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The PL/1 Library computational supbrou-
tines provide support for the operators and
built-in functions of the PL/I language in
four major categories:

1. Bit and Character Strings
2. Arithmetic

3. Mathematical

4. Arrays

This publication gives detailed informa-
tion in each of the four sections mentioned
above with respect to accuracy, chcice of
algorithr, and range of values handled
(where appropriate).

A number of exceptional conditions may
arise in the execution of the library sub-
routines. Many of these are not directly
related to PL/I ON conditions. The method
of treatment in these cases is toc write a
diagnostic message and raise the ERROR con-
aition. This allows the user the opgor-
tunity to investigate the error by use of
the ONCODE built-in function in his ON

INTRODUCTION

EFRROR unit and to program the action he
wants taken.

Module Names

The module name for each of these sub-
routines is IHEWxxx, where xxx is usually a
rnemonic group indicating the module
function.

The seventh character usually defines
the kase, scale, mode and precision of the
arguments for a given module. 1In the
arithmetic, mathematical and array subrou-
tines, this suffix is usually one of the
characters shown in Figure 1; the only
exceptions to this are the array indexing
subroutines, where the suffixes are mnemon-
ic only, and the ALL{x), ANY(x) subrou-
tines, where the suffix is 1 or 2.

In the string subroutines, the seventh
character in each mocdule name has only a
mnemonic significance. In some cases the
seventh character may be one of those given
in Figure 1. This is purely coincidental;
the meanings in Figure 1 do not aprly to
the string subroutines.

r T - b e T 1
| Seventh | |Argument (or element of | Maximum |
|Characterj Argument Attributes Jargument) Passed in | Precision |
- +-- ———= ————— t+ t i
| B | Real fixed-point binary {Fulliword | 31 {
| | | | |
| D | Real fixed-point decimal |Up to 8 Lytes | 15 |
| | | |
| F | Real fixed-point binary or decimal |Binary: fullword {Binary: 31 |
{ | |Decimal: up to 8 bytes |Decimal: 15 |
| G | Real or complex short floating-point |Real: 1 fullword |Binary: 21 |
| | |Complex: 2 fullwords {Decimal: 6 |
| H | Real or complex long floating-point |[Real: 1 doubleword |Binary: 53 |
| | |Complex: 2 doublewords |Decimal: 16 |
| L | Real long floating-point | Doubleword |Binary: 53 |
| | | {Decimal: 16 |
| S | Real short floating-point | Fullword |Binary: 21 |
| | | |Decimal: 6 |
| [ , * , i | I
| U { Complex fixed-point binary |2 fullwords i 31 {
| | | | |
| v | Complex fixed-point decimal |Up to 16 bytes | 15 |
| | | |
] X | Complex fixed-point binary or decimal|Binary: 2 fullwords |Binary: 31 |
i | fDecimal: Up to 16 bytes |Decimal: 15 |
i W | Complex short floating-point |2 fullwords |Binary: 21 |
| | | |Decimal: 6 |
} Z | Complex long floating-point |2 doublewords |Binary: 53 |
| | | {Decimal: 16 |
[ S, L i —1
Figure 1. Interpretation of Seventh Character in Module Names

Introduction 1



CHAPTER 1:

STRING OPERATIONS AND BUILT-IN FUNCTIONS

The library string package contains
modules for handling bit and character
string operations. Generally, a string
function or operator is supported by only
one module, but in the interests of effi-
ciency some of the bit string operators are
provided with additional modules to deal
with byte-aligned input data.

A complete list of the modules provided

in the Library string package is given in
Figure 2.

BIT STRING OPERATIONS

The 'And' Operator (&) (Bit Strings)
Module Name: IHEWBSA
Entry Point: IHEBSAQ

Function:

To implement the 'and® operator between
two byte-aligned bit strings, placing the
result in a byte-aligned target field.

Method:

The current length of the target string
is set equal either to the maximum length
of the operands, or to the maximum length
of the target field (when truncation is
necessary to avoid exceeding the length
of this field). The strings are 'and'ed
together for a length equal to the mini-
mum of the lengths of the operands, and
the result is extended with zeros, if
necessary, up to the current length cal-
culated for the target field.

The 'Or' Operator (])(Bit Strings)
Module Name: IHEWBSO
Entry Point: IHEBSOO0

Function:

To implement the ‘or' operation between
two byte-aligned bit strings, placing the
result in a byte-aligned target field.

Method:

The current length of the target string
is set equal to either the maximum length
of the operands or to the maximum length
of the target field (when truncation is
necessary to awid exceeding the length
of this field). The strings are ‘or‘*ed
together for a length equal to the mini-
mum of the lengths of the operands and
the remainder of the longer string is
moved inmto the target field up to the
current length; the remainder of the tar-
get field is left unchanged.

The °‘Not® Operator () (Bit Strings)

Module Name: IHEWBSN

Entry Point: 1HEBSNO
Punction:
To implement the 'not® operator for a

byte-aligned bit string, placing the
resalt in a byte-aligned target field.

| L v L] L
| PL/I | PL/I | Bit String |Character
| Operation | Punction |- T String

| | | General |[Byte-aligned

* b + $

|r *And* (&) i - | Use BOOL | IHEWBSA | -

| *or* () | - | Use BOOL | IBEWBSO | -

| *Not' (3) ] - | Use BOOL | IHEWBSN | - |
| concatenate ({|)| REPEAT | IHEWBSK | - { IHEWCSK |
| Compare | - | IHEWBSD | IHEWBSC | IHBWCSC
| Assign | - | IHEWBSK | IBEWBSM | IHEWCSM
| Fill | - | IBEWBSM | - { IHEWCSM
| - | HIGH/LOW | - | - | IHEWCSM |
] - | SUBSTR | IHEWBSS | - | IBEWCSS |
P - | INDEX | IHEWBSI | - | IHEWCSI |
| - | BOOL | IHEWBSF | - { - |
L L 1 4 ) § i ]

Figure 2.

Bit and cCharacter String Operations

and Functions



Method:

The current length of the target string
is set equal to either the current length
of the operand or to the maximum length
of the target field (when truncation is
necessary to avoid exceeding the length
of this field). The target field is set
to a string of 1's for a length equal to
its calculated current length and the
result is obtained by an ®'exclusive or®
with the operand. The remainder of the
target field beyond the calculated cur-
rent length is left unchanged.

Cconcatenate/REPEAT/General Assign (Bit
Strings)

Module Name:

IHEWBSK

Entry Points:

Entry
Cperation Point
Concatenate (}}{) IHEBSKK
REPEAT(Bit string, n) IHEBSKR
General assign IHEBSKA
Function:
IHEBSKK: to concatenate two bit strings

into a target field.

IHEBSKR: to concatenate n + 1 instances
of the single source string into a tar-
get field. If n < 0, the result is the
string itself.

IHEBSKA: to assign a bit string to a
target field without zero filling.

Method:

The current length of the target field is
made equal to the smaller of two values:

- the sum of the current lengths of the
source strings

- the maximum length of the target field

All entry points use a subroutine that
obtains data from a source, aligns it
correctly and moves it to the target
field:

IHEBSKK: uses this subroutine twice to
move the source strings to the target
field.

IHEBSKR: uses the subroutine to conca-~

tenate the contents of the target field
with itself (whenever possible) as well
as concatenating the contents of this
field with the source string. Direct
concatenation of the source string

n + 1 times is not used.

Chapter 1:

IHEBSKA: Uses the subroutine once to
move the source string to the target
field.

For all entry points, the remainder of

the target field beyond the calculated cur-
rent length is left unaltered.

Comparison (Bit Strings, Byte-aligned)

Module Name: IHEWBSC

Entry Point: IHEBSCO

Function:

To compare two byte-aligned bit strings
and to return a condition code as bits 2
and 3 of a fullword target field as
follows:

00 if strings are equal

01 if first string compares low at the
first inequality

10 if first string compares high at the
first inequality

The shorter string is treated as though
extended with zeros to the length of the
longer.

The first byte of the target field is
also used to preserve the program mask in
the PSW for the calling routine. This
byte contains:

Bits Contents
0 to 1 Instruction length code 01
2 to 3 Condition code as above
4 to 7 Program mask (calling routine)

Method:

The two strings are compared up to the
current length of the shorter string.
The remainder of the longer string is
compared with zeros.

General Comparison (Bit Strings)

Module Name: IHEWBSD

Entry Point: IHEBSDO

Function:
To compare two bit strings and return a
condition code as bits 2 and 3 of a full-
word target field as follows:
00 if strings are equal

01 if first string compares low at the
first inequality

10 if first string compares high at the
first inequality

String Operations and Built-In Functions 3



The shorter string is treated as though
extended with zeros to the length of the
longer.

The first byte of the target field is
also used to preserve the program mask in
the PSW for the calling routine. This
byte contains:

Bits Contents
0 to 1 Instruction length code 01
2 to 3 Condition code as above
4 to 7 Program mask {(calling routine)

Method:

The two strings are compared up to the
current length of the shorter string.
The remainder of the longer string is
compared with zeros.

Assign/Fill (Bit Strings)

Module Name: IHEWBSM

Entry Points:

Entry
Operation Point
Fixed-lerngth assign IHEBSMF
Variable-length assign IHEBSMV
Zero f£ill only IHEBSMZ
Function:
IHEBSMF: to assign a byte-aligned string

to a byte-aligned fixed-length target,
filling out with zero bits if
necessary.

IHEBSMV: to assign a byte-aligned string
to a byte-aligned variable-length
target.

IHEBSMZ: to fill out the target area
from its current length to its maximum
length with zero bits.

Method:

IHEBSMF: the minimum of the source cur-
rent length and the target maximum
length is calculated and the source
string is moved to the target for a
length equal to this length. Zero
filling of the target is performed if
necessary. The current length of the
target is set equal to the maximum
length.

IHEBSMV: the source string is moved to
the target field as above, but without
zero £filling. The current length of
the target is set appropriately.

IHEBSMZ: zeros are propagated in the
target from the current length to the

maximum length. The current length of
the target is set equal to the maximum
length.

Other Information:

This routine supplies assignment of byte-
aligned bit strings of both fixed and
variable lengths. Non-aligned strings
may be assigned by using the general
assign module (entry point IHEBSKA). Any
filling required for fixed length strings
can then be obtained using the IHEBSMZ
entry described above.

BIT STRING FUNCTIONS

SUBSTR (Bit Strings)

Module Name: IHEWBSS

Entry Points:

Entry

Operation Point
SUBSTR(Bit-string,i) IHEBSS2
SUBSTR(Bit-string, i, j) IHEBSS3

Function:
To produce a string dope vector describ-
ing the SUBSTR pseudo-variable and func-
tion of a bit-string.

Method:
Arithmetic is performed according to the
function definition, using the current
length of the argument string. The
result describes a fixed-length string.

Error and Exceptional Conditions:
STRINGRANGE

INDEX (Bit Strings)

Module Name: IHEWBSI

Entry Point: IHEBS IO

Function:

To compare two bit strings to see if the
seocond is identical to a substring of the
first, and, if it is, to produce a binary
integer (the index) which indicates the
first bit position in the first string at
which such a substring begins. If no
such index is found, or if either string
is null, the function value is zero.

Method{

The index is found by shifting and com-
paring portions of the two strings in
registers.



BOOL (Boolean Function) (Bit Strings)

Module Name: IBEWBSF

Entry Point: IHEBSFO

Function:

To take two source strings and perform
one of the sixteen possible logical
operations between corresponding bits.
The particular operation performed is
defined by inserting the bit pattern -
ninanan - yielded by the third argument
into the table below:

First field | 0 | O | 1 ] 1}
L 4 i 4 ,’

T v T T
Second field { O | 2 | O | 1 |
S S s
Target field | ny| n2| nal n,i
- i 1L L 3 5

T 1

Method:

The current length of the target string
is set equal to either the maximum of the
current lengths of the source strings or
to the maximum length of the target field
(vhen truncation is necessary to avoid
exceeding the length of this field). The
necessary operation is performed on the
strings and the result stored in the tar-
get field. If one string is shorter than
the other, it is regarded as peing
extended on the right with zeros up to
the length of the longer. The field
between the calculated current length and
the maximum length of the target is left
unchanged.

CHARACTER STRING OPERATIONS

Concatenate/REPEAT (Character Strings)

Module Name: IHEWCSK

Entry Points:

Entry

Operation Point
Concatenate (| |) IHECSKK
REPEAT IHECSKR

(Character string,n)
Function:

THECSKK: to concatenate two character
strings into a target field.

IHECSKR: to concatenate n + 1 instances
of the single source string into a tar-
get field. If n < 0, the result is the
string itself.

Chapter 1.

Method:

The current length of the target field is
made equal to the smaller of two values:

- the sum of the current lengths of the
source fields.

- the maximum length of the target
field.

Both entry points use a subroutine that
moves characters from a source to the
target:

IHECSKK: Uses the subroutine to perform
the required number of source moves.

IHECSKR: Uses the subroutine to conca-
tenate the source string with the tar-
get field and also to concatenate the
target field with itself (whenever
possible).

For both entry points, characters beyond

the range of the target current length
remain unaltered.

Compare (Character Strings)

Module Name: IHEWCSC

Entry Point: IHECSCO

Function:

To compare two character strings and to
return a condition code as bits 2 and 3
of a fullword target field as follows:

00 if strings are equal

01 if first string compares low at the
first inequality

10 if the first string compares high at
the first inequality

The shorter string is treated as though
extended with blanks to the length of the
longer one.

The first byte of the target field is
also used to preserve the program mask in
the PSW for the calling routine. This
byte contains:

Bits Contents
0 to 1 Instruction length code 01
2 to 3 Condition code as above

4 to 7 Program mask {calling routine)
Method:

The two strings are compared in storage.
If the strings are of different lengths
and are identical up to the length of the
shorter, the remainder of the longer is
compared with blanks.

Strings: Character String Operations 5



Assign/Fill/HIGH/LOW (Character Strings)

Module Name: IHEWCSM

Entry Points:

Entry

Operation Point
Fixed-length assign IHECSMF
Variable-length assign IHECSMV
Blank fill only IHECSMB
HIGH IHECSMH
LOW IHECSML

Function:

IHECSMF: to assign a character string to
a fixed-length target, filling out with

blanks if necessary.

IHECSMV: to assign a character string to

a variable-length target.

IHECSMB: to fill ocut the target field
from its current length to its maximum
length with blanks.

IHECSMH: to fill a target field with the

highest character in the collating
sequence, up to its current length.

IHECSML: to fill the target field with
the lowest character in the collating
sequence, up to its current length.

Method:

IHECSMF: The minimum of the source cur-
rent length and the target maximum
length is calculated and the source
string is moved to the target for a
length equal to this length. Filling
of the target with blanks up to the
target maximum length is performed if
necessary. The current length of the
target is set equal to its maximum
length.

IHECSMV: moves the string as above, but
without blank filling. The current
length of the target is set
appropriately.

IHECSMB: propagates blanks and sets the
current length of the target equal to
jits maximum length.

IHECSMH, IHECSML: uses part of the blank

f£ill routine to propagate the highest
or lowest character in the collating
sequence up to the current length of
the target.

CHARACTER STRING FUNCTIONS

SUBSTR (Character Strings)

Module Name: IHEWCSS

Entry

Operation Point
SUBSTR(Character-string,i) IHECSS?2
SUBSTR (Character-string, i, j) IHECSS3

Function:
To produce a string dope vector describ-
ing the SUBSTR pseudo-variable and func-
tion of a character string.

Method:
Arithmetic is performed according to the
function definition, using the current
length of the argqument string. The
result describes a fixed-length string.

Exror and Exceptional Conditions:

STRINGRANGE

INDEX (Character Strings)

Module Name: IHEWCSI
Entry Point: IHECSIO
Function:

To compare two character strings to see
if the second is identical to a substring
of the first, and, if it is,to produce a
binary integer (the index) which indic-
ates the first character position in the
first string at which such a substring
begins. If no such index is found, or if
either string is null, the function value
is zero.

Method:

The first string is scanned from left to
right for a character equal to the first
character in the second string. If a
match is found, the whole of the second
string is compared with a substring of
the first string beginning at the match-
ing character. If they are equal, an
index is produced. The scanning con-
tinues until either an index is produced
or the end of the first string is
reached.



CHAPTER 2:

ARITHMET IC OPERATIONS AND BUILT-IN FUNCTIONS

Library arithmetic modules support all
those arithmetic generic functions and
operators for which the compilers neither
produce in-line code nor (as for the func-
tions FIXED, FLOAT, BINARY and DECIMAL) use
the conversion package. The names of the
library modules which support the arith-
metic operations are given in Figure 3; the
names of those which support the arithmetic
functions are given in Figure 4.

Statistics for accuracy of floating-
point modules are given where considered
meaningful and helpful; an explanation of
their use is given in the chapter on mathe-
matical routines. Precise results are
obtained from all fixed-point modules
except complex division and complex ABS,
where small truncation errors inevitably
ocour, and the ADD function (fixed deci-
mal), in which the effect of truncation
errors depends on the relative values of
the scale factors of the arguments.

Any restrictions on the admissibility of
arguments are noted under the headings
'Range' and °*Error and Exceptional
Conditions*.

Range: This states any ranges of arguments
for which a module is valid. Arguments
outside the ranges given are assumed to
have been excluded before the module is
called.

Error and Exceptional cConditions: These
cover conditions which may result from the

use of a routine;
categories:

they are listed in four

P -- Programmed conditions in the module
concerned. Programmed tests are
made where this is not too costly
and, if an invalid argument is
found, a branch is taken to the
entxry point IHEERRC of the execution
error package (EXEP). This results
in the printing of an appropriate
message and in the ERROR condition
being raised.

Interruption conditions in the
module concerned. For those rou-
tines where SIZE and FIXEDOVERFLOW
are detected by programmed tests or
where hardware interruptions may
occur, the OVERFLOW, UNDERFLOW,
FIXEDOVERFLOW, SIZE and ZERODIVIDE
conditions pass to the ON handler
(IHEERR) and are treated in the
normal way. The machine is assumed
to be enabled for all intexruptions
except significance, which is masked
off.

Programmed conditions in modules
called by the module concerned.
These occur when invalid arguments
are detected in the module called.

As I, but the interruption condi-
tions occur in the modules called by
the module concerned.

r- - — 1
| ARITHMETIC OPERATIONS i
) T T T R T -T {
| Operation | Binary | Decimal| Short | 1Long |
| | fixed | fixed | float | float |
F i L ——te i 11
i Real Operations i
k- oo e v ; o T i
| Integer exponentiation: x#*#*n | IHEWXIB| IHEWXID| IHEWXIS| IBEWXIL|
| General exponentiation: x**y | - | - | IHEWXXS| IHEWXXL|
| Shift-and-assign, Shift-and-load | - | IHEWAPD| - { - |
k,_,___ —— L 4 ——tm B ,'
| Complex Operationmns i
|L' . . R R . . - T T - T "
| Multiplications/division: z,*2;,2Z,/2z; | IHEWMZU| IHEWMZV| - | - |
| Multiplication: z,*z, | - | - | IHEWMIW| IHEWMZZ|
| Division: z,/z, i - - | IHEWDZW| IHEWDZZ|
| Integer exponentiation: z#*#n | THEWXIU| IHEWXIV| IHEWXIW| IHEWXIZ|
| General exponentiation: z,**z, } - | - | IHEWXXW| IHEWXXZ|
L R A L i i i
Figure 3. Arithmetic Operations
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r- ——— 1
ARITHMETIC FUNCTIONS |
““““““““““““““““““ T """
Functlon{Blnary |Dec1mal|Short | Long |
|fixed |fixed |[float |float |

L 41 e 1 {

Real Arguments |

- T T T L] %
MAX, MIN{IHEWMXB|IHEWMXD|IHEWMXS|IHEWMXL |
ADD i - | IHEWADL| -1 - |
i L L i _‘

Complex Arguments |

v - i 1

| ADD | - | IHEWADV | -] - |
{ MULTIPLY| IHEWMPU | IHEWMPV | -1 - |
|DIVIDE |IHEWDVU|IHEWDVV| -1 - |
| ABS lIHEWABUIIHEWABV{IHEWABW]IHEWABZ |
[ SV SUISNN S ¥

Figure 4. Arithmetic Functions

REAL OPERATIONS

Positive Inteqer Exponentiation (fixed

binary)

Module Name: IHEWXIB

Entry Point: IHEXIBO

Function:

To calculate x**n, where n is a positive
integer.

Method:

The result is set initially to the value
of the argument. The final result is
then obtained by repeated squaring of
this value or squaring and multiplying by
the argument.

Range:

0 < n < 2%%31

The precision rules of PL/I impose a
further restriction in that if x has a
precision (g,q), this module will be
called only if n*(p + 1) - 1 < 31. This
implies that n < 32/(p + 1) < 16 for all
such cases.

Positive Integer Exponentiation (fixed

decimal)
Module Name: IHEWXID
Entry Point: ITHEXIDO

Function:

To calculate x**n, where n is a positive
integer.

Method:

The result is set initially to the value
of the argument. The final result is
then oktained by repeated squaring of
this value or squaring and multigplying by
the argument.

Range:

The precision rules of PL/1 impose the
restriction that if x has a precision
(p,g), this module will be called only if
n¥*(p + 1) - 1 < 15. This implies that

n < 16/(p + 1) < 8 for all such cases
and, in fact, this module will ofrerate
only for the range 0 < n < 8.

Integer Exponentiation (floating-point)

Module Names and Entry Points:

Module Entry
Argument Name Point
Shert float IHEWXIS IHEXISO
Long float IHEWXIL IHEXILO

Function:

To calculate x**n, where n is an integer
between -2*#*31 and 2#%*#*31 - 1 inclusive.

Method:

If the exponent is zero and the argument
nonzero, the result 1 is returned immedi-
ately. Otherwise the result is set ini-
tially to the value of the argument and

the exponent is made positive. The argu-
ment is raised to this positive power by
rereated squaring of the contents of the
result field or squaring and multirplying
by the argument. Then, if the exponent

is negative, the reciprocal of the result
is taken, otherwise it is left unchanged.

Accuracy:

)

The values given here are for the rela-
tive error divided by the exponent for
exponents Lketween 2 and 1023; the argu-
ments are uniformly distributed over the
full range for each exponent for which
neither OVERFLOW nor UNDERFLOW occurs.
There are 2**(10 - k) arguments for each
exponent in the range 2%#%#k < exponent <
2**(k + 1) - 1, where k has integral
values from 1 to 9 inclusive.

IHEWXIS
[ 3 R L] . . )
] R.M.S. relative | Maximum relative |
| error/exponent | error/exponent |
i *10%%6 | *10%%6 |
 ——— + !
| 0.00871 | 0.692 |
t i 4




IHEWXIL
B A
| R.M.S. relative | Maximum relative |
| error/exponent | errors/exponent |
{ *10*+15 { *¥10##15 {
t 1
| |
L ¥

Error and Exceptional Conditions:
P: x=0withn <0
I : OVERFLOW, UNDERFLOW

Since x**{-m), where m is a positive
integer, is evaluated as 1/(x*#*mj,

the OVERFLOW condition may occur when

m is large, and the UNDERFLOW condi-
tion when x is very small.

Other Information:

IHEWXIS: Foxr large exponents, for
example, those greater than 1023, it i
generally faster and more accurate to
use the module IBEWXXS rather than
IHEWX1S, passing the exponent as a
floating-point argument. However, it
should be noted that IHEWXXS will not
accept a negative first argument, and
thus it is necessary to pass the abso-
lute value of this argument, and also,
in cases where the exponent is odd, to
test the sign of the argument in order
to be able to attach the correct sign
to the numerical result returned.

General Floating-Point Exponentiation

Module Names and Entry Points:

Module Entry

Argument Name Point

Short float 1HEWXXS IHEXXS50

Long float THEWXXL IHEXX10
Function:

To calculate x**y, where x and 'y are
floating-point numbers.

Method:

When x = 0, the result x**y = 0 is given
if y > 0, and an error message if y < 0.
When x # 0 and v = 0, the result x**y =
is given. Otherwise x**y is computed as
EXP(y*LOG(x)), using the appropriate
mathematical function routines.

Error and Exceptional Conditions:

P: x=0 with y < 0

s

1

O : a. x < 0 with y # 0 : error caused in

LOG routine

b. y*¥LOG(x) > 174.673: error caused

in EXP routine

Shift-and-assign,
decimal)

Shift-and-load {(fixed

Module Name: IHEWAPD

Entry Points:

Entry

Operation Point
shift and assign IHEAPDA
Shift and load IHEAPDB

Function:

IHEAPDA: To convert a real fixed decimal
number with precision (py,qy) to preci-
sion (p2,q93), where p, < 31 and
Ea < 15.

IHEAPDB: To convert a real fixed decimal
number with precision (p,,q4) to preci-
sion (31,9.), where p; < 31.

Method:

The argument scale factor is subtracted
from the target scale factor. The argqu-
ment is converted to precision 31 in a
field with a shift equal to the magnitude
of the difference between the scale fac-
tors; the shift is to the left if the
difference is positive and to the right
if negative.

If entry point IHEAPDB is used, the field
is moved unchanged to the target. If
entry point IHEAPDA is used, the result
is checked for FIXEDOVERFLOW and then
assigned to the target with the specified
precision. The assignment may cause the
SIZE condition to be raised.

Error and Exceptional Conditions:
I : FIXEDOVERFLOW or SIZE
COMPLEX OPERATIONS

Multiplication/Division (fixed binary)

Module Name: IHEWMZU
Entry Points:
Mathematical Entry
Operation Point
Zy ¥z, IHEMZUM
Z2./Z2 IHEMZUD
Chapter 2. Arithmetic: Complex Operations 9



Function:

To calculate z,%z, or z,/z,, where z; and
z, are fixed-point binary complex
numbers.

Method:

Let z; = a + bl and z; = ¢ + dI. Then,
for multiplication, an incorporated sub-
routine is used to compute a%*c - b*d and
b*c + a*d; these are tested for FIXED-
OVERFLOW and then stored as the real and
imaginary parts of the result.

For division, the subroutine is used to
compute a*c + b*d and b%c - a*d. The
expression c#%2 + d**2 is computed and
the real and imaginary parts of the
result are then obtained by division.

The subroutine computes the expressions
u*x + v#y and v¢x - uty.

Error and Exceptional Conditions:
I : PIXEDOVERFLOW in either routine,
ZERODIVIDE in the division routine.

MultiplicationwDivision (fixed decimal)

Module Name: IHEWM2ZV
Entry Points:
Mathematical Entry
Operation Point
Zy %25 THEMZVM
21/22 IHEMZVD
Function:

To calculate z; %z, or z;/z, where z, and
z, are fixed-point decimal complex
numbers.

Method:

Let z4 = a + bI and 2z, = ¢ + dI. The
products a*c, b*c, a*d and b*d are com-

puted. Then the required result is
obtained as follows:
Multiplication:
Real part a*c - bed
Imaginary part b#*c + a#*d
Division:
Real part (a*c + b*d)/ (c*c + d=d)

Imaginary part (b#*c - a*d)/(c*c + d=*4d)
Error and Exceptional Conditions:

I : FIXEDOVERFLOW in either routine,
ZERODIVIDE in the division routine.

10

Other Information:

Where the operands differ in precision,
it is faster to present the longer
operand as the second argument rather
than the first.

Multiplication (floating-point)

Module Names and Entry Points:

Module Entry

Arqument Name Point

Short float IHEWMZW IHEMZWO

Long float IHEWMZZ IHEMZZO
Function:

To compute z,;*z; in floating-point, when
Zy = a + bl and z; = ¢ + dI.

Method:
The real and imaginary parts of the
result are computed as a*c - b*d and b#*
c + a*d, respectively.

Error and Exceptional Conditions:

I : Exponent OVERFLOW and UNDERFLOW

Division (floating-point)

Module Names and Entry Points:

Module Entry
Arqument Name Point
Short float IHEWDZW IHEDZWO
Long float IHEWDZZ IHEDZZ0
Function:

To compute z4/2z> in floating-point, when
Zy, = a + bl and z; = ¢ + dI.

Method:
1. AaBS(c) 2 ABS{(d)
Compute g = d/c
then REAL (z,/2z3) = (a + b*g)/(c + d*q)
IMAG (z3/2z3) = (b - a*q)/(c + d+*q)
2. ABS(c) < AEBS(d)

(a + bI)/(c + dI) = (b - aI)/(d - cI),
which reduces to the first case.

The comparison between ABS(c) and ABS (d)
is adequately performed in short preci-
sion in both modules.

Error and Exceptional Conditions:

I : OVERFLOW, UNDERFLOW and ZERODIVIDE



Positive Inteqer Exponentiation (fixed
binary)

Module Name:

THEWX IU

Entxy Point: IHEXIUO

Function:

To calculate z**n, where n is a positive
integer less than 2#%31.

Method :

The contents of the target field are set
to the value of z. The final result is
obtained by repeated squaring of the con-
tents of the target field or squaring and
multiplying by z. Multiplication is per-
formed by the complex mualtiplication rou-
tine IHEWMZU.

Range:
0 < n < 2%%31,

The precision rules of PL/I impose a
further restriction in that if z has a
precision (p, g), this module may only be
called if n*(p 4+ 1) - 1 < 31. This
implies that n < 32/(p + 1) < 16 for all
such cases.

Positive Inteqer Exponentiation (fixed
decimal)

Module Name: IHEWX IV

Entry Point: IHEXIVO

Function:

To calculate z*#*n, where n is a positive
integer less than 2#%%31.

Method:

The contents of the target field are set
to the value of the argument. The final
result is obtained by repeated squaring
of the contents of the target field or
squaring and multiplying by the argument.
Multiplication is performed by the com-
plex multiplication routine IHEWMZV.

Range:

The precision rules of PL/I impose the
restriction that if z has a precision
(p,q), this module may only be called if
n¥*{p + 1) - 1 < 15. This implies that
n < 16/(p + 1) < 8 for all such cases
and, in fact, this module will operate
only for the range 0 < n < 8.

Inteqger Exponentiation (floating-point)

Module Names and Entry Points:

Chapter 2.

Mcdule Entry
Arqument Name Point
Short float IHEWXIW IBEXIWO
Long float IHEWXIZ IHEXIZO
Function:

To calculate z**n, where n is an integer
between —-2#*31 and 2#*#31 - 1 inclusive.

Method:

If the exponent is 0 and the argument
non—-zexro, the result 1 is returned imme-
diately. If the exponent is non-zero,
the contents of the target field are set
to the argument value. The exponent is
made positive and the argument raised to
this positive power by repeated squaring
of the contents of the target field or
squaring and multiplying by the argument.
Multiplication is performed by a branch
to the complex multiplication subroutine.
Then, if the exponent was negative, the
recipreccal of the result is taken, other-
wise it is left unchanged.

Error and Exceptional Conditions:
P : z=0withn <0

I : OVERFLOW, UNDERFLOW
Since x**(-m), where m is a positive
integer, is evaluated as 1/(x**m),
the OVERFLOW condition may occur when
m is large and the UNDERFLOW condi-
tion when x is very small.

H : OVERFLOW or UNDERFLOW in complex mul-
tiplication routine (IHEWMZW or
IBEWMZZ)

General Floating-Point Exponentiation

Module Names and Entry Points:

Module Entry
Arqument Name Point
Short float IHBEWXXW IHEXXWO
Long float IHEWXXZ IHEXXZO0
Function:

To calculate z,%%z,, where z, and z, are
complex numbers of the same precision.

Method:

When z, = 0, the result 0 is returned if
REAL(z3;) > 0 and IMAG(z,) = O.
Otherwise, z,**z, is computed as

EXP(z*#10G(2z3)),
with the proviso that if IMAG(z;) = 0
then LOG(ABS(z4)) is calculated by a call

to the real LOG routine, not to the com-
plex LOG routine.

Arithmetic: Complex Operations 11



Error and Exceptional Conditions:
2, = 0 with either REAL(z,) < 0 or
IMAG(z,) # O

O : a. REAL(z,*LOG(z4)) > 174.673: error

caused in IHEWEXS or IHEWEXL

b. IHEWXXW:
ABS (IMAG(z,*LOG(z,))) > 2%%18%pi:
error caused in SIN routine
(IHEWSNS)

IHEWXXZ :
ABS{IMAG(z,*L0G(2z4))) 2> 2*%50%pi:

error caused in SIN routine
(IHEWSNL)

FUNCTIONS WITH REAL ARGUMENTS

ADD (Fixed decimal)

Module Name: IHEWADD

Entry Point: IBEADDO

Function:

ADD(Xx, ,X,,p,q} where x; and x, are real
fixed-point decimal numbers, and (p,q) is
the required precision of the result.

Method:

If both arguments are non-zero, a call to
the module IHEWAPD is used to shift the
one with the larger scale factor to give
it the scale factor of the other, and
convert it to precision 31. The arqu-
ments are added together, and IHEWAPD is
used to convert the sum to the specified
precision and to assign it to the target
field.

If one of the arguments is zero, the
other is treated as the sum above.

Error and Exceptional Conditions:

H : FIXEDOVERFLOW or SIZE may occur in
IHEWAPD.

MAX ,MIN

Module Names and Entry Points:

PL/I Module Entry
Arqument Function Name Point
Fixed binary MA X IHEWMXB IHEMXBX

MIN IHEMXBN
Fixed decimal MAX IHEWMXD IHEMXDX

MIN IHEMXDN

12

Short float MAX IHEWMXS THEMXSX
MIN IHEMXSN
Long float MAX ITHEWMXL IHEMXLX
MIN IHEMXLN

Function:

To find the maximum or the minimum of a
group of arithmetic values.

All arguments must have the same base,
scale and precision.

Method:

IHEWMX B, IHEWMXS, IHEWMXL: The value of
the current maximum or minimum is set
to the value of the first argument; it
is then compared algebraically with the
next argument and replaced by it if
appropriate. The process is repeated
until a test on the argument list
indicates that all socurce items have
been processed, when the current value
is stored as the result.

IHEWMXD: The address of the current
maximum or minimum is set to the
address of the first argument; this
argument is then compared algebraically
with the next argument, and the address
of the latter replaces that of the for-
mer if appropriate. The process is
repeated until a test on the argument
list indicates that all source items
have been processed, when the result is
moved into the target field.

FUNCTIONS WITH COMPLEX ARGUMENTS

ADD (Fixed decimal)

Module Name: IHEWADV

Entry Point: IHEADVO

Function:

ADD(z,,Z5.P,9) Where z;, and z, are com-
plex fixed-point decimal numbers, and
(p,q) is the required precision of the
result.

Method:

The real parts of each argument are added
and the sum is assigned to the target
field by using the real fixed decimal ADD
module (IHEWADD). The imaginary parts
are treated similarly.

Error and Exceptional Conditions:

H : FIXEDOVERFLOW or SIZE may occur in
IHEWAPD.



MULTIPLY (fixed binary)

Module Name: IHEWMPU

Entry Point: IHEMPUO

Function:

MULTIPLY(Z,,25,p,q} where z, and z, are
complex fixed-point binary numbers, and
(p,q) is the required precision of the
result.

Method:

Let the arguments be z; = a + bl and
22=C*d1-

Then REAL(z.*z,) = a*c -~ b#*d
IMAG(z,*z,) = b*c + a*d

The real and imaginary parts of the pro-
duct are computed. These numbers are
then shifted to give them the required
scale factor(qg).
The results of the shifts are tested for
FIXEDOVERFLOW and truncated by left
shifts.

Error and Exceptional Conditions:

I : FIXEDOVERFLOW

MULTIPLY (fixed decimal)

Module Name: IHEWMPV

Entry Point: IHEMPVO

Function:
MOLTIPLY(z,3,Zz.,,p,g) where z; and z, are
complex fixed-point decimal numbers, and
(p,q) is the required precision of the
result.

Method:

Let z, = a + bI and z, = ¢ + dI, then:

REAL(z *z,) = a*c - b#*d.
IMAG(z3%z,) = b*c + a*d.

The real and imaginary parts are calcu-

lated and then each is assigned to the

target with precision (p,q) by separate

calls to the entry point IHEAPDA of the

decimal shift and assign module IHEWAPD.
Error and Exceptional Conditions:

H : FIXEDOVERFLOW or SIZE in IHEWAPD.

Chapter 2.

DIVIDE {fixed binary)

Module Name: IHEWDVU

Entry Point: IHEDVUO

Function:
DIVIDE{Z: ,22,P.q) where z, and z, are
complex fixed-point binary numbers, and
(p,gq) is the required precision of the
result.

Method:
Let 2z, = a + b, and z, = ¢ + dI, then:

REAL(Z, /2,)
IMAG (21/22)

{a*c + b*d)/ (c**2 + d**2)
{b*c - a*d)/(c**2 + d*+2)

LT}

The expressions a*c + b*d, b*c - a*d, and
c*¥*2 + d**2 are computed with a precision
of 63. The denominator, c**2 + d#**2 is
shifted to precision 31 by either a right
or left shift.

Two calls are then made to an incorpor-
ated subroutine which accepts a numerator
and shifts it so that it has two insigni-
ficant leading digits. It then divides
by c*+2 + d#**2 and shifts the quotient to
the required scale factor (qg).

Error and Exceptional Conditions:

I : FIXEDOVERFLOW or ZERODIVIDE

DIVIDE (fixed decimal)

Arithmetic

Module Name: IHEWDW

Entry Point: IHEDVVO

Function:
DIVIDE(24 ,22,p,9} where z3 and z, are
complex fixed-point decimal numbers, and
(p,g) is the required precision of the
result.

Method:
Let z, = a + bI, and z, = ¢ + dI, then

REAL(z,/2,)
IMAG(z4 /25)

= (a*c + b*d)/(c**2 + d*+%2)
= (b¥c - a*d)/(c**2 + q%=*+2)
The expressions a*c + b*d, b*c - a*d, and
c*%2 + A*%¥2 are computed. Leading zeros
are removed from the denominator (c**2 +
d*#%2) by truncation on the left and a
left shift if necessary. If the
dencominator is still more than 15 digits
long it is truncated on the right to 15
digits.

Function With Complex Argument 13



Two calls are then made to an incorpor-
ated subroutine which accepts a numerator
and shifts it to precision 31 with 2
leading zeros by calling IHEWAPD (via
entry point IHEAPDB). It then divides by
c**2 + d+*+2 and calls IHEWAPD (via entry
point IHEAPDA) to assign the quotient to
the target field with the required preci-
sion (p,q).

Error and Exceptional Conditions:
I : ZERODIVIDE

H : FIXEDOVERFLOW or SIZE in IHEWAPD

ABS (fixed binary)
Module Name: IHEWABU
Entry Point: IHEABUO

Function:

To calculate ABS(z) = SQRT(x*¥2 + y**x2),
where z = x + yI.

Method:

If x = y, result is x*SQRT(2).
Ot herwise,

i

let X1 = MAX(ABS(x),ABS(y))

]

Y1 MIN(ABS(x) ,ABS(y)).
Then ABS{z) is computed as

X1*SQRT(1 + (Y1/X1)*+2),
where the fixed binary calculation of
SQRT(g) for 1 < g < 2 is included within
the module.

The first approximation to the square
root is taken as

g/(1+q) + (1+g)/4,
with maximum relative error 1.8#%2%%-10.
One Newton-Raphson iteration gives maxi-
mum relative error 1.6%2%%-20, and suf-
fices if X1 < 2#**(15-g) where q is the
scale factor of z.
Otherwise a second iteration is used,

with theoretical maximum relative error
of 1.3%2%%-40.

Error and Exceptional Conditions:
I : FIXEDOVERFLOW

ABS (fixed decimal)

Nodule Name: IBEWABV
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Entry Point: IBEABVO

Punction:

To calculate ABS(z) = SQRT (x*#*2 + y**2)
where z = x + yI.

Method:

x and y are converted to binary, with
appropriate scaling if either exceeds 9
significant decimal digits.

Let X1 be the maximum, and Y1 the mini-
mum, of the absolute values of the two
binary numbers thus obtained.

Then if X1 = Y1 = 0, result 0 is
returned. Otherwise, an approximation to
ABS(z) is computed as

X1#SQRT(1 + (Y1/X1)#%2),

where the fixed binary calculation of
SORT(g) for 1 < g < 2 is included within
the module.

The first approximation to the square
root is taken in the form

A +B+(1 + g) - A/{(1 + g)

with maximam relative error 2.17#%#10#%%-4,
and one Newton-Raphson iteration then
gives a value with maximum relative error
2.35%10%%-8.

Multiplication by X1 produces a value for
ABS(2) which is rounded and converted to
decimal, and this suffices if it has not
more than 7 significant decimal digits.
Otherwise, this approximation is scaled
if necessary and used in a final Newton-
Raphson iteration for SQRT(x*#2 + y*#2)
in decimal, with theoretical maximum
relative error 2.76%10%*-16.

Error and Exceptional Conditions:

I : FIXEDOVERFLOW

ABS (floating-point)

Module Names and Entry Points:

Module Entry
Argument Name Point
Short float IHEWABW IHEABWO
Long float IHEWABZ IHEABZO
Function:

To calculate ABS(z) = SQRT (x*%2 + y*%2),
where z = x + yI.

Method:



Let z = x + yI. If x =y = 0, answer is
0.

Otherwise let z4
and z,

MAX (ABS (%) ,ABS (y))
MIN(ABS (x) ,ABS (y)).

[

Then the answer is computed as

ABS(z) = z;*SQRT(1 + (z,/2,)%%2).

Accuracy:
IHEWABW
| S T ) 1
| Arguments | Relative Error |
| | *10%+6 I
e —4 T {
| Range fDistribution| RMS | Maximum |

T S ——4- e 4
|Full range|Exponential | 0.833 | 2.02
| | radially, | i |
| | uniform | i |
| |round orxigin} | }
| F i 4 [ R— J
IHEWABZ
- T . 1
| Arguments | Relative Error |
i | *¥10%*+*15 |
I S ——t- T i
| Range jDistribution| RMS | Maximum |
————————————————————————————— oo
|Full range|Exponential | 0.828 | 3.38 |
| | radially, | | |
{ | uniform ] | }
| jround origin| i |
L- B S, F S —— § -
Error and Exceptional Conditions:

I : OVERFLOW

Chapter 2.

Arithmetic
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CHAPTER 3: MATHEMATICAL BUILT-IN FUNCTIONS

The Library supports all floating point
arithmetic generic functions and has separ-
ate modules for short and long precision
real arguments. Additionally, the Library
has separate modules for short and long
precision complex arguments where these are
admissible.

Since the calling sequence generated in
compiled code is the same as that required
for passing the same arguments to a PL/I
procedure, it is permissible to pass the
names of any of the flocat arithmetic gener-
ic functions as arguments between proce-
dures, according to the normal rules for
entry names.

Any restrictions on the admissibility of
arguments are noted under the heading
'Error and Exceptional Conditions.*

Error and Exceptional Conditions: These
cover conditions which may result from the
use of a routine; they are listed in four
categories:

P -- Programmed conditions in the module
concerned. Programmed tests are
made where this is not too costly
and, if an invalid argument is
found, a branch is taken to the
entry point IHEERRC of the execution
error package {(EXEP). This results
in the printing of an appropriate
message and in the ERROR condition
being raised.

I -- Interruption conditions in the
module concerned. For those rou-
tines where an OVERFLOW interruption
may occur, the condition is passed
to the ON condition error handler
{IHEWERR) and is treated in the
normal way. For those routines
where an UNDERFILOW may occur, the
condition is disabled and both
intermediate and terminal underflows
are accepted as true zero. In cer-
tain circumstances, however, where
intermediate underflow may cause
severe deterjioration in the accuracy
of the result, the condition is
avoided by programmed tests.

O -- Programmed conditions in modules
called by the module concerned.
These occur when invalid arguments
are detected in the module called.

H -- As I, but the interruption condi-

tions occur in the modules called by
the module concerned.
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In order to appreciate properly the
meaning of the statistics for accuracy
given with each module, some consideration
of the 1limits and implications of these
statistics is required. Because the size
of a machine word is limited, small errors
may be generated by mathematical routines.
In an elaborate computation, slight inac-
curacies can accumulate and become large
errors. Thus, in interpreting final
results, errors introduced during the
various intermediate stages must be taken
into account.

The accuracy of an answer produced by a
routine is influenced by two factors: (1)
the accuracy of the argument and (2) the
performance of the roautine.

Most arguments contain errors. An error
in a given argument may have accumulated
over several steps prior to the use of the
routine. Even data fresh from input con-
version may contain slight errors. The
effect of an argument error on the accuracy
of an answer depends solely on the nature
of the mathematical function involved and
not on the particular coding by which that
function is computed within a routine. 1In
order to assist users in assessing the
accumalation of exrors, a guide on the pro-
pagational effect of argument errors is
provided for each function. Wherever pos-
sible, this is expressed as a simple
formula.

The performance statistics supplied in
this document are based upon the assumption
that the arguments are perfect (i.e.,
without errors, and therefore having no
argument error propagation effect upon an-
swers). Thus the only errors in answers
are those introduced by the routines
themselves.

For each routine, accuracy figures are
given for the valid argument range or for
representative segments of this. In each
case the particular statistics given are
those most meaningful to the function and
range under consideration.

For example, the maximum relative error
and the root-mean-square of the relative
error of a set of answers are generally
useful and revealing statistics, but are
useless for the range of a function where
its value becomes 0, since the slightest
error of the argument value can cause an
unbounded fluctuation in the relative mag-



nitude of the answer. Such is the case
with SIN(x) for values of x close to pi; in
this range it is mcre appropriate to dis-
cuss absolute errors.

The results were derived from random
distributions of 5000 arguments per seg-
ment, generated to be either uniform or
exponential, as appropriate. It must be
emphasized that each value guoted for the
maximum error refers to a particular test
using the method described above, and
should be treated only as a guide to the
true maximum error.

This explains, for example, why it is
possible that the maximum error quoted for
a segment may be greater than that found
from a distribution of different arguments
over a larger range which includes that
segment.

Hexadecimal Truncation Errors

While the use of hexadecimal numbers in
System/360 has led to increased efficiency
and flexibility, the effect of the variable
number of significant digits carried by the
tloating-point registers must be noted in
making allowance for truncation errors. 1In
the production of the PL/I Library, special
care was taken to minimize such errors,
whenever this could be accomplished at
minor cost. As a result, the relative
errors produced by some of the Library rou-
tines may be considerably smaller than the
relative error produced in some instances
by a single operation such as
multiplication.

Representations of finite length entail
truncation errors in any number system.
With binary normalization, the effect of
truncation is roughly uniform. With hexa-
decimal normalization, however, the effect
varies by a factor of 16 depending on the
size of the mantissa; in a chain of compu-
tations, the worst error committed in the
chain usually prevails at the end.

In short-precision representation, a
number has between 21 and 24 significant
binary digits. Therefore, the truncation
errors range from 2%#*-24 to 2#*#-20 (5.96%
10¢*-8 to 9.5%10*#%-7). Assuming exact
operands, a product or quotient is correct
to the 24th binary digit of the mantissa.
Hence truncation errors contributed by mul-
tiplication or division are no more than
2*¥*-20. The same is true for the sum of
two operands of the same sign. Subtrac-
tion, on the other hand, is the commonest
cause of loss of significant digits in any
number system. For short-precision opera-
tions, therefore, a gquard digit is provided
which helps to reduce such loss.

Chapter 3:

In long-precision representation, a
number has between 53 and 56 significant
binary digits. Therefore truncation errors
range from 2%#*-56 to 2**-52 (1.39#%10#**-17
to 2.22#%10%%-16).

Normal care in numerical amalysis should
be exercised for addition and subtraction.
In particular, when two algorithms are
theoretically equivalent, it usually pays
to choose the one which avoids subtraction
between operands of similar size.

Hexadecimal Constants

Many of the modules described below dis-
criminate between algorithms or test for
errors by comparisons involving hexadecimal
constants; it must be realized that where
decimal fractions are used in the descrip-
tions the fractions are only quoted as con-
venient approximations to the hexadecimal
values actually employed.

Al gorithms

The algorithms are the methods by which
the mathematical functions are computed.
The presentation of each algorithm is
divided into its major camputational steps,
with the formulas necessary for each step
supplied. Some of the formulas are widely
known; those that are not so widely known
are derived from more common formulas. The
process leading from the common formula to
the computational formula is sketched in
enough detail so that the derivation can be .
reconstructed by anyone who has an under-
standing of college mathematics and access
to the common texts on numerical analysis.?

Many of the approximations were derived
by the so-called "minimax” methods. The
approximation sought by these methods can
be characterized as follows: given a func-!
tion £{x), an interval 1, the form of the
approximation (such as the ratiomal form
with specified degrees), and the type of
error to be minimized (such as the relative
error), there is normally a unique approxi-.
mation to f(x) whose maximum error over I
is the smallest among all possible approxi-
mations of the given form. Details of the
theory and the various methods of deriving
such approximations are left to the
reference.

used as a reference. One such text is A.
Ralston's A First Course in Numerical Anal-
ysis {(McGraw-Hill Book Company, Inc., New
York, 1965). Background information for
algorithms that use continued fractions may
be found in H. S. Wall's Analytic Theory
of Continued Fractions (D. VanNostrand Co.
Inc., Princeton, N.J., 1948).

Mathematical Built-In Functions 17



Terminology

Maximum and root-mean-sgquare values for
the relative and (where necessary) the
absolute errors are given for each module.
These are defined thus:

Let f(x) = the correct value for a
function
gx) = the result obtained from the

module in question
Then the absolute error of the result is
ABS{f () - gix}),
and the relative error of the result is
BBS({f(x) - g(x)}/f(x)).
Let the number of sample results obtained
be N; then the root-mean-square of the
absolute error is
SQET(2. (ABS(£(x;) - g{x)I+*2)/N),

and the root-mean-square of the relative
error is

SQRT(2. ((ABS((£(x3) - glx))/f(x;))*+2)/N).

The Library mathematical modules are
summarized in Figures 5 and 6.

FUNCTIONS WITH RFAL ARGUMENTS

SQORT {short floating-point real)

Module Name: IBEWSQS

Entry Point: IHESQS0
Function:

To calculate the square root of x.
Method:

If x = 0, SQRT(x) = 0. Otherwise, let
X = 16%%(2%p - q)*f,

where p is an integer, q = 0 or 1, and

1716 < £ < 1. Then
SQRT(x) = 16%%pslss-qsSQRT(f)

The first approximation, y;, of SQRT (x)
is obtained by the hyperbolic fit

Yo = 168%psuss-qe(1. 681595~
1.288973/(0.8408065+£))

This approximation attains the minimax
relative error. The maximum relative
erroxr is 2¢%-5_748.

Two Newton-Raphson iterations then yield

[

¥Ya (y;+x/y;) 2

r L] 1

| i Real Arguments {

i } + ~—q Ya = (Ya~X/¥1) /72437y,

| Function jShort Float|Long Float|

t + + 1 with a partial rounding. The maximum

| SQRT { IHEWSQS | IHEWSQL | relative error of y, is theoretically

| EXP i IHEWEXS | IHEWEXL | 2%%- 25,9,

{LOG, LOG2,L0G10 | IBEWLNS | IHEWLNL |

|{SIN, COS,SIND,COSD| IHEWSNS | IHEWSNL | Effect of Argument Error:

| TAN, TAND | IHEWINS | IHEWTNL |

| ATAN, ATAND | IHEWATS | IHEWATL | The relative error caused in the result

| SINH, COSH | IHEWSHS | IHEWSHL | is approximately half the relative error

| TANH | IHEWTHS | IHEWTHL | in the argument.

JATANH i IBEWHTS | IHEWHTL |

| ERF, ERFC { IHEWEFS | IHEWEFL | Accuracy:

L i i 3

Figure 5. Mathematical Functions With r T 1

Real Arguments ] Arguments | Relative Error |

| | *¥10%%6 |
1 4 d

r o o | (4 T v T b

| { Complex Arguments | | Range |Distribution| RMS | Maximum |

t t r——= ik t + + -4

| Function | Short Float|Long Float] {Full Range|Exponential | 0.133 | 0.477 |

L 4 f % L i 4 i S i

{SQRT ] IHEWSQW | IHEWSQZ |

| EXP | IBEWEXW | IHEWEXZ | Error and Exceptional Conditions:

| LOG | IHEWLNW | TIHEWLNZ |

| SIN,COS,SINH,COSH | JHEWSNW | IHEWSNZ | P :x<90

| TAN, TANH i IHEWTNW | IHEWTNZ |

jATAN, ATANH i IHEWATW | IHEWATZ |

L 1 i 3 SORT (long floating-point real)

Mathematical Functions With
Complex Arguments

Figure 6.
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Entry Point: IHESQLO

Function:
To calculate the square root of x.
Method:

If x = 0, SORT(x} = 0. Otherwise, let

x = 16**(2%p - qi*f, where p is an inte-
Then

ger, q = 0 or 1, and 1/16 < f < 1.
SQRT (x) = 16**peh**+-qg *SORT(f).

The first approximation of SQRT(f) is
computed as:

y = 16#*#psuss (1-q) %0.2202(£+0.2587)

This approximation was chosen in order to

permit the use of single precision
instructions in the final iteration by
making the quantity x/y,;-y, below less
than 16%**(p-8).

Four Newton-Raphson iterations of the
form y = (yp *+ %/yn) 72 are then ap-

plied, two in short precision and two in

long precision, the last being computed
as

SQK‘[‘(X) = ¥a ¥ (X/Y3 - Yg)/z

with an appropriate truncation maneuver
to obtain virtual rounding.

The maximum relative error of the final

result is thecretically 2#%#*-63.23.
Effect of an Argument Erxrxor:

The relative error caused in the result

is approximately half of the relative
error in the argument.

Accuracy:

Arguments Relative Error

*10*#15

T

T
i
|
4
T -
|} RMS | Maximum

T
Range {Distribution
14

el e
)

¥ _—
ull range|Exponential | 0.0310] 0.109
4 i i

Error and Exceptional Conditions:

P : x <0

EXP (short floating-point real)

Module Name: IHEWEXS

Chapter 3.

Entry Point:

IHEEXS0

Function: To calculate e to the power x.

Method:

If x < ~-180.218, a zero result is
returned immediately.

Otherwise EXP(x) is calculated as
follows:

1. Divide x by LOG(2) and write
y = x/L0G(2) = 4#*a-b-d

where a and b are integers, 0 £ b< 3 and
0 £ d< 1.

Then EXP(x) = 2¢%y = 16%%3%2%¢-pbs2%%-g

2. Compute 2%#¢-d by the following frac-
tional approximation:

2%%-d = 1-2#47(0.034657359%d*+2+4+
9.9545948~617.97227/(A**2+487.417497))

This formula can be obtained by the
transformation of the Gaussian continued
fraction

EXP(~-2)=1-2/(1+2/(2~2/(3+2/(2~-2/ (5+2/ (2-2
(T7+2/2-...3))))))

The maximum relative error of this ap-
proximation is 2#%#%-29,

3. Multiply 2#%-d by 2%+-b
4. Finally multiply by 16#*¢a by adding a

t0 the characteristic of the result
of step 3.

Effect of Argumemt Exror:

The relative error caused in the result
is approximately equal to the absolute
error in the argument, i.e., to the argu-
ment relative error multiplied by x.

Thus for large values of x, even the
round-off error of the argument causes a
substantial relative error in the answer.

RSN SN W—p———

Accuracy:

L Al

| Arguments | Relative Error

| | *10%%6

j . 1

L L 1 . . . Ll L] .

| Range |Distribution] RMS | Maximum

L [ 4. 4

1 3 B T R

{-1 < x < 1! Uniform | 0.129 | 0.444

f - 4 i i

Lo 1] . v 1] R
|[Full Range| Uniform | 0.115 | 0.459 |
L i i 4 i
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Error amd Exceptional Conditions:

I : OVERFLOW if x > 174.673

EXP (long floating-point real)

Module Name: IHEWEXL

Entry Point: IHEEXLO

Function: To calculate e to the power x.

Method:

If x < -180.2187, return zero as the
result.

Otherwise EXP(x) is calculated as
follows:

1. Divide x by 1L0G(2) and let
y=xX/LOG(2) = 4*a-b-c/16

where a, b, and ¢ are integers, 0 £ b <
3, and 0 £ ¢ £ 15. Then, as an exact
representation for x, obtain

x = {(4*a-b-c/16) *LOG(2)-d

where the remainder 4 is in the range 0 <
d < LOG(2)/16. This reduction is carried
out in extra precision. Then

EXP(x) = 16¢*a*2%%-h*2%*(~c/16) *EXP(~-d)

2. Compute EXP(-d) by using a minimax
polynomial approximation of degree 6
over the range 0 < d < LOG(2)r/16.
The coefficients of this approxima-
tion were obtained by taking the
minimax of relative errors under the
constraint that the constant term
shall be exactly one. The relative
error is less than 2#*#-56.87.

3. Multiply EXP(-d) by 2#2*(-c/16), then
halve the result b times.

4. Finally, multiply by 16%*a by adding
a to the characteristic of the result
of step 3.

Effect of an Argument Exror:

The relative error caused in the result
is approximately equal to the absolute
error in the argument, i.e., to the argu-
ment relative error maltiplied by x.

Thus for large values of x, even the
round-off error of the argument causes a
substantial relative error in the answer.

20

Accuracy:

¥ - T - - 1
| Arguments { Relative Error |
| | *+10%+15 ]
t T T A B St 1
| Range |Distribution| RMS | Maximum |
e t + 1 i
{-1 < x <1} Uniform | 0.0543{ 0.209 |
L 4 ey pi
- 4 T b -t T h]
{Full range| Uniform | 0.0472] 0.426 |
— j i - d 3

Error and Exceptional Conditions:
I : OVERFLOW if x > 174.673

LOG, LOG2, LOG10 (short floating-point
real)

Module Name: IHEWLNS
Entry Points:
Mathematical PL/1 Entry
Function Name Point
Log x to the base e LOG(x) IHELRSE
Log x to the base 2 LOG2 (x) IHELNS2
Log x to the base 10 LOG10(x) IHELRSD

Function: To calculate log x.
Method:

Let x = 16*%p*2%* (~q)*m where p and q are
integers, 0 < g <3, and 1/2 £ m < 1.

Two constants, a (= base point) and b (=
-10G2(a)), arxe defined as follows:

If 1/2 < m < 1/SQRT(2):
=1

thema = 1/2, b

If 1/SQORT(2) < m < 1l: thema=1, b=20

Let y = (m-a)/(m+a).
Then m = a*{1l+y)/(1-y) and ABS(y) <
0.1716.

Now x = (2%% (4*p-q-b))*((1+y)/(1-y)).
Thexefore

I0G(x) = (U*p-g-b) *LOG(2) +
LOG{(1+y) /7 (1-y)).

To obtain LOG((1+y)/(1-y)) first w = 2%y

= (m-a)/(0.5m+0.5a) is computed (which is
represented in System/360 with more sig-

nificant digits than y itself), then the

following approximation is performed:

LOG{(14y)/7(1-y)) = we{c,
+C W2/ (C~WH%2) )

The coefficients were obtained by the
minimax rational approximation of LOG((1+
y)7{1-y))/(2¢y), in relative error, under



the constraint that the first term shall Error and Exceptional Conditions:
be one. The maximum relative error of

this approximation is less than P: x <20
2¢%—25_133,

10G, LOG2, 1L0G10 (long floating-point real)
L0G2(x) or LOG10(x) is calculated by mul- Module Name: IHEWLNL
tiplying the above result by LOG2(e) or
LOG10 (e) respectively. Entry Points:

Mathematical PL/I Entry
Effect of Argument Error: Function Name Point
Log x to the base e LOG (x) IHELNLE

The absolute error caused in the result Log x to the base 2 LOG2(x) IHELNL2
is approximately equal to the relative Log x to the base 10 LOG10 (x) IHELNLD

error in the argument. Thus if the arqgu-
ment is close to 1, even the round-off

error of the argument causes a substan- Function: To calculate log x.

tial relative error in the answer, since

the function value there is very small. Method :
Accuracy: Let x = 16%%p*2#%*(-qg)*m where p and g are

integers, 0 < g < 3, and 1/2 < m < 1.

— ———- ¥ 1
{ Arguments | Relative Error | Two constants, a (= base point) and b (=
| | *10**%6 | -L0G2(a)), are defined as follows:
b TSR B ]
| Range |Distribution| RMS | Maximum | if 172 £ m £ 1/SQRT(2): then a = 1/2,
L — J— —— L e ——d b = 1
IHELNSE

— T ————— T s | if 1/SQRT(2) < m <1: thena =1, b = 0.
| Excluding | | }
|0.5 < x  |Exponential | 0.122 | 0.841 | Let y = (m - aY/(m + a).
I< 2.0 [ I | |
L —_——t 1 L 4 Then m = a*(1 + y)/(1 - y) and ABS(y)
IHELNS2 < 0.1716.
| - - -7 T ==
|Excluding | | | | Now x = 2%#(4*p - g - b)*(1 + y)/(1 - y)
{0.5 < x | Exponential | 0.340 | 0.980 | Therefore
i< 2.0 | [ | |
b Lo L + 4 I10G(x) = (4%p - g - bI*LOG(2) +
IHELNSD LOG((1 + y)/(1 - y)).
| I T T T 1
| Excluding | | | | To obtain LOG((1+y)/(1-y)) first w = 2%y
10.5 < x | Exponential | 0.219 | 1.10 | = (m-a)/(0.5m0.5a) is computed (which is
|< 2.0 | | | | represented in System /360 with more sig-
L - L - 1 4 4 nificant digits than y itself), then the
r ——— T - 1 following approximation is performed:
| Arguments | Absolute Error |
| | *10*26 | LOG{(1+y)/(1-y)) = w*(Cotcy*w**2/
t -7 -——1+ T | (Ca—w¥*2))
| Range | Distribution| RMS | Maximum |
e L 4 ~—d 4 The coefficients were obtained by the
IHELNSE minimax rational approximation of LOG((1+
r - T ————pm———— 1 y)/7(1-y))/ (2+y), in relative error, over
0.5 < x | Uniform | 0.0255} 0.0679] the range y#*#*2 < 0.02944 under the con-
|< 2.0 | { i | straint that the first term shall be 1.
L —— L 1 - J The maximum relative error of this ap-
IHELNS2 proximation is less than 2#*#*-60.55.

T T

{0.5 < x T Uniform T 0.228 | 0.479 } LOG2(x) or LOG10(x) is calculated by mul-
|< 2.0 | | | | tiplying the above result by LOG2(e) or
b e 1o ———1 4 - LOG10(e) respectively.
IHELNSD

r T T T 1 Effect of an Argument Error:

10.5 < x | Uniform | 0.0228}§ 0.0720}
| | | | The absolute error caused in the result
1 1 ~--1 - is approximately equal to the relative
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error in the argument. Thus if the argu-
ment is close to 1, even the round-off
error of the arqument causes a substan-
tial relative error in the answer, since
the function value there is very small.

Accuracy:

3 ] b}
{ Arguments | Relative Error |
{ i 10%%]15 |
L —— &
4 h ] . R _"" - T A
| Range {Distribution| RMS | Maximum |
L L - L ¥}
IHELNLE

e m——— 4 ¥ T 1
|Excluding | | } |
{0.5 < x | Exponential | 0.0544| 0.339 |
i< 2.0 | | | |
| —— i i L 3
IHELNLZ2

ittt S e e bttt |
| Excluding | | i |
0.5 < x { Exponential | 0.0881] 0.425 |
{< 2.0 | l | ]
L e e e i —_—d i F)
IHELNLD

s e T 1
| Excluding | | i {
{0.5 < x | Exponential | 0.0659| 0.322 |
i< 2.0 | | | i
b L - L i i)
T - T ———= -1
| Arguments | Absolute Error |
{ | *10*+15 |
e - T 1
| Range | Distributionjy RMS | Maximum |
[ L Lo i —1
IHELNLE

————————— T - -
10.5 < x | Uniform | 0.0239{ 0.0472]
i< 2.0 | | | |
L ————k — —h 3
IHELNL2
r T - L S h ]
10.5 < x | Uniform ] 0.0291} 0.0576|
i< 2.0 | i | |
L 4 - —te e e
IHELNLD
R — S ikt . T 1
j0.5 < x | Uniform | 0.0125} 0.0294|
i< 2.0 { | i |
i i 'y i 3

SIN, SIND, COS, COSD (short floating-point
real)

Module Name: IHEWSNS
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Entry Points:

Mathematical PL/X Entry
Function Name Point
Sin{x radians) SIN (x) IHESNSS
Sin(x degrees) SIND(x) IHESNSZ
Cos(x radians) COS (x) IHESNSC
Cos (x degrees) CosD(x) IHESNSK

Function: To calculate sin x or cos x.
Method:
Let k = pi/4

Evaluate p = ABS(x)*(1/k) if x is in
radians
or p = ABS(x)*(1/45) if x is in
degrees,
using long-precision multiplication to
safeguard accuracy.

Separate p inmto integer part q and frac-
tional part r, i.e., p = g + r where
0 = r < 1.

Define q, = q if SIN or SIND is required
and x 2 0;
qs = g + 2 if COS or COSD is
required;
gy = g + 4 if SIN or SIND is

required and x < 0.

Then for all values of x each case has
been reduced to the computation of SIN(k#
(q,+1r)) = SIN(t) say, where t 2 0.

Let g, = MOD(q,,8).

if g = 0, SIN(t) = SIN(ksr)

If q2 =1, SIN(t) = COS(k*(1-1))
If g2 = 2, SIN(t) = CO0S{(k*r)

If g = 3, SIN() = SIN(k#(1-1))
If g2 = 4, SIN(t) = -SIN(k#*r)

If g =5, SIN(t) = -cos(k#(1-r))
If g = 6, SIN(t) = -coS(k#*r)

If g = 7, SIN(t) = -sIN(k*{(1-I)).

Thus it is necessary to compute only SIN(
k*r,) or COS{(k#*r,) where ry = rorl1l - r
and 0 < r, <1, as follows:

1. BSIN(k*r;) = r,%*(a,
*a1r1*‘2*a3r1**ll+a 3!1.‘6)

The coefficients were obtained by the
Chebyshev interpolation. The maximum
relative error is less than 2¢#%-28.1.

2. CcOos (k‘r,_) = 1+b1r“.2*b311“u’b3r1..6

The coefficients were obtained by a
variation of the minimax approximation
which provides partial rounding for
the short precision computation. The
maximum absolute error is 2#%%-24.57.

Effect of an Argument Error:



The absolute error of the answer is
approximately equal to the absclute error
in the argument. Hence, the larger the
argument, the larger its absolute error
and the larger the absolute error of the
result. Since the function diminishes
periodically for both sine and cosine, no
consistent contrcl of the relative error
can be maintained outside the range -pi/2
to pi/2 radians (cr -90 to +90 degrees).

Accuracy:
r T h ]
| Arguments | Absolute Error |
| ] *10%%§ |
% | + T A ‘1‘
| Range |Distribution|{ RMS | Maximum |
L .y 1 L 4
IHESNSS
r T -7 T k]
|ABS(x) < | Uniform | 0.0467] 0.119 |
lpis2 | | | |
P — -1 + —
Ipizr2 < I | | |
| ABS (x) | Uniform ] 0.0800} 0.125 |
|< 10 | | i i
¢ T 1
110 < | | | |
|ABS (x) | Uniform { 0.0401] 0.124 |
|< 100 | | i |
L P& U PR i ]
IHESNSC
- T T T 1
|0 £ x < pi| Uniform | 0.0408{ 0.119 |
T t 1 -
I-10 = x| | ] |
|< 0, | Uniform | 0.0402} 0.120 |
Ipi < x | | | |
I= 10 I | | |
b= - e R i
110 < | | | |
| ABS (x) | Uniform | 0.0398} 0.113 |
|< 100 | { | ]
b L 1 1 4
Error and Exceptional Conditions:
P : IHESNSS, IHESNSC:
ABS(x) > 2%#*18#%pi
IHESNSZ, IHESNSK:
ABS(x) = 2**18%*180
SIN, SIND, COS, COSD (long floating-point
real)
Module Name: IHBEWSNL
Entry Points:
Mathematical PL/X Entry
Function Name Point
Sin(x radians) SIN(x) IHESNLS
Sin(x degrees) SIND(x) IHESNLZ
Cos(x radians) COS (x) IHESNLC
Cos (x degrees) COSD(x) IHESNLK

Function: To calculate sin x or cos x.

Method:
Let y = ABS(x)/(pis4) for x in radianms,
or y = ABS(x)/45 for x in degrees,
and y = g + xr, g integral, 0 < r < 1.
Take gy = q for SIN or SIND with positive

or zero argument,
gy = q + 2 for COS or COSD,
gy = q + 4 for SIN or SIND with
negative argument,
and q, = MOD(qg,,B).

Since COS(x)
and SIN(-x)

SIN(ABS(x) + pis/2)
SIN(ABS(x) + pi),

it is only necessary to find

SIN(pi/u*(qz + r))' for 0 < qa < 7.

Therefore compute:

SIN(pirsu*r), if g; = 0 or 4,
cos(pisu®*(1 - r)), if g, = 1 or 5,
COs (pirst*rxr), if g = 2 or 6,
SIN(pizt*(1 - r)) if g2 = 3 or 7.

SIN(pi/U*r,)/r,, where r, is xr or

(1 - r), is computed by using the Cheby-
shev interpolation polynomial of degree 6
in ry##%2, in the range 0 < r,*#*2 < 1,
with maximum relative error 2#%#(-58).

COS{pist*r,) is computed by using the
Chebyshev interpolation polynomial of
degree 7 in r **2, in the range 0 < r,*#*
2 £ 1, with maximum relative error

2%% (~64.3).

Finally, if gz =2 4 a negative sign is
given to the result.

Effect of an Argument Error:

The absoclute error of the answer is
approximately equal to the absolute errxor
in the argument. Hence, the larger the
argument, the larger its absolute error
and the larger the aksolute error of the
result. Since the function diminishes
periodically for both sine and cosine, no
consistent control of the relative error
can be maintained outside the range -pi/2
to pi/2 radians (or -90 to +90 degrees).
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Accuracy:
IHESNLS
= T
| Arguments | Relative Error
i i *10++¢15
9 4
[ 3 L) R A b ] T .
| Range |Distribution| RMS | Maximum
S L 1 A
IHESNLS
= T b T b}
| ABS(x) < | | | |
} piz2 } Uniform | 0.0181 | 0.0771 |
b - + t i
| pir2 < | | | |
| ABS(x) | Uniform | 0.317 | 2.36 |
| <10 | | | |
L i 4 i 3
T T T T R
| 10 < | | | |
| ABS(x) | Uniform | 0.928 | 2.65 |
| = 100 | | | |
| N i 4 L ———
IHESNIC
r—= T T T 1
{ 0 £ x < pi | Uniform { 0.0739 | 0.266 |
prmm } t t {
| -10 < x | | | |
| <0, | Uniform | 0.0683 | 0.266 |
| pi < x | | | |
| =10 | | | |
% 1 4 4 4
T T v T 1
| 10 < i | | |
| ABS(x) | Uniform | 1.02 | 2.68 |
| < 100 | | | |
L i L 4 -
Error and Exceptional Conditions:
P : IHESNLS, IHESNLC:
ABS{x) = 2%*50%pi
IHESNLZ, IHESNLK:
ABS(x) > 2#%*50%180
TAN, TAND (short floating-point real)
Module Name: IHEWTNS
Entry Points:
Mathematical PL/I Entry
Function Name Point
Tan({x radians) TAN(x) IHETNSR
Tan(x degrees) TAND (x) THETNSD

Function: To calculate tan x.

Method:
Evaluate p = (4/pi)*ABS{(x) if x is in
radians,
or p = (1/45)*ABs5(x) if x is in
degrees,

using long-precision multiplication to
safeqguard accuracy.
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Let g and r ke respectively the integral
and fractional parts of p.

If q is even, put s
if g is odd, put s

xr;
1-r.

([}

Let gy = MOD{g,4). Then

If g, = 0, TAN(ABS(xX)) = TAN(pi*s/4)
If gy =1, TAN(ABS(X)) = COT(gi*s/4)
If q; = 2, TAN(ABS(x)) = -COT(pi*s/u)
If g, = 3, TAN(ABS(x)) = -TAN(pi*s/4)

Compute TAN(pi*s/4) and COT(pi#*s/4) as
the ratio of two polynomials:

TAN(pi#*ss/4) = s*P(u)/Q(u)
COT(pi*ss4) = Qg(u)/(s*P(u))

where u = s*#%2/2 and

P(u) = -8.460901+u and
Q(u) = 10.772754+5.703366%u
-0.159321%u*s2

These coefficients were obtained by the

minimax rational approximation in rela-

tive error of the above forxm. The maxi-

mum relative error of this approximation
is 2#*#%-26. The variable u, rather than
s*%*2, was chosen for P and Q in order to
improve the rounding effect of the
coefficients.

Finally, if x < 0, put

TAN(x) = -TAN(ABS(x)).

Effect of an Argument Erxror:

The absolute error of the answer is
approximately egual to the absolute error
of the argument multiplied by (1 + TAN(x)
*%2) . Hence if x is near an odd multiple
of pis/2, an argument error will produce a
large absolute error in the answver.

The relative error in the result is
approximately equal to twice the absolute
error in the argument divided by SIN(2s+
x). Hence, if x is near a multiple of
pi/2, an argument error will produce a
laxrge relative error in the result.



Accuracy:
[T T T T e e e T 1
| Arguments | Relative Erxrror |
| | +10%%6 |
‘‘‘‘‘‘‘‘‘ S St +-—- T -————1
| Range |Distribution| RMS | Maximum |
L 3 Lo S 4
IHETNSR
r T YT T T ey
|ABS(x) < | OUniform | 0.290 | 1.64 |
{pisu | | | |
PG i SO, R 4 __4
. v T R
|piszé < | | | |
| ABS (x) | Uniform | 0.369 | 1.54 i
| < pirs2 | | ! |
P e $ t -4
Ipisz2 < | | | !
| ABS (x) | Uniform | 0.321 | 4.81 |
[< 10 | | | ]
—————————— $- -——1 : -
110 < | | | i
| ABS (x) | Uniform | 0.310 | 1.38 |
< 100 | | i |
b S i___ L )
Error and Exceptional Conditions:
P : IHETNSR: ABS(x) 2 2#%%18%pi
IHETNSD: ABS(x) 2 2%*18%180
I : IHETNSR: OVERFLOW
IHETNSD: OVERFLOW
TAN, TAND (long floating-point real)
Module Name: IHEWTNL
Entry Points:
Mathematical PL/1 Entry
Function Name Point
Tan(x radians) TAN(x) IHETNLR
Tan(x degrees) TAND (x) IHETNLD
Function: To calculate tan x.
Method:
Evaluate
p = (U/pi)*ABS(x) if x is in radians
or p = (1/745)Y*#*AaBS(x) if x is in degrees.

Let q and r be respectively the integral
and fractional parts of p.
If q is even,

put s = r;

If q is odd, put s = 1 r.

Let q3 = MOD(q,4). Then

If gy = 0, TAN(ABS(x)) = TAN(pi*s/u)
If g, = 1, TAN(ABS(X)) = COT(pi*s/8)
If g, = 2, TAN(ABS(x)) = -COT(pi*s/4)
If g, = 3, TAN(ABS(x)) = -TAN(pi*s/4)

Chapter 3.
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Compute TAN(pi*s/4) and COT(pi*s/4) as

the ratioc of two polynomials:

TAN (pi*s/4)

= S*P(s*%2) /Q(s5*%2))
COT (pi*s/4) =

Q(s*%2)/(s*P(s%+2))

where both P and Q are polynomials of
degree 3 in s**2. The coefficients of P
and Q were oktained by the minimax
rational approximation (in relative
error) of TAN(pi*s/4) of the indicated
form. The maximum relative error of this
approximation is 2#**-55.6.

~-TAN{ABS(x)).

Finally, if x < 0, TAN(x) =

Effect of an Argument Error:

The absolute error in the result is
approximately equal to the absolute error
in the argument multiplied by (1+TAN(x)**
2). Hence, if x is near an odd multigple
of pi/2, an argument error will produce a
large absoclute error in the result.

The relative error in the result is
approximately equal to twice the absoclute
error in the argument divided by SIN(2#
x). Hence, if x is near a multiple of
piZ2, an argument error will produce a
large relative error in the result.

Accuracy:

IHETNLR

-

|

}-_--_

Relative Error
*10*%+15

Arguments

Range

Distribution] RMS Maximum

ABS{x) < Uniform 0.646 0.571

pi/s4

#Uniform 0.471

|
|
|
|
L

*Uniform 84.2 4730

fod
je)
&)
Lan
]
A
R SOU S SO S

ABS (x) {

< 100 |

_____ : A
*The errors gquoted are those encountered
in a sample of 5000 points; each figure
derends very much on the particular
points encountered near the singulari-
ties of the function, where no error
control can be maintained.

o e e s o ot o e rains S . o o s e o s i . s

5
UL SIpNUUINETRPRRRS - S S ' W SNy SAp——
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Error and Exceptional Conditions:
P : IHETNLR: ABS{x) 2 2#%%50#*pi
IHETNLD: ABS(x) 2= 2%#50%180
I : IHETNLR: OVERFLOW
IHETNLD: OVERFLOW
ATAN(X), ATAND(X), ATAN (Y,X), ATAND (Y,X)
(short floating-point real)
Module Name: IHEWATS
kntry Points:
Mathematical PL/1 Entry
Function Name Point
Arctan x (radians) ATAN(x) IHEATS1
Arctan(y/x) (radians) ATAN(y,x) IHEATS2
Arctan x (degrees) ATAND (x) IHEATS3

Arctan{ys/x) (degrees) ATAND(y,x) IHEATS4

Function:

To calculate arctan x or arctan(y/x).
The result range is:

Arctan x (radians) * pis2
Arctanlys/x) (radians)t pi

Arctan x (degrees) * 909
Arctan{ysx) (degrees)* 180°

Method:

26

1. ATAN(y,x)

If x = 0 or ABS(y/x) 2
SIGN(y)*pis2
error case X =

2%3¥24, the answer
is returned except for the
y = 0. Otherwise

ATAN(y, x)
or ATAN(y,x)

ATAN(ysx) if x > 0
ATAN(y/x) + SIGN(y)#*pi
if x < 0.

Hence the computation is now reduced to

the single argument case.
2. ATAN(x)

The general case may be reduced to the
range 0 < x £ 1 since

ATAN(-x)
ATAN(1/ABS (x))

-ATAN(x), and
pi/2 - ATAN(ABS(x)).

A further reduction to the range ABS{(x) <
TAN{(pi/12) is made by using

ATAN(x) = pi/6 + ATAN((SCRT(3)*x - 1)/

{x + SQRT(3))).

Care is taken to avoid the loss of signi-
ficant digits in comguting

SORT(3) *x - 1.

For the basic range ABS(x) < TAN(pi/12),
use an approximation forwmula of the form

ATAN(Xx)/x = a + b*x*%2 + c/(d + x*%*2)
with relative error less than 2**-27.1.
3. ATAND{(x) and ATAND(y,x)

The treatment is as above with the addi-

tion of a final conversion of the result
to degrees.

Effect of an Argument Error:

absolute error
to the abso-

Let t = x or y/x; then the
of the answer approximates
lute erroxr in t divided by (1 + t*%2).
Hence, for small values of t, the two
errors are approximately the same; howev-
er, as t becomes larger the effect of the
argument error on the answer error
diminishes.

Accuracy$
- ] 1
| Arguments | Relative Error |
| *10%%6 |
— 4 ) ]
T . N v T . 1
{ Range |Distribution] RMS | Maximum |
- I — § S—— O -3

IHEATS1
r T T T 1
| ABS (x) {Uniform | 0.127 | 0.898 |
I<1 | | I |
- e % $-- -
{Full range|Exponential | 0.246 | 0.994 |
L i L L 4

IHEATS2
T T _'_'_——T"" T 1
|ABS (y) { Exponential | | |
i< 1, 3 { 0.291 | 1.62 |
|ABS (%) |Uniform | | |
I=1 | | | |
L i L 1 J

Exrror and Exceptional Conditions:

P : 1BEATS2, IHEATS4: x =y = 0
ATAN(X), ATAND(X), ATAN (Y ,X), ATAND (¥, ,X)
(long flcating-point real)
Module Name: IHEWATL
Entry Points:
Mathematical PL/I Entry
Function Name Point
Arctan x (radians) ATAN(x) IHEATL1
Arctan{ys/x) (radians) ATAN(y,x) IHEATL2
Arctan x (degrees) ATAND(x) IBEATL3
Arctan(y/x) (degrees) ATAND(Y,X) IHEATLY4



Function:

To calculate arctan x or arctanl{y/x).
The result range is:

Arctan x (radians) + pis2
Arctan(ysx) (radians)t pi

Arctan x (degrees) + 909
Arctan(y/x) (degrees)t 180°

Method:

1. ATAN(y,x)

if x = 0 or ABS{y/x) 2> 2%*56, the answer
SIGN(y)*pi/2 is returned except for the
error case x = y = 0. Otherwise

r= T 1
1 Arguments | relative Erxor |}
ATAN(y,x) = ATAN(y/x) if x > O | | *10#%15 |
or ATAN(y,x) = ATAN(y/x) + SIGN(y)#*pi - T + T |
if x < 0. | Range |pistribution| RMS | Maximum |
L 1 — A G 1
Hence the computation is now reduced to IBEATL1
the single arqument case. r———- T ——— v 3
|ABS (x) |Uniform { 0.0415 | 0.206 ]
2. ATAN(x) {< 1 ] | { i
1 + + y
The general case may be reduced to the |Full range|Exponential| 0.0526 | 0.206 |
range 0 < x £ 1 since L - i 4 L —4
IHEATL2
ATAN(-x) = - ATAN(x), and . o e e e e o ——————— 1
ATAN{1/ABS(x)) = pis/2 - ATAN(ABS(x)). |ABS (y) | Exponentiall | |
i< 1, | | | i
A further reduction to the range ABS(x) | }p-———-—---——-4 0.0688 | 0.358 |
< TAN(pis/12) is made by using |ABS (x) {Uniform | | |
<1 I | | |
ATAN{x) = pi/6 + ATAN((SCRT(3)#*x - 1)/ b 4 i -4 e
(x +# SQRT(3))})
Error and Exceptional Conditions:
Care is taken to avoid the loss of signi-
ficant digits in computing P : IHEATL2, IHEATI4: x = y = 0
SQRT(3)*x - 1
SINH, COSH (short floating-point real)
For the basic range ABS(x) < TAN(pi/12),
use a continued fraction of the form Module Name: IHEWSHS
ATAN(x) /x = 1l+u*lby-a,/(ky+tu-az/(by+u Entry Points:
a5/ {(bs+u))))
Mathematical PL/1 Entry
where u = x%#2, Function Name Point
Hyrerbclic sin x SINH(x) IHESHSS
The relative error of this approximation Hyperbolic cos x COSH (x) IHESHSC
is less than 2#%*-60.7.
Function:
The coefficients of this formula were
derived by transforming a minimax ration- To calculate hyperbolic sin x or hyper-
al approximation in relative error over bolic cos x.
the range 0 < u < 0.071797 for ATAN(xX)/x
of the following form: Method:
ATAN(x)/7x = agtu*({c +tcy*utcyrusru+ 1. BABS{(x) < 1
caturu*u)/ (d,+d; *u+d*uru+
u*u*u)d. Compute SINH(x) as:
under the ccnstraint that a = 1. SINH(X)=X+C ¥ X*¥¥3+C, ¥ X*¥¥54C3 ¥ x**7
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3. ATAND(x) and ATAND{y,x)

The treatment is as above with the addi-
tion of a final conversion of the result
to degrees.

Effect of an Argument Error:

Let t = x or y/x; then the absclute error
of the answer approximates to the abso-
lute error in t divided by (1 + t*#%2).
Hence, for small values of t, the two
errors are approximately the same; howev-
er, as t kecomes larger the effect of the
argument error on the answer errcr
diminishes.

Accuracy:




The ocoefficients were obtained by the Thus, for large values of x, even the

minimax approximation (in relative error) round-off error of the argument causes a
of SINE(x)/x as a function of x#%+#2. The substantial relative error in the answer.
maximum relative errcr of this approxima-
tion is 2##%(-25.6). Accuracy:
~ T 1
2. x21 | Arguments | Relative Error |
H { *10%%6 |
Compute SINH{x) as: b y—————— 4 ¥ - 4
| Range {Distribution| RMS | Maximum |
SINH(x)=(1+D) *# (EXP(x+10G (V)) - L 4 -t 4 -4
V*%x2/EXP(X+LOG (V))) IHESHSS
r T T T |}
Using module IHEWEXS. |0 < | | | |
|ABS(x) < 1| Uniform | 0.198 | 0.877 |
Here 1+D=1/(2#*V), so that this expression 3 +$ + 4 4
is theoretically equivalent to (EXP(x)- 11 < | | | i
EXP(-x)) /2. The value of V (and conse- |ABS(x) < 2| Uniform ] 0.255 | .03 |}
quently those of LOG(V) and D) was so b + + + 4
chosen as to satisfy the following | |ABS(x)<170|Uniform ] 0.201 | 0.816 |
conditions: t 1 --4 ——d— -
IHESBSC
a) V is slightly less than 1/2, so - T T T ]
that D is positive and small |ABS{x) < 1| Uniform | 0.406 | 0.962 |
- [% 4 i L 1
r L3 R T 1
b) LOG(V) is an exact multiple of 11 < ] | | |
2%*%(-16). |ABS(x) < 2| Uniform | 0.248 | 0.720 |
b $ + ¥ {
Condition (b) ensures that the addition | |aBS(x)<170|Uniform | 0.202 | 0.816 |
x+LOG(V) is carried out exactly. L -4 1 4 J
3. xs-1 Error and Excegtional Conditions:
Use the identity H : OVERFLOW in real EXP routine
(IHEWEXS).
SINH (x) =-SINH(ABS(x))
toc reduce to case (2}, akbkove. COSH, SINH (long floating-point real)
4. COSH(x) Module Name: IHEWSHL
For all legal values of arguments, use Entry Points:
the identity
Mathematical PL/I Entry
COSH(x)=(1+D) * (EXP{(X+LOG(V)) + Function Name Point
V¥ 2/EXP (X+LOG (V))) Hyperkolic cos x COSH{x) IBESHLC
Hyperbolic sin x SINH(x) IHESHLS
Here the notation and considerations are
identical to those used in the computa- Function:
tion of SINH(x), in (2) above.
To calculate hyperbolic sin x or hyper-
Effect of Arqument Error: bolic cos x.
The relative error caused in the result Method:
is approximately as follows:
1. BABS(x)<0.881374
SINH: The absolute error in the argument
divided by TANH(x), i.e., of the Compute SINH(x) as
order of the absolute error in the .
argument for large x, or of the SINB(X)=Co¥*X+Cy *X*¥3+Cc #x**5+. ..
relative error in the argument for +Cg¥x*¥13
small x.
: The coefficients were obtained by the
COSH: The absolute error in the argument minimax approximation (in relative error)
multiplied by TANH(x), i.e., of the of SINH(x)/x as a function of x#*#2. The
order of the absolute error in the maximum relative error of this approxima-
argument. tion is 2#*#(-55.7).
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2. x20.881374 Accuracy:

~ T ¥
Compute SINH(x) as H Arguments } Relative Error |
| | *10+*15 |
SINH(x)=(1+D) * (EXP(X+LOG(V) )} - by + T - 4
V*#*2/EXP (x+LOG(V))) | Range |pistribution} RMS | Maximum |
L i - Jp 3 —
using module IHEEXL IHESHLC
[ 3 v T T 1
Here 1+D=1/(2#V) so that this expression |ABS(x) < 5| Uniform | 0.106 | 0.376 |
is theoretically equivalent to (EXP(X)- - R S + + 4
EXP(-x))s2. The value of V (and conse- |ABS (x) | Uniform | { |
quently those of LOG{(V) and D) was so < 170 | ] 0.109 | 0.390 |
chosen as to satisfy the following L S 4 4 - 4
conditions: IRESHLS
| S T L] v b ]
a) V is slightly less than 1/2 so that {ABS(x) < | Uniform | 0.0373} 0.203 |
D is positive and small. 10.881378 | i { |
b + t |
b) LOG(V) is an exact multiple of }]0.881374 <| | | i
2%x(-16). {ABS(x) < 5| Uniform } 0.100 | 0.354 |
L 1 }. 4 |
1 3 -7 L] s |
Condition (b) ensures that the addition jABS (x) | Uniform i { |
Xx+1LOG(V) is carried out exactly. |s 170 | | 0.102 | 0.361 |
L i L i J

3. x<-0.881374

Use the identity
Error and Exceptional Conditions:
SINH(x)=-SINH(ABS{x))
H : OVERFLOW in real EXP routine
to reduce the case to that of step (2). (IHEWEXL).

4. COSH({x)
TANH (short floating-point real)

For all legal values of arguments, use

the identity: Module Name: IHEWTHS
COSH(x)=(1+D) * (EXP (x+LOG{V} )+ Entry Point: IHETHSO
V**2/EXP(X+LOG(V))})

Function: To calculate hyperbolic tan x.
Here the notation and considerations are
identical to those used in the computa- Method :
tion of SINH (x) in step (2) above.
1. ABS(x) < 2%%-12

Effect of an Argument Error: Return x as result.
The relative error caused in the result 2. 2#%%-12 < ABS(x) < 0.7
is approximately as follows:
Use a fractional approximation of the
SINH: The absolute error in the argument form:
divided by TANH{x), i.e., of the
crder of the absolute error in the TANH(x)/x = 1 -
arqgument for large x, or of the x*¢2%(,.0037828+.8145651/(x**2+2.471749))
relative error in the argument for
small x. The coefficients of this approximation
were cbtained by taking the minimax of
COSH: The absolute error in the argument relative erxor, over the range x**2 <
multiplied by TANH(x), i.e., of the 0.49, of approximations of this form
order of the absolute error in the under the constraint that the first term
argument. shall be 1. The maximum relative error
of this approximation is 2¢%¢-26.4.
Thus, for large values of x, even the 3. 0.7 £ x < 9.011
round-off error of the argument causes a .
substantial relative error in the answer. Use TANH(x) = 1 - 2/(EXP(2%X) + 1).
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4. x 2 9.011
Return result 1.
5. x < - 0.7
Use the identity:
TANH(x) = -TANH({-x).
and apply 3 or 4 above, as appropriate.
Effect of an Argument Error:
The relative error caused in the result
is approximately twice the aksolute error
in the arqument divided by SINH(2#*x).
Thus for small values of x it is of the
order of the relative error in the argu-

ment, and as X increases the effect of
the argument error is diminished.

Accuracy:

T - - T - ——n
| Arguments | Relative Error |}
i | *10+%6 |
- T + T 1
| Range |Distribution| RMS | Maximum |
————— 4 $————— S —

L]

|ABS (x)<0.7|Uniform | 0.149 | 0.781 |
b + fo-mmm—i i
| 0.7<ABS (x) | Uniform { 0.0389] 0.288 |
[<9.011 | i |
| S ¥ S, i __ o 4
TANH (long floating-point real)

Module Name: IHEWTHL

Entry Point: IHETHLO

Function: To calculate hyperkolic tan x.
Method:

1. ABS({x) < 2%+%-28

Return x as result

2. 2%*-12 < ABS(x) < 0.54931

Use a transformed minimax approximation
of the form

TANH(X) /X=C o+ ¥X*¥ 2/ (x¥$2+C, ) +d/ (x**
2’02) +d5/ (X**z‘.’C3)

The minimax of relative error was taken
over the range x**2 < 0.30174 under the
constraint that the first term is 1.
The maximum relative exror is 2%%-63

3. 0.54931 < x < 20.101

1-2/ (EXP(2*x) +1)

i

TANH (x)
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4. x =2 20.101
Return result 1.
5. x < -0.54931
Effect of an Argument Error:

The relative error caused in the result
is approximately twice the absolute error
in the argument divided by SINH(2#*x).
Thus for small values of x it is of the
order of the relative error in the argu-
ment, and as x increases the effect of
the arqument error is diminished.

Accuracy:
rT—== 3
Arguments { Relative Error |
| *10%*15 |
4
T - -—=t --1—---f—~--4
Range |pistrikution|{ RMS | Maximum |
4 4 4 4
T L] Rl Bl
|ABS(x) £ | Uniform | 0.0385] 0.192 |
j0.54931 | | { i
L 4 4 4 __1'
L3 T ¥ T
{0.54931 < | | }
{ABS(x) < 5| Uniform | 0.0109} 0.160 |
| W 4 i 1 1

ATANH (short floating-point real)

Module Name: IHEWHTS

Entry Point: IHEHTSO

Function: To calculate hyperbolic arctan x.

Method:

1. ABS(x) < 0.2

Use a rational approximation of the form:

ATANH(x) = x + x ** 3/ (a + b¥x+*%2)

2. 0.2 < ABsS(X) <1

ATANH(x) = -SIGN(xX)*0.5*LO0G((0.5 -
ABS(x/2))/7(0.5 ¢+ ABS(x/2)))

Effect of an Argument Error:

The aksolute error caused in the result
is approximately equal to the absolute
error in the argument divided by (1 - x#*=*
2). Thus as x approaches +1 or -1, rela-
tive error increases rapidly. Near

x = 0, the relative error in the result
is of the order of that in the argument.



P

Accuracy:

r—- . T - i ]
| Arguments | rRelative Error |
| 1 (*¥10%%6) |
i U | _t
¥ T R T T R

| Range | pistribution| RMS | Maximum |
e ———— T : } 1
|-0.2 < x |Uniform | 0.456 | 1.07 |
|s 0.2 | | | |
b + $-———t 1
{-0.9 < x | Uniform | 0.391 | 1.18 |
{< 0.9 | | | i
L L i L ]

Erroxr and Exceptional Conditions:

P : ABS(x) =2 1

ATANH (long floating-point real)

Module Name: IHEWHTL

Entry Point: IHEHTLC
Function: To calculate hyperbolic arctan x.
Method:

1. ABS{x) < 0.25

Use a Chebyshev polynomial of degree 8 in
X**2 to compute ATANH(X) /x.

2. 0.25 < ABS(x) < 1

ATANH(x) = -SIGN(x)*0.5¢+L0OG((0.5 -
ABS(x/2))/(0.5 + ABS(x/2))}

Effect of an Argument Error:

The absclute error caused in the result
is approximately equal to the absolute
error in the argument divided by (1 - x*#*
2). Thus as x approaches +1 or -1, rela-
tive error increases rapidly. Near

x = 0, the relative error in the result
is of the order of that in the argument.

Accuracy:

| S - T -
| Arguments | Relative Error |
I { *10%*15 i
b - et . ~
| Range |Distribution|{ RMS | Maximum |
b 1 —+ t :
|ABS(x) < | Uniform | 0.0638] 0.223 |
0.25

: ! S
|ABS(x) < | Uniform { 0.0913} 0.253 |
0.95

1 H - ! ]

Error and Exceptional Conditions:

P: ABS(x) 2 1

ERF, ERFC (short floating-point real)

Module Hame: IHEWEFS
Entry Points:
Mathematical PL/1 Entry
Fanction Name Point
Error function (x) ERF(x) IBEEFSF
Complement of error ERFC (x) IHEEFSC
function(x)
Function:

To calculate the error function of x or
the complement of this function.

Method:
1. ¢ £ x <1

Compute ERF(x) by the following
approximation:

ERF{x)=x*(a +a;*x**2+a, *x**li+ .. .. +ag*x
*%10

The coefficients were obtained by the
minimax approximation in relative error
of ERF(x)/x as a function of x*#%2 over
the range 0 < x**2 < 1. The relative
error of this approximation is less than
2%#%-24.6. The value of ERFC(x) is com-
puted as

ERFC(x) = 1-ERF({x)
2. 1 < x < 2.040452

Compute ERFC(x)} by the following
approximation:

ERFC(x) = botby*z+b,*z**2+.....
+ bo*z#%9

where z = x-T, and T, = 1.709472. The
coefficients were obtained by the minimax
approximation in absolute erxor of the
function f(z) = ERFC(z+T,) over the range
-0.709472 < z < 0.33098. The absolute
error of this approximation is less than
2#%-31.5. The limits of this range and
the value of the origin, T,, were chosen
to minimize the hexadecimal rounding
errors.

The value of ERFC(x) within this range is
between 17256 and 0.1573.

The value of ERF(x) is computed as
ERF(x) = 1-ERFC{x)
3. 2.040452 < x < 13.306

Compute ERFC(x) by the following
approximation:
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ERFC(x) = EXP(-z) *Fr/x

where z = x*%*2 and

F =
Cot(cy +C %2+, ¥Z#%2) /(d, %z +d # 2% 24 2%%3)

The coefficients of F were obtained by
transforming a minimax rational approxi-~-
mation in absolute error of the function
f(w) = ERFC(X) *x*EXP(x*%¥2)over the range
13.306**-2 < w < 2.040452%%-2 (where w=x#*
*¥2). This approximation is of the form

f(w) =
(a +tay*w+a*wes24a 39wk +3)/ (b ¢ by *wiw**2)

The absolute error of this approximation
is less than 2#%*-26.1.

i
[
i

If 2.040452 < x < 3.9192, ERF(x)
ERFC(x)

If 13.306 > x 2 3.9192, ERF(x) =1

4. x 2 13.306

Results 1 and 0 are returned for ERF(x)
and ERFC(xX) respectively.

5. x <0

Reduce to a case involving a positive
argument by use of the identities:

- ERF(-Xx)
2 - ERFC(-x).

ERF (x)
and ERFC(x)

[[T]

Effect of an Argument Error:

The absoclute error caused in the result
is approximately equal to the absolute
error in the argument multiplied by
EXP(-x*%2).

ERF(x): As the magnitude of the argument
increases from 1, the effect of an argu-
ment error diminishes rapidly. For small
x, the relative error of the result is of
the order of the relative error of the
argument.

ERFC(x): For x > 1, ERFC(x) is approxi-
mately EXP(-x*#*2)/(2%x). Thus the rela-
tive error in the result is approximately
equal to the relative error in the argu-
ment multiplied by 2#x**2. For negative,
or small positive, values of x, the rela-
tive error in the result is approximately
equal to the absolute error in the arqu-
ment multiplied by EXP(-x*%2).
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Accuracy:
r~ - r—- 1
H Arguments | Relative Error |
| | *10%%6 {
¢ — S I
| Range |Distrikbution] RMS | Maximum |
L 4 4 4L —
IHEEFSF
| Sl T T T k]
{ABS (x) { Uniform | 0.115 | 0.853 |
i< 1 | | i |
pa— e
11 < | | |
1ABS (x) | Uniform | 0.0370] 0.107 |
| 2.04 | { | i
—————————— - } e
{2.04 < | | | |
|ABS (x) | Uniform | 0.0348} 0.0597 |
{< 3.9192 | i | |
L L i 4 J
IHEEFSC
r——=- LS T T -
{-3.8 < x | Uniform | 0.297 | 0.9u41 |
i< 0 | | i |
b -4-- } fmmommmmee i
0 £ x { OUniform | 0.126 | 0.692 |
1= 1 | | | |
i PR 4 4 J
[ 3 T T 1] 1
11 < x | OUniform | 0.374 | 1.98 |
[< 2.0 | [ | [
'y i S ’'e 4
[ & T ¥ T h
{2.04 < x | Uniform | 0.369 | 1.27 |
i< 4 | | | |
b ~4— L pomemmm e 1
ju < x { Uniform | 8.22 | 15.1 ]
< 13.3 i | | |
i i P - i —d
ERF, ERFC (long floating-point real)
Module Name: IHEWEFL
Entry Points:
Mathematical PL/I1 Entry
Function Name Point
Error function (x) ERF{x) IHEEFLF
Complement of error ERFC (x) IHEEFLC
function(x)
Function:

To calculate the error function of x or
the complement of this function.

Method:
1. 0 x<1

Compute ERF(x) by the following
approximation:

ERF({x) =
X*(aotas ¥ X*¥2+a ¥ x**U+. ... +a, ¥ X*$22)

The coefficients were obtained by the
mini max approximation in relative error



s,

of ERF(x)/x as a function of x*#2 over
the range 0 < x**2 <1. The relative
error of this approximation is less than
2¢%-56.9. ‘The value of ERFC is computed
as

ERFC{x) = 1-ERF(X)
2. 1 £ x < 2.040452

Compute ERFC(x) by the following
approximation:

ERFC(x) =
bo +b1*2+b22**2+. ...*+b 15*2**18

where z = x-T¢ and Tg = 1.709472. The
coefficients were obtained by the minimax
approximation in absolute error of the
function f{(z) = ERFC(z+T,) over the range
-0.709472 < z < 0.330948. The absolute
error of this approximation is less than
2%*-60.3. The limits of this range and
the value of the origin, T,, were chosen
to minimize the hexadecimal rounding
errors.

The value of ERFC(x) within this range is
between 1/256 and 0.1573. The value of
ERF(x) is computed as

ERF(x) = 1-ERFC(x)
3. 2.040452 £ x < 13.306

Compute ERFC(x) by the following
approximation:

ERFC(x) = EXP{-z)*F/x
whexre z = x*#*2 and
F = co+ds/(z+cy) +dz/(z+c) 4. .. . +d,/ (254C)
The coefficients of F were obtained by
transforming a minimax rational approxi-
mation in absolute error of the function
f(Ww) = ERFC(x)*x*EXP(x*#*2) over the range
13.306%*-2 < w < 2.040452%*-2 (where w=x*
*-2), This approximation is of the form

f(w=(aota, *Wwra *w**2+....a *w**7)/ (b,
thy*wibo*W*2+4 . . . .t *wWHs6tW*+])

The absolute error of this approximation
is less than 2#%*-57.9.

If 2.040452 < x < 6.092368, ERF(X) =
1-ERFC(x)

If 13.360 > x 2 6.092368, ERF(x) = 1
4. x 2 13.306

Results 1 and 0 are returned for ERF(x)
and ERFC(x) respectively.

5. x <0

Reduce to a case involving positive argu-
ments by use of the identities:

~ERF (-x)
2-ERFC(-x).

ERF{x)
and ERFC(x}

I on

Effect of an Argqument Exror:

The absolute error caused in the result
is approximately equal to the absolute
error in the arqument multiplied by
EXP(-x%%2).

ERF(x): As the magnitude of the argument
increases from 1, the effect of an argu-
ment error diminishes rapidly. For small
X, the relative error of the result is of
the order of the relative error of the
argument.

ERFC(xX): For x > 1, ERFC(x) is approxi-
mately EXP(-x*#*2)/(2#x). Thus the rela-
tive error in the result is approximately
equal to the relative error in the argu-
ment multiplied by 2#x*$2. For negative,
or small positive, values of x, the rela-
tive error in the result is approximately
equal to the absolute error in the argu-
ment multiplied by EXP(-x*##*2).

Accuracy:
| S R T - -—=1
| Arguments | Relative Error |
| | *10%%15 |
b T + T-——————= 4
| Range |Distribution{ RMS {Maximum |
R S —— B R —— ¥ S -4
IHEEFLF
f L St S S
{ABS(x)<1 | Uniform { 0.0257 | 0.193 |
~~~~~~~~~~ S RS A
11 < | | |
|ABS (x) | Uniform | 0.00946| 0.0287]|
I< 2.04 | { | ]
—————————— S Gt S
[2.04 < I | [ |
[ABS (x) | Uniform | 0.00802} 0.0139{
|< 6.092 | | j l
| § G ———te i _—d
IHEEFLC
—————————— L Stttk Eaiedntsustaiant Sttt
-6 < x | Uniform | 0.0652 | 0.208 |
I< 0 | | | i
S —— s fmmmmm——- 1
10 < x | Uniform | 0.0266 { 0.146 |
<1 ! | | |
e fommm oo e SR i
11 < x | Uniform | 0.0913 | 0.u426 |
< 2.04 | | ) |
—————————— e S RS Attt |
{2.04 < x | Uniform | 0.0865 | 0.326 |
i< 4 | | i |
pommmm e fommmmm e fommm pommmmee 1
4 <= x } Uniform | 1.96 | 3.51 |
{<13.3 | | | ]
A S — Y P G
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FUNCTIONS WITH COMPLEX ARGUMENTS Let z = r*EXP(hI), and
. SQRT(z) = s*EXP(kI).
SQRT (short floating—-point complex)
Module Name: IHEWSQW Then the relative error in s is approxi-

mately half the relative error in r, and
the relative error in k is approximately
Entry Point: IHESQWO equal to the relative error in h.

Function:
Accuracy:

To calculate the principal value of the

square root of z, i.e., -pi/2 < argument r - - 1
of result < pi/2. | Arguments | Relative Erxror |
| { *+10++6 |
Method: 3 T + T 4
| Range |Distribution| RMS | Maximum |
1. Let SQRT(x+yI) = a+kl 3 + + + 4
|Full range|Exponential | 0.540 | 2.18 |
2. Let SQRT({ABS(x) + ABS{xtyI))/2) = L L 1 4+ 4
k*SQORT(wy+wy) = ¢
vy = MAX{(ABS(x),ABS(y)) and SORT (long floating-point complex)
vy, = MIN(ABS(x) ,ABS(y))} Module Name: IBEWSQZ

3. In the special case when either v, = 0 Entry Point: IBES(QZO0
or vy >> VvV, let

Function:
Wy = Vv, and Wy = Vg
To calculate the principal value of the
Let k = 1 if v, = ABS{x) square root of z, i.e., -pi/2 < argument

of result < pi/2.

k = 1/5QRT(2) if vy = ABS(y)
) Method:

4. In the general case compute:
1. Let SQRT(x+yI) = at+bI
F = SORT(1L/4+(1/4) % (Vv /V,)*%2)
2. Let SQRT((ABS(x)+ABS(x+yI))/2)=
If ABS(x) is near the underflow thresh- k*SCRT (wy+twy) = ¢
old, then take

v, = MAX(ABS(x) ,ABS(y)) and
Wy = ABS(X), w, = v, %2%F, and k = v, = MIN(ZBS(x),ABS(y))
1/SQRT(2)
3. 1In the special case when either v, = 0
If v,*F is near the overflow threshold, or vy >> v, let
then take
Wy = VvV and wa = VvV,
Wy = ABS(x)/U, wy = v;*¥F/2 and k =
SQRT(2) Let k =1 if vy = ABS(x)
In all other cases take k = 1/SQRT(2) if vy = ABS(y)
Wy = ABS{x)/2, Wy = v *F, and k = 1 ’ 4. In the general case compute:
5. If ¢ = 0 then a = b = 0 F = SQRT{1/74+(1/4) (v, /v,)*%2)
If ¢ # 0 and x 2 0, then If ABS(x) is near the underflow thresh-
old, then take
a = ¢, and
b = y/(2%*c) wy = ABS{x), Wy = Vv, *2#F, and k =
1/SQRT (2)
if ¢ # 0 and x < 0, then
If v4*F is near the overflow threshold,
a = ABS(y/(2*c)), and then take
b = SIGN(y) *c
Wy = ABS(x)/4, wp = v,*F/2 and k =
Effect of an Argument Error: SQRT(2)
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In all other cases take

Wy = ABS(x}/2, Wy = V4%F, and k = 1
5. If ¢ =0 thena = b = 0
If ¢ # 0 and x 2 0, then

a = ¢, and

b = y/(2%c)
if ¢ # 0 and x < 0, then

a = ABS(y/(2%c)), and

b = SIGN(y)*c

Effect of an Argument Error:
Let z = r¥*EXP(hI), and
SQRT(z) = s*EXP{kI).

Then the relative errxor in s is approxi-
mately half the relative error in r, and
the relative error in k is approximately
equal to the relative error in h.

Accuracy:

|
|
t

EXP (short floating-point complex)

M

Entry Point:

F

M

Effect of an Argument

odule Name: IHEWEXW
IHEEXWO

unction: To calculate e to the power z.

ethod:
Let z = x + yI.

Then REAL(EXP(z))}
and IMAG(EXP(z))

EXP (x) *#COS(y)
EXP(x) *SIN(y).

i i

Error:

Let EXP(x + yI} = s*EXP(kI).

Then k = y, and the relative error in s
is approximately equal to the absolute
error in x.

Charter 3.

r - 1
| Arguments | Relative Error |
| | *10**15 |
¢ - ———4 4
| Range |Distribution| RMS | Maximum |
i 4 1 2

v T D Bl ’-_’{
|Full range|Exponential | 0.131 | 0.492 |
L 1 i 4 [PRRSP |

Accuracy:

) L] 1
| Arguments | Relative Exrror |
| | *10%%6 |
e Tomm - + g ]
| Range |Distribution|{ RMS | Maximum |
—————————— - 4 1 -4
| ABS (x) | Uniform | 0.646 | 2.40 |
< 170 | | | |
|aBS(y) | | | |
= pis2 | | i |
f————- e $-mmomm oo :
|ABS (x) | Uniform | 0.628 | 2.28 |
I< 170 [ 1 [ |
Ipisz2 < I | | |
|ABS(y)< 20| | | |
L S 4 i ~4
Exror and Excertional Conditions:

O : ABS(y) = 2##18%pi : error caused in

real SIN routine (IHEWSNS)
H : OVERFLOW in real EXP routine
( IHEWEXS)

EXP (long floating-point complex)
Module Nane: IHEWEXZ
Entry Point: IBEEXZO
Function: To calculate e to the power z.
Method:

Let z = x + yI.

Then REAL(EXP(z))} = EXP(x)*COS{y)

and IMAG(EXP(z)) = EXP(x)*SIN(y).
Effect of an Argument Error:

Let EXP(x + yI) = s*EXP(kI).

Then k = y, and the relative error in s

is approximately equal to the absolute

error in x.
Accuracy:
U 1 h)
i Arguments | Relative Error |
| | *10%#15 I
[ 1 i ]
L ) ) R q
| Range |Distribution| RMS | Maximum |
¢ H | B § -4
|ABS(x) < 1| Uniform | 0.187 | 0.614 |
|ABS (y) | | | |
I< pisr2 | | | |
[ 4 4 i 4
v T T T 4
|ABS (x) ] Uniform | 0.200 | 0.819 |
I< 20 | | ] !
|ABS (y) i | | |
< 20 | | | !
L L i i i
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Error and Exceptional Conditions:

O : ABS(y) 2= 2#*50#%pi : error caused in
real SIN routine (IBEWSNL)

H : OVERFLOW in real EXP routine
{IHEWEXL)

LOG {short floating-point complex)

Module Name: IHEWLNW

Entry Point: IHELNWQ

Function:

To calculate the principal value of the
natural log of z, i.e., -pi < imaginary
part of result < pi.

Method:
1. Let LOG{x+yI) = a+bl
2. Then, a = LOG(ABS({x+yI)) and b =
ATAN(y,.x)
3. LOG(ABS({x+yI)) is computed as follows:
Let v, = MAX(ABS(x),ABS(y)) and

va = MIN(ABS(x),ABS(Y))

Let t be the exponent of vy (i.e., vy =
m*l6**t, 1/16 < m < 1)

Let t, = t if t < 0 or
t, = t-1 if t > 0 and
s = 16%%t,

Then LOG(ABS(x+yI)) = 4#%t,*L0OG(2) +
LOG((vy/s)*%2 + (vay/s)*%2)/2

Computation of v,/s and v,/s are carried
out by suitable adjustment of the charac-
teristics of vy and v,; in particular, if
vas/s << 1, it is taken to be 0.

Effect of an Argument Error:
Let z = r+EXP(hI) and L0OG(z) = u + vI.
Then the absolute erxror in u is approxi-
mately equal to the relative error in r.
For the absoclute error in v(= h = ATAN(y,

X)), see corresponding paragraph for
module IHEWATS.
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Accuracy:

Relative Error
$10%%6

Arguments

r
Range |Distrikution RMS Maximum
4

0.396 1.89

o e G e G S e Y

e e e o e e e o
e N R .

T

|

+ +

Full range|Exponential |
i 4

Error and Exceptional Conditions:

O : x=y = 0, error in real LOG routine

(IHEWLNS)

L10G (long floating-point complex)

Module Name: IHEWLNZ

Entry Point: IHELNZO

Function:
To calculate the principal value of
natural log of z, i.e., -pi < imaginary
part of result < pi.

Method:
1. Let LOG(x+yI) = a+bl

2. Then, a = LOG(ABS{x+yI}) and b =
ATAN(y, x)

3. LOG(ABS(x+yI)) is computed as follows:
Let v, = MAX (ABS (x),ABS(y)) and
vy, = MIN(ABS(x) ,ABS{y))

Let t ke the exponent of v, (i.e., vy =
m*16*st, 1/16 < m < 1)

Let t; = t if t < 0 or
ty = t-1 if t > 0 and
S = 16%%t,

Then LOG(ABS(x+yI)) =
43ty *LOG (2) +LOG((Vv4/8) *+2+(v;/S5)*%2)/2

Computation of vy/s and v,/s are carried
out by suitable adjustment of the charac-
teristics of v, and v,; in particular, if
va/s << 1, it is taken to be 0.

Effect of an Argument Exror:
Let z = r#EXP(hI) and LOG(z) = u + vI.

Then the absolute error in u is agpproxi-
mately equal to the relative error in r.
For the absolute error in v(= h = ATAN({y,
x)) see the corresponding paragrarh for
module IHEWATL.



Accuracy:

Relative Error
*10%%15

. Arguments

P S—

h 3
Maximum

T
Range |Distribution| RMS |
+ +
]
'y

0.125

T
Full range|Exponential 0.542

e e e
b e ey o el oo s el

o

Error and Exceptional Conditions:
O : x=y= 0, error caused in log rou-
tine (IHEWLNL)

SIN, SINH, COS, COSH (short floating-point
complex)

Module Name: IHEWSNW
Entry Points:
Mathematical PL/I Entry
Function Name Point
Sin z SIN(z) IBESNWS
Hyperbolic sin z SINH(z) IHESNWZ
Cos z COos (z) IHESNWC
Hyperbolic cos z COSH(z) IHESNRK

Function:

To calculate sin z or hyperbolic sin z,
or cos z or hyperbolic cos z.

Method:
Let z = x + yI.

Then REAL(SIN(z))
and IMAG(SIN{(z))

SIN(x)*CUSH(y)
COS(x) *SINH(y) ;

o

REAL(COS(z))
and IMAG(CO0S(z))

COS (x) #*COSH (y)
-SIN(x)*SINH(y);

I u

REAL(SINH(z))
IMAG(SINH(z))

([l

COS(y) #SINH(x)
and SIN(y) *COSH(x) ;
REAL(COSH(z))
IMAG(COSH(z))

COS (y) *CCSH(xX)
SIN(y) *SINH(x).

([}

and

To avoid making calls to evaluate SINH

and COSH separately, and thus frequently
having to evaluate EXP twice for the same
argument, SINH(u) is computed as follows:

1. u > 0.3465736
SINH(u) = (EXP(u) - 1/EXP(u))/2.
2. 0 £ u < 0.3465736
SINH(u) /u is approximated by a polynomial
of the form a, + a,*u**2 + aj*us*4 (which

has a relative errxor of less than
2%%-26.4).

Chapter 3.

The coefficients were obtained by the
minimax approximation in relative errxror
of SINH(x)/x over the range 0 < x%*2 <
0.12011 under the constraint that the
first term shall be exactly 1.

3. ux2o
SINH{u) = -SINH(-u). Then
= SINH(ABS(u)) + 1/EXP(aBS{u)).

COSH (u)
Effect of an Argument Error:

Combine the effects on SIN, C0OS, SINH and
COSH according to the method of evalua-
tion described in the above paragraph.

Accuracy:

Relative Error
*¥10%%6

Arguments

= s S o e
e e v o
|
|
|
|
[ S——

R - T
Range |Distrikution RMS | Maximum
i

IHESNWS
|ABS (x)
|< 10,
|ABS (y)
L

Uniform 1.17

1A

W
o e e e o
e o

IHESNWZ

r
|ABS (x)
|< 10,
|ABS (y)
L

Uniform 0.878

1A
o o e o

fro o o e onf

-
|
|

1}
k3

IHESNWC
|ABS (x)
|< 10,
|ABS (y)
Is 1

L

Uniform

e
RS ——
or v amman, i cpan. o

IHESNWK

r -T--
|ABS (x) | Uniform 0.968
|< 10, |
|ABS (y) |

!

<1

p———
o e |

Error and Exceptional Conditions:

O : IHESNWS, IHESNWC:
ABS(x) 2 2#*+18*pi : error caused in
real SIN routine (IHEWSNS)

IHESNWZ, IHESNWK:
ABS(y) 2 2#%#18#*pi : error caused in
real SIN routine (IHEWSNS)

H : OVERFLOW in real EXP routine
(IBEWEXS)
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SIN, SINH, COS, COSH (long floating-point Accuracy:
complex) .

r ——==-7 - -1
Module Name: IHEWSNZ | Arguments | Relative Error |
i | #10%%15 |
i i - ¥
T v T T 1
Entry Points: | Range |Distrikbution| RMS | Maximum |
L L L i 4
THESNZS
Mathematical PL/X Entry r T T T -
Function Name Point {ABS (x) | Uniform | 2.01 | 113 |
Sin z SIN(z) IHESNZS  |< 10, | | | ]
Hyperbolic sin z SINH(z) IHESNZZ |ABS(y) < 1} | i |
Cos z cos (z) IHESNZC L L -——1 L 3
Hyperbolic cos z COSH(z) THESNZK IHESNZ2Z
T T T T 1
Function: : | ABS (x) | Uniform | 0.229 | 0.641]
{< 10, [ I | |
To calculate sin z or hyperbolic sin z, jABS(y) < 1} § | |
or cos z or hyperbolic cos z. t i 1 4 4
IHESNZC
Method: r T . 1 T 1
{ABS (x) | Uniform | 0.311 | 3.83 |
Let z = x + yI. |< 10, | | | {
|aBS(y) < 1] { | |
Then REAL{SIN(z)) = SIN(x)#*CCOSH(y) L 1 1 4 J
and IMAG(SIN(z)) = COS(x)*SINH(y); IHESNZK
r B ) h 1
REAL(COS(z)) = COS(x)*COSH(y) |ABS (x) | Uniform | 0.250 | 0.730 |
and IMAG(COS(z)) = -SIN(x)*SINH(y); i< 10, | | | |
|ABS (y) | [ | |
REAL(SINH(Zz)) = COS(y)*SIKH(x) j< 1 | | i |
and IMAG(SINH(z)) = SIN(y)*COSH(x); - i L 1 4
REAL(COSH(z)) = COS(y) *COSH(x)
and IMAG(COSH(z)) = SIN(y)*SINH(x). Error and Exceptional Conditions:
To avoid making calls to evaluate SINH O : IBESNZS, IBESNZC:
and COSH separately, and thus frequently ABS(x) 2 2#*50*pi: error caused in
having to evaluate EXP twice for the same real SIN routine (IHEWSNL)

argument, SINH(u) is computed as follows:
IBESNZZ, IHESNZK:
1. u 2> 0.481212 ABS(y) = 2*#50#%pi: error caused in
real SIN routine (IBEWSNL)
SINH(u) = (EXP(u) - 1/EXP(u))}/2
H : OVERFLOW in real EXP routine
2. 0 < u< 0.481212 (IHEWEXL)

SINH(u)s/u is approximated by a polynomial
of the fifth degree in u#**2 which has a TAN, TANH (short floating-point complex)
relative error of less than 2#%#-56.07

Module Name: IHEWTNW

The coefficients were obtained by the
minimax approximation in relative error

of SINH{x)/x over the range 0 < x#*2 < Entry Points:
0.23156 under the constraint that the
first term shall be exactly 1. Mathematical PL/I Entry
Function Name Point
3. u<@o Tan z TAN(z) IHETNWN
Hyperbolic tan z TANH(z)  IHETNWH
SINH(u) = ~-SINH(-u). Then
COSH{u) = SINH(ABS(u)) + 1/EXP(ABS(u)). Function:
Effect of an Argument Error: To calculate tan z or hyperbolic tan z.
Combine the effects on SIN,COS,SINH and Method:
COSH according to the method of evalua-
tion described in the above paragraph. Let z = x + yI.
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Then REAL{(TAN(z)) =
TAN(x)*(1 -~ TANH(y)*%2}/
(1 + (TAN{x)*TANH(y))*+2),

IMAG(TAN(z)) =
TANH(y)* (1 + TAN(x)*%2)/
(1 + (TAN(x) #*TANH(y))**2).

TANH(z) = - (TAN(zI))I.

Effect of an Arqument Error:

The absolute error caused in the result
is approximately equal to the absolute

Function:
To calculate tan z ox hyperbolic tan z.
Method:
Let z = x + yI.
Then REAL(TAN(z)) =
TAN(x)*(1 - TANH(y)**2)/
(1 + (TAN(x)*TANH(y))**2),
IMAG(TAN(Z)) =

TANH (y)#* (1 + TAN(x)*#*2)/
(1 + (TAN(x)*TANH(y))**2).

error in the argument divided by ABS{COS TANH(z) = - (TAN(zI))I.
(z) **%2) for IHETNWN, or divided by ABS
(COSH(z)#*%2) for IHETNWH. The relative Accuracy:
error caused in the result is approxi-
mately twice the absclute error in the r T -1
argument divided by ABS(SIN(2#*z)) for { Arguments | Relative Exrror |
IHETNWN, or divided by ABS(SINH(2#%z)) for | | *10%%15 |
IHETNWH. } —g—— } S i
| Range |Distribution| RMS | Maximum |
[ iy i L J
Accuracy: IHETNZN
T T L] T h ]
r T - |ABS(x) < 1| Uniform i 0.172 | 0.709 |
| Arguments | Relative Error | |ABS(y) < 9} | | |
l i *x10#*%6 I [§ — 4 1 . 4
b - ——f— - { IHETNZH
| Range {Distribution|{ RMS | Maximum | r T ——— + ——- 1
L e -t L 4 |ABS(x) < 9| Uniform { 0.174 | 0.692 |
IHETNWN }ABS(y) < 1} | } |
r - I T T ) t 1 L 4 4
|ABS(x) < 1| Uniform [ 0.532 | 2.87 |
|ABS(y) < 9§ | | ] Error and EXCEPTIONAL Conditions:
L —d_ ———d b1
IHETNWH I : OVERFLOW
ey e — e T T 1
|ABS(x) < 9| Uniform | 0.524 2.74 | O : ABS(u) > 2##%50#pi, where
|ABS(y) < 1} | | { u = x for IHETNZIN,
L ——d - i 1 4 u = y for IHETNZH.
H : OVERFLOW or ZERODIVIDE in real TAN
Exrror and Exceptional Conditions: routine (IHEWTNL)
I : OVERFLOW
ATAN, ATANH (short floating-point complex)
O : ABS({u) = 2**18*pi, where
u = x for IHETNWN, Module Name: IHEWATW
u = y for IHETNWH.
Entry Points:
H : OVERFLOW or ZERODIVIDE in real TAN
routine (IHEWTNS) Mathematical PL/I Entry
Function Name Point
Arctan z ATAN(z) IHEATWN
TAN, TANH (lonq floating-point complex) Hyperbolic arctan z ATANH(z) IHEATWH
Module Name: 1HEWTNZ Function:
Entry Points: To calculate arctan z or hyperbolic arc-
tan z.
Mathematical PL/L Entry
Function Name Point Method:
Tan z TAN (z) IHETNZN
Hyperbolic tan z TANH (2) IHETNZH Let z = x + yI.
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(ATANH (2#*x/
(1l+x*x+y*y))) /2

]

Then REAL(ATANH(z))

It

IMAG(ATANH(zZ)) (ATAN (2*y,

(1-x*x-y*y))) /2

and ATAN(z) = - (ATANH(zI))I.

Effect of an Argument Error:

Function:

To calculate arctan z or hyperbolic arc-
tan z.

Method:

Let z = x + yI. .

The absolute error in the result is ap- Then REAL(ATANH(z)) = (ATANH(2%x/
proximately equal to the aksolute error (14+x*x+y*y))) /2
in the argument divided by (1 + z*#2) in
the case of IHEATWN, or by (1 - z#*#%2) in IMAG(ATANH(z)) = (ATAN(2*y,
the case of IHEATWH. Thus the effect may (1-x*¢x-y*y)))/2
be considerable in the vicinity of z =
+ 11 (IHEATWN) or *+ 1 (IHEATWH). and ATAN(z) = —(ATANH(zI))I.
Accuracy:
Effect of an Argument Error:
r== T 1 ;
| Arguments | Relative Error | The aksolute error in the result is ap-
| | *10%%6 i proximately equal to the absolute erxrcr
t ¥ —— T 4 in the argument divided by (1 + z#*#2) in
{ Range |Distribution|] RNMS | Maximum | the case of IHEATZN, or Lky (1 - z#**%2) in
L 4 1 -4 - the case of IHEATZH. Thus the effect may
IHEATWN be considerable in the vicinity of z =
r - ————————— N + I (IHEATZN) or * 1 (IHEATZH).
| | < |
|Full range|Exponential | 0.205 | 1.05 |
L L4 1 1 J Accuracy:
1HEATWH
r T T T b ] T T 1
{Full range|Exponential | 0.224 | 1.22 | i Arguments | Relative Error |
L . 1 1 L ¥ | | *10%%15 |
b T 1 T 4
Error and Exceptional Conditions: | Range |Distribution| RMS | Maximum |
i L i i 4
P : IHEATWN: =z = #11 IHEATZN
IHEATWH: z = +1 4 T - : 1 T 1
}|Full range|Exponential | 0.0517j 0.438 |
ATAN, ATANH (long floating-point complex) L L L L 4
IHEATZH
Module Name: IHEWATZ r T v T 1
{Full range|Exponential | 0.0562| 0.409 |
Entry Points: L 1 1 i 4
Mathematical PL/1 Entry Error and Exceptional Conditions:
Function Name Point
Arctan z ATAN(z) IHEATZN P : IHEATZIN: z = #1I
Hyperbolic arctan z ATANH (2) IHEATZH IHEATZH: 2z = %1
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CHAPTER 4:

ARRAY INDEXERS AND BUILT-IN FUNCTIONS

The Library supports the array built-in

functions SUM, PROD, POLY, ALL and ANY, and

also provides indexing routines for han-
dling simple (i.e., consecutively stored)
and interleaved arrays.

Input Data

The array function moduies are distin-
guished from the other Library modules in
that they all accept array arguments and
perform their own indexing, whereas the
other modules reguire that indexing should
pe handied by compiled code. Calls to con-
version routines are included in the SUM,
PROD and POLY modules with fixed-point
arquments, so that these arguments are con-
verted to floating-point as they are
accessed (it should be noted that it is a
requirement of the language that the
results from these modules be in floating-
point). On the other hand, the conversions
necessary for the ALL and ANY modules (the
arguments must be converted to bit string
arrays) are not part of the modules and
must be carried out before the modules are
invoked.

Any restrictions on the admissibility of
arguments are noted under the headings
'Range’ and 'Error and Exceptional
Conditions"*.

Range: This states any ranges of arguments
for which a module is valid. Arguments
outside the ranges given are assumed to
have been excluded before the module is
called.

Error and Exceptional Conditions: These
cover conditions which may result from the
use of a routine; they are listed in four
categories:

P -- Programmed conditions in the module
concerned. Programmed tests are

made where this is not too costly
and, if an invalid argument is
found, a branch is taken to the
entry point IHEERRC of the execution
error package{EXEP). This results
in the printing of an appropriate
nmessage and in the ERROR condition
being raised.

I -- Interrugtion conditions in the
module concerned. For those rou-
tines where SIZE and FIXEDOVERFLOW
are detected by programmed tests or
where hardware interruptions may
occur, the OVERFLOW, UNDERFLOW, and
(when the conversion package is
called) SIZE conditions pass to the
ON condition error handler (IHEWERR)
and are treated in the normal way.
The machine is assumed to be enabled
for all interruptions except signi-
ficance, which is masked off.

O -- Programmed conditions in modules
called by the module concermned.
These occur when invalid arguments
are detected in the module called.

H -- As I, but the interrupt conditions

occur in the modules called by the
module concerned.

Effect of Hexadecimal Truncation

See the corresponding section in the
introduction to Chapter 3 for guidance to
the accuracy of SUM, PROD, and POLY. If
fixed-point arguments are passed to these
functions, further errors may be introduced
by conversions.

A surmary of the Library array modules

is given in Figures 7 and 8.

T e e e e e T - 1
| i Simple arrays, and | Interieaved string i
| | interleaved arrays of i arrays with fixed- |
| | variable-length strings | length elements |
e + - fom e m o -~
| Indexers | IHEWJXS | IHEWIXI |
i ALL, ANY i IHEWNL1 I IHEWNL2 ]
______________ S, i — -4
|Note: IHEWJXI is used for indexing through interleaved arithmetic arrays. |

4

b s e e amam -

Figure 7.

Bit String Array Functions and Array Indexers
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¥ T -1
[ PL/1 i Fixed-point Floating—-point arguments |
| function | arguments r —— e |
| | | Short precision | Long precision |
l " - T —": T ‘IL ) T —°“l
| | Simple |Interleaved] Simple |Interleaved| Simple |Interleaved|
= + + t+ + + oo —— 1
| SUM real | IHEWSSF| IHEWSMF | IHEWSSG]| IHEWSMG | IHEWSSH| IHEWSMH |
| complex | IHEWSSX| IHEWSMX | IBEWSSG { IHEWSMG | IHEWSSH| IBEWSMH |
| | i | | i ] |
| PROD real | IHEWPSF| IHEWPDF | IREWPSS| IHEWPDS | IHEWPSL| IHEWPDL |
| complex | IHEWPSX| IHEWPDX | IHEWPSW| IHEWPDW | IHEWPSZ| 1HEWPDZ |
| f L } L t L .
| POLY real | IHEWYGF | IHEWYGS { IHEWYGL |
| complex | IHEWYGX | IHEWYGW | IHEWYGZ |
L i R i ¥
Figure 8. Arithmetic Array Functions

ARRAY INDEXERS Range:

Indexer for Simple Arrays

Module Name:

IHEWJXS

Entry Points:

Element Entry
Address Point
Bit addresses IHEJXSI
Byte addresses IHEJXSY

Function:

To find the first and last elements of an
array. Their addresses are returned, in
general registers 0 and 1 respectively,
as bit addresses (IHEJXSI) or byte
addresses (IHEJXSY).

Method:

42

The address of the virtual origin B of
the array (i.e., the address that would
correspond to the element A(0,..0)) is
obtained as a byte address for IHEJXSY,
or a bit address for IHEJXSI, by refer-
ring to the first word of the array dope
vector (ADV). .

Address of first element

"
[o¢]

‘+

Ms

]
to
+

Address of last element

where M is the multiplier for the ith

dimension

I is the lower bound for the ith
dimension

U is the upper bound for the ith
dimension, and

n is the number of dimensions.

0 < number of dimensions < 2%#%22

Indexer for Interleaved Arrays

Module Name: IBEWIXI
Entry Points:
Entry
Operation Point
Initialization for bit IHEJXII
addresses
Initialization for byte IBEJXIY
addresses
Elements after the first IHEJXIA

Function:

To find the next element of an array and
to return its bit or byte address in gen-
eral register 1.

Entry point IHEJXII is used to initialize
the routine for bit addresses and to pro-
vide the address of the first element in
the array; IHEJXIY does the same for byte
addresses. Entry point IHEJXIA is used
thereafter to obtain the addresses of
subsequent elements of the array; one
address is returned for each entry into
the routine.

Method:

Arrxays are stored in row major order.

Let Lj be the lower bound and Uj; the
upper bound of the ith dimension, and n
the number of dimensions. Starting with
the element A(L;y,Lay,-e+...1n), the rou-
tine varies the subscripts through their
ranges to A{(U,; ,Uz,......Up), changing the
nth subscript most rapidly; in this way
the elements are referenced in the order
in which they are stored.

The routine does not deal with actual
subscript values but calculates the



extent Ej(= U; - Li + 1) of each dimen-
sion and uses this as a count that varies
from E; to 1 for subscript values Lj to
Uji. A ‘*base address' for each dimension
is maintained and, for the ith dimension,
is defined as the address of the element
with ith subscript equal to its lowest
bound Lj; and with all cther subscripts at
their current values.

Thus initially the base addresses are all
equal to the address of A(L;,Lo,eccees
Ln). Each subsequent element address is
generated from the previous one by adding
the multiplier My from the array dope
vector (ADV) and reducing the subscript
count by 1. When the count for the ith
dimension has been reduced from E; to 1
it is reset to E;, M;_; is added to the
(i-1)th dimension’s base address and the
count for this dimension is decreased by
one.

This new base is the starting point for
further increments by M,. When a new
base address is calculated, the base
addresses for all higher dimensions
((i+1), (i+2),......n) is set equal to
the ith base address.

Range:

0 < number of dimensions < 2%%22

ARRAY FUNCTIONS

ALL (X), ANY (X)

Module Names:

Module
Arquments Name
Simple arrays and interleaved IHEWNL1
arrays with variable-length
elements
Interleaved arrays with fixed~ IHEWNL2
length elements
Entry Points:
Entry
PL/1 Function Point
ALL(X), ANY(X), byte-aligned IHENL1iA
IHENL2A
ALL({X), any alignment IHENI1L
IHENL2L
ANY(X), any alignment IHENL1N
IHELN2N

Function:

The argument X is a bit string array (any
necessary conversion having been per-
formed prior to the invocation of these

modules). The result is a scalar bit
string of length equal to the greatest of
the current lengths of the elements of X.

ALL(X}: the ith bit of the result is 1 if
the ith bits of all the elements of X
exist and are 1; otherwise it is O.

ANY{(X}: the ith bit of the result is 1 if
the ith bit of any element of X exists
and is 1; otherwise it is 0.

Method:

For byte-aligned string arrays, AND
(IHEWBSA) and OR (IHEWBSO) are used for
ALL and ANY respectively; for string
arrays with any alignment BOOL (IHBWBSF)
is used with appropriate parameter bits.

The elements of the array are passed to
IHEWBSA, IHEWBSO, or IHEWBSF one at a
time, and the result is developed in the
target field. For the first call to any
of these logical modules the first ele-
ment of the array serves as both first
and second source arguments. For subse-
quent calls, the result already developed
in the target field is the first argument
and the next elememt of the array is the
second argument.

Range:

Bit strings are limited to a maximum of
32,767 bits.

SUM (X)

Module Names and Entry Points:

Simple Arrays

Module Entry
Arguments Name Point
Fixed, real JHEWSSF IHESSFO
Fixed, complex IHEWSSX IHESSXO0
Short float
real IHEWSSG IHESSGR
complex TIHEWSSG IHESSGC
Long float
real IHEWSSH IHESSHR

complex IHEWSSH IBESSHC

Interleaved Arrays

Module Entry
Arquments Name Point
Fixed, real IHEWSMF IHESMFO
Fixed, complex IHEWSMX IHESMXO0
Short float
real IBEWSMG IHESMGR
complex IHEWSMG I1IBESMGC
Long float
real IHEWSMH IHESMHR

complex IHEWSMH IHESMHC
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Function:

To produce a scalar with a value which is
the sum of all the elements of the array
argument.

Method:

The elements of the array are added to
the current sum in row major order.

For fixed-paint arguments each element is
converted to floating-point by using the
P1/I Library conversion package.

For a complex argqument, the summation of
the real parts is performed before the
summation of the imaginary parts is begqun
in modules IHEWSSG and IHEWSSH, while the
two sums are developed concurrently in
other modules.

Error and Exceptional Conditions:

I : OVERFLOW, UNDERFLOW
H : TIHEWSSF, IHEWSSX, IHEWSMF, IHEWSMX:
ABS {(element of the array) > 7.2%10%%
75: SIZE condition caused in conver-
sion package
PROD (X)

Module Names and Entry Points:

Simple Arrays

Module Entry
Arquments Name Point
Fixed, real IHEWPSF IHEPSFO
Fixed complex IHEWPSX IHEPSX0
Short float
real IHEWPSS IHEPSSO
complex IHBEWPSW THEPSWO
Long float
real IHEWPSL IHEPSLO
complex IHEWPSZ TIHEPSZO

Interleaved Arrays

Module Entry
Arquments Name Point
Fixed, real IHEWPDF IHEPDFO
Fixed, complex IHEWPDX IBEPDXO

Short float
real IHEWPDS 1IHEPDSO
complex IHEWPDW IHEPDWO

Long float
real IHEWPDL IHEPDLO
complex IHEAPDZ IHEPDZ0
Function:

To produce a scalar with a value which is
the product of all the elements in the
array argument.
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Method:

The elements of the array are used in row
major order to multiply the current
product.

For fixed-point argquments, each element
is converted to floating-point by using
the PL/I Library conversion package.

Error and Exceptional Conditions:
I : OVERFLOW, UNDERFLOW
H : IHEWPSF, IHEWPSX, IHEWPDF, IHEWPDX:
ABS(element of the array) > 7.2#%10%¢

75: SIZE condition caused in conver-
sion package

POLY (A,X)

Module Names and Entry Points:

Module Entry
Arguments Name Point

Fixed, real

vector X IHEWYGF IHEYGFV

scalar X IHEWYGF IHEYGFS
Fixed, complex

vector X IHEWYGX IBEYGXV

scalar X IHEWYGX IBEYGXS
Short float, real

vector X IHEWYGS IHEYGSV

scalar X ITHEWYGS IHEYGSS
Short float, complex

vector X IHEWYGW IBEYGWV

scalar X IHEWYGW IHEYGWS
Long float, real

vector X IHEWYGL IHEYGLV

scalar X IHEWYGL IHEYGI1S
Long float, complex

vector X IHEWYGZ IHEYGZV

scalar X IHEWYGZ IHEYGZS

Function:

Vector X:

Let the arquments be arrays declared as
A{m:n) and X(p:q). Then the function
computed is:

n-m j-1
A(m) + ) A(m+ P+ [ x(p+ 1)
— =1 i=0
unless n = m, when result is A(m).

Ifq-p<n-m-1, then,
i>q, X(p + i) = X(qg).

for p +

Scalar X:

This may be interpreted as a special case
of vector X, that is, a vector with one



element, X{(1), which is equal to X. Then
the function computed is:

n-m
2. Alm + J)*xesj
3=0

A floating-point result is obtained in
both cases.

Method:

1. Vector X, (g-p 2 n-m~- 1):

POLY (A,X) is evaluated by nested multi-
plication and addition, i.e.,

(...(A(n)*X(k) + B (n-1))*X{k~-1) +
Aln-2))* ... + A(m+1))*X(p) + A{m)

where k = p +n - m - 1.
2. Vector X, (g - p <n-m- 1):

In the expression above, the terms in X
with subscript ranging from k down to gq

are all made equal to X(q). The evalua-
tion is treated as for scalar X until
sufficient terms in X have been made
equal to X{g), when the computation con-
tinues as in (1.).

3. Scalar X:

Terms in X with subscript ranging from k
to p are egual to X.

For fixed-point arguments each element is
converted to floating-point, by using the
PL/1 Library conversion package.

Error and Exceptional Conditions:

I : OVERFLOW, UNDERFLOW

H : IHEWYGF, IHEWYGX:
ABS(element of the array) > 7.2#%10%+
75: SIZE condition caused in conver-
sion package
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§ 'and' operator 3

|| concatenate operator &
- 'not' operator 3

{ 'or' operator 3

ABS
complex fixed-point 15
complex floating-point 15
absolute error, definition 19
accuracy, in
arithmetic operations 8
mathematical functions 17
ADD
complex arguments 13
real arguments 13
algorithms 18
ALL array function 45
‘and* operator 3
ANY array function 45
array functions 45
array indexers
interleaved arrays 44
simple arrays 44
assignment operations
bit string 4,5
character string 7
ATAN
complex arguments 41
real arguments 27
ATAND (real arguments) 27
ATANH
complex arguments 41
real arguments 31,32

bit string operations 3-6
and 3
assign, general &4
assign/fill 5
BOOL 6
comparison, byte aligned #&
comparison, general 4
concatenate 4§
INDEX 5
not 3
or 3
REPEAT 4
SUBSTR 5

BOOL 6

built-in functions
arithmetic 8
array 42
bit string 5
character string 7
mathematical 17

character string operations
assign/fill 7
compare 6
concatenate 6

46

INDEX 7
REPEAT 6
SUBSTR 7

comparison operator

bit strings &

character strings 6
concat enation operator

bit string &4

character string 6
cos

complex arguments 38,39

real arguments 23,24
COSD (real arguments) 23,24
COSH

complex arguments 38,39

real arguments 28,29

DIVIDE (complex fixed-point) 14
division operator
complex fixed-point 10,11
complex floating point 11

ERF (real arguments) 32,33
ERFC (real arguments) 32,33
error conditions, in
arithmetic operations and functions
array indexers and functions 17
mathematical functions 43
exponentiation operator
complex operations
floating~-point exponents 12
integer exponents 12
real operations
floating-point exponents 9
integer exponemts 9

£ill operations
bit string 5
character string 7

HIGH 16-17

IHEABU

see ABS (complex fixed-point)
IHEABV

see ABS (complex fixed-point)
IHAEABW

see ABS (complex floating-point)
IHEABZ

see ABS (complex floating-point)
IHEADD

see ADD (real arguments)
IHEADV

see ADD {(complex arguments)
IHEAPD

see shift-and-assign, shift-and-load

(real operations)

8



IHEATL
see ATAN (real arguments); ATAND (real
arguments)
IHEATS
see ATAN (real arguments); ATAND (real
arguments)
IHEATW
see ATAN (complex arguments); ATANH
(complex arguments)
IHEATZ
see ATAN (complex arguments); ATANH
(complex arguments)
IHEBSA
see 'and' operator
IHEBSC
see comparison operator (bit string,
byte-aligned)
IHEBSD
see comparison operator (bit string,
general)
IHEBSF
see BOOL
IHEBSI
see INDEX (bit string)
IHEBSK

see concatenation operator (bit string);

REPEAT (bit string)
IHEBSM
see assignment operations (bit string);
£ill operations (bit string)
IHEBSN
see 'mot' operator
THEBSO
see 'or' operator
IHEBSS
see SUBSTR (bit string)
IBECSC
see comparison operator (character
string)
JTHECSI
see INDEX (character string)
IHECSK
see concatenation operator (character
string); REPEAT (character string)
IHECSM
See assignment operations (character
string); fill operations (character
string); HIGH; LOW
IHECSS
see SUBSTR (character string)
IHEDVU
see DIVIDE (complex fixed-point)
IHEDVV
see DIVIDE (complex fixed-point)
IBEDZIW
see division operator (complex
floating-point)
IBEDZZ
see division operator (complex
floating-point)
IHEEFL
see ERF (real arguments); ERFC (real
arguments)
IHEEFS
see ERF (real arguments); ERFC (real
arguments)
IHEEXL
see EXP (real arguments)

IHEEXS
see EXP (real arguments)
IHEEXW
see EXP (complex arguments)
IHEEXZ
see EXP (complex arguments)
IHEHTL
see ATANH (real arquments)
IHEHTS
see ATANH (real arguments)
JHEJXI
see array indexers (interleaved arrays)
IHEJXS
see array indexers (simple arrays)
IHELNL
see LOG (real arguments); LOG2; LOG10
IHELNS
see LOG (real arguments); LOG2; LOG10
THELNW
see LOG (complex arguments)
IHELNZ
see LOG (complex arguments)
IHEMPU
see MULTIPLY (complex fixed-point)
IHEMPV
see MULTIPLY (complex fixed-point)
IHEMXB
see MAX (real arguments); MIN {(real
arguments)
IHEMXD :
' see MAX (real arguments); MIN (real
ar guments)
IHEMXL
see MAX (real arguments); MIN (real
arguments)
IHEMXS
see MAX (real arguments); MIN (real
arguments)
IHEMZU0
see multiplication operator (complex
fixed-point) ; division operator (com-
plex fixed-point)
JHEMZV
see multiplication operator (complex
fixed-point); division operator (com-
plex fixed-point)
IHEMZW
see multiplication operator (complex
floating-point)
THEMZZ
see multiplication operator (complex
floating-point)
IHENL1
See ALL; ANY
IHENL2
see ALL, ANY
IHEPDF
see PROD
IHJEPDL
see PROD
THEPDS
see PROD
IHEPDW
see PROD
IHEPDX
see PROD
IHEPDZ
see PROD
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IHEPSF
see PROD
IHEPSL
see PROD
IHEPSS
see PROD
IHEPSW
see PROD
IHEPSX
see PROD
IHEPSZ
see PROD
IHESHL
see SINH (real arguments); OOSH (real
arguments)
IHESHS
see SINH {(real arguments); COSH (real
arguments)
IHESMF
see SUM
IHESMG
see SUM
IHESMH
see SUM
IHESMX
see SUM
IHESNL
see SIN (real arguments); SIND (real
arguments); COS (real arguments); COSD
(real arguments)
IHESNS
see SIN (real arguments); SIND (real
arguments); COS (real arguments); COSD
(real arguments)
IHESNW ’
see SIN (complex arguments); SINH (com-
plex arguments); COS (complex argu-
ments); COSH (complex arguments)
IHESNZ
see SIN (complex arguments); SINH (com—
plex arguments) ; COS (complex argu-
ments); COSH (complex arguments)
IHESQL
see SQRT (real arguments)
IHESQS ‘
see SQRT (real arguments)
IHESQW
see SQRT (complex arguments)
IHESQZ
see SQRT (complex arguments)
IHESSF
see SUM
IHESSG
see SUM
IHESSH
see SUM
IHESSX
see SUM
IHETHL
see TANH (real arguments)
IHETHS
see TANH (real arguments)
IHETNL
see TAN (real arguments); TAND (real
arguments)
IHETNS
see TAN (real arguments); TAND (real
arguments)
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IHET NN
see TAN {complex arguments); TANH (com-
plex arguments)
JHETNZ
see TAN {(complex arguments); TANH (com
plex arguments)
IHEXIB
see exponentiaticn operator (real opera-
tions, integer exponents)
IHEXID
see exponentiation operator (real opera-
tions, integer exponents)
IHEXIL
see exponentiation operator (real opera-
tions, integer exponents)
IHEXIS
see exponentiation operator (real opera-
tions, integer exponents)
IHEXIU0
see exponentiation operator (complex
operations, integer exponents)
IHEXIV
see exponentiation operator (complex
operations, integer exponents)
IHEXIW
see exponentiation operator (complex
operations, integer exponents)
IHEXIZ
see exponentiation operator (complex
operations, integer exponents)
ITHEXXL
see exponentiation operator (real opera-
tions, floating-point exponents)
IHEXXS
see exponentiation operator (real opera-
tions, floating-point exponents)
IHEXXW
see exponentiation operator (complex
operations, floating-point exponents)
IHEXXZ
see exponentiation operator (complex
operations, floating-point exponents)
IHEYGF
see POLY
IHEYGL
see POLY
IHEYGS
see POLY
JHEYGW
see POLY
IHEYGX
see POLY
IHEYGZ
see POLY
INDEX
bit string 5
character string 7
indexers
see array indexers

1LOG
complex arguments 37
real arguments 21,22
LOG2 (real arguments) 21,22
10G10 (real arguments) 21,22
LoWw 7



mathematical functions 19

MAX (real arguments) 13
MIN (real arguments} 13
Modules Names 1,2
multiplication operator
complex fixed-point
complex f loating-point

MULTIPLY (complex fixed-point)

‘not' operator 3

‘or' operator 3

POLY array function 46
PRCD array function 46

range of arguments

10,11

11

in arithmetic operations and

functions 8

14

in array indexes and functions
in mathematical functions

relative error 19
REPEAT
bit string 4
character string 6

17

43

shift-and-assign, shift-and-load {(real

operations) 10
SIN

complex arguments 38,39
real arguments 23,24
SIND (real arguments) 23,24

SINH
complex arguments 38,39
real arguments 38,39
SQRT
complex arguments 35
real arguments 19,20
SUBSTR
bit string 5
character string 6
SUM 45
TAN
complex arguments 40
real arguments 25,26
TAND (real arguments) 25,26
TANH
complex arguments 40
real arguments 30,31

truncation

in array indexes and functions
in mathematical functions 18

43
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