Systems Reference Library

IBM Time Sharing System

Data Management Facilities

This book is to be used as a reference
guide for TSS users of data management facil-
jties. Topics dealt with include: storage
classes, unit record devices, data set char-
acteristics, data set sharing, gaining access
to data sets, and use of data management fa-
cilities. This book is equally useful to as-
sembler, FORTRAN, or PL/I users.

The reader should be familiar with IBM
Time Sharing System: Concepts and Facil-
ities, 6C28-2003.

File No.

Form

No.

S$370-30
GC28-2056-2

PREFACE

This publication will provide users of PREREQUISITE PUBLICATIONS
PSS with an understanding of the data man-—
agement facilities, and contains more than
a "how to" description of these services.

A working knowledge of the assembler lan- The reader must be familiar with the
guage is required, particularly for under- basic concepts and terminology of TSS, as
standing the description of the TSS access described in IBY Time Sharing System: Con-
wethods. cepts and Pacilities, GC28-2003.

ASSOCIATED PUBLICATIONS

¢ Part I introduces such basic notions as Other publications that will be useful for
that of a data set, imn preparation for details not presented in this guide are:
lJater discussions.
IBM Time Sharing System;

Command System User's Guide,

e Part IY describes the manipulation and GC28-2001
sharing of data sets within TSS: the
notion of control blocks is introduced, Assembler User Facre Instructions,
and the system®s access methods are GC28-2004
discussed from the standpoint of the
macro instructions which relate to each System Programmer'®s Guide, 6C28-2008
of them.
Assembler Programmer®s Guide,
GC28-2032
e Part IXT shows hovw such user-oriented
facilities as the command system, and FORTRAN Programrmer’®s Guide, GC2ZB-2025
the FORTRAN language, make use of the
system's data managemeant services to PL/I (F) Programmer®s Guide,
serve a wide range of needs. GC28-2049

Third EBdition (December 1977)

This is a major revision of, and makes
obsolete, GC28-2056~-1.

This edition is current with Release 3.0
of IBM Time Sharing System/370 (TSS/370), and
remains in effect for all subsequent versions
or modifications of TSS unless otherwise
noted. Significant changes or additions to
this publication will be provided in new edi-
tions or Technical Bewsletters.

Reguests for copies of IBX publications
should be made to your IBM representative or
to the IBM branch office serving your
locality.

A form is provided at the back of this
publication for reader®s comments. If this
form has been removed, comments may be
addressed to IBE Corporation, Time Sharing
System, Dept. 80HM, 1133 Westchester Avenue,
White Plains, New York 10604.

C)Copyright International Business HKachines
Corporation, 1970, 1971, 19777

INTRODUCTION . « ¢« o« ¢ a o o o o o o o o s » & « » o

PART I: BASIC CONCEPTS OF DATA MANAGEMENT
Naming and Cataloging Data Sets . .« . « « = = « « =
UNIT RECORD DEVICES =« o« ¢ = o ¢ & o o » = » =

CLASSES OP STORAGE « ¢ &« o o« = o o 5 o o o e » o = =
Public and Private Storage . - ¢« ¢ o« « = = = = » « =
Permanent and Temporary Storage . ¢« o« « o o « = = =
Virtual Storage . « « o o & « o = = o o o = o & o =
VAM Data SetsS . ¢ ¢ o o ¢ ¢ o o o ¢ e o = o o o » =«

DATA SET CHARACTERISTICS . . =« o o o o = o o = » o «
Sequential Organization ¢« ¢ ¢ o« « + .
Indexed Organization . . « « ¢ o & ¢ & ¢« o« & o =
Partitioned Organization . « « « & = o« ¢ & &« o«

PART II: MANIPULATING ARD SHARIRG DATA SETS
DCB and JFCB . & + & o o o « o = =2 = o o e o o « o =
Introducing a Data Set to a Task « « ¢ o« « = o « = &
Summary of DDEF Operands . . « « &« = « o o « = »
Preparing a Data Set for Use . . =« ¢ o & ¢« o ¢ = = &
The Duplexing Option . « ¢ &« ¢ o & =« & & o o &« &

SHARING DATA SETS . . o ¢ o o « o o o o & o s o = =
External SharTing . ¢« &« o ¢ o o o o o o = o = = « = =
Sharing Private Storage . « ¢ ¢ ¢ « & o o . o« =«
Sharing Public Storage . . = & ¢ = =« ¢ & & o o =
Internal ShaTing « &« ¢ o ¢ o o o = o o o o = = o = =

ACCESSING DATA SETS . . . e » » e o o » e = = e =
Virtual Access Methods —— VAH o o o > e » & s e = =
Processing Data Sets with VAM . . . e o e =
virtual Sequential Access Method —— VSAE . . .
Virtual Index Sequential Access Method -- VISAM
Virtual Partitioned Access Method — VPAM . . .
Sequential Access Methods . . . ¢ ¢ ¢ 2o & o o & « &
Basic Sequential Access Method -- BSA#
Queued Sequential Access Method
Multiple Sequential Access Method -- MSAM . . .
Input/Output Request Facility
TERMINAL ACCESS METHOD —— TAMIYI . . ¢ . o = = =

PART III: USE OF DATA PMANAGEMENT FACILITIES . . . -
Assembler Interfaces . « » o o o o o o o = & o s » =

COMMAND SYSTEM INTERFACES . ¢ ¢ o o o o o @ = = o =
Text EAIitOor . -« o = & o ¢ o o o o o o o = « =
Services of the Data Command . . « « o o « = «
Data Set Copying Services . . « o o « o = « =
Bulk Input/Output Services . . « + ¢ =« « =« o =«
Operator—-Assisted Card Input . « ¢« « « =« + . .
Data Set Cataloging Services &« & & o .

1] . * L] .
L]
L]

FORTRAN & PL/I (F) INTERFACES . &2 o o = = & «
FORTRAN I/0 Control . ¢« « = o o o o o o = o ® = = =
PL/I (F) INTERFACES o o o ® o & & e o o = v = s e =

APPENDIX A: SECONDARY STORAGE LABEL FORMAT . .

Direct Access VOlURES .+ o « & o ¢ 2 2 o o o & o = »
VAM Data Sets e s e e e = s e e .
Physical Sequential Data Sets e e o o o o = = =

LI

L I A]

.

" 8 4§ @

[R B D 2 I

LA . *

, [] * » . . .

* £ v 9 0

L] 1] . . L] L]

L] . . L B

v L . . [

CONTENTS

.
L]
L]
-

’
®
.
SN

L]
. L
\J . . L] . .

0
.
[

O @ NN [o - MO NS R,

. L]
L
)
N -t
- 0

(]
v ¥ 5 ¢ 0

1]

3

LI
L
[2
Y

+ * [] 1]

’
.
]
Ui
-

L]
L]

v . . .
by

Magnetic Tape VOluUBES .« « « o o o o o o = ® = » © & ¢ o & « o s & o o = » o =
Standard Tape Organization . « « =« o ¢ o ¢ o o = o = &« 2 s & = o & » = s =
Volume Label . ¢ « ¢ o =« o ¢ &+ s 2 = = 2 o o »a o o & & o = o = = « = = = =

Set Header Label GTOUP =« o o o = = « = = s o & o » & = ® = & 5 » = =

Header Label GIOUP =« « o o » o« = = » = » o = o » s & o « « « « & a o

Set Trailer Label GroUp . +» =« = & = = « « & &« « = » 2 o« o« a @« = » = =

Trailer Label GTOUP « « o o » = = o = 5 o » « = o » 5 o o = = = » & =

Data
User
Data
User

APPENDIX
Data Set
Data Set

APPENDIX

B:

DATA SET DEFINING FOR COMMANDS AWD LANGUAGE

Definition Rules for Language Processing .« « « « = o » o = o & o o »

Definition Rules for TSS

C:

CoRBANAS = o « o = o & o = = o o o = = =

TSS RECORD FOREKATS .+ ¢ ¢ o o o o » » o o = » = » o = » o o s a =

Fixed—length (format-F) .« ¢ ¢ « o o« ¢ o « = o = o » = =
Variable—-lemngth (format-V¥ and Format-bD) e e & e & » e =
Undefined-format (format-U) e = o s e =2 s o s s o = = =
Control Character . ¢ o« o o o ¢ o o o » = » = = = o =« =
Diagrams of Record Formats . . « « o « = o « = » 2 = o =

INDEX

Pigure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Pigure
Figure
Figure
Figure
Figure

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

- -

1.

2.

3.

4.

5.

6.

7.

8.
S9Aa.
9B.
9C.
9D.
10.
1t
12.
13.
14.
15.
16.
17.
8.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.

* & » w = - - » ® ® o ® e » w = - ® & & & e

Fully and partially qualified names
System Catalog Concept . . =« =« =« & &« + « « =«
Public Storage Rationing - . -

*» & o & e = = & ®

® o = e e ® ® 3 =

s @& ® s ® - = -

-

Data Set Description Control Blocks for Catalogeu/ﬁncataloged Data
Flow of Intormation To and From a Data Control Block

Example of External Sharing . « » o « o «

« @ » * @& ®© = = -

Bulk versus Pragmented Public Storage Assignment . . « « . . .
RESTBL, Virtual Memory, and Main Storage Relationships
Typical 6-record VISAM dataset created sequentially

Addition of record 7 KEY450 to Figure 97 . .
Addition of record 8 KEY350 to Figure 9B . .

> » = e e e e = -

» = = ® o e » & o

Deletion of record 5 KEYS500 and record 6 KEY600 . . o« .« « - .

Virtuwal Partitioned Data Set -
Input/Output Regquest Control Block (IORCB) -
Stapndard Volume Label (VAE only)
Format-E DSCB . o« v ¢ o o o o = » & o« » o =«
External Page EBntry . . - « o o o o o = « »
Format-F DSCB ¢ ¢« o o ¢ o @« o = o = =« s = =
Direct Access Labels for Physical Seguential
Standard Volume Label (Physical Sequential
Pormat~1 DSCB . . o ¢ o 2 o o o o o o &« = =
Format-3 DSCB . ¢ ¢ o &« 2 = o = o o s o o =

Format—4% DSCB . . ¢ =« ¢ ¢ o o = = = » = =« =«
Format-5 DSCB .« + o ¢ o ¢ = o o s s » = o =
Standard Label and Data Organization

Placement of Comtrol Character in a Record .
Record Formats VSAM . ¢ +o « « o o o o = =
Record Formats —— VISAM - . -
Record Formats -—- Physical bequentlal Data
Record Pormats -- Physical Sequential Data
Output Reccrd Formats for ASCII Tapes . . .

Effect of OPEN OptionsS . ¢« v o = = o o = = =
Final Eagnetic Tape Positions . « . . « « . .
Effects of OPEN and CLOSE Options on Magmnetic
PL/I (F) Interface With Data Management . . .
EBCDIC Volume Label Format (Magnetic Tape) -
ASCII Volume Label Format (Magnetic Tape)}
EBCDIC Data Set Header-1 Label Format
ASCII Tape Data Set Header-1 Label Format . .
EBCDIC Data Set Header-2 Label Format
ASCII Data Set Header-2 Label PFormat
User Header Label Pormat . . . « &« « =« « = =
Data Set Trailer Label FPormat . . . o « - . =«
User Trailer Label Format . . « « o« o o « & =
Data
Data

Set Definition Requirements for Commands

Data Sets

> e o » ® ® e =B =

Data Sets

®= ®» » ® & ®= » @ -
® » ® & = ® @ =
e =2 = =2 @ - o e -

» ®» ®» & ® o o s °

on Magmetic Tape . . . =

> e - - & e & = -

e = ® e » = ®» o -

- & » ®» B & = »

Sets Without Keys .
Sets With Keys . .

e & = e ® o o -

& ®» = - = - ® » o

Tape Positiorning

Set Definition Rules for Language ProcessSing - - « « « o« =«

Data Management is a gemeral term that
collectively describes the functions of the
controlling system routines that provide
access to data sets, enforce data storage
conventions, and regqulate the use of input/
output devices. The data management facil-
ities of TSS:

Permit the user to store, modify, and
refer to programs and data, using the
system storage facilities.

Pree the user from concern with specific
input/output device configurations.

Perait the user to defer such specifica-
tions as device type and length of rec-
ords in the data set, until a program is
submitted for execution.

Persit any desired interchange of pro-
graas and data among TSS installations.

Save the time and expemse involved in
writing routines similar to those pro-
vided by IBN.

Allow users to concentrate their pro-
gramming efforts on processing the rec-—
ords read and writtem by the data man-
agement functions.

Provide standardized methods for han-
dling a wide range of input/output and
related operatioms.

INTRODUCTION

Provide the flexibility for including
nevw or improved devices, as they become
available.

Provide comprehensive error-recovery
procedures.

To most efficiently employ these facil-
ities for his own purposes, the user of TSS
should have a clear idea of those that are
available to him, and a geperal idea of how
they operate. This manual provides a suf-
ficiently detailed description of the sys—
tem®s data management facilities to serve
this need, without descending to a level of
detail that would destroy the overall pic-
ture of these services.

Part I consists of descriptions of some
introductory concepts necessary for a dis-
cussion of data management.

Part IX describes how data management is
effected in TSS, at its basic level.

Part IITY shows how higher-level, user-
oriented services interact with the basic
data management facilities, to perform a
broader range of duties.

Introduction 1

PART J: BASIC CONCEPYS OF DATA MANAGEEENT

A record is a collection of related data
items, treated as a unit. In data process-
ing, a record is rarely considered or pro-
cessed individually. V¥ormally, records are
treated in structured, logically related
collections, called data sets. A data set
may be, for example, a source program, a
library of macro instructions, or a file of
data records to be processed by a problem
prograr. In general, data records are
grouped as data sets because of some need
to process them collectively.

NAMING AND CATALOGING DATR SETS

When a user wants to create or access a
data set, he requires some means of speci-
fying to the system the particular data set
he is concerned with. UOnder TSS, the prin-
cipal data management routines have been
designed to free the user from consider-
ations of data set residence, and delegate
that responsibility to the system; also,
many data sets are not physically connected
entities, and may oconsist of widely scat-
tered portions. For these reasons, data
set specification by location cannot be the
general rule; rather, the system must pro-
vide an interface that will relate the
user?s logical specification of a data set
- to that data set®s physical location.

Por direct access volumes, the system
catalog serves to relate the user?'s speci-
fication of a data set ~— the data set's
name —- to a description of its physical
structure, specified in a data set control
block (DSCB). PFor tape volumes, the cata-
log links the name to the beginning of the
data set on the appropriate volume. In
designing the data set paming structure,
one consideration was the sharing of data
sets permitted under the TSS data manage-
ment facilities. This sharing is imple-
mented through the catalog; also, it is de-
sirable to enable users to permit or
restrict a sharer®s access to a data set
collection, rather than individually data
set by data set. Example: If a user has a
collection of data sets concerned with one
project and wants to grant other users
access -to his entire collection, it will be
easier for him and more efficient for the
system to specify his group by one name.
The user implies a data set hierarchy by
specifying only a data set name; the speci
fication of the upper portion of a hierar-
chy includes all the data sets logically
below it.

Within 7SS, a data set name is a series
of one or more simple names, called com-
ponents, joined so that each represents a
level of gualification. Example: The data
set name RECORDS.PERSONEL.DEPT561 consists
of three components, delimited by periods;
each component represents a unique cate-
gory, within which the next component is a
unigque subcategory. In this example, some
individuals might be permitted to access
all records of the company, denoted by the
partially gualified data set name RECORDS;
others might be permitted to access all the
personnel records of the company, denoted
by the partially qualified data set name
RECORDS .PERSONEL; some might be permitted
access to only the personnel records of a
particular department,
RECORDS.PERSONEL.DEPTS561.

A fully qualified data set name identi-
fies an individual data set and includes
all components of that data set'®s name. 1In
the preceding example, the personnel rec-
ords of Departeent 561 were uniquely iden-—
tified by the fully qualified data set name
RECORDS.PERSONEL.DEPTS561. A partially
gqualified data set name identifies a group
of data sets, and omits one or more of the
right-most components of a data set name.

RECORDS

SALES PERSONEL INVENTRY

DEPT DEPT DEPT
561 562 563

DATA DATA DATA DATA DATA
SET SET SET SET SET

Fully and partially qualified
names

Figure 1.

In one example, all records of the company
are designated by the partially gualified
data set name RECORDS, and all the person-

unique; no fully qualified data set
name can be used as a partial qualifi-
er for another fully gualified data

nel records by the partially gualified data

set name RECORDS .PERSONEL

(see Figure 1) .

These rules must be observed in naming

data sets:

1.

Bach corponent except the last must
consist of from one to eight alphamer-
ic characters (this is why "person-
nel®, in the example and Figure 1, has
only one N); the first character must
be alphabetic.

The last component can consist of ei-
ther alphameric characters, as in rule
1, or a relative generation number. A
relative generation number consists of
a signed integer im parentheses. Ex-—
aeple: PAYROLL .CLEBKS(-%1). The sys-—
ter treats each relative generation
number as the equivalent of an abso-
lute generation number, which has the
form GxxxxVyy, where xxxx is an
unsigned four-digit integer and yy is
an unsigned two-digit integer. Use of
a generation number leaves a maximum
of 26 characters available for higher-
level qualification of the name.
(Data sets cataloged under the same
name but different generation numbers
are generations of a generation data
roup, which avoids the necessity of
giving a unique nare to each data set.
For more how-to information on genera-
tion data groups, see Concepts and Fa-
cilities, Command_ System User's Guide,
Assembler Programmer's Guide, FORTRAN
Programmer's Guide, or PL/T (F) Pro-
grapmer®s Guide.)

A period must be used to separate
components.

For data sets used exclusively within
TSS, the user is limited to 35 charac-—
ters, because the system aantomatically
prefixes each name with his eight
character user ID, followed by a peri-
od. The maximum number of characters
(including periods) in a data set name
is 44, For data sets to be inter-—
changed with the Operating System, the
user can employ 44 character data set
names. These data sets, however, can-
not be cataloged imn TSS without being
renamed.

The maximum number of single-character
qualification levels for a basic name
is 18, for data sets used in TSS.
Normally, fewer qualification levels
will be used.

The fully gualified names in each
user's data set name structure must be

set name.

Figure 2 illustrates how data sets on

direct access volumes are located by data
set name, under the system catalog concept.

The system catalog is organized into a

hierarchy of indexes, each index corre-
sponding to a component of a data set's
fully gqualified name.

The highest level

index (the master index) is a set of user-
identification codes, one for each user who

has been granted access to the systenm.

This master index is updated by the JOIN

and QUIT commands given by the systenm
administrators and manager.

O D L L O TV o T T O ——

e System - mta———User Supalied —
Supplied |

| Master Index

EBach user ID

%JOHNDCE, EENG, PHYSICS. COMAR. TEST2 ""/f{ JOHNDOE E | FRANKLEG; I

~

'

[P — U |
I
|

¥

[——"'—'v- ————— User Catalog— === — — ==

T

OHMBOE { ENG i PAVYRL

———

ENG [

Y .
COMAR [TEST)

|
[4
{
|
|
|
|
I
1o
|
|
|
|
[
f
|
{
i
|
|

i Dota Set Control Block

| JOHNDOE. ENG. PHYSICS. |
COMAR. TEST 2 |

-

T e L D ATA PAGE |
|
s o= DATA PAGE |

T e] DATA PAGE B o

“m | DATA PAGE }———
————m s ——~ DATA PAGE J— ——

2.

Figure System Catalog Concept

i
i
{

e DATAPAGE b

|
i
1
S

Basic Concepts of Data Management 3

in the master index points to a collection
of indexes, called the user catalog. Each
index in the user catalog corresponds to a
level of qualification in the data set name
structure adopted by the user. Users,
therefore, determine the nature of their
catalog by the way they name their data
sets.

When a data set is cataloged, the re-
guirasd indexes are established in the user
catalog in accordance with the fully guali-
fied name of the data set. The lowest lev-
el index in the user catalog is called the
data set descriptor amnd, for data sets on
direct access volumes, it points to a data
set control block (DSCB) that locates the
individual pages of the data set. On mag-
netic tape volumes, the lowest level index
of the user catalog gives the order, or
sequence number, of that data set om a par-
ticular volume, relative to the beginning
of the volume.

The explicit cataloging of data sets
through the command system will be dis-
cussed in Part III. Data sets created by
the usual TSS accessing facilities (the
virtual access methods) are cataloged auto-
matically when they are created.

UNIT RECORD DEVICES

R key concept in efficient device man-
agement depends upon the proper use of
uanit-record equipment ({printers, card
readers, and punches). By nature, this e-
quipment can not be concurrently shared
among several users; a unit-record device
must be allocated to cne job until it kas
completed using the device. Therefore nor-
mal users are not allowed complete control
over unit-record devices in TSS because one
user might tie up, for an excessive time, a
piece of equipment that is needed by other
users.

Most users obtain the services of unit
record devices through the command system.
Example: If a user wants to have a data
set printed out, he issues a PRINT cormand;
the system then initiates a batch job for
the printing and thereby makes most effi-
cient use of the printer.

Only users with privilege-class B (sys-
tem monitors) can directly address specific
unit record devices. In Part II, some of
the access methods for this purpose will be
described.

There are three storage categories:
main, auxiliary, and external. Data is
moved between main and auxiliary storage in
a manner that is not evident to the user;
these types of storage will be referred to
only indirectly. External storage, howev-
er, is of more direct concern to the user.

PUBLIC AND PRIVATE STORAGE

The two types of external storage avail-
able to users are public and private.

Public external storage is that pool of
storage available to be portioned out to
users as they need it for creating or
adding to their data sets. So that it will
be a joint pool, capable of being appor-
tioned efficiently, it must consist only of
direct access storage. Direct access
devices provide random access, so that pre-
vious positioning is irrelevant. Volumes
that are not direct access —— for example,
tapes — cannot have control over them
interspersed randomly among tasks, since
one task would have no indication of where
the previous one had positioned the volume.
Therefore, only with direct access volumes
can different portions of the same volume
be efficiently parceled out to different
tasks for immediate access. Hence, only
direct access devices can be used for pub-
lic storage; the system specifies the
devices, and the volumes remain mounted
throughout a session.

Private external storage is not a
storage pool; it consists of volumes that
may be allocated to only one task at a
time. Because tape volumes can be allo-
cated to only one task at a time, all tape
volumes must be private storage. Also, di-
rect access devices available to the sys-—
ter, which are not defined as public
storage, are private devices that can be
allocated to only ome task at a time.
Thus, private extermal storage may be ei-
ther direct or sequential access volumes.

The system assumes that a user wants
public storage unless he requests storage
on a private volume. Public volumes are
always mounted and available for allocation
to a user's task.

If a user wants private volumes, he may
need to wait for devices on which to mount
those volumes. Each time a request is made
for a private-volume device, the systenm
must determine if it can honor the request,
based on the current availability of the

CLASSES OF STORAGR

device type specified, and the device
ration permitted for the user. If no
device is available to the task, a message
is issued to the user (in conversational
mode) or the system places the task in
abeyance until the needed device canmn be
allocated (ir nonconversational mode).
Conversational users can wvait until a
device is available, or perform other work.

PERMANENT AND TEMPORARY STORAGE

How can a public storage pool, available
to all users, be rationed? One solution
might be to give users as much as they
want, whenever they need it. Unfortunate-
ly, this flexibility might lead to a single |
user severely reducing the public storage
available to other users (see Figure 3).
On the other hand, each user might have a
maximum ration of 10% of the public
storage. Besides being arbitrarily rigid
{(1f only one person is using the systen,
why should he be so limited?), this solu-
tion limits the systea to a maximum of 10
concurrent users (see Figure 3).

OTHERS

TOO FLEXIBLE

USER 1 USER 2 USER 3 USER 4 USER 5

USER 6 USER 7 USER 8 USER 9 USER 10

TOO RIGID

Pigure 3. Public Storage Rationing

Classes of Storage 5

Public storage is rationed under TSS by
restricting the extent that is allotted to
any one user, but restricting it in a mann-
er that allows considerable flexibility
during the time span of a given task. Each
user is allotted a maximum ration of perma-—
nent, and a maximum ration of temporary
public storage. Data sets specified as
permanent will continue to be or public
storage after the task has logged-off; data
sets specified as temporary will be erased
automatically by the end of the task. Un-—
der this procedure, it is possible to
allocate to a given user more than a strict
percentage share of public storage, since
it is known that the portion of storage
that is occupied by data sets specified as
®temporary” will be in use for only a short
time. On the other hand, since even the
extent of temporary storage available to a
single user is limited by a fixed maximum,
RO Oone user can occupy an extensive area of
public storage, even for a short time.

Thus permanent- and temporary-storage
rationing represents a compromise between
the two situations depicted in Figure 3.

YIRTUAL STORAGE

Virtual storage is a nause used to
describe the logical storage space defined
by the address capability of the TSS ma-
chinpe. Thus, for machipes using a 24-bit
address, virtual storage can represent over
16 million bytes, and for those using a
32-bit address, virtual storage contains
over 4 billion logical (or conceptual)
bytes. In TSS, each user has at his dis-
posal the total amount of virtual or logic-
al storage that is available to him based
on his machines address capability
{(although some of this space may be used by
system service routines that use virtual
storage) . The system provides this capabi-
lity by translating virtual or logical ad-
dresses, specified by users, into actual
storage addresses; all tramslation is tran-
sparent to the user. Users may prodram
using virtuwal or logical addresses, and
store data sets into virtual storage space;
the system maps the program and data set
addresses into actual storage addresses for
him.

Three special Data Management Access
Bethods —— the Virtual Access Kethods (VAER)
-— have been provided with TSS. They are
specifically designed for a time-sharing
environment and are used to read and write
data to and from direct access storage
devices. Por all three cf the VAN access

methods, the data set management (for exam-—
ple, formatting) is performed in virtual

storage -— using virtual addresses that are
part of the user®s virtual storage address
space —-— although physical device manage-

gent {e.g., I/0) is performed by systenm
programs in resident storage. Each access
gethod provides access and processing capa-
bilities for data sets organized in a spe-
cific manner.

e sequentially (Virtual Sequential Access
Method -— ¥SAM)

e indexed sequential (Virtual Indexed
Sequential Access Method —— VISAM)

s partitioned (Virtual Partitioned Access
Method -- VPAM)

In T5S, data sets organized for processing

by one of the virtual access methods are
generally referred to as VAM data sets.

YAE DATA SETS

VAM data sets reside on direct access
external storage volumes, which are
thanized for maximum accessing efficiency.
Volumes that contain VAM data sets can con-—

&ia only VAM data sets; the formatting of
volumes is described in Appendix A.

a2
tﬁ Lopta s

The content of public storage consists
exclusively of VAN data sets; direct access
private storage, however, can contain ei-
ther VAM data sets or data sets organized
for interchange with any IBM Operating Sys-—
tem (of these latter, only physical sequen-—
tial data sets <ap be accessed under TSS —-
see Appendix & for format descriptions).
VAHM data sets are not on tape volumes
(although they may be temporarily stored as
physical sequential data sets with the VT
command, to be rebuilt in their origimal
format by the TV command.}

Detailed descriptions of the various VAN
data set organizations are given in Part
iT.

Note: Portions of VAM data sets do not
reside in a user®'s virtual storage until
tbhey have been read im by one of the virtu-
al access methods. Virtual storage
includes the portions of any data sets that
can be directly referenced (having been
previously read), and may include data
residing on main, auxiliary, or external
storage (when the virtual access methods
are used for reading).

We have seen that a data set is an
organized, logically related collection of
records. We will nov briefly consider
three basic ways that data sets are
organized.

A distinction should first be made be-
tveen two different types of records: log-
ical and physical. A physical record is
considered from the standpoint of the mann-
er or form in which it is stored, retri-
eved, and moved —— that is, a record that
is defined in teras of physical gualities.
A logical record is considered independent-
ly of its physical environment —-- more than
one logical record may be within a single
physical record.

Logical records are of primary concern
to the user, since they are normally the
units transferred to and from his problem
program. Therefore, we shall refer to
these simply as "records."™

The concepts of logical and physical
records lead naturally to record blocking:
this is the combining of logical records
into physical records that are to be trans-—
foerred to or from an external device.
Blocking will be described im Part II.

Records may be in one of three formats:
fixed-length (format-F), variable-length
(format—-¥v or -D), or undefined (format-U).
Formats are discussed fully in Appendix C.

Records are formatted, and the collec-
tions of records (that is, data sets) are
also formatted. The format characteristics
depend upon how they are to be accessed;
generally they can be grouped into three
categories: seguential, indexed, and
partitioned.

Sequential Organization

When a data set is organized seguential-
1y, the records are organized solely on the
basis of successive physical positionms,
such as those of the records themselves, or
of an associated pointer. One record pre-
cedes another logically if and only if it,
or its associated pointer, precedes the

DATA SET CHARACTERISTICS

other record physically. This implies how
the data set is to be accessed (that is,
how the records are to be read in and out).
There is more discussion of this implica-
tion in Part II.

Indexed Organization

A data set with indexed organization has
a unique key associated with each of its
records. The key is a string that usually
represents an item within the record, such
as a part number, date, or name. The Kkey
may form the basis for accessing the rec-
ords, or several keys may be ordered to
perait seguential accessing. Accessing
this form of data set is also discussed in
Part II.

Partitioned Organization

A data set with partitioned organization
has elements, or members, that are other
data sets; these elements are in either
sequential or indexed organization. A&
characteristic of a partitioned data set is
a control directory that provides informa-
tion about the location and number of the
elements of the data set, and the charac-
teristics of each element.

The organization within any of the three
data set categories is dependent upon how
the data set was created. Details of this
dependence and data set organizations are
in Part IIX.

Application: The names of the data set or-
ganizations were derived from combinations
of the three categories and indicate chara-
cteristics to the user. Example: VIS is
virtual index sequential organization; the
Vv sigpnals a virtual storage data set that
nust reside on a direct access volume, pub-
lic or private. The next two letters, IS,
provide progressively deeper levels of
detail; *index"™ reflects that the logical
order of the records of the data set is de-
termined by a key; "sequential® indicates
that the keys are arranged in an ascending
collating sequence that provides an option
of strict sequential access.

Data Set Characteristics 7

PART IY: MANIPULATING AND SHARING DATA SETS

The characteristics of an individaal
data set must be clearly defined to the
system before the user can create or access
that data set by using the system's data
management facilities.

Does the user want to write to the data
set, read from it, or both? The systenm
must have indications of how he intends to
access a data set so that the routimnes that
he will need will be available.

Does he want to provide his own routines
for handling some processing interruptions?
If he does, the system must have the ad-
dresses of these routines before it can
start processing.

Such indicators are required at differ-
ent times, and the sources of the indica-
tions differ: the user provides some and
the system others. Control blocks act as
storehouses for this information; the sys-
term will reference this information when it
is required.

DCB_AND JFCB

Most of the physical characteristics of
a nevw data set are stored in the data con-
trol block (DCB) , which normally resides in
a user's prograk and is generated at
assembly time. 1In addition to such static
gualities as data set orgamization, the DCB
contains information about processing re-
quirements, among them the number of buf-
fers required for input/output operations.

A particular DCB is not directly linked
to any data set; rather, it is a "floating®™
definition that can be linked to a specific
data set through an intermediate job file
control block (JFCB), as shown in Figure 4.

The JFCB gives the user the flexibility
to associate a DCB with a particular data
set at the command-system level, anytime
before executing a particular program.
user establishes the JFCB by issuing the
DDEF command or macro instruction (or the
CDD command, which copies prestored DDEF
comgands) .

The

INTRODUCING A DATA SET TO_A TASK

Besides creating a JPCB to link a data
set and a DCB, the DDEF command (or macro
instruction) introduces a data set (speci-
fied by its data set name) to a user's
task. For a new private data set, the nec-
essary messages are issued to the operator
to request mounting of any regquired private
volumes. If any volumes cannot be mounted,
conversational users are informed by system
messages; nonconversational tasks are ei-
ther terminated by the operator or gueued
until the required private volumes have
been mounted. (For nonconversational
tasks, a list of private device require-
mrents is made available to the system by
the SECURE command, which the user nmust in-
clude in the task®s nonconversational SYSIN
as the first command after LOGON.) Then,
as each DDEP is read and processed, the re-
guired devices are allocated.

DCB JFCB CATALOG DATA SET
CATALOGED | DATA SET NAMER //
DATA SETS DDNAME L ——~»{ DDNAME | ™. S/
Y DATA SET NAME|

DATA SET NAME -
UNCATALOGED |, f”'D'DNAME,::: P
DATA SETS " expucitoata Lo

DDNAME 2 o -
e SET POINTERS
Figure 8. Data Set Description Control Blocks for Cataloged/Uncataloged Data Sets

Por an existing data set with DISP=OLD
explicitly stated, if a private (PS) data
set is indicated the system requests mount-
ing of appropriate volumes. If a public
(¥I, ¥S, or ¥P) data set is indicated, the
systea searches the catalog for the data
set nameée and, if it does not find the name
{(that is, the data set is not cataloged),
the system cancels the DDEF.

The catalog and DDEF values for data set
organization, data set disposition, and
device type must agree or the command (or
macro iastruction) is canceled. 1In all
other cases of conflict, catalog informa-
tion is used to fill out the JFCB, in pre-
ference to the conflicting information in
the DDEF command or macro imstruction.
Since the user will not be informed of such
conflicts, he should be aware of the JFCB
£111 hierarchy used.

Por a nev virtual storage data set
(DISP=NEN), the DDEF coamand or macro in-
struction is canceled if the specified data
set name already exists in the catalog.

Within any particular task, there cam be
only one JFPCB for a data set. If a user
issues a nev DDEP with a data set name that
is identical to that in a previous DDEF, a
new JPCB will not be created. Instead, the
ddname in the new DDEF will be substituted
for the ddname currently im the JFCB, and
processing for that DDEBF will be considered
complete. This will have the effect of
associating a new DCB (the ome associated
with the ddname now in the JPCB) with the
named data set.

The aser can specify, in the DDEF, pa-
rameters for external storage space-
allocation, device management, data set
disposition, and DCB, that are to be put in
the JPCB. The user may vant to alter some
parameters before executing a program, but
issuing another DDEF with the same data set
name will not affect any parameters in the
JPCB, other than the ddname. If he issues
the RELBEASE command, the user can change
paraneters placed in the JFCB by a previous
DDRP.

A DDEF command or macro instruction is-
sued during a task is valid throughout the
task, unless the user issues a RELEASE com-
mand for the data set named DDNAME in the
DDEY. The RELEASE command releases the
JFCB associated with a data set, removing
the comtrol information in the JPCB and
disassociating the data set from a DCB.
Releasing a data set does not uncatalog or
erase it. If a private data set is re-
leased, and the volume on which it resides
contains no other in-use data sets (i.e.,
data sets for which there are current
JPCBs), then the I/ device on which that

volume resides will be automatically freed
for other uses.

Summary of DDEF Operands

Readers who require an in-depth treat-
ment of the parameters available should
consult Command System User's Guide or
Assembler User Macro Imstructions.

DDNAME: The symbolic data definition name
that serves as the link between the DCB
and the JFCB; since the JFCB, in turm,
points to the data set, the DDNAME con-
nects the data set attributes to a spe-—
cific data set.

DSORG: Indicates the organization of the
data set being defined; specification of
this parameter must be correlated with
the access method to be used in process-—
ing the data set.

DSRAME: Specifies the name under which the
data set is to be cataloged or referred
to for temporary reference; for data sets
that are cataloged, this serves as the
link between the JFPCB and the data set.

DCB: ©Under this heading, parameters may be
stored in the JFCB; these will be re-
ferred to when a data set is opened, for
the purpose of £illing out the DCB (see
PpPreparing Data Sets for Use").

UNIT: Specifies the type of device re-
quired by the data set. Direct access
devices may be specified for either pub-
lic or private volumes; other types of
devices may be specified for private
volumes only.

SPACE: Specifies the storage allocation
for a data set that is to reside on di-
rect access storage. Both primary and
secondary space allocations can be speci-
fied; secondary space is to be allocated
wvhen the primary space has been filled.

LABEL: Applicable to data sets that are on
tape, this operand specifies the seguence
number (relative position) of a data set
on a tape that contains multiple data
sets. Also, this operand may specify the
labeling conventions used with a data
set; that is, if a data set is labeled
and if the label is standard EBCDIC,
standard ACSII, or user—-created.

BETPD: Specifies the number of days the
data set is to be retained by the system
(retention period); applicable only to
non—-VAN data sets on direct access
volumes or labeled tapes. When the spec-—
ified time has elapsed, the volumes are
available for reuse.

Manipulating and Sharing Data Sets 9

VOLUME: Specifies the volume on which the
data set resides; this field must be
specified when creating a new data set on
a private volume or when referring to an
uncataloged data set. It is also re-
quired when adding new volumes to amn ex-
isting private data set. In general, it
is required when the system cannot deter-
mine the necessary volume information
from an existing catalog entry. Also, it
may be specified for new data sets on
public volumes, to restrict initial space
allocation to these volumes.

DISP: Specifies whether the data set
already exists or is to be created. If
DISP is not specified, the system deter-
mines if the data set is mnew or old,
based on whether there is a catalog entry
for it; if yes, it is assumed to be o0ld;
if no, it is assumed to be new. If there
is conflict between the specification of
this operand and the state of a data set,
the DDEF command is canceled.

OPTION: Specifies that either a job 1li-
brary is being defined or a data set is
being added to the concatenated data set
named in the DDNAME operand. A data set
that is to be concatenated must exist in
physical sequential organization. 1A job
library that is being defined must be
virtual partitioned; it will automatical-
ly be placed at the top of a list of job
libraries defined during that task, and
will be used to store object modules un-—
til either it is released, or a mnew job
library is defined omn top of it (job
libraries are searched for object modules
in the reverse of the order in which they
ware created).

RET: Specifies the storage attributes of a
VAR data set. The user may specify per-
manent or temporary storage, that the
data set is to be erased after the CLOSE
or LOGOFF, or that either unlimited or
read-only access to the data set is
permitted.

PROTECT: Applicable to data sets omn tape,
this operand specifies whether file pro-
tection, that is, no file protect ring,
ie required.

PREPRRING A DATA SET_FOR USE

Even after a data set has been defined
to a task and linked to a DCB by the crea-
tion of a JPCB, it is still not ready to be
processed; the DCB may not be completely
filled in, and the data set is not initial-
ly positioned. ™Open processing"™ must be
completed before the access methods can
process the data set.

0

The assembler user initiates processing
by issuing the OPEN macro imstruction; for
users of higher-level languages it will be
automatically issued. When the data set is
opened, the DCB is completed by filling in
information obtained fro=m:

1. Users' modification routines (BSAHM
only)

2. The DCB itself
3. The JFCB

4. The systeam catalog (for existing data
sets)

5. Existing data set labels

Not all of these sources are valid for
each field of the DCB. Two general rules
apply: whemn a field is filled in by a
higher priority source, it cannot be
replaced by information from a lower
priority source; if a field has not been
specified by a higher priority source, it
may be filled in by a lower priority source
if that source is valid for that field.
This flow of information is illustrated in
Figure 5.

Open processing logically consists of
tvo functions: a common portion that per-—
forms the services required by all access
methods, and an access-method-dependent
portion that completes the processing re-
quired by the pertinent access method.

The common portion first ensures that
the DCB is valid; if not, the user's task
will be abnormally terminated. Since the
DDNAME parameter is required to provide the
needed link between the DCB and the JFCB,
befere any filling in can begim a check is
made to ensure that this parameter is in
the DCB amnd that it corresponds with an
identical parameter in some JFCB for that
task. In case of any discrepancy, conver-
sational tasks will be prompted and noncon-
versational tasks will be abnormally terami-
nated. The user's authority code is
checked to ensure that he is privileged to
open this data set; if he is not, the task
is abnormally terminated.

The access-method—dependent portion of
OPEN comrpletes any processing reguired for
the device on which the data set is
rounted, processes tape labels according to
the open option specified (INPUT, OUTPUT,
INOUT, OUTIN, RDBACK, or UPDAT), initially
positions the data set, and sets up the
linkages to the routines that may be used
in accessing this data set. The routines
that may be used depend upon the combina-
tion of the access method being used, the
option with which the data set was opened,
and the macro instruction references speci-

fied in the DCB. The initial positioning
for non-VAM data sets is dependent upon the
option with which the data set was opened,
together with the DISP option of the DCB
(OLD, NEW, or EOD).

Open processing for new VAM data sets
includes creating catalog entries for these
data sets; this occurs during common open.

Just as OPEN completes the logical con-
nection between a data set and a DCB, per-
mitting the data set to be accessed by the

probler program, sco CLOSE eliminates this
link, removing the data set from direct
contact with the problem program, and per-
mitting it to be connected to a different
DCB (or the same DCB, with different param—
eters). Then the data set can be accessed
as a data set with different physical
characteristics. (Note that this applies
to the normal use of CLOSE; a more re-—
stricted form of the instruction, CLOSE
(T), will be discussed below).

Crectes DCB

\\‘
Data Control
Assembly Time / Block (DCB)
Defines DCB
Fields Symbolically
Prior to OPEN
User Add to or Modify DCB
Problem DCB
Program
OPEN Time (iircled numbers represent order in

System Catalog

[3]

JFCB

Execution Time

While Data Set is Open

which sources are sampled for inputs
to data control block; numbers
within boxes indicate priority of
these sources

User
Problem
Program

2] L
User
DCB 4__@_‘ Modification | BSAM
Routines Only
|4
Existing —
Data Set
Label
Add to or Modify
Certain Fields of DCB Completed
DCB

Figure 5.

Plow of Information To and From a Data Control Block

Manipulating and Sharing Data Sets 11

Processing of CLOSE also consists of a
common and an access-method-dependent por-
tion. The common portion disconnects the
DCB from the data set by returning the
fields that were filled in during open
processing to the condition they were in
before the DCB was opened, After perform-—
ing other processing, cortrol is passed to
the access—-method-dependent portion, which
checks all outstanding I/0 operations for
completion and then repositions the data
set volume, if necessary (physical segquen-—
tial data sets). Appropriate label proc-
essing is also performed; the type of proc-—
essing is dependent uporn the cption with
which the data set waz opened. Example: a
physical sequential data set that was
opened for OOTPUT will have appropriate
trailers written when it is closed.

A temporary close, CLOSE{T), can be per-
formed if the user wants to reposition and
consolidate status information, without
disconnectiny the data set from the problem
prograe, by removing the link between the
data set and the DCB. He may subsequently
perform additional processing on that data
set without again opening it. (For VP data
sets, the FIED macro instruction must be
issued prior to any further processing.)
The temporary close performs the same proc-
essing as the standard CLOSE macro instruc-
tion, except that the fields cf the DCB are
not restored to the status they wers in bhe-
fore opening. Also, if the user has speci-
fied the delete—at-close option in the DDEF
for a data set, the standard CLOSE macro
instruction will erase the data set before
returning control to the user; CLOSE(T)
vill not.

The Duplexing COption

For public VAN data sets, an option pro-
vides for parallel creation and updating of

12

two identical copies of a data set. With
this option, when a user changes omne copy
of the data set, the system will automati-
cally change the other copy.

The DUPOPER macro instruction is used
instead of OPEN when the user wants the
system to maintain a copy of the data set.
The user specifies, in the DUPOPEN macro
instruction, the locations of the DCBs of
the data sets to be maintained in parallel;
in response, the system links the JFCBs as-—
sociated with these data sets and allocates
any necessary storage. Since the purpose
of duplexing a data set is to provide pro-
tection against loss of virtual storage
data sets through volume errors, external
storage for each copy of the data set is
allocated, wherever possible, on rutually
exclusive physical volures.

If an input error is detected on a page
of the primary data set, the corresponding
page of the secondary is obtained and used
for input, and, also, is written back to
overlay the logical page with the error on
the primary data set. This process not
only recovers from the error, but also
tends to keep the primary copy in an error-
free state.

To close duplex data sets, the DUPCLOSE
macro imstruction is uvsed. To ensure that
the two copies of tke data sets are identi-
cal, the user must perform all operations
on either data set withim the duplexing
mechanism (i.e., opened with DUPOPEN, and
closed with DUPCLOSE). Errors will be in-
dicated if the DCBs associated with dap-
lexed data sets indicate conflicting attri-
butes; similarly, the sharing properties
specified in PERMIT commands {discussed in
"Sharing Data Sets") must agree.

In many applications, more than one user
may need the same data. Two or more users
may want information fromr the same source
of data or they may want to update the same
copy of data. Enabling users to share one
copy saves storage space; it also eli-
minates the need to collate information
from different copies of the data to form a
single updated copy.

Sharing may be external or internal.
When external, several users have access to
a copy that is contained on external
storage; when a part of it is brought into
a user's virtual storage, that becomes his
private copy for his task alone. It is not
affected by changes made to the external
copy. When intermal, the same copy is com-—
mon to the virtual storage of all the
sharers; a change made by one user is an
immediate change to the copy used by all
other sharers. Some system routines and
control tables are shared internally; the
sharing employed by most users is external.

EXTERNAL SHARING

The catalog is the mechanism by which
data sets are shared externally. 1A user
can allow any portion of his catalog to be
shared; he can specify a data set that is
to be shared, or he can specify amn index
level (a partially gualified data set name)
to be shared. The latter will include all
index levels below the shared index.

The user who aunthorizes sharing of a
portion of his catalog is the "owner";
anyone authorized by the owner to share is
a "sharer". The owner can specify the
class of accessing privilege of the sharers
of a data set or index level:

Unlimited access -~ Sharers may read
from the data set or modify it in any
wvay; they may erase it.

Read-write access -- Sharers may read
from the data set or modify it; they
cannot erase it.

Read-orly access -— Sharers may only
read from the data set; they cannot
modify or erase it.

Note: 1In the JFCB, there is a flag indica-
tion of whether a data set is sharable:
issuing a PERMIT command does not alter an
existing JFCB. Therefore, if a user
decides to share a data set after he has
already issved a DDEF for it, he should re-

SHARING DATA SETS

lease the existing JFCB (by the RELEASE
command or by logging off) and issue anoth-
er DDEF for that data set, so that it will
be flagged as sharable.

Through the PERMIT command, the owner
can specify a data set or index level as
universally sharable or he can explicitly
specify the users who may share it; this
information is placed in his catalog.
Through the SHARE command, the sharer pro-
vides the linkage between his catalog and
ovner®s catalog, and specifies this
information:

Owner's 1ID,

Fully qualified name assigned by the
owner to the data set or index level,

FPully qualified name assigned by the
sharer.

Example: The owner, User 1, whose ID is
USER1, specifies other users who may share
index level A.B. User 2 wants to access
User 1's data set A.B and call it X.Y.

User 2 must then specify USER1.A.B and X.Y
as parareters for the SHARE command. When
User 2 wants to access data set X.Y a cata-
log search will be made through index
levels X.Y.USER1.A.B to reach an entry in
User 1's catalog (see Figure 6).

Sharing Private Storage

211 data sets in a user®s catalog, on
either public or private storage, can be
shared externally. Hovwever, since private
volumes must be mounted on private devices,
and private devices can be allocated to
only one task at a time, a sharer may find
that a private data set is unavailable to
his task for omne of two reasons:

1. There is not an appropriate private
device available for allocation to his
task.

2. Another sharer is currently using the
data. (The private volume will not be
available until he releases the JFCB
or logs off.)

Sharing Public Storage

If the shared data is on public storage,
the data set can be open and accessible to
more than one task. When data is shared
concurrently, records may be read and writ-
ten by different users without any omne hav-
ing to close the DCB he has open for that

Sharing Data Sets 13

Master Index (POD}

—= USER1 Index Pointer
USER? index Pointer }— - ——
i
USERN Index Pointer
|
USERT Index Y USER2 Index
A Index Pointer ™) X Index Pointer }""‘]
M Index Pointer Q Index Pointer
Index Pointer R Index Pointer
B
A Index ¥ X Index
B Index Pointer [Y index Pointer [|
P index Pointer S Index Pointer
Sharing Descriptor
~.
\/—\ . \/\
\\\
B Index Sharer List \\ 4 Y Index
. ™ I
Indicates B \ Sharing Control g USERZ USERT.A.B —
is Sharable J
Data Set Descriptor |
|

Figure 6. Example of External Sharing

data set. The sharer may have to wait un-
til an interlock, set by another sharer’s
task, has been released, but this is the

R write interlock prevents any user,
other than the user who set the interlock,
from reading or writing into a data set,

only restriction on the availability of the page, or member. Only one write interlock
data. Tvwo interlocks, read and write, con- can be set at a time; thus, once a write

trol concurrently shared data.

R read interlock is imposed to prevent
other users from writing into a data set,
member, or page of a data set. Multiple
read interlocks may be established for a

interlock is set, neither read nor write
interlocks can be applied until the write
interlock is reset.

Data_ Set Interlocks: A data set interlock
is set according to the option with which a

data set or member, permitting several data set was opened (INPUT, OUTPUT, INOUT,

users to read it simultaneously, or the
interlocks may be set on a page basis to
give several users simultaneous access to
the records within a page. A read inter-
lock cannot be set if a write interlock has
already been set for the data set or page.
{For a VISAM data set, a data set level
read interlock is slightly less restric-
tive; it prevents other users from opening
that data set for output.)

14

OUTIN, or UOPDAT). It has the effect of
restricting the OPEN options that will be
accepted from future concurrent users; such
users will be prevented from opening a data
set with an option against which it is
interlocked.

Member Interlocks: Partitioned data sets
are interlocked at the member level, rather
than the data set level; these interlocks

are set within the member header associated
with the data set.

Page Interlocks: In shared VISAM data
sets, interlocks are set at the page level;
these interlocks are set by VISAM macro
instructions.

Data set and member interlocks are re-—
leased when the data set is closed, or the
member is stowed; page interlocks are re-
leased when a reference is made to another
page in the data set, when an ESETL or
RELEX macro instructiom is issued, or when
the data set is closed.

INTERNAL SHARING

When virtual storage is shared internal-
ly, only one physical copy of the data is
required in main storage, and is a part of
the virtual storage of all the sharers.

One example of intermal sharing is the
shared data set table (SDST). It exists as
part of the virtual storage that is imni-
tially allocated to all tasks when they
execute LOGOR, and is updated with entries
for internally shared portions of shared
data sets when the data sets are initially
opened; users who subsequently open this
data set reference this table, and incre-
ment the count of concurrent users in the
table.

Internal sharing is effected by the
dynamic loader for control sections with
the PUBLIC attribute; the SDST serves as
the link to this shared virtual storage.

The difference between internal and ex-
ternal sharing is illustrated by the sys-
tem's treatment of PUBLIC and PRIVATE con-
trol sections in shared data sets:

User R wants to share module A with
user B. Module A consists of two control
sections, one with the PRIVATE attribute,
the other with the PUBLIC attribute.

Since an object module exists as a
merber of a partitioned data set {let us
call it JOBLIBA) and only entire data
sets are shareable, User A must share
data set JOBLIBA with User B. So User A
issues a PERMIT command, naming JOBLIBA
to be shared and User B as sharer. User
B later issues a SHARE command, naming
JOBLIBA. He decides to refer to this
data set, for brevity, as LIBA and speci-
fies this in his SHARE command.

User B now issues a DDEF for LIBA,
specifing that it is to be a job library.
Next, he requests the loading of module 12
from LIBA by calling that module.

But User R has already loaded module &
and is presently executing it. The sys-—
tem will "connect"™ the PUBLIC control
section already in shared virtual storage
(it was loaded by User i) to User B's
virtual storage; also, it will obtainm a
nevw copy of the PRIVATE control section
from external storage and load it into
User B's virtual storage. Thus User B is
sharing module A with User A, although
only one of the module's two control sec-
tions is being shared internally.

Sharing Data Sets 15

ACCESSING DATA SETS

The system?s access methods are at the
heart of the data management routines.
These are the technigues by which data is
transferred between virtual and external
storage. Since users must bring data into
virtual storage to examine or process it
internally, these access methods are con-
stantly employed. Indirectly, they are
used by PFORTRAN, the command system, or a
related method. General explanations of
these interfaces are in Part III. Assea-—
bler users have a more direct link to these
access methods through the macro imstruc-
tions that they employ. The access methods
are described, in terms of these macro in-
structions, in the sections that follow.

The access methods available to users
fall into one of two catagories: the vir-
tual access methods (VANM), and the sequen-
tial access methods (SiHM).

The virtual access methods take maximum
advantage of the time-shared environment of
TSS and free the user from device consider-
ations. When a VAM user creates a new VAN
data set on public storage, the system
allocates the needed storage from the pool
of public volumes, and automatically cata-
logs it for the user. The data set may be
spread across different public volures, or
even different device types, but it will be
controlled as a logical entity for the
user. VAM also uses the system®s paging
facilities for data transfer between exter-
nal and main storage. So, the systea can
easure efficient allocatiorn of main storage
by reading in only the pages of a data set
that are being referenced during a particu-
lar time slice. This paging is not evident
to the user and should not be confused with
®"reading into virtual storage® when a VAN
user accesses a data record.

When a page containing a record is read
into virtual storage, the necessary poin-
ters are set up to ™attach™ this record to
the user'®s virtual storage; the record®s
location will then be controlled by the
system so that the user can directly refer-
ence the record when he needs it. When a
reference is made to a record read by VAN,
(whether the reference is made by the user
or by a system routine), the system's
paging facilities initiate any required I/0
operations to ensure that the referenced
page is brought ipn from extermnal or auxi-
liary storage. This is the physical read-
ing and may or may not be performed when
the record is "read into virtual storage,”™
upon the issuance of a VAM READ or GET
instruction.

16

The seguential access methods provide a
range of functions not available under VaM.
Example: SAM users may access magnetic
tape directly, or may access certain data
sets created under the Operating Systenm.
However, the seguential access method ESAH
is restricted to privilege-class E users
and system routines; all it requires is
that a user be aunthorized to access private
volumes. Since SAM always requires the
allocation of a particular private device
to an individual user*s task, SAM users
will be forced to wait until the system can
fulfill this need for a private device;
this restriction does not apply to VAM
users unless they are using private VANM.
FPinally, SAM can not take advantage of the
system®s paging facilities for record input
from external storage; the SAM user must
directly control the length of the physical
record to be read into main storage. The
SAK user?®s instruction, READ or GET, has a
more immediate relation to actual data
transfer than under VAM (that is, the input
buffer will be filled as a result of the
SAM macro instruction, not because of any
subsequent reference to that record).

Users who access existing data sets are
constrained (in terms of the access methods
available to them) by the physical struc-
ture of the data sets. Example: Users who
employ VAM must be sure that the data sets
they are accessing are of VAN organization.
Users who create new dataz sets must base
their choice of access method upon the uses
to which the data set will be put, as well
as the syster environment of TSS. Exanmple:
Users who want to store their data sets on
tapes (perhaps to take advantage of the
limited data set interchange with the Oper-
ating System) will employ the sequential
access methods; users who want to take max-
imum advantage of the time-shared environ-—
ment of TSS will employ VAR.

®ithin VAM or SAM, which access method a
user should choose is determined by the
manner in which he wants to access a data
set. Example: When a data set, or a sub-
stantial portion of it, is to be processed
sequentially, the GET and PUT macro in-
structions will often be the most efficient
and convenient to use.

In determining the access method for
creating a nevw data set, the user will in
many cases be implicitly determining a
great deal about the structure of that data
set. Example: A user who selects VISAN to
build a data set will automatically
organize it as a VAM data set (see Appendix

A) and will restrict hiamself to the per-
mnissible record formats (F or V). Within
the determined framework, the user can
choose the record format that best fits the
employment of the data set. A typical con-
sideration might be processing speed.

Since the access method must determine the
record length for each individual record
from the record itself, for format-v rec-
ords, processing is slower than for format-
F ‘records, in which all lengths are the
same. Therefore, vhen a data set will con-
tain records of uniform lengths, or records
that can, without much loss of space, be
padded to uniform length, format-F is the
most efficient.

YIRTDAL ACCESS METHODS ——_ VAM

The virtual access methods (VAM) are the
principal means of data access in TSS.
There are three virtual access methods,
each of which provides access and process-
ing capability for a specific type of data
set organization:

Virtual sequential access method (VSAN)

Vvirtual index sequential access method
(VISAN)

Virtual partitioned access method (VPAM)

VAE has been specifically tailored to
make efficient use of the system resource
of public storage space. To accomplish
this, it is necessary to permit frag-
mentation of a user"s data set within a
public volume, across several public
volumes, o1 even across several public-
device types. This fragmentation prevents
unnecessary gaps in public external
storage. The efficient use of storage
space by data set fragmentation is illus-
trated in Figure 7.

A data set may be fragmented, for exam-
ple, when its size is being increased dur-
ing different tasks. When a virtual
storage data set is being created, a prede-
termined extent of external storage is
allocated to it (this extent may be deter-
ained by user specification or system
default). When the data set is closed,
pages assigned to the data set that were
not used will be freed (returned to the
pool of available public storage). If,
later, he increases the size of his data
set, the additional extermnal storage allo-
cated may nrot be physically contiguous to
the initial storage. The user is unaware
that his extermnal storage is not physically
contiguous, since VAM organizes data sets
by relative page number and logically

BULK FRAGMENTED
ASSIGNMENT

USERS ASSIGNMENT

N

[ALLOCATED 2222777 IN USE

Figure 7. Bulk versus Fragmented Public

Storage Assignment

connects the data pages, through the rela-
tive external storage correspondence table
(RESTBL), which is in virtual storage.

When data sets are opened, the system allo-
cates virtual storage for the RESTBL; when
they are closed, the virtual storage previ-
ously occupied by the RESTBL, is released
and becomes available for system use (for
shared data sets, the virtual storage for
the RESTBL is only released when the last
DCB for that data set is closed). On ex-
ternal storage, the information relating
(a) the relative page numbers within the
data set to (b) relative page numbers on
the system®s external storage is kept in
data set control blocks (DSCBs). The DSCBs
are used as source input to create the
RESTBL and they are updated, when the data
set is closed, to reflect changes to the
data set.

The page-sized data blocks, into which
virtual storage volumes are divided, are
used by VAX as the unit of transfer between
the direct access device and main storage.

The page—sized block for data storage
was selected for a number of reasons. It
is large enough so that direct access
throughput is high, and the frequency of
access requests by each user will be low.
The direct access volume-packing efficiency
is also quite high for page size blocks.

Processing Data Sets with VAM

Before a user can process a data set, he
must DDEF it (directly or indirectly), and
open the DCB associated with the data set

ARccessing Data Sets 17

{(or have it opened for him}. A segment of
open processing, known as open common, is
basically the same for all data sets (and
has already been described). The access
method -dependent portion of processing that
follows open common is determined by the
data set organization. Initially, for all
virtual storage data sets, this processing
consists of building a RESTBL, performing
some necessary duties for shared data sets,
and them branching to one of two routines
(depending on the virtuwal organization),
wvhich will make final preparations for the
user®s processing.

The overall concept of the virtual
access methods, shown in Figure 8, includes
the data transfers and logical relation-
ships that occur when a user opens an ex-—
isting VAM data set, uses VAM to request a
logical record from it, and references that
record for the first time.

When the user opens the data set ini-
tially, the information in the existing
DSCBs is used by the OPEN routine to con-
struct the RESTBL (1, in Pigure 8). When
he subsequently issues a locate-mode GET,
the external storage address of the page
containing the record is obtaimned from the
RESTBL, and placed in an external page ta-
ble (XPT) entry, which is associated with a
virtual storage buffer (2, in Figure 8).
Note that the external page containing the
record is not read into main storage at
this time. When the record in the virtumal
storage buffer is referenced, a paging re-
location exception interruption occurs, and
the paging mechanism proceeds to bring the
page into main storage (3, in Figure 8).
Thus VAM ensures that only the pages of a
data set that are actually required for
program execution are brought into main
storage from extermal storage.

Virtual Sequential Access Method —— VSAE

The virtual sequential access method
(VSAM) processes virtual sequential data
sets and virtual sequential members of par-
titioned data sets. It can be used for any
of these functions:

Create or extend a virtual sequential
data set or virtual sequential member of
a partitioned data set.

Delete all records ir am existing data
set or member from a specified record to
the end of the data set or member
{truncation) .

Retrieve the logical records of the data
set or member im a sequential or nonse-
guential manner.

Update, in place, an existing record of
the data set or member.

18

To use VSAM to process a data set, that
data set must have virtual sequential (¥S)
organization. As elements of a sequential
data set, the records in a VS data set are
ordered strictly by the sequence in which
they vere created. The user, in creating a
¥S data set, must provide the system with a
stream of logical records that are concat-
enated and stored, page by page, on direct
access devices. As each record is stored,
the system makes its retrieval address a-—
vailable to the user's program. Users emp-
loying the assembler language can form
another virtual sequential or virtual index
sequential data set that contains these re-
trieval addresses. If the user wants to
make an orderly sweep through the data set
after he has created it, he can read the
records back, in the order of creation, by
requesting one logical record after anoth-
er. An assembler user can also read and
update logical records nonsequentially by
specifying the required retrieval addresses
of the records involved in SETL macro in-—
structions; the retrieval addresses are in
the data set that he formed.

A1l buffering required for VSAM process-—
ing (except for format-U move-mode, where
the user®s buffer is on a page boundary) is
supplied by the system, based on the maxi-
mur logical-record length specified im the
appropriate data control block. VSAM log-
ical records may be format-F, -V, or -0U.
Record formats are described in Apperdix C.

The macro instructions associated with
virtual sequential data set processing are
SETL, GET, PUT, and PUTX.

SETL specifies a logical record to be pro-
cessed, using VSAM. The user needs to
specify this macro only if he wants to
process a record other than the next
sequential one in a data set. SETL is
called as a part of open processing, to
initially position the data set for proc-
essing. If the DCB was opened for imput,
update, or in-out, SETL positions the
data set at its logical beginning; if
opened for output or out-in, the data set
is positioned at the logical end.

GET obtains sequential access to a record
of a VSAM data set. It may be specified
by the assembler user in one of two
forms:

Move Mode ——- The user provides the sys-
ter with the address to which he wants
the record transferred; the systenm
moves it.

Locate KBode —--—- The user requests the
virtual buffer address of the next log-
ical record in the input buffer in
which the next logical reccrd is

. __PAGE TABLE

BUFFER o
OPEN 7
Sy S -
RESTBL EXTERNAL PAGE TABLE
PAGE TABLE
BUFFER ‘ F————
GET -

RESTBL #-=1 EXTERNAL PAGE TABLE

~~.__ PAGE TABLE

BUFFER

REFERENCE PAGE -

RESTBL /" EXTERNAL PAGE TABLE

DATA TRANSFER
——————————————— LOGICAL ASSOCIATION

Figure 8. RESTBL, Virtual Memory, and Main Storage Relationships

Accessing Data Sets 19

stored. With this address, the user has
the option of processing the record at that
location or moving it te his own work area.
In "®locate mode,® there is no actual record
transfer until the user references the rec-
ord and a page relocation interruption
occurs; this is also true for format-U rTec-—
ords in "move—mode.®

In processing format-U records, the
user must specify their lengths in the
data control block prior to issuing the
GET macro instructiomn; ¥SAM format-U rec-—
ords must be even—nultiples of a page.

After each execution of the GET macro
instruction (in either mode), the re-
trieval address of the logical record
just retrieved is in a data control block
field. The user may create a secondary
data set from all his GET retrieval ad-
dresses to facilitate future nonsequen-—
tial processing of the original data set.

Successive GET macro instructions will
retrieve the records of a data set in the
sequence of creation. ¥When the systenm
detects the end-of ~-data condition while
processing a GET instruction, the system
will transfer control to the user's end-
of-data (EODAD) routime. To start
sequential processing at a point other
thar the beginning of a data set, the
user can specify the retrieval address in
a SETL macro instruction, prior to issu-
ing the GET macro iastruction.

Similarly, to directly access any rec-
ord in the data set when its data comntrol
block is open, the user can specify its
retrieval address in a SETL macro in-
struction and themn issue a GBT macro in-
struction to obtain it.

PUT places logical records into an output
data set when a virtual sequential data
set or member is being created or added
to. In addition to concatenating records
into a data set, PUT defimes a new end-
of-data set to the system each time it is
issued. It may be issued by the assem-
bler user in either of two forms:

Hove Mode -- The user provides the sys-—
ter with the address of a logical rec-
ord; the system transfers the record
from that location to the next availa-
ble cutput buffer segment. From there,
the syster automatically writes the
record to the output data set before
that portion of the buffer is released
or raused.

Locate Mode —-— The user requests, from
the system, the address of the next a-
vajilable output buffer segment. He
uses that address to store the logical
record that he wants to add to the data
set; the system automatically werites

20

the record to the output data set when
necessary.

The user must specify the length of
the logical record for each PUT macro in-
struction. PFor format-F records, this
information is in the data control block
and is the same for each record in the
data set. Por format-U records, the user
stores this information in the data con-
trol block prior to each PUT. For
format-V records, the lemngths must be
supplied within each logical record by
the user. The length of each logical
record must not exceed the maximum speci-
fied in the data control block at open
time.

When a PUT macro instruction is issued
in either mode , the retrieval address of
the record to be stored is made available
by the systea (in a data control block
field). The user can store these ad-
dresses, and use them in the SETL macro
instruction for later nonsequential proc-
essing of the data set.

The PUT macro iastruction may also be
used to truncate an existing data set.
Since the system automatically generates
an end-of-data indicator as part of the
execution of every PUT, the user could
issue a SETL instruction to position a
volume at, say, the middle of a data set,
and then issue a PUT for a certain logic-
al record; the system will then indicate
that the record is the new end of the
data set. The records that were previ-
ously in the last half of the data set
have now¥w been deleted.

PUTX revwrites an updated logical record
from an input buffer area, back to a data
set on external storage; the record must
have been brought from external storage
to the buffer area by the execution of a
locate~mode GET imnstruction. If the user
attempts to change the length of the rec-
ord he is updating, or if the DCB associ-
ated with that data set was not opened
for update, the usert®*s task will be
abnorrally teraminated.

YSAM Sharing Controls: The systea provides
interlocks for shared virtual sequential
data sets: If a VS data set is opened for
input, other users can read the data set,
but they cannot write into it; if a ¥S data
set 1s opened for output, update, in-out,
or out-in, no other user may have any
access to that data set; the data set can—
not be opened for these options if anyone
else is using it. All ipnterlocks are auto-
matically removed when a data set is
closed.

Virtual Index Sequential Access Method -—-
VISAM

The virtual index sequential access
method (VISAM) processes virtual index
sequential data sets and virtual index
sequential members of partitioned data
sets. It can be used for amny of these
functions:

Create a virtual index sequential data
set or member, in a sequential or nonse-
guential manner.

Retrieve the logical records of the data
set or member, in a sequential or nonse-
gquential manner.

Opdate records in a sequential or nonse-
guential manner.

Insert nevw records in their logical
sequence within the data set or member.

Delete selected records from the data
set or member.

To use VISAM for data set processing,
the data set must have virtual index
sequential (VIS) organization. As elements
of an indexed data set, the logical records
of a VIS data set are organized in an
ascending collating seguence, based on a
unique data key associated with each rec-
ord. The data key may be a control field
that is a part of the record (such as a
part number), or it may be an arbitrary
identifier (such as a line number) that is
added to each logical record.

In each page of the data set there is an
ordered set of locators, one locator per
record. Each locator specifies the physic-
al location of the record omn the page.
Locators are placed sequentially (lowest
key first) at the bottor of the data page
in ascending order, the locator for the
lovest key on the page is at location
X*FPC®* into the page. Location X*FFE' con-
tains a half word displacement to the end
of the locators (highest record on the
page) and is adjusted upwards and downwards
as records are added and deleted. Records
may or may not be logically sequential on a
page, locators are always in sequential
order.

Bven though a VI dataset is logically
sequential its physical pages may or may
not be. Control of this processing is
maintained by using the VISAM directory as
a translating mechanism to convert logical
pages (and their records) into the actual
physical location of the page which con-—
tains the desired record. The directory
for a VI dataset is built and maintaind by
the VISAM access method routines after the

nueber of data pages in the dataset exceed
one. There is one key entry in the direc-
tory for each data page in the dataset ex-
cept page 1 (PPN 0). The key entry con-
tains the logical position of a page in the
dataset as well as its physical location.
Key entries are in the following format:

Bytes

0-1 logical page number (LPN) this key
entry

2-3 physical page number (PPN) this key;
location of this page relative to
1st data page of this dataset

4-5 0ld physical page number (OPPN) on
the page; PPM value on page before
its physicall page number relative
to the dataset was changed

6-9 spare

A-N low key on this page, rounded to a
half word boundry

The 1st 2 bytes of each data page con-
tain the PPN of the page. A page®'s PPN
number will always egqual the PPN value in
the directory unless there have been some
pages deleted, in which case the old page
PPN is saved in the key entry. This PPN
number is used for validity checking of
VISAM pages by the VISAPF input page routine
to ensure dataset integrity. New pages are
always added to the end of the dataset even
though they may logically represent an ins-
ertion somewvhere in the middle. By adding
pages at the end and maintaining a tramnsla-
tion mechanism the need for overflow pages
is eliminated.

Insertions (records) are added to an ex-
isting full data page according to the fol-
lowing rules:

A. If the new record to be added to the
dataset is going to be the last record on
the page, a new page is added to the end of
the dataset, and the new record (key) will
become the low key on the new page. The
key entry for the new page will be inserted
in the correct logical position in the
directory.

B. If the new record is not the last
record on the page all records with a key
value greater than the new record will be
moved to a new page and a new key entry
added to reflect the new page. The new
record may or may not fit on the old page.
If it does not proceed with (a) above.
(See Figures 9A - 9C.)

Accessing Data Sets 21

VISAKE DIRECTORY

¥ L]
I header 1
=’ ¥ L] ¥ L 1.
{f LPN | PPH | OPPN | SP | KEY 1
I | | | | !
] 1] { | I
] 0001 | 0001 {) | KEY300 |
} 0002 | 0002 | i | KEY500 |
| . i 1 - R 2 —F
DATA PAGES

| ¥ ¥

PPN 10000 |]

k 1 1

P! KEY 100 1

| } i

I —Pi KEY200 |

[| = -

P | i

I i !

P] !

| | T +—

1t : 4 R2| R1]EOS|

! i ' i '3 |]

| 3

e 4

L A)
PPN |0001]

L
|
P !
¥ —4
—P! KEY300 i
! i v 4
! ! | KEY400 |
) F ! —
I ! ! |
! 1 \ I !
; iT 1 L] 1 1 1.
i | \\~| R4| R3|EOS]|
i 3 i -y - i T]
| E-————--—-+-—--J
| | J
¥ ¥ Al
PPN}0002} |
!
} ‘r———————+——w
t 4 1
—W KEY500 | o
I H g (I
I ! KEY600 o
| k 1 1
| | T —
| i I)
: . N NN
{ | L—} R6| R5|EOS]
L A) |) §
! .
Figure 9A. Typical 6-record VISAM dataset

22

created sequentially

VISA¥ DIRECTORY

r ¥
! HEADER]
= R ¥ T ¥ 1’
! LPN | PPN | OPPN | SP | KEY i
I t I | I '
I i I] I 1
{ 0001 § 0001 § i | KEY300 |
} 0002)} 0003 | | | KEY450 |
| 0003 § 0002 } ! | KEYS500 |
L 1 L 4 L o]
DATAR PAGES
L L ¥
PPN|0000] i
i E 4
L 1
—pl KEY100 |
1 - 4
I —Pl KEY200 |
[| - 4
| I |
(I] {
|) v |
' ' ' 1 ¥ ¥ 1 1.
| 4 R2|] R1JEOS]|
' 1 2 ',.‘ ¥ 1 J
F L 1)
PPN}0O0O 1} |
— |
F 4
— KEY300 I
I i T)
J i 4l KEYL400 |
| F s —
I i I I
' = _j L . L ;
| i | RE| R3|EOS}
l L 1 i T I] I |
i QL_.__+__J
| 1 -
¥ +]
PPN|0OCO2] I
I
! ! 1 1
) KEYS580 1 L |
! 3 -4 (I
| | KEY500 11
1 F 4 1
| | v —
I I I — |
| ;) AN
| i t—f R6] RS5}E0OS}
’ | 4 A 1 1 3
L i
¥ T 1
PPN)0003} i
F 1 4
——p| KEY450 !
I t 4
1 H i
! } |
| | — f
I I .
! i | R7]1E0S}|
l i 11 ' 3 3
i 3
Figure 9B. BAddition of record 7 KEY450 to

FPigure 92

VISAM DIRECTORY

f Y
header PPNjO00L}
1 1

o W O o oy T VP -

LPN

0001
0002
0003
0004

o o .~ — o

PPN

0001
0004
0003
0002

S

OPPN SP KEY KEY400

— e - o)

KEY300 |
KEY400 |
KEY450 |
KEYS00 |

]

{———-ﬂ-—«h-—J

|
!
|
!
|
!

- —]

o me v —r w—

| R4JRBOS|
L

L J

A
]

DATA PAGES

T ¥
PPN 0000

Figure 9C. Addition of record 8 KEY350 to
Figure 9B

|

l

KEY100 Optionally, the user can specify, in the

:

-

DDEF command's DCB operand (or in the DCB
macro instruction), that a certain percent-

age of space be left in each page during
creation of the data set, for the addition
of logical records (PAD parameter).

1
|
i
!
i
KEY200 |
{
I
I
4
I All buffering required for VISAM proc-

pr o w— — ———
o um wow e
e -

essing is supplied by the system. The

buffer size is one page for data pages, one
page for work page.

r T
PPN10001)

VISAM logical records may be format-F or
format-V; detailed descriptions are in Ap-

KEY300
The macro instructions associated with
processing of virtual index sequential data

L]
!
|
{ pendix C.
I
]
¥
!

/')r KEY350
.] '—-——-—-——.‘
1

sets are SETL, GET, PUT, READ, WRITE, and
DELREC. For shared data sets, the ESETL

....1-—-.-.-.—-,..[

- ——i—y and RELEX instructions are provided.
\\s., R8} R3}EOS

o — o ——

b
o

SETL positions a VIS data set to the begin-
ning, end, next, previous record, or to

any specified logical record within the
data set. If the user wants to specify a

¥ L)
PPN} 0002
'___J

particular logical record with SETL, he
may do so by using either the record key
or the retrieval address. However, for a
shared data set, a user may not specify a

]
[
.

i

- 4
-y
—— — —

retrieval address with SETL. As with the
VSAM SETL, any attempt to position the
data set outside its own bounds will

KEY500

)

KEY600 cause an exit to the user's synchronous-—

n-‘---nn—-r-—-

by o o o o —

error address (SYNAD). PFor a successful
SETL, the record®s retrieval address will
be provided by the system in the appro-
priate DCB field.

b S by ooy - -~y

P ——— T -

Y GET obtains sequential access to a logical

3 record of a VIS data set. It may be
specified by the assembler user in one of
two forms:

r T
PPN 0003}

Move Mode -- The user provides the sys-

KEY450 ten with the address to which he wants

p——— e X

the record transferred; the system
moves it.

v wdve .]

Locate Mode —- The user requests the
| R7{EO0S) address of the next logical record inm

F—-q--—-——-l

Ly —t J the appropriate input buffer. With

2 this address, he has the option of

Accessing Data Sets 23

processing the record in that location,
or moving it to his own work area.

Again, after each execution of the GET
macro instruction, the retrieval address
of the logical record just retrieved is
available in a data control block field.

PUT sequentially creates logical records in

a ViS data set. They must be created
sequentially. They must be presented to
the system for concatenation with the
data set in a logically ascending
sequence of data keys. If a PUT macro
instruction is issued for a record that
has a key with a value that is less than
or equal to that of the previous record,
the system will detect this and exit to
the user*s synchronous-error routine.

This macro can be used when the DCB
has been opened for output, if no other
DCBs have been opened for output. It can
be specified in either of two modes:

Move Mode -- The user provides the sys-
temn with the address of a logical rec-
ord, and the system tramsfers the rec-
ord from that location to the next a-
vailable output buffer segment; fronm
there, it is automatically written to
the output data set by the system be-
fore that portion of the buffer is re-
leased or reused.

Locate Mode -~ The user requests from
the system the address of the next a-
vailable output buffer segment; he uses
that address to store the logical rec-—
ord that he wants to add to the data
set. The system automatically writes
the record to the output data set when
necessary.

As with VSAM, the VISAM PUT may be
used as a means of trumcating an already
existing data set. If any records exist
on this page beyond the current position,
they are deleted one by one until the end
of the page is reached. If any pages of
this data set exist beyond this page,
they are deleted. The directory is also
truncated as necessary.

READ emables the user to read logical rec-—

ords nronsequentially, based on a user-
supplied data key of the retrieval
address. Since READ automatically uses
SETL to position the data set at the pro-
per record, it has the same limitiaion as
SETL with regard to record specification;
logical records of shared data sets may
not be specified by retrieval address.
After selecting a logical record from an
index sequential data set or member, READ
transfers that record tc a user-specified
location.

For shared VIS data sets, an
exclusive-READ can also be specified by

this macro instruction. Then no other
program reguesting that record can gain
any access to it umntil it is released by
the user who issued the READ macro
instruction.

If an attempt is made to read a record
with a key greater than the last key in
the data set, the system transfers con-
trol to the user's end-of-data set
address. If a READ request is made, and
the record with the specified key cannot
be found (but its key is less than the
highest key in the data set), or if an
invalid retrieval address is specified,
control is transferred to the user's
synchronous—error routine.

WRITE creates a VIS data set in a noanse-

quential manner, or imserts or updates
logical records in an existing VS data
set. The three basic functions of this
instruction are:

WRITE -- New key

WRITE -- Replace by retrieval address

WRITE —— Replace by key operation
WRITE ~-—- new key: The system assumes

that the user wants to add a new record
to the data set. A search is therefore
made of the existing data keys in the
data set; and exit is taken to the user's
synchronous-error address, if a record
with an identical key is found. If the
key is unique, the system automatically
positions the locator for the record in
the appropriate position, so that the
records of the data set will be available
for retrieval in an ascending key
sequence.

¥RITE —-- replace by retrieval address or
WRITE —— replace-by-key: The systenm
assumes that the user wants to update an
existing record. If the system deter-
mines that the retrieval address or key
specified is not that of an existing rec-
ord, an exit is made to the user's
synchronous—error routine. Otherwise,
the system replaces the old record with
the new one, adjusts the available space
if the length of the new record is not
equal to that of the old (placing the new
record on an overflow page if necessary),
and updates the record locators and main-
tains the logical key sequence.

For shared VIS data sets, the WRITE macro
instruction also releases any page-level
write interlocks placed on the record,
through the same DCB, by an
exclusive-READ.

DELREC deletes a specified record from a

VIS data set. The user specifies, either
by key or by retrieval address, the rec-
ord to be deleted; DELREC uses SETL to

locate this record. If the record can
not be found, an exit is made to the
synchronous—-error routine. If SETL
locates the desired record, the locator
for that record is removed from its page,
the remaining locators are compressed,
and the space occupied by that record is
made available for future use. If the
record with the lowest key on the page is
deleted DELREC calls ADE (CZCPL) to up-
date the directory to reflect the new low
key on the page. WRhen the last record on
a data page is deleted DELREC will delete
not only the record but its corresponding
key entry from the directory and the page
from the dataset. Page 0 is the only
page which will not be deleted when it
becomes empty. Whenr a page is deleted
from the dataset not only is its corre-
sponding key entry reroved from the dire-
ctory but all key entries with PPN values
greater than the page just deleted will
be adjusted downward to reflect their new
PPN in releationship to the dataset. The
pages old PPN value is also saved in the
key entry and is used when validity
checking pages in the input page routine.
(See Figure 9D.)

ESETL releases a page—level read interlock
imposed by another macro instruction
(e.g., GET, SETL or READ, nonexclusive)
from a shared data set. It does not re-
lease the page-level write interlock set
by an exclusive—-READ.

RELEX makes a record that belongs to a
shared data set available to otker users,
by releasing the page-level write inter-—
lock set by an exclusive—-READ.

VISAM Sharing Rules: The use of VISAM with
shared data sets results in setting and
releasing interlocks.

DATA SET LEVEL INTERLOCKS -— If a VIS data
set is opened for input, in-out, out-in,
or update, a read interlock is set for
the entire data set, preventing other
users from opening it for output.

If a VIS data set is opened for out-
put, a write interlock is set so that no
other user can open it.

PAGE LEVEL INTERLOCKS -- A read interlock
is set on a page of a VIS data set re-
ferred to by a SETL, GET or REARD (nonex-
clusive) macro instruction; OPEN does not
impose any page-level interlocks.

A page-level read interlock is re-
leased@ by an exclusive-READ, WRITE,
ESETL, DELREC, or RELEX macro instruc-
tion, if issued against the data control
block that caused the interlock to be
set. Page-level read interlocks are also
released when the data set is closed, or
by any other macro instruction that
refers to a page other than the current
page. (for example, a sharer issues a
READ macro instruction for a record,

VISANM DIRECTORY

L ¥
I HEADER 1
: i L] T 1] ‘=
| LPN | PPN | OPPN | SP | KEY 1
| | | I | I
! 0001 | 0001 } i } KEY300 |
} 0002 | 0003 | 000& | ! KEY400 |
} 0003 § 0002 | 0003) | KEY450 |}
[] i L A ' J
DATA PAGES
T i R}
PPN}0000} |
1 4
F — KEY 100 |
| b —
i —Pp! KEY200 |
[F 4
| | I I
I 1 { |
| | ! |
(I | { ! T i
i L + -4 R2] R1}EO0S}
1 1 I - 1 ’]
[]
Ly] t
PPRI000O 1) !
pro 4
—Pri KEY300 i
| I r 35041
KEY
L
r i \ ! 1
' } \1 L Y —§
1 i] R8] R3}EOS|
‘ i L i -y L‘ 3
I *
i]
¥] L
PPN} 0003} }
2 L —
——! KEY450 !
| F 4
} | i
| | |
I ! |
a |) T
! I | R7)EOS}
' L A L]
L J
¥] ¥
PPN}0004 I
-t 4
[—] KEYH400 1
| } —
| ! !
I I I
I f |
| }
I I | R4JROSH
' L 1 ¥ £ 3
i J
Pigure 9D. Deletion of record 5 KEY500 and

record 6 KEY600

Accessing Data Sets

25

causing a page to be brought into his
virtual storage; later, he issues a READ
for a record not on that page. The page-
level read interlock, set when the first
READ was issued, is released om execution
of the second.)

A page-level write interlock is set by
an exclusive-READ, or by a WRITE macro
instruction.

A page-level write interlock is re-
leased by a GET, READ (nonexclusive),
RELEX, WRITE, DELREC, or CLOSE macro in-
struction, or by any other macro imstruc-
tions that refer to a page of the data
set other thar the current page.

Virtual Partitioned Access Method -- VPANM

The virtual partitioned access method is
not an access mRethod in the normal sense of
the term. VPAM contains no routines for
reading or writing records. A virtual par-
titioned data set really is a collection of
data sets that a user has corbined for ease
of reference. These constituent data sets
are called members; each member is
organized as a virtual sequential or virtu-
al indexed sequential data set. The other
access methods are used to read records of
a member into a task's virtual storage.

VPAM provides the control that performs
these functions on members:

Create or add to a virtual partitioned
data set.

Prepare any member of a virtual parti-
tioned data set for processing.

3dd nevw members to, or delete existing
members from, an existing data set.

Update existing members in place.

Each member of a virtual partitioned
data set is identified by the name of the
virtual partitioned data set followed by an
ungualified member name in parentheses.

The partitioned organization (see Figure
10) allows the user to refer to either the
entire data set or to any member of that
data set.

References to individual members are
made through the partitioned organization
directory (POD). When a partitioned data
set is created, a POD is set up to account
for each member. As members are added,
deleted, or changed, the directory informa-
tion is automatically updated.

The first entry (omne or more pages) in
the virtuwal partitioned data set is the
POD, which is used to locate members of the
data set. Each member begins on a new
page; any unused space on the preceding
page is left open.

26

Provision is made for users to assign
additional names, called aliases, to each
member, and to locate each member on the
basis of either its name or any of its
aliases. The partitioned data set organi-
zation is suited for storage of libraries,
wvhere references to different entry points
may require the loading of the same
subroutine.

Example: A partitioned data set named
MATHLIB, whose members consist of mathemat-
ical subroutines such as SQRT, ARCTAN, and
CO0S, also contains an alias for SQRT,
called ISQRT; this alias is used to indi-
cate that the argument is a negative value,
so an imaginary value is expected. Refer-
ences to both SQRT and ISQRT would indicate
the same member, but a different erntry
point may be desired when ISQRT is named
(see Figure 10).

Partitioned data sets may be composed of
VS or VIS members, or a mixture of both.

A1l buffering required for VPAM process-
ing is supplied by the system, based on the
maximum logical length specified in the
member®s DCB; for a VIS member, the work
areas needed for the ISD or POD are also
supplied.

Two macro instructions are associated
with VPAM: FIAD is used to prepare a mem-—
ber for processing; STOW is used to update
the POD and, in certain cases, disconnect a
data set member from a user's problem
progranr.

FPIND searches a POD to locate the member
descriptor of a particular VP data set
member (using either the member name or
any of its aliases), and then positions
the member for processing. This posi-
tioning includes obtaining member infor-
mation from the member descriptor and
transeitting it to the member header in
the RESTBL and to the DCB that has been
opened for the data set.

FIND initially checks the DCB to de-
termine if it is currently in use. If
FIND had been issued previously for a
member of that data set, and the informa-
tion in the POD has not yet been updated
by a STOW for that member, FIND calls
STOW to update the member information in
the POD. However, if the DCB is in use
for the creation of a nev member, that
merber may not yet have been named, so a
STOW could not then be issued for it.
Therefore, to protect against this situna-
tion, FIND will not attempt to issue STOW
under these conditions, but will return
an indication to the user that he must
issue a STOW macro instruction for the
new member before issuing FIND.

ot ORGAN!ZATION DIRECTORY i

e MEMBER ———— | / ‘\\
DESCRIPTORS ,) ‘ ™~
- ¥ ! l d Ty
Mermber | Memher | Member | Ali /%?/
ember emner ember 1as m r continu 1 /
ARCT cos SQRT ISQRT / Member SQRT Member SQRT {continued) /
Y
/&
Member ARCT Member ARCT (continued) Member COS /
? /;/
[//,/J// o o
" -
T o
™ o
_\“w’/‘/"
Pigure 10. Virtual Partitioned Data Set
If the DCB is not in use, the POD is Type U (update) —-- Same as type R, ex-

searched for the name given in the FIND
macro instruction. If the name cannot be
located in the POD, a not-found returnm is
made to the user; if the name is located,
sharing data is checked and the member is
positioned for processing by the appro-
priate SETL.

PIND also provides the service option
of moving user-data from the POD to a
user—defined area.

STOW modifies, adds, or deletes member or
alias descriptors imn the POD; the proc-
essing will depend on the type of STOW
specified by the user:

Type N (new) —— If the member name is
not found in the POD, the POD is updat-
ed to reflect the addition of ‘the new
member. If the member name is found in
the POD, processing is ended and a code
returned to the user indicates that the
nev name is not unique.

Type NA (new alias) -- The POD is

searched for each alias being added; if
each is unique, alias descriptors are
created.

Type R (replace) -—- This type replaces
user—data and closes the member. If
muser area" is specified, the data will
be stored in the POD. The POD is up-—
dated to reflect any changes made to
the member, and return is made to the
user.

cept that the member header in the
RESTBL is not closed; it remains active
for further processing.

Type D (delete) —— This type causes the
member to be deleted; all data pages
associated with the member are deleted,
and the member and alias descriptors
are deleted from the POD. The DCB is
initialized for reuse and control is
returned to the user.

Type DA (delete alias) —-- Deletes
aliases from an existing member. The
POD is searched for each alias being
deleted and its descriptor is deleted
from the POD. This process is repeated
for each alias being deleted.

Types C and CA (change name and change
alias) -—- The POD is searched for the
name or alias being changed. The new
member name or alias replaces the old.

VPAM Processing: Since processing a VP
data set usually involves only one member
at a time, the single DCE opened for a data
set can be used for the member being pro-—
cessed. For processing existing members,
FIND must be issued after the OPEN macro
instruction; hovever, when a new member is
being added to the data set, a DCB is
opened for either VIP or VSP (depending on
the type of member desired), PUT or WRITE
macro instructions are used to create the
member, and a STOW (type N) is issued to
include the member in the data set. In
this case a FIND is not needed. A "FIND"
is also not needed when the meamber name

Accessing Data Sets 27

parameter of the DDEF command is specified.
For this case, OPENVAM will issue the
®PIND®. When several members are to be
processed simultaneously, one DCB per mem-
ber must be opened. The opening of each of
these DCBs must be followed by a PIND macro
instruction for that member, so that the
appropriate information is placed im the
correct DCB.

YPAM Sharing Rules: VP data se‘s are
interlocked at the member level wher a FIND
macro instruction is issued; there are no
interlocks set at the data set levei, as
for VSAM and VISAM. HMember interliocks are
set within the RESTBL when FIND is issued;
they are released by the STOW or CLOSE
macro instructions. Only the member being
processed has the interlock applied; other
members are available to other users for

processing.

VIS members avre:
vrite interlocked, when opened for output;

interlocked, wvhen opened with any
other option.

read

¥S members are:
read interlocked, when opened for input;

interlocked, when cpened with any
other option.

write

SEQUENTIAL ACCESS METHODS

The sequential access methods directly
specify the appropriate channel prograas
and they control the logic of error recov-
ery, im addition to providing data set man-
agement. These access methods generally
require that the user specify a large num—
ber of functions that are handled automati-
cally by the virtual access methods. The
user also has available to him special-~
purpose routines that enable him to create
his own direct access and tape-volume
labels. This is not possible with vaM.

Data sets accessed by the segquential
access methods are of physical sequential
organization. They are organized on the
basis of physical records, whose order is
determined strictly by the order of
creation.

The sequential access methods are:

Basic sequential access method ({BSAH)

Queued seguential access method (QS5AN)

Bultiple sequential access method (MSAN)

Terminal access method (TAMII)
Input/output request facility (IOREQ)

28

Basic Sequential Access Method -— BSAM

BSAM provides a limited data set compat-
ibility with O0S by supporting the direct
access, or unlabeled, or standard labeled
magnetic tape data set formats (except for
the direct access split-cylinder format)
that are produced by the 0S basic sequen-—
tial and gueued sequential access methods.
Also, BSAM is the primary means, within
TSS, of accessing magnetic tapes.

BSAM creates the channel programs that
sequentially access tapes or disks, and
passes an I/0 request control block
(IORCB), containing the channel program and
buffer information, to the resident super-
visor through a supervisor call. The IORCB
format is shown in Pigure 11. The resident
supervisor, im turn, initiates the channel
program, records any pertinent error infor-
mation, and passes the IORCB back to BSANM,
vhich then attempts error recovery if nec-—
essary, and informs the user of the results
of the I/O operatiomn by posting the infor-
mation in a data event control block
(DECB) . A DECB is a storage area reserved
as part of a macro expansion (or reserved
separately for future purposes by using the
L-form) that relates an I/0 operation to a
specific READ or WRITE imstruction. BREach
READ or WRITE requires one DECB that con-—
tains control information and pointers to
status indicators.

Hith BSAM, the user must determine the
cutcome of his request before he can do any
processing that is dependent on that re-
quest; the DECB provides a means for making
the determination. The test for completion
is made by issuing the CHECK macro instruc-
tion. If the I/0 operatiom ends satisfac-
torily, contrel is given to the sequential
instruction following the CHECK macro in-
struction. If the request results in an
error or a special conditionr, control is
passed to the user'®s syanchronous—-error rou-
tine (if one was specified; otherwise the
task is terminated). If the I/O operation
is not complete when CHECK is issued, the
task will wait until the operation is
conplete.

BSAM creates its own channel programs in
virtual storage, using virtual storage ad-
dresses. However, the channels do not
operate on the basis of dynamic address
translation, since they can not be made to
wait for paging in whenever they reference
a page that is not in main storage. For
the same reason, all buffer areas that are
to be referenced during the executicn of a
channel program must be inm main storage
during the entire I/0 operation. There-
fore, the resident supervisor reads the
IORCB into its own area of main storage,
translates the virtual addresses in the
channel program into real addresses, and
passes the IORCB back to virtual memory
only when its buffer has been filled.

SvC
Header

{ Symbolic
i Device Address

Data Buffer

Page List

CCW List

Pigure 11. Input/Output Request Control

Block (IORCB)

(Placing the IORCBs in supervisor
storage serves another function: In gener-
al, BSAM buffers can be expected to be less
than one page long. Since supervisor
storage is allocated in 64-byte increments,
the maximum size of an IORCB can be kept
within 1920 bytes, thus saving paging over-
head and main storage use.)

If a buffer is too large to be contained
within the IORCB, BSAN places in the IORCB
pointers to the pages containing the
buffer.

Using BSAM: BSAM enables a user to access
unblocked physical seguential data sets.

It also provides access to blocked records;
all blocking and umblocking must be done by
the user. VWhether records are blocked or
unblocked, BSAM uses the block as the unit
of data exchange with the problem program.
BSANM accepts these record formats: format-
F (blocked and unblocked) , format-V¥
{blocked and unblocked), and format-U
{unblocked only) . Descriptions of these
formats are in Appendix C.

The system checks the physical lengths
of blocks containing format-F records and
transfers control to the user®s SYNAD rou-
tine if an incorrect-length bliock is read.
The user must then determine the size of
the block read, from a count field in the
DECB. Accordingly, the length of format-F
records must not be changed after a data
set is opened; the physical attributes of
format-F records must be accurately
described.

As with all access methods, before a
user can employ BSAM to process a data set,

he must open the DCB associated with that
data set. Ip response to the BSAM OPEN
macro instruction, the system:

Finds the matching data definition
Completes the DCB fields

Establishes address relationships and
linkages to access routines

Issues to operator any required mounting
messages

Verifies or creates data set labels

Positions volumes to the first record to
be processed (see Table 1)

Allocates and prepares required buffer
pools

Establishes the volume dispositions for
end-of-volume conditions

Causes entries to user label checking,
label creating, or DCB exit routines (if
supplied) .

In the CLOSE macro instruction, the
ragnetic-tape volume disposition is
specified:

REREAD —-- Reposition the current volume
to reprocess its portion of the data
set.

LEAVE ~- Position the current volume to

the end of its portion of the data set
just processed.

For magnetic tape, the exact positioning
that follows the CLOSE instruction will
vary, depending on whether labels are spec-
ified for the data set. Table 2 defines
two final-position numbers for labeled and
unlabeled tapes. These numbers are then
used in Table 3, which correlates the spec-
ifications of I/0 processing in OPEN with
the positioning specified in CLOSE.

BSAM Macro Instruction: These are in three
general categories: dJata-set oriented,
buffer oriented, and device-control
oriented.

Buffering macro_instructions -- BSAM is
primarily intended for use on unbuffered
physical sequential data sets; there is no
automatic buffering facility. However, the
user may provide himself with some buffer-—
ing by using the GETBUF, GETPOOL, FREEBUF,
and PREEPOOL macro instructions. 1All such
buffers are only work areas for the user;
they are not intermediate storage areas.
A1l input/output operations between these
areas and external storage are performed
directly, without using intervening holding
areas.

Accessing Data Sets 29

Table 1. Effect of OPEN Optionmns

Open Option Device Action Initial Positioning

bog womm ek

INPUT Data set is read sequentially, First data record.
either forward or backward
(depending on what is speci-
fied in each READ macro in-—
struction); labels, if speci-

fied, are processed as imput

Magnetic-tape

Data set is read forward
sequentially; labels, if spec-
ified, are processed as input

Direct access

Last data record of
last volume of data
set.

RDBACK Magnetic-tape Data set is read sequentially,
either forward or backward (de-
pending on what is specified

in each READ macro instruc-—
tion); labels, if specified,

are processed as iaput

OUTPUT If data set dispo—
sition is specified
as NEW or OLD, vol-
ure is positioned

to first data rec-

Data set is written sequen-
tially; labels, if specified,
are processed as output

Magnetic—-tape or
direct access

INQUT Data set is read sequentially
first; labels, if specified, ord; if data set
are normally treated as imput disposition is spec—|
(however, if records are writ- | ified as MOD, volure}
ten to the data set, subsequent] is positioned to onej
labels, if specified, are pro- record beyond last |
cessed as output) ; when read- data record of last |
ing is conmpleted, volume is volume of data set. |
repositioned and data control
block remains open so that

data set can be processed as

output

Magnetic—-tape or
direct access

—— by = - ——— v S — " — — —— " —— -

G gy o SEN D e NS i TN S} s} S) oy O s WGP ey -y SN ey s WG awe Ve o

OUTIN Bagnetic-tape or

direct access

Initially data set labels are
processed as output; after
data set is opened, user amay
issue READ or WRITE macro in-
structions in any order; when
end-of-volume is reached,
labels are processed either as
input or output, depending on
whether READ or WRITE macro
instruction caused end-of-
volume condition

First data set
record.

UPDAT Direct access Data set is read sequentially;
blocks can be updated in place
by output requests that write
last block read back to data
set; labels, if specified, are

processed as input

!l
i
I
|
]
i
I
]
|
1
!
|
!
|
!
!
!
|
1
I
]
|
I
i
l
!
l
!
i
]
|
!
I
]
I
i
!
i
I
!
!
]
!
i
!
I
!
I
|
i
!

by oum o o o c———r —— —— S ———— et Wy G et WD S) W N AN WS W i S b Wt D S e s Pt oy T oy Wt o S iy o W ot ims o ot
P o ow WS W W i A N —— T S oy N ity s A wniss NI S sma N) o S0 A ey W)y W iy i vy T gty amn P oy SNE i oD . gy) W gy e e

bo o o D w mme W i GRE G e W et N WS gy o SHNN el iy WIS GOP TeoS WEGE agn cumy S
b oo e W e bt N Ny e SR G S CEND GO MM S o e SRS SN eouy S

30

Table 2. _Final Magmetic Tape Positions necessary to free all buffers prior to

closing a data set; it is necessary to

r Y i s

i i Labeled Tape { Unlabeled Tape | free a buffer before it camn be acquired

F —+ + — again.

I 1 | Preceding data | Preceding first |

} ! set header label] data block of 1 FREEPOOL releases areas that were previous-

i | group | portion of data | ly assigned to specified data comntrol

} I | set resident on 1 blocks as buffer pools. The area must

H ! | current volume | have been acguired either by the execu-

F } } 4 tion of a GETPOOL macro imstruction, or

! 2) Following tape | Following tape 1| as a result of buffer options specified

i] mark that termi-| mark that termi-| in the DCB macro instruction. If a FREE-

| | nates trailer— | nates last data | POOL has not been executed by the time a

f ! label group } block of portion{ data set is closed, the CLOSE macro in-

| |] of data set that] struction will release the area involved.

H f { is resident on |

} i | current volume | Data set interactive macro instructions:

L L s — READ, WRITE, CHECK, and DQDECB emable a
user to:

GETPOOL requests allocation of a buffer

pool area, and it assigns that area to a
specific data control block. The user
must specify the number of buffers im the
pool, and their lengths. Only one buffer
pool may be assigned to a data control
block at one time.

Create a sequential data set by storing
blocks ip the order in which they were
supplied.

Sequentially add blocks to the end of an
existing sequential data set.

GETBUF obtains a buffer from a specified Sequentially retrieve blocks from an ex-

buffer pool that must have been previous-
ly assigned to the data control block ei-
ther by a GETPOOL macro imstruction, or
as a result of the buffer options speci-
fied in the DCB macro instruction. Buff-
ers obtained by GETBUF must be returned
by a FREEBUF, if they are to be obtained
again.

FREEBUF returns (to its buffer pool}) a

buffer obtained by GETBUF. It is not

isting sequential data set, or retrieve
an individual block based on these
posiitioning capabilities -- beginning
of data set, location of previous block
processed by system, or location of any
of data set's blocks.

Update an existing data set either by
updating blocks in place, as sequential
processing proceeds {direct access
device only), or by updating blocks in a

Table 3. Effects of OPEN and CLOSE Options on Magnetic Tape Positioning
POSITIONING SPECIFIED
OPTION OF OTHER FACTORS DIRECTION OF IN CLOSE
OPEN INFLUENCING LAST INPUT
SPECIFIED AS POSITIONING OPERATION LEAVE REREAD

last operation was a WRITE;
READ .

¥) L] L] ¥
! | | 1 1
} | ! { !
} | | F 7 4
i | ! | | |
F + } + 1 -4
i OUTPUT } None | Not applicable | Position 2 | Position 1 |
L V'] 1 i |]
L L 1] ¥ ¥ I
} ODTIN] None] Not applicable) Position 2 | Position 1 |
L 1 1 i 1 2
¥ R L ¥ ¥ -1
{ INOUT !} No WRITE operation | Backward | Position 1 | Position 2 |
i } executed for this } 4 } 4
!] data set } Forward] Position 2 | Positionm 1 |
| = } + } —4
! } At least one WRITE | Not determining factor | Position 2 | Position 1 |
H | operation for this f | | !
I | data set I { I |
5 + + } } -1
! INPUT | None | Backward } Position 1 | Position 2 |
I ! F + ¥]
I }] FPorward | Position 2 | Position 1 |
i i) | i 3 L Jd
¥ 1] v ¥ 1 L]
! RDBACK | None | Backward | Position 1 | Position 2 }
!) F + + 4
{ ! | Forward } Position 2 | Position 1 |}
i i | | i 1 2
L L
Note: Trailer label exits are taken for data set processed for INOUT or OUTIN, if]

I

!

.]

!
I
!
[®

no trailer label exits are taken if last operation was a

Accessing Data Sets 31

nonsequential manner ({direct access
device only), or by reproducing a data
set to allow the user to insert new rec-
ords and/or delete old records as the
modified copy is beirg made.

READ causes a regquest for a tramnsfer of a
physical record, from an I/0 device di-
rectly to a specific virtual storage
input area, to be recorded in a control
block (DECB) and placed on an I/0 request
queue. Control is then returned to the
user®s program; when the device is avail-
able the reguest is executed.

%RITE causes a request for a transfer of a
physical segquential record, from a spe-
cific storage area to an I/0 device (di-
rectly, without using a buffer area), to
be recorded in a control block (DECB) and
placed on an I/0 request gqueuwe. Control
is then returned to the user's progran;
when the device is available, the request
is executed.

CHECK checks the queue of control blocks
{DECBs) containing the requests for read
or write operations, to determine if
those requests have been satisfied. It
also indicates whether errors or excep-
tional conditions have occurred while
satisfying the regquest. For each data
set, the CHECK macro instructions must be
issued in the same order in which the
READ or WRITE operations were requested.

DQDECB removes all unchecked DECBs (created
by issuing READ and WRITE macro imstruc-
tions) from a queue of unchecked DECBs
maintained by the system. This macro in-
struction is normally used in the SYHAD
routine when multiple READ or WRITE macro
instructions have been issued without an
intervening CHECK. 'If DQDECB is issued,
all unchecked READ or WRITE recuests must
be reissued. (The user must ensure, be-
fore reissuing, that the data set is
positioned to the desired record.)

Device control macro instructions pro-
vide a user with physical control over a
data set: BSP, CNTRL, PEOV, POINT, and
NOTE. Some of these may be combined with
the interactive macro instractions to pro-
vide nomsequential access to a data set,
within the framework of BSAM.

BSP backspaces one physical record on the
current magnetic tape or direct access
volume. Regardless of the direction of
reading (specified in the READ macro in-
struction), or the option specified in
the OPEN macro instruction, backspacing
is always toward the load-point on mag-
netic tape volumes or the corresponding
positionr on direct access volumes.

CNTRL repositions magnetic—-tape.

FPEOV positions a multivolume data set at
the beginning of the pext sequential vol-
ume, before the physical end of the cur-

32

rent volume is reached. This macro in-
struction is not applicable to data sets
on unit record devices. VWhen volumes are
switched by this macro instruction, FEOV
creates the necessary output labels for
current and new volumes (output data
sets) or verifies the volume labels for
current and new volumes (input data
sets). An attempt to execute this macro
before all READ and WRITE requests to the
data set have been checked will result in
abnormal task termination.

POINT repositions a magnetic-tape volume to
a specified physical record within a data
set on that volume; for direct access
volumes, POINT places control information
in the appropriate control block, so that
the indicated record will be the next
accessed. The user must verify that the
block identification previously provided
by a NOTE macro instruction (now being
used in the POIXT macro instruction)
refers to the same volume. Using POINT,
in conjunction with the information pro-
vided by a previous NOTE, permits reading
or writing a sequential data set from any
specified position. All read or write
requests must be checked for completion
before the POINT macro instruction is
executed.

NOTE makes available to the user the rela-
tive position within a volume of a phys-
jcal record that has been just read or
written. This relative position identi-
fies the block for subsequent reposition-
ing of the volume. Repositioning is mor-
mally accomplished by the POINT macro in-
struction. 211 read or write requests
must be checked for completion before the
NOTE macro instruction is executed.

Both the NOTE and POINT macro imstruc-
tions require that the current block count
in the DCB be valid. For an unlabeled data
set, or a data set comntaining nonstandard
labels, there are conditions when this
count may not be valid, since the block
count is normally found in the trailer
label. These conditions occur when:

the DDEF command or macro instruction
specifies a disposition parameter of
MOD, or

the OPEN macro instruction specifies
RDBACK.

Under these conditions, neither the NOTE
nor POINT macro instructions should be
used.

Practical Applications: A sequential data
set can be created by using BSAM and speci-
fying output or out-in in the OPEN macro
instruction, and by using the WRITE and
CHECK macro imstructions to tramsfer blocks
to the data set being created. To add
blocks to an existing sequential data set,
the user specifies output or out-in in the
OPEN macro instruction, and MOD in the DDEF

command, to position the system to the end
of the existing data set. He then issues a
series of WRITE and CHECK macro instruc-
tions to add the physical records.

To obtain each of the physical records
of a physical sequential data set in the
order in which they were written, the user
specifies input in the OPER macro instruc-
tion to position to the first record of the
data set. He then issues a series of READ
and CHECK macro instructions to retrieve
the blocks in sequence. It is also possi-
ble to retrieve the records of a physical
sequential data set nonseguentially by
using the NOTE and POINT macro instructions
in the manner indicated in their
descriptions.

Physical sequential data sets can be
updated-in-place if they reside on direct
access storage. When this method is ap-
plied, the user specifies updatimg in the
OPEN macro instruction and then issues the
appropriate sequence of macro instructions:
READ and CHECK; WRITE and CHECK. Each READ
and CHECK instruction provides a physical
record in the user®s work area. By examin-—
ing this block (record), the program can
decide if it is to be updated. If the rec-
ord is not to be updated, the program can
branch to another READ and CHECK instruc-
tion to examine the next block. If a block
is to be updated, the program does that and
then issues WRITE and CHECK macro instruc-
tions to return the just-read block, or its
replacement, to the data set. {Only the
most recently read block, or its replace-
mrent, may be updated and returmed.) If two
WRITE and CHECK macro instructions are is-
sued without an intermediate READ and
CHECK, the second WRITE overlays the first.

Queued Seguential Access Methed

The queued sequential access method
(QSAM) consists of the TSS data set manage-
ment facilities that enable a user to
access physical sequential data sets at the
logical record level. 0SAM, in comtrast to
BSAM, permits the user to store and retri-
eve logical records of a sequential data
set without coding his own blocking/
deblocking and buffering routines. Using
QSAM, a sequential data set can be stored
on, or retrieved from, disk or tape.

QSAK*s basic functions are blocking and
deblocking logical records, issuing I/0 re-—
quests, and checking and positioning data
blocks. QSAM itself blocks, deblocks, and
buffers internally, but uses BSAM to per-
form I/0 operations such as reading, writ-
ing, amd checking and positioning for
access to data.

Blocking Logical Records: QSAM blocks log-
ical records according to the logical
record—length and block-size parameters
found in the DCB. When a user wants to in-
clude a logical record in an output data
set, he issues a PUT macro instruction.

QSAM adds this logical record to the phys-
ical record (block} currently being built
if it will fit within the current buffer.
If it will not fit, the block is considered
complete, and the record for which the PUT
¥as issued will be treated as the first
record of a new block. The user can cause
a block to be prematurely regarded as com-—
plete by issuing a TRUNC macro instruction.

Deblocking Logical Records: QSAM returmns a
single logical record to the user each time

he issues a GET macro instruction. When
the current block has been completely pro-
cessed, the next GET instruction causes the
buffer to be refilled, if the data set was
opened for input or readback, or to be
written back before refilling, if needed,
wvhen the data set was opened for updating.
At any time, the user can cause processing
of a buffer to be regarded as complete by
issuing a RELSE macro instruction. Follow-
ing this, the next GET macro instruction
will retrieve the first logical record from
the next physical record.

Buffering Blocks of Data: Double buffering
is the normal buffering facility of QSAM.
This involves the use of two buffers, one
of which will be in use while I/0 activity
is being performed on the other. Thus, on
a normal input or readback data set, while
logical records from one buffer are being
snpplied to the user, the other buffer is
being refilled. On a normal output data
set, QSAM will continue adding logical rec-
ords to one buffer while the other is being
written out.

Under some circumstances, it is neces-
sary to perform only single buffering; only
one buffer is used. The decision to use
double or single buffering is based on the
OPEN option of the data set and on the
macro option specified in the DCB. Double
buffering will be done in all cases except
wvhenr the data set is opered for updating,
or SETL has been specified in the DCB.

Single buffering must be done on an up-
date data set to allow the user to update
one block of records at a time. VNo
reading-ahead can be done until there is a
determination on whether the curremt block
of records must be updated, since an update
WRITE instruction can return only the last
block read. When the user specifies the
SETL macro instruction, he must be able to
specify it after QSAM finishes checkimg any
individual physical I/0 operation; single
buffering is therefore a necessity.

Double buffering on a readback data set,
with fixed or undefined length records, is
handled in the same manner as for an input
data set, except that blocks of records are
read beginning with the last block of the
data set. However, if a data set opened
for readback specifies variable-length rec-
ords, the procedure includes the use of a
third buffer. After a block of records has
been read and checked, a copy of it is

Accessing Data Sets 33

moved to the third buffer. This copy is
used by the system as a table to contain
record lengths, so that the records in the
actual buffer may be accessed in reverse
order. Note that, although three buffers
are used, this is still only double buffer-
ing; the third buffer is, in a sense, a
dupny.

Using OSAM: QSAM enables the user to
access blocked and unblocked physical
sequential data sets. The records within
each such data set can be format-P (blocked
or unblocked), format-v (blocked or
unblocked), or format-U (unblocked only).
These formats are described in Appendix C.

The OPEN macro instruction has the same
basic functions in QSAM as the BSAM OPEN.
In response to the CLOSE macro instruction,
QSAM writes any reemaining ountput buffers,
disconnects the data set from the problem
program, and takes care of any label writ-—
ing and volume disposition that may have
been specified. The effects of the OPEY
and CLOSE options on magnetic-tape posi-
tioning are shown in Table 3. (Note: in-
out and out-in are not supported imn QSAHN.)

As the user requests input or output of
logical records, QSAM anticipates the need
for I/0 activity, manipulates buffers, and
perforas any deblocking or blocking that is
required. The user is free to concentrate
on processing of logical record streams, in
and out of his program.

QSAM Macro Imstructions: As with BSAM
macro instructions, these are in three gen-
eral categories: data-set oriented, buffer
oriented, and device-control oriented.

Data—-set oriented macro instructions en-
able a user to:

Create a seqguential data set by sequen-—
tially storing its logical records in
the order they are supplied by the user.

Sequentially add logical records at the
end of an existing physical sequential
data set.

Retrieve logical records from an exist-
ing physical sequential data set, or
retrieve an individual record, based on
these positioning capabilities:

beginning of data set on current
volume,

eﬂd of data set on current volunme,

previous logical record on volume
{backspace),

or a record whose retrieval address
was previously obtained.

Opdate an existing data set by updating
logical records in place as seguential

34

processing proceeds (direct access
only) .

The QSAM macro instructions are: SETL,
GET, PUT, and PUTX.

SETL enables a user to logically position a
physical seguential data set at its be-
ginning, end, at the previous logical
record, or at any user-specified logical
record. Subsequent PUT or GET operations
will start at the specified position.

GET reads logical records in sequential
order; unless it is used in conjunction
with SETL, when the order is not neces—
sarily sequential. GET may be specified
in either locate or move mode. In locate
mode, GET locates the next sequential
logical record of a data set, reads it
into a buffer if necessary, and places
its address in register 1. The user may
then operate on the record in the buffer
where it is located or he may move it to
his own work area. In move mode, GET
acquires the next sequential logical rec-—
ord from a buffer (reading it into the
buffer if necessary), and moves it to a
user-specified work area.

POT writes new or altered logical records
into a physical sequential output data
set. PUT may be specified in either lo-
cate or move mode. In locate mode, PUT
places in register 1 the address of an
output buffer. The user should subse-
quently comnstruct, at that address, the
next logical record to be incorporated in
an output data set. The system will au-
tomatically write the physical record, of
which the logical record is a member,
into the data set. In mrove mode, the PUT
macro instruction moves a logical record
from a user-specified work area into an
output buffer, so that the system may in-
clude the record in the output data set.
The user must ensure that the length of
the logical record is in the proper DCB
field before executing this macro
instruction.

PUTY causes the mext logical record im a
buffer area of an input data set to be
written as the next sequential logical
record of an output or update data set.
PUTX may be specified for either output
or update mode. Por update, the input
and output data sets are one and the
same; PUTX merely indicates to the system
that a given logical record in a buffer
associated with that data set is to be
written back, in its present form, to the
data set; for output, the input and out-
put data sets are distinct; PUTX trans-
fers a logical record from the buffer of
the input data set to a buffer of the
output data set, from which it is to be
written out by the system. Note that
PUTX (output mode) is effectively the
same as PUT (move); in fact, the PUT
macro instruction accomplishes this func-
tion more efficiently tham PUTX. The

PUTY (output mode) instruction has been
provided primarily as a conversion aid
for 0S users, since it provides a signi-
ficant option under 0S, im which exchange
buffering is possible. For both update
nd output, the last macro instruction
issued for the input data set, prior to
PUTX, must be a locate—-mode GET.

Buffer-oriented macro instructions,
TRUNC and RELSE, give the user some control
over system input and output for his data
sets.

TRUNC causes the current output buffer to
be regarded as filled, so the system will
transfer the truncated physical record in
that buffer, as it then stands, to the
data set on the output device. The sys-
tem is then positioned at the next buffer
area, ¥vhich will be used to hold the next
logical record supplied, by the user, for
output. If an attempt is made to execute
this macro instruction when the output
buffer is already full, or when the rec-
ords are unblocked, the instruction will
be ignored. Therefore, effective use of
this macro always results in a
nonstandard-length block being written to
the data set.

RELSE causes the remaining records of the
current input buffer to be ignored,
locates the next sequential physical
record®s input buffer area, and positions
the user at the first logical record in
that buffer area. The next GET macro in-—
struction will retrieve the first logical
record from the new input buffer.

Device control—oriented macro instruc-
tion, FEOV.

FEOV directs the system to advance to the
next volume of a data set before reaching
the end of the current volume. It also
ensures that the last buffer is written
out to an output data set, and that any
anticipatory regquests to read, issued by
the system for that volome but not vet
checked, are purged. As in BSAN, vhen
volumes are switched by this macro in-
struction FEOV creates the necessary out-
put labels for current and new volumes
(output data sets), or verifies the vol-
ume labels for the current and new
volumes (imnput data sets).

Practical Applications: A physical sequen-
tial data set can be created, using QSAM,
by specifying output in the OPEN macro in-
struction, and by using PUT macro instruc-
tions to tramnsfer logical records to the
data set being created. When the last rec-
ord in the data set has been created, the
user issues a CLOSE macro instruction.

This writes the remaining output buffers,
disconnects the data set from the problem
program, and takes care of any label writ-
ing and volume disposition that may have
been specified.

The user can add logical records to an
existing physical sequential data set by
specifying output in the OPEN macro in-
struction and modification (MOD) in the
DDEF command; this positions the syster to
the end of the existing data set. BHe then
issues a series of PUT macro instructions
to supply the additional records. ¥When all
the additional records have been trans-
ferred, he issues a CLOSE macro
instruction.

The logical records of a physical
sequential data set may be retrieved in the
order in which they were created. The user
specifies ipput in the OPEN macro iastruc-
tion to position the syster to the first
record of the data set, and then issues
successive GET macro instructions tec re-
trieve the logical records. When end-of-
data is detected during a GET, the system
transfers control to the user's end-of-data
routine. Logical records may also be re-
trieved nonsequentially from a sequential
data set by preceding the GET macro in-—
struction with either the RELSE or the SETL
macro instruction. The use of these macros
has beer previously explained.

The user may update physical seguential
data sets in place, after specifying update
in the OPEN macro imstruction, by employing
the PUTX macro instruction (update mode).
First, he issues the GET (locate) macro in-
struction to determine the address of the
next seguential logical record. By examin-
ing this record, the user can determine if
he wants to update it. If it is not to be
updated, a branch is made to another GET
instruction, to examine the next record.

If a record is to be updated, the appropri-
ate changes can be made to it, and then a
POTY (update mode) macro instruction should
be issued to return the updated logical
record to its original storage location in
the data set.

Hultiple Sequential Access Method ——- HSAM

MSAK consists of the data management fa-
cilities that enable the user to process
logical records at the GET/PUT wmacro-
instruction level for the IBM 2540 card
reader/punch and the IBM 1403 printer.

MSAM is a fast and efficient mechanism for
simultaneously driving several unit-record
devices under the conrtrol of a single task;
MSAM also has automatic buffering and
error~-retry options.

MSAM differs from the other sequential
access methods (such as BSAM). For each
MSAM I/O request, the system processes a
buffer group of physical records; for each
BSAM I/0 request, the system processes only
one physical record. Comsiderable process-—
ing is required in the supervisor and the
access methods for each I/0 request,
regardless of buffer size. Usually MSAM
will make an I1/0 reguest only once to proc-
ess each buffer, even though the buffer
will contain a large nusber of physical

. Accessing Data Sets 35

records; this is accomplished by chaining
the channel command words {CCW¥s) related to
each physical record in the buffer.
System—-processing overhead will thereby be
minimized when using unit-record equipment.

BSAH also differs from the other sequen-
tial access methods because several data
sets may be grouped on one device, allowing
the mwser to process all of them under the
same DCB. This saves him from issuing OPEN
and CLOSE macro instructions for the DCB
every time a data set with different char-
acteristics is to be processed. Each data
set is a data group. Input data groups may
be separated by conmtrol cards, which MSANM
will recognize and whose presence will be
communicated to the user; he may then take
whatever action is necessary. Output data
groups on the card punch may be separated
by the special cards that are automatically
merged from the card reader, or the data
groups may be physically removed fromr the
stacker by issuing a message to the opera-
tor. The merging can be accomplished by
specifying the COMBIN option in the DCB
macro instruction; the removal, by issuing
the FINISH macro instruction.

Bach buffer used by MSAM (a buffer group
of physical records) occupies one page of
virtual storage. The number of buffer
pages assigned to any DCB is based on the
device with which the DCB is associated,
determined individually by the specific
installation by a parameter in the symbolic
device allocation table (SDAT). This
allows the value for a device to be
adjusted so that the device will be driven
full-speed for the maximum time between two
consecutive time slices.

Phe first 32 bytes of each buffer page
are reserved for control information used
by MSAH. The remaining portion of the page
is packed with logical records. The maxi-
mur number of such records per buffer page
is 100 on ipput and 200 on output; depend-
ing on the size of the records, there may
be fewer.

BSAE is well suited to the time-shared
environment because it transfers responsi-
bility for waiting for I/O completion from
system service routines, such as BSAM
check, to the invoking routine. Waiting
for I/0 while time-sharing is particularly
undesirable during a user®*s time slice; a
built-in wait-state is provided at time-
slice-end. Therefore MSAM provides the fa-
cility for processing DCBs that are ready
to be processed, and for skipping those
that the user finds to reguire waiting.
W¥hen all openad and accessed DCBs require
waiting, the task may wait for the first
I/0 interruption associated with any DCB in
the task.

Using MSAM: HMSAE enables the user to
access blocked and unblocked physical
saquential data sets, when the data sets
are associated with unit-record devices.

36

Within each such data set, format-F and
format-V¥ records are permitted (see Appen-
dix C).

The DCB defined for data sets that are
to be accessed using MSAE includes a number
of special fields (including the COMBIN
field previously mentioned) that are not
part of the DCBs generated for any other
access method. Whemn the user opens the
DCB, the common portion of the OPEN routine
completes the portion of the DCB that is
common to all access methods, and then
invokes the access-method-dependent OPEN
routine. This routine allocates the re-
quired number of buffer pages, and allo-
cates and formats an IORCB and a DECB for
each buffer page that it allocates. The
DECB is not generated at assembly time, as
it is in other access methods.

¥hen he has finished processing a data
set with the KSAM macro instructions, the
user issues the CLOSE macro instructiom for
that DCB. In response, the system returns
all fields of the DCB to the conditions
they were in before opening, issues the
FPINISH macro instruction (explained below),
and releases the areas of storage obtained
by the access-method-dependent portiomn of
the OPEN macro instruction.

MSAM macro instructions are:
GET, PUT, and FINISH.

SETUR,

SETOR specifies the physical configuration
of the unit-record device associated with
the DCB for which this instruction is is-
sued. When necessary, the system writes
a message to the operator to notify hinm
of the configuration he is to provigde.
Between repetitions of this macro in-—
struction, the user must interrogate the
DCBICB field of the DCB amnd, if it is
non-0, invoke the interruption-inquiry
routine by using the INTINQ macro in-
struction (described in Assembler User
Macro Imnstructions) to determine whether
an asynchronous interrupt is pending. If
yes, the user must give control to the
appropriate interruption-handling routine
before reissuing SETUR.

GET obtains the next sequential logical
record from an input buffer and may be
specified in either the locate or move
mnode. In the locate mode, GET locates
the next sequential record in the speci-
fied input data set, and places its
address in register 1. In the move mode,
GET locates the next sequential record in
the specified input data set and moves it
to a user—-specified work area in virtual
storage. The GET macro instruction of
MSAM differs from GET in other access
methods in the action taken when a
referenced input buffer is not yet full.
Instead of going into a wait state, MSAM
returns a code to the user indicating
that no record has been provided since
the next sequential buffer has not yet
been filled. To obtain that record, the

user must reissue the GET instructions
meanvhile, he may perform other work.

PUT includes a record in an output buffer,
the contents of which are to be printed
or punched on unit-record equipment.

This macro instruction may be specified
in either the locate mode or the move
mode. When specified in the locate mode,
PUT returns, in register 1, the address
of an area within an output buffer. 1In
this area, the user may construct a log-
ical record which will automatically be
included, by the system, as the next
sequential record of the output data set.
When specified in the move mode, PUT
moves a logical record from a user-
specified location to an output buffer;
from there it will automatically be writ-
ten as the next sequential record of the
output data set. PUT returns to the user
a code indicating the manner in which the
instruction was completed. An I/0-not-—
complete indication informs the user that
there was not enough room in a free buff-
er to include the logical record; he may
reissune the PUT later, and, if a buffer
is then free, the system will indicate by
return code that the PUT was completed
successfully. Again, it will automati-
cally be written as the next seguential
record of the output data set.

FINISH signals the MSAN routines that proc-
essing has been completed for the current
data group (the current subsection of the
data set). Employing this macro instruc-—
tion, users can process data groups that
have different attributes but are under
the control of the same DCB, without
closing and opening that DCB between data
groups. PFINISH initiates the final writ-
ing of buffers for an output data set,
and tests the results of all outstanding
I/0 operations for both input and output
data sets. To avoid having his task
placed in a wait-state, the user should
issue PINISH for a data set before issu-
ing CLOSE. Rather than allowing the user
to test for I/0 completion, MSAM CLOSE
will place the task im the wait-state un-
til I/0 activity is completed {(MSAM CLOSE
is the only MSAM routine that will do
this) . Another reason for issuing FINISH
before CLOSE is to ensure notification of
I/0 errors on final I/0 operations; CLOSE
does not provide this facility. If the
user receives a notification that I/0 op-
erations have not been completed, he may
continue with other processing, and reis-
sue FINISH at a later time. FIRNISH also
will notify the operator to remove the
current data group fror the device; or it
will automatically separate data groups
being punched with cards from the card
reader {under control of the COMBINE
field of the DCB).

MSAM Error Processing: Provides the user
with an automatic error-retry option, under
the control of the DCB. Example: The DCB
may specify that a print error be handled

by striking out an erroneous line and
attempting to primt it again. The system
will, if it is unable to recover from an
I/0 error encountered as a record is being
processed, return an indication of this to
the user; he can then determine whether the
error was permanent. If permanent, the
user should issue a CLOSE instruction for
that DCB; if the error was not permanent,
the user may continue processing records
beyond the one with the error, by reissuing
the macro instruction. For an imput opera-’
tion, he may even process the record with
the error, since he will have a copy of it;
however, the validity of that record will
be doubtful.

Input/Output Request Facility

The input/output regunest facility
(IOREQ) consists of the data management fa-
cilities that enable users to program their
own I/0 device-control routines. In
effect, IOREQ is not an access method, but
a means by which the user can create his
own specialized access methods.

The user of IOREQ creates channel com-
mand words (CCWs) and executes them as he
desires. Since the user of IOREQ can have
complete control over a device, and possi-
bly monopolize the channel to which the
device is attached, the use of IOREQ is re-
stricted to devices defined as private in
the symbolic device allocation table
(SDAT)Y. Also, only the BULKIO task and E
class users can request the allocation of a
specific private device through a symbolic
device address.

Because of the direct level of contact
between this facility and the devices them-
selves, the user of IOREQ must:

Be thoroughly familiar with how the
device interfaces with a channel through
its control unit

Handle all exceptional conditions
through his SYNAD routine

Reissue all outstanding requests if an
I/0 request is unsuccessful (perform his
OWNn erTOor recovery)

Not exceed the maximum number of concur-
rent I/0 requests for this device (spec-
ified in the SDAT).

The parameters for the channel program
and buffer address, in an IORCB associated
with each I/0 request, must be explicitly
defined by the user in IOREQ. While this
places a greater burden on the user than in
other access methods, it also provides hinm
with greater flexibility. Example: He may
specify a buffer located in an IORCB, or in
a user work area; or he may write channel
prograss that use CCW chaining and he may
perform scatter-reads or gather—writes
(reading or writing data into or from vir-

Accessing Data Sets 37

tual storage locations that are not
contiguous) .

Another feature of IOREQ is that channel
prograes may be command-chained in the
channel. When the channel completes the
channel program in one IORCB, if command
chaining was specified, the channel immedi-
ately begimns executing the program estab-
lished in a second IORCB that has been made
available. With this option, IOREQ users
who are reading or writing large amounts of
data (too large to fit in a single IORCB)
can employ buffering, by lirking the
JORCBs .

Osing JOREQ: As with the other access
methods, the user must open a data set be-
fore using IOREQ to access it; a CLOSE
macro instruction must be issued to discon-—
nect the data set from the systenm.

In response to the OPEN macro instruc-
tion, the normal open-common functions are
performed first. Then the access-method-
dependent portion of the open routine is
given control; tests ensure that the user
is privileged to access the specific volume
and device, that IOREQ has been specified
as the DDEF operand, and that the device to
be used is defined as private in the SDAT.
Storage is allocated for the data extent
block (DEB) and the IORCBs; information is
moved from the JFCB to the DEB.

W¥hen a user wants to execute one or a
series of I/0 operations, he issues the
IOREQ macro instruction. At assembly time,
this instruction generates a DECB that will
be used to store the completion status of
the operation. This control block is
interrogated by the CHECK macro instruction
to determine when and how the operation has
been completed. The operation, or series
of operations, are explicitly defined by
the user in the VCCW macro instruction.

When the CLOSE instruction is issued,
the task is put into the wait-state until
all outstanding I/O regquests have been com-
pleted; then all storage allocated during
open—-processing is freed, and the normal
close-procedures are completed.

IOREQ Macro Instructions:
CHECK.

VCCW, IOREQ, and

VCCW generates the virtual channel command
word, a doubleword that contains the in-
formation that will prepare the IOREQ
macro instruction for the requested I1/0
activity. Through the use of chaining
fields, groups of these doublewords,
generated in successive storage loca-
tions, can be made to form VCCW lists.
The user can specify read, write, or
read-back operations, as well as no oper-—
ation (NOP), sense, and transfer in chan-
nel (TIC); or, he can specify a hexade-
cimal command code.

38

IOREQ imnitiates a seguence of I/0 opera-
tions that are specified in the previous-
ly generated list of virtual channel com-—
mand words. IOREQ uses this list as
input for generating a list of channel
cormand words (CCWs) to be placed in the
IORCB for execution by the appropriate
channel. IORCBs are executed separately
by the channel, unless the user specifies
IORCB chairning in the appropriate field
of the VCCW. (Note: This is not the
same as the VCCW chaining accomplished
within the IORCB.) IORCB chaining is al-
lowed only between IORCBs that are on the
same device. Even though IORCBs may be
chained, separate CHECK macro instruc-
tions must be issued for each IOREQ re-—
sult, because each IOREQ generates a
separate DECB.

If buffering is specified for amn
IOREQ, the size of the buffer within the
JORCB for read~request VCCWis is determin-—
ed by the differemnce between the lowest
and highest data-area addresses specified
in any read-request VCCW within that VCCW
list; some data areas may overlap.
Therefore, the user must ensure that a
contiguous entity is formed by the indi-
vidual data areas referenced by each
read-request VCCW in the list associated
with that IOREQ.

The size of the buffer built for
¥rite—-request VCCHs is determined by the
sum of the individual data areas associ-
ated with each VCCW; that is, unigue
buffer space is allocated for each write-
request VCCW, regardless of whether the
data areas referenced by these VCCWs have
overlapping portions. Consequently, the
data areas associated with write-reguest
VCCWs do not need to form contiguous
areas.

¥hen buffering is specified in IOREQ,
data is moved from user data areas to
output buffers within the IORCB before
any I/0 activity is performed for amny of
the write-request VCCWs within the VCCHR
list. Therefore, although a user =may
chain VCCWs that are to read into a par-
ticular data area and then write fro=m
that area, the sequence of operations
will result in the old, not the new, data
being written, as the user might expect.

If buffering is not specified in
IOREQ, the area within the IORCB that
would normally have been used for the
buffers is used instead for page-list
entries to the user's data areas. Then
the data transfer is directly between the
channel and these areas.

CHBECK tests for completion of an IOREQ
macro instruction, and detects errors and
exceptional conditions. CHECK must be
used for every IOREQ issued; and must be
issued in the same order as the IOREQs.
If an exceptional condition is detected,
control is passed to the user®s SYNAD

routine (which must be provided or an
ABEND will be executed). If the I/0 op-
eration is successful, the user's progran
resumes eXxecution at the instruction fol-
lowing the CHECK instruction.

TERAINAL ACCESS METHOD -—-— TAMII

The Terminal Access Method (TAMII)
handles all TSS communications. This
includes communicating with local and re-
mote terminal users, SYSIN and SYSOUT data-
sets and local and remote systems or RJE
work stations. TAMII is used by both the
system and the user by issuing GATE and
T-GATE macros (GATRD or TGATRD etc.). The
T—-GATE macros are extensions of the GATE
macros and allow the I/O to be overlapped.

TAMII is composed of five distinct com-
porents. They are:

1. RTAM - Real Terminal Access Method

This component resides in the super-
visor and is an interface between
the TSS supervisor and the device
modules (DCMs; see belovw)

2. DCM - Device Control Modules

The DCMs provide all device depen-—
dent support required to do the fol-
lowing functions:

a. builds channel programs and
initiates 1/0

b. maintains line control during
non-activity between user and
task

c. handles device dependent timer
routines

d. validates task I/0 requests

e. handles device dependent PCI re-
quests and non-normal completion
status

f. handles the connection of a
device to a task whether initi-
ated by the user or the task

g. sets up device dependent infor-
mation in the regquired systenm
control blocks

h. provides error recovery for all
abnormal endings

i. checks user's input for user
function requests (cancel, at-
tention, etc.)

j. determimnes length and type of
input

k. provides simple output edit
capability for system nmessages
to the terminal user.

3. VTSS - Virtual Terminal Support
Systen

This component resides in the task’s
virtual memory, validates the re-
quests, and translates the program's
request against the user's environ-
ment. After determining what has to
be done, VTSS will call the correct
format control module (FCH) to for-
mat the data if any for the user's
terminal.

4. PCM - Format Control Modules

The FCE performs the required edit-
ing and/or formatting reguired by
both the terminal device and the
user. The PCHM also ensures that the
reguest is setup in a mode that the
next level of TAMII will understand.
The PCM then calls the module or
access method, either in real core
or virtual memory, required to do
the actual request. The FCM pro-
vides the following functions:

a. edits output data

b. translates output data to line
code

c. invokes correct routine to do
I/0

d. tramnslates input data to EBCDIC
from line code

e. edits input data

f. moves input data to correct data
area (user's or GATE's)

g. sets up correct return code

h. performs any requested valid
control functions

i. maintains correct segqguence and
buffer links for buffered re-
quests in virtual memory

3. performs any special task

initialization reguired for con-

necting device
5. TCS - Terminal Command Subsystenm

TCS handles all device command re—
guests and maintains the terminal
environment control blocks.

Unlike other acccess methods, TAMII does
not use DCBs and JFCBs; the primary control
blocks are a TCT (Terminal Control Table)
entry for RTAM and the FCL (Format Control
Library) entry for VPSS. At the time the
terminal is connected to the syster, a TCT

Accessing Data Sets 39

is allocated and constructed. When the
terminal is connected to a task a FCL is
allocated and constructed by VISS. Both
the TCT and the FCL contain device informa-
tion and areas to be used for work areas.
Por communication between VTSS and RTAM the
ATCS SVC, with an associated parameter
list, is used to initiate or request a
function to be performed at the terminal.
When RTAM communicates with ¥TSS, it is
through a special I/O synchronous interrupt
processor.

TAMII also will use other access methods
to fulfill the program's request. Since
TAMII is the access method used to read and
write SYSIN and SYSOUT non—-conversationally
TAMII has to be able to access datasets.
TAMII does this by using the appropiate
access method for the dataset. TAMII sup-
ports VAE and QSAM and can read and write
datasets with DSORGs of PS, VI and VS.

TAMII allows both gqueued and direct con-
trol of the terminals by the application
program. The application program may also
transmit EBCDIC character strings, in which
case TAMII handles all editing and tramsla-
tion, or the program can bypass the TAMII
character facilities and transmit direct
terminal control information.

Through appropiate default values, TAMII
allows the task owner to control the queu-
ing function independently for both inpat
and output, transparent to the application.
This allows the application programmer
greater control over the testing of his ap-
plication progranm.

TAMII assumes all responsibility for
error recovery. When the application
issues a request, TAMII assumes the respon-
sibility of getting the request to the ter-
minal. For output, under normal condi-
tions, the application does not receive a
completion notification if the write com-
pletes successfully.

Using TAMIT

TAMII is used both by the system and by
the application programmer when either
issues the appropiate GATE or T-GATE
macros. Currently the application pro-
grammer is unable to initiate the connec-
tion of a terminal to the task. Therefore
there is no "OPEN' macro as such. The ter-—
minal user has to initiate the conmnection
by entering a °*BEGIN' command at the termi-
nal and then the application is informed of
the connection request. The following
macros are available to the application
programmer and the system for controling
the terminals:

1. CHCKT - check a DECB for completion
of a request.

2. DIAL - dial a terminal through an
autocall mechanisam.

40

3. EBXLi3T - activate, deactivate termi-
nal exit list entries.

4. PFINDQ — poll and locate work for an
application.

5. SETTERM - allows user to set, reset
and interrogate flags and fields in
the TAMII control blocks.

6. SOLICIT - solicit data input from a
terminal by using an increasing num-
ber prompt or a decrement count of
lines.

7. TCLEAR -~ purge active and pending
I/0 requests for a terminal.

8. TCNTRL - initiate a control request
for a termrinal.

9. TDCMD - execute a string of device
control commands for a terminal.

10. TFREE - release a terminal from the
task and the system.

11. TGATRD - read an input line from the
pending input gqueue or the termkinal.

12. TGATWHS — write a message to the
user®s primary SYSOUT.

13. TGATWR - write data to a terminal

14, TGTWAR - write data and read any a-—
vailable input from a terminal.

15. TGTWSR - write a message to the pri-
mary SYSOUT and read the user's
response from the primary SYSIN.

16. TRCBUP - read a line from the con-
versational buffer for the terminal.

17. TWRTLST — write a list of output to
the terminal.

18. TERMPRO - set up or save a termimal
user's environment.

19. TRANLCD - locate a translate table
for a terminal.

Three macros which allow an application
to push and pop a terminal®*s environment
and pending queues after an attention from
the terminal user are:

1. ATTNSAV - save the current terminal
environment and perding gueues.

2. ATTERST - restore a previously saved
terminal environment and pending I/0
queue.

3. ATTNDST - destroy a previously saved
entry.

For application programs, supporting
multiple terminals and/or users, four
macros are available to setup the termiral

controls and control the terminal Note: items 1 through 3 above all

connections: result in an asynchronous call to
the application’s routines.

1. HTT - inform and setup control B, PINDQ work polling capability - the
blocks connecting terminals to an application may process completions
application when the request is ini- synchronously to execution by issu-
tiated by the terminal user. ing the PINDQ macro when the program

is ready to receive interrupt and

2. NTTDCN - disconnect and discontinue completion notification.
the multiple terminal application
program. 5. CHCKT - TAMII "check® capability,

using the techingue of assigning a

3. ILOGON - inhibjit user initiated DECB to a request and later issuing
connections. the TAMII CHCKT macro for the DECB

to determine if the request has com-

5. PLOGON - permit user-initiated pleted. With the TARMII CHCKT func-

connections. tion an application program can spe-
cify whether a wait is to be done if
TAMII provides five ways for an applica- the I/0 has not completed.

tion program to be informed of the comple-

tion of a reguest or of the receipt of an All TAEII macros are keyworded and most
asynchronous interrupt; they are: of them use the same keywords and returmn
the same return codes to help the user in

1. Device 'EXIT LIST' - when the exit coding. When supporting multiple ter-
list condition occurs, the routine minals, the most important keyword is the
identified by the exit list is *OSN*. This keyword is the application’'s
scheduled to receive control. This vay of telling TAMII which terminal the
list is device specific. program is communicating with.

2. Application program general *RXIT TAMII has a common return code set for
LIST* - a list general to the pro- its macros. This helps the programmer in
gram. When a device condition using the TBAMII macros.
occurs vhich the device exit list
does not have an entry for, the ap- Code Explanation
plication program's general list is 0 successful call
checked and if it has an entry, the 4 terminal is busy {(request guneued)
routine is scheduled for execution. 8 attention received on this request

12 request aborted attention pending

3. The system SIR and DIR with SIEC and 16 request purged by TCLEAR request
SAEC (synchronous I/0 and asynch- 20 end of data received for SOLICIT
ronous I/0 interrupt) gqueuing 24 user error in parameter list
mechanism is supported by TAMII. If 28 input not available for TGATED
there isn't an exit list entry, the 32 requested operation not supported
PINDQ work table is marked and an on this terminal
interrupt is queued by calling the 36 terminal disconnected from syster
Task Monitor. 40 permanent error on request

Accessing Data Sets

41

PART III: USE OF DATA MANAGEMENT FACILITIES

The user of TSS may have no direct use
for many of the data management facilities.
Interfaces are provided to request for him
specific data management routines that will
perfora specific services.

Although assembler users normally have
the most direct contact with data manage-—
ment facilities because they employ the
macro instructions of the access methods,
usually they cannot directly access ter-—
mipnals using RTAM; some use the GATE macro
instructions as interface when they need
the RTAM facilities. The MTT-mode macro
instructions (see Part II, under "RTAMN™)
provide this interface for multiterminal
tasks.

All users can employ the command system
to create, access, and modify data sets;
the command syster, in turn, requests the
facilities of the appropriate access
method.

I/0 routines of the FORTRAN and PL/I (F)
libraries provide the interface between the
compiled code and the system's data manage-—
ment routines for FORTRAN and PL/I (F)
users.

ASSEMBLER INTERFACES

The nomprivileged assembler user has no
direct communication with either unit-
record equipment or terminals from within
his problem program. However, he can
indirectly access unit-record equipment,
and his own terminal, by means of the bulk-
output facilities and the GATE macro in-
structions. Bulk-output facilities are
much the same as those in the command lan-
guage. See "Command System Interfaces,™
next in this part.

The GATE macro instructions allow the
nonprivileged assembler user, from within
his problem program, to write to his own
SYSOUT, to read from his own SYSIN, or
both. Depending on whether the task in
vhich they reside is conversational or non-
conversational, the GATE routines call on
TANII or VAM to accomplish their functioms.

42

The GATE routines process any required
writing by dividing the message into
device-sized lines, or smaller; then the
appropriate access method is determined and
used to transmit the message to SYSOUT.

When reading is required, the GATE rou-
tines determine the appropriate access
method and use it to obtain the input mes-—
sage; they apply a predefined character-
translation table to the message as it is
transmitted to the user's buffer.

The GATE macro instructions: GATRD,
GATWR, GTWAR, GTWRC, and GTWSR.

GATRD reads a record from a SYSIN device,
translates it to intermal code, and
places it in a user-designated area of
virtunal storage.

GATWR translates a record that is stored in
a user—defined area, and writes it on a
SYSOUT device.

a record that is stored in
area and writes it on a
SYSOUT device; then it reads a record
from the SYSIN device and places that in
another user-defined area of virtual
storage.

GTWAR tramnslates
a user-defined

GTWRC processes in the same manner as
GATWR, except for nonconversational SYS-—
O0T records, in which it translates a
record and a carriage—-control character
that is stored in a user-defined area,
and them passes it to a SYSOUT device.

GTWSR (for conversational tasks only)
translates a record that is stored in a
user—defined area, and writes it om a
SYSOUT device; then reads a record from
the terminal and places it in another
user—-defined area of virtual storage.

MCAST is an assembler macro instruction
that allows the user to replace the
character-translation table with one of his
own choosing; this new table will be used
by the GATE macro instructions for the
duration of the task, to translate data
transferred between the user's prograa and
SYSIN or SYSOUT.

The command system uses the basic data
ranagement facilities to get a broad range
of data management services; the user can
enter, manipulate, output, and copy data
sets; he can enter and delete data set
catalog entries, and he can utilize the
catalog—sharing facilities described in
Part II.

There are five categories of command
system data-management services:

Text—editor services
DATA-command services
Data-set copying services
Bulk input/output services
Data-set cataloging services

Details on the interfaces that will be
cutlined here can be found in the Command

System User®s Guide.

TEXT EDITOR

With the text editor, the user can cre-
ate or alter a virtual index seguential
(VIiS) data set. It interfaces with the
GATE and VISAM routines to perform the re-—
quested data management services.

The VIS data sets created and operated
upon by the text editor are either region
or line data sets. A region data set is
indexed by a key consisting of two fields,
a region name and a line number; region
names, arranged alphabetically, divide the
data set into regions; line numbers index
the elements of each region. The line num-
ber is a seven-digit decimal number at the
beginning of each record.

A line Jata set is indexed solely by
line number; although it can be thougkt of
as a special class of region data set (with
a null region name), linme and region data
sets have different maximum record lengths
{see Appendix C for record formats).

The text editor commands: EDIT, CON-
TEXT, CORRECT, EXCERPT, EXCISE, INSERT,
LIST, LOCATE, NUMBER, REGION, REVISE, and
UPDATE.

EDIT invokes the services of the text edi-
tor. If the user has not previously de-
fined, by issuing a DDEF for it, the data
set named in this command, a text editor
routine will automatically issue a DDEF
wvith a standard set of operands. In this
case, the DDNAME issued for this data set
will be EDDNnnnn, where nnnn is a number

COMMAND SYSTEM INTERFACES

that is automatically incremented within
a task for each new DDNAME issued, to
preserve uniqueness.

If the data set to be edited exists,
or has had a DDEF issued for it, it must
be a VIS data set, or a VIS member of a
virtual partitioned data set. The user
will be prompted if either of these con-
ditions has not been met. Also, he will
be prompted if the data set is read-only,
since it is assumed that he wishes to
alter it.

After a JFCB has been created or
located for the data set, the DCB associ-
ated with the data set will be opened;
the DCB is located within a module of the
text editor. If the data set is parti-
tioned, the user®s entry of a member name
is verified. If none was entered, the
user is prompted and an exit is takem; if
a member name has been entered, a FIND
macro instruction is issued for that mem-
ber. If the member is new, an entry is
made in the POD by the STOW macro in-
struction; if the member exists, a check
is made to ensure that it is virtual
index sequential. After all initializa-
tion, return is made to the command mode
for further text editor commands.

CONTEXT replaces a specified character
string with an input character string,
wherever it occurs within a given range
of lines. After checking the input for
validity, CONTEXT issues a VISA® SETL for
positioning at the first line with inmn the
specified range; then it issues a GET for
that line (record). The line is checked
for occurrences of the specified string,
vhich is replaced if found. After the
line has been completely searched, it is
written out by a VISAM WRITE, if any
replacements were made. SETL is then is~-
sued for any necessary repositioning, and
GET is issued for the next record. This
process is repeated until the range of
lines has been completely checked.

COBRRECT makes corrections to a line or a
range of lines within an object data set.
If only one lime is to be corrected, the
CORRECT routine uses GATWR to print that
line, before correction, on the user's
SYSOUT. The VISAM SETL and GET macro in-
structions are used to obtain that line
and subseguent lines from the object data
set. Then the S5YSIN macro instruction is
used to obtain the user's corrections
from his SYSIN. A new line is con-
structed in an output buffer, based on

Comnmand System Interfaces 43

these corrections, and the VISAK WRITE
{replace-by-key) is used to write the
line back to the object data set.

EXCERPT incorporates a portion of a line or
region data set into the line or region
data set currently being edited. On
entry to this routine, the data set to be
sampled is opened. Abnormalities “in
opening (e.g., data set not fcund, or not
VIS data set or data set membex) result
in user prompting; an error-exit will be
taken. If the data set was opened suc-
cessfully, VISAH SETLs aand GETs will be
used to obtain the records to be incor-
porated, starting with the specified (or
defaulted) first line. The lines will
then be renumbered (that is, their keys
will be changed); using WRITE (new key),
the resultant lines will be written out
to the data set being edited. If the
REVISE command had been specified previ-
ocusly, indicating that the lines being
excerpted are replacing existing lines,
the previously existing lines already
will have been deleted by REVISE, so
there will be no key conflict with WRITE
{new key). (See also REVISE command.)

EXCISE deletes a line or a range of linmes
from a line or rTegion data set. VISAM
SETL and GET are used to position to the
desired line within the data set being
edited; then DELREC is used to delete the
record by key.

INSERT prepares the text editor to accept
data lines for imnsertion following a
given line in the source data set. The
SYSIN macro instruction obtains the input
data from the user's SYSIN.

LIST places a line or a range of lines on a
user?s SYSOUT. 1Lines of a region or line
data set are retrieved with a VISAM GET
macro instruction and listed on the
user®s SYSOUT with a GATWR macro
instruction.

LOCATE searches a specified range of linmes
in an object data set for a specified
character string. VISAM SETL and GET re-
trieve the lines within the range sequen-
tially, until the specified string is
found within a line; then GATWR prints
the line with that string om the usert®s
SYSOUT.

NUMBER renumbers a range of lines within a
region or line data set; in effect, this
associates a new key with each record
within the range. NUOMBER uses VISAM GET
{locate mode) to obtain the lines within
the specified range; as they are obtain-
ed, they are placed in a deletion list,
to be deleted (by key) by the DELREC
macro instruction. The keys are then
changed to conform with the specified

54

renumbering; the changed records are
placed in an addition list from which
they will be placed in the object data
set by a VISAM WRITE (nevw key) .

REGION prefixes a region name to a line
number or range of line numbers; the
lines so prefixed form a region data set
and their keys consist of the combination
of the region name and line number.

Since the region name is a part of the
record key, and seven characters of the
key are reserved for the line number, the
key length specified in the DCB for the
data set being edited must be greater
than 7, to allov room for the region
name, which will be truncated to fit if
necessary. (The key length parameter is
computed and inserted as part of the EDIT
processing; it is computed as the sum of
7 plus the value of the REGSIZE parameter
in the user's profile.} The user will
receive an error message if he attempts
to provide a region name within a data
set whose key length is not greater than
7. The SETL macro imstruction positioans
to the next available line in the speci-
fied region; for a pev region, this will
be line 100.

REVISE prepares the text editor to accept
data for inclusion, at a given point, in
the object data set. It accomplishes
this by first deleting all existing lines
within the specified range, using the
VISAM DELREC macro instruction, and then
positioning the data set at the begimning
of the range; the user can then enter re-
placement lines. The user will be
prompted if an attempt is made to enter
more lines than the range allows.

UPDATE prepares the text editor to accept
new or replacement data lines, from the
user's SYSIN, that are to be placed in
his object data set. The SYSIN macro in-
struction is used to read the data; if
the records are not variable length, they
are padded with blanks as needed. UPDATE
then checks the key supplied by the user
at the beginning of the record (if no key
was provided, the user will be prompted).
If a line with that key exists in the
data set, the record is writtem to the
data set with a VISAM WRITE (replace-by-—-
key); otherwvise, a VISAM RRITE (new key)
is used.

SERVICES OF THE DATR COMMAND

The command system®s data-editing serv-
ices allow the user to build and edit both
¥S and VIS data sets. The DATA, MODIFY,
and LINE? commands are in this group.
MODIPY and LINE? are used only with VIS
data sets, and interface primarily with
VISAM routines; DATA is used for VIS and ¥S

data sets, and interfaces with both VSAM
and VISAM.

DATA creates either a VIS line data set or

a ¥S data set; also it allows the user,
during the creation of a line data set,
to dynamically imsert, delete, and
replace lines in that data set.

After validating its input parameters,
DATA verifies that a JFCB exists for the
named data set (that is, if the user has
issued a DDEF for that data set). If it
exists, the JFCB must show either that
the data set is a virtual partitioned
data set, or that it has VS or VIS organ-
ization; if either of these conditions is
not met, an error message will be issued
to the user. If a JPCB does not exist
for that data set, DATA will create one
by issuing a DDEF; in this case, the data
set name and organization are as speci-
fied in the input parameters, and the
data definition name is derived from a
value maintained by the system for this
purpose.

DATA now opens the data set and, if it
is partitioned, issues a FIND macro in-
struction to ensure that the member name
is unique. Al1l further processing
depends on the type of data set being
created, VS or VIS.

For a VS data set, the SYSIN aacro in-
struction prompts the user with a number
sign and retrieves the record from the
user's SYSIN. Input records continue to
be read until one is found containing ei-
ther a %E, or an underscore followed by a
command; either of these signal the end
of imnput.

For a VIS data set, the user is
promapted for input with the current 1ine
number. Another difference is that DATA
must check input records for modification
indicators; if DATA finds a %D followed
by a line number, the line indicated is
deleted from the data set being built by
the DELREC macro instruction. If a linme
number preceded by only a % is found, the
text following the % is written either as
a replacement or as an insertion line,
depending on whether the line number
specified exists in the data set. If it
exists, a VISAM WRITE (replace-by—-key) is
issued; if the line number does not
exist, a VISAM WRITE (new key) is issued.
As for a VS data set, end-of-input is in-
dicated either by an underscore followed
by a command, or by a record containing a
%E.

#hen an end-of-input indicator is
reached, DATA closes the opened data set
(@ STOW instruction is issued for the
member, if it is a virtual partitioned

data set) and then passes control to the
proper routine.

If an attention interruption is re-—
ceived while the DATA command is in oper-
ation, further processing depends on
whether the data set has been opened. If
it has not been opened, DATRA merely
returns control, leaving the JFCB set up
if one was generated. If the data set
has been opened, DATA closes it (issuing
a STOR instruction for the member if it
is a VP data set) and then returas
control.

MODIFY inserts, deletes, replaces, and

reviews records in a VISAM data set or
VISAM member of a VP data set. Also it
may be used to build a new VISAM data set
or member. In contrast to the data sets
operated upon by the DATA command, MODIFY
may be used with VISAM data sets that are
not line data sets. This is possible
since the user may specify, as part of
the MODIFY parameters, an arbitrary key
length and displacement, as well as
record-format indicators.

After input parameters have been vali-
dated, MODIFY searches for a JFCB for the
named data set. If none exists (that is,
no DDEF has been issued for the data
set) , a JFCB will be created for it. 1In
either case, the JFCB must show that the
data set is either a VP or VIS data set,
and that the user may write on it.

When the JFCB is located or created,
the data set is opened. If the data set
is partitioned, a FPIND macro instruction
must be issued for the specified member
name. If the name is found, a check is
made to ensure that the data set has VIS
organization; if it is not found, a new
member is created with this name and with
VIS organization.

Input records containing the user's
modifications are obtained, one at a
time, by the SYSIN macro instruction.
The user-supplied key points to the loca-
tion of the specified record. When the
user-input does not indicate deletion or
revision, the record is written into the
data set as an imsertion or replacement,
using either WRITE (replace-by-key) or
WRITE (new record). When the first
character supplied by the user is D, the
record at the specified location is
deleted from the data set by the DELREC
macro instruction; wher the first
character is R, the record is reviewed

(presented to the user), by the GATWR

macro instruction. If review of all
modifications is reguested, the record
that is being replaced or deleted will be
presented to the user before the modifi-
cation is made; for imnsertions, the

Command System Interfaces &5

reccord immediately preceding the inser-
tion is presented.

¥hen the end-of -input record is
reachad, the data set is closed; for a VP
data set, the STOW macro instruction is
issued to reflect any alterations before
the data set is closed.

LINE? presents to a user'"s SYSOUT the con-
tents of specified lines from a line data
set, or a language processor list data
set. (A list data set is similar to a
line data set; each record in a list data
set has a unigque line number. However,
unlike the line data set, these records
must be fixed-length and the line numbers
are at the ends of the records.)

After checking and validating the data
set name presented by the user, LIKE?
initiates a search for a JFCB bearing the
indicated data set name. If no JFCB is
found, DDEF is called to create one.

Then the data set is opened and, if it is
partitioned, a FIND macro instruction is

issued to locate the indicated member.

If it is a list data set, a check is made
to verify that it is in list format; oth-
erwise a check is made for line format.

The VISAM SETL macro instruction posi-
tions the data set at the beginning of
the range specified by the user. Succes-
sive GET macro instructions obtain the
records; a check is made to ensure that
the specified range has not been exceed-
ed. The GATWR macro instruction is then
used to write the record on the user's
SYSOUT (if the object is a list data set,
the line number is writtem separately be-
fore the record so it will precede the
record on the user®s SYSOUDT).

After all indicated lines have been
processed, the data set is closed (if it
is a VP data set, a STOW instruction is
issued for the member), and control is
returned.

DATA SET COPYING SERVICES

The command system provides facilities
for making additiomal copies of existing
data sets; depending on the particular com-
mand he selects, the user ray also be able
to change the medium on which the data set
exists. The data set copying commands:
vr, TV, ¥v, and CDS.

VT copies a data set that is in one of the
VAM organizations (VS, VIS, or VP) to
magnetic tape, as a physical sequential
data set. There is no simple correspond-
ence between the records of the VAK data
set and the records of the physical
sequential data set. Records of the

86

physical sequential data set created by
this commpand are blocked into page-length
segments, regardless of the record sizes
in the original data set. Therefore, it
wvould be futile to attempt to use one of
the sequential access methods (for exam—
ple, BSAM) to obtain the records as ori-
ginally placed in the virtual storage
data set. The user can employ the TV
commrand (described below} to copy the
data set back to a direct access device,
at a later time, and then access it with
one of the virtual access methods.

Initially, VT checks that the input
data set is a VAM data set. If there is
no JFCB for the indicated input data set
name, one will be created. Por the out-
put data set, the user must have created
a JPCB (with a DDEF) that has a data
definition name (DDNAME)} of DDVTOUT. VT
locates this JFCB and verifies that it
indicates the proper data set organiza-
tion (physical sequential) and the proper
device type.

When the data sets are opened, the
JFCB of the input data set and the common
portion of the input data set®s format-E
DSCB are written as the first record on
the output tape. The remainder of this
record is padded with 0's.

Data pages to be copied from the input
data set are located through its RESTBL.
For each of these pages, the system’s
paging mechanism is used for input; each
page is then written to tape by BSAM
WRITE. Eight buffers are used to overlap
processing time and input/output time.

After the tape operation has been com-
pleted, both data sets are closed and all
buffers are released. Unless specified
otherwise, the output data set is cata-
loged and any JFCBs created by VT are
released.

TV retrieves and writes into a virtual

storage volume, a data set previously
written on magnetic tape by a VT command.
TV verifies that the input data set has
physical sequential organization and that
it resides on a tape volume. If a JFCB
for the input data set cannot be found, a
DDEF is issued to create one. A check is
then made that the ocutput data set name
indicates a new data set, with a virtual
storage organization. If an output JFCB
is not located, ome is created by issuing
a DDEF. The user must issue a DDEF for
the output data set only if he wants it
to reside on a private volurme.

After the data sets have been opened,
the first record is read from the input
set (see "VT,"™ above, for content), to
verify the tape format, and make availa-—

ble the DSCB data necessary to recreate
the original data set. Data records from
the tape are input by BSAM READ and out-
put (to the direct access device) by VSAM
PUT. At this time, the data set is being
treated as VS, with page-length records,
regardless of how it was originally
created by the user. For these opera-—
tions, eight buffers are used. The ini-
tial instructioms to read tape f£ill the
eight buffers; subseguently, four buffers
at a time are filled as the other four
are eaptied, to overlap processing time
and input/output time.

After all instructions for the input/
output operations have been issued, both
data sets are closed and all buffers are
released. If the output data set, on di-
rect access storage, is not completed
correctly, the command-system ERASE rou-
tine is called to delete the partial data
set. If the output data set has been
completed correctly, the DSCB now associ-
ated with this data set must be modified,
since it now reflects the organization of
the data set as it was created by VSANM
PUT (vwith page-size records and VS organ-
ization). To correct this DSCB, the
format—-E DSCB that is part of the ocutput
data set is read in by TV, and the DSCB
for the newly-created data set is updated
from the information in the old one. The
DSCB then reflects the structure of the
data set as it was originally created by
the user. A catalog entry for the output
data set is created if required; any
JFCBs created by TV are released.

YV makes a copy of an existing VAM data

set; the copy will also exist as a VS
data set. Initially, VV verifies that
the input data set name is the name of a
YAM data set. If the user does not issue
a DDEF for the specified data set name,
there will not be a JFCB for it. A JFCB
will be created by a call to DDEF {a
catalog entry, to act as an input source,
must exist for the data set if a JFCB is
to be created) . The output data set name
must indicate a new VAM data set. Again,
if no JPCB exists for this output data
set, one is created by a call to DDEF.
The user needs to create a JFCB for the
output data set only if he wants it to
reside on a private volume.

Rhen both data sets have been opened,
the common portion of the input data
set's format-E DSCB is retained for
recreating the data set structure after
the copy operation has been completed.
Data pages to be copied from the input
data set are located by indexing through
the RESTBL; the system's paging facil-
ities read these pages. They are then
written to the output data set with a
VSAM PDT; at this point the output data

set is being treated as a VS data set,
wvith page-size blocks.

When the copy is complete, both data
sets are closed and all buffers are re-
leased. If the output data set has not
been completed correctly, ERASE is called
to delete the partial data set. For nor-
mally completed VV operations, the output
data set's DSCBs reflect the structure of
the data set as it was created by VSAM
PUT (VS structure, page-size records).
Therefore, the DSCB is updated from the
DSCB information retained from the origi-
nal data set, so that structure of the
data set is shown as it was created by
the user. The catalog is updated, if
necessary, and any JFCBs created by VV
are released. :

CDS copies a data set, or member of a VP

data set; it may also copy members of a
partitioned data set (with user data and
aliases) into a second VP data set,
replacing or ignoring duplicate members.
CDS provides the user with the option of
specifying that the original data set (or
member) be erased after duplication; he
may also renumber a line data set while
copying it.

Initially, operands are checked for
validity, and a JFCB is obtained or
created for the input and output data
sets. If the ipnput and output data sets
are both VP and no member name has been
specified, multiple member processing
(copying members with user data and
aliases, if they exist) is assunmed.

For multiple member processing, three
DCBs are opened; one for input, one for
VSAM output, and one for VISAX output.

If no member names have been specified
for the input data set, then every member
found in the input data set's POD will be
copied. Otherwise, only the mesbers
specified will be copied. A FIND for a
member is done, which fills in the input
DCB and obtains the user data for the
member. The output POD is searched to
see if a member with the same name
exists. Then each alias in the input POD
vhich is associated with the member is
checked in the output POD. If a dupli-
cate alias is found, it must be associat-
ed with the same member name in the out-
put POD or processing of the member is
ended. If no invalid duplicate aliases
are found, and the user has not specified
that duplicate members are to be ignoread,
the input member is copied into the out-
put data set using the appropriate output
DCB . When the copy is complete, the
input member is erased if applicable, and
the output member is added to the output
POD with its user data and aliases, using
STOW. Multiple member processing is com—

Commrand System Interfaces &7

plete wvhen all specified members have
been copied.

If multiple members are not being pro-
cessed, the imput DCB is opemned and
checked against the output JFCB. Both
data sets must have the same organization
(VAN or physical sequential). 2Any combi-
nation of VAM data sets may be copied.

If a ¥S data set is being copied to VIS,

ing will be handled by the BULKIO task.
This will not be described here. The WT
command routine, described below, is used
for both public and private data set writ-
ing. VSAM and VISAM are used for opera-
tions on ¥S and VIS data sets, respective-
ly; BSAM is used to control tape I/0, and
BSAM is used to access unit-record devices.

PRINT will print an existing private phys-—

the keylength, relative key position, and
pad must be specified for the output data
set (since these may not be obtained from
the input). In all other combinations,
the output is given the same DCB parame-—
ters as the input. For VS format-U rec-
ords, a LBRECL of one page is used. The
output DCB is then opened.

For physical sequential data sets, SANM
READs and WRITEs are used to obtain the
input records and place them in the out-
put data set. For VYAM data sets, VAN
GETs and PUTs are used. If renumbering
is specified, the input record is obtain-
ed and the nev key is overlaid on the old
before the record is written. Normal
processing ends when the input data set
is exhausted.

When processing is complete, the DCBs
are closed and the input data set is
erased, if specified (not applicable to
rultiple member processing). Control is
then returned to the calling routine.

BULK_INPUT/OUTPUT SERVICES

Because of the suitability of public
storage for the operating environement of
TSS, users may often want to transfer data
sets that are on cards or tape volumes to
public VAM volumes. Alternatively, some
may want to write data sets to tape, punch
them on cards, or print them on the instal-
lation®s high—-speed printer. Some of these
functions can be accomplished by using the
data set copying services. Other optioms,
notably those involving unit-record
devices, are performed using the coamand
systemn®s bulk input-output services. These
services consist of the PRINT, PUNCH, RT,
or WT commands, together with the operator-
assisted card input facility. The user can
issue only the commands associated with the
output of data sets (PRINT, PUNCH, and ¥WT) .
The system operator must initiate the
others.

Bulk Output: #When the user issues a PRINT
or PUNCH command, the action taken depends
on the nature of the data set to be printed
or punched. Private data sets will be han-
dled by the PRINT and PUNCH routines out-
lined below, and a separate nonconversa-
tional task will be created for this pur-
pose. Public data set printing and punch-

48

ical sequential, virtual sequential, or
virtual index sequential data set, omn an
installation’s on-line high-speed print-
er. If a physical sequential data set is
being used for input, it must be on a
tape volume. Since a physical sequential
data set can be allotted to only one task
at a time, and the nonconversaticnal task
created by PRINT will require it for
input, specifying a physical seguential
(PS) data set to be printed will result
in the release of any JFCB for the data
set within the task which issued the
PRINT. Also, if a PS data set is not
cataloged, it will be automatically cata-
loged when PRINT is issued; it will be
erased wvhen the nonconversational PRINT
task is completed.

On initial entry to the PRINT routine,
this command determines the devices to be
used and the input data set organizationj;
it issues DDEFs for the input and output
data sets, opens these data sets, and
obtains any buffers that will be needed.
The MSAM SETUR macro instruction is is-
sued so that the printer has the required
device configuration.

After setting up an identifying output
line, PRINT obtains input records by an
internal buffering technique (using VSAE
or VISAM GETs, and BSAM WRITEs and
CHECKs) , and writes them to the printer
with internal buffering (using KESAK POUTs
and INTINQs). PRINT continues to loop in
this manner, until the last record has
been printed; then, it indicates any rec-
ords that were received in error on the
task's SYSOUT. The input and output data
sets are closed, and the nonconversation-
al task is finally logged off.

PUKCH is used t» punch a cataloged VS or VI

private data set into cards on an instal-
lation®s high-speed punch. When the npon-
conversational task created by this com—
mand receives control, it calls DDEF to
define the input and output data sets; it
then opens each of these data sets, and
issues an MSAM SETUR for the punch (out-
put data set), to ensure that the proper
card form is mounted. One logical record
at a time is then read, by VSAM or VISAK
GETs; after each record is read, control
options are tested, and the record is
written to the output buffer with MSAM
PUT. This reading and writing continues

until all input records have been pro-
cessed; then, input and output data sets
are closed, and final messages are writ-
ten to SYSOUT, including a count of the
number of records read, punched, and
skipped, and the number of error records.
An exit is then taken, and LOGOFF called.

WT writes an existing VS or VIS data set on
tape, for eventual printing on a high-
speed printer. The output data set is
automatically formatted into primnt lines,
the format required for high-speed print-
ing. After the operations necessary to
log on the nonconversational task, WT
calls DDEF to define the input and output
data sets, and opens these data sets and
output buffers with a BSAE GETBUF macro
instruction. A blank line is constructed
to provide for initial page positioning.
The first record is cobtained with a VSAM
or VISAM GET. An internal buffering rou-
tine writes the records to the output
data set, using the BSAM WRITE and CHECK
macro instructions. After all input rec-
ords have been read and written onto
tape, the output buffers are released,
the input and output data sets are
closed, and, if requested, the output
data set is cataloged. WT then writes on
SYSOUT the number of records read, writ-
ten, and skipped, and the number of error
records. Then LOGOFF is called to termi-
nate the task.

Bulk Input: If the user has data sets on
tape or cards that he wants to have read
into the system as bulk input, he must sub-
mit them together with any reguired infor-
mation to the system operator, who will
then enter and catalog them under the
user's ID (userid).

RT is issued by the system operator, on be-
half of a user, to read a physical
sequential data set from tape, convert it
to a VAM organization (VS or VIS), write
it to a public VA volume, and catalog it
in the user'"s catalog. VIS data sets
will be built as line data sets.

When the system is ready to process
this command, it creates the necessary
nonconversational task, and requests the
operator to mount the input tape. After
calling DDEF to create the JFCBs for the
input and output data sets, RT opens both
data sets and obtains input buffers with
the GETBUF macro instruction. Input rec-
ords are read by an internal buffering
routine, which uses the BSAM READ and
CHECK instructions. The records are then
written out with the VSAM or VISAM PUT;
if they are line data sets, the record
lengths and line numbers are inserted.

When all input data has been read, the
input and output data sets are closed,

the output data set is cataloged (in the
user's catalog), and the input buffers
are released with the BSAM FREEBUF macro
instruction. Then the record counts and
an end-of-task message are written to
SYSOUT, and LOGOPF is called to terminate
the nonconversational task.

OPERATOR-ASSISTED CARD INPUT

The user can submit his data sets on
punched cards to the system operator, who
will then enter them into the system
through the installation's high-speed card
reader. Two types of input are permitted:
non—-conversational SYSIN data sets, and
data-card data sets. The two types may be
interspersed in any order within a batch of
cards. No command is necessary to read the
cards into the system; control over the
reading of these card data sets is part of
the function of the bulk I/0 task.

A SYSIN data set contains all coamands
needed to run a nonconvers-tional task.
When one of these data sets is read in, it
becomes the SYSIN data set of a nonconver-
sational task, with the submitter’s user
ID. It will be executed as soon as space
is available. After execution, the SYSIN
data set is eliminated from the catalog and
system storage.

A data—card data set contains any infor-
mation the user wants read into public
storage as a cataloged data set. As it is
read, a virtual storage data set is created
in public storage and cataloged in the
catalog of the user who submitted the data
set. It will reside in storage until it is
specifically erased. (For details of the
formats of both card data sets, see Command
System User®s Guide.

DATA SET CATALOGING SERVICES

The command system gives the user the
facility to explicitly request that a cata-
log entry by created, altered, or deleted.
The commands for these purposes are: CATA-
LOG, DELETE, and EVV. The ERASE command,
in addition to freeing all direct access
storage assigned to a specified data set,
deletes from the user'®s catalog the entry
associated with a data set.

CATALOG creates or alters catalog entries
for specific data sets. The user can
also create a data-set superstructure,
called a generation data group (6DG), to
exercise catalog control over future
structural elements (generations).

This command can be used to change a

data set name in an existing catalog
entry for both VAK and physical sequen-

Command System Interfaces 49

tial data sets (except ASCII tapes).
However, with this command, a new catalog
entry can be created only for physical
sequential data sets. A catalog entry
can be created, with the EVV command, for
a VAM data set for which no entry exists
{(either because one was deleted, or be-
cause the data set was created at another
installation). When a data set resides
on a direct access device and its name is
being changed, the DSCB on the volume for
that data set is updated to reflect the
change.

When a2 GDG is being created, the user
rust initially issue the CATALOG command,
naring the new GDG, to set up an index
entry in the catalog; he also indicates
at this time such control information as
the number of generations to be retained
as part of the GDG. Other data sets can
then be cataloged as new generations of
the GDG.

DELETE removes a data set entry from a

50

user's catalog. An entry for any private
data set can be removed with this com-—

mand. The origimal catalog entry for a
public data set, however, cannot be
deleted; this is a protection against the
system "™losing” the data set (unlike a
private data set, the JFCB for a public
data set does not contain enough informa-
tion to locate the data set). The sharer
of a public data set may delete the entry
in his catalog; however, the data set
owner’s entry is not affected (the
sharer®s entry comnsists only of pointers
to the owner's catalog entry). If the
owner of a public data set attempts to
delete his catalog entry, he will receive
a diagnostic message; no action will be
taken.

EVV catalogs all the VAK data sets on a

private VAM volume. The system®s paging
facilities are used to read in the DSCBs
associated with each data set on the vol-
ume; as each is read in, the data set as-—
sociated with it is cataloged, based on
the information in the DSCB. When proc-
essing is completed, the private device
that was required for mounting the pri-
vate volumes is released.

FORTRAN users of TSS have little direct
contact with the system's data management
facilities. They must issue a DDEF for any
data sets (except SYSIN and SYSOUT) that
they expect their program to access, and
they must specify in the DDEF a data
definition name (of the form PTXXPYYY) .
Beyond that, the PORTRAN library modules
provide the major data management inter-—
face; within these, the I/0 control module
(CHCIC) is the primary point of interac-—
tion. (A description of how the FORTRAN
user of TSS specifies data set character-
istics is in FORTRAN Progqrammer®s Guide,
GC28-2025.)

FORTRAN I/0 CONTEROL

The FORTRAN I/0 control routine fulfills
1/0 requests made through other I 0 library
routines by using the data management macro
instruction facilities of TSS. The data
management facilities to be used are deter-—
mined by the type of I/0 statement issued
in the user®s program and by related DDEF
commpands that define such things as the
type of records being tramsferred, and the
manner in which they should be processed.

In general, either VAM or BSA¥ macro in-
structions may be used. When BSAM is used,
the control routine employs its own intern-
al buffering to speed up processing. The
list of PORTRAR statements, below, identi-
fies the principal macro instructions used
for each statement; of course, other in-
structions, such as OPEN and CLOSE, must be
used in conjunction with these.

READ obtains a logical record from a user-
specified input source by usipg the READ,
GATRD, or GET macro instruction.

WRITE initializes writing a logical record
by establishing pointers to the output
buffer area. Subsequent output process-
ing is performed by using the WRITE,
GATWR, or PUT macro instruction.

REWIND repositions the user-specified vol-
ume of one or more data sets to the first

FORTRAN & PL/I (F) INTERFACES

record of the first data set by using the
POINT or SETL macro instruction.

BACKSPACE repositions the user-specified
data set to the previous logical record
by using the NOTE, POINT, SETL, and BSP
macro instructions.

ENDFPILE defines the end of the user-

specified data set by using the WRITE and
STOW macro instructions.

PL/I (F) IRTERFACES

Like FORTRAW, PL/I (F) provides library
modules that greatly simplify the use of
the system®s data management routines. The
user need only issue DDEFs describing each
data set, other than SYSIN or SYSOUT, that
he expects his programs to access, and fol-
low PL/I (F) language requirements for
specifying data characteristics. (PL/I (F)
Programmer®s Guide and PL/I (F) Language
Reference Manual tell how to specify data
characteristics from within the PL/I (F)
langurage.)

Por the DISPLAY statement, library
module IHEWDSP is a direct interface be-
tween the compiled code and the GATE macro
facilities. PFor STRERM I/0, there is no
single interface with compiled code; the
type of STREAM I/0 statement being executed
determines which library module is invoked
by compiled code. PEach STREAM I/0 state-
ment finally invokes module IHEWIOF to
issue the macro instruction. For RECORD
1/0, the single interface with compiled
code is module IHEWION, which interprets
the I/0 request, verifies its validity, and
calls the library module that issues the
appropriate macro instruction.

Table 4 summarizes the PL/I (F)} inter-
face with data management.

Command System Interfaces 51

Table #. PL/I (P) Interface ¥With Data Management

r R IR] ¥ R j 1
! TYPE] FPILE | ACCESS i MODULE ISSUING } PL/I I/0 | MACRO |
|] OF I/0 |} DECLARATION |} METHOD USED | MACRO INSTRUCTION | STATEEENT | INSTRUCTION |
| i L L i) '}
] L] T LA L T L}
] DISPLAY | i TAMII ! IHEWDSP } DISPLAY } GATWR and/or I
i | I | | | GATRD |
! $ + + $) —
| STREAHM | i QSAM, | IHEWIOPF } GET } GET (move mode) |
I 1 ' VSAM, or | ! | or SYSIN !
| | I TAMIX I | | |
I I ! | I + {
} | i } | POT | POT (move mode) |
] | or GATWR

1 : 3 ! ; ,3 2
} RECORD f CONSECUTIVE,] QSAH ! ITHEWITG { READ] GET I
] | SEQUENTIAL, | or | } | (locate mode)]
] | BUFFERED i VSAM i = + =
I) ! | ! WRITE | PUT |
] § | i I | (locate mode) 1
| | I I - $ 4
i | § H 1 LOCATE } PUT]
!] | I f ! (locate mode) |
! 1 ! i t i {
1 | | | | REWRITE | PUTX 1
i I t } } } —
!] CONSECUBTIVE, | BSAM ! IHEWITB ! READ | READ |
i } SEQUENTIAL, | ! i $ {
] ! UNBUFFERED | !] WRITE } WRITE }
! } | I F 4 4
| | ! ! | RBREWRITE | WRITE |
i F + } + } 4
]] INDEXED, I VISAM } IHAEWITD | READ } ESETL or SETL l
1 | SEQUENTI AL, 1| 1 (for format-F) i } to position, 1
; { BUFFERED or | 1 THEWITN | | GET I
J | UNBUFFERED | ! (for format-Vv) { | (locate mode) |
! I ! ! 1 ! to read 1
1 ! I } F + 4
1 I ! ! | WRITE | POT 1
I § I } } { (locate mode) l
i | I ! F + 4
} i } 1 i LOCATE } PUT]
| } § 1 i | (locate mode) }
I ! | i } }]
! | i i I REWRITE } WRITE i
! | 1 ! F } 2]
! ! I I } DELETE | DELREC 1
! + } i t } 4
i { INDEXED, i VISAM ! IHEWITE | READ I READ]
}] DIRECT, 1}] {for format-F) } } 4
} } BUFFERED or | | IBEWITHM i WRITE | WRITE i
i } UONBUFFERED | ! (for format-v) - 4 4
I | | | | REWRITE | WRITE 1
! 4 ! I 2 1 4
| | | | ! DELETE] DELREC 1
1 1 i A i L |

52

Time Sharing uses several groups of
labels to identify direct access and mag-
netic tape volumes, and the data sets they
contain, on secondary storage. The labels,
used to locate the data sets, are identi-
fied and verified by the label processing
routines.

The use of standard labels enables the
system to identify volumes and ensure that
the correct volume is being used and that
no current information is inadvertently
destroyed.

DIRECT ACCESS VOLUMES

Direct access volumes play a major role in
¥SS; they are used to store

e Privileged service routines
e The system catalog
s The system library

In addition, all public storage resides
on direct access volumes. Al1ll data sets in
public storage are organized as virtual
access method (VAM) data sets. A direct
access volume used for private data sets
may contain all VAM type or all physical
sequential type data sets but not both
types on one volume.

VYAM Data Sets

With the exception of tracks 0 and 1 on
cylinder 1 (which are reserved for system-
generated volume information), each VAM-
formatted direct access volume is arranged
into a succession of contiguous pages, each
8096 bytes long. The first accessible page
of the volume (which starts on byte 1,
track 2, cylinder 1) is referred to as rel-
ative page 0, and all other pages are numk-—
bered consecutively. Other pages need not
begin on track boundaries. Locations in a
volume are referenced by relative page num-
ber rather tham by cylinder and track
numbers.

The standard volume label, resident on
cylinder 0, track 1, contains a pointer to
the page assignment table {(PAT) which is
one page long for volumes of type 2311, two
pages for type 2318, six pages for type
3330, twelve pages for type 333B, and six-
teen pages for type 3350. The page assign—
ment table contains a one-byte field for
each page in the volume, arranged in

Rppendix A:

APPENDIX A: SECONDARY STORAGE LABEL FORMAT

sequence, and is used for the allocation of
the pages on the volume. This field indi-
cates whether the page is free and availa-
ble for writing, in current use as a data-
set page, in use as a DSCB page, or
unavailable.

A data set page contains part of a data
set. A data set control block (DSCB) of
Format-E is associated with each data set.
Each DSCB is 256 bytes in extent vwith a
4a-byte key containing the data set name.
DSCBs reside on DSCB pages, 16 DSCBs to a
page. They are not necessarily on the same
volume as the data sets (or individual
pages of the data sets) to which they
refer. The 212-byte data portion of the
DSCB contains the description of the data
set and its location in storage, by volume
and page numbers. If the DSCB is not long
enough to contain the list of all page num-
bers, the additional information is con-
tained in one or more type-F DSCBs.

When a data set is created, space is
allocated for its data information and for
the associated DSCB. A data set descriptor
(DSD) is placed in the user's catalog entry
and gives the location of the format—-E DSCB
vhich in turn gives the location of the
data set's data pages.

VAM data sets on public storage are
always mounted, but VAM-formatted private
volumes must be mounted hefore the data can
be accessed. Accordingly, the DSD for a
data set on a private volume must also con-
tain a pointer to the volume on which the
data set resides, if it resides on one vol-
ume, and to the volume on which the E-
format DSCB resides, if the data set
extends over more than one volume.

The DSCBs contain pointers to the public
volume table (PVT) which is maintained by
the system in shared virtual storage.
Volumes are referenced by relative volume
numbers which the public volume table
translates into symbolic volume addresses.

Standard Volume Label (Figure 12): The
standard volume label resides on cylinder
0, track 1 of the volume. The fields in
the label are the same as those in the mag-
netic tape volume label, described in table
%4, with these exceptions:

Contains the relative
page number of the be-
ginning of the PAT.

PAT page
pointer

Secondary Storage Label Format 53

Device type

Volume status
indicator

Public volume
number

VAN format
indicator

Note: System progra
Sharing Support Syst
an 84 byte volume la

Contains the device
type: 2311, 2314,
3330, 333B, or 3350.

Indicates the status of
the volume:

00 = private volume
20 = public volume

Contains the relative

volume number of this

volume within a set of
public volumes.

Indicates VAM format:
ry2e VAM2 format

mRBers using the Time
em (TSSS) must expect
bel; the label, as de-

scribed in Pigure 12, will be prefixed by a
key of characters "VOL1" and the fields
will be displaced by 4 bytes.

Format-E DSCB_ (Figqure 13): This format is
commpon to all VA¥ data sets. The format-E
DSCB is the data set label; it corresponds
to a tape header label. Also, it describes
up to 38 pages of the data set. The format
of the extermnal page entries is described
in Figure 14.

Format—-F DSCB (Figure 15): This format is

used to describe additional pages of a VAM
data set, if there are more than can be de-
scribed in the format-E DSCB. If addition-
al space is needed, this DSCB will point to
another format-F DSCB. The format of the
external page entries is described in
Figure 4.

VOL ! Volume PAT . Volume Public Reserved Owner name- | VAM Reserved
(volume . Volume Device
(label label serial N page ' status volume | (currently | and-address |Format {currently
identifier) ake number | SSCUTTY pointer ype indicator| number | blank) | code indicator | blank)
number)
1-3 4 5-10 1 12-13 14-17 18 lr 19-20 21-41 42-51 52-53 54-80
Figure 12. Standard Volume Label (VAM only)
Data | System | Pad No. of bytes | Record | Spare | Data {12 bits unused} | Spare | Key Key Secondary | No. of | Mo. of No. of No. of
set code for used in last format sef Record length length | location | allocation | data directory | overfiow | private
name index data page organi= | (20 bits) pages | pages pages vols
sequential zation y
1-44 | 45-57 58 59-60 61 62 63-64 65-68 &9 70 71=-72 73-76 77-78 | 79-80 81 82
£ { {4
7 T]
Total no. of Spare | Refer- | Change | Spare | List of volumes for private data set | External page | Pointer | DSCE | DSCB | Check
pages assigned ence date (each 6 bytes, variable length) I entries, each | to next | type iD sum
(Data set size date J 4 bytes long DSCB if
at CLOSE) External page entries {for public vols) (on full-word | chained
{each 4 bytes long) boundaries)
4
R
83-84 85 86-88 | 87-91 92-96 97-248 249-252 | 253 254 12553230
b
Pigure 13. Pormat-E DSCB
0 15 16 31 (1
7 17 !
/ Relative External List of volumes for private data set I External page | Pointer DSCB | DSCB Check
: / volume page (each 6 bytes, variable length) ctd from | entries, each to next type 1D sum
Z number number Format-E DSCB if required I'4 bytes long DSCB if
(2) / (12 bits) (16 bits) (on full-word | chained
External page entries each boundaries)
{ R 4 bytes long (on full-weord boundaries)
Assignment flag: { ¢
00 i page is assigned and in use 1-248 " 249-252 | 253 | 254 | 255-256
10 if page is assigned and unused { S

Figure 183. External

58

Page Entry

Figure 15.

Format-F DSCB

Physical Sequential Data Sets

Bach private storage volume that is for-
matted for the physical sequential access
method has a volume table of contents
(VTOC) that describes its contents; the
VTOC contains all data set control blocks
(DSCBs) for the data sets contained on that
volume. The VTOC may be located anyvhere
on the volume, starting on a track bounda-
ry-. It may vary in size, but always has an
integral number of tracks. The starting
address of the VTOC is recorded in the
standard volume label . (refer to Figure 16).

The standard volume label resides on
cylinder 0, track 0, of the volume. When
the volume enters the system, the standard
volume label and the VTOC are created. All
space on the volume (except the space occu-
pied by the volume label and VTOC) is then
available for allocation.

The format of VIOC is specified when the
volume enters the system. 1All records have
a 883-byte key and a 96-byte data portiom.
Each of these records becomes a DSCB, of
varying type, and describes the attributes
and extents of a data set.

Each DSCB contains the name, descrip-
tion, and location on the volume of its as-
sociated data set. It is created by the
system when the data set is stored on the
volume. The DSCB serves as the data set's
label and contains information similar to
magnetic-tape labels.

Cylinders

Cylinder 0-
Track O

Standard Volume Label

Tracks

-
[
K

VTOC DSCB

it
k

First Space-Accounting DSCB
VTOC

First DSCB on Volume

Second DSCB on Volume
AN A NN

Last DSCB on Volume

Y

Blank Storage Area
for Data Sets

FPigure 16. Direct Access labels for Phys-

ical Sequential Data Sets

Appendix A:

The DPSCBs are entered into the ¥TOC as
they are created and are placed in the
first available space, starting with the
VTOC-DSCB (a format-4 DSCB). Available
DSCB plots are recognized by a key field of
binary 0s. When a data set is deleted, its
DSCB is overwritten with 0s, making it a
format-0 DSCB. As available extents in-
crease, more direct access device storage
management (DADSM) DSCBs are entered into
the first available slot. At any time, the
VTOC has a mixture of formats-1, -3, -4,
and -5 DSCBs, and "holes" for format-0
DSCBs. These formats will be explained
below.

DSCBs in formats -3 and -5 will appear
to have a key length of 44 bytes, but por-
tions of the key may actually contain data.
The DSCBs are all assigned the same format
to provide the flexibility to convert an
available DSCB (format-0) to another type
of DSCB, and back again, without the neces-
sity for changing the format or modifying
the channel programs that act upon them.

Standard Yolume Label (Figqure 17): Always
the third record on cylinder 0, track 0, of
the voluere; this label identifies the vol-
ume. The fields in the label are the same
as those in the magnetic tape volume label,
described in Table 4, except for bytes
12-21, which contain the address of the
YTOC.

Note: System programmers using the Time
Sharing Support System ({TSSS) must expect
an 84 byte volume label; the label as de-
scribed in Pigure 17, will be prefixed by a
key of characters 'VOL1' and the fields
will be displaced by 4 bytes.

Format-0 DSCB: This is the standard format
of a data record in the VTOC that is not
currently occupied by any other format of
DSCB. The key and data portions contain
binary Os.

Format—1 DSCB (Figqure 18): This format is
comron to all physical sequential data
sets. It consists of a U4l4-byte key field
and a 96-byte data field. The format-1
DSCB is the data set label for direct
access volumes; it corresponds to a tape
header label. Also, it describes up to
three sets of contiguous tracks or cylin-
ders on which the data set resides.

Format-3 DSCB (Fiqure 19): This format is

used to describe extra extents of a data
set, if there are more than can be describ-
ed in the format-1 DSCB. If additional
space 1is needed, this DSCB will point to
another format-3 DSCEH.

Format-4 DSCB (Fiqure 20}: This format is
the first DSCB in the VTOC of physical

sequential volumes.

Secondary Storage Label Pormat 55

1
vOL
(volume Vo!ume Volume | VTOC
(1abel label serial . .
identifier) | '9°¢ number | S8CUrity | pointer
number)
1-3 4 5-10 11 12-21

Reserved Owner name~ | Reserved

{currently | and-address {currently

blenk) code blank)
32-41 42-51 52-80

Figure 17. Standard Volume Label (Physical Sequential Data Sets on Direct Access)
Data set F1 Data set Volume Creation Expiration Number of Not Spare System Reserved
name (hexa- serial sequence | date date extents on used code

decimal) number number volume
format
identifier
1-44 45 46-51 52-53 54-56 57-59 60 61 62 63-75 76-82 \)
Data set Record Option Block Record Key Key Data set Original | Secondary Last
type format code length length length location indicator request allocation record
for space pointer
z 83-84 85 86 87-88 89-%0 91 92-93 94 95 96-98 99-103 \
Spare Extent Extent Lower Upper Additional | Additional Pointer
type sequence limit timit extents extents to next
indicator number (same as (same as DSC8
bytes bytes record
106-115) 106-115)
) 104-105 106 107 108-111 112-115 116-125 126-135 136-140
FPigure 18. Format-1 DSCB
03030303 Extent (in key) — F3 Additional extents;{ Pointer to next
(hexadecimal) 4 groups of (hexadecimal) 9 groups of fields format -3
fields similar to format identifier | similar to bytes DSCB
bytes 106-115 in 106-115 in
format—1 DSCB format-1 DSCB
1-4 5-44 45 46-135 136-140
Figure 19. Format-3 DSCB

56

Key field F4 Last active Available Next Number of VTOC 01

(contains (hexadecimal) format—1 DSCB available available indicators (hexadecimal)

hexadecimal format identifier | or format—A records alternate alternate number of

04s) DSCB track track extents

1-44 45 46-50 51-52 53-56 57-58 59 60
Reserved Device Spare Gross Pointer to VTOC extent— Spare
constants available format—6 same as bytes
space DSCB 106-115 in
format—1
DSCB
(/ 61-62 63-76 77-95 96-100 101-105 106-115 116-140

Figure 20. Pormat-4 DSCB

05050505 Available extent Available F5 Available Pointer

(hexadecimal) extents (in (hexadecimal) extents (same to next

Key Relative Number Number key) — same format format as format—5

identification track of full of additional form as identifier bytes 5-9) DSCB

address cylinders tracks bytes 5-9
1-4 5-6 7-8 9 10-44 45 46-135 136-140

Figure 21. Pormat-5 DSCB
Format-5 DSCB (Pigqure 21): This format is Single Data Set/Single Volume: The volume
always the second VFOC-DSCB for a volume begins with a volume label. The data set
contairing physical sequential data sets. begins with a data set header label, a user
It describes available extents on the vol- header label (optional), and a tape mark.

ume. If additional extents are needed,
this DSCB is chained to other format-5
DSCBs.

MAGNETIC TAPE VOLUMES

Magnetic tapes may be unlabeled or have
standard labels. The control program sup-—
plies routines for automatic positioning
and volume switching of such volumes.

A1l standard tape labels are 80—
character records, wvritten in extended
binary coded decimal interchange code
{EBCDIC) omn nine-track tape units, and in
binary coded decimal (BCD) or the American
National Standard Code for Information In-
terchange, ANSI X3.4-1968 (hereafter re-—
ferred to as ASCI1) on seven—track units.
The tape label is recorded in the same
density as the data on the tape, specified
in the DDEF command.

Standard Tape Organization

The organizations of standard labels and
data on magnetic tape, for the tape organi-
zations below, are illustrated in Figure
22.

Appendix A:

The entire content of the data set is next.
The last data block is followed by a tape
mark and an EOF trailer label group, which
is followed by the two tape marks that are
the last records on the volume.

Single Data Set/Kulti Volume: This is a

simple expansion of the preceding descrip-
tion, where the amount of information re-
quires more than one volume. All volumes,
except the last, of the set will contain
the same organization as for a single data
set/single volume, except that the trailer
will be of an EOV trailer label group. The
last volume will have the same organiza-
tion, except that the trailer group will be
an EOF trailer label group, followed by two
tape marks.

Multi-Data Set/Single Volume: The volume
begins with a volume label. Every data set
will start with a data set header label, a
user header label (optional), anrnd one tape
mark. The data set follows. Every data
set (except the last) will conclude with a
tape mark, an EOF trailer label group, and
another tape mark. The last data set is
the same, except that the EOFP trailer label
group is followed by two tape marks.

Secondary Storage Label Format 57

1. Single data set/single volume

Vv H T T E T T
e} D M Data blocks M O M M
L R F
2. Single data set/multi-volume (Volume 1 of 2)
\ H T T E T
O D M First part of data set N M O M
L R \Y
{(Volume 2 of 2)
\ H T T E T T
o} D M Last part of data set N M O M M
L R F
3. Multi-data set/single volume
\Y H T T E T H T T E T T
®) D M Data set A M O M D M Data set B M O M M
L R F R F
4. Multi-data set/multi-volume set (Volume 1 of 3)
\ H T T E T H T T E T
o] D M Data set A M O M D M Datc set B M @] M
L R F R \4
(Volume 2 of 3)
\ H T T E T
O D M Continuation of data set B M O M
L R v
(Volume 3 of 3)
\Y H T Last part of T E T H T T E T T
o D | M astpart o M o | M D M Data set C M o | M M
data set B
L R F R F
Note: This is an example (Volumes 1 through 3, inclusive} of the successive recording of data sets on physical volumes to maximize tape use.

Figure 22.

Multi-Data Set/Mnlti Volume: This voluome
is similar to the previous one, except that
the amount of information reguires more
than ore volume. These rules rust be fol-
lowved in producing the additional volumes:

1. Each volume, except the last, must
conclude with a tape mark, an EOV
trailer label group, and a tape mark.

2. Rach volume begins with a volume
labhel.

3. The initial data set header label on

each volume, except the first, is a
repetition of the last data set header
label on the previous volume, with the
exception of the volume sequence
number.

58

Standard Label and Data Organization on Magnetic Tape

Yolume Label

The volume label identifies a volume and
its owner, and is used to verify that the
correct volume is mounted. It can also be
used to prevent use of the volume by au-
thorized progranms.

Tables 5 and 6 show the organizatiomn of
standard tape labels and describe their
fields.

A tape using standard labels is identi-
fied as such by the system when it reads
the initial record, and determines that it
is a volume label by finding that these
criteria have been met:

o Initial record consists of 84
characters

e First four characters of the record are
VOL1Y

The system automatically checks the vol-
ume label to ensure that it is in the prop-
er format; if the format is correct, the
system checks the label informatiocn.

Should the check indicate am error (for ex-
ample, the system finds that the wrong vol-
ume has been mounted), it issues a message
to the operator. Similarly, messages are
issued if errors are detected in other
label and format checks.

Data Set Header Label Group

The data set header label group consists
of HDR1 and HDR2. These labels are created
by the system when the data is recorded.
HDR1, as shown in Tables 7 and 8, contain
system data and device~dependent informa-
tion. HDR2, shown in Tables 9 and 10, con-
tain data set attributes. If there are no
user header labels, HDRZ is followved by a
tape mark. The group can be used in
forward-reading operations to:

s Locate the data set
e Verify reference to the data set

e Provide information for the DCB.

User Header lLabel Group

A maximum of eight user header labels
may follow the data set header label group.
The labels are written by the system, as
directed by the problea program that rec-
ords the tape. The group is ended by a
tape mark.

When the tape is read, the user header
label group is made available to the pro-
blem program by the system; the format of a
label is shown im Table 11 .

Data Set Trailer Label Group

The data set trailer label group con-
sists of two labels that duplicate the data
set header labels to facilitate backward
reading of ithe tape. The format for the
trailer labels is identical to the data set
header labels, except for the fields shown
in Table 12. These labels duplicate the
data set header labels to facilitate back-
wvard reading of tape. Location and verifi-
cation of the data sets can also be
achieved with data set trailer labels.

User Trailer lLabel Group

A mraximum of eight user trailer labels
can, optionally, follow the data set trail-
er label group. They are written exactly

Table 5. EBCDIC Volume Label Format (Magnetic Tape)

¥ k] ¥ L 3
} Field | Position | I |
| Number | (Bytes) | Name i Dse !
L .] i 1 F 3
L e 1] ¥ L] ~1
H 1 i 1-3 | Yolume label identifier | Contains "VOL"™ to indicate record is i
| } 1 | volume label i
i } + } 1
i 2 i 4 } YVolume label number { Contains "1" to indicate this is first |
] | | { volume label i
I 1 + \ 4
| 3 i 5-10 | Volume serial number } Contairns unique identification code, i
i i }] assigned when volume entered system; it |
} H H { can be copied on external surface of !
} ! H | reel for visual identification: field i
1 ! i { normally numeric (000001-999999), but H
i } | | may contain any six alphameric I
! I I | characters i
F } + t 4
| 4 (I B | { Not used by TSS i Recorded as EBCDIC 0s |
4] i. x]
¥ L ¥ ¥ k]
{ 5 I 12-21 § Reserved | Recorded as blanks i
£ 4 3 i ;]
L A R L] ¥
i 6] 22-31 | Reserved for manufac-] Reserved for future use; must be blank |
i 1 } turers y 1
i + + t 4
i 7 I 32-41 | Reserved { Reserved for future use; must be blank |
i i i 3 1
g 1 LA L] L
i B t 42-51 §f Owner name-and-address | Contains nnique identification of owner |
} i } code] of volume !
i + + + 4
i 9 { 52-80 | Reserved ! Reserved for future use; must be blank |
[3 -] 3

Appendix A:

Secondary Storage Label Format 59

the same as the user header labels, except A common use of these labels is to store

for the difference noted in Table 13. control information (for example, the num-—
ber of records in the data set, or the num-
User trailer labels specify information ber of read-errors encountered in reading
pertaining to the data sets on the volume. the data set).

These labels contain information that can
not be put into the stamndard header labels
or into the records themselves.

Table 6. ASCII Volume Label Format (Magnetic Tape)

L A] v L] 1
} PField } Position | i 1
| Number | (Bytes) 1 Name ! Use |
F + } + —4
[1 I 1-3 | Volume Label Identifier | Contains "VOL" to indicate record is i
1 ! I | volume label I
1 1 1 1 '
1 J A L | L] L
1 2 I & i Volume Label Number] Contains ™1" to indicate this is first |
I 1 1 { volume label |
1 i 3 . | ¥]
¥ 1 ¥ ¥ ¥
1 3 i 5-10 | Volume Serial Number { Contains six alphameric characters per- |
I | | } manently assigned by the owner to iden— |
I i I | tify this volume i
1 1 1) 1 1
| 8 T L] L] I
[q] 11 | Volume Accessibility ! An alphameric character indicating]
I i | | restrictions on access to the volume. I
H I | ! A blank indicates unlimited access; any |
! i] | other character indicates special han- |
i } | } dling according to the agreement be- }
I | I | tween interchange parties. |
1] b 1 ¥]
L L L) ¥ L3
1 5] 12-31 |} Reserved for future | Must contain blanks }
!] { standardization])
' 1 L 1 i |
L L4 L 4 L 1
i 6] 32-37 { Reserved for future] Must contain blanks }
! } | standardization] |
L 1 1 4 3
L LB v ¥ L]
1 7 | 38-51 | Owner Identification | Contains unigue ID of owner of volume !
L i 1 i —d
] L] L 1) Bl
i 8 | 52-79 { Reserved for future | Must contain blanks i
| I | standardization 1 |
F } } f —
} 9] &0 | Label Standard level | May contain a "1™ or blank. One (1) |
] I I] indicates volume labels and data for-— |
[| } { mats conform to this standard. Blank !
! | | |} indicates labels and data formats re- I
!) 1 | quire agreement of interchange parties. |}
4 L L i 1 J

60

Table 7.

EBCDIC Data Set Header-1 Label Format

rield | Position
Number |} (Bytes)

Name

Use

¥ L L 3
i I | I
| I | 1
} - } + 4
] 1] 1-3 { Label identifier | Contains "BDR"™ to indicate this is !
I I | | header label I
L H 1 1 ’ 3
| L4 ¥ B
! 2 1 &] Data set label number | Contains "1" to indicate this is first |
{] 1 H | data set header label |
[1 i] i |
L LB ¥ L) L
{ 3 1 5-21 |} Data set identifier | Identifies data set; may contain only i
! } | } alphameric characters I
} } 4 } —
1 q i 22-27 | Data set serial number | Contains same identification code as in |
!]])} field #3 of the imnitial volume label of |
[i] ! the volume on which the data set]
J I | | Tesides or of the first volume of a !
| } ! { multidata set aggregate !
3 1 d L 1
¥ 1 A 3 1
) 5] 28-31% ! Volume sequence number | Indicates volume on which data set is i
1 ! l ! recorded, relative to volume on which 1
1 l { | data set or aggregate beginmns I
['y 1 1 I
t 3] v L L
i 6 } 32-35 | Data set sequence | Indicates position of data set relative |
[] | number | to first data set in aggregate; range i
L] i ! { from 0001 to 9999 !
i] i 1)
= v B 4 I
] 7] 36-39 } Generation number | Indicates generation number (0001-9999) |
i i I] of data set i
F n } + 4
H 8] 40-41 { Version number of] Indicates version of generation of data |
eneration set
N S | ;
! 9] 42-47 { Creation date | Indicates year and day data set was i
] ' H | created; recorded as bYYDDD (YY is I
} }] } 00-99 and DDD is 001-366) 1
1 L A 1 .]
L] 1] v L] L
1 10 | 48-53 | Expiration date | Indicates first day tape may be over- !
! ! | | vritten; recorded as bYYDDD |
F { } + —
) 1" |1 54 | Rot used by TSS | Contains EBCDIC 0s i
' 4 + } —
1 12] 55-60 | Unused } Contains 0Os |
k1 i 1 1 1
LI L] v ¥ L
| 13] 61-73 | System code] Contains unique idemntification of pro- |
! | | | gramming system |
L] i 1 2
L ¥ L 1] L
] 1 { 74-80] Reserved } Reserved for future use; must be blank |}
1 1 A 1 3

Appendix A: Secondary Storage Label Format 61

Table 8. ASCII Tape Data Set Header-1 Label Format

T) R i] L]
! Pield | Position | ! {
| Number |} (Bytes) 1 Name ' Use |
k -+ } + 4
i 1 | 1-3 } Label identifier | Contains "HDR™ to indicate this is !
H i | } header label |
I § 1 t 4
{ 2 1 & | Data set label number | Contains "1 to indicate this is first |
] i } } data set header label }
3 + + t N
| 3 | 5-21] Data set identifier { Identifies data set; may ~omntain only |
|] i | alphameric characters l
F } + \ 4
1 4 | 22-27 | Data set serial number | Contains same identification code as in |
! l | { field #3 of the initial volume label of |
' | i § the volume on which the data set i
i i 1 | resides or of the first volume of a |
1 i | { multidata set aggregate i
1 L A1 1 i 1
L LA ¥ T A
1 5] 28-31 | Volume sequence number | Indicates volume on which data set is i
] i i)} recorded, relative to volume on which }
i 1 } } data set or aggregate begins |
L i 5 i]
1) kA L T L
| 6] 32-35 | Data set seguence] Indicates position of data set relative |
i | | number | to first data set in aggregate; range)
! I I | from 0001 to 9999 i
} } + } §
' 7] 36-39 | Generation number | Indicates generation nuzber (0001-9999) |
} I | {optional) ! of data set H
F —+ + + -+
i 8 | L4LO-41 | Version number of } Indicates version of generation of data |
| | } generation (optional)] set }
— } ¥ } 4
! 9 | 842-47] Creation date } Indicates year and day data set was }
i ! | } created; recorded as bYYDDD (YY is |
1 | I | 00-99 and DDD is 001-366) |
+ t } 4 ~
i 10 | 48-53 | Expiration date t Indicates first day tape may be over- |
{ i] | written; recorded as bYYDDD |
L 1 3] 4
1 L4 L | A
] 11] 54 | Data set accessibility | Contains an alphameric indicating i
] } | |} access restrictions to this data set.)
[} | | | A blank indicates unlimited access; any |
] 1 | | other character indicates special han- |
i]] { dling according to agreem.nt between]
i | | | interchange parties. }
} } $ + —
1 12 i 55-60 } Block count | Must contain zeros I
3 ;3 4 i i)
|] ¥ L) L] 1
] 13 i 61-73] System code } Contains unigue identification of pro- |
) J | (optional) | gramring systen i
- + ! —+ i
| 18] 74-80 | Reserved | Reserved for future use; must be blank |
1 1) | I 3 J

62

Table 9.

EBCDIC Data Set Header-2 Label Format

Field

{ Number

3
} Position

(Bytes)

Name

Use

1

1-3

Label identifier

Contains "HDR"™ to indicate header label

2

u

Data set label number

Contains "2" to indicate second data

set header label

wn

Record format

Indicates format of records:

P - Pixed length

V - Variable length

U - Undefined

Block length

Indicates length of block; interpreta-
tion of field depends on format speci-
fied in field #3:

Format P - Length of a physical block
Format V — Maximum length of a block
Pormat U - Maximum length of a block

11-15

Logical record length

Indicates length of logical record; in-

terpretation depends on record format

specified in field #3:

Format P - Length of a logical record

Format ¥ — Maximum logical record
length

FPormat U - This field contains 0Os

16

Density

Indicates tape demsity:

Density (bits/inch)

DEN Value

W - O

Model 2400

7—-track
200
556
800

9~-track

800
1600
6250

-d
~

Data set position

Indicates whether volume switched pre-
viously for data set; volume switched,
1 is written; if not, 0 is written;

when tape is read backwards, this in-
formation indicates when volume switch

is required

18-34

Not used by TSS

Must be blank

-—«--——-—u-——-u-—.—--—vu-—-—.‘—-q.mq-——-——-—-.—1.‘———a«——-—--—.T-—a—..—-q.—-.—cq-—-m—-—qp-——CW--—qp—Wp

-—ﬂﬂ—nmu———-—-"—-—-————-——-quh-——-—..u-——«—a——-.-———-“-ch—“qn-—--."ah——-—“——Jh.‘-——mﬂb——ﬂimah

35-36

be o e ey . — o —— S ——— Y —— - o — o Uy S o WA s e WY o T = S St N -) Wy — . oy T N S o o T W o vy - - S — oy - =]

Tape recording
technigue

Indicates, for 7-track tape, technique
in creating this data set

-.—.-—«.-—-w-.—-.—...r-_q-—.m.’.—qna—-..‘-q--——-.-——-u-—-——-.-.—-...—...u—4-.‘.-q-.—_——-)———....—-——-.u._—-—c«qp——.uh«-—-l.—...A

BCD Code Meaning

Cbh Data conversion fea-—
ture used

Eb Even parity used

Tb BCD to EBCDIC trans-
lation required

ET Even parity used;
BCD to EBCDIC trans-—
lation required

bb 0dd parity, no trans-

lation required; or
this is 9-track tape

h——--h——-lb—u‘-h-—-L««J-—-‘-——db—-.-———-¢.—J-a——_-‘q——‘lJL———v*——‘qu———--——~L~_—-‘th~—-h~Jb—-

Appendix A:

Secondary Storage Label Format

(=)}
W

Table 9. EBCDIC Data Set Header-2 Label Format (continued)

i L ¥ Bl
H 10 i 37 } Control character | Indicates type of control character |
i] } ! (first data character of each record) 1
§] } }] used to control printer-spacing and |
I I i | punch-selection: |
1 1 1] 2 — American National Standard FORTRAN |
! J i I control character |
I | } { M - Machine-code control character !
] i I } b - No control character used]
f - 1 1 i ']
¥ T ¥ ¥ I
I 11 { 38-80 | Reserved } Must be blank]
i L 1 L i]

Table 10. ASCII Data

Set Header—-2 Label Format

-
Field | Position
Number | (Bytes)

Name

Use

1 1-3

Label identifier

Contains "HDR" to indicate header label

2 4

Data set label number

Contains "2" to indicate second data
set header label

Record Format

Indicates format of records:

F - Fixed length

D - Variable length (specified in
decimal)

U0 - Dndefined

Block length

Contains five numeric characters speci-
fying the maximum number of characters
per block

11-15

Logical record length

Indicates length of logical record; in-

terpretation depends on record format

specified in field #3:

Pormat F - Length of logical record

Format D - Maximum logical record
length (count fields incl.)

Format U - Contaim zeros

16-50

Reserved for operating
systems

Contains alphameric characters reserved
for operating systems use

~

51-52

— e — " —— " T o Y — -y o — ——— W S oy W oy oy o o o]

Buffer offset (optional)

Contains tvo nmmeric characters speci-
fying the length, in characters, of any
additional field inserted before a data
block, e.g., block length

53-80

TRl T T S B e ks i o SR My

i
i
|
I
I
'
i
|
I
|
A
!
i
1 s
i
1
!
I
'
'
i
'
i
I
!
'
i
!

r——v—.—-—-—-—-{-——<-—-—-—-——.—-—_’..——n—dnu-——u-‘..db—q-lb—-lb

Reserved for future
standardization

IR S

Must contaimn blanks

b——~h-—-——-<n—-—-i-q—-—————J-——.—-Jh——-——a—J'-——-nQ—J-——-J

64

Table 11. User Header Label PFPormat

1 .1 B L 1
| Field °) Position | ! |
| Number | (Bytes) i Name) Use)
1] i] ']
¥ L) L ¥ —
! 1 i 1-3 | Label identifier ! Characters "UHL"™ indicate this is user |
L | i } header label I
i A 1 !])}
L 1] L4 Bl
| 2 | 4 } Label number | Identifies relative position (1-8) of }
' ! H ! label within label group !
1 I i 3 2
v ¥ v L B
I 3 ! 5-80]| User specified | Used to specify information pertaining |
] | })] to data set or sets on volume)
L I) L J

Table 12. Data Set Trailer Label Format

-
| Format of trailer labels is identical to data
] cept for these fields:

[

set header labels (Tables 5 and 6), ex—

L R ¥
] Pield | Position |

| Number |} (Bytes) Name

Use

R ik shada R R
e e e - — . T — — e —— —— e

R el e ks s s e

b o S e Ty WS Ay ey D o W gy WIS) . gy i =

1 1-3 Label identifier Characters "EOV" indicate end of vol-
ume; "EOP" indicates end of data set;
field indicates this is data set trail-
er label

2 4 Label number Indicates label is first (1) or second
(2) data set trailer label

12 55-60 Block count Indicates number of blocks in data set

on current volume of multi-volume data
set, with range of 000000 to 999999;
indicates number of blocks from last
label of label header group to first
label of trailer label group, exclusive
of tape marks

-———————Jh-——dh——-——Jh—-—J--—-‘

Table 13. User Trailer Label Format

i L
Field } Position |
Number | (Bytes) | Rame

Use

1 1-3 Label identifier

Characters "UTL"™ indicate this is user
trailer label

Label number

Identifies relative position (1-8) of
label within label group

5-80 User specified

-—-——1.-—q-——l
N

P ey el s =
&

e e o s o s o -

b o e e e e - —]

Used to specify information pertaining
to data sets on the volume

-—_.u.__.l.__.h—-_J

Appendix A: Secondary Storage Label Pormat 65

APPENDIX B: DATA SET DEFINING FOR COMMANDS

ARD LANGUAGE PROCESSORS

DATA_SET DEFPINITION RULES FOR LANGUAGE
PROCESSING

Table 14 provides information relating
to the organization of and DDEF require-
ments for data sets involved in assembly,
compilation and linkage-editing.

DATA SET DEFINTTION RULES FOR TSS COMMANDS

Table 15 provides information relating
to the structure of and DDEF requirements
for data sets processed by TSS coammands.

jnot yet converted to

Table 18. Data Set Definition Rules for Language Processing

v i L]
] Command ; Related Data Sets } DSORG } Data Set Definition Rules 1
i 3 1 i 4
| L4 L4 A v
JASHM }Source program data set. I VI | Source programr data sets: If |
] (ASSEMBLER) | jLine data set]supplied as part of SYSIN datal
i I } 4set, these data sets do not
i jObject module. i ¥S jrequire any further defini-]
i I ! (VP member) jtion. If supplied as pre- |
| F ¥ }stored data sets, they must bej]
1 |Listing data set. ! VI Jcataloged. No DDEF required |
I | jList data setj}prior to an ASM, COBOL, FTR, |
} 4 } 4PTNH, HASM, PLI or PLIOPT I
JCOBOL JSource program data set. H vl jconmand. |
} {COBOL) H I ¥S ! !
i o + -4 {
| [Object module. ! vS 1 I
!] | (VP member) 1]
I } + 4 |
L fListing data set. ' Vi 1 1
] i }JList data set] i
I t + .l |
} |Load data set (created by the | ¥sS i]
1 }programa product COBOL i 1 }
] fnot yet converted to] | |
1 jobject module). i] |
I } 4 I
} jSource statements for inser- |} ¥I]]
[jtion by preprocessor (Note 1) .| (VP member) | i
I -+ - t 4 1
| PTN |Source program data set. 1 VI I]
{ (FORTRAN) | fLine data set|Object module: The module is |
i ¥ } 4placed in the library at the |
I jObject module.] Vs Jtop of the program library |
1 } I} (VP member) jlist. If a job library is to |
{ } + —Jreceive the object module, a |
] jListing data set.] VI |DDEF command must define the |
i { IList data setjlibrary. }
F t } 4 I
| FENH jSource program data set.] VI) |
{ (FORTRAN H) ! VS]]
JEXTENDED) | i | |
! F } -4 I
i 10bject module.] ¥S 1]]
1 i] (VP member) | I
I ' + 4 !
i JListing data set. | vI] !
! ! JList data set] 1
I F } 4 !
} lLoad data set (created by the | vsS jListing: No DDEF command i
} jprogram product FORTRAN H] jreguired }
1 I 1
| ! !
L L 3

jobject module).
) T

!

Note 1: DDEF command is required if VP data set is not USERLIB.

66

{VP member)

Table 14. Data Set Definition Rules for Language Processing (Continued)

L] hJ
;ﬁ Command | Related Data Sets DSORG Data Set Definition Rules
i 1

7
;ﬁhsu jSource program data set. VI Same rules as for ASH.
| (ASSEBLR H) |} vs

i

LB 1

jObject module. VS

!

v

1-._-———-.-‘-‘

IListing data set.

i

4
VI

!
i
Ll
I
i
]
|
Ll
3
!
List data set}
" |

1 4
JLoad data set (created by the

P SR F——

e e oy — . — . oy W — ey W =t " — -~

v

VS]

{program product ASSEMBLER H i

Inot yet converted to }

jobject module). i
+— t }
jPLI jSource program data set. VY | Same rules as for ASM. !
I (BL/I (B)) | Line data set] "
! 4 i
! jObject module. vsS { I
i ! (VP meamber) | |
| }] |
} JListing data set. vS I }
|) List data set} 1
| b } i
i |Load data set (an object mod- |} Vs J o DDEF comrand required. ?
H lule that has been created by | | |
i Jthe TSS PL/I (F) compiler but | i i
i jnot converted from card-image |}) I
! jforn) . 1 I i
! F t t 1
} |Source statements for inser- | VI IDDEF command required if VP |
| jtion by preprocessor. ! (VP member) |data set is not USERLIB. !
| F } + 2l
i }Storage for:] VI IDDEF command required if data)
1 1 }JLine data set]set is not the MAC.name (0) |
] } 1. Translated source state- | |data set created automatically!
1 | ments when 48-character | Iby the preprocessor. {
i] set not used. H i }
| | | I }
] I 2. Source statements gener- 1} } 1
i } ated by the preprocessor.} } i
- } + ¥ 4
{PLIOPT } Source program data set. L] VI }Same rules as for ASHM. 1
1 (PL/T | 1 vs 1 |
{OPTINIZING | | | |
jCOMPILER) [} I i]
| F } — |
i jObject module. } vs | |
! | ! (VP member) | |
[F + - !
1 JListing data set. | vI } I
1) JList data set] '
I } } — I
! {Load data set (created by the | vs 1 J
] {program product PL/I I H |
1 | OPTIMIZING COMPILER not yet | | i
! jconverted to object module).) I !
I — } + -4
! jSource statements for inser- | VI IDDEF command required if VP |
| i 1
L L i

jtion by preprocessor.
i]

(VP member) |data set is not USERLIB.
) 1

appendix B:

Data Set Defining for Commands and Language Processors

67

Table 14.

jdefined by previous DDEF com-
jmand in this task.

Data Set Definition Rules for Language Processing (Continued)

g L ¥ ¥ L
i Command | Related Data Sets | DSORG } Data Set Defimition Rules i
L L i 1 J
| ¥) i | L
] LNK]Source program data set. ! vl |Same rules as for ASM, FTN, |
} (LINKAGE i ILine data setfand PL/I (F). |
{ EDITOR) F + + -4
1 {Libraries that are to supply 1| VP 1Fach library referred to by |
] jobject modules. 1 | INCLUDE statements except]
1 1 ' JOSERLIB and each job 1library |
i I | jused by automatic call aust bel
' }) jdefined by a DDEF command.)
| F } + 4
i jLibrary to receive output ob- |} VP {If library at top of program |
1 |ject module. | flibrary list is to receive !
! i ! joutput object module, no addi-|
i } } {tional DDEF in this task.)
J } I 1If another library is to re- |
1) ! jceive output, it must be de- |
i i I jfined by previous DDEF command]|
} i 1 fand be specified by its ddname]
1 1 ! Jtc linkage editor program. !
i } } - 4
] fListing data set.] VI INo DDEF command required. f
| i jList data set] 1
L i i N L J
Table 15. Data Set Definition Requirements for Commands

¥ R ¥ 1
} Command] Related Data Sets 1 DSORG }] Data Set Definition i
i i 1 A 4
4 L] 1] T 1
}|BACK jNew SYSIN data set that is to] ¥S, VI |Rew SYSIN data set must be i
1 fcontrol completion of this 1 |cataloged or defined by pre- |
] jtask in nonconversational } jvious DDEF command in |
] |mode. 1 Jconversational portion of thisj|
¥ | 1 Jtask. I
5 -+ + + -4
JBUILTIN fObject module in user's pro- | \'d4 fData set must be defined in |
] Jgram library hierarchy. | Jcurrent task, or must be i
l 1] Jcataloged. ‘ |
F + } 1 4
JCATALOG]Data set to be cataloged. 1 PS {Data set to be cataloged must |
} } } tbe defined by previous DDEF 1
i } i fcommand in this task, unless |
1 i ! |OPDATE option specified. |
) L L 1 J
| g)] 1 N
|CDD |Data set containing only DDEF} Vi |Data set must be cataloged,]
! fcommands. ' jdefined in current task. |
L 1 1 3. J
| 1 L] L 1
{CDS joriginal data set: Existing |} vs, vI }Data set to be copied must be |
) Jdata set or one or more mem— | jcataloged or defined by pre- |
1 jbers of partitioned data set.] jvious DDEF command in this 1
! ! ! ltask. I
! 2 } { 4
i {Nev copy: Can be data set, | VS, VI JProvided by systea. 1
] jone member of partitioned i |]
! jdata set, or entire parti- | I)
i ttioned data set. ! 1 1
¥ { + + 4
JCLOSE jData set to be closed.] any jData set to be closed must be |
i I I
I | |
1 L J

!
s

4

68

Table 15.

Data Set Definition Requirements for Commands (continued)

is permitted

jpermitted must be cataloged;
jno DDEF command required for

r) ¥ L) Rl
} Command i Related Data Sets I DSORG i Data Set Definition }
1 1 4 [[
L L ¥ v 1
| DATA? |]Data set to be entered. } Vs, VI |No DDEF comrmand is required if}|
| } i fthe data set is to reside on |
} i ! jpublic storage; data follows |
1 } ! jthis command in input stream. }
1 i i JIf the data set is to reside. |
| | 1 Jon private storage a DDEF must}
| 1 ! Ibe issued before the command. |
L 1 L ']]
| B \J L L] s
|DEFAULT |User profile data set 1 vp JProvided by systen. }
i] SYSPRX in USEERLIB. i { }
+ ¥ ¥ 4
}DELETE jData set whose name is to be | Any }No DDEF command required for |
' |rermoved from catalog. i |this coamand. I
L L N]]
L L] L) T L
{DSS? |Data sets whose status is de-—} Any {Bach data set whose status is |
1 Isired. L] jto be presented must be cata- |
I | I jloged; no DDEF command re- i
] | I jquired for this command. |
L 1 'l 'l '}
L 1 ¥ L} B
| DUMP |Data set to be primted as a | \28 IDDEF command whose ddname is |
I Jresult of program control [List data set|PCSOUT must be defined prior 1
} jcommand DUMP. i jto execution of DUMP command. |
L 1 } 3 1 .]
4 1] L] 1 4 1]
JEDIT2 |Data set to be processed by | vl |Data set must be cataloged, ort
I |]the Text Editor. | {defined in current task. This]
1 j 1 fis done automatically.]
L 1 A 1 1
¥ ¥ ¥ ¥ L
{END2 JData set being processed by | v1i |50 DDEF command regquired for |
i jthe Text Editor, or indicates] jthis command. }
I | PROCDEF command completion. | 1]
L 1 ']) 2
r L] 1] ¥ L
| ERASE |Data set to be erased. I Any |Data set to be erased must be |
! ! ! fcataloged, or DDEFed. I
i i . L '}
L B A L] L] R
JEVY {Private data sets whose names}VvVs, VI, VP |No DDEF command required for |
1 jare to be entered in catalog.l jthis comrand. }
L L L 1 1
1 4 L] L) L] 1
|EXECUTE | SYSIN data set for nonconver-—) vs, VI |Data set must be cataloged; nol
! jsational task set up by this | |IDDEF command required by this |
H jcommand. .) jcommand. }
L } + { |
JLINE? fLine data set containing 1 vi jLine data set must be |
1 Jlines to be presented. jList or line |cataloged or defined by pre- |
1 1 | data set Jvious DDEF command in this l
| 1 1 Jtask.)
F + \ + 4
JLOAD jOobject module to be loaded. } VP jobject module to be loaded is |
i i } (VS menmber) jidentified by external name }
] i ! |specified in this command; it |
i ! ! Imust be in a library in the [
| I I Jcurrent program library list. |
i 1 | 3 1 k]
L 2 ¥ ¥ 7 L i
| MODIFY jpata set to be changed. } VI jData set must be cataloged or |
I | ! jdefined by previous DDEF com- !
' ! ' jmand in this task. '
i t 4 } 4
jPC? |Data set whose status is re- | Any jEach data set whose status is |
i jquired. | jto be presented must be cata- |
! ! i {loged; no DDEF command re- !
I 1 i Jquired for this command. !
L. 1 L 1 i |
¥ L A v L]
| PERMIT JData sets for which sharing | Any Jpata sets for which sharing is}
i ! 1 i
| | 1 I
i I 1 !
i N 1

{this command.

L

Appendix B:

Data Set Defining for Commands and lLanguage Processors 69

|magnetic tape in print
| format.

|defined by previous DDEF com- |
jmand in this task. |

Table 15. Data Set Definition Requirements for Commands (continued)
&

L hJ R B} 3
| Command | Related Data Sets ! DSORG] Data Set Definition 1
I N 1 i 1 i
L] v v ¥ 1
jPOD? jvirtual partitioned data set | VP fvirtual partitioned data set |
] {for which information about | jmust be cataloged, or defimned |
] lits members is given. 1 tby previous DDEF command in f
) | 1 jthis task. }
} + + 4 —
| PRINT {Data set to be printed. JPS, ¥5, VI |pata set must be cataloged or |
i] 1 jdefined by previous DDEF com— |
] 1 1 jmand in this task. 1A previous|
[) i IDDEF required for unlabeled)
| | ! jtapes. I
F } 1 } -4
{ PROCDEF jbata set which consists of] vI jProvided by systen. i
! jother commands, to become a | 1 |
I Juser-written procedure. 1 i }
I t { ¥ —
JPROFILE jUser profile data set im i vP }Provided by system. }
! JUSERLIB, session profile in | 1 |
! ftask virtual memory. 1 I §
— 4 + + |
JPUNCH tbata set to be punched on) ¥s, VI fpata set must be cataloged or |
) |cards. } jbe defined by previous DDEF |
} i | Jcommand in this task. t
{ 1 } + 2
IREGIONZ2 {Data set to be processed by | VI jData set must be cataloged, orj
1 jthe Text Editor. ! jdefined in current task. V
4 i) I]
¥ T L4 L Ll
{RELEASE IData set whose definition is | Any fbata set whose definition is |
1 |to be released. } j]to be released must be defined}
1 | ! jin previous DDEF command in |
1 1 i jthis task. I
+ } } !
IRET JVAM data set whose data set VS, Vi, VP jbata set must be cataloged. 1
) {descriptor is to be changed. |) 1
F } $ + -
| SHARE jData sets for which sharing | Any jData sets for which sharing isj
] |is requested.] Irequested must be cataloged byl
1 i ! ftheir owner; no DDEF command |
} | i jreguired by this cormmand. }
3 3 2 1 . |
¥ ¥ ¥ T 1
] SINONYN- }User profile data set in i VP {Data sets must be defined in |
i JUSERLIB, session profile in | jcurrent task. }
1 }task virtual storage.] I t
F } + —+ 4
ITv IPhysical sequential data set | Ps fData set (input) must be cata-]
] } (from a VT operation) to be |} | loged or defined in current]
] jwritten on a VAM volume. i jtask. i
i I 1 1 .
LB Li ¥ L] B
|vT JVAM data set to be copied to JV¥VsS, VI, VP |Data set (input) must be cata-—|
} jmagnetic tape as a physical | {loged or defined in current 1
i | sequential data set. I |task. }
— t } 2 -
vy {VAM data set to be copied jvs, vI, vp }Data set (input) must be cata-l|
jinto direct access storage. | tloged or defined in current i
i] jtask. [}
} t } -
RT {Data set to be recorded on 1 ¥S, VI |Data set must be cataloged or |

I

!

i

A

e — oy —p —— N -

|2These are the basic directive commands of the Text Editor.
| Guide for details concerning the data manipulation commands of this facility.
[

-4

1If the DATA command was used to create the data set within the current task, then the}
data set is defined as if a DDEF command had been issued by the user directly.
data set is also VAM organized and resides in public storage, it is automatically
cataloged.

If thel

See Command System User's

b e o o oo w—

70

TSS logical records may be in one of
three formats: fixed-length (format-F),
variable-length (format-vV and format-D), or
undefined (format-U).

The prime consideration in the selection
of a record format is the nature of the
data set itself. The user knows the type
of input his program will receive and the
type of output it will produce. Selection
of a record format is based on this knowl-
edge, as well as an understanding of the
type of input/output devices that are to
handle the data set, and of the access
method used to read and write the data set.

In the case of ASCII tape records, the
user should be aware that TSS tramnslates
the records to EBCDIC on input to process
them and translates them back to ASCII form
for output. Since some ASCITI records begin
with a control information field that is
foreign to TSS, the size of this field
(buffer offset) must be identified as part
of the record format.

The record format of a data set is
placed into the data control block accord-
ing to specifications in the DCB macro in-
struction, the DDEF command, or the DDEF
macro instruction.

FIXED-LENGTH (FORMAT-F)

Format-F records are fixed-length. If
unblocked format F, the logical record con-
stitutes the block. If blocked format-F
(applicable to BSAM and QSAM only), the
number of logical records within a block
{blocking factor) is normally constant for
every block in the data set, unless the
block is truncated (short block).

The system performs physical leangth

checking on format-F records, automatically
making allowances for truncated blocks.

VARIABLE-LENGTH (FORMAT-V _ARD FORMAT-D)

Format-¥ and format-D (ASCII tape only}
records are variable-length records, each
of which describes its own length. When
blocked (applicable to BSAM and QSAM only),
each block also includes its block length.
The system performs length checking of the
records and blocks.

‘+he first four characters of the record
contain control information describing the
length of the record; the format of this
information depends on wvhether the record
is part of a virtual storage data set or a
physical sequential data set.

APPENDIX C: TSS RECORD FORMATS

When unblocked, the logical record and
the block control information constitute
the block. The block control information
(four bytes) must be included in the record
length.

In blocked format-v, the block length,
LLbb, is prefixed to each block, LL repre-
sents the block length, and bb represents
two characters reserved for system use.
This four-byte block length field must be
included in the block length.

Variable length records on ASCII tapes
are specified as format-D. They contain
the same control information as format-v
records, but this information is recorded
in decimal characters.

UNDEFINED-FORMAT (FORMAT-U)

Format-0 is provided to permit the proc-
essing of any blocks that do not confora to
the P or Vv formats. Since each block is
treated as a logical record (unblocked),
any deblocking must be done by the user's
pProgranm.

CONTROL CHARACTER

The user may optionally specify, in the
DDEF command, the DDEF macro instruction or
the DCB macro instruction, that a control
character precedes each logical record in a
data set, as shown in Figure 23. This con-
trol character specifies carriage control
wvhen the data set is printed, or stacker
selection when the data set is card-
punched. The character itself is never
printed or punched, but it is a part of the
record in storage.

If the destination of the record is a
device that does not recognize this control
character (e.g., disk), the system assumes
that the control character is the first
character of data. If the destination of a
record is a printer or a punch and the user
has not specified that the first character
of the record is to be used as a control
character, this character is simply treated
as the first character of the data.

DIAGRAMS OF RECORD FORMATS

The following pages show the standard
external record formats for TSS. An exter-—
nal format -- the format seen by the user
-— may differ from the internal format.

e Record formats for virtual sequential

data sets are shown in Figure 24.

Appendix C: TSS Record Formats 71

e Record formats for virtumal index e Virtual partitioned data sets must con-

sequential data sets are shown in form to the record formats shown in
Figure 25. Pigure 28 for virtual sequential mem-
bers, and to those shown in Figure 25
s Record formats for physical seguential for virtual index segqguential meabers.
data sets are shown in FPigures 26 and
27.

e Record formats for physical seguential
data sets on ASCII tapes are described
in FPigures 28 amd 29.

Format F and Format U

C Dato

Format V
4-byte

length C Data
field

Figure 23. Placement of Comntrol Character in a Record

Fixed-length RECORD RECORD RECORD RECORD RECORD RECORD
(Format F) 1 2 3 4 5 6

f————— 1 Poge ————————-»-1«——~ 1 Page ————»{-4—— 1 Page ———»={

o Maximum record length: 1,048,576 bytes.

e System automatically keeps track of overlap across page boundaries.

Variable-length fe—— Record 1—*— Record 2 "—’+‘— Record 3 ——het——— Record 4 ”‘——‘""l

(Format V)
belt DATA beee DATA beee DATA beeg DATA {
%—4———— 1 Page —————pft———— 1 Page ———pft—————— | Page —————D—{
o Maximum record length: 1,048,576 bytes.
e System automatically keeps track of overlap across page boundaries.
e User must include length of each variable-length record s first 4 bytes of record; length is specified as b{ ¢ £,
where b contains binary zeros, and { (£ contains a binary number specifying length of the record, in bytes.
This length must include the 4-byte length field.
Undefined j«—— Record 1 —*——— Record 2 ——————pt———————— Record 3 —_—]
(Format U)
Data Data Data
fe—— Page ———"+4—‘ 1 Page —>e— | che—"*"— 1 Page —>te— | Pogeﬁ”"l
e Maximum record length: 1,048,576 bytes.
o Each record length must be a multiple of 4096 bytes (1 page) in length. If more than one page is required, an
integral number of pages is allocated.
General VSAM e Buffer pages required are supplied by system based on maximum logical record length.
Rules: o VSAM data sets cannot be written on volumes containing physical sequential data sets.
Figure 284. Record Formats —-- VSAM

72

Fixed-length Initial Key

(Format F) f+——RECORD | —}¢— RECORD 2 —#~f«—— RECORD 3 ~——#~j=—— RECORD 4 —#|

Key DATA Key DATA Key DATA Key DATA j

Imbedded Key
!‘——- Record 1 -—>+<————- Record 2 —P—te—— Record 3 —®€—— Record 4 —=

First Part EK End Part | First Part K End Part | First Part K End Part | First Part K End Part

m
m

of Data v of Data | of Data v of Data | of Data Y of Data | of Date v of Data
Variable~length
(Format V) Initial Key
‘-‘———— Record 1 *———— Record 2 —————*—— Record 3 ——D-'
beeg Key DATA boee Key DATA befe Key DATA {

Imbedded Key
Record 1 ——*——- Record 22— pwbt———— Record 3 ———=]

K K K
First Part End Part First Part End Part First Port End Part
beet of Data E of Data beee of Data £ of Data bret of Data £ of Data
Y Y Y
¢ Maximum logical record length: 4000 bytes.
® Maximum number of records per data page: 1300.
® Maximum key length: 255 bytes.
¢ Maximum number of data pages: 65,000,
® Maximum number of overflow pages: 240.
e Maximum number of records per overflow page: 255.
® Maximum number of directory pages: 255,
® User must include length of each variable-length record as first 4 bytes of record;
length is specified as bt 23, where b contains binary zeros, and 124 contains a
binary number specifying length of the record, in bytes. This length must include
the 4-byte length field,
Line Data Set Record
n RECORD —
Record Line Flag DATA
Length Number
4 7 t 1 -.___4
L— byfes—”‘_v bytes byte (data length - 120 bytes)
. Maximum record length: 132 bytes.
. Maximum data length: 120 bytes.
. Flag byte indicates whether record originally
came from terminal keyboard (01) or card reader (00).
Region Data Set Record
et RECORD !
Record Region Line |
Length Name Number Flag DATA
4 0-244 7 1
fa—bytes —po| - bytes ——pig-- bytes —pmja-byte ml@———— (data length - 244 bytes) — 3

s Maximum record length: 256 bytes.
s Maximum data length: 244 bytes.
* Flag byte indicates whether record originally
came from termina! keyboard (01) or card reader (00).

Figure 25. BRecord FPormats -- VISAM

Appendix C: TSS Record Pormats 73

{Format F)

Fixed~length) RECORD 1 RECORD 2 RECORD 3

o Moximum record length — 32,760 bytes.

e Each block treated os a logical record.

SHORT
[—1—- BLOCK *“—*‘I e BLOCK —— |~-———— BLOCK ———p
Fixed~length REC REC REC REC REC REC REC REC
Blocked 1 2 3 4 5 6 7 8
(Format FB) -

o Maximum block length — 32,760 bytes.

e Blocking factor is usually constant; however, data set may contain truncated or short blocks.

[+ BLOCK] —{ |*——BLOCK2 ——{ |=———BLOCK 3 ———>
Fixed-length, :
Blocked REC REC REC REC REC REC REC REC REC
Standard Blocking 1 2 3 4 5 I3 7 8 9

(Format FBS)
o Maximum bjock length — 32,7640 bytes.

e Last block may be truncated; truncated block invokes end-of-volume routines.

LL - — LL

1 2
I—q— e — e——— [{]
Variable-length ! 2
(Format V) L bb ¢t bb | DATA LL b €0 bh | DATA {
e Maximum logical record length — 32,756 bytes.
- LL]
e {f ————— (£ —]
Variable-length, 1 2
Blocked
(Format VB) } LL‘ bb f’ﬂlbb DATA e 2bb DATA
LL2
|t— [0 3 ——Td— 44 4 —
¢
) LLzbb 14 3bb DATA (X1 4bb DATA {

o Maximum logical record length — 32,763 bytes.
e Each logical record must describe its own length; this information must be included by user as first
4 bytes of each record:
2@~ Binary number specifying record length in bytes.
Y P ying Y
bb - Binary Os.
e System performs length checking of blocks containing Format-V records, based on user-supplied length

information; when data sets wifh Format-V records (either blocked or unblocked) are created,
a 4-byte control block is required in the form Llbb, where:

LL - Binary number specifying block fength in bytes.
bb - Two bytes reserved for system use.
Value of LL is determined by adding the £€ s of the records within block and adding 4 bytes for the control field.
e Format-V and Blocked Format-V records cannot be processed on 7-track tape units without data

conversion feature.

Figure 26. Record Formats -- Physical Sequential Data Sets Without Keys

T4

Undefined
(Format U)

:

RECORD 1}

RECORD 2

RECORD 3

3

Maximum record length — 32,767 bytes.
Each block is treated as logical record.

No length checking is performed.

prior to asking system to write that record.

User must make length of each Format-U record available to system in dota set's data control block,

o When system reads a Format-U record, it makes record’s length available to user in data set's data
control block.

Also, there is a device-dependent rule for physical sequential data sets:

Track overflow

(Option T)

No track
overflow

Figure 26.

Fixed
Length
(Format F)

Fixed
Length
Blocked
(Format FB)

Variakle
Length
(Format V)

Variable
Length
Blocked

(Format VB)

Undefined
(Format U)

Track=-overflow option for direct-access devices; when this option is used, a record that does not fit
on a track is partially written on that track and continued on next track; if this option is not used,
records are not split between tracks.

REC
5

REC
6

le— TRACK2 ———]

REC REC REC REC REC
1 2 3 4 cont'd
fe——— TRACK] ——————]
REC REC REC RECORD
2 3 4

RECORD
5

ot TRACK 1 —b—} fe———— TRACK2 ————]

‘ Key] l Dotc]

1 Keyzl Dcm2

Key3 l Detc«:11

Lq— Record] —m|

I"— Record?2 —-—J

L‘—-' Record3 —=

Record Formats — Physical Seguential Data Sets Without Keys (cont'd)

[l: BLOCK >
l Key, | Key, ! Data, | Key, k Data, | Key, | DafGQAJ
¢ Record —#=t= Recard —#=e— Record —»{
.~ L I.._w L, L, ~—j
rﬁ 0, — | !.. 06, — h tey —
lKey] LLibb | £bb | Data Keyz] LL,bb i (0 bb ‘ Data IKey3 | LLbb Imsbb l Dota l
e Record ———f¢—————— Record - Record ~—————n]
LL,
r__ 28, e) e fl3]
| Keyg | LLjbb l 0L bb [Key [Data | 0,0k | Key, l Data | £04bb 1 Keyy [Dora
e Record — stt———— Record ———mra—— Record —

r Key [Data

Key | Data [

Key 1 Data

L<— Record —=f

me— Record —Pl

let— Record —wm

The same rules apply to physical sequential data sets with keys as for those without keys; also:

® All keys in data set must be the same length.

e Number of bytes transmitted in a READ or WRITE operation equals the key plus the data portion of record.

Note: Non-zero KEYLEN operand in DCB identifies data set with keys.

Figure 27.

Appendix C:

Record Formats — Physical Sequential Data Sets With Keys

TSS

Record Formats

75

Fixed-length,
Blocked and
Unblocked
{Format F)

Variable-length,
Unblocked
(Format D)

Variable-length
Blocked
(Format DB)

Undefined
(Format U)

Record 1

Record 2

Record 3

e Maximum record length - 32,760 byftes
e Buffer offset not supported
® Data in EBCDIC form is translated to ASCII

dddd DATA DATA

dddd | DATA 4%

e Maximum logical record length - 32,756 bytes
® Block descriptor in example has been stepped over
e Each logical record must describe its own length; this
information must be included as first four bytes of each record:
dddd - unpacked decimal number specifying length in bytes
e dddd and DATA are translated to ASCII
o Buffer offset of 0 and 4 are supported

é DDDD | dddd DATA dddd DATA dddd DATAZ

o Maximum logical record length - 32,763 bytes

e System performs length checking of blocks containing
Format-D records, based on user supplied length information;
when data sets with Format-D records (either blocked or
unblocked) are created, a 4-byte control block in the form
DDDD is required, where:

DDDD - unpacked decimal number specifying block length
in bytes

Value of DDDD is determined by adding the dddd's of the
records within the blocks and adding 4 bytes for the control
field,

e DDDD, dddd, and DATA are translated to ASCII

Record 1 Record 2 Record 3

e Maximum record length - 32,767 bytes

® Each block is treated as a logical record

e No length checking is performed

e User must make length of each Format-U record available to
system in data set's data control block

e Buffer offset not supported

e Format U is supported when 128 character set is used

e Data translated to ASCII

Note: This represents the output after the system has processed the internal EBCDIC data
format described in Figure 27.

FPigure 28. Output Record Formats for ASCII Tapes

76

When more than one page number is indi-
cated, the major reference is first. All
references are within plus or minus one of
the indicated page number.

accessing data sets 16
accessing privilege 16
access methods
BSAM - see basic sequential access
method
IOREQ - see input/output request
facility
MSAM - see multiple sequential access
method
O0SAM - see queued sequential access
method
SAM - see sequential access methods
TAMII - see terminal access method
VAM - see virtual access methods
VISAE — see virtual index sequential
access method
VPAM - see virtual partitioned access
method
VSAM - see virtual seguential access
method
access, read only 13
access, read-write 13
access, restrictirg 10
access, unlimited 13
aliases 26,27
assembler interfaces &2
attach a record to virtual storage 16
attention interruption (of DATA) 45
automatic buffering (MSAM) 36
auxiliary storage 5

basic seguential access method (BSAEK) 28
buffering 29
macro instructions:
BSP 32
CHECK 32
CNTRL 32
DQDECB 32
FEOVY 32
FREEBUF 31
FREEPOOL 31
GETBUOF 31
GETPOOL 31
NOTE 32
POINT 32
READ 32
WRITE 32
record formats 29
block count (DCB) 33
blocking 7
BSAM 29
O0SAM 33
buffering, automatic (MSAM) 36
buffering, BSAM 29
buffering, double 33
buffering, exchange 35
buffering, IOREQ 38
buffering, 0SAM 35,33
buffering, single 34
buffering, VISauM 23

buffering, VPAM 27
buffering, VSAM 18

build channel programs 39
bulk input 48

bulk input/output &8

bulk output 48

card input, operator assisted 49
card reader/punch - see unit record
equipment
CATALOG command 50
catalog, for sharing data sets 13
catalog, system—-use 2
catalog, user 3
cataloging, automatic 3
cataloging data sets 2,49
cataloging virtual storage data sets 10
CDD command 8
CDS command 47
CCW chaining 36,38
channel programs (BSAM) 28
channel programs (SAM) 28
CHECK macro (BSAM) 28
CLOSE macro (BSAM) 10,29
CLOSE macro ({QSAM) 34
CLOSE processing
access method dependent 11
common 113
CLOSE, temporary (7T) 12
COMBIN option (DCB) 36
command chaining 38
corsand system interfaces 43
component 2
concurrent sharing 13
CONTEXT command 43
control blocks 8
data control block (DCB) 8,10

data event control block (DECB) 36,38
data set control block
(DscB) 3,17,53-57
input/output request control block
(IORCB) 28

job file control block (JFCB) 8,9
control cards (MSAM)} 36
control character 71
control sections
public 15
private 15
copying data sets 46
CORRECT command 43

DATA command &5

data control block 8

data event control block (DECB)

data group 36

data management 1
basic concepts 4

facilities 1

data pages 22,23,25

data set 2
accessing 16
cataloging 49
characteristics 7
copying 46
data—card U49

36,38

Index 77

defining (rules) 66
duplexed 12

interlock 14,24
introducing to a task 8

line 42
list 46
name 2

naeing and cataloging 2
naming rules 2
physical sequential 55
preparing for use 10
region 43
sharing 13
SYSIN 49
virtual partitioned 26
virtual storage - see virtual storage
data set
data set contrcl block (DSCB) 3,17
formats 54,56
data set descriptor (DsD) 3,53
bCB operand of DDEF S
bDCB, filling in 10
DCB (see TCT 39)
DCBICB, field of DCB 37
DCH (TAMII) 39
DDEF 8,9
effective span 9
summary of operands 9,10
DDNAHME operand of DDEF 9
deblocking {QSaM) 33
delete at close option 12
DELETE comrmand 50
device contrecl modules (TAMII) 39
device dependencies 39
direct access volumes 53
directory, page (VISAM) 23,25
directory, partitioned organization
(pOD) 27
DISP operand of DDEF 10
DISPLAY, PL/I (F) I/0 52
double buffering 33
DSNAME operand of DDEF 9
DSORG operand of DDEF 9
DUPCLOSE macro instruction 12
duplexing option 12
DUPOPEN macro instruction 12
dynamic loader, use in sharing 15

EDIT command 43

edit imput/output data 39
end-of-data routine (EODAD) 20
ERASE command 49

error processing (MSAM) 37
error recovery (TAKII) 39,40
EVY command 50

EXCERPT command 44

exchange buffering 35

EXCISE command 44

exit list 41

external page table (XPT) 18
external sharing 13,5

PIND macro instruction 12,28
format control modules 39
formats, record 7,70-76

FPORTRAN interfaces 51

FORTRAN I/0O control 51

FORTRAN I/0 statements 51
FORTRAR library 42
fragmentation, data set 17
fully qualified data set name 2

78

GATE macro instructioms 39,42

GATRD 42
GATWR 42
GTWAR 42
GTWRC 42
GTWSR 42

gather-write 38
generation data group (GDG) 50,3
index entry 50

BOLD parareter of DDEF 17

index entry (generation data group) 50
index, master 3
indexed data sets 7
initiate I/0 39
input, bulk 49
input/output, bulk 48
input/output request control block
(IORCB) 28
chaining 38
input/output request facility (IOREQ) 38
buffering 38
macro instructions

CHECK 38
IOREQ 38
VCCW 38

INSERT command 44
interfaces 42
assembler 42
coamand system 43
FORTRAN 51
PL/I (F) 52
internal sharing 15,13
interlocks:
data set 14,24
member 14,27
page (VISAM) 15,22
read 14,28
releasing 15,27
sharing 14
write 14,24,28
INTINQ macro instruction 37

JFCB (see TCT 39)

job file control block (JFCB) 8
filling in 9

job library 10

LABEL operand of DDEF 9
labels
trailer (writing) 12
volume label formats 53,55,58
libraries 26
lipe control 39
LINE? command 46
line data set 43
LIST command 44
list data set 86
LOCATE command &4
locators (VISaM) 21
logical record 7
LPN 21

magnetic tape volumes 57
accessing 28

main storage 5

master index 3

MCAST macro instruction 42
menbers 26
member header 27
member interlock
MODIFY command 45
multiple sequential access method
(MSAM) 36
buffering (automatic) 36
control cards 36
error processing 37
macro instructions
FINISH 36
GET 36
POT 36
SETUR 36
multiple terminal support 40

14,27

naming data sets 2
NUMBER command 44

open processing 10
common portion 10
access-method-dependent portion 10
OPPN 21
OPTION parameter of DDEF 10
organization, data set
indexed 7
partitioned 7
physical sequential 28,33,36,55
seguential 7
virtual index sequential 21
virtual sequential 18
organization, standard tape 57
output, bulk 48
overflow page, VISAM 21

PAD parameter (DCB) 23
page deletion 25
page length, reason for choosing 17
page interlock 15
VISRME 24
partially gualified data set name 2
partitioned data set organization 7
partitioned organization directory
(pOD) 25
permanent storage 5
PERMIT command, restriction 13
physical record 7
physical sequential data set 55,28,33,36
PL/I (F)
DISPLAY I/0 52
interfaces with data mgnmt.
RECORD I/0 52
STREAM I/0 52
polling &1
PPN 21
PRINT cormand 48
printer - see unit record equipment
private storage 5
privilege, accessing 13
public storage 5
public volume table (PVT) 53
PUNCH command 48

51-52

queued sequential access method (QSAM) 33
blocking 33
buffering 24-35
macro instructions
PEOV 35

GET 34
PUT 34
PUTX 35
RELSE 35
SETL 34
TRUNC 35

record formats 34

read interlock 14,28
restriction 14
read-only access 13
read-write access 13
real terminal access method 39
record 2
record foramats, allowable
BSAM 29
fixed length 70
physical sequential data set 70
QSAM 34
variable length 70
VISAM 24,70
veam 70
VSAM 18,70
undefined length 70,18
record, logical 7
record, physical 7
RECORD, PL/I (F) I/0 52
REGION command 44
region data set 43
REGSIZE parameter (user profile) 44
relative external storage correspondence
table (RESTBL) 17
constructing 18
RELEASE command 9
RET parameter (DDEF) 10
RETPD parameter (DDEF) 9
retrieval address 18
vVsSaM 20
REVISE command 43
RT command 49
RTAM 39

scatter-read 38
SECURE coamand 8
sequential access methods (SAN) 16,28
sequential data set organization 7
shared data set table (SDST) 15
sharing data sets 13

catalog use in 13

concurrent 13

external 13

interlocks 14

internal 15

virtual storage data sets 14

VISAM 25

vPAM 27

VSAM 20
single buffering 34
SPACE parameter (DDEF) 9
storage, classes of 5

auxiliary 5

external 5

main 5

permanent 5

private 5

public 5
temporary 5
STREARX, PL/I (F) I/0 52

symbolic device address (SDA) 38
syrbolic device allocation table (SDAT)

Index

37
79

SYSIN data set (monconversational)
system operator 48

tapes, magnetic 59

accessing 28

organization 59
TCS (terminal coamand system) 39
TCT 39
temporary close (CLOSE(T)) 13
temporary storage 5
terminal access method (TAMII) 39

buffering 43

error recovery 39

macros instructions 40

return codes 41
terminal control table (TCT) 39
text editor 43

creation of VIS data sets 43
trailer labels, writing 12
translate input data 39
truncation of data sets
TSS mode (RTAM) 42
TV command 46

20,22

ONIT parameter of DDEF command 9

unit record devices 4,36,48
command system, use of &
MSAM, use of 36
users of 4

unlimited access 13

UPDATE cormand &4i4

user—-data 27

VAM data set - see virtual storage data set
16,17

virtual access methods (VAN)
processing data sets 17
virtual channel command word 38

virtual index sequential access method

(VISAM) 20
buffering 24
functions 23
macro instructiomns

DELREC 24
ESETL 25

80

49 GET 23
POT 24
READ 24
RELEX 25
SETL 23
WRITE 24

overflow page 21
organization (VIS) 43
page directory 21
record formats 23
sharing 28
truncating 23
virtual partitioned access method
(VPAM) 24
buffering 27
functions 26
macro instructions
PIND 27
STOW 27
organization (VP) 26
processing 27
sharing 27
virtual sequential access method (VSAM)
buffering 18
functions 18
macro instructions
GET 18
PUT 20
PUTX 20
SETL 18
organization (VS) 18
record formats 18
sharing 20
virtual storage data sets 6
cataloging 10
concurrent sharing 13
virtual terminal support system 39
VISAM data sets 22-25
VOLUME operand of DDEF 9
volume table of contents (VIOC) 55
VT command &6
vrss 39
V¥V command &7

write interlock 14,28

WT command 49

18

GC28-2056-2

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

{BM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

2-9G0Z-820D 'V'S'N Ul pajuig sanjIoe4 Juswabeueyy eleq walsAg Bulieys swi) Wl

