
File No. S360-37 (rSS) 
GY28-2014-2 

Program Logic 

VersiDn B.1 

IBM Sys·tem/3S0 Time Sharing System 

Program Control System 

This publication describes the internal logic of 
the Program Control System of IBM System/360 Time 
Sharing System. It offers facilities within the 
Command System that provide the user with program 
control and checkout aids at both load and execu­
tion time. 

Program logic manuals are intended for use by 
IBM customer engineers involved in program main­
tenance and by system programmers involved in 
altering the program design. Program logic infor­
mation is not necessary for program operation and 
use; therefore, distribution of this manual is 
limited to people with program maintenance or mod­
ification responsibilities. 



PREFACE 

This publication provides customer 
engineers and other technical personnel 
with information describing the inter­
nal organization and logic of the Pro­
gram Control System (PCS). This 
material is divided into four sections 
and eight appendixes. 

Section 1 is an introduction to PCS 
and describes it as an operating entity, 
including its relationship to the Time 
Sharing System and especially the Com­
mand Language Interpreter. 

The appendixes contain supplementary 
material which can be referred to while 
using other portions of the manual. 
Appendixes A and B provide lists of PCS 
routine identifications and mnemonics. 
Appendix C is a table detailing PCS 
routines and their calling conditions. 
Appendix F describes, in detail, the 
formats and contents of the tables used 
by PCS routines. Appendix G gives ex­
amples of PCS output formats and Appen­
dix H details the PCS processing 
limitations. 

Section 2 concentrates on the inter­
actions of the various PCS routines. 

Prerequisite Reading 

It defines their interrelationships as 
well as their use of communication 
areas so as to provide a frame of ref­
erence for the details that follow. 

Effective use of this manual is based 
on an understanding of TSS/360 as dis­
cussed in: 

IBM System/360 Time Sharing System: 
Section 3 provides a detailed de­

scription of the functions and internal 
logic of the individual PCS routines. 

Concepts and Facilities, 
Form C28-2003 

IBM System/360 Time Sharing System: 
System LOglC Summary, 
Form Y28-2009 

Section 4 consists of flowcharts 
that are compatible with the level of 
detail supplied in Section 3. Thus, 
they are arranged in the same order 
(i.e., by routine identification -

CZA •• ) . 

IBM System/360 Time Sharing System: 

Third Edition (September 1971) 

This is a major revision of, and obsoletes, GY28-2014-1, 
and Technical Newsletters GY28-3009, GY28-3ll4 GN28-3llS 
and GN28-3162. This edition is current with Version 8 Mod­
ification I, and remains in effect for all subsequent ~er­
sians or modifications of IBM System/360 Time Sharing System 
unless otherwise indicated. Significant changes or addi­
tions to this pUblication will be provided in new editions 
or Technical Newsletters. Before using this publication in 
connection with the operation of IBM systems, refer to IBM 
System/360.T~me Sharing System: Addendum, GC28-2043-12-,-­
for the edltlons of publications that are applicable and 
current. 

This edition of the Program Control System PLM incorpo­
rates the TNLs mentioned above and reflects the following 
additional changes to the Program Control System: Offset 
f:om location 0 is assumed to be an offset from the quali­
fled name if a qualification is in effect. Besides offset 
a~d length, .the type of a display or dump may now be speci­
fled; that lS hexadeclmal, binary, floating-point, charac­
ter, symbolic, or integer. The Program Module Dictionary 
(PMD) has been changed. 

Requests for copies of IBM pUblications should be made to 
your IBM representative or to the IBM branch office serving 
your locality. 

A form is provided at the back of this publication for 
readers I comments. If the form has been removed, comments 
may be addressed to IBM Corporation, Time Sharing Systems 
Publications, Department 561, P.O. Box 344, 265l Strang 
Boulevard, Yorktown Heights, N.Y. 10598 

Copyright International Business Machines Corporation 
1967,1968,1971 

Command System User's Guide, 
Form C28-200l 



SECTION 1: INTRODUCTION • • • . . • . • • . • . 
Purpose of the Program Control System • • • • . • 
Relationship of PCS to TSS/360 Programming System 
PCS Operational Characteristics • . • . • . . • • 
PCS Interface with Other TSS/360 Service Programs • 

Command l~nalyzer and Executor (CA&E) 
User Coni:rol Routine •••• 
Task Monitor • • • • • 
Intervene • • . . • • 
Data Management • • . 
Virtual Memory Allocation 
Dynamic Loader . . . . • 

Common Areas • . • • • • • 
Overview o:E PCS processing 

Processing of Immediate Commands 
DISPLAY and DUMP Command Processing • 
SET Command Processing 
IF Co~nand Processing . • • 
QUALIFY Command Processing. 
REMOVE Command Processing • 
CALL Command Processing • 
STOP Command Processing • 
BRANCH Command Processing 
GO Co~nand Processing • . 

Processing of Dynamic Commands 
AT Dynamic Command Processing 
IF Dynamic Command Processing 
STOP Dynamic Command Processing . 
BRANCH Dynamic Command Processing 
CALL Dynamic Command Processing • 

SECTION 2: PCS LOGICAL ORGANIZATION 
PCS Phase Descriptions . . . . . . • 
PCS Routines and Communication Tables 
PCS Input (Phase I) . • • . • . ••• 

Phase I References to Internal Tables 
PCS Input (Phase II) .....• 

Phase II References to Internal Tables 
PCS Output (Phase III) .•.•..... 

DISPLAY/DUMP Component . . . . . . • • 
Phase III References to Internal Tables • 
Phase III Message Formats . . 

SECTION 3: MODULE DESCRIPTIONS 
CZAMA - SET . . . 
CAAMB - BRANCH 
CZAMC - STOP and GO . . . . 
CZAMD - DISPLAY and DUMP 
CZAME - IF 
CZAMF - I\T 
CZAMG - CALL . 
CZAMH - EXPSCAN 
CZAMI - DATAFLD 
CZAMJ - SUB POL 
CZAML - DATALOC 
CZAMO - EXTERNAL 
CZAMQ - SCANFLD & GETCHAR 
CZAMR - QUALIFY 
CZAMS - REMOVE 
CZAMT - UNLOAD 
CZANA - PHASE2 
CZANF - CODEGEN 

. 

. 

CONTENTS 

. . 

. . 

7 
7 
7 
7 
7 
7 
9 
9 
9 
9 
9 

10 
10 
10 
10 

• 10 
11 

• 11 
11 
11 
11 
11 

• 11 
13 
13 
13 
13 
13 

• 13 
14 

15 
15 
'15 
16 
19 
20 

• 21 
25 
26 
28 

• 28 

31 
31 
31 
32 
32 

· 32 
33 
33 
34 
36 
36 
38 
40 
41 
43 
43 
44 

· 44 
45 



CZANG - SUBGEN 
C ZANH - COMCON 
CZANI - OPGEN . 
CZANT - LOADOP 
CZANV - GETBASE 
CZANW - DIAGNO 
CZANX - PROMPT 
CZANZ - GETPAGE 
CZAOA - VALMOD 
CZAOB - VALSYM 
CZAOD - GETREG 
CZAPB - PCSPUT 
CZAPC - FINDLOC 
CZAPG - SYMGEN 
CZAPH - LINE 
CZAPI - FORMDIAG 
CZAPK - SAVIX • . 
CZAPL - FINDREAL 
CZAPN - GENCALL . 
CZAQA - DISPDUMP 
CZAQB - NEXTLIST 
CZAQC - NEXTITEM 
CZAQD - NEXTISD 
CZAQF - DISREG 
CZAQG - SIMVAR 
CZAQH - ADDITEM 
CZAQI - DISINST 
CZAQJ - DISARAY 
CZAQK - DISALINE 
CZAQM - DISHEX 
CZAQN - DISHLINE 
CZAQQ - DISRHEAD 
CZAQR - DISYM • 
CZAQT - DBIN 
CZAQU - DISOUT 
CZAQV - REALCON 
CZAQX - DIAG 

SECTION 4: FLOWCHARTS 

APPENDIX A: PCS MNEMONIC CROSS-REFERENCE LIST 

APPENDIX B: PCS ROUTINE/ASSEMBLY MODULE CROSS-REFERENCE LIST 

APPENCIX C: PCS ROUTINES AND CALLING CONDITIONS 

APPENDIX D: PCS LINKAGES TO EXTERNAL ROUTINES 

APPENDIX E: MAJOR TABLES REFERENCES BY PCS ROUTINES 

APPENDIX F: INTERNAL AND EXTERNAL TABLE REFERENCE 
Cornman Areas . . . . . . . 

Task Dictionary Table (TDY) . . . . 
Internal Symbol Dictionaries (ISD) 
New Task Cornmon (NTC) . . • . • 
Interrupt Storage Area (ISA) 
Source List . • . • . . . 
Combined Dictionary Entry . . 

PCS Communication Areas and Tables 
Organization of PCS Communication Areas and Tables 
Space Sharing between Tables 
Location Table (LOCTAB) . . . . . 
Statement Table (STATAB) .... 
Internal Symbol Dictionary Map (ISDMAP) 
Source List Item (SLITEM) . . . . . . . 
Identified Source List Items (PQNITEM, SQNITEM, SYMITEM, 
SUBITEM) . . . . . . . . 
Data Location Item (LOCITEM) 

• 148 
49 
50 
52 
52 
54 
55 
55 
55 
56 
57 

! 58 
60 
60 
62 
62 
62 
62 
63 
63 
64 

:65 
65 
66 
66 
66 
67 
68 
68 
68 
69 
69 
70 
70 
70 
71 
71 

72 

.138 

.152 

.153 

.162 

.163 

.164 

.164 

.164 

.172 

.176 

.176 

.176 

.176 

.176 

.177 

.177 

.179 

.180 

.180 

.181 

.182 

.183 



Data Field Item . • • • • • • . • • 
Phrase List (PLHEAD) .••.... 

Phrase List Processing - Phase I 
Phrase List Processing - Phase II • 

Polish String (POLISH) 
Display List (DISPLIST) . • • • . • • 

APPENDIX G: DISPLAY/DUMP OUTPUT FORMATS 
Single Data Locations or Arrays 
Ranges • • . . . • • . 

APPENDIX H: PCS LIMITATIONS 

ILLUSTRATIONS 

FIGURES 

.185! 

.186 

.187 
• 194 
• 194 

• .200 

• .203 
.203 
.204 

.206 

1. PCS Co~nunication with TSS/360 Service Routines ..... 8 
2. PCS Co~nunication with TSS/360 Service Routines via Common 

3. 
4. 
5. 
6. 
7. 
B. 
9. 

10. 
11 • 
12. 
13. 
14. 
1 5. 
16. 
17. 
18. 
19 • 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 

Areas . . . . . . . • 
Overvie'tl of PCS Componen ts 
PCS Phase I Processing . 
PCS Phase II Processing 
PCS Phase III Processing 
Sequence of Events of AT Statement Processing 
Phase I Control Routine 
Phase I Nesting Chart 
Phase II Control Routine 
Phase II Nesting Chart . 
Phase III Control Routines 
Phase III Nesting Chart 
Display/Dump Control Routine • 
Display/Dump Nesting Chart . 
Task Dictionary Organization 
TDY Heading 
Sample PMD Group 
PMD Group Header 
PMD Preface 
Format of PMD Entry 
Assembler Internal Symbol Dictionary 
FORTRAN Internal Symbol Dictionary 
Linkage Editor rSD . . . . . . 
Sample STATAB/ISDMAP Page 
Locaticn Table (LOCTAB) Entry 
Statement Table (STATAB) Entry 
Internal Symbol Dictionary (ISDMAP) Entry 
Sample ISDMAP . . . . 
Source List Item . . . 
Qualifying Name Items 
Symbol Name Item . . . 
Symbol Name Item for Statement Number 
Subscript Item . . . . . . . 
Data Location Item (LOCITEM) • 
Data Field Item (FLDITEM) 
Phrase List Header (PLHEAD) 
Phrase List Terminator/Continuation Trailer 
Linkage Relationships between LOCTAB, STATAB, and Phrase 
Sample Polish String . • . . . 
Display List (DISPLIST) Format . . • . . • . . • . . . . 

8 
9 

10 
11 

• 12 
13 
17 
18 
22 
23 
24 
26 
27 
30 

.164 

.164 

.165 

.165 

.166 
• .169 

.172 

.174 

.175 

.177 

.179 

.180 
• .180 

.181 
· 181 
.182 
.182 
.182 
.182 
.183 
.185 
.187 
.187 

Lists .195 
.195 
.200 



TABLES 

1. Syntax Analysis Table 
2. Display Formats for Ranges 

CHA;RTS 

AA. 
AB. 
AC. 
AD. 
AE. 
AF. 
AG. 
AH. , 
AJ. 
AK. 
AL. 
AM. 
AN. 
AO. 
AP. 
AQ. 
AR. 
AS. 
AT. 
AU. ' 
AV. 
AW. 
AX. 
AY. 
AZ. 
BA. 
BB. 
BC. 
BD. 
BE. 
BF. 
BG. 
BH. 
BJ. 
BK. 
BL. 
BM. 
BN. 
BO. 
BP. 
BQ. 
BR. 
BS. 
BT. 
BU. 
BV. 
BW. 
BX. 
BY. 
BZ. 

CZAMA - SET 
CZAMB - BRANCH 
CZAMC - STOP & GO 
CZAMD - DISPLAY & DUMP 
CZAME - IF . 
CZAME - AT . . . . • . 
CZAMG - CALL . . • • 
CZAMH - EXPSCAN (Expression Scan) 

. ~ 

CZAMI - DATAFLD' (Form Data Field Definition) 
CZAMJ - SUBPOL (Subscript to Polish) . . 
CZAML - DATALOC (Form Data Location Definition) 
CZAMO - EXTERNAL (Form External Symbol Definition) 
CZAMQ - SCANFLD (Sca~ Field to Delimiter) 
CZAMR - QUALIFY 
CZAMS - REMOVE .•.. 
CZAMT - UNLOAD . . • . 
CZANA - PHASE2 (Phase II Control) 
CZANF - CODEGEN (Code Generator) . • • • • 
CZANG - SUBGEN (Subscript Computation) 
CZANH - COMCON(Combine Constants) • 
CZANI - OPGEN (Operator Code Generator) 
CZANT - LOADOP (Load Operand) ..... 
CZANV - GETBASE (Base Register Assignment) 
CZANW - DIAGNO (Issue Diagnostics) 
CZANX - PROMPT (User Prompting) .••• 
CZAOA - VALMOD (Evaluate Module Name) 
CZAOB - VALSYM (Evaluate Symbol) . • • 
CZAOD - GETREG . . . • • . . . . ..•• 
CZAPB - PCSPUT (Phase III Control) 
CZAPC - FINDLOC (Location Table Scan) 
CZAPG - SYMGEN (Symbol Generator) 
CZAPK - SAVIX (Saved Instruction Execution) 
CZAPN - GENCALL (Call Generated Code) 
CZAQA - DISPDUMP (Display/Dump Control) 
CZAQB - NEXTLIST (Process Phrase List) . 
CZAQC - NEXTITEM (Process Display List) 
CZAQD - NEXTISD (Process Next ISD Entry) 
CZAQF - DISREG (Display Register) 
CZAQG - SIMVAR (Display Simple Variable) 
CZAQH - ADDITEM (Convert Item by Data Type) 
CZAQI - DISINST (Display an Instruction) . • 
CZAQJ - DISARAY (Display an Array) . . . . 
CZAQK - DISALINE (Display a Line of an Array) 
CZAQM - DISHEX (Display a Range in Hexadecimal) 
CZAQN - DISHLINE (Display a Hexadecimal Line) 
CZAQR - DISYM (Format a Symbol) . . 
CZAQU - DISOUT (Output a Line) . . . . . 
CZAQV - REALCON (Real Number Conversion) 
CZAPI - FORMDIAG (Format Diagnostic) 
CZAQQ - DISRHEAD (Format Range Header) . 

· 39 
.205 

73 
74 
75 
76 
77 
78 
79 
80 
85 
86 
88 
90 
91 
93 
94 
95 
96 
99 

• 101 
.102 
.103 
.105 
.106 
.108 
.109 
.110 
• 111 
• 1 1 2 
• 113 
• 11 6 
.117 
• 11 9 
.120 
• 1 21 
.122 
.123 
.124 
· 125 
.126 
.127 
.128 
.129 
.130 
• 13 1 
.132 
.133 
.134 
.135 
.136 
.137 



PURPOSE OF THE PROGRAM CONTROL SYSTEM 

The Program Control System (PCS) is 
an integral component of the TSS/360 
Command System, offering facilities 
within the command system that provide 
the user with program control and 
checkout aids at both load and exec~tion 
time. PCS commands are used to: 

• Request at any time during execution 
of a program, display of the contents 
of data fields, instruction 
locations, and registers. 

• Modify the contents of the user's 
virtual storage. 

• Specify locations within his program 
where execution is to be stopped or 
started. When execution stops, the 
user can issue additional commands 
before he resumes execution. 

• Establish logical (i.e., true or 
false) conditions that allow or 
inhibit the execution of other 
commands. 

These control and checkout services 
are requested by means of t.he PCS 
commands: AT, BRANCH, CALL, DISPLAY, 
DUMP, GO, IF, QUALIFY, REMOVE, SET, and 
STOP. These commands and t~heir usage 
are defined in the Command System 
User's Guide. 

RELATIONSHIP OF PCS TO TSS!360 
PROGRAMMING SYSTEM 

PCS is an extension of t:he command 
analyzer and executor (CA&E) routines 
within the command system. PCS is 
present in initial virtual storage 
(IVM) at logon time and is called by 

CA&E when CA&E recognizes a user­
issued command requesting PCS services. 
PCS does not directly service 
interrupts nor does it execute 
privileged instructions. 

PCS OPERATIONAL CHARACTERISTICS 

PCS is loaded as part of initial 
virtual storage by TSS STru~TUP. Its 
routines are reenter able and are 

SECTION 1: INTRODUCTION 

dynamically paged into and out of main 
storage as needed. The services of 
PCS are always available to the user. 

PCS commands and statements may be 
issued in conversational or 
nonconversational mode. All commands 
are obtained from SYSIN, without 
distinction as to mode. In the 
conversational mode, a syntax check is 
made and symbolic references are 
validated. If syntactic errors or 
references to undefined symbols are 
detected, appropriate messages are 
written on SYSOUT. In the non­
conversational mode, the same checks 
as in the conversational mode are made 
but diagnostics will cause the state­
ment to be ignored. Diagnostics are 
delivered to the task's SYSOUT data set 
together with the PCS output, and 
incorrect commands are ignored. 
Output from the DUMP command is always 
written to the PCSOUT data set for 
subsequent printing. 

pes statements may require 
immediate or deferred execution 
depending on the presence of an AT 
command. Those statements which do not 
contain an AT command are executed 
immediately. Those statements which 
do contain an AT command are processed 
during object-program execution upon 
arrival at the location specified in 
the AT command. This latter deferred 
type of command execution is said to 
be dynamic and is accomplished by the 
insertion of a PCSVC supervisor call 
in the issuing task's program at the 
points specified in the AT command. 

pes INTERFACE WITH OTHER TSS/360 
SERVICE PROGRAMS 

PCS interfaces with other system 
modules in performing its task 
(Figure 1). All linkages between pes 
and such system modules are type-I 
linkages. 

COMMAND ANALYZER AND EXECUTOR (CA&E) 

The command analyzer and executor 
(CA&E) serves as the primary link 
between PCS and the user's program. 

INTRODUCTION 7 



CA&E obtains user's ¥CS statements 
from SYSIN in exactly the same way as 
for other commands. CA&E scans the 
statement and, detecting a PCS command, 
calls the appropriate PCS module to 
perform the required processing. 

ENTER COMMAND MODE 
SYSIN CME 

CA&E also serves as a control program 
for PCS, exercising control over the 
flow of work between PCS phases. Upon 
completion of the processing of a phase, 
PCS returns control to CA&E, unless 
otherwise noted (Figure 3). 

INTERVENE 

PROCESS PeSVC 

STOP PeS ~t 
COMMAND I ENTER ! I PROCESS PeS COMMAND 

COMMAND I 
MODE ~_~. ______________ ~ ______________ -L __ ~ I 

VAMOR TAM GATE 
OUTPUT 

SYSOUT PeS 

CALL CALL 
f-+ USER CONTROL r---. TASK MONITOR 

EXECUTE 
PeSVC 

USER'S PROGRAM 

STORAGE 
FOR PeS 
PROCESSING LOl 

i 
UNLOAD 

DUMP 
OUTPUT 

RETRIEVE 
ISD 

MODULE 

VIRTUAL 
MEMORY 
ALLOCATION 

Figure 1. PCS Communication with 
TSS/360 Service Routines 

GET TASK EXECUTION DATA 

TASK MONITOR - lSA 
SET REGISTERS AND VPSW 

RESOLVE 
EXTERNAL 
SYMBOLS 

F1gure 2. PCS Commun1cat1on w1th 
TSS/360 Service Routines 
via Common Areas 

8 

RESOLVE 
SYMBOL 

DYNAMIC 
LOADER 

DATA 
MANAGEMENT 

RESOLVE INTERNAL SYMBOLS 
PeS 

SIGNAL 
UNLOADER 
TO CALL PeS 

I+-
DYNAMIC 

TOY . LOADER 

t 
LANGUAGE 
PROCESSORS 

ISD - LANGUAGE 
PROCESSORS 



NEW PCS 
STATEMENT 

PCS INPUT 
(PHASE J) 

CME 

ENTRY 2 

PCS INPUT 
(PHASE II) 

NO 

PC, OUTPUT 
(PHASE 111) 

Figure 3. 

NO 

Fig. 4 

Fig. 5 

DISP!DUMP 
COMPONENT 

Fig. 6 

DISP!DUMP 
COMPONENT 

USER CONTROL 

EXECUTES 
PCSVC 

TASK MONITOR 

PCS OUTPUT 
(PHASE III) 

Overview of PCS Components 

Fig. 6 

USER CONTROL ROUTINE 

pes, when processing the CALL command, 
gives control to the User Control ser­
vice routine to initiate execution of 
the user's program. 

TASK MONITOR 

The task monitor is called to 
initiate program execution when PCS 
processes a CALL command. PCS calls 
the task monitor indirectly, via the 
User Control service routine. Upon 
encountering a PCSVC in the user 
program, the task monitor calls PCS to 
provide the processing required to 
complete the actions in a dynamic 
statement. 

INTERVENE 

During the processing of a dynamic 
statement, PCS determines if the task 
should be placed back in the command 
mode. This could result from the 
processing of a dynamic STOP command 
or from an error condition recognized 
by PCS. A task is placed in command 
mode when control is given to INTERVENE 
to halt the execution of the user 
program and give control to CA&E. 

DATA MANAGEMENT 

Data management facilities are used 
for the retrieval of internal symbol 
dictionaries (ISO). Two VAM routines 
are used in ISO retrieval: VPN1 FIND 
is used to locate the member, and VAM 
MOVE PAGE to read in the ISO. PCS also 
uses VISAM for off-line output in 
response to the DUMP command. VAM and 
Tfu~ are used by the GATE routine for 
SYSIN and SYSOUT. 

VIRTUAL MEMORY ALLOCATION 

PCS uses GETMAIN to add required 
working storage, and FREEMAIN to 
release it. The CKCLS SVC is issued to 
determine the memory protection and 
privilege status associated with a 
virtual storage address. 

INTRODUCTION 9 



DYNAMIC LOADER 

PCS executes a DLINK SVC to load a 
referenced module. Two dynamic loader 
subroutines are also used by PCS. The 
MAP SEARCH routine is called to search 
the storage map for a virtual memory 
address. The HASHSEARCH routine is 
called to resolve a module name or 
external reference in a PCS statement. 
Whenever a module that was referenced 
symbolically in a PCS statement is 
unloaded, the dynamic loader enters a 
PCS subroutine to clear PCS tables and 
restore all instructions in the user's 
program that have been replaced with 
SVCs by PCS. This action guarantees 
that no PCS checkout or control 
statements will remain to interfere 
with execution of modules that have 
not been unloaded. 

The task dictionary, maintained 
by the dynamic loader, provides PCS 
with a constantly updated picture of 
the extent of the user's program, his 
usage of virtual storage, and the 
values assigned to external symbols. 
A description of the task dictionary 
is presented in Appendix F. 

COMMON AREAS 

PCS processing requires a complete 
picture of the user's program mapping, 
the status of the program during 
execution, and the operating 
environment. PCS obtains this 
information from three basic sources: 
A task dictionary (TDY), internal 
symbol dictionary (ISD), and interrupt 
storage area (ISA) (Figur~ 2). These 
common areas are described in 
Appendix F. 

OVERVIEW OF PCS PROCESSING 

The processing performed by PCS for 
each of the commands may be 
conveniently discussed under two 
general headings: processing of 
immediate statements, and processing of 
dynamic statements. As stated earlier, 
a statement 'becomes' dynamic (i.e., 
deferred) because of the presence of an 
AT command in the statement. 

An overview of the processing of 
immediate and dynamic commands is shown 
in Figures 3-6. Three functional 
phases are distinguished: PCS Input 
(Phase I) i PCS Input (Phase II) i PCSI 
Output (Phase III). 

10 

I~ should be noted, however, that this 
division of PCS into three phases 
represents a logical rather than a 
physical division. 

PROCESSING OF IMMEDIATE COMMANDS 

Phrases in immediate statements are 
processed individually (i.e., one at a 
time). Control is always returned to 
CA&E at the completion of processing 
for a phrase, unless otherwise noted. 

DISPLAY and DUMP Command Processing 

One or more operands are allowed in 
both the DISPLAY and DUMP commands. 
The encoded information for each of the 
operands is placed in a phrase list. 
This information consists of the 
starting and ending virtual storage 
locations to be displayed, the type of 
symbol that the user referenced in the 
operand, and the location of the 
appropriate dictionary entry where the 
symbol was found. In addition, any 

C ENTRY FROM 
CME 

NOTIFY CA&E 
STOP GO BRANCH OF END-OF-

STATEMENT 
AND BUILD 
PHRASE LISTS 

BUILD PHRASE 
AT LIST, GENERATE 

CODE, INFORM 
CME OF DYN. 
STATEMENT 

IF CALL DISPLAY DUMP SET BUILO PHRASE 
LISTS 

QUALIFY 
RETRIEVE ISD 

REMOVE REMOVE PCSVC 
FROM USER 
PROGRAM 

( RETURN 

Figure 4. PCS Phase I Processing 



object code that was generated (for 
subscripting) is located by pointers 
in the phrase list. The phrase list is 
then presented to the appropriate 
subroutines for displayin9 or dumping. 

SET Command processing 

The SET command allows a data 
location to be set equal to an 
expression. The informat:con pertaining 
to the data location to the left of the 
equal sign is tabularized into a phrase 
list, as in the DISPLAY command. 
Object code is created to compute the 
result of the expression to the right of 
the equal sign. The code is linked to 
via the phrase list. When the list is 
presented to the subroutine that per­
forms the SET action, the object code 
is executed. The result of the 
evaluation is then returned to the SET 
routine, which stores it in the data 
location specified by the phrase list. 

ALL 
COMMANDS 
EXCEPT 
QUALifY 
AND 
REMOVE 

GENERATE 
CODE 

PCSPUT 
(PHASE III) 

NO 

ISSUE 
DIAGNOSTIC 

PLACE pcsvc 
IN USER 
PROGI:AM 

USER CONTROL 

RETURN 

Figure 5. PCS Phase II Processing 

IF Command Processing 

The presence of an IF expression in 
the statement makes its execution 
conditional. PCS compiles object code 
to evaluate the result of the 
expression, executes this code, and then 
notifies CA&E of the result of the 
logical evaluation. If the condition 
is false, the remainder of the state­
ment is ignored; if true, CA&E processes 
the next command in the statement. 

QUALIFY Command Processing 

The QUALIFY command allows the user 
to specify the name of the program 
module to which his internal symbols 
apply. Processing of the directive 
includes locating the internal symbol 
dictionary for the module and storing 
the necessary information into its 
internal tables. 

REMOVE Command Processing 

The REMOVE command allows the user 
to deactivate selected dynamic state­
ments permanently. PCS processing 
consists of delinking and removing the 
appropriate table entries for the 
statements and of removing any PCSVC's 
present. 

CALL Command Processing 

The CALL command initiates program 
execution. If a module has not been 
loaded, PCS will request the dynamic 
loader to load it. The VPSW is then 
modified to start execution at the 
module entry point, and the contents 
of the user's linkage registers are 
set so that a type-I linkage can be 
achieved. Control is given to the User 
Control Routine for this. 

STOP Command Processing 

The STOP command in an immediate 
statement causes the user to be 
notified of the current status of his 
program. CA&E is notified that an 
end-of-line condition is met. 

BRANCH Command Processing 

The BRANCH command causes the VPSW 
(which contains the location in the 
user's program from which execution 
will start or be resumed) to be 
altered to an operand specified in the 
command. CA&E is notified of an end 
of statement. 

INTRODUCTION 11 



A 

LOCATE 
INTERNAL 
INFORMATION 
FOR THIS AT 
OPERAND 

STOP 

BRANCH 

GO NOTIFY CA&E 
!--=--=---~ OF END OF 

SUIllST LEVEL 

AT 

CAll 

IF 

DISPLAY 
DUMP 
SET 

PERFORM 
ACTION 

NO 

INTERVENE 

YES 

USER CONTROl 

YES 

Figure 6. pes Phase III Processing 

12 

LOCATE 
DYNAMIC 
STATEMENT 

NOTIFY 0.&£ 
OF FALSE If 

RECOMPOSE 
INSTRUCTION 



GO Command Processing 

When a GO command is entered, PCS 
notifies CA&E of an end o~ line. 
Since the location of the VPSW was not 
altered, execution will start or 
resume at the current address. 

PROCESSING OF DYNAMIC COW~NDS 

Dynamic commands are commands whose 
execution has been deferred until a 
specified location in the user's 
program is reached during execution. 
This is accomplished by means of the 
AT command. 

AT Dynamic Command Processing 

PCS implements the AT command by 
inserting a PCSVC into the user's 
program at the location specified in 
the command operand. The user's 
instruction at that location is saved 
in internal tables. PCS then notifies 
CA&E that the statement is dynamic. 

When the PCSVC is executed in the 
user's program, the task monitor 
recognizes it and enters PCS for 
processing (Figure 7). PCS searches 
its internal tables for the 
information pertaining to the SVC at 
that location. All the processing is 
then done for the actions requested at 
that event, as described above in the 
paragraphs on processing of immediate 
commands, except as indicated below. 

IF Dynamic Command Processing 

The condition is evaluated by 
executing the code generated during 
the immediate command processing phase. 
If the result is false, the next state­
ment effective at this location is 
processed. If the result is true, the 
remaining phrases in the current 
statement are performed. 

STOP Dynamic Command Processing 

The user is notified of the 
location of his program and control is 
given to the Intervene system routine 
to halt the user's progr,:tm and to 
place the task in the co::runand mode. 

BRANCH Dynamic Command P.r:ocessing 

The VPSW in the ISA is modified and 
control is returned to the task 
monitor to resume program execution. 

Figure 7. 

USER'S 
'ROGRAM 

~ EXECUTE 

TASK MONITOR 

~ CAll PCS 

RECOMPOSE 
OVERLAID 
INSTRUCTION 
FOLLOWED BY 
PCSVC 

~ 
MODIFY VPSW 
TO POINT TO 
RECOMPOSED 
INSTRUCTION 

~ RETURN T 
TASK MO 

TASK MONITOR 

PCSVC 

o 
NITOR 

~RETURN T 
USER'S PR 

o 
OGRAM 

USER'S PROGRAM 

~ EXECUTE 
INSTRUCT 

RECOMPOSED 
ION & PCSVC 

TASK MONITOR 

~ CALL PCS 

PCS 

IDENTIFY 
LOCATION OF 
PCSVC AS A 
RETURN ENTRY 

~ 
MODIFY VPSW 
TO RESUME 
USER'S PROGRAM 
EXECUTION 
FOLLOWING THE 
AT LOCATION 

~ RETURN T 
TASK MO 

TASK MONITOR 

o 
NITOR 

o 
OGRAM 

~ RETURN T 
USER'S PR 

USER'S PROGRAM 

Sequence of Events ot AT 
Statement Processing 

INTRODUCTION 13 



CALL Dynamic Command Processing 

Control is given to the User 
Control system routine which initiates 
execution of the called program. 
When control returns from the program, 
the remaining actions in the dynamic 
statement are performed. 

Terminal Processing of Dynamic 
Statements 

Prior to resumption of the user's 
program, the instruction that was over­
laid with the PCSVC must be executed 

14 

(Figure 7). This is done by recom­
posing the instruction into a PCS work 
area. After the recomposed instruction 
is executed, return is made to the 
user's program at the next sequential 
instruction. To do this, a second 
PCSVC is placed following the recom­
posed instruction so that PCS will 
again be entered immediately after its 
execution. PCS recognizes this entry 
as a return-entry and modifies the 
VPSW to point to the next sequential 
instruction in the user's program. Con­
trol is then passed to the task monitor 
and normal program execution continues. 



The Introduction to this manual 
present~d an overview of PCS functions, 
without specific reference to the 
program internals. The present section 
relates these functions to specific 
routines. Brief descript.ions are given 
of each function, the rou.tines that 
perform these functions, the calling 
relationship between rout.ines, and the 
internal communication tables that are 
formed and referenced by them. This 
discussion is prefaced by a brief 
account of the logical organization 
of PCS. 

PCS PHASE DESCRIPTIONS 

processing of PCS sta':ements is 
performed in three logica.l phases, 
designated as PCS Input (Phase I), PCS 
Input (Phase II), and PCS Output 
(Phase III). 

The functions for each logical phase 
are performed by a collection of 
subroutines under the direction of a 
control subroutine for that phase. The 
phases, their functions, and the 
control routines, are described briefly 
below. 

It should be understcod that there 
is no one-to-one correspondence between 
these logical phases and physical PCS 
assembly modules; many PCS routines are 
employed in more than or.,e logical phase. 

PCS Phase I 

PCS Input (Phase I) performs initial 
processing of PCS statements. Commands 
and their operands are E~valuated, 
checked for ·errors, and then formed 
into phrase lists for further processing 
by Phases II and III. Control is 
exercised by one of nine Phase I 
control routines; CA&E passes control 
to the appropriate routine depending 
on the source phrase currently being 
processed. 

PCS Phase II 

PCS Input (Phase II) performs final 
input processing of PCS statements. If 
any warning diagnostics were issued in 
Phase I, Phase II prompts the user to 

SECTION 2: PCS LOGICAL ORGANIZATION 

accept the system's interpretation. 
In nonconversational mode, warning 
diagnostics cause the statement to be 
ignored. 

If the user accepts the statements 
as interpreted by the system, or if 
there are no diagnostics; Phase II 
proceeds to generate all object 'code 
necessary, to evaluate SET and IF 
commands, and subscripted variables. 
The generated code is linked to PCS 
tables. If the statement is dynamic, 
all PCSVCs called for by AT commands 
are planted in the user's program. If 
the statement is immediate, Phase II 
calls PCS Output (Phase III) to perform 
the actions s~ecified. 

CA&E initiates Phase II processing 
by a call to PHASE2 (CZANA): this 
routine controls the processing 
described above. If the user does not 
accept the statement or if any fatal 
diagnostics are issued, the above 
processing does not occur and PHASE2 
returns control to CA&E. 

PCS Phase III 

PCS Output (Phase III) performs the 
actions specified by PCS internal 
tables built during Phase I and II. 
PCSOutput is entered either from the 
task monitor, as the result of a PCSVC 
having been executed in the user's 
program, or, in the case of immediate 
statements, directly from the Phase II 
control routine, CZANA. Entry is made 
to PCSPUT (CZAPB), the control routine 
for Phase III processing. 

PCS Output (Phase III) calls a 
DISPLAY/DUMP component wnenever the 
DISPLAY, DUMP, or SET functions are to 
be performed. 

Following the completion of Phase III 
processing, PCSPUT (CZAPB) returns 
control to the caller. 

PCS ROUTINES AND COMMUNICATION TABLES 

This sub-section relates PCS 
functions to specific routines and 
internal communication tables and areas. 
The organization of this material 

PCS LOGICAL ORGANIZATION 15 



reflects the division of PCS functions 
into three logical phases. Overview 
flowcharts are given of the control 
routines for each of the phases. 
Nesting charts are given showinq the 
calling relationship between the 
routines of each phase. Tables 
specifying routine calling conditions 
are given in Appendix C. 

For detailed information concerning 
a specific rout~ne, the reader should 
consult the individual rout~ne 
description in Section 3, or the 
flowchart in Section 4. These sections 
are ordered by module ID. The reader 
will find detailed descriptions of 
external and internal communication 
tables in Appendix F. 

Note: Routine designations appearing in 
this document take the CZ ..• form. By 
convention, the CF designation is in­
tended to denote routines referenced 
exclusively from within the same assem­
bly module; the CZ designation denotes 
routines referenced from outside the 
assembly module. However, since this 
convention has not been strictly fol­
lowed, the CZ code is used throughout 
this document to designate both cases. 
The correct designation for internally 
referenced routines can be determined 
by checking the listings. 

PCS INPUT (PHASE I) 

PCS Input (Phase I) routines can be 
divided functionally into five 
catagories: 

• Control routines 

• Source list scanner 

• Expression evaluators 

• Operand evaluators 

• Diagnostic routine 

Control Routines 

When CA&E recognizes a phrase 
requiring PCS processing, control is 
passed to the appropriate Phase I 
control routine (Figure 8). These are: 
SET (CZAMA), BRANCH (CZAMB), STOP 
(CZAMCl), GO (CZAMC2), DISPLAY (CZAMDl), 
DUMP (CZAMD2), IF (CZAME), AT (CZAMF), 
explicit CALL (CZ&~Gl), and implicit 
CALL (CZAMG2). All of the above 
routines control the evaluation of 
operands into encoded form and the 

16 

insertion of these operands into phrase 
lists for further processing by 
Phases II and III. 

Control for the processing of the 
QUALIFY and REMOVE commands is 
provided by QUALIFY (CZAMR) and 
REMOVE (CZAMS). QUALIFY (CZAMR) 
locates the ISDMAP-entry for the program 
module to be used in the implicit qual­
ification of internal symbols. REMOVE 
(CZAMS) performs permanent cancellation 
of specified dynamic statements. Phase 
I provides the entire processing re­
quired by the QUALIFY and REMOVE com­
mands. 

UNLOAD (CZAMT) is entered from the 
dynamic loader when a module referenced 
in PCS statements is unloaded by the 
user. The routine provides all the 
processing needed to release PCS 
working storage and provides for 
restoring the user's instructions that 
were overlaid with PCSVCs. 

The remaining routine categories 
represent those called directly or 
indirectly by Phase I control routines. 
The nesting relationships for Phase I 
routines can be seen in Figure 9. 
Their calling conditions are defined 
in Appendix C. 

Source List Scanning Routine 

SCANFLD (CZAMQ) scans the source 
list and forms a source list item 
(SLITEM). This item and the other 
internal reference items mentioned in 
the succeeding paragraphs are identified 
immediately afterwards. 

Expression Evaluator Subroutines 

EXPSCAN (CZAMH) evaluates an 
expression and forms a Polish string 
(POLISH). The subscript/offset scan 
routine, SUBPOL (CZAMJ) evaluates a 
subscript/offset expression and forms 
a Polish string. 

Operand Evaluator Subroutines 

DATALOC forms a data location item 
(LOCITEM). DATAFLD (CZAMI) forms a 
data field item (FLDITEM) which may 
consist of a single data location item 
or two combined data location items, 
forming a range. VALSYM (CZAOB) forms 
an internal symbol data, location item. 
EXTERNAL (CZAMO) forms an external 
symbol data location item. It also 
forms a data location item for an 



CZAMA 

( ENTRY FROM DATAFlD-CZAMI EXPSCAN-CZAMH 
Form phrase CME Form SET :r PlHEAD; link f---+ F",m FlDITEM ~ ~ 
I i sf entry for 

for each term 
Form POLISH each operand; 

to STATA8 for expreuion link POLISH 01 SET ""P 

CZAMB 

DATAFlD-CZAMI 
Form phrase 

Set 'delete BRANCH Form BRANCH 
f---- F,,,," FLOITEM ~ 

list entry; 
~ rest of line' PlHEAD link 'e> lor BRANCH 

STATAB lIog 
operand 

CZAMe 

Form STOP/ 
~;'et 'delete STOP GO GO PlHEAD; f----- lest of line I 

link to 
STATAB nag 

CZAMD 

Fe>rm DISPLAY / 
DA"'AFlD-CZAMI 

DISPLAY DUMP PlHEAD; r-- form FlDITEM k7> NO 

DUMP link to kx" each e)(pt"e$Sion? 

STATAB operand 

YES 

EXPSCAN-CZAMH 
Form phrase 

Form POLISH ~ 
list entry for 
each operand; 

for expression link POLISH 

CZAME 

DAf AFLO-CZAMI EXPSCAN-CZAMH 
Form phrase 

IF Form IF Hst entry for 
PlHEAD; link f--+ F",m FLDITEM r-- Fe>rm POLISH r- each operand; '0 STATAB for each term for expressi on link POLISH 

of IF exp 

CZAMF 

DATAFLD-CZAMI ~~ 'OO,"'N~'" GENCALl-CZAPN 

I AT Form AT 
Location YES Generate code r-PLHEAD; I ink I-- F >rm f lDITEM 
offset? to evaluate EXeC-ute Code to STATAB fur each in-str 

offset 
location 

NO 

• 
Set 'dynamic H Form phrase 

Increment 

)-- list entry for 
RETURN slatemen,1 

each instr -- loe-ation by 
I flag offse 

I I location 

I CZAMG 

~OAW'O<'~' 
CALL Form CALL 

implocit NO Form FlDITEM NO PLHEAD; I ink y to STATAB CAll? for the entry 
point 

YES 

u'~N"_"~ EXPSCAN-CZAMH 

Form phrase 
Evaluate module Form POLISH f-- list entry; 
nome in New for expression link POLISH 
Task Common 

CZAMR 

SCANFlD-CZAMQ VALMOD-CZAOA 
Save ISDMAP 

QUALIFY Form SLiTEM r-- Evaluate module t-- index for 

for pri mary! .ymbol 
r:ame qualification secondary name 

CZAMS 

DATALOC-CZAMl 

"""ote STATAB 
Unlink each Clear LOCTAB 

REMOVE phrase list and restore ) Form LOCITEM f-- .~ h. AT ~ f--+ RETURN 
for each entry from user's \. 

l,c,rose list 
statement NR STATAB ""'ry instruction 

Figure 8_ Phase I Control Routine 

PCS LOGICAL ORGANIZATION 17 



SET t---
t---

I 
8RANCH F 

l~o"GO ~ 
DISPLAY t---& DUMP 

t---

IF -
-

--1'00'"" I 
I ~ AT t G'N<'" I -CAll --

I REMOVE F= 
t---

QUALIFY 
t---

EXPSCAN ,...-.-

t---., 
PROMPT DATAFlD -., 

SUBPOl t---
r-

i---VAlMOD 1+ DATAlOC 1_ EXTERNAL 

, II ., 
VALSYM SCANFLD 

DIAGNO ~ GETCHAR 

Fiqure 9. Phase I Nesting Chart 

18 



undefined command variable or a defined 
command variable. VALMOD (CZAOA) eval­
uates a module name and locates inter­
nal symbol dictionaries (ISO) for the 
module. 

Diagnostic Routine 

Each Phase I routine, while per­
forming the various error checks., can 
form diagnostic codes which subsequently 
will cause diagnostic messages to be 
issued. 

The diagnostic routine DIAGNO (CZANW) 
selects the text of the message based 
on the code. The severity of the error 
is also decided by the diagnostic 
code. The fatality code of the entire 
statement is based on the most severe 
diagnostic issued. 

PHASE I REFERENCES TO U~TERNAL TABLES 

PCS processing builds entries or 
makes references to the following 
internal communication t.ables and areas: 

• Statement Table (STATAB) 

• Phrase List (PLHEAD) 

• Source List Item (SLITEM) 

• Identified Source List Item 
(PQNITEM, SQNITEM, SYMITEM, SUBITEM) 

• Data Location Item (LOCITEM) 

• Data Field Item (FLDITEM) 

• Polish String (POLISH) 

• Internal Symbol Dictlonary Map 
( ISm1AP) 

• Location Table (LOCTlI.B) 

• Display List (DISPLIST) 

These areas and their use by PCS are 
described below. The description is 
preceded by a summary review of source 
list processing by CA&E. 

Source List 

CA&E initializes a source list each 
time a user logs on. As CA&E obtains a 
user's command, it places the command 
in a level-one sublist and calls the 
appropriate routine in PCS Input 
(Phase I). Should the user's program 

be executed during this session and 
should the execution of that program 
be interrupted, for example, by the 
issuance of a new command, CA&E will 
create a nested sublist (a non-level­
one sUblist) for the new command. 
The new sublist acts in the same way as 
a level-one sublist, initiating a user's 
program, etc. When all nested, non­
level-one sublists are processed, 
processing of the level-one sublist is 
resumed. 

Statement Table (STATAB) 

A STATAB entry is created by the 
appropriate Phase I control routine for 
each PCS statement to be processed. 
The entry points to the first phrase 
list header (PLHEAD) for the statement. 
This phrase list header identifies the 
first PCS command in the statement. 

If the statement is immediate, the 
STATAB entry is placed in the PCS PSECT. 
If the statement is dynamic, the 
immediate STATAB entry is assigned 
temporary storage in the last STATAB 
page. Phase II later assigns this 
storage permanently. 

Phase III will use STATAB to locate 
the phrase list in processing both im­
mediate and dynamic statements. 

Phrase List (PLHEAD) 

In processing PCS statements, Phase I 
control subroutines build a phrase list 
for each PCS command. This list 
consists of a phrase list header 
(PLHEAD), identifying the command by 
type, and a phrase list entry for each 
of the command operands. The format of 
each phrase list entry is determined by 
the syntax used to express the operand 
and the process used to evaluate it. 

Source List Item (SLITEM) 

Characters are extracted from the 
source list by GETCHAR and are stored 
as a continuous string in the buffer in 
PCS PSECT. The SCANFLD (CZAMQ) 
subroutine scans this string and forms 
a source list item (SLITEM) for each 
string. SLITEM contains the location 
and length of the string, the 
character type (numeric or alphameric), 
and the string delimiter found. 

Identified Source List Item 

The identification and delimination 
of the source list item are used to 

PCS LOGICAL ORGANIZATION 19 



determine the format of the data lo­
cation (LOCITEM). During this process 
of identifying the data location, DATLOC 
moves the source list item previously 
formed to one of four identified source 
list items: PQNITEM, SQNITEM, SYMITEM, 
and SUBITEM. PQNITEM and SQNITEM spec­
ify primary and secondary qualifying 
module names. SYMITEM specifies symbol 
names. SYMITEM and SUBITEM specify 
statement numbers and subscripts. All 
four identified source list items are 
used to express a floating point con­
stant. All other data locations are 
specified by SYSITEM. 

Subsequent processing of the ident­
ified source list items varies according 
to the type of LOCITEM identified. 

Data Location Item (LOCITEM) 

A data location item (LOCITEM) is 
formed by Phase I from the identified 
source list items. LOCITEM identifies 
the data location as an array, internal 
symbol, internal symbol with offset, 
statement number, statement number with 
offset, single precision constant, 
double precision constant, etc. De­
pending on the data format used, sev­
eral source list items may be required 
to identify the data location item com­
pletely. 

When a LOCITEM has been identified 
and validated by a context check, con­
trol is passed to the appropriate 
Phase I routine to perform the conver­
sion and/or evaluation. 

Data Field Item (FLDITEM) 

A Data Field Item (FLDITEM) is formed 
from the LOCITEM. If subscript/offset 
notation is used in a LOCITEM, Phase I 
forms a Polish string for the subscript/ 
offset expression. If range notation is 
used, a second LOCITEM and Polish string 
is formed and incorporated into FLDITEM. 
The DATAFLD (CZAMI) routine controls 
formation of FLDITEM. 

Polish String (POLISH) 

If the operand is an expression, the 
Phase I control routine calls EXPSCAN 
(CZAMH) to form a Polish string. En­
tries in a Polish string consist of a 
header entry for the expression, an en­
try for each operand and operator in 
the expression and a trailer entry to 
control the processing of the Polish 
string by Phase II. If an operand is 
subscripted or offset, SUBPOL (CZAMJ) 

20 

is called to evaluate it, and the oper­
ands and operators of the subscript/ 
offset Polish string are included in the 
Polish string for the expression. 

A description of Polish string for­
mation is given in the module descrip­
tion for EXPSCAN (CZAMH). An example 
of a Polish string processing is given 
in the module description for CODEGEN 
(CZANF). Further discussions of Polish 
strings are in Appendix F. 

Internal Symbol Dictionary Map (ISDMAP) 

The ISDMAP, generated by Phase I, 
contains an entry pointing to the 
address of each ISD loaded. If the 
ISD is a link-edited lSD, additional 
ISDMAP entries are made for each 
assembled or compiled module. 

Location Table (LOCTAB) and Display 
List (DISPLIST) 

In addition to the tables and areas 
described above, PCS processing includes 
references to a location table (LOCTAB) 
and a display list (DISPLIST). Entries 
to LOCTAB are created by Phase II and 
are described in the discussion for that 
phase. Phase I references LOCTAB in 
processing REMOVE and UNLOAD phrases. 
DISPLIST entries are created by 
Phase III and are described in the dis­
cussion for that phase. Phase I does 
not reference DISPLIST. 

Final Phase I Processing 

When the format for the phrase list 
entry has been fully determined, Phase I 
control routines insert entries for each 
operand into the phrase list behind the 
phrase list header and establish link­
age to any POLISH string formed in the 
process. 

When the current phrase list has been 
completely formed, control is returned 
to CA&E. 

PCS INPUT (PHASE II) 

Phase II subroutines can be divided 
functionally into four catagories: 

• Control Routine 

• Code Generation Routines 

• Table Scan Routine 

• Diagnostic Routines 



control Routine 

When Phase I returns co~trol to CA&E, 
CA&E calls CZANA (PHASE2), the control 
routine for Phase II processing (see 
Figure 10). 

If fatal diagnostics were issued in 
Phase I, CZANA calls DIAGND (CZANW) 
to issue a diagnostic and then informs 
CA&E to delete the rest of the source 
line. For less-than-fatal diagnostics, 
CZANA calls PROMPT (CZANX) to write a 
diagnostic and solicit user approval 
of the system's interpretation. (In 
non-conversational mode, the statement 
is ignored). 

If the user's approval is obtained, 
CZANA proceeds to locate and 
initialize the STATAB entry and to 
locate the associated phrase list. 
Each entry in the phrase list is then 
inspected to determine if the phrase 
list entry contains a pointer to a 
polish string. If so, CZANA calls 
CODEGEN (CZANF) to generate code to 
evaluate the polish string. The 
address of the generated code then 
overlays the address of the Polish 
string in the phrase list entry. 

If the statement is dynamic, the AT 
phrase is processed after the 
generation of all necessary code. A 
LOCTAB entry (described below) is 
formed for each en try in t.he AT phrase 
list and a PCSVC is stored in the 
user's program. The LOCTA.B entry 
serves to link the PCSVC a.ddress with 
the first entry in the statement 
table (STATAB) associated with the 
address. If a previous LOCTAB entry 
already exists for the location 
specified by the AT phrasE! list entry, 
as the result of an earlier dynamic 
statement, the current ST1\TAB entry is 
linked to the last STATAB entry for 
the location. 

If the statement is immediate, 
CZANA calls Phase III to perform the 
necessary actions. 

Code-Generation Routines 

CODEGEN (CZANF) is the control 
routine for all object-code generation. 
CFANF processes the polish string, and 
based on the type of entries, calls 
the appropriate routine to combine two 
operands. If the operator is part of 
a dimension string, SUBGEN (CZANG) is 
called to generate the code. 

If the operation is between two non­
dimensioned variables or between a non­
dimensioned variable and a constant, the 
code to perform the operation is gener­
ated by OPGEN (CZANI). If both operands 
are constants, COMCON (CZANH) is called 
to combine them. LOADOP (CZANT) gener­
ates code to load an operand. GETBASE 
(CZANV) assigns a base register for ref­
erencing an operand and generates code to 
load the base register when necessary. 
GETREG (CZAOD) assigns registers re­
quired for generated code. 

Table Scan Routine 

If the statement is dynamic, CZANA 
calls FINDLOC (CZAPC) to scan the lo­
cation table (LOCTAB) for an entry which 
matches the specified AT location. If 
an available (i.e., non-matching) entry 
is found, its address is returned and 
.CZANA creates a LOCTAB entry to link 
the PCSVC address and the STATAB entry. 
If a matching entry is found, CZAPC re­
turns a matching code, signifying that 
a PCSVC already exists for the location. 
CZANA will then link the matching LOCTAB 
entry to the current STATAB entry. 

Diagnostic Routines 

DIAGNO (CZANW) forms and issues diag­
nostics. Diagnostic levels are: 

1. Null - These are informational only 
and do not result in prompting or 
rejection. 

2. v~arning - In conversational mode, 
these are informational and cause 
the user to be prompted for ac­
ceptance of system's interpre­
tation. In non-conversational 
mode, warning diagnostics cause the 
statement to be ignored. 

3. Operand Fatal - These indicate that 
an operand is being ignored. They 
cause prompting or rejection. 

4. Statement Fatal - These diagnostics 
cause the entire statement to be 
rejected. 

PROMPT (CZANZ) issues prompting 
messages as a result of a diagnostic, 
and solicits a user's response. 

PHASE II REFERENCES TO INTERNAL TABLES 

phase II builds entries or makes 
references to the following internal 

PCS LOGICAL ORGANIZATION 21 



lOCATE AND 
INl1lAUZf SOLICIT USER 
STATA6 ENTRY APPROVAL 

I 
I 8 r 

lOCATE (NEXT) 
PHRASE UST 

DtSPlA.Y 
DUMP 
SET 

ID 

I 

SRANCH (WITH OFFSET) 
CALL (WITH PARAMETERS) 

CODEGEN-CZANF 

CAll (WITHOUT PAR.AMETERS) 

GO STOP 
TERMiNATE 

DYNAMIC? 

FINDLOC-CZAPC 

SEARCH lOCTAS 
FOR MATCH WITH 
AT UST ENTRY 

VARIABLE 

! PE KENT COUNT 

HEXADECIMAl ADDRESS 

SfATEMENT NO ! INTERNAL 
EXTERNAL 

OFfSET? 

YES 

COD£G:N-CZANF 

ARRAY 

EXPRESSION 

GENERATE 
CODE 

NO 

DIAGNO-CZANW 

REJECT 
STATEMENT 

APPROVED 

YES 

STORE 
CODE ADDRESS 
IN PHRASE 
UST ENTRY 

A 

PCSPUT -CZAPB 

PERFORM 
ACTIONS 
(PHASE III) 

STORE 
CODE ADDRESS 
IN PHR~SE 
LIST ENTRY 

NO 

PLACE 
PCSVC IN 
USER'S CODE 

ADJUST PHRASE 
LIST ENTRY 

CODEGEN-CZANA 

GENERATE 
CODE 

Figure 10. Phase II Control Routine 

22 

RELEASE 
STORAGE, 
MARK PMOS 
FOR UNLOAD 

ASSIGN 
PERMANENT 
STORAGE 

2NO NO 

YES 

USER CONTROL 

10 OFFSET OR >----~ 
ARRAY? 

YES 

STORE 
CODE ADDRESS 
IN PHRASE 
LIST ENTRY 



r--- PHASE 2 ~ 

PROMPT FINDlOC 

CODEGEN 

COMCON SUBGEN 

Figure 11. Phase ~I Nesting Chart 

communication tables and areas. Except 
for LOCTAB, which is described below, 
these areas are described in the dis­
cussion for Phase I. 

Statement Table (STATAB) 

Phase II locates and initializes the 
STATAB entry. If the phra.se being pro­
cessed is dynamic, Phase II assigns 
permanent storage to the immediate 
STATAB entry. 

Phrase List (PLHEAD) 

Phase II .locates the phrase list(s) 
formed by Phase I. Phase II then in­
spects the identification of each 
phrase list header (denoting type 

PHASE III 

OPGEN 

lOADOP 

GETBASE 

DIAGNO GET REG 

of command) and phrase list entry (de­
noting type of operand) and performs 
further processing depending on the 
identification found. 

Polish String (POLISH) 

If the phrase list entry contains a 
pointer to a polish string, Phase II 
generates code to evaluate the polish 
string. The address of the generated 
code then overlays the address of the 
polish string in the phrase list entry. 

Location Table (LOCTAB) 

This table links PCSVC interrupts to 
the deferred pes statement. Entries 

PCS LOGICAL ORGANIZATION 23 



( ENTRY FROM ) 
PHASE II 

(ENTRY FROM J 
TASK MONITOR 

CZAP8l t 
CZAPB2 FINDLOC-CZAPC 

GET LOCTAB 
ENTRY FOR SVC 

~ FINDLOC-CZAPC 

NO RETURN YES ORIG YES FIND LOCTAB INTERPRET INSTRUCTION f--ENTRY A BRANC 
ENTRY FOR BRANCH 
ORIG 
INSTRUCTION 

NO 

( BRANCH ON ) PHRASE 10 SET VPSW SET VPSW ~ SET VPSW TO NEXT TO BRANCH 
TO NEXT SEQ 

SEQUENTIAL OPERAND TAKEN 
INSTRUCTION 

INSTRUCTION LOCATION 

+ t 
GENCALL-CZAPN 

BRANCH 

~ 
EXECUTE 

ADJUST 
OFFSET 

GENERATED r- BRANCH 

CODE 
ADDRESS 

STOP NO 
TERMINATE 

FINDREAL-CZAPL 

GO 
FIND ACTUAL 
VMA 

CALL NO YES 

9 YES Y-NO 

GENCALL-CZAPN 
STORE 

USER CONTRO L 

EXECUTE f- ADDRESS IN 
GENERATED PARAMETER INITIATE USER 

CODE LIST PROGRAM 

cb 
I 

G'NC'U<",Nv IF 
EXECUTE TRUE NO YES SET CA&E 

~ IMMEDIATE 
GENERATED INDICATORS 
CODE 

YES NO 

INTERVENE 

AT LOCATE NEXT NO GO BRANCH YES NEXT 

STATAB ENTRY OR STOP 
STATAB HALT USER'S 
ENTRY PROGRAM 

YES NO 

~ 
SET DISDUMP-CZAQA 
DISPLAY RECOMPOSE 
DUMP 

A 
CHANGE TO f- USER'S 

STOP 
NO 

PERFORM STOP INSTRUCTION, 
ACTIONS ADD PCSVC 

( RETURN 

F~gure 12. Phase III Control Rout~nes 

24 



in the table link the PCSVC address with 
the first entry in the statement table 
(STATAB) associated with this location. 
Phase II creates LOCTAB entries for each 
PCSVC stored in a user's program, while 
Phase III creates LOCTAB entries for 
each PCSVC that follows cl recomposed 
instruction. The relative position of 
the entry in the table is determined 
by a hashing algorithm, based on the 
address of the PCSVC. 

Phase I references thls table in 
processing REMOVE and UNLOAD phrases. 
Phase III, in processing the PSCVC, 
locates the LOCTAB entry by means of 
the hashing algorithm mentioned above. 

PCS OUTPUT (PHASE III) 

Phase III routines can be grouped 
into three catagories: 

• Control routine 

• Processing routines 

• Diagnostic routines 

These routines are identified and 
described below. 

Phase III also contains a DISPLAY/ 
DUMP component which is entered 
whenever the DISPLAY, DUMP or SET 
functions are to be performed. This 
component is described following the 
discussion of the main part of 
Phase III processing. 

Control Routine 

Phase III control is exercised by 
PCSPUT (CZAPB). This rcutine has two 
entry points; it is entered from 
Phase II to process an immediate 
statement, and from the task monitor 
when processing a dynamic statement. 

To determine which type of dynamic 
statement entry caused the interrupt, 
CZAPB, upon receiving control from the 
task monitor, calls FINDLOC (CZAPC) to 
locate the LOCTAB entry for the PCSVC. 
If the LOCTAB entry is not a RETURN 
entry, it signifies that the interrupt 
was caused by a PCSVC which was inser­
ted into the user's pro9ram during 
Phase II execution. In this case, CZAPB 
processes the dynamic s1:atement as if 
it were an immediate statement. If the 
entry is a RETURN ENTRY, it signifies 
that the interrupt was caused by the 

PCSVC which was placed immediately after 
the recomposed user instruction earlier 
during Phase III processing. In this 
case, CZAPB processing consists of modi­
fying the VPSW to point to either the 
address of the next sequential instruc­
tion, or to the branch address, in cases 
where the original instruction could re­
sult in a branch. 

In processing immediate statements 
and non-RETURN dynamic statements, CZAPB 
locates the STATAB entry and its associ­
ated phrase list. A branch is then 
made, depending on the phrase list 
identification, to one of the following 
processes. 

AT: Each entry in the AT list is 
checked to see if the entry is for the 
current interrupt address. If an entry 
is found for the current interrupt 
address, the address of the next STATAB 
entry is located. Processing continues 
with the identification of the next 
phrase list. 

IF: GENCALL (CZAPN) is called to exe­
cute the code generated in Phase II for 
evaluation of the IF expression. If the 
result is true, processing continues 
with the identification of the next 
phrase list. If the result is false, 
and a dynamic statement is in process, 
processing continues with the next 
STATAB entry. CA&E is notified of a 
false immediate IF phrase. 

DISPLAY, DUMP, AND SET: DISPDUMP(CZAQA) 
is called to process the phrase list. 
Processing continues with the identi­
fication of the next phrase list. 

STOP: The STOP indicator is set. Pro­
cessing continues with the next STATAB 
entry. 

GO: The user is notified of the 
symbolic instruction where program exe­
cution is resumed. The BRANCH/GO indi­
cator is set. Processing continues with 
the next STATAB entry. 

BRANCH: If the branch address is 
offset, GENCALL (CZAPN) is called to 
execute the code generated in Phase II. 
The result is added to the branch ad­
dress. The user is notified of the 
symbolic location where program exe­
cution is resumed. The BRANCH/GO indi­
cator is set. Processing continues with 
the next STATAB entry. 

PCS LOGICAL ORGANIZATION 25 



CALL: If a parameter list is to be con­
structed, GENCALL (CZAPN) is called to 
execute generated code to evaluate each 
parameter. The address of each para­
meter is stored in the parameter list. 
The V-con, R-con, and the parameter list 
are inserted in the source list. If the 
statement is immediate, processing 
continues with the next STATAB entry. 
If the statement is dynamic, the User 
Control routine is called to initiate 
program execution. When control re­
turns, processing continues with the 
next phrase list. 

TERMINATE: Processing continues with 
the next STATAB entry and for immediate 
statements, control is returned to the 
caller. CA&E is notified of a~ end­
of-level if a BRANCH or GO phrase was 
processed. 

For dynamic statements, the next 
STATAB entry is processed as described 
above for each command. When all 
STATAB entries have been processed, the 
user's instruction is recomposed. This 
is followed by a PCSVC. The LOCTAB 
entry for the PCSVC is designated a 
RETURN. entry. Control then returns to 
the caller, unless the user program has 
been halted. 

The remaining categories of routines 
represent those called directly or indi­
rectly by CZAPB to accomplish specific 

PCSPUT 

re---

~ 
FINDREAL 

L-. SYMGEN SAVIX 

DISPDUMP FINDLOC 

Figure 13. Phase III Nesting Chart 

26 

tasks. The nesting relationship for 
Phase III routines can be seen in 
Figure 13. Their calling conditions 
are defined in Appendix C. 

PROCESSING ROUTINES: GENCALL (CZAPN) 
is entered with a pointer to the code 
generated in Phase II. The subroutine 
executes the code and stores the result. 
FINDREAL (CZAPL) determines if the VMA 
with which it is entered contains a 
recomposed instruction. If so, the 
caller is returned to the VMA of the 
original, overlaid instruction. SYMGEN 
(CZAPG) converts a VMA to symbolic form 
for display purposes. SAVIX (CZAPK) re­
composes the machine instruction in the 
user's program and follows it with an 
ENTER PCSVC. FINDLOC (CZAPC) hashes the 
VMA of a PCSVC and finds the matching 
LOCTAB entry. 

Diagnostic Routine 

LINE (CZAPH) outputs confirmation 
and diagnostic messages to the user. 
A description of the formats for these 
messages is provided following the 
discussion of Phase III. 

PHASE III DISPLAY/DUMP COMPONENT 

The DISPLAY/DUMP component of 
Phase III is called by CZAPB whenever 
DISPLAY, DUMP, or SET functions are to 

GENCALL 

LINE 



be performed (see Figure 14). CZAPB 
passes the address of the first phrase 
list as an argument. 

Processing of the DISPLAY/DUMP com­
ponent is controlled by DISPDUMP (CZAQA). 
The following functions are performed: 

1. 

2. 

Picks up successive :_tem references 
from the phrase list r obtains the 
address and attributes of each 
item, converts the contents of each 
item according to its attributes 
and places it in an area for output. 

If DISPLAY is specified, transmits 
values of items in a list to the 
user's SYSOUT. 

FORM DISPLA] 
LIST FOR FIRST 
PHRASE LIST 
ENTRY 

PROCESS DISPLAY 

3. 

4. , 

If DUMP is specified, generates the 
same values onto a data set refer­
enced as PCSOUT. 

Modifies and displays the contents 
of a data location referenced by a 
SET conunand. 

Only one display list (described 
below) is processed for each entry into 
DISPDUMP. Each entry in the phrase list 
is processed and two display list items 
(DISPLIST) are formed. The DISPLIST 
item defines the attribute of the phrase 
list entry data. These attributes 
determine the output format. 

LIST BASED ON ~--------------, 

REGISTER 

CONVERT AND 
FORMAT IN 
REGISTER 
NOTATION 

ISSUE 
OUTPUT 
LlNE(S) 

Figure 14. 

SIMPLE 
VARIABLE 

ENTRY TYPE 

CONVERT AND 
FORMAT AS A 
SINGLE 
VARIABLE 

ISSUE 
OUTPUT 
LINE 

HEXADECIMAL 
J.RRAY RANGE 
---~--~ ----~~-~ 

[ 
~~~~~I~G 
OF ARRAY 

CONTROL 
PROCESSING 
OF HEX RANGE 

CONVERT AND 
FORMAT THE 
ELEMENTS FOR 
ONE LINE 

CONVERT AND 
FORMAT THE 
DATA FIELD FOR 
ONE LINE OF 
OUTPUT OF OUTPUT 

RESET DISPLAY 
liST FOR NEXT 
ITEM IN RANGE 

FORM DISPLAY 
LIST FOR 
NEXT PHRASE 
LIST ENTRY 

Display/Dump Control Routine 

PCS LOGICAL ORGANIZATION 27 



The formats of the data displayed 
corresponds to the way the data field 
was specified in the PCS statement. 
Twelve specifications are defined, each 
with a unique IDENT value and entry 
format in the DISPLAY/DUMP phrase list. 
These are: 

1. General rigister 

2. Single precision register 

3. Double precision register 

4. % count 

5. Internal symbol 

6. FORTRAN statement number 

7. Subscripted array 

8. External symbol 

9. Hexadecimal address 

10. Expression 

11. Command Variable 

12. 5. 6, 8, and 9, above, with offset 

A complete description of DISPLAY/ 
DUMP output formats is provided in 
Appendix G. 

PHASE III REFERENCES TO INTERNAL 
COMMUNICATION TABLES 

Phase III builds entries to or makes 
references to the following internal 
communication tables and areas: 

Statement Table (STATAB) 

CZAPB references STATAB to locate 
the phrase list for the current state­
ment. In immediate statement entries 
to Phase III, the location of the 
STATAB entry is supplied as a parameter. 
In non-RETURN dynamic entries, the loc­
ation of the STATAB entry is picked up 
from the LOCTAB entry. 

Location Table (LOCTAB) 

In dynamic statement entries, CZAPB 
references the LOCTAB entry for the 
PCSVC to determine whether the entry is 
a RETURN or non-RETURN entry. In sub­
sequent processing of non-RETURN dynamic 
statements, LOCTAB is referenced to 
locate the address of the overlaid in­
struction. 

28 

Phrase List (PLHEAD) 

CZAPB obtains the command identifi­
cation from the phrase list header 
(PLHEAD); the path of processing is de­
termined by the identification. 
DISPDUMP uses the phrase list entry 
identification of the operand type to 
form a display list (DISPLIST). 

ISD Map (ISDMAP) 

CZAPB and DISPDUMP reference the 
ISDMAP to locate the ISD for each 
module named in a PCS statement. 

Display List (DISPLIST) 

The DISPLAY/DUMP component forms a 
display list for communication between 
DISPLAY/DUMP routines. The information 
used in forming DISPLIST is obtained 
from the phrase list whose entry point 
is passed to DISPDUHP as a parameter, 
and from the ISDMAP. 

DISPLIST contains header information 
and an item (two items if a range is 
involved) for each entry in the phrase 
list. The header information identi­
fies the action to be taken as DISPLAY, 
DUMP, or SET. It stores the phrase 
list entry location, the ISD map index 
qualification, and other housekeeping 
information. The body of the list 
identifies the items which are to be 
dumped, displayed, or set. 

A full description of DISPLIST is 
given in Appendix F. 

PHASE III MESSAGE FORMATS 

Phase III issues confirmation and 
diagnostic messages in the following 
formats: 

1. At symbol psw statement no. - a 
standard header, printed every­
time a dynamic statement is 
processed (and, if conditional, 
is true). 

symbol 

the instruction location is 
expressed as an internal symbol 
with offset if the ISD for the 
module has been loaded. In 
assembly language programs, the 
closest internal symbol is used. 
In FORTRAN programs the nearest 
statement number is used. The 
statement number may be sub­
scripted to indicate which un-



numbered statemen-:; following the 
numbered statemen-: has control. 
If the ISD is not available, the 
instruction location is expressed 
as an external symbol (with off­
set). The externa.l symbol used 
will be the control section con­
taining the instruction location. 
If the instructio~ location is 
not in a control section, the 
location is expressed as a hex­
adecimal address. 

psw 

user's current P~fl edited as: 

PSW abc ffffffff 
where 
a 2-bit ILC 
b = 2-bit CC 
c = 4-bit program mask 
ffffffff = 32-bit address 

statement no. 

an integer, assigned to the PCS 
statement. 

This message serves to correlate 
outputs to SYSOUT with the pro­
gram flow; it always precedes such 
output. 

2. STOP AT symbol psw - this message 
is printed when a STOP is processed 
in either a dynamic or irrunediate 
statement. 

symbol 

same as 1 

psw 

same as 1. The address portion 
contains the location of the 
next instruction to be executed. 

3. RUNNING FROM symbol - this message 
is output when a GO or BRANCH com­
mand is processed. 

symbol 

same as I 

4. ILLEGAL ENTRY INTO PCS, instr, 
psw - this message is printed when 
a matching address is not found in 
the location table (LOCTAB). 

instr 

will be either 
EX R, D(X,B) if ILC = 2 

or SVC D if ILC = 1 
where R, D, B, and X are printed 
as decimal integers 

psw 

user's VPSW. The address con­
tains the location irrunediately 
following the instruction that 
caused the error. 

5. IMPROPER ORDERING OF DYNAMIC 
STATEMENT statement no. - this 
message is printed when a BRANCH 
or STOP phrase in a dynamic state­
ment is processed and a subsequent 
dynamic statement for the same 
location is still outstanding. 

statement no. 

the PCS statement number of the 
outstanding statement. 

6. Other diagnostics will be preceded 
by the standard header if the 
error occurs in a dynamic statement. 

PCS LOGICAL ORGANIZATION 29 



ENTER 

! 
DISPOUMP 

! 
NEXTLIST DIAG 

:+-

1 
GENCALL f+- DISREG 

" - NEXTISD NEXTITEM 

DISARAY 

DISAUNE 

DISHEX 

SIMVAR DISYM 

DISINST ADDITEM 

DISH LINE FINDLOC REALCON 

ulSOUT 

Figure 15. Display/Dump! Nesting Chart 

30 



The descriptions presented in this 
section are arranged alphabetically by 
routine identification. They should be 
read and used along with the flowcharts 
in Section 4. A few flowcharts have 
been omitted, because these routines 
are adequately explained by their de­
scription. 

Appendix B can be used to find the 
routine mnemonic corresponding to the 
routine identification since it is in 
subroutine ID order. However, Appendix 
A, which is in order by routine mnemonic, 
will provide a cross-reference to the 
routine identification. 

CZAMA -- SET 

This routine controh: the processing 
of the SET phrase. (See Chart AA.) 

Entry 

CZAMAl 
Entered via a type-I call with no 
parameters. 

Routines Called 

DATAFLD (CZAMIl) 
Forms a data field i 1:em. 

ExpseAN (CZAMHl) 
Expression scan. 

DIAGNO (CZANWl) 
Issued diagnostics. 

GETPAGE (CZANZl) 
Allocates a page of virtual storage. 

Exit 

This subroutine returns control to 
the caller. 

Operation 

A phrase list header (PLHEAD) is 
created which identifies the phase as 
SET. Each SET phrase consists of a SET 
operand and an expression. 

DATAFLD is called to form a field 
item for the SET operand whose length 
attribute is the length of the expres­
sion result. DATAFLD then creates a 

SECTION 3: ROUTINE DESCRIPTIONS 

FLDITEM for the first term of the 
expression. EXPSCAN is called to form 
a Polish string. Next, the SET operand 
and the resulting expression are checked 
for length agreement. The phase list 
entry is now inserted in the phrase 
list. Formation of phrase list entries 
continues until the entire SET phrase 
has been processed. 

The PLHEAD is then inserted, pre­
ceding the first phrase list entry, 
and a list terminator is placed imme­
diately following the last entry. 

C ZAMB -- BRANCH 

This routine controls the processing 
of the BRANCH phrase. (See Chart AB.) 

Entry 

CZAMBl 
Entered via type-I linkage with no 
parameters. 

Routines Called 

DATAFLD (CZAMIl) 
Forms a data field item. 

DIAGNO (CZANWl) 
Issues diagnostics. 

GETPAGE (CZANZl) 
Allocates a page of virtual storage. 

Exit 

This routine returns control to the 
caller. 

Operation 

A phrase list header (PLHEAD) is 
formed, identifying the phrase as 
BRANCH. DATAFLD is called to form a 
data field item (FLDITEM) for the 
BRANCH operand. A BRANCH phrase list 
is then formed and linked to the imme­
diate statement table entry (STATAB). 
If the statement is dynamic, the list 
is assigned storage space and is in­
serted in the phrase list page. If the 
BRANCH is immediate, and there is no 
active corresponding user program, a 
diagnostic is issued, and control is 
returned to the calling program. 

ROUTINE DESCRIPTIONS 31 



Since the BRANCH phrase, when used, 
must be the last phrase in a PCS state­
ment, a flag is set so that CA&E will 
delete any remaining characters in the 
source line. 

CZAMC -- STOP & GO 

This routine controls the processing 
of a STOP or a GO phrase. (See Chart 
AC. ) 

Entry 

CZAMCI 
Entered, for a STOP phrase, by type­
I linkage with no parameters. 

CZAMC2 
Entered, for a GO phrase, by type-I 
linkage with no parameters. 

Routines Called 

DIAGNO (CZANWl) 
Issues diagnostics. 

Exit 

This routine returns control to the 
caller. 

Operation 

A phrase list header (PLHEAD) is 
formed, which identifies the phrase as 
either STOP or GO. The PLHEAD is then 
linked to the immediate statement table 
entry (STATAB). If the statement is 
dynamic, the header is inserted in the 
phrase list page. If the STOP or GO 
phrase is immediate, and there is no 
corresponding active user program, a 
diagnostic is issued. 

Since a STOP or GO phrase, when used, 
must be the last phrase in a PCS state­
ment, a flag is set so that CA&E will 
delete any remaining characters in the 
source line. 

CZAMD -- DISPLAY & DUMP 

This routine controls the processing 
of a DISPLAY or a DUMP phrase. (See 
Chart AD.) 

Entry 

CZAMDI 

32 

Entered, for a DISPLAY phrase, by 
type-I linkage with no parameters. 

CZAMD2 
Entered, for a DUMP phrase, by type­
I linkage with no parameters. 

Routines Called 

DATAFLD (CZAMIl) 
Forms a data item. 

EXPSCAN (CZAMHl) 
Expression scan. 

DIAGNO (CZANWl) 
Issues diagnostics. 

GETPAGE (CZANZl) 
Allocates a page of virtual storage. 

Exit 

This routine returns control to the 
caller. 

Operation 

A phrase list header (PLHEAD) is 
formed, identifying the phrase as either 
DISPLAY or DUMP. DATAFLD is called to 
form a data item for the first operand. 
If the operand is a constant, or the 
first term of an expression, EXPSCAN 
is called to form a Polish string. A 
phrase list entry is formed and inserted 
in the phrase list. Formation of phrase 
list entries continues until the entire 
operand has been processed. The PLHEAD 
is then inserted preceding the first 
phrase list entry, and a list terminator 
is placed immediately following the last 
phrase list entry. 

CZAME -- IF 

This routine controls the processing 
of an IF phrase. (See Chart AE.) 

Entry 

CZAMEI 
Entered by type-I linkage with no 
parameters. 

Routines Called 

DATAFLD (CZAMIl) 
forms a data field item. 

EXPSCAN (CZAMHl) 
Expression scan. 

DIAGNO (CZANWl) 
Issues diagnostics. 



GETPAGE (CZANZl) 
Allocates a page of virtual storage. 

Exit 

This routine returns control to the 
caller. 

Operation 

A phrase list header (PLHEAD) is 
formed identifying the phrase as an IF 
phrase. DATAFLD is called to form a 
data field item (FLDITEM) for the first 
term of the expression. EXPSCAN is 
called to form a Polish !:tring for the 
expression. An IF phrase list entry is 
then created and linked t.o the immediate 
statement table entry (STATAB). If the 
statement is dynamic, the list is as­
signed storage by means of GETPAGE and 
inserted into the assigned phrase list 
page. 

CZAMF -- AT 

This subroutine controls the pro­
cessing of an AT phrase. (See Chart 
AF. ) 

Entry 

CZAMFI 
Entered by type-I linkage with no 
parameters. 

Routines Called 

DATAFLD (CZ&~II) 
Forms a data field item. 

CODEGEN (CZANFI) 
Generates code to evaluate offset. 

GENCALL (CZAPNI) 
Executes generated code. 

GETPAGE (CZANZI) 
Allocates a page of v~rtual storage. 

FREEMAIN 
Releases allocated virtual storage. 

DIAGNO (CZANWl) 
Issues diagnostics. 

MAPSEARCH (CZCCQ) 
A dynamic loader subroutine which 
locates the CSD for the instruction. 

CKCLS 
Checks storage protection class. 

Exit 

This routine returns control to the 
caller. 

Operation 

A phrase list header (PLHEAD) is 
formed, identifying the phrase as an 
AT phrase. DATAFLD is then called to 
form a data item for each instruction 
location. If the instruction location 
is offset, CODEGEN is called to gener­
ate the code necessary to evaluate the 
offset, and GENCALL is called to execute 
the generated code. The instruction 
location address is then incremented 
by the computed offset. 

An AT phrase list entry is formed 
for each instruction location and is in­
serted in the phrase list. Creation of 
phrase list entries continues until all 
operands of the AT phrase have been pro­
cessed. The PLHEAD is then inserted, 
preceding the first phrase list entry, 
and a list teminator is placed immedi­
ately following the last list entry. 

An entry for the statement is in­
serted into the dynamic statement table, 
(STATAB), and the dynamic statement flag 
is set. 

CZAMG -- CALL 

This routine controls the processing 
of the CALL phrase. (See Chart AG.) 

Entry 

CZAMGI 
Entered for an explicit CALL, by 
type-I linkage with no parameters. 

CZAMG2 
Entered, for an implicit CALL, by 
type-I linkage with no parameters. 

Routines Called' 

DATAFLD (CZAMII) 
Forms a data field item. 

EXPSCAN (CZAMHI) 
Expression scan. 

DIAGNO (CZANW1) 
Issues diagnostics. 

GETPAGE {CZANZl} 
Allocate a page of virtual storage. 

ROUTINE DESCRIPTIONS 33 



EXTERNAL (CZA~Ol) 
Evaluates external symbol. 

Exit 

This routine returns to the caller 

Operation 

A phrase list header (PLHEAD) is 
formed, identifying the phrase as CALL. 
For an explicit CALL, DATAFLD is called 
to form a data field item for the entry 
point. For an implicit CALL, EXTERNAL 
is called to evaluate the module name 
in New Task Common. BUILTIN, a pro­
cedure key, is constructed containing, 
the entry point, the RCON for the entry 
point, and a parameter count of zero. 

If a parameter list is specified in 
the phrase, DATAFLD is called to form 
a data field item (FLDITEM) for the 
first operand of each parameter. 
EXPSCAN is called to form a Polish 
string for each parameter, the parameter 
count is incremented and the address of 
the Polish string is inserted in the 
phrase list. 

A CALL phrase list is formed. When 
all parameters have been processed, the 
phrase list is assigned storage in the 
phrase list page, if the statement is 
dynamic. 

CZAMH -- EXPSCAN (EXPRESSION SCAN) 

This routine scans and identifies 
the operators and operands of an ex­
pression, in order from left to right, 
and forms a Polish string. (See Chart 
AH. ) 

Entry 

CZAMHl 
Via standard type-I linkage. 

Routines Called 

GETPAGE (CZANZ1) 
Allocates a page of virtual storage. 

DATAFLD (CZAMIl) 
Forms a data field item. 

DIAGNO (CZANWl) 
Issues diagnostics. 

SCANFLD (CZAMQl) 
Scans a field to a delimiter. 

34 

PROMPT (CZANXl) 
Issues a message and receives a 
response. 

Exit 

This routine returns control to the 
caller. 

Operation 

The first term of an exp~ession will 
have been identified and defined by the 
caller. Subsequent operands are identi­
fied and defined through calls to 
DATAFLD, and are entered in a Polish 
string in the order in which they are 
encountered. Operators are identified 
as the delimiter of an operand, or by 
means of calls to SCANFLD. 

Operators are placed in an operator 
stack with an assigned weig~t or value. 
Before an operator is entered into the 
operator stack, its assigned weight is 
compared to that of the previous opera­
tor. If the weight of the ~urrent op­
erator is greater than, or equal to, 
the weight of the previous operator, 
the previous operator is removed from 
the stack and placed in the Polish 
string. This process is continued until 
the current operator can be placed in . 
the operator stack (i.e., the current 
operator's assigned weight is less than 
that of the previous operator). 

When a left parenthesis ( is encoun­
tered in the expression, it is entered 
directly into the operator stack, and 
a parenthesis counter is incremented. 
When a right parenthesis ) is encoun­
tered, operators are removed from the 
operator stack and placed in the Polish 
string until a left parenthesis operator 
is encountered. The left parenthesis 
operator is then removed from the opera­
tor stack, the parenthesis count is 
decremented, and the parenthesis opera­
tors are eliminated. When the end of 
the expression is reached, any operators 
remaining in the operator stack are 
placed in the Polish string. 

Each entry in the resulting Polish 
string is identified as an operand or 
an operator. Operand entries further 
are identified as either constant or 
variable; registers are considered vari­
able. PCS will provide storage for op­
erands identified as constant. Each op­
erand will also be identified as to data 
length and data type. The ope~and data 



type is used to determine the data type 
of the entire expression. 

Constant operands are variable oper­
ands are processed uniquely. The data 
type of a constant operand is always 
defined and automatically defines the 
data type of the expression in which it 
occurs. All constants within an ex­
pression must have the same data type, 
or the expression will be rejected. 

The data types of all fully defined 
variable operands should agree with the 
data type of any constant operand oc­
curring in that expression. If they 
do not agree, the data type of the con­
stant operand(s) is assumed for the 
whole expression, and a diagnostic is 
issued. 

If the expression contains variable 
operands only, the data types of all 
fully defined variables must agree in 
order to define the data type of the 
expression: In conversational mode, if 
the data types of variables do not agree, 
the user is prompted for data type defi­
nition information. The user is always 
prompted if the expression contains two 
or more variable operands, whose data 
types are undefined. 

In non conversational mode, diagnos­
tics cause the statement to be ignored. 

When the'logical opere.tors (AND or 
OR), are encountered, the data type of 
the expression is reset. 

If an operand is identified as a 
subscripted array, or as a symbol with 
offset, the subscript/offset Polish 
string is included in the Polish string 
for the expression being scanned, and 
a subscript/offset operator is entered 
in the operator stack. 

Operator stack entries will contain 
an encoded value unique to the following 
operators: 

Operator 

(+ ) 
+ 

* 
/ 
> 
>= 

1= 
< 

Definition 

Subscript/offset 
Addition 
Mul tiplicat:ion 
Division 
Greater than 
Greater than or equal to 
Equal to 
Not equal t:o 
Less than 

Operator 

<= 
1> 
1< 
& 

I 

Definition 

Less than or equal to 
Not greater than 
Not less than 
And 
Or 

Subtraction is accomplished through 
an addition operator and a unary arith­
metic indicator, which is attached to 
the next operand in the expression. 
The NOT (l) operator is a logical unary 
operator and is attached to the next 
operand. Unary operators are cleared 
after they have been attached to an 
operand. A plus or minus sign may be 
treated as a unary arithmetic operator 
in certain cases. For example: -A*B. 

A plus unary operator is ignored. A 
minus unary operator is attached to the 
next operand. If the next operand is a 
parenthesized sUbexpression, the unary 
indicator is attached to the major oper­
ator of that subexpression. This is 
accomplished by attaching the unary in­
dicator to the left partnthesis and 
entering the left parenthesis in the 
operator stack. When the corresponding 
right parenthesis is encountered, the 
unary indicators are attached to the 
last element in the Polish string. 

The expression scan is terminated 
when an operand is not followed by one 
of the logical or arithmetic relational 
operators, and the parenthesis count is 
zero. Control is returned to the 
calling program. 

The following error checks are made: 

1. No two operators appear in sequence. 

2. No two operands appear in sequence. 

3. An expression may not be preceded 
by a mUltiplication or division 
operator (* or I). 

4. Data types in an expression must 
agree. Undefined data types are 
assumed to agree. 

5. Valid operands are expressed in 
terms of data location, either 
with or without offset or offset 
range. 

ROUTINE DESCRIPTIONS 35 



6. For every left parenthesis, there 
is a corresponding right parenthe­
sis. For every right parenthesis, 
there is a leading left parenthe­
sis. 

7. At least one operand appears in an 
expression. 

CZAMI -- DATAFLD - FORM DATA FIELD 
DEFINITION 

This routine controls the formation 
of a data field item (FLDITEM). (See 
Chart AJ.) 

Entry 

CZAMII 
Via standard type-I linkage. 

Routines Called 

CKCLS 
Determines if a range of virtual 
storage locations are allocated to 
the user. 

DATALOC (CZ~MLI) 
Forms a data location item. 

SUBPOL (CZAMJI) 
Evaluates subscripts and forms a 
Polish string. 

DIAGNO (CZANWl) 
Issues diagnostics. 

Exit 

This routine returns control to the 
caller. 

Operation 

A call is made to DATALOC to identify 
and define a data location. If sub­
script/offset notation is used, SUBPOL 
is called to form a Polish string for 
the subscript/offset expression. The 
data location item (LOCITEM) becomes 
the data field item (FLDITEM). If­
range notation is used, a second call 
to DATALOC is issued, to identify and 
define another data location. If 
subscript/offset notation is used on 
the second data location, SUBPOL is 
called upon to form a Polish string for 
the subscript/offset. The second data 
location is incorporated in the data 
field item. A branch is made, based on 
the type of LOCITEM last formed. 

36 

External and Hexadecimal Address: A 
check is made to ensure that the data 
location virtual storage address is 
larger than, or equal to, that of the 
data field, and that all storage 
between those addressed is assigned. 

Internal, statement Number, and Sub­
Scripted Array: A check is made to 
ensure that the VMA of the data loca­
tion and the data field are in the same 
control section, and that the data loca­
tion's VMA is larger than, or equal to, 
that of the data field. 

Hexadecimal, Integer, Character, 
Address, or Floating Point Constants: 
The FLDITEM is identified as a constant, 
and a check is made to ensure that 
range notation was not used. 

Register: A register range item is 
formed and a check that integers less 
than 16 are used to specify general 
registers, and that even integers less 
than 8 are used to specify floating 
point registers, is made. 

Error: The data field item is identi­
fied as an error. 

Null and Percent Count: A check is 
made to ensure that range notation was 
not used. 

Command Variable and Undefined Variable: 
No processing is performed. 

CZAMJ -- SUBPOL - SUBSCRIPT TO POLISH 

This routine identifies the operands 
and operators of a subscripted or off­
set expression, and forms a Polish 
string. (See Chart AK.) 

Entry 

CZAMJl 
Via standard type-I linkage. 

Routines Called 

GET PAGE (CZANZl) 
Allocates a page of virtual storage. 

DATALOC (CZAMLl) 
Forms a data location item. 

SCANFLD (CZAMQl) 
Scans a field to a delimiter. 

DIAGNO (CZANWl) 
Issues diagnostics. 

VALMOD (CZAOAl) 
Evaluates module name. 



CKCLS 
Checks storage protection class. 

Exit 

This subroutine returns control to 
the caller. 

Operation 

Initially, a left parenthesis pseudo­
operator is entered into the operator 
stack. If a subscripted array is being 
processed, a dimension constant is en­
tered into the Polish string, and a 
dimension operator is entered into the 
operator stack. 

Operands are identified and defined 
through calls to DATALOC. If the 
operand is identified as a hexadecimal 
address, and range notation is used, a 
second call is made to D1WALOC to 
identify and define the upper limit 
of the range. 

CKCLS is called to ensure that the 
storage locations of all operands are 
assigned. The operand it:em is then 
entered in the Polish string. 

If the data type of an operand has 
been defined, and it is not defined as 
either integer or hexadecimal, a diag­
nostic is issued. 

Operators are entered into the opera­
tor stack with an assigned weight or 
value. Before an operator is entered 
into the operator stack, its assigned 
weight is compared to that of the pre­
vious operator. If the weight of the 
current operator is grea~er than, or 
equal to, the weight of the previous 
operator, the previous operator is re­
moved from the stack and put into the 
Polish string. This process is con­
tinued until the current operator can 
be entered into the operator stack. 
That is, the current operator's as­
signed weight is less th~n that of the 
previous operator. 

Operator entries will contain an en­
coded value unique to the following 
operators: 

+ 
* 
/ 

Addition 
Multiplication 
Division 

Subtraction is accomplished through 
an addition operator and a unary arith­
metic operator attached to the next 
operand. 

When a left parenthesis ( is encoun­
tered, it is entered directly into the 
operator stack, and a parenthesis 
counter is incremented. 

When a right parenthesis is en­
countered, operators are removed from 
the operator stack and entered into the 
Polish string, until a left parenthesis 
operator is encountered. The left pa­
renthesis operator is then removed from 
the operator stack, the parenthesis 
count is decremented, and both parenthe­
sis operators are discarded. 

The comma is a special operator. 
When a comma is encountered, the opera­
tor stack is emptied and its contents 
are entered into the Polish string. 
When this happens, the parenthesis count 
must be zero, or a diagnostic is issued. 
If a subscripted array is being pro­
cessed, the next dimension constant is 
entered into the Polish string and a 
dimension operator is entered into the 
operator stack. A dimension operator 
has the highest priority of any operator 
in the operator stack. 

If a second comma in an offset is 
detected, the routine searches for a 
type field, and if it finds a valid one, 
sets the appropriate code in LOCOUTYP. 
The source list is then adjusted to 
make it appear as though no type field 
existed. Processing continues as for 
an offset without type indicator. 

When a subsequent comma or an end­
of-subscript indicator is encountered, 
the dimension operator is removed from 
the operator stack and entered into the 
Polish string as a plus operator. If 
a symbol with offset is being processed, 
the comma indicates offset range nota­
tion and DATALOC is called to identify 
and define the offset range. The off­
set range must be expressed as either 
an integer or a hexadecimal constant 
and must be delimited by a right paren­
thesis (end-of-offset indicator). The 
offset range is incorporated in the 
item for the symbol with offset. 

An end-of-subscript/offset condition 
occurs when a right parenthesis is en­
countered at parenthesis level zero; 
(i.e., the initial left parenthesis 
pseudo-operator has been removed from 
the operator stack). The subscript/ 
offset Polish string is then terminated. 

ROUTINE DESCRIPTIONS 37 



Although this subroutine is not re­
cursive, nested subscripts and/or off­
sets are permitted. Operands in a 
subscript/offset expression are identi­
fied by DATALOC. Upon entry, the DATA­
LOC item for the subscripted array/ 
symbol with offset is entered in a 
nested stack. DATALOC items are formed 
for the operands in the subscript/offset 
expression. If an operand in a sub­
script/offset expression is subscripted/ 
offset, the DATALOC item for the operand 
is entered in the nested stack. When 
an end-of-subscript/offset condition is 
detected, a subscript/offset operator 
is entered in the operator stack. The 
last entry made in the nested stack is 
removed and processed as a simple oper­
and. When all entries have been removed 
from the stack, the subscript/offset 
Polish string is terminated. 

The following error checks are made: 

1. No two operators appear in sequence. 

2. No two operands appear in sequence. 

3. Data types must be integer, hexa­
decimal, or undefined. 

4. Data lengths must be 1, 2 or 4 
bytes. 

5. Commas within the subscript must 
not be enclosed in parentheses. 

6. The initial character of a sub­
script, or the character immedi­
ately following a comma, must not 
be a * multiplication or a / divi­
sion operator. 

CZ.AML -- DATALOC - FORM DATA LOCATION 

This routine analyzes the syntax of 
an expression, identifies the data loca­
tion, and controls the evaluation and 
formation of data location and source 
list items. (See Chart AL.) 

Entry: CZAMLI--Via standard typ~-I 
linkage. 

Routines Called: SCANFLD (CZAMQl)-­
Scans a field to a delimiter. 

VALMOD (CZAOAl)--Evaluates module name. 

VALSYM (CZAOBI)--Evaluates internal 
symbol from ISD. 

EXTERNAL {CZAMOl)--Evaluates external 
symbol. 

DIAGNO (CZANWl)--Issues diagnostics. 

GETCHAR (CZAMQ2)--Gets next character. 

38 

Exit 

This subrouting returns control to 
the calling program. 

Operation 

The data location item LOCITEM and 
the four identified source list items 
PQNITEM, SQNITEM, SYMITEM, and SUBITEM 
are initialized, and SCANFLD is called 
to form a source list item (SLITEM). 
An SLITEM consists of a character 
string (identified as null, numeric or 
alphabetic) and a delimiter. Alpha­
meric strings are processed as alpha­
betic strings. 

The identification and delimitation 
of the source list item are inspected 
to determine the format of the data 
location. Depending upon the format 
used, several source list items may be 
required in order to completely identify 
the data location. During the process 
of identification, the source list item 
formed is moved to one of the four iden­
tified source list items and if neces­
sary, they may be adjusted to accommodate 
the new source list item. The valid 
contents of the identified source list 
items, are shown in Figure 16. 

ABC, MNO, and XYZ represent, res­
pectively, the first, second and third 
alphabetic or alphameric character 
strings encountered. Similarly, 123, 
456, and 789 represent numeric strings. 
Any combination of source list items 
other than those specified in Table 1, 
is an error and will result in a diag­
nostic. 

When a data location has been identi­
fied, its context is checked. If the 
context is not valid an error diagnostic 
is issued. If the data location is 
valid in the current context, control 
is passed to the appropriate conversion 
and/or evaluation routine. 

Two indicators IMPLICIT and EXPLICIT 
are set in SYMIND to aid in the evalua­
tion of symbols. The IMPLICIT indica­
tor is set for an implicitly qualified 
symbol (i.e., an array, a statement 
number, or the special _%CSECT symbol) 
while the EXPLICIT indicator is set for 
an explicitly qualified symbol. 

Array, Statement Number, and Statement 
Number with Offset: VALMOD is called 
if the internal symbol is explicitly 
qualified. VALSYM is called to evaluate 
the internal symbol. 



Table 1. Syntax Analysis Table 

Data location PONITEM' SQNITEM SYMITEM SUBITEM SLiTEM 

Array ABC ( 
ABC MNO ( 
ABC MNO XYZ ( 

Internal with off.~et ABC ( 
ABC MNO ( 
ABC MNO XYZ ( 

Internal ABC 
ABC MNO 
ABC MNO XYZ 

Statement number 123 ( 
with ofhet 123 ( 456 ) ( 

ABC 123 ( 
ABC 123 ( 456 ) ( 
ABC MNO 1 2 3 ( 
ABC MNO 123 ( 456 ) { 

Statement number 123 
1 2 J ( 456 ) 

ABC 1 2 J 
ABC 1 2 J ( 456 ) 
ABC MNO 12 J 
ABC MNO 12 J ( 456 ) 

hternol ABC 

External with offset ( 
ABC ( 

Generol register . 1 2 3 R 

Single precision reg ! 2 3 E 

Double precision reg 123 0 

Hexodec tmol address L 

Hexadecimal constant X 

Character constant 

Address constont A 

Integer ~stant 123 

Percent covnt % 

Null 

Single precision 123 
comtont 123 456 

456 
456 123 E 

+ 456 123 E 
- 456 123 E 

456 1 2 3 E 
+ 456 1 2 3 E 
- 456 123 E 

789 123 456 E 
+ 789 123 456 E 
- 789 123 456 E 

456 123 E 
+ 456 123 E 
- 456 123 E 

123 E 
1 2 3 456 E 

12 3 E 

Double precision 456 123 0 
constant + 456 123 0 

- ! 456 123 0 
456 123 0 

+ 456 123 0 
- 456 123 0 

789 123 456 0 
+ 789 123 456 0 
- 789 123 456 0 

789 456 0 
+ 789 456 0 
- 789 456 0 

123 0 
12 J 456 0 

456 0 

ROUTINE DESCRIPTIONS 39 



Internal and Internal with Offset: 
VALMOD is called if the symbol is expli­
citly qualified. VALSYM is called to 
evaluate the internal symbol. If the 
evaluation is unsuccessful and the sym­
bol is not implicitly or explicitly 
qualified, the symbol is processed as 
an external or external with offset. 

External, External with Offset, and 
Offset: EXTERNAL is called to evaluate 
the symbol. An offset, [indicated by 
. (] not preceded by a name is assumed 
to be an offset from zero if no 
qualification is in effect, and is 
assumed to be an offset from the 
qualified name if a qualification is in 
effect. EXTERNAL is called to handle 
either case as if it were external with 
offset. 

Address Constant: If the address con­
stant indicator is cleared, the valid 
operand indicators (designated by the 
program symbol EVALUATE) are set to 
allow arrays, statement numbers, inter­
nal symbols, and external symbols to be 
identified in the current context. The 
address constant indicator is set and 
processing continues with the formation 
of the source list item. If the address 
constant indicator is set, the data lo­
cation is evaluated as an internal sym­
bol. 

Binary Constant: Binary is handled 
internally as for a hexadecimal constant. 
The binary flag is set in LOCOUTYP, and 
the binary input stream in the source 
list is converted to hex. 

Hexadecimal Address and Hexadecimal 
Constant: Once it is determined that 
hexadecimal information is being pro­
cessed, subsequent characters are 
scanned until the terminal quote is rec­
ognized. The characters are then con­
verted to hexadecimal and the data 
location item is formed. Hexadecimal 
address with offset will be treated the 
same as external with offset, the hex­
adecimal address itself being substituted 
for the virtual memory address that 
would be obtained from EXTERNAL. This 
is also true for ranges which combine 
hexadecimal address with or without 
offset and external or internal with or 
without offset. 

Character Constant: Once it is deter­
mined that character information is 
being processed, subsequent characters 

40 

are scanned until the terminal quote is 
recognized and the data location item 
is formed. 

Integer Constant: The SYMITEM character 
string is converted to integer and the 
data location item is formed. 

General Register, Single Precision Reg­
ister, and Double Precision Register: 
The SYMITEM character string is con­
verted to integer and the data location 
item is formed. 

Single Precision Constant and Double 
Precision Constant: The SYMITEM and 
SUBITEM character strings are first con­
verted to integer and then to an unnor­
malized floating point number. The 
SQNITEM is converted to integer, the 
exponent is adjusted, and the floating 
point number is raised to the exponen­
tial power. The data location item is 
then formed. 

Percent Count: The data location item 
is formed. 

Null: A null data location item is 
formed. 

CZAMO -- EXTERNAL - FORM EXTERNAL 
SYMBOL 

This routine completes the formation 
of a data location item (LOCITEM) for 
an external symbol, a defined command 
variable, or an undefined command vari­
able. (See Chart AM.) 

Entry: CZAMOI--Via standard type-I 
linkage 

Routine Called: Dynamic loader is 
called by the following hand-coded 
expansion of the LOAD macro instruction. 

In PSECT 

LOADM DLINK 
DC X'800l' 

LNAME DC CL8' 
V DC A (0) 
R DC A (0) 

In CSECT 

EX O,LOADM 

HASHSEARCH (CZCDL2)--A Dynamic Loader 
subroutine which locates the CSD for 
the external symbol with the calling 
sequence: 



CALL CZCDL2, (LIS'l') 

where LIST consists of five param­
eters: 

1 - Pointer to the hash table. 
2 - zero 
3 - Pointer to the symbol name. 
4 - Contains the module sequence 

number. 
5 - Contains the VMA of the symbol 

definition (on re1:urn). 

Dictionary handler (CZASD3}--Locates a 
defined command variable with the 
calling sequence: 

CALL CZASD3,LIST 

where LIST consists o:~ five param­
eters: 

1 - Pointer to the location of the 
combined dictionary address. 

2 - Pointer to the command variable 
name. 

3 - Pointer to the en":ry mask. 
4 - Pointer to the hash value of 

the name. 
5 - Pointer to the address of the 

entry (on return). 

Exit: This routine returns to the 
calling program. 

Operation: HASHSEARCH is called to 
locate the symbol definition. If the 
symbol is a system symbol, the first 
word of the hash search parameter list 
points to the system hash table; 
otherwise, the first word points to the 
user hash table. If the symbol defini­
tion is found, the data location item 
for the external symbol is completed. 
If necessary, the virtual storage 
address of the PMD is inserted in the 
immediate table of modules referenced 
by PCS and the routine exits. 

If the symbol definition is not 
found, the dynamic loader is called to 
load the module. If the module was 
loaded correctly, HASHSEARCH is called 
to locate the definition. If the defi­
nition is found, the data location item 
is completed as described above, and 
the routine exits. If the definition 
is not found after the second call to 
HASHSEARCH, a diagnostic is issued and 
the routine exits. 

If the module was not. correctly 
loaded by the dynamic loader, the cur­
rent context is checked. If an unde­
fined command variable is valid in the 

current context, a data location item 
for an undefined command variable is 
completed and the routine exits. If a 
defined command variable is valid in 
the current context, the Dictionary 
Handler is called to locate the combined 
dictionary entry for the command vari­
able. If the entry is found, the data 
location item for the defined command 
variable is completed and the routine 
exits. If, however, the command vari­
able entry is not found, or a command 
variable is not valid in the current 
context, a diagnostic is issued. 

CZAMQ -- SCANFLD & GETCHAR 

This routine scans the input source 
statement to a field delimiter, and 
forms a source list item (SLITEM) for 
the field scanned. (See Chart AN.) 

Entry: CZAMQI {SCANFLD)--Via standard 
type-I linkage. 

CZAMQ2 (GETCHAR)--To get the next 
character to be scanned, from the 
source list, and return with the 
character in register 1. 

Routines Called: DICTIONARY HANDLER 
(CZASD3)--Locates a synonym with the 
calling sequence: CALL CZASD3,LIST 

where LIST consists of five param­
eters: 

I - Pointer to the location of the 
combined dictionary address. 

2 - Pointer to the synonym. 
3 - Pointer to the entry mask. 
4 - Pointer to the hash value of the 

synonym. 
5 - Pointer to the address of the 

entry (on return). 

SOURCE LIST HANDLER (CZASC3, CZASC4, 
CZASC5)--Inserts a synonym into the 

source list with the calling sequence: 

CALL CZASC5,LIST 

where LIST consists of one parameter: 

I - Pointer to the address of the 
synonym entry in the combined 
dictionary. 

The Source List Handler is called in 
the GETCHAR subroutine to process source 
list markers with the calling sequence: 

CALL CZASC3 and CALL CZASC4. 

Exit: This routine returns to the call­
ing program. 

ROUTINE DESCRIPTIONS 41 



Operation: If a source list item 
(SLITEM) is outstanding, the position 
pointer in the PCS diagnostic buffer is 
updated and processing continues with 
checks for synonym sUbstitution as 
discussed below. (An outstanding 
source list item may occur as a result 
of a relational operator in an express­
ion, or as a result of the syntax 
analysis of a floating point register 
or constant.) 

If a source list item is not out­
standing, the source list item is ini­
tialized. The source list item contains 
the character string identification, the 
address of the first character in the 
string, the length of the character 
string, and the delimiter. The address 
of the next available byte in the PCS 
diagnostic buffer becomes the starting 
address of the character string. The 
length and identification characteris­
tics of the string are initialized as 
zero and null respectively. 

Characters are extracted from the 
source list via GETCHARi they are 
classified; and control is passed to the 
appropriate subroutine based on the 
character class. These subroutines 
determine whether the character in 
question is a continuation character or 
a delimiter. If it is a continuation 
character, it is identified as either 
numeric or alphameric, the length of the 
character string is incremented, and 
the character is concatenated with the 
previous characters. If the character 
is a delimiter, it is stored in the 
source list item and is also concate­
nated with the previous characters. 
Delimiting characters do not partici­
pate in the identification of the 
character string, nor are their lengths 
included in the length of the string. 

When a delimiter is encountered, 
checks are made to see if synonym sub­
stitution is possible. If the "synonym 
possible" indicator is set, alphameric 
strings of eight characters or less are 
hashed, and the Dictionary Handler is 
called to search for a synonym. If a 
synonym is found, the delimiter is re­
stored to the source list. (The de­
limiter will be extracted from the 
source list after the synonym string 
has been scanned.) At this point, the 
Source List Handler is called to insert 
the synonym in the source list, and the 
source list scan is re-initiated. 

42 

The following examples illustrate 
the treatment of synonym sUbstitution 
by PCS. It is assumed that the reader 
is familiar with the structure of PCS, 
since these examples deal with program 
logic outside the scope of this sub­
routine. 

Example 1: The source list contains 
the string: ALPHA, BETA where bot.h 
ALPHA and BETA are candidates for syno­
nym sUbstitution. Suppose ALPHA has a 
synonym PGMA.ALPHA. After the substi­
tution, the source list contains the 
string: PGMA.ALPHA,BETA. 

In the above string, only PGMA and 
BETA are candidates for further sub­
stitution. 

Example 2: The source list contains the 
string: RESULT,BETA and, as in example 
1 above, both RESULT and BETA are candi­
dates for synonym substitution. Suppose 
RESULT has a synonym of A+B. After the 
substitution, the source list would con­
tain the string: A+B,BETA. 

In the above string, A, B, and BETA 
are all candidates for further synonym 
substitution. Notice that the delimiter 
of RESULT becomes the delimiter of B. 

Example 3: The source list contains the 
string: 100, lOR, 2E+l 

In this example, there are no candi­
dates for synonym substitution since 
all the initial strings are numeric. 

Example 4: The source list contains 
the string: A 'ALPHA , where both A and 
ALPHA are candidates for synonym sub­
stitution. If ALPHA has the synonym 
PGMA.ALPHA and there is no synonym for 
A, the resultant source list string 
would be: A'PGMA.ALPHA' 

PGMA is a candidate for further 
synonym substitution. 

Example 5: 
the string: 

The source list contains 
L'FACE,X'FACE', 'FACE' 

In this example, the strings Land 
X are candidates for substitution, 
while the three character strings, 
FACE, are not. 



CHARACTER CLASSES: The following 
character classes have been established. 

Class 0 Any character not specified in 
the remaining classes. These are 
continuation characters, and the 
source list item identification 
indicates the presence of an alpha­
meric character. 

Class 1 [0 thru 9] These characters 
are continuation characters. The 
source list item is identified as 
numeric. 

Class 2 Space This is a continuation 
character. If it is encountered in 
the initial position of a source 
list string, it is discarded. If a 
continuation character has been 
pro~essed prior to the occurrence of 
a space, the space is concatenated 
with the previous characters, the 
character string length is increment­
ed, and the position in the PCS 
diagnostic buffer is temporarily 
updated. An indicator is set to 
identify a trailing.blank. Then, if 
a delimiter is the next non-space 
character encountered, all trailing 
blanks are discarded. If the next 
non-space character is a continuation 
character, the character string 
length and PCS diagnostic buffer 
position are updated to include the 
space. If a string contains an 
embedded blank, an indicator is set, 
~nd the source list item identifica­
tion indicates the presence of an 
alphameric character. 

Class 3 DER These charact~ers may be 
delimiters or continuat~ion characters. 
If a numeric string is being scanned, 
these characters are considered to 
be delimiters. They are also treated 
as delimiters if a floating point 
constant is being scanned. In all 
other cases, they are processed as 
continuation characters. 

Class 4 End-of-block and semicolon (;) 
These characters are delimiters. 

Class 5 [+ - * / & I < > == 1 ( ) 

I] These characters are delimiters. 

Class 6 Horizontal tab character. 

GETCHAR 

This routine extracts ~he next char­
acter from the source lis"c via the GNC 

macro. If the extracted character is 
an end-of-block, and E marker has been 
encountered. If the E marker points to 
a procedure marker (P marker), the 
Source List Handler is called to process 
the marker. Upon ~eturn, the next char­
acter is extracted from the source list. 

In all other cases, the character 
extracted from the source list is re­
turned to the calling program in general 
register 1. The following error checks 
are made: 

1. Alphabetic/alphameric strings are 
eight characters or less in length. 

2. Alphabetic/alphameric strings do 
not contain embedded blanks. 

CZAMR -- QUALIFY 

This routine controls the processing 
of the QUALIFY phrase. (See Chart AO.) 

Entry: CZAMRI--Entered by type-I linkage 
with no parameters. 

Routine Called: SCANFLD (CZAMQl)--Scans 
a field to a delimiter. 

VALMOD (CZAOA1)--Evaluates module names. 

DIAGNO {CZANWl)--Issues diagnostics. 

Exit 

This routine returns to the caller. 

Operation 

SCANFLD is called to form a source 
list item (SLITEM) for the primary 
qualifying name. If the delimiter is a 
period, SCANFLD is called again to form 
a source list item for the secondary 
qualifying name. 

The ISDMAP entry for the module name 
is located by VALMOD. The entry number 
and location are then saved for subse­
quent use by VALSYM in evaluating 
implicitly qualified internal symbols, 
statement numbers, or offsets. 

CZAMS -- REMOVE 

This routine controls the processing 
of the REMOVE phrase. (See Chart AP.) 

Entry: CZAMSI--Via type-I linkage with 
no parameters. 

Routines Called 

DATALOC (CZAMLI) 
Forms a data location item. 

ROUTINE DESCRIPTIONS 43 



DIAGNO (CZANWl) 
Issues diagnostics. 

Exit 

This routine returns to the caller. 

Operation 

DATALOC is called to form a data 
location item (LOCITEM) for each state­
ment number in the list. The statement 
number is used as an index to the state­
ment table (STATAB) for the purpose of 
locating the appropriate entry. Each 
entry in the AT list for the statement, 
is unlinked from the chain of statement 
table entries for the particular loca­
tion. When only one statement table 
entry is active at a location, the loca­
tion table entry (LOCTAB) is nullified 
and the user's instruction is replaced. 
If the parameter "ALL" is entered, this 
routine acts as though a parameter list 
"1,2, ... n" (where n is the current 
statement count) had been entered. 

CZAMT -- UNLOAD 

This routine adjusts PCS tables and 
cleans up user's program when a module 
referenced in prior PCS statements is 
being unlinked by the dynamic loader. 
(See Chart AQ.) 

Entry 

Via a standard type-I linkage. Reg­
ister I contains the address of the PMD 
preface for the module being unloaded. 

Routines Called 

FREEMAIN Macro 
Releases storage no longer needed 

PRMPT Macro 
Issues messages to the user 

MAPSEARCH (CZCCQ) 

Exit 

To the calling program (Dynamic 
Loader) • 

Operation 

All the saved instructions in the 
location table (LOCTAB) are restored in 
the user's program, thus destroying the' 
PCSVCs. Any ISDs that have been fetched 
are released. Storage allocated for the 
location table, statement table, ISD 
map, phrase list, Polish string, or 

44 

generated code is released. If any dy­
namic statements were entered, a call 
to GATE notifies the user that his pro­
gram has been restored. 

CZANA -- PHASE2 - PHASE II PCS INPUT 
CONTROL 

Phase II control is the control rou­
tine for the final processing of the 
statement phrases. (See Chart AR.) 

Entry 

CZANAI 
Via standard type-I linkage. 

Routines Called 

CODEGEN (CZANFI) 
Translates a Polish string to gen­
erated code. 

VISAM OPEN 
Opens PCSOUT data set on first DUMP 
command. 

FINDLOC (CZAPCI) 
Finds a LOCTAB entry for the instruc­
tion location. 

FREEMAIN Macro 
Releases storage no longer needed. 

GATWR 
Writes the statement number on 
SYSOUT. 

PROMPT (CZANXI) 
Issues prompting messages. 

PCSPUT (CZAPB2) 
Evaluates conditions and perform 
actions. 

DIAGNO (CZANWI) 
Issues diagnostic. 

DICTIONARY HANDLER (CZASD3, CZASD5, 
CZASD6) 

Locates a command variable with the 
calling sequence: CALL CZASD3,LIST 

where LIST consists of five param­
eters: 

I - Pointer to address of combined 
dictionary address. 

2 - Pointer to command variable name. 
3 - Pointer to entry mask. 
4 - Pointer to the hash value of 

the name. 
S - Pointer to the VMA of the entry 

(on return). 



The Dictionary Handler also deletes a 
command variable entry wi t.h the calling 
sequence: CALL CZASD6 

The Dictionary Handler also inserts a 
command variable entry in the diction­
ary with the calling sequence: CALL 
CZASD5,LIST 

where LIST is a single parameter: 

1 - Pointer to the VMA of the 
command variable entry. 

Exit 

This routine returns control to the 
calling program. If an immediate CALL 
phrase is being processed, Phase II 
Control passes control to the User Con­
trol routine (CZAMZI) via a special 
transparent linkage so that when the 
User Control Routine issues a return, 
control returns to the program which 
called Phase II Control. 

Operation 

If any diagnostics were issued in 
Phase I, the diagnostic level is checked. 
If a fatal diagnostic was issued, DIAGNO 
is called to issue a diagnostic. CA&E 
is then instructed to delete the re­
mainder of the line. Otherwise, control 
is passed to PROMPT to write the diag­
nostic and solicit user approval. 

The statement table entry (STATAB) 
is located and initialized. The phrase 
list is located and each entry in the 
phrase list is inspected to see if code 
should be generated for ~he entry. 
CODEGEN is called to generate the code 
required. If a command variable is 
being defined or redefined via a SET 
phrase, the Dictionary Handler is called 
to locate the command variable entry in 
the combined dictionary. If an entry 
is not found, the Dictionary Handler 
is called to insert the entry. The 
dictionary handler" is then called to 
locate the inserted entry. 

If an entry for the command variable 
is in the combined dictionary, the data 
length of the entry in the dictionary 
is compared to the data length of the 
command variable being redefined. If 
the data lengths do not agree, the com­
mand variable entry in the dictionary 
is deleted, and the new command variable 
entry is inserted in the dictionary. 

If the statement is immediate, PCSPUT 
is called to perform the actions speci­
fied by the statement. The storage 
assigned for the phrase list, generated 
code, and Polish string is then re­
leased. 

If the statement is dynamic, FINDLOC 
is called to locate a LOCTAB entry for 
each AT list entry. If the LOCTAB entry 
is in use, the chain of STATAB entries 
for the location is followed until the 
last entry is found and the current 
STATAB entry is linked to the last 
entry. If the LOCTAB entry is not in 
use, an entry is created for the loca­
tion and a PCSVC is inserted in the 
user's program. Storage for the STATAB 
entry, the phrase lists, and generated 
code is permanently assigned. Storage 
for the Polish string is released. The 
PCS statement number assigned to the 
statement is written out. 

CZANF -- CO DEGEN - CODE GENERATOR 

This routine is the control routine 
for the specific operator code genera~ 
tion routines. (See Chart AS.) 

Entry 

CZANFI 
Via standard type-I linkage. 

Routines Called 

GETPAGE (CZANZl) 
To allocate a page of virtual storage 
for generated code. 

OPGEN (CZANIl) 
To generate code to combine two 
operands. 

SUBGEN (CZANGI) 
To generate code for dimension 
computation. 

GETBASE (CZANVl) 
To convert a VMA to base displace­
ment address. 

LOADOP (CZANTI) 
To generate code to load an operand. 

COMCON (CZANHI) 
To combine two constant operands. 

SOURCE LIST HANDLER (CZASC2) 
Expands the source list with the 
calling sequence: CALL CZASC2, LIST 
where list is a single parameter: 

I - Pointer to the number of pages 
needed to expand the source list. 

ROUTINE DESCRIPTIONS 45 



Exit 

This routine returns control to the 
calling program. 

Operation 

CODEGEN is the control routine for 
all object code generation. The Polish 
string is processed and, based on the 
types of entries, the appropriate rou­
tine is called to combine two operands. 

Entries in the Polish string are in­
spected. The operands are placed in a 
pushdown list. As each operand is en­
countered in the Polish string, a 
pointer to the entry is placed in a 
pushdown list. When an operator is en­
countered, the last two operands are 
removed from the pushdown list. Control 
is given to the appropriate routine to 
generate the code for the operation. 
Selection of this routine is based on 
whether the operator is part of a di­
mension string. If it is, SUBGEN is 
called. If both operands are constants, 
COMCON is called to combine them via 
the operator into one Polish string 
entry. Otherwise, OPGEN is called to 
generate code to perform the operation. 

Upon return from the specific code 
generation routine, the generated code 
result is placed in the pushdown list, 
and the next entry in the Polish string 
is .:i,.Hspected. 

Processing of the Polish string con­
tinues until a trailer entry is en­
countered. CODEGEN completes its 
processing by providing the object code 
to return the final result of the com­
putation. 

In the sample expression A+B*(C-D) the 
final Polish string has the form: 

HEADER 
OPERAND A 
OPERAND B 
OPERAND C 
OPERAND -D 
OPERATOR + 
OPERATOR * 
OPERATOR + 
TRAILER 

The processing of the Polish string 
would be accomplished as follows: 

Step 1: The header is recognized as a 
control entry. Since the information 

46 

in the header pertains to all the en­
tries following, it is stored for later 
references. 

Step 2: A is recognized as an operand. 
Its location is entered as the first 
entry in the pushdown list. 

Step 3: Operands B, C, and -D are en­
tered in the pushdown list as the second 
through fourth entries: 

OPSTACK Polish String 

ENTRY l-------4.~ OPERAND A 
ENTRY 2 • OPERAND B 
ENTRY 3 ~ OPERAND C 
ENTRY 4 ~ OPERAND -D 

Step 4: The + operator indicates that 
a combination must be performed. En­
tries 3 and 4 are removed from the push­
down list. Since C and -D are varia­
bles, OPGEN is called to generate code 
to perform the combination. 

Step 5: OPGEN calls subroutines GET­
BASE, to make base register assignments, 
and LOADOP, to load the first operand 
(C) into a register. Since the second 
operand is negated, a subtract command 
will be generated. The resulting entry 
(C-D) is made in the Polish string in 
place of the original operand C entry. 
A pointer to the entry replaces entries 
3 and 4 in the pushdown list: 

OPSTACK Polish String 

ENTRY 1 -----~- OPERAND A 
ENTRY 2 ~ OPERAND B 
ENTRY 3 • OPERAND C-D 

Step 6: The * operator is encountered 
next. Again OPGEN is called to gener­
ate code to perform the multiplication 
between the lasu two entries in the 
pushdown list. The resultant operand 
replaces operand B in the Polish string, 
and entries 2 and 3 in the pushdown 
list: 

OPSTACK Polish String 

ENTRY l------.... ~- OPERAND A 
ENTRY 2 ~ OPERAND B*(C-D) 

Step 7: The final + operator causes 
the combination of the last two operands 
into the final result: 

OPSTACK Polish String 

ENTRY 1-----...... - OPERAND A+B* (C-D) 



Step 8: The trailer entry signifies the 
end of the Polish string ,. CODEGEN de­
termines if the result w:.ll be returned 
from the object code in the proper reg­
ister. If necessary, CODEGEN generates 
the code to transfer the result fol­
lowed by the return branch coding. For 
the subscript an array in the DISPLAY 
A (I, J) expression, the Polish string 
had the form: 

FIRST DIMENSION OPERAND 
OPERAND I 
DIMENSION OPERATOR (*) 
SECOND DIMENSION OPERAND 
OPERAND J 
DIMENSION OPERATOR (*) 
PLUS OPERATOR 
TRAILER 

The processing of the Polish string 
would be accomplished as follows: 

Step 1: Entries are mad2 in the push­
down list for the first and second 
operands. 

Step 2: The * operator encountered 
next is recognized as a dimension opera­
tor. SUBGEN is called to generate the 
code to perform the multiplication. In 
addition, code is generated to provide 
a dimension check of the result. A 
pushdown list entry of the result re­
places the original operand. 

Step 3: The second and third entries 
are made in the pushdown list for the 
next dimension operand and J. 

Step 4: The * operator causes the 
computation of J* dimension operand as 
in step 2. The pushdown list is now: 

OPSTACK Polish String 

ENTRY l----.... ~~ I*dimension#l 
ENTRY 2 ~ J*dimension#2 

Step 5: The + operator, not flagged as 
a dimension operator, causes O~GEN to 
be called, OPGEN generates the code to 
perform the addition bet:ween the two 
operands and form the result operand. 

Step 6: The trailer entry causes CODE­
GEN to process the final operand and 
generate the return object code. 

When the pushdown list contains a 
single operand, code is generated to 
return the resultant operand to the 
generated code caller. 

If a call phrase is in process and 
the resultant operand is a constant, 
the constant is inserted in the last 
source list page. The constant is 
aligned on the appropriate boundary con­
sistent with the data type of the con­
stant. It is preceded with its length 
byte and followed by an E marker. 
After the constant is inserted in the 
source list, it is treated as a vari­
able. The Source List Handler may be 
called to expand the source list in 
order to insert the constant. 

, There are three ways in which the 
result of generated code can be re­
turned: 

• The result can be loaded in general 
register 1. 

• The result can be loaded in floating 
point register O. 

• A pointer to the result can be loaded 
in general register 1. 

If code has been generated to load 
the result, if the result is to be 
negated either arithmetically or logi­
cally, or if the result cannot be re­
turned in storage (i.e., the result of 
generated code and the recipient stor­
age area are not the same length), the 
result is returned in a r8gister. 

If a base register is not assigned 
to an operand returned in storage, 
GETBASE is called to assign a base reg­
ister for the result. If the base reg­
ister assigned is not register 1, the 
following instruction is generated: 

LA 1,D2(X2,B2) 

To load the return code into general 
register 15 and exit, the following in­
structions are generated: 

LA 15,8(0,0) 
BR 14 

This return code indicates that the 
result is returned in storage. 

If the result is to be returned in a 
register, LOADOP is called to generate 
the code to load operands that are not 
in registers already. If the operand 
is logically negated, the following 
instructions are generated: 

LA 10, 1 
XR 10, R2 
LR 1, 10 

ROUTINE DESCRIPTIONS 47 



If the operand is arithmetically 
negated one of the following instruc­
tions is generated, depending upon the 
data type of the expression. 

LCR 1, R2 
or LCDR 0, R2 

If the result is not negated and is 
not in the correct register, one of the 
following instructions is generated, de­
pending upon the data type. 

LR 1, R2 
or LDR 0, R2 

The following instructions are gen­
erated for results returned in general 
register 1: LA 15, 0(0,0) 

BR 14 

The following instructions are gen­
erated for results returned in floating 
point register 0: LA 15, 4(0,0) 

BR 14 

CZANG -- SUBGEN - SUBSCRIPT GENERATOR 

This routine assists in the code 
generation for sUbscripting. (See 
Chart AT.) 

Entry 

CZANGI 
Via standard type-I linkage 

Routines Called 

LOADOP (CZANTl) 
Loads an operand. 

DIAGNO (CZANW1) 
Issues diagnostics. 

GETBASE (CZANVl) 
Assigns a base register to the ISD 
entry. 

Exit 

This routine returns control to the 
calling routine. 

Operation 

If the operator is multiply, the 
operands are the dimension operand and 
the subscript. When the array is a 
FORTRAN dummy argument, the dimensions 
are dummy arguments. The dimensions 
are in true form and not factors; there­
fore different processing is required. 

48 

Non-dummy Arguments: If the subscript 
is a constant, no code is generated. 
The dimension check is performed at 
this time. If the subscript exceeds 
the dimension, a diagnostic is formed. 

If the subscript is not a constant, 
code is generated to compute the di­
mension. LOADOP is called to load the 
subscript operand. GETBASE is called 
to assign a base register to the ISD 
entry for the array. The instructions 
required to perform the mUltiply and 
the dimension check are then generated. 

1. L (subscript gen­
erated by 
LOADOPO) 

2. BCTR Rl,O (decrement sub­
script register) 

3. M Rl,D2(O,B2) (multiply sub­
script register 
by dimension 
constant) 

4. CL 

5. BC 

6. LR 

7. BR 

Rl,D2+4(0,B2) (compare sub­
script factor 
to next dimen­
sion factor) 

4,D2(0,15) (branch if re­
sult is in 
range) Note: 
The D2 field is 
set to branch 
to the instruc­
tion following 
instruction (7). 

15,R2 (load ISD 
pointer into re~ 
turn code reg­
ister) Note: 

14 

The R2 field is 
the same regis­
ter that is in 
the B2 field of 
instructions 
(3) and (4). 

(return to 
caller) 

Dummy Arguments 

LOADOP is called to load the sub­
script. For the first dimension, a 
dimension factor operand is created. 
The dimension factor is entered in a 
stack. 



The current dimension factor is lo­
cated in the stack. If the dimension 
factor is not in a register, LOADOP is 
called to load the factor. The follow­
ing commands are generated to compute 
the dimension and perform the dimension 
check. 

1. L (subscript generated 
by LOADOP). 

2. L (current dimension 
factor generated by 
LOADOP) . 

Note: This command is always gen­
erated for the first dimension. 
It is generated for subsequent di­
mensions if they are stored sub­
expressions. (See GETREG.) 

3. BCTR Rl,O (decrement subscript 
register) . 

4. MR Rl,R2 (multiply subscript 
register by dimen­
sion factor regis­
ter) . 

5. M Rl,D2(0,B2) (multiply dimension 
factor register by 
next dimension). 

Note: GET BASE is called to assign 
a base register for the next di­
mension prior to the generation of 
this instruction. If the ISO indi­
cates that the next dimension is 
a halfword, an MH instruction is 
generated. 

6. CLR Rl,R2 (compare subscript 
register with cur­
rent dimension fac­
tor register). 

7. 

8. 

BC 4,D2 (15,0) (brar:ch if result 
is ir:. range) 

Note: The D2 field is set to 
branch to the instruction follow­
ing instruction (9). 

LA 15,16 (load return code 
to indicate dimen­
sion check error in 
subscripting a 
dummy array). 

9. BR 14 (return to caller). 

If the operator is not a multiply, 
the operands are the subscript and 
array, or the offset and symbol VMA. 
If the subscript/offset is a constant, 

it is added to the VMA of the array/ 
symbol. If the 'subscript/offset is 
not a constant, LOADOP lS called to 
generate the code to load the subscript/ 
offset. GETBASE is called to assign a 
base register for the array/symbol VMA. 
The subscript/offset register which will 
occupy the X2 field of the instruction 
generated to locate or load the data, 
is stored in the array/symbol operand. 

CZANH -- COMCON - COMBINE CONSTANTS 

This routine combines two constants 
(nondimension) and forms a single entry 
in the Polish string. (See Chart AU.) 

CZANHI 
Via standard type-I linkage. 

Routines Called 

DIAGNO (CZANWl) 
Issues diagnostics. 

SIR Macro 
Specify Interrupt Routine. 

DIR Macro 
Delete Interrupt Routine. 

INTINQ Macro 
Interrupt Inquiry. 

This routine returns control to the 
calling program. 

Operation 

If both operands in the Polish 
string are constants, they are combined 
during code generation time into a sin­
gle entry. If necessary, both constants 
are truncated or padded. Character 
constants are truncated or blank filled 
on the right. Hexadecimal constants 
are truncated or zero filled on the 
left. A low order word of zeroes is 
supplied for single precision constants. 
The low order word of double precision 
constants is truncated. Integer con­
stants are always four bytes in length. 

The operation to be performed is 
identified in the operator entry by a 
four-bit code corresponding to the 
rightmost hexadecimal digit in the in­
struction code. 

ROUTINE DESCRIPTIONS 49 



Code Operation 

E Logical Add 
A Add 
C Multiply 
D Divide 
4 And 
6 Or 
9 Arithmetic rela-

tional 
5 Logical relational 

Except for a logical relational op­
erator between two nonloadable operands, 
both operands are loaded into registers, 
and the RR form of the operand is exe­
cuted. 

The relational operations, the mask 
to be ~sed in the conditional branch 
has been set in the operator entry. 
The result operand will be formed in 
the Polish string in place of the X 
operand entry. The data length of the 
result is set to four or eight bytes. 
The result will be stored in compliment 
form if the unary indicator is set in 
the operator entry. 

CZANI -- OPGEN - OPERATOR CODE 
GENERATOR 

This routine generates the code to 
perform all arithmetic, logical, or re­
lational combinations between two vari­
abl~s, or one variable and a constant. 
(See Chart AV.) 

Entry 

CZANIl 
Via type-I linkage. 

Routines Called 

LOADOP (CZANT 1 ) 
Generates code to load an operand. 

GETREG (CZAOD1) 
Assigns a general or floating point 
register. 

GETBASE (CZANV1) 
Converts a VMA virtual storage ad­
dress to a base-displacement address. 

Exit 

This routine returns control to the 
calling program. 

50 

Operation 

The routine is entered with a pointer 
to two operands and an operator. The 
operation to be performed is identified 
in the operator entry by a four-bit 
code corresponding to the rightmost hex­
adecimal digit in the appropriate in­
struction code. 

Code Operation 

E Logical Add 
A Add 
C Multiply 
D Divide 
4 And 
6 Or 
9 Arithmetic rela-

tional 
5 Logical relational 

~he leftmost hexadecimal digit is se­
lected for the instruction code, based 
on the type, length, and location of 
the second operand. 

Hex 
Type Length Location Digit 

INTEGER 4 GENERAL 1 
REGISTER 

REAL 4 F.P. 3 
REGISTER 

REAL 8 F.P. 2 
REGISTER 

INTEGER 2 STORAGE 4 
INTEGER 4 STORAGE 5 
REAL 4 STORAGE 7 
REAL 8 STORAGE 6 

For relational operations, the mask to 
be used in the conditional branch has 
been set in the operator entry. The 
operators and masks are: 

Mask Definition Operator 

1100 Greater than > 
0100 Greater than or equal >= 
1010 Less than < 
0010 Less than or equal < '''' 
0110 Equal 
1000 Not equal 1 = 
0010 Not greater than l! > 
0100 Not less than 1!< 

The resultant operand vvill be formed 
in the Polish string in place of the 
X operand entry. The data length of 
the result is set to four or eight 



bytes. The ~in register" flag is set. 
All registers used in the generated 
code will be released, except for the 
final result register. The generated 
code pointer is updated to reflect the 
code added to the genera"ted code page. 

Addition: The first operand is se­
lected. If either operand is in a reg­
ister, no code is generated. If Y only 
is in a register, the operands are ex­
changed. If neither operand is in a 
register, LOADOP is called to load the 
operand with the shorter data length. 

If the arithmetic una:cy indicator of 
the operands do not agree, the hexa­
decimal digit representing the op code 
is changed to subtraction. The arith­
metic unary indicator of the result is 
set if the X operand and the operator 
arithmetic unary indicators do not 
agree. 

The Y operand is examined and, based 
on its type, length, and location, the 
appropriate add instruction is generated. 

Multiplication: The first operand is 
selected. If either operand is in a 
register, no code is generated. If Y 
only is in a register, t~e operands are 
exchanged. If neither operand is in a 
register, LOADOP is called to load the 
shorter operand. 

The arithmetic unary indicator of the 
result is set to the Exclusive OR of the 
arithmetic unary indicators of the two 
operands and the operator. 

The Y operand is examined and, based 
on its type, length, and location, the 
appropriate multiply instruction is 
generated. 

Division: If the dividend (operand X) 
is not in a register, LOADOP is called 
to generate code to load it. If the 
data type is integer, code is generated 
to load the data into the even register 
of the pair and to propagate the sign 
by &pifting the operand into fhe odd 
register'. 

The arithmetic unary indicator of 
the result is set to the exclusive OR 
of the arithmetic unary indicators of 
the two operands and the operator. 

The Y operand is examined and, based 
on its type, length, and location, the 
appropriate divide instruction is gen­
erated. Integer divisors with lengths 
of one or two bytes will be loaded via 

LOADOP, and a divide register instruc­
tion will be generated. 

AND/OR: The first operand is selected. 
If either operand is in a register, no 
code is generated. If only Y is in a 
register, the operands are exchanged. 
If neither is in a register, LOADOP is 
called to generate code to load the 
shorter operand. 

If the logical unary indicator of 
the operand selected is set, code is 
generated to invert the operand. This 
is accomplished by generating a load 
address and an RR exclusive OR, which, 
when executed, will invert the low­
order bit of the operand. 

If the logical unary indicator of the 
second operand is set, code is generated 
to invert the operand, as described 
above. 

Based on the type, length, and loca­
tion of the Y operand, an RR or RX in­
struction is generated to perform the 
AND or OR operation. 

The logical unary indicator of the 
result is set to the Exclusive OR of the 
logical unary indicator of the X operand 
and the operator. 

Arithmetic Relational: If the first 
operand is not in a register, a call is 
made to LOADOP to generate the code to 
load it. 

If the arithmetic unary indicator of 
the second operand is set, the arithme­
tic unary indicator of the first operand 
is inverted, and the alternate mask for 
the comparison is selected. This is 
done to eliminate the command to load 
the second operand, if the operand must 
be complemented before performing the 
comparison. For example, A GT -B be­
comes -A LT B. The alternate masks are: 

Mask 

1010 
0010 
1100 
0100 
0110 
1000 

Comparison 

Greater than> 
Greater than or equal to >= 
Less than < 
Less than or equal to < == 
Equal to = 
Not equal to 1= 

If the arithmetic unary indicator of 
the first operand is set, an LCR in­
struction is generated. 

ROUTINE DESCRIPTIONS 51 



GET REG is called to assign a general 
register which will be used for the re­
sult. Code is generated (an SR instruc­
tion) to load a logical false indicator. 
Logical false is zero; logical true is 
nonzero. 

The Y operand is examined and, based 
on its type, length, and location, the 
appropriate compare instruction is gen­
erated. 

The BC instruction is generated. If the 
logical unary indicators of the first 
operand and the operator do not agree, 
the mask is inverted before being in­
serted in the Ml field of the instruc­
tion. A displacement is computed to 
branch around the next instruction. 

An LA Rl,l(O,O) is generated to load 
a logical true indication in the result 
register. 

Logical Relationals: If the "not load­
able in general register" flag is off 
in the Polish string header entry, logi­
cal relationals will be processed in 
the same manner as arithmetic relation­
also The compare instruction generated 
will be a logical compare, using the 
general registers. A logical rela­
tional between two operands which are 
not loadable will result in a storage­
to-storage comparison of the two oper­
ands. Code is generated to load a 
logical false indicator into the result 
register. GETBASE is called for each 
operand to assign a base register and 
displacement. The CLC instruction is 
generated, followed by a BC instruction. 
If the logical unary indicators of the 
first operand and the operator do not 
agree, the mask is inverted before being 
inserted into the MI field of the BC 
instruction. A displacement is computed 
to branch around the next instruction. 
An LA Rl,I(O,O) is generated to load a 
logical true indicator into the result 
register. 

CZANT -- LOADOP - LOAD OPERAND 

This routine generates the code to 
load an operand into a general or float­
ing point register. (See Chart AW.l 

Entry ---
CZANTI 

Via a standard type-I linkage. 

52 

Routines Called 

GETBASE (CZANVl) 
Converts a VMA to base-displacement 
address. 

GETREG (CZAODl) 
Assigns a general or floating point 
register. 

Exit 

This routine returns control to the 
calling program. 

Operation 

A call is made to GETBASE to provide 
a base register for the data. GET REG is 
called to provide a pair of data regis­
ters for the operand. The load instruc­
tion is generated based on the type and i 

length of the operand. 

Instructions 
Type Length Generated 

Integer 1 SR & IC 
Integer 2 LH 
Integer 4 L 
Real 4 load short * 
Real 8 load long 

* If the Polish string header entry 
indicates that the result is to be 
double precision, the load short in­
struction will be preceded by an SR 
to clear the register. 

The RI field is set to the register 
supplied from GETREG. The B2 and D2 
fields are set to GETBASE output param­
eters. 

CZANV -- GETBASE - BASE REGISTER 
ASSIGNMENT 

This routine assigns a base register 
for referencing an operand and generates 
code to load the base register, if nec-
essary. (See Chart AX.) • 

CZANVI 
Via a standard type-I linkage. 

Routines Called 

GETPAGE (CZANZl) 
Obtains a page for generated code. 



GETREG (CZAODl) 
Assigns a general register. 

Exit 

This routine returns control to the 
calling program. 

Operation 

Three groups of base Legisters are 
used to reference operands in generated 
code. The first group (Legisters 10, 
11, and 12) references v~riables; the 
second (register 13) references a sub­
expression that was stored in a PSECT 
by generated code; the third (register 
15) references constants that are 
stored in the same page as the gen­
erated code. 

Variables - The first time a vari­
able is referenced, an LM instruc­
tion is generated. The Rl and R3 
fields are set to 10 and 12, re­
spectively. The location of the 
LM is saved. The pointer to the 
next available stor~ge area for 
generated code is updated. The 
count of bases assigned is set to 
one. The VMA of th3 variable is 
rounded to the loweL page boundary 
and stored as the first base as­
signed. It will be loaded into 
register 10 which will be the base 
register during the execution of 
the generated code. 

For subsequent variable references, 
a check is made to see if the variable 
can be referenced by using a previously 
assigned base. If a previous base can 
be used, it becomes the base register, 
and the displacement is set to the dif­
ference between the variable's VMA and 
the base. This will minimize the num­
ber of bases and LOAD multiple commands. 
If a previous base cannot be used, the 
count of bases assigned is incremented 
and the variable's VMA is assigned a 
base as described above. 

The register that will contain the 
base is returned as the base register 
with the appropriate displacement. 
When three base registers have been 
assigned, and they cannot be used in 
referencing the next variable, the reg­
isters are stored in the current page. 
The pointer to the next available stor­
age areas for data is updated. The B2 
field of the LM instruction is set to 
15, and the D2 field is set to the dif­
ference between the assigned base stor-

age and the starting address of the 
generated code. The base for the next 
variable is then assigned as if it were 
the first base. 

Dimension factors are treated as spe­
cial variables; they are contained in 
the array ISD symbol entry. The base 
register assigned for referencing these 
variables contains the VMA of the array 
ISD entry. This V~ffi is returned to the 
generated code caller if a dimension 
error occurs in the dynamic evaluation 
of a subscript. A check is made to see 
if a base register has been assigned 
for referencing the ISD entry. If one 
has been assigned, it is used; other­
wise, the next available base register 
is assigned in the manner described 
previously. The assigned base register 
number is saved for SUBGEN usage. This 
number is returned to the GETBASE caller 
and the displacement is set to the dif­
ference between the dimension factor's 
VMA and the ISD entry's VMA. 

If the operand is a FORTRAN dummy 
variable, the VMA just processed is the 
address of the adcon for the argument. 
GETREG is called to assign a general 
register for the adcon. The following 
command is generated: L Rl, D2(0,B2) 
The Rl field is the register supplied 
by GETREG. 

The following instructions are then 
generated: 

(I) 

(2 ) 

(3) 

(4 ) 

1. 

LTR 

BC 

LA 

BR 

Rl,Rl 

7,D2(B2) 

(test adcon reg­
ister) . 

(branch past the 
next two instruc­
tions) 

15,12 (0 ,0) (load return code 
to indicate a ref­
erence to a dummy 
variable which has 
not been estab­
lished) 

14 (return to caller) 

FORTRAN dummy variables as well 
as operands specified as symbols 
with offset are automatically 
aligned. For all other operands, 
the displacement of the operand is 
checked against the data length to 
ascertain alignment requirements. 
ALR Rl,R2 (add base register to 
offset register instruction is 
generated if alignment is required 

ROUTINE DESCRIPTIONS 53 



and double indexing is specified. 
Thus, the offset register becomes 
the base register. Also, if oper­
and alignment is requested by the 
caller, an MVC Dl(L,13) ,D2(B2) in­
struction is generated to move the 
data to aligned storage in the 
PCS PSECT. Register 13 is the 
base register for the aligned stor­
age and the Dl field of the move 
instruction is set to the next 
aligned storage location. 

2. Stored sUbexpressions - If the 
item is not identified as a con­
stant, and the stored flag is set, 
the item is a stored subexpression. 
The stored flag is cleared. Reg­
ister 13 becomes the base register 
while the displacement is picked up 
up from the item. This displace­
ment was stored in the item when 
the code to store the sUbexpression 
was generated. The pointer to the 
next available PSECT storage loca­
tion is updated, to release the 
subexpression storage. 

3. Constants - If the item is identi­
fied as a constant, the constant 
is stored as data in the current 
page. Prior to being stored, the 
constant is padded or truncated as 
necessary. Character and real 
constants are truncated on the 
right; others are truncated on the 
left. Character constants are 
blank padded on the right. Real 
constants are zero filled on the 
right. Others are zero filled on 
the left. The pointer to the next 
available data storage location is 
updated. Register 15 becomes the 
base register. The displacement 
is set to the difference between 
the data storage and the starting 
address of generated code. 

CZANW -- DIAGNO - ISSUE DIAGNOSTICS 

This routine forms and issues diag­
nostics for PCS. (See Chart AY.) 

Entry ---
CZANln 

Via standard type-I linkage. 

Routines Called 

PRMPT 
Writes a line to a terminal. 

54 

GETCHAR (CZAMQ2) 
Gets the next character. 

Exit 

This routine returns control to the 
caller. 

Operation 

A diagnostic message consists of two 
sets of characters. The first set con­
sists of that portion of the search list 
string which caused the diagnostic. 
This set is contained in the PCS diag­
nostic buffer. The second set is the 
text of the diagnostic message and is 
contained in SYSMLF. Each diagnostic is 
assigned a unique code number, which is 
supplied in the diagnostic code storage 
area and is used to locate the diagnostic 
test and level. 

The four diagnostic levels are: 

1. Null: These diagnostics are in­
formational only. They do not re­
sult in prompting or rejection. 

2. Warning: These diagnostics are 
informational. They cause the 
user to be prompted for acceptance. 

3. Operand Fatal: These diagnostics 
indicate that an operand is being 
ignored. They cause prompting or 
rejection. 

4. Statement Fatal: These diagnos­
tics cause the entire statement 
to be rejected. 

The diagnostic code storage area is 
checked, and if it is clear, processing 
continues with the diagnostic scan 
check. If the storage area is not zero. 
it is assumed that it contains one or 
more diagnostic codes, and a diagnostic 
will be issued for each. If more than 
one diagnostic is issued, the offending 
portion of the source list string is 
contained in the first diagnostic. 
Subsequent diagnostics will contain the 
text alone. 

When all diagnostics have been 
issued, the diagnostic scan indicator 
is checked. If the indicator is clear, 
the routine exits. If the indicator is 
set, the source list input has violated 
PCS syntax rules and the character 
string in the PCS diagnostic buffer is 
scanned. Each character is inspected. 
An end-of-block indicator causes an 
automatic termination of the diagnostic 
scan, regardless of syntax checks. If 



a quote is encountered, t.he subsequent 
characters are checked for the terminal 
quote. If a left parenthesis is en­
countered, a parenthesis count is in­
cremented. When a right parenthesis is 
encountered, the parenthesis count, if 
it is greater than zero, is decremented. 
The diagnostic scan is terminated when 
the parenthesis count is equal to zero 
and a comma or semicolon is encountered 
outside of the quoted string. 

The diagnostic scan may result in 
the extraction of characters from the 
source list. These characters are ob­
tained by means of the GETCHAR routine 
(see SCANFLD). Any charEccter strings 
obtained by the diagnostic scan are not 
candidates for synonym substitution. 
When the diagnostic scan has been com­
pleted, a diagnostic for the resultant 
character string is issued. 

CZANX -- PROMPT - USER PHOMPTING 

This routine issues a prompting 
message and solicits a user's response. 
(See Chart AZ.) 

Entry 

CZANXl 
Via a standard type-I linkage. 

Routines Called 

BRMPT 
Nri tes a line to the i:erminal and 
reads a response. 

DIAGNO (CZANW1) 
Issued diagnostics. 

This routine returns ~o the calling 
program. 

Operation 

A prompt message consists of a mes­
sage number and two character strings. 
The message number and the location 
and length of the first character string 
are supplied by the caller. The second 
character string is contained in SYSMLF 
and is referenced by message number. 
The message is written via a call to 
the PRMPT macro, which returns the re­
ply. If the response is valid, it is 
returned to the caller. If the response 
is invalid, the default response is re­
turned to the caller. 

If the task is non-conversational, a 
diagnostic is issued in place of the 
PROMPT message. The diagnostic level 
is set to cause statement rejection. 

CZANZ -- GETPAGE - ALLOCATE VIRTUAL 
STORAGE 

This routine allocates virtual stor­
age for PCS. 

Entry 

CZANZl 
Via a BASR. 

Routines Called 

GETMAIN 
Allocates one page of virtual stor­
age. 

DIAGNO (CZANI'71) 
Issues a diagnostic. 

Exit 

This routine returns to the caller 
if storage is available; if not, control 
is passed to the caller of PCS. 

Operation 

GETMAIN is called to allocate one 
page of working storage. If the return 
code indicates that storage is avail­
able, return is to the caller, with the 
storage location in parameter register 
1. If the return code indicates that 
storage is not available, a diagnostic 
is issued and GETPAGE returns control 
to the caller of PCS directly. 

CZAOA -- VALMOD - EVALUATE MODULE NAME 

This routine locates and loads the 
internal symbol dicLionary (ISO) for 
the module. (See Chart BA.) 

Entry 

CZAOAl 
Via standard type-I linkage. 

Routines Called 

GETMAIN Macro 
Allocates storage for an ISO. 

MOVEPAGE 
Reads in an ISO. 

ROUTINE DESCRIPTIONS 55 



FIND Macro 
Locates the ISO. 

HASH SEARCH (CZCDL2) 
Locates the PMD for the module name 
with the calling sequence: CALL 
CZCDL2, (LIST) 

where LIST consists of five parameters: 

1 - Pointer to the user hash table. 
2 - Zero 
3 - Pointer to the symbol name. 
4 - The module sequence number. 
5 - The VMA of the symbol definition 

(on return). 

Exit 

This routine returns to the calling 
program. 

Operation 

The ISOMAP is first searched to de­
termine if the ISO for the module has 
been loaded. If it has, the entry num­
ber in the ISOMAP is returned to the 
caller. If the ISO has not been loaded, 
the PMO for the module is located and 
the "ISO available" flag is checked. 
(See CZAMO for PMD loading procedure.) 
If the flag is off, an error diagnostic 
is formed. If it is on, the ISO is 
loaded and the ISOMAP is updated. 

This routine may be called with one 
or two qualifying names. If two names 
are given, the search procedure de­
scribed above is followed using the 
linkage editor qualifying name. When 
the ISO is loaded, a search is made 
through it for level 1 ISOs. When one 
is found, all input module names (com­
piler or assembler produced ISOs) are 
put into the ISOMAP with a pointer to 
the entry for the linkage editor ISO. 
If the linkage editor ISO has no input 
module with the same name as the secon­
dary qualifying name, an error indicator 
is set. 

If the ISDMAP already contains an 
entry for the names given, the routine 
returns with pointers to the entry or 
entries and performs none of the load 
functions described. The following 
error checks are made: 

• No module loaded for the given name. 

• Module has no ISO. 

• For linkage editor modules. 

56 

a. Two qualifying names required. 

b. Second qualifying name not found 
in linkage editor ISO. 

CZAOB -- VALSYM - EVALUATE SYMBOL 

This routine locates a symbol's 
entry in the internal symbol dictionary 
(ISD) and computes its virtual storage 
address. (See Chart BB.) 

Entry 

CZAOBI 
Via standard type-I linkage. 

Routines Called 

HASHSEARCH (CZCOL2) 
Locates the CSO for the control sec­
tion containing the symbol with the 
calling sequence: CALL CZCDL2, (LIST) 

where LIST consists of five param­
eters: 

1 - Pointer to the user hash table. 
2 - Zero 
3 - Pointer to the symbol name. 
4 - The module sequence number. 
5 - The VMA of the symbol definition 

(on return) 

Exit 

This routine returns to the calling 
program. 

Operation 

The ISD for the primary qualifying 
name is located. If the ISO is for an 
assembled or compiled module, it is 
searched for the symbol entry. If, 
however, it is for a link edited module, 
the ISO for the secondary qualifying 
name is searched. 

If a FORTRAN statement number is 
being processed, the statement number 
table of the FORTRAN ISO is searched. 
If a subscript value is specified, the 
entry must be found in the statement 
number table, or the data location is 
identified as an error. If the entry 
is found, the subscript value (if any) 
is applied to the entry in the state­
ment number table to locate the appro­
priate entry. The symbol displacement 
in the control section is obtained from 
the statement number table entry. The 
control section name is obtained from 



the next to last entry in the section 
name table. If the entry is not found, 
the data location is re-identified as 
an internal symbol. 

If an internal symbol is being pro­
cessed, the symbol table of the FORTRAN 
or assembler ISD is searched. If the 
symbol entry is not found, the data 
location is redefined ei~her as an 
error, if an implicit or explicit in­
ternal symbol is being processed, or 
as null, if the symbol is not implicitly 
or explicitly qualified. 

If the symbol table e~try is found, 
the entry type is inspected. If the 
entry type is immediate data, the data 
location item is COlnpleted and the 
routine exits. If the entry type indi­
cates that the symbol is a DSECT, the 
data location identifica~ion is checked 
to ensure that an internal symbol with 
offset is being processed. The data 
location item is then completed and the 
routine exits. 

In all other cases, t~e type and 
length attributes are stored in the 
LOCITEM. The symbol dis?lacement in 
the control section is o~tained from 
the symbol entry. The cantrol section 
number in the symbol entry is used to 
index the section name table to obtain 
the control section name. 

If a linkage editor ISD was specified 
as the primary qualifier, the ISD is 
searched down to locate the lowest level 
in the defining lSD, then up to compute 
a displacement for the control section. 
To facilitate this search, a temporary 
two-word search list is formed pointing 
to the preceding ISD (werd 1) and the 
input module heading (werd 2). 

A two word entry is rrade for each 
ISD level. Generation ef the list con­
tinues until a level I ISD is obtained. 
The level I ISD is then searched to see 
if any input module name equals the 
secondary qualifying narr.e. If no match 
is found, the entry for the level 1 ISD 
is deleted from the search list, the 
entry for the next higher level (i.e., 
the previous entry in the search list) 
is obtained, and the search for a level 
I ISD is continued. 

Hhen a level I ISD containing the 
secondary qualifying input module name 
is found, a check is made to determine 
if the control section name for the 
symbol is one of the input control sec­
tions of the input modu:e. If the con-

trol section name is not found, the 
level 1 ISD is deleted from the search 
list and the search continues. 

If the control section was an input 
control section in the formation of the 
level I link edited program, a search 
up the ISD levels (using the entries 
in the search list) is initiated, in 
order to compute the displacement in 
the final control section (i.e., the 
control section in the loaded module) . 
If, at any point, during the upward 
search, a control section is not found, 
the downward search is resumed. 

Hhen the final control section name 
has been determined, the HASH SEARCH 
routine is called to locate the control 
section definition. The symbol dis­
placement in the control section is then 
added to the control section VMA and 
stored in the LOCITEM. 

CZAOD -- GETREG - REGISTER ASSIGNMENT 

This routine assigns registers re­
quired for generated code. (See Chart 
BC. ) 

Entry 

CZAODI 
Via a standard type-I linkage. 

Routines Called 

None 

Exit 

This routine returns control to the 
calling subroutine. 

Operation 

The routine is entered with a pointer 
to an operand entry in the Polish 
string. The register type requested is 
determined. 

General Purpose: Five pairs of regis­
ters, in order from 0-1 through 8-9, 
are used for loading operands. The 
register assigned to the operand is 
stored in the operand entry and the "in 
register" flag is set. If a request is 
made for a register, and all five have 
been assigned, the first used registers 
are allocated PSECT storage, and a reg­
ister pair is freed for the current 
call. The operand entry in the Polish 
string is updated to indicate that the 

ROUTINE DESCRIPTIONS 57 



operand has been stored, and where it 
is stored. An ST instruction is added 
to the generated code to store the reg­
ister. 

Floating Point: Registers are taken in 
sequence. The register assigned to the 
operand is stored in the operand entry, 
and the "in register" flag is set. If 
a request is made, and all four regis­
ters have been assigned, the first used 
register is allocated PSECT storage, 
and the register is used for the cur­
rent call. The operand entry in the 
Polish string is updated to indicate 
that the operand has been stored, and 
where it is stored. An STD instruction 
is added to the generated code to store 
the floating point register. 

CZAPB -- PCSPUT - PCS OUTPUT CONTROL 

This routine exercises overall con­
trol in Phase III for processing imme­
diate and dynamic statements. (See 
Chart BD.) 

Entry 

CZAPBI 
Is used by the task monitor to call 
PCS to process a PCSVC interrupt. 
A standard type-I linkage is used. 

CZAPB2 
Is used by PCS Input Phase II to 
process an in~ediate statement. A 
standard type-I linkage is used. 

Routines Called 

FINDLOC (CZAPCI) 
After an SVC interrupt, locates the 
matching entry or finds the next 
available entry in the location 
table (LOCTAB) 

LINE (CZAPHJ) 

Writes a line on the terminal 
device. 

FORMDIAG (CZAPI1) 
Calls PRMPT to write a diagnostic 
message on the terminal device. 

INTERVENE (CZAMZ3) 
Interrupts processing of the current 
user program and provides the link­
age to CA&E to create a new sublist. 

DISPDUMP (CZAQAI) 
Processes phrase lists. 

58 

VISAM PUT 
Writes a line on the PCSOUT data set. 

GENCALL (CZAPN1) 
Executes the generated code. 

SYMGEN (CZAPG1) 
Generates a symbol for a VMA. 

FINDREAL (CZAPL1) 
Locates the VMA of a recomposed in­
struction. 

SAVIX (CZAPK1) 
Recomposes the user's instruction 
which was replaced by an SVC. 

USER CONTROL ROUTINE (CZAMZ1) 
Initiates execution of a user's 
program. 

EXPAND SOURCE LIST (CZASC2) 
Expands the source list by one page. 

Exit 

PCS Output Control returns to the 
calling program. 

Operation 

This routine has two entry points. 
It is entered from PCS Input Phase II 
to process an immediate statement, and 
it is entered from the task monitor to 
process a dynamic statement. 

Immediate statement Entry: The loca­
tion of a statement table entry (STATAB) 
is supplied as a parameter. The imme­
diate statement switch is turned on, 
and control is given to the common pro­
cessing routine. 

Dynamic Statement Entry: Control is 
received from the task monitor via a 
standard type-I linkage. However, no 
parameters are supplied. The interrupt 
addre~s is picked up from the VPSW in 
the interrupt storage area (ISA1). 
FINDLOC is entered with the VMA of the 
interrupt. If the LOCTAB entry was 
found, a check of the entry type is 
made. 

If the type is a RETURN, the inter­
rupt was caused by the ENTER PCSVC that 
was placed following the recomposed 
user's instruction. If the recomposed 
instruction is a NOPR instruction, the 
overlaid instruction was a branch type 
instruction and must be interpreted. 
FINDLOC is called to locate the LOCTAB 
entry for the original instruction. 



The branch instruction is then inter­
preted to determine if the branch is 
successful. If it is, the user's VPSW 
is modified to transfer control to the 
branch address. If it is unsuccessful, 
the user's VPSW is modified to point to 
the next sequential instruction in his 
program. The entry is then cleared 
from the location table. 

If the LOCTAB entry was not a RETURN, 
the pointer to the STATA:3 entry is 
picked up, and control is given to the 
common processing routin,=. 

If a LOCTAB entry for the interrupt 
address was not found, it is classified 
as an illegal entry; this is probably 
caused by an erroneous SVC instruction 
or by the user who executed an SVC via 
an EX instruction. A diagnostic is 
issued, indicating the contents of the 
VPSW and of the erroneous instruction. 
Control is then passed to INTERVENE 
to halt execution of the user's program, 
create a new sublist, and obtain the 
next line of input. 

Common Processing for Immediate and 
Dynamic Statements 

The STATAB entry is located and the 
dynamic count is incremented. The 
phrase list is then located and a branch 
to the appropriate routine is made based 
on the phrase list identification. 

AT: Each entry in the AT list is 
checked to see if the entry is for the 
current interrupt address. If an entry 
is found for the current interrupt ad­
dress, the address of the next STATAB 
entry is set from the A'I' list entry. 
Processing continues with the identifi­
cation of the next phrase list when an 
entry is found or when all entries have 
been inspected. 

IF: GENCALL is called to execute gen­
erated code. If the result is true, 
processing continues with the identifi­
cation of the next phrase list. If the 
result is false, and a dynamic state­
ment is in process, processing continues 
wi th the next STATAB en-try. CA&E is 
notified of a false immediate IF phrase. 

DUMP: The standard header is written 
if necessary, to the PCSOUT data set 
for dynamic DUMP phrases. Processing 
of the DUMP phrase list is identical, 
with the processing of a DISPLAY or SET 
phrase list. 

DISPLAY and SET: DISPLAY/DUMP is called 
to process the phrase list. processing 
continues with identification of the 
next phrase list. 

STOP: If LIMEN is defaulted to "I", a 
STOP followed by the standard header is 
written out. If LIMEN is not defaulted 
to "I", only the statement number is 
written out. If a statement number has 
already been written, the STOP indica­
tor is set and processing continues 
with the next STATAB entry. 

GO: If LIMEN is defaulted to "I", the 
user is notified as to the symbolic in­
struction where program execution is 
resumed. The BRANCH/GO indicator is 
set. Processing continues with the 
next STATAB entry. 

BRANCH: If necessary, the standard 
header is written on the SYSOUT device 
for dynamic statements. If the branch 
address is offset, GENCALL is called to 
execute the generated code anq the re­
sult is added to the branch address. 
The user is notified as to the symbolic 
instruction where program execution is 
resumed. The BRANCH/GO indicator is 
set and processing continues with the 
next STATAB entry_ 

CALL: If a parameter list is to be 
constructed, GENCALL is called to exe­
cute generated code to evaluate each 
parameter. If the parameter is re­
turned in a register, the parameter is 
inserted in the source list. The ad­
dress of each parameter is stored in 
the parameter list. 

The V-con, R-con, and the parameter 
list (which may be null) are inserted 
in the source list. If the statement 
is immediate, processing continues with 
the next STATAB entry. If the state­
ment is dynamic, the user control rou­
tine is called to initiate program 
execution. When control returns, pro­
cessing continues with the next phrase 
list. 

CONTINUE: Processing continues with the 
next phrase list. 

TERMINATE: Processing continues with 
the next STATAB entry_ 

Processing of Next STATAB Entry: If 
the statement is immediate, control re­
.turns to the caller. CA&E is notified 
of an end-of-Ievel if a BRANCH or a GO 
phrase was processed. 

ROUTINE DESCRIPTIONS 59 



For dynamic statements, the standard 
header is written, if necessary. If 
there is a next STATAB, and a BRANCH or 
STOP phrase was processed, a diagnostic 
containing the unprocessed statement 
number is issued and execution of the 
user program is halted. If there is a 
next STATAB entry, and a BRANCH or STOP 
phrase was not processed, the next 
STATAB entry is processed as described 
above. 

When all STATAB entries have been 
processed, the user's instruction is 
recomposed if necessary. If the user 
program is to be halted, INTERVENE is 
called and when control returns, PCSPUT 
locates the save area pointed to by 
CZAMZ4, and issues a return. Control 
returns to the caller if the user's 
program is not halted. 

CZAPC -- FINDLOC - LOCATION TABLE SCAN 

This routine hashes a VMA and finds 
an appropriate location table (LOCTAB) 
entry. (See Chart BE.) 

Entry 

CZAPC1 
Via a standard type-I linkage with a 

VMA stored in the PSECT. 

Routines Called 

GET PAGE 
Allocates a page for LOCTAB. 

Exit 

This routine returns to the calling 
program with a return code: 

o - Available entry found. 

4 - Matching entry found. 

Operation 

FINDLOC is called for two purposes: 
to locate an available entry in LOCTAB, 
or to locate a matching entry. The 
location table is searched by hashing the 
VMA until either an available (null) 
entry or a matching entry is found. 
Entries that are unlinked by REMOVE are 
considered available if a matching entry 
is not found. 

FINDLOC takes the virtual memory ad­
dress provided, hashes the address, and 
uses the hash result to search the 10-

60 

cation table. 
is: 

The formula for hashing 

1. Divide VMA by constant X'EEEF'. 
Save remainder as hash. 

2. Take nine low-order bits from hash. 

3. If the result is more than 340, 
subtract 171. 

4. Multiply by 12 to get byte address. 

5. Combine byte address with LOCTAB 
page address to get address of 
LOCTAB entry. 

6. To get next address, shift off low­
order bit of hash and continue with 
next nine bits. Eight combinations 
are possible . 

. If a LOCTAB entry is found to be null, 
its address is returned as an available 
entry. If a non-null entry is found, 
the SVC location in the entry and the 
VMA that was hashed are compared. If 
they are equal, the LOCTAB address is 
returned as a matching entry. If they 
are not equal, the first LOCTAB entry 
identified as REMOVE is set as the null 
entry. Then the search continues. 

After all entries for a page of the 
table have been searched, the overflow 
pointer is examined. 

If it is nonzero, the search is con­
tinued on the new page. After all pages 
have been checked (i.e., the overflow 
pointer on the last page is zero), the 
null entry is checked. If a LOCTAB entry 
identifies as REMOVE was found, the ad­
dress of the entry is ~eturned as the 
available entry. If al'l LOCTAB entries 
inspected were "in use," a new page is 
allocated via GETPAGE. The address of 
the new page is stored in the overflow 
pointer of the last page. 

If all existing pages of the lo­
cation table were examined without find­
ing an entry, the return parameter is 
set to zero before returning to the 
calling program. 

CZAPG -- SYMGEN - SYMBOL GENERATOR 

This routine converts a VMA of a user 
instruction to symbolic form for display 
purposes. (See Chart BF.) 



Entry 

CZAPG1 
Via a standard type-I linkage. 

Routines Called 

MAPSEARCH (CZCCQ) 
Locates the control section infor­
mation (CSD) for the VMA with the 
calling sequence: CALL CZCCQ, (LIST) 
where LIST consists o~ three para­
meters: 

1 - VMA to be resolved 
2 - Function code (set to zero) 
3 - Pointer to CSD (upon return) 

Exit 

This routine returns to the calling 
program. 

Operation 

The routine searches all available 
ISDs and PMDs and attempts to recon­
struct the symbolic address, as it was 
defined in the FORTRAN or assembly pro­
gram, into the form: 

FORTRAN - QNAME.99 (ddd) 

Assembly - QNAME. LNMI,E. (offset) 

where QNAME is a qualifying program 
module name 

99 is the nearest preceding statement 
number that can be followed by a sub-
script 

(ddd) is the count of executable 
FORTRAN statements 

LNAME is the nearest preceding in­
ternal symbol which nay be followed 
by (offset) 

(offset) is the offset interval in 
bytes 

If a link-edited module is being 
processed, two qualifying names will be 
returned. The first is the name of the 
load module; the second is the assembler 
or compiler module name that contains 
the internal symbol. 

If the location occurs in the con­
trol section, before any internal sym­
bols or statement numbers, or if the 
control section contains none, the sym­
bol has the same form, except that 

LNAME is the control section name and 
the statement number designation (99) 
is zero or omitted. 

The MAPSEARCH routine is called to 
locate the entry that brackets the 
user's VMA. The entry points to a PMD 
from which the module and control sec­
tions names are obtained. If the PMD 
indicates the module has an lSD, the 
ISDMAP is searched. If a matching entry 
is found, the ISD type is checked. The 
type may be: 

• Assembler ISD - The section name en­
tries are scanned, to find the cor­
rect section. All symbol entries 
for the control section are examined, 
to locate the closest preceding in­
ternal symbol. 

• FORTRAN ISD - The statement number 
entries are examined, to locate the 
closest preceding statement number. 

• Linkage editor ISD - Each link-edit 
operation generates a new lSD, and 
links together all previous, assoc­
iated ISDs. 

The qualifying name (QNAME) is saved as 
the first of two qualifying names to be 
displayed. The control section name 
pointed to by the memory map is used as 
an argument, to search the link-edit 
produced output control section. 

When a match is found, the input module 
name containing the control section is 
saved as the current QNAME. A new value 
of LNk~E is determined, depending on 
whether input control sections processed 
by the linkage editor are unchanged, re­
names, or combined. The ISD for the 
input module is obtained, and the type 
checked. If it is a link-edit lSD, the 
procedure described in this paragraph is 
repeated, using the new values of QNAME 
and LNAME. 

If the ISD is an assembler or FORTRAN 
lSD, processing is as described above. 
When the link-edit ISD search is com­
pleted, QNAME contains the module name 
while LNAME contains the control section 
name. 

If a list is exhausted without a 
match, processing is discontinued, and 
the symbol is resolved as an external 
symbol. If an external symbol is to be 
generated, the external symbol used is 
the control section name containing the 

ROUTINE DESCRIPTIONS 61 



VMA. The offset from the control sec­
tion name is expressed as a hexadecimal 
value. 

CZAPH -- LINE 

This routine sends a message line to 
the user. 

Entry 

CZAPH1 
Via a standard type-I linkage. 

Routines Called 

GATWR 
Sends a line to the user. 

Exit 

This routine returns to the calling 
program. 

Operation 

A character string has been for­
matted in the line area. The ending 
pointer will determine the number of 
characters in the message. A call is 
made to GATWR to write the message and 
the message area is then cleared. 

CZAPI -- FORMDIAG - FORMAT DIAGNOSTIC 

This routine sends a diagnostic mes­
sage to the user. 

Entry 

CZAPI1 
Via a standard type-I linkage. 

Routines Called 

None 

Exit 

This routine returns to the calling 
module. 

Operation 

A diagnostic code is returned and used 
to search a table for the proper message 
identifier. This identifier is used to 
select a message from the System Message 
file. If the message requires an insert, 
a pointer to the insert is placed in a 
register. The PRMPT macro is issued to 
write the message to the user's termin­
al. Upon return from PRMPT this routine 

62 

clears the line buffer used to hold 
message inserts and returns to its 
caller. 

CZAPK -- SAVIX - SAVED INSTRUCTION 
EXECUTION 

This routine recomposes the machine 
instruction in the user's program that 
Phase II control replaced with an SVC. 
(See Chart BG.) 

Entry 

CZAPK1 
Via a direct branch. 

Routines Called 

FINDLOC (CZAPC1) 
Finds an available entry in LOCTAB. 

LINE (CZAPH1) 
Issues a diagnostic line. 

Exit 

This routine returns to PCSPUT via 
a direct branch to PB420. 

Operation 

The VMA immediately following the 
SVC in the user's program and the first 
two bytes of the original instruction 
are found in LOCTAB. The instruction's 
operation code is checked to see if the 
instruction could result in a branch 
(is a branch type instruction). If it 
could, a NOPR instruction is sub­
stituted; if not, the instruction is 
recomposed in working storage and fol­
lowed by an ENTER PCSVC. 

When the subject instruction of an 
EXECUTE is of the branch type, a NOPR 
replaces the EXECUTE, so that the 
branch can be interpreted after the 
RETURN. 

A RETURN entry is placed in LOCTAB 
for the ENTER PCSVC. The address of 
the next sequential instruction in the 
user's program is stored in the entry 
along with the length of the recomposed 
instruction. 

CZAPL -- FINDREAL - FIND REAL ADDRESS 

The purpose of this routine is to 
determine if a location contains an 
instruction recomposed by PCS. 



Entry 

CZAPL1 
Via a standard type-I linkage. 

Input Parameters: Register 1 contains 
the virtual storage address. 

Output Parameters: Register 15 con­
tains either the address of the oriqi­
nal instruction or zero for a non­
recomposed instruction. 

Routines Called 

FINDLOC (CZAPC1) 
Finds location table entry. 

Exit 

The routine returns to the calling 
program. 

Operation 

The VMA is compared t:o the address 
of the page containing i:he recomposed 
instructions. If the VHA is in the 
recomposed instruction page, FINDLOC 
is called to search the location table 
for the matching entry. The address 
of the instruction that was overlayed 
by the PCSVC is computed from the re­
turn address and delta in the RETURN 
LOCTAB entry. The caller is then re­
turned to the VMA of the original in­
struction that was overlayed by the 
PCSVC. 

CZAPN -- GENCALL - CALL GENERATED CODE 

This routine is entered with a 
pointer to generated code. It executes 
the code and stores the results in 
CZAMA9. (See Chart BH.) 

Entry 

CZAPN1 
Via a standard type-I linkage. 

Routines Called 

SIR Macro 
Specify Interrupt Routine 

DIR Macro 
Delete Interrupt Routine 

INTINQ Macro 
Interrupt Inquiry 

LINE 
Issues diagnostic line 

Exit 

This routine returns to the calling 
program. The CZAMA9 area contains three 
parameters: 

1 - The return code from generated code. 
If an error occurred during the 
execution of the generated code, 
the return code is set to 12. 

2 - Not used. 
3 - General register 1, as a result of 

executing the generated code. 

Operation 

The SIR Macro is executed. Control 
is passed to the generated code. The 
results of the generated code are stored 
in CZAMA9. The DIR Macro is executed. 
The INTINQ Macro is executed and if it 
detects an interrupt, an error return 
code is created. 

If the generated code execution did not 
cause an interrupt, the return code is 
checked. 

If the return code indicates an 
error, the standard header is written 
if necessary. Diagnostics identifying 
the error and the phrase being proc­
essed are issued and an error return 
code of 12 results. 

CZAQA -- DISPDUMP - DISPLAY/DUMP 
CONTROL 

This routine controls the processing 
of a DISPLAY, DUMP, or SET phrase list. 
(See Chart BJ.) 

Entry 

CZAQA1 
Is entered from PCSPUT via a stan­
dard type-I linkage, with the 
following two-word parameter list: 

Word 1 - Location of the first 
phrase list 

Word 2 - Base location of the ISDMAP 

Routines Called 

DISOUT (CZAQU1) 
Writes a qualification line. 

NEXTLIST (CZAQB1) 
Processes a phrase list. 

GDV Macro 
Gets the default value for LINEMENT. 

ROUTINE DESCRIPTIONS 63 



Exit 

This routine returns to the caller. 

Operation 

DISPDUMP processes the phrase list 
header. If the header indicates the 
presence of a qualification name, and 
if this name is not the same as the last 
name, a line of the form: QUALIFICATION 
IS BY ... is issued to the terminal. 

The default value for LINEMENT is 
obtained if a SET phrase list is being 
processed. 

NEXTLIST is called to process the 
entries in the phrase list. When con­
trol returns, if an error or an atten­
tion interrupt has occurred, the return 
code is set to 4 (error/stop). Other­
wise, the return code is set to 0 
(continue) . 

CZAQB -- NEXTLIST - PROCESS PARAMETER 
LIST 

This routine processes each item in 
a SET, DUMP, and DISPLAY/phrase list, 
and initializes the display list 
(DISPLIST) for each entry. (See Chart 
BK. ) 

Entry 

CZAQB1 
Via a standard type-I linkage. 

Routines Called 

GENCALL (CZAPN1) 
Executes generated code. 

DISREG (CZAQF1) 
Displays registers. 

NEXTISD (CZAQD1) 
Sets up display list item. 

NEXTITEM (CZAQC1) 
Processes DISPLIST. 

CKCLS Macro 
Checks storage protection class. 

DISRHEAD (CZAQQ1) 
Formats and writes range headers 
and issues diagnostics. 

MAPSEARCH 

64 

Locates the CSD for a VMA with the 
calling sequence: CALL CZCCQ, (LIST) 
where LIST consists of three para-

meters: 

1 - The VMA to be resolved. 
2 - A function code of zero. 
3 - Contains the CSD address (on 

return) . 

Exit 

This routine returns to the calling 
program. 

Operation 

The phrase list entry header is pro­
cessed and the display list (DISPLIST) 
items are initialized and a branch 
based on the entry identification is 
executed. 

Register: DISREG is called to perform 
all necessary processing. 

Dynamic Count: The DISPLIST item for 
the dynamic count is formed. 

External Symbol: The DISPLIST item for 
an external symbol is formed. If an 
offset is specified, GENCALL is called 
to evaluate the offset. If a range is 
in process, a second display list item 
is formed for the range upper limit. 
If a range is not in process, and an 
offset is not specified, the DISPLIST 
item is adjusted if the external sym­
bol is a module name or a control sec­
tion name. 

Internal Symbol, Statement Number, Sub­
scripted Array: The DISPLIST item for 
an internal symbol is formed. NEXTISD 
is called to aid in the formation of 
the item. GENCALL is called to eval­
uate the subscript/offset. If a range 
is in process, a second DISPLIST item 
is formed for the upper limit of the 
range. 

Hexadecimal Address: The DISPLIST item 
is formed for the hexadecimal address. 
A second DISPLIST item is formed for a 
range. 

Expression: The display list item for 
an expression is formed. 

Command Variable: The display list 
item for a command variable is formed. 

When the DISPLIST items have been 
formed, DISRHEAD is called to form a 
range header if necessary. If an off­
set was processed in creating a DISPLIST 
item, a storage class check is made to 
insure all storage is assigned and to 



test for read only, or no read/no ~rite 
storage. If a SET phrase is being pro­
cessed, GENCALL is called and the re­
sult is stored in the specified area. 
If a positive response is requested, 
the result will be displayed. If nec­
essary, the range header is written. 
NEXT ITEM is called to perform the for­
matting and output functions. The next 
entry in the phrase is t~en processed. 

CZAQC -- NEXT ITEM - PROCESS DISPLAY 
LIST 

This routine processes the display 
list (DISPLIST) generated by NEXTLIST. 
It determines which routine to call to 
convert the data item, and the order 
of call when a range is specified. 
(See Chart BL.) 

Entry 

CZAQC1 
Via a standard type-I linkage. 

Routines Called 

SIMVAR (CZAQG1) 
Displays a simple var~able. 

DISARAY (CZAQJ1) 
Displays an array. 

DISHEX (CZAQM1) 
Displays a hexadecimal range. 

NEXTISD (CZAQD1) 
Resets display list L:.ems. 

DBIN (CZAQT1) 
Display a variable or range in binary 

DISOUT (CZAQU1) 
l-'lrites a line. 

EBCDTHIE Macro 
Converts Version ID. 

DISYM {CZAQR1} 
Formats a symbol name. 

Exit 

This routine returns to the calling 
program. 

Operation 

The IDENT of each entry is examined, 
and a call to the appropriate routine 
is made to display either the full 
range or a portion of the range. 

If the full range was not displayed, 
NEXTISD is called to reset the first 
DISPLIST item. 

CZAQD -- NEXTISD - PROCESS NEXT ISD 
ENTRY 

This routine sets entries in the 
display list (DISPLIST) from the ISD 
entry, and determines a type and length 
for data fields between two ISD 
entries. (See Chart BM.) 

Entry 

CZAQDl 
Entry is via a standard type-I 
linkage. 

Routines Called 

None 

Exit 

This routine returns to the calling 
program. 

Operation 

When the routine is entered for the 
first item in the range, the offset 
(displacement from the control section) 
is moved from the ISD to DTEMPLOC. 
This will be used to control the pro­
cessing of items through the ISD. After 
the first time, the next unprocessed 
ISD entry is examined. The displace­
ment of this item is compared with the 
updated DTEMPLOC, to determine whether 
there are intervening undefined areas. 

If the ISD entfY is the next item to 
be displayed, the item display list is 
set, based on the ISD information. 
Length, type, and subscript dimensions 
are placed in the list, and a flag is 
set if the item is to be displayed in 
the assembler DC format. 

If the ISD entry is not the next 
item to be processed, the information 
for the display list is generated. A 
test is made on the item to dete~mine 
if it is an instruction, or if it is 
between two instructions. Based on 
this test, the list will be set to dis­
play the item as: 

1. An instruction, if the previous 
item was an instruction, and the 
byte at the VML contains a legal 
operation code. 

ROUTINE DESCRIPTIONS 65 



2. A hexadecimal field displayed in 
the assembler DC format; e.g., 
X' FFFFFFFF I • 

3. A character string displayed in 
the assembler DC format; e.g., 
'ABCDE' . 

4. A hexadecimal range. 

When all ISD entries for a control 
section have been processed, the re­
maining area to be displayed is spec­
ified in the list to be formatted as a 
hexadecimal range. 

CZAQF -- DISREG - DISPLAY REGISTERS 

This routine displays one or more 
general purpose registers, or floating 
point single or double precision reg­
isters. (See Chart BN.) 

Entry 

CZAQFI 
Via a standard type-I linkage. 

Routines Called 

GENCALL (CZAPNI) 
Calls generated code. 

ADDITEM (CZAQHI) 
Converts and moves an item to the 
line. 

DISOUT (CZAQUI) 
Writes a line. 

Exit 

This routine returns to the calling 
program. 

Operation 

The display list (DISPLIST} is 
initialized, based on the register type 
involved. If a SET phrase is being 
processed, GENCALL is called. If an 
error is detected upon return, the 
"error stop" flag is set. No further 
action is performed. If an error is 
not indicated, the data is moved to 
the proper register in the interrupt 
storage area. If positive response is 
suppressed (LINEMENT ~ I), a return is 
made. If positive response is req­
uired, processing continues. 

66 

The register numbers are placed on 
the line. ADDITEM is called to con­
vert and move one register to the line. 
The line is output when all registers 
requested have been converted, or when 
the output line is full. 

CZAQG -- SIMVAR - DISPLAY SIMPLE 
VARIABLE 

This routine formats and outputs a 
simple variable. (See Chart BO.) 

Entry 

CZAQGI 
Via a standard type-I linkage. 

Routines Called 

DISINST (CZAQIl) 
Formats and displays an instruction. 

DISYM (CZAQRl) 
Formats symbol name. 

ADDITEM (CZAQHl) 
Converts an item and moves to line. 

DISOUT (CZAQUl) 
Writes a line. 

Exit 

This routine returns to the calling 
program. 

Operation 

If the item to be displayed is an 
instruction, a call is made to DISINST. 
If a variable is to be displayed in 
assembler format, the data field is 
converted first to hexadecimal char­
acters and placed in the line. The 
item is then converted according to 
data type via ADDITEM, and moved to 
the line in place of "operands." 

For a simple variable, a call is 
made to DISYM, which formats and places 
the symbol on the line. The equal sign 
is then moved to the line, followed by 
the item converted by ADDITEM. DISOUT 
is called to write the line on the 
terminal or data set. 

CZAQH -- ADDITEM - CONVERT AN ITEM BY 
DATA TYPE 

The routine converts the item ac­
cording to its type and moves it to 
the line image. (See Chart BP.) 



Entry 

CZAQHI 
Via a standard type-I linkage. 

Routines Called 

REALCON (CZAQVI) 
Converts a real number. 

DISOUT (CZAQUI) 
Writes a line. 

Exit 

This routine returns to the calling 
program. 

Operation 

The proper conversion routine is 
selected according to data type. This 
may require converting an item in a 
work area prior to its being moved to 
the line. The conversion routines are: 

Integer: The item is converted to 
decimal and unpacked into a hold area, 
preceded by the sign. Leading zeros 
are suppressed, unless t.he item is a 
member of an array. 

Real: The item is converted to the 
standard FORTRAN format with specifi­
cation of ElS.8 (single precision) and 
D23.l6 (double precision). A call is 
made to REALCON to make the conversion 
and place the result in a hold area. 

Complex: Two calls are made to REALCON 
to convert both parts of the number 
and place the result in a hold area. 

Logical: If a variable is not zero, 
the constant .TRUE. is moved to the 
hold area; otherwise, .FALSE. is moved. 
If the item is a member of an array, 
these will be abbreviated to .T. and 
.F., respectively. 

Inunediate: Converted as a fullword 
integer. 

Character: The characters need no 
conversation, and are moved directly to 
the line. 

Address: Converted to hexadecimal 
characters. 

Data types other than the ones listed 
will be converted to hexadecimal charac­
ters and stored for output by words. 

After conversion, the item is moved 
to the line. If all the characters 
cannot fit on the line, the line is 
filled and written, and a new line 
begun. 

CZAQI -- DISINST - DISPLAY INSTRUCTION 

The routine formats and outputs an 
instruction in the assembler format. 
(See Chart BQ.) 

Entry 

CZAQIl 
Via a standard type-I linkage. 

Routines Called 

DISOUT (CZAQUl) 
Writes a line. 

FINDLOC r(CZAPCl) 
Finds the LOCTAB entry containing 
the original overlayed instruction. 

Exit 

This routine returns to the calling 
program. 

Operation 

A header line is displayed prior to 
the first instruction. If the location 
contains a PCSVC, FINDLOC is called. 
The original instruction then replaces 
the SVC for formatting. The location 
is converted to hexadecimal digits and 
placed in the line. Each halfword of 
the instruction is then converted to 
hexadecimal. A table lookup gets the 
mnemonic operation code. The proper 
format for the operands is selected 
from the OPC table, and the operands 
are added to the line in accordance 
with standard assembler conventions. 

RR instructions - Rl, R2 
SPM - RI 
SVC - I 

RX instructions - RI, D2 (X2, B2) 

RS instructions - RI, R3, D2 (X2,B2) 
shift instructions - RI, D2 (B2) 

SI instructions - Dl (Bl), 12 
or - DI (Bl) 

SS instructions - Dl (L, Bl), D2 
(B2 ) 

or - Dl (Ll, Bll, D2 
(L2, B2) 

ROUTINE DESCRIPTIONS 67 



If the instruction has an ISD entry, 
the symbol is also placed on the line. 
For a FORTRAN program, this might in­
volve counting backwards to the first 
nonzero statement number. 

If a base register is indicated in 
the operand of an assembler program 
instruction, a search of the lSD's 
Using Table that covers that location 
is made. If the register definition 
is found, the register contents and 
the instruction's displacement are 
added and used to scan the ISD for a 
symbol entry. If a symbol entry is 
found, it is placed in the output line 
next to the operands. 

CZAQJ -- DISARAY - DISPLAY ARRAY 

This routine determines whether or 
not a line of an array is to be sup­
pressed or displayed. (See Chart BR.) 

Entry 

CZAQJl 
Via a standard type-I linkage. 

Routines Called 

DISALINE (CZAQKI) 
Formats a line of array elements. 

ADDITEM (CZAQHI) 
Converts and moves an item to the 
line. 

DISOUT (CZAQUl) 
Writes a line. 

DISYM (CZAQRl) 
Formats a symbol name. 

Exit 

This routine returns to the calling 
program. 

Operation 

The maximum length of an item, after 
conversion, is computed in order to 
determine the number of items that will 
fit on one line. For a one-dimensional 
array, the number on a line will de­
pend on the length of the line. Other­
wise, it will depend on the dimension 
of the first subscript. 

Each element of the array is com­
pared with the next, and a count is 
maintajned of the number of equals. 

68 

If all the items on two or more lines 
are equal, a line is displayed indi­
cating the beginning and ending sub­
script values, and the value of the 
item that was suppressed. When a line 
is not suppressed, a call is made to 
DISALINE to format and write the line. 

CZAQK -- DlSALINE - DISPLAY A LINE OF 
AN ARRAY 

This routine formats and outputs a 
line of an array. (See Chart BS.) 

Entry 

CZAQKl 
Via a standard type-I linkage. 

Routines Called 

ADDITEM (CZAQHl) 
Converts an item and moves to the 
line. 

DISOUT (CZAQUl) 
Writes a line. 

Exit 

This routine returns to the calling 
program. 

Operation 

The items are arranged on the line, 
in the order of the value of the first 
subscript. If the value is not a mul­
tiple of the number of items on a line 
it is shifted in the line image to its 
proper position. 

Each item in the line is converted, 
according to data type, by means of 
ADDITEM, and placed in the line. The 
subscript values of the first item are 
printed to the left of the line. 

The line is written when the last 
item in the array has been converted, 
the first subscript value after up­
dating has been reset to one, or the 
line is full. 

A "last item" flag is set when all 
items in the array have been displayed. 

CZAQM -- DISHEX - DISPLAY A RANGE IN 
HEX 

This routine determines whether or 
not a hexadecimal line is to be sup­
pressed or displayed. (See Chart BT.) 



Entry 

CZAQMl 
Via a standard type-I linkage. 

Routines Called 

SIMVAR (CZAQGl) 
Displays a hexadecimal field in the 
assembler format. 

DISHLINE (CZAQNl) 
Formats a line of hexadecimal data. 

DISOUT (CZAQUl) 
Writes a line. 

Exit 

This routine returns to the calling 
program. 

Operation 

If the flag to display the hexa­
decimal field in the assembler format 
is on, the SIMVAR routine is called. 
Otherwise, the number of words to be 
formatted on one line is determined. 
Each word to be displayed is compared 
with the next, and a count is main­
tained of the number of equals. If 
all the words on two or more lines are 
equal, those lines are suppressed, and 
a line is displayed indicating the be­
ginning and ending location and the 
contents of the suppressed words. 

When a line is not suppressed, a 
call is made to DISHLINE to format and 
write the line. 

CZAQN -- DISHLINE - DISPLAY A HEX LINE 

This routine formats and writes a 
line of hexadecimal characters. (See 
Chart BU.) 

Entry 

CZAQNl 
Via a standard type-I linkage. 

Routines Called 

DISOUT (CZAQUl) 
Writes a line. 

Exit 

This routine returns to the calling 
program. 

Operation 

The beginning VMA is converted to 
hexadecimal and placed in the line. 
Since hexadecimal characters are for­
matted in mUltiples of four words to a 
line, the VMA of the first byte, if. 
not a multiple of sixteen, causes the 
line pointer to shift to the approp­
riate line position representing the 
VMA. If only one line is being dis­
played, this routine is bypassed. 

Each word is converted to hexadecimal 
characters. In the case of the first 
and last positions of the range, less 
than a full word could be converted. 
For DUMP, a character representation is 
also formed, which will appear to the 
right of the hexadecimal representation. 

DISOUT is called when the last byte 
has been converted or the line becomes 
full. A "last item" flag is set when 
all the characters in the range have 
been displayed. 

CZAQQ -- DISRHEAD - FORMAT RANGE HEADER 

This routine forms a header for a 
range specified in a DISPLAY, DUMP, or 
SET command. It also retrieves location 
identifiers, such as a symbol or hex 
address, for diagnostic messages. 

Entry 

CZAQQI 
Via a standard type-I linkage. 

Routines Called 

MAPSEARCH (CZCCQ) 
Finds the CSECT containing a VM 
address. 

DISYM (CZAQRl) 
Forms a symbol corresponding to a 
VM address. 

DISOUT (CZAQU1) 
Writes a range header. 

DIAG (CZAQX1) 
Writes a diagnostic message. 

Exit 

This routine returns to the calling 
program. 

ROUTINE DESCRIPTIONS 69 



Operation 

This routine calls DISYM to form a 
symbol or location identifier for the 
beginning VM address in the DISPLIST. 
If a range is specified, DISYM is 
called a second time to form the rest 
of the range header. 

If an error code is present in DCODE, 
DIAG is called to write a message to the 
user. 

If the range is specified as an exter+ 
nal symbol, MAPSEARCH is called to find 
the CSECT in which it is included. 

When all information is collected, 
DISOUT is called to write the line on 
the user's SYSOUT. 

CZAQR -- DISYM - FORMAT SYMBOL 

This routine formats a symbol or 
a hexadecimal location on a line. (See 
Chart BV.) 

Entry 

CZAQR1 
Entry is via a standard type-I 
linkage. 

Routines Called 

None 

Exit 

This routine returns to the calling 
program. 

Operation 

If the IDENT indicates an external 
symbol, the pointer to the PMD is used 
to pick up the symbol name. The off­
set, if any, is added to the line. 

If the IDENT indicates hexadecimal, 
the VMA is converted to hexadecimal 
characters, and placed on the line. 

Internal symbols are preceded by 
the module name, unless a qualify 
statement is in effect. Modules that 
have been link-edited will also show 
the current module name. The offset 
or subscript value is added to the 
line. 

FORTRAN statements with a zero 
statement number will be displayed as 
a subscript to the previous nonzero 
statement number. 

70 

The final process scans the com­
plete symbol, including offset and 
subscript, and shifts the characters 
to remove any blanks. 

CZAQT -- DBIN - FORM A LINE IN BINARY 
FORMAT 

This routine creates a line of bi­
nary data. 

Entry 

CZAQT1 
Via a standard type-I linkage. 

Routines Called 

DISYM 
Forms a symbol corresponding to a 
virtual memory address. 

DISOUT 
Writes a line. 

Exit 

Returns to the calling program. 

Operation 

A line is created containing the 
given number of bytes in binary format, 
and the proper virtual memory identi­
fier is placed in front of it. 

CZAQU -- DISOUT - OUTPUT A LINE 

This routine sends a line to the 
user via GATE for DISPLAY and SET, or 
via VISAM to PCSOUT for DUMP. (See 
Chart BW.) 

Entry 

CZAQU1 
Via a standard type-I linkage. 

Routines Called 

GATWR 
Writes a line on the terminal 
device. 

VISAM PUT 
Writes a line on the PCSOUT data 
set. 

Exit 

This routine has two exit points: 

• To DISPDUMP if the display has 
been terminated by ~n attention 



interrupt. A direct branch is 
made to QA040. 

• To the calling program. 

Operation 

Before a line is sent to the ter­
minal, the interrupt flag is checked. 
If the flag is on, the user has inter­
rupted to bypass a lengthy display, and 
the DISPDUMP routine retu.rns to the 
control module. Since the interrupt 
flag cannot be on unless the allow 
interrupt flag is also on, at least 
one line of data will be transmitted. 

Output to the user terminal is via 
the GA~WR routine. Dump output is put 
on the PCSOUT data set by the VISAM 
PUT macro. 

CZAQV -- REALCON - REAL NUMBER CON­
VERSION 

This routine converts a floating 
point number in single or double pre­
cision to the standard FORTRAN format: 

Single ±.XXXXXXXX E±XX 

Double ±.XXXXXXXXXXXXXXXX D±XX 

(See Chart BX.) 

Entry 

CZAQV1 
Via a standard type-I linkage. 

Routines Called 

None 

Exit 

This routine returns to the calling 
program. 

Operation 

The number is converted to a frac­
tion with a characteristic of zero, by 
multiplying or dividing the number by 
a power of ten. The exponent corres­
ponding to the power of ten is saved. 
The resulting fraction is converted to 
decimal digits by successively mUlti­
plying the hexadecimal number by 10. 
As each decimal digit shifts into the 
high-order position, it is zoned and 
moved to the next position in the out­
put area. Leading zeros are eliminated 
and the exponent is adjusted. The 
exponent and signs are then moved to the 
output area along with the E/D indicator. 

CZAQX -- DIAG - DYNAMIC DIAGNOSTIC 

This routine forms the diagnostic 
for all errors detected by the PISPDUMP 
routine. 

Entry 

CZAQX1 
Via a standard type-I linkage. 

Routines Called 

PRMPT 
Writes a line on the terminal device. 

Exit 

This routine returns to the calling 
program. 

Operation 

A message identifier from SYSMLF is 
selected, based on the diagnostic code 
set by the calling subroutine. The key­
word which indicates the reason for the 
diagnostic and also the action that was 
not taken is used as a parameter. PRMPT 
is called to send the line to the termi­
nal. The error flag is set to return 
an error code to the caller of the 
DISPDUMP'routine. 

ROUTINE DESCRIPTIONS 71 



This section contains the flowcharts 
for the various PCS routines. The 
charts are arranged in the same order 
as the routine descriptions. However, 
not all descriptions are illustrated 
by a chart. 

72 

SECTION 4: FLOWCHARTS 



Program Logic Manual 

GY28-2014-2 

Program Control System 

Flowcharts on pages 73-136 were not scanned. 



CHART BZ. 

PAGE 1. OF 1 

DISRIIEAD (FOR>ll\.T RANGE BEADER) 

····A2········· • * .. ENTER • · . ............... 

I ·····B2······· .. ·· .CZAQ-Rl 061A2. *---------------. 
.. (DIsYM) fORM .. 
• SYMBOL FOR • 
• BEGINNING VMA • ................. 

1 
.* . 

c2 *. o· •. 
NO •• * • 

.. ---.. RANGE ... .. ... 
.... .* ... " 
r~ 

····*D2·········· *CZAQRl. 061A2 • • ---------------+ 
• (DISYM) FORM • 
-SYMBOL FOR END • 
• OF RANGE • ................. 

1 

- CZAQQ 

OQ005 .'. 
E2 *.. • •••• E3 •••••••••• 

•• .. • .CZAQn • • ••• Ell ••••••••• 
•• ERROR •• YES .---------------*. • -->.. CODE SET •• -------->. (DIAG) ISSUE .-------->* RETURN • 
•• .. • • DIAGNOSTIC"· ... .. .. . . . ............. . .. .... . ........ ,.. ...... . ro 

. *. . •. 
F2 ... F3 •• • •••• F4 •••••••••• 

.. '" *. ..... • • 
.. " ... NO .. • •• ~ES +-GET CSECT NAME • *. EXTERNAL •• -------->*. INTERNAL 0.-------->. FROM ISO 

.... SYMBOL .. • ... SYMBOL ... • *. .• •. 0* • • •. .• .. o· ••••••••••••••••• 
rES ro 

••••• G2 ........... ' ••••• G3 •••••••••• 
*CZCCQ \. *CZAQUl 062Al. 
• - ------------ --~. .---------------*" 
• (MAPSEARCH) GET"'-------->*"(DISOUT) WRITE +<----------------
.. CSECT NAME" *" A LINE • · ... . .................. . ............... . 

I ····S3········· · . • RETURN • · . ............... 

Flowcharts 137 



APPENDIX A: PCS MNEMONIC CROSS-REFERENCE LIST 

This appendix lists mnemonics ref­
erenced in PCS routines. Only those 
used extensively or those that have 
major fUnctions are listed -- simple 
constants in PSECTs are omitted. 

location of each item. Names of 
items in CSECTs or PSECTs are shown 
with the control section name as 
the location. Names of items in a 
table are shown with the name of 
the table as the location. The 
names of the tables themselves 

Three types of mnemonics are listed: show where the storage for the 
entire table is assigned. The 
entry point column is not appli­
cable and has been left blank. 

1. Subroutine names -- Along with the 
description, this list gives the 
entry point label assigned to the 
subroutine, plus the name of the 
assembly module CSECT in which the 
subroutine is located. 

3. Mnemonic values -- Mnemonics rep­
resenting condition status or 
numeric values of codes are given 
in this appendix. The entry point 
and location columns are not appli­
cable and are left blank. 

2. Data names In addition to the 
description, this list gives the 

Mnemonic 

ACON 

ACTIND 

ADCONIND 

ADDITEM 

ADDRES 

AlSD 

ALEENT 

ALIGN 

ALLOCATE 

ALPHA 

ARRAY 

ASGCODE 

AT 

ATENTRY 

ATNEXT 

ATVMA 

138 

Entry 
Point 

CZAQHl 

NF900 

CZAMFI 

Location 

CZAMBP 

LOCITEM 

CZAQBC 

ISDMAP 

lSDMAP 

CZAMBP 

CZAMBP 

CZAMBC 

CZAMBC 

ATENTRY 

AT ENTRY 

Description 

Identifies an operand as an address constant 

Action indicator. Set for a DISPLAY, DUMP or 
SET phrase list entry. 

Address constant indicator 

Convert an item and move to line 

Identify an operand as a hexadecimal address 

Address of ISD 

Address of Linkage Editor entry 

Alignment indicator. If set, check operand 
alignment and generate code to align if neces­
sary. 

Byte length of Polish string entry to be as­
signed storage. 

Identify alphabetic character 

Identify an operand as a subscripted array 

Routine to allocate storage for generated code. 

AT phrase routine 

Entry in AT phrase list 

Address of next STATAB entry 

VMA/LOCTAB entry address 



Entry 
Mnemonic Point Lccation 

BACLTB C2AMBP 

BACTIONS C2AMBP 

BASElS CZAMBP 

BFLAG CZAMBP 

BIS 

BLINE CZAMBP 

BMCD--

BRANCH CZAMBI C,:AMBC 

BRUN 

BSTOP 

BUFFER C:~AMBP 

BUFFERX CZAMBP 

BYTELNG CZAMBP 

CALL CZAMGl C:~AMBC 

CALLIND CZAMBP 

CCON 

CGCPAGE CZAMBP 

CLASS CZAMAC 

CODEGEN CZANFl CZAMBC 

CODEX 

COMCON CZANHI CZAMBC 

COMVAR 

CONAREA CZAMBP 

CONLNG EXPHEAD 

CONST 

CONTINUE 

COPIND CURROP 

COPPRI CURROP 

COPTYPE CURROP 

CPLPAGE CZAMBP 

Description 

Pointer to first LOCTAB page 

Controls output of standard header for dynamic 
statement 

Contains current generated code cover 

PCS output indicators 

PCS output indicator for immediate statement 

Output area for PCS messages/diagnostics 

Diagnostic code for determining message text 

Branch phrase routine 

PCS output indicator for BRANCH/GO 

PCS output indicator for STOP 

Area for collecting characters obtained from 
source list. 

Address of next available byte in BUFFER 

Controls padding/truncating constants 

Call phrase routine 

Call phrase indicator 

Character constant identification 

Address of current generated code page 

Character classification table 

Code generator control routine 

Code cover register for PCS 

Combine constants routine 

Command variable identification 

Conversion area for constants 

Byte length of longest constant 

Constant identification 

Phrase list continuation identification 

Current operator indicators 

Current operator priority 

Current operator type 

Current phrase list page 

PCS MNEMONIC CROSS-REFERENCE LIST 139 



Entry 
Mnemonic Point Location 

CPSPAGE CZAMBP 

CSMADD CZAMBP 

CURROP CZA.l\lBP 

CURRPHR CZAMBP 

CURRSTAT TEMPSTAT 

CZAMAC CZAMBC 

CZAMAP CZAMBP 

CZAMA7 CZAMBP 

CZAMA8 CZAMBP 

CZAMA9 CZAMBP 

CZAMG2 CZAMG2 CZAMAC 

CZAMIC CZA.l\lIC 

CZAQAC CZAQBC 

CZAQAP CZAQBP 

DACTION DISPLIST 

DARRAYF DISPLIST 

DATAFLD CZAl\1Il CZAMHC 

DATALOC CZAMLI CZAMHC 

DBEGVML DISPLIST 

DBEGVML2 DISPLIST 

DBRI DISPLIST 

DBR2 DISPLIST 

DBYADJF DISPLIST 

DDlfl.GNO DISPLIST 

DDISPMAX DISPLIST 

DDUMPMAX DISPLIST 

DEFTABLE CZAQBP 

DENDVML DISPLIST 

DENDVML2 DISPLIST 

DFTIMEF DISPLIST 

140 

Description 

Current Polish string page 

Current STATAB/ISDMAP page 

Current encoded operator 

Current phrase list identification 

Current PCS statement number 

CSECT for module 1 of PCS 

PCS PSECT 

Interrupt control block for generated code 

PCSOUT data control block 

Save area for generated code execution 

Program call (Phase I) 

CSECT for module 2 of PCS 

CSECT for DISPLAY/DUMP module 

PSECT for DISPLAY/DUMP module 

Current phrase identification 

Array in process indicator 

Evaluate data field routine 

Evaluate data location routine 

VMA of 1st byte of 1st data location 

VMA of 1st byte of last data location. 

Base register 1 used in formatted instruction 
indicator. 

Base register 2 used in formatted instruction 
indicator 

Bypass line adjustment for hex data 

Diagnostic output indicator 

Line length for SYSOUT line 

Line length for PCSOUT line 

Instruction edit and format table 

VMA of last byte of 1st data location 

VMA of last byte of last data location 

First time indicator 



Mnemonic 

DHEXADDF 

DHFLAG 

DHFLAG2 

DHOLDA 

DIAGIND 

DIAGITEM 

DIAGNO 

DIAG 

DIDENT 

DtDENTTO 

DIFLAG 

DIFLAG2 

DINFORF 

DINHDRF 

DISALINE 

DISARAY 

DISDMAP 

DISDPTR 

DISHEX 

DISHLINE 

DISINST 

DISOUT 

DISPDUMP 

DISPLAY 

DISPLIST 

DISPLNG 

DISREG 

DISRHEAD 

DISYM 

DITEMS 

DLINE 

Entry 
Point 

CZANWI 

CZAQXl 

CZAQKl 

CZAQJl 

CZAQMl 

CZAQNl 

CZAQIl 

CZAQUl 

CZAQAl 

CZAMDl 

CZAQF1 

CZAQQ1 

CZAQR1 

Location 

DISPLIST 

DISPLIST 

DISPLIST 

CZAQBP 

CZAMBP 

CZAMBP 

CZAMBC 

CZAQBC 

DISPLIST 

DISPLIST 

[;ISPLIST 

DISPLIST 

DISPLIST 

CZAQBC 

CZAQBC 

DISPLIST 

DISPLIST 

CZAQBC 

CZAQBC 

CZAQBC 

CZAQBC 

CZAQB 

CZAMBC 

CZAQBP 

CZAQBP 

CZAQBC 

CZAQBC 

CZAQBC 

CZAQBP 

CZAQBP 

Description 
f 

Show locations as hex addresses 

Header flags 

More header flags 

Output conversion area 

Diagnostic indicator 

Address of character string in error 

Issue diagnostic routine 

Diagnostic code for determining message text 

1st data location identification 

Last data location identification 

Item flags for 1st data location 

Item flags for last data location 

Assembler format indicator 

Instruction header line indicator 

Format 1 line of array elements 

Format an array 

Address of ISDMAP entry 

Address of ISD/PMD/combined dictionary entry 

Format a hex range 

Format 1 line of a hex range 

Formation instruction 

Output line 

DISPLAY/DUMP control routine 

DISPLAY phrase routine 

DISPLAY/DUMP item (DFIT and DSIT) 

Length of item after output conversion 

Format register 

Format and write range header and diagnostics 

Format symbol 

Number of items per output line 

Output line for DISPLAY/DUMP 

PCS MNEMONIC CROSS-REFERENCE LIST 141 



Mnemonic 

DLINEPTR 

DLITEMF 

DLNG 

DLNG2 

DNOBIF 

DNOEQS 

DNOGRP 

DNOISDF 

DNOLINE 

DNOSUB 

DOCTABLE 

DOFF 

DOFFLAG 

DOFFRNG 

DOPCHAR 

DOPTAB 

DOUBLE 

DPAREPTR 

DPARLPTR 

DQISDMAP 

DQUALF 

DRNGERR 

DRNGLNG 

DSECNO 

DSTOPF 

DSUBDIM 

DSUBFLD 

DSUBVAL 

DTEMPLOC 

DTYPE 

DUMP 

142 

Entry 
Point 

CZAMD2 

Location 

DISPLIST 

DISPLIST 

DISPLIST 

DISPLIST 

CZAQBP 

CZAQBP 

CZAQBP 

DISPLIST 

CZAQBP 

DISPLIST 

CZAQBC 

DISPLIST 

DISPLIST 

DISPLIST 

DOPTAB 

CZAMBP 

DISPLIST 

DISPLIST 

DISPLIST 

DISPLIST 

DISPLIST 

CZAQBP 

DISPLIST 

DISPLIST 

DISPLIST 

DISPLIST 

DISPLIST 

DISPLIST 

DISPLIST 

CZAMBC 

Description 

Current line pointer 

Last item processed indicator 

Length of 1st data location 

Length of last data location 

Number of bytes in field 

Number of equal items in a range 

Number of elements in an array group 

No entry in ISD indicator 

Number of items per output line 

Number of subscripts/dimensions 

Table of instruction mnemonics 

Subscript/offset 

Offset in item indicator 

Offset range indicator 

Operators using two characters 

Double character operator table 

Double precision register identification 

Current phrase list position 

End of phrase list 

ISDMAP number of implicit qualifiers 

Suppress qualification indicator 

Range error indicator 

Range length 

Control section number 

Display/Dump Stop indicator 

Subscript dimension 

Format subfields in overlay indicator 

Subscript value 

CSECT displacement 

Data type 

DUMP phrase routine 



Entry 
Mnemonic Point Location Description 

DYNAMIND CZAMBP Dynamic statement indicator 

EMBEDDED CZAMBP Embedded blanks indicator 

ENTX Entry register 15 

ERROR Operand in error identification 

EVALUATE CZAMBP Valid operands for evaluate indicators 

EXPARI Arithmetic expression indicator 

EXPDIAG CZAMBP Expression diagnostic code storage 

EXPHEAD CZAMBP Expression header 

EXPIND CZAMBP Expression unary indicators 

EXPLICIT Explicitly qualified indicator 

EXPLOG Logical expression indicator 

EXPLPC CZAMBP Expression left parenthesis count 

EXPREL Relational expression indicator 

EXPRESS Expression identification 

EXPSCAN CZAMHl CZAMHC Form Polish string for expression 

EXPTYPE EXPHEAD Operator types in expression 

EXTERN External symbol identification 

EXTERNAL CZAMOl CZAMHC Evaluate external symbol 

FATAL Fatal diagnostic indicator 

FCON Floating point constant identification 

FGCPAGE CZAMAP First generated code page 

FINDLOC CZAPCl CZAMBC Final LOCTAB entry 

FINDREAL CZAPLl CZAMHC Final original VMA of instruction 

FINDVMA CZAMBP VMA to be used by FINDLOC 

FIRSTOP CZAMBP Polish string address for expression header 

FLDDELIM :2'LDITEM Data field delimiter 

FLDIDl FLDITEM 1st data location identification 

FLDID2 FLDITEM 2nd data location identification 

FLDILNG FLDITEM Field item length for phrase list 

FLDITEM CZAMBP Data field item 

FLDLNG FLDITEM Data length of field 

PCS MNEMONIC CROSS-REFERENCE LIST 143 



Mnemonic 

FLDNAME 

FLDOFFI 

FLDTYPE 

FLDVMA 

FORMDIAG 

FORMED 

FORMHEAD 

FORMPSW 

FORTRAN 

FPCIND 

FPLPAGE 

FPRUT 

FPSPAGE 

FPUSED 

FSMADD 

FZ 

F6 

GCINTYP 

GENCALL 

GENCODE 

GENERAL 

GETBASE 

GETCHAR 

GETPAGE 

GETREG 

GO 

GPRUT 

GPUSED 

HCON 

HEADADD 

144 

Entry 
Point 

CZAPII 

CZAPFI 

CZAPJl 

CZAPNI 

CZANVI 

CZAMQ2 

CZANZI 

CZAODI 

CZAMC2 

Location 

FLDITEM 

FLDITEM 

FLDITEM 

FLDITEM 

CZAMBC 

CZAMBP 

CZAMBC 

CZAMBC 

CZAMBP 

CZAMBP 

CZAMBP 

REGUT 

CZAMBP 

CZAMBP 

CZAMBP 

CZAMBP 

CZAMBC 

CZAMBC 

CZAMBC 

CZAMBC 

CZAMBC 

CZAMBC 

REGUT 

CZAMBP 

CZAMBP 

Description 

Pointer to symbol name 

Subscript offset Polish string and generated 
code 

Data type of field 

VMA of field 

Form PCS output diagnostic 

Source list item outstanding 

Form standard output header 

Format VPSW 

Symbol in FORTRAN ISD indicator 

Floating point constant indicator 

First phrase list page 

Floating point register usage table 

First Polish string page 

Floating point registers available 

First STATAB/ISDMAP page 

Floating point register 0 

Floating point register 6 

Generated code interrupt type 

Execute generated code 

Generated code DSECT 

General register identification 

Assign base register 

Get next character 

Get 1 page of virtual memory 

Assign register to data 

Go phrase routine 

General purpose register usage table 

General purpose registers available 

Hex constant identification 

Phrase list header address 



Entry 
Mnemonic Point Location 

HEADER CZAMBP 

ICON 

IDENTI ITEM 

IDENT2 ITEM 

IF CZAMEI CZAMBC 

IMPLICIT 

IMPQUAL CZAMBP 

IMPQUALl CZAMBP 

IMPQUAL2 CZAMBP 

INTERN 

ISDFOUND CZAMBP 

ISDMAP 

ITEM 

LINENO CZAQBP 

LGCPAGE CZAMBP 

LINE CZAPHI CZAMBC 

LOADOP CZANTl CZAMHC 

LOCDELIM LOCITEM 

LOCENTL LOCITEM 

LOCID LOCITEM 

LOCI LNG LOCITEM 

LOCITEM CZAMBP 

LOCLNG LOCITEM 

LOCNAME LOCITEM 

LOCOFF LOCITEM 

LOCTAB 

LOCTYPE LOCITEM 

LOCVMA I,OCITEM 

LPLPAGE CZAMBP 

LSMADD CZAMBP 

Description 

Phrase list header formed 

Integer constant identification 

Identification of phrase list entry 

Identification of phrase list entry 

IF phrase routine 

Implicitly qualified indicator 

ISDMAP number for implicit qualifier 

Primary qualifier ISDMAP entry 

Secondary qualifier ISDMAP entry 

Internal symbol identification 

ISDMAP number for e~plicit qualifier 

DSECT for ISDMAP entry 

DSECT for phrase list entries 

PCSOUT line number 

Last generated code page 

Output line for PCS output 

Generate code to load operand 

Data location delimiter 

Data location item entry length 

Data location identification 

Data location item length 

Data location item 

Data length 

Pointer to data location name 

Polish string/generated code for subscript/ 
offset 

DSECT for LOCTAB entry 

Data type 

Data locati0n VMA 

Last phrase list page 

Last STATAB/ISDMAP page 

TCS MNBMONIC CROSS-REFERENCE LIST 145 



Mnemonic 

LTDELTA 

LTINUSE 

LTOPCODE 

LTRTN 

LTRTNADD 

LTSTPTR 

LTSVCLOC 

LTTYPE 

NAME 

NEST 

NEXTISD 

NEXTITEM 

NEXTLIST 

NEXTPAGE 

NONALIGN 

NONFP 

NONGP 

NONST 

NULL 

NUMER 

o FATAL 

OFFLINE 

ONLINE 

OPBRIX 

OPCHAR 

OPERANDI 

OPGEN 

OPINDEX 

OPSTACK 

OPTAB 

146 

Entry 
Point 

CZAQDl 

CZAQCl 

CZAQBl 

CZANII 

Location 

LOCTAB 

LOCTAB 

LOCTAB 

LOCTAB 

LOCTAB 

LOCTAB 

ISDMAP 

CZAMBP 

CZAQBC 

CZAQBC 

CZAQBC 

PGHEAD 

OPSTACK 

OPTAB 

EXPHEAD 

CZAMHC 

CZAMBP 

CZAMBP 

Description 

Length of recomposed instruction 

LOCTAB entry in use indicator 

Two bytes replaced by SVC 

LOCTAB entry for recomposed instruction 

VMA of next sequential instruction 

Address of 1st STATAB entry 

SVC interrupt address 

LOCTAB entry type 

Module name 

Nesting stack for subscripts/offset 

Process next ISD entry 

Process display list 

Process next phrase list 

Address of overflow page 

Unaligned operand in expression 

Operand in expression not loadable in floating 
point register 

Operand in expression not loadable in general 
purpose register 

Operands in expression must be loaded 

Operator/delimiter identification 

Numeric character identification 

Operand fatal diagnostic indicator 

Standard header offline indicator 

Standard header online indicator 

Operator branch index 

Operators using single character 

Operand processed indicator 

Operator code generator routine 

OPSTACK index 

DSECT for operators 

Single character operator table 



Mnemonic 

OPTYPE-

PCODE-

PCSDCB 

PCSDIAGS 

PCSPUT 

PERCNT 

PERMBOT 

PERMPMD 

PERMTOP 

PGHEAD 

PHASE2 

PHRASEID 

PHRASELL 

PHRASELQ 

PLDELTA 

PLHEAD 

PLIDENT 

PLINEPTR 

PLLOC 

PLNEXT 

PLPOINT 

PLQUAL 

PLWORD-

PMDVMA 

POLARITH 

POLBASE 

POLCON 

POLCTRL 

POLDIM 

POLDIMD 

Entry 
Point 

CZAPBl 

CZANAI 

Location 

CZAMBP 

CZAMBP 

C:~AMBP 

CZAMBC 

PGHEAD 

CZAMBP 

PGHEAD 

CZAMBC 

HEADER 

HEADER 

HEADER 

PLHEAD 

PLHEAD 

CZAMBP 

CZAMBP 

PLHEAD 

TEMPSTAT 

PLHEAD 

HEADER 

CZAMBP 

POLISH 

Description 

Valid operands for evaluation 

Codes determining message text and responses 

Data control block for PCSPUT 

Storage for diagnostic codes 

Phase III PCS Output Control routine 

Dynamic count identification 

Permanent storage assigned from bottom of page 

PMD table index 

Permanent storage assigned from top of page 

DSECT for page control 

Phase II PCS Input Control 

Current phrase identification 

Current phrase list length 

Current implicit qualifier 

Phrase list length 

DSECT for phrase list header 

Phrase list identification 

Line pointer for PCS 

VMA to be converted to a symbol 

Next word in phrase list 

Phrase list pointer 

Phrase list qualifier 

Single entry phrase list 

Table of PMDs flagged for unloading 

Polish String arithmetic unary indicator 

Base assigned for Polish string operand indi­
cator 

Polish string constant indicator 

Polish string control entry 

Polish string dimension entry 

Dimension displacement in ISD 

PCS MNEMONIC CROSS-REFERENCE LIST 147 



Mnemonic 

POLDL 

POLENTRY 

POLHEAD 

POLINDl 

POLIND2 

POLINREG 

POLISH 

POLLOG 

POLOP 

POLOPT 

POLOVF 

POLPRI 

POLS TART 

POLSTORE 

POLSUB 

POL TERM 

POLTYPE 

POLVMA 

POWERTAB 

PQNDELIM 

PQNID 

PQNITEM 

PQNPTR 

PROMPT 

PSIND 

PSOPERND 

PX 

QUALIFY 

REALCON 

REGUT 

REMOVE 

148 

Entry 
Point 

CZANXI 

CZAMRI 

CZAMSI 

Location 

POLISH 

CZAMAP 

POLISH 

POLISH 

OPSTACK 

OPSTACK 

CZAMBP 

EXPHEAD 

POLISH 

CZAMHC 

PQNITEM 

PQNITEM 

SLITEMS 

CZAMBP 

CZAMBC 

CZAMBP 

CZAMBP 

CZAMBC 

CZAQBC 

CZAMBP 

CZAMBC 

Description 

Data length 

Polish string entry address 

Polish string header ident 

Miscellaneous polish string flags 

More polish string flags 

Operand in register flag 

DSECT for polish string 

Polish string logical unary indicator 

Encoded operator 

Polish string operator flag 

Polish string overflow ident 

Operator priority 

Start of generated code 

Polish string stored subexpression flag 

Polish string subscript entry 

Polish string terminator ident 

Expression data type 

Operand VMA 

Power of 10 table 

Item delimiter 

Item identification 

Primary qualifying name item 

ISDMAP entry address of primary qualifier 

Solicit user for response 

PSECT index for stored subexpressions 

Address of Polish string operand 

PSECT cover register 11 

QUALIFY phrase routine 

Floating point conversion 

Register usage table 

REMOVE phrase routine 



Mnemonic 

RESLNG 

RES LOAD 

RTNX 

SAVEX 

SAVIX 

SCANFLD 

SCANIND 

SET 

SIMVAR 

SINGLE 

SL 

SLCOUNT 

SLDELIM 

SLIDENT 

SLITEM 

SLITEMS 

SOFFSET 

SOP CHAR 

SOPTAB 

SQNDELIM 

SQNID 

SQNITEM 

SQNPTR 

STACK 

STACKIND 

STATAB 

STATABAD 

STATNO 

STNUM 

STOP 

Entry 
Point 

CZAPKI 

CZAMQl 

CZAMAl 

CZAQGl 

CZAMCl 

Location 

CZAMBP 

C:~AMBC 

CZAMBC 

C:~AMBP 

CZAMBC 

CZAQBC 

CZAMBP 

S::"ITEM 

S::"ITEM 

S::"ITEM 

CZAMBP 

CZAMBP 

OPTAB 

SQNITEM 

SQNITEM 

SLITEMS 

CZAMBP 

CZAMBP 

OPSTACK 

CZAMBP 

STATAB 

CZAMBC 

Description 

Length of expression result 

Expression result indicators 

Return register 14 

Save area register 13 

Executes saved instruction 

Scan field to delimiter 

Diagnostic scan indicator 

SET phrase routine 

Format a simple variable 

Single precision register ident 

Search list for link edit ISDs 

Character string length 

Item delimiter 

Item ident 

Source list item 

Identified source list items 

Offset identification flag 

Subscript operator characters 

Subscript operator table 

Item delimiter 

Item ident 

Secondary qualifying name item 

Secondary qualifier ISDMAP entry address 

Operator/operand stack 

Operator indicators 

DSECT for statement table entry 

STATAB entry address number ident 

Statement number ident 

Statement number 

STOP phrase routine 

• PCS MNEMONIC CROSS-REFERENCE LIST 149 



Entry 
Mnemonic Point 

STPCOUNT 

STPLIST 

SUBDELIM 

SUBDIAG 

SUBDIM 

SUBGEN CZANGI 

SUBID 

SUB INC 

SUBIND 

SUBIND2 

SUBISD 

SUBITEM 

SUBLPC 

SUBNDM 

SUBPOL CZAMJI 

SUBPST 

SUBSTO 

SVCTAB 

SYMDELIM 

SYMGEN CZAPGI 

SYMID 

SYMIND 

SYMITEM 

SYNONYM 

TEMPBOT 

TEMPPMD 

TEMPSTAT 

TEMPTOP 

TERMINAT 

TRAILING 

UNDEFINE 

150 

Location 

STATAB 

STATAB 

SUBITEM 

CZAMBP 

NEST 

CZAMHC 

SUBITEM 

SUBDIM 

NEST 

SUBDIM 

SUBDIM 

SLITEMS 

CZAMBP 

NEST 

CZAMHC 

SUBDIM 

CZAMBP 

CZAMBP 

SYMITEM 

CZAMHC 

SYMITEM 

CZAMBP 

SLITEMS 

CZAMBP 

PGHEAD 

CZAMBP 

CZAMAP 

PGHEAD 

CZAMBP 

Description 

Dynamic count 

Phrase list address 

Item delimiter 

Storage for subscript diagnostic codes 

Subscript dimension entry 

Generate code for subscripts/offsets 

Item ident 

Dimension displacement in ISD 

Subscript unary indicator 

Subscript entry indicators 

Address of array entry in ISD 

Statement number subscript item 

Left parenthesis count for subscripts 

Number of dimensions 

Form Polish string for subscript/offset 

Base address of PSECT 

Stored sUbexpression storage 

Table of location dependent SVCs 

Item delimiter 

Generate symbol for VMA 

Item ident 

Symbol indicator 

Symbol item 

Synonym indicator 

Temporary storage assignment from bottom of page 

PMD table index 

Immediate STATAB entry 

Temporary storage assignment from top of page 

Phrase list terminator 

Trailing blanks indicator 

Undefined command variable ident 



Entry 
Mnemonic Point Location Description 

UNLOAD CZAMTI C2.AMBl UNLOAD phrase routine 

VALIDOP EXPHEAD Valid operator indicator 

VALMOD CZAOAl CZAMBC Evaluate module name 

VALSYM CZAOBl CZAMHC Evaluate internal symbol 

VARLNG EXPHEAD Byte length of longest variable 

VARLOAD EXPHEAD Variable load indicators 

VARTYPE EXPHEAD Data type of variables 

WARN Warning diagnostic indicator 

WZ Working register 0 

WI Working register 1 

W2 Working register 2 

W3 Working register 3 

W4 Working register 4 

W5 Working register 5 

W6 Working register 6 

W7 Working register 7 

W8 Working register 8 

W9 Working register 9 

WIO Working register 10 

PCS MNEMONIC CROSS-REFERENCE LIST 151 



APPENDIX B: PCS ROUTINE/ASSEMBLY MODULE CROSS REFERENCE LIST 

Routine Assembly 
I. D. Module 

CZNvlA CZAMB 
CZAMB CZAMB 
CZAMC CZAMB 
CZAMD CZAMB 
CZAME CZAMB 
CZfu'1F CZAMB 
CZAMG CZAMB 
CZAMH CZAMH 
CZAMI CZAMH 
CZAMJ CZAMH 
CZAML CZAMH 
CZAMO CZAMH 
CZAMQ CZAMB 
CZAMR CZAMB 
CZAMS CZAMB 
CZAMT CZAMB 
CZANA CZAMB 
CZANF CZAMB 
CZANG CZAMH 
CZANH CZAMB 
CZANI CZAMH 
CZANT CZAMH 
CZANV CZAMB 
CZANW CZAMB 
CZANX CZAMB 

*CZANZ CZAMB 
CZAOA CZAMB 
CZAOB CZAMH 
CZAOD CZAMB 
CZAPB CZAMB 
CZAPC CZAMB 
CZAPG CZAMH 

"'CZAPH CZAMB 
CZAPI CZAMB 
CZAPK CZAMB 

*CZAPL CZAMH 
CZAPN CZAMB 
CZAQA CZAQB 
CZAQB CZAQB 
CZAQC CZAQB 
CZAQD CZAQB 
CZAQF CZAQB 
CZAQG CZAQB 
CZAQH CZAQB 
CZAQI CZAQB 
CZAQJ CZAQB 
CZAQK CZAQB 
CZAQM CZAQB 
CZAQN CZAQB 
CZAQQ CZAQB 
CZAQR CZAQB 

*CZAQT CZAQB 
CZAQU CZAQB 
CZAQV 

*CZAQX 
CZASB 
CZA B 

*Because of their simplicity, these 

152 

Routine Name 

SET 
BRANCH 
STOP & GO 
DISPLAY & DUMP 
IF 
AT 
CALL 
EXPSCAN - Expression Scan 
DATAFLD - Form Data Field Definition 
SUBPOL - Subscript to Polish 
DATALOC - Form Data Location 
EXTERNAL - Form External Symbol 
SCANFLD & GETCHAR 
QUALIFY 
REMOVE 
UNLOAD 
PHASE2 
CODEGEN 
SUBGEN 
COMCON 
OPGEN 
LOADOP 
GETBASE 
DIAGNO 
PROMPT 
GETPAGE 
VALMOD 
VALSYM 
GETREG 
PCSPUT 
FINDLOC 
SYMGEN 
LINE 

- Phase II PCS Input Control 
- Code Generator 
- Subscript Generator 
- Combine Constants 
- Operator Code Generator 
- Load Operand 
- Base Register Assignment 
- Issue Diagnostics 
- User Prompting 
- Allocate Virtual Storage 
- Evaluate Module Name 
- Evaluate Symbol 
- Register Assignment 
- Phase III PCS Output Control 
- Location Table Scan 
- Symbol Generator 

FORMDIAG - Format Diagnostics 
SAVIX - Saved Instruction Execution 
FINDREAL - Find Real Address 
GENCALL - Call Generated Code 
DISPDUMP - Display/Dump Control 
NEXTLIST - Process Phrase List 
NEXTITEM - Process Display List 
NEXTISD - Process Next ISD Entry 
DISREG - Display Registers 
SIMVAR - Display Simple Variable 
ADD ITEM - Convert an Item by Data Type 
DISINST - Display Instruction 
DISARAY - Display Array 
DISALINE - Display a Line of an Array 
DISHEX - Display a Range in Hex 
DISHLINE - Display a Hex Line 
DISRHEAD - Format Range Header 
DISYM - Format Symbol 
DBIN - output Binary Format 
DISOUT - Output a Line 
REALCON - Real Number Conversion 
DTAG - Dynamic Diagnostic 

routines have not been flowcharted. 



APPENDIX C: PCS ROUTINES AND CALLING CONDITIONS 

Routine: PHASE I PCS INPUT, (CZAMA) Level: 1 

Called 
Routine Function Routines Calling Conditions 

CZAMA Processes t::le SET phrase DATAFLD Always called. 
SET 

EXPSCAN Always called. 

DIAGNO If error occurs. 

CZAMB Processes the BRANCH DATAFLD Always called. 
BRANCH phrase 

DIAGNO If error occurs. 

CZAMC Processes the STOP or DIAGNO If error occurs. 
STOP/GO GO phrase 

CZAMD Processes the DISPLAY DATAFLD Always called. 
DISPLAY/ or DUMP phrase 
DUMP EXPSCAN If what is to be displayed 

is the result of an ex-
pression. 

DIAGNO If error occurs. 

CZAME Processes the IF phrase DATAFLD Always called. 
IF 

EXPSCAN Always called. 

DIAGNO If error occurs. 

CZAMF Processes the AT phrase DATAFLD Always called. 
AT 

CODEGEN Only if operand is offset. 

GENCALL Only if CODEGEN is called. 

DIAGNO If error occurs. 

CZAMG Processes explicit and EXTERNAL Called when processing 
CALL implici t CP.LL phrase implicit phrase. 

DATAFLD Called when processing 
explicit phrase or if 
parameters are present. 

EXPSCAN If parameters are present. 

DIAGNO If error occurs. 

CZAMR Processes C)UALIFY phrase SCANFLD Always called. 
QUALIFY 

VALMOD Always called. 

DIAGNO If error occurs. 

PCS.ROUTINES AND CALLING CONDITIONS 153 



Routine: PHASE I PCS INPUT, (CZAMA) Level: 1 (cont'd) 

Called 
Routine Function Routines Calling Conditions 

CZAMS Processes REMOVE phrase DATALOC Always called. 
REMOVE 

DIAGNO If error occurs. 

CZAMT Removes all effects of None 
UNLOAD PCS in user's task 

Routine: PHASE I PCS INPUT, (CZAMA) Level: 2 

Called 
Routine Function Routines Calling Conditions 

CZAMH Forms Polish string in DATAFLD If there is a second 
EXPSCAN an expression operand i. e. , if expres-

sion is multiple term. 

SCANFLD If an operator is present. 

DIAGNO If error is present. 

PROMPT If the expression type is 
undefined. 

CZANF Generates code. (See Phase II 
CODEGEN chart for this 

routine) 

CZAPN Executes generated (See Phase 
GENCALL code III chart for 

this routine) 

Routine: PHASE I PCS INPUT, (CZ&~A) Level: 3 

Called 
Routine Function Routines Calling Conditions 

CZAMI Forms data field items. DATALOC Always called. 
DATAFLD 

SUBPOL If there is an offset or 
subscript. 

DIAGNO If error occurs. 

CZANX Issues message asking DIAGNO If nonconversational task. 
PROMPT for user response 

154 



Routine: PHASE I PCS INPUT, (CZAMA) Level: 4 

Called 
Routine Function Routines Calling Conditions 

CZAMJ Forms Polish string for DATALOC Always called. 
SUBPOL subscript/offset ex-

pression. SCANFLD Always called. 

DIAGNO If error occurs. 

Routine: PHASE I PCS INPUT, (CZAMA) Level: 5 

Called 
Routine Function Routines Calling Conditions 

CZAML Forms a data location SCANFLD Always called. 
DATALOC item. 

VALMOD If there is an explicit 
qualifier to be evaluated 
(Le. , a module ISD must 
be found) . 

VALSYM If an internal symbol 
is possible. 

EXTERNAL If an external symbol 
is possible. 

DIAGNO If error occurs. 

GET CHAR If hex address, hex con-
stant, or character 
constant. 

Routine: PHASE I PCS INPUT, (CZAMA) Level: 6 

Called 
Routine Function Routines Calling Conditions 

CZAMO Forms a data location None 
EXTERNAL item for an external 

symbol, an undefined 
command variable, or 
a defined command 
variable. 

CZAMQl Forms a SOl.:,rce list item. GET CHAR Always called. 
SCANFLD 

CZANW Issues diac;:mostics. GETCHAR Called for diagnostic 
DIAGNO scan. 

CZAOA Evaluates module name None 
VALMOD and locateE; ISD for 

the module. 

CZAOB Forms a da1:a location None 
VALSYM item for an internal 

symbol. 

PCS ROUTINES AND CALLING CONDITIONS 155 



Routine: PHASE I PCS INPUT, (CZAMA) Level: 7 

Called 
Routine Function Routine Calling Conditions 

CZAMQ2 Gets next character. None 
GETCHAR 

Routine: PHASE II PCS INPUT, (CZANA) Level: 1 

Called 
Routine Function Routines Calling Conditions 

CZANA Generates code and assigns CODEGEN If there is any code to 
PHASE2 permanent storage for be generated. 

final phrase list pro-
cessing. 

FINDLOC If statement is dynamic. 

PCSPUT If the statement is 
immediate. 

DIAGNO If fatal error occurs. 

PROMPT If non-fatal error occurs. 

Routine: PHASE II PCS INPUT, (CZANA) Level: 2 

Called 
Routine Function Routines Calling Conditions 

CZANF Controls the execution OPGEN If one of the operands is 
CODEGEN of generated code; it not a constant. 

also generates the final 
return linkage from gen- COMCON If both operands are 
erated code to PCS. constants. 

SUBGEN If subscript/offset opera-
tors are present. 

GETBASE If base register for re-
sult has not been assigned. 

LOADOP If result has not been 
loaded but must be loaded. 

CZANX Issues diagnostic DIAGNO If nonconversational task 
PROMPT and solicits user 

response. 

CZAPB Performs immediate (See Phase 
PCSPUT actions. III chart for 

this routine) 

CZAPC Locates a LOCTAB None 
FINDLOC entry. 

156 



Routine: PHASE II PCS INPUT, (CZANA) Level: 3 

Called 
Routine Function Routine Calling Conditions 

CZANG Computes a dimension and LOADOP If subscript/offset is 
SUBGEN performs dimension check variable. 

and applies subscript/ 
offset to the base of GETBASE If subscript/offset is 
the symbol. variable. 

DIAGNO If dimension check on 
constant subscript has 
failed. 

CZANH Performs specified DIAGNO If program interrupt 
COMCON operations on two occurs during processing. 

constants. 

CZANI Generates code to LOADOP Always called. 
OPGEN combine two operands 

by operator specified. GET REG If relational operator is 
being processed. 

GET BASE If relational operator is 
being processed. 

Routine: PHASE II PCS INPUT, (CZANA) Level: 4 

Called 
Routine Function Routine Calling Conditions 

CZADIT Generates code to load GET BASE Always called. 
LOADOP an operand. 

GETREG Always called. 

CZANW Outputs diagnostic. None 
DIAGNO 

Routine: PHASE II PCS INPUT, (CZANA) Level: 5 

Called 
Routine Function Routine Calling Conditions 

CZANV Assigns base register for GET REG If operand is a dummy 
GET BASE operand; provides align- variable. 

ment if necessary. 

Routine: PHASE II PCS INPUT, (CZANA) Level: 6 

Called 
Routine Function Routine Calling Conditions 

CZAOD Assigns dat:a register None 
GETREG to contain operand. 

PCS ROUTINES AND CALLING CONDITIONS 157 



Routine: PHASE III PCS OUTPUT CONTROL (CZAPB) Level: 

Called 
Routine Function Routines Calling Conditions 

CZAPB Exercises overall con- FINDLOC Always called (dynamically 
PCSPUT trol for processing only) . 

dynamic or immediate 
PCS entries. LINE If line is to be output. 

DISPDUMP If a display/dump or set 
phrase is being processed. 

GENCALL If there is generated code 
to be executed. 

FINDREAL If a GO phrase is being 
processed. 

SYMGEN If a BRANCH or GO phrase 
is being processed. 

SAVIX Always called (dynami cally 
only) . 

FORMDIAG If there is an illegal 
entry into PCS. 

Routine: PHASE III OUTPUT CONTROL (CZAPB) Level: 2 

Called 
Routine Function Routines Calling Conditions 

CZAPG Translates a VMA into None 
SYMGEN user's symbol (plus 

offset, if needed) 

CZAPI Writes a diagnostic None 
FORMDIAG message 

CZAPK Recomposes overlaid FINDLOC Always called. 
SAVIX instructions 

LINE If instruction cannot be 
recomposed (due to storage 
limitation) 

CZAPL Finds the virtual FINDLOC Always called. 
FINDREAL memory address for 

recomposed instruction 

CZAQA Processes a display/ DISOUT If qualification has 
DISPDUMP dump, or set list changed. 

NEXTLIST Always called. 

158 



Routine: PHASE III PCS OUTPUT CONTROL (CZAPB) Level: 3 

Called 
Routine Function Routines Calling Conditions 

CZAPI-T Outputs a line. None 
LINE 

CZAQB Processes a phrase GENCALL If there is generated code 
NEXTLIST list entry. to be executed. 

DISREG If a list entry for a 
register is processed. 

DISHLINE If diagnostic code set. 

NEXTITEM If non-register list 
entry is processed. 

NEXTISD If internal symbol entry 
is processed. 

DISRHEAD If a range entry or diag-
nostic is to be written. 

Routine: PHASE III PCS OIJTPUT CONTROL (CZAPB) Level: 4 

Called 
Routine Function Routines Calling Conditions 

CZAQB Processes the two DISARAY If one DISPLIST item is 
display list items an array. 
(called DISPLIST) . 

SIMVAR If a simple variable 
DISPLIST item is processed. 

DISHEX If a DISPLIST item for 
hexadecimal addresses is 
processed. 

I 

NEXTISD If a DISPLIST item for an 
internal symbol range is 
processed. 

I 

DISYM If a range is processed. 

DISOUT If a line is to be output. 

DBIN If binary is to be output. 

CZAQF Processes a phrase list GENCALL If a set phrase is 
DISREG entry for a register. processed. 

DISOUT Always called. 

ADDITEM Always called. 

CZAQQ Formats and writes DISYM Always called. 
DISRHEAD range headers and 

diagnostics. DISOUT If a range header is to 
be printed. 

DIAG If diagnostic condition 
detected. 

PCS ROUTINES AND CALLING CONDITIONS 159 



Routine: PHASE III PCS OUTPUT CONTROL (CZAPB) Level: 5 

Called 
Routine Function Routines Calling Conditions 

,CZAPN Executes generated FORMDIAG If a program interrupt 
I GENCALL code. occurred in generated 

I code, or if generated 
code returned an error 
code. 

CZAQD Formats a DISPLIST None 
NEXTISD item. 

CZAQJ Formats an array. DISYM If a range is not pro-
DISARAY cessed. 

DISOUT If a line is full. 

DISALINE Always called. 

ADD ITEM Always called. 

CZAQM Formats a hexadecimal DISHLINE Always called. 
DISHEX range. 

DISOUT If there is equal line 
suppression. 

SIMVAR If an instruction is 
being processed. 

DBIN Formats a line of DISYM If a range is not 
CZAQT binary. processed 

DISOUT Always called. 

CZAQX Writes diagnostic None 
DIAG messages. 

Routine: PHASE III PCS OUTPUT CONTROL (CZAPB) Level: 6 

Called 
Routine Function Routines Calling Conditions 

CZAQG Formats a simple DISYM Always called. 
SIMVAR variable. 

ADD ITEM Always called. 

DISOUT Always called. 

DISINST If an instruction is being 
processed. 

CZAQK Formats an array line. ADD ITEM Always called. 
DISALINE 

DISOUT Always called. 

CZAQN Formats a hexadecimal DISOUT Always called. 
DISHLINE data line. 

160 



Routine: PHASE III PCS OUTPUT CONTROL (CZAPB) Level: 7 

Called 
Routine Function Routines Calling Conditions 

CZAQH Converts an item and DISOUT If line is full. 
ADD ITEM adds it to the line. 

REALCON If floating-point numbers 
are to be converted. 

CZAQI Formats an instruction FINDLOC If the instruction is a 
DISINST PCSVC. 

DISOUT Always called. 

CZAQR Forms a symbol None 
DISYM 

Routine: PHASE III PCS O'UTPUT CONTROL (CZAPB) Level: 8 

Called 
Routine Function Routines Calling Conditions 

CZAPC Finds a LOCTAB entry. None 
FINDLOC 

CZAQU Writes a line. None 
DISOUT 

CZAQV Converts and formats None 
REAL CON a floating-point 

number. 

PCS ROUTINES AND CALLING CONDITIONS 161 



APPENDIX D: PCS LINKAGES TO EXTERNAL ROUTINES 

If a routine has no external linkage, the PCS subroutine name has been omitted 
from the table. 

EXTERNAL ROUTINE 

BY MACRO BY TYPE I CAll BY 
SVC 

a v 
OJ> < « 
N N 
~ ~ 

"" oC 

0 ~ ~ ~ V N u 0 0 u u Z Z 0 ::;: r< 
U N U w 
N « « « ° ~ ~ I I N N « ~ ~ o~ Z I >- >- -'-, w >- I U "" OJ> W W 

Z Z ... ::> 
~ 

U r< « ::::; <:> 3 U O 
0 ... "" ~ z « _u 

0 ~ ~ '" ~ 0 
w ... i5; ::;:N 

PCS ROUTINE OJ> '" ~ ::;: ::;: 3: >- >- OJ> U > «~ -' u Z 0 ... 0 V> I ;:: "" w U ~ >- « « >- > "- OJ> ::> Z 

'" ::::; ;: ;: >-
~ !!! !!! ~ « ::;: 0 u 

~ « ':d ~ 
0 >- >-~ "" "" ~ ~ u c.: 0 OJ> 0 u.. > > u.. <:> "- <:> :r: ° ::;: ° 

CZAMB BRANCH X 

CZAMC STOP/GO X 

CZAMF AT X X X 

CZAMI DATAFLD X 

CZAMJ SUBPOL X 

CZAMO EXTERNAL X X X X 

CZAMQ SCANFLD X X 

CZAMT UNLOAD X 

CZANA PHASE2 X X X X 

CZANF CODEGEN X 

CZANH COMCON X X X 

CZANW DIAGNO X X X 

CZANX PROMPT X 

CZANZ GETPAGE X 

CZAOA VALMOD X X X X X 

CZAOS VALSYM X 

CZAPB PCSPUT X X X 

CZAPG SYMGEN X 

CZAPH LINE X 

CZAPI FORMDIAG X 

CZAPN GENCALL X X X 

CZAQA DISPDUMP X 

CZAQS NEXTUST X 

CZAQC NEXTITEM X 

CZAQU DISOLIT X X 

162 



CZAMA 
CZAMB 
CZAMC 
CZAMD 
CZAME 

CZAMF 
CZAMG 
CZAMH 
CZAMI 
CZAMJ 

CZAML 
CZAMO 
CZAMQ 
CZAMR 
CZAMS 

CZAMT 
CZANA 
CZANF 
CZANG 
CZANH 

CZANI 
CZANT 
CZANV 
CZANW 
CZAOA 

CZAOS 
CZAOD 
CZAPS 
CZAPC 
CZAPG 

CZAPK 
CZAPL 
CZAPN 
CZAQA 
CZAQS 

CZAQC 
CZAQD 
CZAQF 
CZAQG 
CZAQH 

CZAQI 
CZAQJ 
CZAQK 
CZAQM 
CZAQN 

SET 
BRANCH 
STOP/GO 
DISPLAY/DUMP 
IF 

AT 
CALL 
EXPSCAN 
DATAFLD 
SUBPOL 

DATALOC 
EXTERNAL 
SCANFLD 
QUALIFY 
REMOVE 

UNLOAD 
PHASE2 
CODEGEN 
SUSGEN 
COMCON 

OPGEN 
LOADOP 
GETSASE 
DIAGNO 
VALMOD 

VALSYM 
GETREG 
PCSPUT 
FINDLOC 
SYMGEN 

SAVIX 
FINDREAL 
GENCALL 
DISPDUMP 
NEXTUST 

NEXTITEM 
NEXTISD 
DISREG 
SIMVAR 
AD D ITEM 

DISINST 
DISARAY 
DISALINE 
DISHEX 
DISHUNE 

CZAQQ DISRHEAD 
CZAQR DISYM 
CZAQT DBIN 
:ZAQU DISOUT 

• 
• 

• • It 

· '. • · '. 

• • 
• 

• 

• • 
• 

• 

APPENDIX E: MAJOR TABLES REFERENCED BY PCS ROUTINES 

• • • 
• • • • • • • • 
• • 

• • • 
• • • • • • • • • • • • • • • 

• • •• • 
• • • • • 
• • • • • • • • 

• • • • 
• • • 

• • • • • • • • 
• • • 

• • 
• • • 

• • • • 
• • • • • 

• • • • • • 
• • • 

• • 
• • • • • 

• • • • 
• • • 
• • • • • • • 

• 
• • • 

• • • 
• 
• 

• • • 
• 

• • 

MAJOR TABLES REFERENCED BY PCS ROUTINES 163 



APPENDIX F: INTERNAL AND EXTERNAL TABLE REFERENCE DATA 

This appendix contains the following 
external and internal data used by PCS: 
common areas, PCS communication areas, 
and PCS internal lookup tables. 

COMMON AREAS 

PCS common areas consist of: task 
dictionary, combined dictionary, internal 
symbol dictionaries (ISD), new task com­
mon (NTC), interrupt storage area (ISA), 
and the source list. 

TASK DICTIONARY TABLE (TDY) 

The task dictionary table (TDY) (Fig­
ures 17, 18, 19, 20, 21) contains 
information needed to load (and unload) 
the modules in a particular task. It 
consists of a heading, two hash tables 
(system and user), the storage map table 
(MAP), and one program module dictionary 
(PMD) for each module loaded during the 
task. PMDs are arranged in irregularly­
located PMD groups. The TDY is initi­
alized by STARTUP and maintained by the 
dynamic loader. PCS uses the infor­
mation in the TDY to resolve symbolic 
references in a PCS statement. 

T 
+ h 

-+ 
-.L 

TDY H.adlng 

System H",h Table (Powe<' of Two In length) 

Us.r HMh Tabl. (Power of Two in length) 

MAP 

PMD Group F-

NULL I+-

PMD Group 

PMD Group 

Figure 16. Task Dictionary Organization 

164 

TDY Heading (CHATDH) 

The TDY heading (Figure 18) is 16 
words in length and contains the follow­
ing: 

Word 0 

Word 1 

Word 2 

Word 3 

Word 4 

o 

2 

3 

4 

5 

6 

7-15 

Figure 17. 

- Link to PMD group 
The address 0f the first 
word of the last PMD group 
to be entered into the TDY. 

- Hash divisor 
This is some number not more 
than the length of each hash 
table in words. It is pro­
vided by STARTUP and remains 
unchanged during a task. 

- Pointer to system hash table 
The virtual storage address 
of the beginning of the 
system hash table. 

- Pointer to user hash table 
The virtual storage address 
of the beginning of the user 
hash table. 

Note: If the user authority 
is P or 0, LOGON sets word 
3 (pointer to user hash 
table) equal to the contents 
of word 2 (pointer to system 
hash table). 

- The virtual storage address 
of the origin of MAP table. 

link to PMD Group 

Hash Divisor 

Pointer to System Hash Table 

Pointer to User Hash Table 

Pointer to MAP 

Maximum length of MAP 

length of Current MAP 

Reserved 

TDY Heading 



Pointer to Next PMD Group 

Beglnn;ng 1----------------------
of Page. Pointer to P.evious PMD Group 

Pointer to End of Group 

~-------------------

PMD 

Released PMO Space 

~ 

1- ___________________ f4-

PMO 

This May 
Exceed 0 

Page 

This Will 
be len 
Than 0 

f-+ Page 

I---------
PMO
---------- I+-- 1 

~+------------A-vO-iia-b-I.-s-pa-ce-----------~ 
End of Poge 

Figure 18. Sample PMD Group 

Word 5 - The length, in bytes, of the 
maximum space allocated by 
the system for the task's 
storage MAP. 

Word 6 - A count of currently valid 
MAP entries. 

Words 7-15- Reserved for future ex­
pansion 

Program Module Dictionary (PMD) Group 

Each PMD group consists of at least 
one PMD with its associatd PMD preface 
(Figure 19). When a new PMD is to be 
added to the TDY by the dynamic loader, 
if room exists in the same page that 
contains the last inserted PMD, the new 
PMD will be added to that page and 
become part of that PMD group. If such 
space does not exist on the page, a new 
PMD group is formed, starting with the 
new PMD. Note that the first PMD in a 
group may exceed a page in length, but 
that successive PMDs in a group may not 
exceed a page. 

PMD groups (Figure 18) are chained 
together bi-directionally through the 
first two words in each PMD group 
header. The TDY heading contains a 
pointer to the beginning of the chain 
of PMD groups. 

Pointer to Next PMD Group Heoder-

Pointer to Previous PMD Group Header 

Pointer to lost PMD Group 

Pointer to End of Group 

Figure 19. PMD Group Header 

PMD Group Header 

Each PMD group header (Figure 20 ) 
consists of four pointer: 

Word 0 - A pointer to the next PMD group 
header. 

Word 1 - A back pointer to the previous 
PMD group header. 

Word 2 - A pointer to the last PMD in 
this group. 

Word 3 - A pointer to the first byte 
past the end of this PMD group, 
which therefore defines the 
beginning 6f available spcr'ce 
in this group. 

The PMD group header is at the be­
ginning of a page. 

Pointer to Next PMD Group Header: This 
either contains the address of the next 
PMD group header, or is zero if this is 
the last PMD group in the chain. 

Pointer to Previous PMD Group Header: 
This contains the address of word 0 of 
the previous PMD group header in the 
chain. The most recently added group 
will backlink to word 0 of the TDY 
heading (CHATDH). 

Pointer to Last PMD in This Group: This 
is the beginning of a circular chain of 
all PMDs in the group. It contains the 
address of the last (most recent) PMD 
preface in this PMD group. 

Pointer to End of Group: This contains 
the address of the beginning of the 
available space at the end of the last 
page in the group. Space made avail­
able by deletion of a PMD within a group 
is not accounted for. Space is only 
released on a full group basis. 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 165 



PMD Preface 

The PMD preface (Figure 21) is gener­
ated by STARTUP of the PMD preface is 
part of initial virtual storage, or by 
the loader if it is not. The contents 
are maintained by the loader. It always 
immediately precedes the PMD at load 
time, and when the term PMD is used in 
the following description, the PMD pre­
face is generally meant. The PMD pref­
?ce contains the following entries: 

Word 0 - A link to next PMD in the 
chain of PMDs within this PMD 
group. The PMD group header 
contains a pointer to the last 
PMD of this group. Since each 
new PMD is inserted at the 
beginning of the chain, PMDs 
are in reverse order of ap­
pearance within a PMD group. 
The link contains the address 
of the first word of the PMD 
preface of the next PMD. The 
last PMD in the chain points 
to the third word in the PMD 
group header. 

Word 1 - A link to the module usage 
table entry (MUTE) chain for 
modules that explicitly call 
this module. 

Word 2 - A link to the MUTE chain for 
modules that are explicitly 
called by this module. 

Word 3 
left­
half 

Word 3 
right­
half 

- The number of explicit links 
(CALLs/LOADS) to this module. 
For each explicit link to this 
module the value of this field 
is incremented by one. 

- PMD flags. The PMD flags 
field is a halfword containing 
flags used by the loader. The 
following flags are defined 
(bits numbered from left to 
right starting with 0): 

Bit 15 - Public flag - this 
bit is set if this 
module contains any 
public CSECTs. 

Bit 14 - Candidate flag - this 
bit is set if this 
module is on the 
deletion candidate 
list. 

Word 4 - A pointer to the JFCB for li­
brary containing this module. 

166 

o link to Next PM.D Preface in Chain of PMOs within this 
PMD G,oup 

link to MUTE Chain for Modules that Explicitly Call this 
Module (BABY Chain) 

link fo MUTE Chain for Modules thot ore Explicitly Coiled 
by Ihis Module (PAPA Chain) 

2 

Numbe, of Explicit CALLs! 1 
LOAD. on this Module PMD Flogs 
(MJTE Count) 

3 

4 Pointer to JFCB for library Containing 'his Module 

5 DeB Add.-en for library where Name wqs Found 

6 Retrieval Address of PMD 

Leng,h of PMD in Bytes 

User 8 
Information 

Retrieval Address of Text 

from library 
fo, 

9 
Module 

It!!ngth of Text in 8ytes 

10 Retrieval Addren of ISD 

11 length of ISO in Bytes 

12 SYSUB Switch - Zero jf library where Name wos Found is 
Not SYSLlB, Non-Zero if it i •. 

13 Module Sequence Number 

14 Reserved for Future Use 

Figure 20. PMD Preface 

Word 5 

Words 
6-11 

Address of DCB for library in 
which name is resolved. 

- User information from library 
where this module was ob­
tained. The form of the re­
trieval address is: 

2 Bytes 

Poge , Relative to 
Beginning of this 
Member 

2 Bytes 

Zero 

The retrieval address for the 
PMD will, therefore, always 
be zero. 

Word 12 - SYSLIB switch: Set to non­
zero if module was extracted 
from SYSLIB. 

Word 13 - The module sequence number. 
Each module is assigned a con­
secutive sequence number as it 
is loaded. This sequence 
number is used to differentiate 



unnamed (non-CO~10N) control 
section references among 
modules. 

Word 14 - Reserved for future use. 

Program Module Dictionary (PMD) 

The output from an assembler, com­
piler, or the linkage editor is known as 
a program module. This is composed of 
a program module dictionary (PMD) I text, 
and internal symbol dictionary (ISD). 

Each PMD consists of one PMD heading 
plus as many control section dictionarie~ 
(CSD) as there are control sections in 
the module. Address pointers in the PMD 
are initially relative to the beginning 
of the PMD itself (not the PMD preface) I 

except where otherwise specified. Some 
fields in the PMD are filled in by the 
loader. These are left zero by the 
language processor. The FMD format is 
shown in Figure 22. 

PMD Heading: 

1. Length of PMD in bytes - This length 
does not include the PMD preface. 

2. Diagnostic code (1 byte) - The diag­
nostic code indicates the highest 
level diagnostic encountered during 
generation of the module by the lan­
guage processor that created it. 

3. Flags (1 byte) - The flag bits are 
numbered from left to right, 
starting with zero and are defined 
as follows: 

Bit 1 

Bit 2 

Vel'Si,,,, 10 Flag 

FORTRAN Main Program 

FORTRAN Module 

PeS Communication Flag 

linkage Editor Flag 

ISO Flag 

module has an ISD associated. 
This bit is set by the proc­
essor creating the PMD. 

module was processed by link 
editing. This bit is set by 
the Linkage Editor. 

Bit 3 

Bit 5 

Bit 6 

Bit 7 

PCS is to be called before 
module is dynamically un­
linked. This bit is set by 
PCS. 

module was produced by the 
FORTRAN compiler. 

FORTRAN module is a main 
program, not a SUBROUTINE, 
FUNCTION, or BLOCK DATA sub­
program. 

version ID indicator. If this 
bit is set, the module version 
ID is to be interpreted as a 
64-bit binary number which is 
the creation date of the 
module. If this bit is not 
set, the version ID is eight 
alphameric EBCDIC characters. 

4. Length of PMD heading - The length 
in bytes of the PMD heading. 

5. 4-Character I.D. name - The I.D. 
name is supplied by the user to 
serve as deck identification if the 
module is punched into cards. This 
field is currently unused. 

6. Version I.D. - See item 3 (bit 7 
discussion) for interpretation of 
version I.D. 

7. Number of REFs for the standard 
entry point - the DEF for the 
standard entry point is always 
treated as a complex DEF. This 
field contains the number of REFs; 
it may be zero. 

8. Number of modifiers for the stand­
ard entry point - This field con­
tains the number of modifiers that 
are to be used to compute the DEF 
for the standard entry point. 

9. DEF for standard entry point - This 
seven-word entry describes the DEF 
for the standard entry point of the 
module. It has the same form as 
the individual DEF entries within 
the CSDs. The standard entry point 
DEF for the module is considered to 
belong to the first PSECT of the 
module and is treated the same as a 
complex DEF whose ENTRY statement 
appears within that PSECT. 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 167 



If no PSECT is declared, the stand­
ard entry point will be associated 
with the first CSECT, instead. 
This DEF entry contains the follow­
ing subfields, which are described 
in the discussion of DEF entries, 
under control section dictionary. 

a. Alphameric name of module 
b. Value of DEF 
c. R-value displacement 
d. CSD link 
e. Reserved for future use 
f. Search link 

The alphameric name is also the 
name of the module. 

10. REF(s) for entry point - Have the 
same form and function as the REFs 
described in the CSD discussion 
that follows. 

11. Modifier(s) for standard entry 
point - These have the same form 
and function as the modifiers de­
scribed in the CSD discussion, 
except that they apply to the 
standard entry point DEF. 

Control Section Dictionary (CSD) 

The control section dictionary has 
the following components: 

• CSD heading 
• Definition table 
• Reference table 
• Relocation dictionaries (RLDs) 
• Virtual Storage Page Table (VMPT) 

CSD Heading: 

1. Number of bytes in CSD - Specifies 
the length of the control section 
dictionary in bytes. 

2. Length of control section in bytes­
Specifies the virtual storage span 
of the control section. The length 
of the virtual storage page table 
is derived from this length. For 
example, if the length of the con­
trol section is 8192, the virtual 
storage page table will contain 

168 

two pages; but if the length is 
8193 bytes, the virtual storage 
page table will contain three 
pages. This value will be equal 
to the highest location counter 
value assigned by the language 
processor, plus one. 

3. Page number in text of page 0 of 
CSECT text - The text for each con­
trol section in the module occupies 
an integral number of pages in its 
resident data set. The text pages 
for all control sections in a 
modure-are contiguous. This number 
is the page number, relative to the 
first page of text for this module, 
of the first page of text for this 
CSECT. (Numbering begins with 0.) 

4. Version I.D. - This is a 64-bit 
binary number which is the creation 
date of the control section ex­
pressed as the number of micro­
seconds that have elapsed from 
March 1, 1900 until the time of 
CSECT creation. 

5. PMD link - The PMD link is filled 
in by STARTUP or the dynamic 
loader. It points to the beginning 
of the PMD preface. 

6. Whether CXD REF exists and number of 
QREFs. Bits from left to right 
contain: 

Bit 0 - set to 0 if no CXO REF 
exists; set to 1 if a CXO REF 
does exist. (Only one CXD REF is 
possible. ) 

Bit I - not used. 

Bits 2-14 - number of QREFs (con­
tains all zeros if none). 

7. Number of implicit references to 
this control section (user count) -
This is a count of the number of 
REF entries that refer to this con­
trol section and are linked to this 
CSO through their CSO link. It is 
computed by the loader, and in­
cludes both external and internal 
references. This number is 
arbitrarily set by STARTUP for each 
CSECT in initial virtual storage to 
X'7FFF' to prevent unloading of IVM 
modules. 

8. Number of relocatable definitions -
This is the number of relocatable 
definitions in the definition table. 
It is always at least one, namely, 
the control section name DEF. 

9. Number of absolute definitions -
This is the number of absolute 
definitions in the definition table. 
It may be zero. 



The PMD 
Preface is 
Prefixed 
hore by 
either 
STARTUP 
or the 
Dynamic 
Loader. 

PMD 
Heading 

0 

I 

2 

3 

4 

5 

6 

7 

e 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

-

Length of P MD in Bytes 

Diog. I Flags J Length of P MD 
Code Heading in Bytes 

4 - Character I. D. Name 

Version ID 

1----------------
of Module 

No. REFs for Entry I No. Mods. for 
Point Entry Point 

Alphameric Name 

~------------------
of Module 

Value of DEF 

R-Volue Displacement 
(Creoted by LINK EDITOR) 

[CSD LINK] 

(Reserved) 

[Search Link] 

Alphameric Nome 

----------------
of REF 

[Value of REF] 

[R - Volue of REF) 

[CSD LINK) 

(Reserved) 

} 
For Deck 
Punchout 

DEF for 
Standard 
Entry Point 

REF(s) for 
Entry Point 

PMD 
Heoding 

CSD 
Heeding 

Definition 
Tobie 

Definition(.) 
Relative 
Absolute 
Complex 

Note: 

{1I-L..l.I __ RE_F_N_um_be_r _...LI_...LI __ By_re'_--Il ::::::~:,~: '0' 

~ 

Number Bytes in CSO 

Length of Control Section 
in Bytes 

Poge Number in Text of Poge 0 
of CS Text 

CSECT 

------------------
Venion 10 

[PMD link] 

Count of QREF. 
(No. REF. into this 

Control Section (user 
and CXDREF count) ) 

No. Reloeotoble No. Absolute 
DfF. DEF. 

No. Complex No. of External and 

DEFs Internal REFs in 
Reference Tobie 

Attributes of C.S. No. Page. of Text 

A I phomeri c Nome 

1--------------------
of DEF 

Volue of OEF 
[Modified by Looder) 

R-Volue Displacement 
[Modified by Loader] 

[CSD link] 

(Reserved) 

[Seorch link] 

~ 
, 

Bracketed [} items are filled in by Dynamic Loader. 

'Ii t ruo 

Reference 

Table 

Alphameric Name 

~-------------------
of REF 

[Value of REF] 

[R-Value of REF] 

[C5D Link] 

(Reserved) 

Name of 

1----------_.-
DXD Instruction 

(Q-Volue of REF) 

Alignment I Length 

[Link to Next DXD Nome] 

fLink to Some DXD Name] 

1... 

-
(Reserved) 

(Reserved) 

(Value of CXD) 

(Reserved) 

(Reserved) 

(CXD REF Link) 

, . .... 

Modifier 
Pointers for 
Complex OEF. 

Externol 
or Internal 
REF 

Modi fiers for 
Complex OEF. 

Modifier Pointers 
for Externol REFs 

Q-Type 
REF 

Modifiers for 
External REF. 

Modifier Pointen 
for Internol REFs 

Modifiers for 
Internal REFs 

Virtual Memory 
Page Tobie 

CXD-Type 
REF 

No. Modi fien for 
Page 0 of PMD 

No. Modifier. for 
Page x of PMD 

REF Number 

No. Modifiers for 
Page 0 of Text 

No. Madifiers for 
Page y of Text 

REF Number 

No. Modifie,. for 
Page 0 of Text 

No. Modifiers for 
Page z of Text 

REF Number 

Relative Location of First 
Modifier for PMD Page 0 

Relative Location of First 
Modifier for PMD Page x 

T Byte 

Relative Location of First 
Modifier for Text Poge 0 

Relative Location of First 
Modifier for Text Page y 

Byte 

Relative Location of Fint 
Modifier for Text Page 0 

Relative Location of First 
Modifier for Text Poge % 

T Byte 

Page No. in Text I Page No. in Text 
of Virtual Memory Pogo 0 I of Virtual Memory Page 1 

Page No. in Text of 
Virtual Memory Page'm-I' 

Poge No. in Text of 
Virtual Memory Pago 'm' 

Remoining CSO. 

Complex DEF RLD 
Note, Page x i. the last 
PMD page for which there 
are any Campi ex 
DEF modi fiers 

External REF RLD 
Note, 
1. Modifiers for Q-REF and 
CXD-REF. are included in 
this RLD. 
2. Page y is the lo.t text 
page for whi ch there ore 
any External REF modifiers. 

Internal REF RLO 
Note, Page z i. the last 
text page ·for which there 
or. any Internal REF 
modifien 

Figure 21. Format of PMD Entry 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 169 



10. Number of complex defj.ni tions -
This is the number of complex 
definitions in the definition 
table. It may be zero. 

11. Number of references from this 
CSD - This is the sum of external 
and internal references in the 
reference table. It may be zero. 

12. Attributes - This halfword has one 
bit set for each attribute pos­
sessed by the control section. 
Currently defined attributes are 
shown below. Bits are numbered 
from left to right, starting with 
O. 

170 

a. Fixed-length (Bit 14 off) - A 
fixed-length control section 
will be allocated a fixed num­
ber of pages at load time. 

b. Variable-length (Bit 14 on) -
A variable-length control sec­
tion will be allocated pages 
in excess of the length stated 
in the CSD heading. 

c. Read-only (Bit 13 on) - Read­
only specifies that the control 
section may not be stored into. 
It causes storage protection by 
means of a storage class-B 
assignment to all pages of the 
control section. Non-read-only 
and nonprivileged control 
sections are assigned storage 
class A. 

d. Public (Bit 12 on) - Control 
sections are not shared by 
control section name alone. A 
PUBLIC control section of a 
module residing in a given data 
set (library) is shared if 
another user has access to the 
same data set and module. Con­
trol sections of a given module 
need not all be PUBLIC or non­
PUBLIC. Fixed length PUBLIC 
control sections with the same 
attributes are assigned storage 
in the same assignment. A 
public control section must 
never contain relocatable 
adcons (A-, V-, or R-type). 

e. PSECT (Bit lIon) - If this bit 
is set, it causes the dynamic 
loader to override the system 
packing indicator and insert 
this control section as packed. 

f. COMMON (Bit 10) - A COMMON 
section is a control section 
common to all modules in which 
it is declared. COMMON sec-

tions are more fully discussed 
in Linkage Editor and Assembler 
Language. COMMON sections are 
of two types: 

(1) Named COMMON sections (those 
with a name not all blanks). 
These are treated as fixed­
length sections. 

(2) Blank COMMON sections, whose 
name consists of eight 
blanks. FORTRAN blank 
COMMON is assigned the 
VARIABLE and COMMON attri­
butes by the FORTRAN compiler. 

The treatment of blank COMMON 
sections differs from that 
of blank non-COMMON sections. 
Control section rejection is 
instituted between blank 
COMMON sections of different 
modules, whereas blank non­
COMMON sections of different 
modules are treated as in­
dependent control sections. 
The latter are called 
unnamed control sections. 

g. Privileged (Bit 9 on) - A con­
trol section with a privileged 
attribute is assigned storage 
key C, which provides fetch, as 
well as store, protect. This 
attribute overrides RIO. 

Anything in a privileged CSECT 
may be referenced only when the 
PSW key is zero. 

h. SYSTEM (Bit 8 on) - Any external 
symbol that appears in a control 
section which has the SYSTEM 
attribute cannot be referenced 
by a user program unless the 
symbol begins with SYS. Con­
versely, no references from a 
control section with a system 
attribute may be to a user 
symbol. 

i. TDYCQR validity (Bit 7 on) - The 
dynamic loader sets this flag to 
indicate that the count of 
Q-type REFs in TDYCQR is valid. 
If bit 7 is off, the count of 
Q-type REFs is not valid. 

j. Common CSECT Rejected (Bit 6 
on) - The dynamic loader sets 
this flag to indicate to the 
Program Control System that the 
CSECT was rejected as a common 
CSECT that was already loaded 
in another module. 

k. Bits 4 and 5 are not used. 



1. Public storage Assigned by 
CONNECT (Bit 3 on) - Set by the 
dynamic loader, if applicable. 

m. PCSA called for this CSD (Bit 2 
on) - Set by the dynamic loader, 
if applicable. 

n. CSD has been allocated storage 
(Bit 1 on) - Set by the dynamic 
loader, if applicable. 

o. Public name (Bit I) on) - This is 
used only by the dynamic loader 
to specify nonblank control 
sections whose n~nes appear in 
the shared data set table (SDST). 
The first such control will 
appear in the SDST under the 
module name. A control section 
may be indicated as both having 
a public name and rejected. 

13. Number of pages of text - This 
specifies the r.umber of pages of 
text for this control section in 
the data set. It should be noted 
that this generally does not 
correspond to the n~mIDer of pages 
in the virtual storc~ge page table. 
It cannot, of course, be larger. 

Definition Table 

The definition table is made up of 
seven-word entries, one for each ex­
ternal definition in the current control 
section. Definitions are grouped as 
relocatable, absolute, and complex in 
that order. The first definition in the 
table is the name of thl~ current con­
trol section. 

Relocatable definitit:ms are external 
definitions whose value may be computed 
as the sum of the origin of the control 
section wherein they appear and a con­
stant that is the symbol's displacement 
from the section origin. 

An absolute definition is an EQU item 
with an absolute value whose name has 
been declared an entry point in the con­
trol section in which the name is de­
fined. 

A complex definitior., is either an EQU 
item with a complex relocatable value, 
i.e., containing external symbols; or a 
simple relocatable definition whose 
ENTRY statement appeared within a con­
trol section other than the section in 
which it is defined. ~:he definition 
entry appears within the CSD of the con­
trol section that contains the ENTRY 
statement. (Note that the origin of the 
same control section is the R-value for 
the DEF.) The complex DEF is required 

in this case, with one REF entry that 
names the control section in which the 
DEF symbol is actually defined. 

Each DEF in the definition table con­
tains the entries of the following form: 

1. Alphameric name of DEF - This field 
contains the eight-character alpha­
meric name of the DEF. 

2. Value of DEF - The value of the DEF 
is set by the language processor 
and is modified by STARTUP or the 
loader, in the case of complex and 
relocatable definitions. For re­
locatable DEFs, the value portion 
of the definition entry contains 
the displacement value of the sym­
bol relative to the base of its 
control section. For absolute 
DEFs, this entry contains the ab­
solute value; for complex DEFs, it 
contains the absolute portion of 
the DEF value, which may be zero. 

3. R-value displacement - The "dis­
placement for R-value" word con­
tains the displacement of the 
original defining control section 
origin with respect to the head of 
the control section within which 
the definition now appears. This 
is required to compute valid R­
values for control sections that 
have been COMBINED by linkage 
editing. In creating the PMD, only 
the linkage editor will ever 
produce a nonzero value in this word. 

4. CSD link - This CSD link is init­
ially zero. When the control sec­
tion is loaded, it is filled in by 
STARTUP or the dynamic loader as a 
pointer to the beginning of the CSD 
in which this DEF appears, pro­
viding neither the DEF nor the con­
trol section has been rejected. 

5. For future use. 

6. Search link - This field is filled 
by the HASH SEARCH routine of 
either the loader or STARTUP. It 
contains the address of the begin­
ning of the next DEF entry which 
hashes to the same value. It con­
tains zero if there are no more 
DEFs with the same hash value in 
this chain. 

Reference Table, Relocation Dictionaries, i 

and Virtual Storage Page Tables: The 
reference table, the relocation diction­
aries and the virtual storage page table 
follow the definition table in the CSD. 
For a complete description of this sec­
tion of the PMD, see Dynamic Loader PLM. 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 171 



INTERNAL SYMBOL DICTIONARIES (ISD) 

PCS uses the internal symbol diction­
aries (ISD) produced by the assembler, 
FORTRAN compiler, and the linkage 
editor. 

Assembler ISD 

The assembler ISD is divided into 
four sections: a heading, section name 
table, using tables, and the symbol 
table (see Figure 23). 

HEADING: 
Word 1 - Bits 0-15 contain the indicator 

4, identifying the ISD as 
assembler produced. 

Word 2 - The length of the ISD in bytes. 

Word 3 - Contains a link to the start 
of the symbol table. 

Word 4 - The number of entries in the 
section name table. 

Word 5 - The number of using tables. 

Word 6 - The number of entries in the 
symbol table. 

Section Name Tables: The alphameric 
name and the version identification of 
each control section (including DSECTs) 
is entered here, in sequence, by the 
section number assigned. The name of 
blank common is represented by eight 
blank characters; the unlabeled control 
section is represented by binary zero. 

Using Tables: The assembler places a 
using table in the ISD at every section 
break and for each USING and DROP state­
ment. All 16 entries are included each 
time, plus the location at which the 
table became effective. Registers con­
taining bases for DSECT references are 
included, but registers containing other 
external bases are marked as unavailable 
for checkout purposes. 

Symbol Table: The assembler inserts as 
symbol entries all absolute or simple 
relocatable value items from its inter­
nal dictionary, in addition to entries 
for each section name. Symbols are 
grouped according to control section 
and ordered within each group by 
ascending location counter value. Im­
mediate value symbols follow those with 
location counter values. 

Name 
two words containing the alphameric 
name of the symbol. 

DSECT Flag 

172 

contains a I bit if this symbol was 
defined in a DSECT, or if it names 
a DSECT. 

Usi,.. 
Tabl. I 

Using 
Tabl. 2 
throuliJh n 

Symbol 
Entry 1 

'\ 

J 
)-

~l 

Symbols 2 
through N ,\..( 

ISO Type (4) I Zoro 

I.orvfII 01150 in Iyt_ 

to 10 Symbol Tabl. 

Nu ...... 01 Section _ 

Nu_ 01 Utlng Tobl .. 

Nu ...... 01 Symbol. 

Section Nome I (AI~ic) 

Vonlon 10~ 

Section NorM" 

Venion IOn 

Section 
Displacement Number 

I: I I Section 
Nvmbe< 

Bose Volue Absolute IX Displocement 

I: I I 
Section 
Number 

Sm. Value Absolute Of' Displacement 

AI phomeri c Nome 

Type Numb., of 1 
Diment.iOt'lf length or thi1 Entry 

Section Reloti",e Location within Control Section 
Nvmber 

Immediate Value 

length Attribute of Symbol 

Dirrte"nsion Foetor 

Figure 22. Assembler Internal 
Symbol Dictionary 

-

_1-

1-' 

I..., 
) 

l-

1 
~ 

1 
J 

Section 
Nome2 
Through 
Section 
Nomen 

Starting 
Location 
for Using­
Table 
Range 

Regilter 0 

Regilter 15 

Location 
Ol" Value 
(1 Word) 



Type 
identifies the type of field as: 

(Assembler Type Attributes) 

Instruction (I) 
Absolute EQUs 
Section name (J) 
Integer constant (F,H) 
Real number (D,E) 
Character constant (e) 
Hexadecimal constant 
(G,K,R,X,M,W,U) 
Binary constant (B) 
Packed decimal constant (P) 
Zoned decimal constant (Z) 
S-type address constant (S) 
Other address constant 
(A,Q,V,Y) 

Code 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 
11 

12 

Symbols with type a-:tributes T, N, 
and 0 are not included in the lSD, 
nor do undefined s~nbols appear. 

Number of dimensions 
has a value of 1 if a duplication 
factor (other than 1) or mUltiple 
contents were used. Otherwise, it 
has a value of o. 

Length of entry 
length in bytes for this symbol 
entry. 

Section number 
a number identifying the section 
in which the symbol was defined. 
This corresponds tc the ordering 
of the names in thE section name 
table. 

Displacement 
the location counter value. 

Immediate value 
if the type was indicated a~ an 
absolute EQU, the fourth word of 
the symbol entry will contain, 
instead of a section number and 
displacement, the immediate value 
of the symbol. 

Length 
length in bytes of the field de­
fined by this entry. 

Dimension factor 
this word is included in the sym­
bol entry only if the number of 
dimensions is non-zero. It con­
tains the byte length of the entire 
field defined by this entry (i.e., 
the length times the duplication 
factor) . 

FORTRAN ISD 

The ISD has four sections: A 
heading, section name table, statement 
number table, and a symbol table (see 
Figure 24). 

Heading: 
Word 1 - Bits 0-15 contain the indi­

cator 8, identifying the ISD 
as FORTRAN produced. 

Word 2 The length of the ISD in bytes. 

Word 3 - Contains a link to the start of 
the symbol table. 

Word 4 - The number of entries in the 
section name table. 

Word 5 - The number of entries in the 
statement number table. 

Word 6 - The number of entries in the 
symbol table. 

Section Name Table: All control section 
names and their version identifications 
(CSECT, PSECT, labeled and blank com-

mons) are listed here. The last two 
entries are the CSECT and the PSECT. 

Statement Number Table: For each 
executable statement in the program, 
FORTRAN inserts an entry containing the 
statement number and the offset from 
the CSECT base. Entries for unnumbered 
statements contain a statement number 
of zero. The entries are arranged in 
source order. 

Symbol Table: The FORTRAN compiler in­
serts into the symbol table a defining 
item for all variables, section names, 
and FORMAT statement numbers. Entries 
are grouped according to control sec­
tion and are ordered within each group 
by ascending location counter value. 

Name 

Type 

Type 

two words containing the alphameric 
name of the variable 

bit 1 - set to 1 if the variable is 
a dummy argument 

bits 2-7 - identifies the type of 
variable as: 

Type 
SectIOrlname 
Integer 

Code 
--3-

4 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 173 



~ 
Real number 
Character constant (FORMAT) 
Complex number 
Logical 

Code 
5 
6 

13 
14 

Number of dimensions 
the number of dimensions of a 
dimensioned variable (0 for non­
dimensioned variables). 

Length of entry 
length in bytes for this symbol 
entry. 

Section number 
a number corresponding to the order 
of the names in the section table 
of the ISD. 

Displacement 
the offset in bytes from the con­
trol section base. 

Length 
length attribute of the variable. 

Dimension length 
This byte contains the length of 
the adjustable dimension (2 or 4) 
which is itself a dummy argument. 

Dimension factors 
For each dimension of a non-dummy 
variable array, the dimension 
product value is listed. The value 
of the nth dimension factor is the 
byte length times the product of 
the sizes of dimensions 1 through 
n. 

For dummy variable arrays, if the 
dimension is constant, the constant 
value is stored here. If the 
dimension is adjustable, the lo­
cation (displacement from the PSECT 
base) is stored here. 

Linkage Editor ISD 

The linkage editor produces, on 
option, an ISD that permits the PCS to 
trace back to the original modules (see 
Figure 25). 

The ISD heading contains the output 
module name, length of the lSD, and 
total number of input modules, plus two 
words containing: 

1. Link edit level (16 bits) - A 
counter equal to 1 plus the highest 
link edit level value present in 
any of the previously generated 

174 

ISO Type (8) I Zero 

Section 
No_ 
Table 

Statement 
Number 
Table 

Symbol 
Entry 1 

Symbol, 
21hru N 

-

o 2 

I~I Type 

Section 
Nu ..... r 

Dim. 
Length 

Figure 23. 

Length 01 ISO in Byt .. 

6 to Symbol Tobl. 

Number of Section Names 

Number 01 Statement Number Entrl .. 

Number 01 Symbol. 

Section Namel 
(Alphameric) 

Version 101 

~ :::---..: -
Section Nomen 

Version IDn 

8 16 31 

Statement Numbe.r 

DisplocMtent in Control Section 

Alphon.rlc No ... 

Nu ..... rol I 
Din.nsiOnl 

length 01 thi. Entry 

R.latlve Location within 
Control Sectlan 

length Attribute 01 Symbol 

Dimension Factor 1 

FORTRAN Internal Symbol 
Dictionary 

Section 
Name 
Entry 

Statement 
Numb.r 
Entry 1 

Statement 
Number 
fntri4s 2 
thru N 



linkage editor ISDs. If there are 
no previous linkage editor ISDs 
present, the value equals 1. 

2. Type (16 bits) - 0 for linkage 
editor ISDs. 

3. Displacement to preceding ISD (32 
bits) - A displacement (in bytes) 
from a previously generated link­
age editor ISD to the newly 
generated ISD. 

The main body of the dictionary con­
tains a list of entries for each input 
module. Each input module entry is 
prefaced by a heading t~at contains the 
name of the input module, displacements 
to the next input module name and to the 
ISD associated with the module, and the 
number of output control sections 
formed. This is followed by a list of 
entries for each control section from 
this module; the list of entries is 
preserved in the output module. 

Each control section entry is pre­
faced by a heading that specifies the 
output name of the control section and 
the number of input con-erol sections 
used to form the output control section. 
This is followed by a list of the input 
control sections and their text dis­
placements that were co:nbined or re­
named to form this output control sec­
tion. The simplest case is a list with 
no entries, which indicates that the 
output CS is identical to the input CS. 
If the list contains one entry, it 
indicates a RENAMED CS. A list with 
more than one entry indicated a COM­
BINED CS. 

The linkage editor is also respon­
sible for chaining to the ISD it pro­
duces all previously generated ISDs 
associated with the modules input to 
the linkage editor, thus forming a com­
posite ISO. The ISOs associated with 
input modules are of two types: those 
created by a compiler or assembler and 
those generated by previous output from 
the linkage editor. The output module 
from a compilation or assembly contains 
only one ISO. When two or more such 
modules are linked by 1:he linkage edi­
tor, the associated ISD from each mod­
ule is retained and added to the 
composite ISO. The resulting output 
module, if subsequently input to the 
linkage editor,· causes another ISO to 
be produced, which is joined to the 
string of previous ISD.:; to form a new 

composite ISD. Thus, the ISD of a 
module output by the linkage editor con­
tains all the original compiler or 
assembler produced ISDs, each associated 
with a former module, plus one or more 
linkage editor ISOs, one for each module 
generated by a pass through the linkage 
edi tor. 

Input 

Module 1 

2 By'" 2 By'.' 

ISO Type (0) link Edit level 

Leng.h of ISO (No By'e,) 

t;. to Preceding ISO (Sy'es) 

Alphameric Nome of Output Module 

NLlmber of Input Modules 
i 

r---- Alphameric Nome of Input Modu Ie 1 ~ 
6. to Next Inpul Module Name (Bytes) 

A to ISD For Module (Bytes) 

No. Output C5s Formed from 1nput Jvfodule 

t-- Alphameric Nome of OlJtput Control Seclion 1 -

No. Input C55 Used to Form Output CS 

r---- Alphameric Nome of Input -
Control Section 1 Used to. Form OutplJt CS 

Text Displacement, Control Section 1 

r---- Alphameric Name of Input _ 
Control Section 'n I UMcf to Form Output CS 

I T ex t D i5.plocement, COf'\trol Section ' f'\:' 

I 

I 
j 

1 

l 

IS<! 
Heodiog 

Iv\odule 
Heading 

Control 
Section 
Heading 

Control 
Section 1 
of Inpu. 
Module I 

Remaining 

L--. 
}

cont<OI 

{~ =:J ~~~:I 
~::~'ning ~======_=== 
Modvle~ ~ 

Figure 24. Linkage Editor ISD 

IN~ERNAL AND EXTERNAL TABLE REFERENCE DATA 175 



The order in which ISDs appear in a 
program module output by the linkage 
editor is: 

1. The newly generated ISD. 

2. All the previously generated ISDs, 
in the same order in which they 
were input to the linkage editor. 

NEW TASK COMMON (NTC) 

New Task Common (NTC) is an area 
maintained by the system to contain 
those system values referenced in a 
single task by more than one command 
language object module. 

PCS uses the following item in New 
Task Common: 

Label Length 

NTCNAM 2 words 

Description 

This field con­
tains the eight 
byte name of the 
current program 
(the name of the 
last module assem­
bled, compiled, 
or loaded). 

INTERRUPT STORAGE AREA (ISA) 

The Interrupt Storage Area (ISA) con­
tains a complete set of old and new vir­
tual program status words (VPSWs) for 
all presently defined task interrupts. 
In addition, the ISA contains space to 
save general purpose and floating point 
registers, channel status word and sense 
data, and other flags and constants. 

Since this area is contained in seg­
ment 0, page 0 of virtual storage, it 
may be operated upon by instructions 
having no base register assignment. 

PCS references the user's register 
and VPSW in the long save area 1 portion 
of the ISA. These items are: 

Label Length Description 

ISA1l3 1 word Register 13 
ISA1l4 1 word Register 14 
ISA1l5 1 word Register 15 
ISAIO 1 word Register 0 
ISAll 1 word Register 1 
ISA12 3 words Registers 2 - 4 
ISAlS 8 words Registers 5 - 12 
ISAIOP 2 words User's VPSW 

176 

Label Length Description 

ISAlFO 2 words FP Register 0 
ISAIF2 2 words FP Register 2 
ISAlF4 2 words FP Register 4 
ISAlF6 2 words FP Register 6 

Other ISA items referenced by PCS 
are: 

ISAFA 1 byte Attention flag A 
ISAFB 1 byte Attention flag B 
ISAUTH 1 byte User authority 

code 
ISARTN 2 bytes Address of system 

RTRN routine. 
ISATDY 1 word Pointer to dynamic 

loader's task 
dictionary. 

SOURCE LIST 

PCS uses the following three source 
list DSECTs: 

CHASLP 
CHASLH 
CHASLM 

Source List Page Header 
Sublist Header 
Source List Marker 

These DSECTs are described in the 
IBM System/360 Time Sharing System: 
System Control Blocks PLM, Form Y28-
2011. They are used to insert para­
meters and parameter list data for CALL 
phrases into the source list, and to 
extract characters from the source list. 

COMBINED DICTIONARY ENTRY 

PCS uses the combined dictionary 
(CHADEN) to insert an entry for a com­

mand variable. The combined dictionary 
is described in the IBM System/360 Time 
Sharing System: System Control Blocks 
PLM, Form Y28-2011. 

PCS COMMUNICATION AREAS AND TABLES 

PCS communication areas and tables 
consist of: 

• Location Table (LOCTAB) 

• Statement Table (STATAB) 
• Internal Symbol 

Dictionary Map (ISDMAP) 
• Source List Item (SLITEM) 
• Identified Source 

List Items (PQNITEM, SQNITEM, 
SYMITEM, SUBITEM) 

• Data Location 
Item (LOCITEM) 

• Data Field Item (FLDITEM) 



• Phrase List 
• Polish String 

(PLHEAD) 
(POLISH) 
(DISPLIST) • Display List 

ORGANIZATION OF PCS COMMl'NICATION AREAS 
AND TABLES 

Tables of fixed maximl~ length, which 
contain constants, and which are re­
quired throughout PCS processing, are 
assembled into the appropriate control 
section; tables of variable length, 
which are required throuSlhout PCS pro­
cessing, are allocated s1:orage dynami­
cally. 

In some cases, in order to conserve 
storage, two tables are assigned to the 
same pages. The Statement Table and the 
ISD map share the same page. The re­
composed instructions share the same 
page as the Polish strinq. (For a more 
detailed discription of page sharing, 
see the discussion below.) 

The various pages dynamically allo­
cated are: 

STATAl 

150MAP 

rec""'flONd 
In,'ructl"", 

POLISH 

P-::lD 
L:J -=:J u 

Since any of these tables may require 
more than one page of storage, a set 
of pointers is maintained for each. 

• A pointer to the first allocated 
page. 

• A pointer to the last: permanently 
allocated page. 

• A pointer to the current page. 

During processing, the last two 
pointers mayor may not be equivalent. 
As a statement is being analyzed by PCS 
input, entries are "temporarily" made 
to tables. These entries do not become 
"permanent" until the entire statement 
has been analyzed and accepted by PCS 
input. Except for the ISD map, immed­
iate statements never cause permanent 
entries to tables. 

If a table overflows to an additional 
page while temporary entries are being 
made, that page is not considered per­
manent until the entire dynamic state­
ment is accepted. 

SPACE SHARING BETWEEN TABLES 

As discussed earlier, the ISD map 
and STATAB share space in the same pages 
of storage. STATAB entries are made 
from the bottom of the page (position 0) 
consecutively to the top (position 4095). 
ISD map entries are made from the top of 
the page, consecutively toward the 
bottom. 

A sample STATAB/ISDMAP page might 
appear as in Figure 26, below. 

Bottom of Pogo 
(P",ilion 0) 

Reflocts 
.. 

the amount 
of .torage 
auigned to 
ISDMAP 
entries. 

STATAB 
entrie, 

Figure 25. 

PUMTOP 

TEMPlOP 

ENTRY 1 

ENTRY 2 

ENTRY 3 

ENTRY " 

UNASSIGNED 

ENTRY 3 

ENTRY 2 

ENTRY 1 

NEXTPAGE {OJ 

PERMIOT 

TEMPIOT 

Reflects 
the amount,... 
of storage 
assigned to 
STATAB 
entri4K. 

ISOMAP 
entries 

Top of 
Pogo 
(Position 
4095) -

Sample STATAB/ISDMAP Page 

To maintain control over the amount 
of space allocated in each page, three 
words of the page are reserved for page 
control information. The first two 
words of the page are the page header 
and have the form: 

o 15 16 31 

PERMTOP PERMIOT 

TEMPTOP TEMPIOT 

PERMTOP 
index into the page. Contains the 
number of bytes of permanently 
assigned storage preceding the page 
trailer. 

INTERNAL.AND EXTERNAL TABLE REFERENCE DATA 177 



PERMBOT 
index into the page. Contains the 
number of bytes of permanently 
assigned storage following the page 
header. 

TEMP TOP 
index into the page. Contains the 
number of bytes of storage assigned 
preceding the page trailer. 

TEMP BOT 
index into the page. Contains the 
number of bytes of storage assigned 
following the page header. 

The last word of the page i~ the page 
trailer, and has the form: 

o 31 

NEXTPAGE 

NEXTPAGE 
contains the virtual storage ad­

dress of the next page for this table(s). 

When PCS sear"hes STATAB for a par­
ticular entry, the statement number of 
the entry is mUltiplied by 8 (the STATAB 
entry length, in bytes) to compute a 
byte index. The byte index is then com­
pared to the STATAB length on the first 
page (as contained in PERMBOT). If the 
byte index is greater than PERMBOT, it 
is decremented to obtain a new byte 
index which is compared to the PERMBOT 
of the next STATAB page. This process 
continues until the byte index is less 
than or equal to the PERMBOT of a page. 
At this point, the byte index is added 
to the virtual storage address of that 
STATAB page to obtain the address of the 
particular STATAB entry being sought. 

When PCS searches the ISD map for a 
particular entry by name, the search 
proceeds through the page from the top 
toward the bottom, because the entries 
were stored in inverted order. Each 
entry in the ISD map is compared to the 
search name. The search is terminated 
when either the ISO map entry is found, 
or the end of the ISD map is detected. 
The end of the ISO map is indicated when 
the overflow pointer to the next page is 
zero. 

To locate an ISO map entry by number, 
the entry number is multiplied by the 
entry length (16 bytes) to compute the 
byte index. 

178 

The byte index is then compared to the 
ISO map length of the first page (as 
contained in PERMTOP). If the byte off­
set is greater than PERMTOP, it is de­
cremented by the value of PERMTOP, and 
the result is compared to the PERMTOP 
of the next page. This process is re­
peated until the byte offset is less 
than, or equal to, the PERMTOP of a 
page. At this point, the byte index is 
subtracted from the top of the page 
minus four bytes plus one byte, to ob­
tain the address of the particular ISD 
map entry being sought. For example, 
to find the displacement address in the 
page, of ISO map entry one, the fol­
lowing figures would apply. 

ISD map entry number = 1 4095 Top of Page displacement 
Time's entry length = 16 -4 Length of NEXTPAGE indicator 

16 ~ -16 Byte index 
+1 Compensation for zero origin 

4076 Displacement from bottom of 
page {Displacement zeroi 

In the example above, notice that any 
entry may be found by varying the ISO 
map entry number which computes the byte 
index. 

The recomposed instructions and 
Polish string also share the same pages, 
although in this case entries are made 
for both types, from the bottom of the 
page, toward the top. PERMTOP and TEMP­
TOP will always contain zero for these 
pages. 

PCS input makes entries for the 
Polish string. These entries are always 
temporary, and their storage assignments 
are reflected in TEMPBOT. When PCS 
input terminates processing, storage 
assigned to the Polish string is re­
leased. 

PCS output makes entries for the re­
composed instructions. These entries 
are always considered "permanent" in 
that the storage assignment for this 
table is reflected in both PERMBOT and 
TEMPBOT. Each recomposed instruction 
is followed by a PCSVC. When PCS out­
put regains control as a result of hav­
ing executed this PCSVC, the storage 
assigned to the recomposed instruction 
is released. 

The pages for the phrase list are not 
shared. Entries are made consecutively 
from the bottom of the page toward the 
top. PERMTOP and TEMPTOP will always 
be zero for these pages. 



Page control information is main­
tained for all generated code pages. 
Code is generated from the bottom of the 
page toward the top, and its storage 
allocation is reflected by PERMBOT and 
TEMPBOT •. Inversely, co~stant and base 
register data is assigned storage from 
the top of the page towc.rd the bottom, 
with the storage assignments being re­
flected by PERMTOP and 'I'EMPTOP. The 
page trailer word for linking overflow 
pages is maintained. It may be loaded 
into register 15 during the execution 
of generated code to provide code cover 
for the execution of subsequent gener­
ated code. 

The location table (LOCTAB) is an 
exception to the page control method 
described. Entries are not made in the 
table in any sequential pattern, but 
may be scattered throughout the page. 
A hashing algorithm is used to search 
the location table pages for a par­
ticular entry. The hash result fur­
nishes a chain of eight entries per 
page, each of which is ~nspected during 
a search. The search is terminated when 
either the applicable entry is found, 
or a null entry is found. Since each 
LOCTAB entry is in many hash chains, all 
entries made in the location table are 
considered permanent. 1;vhen a LOCTAB 
entry is no longer required, its storage 
allocation is made available for reuse. 

If the search through the location 
table for a particular entry is un­
successful, and 'entry available for 
reuse' entry will be used in preference 
to a null entry. 

LOCATION TABLE (LOCTAB) 

The location table (LOCTAB) (Figure 
27), contains an entry for each PCSVC 
stored in the user's program as a result 
of processing a dynamic statement. 
LOCTAB also contains an entry for each 
PCSVC that follows a recomposed in­
struction. 

A hashing algorithm, based on the 
address of the PCSVC, is used to deter­
mine the relative position of an entry 
in the table. The same algorithm is 
used to efficiently search the table for 
a particular entry. 

Word 0 N.SVC) 

W",d I A(Statement TobIe} or A(NSH 

Type 1 I 
Op Code or Change 

(1 byle) from SVC to NSI 
(I byt~) (2 by'.,) 

Word 2 

Figure 26. Location Table 
(LOCTAB) Entry 

A(SVC) is the virtual storage address 
of the byte following the PCSVC that 
is associated with the LOCTAB entry. 

A(Statement Table) is a full word ad­
dress pointing to the first Statement 
Table entry associated with this loc­
ation, for a LOCTAB entry identified 
as IN USE. 

A(NSI) is the address of the next se­
quential instruction, following the 
SVC in the user's program, for a 
LOCTAB entry identified as RETURN. 

TYPE is a one byte indicator which 
designates the type of entry. The 
possible codes and their meanings 
are: 

00 - NULL This entry has never 
been used. 

01 - LTINUSE This entry is for a 
PCSVC which is stored 
in the user's prcgram. 

04 - LTRTN 

2C - REMOVE 

This entry is for a 
PCSVC that follows a 
recomposed instruction. 

This entry is available 
for reuse. 

Op Code specifies the two bytes in the 
user's program which were replaced 
by the PCSVC for a LOCTAB entry 
identified as IN USE. 

Change from SVC to NSI. For a return 
code entry, this ha1fword contains 
the byte length of the recomposed 
instruction. 

Initially, all LOCTAB entries are 
identified as NULL. 

PCS input forms a LOCTAB entry iden­
tified as IN USE for the first occur­
rence of a specified AT operand. This 
LOCTAB entry is associated with the 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 179 



specified AT operand in subsequent AT 
phrases via the AT phrase list. 

PCS output forms a LOCTAB entry 
identified as RETURN, for each PCSVC 
that follows a recomposed instruction. 

When PCS Output gains control as a 
result of having executed a PCSVC which 
follows a recomposed instruction, the 
LOCTAB entry is cleared and identified 
as REMOVE. If a user removes all dy­
namic statements for a particular lo­
cation, the instruction which was over­
laid by the PCSVC is restored in the 
user's program, thereby nullifying the 
PCSVC, and the LOCTAB entry for the 
PCSVC is cleared and identified as 
REMOVE. 

STATEMENT TABLE (STATAB) 

The Statement Table (STATAB) (Figure 
28), contains an entry for each dynamic 
statement entered by the user. The 
Statement Table entry for immediate 
statements is contained in the PCS 
PSECT. 

Word 0 

Word J 

pes 
S~a~emen~ Number 
(2 bytes) I 

A( Phrase lis~) 

Figure 27. Statement Table 
(STATAB) Entry 

°/0 Count 
(2 bytes) 

PCS Statement Number is a halfword in­
teger assigned to dynamic statements 
by PCS for identification purposes. 
The first statement number assigned, 
is one. 

% Count is a halfword integer which is 
incremented by PCS Output each time 
the statement entry is processed. 
It is initialized to zero, and incre­
mented before processing the phrase 
list associated with the entry. 

A(Phrase List) is the full word address 
of the first phrase list formed for 
the statement. 

PCS Input Phase I forms a phrase list 
for the phrase being processed. This 
phrase list is linked to the immediate 
STATAB entry in the PSECT. If the cur­
rent phrase is an AT phrase, the state­
ment is considered dynamic and the im-

180 

mediate STATAB entry is assigned temp­
orary storage in the last statement 
table page. 

PCS Input Phase II locates the STATAB 
entry being processed and initializes 
the % count to zero. If the statement 
is dynamic, the storage for the STATAB 
entry is permanently assigned. The 
Statement Number in the immediate STATAB 
entry becomes output for identification 
purposes, and is then incremented to 
prepare for the next dynamic statement. 

INTERNAL SYMBOL DICTIONARY MAP (ISDMAP) 

The. ISD map (Figure 29), contains an 
entry for each ISD loaded. It is gen­
erated by PCS input and used by the PCS 
output and DISPLAY/DUMP components. 

WO<dO 

WO<d 1 

WO<d 2 

WO<d3 

Figure 28. 

Modulo Name 

A(ISO) 

A(linkoge Editor Entry} 

Internal Symbol 
Dictionary (ISDMAP) Entry 

Module Name is an assembled, compiled, 
or link edited module name. 

A(ISD) is the virtual storage address 
of the Internal Symbol Dictionary. 

A(Linkage Editor Entry) is the virtual 
storage address of the primary 
qualifier's ISDMAP entry. In an 
ISDMAP entry for a primary qualifier, 
this word contains a zero. 

When the ISD for a modu:e is loaded, 
an ISDMAP entry for a primary qualifier 
is made. If the ISD is a link edited 
lSD, an ISDMAP entry is made for each 
assembled or compiled module. 

For example, assume that two ISDs 
have been loaded, one for a module 
called PGMONE and the other for a module 
called PGMTWO. Further assume that 
PGMTWO is a link edited module that was 
created by combining three other modules 
named PGMA, PGMB, and PGMC. The ISDMAP 
organization, with the entries made in 
inverted order, would appear as shown 
in Figure 30. 



~ .-... 

PGMC 

PGMB 

PGMA 

PGMTWO 

PGMONE 

Figure 29. Sample ISDMAl? 

SOURCE LIST ITEM (SLITEM) 

A source list item is formed for each 
character string scanned (SCANFLD). A 
source list item has the format of 
Figure 31. 

Word 0 A(Chorocters) 

Word 1 COUNT 

W",d2 IDENT I DEUM I 

Figure 30. Source List Item (SLITEM) 

A(Characters) is the address of the next 
available byte in a buffer in the PCS 
PSECT. 

COUNT is the number of characters, not 
including delimiters, extracted from 
the source list and stored in the 
buffer. 

IDENT is a one byte indlcator identi­
fying the character string scanned. 
The possible codes and their meanings 
are: 

00 - NULL 

04 - NUMBER 

The first character 
scanned is the de­
limiter. 

The entire string 
cO;lsists of the 
characters 0 
through 9. 

08 and OC - ALPHA This string con­
tains one or more 
non-numeric char­
acters. 

Leading and trailing blanks are ig­
nored. An embedded blank is treated 
as a non-numeric character. 

DELIM is the character string delimiter. 
The various delimiters are: 

+ plus 
* multiply 
& and 
> greater than 

equal to 
left 
parenthesis 

• quote 
colon 

, comma 

- minus 
/ divide 
I or 
< less than 
1 not 
) right 

parenthesis 
period 
semicolon 
end-of-block 

The letters D, E, and R are treated 
as delimiters in numeric fields. The 
delimiter does not participate in the 
identification of the character 
string. 

The source list contains a string of 
characters. This string is not nec­
essarily contiguous because of synonym 
substitution, line continuation and/or 
procedure expansion. Characters are 
extracted from the source list (GETCHAR) 
and stored in the buffer in the PSECT 
to provide a continuous character 
string. 

When a source list item has been 
formed, the synonym checks are per­
formed. These checks are: 

• The string must be identified as 
ALPHA. 

• The string must be 8 characters or 
less in length. 

• A synonym is possible at this point 
(i.e., the SYNONYM indicator is set). 

If all the synonym tests are suc­
cessful, and the character string has a 
synonym, the delimiter is restored to 
the source list and the character string 
and delimiter are eliminated from the 
continuous character string buffer. The 
source list is expanded to include the 
synonym character string, and a source 
list item for the first character string 
of the synonym is formed. 

Because of the syntax of PCS, a 
source list item may be formed prema­
turely. When this happens, the charac­
ter string and delimiter of the source 
list item are "eliminated" from the con­
tinuous character string buffer. An 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 181 



indicator (FORMED), is set to indicate 
that a source list item is still out­
standing. When the next source list 
item is requested," the character string 
and delimiter of the outstanding source 
list item are restrored to the continu­
ous character string buffer, the FORMED 
indicator is cleared, and the outstand­
ing source list ierm is returned. 

IDENTIFIED SOURCE LIST ITEMS (PQNITEM, 
SQNITEM, SY1-lITEM, SUBITEM) 

In the process of identifying a data 
location, several source list items may 
be formed. When a source list item is 
formed, the IDENT and delimiter are in­
spected and the source list item is 
moved to one of the four identified 
source list items. These identified 
source list items have the same format 
as the source list item (SLITEM). The 
processing of identified source list 
items varies according to the data lo­
cation identified. 

Explicitly Qualified Internal Symbols 

The identified source list items, 
PQNITEM and SQNITEM (Figure 32), specify 
the primary and secondary qualifying 
module names. VALMOD processes these 
items and modifies the item format. 

Word 0 Module Name (8 Character:;.) 

Word 1 Trailing blanks ~uppned if nece~sory 

IDENT 

1 

DELIM 

\ 
(ALPHAI (petied) 

Word 2 

Figure 31. Qualifying Name Items 

Internal and External Symbols 

The identified source list item, 
SYMITEM (Figure 33), specifies the sym­
bol name. DATALOC modifies the item 
format. 

Word 0 Symbol Nome (8 Characters) 

Wordl Trailing blonh supplied if necessary 

!DENT I DEliM I (ALPHA) 
Word 2 

Figure 32. Symbol Name Item 

182 

DATALOC checks the symbol name for 
one of three special strings; %, %COM, 
or %CSECT. 

If the symbol name is %, a data lo­
cation item for the dynamic count is 
formed. 

If the symbol name is %COM, it is 
considered to be an alias for Blank 
Common and is changed to all blanks. 

If the symbol name is %CSECT, it is 
considered to be an alias for an un­
named control section and js converted 
to all zeros. Since unnamed control 
sections must be internal symbols, the 
symbol is identified as being implicitly 
qualified. 

The symbol name item is presented to 
VALSYM for evaluation as an internal 
symbol. If the internal symbol eval­
uation is not successful, the symbol 
name is presented to EXTERNAL for eval­
uation as an external symbol. 

Statement Numbers 

The identified source list items, 
SYMITEM (Figure 34) and SUB ITEM (Figure 
35), specify the statement number and 
subscript. DATALOC converts the state­
ment number and subscript to integer and 
modifies the item formats. 

Word 0 

Word I 

Word 2 IDENT I 
(NUMBER) 

Figure 33. 

Word 0 

Word I 

IDENT I (NUMBER 
!NULl) 

Word 2 

Statement Number (Integer) 

Subscript (Integer) 

DELIM I 
Symbol Name Item for 
Statement Number 

Subscript (Integer) 

UNCHANGED 

DELIM I 
Figure 34. Subscript Item 

The symbol name item is presented to 
VALSYM for evaluation as a statement 
number. The statement number is used 
to search to statement number table and 
the subscript is used as an index which 
is applied to the entry found. If an 



entry in the statement nL~ber table is 
not found, VALSYM evaluat:es the symbol 
name item as an internal symbol. This 
evaluation must be succeE;sful or a 
diagnostic will be formed. 

Floating Point Constants 

All four identified source list items 
are used to express a floating point 
constant. Their contents represent the 
following portions of the number: 

SYMITEM represents the integer 
portion of the floating 
point consi:ant. 

SUBITEM represents the fractional 
portion. 

PQNITEM represents the sign of the 
exponent. 

SQNITEM represents the exponent. 

SYMITEM and SUBITEM a:ce converted to 
integer, a character at a time. (The 
string length of SYMITEM will have been 
previously adjusted to eliminate leading 
zeros. ) The result is s":ored in CONAREA 
as an unnormalized, double precision, 
floating point number (1 byte exponent 
and 7 byte integer). The exponent por­
tion of the number is then converted to 
integer and adjusted to include the 
sign. Exponent range checks are made, 
and the exponent is adjusted to account 
for the fraction. The resulting float­
ing point number is then multiplied or 
divided by the appropriate power of 10, 
and the result is stored in CONAREA. 

Other Data Locations 

All other data locations are spe­
cified by SYMITEM. Processing of this 
identified source list i~em for the 
other data locations, is described in 
the DATALOC subroutine description. 

DATA LOCATION ITEM (LOCITEM) 

A data location item (LOCITEM) 
~Figure 36), is identified by DATALOC. 
It has the format illustrated below: 

LOCITEM is the address of the next 
available byte in the continuous 
character string buffer. It is set 
by DATALOC in initializing LOCITEM. 
This pointer is used for diagnostic 
purposes. 

Word 0 lOCITEM 

Word 1 LOCTYPE lOCDELIM tOCllNG 

Word 2' LOCID ADCONIND LOCOUTYP IlOCISDNO 

Word 3 LOCLNG 

Word 4 LOCVMA 

Word 5 LOCNAME 

'/lord 6 LOCOFF 

Figure 35. Data Location Item (LOCITEM) 

LOCTYPE is a one byte indicator which 
designates the data type of the data 
location. The possible codes and 
their meanings are: 

00 - UNKNOWN Type is undefined. 
This is set by DATALOC 
in initializing 
LOCITEM. 

04 - ISDINT Type is integer. This 
is set by DATALOC for 
integer constants and 
% count. 

05 - ISDREL Type is real. This is 
set by DATALOC for 
floating point con­
stants and floating 
point registers. 

06 - ISDCHC Type is character. 

07 - ISDHEX 

ISDSTP 

DEN COD 

This is set by DATALOC 
for character 
constants. 

Type is hexadecimal. 
This is set by DATALOC 
for hexadecimal 
constants. 

is the data type of an 
internal symbol, as 
specified in the ISD. 
It is set by VALSYM. 

is the entry code for 
a command variable in 
the combined dic­
tionary. It is ad­
justed and set by 
EXTERNAL. 

LOCDELIM is the delimiter of the data 
location character string. In most 
cases, this character is the de-

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 183 



limiter of SLITEM. Prior to exiting, 
DATALOC moves the SLITEM delimiter 
to LOCDELIM. If a source list item 
is still outstanding, (i.e., FORMED 
is set), the delimiter is already in 
LOCDELIM. An end-of-block delimiter 
is converted to a semicolon. Valid 
LOCDELIMs are: 

+ plus - minus 
* multiply / divide 
& and I or 
> greater than < less than 

equal to 1 not 
left ) right 
parenthesis parenthesis 
colon semicolon 

, comma quote (only if 
ADCONIND is set) 

LOCILNG indicates the item length. It 
is set to the number of bytes in this 
item following LOCID. It is used by 
DATAFLD in the formation of a data 
field item for a range. 

LOCID is a one byte indicator of the 
identification of. the data location 
as determined by DATALOC. This 
identification is subject to modifi­
cation during the evaluation process. 
The possible codes and their mean­
ings are: 

00 - NULL 

04 - GENERAL 

08 - SINGLE 

OC - DOUBLE 

10 - PERCNT 

14 - EXTERN 

184 

Identifies an oper­
ator/delimiter. This 
identificaiton is set 
by VALSYM to signify 
an unsuccessful eval­
uation of an internal 
symbol. A NULL 
identification nulli­
fied the INTERN ident­
ification. 

Identifies a general 
register. 

Identifies a single 
precision register. 

Identifies a double 
precision register. 

Identifies the per­
cent count (%). 

Identifies an external 
symbol. 

18 - INTERN 

IC - STATNO 

20 - ARRAY 

24 - ADDRES 

28 - HCON 

Identifies an internal 
symbol. VALSYM sets 
this identification 
(thereby nullifying 
the STATNO identifi­
cation) if the eval­
uation of a statement 
number is unsuccess­
ful. 

Identifies a state­
ment number. 

Identifies a sub­
scripted array. 

Identifies a hexa­
decimal address. 

Identifies a hexa­
decimal constant. 

2C - COMVAR Identifies a defined 
command variable. 
This identification 
is set by EXTERNAL. 

30 - UNDEFINE Identifies an un­
defined command vari­
able. This identifi­
cation is set by 
EXTERNAL. 

34 - ERROR Identifies a syntax 
error. 

38 - ICON 

3C - CCON 

40 - ACON 

44 - FCON 

80 - SOFFSET 

Identifies an integer 
constant. 

Identifies a char­
acter constant. 

Identifies an address 
constant. This 
identification is used 
in checking the con­
text of the address 
constant. If the con­
text is valid, this 
identification is 
modified to that of 
the symbol specified 
in the address con­
stant. 

Identifies a floating 
point constant. 

Identifies a data lo­
cation with offset. 
This bit is ORed into 
LOCID. 



ADCONIND is one byte which is set to 
indicate that an address constant· is 
being processed. 

LOCOUTYP is a byte contclining a code 
which is the same as LOCTYPE, indi­
cating the user's choice of output 
with an offset field. The first 
half-byte may also contain informa­
tion regarding special forms of out­
put as follows: 
code 10 - user has requested the 

identity of an address, 
i. e. the CSECT name that 
contains that address, by 
means of the ID? parameter. 

LOCISDNO is a byte containing the number 
of an ISD map member for a module 
that has been the subject of a request 
for a display/dump in symbolic format,' 
where the module was identified using 
an external symbol with an offset. 

LOCLNG contains the data length of the 
variable or constant. For internal 
symbols, the data length is obtained 
from the ISD. For command variables, 
the data length is obtained from the 
combined dictionary. The length of 
all other data locations is im­
plicitly defined. If the data lo­
cation is offset, an explicit length 
can be specified and will be used in 
place of the defined length. 

LOCVMA is the virtual s't:orage address 
of the first byte of a variable. For 
registers, this word contains the ISA 
address. For undefined command 
variables, the eight bytes to LOCVMA 
and LOCNAME contain the command 
variable name. 

LOCNAME. For external symbols, this 
word contains the adjress of the DEF 
entry in the CSD of the PMD. For 
defined command variables, this word 
contains the address of the combined 
dictionary entry. For internal sym­
bols, statement numbers, and sub­
scripted arrays, this word has the 
form: 

o 7 8 31 

jlSOMAP 
NlJM8U DELTA into ISO 

and where: byte I 

bytes 2-4 

contains the 
entry number in 
the ISDMAP for 
the ISD used in 
evaluating the 
data location. 

contain the 
index from the 
base address of 
the ISD to the 
defining ISD entry. 

LOCOFF is the address of the Polish string 
formed for a subscript/offset. It is 
set by SUBPOL. 

DATA FIELD ITEM (FLDITEM) 

A data field item (FLDITEM) (Figure 
37), is formed by DATAFLD. DATALOC is 
called to form a data location item 
which is then moved to the data field 
item. If a range is specified, DATALOC 
is again called to form a second data 
location item"which is then combined 
with the data field item. 

Word a FLDITEM 

Word 1 FLDTYPE FLDDELIM FLDILNG 

Word 2 FLDIOl FLDID2 FLDOUTYP I FLDISDNO 

Word 3 FLDLNG 

Word 4 FLDVMA 

Word 5 FLDNAME 

Word 6 FLDOFFl 

W<m37 LOCNAME 

Word a lOCOFF 

Figure 36. Data Field Item (FLDITEM) 

FLDITEM contains the same address as 
LOCITEM for the first data location 
item. 

~LDTYPE contains LOCTYPE if a single 
data location item is formed (i.e., 
not a range). If a range is speci­
fied, FLDTYPE is set to 00 (UNKNOWN). 
If a range of registers is identified, 
FLDTYPE is set to LOCTYPE of the 
second data location item. 

FLDDELIM is set to LOCDELIM of the last 
data location item formed. 

FLDILNG is the data field item length. 
It is set to the number of bytes in 
this item following FLDIDI. It is 
used by the phrase list control 
routines for the allocation of stor­
age for phrase list entries. 

FLDIDI and FLDID2. FLDIDI is the LOCID 
of the first data location item. If 
a second data location item is formed, 
the LOCID of that item is placed in 
FLDID2. Otherwise FLDID2 is set to 
00 (NULL). DATAFLD modifies FLDIDI 
in the process of forming the data 
field item. The possible codes for 
FLDIDI, with the corresponding codes 
for FLDID2, and their meanings are: 

00 - NULL Identifies an operator/ 
delimiter. FLDID2 must 
also be NULL. 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 185 



04 - GENERAL 

08 - SINGLE 

OC - DOUBLE 

10 - PERCNT 

14 - EXTERN 

18 - INTERN 

lC - STATNO 

20 - ARRAY 

24 - ADDRES 

186 

Identifies a general 
register. DATAFLD 
sets this to the 
LOCID of the last data 
location item formed. 
Register range nota­
tions of the form 0:4R 
and OR:4R are equi­
valent. FLDID2 must 
be either NULL or 
GENERAL. 

Identifies a single 
precision register. 
DATAFLD sets this to 
the LOCID of the last 
data location item 
formed. Register 
range notations of the 
form 0:4E and OE:4E 
are equivalent. 
FLDID2 must be NULL 
or SINGLE. 

Identifies a double 
precision register. 
DATAFLD sets this to 
the LOCID of the last 
data location item 
formed. Register 
range notations of the 
form 0:4D and OD:4D 
are equivalent. 
FLDID2 must be NULL or 
DOUBLE. 

Identifies the percent 
count (%). FLDID2 
must be NULL. 

Identifies an external 
symbol. FLDID2 must 
be NULL or EXTERN. 

Identifies an internal 
symbol. FLDID2 must 
be either NULL, INTERN 
or ARRAY. 

Identifies a statement 
number. FLDID2 must 
be NULL or STATNO. 

Identifies a sub­
scripted array. 
FLDID2 must be either 
NULL, INTERN or ARRAY. 

Identifies a hexa­
decimal address. 
FLDID2 must be NULL or 
ADORES. 

28 - CONST 

2C - COMVAR 

Identified a constant. 
This identification 
applies to data lo­
cation items identi­
fied as HCON, ICON, 
CCON, or FCON. 
FLDID2 must be NULL. 

Identifies a defined 
command variable. 
FLDID2 must be NULL. 

30 - UNDEFINE Identifies an unde­
fined command variable. 
FLDID2 must be NULL. 

34 - ERROR Identifies a syntax/ 
context error. 

FLDOUTYP contains LOCOUTYP. In the case 
of a range the second LOCOUTYP will 
become FLDOUTYP. 

FLDISDNO contains LOCISDNO. In the case 
of a range the second LOCISDNO will 
become FLDISDNO. 

FLDLNG contains the length of the data 
field. If a single data location 
item was formed, FLDLNG contains the 
LOCLNG of that item. If two data lo­
cation items were formed, it contains 
the difference between the LOCVMAs of 
the items. In data field items for a 
single register, the register number 
is stored in the third and fourth 
bytes of FLDLNG. In data field items 
for register ranges, the first regis­
ter number is stored in the third 
byte of FLDLNG and the second regis­
ter is stored in the fourth byte. 

FLDVMA is the virtual storage address of 
the first byte of the data field 
(i.e., LOCVMA of the first data lo­
cation item). 

FLDNAME is the LOCNAME of the first data 
location item. 

FLDOFFI is the address of the Polish 
string formed for the subscript/off­
set of the first data location item. 

LOCNAME is the LOCNAME of the second 
data location item. 

LOCOFF is the address of the Polish 
string formed for the subscript/off­
set of the second data location item. 

PHRASE LIST (PLHEAD) 

PLIDENT identifies the current phrase. 
The possible codes and their meanings 
are: 

08 - SET Identifies this as a 
SET phrase. 



OC - DISPLAY Identifies this as a 
DISPLAY :?hrase. 

10 - DUMP Identifi,;;!s this as a 
DUMP phra.se. 

14 - CALL Identifi;;!s this as a 
CALL phrase. 

18 - BRANCH Identifies this as a 
BRANCH phrase. 

lC - GO Identifies this as a 
GO phrase. 

20 - IF Identifies this as an 
IF phrase. 

24 - STOP Identifies this as a 
STOP phrase. 

28 - AT Identifies this as an 
AT phrase. 

PLQUAL is the ISDMAP entry number for 
the ISD used for automatic qualifi­
cation of implicitly qualified in­
ternal symbols. 

PLDELTA is the byte length of the phrase 
list. It is initially set at 4 (the 
length of the phrase list header) . 

Won/O PlIDENT PlQUAl PlC>ElTA 

Figure 37. Phrase List Header (PLHEAD) 

Phrase List Processing - Phase I 

PCS Input (Phase I) forms a phrase 
list header (PLHEAD) (Figure 38) for the 
current phrase. Storage for the phrase 
list header is preallocated, while stor­
age for phrase list entries is allocated 
by the phrase list control routines. 
As the entries are inserted in the list, 
PLDELTA is incremented to reflect the 
current length of the phrase list, in 
bytes. When the current list has been 
completely formed, PCS Input (Phase II) 
allocates storage for a phrase list 
terminator (Figure 39). If the state­
ment associated with th~s phrase list 
is dynamic, the next phrase list header 
will be formed and will overlay the 
current terminator. This procedure re­
sults in the automatic linking of phrase 

lists in dynamic statements. This logic 
has no effect on phrase lists associated 
with immediate statements, since all 
assigned storage is released following 
execution of the immediate phrase. 

Word 0 IDENTl 

Figure 38. Phrase List Terminator/ 
Continuation Trailer 

IDENTI contains the identification of 
this word. Possible codes and their 
meanings are: 

00 - TERMINAT 

04 - CONTINUE 

Identifies this as a 
phrase list termin­
ator. 

Identifies this as a 
continuation trailer. 

During the formation of an AT, 
DISPLAY, DUMP, or SET phrase list, a 
page overflow may occur during the 
phrase list storage allocation process. 
In this case, a continuation trailer 
(Figure 38), is formed at the end of the 
list. The phrase list is expanded by a 
page and PLDELTA is set to 4 thus re­
initializing the phrase list header. 
The entry which caused the overflow is 
then inserted in the phrase list. 

To minimize page referencing and/or 
phrase list storage allocation, the 
following exceptions should be noted: 

1. A BRANCH, GO, or STOP phrase list 
is an implicit phrase list ter­
minator. A termination trailer is 
not formed for these lists. 

2. A BRANCH, CALL, IF, GO, or STOP 
phrase list for an immediate phrase 
is formed in the PCS PSECT and is 
not inserted in the phrase list 
pages. 

Phrase list entry insertion is gov­
erned by the phrase list control 
routines. The formats of these entries 
are unique for each control routine. 
These control routines are discussed 
below. 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 187 



DISPLAY/DUMP CONTROL ROUTINE: An entry 
is made in the phrase list for each 
operand in the DISPLAY/DUMP phrase. The 
format of each entry is determined by 
the syntax used to express the operand 
and the process used to evaluate it. 

Register: 

Ward 0 IDENTl I IDENT2 UNUSED 

,Word 1 UNUSED REG' I REG2 

IDENTl identifies the type of register 

External Symbol: 

Word 0 IDENT! I IDENT2 I OUTYP I !SDNO 

Word , Dl 

Word 2 YMA 

Word 3 NAME1 

Word 4 OFFSET1 

entry. The possible codes and their Word 5 NAME2 

meanings are: 

04 - GENERAL Identifies a general 
register. 

08 - SINGLE 

OC - DOUBLE 

Identifies a single 
precision register. 

Identifies a double 
precision register. 

IDENT2 identifies the type of register 
entry when a register range has been 
specified. It contains the same 
codes as IDENTI. If the entry is for 
a single register (i.e., no range), 
IDENT2 will contain code 00 (NULL). 

REGl contains the number of the first 
register. 

REG2 contains the number of the last 
register specified in a range. If 
no range is specified, this entry is 
the same as REG1. 

% Count: 

Word 0 !DENT! I UNUSED 

Word 1 DL 

Word 2 YMA 

IDENTI identifies the type of entry. 
The code for a % count entry is: 

10 - PERCNT Identifies the dynamic 
count of the statement. 

DL is a word field containing the data 
length. 

VMA is the virtual storage address of 
the dynamic count in the current 
STATAB entry. 

188 

Word 6 OFFSET2 

IDENTl identifies the type of entry. 
The possible codes for an external 
symbol, and their meanings are: 

14 - EXTERN 

94 - EXTERN+ 
SOFFSET 

Identifies an external 
symbol. 

Identifies an external 
symbol with offset. 

IDENT2 identifies the existence of an 
external symbol range. The possible 
codes and their meanings are: 

00 - NULL No range specified. 

14 - EXTERN 

94 - EXTERN+ 
SOFFSET 

Identifies an external 
symbol range. 

Identifies an external 
symbol range with off­
set. 

OUTYP contains FLDOUTYP. 

ISDNO contains FLDISDNO. 

DL contains the number of bytes to be 
displayed/dumped. 

VMA contains the virtual storage address 
of the first external symbol. 

Nfu~El contains the address of the first 
symbol definition in the PMD. 

OFFSETl contains the address of the 
Polish string formed for the offset. 
This word is present only if IDENTl 
contains code 94 (EXTERN+SOFFSET). 

NAME2 contains the address of the second 
symbol definition in the PMD. This 
word is present if IDENT2 is not NULL. 

OFFSET2 contains the address of the 
Polish string formed for the offset 
of the second symbol. This word is 
present only if IDENT2 contains code 
94 (EXTERN+SOFFSET). 



Internal Symbols and Subscripted Arrays: 

Word 0 IDENT! I IDENT2 I OUTYP I UNUSED 

Word , DL 

Word 2 VMA 

Word 3 NAMEl 

Word 4 OfFSETl 

Word 5 NAME2 

Word 6 OFFSET2 

IDENTl identifies the type of entry. 
The possible codes for an internal 
symbol or subscriptec. array entry, 
and their meanings are: 

18 - INTERN 

20 - ARRAY 

98 - INTERN+ 
SOFFSET 

Identifies an internal 
symbol. 

Identifies a subscrip­
ted al:'ray. 

Identifies an internal 
symbol with offset. 

IDENT2 identifies the existence of an 
internal symbol range. The possible 
codes and their meanings are: 

cOO - NULL 

18 - INTERN 

20 - ARRAY 

98 - INTERN+ 
SOFFSET 

No ranqe specified. 

Identifies an internal 
symbol range. 

Identifies an internal 
symbol range. 

Identifies an internal 
symbol range. 

OUTYP contains FLDOUTYP. 

DL contains the number of bytes to be 
displayed/dumped. 

VMA contains the virtual storage ad­
dress of the first symbol entry. 

NAMEI contains the ISDMAP entry number 
for an ISD and an index into the ISD 
to locate the first symbol entry. 

OFFSET I contains the address of the 
Polish string formed for the offset/ 
subscript. This word is present if 
IDENTI contains either code 20 
(ARRAY) or 98 (INTEF~+SOFFSET). 

NAME2 contains the ISDMAP entry number 
for an ISD and an index into the ISD 
to locate the second symbol entry. 
This word is present if IDENT2 is 
not NULL. 

OFFSET2 contains the address of the 
Polish string formed for the sub­
script/offset of the second symbol. 
This word is present if IDENT2 con­
tains either code 20 (ARRAY) or 98 
(INTERN+SOFFSET) • 

Statement Number" " 

Word 0 IDENT! I IDENT2 I OUTYP . f UNUSED 

Word , DL 

Word 2 VMA 

Word 3 NAME' 

Word 4 OFFSETl 

Word 5 NAME2 

Word 6 OFFSET2 

IDENTI identifies the type of entry. 
The possible codes for a statement 
number entry, and their meanings are: 

IC - STATNO 

9C - STATNO+ 
SOFFSET 

Identifies a statement 
number. 

Identifies a statement 
number with offset. 

IDENT2 identifies the existence of a 
statement number range. The possible 
codes and their meanings are: 

00 - NULL 

lC - STATNO 

9C - STATNO+ 
SOFFSET 

No range specified. 

Identifies a statement 
number range. 

Identifies a statement 
number range with off­
set. 

OUTYP contains FLDOUTYP. 

DL contains the number of bytes to be 
displayed/dumped. 

VMA contains the virtual storage address 
of the first stateme~t number. 

NAMEI contains the ISDMAP entry number 
for an ISD and an index into the ISD 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 189 



to locate the first statement number 
entry. 

OFFSETI contains the address of the 
Polish string formed for the offset. 
This word is present if IDENTI con­
tains code 9C (STATNO+SOFFSET). 

NAME2 contains the ISDMAP entry number 
for an ISO and an index into the ISO 
to locate the second statement 
number entry. This word is present 
if IDENT2 is not NULL. 

OFFSET2 contains the address of the 
Polish string formed for the offset 
of the second symbol. This word is 
present if IDENT2 contains code 9C 
(STATNO+SOFFSET) . 

-Hexadecimal Address: 

Word 0 'DENT! I luENT2 I UNUSED 

Word 1 Dl 

Word 2 VMA 

IDENTI identifies the type of entry. 
The possible code for a hexadecimal 
address entry, and its meaning is: 

24 - ADDRES Identifies a hexa­
decimal address. 

IDENT2 identifies the existence of a 
hexadecimal address range. The 
possible codes and their meanings 
are: 

00 NULL No range specified. 

24 - ADORES Identifies a hexa­
decimal address range. 

DL contains the number of bytes to be 
displayed/dumped. 

VMA contains the virtual storage address 
of the first hexadecimal address. 

- Expression: 

Word 0 IDENTl I TYPE I UNUSED 

Word 1 Dl 

Word 2 EXPRESSION STRING 

IDENTI identifies the type of entry. 

190 

The possible code for an expression 
entry and its meaning is: 

28 - EXPRESS Identifies an expres­
sion. 

TYPE identifies the data type of the 
expression result. The possible 
codes, and their meanings, are: 

04 - ISDINT 

05 - ISDREL 

06 - ISDCHC 

07 - ISDHEX 

OE - ISDLOG 

Identifies an integer 
expression. 

Identifies a floating 
point expression. 

Identifies a character 
expression. 

Identifies a hexa­
decimal expression. 

Identifies a logical 
expression. 

DL contains the data length of the ex­
pression result. 

EXPRESSION STRING contains the address 
of the Polish string formed for the 
expression. 

-Command Variable: 

Word 0 IDENTl I UNUSED 

Word 1 DL 

Word 2 VMA 

Word 3 NAME 

IDENTI identifies the type of entry. 
The possible code for a command 
variable entry, and its meaning, is: 

2C - COMVAR Identifies a command 
variable. 

DL contains the data length of the com­
mand variable. 

VMA contains the virtual storage address 
of the data in the combined diction­
ary entry. 

NAME contains the virtual storage ad­
dress of the combined dictionary 
entry. 

SET CONTROL ROUTINE: An entry is made 
in the phrase list for each operand in 
the SET phrase. The format of an entry 
is determined by the syntax used to 
express the operand and the process used 
to evaluate it. 



• Register: 

Word 0 IDENT! I TYPE UNUSED 

Word 1 UNUSED REGI I UNUSED 

WOM 2 EXPRESSION STRING 

IOENTl identifies the type of register 
entry. The possible codes, and their 
meanings, are: 

04 - GENERAL Identifies a general 
register. 

08 - SINGLE 

OC - DOUBLE 

Identifies a single 
precision register. 

Identifies a double 
precision register. 

TYPE indicates the data type of the 
expression result. 

REGl contains the number of the register 
to be set. 

EXPRESSION STRING contains the address 
of the Polish string formed for the 
expression. 

• External Symbols: 

Word 0 IDE NT! I TYPE I UNU:;ED 

WOM 1 DL 

Word 2 VMA 

Word 3 NAME 

Word 4 OFFSET 

Word 5 EXPRESSION STRING 

IOENTl identifies the type ot entry. 
The possible codes for an external 
symbol entry, and their meanings, 
are: 

14 - EXTERN 

94 - EXTERN+ 
SOFFSET 

Identifies an external 
symbol. 

Identifies an external 
symbol with offset. 

TYPE contains the data type of the 
expression result. 

OL contains the number of bytes to be 
modified. 

VMA contains the virtual storage ad­
dress of the symbol. 

NAME contains the address of the symbol 
definition in the PMD. 

OFFSET contains the address of the 
Polish string formed for the offset. 
This word is present if IOENTl con­
tains code 94 (EXTERN+SOFFSET). 

EXPRESSION STRING contains the address 
of the Polish string formed for the 
expression. 

• Internal Symbols, Subscripted Arrays, 
and Statement Numbers: 

Word 0 IDENT! I TYPE I UNUSED 

Word 1 GL 

Word 2 VMA 

Word 3 NAME 

Word 4 OFFSET 

Word 5 EXPRESSION STRING 

IDENTl identifies the type of entry . 
The possible codes for an internal 
symbol, subscripted array, or state­
ment number entry, and their mean­
ings, are: 

18 - INTERN 

lC - STATNO 

20 - ARRAY 

98 - INTERN+ 
SOFFSET 

9C - STATNO+ 
SOFFSET 

Identifies an internal 
symbol. 

Identifies a statement 
number. 

Identifies a sub­
scripted array. 

Identifies an internal 
symbol with offset. 

Identifies a statement 
number with offset. 

TYPE indicates the data type of the ex­
pression result. 

OL contains the number of bytes to be 
modified. 

VMA is the virtual storage address of 
the symbol. 

NAME contains the ISOMAP entry number 
for an ISO and an index into the ISO 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 191 



to locate the defining symbol/state­
ment number entry. 

OFFSET is the address of the Polish 
string formed for the offset/sub­
script. This word is present if 
IDENTI contains either code 98 
(INTERN+SOFFSET), or 9C (STATNO+ 

SOFFSET) • 

EXPRESSION STRING contains the address 
of the Polish string formed for the 
expression. 

• Hexadecimal Address: 

Word 0 IDENT! I TYPE I UNUSED 

Word ! Dl 

Word 2 VMA 

Word 3 EXPRESSION STRING 

IDENTI -identifies the type of entry. 
The possible code for a hexadecimal 
address entry, and its meaning, is: 

24 - ADDRES Identifies a hexa­
decimal address. 

TYPE contains the data ~ype of the ex­
pression result. 

DL contains the number of bytes to be 
modified. 

VMA contains the virtual storage address 
of the first byte to be modified. 

EXPEESSION STRING contains the address 
of the Polish string formed for the 
expression. 

• Undefined Command Variables: 

Word 0 IDENT! I TYPE I UNUSED 

Word 1 Dl 

Word 2 

COMMAND VARIABLE NAME 

Word 3 

Word 4 EXPRESSION STRING 

IDENTI identifies the type of entry. 
The possible code for an undefined 
command variable, and its meaning, 
is: 

192 

30 - UNDEFINE Identifies an undefined 
command variable. 

TYPE contains the data type of the ex­
pression result. 

DL contains the data length of the ex­
pression result. 

COMMAND VARIABLE NAME contains the 8 
character name of the command vari­
able being defined/redefined. 

EXPRESSION STRING contains the address 
of the Polish string formed for the 
expression. 

• PCS Input (Phase II) modifies an un­
defined command variable entry as shown 
below. 

WoniO IDENTl I TYPI' I UNUSED 

WO<d 1 Dl 

Word 2 VMA 

Wofd3 NA.ME 

Woni' GENERA TED CODE 

IDENTI identifies the type of entry. 
The possible code, and its meaning, 
is: 

2C - COMVAR Identifies a command 
variable. 

TYPE indicates the data type of the 
expression result. It is used to 
define the entry code for the com­
mand variable. 

DL contains the data length of the ex­
pression result. It is used to de­
fine the data length of the command 
variable. 

VMA contains the virtual storage address 
of the data in the combined diction­
aryentry. For integer, floating 
point, and hexadecimal command vari­
ables, the data is initialized to 
zero. For character command vari­
ables, the data is initialized to 
blanks. 

NAME contains the virtual storage ad­
dress of the combined dictionary 
entry formed. 

GENERATED CODE contains the address of 
a sequence of instructions that eval­
uate the expression. 



CALL CONTROL ROUTINE: A single entry is 
made in the phrase list for the CALL 
phrase. This entry has the format 
shown below: 

Word 0 VCONPTR 

Word ! NAMEPTR 

Word 2 FLAGS 

Word 3 

NAME 

Word 4 

Word 5 VCON 

Word 6 RCON 

Word 7 PARAMETER COUNT 

Word 8 PARAMETER 1 

Word 9 PARAMETER 2 

Word 10 PARAMETER 3 

Word 11 PARAMETER 4 

Word 12 PARAMETER 5 

VCONPTR contains the addreSS of word 5, 
VCON. 

NAMEPTR contains the address of word 3, 
NAME. 

FLAGS contains various flags of impor­
tance to CZAMZ (USER CONTROL). When 
called by PCS this word is always zero. 

NAME contains the name of the module 
being called. 

VCON contains the virtual storage ad­
dress of the module's entry point. 

RCON contains the virtual storage ad­
dress of the module's PSECT. 

PARAMETER COUNT indicates the number of 
parameters contained in the list. 
It is initially set to zero, and is 
incremented by one for each para­
meter specified. The parameter count 
has a limit, imposed by PCS, of five. 

PARAMETER x contains the address of the 
Polish string formed for the para­
meter. 

BRANCH CONTROL ROUTINE: A single entry 
is made in the phrase list for a BRANCH 
phrase. The format of an entry is de­
termined by the syntax used to express 
the operand, and the process used to 
evaluate it. 

External Symbol: 

Word 0 lDENTl I 
Word 1 VMA 

Word 2 NAME 

Wo<d 3 OFFSET 

IDENTl identifies the type of entry. 
The possible codes for an external 
symbol, and their meanings, are: 

14 - EXTERN Identifies an external 
symbol. 

94 - EXTERN+ Identifies an external 
SOFFSET symbol with offset. 

VMA contains the virtual storage address 
of the symbol. 

NAME contains the address of the symbol 
definition in the PMD. 

OFFSET contains the address of the Polish 
string formed for the offset. This 
word is present if IDENTI contains 
code 94 (EXTERN+SOFFSET). 

Internal Symbols and statement Numbers: 

Word 0 IDENT! I 
Word 1 VMA 

Word 2 NAME 

Word 3 OFFSET 

IDENTI identifies the type of entry. 
The possible codes for an internal 
symbol or statement number entry, and 
their meanings, are: 

18 - INTERN Identifies an internal 
symbol. 

lC - STATNO 

98 - INTERN+ 
SOFFSET 

Identifies a statement 
number. 

Identifies an internal 
symbol with offset. 

9C - STATNO+ Identifies a statement 
SOFFSET number with offset. 

VMA contains the virtual storage address 
of the symbol. 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 193 



NAME contains the ISDMAP entry number 
of an lSD, and an index into the ISD 
to locate the defining symbol/state­
ment number entry. 

OFFSET contains the address of the 
Polish string formed for the offset. 
This word is present if IDENTI con­
tains either code 98 (INTERN+SOFFSET) 
or 9C (STATNO+SOFFSET). 

Hexadecimal Address: 

Word 0 

I '''"' 
VMA Word I 

IDENTI identifies the type of entry. 
The possible code for a hexadecimal 
address entry, and its meaning, is: 

24 - ADDRES Identifies a hexa-
decimal address. 

VMA contains the hexadecimal address. 

GO CONTROL ROUTINE: The GO control 
routine produces no phrase list entries. 
The phrase list for a GO statement con­
sists of a phrase list header only. 

IF CONTROL ROUTINE: A single entry is 
made in the phrase list for an IF 
phrase. The format of the entry is 
shown below: 

Word 0 EXPRESSION STRING 

EXPRESSION STRING contains the address 
of the Polish string formed for the 
expression. 

STOP CONTROL ROUTINE: The STOP control 
routine produces no phrase list entries. 
The phrase list for a STOP statement 
consists of a phrase list header only. 

AT CONTROL ROUTINE: An entry is made 
in the phrase list for each operand in 
the AT phrase. The format of the entry 
is shown below: 

Word 0 ATVMA 

Word 1 ATNEXT 

ATVMA contains the virtual storage ad­
dress of the operand. If the oper­
and is expressed as a symbol with 
offset, code is generated to eval­
uate the offset. The code is then 
executed and the virtual storage 
address of the symbol is incremented 
by the offset. The resultant VMA is 
stored in ATVMA. 

194 

ATNEXT indicates the next STATAB entry 
to be processed. It is initialized 
to zero. 

Phrase List Processing (Phase II) 

PCS Input (Phase II) locates the 
phrase list(s) formed by Phase I. The 
identification of each phrase list and 
phrase list entry is inspected. If the 
list or entry contains a pointer to a 
Polish string, code is generated to 
evaluate the Polish string and the ad­
dress of the generated code overlays 
the address of the Polish string. 

If the statement is dynamic, the AT 
phrase list is processed after the gen­
eration of necessary code. A LOCTAB 
entry is then formed for each entry in 
the AT phrase list. An SVC is assoc­
iated with the LOCTAB entry and is 
stored in the user's program. The 
LOCTAB entry is linked to the current 
STATAB entry and the AT phrase list 
entry is linked to the LOCTAB entry. 

If a LOCTAB entry has already been 
formed for the AT phrase list entry of 
the current dynamic statement, it was 
formed as the result of a previous 
dynamic statement. In this case, the 
STATAB/AT phrase list chain is followed, 
to locate the last AT phrase list entry 
in the chain which is then linked to 
the current STATAB entry. The current 
AT phrase list entry is linked to the 
LOCTAB entry. 

The linkage relationships between 
LOCTAB, STATAB, and AT phrase list 
entries, is shown in Figure 39 for the 
following example: 

Statement 1: AT A 
Statement 2 : AT A,B,C 
Statement 3 : AT A,D 
Statement 4: AT B,D 

POLISH STRING (POLISH) 

Polish String Organization 

PCS Input (Phase I) forms a Polish 
string for each expression. Entries in 
a Polish string consist of: a header 
entry for the expression, an entry for 
each operand and operator in the ex­
pression, and a trailer entry to control 
the processing of the Polish string. If 
an operand is subscripted or offset, the 
operands and operators of the subscript/ 
offset Polish string are included in the 
Polish string for the expression. 



STATAS 

SlEJJ 

b 
"CE] A(SZ) "tE A(PL2) 

"BE A(S2) 
~tE 

A(Pl3) 

"BE A(S3) 
~tE 

A(Pl4) 

A zero in the second word 
(ATNEXT) of 0 phrase Ii ,t 
entry I ind.cates the end of 
the chain. 

PLI 

Pl2 

PLl 

Pl4 

PHRASE LIST 

AT Head.r 

A(lA) }, '." 
A(S2) 

AT Header 

A(lA) 

A entry 

A(S3) 

A(lS) 

8 entry 

A(S4) 

A(lC) 

C entry 

0 

~ 

AT Head.r 

A(LA) 

A entry 

0 

A(LO) 

o entry 

A(S4) 

-
AT Head.r 

A(lS) 

8 entry 

0 

A(lD) 

o entry 

0 

~ 

Figure 39. Linkage relationships 
between LOCT.A.B, STATAB, 
and Phrase Lists 

The header entry contains information 
pertinent to the entire expression, such 
as, the type of arithmetic and registers 
to be used in the evaluation of the ex­
pression, and the data type and length 
of the expression result. 

The trailer entry is used for con­
trol and indicates either the end of the 
Polish string, or a continuation of the 
Polish string into another page of stor­
age. 

An example of a Polish string formed 
for the expression B+C is shown in 
Figure 41. Note that this example 
assumes a Polish string extending only 
one page in length. 

Since the operators, AND (&) and OR 
(I), separate logical expressions, it 
is necessary to have a header entry for 
each expression. For example, in the 
expression: A=B & C=D, one header would 
be formed for the expression A=B, and 
another for the expression C=D. 

Since all expressions within sub­
scripts and offsets must be evaluated 
in general registers, and the length of 
the subscript/offset result is always 
four bytes, it is not necessary to form 
a header entry for a subscript/offset 
Polish string. 

Page Control 

Header For txpreuion 8 + C 

Operand S 

Operand C 

+ Operator 

T roiler Indicating End 

[ Next Pogo (0) 

Figure 40. Sample Polish String 

Note: Evaluation of subscripts and 
offsets is performed using logical 
arithmetic wherever possible. An Add 
Logical or Subtract Logical will be 
generated for plus and minus operators 
rather than an Add or Subtract. In the 
evaluation of a subscript expression 
(which is really an integer expression), 
a fixed point overflow cannot occur. 
This error is diagnosed as a dimension 
check error. 

POLISH STRING HEADER: A Polish string 
header for an expression has the form: 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 195 



'Word 0 EXPHEAD I VARLOAD I VARTYPE I POLTYPE 

Word 1 VARlNG 

Word 2 CONLNG 

Word 3 EXPTYPE I VALIDOP I OPERANDI I 

• EXPHEAD identifies this entry as a 
Polish string Header. The possible 
code for this entry and its meaning, 
is: 

84 - POLHEAD Identifies a Polish 
String Header. 

VARLOAD contains the variable load indi­
cators which are used to determine 
whether or not the expression can be 
evaluated. The indicators are also 
used in selecting the appropriate 
prompt for type diagnostics. These 
indicators are initialized to zero 
and are selectively modified in the 
formation of the Polish string. The 
possible codes, and their meanings, 
are: 

01 - NONFP 

02 - NONGP 

04 - NONST 

196 

Indicates that the ex­
pression is not load­
able in a floating 
point register. This 
indication is set if a 
variable is not 4 or 8 
bytes in length. It 
is also set if an in­
teger constant, char­
acter constant, or 
hexadecimal constant 
is encountered in the 
expression. 

Indicates that the ex­
pression is not load­
able in a general 
purpose register. This 
indication is set if a 
variable is not 1, 2, 
or 4 bytes in length. 
It is also set if a 
character constant or 
floating point constant 
is encountered. 

Indicates that the ex­
pression cannot be 
evaluated in a storage 
to storage process. 
(i.e., the operands 
must be loaded into a 
register in order to 
evaluate the expres­
sion). This indication 
is set under the 
following conditions: 

If an arithmetic oper­
ator {*/+-} is en­
countered in the ex­
pression; if an integer 
constant or floating 
point constant is en­
countered; if all vari­
ables in the expression 
are not the same length; 
or if the length of the 
expression result is 
not equal to the length 
of the receiving oper­
and (i.e., the operand 
on the left of the 
equal sign in a SET 
phrase) . 

08 - NONALIGN Indicates the presence 
of an unaligned vari­
able. This indication 
is set if a variable 
is not aligned on the 
appropriate word 
boundry consistent with 
the length of the 
variable. 

VARTYPE identifies the data type of de­
fined variables. It is initialized 
to 00 (UNDEFINED). The data type of 
the first defined variable en­
countered is entered into VARTYPE. 
The data type of subsequent vari­
ables must agree with the contents 
of VARTYPE. If a variable type dis­
agreement occurs, VARTYPE is set to 
FF (ERROR), a diagnostic is issued 
and the user is prompted for type 
definition. 

POLTYPE identifies the data type of the 
expression. It is initialized to 00 
(UNDEFINED). The data type of the 
first constant is stored in POLTYPE. 
All subsequent constants must agree 
with POLTYPE or the expression is 
rejected. VARTYPE, if defined, must 
agree with POLTYPE or a data type 
diagnostic is issued. (Note: 
POLTYPE specifies the data type of a 
command variable established through 
a SET phrase. POLTYPE also specifies 
the output format of an expression, 
if the result is to be displayed/ 
dumped. ) 

VARLNG specifies the byte length of the 
expression result. It is initially 
set to zero. In the process of 
forming a Polish string, it is set 
to the byte length of the longest 
variable. If the expression does 
not contain a variable, VARLNG is set 
to the length of the receiving oper-



and. If the length of the receiving 
operand is undefined, VARLNG is set 
to the value contained in CONLNG. 
(Note: VARLNG contains the data 
lenght of a command variable estab­
lished through a set phrase. VARLNG 
also indicates the length of a pa­
rameter in a CALL phrase and the 
length of an expression in a DISPLAY 
or a DUMP phrase.) 

CONLNG specifies the byte length of the 
longest constant in the expression. 
Integer constants, address constants 
and single precision constants are 
always four bytes in length. Double 
precision constants are always eight 
bytes long. CONLNG is set to the 
byte length of the converted result 
of character and hexadecimal con­
stants. Any padding characters 
involved in the internal processing 
of character or hexadecimal con­
stants, are not included in the 
length indication contained in 
CONLNG. 

EXPTYPE contains the indicators which 
identify the operators encountered. 
These indicators are initialized to 
00 and are selectively modified 
during the formation of the Polish 
string. The possible codes, and 
their meanings, are: 

01 - EXPARI 

02 - EXPREL 

04 - EXPLOG 

Identifies the occur­
rence of an arithmetic 
operator (+,-,*, or /). 

Identifies the occur­
rence of a relational 
operator (=,1 =,>,1 >, 

.2 ,<,1 <" or.::;). 

Identifies the occur­
rence of a logical 
operator (&,\,or ). 

For the second heade~ formed for an 
expression, these indicators are 
initialized to EXPLOG. 

VALIDOP contains the valid operator in­
dicators. These indicators have the 
same values and meanings as de­
scribed in EXPTYPE (:2:XPARI, EXPREL, 
and EXPLOG). These indicators are 
initialized to one to indicate that 
all operators are valid. When an 
operator is encountered, the indi­
cator for that particular operator 
type is checked to determine whether 
or not the current operator is valid. 

If the operator is deemed valid, the 
indicators are selectively modified 
as follows: 

Operator Type Action 

Relational If a relational op­
erator is encoun­
tered, subsequent 
relational oper­
ators are considered 
invalid. VALIDOP 
is set to EXPLOG 
and EXPARI. 

Arithmetic If an arithmetic 
operator is en­
countered, a check 
is made to deter­
mine whether or not 
a relational oper­
ator is valid. If 
a relational oper­
ator is valid, log­
ical operators are 
considered invalid 
and VALIDOP is set 
to EXPREL and 
EXPARI. If a re­
lational operator 
is deemed invalid, 
VALIDOP is not 
modified. 

Logical If a logical oper­
ator is encountered, 
all operators are 
considered valid 
and VALIDOP is set 
to EXPLOG, EXPREL, 
and EXPARI. 

OPERANDI indicates when an operand is 
present. It is set when an operand 
is encountered and cleared when an 
operator is encountered. If this 
indicator is not set when an exp­
ression or subexpression ends, a 
diagnostic is issued. 

• Polish String Operand Entry: A Polish 
string operand entry has the following 
form: 

Word 0 POLINDI I POLlND2 I POlDIMD I UNUSED 

Word I POlDL or SUB PST 

Word 2 POlVMA 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 197 



POLINDI contains miscellaneous Polish 
string indicators. The possible 
codes, and their meanings, are: 

01 - POLLOG Identifies a logical 
unuary indicator. If 
POLLOG is set in an 
operand entry, the op­
erand is to be log­
ically negated before 
combining it with any 
other operand. If 
POLLOG is set for an 
operator entry, the 
result of combining 
the two operands by 
the operator is to 
be logically negated. 

02 - POLARITH Identifies an arith­
metic unary indicator. 
If POLARITH is set in 
an operand entry, the 
operand is to be arith­
metically negated 
before combining it 
with another operand. 
If POLARITH is set for 
an operator entry, the 
result of the two op­
erands combined by the 
operator is to be 
arithmetically negated. 

04 - POLCON 

08 - POLDIM 

10 - POLOPT 

Identifies a constant 
operand. 

Identifies a dimension 
operand of a subscript 
Polish string. 

Identifies an operator 
entry. If this indi­
cator is not set, the 
entry is considered 
to be an operand. 

40 - POLSUB Identifies an operand 
entry of Polish string 
formed for a subscript/ 
offset. 

80 - POLCTRL Identifies a control 
entry. This indicator 
is set for a Polish 
string header, a con­
tinuation trailer, or 
a termination trailer. 

POLIND2 contains miscellaneous Polish 
string indicators. The possible 
codes and their meanings, are: 

198 

01 - POLINREG Identifies an operand 
in a register. This 
indicator is set when 
code has been gener­
ated to load the op­
erand into a register. 

02 - POLSTORE Identifies a stored 
subexpression. If an 
operand must be loaded 
into a register, a data 
register is assigned. 
If, however, all data 
registers are in use, 
code is generated to 
store the contents of 
a data register in the 
PCS PSECT. The oper­
and entry for the data 
register stored is 
identified as a stored 
sUbexpression. 

04 - POLBASE Identifies an operand 
entry whose virtual 
storage address has 
been changed to a base 
and displacement. 

40 - ISDDUM Identifies a dummy 
variable operand entry. 
This bit is obtained 
from the data type 
field of the defining 
internal symbol dic­
tionary entry for the 
operand. 

80 - POLALIGN Identifies an operand 
entry whose virtual 
storage address is 
unaligned. A dummy 
variable operand and 
an offset operand are 
assumed to be un­
aligned. 

POLDIMD contains the dimension factor 
displacement (an index into the ISD 
entry for an array). An ISD entry 
consists of five words plus an 
additional word for each dimension 
in the array. For the first dimen­
sion entry formed, this index is 
initialized to 16 (i.e., an index 
from the first byte of the ISD entry 
to the fifth word, which represents 
the length of an array element). 
For subsequent dimension operand 
entries, this index is incremented 
by 4 to shift to the next dimension 
factor. 



POLOL contains the data length of the 
operand. 

SUBPST contains the base address, for a 
dimension operand, of i~he PSECT for 
the compiled module wh:Lch produced 
the ISO. SUBPST is used in SUBGEN 
to locate address constants when a 
dununy variable array has adjustable 
dimensions. 

POLVMA contains the data location of a 
variable. If the operand is a con­
stant, the constant will have been 
stored in the address contained in 
POLVMA. The length of a constant 
entry is POLOL+8 bytes in length. 

In the process of generating code, 
POLVMA is subject to modification. 
It has the following format: 

D2 

When a base register is assigned, 
(via GETBASE), for the virtual stor­
age address of the variable, the page 
containing the address is assigned 
to a base register, the number of 
which is stored in B2, and the page 
increment is stored in 02. For 
dimension factors obtained from the 
ISO, the assigned base register con­
tains the virtual storage address of 
the ISO entry for the array. The D2 
field is set to POLoum of the oper­
and entry. The POLBASE indicator is 
set to idnetify the fact that POLVMA 
is in base/displaceme~t form. If a 
subscript or offset is to be applied, 
the number of the register containing 
the subscript/offset is stored in the 
X2 field (SUBGEN). 

When a data register is assigned 
to the operand, GETREG stores the 
number of the register assigned in 
the RI field. The con®and to load 
the operand is generated; all fields, 
excepting the Rl field, are cleared; 
and the POLINREG indicator is set. 

When the contents of a register 
must be stored, GETREG generates the 
code necessary to store the number 
of the register in the RI field in 
the PCS PSECT. The B2 field is set 
to identify the regis1:~er covering 
the PCS PSECT (register 13), and the 
02 field is set to the displacement 
into the PSECT. The indicator, 

POLSTORE, is set to identify a stored 
subexpression. 

POLISH STRING OPERATOR ENTRY: A Polish 
string operator entry has the form: 

Word 0 STACKIND I OPBRIX I'POLOP POLPRI 

STACKINO contains miscellaneous Polish 
string indicators. These indicators 
are discussed under POLINOI of the 
operand entry discussion above. 

OPBRIX identifies the operator. Thie 
operator index is eventually trans­
lated into actual machine code. The 
index values are: 

o - add or subtract operations. 

1 multiply operation. 

2 - divide operation. 

3 - compare operation. 

4 - AND operation. 

5 - OR operation. 

POLOP contains the mask to be placed into 
branch-on-condition conunands for re­
lational operators. 

POLPRI contains the operator priority 
indicator. This indicator is used in 
phase I. The operator priorities are: 

o - subscript/offset and base addi­
tion. 

1 - multiply or divide. 

2 - add or subtract. 

3 - greater than, less than, greater 
than or equal to, less than or 
equal to, equal to, not greater 
than, not less than, not equal to. 

4 - AND. 

5 - OR. 

6 - subscript comma. 

7 - right parenthesis or terminator. 

8 - left parenthesis. 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 199 



POLISH STRING TRAILER: A Polish string 
header has the form: 

V";ord 0 POLINDI 

POLINDI identifies this entry as a 
Polish string trailer. The possible 
codes and their meanings, are: 

81 - POLTERM Identifies a Polish 
string terminator. 

82 - POLOVF Identifies a Polish 
string overflow 
(Continuation Trailer) . 

DISPLAY LIST (DISPLIST) 

The display list (Figure 42), is 
created and used by the DISPLAY/DUMP 
subroutine. It resides in the DISPLAY/ 
DUMP PSECT and is used for communication 
between subroutines. 

The display list is divided into 
three main parts: 

(1) The DISPLIST Header (words 0-4), 
which contains the information origin­
ally developed in housekeeping and 
NEXTLIST. This header is required by 
all DISPLAY/DUMP routines. 

(2) The 
contains 
the data 
the case 

first item in DISPLIST, which 
the information pertinent to 
item (or first data item, in 
of a range). 

(3) The second item in DISPLIST, which 
has the same format as (2) above, and 
is required to describe the last data 
item in a range. Information in (2) and 
(3) is gathered from the phrase list 
in NEXTLIST and from the ISD in NEXTISD. 

DHFLAG identifies the first word of the 
header, and contains miscellaneous 
flags for the DISPLAY/DUMP sub­
routine. The possible codes, and 
their meanings, are: 

200 

04 - DOFFRNG Identifies an offset 
range. This indicator 
is set when an offset 
range is specified in 
the phrase list. 

10 - DNOISDF Identifies the absence 
of an ISD. This indi­
cator is set when an 
area between two ISD 

Word 0 

Word 1 

Word 2 

Word 3 

Word 4 

Word 5 

Word 6 

Word 7 

Word 8 

Word 9 

Word 10 

Word 11 

Word 12 

Word 14 

7 
3 
7 

Word •. 19121,2 
25,2 
16, 

Words 20,22,2 

~ 
15,1 

I~I . 26,2B 

Figure 41. 

DHFLAG DHFLAG2 DACTION DQISDMAP 

DPAREPTR 

DPARlPTR 

DDUMPMAX DDISPMAX 

DliNEPTR 

UNUSEDI 

DIDENT DTYPE DNOSUB DIFLAG 

DSECNO DOUTYPE! DOUTISD UNUSED 

DISDPTR 

DISDMAP 

DTEMPlOC 

DBEGVMl 

DENDVMl 

DlNG 

DOFF 

DSUBVAl 

DSUBDIM 

Display List (DISPLIST) 
Format 

entries is being dis­
played. 

40 - DINFORF Identifies an instruc­
tion format. This 
indicator is set to 
display a variable in 
the assembler format. 

80 - DFTIMEF Identifies the proc­
essing of the first 
entry in a range. This 
indicator is on when 
processing the ISD for 
the first entry in a 
range, and off for 
second and subsequent 
entries in a range. 

DHFLAG2 identifies the second word of 
the DISPLIST Header, and contains 
miscellaneous flags for the DISPLAY/ 
DUMP subroutine. The possible codes 
and their meanings, are: 



02 - DSVCF Identifies the presencE 
of a PCSVC. This indi­
cator is set when 
formatting an instruc­
tion which has been 
overlaid by a PCSVC. 

04 - DDIAGNO Identifies the presence 
of a diagnostic. This 
indicator is set to 
signal diagnostics that 
occur in DUMP commands 
to be issued via GATE. 

08 - DBYADJF Indicates that an 
adjustment is to be 
bypassed. This indi­
cator is used in. the 
formatting of hexa­
decimal ranges. 

10 - DSTOPF Indicates that a 
diagnostic has been 
issued. 

20 - DINHDRF Identifies the fact 
that ~n instruction 
header line has been 
DUMPed/DISPLAYed. 

40 - DBR 2 Identifies a base reg­
ister. This indicator 
is set when cross 
referencing a second 
symbol. . 

dO - DBR 1 Identifies a base 
register. This indi­
cator is set when cross 
referencing the first 
symbol. 

DACTION identifies the action to be 
taken by the subrout:ine. This indi­
cator is set in housekeeping from 
information contained in the phrase 
list. It can indicate a Display, 
Dump or Set. 

DQISDMAP qualifies the ISD map index. 
This indicator is set in house­
keeping from information in the 
phrase list. 

DPAREPTR identifies the phrase list 
entry. This phrase list entry 
pointer was originally passed as an 
argument from PCS Output, and points 
to the current position in the phrase 
list. 

DPARLPTR identifies the phrase list. 
This phrase list pointer points to 
the end of the current phrase list. 

DISPMAX indicates the maximum number of 
characters in a SYSOUT line. This 
indicator is initialized to 120. 

DUMPMAX indicates the maximum number of 
characters in a PCSOUT line. This 
indicator is initialized to 120. 

DLINEPTR indicates the next available 
position in a line. 

DIDENT identifies the FROM entry. This 
indicator is set from information 
contained in the phrase list. See 
FLDIDl under Data Field Item. 

DTYPE identifies the type of data to be 
dumped, displayed or set. This 
indicator is set from information in 
the lSD, or generated for non-ISD 
items. It is set from information 
contained in the phrase list, for a 
SET statement. See LOCTYPE under 
Data Location Item. 

DNOSUB contains a subscript count which 
is set for arrays. 

DIFLAG contains miscellaneous flags 
which have the following possible 
codes: 

02 - DOFFLAG Identifies an offset 
item. 

04 - DHEXADDF If the indicator is 
set, the location 
counter is formatted 
as 8 hexadecimal 
digits. If it is not 
set, the location 
counter is formatted 
as a 2 digit control 
section number and a 
5 digit increment. 

08 - DSUBFLG Identifies the sub­
field in an overlay 
as being processed. 

20 - DQUALF Identifies a qualifi­
cation flag. This 
indicator is set to 
suppress qualification 
of internal symbols. 

40 - DLITEMF Identifies the last 
item. This last item 
indicator is set when 
the last item has been 
processed. 

80 - DARRAYF Identifies an array. 

INTERNAL AND EXTERNAL TABLE REFERENCE DATA 201 



DSECNO identifies the section number. 
This indicator is set from infor­
mation contained in the ISD. 

DOUTYPE is filled in from OUTYP in the 
Phrase List. 

DOUTISD is filled in from ISDNO in the 
Phrase List. It is only used when a 
request for symbolic output is made 
in the form external symbol with 
offset. 

DISDPTR is the ISD/FSD pointer. This 
indicator is set from the displace­
ment in the phrase list and the ISD 
map. 

DISDMAP contains the pointer to the ISD 
map. This pointer is set as a result 
of the search of the ISD map. 

DTEMPLOC indicates the displacement of 
an item from the control section. 
This indicator is used for control­
ling the processing of the next ISD 
item. 

DBEGVML indicates the beginning virtual 
storage location of the item. This 
indicator is set from information in 
the phrase list and adjusted by the 
offset or subscript, as required. 

202 

DENDVML indicates the ending virtual 
storage location of the item. This 
indicator is set from information in 
the phrase list and adjusted by the 
offset or subscript, as required. 

DLNG indicates the length of the item. 
This indicator is set from infor­
mation in the lSD, or generated for 
non-ISD items. 

DOFF indicates the subscript/offset. 
This indicator is set as the result 
of executing generated code. 

DSUBVAL contains the subscript value. 
This indicator is initialized to one 
for arrays. (See Note below.) 

DSUBDIM contains the subscript dimen­
sion. This indicator is set for 
arrays, using the dimension factors 
contained in the ISD. (See Note 
below. ) 

Note: Space in the display list has 
been allocated for seven subscripts. 
This makes the total length of the item 
list 92 bytes and the complete list 
(consisting of one header and two dis­
play lists) 208 bytes in length. 



Formats of displayed data correspond 
to the way the data field was specified 
in the PCS statement. T"'lelve specifi­
cations are defined, each with a unique 
IDENT value and entry format in the 
DISPLAY/DUMP phrase list.. These are: 

1. General register 

2. Single precision register 

3. Double precision reqister 

4. % count 

5. Internal symbol 

6. FORTRAN statement number 

7. Subscripted array 

8. External symbol 

9. Hexadecimal address 

10. Expression 

11. Command Variable 

12. Offset (with 5, 6, 8, or 9 above) 

SINGLE DATA LOCATIONS OF: ARRAYS 

1. Register -- will be displayed as 
follows: 

nR==FFFFFFFF 

General purpose register n in 
hexadecimal. 

nE=±.XXXXXXXXE±XX 

Single precision floating point 
register. 

nD=±.XXXXXXXXXXXXXXXXD±XX 

Double precision floating point 
register displayed in FORTRAN 
floating point format. 

2. Internal symbol -- (Array or simple 
variable - same entry format) will 
be converted according to data 
type. These are: 

APPENDIX G: DISPLAY/DUMP OUTPUT FORMATS 

Integer (halfword) 

+XXXXX 

Integer (fullword) 

+XXXXXXXXXX 

Real (single precision) 

~ • XXXXXXXX E ± xx 
Real (double precision) 

+XXXXXXXXXXXXXXXXDd:XX 

Complex 

(~.XXXXXXXXE±XX,±.XXXXXXXXE±XX) 

Logical 

TRUE or FALSE 

Address 

FFFFFFFF 

Immediate 

+XXXXXXXXXX 

Instruction 

See item 7 

Character 

Actual character string 

Simple variables will be displayed 
as: 

A=value 

if a QUALIFY BY 
statement was used 

or 

PGM.A=value 

if not. 

Arrays will be displayed by rows. 
A new column will start at the 

DISPLAY/DUMP OUTPUT FORMATS 203 



beginning of a line. For example, a 
7 by 4 array is displayed as: 

(1,1) 

(5,1) 

(1,2) 

(5,2) 

Equal lines will be suppressed with 
a comment: 

(1,3): (7,4) CONTAINS (VALUE) 

3. % count (may only be displayed as 
part of an AT statement) -- will be 
displayed as a halfword integer. 

Statement: AT [location] iDISPLAY % 

Response (when location is reached): 
%=XXXXX 

4. Hexadecimal -- data will be displayed 
in hexadecimal with an address given 
in hexadecimal. 

Statement: DISPLAY L'3CF' 

Response: 3CF = 9A 

5. External or internal symbol with 
offset -- (same entry format) will 
be displayed in hexadecimal. 

Statement: DISPLAY A. (10) 

Response: A. (10) 4F 

6. Subscripted array -- will be display­
ed according to the data type as 
described. 

Statement: DISPLAY A(I,J) 

Response: A{X,Y) = value 

where X and Yare the current 
values of I and J. 

7. FORTRAN statement number -- will 

204 

be displayed as an instruction. 
Both FORTRAN statement instructions 
and assembler instructions will be 
displayed in the same format. The 
instructions will be converted to 
hexadecimal and symbolic, as in the 
assembler format. Operation codes 
will be replaced with the standard 
mnemonics, with assembler-extended 
mnemonics for branches. A symbolic 
reference will be made where pos­
sible, when instructions refer­
encing storage have base registers 
defined in USING statements. No 

cross referencing will be attempted 
on FORTRAN instructions. 

Statement: DISPLAY NEXT 

Response: (headings are printed 
only once): 

LOC INSTRUCTION LABEL OPC OPERANDS SYMBOL 

01 00022 4330 F042 NEXT IC 3,66(0,15) SWITCH 

RANGES 

Examples are given below where the 
from-to types are the same. All pos­
sible combinations are shown in Table 2. 

1. Register -- general purpose reg­
isters and single precision 
floating point registers will be 
displayed in a series on a line. 
The order of display is the same 
as the order of input. 

Statement: DISPLAY 15: OR 

Response: 15:0R FFFFFFFF FFFFFFFF 

2. Internal symbols items will be 

3. 

converted according to the data 
type, as described. The form is: 

A:B 

where A and B may be either an 
array, a simple variable, or a 
statement number. The display 
format for A and B is as des­
cribed for internal symbols. If 
the range includes areas for which 
a type is not known, those areas 
will be displayed in hexadecimal. 
Simple variables appearing between 
two instructions in a range will 
be displayed in the assembler DC 
format. 

Hexadecimal -- if either data lo­
cation is expressed with a hexa­
decimal number, the entire field 
will be displayed in hexadecimal. 
For example: 

DISPLAY L'103':L'127' 

will be displayed as (if the range 
required more than one line): 

103 FF FFFFFFFF ______ _ 

11 0 FFFFFFFF 

120 



aligned so that the second and 
following lines will start on a 
boundary that is a multiple of 16. 
Equal lines will be suppressed 
with a corrunent: 

120: IFF CONTAINS 00000000 

4. External or internal symbol with 
offset -- will be displayed in 
hexadecimal in the same format as 
described in 3, above. This also 
applies when this type is used with 
an internal symbol (,=ither to or 
from) • 

5. Subscripted array -- will be dis­
played as shown for arrays, except 
that the limits will be the current 
values of the subscripts. 

Internal symbols, statement numbers, and 
external symbols having an offset will 
be displayed in hexadecimal, in the same 
format as described in (3) I above; this 
applies equally whether the offset is 
associated with the from or to location. 

Table 2. Display Formats for Ranges 

~ 
I 2 3 4 5 6 

FROM 

I general 
hex register 

2 .Ingl. 
Ip precision 

3 doubl. 
fp 

precision 

'" % count-

5 internal isd 

6 statement isd 
number 

7 arTay Isd 

8 extemal 

9 hex add,.. 

lO .p'euion 

11 command 
variabl. 

12 (5,60.-8) 
hex he" with offset 

= range not permissabi. 
.. ::: format if no range is invotvecl 
cd = data type and length _Ifled for _ry in C5D 
exp = lormat Implied by expr .. ,ion type 
Ip = FORTRAN floating point fonna! 
hex = h.xod.c:imal 
int = holfword integer 
isd = dato type and length _ilied by .... r·. 150 

7 8 9 10 11 

isd 

isd 

hex 

hex 

hex hex 

12 13· 

hex 

fp 

fp 

iftt 

hex Isd 

hex isd 

hex Isd 

hex hex 

hex 

exp 

eel 

hex hex 

DISPLAY/DUMP OUTPUT FORMATS 205 



APPENDIX H: PCS LIMITATIONS 

The following restrictions were made, 
based on the amount of storage allocated 
for the various tables and working areas. 

l. Maximum number of dynamic state-
ments is 216 -l. 

2. PCS places no restriction on 
statement length. 

3. Maximum offset is 2 32 _l. 

4. Maximum range is 232 -l. 

5. Maximum number of modules with 
ISDs is 255. 

206 

6. Maximum size of ISD is 2 24 ·bytes. 

7. Maximum character constant is 256 
bytes. 

8. Maximum hexadecimal constant is 
512 hexadecimal characters. 

9. Maximum number of operators in 
OPSTACK is 15. 

10. Maximum length in set command is 
256 bytes. 



ADD ITEM routine (CZAQH) 
calling conditions 161 
chart BP 127 
description 66 

address constant 40 
array 

display-list processing 65 
input evaluation 36,38--39,184 
output format 203-204 
phrase-list entry format: 187 

AT cOIlUlland 
dynamic processing overview 13 

AT routine (CZAMF) 
calling conditions 153 
chart AF 78 
description 33 
phrase list processing 194 

background mode (see nonconversational 
mode) 

binary constant 40 
BRANCH cOIlUlland 

dynamic processing overview 13 
processing overview 11 

BRANCH routine (CZAMB) 
calling conditions 150 
chart AB 74 
description 31 
phrase list processing 193 

BUILTIN 34 

CA&E (see cOIlUlland analyzer and 
executor) 

CALL cOIlUlland 
dynamic processing overview 14 
processing overview 11 

call generated code routine (see GENCALL 
routine) 

CALL routine (CZAMG) 
calling conditions 150 
chart AG 79 
description 33 
phrase list processing 193 

character constant evaluation 40 
CKCLS SVC 9 

PCS linkages 159 
code generation 

arithmetic operations 51 
control routine 45 
logical operations 52 
relational operations 51 
subscripting 48 

CODEGEN routine (CZANF) 
calling conditions 15~,156 
chart AS 99 
description 45 

combined dictionary 160 
combined dictionary entry 

(CHAD EN) 176 
COMCON routine (CZANH) 

calling conditions 157 
chart AU 102 
description 49 

command analyzer and executor 
(CA&E) 7,9,15 

cOIlUlland variable 
display-list processing 65 
input evaluation 36,190 
output format 204 
phrase-list entry format 190 

cOIlUllands (see specific cOIlUlland) 
COIlUllon areas 10,164 
cOIlUllunication areas and tables 

format 176-202 
overview 19-20 

control routines 
phase I 16 
phase I logic chart 17 
phase II 20 
phase II logic chart 22 
phase III 25 
phase III logic chart 24 

control section dictionary 
(CSD) 168-171 

conversion 
real number 71 

CSD (see control section dictionary) 

data conversion (see ADDITEM routine) 
data field item (FLDITEM) 

generation routine 36 
phase I processing 20 
referencing routines 163 

data location item (LOCITEM) 
format 180 
generation routine 
phase I processing 
referencing routines 

data management 9 

38 
20 

163 

INDEX 

data specifications (see array, cOIlUlland 
variable, expressions, external symbol, 
FORTRAN statement number, hexadecimal 
address, hexadecimal constant, internal 
symbol, offset, percent count, registers) 

DATAFLD routine (CZAMI) 
calling conditions 154 
chart AJ 85 
description 36 

DATALOC routine (CZAML) 
calling conditions 155 
chart AL 88 
description 38 

DBIN routine 
calling conditions 
description 70 

DIAG routine (CZAQX) 
calling conditions 160 
description 71 

DIAGNO routine (CZANW) 
calling conditions 155,157 
chart AY 108 

INDEX 207 



description 54 
diagnostic routine (see DIAGNO routine) 
diagnostics 

diagnostic routines 54,71 
generation 19 
levels 21 
system action 7,21,26 
user prompting 21 

dictionary handler (CZASD) 162 
DIR 162 
DISALINE routine (CZAQK) 

calling conditions 160 
chart BS 130 
description 68 

DISARAY routine (CZAQJ) 
calling conditions 160 
chart BR 129 
description 68 

DISHEX routine (CZAQM) 
calling conditions 160 
chart BT 131 
description 68 

DISHLINE routine (CZAQN) 
calling conditions 160 
chart BU 132 
description 69 

DISINST routine (CZAQI) 
calling conditions 161 
chart BQ 128 
description 67 

DISOUT routine (CZAQU) 
calling conditions 161 
chart BW 134 
description 70 

DISPDUMP routine (CZAQA) 
calling conditions 158 
chart BJ 121 
description 63 

DISPLAY and DUMP commands 
processing overview 10 

DISPLAY/DUMP 
chart BJ 121 
control routine description 63 
nesting chart 30 
processing overview 26 

display formats 203-205 
display formatting routines 66-71 
display list (DISPLIST) 

format 200-202 
generation 64 
items 64 
phase I processing 20 
phase III processing 28 
processing routine 65 
referencing routines 163 

display registers routine (see DISREG 
routine) 

DISPLAY routine (CZAMD) 
calling conditions 153 
chart AD 76 
description 32 

display simple variable routine (see 
SIMVAR routine) 

DISPLIST (see display list) 
DISREG routine (CZAQF) 

calling conditions 159 
chart BN 125 
description 66 

208 

DISRHEAD routine (CZAQQ) 
calling conditions 156 
chart BZ 137 
description 69 

DISYM routine (CZAQR) 
calling conditions 161 
chart BV 133 
description 70 

DLINK 162 
double-precision constant 

evaluation 40 
double-precision register (see registers) 
dump formats 203-205 
DUMP routine (CZAMD) 

calling conditions 153 
chart AD 76 
description 32 

dynamic commands 13 
dynamic count 64 
dynamic loader 10 

EBCDTIME 162 
error checking (see diagnostics) 
expressions 

display-list processing 64 
input evaluation 34 
output format 190,203-205 
phrase-list entry format 187-194 
syntax analysis 38 

EXPSCAN (expression scan) (CZAMH) 
calling conditions 154 
chart AH 80 
description 34 

external reference tables 164-176 
EXTERNAL routine (CZAMO) 

calling conditions 155 
chart AM 90 
description 40 

external symbol 
display-list processing 64 
input evaluation 36,39-40 
output format 204-205 
phrase-list entry format 188 

FIND 162 
find real address routine 62 
FINDLOC routine (CZAPC) 

calling conditions 156 
chart BE 116 
description 60 

FINDREAL routine (CZAPL) 
calling conditions 158 
description 62 

FLDITEM (see data field item) 
format diagnostic (see FORMDIAG routine) 
format range header routine (see DISRHEAD 
routine) 

formats 
output 203-205 

formatting 66-71 
FORMDIAG routine (CZAPI) 

calling conditions 158 
chart BY 136 
description 62 

FORTRAN statement number 
display-list processing 64 



input evaluation 36,38-39,182 
output format 204-205 
phrase-list entry format 191 

FREEMAIN 9 
PCS linkages 162 

GATWR 162 
GDV 162 
GENCALL routine (CZAPN) 

calling conditions 154,160 
chart BH 120 
description 63 

general register (see registers) 
GETBASE routine (CZANV) 

calling conditions 157 
chart AX 106 
description 52 

GETCHAR routine 
calling conditions 156 
chart AN 91 
description 41 

GETMAIN 9 
PCS linkages 162 

GETPAGE routine (CZANZ) 55 
GETREG routine (CZAOO) 

calling conditions 157 
chart BC 112 
description 57 

GO command 
processing overview 13 

GO routine (CZAMC) 
calling conditions 153 
chart AC 75 
description 32 
phrase list processing 194 

GTWSR 162 

HASHSEARCH (CZCCF) 162 
hexadecimal address 

display-list processing 64 
input evaluation 36,39,40 
output format 204-205 
phrase-list entry format 190,194 

hexadecimal constant 
evaluation 36,39,40,183 

identified source list item 
format 182 
phase I processing 19 
referencing routines 163 

IF command 
dynamic processing overview 13 
processing overview 11 

IF routine (CZAME) 
calling conditions 153 
chart AE 77 
description 32 
phrase list processing 194 

immediate commands 10 
integer constant evaluation 40 
interfaces with system modules 7 
internal reference tables 

formats 176-202 
phase I references 19-21 

phase II references 21-25 
phase III references 28 

internal symbol 
address resolution 56 
display-list processing 64 
input evaluation 36,39-40 
output format 203-205 
phrase-list entry format 189 

internal symbol dictionaries (ISD) 
assembler ISD format 172 
FORTRAN ISD format 173 
ISO processing 65 
linkage editor ISD format 174 
PCS references 163 

internal symbol dictionary map (ISDMAP) 20 
format 180 
phase III processing 28 
referencing routines 163 

internal tables 19,21 
interrupt storage area (ISA) 

format 172-176 
INTERVENE (CZAMZ) 

overview 9 
PCS linkages 162 

INTINQ 162 
ISA (CHAISA) 163 
ISD (CHAISO) (see internal symbol 
dictionaries) 

ISDMAP (see internal symbol dictionary 
map) 

limitations 206 
LINE routine (CZAPH) 

calling conditions 159 
description 62 

LOADOP routine (CZANT) 
calling conditions 157 
chart AW 105 
description 52 

location table (LOCTAB) 
format 179 
phase I processing 20 
phase II processing 23 
phase III processing 28 
referencing routines 163 

LOCITEM (see data location item) 
LOCTAB (see location table) 

MAPSEARCH (CZCCQ) 162 
message formats 28 
module name evaluation routine (see VALMOD 

routine) 
MOVEPAGE (CZCOC) 162 

nesting 
DISPLAY/DUMP 30 
phase I 18 
phase II 23 
phase III 26 

New Task Common (NTC) 
format 176 
referencing routines 163 

NEXTISD routine (CZAQD) 
calling conditions 160 
chart BM 124 
description 65 

INDEX 209 



NEXT ITEM routine (CZAQC) 
calling conditions 159 
chart BL 123 
description 65 

NEXTLIST routine {CZAQB} 
calling conditions 159 
chart BK 122 
description 64 

nonconversational mode 
overview 7 
system error response 35 

null 36,40 

offset 
display-list processing 64 
input evaluation 36,39-40 
output format 205 
phrase-list entry format 187-194 

operand 
alignment 53 
constant 34,49 
loading 52 
types 35 
variable 34 

operator 
code generation 50 
dimension 37 
entries 49-50 
entry processing 50-52 
logical 35 
masks 50 
parentheses 34,37 
stack 34,35,37 
unary 35,37 

OPGEN routine (CZANI) 
calling conditions 157 
chart AV 103 
description 50 

OPSTACK 
description 46 
referencing routines 163 
restrictions 206 

output control routine (see 
output formatting routines 

PCSPUT routine {CZAPB} 

PCSPUT routine) 
66-71 

calling conditions 156,158 
chart BD 113 
description 58 

percent count 
display-list processing (see dynamic 

count) 
input evaluation 36,39-40 
output format 204 
phrase-list entry format 188 

phase I 
control routines overview 16,17 
nesting chart 18 
organization 16 
overview 15 

phase II 

210 

control routine overview 21 
nesting chart 23 
organization 20 
overview 15 

phase III 
control routine overview 25 
nesting chart 26 
organization 25 
overview 15 

PHASE2 routine (CZANA) 
calling conditions 156 
chart AR 96 
description 44 

phrase list (PLHEAD) 
DISPLAY/DUMP processing 188 
header 187 
phase i processing 
phase II processing 
phase III processing 
referencing routines 

19,187 
23,194 

28 
163 

PLHEAD (see phrase list) 
PMD (CHATDY) (see Program Module 
Dictionary) 

PMDTAB 163 
POLISH (see Polish string) 
Polish string {POLISH) 

generation 36 
organization and format 194-202 
phase I processing 20 
phase II processing 23 
processing routine 46 
referencing routines 163 

Program Module Dictionary (PMD) group 
entry format 169 
format 165 
heading format 167 
preface format 166 
referencing routines 163 

PROMPT routine (CZANX) 
calling conditions 154,156 
chart AZ 109 
description 55 

Prompting (see PROMPT routine) 

QUALIFY command 
processing overview 11 

QUALIFY routine (CZAMR) 
calling conditions 153 
chart AO 93 
description 43 

REALCON routine (CZAQV) 
calling conditions 161 
chart BX 135 
description 71 

registers 
. display-list processing 64 

input evaluation 36,39-40,184 
output format 203-205 
phrase-list entry format 188 

REMOVE command 
processing overview 11 

REMOVE routine (CZAMS) 
calling conditions 154 
chart AP 94 
description 43 

restrictions 206 



saved-instruction execution routine (see 
SAVIX rou tine) 

SAVIX routine (CZAPK) 
calling conditions 158 
chart BG 119 
description 62 

SCANFLD routine (CZAMQ) 
calling conditions 155 
chart AN 91 
description 41 

SET conunand 
processing overview 11 

SET routine (CZAMA) 
calling conditions 153 
chart AA 73 
description 31 
phrase list processing 190 

SIMVAR routine (CZAQG) 
calling cond tions 160 
chart BO 126 
description 66 

single-precision constant 
evaluation 40 

single-precision register (see registers) 
SIR 162 
SLITEM (see source list item) 
source list 

.DSECTs used by PCS 
phase I processing 
referencing routines 

176 
19 

163 
source list analysis 38 
source list item (SLITEM) 

format 181 
generation routine 41 
phase I processing 19 
referencing routine 163 

STATAB (see statement table) 
statement number (see FORTF~N statement 

number) 
statement table (STATAB) 

format 180 
phase I processing 
phase II processing 
phase III processing 
referencing routines 

STOP conunand 

19 
23 

2B 
163 

dynamic processing overview 13 
processing overview 11 

STOP routine (CZAMC) 
calling conditions 1S3 
chart AC 75 
description 32 
phrase list processing 194 

storage 
allocation S5 
restrictions 206 

SUBGEN routine (CZANG) 
calling conditions 157 
chart AT 101 
description 48 

SUBPOL routine (CZAMJ) 
calling conditions 155 
chart AK 86 
description 36 

subscript code generation (see SUBGEN 
routine) 

subscripted array (see array) 
symbol (see external symbol and internal 

symbol) 
SYMGEN routine (CZAPG) 

calling conditions 158 
chart BF 117 
description 60 

syntax analysis routine 38 
syntax check 7 

tables, internal and external 164-202 
TAM 9 
task dictionary table (TDY) 

format 164 
task monitor 9 
TERMINATE 59,187 

UNLOAD routine (CZAMT) 
calling conditions 1S4 
chart AQ 95 
description 44 

user control routine 9 
user prompting (see PROMPT routine) 

VALMOD routine (CZAOA) 
calling conditions 155 
chart BA 110 
description S5 

VALSYM routine (CZAOB) 
calling conditions 155 
chart BB 111 
description 56 

VAM 9 
virtual memory allocation 9 
virtual storage allocation (see GETPAGE 
routine) 

VISAM 9 
VISAM OPEN 162 
VISAM PUT 162 

INDEX 211 



GY28-2014-2 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, Whits Plains, t(BW York 10604 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, Naw York 10011 
[International] 

Ul 
"­
W 
0'1 
o 

(') 
o 
:;;1 
rt 
11 
o 
I-' 

Ul 
'< 
UI 
rt 

~ 

Ul . 
~ . 




