then load.
Changes you make with the SET command remain in effect as long as the program is
loaded. By contrast, changes you make with AT commands in any of your programs are
completely removed if you issue an UNLOAD command, even if the program you un­
load does not contain AT statements and is not linked to other programs. Logging off
causes all of your programs to be unloaded from virtual storage.

Example 10: Input and Output on Magnetic Tape

In the previous examples, all of your data sets resided on direct-access devices (disks). In this example, your data
sets reside on tape.

In Part 1, you execute a program that reads a cataloged data set from tape and writes a data set on a new tape,
which you then catalog.

In Part 2, the same program reads a cataloged data set created on tape by OS or OS/VS and then writes a
data set on the same tape you cataloged in Part 1.

Part 1: Reading a Cataloged Labeled Data Set

MNI0PST

AREA
DCBINI
DCBOUTI
MNI0CST
CSTlO

AGAIN

EODI0

EXIT
SYNI0

OKMSG
Ml
SYNMSG
M2

PSECT
ENTRY
ENTRY
ENTRY
DC
DC
DS
DCB
DCB
CSECT
SAVE
L
ST
ST
LR
USING
'LR
USING

.
OP:EN
READ
CHECK

.

You complete the LOGON procedure and begin your task. Your previously-assembled
program includes the following source statements:

CSTI0
EODIO
SYNIO
F' 76 ' SAVE AREA LENGTH
l8F' 0 ' REMAINDER OF SAVE AREA
80C
DDNAME=INI0DD,EODAD=EODlO,SYNAD=SYNlO
DDNAME=OUTIODD,RECFM=F,LRECL=80,SYNAD=SYNlO

(14,12)
14,72(0,13)
14,8(0,13)
13,4(0,14)
13,14
MNI0PST.13
12,15
CSTI0,12

(DCBINl"DCBOUTl.(OUTPUT))
INIDECB,SF,DCBIN1,AREA
INIDECB

SAVE REGISTERS IN CALLER'S SAVE AREA
GET RCON FROM CALLER'S SAVE AREA
STORE FORWARD POINTER
STORE BACKWARD POINTER
SET PSECT AND SAVE AREA REGISTER
PSECT COVER REGISTER

CSECT COVER REGISTER

OPEN DCBS
READ INPUT RECORD

(modify record)

WRITE OUTIDECB,SF,DCBOUTl,AREA WRITE OUTPUT RECORD
CHECK OUT1DECB
B AGAIN RECYCLE
CLOSE (DCBIN1,.DCBOUTl) CLOSE DCBS
LA l,OKMSG
EXIT (1) RETURN TO TERMINAL
LA 1,SYNMSG
B EXIT
DC ALI (L'MI) MESSAGE LENGTH IN FIRST
DC C'PROGRAM FINISHED OK'
DC AL1(L'M2) BYTE OF MESSAGE
DC C'SYN ERROR'
END

Examples 61

The program reads a record from one data set, modifies the record, and then writes it
in a data set on another tape.

The CHECK is required to complete a READ or WRITE I/O request. It detects any
errors or exceptional conditions that may occur and, when these arise, transfers control
to the external symbol specified in the EODAD or SYNAD DCB field. When the pro­
gram attempts to read past the last record, control is passed to EODIO and the DCB's
are closed.

The EXIT macro instruction causes an appropriate message to be printed, and then
returns control to the terminal. Notice that each DCB contains the name of one of your
DDEF commands, which in turn specifies the data set described by the DCB.

S,Y: DDEF INIODD,.INIO,DISP=OLD

SYS:

Since your input data set is already cataloged, you need entry only these parameters.
The omitted information is provided by the catalog entry and by the tape label, which
was created by the system when the data set was written. OLD indicates that the data
set exists.

You will be notified that your task is waiting for the system operator to mount your tape
reel (a private volume). The system obtains its volume serial number from your cata­
log. \\-'hen the tape volume has been mounted and activated, your task will proceed.

S,Y: DDEF DDNAME=OUTIODD,DSORG=PS,DSNAME=OUTIO.UNIT=(TA,9),VOLUME=-
(PRIVATE) , LABEL= { • SL}

SYS:

SYS; MAIHIO

You found it necessary to continue your command operands on a second line. Here
you define the output data set your program will write on tape. It is not cataloged and
is not yet created, so you must supply all the necessary parameters in your DCB and
DDEF. Note that the continuation hyphen may occur anywhere so long as it is the
last non-blank character in the line.

The data set is to have phYSical sequential {PS) organization, as do all data sets re­
siding on magnetic tape.

The UNIT field of this DDEF command indicates that your data set is to reside on
a 9-track tape.

The DISPOSITION field is defaulted (by omission), indicating that the data set is
NEW (i.e., does not now exist).

The VOLUME field specifies a private volume (all tapes are private). You have not
specified the volume serial number of a tape reel in VOLUME field; so the system in­
structs the operator to choose a tape reel from the installation pool.

The LABEL field specifies that the system is to create standard labels (SL) on the
tape when creating the data set.

You must wait for the operator to select a tape reel, mount it, and inform the system of
its volume serial number. You will then be informed of the selected volume, at your
terminal, for future reference.

Now you run your program.

PGM: EXIT. RELEASE ALL UNNEEDED DEVICES
PROGRAM FINISHED OK

YOU: CATALOG OUTlO

S.Y: !!OGOFF

62

At the conclusion of your program, EXIT prints the messages and returns control to
the terminal; this is indicated by the underscore.

You catalog your data set. Only VAM data sets are automaHcally catalogerl when created.

SYS:
LOGOFF was accepted by the system. In previous examples, your data sets were all
automatically cataloged on public disks. Public disks remain mounted while the system
is operational; they contain data sets belonging to the users with whom you share the
svstem.
, Your private volumes (all tapes and your own private disks) are dismounted at the end

of your task and later retained. Thus, it is not necessary to catalog them in order to
preserve them. However, cataloging your private volumes (disks and tapes) enables you
to write DeB macro instructions and issue DDEF commands with the minimum re­
quired parameters. The system obtains the missing parameters from your eatalog entry.

Part 2: Reading a Cataloge~_ 'b_ut _~nlabeled OS or OSjVS Data Set
You complete the LOGON procedure and enter your first command.

S, Y: DDEF INI0DD" '~STUFF .DISP=OLD

SYS:

You define your input data set. It differs from the input data set in Part 1 in several
ways:
• It was created under OS or OS/\7S. You indicate this by specifying the data set name

with an asterisk preceding .
• It is unlabeled. This means that you cannot use the label to provide any of the DeB

and DDEF parameters. Those not specified in your DeB macro instruction or DDEF
command are taken from the catalog entry. Appendix E provides further details
about these sources and the order in which they are searched.

You will be notified that your task is waiting for the system operator to mount your tape
reel (a private volume). The system obtains its vnlume serial number from your catalog.
When the tape volume has been mounted and activated, your task will proceed.

StY: DDEF OUTIODD,PS,OUTIOA.UNIT=(TA,9).VOLUME= (.101010) ,LABEL=(2 •• l

StY: CALL MAINIO

You decide to write your output data set on the same tape reel you used in Part 1.
You indicate that it will be the second data set on the tape with the 2 in the LABEL
field. You previously omitted this parameter {default=l, or first). The data set does not
now exist, so you choose the default for disposition (NEW) and omit the field.

You run the program described in Part 1 of this example. Note that the DDEF com­
mand enables you to supply various data set and volume infonnation at the terminal.

PGM:
PGM:

EXIT. RELEASE ALL UNNEEDED DEVICES
PROGRAM FINISHED OK

StY: RELEASE INIODD

StY: CATALOG OUTIOA,N

S,Y: I:OGOFF
SYS:

This command deletes the DDEF command you issued earlier, thereby withdraWing
definition of the data set. Accordingly, the system instructs the operator to dismount
your tape reel and save it. The unit on which it was mounted is now free for other use.

Positional operand notation is used here. You catalog your new dab~ set, indicating with
the N that the catalog entry to be created for it is new (not currently cataloged). By
default, access will be unlimited.

The LOGOFF is accepted by the system. The label for a data set on tape is similar to
the data set control block (DSeB) provided by the system when a data set on a disk is
first created. Both contain information about the data set that may be required when
the data set is processed. Appendix E provides further details.

Examples 63

Example 11: Conversational Initiation of Nonconversational Tasks

It is often more convenient to have your programs run after you have left the terminal-that is, to have them run
in non conversational mode. Two ways of doing this are shown in this example.

In Part 1, you begin your task conversationally and then use the BACK command to switch its execution to the
nonconversational mode.

In Part 2, you construct a nonconversational task and then use the EXECUTE command to cause it to be executed
at a later time.

Part 1: The BACK Command
You complete the LOGON procedure and begin processing.

S,Y: ~ATA DSNAME=BACKPROG
With this command, you build the SYSIN data set (named BACKPROG) that will pro­
vide input to your task after you have switched to nonconversational mode. You do not
need to issue a DDEF command for the data set created by a DATA command.

S,Y: #DDEF OUT11"OUTDS,DISP=OLD
The system prompts (with #) for the first command to be executed in your nonconversa­
tional task. This DDEF command defines the cataloged data set that MAINll has
previously written and which will be written Over when MAIN 11 is run. It resides on a
public disk.

S,Y: #CALL MAIN11
This program is already assembled and its object module resides on your USERLIB dat~
set, which never requires a DDEF command. It includes the following statements:

MN11PST PSECT
ENTRY STRTll
DC F'76' SAVE AREA LENGTH
DC 1aF'O' REMAINDER OF SAVE AREA

AREA DS 80C DATA AREA
DCBOUT DCB DDNAME=OUT11
MN11CST CSECT
STRTll SAVE (14,12) SAVE REGISTERS IN CALLER'S SV AREA

L 14,72(0,13) GET RCON FROM CALLER'S SAVE AREA
ST 14,8(0,13) STORE FORWARD POINTER
ST 13,4(0,14) STORE BACKWARD POINTER
LR 13,14 SET PSECT AND SAVE AREA REGISTER
USING MNllPST,13 PSECT COVER REGISTER
LR 12,15
USING STRTU,12 CSECT COVER REGISTER

.
OPEN (DCBOUT,(OUTPUT» OPEN OUTPUT DCB

ALPHA GATRD AREA,LNG READ FROM SYSIN
CLI AREA+3,C'E' REACHED END?
BE FINISH BRANCH IF YES

create a record

64

FINISH

LNG

S,Y: #

PUT
B
CLOSE

DC
END

DCBOUT,AREA
ALPHA
(DCBOUT)

F'80'

WRITE RECORD
RECYCLE
CLOSE DCB

AREA LENGTH

Notice how the DDEF command specifying the same data definition name as specified
in your DCB statement contains the name of the desired output data set.

PART 0049628-49-11-MODEL 879

S,Y: #
PART 0078928-49-11 MODEL 127

S,Y: #
PART 0078927-49-10 MODEL 127

S, Y: #
E

S,Y: #
LOGOFF

S,Y: #
%E

This is part of the data to be read by CATRD.

You identify the end of your data with E. Your task will be abnormally terminated if
CATRD attempts to read past the end of SYSIN.

Note that errors made while entering this data and the entire command sequence
under the DATA command are not detected until the nonconversational task is executed.

You enter %E to indicate the end of your BACKPROC data set. The system then
prompts you with the underscore to continue your conversational task.

S,Y: BACK DSNAME=BACKPROG
SYS:

Beginning with the first command in your BACKPROG data set (DDEF OUTIl ...),
your task is continued nonconversationally. If the system is not able to accept your
request, the BACK command is rejected. It can be re-issued later during this session.

Your nonconversational task will be abnormally terminated if it attempts to access a
data set on a private volume for which you have not issued a DDEF command prior to
issuing the BACK command. The operator must have mounted any required volumes
before the nonconversational task is created.

The conversational part of the task is now finished. You can le~ve the temlinal or
log on again.

WARNING: The BACK command may not complete its operation if the attention key
is depressed shortly after issuing the command. The result is a non-conversational task
still connected to a terminal. Wait a few seconds before reit;itiating LOGON procedures.

Part 2: The EXECUTE Command
You complete the LOGON procedure and begin your task.

Examples 65

S, Y: DATA DSNAME=EXECPROG
- You now build the SYSIN for the separate nonconversational task that is to be executed

later. The system prompts for commands and data with the number sign. When the data
set EXECPROG is completed, it will be automatically cataloged. This cataloging is a
function of the DDEF issued when the DATA command is used.

S, Y: #
LOGON ADUSERID",ADACCT29

S, Y: #

You provide information for the LOGON of the nOllconversational task (LOGON starts
in column 3). Except for the inclusion of this command, the tas kis exactly the same as
the one you constructed in Part I of this example. No password is given for a non­
conversational task.

If any private volumes were to be used during the nonconversational task, a SECURE
command would be needed at this point. The command would notify the operator to
secure a unit for your private volume(s) and mount them before the task is initiated.

DDEF OUT11"OUTDS,DISP=OLD

S,Y: #
MAIN11

S,Y: #
PART 0049628-49-10

S, Y: #
PART 0078928-49-11

S, Y: #
PART 0078927-49-10

S,Y: #
E

S,Y: #
LOGOFF

S,Y: #
%E

This command defines the cataloged data set on which your program (MAINlI) will
write its output.

This program is already assembled and stored on your USERLIB, which doesn't require
a DDEF command. Its relevant statements are shown in Part 1.

MODEL 879

MODEL 127

MODEL 127
This is your input data.

S,Y: EXECUTE DSNAME=EXECPROG
SYS:

S,Y: !!OGOFF

SYS:

66

Your request for a nonconversational task has been accepted by the system. The task is
initiated when system resources are available.

The data set EXECPROG will provide the SYSIN for your nonconversationaI task. Its
SYSOUT will consist of system messages and any output to SYSOUT generated by your
program. SYSOUT is printed later as a separate nonconversational task, and the listing
is identified as yours. The system prompts you with an underscore (below). You are free
to enter any command sequence to continue your conversational task.

This LOGOFF is for your conversational task.

LOGOFF is accepted by the system.

Example 12: Preparing a Job for Nonconversational Processing

It is not always convenient or efficient to use remote terminals to create or initiate non conversational tasks. In this
example, your task is on punched cards. You submit to the machine room the card deck that contains the com­
mands and data for your task. The operator then enters them into the system.

LOGON ADUSERID",ADACCT29
You initiate your nonconversational task with the LOGON command. All LOGON
parameters must be included on one card. For non conversational tasks, the password
parameter must be omitted. This command must begin in the third column. The first
two columns must be blank.

ASM AT2EX12,N,LISTDS=N

PST12 PSECT
ENTRY
DC
DC

AREA DC
CST12 CSECT
BEGIN12 SAVE

L
ST
ST
LR
USING
BASR
USING

HERE EQU
GATRD
CLI
BE
MVZ
L
SLA

* RESTRICTED TO
ST
MVZ
GATWR
B

LEAVE EXIT
LENGTH DC

END

You construct the same program as in Example 4 specifying different external symbols
to avoid duplication when your assembled object module is placed on USERLIB.

Remembering that you cataloged the source data set in Example 4, you use a different
module name so that the source data set created during this assembly will have a
different name. You indicate that you do not want a list data set. Your listings will there­
fore be printed automatically on SYSOUT and no record of them retained after printing.

BEGIN12
F'76'
18F'0'
F'O' RD/WR AREA

(14,12)
14,72(0,13)
14,8(0,13)
13,4(0.14)
13,14
PST12,13
11,0
*.11 LOCAL BASE REG
* AREA+3,LENGTH READ FROM SYSIN
AREA+3,C'E' CHECK IF END
LEAVE BRANCH IF YES
AREA + 3 (1) , =X ' 00 ' CONVERT TO BINARY
5,AREA
5,1 MULT BY 2

INTEGERS FROM 0 TO 4
5.AREA
AREA+3 (1) • =X'FF' CONVERT TO EBCDIC
AREA+3, LENGTH WRITE ON SYSOUT
HERE
'PGM FINISHED'
F'l' LENGTH OF AREA

You could have assembled from a prestored source data set, just as in conversational
mode.

Examples 67

AT2EX12
2
1
3

E

LOGOFF

68

When your program is executed, it will attempt to read data from SYSIN, which is this
stream of commands and data. Here you supply the input for three cycles of GATRD.

This entry signals the end of data input and will cause your program to branch to
EXIT, which will return control to SYSIN. The next command in the SYSIN stream
below wi1I then be executed.

At the completion of your task, SYSOUT will be printed as a separate task. It will
contain commands, listings, and the program output generated by GATWR. SYSOUT
will include neither program input (2,1,3) nor assembler parameters (AT2EXI2,N). It
will include your listings since you specified in your ASM command that no list data
set was required.

Unlike the LOGON command, LOGOFF permits no parameters. All data set disposition
must be completed before LOGOFF. The data set named SOURCE.AT2EXI2 will be
automatically cataloged by the system. No user action is necessary. A DDEF is issued at
ASM time, accommodating the module name AT2EXI2, by prefixing SOURCE to the
object module name.

After completion of this task, you may execute AT2EXl2 again, since the object
module will be retained on USERLIB.

The LOGOFF command must begin in card column 3.

Example 13: Storing DDEF Commands for Later Use

In this example, you create a data set containing DDEF commands for hequently used data sets. Your DDEF com­
mands create a library hierarchy that permits you to select various versions of identically named subroutines.

You complete the LOGON procedure and enter your first command.

S, Y: DATA DDPACK,I,(lOO,lOO)
- Positional parameter notation is used here. The DATA command can be used to store

any data, source statements, or commands you wish to enter through the terminal. Here
you store a set of frequently-used DDEF commands in a data set you name DDP ACK.
They are stored as character strings in a line data set, but are interpreted as commands
when they are later retrieved with the CDD command. The system prompts you by
typing a line number for each line, since indexing was specified. The data set named
DDP ACK will be automatically defined and cataloged by the system.

S.Y: OOOOlOODDEF JOBIDD"JOBl,OPTION=JOBLIB
S,Y: 0000200DDEF JOB2DD"JOB2,OPTION=JOBLIB

A mixture of positional and keyword parameter notation is used here. These two DDEF
commands define the cataloged job libraries that contain the object modules of your
subroutines. They already exist, so you specify their dispositions as OLD, by default.

S,Y: 0000300DDEF IN13DD"IN13,DISP=OLD
Your program is to retrieve its input from the cataloged data set in IN13.

S,Y: 0000400DDEF OUT13DD,VS,OUT13,VOLUME=(,131313) ,UNIT=(DAl,2311)
Your output data set will reside on a private disk whose volume serial number is 131313.

S,Y: 0000500%E

S, Y:

You Signal the end of the data set containing your DDEF commands. The system then
prompts for the next conversational command with the underscore.

CDD DSNAME=DDPACK.(JOB2DD,IN13DD,OUT13DD)
- This command causes the three DDEF statements in DDPACK that you specify to be

entered in SYSIN. If you omit the DDNAME field, all the DDEF commands are
entered in SYSIN.

The data set containing the DDEF commands must be defined for the current session
(which it was when created by the DATA command), or be cataloged.

SYS: DDEF JOB2DD.,JOB2,OPTION=JOBLIB
SYS: DDEF IN13DD.,IN13.DISP=OLD

Each DDEF command that is issued is printed at the terminal.

SYS: DDEF OUT13DD.VS,OUT13,VOLUME=(,131313) ,UNIT={DA,2311)
SYS:

S.Y: CALL MAIN13

You must wait for the operator to mount your private disk. No wait was required for
the two data sets above because they are on public volumes which remain mounted
while the system is operational. A message \ ill advise you of the wait state.

Your program, which is stored on your USERLIB, calls two subroutines (SUB13A and
SUB13B).

You previously assembled a version of SUB13A and stored it on JOBI. Later you re­
assembled another version and stored it on JOB2. For this session, you want to use the
version on JOB2, so you issue a DDEF command for JOB2, but not for JOB1 (see CDD
parameters). Thus, your program library list begins with JOB2, then USERLIB, and
then SYSLIB; this is the order in which the loader searches for object modules.

Versions of SUB13B are stored in JOBI and USERLIB. Since JOB1 job library is not
in your program library list, the version on USERLIB will be loaded.

Examples 69

PGM: MAIN13 FINISHED

S,Y: !:OGOFF
SYS:

70

Your program prints this message with a GA TWR macro instruction and then returns
control to the caller (the system) with a RETURN macro instruction. The system then
prompts with the underscore.

The LOGOFF is accepted by the system.
All V AM data sets are automatically cataloged. Your private volume is dismounted by

the operator and retained at the installation.

Example 14: Writing and Updating Virtual Index Sequential Data Sets

In the first part of this example, yon nm a program that reads a virtual sequential (vs) data set. After reading a
record, the program adds a key to it and then "vrites the record into a virtual index sequential (VI) data set. The
process is then repeated until all the records have been indexed.

In the second part, another program modifies the VISAM data set by deleting records.

Both of these data sets are on disks.

Part 1; Writing a VI Data Set

MN14APST

AREA
DCBIN14
DCBOUT14

MN14ACST
MN14

ALPHA

EOD14A

SYN14A

OKMSG
OK
SYNMSG
SYN

PSECT
ENTRY
ENTRY
ENTRY
DC
DC
DS
DCB
DCB

CSECT
SAVE
L
ST
ST
LR
USING
LR
USING

.
OPEN
LA
GET
ST
LA
PUT
B
CLOSE
EXIT
CLOSE
EXIT
DC
DC
DC
DC
END

You complete the LOGON procedure and begin processing your task.

You are going to run a program which adds an index to each record of a VS data
set, and then writes the modified records in a VI data set. The program includes the
following statements:

MN14
EOD14A
SYN14A
F'76'
18F ' O'
84C

SAVE AREA LENGTH
REMAINDER OF SAVE AREA
TEMP RECORD STORAGE

DDNAME=IN14DD,EODAD=EOD14A
DDNAME=OUT14DD,SYNAD=SYN14A,LRECL=84,RECFM=F,DSORG=VI,KE­
YLEN=4, RKP=O

(14,12)
14,72(0,13)
14,8(0,13)
13,4(0,14}
13,14
MN14APST,13
12,15
MN14,12

(DCBIN14"DCBOUT14,(OUTPUT»
10,0
DCBIN14,AREA+4
10 ,AREA
10,1(10)
DCBOUT14,AREA
ALPHA
(DCBIN14"DCBOUT14)
OKMSG
(DCBIN14"DCBOUT14)
SYNMSG
A(L'OK)
C'FINISHED OK'
A(L'SYN)
C'SYN ERROR OCCURRED'

SAVE REGISTERS IN CALLER'S SV AREA
GET RCON FROM CALLER'S SAVE AREA
STORE FORWARD POINTER
STORE BACKWARD POINTER
SET PSECT AND SAVE AREA REGISTER
PSECT COVER REGISTER

CSECT COVER REGISTER

OPEN DeB'S
INITIALIZE KEY VALUE
GET VSAM RECORD
SET KEY VALUE
INCREMENT VALUE
PUT VISAM RECORD
RECYCLE
CLOSE DCB'S

CLOSE DCB'S

Examples 71

S,Y: DDEF IN14DD"MYVSDATA
You define the VS data set which provides input to your program. At execution time, the
parameters that you omitted from the DCB macro instruction and from this command
will be provided from the catalog and the data set's DSCB. These fields are:
LRECL(80),RECFM(F) ,UNIT(DA,2311).

S,Y: QDEF OUT14DD,VI,MYVIDATA,UNIT=(DA,2311) ,VOLUME=(,141414)

S,Y: MAIN14A

The data set which your program creates is to reside on one of your own disks. Since
there is no DSCB until the data set is created, and no catalog entry, you must specify
all the required parameters in your DCB macro instruction and in this DDEF com­
mand. The DSORG parameter is not necessary, but supplying it prevents the system
from providing a default option that you may not want.

Now you run your program. Entry is at the first byte of the first CSECT since the
operand of the END statement was blank.

PGM: EXIT, RELEASE ALL UNNEEDED DEVICES
FINISHED OK

When it has finished, the EXIT macro prints a message and causes control to be re­
turned to the terminal. It then prompts with the underscore.

S,Y: ~RASE MYVSDATA

S.Y: J:!OGOFF
SYS:

No longer needing your input data set, you erase it from public storage and delete its
catalog entry.

LOGOFF is accepted by the system.

Part 2: Updating a VI Data Set

UPDPST

DCBDEL
KEYLOC
AREA
UPDCST
START

72

PSECT
ENTRY
ENTRY
ENTRY
DC
DC
DCB
DS
DS
CSECT
SAVE
L
ST
ST
LR
USING
LR

You complete the LOGON procedure and begin your task.

A program named UPDATER reads records from the data set you saved in part l.
It deletes any that begin with "A". It includes the following statements:

START
EODUPD
SYNUPD
F'76' SAVE AREA LENGTH
18F'0' REMAINDER OF SAVE AREA
DDNAME=OUT14DD,SYNAD=SYNUPD,EODAD=EODUPD
F
84C

(14,12)
14,72(0,13)
14,8(0,13)
13,4(0,14)
13,14
UPDPST,13
12,15

SAVE REGISTERS IN CALLER'S SAVE AREA
GET RCON FROM CALLER'S SAVE AREA
STORE FORWARD POINTER
STORE BACKWARD POINTER
SET PSECT AND SAVE AREA REGISTER
PSECT COVER REGISTER

ALPHA

BUMP

EODUPD

LEAVE
SYNUPD

OKMSG
OK
SYNMSG
SYN

USING

OPEN
LA
ST
READ
CLI
BNE
LA
DELREC
LA
B
CLOSE
LA
EXIT
LA
B
DC
DC
DC
DC
END

START,12

(DCBDEL. (UPDAT))
4,0
4,KEYLOC
DECBDEL,KY.DCBDEL.AREA,KEYLOC
AREA+4. C' A'
BUMP
O,KEYLOC
DCBDEL,K, (0)
4,l(4}
ALPHA
(DCBDEL)
1.OKMSG
(I)
1,SYNMSG
LEAVE
A(L'OK)
C'FINISHED DATA SET'
A{L'SYN)
C'SYN ERROR OCCURRED'

CSECT COVER REGISTER

OPEN DCB FOR INPUT & UPDATE
INITIALIZE KEY VALUE
SET VALUE IN KEYLOC
READ RECORD AT KEY VALUE
BEGINS WITH A?
BRANCH IF NO
SET KEYLOC ADDRESS
DELETE RECORD
INCREMENT KEY VALUE
RECYCLE
CLOSE DCB
SET OK MESSAGE
EXIT
SET ERROR MESSAGE

S,Y: DDEF OUT140D.,MYVIDATA
- You define the data set which your program reads, and from which it deletes records.

S • Y: yPDATER

Since it is cataloged, you need provide only the minimum DDEF parameters.

You have previously assembled this program. Its object module resides on your
USERLIB.

PGM: EXIT, RELEASE ALL UNNEEDED DEVICES
FINISHED DATA SET

S.Y: !!OGOFF
SYS:

After your program is completed, the EXIT macro instruction prints its messages and
returns control to the terminal.

LOGOFF is accepted by the system.

Examples 73

Example 15: Missing Subroutines

III this (·x:llllpk. YOIl attempt to ('xecutc a program that refers to a missing sllhroutine. III Part 1, ~'Oll proc('cd
\\[thoul l!i(' sulmmtilll'; ill Part 2, you alter yom program lihrary list to make the subroutine availahle.

Part 1: Proceeding Without a Missing Subroutine

S.Y: CALL MAINl5

You complete the LOCOI'\ procedure and enter your first command.

The CALL commantl causes the objed module to be loaded from your USEnLlB and
then executed.

SYS: "" ~,,~ ':'UNDEFINED REF (SUB15) IN MODULE (MAIN15
(MAIN15) ERROR IN LOADING MODULE.

) ADDRESS FFFFFOOO ASSIGNED.

STATEMENT REJECTED.

S,Y: CALL MAIN15

PGM: MAIN15 COMPLETED

S,Y: ~OGOFF
SYS:

MAINl5 contains a reference to SUB15. During loading, SUBl5 could not be found,
so the loader aSSigned an invalid address that will cause an interrupt if the execution
of MAINl5 ever reaches that reference.

The second message indicates that MAIN15 has been loaded but that the execution
part of CALL has been rejected.

You know that this reference will not be encountered during execution, so you decide
to nm without SUBI5.

Successful completion of your program is indicated by this message.

LOGOFF is accepted by the system.

Part 2: Supplying the Missing Subroutine

S,Y: MAIN15
After logging on, you again attempt to load and execute your program.

SYS: *'~*'"':<UNDEFINED REF (SUB15) IN MODULE (MAINl5) ADDRESS FFFFFOOO ASSIGNED.
(MAIN15) ERROR IN LOADING MODULE.
STATEMENT REJECTED.

S,Y: ~NLOAD MAINl5

And again your subroutine cannot be found. But this time you decide to provide it.

First you must unload MAIN 15 from virtual storage, since it contains the invalid
references to SUBI5.

S,Y: QDEF LIB15DD,VP.LIB15,DISP=OLD,OPTION=JOBLIB

S,Y: MAIN15

PGM: MAIN15 COMPLETED

S,Y: LOGOFF
SYS:

74

The object module for SUBI5 is stored in your LIBI5 job library. Issuing this DDEF
command places the library at the top of your program library list. Now, when MAINIS
is loaded, the refel'ence to SUBl5 will be satisfied.

This time when MAIN15 is loaded the reference is satisfied from your LIBI5 job library.

And your program runs to completion.

LOGOFF is accepted by the system.

Example 16: Entering Data for Later Use

In this example, you use the terminal keyboard to enter statements of a source data set directly into the system,
rather than keypunching them and then entering the card deck.

After completing the LOGON procedure, you enter your first command.

S.Y: EDIT SOURCE.READER

S, Y: 0000100PSTlS
S,Y: 0000200
S, Y: 0000300
S, Y: 0000400
S,Y: 0000500CST16
S, Y: 0000600BEGIN16
S. Y: 0000700
S,Y: 0000800
S, Y: 0000900
S,Y: 0001000HERE
S, Y: 0001100
S, Y: 0001200
S, Y: 0001300
S, Y: 0001400
S,Y: 0001500

S,Y: 0001600

Positional operand notation is used.

You specify the fully-qualified name of the source data set that you are about to enter
at the keyboard. The EDITOR will create a virtual indexed-sequential data set. This
indexing is necessary if you should enter an erroneous line and want to correct your
keyboard input. ASM also requires the line numbering (indexing). The data set is auto­
matically defined, cataloged, and placed on a public disk.

The system prompts for your statements by issuing the next line number it has
assigned.

Seven digit line numbers are shown, to indicate the maximum length of the numbers.

PSECT
ENTRY BEGINl6
DC F'76'
DC 18F'0'
CSECT
BASR 11,0
USING ",11 LOCAL BASE REGISTER
L 13,72(0,13)
USING PST16,13
EQU *
GATRD AREA+3,LENGTH READ FROM SYSIN
CLI AREA+3, C' E' CHECK IF END
BE LEAVE BRANCH IF YES
MVZ AREA + 3 (1) ,=X'OO' CONVERT TO BINARY
L 5,AERA

REA

You notice your typing error before you press the carriage return key. You backspace
three times, move the paper up a line to avoid over-typing, and enter the correct letters.
Then you press the carriage return key.

SLA 5,1 MULTIPLY BY 2
S,Y: 0001700*RESTRICTED TO INTEGER FROM 0 TO 4
S, Y: 0001800
StY: 0001900
S, Y: 0002000
S,Y: 0002100
S,Y: 0002200LEAVE
S,Y: 0002300AREA
S, Y: 0002400LENGTH
S, Y: 0002500_REVISE

S,Y: 0002500
S,Y: ~XCISE 1700

S,Y: INSERT 0002500

ST 5,AREA
MVZ AREA+3(1) ,=X'FF' CONVERT TO EBCDIC
GATWR AREA+3,LENGTH WRITE ON SYSOUT
B THERE
EXIT 'PGM FINISHED'
DC F'O' READ/WRITE AREA
DC F'l' LENGTH AREA

2100
After you are prompted for the number 2500, you notice an error in line 2100. Yon
enter __ REVISE 2100 and then the new line. To insert a new line, simply give it a
line number that falls between two existing line numbers.

B HERE

Here yon delete line number 1700.

S,Y: 0002500 END
You are again prompted to enter line number 2500 and you do so.

Examples 7.5

S,Y: 0002600_END
The,. END indicates completion of your data set. The system then prompts for another
command with the underscore.

S,Y: EDIT SOURCE.READER
S,Y: LIST

S, Y: 0000100 PST16
S, Y: 0000200
S, Y: 0000300
S, Y: 0000400
S,Y: 0000500 CST16
S, Y: 0000600 BEGINl6
S, Y: 0000700
S, Y: 0000800
S,Y: 0000900
S,Y: 0001000 HERE
S,Y: 0001100
S, Y: 0001200
S,Y: 0001300
S,Y: 0001400
S,Y: 0001500
S,Y: 0001600
S,Y: 0001800
S, Y: 0001900
S,Y: 0002000
S,Y: 0002100
S,Y: 0002200 LEAVE
S, Y: 0002300 AREA
S,Y: 0002400 LENGTH
S,Y: 0002500
S, Y: INSERT 450

S,Y: 0000450 AREA

S, Y: EXCISE 2300

S,Y: END

S, Y: ~OGOFF
SYS:

i

76

To check on the accuracy of your corrections, you cause your source data set to he
printed at the terminal. (You could also have printed it on the high-speed printel' by
issuing a PRINT command; the dsname parameter would be SOURCKREADER). .

PSECT
ENTRY BEGIN16
DC F'76'
DC laF'O'
CSECT
BASR 11,0
USING *,11 LOCAL BASE REGISTER
L 13,72(0,13)
USING PST16,13
EQU *
GATRD AREA+3,LENGTH READ FROM SYSIN
CLI AREA+3, C' E' CHECK IF END
BE LEAVE BRANCH IF YES
MVZ AREA+3(1) ,=X'OO' CONVERT TO BINAR~
L 5,AREA
SLA 5,1 MULTIPLY BY 2
ST 5 ,AREA
MVZ AREA+3(1) .=X'FF' CONVERT TO EBCDIC
GATWR AREA+3, LENGTH WRITE ON SYSOUT
B HERE
EXIT 'PGM FINISHED'
DC F'O' READ/WRITE AREA
DC F'l' LENGTH AREA
END

You notice a modifiable work space named AREA in the CSECT. You decide to follow

DC

recommended programming practice and put it in the PSECT.

F'O' READ/WRITE AREA

You have successfully deleted line 2300. This was the AREA entry in the CSECT. Now
you signal the end of modifications hy typing _ .END.

LOGOFF is accepted by the system.
The data set SOURCKREADER will bE' available for future use, since it was auto­

matically cataloged. If you decide at a later time to add extellsively to the data set named
SOURCKREADER (line 2.'500 and beyond), you simply issue a DDEF command for the
data set. After removing the present END statel11ent (using the MODIFY command), a
DAT A command with a start line numher of 2500 will allow you to continue the build­
ing of the line data set begun earlier. The DATA command ,viII function with existing
data sets as well as with ones that are being created in the current task. .

Example 17: Data Set Considerations When Interrupting Program Execution

In this example you discover that a program you are running is reading the wrong data set. You interrupt it, supply
the correct data set, and continue.

After completing the LOGON procedure, you begin processing your task.

S,Y: ~VV 2311,171717

S,Y: ~DEF INI7DD •• INI7A

SYS:

The data set from which your program will receive its information (IN17 A) resides on a
private volume which was created originally for another system and has therefore not
been cataloged for your system. You present it to the present system with the Enter Yam
Volumes (EVV) command, specifying device type (2311) and volume number (171717).
All data sets on volume 171717 that have not been previously cataloged for this system
will be automatically cataloged.

The data set was automatically cataloged as a result of the EVV command. Only mini­
mum parameters are now required to describe it in the DDEF command.

A message will advise you the task is waiting for the operator to mount your private
disk volume. Once the volume is mounted, you will be advised that your task is ready
to proceed.

S.Y: MAINI7
PGM: AVERAGE I.Q. OF COMPUTER PROGRAMMERS IS: 0.30103

Your program contains a GATWR macro instruction to print the results of its computa­
tion on the terminal.

YOU: (press attention button)

SYS:
YOU: UNLOAD MAIN17

S,Y: RELEASE IN17DD

Noticing slightly incorrect output, you interrupt your task during printout of output. See
Appendix D for a discussion of attention interrupt handling.

The system prompts you with the exclamation point; YOll can now enter any command.
Suspecting incorrect input data, you decide to select another input data set that resides

on a different disk. The DCB for data set IN 17 A in your program has been opened. It
contains information that describes the incorrect data set. Unloading your program
closes all of its open Data Control Blocks (DCB).

Now you release the DDEF for the incorrect data set. The previous DDEF is canceled
and the operator is instructed to remove your private disk. The unit on which it was
mounted is now available for other use.

S,Y: ~DEF INI7DD"OTHERI7

S,Y: MAIN17

You define another data set that is on a public disk. No waiting is necessary since public
volumes remain mounted while the system is operational.

You again load your program. This time the DCB for DDNAME=IN17DD is filled in
for the data set named OTHER17.

PGM: AVERAGE I.Q. OF COMPUTER PROGRAMMERS IS: 198.6

S,Y: !!OGOFF
SYS:

Your program prints correct results, and returns control to the terminal.

LOGOFF is accepted by the system.

Examples 77

Example 18: Sharing Data Sets

This example shows how data sets can be shared by several users of the system. Part 1 shows a session during
which another user makes one of his data sets available to you. Part 2, shows how you copy the data set so that
you can make changes to it.

Part 1: Permitting Access to a Data Set
USR: (presses attention button or dials up the system)

LOGON ABPALID,PASSME"ABACCT2
Another user's LOGON is shown here. His identification is ABPALID.

SYS:
The system will complete the LOGON procedure and invite the user to begin his task.

S,Y: ~ERMIT DATA,ADUSERID,RO
Positional operand notation is used here. He makes available to you all of his cataloged
data sets whose left-most name qualifier is DATA. Thus you may share his data sets
below this level of index in the catalog, such as those named DATA.Ql, DATA.Q2,
DATA.Ql.AA, DATA.Ql.AB, etc. He could have made only a certain data set available
by specifying its fully qualified name, e.g., DATA.Q5.

Read-only (RO) means that you may only read the specified data sets. He could have
permitted read/write (RW), or unlimited (U) access. The latter would allow you to
erase the data set. Notice that these access types differ from those of the CAT ALoe
command. .

S,Y: PERMIT INFO,ADUKU,R
\Vith this command the user withdraws the access {R means restrict) to his INFO data
set that he has previously permitted to the user whose identification is ADUKU.

S,Y: !!OGOFF
SYS:

LOGOFF is accepted by the system.

The LOGOFF command has caused this user's (ABPALID) catalog entry for the speci­
fied group of data sets to be marked so that you can access them by issuing the proper
SHARE command. An ABEND command could also have been used to update his
catalog.

Part 2: Accessing a Shared Data Set
YOU: (press attention button or dial up the system)

LOGON ADUSERID,MYPASS'~, ,ADACCT29

SYS:

S,Y:

78

. Now you log on to share ABPALID's data set.

The system will complete the LOGON procedure and invite you to begin your task

SHARE MYDATA,ABPALID,DATA
- Positional operand notation is used. For each data set the owner has cataloged with the

left-most qualifier "DATA," an entry will be created in your catalog under the left-most
qualifier "MYDAT A." This command is rejected jf the owner has not granted access to
vou with the PERl\HT command.
, Since you have been permitted read-only-access, you mllst make your own copy of the
data set MYDATA.Ql.AA oefOl'e ~'ou call modify it. Before issuing the CDS command,
you mav define the data set into which the contents of MYDATA.Ql.AA will be copied.
Howev~r, if you do not define it, CDS will do it for you.

S,Y: £DS DSNAME1=MYDATA.Ql.AA.DSNAME2=MYOWND.Ql.AA

S,Y: !!OGOFF

SYS:

To refer to a specific data set to which you have been permitted access, you must append
to the partially-qualified name you have assigned it, the same rightmost name that the
owner has assigned it; in this case Q l.AA.

The name you assign to the new data set (MYOWND.Ql.AA) makes it easy to relate it
to the original data set; you could have assigned any name.

You still have read-only access to the original data set (MYDATA.Ql.AA in your
catalog),

The SHARE command caused entries to be created in your catalog for the group of data
sets whose left-most qualifier is MYDAT A, They point to the owner's data sets.

You must remember that if the owner erases or deletes one of his data sets which you
share, its entry in your catalog is not removed. You would then use the DELETE com­
mand to update your catalog.

You should also note that the ERASE command for a shared data set is disregarded if
there are any active users for that data set. Conversationally, a diagnostic will be issued,
to alert you to system action,

LOGOFF is accepted by the system.

Examples 79

Example 19: Switching Between Terminal and Card Reader for Input

If a card reader is available at your terminal, it can be used for entering commands and data.
In this example, you switch the SYSI~ of your conversational task from keyboard to card reader. You have pre­

pared a deck of cards that contains part of your command stream, your source program, and input data.
Your card deck is shown below. It includes a source program similar to the one you used in Examples 4 and 12.

ASM ATMS2,N LOGON and
assembler

PST19 PSECT parameters
ENTRY BEGIN19
DC F'76'
DC 18F'0'

AREA DC F'O' READ/WRITE AREA
CSTl9 CSECT
BEGIN19 BASR 11,0

USING *.11 LOCAL BASE REG
L 13,72(0,13)
USING PST19,13

HERE EQ.U *
GATRD AREA+3,LENGTH READ FROM SYSIN
CLI AREA+3, C' E' CHECK IF END
BE LEAVE BRANCH IF YES
MVZ AREA+3(1) ,=X'OO' CONVERT TO BINARY Source
L 5,AREA Statements
SLA 5,1 MULT BY 2

* RESTRICTED TO INTEGERS FROM 0 TO 4

LEAVE
LENGTH

PRINT
KB
ATMS2

2
1
3
E
KB

YOU: CB

ST 5,AREA
MVZ AREA+3(1) ,=X'FF' CONVERT TO EBCDIC
GATWR AREA+3,LENGTH WRITE ON SYSOUT
B HERE
EXIT 'PGM FINISHED'
DC F'l' LENGTH OF AREA
END
LIST.ATMS2(0)",EDIT,ERASE
Return to keyboard

Input
data for
program ATMS2
End of data

After compJetill~ the LOGON procedure, you place vour card cleek in the card reader
and begin yom task. The cards must be cut in the upper left corner.

You switch SYSIN to the card reader. You can do this anytime the system is waiting for
keyboard input if the desired cards are ready in the carel reader.

Since the telminal is in send-receive mode, each card imagc is printed on the terminal
as if it had been typed in at the keyboard.

S,C: ASM ATMS2,N
Positional operand notation is used. The system prompts for source statements by issuing
a line number. It then reads the statement from the card reader.

80

S,C: 0000100PST19
S,C: 0000200
S,C: 0000300
S,C: 0000400
S,C: 0000500AREA
S,C: 0000600CSTl9
S,C: 0000700BEGIN19
S,C: 0000800

(rest of source

S,C: 0002200LENGTH
S,C: 0002300

SYS:

PSECT
ENTRY BEGIN19
DC F'76'
DC 18F'0'
DC F'O'
CSECT
BASR 11,0
USING *,11
program)

DC
END

F'l'

READ/WRITE AREA

LOCAL BASE REGISTER

LENGTH OF AREA

The source input is scanned and you are notified that your assembly has been completed.

S,C: PRINT LIST.ATMS2",EDIT,Y
SYS:

S,C: KB

S,Y: QANCEL 0137

S, Y: CB

S,C: ATMS2

CIP: 2
PGM: 4
CIP: 1
PGM: 2
CIP: 3
PGM: 6

CIP: E

S,C: KB

S,Y: ERASE SOURCE.ATMS2

S,Y: LOGOFF
SYS:

Your program has been assembled without error. The printing of its listings has been
assigned to a separate nonconversational task with a unique BSN. You decide to erase
the data set as soon as the printing is completed.

This card causes SYSIN to switch to tbe keyboard, and the system then prompts with
the underscore. SYSIN is also transferred to the keyboard when you press the attention
button.

You decide that you don't want your listing data set printed now, so you cancel the
print request. BSN 0137 is assumed here.

You can enter CB to switch SYSIN to the card reader at any time. Your program reads
data from the card reader and prints results (with GATWR) on SYSOUT.

Execution of your program has reached the GATRD macro instruction. The system
prompts you for SYSIN data, which you have included in the card deck.

END of data for program ATMS2.

This card causes SYSIN to be switched to the keyboard, and the system then prompts
with an underscore.

The data set named SOURCE.ATMS2 will have been automatically cataloged by the
system. You have no further need of it, so you erase it.

LOGOFF is accepted by the system.

Examples 81

Example 20: Anticipating an Interrupt in a Nonconversational Task

In this example, you create a nonconversational task on cards. To prevent your task from being abnormally ended
if a fixed-point overflow occurs during the running of your program, you include in the program an interrupt
handling routine. Your program uses the SPEC, SIR and DIR macro instructions. Refer to Appendix D for more
details.

The SYSIN for your task consists of the cards below.

LOGON ADUSERID",ADACCT29
A nonconversational task is initiated with a LOGON command that must include the
parameters on the same card. The password is not used.

This command must begin in column 3; columns 1 and 2 must be blank.

SECURE (DA=1,2311)
All devices required for private volumes in a nonconversational task must be specified
by a SECURE command. It must immediately follow the LOGON command.

You specify that your task requires one 2311 disk unit.

DDEF JOBLDD"JOBL,UNIT=(DA,2311) ,VOLUME=(,202020),OPTION=JOBLIB
This command will define your job library for this session. It causes the operator to mOllnt
your disk (volume serial number 202020) on the device secured in the preceding com­
mand. If you do not issue it, your task will be terminated when it reaches this point.

EDIT SOURCE.MYPGM

PSTMYP

DELTA
RHO
ALPHA
BETA
CSTMYP
MYSTRT

OMEGA

82

PSECT
ENTRY
ENTRY
DC
DC
SPEC
DS
DS
DS
CSECT
SAVE
L
ST
ST
LR
USING
LR
USING

SIR
LA
LA
SR
SR
L
A
AR
BXLE

You specify that a data set is to be constructed from the cards that follow, and is to be
named MYPGM. You plan to assemble from it later in your task.

Your program computes ~ (AI + BI) where i=lO. If a fixed-point overflow occurs, ~ is
set to zero.

Your program includes the following source statements.

MYSTRT
SIGMA
F'76'
18F'0'
EP=SIGMA,COMAREA=RHO,INTTYP=IF
4F
10F
10F

(14,12)
14,72(0,13)
14,8(0,13)
13,4(0,14)
13,14
PSTMYt',13
12,15
MYSTRT,12

DELTA, 127
8,4
9,40
6,6
5,5
4,ALPHA(O,5)
4,BETA{0,5)
6,4
5,8,OMEGA

LENGTH SAVE AREA
REMAINDER OF SAVE AREA

INTERRUPT COMMUNICATION AREA
ALPHA VALUES
BETA VALUES

SAVE REGISTERS IN CALLER'S SV AREA
GET RCON FROM CALLER'S SAVE AREA
STORE FORWARD POINTER
STORE BACKWARD POINTER
SET PSECT AND SAVE AREA REGISTER
PSECT COVER REGISTER

CSECT COVER REGISTER

SPECIFY INTERRUPT ROUTINE
INCREMENT BY 4
SET FOR 10 SUMMATIONS
INITIALIZE SUMMATION REGISTER
AND BEGINNING DISPLACEMENT
GET ALPH VALUE
ADD BETA VALUE
SUM PO R6
RECYCLE UNTIL FINISHED

DIR DELTA DELETE INTERRUPT ROUTINE

EXIT 'MYPGM FINISHED'
*INTERRUPT ROUTINE FOR FIXED-POINT OVERFLOW
SIGMA SAVE (14,12)

SR 4,4
LR 3,0

SET REG 4 (SUM) TO ZERO
SAVE AREA TO REG 3

ST 4,36(0,3) ZERO IN SAVE AREA'S REG 4
RETURN RETURN (14,12)

END

END

ASM MYPGM,Y

MYPGM

LOGOFF

Since you cannot process from the terminal any interrupts which may occur during the
execution of your nonconversational task, you include in your program a routine to
handle a type of interrupt which may occur. The SPEC macro instruction generates an
interrupt control block (ICB), and specifies the entry point of that routine (SIGMA).
The name specified on the SPEC macro instruction becomes the name of the ICB to
which the SIR and DIR macro instruction will refer.

Control is transferred to the routine beginning at SIG.MA when a fixed-point overflow
(interrupt type IF) occurs. The routine sets the value of the register containing the
overflowed sum to zero.

The SIR macro instruction establishes system references to the interrupt routine you
speCify in the SPEC macro instructioIl. When the speCified interrupt occurs, your pro­
gram's registers are stored in a save area to which register zero points. Your interrupt
routine must therefore store in this save area any registers for the interrupted routine it
wishes to alter. After executing the interrupt routine, your program's registers are re­
stored from the save area, and execution of your program resumes at the next instruction
past the interrupt.

The DIR macro instruction disables the specified SIR macro instruction. It is needed
only when you want the same type of interrupt to be handled by a routine which speci­
fies a lower priority, or by the system.

Execution of the EXIT macro instruction causes the specified message to he printed on
SYSOUT and control to return to the system. The next record will then be read from
SYSIN. '

This card will Signal the end of your source data set. SOURCE.:MYPGM will be auto­
matically cataloged.

Positional notation is used for ASM operands. This command will activate the assembler
and cause the program named in the parameter card to be assembled from the presto red
source data set.

You are not asked for modification when running in noncoTlversational mode.

This command will cause your newly-assembled program to be run.

The LOGOFF command mllst begin in card column 3.

Examples 83

Example 21: Housekeeping

Periodically yon should take inventory of your data sets and dispose of the ones you no longer need. In this
example, you delete several old data sets residing on tapes, erase some unnecded data sets residing on public
storage, convcrt a sourcc data sct to punched cards, and copy another data set from a public disk to tape.

After completing thc LOGO:>l procedure, the system invites you to begin your task.

S,Y: PC?
This command causes brief catalog entries for all of your data sets to be printed at your
terminal. If you had specified a fully qualified data set name as operand, you would be
presented with the status of that data set only; if you had specified a partially qualified
data set name as operand, each data set possessing the same qualification would be
presented.

SYS: DATA SETS IN CATALOG WITH QUALIFIER ADUSERID
ADUSERID.ABLE.1, ACCESS=RW
ADUSERID.ABLE.2, ACCESS=RO
ADUSERID.BAKER, ACCESS=RO, OWNER=ROGERG**

ADUSERID.OUTI0, ACCESS=RW
ADUSERID.SOURCE.AT2, ACCESS=RW
ADUSERID.SOURCE.AT2EXI2, ACCESS=RW

YOU: (press attention button)

S,Y: !!,SS? OUTI0

By pressing the attention button you have terminated the presentation of the catalog.
You need more information about two of your data sets and request this with a DSS?
command.

SYS: ADUSERID.OUTIO
VOLUME:IOIOI0 (9-TRACK TAPE)
ORGANIZATION: PS

S,Y: !!,SS? SOURCE.AT2EXI2

SYS: VOLUME: PB8171 (2314)
ORGANIZATION: VI
REFERENCE DATE: 195/70
RECORD FORMAT: V

PAGES: 00001
CHANGE DATE: 195/70
RECORD LENGTH: 00132
KEY POSITION: 00004 KEY LENGTH: 00007

S,Y: DELETE OUTI0
You decide to use tape 101010 as a scratch tape, and to ignore the data set namcd
OUTIO. So you issue this command to delete the entry in your catalog for the data set.

S,Y: PUNCH DSNAME=SOURCE.AT2EX12. STARTNO=9.ENDNO=88,ERASE=Y

84

You decide that your AT2EX12 program is used too infrequcntly to warrant rett'ntioll on
the system. \Vith this command yon canse its source program to be punchetl on cards
which you will retain. By specifying the ninth character of yom terminal line as the first
character to be punched in column I (ST ARTNO=9) yml will cause the suppression of
the system-supplied 7 -digit line numbcr and of the input indicator in column 8. Yom last
character (ENDNO=88) will be punched in column 80 OIl the cartl. You specify that thc
data set is to be erased at the conclusion of the punch task.

SYS:

S,Y: ~SE SOURCE.AT2

S,Y: POD? USERLIB"Y

SYS:

The system informs you that a nonconversational task has been established for your
PUNCH request. A unique batch sequence number (BSN) will be given to you at the
terminal.

You decide to also erase another source program which is similar to the one you had
punched on cards. It is erased from storage, and its catalog entry is deleted.

Now you request a list of each object module on your USERLIB. You specify that for
each module, the listing of any aliases. An alias is an external name other than the
module name such as CSECT name or external entry point name. Member oriented
data (system and user) is omitted by default.

The requested data for each member of USERLIB will be presented at your terminal.

S,Y: ERASE USERLIB(AT2EX12)
- You erase your AT2EX12 object program module from your USERLIB and delete its

entry from the USERLIB directory. All forms of your AT2EX12 program have been
removed from the system. You retain only the source program on the card deck.

S,Y: WT DSNAME=SOURCE.ATIMES,DSNAME2=SVATIMES,VOLUME=999999.STARTNO=9,­
ENDNO=88 ,ERASE= Y

SYS:

S,Y: !,!SAGE

SYS:

S,Y: !!OGOFF
SYS:

This command causes the creation of a separate nonconversationaI task to write your
SOURCE.ATIMES data set on one of your tapes (volume number 999999). You speCify
start and end column numbers so that the tape can be later used to print or punch the
data set.

The system informs you that a nonconversational task, with a unique BSN, has been
established for your WT (write tape) request.

After the data set is written, its public disk storage is erased and the catalog pntry for
SOURCE.ATIMES is deleted (because of the ERASE parameter). A new catalog entry
is created for the data set SV A TIMES.

You request a listing of an resources that have heen used by yon since you were joined
to the system. This will be useful to you for accounting purposes and \vill show you
whether you are currently using mOTe storage than you reasonably need so that you may
delete unnecessary data sets. The USAGE command will also list your user limits for
each resource as \~ell as the resources you have been using since the' current LOGON, a
facility you can use in planning a task and in making sur~ that you will not exceed the
number of devices allocated to you.

You will receive an accounting for the following resources: pcrmanent storage (in page>
used), temporary storage, direct-access devices, magnetic tapes, printers, card re<l(IPr­
punches, bulk input, bulk output, TSS tasks, total time that your terminal was con­
nected to the system, and CPU time used.

The system accepts the LOGOFF request.

Example., 8.5

Example 22: Use of Generation Data Groups

Successive, historically related data sets can be cataloged as a generation data group (cDG}-(for example, similar
payroll records that arc created every week). They can be stored and accessed by their relative generation num­
ber (mostly recently stored is 0, next previous is -1, etc.). Or, each data set (called a generation) in the group can
be referred to by its absolute generation name (this is explained in Part 2 of this example).

This example shows the establishment of a CDC and both types of references. It also illustrates the use of
private libraries and tapes.

Part 1: Establishing a Generation Data Group and Relative References
You complete the LOCON procedure and begin your task.

S, Y:

SYS:

DDEF PAYLIBDD"PAYLIB,OPTION=JOBLIB
- You define for this session your job library data set which is on your own private disk.

In it resides your program for establishing a CDC for processing payroll records. Since
it is the most recently defined library, the system places it at the top of your program
library list.

You will be notified that your task is waiting for the operator to mount the private
volume defined above. The task will proceed when mounting is complete.

S,Y: QDEF CRNTDD •• CURRENT

SYS:

You also define for this session the data set which contains this week's report for your
payroll program.

Your task will wait while the operator is mounting the private volume containing the
data set named CURRENT.

S.Y: QATALOG GDG=PAYROLL,GNO=5,ERASE=Y
This command causes the establishment of a special entry in your catalog to describe
the generation data group named PAYROLL. You specify that a maximum of five data
sets (generations) are to be maintained in the CDC. You will be adding generations in
chronological order, thus retaining only the most recent five. The oldest generation will
be erased when there are more than five.

S,Y: QDEF WK37DD,VS,PAYROLL(+1)

S,Y: PAYUPDAT

You define the new data set (or generation) which your program will write. It will reside
on public storage by default. The system \\lill automatically catalog it. A positivc relative
number (in this case 1) deSignates a generation about to be created. (0) is used to refer
to the most recently created generation, (-1) the generation just prior to the most
recent, etc. \Vhen a new generation is cataloged, that generation assumes relative num­
ber (0) and all other relative generation numbers are decreased by one.

You cause your payroll updating program to be loaded from your private library, and
run. It reads your data set named CUHHENT, processes it, and then writes the data
set (generation) you defined above. Then it prints a message at the terminal.

PGM: 'WEEK37' PAYROLL FINISHED.

8G

A data set which was written during a previous session can bl? added to this CDC. You
would simply use the CAT ALOC command to change its data set namc to PAYHOLL
(+1).

StY: !:OGOFF
SYS:

LOGOFF is then accepted by the system.

Part 2: Absolute Reference
You complete the LOGON procedure and begin your task.

S.Y: DDEF PAYLIBDD,.PAYLIB.OPTION=JOBLIB
- You define the job library.

SYS:
You will be notified that your task is waiting for the operator to mount the private
volume defined above. The task will proceed when mounting is complete.

S,Y: QDEF CRNTDD.,CURRENT
You define the cataloged data set which contains payroll information for this week.

S,Y: DDEF WK37DD.,PAYROLL(O)
- You also define the data set you wrote and cataloged last week. Your program uses it

for input too.

S. Y: DDEF WK38DD.VS.PAYROLL(+1)
- This command defines the data set your program will write for this week, and auto­

matically places the entry in your catalog, as PAYROLL (0).
The data set for last week can now be referred to as P A YR 0 LL (-1).
You may also refer to a data set in a generation data group by its absolute generation

number. The system provides a unique name for each generation (by which it is cata­
loged by appending to the group name the absolute generation number of the form
GxxxxVyy, where xxxx is the generation number and yy indicates the version of a
particular generation.

S.Y: PAYUPDAT
Again you run your payroll updating program.

PGM: 'WEEK38, PAYROLL FINISHED.
And your program prints its message.

The oldest generation in your catalog PAYROLL (-1) has been assigned the absolute
generation name PAYROLL.G0001VOO, and the current generation PAYROLL (0) has
been assigned the name PAYROLL.G0002VOO.

You can provide gaps in the sequence of absolute generation numbers by specifying a
relative generation number greater than + 1 when you define the latest generation.
Thus, if you had specified +3 in the DDEF command above (instead of + 1), the
absolute generation names would be PAYROLL.GOOOIVOO and PAYROLL.G0004VOO.
However, the relative numbers would be PAYROLL(-l) and PAYROLL(O), respec­
tively. If you now insert a generation with absolute name PAYROLL.G0003VOO, the
relative numbers would be adjusted.

Absolute generation names are useful if you want to update a generation with a new
version. The system does not automatically create nonzero version numbers. You can
do so with the CATALOG command, as shown below.

S,Y: QDEF CHNGDD,VS,CHNGWK37
You define a cataloged data set which one of your payroll programs will write.

Examples 87

S,Y: PAYCHNG
This program alters last week's payroll data set and writes a temporary data set.

S,Y: QATALOG DSNAME=CHNGWK37,STATE=U,ACC=U,NEWNAME=PAYROLL.G0001VOl

S,Y: !:OGOFF
SYS:

88

You specify that yOUl' catalog entry is to be updated (U) so that it points to the altered
data set, which is identified by a new version number. Since the data set which was
replaced is on public storage, it- is automatically erased.

LOGOFF is accepted by the system.

Example 23: Creating and Using a User Macro-Library

A number of macro definitions are made available to you with TSS. Examples of these are CALL, SAVE, and BETUliN.

These macro are defined on a TSS library termed the "System Macro Library." You may, if you wish, create a
macro library for your private use, termed a "user macro library." This example describes how YOIl create and usc
such libraries. Appendix A gives more detailed information on lIser macro libraries.

Since user macro libraries contain many lines, they are usually created in nonconversational mode, as they are
in this example.

LOGON ADUSERID ••• ADACCT40
LOGON and LOGOFF must begin in the third column.

~DIT USERSYM,TOTAL,8

0000100 MACRO
0000200 TOTAL
0000300 L
0000400 A
0000500 A
0000600 ST
0000700 MEND

This command will cause the system to create a REGION data set named USERSYM
from the statements that follow it. These statements will define your macros. The first
region will be called TOTAL. The keys for each region \vill he 15 hytes IOllg, position
1 to 8 for the name of the region, positions 9-15 for the line counter.

&:NUM,&:REG,&:AREA
&:REG, &:NUM (1)
&:REG,&:NUM(2)
&:REG,&:NUM(3)
&:REG, &:AREA

The first macro you create is named TOTAL. The macro definition is givcn hetwecn
the MACRO and MEND statements.

0000800 REGION PREFIX

This command describes the next region of your macro library.

0000100 MACRO
0000200 PREFIX &:PSECT
0000300 L 14,72{0,13) GET PSECT POINTER

FORWARD POINTER
BACKWARD POINTER
PSECT BASE REG

0000400 ST 14,8 (0,13)
0000500 ST 13,4(0.14)
0000600 LR 13,14
0000700 USING &:PSECT,13
0000800 MEND

0009000 REGION TESTD

Your second macro is named PREFIX. This macro contains code that is generally
executed following a SAVE macro instruction.

This command describes the next region of your macro library.

0000100 TESTD
0000200 LENGTH
0000300 LINE
0000400 CODE
0000500 INDATA

DSECT
DS F

7C
X
80C

RECORD LENGTH
RETR LINE NO
INPUT CODE
INPUT DATA

DS
DS
DS

Your last entry to your macro library is not a macro but a DSECT copy parcel named
TESTD. (Although TESTD is not a macro, it will sometimes be considered one in gen­
eral discussions of your user macro library). The assembler will cause this DSECT to be
brought into your program when it encounters your statement:

COpy TESTD

The _END will signal entry of the last line of the USERSYM data set-your macro
library.

Examples 89

90

DDEF SOURCE,VI,USERSYM
DDEF INDEX,VS,USERNDX

SYSINDEX

These two commands will define for the current task the macro definition and index
data sets. SOURCE and INDEX are data definition names required by the SYSINDEX
service routine. They will be automatically cataloged as new data sets, with access
qualifier=U.

The SYSINDEX routine will scan the data set containing your macro definitions and
copy parcel (USERSYM). It will then create a data set that you named USERNDX
when it was defined in the previous command. This data set will contain the names of
your two macro definitions and the copy parcel.

UNLOAD SYSINDEX
As the SYSINDEX routine is no longer needed, you may unload it.

ASM TESX,N,(SOURCE,INDEX) ,LISTDS=Y

&NAME
&:NAME

TESTP

TEMP
TEMPAREA
MESSAGE
MSGLEN
MSGIN

TEST
TESTE

You will then assemble a program using your newly-defined macro library. (Position
operand notation is used far ASM in this example).

Your assembler parameters proVide the module name TESX and specify that source
lines are not prestored (N). SOURCE and INDEX are the ddnames for the definition
and index data sets. In nan conversational mode you must ask for a list data set explicitly.

Note that DDEF commands for SOURCE and INDEX were issued preceding the
execution of SYSINDEX, so you need not issue them again. The data set named
SOURCE.TESX will be automatically defined and cataloged by the system.

MACRO

The next 7 source statements show how you may define a macro (named MOVE)
within your source statements. This macro would override a macro of the same name
defined in your macro library.

MOVE
ST
L
ST
L
MEND
PSECT
DC
DC
DC
DS
DC
DC
DC
DC
DC
ENTRY
COpy

CSECT

&:TO,&:FROM
2,TEMPAREA
2,&FROM
2,&:TO
2,TEMPAREA

F'76' LENGTH SAVE AREA
18F'O' REMAINDER OF SAVE AREA
F'O'
CL80
F'O'

MSG LOCN
MSG LEN

F'92'
C'OOOOlOO'
X'OO'
CL80'TEST
TESTE
TESTD

MOVE EXECUTED'

The five lines in your macro library with the name TESTD will be copied without
change into your source program at this point.

SAVE (14,12)
PREFIX TESTP

The statements that are normally used follOwing a SAVE macro instruction will be
copied here, including a USING TESTP,13 instruction.

USING
USING
LR
LA
MOVE

TESTD,3
TESTE,12
12,15 LOAD COVER REG
3,LENGTH COVER DSECT
MSGLEN,LENGTH DATA LENGTH

The macro instruction defined in this assembly will be expanded here.

MVC MESSAGE,INDATA MOVE DATA
GATWR MESSAGE,MSGLEN WRITE DATA
L 13,4(13) RESTORE CALLING REG
RETURN (14,12),T
END TESTE

PRINT LIST.TESX",EDIT,Y

TESX
LOGOFF

Positional operand notation is used here. The system will establish a nonconversational
task to print the current generation of LIST.TESX. The data set will be erased after
printing is completed.

You run your program and then LOGOFF. SOURCE.TESX has been automatically
cataloged at ASM time. The system issued the necessary DDEF command.

Examples 91

Example 24: Use of the Linkage Editor

In this example, the basic facilities of the linkage editor are shown. Object modules LEMODl, LEMOD2, and LEMOns

are assumed to already exist. You desire to first link these three modules that reside in a library on the program
library list. You then wish to combine two control sections (CSECTl and CSECI'2) of a fourth module (EYLE1) and
add it to the output. This example is divided into two parts, to portray the linkage editor use with both dynamic
and prestored control statements.

Part J: Conversational Linkage Editing: Control Statements Entered from the Terminal Keyboard

You complete the LOGON procedure and begin your task.
Define Libraries: You may then either enter DDEF commands that are required to

identify the libraries to be used during this linkage editor run, or, as shown below,
retrieve the DDEF commands from a previously cataloged line data set.

S, Y: QDD DSNAME=LNKED. DD
SYS:

Retrieves the DDEF commands cataloged under the data set name LNKED.DD, and
prints each on SYSOUT. One DDEF is used to define the library LKLIBI used in the
LNK command.

S, Y: !!NK NAME=TS2LNK,STORED=N ,LIB=LKLIB1, ISD= N ,PMD=Y,LINCR= (500,100)
SYS:

Processes the parameters specified. You have told the system that control statements are
not prestored, the control statements will begin at line 500, a special library (LKLIBI)
has been established for the object module produced, you do not want an lSD, you
desire the PMD listing. ""'hen the linkage editor is ready for a control statement, you
will receive the first line number at your terminal. You enter the content for the line
and press the return key. The line is then made available to the linkage editor.

S,Y: 0000500INCLUDE (LEMOD1,LEMOD2,LEMOD3)
S,Y: 0000600COMBINE CSECTl,CSECT2

As each control statement is received by the linkage editor, it is analyzed for correctness
and processed according to the particular functions it specifies. If errors are discovered
by the linkage editor, a diagnostic message is typed at the terminal, prompting you to
correct the statement in error. The modules LEMQDl, LEMOD2, and LEMOD3 exist
in USERLIB or in the libraries named in the DDEF commands containing OPTION=
JOBLIB. The CDD command produced these DDEF commands.

S,Y: 0000700INCLUDE, (EYLEl)
SYS: 0000700 E***ILLEGAL DELIMITER
S,Y: #

700,INCLUDE (EYLEl)

SYS: #
YOU (press return key)
S,Y: 0000800END

92

You correct the statement in error.

You signify that all desired linkagE editor control statements have been entered by
specifying an END control statement. At this time the linkage editor attempts to resolve
any unresolved external references by an automatic search of the libraries on the pro­
gram library list. It then provides a list, at the terminal, of all finally outstanding un­
resolved external references, distinguishing those that can be resolved from SYSLIB
from those that need resolution from USERLIB or job libraries at execution time.

SYS:

S,Y: ,!:OGOFF
SYS:

The linkage editor finds no errors and completes necessary processing. The output
module is automatically stored ill the library with ddname LKLIBl. The names of the
original modules are retained as auxiliary entry points of the link edited module. Linkage
editor processing is thus concluded. The system solicits your next command.

The system accepts the LOGOFF request.

Part 2: Conversational linkage Editing: Control Statements from a Prestored Data Set

This is identical to Part 1, except that the linkage editor control statements are obtained from a prestored data set.
Thus, correction lines are treated in a slightly different manner.

Statements as shown in Part 1.

S,Y: LNK TSZLNK,Y,LKLIBl"N,Y, (500,100)
SYS:

Processes the parameters specified. Here, however, you have indicated that control
statements are prestored.

SYS: 0000700 E***ILLEGAL DELIMITER
The diagnostic message appears at the keyboard.

The keyboard is unlocked so that you may make a correction.

S, Y: #
700,INCLUDE (EYLEl)

You enter the correction line.

SYS: #
YOU: (press return key)

Statements as shown in Part 1.

Examples 93

Example 25: Tape and Disk-Medium Transfers of Virtual Access Method Data Sets

In this example, three commands provided for manipulation of VAM data sets are presented. They are TV (TAPE to
VAM), VT (VAM to TAPE), and vv (VAM to VAM). The data sets to be copied are assumed to exist, and are cataloged.

You complete the LOGON procedure and begin your task.

S, Y:
S, Y:

SYS:

DDEF DDVTOUT,PS,COPYl,UNIT=(TA,9) ,VOLUME=(PRIVATE)
VT DSNAME1=ORIGINl,DSNAME2=COPYl
- Data set ORIGIN 1 already exists as a V AM data set. COPYl is the name assigned to

the magnetic tape copy of this data set. The installation default for LABEL is assumed.

When the data set is successfully copied, you will receive a message indicating the
names of the input and output data sets, as well as the me sequence numbers and
volume serial numbers used.

S,Y: RELEASE DDVTOUT
You wish to copy another data set (ORIGIN2) onto another tape. You therefore release
DDVTOUT and issue command again.

S,Y: DDEF DDVTOUT,PS,COPY2,UNIT=(TA,9) ,VOLUME=(PRIVATE)
S,Y: VT ORIGIN2

SYS:

Here the output data set name is not given. The output data set name will become
ADUSERID.TAOOOOOl.ORIGIN2, where TAOOOOOl is an arbitrary number to assure
uniqueness for the fully-qualified data set name.

The system will signify a successful copy. Any failure to copy successfully will result in a
diagnostic message and cancellation of the command.

S,Y: DDEF DDCOPYB,VS,COPYBACK
S,Y: !V DSNAME1=ADUSERID.TA000001.ORIGIN2,DSNAME2=COPYBACK
SYS:

The data set just produced on a 9-track magnetic tape is copied on direct access storage
(public) in VAM format. An appropriate system message will be issued to signify whether
or not the copy attempt was successful. It is assumed that ORICIN2 was a virtual
sequential data set. COPYBACK is thus defined as having VS organization.

S,Y: DDEF DDCOPY3,VI,COPY3
S,Y: YV DSNAME1=ORIGIN3,DSNAME2=COPY3

SYS:

The data set named ORIGIN3 is copied into public storage, assigning the name COPY3.
It is assumed that ORIGIN3 has virtual index sequential organization. Therefore COPY3
is so denned.

An appropriate system message will appear, signifying the success or failure of the copy
operation.

S,Y: DDEF PRIVDD,VI,COPY4,UNIT=(DA,2311) ,VOLUME=(,333333)
S,Y: VV DSNAME1=ORIGIN4,DSNAME2=COPY4

SYS:

S,Y: ~OGOFF
SYS:

94

You desire to copy the data set ORIGIN4 onto a private VAM volume #333333 and
name the output data set COPY4.

An appropriate message will appear, signifying the success or failure of the copy
operation.

Your LOGOFF request is accepted by the system. Your new data sets were automatically
cataloged.

Example 26: The Text Editor Facility

In this example, the basic use of the Text Editor facility is illustrated. One of the most important applications of
this facility is to create and edit data sets.

You complete the LOGO:-; procedure and begin your task.

S,Y: EDIT DSNAME=EX26

S,Y: 0000100 DEMOl
StY: 0000200 DEM02
S,Y: 0000300 DEM03

StY: 0000400 UPDATE

SYS:

YOU: 0000150 INSERTl

YOU: INSERT 0000400

S,Y: 0000400 DEM04
S,Y: 0000500 DEM05
S,Y: 0000600 END

S, Y: EDIT DSNA.ME=EX26

StY: EXCISE Nl=0000200

S,Y: !NSERT 260,10

S,Y: 0000260 INSERT2
StY: 0000270 INSERT3
S,Y: 0000280 _END

S.Y: f!OGOFF
SYS:

You invoked the Text Editor with this command. A DDEF command is not required
unless YOIl are creating a new data set with a format differing from your default values.
You will be prompted '.-vith line numbers to enter text.

You enter data lines you wish to be part of the data set named EX26. Each time you
press the return key, the Text Editor prompts with the next line number.

You decide to make a change to the previous entries. Bv preceding UPDATE with an
underscore, known as a break character (_), the Text Editor immediately executes the
command.

The system will issue a message prompting for line number and data.

You add line number 150 to your data set.

You now want to continue entering data at the point where you left off earlier. INSERT
is preceded by a break character, since the system expects data and not a command
follOwing UPDATE.

You terminate Text Editor processing.

You reinitiate editing on the same data set.

Line number 200 of the data set will be deleted.

You wish to insert additional lines, starting with line 260 and proceeding in increments
of 10.

Text Editor processing is terminated.

You decide to terminate your conversational task. The system accepts the LOGOFF
request.

Examples 95

Example 27: The Text Editor Facility

In this example, the Text Editor is shown using most of the updating capahilities of the facility. It is probably
much more complex than you might wish for a single terminal session, but attempts to portray the flexibility of
the commands available.

After completing the LOCOl\; procedure, you begin your task.

S,Y: EDIT DSNAME=EX27,RNAME=REGION2,REGSIZE=8

S,Y: 0000100 LINEA
S,Y: 0000200 LINEB
S,Y: 0000300 LINEC
S,Y: 0000400 LINED
S,Y: 0000500 LINEE
S,Y: 0000600 LINEF
S,Y: 0000700 LINEG
S,Y: 0000800 LINEH
S,Y: 0000900 LINEI
S,Y: 0001000 LINEJ
S,Y: 0001100 END

S,Y: DEFAULT TRANTAB=Y

S,Y: EDIT DSNAME=EX26

You invoke the Text Editor. A DDEF command is not required. Because you wish to
produce a region data set, vou define a region name for EX27 and assign a region
name size.

You enter the lines you wish to constitute REGION2 of data set EX27. You then termi­
nate Text Editor processing.

You wish to use the ENABLE, DISABLE, POST, or STET commands in editing your
data set. Since no transaction table is normally kept (TRANTAB=N), you must reset
the default to Y.

You invoke the Text Editor for data set EX26 which you created in the previous
example.

S.Y: NUMBER Nl=300,N2=500,NBASE=300,INCR=50
S,Y: DISABLE
S,Y: EXCERPT DSNAME=EX27,RNAME=REGION2,N1=600,N2=1000.

These lines will be inserted in the current data set, EX26.

S.Y: CONTEXT Nl==300,N2==500.STRINGl==DEMO,STRING2==XXXX

S,Y: ENABLE

The data set is searched for the character string DEMO for occurrence in lines 300 to 500
only. \Vherever it is found, XXXX will replace the occurrence.

NOTE: This facility is useful for symbol replacement in source language data sets.

Up to this point, the revisions made since DISABLE was issued above were temporary.
These revisions are now permanent, with the ENABLE command execution.

S,Y: CORRECT Nl=lOO,SCOL=O

SYS: DEMOI
YOU: * %

D6

Standard correction characters are assun'ed, by default.

The result will be DE110.

S,Y: POST

S,Y: END

With this command you make permanent all editing commands issued for the current
data set.

You terminate Text Editor processing of EX26.

S,Y: EDIT EX27,RNAME=REGION2
You initiate Text Editor processing of EX27. The current region is now REGION2.

S,Y: ~OCATE STRING=LINEF
The entire data set EX27 is searched for the character string LINEF.

SYS:
The line in which LlNEF is first discovered is displayed at the terminal.

S.Y: LIST Nl=lOO,N2=500,CHAR=H

S.Y: END

S,Y: ~OGOFF
SYS:

The first five lines of the current region (REGION2) will be displayed in hexademical
notation.

Text Editor processing is terminated.

The LOGOFF is accepted by the system.

Examples 97

Example 28: Use of Procedure Definition (PROCDEF)

In this example, you are shown how to create a procedure, tailored to your needs, to be called at a later time just
as if it were a system-supplied command. You have also decided to change the system command prompt string
for this terminal session by invoking the MCAST command.

You complete the LOGON procedure and enter your first command.

S,Y: MCAST CP=**:
The initial default for the system command prompt is an underscore and backspace. You
decide to change this prompt to a pair of asterisks with no carriage return. Thus you
issue the MCAST command with the CP (Command Prompt) parameter.

S, Y:
S, Y:
S,Y:

**PROCDEF NAME=ASMPGM
0000100 PARAM MODULE
0000200 ASM MODULE

S, Y:
S. Y:

0000300 PRINT LIST.MODULE",EDIT,Y
0000300 END

S,Y: **ASMPGM MYMOD

This procedure will now be available for calling using the name ASMPGM. It allows
you to define a module name for assembly. By calling the established procedure, and
giving it a unique module name to use, both the assembly and printing of the resulting
listing data sets can be accomplished.

The procedure established above (via PROCDEF) will now be activated. The actual
module name (MYMOD) will replace the dummy module name (MODULE) wherever
it occurs.

S,Y: **PROCDEF NAME=SETUP
S,Y: 0000100 PARAM STORED=$l, ISD=$2, SYMLIST=$3, CRLIST=$4; MACROLIB=$5
S,Y: 0000200 DEFAULT STORED=$l, ISD=$2, SYMLIST=$3. CRLIST=$4, MACROLIB=$5
S,Y: 0000300 _END

This procedure will now be available to vary the default values for certain ASM
parameters.

S,Y: **SETUP Y,N,Y,Y, (SRC,NDX)
Some ASM parameter default values have been adjusted to suit your requirements.

S,Y: **DDEF SRC,VI,MACSRC; DDEF NDX,VS,MACRNDX

S,Y: >:'*ASM MODI

S, Y: ~""PROCDEF ZLOGON

MACSRC and MACRNDX are the DSNAMES for the symbolic and index portions of
a macro library.

You now proceed with the assembly of MODl with the adjusted default values.

Here the operand (ZLOGON) for the PROCDEF command is shown without the use of
a keyword.

S,Y: 0000100 DDEF STOREIT,VP,MYLIB,OPTION=JOBLIB
S,Y: 0000200 END

S , Y: >~ '~LOGOFF

SYS:

98

You decide that each time you LOGON you would like a certain job library defined for
any object modules you may produce. By assigning ZLOGON as the procedure name,
you insure its automatic call as soon as LOGON is accepted. ;"'IYLIB is assumed to be
an existing, cataloged data set. Since P ARA~I was not used you cannot change any of
the values in the DDEF command.

The LOGOFF command is accepted by the system.

Example 29: Use of the BUILTIN Procedure

In this example, you are shown the use of BUILTI,,"", as a user-defined procedur8. This facility allows you to invoke
an object program just as if it were a system-supplied command. You choose a program (already containing the
BPKD macro in its PSECT) which causes a data set to be created. You will later invoke the KEYWORD command
to obtain a listing of all your Ilser-created commands existing in USEHLIB.

You complete the LOGON procedure and begin your task. The program which you will later invoke, includes the
folloWing source statements.

PST29 PSECT

AREA
DCBNM
USER29
CST29
STRT29

LABEL

PUT
BCT
CLOSE

ENTRY STRT29

DS
DCB
BPKD
CSECT
EQU *

80C
DDNAME=OUTDD,RECFM=FA
STRT29

LA 2,20
OPEN (DCBNM, (OUTPUT))
EQU *
(create record at AREA)

DCBNM.AREA
2,LABEL
(DCBNM)
EXIT
END

DATA AREA

SET FOR 20 CYCLES
OPEN DCB

PUT RECORD IN DATA SET
RECYCLE
CLOSE DCB

Assuming that the above module was assembled without specifying a job library,
your USERLIB will contain it. The sequence to follow indicates how you may invoke
the module which creates a data set containing 80 character records, via BUILTIN.

S. Y: ~UILTIN NAME=DOPROG, EXTNAME=USER29

S.Y: QOPROG

StY: KEYWORD

SYS:

S.Y: !!OGOFF
SYS:

The object program definition via your user-created command {DOPROG) is now
established.

You decide to invoke DOPROG. The program shown earlier will now be retrieved from
your USERLIB, and executed beginning at entry point STRT29. Control will return to
your terminal at EXIT time.

You request a listing of all the command names in your USERLIB.

(The command names are printed at your terminal, one command string per line. Any
associated parameters will be printed in the same format as they appear in the PROCDEF
or BUlL TIN commands.)

The LOGOFF command is accepted by the system.

Examples 99

Example 30: The User Profile Facility

In this example, you are shown how to manipulate your copy of the prototype user profile, made available to you
at JOIN time. This prototype profile is a member of your user library (USERLIB).

You complete the LOGON procedure and cntcr your first command.

S,Y: QEFAULT DSORG=VS
The data set organization field was originally defaulted by the system to VI (indexed
sequential). You will now be using mostly VS organized data sets, so you set the default
value (for the DDEF command) to virtual sequential (VS).

S,Y: DEFAULT DEPROMPT=YES
At some previous time, the value of DEPROMPT had been set to "no." For future use,
you decide that all partially qualified names entered for either the ERASE or DELETE
commands should be audited. The value of "yes" will cause individual data set names
to be presented.

S,Y: ~YNONYM DOPROG=PRINTDS
The BUILTIN procedure named in Example 29 can now be invoked with either name:
DOPROG or PRINTDS.

S,Y: ~YNONYM FINIS=DISPLAY 'TASK COMPLETED'

S,Y: !:ROFILE

S,Y: FINIS
8YS: TASK COMPLETED

S,Y: LOGOFF
SYS:

When FINIS is invoked, the message: TASK COMPLETED will appear on SYSOUT.

You decide to make the changes applied to your session profile by the SYNONYM and
DEFAULT conunands, a permanent part of your user profile.

The command FINIS was established earlier in the session, using the SYNONYM com­
mand. Since the PROFILE command was later invoked, FINIS may be used in subse­
quent sessions to produce the same message.

The LOGOFF is accepted by the system.

Example 31: Use of the OBEY Macro

The OBEY macro instnlction allows the user to execute a command or command statement even though not in
command mode. Upon execution of the OBEY macro instruction, the command or command statement specified via
the macro instruction operands is ('xec~ltcd; control is then returned to the user's program. OBEY may be used
,mY'where in the user's program.

CST5 CSECT
ENTRY STRT5

STRT5 EQU *
OBEY 'DDEF OUTDD"OUTDS'

IOO

LA 2,20
OPEN (DCBNM, (OUTPUT))

LABEL EQU *
(create record at AREA)

PUT
BCT
CLOSE
EXIT

DCBNM,AREA
2,LABEL
(DCBNM)

80C

SET FOR 20 CYCLE
OPEN DCB

PUT RECORD IN DATA SET
RECYCLE
CLOSE DCB

DATA AREA AREA DS
DCBNM DCB

END
DDNAME=OUTDD, RECFM=FA, DSORG=VS

Your program will write a data set with SO-character records from the ;;torage area
named AREA. Notice that your DeB macro instruction includes the DDNAME that
is a parameter in the OBEY of the DDEF command, which in turn contains thc name
of the data set (OUTDS). The DDEF command relates the correct data set to your
program because every data set name must be unique in your task. .

The Appendixes in this publication give detailed in­
formation on the use of TSS by assembler language .
programmers.

Appendix A, "Use of the TSS Assembler," describes
the format of assembler statements, correction tech­
niques, diagnostic actions, assembler parameters, as­
sembler output, assembler restrictions, and user macro
libraries.

Appendix B, "Problem Program Checkout and Mod­
ification," considers the use of the Program Control
System (pes). Prompting and diagnostic facilities, pro­
gram listings, and use of the Linkage Editor are also
discussed. Concerning pes, only certain aspects are
covered-in particular, diagnostic action. Command
System User's Guide is the primary reference for the
use of the Program Control System.

Appendix C presents assembler language program­
ming considerations. The initial sections of this ap­
pendix describe programming techniques and sample
programs that allow the programmer to write programs

Part IV. Appendixes

with a minimum of effort. Later sections of this appen­
dix discuss more complex programming considerations.

Appendix D discusses interrupt considerations, in­
cluding use of the terminal attention key and the
various macro instructions provided with TSS/360 for
control of interrupts. The publication Assembler fJser's
Macro Instructions gives more detailed information
on interrupt-handling macro instructions.

Appendix E is a guide to the usc of DDEF command.
Appendix F describes various user-defined proced­

ures available. Hepresentative examples are given.
Procedure Definition (PROCDEF), user's own code
procedures (BUILTIN), and the User Profile FaCility
are portrayed.

The commands available in TSS are described in the
examples given in Part III and are presented in detail
in Command System User's Guide.

Appendixes 101

Appendix A. Use of the TSS Assembler

Problem-Program Preparation
In Time Sharing System, a problem program is the
collection of instructions and data that the user speci­
fies for the solution of some well-defined problem.
The term problem program thus differentiates user­
written application programs from system programs.

Problem programs may be in the system as source
programs or object programs. A source program is in
the symbolic form in which it was written by a user.
It consists of a series of statements coded in one of the
source languages available in TSS (FORTRAN IV, PL/I or
assembler). An object program, in hexadecimal code
or machine language form, is relocatable and can be
loaded and executed by the system.

Language Processing
The operation that converts a source program to an
object program, called language processing, is illus­
trated in Figure 14. Note the terms source program
data set and object program module. A source program
data set is the collection of all source statements sub­
mitted for processing during any Single assembly or
compilation. An object program module is the prin­
cipal output of a single assembly or compilation. A
source program data set and its corresponding object
program module may represent all or part of the ac­
tual program required to solve a user's problem. A
user can thus design his problem program in sections
and, separately, assemble or compile each section. He
can then, if he has supplied the proper symbolic link­
ages between sections, use the system to combine var­
ious sections prior to, or during, program execution.

1. ASM

2. Parameters

3~ Source Program

Data Set
/

/ \
// \

/ li.ting Data Set \
/ and/or Source \ Li.ting

Program Dota Set \ Data Set (i f reque.led)

(Optional) ~

L:--J
Figure 14. Language Processing

102

Language Processing in Conversational Mode

To initiate assembler language processing in conversa­
tional mode (see Figure 14), the user issues an ASM

command with the d~sired parameters. He must enter
them all at the same time as the system will not prompt
for individual parameters. The parameters to be en­
tered, listed below, are dcpendenet upon whether the
source program is prestored and on options selected
by the user.

•

•

•

Module name of the object program module being
created: The source data set for the object module
will be named souRcE.module; the associated list­
ing data set will be named LIST. module.

An indication of whether the source program data
set is prestored or is to be made available via SYSIN:

If the source program is made available via SYSIN,

the user can also specify its starting line number
and the value by which the line numbers are to be
incremented (values of 100 and 100 are assumed,
if the starting line number and increment value
are not specified).

Version identification of the module: This consists
of one to eight user-supplied alphameric characters,
the first of which need not be alphabetic. If a ver­
sion identification is not supplied, the listing is time
stamped.

• The ddnames of the symbolic and index portions of
the user-written macro libraries to be used in addi­
tion to the system macro library: If this parameter
is omitted, only the system macro library is as­
sumed.

• An indication of whether these options are wanted:
Internal symbol dictionary
Source data set listing
Object program module listing
Cross reference listing
Edited symbol table
Internal symbol dictionary listing
Program module dictionary listing

When these inputs are provided, language process­
ing of the source program beginS. The user can issue
source program statements from his terminal, in re­
sponse to system prompting; or he can make the source
statements available from a prestored data set. When
using a continuation character in statements extending
beyond 80 characters, he milst observe the continua-

tion conventions of the souro' language. An El'm state­
ment is alv.·ays included in the source program data
set to indicate the end of thc input to the language
processor.

Prompting and diagnostic bcilities are available dur­
ing language processing. These facilities vary with the
way the source program data set is presented to the
system (as part of SYSIN or as a prestored data set);
they are described under "Problem Program Checkout
and Modification," Appendix B.

At the conclusion of language processing, the system
stores the object program module, by its module name.
in the user's library or in his most recently defined job
library, if there is one. This completes source language
processing in the conversational mode.

Language Processing in Nonconversational Mode

The same commands are used to initiate nonconversa­
tionallanguage processing as in conversational process­
ing; the same outputs can be produced. The user must
store the parameters required by the language proc­
essor in the 51'SIN data set immediately after the ASM

command. However, the user has the option of making
the source program module available in the SYSIN data
set or as a prestored data set.

Entry and Correction of Assembler
Source Statements
This section discusses the format of assembler source
statements entered at the terminal keyboard, the termi­
nal card reader, and in card form for nonconversational
mode processing. If conversational mode, correction of
source statements is frequently performed by insertion
or replacement. Since assembly speed can he influ­
enced by the manner of making such corrections,
guidelines for efficient correction tedmiques are given.
A discussion of techniques for entering keyboard lines
so that they can be punched and reentered in card
form is also included.

Format of Source Lines

Input Sources

A source program is a sequence of source statements
that have either been punched into cards and entered
by card reader, typed at the keyboard of a remote ter­
minal device, or both. Individual source statements may
also contain card lines, keyboard lines, or both. Source
statements formats differ between the two sources. The
card fonnat is identical to that used in other assembler
languages. The keyboard format has been designed

for ease of operation at typewriter-like terminal de­
vices. A name field, comment line, or continued line
must begin immediately following the line number (no
space). If the line is not one of the above, one or more
hlanks must follow the line number.

Statement Boundaries--Card Format

Source statements arc nonnan), contained in columns
] -71 of initial cards and columns 16-71 of any continua­
tion cards. Free form may be used, however. Therefore,
columns 1, 71. and 16 are referred to as the "begin,"
"end," and "continue" columns, respectively. This con­
vention can lw altered by use of the input format con­
trol (rC'TL) assembler instruction. The continuation
character, if used, always immediately follows the
"end" column.

Continuation Lines--Card Format

\Vhen necessary to continue a statement on another
card, the follOWing rules apply:

1. Enter a continuation character (not blank and not
part of the statement coding) in column 72 of the
initial carel.

2. Continue the statement on the next card, starting in
column 16, All columns to the left of column 16
are ignored.

3, When more than Olle card is needed, each card to be
continued must have a character (not blank and not
part of the statement coding) punched in column
72.

4. Not more than hvo continuation cards can be used
for a statement', except in a macro instruction or
macro prototype statement, where as many contin­
uation cards may be used as are necessary.

NOTE: When the MODlFY command is used to alter
existing source statements, the continuation column
(72) is displaced to the light by as many positions as
the line number and the required comma occupy. For
example, if the follOWing:

DC F'70' RESERVE A 19 WORD SAVE -
AREA FOR CALLING PGM

represented two source statements, entered originally
on cards, and the hyphen (-) in the first line appeared
in column 72, alterations by the :MODIFY command will
cause adjustment. The llser notices that '70' is not the
correct value and must change ~he source entry. As­
suming the line number was 400, the entry for MODIFY
would be as follows: 400, DC F'7S' RESERVE A 19 WORD
SAVE -. The new source entry would now be offset four
positions to the right, relative to the original entry.

Appendix A. Use of the TSS Assembler 103

Character Sets--Card farmat

CA and en can be llsed to specify thc character set used
during 1056 card reader input. With CA, the user indi­
cates he \yishes to convert card input from 1057 card
punch code to EBCDIC. With CB, the user specifies con­
version from 029 keypunch code to EBCDIC.

Statement Boundaries-Keyboard format

,,,hen entered from a terminal, source statements oc­
cupy the statement area of each keyboard line. The
statement area is that portion of the line between the
column at which the system releases the keyboard to
the user and the right-hand margin setting. This area
may contain more or less than 80 characters, depend­
ing on the type of keyboard being used.

Many terminal keyboards available with TSS con­
tain }lOth llpper and lower case forms of the letters A
through Z. 1;he upper case form must be used, except
within character constants or comments. However, if
the system is in KB mode (the default option), the
lower case characters will be translated into their
upper case equivalents, thus eliminating many of the
previously required shifting operations. A good general
practice is to set tab stops and make use of the tab key
to separate the various fields of the source statement.
This practice provides a simple method for formatting
the input program on the terminal paper without ex­
cessive mannal spacing. \Vhen entering keyboard lines,
a Single depression of the tab key is considered the
equivalent of one blank. Thus, when reference is made
to blanks, tab or blank is implied, unless speCifically
stated otherwise.

Continuation Lines--Keyboard format

'Vhcn it is necessary to continue a statement that is
being entered from' a keyboard, a hyphen (the key­
board continuation character) is typed at the point at
which continuation is desired, followed immediately by
a carrier return. The statement is continued at the first
character of the statement area of the next line.

H a line with an asterisk (*) in column 1 follows a
continued line, the * and following columns will be
considered a continuation of the preceding line, not as
a comment line. For example, if this sequence occurs:

LINE NO. TEXT

0000500
0000600*

L
COMMENT

2,-(CR)

the assembler will combine the two lines as follows:

L 2, *COMMENT

There is 110 restriction on the numher of continuation
lines which may be entered in keyboard format The
onIv restriction placed on the length of a statement is
that imposcd by available assembler working storage.

.W·l

NOTE: rCTL statements in the source program apply
only to lines in card format and have no effect on key­
board lines.

Character Sefs--Keyboard format

KA and KB can be used to specify the character set to be
used during keyboard input. With KA, the user indi­
cates he \vishes to use the full EBCDIC character set dur­
ing input. \Vith KB, the user speCifies that the lower
case characters (a-z and! " ¢) be translated into their
upper case equivalents (A-Z and $ # @). VVhen neither
is specified, KB is assumed.

Mixed Card and Keyboard Input

Assembler language source statements entered at the
terminal may be from the card reader (if one is avail­
able), from the keyboard, or from a mixture of the two,
without restriction.

The procedure for changing input mode is as fol­
lows. The system will expect lines from the keyboard
until the cDC of the commands c, CA, or eB is entered at
the keyboard. Once these characters have been en­
tered, input lines are expected from the card reader.
If a card containing command K, KA, or KB is encoun­
tered, lines arc once again expected to be entered from
t11e keyboard. (See Terminal User's Guide for SYSIN

Devic~ Selection and Data Translation.)

Caution When Changing Card-Origin Statements

Source statements from punched cards may later be
changed, using various commands of the TSS Text
Editor (the Text Editor commands are described in
Command System 'User's Guide).

On assembly, each source statement of punched
card origin is treated as an SO-character record. 'Vhere
the stat~;ment has been shortened to fewer than 80
characters hy changing it with a Text Editor command
after it has been stored, the assembler, before further
processing, pads the statement to 80 characters with
trailing blanks. \Vhere the statement has been changed
to contain more than SO characters, the assembler trun­
cates the statement to BO characters.

Care must be taken in changing a card-origin source
statement so that, after padding or truncation by the
assembler, the statement will still conform to the cod­
ing conventions discussed in this section. (An cxample
might be a statement containing a sequencc number
in the icicntifieationscquence field, columns 73-80.
The slatemcllt is shortened one character during Text
Editing. The assembler pads with one trailing blank
in column 80, leaving columns 72-79 containing the
sequence number, Since column 72 is normally the
continuatioll column, an error resl1lts if tlte lI('xt S01lrce
statcllwnt is \lot a continuation lint·.)

Efficient Correction Techniques

Conversational correction of assembler statements is
nonnally made at one of two points in the assembly.
The first, called local correction, is when the user's
keyboard is unlocked for a new or correction line.
This occurs following the assembler's scan of the
statement just entered and the printing at the terminal
of any diagnostic messages associated with that state­
ment. The second point at which corrections are nor­
mall), made is when the entire program has been en­
tered (i.e., the E:"iD line has been entered) and a
message soliciting modifications is typed at the termi­
nal. This occurs only when errors have been detected
by the system. Corrections made at this point are called
global corrections. The distinction between local and
global corrections and between different types of local
corrections is important in that the user can minimize
the amount of processing required for a given assembly
by being aware of the effect of the correction upon the
assembly process. The follmving paragraphs describe
efficient correction techniques in detail.

After all global corrections are made, all the cor­
rected lines are collected and applied to the source
data set. The assembler then reinitiates the source scan
of each individual statement, beginning with the first
source line of the program. \Vhen local corrections are
made, reinitiation of the source scan mayor may not
be required, depending upon the type of correction
made. Since it is desirable to minimize the number of
source scans, corrections that reinitiate the source scan
generally should not be made until the time for global
corrections is reached. This rule does not apply, of
course, where failure to make a correction would result
in many other diagnostics, such as an error in defining
a symbol.

A simple correction rule that can be assumed in the
majority of cases is: correction of a statement immedi­
ately following entry of that statement does not cause
reinitiation of the source scan; all other corrections do
cause reinitiation of the source scan. Example 1 below
demonstrates immediate correction; example 2 demon­
strates a correction causing reinitiation of the source
scan.

Example 1:

LINE NO. TEXT

00006001' ABLE 1 DC F
NOTES

Entry of this statement pro­
duces a diagnostiC.

0000600E *** DATA OMITTED FR01\! DC OPERAND

#600,TABLEl DS F Immediate correction, entered
after the system has typed #,

(press return key) causes the line to be replaced
at once. User presses return key

0000700 . . . after #. User can then proceed
without re-scan.

Example 2:

LINE NO. TEXT NOTES

0000600TABLEl DC F Entry of this statement pro­
duces a diagnostic.

0000600E *"* DATA OMITTED FRO,\1 DC OPERAND

(press return key)

0000700TABLE2 DS F

ooo0800%600,TABLEl DS

000800 '"

User presses return key after #.

User ignorcs error by returning
carriage after # has been
prillted, causing next line to be
solicited.

F Since line 700 was error free,
line 800 is solicited. The user
now decides to correct line 600,
using % notation. This correc­
tion forces a rescan of the entire
source module.

\Vhen the module bas been re­
scanned, the user is again solic­
ited for the next line and can
continue.

The position at which the keyboard is unlocked after
the system solicits a new statement corresponds to the
"begin" column in card format; i.e., a name field, COIIl­

ment line, or continued line must begin immediately
following the line number. If the line is not a comment,
named line, or continued line, one or more blanks must
follow the line number.

If, after the keyboard has been unlocked for a new
line, the user wishes to correct a statement, he types a
percent sign (%) followed by the number of the state­
ment he is correcting and then the corrected statement.
In example 2 above, after line 800 is solicited, the user
corrects line 600.

If a diagnostic has been issued for a statement, the
system types a number sign (#) and then unlocks the
keyboard. The user may then enter the number of the
statement he is correcting (which is not necessarily the
previous statement) and then the corrected statement.
If the user decides at this point that previous errors in
his assembly would result in excessive diagnostics and
solicitations for corrections, he may respond by typing
the letter I and press the return key. This will inhibit
all further diagnostic messages from being printed at
his keyboard. He may also print the letter C and press
the return key; in that case he will continue to receive
diagnostics but will not be solicited for corrections. If
the error is a minor one, he may ignore the request for
correction by pressing the return key. Example 1 above
shows how the system continues to solicit corrections
until the user ignores the request.

Note that, in a correction, line, a comma must be
used to separate the line number from the corrected
statement.

Discussion of assembler response to more complex
local corrections requires a definition of three terms:

Appendix A. Use of the TSS Assembler 105

1. Partial Statement: A partial statement is the state­
ment currently being entered. Statements are partial
until a line is entered that is not a continued line. An
example of a partial statement is shown below. The
first line is a continued line, but the continuation line
has not yet been entered: (CR) notes carrier return.

ALPHA DC CLlOO'THIS IS AN EXAMPLE- (CR)

2. Tentative Statement: A tentative statement is the
last statement completely processed by the assem­
bler. Thus, while a new statement is being formed
(i.e., is partial), the previous statement is defined as
being tentative. When a statement has been com­
pletely entered and the next line has not yet begun,
the statement just entered is tenned tentative. An
example of a tentative statement is shown below,
where the second line is not a continued line.

lIEXCON oc CL16' 0123456789- (CR)

ABCDEF'

The above lines are, of course, equivalent to the
following single line.

lIEXCON DC CL16'0123456789ABCDEF' (CR)

3. Committed Statement: The relation between a com­
mitted statement and a tentative statement is identi­
cal to the relation between a tentative statement
and a partial statement; once a statement becomes
tentative, the preceding statement becomes com­
mitted. In the folloWing example, entrance of the
second statement causes the second statement to
become tentative and causes the first statement to
become committed.

GAMMA CSEGr

USING *,15

The relation between the above types of statements
and assembler response to corrections is as follows:
1. Tentative and partial statements can be corrected

without causing a reinitiation of the source scan.

LINE NO. TF.xT NOTES

0000100 MACRO

0000200&NAME MACNAME P1,-(CR)
Line 100 is tentative, Line
200 is partial, due to the
continuation character.

0OOO300&P2, &P3,-(CR)
0000400%200,&NAME MACNA:\lE &Pl,-(CR)

106

Line 300 is partial due to the
continuation character. Line
400 is solicited, but program­
mer notices an error. Since
line 200 is still in partial
status, this correction does
not cause reinitiation of the
source scan.

0000400&I'4,&P5

0000500 ...

Entry of this statement
causes line 100 to become
committed and the composite
statement beginning at line
200 to become tentative.

Before the statement begin­
ning with line 500 is com­
pleted, corrections can still
be made to lines 200 through
400 without causing rescan.

2. Correction of committed statements does cause re-
initiation of the source scan.

LINE NO. TEXT

0000200RA EQU 125
0000300RB EQU 13

NOTES

0000400 L RA,ALPHA Causes a diagnostic due to an
invalid value for symbol RA.

0000400E *** Rl VALUE INVALID FOR FIELD

#200,RA EQU 12 Correction of a line prior to the
committed statement (line 3(0)
causes a reinitiation of the
source scan.

3. Insertion of a new statement between a committed
and a tentative statement does not cause reinitiation
of the source scan of the entire program. For exam­
ple, insertion of line 650 in the following example
requires that line 700 be rescanned, but lines prior
to 650 are not rescanned.
LINE NO.

000060O

0000700

TEXT NOTES

SAVE (14,12) At completion of this state­
ment, line 600 is tentative.

EX O,TAB(l) Line 600 is committed at this
point, line 700 is tentative.

0000800%650, L 1,0(1) User elects to insert a line at
this pOint.

0000800 User continues.

The source and object listings (if requested) are not
created until the entire program has been entered and
all corrections nave been made. Thus the conversa­
tional terminal may contain many diagnostic messages,
but the listing contains diagnostics only for source
errors remaining after all corrections have been made.

Entry of Keyboard Source Statements for Later
Punching and Recompilafion

It may be desirable to punch out source statements
entered at the keyboard in order to enter these state­
ments later by card reader; this is possible only if no
source statement contains more than one line, because
of the different conventions used in determining the
initial significant character in continuation lines. Key­
board continuation lines always begin in type position
1; card continuation lines begin in column 16 or in a
column speCified in the IGrL instruction. (It is not per­
missible to specify that continuation lines begin in
column 1 in the IGrL instruction.)

OPERATION OPERAND

ASM
NAME:::: module name [STORED == {~} J
[,MACROLIB = ({data definition name of j)]bolic portion,
data definition name of index portion} [, , ..)] [,VERID = version identification]
[,ISD:::: {YIN}] [,SYMLIST == {YIN}] [,ASMLIST:::: {YIN}]
[,CRLIST = {YIN IE}] [,STEDIT = {YIN}] [,ISDLIST = {YIN}]
LPMDLIST~cc{Y:N}] [,LISTDS={Y1N}] [,LINCR=(first line number, increment)]

Figure 15. Assembler Parameters

Tenninallines must contain no more than 80 signifi­
cant characters if they are to be punched.

The means for punching tenninal lines is the PUNCH

command. This command contains two operand fields
("startno" and "endno") specifying the character posi­
tions relative to the data set record of the lines to be
punched. Assembler source lines are stored in the data
set as entered by the programmer, with the exception
that the first character of each line entered becomes
the ninth character of the data set record; a 7 -byte line
number and a I-byte fonnat character are provided by
TSS during the fonnation of the data set. Thus, the
startno operand of the PUNCH command should be 9,
not 1. The endno operand is nonnally 88, but it can be
less if all the keyboard lines contain some number of
significant characters less than 80.

Assembler Options and Related Output
This section discusses three topics:
1. The parameters supplied when the ASM command

is given.
2. The listings produced by the assembler when re­

quested by user-supplied parameters.
3. The destination of all output from the assembly.

Assembler Parameters

When issuing an AS~1 command, the user must enter
parameters providing such items as the module name
for this assembly; the source of the input lines (pre­
stored or to be entered at the tenninal), etc. A list of
assembler parameters is given in Figure 15. The nota­
tion used in Figure 15 is explained in Appendix G,
Command Fonnats.

One of the assembler parameters listed in Figure 15
(module name) must be provided by the user; others
may be left unspecified and system or user default
values ,,,,ill be chosen.

Explicitly Defaulted

A comma is issued immediately following entrance of
the preceding parameter, rather than entering a value
for the new parameter followed by a comma. For ex­
ample, module ALPHA, with prestored source lines, is to
be assembled, explicitly defaulting supplementary

macro libraries and the version identification, but sup­
plying parameters for all other parameters. The proper
parameter description is:

AI,PHA, Y, , , Y, Y, Y, Y, Y, Y, Y

Implicitly Defaulted

In the example above, the user could have pressed the
return key following entrance of the Y specifying that
an ISD is to be produced. This action implicitly defaults
all parameters following the ISD option.

The assembler parameters shown in Figure 15 are
defined as follows:
NAME =

specifies the name of the object module to be
created. Since the name used becomes a member
of a virtual partitioned data set when the object
module is created, partially-qualified names and
generation data group names cannot be used.
Virtual partitioned data set members must be
identified with simple names. The source data
set for that module is named souRcE.module by
the system; the listing data set for the module is
named uST.module-name.generation-number to
cause actual printing to be accomplished. The
module name must be unique to the library that
is to include it; i.e., it must not be the same as
any entry point, CSECT name, or externally defined
symbol or module in that library. The name con­
sists of one to eight alphameric characters, the
module name may not be the same as any exter­
nal definition supplied by the module.

STORED =
specifies whether or not the source data set
is prestored; if so, it must have been named
SOURCE. module. The allowable values are Y or
N. The system assumes N.

MACROLlB=

The first ddname (ddnamc[) specifies the sym­
bolic portio II of the supplementary macro library
that is to be used. A DDEF for this ddname must
be provided by the user. If a DDEF has not been
entered by a conversational user, he is prompted
for the required definition information; a non­
conversational task is abnormally terminated.

Appendix A. Use of the TSS Assembler 107

Default: Only the system macro library is used.
The second (ddname!!) specifies the ddname of
the index portion of the supplementary macro
library that is to be used. A DDEF for this ddname
must be provided by the user. If a DDEF has not
been entered by a conversational user, he is
prompted for the required definition information;
a nonconversational task is abnormally termin­
ated.
Default: Only the system macro library index is
used.
Note: ddnamel and ddname!! must both be given
if either is given. Up to five more user supple­
mentary macro libraries may be defined for use.
The first additional one would use ddnamex for
the symbolic portion and ddname4 for the index
portion. The next one would utilize ddnameo and
ddname6, and so on until the maximum allowable
nnmber of supplementary macro libraries is
reached. As with ddnamel and ddname2, a pair
of ddnames must always be specified. User macro
libraries are searched in the reverse order of
specification; the first one defined will be the last
one searched.

VERID=

• ISD=

specifies the version identification to be assigned.
The version identification consists of one to eight
alphameric characters. The version identification
appears in the PMD (and PMD listing if requested).

specifies whether an Internal Symbol Dictionary
(ISD) is to be produced. An ISD is used by the
Program Control System (pes) in order to refer
to internal program symbols during checkout.
The allowable values are Y or N. The system
assumes Y.

SYMLIST=

specifies whether a symbolic source program
listing is to be produced. The allowable values
are Y or N. A source listing displays the card or
keyboard images supplied as input to the assem­
bler. The system assumes N.

ASMLIST=

108

specifies whether an object program listing is to
be produced. The allowable values are Y or N.
An object program listing shows the concatenated
source lines together with the associated absolute
value or location counter assignment. 'Vhere re­
quired by the statement, the hexadecimal repre-

sentation of the binary text is also displayed.
The system assumes Y.

CRLIST=

specifies whether a cross-reference listing is to be
produced. The allowable values are Y or N. A
cross-reference listing is a table of the defined
symbols and the locations of aU references to
those symbols. The system assumes N.

STEDIT=

specifies whether the edited symbol table is to he
listed. The allowable values are Y or N. The sym­
bol table edit displays symbol names, their attrib­
utes, and the absolute or relocatable value as­
signed to each symbol. Either a cross-reference
listing or a symbol table edit may be requested
but not both. The system assumes N.

ISDLIST=

specifies whether an ISD listing is to be produced.
The allowable values are Y or N. An ISD listing
displays the internal symbol entries found in the
ISD. The system assumes N.

PJ.IDLIST=

specifies whether a program module dictionary
(PMD) listing is to be produced. The allowable
values are Y or N. A PMD listing displays the
contents of the PMD by control section. The sys­
tem assumes N .

LISTDS=

specifies whether the requested listings are to be
placed in a list data set or placed directly on
SYSOUT. When listings are placed on SYSOlIT, no
record of them is kept in the system after print­
out. The system assumes N for non-conversational
tasks (no list data set), and Y for conversational.

LINCR = first line number
specifies the line number to be assigned to the
first line of the data set. The line number can
contain three to seven digits, the last two of
which must be 00.
Default: The first line number is 100.

increment

specifies the increment to be applied to develop
successive line numbers. The increment can con­
tain three to seven digits, thplast two of which
must be 00.
Default: The increment is 100.

Although the line number values are explained in
the context of the STORED parameter, such values have
meaning only in conjunction with a negative (N) re­
sponse to the STORED parameter. So that the syntax
analysis for both prestored and non-prestored data sets
may be identical, the LINeR parameter now resides at
the end of the parameter list.

The source code in your object program listing can
appear in either aligned or unaligned fonnat. Aligned
fonnat means that regardless of how you entered your
input, all name fields will appear in column 1, all in­
stmction mnemonics will appear in column 10 (or one
blank follOWing the name field, whichever is further
to the right), and all operands will begin in column 16
(or one blank following the mnemonic, again which­
ever is further to the right). U1Ulligned fonnat means
that the fields of the source code will appear exactly
as you entered them.

If you do not specify otherwise, the source code will
be aligned. To achieve an unaligned fonnat, issue the
DEFAULT command with an operand of ASMALIGN=N
prior to issuing the ASM command. If you have issued
DEFAULT AS:\fALIGN=N and wish to revert to an aligned
fonnat (the system default), issue DEFAULT ASMALIGN=Y.

Structure and Description of Assembler Listings

The assembler prepares a listing data set if one or more
of the six listing options are requested. In nonconver­
sational mode, if a list data set is not specifically re­
quested, listings are placed on SYSOUT and no record of
them is retained in the system after printout. In con­
versational mode, a list data set is automatically created.
for your listings. You may, however, choose to have
them placed on SYSOUT (printed at your tenninal).
The six types of listings are: source program listing,
object program listing, cross-reference listing, symbol
table listing, internal symbol dictionary listing, and
program module dictionary listing. Various combina­
tions of these listing options are possible. Operation
codes are now aligned on output listings from the
Assembler to proVide a more orderly presentation.
This applies to both macro expansions and user­
created code. Printing of the listing data sets prepared
by the assembler is not automatic. Each time a unique
module name is encountered, a generation data group
is established, containing two generations. Each time
the limit (two generations) is reached, the oldest
generation is erased. The user may print only when
he desires the output listings, using: PRINT LIST.module­
name. generation (absolute) or LIsT.module-name
(generation) (relative). Command System Users

Guide, Ge2S-200l, presents a complete explanation of
the language processor listing data set maintenance
process.

Since a pending BOLK!IO task will be established
when the PIUNT command is issued for the language
processor listing data set, the user must not attempt to
erase the data set (or othelVvise remove it from the sys­
tem) unless the BSN is canceled first.

The formats of assembler~produced listings are illus­
trated below. The programs were designed so that
diagnostics would be produced and certain assembler
instmctions and assembler functions (e.g., literal pool­
ing and reordering of control sections) could he illus­
trated. All types of assembler output are shown; the
circled numbers on the listings correspond to the
numbers in bold face type in the text.

Source Program Listing

The source program listing presents, in the order re­
ceived, the original source language line images sub­
mittpd for assembly by the user. Each source line, 2, is
preceded by a decimal statement number, 1. Tenninal
input greater than 120 characters is continued on the
next line. Figure 16 is an illustration of a source pro­
gram listing.

Diagnostic messages, 3, are collected and presented
at the end of the listing. Only those messages produced
prior to the text generation phase are listed. Each mes­
sage is preceded by the statement number, 4, of the
line to which it applies. Messages are listed in ascend­
ing order by line number.

Object Program Listing

The object program listing documents, in control sec­
tion order, the hexadecimal representation of the hi­
nary text assembled for each source statement. Con­
tinued source statements are shown in concatenated
form. No characters before the continue column in con­
tinuation lines appear in the object listing. Unless an
ICTL instruction is used to change assembler treat­
ment of card records, column 16 is the continue col­
umn on card records. The first non-blank, non-tab
character is used as thp continue column in keyboard
continuation lines. The ASMALIGN default value may be
used to align the source code in the object program
listing.

Figure 17 is an illustration of an object program
listing. The sample listing in Figure 17 contains three
control s(:'ctions, one of which has been written non­
contiguously (for illustrative purposes only) and has

AppendiX A. Use of the TSS Assembler 109

CD
LINE

0000100
0000200
0000300
0000400
0000500
0000600
0000700
0000800
0000900
0001000
00011 00
0001200
0001)00
0001400
0001500
0001600
0001700
0001800
0001900
0002000
0002100
0002200
0002300
0002400
0002500
0002600
0002700
0002800
0002900
0003000
0003100
0003200
0003300
0003400
0003500
0003~00

0003700
'1003800
0003900
0004000
0004100
0004200
0004300
0004"'00
0004500
0004600
0004700
0004800
0004900
0005000
0005100
0005200

LINE

0005300
0005400
0005500
0005600
0005700
0005800
0005900
0006000
0006100
0006200
0006300
0006400
0006500
0006600
0006700
0006800
0006900
0007000
0007100
0007200
0007300
0007400

INDIl\NP

YEAR
MESSAGE
LENGTH
f'RINCP
!NT
7JlEN
NOW
ROUND
TE~
EDITOR

o
SOURCE TEXT

INDIAN PROBLEM
PSECT
ENTRY INDIAN
DC r ' 76'
DC 1SF'Q'
OS 0
DS eL20
DC F 1 20'
DC PL7'+2!;'.OO·
DC PL2'+1.04'
DC F"626'
DC Y'1965'
DC PL2'50'
OS PL66
DC C' $,
DC Xf2120·,C','
DC X'202020',C','
DC X·202020'
DC X' 2020 I

SOURCE LANGUAGE LISTING

SAVE AI'FA

COl'J\'E'RS ION AREA
MESS}'GE WC1>_TION
I'ESSJ\GE LENGTH
PPtNCIPAL lIJ-M'
INTEREST RATE

•• THE FOLLOWING INSTRUCTIONS }\RF. INCLUDED TO CAUSE HOOIF'IE~5 TO PRINT
•• ON THE ProGRAM MODULE DICTION.APY LISTING

EXTPN XYZ
DC VIM)
DC A(XY')
DC l'L3 (TEMP)

•• END OF SPECIAL INSTRUCTIONS
INDIANC CSECT RE.A.OONLY

USING INDIAN, 15
INDIAN S~VE (14,12)

L 14,72(0,11)
ST 14,8(0,13)
ST 13,4(0,14)
LR 13,1.
USING INDI.M~P, 1:J
LF 12,15
DROP 15
USING INDINl",12
L S,NOW
L 3,T!lEl1
L 4,1

nmIAUCL CSECT REJ\DONLY

GET PSEC'T COVEP REG
STOPE POm-lAPP LINK
STORE BJ!.CKWJ! PD LINR
SET FEG 1] TO AODRE5F OF PSEC'T

LO~[i COVFP FEr,

SET UP llATP. COL'NTr:P

ENT MESSAGE+6 (14) ,PRHICP+1 EDIT 111SWFR
CVD 3, YEAH CaN'tlEFT YEAR FOR PPINTOUT
UNPK MESSAGE (4) ,YEJ\R+5 (3)
OI MESS.AGE+3,X'PO'
GATWP MESSAGE,LENGTH
L 13,4(0,13)
RETUFN ('n~, '1:2)

RD-'OVE SIGN FRO,., DATE
WRITE ANSWER ON SYSOUT
IlEsrorE C/\LLINC REG 13

•• THE FOLLOWING INSTRUCTIONS ARE InCLUDED 'l'O ILLl1STPJ\TE CERTIUN TYPES
•• OF' ASSEr-mLER INSTRUCTIONS AND TIlE POOLING Of' LITERALS
TlIISYEAR EQU NOW

&A

GBLlI LA

SOURCE TEXT

SET!>.
ORG
,.~c

L

·.100
YE~P(2) ,=X'40.Q.O'
1,=P'123-'
2,YEAF.X'48' ,80
2,e

t;P1 ,&P2

50UPCE LANGUAGE LI~TING

CCW
CNOP
l~ACRO

'1M
.lNOTE &P1,''J'HIS ILLUSTRATES]!'N ~OTE tP2'

•• END OF
INDIAl~C
LOOP

PRINT

HEND
HM 1, DIAGNOSTIC
11M • , COMMENT

ILLUSTAA'TIONS
CSECT
MP
lIP
MVN
I<VC
ZAP
BXLE
>'VC
END

PRINCP~INT
PRINCP, ROUND
PRINCP+5 (1) ,PRINCP+6
TEMP. PRINCP
PRINCP, TEMP
3,4, LOOP
HESSAGE+4 (16) IEOlTOF

COIIPUTE INTEREST
FOUND OFf'
"OVE SIGN
EN'ECTlVELY SIlII'T ON' 2 DIGITS

SET UP EDIT !'Jl5K

SOllRCE I.ANGU}V~E LISTING

DIAGNOSTIC MEFSAGES

0001400 E ••• VALUE OF LENGTH MOflIPlf:P INVALID FOR TYPE or CONSTTlNT
OOO~200 E ••• IEDIT 'UNDEFINED MNE~ONIC OPERATION

Figure 16. Source Program Listing

110

PAGE 0001

PAGE 0002

PAGE 000)

I
!

c!:, @ @ @ (i}l PAGE OOO~

r.oCAT!ON INSTRUCTION i\DOR , /'ID011 , STATE~T SOt'RCE 07/22i7 08:39:19

@ @ 01 oaODO

01 00000 OO()OOO~C
01 00004 00000000
01 00050
01 00058
01 000 6C 00000014
01 00010 aOOQOOOOO2uOOC
01 00071' 10"C
01 00071} 000000
CI 0007(' 0000065.A
01 00080 0OOOO7}1.D
01 00084 050e
01 00086
01 00096 405D40
01 00099 2120
01 00098 DB
01 0009(' 202020
01 OOO~F <B
01 00010 202020
01 000") 2020

C1 CODA5 000000
01 OOO"'!} 00000000
01 QOO.'\C 00000000
0' 000110 000096

01 OOOB3
01 00084
01 OODB1;- 0000
01 OOOBe; 0002
01 OOOBa ooooooa4
01 OOOBe I)OOOD{lSS
01 oooea ;)000006C
01 000C4 ooooooeo
Q1 000C8 00000000

02 00000
02 00000

02 aoooo ,)OEC Dooe
02 00004- ~8EO D;)4G
02 oaOD8 soro D008
07 00.00(' ')Q[ti) EOOll
02 00010 1 aor:

01 oaoao
(12 I)jO 12 Hl,y

02 00000
n 000'4 5850 [loao
n 00018 58)0 D07C
r,2 ooate 58!!.;) 0001

00;)01GO INDUN PROBlEM
0000200 !ND!l\NP PSEC'l'
0000,00

(i)
fNTPY INDI P>N

o-OOOliOO DC F' 76 I

0000500
YF,}\R@

DC , sr' 0 I

0000600 OS V
00007CO t'Ef:SJI.GE OS CL20
0000800 LENGT~ IX F020'

~~g~~g~® ~:~NCP DC PL7' 24.0Q·
IX PL2· ... 1.04· · 00::,1100 THEN DC P'1626'

0001200 NOO DC 1'1965'
0001)00 ROt!NP DC PL2' SO"
OQ0140) p TFrw [IS PL(if,

0001500 r.DITl1p IX: C' <

0001£00 DC Y'2120' ,C',

OOQ17flQ DC X''2I).:;!020' ,(".

0001800 fiC' X'202020'

CONVERS I ON >-. REA
KESSAGE LOCATION
MESSAGE LENGTH
PFlINCtPAL A.MT
INTEPJ:ST RATE

~~gg~g@i) •• THB 'fO~i0WP'l~' ~~~~~UCTI()N~ "Pi: INCLtJDFD TO CJl.USE
0002100 -' ... ON '!'Uf. PROGPM' I-40Dt'LE DiCTrON1'.RY LISTING

r.~ODIFIERS TO PRNT

aoonon r:XTf'N XYZ · 0002)00
0002 1HlO
0002500
0002600

0002700
0002800
(1002900 · 0001000
0003100
000)200-
OODDon
OOO)~OO

GOO 35!'l-D
0003600
0003700

0' OQ080 000)800
0' 0001C 000)900

00011000 w

DC V\l·,j\)
DC A(XYZ)
DC T,L3 (TE~q))

j-~ND Df' SPF.f'H I, IW:TFU''I""I{'NS
INDIANP PSECT

OS or
DC H'O·
DC H'2'

CllD0002 DC A~.-4)

DC A(~tESS1\GEl

DC]I., (LEnGTn)
DC A(O)
DC JI. (0)

f»D!hNC CSErr RF:HlONLY
USING !Nf'lJAN, 15

INfJI1l,t'l .t:f\'1F (1 Q. , ?)
INDIJI'.N STt.. i~.1?17('3) SJl.VF

L 14.72(O,11}
~T 111, P, (O,l)}

@ ~~ ~;:~~o.nq
H~ING Pl'(Hft]TP. 11
LP 12,1')
DFOP 15

@ ~s rNG ~t:~~:/~' 't 2

L 3,'I"lU:tl ., ,

FULL WOPD ALICN~.Etn:·

SIC CODE
TYPE CODE

SPECIFIED nee's
GET PSECT COVER REG
STORE FORW~ RD LINK
STORE BJ!CKWARD LINK
SET REG 1 3 'l'O ADDRESS OF PSEcr

TO]l.D COVER PEG

SET l'P DA.TE COUNTE~

PAGE aaos

LOC~TI('1N rNS~RUCT!OU ... ODP , M)DP 2 STII.TF.¥UT SOCPCE 07/2:2/71 08:39:19

0' .')0020
02 G0020 FCC 1 0070 [':0'7 01 00070 0'
02 00026 F.A.fi1 D07D 0081& 01 00070: 01
02 D002e 0100 D07S D076 0' 00075 01
02 0(0)1 D1QF D086 0010 0' 00086 01
!j2 00038 F86F 0070 D086 0' 00071) 01
~}2 QuOJE 813_ cn20 02
02 00042 Nap ['QSC D096 01 ooose 01

02 OOO~8 00;)000'5
02 oa04C 4040

03 00000

0006600
00077 0006700
00(1134 0005800
00076 0006900
00010 0OO70DO
00086 0007100
00020 0007200
00096 0007300

00071.100

INDI1>..NC
LOOP

@

PPINT

CSFCT
~'l' PPInCP. INT

""" '''Ie
'AP
BYLF.

''Ve
END

PRIMep , ROUND
PF.INCP+S (1) ,PPINCP+6
TE~tp, PPINCP
P RINCf' ,TF.P-'P
3, 4 ,I..(\()r

MESf.A(;P+l! (16) ~EDr'!'OP

=F'123'
.. x' 110 itO '

IN['IT Jl.NCL CSF.CT :nEAOONL\·

COHPUTE. INTEP.EST
POliND OFF
~OVf: SIGN
Ern:CTIVELY SUIFT OFF 2 DIGITS

SET UP EDIT t'lASK

C3 00000 4£30 n050 01 nooso

000"'00
0004200 E
0004300
()'}Ott.400
ao-otlsoo
0004600

@ CVD EDJI. Yf_~~SJ\GF.+(, {''') • Pf.'lNC~~V~~,~T y:~~~p PPINTOUT

03 0.0004 r]32 D059 D055 01 OOOS8
03 00001> 96F'O ['IOSB 01 00055

03 OOOOC
03 aOOOE t<110 DOBS

0' 00055

01 aOOBB

UNPR MFS~}\GE(t:) ~YE"P+S (3)

@ ~;'rWP ;:;;~~~:~~~~'
('HDPSFCT CH[;XOOO 2

+ INl"lIANCL CSECT
... C"BDY0002 LJ1 1 ~CHD(}C02

CliDINNFA ., (C1:1>TC1) .X'9[,'

t:>.F.MOVF SIGN Ff!O~' D1\TE
WPIT'E ANSWER ON SYSQUT

GENERA'!'E LINKAGE
03 000'2 "H'O 009D L1\ 1').,X' 90 I L01l.D REG. 15 WITH EN'l'ER coot:

03 00016 OJl79
03 00018 5800 D004

0] 0OO1C
0] OD01C 9BEC DOoe
'-:-1 00020 Q7f'E

01

0'

OOOQlt

OOOOC

..
000 11700
OO,)48DO

ENTER TYPE n I.IN;CA(;F
5VC 121
L 1),1(iO,11;
nETUnN (1l!, i2l
0.':; on
1M 14,12~12fl1)
BR 14

SUPEPVISOR CALL
P.EST<)RE CALLING REG 13

00011900
ooosoOO
CtOI)StOO
0005200
0005)00
0005400
0005500
01)0%00
0005700
0005800
G005900
0006000
000f;100
0006200
0006300

•• 'l'HF. FOLLOWING INSTPllC1'ION!; P,J:;oE INCLUDED TO ILI.USTRJ\.TE CERTAIN 'tYPES
.- OF J,SSR..-au:P INSTPUC'I'ION~ AND THE POOLING OF LITFRALS

0' 00080

00000002
03 00086

CJJ DOOSE D201 D05o. CO~C 01 OOOSO 02 0004C
03 Goose 5.8'0 C048 02 00048
03 00090 02000050 '18000050
0) 00098 07011

+w
00061100 ..
0006500

THI~YE"R E0tT NNI
GBr.]. t.A
~ET"_ ,
(lP" -+100
~(\f(" YEAP(2) ."")"11-1)40'

@ ~cw ~:~~~~:;:U81.BO
@ ~~g:o :!,B

f!f-l &Pl • £.[>2
t~NM'F' Ij.Pl, 'TH!~ ILL1T5TP~T:r:::S AN ~-~NOTF. t.P2'
t~END

/")-' 1. f.'-!JI,GN0STIC
MNOTE 1,' THIS TLU"S'1'PATES AN MNOTE DU.GNOSTIC'

m·. • ,C0Y'~'EN'::'
:. Tf~~~ ;~L~~~:-~~T~~N7O'Tr. cotTENT @

o w;.nNING AND F.PFOF HEfiSAGES

0001!Joe r: ... VALUE OF LENGTH MODIFIER !rNAI., tn FOR TYPE OJ' CONf"TJI.NT
0004000 W ••• OPERAND REQUIRES FULL-waRD Bm'NDARY
00011200 E ... I rnIT • UNDEFINED MNEMONIC OPEAATlon
00063Q:) h~ ••• 'rHtS ILLt:.1STRATES I\N MNOTE DIl'GN~Tl(,

NtJ1"BEF: OF WAF1UNG AND EPROR MESS~.GES 00 Ii CD
HIGHEST SEVERITY CODE F.NCOUNTF.FED 00' (2)

P~GE 0006

Figure 17, Object Program Listing

Appendix A. Use of the TSS Assembler 111

bePIl put in order by the assembler. TIle user should
avoid writing non-contiguous control sections, if pos­
sible, as they assemble much less efficiently.

\Vaming and error messages. 5, are collected and
presented at the end of the listing. All diagnostic mes­
sages (including MNOTE messages with a severity
code) produced by the assembler ,vill be listed. This
listing differs from the listing presented at the end of
the source language listing. Messages are listed in
ascending order by line number. A count of the num­
ber of messages, 6, and an indication of the highest
severity code encountered, 7, are also presented. The
severity code is 1 if only waming messages were pro­
duced, or 2 if error messages ,verc produced.

The listing contains the following types of lines in
addition to the column heading line: machine instruc­
tions, assembler instmctions with related values, as­
sembler instmctions without values, ccw instmctions,
C~OP instmctions, constants, literal pools, diagnostic
messages, 1>.INOTE messages, and commentary lines
(i.e., lines which were written as commentary by the
user or which, due to diagnostic action, were made
commentary by the assembler). In addition, a space
for required boundary alignment or a statement gen­
erated hy a macro instmction contains a plus sign (+),
8, immediately following the statement field. A source
statement is edited in the following manner: (a) the
name field will begin in column 1; a sequence symbol
in the name field is suppressed; (b) the operation code
is shifted to begin in the location corresponding to
card column 10 or the next available location there­
after; (e) the operand is shifted to begin in the loca­
tion corresponding to card column 16 or the first avail­
able location thereafter; and (d) the comment field
will follow the operand field by the number of blanks
coded in the source program. No editing is performed
if the statement is in error. Each type of line is de­
scribed below.

1. ltfachine Instructions: Under location, 9, the sec­
tion number, 10, and location counter displacement,
11, are listed in hexadecimal. The instmction, 12, addr
1, 13, and addr 2, 14, fields differ according to the type
of instruction. If the instruction type is RR, 15, the first
part of the instruction field contains the hexadecimal
text, and the addr 1 and addr 2 fields are blank. If the
instruction type is RX or RS, 16, the hexadecimal text
for the RI and R2 fields (R3, if RS) and the hexadeci­
mal text for the B2 and D2 fields appear under in­
stmction heading. The addr 1 field is blank. Under the
addr 2 heading appear the section number and the
location counter displacement of the symbolic S2 field,
if applicable. If the instruction type is S1, 17, the in­
stmction field contains the hexadecimal text of the I
field and the hexadecimal text for the B1 and D1 fields.
The addr 1 field contains the section number and loca-

112

hon counter displacement of the symbolic S1 field, if
applicable. The addr 2 field is blank. If the instruction
type is SS, 18, the three subficlds of the instruction
field contain the hexadecimal text of the In and R2
fields, the hexadecimal text of the Bl and DI fields,
and the hexadecimal text of the B2 and D2 fields, re­
spectively. The addr 1 field contains the section num­
ber and location counter displacement of the symbolic
Sl field, if applicable. The addr 2 field contains the
section number and location counter displacement of
the symbolic S2 field, if applicable.

The seven-digit decimal statement number appears
under the statement heading, 19. The number is edited
to contain leading zeros, e.g., line 4200 prints as
0004200. The SO-character source statement is listed
under source, 20, and is preceded by the letter WorE
if a warning or error message has been issued. If a
statement exceeds SO characters in length, it is con­
tinued on as many lines as necessary, with continuation
lines beginning in the location corresponding to card
column 16.

2. Assembler Instructions With Related Values: This
format desrription applies to the instructions CSECT,

PSEC'T, DSEC,'T, COM, START, END, EQU, LTORG, ORG, USING.

SETA, SETB, and SETC. Under the instmction heading,
the value of the instmction is listed. The types of val­
ues are described below. The location, addr 1, and
addr 2 fields are blank. Other fields are as described
under machine instmctions.

Relocatable value fields are associated with CSECT,

PSECT, DSECT, COM, START, EQU, END, LTORG, ORG, and
USING. Thev contain the section number and location

-counter displacement, both in hexadecimal. Absolute
value fields are associated with EQU, USING, SETA, and
SETB; they contain the 32-bit value expressed as 8 hex­
adecimal digits. External or complex relocatable value
fields are associated with EQU and USING, and are blank.
Character-string value fields are associated with SE.'TC;

they contain an alphameric character string.
3. Assembler Instructions Without Values: The lo­

cation, instruction, addr 1, and addr 2 fields are blank
for the following instructions; COPY, DROP, ENTRY,

EXTRN, AIF, AGO, GBLA, GBLD, GBLC, LCLA, LCLB, LCLC,

PRINT, ICTL, !SEQ, PUNCH, REPRO, and macro instruc­
tions. The remaining fields are as described under ma­
chine instructions.

4. CC\V Instructions, 21: The location field contains
the section number and location counter displacement,
hoth in hexadecimal. The instmction field contains the
text of the command code and data address fields, ex­
pressed as eight hexadecimal digits, followed by the
text of the Hag and count fields, also expressed as eight
hexadecimal digits. The addr 1 and addr 2 fields are
blank. The remaining fields are as described under
machine instructions.

5. CNOP Instructions, 22: The location field con­
tains the section number and location counter dis­
placement, both in hexadecimal. The instruction field
contains the hexadecimal text of one, two, or three
NOPR instructions, if required. The addr 1 and addr 2
fields are blank. The remaining fields are as described
under machine instructions.

6. Constants: The location field contains the section
number and location counter displacement, both in
hexadecimal, for a DC, 23, or OS, 24, statement. If DC, up
to eight bytes of the constant are listed on the first
line under instruction. If os, this field is blank. If the
DATA print option is on, the remainder of the constant
is listed eight bytes per line. If a duplication factor
greater than one is present, each duplication is listed
as if it were a new constant. The addr 1 and addr 2
fields are blank. The remaining fields are as described
under machine instructions.

7. Literal Pools: The location, instruction, addr 1,
and addr 2 fields are as described under constants. The
source text of the literal, beginning with an equal sign
(=), 25, appears in lieu of the SO-character source
statement.

S. Diagnostic Messages: Diagnostic messages are
collected at the cnd of the listing. Each message is
preceded by the statement number of the line to which
it applies, and its severity code. Messages are listed in
ascending order by line number.

9. MNOTE Messages: MNOTE messages that contain
a severity code, 26, are printed as diagnostic messages.
MNOTE messages that contain an asterisk for the sever­
ity code, 27, are printed as commentary lines.

10. Commentary Lines: Commentary lines are lines
which were written as commentary by the user, 28, or
which, due to diagnostic action, were made commen­
tary by the assembler, 29. The location, instruction,
addr 1, and addr 2 fields of these lines are blank. Other
fields are as described under machine instructions.

Cross-Reference Listing

The cross-reference listing is a presentation in alpha­
betical order of all the symbols defined within the as­
sembly. It includes a list of all hexadecimal program
locations \vhere a reference to the symbol is made in
the source language. Figure IS is an illustration of a
cross-reference listing.

Each symbol, 30, in an index line is followed im­
mediately by the type attribute (defined in Table 6),
33, and the length attribute, 34, in bytes, of the sym­
bol. Under location, 35, arc listed the section number,
31, and displacement, 32, both in hexadecimal, of the
location where the symbol is defined (if relocatable).
or an eight.digit hexadecimal number. (if absolute).
The references field, 36, contains the section number,
37, and displacement, 38, in hexadecimal, of each 10-

SYMBOL TYPE LNG LOCATION REPERENCES

CHDX0002 I 00004@03 OOOOE@@ @
CHDOO02 A 00004 01 OOOBB 03 OOOOE
EDITOR C 00003 01 00096 02 00042
INDIAN H 00004 02 00000 02 00000,

CPOS:;: fI

)

02 00014
INDIlINC J 00001 02 00000

r
INDIlINCL J 00001 0:. 00000
TNDIl\NP J 00001 01 00000 02 00012
INT P 00002 01 00077 02 00020
LENGTH F 00004 01 0006C 01 OOOCO

00006 LOOP I 02 00020 02 0003E
03) MESSAGE C 00014 01 00058 01 OOOBe, 02 00042, 03 00001"

NOW F 00004 01 00080 02 00014, 03 00022
PRINCP P 00007 01 00070 02 00020, 02 00026, 02 0002e, 02
PRINT I 00004 07 0003E I ROUND P 00002 01 00084 02 00026
TEMP P 00010 01 00086 01 OOOBO, 0200032, 02 00038

) THEN F 00004 01 0007C 02 0001B
THISYEAR U 00004 01 OOOBO
XYZ T 00001 00 0000' 01 aOOAC
YEAR D OOOOB 01 00050 03 00000, 03 00004, 03 00086, 03

Figure 18. Cross-Reference Listing

Table 6. Type Attributes

TYPE

ATTRI- DESCRIPTION OF SYMBOL

BUTE REPRESENTED BY ATTRIBUTE

A A-type address constant, implied length, aligned.
B . Binary constant.
C Character constant.
D Long floating-point constant, implied length,

aligned.
E Short floating-point constant, implied length,

aligned.
F Full-word fixed-paint constant, implied length,

aligned.
G Fixed-point constant, explicit length.
H Half-word fixed-pOint constant, implied length,

aligned.
I Machine instruction.
J Control section name.
K Floating-point constant, explicit length.
M ~1 acro instruction.
N Self-defining term (inner and outer macro instruc­

tion operands only).
o Omitted operand (inner and outer macro instruc-

tion operands only).
P Packed decimal constant.
Q Q-type address constant, implied length, aligned.
R A-, Q-, R-, S-, V-, or Y-type address constant, ex-

plicit length.
S S-type address constant, implied length, aligned.
T External symbol.
U Undefined. Used for symbols whose attributes are

not available, and for inner and outer macro
instruction operands that cannot be assigned an­
other attribute. This includes inner macro instruc­
tion operands that are symbols or literals. This
letter is also aSSigned to symbols that name EQU
statements.

V V-type address constant, implied length, aligned.
W CC\V assembler instruction.
X Hexadecimal constant.
Y Y -type address constant, implied length, aligned.
Z Zoned decimal constant.
R-type address constant, implied length, aligned.

Appendix A. Use of the TSS Assembler 113

@ @ @ @ TABLr

SYHBOL TYPE LENGTH VALUE

('HDX0OO2 r 00004 03 DOOOF
CHDOOO2 " 00004 01 OOORB
EDITOF. C 00003 01 00096
INnIAN ,. 00004 02 00000
INDIANC J DOOOl 02 00000
INDIANCL J 00001 03 00000
INDIANP J 0000 1 01 00000
TUT P 00002 01 00077
LENGTH F 00004 01 0006('
LOOP I ')0006 02 00020
NESSAGF. C 00014 01 00058
NOW F OOC04 01 00080
Pi(INCP P 00007 01 00070
PRINT I 00004 02 0003r.
ROUND p 00002 01 000B4
TEMP P 00010 01 OOCB6
THEN F 00004 01 0OO7C
THISYEAR U 00004- 01 08080
YY'l .,. DOOOl 00000000
YEAR D 00008 01 00-050

Figure 19. Symbol Table Listing

cation \,\,here a reference is made to the symbol. Refer­
ence locations are listed in ascending order.

Symbol Table listing

The symbol table listing is a presentation, in alpha­
betical order, of all the symbols, 39, defined within the
assembly. It includes their type, 40, length, 41, and
value, 42, attributes. This listing is similar to the cross­
reference listing but excludes references. This listing
is produced only if the symbol table listing option has
been selected and the cross-reference listing option
has not also been specified. Figure 19 is an illustration
of a symhol table listing.

Each symbol in the listing is followed by its type,
length, and value attributes. The value attribute, in
hexadecimal, is either a section number and location
counter displacement, if relocatable, or an eight-digit
hexadecimal number, if absolute.

Internal Symbol Dictionary Listing

The internal symbol dictionary listing is a presentation
of the symbols and related information placed, on re­
quest, in the ISD portion of the program module to
assist the program checkout system. Figure 20 is an
illustration of an internal symbol dictionary listing.

Each column after the first presents symbols and
information as described by the first column. The first
line of a column contains the eight-character name of
a symbol, 43. The second line contains the type of
symbol, 44, that is represented by one of the follow­
ing: INSTR, ADCON, BIXARY, HEX, SECTION, REAL, INTEGER,

CHAR, ZONED, PACKED, S-CON, or VALUE. The third line
contains a duplication factor, 45, in hexadecimal. TIle
fourth line contains an eight-digit length, 46, if any, in
hexadecimal. The length is normany the length attrib­
ute of the symbol; if the symbol is the name of a con­
trol section, the length represents the length, in bytes,
of the control section. The fifth line contains an eight­
digit immediate value or an eight-digit section number
and location counter displacement, 47, in hexadecimal.

114

PAGE 0002

o:r- f'fTTNF:P ~n!R0I.~

snmnr. TYI'~ I.FNCTJ! VA!FF.

Program Module Dictionary listing

The program module dictionary (PMD) listing presents
the contents of the l'MD. The PMD is created at assem­
bly time and stored as part of the object module. Infor­
mation in the PMD directs the loading of the ohject
module. The p~m contains external symbol definitions,
references, and relocation information.

The FMD listing is helpful in determining the struc­
ture of the user's object module and its relocation
properties. Figure 21 is an illustration of a P~1D listing.

The initial portion of the PMD listing contains a de­
scription of the program module. The module name is
listed first, 48, followed by the w[sion (or time
stamp), 49, the length of the 1'l\!D, 50, in lwx<[ckcimal,
and the highest severity co ell' encountered, 51. The
severity code is 0 if no diagnostic messages were pro­
duced, 1 if only warning messages were produced,
or 2 if error messages were produced. The succeeding
parts of the p~m listing contain descriptions of the

, control sections in the module. The name of the con­
trol section is listed first, 52, followed by the type, 53,
which is CaNTHaL, COMMON, or rHOTOTYPE. A time
stamp is always assigned to the version, 54. The attri­
butes, 55, may be one or more of the following:
FIXED, VARIABLE, READ ONLY, PUBLIC, SYSTEM, or PRVLGD.

Each attribute, except FIXED, prints if it was specified
by the user. FIXED prints if VARIABLE was not specified.
The length in bytes of the control section dictionary,
56, is listed next (in hexademical), follO\ved by the
byte length, 57, in hexadecimal, of the binary text for
the control section.

Following each control section description is a de­
scription of the relocatable, absolute, and. complex
definitions, 58, within the control section. These defi­
nitions, for which the name and value are listed, in­
clude only those symbols and CSECT names that have
been declared entry points by the ENTRY instruction.
The next part of the control section description con­
tains the names of the references, 59, within the con-

INTERNAL SnIDOL DICTIONARY PAGE 0001

1ll<ME @ INDIANP YEAR MESSAGE LENGTH PRINCP INT TUBN THIS-YEAR NOW ROUND TEMP EDITOR

@TYPE @ SECTION REAL CHAR INTEGER PACKED P)l.CKP.D INTEGER INTEGER INTEGER PACl<ED PACKED CIIAR
OUPL 4S 000000 000000 000000 000000 000000 000000 OCOOOO 000000 000000 000000 000000 000000

@ LENGTH OOOOOOCC 00000008 000000 I_ 0000000. 00000007 00000002 0000000. 0000000. OOOOOOO~ 00000002 000000 10
00000003

LOC/VAL@01 00000 01 00050 01 00058 01 0006C 01 00070 01 00077 01 0007(' 01 00080 01 00080 01 0008. 01 00086 01
00096

NMIE CHDOO02 INDIANC INDIAN LOOP PRINT INDIANCL CHDXOOO2

TYPE ADCON SECTION HEX INSTR INSTR SECTION rNSTR
DUPL 000000 000000 000000 000000 000000 000000 000000
LENGTH 00000004 0000004E 0000000. 00000006 0000000. 0000009A 0000000'
WC/VAL 01 0008B 02 00000 02 00000 02 00020 02 OOOJE OJ 00000 03 DOOOE

Figure 20. ISD Listing

PROGRAP MODULE DICTIONARY LISTING PAGE 0008

MODULE @
NAME W INDIANX
VERSION ~r.:;;., 07/22/7
LENGTH ~ 00000200
DrAG SEVERITY 002~

08:39:19

SE~~N 0 1 ~< 2 INDIANP

TYPE 53 PROTOTYPE t<).
VERSION @ 07/22/7 08: 39: 19~
l.TTRIBOTES 55 FIXED f.?I
CSD LENGTH OOOOOOEC ~
SECT LENGTH OOOOOOCC@

COMPLEX DEFINITIONS~
NAlIE INDIAN
Vl\LUE 00000000

REFERENCES@
REF t 0000 0001 0002
(,!\ME Ai'. XY Z INDIANI'

tlODIFIERS FOR COHPLEX DEFS@
""" PAGE 00 NOnIFIERS 0001
~~ LENGTH 4
~®PEF I 0003
~ TYPE +

@3BYTE 09C

G003
INDIANe

llODIFIERS FOR TEXT (EXTERNl\L REFS, Q-COIl5. JI.ND eXDS)
TEXT PAGE no VIRTUl\L PAGE 00 # MODIFIERS 0002

LENGTH 4 4
REF' 0001 0000
TYPE + +
BYTE Ol\C DAB

!lODIFIERS FOR TEX'l' (INTERNAL REFS)
TEXT PAGE 00 VIRTUAL PAGE 00 'MODIFIP.RS 0004

LENGTH • 4 4 3
REF f 0002 0002 0002 0002
TYPE' + + + +
BYTE oeD aBC OB8 OBO

SECTION 02
NMlE
TYPE
VERSION
ATTRIBUTES
CSD LENGTI!
SECT LENGTH

SECTION 03
NAME
TYPE
VERSION
ATTRIBUTES
CSD LENGTH
SECT LENGTH

REFERENCES
REF f 0000

INDIANC
CONTROL
07/22/7 08:39:19
FlXED.READONLY
00000054
0000004E

INDIANCL
CONTROL
07/22/7 08,39:19
FIXED, READONLY
00000070
000000911

tlAME INDIANP

~l()DIFIERS FOR TEXT (INTERNAL REFS)
TEXT PAGE 00 VIRTUAL PAGE 00 • MODIFIERS 0001

LENGTH 3
REF t 0000
TYPE +
BYTE 091

END OF MODULE

Figure 21. PMD Listing

PAGE' 0009

Appendix A. Use of the TSS Assembler 115

trol section. The last part within a control section de­
scription contains a description of each modifier with
the control section, 60. Modifiers for definitions are
listed first, followed by modifiers for text, with exter­
nal references preceding internal references. For each
modifier there is an entry for the length, 61, a refer­
ence number (corresponding to the reference listed
above), 62, a type code (+, -, C, Q, or R), 63, and
byte displacement, 64, within the text of the control
section where the reference appears. See Table 7 for
an explanation of the type code.

Table 7. Type Code Significance in PMD Listing

TYPE

CODE SIGNIFICANCE

+ The definition value of the reference at " reference
numher" is added to the adcon starting at the indi-
cated byte of the page to which the modifier applies.

- Same as +, except that the value is subtracted.

C Store cumulative external dummy section length (CXD
value) in storage indicated by modifier.

Q Same as "+" but use Q-type constant value associated
with external dummy section named in reference.

R Same as "+" but use R-value rather than definition
value.

Destination of Output

Assembly variations and the destination of output
associated with each variation and shown in Table 8.

Object Program Module Format

Each of the language processors produces object pro­
gram modules that always have a program module
dictionary and text; an internal symbol dictionary is
produced only if specified by the user (see Figure 22).

Program Module Dictionary

The program module dictionary consists of a header
and a series of control section dictionaries.
• The header contains the name of the standard entry

point to the module and other information common
to the entire module.

• Each control section dictionary describes its as­
sociated control section so that the system can
produce, from the text, a fully linked, executable
object module.

Text

The text portion of the module contains the instruc­
tions and constants generated by the assembler or
compiler; it is the executable portion of the. module.
The text is organized by control sections, the basic
unit of an TSS programs.

A control section is a block of coding whose virtual
storage location assignments may be adjusted inde-

116

r

ProgtamModul .. Dictionary

PMD Header

Control Control Control
Sectron Section Section

1 2 3
Dictionary Dictionary Dictionary

. ...

Text
..... tnstruetlonaruVor Data (Hexodecimal)

Control Section 1

Control Section 2

Control Section 3

• • •
Control Section 71

Internal Syinb>IOicfiOllCfI'y
{Opti9nOt)

Figure 22. Format of an Object Program Module

Control
Section

71
Dictionary

pendently of other coding at linkage editing or load
time, without altering or impairing the operating logic
of the program. At least one page (4096 bytes) of
virtual storage is aSSigned to each control section;
a control section may require more than one page.
However, at LOGON time the user may specify that
control sections with like attributes be packed in
virtual memory. This allows several related control
sections to be collected into less memory space. Con­
trol section packing is encouraged so that the modules
to be executed may be compressed into fewer pages,
thus redUCing the time required for paging operations
by the system.

When virtual storage space is allocated to an object
program module at load time, all its control sections
are allocated. The contents of each control section oc­
cupy contiguous virtual storage addresses; however,
the individual control sections may be scattered
throughout virtual storage.

When object program modules are placed in main
storage for execution, they are brought in page-by­
page. The contents of each page occupy contiguous
main storage locations; however, individual pages may
be scattered throughout main storage. Only the pages
required for execution are kept in main storage during
a user's time slice.

Table 8. Destination of Output

OUTPUT

OBJECT ASSEMBLER

ASSEMBLY VARIATION MODULE SOURCE LISTINGS DIAGNOSTICS

Conversational-Input Latest JOBLlB defined Data set named Data set named LIST. To terminal, and to list
from terminal key- in task or USERLIB SOUHCE. module name unless
board or card reader module name created printout to i:erminal

data set if listings
requested.

by system. is requested.

Conversational- Data set named If a printout of the
Prestored Data Set SOURCE. listing data is de-

module name will be sired, it must be re-
updated to reflect quested using the
modjfications. PRINT command.

Nonconversational- Same as conversational, To SYSOUT data set if
Prestored Data Set if listing data sct is no listing data set re-

specifically requested. quested; otherwise to
To SYSOUT if no list- list data set only.
ing data set requested.

N onconversa tional- Same as conversational,
Input After ASM not prestored.

The object program module code contains virtual
storage addresses during execution. These are trans­
lated into actual main storage addresses, based on re­
lationships established between each page's virtual
storage base address and its main storage base address,
at the time it is placed in main storage. If a page that
is executing is swapped out and then relocated in main
storage, it may well be assigned a new location in
main storage. However, because a new relationship
has been established between the page's virtual stor­
age base address and its new main storage base ad­
dress, the system can execute the page in its new main
storage location.

Assembler users can control the organization of text
into control sections.

Internal Symbol Dictionary

The internal symbol dictionary contains information,
such as symbol definitions and data descriptions. It
permits users to write program control system com­
mands, using the same symbolic names for data and
instructions that were used in their source coding.
The internal symbol dictionary should be requested
if the Program Control System is to be used.

Assembling in Express Mode
\Vhen a number of modules are to be assembled con­
secutively in one task, time may be saved by assem­
bling in express mode. This will cause the language
processor control to read the name of the next module
from SYSIX whenever it would normally have re­
turned to the Command System for a further command.

The express mode is turned on by issuing a command

DEFAULT LPCXPRSS=Y

anywhere in the task before the first assembly. The
ASM command is issued only once, for the first assem­
bly, and the assembly options (operands) are issued
at the same time. The assembly options cannot oe
changed for subsequent assemblies.

The express mode can be turned off by entering an
underscore as first character in a line, which will cause
an exit from the language processing control system
and a return to the command system. It is also possible
to turn off the express mode by pressing the attention
button any time during the assembly process and issu­
ing a command

DEFAULT LPCXPRSS=,

Assembly can then be continued in non-express mode
by issuing a GO command.

If an invalid module name is entered when the lan­
guage processor control expects a new module name,
the express mode will be turned off and a diagnostic
message will be issued.

Assembler Restrictions
Limitations of virtual storage available to the assem­
bler and of the object programs generated by it impose
a number of restrictions on the size and contents of
source programs capable of being assembled. These
restrictions are categorized according to complexity.
The first category, simple source program restrictions,
can easily be applied to individual source statements
or particular types of source statements. Simple pro­
gram restrictions are listed in Table 9.

Appendix A. Use of the TSS Assembler 117

The second category, complex restrictions, is com­
posed of restrictions that generally are too complex to
anticipate in advance of assembly (e.g., the storage
requirements of the various tables internal to the as­
sembler are, in many cases difficult to compute ac­
curately, as the table sizes are complex functions of
the source program). Very few programs are of such a
size or configuration that these complex limitations are
exceeded. Therefore, the assembler user may not wish
to concern himself with the complex restrictions until
he receives a diagnostic message; then he can proceed
to remedy the situation. Complex program restrictions
are listed in Table 10.

The assembler working storage is separated into

Table 9. Simple Source Program Restrictions

ITEM

Unique control sections

L TORG statements

External References

&SYSNDX

Unsublisted positional
macro instruction
operands

Macro instruction
suboperands within
a sublist

118

MAXIMUM

NUMBER

OR SIZE

255

253

10,000

255

255

ASSOCIATED

DIAGNOSTIC

MESSAGE

MAXIMUM NUMBER
OF CONTROL SEC­
TIONS EXCEEDED

None

None

None

CHARACTER STRING
ACCUMULATION IN
EXCESS OF 255

None

three parts. Within each working storage area are col­
lections of file and table entries linked together by
chain words. In the tables that follow, the table en­
tries have been identified by the assembler phase that
produces them.

Some of the more probable causes of working stor­
age overflow are: specifying FULLGEN as an operand in
a PRINT statement; infinite nesting of macro instruc­
tions; infinite looping within a macro expansion; and
too many source statements. If a work area overflows,
the assembler will attempt to dynamically acquire
additional storage. If the storage is either unavailable
or unaddressable, the assembly will terminate with an
appropriate diagnostic message.

USER

CORRECTIVE

ACTION

Split assembly in several
parts and assemble each
separately.

Combine literal pools or
split assembly into several
modules.

Reduce external refer­
ences by combining as­
sembly modules or reduc­
ing size of assembly.

Reduct number of inner
and outer level macro in­
structions.

Rewrite macro definition
in order to concatenate
operands longer than 255
characters f)r change
macro instruction.

Rewrite macro definition
making suboperands op­
erands.

ASSEMBLER

CONTINUATION

ACTION

Control section statements for sec­
tions numbered 256 or greater are
made commentary; the associated
coding becomes part of the section
in effect at the time of the error.

The 254th and following L TORG
statements are made commentary, lit­
erals associated with these statements
are pooled by dafult at the end of
the first CSECT andlor PSECT.

A number is assigned to each reIa­
catable reference required by the as­
sembly (EXTRN symbol, V-type ad­
dress constant, and control section
name). Reference 65535 is 1ost, and
the loader resolves reference 65536 as
if it were reference 0, etc., thus pro­
ducing erroneous relocation of the
module.

The assembler continues modulo
10000 for &SYSNDX values. Macro
expansions not referring to this sys­
tem variable are correct; the first
10000 inner and outer level macro in­
structions generated are not effected.
The lOOOlst use produces a &SYS­
NDX value of 0001 again; use of this
va1ue may produce duplication or
conflicts with earlier macro-generated
statements.

The length of the character string is
reduced to 255 characters and the
macro expansion continues.

Macro processing continues with the
number attributes (N') of the posi­
tional operand computed modulo
255.

Table 9. Simple Source Program Restrictions (Continued)

Number of characters
for card format input
excluding macro
instruction and
prototype statements

Location counter value

Number of parenthesis
levels per expression

DS length modifier

SYS symbol prefix
reserved for system use

MAXIMU]',!

NUMBER

OR SIZE

240

64

65,535

Table 10. Complex Restrictions

Assembler Work Area 1:
(l % pages = fixed usage

ASSOCIATED

DIAGNOSTIC

MESSAGE

TOO 1\IANY CONTIN­
UATION LINES

LOCATION COUNTER
EXCEEDS 1IAXI\WM
SEGMENT ADDRESS

EXPRESSION CON­
TAINS EXCESSIVE
PARENTHESIS

VALUE OF LENCTH
MODIFIER INVALID
FOR TYPE OF
CONSTANT

ENTRY POINT
DECLARED IN
CONTROL SECTION
WITHOUT SYSTEM
ATTRIBUTE

OVERFLOW CAUSE

us En
connECTIVE

ACTIO:-l

Compact statement. Op­
(Taml fields can be con­
tracted by using a varia­
ble character symbol in
lieu of the desi~ed oper­
and. The variable symbol
III nst, of conrse, be set
to the desired character
string for the operand.
Comments can be con­
tinued on separate com­
ment statements.

Use multiple control sec­
tions. A symbol with lo­
cation eOu~lter yalue 224_2
may not have a length
attribute greater than 1.

Simplify expression possi­
bly through the use of
nested EQU or SET state­
ments.

\Vrite more than one con­
secutive DS statement.

ASSEMBLER

CONTINUATION

ACTION

Processing continues with the fourth
and follOWing cards of the statement
treatl'd as commentary.

The assembly is terminated. No ob­
ject module is created.

Evaluation of the expression noted in
the diagnostic is terminated, causing
incomplete assembly of the statement.

Length of the DS statement is re­
dm-ed to 65,535 and processing con­
tinues.

All external symbols start- The assembly continues nonnally.
ing with the characters
SYS should be remoyed
from the non system pro-
gram.

COll1MENTS

Initial allocation only. Expan­
sion is pOSSible.

ASSOCIATED DIAGNOSTIC

MESSAGE

981f.J pages = variable usage
as outlined below)

Assembler
Phase II-A:

Macro Level Dictionarv
52 words + 4 to 16,384 words
per entry (average 7 words
per entry)

Using-Register Tables
(.33 words per table) (Over­
lays area occupied by Page
Usage Tables in Phase II-B)

Excessive nesting of macro
instructions and/or usage of
variable symbols within each
macro level

Phase !I-C:
More than 1500 control sec­
tion, USING, and/or DROP
statements

A separate macro level diction­
ary is created for each macro in­
struction and lasts until the
macro has been expanded as
determined by the macro defi­
nition. Encountering a MEND
or MEXIT statement will cause
tbe area occupied by the cur­
rent macro level dictionary to
be retumed to a scratch status.
A macro level dictionary con­
tains an entry for each positional
macro instruction operand, an
entry for each prototype key­
word operand, and global and
local variable symbol.

A USing-Register Table is cre­
ated for every control section
break, USINC', or DROP state­
ment encountered in user level
or macro generated source state­
ments.

ASSEMBLER WORKING
STORAGE EXHAUSTED
-WORK I

Same

Appendix A. Use of the TSS Assembler 119

Table 10. Complex Restrictions (Continued)

ITEM

Cross Reference Item
Sort Keys (2 words per entry)
(Overlays area occupied by
USing-Register Tables)

Assembler Work Area 2:
(255 pages initially)

Main Dictionary Items
(5 to 1025 words per item or
greater (average 7 words per
item»

Logical Order File
(Normally 5 words per source
or macro generated statement
except DCs, DSs, DXDs, or
CXDs. Ten words per address
constant, 8 words per DS, and
8 words plus the text length
for one occurrence for each
non address constant DC are
reserved)

C lobal-Section-Macro
Chain (3 words per entry)

Source statement continuation
lines

Macro Name Dictionary Items
(5 words per item)

Variable Information for Diag­
nostics

Character string operands from
TITLE and MNOTE instruc­
tions

Logical Order File
(Alignment Entries)
(2 words per entry)

Main Dictionary
(1) Relocatable EQU items (5

words per item)
(2) Literal items plus associ­

ated literal trailer items (8
words per literal item and
5 words for each trailer)

120

OVERFLOW CAUSE

Phase III:
Too many internal symbols and
references to internal sym­
bols. (Approximately 20000
cross-references)

Assembler
Phase I and II-A:

Too many user local and
global symbols in combina­
tion with other uses of the
WORK2 area

Too many source statements
or statements resulting from
macro expansions in combina­
tion with other uses of the
WORK2 area

Too many user level control
section, macro instruction,
CBLA, CBLB, CBLC (SETA,
SETB, or SETC associated
with user level global state­
ments), USING, DROP, EN­
TRY, PRINT, andlor L TORG
statements in combination
with other uses of the
WORK2 area

Too many continuation lines

Too many different macro
definitions called by user pro­
gram

Too many diagnostics

Too many TITLE and
MNOTE instructions

Phase II-B:
Excessive number of DS, DC,
CNOP, CCW, CXD, LTORG,
or machine instructions re­
quiring alignment

Phase II-B:
Excessive number of EQU
statements

Excessive number of nondu­
plicate literals within a literal
pool

COMMENTS

A two word sort key is devel­
oped for each internal symbol
and each reference to it if a
cross reference listing has been
requested.

Simply relocatable items are
those resolvable into one relo­
eatable value plus an absolute
offset.
A literal item is created for the
occurrence of each unique lit­
eral string. A trailer is created
each time a literal with the
same character string appears in
a different literal pool.

ASSOCIATED DIAGNOSTIC

MESSAGE

Same

ASSEMBLER WORKING
STORAGE EXHAUSTED
-WORK2

Same

Same

Same

Same

Same

Same

Same

Same

Same

Table 10. Complex Restrictions (Continued)

ITEM

Logical Order File
(Diagnostic entries)
(4 words per entry)

Assemhler Work Area 3:
Original Source Statements

(20 page blocks are acquired
as needed)

Macro-Generated Statements

Additional Working Storage:
Program Module Dictionary

(2 pages + ¥s page for each
page of Assembled Program
Text + total number of DEFs
and REFs multiplied by 28)

External Name List
(2 pages + number of DEFs
multiplied by 28; two words
per entry)

List Data Set (VISA\1)

Assembled Program Text

Internal Symbol Dictionary (2.'55
pages)

OVERFLOW CAUSE

Phase III:
Diagnostic messages

Assembler
Phase 1:

Source program too large or
referring to a lengthy COpy
element or containing back­
ward AGO and/or AIF state­
ments.

Phase II-A:
Macro expansions

Phase III:
P~1D too large. An excessive
number of external definitions
and / or external references
will cause overflow

More than 512 external def­
initions (ENTRY operands,
CSECT, and PSECT names)
were specified.

Listing contributed to exhaus­
tion of virtual storage.

Virtual storage exhausted.

Phase TV:
ISD too largl'; excessive nnm­
h{,r of control s(,ction,. US­
I:\'C, DROP, control seo:;tion
hreaks, and/or internal sym­
hols

COMMENTS

It is impossihle to state exactly
what number of statements pro­
duces this overflow condition
since the usage of assembler
working storage is a function of
the type of statement. However,
for an average pm.gram this
number is usually larger than
10,000. In addition it should be
noted that the FULLCEN op­
erand of a PRINT statement
will cause all conditional macro
generated statements to be
saved for printing on the output
listing, thus reqhiring more
\VORK3 area than is otherwise
the case.

ASSOCIATED DIAGNOSTIC

MESSAGE

Same

VIRTUAL STORAGE EX­
HAUSTED. ASSEMBLER
CANNOT CONTINUE.

An infinite loop during macro Same
expansion may result in virtual
storage exhaustion PRINT state-
ments with a FULLCEN oper-
and mav also result in total
usage of virtual storage since
each macro model statement is
retained after string substitution
is perfonned during the process-
ing of each macro instruction.

Either splitting up the assembly
or removal of external names
should solve the problem.

Problem external to the assem­
bler.

Problem external to the assem­
bler.

Fcmr wonls are used for eaeh
control sf'ction; 3l, for <':Icll
USINC, DROP, or control sec­
tion hreak; and .'5 to 6, for each
internal symhol.

PMD FILE OVER­
FLOWED. ASSEMBLY
TERMINATED.

EXT NAME FILE OVER­
FLOWED. ASSEMBLY
TERMINATED.

THE SIZE OF VIRTUAL
MEMORY HAS BEEN
EXCEEDED.

VIRTUAL STORA<-:E EX­
HAUSTED. ASSEMBLER
CANNOT CONTINUE.

ISO FILE OVER­
FI.O\VED. ISO NOT
I'HODUCEO.

Appendix A. {J,,, of tJ", TSS A""mhlc, 121

Assembler Diagnostic Action
This section describes the fommt of diagnostic mes­
sages produced by the TSS assembler. It includes a
description of error severity codes and error levels, and
describes the effect of error severity upon requests to
execute the assembled program. Refer to the publica­
tion System Messages for a description of each diag­
nostic and the source program errors that cause it.

An but a few of the diagnostic messages produced
by the assemhlers are issued in response to source pro­
gram errors. In conversational mode, all diagnostics
produced hy the assembler appear on the terminal. In
addition. messages from the conversational phases of
the assembler for conditions which have been left un­
corrected and all messages from the nonconversational
phases of the assembler will appear in the output pro­
gram listings, if any list option is selected. In noncon­
versational mode, aU messages appear either in the
output program listings or on SYSOUT if listing data set
is not specified.

A few messages pertain to violations of assembler
space and size restrictions and malfunctions in the
assemhler's operating environment. Some of the con­
ditions which produce these messages also cause tenni­
nation of the assembly and a return of control to the
command-language level. The assembler does not pro­
duct' ohjcct modules under conditions of abnonnal
termination; it will, however, place the terminating
diagnostic m('~sage in the list data set, if one is avail­
ahle, and/or on SYSOUT.

The format of a diagnostic message is:

number code *** text

When the assembler is used in conversational mode
with prestorcd source data set, the actual line in which
the error occllrred is printed ont immediately before
the diagllostic message. Diagnostie messages produced
after Phase I when running conversationally withont
a preslori'd sonrcc data set also calise the error line to
he printcd out at the keyboard.

The text for all messages produced by the assembler
itself will he contained on one line. The text portion of
mc,ssagcs produced hy macro instrnctions through the
M:"><OTE facility may ('xt("nd to more than OIle line.

Tlw "numher" paramctcr is thl' sourcc program lint'
ItlllnJ)(,1 of th(' first line of the statement to which thl'
lIlessagc' applies. t-vkssag('s cOIl("(Tnillg errors that the
asscrnhln docs Ito! associate with any spc'dfic stah'­
Il1C'lIt carry tIl(' lilw IHllnhc'[of thl" source program END

statpll)("llt.

Tll(' "("od("" paramdn is a mH'-klln indicator of tht'
wvc'rity of tIll" eITor. '1'111' knITS lIwd, Ihl' st'vl'rity of
c·rror.\ a\scwial,·d with c'ach kiln. awl a hrier dc·.snip­
tio" of aswlIlh'n a<"lioll takell arc' giv('l1 ill Tahle II.

122

If a symbol is \alidl)' defined in a machine instruc­
tion or in a DC, DS, LTORG, or ccw statement, and the
statement is then discarded for syntactic errors, the
symbol will nevertheless be assigned the relocatable
value it would ha\"(' had, had the statement been
correC't.

Errors occmring in statements that are bypassed due
to conditional assembly statements (All', AGO), do not
producc diagnostic messages except in the case of an
improperly formed sequence symbol in the name field.

When an assembled program is to be executed, the
module named, and all modules called by this module,
are inspected during the loading process to see whether
any have been assembled with level-2 errors (severity
code E). Any module containing an error level of 2
causes a diagnostic message naming the module and
the error level to be printed on the user's SYSOUT.

Use and Structure of a User Macro Library

This section describes possible uses of a user macro
library, the mechanism by which the TIS assembler
operates on user macro libraries, and a detailed de­
scription of their creation and format. Up to seven
macro libraries may be used in conjunction with the
TSS Assembler. The libraries will be searched in the
hierarchy specified by the DDEF sequence associated
with ASl\f. Example 23 in Part III of this publication
illustrates the procedure for buildin~ and using a user
macro librarv.

Reasons for Using a User Macro library

There are a number of ways in which user macro li­
braries may he of value. A few of these are listed
helow.

I. TIl(' samp macro instruction is to be made a"ailabk
to more than olle program or programmer. The
macro instmctioll eould be defined in each pro­
~ram. hilt a change in the macro definition would
then IT((lIire that ('aeh indiddllal cop~' of thl' macro
definition he changed rather than jnst one cop~·.

::!. A nHHlifi{'d form of a snll'm macro instruction is to
he 11St'd. ('lllpltl\ing tIll' S:lllH' macro instmdion
nanH' as tIl(' S\'s!nll Iihrary macro instruction namt'. . .
:\s tIl(' lIser macro Jihr:llT will he searched nrst. tht'
modified form could Ill" placcd ill thl' IIser macro
lihrary.

:1. A pro~rall1 thaI 1Il1lS! operate ill 11101'1' Ihall 11111'

op('ra!ill~ ('llyiWIlIIH'llt ("rss and OS Ill" OS YS. fill'

c'xalllpk) is l)('ill~ \\rilkll. Th,' S(l1!lTC' pro).!:r:l1l1 may

be identical in both systems if an code required to
be different is contained in macro definitions.

4. Debugging output code is to be included in a pro·
gram during checkout. and removed when the pro­
gram is complete. The debugging code could, of
course, simply be removed everywhere it appears
in the source program. Another technique is to in­
clude all such code in user macro definitions. then
change the macro definitions when the program is
complete so they no longer produce the debugging
code.

5. A program is being written that must interface with
other programs, but the interface design is not yet
firm. Programs on both sides of the interface may
wish to place code in Hser macro definitions, so that
when the interface needs changing all code associ­
ated with the change is centralized.

TSS Assembler Processing of Macro Definitions

When the TSS assembler encounters an operation code
not defined as a machine instruction, the assembler
does not produce a diagnostic labeling the opera-·
tion code as invalid until it has been detennined that
the operation code is not a macro instmction. If the
assembler is to know that a macro instruction is being
used, a definition of the macro must be in one of three
places. These places are listed below, in the order in
which the assembler will look for them.

1. Macro instmctions may be defined in the program
using them.

2. Macro instructions may be defined in a user macro
library.

3. Such macro instructions as CAlL, SAVE, RETURN and
all other macro instructions described in the publi­
cation Assembler User's Macro Instructions are
defined in a macro library supplied with TSS and
available to all users of this system. These macro
instructions are referred to as "system" macro in­
structions. Macro definitions defined in sources 1 or
2 above will be used prior to any definitions in the
system macro library.

Detailed Description of User Macro Library Creation
and Format

The following paragraphs describe user macro library
creation and format. This description applies equally
to the system macro library.

A macro and copy library is a collection of macro
definitions and symbolic statements. It is from such a

library that the TSS assemhler retrieves and expands
macro definitions when the corresponding m~cro in­
struction appears in a source program. The operand
of a copy instrudion identifies the section of coding
to be copied and included in the program currently
being assembled.

Associated with each macro library is it macro li­
hrarv index. The entries in the index relate the name
of e<~ch macro definition and group of copy statements
to its location in the macro library. Thus, source lines
in the macro and COpy libmrv can be located bv
matching the op' ... ralion of the· eorrespondbg macr~
instruction or operand of the corresponding COpy

statement to the appropriate entry in the index.

The first eard of each macro or f,trl.mp of COpy state­
ments in a library must contain a header character
(normally a riglll parenthesis) as the first character
followed by the macro or COpy name. This name has a
maximurn of eight characters; if less, it must be left
justified. In source lines to be copied, the symbolic
statemf"nts (for exalnpJe a DSEe'! begin at the second
line. If the source lines are not naturally delimited (as
a ~lEND statt,ment delimits a macro definition), a de­
limiting statement must appear between items. For
the TSS mano and copy library the delhniter state­
ment contains a right parenthesis in the first position
of the text. It should he noted that the right parelJ­
thesis may also serve as the header character.

The second card of each macro definition must con­
tain MAGRO. This is foHovved by a macro instruction
prototype statement, model statements (if any)
and a macro definihon trailer statement, i..e., ".rEND:

The macro and copy library may be created and
modified hy the DATA and MODIFY commands. Alter­
natively, it may he created or modified by mer-sup­
plied routines usmg VISAM.

The orgamzation and format of the symbolic com­
ponent of the system macro and copy library is shown
in Figure 2.3. The format of each symbolic line, which
is shown in Figurc 2J, follows that described for line
data sets.

The lines of informatioD\Nithin the symbolic com-..
ponent are ordeled by line number. The number of
the first line of each parcel (Le., macro or group of
copy statements) is used to index the symbolic com­
ponent.

Having established the macro and copy library, the
user must create the associated macro library index by
executing either the SYSINDEX or SYSXllLD IBM-supplied
service routines. Use of the SYSTNDEX routine is illus­
trated in Example 23. The SYSINDEX rontine requires
that the macro definition and index d.lta sets be ex­
plicitly deEned for the task with respective ddnames

Appendix A. Use of the TSS Assemhler 123

Table 11. Assembler Diagnostic Action

CODE SEVERITY

blank Informational
message,
Level-O
(no error)

\V \Varnin!!:

E

message,
Level-I
error

Error
message.
Level':2
error

[JESCIIIPTIO N

The expansion of macro instructions mav generate diagnostic messages if
an MNOTE statement is encountered within the macro definition. The
~INOTE statt'ment allows a severity code to be associated with the mes­
sage. \Vhen the value of the code' is zero, the message is treated as a
diagnostic for the purposes of prillting at the terminal and inclusion in
the diagnostic portion of the ohjcct listing; hO\vever, the message is con­
sidered to be informational onlv and does not contribute to the count of
error messages or the error seve;'itv level of the assembled module.
A message with this code is produced under the following two conditions,
which result in the associated actions:

1) The assembler detects a situation that either may not be as the pro­
grammer intended, or is incompatible with other assemblers.

2) The assembler encounters an MNOTE statement with a severitv code
of 1 during macro expansion. ~

A message with this code is produced under the following circumstances,
which result in the associated actions:

1) The operation code of any instruction cannot be identified
or

the syntax for the operands of machine instructions cannot be analyzed
or

the syntax for the operand field of assembler instructions cannot be
correctly analyzed.

2) The syntax for the operands of machine instructions is correct but the
values obtained for the various operands aTC ineorrect.

3) The syntax for the operand fieJd of assembler instructions is correct
but the values or definitions for some of the operands are incorrect.

4) An MNOTE statement with a severity code of 2 or greater is encoun­
tered during macro expansion.

ACTION

Action is determined by the
design of the individual mano
definition.

1) The statement is assembled
as written

2) Action is determined by the
design of the individual
macro definition

1) Statement is not assembled;
however, symbols contained
in name fields of such in­
structions are considered
defined for the assembly.

2) The instruction is assem­
bled but those sub fields for
which correct values could
not be obtained are set to
zero in the machine lan­
guage text.

3) An attempt is made to proc­
cess the correct operands
(when there are more than
one) and ignore the incor­
rect ones.

4) Action is determined by the
design of the individual
macro definition.

Note: When an ~INOTE instruction is encountered in the source program of a conversational assembly, the assembler will inter­
rupt processing and prompt the user for corrections.

SOL'RCE and INDEX. The user must also specify the
header character and the length of the macro name.
The SYSINDEX routine receives the user's input parame­
ters, prompts him for missing parameters and processes
those parameters. It then calls the SYSXBLD routine
\vhich creates the index. Alternatively, thc user can set
up the parameters required and pass them directly by
calling SYSXBLD in a problem program.

SYSXBLD makes a sequential pass through the entire
macro and COpy library to detennine, based on param­
eters supplied, which statements must have an index
entry. The user-supplied header character will be
compared with the first character of each symbolic
statement to determine whether that statement con­
tains an index entry. Or, the user may supply the name

124

of a routine to be caUed after each symbolic statement
is obtained. This routine must determine if a state­
ment requires an index entry, If it does, the user rou­
tine returns to the appropriate library service :-outine
\vith a name and associated line number that are to be
placed in the index. If the user routine detennines
that a statement does not require an index entry, it
must pass this fact to the service routine and request
the next statement.

For detailed infonnation on the use of SYSINDEX and
SYSXBLD, see the publication Assembler User's Macro
11lstructions.

Figure 2.5 shows the format of the symbolic library
index. The index component is a table that rdates the
name of each parcel to the number of its first linl'. It

Figure 23. Format of a l\.facro Definition Symbolic Component

LL LN C T

4 Bytes 7 Bytes 1 Byte (LL-12) Bytes

LL is the length of the line including the LL field
C is a code whose values and their meanings arc:

Code Meaning
01 The line originated at a terminal keyboard
00 The line was obtained as a card image

Note: C is normally 00 for all lines of the system
macro and COpy library

LN is the line number
T is the text of the symbolic line consisting of LL minus

12 characters

Figure 24. Format of a Line in a Symbolic Component

consists of a single record containing a header and as
many entries as there are parcels in the associated li­
brary. The header contains information describing the
inde'x as a whole; each index entry contains a parcel
name and retrieval information for the corresponding
symbolic parcel in the associated library. Entries ap­
pear in ascending order according to the EBCDIC col­
lating sequence of parcel names. Thus, any parcel in
the system macro and copy library can be located
within the symbolic component by matching the oper­
ation of the corresponding macro instruction or oper­
and of the corresponding COpy statement to the ap­
propriate entry in the index.

Index Header

1. Name Length: a two-byte binary integer specifying
the length, in bytes, of parcel names. In the IBM­

supplied macro and copy library, this value equals
eight. The two high-order bytes of this word are
reserved for future use and currently are set to zero.

2. Index Length: the location, relative to hyte zero of
the first index entrv, of the first unused hvte in the
index. This value is used to indicate the "length of
the index .

.'3. Search Starting Point: the location, relative to byte
zero, of the first index entry. This is the point at
which the routine is to bcgin its binary search pro­
cedure.

Index Entry

1. Parcel Name: the parcel name, whose length in
bytes is given in the header. It is left-justified and.
if necessary, filled \\lith trailing blanks.

2. Retrieval Line Number: the retrieval line numher
associated with the corresponding parcel in the
symbolic library. The line number is given in EBCDIC

and is right-justified with leading blanks.

Header

Entries.

.,...--.. --.------ --- ---'---.------. 8 bytes~--~-·--~~ -_ .. -_._-....

4--·--··4 byl"s·-_

Nome
length

Index Length

Binary Search Starting
Point

Parcel Nome 1

Retrieval Line Number:

Parcel Nome 2

Retrieve! Line Nlnnber 2

Figure 25 Format of SymboliC Lihrary Index

]
Index
EntlY

Appt'l1<lix A. Usc of the TSS A<;sembll'r 125

Control Section Names and Attributes
Control sections are named to assist the assembler in
assigning consecutive virtual storage locations to them
during assembly. The consecutive assignment of virtual
storage locations, once begun, is continued throughout
assembly. Control section contents may be written in
an intermixed manner. If the assembler detects several
statements defining a particular type of control section,
all containing the same name, it considers the first such
statement as the beginning of the control section; the
rest of the statements are continuations of that control
section.

Only control sections with the PSEcr attribute (de­
scribed below) need be named. However, there may
only be one unnamed control section in a source pro­
gram module. As with named control sections, the un­
named control section is provided with a location
counter; its contents are aSSigned consecutive virtual
storage addresses throughout assembly.

In addition to controlling assembler address assign­
ments, the identification of control sections

• Enables symbolic linkages, based on control section
names, to be made between control sections.

• Allows the dynamic loader to allocate noncontigu­
ous storage for different control sections of an object
program module during loading.

• Allows dynamic control section rejection at load or
link edit time.

Table 12 summarizes the ways in which control sec­
tions can be named and aSSigned attributes at source
coding time.

The attributes of control sections describe the char­
acteristics of the instmctions and data they contain.
Attributes are described at the control section level be­
cause the linkage editor and dynamic loader operate on
control sections. These attributes can be speCified by
assemb1er users:

HEAD ONLY-The control section contains instmctions
and/ or data that are not to be modified by a user. If
this attribute is not speCified, the control section is as­
sumed to have a read/write attribute. READONLY control
sections are allocated storage with a proteetion key
that prevents the user from storing in the control
section.

PUBLIc-The control section contains instmctions
and/ or data that can be shared by other tasks if (1) the
owner of the library containing the object program
module that includes this control section issues an ap­
propriate PERMIT command authorizing its sharing,
(2) each sharer issues a SHAHE command updating the
system catalog so that the system can locate that li­
brary by each sharer's name, and (3) the owner and
sharers define the library by a DDEF command (by

126

specifying OPTION-JoBLm in the command operand) in
their respective tusks prior to attempting to use the
object program module involved; the modules may not
contain relocatable address constants.

If the public attribute is not specified, the control
section is assumed to be private.

NOTE: If two users refer to the same public control
section, both share the same physical copy. If two users
refer to a private control section, each uses a separate
copy.

PSECT-The control section contains modifiable stor­
age (variable program data, save areas, or working
storage areas). Control sections with the PSECT attri­
bute are normally used for the modifiable storage
associated with READONLY, PUBLIC control sections.
Each such control section has its own private copy of
the modifiable storage (PSECT) control section.

cOM-The control section is used as a common stor­
age area by independent assemblies that have been
linked and/ or loaded for execution as one overall pro­
gram. The reguired storage area is allocated at assem­
bly time.

PRVLGD--The control section is to be supplied with a
storage protection key at load time, such that only
privileged system service routines have access to it. If
this attribute is not specified, the control section is
assumed to be nonprivileged. This attribute is reserved
for system routines resident in the SYSLIB.

VARIABLE-The length of the control section may
vary during program execution. If this attribute is not
speCified, the fixed-length attribute is assumed. The
number of pages allocated for variable-length control
sections is determined by each installation and is speci­
field at system generation time. Fixed-length control
sections are allocated an integral number of pages (the
minimum number that will contain the bounds of the
control sections) .

NOTE: TIle SYSTEM and PRVLGD attributes may also be
specified by system programmer-users, if the control
section is to be part of a system object program module.
This attribute is never specified for problem programs.
The user should keep in mind that control sections
may be packed on double-word boundaries by the dy­
namic loader at execution time, if control section pack­
ing was deSignated at LOGON time. Only control sec­
tions with like attributes may be packed, however. This
packing technigue more efficiently utilizes virtual stor­
age space, and is encouraged whenever practical.

Shared Object Program Modules
In TSS, shared object program modules normally con­
tain one or more control sections with READOl'\LY and
PUBLIC attributes, and a prototype (PSEGr) control
section for the modifiable storage required by the
READONLY portions.

IvIodifiable Storage
f----__ PSEC T attribute

READONLY and PUBLIC
attributes

A simplified format of a shared object program mod­
ule is illustrated in Figure 26. Figure 26. Shared Object Program Module

Table 12. Assembler Statements Used to Name Control Sections and Describe their Attributes

NAME

FIELD

Symbol
or

blank

Symbol
or

blank

Symbol

Symbol
or

blank

Symbol

ASSEMBLER STATEMENT

OPERATION

FIELD

START

CSECT

PSECT

COM

DSECT

OPERAND

FIELD

Self-defining value or blank

READONLY
PUBLIC
PRVLGD
VARIABLE
SYSTEM
blank (none of above)

READONLY
PUBLIC
PRVLGD
VARIABLE
SYSTEM
blank (none of above)

READONLY
PUBLIC
PRVLGD
VARIABLE
SYSTEM
blank (none of above)

blank

.

USE

May be used to identify first (Of only)
control section of object module; may
be used if self-defining value is in­
cluded in operand to specify initial vir­
tual storage location counter value for
first control section

Identifies control section without
PSECT or COM attribute; is not a
DSECT

Identifies control section containing
address constants and save area, and/
or working area

Identifies control section serving as
common storage area

Identifies control section describing
layout of storage area; does not actu­
ally reserve storage; storage area re­
served by another statement

REMARKS

Control section identified this way as­
sumed to have fixed-length and read/
write attributes but not these attri­
butes: PRVLGD, PUBLIC, PSECT,
SYSTEM, or COM

Assembler assigns control section's at­
tributes based on specification in oper­
and field

Assembler assigns PSECT attrihute to
control section; also other attributes
specified in operand field

Assembler assigns COM attribute to
control section; also other attributes
specified in operand field

Appendix A. Use of the TSS Assembler 127

Appendix B. Problem Program Checkout and Modification

The system elements that contain facilities for simplify­
ing problem program checkout and modification are:
• Assembler
• Linkage editor
• Program control system

Assembler
The assembler includes conversational prompting and
diagnostic facilities to assist the user in debugging his
source program modules as he enters source statements
at his terminal. It also includes optional facilities for:

• Storing and cataloging the source data set and
object program module,

• PrOViding various listings,
• Including an internal symbol dictionary (ISD) in his

object program module.
The ISD allows the user to employ the full capabilities

of the program control system when the object pro­
gram is subsequently checked dynamically during exe­
cution.

Prompting and Diagnostic Facilities

The diagnostic facilities available during source lan­
guage processing vary with the manner in "vhich the
user has speCified that source language processing is
to proceed.

• As part of a conversational task in which the user
enters his source statements from the terminal.

• As part of a conversational task in which the source
statements are made available from a prestored
data set specified by the user.

• As part of a nonconversational task in which the
source statements are made available in the SYSIN

data set.
• As part of a nonconversational task in which the

source statements are made available from a pre­
stored data set other than SYSIN, but which is speci­
fied by the user in the SYSIN data set.

NOTE: To be acceptable for language processing, a
prestored source data set must have a line organiza­
tion. If source statements are submitted conversation­
ally, or if they form part of the prestored SYSIN of a
task, a source data set will be constructed with line
organization. Each physical line output to the system,

128

whether as a single card or as a single line typed at the
terminal, becomes a physical record of the line data set
(input length is limited to 120 characters). Continua­
tion conventions specified for commands do not apply
to line data sets. Continuation conventions for combin­
ing two or more physical records into a single logical
statement for a language processor are as speCified by
that processor.

Conversational Mode, Source Statements from Terminal

When the assembler is ready for a source 'statement,
the system unlocks the user's keyboard and prints a
line number at his terminal. The user then types in
the contents for the line. The system stores both the
line number and the line and then locks the user's
keyboard.

If the syntax analysis indicates that the statement is
correct, the . system again unlocks the keyboard and
prints the next line number at the terminal, so that the
user can enter his next statement.

If the syntax analysis indicates that one or more
parts of a statement are incorrect, a diagnostic message
identifying each error is sent to the user's tenninal. The
system then types out the line in error and a # sign,
and unlocks the user's keyboard so that the user can
enter corrections. He can insert required lines between
previously entered lines, replace erroneous lines, or
delete lines.

\Vhen a user enters a correction line as an insert or a
replacement, the first part of it must be a percent ·sign
(%), followed by the appropriate line number. He
then types a comma, and enters the correction. The %
identifies the line as a correction rather than as the
contents of the line for which the system entered a
line number. Example: to replace line 500, the correc­
tion line might read

600 %500, DC A(TRIAL)

If the user wishes to delete one or more lines, he
must type a %D after the system-supplied line number,
then a comma, and then the line number or range of
line numbers to be deleted. Example: the correction
line for a deletion entry might read

400 %D, 200"] - for a Single line

1800 %D, 900, HOG 1-- for lines 900-1100

The indicated lines are permanently removed from the
source data set.

Each modification is stored by the system until all
modifications are completed. A user restarting a long
program may, thus, have a long wait before he can
enter his next statement. To signal the system that he
has entered all his modifications, the user enters a
normal line (he does not enter % or %D), in response
to the system's prompting. The corrections are then
made by the assembler, after which the just-entered
line is processed. If the assembler must restart, all un­
corrected diagnostics will be reissued.

When the user enters an END statement, the as­
sembler completes its first phase. If any diagnostic
messages are issued at this point, the user i'i prompted
for a decision: Does he \vant to terminate language
processing, make modifications and restart, or continue
language processing? The user may request that all
fGrther diagnostic messages, or solicitations for correc­
tions, be inhibited, by typing T or 'C' respectively
when prompted and pressing the return key. Diagnos­
tics will still be issued with the listing after completion
of assembly, but the operation in conversational mode
will not be needlessly impeded by messages and
promptings should the user decide not to effect modi­
fications at the keyboard. If he elects to modify and
restart, the user repeats the above procedure after
making modifications required by the diagnostic mes­
sages just received.

The second phase of the language processor is then
executed. If any errors are detected during this phase,
the assembler indicates the number of an erroneous
line, but does not issue the line itself. If the user wants
to see the actual contents of the line, he follows this
procedure:

1. He presses the ATTENTION key to interrupt source
language processing.

2. When the system prints an exclamation point (!),
he types in the UNE? command and specifies the
source data set name, together with the line num­
ber supplied in the diagnostic message.

3. After the line has been presented, he issues a ('-0

command to resume source language processing
from the point of intermption.

At the completion of this phase, the user is informed
whether the assembler found no crrors, minor crrors,
major errors, or errors that prevented it from producing
an object module. The assembler will continue process­
ing if it can; if it cannot, it will so inform the user.

NOTE: The user can terminate language processing
at any time by pressing the ATTENTION button.

Conversational Mode, Source Statements from

Prestored Data Set

In this fonn of language processing, successive lines of
the source program module are fetched from the speci­
fied prestored data set. Communication, when source
statement errors are detected, takes place between the
user and the system via his terminal, The user's termi­
nal is locked until diagnostic (or prompting) messages
are produced.

If the system's syntax analysis indicates that one or
more parts of the statement being processed are in­
(~rrect, the system prints out at the terminal the line
in which the error occurred, fonowed by the diagnostic
message and a number sign (II) at the beginning of
the next line to prompt corrections. (The line printed
out by the system may happen to be a continuation
line. If the user wants to see the contents of some pre­
viousline he can pres~ the attention key and then type
in the Ll:-JE? command, specifying source data set
name and desired line numher(s).) The user may then
proceed to correct his program, based on the di:lgnos­
tic messages. He can add lines between existing lines,
or replace or delete eXisting lines.

If he ,,,,-ants to enter a correction line as an insert or
a replacement, he types in the line number of the line
involved, a comma, and the actual correction. For ex­
ample, to insert line 450 (between, say, lines 400 and
500), the insertion line might read:

[" 11 450,_ - GATHD AREA+3, (ENGTH :=J
The correction line is pennanently inserted by the

system ill the prcstored source data set. The system
then types out another # at the beginning of a new
line, and unlocks the user's keyboard.

If the user wants to delete one or more lines, he
types a D following the II, then a comma, and the line
number or range of line numbers to be deleted.

[# D, __ ~() "l- to delete line 400

D, 9~}-100 I - to delete lines 900-1100

The lines to be deleted arc pennanently removed from
the prestored source da ta set.

The user may decide at some point that he has too
many errors in his source program to try cOlTecting
them conversationally but wishes to allow the assem­
bly to continue without further diagnostic messages
coming to his terminal to slow down the process need­
lessly. In thaI case he can inhibit all further diagnostic
messages by typing the letter T in response to the
number sign (II) and pressing the return key. If he
wishes to continue receiving diagnostic messages but
not be prompted for corrections until the completion
of the SOURcE.data set scan, he can type in the letter
'C' at the terminal and press the return key. He may
also elect to ignore only the current error message by

Appendix B. Pl'Oblem Pr0gramming Checkout and Modification 129

pressing the return key. In all cases, all unsatisfied
diagnostics are included in the LIST. dataset when the
first phase of the assembly process is completed.

To signal the system that he has entered all the cor­
rections required, in response to the diagnostic mes­
sages for the previous statement, the user responds to
the # with a carriage return. The system processes the
correction lines and then retrieves the next line of
the prestored source data set. This may cause further
diagnostic messages and a repetition of all preViously
issued messages.

After the END statement of the source data set has
been processed, the system and user communicate in
the same way as described about for "Conversational
Mode, Sourc~ Statements from Terminal."

Nonconversational Mode, Source Statements from SYS'N

In this situation, there is no system communication
with the user during language processing. The source
data set is read, one statement at a time, from the
SYSIN data set. As each statement is read, a line num­
ber is prefixed to it, to serve as the key by which
the line can be identified later. The new data set cre­
ated in this way can be modified, or otherwise used
after language processing is completed. Any diagnostic
messages are sent to the task's SYSOUT data set.

Nonconversational Mode, Source Statements from
Prestored Data Set

This is essentially the same as the previous type of
language processing, except that the source program
module already exists as a line data set. The system
picks up the source statements, line by line, and proc­
esses them. No corrections are made, and any diagnos­
tic messages are written on the task's SYSOUT data set
for later analysis by the user.

Program Listings and Related Aids

The user can specify that any, or a combination, of the
following be made available as a result of source lan­
guage processing:
1. Listings
• Object program module listing
• Source data set listing
• Cross reference listing .
• Edited symbol table
• Internal symbol dictionary listing
• Program module dictionary listing
2. Internal symbol dictionary

NOTE: A cross reference listing and an edited symbol
table cannot both be requested.

Linkage Editor
In addition to its basic function(static linking of object
program modules), the linkage editor can

130

• Control the libraries from which input object pro­
gram modules are to be obtained, and the order in
which searches occur to satisfy unresolved refer­
ences during linkage edit or input processing.

• Provide an automatic search (of the libraries in the
program library list) at the completion of linkage
editor input, to satisfy all unresolved external refer­
ences (where resolution has not been explicitly ex­
cluded during linkage editor input).

• Replace, delete or rename control sections within
modules. (Automatic rejection of control sections
occurs when more than one section has the same
name; the first control section received as input is
retained in the object program module; all others
subsequently detected with the same name are ig­
nored.)

• Rename or delete entry points within an object pro­
gram module.

• Change the attributes of control sections within an
object program module.

• Combine two or more control sections of an object
program module, thus reducing the number of vir- .
tual storage pages required.

• Collect automatically and include a reserved stor­
age area within the output object program module,
for common control sections received as input.

Prompting and Diagnostir. Facilities

The linkage editor may be run under the same four
conditions as the language processors. It also issues
prompting and diagnostiC messages in the same way,
and the user can correct control statements in the same
manner as for source statements.

Program Listings and Related Aids

The user may optionally specify that either or both of
these be produced by the linkage editor:
1. Internal symbol dictionary for the output object

module.
2. Program module dictionary listing.

The linkage editor automatically prepares a list of
the symbols that cannot be resolved by automatic calls,
and those symbols whose resolutions are deferred to
the dynamic loader. .

Object Program Module Linking

Time Shar'ing System Program Structure

In TSS, a problem program, at execution time, may be
a single object program module, or a series of object
program modules that are linked together.

Symbolic linkage

Symbols may be referred to (used as an operand in a
statement) in one control section, and be defined (used
as the name of a statement) in other control sections to
establish linkages between those control sections.

External References: A control section may contain
external references (the symbols that are referred to
in control sections of one object program module, but
defined in control sections of separately assembled
object program modules). Symbols that are external
references are used in source program modules to

• Identify an entry point in another object program
module or

• Identify the location of data (as a table) that is con­
tained in another object program module.

External Symbols: Each object module has at least
one external symbol (a symbol that can be used as an
external reference in another module) .. These are valid
external symbols in TSS object program modules:

• The module's name (standard entry point of the
module).

• Name of any control section in the module, includ­
ing common blocks; if blank COMMON is declared,
the name is a name of blanks; if an unnamed con­
trol section is declared, its name is a name of hexa­
decimal Os.

• Any symbol that is included in an ENTHY statement
in the object program module and is used as a name
in any statement, except those in dummy sections.

External Symbol Values: The values associated with
each external symbol are V-value and H.-value.

The V-value specifies the location at which execution
of the object program module is to begin \vhen control
is transferred to that object program module. "ntis is
the conventional external symbol value.

These are the V-values for external symbols:

EXTERNAL SYMBOL

1. ~fodule name

2. CSECT name

3. Symbol in operand of EN­
TRY statement

V-VALUE GIVEN CALLING

PROGRAM

1. Virtual storage location
of expression included in
END statement in called
program module; or, if
END statement is blank,
origin of first CSECT in
called program module

2. Virtual storage location of
origin of named CSECT
in called program module

3. Actual virtual storage lo­
cation of symbol in called
program module

These R-values specify various locations, depending
upon the type of external symbol speCified:

EXTEHNAL SYMBOL

1. Module name

2. CSECT name

3. Svmbol iii operand of EN­
TRY statement

R-VALUE CIV.£N CALl.ING

PHUGHAM.

1. Virtual storage location of
origin of PSEeT contTol
section (if there is one) in
('[(!led prOf'r:ml module;
if calle'! pr;gram module
does not contain PSECT
control section, R-valne
gives virtnai storage 10-
~ation of migin 0'£ first
CSECT in c;,Il~'d program
tnodl1le

2. Virtllal slorag!' location of
origin of :w'mecl CSECT
(saBle as V-,.valne)

3. Virtlr,ll stot"a,ge location of
origin of control sedimr
C'ol~tajIling ENTRY state­
Jnf:nt in ('an(-~d pro~rarn
module; if called progrmn
module contain.s I'SFCT,
ENTHY st:ltf'mc'nt should
he in PSECT ('VI'H tl.ongh
symbol is defined ill an­
,ither contrGl sect ion

An illustration of the rules is given in Figllre '27.
i\1odule \of consists of two control sections: it CSl'~cr (x)
and a PSECT (Y). It has a standard entry
a deferred point (z).

(w) and

Note in the refcrcw'cs to module M hI! entry point
("\V and Z L hO\v the' V -valn(' indicates the location to
which control is transferred. and th,· H-\:;!tJl' ::I\'CS tile
location of the 1':';1".CT If module :\1 WCl"'.' ;l,.h,nC;[pro­
gram module, CSECT x would have HFA DO;\;T. Y· nnd PUB­

LIC attrihutes, and a single copy of this control section
could be llsed by any task permitted to share H. How­

ever, each sharing task would 1w given a ':cparalc copy
of the PSLCL and for each copy there wOlllc1 Iw it sepa­
rate H-vaJue indicating whc-re that task'" pri\:<Jrc copv
of the PSECT is located. Each calling program could
then pass that address to module M, to he l1sed as its
private vmiahle area, 'Nhen module M is executed en
its behalf. Example: Assllme that module \1 is shared
by task 1 and task 2. Aho, assum(' tkd module /\. of
task I and module B of task 2 arc in main storage
simultaneously and both arC' using modul(, ~1, with
task 2 rnaking the first reference. IVfain storage might
appear as in Figure 28.

Linkage Conventions

Standard linkage conventions have heen defined 10

govern the communication hetween all TSS programs.

• Type I-Between two nonprivilegcd or between
two privileged programs.

AppendiX B. Problem Programming Checkout and 'vlr,dd:kaUnn 131

Reference
by Module
Name M

I I
V(M) R(M)

Reference
by CSECT
Name X

Reference
by Entry
Point Z

V(X) R(X) V(Z) R(Z)

I

~ X CSECT

W (Standard
Entry
Point)

Z (Deferred ~

Entry
Point

Y PSECT

ENTRY Z

END(W)

Reference
by PSECT
NameY

V(Y) R(Y)

I I

Figure 27. V- and R-Values of External Symbols

Module A

{ (of task j)

,.--...-..,

I ps:cr I
Figure 28. Sharing a Module

M

x

CSECT

Y

PSECT

Module B

(of task 2)

/

• Type II-From a nonprivileged to a privileged
program.

• Type III-From a privileged to a nonprivileged
program.

Only the type-I linkage between nonprivileged pro­
grams is covered here; type-I linkage between privi­
leged programs is described in Assembler User Macro
Instructions. Types-II and -III linkages are described
in System Programmer's Guide.

Type-I linkage conventions include three basic
standards to which the assembler user must adhere:

1. Using the proper registers in establishing a linkage;

2. Reserving a parameter area in the calling program,
to which the called program may refer;

3. Reserving a save area (in the calling program) in
which the called program may save the contents of
the calling program's registers.

132

Proper Register Use: Four general registers are used
for the type-I linkage between nonprivileged pro­
grams.

• General register 1-Set up by the calling program
to give location of the parameter list to be passed
to the called program.

• General register 13-Set up by calling program to
give location of save area to called program.

• General register 14-Set up by calling program to
give called program the location of standard return
address in the calling program.

• General register 15-Set up by calling program to
indicate location to which control is to be trans­
ferred in the called program (V-value); on return
to the calling program, the called program may
supply a return code to the calling program in this
register.

Reserving a Parameter Area: Every calling program
may reserve a storage area (parameter area) in which
the parameter list used by the called program is lo­
cated. The first entry in a variable-length parameter
area contains the length (in bytes) of the entire param­
eter area. Each succeeding entry contains the address
of an argument to be "passed" to the called program.

Reserving a Save Area: Every calling program must
reserve a storage area (save area) in which certain
registers (those used in the called program and those
used in the linkage to the called program) are saved
by the called program.

The minimum amount of storage needed for the save
area of a program that is both calling and called, is 19
words. Table 13 shows the layout of the save area and
the contents of each word.

NOTE: It is the responsibility of the called program
to maintain the integrity of general registers 2 through
12, so their contents will be the same at exit as they
were at entry to the called program. It is the calling
program's responsibility to maintain the floating-point
registers around a call. General registers 0, 1, 13, 14,
and 15 must confoml to the indicated conventions.

linkage Macro Instructions

The CALL, SAVE, and RETURN macro instructions provide
linkage between object program modules; the RETUR.N"

and EXIT macro instructions define the end of program
execution.

CALL Macro Instruction: The forms of the CALL

macro instruction are implicit CALL and explicit CALL.

The principal difference between the two forms is the
time at which the called program is brought into virtual

Table 13. Save Area Contents

WORD LOCA nON CONTENTS

1 Contains length of save area

2 Address of calling program's save area; field
is set by called program in its own save area

- --
3 Address of next save area; that is, save area of

program to which this program refers

4 Contents of register 14 containing address to
which return from this program is made; field
is set by called program in calling program's
save area

5 Contents of register 15 containing address to

which entry into this program is made; this
field i, set by called program in calling pro-
gram's save area

--
6 Contents of register 0

7 Contents of register 1

8 Contents of register 2 .

Saved by called program

18 Contents of register 12

19 Address of the caned program's PSECT be-
long to calling program (R-value)

1---
20 if User data

storage. Consider the program illustrated in Figure 29.
An implicit linkage hetween module A and module B
means that allocating A implics allocating B. In other
words, when A is allocated, so is B. Explicit linkage,
between two modules (c.g., Band C in Figure 29)
means that C is not to he loaded unless, in the execu­
tion of B, C is actually (or explicitly) required.

The usefulness of the differentiation of implicit and
explicit linkage is illustrated by Figure 29.

• Linkages are provided so that any comhination of
the object modules needed for any conceivable run
can be selected.

• If only A and C, or A, B, and E are needed in a
given nm, none of the others need he aUocated; C,
B, and E would be allocated with A, each time A
is allocated.

SAVE Macro Instruction: The SAVE macro instruction
may be used as a convenient means of automatically
storing the contents of registers in the calling program's
save area. It may be written at every entry point of the
called program. An entry point identifier may be speci­
fied in the SAVE macro instruction to identify the entry
point to which control is to be transferred.

RETURN Macro Instruction: The RETUHN macro in­
struction is placed in called programs at the points
where control is to be transferred back to the calling

Implicit Coli

Explicit Call

Figure 29. Program with Implicit and Explicit Linkig'os

program. Used in this way, RETUR'l is also a convenient
way of restoring the registers of the calling program
that WCIY saved hv the SAVE macroinstruction.

The HETUHN nu;cro instnlction is used in the first oh­
jeet program module of a program to indicate the end
of the program's execution.

EXIT Macro 11!strw;fion: The EXIT macro instruction
tenninates a program and switches the task to com-
mand mode. -

ABEND Macro Instruction: System programs use
the ABEND macro instruction to ttTminate a task 'l.vhen
an uncorrectable error occurs. The user may use ABEND

as an error exit in his program.
A more detailed description of these' macros is con­

tained in Assembler User Macro Instructions.

Object Module Ccmbination

If a program comists of one or more object program
modules (sec Figure .30), the user can:

.. Statically combine two or more (or all) object pro­
gram modules prior to program execution by using
the linkage facilities of the linkage editor program,
or

.. Dynamically link the object program modules dur­
ing execution of the program hy making usc of the
automatic facilities of the system's dynamic loader.

Appendix B. Prohlem Programming Checkout :md Modification 133

Static Linking

Static linking, although optional, may be used for ob­
ject program module build-up during program devel­
opment. It may also be used to combine a number of
short object modules together and thereby save on
paging time during program execution. A similar sav­
ing of page space may be achieved by specifying the
control section packing option for the dynamic loader
during LOGON, and the user will probably find dy­
namic linking through the dynamic loader more con­
venient than using the linkage editor. He may, how­
ever, find the editing facilities of the linkage editor to
be of value in program development. (Example: He
may want to update object program module informa­
tion without recompiling or reassembling.)

In cases where the linkage editor is used for object
program module combination, the object program
modules to be combined may be in one of the libraries
included in the program library list, or they may be in
other libraries identified in the control statements that
are input to the linkage editor program. On the other
hand, all object modules to be dynamically linked must
be contained in libraries currently identified on the
program library list.

vVhen the linkage editor is to be invoked a number
of times consecutively in one task, time may be saved
by running in express mode. This will cause the lan­
guage processor control to read the name of the next
output module from SYSIN whenever it would nor­
mallv have returned to the Command System for an­
othe~ command. The express mode is turned on by
issuing a command

DEFAULT LPCXPRSS=Y

anvv:here before the LNK command is issued. The LNK

co~mand is issued only once, for the first linkage
edited object program, and all parameters are issued
at the same time. The link editing parameters cannot
be changed for subsequent object modules.

The express mode can be turned off by entering an
underscore as first character in a line; this will cause
an exit from the language .processor control and a
return to the command system. It is also possible to
turn off the express mode by pressing the attention
button any time during the link editing process and
issuing a command

DEFAULT LPCXPRSS=,

Link editing can then be continued in a non-express
mode by issuing a GO command.

If an invalid module name is entered when the lan­
guage processor control expects a new object module
name, the express mode will be turned off and a diag­
nostic message will be issued.

134

Conversational Linkage Editing: To initiate conver­
sationallinkage editor processing, the user issues these
commands (refer to Figure 30) :

• DDEF or CDD command-Defines each library to be
used during execution of the linkage editor pro­
gram.

• LNK command-Loads and initiates linkage editor
processing.

When LNK is entered, the necessary parameters must
be included. Parameters not included will assume sys­
tem default values, where applicable. The parameters
available are:

• Name of the object module being created.

• Version identification of the module being created.

• An indication of whether the control statement data
set is prestored or is to be made available via SYSIN.

If that data set is not presto red, the user can also
specify its starting line number, and the value by
which the lines are to be incremented (values of
100 and 100 are assumed, if the starting line number
and increment value are not specified) .

• N arne of the libralY in which the new object pro­
gram module is to be stored. If this library is not
speCified, the object program is placed in the library
that is currently at the top of the program library
list.

• An indication of whether an internal symbol dic­
tionary (ISD), or a program module dictionary
(FMD) listing is \vanted.

'When these parameters have been proVided, linkage
editor processing of the control statement data set be­
gins. The user can issue the control statements from his
terminal in response to system prompting, or he can
make the control statements available from a prestored
data set. The user must observe the continuation con­
ventions for linkage editor control statements; prompt­
ing and diagnostic facilities are available from the
system to assist him in elltering his control statements
correctly.

To combine object program modules, the user speci:
nes the appropriate INCLUDE control statements. Any
extemal references in the input modules that were not
satisfied (or excluded) by INCLUDE control statements,
are satisfied at the end of the run by automatic call.
Automatic call searches the program library list to
satisfy the remaining external references. All required
modules, except those in SYSLIB are placed in the out­
put module. Linkage editor forms one F:MD for the
resulting object program module and, if the ISD option
is specified, a chained ISD for all input object modules.

r----------
I
I
I

-~

-- Optional linkage Edit;ng -- -- ---- - - --- --l
!
I

-.... --------..
: -----__________ __________ Edited Object

" . -___ -~ Program Mod"le

I
I
I
I , Oblect ------ ~

, , Program-------____ - ___
, Modules ---. __ ---.-_____ ", ---.. _-- --~

I
I
I '" ----.,-~ ---.---

" ---- ---------Object
Program
Modules User - ',~" __ ~~~:!t~r: I __

, Control I
I

, Statement,

r--­
I
I

Explicit and
Inplidt
linkage
ReqlJirements

During
Execution ,

I
I
I L ___ _ User's

Virtual
Storage

, , , ,
DDEF

RUN Program " , , ,
" , User Calo.log

, Listing Data
, Set/Control

'. Statement
'\,

'" Data se~ !

'- ________ . _______ .-J

1---------_ .. _-_.
Output
Data Sets

Figure 30. Object Program Module Combination

At the conclusion of linkage editing, the system
stores the object program module, by its module name,
in either a library specified in the parameters defined
for the linkage editor run or, if no speCial library has
been speCified, the module is stored in the library cur­
rently at the top of the program library list. The origi­
nal input module names are retained as auxiliary entry
points.

Nonconversational Linkage Editing: The same com­
mands are used to initiate nonconversational linkage
editing. The user must be careful to store the DDEF

commands, required to define the libraries, ahead of
the L~K command (which must contain the desired
parameters), in the SYSI~ data set. However, the user
has the option of making the control statements avail­
able either in the SYSIN data set, or as a prestored data
set.

Dynamic L;nking

Object program modules are linked dynamically dur­
ing execution by the dynamiC loader. To initiate pro­
gram execution, the user issues these commands (see
Figure 30):

• DUEl" or CDD command-Defines each data set to be
processed by the program.

• Either a LOAD command followed bv CALL com
maud (or an implicit CALL) or merely" a CALL com­
mand--Loads and initiates execution of thc speci­
fied object program module.

LOAD Command: vV'hen the 1lser issues a LOAD com­
mand, the first object program module of the user's
program is explicitl\' loaded in the user's virtual stor·
age. The dynamic 'loader will allocate space in the
user's virtual storage for the module named in the LOAD

command. It then allocates space for all the object pro­
gram modules implicitly called by that module, and all
other modules implicitly called by them. \Iodules that
are explicitly called are not km;"ill to the loader at
this time.

NOTE: The LOAD command need not be issued prior
to CALL or implicit CALL. The LOAD command, howcver,
is useful for placing object modules in virtual storag~
to examine them prior to execution. .

CALL Command, V/hcn the CALL command is
issued, tlw first object program module and all implicit

AppendiX B. Prohkm Programming Checkout ami \L"HncaUon 135

modules are allocated space in the user's virtual stor­
age, if they have not already been loaded. When exe­
cution begins, pages are loaded into main storage as
needed.

If, during execution of the first object module, a
reference is made to another module and the linkage
is implicit, these events occur:

1. The linkage is completed so that control can be
transferred.

2. The required pages of the new module are brought
into main storage (from its library), relocated (if
necessary), and then are given control.
Explicit linkage to another module is detected when

an explicit CALL macro instruction is executed. Then,
the dynamic loader action is similar to that of the LOAD

coml~aDd (it allocates space for the explicitly called
object module, for all other modules it implicitly calls,
and for all modules they implicitly. call). However,
when the allocation is completed, control is transferred
to the explicitly called object program module.

LOAD Macro Instruction: The LOAD macro instruc­
tion allocates object modules during program execution
when a module is loaded; it is not given control. This
procedure is useful for inserting pcs commands and
statements into modules before execution.

UNLOAD Command: The UNLOAD command deletes
object program modules and all linked modules that
will not be needed by other tasks.

DELETE Macro Instruction: The DELETE macro in­
struction is used during program execution to perform
the same function as the UNLOAD command.

PROGI

CAll

PROG2 PROGA

SAVE

CAll
GETMAIN

FREEMAIN

RETURN

Program Control System
The user can employ program control commands and
statements to perform one, or any combination, of
these operations:

1. Request output of data fields and instruction loca­
tions ,vithin his program, specifying them by their
symbolic names in the source language program or
by their virtual storage addresses; he can also re­
quest output of machine register contents, specify­
ing the registers by type and number.

2. Modifying variables within his program, specifying
them by their symbolic names or by their virtual
storage addresses, and specifying the new value for
each variable in standard representation as an in­
teger, floating-point number, or character string.

3. Specify, either symbolically or by virtual storage ad­
dress, instruction locations within his program at
which execution is to be stopped or started. When
program execution has been stopped, the user may
intervene, as described in items I and 2, before he
directs resumption of program execution.

4. Specify, either symbolically or by virtual storage ad­
dresses, instruction locations within his program at
\V'hich the actions described in items I and 2 are to
be performed automatically.

5. Obtain the values of his program's variables at a
specified point in its execution, with the variables
automatically formatted according to their types.

6. Establish logical (true or false) conditions which
allow or inhibit the actions described in items 3, 4
and 5.

The use of program control system facilities does
not involve any restrictions on the user relative to

Work AREA
for Use
With PROGI

Work Area
for Use
With PROG2

Figure 31. A Reenterable Routine that Requests its own Temporary Storage

136

source coding. In general, the use of program control
facilities will greatly simplify the preparation of source
programs. l)(:'canse many functions previously source­
coded may conveniently be made available after com­
pilation. Typical of these: the routines used for debug­
ging programs, and the conventional I/O statements
usually included in source programs.

Program Control Commands

The program control commands (DISPLAY, DUMP, and
SET; CALL, GO, BRANCH, and STOP; AT; and QUALIt"Y and
REMOVE) may be issued indiVidually, or (except for
QUALIFY and REMOVE) may be combined into program
control statements.

The DISPLAY and DUMP commands allow the user to
obtain the values of variables, the contents of machine
registers, and the contents of speCified virtual storage
locations. These two commands differ in that the DIS­

PL-\Y command delivers the designated infonnation to
SYSOUT (the temlinal in conversational mode); the
DUMP command delivers the deSignated information to
the PCSOUT data set which must be subsequently trans­
ferred to an output medium (by the PRINT command).
The SET command allows the user to change the con­
tents of machine registers, or the values of variables
within his program.

The STOP command interrupts exeeution of the user's
program and outputs the instruction location at which
the interruption was honored. Thus, except for this out­
put infomlation, the STOP command, used alone, is
equivalent to the operation of the ATrENTION button at
the user's terminal. The STOP command is more useful
when included in a statement that designates the in­
struction locations at which execution is to be inter­
rupted.

The CALL command, used after a LOAD command,
initiates execution of the loaded program, either at its
entry point or any other speCified pOint. The CALL, GO,

and BRANCH commands may also be issued after a STOP

command to perform any of the following:
• Resume program execution from the point of inter­

ruption (Go).
• Resume program execution at a point other than

the point of interruption in the current program
(BRANCH).

• Load and initiate execution of another program
(CALL).

The AT command, issued individually, does not inter­
rupt program execution; it simply infonns the user
when execution of his program has reached the instJuc­
tion locations designated in the command.

When the AT command is included in a program
control statement, it designates the instruction locations
at which the actions specified in the statement are to he
performed. Program control statements that include

one or more AT cOlnrnands are dynamic staterncnts.
\Vhen an AT command is accepted hy the system, it is

assigned a 1l1lmlwf to identify it uniquely. and that
nurnher is prilltl'd at tlw terminal. This is done ",heth,'!'
the AT cornmand is individually issued, or is the fi,st of
a string in a stat:'lTwnt \Vhen an AT command suhse­
quently bccomes effectivp, the standard output pre,
sented to the user includes the AT command's identifi­
cation numher.

The QUALIFY command allows Hi{' user to deSignate,
hefore 1](> rders to a group of internal or eXlernal sym­
bols, the program in which these symbols arc defined;
he may, thereaftlT. refer to these symhols 'without
explicitly qualifying them by program namp. If the
user does not issue the QUALIFY command, he must
prefix each symbol with the program name. If the user
is uncertain of his (l'lCllification, he may issue the com··
mand: "DISPLAY .(0, 1\". pes will supply the symbol
last named ill a qUALIFY command and display one
byte. If no QUALIFY command has been issued during
the task, L'O' is the assumed qualification.

The HE!>.WVE command enables the user to delete
previously issued dynamic statements (those \vhich in­
clude one or more AT commands), therehy temlinating
their subsequent execution.

Program Control Statements
The program control commands just described (except
QUALll'Y and REMOVE) can be combined into program
control statements, either to request immediate execu­
tion of several pes commands with one entry. or to fe­
quest deferred execution of one or more pes com·
mands. Deferred execution of the actions specified in
any statement is achieved by including an AT com­
mand in the statement. The AT command makes it a

dynamic statement in the sense that its execution is
dependent upon arrival at the instrut:tion location,
deSignated in the AT command.

Execution of a program control statement, either im·
mediate or dynamic, can also be made conditional by
inclusion of an 1[' command. The IF command defincs
a logical expression (two-valued, or truc .. false) that
must be tnlc to ,>]10'" execution of the statement's HC­
hems. When a dvnamic statement includes it" iF com­
mand, the IF cornmand is evaluated only wIwn contw,j
arrives at the instruction locations designated in the .. \1

command.
This is the genC'l'al format of a program c()utrol state­

ment
(AT) ... ;(IF);(DISPLAY) ... ;(DUMP) ... ;(SE'1') ... ;(BHANCH)

(STOP)
The nIles for the inclusion of program control com­

mands in program control statements are:
AT: None, one, or more than one AT command rnay
be included in a statenlent. Uincludc(l the .\''1' COIll­

mands must be thc first entered in the statement.

AppendIX B. Problem Programming Checkout and \iodiHc,ltion J37

IF: The IF command must be entered after any AT

commands in the same statement. Multiple IF com­
mands may be entered in a single statement.
DISPLAY: None, one, or more than one DISPLAY com­
mand may be included in a statement. If included,
they must follow any AT commands and/or the IF

command entered in the same statement. The DISPI"AY
command is performed (together with any DUMP com­
mand in the same statement) before any other action
commands specified in that statement.
DUMP: None, one, or more than one DUMP command
may be included in a statement. If included, they must
follow any AT commands and! or the IF command, if
present. The DUMP commands may be entered before
or after other action commands (except BRANCH or
STOP) in the statement. SET commands, if present in a
statement, are performed after any DISPLAY and DUMP
commands in the statement, but before BRANCH or STOP.
BRANCH: Only one BRANCH command may be entered
in a statement; it must be the last command or entry in
the statement. If the BRANCH command is included in a
statement, the STOP command may not be included. If
other action commands are included in the same state­
ment, they are performed before the BRANCH command
is executed.
SET: The SET command enables the user to change
the contents of a specified data location to a new value.
\Vhen the command becomes effective, the new value
of the data location is produced in the same format
that would be produced if the name of the data loca­
tion had appeared in a DISPLAY command. The output
is produced from the changed field itself and reflects
the results of all conversions and expression evaluation.

STOP: Only one STOP command may be entered in a
statement. If included, it must be entered after any AT
commands and/ or the IF command in the same state­
ment. If the STOP command is included in a statement,
the BRANCH command may not be included. If other
action commands are included in the same statement,
they are performed before the STOP command is exe­
cuted.

PCS and the Internal Symbol Dictionary
"\Vhen the user selects the ISD option in the ASM param­
eters, the assembler includes the internal symbol dic­
tionary as part of the object module. The I~D contains
the length and type attributes and the location of each
symbol that appears in the "name" field of a statement
in the source program (note exceptions below).

pcs uses the information in the ISD to determine the
location of an instruction or data area in virtual stor­
age, to select the proper conversion and format when
a variable is displayed or dumped, and to determine

138

the method of arithmetic to be used in evaluating a
SET or IF expression.

pcs recognizes the following type attributes:

Immediate values (absolute EQU statements)
Instructions
Character
Integer (halfword and fullword)
Floating point (single- and double-precision)
Address constants
Hexadecimal
Relocatable EQU statements
Names on LTORG statements

All other type attributes are treated as hexadecimal
data. In addition, if the user designates, in his source
program, a length attribute for a type having an im­
plied length (Le., HL2), the type attribute for the sym­
bol is recorded in the ISD as hexadecimal. The reason
for this is that the assembler does not force boundary
alignment when a length attribute is specified. Since
the data area, therefore, may be unaligned, it cannot
be considered as having the characteristics that the
type attribute implies.

When an offset is specified with an internal symbol,
the type is considered hexadecimal, and the length,
unless designated with the offset, is treated as one
byte.

The assembler statements listed below are not in­
cluded in theISD; therefore they may not be referred
to in pes statements.

Complex EQU statements
Local and global variable symbols
Sequence symbols
Names on macro instructions that are not carried
forward in the expansion.

Symbols in DSECTS, although recorded in the ISD,
should not be referred to in PCS statements.

If PCS statements are to refer to internal symbols,
the original object module must have included an ISD.

When object modules are link-edited and the ISD
option is selected, the linkage editor automatically re­
tains each module's ISO. In addition, a new ISD is
formed, allOwing PCS to trace back from the new com­
pOSite object module to each original control section.

Using PCS Without an ISD
\Vhen an ISD is not selected at assembly time, the user
is restricted to the use of external symbols in his pro­
gram control statements. PCS commands can refer to
lines in the source program by using the control section
name with a hexadecimal offset equal to the location
shown on the object listing.

If pcs statements are to refer to internal svmbols
the original object module must have included an ISD:

No conversion or formatting is done for variables
that are referred to by external symbols. The type is
considered to be hexadecimal, and, unless an explicit
length is speCified, one byte is assumed as the length.

Evaluating Expressions
When h ... ·o operands are joined by an operator to form
an expression, the length and type attributes of both
are used to determine the method of arithmetic to be
used in performing the operation. Integer, Hoating­
pOint, or logical arithmetic is selected. However, logi­
cal (i.e., address) arithmetic is performed only when
requested by the user in response to the system's
prompting.

When it is not possible to determine the arithmetic
to be used from the type and length of the operands,
the conversational user is prompted to supply the
method. In a nonconversational task, since the expres­
sion cannot be evaluated, the pes statement is rejected.

References to variables that are not aligned on the
proper boundary result in a warning diagnostic. How­
ever, the operation will be successfully performed
without a specification interrupt. PeS automatically
provides intermediate moves to proper word bound­
aries.

Table 14 illustrates the possible combinations of op­
erands for arithmetic and relational operations. Logi­
cal operators are not included since they are always
performed in a general register and must be one, two,
or four bytes in length.

Program interrupts can occur any time an expres­
sion in a PCS statement must be evaluated. These in­
terrupts are recognized as being caused by a pes state- .
ment and not by the user's object program. Five such
interrupts can occur:

1. Fixed-point overflow exception
2. Fixed-pOint divide exception
3. Exponent overflow exception
4. Exponent underflow exception
5. Floating-point divide exception

When any of these interrupts occurs, a diagnostic
is issued and the action requested in the PeS statement
is not performed. These interrupts are not recogmzed
by the user's program interrupt routine if one has been
specified.

Floating-Po;nt Constant Conversion
The assembler and pcs use different methods to con­
vert Hoating-point constants to their internal binary
values. As a result, the two processors may develop
two slightly different internal values for the same
Hoating-point number. Thus, although a single-preci­
sion floating-point number gives up to seven decimal

places of preclSlon, the user should assume only six
decimal places of precision between the two proces­
sors. \Vith double-precision numbers, a maximum of
sixteen decimal places should be assumed instead of
seventeen.

This difference in conversion techniques should also
be kept in mind when using pes IF and SET commands
to debug an assembler language program. For exam­
ple, if an IF command were used to test the value of
an object-module variable which was initialized with
an assembled Hoating-point constant, equality might
not occur because different internal values were ob­
tained by the tViO processors for the floating-pOint
number.

To avoid the possibility of such a problem, the user
should take into consideration the allowed variation
between the two numbers being tested. One method
to use when testing two numbers for equality is to
take the absolute value of the difference against the
allowed variation. (A similar problem might develop
when a floating-point variable that is to be used for
comparison by the object program is initialized using
a floating-point number in a SET command.)

If the programmer has access to an assembly that
indicates the internal value to which a Hoating-point
number has been converted by the assembler, the
problems resulting from different conversion tech­
niques may be avoided by using the hexadecimal
equivalent of the internal value in the IF or SET com­
mand.

PCS Diagnostics
pes examines each statement for validity and issues
diagnostics alerting the user to errors.

Diagnostics usually are issued immediately upon re­
ceiving the command. In conversational mode, the
user can reenter the statement with the necessary cor­
rection made. Nonconversationally, the user has no
chance to correct errors; a diagnostic is printed on
SYSOUT and the pes statement is simply ignored.

Certain errors are not detected until execution has
begun. These errors are the result of an action the
user has requested in a dynamic pes statement (i.e.,
one containing an AT command). In a conversational
task, after the diagnostic is issued, the terminal is
placed in command mode. The user can then REMOVE

the erroneous statement, reenter it correctly if he de­
sires, and continue execution with a GO. If he wishes
to perform the corrected statement immediately, he
must use the operand of the AT statement as the oper­
and of the BRANCH.

In a non conversational task, the diagnostic is writ­
ten on the SYSOUT data set and the next command
is read from SYSIN. This may result in prematurely
terminating program execution.

Appendix B. Problem Programming Checkout and Modification 139

Miscellaneous Considerations

CALL, GO, and BRANCH Commands

When the CALL command specifies an external symbol
as an operand, the object module defining that symbol
is automatically loaded if it has not been previously
loaded. If, however, there is a serious error in loading
the module, the CALL command is rejected. Serious er­
rors are caused by level 2 errors when the module was
assembled, as described in Appendix A, under "As­
sembler Diagnostic Action"; or dynamic loader errors
as described in Appendix C, under "Recovering from
Errors when Dynamically Loading."

If the error condition does not preclude execution of
the object module that was loaded, the CALL command
may be reissued to initiate execution. The module
name must be repeated on the second CALL.

If the user anticipate!> that such errors will occur,
he should first issue a LOAD command naming the
module, followed by a CALL with operand. This
method ensures that program execution will always
be initiated. This is most important to the nonconver­
sational user, since it is not always possible to antici­
pate loading errors. The conversational user may use
the LOAD and CALL procedure, or a CALL followed by a
duplicate CALL command if the first CALL is rejected.

Table 14. Possible Combinations of Operands for Arithmetic and Relational Operations

OPERAND 1

EOR DOR OTHER
SINGLE- DOUBLE- TYPES

PRECISION PRECISION LENGTH
OPERAND 2 H

H I

F I

E or Single-Pre- F703
cision Register

D or Double- F048
Precision
Register

Other Types I
Length = 1

Other Types I
Length = 2

Other Types I
Length = 4 or
General Register

Other Types F048
Length = 8

Other Types F048
Length Other
Than 1,2,4 or 8

H = halfword integer
F = fullword integer
I = integer arithmetic

F REGISTER

I F703

I F705

F705 E

F049 D

I F703

I F703

I E

F049 D

F048 F048

E = single-precision, Hoating-point arithmetic
D = double-precision, Hoating-point arithmetic

REGISTER

F048

F049

D

D

F048

F048

D

D

F048

F048 = operation cannot be performed because operands are incompatible
F049 = only Hoating-point arithmetic is possible
F703 = user is prompted to select integer or logical arithmetic

=1

I

I

F703

F048

F703

F703

F703

F048

F048

F705 = user is prompted to select integer, logical, or Hoating-point arithmetic

OTHER

OTHER TYPES
TYPES LENGTH

OTHER LENGTH OTHER OTHER
TYPES =40R TYPES THAN 1,

LENGTH GENERAL LENGTH 2, 4, OR
=2 REGISTER =8 8 BYTES

I I F048 F048

I I F049 F048

F703 E D F048

F048 D D F048

F703 F703 F048 F048

F703 F703 F048 F048

F703 F705 F049 F048

F048 F049 a F048

F048 F048 F048 b

a = if operation is relational, the user is prompted to select logic al or Hoating-point arithmetic; if the operation is not relational,
diagnostiC F048 is issued

b = if operation is relational and the two operands have the same length, a .logical compare is made; if not relational or jf the
lengths are unequal, diagnostic F048 is issued

140

AT Command

The AT command should only refer to instructions in
the user's own program. AT should not be used in a
label-processing or end-of-volume routine.

For each operand in an AT command, the instruc­
tion at that location is replaced by an svc causing pcs
to be activated when the svc is executed. For this rea­
son, the user should not designate as an operand in an
AT command any instruction location that is the sub­
ject of an Execute (EX) instruction, or any instruction
residing in a public control section.

The instruction replaced by the svc is moved to an
area of virtual storage remote from the user's program
and is executed after all pes actions have been per­
formed. It will, in fact, never be executed if a CALL

is issued that specifies a different restart point.
If a program interrupt should occur when this in­

struction is executed and a user's interrupt-handling
routine has not been specified, a diagnostic message
is issued. Since the interrupt is recognized as being
caused by an instruction in the user's object program,
the diagnostic is issued by the system's program in­
terrupt routine. The control section name and displace­
ment in the message are not shown in this case, since
the instruction does not reside in a user's CSECT. If the
user suspects that this situation has occurred, he can
remove the PCS statement containing the appropriate
AT operand and enter a CALL to re-execute the instruc­
tion(s). An interrupt at this time isolates the invalid
instruction.

Operational Considerations

The user cannot make full use of the program control
facilities until he has loaded his program; e.g., with a
LOAD command. After loading his program, the user
can initiate investigatory actions, e.g., he may DISPLAY

the contents of machine registers or of locations in his
virtual storage, or he may issue AT or SET commands.

Even after his program is loaded, the user's utiliza­
tion of program control facilities will be restricted, if
he failed to request an internal symbol dictionary (ISD)

when his program was assembled or compiled. Lack­
ing the ISD for a program, the user may refer only to
external symbols in his commands; with the lSD, he
is free to refer, also, to internal symbols within the
program.

Once the user has loaded, but not initiated execution
of his program, he may input program control com­
mands and statements that refer to his program, and
then initiate execution. If he is operating in conversa­
tional mode, he can intermpt execution of his program
by pressing the ATTENTION button at his terminal; then
he may input additional commands and statements or
cancel previous statements.

The user can then resnme program execution by en­
tering the GO command. Alternatively, he can ~ntcr
dynamic statements prior to program initiation, and
specify control points at which execution is to bc
stopp('d~ At these points hc may enter data, change
program sequcnce. etc.

\Vhen execution of the program is completed, the
user may want to cnter more commands. Example: re­
sta:t execution. of the program from a specified entry
pomt by use of the GO command.

Program control operations may be continued on an
object program until the program is unloaded by an
UNLOAD command (or, in the case of an assembler­
written program, by a DELETE macro instmction).
\Vhen a program referred to in a dynamic pcs state­
ment is unloaded, all dynamic statedlents are deleted.
The user can reenter any dvnamic pes statements that
refer to programs that £~re ~till loaded, jf he wants to
reinstate these statements.

Conversational Mode

In the conversational mode, pcs commands received
from the user are checked for valid syntax; the symbols
he refers to are checked against the object program's
external and internal symbol dictionaries. Syntax errors
and references to undefined symbols are reported to
the user at his terminal together with appropriate mes­
sages to direct his corrective actions. The user is thus
assured of entering only a valid set of program control
commands and statements.

All output is produced at the user's terminal, except
for the output developed by a DUMP command. Exam­
ple: A dynamic statement that calls for the intermption
of program execution causes output at the user's ter­
minal when the statement is executed, to inform the
user of the action taken and its location within his
program.

Nonconversational Mode

Program control facilities may also be used in noncon­
versational mode, but with these differences:

1. Program control commands containing errors pro­
duce diagnostic- messages that are sent to the task's
SYSOUT data set; the commands are ignored.

2. No prompting is pcrforn1ed; incompletely entered
commands. which would cause the user to bc
prompted in conversational mode, are ignored.

3. Program control output is sent to the nonconversa­
tional tasks' SYSOeT data set, and may be inter­
spersed with other data that appears there.

4. After object program execution is intermpted by a
STOP command (alone, or in a statement), the next
command is taken from the nonconvcrsational task's
SYSIN data set.

Appendix B. Prohlem Programming Checkout and Modification 141

Appendix C. Programming Considerations

This appendix describes procedures that the TSS as­
sembler language programmer should follow in the
preparation and execution of his programs. The initial
sections in this appendix describe concepts basic to
the V'.'THing of any assembler language program; in­
cluded are discussions of writing programs in TSS assem­
bler language, creation of unnamed control sections,
pooling of literals, system macro instruction usage,
floating-point computations, references to module
names of link-edited modules, use of the EXIT and
PAUSE macro instructions, assembler language linkage
conventions, shared code considerations, efficient use
of virtual storage, control section rejection and linking
control sections, and recovering from errors when
dynamically loading.

Next, a discussion is given of library management,
including a description of the libraries available to the
programmer and the use of the program library list.

The final section of this appendiX describes those
TSS naming conventions of which the user should be
aware in order to avoid creating names that conflict
with names reserved for system use.

Users writing privileged system programs should
refer to the System Programmer's Guide for proper
programming procedures.

Writing Programs in TSS
While not all programs need he written in accordance
with the guidelines given here, users of TSS will find·
it easier to use the assembler if these guidelines are
followed. More detailed information concerning as­
sembler language programming is given later in this
Appendix, and in Appendix D, "Interrupt Considera­
tions."

The programming procedures described in this sec­
tion use two programs for demonstration purposes. The
first will be referred to as PGM. The name PGM is as­
signed as the module name when the ASM parameters
are entered. Consistent with TSS terminology, the out­
put of an assembly \vill be referred to as a "module,"
rather than the more general term "program."

The assembler instructions for PGM will be shown
completely. It will be seen that PGM initializes two
variables, then calls a second module, SUB. The instruc­
tions for SUB will be shown only in enough detail to
make clear the details of the linkage between PGM

and SUB.

The first assembler statement normally written will
be a PSECT statement, as, for example:

PGMP PSECT

142

where PCMP is the label of the PGM PSECr. The name of
the PSEcr may not be identical to the module name.
(Here, the P is affixed to the module name PGM as a
convenient notation technique.)

At this point it is pertinent to briefly discuss TSS

naming conventions. A more detailed discussion is
given later in this appendix. The user should not use
names in his program that start with the following
three characters: SYS, CHC, or CHD.

Following the PSECT statement, an ENTRY statement
is given identifying the point in PGM at which execu­
tion begins. In PGM, the name of this entry point is
PCME. The entry point name may not duplicate the
module name or PSECT name. (The manner in which
PGME is used will be shown later.) Execution at PGME

is initiated by use of the CALL command or by an
implicit CALL, as:

CALL PGME

(The CALL command is described in detail in the exam­
ples contained in this publication, as well as various
appendixes, and Command System User's Guide.)

FoUowing the ENTRY statement are two statements
reserving a 19 word save area:

PGMP PSECT
ENTRY
DC
DC

PGME
F'76'
18F'O'

This save area is required by many of the system
macro instructions (such as GET, PUT, CALL, SAVE, and
RETURN). The oc F'1S' statement gives the number of
bytes in the save area (4 x 19); the DC IBF'O' statement
sets the last 18 words of the 19 word save area to O.
\Vhen the contents of any word in the save area is
altered, the new contents will, in general, not be O.
Thus, presetting each word to 0 allows one to deter­
mine if a word has been altered or not. This would not
be possible if the statement DS IBF had been used, for
example, as the contents of a storage area defined with
a DS is not predictable.

The next statements to be placed in the PSEcr are
those reserving storage for items whose values may be
changed by the program. This practice is required for
reenterable programming, and is a convenient practice
for all types of programs, a'> described in the section of
this appendix discussing performance considerations.
Assume that module PGM will be computing a new
value for two words, to be referred to as ALPHA and
BETA:

PCMP PSECT
ENTRY PGME
DC F'76'
DC 1BF'0'

ALPHA DS F

BETA DS F

As stated earlier, PGJ\,1 will make use of a subroutine
SUB. The entry point to SUB is SUBE. The CALL, SAVE,

RETUfu'\f group of system macro instructions will be
used to accomplish the linkage to SUBE, and from SUB

back to PGM. A necessary part of a CALL on SUBE is a
specification in PGM of the entry name of module to be
called. The normal \',ay of specifying that a program
will be called is by use of the ADCON macro instruction.
The implicit form of the ADCON macro instruction will
be used here;

PGMP

ALPHA

BETA

SUBEVR

SUBEVR

PSECT
ENTRY
DC
DC

DS

DS

AD CON

EQU

DC
DC

PGME
F'76'
lBF'O'

F

F

IMPLlCIT,EP=SUBE

*-12

This and the following two
statements are generated by the
ADCON macro instruction and
will appear in the object listing
with a plus sign to the left of
the generated statement.

V(SUBE)
R(SUBE)

The ADCON macro instruction defines V-and R-type
address constants for a later CALL to entry point SUBE,

just as a program wishing to CALL module PGM at entry
point PGME would write, for definition of the V-and
R-type address constants:

PGMEVR ADCON IMPLICIT,EP=PGME

In addition to items varying at object time and V­
and R-type address constants, all other types of address
constants should be placed in the PSEGr. In module
FGM, assume the addresses of ALPHA and BETA are
required:

PGMP

ALPHA

PSECT
ENTRY
DC
DC

DS

1'G:\l£
F'76'
lBP'G'

F

BETA

SUBEVR

AALPHA

DS

ADCON

DC
DC

F

IMPLICIT,EP=SUBE

A(ALPHA)
A(BETA)

That part of PGM that actually performs computa­
tions-the executable portion of the module-will now
be written. The first statement in this portion of the
module will be a CSEGr statement. This CSEGr will be
assigned the attribute READONLY, as a CSEGr should not
contain information that will be altered at object time.

PGMP

PGMC

PSECT
ENTRY

CSECT

1'GME

READONLY

The label on the CSEGr statement was chosen to be
the module name I'GM with a C attached, a convenient
notation technique. The CSEGr name (PGMC), the PSEGr

name (PGMP), the entry name (PGME), and the mod­
ule name (PGM) must all be different, as all are exter­
nal symbols and external symbols may not be dupli­
cated in a module.

VVhen PG~I is to be executed, the CALL command is
used to transfer control to the entry point of PGM. The
entry point is PGME, as noted in the ENTRY statement
in the PSEGr. l'GME will be defined at the beginning of
the CSEGr. The question of base register usage should
also be considered. When FGME is entered, general
register 15 contains the address of PGME. This informa­
tion should be furnished the assembler by a USING state­
ment:

PGMP

PGMC

PGME

PSECT
ENTRY

CSECT
USING

SAVE
STM

PGME

READONLY
PGME,15

(14, 12)
14, 12, 12(13)

This statement is generated by
the SAVE macro instruction,
and will store general registers
14, 15 and 0 through 12 in the
calling program's save area.

Appendix C. Programming Considerations 143

Note the use of the SAVE macro instruction at the en­
try point PGME above. It is a recommended convention
to use the SAVE as shown to save the contents of the
registers when entered from the CALL command or as
the result of a CALL from another program. The SAVE

allows PGM to restore registers to their value when
PGME was entered with the RETURN macro, as shown
later. (Use of RETURN is also a recommended conven­
tion.)

Following the SAVE of general registers, a sequence
of nve instructions will then be given:

PGMP

PGMC

PGME

PSECT

CSECT
USING

SAVE

L

ST

ST

LR

USING

READONLY
PGME,15

(14, 12)

14, 72(0, 13)

Loads register 14 with the R­
value of PGME, which in this
case is the address of the PGM
PSECT, PGMP. The calling
program placed the R-value of
PGME in the 19th word of its
save area prior to calling PGME.

14,8(0,13)

The address of the PGM save
area is placed in the third word
of the PGM save area. This save
establishes the "forward pOinter"
in the calling program's PSECT.

13,4(0,14)

The address of the calling pro­
gram's save area is saved in the
second word of the PGM save
area, PGMP+4. This save estab­
lishes the "backward pointer."

13, 14

Register 13 now contains the ad­
dress of the PGM save area (by
convention, its PSECT) as it will
throughout execution of PGM.

PGMP,13

Inform the assembler that anv
items referred to in PGM}:>
should use register 13 as the
base register.

The remainder of the PGM CSEGr wiII now be written.
In this example, PGM will initialize the two variables
ALPHA and BETA to 12, then execute a CALL on subrou­
tine SUB, supplying SUB with the address of a parame­
ter list containing address constants for the two pa­
rameters required by SUB: ALPHA and BETA.

144

PGMP

PGME

PSECT

SAVE

USING
L

ST

L

ST

LA

CALL

LA

L

ST

L

(14, 12)

PGMP,13
0,F12

Set ALPHA to 12.

O,ALPHA

Register 0 is a convenient regis­
ter to use for such temporary
usage, as it is unsuitable for re­
taining the same value over
large parts of a program. Many
macro instructions destroy regis­
ter 0 contents. Note that F12 is
defined below in the CSECT.
This is not in conflict with ear­
lier suggestions for items to be
placed in a PSECT, as F12 will
not be altered by PGM, and is,
of course, not an address con~
stant.

0,=F'12'

This demonstrates another means
of setting a variable to 12. The
assembler will generate a literal
constant of 12, and place it in
the CSECT, as all non-ad con
literals are placed in the Ilrst de­
Ilned CSECT unless a L TORG
is declared.

O,BETA

15,SUBEVR

(15),MF=(E,AALPHA)

The following Ilve instructions
are generated by the CALL
macro instruction:

I,AALPHA

Load register 1 with the address
of the parameter list.

14, 16(0, 15)

Load register 14 with the R­
value of the program to be
called.

14, 72(0, 13)

Store the R-value in the 19th
word of the save area to be sup­
plied to the called program.

15, 12(0, 15)

Load register 15 with the V­
value (the entry point) of the
program to be called.

BASR 14, 15

Branch to the location in regis­
ter 15, setting register 14 to the
address of the first byte follow­
ing the BASR. The called mod­
ule will return to the address in
register 14.

Note that the LA into register 15, required for this
form of the CALL macro instruction, will destroy any
previous contents of register 15. When PGME was en­
tered, the USING PGME, 15 statement established a base
register for the PCM CSECf. If a CALL or other use of 15
is made, as in this example, another register should be
used. General register 12 is a good chOice, as no sys­
tem macro instructions (such as CALL) require that
register 12 be altered. The code following PGME might
then be:

PGME

USING

SAVE
L
ST
ST
LR
USING

LR

DROP

USING

LA

CALL

PGME,15

(14, 12)
14,72(0, 13)
14,8(0, 13)
13,4(0, 14)
13, 14
PGMP,13

12, 15

To load register 12 with the ad­
dress of PGME.

15

This instruction is required prior
to the following USING, or the
assembler would continue to use
register 15 as the PGME base
register.

PGME,12

To infonn the assembler that
register 12 is now the base reg­
ister for PGME.

15,SUBEVR

(15),MF=(E,AALPHA)

Many forms of the CALL macro might have been
used to call SUBE. The form shown above requires that
the V- and R-type address constants be prepared by
the programmer; another form of the CALL would
cause the assembler to generate these two address
constants and place them in the PGM pSEcr.

PGM is now completed, and will use the usual sequence
of statements to return control to the calling program:

F12

L

RETURN

LM

BR

DC

END

13,4(0, 13)

Load register 13 with the ad­
dress of the calling program's
save area.

(14, 12)

Restore the remaining registers
to the values they contained
\vhen PGM was called.

14, 12, 12(13)

14

These instructions are generated
bv the RETURN macr~ instruc­
tion, and loads registers 14, 15,
and 0 through 12 from the save
area of the calling program, and
then returns control to the call­
ing program.

F'12'
ReqUired above.

Notes the end of this assembly.

The assembler instructions for the entire PGM module
are repeated below.

PGMP

ALPHA

BETA

SUBEVR

AALPHA

PGMC

PGME

PSECT
ENTRY

DC

DC

DS

DS

ADCON

DC
DC

CSECT

USING

SAVE

L

ST
ST
LR

Declare the program PSECT.
PGME
Identify the program entry
point.
F'76'
Reserve a 19-word save area.
18F'O'

F
Reserve space for items to be
altered in program execution.

F

IMPLICIT,EP=SUBE
Define V-and R-type ad cons
for the CALL of SUBE.

A(ALPHA)
A(BETA)
Address constants of parameters
used by SUBE.

READONLY
Declare the program CSECT.

PGME,IS
The calling program established
register 15.

(14, 12)
Save the contents of registers,

14,72(0, 13)
Establish the backward and for-
ward chains.

14, 8(0, 13),
13, 4(0, 14)
13,14
Load PSECT base register and
inform the assembler.

Appendix C. Programming Considerations 145

USING
LR

PGMP,13
12, 15

Establish base register for
PGME and inform the assem­
bler.

DROP 15

Fl2

USING
L

ST
L
ST
LA

CALL
L

RETURN

DC
END

PGME,12
0,=F'12'

Initialize ALPHA and BET A to
12.

O,ALPHA
0,=F'12'
O,BETA
15,SUBEVR

Call SUBE, passing the address
of the parameter list.

(15),MF=(E,AALPHA)
13,4(0, 13)

Restore the address of the caIl-
ing program's save area.

(14, 12)

Return to the calling program.

F'12'

Module SUB, called by PGM at the SUBE entry point,
will now be shown. First, the SUB PSEGr.

SUBP PSECT
ENTRY
DC
DC

SUBE
F'76'
18F'0'

Next the initial part of the SUB CSEGr, ENTRY and
SAVE statements and the code establishing the PSEGr

and CSECI" base registers:

SUBP PSECT

ENTRY SUBE

SUBC CSECT READONLY
USING SUBE,15

SUBE SAVE (14, 12)

L 14,72(0, 13)
ST 14,8(0, 13)
ST 13,4(0, 14)

146

LR 13,14
USING SUBP,13
LR 12,15
DROP 15
USING SUBE,12

Module SUB will now move the values of ALPHA and
BETA from the calling program into SUB. Note that:
(1)SUB can obtain the values of ALPHA and BETA, as
the CALL of SUBE by PGM placed the location of address
constants pointing to ALPHA and BETA in general regis­
ter 1; and (2) SUB should store the values obtained in
the SUB PSECI", SUBP, in accordance with the practice of
storing items that vary during execution in a PSECI".

The assembler instructions might be:

SUBP

VARI

VAR2

SUBC

SUBE

PSECT
ENTRY

DS

DS

CSECT
USING

SAVE

DROP

USING

LM

L

ST

L

ST

SUBE

F

F

ALPHA and BETA from PGM
will be stored here.

READONLY
SUBE,15

(14, 12)

15

SUBE,12

6,7,0(1)

Load the address of ALPHA
into register 6, and the address
of BETA into register 7.

0,0(0,6)

Store ALPHA in VARI.

0, VARl

0,0(0,7)
Store BETA in V AR2.

0, VAR2

Following whatever other instructions might be exe­
cuted, SUB returns to PGM. When PGM is reentered fol-

lowing the CALL to SUB, all general registers will con­
tain the same values as when SUBE was called.

L
RETURN

END

13,4(0, 13)
(14, 12)

Creation 01 Unnamed Control Sections
Certain statements within the TSS assembler language
require that a control section be defined when they
are encountered because they assume that a location
counter value is available. If the programmer has not
declared a control section, the assembler defines an
unnamed CSECT which will be the first control section
in the object module produced by the assembler. This
assembler action does not normally need to concern
the programmer, except when
(1) statements generated in this control section will

require a base register which has not been pro­
vided, or when

(2) the programmer expects to call the module by its
name.

The following statements will cause the assembler to
produce an unnamed CSECT if necessary:

• all machine operation instructions
• all system or user macro instructions

• ccw
• CNOP
• CXD
• DC, DS, and ORG

• EQU
• ENTRY
• USING and DROP
• LTORG
• END

If a module will be called by name and no symbol
is specified on the END statement, then the entry
point for execution of the module will be the first byte
of the first CSECT (if one exists). If the assembler has
defined an unnamed CSECT for the reasons above, the
unnamed CSECT is the assumed execution entry point
(standard entry point) for calls of the module by
name, even though the programmer may have defined
a named CSECT later in the program. This condition
may prevent proper execution of the program. Further,
if the unnamed CSECT has no text, that is, its length
is zero, the address associated with the CSECT is
location O.

The programmer should define a control section
before coding any of the statements mentioned to
avoid any problems caused by an assembler-produced
unnamed control section. A suggested practice is to

define all control sections to be used with CSECT,
PSECT, COM, or DSECT statements before coding
anything else except comments. For example, the fol-
100ving sequence of statements guarantees that the first
two control sections in the program will be a PSECT
named PS and a CSECT named CS. The assembler
will build the control sections from subsequent state­
ments.

PS

CS

PS

PSECT
DC
CSECT

PSECT

END

F'76',18A(0)

Pooling of Literals

define a save area

present the program
in this and following
statements

\Vben LTORGS are included in a program, non-adcon
literals are pooled at the first LTORG following their
occurrence. Any non-adcon literals not pooled by the
end of the program are pooled at the end of the first
CSECT. \Vben no LTORG is present, all non-adcon literals
are pooled at the end of the first CSECr. When a PSECT

is present in the program, regardless of whether
LTORGS are present, all adcon literals are pooled at the
end of the first PSECT. If there is no PSECT in the pro­
gram, adcon literals follow the pooling rules used for
non-adcon literals. Finally, if a CSECT is not pre~ent
and a PSECT is present, all literals are pooled as LTORGS

are encountered or at the end of the first PSECr.

System Macro Insfruction Usage
There are certain conditions to be met and certain
conventions to be observed when using system macro
instructions. The contents of registers 0, 1, 14, and 15
may be destroyed when system macro instructior.s are
used. Some system macro instructions generate literals
for wbich base registers must be provided by the user.
\Vith two exceptions, whenever a macro instruction
generates a control section statement, that control sec­
tion is a continuation of one previously declared by the
source program, and the control section in effect at
macro call time is continued before the macro genera­
tion is completed. The two exceptions are DCBD and
ADCOND, whicb cause a unique DSECT to be generated,
and this control section is in effect when macro genera­
tion is completed. A few macro instructions require
register 13 to be preset to the address of a save area;
CALL, SAVE, and RETURN are examples of this type of
macro instruction. The publications Assembler User
Macro Instructions and System Programmer's Guide
contain more detailed discussions of these topics.

Appendix C. Programming Considerations 147

Floating-Point Computations
It must be kept in mind that, unlike integer arithmetic,
floating-point computations are not in general exact,
due to roundoH. This may cause the low-order bits of
a result to be diHerent from the expected value. This is
true of pes and FORTRAN programs as well as assembler
language programs. Thus, the user should be particu­
larly careful when comparing the results of an assem­
bler language floating-point computation with teat
from a pcs computation, etc.

The order in which programs perform floating-point
computations may be important. For pcs, this order
is described in the publication Command System User's
Guide. For FORTRAN programs, the object listings must
be inspected to determine the order of computation.

References to Module Names
of Link-Edited Modules
'When modules are link-edited, the resultant module is
assigned the name specified in the LNK parameters. The
module names for those modules included in the link
edit are retained as auxiliary entry points in the list of
external symbols associated with the link-edited
module.

The module names of link-edited modules are re­
tained in the ISD of the resultant module, if an ISD was
requested for the resultant module and the module(s)
being included had been assembled with an ISD. The
user can, in his Pes commands, refer to internal sym­
bols, including the original module name, in the re­
sultant module. In order to do so, the internal symbol
must be qualified by both the resultant module name
and the original module name, in that order.

EXIT and PAUSE Macro Instructions
Table 15 summarizes the use of the EXIT and PAUSE

macro instructions in both conversational and noncon­
versational mode.

Assembler Language Linkage Conventions
This section discusses the coding practices to be ob­
served when preparing modules to be used as sub­
routines that are called by other object modules and
when preparing linkages to. other object modules. The
section concludes with an example describing the con­
tents of the PSECTS of three modules at various points
in the transfer of control from one to another. For in­
formation regarding the linking of assembler language
programs with FORTRAN and PL/I subprograms, refer to
the FORTRAN Programmer's Guide and PLII Pro­
gramrner's Guide, respectively.

Linkage Conventions

Standard linkage conventions have been defined to
govern the communication between aU TSS programs.

148

Five types of standard linkage have been defined: I,

II, 1M/II, III, IV. Only type I linkage will be described
here. The other linkage types are described in detail
in the publication System Programmer's Guide.

Table 15. EXIT and PAUSE Macro Instructions

MACRO EFFECT IN

INSTRUC- CONVERSATIONAL

TION MODE

PAUSE n 1. Prints the message
or PAUSE "PAUSE n" or
message "PAUSE message" at

the user's terminal.

EXITn
or EXIT
message

2. Prints an underscore
at terminal request­
ing a command.

3. Program may be con­
tinued at the state­
ment following the
PAUSE by entering
the RUN command.

1. Prints "EXIT, RE­
LEASE ALL UN­
NEEDED DE­
VICES," followed by
n or 'message' at the
terminal.

2. Prints an underscore
at terminal request­
ing a command.

EFFECl'IN

NONCONVERSATIONAL

MODE

PAUSE n or 'message'
prints on SYSOUT data
set, execution continues
with the statement fol­
lowing the PAUSE.

1. Prints "EXIT, RE
LEASE ALL UN
NEEDED DE
VICES," followed by
n or 'message' in the
SYSOUT data set.

2. Reads the next com­
mand from the
SYSIN data set.

Associated with type I linkage conventions are three
areas of concern; these are:

1. Register usage.
2. Parameter lists.

3. Save areas.

Proper Register Usage

TSS has assigned roles to certain registers used in
generating a linkage. The function of each linkage
register is illustrated in Table 16. Note that registers 2
through 12 are not assigned and, thus, are always
available to the programmer for other purposes.

It is the responsibility of the called module to main­
tain the integrity of general registers 2 through 12 so
that their contents are the same at exit as they were
at entry to the called module. It is the calling module's
responsibility to maintain the floating-point registers
and program mask around a call. General registers 0,
1, and 13 through 15 must conform to the indicated

conventions; 0 and 1 may he destroyed by the called
module.

Table 16. Linkage Registers

GENERAL

REGISTER USAGE

1 Parameter List R<'.l!;ister---contains the address of a
list ot pointers to input parameters.

13 Save Area Regist('f---contains the address of the
calling module's save area.

14 Return Register--contains address in calling mod­
ule at which exeClltion resumes upon return.

15 Entry Point Register--contains address of the entry
point in the called module; also Return Code Reg­
ister-contains return code set by called module.

Reserving a Parameter Area

If a called module requires input parameters, the can­
ing module must supply the called module with the
location of a parameter list in general register 1. Each
entry in the parameter list must be on a full-word
boundary and represents the address of a parameter
being passed to the called module. If the parameter
list is variable in length, the length is specified as a
count of the number of addresses that compose the list.
This (..'Ount is located one word before the first word
in the parameter list. Regardless of whether the pa­
rameter list is of fixed or variable length, the parameter
list register points to the first word of the parameter
list. The CALL macro instruction can be used to gen­
erate the parameter list, as well as to link to the called
module.

Reserving a Save Area

It is the responsibility of the calling module to sup­
ply a 19-word area to be used by the called module.
Figure 32 shows the layout of the save area and briefly
describes the information saved in the area by the call­
ing and called module. Of particular interest in this
save area (for trace purposes) are the following two
words:
Word 2 The "backward pointer." This word always

points to the save area of the module that
called the module whose save area is being
inspected.

\-Vord 3 The "forward pointer." This word contains
the address of the save area of the module
last called by the program whose save area
is being inspected. The low order bit of this
word is set to zero as the called program is
entered and set to 1 upon exit if the T option
in the RETURN macro is used. This bit is useful
in determining the flow of control during pro­
gram execution.

CALL, SAVE, and RETURN Macro Instruction Usage

The CALL, SAVE, and RETURN macro instructions are
used to provide linkage between object program mod­
ules. Refer to the publication Assembler User's Macro
Instructions for a detailed description of the notation
and options of eaeh macro instruction. In most cases,
additional user-written instmctions are necessary to
complete the requirements of the linkage conventions.
The following sections illustrate the points that should
be considered when using the program linkage macro
instructions.

CALL Macro Instruction

The CALL macro instruction generates all the necessary
instmctions to set the entry point and return registers,
constructs a parameter list if parameters are specified
and sets the parameter register, and stores the R-value
for the called module in the 19th word of the save area
indicated by register 13. It is the user's responsibility
to ensure that register 13 is properly set to the address
of the save area.

If the calling module requires the contents of regis­
ters 0, 1, 13, 1<1, and IS, the calling module must save
and restore thcse registers around the CALL. (For exam­
ple, register 15 may be used as a base register for
code.) The calling module must also save and restore
the program mask and any floating point registers used
around the CALL.

NOTE: An implicit CALL refers to a V- and an R-type
address constant pair. In order for the loader to prop­
erly resolve the value of the R-type address constant,
the label appearing in the operand of the R-type ad­
dress constant must be an external symbol.

Although the CALL macro instruction prOvides for
specifying parameters that automatically cause a pa­
rameter list to be constructed, there are various other
methods for communicating between object modules,

The user can, of course, construct his own parame­
ter list, setting the parameter list register (1) prior to
the CALL. The location of data (such as a table)
can be communicated to the called program by an
E:"><TRY statement in the calling program. The called
program must then contain an EXTRN statement and
an address constant naming the table.

SAVE Macro Instruction

The SAVE macro instruction generates the instructions
for saving the contents of general registers as specified
by the user. Hegistcr 13 is never saved and must not
be specified. The user may wish to save all the regis­
ters but 1.3 (i.e" SAVE (14,12)). This provides full pro­
tcction against inadvertently changing a register.

In addition to saving registers, SAVE can be used to
develop a means of checking the program flow. If the
T option is specified, registers 14 and 15 are stored in

AppendiX C. Pro~ramming Considerations 149

the fourth and fifth words of the save area. Also, if the
first register specification in the macro instruction is 14,
15, 0, I, or 2, all registers from 14 through the second
register specification are saved. If an entry-point iden­
tifier operand is specified, the entry-point identifier
character string is included in the macro expansion
beginning on a half-word boundary preceding the
entry point.

The entry-point identifier is placed so that either one
or two bytes separate its end from the beginning of the
entry-point. If an extra byte is needed to achieve half­
word alignment, a character blank is added to the end
of the string. A count byte will then follow. The count
byte will always precede the entry-point and contain a
value equal to the number of characters in the string,
plus the blank (if used). The count byte itself is not
included in this tally.

If the entry-point identifier operand is written
as an asterisk, the entry-point identifier is the same as
the symbol in the name field of this macro instruction.
If the name field is blank, the name of the control sec­
tion containing the SAVE macro instruction is used as
the identifier character string.

The additional instructions to be supplied by the
user following the SAVE are dependent on the type of
module being prepared.

If the called module does not perform any further
linkages, the only additional instruction necessary is
one that loads into a base register the PSECT address
from the nineteenth word of the save area as pointed
to by register 13.

If register 15 is not to be used in further calls, it can
be used as a base register for the code. If register 14
is used by the called module, it should be specified in
the SAVE and RETUR."O.

A program that does not perform any calls may be
coded as;

SUBIEP SAVE

L

USING

USING

RETURN

(14,12),,*
Save registers 14-15, 0-12 and
place SUBIEP preceding the
entry point

12,72(0,13)
Pick up address of PSECT

SUBIP,12
PSECT base register

SUBlEP,15
Code base register

(14,12),T
Restore and return

If the called module does perform further linkages,
additional instructions must be supplied to perform the
fonowing functions:

150

• Establish a save area to be used by the modules
being called.

• Save the contents of registers 13 and 14. Register
14 can be specified in the SAVE macro; the instruc­
tions to save register 13 must be supplied by the
user. The backward pointer in the called module's
save area is intended for this purpose.

• Establish the forward and backward pointers in the
calling and called module's save areas. This facili­
tates checking of the How of control from one ob­
ject module to another.

The following is an example of a module that has
been written so that its save area occupies the first 19
words of its PSECT. This is convenient in that the save
area register (13) can also be used as a base register
for the PSECT.

SUBIP

SUBIC

SUBIEP

PSECT
DC
DS

ENTRY

CSECT

SAVE

L

ST

ST

LR

USING

LR

USING

F'76'
18F

SUBIEP

~ADONLY

(14,12)
Save registers 14-15,0-12

14,72(0,13)
Get R-value from calling mod­
ule's save area

14,8(0,13)
Store forward pointer in calling
module's save area

13,4(0,14)
Store backward pointer in SUBl
save area; address of calling
module's save area will be re­
stored to 13 before return

13,14
Set base register for PSECT and
save area

SUBIP,13

12,15
Set code register

SUBlEP,12

Note that register 14 in the example is used to hold
the PSECT address temporarily until 13 is saved. This is
safe, since 14 has been specified in the SAVE and is to
be restored on RETURN. Also, since this module is to
CALL another module, register 12 is used as a base
register for code, rather than saving and restoring 15
around each call. Finally, the occurrence of the ENTRY

statement in the SUBl PSECT identifies the origin of the
PSECT as the R-value for the entry point SUBIEP.

)-SAREA __

(word 1)
SAREA ..,.. -4
(word 2.>

Contain. the length of Ihe save area in byles, a minimum of 76.
)-

The addreu of Ihe calling module's .ove area. This field is set by the called module in its
own s.oye area.

> SAREA + 8
(word 3) The address of the next s.ave area; that is, the save area of the caUed module. This field is

set by the called module.
2)-SAREA + 1

(word 4) The contents of register 14 containing Ihe addre .. to which return from the called module is
made. Thi. field is set by the called module in the calling module's save area.

6)0 SAREA +
(word 5) The conlents of regi.ler 15, containing the address to which entry into Ihe called module i,

made. Thi, field is set by the called module in the colling module'. save area.
0)0 SAREA -+ 2

(word 6) The contents of register O. Value in regi.ter 0 set by colling module and .aved by called

SAREA + 2
(word 7)

SAREA + 2
(word 8)
SAREA + 3
(word 9)

4

8

2

module.
)-

The contents of register l.
)0

The contents of register 2.
)-

The contents of register 3.

Eight word. containing Ihe contents of registe,. 4·1l.

8)
The contents of register 12.

2)

SAREA + 6
(word 18)
SAREA -+ 7
(word 19) The address of the PSECT of the coiled module. This field must be set by the colling module,

by storing the R·value of the called entry point in it.

Figure 32. Save Area Format and Word Content

Although it is convenient to have a save area as
the initial portion of the PSECT, it is not a requirement.
Some alternatives are:

• The save area resides in the PSECT but not at the be­
ginning.

• The save area resides in another control section but
is located by an address constant in the PSECT.

• The module contains no PSECT; the save area resides
in another control section type and is pointed to by
an address constant in the module.

• The save area is dynamically allocated via GETMAIN

on each entry to the routine and released prior to
RETl-"RN.

While any of these methods is possible, each has dis­
advantages. All require more instructions in locating
the save area. Also, an extra register must be used as
the PSECT base register, thus decreasing the number of
registers available for the program.

RETURN Macro Instruction

The RETl-"R:'oI macro instruction expands into the instruc­
tions for restoring the gem~ral registers and rdurning
control to the calling program. Additionally, if the T
option is specified in the macro, tlw low-orrin hit in
the third word of the caller's saVf~ an'a i, ,tot on to
facilitatf: tracing saVf~ an~as

Register 13 must be set to the calling module's save
area prior to the RETURN. If the contents have been
stored as the backward pointer (word 2) in the called
module's save area, the register contents can be re­
stored easily by:

L
RETURN

13,4(0,13)
(J 4,12)

If neither register 14 nor the T option has been speci­
fied in the SAVE macro instruction, 14 must also be
restored prior to the RETURN.

A return code can be specified in the macro or can
be preset in register 15 by the program. Return codes
can be any value from 0 to 4092. Codes must be as­
signed in multiples of four, so that the calling program
can use them as an index to a branch table,

If the RETl'R:'oI macro instruction is written with the
T option, when the registers are restored, the low­
oT(kr bit of the forward pointer in word 3 of the call­
ing module's save area i<; set to 1. This is another means
of tracing thp flow of control hetween modules.

Object Modules Initiated by a CALL Command

Ihgically, the first modulI: to TfTf'ivP control ha.s the
sam I, linkag" as lowf:r-Ievd rrmtin('s that it, in tnrn,
(·alh. The <;y,tl'Tn, vi'! thl! LAlor. command, allo('atf's a

save area to be used by the modules. On entry, regis­
ters 13, 14, and 15 are set by convention to the save
area, the return point, and the entry point, respectively.
The 19th word of the save area contains the R-vaille
for the entry pOint. The return point, in this case, is to
a system rontine that conversationally places the termi­
nal back in command mode or noncoI1versationally
r('ads the next command from SYSIN. The contents of
registers 0 through 12 are unpredictable.

If the initial module completes its execution with an
EXIT macro instruction, the registers contain the values
as last changed by the program. If, however, the pro­
gram ends execution with a RETURN macro instruction,
the contents of the registers depend on which registers
were restored in the RETURN. Registers 13 and 14 must,
of course, always contain the save area address and
return point. Registers 0 through 12 and 15, if not
specified in the RETURN, contain the values as set by
the program. Register 15, if restored, contains the
entry point. In this case, any investigation of the con­
tents of registers 0 through 12 musl he done prior to
the ('x('cution of the RETURN.

Example of Module Interaction

The interaction of three modules is shown below (Fig­
urt'S 33, 34, and 3.5). Modul(' A calls module B which
in turn calls module C. Rcgistf'r 0 is loaded with "1,"
"2," and "3," in modules A, B, and C, respectively. The
load is performed prior to the link to the next higher
Icv!'!. Tablp 17 shows thc contents of the save areas
for all the modules at the points specified. The back­
ward and forward pointers between save area levels
are contained in words 2 and 3. The next higher level
entry point is in word 5, and the return point to the
level being inspected is contained in word 4. The save
ar('a for the highest level will never contain useful in­
formation in words 4 through 18, the general register
save area. This is because it is the responsibility of the
called module to save the environment of the calling
module in the calling module's save area.

It must also be emphasized that the setting of bit 31,
word .3 in the calling module's save area results from
the called module using the T option on the RETURN.

As an ('xarnple, see the save ar('a for module B after
control is passed to module A. The setting of this bit
took pIac(' at line 2000 in module C.

Thus. hy inspecting the sav!' areH hdonging to a
modlll!', it may he determine!l whether it was tlw
highest kvd ('xecHtpd, where it was called, tIl(' location
of til!' ca !ling module's sa\'e area aml tJlP d(,sl'('1\(lin~

chaiu of poilltcr~. tIl!' {,Jllry point to the TWX! higllPr
level 1II0dllk. if any, and tIl(' rf'\lIrJl point to flip le"c\
I){'ill~ il1~p('d('(l if a ('all was mad£' to a higher 1('"e1.

!r;2

Interroutine Communication

Extcmal dm11ln:~ sections proYidc a direct means of
communication among sCH'ral different routines. They
arc defined hy DXD instructions and are located at
('xt'cution timc by a Q-type address constant naming
tlU' desirpd extt'mal dummy section. The infonnation
present in an external dummy scction is availablp to
all routines which have defined the dummy section
within their code.

The eXD instruction must be specified in at least one
of the routines. For all modules loaded Simultaneously,
the loader will cakulate the cumulative byte length of
all external dummy sections and plaee the sum in the
fullword storage area allocated hy the CXD instruction.
Any routine which issued the eXD instruction can then
usc the cumulative sum to detennine the amount of
virtual storage which must be acquired to contain all
the external dummy sections. The storage will be
obtained dynamieally, at execution timc, by issuing a
CETMAIN macro instruction. Alternately, storage may
have been reserved earlier with DS, DC, or ORC assem­
bler instructions.

The example which fonows illustrates a use of ex­
ternal dummy sections as communications areas for a
main routine and its subroutine. MAI::-';PGM is the main
routine which has been assembled in a program
module. It will call the subroutine SUBPGM which has
been assembled in a separate program module. The
main routine 'sill place the address of the message
'Sample Message' in the external dummy section
named PI. The lllessag<' byte length will be saved in
the external dummy section P2. \Vhcn SUBPGM gains
control. it can access the two external dummy sections
and write the message to SYSOUT.

TIw assembler instmctions for the module MAIl'\PGM

are showll below. The standard entry and linkage con­
ventions discllssed earlier must be followed. This
example, howevcr, will only show the code necessary
for establishing and manipulating external dummy
sections.

MAIl\:P

PI

1'2

PSECT

DXD

D.\I)

DC
DC

A
E'demal rlnmmy sec·tinn ,,·hich
will be Sf't to ~ the addrf'~' of
MSC.

F
E,tf'rnaJ 'tnmm\ sr-dioll "hit'h
will hf' 'f't to' the If'ngth of
MSC.

(.,)(1' 1l
(,}(1'1\

\)~h I'" a,1.1n'" n)J)st.mh "",.1
tn 1'''-,lt., 1'1 and 1'2 in tl,., a,'­
qllin'l\ \ irin.--t1 ... hn"agf'

CUM LEN

XDPGS

MSG

LMSG

CXD

DS

DC

DC

After loading, this fullword in
storage will contain the cumula­
tive byte length of all external
dummy sections defined by the
two routines.

F
This fullword will save the num­
ber of pages of virtual storage
which must be acquired.

C'SAMPLE MESSAGE'

A(L'MSG)
Set to the length of MSG.

The executable portion of the main routine is now
shown. MAINPGM will calculate the virtual storage re­
quest from the sum stored in CUMLEN, and issue the
GETMAIN macro instruction.
MAINC CSECT

L

LA

SRA

ST

LR

GETMAIN

LR

12,CUMLEN

12,4095(0,12)

12,12
The preceding code is necessary
to convert the number of bytes
needed into pages.

12,XDPGS
The page request is stored in
XDPGS for reference when the'
storage is released.

0,12
Register 0 now contains the
number of pages which must be
acquired.

PAGE ,LV =(0)
The GETMAIN macro instruc­
tion is issued to obtain the vir­
tual storage.

12,1
Register 12 is established as the
base register for addressing the
external dummy sections.

The main routine will now place the proper values
in the external dummy sections and call SUBPGM.

L 5,QPI
The displacement of the external
dummy section PI is loaded into
register 5.

LA 6,MSG

ST

The address of MSG is loaded
into register 6.

6,0(5,12)
The address of MSG is stored in
PI.

L
L

ST

CALL

5,QP2
6,LMSG
The displacemcnt of P2 is
loaded into rl'~ister 5; the b"tl'
length of ~fSG is loaded j;lto
rcgister n.
6,O{5,12)
The lellgth of ~ISC is stored ill
}>2.

SUBPGM
A call is made to the slIhroutillt·
to print out ~ISG.

After SUBPGM has completed execution, it will rdurn
control to the main routine. Since the storage needed
for the external dummy sections is no longer required,
a FRE&'fAIN macro instmction can be issued to release
virtual storage.

L

LR

FREE MAIN

END

O,XDPGS
Thc pa~c rcc[lIcst is loaded.

1,12
The addrcss of the external
dummy scction block is load cd
into register 1.

PAGE,LV=(O),A=(1)
Virtual stonl~c is relcascd.

The external dummy sections PI and P2 mnst also
be defined in the subroutine in order for interaction
between the two routines to occur. Following is the
necessary code for SUBPGM:

SUBP PSECT

P2 DXD

PI DXD

QP2 DC

QPI DC

LNGAREA DS

MSGAREA

xx
QXX

DS

DXD

DC

F
Length of MSG.

A
Address of MSG.

Q{P2)

Q{Pl)
Displacements of external
dummy sections within bloek of
storage.

F

CL256
Areas into which P2 and PI
will be moved.

CL256

Q(XX)
The external dummy section XX
is an area which will be used
only by SUBPGM. It has not
been defined in MAINPGM and
is thus not available to the main
routine even though it is repre­
sented in the arca secured by
MAINPGM.

AppendiX C. Programming Considerations 153

SUBC CSECT

VIRTUAL
MEMORY

L

L

LOCATION STATEMNT

OCOOI00
300000 0000200

0000300
3000')0 0000400
3000()4 1)000500

0000600
30004 (+

+
30004(+
300050
30005" 0000700
300058 00C0800
3010')0 0000<100

0001000
0001100

301000 +
301000 +
~01004 0001200
301008 0001300
30 lOa C 0001400
301010 0001 'i00

0001600
3010120001700
3010lb 0001800

OOCI"OO
0002000

301018 0002100

30 I 01 C

~o 1 01 C
30l01e
301020
301(}~4

301028
3010? C

0002200

0002300
0002400
OC02500
00021>00

30107£ 0002700
1)002800

301032

+
+
+
+
+
+
+
+

301037 +
30103'" +
30 I 03 A

OCC2900

SOURCE

• MODULl
SUBRA

ADPRI

AOPRI

PLlsr
PARAM
SUBRAI

SUBRA21
SUERA21

CALLS ..

7,QP2
The displacement of P2 within
the block of storage is loaded
into register 7.

8,0(7,12)
SUBPGM assumes that register
12 pOints to the address of the
storage block containing the ex­
ternal dummy sections. By using
register 12 as the base and reg­
ister 7 as the index, the message
length can be obtained and
loaded into re<rister 8. Note that
if SUBC is n~t defined with a
PUBLIC attribute, the preced­
ing two lines will be replaced
with the following:

L 7,0(12)
ORG "-2
DC QL2(P2)

These lines will generate one
LOAD instruction, thus saving
on the number of source lines.

'f<'

SUBRA21

ST

BCTR

L

L

EX

GATWR

MOVE MVC

END

P SEC T
ENTRY
DC F'76' SAVE AREA
DC
AOCCN
CNOP
feu
DC
DC
QC
OS
CSECT
USING
SAVE
OS
STM
l
ST
ST
LR
USING

l~F'O'

IMPLICIT.EP=SUBRB21
0,4
*-12
VI SUBRB211
R(SUBRB21)
A(PARAMl
F
READDNL Y
SUBllA21,15
114,12)
OH
14.12,12(13)
14.7210.131
14.AI(},13)
13.4tO,l4}
11, 14
SUBRA,13

LA 0.1
LR 12,15
O~OP 15
USING SURRA21,12
LA 15,ADPRI
CALL I l'>l ,MF:IE.PLlSTl
I)S 0>1

V-CON
R-CON

SAVE REGS IN CALLER'S SAVE AREA

GET LOC THIS PROGRAM'S SAVE AREA
SAVE IN CALLER'S SAVE AREA
SAVE LOC OF CALLER'S SAVE AREA
LDC THIS SUBROUTINE'S SAVE AREA

LOAD COVER REG

CI-1DINNRA PLIST
DS OH
LA l,PLIST

LOAD POINTER TO PARAM LIST IN10 REG
HALF WORD ALIGNMENT

LOAD PARAM. REG. 1
L 14,lb10,15l
L 15,1210.15)
ST 14,7210.13}
BASR 14,15
Eeu •

STORE IN SAVE AREA
LINK

RETURN POINT AFTER CALL

SUBC may not have the PUB­
LIC attribute because the Qcon
for P2 must be resolved by the
dynamic loader.

8,LNGAREA
The message length is stored.

8,0
Decrement register contents by
one to prepare for EXECUTE
instruction.

7,QP1
Load displacement of PI.

7,0(7,12)
Obtain address of MSG.

8,:\lOVE
Move message to MSGAREA in
order to write to SYSOUT.

MSGAREA,LNGAREA
Issue message.

MSGAREA(0),0(7)
Move message.

.. ADDITIONAL PROCESSING BY SUBRAI

L 13,410,13)
RETURN (14,12),T
OS OH
l.M 14.12,12(13)
01 llC13},X'OI'
BR 14
ENO

RESTORE REG 13 TO CALLER'S SAVE AREA
RESTORE REGS AND RETURN

Figure 33. Module A Source Listing

154

VIRTU~L

MEMORV
LOC~TION STATEMNT

0000 I 00
35000 0 0000200

0000300
350000 0000400
350004 0000500

0000600
35004 C

35004C
350050
350054 0000700
3510000000800

0000900
0001000

+

351000 •
351000 •
~51004 0001100
35100e 0001200
35100C 0001300
~5101C !)001400

0001500
3510120001MO
l~IOl 60001700
3'5101 A 000 1800

0001900
0002000

3510lC 0002100
0002200

351020 •

351020 •
351020 •
35102" +
351028 •
)5102C •

0002300
0002400
0002500
0002600

3'5102E 0002700
0002800

351032 •
351032 +
3';1036 +
35103A +

0002900

SOURCe

'* ~IO\}ULr

SUBRBI

ADPR2

ADPR2

RISAVE
SU8Re2

SUBRB21
SUBRB21

CALlC

*

f,j'

n S-EC T
FNTRY
fl(

DC
ADCON
CNOP
FQU
OC
DC
os
CSECT
USING
SAV E
DS
ST"!
L
Sf
5T
lR
USING
5T

SUBRS 21
F'16'
lSF '0'
IMPLICIT,EP-SUBRCZI
0,4
*-12
V(SlJBRC211
RISUBRC2U
F
READONL V
SUBRBZI.l5
(14.12>
OH
14,12,12{ 13)

14.7210.131
14,1110,13)
13,410,(4)
1 ~,14
SURRB 1.13
l,R1SAVE

LA
LR

A,?
12, 15

DqOP 15
USING SUBRB21,12
LA 15,A!lPR2
CALL Il,I,MF-IE,llll
OS OH

SAVE AREA

V-CON
R-COf':

SAVE REGS IN CALLER'S SAVE AREA

GET LOC THIS PROGRAM'S SAVE AREA
SAVE IN CALLER'S SAVE AREA
SAVE LOC OF CALLER'S SAVE AREA
lOC THIS SUBROUTINE'S SAVE AREA

SAVE ADDRESS OF PAPAMETER LIST

LeAD COliER REG

CHD INNRA III
OS OH

LOAD POINTER TO PARA~ LIST INTO REG
HALF WORD ALIGNMFNT

1 14,lb(O.l51
L 15,1210,15)
ST 14,7210,131
BASR 14,15
Eeu •

STORF IN SAllE AREA
LINK

RETURN POINT AFTER CALL

• ADDITIONAL PROCESSING BY SUBRB2

•
L 13,410.13)
RETURN 114,12),T
OS OH
lM lIt.l2tl21l3)
01 lllDl,X'Ol'
BR 14
END

RESTORE REG 13 TO CALLER'S SAVE AREA
RESTORE REGS AND RETURN

Figure 34. Module B Source Listing

VIRTUAL
MEMORY
LOCATION STATEMNT

0000100
400000 0000200

OOOOlOD
400000 0000400
40GO(l4 0000500
401000 0000600

401000

0000700
0000800

401000 +
4010040000900
40 I 00 8 000 I 000
40 100C 0001100
4010100001200

0001300
0(101400
0001500
0001600
0001700

4010120001800
40 I 01 ~ 000 1900

(l002000
4010lA
40101A +
40101E
40 10J?

0002100

SOURCE

... HODULE '(,
SUBRC 1 PSECT

ENTRV
OC
DC

SUBRC2 (SEer
USING

SUIlRC21 SAVE
SUBRC2l OS

ST ..
L
ST
ST
lR
USING

•

SUBRCZl
FI16 1

lapo'
READONLV
SU8RC21,15
114,121
OH
14.12,12(13)
14. 7Z1 0.1 1)

14.810.131
13,410.14)
13.14
SUBRC 1.13

SAVE AREA

SAVE REGS IN CALLER'S SAVE AREA

GET LOC THIS PROGRAM'S SAVE AREA
SAVE 1"1 CALLER'S PSEC T
SAVE LOC DF CALLER'S SAllE AREA
LOC THIS SUBROUTINE'S SAVE AREA

• ADDITIONAL PROCESSING BY SUBRe2, USlNG 15 AS CODE COVER
* AS NO SYSTE~ MACROS USED.
•

LA 0,3
L 13.4(0,13)
RETURN 114.12),T
DS OH
LM 1",12 ,I2(13)

01 111 n),x'Ol'
SR 14
END

RESTORE REG 13 TP CALLER'S SAVE AREA
RESTORE REGS AND RETURN

Figure 35. Module C Source Listing

Appendix C. Programming Considerations 155

Table 17. Save Area Linkage

STATE- STATE- STATE- STATE-

MENT MENT MENT MENT

SAVE AFTER A '\THEHE AFTER 11 '''HERE AFTEH C WHERE AFTER B \VHERE

AREA WOHD CALLS B SET CALLS C SET HETVHNS TO H SET RETURNS TO A SET

1 F'76' F'76' F'76' F'76'

2 xxxx* A-1400 xxxx* xxxx* xxxI

3 R(SUBRB1) B-1200 H(SUBRBl) R(SUBRB1) R(SUBRBI + 1) B-2800
[350000] [350000J [350000] [350000]

4 V(CALLB) B-1000 V(CALLB) V(CALLB) V(CALLB)
[,30102E] [30102E] [30102E] [30102E]

A 5 V(SUBRB21) B-1000 V(SUBHB21) V(SUBRB21) V(SUBRB21)
[351000] [351000] [351000] [351000]

6 F'Ol' B-1000 F'Ol' F'Ol' F'Ol'

7 A(PLIST) B-1000 A(PLIST) A(PLIST) A(PLIST)
[300054] [300054] [300054] [300054]

19 R(SUBRB1) A-2200 R(SUBRBl) R(SUBRB1} R(SUBRB1)
[350000] [350000J [350000] [350000]

1 F'76' F'76' F'76' F'76'

2 R(SUBRA) B-1300 R(SUBRA) R(SUBRA) R(SUBRA)
[300000] [300000J [300000] [300000]

3 F'O' R(SUBRCl) C-lOOO R(SUBRC1 + 1) C-2000 R(SUBRC1 + 1)
[400000J [401001] [401001]

4 V(CALLC) C-0800 V(CALLC) V(CALLC)
[35102E] [35102E] [35102EJ

B 5 V(SUBRC21) C-OSOO V{SUBRC21) V(SUBRC21)
. [401000J [401000] .[401000]

6 F'02' C-0800 F'02' F'02'

7 A(PLIST) C-OSOO A(PLIST) A(PLIST)
[300054] [300054] [300054]

19 F'O' R(SUBRCl) B-2200 R(SUBRCl) R(SUBRC1)
[400000] [400000] [400000]

1 F'76' F'76' F'76' F'76'

2 F'O' R(SUBRBl) C-llOO R(SUBRB1) R(SUBRB1)
[350000] [350000] [35OOO0J

3 F'O' F'O' F'O'

4
C 5

6
7

.
19 F'O' F'O' F'O' F'O'

, ,. *Subroutme A Inserts the address of lts caller 5 save area m tillS word.

Shared Code (PUBI.IC) Considerations
The system recognizes a control section as being pri­
vate or sharable. The latter type is identified by the
specification of the PUBLIC attribute associated with the
control section and the residence of the control section
in a shared data set. Each task is allocated its own
copy of a private control section; however, allocation
of public control sections occurs in such a way as to
make the same physical copy of the control section

156

available to all tasks that have allocated the control
section to their respective virtual storages.

Sharing object code enhances the efficiency of the
system. Paging is reduced since only one copy need
be in main storage or on the paging device; in addition,
shared routines can be executed simultaneously by
more than one CPU.

A reenterable program is one that can be inter­
rupted at any point during execution, entered by an-

other user, and subsequently, reentered at the point
of interruption by the first user, and produces the
desired results for all users.

The latter type is identified by the specification of
the PUBLIC attribute associated with the control section
and the residence of the control section in a shared
data set. Each task is allocated its own copy of a pri­
vate control section; however, allocation of public
control sections occurs in such a way as to make the
same physical copy of the control section available
to all tasks that have allocated the control section to
their respective virtual storages.

In TSS, a standard reenterable program nonnally
consists of one or more named, read-only PUBLIC CSECTS

containing instructions and invariant data (relocatable
address constants can never be contained in these
CSECTS), and a PRIVATE PSECT, consisting of save areas,
working storage and variable program data. With this
method, each task using the reenterable program is
supplied a private copy of the PSECT, the location of
which is passed to the reenterable program as a link­
age parameter by the calling program.

Other variations of reenterable programs are pos­
sible; for example, temporary working storage can
also be obtained dynamically by the reenterable pro­
gram itself, using the GETMAIN macro instruction. In
this case, storage is obtained for each task entering
the reenterable program, and is private for that task.

To make the reenterable program sharable, the user
specifies the PUBLIC attribute in the control section
declaration. Specifying the READONLY attribute ensures
that the shared code will not in any way modify itself
during execution. If the READONLY attribute is not speci­
fied, it is the responsibility of each user to ensure the
integrity of the routine at any stage of execution, pre­
venting mutual interference.

Prior to assembling the module, a DDE!<' must be
issued defining the job library where the object mod­
ule is to be stored. Once the module is assembled, the
user must grant access to the job library by issuing a
PERMIT. This, of course, is not necessary if the object
moduie is stored on a job library previously being
shared.

Each user who has been pennitted access must then
issue a SHARE command, to make the appropriate
entry in his catalog for the library. Again, this is not
necessary if the user is already sharing the data set.
Each time the sharer wishes to use the shared pro­
gram, he must issue a DDEF for the JOBLIB prior to
loading the object module. The object code actually
is shared only when each user loads the public control
section from the same shared job library. A sharer who
link-edits a public control section onto another library
receives a private copy each time the object module
is loaded from that library.

A program requiring more than 256 shared pages of
storage cannot be loaded in public storage. The pro­
gram will be loaded on private pages, and each user
sharing it will receive a private copy.

Efficient Use 01 Virtual Storage
This section discusses how to use virtual storage effi­
ciently. To understand the guidelines that are pre­
sented here, the user should be aware of certain
aspects of how the system allocates and manipulates
the virtual storage associated with his task.

1. Control Sections: All PSECTS and CSECTS are allo­
cated virtual storage starting on a page boundary.
Thus, each specification of a new control section
incurs a requirement for a new page.

2. Auxiliary Storage: As a result of task execution,
pages will be brought into real storage as neces­
sary. If the content of a page is altered while it is
in real storage, the system will write the changed
page on auxiliary storage (i.e., the paging drums
and disks) when the real storage space occupied
by this page is released for other use (primarily at
the end of the time slice). Furthermore, the system
will attempt to keep frequently-used pages on the
paging drum and seldom-used pages on the disk.

Pages that are read-only (i.e., not changed dur­
ing execution) will not be placed on auxiliary stor­
age since they can be reloaded from the initial
source.

Once the initial state of a virtual storage page
changes, a copy of this page will be on auxiliary
storage until the task explicitly deletes it (e.g., via
FREEMAL"l") or logs off.

3. Sharing: There are two levels of inter-user sharing
available in the system: data set sharing via the
PERMIT and SHARE commands, and control section
sharing via the PUBLIC attributes of the control sec­
tion declaration. In the latter case, two or more
tasks will share a single real core page to reflect the
status of a page of their respective virtual storages.
Note that the PUBLIC attribute of the control section
will not be effective except in the case where the
library originally containing the control. section is
also shared.

A shared page, once brought into real storage,
tends to remain resident there for an extended
period of time (as compared to 'private pages); the
intent is to make it immediately available to other
tasks besides the task that caused the initial load.
Thus, seldom-used control sections should not be
shared internally unless it is a requirement.

AppendiX C. Programming Considerations 157

Guidelines For Efficient Use
Internal Organization of Program Modules

1. In general, the following conventions should be
adhered to in setting up the contents of PSECTS and
CSECTS:

A CSECT should contain:
Executable read-only code
Data constants
Non-relocatable literals
Any other non-modifiable address-free information

A PSECT should contain:
Save areas
Local temporary storage
Parameter lists
Address constants and relocatable literals
Any other modifiable location-dependent infor-

mation

There are, however, cases where this results in a
less efficient program. For instance, if a module con­
sists of a large PSECT in comparison to the CSECT, and
the sum of both is less than 4096 bytes, the CSECT can
be incorporated into the PSECT, thereby reducing the
page references when the module is executed.

2. Segregate code so that seldom-used code is allo­
cated to a CSECT which is not in the main flow of
the program logic.

External Organization of Program Modules

1. Concentrate changeable data (i.e., PSECTS and
tables) into as few pages as possible--a changed
page requires additional auxiliary storage space.

2. If program module A uses program module B, then
attempt to package the read-only CSECTS of A and B
together in the same page and the read-write PSECTS
of A and B in another page.

3. In general, do not combine CSECTS or PSECTS such
that they cross a page boundary. Optimally, a con­
trol section or combined control sections should be
4096 bytes in extent.

These combinations of control sections can be effected
by using the combine feature of the linkage editor.

Programming Techniques

1. It is most useful to plan the use of virtual storage
as if it were a one-page overlay environment­
that is, as if only one page of virtual storage could
be used without incurring the overhead of a page
overlay.

2. Do not zero out virtual storage areas obtained by
a GETMAIN; they are set to zero automatically.
(Note, however, that the contents of an area re­
served by a DS statement are unpredictable, i.e.,
they should not be assumed to be zero.)

158

3. Use open (in-line) as opposed to closed (out-of­
line) subroutines. If increasing the size of the total
program will reduce the page references, do so.

4. Perform your O\vn page suballocation on return
from GETMAIN; i.e., use the entire page provided
by the GETMAIN before issuing another GETMAIN.

5. Utilize program common for parameters that are
frequently referred to, small work areas, etc.

6. For large tables (i.e., greater than four pages),
use GETMAIN to allocate the necessary space. When
the space is no longer needed, the decision as to
whether to reuse it or to release it via a FREEMAIN
should depend on the total table size. If the table
is less than 10 pages in size, it is more efficient to
reuse the space, since the system overhead on a
FREEMAIN-GETMAIN sequence is greater than
the overhead attached to the paging operations
necessary to reuse the space. If the table is greater
than 10 pages in size, a FREEMAIN should be used
to release the old space and a GETMAIN should be
issued for the new table.
Using GETMAIN-FREEMAIN for space allocation is
of particular importance when the program is not
to be unloaded. For example, initial virtual storage
(IV1\o1) is never unloaded and, if a large table ap­
pears in a PSECT, once the table is changed, the
changed pages will remain in auxiliary storage
until the owning task logs off.

7. Avoid repetitive nonsequential use of subroutines
if data can be blocked into or out of the subrou­
tine in a Single caB; for example, OPEN all data
sets at the same time.

8. Avoid multi-page chained tables if possible-a lin­
ear search in one page is more efficient than a ran­
dom search in two pages even if the CPU execution
time of the former is greater (true virtual storage
execution time is the sum of CPU time and paging
time). If the table is larger than a page, use an
index table to get to the proper table page di­
rectly.

9. Avoid the use of "push down" stacks where the
depth of the stack at any time is larger than one
or two pages.

10. A void sequential programs which build large pro­
gram or data virtual storage images and then do
not refer to them for an extended period of time;
use data management (external storage) instead.
This eliminates excessive build-up of inactive pages
in auxiliary storage.

11. Use job libraries carefully to avoid excessive li­
brary searching for program modules.

12. In general, implicit loading of a module (via V­
type constants or A-type constants with an E.XTRN)

should be used in preference to explicit loading
(via the LOAD command, the LOAD macro instruc­
tion, or an explicit CALL). An exception to this
would be when implicit loading causes loading of
many more modules than the program might
actually use.

13. In general, unloading will not noticeably increase
system performance. An exception would be when
a very large number of pages of a program have
been referred to, but will not be referred to again.

Only modules that were explicitly loaded ean
be explicitly unloaded. If it is desired to unload a
module that was implicitly loaded, it is necessary
to unload the explicitly-loaded module that caused
the implicit loading.

14. At LOGON time, specify control section packing
whenever possible. This allows control sections
with like attributes to be collected into less memory
space. Modules to be executed may thus be com­
pressed into fewer pages, reducing the time re­
quired for system paging operations.

Control Section Reiection
and Linking Control Sections
During the dynamic linking of object modules, each
control section name is checked against control section
and entry point names that are already loaded in the
task If a duplication is found, the control section is
rejected. Figure 36 summarizes the loader's rejection
action.

CONTROL SECTION LOADER REJECTION ACTION

Named CSECTs, Subject to automatic control section rejection if

PSECTs, or name duplicates a control section name or any

COMMON other entry point name already present in the
task.

Unnamed Given a unique internal numeric identification

CSECTs when processed by the loader; it is not subject
to automatic rejection.

Unnamed (blank) Subject to automatic rejection: after one un-

COMMON named COMMON control section is processed,
any subsequently loaded will be assigned the
some nome and therefore rejected.

Figure 36. DynamiC Loader Automatic Control Section Rejection

Control sections may also be rejected because of the
violation of a naming restriction.

Control section rejection may result in other errors,
since none of the entry points defined by the control
section are recorded by the system. References to these
entry points will be unresolved unless they are satisfied
by another control section.

Accidental control section rejection can be avoided
by unloading following each execution. However, in
some cases, it is desirable to allow a control section to
be linked from one execution to the next.

If an UNLOAD eommand is issued after a module has
completed execution all record of control section and
entry names in that module are removed from the
task's allocated storage. Any subsequent module that is
loaded containing a CSECT with the same name would
have storage allocated as if it were the first usage.

\Vhen the user \vishes to pass the contents of the
same named control section from one program to the
next, the UNLOAD command should not be entered. In
this case, the second program's references to the con­
trol section would be resolved to the control section
that was allocated storage with the first program, if
both have the same name.

Recovering from Errors
When Dynamically Loading
If a program consists of more than one object module,
the modules are dynamically linked by the system's
dynamic loader at execution time. The dynamic loader
takes all of the implicit external references in the mod­
ule that is explicitly loaded or run and resolves them
by searching the program library list. It is possible
that while the loader is linking the object module (s)
into the user's virtual storage, several error conditions
may arise that affect the eventual execution of that
program.

• Name to be loaded or run not found in library:
Either the user has speCified the wrong name in
the LOAD or CALL command or the job library con­
taining the object module has not been defined in
the task and, therefore, is not in the program library
list. If the latter is the cause of error, the user in
conversational mode can merely enter the DDEF de­
fining the job library and reissue the LOAD or CALL

command.

• Unresolved references: If an object module has an
external reference that cannot be located in any of
the libraries in the program library list, a diagnostic
is issued specifying the name in the reference. Fur­
ther linking of other object modules is not sus­
pended, however, so that the explicitly-named
object module and, pOSSibly, other object modules
that were referred to implicitly have been placed
in the user's virtual storage. If the error occurs in a
CALL command, execution of the program is not
initiated.

If the user wishes to execute his program regard­
less of the error, he may reissue the CALL command.
He must, however, repeat the name of the module
named in the original CALL command. This is neces­
sary to define the point at which execution is to be
initiated.

If the user anticipates that an object module will
have unresolved references, he should first issue a

Appendix C. Programming Considerations 159

LOAD command naming the module, followed by a
CALL with an operand. This procedure is recom­
mended for a nonconversational task, since the user
can be assured that execution will be initiated re­
gardless of unresolved references.

If the user does not wish to run the version of
the program that has been loaded into his "storage,
he must issue an UNLOAD command. If he does wish
to run this version of the program, he can then
enter a DDEF defining a job library that was missing
in the first load attempt. A LOAD or CALL issued at
this point causes the entire linking procedure to
he redone.

• Duplicate entry points: This condition may occur
""hen dynamically linking an object module from
one library with a module from another library.
In this case, since the second entry point definition
is disregarded, all further references to the ENTRY

name may be erroneously resolved.
The user should take some corrective measures

before attempting to LOAD or CALL again. (A pos­
sihle correction might be to change the ENTRY

name by link-editing the object modules onto an­
other JOBLIB.) To avoid the possibility of such
dnplications when working with a new library, the
POD? command can be used to list the directory of
the library. The user can then circumvent the prob­
lem by setting up an appropriate program library
list before he attempts to load his program.

Library Management
Program library list Control

A program in TSS can consist of one or morc object
modules. All programs in TSS are stored in object
module form in program libraries that are partitioned
data sets. A program consisting of only one object
module is stored entirely within one library; however,
if a program consists of several object modules, these
modules may reside in diHerent libraries, depending
on how the user has stored them. During linkage edit­
ing and during execution, the system can automati­
calIy retrieve all object modules required, if the user
has defined the libraries in which those object mod­
ules are contained. The manner in which the user does
this is described in the following paragraphs.

There are four categories of program libraries:

• System library (SYSLlB)

• User library (USERLIB)

• User-defined job libraries

• Other user-defined libraries used in linkage-editing

160

TSS docs not aHow a library to contain more than
one declaration of any external symbol. III this sens('.
named and blank COMMON arc not considered external
symbols since they are not listed in the directory of the
library.

TIle system library contains service routines pro­
vided by the installation. For example, it includes
service programs, and the installation's standard sub­
routines and functions.

The user library is the private library assigned to
each user when he is joined to the system. This library
is automatically defined for him and an entry made in
his catalog by the system. His user library is thus
available each time he logs on. If the user does not
employ job libraries in a task, all the object modules
resulting from his use of the language processors are
placed in his user library.

The user may wish to restrict his user library to
checked-out, standard object modules that he executes
frequently or that he uses frequently in the buildup of
other object modules.

The program library list is a defined hierarchy of
program libraries. It is set up at log-on time, and ini­
tially consists of the user library and SYSLIB.

The library at the top of the list automatically re­
ceives all object modules resulting from language
processing. As noted above, if no job libraries are de­
fined, the library at the top of the list is always the
user library. However, the user can specify that a job
library he added to the program library list to receive
the output of the language processors. He does this
by issuing a DDEF command defining that job library
and containing the operand OPTION = JOBLm. When this
command is executed, the name of that job library is
added to the top of the program library list. That li­
brary then receives all subsequent module output of
the language processors until another job library is
defined (and is thus at the top of the list) or until a
RELEASE command is issued for that job library. A job
library must always be a partitioned data set and may
be defined on public or private volumes.

In addition to using the program library list to store
object modules, the system uses this list to control its
order of search when looking for object modules that
must be loaded at execution time. The library at the
top of the list is searched first, then the next-to-the-top
library, etc.; finally, the user library and SYSLIB are
searched.

In summary, the user has the following basic library
setups for handling the object modules produced by
the language processors.

• User Library--As this is always available and is
always searched, the user may wish to reserve

this for frequently used checked-out programs.
All user's VSERLIBS are kept on public volumes and,
hence, are always mounted on system devices.

• Session JOBUE-By issuing a DDEF command for a
new library at the beginning of a session, a user can
create a library to contain all modules assembled
during the ses~ion. By not cataloging this new li­
brary during the session (if private), he can discard
modules not to be used again or not yet debugged.

• Cataloged Private Volume JOBLIB-A user can di­
rect output to and retrieve from a library of infre­
quently-used modules by issuing a DDEF command
for a cataloged job library that resides on a private
removable disk pack. In a non conversational task
when using private job libraries, the user must re­
quest (via SECURE) a device for that job library.
Modules may be entered in such a library:

Automatically if the library is the latest defined
one in the session.

By link-editing it from his USERLIB, session job
library or public-device job library and specifying
to the linkage editor the desired private device
job library as the output destination. Cataloged
libraries on private volumes may also be shared by
several users.

• Cataloged Public Volume JOBLIB-This type of
library may be useful to the user in setting up (and
using) a library of frequently-used programs whose
names and external symbols conflict with other
programs in USERLIB. A3 an example, versions of
frequently used programs may be set up with one
in USERLIB and another in a job library. Cataloged
libraries on public volumes may be shared among
users.

The program library list can also be used, during
link-editing, to define the following for the system:

• The library that is to receive link-edited object
module.

• The sequence in which libraries are to be searched
if the system must find other object modules to
define references in the link-edited object module.

The fourth category of libraries may be defined by
a DDEF command with the operand keyword]OBLIB
omitted. Such libraries may be referred to by a specific
link editor INCLUDE statement, but they are not listed in
the program library list, and hence are not included in
the automatic library search, nor are they available to
the dynamic loader.

Refer to AppendiX B and to the publication Linkage
Editor for an explanation of link editor program li­
braries.

Program Versions

Since one library cannot contain more than one con­
trol section entry point or module with the same
name, different versions of the same program must
be kept in differmt libraries. For example, a user
may have a checked-out program in his USERLIB and
wish to reassemble the program with modifications,
but retain his original version until the new version
has been checked out. A DDEF with a]OBLlB option
causes the new module to be stored on the job library
rather than USERLlB. The user may continue after as­
sembly with his checkout of the new version, since any
subsequent LOAD or CALL command in the task naming
the module retrieves the new version from the job
library. If, when the new version has been successfully
tested, he wishes to replace the old version with the
new version, he may link-edit the new version onto his
USERLlB. He may also use the TV, vv, or CDS commands
to copy a program module from one library to another.
If he does not wish to retain the new version, he must
either ERASE the module on the job library or RELEASE
the job library. ReleaSing the library removes it from
the program library list, automatically causing subse­
quent retrievals of that module to revert to USERLIB.
Erasing the module does not remove the job library
from the program library list, but any subsequent ref­
erences to that module are resolved from USERLlB after
the job library has been searched unsuccessfully.

To facilitate orderly maintenance of programs within
various job libraries (and USERLlB), the POD? com­
mand is available. POD? enables the user to obtain on
SYSOUT a list of the member names (and optionally the
alias names and other member-oriented data) of in­
dividual members of cataloged VPAM data sets.

Sharing Libraries

A user may allow another user to share (i.e., access)
one or more of his cataloged job libraries. \Vhen the
owner permits access to his job library, all of the object
modules on that data set are usable by the sharer.
This facility does not imply that if the owner and/or
one or more sharers use the same program at the same
time they are sharing (co-using) the same copy in real
storage. TIlis aspect is controlled by the PUBLIC attri­
bute assigned to a control section at assembly time.

The data set owner issues a PERMIT command to
designate the other users who may share his job library
and indicate the level of access those users may have;

• Read-only access; The sh~rer may use the object
modules on the library, but may not add, replace,
or erase a module.

• Read-and-write access: The sharer may use any
object module on the library and may add or re-

AppendiX C. Programming Considerations 161

place modules. He may not use the ERASE command
to delete a module from the library.

• Unlimited access: The sharer, in cffect, can treat
the library as his own; thus he may even erase
modules.

(Note that the implications of "read-only," "read­
write," and "unlimited" are slightly different when
specified by the user for his use of his own data sets
and w'hen specified in a PERMIT command. The owner
of a data set may permit any level of access he wishes
f(·gardless of the access designator in the owner cata­
log. For example, if the owner catalog is marked "read
only", the owncr may not write into his own data set,
but he may permit a higher level of access (read/write
or unlimited) to a sharing user. This flexibility must
make the data set owner very cautious with critical
data sets he has entered into the system.)

To gain access to a data set for which he has been
previously authorized, the sharer must issue a SHARE
command. The SHARE command places an cntry for
the owner's data set name in the sharer's catalog. The
sharer may then enter a DDEF command for the data
set (with the JOBLIB option) in cach task where he
wishes to include the library in his program library list.

Groups of job libraries with names having common
higher-order components can be specified by using
partially-qualified names when the PERMIT is issued.
For example, an owner of two job libraries named
TRACK.SUBI and TRACK.SUBZ can allow sharing of both
libraries by ming the partially-qualified name TRACK
in the PERMIT command. In this case, the sharer must
also use the partially-qualified name (as the dsnamc2
parameter) in the SHARE command, even though he
only wishes to use one of the job libraries.

Table 18 lists the commands applicable to shared
data sets and the effect of the command on the user's
catalog.

System Naming Rules
User-Assigned Names

The following names resulting in external symbols are
supplied by the user in his assembler language source
program or during assembly.

• Module name
• Control section names

• ENTRY names

All {'xtemal symbol definitions in a module, includ­
ing the module' name, must be unique. In addition,
since the system does not allow anyone library to
contain more than one definition of a particular exter­
nal symbol, each name (except names of COMMON~on­
trol sections and unnamed CSr-:CTS) must be distinct
from any other symbol contained on the library that

162

is to receive the object module. It is valid to have the
same names on different libraries. Since a named or
blank CO:l\lMON control section is not listed in the di­
rectory of the library as an external name associated
with the module name, it does not have the preceding
restriction. Also, since it is not listed in the directory,
it cannot be explicitly referred to by name (i.e., it
cannot be loaded by its COMMON name).

The POD? command can be used to list the external
symbols in a library to avoid duplication.

Reserved Names
External Symbols

The user must never assign a name beginning with
the characters SYS. These letters are reserved for cer­
tain system programs. Any module stored on the user
library or a job library starting with these symbols
can never be retrieved by that name for execution,
since resolution of SYS symbols for loading and run­
ning is always attempted from the system library. In
addition, a diagnostic is issued if a module, loaded by
another name, contains an external symbol definition
beginning with sys.

The user should also be careful to avoid aCCidentally
duplicating the names of IBM-supplied FORTRAN sub­
programs. Generally, he should avoid the use of all
external symbols starting with the characters CHC, or
any FORTRAN-supplied subprogram name (i.e., SIN, COS,
etc.), unless he specifically wishes to use this FORTRAN
subprogram.

'nfernal Symbols

The user should avoid assigning an internal symbol
beginning with the characters CHD, since system macro
instrnctions use these characters and might cause a
duplication of internal symbols.

Reserved Names Associated with Data Sets

The following list contains the reserved names which
are assigned to system functions:

RESERVED DDNA!>.IES

SYSLIB
SYSULIB
SYSIN
SYSOUT
PCSOUT

RESERVED DSNAMES

USERLIB
SYSLIB

The following names are assigned to the assembler
output data sets:

sovRcE.modull'-is the data set name assigned to the
line data set of source statements constructed dur­
ing the assembly. If the input to the assembler
is from a pre stored data set, then the nser must
assign the name SOURCE.module to the data set
prior to the AS:\l command.

LIsT.module-is the data set name assigned to the data
set created for all the listings optionally selected
by the user. The system automatically catalogs
each new generation. Printed output is optional

Table 18. Shared Data Set Commands

COMMAND BY OWNER

PER:\IIT l\!ust be issued prior to the SHARE command by the
sharer(s}.

SHARE Not allowed.

ERASE The owner may always erase a member (object mod-
ule) from his job library or erase the entire library. If
he erases the job library, the entry in the sharer's cata-
log is not removed. The sharer(s) must issue a DE-
LETE command to remove the entry from their own
catalog.

DELETE The owner may delete a library or group of libraries
from his catalog. An object module alone cannot be
deleted.

\Vhen the owner deletes a shared job library, the
sharer's catalog entry is not removed.

CATALOC The owner may catalog a fully-qualified data set
name. If that name is a component of a partially-
qualified name that the owner has permitted to be
shared, all sharers have immediate access to the newly
cataloged data set.

If an owner changes the name of a single data set
to which he pennitted access using a fully-qualified
name, each sharer must delete his catalog entry and
reissue the SHARE command with the owner's new
name.

and must be requested via the PRINT command.
The listing data set is a generation data group,
established the first time the module name was
f'nconntered during language processing.

BY SHARER

Not allowed. A user cannot
set that he does not own.

permit access to a data

Must be issued prior to any other references to the
data sets. Once issued, the sharer mav access the data
set until he issues an ERASE or' DELETE. The
SHARE command places an entry in the sharer's
catalog, so that a further CAT ALOC command is not
necessary.

A sharer may only erase if he has been granted un-
limited access. If he then erases an object module,
neither the sharn's nor the owner's catalog is affected.
If he erases the entire job library, both his catalog
entry and the owner's are removed.

A sharer may delete his catalog entry for a job library
without affecting the owner's catalog. The sharer
must reissue a SHARE command if he again wants
to refer to the data set that was deleted.

A sharer that has been granted unlimited access may
change or add entries to the owner's catalog. If he is
permitted to share a group of data sets, he may cat a-
log a new data set into the group, but he must in-
elude as part of the name the partially-qualified name
that he used in the SHARE command. If he changes
the name of one of the data sets in the group, the
new name must still contain the partially-qualified
name.

A sharer who has been granted unlimited access to
an individual data set may never change the data set
name.

Appendix C. Programming Considerations 163

Appendix D. Interrupt Considerations

This appendix discusses the more common interrupt
considerations when programming in TSS. The sections
of this appendix discuss:

1. TSS operation when a program interrupt occurs in
a program where the programmer does not llse the
SIR, DIR, and SPEC macros to control internlpts.

2. The effect of an interrupt caused by pushing the
attention button at the terminal, and resuming exe­
cution following the interrupt.

3. TSS facilities for user-written interrupt handling
routines, and considerations for the processing of
interrupts.

Program Interrupts
If a program interrupt occurs during program execu­
tion and the user has not specified his own interrupt­
handling routine for the interrupt type, the interrupt is
processed by a system service routine.

A diagnostic message appropriate to the cause of the
interrupt and the virtual program status word is issued
to the terminal (or in nonconversational mode, is writ­
ten to SYSOUT) and the task is returned to command
mode. In addition to a diagnostic specifying the type
of interrupt that has occurred, the user is supplied the
following information to locate the source of the
interrupt:

PSW' = xxxxxxxxxxxxxxxx. THE INTERRUPT OCCURRED
IN CSECT xxxxxxxx WITH A DISPLACEMENT OF
xxxxxxxx FROM THE BEGINNING OF THE CSECT.

If the interrupt occurs in a conversational task, an
underscore is typed at the terminal requesting that the
user enter a command. The user can then use pes

statements for problem investigation.
In a nonconversational task, if a data set has been

supplied with a ddname of TSKABEND, this data set be­
comes the task's new SYSIN. This data set can contain
a sequence of pcs commands and statements to obtain
a selective dump of the program before terminating
the task with a LOGOFF command. If a TSKABEND data
set has not bcen supplied, the task is terminated.

The following table (Table 19) shows each type of
program interrupt, and the possible causes for the
interrupt.

164

Table 19. Types of Program Interrupts

TYPE OF

INTERRUPT

Operation
Code

Privileged
Operation

Execution

Protection

Addressing

Specification

Data

Fix('d-Point
Overflow

Fixed-Point
Divide

Decimal
Overflow

Decimal
Divide

Exponent
Overflow

Exponent
Underflow

Significance

Floating-Point
Divide

CAUSE OF

INTERRUPT

The operation code is not valid.

A pIivileged instruction has been encountered
in a program executing in a nonprivileged
state.
The subject instruction of an Execute (EX) is
another Execute.
The storage key used in an instruction fetch
or a data reference does not match the pro­
tection key in the PSW.
An address specifies a location that has not
been allocated to the task's virtual storage.
1. Reference has been made to virtual storage

with an address that does not specify an in­
tegral boundary for the unit of information.

2. The RJ field of an instruction speCifies an
odd register address for a pair of general
registers that contain a 64-bit operand.

3. A floating-point register other than 0, 2, 4,
or 6 has been specified.

4. The multiplier or divisor in decimal arith­
metic exceeds 15 digits and sign.

5. The first operand field in a decimal multiply
or divide is smaller than or equal to the
second operand field.

I. The sign or digit codes of operands in deci­
mal arithmetic, editing operations, or Con­
vert to Binary (CVB) are incorrect.

2. Fields in decimal arithmetic overlap incor­
rectly.

3. The decimal multiplicand has too many
high-order Significant digits.

A high-order carry has occurred or high-order
Significant bits have been lost in a fixed-point
addition, subtraction, shifting, or sign control
operation.
1. Division by zero has been attempted.

2. The quotient has exceeded the register size
in fixed point division.

3. The result of Convert to Binary (CVB) has
exceeded 31 bits.

The destination field is too small to contain the
result in a decimal operation.
The quotient has exceeded the speCified data
field.
The result characteristic has exceeded 127 in
floating-point addition, subtraction, multipli­
cation, or division.
The result characteristic is less than zero in
floating point addition, subtraction, multipli­
cation, or division.
The result of a floating-point additi,)J1 or sub­
tractioll has an all-zero fraction.
Division by a floating-point number with a
zero fraction has been attempted.

NOTE: Fixed-point overflow, decimal overflow, ex­
ponent underflow and significance interrupts can be
masked off by setting the appropriate bits in the pro­
gram mask. Such interrupts are ignored and are not
recognized by the system. These interrupts can also
be processed by the user with the SIR, DIR, and SPEC

macro instructions.

Attention Considerations

Interrupting Execution

\\-11en an ATTENTION interruption has been en­
countered in a nonprivilcged program, the system will
respond with one of the following three characters:
!, .. , or __ . The response character will indicate to the
user the situation at the time the interruption oc­
curred. (Note that the user program may have been
executing a privileged command string when it was
interrupted.) The user may then request a particular
system action by issuing the appropriate command or
pressing the A'ITENTION or RETURN key. The
possible user actions and corresponding system re­
sponses are shown in Table 20. If the attention button
is pushed while a pcs DISPL<\ Y response is being typed
on the terminal, it is assumed the user wishes to can­
cel any further lines from the DISPLAY request.

If a user program has invoked a privileged system
program (such as the OPEN routine) and it is in opera­
tion when the attention button is pushed, the interrup­
tion is not honored until that program has completed
its processing and has returned tc the user program. If
a user's program is executing, the interruption is
honored immediately.

Combining the PCS STOP C'Ommand with an AT also
produces an interruption. The symbolic location at
which execution was stopped is printed at the ter­
minal. To find the location when a program is inter­
rupted by an attention, the user may enter a STOP

C'Ommand.
Once the undersC'Ore has been typed, the user may

enter any C'Ommands or pcs statements he wishes. He
may even REMOVE the PCS statement that caused the
interruption, so no subsequent execution of the in­
struction will be interrupted.

Levels of Interruption
\Vhenever a non privileged program is interrupted, and
another user program is invoked, the status registers
and psw of the interrupted program are saved in a
system table called the stack table. The interruption
may have been an ATTENTION, a pcs AT, a CLIC,

CLIP, COMMAND, PAUSE, or OBEY macro instruction, or a
program interruption. The interrupted program re­
mains active, with its status saved, until such a time

when it again receivcs control. The RTRN, PUSH, and
EXIT comIllands, issued after an ATTENTION inter­
ruption, can be used to manipulate the stack table.
The function of these commands and the system re­
sponse are shown in Table 20.

The current level of interruption is an indicator of
how much of the stack table is in use. One level is
taken whenever a program's status is saved; the level
is freed when the interrupted program regains control.
A maximum of ten levels are available. The user is at
level zero when no program's status is currently being
saved. The STACK command, issued after an ATTEN­
TION interruption, will display the names of all active
programs in the stack table in descending order from
the currently active down. See Command System
User's Guide for a more detailed description of these
commands.

Resuming Execution

The GO C'Ommand is used to resume execution after an
attention interrupt or a pcs STOP command. To resume
at the point of interruption, a GO C'Ommand is sufficient;
however, the user can specify an alternate point at
which to resume or restart, using a BRANCH C'Ommand.
He might, for example, in a two-phase program, want
to skip directly to the second phase to continue proc­
essing. The interrupted program should not be un­
loaded and reloaded as it may not resume execution
at all.

Intervention Prevention Switch (IPS)

The Intervention Prevention Switch (IPS) may be set
by the user to protect a segment of C'Ode, preventing
the interruption of his program during the execution
of that segment. Setting and unsetting the switch is
acC'Omplished by means of the follOWing being coded
into his program, surrounding the code he wishes
protected:

L R5,=V(SYSAAA)
USING

AP

SP

EX

COpy

CHAAAA,R5

AAAIPC, =P' +1'

(code to be
protected)

AAAIPC, =P'+l'

AAASW

CHAAAA

Sets the IPS

Resets the IPS
Passes control
to the user

Creates DSECT
for symbols

AppendiX D. Interrupt Considerations 165

Table 20. Responding to Attention Interruptions

166

When the ATTENTION key is pressed, the system
responds with one of three condition symbols:

By these actions, the
user colis for the system
reaction listed in the
b lock under the
corresponding
condition symbol:

By issuing the GO
command.

By issuing any
command . . .

By pressing the
RETURN key.

By pressing the
ATTENTION key

By entering STRING
to list remaining
commands in an
interrupted string

By entering STACK

..

to list names of active
nonprivileged programs
(in the order in which
they may be retrieved).

By entering EXIT
to end the currently
active program ..

By entering RTRN
to cancel command
strings and user
programs at every
attention level ••

By enteri ng PUSH
to save the status of
the currently active
program

! (to denote the
interruption of
nonprivi leged
programs or
commonds)

the current user
program is
resumed

the command is
executed

the current user
program is
resumed

the system returns
an exclamation
point (nothing is
changed)

the system
displays the
unexecuted
command stri n9,
if it exists

* (to denote the
interruption of
on unfinished,
privileged
command string)

, or user's
command prompt
(denotes completion
of program or
command string)

the most recently interrupted user pragram is resumed and
intervening command strings are cancelled

the command is the commond is
executed and the executed
current command
string.i. cancelled

the current the system prompts
command stri n9 j 5 the user to enter
resumed a command

the system returns the system prompts
an asterisk the user to enter
(nothing is o command

changed}

the system the system returns
displays a diagnostic
unexecuted message

commands in the
current command
string

the system displays the names of active user programs at every ATTENTION level

ends the currently ends the most recently interrupted program and resumes
ac ti ve program, its associated command string, cancelling subsequent
resumes command command strings
string if it exists

command strings and user programs are cancelled by the system at evcry ATTENTION level

the system saves the status of the currently active program in ISA long Save 1 (ISAlSll

\Vhere the IPS has been set and the user hits the atten­
tion key, an exclamation point will be printed out at
his tenninal. However, control will be passed to the
user only after the EX AAAS\V instruction has been
processed. If no intcrrupt has occurred preceding this
instruction, it will be treated as a no-op and execution
will procecd normally.

If the nSl'r wishes to ignore the S('ttiIlg of the IPS,
hc may do so by causing a second attention interrupt.
The second attention overrides the IPS setting and
causes the terminal to be openl'd.

Writing Interrupt-Handling Programs
Time Sharing System provides facilities to <'nable the
Ilser to write his own interrupt-handling programs.
Interrupt-handling consists of responding to task inter··
rupts. Significant features of the interrupt-handling fa­
cility are priority interrupt control and interrupt delay,
both of which are discussed below.

Refer to the publication Assembler User's Macro
lttstructions for a detailed description of each interrupt
macro instnlction.

There are six types of task interrupts: program,
supervisor call, external, asynchronous, timer, and in­
put/ output.

The problem programmer may decide how to re­
spond to any of the six types of interrupts or he may
elect to ignore certain interrupts.

This section discusses:

• How to establish an interrupt handling routine.

• Processing the interrupt.

• An illustration of the sequence of events as might
occur when a user specifies interrupt-handling rou­
tines utilizing all of the facilities of TSS interrupt
management.

Establishing Interrupt Routines

When a user wishes to provide an interrupt-handling
routine to service any of the possible task interrupts,
he must specify to the system the conditions for servic­
ing an interrupt and the points at which he wishes to
activate and deactivate his interrupt-handling routine.

The Specify Entry Condition macro instructions de­
fine Interrupt Control. Blocks (ICBS) which specify
what task interrupts ar~ to be processed, under what
conditions the user's interrupt routine is to be entered,
and the entry point address of the user's interrupt rou­
tine. The following Specify Entry Condition macro
instructions are available:
SPEc-Program interrupts
sSEc-Supervisor calls (svcs)
sEEc-External interrupts
sAEc-Asynchronous interrupts (attention key)
STEC-Timer interrupts
SlEc-Synchronous I/O interrupts

\Vhell the normal L-type form of the macro instruc­
tion is written, no linkage is performed. The interrupt
control block is built and the name included on the
Specify Entry Condition macro instruction becomes
the name of the ICB. This name is rderred to in the
SIR and DIR (Specify and Delete Interrupt Routines)
macro instructions. The E-type foml of the macro in­
struction may be used in-lint' to modify the contents
of all already existing ICB.

Along with the macro instruetion specifying the
entry condition, the user must reserve 16 bytes of stor­
age for a communication area (COMAREA). This area is
used to communicate with the interrupt-handling rou­
tine and, upon interrupt, will describe the conditions
causing the interrupt.

The SIR macro instruction makes the interrupt rou­
tine specified by the lCB address available and sets its
priority. Any user interrupt routine can be made un­
available by the DIR macro instruction. Another SIR

macro instruction will make the interrupt routine avail­
able again.

It should be noted that if the SAEC macro instruction
is used to get control for interrupts from the attention
key, the USATT macro instruction must be issued after
the SIR macro instruction. This will cause control for
attention interrupts to be taken away from the system
and given to the user-designated routine. Likewise, the
CLATI macro instruction should be issued before the
DIR macro instruction when making the attention inter­
rupt handling routine unavailable. This returns control
of attention interrupts to the system. The DCB parame­
ter required for the SAEC macro instruction to be used
for attention is the system symbol SYSINDCB. An EXTRN
statement must also be included for SYSINDCB.

Processing an Interrupt

'When an interrupt occurs, an exit is taken from the
interrupted routine and control is passed to the entry
point of the user-specified interrupt routine. Informa­
tion identifying the type of interrupt that occurs is
made available in a communication area (COMAREA).
Using this information, the interrupt routine written
by the user can perform any calculations necessary,
including issuing input/ output macro instructions if
the user should wish to do so, and whatever else is
necessary to respond to the interrupt. The I:"IiTINQ
macro instruction may be issued in the interrupt rou­
tine. Issuing a RETURN macro instruction causes control
to be returned to the interrupted routine at the instruc­
tion following that which caused the interrupt, or to
another enqueued interrupt routine.

If interrupts arc not disabled by an SAl macro in­
struction, higher-priority interrupts will interrupt a
routine of lower priority. If more than one interrupt­
handling routine is defined with the same priority and

Appendix D. Interrupt Considerations 167

for the same type of interrupt, the interrupt-handling
routine associated with the first issued SIR macro in­
struction will take precedence.

Upon entry to an interrupt handling routine, register
contents are as described below. Sec Figure 37 for a
description of the items referred to below.

An interrupt-handling routine should be coded with
normal type I linkage conventions. Figure 38 illus­
trates the interrupt control block format. On entry to
the interrupt-handling routine, although it is not neces­
sary to save the contents of the general registers, if a
SAVE is issued, the registers will be saved in an area
provided by the system and pOinted to by register 13.
Register 14, however, should always be saved if it is
going to be changed in the interrupt routine, and re­
stored prior to the RETURN.

REGISTER CONTENTS

o

1

2-12
13

14

Address of a save area. This save area contains in­
formation on the condition of the interrupted pro­
gram, including the contents of all registers at the
time of the interrupt. The interrupt routine can use
this area to change the return point to the inter­
rupted program (old VPSW), or the contents of any
of the other registers.
Address of the appropriate ICB whose first word
contains the address of the COMAREA, and whose
second word contains the address, if applicable, of
the associated DCB.
Same as at the time of int!;rrupt.
Address of the register save area to be used by the
interrupt handling routine. The 19th word of this
save area contains the locatwn of the interrupt rou­
tine's PSECT.
Address of the location in the control program to
which control will be returned after execution of the
interrupt routine. If this is changed by the interrupt
handling routine, it mu~t be reset before the RE­
TURN.

15 Address of the entry point of the interrupt handling
routine. (This register can be used to provide ad­
dressability.)

It is important to remember that, on return to the
interrupted routine, all general and floating-point regis­
ters will be restored to the contents as stored in the
area pointed to by register zero. To illustrate, if an
interrupt.handling routine is to set a particular value
in general register 7, the interrupt routine must store
that value into the appropriate word (in this case, 48
bytes) beyond the address supplied in register zero.
Note that since register zero cannot be used as a base
register, that address must first be transferred to a
valid base register.

On a normal return from an interrupt-handling rou­
tine, once any queued interrupts have been serviced,
execution resumes in the interrupted routine at the in­
struction following the point of interruption. If the user
wishes to modify this return point, he must modify the
old vpsw located in the area pointed to by register

168

zero. The address of the desired return point should
be stored in the second word of the douhle-word vpsw.
The condition code and program mask in the first word

64 Word Entry

10

Forward Pointer to Next Entry

Forward Page Pointer

Pointer to Interrupt Conditions

Length = 120 Bytes

Register 13

Unused

Register 14

Register 15

Regi.ter 0

Register 1

Regi.ters 2·12

Not used

Not used

OldVPSW

Floating Point Regi,ter 0

floating Point Register 2

floating Point Register 4

Floating Point Register 6

Task Monitor RSPRV Flog

Pushdown Pointer from ISA

Length = 108 Bytes

Backward Link

Forward Link

Register 14 (Return Linkage)

Register 15 (Entry Point)

Registers 0-12

PSECT Address of Called Program

Available for Called Program

Reserved

Word

2

3

4

5

6

7

8

9

10

11

12-22

23

24

25-26

27-28

28.30

31·32

33·34

35

36

37

.38

39

40

41

42·54

55

56-63

64

[Reg 1 _In_t_e_rr_u_pt_C_o_n_'_ro_I ... B_IO_<_k_(_IC_B_)_ _ _, •. 1 Comarea
- '7 Comarea Addre.. ~

DCB Addres.

I
"--DCB

Figure 37. Information Available Upon :(!:ntry to an Interrupt
Routine

of the vpsw may also be modified if desired. The for­
mat of the vpsw is given in Figure 39 for reference.
Note that the preceding procedures apply to non­
privileged interruption-handling routines only. For a
description of privileged interruption-handling pro­
cedures, see the System Programmer's Guide.

Interrupt delay is accomplished through the SAl and
RAE macro instructions, which allow the user to inhibit
or permit further interrupts while his interrupt han­
dling routine is in control. The SAl macro instruction
delays interrupts to the task. These interrupts are not
lost, they are queued up in the supervisor. The RAE

macro instruction pem1its interrupts to the task (in­
cluding those that were queued while the SAl was in
effect).

Reg 1 ... 0

4

8

12

16

20

24

28

32

Pointer to Communication Area

Pointer to Data Control Block

Format of Timer Type Timer Number
Timer Interval: 1------- ---------------

Message Length Message Number ------- ------ -------f- _ _ _ _ _ _ _ ______ ~V£. ~,!!b!." __

Program Interrupt Mask

Attention Ma sk
- -P-;;-i;;!e7 t7. Ti';e;-I;';"~I- - - - - - - - ---- --- ---- -- -- - ----- ---Pointer to Message Area

Entry Point 1-V·value

Entry Point l-R·value

Reserved for Use by INTlNQ

Reserved Privileged Reserved DE Type
Inhibit
Switch

Reserved for Use by INTlNQ

Program Mask Save Area

Reserved

Figure 38. Interrupt Control Block (ICB) Format

The INTINQ macro instruction allows the user's inter­
rupt-handling routine to optionally:

1. Relinquish control until a specified interrupt occurs
(MODE=R).

2. Enter a wait-state until a specified interrupt occurs
(MODE=W).

3. Branch conditionally, depending on whether a spec­
ified interrupt has occurred (MODE=C); if the inter­
rupt has occurred, it is dequeued.

4. Delete pending interrupts (MODE=CLEAR).

Figure 40 illustrates the use of all the interrupt-han­
dling facilities. The circled numbers in Figure 40 are
explained below. The example shows the logical se­
quence of events as might occur in a situation where

three interrupt routines are specified, two with ('qual
priority.

In the PSECT of this program, the following instruc­
tions are written:

rcm SxEC El'c=HOUTlNEl,CO\IAHEA=CAI.
INTTYI'=

ICB2 SxEC El'=HOUTINE2,CO~IAHEA=CA2.
JNTTYl'=

ICB3 SxEC El'=HOUTINE3,CO\IAHEA=CA:3.
INTTYP=

CAl DS 41' CO~f1IIUNICATION ABEA I
CA2 DS 41<' CO~Ir..IUNICATION ABEA 2
CA3 DS 4F CO\I\IUNICATION A1\EA :3

Note that in this illustration the sccond digit of the
Specify Entry Condition macro instruction (shown as
x), having no significance in the example, is not filled
in. Also, the interrupt type is not specified since this
parameter varies with thc particular macro instruction.

1. In the main routine the user has activated intcrrupt­
handling routines under the conditions described in
the SpeCify Entry Condition macro instructions. As­
suming that the third SIR specifics the same gronp
of interrupts as the second SIR, the third has an im­
plied priority over the second.

2. An interrupt of the type first specified oeeurs in the
main routine. The system, recognizing that a user's
interrupt-handling routinc has been spccified:
a. Saves the general and floating point registers in

the supervisor area (setting register zero appro­
priately).

b. Saves the interrupt information in the indicated
communication arca (setting register one to the
ICB, the first \\lord of which contains the address
of the communication area).

c. Sets register 1.'3 to a standard TSS savc area in
which the address of the I'SJo:CT of the interrnpt­
handling routine has heen stored in the 19th
word.

d. Sets register 15 to the entry point of thc intcr­
rupt-handling routine, and register 14 to the ad­
dress (in the system) to which the interrupt
routine should return.

3. The user issues a SAl macro instruction. \Vith this
instruction, the user requests that further interrupts
of any type be delayed (enqueued) until this inter­
rupt-handling routine re-enables them.

4. \Vhen the interrupt specified by the second SIR

macro instruction occurs, it is not honored immedi­
ately because of the previously issued SAL Instead,
it is enqueued by the system and will be honored
vvhen the user's interrupt routine issues a RAE or
returns. The interrupt may, in fact, never be hon­
ored if an INTIXQ dequeues it.

Appendix D. Interrupt Considerations 169

I r~~-- 8 bytes --~~~
01 7 8 9 10 11 12 15 16 31 32 63

Task Mask
Program

Mask

~ v u -' u

~
-

Interrupt Code

t% :;

j@§ ~ "- ~ <I> a :;
~ ;:;:: " c 0 ~ c _ a 3: ;:::

'" 0 o ~

"- - > " u

.~~
c-"' >0 c ._
~ " :;; - ::J~ " .:: E ~ o u ,,-6,

o:~
- >-x ~

"- " "-'« .- c x .-I- _ UJO wen

Figure 39. Virtual Program Status Word (VPSW)

5. This interrupt is treated the same as the interrupt
at 4, except that its priority being higher will cause
it to be honored before 4, unless it is dequeued.

6. This macro requests that the system examine the
lCB for the interrupt types specified. If an interrupt
of the type is queued, the branch will be performed.
If it is not, execution will continue with the next
sequential instruction. When the interrupt is found
to be queued, and the branch is taken, the interrupt
is then removed from the queue.

SAVE

{
S'IR

fi\.-.----.. SIR
V - SIR

RETURN

ICB1, PRIORITY = LOW
ICB2, PRIORITY = HIGH
ICB3, PRIORITY = HIGH

Interrupt L-_
Occurs

0f-------l.~ SAl

0f-------l ~
0f------1 ~ .

Inhibits Interrupk

Interrupt 2 Occur>
and Is Queued by
System

Interrupt 3 Occurs
and Is Oueued by
System

01-----I~ .. °INTlNO ICB2, Conditional
'-::..J Branch
No Branch

Branch Executed
Dequeues Interrupt 2

o .. RAE Permik Interrupts

'-------J..- ,RETURN

Figure 40. Illustration of Interrupts Being Serviced

170

Instruction Counter

7. When the RAE macro instruction is issued, all inter­
rupts that have been enqueued since the SAl are
honored. In this case, since interrupt 2 was de­
queued by the lNTINQ macro instruction, the only
enqueued interrupt in the list is interrupt 3. When
the interrupt 3 routine returns control (to the next
sequential instruction beyond the RAE in the main
routine), the main routine then returns. The sys­
tem then resets the general and floating-point regis­
ters to the contents of the saved area (as pointed
to by register zero on entry) and resumes execution
at the location specified in the old vpsw.

This appendix discusses use of the DDEF command
(Figure 41) and includes the following topics:

• Preparing a DDEF for a new data set (Table 21)
• Preparing a DDEF for an existing data set (Table 22)
• Specifying DCB parameters in a DDEF command

(Table 23)
• DDEF and data set organization requirements for

language processing
• DDEF and data set organization requirements for

commands (Table 24)
• SECURE command requirements for non­

conversational tasks
• DDEF considerations for multiple executions in

the same session
The purpose of the DDEF command is to allow the user
to specify those data sets that are to be created or proc­
essed during the execution of his program or the com­
mands he has issued. The DDEF command:

• Associates a DCB with a named data set-the ddname
appears in both a DCB and a DDEF.

• Names the data set to be created or processed­
DSNA:ME parameter

• Requests, when necessary, device and device space
allocation and volume mounting-uNIT, SPACE, and
VOLU:\,fE parameters.

• Dennes labeling conventions to be used and certain
label information if desired-LABEL parameter

• Declares the disposition of the data set (i.e" whether
a new data set is to be created or an existing one is
to be processed) -DISP parameter

• Allows declaration of data set attributes and char­
acteristics-DSORG and DCB parameters

The DDEF command (or macro instruction) causes
the parameters included therein to be recorded in an
entry in a table known as the Task Data Definition
Table (TDT), which is maintained by the system. This
table is not of concern to the user; it is described here
only as an aid to understanding the functions of the
DDEF command. Each entry is the result of one DDEF
command or macro instruction and is identified by the
ddname which appeared in that command or macro
instruction.

The complete DDEF command is shown in Figure 4l.
For clarity, the DCB parameter, with all possible sub­
operands is shown separately.

The system locates data set characteristics and attri­
butes by searching the TDT for an entry with the same
ddname as appears in the data control block (DCB)
specified in the user's program (or system routine).

Appendix E. Data Set Characteristics

The TDT is discarded each time a session is com­
pleted (i,e" log-off time). IIenee, a DDEF cOIllIll:md

must he given for each data sd to IH' proccssed in
every session. For S0111e data sets, the system itself
effectively issues the necessary DUEF (s('c Tahle :21).

All VA~I data sets are (1IIIonwfi('(/7fy ('(//afo,!!.(·d whell
they are created. SAM data sets mllst he cata log('d hy
the llser, using the CATALOC cOIl1Ill;tml (or macro),
vVhen the Ilscr isslIes a CATALOC COmlllalHl lIaming a
data set for which a DDEF has hc!'!) give!) ill th!' <'IIIT(,l1t
session, label, organization, ullit, alld volume illionna­
tion from the TDT entry are recorded in the sv~t('J1l
catalog. A subseqllcnt DDEF command which lIam('s thaI
cataloged data sct is Significantly simpkr, sin('(' the S\'S­

tern will automatically extract that informatioll from the
catalog and place it in the TDT entry heing hllill; i.('"
for cataloged data sets, the lIser dol'S lIot rl'sp('cify ill
the DDEF the information that is already in the catalog,

VVhen the data set is written, some of its attrihutes
(e.g" record length (LHECL), record type (IIECFl\(),

etc,) arc recorded in the data set control block (DSCB)
on direct access devices or in the tape label. The
system ,viII also (~xtract this information from the
DSCB or label when an existing data set is hcing proc­
essed; hence, the user docs not resp('cify that illforma­
tion in a DDEF command or \vithin a nCB within llis
program (except for ASCII tapes),

There are thn'c points to consider in providing DDEF
commands:

1, For a ne\v data set (and for all ASCII tapes), tlw user
must supply all characteristics and attrihutes, or
specify only those rcquired and rely upon system­
assigned defaults for the remainder.

2. For an existing data set, the user should specify
only that information not recorded in the DSCB or
label.

3. Further, if the existing data set is cataloged, the
user should not specify information already in the
catalog,

The following general guidelines and Tables 21 and
22 provide information for the proper use of the DDEF
command (or macro instruction).

1. If a DCB is opened (OPEN macro instruction) and no
DDEF with the same ddname has previously been
issued and:

Appendix E. Data Set Characteristics 171

DDEF I I [V0
PSSI

p I] DDNAME= name \\' DSORG=
PCSOUT

RX

,DSNAME= {~~;;e }
l}5name l

[, DCB= ([data definition nome J [,DSORG=code] ['RECFM=code]
[,LRECL=integer] [,KEYLEN=integer]
[,RKP=integer] [,PAD=intege']
['MACRF=code1 [,DEVD=code]
[,DE N=integer 1 [,TRTCH=code J
[,OPTCD= I wi A IJ [,SLKSIZE=integer]
[,IMSK=code] [,NCP=integer J
[,BUFNO=integer] [,BUFL =integer]
[,BFTEK=code] [,PRTSP=code]
[,STACK=code] [, MODE =code])]
[,EROPT=code] [,8UFOFF=integer]

DA [, datype-integer]

[,UNIT= (TA [,tapetype- {;DC}J) J
device

[,SPACE= (1 ~~L . I ,primary-integer [,secondary-integer] (,HOLD J)]
rcdlength-mteger

[;LABEL= ([fileseqno-integer] [,Iabeltype-

[.DISP= ! ~~~ lJ
[OI'TION= IcoNc !]

, IJOBLlB\

[, RET=retenti on code 1

[, PROTEcr={ ~}]

Figure 41. The DDEF Command

NL
SL
AL
SUL
AUL

a. the session is conversational, the user will be
prompted for all parameters specifiable in the
DDEF command.

b. the session is nonconversational, the session will
be terminated.

2. More than one DDEF cannot be issued for the same
ddname unless it specifies concatenation (OPTION=

CONC) of existing physical sequential (ps) data sets.
3. A data set cannot be referred to by more than one

ddname at a time. If a second DDEF specifies a differ­
ent ddname for a data set, the ddname given in the
earlier DDEF will simply be replaced. This is true
even if the DSNA~!E parameter specifies different
member names of the same partitioned data set.

172

] [,RETPD=i n teger])]

4. With the exception of IOREQ, a data set created with
one access method cannot be processed with a dif­
ferent access method. vs data sets cannot be read
with VI techniques, VI cannot be read with vs, etc.

5. The SPACE parameters should be specified for an
new data sets on direct access devices unless the
installation-assigned defaults are satisfactory. The
HOLD sub-parameter should not be specified unless
the data set is to be extended or modified. The
DSCB maintains secondary space allocation specifica­
tion from the DDEF issued when the data set was
created, thereby obviating the need to specify this
parameter when extending an existing direct access
data set.

6. \Vhen creating private volume data sets, the system
will assign the volume to be used if the volume
specification is VOLUME= (PRIVATE).

7. If no labels {LABEL= (,l'IL) are specified for a tape
data set tlle data set must 1Iot contain a header
label recognizable by TSS,

8. For a cataloged data set, if SPACE, UNIT, LABEL, or
VOLUME operands are entered, diagnostics will be
displayed as appropriate. However, the associated
fields will be taken correctly from the existing cata­
log entry.

Tahle 21. Fonn of DDEF for New Data Sets

9. When a module has been loaded from the wrong
library, the incorrect version of the module must be
unloaded, a DDEF or RELEASE issued for the job li­
brary affected, and a LOAD or CALL issued for the
correct version,

10, When defining an ASCII tape, the DDEF command
(or macro instruction) must always be used to sup­
ply all necessary DCB information; there is no other
sOurce for this information. ASCII tapes cannot be
cataloged.

WHEN APPLICABLE

VAM BSAMORQASM

Puhlic Private Private
OPERANDS USERLIB JOBLIB USERLIB JOBLIB DISK TAPE COMMENTS

DDNAME=data definition name X X X X X X 1-8 characters (1st alpha-
betic); cannot begin with
SYS; must be same as
DDNAME in macro
instruction.

[,DSORG==data set organization] VS VS
VI VP VI VP PS PS
VP VP

,DSNAME=.,..boI [{ ,3330 ~ X X X X X X Maximum of 35 characters
(18 quali.6ers) .

r=("'(\ ~i;r f l)] • • • •
X X X X Must specify for new V AM

DA 2314 X X X X data set on private volume
,UNIT= ~:~~~ type] X X and uncataloged physical

X sequential data set. If
nonconversational, obtain
devices with SECURE
command.

['~Arn= ~~ l~ 1
X
X
X

X X X X X
[,secondary] X X X X X
[,HOLD] X X X X X

['VOLUME=([{~=!E })]

X X In nonconversational, use
X X X X SECURE command to

obtain private volumes.
X X X X
X X •• ••

X X
X X Must he specified for ASCII
X X tapes.

X
X X

X
[,RETPD=integer] X X X X X X

[,DISP=NEW] X X X X X X Data sets are defaulted to
existence: if cataloged, OLD
is assumed; if uncataloged,
NEW is assumed. ,

[,OPTION:::JOBLIBJ X X
{,RET=codes] X X X X

[,PROTECT= {~}] X Defaulted to N
X

OSee Table 23
"Must be specified here

Appendix E. Data Set Characteristics 173

Table 22. Forms of DDEF for Existing Data Sets

WHEN APPLICABLE

CATALOGED"" BSAMOR QSAM

VAM CATALOGED UNCATALOGED

OPERANDS USERLIB JOB LIB DISK TAPE DISK TAPE COMMENTS

DDNAME=data definition name X X X X X X 1-8 characters (1st alpha-
betic); cannot begin with
SYS; must be same as
DDNAME in macro
instruction.

[,DSORG=data set organization] PS PS
X X X X X X Maximum of 35 characters

,DSNAME= t symbol ~ (18 qualifiers).
"symbol X X For data sets created undeT

OS or OS/VS; maximum

LDCBo(, ... ll [f~:}] of 44 characters .
" " • • • •

[(I ,2311 I)] X Must specify for uncata-
_ DA ,2314 X loged physical sequential

,UNIT - J:v~~:pe type] X data set. If nonconversa-
X tional, obtain devices with

[SPACEo (D ~d kngili lJ) 1
SECURE command.
Never specified for
DISP=OLD data sets.

, ,prunary
Lsecondary]
£,HOLD] X X X X

[([{ PUBLIC }])[If nonconversational, use
,VOLUME= PRIVATE SECURE command to

volseqno X X obtain private volumes.
[{ PRIVATE }] volsemo, ... X X

['L~ELo([:=I~)O]
X Normally defaulted; file
X sequence number is in

X X catalog. However, must be
X specified for ASCII tapes.

X X
X

[,DISP= {~t~ lJ X X X X X X
X X X X MOD applies only to

BSAM; positiOns after last
record of data set.

[OPTION- { JOBLIB 1] X
, - CONC Only OLD BSAM data sets

X X X X can be concatenated.
['RET=codes] X X

[,PROTECT= { ~}]
X X Default when DISP=
X X MODisN

"See Table 23
"" Existing uncataloged V AM volumes must be cataloged with an EVV (Enter V AM Volumes) command before they can be accessed.

174

Forms of the DDEF Command
Tables 21 and 22 specify all allowahle forms of the
DDEF command (excluding DCB parameters) for new
and existing data sets, respectively, where the data
set organization is VS, VI, VI', or ps. Standard TSS meta­
language notation (as described in the Command
System User's Guide) is used. The first column speci­
fies the general structure of each parameter, including
whether parentheses are to be entered or not and the
exact entry for providing default (or specification omis­
sion) entries. IBM-assigned defaults are underlined and
may be selected by omission of specification in the
DDEF command.

DCB Parameter Speciflcation
It is not required that DCB information be specified in
the DDEF command (except for ASCII tapes, \vhere it is
always required). It is, however, sometimes desirable
to code a general-purpose program for which the at-

Table 23. Use of DCB Parameters in the DDEF Command

tributes of the data sct(s) to be processed are not
known or not specified at assembly time in DCB macro
instmctioIlS. In this case, these parameters may be sup­
plied dynamically (i.e., without program, reassembly)
from the DCB information maintained in DSCBS, data set
labels, and DCB subparameters specified in the DDEF

command.
[f a field has becn specified in the DCB at assembly

time or by thc user's program prior to OPEN, it will not
be modified by the system if a later specification for
the same fi(·ld is given; e.g., if there were a LRECL (logi­
cal record length) specification in the DDEF command
as a DeB subparameter and the DCB also contained an
LRECL specification at assembly time, the DDEF specifi­
cation would be ignored. Any field supplied dynami­
cally by the system is reset when the DeB is closed. This
p.ermits successive dynamiC DCB parameter specifica­
tion between successive OPEN-CLOSE executions.

Information is used or filled into a user's DCB at OPEN

time in the follOWing order:

APPLICABLE DSOHG IF D1SP=OLD WILL

DCB VS VI VP PS rue: BE FILLED FROM

OPERAND SPECIFIES CATALOG DSCH OR LABEL

DSORG data set organization x x x x x x VIP/VSP

RECFM record fonnat x x x x x

LRECL logical record length x x x x x

KEYLEN key length x VIP x x

RKP key position x VIP

PAD space to be left on each page x VIP x
of VI(VIP) data set for subse-
quent insertions

MACRF type of macro inst:uctioIlS used x x

DEVD device type x x

DEN tape density x x

TRTCH data conv, parity, translation x x

OPTCD write check or ASCII tape x x I x

BLKSIZE maximum block length x x x

IMSK error recovery procedures x x x

NCP number of consecutive READ, x x K

WRITE or IOREQ macro in-
structions issued before CHECK

BUFNO no. of buffers x x

BUFL buffer length x x

BFTEK buHer technique x

PRTSP print spacing x

STACK stacker selection x

MODE mode of operation x

EROPT error option x

BUFOFF buffer offset K

Appendix E. Data Set Characteristics 175

1. DCB macro instruction assembly time specification

2. User's program prior to OPE", (can modify above)

3. TDT entry containing DDEF and catalog information

4. DSCB or data set label (existing data sets only)

The DCB parameters applicable to each data set or­
ganization and which are recorded in the system cata­
log or in a DSCB or data set label are shown in Table 23.
Refer to the publication Assembler User Macro In­
structions for the actual parameter specifications.

Data Set Definition Rules
for Language Processing
No DDEF command is required to define the source and
listing data sets, or the object modules, used in lan­
guage processing. The DDEF command is required when
the job library that is to receive the object module is
not the library at the top of the program library list;
that job library must be defined. Each library referred
to by INCLUDE statements (except USERLIB), and each
job library used by automatic call, must also be defined
by a DDEF command.

Data Set Definition Rules
for TSS Commands
Table 24 provides information relating to the structure
of and DDEF requirements for data sets processed by
TSS commands.

Secure Requirements
for Nonconversational Tasks
Nonconversational tasks are enqueued until the system
is able to fill the requirements for private devices. The
list of requirements is made available to the system

Table 24. Data Set Definition Requirements for Commands

COMMAND RELATED DATA SETS

BACK New SYSIN data set that is to control
completion of this task in nonconversa-
tiona I mode.

BUILTIN USERLIB or a virtual partitioned data
set specified by DSNAME will contain
a member named SYSPRO.

Virtual partitioned data set must con-
tain an object module with entry point
named by EXTNAME operand.

by means of a SECURE command, which the user must
include in the task's command procedure as the first
command after I~OGON. Then, as each DDEF command is
read and processed, the required devices are allocated
from those that have been reserved for the nonconver­
sational task. Any attempt to allocate more than have
been secured causes the task to be terminated.

In determining the number of devices needed in a
task, the following points should be considered:

• The number of devices should be at least equiva­
lent to the number of data sets on diHerent private
volumes that are opened at anyone time. Two or
more data sets residing on the same private volume
may require only one device (the exception is de­
scribed below) .

• If two diHerent data sets are referred to in sequence
(i.e., the first is closed before the second is opened)
the system can be directed to allocate the same de­
vice to both by including the UNIT=AFF option in
the second DDEF along with the ddname of the first
DDEF. W'hen the UNIT=AFF option is selected, the
device types of both data sets must be compatible
and neither should be a new data set residing on a
direct access device. If several data sets are to be
serially processed with unit affinity speCified, each
data set may have unit affinity with only the most
recently processed data set. Note that unit affinity
may only be specified for physical sequential data
sets. .

• If two diHerent data sets on private volumes are
referred to by the same ddname, the UNIT=AFF

option cannot be selected. Since the first DDEF must
be released prior to the second DDEF, two devices

DSORG DATA SET DEFINITION

VS, VI New SYSIN data set must be cataloged, or defined
by previous DDEF command in conversational por-
tion of this task.

VP Virtual partitioned data set does not have to be de-
fined or cataloged when BUlL TIN command is
issued.

VP Virtual partitioned data set must be in user's pro-
gram library hierarchy when command defined by
BUILTIN is issued. (DDEF with OPTlON=JOB-
LIB)

CATALOG Data set to be cataloged. PS Data set to he cataloged must be defined by previous
DDEF command in this task, unless UPDATE op-
tion specified.

CDD Data set containing only DDEF com- VI Data set must be cataloged, or defined in current task.
mands.

176

Table 24. Data Set Definition Rt'quirements for Commands (Continued)

COMMAND RELATED DATA SETS DSORG DATA SET DEFINITION

Data set to be copied. Any ex- Data set to be copied must be cataloged or defined
cept RX by previous DDEF command in this task.
(for USCT-

con-
trolled
physical
I/O with
private
devices)

CDS Copy data set. Any ex- VAM-does not have to be defined or cataloged.
cept RX PS-should be cataloged or defined to insure proper
(for user- volume and unit.
con-
trolled
physical
I/O with
private
devices)

CLOSE Data set to be closed. any Data set to be closed must be defined by
DDEF command in this task.

previOUS

DATAl Data set to be entered. VS, VI No DDEF command is required if the data set is to
reside on public storage; data follows this command
in input stream. If the data set is to reside on private
storage a DDEF must be issued before the com-
mand.

DEFAULT User profile data set in USERLIB. VP Data set must be defined in current task.

DELETE Data set whose name is to be removed any No DDEF command required for this command.
from catalog.

DSS? Data sets whose status is desired. any Each data set whose status is to be presented must
be cataloged; no DDEF command required for this
command.

DUMP Data set to be printed as a result of VI DDEF command whose ddname is PCSOUT must
program control command DUMP. be defined prior to execution of DUMP command.

EDI'P Data set to be processed by the Text VI Data set must be. cataloged, or defined in current
Editor. task. This is done automatically~

ENDz Data set being processed by the Text VI No DDEF command reqUired for this command.
Editor, or indicates PROCDEF com-
mand completion.

ERASE Data set to be erased. VS, VI, VP Data set to be erased must be cataloged.

EVV Private data sets whose names are to VS, VI, VP No DDEF command required for this command.
be entered in catalog.

EXECUTE SYSIN data set for non conversational VS, VI Data set must be cataloged; no DDEF command re-
task set up by this command. quired by this command.

KEYWORD SYSPRO data set in USERLIB, SYS- VIP Data set must be defined in current task.
PRO data set in SYSLIB.

LINE? Line data set containing lines to be VI Line data set must be cataloged or defined by pre-
presented. vious DDEF command in this task.

1If the DATA command was used to create the data set within the current task, then thc data
set is defined as if a DDEF command had been issued by the user directly. If the data set is
also V AM organized and resides in public storage, it is automatically Ultaloged.

2 These are the basic directive commands of the Text Editor. SCI.' Cummand System User'~ Guide
for details concerning the data manipulation commands of this facility.

Appendix F. User Defined Procedures 177

Table 24. Data Set Definition Requirements for Commands (Continued)

COMMAND RELATED DATA SETS DSORG DATA SET DEFINITION

FTN VP Object module to be loaded is identified by external
ASM name specified in this command; it must be in a
LNK library in the current program library list.

LOAD PLI
User- Object module to be loaded.
written
problem
program

MCAST User profile data set in USERLIB, VP, Data set must be defined in current task.
session profile in task virtual memory. VSP

MCASTAB User profile data set in USERLIB, VP, Data set must be defined in current task.
session profile in task virtual memory. VSP

MODIFY Data set to be changed. VI Data set must be cataloged or defined by
DDEF command in this task.

previous

PC? Data set whose status is required. any Each data set whose status is to be presented must be
cataloged; no DDEF command required for this
command.

PER!\fIT Data sets for which sharing is per- any Data sets for which sharing is permitted must be
mitted. cataloged; no DDEF command required for this

command.

POD? Virtual partitioned data set for which VP Virtual partitioned data set must be cataloged, or de-
information about its members is given. fined by previous DDEF command in this task.

PRINT Data set to be printed. PS, VS, VI Data set must be cataloged or defined by previous
DDEF command in this task. A previous DDEF re-
quired for unlabeled tapes.

PROCDEF USERLIB or virtual partitioned data VP Virtual partitioned data set does not have to be de-
set named by DSNAME will have a
SYSPRO member created to contain

fined or cataloged.

procedure definition.

PROFILE User profile data set in USERLIB, ses- VP Data sets must be defined in current task.
sian profile in task virtual memory.

PUNCH Data set to be punched on cards. VS, VI Data set must be cataloged or be defined by previous
DDEF command in this task.

REGION' Data set to be processed by the Text VI Data set must be cataloged, or defined in current
Editor. task.

RELEASE Data set to be released. any Data set to be released must be defined in previous
DDEF command in this task.

RET VAM data set whose data set de- VS, VI, VP Data set must be cataloged.
scriptor is to be changed.

SHARE Data sets for which sharing is re- any Data sets for which sharing is requested must be
quested. cataloged; no DDEF command required by this

command.

SYNONYM User profile data set in USERLIB, ses- VP Data sets must be defined in current task.
sion profile in task virtual storage.

TV Physical sequential data set (from a PS
VT operation) to be written on a V AM

Data set (input)
current task.

must be cataloged or defined in

volume ..

VT VAM data set to be copied to mag- VS, VI, VP Data set (input) must be cataloged or defined in
netic tape as a physical sequential current task.
data set.

VV V AM data set to be copied into direct VS, VI, VP Data set (input) must be cataloged or defined in
access storage. current task.

WT Data set to be recorded on magnetic VS, VI Data set must be cataloged or defined by previous
tape in print format. DDEF command in this task.

1 These are the basic directive commands of the Text Editor. See Command System User's
Guide for details concerning the data manipulation commands of this facility.

178

must be secured for the data sets even though both
data sets are not open at the same time. Since the
ddname must be unique in each DDEF, the first data
set must be released prior to the second DDEF.

Therefore, two devices are necessary since the RE­

LEASE command removes the device from the task's
allocation prior to the second DDEF command.

Data Definition Considerations
for Multiple Executions in the Same Session
A DDEF command provides the linkage between the
ddname used in the source program DeB and the actual
physical data set. Once a DDEF has been entered, it
remains in effect until log-off time, unless the definition
is released or redefined.

If two programs are executed in succession, the fol­
lowing conditions could arise:
1. Both programs refer to the same data set with the

same ddname. One DDEF command issued prior to
the execution of the first program is sufficient for
both executions if the data set is read in both pro­
grams or written in the first and read in the second.
If, however, the data set is written in both pro­
grams, the data is not automatically concatenated.
Data written in the first execution would be written
over in the second execution. If the user does not
wish this to occur, he must take the steps outlined
in 3.

2. Both programs refer to the same data set with dif­
ferent ddnames. Each execution must be preceded
by a DDEF command giving the ddname as appropri­
ate for the execution. Since the second DDEF will
contain the same DSNAME as the first, effectively re­
defining it, the first definition need not be released.

3. Each program refers to a different data set with the
same ddname. Each execution must be preceded by
a DDEF command giving the DSNAME for the ddname.
In addition, since the second DDEF has the same
ddname, the first definition must be released prior
to the second DDEF. \Vhen a data set on a private
volume is released, the input/output device is also
released unless another defined data set resides on
that same volume. In a nonconversational task, if a
device is freed by a RELEASE command, the user
must account for this when specifying the SECURE

command. For example, if two programs read dif­
ferent data sets on separate private volumes and
both are referred to by the same ddname, the
following procedure is necessary:

a. SECURE Two devices--even though only one device
is needed at anyone time

b. DDEF For first data set
c. CALL First execution
d. RELEASE First data set
e. DDEF For second data set

f. CALL Second execution

Appendix E. Data Set Characteristics 179

Appendix F. User Defined Procedures

This appendix will depict representative uses of the
Procedure Definition (PROCDEF), BUILTIN, and the User
Profile. These facilities all enable the user to tailor his
task to special situations, while still retaining the gen­
eralized scope provided by the system-supplied com­
mands. Command System User's Guide is the primary
source for explanation of these user-created proce­
dures.

Procedure Definition (PROCDEf)

The PROCDEF command defines a command procedure
which consists of other commands. When issuing
PROCDEF, the user must specify the name to be assigned
to the user-written command procedure. The system
then prompts the user to enter his first line by issuing
the line number 100. If the user wants to build his
command procedure so that he can substitute values
for the operands in the created procedure, the PARAM

line should be incorporated. Without the PARAM line,
the procedure remains fixed, as defined, with no ad­
justment of operand values possible at execution time.
These dummy operands that comprise the PARAM line
may be both keyword and positionally specified (see
Example 1 in this appendix).

Entering Procedure Text

After PROCDEF is issued (optionally using the PARAM

line) all subsequent lines issued without a Single pre­
ceding break character (_) will be included in the pro­
cedure text. The system prompts for each line with a
line number, and there is no apparent limit on the num­
ber of lines the user may enter.

The user may enter system-supplied commands (in­
cluding PROCDEF and/or BUILTIN commands) or other
user-created commands. The commands entered need
not include all of the operands normally associated
with them, but only those necessary for the successful
performance of the functions requested. These oper­
ands may be indicated as variable (dummy names
,vithin a PARA.M line) or may be fixed with explicit
values. Fixed operand values are not included in the
PAR. M line, and therefore will be executed exactly as
given in the text when the procedure is called.

A direct call to a language processor-produced ob­
ject module may be produced by entering the name of
the module in the procedure text.

180

Commands preceded by a break t:haracter (e.g.,
_-END) are executed immediately and do not beeome
part of the proeedure text.

NOTE: To insert a t:ommand requiring a break character
for execution (e.g., LIST in the text editor context)
during PROCDEF generation, use two break characters to
insure that one will appear with the eommand in the
PROCDEF.

Terminating Procedure Definition

The user terminates PROCDEF processing by entering
a break character fonowed by anyone of these items:
an END command, an EDIT command, another PROCDEF

command. When the user enters another PROCDEF com­
mand, the same options for terminating its processing
are available. Eventually, the last PROCDEF desired will
have to be terminated with either an END or an EDIT

command.

Nested Procedure Definitions

The text of a procedure, defined by PROCDEF, may con­
tain other PROCDEF commands, entered just as any other
system-supplied command, without a preceding break
character. These additional PROCDEF commands are said
to be nested in relation to the complete procedure.

Example 1: PROCDEF NAME = MYJOB
100 PARAM DDNAME=ALPHA,DSNAME=

DATASET,VOLUME=ANY,$N,STATE=$l,
ACC=$2,NEWNAME=BETA

200 DDEF DDNAME=ALPHA,DSORG=VI,
DSNAME=DATASET,VOLUME=ANY,$N

300 CATALOG DSNAME=DATASET,STATE=
$1,ACC=$2,NEWNAME=l\ETA

400 -END

In the PARAM line in Example I above DDNAME,

DSNAME, VOLUME, STATE, ACC, and NEWNAME are ex­
ternal strings (keywords) that associate the calling
parameters with the internal strings (in the PARAM

line) ALPHA, DATASET, ANY, $1, $2, and BETA respec­
tively.

DDEF, on line 200, is a system-supplied command
with the variable operands DDNAME, DSORG, DSNAME,

VOLUME, and DlSP. The keyword DlSP is omitted and the
dummy operand $N is supplied positionally. DSORC=VI

is a fixed operand value and will be so treated when the
procedure named MYJOB is called. Values for the other
variable operands will be supplied when the procedure
is called.

CATALOG, on line 300, is also a system-supplied com­
mand. Its operands are all variable and will be substi­
tuted when the procedure is called.

The _END, line 400, terminates the definition of this
procedure. It can now be executed by the user.

Example 2: MYJOB DDNAME=SETUP,DSNAME=ONE,
VOLUME=131313, OLD, STATE=U,
ACC=U,NEWNAME=TWO

This parameter string associated with MYJOB will
cause the dataset named ONE to be defined and re­
trieved as an existing (DISP=OLD) data set on private
volume #131313. The catalog entry for ONE will then
be updated, renaming the data set as TWO. The access
qualifier of U (unlimited access) is retained.

Example 3: MYJOB SETX,FIRST,PRIVATE,NEW,N,R,
SECOND

This parameter string associated with MYJOB will
cause the data set named FIRST to be defined for a
private volume. The data set does not yet exist (DISP=

NEW). The data set will be cataloged with read-only
access, under the data set name SECOND.

Object Program Definition (BUILTIN)
The BUILTIN command defines an object program that
the user can invoke as if it were a command. It is useful
for accomplishing actions not achieved by any current
system-supplied commands. If the user wishes to define
operands for his BUILTIN command, he must supply the
code within his module to handle the parameter values
supplied when the module is called. The BPKD macro
instruction (BUlL TIN Procedure Key Identifier) must be
supplied in the object code as part of the PSECT and
have the expected parameters defined. The BPKD macro
instruction must also supply the names needed to pro­
vide linkage between the module and the BUILTIN com­
mand defining that module. The following source pro­
gram could be assembled, with the object module
being retained for future use. The program is only a
randomly selected example to indicate the sequence of
events necessary for BUILTIN, and the control features
(BPKD) necessary for incorporation. Any other se­
quence of executable code would suffice equally as
well.

PSTl6 PSECT
ENTRY BEGIN16
DC F'76'
DC IBF'O'

USEREX BPKD BEGIN16
CSTl6 CSECT
BEGIN16 BASR 11,0

USING *,11 LOCAL BASE
REGISTER

L 13,72(0,13)
USING PSTl6,13

HERE

LEAVE
AREA

LENGTH

EQU *
GATRD AREA +3,LENGTH

CLl AREA+3,C'E'

BE LEAVE

MVZ AREA+3(1),=X'QQ'

L 5,AREA
SLA 5,1

ST .S,AREA
MVZ AREA +3(1),=X'FF'

GATWR AREA +3,LENGTH

B
EXIT
DC

DC

END

HERE
'PGM FINISHED'
F'O'

FT

READ FROM
SYSIN
CHECK
IF END
BRANCH
IF YES
CONVERT
TO BINARY

MULTIPLY
BY 2

CONVERT
TO EBCDIC
WRITE ON
SYSOUT

READ/WRITE
AREA
LENGTH
AREA

Assuming that the above module was assembled
without specifying a job library, the task USERLm will
contain the object code available via entry point
BEGIN16. Example 4 to follow shows how this code se­
quence may be retrieved.

Example 4: BUILTIN NAME=GETPROG,EXTNAME=
USEREX
The object program definition via a user-created
command (GETPROG) is now established.

GETPROG
The execution of this user-defined command will
now result in the calling and nmning of the pro­
gram shown earlier. Control will be transferred to
the entry point named BEGIN16, with linkage estab­
lished via parameters in the BUILTIN command and
the BPKD macro specification.

The User Profile
The user profile is a specialized data set containing in­
formation pertinent to each user. Stored within this
data set is information regarding the values the user
generates for defaults and synonyms, and optionally,
his command symbols. The user profile is a member of
the partitioned data set named USERLIB.

Initially, the system provides the user with a proto­
type user profile, resident in SYSLIB, which contains the
default values for system-supplied commands and any
initial synonym values.

\¥hen a user is joined to the system, a copy of the
prototype profile in SYSLm is made a member of his
user library. He can make changes or add to the proto­
type copy in memory during a terminal session by
issuing a SYNONYM or DEFAULT command, or by using
the SET command to establish command symbols. Such
changes aHect only the session profile, unless followed
by the PROFILE command, which pel'JIlanently changes
the user profile.

Appendix F. User Defined Procedures IBI

When the prototype profile is not pennanently
changed during a session, the memory copy is erased
when LOGOFF is issued. When, during the course of a
session, the user issues a PROFILE command, the entire
profile copy, as it exists in memory, is written into
USERLIB, and given the member name of SYSPRX.

When the user initiates his task, the system gener­
ates a search through USERLID to locate the user's pro­
file. If it is not found (i.e., the user has erased his user
profile), the system copies the prototype profile from
SYSLIB into memory, where it may be accessed and
used. Unless changed via PROFILE, this memory copy
of the prototype profile is erased at LOGOFF.

The user profile can exist concurrently on three
levels: the prototype profile in SYSLIB, the user profile
in USERLIB, and the session profile in storage.

SYSLIB

USERLIB

VIRTUAL
MEMORY

182

Prototype profile resides in SYSLIB as member
SYSPRX. It is copied into storage if there is no
user profile in USERLIB.

~
User's profile (member SYSPRX) is copied into
storage from USERLIB every time LOGON com-
mand is issued.

LOGON ,rROFILE , (every session) (whenever user wishes)

Changes made during session are entered on this
copy; PROFILE command causes session profile
to replace the one in USERLIB.

At the user's first LOGON, the system provides initial
default values for most operands .. \Vhen the user does
not explicitly define operand values when entering a
command requiring these values, the system will de­
fault to the initial value that it has provided. If the
initial value is null, the user must speCify a value. The
default table is a list of default values supplied by the
system (see Command System User's Guide).

A user can specify his own default values to be used
in place of or in addition to these system-supplied de­
fault values by using the DEFAULT command. Any
changes become a part of his user profile for the session
involved and may, of course, be saved for later sessions
by issuing a PROFILE command.

Each user has a separate user library and therefore a
separate user profile. At times the user may find it de­
sirable to share the copy of the profile in his user
library. Since his copy is addressable as a nonnal mem­
ber, it can be shared by making USERLIB shareable.
Nonnal sharing precautions and procedures should be
used.

The user may erase his copy of the user profile, exer­
cising the nonnal erasing procedure. He may also log
on without it for a particular session by using the pris-·
tine operand of the LOGON command.

Command System User's Guide should be referenced
for complete details concerning User Profile Manage­
ment.

%E (see end of modifications indicator)
%END (see end-of-data indicator)
%ENDDS (see data card data set)
-it (see num ber sign)

ABEND description 8
ABEND macro instruction 133
ABENDREG command, general form 184
absolute generation name 86-88
access

catalog 62, 86, 88
sharing 78-79,156-157
withdrawal 78

access methods
basic sequential (BSAM) 24-25,34
queued sequential (QSAM) 24-25,34
restrictions 171-180
virtual index sequential (VlSAM) 24-25, 34
virtual partitioned (VPAM) 24-25, 34
virtual sequential (VSAM) 24-25, 34

ADCON (see address constant)
ADCON macro instruction 143
address constant 131
addressing interruption 164
alias 13
alignment

by program control system 138
source statement 103
virtual storage area 157-159

assembler
data set identification 17
diagnostic action 122
general description 102-106
limitations 117
options (see assem bier parameters)
output 107-117
restrictions 117 -121
sample coding 142-147

assembler parameters
default 38-39
general 38-39,107-109,184
required 38-39, 107

AT command .
description 141
example 32, 59

A TTENTION button
effect on command execution 56, 165-166
to cause interruption 165-167
to log on 3, 28

auxiliary storage 157

BACK command
data se t require men ts 176
description 5. 8, 9
example 28,64
background mode (see non conversational mode)
base register 142-148
basic sequential access method (see BSAM)
batch sequence number (BSN) 8,53-55
BEGIN command

description 8
example 28

BFALN (DCB operand)· 25
BLKSIZE (DCB operand) 25. 175
boundary (see alignment)
BPKD macro instruction 34
BFTEK (DCB operand) 25,175
BRANCH command

example 30. 59
BSAM access method 22, 24. 34
BSN (see batch sequence number)
BUFCB (DCB operand) 25
BUFL (DCB operand) 25, 175
BUFNO (DCB operand) 25, 175
BUFOFF (DCB operand) 175
BUILTIN command

data set requirements 176
example 33, 99

bulkl/O 18-19,21

CA (indicates card reader SYSIN) 104
CALL command

example 30,47, 63,64
CALL macro instruction

efficiency considerations 158-159
example 30
general 132-133,144, 149

CANCEL command
description 8
example 28,54

card reader example 80-81
card statement format 103
carriage return 36, 105, 130
CAT macro instruction 28
CATAL(x; command

data set definition requirements 173-174,176
description 12
example 28, 62, 86. 88
generation data group 86-88
renaming option 45
sample usage 28
shared data set 161

catalog
concept 2
effect on DDEF command 171
of library 45
recording of information 171
structure 10-11
system 10
user 10,12

cataloging (automatic system action, VAM) 171
cataloging data sets 12
CB (indicates card reader SYSIN) 80,81, 104
CDDcommand

data set requirements 176
description 17
example 28, 68

CDD macro instruction 17, 28
CDS command

data set req uirements 177
example 29, 79
use 21,29

CDS macro instruction 21,29
character se ts

card format 104
keyboard format 104

CHECK macro instruction 34,61
CHGPASS command

Index

Index 183

descrip tion 8
example 28
general form 181

CLATT macro instruction 167
CLOSE COMMAND

data set requirements 177
example 29
sample usage 29

CLOSE macro instruction 24,29. 34,61.73
COMAREA (see communication area)
COMMAND macro instruction 26
command procedure data set 18
committed statement 106
COMMON control section 162
communication area 168-169
CONC (for OPTION operand of DDEF command) 172
concatenation of data set 172
CONTEXT command

example 30, 96
continuation line

card format 103
keyboard format 104

continuation of terminal command 61. 104
control section (CSECT)

attributes 126
linking 159
name duplication 45
naming rules 143. 160
packing 36
public 156-157
rejection 159
storage allocation 157
unnamed 147

conversational mode
assembler I/O 22
correction of input 105-106
definition of 3
entering commands 4
entering data 34, 18
language processing 128
linkage editing 130-136
output 117
PCS 136-141
SYSIN 4
SYSOUT 4
task

execution 3
initiation 3
interruption 4,164
termination 4

conversion of floating-point constants 139
COPY instruction 123-124
CORRECT command

example 30.96
correction. error (see error. correction techniques)
cross-reference listing

assembler parameter (CRLlST) 39,108
description 113
example 113

CSECT (see control section)

data card data set 19
DA TA command

building a data set at the terminal 75
automatic cataloging 66
data set requirements 177
description 18
example 29,64,66.75
to store DDEF commands 69

data control block (DCB)
DDEF command use 17,171-175

184

general description 15-16
parameterofDDEF command 171.173-174

data in terruption 164
data management

basic sequential 22,24,34
general 10
virtual indexed sequential 12-13,22-24.34
virtual partitioned 13.22-24
virtual sequential 12.22-24.34

data set
cataloging 12.45.61-63
closing 24, 29, 34
concatenating 172
copying 21
defming 15-18

for comands 176-178
for problem programs 15-18

deletion 12, 17
iden tifying 17
list (see list data set)
management 10
modification 21
names)0
organization 12-13
physical sequential (see BSAM)
prestored 18.4446
printing 4748
processing restrictions 171
protection 19-21
reading 49-50
removed 185
residence 13-14
sharing 19-21
source (see source data set)
virtual index sequential (see VISAM)
virtual partitioned (see VPAM)
virtual sequential (see VSAM)

DA TASET command (see data card data set)
data set control block (DSCB) 72.171
DCB (see data control block)
DCB macro instruction

description of use 15-16,23.34
EODAD parameter 49
examples 3,47,49,64.71
omitted parameters 49-50
operand list 25

DCB parameters
DDEF command 171.173-174

DCBD macro instruction 23
DDEr command

description 171-176
example 29
multiple executions 179
~toring for later use 29

DDEF macro instruction 29
(see also DDEF command)

DDNAME
DCB operand 25
DDEF command parameter 171.173-174

DDNAME? command
de scrip tion 18
example 30, 54
use 31

decimal divide interruption 164
decimal overflow interrupt masking 164-165
default

assembler parameters 38-39, 107-109
DDEF parameters 172-175
explicit 107
implicit 107
log-on parameters 36-37

DEFAULT command
data set requiremen ts 177
description 15
example 32, 100

DEL macro instruction 29
DELETE command

data set requirements 177
example 84

DELETE macro instruction 30, 136
deletion

data set 84
source statement 76

DELREC macro instruction 34
DEN (DCB operand) 175
DEPROMPT 12
DEVD (DCB operand) 25, 175
diagnostic action

levels 124
diagnostic messages 4, 35
DlR macro instruction 34,83
DISABLE command

example 31,96
DISABLE macro instruction 31
DlSP (parameter of DDEF command) 173-174
DISPLA Y command

example 32,56
DMPRST command
DSECT 127
DSECT copy parcel 89
DSNAME (parameter of DDEF command) 173-174
DSORG 171

DCB operand 25
DDEF command parameter 173-174,175

DSS? command
data set delmition requirements 177
description 17
example 31,84

DUMP command
data set requirements 177
description 137-138

• example 32,60
duplicate

data set delmition names 176, 179
entry point 159-161
symbols in libraries 53

DUPCLOSE macro instruction 24, 34
DUPOPEN macro instruction 24, 34

EDIT command
data set require men ts 177
example 30, 95-97

EDIT feature (assembler) 112
EDIT option of PRINT command 48
edited symbol table (STEDIT assembler parameter) 39, 108
ENABLE command

example 31,96
END command

data set requirements 177
example 30, 97, 98

END statement 40,52
end of modifications indicator 45
entry point name

dUplication 53,159-161
rules 162

ENTRY statement 49
EODAD

DCB operand 25
ERASE command

action when data set actively shared 79
data set requirements 177
descrip tion 12, 21
example 29.46, 72

object module 46
shared data set 162

ERASE macro instruction 29
ERASE operand of PRINT command 47
EROPT (DCB operand) 25.175
error

assembly 38-41
code 122
control section rejection 159
correction techniques 105-106
detection with CHECK 61
during MODIFY command 44
global correction 105-106
incorre ct da ta se t 7 7
incorrect volume 77
local correction 105
module loading 140. 158
program control system 139
source statement 40
syntactical 122

EVVcommand
data set requirements 177
example 29.77

EXCERPT command
example 30. 96

EXCISE command
example 30. 95

EXECUTE command
data set requirements 177
descrip tion 5, 1 0
example 28, 65-66

execution interruption 164
EXHIBIT command

example 30
EXIT command
EXIT macro instruction 34,43
EXLST (DCB operand) 25
EXPLAIN command 135
exponent overflow 139, 164
exponent underflow 139, 164
express mode 5 I, 117
expression evaluation by program control system 139
external symbols, restrictions 160

flXed-point divide exception 139. 164
tixed-point overflow

general 83, 139
masking interrupt 164. 165

floating-point computations 148
floating-point divide exception 139. 164
format

card statement 103
diagnostic messages 122
keyboard entry 104
macro library 123-125
source statement 103

FREEMAIN macro instruction 136
fully qualified name 10

GATRD macro instruction 26,34,44
GATWR macro instruction 26,34,44
GOG (see generation data group)
generation data group 11

example 86-88
GET macro instruction 34,49
GETMAIN macro instruction 136
GO command

example 30, 57
interrupt cOrisiderations 164

GTWAR macro instruction 26
GTWRC macro instructions 26
GTWSR macro instructions 26

Index 185

HOLD (parameter of DDEF command) 172-174
hou se keeping 84-85
hyphen

command continuation 62
statement continuation 103

ICB (see interrupt control block)
ICTL statements 104
II· command

description 137
example 32,59
floating-point considerations 139

IMSK (DeB operand) 25, 175
index, addition to record 71-73
INDEX data definition name 90
indexed data set organization (see VISAM)
initial virtual storage 157
input

card reader 80
mixing 104

input/output request facility (lOREQ) 23, 24
INSERT command

example 31,95
internal symbol, naming restrictions 162
internal symbol dictionary (ISD)

assembler parameter 39,108
creation 39
link editor use 130
listing (ISDLISn 39,108
program control system use 137
symbols not included 138

interrupt 164-170
asynchronous 166-167
ATcommand 141
display of location 56
external 166-167
input/output 166-167
program 77,164-165,167
program control system 140
resumption of execution 57,60,165
supervisor call 166-167
timer 166-167
types 164

interrupt control block (ICB) 83, 167
interrupt handling

of tasks 82-83
programs 166
routines 164-170

intervention prevention switch (IPS) 165-166
INTINQ macro instruction 168-169
invalid address assignment 58
I/O

assembler 22
bulk 18-19,21
during program execution 22
dynamic 22

10REQ (see input/output request facility)
IPS (see intervention prevention switch)
ISD (see internal symbol dictionary)
ISDLIST (see internal symbol dictionary)
IVM (see initial virtual storage)

job library
add ing 2, 13-14
contents 2, 13-14
creation 41, 53
use 41,53

JOBUB (see job library)
JOBLIBS command

description 14
example 29

186

K (indicates keyboard SYSIN) 106
KA (indicates keyboard SYSIN) 41, 106
KB (indicates keyboard SYSIN) 37, 106
keyboard entry format 104
KEYLEN (DCB operand) 25,175
KEYWORD command

data set requirements 177
example 33

keyword operand 183

LABEL (parameter ofDDEF command) 173-174
language processors

assembler 22
library

concepts 2
display of object module names 84, 160
hierarchy (see program library list)
list (see program library list)
name qualification 161
obtaining information 160
private volume 159
programs 160
public volume 160
search 13-14
sharing 160

limitations (see restrictions)
LINE? command

data set requirements 177
description 18
example 59
general form 31

line data set 75
line number, assembler parameter (LINCR) 108-109
link editor

data set definition 130
example 92-93
internal symbol dictionary use 130
module names 134-135

linkage
control section 159
conventions 131-133,148-155
dynamic 135-136
editing 130
macro instructions 132-133
static 134
symbolic 131

LIST command
example 31,97

list data set
assembler parameter (LiSTOO) 39
defining (LISTDS) 39, 108
omitting PRINT command 44

LISTDS (see list data set)
listing

cross-reference 113-114
internal symbol dictionary (lSD) 114-115
object 109,111 -113
program module dictionary (PMD) 114-116
source program 109-111
symbol table 114

listing data set (see list data set)
literals

example 145,146
general 113,147

LNK command
example 92-93

WAD command
data set requirements 177
duplicate entry points 160
duplicate names 53
efficiency considerations 159

errors 159-160
example 30, 58
interrupt considerations 164
missing name 159
missing su brou tine 74
object modules 159
undefined reference 74
unsolved reference 159

LOAD macro instruction 30, 136
loading procedures (see LOAD command)
local correction 105
LOCA TE command

example 31,97
locate mode (see GET and PUT macro instructions)
LOGOFF command

conversational 37
description 10
example 28,37,41
non conversational 68

LOGON command
conversational 36
description 10
example 28, 36, 66
non conversational 66
operands 36-37

LPCXPRSS
example 51
general 117

LRECL (DCB operand) 25,175

MACRF (DCB operand) 25,175
macro instructions (see also macro instructions

listed alphabeticaUy)
assembler process of 123
chart 28-33, 34
creation 89-91
general service 23-24
system 147

macro library
assembler parameter (MACROLlB) 38, 107
creation of 123
format 123
index 125
user 89-91,122

management
data set 10
device 14
virtual storage 155

MCAST command
data set requirements 177
example 32

MCAST macro instruction, example 32
MCAST AB command

data set requirements 178
example 32

message format, diagnostics 122
messages

asse m b leT storage lim i ts 11 7
conversational output 35
diagnostic 4,35, 113
information 35
MNOTE 112
prompting 4, 35
response 4, 35
source listing 109
warning 124

metasymbol 183
mixed mode 8
mixed input {card and keyboard input} 104
MNOTE statement 113,124
MODE (DCB operand) 25,175
modification of source statement 40-41,44,54

MODIFY command
data set requirements 178
description 21
example 29,44,54
termination 45

modifying a data set 21
modifying programs 4-5, 136
module (see also object module)

assembler parameter 38, 107-108
object 38,107-108
source 38,107-108

module name
assignmen t 107
duplication 53
link edited 148
multiple execution 179

move mode (see GET and PUT maero instructions)
MSAM (see multiple sequential access method)
MIT (see multiterminal task)
multiple sequential access method (MSAM) 22-23
multi terminal task 5

name
absolu te generation 87
assembler parameter 38
list data set 41, 45
module 38, 107
qualification 10
rules 10
shared data set 78-79,159,160
source data set 38,108

naming
data sets 10
restrictions 162
rules 162

NCP (DCB operand) 25,175
nonconversational mode

assembler parameters 67
entering data 18-19
general description 5-8
interrupt 82-83
language processing 103
linkage editing 135-136
log off 66,68
log on 67
output 8
processing 5-8
program execution 68
SECURE requirements 176
SYSIN 64,66
SYSOUT 8, 66-67
task preparation

execution 8
initiation 5
termination 8

NUMBER command
example 31,96

number sign (#) prompt for modifications 40, 44-45

OBEY macro instruction
description 29
example 100

object listing (ASMLlST assembler parameter) 39
object module

combination 133-135
display of names 84
format 116
linkage 133-135
loading 159
naming rules 160
shared 156-157
structure 109,111-112

Index 187

versions 69
object program listing

assembler parameter 39, 108
example 111

object program module (see object module)
OPEN macro instruction

description 23, 34
examples 47,49,64,71

operation code in terruption 164
operator-assisted input 8, 18-19
OPTeD (DeB operand) 25,175
OPTION (parameter of DDEF command) 173-174
options, assembler (see assembler parameters)
OS data set use 63
output of assembler 107-1l7
output module (see object module)

PAD (DCB operand) 25,175
page control while printing data set 47-48
paging 157
parameter area 132,149
parameter list 149
parameters

assembler 38-39,107-109
LOGON 36-37

partial statement 106
partially qualified name 10
partitioned data set (see VPAM)
password 36
PAUSE macro instruction 26.148
PC? command

data set requirements 178
description 17
example 31,84

PCS (see program control system)
PCSOUT

requirements for DDEF 58
PERMIT command

access levels 161-162,163
catalog alteration 19-21
data set requirements 178
de scrip tion 19
example 29,78
use 159

physical sequential data set (see BSAM)
PMD (see program module dictionary)
POD? command

data set req uiremen ts 178
de scrip bon 18
example 31, 85

positional operand 183
POST command

example 32,97
pound sign (#) prompt for modifications 40-41,44-45
PR macro instruction 30
PRINT command

data sct requirements 178
description 5,21
EDIT option 48
example 30, 48
interface with LPC listing data set 35
required record format 48

printing a data set 48
print-out (see listing)
PRISTINE (LOGON operand) 37
PRIVATE (option ofDDEF command) 173-174
private volume

188

ca taloging 61
job library 161
library 161
mounting 61-64
use of 14

volume labels 14
volume sequence number 62-63
volume serial number 62-63

privileged operation interruption 164
problem program

I/O 22-23
preparation 102,142
residence 158-159

PROCDEF command
data set requirements 178
definition 180
example 32,98

PROFILE command
data set requirements 178
example 32, 100

program (see also object module)
execution 42-43
interruption 164
library list l3-14
linkage 130-l36
maintenance 84-85
module dictionary 114-116
reenterable 51-55, 156-157

program control system (peS) 136-141
commands 140-141
diagnostics 139
dynamic statements 58-60
errors 139
examples 56-60
expression evaluation 139
floating-point considerations 139
immediate statements 56-57
internal symbol dictionary use 138-139
restrictions 138, 139, 141
statements 137-138

program library list l3-14
program module (see object module)
program module dictionary listing

(PMDLIST) 39,108, 114-116
program status word, display 56
programming practices 142-163
prompting messages 4, 35
PROTECT (parameter of DDEF command) 173-174
protection interruption 164
prototype control section (PSECf)

contents 143
dump 59
general 158
listing 115
name 143
save area 143

PRTSP (DCB operand) 25,175
PS (lICe BSAM)
PSECf (see prototype control section)
PSW (see program status work)
PU macro instruction 22, 30
public considerations (shared code) 156-157
public volume 14
public volume library 161
PUNCH command

data set requirements 178
description 5,21-22
"endno" parameter 106
example 30, 84
"startno" parameter 106
statement entered at keyboard 106

PUT macro instruction 34

QSAM (sec queued sequential access method)
qualification

data set name 78-79
internal symbols 162

library name 162
partial to

QUALIFY command
example 32, 58

queued sequential access method 22,24

R-type address constant (RCON) 143,149
R-vaJuc 49
RAE macro instruction 168
READ macro instruction 34
read-and-write access 78, 161-162
read-only access

cataloged data set 49-50
shared data set 78

RECFM (DCB operand) 25, 175
records

deletion 72
reen tera ble program 156-157
references

listing 113-114
resolving 159
undefined 74
unresolved 159

REGION command
data set requirements 178
example 31

register, base 145-147
register, usage

general 142-152
interrupt-handling routine 165-167
program linking 148

registers, saviing 49, 148-151
, rejection, control section 159

REt macro instruction 29
relative generation number 11, 86-87
RELEASE command

data set requirements 178
description 17
example 29,60,63,77

remote job entry 8
removal of a catalog entry 29, 85
removal of a data set 84,85
REMOVE command

description 137
example 32, 59

rename a catalog entry 45
resident terminal access method 22-23
response message 4,35
restrictions

assembler 117-121
naming 162
punched tenninal statements 103-107
statemen t length 103
virtual storage 156-157

RET command
data set requirements 178
example 29, 48. 50

RET (parameter of DDEF command)
example 48, 50
general form 173-174

re turn code re gis ter 13 2
RETURN key 27, 105
RETURN macro instruction

after an interrupt routine 136,167
example 34,48, 52, 83
general 13 3, 151

RJE (see remote job entry)
RKP (DCB operand) 25,175
RT command (read tape) 18
RTAM (see resident terminal access method)

SAEC macro instruction 167
SA I macro in struction 167
sample assembler coding 143-147
save area 49-50,132,142,149-151
SA VE macro instruction 34, 133, 136. 149-151
Sf'TURF command

description 10,171,179
example 30, 82
requirements 179

SEFe macro instruction 167
sequential data S\~t (see VSAM)
SET command

description 137
example 32,56,58
floating-point considerations 139

severity code 122
SHARE commano

catalog entry 78
data se t definition requirements 178
entry in system 78
example 30.78
use 19-21,157

sharing
considerations 156-157,161-162
data sets 19-21,78,156
descriptor 78-79
library 161-162

SIEC macro instruction 167
significance interrupt masking 164
SIR macro instruction 83, 164

description 34
example 82

source data se t
creation 38-41,75-76
defining 38, 107
display 76
names 38,162
pre sto red 75

"SOURCE" data set name qualifier
macro library use 90
system creation 38, 107

source listing
assembler parameter (SYMLIST) 39, 108
general 109
sample 110

source module
assembler parameter 38,107
general 102

source program listing (see source listing)
source statement

changing 40
committed 106
correction 40
display 40, 44, 76
END (see END statement)
format 38, 103, 104
keyboard (for later use) 106-107
partial 106
restrictions 103-104
review 44
tentative 106

SPACE (parameter ofDDEF command) 173-174
SPEC macro instruction 34,83, 167
specification interruption 164
SSEC macro instruction 167
STACK (DCB operand) 25.175
start line number (LINCR assembler parameter) 40, 108-109
start line number increment

(LiNCR assembler parameter 40, 10fi-l09
statement (see source statement)

Index 189

static linking 134-135
STEC macro instruction 167
STOP command

description 137. 138
example 32, 56, 59
in terrupt considerations 138

storage (see also: virtual storage, auxiliary storage\
allocation 156
management 156-157

STORED (assembler parameter) 38, 107
subroutine

missing 74
supplementary macro library (assembler parameter) 38, 107-108
switching modes 8, 9, 64-66
symbol table listing

description 113
example 113

symbol type designation on listing 113
symbolic library index 125
SYNAD (DCB operand) 25,61
SYNONYM command

data set requirements 178
example 32, 100

SYSIN
card reader 80-81
conversational 4
entering source statements 128-129
macro instruction 26
non conversational 5

SYSLIB (system library) 13,160
SYSOUT

conversational 4
messages 4, 35
nonconversational 8

system
catalog 1 0-11
general description
library 13, 160
log 27

tab stop
setting 42
use 42,104

TAM (see Terminal Access Methot!)
tape, magnetic

DDEF command 62-63
task

execution
conversational 3-5
nonconversational 8

initiation
conversational 3
nonconversational 5,8

interruption 4,164
management 3-10
termination

conversational 4
non con versa tional 8

task data defmition table (TDT) 171
task iden tity

LOGON operand 36
TDT (see task data defmition table)
tentative statement 106
terminal entry format 42-43
terminal If 0 3-4, 22-23
termination

modifications of source statement 40
task 37, 164

text, object program module 116
text editor

examples 95-97
general descrip tion 18

190

TIME command
description 10
example 28, 3S

time-stamp 3S, 115
TR TCH (DCB operand) 25, 175
1Y command

data set requirements 178
example 30, 94
use 30

type I linkage 132,148

uncataloging (see DELETE command)
UNIT (parameter of DDEF command) 173-174
unlimited ac(.'Css

cataloged data sets 49-50
shared data sets 78-79,161-162

UNLOAD command
at LOGOFF 60
efficiency considerations 158
example 30, 54
removal of program control system statement 59
unreferenced programs 159

unresolved references 159
UPDATE command

example 31,95
USAGE command

description 10
example 28. S5

USATT macro instruction 167
user

iden tifieation 36
horary (see user library)

USERLIB (see user library)
user defmed procedures

BUILTIN 181
general lS0-182
PROCDEF ISO-lSI

user library
general description 13, 160
organization 13

user macro library
creation 122-125
example 89-91
use 122-123

User profile
DEFAULT command 15,177
general 181-182
PROFILE command 15,178
SYNONYM command 15.178

USERSYM data set 89-91

V-type address constant (VCON) 143,145
VAM (virtual access method)

(see VlSAM, VPAM, VSAM)
VERID (see version identification)
version

general data group 86-88
of program 161

version iden tification
assembler parameter (VERID) 38, 108
on listing 115

VI (see VlSAM)
virtual indexed sequential (see VISAM)
virtual partitioned (see VPAM)
virtual program status word (VPSW) 169
virtual sequential (see VSAM)
virtual storage

allocation 157
concept 2, 12-13
efficiency considerations 157-159
limitations 117-118
management 157-159

VlSAM
access method 22·24, 34
data set 12-13

volume
concept 14
labels 14
magnetic tape 61-63
mounting 62·63
organization of data sets 12-14
private 14, 161
public 14,161

VOLUME (parameter of DDEF command) 173·174
VP (see VPAM)
VPAM

access method 22-24
data set 13

VS (see VSAM)
VSAM

access method 22-24, 34
data set 12

VTcommand
data set requirements 178

example 30. 94
use 21,30

VV command
data set requirements 178
description 21
example 30, 94

WRITE macro instruction 34.61
wr command

data set definition rcquireml'nts 178
description 5. 21
example 30.58

wr macro instruction 21, 30
wrL macro instruction 27
wro macro instruction 27
wrOR macro instruction 27

ZLOGON
example 28
general description 10. 98
use 37.98

Index 191

GC28·2032·6

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
360 Hamilton Avenue, White Plains, New York 10601
(International)

"tI ...
o

CO ...
Q)

3
3
<I> ... cr,

