
--..- ------------- -. ---- - - --------____ - 1'_ 

Version 8.1 

IBM System/360 Time Sharing System 

System Service Routines 

File No. S360-31 
GY2S-201S-3 

Program Logic 

Describes the internal logic of the system service 
routine used in TSS/360. The system service routines 
are non-resident programs that can be invoked either 
directly by the user, through the use of system com­
mands and macro instructions, or indirectly, in res­
ponse to requests from other system components. 

The system service routines are divided into eight 
categories: catalog services; external storage allo­
cation; device management; virtual memory allocation; 
small virtual memory allocation; symbolic library 
services; control section store; and serviceability 
aids. Appendixes describe VAM and SAM OSCB formats 
and catalog SBLOCK formats. 

This material is intended for persons involved in 
program maintenance, and system programmers who are 
altering the program design. It can be used to locate 
specific areas of the program, and it enables the 
reader to relate these areas to the corresponding pro­
gram listings. Program logic information is not nec­
essary for the use and operation of the program. 

Prerequisite Publications 

The reader must be familiar with the information 
presented in: 

IBM System/360 Time Sharing System: System 
Programmer's Guide, Ge2S-200S 

IBM System/360 Time Sharing s*stem: System 
Logic Summary PLM, GY2B-20 9 



PREFACE 

This book describes the internal logic 
of the system service routines used in 
TSS/360. The system service routines are 
divided into eight categories and each 
category is discussed in a separate section 
of this book: 

1. Catalog services 

2. External Storage Allocation 

3. Device Management 

4. Virtual Memory Allocation 

5. Small Virtual Memory Allocation 

6. Symbolic Library Services 

7. Control section Store 

B. serviceability Aids 

Each of the 8 sections provides a general 
description of the catagory and also 
individual routine descriptions. Section 9 

Fourth Edition (September 1971) 

This is a major revision of. and makes obsolete, 
GY28-2018-2 and Technical Newsletters GN28-312q and 
GN28-1152. Changes since the latest Technical 
Newsletter include four new catalog Service routines 
USERCAT SCAN (CZUFY). CATFLUSB (CZCFX), DSCB/CAT 
RECOVERY (CZUFX>. catalog Error Processor (CZCFE), and 
a new External Storage Allocation routine, READWRIT 
(CZCEM). SHAREUP (CZCFU) and LOCATE (CZCFL) have teen 
changed extensively and smaller changes have been made 
to INDEX (CZCFI) and MOUNTVOL (CZCAM). 

This edition applies to Version 8, Modification 1, 
of the IBM System/360 Time Sharing System, and to all 
subsequent releases until otherwise indicated in new 
editions or Techincal Newsletters. Before using this 
publication. please refer to the latest edition of IBM 
system/360 Time Sharing System: Addendum. GC28-20Q3, 
which lists the current editions of publications. 

This publication was prepared for production using an 
update the text and to control the page and line format. 
impressions for photo-offset printing were obtained from 
Printer using a special print chain. 

contains the flowcharts for all the 
routines. Appendixes include a module 
directory and descriptions of VAM and SAM 
DSCB formats and catalog SBLOCK formats. 

The material in this book is intended 
for persons involved in program 
rr.aintenance, and system programmers who are 
altering the program design. It can be 
used to locate specific areas of the 
program and it enables the reader to relate 
these areas to the corresponding program 
listings. Program logic information is not 
necessary for the use and operation of the 
program. 

The reader must be familiar with the 
information presented in: 

IBM System/360 Time Sharing System: 
System Programmers Guide, GC28-2008 

IBM System/360 Time Sharing System: 
System Logic Summary PLM, GY28-2009 

IBM computer to 
Page 

an IBM lQOJ 

Requests for copies of IBM publications should be made to your IBM 
representative or to the IBM branch office serving your locality. 

A form is provided at the back of this publication for reader's 
comments. If the form has been removed. comments may be addressed to 
IBM Corporation, Dept. 643. Neighborhood Road, Kingston. New York 12401 

© Copyright International Business Machines Corporation 
1967,1969,1970.1971 



INTRODUCTION 

SECTION 1: CATALOG SERVICES. 
General Description of Catalog Services • 

The catalog • . • • • • • • 
Catalog Protection • • • • • • • • 
Cataloo Services Routines • • • •••••••••• 

Routines Invoked by the User Program 
Routines Invoked by Other Catalog Service Routines 

CONTENTS 

1 

2 
2 
2 
4 
4 
4 
5 

Routines Invoked by Other System Routines for Dynamic Catalog 
Operation . . • • • • • • • • • • 
ADDCAT (CZCFA) • • • • • ••••••••••••••• 

5 
5 
9 DELCAT {CZCFr:;} 

SHARE (CZCFS) • 
UNSHARE (CZCFV) 
Collective Removal 
Selective Removal • 
SHAREUP (CZCFU) • . 
LOCATE (CZCFL) . • • • 
CATALOG ERROR PROCESSOR (CZCFE) • 
INDEX (CZCFI) • • • . • 
GETSBLOCK (CZCFG) • • • 
SEARCHSBLOCK (CZCFH) 
USERCAT SCAN (CZUFY) 
CATFLUSH (CZCFX) 
DSCB/CAT RECOVERY (CZUFX) • • • • 

SECTION 2: EXTERNAL STORAGE ALLOCATION 
External Volumes • • • • • • • • • • • • • • • 
Public and Private Volumes • • • •• •••••••••• 
Duplexing capability for USER Data Sets •••••••• 
SAM Volume Processing • • • • • . • • • • • • • 
VAM Volume Processing • • • • • • • • • 
Routines Used With SAM Format Volumes 

ALLOCATE (CZCEA) • • • • 
SAMSEARCH (CZCEC) • • • • • 
SCRATCH (CZCES) • • • • • • • • • • 
EXTEND (CZCEX) • • • • 
GIVBKS -- Give Back SAM Storage (CZCEG) 
MERGESAM (CZCEE) 
OBTAIN/RETAIN (CZCFO) 

10 
• 12 
• 14 
· 14 
· 14 
• 15 

• • 20 
• 21 
• 23 

• • 24 
24 

• 26 
28 

• 30 
• 30 
• 30 
• 30 

• • • 31 
• 31 
• 32 

32 
• 32 
• 35 

• • • 35 
36 

• • 38 
• 38 

OBTAIN Request · • • • . • • 40 
RETAIN Request • • • • • 

RENAME (CZCFZ) •••• 
Routines Used With VAM Format Volumes • 

FINDEXPG (CZCEL) 
ADDDSCB (CZCEK) 
VOLSRCH (CZCEH) • 
RELEXPG (CZCEN) •••• 
DSCBREC (CZCEF) • • • • • • 
WRITDSCB (CZCEW) • • • • 
VAMINIT (CZCEQ) •••••• 
READWRIT (CZCEM) ••••• 
ESA LOCK (CZCEJ) 

SECTION 3: DEVICE MANAGEMENT 
General Operation • • • • • 

MOUNTVOL Routine (CZCAM) 
MTREQ Routine (CZCAA) . 
BUMP Routine (CZCAB) 
RELEAS Routine (CZCAD) 
PAUSE Routine (CZCAC> • 

• • • 41 
• 42 

• • • • • • • 42 
42 

• 43 
• • • • • 45 

• • • • • • • • 46 
· 47 

• • • 49 
• 50 

• • • 51 
• • 52 

• 54 
• • • 54 
• • • 55 

• 57 
• • 59 

• 60 
• 61 

iii 



SECTION 4: VIRTUAL MEMORY ALLOCATION •••• 
VMA -- Virtual Memory Allocation (CZCGA) 
GETMAIN (CZCGA2) • • • • • • • • • • 
Allocation of Packed Virtual Storage 
Allocation of Non-Packed Virtual Storage 
Allocation of Virtual Storage • • 
FREEMAIN (CZCGA3) • • • • . • • • 
Release of a Variable Allocation 
Releasing Storage • 
EXPAND (CZCGA4) • 
GETSMAIN (CZCGA6) • 
CONNECT (CZCGA7) 
DISCONNECT (CZCGA8) 

SECTION 5: SMALL VIRTUAL MEMORY ALLOCATION 
General Description • • • • • • 

Internal Tables • • • • • • • • • • 
Internal Subroutines Available 

Small Virtual Memory Allocation (CZCHA) • 

SECTION 6: SYMBOLIC LIBRARY SERVICE ROUTINES 
Symbolic Library Indexing Routine (SYSINDEX) 
Symbolic Library Search Routine (SYSEARCH) 
User Subroutine for SYSXBLD • • • • • • • • • • 
SYSINDEX -- Symbolic Library Indexing Routine (CGCKA) 
SYSXBLD -- Build Symbolic Library Index (CGCKB) • • • 
SYSEARCH -- Symbolic Library Search Routine (CGCKC) • 

SECTION 7: CONTROL SECTION STORE ROUTINE 
Control Section Store (CZCKZ) 

• • • • 63 
• 64 

• • • • 66 
• 67 

• • 67 
• • 67 

• 67 
• 68 

• • • • 68 
68 

• 69 
• 70 
• 71 

• 73 
• 73 
• 73 
• 74 

74 

• 77 
• 77 
• 78 

• • 78 
• 78 

• • 79 
• 81 

• 82 
• • 82 

SECTION 8: SERVICEABILITY AIDS • • • • • 84 
Error Information Recording and Retrieval • • • 84 

Error Information Recording • • • • • • 84 
Error Information Retrieval • • 84 
Virtual Storage I/O Operation Aids • 84 

I/O Request Control Block (IORCB) • • • • • • 84 
I/O Statistical Data Table (SDT) • • • • • 85 
Virtual Memory Statistical Data Recording (CZCRY) • 85 
Virtual Memory Error Recording (CZCRX) • 86 
Drum Access Module (CZASY) ••••••••••• • • • • 88 
Virtual Memory Environment Recording Edit and Print (CZASE) ••• 89 
Environment Recording Edit and Print, Model 67 (CMASN) 90 
RTAM Error Recording Interface Module (CZCTR) • • • • • 91 

Time Conversion • • • • • • • • • • • • • 92 
SYSTIME Routine (CZCTA) • • 92 

SECTION 9: FLOWCHARTS ••• • • • • 94 

APPENDIX A: DATA SET CONTROL BLOCK (OSCB) FOR~~T .260 

APPENDIX B: CATALOG SBLOCK FORMAT • • • .272 
SBLOCK Format • • .272 

APPENDIX C: MODULE DIRECTORY .279 

INDEX • • • • ••••• 284 

iv 



Figure 1-
Figure 2. 
Figure 3. 
Figure 4. 
Figure 5. 
Figure 6. 
Figure 7. 
Figure 8. 
Figure 9. 
Figure 10. 
Figure 11-
Figure 12. 
Figure 13. 
Figure 11+. 
. Figure 15 . 
Figure 16. 
Figure 17 • 
Figure 18. 
Figure 19. 
Figure 20. 
Figure 21-
Figure 22. 
SBLOCK 
Figure 23. 
Figure 21+. 
Figure 25. 
Figure 26. 
Figure 27. 

Chart AA. 
Chart AB. 
Chart AC. 
Chart AD. 
Chart AE. 
Chart AF. 
Chart AG. 
Chart AH. 
Chart AI. 
Chart AJ • 
Chart M. 
Chart AL. 
Chart AM. 
Chart BA. 
Chart BB. 
Chart BC. 
Chart BD. 
Chart BE. 
Chart BF. 
Chart BG. 
Chart BH. 
Chart BI. 
Chart BJ • 
Chart BK. 
Chart BL. 
Chart BM. 
Chart BN. 
Chart BO. 
Chart BP. 
Chart PQ. 

IL:;:'USTRP.TIONS 

3 Typical SBLOCK Format ••.•••••••• 
Option Codes for VAM Input Parameter • • •• 6 
Format of SHARE Control field • • • • • ••• 
l'y!=e,; of OBTAIN Requests •. . • • • • • • • 
General Diagram of Device Management Operation • • • • 
Standard (~efault) Virtual Memory Allocation 
Location of Input Parameters for GETMAIN 
DRAM Condition Code Recovery Procedures 
Format-l OSCB 
Format-3 DSCB · Format-I+ DSCB · 

• 11 
• 40 
• 55 
• 63 
• 66 
• 88 
.261 
.265 
.265 

Format-5 OSCB · • • • • • • • .267 
Format-A DSCB · · • • • • • 268 
Format-B OSCB • • • • • • • .269 
Format-C OSCB · • • • • • • .270 
Format-E DSCB • • • • .270 
Format-F OSCB • • •••••• 271 
General SBLOCK Format • • •• ..272 
SBLOCK Format - Data Set Descriptor (First Block) .273 
SBLOCK Format - Data Set Descriptor (Chained SBLOCKs) .274 
SBLOCK Format - Index (Generation Index) -- First SBLOCK 275 
SBLOCK Format - Index (Generation Index) - Chained 
• . . • • • • • • • • • • • . • . • • • • • • 276 
SELOCK Format - Sharing DescriFtor • • • . • • • .276 
SBLOCK Format - Sharer List (First SBLOCK) .277 
SBLOCK Format - Sharer List (Chained SBLOCKS) .278 
Module Directory, Indexed Alphabetically by Module Title 279 
Module Directory, Indexed Alphabetically by Module Name .283 

AD DCA'T (CZCFA) · . . . . · 95 
DELCAT (CZCFD) · · · · .102 
SHARE (CZCFS) . · . · · .105 
UNSBARE (CZCFV) · · · · · · · · .106 
SHAREUP (CZCFU) · .108 
GETS BLOCK (CZCFG) .109 
SEARCHSBLOCK (CZCFH) . . . . · · · · · .111 
LOCATE (CZCFL) · · . · .112 
INDEX (CZCFI) .123 
USERCAT SCAN (CZUFY) · · · · .126 
OSCB/CAT RECOVERY (CZUFX) .130 
CATFLUSH (CZCFX) · . . . . .141 
Catalog Error Processor (CZCFE) .145 
ALLOCATE (CZCEA) · .146 
SAMSEARCH (CZCEC) .147 
SCRATCH (CZCES) .149 
EXTEND (CZCEX) · .150 
GIVBKSAM (CZCEG) .151 
MERGESAM (CZCEE) .152 
OBTAIN/RETAIN (CZCFO) .155 
REN,\ME (CZC FZ) · · · .157 
FINLEXl'G (CZCEL) .158 
ACDCSCE (CZCEK) · · · .160 
VOL;3RCH (CZCE!j) · · · · · .163 
RELEXPG (CZCEN) · .168 
DSCBREC ( CZCEF) · .172 
WRITOSCB (CZCEW) · .181 
VAMINIT (CZCEQ) · .188 
RIcA[;WRI'I' (CZCEM) · · · . .189 
ESA LOCK (CZCEJ) .191 

v 



Chart CA. MTREQ (CZCAA) .194 
Chart CE. PAUSE (CZCZC) · . · · · · · · · .205 
Chart CC. RELEAS (CZCAD) · .208 
Chart CD. BUMP (CZCAB) · · · .210 
Chart CEo MOUNTVOL (CZCAM) · · · · · .212 
Chart DA. VMA (CZCGA) · .221 
Chart EA. SVMA (CZCHA) · · · · · · · .234 
Chart FA. SYSINrEX (CGCKA) · · · · · · .240 
Chart FB. SYSXBLD (CGCKB) · · · · · · · · · · · .241 
Chart FC. SYSEARCH (CGCKC) . · · · · · · · · · · .242 
Chart GA. CSECT STORE (CZCKZ) . · · · · · · · · · .243 
Chart HA. VMSDR (CZCRY) · · · · .244 
Chart HB. VMER (CZCRX) · · .245 
Chart HC. DRAM (CZASY) · · · · · · .252 
chart HD. VMEREP (CZASE) · · · · · · · · · · · · · · · · · .253 
Chart HE. EREP67 (CMASN) · · · · · .254 
Chart HF. SYSTIME (CZCTA) · · · · · · .255 
Chart HG. RERIM (CZCTR) · · .. · · .259 

vi 



IBM System/360 1'ime Sharing System, 
hereafter referred to in this publication 
as Time Sharing System/360 (TSS/360>, pro­
vides eight categories of system service 
routines. These rout_ines are invoked ei th­
er directly by the user through use of sys­
tem commands and macro i~structions. or 
indirectly, in response to requests from 
other system components. 

The eight categories are: 

• Catalog Services: These routines allow 
the user to read, write, update, and 
share his user catalog and the data 
sets contained in it. The catalog is a 
hierarchial index structure; each index 
level is made up of 64-byte blocks of 
storage called SBLOCKs. catalog ser­
vice routines operate on the index 
levels and the SBLOCKs. 

• External storage Allocation: These 
routines control the storage on direct 
access volumes used for data storage. 
One group of routines controls the ini­
tial allocation of storage to a data 
set and the secondary allocation of 
storage as it is needed. When storage 
is no longer needed, it can be returned 
in part, or all the space assigned to 
the data set can be returned when the 
data set is deleted. One set of ESA 
routines is used for the processing of 
SAM format volumes and another for VAM 
format. 

• Device Management: These routines are 
used to allocate, mount, and release 
private devices. Mounting messages are 
issued to the operator; and his reply 
is awaited. Facilities are provided to 
mount subsequent volumes of a multi­
volume physical sequential data set on 
the same device as earlier volumes of 
the same data set. 

INTRODUCTION 

• Virtual Nemory Allocation: This rou­
tine provides for problem program 
requests for dynamic allocation and 
release of virtual storage during pro­
gram execution. In addition, an exist­
ing block of storage can be dynamically 
expanded. The storage obtained can be 
either private or shared. 

• Small Virtual Memory Allocation: This 
routine provides the system or user 
[rag ram with dynamic allocation of vir­
tual storage by bytes. SVMA obtains 
integral numbers of pages from VMA 
which ar~ then segmented to satisfy the 
requests. 

• Symbolic Library Service Routines: A 
symbolic library is composed of two 
portions: an index and a symbolic com­
ronent. Each portion may be a distinct 
data set, or they may be members of 
different partitioned data sets. The 
symbolic portion contains source state­
ments; the index portion is used to 
locate the desired group of symbolic 
statements. Routines are provided to 
automatically index and retrieve indi­
vidual sections from the library. 

• Control Section Store Routine: This 
routine is invoked by the CSTORE macro 
instruction. It enables the user to 
create, during program execution, a 
control section that is placed as a 
module in the current JOBLIB. 

• Serviceability Aids: These aids con­
sist of service programs to record and 
retrieve statistical data concerning 
system performance and hardware fai­
lures, and a routine which converts 
time and date from system format to 
EBCDIC form. 

Introduction 1 



GENERAL DESCRIPTION OF CATALOG SERVICES 

THE CATALOG 

The system catalog (called the scratch 
catalog) is a VAM partitioned data set that 
exists in virtual storage fr·'m startup to 
shutdown. This is a dynamic catalog since 
only members (users) that are active during 
a session exist in the scratch catalog. 
The individual user catalogs are VS data 
sets with format U records that reside on 
public storage. 

When a user logs on, the scratch catalog 
is searched for the user's member. and 
normal logon procedure follows if it is 
found. If the user's member is not found, 
the external VS rr:~mber will be copied into 
the scratch catalog. subsequent references 
will use the scratch catalog. 

When the user logs off (or abends), a 
check is made to see if the scratch catalog 
member has been changed. If it has, the 
system copies the scratch catalog member 
into the external VS data set. At shut­
dOWII, the scratch catalog is erased. If a 
scratch catalog exists at startup (no shut­
down), it will be used as the system cata­
log. Entries in the catalog contain 
infomation about the physical location of 
data, a list of users who have access to 
the data, and how the data may be accessed. 
The catalog is a hierarchical structure of 
indexes, each uniquely identifiable by its 
symbolic name plus the symbolic name of 
each higher-level index in its structure. 
The highest level of index in the catalog 
contains one entry for each authorized user 
of the system. Each entry is the eight­
character userid, which is concatenatF..!d 
automatically by the system to the name 
that the user assigns to his data set. 
This highest level index is called the 
master index, and is actually the parti­
tioped organization directory (POD) of the 
catalog data set. 

Each index name is referred to as a 
simple name; combining the names produces a 
qualified name. If the name of each level, 
from highest to lowest, is specified, a 
0ingle data set is identified by its .fully 
qualified name. If one or more of the low­
est levels are not included in the name, a 
collection of data sets is identified by 
its partially qualified name. Including 
all simple names and separating periods 
(but excluding the user identification), 
the length of a data set name must not 
exceed 35 characters. The concatenation of 

2 

the user identification gives the name a 
maximum length of 44 characters for catalog 
references. 

A data set is cataloged at OPEN time, 
using information placed in the JFCB by the 
DDEF command. As pages are assigned to 
members, they are formatted into 64-byte 
blocks called SBLOCKs which are the basic 
unit of information in the catalog. Each 
SBLOCK contains indexing information and 
pointers to related SBLOCKs. Space for 
each user catalog is allocated in whole 
page units, 64 available SBLOCKs per page. 
Related SBLOCKs are chained together in 
groups called indexes, each of which corre­
spond to a level of qualification in the 
data set name structure adopted by the 
user. 

A logical entity within the catalog con­
sists of one or more chained SBLOCRs. The 
logical entities defined in an SBLOCK are: 

• Indexes 

• Generation indexes 

• Data set descriptors 

• Sharing descriptors 

• Sharer lists 

As pages are assigned to user catalogs, 
the fields are zeroed and information is 
inserted in groups of 64 bytes. Unused 
SBLOCKs are identified by a control field 
of binary zeros. The form of a typical 
SBLOCK is shown in Figure 1. (Refer to 
Appendix B for a detailed description of 
SBLOCKs. ) 

The SBLOCKs within an index need not be 
contiquous. Forward and backward links in 
each SBLOCK give the relative location of 
the next succeeding and preceding SBLOCKs 
in the index level, which may be in the 
same or different pages. Within each index 
are SBLOCKs containing the name of each 
subordinate index, and a pointer to the 
beginning of the SBLOCK chain of each sub­
ordinate index. For a fully qualified data 
set name in SAM, the lowest level index in 
the catalog of the data set owner contains 
one or more SBLOCKs identifying the volume 
or volumes on which the data set resides. 
In VAM if the data set is public. the 
SBLOCK points to the format E DSCB and 
gives the volume type. If private, it 
points to the format E DSCB and the volume 



r---" --T''------T--------'------"--- ---,-,- -----"-1 
iFIELDI#BYTES\DESCRIPTION I 
~-----+------+---------------" ,,--,----,-------1 

I :3 I (CCCFWD> Forward Pointer to I 
I lithe first character of the I 
I ! Inext SBLOCK in the chain. I 
I I IPointer is of the form Pbb: I 
I I I P is the logical page numbt"r! 
I I Iwithin tne member; bb is thel 
I i Irelative byte within the I 
! I I page. I 
i I I I 
I 2 I 1 I (CCCCT1) Binary Count of I 
I I I SBLOCKs allocated from a I 
I I Ipage. This field is main- I 
I I Itained by Catalog Services I 
I I lin the first SBLOCK of each I 
I I I page. I 
I I I I 
I 3 I 3 I(CCCBWD) Backward pointer tol 
I I I the preceding SBLOCK in a I 
I I Ichain. Pointer is of the I 
I I Iform Pbb. ! 
I I I I 
I 4 I 1 I <CCCCT2) Binary count of I 
i I Ibytes allocated from the I 
I I I field to follow. I 
I I I I 
I 5 I 56 IAllocatable field; format isl 
I I Ivariable according to SELOCKI 
I I I usage. I L _____ ~ ______ ~ ____________________________ J 

Figure 1. Typical SBLOCK Format 

on which it resides. such SBLOCKs are 
called data set descriFtors. The lowest 
level index of a sharer's fully qualified 
name (FQN) in the catalog of a data set 
sharer consists instead of an SBLOCK con­
taining the owner's FQN for the data set, 
which may in turn be used to locate the 
SBLOCK in the owner's catalog that identi­
fies the volume. Such an SBLOCK in the 
sharer's catalog is called a sharing 
descriptor. 

In addition to pOinters to subordinate 
indexes and other user catalogs, SBLOCKs 
within an index level may cont.ain names of 
other users who may share data sets defined 
in (or subordinate to) this index level. 
Such SBLOCKs are called sharer lists. 

If, in the course of searching through a 
user catalog according to a fully qualified 
name (FQN), the lowest level index is found 
to contain a sharing descriptor pointing to 
another owner's catalog, then the search 
continues in the owner's catalog using the 
owner's FQN. When the last index level 
pointed to by the owner's FQN is found, a 
check is made in the owner's catalog to see 
if the sharer is allowed to access the data 
set. The search for sharing information 
tegins at the lowest level (last level 
found) and will continue up to the highest 
level (userid) if necessary, until an 

access fer the sharer is found. If an 
access is not found, permission is denied 
the user to access the data set being 
searched for in the owner's catalog. The 
PERM I'!' command enables the user to add to 
01" modify sharer lists in any index level 
of his catalog, and thus enables him to 
control the sharing privileges associated 
with a r,articular data set or group of data 
sets defined in his catalog. depending on 
which index level is affected by the 
command. 

The catalog modification is always made 
to the index level corresponding to the 
last component of the name contained in the 
command. This level might consist of a 
single data set descriptor or sharing 
descriptor, or if this level is sharable, 
it might indicate the presence of subordi­
nate levels, which are sharable as a unit. 

The virtual partitioned access method is 
used to load the user catalog into a user's 
virtual storage. When a user enters a 
LOGON command into the system, a constant 
job file control block (JFCB) for the cata­
log is entered into his virtual storage. 
This JFCB points to the format E DSCE for 
the catalog and indicates that the catalog 
is a shared data set. Once the user iden­
tification is established, virtual memory 
task initialization (VMTI) is used to open 
the catalog data set; this causes the 
RESTEL and POD to be brought into the 
user's virtual storage. A subsequent FIND 
and GET tring the member corresponding to 
the user's catalog into virtual storage. 
Any of the various catalog services to be 
performed on the member are performed by a 
catalog service routine. A member appears 
in virtual storage as a contiguous piece of 
data. Addresses used within a member are 
relative to an origin address of zero. 
catalog service routines use the origin 
address of the member as an index so that 
the members are effectively address-free 
and can be located in any contiguous area 
of virtual storage. 

The 'STOW macro instruction can be used 
to update the POD of the catalog to indi­
cate compression or expansion for new or 
deleted members. If a page is required to 
~xpand a member in virtual storage, the 
FINDEXPG routine adds on a contiguous page. 
The external address is assigned through 
the PUT macro instruction. Access method 
routines will assign an external page from 
extents already allocated to the catalog if 
there is a page available; if not, the rou­
tines will request another extent from 
external storage allocation. If a user 
should QUIT the system, the DELETE routine 
updates the POD and returns the external 
storage used by that user's catalog for 
allocation to other members. 

Section 1: Catalog Services 3 



CATALOG PROTECTION 

Any portion of storage containing the 
catalog is assigned a storage protection 
key different from that of the user data 
and programs. In addition, another form of 
protection is required because catalog ser­
vices may be executed in parallel; this 
protection is called an interlock. 

Parallel catalog accesses may be data 
dependent (i.e., they may modify the same 
data, causing interference if the modifica­
tion is concurrent). In order to avoid 
interference problems. an interlock is 
placed in the first index level of each 
user catalog. The interlock operates in 
such a manner that a user catalog can be 
accessed only in a serial manner. A cata­
log service routine will force a time-slice 
end if it finds itself locked out of a 
member. 

CATALOG SERVICES ROUTINES 

Time Sharing System/360 contains catalog 
service routines designed to allow the user 
to update, add to, and delete from his 
priVate catalog. Catalog service routines 
are reenterable, closed service routines 
residing in virtual storage. They operate 
only in the privileged state and are enter­
able only by a privileged program. The 
privileged program calls the catalog ser­
vice routine. supplying a list of input 
parameters. 

Catalog service routines are divided 
into two groups: 

• Routines invoked by the user program. 

• Routines invoked by other catalog ser­
vice routines. 

Routines Invoked by the User Program 

The following catalog service routines 
can be invoked by the user from his termi­
nal by means of commands. The routines are 
privileged, however. and cannot be called 
directly by the user's program. 

ADDCAT (CZCFA) 
is invoked at OPEN time. This routine 
establishes the required new entries 
in the index levels of the user 
catalog. 

DELCAT (CZCFD) 

4 

is invoked when a user issues a DELETE 
command. or a CATALOG command renaming 
a data set. This routine removes the 
lowest level qualifier(s) of the old 
data set name from the user catalog. 

SHARE (CZCFS) 
is invoked when a data set owner 
issues a PERMIT command extending 
sharing privileges. SHARE creates 
within the specified index level of 
the owner's catalog a list of sharers 
and their privilege codes. 

UNSHARE (CZCFV) 
is invoked when a data set owner 
issues a PERMIT command rescinding 
sharing privileges. This routine 
reverses the operation performed by 
the SHARE routine by removing names 
from a sharer list in the owner's 
catalog or by restricting the access 
privileges of some sharers. 

SHAREUP (CZCFU) 
is invoked when a user other than the 
data set owner issues a SHARE command. 
SHAREUP places a reference to the 
owner's catalog (the owner's FQN) into 
the sharer's catalog (under the 
sharer's FQN). 

LOCATE (CZCFL) 
is invoked to locate the index level 
in the catalog that corresponds to the 
lowest level qualifier in a fully or 
partially qualified data set name. 
LOCATE does this by searching through 
each index level corresponding to the 
comronents of the name. At the same 
time, if a sharing descriptor is 
encountered during the search, the 
owner's FQN is prefixed to the remain­
ing comFonents of the user's FQN, and 
at the last stage of the search the 
owner's lowest index level is checked 
for being sharable by the user. EVery 
catalog service routine except GETSB­
LOCK and SEARCHSBLOCK calls uFon 
LOCATE to find a path leading to par­
ticular index levels within the user 
catalog. In response to one user com­
mand, LOCATE may thus be called many 
times. 

INDEX (CZCFI) 
is invoked to make a catalog entry for 
a new name during the processing of a 
CATALOG or SHARE command. This rou­
tine directs a search for existing 
index levels corresponding to the 
first components of the name, and then 
constructs new index levels for the 
remaining qualifiers for which no 
index levels previously existed. 

CATALOG ERROR PROCESSOR (CZCFE) 
is invoked to execute all SYSER and 
ABEND macro instructions currently 
claimed by the catalog service rou­
tines. Whenever one of these routines 
encounters a user input data format 
error and no appropriate return codes 
are available, CZCFE is called to 



invoke a completion code 1 ABEND. 
CZCFE will also be called to execute a 
SYSER and ABEND when one of the rou­
tines discovers a catalog structure 
error. In this case, CZCFE will also 
write a message to SYSLOG describing 
the type and location of the error in 
the catalog. 

Routines Invoked by Other Catalog Service 
Routines ----

The following additicnal catalog service 
routines are not invoked directly by the 
user, but are called by other catalog ser­
vice routines in order to carry out fre­
quently performed operations upon the 
catalog. 

GETS BLOCK (CZCFG) 
As the need arises to process various 
SBLOCKs within the catalog, this rou­
tine finds each SBLOCK by means of its 
page and byte disrlacement relative to 
the catalog member, reads the page 
containing the SBLOCK into storage if 
necessary, and gives its virtual 
address to the caller. 

SEARCHSBLOCK (CZCFH) 
As empty SBLOCKs are required to 
expand or create new catalog entries, 
this routine locates an unused 64-byte 
block within the catalog member and 
also fills in the forward and backward 
links to chain the new em~ty SBLOCK 
into an existing index. 

Routines Invoked by Other Systerrl Routines 
for Dynamic Catalog Operation 

The following routines rerform the 
dynamic catalog function, which consists of 
bringing individual user catalogs into a 
scratch catalog as users log on the system. 
The scratch catalog is then used as a sys­
tem catalog. 

USERCAT SCAN (CZUFY) 
If the system finds that t:he DSCB for 
the SYSSVCT data set is in error, this 
routine is called to rebuild the SYS­
SVCT data set. 

CATFLUSH (CZCFX) 
This routine is used to copy members 
into the user catalog and delete mem­
bers fro~ the scratch catalog. 

DSCB/CAT RECOVERY (CZUFX) 
This routine is used to rebuild a user 
catalog if the current member in the 
scratch catalog cannot be used. Also, 
this routine is used to rebuild a user 
catalog if no member exists in the 
scratch catalog, and the user catalog 
is not usable. If the user catalog is 
rebuilt, all sharing information must 

be reentered by the user because it is 
lost when the user catalog is rebuild 
f ron, public DSCBs. 

1I.DDCAT (CZCFA) 

ADDCAT is a reentrant. privileged rou­
tine residing in virtual storage. This 
routine adds new data sets to the catalog, 
updates the catalog for new dat.a sets, and 
deletes outmoded generations as required. 
(See Chart AA.) 

Entry Points: 
CZCFA1 - for SAM data sets. 
CZCFA2 - for VAM data sets. 

Input: ADDCAT has two separate sets of 
input paraneters. Register 1 contains the 
address of a parameter list utilized as 
follows: 

For SAM data sets (CZCFA1) 

Word 1 
Word 2 

Address of a 44-byte FQN 
Address of a halfword option code 

byte 1 
byte 1 
byte 2 
byte 2 

00 
BO 
00 
BO 

Normal processing 
Update requested 
Do not update user field 
Update user field 

Word 3 
Word 4 

tits 

bits 
bits 
bits 

Word 5 

For VAM 

Word 1 

Word 2 

Word 3 

Word 4 

Address of 26-byte user field 
Address of a packed parameter word 

0-7 00 Read only user priv. 
= 01 Read/write user priv. 

8-15 label data 
16-23 data set origin 
24-31 volume count 

Address of the start of volume 
serial numbers 

data sets (CZCFA2) 

Address of JFCB 

Address of fullword option code 

Address of 64-byte return area 

Address of fullword pOinter to 
public/private volume table. 

The opt.ion code functions are as shown 
in Figure 2. No entry implies the bit is 
unused. 

output: The catalog is updated. 

Assumptions: A new data set is not a 
generation data set unless so indicated in 
the SBLOCK. 

Section 1: Catalog Services 5 



r------T---------------T-------------------, 
I Bit I I I 
I Number I Bit=O I Bit=1 I 
t------t---------------+------------------~ 
10 INo update 1 Update I 
11-3 I 1 1 
14 I I RET I 
15 I I CATVAM 
16 IDSD update IJFCB update 
17 Icomplete updatelUpdate specific 
I 1 1 fields 
18-10 I I 
111 INO change IShare privileges 
(12 I IRET and access 
I I 1 privileges 
113 I ILabel data 
I 4 I I Da ta set 
1 I I organization 
115 I 1 DSCB/CATALOG 
116-18 I 1 RECOVERY 
119 I ITape density 
120 I ITape parity 
121 I ( 
122 I IDSCB pointer 
123-30 I ( 
131 I IDevice type code l ______ ~ _______________ ~ __________________ J 

Figure 2. Option Codes for VAM Input 
Parameter 

If the maximum number of generations has 
been reached and the 'delete oldest only' 
indicator is not on, all generations shall 
be deleted from the catalog and erased. 

Modules called: 
INDEX (CZCFI) -- To create the necessary 
index levels for a new nongeneration cata­
log entry. 

GETSBLOCK (CZCFG1) -- To locate an SBLOCK 
and calculate its VMA. (CZCFG4) -- To per­
form PUT/PUTx/STOW sequence as necessary. 

DELCAT (CZCFD) -- To delete SAM data sets. 

DELVAM (CZCFT2) -- To delete and erase VAM 
generation data sets. 

LOCATE (CZCFL) -- To locate and retrieve 
SBLOCKs in the catalog to determine whether 
a data set is new and to provide the 
address of the last catalog SBLOCK and an 
image of the last SBLOCK located. 

GATE (CZATC) -- To write messages to inform 
the user that a data set was not scratched 
when deleted or when DELVAM was 
unsuccessful. 

SCRATCH (CZCES) -- To delete DSCBs from a 
SAM generation data set. 

ADDDSCB (CZCEK) -- To assign space for a 
new format E DSCB. 

6 

SEARCH SBLOCR (CZCFH) -- To acquire and 
chain an empty SBLOCR for DSD or an 
extended SBLOCK. 

FINDJFCB (CZAEB) -- To locate a JFCB for a 
SAM generation data set. 

RELEASE (CZAFJ) -- To free a JFCB for a SAM 
generation data set. 

ABEND (CZACP) -- To terminate processing 
after a system error. 

CATALOG ERROR PROCESSOR (CZCFE) -- To 
execute SYSERs and ABENDs when claimed by 
ADCAT or when a catalog structure error is 
discovered. 

Exits: 
Normal - Register 15 contains 00. 

Error - Register 15 contains one of the 
follololing codes: 

SAM DATA SETS 
04 - Userid not found in POD 
08 FQN not found 
Oc - No sharing allowed 

VAM DATA SETS 
08 - FQN already in catalog 

Operation: ADDCAT is entered with a Type I 
linkage and has two entry points; one for 
VAM data sets and one for SAM data sets. 

A. SAM Data Sets: 

ADDCAT checks for generation and non­
generation data sets. 

1. Nonqeneration: For nongeneration data 
sets, Type I linkage is used to enter INDEX 
to create the necessary index levels for 
the FQN. ADDCAT takes one of the following 
actions according to the return code from 
INDEX: 

Code '0' 
indicates that the INDEX operation was 
completed successfully. All necessary 

'index levels of the FQN were created, 
and INDEX has obtained an SBLOCK for 
the creation of a data set descriptor 
(DSD) and back chained it to the index 
level pointer. ADDCAT then proceeds 
to cuild a data set descriptor in the 
SBLOCK provided by INDEX. If the data 
set resides on more than one volume, 
additional SBLOCKs as required are 
aSSigned via the SEARCHSBLOCK program 
for the recording of the additional 
volume control fields. 

Code '4' 
indicates the LOCATE function was 
unsuccessful due to invalid USERID and 



this code is passed back to ADDCAT's 
calling routine. 

Code '8' 
indicates the FQN is currently in the 
user's catalog. If the last level 
located is a DSD, the input parameters 
are checked to see if the user wishes 
to update the DSD in the catalog 
(attributes or vol. control fields). 
If no update option was indicated, 
processing is terminated and control 
is returned to the calling program. 
When the option of updating is taken, 
further checks are taken to determine 
the exact fields to be updated. Data 
must appear in the correct relative 
locations and if the volun~ control 
fields are being updated, a complete 
update of the field must be done, 
including the count field. 

Code 'c' 
indicates that no sharing is allowed 
of the catalog the user is trying to 
extend. Control is returned to the 
calling routine with this return code. 

2. Generation: For a generation asso­
ciated FQN, Type I linkage is used to enter 
LOCATE. ADDCAT takes one of the following 
actions according to the return code from 
LOCATE: 

Code '0' 
indicates that the FQN was found in 
the catalog implying that the user 
wants to perform an update. A branch 
is made to the code which checks and 
processes the update options. 

Code '4' 
indicates that the user's ID was not 
found in the POD and the code is 
returned to the user along with 
control. 

code'S' 
indicates the full FQN was not found 
which should be the normal condition 
when processing generations. ADDCAT 
checks the last index found to deter­
mine if it is a generation index and, 
if not, the error code is returned to 
the user. If the index was a genera­
tion index, ADDCAT checks the number 
of generations existing against the 
maximum allowed. If the maximum is 
not exceeded, the non-generation pro­
cedure for a new data set is followed, 
except that a generation flag is set 
prior to calling INDEX and construct­
ing the DSD. 

ADCAT checks for catalog structure 
errors in the generation index. If an 
error is detected, the ERROR PROCESSOR 
is called (with information describing 

the type of error and its location in 
the index) to issue a SYSER and a com­
pletion code 1 ABEND. 

When the maximum number of genera­
tions is exceeded, the delete options 
are checked to determine whether to 
scratch or delete all existing genera­
tions or only the oldest. If a data 
set is to be scratched, FINDJFCB is 
called to find or create a JFCB, 
SCRATCH is called with the JFCB 
returned, the JFCB is released, and 
DELCAT is called to remove the catalog 
entry. If a data set is to be 
deleted, FINDJFCB is called to find a 
JFCB. DELCAT is called to remove the 
catalog entry, and RELEASE is called 
to free the JFCB if one was found. 
This process is repeated until all the 
necessary generations have been 
deleted c.s specified at which time 
ADDCAT returns with a successful 
return code. 

Code ·c' 
indicates the user is not allowed to 
share. 

B. VAM Data Sets: 

LOCATE is entered to determine whether 
the data set is old or new, and, in the 
case of a generation data set, to convert 
the generation-version number to absolute 
form if it is relative. If the index 
levels are not all found (RC = '08'>, the 
data set is treated as new; RC='OO' indi­
cates an old data set. Return codes of 
'04' and 'OC' result in SYSERs (minor soft­
ware) followed by ABEND. 

IIft.er return from LOCATE, ADDCAT checks 
for the RET option in the parameter list 
(word 2). If the option is 1, a branch is 
taken to the code for updating the catalog; 
if the RET option is not on, ADDCAT 
examines the CATVAM option to add a private 
VAM data set to the catalog without going 
to AtDDSCB (since the data set already has 
a DSCB). If the option is on for an old 
data set, control is returned to the user 
~ith a code of 'OS' indication that the 
fully qualified name given by CATVAM was 
not unique. The DSD is also returned to 
the user. 

If the CATVAM option is on for a new 
data set ADDCAT checks for a generation 
qualifier and calls INDEX if necessary, to 
create a generation index. 

Processing differs for new nongeneration 
data sets, new generation data sets, and 
old data sets, as follows: 

Section 1: Catalog Services 7 



1. New Nongeneration Data Sets: For a new 
data set it is assumed that if the last 
index pointer found by LOCATE is not a 
generation index (CCCFL1 ~ 02), the new 
data set is not generation associated. 
Therefore, if the last qualifier is in 
absolute GOOOOVOO format, ADDCAT will 
return with a code of '08', except in the 
case of the CATVAM art ian teing set as men­
tioned above. ADDDSCB is entered to obtain 
a DSCB for the new data set and its point­
er. In the event of an error return from 
ADDDSCB, r:racessing will be ~. errninated wi t_h 
a SYSER (minor software) follOwed by ABEND. 
The pointer to the DSCB is inserted into 
the JFCB and INDEX is entered to create the 
necessary index levels for the FQN in the 
catalog. 11 return code of '00' from INDEX 
indicates an SBLOCK has been obtained for 
the creation of a DSD. GETS BLOCK is 
entered with the pointer to the SBLOCK from 
INDEX to get the SBLOCKi ADDCAT then gets 
the backward pointer to the index SBLOCK 
and enters GETSBLOCK to indicate in the 
SBLOCK the type of DSD (public or private). 
GETS BLOCK is entered to again get the DSD 
SBLOCK. (Returns of '04' or 'Oc' from 
INDEX result in SYSER and ABEND; a return 
of '08' indicates that the FQN was already 
in the catalog and results in a return to 
the user with a code af '08'.) ADDCAT then 
r:roceeds to construct the DSD using infor­
mation in the DSD portion of the JFCB and 
calls CZCFG4 for PUT/PUTX/STOW. control is 
r-eturned to the user with a successful 
return code of '00' in general register 15 
and an image of the DSD in the user's 64-
byte return area. 

2. New Generation Data Sets: If ADCAT is 
call"f:'d to perform an operation on a genera­
tion data set, validity checks are per­
formed on the generation index in the cata­
log. If an error is detected, the ERROR 
PROCESSOR is called with information 
describing the type and location of the 
error in the catalog index. The ERROR PRO­
CESSOR issues a SYSER and completion code 1 
ABEND. Otherwise ADDCAT checks the sharing 
access and only the owner or a sharer with 
unlimited access will be allowed to proceed 
(ABEND is otherwise invoked). GETSBLOCK is 
entered to get the generation index and the 
number of pointers to existing generations 
is incremented by the one to be added and 
compared to the maximum allowed. When a 
user requests deletion of generation data 
sets, the data sets are autQmatically 
scratched by DELVAM as well because once a 
data set is deleted from the catalog it is 
inaccessible. 

If the maximum number of generations is 
not exceeded, ADDCAT will search through 
the pointers to previously existing genera­
tion data sets, comparing the new genera­
tion name to those already cataloged. The 

8 

pointer to the Ilew generation data set 
descriptor is sorted by qeneration number 
into the list of pointers. INDEX is 
entered to find and chain an SBLOCK in 
which to construct the DSD for the new data 
set. 

If the maximum number of generations is 
exceeded, the delete options are examined 
to calculate the number of generations to 
be deleted and erased. DELVAM is entered 
with the FQN of the generation to be 
deleted. If DELVAM was unsuccessful, a 
message is sent to the user with the reason 
for no deletion and the data set name (via 
the GATWR macro). The number of genera­
tions to be deleted is decremented and pro­
ceSSing continues with the next generation. 
DELVAM is called for each generation until 
the count is zero. ADDCAT then processes 
the new generation as above when there are 
no deletions to be made. 

Old Data Sets: For an old data set, ADDCAT 
examines the option code to see if an up­
date is requested. If not, processing is 
terminated with a SYSER (minor software) 
and an ABEND. To process the update 
options, ADDCAT must first determine wheth­
er the DSD or the JFCB is to be updated. 
(Note: Only bytes 21-55 of either the DSD 
or the DSD portion of the JFCB may be 
updated at one time. Not both.) 

If the JFCB is to be updated from the 
DSD, the option code is examined to deter­
rrine whether a complete or partial update 
should be performed. If a complete update 
is requested, ADDCAT moves each field of 
the DSD into the corresponding field in the 
JFCB. A partial update is requested, the 
last three bytes of the option are examined 
bit by bit to determine which fields are to 
be u~dated. In either case, when updating 
TDTAQL, the userid in Task Common is com­
rared to the userid in the FQN to determine 
~hether to move the owner's (CCCFL4) or 
sharer's (CCCFL3) access privileges into 
the JFCB. 

If the DSD is to be updated from the 
JFCB, GETS BLOCK is entered to obtain the 
DSD SBLOCK from the catalog. The ortion 
code is examined to see if a complete or 
partial update is requested and the update 
is performed the same as the JFCB update. 
When the SBLOCK has been updated as 
required, CZCFG4 is called. 

Uf-Uti completion of the 
is returned to the user. 
back an image of the DSD, 
return code, as indicated 
register 15. 

updating, control 
ADDCAT passes 
and the proper 
under "exits', in 



DC:U:AT (CZCFD) 

JELCAT is a reenterable, nonrecursive, 
privileged subroutine, residing in virtual 
storage. It deletes index levels from the 
catalog structure and recatalogs index 
levels under a different fully qualified 
name. DELCAT calls LOCATE to get the spec­
ified index level and then determines if an 
owner's catalog is referred to by checking 
the first byte of the 45-byte buffer used 
as an entry parameter to LOCATE. If the 
flag is set, the sharer disposition flag in 
the 64-byte SBLOCK retrieval buffer is 
checked. (See Chart AB.) 

Entry Point: CZCFDl 

Input: Register 1 contains a pointer to 
this list.. 

Word 1 

Word 2 

Word 3 

Pointer to fully qualified name 

Pointer t.O option (if RENAME 
option is selected, bits 0-15 
contain X' 04 t ) 

Pointer to new fully qualified 
name (applicable only if RENAME 
option is selected> 

output: Register 1 contains a pointer to 
the input parameter list. 

Modules Called: 
LOCATE (CZCFL) -- To locate an index level. 

INDEX (CZCFI) -- To construct chained index 
levels and create new members in catalog 
data sets. 

GETSBLOCK (CZCFG1) -- To locate SBLOCK and 
calculate virtual storage address. 
(CZCFG4) -- To perform PUT/PUTX/STOW 
functions. 

CATALOG ERROR PROCESSOR (CZCFE) -- To claim 
a SYSER and a completion code 1 ABEND when 
a catalog structure error is encountered or 
an end-of-data-set is detected by 
GETSBLOCK. 

Exits: 
Normal - register 15 contains 00 - DELCAT 

successful. 

Error - DELCAT returns one of the follow­
ing codes: 

04 - userid not in the POD 

08 - the DELETE fully qualified 
name not found by LOCATE 

08 - the DELETE fully qualified 
name is an index level con-

taining pOinters to lower 
levels 

08 - the DELETE fully qualified 
name and RENAME fully quali­
fied name refer to different 
user catalogs 

08 - the RENAME fully qualified 
name is not unique 

oc - indicates a sharing error 

Operation: The fully qualified name sup­
Flied in the entry parameter list is used 
to locate the specified index level, 
through use of the LOCATE routine. If 
LOCATE returns with a non-zero return code, 
indicating an unsuccessful locate, DELCAT 
terminates with an appropriate error return 
code. 

Upon a successful return from LOCATE, 
DELCAT determines if an owner's catalog was 
referred to by checking the first byte of 
the 45-byte buffer used as an entry pararee­
ter to LOCATE. If the flag is on, the 
sharer disposition flag in the 64-byte 
SBLOCK retrieval buffer is checked. In 
order to be able to delete from the owner's 
catalog, the sharer must have unlimited 
sharing privileges. 

The fully qualified name can only 
describe one of the following: 

• An eropty index level 

• A data set descriptor 

• A sharing descriptor 

Otherwise, DELCAT is terminated with an 
error indication. 

DELCAT can be entered with one of the 
following options: DELETE or RENA~E. 

If the delete option is selected, the 
entire entity located is zeroed and the 
SBLOCK-count for the page is decremented by 
one for each SELOCK freed. The deletion 
includes extended SBLOCKs and any attached 
sharer's lists. Next, the pOinter field 
referred to by the back-chain in the first 
SBLOCK of the deleted entity, is retrieved 
and deleted. If the deleted pOinter was 
the sole member of that index level, the 
entire index level is. in turn, deleted as 
described above. However, if the first 
SBLOCK in the user's catalog becomes empty 
or if the SBLOCK is a generation index, it 
is not deleted. If the index level is not 
emptied, the zeroed pointer entry is left 
in the index level for future use. Howev­
er, if the deleted member is located in an 
extended SBLOCK which has become empty as a 
result of the deletion, the extended SELOCK 

Section 1: Catalog Services 9 



is removed from the chain. The empty node 
SBLOCK is not deleted unless there are no 
extended SBLOCKs chained to it. DELCAT 
updates the respective allocated byte 
fields and forward and backward chains 
involved in the deletion and justification. 

When deleting a data set descriptor from 
the catalog, the structure of any sharing 
lists or volume lists attached to it are 
checked for errors. If an error is encoun­
tered the ERROR PROCESSOR is called (with 
information describing the type and loca­
tion of the error in the catalog) to 
execute a SYSER and a completion code 1 
ABEND. 

If the rename option is selected, DELCAT 
verifies via LOCATE that the RENAME fully 
qualified name and the DELETE fully quali­
fied name refer to the same user's catalog. 
If they refer to different user catalogs, 
an error return results. DELCAT then 
enters INDEX to construct the new fully 
qualified name and transfers the contents 
of the last qualified level in the old 
fully qual~fied name to the new one. Once 
the data is successfully transferred, 
DELCAT proceeds to delete the last quali­
fied level of the old fully qualified name 
as described above, except for deleting any 
sharer's list or extended SBLOCKs that are 
now associated with the new fully qualified 
name. 

If the last qualified level of a fully 
qualified name is a sharing descriptor, the 
sharing descriptor is deleted, rather than 
the shared index level referred to. 

SHII-RE (CZCFS) 

SHARE is a reenterable, nonrecursive. 
privileged subroutine residing in virtual 
storage, that adds sharing privileges to a 
catalog level. An unshared level can be 
set to shareable, or a shared level can 
have its sharing access modified. Sharing 
can be universal (meaning that any user may 
share), or selective (meaning that only 
those users whose userid is included in the 
input parameter list are allowed to share>. 
LOCATE is called to retrieve the proper 
level for the fully qualified name sup­
plied. For selective sharing, a sharing 
list is created or updated, depending on 
the type of request. (See Chart AC.) 

Entry Point: CZCFSl 

Input: Register 1 contains a pointer to 
this parameter list: 

Word 1 

10 

Virtual storage address of a 44-
byte field containing the fully 

Word 2 

word 3 

Word 4 

qualified name, left-justified 

Virtual storage address of a ful­
lword control field 

count field - number of sharers 
to be added to the sharers list 
(used only for universal sharing) 

Virtual storage address of a list 
of sharers 

The format of the control field pointed 
to by Word 2 is shown in Figure 3. 

Notes to Figure 3: 

Byte 0: 
net used. 

Byte 1: 
bit 0=0 

indicates that a Universal/Selective 
sharing parameter is not present. 

bit 0=1 
indicates that a Universal/Selective 
sharing parameter is present in byte 
2. This bit is examined only in the 
update mode. If it is 0, the sharing 
mode is taken from the catalog itself. 

bit 1=0 
access code is not present in byte 3 
of the control word or in the list of 
new sharers. The default is unlimited 
access for all sharers on the list of 
new sharers. 

bit 1=1 
access code is present. 

Byte 2: Universal/Selective parameter 
bit 6=1 

indicates that the request is for 
selective sharing. 

bit 7=1 
indicates that the request is for 
universal sharing. If this bit is 
set, the access code must be specified 
in byte 3. 

Byte 3: access code 
bits 0-7 

all zero indicates unlimited sharing. 

bit 1=1 
indicates read/write access. 

bit 2=1 
indicates read-only access. 



I­
i 

I 
b>,te 0 

I 
I 

i 
1 

--~~+------

I 
byte 1 

Not Used 
(must be binary zeros) 

bits 

Un ivpr,a I Access Not Used 
Selechve Code 
Parameter I Indicator I 

(must be binary zeros ) 

Indi cator I I 

~- .... -- 1..--1
--- Tl-T------~- r-------~ 

o 11 2 J31,151 6 7 

-----1---- f------------- ~_L_ ----- - -- - ------ -- ----L __ ----r--------------+--------~ 
bi ts 

Not Used i Sel€ctive 

byte 2 (must be binary zeros) 
Sharing 
Indicator 

Un iversal 
Sharing 
lndi calor 

I 
I 
I bits 

----{---
i Read/write 

byte 3 Indicator 
I 

I 
--~-

; 

bi ts 0 1 

i 
Figure 3. Format of SHARE Control field 

The list of sharers pointed to by param­
eter 4 has a length of 9*N bytes, when N is 
the number of sharers indicated in Word 3 
of the input parameter list. Each entry 
has the following format: 

Bytes 

r----------------------T---------, 
I SHARER ID I ACCESS I 
I I CODE I 
• --T--T--T--T--T-~--T-t---------~ 
11 2 3 4 5 6 7 BI 9 I 
l __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~_~ _________ j 

The access code has the same meaning as 
in the control field pointed to by parame­
ter 2 (byte 3>. This list is not meaning­
ful for universal sharing. 

output: Register 1 contains a pointer to 
the input parameter list. 

Restrictions: A user can autho.rize sharing 
only if those index levels are in his own 
user catalog. 

Read only 
Indicator 

2 
i :r I 3 4 6 

I i 
7 

Modules Called: 
.LOCATE (CZCFL) -- To locate an index level. 

GETSBLOCK (CZCFG1) -- To locate SBLOCK and 
calculate virtual storage address. 
(CZCFG4) -- to update external storage. 

SEARCHSBLOCK (CZCFH) -- To acquire and 
chain an empty SBLOCK to an index level • 

CATALOG ERROR PROCESSOR (CZCFE) -- To 
execute a SYSER and a completion code 1 
A~END when a catalog error is encountered 
or if an end-of-data-set is detected by 
GETSBLOCK. 

Exits: 
Normal - register 15 contains 00: SHARE 

successful 

Error if SHARE is unsuccessful. register 
15 contains one of the following 
codes: 

section 1: Catalog Services 11 



04 - Owner-id not in the POD 

08 - Fully qualified name not in 
cat.alog 

Oe - Owner is not allowed 

10 - Not used 

14 - A re'lu,c,st to ,;hare is 
directed to a shdr~ng 

descriptor 

18 - Not used 

Ie _. Not used 

20 - Request to update from a list 
of shares to a universal 
shared level or vice versa 

Operation: The owner of a catalog can set 
a level in the catalog to "universally 
Shareable," meaning that any user can 
share, or to "selectively shareable" mean­
ing that only those users whose ID is 
included in the input parameter list are 
allowed to share. 

The user can specify whether the level 
for a newly shared data set is to become 
universally shared or selectively shared. 

If the level is to be universally share­
able, the user can supply the access code 
(read-only, read/write, or unlimited 
access). If the user does not specify any 
access code, as indicated by byte 1 of the 
control field, unlimited access is assumed. 
If a sharer has unlimited access, he can 
add to or delete from the shared Fortion of 
the cataloy. SHARE supplies LOCATE with 
the fully qualified name to get the proper 
index l.eve1. SHARE sets the sharing flag 
in that level to universal and sets the 
sharing privileges from the access code in 
the parameter list or will default the 
access to unlimited if none is given. 

If the l.evel is to be selectively 
shared, the user must supply a count of the 
number of sharers plus a list of these 
sharers in the form: sharer's-id (8 bytes) 
followed by his sharing privilege (I-byte 
access code). If the user does not supply 
any sharing privilege for the sharers on 
the sharing list, each sharer will be given 
unlimited access. This is indicated when 
bit 1 of byte 1 of the control field is 
zero. After locating and retrieVing the 
SBLOCK associated with the fully qualified 
name, SHARE sets the sharing flag in the 
level to "selective.- A sharing list is 
constructed and attached to the level by 
filling in the pointer to the sharer list. 
SBLOCKs to create the sharer l.ist are 
obtained using SEARCHSBLOCK. CZCFG4 is 

12 

used, in all cases, to update external 
storage when necessary. 

The user can share a data set which is 
already being shared, but a request to 
change the sharing mode from selective to 
univer~ial, or from universal to selective, 
without flrst restricting the data set, 
will not be honored and will result in a 
return code of 20. 

If the sharing mode is universal and the 
user wants to leave it as universal. SHARE 
simply changes the sharing privileges by 
using the access code from the input. If 
none is supplied in the input parameter 
list, unlimited sharing privilege is 
assumed. When the sharing mode is selec­
tive and the user wants it to remain selec­
tive, the user must supply a count of the 
number of users to be added to the present 
sharing list plus a list of new sharers 
containing sharerids followed by their 
sharing privileges. Before updating the 
selective sharing, SHARE checks the struc­
ture of the sharing list for errors. If an 
error is encountered the ERROR PROCESSOR is 
called (with information describing the 
type and loca t.ion of the error in the shar­
ing list) to execute a SYSER and a comple­
tion code 1 ABEND. The sharing privileges 
for the new sharers on the sharing list can 
be defaulted as indicated by byte 1 of the 
control word. When this happens, the new 
sharers will be given the sharing privilege 
of the last sharer on the present sharing 
list. SHARE checks each userid to ensure 
that it does not already belong to the 
user's list. If it already belongs to the 
list, the access code from the input is 
inserted in the existing entry; if it does 
not already belong to the list, it is 
added. After the list has been completely 
updated, the count of sharers in the cata­
log level is updated by the number of IDs 
added. 

CZCFG4 is used, in all cases, to update 
external storage when necessary. 

UNSHARE (CZCFV) 

UNSHARE is a reenterable, nonrecursive, 
privileged subroutine residing in virtual 
storage, that removes sharing privileges 
from a catalog level. First the proper 
level is located and checks are made to see 
that the sharing mode of the level is com­
patible with the type requested. If the 
sharing mode is universal and the request 
is to delete all sharers, the sharing flag 
is set to private and the new index level 
is updated in the catalog. If the sharing 
Irode is selective and the request is to 
delete all sharers, the additional opera­
tion of deleting the sharer's list is per­
formed. When the sharing mode is selective 
and the request is not to delete all mem-



b~[~r tne sharer's list is searched and 
only the members passed in the parameter 
list are delet.ed. (See Chart AD.) 

Entry Point: CZCFVl 

~~~: Register 1 contains a pOinter to 
this parameter list: 

Word 1 

Word 2 

Word 3 

Word 4 

Pointer to a 44-byte field con­
taining the fully qualified name, 
left-justified. 

Pointer to a fullword control 
field. 

Pointer to halfword count field. 

Pointer to a list of sharers. 

The control field pointed to by Parame­
ter 2 is aligned on a tullword boundary and 
has the following structure. 

Byte 0 - unused 

Byte 1 - unused 

Byte 2 
bits 0-5 -- unused 

bit 6=1 

bit 7==1 

delete all sharers 

delete only those sharers 
identified in the input pa­
rameter list 

Byte 3 - unused 

All unused bits must be set to zero. 

The count field pointed to by Parameter 
3 is a halfword binary count of the number 
of sharers to be removed from the sharer 
list of a selectively shared level; it is 
aligned on a halfword boundary. This pa­
rameter is meaningful cnly for selective 
sharing. 

The list of sharers pointed to by Param­
eter 4 has a length of 9*N bytes, where N 
is the number of sharers identified in the 
count field above. Each entry in the list 
has the following format: 

r------------------------------T-----' 
I I 00 I 
I SHARER ID I (hex) I 
t--T---T---T---T---T---T---T---t-----1 

Byte 11 2 3 4 5 6 7 8 I 9 I 
l __ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ _____ J 

outp~"-ic: Register 1 contains a painter to 
the input parameter list. 

1. Sharing privilege can be removed from 
a catalog level only by the owner of 
the cdtalog. 

2. To determine the sharing privilege of 
a catalog level, UNSHARE examines 0nly 
the sharing privilege pointed to by 
the fully qualified name. This means 
that for UNSHARE. the sharing ~rivi­
lege of any higher level in the cat.a­
log has no effect on the sharing rri­
vilege of subordinate levels. The 
owner must specifically establish the 
sharing rrivilege of a level via SHARE 
if any other user is to link to the 
sr:cecific level via SHAREUP. 

3. A level is considered private by 
UNSHARE until a SH~RE is given for it. 

l-',)dules Called: 
LOCATE (CZCFL> -- To locate an index leve1. 

GETS BLOCK (CZCFGl) -- To locate SBLOCK and 
calculate virtual storage address. 
(CZCFG4) -- To effect PUT/PUTX/STOW 
functions. 

CATALOG ERROR PROCESSOR (CZCFE) -- To 
execute a SYSER and completion code 1 ABEND 
when a catalog structure error is encoun­
tered or an end-of-data-set is detected by 
CZCFG1. 

Exits: 
Normal - register 15 contains 00, UNSHARE 

successful 

Error - register 15 contains one of these 
codes: 

04 - Owner-id not in POD 

OS Fully qualified name not in 
catalog 

oc - Owner is not allowed to share 

10 -. A list of sharers was pro­
vided for a universally 
shared level 

14 - Request to unshare is 
directed to a sharing 
descriptor 

18 - Level is not now shareable 

lC - Input ids are not in the 
sharer's list 

Operation: The o·,mer of a catalog can use 
one of two options with UNSHARE: 

• ~aking d universally or selectively 
shared level in the catalog private. 

Section 1: Catalog Services 13 



• Removing sharing privileges from a list 
of users for a selectively shared cata­
log level. 

In either case, UNSHARE locat.es the 
fully qualified name to get the proper 
level in the cataloq. If the level indi­
cated is a sharing descriptor or if the 
level is not already shared, an error 
return is made. 

Before removing any userii's from a shar­
ing list, the sharing list is checked for 
catalog structure errors. If an error is 
encountered, the ERROR PROCESSOR is called 
(with information describing the type and 
location of the error) to issue a SYSER and 
a completion code 1 ABEND. 

Collective Removal 

If sharing privileges are to be removed 
collectively, (that is, the catalog level 
is to be made private), UNSHARE checks the 
sharing mode of the level to see if it is 
universal. If so, it resets the sharing 
flag to make the level private. The point­
er to the sharing list is saved and zeroed; 
all SBLOCKs in the sharing list are then 
returned to the catalog. 

Selective Removal 

If the sharing privileges are to be 
removed selectively, UNSHARE checks the 
sharing flag in the cataluJ level. If 
selective sharing is not indicated, an 
error return is made. Ut,SHARE next 
searches the sharing list for the userid. 
If the userid is not present, a flag is set 
in the access byte following the userid on 
the input list and UNSHARE begins to search 
for the next userid in the input list. If 
the userid is present, its entry is zeroed 
on the sharing list. If the deletion 
results in an empty sharing list SBLOCK 
which is not the node sharing list SBLOCK, 
the SBLOCK will be removed from the sharing 
list chain. Processing is completed when 
all the userids on the input list have been 
removed from the sharing list. If any 
deletion results in the removal of all of 
the members from the sharing list, the 
catalog level is set to private. 

Note: For both collective and selective 
removal, CZCFG4 is used to update external 
storage when necessary. 

SHAREUP (CZCFU) 

SHAREUP is a reenteratle, nonrecursive, 
privileged subroutine, residing in virtual 
storage. It linkS a user's private catalog 
to a level in another user's shareable 
catalog by constructing a sharing descrip­
tor in the sharer's catalog that points to 
a node in a user's catalog that was pre-

14 

viously designated as shareable. The 
shared index level is J:"etrieved to deter­
mine if the calling program is allowed to 
share. If the calling program or user is 
allowed to share and his fully qualified 
name is unique, a sharing descriptor is 
constructed by the INDEX routine. (See 
Chart AE.) 

Entry Point: CZCFUl 

Input: Register 1 contains a pointer to 
the following parameter list: 

~ord 1 

Word 2 

Pointer to owner's fully quali­
fied name. 

Pointer to user's fully qualified 
name. 

output: Register 1 contains a pointer to 
the input parameter list. 

Modules Called: 
LOCATE (CZCFL) -- To locate an index level. 

INDEX (CZCFI) -- To construct a chained 
index level and create new ~ernbers in the 
catalog data set. 

GETS BLOCK (CZCFG1) -- To locate an SBLOCK 
and calculate virtual storage address. 
(CZCFG4) -- To perform PUTX function. 

CATALOG ERROR PROCESSOR (CZCFE) -- To 
execute a SYSER and completion code 1 ABEND 
when a catalog structure error is encoun­
tered or an end-of-data-set is detected by 
CZCFGl or an unsuccessful return code is 
obtained from INDEX. 

Exits: 
Normal - register 15 contains 00; SHARE UP 

successful 

Error - register 15 contains one of the 
following codes: 

04 - userid not in POD 

08 - user name not unique 

OC - index level requested to 
share is not shareable 

10 - owner FQN nonexistant 

14 - ownerid not in POD 

18 - request to add sharing 
descriptor with gdg. 

lC - user is attempting to share 
another catalog in the owners 
catalog. 



'21!c't_c:tion: LOCATE is called to retrieve 
th~ owner's fully qualified name that is in 
the pararreter list. If a X'04' return code 
is returned from LOCATE, it is converted by 
SHAREUP to a X'14' return code which is 
returned to the caller after the sharing 
descriptor is built. Similarly, a X'08' 
return code (level to be shared is not in 
the catalog) is converted to a x'lO' return 
code which is sent to the caller after the 
sharing descriptor is built. A X'OC' 
return code (level cannot be shared) is 
sent to the caller after the sharing 
descriptor is built. B~fore processing is 
continued, a check is made to see if LOCATE 
crossed a catalog boundary. If it did, 
processing is terminated and the sharing 
descriptor is not built since sharing 
across multiple members is not permitted. 

LOCATE is then called with the sharer's 
FQN that is in the parameter list. If a 
X'04' return code is received, processing 
terminates and a X'04' return code is sent 
to the caller. If a X'OO' return code is 
received, a check is made to see if the 
user is trying to build a sharing descrip­
t.or in a generation index. If so, proces­
sing terminates with a X'18' return code. 
A check is made to see if the user has 
already shared the data set. If he has, 
the caller is sent a X'OO' return code. 
otherwise a X'08' return code, indicating 
that the name is not unique, is returned. 
A X'OC' return code means that a subset of 
the name is the name of a ~reviously 
created sharing descriptor and the caller 
receives a return code of X·08'. 

A X'08' return code means that only a 
subset of the name was found. The catalog 
entity on which the search terminated could 
be either an index or a data set descrip­
tor; the SBLOCK retrieved by LOCATE is 
checked to determine which. If the search 
terminated on an index, the name is unique 
and SHAREUP continues to build a sharing 
descriptor. If the search terminated on a 
data set descriptor, there can be no addi­
tional subordinate levels; thus the name is 
not unique and SHAREUP returns with a 
return code of '08'. If the SBLOCK 
returned is a generation index, SHAREUP 
returns with a return code of '18'. 

If the name is unique, INDEX is called 
to construct the necessary levels for 
building a sharing descriptor. INDEX 
builds all required levels including the 
level that the sharing descriptor occupies. 
On return from INDEX, it is necessary to 
change the last level created by INDEX into 
the completed sharing descriptor. A non­
zero return code causes SYSER to be 
invoked. since all conditions causing non­
zero return codes should have been disco­
vered by the previous LOCATE. 

Before the sharing descriptor is built, 
a check is made to see if INDEX added the 
new levels to the catalog correctly. If an 
error is detected, the CATALOG ERROR PRO­
CESSOR is called to claim a SYSER and a 
camp code 1 ABEND. If the new levels are 
satisfactory, the sharing descriptor is 
built and the catalog is updated externally 
with a call to CZCFG4. 

If the final return code is X'OO', LOC­
ATE is called again with the sharer's name 
to see if the sharer is allowed to access 
the data set. If no access is permitted 
the caller receives a X'OC' return code. 

LOCATE (CZCFL) 

LOCATE is a reentrant, privileged rou­
tine that resides in public storage. The 
first entry pOint (CZCFLl) is called to 
retrieve SBLOCKs from the user catalog, 
either by fully qualified name (FQN) or 
relative address. Conversion of relative 
numbers (for example, NAME(+1» to al:;solute 
generation numbers (for example, NAME. 
GOOOIVOO) is performed when required. The 
second entry point (CZCFL2) is called to 
locate the catalog level and any lower 
levels implied for an FQN. Catalog infor­
rration is placed in one or more TBLOCKs 
(logical entities containing output catalog 
data which are located in a GETMAIN area) 
for each terminal level found in the 
catalog. 

Entry Points: 
CZCFL1 for LOCATE 
CZCFL2 -- for LOCFQN 

Input: LOCATE has two separate sets of 
input parameters. Register 1 contains the 
address of the following parameter list: 

For LOCATE (CZCFll) 

Word 1 

word 2 

Pointer to a fully qualified name 
or relative address, depending on 
the option code specified in Word 
2 

Option pointer 

0004 -- locate on fully qualified 
name and unlock 

0008 -- locate on relative 
address and unlock 

OOOC -- locate on fully qualified 
name and hold interlock 

0010 -- locate on relative 
address and hold 
interlock 

0014 -- release interlock 

Section 1: catalog Services 15 



Word 3 

Word 4 

Pointer to SBLOCK return area 
(64-byte buffer> 

Pointer to owner's name and flag 
return area (45-byte buffer) 

For LOCFQN (CZCFL2) 

Word 1 

Word 2 

Word 3 

Word 4 

Pointer to a fully qualified name 

Pointer to a fullword area for the 
return of the numcer of TBLOCK 
pages 

Pointer to a fullword area for the 
return of the first TBLOCK page 
virtual memory address 

Pointer to a I-byte option code 

01 -- cross catalog when 
necessary 

02 cross catalog implicitly 

03 don't cross catalog 

Output: Register 1 contains a pointer to 
the input parameter list. 

Modules Called: 
GETSBLOCK (CZCFG1) -- To calculate the 
SBLOCK virtual memory address. 
(CZCFG3) -- To provide the initial sizing 
of the VAM buffer used in processing the 
user catalog. 
(CZCFG4) -- To effect the necessary PUT/ 
PUTX/STOW and CLOSE (TYPE T) sequence. 

FIND (CZCOJ) To search the POD or entry. 

STOW (CZCOK) To replace the member 
descriptor and to close the member. 

ERROR PROCESSOR (CZCFE) To record a 
catalog structure error in SYSLOG and issue 
SYSER and/or ABEND. 

DSCB/CAT RECOVERY (CZUFX1) -- To rebuild 
the catalog in SYSCAT. 

GETMAIN (CZCGA2) -- To reserve pages of 
virtual storage. 

READ (CZCPE) -- To read a record from 
SYSSVCT. 

WRITE (CZCPE) -- To write a record in 
SYSSVCT. 

FINDJFCB (CZAEB) -- To find a JFCB for the 
user catalog. 

OPEN (CZCLA) -- To open the USERCAT DCB. 

GET -- To bring the user catalog into the 
buffer. 

16 

PUT To move the user catalog into 
SYSCAT. 

CLOSE (CZCLB) -- To close the user catalog 
DCB. 

CATFLUSH (CZCFX) -- To remove the catalogs 
for inactive member from SYSCAT. 

INDEX (CZCFI) -- To build the first page of 
a catalog for a userid. 

Exits: LOCATE (CZCFL1) 

Normal - register 15 contains X'OO'. 

Error - register 15 contains one of the 
following hexadecimal codes: 

04 - The userid supplied to the FIND macro 
instruction is not in the POD of the 
catalog data set. If the owner's 
userid is not found, a flag is set in 
the first byte of the 45-byte buffer, 
and the owner's fully qualified name 
is in the remaining 44 bytes. 

08 - Not all the qualifiers of the fully 
qualified name were located. The last 
qualified SBLOCK located is in the 
64-byte retrieval area. If an owner's 
catalog was entered, a flag is set in 
the first byte of the 45-byte buffer 
and the owner's fully qualified name 
is in the remaining 44 bytes. 

OC - The user is attempting to retrieve an 
entity in an owner's catalog that he 
is not allowed to share. No SELOCKs 
are retrieved in the 64-byte buffer, 
nor is the owner's fully qualified 
name inserted in the 45-byte buffer. 

LOCFQN (CZCFL2). Same exits as for CZCFL1. 

Same as above. 

LOCATE calls the ERROR PROCESSOR (CZCFE) 
to issue a SYSER for any of the following 
conditions: 

1. 80102501 - The FQN in the parameter 
list contains an error (for example, 
the userid or qualifier exceeds 8 
characters in length). 

2. 80102502 - An FQN generation data set 
name contains an error (for example, 
if there is a non-numeric character 
between parentheses). 

3. 80102503 - There is an invalid option 
cede in the input parameter list. 

4. 80102504 - An unexpected return code 
is returned from FIND. 



80102506- Another catalog rrember has 
to be opened thus forcing LOCATE to 
implicitly release the current member 
which has been locked up for an 
update. 

6. 80102507 - The userid is not in the 
first SBLOCK of a catalog. 

7. 80102508 - A catalog cannot be 
accessed (for example, the member can­
not be located by FIND or a STOW can­
Dot be issued successfully). 

8. 80102509 - A SYNAD was taken on a READ 
or WRITE operation on SYSSVCT for a 
reason other than that the key was not 
found. 

9. 80109902 - This is a general SYSER 
that CZCFE issues when requested to 
issue a SYSER but the parameter list 
to CZCFE does not contain a SYSER. 
The following conditions in LOCATE 
cause this SYSER: 

The number of qualifiers exceeds 19. 

The primary catalog cuffer has been 
destroyed after processing an owner's 
catalog. 

There was an error return from last 
call to GETSBLOCK (CZCFG1) before 
exit. 

10. 80109901 - This SYSER is issued by 
CZCFE when LOCATE detects a catalog 
structure error. 

operation: LOCATE (CZCFL1) 

LOCATE is entered with a request to 
retrieve an SBLOCK either by its fully 
qualified name (FQN) or its relative 
address. 

After initialization, the option code is 
examined. If it is not zero or a multiple 
of four a SYSER and ABEND will be issued 
informing the user of an invalid option 
code. If the input option requests a LOC­
ATE on an FQN, a trace table is built. A 
24-byte entry is made for each qualifier in 
the FQN. First, the qualifier is moved 
into the table after it is validated. A 
flag is set in the entry to indicate that 
the level is an explicit one and a second 
flag is set if the FQN points to a data set 
in an owner's catalog. A third flag is set 
for the last qualifier in the FQN. If the 
FQN is a relative generation, it is con­
verted to binary and the qualifier for the 
current level contains the binary number 
followed by a plus or minus sign. A SYSER 
and ABEND are claimed if any irregularity 
is detected in the FQN. The trace table is 
updated when the SBLOCK for the level is 

found in the catalog. Sharing infcrrration 
and the type and relative address of the 
SELOCK are saved in the table. A flag is 
alsc set to indicate that the qualifier was 
found in the catalog. 

LOCATE calls CZCFG3 after issuing the 
FIND against the user's catalog, to initia­
lize the VAM buffer in which the catalog is 
rrocessed. LOCATE must also determine if 
the member for which the FIND is to ce 
issued is already open. If it is, LOCATE 
cypasses issuing the FIND and the call to 
CZCFG3. If a member is open but does not 
correspond to the member for which the FIND 
is to be issued, CZCFG4 is called to issue 
the necessary PUTX, PUT, STOW and CLOSE 
(TYPE=T) sequence. Before calling CZCFG4 a 
check is made to see if the catalog is 
locked ur. If it is, a SYSER and ABEND are 
claimed and the user receives the message: 
LOCATE HAD TO IMPLICITLY RELEASE A MEMBER 
LOCKED UP FOR UPDATE. 

If the return code from FIND indicates 
that the userid in the FQN is not in the 
SYSCAT POD and if the attempted access is 
to his own catalog, the address of the user 
catalog is extracted from SYSSVCT with a 
READ operation. If a SYNAD is taken on the 
READ because the key is not found, a return 
Ioiith RC='OI~' is made. If a SYNAD is taken 
on the WRITE oreration or on the READ 
operation for any other reason than because 
the key can not be found the program will 
issue a SYSER and ABEND and the user 
receives the message; UNRECOVERABLE ERROR 
IN SYSSVCT. A STOW 'N' is issued to create 
a member entry in the POD and this is fol-
10loied by a FIND to open the member of SYS­
CAT. If the STOW fails because the POD is 
full, CATFLUSH is called to delete inactive 
rr,embers from the SYSCAT POD and a branch is 
taken to reissue the STOW 'N' again. If 
the CATFLUSH return code is not zero, LOC­
ATE terminates with a '04' return code. If 
the return code from FIND is other than 
'00' or '14' (member already open), SYSER 
80102508 and an ABEND are issued. The user 
receives the message: SYSTEM FAULT: 
UNABLE TO ACCESS CATALOG. If the FIND is 
successful and the DCB indicates there are 
rages in the SYSCAT member, a branch is 
taken to continue normal processing in LOC­
ATE. If there are no pages in the SYSCAT 
rrember and SYSSVCT indicates a USERCAT does 
not exist, INDEX is called to create the 
first fage of a catalog in SYSCAT. The 
flag UCTSYNC in SYSSVCT is then set to ind­
icate that the SYSCAT member and the USER­
CAT are not the same by issuing a WRITE or 
SYSSVCT. Then a branch is taken to con­
tinue normal processing. 

If there is no 
is a USERCAT, the 
SYSCAT. FINDJFCB 
for the USERCAT. 

SYSCAT member but there 
USERCAT is moved into 
is called to get the JFCB 
The USERCAT DSCB pointer 

Section 1: catalog Services 17 



is moved fron: SYSSVCT to the JFCB, TPTVPY 
is set to indicate that the USERCAT is a 
",rivileged data set and the LCB tor USERCAT 
is opened. 1\ GET moves t.he USERCAT to the 
buffer, a PUT moves it to SYSCAT "lnd t.he 
DCB is then closed. A STOW is exec'lt.ed to 
close the catalog member. If the return 
code from STOW is not zero, a SYSER and an 
ABEND are issued and the user receives the 
message: SYSTEM FAULT: UNABLE TO /,CCESS 
CATALOG. Before retul:ning to reissue t.he 
FIND, SYSCAT is checked to see if it 
exceeds 800 pages. If it doe~, CATFLUSH is 
called to delete inact:i ve SY:'CAT member s. 

Aft('r the FIND is complete, CZCFGl is 
called to obtain the virtual memory address 
(VMA) of the first SBLOCK in the catalog. 
If the return code from CZCFGl is not zero 
or if the FQN userid is not in the first 
catalog ;::>BLOCK, a SYSER is claimed dnd the 
ERROR PROCESSOR (CZCFE) is requested to 
call CZUFX to rebuild the catalog. CZCFE 
then issues a completion code 1 ABEND after 
CZUFX returns control. 

When the catalog SBLOCK for one of the 
FQN qualifiers is found, the corresponding 
entry in the trace table is updated as 
described above. If this is the SBLCCK for 
the last qualifier in the FQN and it is not 
a sharing descriptor, the catalog search is 
finished. If LOCATE is called by LOCFQN, 
LOCATE branches back to LOCFQN. Otherwise 
the caller receives a zero return code and 
LOCATE exits. Th~ exit procedure consists 
of moving the last located SBLOCK into the 
calling routine's 64-byte buffer (given as 
an entry parameter to LOCATE). This SBLOCK 
may be an index, a data set descriptor or a 
sharing descriptor. Sharing information 
extracted from the current or a higher 
level is returned in the 64-byte buffer (if 
a sharing descriptor is not being 
returned). LOCATE also fills in CDSNPT, 
CDSCLS and CDSCLC in the catalog common 
area (CHBCDS). If the input option 
requests the closing of the catalog member, 
CZCFG4 is called to close it before return­
ing to the caller. 

If the SBLOCK is an index SBLOCK (and 
there are more FQN qualifiers to be 
located), a search is made in this index 
level for the pointer entry containing the 
next FQN qualifier. If found, CZCFGl is 
called to obtain the VMA of the SBLOCK and 
a branch is made to update the trace table 
as described previously. If the next FQN 
qualifier is not found in the index level, 
the caller receives an X'08' return code. 
If LOCATE is called by LOCFQN the module 
branches to it. If not the module exits as 
described previOUSly. 

If the SBLOCK is a sharing descriptor 
and proceSSing is already in an owner's 
catalog, a x'OC' return code is sent to the 

18 

caller or LOCFQN. If LOCATE was called by 
CELCAT, the catalog search is complete and 
this sharing descriptor is returned to 
DELCAT. Otherwise LOCATE moves the owner's 
FQN from the sharing descriptor to the cal­
ling routine's 45-cyte buffer. Any remain­
ing qualifiers in the original FQN are then 
concatenated with the owner's FQN in the 
ruffer. If adding these qualifiers causes 
thf FQN to exceed 44 characters a SYSER and 
ABEhL are claimed. The sharing descriptor 
is then moved into the 64-byte buffer in 
edse t.he owner userid is not found. If the 
Gwner dnd sharer userids are not the same 
thE current catalog member is closed before 
branching back to build a new trace table 
for the owner's FQN. Before closing the 
catalog rrember a check is made to see if 
t.he caller requested LOCATE to keep the 
catalog locked until it is updated (CDSLOC 
flag was set). If so, a SYSER and ABEND 
are claimed and the user receives the mes­
sage: LOCATE HAD TO IMPLICITLY RELEASE A 
MEMBER LOCKED UP FOR UPDATE. 

If the catalog level pointed to by the 
owner's FQN is successfully retrieved, and 
the user is allowed to share, a flag 
(X'04') is set in the first byte of the 
45-byte cuffer to indicate that an owner's 
catalog was entered and LOCATE will exit 
with a zero return code. If the user is 
not allowed to share the owner's data set. 
the buffer flag is set to zero and LOCATE 
exits with a X'OC' return code. 

When LOCATE is given a fully qualified 
name containing a relative generation num­
ber, the relative generation number is con­
verted to an absolute generation name. The 
last qualifier before the relative number 
must point to a generation index, or LOCATE 
terminates with an error condition. When 
the absolute name associated with a zero or 
negative relative number is located, the 
relative number is overlayed in the fully 
qualified name by the absolute name. If a 
Fositive number is given, a new absolute 
name is generated by adding the last 
generation number to the relative number. 
The result is put in the fully qualified 
name, as with zero or negative numbers. 
LOCATE then proceeds as usual, retrieving 
the data set descriptor for zero or nega­
tive numbers, and returning an error code 
for positive numbers. If the generation 
index is in an owner's catalog, the rela­
tive number is replaced in the 45-byte 
buffer, not in the original fully qualified 
narre. 

Sharing information is extracted from 
the catalog by searching all levels of the 
catalog until an access is found. The 
search begins at the lowest level (the last 
level found) and can continue up to the 
highest (userid). The first access that is 
found is returned. If a level is shared 



selectively, the sharing list is searched 
for the userid. If a level is shared 
universally. that access is returned. 

A request by relative address may be 
made only after a LOCATE has been executed 
for a fully qualified name and it is neces­
sary to retrieve subsequent chained 
SBLOCKs. However, if any intermediate re­
quest causes LOCATE to enter another user's 
catalog. a request by relative address is 
not valid for any relative address within 
the first user's catalog. When this option 
is used, no fields in the SBLOCK are 
changed. 

LOCATE checks for catalog structure 
errors when searching through a catalog. 
If an error is detected, the CATALOG ERROR 
PROCESSOR (CZCFE) is called with an error 
code to describe the type of error and with 
other data such as the location of the 
error in the catalog. If LOCATE is called 
by LOCFQN a flag may be set requesting 
CZCFE to return after claiming a SYSER and 
processing continues in LOCATE. Otherwise 
CZCFE issues an ABEND. 

Note: LOCATE'S PSECT (CZCFLX) contains a 
data control block (DCB) for SYSCAT. 

LOCFQN CZCFL2 

LOCFQN is entered to find the catalog 
level and any lower levels implied for an 
FQN. This information will be returned to 
the caller in 96-byte blocks called 
TBLOCKs. The TBLOCKs are all chained 
together on storage obtained by a GETMAIN 
operation. The caller must free this 
storage when the TBLOCKs are no longer 
required. 

LOCFQN calls LOCATE (CZCFLl) with the 
FQN in the input parameter list. Upon 
returning from LOCATE the return code is 
saved and a switch is set to activate error 
recovery if an error is encountered during 
a lower level implicit search of the 
catalog. If an error is detected a call is 
made to the ERROR PROCESSOR (CZCFE) to 
issue a SYSER and ABEND. If the flag is 
set the ERROR PROCESSOR may be requested 
for certain recoverable situations to 
return to the caller after issuing the 
SYSER. 

If a zero return code is obtained from 
the LOCATE call the virtual memory address 
(VMA) of the catalog SELOCK associated with 
the last qualifier in the FQN is obtained 
by calling GETSBLOCK (CZCFG1). If a non­
zero return code is obtained for GETSBLOCK, 
the ERROR PROCESSOR is called to issue a 
SYSER and ABEND and the user will get the 
n,essage: SOFTWARE ERROR- ERROR RTN ON LAST 
GETSBLOCK BEFORE EXIT. 

The SBLOCK is then analyzed to determine 
its type. If it is a data set descriptor 
SBLOCK and a entry was not made into an 
owner's catalog, a TED type TBLOCK will be 
built. TBS TBLOCKs containing permissive 
information for all qualifier levels of the 
FQN will also be built and chained to the 
'IBD TBLOCK. If entry was made into an 
owner's catalog a TBD TBLOCK is built only 
if the sharer has access to the data set. 
lifter building the TBLOCK for t.his level in 
the FQN, a check is made to see if this 
qualifier level is in the FQN in the param­
eter list t.o LOCFQN. If so, it is the end 
of the processing in the current catalog 
and the catalog is closed. This is the 
sa~e proceedure followed when a return code 
of X'OS' or X'OC' is received from the ini­
tial call to LOCATE. If the closed catalog 
is not an owner's catalog, processing is 
complete and a return is made to the 
caller. 

If processing is in an owner's catalog, 
a check is made to see if the sharer'S 
catalog was previously closed. This is the 
same procedure to be followed for a return 
code of X'04' from t~e initial LOCATE call. 
If it was closed the buffer is checked to 
see if the first SBLOCK in the catalog con­
tains a userid. If it does not, a SYSER is 
clairred and the ERROR PROCESSOR is asked to 
return instead of issuing an ABEND. If 
there had been an explicit search into an 
owner's cat.alog but no TBLOCKs were built 
because of a lack of sharing information, 
an initial return code of X'OO' from LOCATE 
is changed to x'OC' before exiting from the 
module. If an explicit search into the 
owner's catalog yields no output, a TED 
TBLOCK is built containing the sharer's 
FQN. A TBO TBLDCK is also built containing 
the owner's FQN and a flag, which is set to 
explain why there is no output. 

The module then checks to see if the 
current qualifier level is explicit (that 
is, the qualifier is in the input FQN). 
This procedure is also followed after out­
put of a TBD TBLOCK. If the level is 
explicit, processing in this catalog is 
complete and the member is closed as pre­
viously described. If not, a search is 
made for the next lowest qualifier. If 
none is found, the entry in the trace table 
(see LOCATE for explanation of trace table> 
for this qualifier is erased and the module 
will back up to the next higher qualifier 
to see if it is explicit. When a qualifier 
is found a check is made to see if the num­
ber of qualifier levels exceeds 19. If so, 
a SYSER is claimed, all the lower qualifier 
levels are ignored and a TBD TBLOCK is 
built as described above. If the number of 
qualifier levels is fewer than 19, a new 
trace table entry is built for this quali­
fier level and the module branches to ana­
lyze the type of SBLOC~ in the catalog for 

Section 1: Catalog Services 19 



this level as descrlhed after the initial 
(;a11 to LOCAT.E. 

If the SBLOCK that is returned after the 
initi,'ll call to LOCATE is a sharing descri­
ptor, a check is made to see it an owner's 
catalog has been entered. If so, LOCFQN 
backs up t.O examine the next higher quali­
fier as described above. If an owner's 
catalog has not been entered and L~:FQN is 
requested not to enter a catalog, a TBD and 
TBO TBLOCK are built and LOCFQN backs up 
again to ex~mine the next hlgl.er qualifier. 
If LOCFQN is requested to implicitly ent.er 
d catalog, a flag is set indicating 2n 
owner's catalog has been entered and the 
sharer's catalog is closed. Since it will 
not be reopened again, each page in the 
buffer is aarked as changed so that page­
ins can be done from the drum or auxiliary 
storage instead of external storage which 
cOlllcl be changed since the catalog is 
closed. If sharer and owner user.ids are 
the same the catalog is not closed. LOCATE 
is now entered for the SEcond time using 
the FQN in the sharing descriptor. Final­
ly, if none of the above options is 
requested, LOCFQN enters an owner's catalog 
only if the qualifier level which points to 
the sharing descriptor is in the input FQN 
(that is, is an explicit qualifier level). 
Otherwise a TBD and TBO 'TBLOCK are built 
before branching back to look at the next 
higher qualifier. 

If the SBLOCK that is returned after the 
initial LOCATE call is an index, LOCFQN 
looks for the first member in this index 
level. If none can be found, a TBD TBLOCI< 
is built as described previously. If a 
member is found, LOCFQN brnnches to check 
if the number of qualifier levels exceeds 
19. 

A TBD TBLOCK contains an FQN (TBDDSI), 
the DSCB pointer if it is a VAM data set 
(TBDDSC), the owner's or sharer's access to 
the data set (TBDACC), the owner's userid 
if the data set is shared (TBDOWN) and data 
set organization (TBDORG). The TBLOCK has 
room for two volume fields (TBDDVF, TBDDVL) 
for a SAM data set. If the data set exists 
on more than two volumes, this information 
is stored in TBC TBLOCKs which are chained 
to the TBD TBI,oCK. A TBDFLL flag is also 
set if the data set has BULKIO pending for. 
it or if it is a temporary data set. 

If a TBD TBLOCK is built for a sharing 
descriptor, either because of the input 
option, or because of an unsuccessful 
search into the owner catalog, a TBO TBLOCK 
is also built and chained to the TBD 
TBLOCK. The TBO TBLOCK contains the owner 
data set name issued by the user at SHARE 
time and flags, if applicable, indicating 
the reason for the unsuccessful search (for 

20 

1
0XamPle! userid not found, data set non­
existent or non-sharable). 

Sharing inforrration is stored in TBS 
TBLOCKs which are chained to the TED 
TBLOCK. Each entry in the TBLOCK (ten 
bytes) consists of a userid, the access, 
and t~e FQN level associated with the 
access. If a level is shared universally, 

• the userid is set to *ALL. 

CATALOG ERROR PROCESSOR (CZCFE) 

The CATALOG ERROR PROCESSOR is a reent­
~ratle, nonrecursive, privileged subroutine 
rec3iding in virtual storage. Its function 
is to execute catalog SYSERs and to take 
action when a catalog structure error or a 
user format error is discovered by one of 
tne catalog service routine modules. If 
the module is called to execute a catalog 
SYSER (error codes FO-FF) the SYSER and 
ABEND in the parameter list are checked and 
then issued from this module. When a 
catalog structure error (error codes 00-9F) 
is discovered by one of the catalog service 
modules, the ERROR PROCESSOR is called with 
the type and location of the SYSER in the 
catalog. This information is recorded in 
the system log and a SYSER and an ABEND are 
then issued. If a user format error (error 
codes EO-EF) is detected, the error ~roces­
sor is called to issue an ABEND to the 
user. 

Input: The farameter list to the module is 
in the PSECT CBBCEP. It contains the fol­
lowing infor~ation: 

Word l/Word 2 ~odule name of caller 

word 3: Contains the following: 

byte 1 hexadecimal error code 
byte 2 - exit option code 
byte 3 - flag byte (not used) 
byte 4 - not used 

Word 4 Address of FQN (44-byte area). 

~,ord 5 Address of qualifier level at 
which error occurs (this address 
should be in the range of the 
FQN) • 

Word 6 Address of mino~ SYSER in caller's 
PSECT. 

Word 7 Address of ABEND message in cal­
ler's PSECT (the first byte gives 
the length of the text that 
follows) . 

Wo.rd 8 Primary address of the error. 



Word 9 Secondary address associated with 
the error. 

Word 10 contains the following: 

bytes 1,2 - actual count of entries 
byte 3 - not used 
byte 4 - not used 

Modules Called: SYSER (CEAIS) -- system 
error routine: invoked when the error pro­
cessor is called with ~rrors codes 00 to 9F 
and EO-EF. 

Exits: Return, to the caller, if specified 
by the option code (CEPOPT). Otherwise, 
issues an ABEND. 

SYSERs: 
80109901 This SYSER is issued when CZCFE is 

called when one of the catalog 
service routines discovers a 
catalog structure error (error 
code 00-9F) 

80109902 This SYSER is issued when CZCFE is 
called to issue a SYSER but the 
parameter list does not contain 
one (error code FO-FF) 

80109903 This SYSER is issued if the param­
eter list contains a SYSER that is 
not type 1 (error code FO-FF). 

Operation: The CATALOG ERROR PROCESSOR is 
called for three types of errors detected 
by the Catalog Service Routines: 

1. Type 1 (error codes 10-9F) a catalog 
structure error. 

2. Type 2 (error codes EO-EF) a user 
input format error with no afpropriate 
return code available for returning to 
the caller. 

3. Type 3 (error codes FO-FF) other sys­
tem error conditions for which the 
caller supplied a SYSER code and a 
comp code 1 ABEND message. 

If the parameter list contains a fully 
qualified name (FQN), it is added to all 
ABEND and WTL messages. If the name 
exceeds 44 characters only the first 44 are 
added. If the parameter list contains an 
address of a qualifier that is in the FQN 
range, the qualifier is also added to the 
messages. 

When called for a type 1 error, the 
CATALOG ERROR PROCESSOR checks to see if 
the parameter list contains a SYSER. If it 
does not, SYSER 80109902 is executed. If 
the SYSER is not a type 1 SYSER, the module 
issues a 80109903 SYSER. Otherwise the 

SYSER in the parameter list is issued. If 
the ~arameter list contains an ABEND mes­
sage, the FQN and the calling routine are 
added to it before writing the message to 
SYSLOG. If the farameter list does not 
contain an ABEND, a standard message is 
written in SYSLOG instead. Before issuing 
the ABEND (either the one in the pararr,eter 
list or the standard ABEND message), the 
option code is checked. If it specifies a 
return, the CATAlOG ERROR PROCESSOR returns 
to the caller. If it specifies that the 
catalog is to be rebuilt, CZUFX is called 
to do this before return is made to the 
caller. Otherwise the ABEND message is 
issued. 

When called for a type 2 error the 
CATALOG ERROR PROCESSOR checks the parame­
ter list to see if it contains an ABEND 
message. If it does, the message is conca­
tenated with the error code, the module 
name of CZCFE's calls an FQN. Then a camp 
code 1 ABEND is issued. If the para~eter 
list does not contain an ABEND, a standard 
message is issued. 

If called for a type 3 error, the 
CATALOG ERROR PROCESSOR writes a Ir1essage to 
SYSLOG describing the type and location of 
the error in the user's catalog. The FQN 
and the module which discovers the error 
are also included in the message. The 
option code is again checked. If a return 
is requested, the module returns to the 
caller. If it requests that the catalog be 
rebuilt, CZCFX is called to do this before 
returning to the caller. Otherwise, a comp 
code 1 ABEND is issued and the user 
receives a standard message along with the 
error code, the module which detected the 
error and the FQN. 

Note: CZCFE8 is the location in CZCFE 
where all SYSERs are executed. CZCFER is 
the location of the area in CZCFE's PSECT 
which contains the write-to-Iog message. 

INDEX (CZCFI) 

INDEX is a reenterable, nonrecursive. 
~rivileged subroutine residing in virtual 
storage, that constructs chained index 
levels in the catalog and creates new mem­
~ers within the catalog data set. The 
fully qualified name input parameter is 
inspected to determine if a new member is 
~eing created or a new index level is to be 
added to the user. If the FQN consists of 
just one component, INDEX will build the 
userid SBLOCR in the catalog and exit. 
When index levels are to be chained for the 
user, the lowest level found is searched 
for an empty pointer and a pointer is con­
structed to the first SBLOCK of the level 
~eing created. (See Chart AI.) 

Section 1: Catalog Services 21 



_.t~ntry Point: CZeFI1 

Input: Register 1 contains a pointer to 
the pararreter list: 

Word 1 

Word 2 

Pointer to fully qualified name 

Pointer to special parameters 

bits 0-7 - generation code 40; 
create generation 
index 

tits 8-15 - maximum generation 
nUlT1ber 

bits 2u-31 - generation flags 

Outpu~: Register 1 points to the input pa­
rameter list. 

Modules Called: 
GETS BLOCK (CZCFG1) -- To locate SBLOCK and 
calculate virtual storage address. 
(CZCFG4) -- To update the catalog. 

SEARCHSBLOCK (CZCFH) -- To acquire and 
chain an ~~pty SBLOCK. 

PUT (locate mode) (CZCOS> To locate a 
tuffer to be the next record put in the 
data set. 

LOCATE (CZCFL) -- To locate an index level. 

CATALOG ERROR PROCESSOR (CZCFE) -- To claim 
a SYSER and a completion code 1 ABEND when 
a catalog structure error is detected, or 
when an end-of-data-set condition is 
detected by CZCFGl. CZCFE is also called 
whenever a SYSER is clained tecause the 
userid in FQN is not 8 characters in 
length. 

Lxits: 
Normal - register 15 contains 00 - a new 

member was successfully added, or 
all qualifiers (index levels> not 
previously cataloged were added. 

Error - if INDEX was unsuccessful, regis­
ter 15 contains one of the follow­
ing codes: 

22 

04 - userid not found in POD. 

08 - all components of the fully 
qualified narees were already 
in the catalogs, or the 
generaticn name had a format 
error. 

oc - user is attempting to update 
a user catalog for which he 
is not authorized. 

Operation: INDEX inspects the fully quali­
fied name supplied as an input parameter to 
determine whether the name has one com­
ponent or more than one. If there is only 
one component (the userid), the PUT macro 
instruction is issued to acquire a buffer 
in which to construct the userid SELOCK. 
INDEX returns with a X'OO' return code 
after building the userid SELOCK. The STOW 
!facre instruction is issued in LOCATE. 

If the fully qualified name is composed 
of mere than one component, INDEX will 
enter l.OCATE to determine if the sarr,e name 
already exists. If LOCATE indicates that 
all the components of the fully qualified 
name were found (code 0), INDEX will return 
a code of '08' to the calling routine. A 
return code cf '04' or 'OC' is passed on as 
a return code from INDEX, and no further 
processing takes place. 

Upon locating some, but not all of the 
levels of the fully qualified name, INDEX 
deterrrines, in the case of a sharer, if the 
sharer is privileged to update the catalog. 
If not, an error code of 'OC' is returned. 
If the lcwest level found is a generation 
index, the next corr-ponent of the fully 
qualified name must have the atsolute 
generation name format. Otherwise, an 
errcr code of '08' is returned. 

The lowest level fO~Ld is then searched 
fer an empty pointer. If none exists, the 
SEARCHSBLOCK routine is entered to acquire 
and chain an empty SBLGCK in which a point­
er is to be placed. This is a pointer to 
the first SBLOCK of the level being added. 
1his process is continued until the entire 
fully qualified nane has been cataloged. 

If the parameter list indicates that a 
generaticn index is teing created, the 
~i.eraticn options are put in the SBLOCK of 

t~~ lowest level created. 

When the level is being added to an 
existing generation index, the pointer to 
the new level is sorted by generation nurr­
ter into the list ef pcinters belonging to 
that G~n~ration index. 

Validity checks are performed on data in 
tne catalog when INDEX is searching the 
catalog. If an error is detected, the 
CATALOG EFRCR PROCESSOR is called with 
rararreters describinq the type and location 
cf the error in the catalog, to claim a 
SYSEF and d corrpleticn code 1 ABENC. 

A call to CZCFG4 is made to update the 
catalog cn external storage. 



GETSBLOCK (CZCFG) 

GETSBLOCK is a reenterable, nonrecur­
sive, privileged subroutine residing in 
virtual storage. ~hen entered at its pri­
mary entry point (CZCFGl>, it receives a 
pointer containing the relative address of 
an SBLOCK and calculates its virtual 
storage address for the user. The user 
submits the pointer to the desired SBLOCK 
in the format OPbb, where P is the page 
number relative to the member and bb is the 
relative byte within tre page. If the 
requested SBLOCK is in the page buffer, the 
virtual storage address is calculated and 
returned to the user. If the p value 
exceeds the size of the user's catalog, 
CZCFG2 is called which returns to the user 
with a return code of X·04'. 

Entry point CZCFG3 is invoked by LOCATE 
to provide initial sizing of the VAM buffer 
used in processing the user catalog. 

Entry point CZCFG4 is used to perform 
the PUT or PUTX functions as indicated by 
the bit settings in the CHACDS table. (See 
Chart AF.) 

Entry Point: 
CZCFG1 - Primary entry point. Used to con­

vert a 'Pbb' address into a 32-bit 
Virtual Memory address. 

CZCFG2 - EODAD exit. 
CZCFG3 - Entry point from LOCATE (CZCFL) to 

provide initial sizing of the VAM 
buffer used in processing the user 
catalog. 

CZCFG4 - Used to effect PUTX/PUT/STOW/CLOSE 
sequence as indicated by the bit 
settings in the CHACDS table 
(CDSFLG) . 

Input: Register 1 contains a pOinter to 
the relative address of the requested 
SBLOCK. 

output: Register 1 contains a pointer to 
the virtual storage address of the 
requested SBLOCK. 

Modules called: 
SETL (CZCOT) -- To locate the specified 
rage of a catalog member. 

GET (CZCOR) -- To move the specified page 
to the catalog buffer. 

STOW (CZCOK) -- To unlock a member in the 
POD. 

CLOSE (CZCOQ) -- To disconnect a data set 
from the system. 

PUT (CZCPA) -- To add a record to an output 
data set. 

PUTX (CZCOU) -- To exchange a record in an 
output data set. 

READ (CZCPE) -- To read a record of 
SYSSVCT. 

~RITE (CZCPE) -- To write a record of 
SYSSVCT. 

CATALOG ERROR PROCESSOR (CZCFE) -- To issue 
any SYSERs and ABENDs claimed by GETSBLOCK. 

Exits: If the return code from STOW is not 
zero a SYSER is issued followed by an 
ABEND. If end-of-data set occurs, control 
is returned to the user with 04 in register 
15; otherwise, control is returned with 00 
in register 15. 

Operation: CZCFGl - This is the primary 
entry point used to convert a 'Pbb' address 
into a 32-bit Virtual Memory address. This 
is done by multiplying (P-l) by 4096, and 
adding the product to the beginning of the 
user's catalog buffer. Adding the bb value 
yields the required Virtual Memory address. 

No physical GET operations are per­
formed. If the P value exceeds the size of 
the user's catalog, CZCFG2 is entered. 

CZCFG2 - This is the EODAD exit after a GET 
or PUT is issued for a catalog member. A 
SYSER and ABEND will be claimed if the 
EODAD occurs. 

CZCFG3 - This entry point is invoked by 
LOCATE (CZCFL) after the call to FIND 
(CZCOJ), to provide initial sizing of the 
VAM buffer used in processing the user 
catalog. The buffer must be at least one 
rage greater than the current size of the 
member (CCBDMS). If the buffer is too 
small, a FREEMJ\IN and GETMAIN sequence is 
perforrred to release the current buffer and 
obtain the required space for the new buff­
er, storing these parameters in the DCB 
Header. DCBEXL, DCBBCN, DHDDXP, and DHDCPR 
are cleared to ensure that paging of the 
rrember will te effected on a subsequent GET 
operation. 

The DHDMRL field is set to one page 
greater than the current size of the memb­
er. This field is set to ensure proper 
execution of CZCFG4 and the edit performed 
by SEARCHSBLOCK (CZCFH). 

A SETL is issued to the beginning of the 
rrember, followed by a GET (locate mode). 
The address returned by GET is stored in 
EUFFJ\D and used by CZCFG1 to calculate the 
Virtual ~emory address requested. 

CZCFG4 - This entry point is used to effect 
the necessary PUTX/PUT as indicated by the 
bit settings in the CHACDS table (CDSFLG). 
The CDSFIG bits are then reset, and a STOW 

Section 1: Catalog Services 23 



(type R) is issued against the DCB pointed 
to by CZCFL2. The CZCFL2 field is reset to 
foint to the primary DCB (CDSCOM). 

If a t'UTX was issued, a check is made to 
see if the flag byte in the SYSSVCT record 
indicates that the USERCAT and the SYSCAT 
(SCRATCHCAT) members are the same. (Tbey 
should not be the same since the PUTX 
changed SYSCAT.) If the flag indicates the 
catalogs are the same, the record is reset 
and written back into SYSSVCT. If a SYNAD 
is taken on a READ or on a WRITE, the 
CATALOG ERROR PROCESSOR is called to issue 
d SYSER and ABEND and the user receives the 
message: UNRECOVERABLE ERROR IN SYSSVCT. 

If d PUT is issued against a member due 
to an added page, a CLOSE (TYPE=T) is 
issued instead of the STOW. 

SEARCHSBLOCK (CZCFH) 

SEARCHSBLOCK is a reenterable, nonrecur­
sive, privileged subroutine residing in 
virtual storage. It acquires and chains an 
empty SBLOCK as either: 

• An extended SBLOCK of a cataloged 
entity. 

• The first SBLOCK of a cataloged entity. 

The count of SBLOCKs in each page is 
checked until an available SBLOCK is found. 
The relative address of thE: SBLOCK within 
the page is then located by searching for a 
control byte of zeros. The new SBLOCK is 
retrieved by GETS BLOCK and its virtual 
storage address is returned to the user. 
The new SBLOCK is linked to the parent 
SBLOCK before returning control to the 
user. (See Chart AG.) 

Entry Point: CZCFHl 

Input: Register 1 contains a point~r to 
the address of the SBLOCK to which the new 
SBLOCK is to be chained. 

Output: Same as input 

Modules Called: 
GETSBLOCK -- locate SBLOCK and calculate 
virtual storage address. 

CATALOG ERROR PROCESSOR (CZCFE) -- To claim 
any SYSERs and camp code 1 ABENDs issued by 
SEARCHSBLOCK. 

Exits: 
Normal - return without return code 

Error - to SYSER without return code 

Operation: SEARCHSBLOCK scans the existing 
pages of the user's catalog. By testing 
the count of SBLOCKs in the page (64 is the 

24 

maximum), a page containing an available 
SBLOCK can be located. When an end-of-data 
set condition is encountered while scanning 
through the pages, SEARCHSBLOCK appends a 
new page to the user's catalog through use 
of a simulated PUT (locate mode). SEARCHS­
BLOCK sets the PUT indicator in the CHACDS 
t.able, calculates the VMA of the new page 
ty adding the current value of LRECL to 
that of DCBBCN, and then increases the 
value of LRECL by 4096. The new page is 
zeroed out and thereby initialized. 

Once the page is retrieved, SEARCHSBLOCK 
scans the allocated byte field of each 
SBLOCK in the page. If this field is zero, 
the SBLOCK is free; if this field is not 
zero, the next SBLOCK is examined. This 
Frocedure is repeated until an empty SBLOCK 
is found. SEARCHSBLOCK inserts a cackward 
Fointer in the new SBLOCK, and retrieves 
the parent SBLOCK to which it is chained. 
The forward chain in this SBLOCK can be one 
of the following: 

• Extended SBLOCK pointer. 

• Pointer to a list of sharers. 

• Pointer field in a member of an index 
level. 

SEARCHSBLOCK determines the proper field 
and inserts the forward chain. 

The new SBLOCK is retrieved via 
GETSBLOCK and control is returned to the 
calling program. 

USERCAT SCAN (CZUFY) 

USERCAT SCAN is a reenterable. nonrecur­
sive, Friviliged subroutine that resides in 
virtual storage. It is called at entry 
point CZUFYl when OPEN VAM or DSCB/CAT 
RECOVERY discovers an error while reading 
the DSCE for the SYSSVCT data set. The 
first data page of the data set is examined 
to see if it contains records for userids 
TSS ••••• , SYSOPERO, and SYSMANGR, and if 
the locators at the bottom of the VISAM 
page for the records are correct. If all 
these conditions are true, the checksum is 
computed for the SYSSVCT DSCB, and the DSCB 
page is written out before leaving the 
module. Otherwise, the first page of SYS­
SVCT is constructed with records for the 
three userids and the page is written onto 
a direct access device. The DSCB for SYS­
SVCT is initialized, the checksum is com­
Futed, and this page is written out. The 
opErator is then prompted with a message 
telling him to call CZUFY2 after startup is 
complete. 

The data set SYSSVCT is rebuilt at entry 
point CZUFYI. First, the bSCB pointer for 



each record in SYSSVCT is filled ~ith 
zeros. The public volumes are then scanned 
for usercat DSCBs. When found, the DSCB 
pointer is computed and entered into SYS­
SVCT for the userid. (See Chart AJ.) 

Entry Points: 
CZUFYl - To compute checksum for SYSSVCT 

DSCB and to construct the first 
page of SYSSVCT data set if 
necessary. 

CZUFY2 - To initialize SYSSVCT and then 
rebuild it by noving in the DSCB 
pointer for all of the usercat 
data sets. 

Input: None 

putput: None 

Modules Called: 
SETL (CZCOT) - To position to beginning of 
SYSUSE data set. 

GET (CZCOR) - To retrieve a record in 
SYSUSE. 

OPEN (CZCLAO) - To open SYSUSE and SYSSVCT 
data sets. 

READ (CZCPE) - To read a record in SYSSVCT. 

WRITE (CZCPE) - To ~rite a record in 
SYSSVCT. 

PR~2T (CZATJ) - To issue a message to user 
and operator. 

CLOSE (CZCLB) - To close SYSSVCT and SYSUSE 
data sets. 

READWRIT (CZCEM) - To read and ~rite a OSCE 
page. 

ESALOCK (CZCEJ) - To lock and unlock the 
SDAT PAT lock. 

FINDJFCB (CZAEB) - To find the JFCB for 
SYSSVCT. 

DDEF (CZAEA) - To build a JFCB for SYSSVCT. 

FINDEXPG (CZCEL) - To get a page of storage 
on a direct access device. 

GETMAIN (CZCGA) - To get a page of virtual 
storage. 

FREEMAIN (CZCGA) - To free a page of virtu­
al storage. 

ABEND (CZCAP) - To abort from a module. 

Exits: The module does not set a return 
code on normal exit. 

ABEND: If ODEF could not create a JFCB for 
SYSSVCT. 

If FINDEXPG could not get a free 
page on a direct access device. 

If READWRIT could not ~rite out a 
~SCB page containing the 
corrected DSCB for SYSSVCT. 

if READWRIT could not read a DSCB 
page containing the OSCB fer 
SYSSVCT. 

~.f9~i~0: The entry IJuint CZUF'Yl is 
called ~hen OPEFVA~ or DSCB/CATALOG RECO­
VERY encounters an error in the SYSSVCT 
OSCB. FINDJFCB is called to retrieve the 
JFCB. If one is not found, ODEF is called 
to create one. If a JFCB cannot be 
created. an ABEND is issued and the user 
receives the following message: 

SYSTEM FAUL'r: 001, UNABLE TO ACCESS USERCAT 

The LSCB pointer is obtcdned from the JFCB 
and READWRIT is then called to read the 
CSCB page into virtual storage. If no 
error is detected in reading the DSCB page. 
the module returns to the caller. If an 
error other than checksum is detected, an 
ABENC is issued. and the user receives the 
follo~ing message: 

SYSTEM FAULT; 002, UNABLE TO ACCESS USERCAT 

If a checksum error is detected by REAO­
WRIT, the first page of the SYSSVCT data 
set is read into main storage at CZCOWl by 
issuing a SETXP macro instruction. The 
page is examined to see if it contains 
records for userids TSS ••••• , SYSOPERO, and 
SYSMANGR, and to see if the locators at the 
bottom of the VISAM page for these userids 
are correct. If these conditions are true, 
the checksum for the SYSSVCT DSCB is com­
puted and the DSCB page is ~ritten out by 
calling READWRIT before leaving the module. 
(ESALOCK has to be called to lock the SOAT 
PAT page before ~riting the DSCB page. 
When the ~rite is completed, ESALOCK must 
te called again to unlock the SCAT PAT 
lock.) If the ~rite operation is unsucces­
sful, an ABEND is issued, and the user 
receives the follo~ing message: 

SYSTEM FAULT: UNABLE TO WRITE OSCB OR PAT 
PAGE 

If the first page of tbe SYSSVCT data 
set is not correct, the data set is rebuilt 
with records for userids TSS ••••• , SYS­
OPERO, and SYSMANGR on a page of virtual 
storage obtained by a GETMAIN macro call. 
The DSCB pointer for the USERCAT of each 
userid is computed and put into SYSSVCT. 
The page is then ~ritten out to a page on a 
direct access device ~hich ~as obtained by 
calling FINDEXPG. If FINDEXPG can not 
obtain a page of storage an ABEND is issued 

Section 1; catalog Services 25 



and the user receives the following 
message: 

SYSTEM FAULT: EXTERNAL STORAGE EXHAUSTED 

The DSCB for SYSSVCT is then initia­
lized, and the page containing the DSCB is 
written out as described above. The opera­
tor is prompted with a message telling him 
to call entry point CZUFY2 after startup is 
complete. FREEMAIN is then called to free 
the page of storage obtained ty calling 
GETMAIN. The corresponding by,~e in the PAT 
page table is found and set to indicate 
that the page is in use. The PAT page is 
then written out by READWRIT. 

Entry point CZUFY2 is called to rebuild 
the SYSSVCT data sets. First, the SYSUSE 
data set is opened if it is not already 
open, and a SETL macro instruction is 
issued to position the beginning of the 
data set. Then, a record is obtained by a 
GET. A userid is obtained from the SYSUSE 
record, and it is used as the key to read a 
record in SYSSVCT after it has been opened. 
If the redd is unsuccessful, the DSCB 
pointer in the SYSSVCT record will be 
filled with zeros, a WRITE UPDATE will be 
issued on SYSSVCT, and the program will get 
the next record in SYSUSE. If the READ or 
WRITE UPDATE results in a SYNAD for a 
reason other than because the use rid was 
not found, the user is prompted with the 
following message: 

UNABLE TO ACCESS USERCAT FOR THE USERID 

and the program looks at the next record in 
SYSUSE. If a SYNAD is taken because the 
userid was not found in SYSSVCT, a WRITE 
NEW will be issued on SYSSVCT, and the pro­
gram will get the next record in S¥SUSE. 
If a SYNAD is taken on a WRITE NEW, the 
user is prompted with the following 
message: 

USERID CANNOT BE ADDED TO USERCAT TABLE 

dnd again the program tranches back to get 
the next SYSUSE record. 

When all the records in SYSUSE have been 
read, SYSUSE is closed if it was opened in 
this module. SYSSVCT is now initialized so 
that all of the records have a zero DSCB 
pointer. All of the public volumes are 
then searched for USERCATs by examining the 
PAT page on each public volume for a DSCB 
page. When one is found, READWRIT is 
called to read the page into main storage 
at CZCOZ1. Each format E DSCB i~ examined 
for an FQN of userid.USERCAT. If found, 
the DSCB pointer is computed and moved into 
SYSSVCT with a WRITE UPDATE using the 
userid in the DSCB as the key. If the 
WRITE results in a SYNAD, the user is pro­
mpted with the following message: 

26 

UNABLE TO ACCESS USERCAT FOR THE USERID 

~hen all of the DSCBs on all of the volumes 
have been checked, the module returns. 

CATFLUSH (CZCFX) 

CATFLUSH is a public, reenterable, pri­
vileged subroutine that copies members of 
the scratch catalog (SYSCAT) into individu­
al user catalogs at task termination. 
deletes closed members from the scratch 
catalog when the virtual storage POD becom­
es full. and erases the scratch catalog at 
shutdown. (See Chart AL.) 

Entry Points: 
CZCFXl - To copy specific members into the 

user catalog. 
CZCFX2 - To copy inactive members into the 

user catalog and erase them from 
the scratch catalog (SYSER if 
erase is impossible). 

CZCFX3 - To copy all members into the user 
catalog and erase the scratch 
catalog. 

CZCFX4 - To copy SYSOPERO member intc the 
user catalog. 

CZCFXS - SYSSVCT DCB 
CZCFX6 - USERCAT DCB 
CZCFX7 - SYNAD entry 
CZCFX8 - To copy inactive members into the 

user catalog and erase them from 
the scratch catalog (no SYSER if 
erase is impossible). 

Input: Register 1 points to a userid. 
(The parameter list is for entry point 
CZCFXl only.) 

Output: None 

Modules Called: 
READ/wRITE (CZCPE) 
record into SYSSVCT. 

To read or write a 

FINDJFCB (CZAEB) -- To find the SYSCAT and 
USERCAT JFCBs. 

DDEF (CZAEA) -- To create a USERCAT JFCB if 
none is found. 

ADDDSCB (CZCEK> -- To allocate a DSCB for a 
new USERCAT. 

OPEN (CZCLA) To open a USERCAT DCB. 

SETL (CZCOT) To position the data set 
(old USERCAT). 

PUT (CZCOS) -- To copy the user catalog 
from the scratch catalog. 

CLOSE (CZCLB) -- To close the USERCAT DCB. 



STOW (CZCOK) -- To unlock a scratch catalog 
member (type R), and to erase a scratch 
catalog member (type D). 

FIND (CZCOJ) -- To lock a member of the 
scratch catalog. 

GETSBLOCK (CZCFG) -- To set up the scratch 
catalog buffer (entry faint CZCFX3). 

RELEXPG (CZCEN) -- To give back pages of 
the scratch catalog at shutdo~n. 

READWRIT (CZCEM) -- To rEad or ~rite the 
scratch catalog DSCE. 

DSCBREC (CZCEF) To handle a OSCE error. 

PATLOCK (CZCEJ) To lock or unlock a PAT 
when ~riting a DSCB. 

SYSER (CEAIS) -- To indicate an error 
condition. 

ABEND (CZACP) -- To terminate processing 
for an error condition. 

Exits: 
Normal - register 15 will contain a zero 

return code. 

Error - SYSER or ABEND 

Operation: The input r:arameter list (con­
sisting of a pointer in register 1 to an 
eight-character userid) is required for 
entry point CZCFX1. All other entry points 
~ork on the entire scratch catalog, except 
CZCFX4 ~hich works only on SYSOPERO. 
Before a member of SCRATCHCAT is copied to 
USERCAT, the entry for this user in SYSSVCT 
is checked for UCTFLG=X'OO' or '01'. If 
this sync byte is '01', no changes have 
been made to SCRATCHCAT and no update is 
necessary. If the sync byte is '00', USER­
CAT is updated from SCRATCHCAT and UCTFLG 
is set to '01'. (In this description 
·sync· means the scratch catalog and the 
user catalog for a memter are the same.) 

CZCFXl (entry paint 1) is called by 
LOGOFF or ABEND to update a user catalog. 
'I'his ~ill ensure that a user's catalog con­
tains any changes made to the scratch 
catalog. The member is not deleted from 
the scratch catalog at this time. 

CZCFX2 (entry point 2) is called by LOC­
ATE if it is necessary to add a member to 
the scratch catalog and there is no room in 
the virtual storage POD to insert the memb­
er. If all me~bers are active, a minor 
SYSER is declared and the task is ter­
minated. Before any member is deleted (by 
t.he STOW D macro instruction), the UCTFLG 
tyte is checked for the RCR Ration Flag 
(UCTFLG=X'02') and if it is set, the member 
is skipped and not deleted. 

CZCFX3 (entry point 3) is called by SHU­
TDOWN to update all members not already 
updated and then erase the scratch catalog. 
When entered at CZCFX3. CATFLUSB checks the 
RCR Ration Flag for each member and. if it 
is set for a member, bypasses that member 
and does not erase the scratch catalog. 
All successfully updated members are 
deleted. All members in SCRATCHCAT updated 
with no RCR ration flag set are also 
deleted. 

To erase the scratch catalog, RELEXPG 
(CZCEN) is called to release all pages from 
the scratch catalog except the format E 
DSCB slot. Then, the DSCB is read into 
CZCOZ by a call to READWRIT (CZCEM). The 
follo~ing fields in the format E slot are 
filled with zeros: 

DSELBP bytes in last page 

r;SENCP data pages 

OSEDOP directory pages 

DSENOP overflo~ pages 

rSETNP total pages 

DSEENT (38 full words) 

DSECHN chain pointer 

The checksum for the DSCB is then recalcu­
lated and written to external storage by 
REAm-mIT. 

CZCFX4 (entry point 4) is called by MOHR 
(STARTUP) to force a refresh of SYSOPERO to 
ensure that this particular user catalog is 
updated. 

CZCFX8 (entry paint 5) is called by LOC­
ATE to reduce the size of the scratch 
catalog when it reaches 800 data pages. If 
all rrerr,bers are currently active, a return 
is made to the caller. 

CAT FLUSH uses the following method to 
cory from the scratch catalog to the user 
catalog. If no user catalog exists (no 
address in UCTDSCB in SYSSVCT), FIND JFCB 
is called to locate the JFCB for this user 
catalog. If no JFCB exists, DDEF is called 
to create one. ADDDSCB is then called to 
assign a format 'E' OSCE for this user 
catalog, the pointer to which is placed in 
TOTDSC ~efore the call to OPEN. Prior to 
opening the USERCAT, CATFLUSH ensures that 
the member to be copied from the scratch 
catalog is write-interlocked and if it is 
not, a ~rite interlock is imposed before 
the user catalog is opened. Read inter­
locks are cleared before setting a write 
interlock. 

Section 1: catalog Services 27 



Also before opening the user catalog, 
CATFLUSH sets the RCR Ration Flag in SYS­
SVCT for this entry. CATFLUSH then opens 
the user catalog for output. If the OPEN 
is successful the OSCB pointer is placed in 
UCTDSCB and a WRITE is issued. CATFLUSH 
reads pages from the scratch catalog (by 
GET macro instruct10ns), writes pages to 
the user catalog (by PUT macro instruc­
tions), and then closes the user catalog. 

When a user catalog exists, CATFLUSH 
moves the DSCB pointer for t;.e user catalog 
from UCTDSCB to TDTDSC. Before opening the 
user catalog. CATFLUSH SETS THE RCR Ration 
Flag in SYSSVCT for this entry. A SETL 'B' 
is done after the user catalog is opened. 
The PUT macro instruction that follows will 
truncate any pages no longer needed, or add 
pages if necessary. On the successful com­
pletion of the PUTs to the user catalog, 
the UCTFLG is set to X"Ol' to indicate that 
the update is complete and the RCR Ration 
Flag is cleared. 

OSCB/CAT RECOVERY (CZUFX) 

DSCB/CAT RECOVERY is a public, reenter­
able, privileged subroutine that provides 
dynamic error recovery for either the 
scratch catalog or the user catalogs. It 
updates a user catalog if the current memb­
er in the scratch catalog cannot be used, 
or rebuilds a user catalog if no member 
Exists in the scratch catalog and the user 
catalog is unusable. If the user catalog 
is rebuilt, the user must reenter all shar­
ing information because it is lost in 
rebuilding from public DSCBs. (See Chart 
AK. ) 

Entry Point: CZUFXl 

Input: Register 1 contains a pOinter to a 
two-word parameter list that is organized 
as follows: 

Word 1 address of an eight-character 
userid 

Word 2 address of a one-byte flag field 

The flag will be set to the following hexa­
decimal values: 

28 

X'01' - cannot open bhe user catalog for 
input 

X'02" - cannot open the user catalog for 
output 

X'04' - the scratch catalog member is 
unusable 

X'OS' - the user catalog is unusable 
X'lO' - user catalog input paging error 
X'1l' - user catalog DSCB input paging 

error 

Output: None 

~odules Called: 
READ/WRITE (CZCPE) -- To read or write a 
record in SYSSVCT. 

READWRIT (CZCEM) -- To read or write a 
DSCE. 

VMA (CZCGA) -- To get work and buffer pages 
(GETMAIN) • 

ADDDSCB (CZCEK) -- To allocate a new DSCB 
for a user catalog. 

INDEX (CZCFI) -- To create a userid SBLOCK 
level when rebuilding the catalog. 

GET SBLOCK (CZCFG) -- To set up the scratch 
catalog buffer (entry point 3). --To do 
PUT/PUTX/STOW on the scratch catalog member 
(entry point 4). 

CPEN (CZCLA) -- To open a user catalog DCB. 

PUT (CZCCS) -- To copy the scratch catalcg 
rreITber to the user catalog. --To copy the 
user catalog to the scratch catalog. 

CLOSE (CZCLB) -- To close the user catalog 
DCB. 

DELCAT (CZCFD) -- To delete a catalog 
entry. 

VMA (CZCGA) -- To free the buffer and work 
pages (FREEMAIN). 

LOCATE (CZCFL) -- To verify data set names 
with pULlic DSCBs. 

ADDCAT (CZCFA) -- To update DSDs. --To 
catalog public data sets during rebuilding 
[rocess. 

RELEXPG (CZCEN) -- To free up data pages 
and r:SCB slots. 

GET (CZCOR) -- To copy the scratch catalog 
member to a work area. --To copy the user 
catalog into a buffer for copy to the 
scratch catalog. 

USER PROMPTER (CZATJ) -- To issue diagnos­
tics to the user. 

PAT LOCK (CZCEJ) -- To lock or unlock a PAT 
when writing a DSCB. 

SRCH SDST (CZCQE) To clean up the SDST 
entry when called during the open process. 

FIND (CZCOJ) -- To lock a scratch catalog 
member. 

ABEND (CZACP) -- To terminate processing 
when an error occurs. 



Exits: 
Normal - Return to caller if input code is 

X'04' (SCRATCHCAT is unusable> 

Error - ABEND (CC1) 

Operation: DSCB/CAT RECOVERY assumes upon 
ent.ry that the user catalog rr,ember is 
locked in the scratch catalog. This lock 
~revents multiple users from attempting 
recovery of a user catalog. 

The userid is used as a key to extract 
t.he entry for this user from SYSSVCT. The 
pointer to the user catalog (UCTCSCB) is 
checked for a nonzero fainter. 

If a user catalog exists (UCTDSCB is not 
zero), the DSCB is read into CZCOZ by a 
call to REAOWRIT (CZCEM). The return code 
is tested, and if the data set name agrees, 
this OSCE is used to ufdate the catalog. 
The return code from REACWRIT is saved for 
later use. The DSCE is checked for the 
following: 

1. VS organization 

2. (J-format records 

3. Number of pages in OSCB 
page entries 

4. LRECL = a multiple of 4096 

5. A checksum error 

Number of 

If any of these checks failS, the OSCB is 
declared invalid, and the CSNAME field in 
the invalid OSCE, the OSCB pointers in 
UCTOSCB and the JFCB for t.his user catalog 
are all filled with zeros. 

The OSCB is then written back to extern­
al storage by REAOWRIT. AOOOSCB is called 
to assign a new DSCB slot, and the pointers 
in the JFCB and UCTDSCB are updated. The 
user catalog is then rebuilt in SCRATCHCAT 
by scanning public storage for the user's 
data sets and calling AODCAT2 with the CAT­
VAM option to catalog them. Uron comple­
tion of the rebuild, SCRATCHCAT is used to 
create a new USERCAT. 

If the tests on the original OSCB were 
successful. a GETMAn~ is done for a Luffer 
large enough to hold all pages of the user 
catalog. A SETXP is then issued to read 
these pages into the buffer and the first 
page is checked for an index level SBLOCK 
with the correct userid in the name field. 

If the userid is incorrect, the user 
catalog is bad and the procedure described 
above for a bad OSCB is followed. 

If the userid in the first SBLOCK on the 
first page of the user catalog is correct, 
all catalog chains are searched for ~ublic 
OSOs. For this search, the following tests 
are made to ensure catalog integrity: 

1. Forward and backward pointers for each 
SBLOCK are good. 

2. Number of bytes used in each SBLOCK is 
correct. 

The count in the above test is corrected 
if it is wrong. If the pointers are wrong, 
the user catalog is bad, and it is rebuilt 
from the public DSCBs. At the com~letion 
of the search and corrections, the buffer 
is written (by PUT) into the scratch 
catalog for the completion of the recovery 
procedure. 

Following the copy to the scratch 
catalog, all OSCBs on public volu~es are 
searched and as each data set for this user 
is found, a LOCATE is done. If the data 
set does not exist in the catalog, it is 
cataloged by a call to AODCAT2 with the 
CATV AM option specified. A dummy JFCB is 
used for this call with the data set name 
rroved into it from the OSCB. If the data 
set does exist in the catalog, the OSCB 
painter is compared to the address of the 
DSCB on public storage. If the pointers 
agree, the OSCB search is continued. If 
the OSCB pointers do not agree, the DSCB 
pointed to by the catalog is checked and, 
if it is a valid DSCB, the OSCB search is 
continued. If it is an invalid OSCB, the 
DSCB just located is checked: if it is 
valid, a pointer to it is put in the 
catalog; if it is not valid, the data set 
is erased. At the completion of the OSCB 
search, the scratch catalog member is again 
searched for public DSOs and any OSOs that 
are not ~arked as public are deleted from 
the scratch catalog by a call to DELCAT. 
At the completion of the scratch catalog 
search. the member is copied to the user 
catalog as described in the CATFLUSH module 
description. 

If UCTDSCB is zero, public storage is 
searched for a USERCAT DSCB. If one is 
found, both the OSCB and the USERCAT are 
validated as described above. If a USERCAT 
DseB is not found, the scratch catalog is 
rebuilt. 

Section 1: catalog Services 29 



SECTION 2: EXTERNAL STORAGE A~LOCATION 

External storage allocation (ESA) 
includes those service routines that alloc­
ate storage from direct access volumes 
designated as external volumes. External 
volumes are those volumes of secondary 
storage used for data, as opposed to 
volumes used as auxiliary stc,rage. Auxi­
liary volumes are used for virtual storage 
(paging) and, as such, are controlled by 
auxiliary storage allocation (CEAIA). 

EXTERNAL VOLUMES 

The external storage allocation routines 
deal only with direct access volumes (IBM 
2311 Disk Pack or IBM 2314 Disk Pack). All 
public storage volumes are assumed mounted. 

Each volume in the system has a 6-byte 
identification associated with it. The 
volume identification is included in the 
volume label on each volume. When a device 
becomes accessible to the system, a unique 
2-byte logical (symbolic) device address is 
associated with it; this logical address 
can then be used to refer to any volume 
mounted on that device. The logical device 
address is converted to a true physical 
address by the supervisor path finding 
mechanism whenever the volume is accessed. 
The symbolic device allocation table (SDAT) 
contains an entry for each on-line device. 
Within the entry is control data used by 
ESA routines to determine volume type, page 
availability information, Page Assignment 
Table (PAT) origin, PAT VMA for VAM 
volumes, and VTOC space available or gross 
space available for SAM volumes. 

Each volume is identified by a volume 
label located on cylinder 0, track O. The 
volufl'(' label points to the Page Assignment 
Table (PAT) for VAM volumes, which is used 
to indicate the current assignment status 
of each page on the volume. The PAT occu­
pies some number of pages on the volume, 
the number dependent on device type (1 on 
the 2311 Disk Pack; 2 on the 2314 Disk 
Pack). The remaining pages can be allo­
cated as Data Set Control Block (DSCB) 
pages or data pages. For SAM volumes the 
volume label points to the VTOC which is 
itself variable in length but composed of 
fixed length (140 byte) records (DSCBs). 

SAM volumes use format-O, -1, -4, -5, 
-A. -B, and -C DSCBs. VAM volumes use 
format-E and -F DSCBs. The DSCB formats 
are described in detail in Appendix A. 

30 

There are two types of external volumes, 
those containing physical sequential data 
sets (SAM volumes) and those containing 
virtual storage data sets (VAM volumes). 
Each external volume may contain either, 
but not both, types on the same volume. 
VAM volumes are characterized by the fact 
that they are formatted into page-sized 
records and space is maintained and allo­
cated in page-oriented extents. SAM 
volumes are not pre-formatted and can be 
used for interchange with Operating System/ 
360. Srace is maintained in terms of 
tracks and cylinders and can be allocated 
in increments of either tracks or 
cylinders. 

Utility programs are provided with TSS/ 
360 for volume initialization. Initializa­
tion of volumes containing physical sequen­
tial data sets is described in the publica­
tion IBM System/360 Time Sharing System: 
Inderendent Utilities, GC28-2038. Initia­
lization of volumes containing virtual 
storage data sets differs from those con­
taining rhysical sequential data sets in 
that VAM volumes are formatted into page­
sized segments (to be consistent with page 
number conversion algorithms in the resi­
dent monitor) and the PAT table is then 
formatted and initialized. The PAT table 
will be pOinted to by the Volume Label, and 
will contain one one-byte entry for each 
rage on the volume. 

PUBLIC AND PRIVATE VOLUMES 

All external volumes can be classified 
as either public or private. Space is not 
allocated on a private volume unless a user 
explicitly declares in a DDEF command or 
DDEF macro instruction that he wants srace 
cn that volume. If the user does not 
declare a specific volume. space will be 
allocated on a public volume. All public 
volumes are VAM volumes, and the system 
specifies the storage device for the user. 

DUPLEXING CAPABILITY FOR USER DATA SETS 

Through the DUPOPEN command, the user 
has the capability of duplicating his data 
set on two separate physical volumes. This 
fUnction is transparent to the user and is 
available only for public VAM data sets. 
The external storage required is exactly 
double for this duplicating facility, and 
the time required for data output is 
approxirr.ately doubled. The routines that 



operate on VAM data sets must be aware of 
the possibility of the duplicate set. 

Note: If either copy of a duplexed data 
set. is changed independently of the other, 
duplexing is invalidated in a manner which 
is transparent to the duplexing mechanism, 
and may cause false recoveries. 

SA.M VOLUME PROCESSING 

ALLOCATE is called to inspect the job 
file control block (JFCB) for the size of 
the initial allocation. The sFecification 
will be in terms of tracks. cylinders. or 
records, and only from a single volume hav­
ing enough space for the entire amount of 
requested storage. ALLOCATE returns the 
appropriate code if the request cannot be 
satisfied, and updates the SDAT and volume 
fields of the JFCB. 

ALLOCATE calls SA~SEARCH to find the 
extents for physical sequential data sets. 
During the scan, SAMSEARCH creates a push­
down list of five extents smaller than the 
request. If an extent equal to the request 
is found, the scan is terminated and the 
extent allocated. If an extent equal to 
the request is not found. the smallest 
extent larger than the request is allo­
cated. If an extent equal to or greater 
than the request is not found, space is 
allocated from the extents in the push-down 
list. up to five separate contiguous 
extents as necessary are combined until the 
request is satisfied. Requests must be 
made for integral numbers of tracks or 
cylinders. 

When the access method routine detects 
that extent limits have been reaChed, and 
additional space is required fer a data 
set, EXTEND is used to obtain additional 
storage. The secondary allocation field of 
the JFCB is used to determine the amount of 
storage required. EXTEND always makes the 
total requested allocation froll' one volume. 
If there is not sufficient space available, 
EXTEND links to the calling program (end of 
volume - EOV) for label processing and the 
mounting of a new volume. EOV returns to 
EXTEND for the allocation from a new 
volume. 

When a data set is closed, the CLOSE 
routine checks the space release flag in 
the JFCB to determine whether unused space 
is to be returned (that is, made available 
for reallocation, and made unavailable to 
the data set from which it is released). 
GIVBKS is called to merge the returned 
extents into the list of extents in the 
DADSM-DSCBs of the proper volume. Adjacent 
ext.ents are combined whenever possible. If 
any extents are given back, the DADSM-DSCBs 
are updated. 

To return the extents to the available 
space on the volume, MERGESAM is called by 
GIVBKS. It is MERGESAM that adds the 
returned extents to the list of extents in 
the CADSM-DSCBs, maintaining the order by 
location and combining extents whenever 
Fossible. 

When the user commands the system to 
erase a data set., or when any data set 
remains on a public volume at the end of a 
task, the SCRATCH routine is used to remove 
it from the volume or volumes on which it 
resides. All the allocated extents are 
merged tack into the available extents on 
the volume (s) and t.he data set DSCBs are 
over-written with zeros to indicate that 
the extents are available for reallocation. 

The various SAM routines call the 
OBTAIN/RETAIN routine for reading and writ­
ing DSCBs. The RENAME routine can be used 
to change the FQN in the key field of a 
format-l DSCB. 

VAM VOLUME PROCESSING 

VAM volumes may be either public or pri­
vate. FiNDEXPG is called to allocate the 
number of pages specified in the allocation 
fields of the JFCB. The new DSCB will be 
constructed using the list of external page 
entries returned from FINDEXPG. 

To find and commit an unassigned DSCB 
slot, ADCDSCB is called. For a format--E 
DSCB, ADDDSCB will call VOLSRCH and will 
search the PAT of the returned RVN to find 
an unused OSCB or a dat.a page which can be 
assigned as a DSCB page. For a format-F 
OSCB, ACDDscn will try to assign it from 
the fage or volume on which the format-E 
OSCB resides. Failing this, it will call 
VOLSRCH as for a forrr~t-E DSCB. RELEXPG is 
used to return data pages and DSCBs for 
subsequent reallocation. 

DSCBREC is called to recover from a 
checksum error. If the data set has been 
opened, the bad format-E DSCB is reflaced 
cy a new one. This is because the call is 
assumed to have come from WRITDSCB after 
having found a cad format-E DSCB. All the 
data set pOinters are present in the 
RESTBL, and the DSCE chain is about to be 
updated anyway. If the data set has not 
teen ofened and there is no duplexed copy, 
the data set is deleted from the catalog 
and all DSCBs associated are released. If 
the data set is not open, but is duplexed. 
recovery is made from the duplexed cOfY. 

WRITDSCB updates and writes the DSCBs to 
external storage, using an in-line subrou­
tine to obtain the DSCBs to be updated. 

Sect.ion 2: External Storage Allocation 31 



When private VAM volumes require mount­
ing. the VAMINIT routine is used to read 
the volume label record. and set up the 
SDAT entry. 

ROUTINES USED WITH SAM FORMAT VOLUMES 

ALLOCATE (CZCEA) 

ALLOCATE is a reentrant. nOIlrecursive, 
~rivileged routine residing in virtual 
storage. This routine is caJ .ed I:;y DATADEF 
to provide the initial allocaticn of direct 
access external storage for new output data 
sets. ALLOCATE finds a private volume in 
the JFCB. DSCBs describing the extents 
allocated are written and the VTOC DSCB, 
JFCB, and SDAT entry updated. (See Chart 
BA. ) 

Entry Points: 
CZCEAI Normal entry via Type I linkage. 

CZCEA2 Called by ABEN8 for resetting 
interlocks. 

Input: Register I contains a pointer to a 
one-word parameter list: 

Word 1 Address of the JFCB 

output: The JFCB, VTOC, and SDAT are 
updated. 

Restrictions: 

1. Allocation is from one volume only. 

2. There is a maximum of fiVE extents 
allocated to one SAM data set. 

Modules called: 
OBTAIN/RETAIN (CZCFO) -- Read/Write DSCBs 

SAMSEARCH (CZCEC> -- Assigns extents 

PAIR (CZCACS) -- Set and delete ABEND table 
entry 

SYSER (CEAIS) Minor system error 

ABEND (CZACP) End task and return con-
trol t.O terminal 

Exits: 
Normal - Register 15 contains 00. 

Error - Register 15 contains one of the 
following codes:, 

04 - No space found 
08 Unrecoverable I/O error 
oc - Duplicate DS name found 
10 - Volume not formatted properly 

SYSER and ABEND occur when the JFCB (1u(c's 
not indicate any mounted volume. 

32 

2p::ratiof!: ALLOCATE searches the volume 
fields of the JFCB to find the last nounted 
volurr~. If none are feund, SYSER is 
called. followed by ABEND with the follow­
inq ~essage to the user: 

NO ~OUNTED VOLUME INDICATED BY JFCB 

If one is iound it is checked to be sure 
it i~ d SAM fcrmatted volume on a private 
device. If it is on a public device, SYSER 
IS called and return is made with the 
return code set to '04'. If the volume is 
not SAM formatted, a return is made with 
the return code set to '10'. If these 
checks are succEssful, the VTOC is locked 
and the gross space and hole count fields 
cf the SDAT are Examined. Return is made 
with a code of '04' if there is not enough 
gross space on the volumE. If there is 
space enough, OBTAIN is called to read the 
DSCE with the same data set name on the 
volume. It such a DSCB is found, through a 
SEARCH KEY EQUAL on DSNAME, a duplicate 
data set name exists, and return is made 
with a code of 'OC'. If none is found, 
ALLOCATE calls SAMSEARCH to allocate space 
for the GSCB. OBTAIN then reads in two 
format-O (i.e., unused) DSCBs to become the 
data set DSCBs (format-I), sets up all 
fixed GSCB fields and fills in the extents 
just allocated. The original data set flag 
is set in the JFCB; the VTOC is updated. 
the lock bytes reset. and return is made 
~ith a code of '00'. An unrecoverable I/O 
error will cause the program to return with 
a code of 'OS'. 

SAMSEARCH (CZCEC) 

SAMSEARCH is called ty either ALLOCATE 
or EXTENC to search the DADSM-DSCBs for 
available space to fill a request. The 
DADSM-DSCBs are then updated to reflect the 
allocation. (See Chart BB.) 

Entry Point: CZCEC1 

lnfut: General Register 1 contains a 
fainter to the following parameter list: 

~ord 1 

Word 2 

Word 3 

Word 4 

Address of either the primary 
allocation field (TDTSPO) or the 
secondary allocation field 
(TDTSP2) of the JFCB 

Address of the VTOC-DSCB 

Address of the SDAT entry 

Address of a 12-word output area. 
The first byte of the area con­
tains a flag indicating the type 
of request. 

Output: General register 1 contains a 
fainter to the input parameter list; the 
list is unchanged, but the work area 



pointed to by ~ord 4 now describes the 
extents allocated. 

If a standard user label (SUL) track was 
requested, the output area has the follow­
ing format: 

Word 1 

Word 2 

Word 3 

Word 4 

Words 

Count of extents allocated 

CCHH of SUL track 

CCHH of lower limit of first 
extent 

CCHH of upper limit of first 
extent 

CCH of lower and up~er limits of 
other extents 

If no SUL track was requested, the out­
put area has the following format: 

Word 1 count of extents allocated 

Word 2 CCRE of lower limit of first 
extent 

Word 3 CCRH of upper limit of first 
extent 

Words CCHE of lower and upper limits of 
4-11 other extents 

Word 12 Unused 

Modules Called: 
OBTAIN/RETAIN (CZCFO) -- read/write format­
S DADSM-DSCBs from/to external volume 

~TO macro (CZABQ) -- write error- message to 
system operator 

SYSER (CEAIS) minor system error 

ABEND CCZACP) force abnormal end of task 

Exits: 
Normal - registers 15 contain 0, registers 

0-14 are restored 

Error - register 15 contains 04, meaning 
request cannot be satisfied; regi­
sters 0-14 are restored 

Operation: The size of the requested area 
is extracted from the JFCB. On a request 
for track allocation, the number of tracks 
requested is incremented by 1 if a standard 
user labeling (SUL) track is requested; if 
a SUL track is requested the ·SUL added­
flag is set. 

The SEARCH routine (described below) 
then findS the extent or extents to satisfy 
the request. The COMPUT routine (described 
below) examines the extents to see if they 
fill the request, sets appropriate pages, 

and updates the DSCE. UPDATE (described 
below> ur-dates the DADSM-DSCBs to reflect 
the allocation of extents. Return is then 
rrade to the calling routine. 

SEARCH SUBROUTINE: OBTAIN reads the DADSM­
CSCB~one at a time, into a work area. 
UNPACK (described later) examines tile 
extents and coroputes the size of the re­
quest. The request can be in terms of 
tracks (in whicil case the allocation can 
tegin at allY available track) or in tern:s 
of cylinders (in which case only full 
cylinders can be allocated). The request 
can te satisfied in one of three ways: 

• An extent equal to the request. 

• An extent larger than the request. 

• A combination of extents, each af which 
is smaller than the request. 

If an extent equal to the request is 
found, the extent is placed in COMPUT's 
work area, and. if no SUL track is 
requested, exit is made. If, however, a 
SUL track is requested, the extents are 
searched for a surplus track to be used as 
a SUL track. If the OSCB is chained, 
OBTAIN reads in the continuation DSCBs and 
they are searched for an available track. 
If a SUL track is found, a successful 
return is made. If no such track is found, 
a no-space-available return is made. 

If an extent greater than the request is 
found, it is saved until an extent equal to 
the reqUEst, or a smaller extent that is 
larger than the request is found. If the 
CSCB is chained, all continuation DSCBs in 
the chain are searched. If an extent equal 
to the request is found, the procedure 
described in the preceding paragraph is 
followed. If no ext:ent equal to the re­
quest is found during the search, the re­
quest is satisfied from the smallest extent 
that is larger than the request. The 
excess space is subtracted from the extent 
and the result is entered into the DSCB as 
an update to the old extent. If a SUL 
track is requested, the procedure described 
in the previous r~ragraph is followed. 

During the search of the DSCBs, a push­
down list of extents smaller than the re­
quest is accumulated. The list has five 
entries, and only extents larger than the 
smallest extent in the list are added. 
When a new extent is added, the smallest is 
deleted from the list. This list is aban­
doned as soon as an extent equal to or 
larger than the request is found. If no 
such extent is found, space is allocated 
from the extents in this list, combining 
the smaller extents (with a maximum of 
five) for the allocation. 

;;ection 2: External Storage Allocation 33 



COMPUT SUBROUTINE: COMPUT determines it an 
-extent can till the request ano sets the 
appropriate flag accordingly. It also 
determines if the entire extent_ is a 110-
cated and updates the OSCR accordingly. 

It a SUL track is req~ested, the output 
parameter list pointer is incremented to 
include the SUL track. The requested allo­
cation can be in terms of tracks or 
cylinders. 

• If a cylinder request al~J includes an 
SUL request, COMPUT determines if there 
are any available tracks preceding the 
cylinder. If there are, the SUL track 
is made the first track of the extent. 
If there are no preceding tracks, the 
last track on the cylinder is used as 
the SUL track. If the entire extent 
was allocated, its entry in the DSCB is 
flagged for deletion by UPDATE; if only 
part of the extent was allocated, the 
DSCB entry is flagged for updating (Ly 
UPDATE) to reflect the new limits of 
the extent. If space in addition to a 
SUL track was allocated, COMPUT places 
the upper and lower limit CCHH of the 
extent in the output parameter list, 
and checks the input parameter list for 
additional extent requests. 

• If a track request also includes a SUL 
track, the first available track in the 
extent is used as the SUL track and its 
CCHH is placed in the output parameter 
list. If the entire extent was allo­
cated, the extent entry is flagged for 
deletion. If the extent allocated was 
only a SUL track, COMPUT examines the 
next entry in the input list; if the 
extent included other tracks in addi­
tion to this SUL track, the upper and 
lower limit CCHHs are placed in the 
output list before examining the next 
input entry. 

When all entries in the input list have 
been processed, a count of extents allo­
cated is placed in the output list, and the 
gross available space indicator for the 
volume is updated. Exit is then made. 

UPDATE SUBROUTINE: UPDATE updates the 
DADSM-DSCBs as extents are allocated. 
OBTAIN is called to read in t.ne DSCBs if 
they are not already in storage. The CCHHR 
and chain address in the input list are 
moved to the output list, if needed; other­
wise, they are saved. 

If the extent in the LADSM-DSCB equals 
zero and UPDATE'S work area list is not 
exhausted, SYSER is invoked. If the extent 
in the DADSM-DSCB is not zero, the avail­
able tracks in the DSCB extent is compared 
to the original request for track alloca­
tion of the entry to UPDATE. If the DSCB 

34 

extent available tracks is greater, SYSER 
is invoked; if it is lesser, PACK is called 
to move the DSCB extent to the output list. 
If there are more extents in this DSCB, the 
DSP [ointer is incremented, and the next 
(~xtent in the DSCB is examined, as above. 
If there are no more extents in the DSCB, 
CBTAIN is called to read in the next DSCB, 
and its Extents are examined as previously 
described. 

If, however, the number of available 
tracks in the DSCB extent is equal to the 
original request of the UPDATE entry, the 
iollowing procedure is used. 

PACK is used to move the UPDATE extent 
to the output work area, if it is not 
flagged "delete extent. W If the next entry 
is a new entry to be added to the DSCB, 
PACK is called to move it to the output 
work areas; otherwise, the pointer to the 
next UPDATE entry is incremented. If there 
are Iwre extents in this DSCB or if there 
are no more UPDATE entries, the DSCB point­
er is incremented, and the next extent in 
the DSCB is examined. as described pre­
viously. If there are no more extents in 
the DSCB. OBTAIN is called to read in the 
next DSCB, and its extents are examined. 

If the extent in the DADSM-DSCB equals 
zero and the UPDATE work area list finally 
becoffies zero Call DSCBs have been 
examined>, the output area is zeroed and 
the hole count in the VTOC-DSCB is incre­
mented by one, if the OSCB is not the first 
in the chain. RETAIN is then used to write 
the CADSM-DSCB. 

If a hardware error occurs. the WTO 
macro instruction is issued to inforrr the 
operator; registers are restored, a return 
code of 8 is set, and return is made. For 
all the errors, SYSER is invoked, the WTO 
macro instruction is issued to inform the 
operator, registers are restored, a return 
code of 04 is set, and return is If,ade. 

PACK SUBROUTINE: If the output-DSCB-full 
flag is set, OBTAIN is called to get the 
CCHHR for available continuation DSCBS, if 
any. RETAIN is called to write the DACSM­
CSCB. A CCHHR, if one was saved, is used 
as the address of a new output DSCB. Allo­
cated extents are moved to the out~ut DSCB. 
If there are more extent slots in the out­
put DSCB, PACK moves its pointer to the 
next available slot and exits. If there 
are no extent slots in the output DSCB, the 
output-DSCB-full flag is set, and exit is 
[f;ade. 

UNPACK SUBROUTINE: If the next extent in 
the CSCB is 0, the DSCB is scanned for a 
chain address; if there is none, normal 
exit is made; if there is one, an error 
exit is taken. 



If the next DSCB extent is not 0, it is 
put in a work area; the count of extents in 
the DSCB is incremented by one. The size 
of the extent in tracks is computed or set 
equal to the cylinder count, depending on 
the type of request. If there is room for 
more extents in the DSCB, this process is 
repeated. When all the extent fields of 
the DSCB are filled, exit is made. 

SCRATCH (CZCES) 

SCRATCH deletes data set DSCBs on all 
volumes of a specified data set and assimi­
lates the external storage back into the 
available space (the DADSM) on the volume. 
(See Chart BC.) 

Entry Point: CZCES1 

Input: Register 1 contains a pOinter to a 
word containing the address of a JFCB. 

output: None 

Assumptions: At least one of the volumes 
indicated in the JFCB is mounted upon entry 
to SCRATCH. 

Modules Called: 
BUMP (CZCAB) -- dismount and mount external 
volume on same device 

OBTAIN/RETAIN (CZCFO) 
from/to external volume 

read/write DSCBs 

MERGESAM (CZCEE) -- merge physical sequen­
tial data set extents with DADSM extents 

VMA (CZCGA) -- allocate and release virtual 
storage 

WTO macro (CZABQ) -- write error message to 
system operator 

SYSER (CEAIS> minor system Error 

ABEND (CZACP) force abnormal end of task 

PAIR (CZACS) -- set and delete ABEND Table 
Entry 

Exits: 
Normal - register 15 contains 0; registers 

0-14 are restored. 

Error - register 15 contains 04, ffieaning 
SCRATCH was unsuccessful on one or 
more volumes as indicated in JFCB 
volume fields, as follows: 

TDTV8 0; TD'IV9 

TDTV8 0; TDTV9 
to system problems 

o successful 

1 error due 

TDTV8 = 1; TDTV9 
not found 

1 - data set 

Registers 0-14 are restored. 

Exit to ABEND if a mounted volume cannot be 
found. or if an error is encountered by 
PUMP. 

operation: The first volume field in the 
JFCB is examined. If a JFCB chain field or 
other than a data set volume is selected, 
the next volume field in the JFCB is 
selected until a data set volume is found. 
If the selected volume is mounted but can­
not be found. the next volume field in the 
JFCB is selected. If a mounted data set 
volume is found but has already been ~ro­
cessed, BUMP is called to mount the next 
volume of the data set. If a mounted 
volUll,e is not found, the mounted-volurne­
found indicator is set, the relative volume 
number of the volume that was found is 
saved, and the parameter list for BUMP is 
initialized. 

If the VTOC is locked, time-slice end is 
invoked until such time as the VTOC becomes 
available. The VTOC lock byte is then set, 
and OBTAIN is called to read in the first 
data set CSCB (format-l) and the VTOC-DSCB. 
GETMAIN is called to get storage for the 
extent list, and the list is constructed 
from the format-l DSCB. The DSCB is then 
zeroed out, and RETAIN is called to write 
it back as a zero record; the VTOC hole 
count is incremented by one. If the data 
set CSCB is chained, the continuation DSCBs 
(format-3 or -0) are read in by OBTAIN, 
zeroed out .• and written back as zero rec­
ords by RETAIN. The VTOC hole count is 
incremented by one for each such DSCB 
returned. 

MERGESAM is then called to return the 
free extents to the available space on the 
volume. FREEMAIN then releases the storage 
used for the extent list. RETAIN writes 
back the updated VTOC-DSCB, and the hole 
count in the VTOC and the gross available 
space indicator in the SDAT are updated. 
The VTOC lock byte is reset and the next 
volume field in the JFCB is examined. This 
Frocess is repeated for each volume on 
which the data set resides. 

When all volumes have been processed. 
SCRATCH returns with a return code as indi­
cated under Exits. 

EXTEND (CZCEX) 

EXTEND is the external storage alloca­
tion routine that is called when additional 
space on a direct access volume is required 
for a data set. EXTEND makes the alloca­
tion and uFdates the VTOC, JFCB, and SDAT. 

Secticn 2: External storage Allocation 35 



This routine is called by SAM EOV when an 
end-af-volume condition is encountered and 
additional direct access space must be 
allocated. (See Chart BD.) 

~nt.!:LPoints : 
CZCEX1. normal entry point. 

CZCEX2, used only by SAM EOV when calling 
EXTEND after having a new private volume 
nounted. 

Inpu!:: Register 1 contains a pointer to a 
two-word parameter list. 

Word 1 

Word 2 

Address of JFCB 

Address of a word in which EXTEND 
places output address. If this 
wcrd has a value of 1, FEOV has 
been requested on current volume. 

oU!:f>ut: The word pointed to by parameter 
two contains an address painting to the 
first OSCE containing the new extents, fol­
lowed by a doubleword containing the CCRHR 
address of the DSCE. If extents are con­
tained in a second DSCB, the word following 
the doubleword contains the address of the 
DSCB followed by its CCHHR. If no such 
OSCB exists, the address is zero. 

Restrictions: Each allocation is made from 
one volume only; a maximum of 5 extents are 
allocated to a physical sequential data 
set. 

Modules Called: 
OBTAIN/RETAIN (CZCFO) -- read/write DSCBs 

SAMSEARCH (CZCFC) -- assign extents to data 
set 

MTREQ (CZCAA) -- allocate additional pri­
vate volume 

SYSER (CEAIS) minor system error 

ABEND (CZACP) force abnormal task end 

PAIR (CZACS) -- ABEND deinterlock routine 

Exits: 
Normal - Register 15 contains 00. 

Register 15 contains 04 - New 
VoluIfle. 

Error - Register 15 contains 08 - No space 
available. 

36 

Exit to ABEND if either of these 
conditions exists: 

1. No mounted volumes in JFCB. 

2. Unable to obtain Format-l DSCB 
from data set volume. 

Cperation: The internal subroutine GET is 
usej to l:.Et_rieve the last mounted volume in 
the JFCB. The TEST subroutine is used to 
determine if there is sufficient space on 
th-:- volurre. It cheCKS the SDAT hole count;, 
thE- gross space field, and the VTOC lock 
cyte. If the volurre satisfies the request, 
TEST OBTAINs the VTOC-DSCB and calls 
~A~SEARCH to allocate space for the re­
qu~st. OBTAIN reads in a data set DSeB 
(Forwat-l) and lWRITE enters the newly 
allocated extents into it. The 1WRITE 
internal subroutine is used to write 
extents in a OSCB when space allocation is 
from an old volume. 2WRITE is used when 
space allocation is from a new volume (see 
telow). The VTOC-DSCB, JFCB, and SOAT are 
updated, and a successful return is taken. 

If thE last volume in the JFCB list does 
not contain enough available space, EXTEND 
will return to the calling program (SAMEOV) 
with a return code of 08. SAM EOV then has 
a new volume mounted. EXTEND is then 
entered at its secondary entry point 
(CZCEX2); the newly mounted volume is then 
the last volume in the JFCB list. The TEST 
internal subroutine is used to determine if 
the volurre is suitable. If the volume does 
not contain sufficient space, return is 
made with a code of 08; if sufficient space 
is available, the 2WRITE subroutine sets up 
a new Forrrat-l OSCB and writes the extents. 
Continuation OSCBs, if needed, are read and 
written using OBTAIN and RETAIN respective­
ly. The VTOC-DSCB, JFCB, and SDAT are 
updated and return is made with a code of 
O. 

~~~KS -- Give Back SAM Storage (CZCEG) 

GIVBKS returns unused external storage 
from physical sequential data sets to ESA 
control and deletes the references tc the 
storage from the format-l and -3 data set 
DSCBs. GIVBKS is called only by SAM CLOSE. 
(See Chart BE.) 

CZCEG1 

!BEE!: General Register 1 contains a 
Fointer to this list: 

Word 1 Address of the JFCB 

Word 2 Address of extent list 

The extent list contains a 4-word entry 
for each extent being returned; there can 
te a maximum of 256 entries. The entry has 
this format: 



Word 1 

Word 2 

Word 3 

Word 4 

X'SO' 

byte 1 

extent 
sequence 
number 

unused 

byte 2 byte 3 byte 4 

Lower cylinder and track CCHH of 
the extent 

upper cylinder and track CCHH of 
the extent 

unused symbolic device 
address of the 

byte 2 volume byte 1 

Notes: The flag in byte 1 of Word 1 
denotes the last extent in the list; this 
byte contains binary 0, for all other 
entries. The symbolic device address of 
the volume in bytes 3 and 4 of Word 4 is 
only in the first extent of the list. 
These bytes are unused in all other 
entries, since extents can be returned 
only for one volume. 

Qutput: None 

Restrictions: Extents can be returned for 
one volume only. 

Modules Called: 
OBTAIN/RETAIN (CZCFO) -- read/write formats 
-1, -3, and -4 DSCBs from/to external 
volume 

MERGESAM (CZCEE) -- merge physical sequen­
tial data set extents with OADSM extents 

VMA (CZCGA) -- allocate and release virtual 
storage 

SYSER (CEAIS) minor system error 

ABEND (CZACP) force abnormal end of task 

Exits: 
Normal - registers 0-14 are restored: re­

gister 15 contains 0, meaning 
GIVBKS successful or 04, meaning 
GIVBKS successful and t.he entire 
prime data set DSCB (format-I) has 
been zeroed. 

Error - registers 0-14 are restored, re­
gister 15 contains OS, meaning 
GIVBKS unsuccessful. 

Operation: A JFCB and the symbolic device 
address are passed as input; from this, 
GIVERS finds the volume on which space is 
to be returned. GIVBKS obtains the SDAT 
pointer, sets the VTOC lock byte, and calls 
OBTAIN to read the VTOC-DSCB and the format 
-1 DSCB for the data set. The amount of 
space required for reading continuation 
DSCBs and constructing the extent list for 
MERGESAM is computed from the number-of-

extents field of the format-l OSCE. This 
figure must be increased by one if the 
first extent is a label track, since that 
extent is not included in the count. A 
list of extents is then constructed, the 
manner in ~hich this is done depends on the 
number of extents being returned. 

More Than Three Extents: If there are more 
than three extents described, the space 
required for format-3 DSCBs and the 
MERGESAM list is computed as follows: 

Every record read into the work area is 
preceded by a marker doubleword to identify 
end-of-record condition during the scan 
process. consequently, 148 bytes of 
storage are required for every reccrd (144 
for the DSCB and four for the marker), con­
taining up to thirteen extents, and eight 
tytes are required for every extent to con­
struct the MERGE SAl-' parameter list. The 
space-requirement computation is therefore: 

bytes, where N is the 
count of extents, 
adjusted for label 
track if necessary. 

This space is obtained by use of GETMAIN. 

The marker words are moved into the 
area. OBTAIN is called to bring in the 
format-] DSCBs; a continuation character 
indicates that there are more to be read 
in. 

The last extent in the last format-3 
[SCE is located; then the last extent in 
the list is found. The index is set to the 
end cf MERGESAM's list, to enter the DSCB 
teing returned. 

~Q~Mor~Jh~n Three Extents: If there are 
not rrore than three extents, MERGESAM's 
list index is set to the end of the PSECT 
work area. The last valid extent in the 
tormat-l oseE is found, the number of 
extents returned is counted, and an index 
is set to the end of the input list. The 
last extent in the last format-3 DSCB is 
located; then the last extent in the list 
is found. The index is then set to the end 
cf MERGES1\M's list to enter the OSCB being 
returned. 

Each extent in the OSCB is zeroed out. 
and the count of extents still to be 
returned is decremented by one for each 
extent. This process is repeated until the 
count of extents to be returned is zero 
(i.e., there are no more extents to 
return), or until the lower level CCHH of 
the extent being returned does not comFare 
with that of the extent in the OSCE (mean­
ing that part of the extent was used and 

:-;ection 2: External Storage Allocation 37 



the entry in the Dses must be changEd to 
~eflcct this condition). The nlimher of 
pxtents in the format-l DseB is adjusted by 
the number being returned. How~ver, when 
only part of an extent is returned, the 
resultant number of extents rr:ilst 1)(': i,lcre­
mented by one. 

When a continuation record Ca format-3 
useS) is zeroed out because of returned 
extents, REI'AIN is called to write it back 
as a zero record, and the hole count in the 
v'TOC-DSCB is incremented by aD". .If all 
extents for a data s et on a ~ctrticular 
volume are returned, the format-l DSeB is 
also zerc~d; RETAIN is again used to write 
it back as a format-O DSCB, and the hole 
count in the VTOC-DSCB is incremented by 
one. The format-l DSCB is updated, and 
RETAIN is called to write it back. 

After all the data set DSCBs (frrmats-l 
and -3) have been adjusted, MERGESAM is 
called to merge the returned extents with 
the available space on the volume. RETAIN 
is called to rewrite the VTOC-DSCB. The 
hole count indicator and gross available 
space field in the SOAT are adjusted 
according to the values in the VTOC-DSCB. 
The VTOC lock-byte is reset, and FREEMAIN 
is called to release work areas. Return is 
then made to SAM CLOSE. 

MERGESAM (CZCEE) 

MERGESAM returns extents from physical 
sequential data sets passed to it by 
SCRATCH or GIVBKS and merges them with the 
DAOSM extents on their volume. (See Chart 
BF .) 

Entry Point: CZCEEl 

Input: Register 1 contains a feinter to 
the following rarameter list: 

Word 1 Address of an SOAT entry 

Word 2 Pointer to a list of data set 
extents 

Word 3 Address of the VTOC DSCB 

Word 4 Pointer to HW containing number of 
extents 

outl2ut: None 

Modules Called: 
OBTAIN/RETAIN (CZCFO) -- read/write format­
S DADSM-DSCBs from/to external volumes 

WTO macro (CZABQ) -- write error messages 
to system operator 

SYSER (CEAIS) -- minor system error 

38 

;;r'l. al - r(>o: c t<"r 15 contains 0; registers 
0-1 1; are restored 

5:,[~~.5"at: !~::.r.,: The list of ext.ents to be 
n'Jl",d I;"j ,:h the OADSM extents is first 
se': +~"d; ('ontiglJous extents are merged and 
Lhpu~b~~ cf Extents is adjusted accord­
ingly. Th" extents are put into DADSM 
:orm. OBTAIN reads the DADSM-DSCBs until 
the first extent is within the range of the 
CPDSM ext~nts in that DADSM-DSCB. If the 
pxtent cannot be merged with a DADSM 
extent, it is inserted, and following 
Extents are pushed down to make reom. If 
this causes the DADSM extents to overflow 
the CADS~-DSCB, OBTAIN rpads an available 
D:;CE t.O create a new DADSM-DSCB chained to 
the oth~r with the overflow extent 
lDserted. The hole count (available DSCB 
records) in the VTOC-DSCB is decremented by 
Gnp. If the list extent can be merged with 
cne of the OADSM extents, the DADSM extent 
is modified to reflect the list extent 
also; no other action is required in this 
case. If, however, the list extent can be 
rrerged with two of the DADSM extents, the 
three extents are merged into one DADSM 
extent and the following extents are 
shifted up to fill the hole created. The 
last vacated DADSM extent field is zeroed 
cut. If, in this process a DADSM-DSCB 
becomes em~ty, its key and data are zeroed 
out (making it a zero DSCB), and RETAIN 
writes it back; the hole count in the VTOC­
oseB is incremented by one. This procedure 
is repeated for all extents in the list. 

When the list of extents to be returned 
is exhausted, the holes, if any, in the 
CADSM-CSCB are filled. OBTAIN is called 
toread in DSCBs and the OADSM extents are 
rushed uFo RETAIN writes out the DSCBs 
after the holes have been filled. This 
process continues until either there are no 
more holes or until all DADSM-DSCEs have 
teen processed. 

Should a oseB become vacant as a result 
of the push-up process, it is zeroed out, 
and written back as a zero DSCB. When the 
extents in all the OADS~-DSCBs have been 
processed, successful return is made. 

GETAIN/RETAIN (CZCFO) 

OETAIN/RETAIN is a reenterable, nonre­
curSlve, privileged routine residing in 
virtual storage. This routine is used fer 
SAM format DSCBs with the exception of the 
option for reading or writing volume 
labels, which can be used with either VAM 
cr SAM. 

OETAIN reads the VTOC, obtains virtual 
stor~ge, and builds an IORCB. A channel 



progran: is constructed in the lORCB accord­
ing to the type of OBTAIN requested. When 
the IORCB is completed, an lOCAL is issued 
followed by an internal check routine 
(AWAIT if I/O is not complete). A posting 
routine checks for errors when I/O is com­
pleted and links to SYSER if necessary. If 
successful, the data is moved from the 
IORCE buffer to the user's input: area. 

RETAIN writes one or more DSCBs, volume 
labels. or end-of-file markeTS t.o specified 
addresses. Virtual storage is assigned and 
an lORCB constructed. j, channel program is 
then developed and an lOCAL is executed. 
When I/O is complete, a posting routine 
checks for errors and links to SYSER if 
necessary. (See Chart BG.) 

Entry Points: 
CZCF01 - OBTAIN 
CZCF02 - RETAIN 
CZCFR1 - RETAIN Same entry point as 

CZCF02. 

Input: General register 1 contains a 
pointer to the parameter list: 

Word 1 

Word 2 

Word 3 

Word 4 

A pointer to the symbolic device 
address entry table (SDAT) for 
the volume containing the VTOC 
or data set. This field is a 
32-bit virtual storage address. 

A pointer to a packed word that 
is arranged as follows: 

hits 0-7 - Type of OBTAIN re­
quest desired. The type is 
designated by a binary 
number as indicated in 
Table 1. The type is desi­
gnated by a binary number 
as indicated in the 'RETAIN 
REQUEST' section. 

bits 8-15 - used type of RETAIN 
request. 

bits 16-31 - count of RETAIN 
requests; otherwise -
binary zeros. 

A pointer to a field containing 
a data set key or a label key 
when requesting a Tyre 1, 2, or 
5 OBTAIN. When this field does 
not apply to the function 
requested, it must be defined 
hut can he left blank. The data 
set key is assumed to be q4 
bytes in length, and a label key 
is assumed to tc 4 bytes in 
length. 

A pointer to a CCHHR when per­
forming direct reads for formats 
3, 5, B, and D DSCBs, 0r when 

Word 5 

writing DSCBs. When reading a 
label, this field will point to 
the CCHH of the track upon which 
the label resides. 

Note: When writing records, 
fields 4 and 5 are repeated as 
many times as the count in word 
2. 

II painter to the input area for 
the OBTAIN request heing made or 
t.he address of the reccrd to be 
written. 

~ 
o 
1 
2 
3 

" 5 

bength 
140 hytes 
101 bytes 
244 bytes 

5 byt.es 
10 bytes 
80 bytes 

or 

A painter to the input area for 
the RETAIN request being made. 

~ 
o 
1 
2 

Length 
140 bytes 

84 bytes 
user specified 

Note: OBTAIN and RETAIN use identical 
parameter lists. 

Output: Register 1 points to the input 
paralLeter list. 

Restrictions: 
1. The writing of DSCBs, labels, and end­

of-file marks cannot be intermixed. 

2. OBTAIN/RETAIN does not set the inter­
lock byte in the symbolic device allo­
cation table (SDAT). To prevent con­
current references to a particular 
VTOC, the user must test and set the 
lock byte. 

Modules Called: 
lOCAL (CEAH16) -- execute request for I/O. 

AWAIT (CEAP7) -- wait~ for I/O completion. 

VMA (CZCGA) -- GETMAIN for the virtual 
storage used to construct the IORCB. 

RESET (CEAAH) re-enable an I/O device. 

SYSER (CEAIS) entered when request type 
or parameter is invalid. 

ERRORRETRY (CZCRH) -- direct access error 
retries. 

VMSDR (CZCRY) -- V~ statistical data 
recording. 

Section 2: External Storage Allocation 39 



;:;;xits: 
Normal - register 15 contains nu. 
Error - register 15 ccntai;;,:; on of the 

following codes: 

04 - write error CI\ETj\l;'~i 
04 - OSCB record not found 

(OBTAIN) 
08 - hardware error Cl)llf"l i =_ i(l~l 

(OBTAIN) 
08 - error in input pard[l~ete.t: 

(RETAIN) 
oc - unit exception ;B'IldN) 

Ii!:.:. 

10 - intervention reqllir('cl (urn'! . .! N 
type 5) 

Ope;-~tion: For both OBTAIN dr:d Bl:.'lAI N 
requests, upon entry a data control tlcck 
(DeB), a data extent block (DEB.l, and aD 

event control block (ECB) are constructed 
in order to maintain compatible linkage 
with rommon system hardware error routines 
'.mdLbe t.a sk monitor. A page of virtual 
,;tc£age h; allocatedt.hrough GETf'lAIN. and 
~n initialized copy of an input/output re­
Quest control block (IORCB) is moved into a 
re·:e:cved section of the page. 

Thi~ co~y of the IORCB is then ufdated 
to p2rform the requested read function. 
': L'e' loca ticn of the symboli c device address 
and th~ location of the VTOC are computed, 
fctchei1, and placed in the IORCB. A chan­
nel rrogram is developed within the lCRCB 
as rEquired to perfo1.Tn one of the types of 
requ2st shown in Figure 4. 

r----T-------------T---------··~---------------------------------------------------------, 

I Type! F,lliction I Input ArEa I DescrlptioJ; I 
.----+-------------+----------t---------------------------------------------------------~ 
! 0 I Direct 1140 bytes IThis re'juest is initiated to read FOrmat 3, ~, 5, B, and I 
I I Reference I Ie DSCBs where the ]. 0(; ical address of t.he record is known I 
! I DSCB I Ifrom a previous operation such as Type 2 (below). The I 
I! I laddrec;s of the rpad is rrovided to the OBTAIN routine in I 
I I I I the forUl CCHHR. I, search for an equal ID is performed. I 
I I I 1',4her: the ID is fO:.Jnd, t.he key and data fields are read I 
I I I : (140 bytes.). ! 
~----+-------------+----------+---------------------------------------------------------~ 
I 1 jSearch for 1101 bytes IThis request is initlated to read type 1 and A OSCBs. Ani 
I I DSCE key and I lin-channel search is performed on a key, which is the I 
I I read count I I dsname of t.he data set whose DSCB is being searched for. I 
I I I !wtpn an equal k~y is found, the catalog data field (96 I 
I! I !bytes) is read into the IORCS buffer area. The count I 
I I I Ifield (5 bytes) is then read into the buffer area to I 
I I I loccupy the tyte of the data field. The count field is I 
I I I i decl. errent e(~ by OJ,f, to ad just it to the correct address of I 
I I lithe data fielJ. on files. I 
.----+-------------+----------+---------------------------------------------------------~ 
I 2 ISearch for 1244 bytes !This request i~ the same as type 1 above. except that thel 
I IDSCB -- I IVTOC-DSCB is also read and [laced in the area contiguous I 
I I Read count i Ito the right-hand byte of the count field starting cn thel 
I I and Read I I next fullword l::;cund2,ry. I 
I IOSCB I I I 
~----t-------------t----------+---------------------------------------------------------~ 
I 3 Isearch for 15 bytes jUnassigned DSCEs contain a field of binary zeros. This I 
I lone available\ I request causes an in-channel search on a field of binary I 
I I DSCB I Izeros. The count field is read in the form CCHHR and is I 
I I I I placed in the input area. I 
t----t--------------t---------t----------------------------------------------------------~ 
I 4 I Search for 110 bytes IThis request perforrrs the same functions as types above I 
I \two availablel lexcept that it ,iearches for two available DSCBs. The I 
I I DSCBs I I first address is placed in the first five bytes of the I 
I I I linput area; the second address is placed in the second I 
I I I I five bytes. I 
t----+-------------+--------·--+------------------------------------------.---------------~ 
I 5 IVolume/User 180 bytes IThis request initiates a track search for a data set or I 
I Ilabel read I I volume label key. When an equal is found on the key, the I 
I I I Idata field is read. If an end-of-file is detected on thel 
I I I Iread, a code is placed in register 15 and control is I 
I I I Ireturned to the user. This request can be used for eith-I 
I I I ler VAM or SAM data sets. I l ____ ~ _____________ ~ __________ ~ _______________________ -------___________________________ J 

Figure 4. Types of OBTAIN Requests 

40 



The initial DADSM-DSCB (the DseB used to 
define available extents) can be accessed 
directly by incrementing the record address 
of the VTOC. 

After the 10RCB has been bU~llt. the 
lOCAL SVC is executed, followed by the 
OBTAIN routine and an AWAIT. When 1/0 is 
complete, the task monitor links to OBTAIN 
posting, which checks for errors. If no 
errors occurred, posting moves the data 
from the IORCB buffer drEd (now located in 
the ISA) to the user's inr~t area. If an 
error occurred, postJ.n9 1 inks to common 
system error routines. l':),;t: D']. however., 
selects out end-of-cylinder and end-of-file 
for further processing by OBTAIN dnd the 
user. If the IORNP or the IORPG flag in 
the IORCP has been set by either the HOLDI 
DROP facility, paging error rCC,)Vt'ry Elroce­
dures, or the Purge I/U facility to indic­
ate that no path is available, OBTAIN post­
ing will post the 1/0 action a~ incomplete 
and intercepted. When posting completes, 
it returns control to the user with an 
indicative code in register 15, or updates 
the IORCB for another search if the VTOC 
exceeds a cylinder and end-of-cylinder was 
detected. 

RETAIN REQUEST 

Types of RETAIN requests are: 

InFut 
~ Function Area 

o WRITE 140 
DSCB bytes 

1 WRITE 84 
LABEL bytes 

2 EOF user 
markers spec-

ified 

DescEipti~.!:J 
This request is ini­
tiated to write one or 
more DSCBs. Available 
location found by type-
3 OBTAIN 

To write a user label 
or standard label on a 
volume -- key must be 
included 

When the initialized IORCB, which con­
tains an appropriate channel program to 
write the DSCB or label, is moved into a 
reserved section of the page allocated 
through GETMAIN, the symbolic device 
address is obtained from the symbolic 
device address table <SDATJ and placed in 
the 10RCB. The seek and search address is 
directed to constant fields in the 10RCB 
that are filled in with data indicated by 
the input parameter list. The write is 
also addressed to a constant buffer area in 
the IORCB into which the DSCBs or labels 
are moved. Note that a type 1 RETAIN re­
quest writes an 84 byte label. When the 

IORCB has been built, the lOCAL SVC is 
executed, followed by the RETAIN CHECK rou­
tine which checks the flag in the DECB. 
The RETAIN routine branches to an AWAIT 
nacro instruction if the I/O is not 
complete. 

Ufon completion of the 1/0, thetdsk 
monitor invokes th~ RETAIN posting routine 
to check for hardware errors. If no errors 
have occurred, posting places an approfri­
ate code in the DECB and returns control to 
the task monitor which, in turn, returns 
control t.O RETAIN d t the inst.ruction imme­
diately following the AWAIT. If an error 
is detected, posting links to the system 
error routine for retry procedures. 

If the IORNP or the IORPG flag in the 
IOReB has teen set by either the HOLDIDROP 
facility, paging error recovery procedures, 
cr the Purge 1/0 facility to indicate that 
no path is available, RETAIN posting will 
post the 1/0 action as incomplete and 
intercepted. Whether or not the retry was 
successful. control is returned to RETAIN 
ty pesting. RETAIN checks the DECB for an 
unsuccessful write, and if one has 
cccurred, the hexadecimal error code '04' 
is placed in register 16. The count of the 
number of RETAIN requests in the parameter 
area is set to indicate the number of 
writes completed. Thus, the record causing 
the error can te located by multiplying the 
count by eight and incrementing the address 
cf the first CCHHR pointer by the result. 
Control is returned to the user upon detec­
tion of the first error. 

If no error is indicated, the count of 
records to be written is checked for zero; 
if the count is zero, control is returned 
to the user. When the count is not zero, 
the next record specified in the parameter 
list is written. Although an indefinite 
number of records can be specified in the 
RETAIN macro instruction, the RETAIN rou­
tine writes them one at a time in order to 
facilitate error recovery procedures. 

The OBTAINIRETAIN routine does not set 
an interlock in the symbolic device alloca­
tion table (SDAT) to prevent concurrent 
reference to a particular VTOC. Interlock 
Dust be established prior to issuing an 
OBTAIN or RETAIN if it is desired to pre­
vent. concurrent access to a VTOC. The fol­
lowing error checks will be made: 

1. validity of request type 

2. Reasonableness of parameters 

An invalid request type or parameter 
will cause the System Error Routine to be 
invoked. 

Section 2: External Storage Allocation 41 



RENAME is a reenterable, nonrecursive, 
privileged subroutine residing in virtual 
storage. It changes the fully qualified 
name in the key field of a format-l DSCB 
for all volumes specified in the JFCB to 
the name specified by the calling program. 
(See Chart BH.) 

Entry Point: CZCFZl 

Input: Register 1 contains a pointer to 
the following parameter list: 

word 1 

word 2 

Address of a JFCB 

Address of a 44-byte area con­
taining the new data set name 

Qutput: None 

Assumption: At least one of the volumes 
indicated in the JFCB is mounted upon entry 
to this routine. 

Modules Called: 
OBTAIN/RETAIN (CZCFO) -- read/write format-
1 DSCBs from/onto external volumes. 

BUMP (CZCAB) -- dismount and mount external 
volumes on same device. 

wTO (CZCABQ) -- write error message to sys­
tem operator. 

SYSER (CEAIS> minor system error. 

ABEND (CZACP) 
task. 

force acnormal End of 

Exits: 
Normal 

Error 

register 15 contains 00: regis­
ters 0-14 are restored. 

- register 15 contains 04; RENAME 
was unsuccessful on one or more 
volumes as indicated by flags: 

TDTV8 = 0 and TDTV9 = 0 -
Successful. 

TDTV8 = 0 and TDTV9 = 1 - error 
due to system problems. 

TDTV8 = 1 and TDTV9 = 0 - data set 
not found. 

TDTV8 = 1 and TDTV9 = 1 - new data 
set name already exists. 

Registers 0-14 are restored. 

Operation: This routine uses OBTAIN to 
search the VTOC to determine if there is 
already a DSCB with the new data name and 
to retrieve the DSCB with the data set name 
to be changed. If a DSCB with the new data 

42 

set name is encountered, an error return is 
made indicating that the name is not unique 
in the volume. 

The rout.ine performs the renaming for 
each volume on which the data set resides 
as specified in the JFCB. If any of the 
volUlr,es is not mounted, the BUMP routine 
(CZCAB) is called to dismount a volume on 
which RENAME has already been performed and 
to mount the unmounted volume on that 
device. 

If RENAME cannot perform its service on 
a volume, an indicator in the JFCB is set 
to pass the information back to the calling 
program. There are two bits within the 
volurre flags of the JFCB defined as 
follows: 

(Fields TDTV8 and TDTV9 in the system table 
CHATDT) 

00 successful 

01 unsuccessful due to system problems 

10 data set name in JFCB not found in 
VTOC of this volume 

11 -- data set name not unique in this 
volume 

After changing the key (the data set 
name). the DSCB is rewritten by use of 
RETAIN. 

ROUTINES USED wITH VAM FORMAT VOLUMES 

FINDEXPG (CZCEL) 

FINDEXPG is a reentrant, nonrecursive, 
rrivileged routine, which resides in virtu­
al storage. This routine is entered when 
rages of external storage are required for 
a data set. (See Chart BI.) 

Entry Point: 
CZCELl -- Normal entry. Type I linkage. 

1nput: Register 1 contains a pointer to a 
rararreter list: 

hard 1 

Word 2 

Word 3 

JFCB address 

Address of the receiving area 

Address of a word containing the 
number of pages required (negative 
if WRITDSCB is not to be called) 

Output: Each rage aSSigned will be indi­
cated by one word in the receiving area of 
parameter two, in the following forrrat. 

Bits 0-15 - Relative Volume Nurrber 
Bits 16-31 - Relative page Number 



Assumptions: The format of the volume list 
for private data sets is exactly the same 
as the PVT. 

Modules Called: 
VOLSRCH (CZCEH) -- To find suitable volumes 
frow which to allocate space. 

RELEXPG (CZCEN) -- To return assigned pages 
and adjust user resource count if ~ntire 
allocation cannot be wade. 

WRITDSCB (CZCEW) -- To update the DSCB 
chain. 

&,A LOCK (CZCEJ) -- To lock and unlock PAT 
pages. 

RCR (Macro) -- Used in accounting for user 
public resources. 

READWRIT (CZCEM) -- To write PAT pages. 

Exits! 
Normal - Register 15 contains 00. 

Error - Register 15 contains one of the 
following codes: 

04 Insufficient space. 

08 Resource limits exceeded. 

The following errors cause an ABEND. 

1. Error writing a PAT page 

2. Illegal device code in the SDAT 

Operation: The JFCB address, the address 
of a receiving area, and the address of the 
number of pages required are presented to 
the routine. If the data set is public. 
FINDEXPG passes this inforrration to the 
Resource Control Routine which determines 
if the request is allowed, or if the user 
has already reached his resource limits. 
If RCR makes an error return, FINDEXPG 
returns to the calling routine with an 
indicator (08) in GR 15. 

otherwise, VOLSRCH is called to locate a 
volume from which allocation may be made. 
When a suitable volume has teen located, 
the PAT is obtained, by using the PVMA in 
the SDAT, and locked. The PAT is scanned 
for invalid codes. If one is found, a mes­
sage is sent either to the operator if the 
volume is public or to the user if the 
volume is private. Then VOI,SRCH is called 
for a new volume. The PAT is next 
inspected for unallocated pdges. As one is 
iound, the user count is incremented in the 
PAT entry for this page and a word entry, 
consisting of relative volurr,e number and 
relative page number is stored in the 
user's receiving area, the address of which 
is an input parameter. If more pages are 

needed, the PAT is scanned for more zero 
entries, as above. When either the alloca­
tion is complete, or there are no more 
unallocated slots in the PAT, the PAT page 
is written out via READWRIT and the lock 
released. 

In the second case, the appropriate PAM 
tit in the SDAT is set. to indicate no 
further space. If there are more PAT pages 
for this volume, they are inspected in 
turn. When the space request cannot be 
satisfied from the current volume, VOLSRCH 
is called at the second entry point to find 
another volume. 

If VOLSRCH is unable to find a suitable 
volume, RELEXPG will be called to release 
any pages already aSSigned and the callers 
receiving area will be zeroed out. If the 
data set is public, RCR will be called to 
delete those pages requested but not 
assigned, the return code will be set to 
(04) and the following message will te sent 
to the operator: 

ZCEL - NO MORE DATA PAGES AVAILABLE ON 
PUBLIC VOLS 

The following message will then be writ­
ten to the user: 

ZCEL - INSUFFICIENT SPACE TO BUILD DATA 
SET (data set name) 

When the request has teen satisfied, 
control is returned to the calling routine 
with GR15 zeroed, to indicate success. 
Just before a successful return. WRITDSCB 
.. ill be called to update the DSCB chain, 
unless the word containing the number of 
required pages is negative. 

ACDDSCB (CZCElO 

ACDDSCB is a reentrant, nonrecursive, 
privileged routine, residing in virtual 
rreocory. ACDDSCB is called by ADDCAT, 
WRITDSCB, and DSCBREC to assign space for a 
new forwat E or format F DSCB. (See Chart 
EJ. ) 

Entry Points: CZCEKl -- Normal entry. 

Input: Register 1 points to a parameter 
list: 

Word 1 Address of the JFCB associated 
with the VAM data set for which 
the DSCB assignment is to be made. 

Word 2 Address of the volume table asso­
ciated with this data set. 

Word 3 Address of a one-word return area. 

Word 4 Address of a control word that has 
the following format: 

:iection 2: External Storage Allocation 43 



Bits 0-7 - X'SO' if call i~ for a for­
mat E OSCB 
X'OO' if call is for a for­
mat F OSCE 

Bits 8-15 - unused 
Bits 16-31 - The RVN of the current DSCE 

page if the call is for a 
format F OSCB. 

(Note: If the call is from 
DSCBREC (CZCEF) for a format E 
DSCB, word 4 will be set to zero.) 

output: A pointer to the newly assigned 
OSCE will be placed in the return area 
whose address is the third input parameter. 
The pointer is in the form: 

Bits 0-3 - DSCB slot number 
4-15 - Relative Volume Nwrber 

16-31 - Page numter 

Workpage CZCOZ will contain the new DSCB 
leage. 

Assumptions: If the call is for a format F 
DSCB, the device indicated by fdrameter 
four is assumed locked and will be used, 
then left locked upon return. The new 
device obtained from VOLSRCH will be locked 
and left locked, and the pointer of parame­
ter four will be changed to point to this 
new device. 

Modules Called: 
VOLSRCH (CZCEH) -- To find suitable volumes 
from which to allocate space. 

ESA LOCK (CZCEJ) -- To unlock or lock PAT 
ijages . 

READWRIT (CZCEM) -- To read and write DSCB 
pages and to write the PAT. 

Exits: 
Normal - Register 15 contains 00. Output 

as described. 

hrro~ - 1. No OSCB sface available. 
ABEND. 

2. Error reading or writing DSCB 
or PAT. Message to operator. 

3. Illegal device code. ABEND. 

Operation: ADDDSCB requires that, on 
entry, general register t contain a pointer 
to a parameter list containing: 

1. The address of the JFCB associated 
with the VAM data set for which the 
OSCB assignment is to be made; 

2. The address of the volume table asso­
ciated with this data set; 

44 

3. The address of a one-word return area. 

In addition, if the call is to request 
space for a format F DSCB, it is assumed 
that a DseB Fage is being used by the call­
ing routine and that the device containing 
this DSCB page is locked. In this case a 
fourth parameter is necessary. This fourth 
Farameter will be the address of a word 
containing the RVN of the locked device. 
The calling routine will signify a request 
for a format E DSCE by making the fourth 
j:arameter zero. 

To find space for a format F DSCB, 
ADDDSCB _ill scan first the OSCB page and 
then the volume on which the format E OSCB 
resides. If there are no usable pages on 
that vclume, or if the call is for a format 
E DSCB, ADDDSCB will obtain a volume to 
search by calling VOLSRCH (CZCEH). VOLSRCH 
will select a suitable volume, place its 
relative volume number in an address sup­
plied by AODDSCB, set a successful return 
code, and return to ADDDSCB. 

If VOLSRCH returns with an unsuccessful 
return code (no suitable volume found), 
ADDDSCB will call VOLSRCH again at the ini­
tial enTry (CZCEHl) and this time will 
attempt to allocate OSCB space frorr. any 
continuation slots. If, in this attempt, 
VOLSRCH again returns unsuccessfully, 
AODOSC~ will call ABEND with a message to 
the user. 

Upon a successful return, the PAT page 
of the returned volume is checked for inva­
lid codes. If one is found, a message is 
sent to the user if the volume is private 
or to the operator if the volume is public. 
An attempt is made to get another volume. 
If no invalid code is found, VOLSRCH return 
indicators are checked for one of two poss­
ible cases: (a) space exists on an 
unfilled OSCB page, or (b) all OSCB pages 
j:resently assigned are full but unassigned 
j:ages exist from which a new OSCB page may 
be allocated. These two cases are 
described below. 

<case a) SDAT P~)M indicates unfilled 
DSCB page(s) exist: 

VOLSRCH returns a volume pointer and 
indicates the FAT page for that volume 
which describes an unfilled OSCB page. A 
search of this PAT page is made for an 
unfilled OSCB page entry. If no unfilled 
OSCB pages exist, it indicates that the PAT 
Summary Table (PST) must be updated and a 
new OSCB page assigned from this PAT if 
possible. See case (b) for this procedure. 
when an apparently usable DSCB page entry 
is located, the OSCB page on external 
storage is read into the workpage CZCOZ by 
a call to CZCE~. If this DSCB page was 
just assigned (see case (b», the PAT entry 



has already been updated; ~he first DSCB 
slot in the page is assigned by setting 
bits 6-7 of OSETYP of the OSCB slot to 01 
for form~t E or 10 for forrn~t F. The DSCB 
is then checksummed and wri t.Len back to 
~xternal storage via CZCEM. The new DSCB 
assignment is passed back to the calling 
module in the form of H,lative volume num­
ber, page number and DSCB ~;lot number. 

If this DSCB page was noL ~ newly 
assigned page, the OSCB rage is searched 
for an available [,SCB slnt (LiU; 6-7 of 
DSE'TYP l~qual to 00). It dssigninq a slot 
will leave four or more available slots on 
the t,,'~e, the slot i:,~ as:3igned. If it 
leav, .. <; iust four, the PAT ent_ry wi 11 be 
changed Irom 'aD' to '82', A page so 
rrarked will not thereafter b~ searched 
fcXCe[,t to find "pace for a for:nat F O,;CB 
whose format E DseB is on that l~a'Je, or if 
no other srace i~> availatle. If no avail­
able slots are found in this DseB page, the 
PAT entry is set to '83' to ind"lCdte a com­
pletely full page and the search for anoth­
er page continues. When an available slot 
is found, it is assigned by setting bits 
6-7 of DSETYP. The DSCB is checksummed 
and, if call is for a format_ E DSCB, wri t­
ten back to external storage via CZCEM. If 
tne FAT page has been changed, it is writ­
ten back to external storage via CZCEM. 
The new DSCB assignment is IBssed back to 
the calling module as noted in the previous 
paragraph. If the calling program is 
ADDCAT (CZCFA), any devices locked by 
AODOSCB will be unlocked before returning. 

(Case b) SDAT PST indicates all OSCB 
[Jiiges full but unassigIHcd pages exist. 

When VOLSRCH returns a volume pointer 
and indicates a PAT page from whch a new 
DSCB page may be assigned, ADDCSCB searches 
that PAT page and, upon finding an unas­
Signed page, assigns that page as a DSCB 
page by setting the PAT entry to 'BO'. The 
SLAT PST DAM (DSCE Availability Mask) is 
uf!dated to reflect this newly assigned OSCB 
page. The new page is read into workpage 
CZCOZ. All DSCB slots on the page are made 
available for future assigr~ent by setting 
them to zero. OSCB assignroent then con­
tinues as described in CdS~ (a) for a newly 
assigned DSCE page. 

If no unassigned pages are available for 
DSCB assignment, the PST is updated to 
reflect the fact that no more space is 
available on the volume page described by 
the PAT page under examination. AODDSCB 
will then examine the next PAT ~age (if 
more than one exist) for the volume and 
repeat the above process. If no space can 
be found on this volume, VOLSRCH is re­
entered at its second entry point (CZCEH2), 
and a new volume is obtained. The entire 
procedure is then repeated. 

~OLSRCH (CZCEH) 

VOLSRCH is a privileged, reentrant non­
recursive routine which is called by 
ADDDSCE and FINDEXPG t:o determine the most 
suitable volume in a given list, pul:;lic or 
rrivate. from which to allocate space. 
(See Chart EK.) 

Entry Points: 
CZCEHl For initial call. 
CZCEH2 -- For sul:;sequent calls. 

lQBut: Register 1 contains a pointer to a 
rararreter 1 ist: 

Word 1 Address of control word. (Control 
word format is as follows: 

word 2 

Word 3 

Word 4 

Byte 0 - X'OO' DAM, PAM search 
- X'80' PAM search only 
- X'CO' Primary allocation 

set by OPENVAM 
(CZCOJ\) 

Bytes 1-3 - Number of pages 
requested by FINf,EXPG 
(CZCEL)i Not used when 
Byte 0 is X'OO'.) 

JFCB adress. 

Address of the halfword return 
slot for the relative 
volume number. 

Address of the volume list. 

gut put : The relative volume number of the 
selected volume will be placed in the half­
word which is addressed by word 3 of the 
input fararneter list. Register 1 contains 
OJ pointer t.O the input parameter list. 

Restrictions: The second entry point 
(CZCEH2) may be entered only after the 
first (CZCEH1) has been entered. 

The task will SYSER and ABEND if the 
data set is public and there are no volumes 
in the PVT. 

Modules Called: 
SYSER (CEAIS) Full VM dump. 

ABEND (CZACP) Terminate task and return 
control to the terminal. 

Interlock (CZCOH) -- To lock RESTBL. 

Release Interlock (CZCOI) -- To unlock 
RESTBL. 

Exi t.s: 
Normal - Register 15 contains 00. 

Error - Register 15 contains one of the 
following codes: 

:;ect ion 2: External Storage Allocation 45 



04 No space on dny volume. 
08 CZCEH2 called out of turn. 

Operation: The first input parameter is 
the address of a control byte which indi­
cates the type of search required. If the 
control byte contains an '80', VOLSRCH will 
examine the PAM bits of each volume to find 
one containing available data pages. If 
the control byte is '00', VOLSRCH will test 
each volume. examining first the DAM bits 
to find one containing an available DSCB 
page. If the DAM bits indica e that no 
such page is available, the PAM is then 
examined to see if a data page is present 
which may be assigned as a DSCB page. If 
one is, the control byte is changed to '80' 
to inform the calling routine that such is 
the case. If there are none, the next 
volume is then examined. If the second bit 
of the control byte is on, VOLSRCH is being 
called for primary allocation and the 
RESTBLE will not be searched to determine 
on which volumes the data set is currently 
located. 

Whenever a suitable volume is found, the 
relative volume nurrber is placed in the 
halfword return slot whose address is the 
third input parameter. If no suitable 
volume is found, return will be rr,ade to the 
calling routine with general register 15 
set to • 04 t • 

For a private new data set, the volume 
list is examined for the device having the 
most available space. For an existing pri­
vate data set, the search begins with the 
volume containing the format E OSCB, and 
cycles from the last in the list to the 
first. 

For public data sets, the volume entries 
in the JFCB will be examined for valid, 
Kounted, public volumes. If any are found, 
the search will be restricted to them. If 
none are found in the JFCB, the public 
volume table will be searched. 

For public data sets, the first volume 
of the PVT is reserved for systerr. use and 
will be examined last. For a new public 
data set, a search will be made for the 
device having the most available space. 
For existing public data sets, the search 
begins with the volume containing the for­
mat E DSCB. 

When the data set is duplexed, the 
volumes containing the duplexed copy are 
not examined unless there is no space on 
any other public volume, including the sys­
tem volume. 

If the calling routine needs more than 
one volume, the second entry (CZCEH2) 
should be called. VOLSRCH will then con­
tinue the search. If multivolume data sets 

46 

have been inhibited. data sets will not be 
allowed to expand to more than one device. 
If an old data set is already multivolume, 
it will be restricted to those volumes on 
which it already exists. 

RELEXPG (CZCEN> 

RELEXPG is a reentrant, nonrecursive, 
privileged routine residing in virtual 
storage, which is called by CLOSEVAM. 
DELVAM, ~RITDSCB. DSCBREC, and FINDEXPG 
when external pages and DSCBs are to be 
rrade available. (See Chart BL.> 

Entry Point: CZCEN1 -- Normal entry by 
type I linkage. 

InEut: Register 1 points to the following 
parameter list: 

Word 1 

Word 2 

Word 3 

JFCB address 

Address of the list of entries to 
be released. 

Address of a word containing the 
number of entries in the list. 

The format of entries in the release 
list is: 

r-------T-------------------T-------------, 
I I 1 External Page 1 
IField AIRelative Volume No.1 Number I 
t-------+-------------------+-------------~ 
10 314 15116 311 l _______ ~ ___________________ ~ _____________ J 

The release list must be aligned on a 
fullword boundary. Field A contains a DSCB 
slot number when a DSCB is being released. 

Output: Relevant PAT entries and DSCB 
pages will be changed to reflect the 
requested releases. 

AssurrEtion: Private data sets will have a 
volume list in exactly the same format as 
the PVT. 

!'odules Called: 
CZCOy -- ~orkpage for reading OSCB pages. 

RCR -- To credit user with pages being 
returned. 

ESA LOCK (CZCEJ) -- To lock and unlock 
devices. 

READWRIT (CZCEM) -- To read and write DSCB 
pages and to write PAT pages. 

Exits: 
Normal - Register 15 contains 00. 

Error - None. 



Operation: The routine L; entered with the 
address of the JFCB, the address of the 
~ist of entries to be released (these can 
be mixed data pages and DSCBs), and the 
address of a word containing the number of 
entries in the release list. ~hese last 
two parameters are set up as indices and a 
loop count and t_he first entry in the 
release list is obtained. 

The relative volume number is stored in 
a comparison field so that the current PAT 
page can be used to reledse consecutive 
entries for the same relative volume before 
being rewritten. The relative VOIUllH'; num­
ber is used to index the volume list; the 
SOA is extracted and used to calculate the 
appropriate SLAT entry. 

The external page nwnber of the entry in 
t.he release list is examined for validity 
ty type of device and set to modulo 4096 to 
get the relative PAT page and entry within 
the page. The device is locked and the 
virtual memory address of the PAT obtained 
using the PVMA field in the SOAT. 

The PAT is scanned for invalid codes. 
If one is found, a message is sent either 
to the user if the volume is private or to 
the operator if the volurre is Fublic. If 
the PAT is invalid, it will not be changed 
or written. 

The PAT entry is examined. If it is 80, 
82, or 83 (a DSCB page) the proper DSCB 
fCage, if not already in core, will be read 
in. The indicated slot will be released 
and the PAT entry changed, if necessary, 
according to the number of slots still 
assigned. If no slots are left assigned, 
the PAT entry will be set to zero, making 
the entire page available, and the appro­
priate PAM bit set to show at least one 
available page entry. Otherwise, the rele­
vant DAM bit will be set to show at least 
one DSCB available. 

When a data page is being released, the 
count of users is decremented. If the 
resulting count is non-zero, the page can­
not be released. Other~ise, the PAM bit is 
set to show at least one available page 
entry in this PAT page. 

If the PAT entry of the page to be 
released is 'cO', an errcr entry, the relo­
cation field will be searched to find the 
relocated page number. If none is found, 
SYSER 002 is called and the program con­
tinues with the next entry to be released. 

A special 
external PAT 
error pages. 
released, bit 
examined. If 

feature of RELEXPG allows 
page entries to be rrarked as 

When a data page is being 
1 of the release entry is 
it is en, the PAT page entry 

is set to CO, thus making it an error 
entry. 

As rages are made available, PVTAVS, the 
number of available pages is updated. 

Processing continues by incrementing 
indices and decrementing the count of 
Entries in the release list. When more 
entries are to be released, the relative 
volume number of the next entry is compared 
with that of the previous entry. If these 
are equal, the routine will loop to [rocess 
this entry. Otherwise, any altered PAT 
pages must be rewritten using READWRIT and 
this relative volume number saved. The 
routine then loops to use the relative 
volurre number as an index to the volume 
list. 

When all entries have been processed, 
the altered PAT pages on the current volume 
are written using READWRIT. The Resource 
Control Routine is called to adjust the 
resource limits when any public pages are 
returned. RELEXPG then returns to the 
calling routine. 

DSCBREC is a reentrant, nonrecursive, 
~rivileged routine residing in virtual 
memory. This routine is used to recover as 
far as possicle from a checksum error. 
(See Chart BM.) 

g~£2ints: CZCEFl - Normal entry via 
type I linkage. 

l~ut: Register 1 contains a pointer to 
the follewing rarameter list: 

Io<ord 1 

word 2 

Word 3 

,}FCB address 

Address of a fullword describing 
the bad OSCB, which will be 
changed upon successful return to 
the address of a replacement DSCB 
which should be re-read. 

Address of the Volume Table. 

The format of the second parameter word 
1- P • . , . 

r---------T---------------T---------------l 
IDSCE SlctlRelative VolumelExternal page I 
I No.! No. I No. I 
t---------+---------------+---------------~ 
10 314 15116 311 
l _________ ..l ________________ .L ________________ J 

Qutfut: Register 1 contains a pointer to 
the input pararreter list. 

Modules Called: 
ADOCAT (CZ(:FA) 
the DSD. 

To update OSCB peinter in 

3ecticn 2: External Storage Allocation 47 



AODOSCB (CZCEK) -- To su~ply n~w DSCB 
slot~. 

DELCAT (CZCF~) -- To delete a catalog 
entry. 

DSCB/PAT RECOVERY (CZUFX) -- To rehuild a 
user catalog from public DSCBs. 

FINDEXPG (CZCEL) -- To ottain new data 
~ages. 

RELEXPG (CZCEN) -- To releas~ to the systerr 
LSCB slots and data ~ages. 

ESA LOCK (cZCEJ) -- To lock and unlock 
devices. 

RCR -- R~source control rracro to credit the 
data set owner with lost public ~ages. 

GETMAIN/FREEMAIN (CZCGA) -- Get or free 
virtual storage. 

SE'IXP (SVC 244) To read a data page. 

PGOUT (SVC 242) To write a data page. 

REAOWRIT (CZCEM) -- To read and write Dsce 
~ages and write the PAT. 

USERCAT SCAN (cZUFY) -- '10 com~ute the che­
cksum for the SYSSVCT OSCB and to construct 
the first page of the SYSSVCT data set if 
necessary. 

Exits: 
Normal - Register 15 ccntains 00. 

Error - Register 15 ccntains one of the 
following codes: 

04 Recovery is impractical - (not du­
plexed or, data set shared and for­
rrat E CSCB bad). 

08 Not enough pages available. 
OC Unreccverahle write error 

encountered. 
10 Error page found with no relocation 

entry. 

Operation: DSCBREC requires, on entry, a 
~ointer in General Register 1 to a parame­
ter list containing the address of the JFCB 
with which the OSCB in error is associated, 
the address of a pointer to the OSCB, and 
the address of the volume table. 

Upon entry, the follo~ing message will 
be written to the operator: 

ZCEF - CHECKSUM ERROR ON SLOT XX, PAGE 
XXXX, R.V.N.XX, V.S.N.XXXXXX 

Following this, OSCEREC will check to 
see if the OSCE in errcr is the format E 
USCB of a shared data set. If so, complete 
recovery is not prac~ical. If not, a check 

48 

will be made to see if the calling program 
is WRITOSCB. WRITCSCB calls OSCBREC only 
if the format E OSCE is found to be bad. 
No atten.pt to "save" the data set is 
required as all data page pointers are 
rresent in the RESTBL and the OSCB chain is 
about to be updated anyway. In this spe­
cial case DSCBREC will assign a new format 
E LSCB. update the E OSCB rointers in the 
RESTBL, JFCB and OSD, then checksurr and 
write to external storage the new DSCB 
slot. If the calling program is not 
WRITDSCE, a check will be made as to wheth­
er or not the data set is duplexed. 

If the data set is not duplexed, com­
plete recovery is not practical but an 
atterrpt will be made to save as many pages 
as possible. DEICAT will be called to 
delete the data set from the catalog and 
the user will he notified that this has 
teen dcne. The DSCB chain will then be 
scanned and all DSCBs preceding the tad 
ene, tcgether with their described data 
pages, will be returned to the systerr via 
RELEXPG. All ether OSCBs dnd data pages in 
the chain will be lost. The number cf lost 
rages will be calculated and credited to 
the user via the Resource Control rracro. 
The user or the operator, depending upon 
whether the data set is on private cr rub­
lie volurre,~, will be inforn,ed of the number 
of pagES lost. Return is then rrade with 
'04' in register 15. 

If the data set is duplexed, the DSCB 
chain will be searched to find the relative 
[osition of the bad OSCB and the nurrter of 
rages that will be lost. The Resource Con­
trol macro will be called to credit the 
user with the nurrber of pages lost and 
FINOEXPG will be called to replace these 
rages. At this time TDTOCI will be checked 
to see if this is the primary or the secon­
dary c0i=Y. 

If it is prirr.ary, a dummy secondary 
RESTBL will be constructed frorr the secon­
dary OSCE chain and the data set will be 
transferred frorr these addresses to those 
supplied by FINCEXPG for the primary data 
set. 

If it is thE secondary copy, the same 
procedure will be followed except that no 
durrrry kESTEL need be constructed as the 
primary FESTBL already exists. The data 
set will be transferred from addresses in 
the primary RESTEL to those su~plied by 
fINCEXPG. 

Once this transfer is complete, DSCEREC 
~ill check the forffiat type of the tad DSCB. 
If it was a format F OSCE, the DSCE string 
will be updated from those pages found by 
FINOEXPG. If it ~as a format E OSCE, 
[SCBREe ~ill first update the OSCB header 



and the E DSCB pointers in the JFCB and 
eSD. 

If the data set is shared, LSCBREC has 
no knowledge of the location of the sharing 
JFCBs and is therefore unable to update 
their forrrat E DSCB pointers. Therefore, 
if tne bad DSCB is forrrat E and the data 
set is found to be shared, DSCEREC will 
consider the data set as one that has no 
duplex copy. The data set will be deleted 
via DELCAT and register 15 will hold the 
return code of '04'. 

Before exiting, the following messages 
will be printed: 

1. To the operator (if data set is 
publiC> : 

ZCEF - RECOVERY (SOCCESSfUL.XXXX)/ 
(IMPOSSIBLE. ALL) PAGES LO~;T 

2. To the user: 

ZCEF - CHECKSUM ERROR ON SLOT XX, FAGE 
XXXX, R.V.N. XX, V.S.N. XXXXXX 

ZCEF - RECOVERY (SOCCESSFUL.XXXX)/ 
(IMPOSSIELE.ALL) PAGES LOST 

3. To the user if recovery was not 
successful: 

ZCEF - CHECKSUM ERR HAS CAUSED DELE­
TION OF DATA SET (d.s.name) 

WRITDSCB (CZCE~) 

~RITDSCB is a reentrant, nonrecursive, 
privileged routine which resides in virtual 
memory. ~RITOSCB is called by OPENVAM, 
CLOSEVAM. and FINOEXPG to construct a oseB 
chain frow the RESTBL, JFCB, DCB, and PVT. 
(See Chart BN.) 

Entry Points: CZCE~l - Nonnal entry. Type 
I linkage. 

Input: General Register 1 contains a 
~ointer to the parameter list: 

~ord 1 Address of the RESTBL reader 

Word 2 Address of a control tyte 

bits 0-3 - 'F' - new data set 
'0' - old data set 

bits 4-7 - 'F' - write all rages in 
RESTBL 

'0' - write only pages in use 

Word 3 Address of the JFCB 

word 4 Address of the DCB 

(~utEut: R('gister 1 contains a pOinter to 
the infut rararreter list. 

Assurrpticns: 'The format of the volume 
lic;ts of both public and private data sets 
are identical. 

/'fcdules Cdiled: 
ACDDSCB (CiCEK1) -- To find a new format E 
or F OSCE. 

RELEXPG (CZCENl) -- To return excess DSCB 
slots. 

[SeEREC (CZCEFU -- To set up new format E 
OSCB. 

ESA LOCK (CZCEJ) -- To lock and unlock 
devices. 

~EADWR1~ (CZCE~) -- To read and write CSCB 
fages and to write the PAT. 

Exits: 
Normal - Register 15 contains 00. 

Error - 1- Error reading DSCB page. 
AEEND. 

2. Error writing CSCE page or 
PAT. ABEND. 

3. Unrecoveratle checksulT error. 
ABEND. 

~terat.ion: Inrut parameters for WRITr::SCE 
are the address of the RESTBL and the 
address of a contrcl byte ~hich is -FF ft for 
a new data set and '00' for an old one. If 
the data set is new, two additional rarame­
ters, the address of the JFCB dnd the DCB 
are al~o rEquired. 

After initial housekeeping activities. 
the rage containing the format E OSCB will 
be read in using subroutine 1. If a check­
surr error is encountered and the data set 
is not being shared, DSCBREC will be called 
to provide a new format E OSCB. If the 
return from DSCBREC indicates an unsuccess­
ful recovery or if the data set is shared. 
WRI'ICSCB will and ABEND with appropriate 
rr€ssages. 

Once a good forrrat E OSCB has been read 
in, the rage totals in the OSCE header will 
be u[dated frorr the RESTBL header. At this 
time also, if the data set is not parti­
tioned the OSCE header will be filled in 
from inforrration in the JFCB and DCB. 

If the data set resides on private 
volurres, the number of volumes in the DSCB 
will be checked against the nuwber of pri­
vate vclurres. If they are equal or if the 
volume count is equal to one, no vclume 
updating is required. If they are not 
equal, the DSCB volume count will be 
updated froIT t_he numter in the PVT. Volume 

Secticn 2: External Storage Allocation 49 



IDs from the PVT will then be rroved into 
the format E OSeB. If more DSCBs are 
required, the next DseB in the chain will 
be used. If there is no entry in the chain 
field, subroutine 3 will be called to get a 
new one. This will continue until all 
volume IDs have been entered. 

Following any volume updating, WRITDSCB 
will begin updating page entries in the 
DSCB f ron t.he RESTBL, oct aining any addi­
tionally needed DSCBs as in the volume 
updating procedure. Whenever a OSCB has 
been filled and its chain field updated, 
its checksum will be computed and stored 
using sUbroutine 2. When all extents have 
been moved into the oseE chain, ilny 
unfilled entry space in the last DSCB will 
be set to zero and any unused DSCBs will be 
released via PELEXPG. 

subroutine 1: This subroutine will read 
in the page containing the indicated DSCB 
and set the base register for that DSCB. 
The checksum will then be tested and a 
branch will be made accordingly to either 
the normal or the error return. 

Subroutine 2: This subroutine has two 
entrles. When the first entry is used, 
OSETYP will be checked to see if this is a 
format E DSCB. If it is not, DSETYP will 
be set to indicate a format F DSCB. The 
checksum value for the DSCE will then be 
computed and placed in the checksum field 
(OSECKS). When the second entry is used, 
only the checksurrming will be done. 

Subroutine 3: This sUbroutine will 
search tne currently held DSCE page in 
CZCOY for a usable DSCb slot. If one is 
found, it will be assigned and the PAT 
entry updated as necessary. If one is not 
found, the PAT entry will be set to indi­
cate a full page and ArDDSCB will be called 
to furnish a new OSCB slot. The value 
returned from AOODSCB will be rlaced in the 
chain field (DSECHN) of the previous DSCB, 
that OSCB will be checksummed via Subrou­
tine 2, and the old OSCB page will be writ­
ten out. The new DSCB page, placed in 
CZCOZ by ADODSCB, will be transferred to 
CZCOY. 

VAMINIT (CZCEQ) 

VAMINIT is a privileged, reentrant, non­
recursive routine residing in virtual 
meffiory. This routine initializes private 
VAM volumes when they are entered into the 
system. (See Chart EO.) 

Entry Point: CZCEQ1 via type I linkage. 

InFut: Register 1 contains the address of 
the SOAT entry for the volume to be 
initialized. 

50 

CutFut: The tables associated with the 
volune are updated. 

Restriction: VA~INIT must not be invoked 
for a putlic volume. 

~odules Called: 
SETXP (CEAH7) To read the PAT into vir-
tual storage. 

GETMAIN (CZCGA2) -- To get the virtual 
storage for the PAT. 

CBTAIN (CZCF01) -- To read the volume 
label. 

ABEND (CZACP) -- Returns control to the 
terminal. 

Exits: 
Normal - Register 15 contains 00. 

Error - ABEND 

ABEND 

Routine was invoked for a 
public volume. 
Device code other than 
2311 or 2314. 

0Feration: VAMINIT is entered with Type I 
linkage and is passed the following 
pararreter: 

Address of SDAT entry 

After a normal initialization procedure 
(storing registers, setting up base regis­
ters, etc.), VAMINIT will check SCAT loca­
tion SCAPP to determine whether this is a 
priVate or public volume. If public, 
VAMINIT will invoke the ABEND procedure 
with an appropriate error nessage. 

If private, VAMINIT will have the volume 
label read into virtual memory by invoking 
the OBTAIN routine. From inforrraticn in 
the volurre label VAMINIT will then enter 
the volume IL and the PAT origin (PTC) in 
thE SDAT. 

VAMINIT will then invokE the GETMAIN 
routine to obtain virtual memory for the 
Faye assignment table (PAT). If the device 
is a 2311, PAT will be one page in length; 
if 2314, two pages in length. The PAT sum­
rrary mask (PSM) in the SOAT is set up and 
VA~I~IT invokes the SETXP routine to read 
in the PAT. After reading in the PAT, 
VAMINIT will set the VAM/SAM flag (SDAAM) 
to 0 and set up the PAT Virtual Menory 
Address (PVMA). 

VANINIT will verify that the PAT pages 
read in by SETXP are valid. If they are 
not valid, a message will be written to the 
system log and to the user, and the invalid 
fAT tit will he set in the SDA. 

VAMINIT will then return to the routine 
which called it via Tyre I return linkage. 



rtEADWRIT (CZCEM) 

READWRIT is a reentrant, nonrecursive, 
~rivileged routine residing in virtual 
storage. It is used to read DSCB rages 
into virtual storage or write DSCE or PAT 
pages to external storage. (See Chart BP.) 

Entry Point: CZCEM1 - Nornal entry via 
Type 1 linkage. 

Input: Register 1 contains the address of 
the following parameter list: 

Word 1 

Word 2 

'",ORO 3 

Word 4 

Word ') 

Address of the volulfe table or, if 
none Exists, of the halfword con­
taining the SDA number. 

Address of a one-byte request 
flag. The first half-byte is '0' 
to write a DSCB ~age, '4' to read 
a DSCB page or '8' to write the 
PAT. The second half-byte is in 
the following format: 

bit 1 unused. 

bit 2 

bit 3 

bit 4 

0, pararr>eter 1 has address 
of PVT. 
1, farameter 1 has address 
of SDA no. 

0, slot no. in parameter 3 
used. 
1, slot no. ignored. 

0, address of JFCB in pa­
rameter 5. 
1, parameter') contains 
address ot iON or is 
ignored. 

Address of a onE word pointer to 
the DSCB or RVN in the following 
format: 

bits 0-3 OSCE slot nurrber. 

bits 4-15 Relative volume 
numter. 

bits 16-31 Relative fage number. 

For a write DSCB request, the slot 
number will always be ignored. 
For a write PAT request, only the 
relative volume field will be 
used. 

Address of a page boundary buffer 
into or from which thE DSCB page 
will be read or written. Parame­
ters 4 and 5 arF not required for 
a write PAT request. 

Address of the JFCB or, if there 
is none, the address of the fully 
qualified data set narre (FQN). 

~utrut: If the requested DSCB page is 
found to have teen relocated, the new fage 
number will be used to update the OSCB 
pointer supplied in parameter 3. 

Assumpt~ons: It is assumed that the device 
to be read from or written to has been 
locked, if necessary, prior to the call to 
READWRIT. No deviCE locks will be set or 
reset within READWRIT. However, if the re­
quest is to write to a public device, a 
check will be made to be sure the device 
has been locked by this task. 

Modules Called: 
SETXP (SVC 244) To read DSCB pages. 

PGOUT (SVC 242) 
rages. 

To write OSCB and PAT 

Exits: 
Normal Register 15 contains 00. 

Error - Register 15 may be set to one of 
the following return codes: 

04 Indicated volume beyond PVT 
limi t. 

DB JFCB and RESTBL DSCB pointers 
disagree. 

DC Relocation entry cannot be 
found. 

10 Pointer indicates a non-OSCB 
page. 

14 Checksum error on indicated 
OSCE slot. 

IS Data set names disagree. 
1e Unable to write PAT. 
20 Unable to write DSCE page. 
24 Device not locked by this task 

for a write operation. 
28 Page number beyond device 

limits. 
2C Invalid buffer area address. 

f£eration: If the PVT address is given, 
the infut RVN is check~d to see that it is 
within PVT limits and the SOA number 
obtained frorr the proper PVT entry. The 
::iDA ntlIT,ber is then used to compute the SOA'!' 
Entry address. If the request is to write 
the PAT, control passes to the write PAT 
subroutine. 

Other~ise. the address of the buffer 
area (rarameter 4) is checked to be sure it 
is non-zero and on a page boundary. The 
[aye nurrter to be read or written is 
checked against the limits for that device. 
If the JFCB has been supplied (in parameter 
5), and if a RESTBL exists for this data 
set, the OSCB rointers in the JFCB and 
RESTBL are comFared to be sure they agree. 
The PAT entry is then checked to see that 
it indicates a DSCB page. If the entry is 
'CO', READWRIT scans the PAT relocation 
entries to find the correct page. If the 
reqUEst is to write the oseB page, contrel 

Secticn 2: External Storage Allocatien 51 



is passed to the write subroutine. If not, 
the OSCB page is read in. If the slot num­
ber has been specified, the checksum is 
computed and compared and, if this is a 
completed format 'E" OSCB, the data set 
name is compared to that in the JFCB or the 
F~N supplied in parameter 5. 

REAOWRIT then returns control to the 
routlne which called it via type I return 
linkage. 

Write DSCE Subroutine: If the device to 
be written to is pUblic, the SCAT entry i::; 
checked to see that it has been locked by 
~his task. The page is then written out 
via l'(;CU'I. 

Write PAT subroutine: If the device is 
public the SLAT entry is checked to be sure 
the device was locked by this task. The 
f'AT page number is obtained from the SDAT 
and compared with the page limits for this 
device. The PGOUT parameter list is then 
filled in from the SDAT and the PAT pages 
writtpn. 

Any error found results in a diagnostic 
mess~ge to the operator and a nonzero 
return code U"J the caller. (See Exits.) 

1:.SA LOCK (CZCEJ) 

ESA LOCK is a reentrant. nonrecursive, 
privileged routine residing in virtual 
storage. It is called to set and clear 
virtual memory locks and to record the ta~"k 
and module which applied the lock. CZCEJ 
is called for the SDAPLO lock by all rou­
tines reading and writing DSCR and PAT 
Fages. (See chart B~.) 

Entry Points: 
CZCEJl to set lock. 

CZCEJ2 to clear lock. 

CZCEJ3 ABEND reset of locks. 

Input: Register 1 points to the following 
farameter list: 

Word 1 

52 

Address of a ~ara~eter word for­
matted as follows: 

byte 1 Type code. (X'Ol' for 
the SDAPLO lock.) 

byte 2 - Wait count. This speci­
fies the numter of 
TSEND's to wait for the 
lock to be released. 
when the lock cannot be 
set in the requested 
tiwe, control is returned 
to the cdller with return 
code set to X'OQ'. 

.. ord 2 

byte 3 - Lock code. If this byte 
is set to X'SO', the cal­
ling task is allowed to 
lock more than two PATs. 

byte 4 - Reserved 

Address of the SDAT entry . 

Cutput: Lock processing will be perforrr,ed 
as requested. 

Modules Called: 
PAIR (CZACS) To put an entry in the AIR 
table. 

SYSER (CEAIS) -- ~inor system error. 

Exits: 
Normal - Return to calling routine with re­

gister 15 set to 00. 

Error - Return to calling routine with 
return code 04; lock could not be 
set in lirr.ited attempts requested. 

Cperation: The type code is first edited 
to deternine the type of lock to be set. 
currently any code but X'Ol' (SDAPLO lock) 
~ill cause a SYSER. PAIR is then called to 
~ut the address of the ABEND reset routine 
(CZCEJ3) into the AIR table. Entry is then 
rrade to the appropriate lock set or lock 
reset routine. 

The leek set routine first determines 
whether the lock is already set. If set by 
this task it returns control to the calling 
routine ~ith return code of 00. If set by 
another task it forces time slice ends 
until the lock is cleared or until the 
rraxirrurr nunber of TSEND's specified by the 
~ait count pararreter is reached. In the 
latter case. it exits to the calling rou­
tine with return code 04. 

If the lock is clear, the lock set rou­
tine determines whether this task is 
allowed to lock more than two PATs. If so. 
the lock is set; the task ID and PSECT 
address of the routine setting the lock are 
recorded in the SOAT and control is 
returned to the calling routine with return 
code 00. If the task is not allowed to set 
rr,ore than two FATs, the lock set routine 
determines whether the task already has the 
maximum number of locks allowed (currently 
two for SDAPLO). If so, SYSER is called. 
If not, the lock is set; the task 10 and 
PSECT address of the routine setting the 
lock are recorded in the SDAT and control 
is returned to the calling routine with 
return code 00. 

The lock reset routine first determines 
whether the lock was set by this task. If 
not, SYSER is called. It then checks if it 
was set by this roodule. If not, it returns 



centrol to the caller ~ith return code 00, 
but does not reset the lock. If locked by 
this module, the lock reset routine clears 
the lock task ID and PSECT address and 
return~ control to the caller ~ith return 
code 00. 

The ABEND reset routine is called by 
ABEND to clear all locks set by the task if 
an abnormal terminate becorres necessary. 

SEction 2: External Storage Allocation 53 



SECTION 3: DEVICE MANAGEMENT 

Device rr:anagement allocates, mounts, and 
releases private devices used by all tasks 
except the BULKIO task. Devices required 
by the BULKIO task are allocated by BULKIO; 
MTREQ is called only to update tables in 
this case. At system startup, each device 
attached to the time sharing cystem is 
designated as either public or private. 
Public (system) devices are assurred to be 
r:ermanently mounted. Device management 
also restricts tasks to the limits allowed 
for private devices, and maintains charges 
for their use. 

Five routines make up device management 
as follows: 

MTREQ - allocates devices, restricts tasks 
to preestablished resource limits, and 
starts charges for private devices. 

PAUSE - issues mount requests to the opera­
tor and awaits his response and validates 
the suitability of the mcunted volume. 

RELEAS - releases a device that has been 
allocated, services requests for devices 
enqueued on the request queue, and updates 
and/or stops charges. 

BUMP - called to mount subsequent volumes 
of a mUlti-volume SAM data set. 

MOUNTVOL - initializEs, builds the PVT for, 
and calls MTREQ to mount, all volurres of a 
VAM private data set. 

GENERAL OPERATION 

For a conversational task, the DDEF com­
mand routine will call MTREQ each tirre a 
private device is requested for non-VAM 
data sets. If a private device is 
requested for a VAM data set, the DDEF com­
mand routine will invoke MOUNTVOL to 
initialize the PVT. MOUNTVOL will call 
L"JTRE(,.l and return control to the DDEF com­
mand routine. If the USER's ration allows 
the allocation, MTREQ first checks to see 
if a device of the required type is avail­
able and whether or not the desired volume 
is already mounted. If the device and 
volume are ready, allocation is carried out 
at once. If a device is available but the 
required volume is not mounted, MTREQ calls 
the PAUSE routine to issue a mount request 
to the operator. Allocation is completed 
as soon as the operator indicates that 
mounting was done. Finally, if the USER's 
ration allows, and a device of the required 
type is not available, MTREQ places an 

54 

entry in the request queue table. This 
table is scanned by the RELEAS routine each 
time it releases a device, to see if the 
just-released device has been requested. 
If requested, it allocates the device and 
fasses to MTREQ for table updates. 

Note that every task needing a private 
device has its own copy of the MTREQ rou­
tine. If that routine finds a requested 
private device unavailable, it adds a re­
quest to the request queue table, which is 
shared by all tasks, and then puts itself 
and its task into wait status. When the 
RELEAS rcutine operates, it scans the re­
guest queue and interrupts the first task 
awaiting the just-released device according 
to a thrEe lEvel priority; SDA requests 
first, conversational requests second, and 
all ether requests in the third level. 

Device managerrent operations for a non­
conversational task are similar except that 
every private device required by the task 
rrust be allocated before the task is 
allowed to proceed. To do this, device 
rranagerr,ent performs in two phases. In the 
first phase, the SECURE command routine 
(resfonding to a SECURE command) calls 
MTREQ to allocate every ~rivate device 
needed by the task. Only when the alloca­
tion is complete does the nonconversational 
task start executicn; until then, the task 
is suspended. In the second phase, when 
the nonconversational task is executing, 
the [DEF comrrand routine calls MTREQ or 
~OUN~VOL for each priVate device request, 
asking that the desired device and volume 
be allocated from the set of devices 
secured for the task. On each call, MTREQ 
makes an allocation from the set of private 
devices it has secured for that task. This 
continues until the nonconversational task 
terminates. During the second phase MTREQ 
will determine if the volume is mounted 
elsewhere, and if so, will exchange the 
reservation for the device on which the 
volurre is rrounted. 

MTRtQ handles the mounting of VAM 
volurres or the mounting of an initial SAM 
volurre, as well as the allocation of unit­
record devices. Mounting of subsequent 
volurres of a multi-volume SAM data set is 
the function of the BUMP routine. EUMP 
calls PAUSE to ask the operator to dismount 
the currently mounted volume and replace it 
~ith the next volume. Only one device is 
assigned to a SA~ data set, since only cne 
volume is mounted at a time. 



The general flow of device management is 
illustrated in Figure 5. 

MOUNTVOL Routine (CZCAM) 

MOUNTVOL is a reentrant, nonrecursive, 
privileged routine which resides in virtual 
storage. This routine will mount and 
initialize all volumes of a VAM private 
data set and build for it a ~rivate Volume 
Table to be in the same format as a Public 
Volume Table. (See Chart CE.) 

CZCAMl via type I linkage. 

Input: Register 1 contains a ~ointer to 
the parameter list: 

I-iord 1 Pointer to JFCB 

v.ord 2 Pointer to DSD (optional) 

Word 3 pointer to a fullword return area 

output: Register 1 contains a pointer to 
the input parameter list. A pointer to the 
PVT is placed in the third input parameter 
word. 

( MTRE0 

,-=r_TOS~: 
'I Check to see Ii 

if device is 
I avai labie I 

L_r--i 
/- '~ I 

~ / '~jO 'Put request in 
(/ Available " Request Queue '" / 

,,/ I 

r---~=- L~=J __ -=----J l " , 
~ ____ PAU~ ___ i ~Ilt~;o;~~~~) 
I Ask operator to ! 
I mount de.; ice ! 

I 

'--~=1~=-~ .. , PAUSE 
/ " I --- - - .- ---~-- -----

I, RetU"')J1/ Ask operoto, 
--- - - -~ - to rrount next 

~--------, voiu:-ne 

(~~t:;p' -----1---- .. 
For subsequent volumes of a 
multivolume SAM dato set 

_."- ---"" 
(RETURN / 

'--- --~..--

Restrictions: This routine can be used 
only on PAT formatted private volurres. 

t-:odules Called: 
l'ITREQ (CZCAA) 
the JFCB. 

To mount all volurres in 

VAMINIT (CZCEQ) To initialize the SDAT 
entry of a mounted VAM volume. 

LOCATE (CZCFL) -- To retrieve the DSD of a 
data set if one was not provided as an 
input parameter. 

SETXP (SVC 244) -- To prepare to read an 
external page into virtual storage. 

GETMAIN (CZCGA) -- To obtain space for the 
PVT and the JFCB volume field extensions. 

SYSER (SVC 228) -- To provide a full virtu­
al storage dumr. 

SECURE -- To allocate the devices needed 
for the task, if BULKIO. 

READWRIT (CZCEM) To read DSCB pages and 
to write PAT rages. 

I 
f----

MOUNTVOL 

"'HREQ 

Mount 
Volume 

j 
,...'----.... 

[--l-----l 
I Initialize • (---~ 
I and Build L.J Return ') 
i PVT Entry i",---~--~/ 
L ______ ~~ 

_J 

Figure 5. General Diagrarr of Device Manaqement Oreration 

Section 3: Device Management 55 



ic_x its : 
Norrr~l - Register 15 contains 00. 

Error - Register 15 contains one of the 
following return codes: 

04 Not a VAM data set. 
08 Not a private data set. 
oc DSD not found by LOCATE, or 

unmounted volume returned 
from MTREQ. 

10 Non-zero return code returned 
from MTREQ or LCCATE. 

14 More than three volumes in 
JFCB appendage. 

Operation: Upon entry the JFCB field, 
1DTOSV, is checked for data set organiza­
tion. If other than VAM organization, a 
return to the caller is made with a code of 
'04'. MOUNTVOL assumes it will only be 
called for private data sets. 

If a RESTBL is indicated by the JFCB and 
a PVT is indicated by RESTBL field RHDVTA, 
the PVT pointer is placed in the return pa­
rameter list and a return is made to the 
caller with a code of '00'. 

The disposition field, TDTDSP, is 
examined. If zero, the data set is 'new'; 
if non-zero, the data set is 'old'. In 
either case, if the task is BUIKIO, SECURE 
is called to allocate the devices needed 
for the task. 

For new data sets, MTRE~ is called to 
rrount all volumes indicated ty the JFCB 
volume fields. If a non-zero return code 
is received from MTREQ, a call to RELEAS is 
issued if one or more of the volumes in the 
J~CB is mounted. Control is returned to 
the calling routine with a return code of 
'10'. On a zero return from MTREQ, PVT 
size is calculated and GET~~IN is called to 
acquire the PVT space. The volume count is 
placed in the PVT header. A loop is set up 
to initialize each volume entry, build the 
PVT entries, and set the flag field if the 
PAT table indicates that relocatEd PAT 
pages exist. All assigned pages which are 
not in use are set to available in the PAT. 
VAMINIT is called to initialize each 
volume. After the volume is initialized, 
the SDAT entry is used to build the PVT 
entry (VSN, dev code, and SDA). The order­
ing of the volume entries in the JFCB is 
the ordering of the entries in the PVT. 
While scanning the JFCE volume fields if an 
unmounted volume or different nuwber of 
volumes than the JFCB volume count are 
found, a SYSER (minor software) occurs and 
a call to RELEAS is issued for all the 
mounted volumes followed by a return to L~~ 
calling routine with a return code of '10'. 
After the PVT is built, a pointer t.o it is 
placed in the return parameter list and a 

56 

return is made to the caller with a code of 
• 00 ' • 

For an old data set, MOUNTVOL will first 
check the ,JFCB to determine whether the 
user specified any volumes in his DDEF. If 
he did, the volume IDs are moved into a 
save area to be examined later for duplica­
tion or addition. 

The parameter list DSD pointer is 
examined; if zero, LOCATE is called to 
return the DSD of the data set. If a non­
zero return code or other than a DSD is 
returned by LOCATE, SYSER (minor software) 
is invoked and a return is made to the 
caller with a code of 'Oct. 

Once the eSD is located, the JFCB volume 
count is set initially to one, and the 
first JFCB volume field is set up with the 
OSO volume 10. Task Common is checked to 
see if the BULKIO flag is set; if it is, 
~TREQ must be called with an SDA request, 
using the SDA which will be in the JFCB, to 
mount the first volume of the data set. If 
the BULKIO flag is not set, MTREQ will be 
called with the usual JFCB request to mount 
that volume. If a non-zero code is 
returned, a call to RELEAS is issued if one 
cr more of the volumes in the JFCB is 
rrounted. Control is returned to the cal­
ling routine with a return code of '10'. 
If the volume was already mounted and SDAP­
VMA has been initialized, the call tc 
VAMINIT will be typassed; if not, VAMINIT 
is called to initialize the first volume. 
A dUll'my ene-entry PVT is built using this 
volume and the PVTFLG is set to 'SO' if the 
PAT table indicates any relocated pages. 
The REACDSCB subroutine is called to read 
the 'E' OSCB pointer froIT. the DSD using the 
VAM workpage (CZCOY) for the OSCB page. 

The volume count in the 'E' OSCB is 
examined. If the count is zero, the data 
set resides on only one volume which is 
already rrounted. If no additional volumes 
were specified in the JFCB, GETMAIN is 
called te get 32 bytes for a one-entry PVT. 
The PVT is built from the previously built 
dummy PVT, the pointer is placed in the 
return parameter list, and a return is made 
to the caller ~ith a code of '00'. 

If the OSCB volume count is greater than 
ene, the DSCB string contains a volume 
entry for each volume of the data set -
including the first volume. The volume 
count plus one, times sixteen, is used to 
calculate the space required for the PVT. 
GETMAIN is called to acguire the PVT space. 
The volume entries of the first DSCB are 
transferred to the JFCB volume fields. 
GETMAIN is called to acquire all the space 
needed for the JFCB volume field appendages 
(number of volumes divided by 3 and rr.ulti­
plied by 32). Then, as each 32-byte ap-



pendage is needed, it is taken from this 
area. When all volume ent~ies of the DSCB 
are transferred to th., TFeB vc,iUIT,( fields. 
MTREQ is called with a ~equest to mount all 
volumes just entered, If a L!~n- Zf"rn return 
code is returned by MTl(Z(" a ':all to RELEAS 
,is issued if one o~ more ot the volumes in 
the JFCB is mounted. Control is returned 
to the calling routine ... ith " !",tu~,n corie 
of '10'. Ot,herwise ii lOOt' 1:, ';f'~ :Jp teO 

call VAMINIT to initicllize each volume, 
build the PVT entry trom the ~oxresronding 
SDAT entry, and to exan·ine tln- PAT table 
for relocated entries, s~tting PVTFLG to 
'80' if any are found. All dssigned pages 
which are not in use drp s~t dvailable in 
the PAT. A SYSER (minor software) is 
invoked if a null field, unmounted volume, 
or more than three volume fields are dis­
covered in a JFCB apf-endaqe. i\ return code 
of '10' is issued for the tirsr t.~o condl­
tions and '14' for the third. 

After all volumes are ir,iLldllzed, a 
check is nade to deterrrine it lh~rE are 
data set volumes that have not yet been 
mounted. If umr,ounted volumes remain, 
another DSCB must be read to obtain the 
next volume fields. If the "next- DSCE 
pointer is zero, a SYSER (minor software) 
and an ABEND (comp code 1) dre invoked. 
Otherwise the READDSCB subroutine is 
entered to read the next OSCB (if neces­
sary). A branch is made to the previously 
described code to process the volume 
entries in this DSCE. DSCBs dre read until 
all volumes of t_he data set have been pre­
cessed and the PVT has been built. 

Once this has been accomplished, 
MOUNTVOL will check to see if any volume" 
had been specified in the JFCB. If not, 
the PVT pointer is moved to the return pa­
rameter list and a return is made to the 
caller with a code of '00'. If there were 
volumes specified, the volume: ~;f,rial num­
bers in the JFCB will be compared to those 
from the DSCB(S). If the serial numbers do 
not compare, they will be placed in the 
JFCB in the sequence defined by the user, 
but immediately following those placed 
there from the DSCB(s). If the volume 
serial numbers do compare, they will be 
ignored. The new volumes are then mounted, 
initialized, and entered into the end of 
the PVT via normal processing; return is 
made to the caller with a code of '00' and 
the PVT pointer in the third input parame­
ter ~ord. 

MOUNTVOL also contains t:11e HEADDSCB sub­
routine that is branched to ~hen a DSCB is 
to be read. The READDSCB subroutine is 
entered with register 1 pointing to the 
USCB to be read, and a word at location 
MNTDSCB that points to an aligned page of 
virtual storage (a page-houndary buffer) 
into which the DseB page is to be read. 

FlEADDSCB stores the DseB address for the 
READWRIT routine (CZCEM) and then puts the 
address cf the page-boundary buffer into 
the parameter list for READWRIT. READDSCB 
assumes that the address of the JFCB is 
already in the parameter list. READDSCB 
then calls READWRIT to read in the DseB 
[,age. 

When READWRIT returns to READDSCB, the 
return code in register 15 is checked. If 
the return code is zero (good), READCSCB 
calculates the address of the forrrat E OSCB 
and ~uts it into register 6. REAODSCE then 
branches back to MOUNTVOL with register 6 
pointing to the requested oseB. If. upon 
return from READWRIT, READDSCB finds a non­
zero return code in register 15, the return 
code is saved and then examined to see if 
it indicates a DSCB checksum error. It it 
does. REA~LSCB issues the following 
rr,essage: 

CHECKSUM DID NOT COMPARE UPON REACDSCB. 

READDSCB then sets a return code to indic­
ate a bad return from READWRIT and checks 
to see if the volume has already been 
mounted. If it has, then READDSCB calls 
RELEAS (CZCAD) t.o release the volume. Upon 
return from RELEAS, READDSCB returns to 
~OUNTVOL with the return coce (F'28') indi­
cating a tad return from READWRIT in 
register 15. 

~TRE~ Routine (CZCAA) 

MTREQ is a reenterable, recursive, ~ri­
vileged routine residing in virtual 
storage, used to allocate unit-record 
devices, and devices such as disk or tape 
Jrives required for private volumes. For a 
nonconversational task, the routine tries 
to allocate ~very device needed for that 
task. For a conversational task, it allo­
cates the reguested device as soon as it 
tecomes availatle. (See Chart CA.) 

Entry Points: CZCAA1 - Type I linkage. 
Entry is rrade under any of these 
conditions: 

1. During conversational task execution. 

2. During nonconversational task 
execution. 

3. Prior to nonconversational task execu­
tion, that is, entry from the SECURE 
cOIT.ITand routine. 

! •• 

~) .. 

When a s~ecific device, rather than a 
type of device, is specified. 

To exchange reservations when BUMP 
discovers the volume requested is 
presently mounted on another device 
(Nonconversational). 

Section 3: Device Management 57 



CZCAA3 - Entry at this point is for the 
purpose of resetting lock bytes when a task 
is abnormally ended or when SYSERR 
080502509 occurs. 

Input: On entry register 1 contains a 
pointer to one of the following 4-word pa­
rameter lists: 

Entry Point 1 (private devices) 

Word 1 Number of parameters minus one 

Word 2 Pointer to a flag word 

byte 0 - bit 0 - No msg to user 
bit 1 - Mount all volumes 

in JFCB 
bit 2 - JFCB pointed to by 

word 4 
bit 3 - Dev Code pointed to 

word 4 
bit 4 - SDA pOinted to by 

word 4 
bit 5 - This is a reserve 

request 
bit 6 - Scratch volume 
bit 7 - CE is caller 

byte 1 - Tape density code 

byte 2 - not used 

byte 3 - bits 0-2 not used 
bit 3 - label status 

(unlabeled=U 
bit 4 - RING flag set 

(RECOGNITION=U 
bit 5 - tape ring required 

(RING=l) 
bit 6 - ASCII request 
bit 7 - do not verify vol­

ume label on call 
to PAUSE 

by 

Word 3 Pointer to a volume serial field 
or the number of device codes for 
reserve requests 

Word 4 Pointer to a JFCB, to a list of 
device codes, or to an SDA 

Parameters 3 and 4 may be repeated for 
device code or SDA requests. 

Modules Called: 
MSGWR (CZAAD2) To issue messages to a 
conversational user. 

PAUSE (CZCAC1) -- To issue volume mounting 
messages to the operator. 

FREE~~IN (CZCGA3) -- To release storage 
obtained by GETMAIN. 

RELEAS (CZCAD1) -- To free any device that 
has been reserved but could not be used 
because of a non-zero return frOID PAUSE. 

(CZCAD3) -- To update tables and/or 
release devices. 

ADDEV -- To add symbolic device address to 
the Task Device List. 

SETAE -- To set asynchronous entry for SAM 
modules. 

RMDEV -- To remove the symbolic device 
address from the Task Device List. 

PAIR (CZACS) To interface with the ABEND 
routine for the release of SDAT locks. 

PRMPT -- To inform the user that he has 
atterrpted to exceed his device ration. 

Exits: The routine normally returns to the 
caller, via the RETURN macro. If a minor 
system error occurs, the routine exits to 
ABEND. In the event that a major system 
error occurs the routine calls SYSER. 

MTREQ checks for the following errors, 
placing a hexadecimal code in register 15 
before returning control to the caller: 

Code 
00 

04 
08 
OC 
10 
14 
18 
1C 
20 
24 
28 
2C 
30 
34 

38 
3C 
40 

Significance 
No error detected 
Volume not found 
User canceled request 
Label error detected 
Invalid device code or SDA 
Private volume count exceeds limit 
No room in request queue 
No reservation for this request 
Volume requested is public 
Volume-Id not found in SDAT 
Flag incorrect in SDAT 
Volume in use 
Error return from MSGWR 
seA requested device detached, par­
titioned or system reserve 
CE requested partitioned device 
Ration exceeded 
Non-zero return code from PAUSE 

MTREQ also issues three messages to the 
user: 

D301 NO PRIVATE DEVICE AVAILABLE FOR 
volume AT THIS TIME WILL YOU WAIT? 

D302 PRIVATE VOLUME volume IS IN USE -
AWAIT (CEAP7) -- To place the task in wait WILL YOU WAIT? 
status. 

GETMAIN (CZCGA2) -- To obtain more virtual 
storage. 

58 

CZCAA100 devcie NOT AVAILABLE - YOUR 
PRIVATE DEVICE RATION IS USEe 
UP 



OPERATION: For a conversational task, 
MTREQ allocates requested devices one at a 
time, as each becomes available. Alloca­
tion and volume mounting are done at once. 

For a nonconversational task, MTREQ 
actually operates twice. First it is 
called by the SECURE command routine to 
reserve, as a set, all devices needed by 
the task. A nonconversational task cannot 
start until all of its required devices 
have been secured. Later it is called as 
each DDEF command is executed. MOUNTVOL 
calls MTREQ for VAM data 3ets, and it is 
also called if BUMP discovers the volume on 
another device. In SECURE processing, 
MTREQ reserves only private devices until 
the entire set is available; unit-record 
devices are reserved aft.er all private 
devices have been reserved for the task. 

If the caller furnishes a symbolic 
device address, and thus requests a speci­
fic device, that device will bE allocated 
as soon as it becomes available. 

When MTREQ allocates a device, it flags 
the symbolic device allocation 1~dble (SDAT) 
entry for that device as unavailable. Next 
it increments the TSI device queue, via 
ADDEV. Finally it calls PAUSE to carry out 
the volume mounting required. 

When a required volume is mounted but 
not yet available, or if no device of the 
required type is available, or if the spec­
ific device requested is currently unavail­
dble, MTREQ enqueues the request in the re­
quest queue (RQUE). A conversational user 
will be asked at this roint if he wants to 
wait; he can cancel his request and end the 
wait at any time simply ty pressing the 
ATTENTION key at his terminal. After queu­
ing the request, MTREQ places itself in 
wait status which continues until RELEAS 
operates, allocates the device, and inter­
rupts MTREQ. RELEAS will supply a pointer 
to the SDAT entry of the just-released 
device, and MTREQ then ~roceeds with its 
customary table and pointer update 
functions. 

BUMP Routine (CZCAB) 

BUMP is a reenterable. non-recursive, 
privileged routine, residing in virtual 
storage, used to dismount a specified pri­
vate volume and wount another private 
voluroe on the same tape or disk drive. If 
the second volume is already mounted, 
device pointers are interchanged. The rou­
tine may be used just to reverify the label 
of an already mounted tape volume. (See 
Chart CD.) 

.E.ntry Point: 
CZCABl - Type I linkage 

CZCAB2 - Entry at this point is used to 
reset lock bytes when a task is 
abnormally ended. 

.!nput: upon entry to this routine, regist-
er 1 point.s to t.he following parameter 
list: 

word 1 Address of first JFCB 

Word 2 Address of volume serial field 

Word 3 Address of second JFCB 

Word 4 Address of second volume serial 
field 

Modules Called: 
Vol Label Processor (CZCWX) -- To read 
tape volume label for reverification. 

PAUSE (CZCACl) -- To issue mounting message 
to system operator and await operator 
response. 

PAIR (CZACS) -- To provide for the release 
of SDAT locks when a task is abnormally 
ended. 

RELEAS (CZCADl) -- To release the original 
device if an exohange is made for a conver­
sational task. 

(CZAD3) -- Release for a nonconver­
sational task. 

MTREQ (CZCAA1) -- To reclaim the released 
device when an exchange is made for a non­
conversational task. 

Exits: BUMP returns control to the calling 
frogram, and sets a return code to show the 
results of BUMP operation. If a system 
error occurs, the routine is terminated cy 
ABENC. 

Return Code 
(Hexadecimd 1) 

00 

oc 

10 
14 

18 

lC 

24 

28 

Significance 
Norrral return. no errcr 
detected. 
Reverification found incor­
rect latel. 
Old volume not ~ounted. 
Device not available, that 
is, another task is using 
old volume. 
Device codes differ but con­
catenation is not indicated. 
Reverification requested for 
a non-tape volurre. 
Device not tape or direct 
access. 
New volume has already been 
rrounted and is in use. 

BUMP will also return any error code 
received from the PAUSE routine. See the 

Section 3: Device Management 59 



description of PAUSE for that routine's 
return codes. 

Operation: BUMP begins by checking its 
input parameters to see if reverification 
is desired. This is indicated if the para­
n.eters (JFCB Fointer and volume serial 
field) for both old and new volumes are the 
same. In this case, only a tape label 
check is made. BUMP sets a return code to 
show the result of the check before return­
ing control to the calling program. 

When a dismount/mount oFeration is 
requested, BUMP checks that the old volume 
is mounted, that the new volume is not 
mounted, and that the specified device is 
available. A comparison of the device 
codes for the two volumes decides the next 
action. If the volume is presently on 
another device, the pointers are exchanged. 

If the device codes are the same (i.e., 
the new volume is to be mounted on the 
device used for the old volume), the rou­
tine builds a message to the system opera­
tor, asking him to mount the aFpropriate 
volume. BUMP then calls the PAUSE routine 
to transmit the message and wait for the 
operator's reply. If PAUSE reports a suc­
cessful mount, BUMP updates the SDAT (sym­
bolic device allocation table) entry for 
the device and adjusts the JFCBs to indi­
cate that the old volume has been dis­
mounted and the new volu~e mounted. 

If the device codes differ and conca­
tenation is specified, BUMP will try to 
mount the next volume in the concatenation 
that uses the same type of device. To do 
this, BUMP searches the concatenated JFCBs 
to find the next one with the same device 
code as the old volume. The JFCB and 
volume serial field of this volurr,e are then 
accepted as the new volume parameters. The 
remainder of BUMP processing is the same as 
for volumes with identical device codes. 

RELEAS Routine (CZCAD) 

RELEAS is a reenterable, non-recursive, 
privileged routine residing in virtual 
storage, used to decrement the user count 
or, if the user count reaches zero, to 
release either a single device or all 
devices associated with a private data set. 
Release means to inform the system that the 
device upon which a private volume was 
mounted is now free for other use. The 
routine also notifies any task(s) awaiting 
the freed device(s) that the device(s) is 
now available. (See Chart CC.) 

Entry Point: 
CZCADl - To update the user count and/or 
release devices, and to calculate charges 
against a task for device utilization. 

60 

CZCAD2 - To reset lock bytes when a task is 
abnormally ended. 

CZCAD3 - Same as CZCADl with no charges 
calculated. 

Input: Register 1 contains a pointer to 
the parameter list: 

Word 1 Pointer to a flag byte which con­
tains one of the following: 

X' 80' JFCB pointer is given 
X'OO' SDAT pointer is given 
X' 40' SDAT pointer is given and 

drive is to be completely 
released. 

Word 2 Pointer to a JFCB or SDAT entry 

Modules Called: 
VSEN£ (CEAQ5) -- To send message to task 
that was awaiting just-released device. 

PAIR (CZACS1) -- To provide for the release 
of SDAT locks when a task is abnormally 
ended. 

SETAE To set asynChronous entry. 

PURGE To remove a device from a task's 
list of available devices. 

Exits: RELEAS always returns control to 
the calling program, setting a return code 
to show the results of the RELEAS 
operation: 

Return Code Significance 
X'OO' No error was detected. 

X'04' Release was for a public 
device; request was ignored. 

X'OC' Release was for device not 
assigned to this task; request 
was ignored. 

Operation: REIEAS first inspects the input 
parameter list to see if an SDAT or a JFCB 
pointer was supplied. The parameter list 
consists of a pointer to a flag byte and a 
pointer to an SDAT entry or a JFCB (which 
resides in the task data definition table). 
An SLAT pointer is given when just one 
device is to be released. A JFCB pointer 
is given to release more than one device. 
The flag byte equal to 'SO' implies that 
the second painter is to a JFCE. 

When the pointer is to an SDAT entry, 
RELEAS reduces by one the user count in 
that entry. When the pointer is to a JFCB, 
the routine scans the volume serial numbers 
in that JFCB to see if any volumes are 
rrounted. For each volume that is mounted, 
RELEAS reduces by one the user count in the 
corresponding SDAT entry, resets the 



volume-La field in the .JFCB to the volume 
serial number, and zeros the volume mounted 
flag. 

If the user count is now non-zero, no 
further action is taken. If an SLAT re­
quest, RELEAS merely returns to the calling 
program. If a JFCB request, the routine 
looks for the next mounted volumE. 

If the user count is zero, a PURGE is 
done to remove the device from the task's 
list of available devices. Then, if the 
release is being done dUling a nonconversa­
tional task. no further action is taken. 
Otherwise, the device is now free, and 
RELEAS searches the request queUE for a re­
quest involving the device type just 
released. Priority is given to requests in 
this order: 

1. Request for a specific device, by sym­
bolic device address 

2. Request from a conversational task 

3. Any other kind of request 

When a request can te filled, RELEAS 
sends a message to interrupt the task that 
made the request and sUfplies the appropri­
ate SDAT pointer. Whether or not there is 
a request for the just-released device, 
RELEAS flags the SOAT entry for that device 
to show its availability. 

PAUSE Routine (CZCAC) 

PAUSE is a reenterable, non-recursive. 
~rivileged routine residing in virtual 
storage, used to send mount reguest mes­
sages to the system operator, asking him to 
mount. vol umes. It also verif ies the opera­
tor's reply and, for tape or direct access, 
checks the label of the newly mounted 
volume. (see Chart CB.) 

Entry Point: 
CZCAC1 - Type I linkage. 

CZCAC2 - Entry at this point is used to 
reset lock bytes when a task is abnormally 
ended. 

Input: Upon entry to PAUSE, register 1 
contains a pointer to a parameter list: 

Word 1 Flagword address 
The flagword is formatted as 
follows: 

Bi ts 0-7 un u~;ed 
Bit 8 volume verification 
Bit 9 tape volume 
Bit 10 scratch volume 
Bit 11 unlabelled volume 
Bit 12 no message to user 
Bit 13 SAM volume 
Bit 14 ASCII 

Bit 15 unused 
Bits 16-23 tape density 
Bit 24 tal::€! ring required 
Bit 25 RING flag set 
Bit 26 remount volume 
Bit~ 27 reverify volume 
Bits 28-31 unused 

SDAT entry address 

!Wodules Called: 
lWSGWR (CZAA~-- To issue messages to a 
conversational user. 

SAM Vol Label Rdr (CZCWX) -- To rewind and 
unload a tape volume. 

VSENC (CEAQS) -- To send a message to the 
operator. 

AWAIT (CEAP7) -- To place the task in wait 
status. 

OBTAIN (CZCFO) -- To read a volume label 
and to read the VTOC OSCB or SAM organized 
volurres. 

PAIR (CZACS) -- To provide for the release 
of SDAT locks when a task is abnormally 
ended. 

ESAM REAr/WRITE (CZCRA) -- To read a tape 
header label. 

Tape Volume Label Reader (CZCWX) -- To read 
tape volume latels. 

Exits: PAUSE always returns control to its 
caller, ~lacing a hexadecimal code in 
register 15 to show the results of process­
ing. The codes are as follows: 

Code 
00-

04 

08 

OC 

Significance 
Nc error detected. 

Operator has made a negative reply, 
indicating he could not perform 
reount request. 

Attention interrupt or notice of 
shutdown received. 

Label error or read error detected. 

Operation: For a conversational task the 
routine next issues a message (via MSGWR) 
to inforrr the user that his task is now 
~aiting operator action. 

The mount request message, built ty 
PAUSE, is sent to the operator via WTOR. 

When PAUSE regains control, it checks 
first to see if an attention has occurred; 
if so it merely returns control to its 
caller after setting an appropriate return 
code. The action taken depends on the re­
quest. PAUSE now informs the user (pro-

Section 3: revice Managerrent 61 



'.Ii,jed he is conversational) that his task 
i.s no longer wdi t_inq 6 and re-tu}. ns cant.roJ. 
to t.hL' caller. 

When verification has Leen ~;tipuldted, 
f~USE proceeds according to the type of 
volume involved. The volume identification 
supplied by the caller (or by the operator, 
if a scrat.ch volume) i:; compared against 
the. actual volwli!:c label. Fllr a disk, t.he 
routine copies the volume latel. Some of 
the information from the volume label is 
used to u~date the SCAT entri~s designated 
by the caller. On SAM orqanized packs the 
volume label contains a pointer to the VTOC 
DSCB, which PAUSE cdlls OBTAIN to read. 
Some of the device constants Jnd space 
information contained in the DSCE are also 
used to update the SDAT entry_ 

The density at which a new or existing 
td[e is to be processed is always deter­
mined at mount time. 'lh(c PAUSE. routine 
uses the density specified in a newly 
defined field in SDAT (SGADN) for its label 
~rocessing. 

For labeled tapes, PAUSE attempts to 
read the volume label at the density speci­
fied in SDADN. If the label is not read­
able at the density specified in SCAT or if 
the label could not ce read, a check is 
made to ~ee if a scratch tape or user tape 
was requested. If a scratch tape was 
requested, the operator is instructed to 
rr,ount another tape with tile correct densi­
ty. If a user tape was requested, PAUSE 
returns a -label error" return code (X'OC') 
to the callinq routine. Once the volume 
label has been read successfully, an 
attempt is made t.o read header label 2, if 
any, at the density srecified in SDAON. If 
there are header labels and the density 
specified in the header label does not 
agree with the density specified in SOAT or 
if the label could not be read, the same 
proceSSing as for the volume label verifi­
cation is performed. If there are no head­
er labels and the volune label is read 
correctly, the density in SDAT is consi­
dered correct._ The ta[.:€ is always backs­
paced to its original position following 
the volume label, ano E-'rocessi ng continues. 

If an unlabeled tape was requested, 
PAUS~ attell'pts to read the volumE label at 
all densities in order to verity that a 
label does not exist. If a label was found 
on a SCRATCH tape that was requested with 
no labels, the operator is asked to mount 
another tape. If a lacel was found on a 
user tape defined as unlabeled, PAUSE 
returns a -label error- return code (X'OC') 
to the calling routine. Note that the sys­
tem cannot protect against the user speci­
fyiIlq the wrong density for unlabeled. 
uncataloged user tape~. 

62 

~Qr SCRATCH tapes only, PAUSE checks the 
expiration date in the first header label 1 
on the tape to determine if the expiration 
date has been exceeded. The current date 
is ol~tained by use of the EBCDTIME macro 
instruction. If the header label 1 was 
properly read and the expiration date has 
been reached, or if the header label 1 did 
not exist or could not be read, the tape is 
tackspaced to its original position follow­
ing the volume label, and processing 
continues. 

If the expiration date was not reached, 
a rressage is sent to the operator stating 
·F~PIRATION CATE NOT REACHED, (original 
mount rressage inserted here), OR REWRITE 
THIS TAPE BY REPLYING R.- If the operator 
res[cnds to rewrite the tape, a new expira­
tion date is assigned and recorded in head­
er label 1. 

When the PAUSE routine requests the 
operator to mount a SCRATCH volume (lateled 
er unlabeled>, it Expects the operator to 
respond with the volume serial nUll'ber of 
the vclmre mounted. If the volume is 
labeled and the operator's response does 
not natch the volume serial numLer in the 
label, the operator is told to mount a new 
volurre. If the operator's response is 
correct. the volume serial number is placed 
in SCAT. If the volume is not labeled the 
volume serial nmr,ber supplied by the opera­
tor is placed in SDAT. 

The PAUSE routine issues the following 
messages to inform the user of task 
processin'.J : 

B075 WAITING: YOUR VOLUME IS BEING 
MOUNTED 

8076 VOLUME MOUNTED 

B077 VOLUME SERIAL NUMBER number HAS BEEN 
ASSIGN1,D TC YOU 

Fer d scratch volume that is not identi­
fied by the operator, the routine sends a 
request to the operator to provide the mis­
Sing volume identification. When a volume 
cannet be verified, the operator will be 
prompted to inform hirr of the error. The 
nurrber of times the o~erator message is 
issued depends on the lioit set in system 
conmen ~y the installation. The message is: 

I:NTEH SERIAL NC. 
device address). 
~--.~--------

OF VeL 

Other n,pssagec:. sent t.o thE: ope rater by 
th~ PAUSE routine are: 

REAr; ERHOR ON (.§ymcolic dEvie~.il2gIes~). 
CORRECT IF POSSIBLE. 

VCL. 
addres,_;} . 
-~--- -~- -----



Virtual Memory Allocation (VMA) provides 
a centralized routine for dynamically serv­
icing all requests for virtual storage 
issued by the system or user's programs 
during the execution ot a task. VMA deter­
mines if a request for virtual storage 
should be &acked or placed in a unique seg­
ment, starting on a segment boundary. The 
general allocation requirements are for 
segmentation ona 32-bit systerr, and for 
packing on the 24-bit system. However, 
there is no firm division tetween the two 
systems, regarding the method of allocation 
used. Sharatle data sets will always be 
located on segment boundaries, and private 
PSECTS will always be packed regardless of 
system type. In order that installations 
may choose other than the basic rhilosophy, 
and may arbitrarily allocate on segment or 
page boundaries, VMA is designed to allow 
implementation of either form ot allocation 
on either system. 

To provide VMA with this facility, the 
following parameters are presented to the 
system and are interrogated by VMA in the 
course of determining the pages to be 
allocated: 

• System Packing Parameter: an indica­
tion of whether or not private control 
sections and private data sets should 
be packed. 

• Public Segment Indicator: an indica­
tion of whether a ~utlic segment is 
being used. 

• System Indicator: an indication of 
whether the system has 16 (24-bit 
addressing) or 4096 C32-bit addressing) 
!;egments. 

• Virtual Storage Pointer: the virtual 
storage address at which packing can 
begin. 

• Variable Length I~dicator: Indicates 
variable or nonvariable allocation for 
next segment inforrraticn. 

• Next Available Segment Pointer: the 
virtual storage address of the next 
full segment available for allocation. 

" Public Segment Number: the shared page 
table number of the public segment_, if 
a public segment exists. 

• Variable Allocation Parameters: the 
-~--~--,-------- -

SECTION 4: VIRTUAL MEMORY' ALLOCATION 

the number of pages in a variable 
request. 

These pararceters, initialized in the 
System Table (SYS) or in the Interrurt 
Storage Area (ISA) -- page 0, segment ° 
are copied into the PSECT of VMA the first 
tirre VMA is entered. In order to alter th9 
basic algorithm to meet the need of a par­
ticular allocation, the GETMAIN rracro may 
s~ecify farameters which override, for that 
allocation. those which Startup presented 
to the systerr. The standard method of 
allocation is shown in Figure 6. 

r-----------------------------------------, 
! TYPE OF SEG~ENT I 
I r--------------T---------T------------, ! 
I I TYPE OF DATA ! PACKED I NON-PACKED I I 
! ~--------------+---------+------------~ I 
I I Private I Packed I Private I I 
I I CSECT I Private I Segment I I 
I I I Segment I I I 
I ~--------------+---------t------------~ I 
I I Public I Packed I Shared I I 
I I CSECT I Public I Segment I I 
! I I Segment I I I 
I ~--------------+---------+------------~ I 
I I PSECTS I Packed I Packed I I 
I I I Private I Private I I 
I I I Segment I Segment I I 
I t--------------t---------+------------~ i 
I I Private VAM I Packed I Private I I 
I I Da ta Set I Pri va te I Segment I I 
I I (RESTBL) I Segment I I I 
I t--------------t---------+------------~ I 
I I Public VAJ!J I ~3ha r:ed I Shared I I 
I I Data Set I Segment I Segment I I 
I i (RESTBL) I I I I I l ______________ ~ _________ ~ ____________ J I 

! I 
IDefinitions: I 
IPacked - Allocate on page boundar-yo I 
I ! 
IPrivate - Pages Tables are in the task's I 
I XTSI and are available only to I 
I this task. I 
I I 
Ipublic - Page Table is in real core and I 
I is ~ointed to by a segment I 
I table entry for all tasks wish-I 
I ing to reference it. Packed byl 
I page boundary. ! 
I I 
IShared - Page Tatle exists in real core I 
I and is pointed to by a segment I 
I table entry for all tasks who I 
I wish to reference it, j\lloca- I 
I tion is on a seqment LUlnc(]ary. I 
l__ _ ___ ______ ____ _______ ________ _______ ____________ J 

Figure 6. Stand~rd (Lef~ult} Virtu21 
1"PfTory !111oc.Jt_ion 



VMA has two primary functions. It con­
trols the allocation of virtual storage and 
it controls the construction of segment and 
~agc tables by issuing the a~pro~riate 
SVCs. The various control fields in the 
VMA PSEC'T provide a virtual storage picture 
of various aspects of the task's segment 
and page tables. On examining tne nature 
of a request for virtual storage alloca­
tion, V~A (either private or shared) will 
examine its parameters under various 
algorithms, select the proper address for 
the allocation, update its parameters, and 
issue the appropriate Svc for updating the 
segment and ~age tables. 

There are six entry points to Virtual 
Memory Allocation: 

• GETM~IN (CZCGA2) - Get virtual storage 
l:y pages 

• FREEMAIN (CZCGA3) - free virtual 
~;torage by r:;ages 

• EXPAND (CZCGA4)* - Ex~and an existing 
block of virtual storage 

• GE~SMAIN (CZCGA6)* - Get shared virtual 
0torage 

• CONNECT (CZCGA7)* - Connect to a shared 
page table 

• DISCONNECT (CZCGASJ* - Disconnect from 
a shared ~age table 

Note: Entry points marked * are available 
to privileged programs only. 

Input and output parameters are dis­
cussed in the descri~tions of the various 
sutroutines. 

VM~ -- Virtual Memory Allocation (CZCGA) 

The Virtual Memory Allocation Routine is 
a closed, re-enterable, privileged service 
routine located in the task's initial vir­
tual storage. It is called via Type I or 
~ype II linkage depending on the privilege 
class of the user. The primary functions 
of the module are to control the allocation 
of virtual storage, and to control the con­
struction of segment and page tables by 
issuing the required SVCs. VMA is used by 
system routines that require storage space 
for a user's task as well as by user's 
prog rarr·s. 

Task interrupts (synchronous I/O, asyn­
chronous I/O, external, timer) are inhibi­
ted on entry by use of an ITl (inhibit task 
interrupt) macro. The mask field is 
restored to its original state on return. 
(See Charts DA and DB. J 

64 

Entry Points: 
CZCGA2 (GETMAIN) -- called via GETMAIN 
macro 

(CZCGA3) FREEMAIN -- called via FREE~AIN 
rracro 

(CZCGA4) EXPANC -- called via CALL MACRO; 
Type I linkage 

(CZCGA6) GETSMAIN -- called via CALL macro; 
'IYI::e I linkage 

CZCGA7 (CONNECT) -- called via CALL macro; 
Type I linkage 

(CZCGAS) DISCONNECT CALLED VIA CALL 
rracro; Type I linkage 

Input: GETMAIN - register 0 contains: 

• Binary count of pages in lower three 
bytes 

• Protection class (in binary) in tits 
4-7 of the high-order byte 

• Packing paraffeter (binary) in bits 1-3 

• Variable parameter in bit 0 

FREE~AIN - binary count of pages in regis­
ter 0; variable parameter in sign bit of 
register 0; virtual storage address in re­
gister 1. 

EXPAND - register 1 contains a pointer to 
the following two-word parameter list: 

r----------------------------------, 
word 1 IPointer to a four-word pararreter I 

larea I 
.----------------------------------~ 

hord 2 Ilocation of output parameter list I l _________________________________ ~ 

The four-word pararreter area pointed to by 
Word 1 above is as follows: 

r----------------------------------, 
Word 1 IVirtual storage address of block I 

I to be eJ<panded I 
t----------------------------------~ 

Word 2 IEinary count of pages in block I 
t----------------------------------~ 

hord 3 IIncrement of pages (binary) I 
t----------------------------------~ 

Word 4 IProtection class (binary) I l __________________________________ J 

GETSMAIN - register 1 contains a pointer to 
the following two-word parameter list: 

r----------------------------------, 
Word 1 IPointer to a five-word parameterl 

larea I 
~----------------------------------~ 

Word 2 ILocation of output parameter list I 
l __________________________________ J 



The parameter area pointed to by Word 1 
above is as fellows: 

r----------------------------------, 
Word 1 IHigh crder bit specifies I 

IEXIT=RETURN option if 1; remaining I 
Ibits specify binary nurrber of I 
Ipages required. I 
.----------------------------------1 

word 2 IShared page table (SPT) numberl 
I (binary) I 
~----------------------------------~ 

Word 3 (Data type (binazj) I 
.----------------------------------~ 

Word 4 IProtection class (binary) I 
.----------------------------------~ 

Word 5 IVariable length indicator I l __________________________________ J 

CONNECT - register 1 contains a pointer to 
the following parameter list: 

r----------------------------------, 
Word 1 IPointer to a two-word parameter I 
area I I 

t--------------------------------~-1 
Word 2 ILocation of output parameter list I l __________________________________ J 

The pararreter area pointed to ty Word 1 
above is as follows: 

r----------------------------------, 
Word 1 IShared page table (SPT) number I 

I (binary) I 
t----------------------------------~ 

Word 2 !Relative page location (binary) I l __________________________________ J 

DISCONNECT - register 1 contains the 
following: 

r----------------------------------, 
Word 1 IPointer to a two-word parameter I 

larea I L-_________________________________ J 

The parameter area is as follows: 

r----------------------------------, 
Word 1 iShared page table (SPT) number I 

I (binary) I 
t---------------------------------~ 

Ward 2 IRelative page location (binary) I l __________________________________ J 

output: GETMAIN - Virtual storage address 
of allocated block is returned in register 
o 

fREEMAIN - nc output 

EXPAND - the second pointer in the parame­
ter list points to the word ~here EXPAND 
returns the virtual storage address 

GETSt-'~IN - the second pointer in the faram­
eter list points tc the following parameter 
drea: 

r----------------------------------, 
word 1 IShared page table (SFT) output I 

t----------------------------------~ 
word 2 IVirtual storage address of allo-l 

icated block I l __________________________________ J 

CONNECT - the second pointer in the parame­
ter list points to a word where the virtual 
storage output is stored 

DISCCNNECT - no output 

~cdules called: 
~DDPG - Luilds page table and external page 
table entries 

DELPe; - deletes page table and external 
page tatle entries and releases main 
storage and external storage 

MOVXP - Iroves fage table and external page 
table entries from one location in XTSI to 
another 

ADSPG - builds page table and external page 
table entries for shared pages 

CNSEG - connects a segment table entry to a 
shared page tatle 

DNSEG - disconnects a seqment table entry 
froIT a shared page table 

CKCLS - checks the privilege of pages being 
freed. 

Exits: 
Kormal - registers 2-14 are restored 

Errer - VMA returns a code 8 in Register 
15 if it receives a bad parameter 
or a code of 4 if insufficient 
virtual storage exists and the 
EXIT=RETURN option is specified. 
If the option EXIT=RETURN is not 
specified ABEND is invoked. An 
error exit is also taken when a 
nonprivileged user tries to free a 
page 'With a protection class other 
than user read/write, tries to 
free unallocated virtual storage, 
or in a 32-bit system, tries to 
free with a variable request a 
segment not marked as variatle. 

Flowchart 
GETMAIN 
FREEMAIN 
EXPAND 
GITSMAIN 
CONNECT 
Cl~3CONNECT 

References: 
- DA 
- DB 
- DA 
- CE 
- DB 
- DB 

Section 4: Virtual Memory Allocation 65 



GETMAIN (CZCGA2) 

The function of GET~AIN is to obtain 
virtual storage for the user's program and 
system service routines (see Chart DA). 

Entry Points: CZCGA2, Type 1M or Type II 
linkage, via GETMAIN macro. 

InFut: Upon entry to this routine, general 
registers 0 and 1 contain input parameters 
as shown in Figure 7. 

Par"Hl'eter 1 
count of contiguous pages requested by 
LV parameter of GETMAIN macro 
instruction 

ParameTer 2 
packing parameter, as specified by 
PACK parameter of GET~AIN macro 
instruction 

Parameter 3 
protection class - specified by PR pa­
ra~eter of GETMAIN macro instruction 

Pararreter 4 
specifies return code, as specified by 
EXIT parameter of GETMAIN macro 
instruction. Indicates if ABEND 
should be called if the request cannot 
be satisfied 

Parameter 5 
variable bit parameter 

Modules Called: 
ADDPG by rracre. 
CKCLS by macro. 

Exits: Return, type 1M linkage 

hegister 1 - contains the virtual storage 
address of the allocated vir­
tual storage 

Register is - contains one of the following 
return codes: 

o - request fulfilled; 
4 not enough virtual storage to 

fulfill request; 
8 - invalid parameter passed to 

VMA. 

Operation: GETMAIN examines the input 
parameters to determine the type of alloca­
tion required. If the number of contiguous 
~ages is zero, a variable-length allocation 
is implied. In this case, the number of 
contiguous pages for the request is taken 
from the variable allocation parameter, 
initialized by STARTUP. In the 24-bit sys­
tem, this amount is some number of pages 
less than 256 (20 if the variable alloca­
tion parameter is 0); in the 32-bit system 
variable segments are assigned. The user 
can also specify a variable allocation to 
GETMAIN through an input parameter. In 
this caSE, the number of pages in the vari­
able allocation parameter is added to the 
number of pages requested and, for the 24-
bit system, allocation of this sum is made. 
In the 32-bit system a full segment is 
added to the request and the allocation is 
indicated as variable to ADDPG. 

Allocation occurs in one of the follow­
ing two manners: 

Packed: Allocation of packed virtual 
storage can be specified in either of two 
ways: 

• If the system packinq parameter is on; 
in the absence of an input packing pa­
rameter specifying a unique segment, 
virtual storage is packed. 

• If the system packing parameter is off, 
and an input parameter to GETMAIN spec­
ifies packing, virtual storage is 
packed. 

Non-packed: Allocated virtual storage is 
placed in a unique segment if the system 
packing indicator is off and the packing 
input parameter is not specified, or if the 

r-----------T-----------T-----------T-----------------------------------, 
I parameter I parameter I parametEr I parameter I 
I I I I I 
1 5 12 1:3 11 I 
~-----------t-----------+-----------t-----------T-----------T-----------~ 
I bit I bits I bi ts I I I I 
I I I I I I I 
I 0 11-3 14-7 I byte 2 I bytE 3 ! bytp4 I l ___________ ~ ___________ ~ ___________ ~ ___________ ~ ___________ ~ ___________ J 

r-----------------------------------------------------------, 
I parameter 4 I 
I I 
t-----------T-----------T-----------T-----------------------~ 
I byte 1 I bytE 2 I byte 3 I byte 4 I l ___________ ~ ___________ ~ ___________ ~ _______________________ J 

Figure 7. Location of Input Parameters for GETMAIN 

66 

general 
register 0 

general 
register 1 



input packing indicator specifies a unique 
segment. 

l\llocation of Packed Virtu:!l Storage 

In a 24-bit system GET~~IN first checks 
for freed pages to reassign. If the re­
quest is for eight pages or less, GETMAIN 
then checks to see if the request fits in 
the segment indicated by the virtual 
storage ~ointer. If it does, the block is 
allocated, and the virtual storage pointer 
is u~dated by the number of ~ages allo­
cated. If the request does not fit, 
GE'TMAIN checks the segment map t.o determine 
if there is a segment available for reallo­
cation. If a freed segment exists, GETMAIN 
allocates from the segment, starting at the 
segment boundary. The virtual storage 
pointer is set to the segment boundary plus 
the number of pages allocated, unless the 
entire segment was assigned. If no freed 
segment exists, GETMAIN checks to see if 
the next available segment is contiguous to 
the segment indicated by the virtual 
storage pointer. 

If the segment is contiguous, GETMAIN 
determines if the request will fit in the 
space remaining from the virtual storage 
pointer to the end of virtual storage. If 
it does not, the user has exceeded the size 
of virtual storage, and ABEND is invoked. 
If it does fit, the virtual storage pointer 
is ufdated by the number of ~ages allo­
cated. The next available segment pointer 
is u~dated if the allocation causes the 
virtual storage pointer to cross a segment 
boundary. 

If the next available segment is not 
contiguous to the segment indicated by the 
virtual storage pointer, GET~~IN determines 
1f the request will fit in the s~ace 
remaining froIT the next available segment 
to the end at virtual storage. If it does 
not fit, the user has exceeded the size of 
virtual storage, and an error return is 
made. IE the allocation does fit, the vir­
tual storage pointer is set to the location 
of the next available segrrent ~lus the num­
ber of pages allocated. 

In both of these cases, if the number at 
pages requested is greater than 256, no 
check for a freed segment is made. If the 
block cannot be allocated in any of the 
above manners, t.he page rral-, in the 24-bi t 
system, is searched for a contiguous string 
of zeros for as many pages dS dre 
requested, and allocation is made at the 
corresponding virtual storage address. In 
the 32-bit system, the user has exceeded 
the SiZE of virtual storage, and an error 
return is made. 

Allocation of Non-Packed Virtual Storage 

If the reguested allocation can be con­
tained in one segment, a check is made for 
d freed segment. If one exists, it is 
allocated, and its entry in the segment 
table is set to "1". If no freed segment 
Exists, the next available segment is allo­
cated, and the next available segment 
fainter is updated by one segment. 

If the request cannot be put into one 
segment (i.e., the request is for more than 
256 pages), the next available segrrent is 
checked to see if the request will fit in 
the space between the next available seg­
uent and the end of virtual storage. If it 
~ill, virtual storage is allocated there; 
if net, the segment map is searched for a 
large enough sface to reallocate. 

Allocation of Virtual Storage 

When sufficient space is found, VMA 
issues the ADDPG supervisor call to create 
the fage table and external page table 
entries. If the request is for ~ore than 
16 segrr.ents, the calls to ADDPG are broken 
into multiples of 16 segments. ADDPG sets 
the rage table entries to "not available", 
the external page table entries are set to 
-assigned" and the file addresses are set 
to zero. ACDPG receives the protection 
class and sets the proper protection code 
in the external page table entries. 
GET MAIN returns the virtual storage address 
to the requestor. 

If d request cannot be satisfied, the 
user has the option of retaining control or 
having GET~AIN go to ABEND by specifying 
the EXIT parawcter. If this parameter is 
Lot supplied, GETMAIN goes to ABEND. 

Hestrictions: The requestor cannot assume 
that two consecutive requests for virtual 
~toragE will result in allocation of one 
contiguous area; this can only be done by 
issuing one request for the entire arrount. 
A contiguous block of virtual storage, 
~ithin the limits of the system can be 
requested; hOWEver, it must exist at the 
time of the request. 

FREEMAIN (CZCGA3) -----------------
The function of FREEMAIN is to release 

virtual storage allocated through GETMAIN 
cr GETSMAIN. (See Chart DB.) 

tntry Point: CZCGA3, type 1M or type II 
linkage, via FREEMAIN macro 

lnpu!: Ufon entry, general register 0 con­
tains a fullword count of the number of 
contiguous pages to be released; general 
register 1 contains the virtual stcrage 
address of the area to te released. 

Section 4: Virtual Memory Allocation 67 



L ,lc.' vdxiable allocation indicator is con­
tained in the sign bit of register O. If 
this bit is set to wlw, a variable alloca­
tion is indicated; if it is set to zero, 
the request is treated normally. 

Restrictions: Virtual storage ottained in 
~ages must be freed by pages. 

Modules Called: 
DELPG - by macro. 
CKCLS - by macro. 

Exits: 
Normal - Return via type 1M liLkage. 

Error - If a parameter is invalid, or if 
there is a protection violation, 
or if the storage to be freed is 
unassigned, an error exit is 
taken. 

Operation: The operation of FREEMAIN 
depends on whether a variable allocation or 
fixed amount of virtual storage is to be 
released. 

Release of a Variable Allocation 

24-bit System: If the nurr,ber of r.;ages to 
be released specified as an input parameter 
is zero, release of a variable allocation 
is indicated. In this case, FREEMAIN 
releases the number of pages indicated in 
the variable allocation parameter. If the 
variable allocation indicator is on, a 
variable allocation is also specified to be 
released. FREEMAIN adds the number of 
pages specified in the variatle allocation 
parameter to determine the number of pages 
to be released. The numter defaults to 20 
if the variable allocation parameter is O. 
FREE~~IN uses the CKCLS supervisor call to 
determine the protection class of the vir­
tual storage area to be released; it then 
determines if the user has sufficient pri­
vileges to release the area of virtual 
storage. (A nonprivileged user cannot 
release an area of privileged virtual 
storage.) If the user can release the 
area, it is released; if he does not have 
the privilege to release it, VMA will ABEND 
the task. FREEMAIN uses the virtual 
storage address and count of pages to up­
date the page map. 

32-bit System: If the number of pages 
specified in the LV parameter is zero, the 
release of a variable allocation is indi­
cated. FREEMAIN indicates to DELPG that a 
variable-length segment is being released. 
The variable allocation indicator input to 
FREEMAIN also specifies the release of a 
variable allocation. FREEMAIN passes to 
DELPG the user count and indicates that the 
request is variable. DELPG returns page 
and segment counts to FREEMAIN so that an 
exact accounting of 'variable' pages can be 
made. FREEMAIN uses the CKCLS supervisor 

68 

call to determine the protection class of 
the virtual storage area to be released, 
and to determine if, on a variable freemain 
request, the segment is variable. 

Releasing Storage 

FREEMAIN uses the DELPG supervisor call 
to free any auxiliary storage and main 
storage committed to these pages. DELPG 
sets the corresponding page tatle entries 
to "not availal:le-, the external page table 
entries to "not assigned-, and the file 
addresses to zero. Except in the case of 
32-bit variable segments, FREEMAIN divides 
all requests that overlap segment tcunda­
ries into multiple requests, so that each 
virtual storage request is contained within 
a single segrr,ent. DELPG supplies an output 
parameter that specifies the length of the 
segment after the deletion. In this way, 
FREEMAIN will update the segment map, 
enabling GET~AIN to reuse segments that 
were previously allocated. 

DELPG packs the page tatles and removes 
page table entries for a deletion at the 
end cf a segment. Therefore, if the dele­
tion is at the end of a segment, FREEMAIN 
moves the virtual storage pointer back 
whenever possitle in the 24-bit systerr, and 
the next available segment pointer back in 
the 32-bit system. 

EXPAND (CZCGA4) 

The function of EXPAND is to enlarge an 
existing block of virtual storage. EXPAND 
can te used only by privileged systerr serv­
ice routines. (See chart DA.) 

Entry Point: CZCGA4, type 1 linkage, via 
CALL macro. 

Input: Upon entry to EXPAND, general re­
gister 1 contains a pointer to the follow­
ing two-word parameter list, aligned on a 
fullword bcundary: 

r---------------------------------, 
Word 1 IVirtual storage address of the I 

lfour-word parameter area shown I 
I below I 
~---------------------------------~ 

~ord 2 IVirtual storage address of where I 
!output parameter list is to be I 
Istored I l _________________________________ J 

r---------------------------------, 
Word 1 lVirtual storage address of the I 

Iblock that is to be expanded I 
t---------------------------------~ 

Word 2 IN- a binary count of the number I 
lof pages in the above block I 
t---------------------------------~ 

Word 3 IN*- a binary count of the number I 
lof pages to be added contiguouslyl 
Ito the above block I L _________________________________ J 



Word 4 
r---------------------------------l 
IProtection Class - a binary num- I 
Iber, right-adjusted, representingl 
Ithe protection class of the blockl 
Ito be expanded. It can assume I 
I the following va 1 uec;: I 
I I 
I 0 - user read/~rite I 
I 1 - user read only I 
I 2 - private privileged I l _________________________________ J 

Modules Called: 
CKCLS by macro. 
MOVXP by macro. 

output Parameters: EXPAND returns the 
virtual storage address of the expanded 
block at the location specified by parame­
ter 2 of the input parameter list. 

Exits: 
Normal - Return via type 1 linkage. 

Error - If a parameter is invalid or if 
the user tries to expand unallo­
cated virtual stcrage, an error 
exit is taken. 

Operation: EXPAND receives the size of 
the original block of virtual storage, the 
size of the block to be added, the virtual 
storage address of the block, and the pro­
tection class of the block. 

If the virtual storage pOinter minus 
the size of the existing block is equal to 
the input virtual storage address, the 
added block can be appended to the exist­
ing block. The virtual storage address 
plus the size of the block are passed to a 
special GETMAIN entry to perform the allo­
cation. The new virtual storage address 
is set up as an output parameter. 
Accounting calculations are performed, 
task interrupts are enabled, and return is 
~ade to the calling routine. 

In the 24-bit system, if the virtual 
storage pointer minus N is not equal to 
the input virtual storage address, a check 
is made to determine if there is a hole of 
N* in the page map at the virtual storage 
address +N. If there is, the hole in the 
lIiap is deleted, and GET~.AIN is used as in 
the previous case. 

In the 32-bit system (or in the 24-bit 
system when there is no available hole), 
EXPAND proceeds as follows. 

The block must be relocated so a count 
of N + N* is passed to GETMAIN to obtain 
the block of storage. The supervisor call 
MOVXP is used to move the page and asso­
ciated external page table entries to 
their new position. FREEMAIN code is then 
used to delete pages of the old block, 

t:ask inteITU[ts are enabled, and return is 
rrade tc tne calling routine. 

In the 32-bit system, or in the 24-bit 
system with no hole of N+N* or greater in 
the page map, a user error has occurred; 
virtual storage is exceeded. A user error 
exit is rrade. 

GETS~AIN is used to create a shared 
page table when one does not exist, and to 
obtain additional space in a segroent when 
a shared page table has already been 
created. GETS~AIN is used by VAM and the 
dynarric loader to obtain shared virtual 
storage. (See Chart DB.) 

Entry Point: CZCGA6 - via CALL macro. 
Type I linkage 

IDIut: Upon entry, general register 1 
contains a pointer to the following param­
eter list; two contiguous words aligned on 
a fullword boundary. 

r---------------------------------, 
~ord 1 IVirtual storage address of the I 

Ifive word parameter area shewn I 
Ibelow. I 
~---------------------------------~ 

~ord 2 IVirtual storage address. where I 
loutput ~arameter is to be stored. I l _________________________________ J 

r---------------------------------, 
~ord 1 IN = binary number of pages re- I 

Iquired. N cannot exceed 1 segment I 
1(256 ~dgeS). When a request for I 
Ipages cannot be filled. the high-I 
lorder bit in this word indicates I 
I EXIT=RETURN option if bit is 1. I 
~---------------------------------~ 

Word 2 ISPT# - binary number of the I 
Ishared fage table when virtual I 
Istorage is to be acquired. If I 
Ithis number is not known, an SPT#I 
lof binary 0 should be used, and at 
Inew unique number will be sup- I 
Iplied by the system. I 
t---------------------------------~ 

Word 3 IData ty~e - one of the following 1 
Inumbers (in binary) with the fol-I 
Ilowing meanings: I 
I I 
I 1 - data set I 
1 2 - CSECT I 
I 3 - PSECT I 
r---------------------------------~ 

~ord 4 \Protection class - one of the I 
Ifollowing numbers (in binary) I 
Iwith the following meanings: I 
I I 
I 0 - user read/write I 
I 1 - user read only I 
I 2 - private privileged I L _________________________________ J 

Section 4: Virtual Memory Allocation 69 



Word 5 

Exits: 

r---------------------------------, 
IVariable length indicator - one I 
lof the following numbers (in I 
I binary) with the following I 
Imeanings: I 
I I 
I 0 - nonvariable allocation I 
I 1 - variable allocation I l _________________________________ J 

Normal - Return, by macro. 
GETSMAIN returns the shared page 
table number at the location spec­
ified by the second parameter of 
the input parameter list. The 
full word following the SFT number 
contains the address of the allo­
cated virtual storage. 

Error - If a parameter is invalid or if 
the request for pages cannot be 
filled, a check is made to see if 
the high-order bit is on in the 
first word (N pages required) of 
the input parameter area. If this 
bit is off, an error exit is 
taken. If it is on, return is 
made to the calling routine with 
one of the following return codes 
in register 15: 

X'04' Request cannot be filled 
X'OS' Invalid ~arameter received 

Restrictions: The amount of shared storage 
requested, N, cannot exceed one segment 
(256 pages). 

Modules Called: ADSPG by macrc. 

Operation: GETSMAIN disables task inter­
rupts and obtains the input parameter. 

If the variable length indicator input 
parameter is off (that is, set to ·0·), 
GETS~AIN gets the next segment (which is 
either the next available segment, or the 
next available deleted segment). If the 
variable length indication input parameter 
is on (that is, set to '1'), the action 
taken depends on whether the system has 
24-bit or 32-bit addressing. For the 24-
bit system, GETSMAIN adds the pages indi­
cated in the variable allocation parameter 
in the ISA to N (the number of pages 
requested); it then gets the next segment. 
In the 32-bit system, a request is wade for 
a variable length segment, and this is 
indicated to ADSPG. 

If the public segment indicator is off, 
(that is, a public segment does not exist), 
ADSPG is called; if this indicator is on, 
the type is tested. If the type is CSECT, 
the shared page table nurrber of the last 
assigned segment is used as input to ADSPG; 
ADSPG is then called. If the type is not 

70 

CSECT, the shared page table number is not 
known (except for the case where data sets 
are being packed into a segment and the 
shared page table number is known from the 
first GETSMAIN). When the shared page 
table number is not known, ADSPG creates a 
shared page table and sets up the corre­
sponding segment and auxiliary segment 
table entries. When a shared page table 
nu~ber is sUfplied to ADSPG, ADSPG checks 
to see if the request will fit into the 
segment already assigned. In order to 
determine if AtSPG has used the segment 
supplied to it, GETS¥AIN compares the 
shared rage table number input to ADSPG 
with the shared page table number output. 

If the request fits into the segment 
already assigned, the virtual storage 
address is set up as an output parameter 
(the second word of the output parameter 
list). Task interrupts are enabled, and an 
exit is made to the calling routine. 

If the request does not fit into the 
segment already assigned, ADDSPG uses the 
virtual storage address supplied by 
GETSMAIN to create a new shared page table, 
segment, and auxiliary segment table entry. 
Therefore, in the case of packing within 
segments, it is ADSPG that keeps track of 
page allocation; however, GETSMAIN still 
keeps track of segment allocation. 

GETS~AIN then saves the new Shared Page 
Table number and checks to see if the next 
segment was the next available segment. 

If it was not, the next available 
deleted segment is deleted from the segment 
map. and the segment map is searched for a 
deleted segment less than the next avail­
able segment. If such a segment was found, 
the next available deleted segment is set 
to the found segment, the virtual storage 
address is set ur as an output parameter, 
task interrupts are enabled, and return is 
made to the calling routine. 

If the next segment was not the next 
available segment, a test is made to deter­
mine if it is the last segment, and if it 
is, it is set to wdefunct·, and its virtual 
storage address set up as an output parame­
ter. After enabling interrupts, an exit is 
rrade. If the next segment is not the last 
segment the procedure is as stated atove. 
The virtual storage address is placed in 
the output parameter list, task interrupts 
are enabled, and return is made to the 
user. 

CONNECT (CZCGA7) 

The function of CONNECT is to allocate 
shared virtual storage when a shared page 
table already exists for the data object. 
(See Chart DB.) 



Entry Point: CZCGA7, type I linkage, 
available to privileged users only. 

Input: Upon entry to CONNECT, general re­
gister 1 must contain the address of a pa­
rameter list. The parameter list, which 
must start on a full-word boundary, is as 
follows: 

r---------------------·-----------, 
Word 1 IVirtual storage address of the I 

Itwo-word parameter area shown I 
I below I 
t---------------------------------~ 

Word 2 IVirtual storage address where I 
loutput parameters are to be I 
I stored I L _________________________________ J 

r---------------------------------, 
Word 1 ISPT# - the binary number assigned I 

Ito the shared page tatle to be I 
I connected I 
~---------------------------------i 

Word 2 IRelative Page Location - the pagel 

Exits: 

Inumber, in binary, within a I 
Ishared segment of the beginning I 
lof the shared data object I l _________________________________ J 

Normal - Return by macro. 
CONNECT returns the virtual 
storage address of the shared data 
object at the location specified 
by the second input parameter. 

Error - If a parameter is invalid or if 
there are no availatl€ segments, 
an error exit is taken. 

Restrictions: Available to privileged 
users only. 

Modules Called: CNSEG by rracro. 

Operation: CONNECT checks for the next 
available deleted segment; if found, this 
segment is passed as input to the supervi­
~or call, CNSEG. If a deleted segment is 
not found, the next available segment is 
used. The shared page table number and 
relative page location are also passed to 
CNSEG. 

If a segment is already connected to the 
shared page table, CNSEG notes the corre­
sponding segment number and segment address 
and passes it back to CONNECT. If not, 
CNSEG creates a segment table and auxiliary 
segment table entry and connects them to 
th~ shared page table and raSS€S the seg~ 
ment address to CONNECT. 

If the segment returned from CNSEG is 
not the same one passed as input, CONNECT 
adds the relative location to the returned 

segment and sets it up as an output fararne­
ter, enables task interrupts and exits. 

If the segment number returned from 
CNSEG is the same as was input to CNSEG, 
CONNECT proceeds as follows: 

If the segment is the next available 
segment, CONNECT sets it to "defunct" if it 
is the last segment or increases the number 
of the next available segment by wI" if it 
is not the last segment. It then adds the 
relative location to the address of the 
returned segment and places the output pa­
rameter area. After enabling task inter­
rupts, it exits. 

If the segment returned is not the next 
available segment, the entry for the next 
available deleted segment is removed from 
the segment mar, and the segment map is 
searched for a deleted segment less than 
the next available segment. CONNECT then 
sets the next available deleted segment to 
zero if no such segment was found, or, if 
such a segment was found, sets the next 
available deleted segment to the number of 
the found segment. CONNECT adds the rela­
tive location to the returned segment and 
places it in the output area. Task inter­
rupts are enabled, and CONNECT exits. 

LISCONNECT (CZCGA8) 

The function of DISCONNECT is to unlink 
a task's segment table entry from an exist­
ing shared page table. (See chart DB.) 

Entry Point: CZCGA8, type I linkage, via 
CALL macro. 

Input: Upon entry t.o DISCONNECT, general 
register 1 contains the address of the fol­
lowing rarameter list 

r---------------------------------, 
1 word (Virtual storage address of a two-I 
aligned Iword rarameter area I on d l _________________________________ J 

fullword 
toundary 

Word 1 

Word 2 

Exits: 

r---------------------------------, 
15 PT# - the number, in binary, I 
lassigned to the shared page tablet 
Ito be disconnected I 
.---------------------------------~ 
IRelative page Location - the pagel 
Inumber, in binary, within a I 
(shared segment, at which the I 
Ishared data object begins I L _________________________________ J 

Normal - Return ty macro. 

Error - If a [arameter is invalid an error 
'~xit is taken. 

Section 4: Virtual Memory Allocation 71 



Modules called: DSSEG by macro. 

Restrictions: DISCONNECT is available for 
privileged users only. 

Operation: DISCONNECT receives the shared 
page table number and relative page loca­
tion as input parameters: nonzero relative 
page location should not be disconnected. 
If this segment is specified, DISCONNECT 
does not process the request. It merely 
enables task interrupts and exits. The 
public segment cannot be disconnected; 
therefore, DISCONNECT checks the shared 
~age table number given as input against 
any public segment shared page table num­
bers. If the public segment is specified, 

72 

DISCONNECT enables task interrupts and 
exits, as for the previous case. 

If the segment specified can be discon­
nected. BISCONNECT uses the supervisor call 
DSSEG. DSSEG searches the auxiliary seg­
rrent table, and when the corresponding 
entry is found, the segment is set to Knot 
available", and auxiliary segment table is 
set to "not assigned". DSSEG supplies an 
output parameter specifying the virtual 
storage address of the segment correspond­
ing to the input shared page table number. 
CISCCNNECT updates the next available 
deleted segment and segment map according­
ly, thereby making the segment available 
for reallocation. 



Small Virtual Memory Allocation (SVMA) 
is used to assign or free virtual storage 
in multiples of doublewords expressed as a 
byte count. The routines may be used by 
all system service routines and users for 
dynamic virtual storage. Execution results 
from the R option of the GETMAIN and 
FREE~AIN macros. 

GENERAL DESCRIPTION 

Requests for virtual storage are made 
via the GETMAIN macro, R form. Requests to 
free previously assigned virtual storage 
are made via the FREEMAIN macro, R form. 
Requests for assignment of virtual storage 
must specify the number of bytes, and this 
value should represent a count of double­
words. If the request is not a multiple of 
eight (a doubleword multiple) the request 
value is increased to the next higher mul­
tiple of eight. 

Virtual storage under control of SVMA is 
divided into two classes by ty[e of user 
(privileged and nonprivileged) with a page 
header table for each tyr-e. This insures 
that the virtual storage of the system 
service routines is not availatle for use 
by user programs, nor can it be freed by 
them. 

Each page of virtual storage controlled 
by SVMA is assigned a storage key. 
Requests for storage with a given key will 
be assigned areas within the same page if 
possible. 

Requests are also classified into those 
for less than one page and those of one 
page or more. Requests for less than one 
page are aligned on a doubleword boundary, 
while those for a page or more are 
page-aligned. 

Except for the program itself, all 
storage required for internal tables and 
allocation is obtained dynamically from 
GETMAIN (pages). thus the program only 
occupies the storage required for its 
operation. 

The program uses three entries in the 
ISA table (CHAISA). These are: 

rSAVPS 
contains the address of this program's 
PSECT. It is not necessary for the 
user to supply the PSECT address. 

SECTION 5: SMALL VIRTUAL MEMORY ALLOCATION 

ISALCK 
Task interrupt inhititation lock byte. 
This is set whenever this pr'ogram is 
called. then reset to its initial 
state on exit. 

ISATMP 
Address of the Task Monitor's PSECT is 
used to determine whether the caller 
is the ENTER routine. 

COMMENTS: The user should be aware that he 
rray actually use more SVMA than he requests 
tut he may then overlay this area with a 
subsequent get SVMA request. He ffiay also 
te able to retrieve data after he has given 
a FREEMAIN SVMA request for the area. 

Area that has been freed by the user 
will net be reallocated. 

Internal Tables 

There are three internal tables: (1) 
Page Header Tat:le; (2) Page Headers; (3) 

Unit Table. 

The Page Header Table Page represents 
rages of virtual storage. Each page is one 
entry in the table. Each page header table 
rage has forward and backward links, a 
count of active rage headers, and up to 51 
rage headers. 

1he rage headers consist of 20-word 
entries within the Page Header Table. A 
r-age header contains all the information 
about a ra'Je of virtual storage which is 
assigned or available for assignment, 
including a Unit Table. 

The Unit Table is used only by the 
FREEMAIN routine, and consists of 512 bits 
- one bit for each doubleword of the page 
defined 1::y the Page Header. 

The Entry Definitions for the Page Head­
er Table are as follows: 

PHT 

FOR PAGE 

Page Header Table 

Forward link - points to next 
Page Header Table in chain. 

EACKPAGE Backward link - points to last 
Page Header Table in chain. 

PHCOUNT Count of active page headers -
those currently in u"e. 

PHEADERS Page headers - 20 words. 

Sect.ion 5: Small Virtual Memory Allocation 73 



BACKPH 

FORPE 

PASK 

NAU 

NFU 

UNIT 

Picture 

Name 
PHT 
FORPAGE 
BACKPAGE 
PHCOUNT 
PHEADERS 
FORPH 
BACK PH 
PASK 
NAU 
NFU 
UNIT 

Backward link - points to last 
page header in chain. 

Forward link - points to next 
page header in chain. 

Page address - (20 bits) 
address of the first byte of a 
page available for or current­
ly in use by USEr: and Storage 
key - (12 bits) The storage 
key assigned to the page. 

Next available unlt - The 
address of the next available 
doubleword within the page 
(when combined with the page 
address it forms the address 
returned to the user). 

Number of freed units - a 
count of the number of bytes 
which have been freed via 
FREEMAIN. This will equal the 
NAU address when all assigned 
bytes on the page have been 
freed. 

Unit Table - 512 bits initial­
ly zero. When FREEMAIN has 
freed a unit the corresponding 
bit is set to one. 

of Page Header Table 

0l2eration OE.erand 
DSECT 
DS F 
DS F 
DS OeL80 
DS F 
OS F 
OS F 
DS F 
DS H 
DS H 
DS Cl64 

Internal Subroutines Available 

PHTBLINK 
This subroutine is used to connect one 
page header table page to the last one 
in the chain. It calls GET~AIN 
(pages) requesting one page with a 
storage key which is user-fetch­
protected. It then inserts thE back­
ward link address and zeros the for­
ward link address, the page header 
counter, sets the next available page 
header address to the address of the 
first page header in this entry, 
updates the forward link address of 
the last page header table (pointed to 
by the backward link), and returns. 

PHLINK 
This subroutine zeros the page header 

74 

NAPER 

to be linked in, inserts the backward 
link address, updates the forward link 
address of the last page header 
(pointed to by the backward link), 
sets the storage key required, obtains 
a page, inserts the address in the 
entry. calls NAPER and returns. 

This subroutine locates the next 
available page header. It first 
searches the page header table page in 
which the next page header was 
located. If there are no page headers 
available, it then searches all other 
page header table pages for an avail­
able page header. If none can be 
found it sets the next available page 
header address (NAPE) to zero and 
returns. If one is found it inserts 
the address into NAPH, updates the 
page header count for this page header 
table page, and returns. 

DELINK 

FHTDE 

This subroutine removes a page header 
from the chain. It updates the for­
ward and backward pointers of all 
headers involved. subtracts one froff 
the page header count, calls PHTDE if 
the count reaches zero and then 
returns. 

This subroutine disconnects a page 
header table page from its chain. 
However, before disconnecting the 
entry it checks to see if there is 
only one page and if so it sets NAPH 
to point at the first page header and 
returns. If there are other pages it 
updates all the forward and backward 
links involved. Then if the next 
available page header (NAPH) points to 
a header in this page, the NAPHR rou­
tine is called to obtain an address in 
an existing page. The page is then 
released via FREEMAIN (pages) and con­
trol is returned to the main program. 

S~~LI VIRTUAL ~E~ORY ALLOCATION (CZCHA) 

SVMA is used with GETMAIN macro R 
option, and FREE~AIN macro R option. 

For GET~AIN nacro R option: 

This routine is a closed, reenterable, 
privileged service routine used by any sys­
terr service routine or user to assign vir­
tual storage in ~ultiples of doublewords. 

Entry Point: CZCHA2 (See Chart EA.) 



Input: On entry Register 0 contains: 

• The byte count in the low order 3 
bytes. 

• The protection class (0, 1, or 2) in 
bits 4-7 cf the high order byte. 

• Packing parameters in bits 1 to 3 of 
the high order byte. 

output: Registe:r 1 contains the Virtual 
storage address and/or Register 15 contains 
one of the following codes: 

00 Normal return. Successful 
completion. 

04 Insufficient contiguous virtual 
storage available, if EXIT = 
RETURN. 

OB Protection class is invalid. 

Internal subroutine Used: 
PH1BLINK - Page Header Table Page Link. 

PHLINK 

NAPHR 

- Page Heade:r Link. 

- Next Available Page Header 
Rcutine. 

Modules Used: 
GETMAIN (CZCGA2) To supply integral pages. 

ABEND (CZACP) To force abnormal end of 
task. 

Exits: 
Normal - Return to calling routine with Re­

gister 15 containing 00 and Regis­
ter 1 containing the virtual 
storage address. 

Error - If EXIT = RETURN option has been 
used, control is returned to the 
user and Register 15 contains a 
code of 04. 

If EXIT = RETURN and not enough 
virtual storage exists, ABEND is 
invoked. 

If the protection class is inval­
id. a code of OB is :returned in 
Register 15. 

Restrictions: Two sepa:rate requests for 
virtual storage do not assure contiguous 
allocation of the two areas. The only way 
to ensure a contiguous allocation of N 
pages or bytes is the GETMAIN of N pages or 
bytes. 

Operation: When a request is made, GETMAIN 
saves the present value of ISALK and sets 
it on. This inhibits task interrupts while 
GETMAIN is in execution. The tYFe of user 

is then det.ermined by comparing tre calling 
routine's PSECT address with the PSECT 
address of the ENTER routine (CZCUE). If 
it is the ENTER routine the user is nonpri­
vileged; if not, the user is considered 
rrivileged. 

The requEst is then adjusted to the next 
higher multiple of eight, if not on a mul­
tiple at present. If the request is for a 
page or more, a flag (MULTI) is set on. 

The program then searches the proper 
page header table (privileged or nonprivi­
leged) for a page with a storage key which 
matches the requested key. If, in this 
search, it is found that all the page head­
Ers haVe been used (that is, the next 
dvaila~le page header field (NAPH) is 
zero). the subroutine PHTBLINK is used to 
connect another page header table page into 
the chain and to initialize it. If NAPH is 
not zero, but a new page header is needed, 
the subroutine PHLINK is called to link a 
new rage header into the chain. 

The search can end in four ways: (l) A 
rage is found which has enough storage 
availacle to satisfy the request. The next 
availa~le unit (NAU) address is saved for 
output to the user and the NAU address is 
then advanced by the amount of the request. 
The return code (in Register 15) is set to 
zero and the page and unit address put in 
Register 1. All program switches are then 
reset, the ISAICK value is restored, and 
control is returned to the caller. (2) The 
request is for greater than a page so that 
cne rage cannot satisfy the request. 
GETMAIN (pages) is called to supply enough 
pages to fulfill the request. The NAU 
address of all full pages is set to 4096. 
The program then handles the fractional 
page (if one was requested) as described in 
1, with the exception that the address 
retu:rned to the user is the address of the 
first page assigned to the user. (3) There 
is nc [age which has enough storage avail­
able. GETMAIN (pages) is called to sUffly 
one rage and the program proceeds as 
described in n). (4) There are ne rages 
which have enough available storage and 
GETMAIN (pages) cannot supply the required 
rage (or pages). The program will eithe:r 
return centrol to the calling routine with 
Register 15 set to 4 (if the EXIT = RETURN 
rararrete:r was used), or will call ABEND. 

SVMA aOES not attempt to back-fill 
rages. This means that if FREEMAIN (bytes) 
has freed a portion of a Fage, the areas 
will net be reassigned until all units of 
the page which were assiqned (via GETMAIN 
lytes) are freed. The page is then 
released (via FREE~AIN pages), allowing 
reassignment of the page. The NAU add:ress, 
the nunber of freed units, and the unit 
table are all set to zero. 

Section 5: Small Virtual Memory Allocation 75 



.For FREEMAIN rr.acro R or:;tion: 

This routine is a closed, reenterable, 
privileged service routine used by any sys­
tem service routine or user to free virtual 
storage in multiples of doublewords. 

Entry Point: CZCHA3 (See Chart EB.) 

Input: On entry: 

• Register 0 contains a ~inary count of 
the bytes to be released. 

• Register 1 contains the virtual memory 
address of the bytes to be released. 

Output: Register 15 is returned to the 
user with one of the following codes: 

00 Normal return. Successful 
coU'pletion. 

04 Address to be released cannot be 
located, is unassigned, or has been 
freed. 

08 Address to be released is not doub­
leword address. 

Internal Subroutines Used: 
DELINK Delink a page header. 
PHTDE Page Header Table Delink. 

Modules Used: 
FREE~AIN (CZCGA3) To free integral pages. 

Exits: 
Normal - Return to the calling routine with 

Register 15 ccntaining 00. 

Error - If address to be released cannot 
be located, is unassigned. or has 
been freed, control is returned to 
the calling routine with a code of 
04 in Register 15. 

If the area to be released is not 
a doubleword address, control is 
returned to the calling routine 
with a code of 08 in Register 15. 

Operation: When a request is made, 
FREEMAIN operates in the same manner as 
described for GETMAIN to save ISALCK, 
determine the type of user, adjust the 
requested byte count, and set MULTI (one 
page or more indicator>. The VMA is 
checked for a doubleword boundary. If it 
is not a doubleword boundary, a code of 08 
is returned to the user. 

The routine then searches the correct 
page header table (privileged or nonprivi-

76 

leged) for the page header which has the 
sr:;ecified page address (high order 20 bits 
of the input address). This search ends 
when the page header controlling the r::age 
is located. If the page header cannot be 
found. a code of 04 is returned in Register 
15. 

Once the correct page header is located, 
the r:;rogram checks that the next available 
unit address is not less than the maximum 
address to be freed. This is an error con­
dition, unless the request was for more 
than a page, and results in a return to the 
caller with a code of 04 in Register 15. 
If the request exceeded one page, then the 
fage being freed is checked to insure that 
all units were assigned and that no units 
were previously freed. If either of these 
conditions is not met. an error is indi­
cated and control is returned to the caller 
with a code of 04 in Register 15. If these 
conditions are met then the page is removed 
from the chain via the DELINK subroutine, 
the request is decreased by 4096, the 
starting address (address of first unit to 
te freed) is increased by 4096, and the 
search is re-started for the next page 
involved. This ~rocess continues until the 
request value is reduced to one page or 
less. When the correct page is located 
this time, or if the initial request was 
for less than a [age, and the next avail­
able unit address is not less than the 
maximum address to be freed, the program 
checks tc insure that all units to te freed 
dre now assigned (the unit table contains 
O's in each unit position to be freed). If 
all units are not aSSigned (one or more 
contains a 1 bit), an error condition 
exists and control is returned to the call­
er with a code of 04 in Register 15. 
However, if all units are assigned, the 
progra~ frees them by placing 1-bits in 
each pOSition to be freed. 

The next step is to determine if all 
units are no~ free for that page. This is 
done by comparing the next available unit 
(NAU) address with the numher of freed 
units. If they are equal, the page is 
freed via FREEMAIN (pages) before beginning 
the normal return sequence. Any pages pre­
viously r:;rocessed to be freed are freed via 
FREE~AIN (pages), Register 15 is set to 0 
(in case of an error reSUlting in a return 
code in Register 15, these two operations 
are typassed when returning>, program 
switches are reset, all other registers are 
restcred and control is returned to the 
user. 



A symbolic library is a collection of 
separate components called farcels~ each 
farcel being a nawed gIOUp of symbolic 
statements, which are combined into one 
VISAM line data set and indexed so that any 
single parcel may be retrieved by specify­
ing its nawe. The parcels of a syrrbolic 
li~rary may be macro definitions for use by 
the TSS/360 Assembler, or they may be any 
other groups of statements which the user 
might wish to store within the system and 
retrieve during the execution of his 
programs. 

Associated with the symbolic component 
of each symbolic library is a ser:-arate data 
set called the index which contains in 
alphabetic order the names of all the par­
cels in the symbolic component and the line 
number of the first syrobolic statement in 
each named parcel. Once the symbolic com­
ponent and the index have been created, 
system programs (such as the assewbler) or 
user programs may call a system routine to 
automatically search the index for a given 
parcel name and thus lecate the desired 
r:-arcel to be processed. 

The symbolic component of a sy[[,bolic 
library may be created by the user using 
the system DATA command, dnd may be modi­
fied using the system MODIFY command. 
Alternatively, the user way employ any pro­
grail' that constructs a VISAM line data set. 
Once the symbolic component. has been 
created, a system routine may te called ty 
the user to automatically construct the 
index for the entire library. If the 
library is replaced or modified it may be 
automatically re-indexEd after each such 
modification, by invoking the indexing pro­
gram via an appropriate RUN cOlw,and. 

The following routines are invoked by 
the user to index and retrieve symbolic 
libraries: 

symbolic Library Indexing Routine 
(SYSINDEX) 

This routine automatically indexes the 
symbolic component of a symtolic library to 
credte an alphabetical index of all the 
parcels. and is invoked when the user 
issues the appropriate RUN command or 
executes a program calling this routine. 
Before execution, DATADEF cowmands must be 
issued for both the symbolic component and 
indexed data sets. The ddname SOURCE and 
dsorg (data set organization) VI must be 
specified in the DATADEF for the symbolic 
component. The DATADEF for the indexed 

SECTION 6: SYMBOLIC LIBRARY SERVICE ROUTINES 

data set wust specify the ddname INDEX and 
dsorg of VE. The individual parcels are 
identifi(,d by SYSINDEX either autorr.atically 
er by HEans of a user-supplied subprogram. 

In the automatic method, parcels are 
identified by being immediately preceded by 
one or more header lines, which are distin­
guished ty havinga unique first byte dis­
tinct frcm the first byte of any syrrtolic 
line. Each header contains one narre or 
alias for the following parcel. The parcel 
name (or alias) begins with the second tyte 
cf each header and may have at most the 
number of bytes specified by the user in 
his LENGTH parame-t.er (see below). Alterna­
ti vely, the user rna i' en:rloy any n:ea ns for 
identifying parcels and their names. and 
may supply a subprogram to examine each 
SOURCE line provided by SYSINDEX and pass 
the name, aliases and retrieval line number 
for each parcel back to SYSINDEX. 

The SYSINDEX routine analyzes the user­
supplied parameters and calls the actual 
index-building routine SYSXBLD. which scans 
the entire SOURCE data set, testing each 
line for the user-supplied header identifi­
er byte cr allowing the user-supplied sub­
program to perform the test and extract 
each narrE and alias. SYSXBLD collects a 
list of the narre and aliases of each parcel 
in the temporary array LIST until the first 
non-header line is detected; then the names 
in LIST are placed one by one into a tem­
porary index TINDEX along with the retriev­
al line number of the first non-header line 
in the parcel. 

The temporary index TINDEX is used in 
order to sort the entries into EBCDIC 
collating sequence in the final index 
CHASLX. Each TINDEX entry consists of the 
fields (name, Ietrieval line number> which 
will be entered in the final index, plus a 
forward link pointing to the relative loca­
tion of the TINDEX entry for the next high­
er name in EBCCIC sequence. As each name 
is received for entry into TINDEX it is 
compared with all previously entered names, 
in ascending sequence, until its proper 
location in the ascending chain is deter­
rrined. Then it is placed at the end of 
TINLEX with a link field pointing to the 
next higher nawe. and the link field of the 
next lower name is adjusted to point to the 
new entry. 

Once the entire SOURCE data set has been 
scanned and the complete TINDEX created, 
the last pnase of SYSXBLD extracts all the 
entries fro~ TINDEX in ascending name 

Section 6: Syubclic I.ibrary Service Rout ines 77 



sequence and places them, without the link 
field, into the final index CHASLX. 

Symbolic Library Search Routine (SYSEARCH) 

This routine may be called by a system 
or user program to locate any individual 
parcel of a symbolic library, using its 
index as created by SYSINDEX. The virtual 
address of the index and the name of the 
parcel are given to SYSEARCH, and the 
retrieval line number of the first line of 
the parcel is returned. The calling pro­
gram should, before calling SYSEARCH using 
a given index for the first time, open the 
data set containing the index, find the 
index member and GET the index in order to 
give its address to SYSEARCH. 

It is the function of SYSEARCH only to 
locate the line number beginning a parcel; 
the calling program must then access and 
process the parcel as required. Once the 
retrieval line number of a particular par­
cel is obtained and the data set containing 
the symbolic component is open, the calling 
program may use the SETL macro instruction 
to position the symbolic data set to the 
beginning of the parcel and then get each 
line of the parcel in turn until the end of 
the parcel is detected. The assembler, for 
example. rray detect the MEND symtolic 
statement as the end of the parcel; a user 
program might either use a special symbolic 
line within the parcel or detect the next 
parcel header as the delimiter of this 
parcel. 

User subroutine for SYSXBLD 

The user subroutine for scanning the 
symbolic statements, if provided to 
SYSINDEX, will be entered by SYSXBLD after 
each SOURCE line is obtained, and will be 
supplied with the virtual address of the 
last source line. the address of the DCB 
for the SOURCE data set, and the addresses 
where a retrieval line number (in 8-byte 
EBCDIC format) and a name or alias may be 
returned to SYSXBLD by the user. The user 
subroutine may insrect the line and return 
one of the following condition codes to 
SYSXBLD: 

o - No index entry to be made; proceed to 
get next SOURCE line 

4 - Enter the returned name and retrieval 
line number into TINDEX and return to 
user subroutine without getting 
another source line 

8 - Enter the returned name and retrieval 
line number into TINDEX and proceed 
to get next SOURCE line 

If there are one or more header lines 
(not considered rart of the rarcel) con-

78 

taining the name and aliases of the follow­
ing Farcel, then before returning either 
code 4 or 8 the user routine must have 
located the proper retrieval line number to 
be associated with the following parcel by 
repeating the VA~ GET macro instruction 
until the first line of the parcel is 
obtained; the DCB address supplied to the 
user routine must be used in this macro. 
During this process, the name and any 
aliases must be accumulated internally by 
the user routine until the proper retrieval 
line number for the following parcel is 
available to be passed back to SYSXBLD. 
Return code 4 is then used repeatedly to 
pass back all but the last alias and return 
code 8 is used to passback the last (or 
only) name for entry into TINDEX. The user 
routine is always entered at the same Foint 
and rrust therefore remember when returning 
code 4 not to re-process the last line 
obtained by SYSXBLD. 

When the SOURCE data set is exhausted, 
whether it is SYSXBLD or the user routine 
issuing the last GET macro, control auto­
rratically Fasses to the last phase of 
SYSXELD for constructing the final index. 

SYSINDEX -- Symbolic Library Indexing 
Routine (CGCKA) 

SYSINDEX receives the user's input pa­
rameters. promrts the user for missing pa­
rameters, and [rocesses the parameters. 
After the parameters have been processed, 
SYSINDEX calls SYSXBALD, the routine that 
actually builds the index (CHASLX). (See 
chart Fl',.) 

SYSINDEX 

Input: Parameters are received in one or 
more control statements in the forrr: 

keyword=parameter. keyword-parameter 

r-------T---------------------------------, 
IKeywordl I 
~-------+---------------------------------~ 
ILENGTH INumber of characters in each narrel 
I Ito be entered in the index I 
~-------+---------------------------------~ 
IHEADE~ ISingle character that is ccrrraredl 
1 Iwith the tirst byte of each I 
I Isource line to determine whether I 
I Ithat line requires an index entry! 
~-------+---------------------------------i 
I SCAN IThe symbolic name of a user- I 
I Isurplied routinE to be called fori 
I leach source line to determine if I 
lithe line is an index entry I 
~-------i---------------------------------i 
l~otE: HEADER or SCAN, but not toth, mustl 
Ibe specified. I L _________________________________________ J 



output: symbolic library index - a virtual 
sequential data set. The index contains 
the names of, and line number rointers to, 
the elements contained in the source data 
set. 

Restrictions: 

1. If the user is operating in nonconver­
sational mode, all infut paraffieters to 
SYSINDEX must be correctly spelled in 
a single control statement. 

2. Names to be placed in the index must 
net be longer than 255 characters. 

3. An input parameter must not be split 
between two control sta teIf>ents. 

4. Continuation records are not 
perrritted. 

Assumptions: 

1. Before SYSINDEX is executed, the user 
must have stored the symbolic com­
ponent as a line data set, organized 
sequentially by line number. 

2. The user must have supplied two DDEF 
comreands: one named SOURCE that 
defines the data set containing the 
source lines to be processed, and one 
named INDEX that defines the index to 
be created. 

~odules Called: 
VAM 
G'H-lAR 
GATWR 
~YSXBLD-CGCKB - to create the index CHASLX 

Exits: 
Normal - end of job 

Error - if user is nonconversational, any 
parameter errors cause the index 
generation ~rocess to be ter­
minated and a return to SYSIN for 
the next command 

Operation: USing the GTWAR macro instruc­
tion, SYSINDEX requests the user to enter 
his in~ut rarameters. Records received 
with errors are not processed. The SCAN 
routine (described below) scans the record 
for a delimiter (equal Sign, comma, or 
blank). The first scan obtains a keyword; 
the second, a parameter; the third, a key­
word; and the fourth, a parameter. 

If the length operand is specified as 
zero or is not specified, the conversation 
a1 user is prompted to sup~]y the length, 
I:!xecution is terminated for the nonccnvl'r­
sational user. If a valid length is speci 
fied, it is converted to bind!'v dnd stor.,',L 

SYSINCEX then checks that either the 
HEADER or SCAN keyword (but not both) has 
teen specified. The header character or 
address of the scan routine is stored. 

When SYSINDEX determines that either 
HEADER or SCAN and a non-zero length have 
teen specified, it calls SYSXBLD to gener­
ate the index. Upon return from SYSXBLD, 
SYSINDEX ret.urns to the Command Language 
Jntprp.reter. 

If the user makes an error in entering 
his parameters or omits a required parame­
ter, the GATWR macro instruction is used to 
write the appropriate error message. 

SCAN SUBROUTINE: SCAN is an internal sub­
routine used exclusively by SYSINDEX. It 
scans the user's control statement to 
extract keyword symbols and parameter 
values. The scan detects delimiters, which 
may be: comma, equal siqn, or an EOR rr·ark­
ere Imbedded blanks, which also halt the 
scan, dre discarded. SYSINDEX and SCAN 
allows blanks to surround delimiters, but 
not. wi thin a keyword symbol or a parameter 
value. From its normal exit, the SCAN rou­
tine provides the character field scanned 
(left-adjusted with trailing blanks). the 
length of this field, and the delimiter. 
Delimiters obtained by SCAN are retained in 
a '3tcrage area until replaced by the next 
delimiter. When SCAN detects that the 
delimiter of the last field scanned was an 
end-af-record marker, all informaticn en 
the control statement has been processed, 
and SCAN makes an end-of-record exit. 

SYSXBLD -- Build ~~mbolic Library Index 
(CGCKB) -----

SYSXBLD consist.s of two major com­
ponents: LOOP, which scans each line of 
the source data set ta locate, extract, and 
place entries in a temporary index; and 
TERM, which operates on the temporary index 
to form a final and complete index. (See 
Chart FE'.) 

.!npu~: Fegist_er 1 contains a i._ointer to 
this list: 

Word 1 
r---------------------------------, 
IPointer to full word containing I 
! lengt.h of parcel names in index I 
t---------------------------------~ 
iPointer tc one-byte field ccn- I 
Itaining hEoder character, if i 
I specifie(j I 
t---- - ---- .. _- -.. _--.- .--._-.. . . -.-- -·----1 
jPointer to variable-lenqth fieJ_cl I 
I (with IT.axiwum of ejght t:vtes) I 
I cont i~ in i n0 Ildme () f 11!JC1~' 

I rCIlt.i Jl", if '3pt"ci j jyr! 
I 
I . ____ J 



output: The index CHASLX to be used in the 
subsequent retrieval of information from 
the symbolic library. 

Modules called: 
VAM 
FINDJFCB 
OPEN 
FIND 
GET 
PUT 
STOW 
CLOSE 
User's scan routine (if scan ortion is 
specified) 

Exits: 
Normal - return to calling program 

Error 
1. If the same name is specified more 

than once, SYSXBLD terminates. 

2. If an unreadable record is encountered 
in the source member, control is 
transferred to the SYNAC exit. 
SYSXBLD provdies no SYNAD exit for the 
CHASLX DCB; any unrecoverable I/O 
error associated with CHASLX invokes 
the systere error rrocedure. 

Operation: FINDJFCB is used to determine 
the nature of the symbolic comronent; it is 
assumed that this data set has been 
described by a DEFINE DATA command with the 
ddnarre SOURCE. The data set is opened and 
a FIND is issued for the member. GETMAIN 
obtains a page of virtual storage for the 
terrpcrary index. The VISAM GET rr,acro 
instruction (locate mode) is used to obtain 
d line from the symbolic component. If an 
unreadable record is encountered, control 
is transferred to the I/O error routine 
(IOERR) by means of the SYNAD exit in the 
DCB; GATWR is used to write an error mes­
sage, and exit is made. Upon normal exit 
from GET, the input parameters are checked 
to determine the option selected - scan or 
header. 

If scan was supplied, a CALL is made to 
the named routine. If the user's scan rou­
tine determines that no entry is to be 
rlaced in thE index for a given line, it 
returns with a code of O. If a narre and 
line number are to be placed in the index, 
the AETI (add entry to index> subroutine is 
aIled to supply the appropriate entry to 
TINDEX. A return code of entries 4 or 8 is 
returned. 

If the return code is 4, SYSXBLD returns 
to the user's scan routine to obtain a 
synonym for the entry. This process is 
repeated as long as the user's scan routine 
returns a code of 4. (Note that it is the 
user's responsibility to avoid an infinite 
loop here.) The user must also make cer-

80 

tain that the correct retrieval liDe nu~ter 
fainter is returned in the pararreter list. 
This retrieval line number must be that of 
the first symbolic statement to be input 
following a CALL to SYSEARCH for a given 
name. Consequently, it is the first sym­
colic line of a parcel following the line 
containing the parcel name; the user's scan 
routine must get the former line to obtain 
the appropriate line numcer. For this 
reason, and so that the user can obtain 
synonyms already in the symbolic component, 
the DCB location is given in the CALL to 
the user's scan routine. 

If thE user's scan routine returns a 
code cf 8, SYSXBID makes the approrriate 
entry in TINDEX, gets the next source line, 
and then calls the user's scan routine as 
described in the previous paragraph. 

If the user supplied a header character 
in the CALL to SYSXBLD, the character is 
corrpared with the first byte of the symbol­
ic line. When an equal comparison is made, 
the narre is placed in LIST; this name 
begins in the second byte of the syrrbolic 
line. The length of this name is given in 
the CALL to SYSXBLD. Note that the names 
are not placed in the index at this time, 
since this header rray be irr@ediately fol­
lowed by other headers carrying synonymous 
nanes. 

Entering of names in the index is post­
poned until a non-header is encountered, so 
that the correct retrieval line number may 
be obtained. When a non-header line is 
encountered, the list of names is dequeued. 
and AfTI places the names in the index. 
GET then ottains the next source line. 

This process is repeated until there are 
no more symbolic lines to process; the 
EODAD exit in the DCB associated with the 
SOURCE data set is then taken. The SOURCE 
DCB is closed, dnd the DCB associated with 
the index is opened. FINDJFCB is used to 
determine the nature of the index. Me~bers 
of partitioned data sets are located by the 
FIND macro instruction, which also indi­
cates if the merrber is new or a replace­
ment; this influences the type of STOW 
rracrc instruction to be used later. For 
replacement rrembers, a SETL macro instruc­
tion is iSSUEd to position to the beginning 
of the index. PUT (locate mode) is then 
used to obtain the address of this index. 

The length of the entry is extracted 
from th~ o~erdnd field of the CALL macro 
instruction. LINK, a link pointer to the 
next-higher entry in the index, is estat­
lished. The entries are placed in the 
index until LINK attains a value of zero, 
indicating that the highest value name has 
teen reached. Processinq is then ccrr~lete. 



AE~I SUBROUTINE: The add entry to index 
routine (AETI) is an internal sutroutine 
used exclusively by LOOP. AETI shares the 
PSECT used by SYSXBLD. It expects a param­
eter list containing the location of the 
name to be an index and the location of the 
associated retrieval line number. 

Entries are made in a temporary index 
(TINDEXJ, not in the final index. Entries 
in TINDEX are ordered rhysically in the 
order of submittal, but are linked together 
by ascending EBCDIC collating sequence. 
TINDEX entries contain: 

1. A left-adjusted p~rcel name (NAME), 
the length of which was specified in 
the CALL to SYSXBLD. 

2. The retrieval lin. number (RLN) con­
tained in dn 8-byte EBCDIC field. 

3. A link pointer (LiNK) to the highest 
name in ascending EBCDIC collating 
sequence contained in a 4-byte field. 
The highest value name has d zero link. 

AETI Ilaintains NEX'l', a [ointer to the 
first unused byte in TINDEX. Since the size 
of TINLEX is not predictable, the GETMAIN 
macro instruction is used. as needed. to 
acquire udditional working :;torage. 

The SYSEARCH routine is used to locate 
1niormation ~tor~d in d symbolic library. 
(See Chart Fe.) 

Entry Point: SYSEARCH 

Input: Register 1 cuntdins the add res!; uf 
this list. 

r---------------------------------, 
~ord 1 IAddress of the index corr~onent ofl 

Ithe library to l~ searched. I 
~---------------------------------~ 

Word 2 IAddress of first byte of name to I 
tbe located. This ndm€ ~ust ~e ofl 
Ithe length ~~ecified to SYSINDEX I 
lor SYSXLLD dnd must te left- I 
I justified with truiling blanks. I 
t---------------------------------~ 

Word 3 ILocation at which SYS~RCH is to I 
lstore the retrieval line number I 
lit utt.:..ins. I l _________________________________ J 

output: If the index entry is found. 
SYSEARCH places the retrieval line number 
at the location specified by word 3 of the 
inFut raraffieter list and returns with a 
code of O. If the name does not exist in 
the index, return is made with a code of 4. 

Exi!: Ncrrr,al - return to calling routine 

Operation: SYSEARCH executes a convention­
al binary search using the starting point 
(SLXSSP) established by SYSINDEX or 
SYSXEL:C. 

DELTA, the increment value used in the 
tinary search, is initially set to a value 
cf SLXSSP-4tSLXNLN. SLXNLN is the length 
of a line in the index. The input name is 
COil Fared with the name retrieved from the 
index. If an equal comparison is aade, the 
line nunter is returned to the calling pro­
gram. SYSEARCH exits with a return code of 
o. 

If an unequal comparison is made, DELTA 
is divid€d by 2 (by a shift-register 
instruction) and added to, or subtracted 
from, the current [osition Fainter (regis­
ter 15), deFending on whether the routine 
rrust Ir.uve forward or backward in the index 
to find the desired name. The current 
ro~iticn fOinter is initialized to the 
Linary search starting point. 

The inFut name is compared to the index 
name indicated by register 15. If the 
input name is greater, SYSEARCH moves for­
ward in the index; if the input name is 
less, SYSEARCH moves backward. Register 15 
is adjusted and the compdrison refeated. 

On an equal ccrr'Farison, SYSEARCH rlaces 
the retrieval line number associated with 
the inrut ndffe at the location indicated by 
word 3 of the infut parameter list, sets 
the return code to 0, and exits. If DELTA 
reaches a value of SLXNLNf8, the infut name 
does net exist in the index. SYSEARCH 
exits ~ith a return code of 4. 

Section 6: SYlI'vclic Library Service RontinE::s 81 



SECTION 7: CONTROL SECTION STORE ROUTINE 

The Control Section Store routine pro­
cesses user requests made through the 
CSTORE macro instruction. During program 
execution, any set of contiguous virtual 
storage bytes may be transformed into an 
object module consisting of a single con­
trol section. The module is sto~ed in the 
current JOBLIB. It can then be loaded by 
the program that created it, or by a subse­
quent program. When the module is loaded, 
no relocation takes place; therefore, it 
may contain no relocatable items. 

The resulting module will consist of an 
unnamed control section which contains a 
copy of the hexadecimal text beginning at 
the page boundary preceding the address 
specified as the starting address parame­
ter, and terminating at the page boundary 
following the address computed froffi the 
fourth parameter. Thus the resulting con­
trol section will always be an integral 
number of pages in length. 

When the module is loaded by the user, 
the module name, as well as the entry point 
name, will point to the address computed by 
adding to the address of the new module the 
page offset (if any) implied cy the start­
ing address. For example, assume that the 
user requests that a control section of 
4048 bytes be created from the bytes begin­
ning at virtual storage address 50050. 
Also assume that the new module is later 
loaded at 70000. The loaded module and 
control section will occupy the full two 
pages beginning at 70000. The second page 
is required so that the new control section 
will include the last two bytes requested 
by the user. The module and entry point 
names will both point to 70050. 

Maximum control section size is one 
segment. 

CONTROL SECTION STORE (CZCKZ) 

The Control Section Store routine is a 
privileged. reenterable, public system rou­
tine which permits the user to create a 
control section during program execution. 
(See Chart GA.) 

Entry Point: CZCKZ, type I or II linkage 

Input: General register 1 contains a 
pOinter to the following parameter list: 

82 

r-------T---------------------------------, 
'Word Icontents I 
.-------t---------------------------------~ 
11 and 21Module Name , 
~-------+---------------------------------~ 
13 and 41Entry Point Name , 
.-------t---------------------------------~ 
I 5 IVirtual storage address of first I 
, I byte of text I 
.-------t---------------------------------i ,6 ILength of text, in bytes I 
.-------t---------------------------------~ 
I 7 Icontrol section attribute code. I 
I I as follows: I 
I I I 
I iBit 24 on - System I 
I IBit 25 en - Privileged I 
I iBit 26 on - Common I 
I IBit 27 on - Prototype (PSECT) I 
I IBit 28 on - Public I 
I (Bit 29 on - Read-only I 
I IBit 30 on - Variable length I 
I IBit 30 off - Fixed-length I l _______ i _________________________________ J 

Restrictions: The module name and entry 
~oint na~e must ce unique in the job 
library. The control section to be created 
rrust not ce more than a segment in length. 

Modules Called: 
CZCLJI (OPEN) 
CZCLB (CLOSE) 
CZCOJ (F IND) 
CZCOK (STOW) 
CZCOS (PUT) 

To detect duplication and 
to place the created 
~odule in the litrary 

Exit: Return, with register 14 containing 
the exit address, and register 15 contain­
ing one of the following return codes: 

00 normal return 

04 rr,odule name or CSECT name already in 
use. 

CFeration: This routine receives input 
~ararneters passed to it ty the CSTORE macro 
instruction. After opening the DCB for the 
current job licrary, it checks for poten­
tial duplication of the module and entry 
point names by issuing a FIND. If duplica­
tion exists, the DCB is closed, the return 
code in register 15 is set for duplication 
(X '04'), and the routine exits. 

The PMD is no~ constructed in this rou­
tine's PSECT work area. The def for the 
CSECT is given a name of eight hexadecimal 
zeros, and V- and R- value displacerr,ents of 
zero. 



The offset between the address given as 
the third parameter and the preceding page 
boundary is installed as the V- and R­
value displacements in the def for the 
ent.ry point name. The ref for the module 
name (standard entry point) is set to name 
this def. 

The new PMD and the s~ecifi€d text are 
flaced in the current JOELIB with succes­
sive calls to move mode PUT. 

The STOW routine is then called to enter 
the specified module name in the POD as the 
n,ember narre. and the sr.;€cified entry point. 
name as an alias. 

The DeB is closed. the register 15 
return code set to zero. and the routine 
exits. 

section 7: Control Section Store Routine 8~ 



SECTION 8: SERVICEABILITY AIDS 

The serviceability aids corlsist of rou­
tines recording error information, routines 
retrieving error information, and a time 
conversion routine, SYSTIME, which converts 
time from machine format to EBCDIC time and 
date. 

ERROR INFORMATION RECORDING ANC RETRIEVAL 

During the course of TSS/360 operations, 
a history is maintained of the environment 
of the system at the occurrence of any 
hardware failures or major software errors. 
The pertinent information for each error -­
error indications, machine status informa­
tion, instruction retry data -- is 
collected by various TSS/360 programs and 
recorded on the paging drum for later 
retrieval and analysis by the Customer 
Engineer. 

The paging drum is formatted so that 
following every page of 4096 bytes there is 
an unused record of 246 bytes into which 
error statistics may be ~laced. The error 
environment information is recorded on the 
even numbered records cn each track. The 
first of these records (track 0, record 2) 
contains a pointer to the end of the error 
information on the drum, as well as some 
summary information. Ap~roximately 192,000 
bytes, capable of storing information about 
500 error incidents, are available per pag­
ing drum. If additional incidents occur 
after the recording area is full, further 
recording will be bypassed until a retriev­
al program is run, freeing the recording 
area. 

ERROR INFORMATION RECORDING 

Machine checks resulting from central 
processor and storage unit hardware 
detected errors, system errors, and solid 
outboard errors on direct access devices 
are accumulated and recorded on the paging 
drum by the system error recording and 
retry (SERR) frogram. 

The virtual memory statistical data 
recording (VMSDR) and virtual rr.emory error 
recording (VMER) programs are called when a 
task I/O retry operation for a sequential 
device either ends successfully (intermit­
tent error) or with error af~er a pre­
scribed number of retries (solid error). 
VMSDR accumulates intermittent error infor­
mation on the statistical data table (SOT), 
and calls VMER to record error information 
on the paging drum when a SDT field over-

84 

flows or in the case of a solid outboard 
error. VMER is also called by SAM posting, 
TAM posting, MSA~ posting, and RTAM report­
ing interface routines in the event of a 
solid inboard error. 

ERROR INFORMATION RETRIEVAL 

Two programs have been developed for 
retrieving the information from the drum. 
organizing the data into a usefUl format, 
and sending it to an output device. The 
first of these, virtual memory envircnrr.ent 
recording edit and print (VMEREP), runs as 
a virtual storage program under the Tirr,e 
Sharing System. The second program, 
environment recording edit and print -­
~odel 67 (EREP67), is a stand-alone program 
operating in real core. These retrieval 
~rograms are reserved for the use of the 
customer engineer. 

VIRTUAL STORAGE I/O OPERATION AIDS 

Two 1/0 operation aids are fundarrental 
to virtual storage error recording and 
retrieval: the I/O request control block 
(IORCB) and the I/O statistical data table 
(SDT) • 

1/0 Request Control Block (IORCB) 

The IORCB is the basic 1/0 communication 
link between virtual storage and the resi­
dent supervisor. A virtual storage program 
requests the execution of an I/O operation 
ty issuing the LOCAL supervisor call. Fol­
lowing the LOCAL is a variable length pa­
rarreter list termed the IORCB. 

The IORCB is variable in size, but the 
first 80 bytes are considered to be a fixed 
length sub-area whose internal fields are 
all in fixed and known locations relative 
to the teginning of the IORCB. There are 
three variable sub-areas: 

• Cata buffer 

• Page list 

• CCW list 

The page list has a maximum size of 
eight doublewords. The maximum collective 
size of the three sub-areas is 1840 bytes. 



I/O Statistical Data Table (SD'r> 

The I/O statistical data table (SDT) 
accumulates statistical data on outtoard 
failures of task I/O devices. The SDT con­
tains one statistical data record (SDR) 
entry for each task I/O device on the sys­
tem. Each of these SDk entries consists of 
statistical data on outboard failures of 
the associated task symbolic I/O device. 

Fields in the SDT are: 

SDTLSD - Length of an SOR entry (72 tytes) 

SDTLBA - Address of byte following last 
byte of SLT 

SOTSDA - Symbvlic device address 

SDTFB - Flag bytes (Example: write-to­
operator flag) 

SDTLP - Last path used (actual 1/0 
address) 

SOTEIC - Total error incident count 

SDTRE.T - Total retry count 

SDTRTH - Retry threshholds (specific error 
condition for device) 

SDTTSl - Time stamp at error n-·2 

SDTTS2- Time stamp at error n-l 

SDTTS3- Time stamp at error n 

SDTSDB - SDR save area (64 half-bytes)- a 
4-bit frequency counter for each 
bit of sense data 

If an SOT field (bucket) overflow 
occurs, the SDR entry of a symbolic I/O 
device is written on the drum for preserva­
tion recording. 

Virtual Memory Statistical Data Recording 
(CZCRY) 

The purpose of the virtual memory sta­
tistical data recording (VMSOR) subroutine 
is to accumulate error statistics on task 
I/O devices in the statistical data table 
(SOT). VMSDR is a privileged, reenterable 
subroutine operating in virtual storage, 
and is called by SAM posting, TAM posting, 
MSAM posting, and RTAM reporting interface 
routines when a task I/O retry 0feration 
either ends successfully (intermittant out­
board failure) or is comfleted with error 
after a prescribed number of retries (solid 
outboard failure). (See Chart HA.) 

Entry Point: CZCRYY, type-l linkage, via 
CALL macro. 

Input: Register 0 contains the following 
Ecrror codes: 

1 - intermittent outboard error. 
2 - solid outboard error. 

Register 1 contains a full word rointer 
to the failing ccw address in the IORCB. 

Modules Called: 
CZCRXI - Virtual memory error recording 

(VMER) - generates I/O error rec­
ords to be output on drum via drum 
access module (DRAM), and informs 
or-erator of the failing task I/O 
comr-onent if the immediate rerort 
flag is on for the device. 

CZAB(..l - Write to cperator (WTO> - trans­
mits a rressage to the main or-era­
tor control program (MOCP) which 
will r-rint the message on the 
or-erator's terminal. 

fxits: 
Normal - when recording is comr-leted. con­

trol is returned to the caller via 
a RETURN. 

Error - if the statistical data reccrd 
(SDR) entry for the failing device 
cannot be found in the SOT, a 
SYSERR of the minor software error 
type is invoked, followed ty an 
ABEND rracro. 

Operation: VMSDR is called by the fosting 
routines to record hardware outboard errors 
on I/O devices. The posting routines dis­
tinguish between two types of errors; solid 
and intermittent. VMSDR recognizes four 
types cf errors; solid, immediate report, 
critical interrrittent. and statistical data 
recording. 

A solid error (call type 2B) is any 
error which was not recovered from after a 
specified number of retries by the access 
method. Intermittent errors are those 
which have been recovered from 
sUCCEssfully. 

If the irrmediate report flag is on in 
the SDT entry all intermittent errors for 
that device will be recorded as irrmediate 
report errors (call type 26l). If the 
irrrrediate re~ort flag is not set, a test is 
rrade to determine if the error is anyone 
cf five critical errors on direct access. 
Critical direct access errors are recorded 
as intermittent errors (call ty~e 2F). 

If the error is neither a solid nor 
critical error and the immediate report 
flag is off, the statistical data tatle 

Section 8: serviceability Aids 85 



entry for the device will te updated and 
tested for bucket overflow. 

Updating the SDT tatle consists of re­
cording the current system time if this is 
the first error incident (indicated hy a 
zero error incident count) and incrementing 
the error incident count ty one. The 64 
sense bits are checked individually and the 
corresponding SDT bucket is incremented by 
one if the bit is on. There are 64 buckets 
of a half tyte each. An overflow indicator 
is set whenever a bucket valul. reached 15. 
In the event of bucket overflo~ an SDR 
error (call type 2A) will he recorded. 

If there is no overflow VMSDR sets the 
retry count in the SDT entry to zero thus 
completing the update of the statistical 
data table. VMSDR then returns control to 
the posting mcdule. 

If the error was solid, immediate 
report, or intermittent, or if there is a 
bucket overflow condition, the retry count 
remains in the SDT and the last path is 
moved from the IORCB into the SOT. The pa­
rameter list is completed and a call is 
made to VMER to record the error on the 
drum. On return from VMER a test is made 
for error type. If the error was either an 
immediate report or SDT type, the SDT buck­
ets and error incident count are reset. 
The retry count is then reset and a return 
is made to the posting routine. 

Virtual Memory Error Recording (CZCRX) 

Virtual memory error recording (VMER) is 
a privileged, reenteratle, subroutine, 
operating in virtual storage, which informs 
the operator of the failing task I/O com­
ponent and generates I/O error records that 
are to be output for preservation recording 
on drum via the drum access module (DRAM). 
VMER is called by VMSCR in the event of a 
solid outboard failure or an SDR hucket 
overflow, and by SAM posting, TAM posting, 
MSAM posting, and RTAM reporting interface 
routines on a solid inboard failure of a 
task I/O operation. (see Chart HB.) 

Entry Points: CZCRXI - Entry from virtual 
memory statistical data recording (VMSDR) 
to form the I/O outboard error record 
(CHADER) and reset to zero the SDR buckets 
in the SOT entry. Type-I linkage, via CALL 
rr.acro. 

CZCRX2 - Entry from SAM rosting and TAM 
error posting routines to form an I/O 
inboard error record. Type-I linkage, via 
CALL macro. 

CZCRX3 - Entry from task monitor to call 
DRAM for recording I/O error records on 
drum. This is a queued linkage entry. 

86 

CZCRX4 - Entry from Main Operator House­
keeping Routine (MOHR) to initialize the 
drum index if it is invalid. 

Input: Upon entry at CZCRX1, register 1 
~oints to a parameter list which contains 
the fOllowing: 

Word 1 - SeT entry address of failing 
component. 

Word 2 - Failing CCW address (zero if 
unpredictable) • 

word 3 - Sense bytes 0-3. 

word 4 - Sense bytes 4-7. 

word 5 - One of the following error codes: 
X'OO' - call type 2B solid error 
X'OB' - call type 26 immediate 

rer;ort error 
X'IO' - call type 2F intermittent 

error 
X'l8' - call type 2A SDA error 

word 6 - Address of SDAT entry for failing 
comr;onent. 

Upon entry at CZCRX2, register I r;oints 
to a parameter list that contains the 
following: 

Word I - Address of failing CCW (Zero if 
unpredictable). 

word 2 - Pointer to failing symbolic 
address. 

Upon entry at CZCRX3, register 0 con­
tains 22 minus the buffer number tc be re­
corded. Register 1 contains the address of 
the page containing the buffer. 

Cutput: If VMER is entered from VMSDR, and 
if the immediate report flag is on, the 
following message is printed on the opera­
tor's terminal for all solid outboard 
errcrs: 

I/O OUTBOARD ERROR ON SDA XXXX,SOLID 

For all other outboard errors the message 
is: 

I/O OUTBOARD ERROR ON SDA XXXX,I.R. 

The variable is the symbolic device 
address field taken from the SDT entry for 
the device in error. 

If VMER is entered from a posting rou­
tine, and if the irrmediate report flag is 
cn, the following message is printed on the 
operator's terminal: 

I/O INBOARD ERROR ON LP XXXX 



The variable is the last path used taken 
from the SOT entry for the device error. 

~odules Called: 
CZASY - Drum access module (DRAM) - outputs 
I/O error records on the dummy spaces on 
t.he paging drum. 

CZABQl - Write to operator (WTO) - trans­
mits a message to the main operator control 
program (MOCP) which will print the message 
on the operator's terminal. 

CZGG2 - GETMAIN routine used to allocate 
space for buffering data which is to be 
recorded. 

CZGG3 - FREEMAIN routine used to release 
buffer space when no lcnger required. 

CZCJTQ - Queue linkage entry routine used 
to set up later entry at CZCRX] by task 
monitor. 

Exits: 
Normal - (After entry at CZCRXl or CZCRX2) 

When Queued Linkage entry has been 
set up, VMER returns to caller via 
RETURN. 

(After entry of CZCRX]) After I/O 
error records havE been recorded 
on drum, VMER returns to caller 
vja RETURN. 

Error - It an I/O error occurred while 
outputting the I/O error records 
on drum, the following message is 
printed: 

I/O DRUM FAILURE ON SOA XXXX 

If no available drum path can be 
located, the following message is 
printed on the operator's 
terminal: 

NO DRUM PATH AVAILABLE 

If the drum used for recording is full, the 
fcllowing message will be issued: 

DRUM OVERFLOW ON SOA XXXX 

operation: When VMER is called by VMSDR to 
format and record task outboard errors, the 
code in word five of the parameter list is 
used to set the proper error type in the 
outboard error record. Error information 
is moved from the SDT entry for the failing 
task I/O device and from the IORCB in the 
interrupt storage area and the ISA to the 
outboard error record. An in-line routine 
is then entered to determine the proper CCW 
list, failing CCW, number of CCWs, and OER 
record length all of which are then stored 
in the outboard error record. If the fail­
ing CCW is unpredictable all of the CCWs 

(up to a maximum of 10) are saved in the 
error record. If the failing CCW is known 
and its relative number is 10 or less, all 
the CCWs (up to a Iraximum of 10) are saved 
along with a pointer to the failing CCW. 
If the failing CCW is known, but its rela­
tive nUIf\ber is greater than 10. the number 
of CCWs and relative number of the failing 
ecw are both set to 10 and the failing CCW 
and the nine CCWs preceding it are saved in 
the outboard error record. 

If the failing device is tape or disk. 
the volume 10 and th(~ current system time 
are put in the outboard error record. Cur­
rent systew time reflects the time of the 
last error for an SDR record or the time of 
€:rrer for the other types of task outboard 
errors. 

Wben VMER is called by posting routines 
to record task I/O inboard errors (call 
type 2C) the tiwe of error is put in the 
inboard error record and an immediate 
report message is set up for the operator. 
The CSW, Channel log, user 10, last fath, 
last seek address, and SDA are stored in 
the inboard error record. If the failing 
ecw is known the CCws are moved to the 
inboard error record. 

The remaining procedure is the sane fer 
toth types of entry (CZCRX1 and CZCRX2). 
If the iwmediate report flag is on, the WTO 
nacre is invoked to transmit the message to 
the main operator control prograw which 
prints the message out on the operator's 
terminal. 

If there is no tuffer space available, 
the GET~AIN routine is called to allocate a 
page for use as buffers. The I/O error 
information to be recorded is moved into an 
availatle buffer space and a queued linkage 
entry is set up to provide a letter entry 
ty task rronitor at CZCRX3. The parameters 
required to locate the buffer are also pro­
vided. VMER then returns to caller via 
RETURN. 

Task monitor then calls VMER at CZCRX3 
and passes the parameters used to locate 
the cuffer containing the I/O error infor­
rraticn tc be recorded. 

A CCW list is constructed for a channel 
frograffi to locate and read in the environ­
ITIent recording (ER) index record. The CCW 
list is descrited in the drum access module 
(DRA~) description. The drum access module 
(DRA~) subroutine is then called to execute 
the channel program. 

Upon return from DRAM. the return code 
is checked to determine if the file protect 
tit is on (set to one), indicating that the 
task-supervisor interlock is locked or the 
task-task interlock is locked for another 

Section 8: Serviceability Aids 87 



r---------T----------------------T------------------------------------------------------, 
IConditionl I I 
I code I Error I Recovery Procedure I 
t---------t----------------------t------------------------------------------------------~ 
I 1 ISIO instruction r€jectlGenerate message to cperator informing him of drum 1/01 
1 I I failure. I 
t---------t----------------------~ 1 
I 2 10peration complete IIssue RDI and return to caller. I 
I ,with error I I 
t---------t----------------------t------------------------------------------------------~ 
I 2 I Drum Path unavailable I Get new drurr. SDA frOlf first half word of parameter I 
I' Ilist and repeat recording sequence. If new SDA is I 
I I Izero, issue RDI and inform operator that no drum path I 
I: I is available. I L ________ i-_____________________ L ______________________________________________________ J 

Figure 8. DRAM Condition Code Recovery Procedures 

task. If the file protect bit is on, the 
sequence of operations beginning with the 
construction of a CCW list is repeated. If 
net, the condition code is checked to 
determine if the I/O operations have suc­
cessfully completed. If successful, a 
check is made to see if the time stamp 
exists. If there is nc time stamp, the 
current system time is obtained via the 
REDTIME macro and stored in the index time 
stamp. If the index record is invalid, it 
is initialized and the current system time 
is stored in the error index time stamp. 

DRAM is then called to read the first 
available 246 byte dumrry record from the 
drum. The error record is moved from the 
error buffer to the dummy record. 

If the entire record did not fit in the 
dummy record, DRAM is called to write the 
dummy record onto the drum and the record 
number portion of the index is updated. 
The remainder of the error record is then 
moved to the drum buffer and DRAM is called 
again to write the next durrmy record on the 
drum. 

If the entire record fits in the dummy 
record which was read, DRAM is only called 
once to write the dummy record on the drum 
and the record number is left unchanged. 

The byte count portion of the index 
record is updated and DRAM is called to 
write the index back onto the drum. 

If the condition code indicates that I/O 
operations have not been successfully com­
pleted, one of the following recovery pro­
cedures is taken, depending upon the condi­
tion code returned by DRAM. See Figure 8. 

When the I/O error record has been re­
corded on the drum, VMER resets the task 
interlock by issuing the extended instruc­
tion RESET DRUM INTERLOCK (RDI). If the 
buffer which was recorded was the first 
buffer in the buffer page, the page is 

88 

released cy calling the FREEMAIN routine. 
VMER then returns to the caller via RETURN. 

When VMER is called by the ~ain Operator 
Housekeeping Routine (MOHR) during the 
startu~ ~rocessf entry point CZCRX4 is 
used. A flag is set to indicate entry from 
~OHR, and a branch is made to the routine 
normally entered at CZCRX3. The drUIf index 
is read, and the current system tirre is 
stored in the index record. The updated 
index record is written on the drurr, the 
drum index interlock is reset. and control 
is returned to ~OHR. 

[rum Access Module (CZASY) 

The drurr access module (DRAM) is a spe­
cial purpose, ~rivileged, closed, reenter­
able, virtual storage subroutine provided 
for the use of those virtual storage pro­
grams, such as VMER and VMEREP. which Uoust 
access the error records stored on the 
dummy spaces of the paging drum. This spe­
cial access method is needed primarily to 
prevent interfering with the drum paging 
operations. (See Chart HC.) 

Entry Point: CZASYl - Type-l linkage, via 
CALL macro 

Input: Register 1 contains a pointer to a 
location containing a pointer to a parame­
ter list which contains the following: 

r-----------------------------------, 
byte 10 1 2 3 I 

t--------------r----------T---------~ 
Word 1 I Device Addressl Flags. ICCW Count I l _____________ -i __________ i _________ J 

*cit 2 of the Flag Byte contains the 
-ignore sick unit" indication. 

The rerraining input parameter list is in 
the form of a CCW list: 



r----------------------------------, 
Word 2 I First CCW I 

t----------------------------------~ 
I I 
I I 
t----------------------------------~ 

Word n I nth CCW I L __________________________________ J 

CCW n must be a NOP VCCW. 

output: Register 1 is returned to the 
calling program unchanged; the parameter 
list is unchanged, except for the following 
changes in Word 1: 

Flag Byte: 

I!i t(s) 
o 
1* 
6,7 

Meaning 
File protect was on. 
Device address has been changed. 
Condition Code after S10: 

-00-
-01-
-10-
-11-* 

Operation complete 
Error after SIO 
Complete with error 
Drum unavailable 

* In the event that condition code 3 has 
been received, a new device address is 
returned in bytes 0 and 1 of Word 1. 

Modules Called: lOCAL (SVC) - called to 
initiate the I/O operation. 

Exits: 
Normal - when I/O operations are complete, 

DRAM RETURNs to caller. 

Error .- when I/O operations are either 
complete with error or incomplete, 
DRAM RETURNs to caller with condi­
tion code indications. 

operation: The calling routine provides 
DRAM with a CCW list, which is used to 
build an I/O request control block (IORCB). 
A page list for the IORCB is constructed by 
inserting the high-order 20 bits of each 
CCW address into the list. The origin of 
the CCW list is calculated, and each output 
CCW is created relative to the page table. 
The length of the IORCB is then calculated 
in 64-byte blocks, and, when creation of 
the IORCB is complete, the I/O operation is 
initiated by executing an lOCAL SVC. 

A special DRAM flag bit (IORAMM) is set 
in the IORCB to notify the page drum queue 
processor and other programs concerned that 
the call is from DRAM. When th€~ I/O opera­
tion completes, the DRAM posting routine 
(CZASX) is given control. When posting is 
completed, control is returned to DRAM, 
which determines if a new device address 
was posted, as indicated in the condition 
code bits of the flag byte. 

If a new device address was posted, the 
new one is placed in the first two bytes of 
the r:ararreter list; otherwise, these bytes 
renain unchanged. The appropriate flags 
and CCw count are inserted, paraweters 
replaced. and the registers are restored. 
DRAM then RETURNs to the calling program. 

Virtual ~emory Environment Recording Edit 
and Print (CZASE) 

Virt.ual memory environment recording 
edit and print (VMEREP) retrieves, forrrats, 
and Frints the environment recording infor­
nation stored on the paging drum. VMEREP 
is a non-reenterable, privileged, virtual 
storage service routine reserved fer the 
custcmer engineer. The routine receives 
job requests from the C.E. or a user with 
a privilege class of A or E, and communi­
cates with him via the GATE subroutine 
(CZAAB). (See Chart HD.) 

Entry Point: CZASEl - Type-I linkage, 
VMEREP conrr,and. 

via 

Input: Error history reports located on 
the dummy spaces on the paging drun. 

Output: Formatted reports are sent to 
[rinter or SYSOUT. 

Modules Called: 
CDEF (CZ~EA) - Obtains use of printer for 
output. 

CPEN (CZCEA) - Opens output data set. 

CRAM (CZASY) - Accesses error records on 
raging drum. 

CLOSE (CZCLB) - Closes output data set. 

RELEASE (CZAFJ) - Releases DDEF for 
printer. 

GTWSR (CZATC> - COIr.municat.es with C. E. or 
user. 

Exits: Normal - Exit is made when user 
enters job request END. 

Operation: After identifying himself as a 
C.E. or user with proper rrivilege class, 
the C.E./user enters the command verb 
VMEREP which is interpreted by CLI. VMEREP 
is then trought intc the system and given 
control. The C.E. then enters the follow­
ing information via the console typewriter: 

• Symbolic Device Address of the paging 
drum. 

• ,Job Request. 

Sec~ion 8: Serviceability Aids 89 



If the desired output device is a print­
er, the VMEREP routine calls DDEF (CZAEA) 
to obtain a printer. 

The job request specifies the type of 
information to be retrieved, and the 
options applicable. The following job 
requests and options are valid: 

LIST FAILURES - Lists all errors recorded 
on the drum by record-id and error type. 

PRINT INDEX - Print contents of the index 
record (track O. record 2). 

PRINT ALL - Print contents of the index 
record and all error information on the 
drum. 

PRINT ID HHRRNN - This job request is given 
when information about a particular error 
is desired. HH, RR, and NN are the hexa­
decimal values of the track number, head 
number, and byte number respectively. 

SEARCH CSEE - This request is used when a 
particular class of errors is to be re­
trieved and processed. 

C is the CPU number (1-8) to which fail­
ure was atributed. 

S is the storage element identification 
(A-H) to which failure was attributed. 

EE is error type, as follows: 

01 - Internal machine check. 
09 - Multiple internal machine checks. 
26 - Iffimediate reFort. 
27 - paging I/O statistical data record. 
28 Solid Faging I/O outboard error. 
29 External machine check. 
2A Task I/O statistical data record. 
2B - Solid task I/O outboard error. 
2C Task channel failure. 
2D - Paging channel failure. 
2E - Intermittent paging I/O outboard 

error. 
2F - Intermittent task I/O outboard 

error. 
41 - System error. 

Any parameter not used should be replaced 
with an X. 

Example: SEARCH XX29 means print all rec­
ords whose error type is 29. 

RESTART - This request causes VMEREP to 
return to its initial routines. 

RESET INDEX - This request should only be 
used whenever all the data on the drum has 
been retrievEd, so that programs which 
record information on the drum can start at 
the first record (track 0, record 4). 

90 

SET INDEX TO HHRRNN - The pointer in the 
index record is changed to HHRRNN. Any new 
records written on the drum will be re­
corded just after the byte located at track 
HH, record RR. byte number NN. 

SET IR •••• (SDA in four hexadecimal digits) 
- This job request sets the immediate 
report to operator flag in the SDT which 
causes each error for the particular device 
to be recorded. 

RESET IR •• *.(SD~ in four hexadecimal 
digits) - This request causes the immediate 
report flag to be set off. 

END - This job request is used when no 
further requests are to follow, and indi­
cates that data sets should be closed, 
devices relinquished. etc. 

The following options are available to 
the user: 

PRINT ZEROES - This option forces the 
printing of the complete CPU log, zeroes as 
well as non-zeroes. 

Note: This option is applicable only to 
error types 01 and 09 and must be entered 
in one of these three ways: 

SEARCH CSOl PRINT ZEROES 
SEARCH CS09 PRINT ZEROES 
PRINT ALL PRINT ZEROES 

SYSOUT - This option causes the output of 
this jcr request to be sent to SYSOUT 
instead of the printer. 

After the user enters his job request, 
VMEREP retrieves the desired inforrration 
via the drum access module (D~M), formats 
the data, and prints it on the specified 
cutput device. If VMER or SERR stored 
additional information on the drum while 
the serVicing of the jor request was in 
progress, and is applicable to the type of 
information requested, this new information 
is fcrrratted and printed. 

When the job requested has been com­
pleted. VMEREP asks the user for his next 
job request. When no more error data is to 
be retrieved. the user normally issues a 
RESET INDEX job request followed by an END 
request. VMEREP terminates via norreal pro­
gran: end. 

Environment Recording Edit and Print, Model 
67 (CMASN) 

The environment recording edit and print 
program for Model 67 (EREP67) is an off­
line, self-loading, and self-controlled 
prograrr used by the customer engineer to 
edit and print the information recorded on 
the paging drum by error recording programs 



(SERR and VMER). This program does not run 
~ith the TSS monitor. It loads itself into 
storage and operates under its o~n control. 
(See Chart HE.) 

Entry Point: The deck provided is self­
loading. The program is assumed to be the 
sole user of the system at execution time. 

Input: Error information stored on the 
dummy spaces on the paging drum. 

Formatted reports are sent to the output 
device (usually a high-speed printer. 

Assumptions: 

• The ~SS monitor ~ill have to be stopped 
before this program can be used. 

• The EREP67 program ~ill have access to 
paging drum and a print device. 

• EREP67 does not save or restore any 
environment. 

Exits: Ncrmal - exit is made ~hen C.E. 
enters job request END.-

Operation: EREP67 cannot ce run concur­
rently ~ith the TSS/360 monitor, since 
access to the paging device is required. 
After loading the program, the operator 
enters the following information via the 
console type~riter. 

• Address of the paging drum. 

• Address of the output device. 

• Job request. 

The following job requests, which specify 
the type of information to be retrieved and 
the options available, are valid: 

PRINT IN[;EX - Print contents of the index 
record (track 0, record 2). 

PRINT ALL - Print contents of the index 
record and all error information on the 
drum. 

PRINT ID HHRRNN - This job request is given 
when information about a particular error 
is desired. HH, RR. and NN are the hexa­
decimal values of the track number, head 
number, and byte number respectively. 

SEARCH CSEE - This request is used ~hen a 
particular class of errors is to be re­
trieved and processed. 

C is the CPU number (1-B) to ~hich fail­
ure was attributed. 

S is the Storage Element identification 
(A-H) to ~hich failure is attributed. 

E is the error type as follows: 

01 - Internal machine check. 
09 - Multiple internal machine checks. 
26 - Immediate report. 
27 - Paging 1/0 statistical data record. 
28 - Solid paging I/O outboard error. 
29 - External machine check. 
2A - Task I/O statistical data record. 
2B - Solid task I/O outboard error. 
2C - Task channel failure. 
2L - Paging channel failure. 
2E - Intermittent paging 1/0 outboard 

error. 
2F - Intermittent task 1/0 outboard 

error. 
41 - System error. 

Any parameter not used should be 
replaced with an X. 

ExamEle: SEARCH 3XOl means print all type-
01 records pertaining to CPU 3. 

PRINT ZEROES - This option is used in con­
nection ~ith the PRINT ALL, PRINT ID, and 
SEARCH job requests, to force the printing 
of the complete CPU log, zeroes as well as 
non-zeroes. 

RESET INLEX - This request should 2nly be 
used ~henever all the data on the drum has 
been retrieved, so that programs ~hich 
record information on the drum can start at 
the first record (track O. record 4). 

SET INDEX TO HHRRNN .. The pointer in the 
index record is to be changed to HHRRNN. 
Any ne~ records ~ritten on the drmn ~ill be 
recorded just after the byte located at 
track HH, record RR, byte number NN. 

END - This job request indicates that no 
rrore job requests follo~, and that the pro­
gram is to be terminated. 

After the C.E. enters his job reguest, 
EREP67 rEtriEves the desirEd information 
from the paging drum, formats the data, and 
frints it on the specified output device. 
when no more jobs are requested, the C.E. 
normally issues the RESET INDEX job request 
follo~ed by an END request. 

RTAM Error Recording Interface Module 
(CZCTR) 

The RTAM error recording interface 
module (RERIM) is a privileged, reenter­
able, subroutine residing in virtual memory 
which acts as the central point for Fassing 
error information between the RTAM subsys­
terr and the TSS subroutines VMSDR and VMER. 
The purpose of this interface routine is to 
allow terminal error recording information 
to be stored in virtual ~emory and net tie 
up real core space unnecessarily. RERIM is 
passed error information in the MCB wessa-

Section 8: Serviceability Aids 91 



gearea frmf! the real core RTAM error rou­
tine CEATCS. RERIM then analyzes the 
information and passes it on to either 
VMSDR or VMER for recording. (See Chart 
HG. ) 

Entry Points: CZCTR1 - Entry from LOGON of 
Main Operator, and SHUTDOWN. When entered 
from LOGON this entry ~oint is used to 
establish CZCTR2 as the entry point for 
processing external interrupts with code 
value 255. When entered from SHUTDOWN, 
this entry point is used to delete CZCTR2. 
This is a Type-I linkage entry point, 
entered via the CALL macro. 

CZCTR2 - Entry from the task monitor for 
recording external interrupt 255 (X'FF'). 
This is a queued linkage entry. 

Input: Upon entry at CZCTR1, register 1 
contains a value of X'04' if called by 
SHUTDOWN. 

Modules Called: CZCRYY - Virtual memory 
statistical data recording (VMSDR) - to 
accumulate error statistics on task. I/O 
devices in the statistical data table (SDT) 
and to inform the operator of the device 
failure if the system is in the immediate 
report mode. 

CZCRX2 - Virtual memory error recording 
(VMER) - to inform the operator of a solid 
inboard failure of a task I/O operation and 
record error records on drum. 

Exits: 
Normal - control is returned to the calling 

routine via a RETURN macro. 

Error - if CZCTR2 receives control for an 
error other than a solid outboard, 
solid inboard, or intermittent 
error, a SYSER is issued and con­
trol is returned to the caller via 
a RETURN macro. 

- if the SDA of the terminal is not 
found in CHBSOT a SYSER is issued 
and control is returned to the 
caller via a RETURN macro. 

Operation: When CZCTR is entered at 
CZCTR1, register 1 is checked to see if the 
routine was called by LOGOFF. If it was, 
CZCTR1 issues a OIR macro to end CZCTR2 
external interrupt processing and then 
returns to LOGOFF. Otherwise, CZCTR1 
issues a SEEC to create an ICB and a mes­
sage area for external interrupts. CZCTR1 
then issues a SIR designating CZCTR2 as the 
external interrupt 255 handling rO<ltine and 
returns to the caller. 

When CZCTR is entered at CZCTR2 an IT! 
macro is issued to inhibit interrupts. 
CZCTR2 then examines the error recording 

92 

block in the message area defined with the 
SEEC macro issued by CZCTR1. 

If the error is an intermittent or solid 
cutboard error, VMSDR is called to record 
the error information. If it is a solid 
inboard error, VMER is called to record it. 
If the error is none of these, SYSER is 
called to indicate a system error. After 
recording the error information, CZCTR2 
restores ISA fields so they contain the 
sarre information they had when CZCTR2 first 
received control. CZCTR2 then issues a PTI 
to permit interrupts and returns control to 
the task monitor. 

TIME CONVERSION 

SYSTIME ROUTINE (CZCTA) 

The SYSTIME routine is a closed, re­
enterable, nonrecursive, virtual storage 
routine. It is used by the EBCOTIME macro 
to convert time from the format in which it 
is maintained by the system (that is, 
double precision fixed point binary number 
of micro seconds that have elapsed since 
3/1/1900) into various EBCDIC forms of time 
and/or date. The privilege is the same as 
that of the calling routine, implying that 
SYSTIME is a fence straddler. (See Chart 
HF. ) 

Entry Point: SYSKAl via type 1 linkage. 

Input: General register 1 contains a 
pointer to the following parameter list: 

Word 1 Address of a halfword containing 
the length in bytes of the text 
field. Maximum allowable length is 
50 bytes. 

Word 2 Address of the text field in which 
the output of SYSTIME is to be 
placed. 

On input, the text field contains 
special character groups which 
specify to SYSTIME the form that 
its output should have. The spe­
cial character groups are as 
follows: 

yy 
YYY 
MO 
DOD 
DO 
HH 
~M 

SS 
SSS 

SSSS 

Year, from 00 to 99. 
Year, from 1900 to 1999. 
Numeric month. from 01 to 12. 
Day of year, from 001 to 366. 
Day of month, from 01 to 31. 
Hour of day, from 00 to 23. 
Minutes past hour, from 00 to 
59. 
Seconds, from 00 to 59. 
Tenths of seconds, from 000 
to 599. 
Hundredths of seconds, from 
0000 to 5999. 



MON 
DAY 
DAYW 

First 3 characters of month. 
First 3 characters of day. 
First 4 characters of day. 

Word 3 Zero, or the address of a binary 
number to be converted to time and/ 
or date. 

output: All special character groups 
within the text field are converted. All 
characters which are not part ~f the spe­
cial character group are unchanged. Regis­
ter 15 contains the following information: 

Bits 0-15 yy Year, from 00 to 99 in binary. 

Bits 16-31 ddd Day of year, from 001 to 366 
in binary. 

Example: An input text field appearing, 

'MO/DD/YYbHH:MMbHOURS' 

would give the following output from 
SYSTIME: 

'Ol/06/68b23:59bHOURS' 

b = blank. 

If the length field is zero (the field 
pointed to by the first word of the parame­
ter list) or if the text field is zero or 
blank, a default field as follows is 
inserted in the text field, left justified: 

'MO/DD/YYbHH:MM' 

Module Called: REDTIME (CEAR6) Read 
elapsed time SVC. SVC 218. 

Normal - Return to calling routine. 

Error - ERRl ABEND Usinq register notation 
with length greater 
than 50. 

ERR2 ABEND Branch Array R2 value 
greater than 48 (i.e., 
indexing by R2 value 
would exceed length of 
tal:le) • 

Operation: The date and time are cOlTputed 
from the time parameter supplied by the 
user or obtained from the REDTIME macro and 
are converted to the equivalent EBCDIC 
values. 

The input text length is tested for 
zero. If it is zero, the default format of 
time and date is assumed. If the length is 
non-zero, the input field is scanned for 
special character groups. Each tilTe a sfe­
cial character group is found, the appro­
priate date or time EBCDIC value is stored 
as indicated in the text. When the entire 
text has been processed, a return is made 
to the calling program. 

Section 8: Serviceability Aids 93 



SECTION 9: FLOWCHARTS 

The flowcharts in this _nual have been produced by an IBM proqram, using ANSI sym­
bols. The symbols are defined in the left column below, and examples of their use are 
shown at the right. 

94 

SYMlIOL 

ONPAG£ 
CONNECTOR 

orr rAGE 
C0NNEC1"QR ..... . . . . . . 

tNOle 
SWITC 
TIUIT 
A HUM 
PATHS 

DEFINITION 

NG 
OP­

E IN 
ION 

DECISION OR 
PE OPERATroN 

:ME~i~~ Of' 
BE FOLLOWED. 

INDICATES A SUBROUTINE OR 
MODULE THAT IS DESCRIBED 
IN THIS MANUAL 

INDICATES A SUBIWU'tINE OR 
MODULE THAT IS INCLUDED 
IN TlfE FLOWCHARTS or AN­
OTHER MANUAL. 

INDICATES GENERAL 1/0 
FUNCTIONS. SUCH AS GET. 

t~b' o~~~gt-~~n6L S~RO 
INSTRUCTIONS. 

[NDICATES A PROCESS THAT 

t~~~~iM~r~;E~E~~[~A~~ ?~tH. 
MOOtFIES AN INDEX R£GISTER~ 
OR [NITJALIZeS A ROUTI!"lE. 

INDICATES ENTRY TO OR EXIT 
FROM ANOTHEJiI BLOCK ON THE 
SAME FLOWCHART PAGE. 

INDICATES ENTRY TO OR EXIT 
FROM A BLOCK ON ANOTHER 
PAGE OF THE SAME SET OF 
fLOWCHARTS • 

EXAMPLE C'-I!NTS 

Bl: MODNAME IS THE LOAD MODULE OR LrIlRAl<Y 
~\iL.~~E ROUTINE DESCRIBED BY THIS 

=~I. IS THE COMMON NAME OF THE 

O'TIiERHOD INDICATES THE MODULES PASSING 
~~~~ TO THIS MODULE AND THEIR. FLOW-

C3: CSECT IS THE CSECT NAME OR OTHER ENTRY 
POINT AT WHICH PROCESSING BEGINS. 

LABEL 1 IS TK£ LABEL Of' THE FIRST 
INSTRUCTION, 

OJ: PROGRAM EXECUTION CONTINUES wITH BLOCK 

~ll~~E~JT~E~E~~lg~ci~oWtsO~ES. 

El: IS THE LABEL or THE SECTION OF 
N THIS ROUTINE FROM WHICH CONTROL 
SED TO THE SUBROUTINE. CONTROL 
5 TO THE N!XT INSTRUCTION FOLLOw­
£ SUBROUTINE CALL. 

ENTRVPT 15 THE ENTRY POINT. 

SUBRTN I S THE CaM:JN NAME OF THE SUB­
ROUTINE tN FLOWCHART AG. 

VIA: PASSMECH INDICATES HOW CONTROL 
PASSES FROM COMNAM£ TO SUBRTN. 

f3: LA8E THE SECTION or 
eH co I S PASSED 70 THE 

~~ U'Ll~~ti~~IS 
A.LSO BE U ED I N A PROCESS-

G3: E)(EC'UTION CONTINUES WITH BLOCK HJ WHEN 

~:~F.D~('A~I~~I§Sst'S~F~~~A~f:§:-~H~~ ON 
THE DECISION IS NO. 

l~fEgFt&~EE~E~f~~~RC~~~BE~'~fT~NgLOct( 
H 3 FROM ANOTHER PAGE OF' TH I S SET Of' nnw--
CHARTS. THIS CONNECTOR IS ALSO PAIRED 
WITH THE ONP-AGE CONNECTOR FROM S:""OCIC D3. 

H) ~ LABr;L4 I S THE LABEL of A SECT I ON OF CODE 
Of THIS ROlJTlNE THAT INITIATES 1/0. 

J]: NEXTRTN IS THE COMMON NAHE Of' THE ROUT­
INE TKAT EXECUTES AFTER TK15 ROUT[NE. 

~~T~~PI 5 I B£I~II i~bRIN PgA~T O~(' ~EXTRTN. 

~l:~ES P~~~E~~lC~6E~E~~T~~NTROL 



Program Logic Manual 

GY28-2018-3 

System Service Routines 

Flowcharts on pages 95-258 were not scanned. 



Chart HG. RElUM (CZCTR) 

c~~==> 

._B},~l 

'--___ ....J 
---c:~~ 

1 
8 

Section 9: Flowcharts 259 



APPENDIX A: OATA SET CONTROL BLOCK (OSCB) FOIUlAT 

Each SAM direct access volume has a 
volume table of contents (VTOC) that 
describes its contents; the VTOC contains 
all the data set control blocks (OSCBs) for 
the data sets contained on that volume. 

Each"VAM volume has a PAT table describ­
ing whether a page is used for OSCB or 
Data. The VAM DSCBs are of E and F 
formats. 

For SAM formatted volumes, the TSS/360 
OSCB formats are: 

Format-O - an unused OSCB; contains binary 
zeros. 

Format-1 - the data set label for direct 
access volumes containing phys­
ical sequential data sets. (See 
Figure 9.> 

Format-3 - used to describe additional 
extents of a physical sequential 
data set if there are more than 
can be described in a format-1 
OSCB. (See Figure 10.) 

Format-4 - the first OStB in the VTOC. 
(See Figure 11.) 

Format-5 - describes available extents on a 
volume containing physical 

260 

Format-A -

Format-B -

sequential data sets. (See 
Figure 12.) 

the data set label for dire~t 
access volumes containing virtu­
al storage data sets. (See 
Figure 13.) 

used to describe additional 
extents of a virtual storage 
data set if there are more than 
can be described in a format-A 
DSCB. (See Figure 14.) 

Format-c - describes available extents on a 
volume containing virtual 
storage data sets. (See Figure 
15. > 

For VAM formatted volumes, the TSS/360 
OSCB formats are: 

Format-E - This OSCB is used for single or 
mUlti-volume VAM public or pri­
vate data sets. (See Figure 
16. ) 

Format-F - This OSCB is used as an exten­
sion of the format E OSCB. (See 
Figure 17.> 



r------~---------~-------------~-------~--------------T-------------------------------------------, 
I Field I I I I I I 
INumberlField Name IIdentificationlLength 1 Representation I Usage I 
~------t-----------t--------------t--------t--------------t-------------------------------------------~ 
11 IData set IDSCNME 144 byteslalphameric IMay have one of two forms: I 
I I Name I I I (EBCDIC) I I 
I I I I I I 1. User !D.User Name I 
I I I I I ! 2. User ID.User Name.Generation I 
I I I I I! ! 
I I I I I IThe user ID is eight bytes in length. The! 
I I I I I luser name is a maximum of 35 bytes in form I 
I I 1 I 1 !1. and 26 bytes in form 2. The generator 1 
I I 1 1 I lis of the form GNNNNVNN (eight characters) I 
I I I 1 1 Iwhere N is a decimal number. I 
I I I 1 I I 1 
I I I 1 1 I Note:. If a user declares himself an OS/3601 
I j I I 1 luser, the User ID is not concatenated and I 
i f I 1 I Ihe is allowed a 44-character name in form 1\ 
I I I 1 I I and 35 charact.?rs in form 2 - I 
t------t-----------t--------------t--------t--------------t-------------------------------------------~ 
12 I Format I DSCFID 11 byte I hexadecimal !Contains X'Fl' I 
I I Identifier I I 1 I I 
~----+-----------t--------------t--------t--------------+-------------------------------------------1 
13 !Data Set I DSCVSR 16 bytes lalphameric !Used for data/volume relationship_ This I 
I ISerial I 1 1 (EBCDIC) !field contains the volume serial number of I 
I I Number I I I Ithe first (or only> volume which contains I 
I I I 1 I ! the da ta set. I 
~------+-----------+--------------+--------+--------------+-------------------------------------------1 
14 I Volume I DSCVSQ 12 bytes Ibinary I Used to indicate the order of the present I 
I I Sequence I I I Ivolume relative to the first volume, I 
I I Number I 1 I !containing the data set. Range is from I 
I I I I 1 10001 to 9999. I 
~------+---------__+--------------t--------t--------------t-------------------------------------------1 
15 I Creation IDSCCRD 13 bytes Idiscontinuous lyeD where Y=year (0-99) and DD=day (1-366) I 
I IDate I 1 1 binary I I 
r------t-----------t--------------t--------t--------------+---------------------------------------------1 
16 IExpiration IDSCEXP 13 bytes Idiscontinuous iIndicates the year and day the data set may! 
I IDate 1 I 1 binary Ibe purged. Has same form as the Creation I 
I I I 1 I I Date. I 
~------+-----------t--------------t-------t--------------t------------------------"------------------~ 
17a INumber of IDCBNEX 11 byte (binary IThe number of total separate extents in I 
I I Extents on I 1 I I which the data set resides on this volume; I 
I IVolume I 1 I Icount does not include extent describing a 1 
! i I I I I user's label track. I 
t------t-----------t--------------t--------t--------------+-------------------------------------------~ 
17b INumber of 1 DCBFL1 11 byte 1 binary IUsed only for an 05/360 partitioned data I 
I IBytes Used I 1 I Iset. It contains a binary number indicating I 
I I in Last 1 I 1 I the tota 1 number of bytes being used in the I 
I (Directory I 1 I !last available directory block. Value of 1 
I IBlock II! I zero indicates that the last available ! 
1 I I 1 I ! block is not being used. 1 
t------t-----------t-~------------t--------t--------------+-------------------------------------------1 
17c I Spare I DCBSP1 11 t:yte I I I 
t------t-----------t--------------+--------t--------------t-------------------------------------------~ 
18 I system IOCBSCD 113 byteslalphameric 1'10 identify the programming system. Only ! 
I (Code I 1 I (EBCDIC) Icharacters A-Z, 0-9, and blanks are used. I 
t------+-----------t---------------+--------t--------------+-------------------------------------------~ 
19 I Reserved 1 17 bytes I i I 
I (For Future I I I! I 
I IUse 1 1 I! I 
r------+-----------t--------------+--------+--------------+--------------------------------------------i 
110 IFile Type ICCBFTY 12 bytes Ihexadecimal IHex Cod~ Description I 
I I I I I I 4000 Sequential organi zation I 
I I I 1 I I 2000 I:irect Organization I 
I I I I I I 0200 Partitioned Organization I 
I I I 1 I I 0000 Organizat_ion not defined I 
I I I I 1 I 8000 Index Sequential Organization I 
I I I I I I 
I I 1 1 INote: .If bit 7 of byte zero is en, the. I 
I I 1 I I data set descr ibed by this DSCE must rema1n I 
I I 1 I lin the same absolute location of the directl 
I! I I I I access device. I L ______ ~ ___________ ~ ______________ ~ ________ ~ ______________ ~ __________________________________________ ~ 

Figure 9. Format-l DSCB (Part 1 of 4) 

Appendix A: Data Set: Control Block (OSCB) Format 261 



r------y---------T--------'------,--------,--------------,-----------------------------------------, 
I Field I I I I I I 
INumberlField Name IIdentificationlLength I Representation I Usage I 
~------t-----------t--------------t--------t--------------t---------------------------------------~ 
111 I Record I DSCRFM 11 byte I binary I Bi t Binary Code I 
I 1 Format I I I 10,1 10 - fixed-length record (F) I 
I I I I I I 01 variable-length record (V) I 
I I I I I I 11 undefined-format record (U) I 
I I I I I I I 
I I I I I I 2 track overflow feature must be I 
I! I 1 I I used I 
I I I I 1 I I 
I I I I I I 3 blocked (B) 1 
I I I I 1 I I 
I I I 1 I I 4 truncated records in data set (T) I 
I I I I I I I 
I I I 1 I 15,6 10 control character ASA code (A) I 
I I I 1 I I 01 control character machine code (M)I 
I I I 1 I I 00 control character stated I 
I I I I I I I 
1 I I I 1 I 7 Not used 1 
t------t-----------t--------------t--------t--------------t-------------------------------------------~ 
112 IOption I DSCOPT 1 byte I binary IThe 8 bits of this field are used to I 
I 1 Codes 1 I I indicate various options used in building 1 
I I! ! Ithe data set. The bit configuration of I 
I I I I Ithis field is exactly the same as that I 
I I I I Idescribed for the OPTCD field in the DCB. I 
I I I I I Bit 0 of this field is common across the I 
I I 1 1 Ivarious data set organizations, as follows: 1 
I 1 I I 1 I 
I I I I I Bit Description I 
I I I I 10 If on, indicates data set was created 1 
I I I I 1 using Write Validity Check I 
I I I I I I 
I I I I 11-7 reserved I 
~------+-----------t--------------t--------t--------------+-------------------------------------------~ 
113 I Block I DSCBKS 12 bytes Ibinary IBlock length for fixed-length records or I 
I I Length 1 1 1 lmaximum block size for variable-length 1 
I I I I I I records (1-32,767 bytes). I 
~------t-----------t--------------t--------t--------------t------------------------------------------~ 
114 I Record I DSCLRC 12 bytes Ibinary IRecord length for fixed-length records or I 
I I Length I I I Ithe maximum record length for I 
I I I I 1 lvariable-Iength records. (1-32,767 bytes) I 
t------f-----------t--------------t--------t--------------t-------------------------------------------~ 
115 IKey Length IDSCKLN 11 byte (binary ILength (1-255 bytes) of the key of the datal 
I I I 1 1 Irecord in the data set. A value of zero I 
1 I I I I Imeans no key exists. I 
r------t-----------t--------------t--------t--------------t------------------------------------------~ 116 IKey I DSCRKP 12 tytes Ibinary tHigh order position (byte 1 through byte I 
I iLocation I I I 132,767) of the key in the data record. A I 
I I I I I Ivalue of zero indicates that the key is notl 
I! I 1 I lin the data portion but corresponds to the I 
I I I I I (physical key on the direct access volume. I 
~------t-----------t--------------+--------+--------------+-------------------------------------------~ 
! 17 1 Data Set I DSCDSI 11 byte I binary I Eit Description I 
I IIndicators I I I 10 If on, indicates that this is the lastl 
1 I I I I I volume which normally contains this I 
I I I I I 1 data set. I 
I I I 1 I I 1 
I I I I I 11 Sr:are I 
I I I I I I I 
I I I I I 12 If on, indicates that the block lengthl 
I I I I 1 I must always be a multiple of eight I 
I I I 1 I byt es . I 
I I I I I 1 
I I I I 13 If on, indicates that this data set isl 
I I I I I security protected and a password mustl 
I I I I I be Frovided in order to access it. I 
I I I I I I 
I I I I 14 (Data Set Abnormal Close) if on, I 
I 1 I ( 1 indicates that this data set may be I 
I I I 1 I invalid due to abnormal termination ofl 
I I I I I a task which was writing or updating I 
I I I I I the data set. 1 
! I I I I I 
I I I I I 5 - 7 Spare I L ______ ~ __________ ~ _____________ L ________ ~ ______________ i __________________________________________ -J 

Figure 9. Format-l DseE (Part 2 of 4) 

262 



r------T-----------T--------------,.-------T--------------T----------------------------------------------, 
I Field I I 'I I I 
INumberlField Name lIdentificationlLength IRepresentationlUsage , 
~·------+-----------+--------------i---------+---------------+----- .. -------------------------------------~ 
lISa IOriginal I 11 byte ,binary IThis field indicates the type of request I 
I IRequest E'orl I I I that was issued for the initial allocation: I 
I I Space I I I I I 
I I I I I I I 
I I I I' I Bit lLescription I 
I I I I I 10,1 00 indicates original request was in I 
I I I I I I absolute tracks; no secondary I 
I I I I I I allocation is made. , 
!! I I I I I 
I I I I I I 01 indicates request is in number of I 
I i I I I I records. I 
! I , I I I I 
I I I 'I I 10 indicates request is in number of I 
I I I I I I tracks. I 
I I I I I I I 
I { I I I I 11 indicates request is in number of I 
I I I I I 'cylinders. I 
I I I I I' I 
I I I " I 2 If on, indicates original request was I 
! I I I I ! for an indexed sequential data set I 
'I I I I I wi th embedded index. I 
I I I 'I I I 
I I I I I I 3 Spare I 
I I I I I I i 
I I I I I I 4 If on, indicates that the original I 
I I I I I I·r equest was for the maximum contiguous I 
I I I i I I quantity on the volume. I 
I I I I I I I 
I I I I I I 5 If on, indicates that the original I 
I I I I I I request was for the maximum contiguous I 
I I I I I I quantity on the volume. I 
I I I I I I I 
I I I I I I 6 If on, indicates that the original I 
I I I I I I request was for the five or fewer I 
I I I I I I extents that were larger than or equall 
I I I 'I I to a specified minimum. I 
I I I I I I I 
I I I I I I 7 If on, indicates that the original I 
I I I I I I request was a record request and was I 
I I I I I I too be rounded upward to a cylinder I 
I I I I I I boundary. I 
t------~-----------t-------------_+--------+--------------+----------------.---------------------------~ 
,lab I secondary I DSCSAL 13 bytes Ibinary IThe three bytes of this field are a I 
I IAllocation I I I I binary number indicating how many blocks, I 
I' I I I I t.racks, or cyl inders are to be requested at I 
I I I I' Ithe end of the initial extent when I 
I I I I I I processing a sequential data set. I 
t------+-----------+--------------+--------+--·------------+------.-----------------------------------i 
119 ILast RecordlDSCLRD 15 bytes !binary ,(Direct Access Address) -- identifies the I 
I I Pointer I ! I Ilast record. It is in the format TTRLL I 
I I I I I t (where TT is the x'elati ve address of the I 
I I , I I I track containing the last record, R is the I 
I I I I I 110 on that track, and LL is the number of I 
! I I I I Ibytes remaining on that track following thel 
I I , I I Irecord). If all five bytes equal binary I 
I I I I I Izeros, the last record pointer does not I 
I I I I I laHly- I 
~------+-----------+--------------+--------+--------------t- .------------------------------------------i 
120 ISpare I DSCSP2 12 bytes I I I l ______ L-__________ i _____________ -L_. _______ i ______________ i ___________________________________________ J 

Figure 9. Format-l DSCB (Part 3 of 4) 

Appendix A: Data Set Control Block (DSCB) Format 263 



r------T-----------T--------------r--------T--------------T-------------------------------------------, 
I Field I I I I I I 
I Number I Field Name IIdentificationlLength (Representation I Usage I 
~------+-----------+--------------t--------t--------------+-------------------------------------------~ 
121 IExtent TypelDSCxTS 11 byte Ihexadecimal (Bex Code Meaning I 
I I Indicator I I I I 00 Next three fields do not indicatel 
I IHex I I I I any extent. I 
I I I I! I I 
I I j ! I I 01 Prime Areas (Index Sequential) I 
I I I I I I or consecutive area, that is, the! 
I I I I I I extent containing the data rec- I 
I I I t I lords (user's). I 
I I I I I I t 
I I I I I I 02 Overflow area of an indexed t 
I I I I I I sequential data set. I 
I I I I I I I 
I I I I I I 04 INDEX area of an Index Sequentiall 
I I I I I I data set. I 
I I I I I I I 
I I I I I I 40 Next three fields indicate one I 
I I I I I I track is used to contain user's I 
I I I I I I data set labels. I 
I I I I I I I 
I I I I I ! 80 The extent described is sharing I 
I I I I I I one or more cylinders with one I 
I I I I I I or more data sets. I 
I I I I I I I 
I I I I I (81 The extent described begins and I 
I I I I I I ends on cylinder boundaries, I 
I I ( I I I i.e., the extent is composed of I 
I I I I I I one or more cylinders. I 
~------+-----------t--------------t--------t--------------t-------------------------------------------~ 
122 I Extent I DSCMVL 11 byte Ibinary IThis field uniquely identifies each I 
I ISequence I I I Iseparate extent on a given volume for a I 
I I Number I I I Idata set. For all organizations but I 
I I I I I lindexed sequential the first extent of the I 
I I I I ( (data set on each volume is identified with I 
I I I Ilia zero in this field. The first extent on I 
I I I I I leach volume of an indexed sequential data I 
I I I I I Iset is identified with a value of one in I 
I 1 I I I Ithis field. Additional extents on the I 
I I I I I I volume are identified with sequentially I 
I I I I I lincreasing binary values. This field is I 
I I I I I lalways zero for an extent field pointing tal 
I I I I I la user label track. I 
~------~-----------+_-------------t--------t--------------t-------------------------------------------i 
123 ILower LimitlDSCLCH 14 bytes I I (Direct Access Address) - the cylinder and I 
I I I I I Itrack address (CCHB) specifying the I 
I I I I I Istarting point of this extent component. I 
r------t-----------t--------------t--------t--------------t-------------------------------------------~ 
124 IUpper LimitlDSCLCH 14 bytes I I (Direct Access Address) - the cylinder and I 
I! I I I Itrack address (CCBB) specifying the ending I 
I I I I I IFoint of this extent component. I 
t------t-----------t--------------t--------t--------------t-------------------------------------------i 
125-28 IAdditional I DSCEX2 110 bytesl 1 Same as fields 21-24. I 
I I Extents I I I I I 
~------+-----------+--------------t--------t--------------t-------------------------------------------i 
129-32 IAdditional IDSCEX3 110 bytes I ISame as fields 21-24. I 
I I Extents I I I t I 
~------t-----------t--------------+--------+__------------+-------------------------------------------i 
133 IPointer to IDSCCN3 15 bytes I IThis field contains the CCHBR of a I 
I INext OSCB I I I Icontinuation DSCB, if needed, to further I 
I 1 Record I I I Idescribe the data set. The next DSCB will I 
I I I I I Ibe of the format-3 type. All zeros signify I 
I I I I I Ithat this is the last DseB. I 
I I I I I I 1 
I I I I I I (If field 10 indicates Index Sequential I 
I I I I I I Organization, this field will point to a I 
1 I I I I I format-2 DSeB.) I ~ ______ ~ ___________ ~ ______________ ~ ________ ~ ______________ ~ ___________________________________________ J 

Figure 9. Format-l DSCB (Part 4 of 4) 

264 



f-----,-----------.,---------------T--------T------------T---------------------------------------·--, 
I Field I I I I I I 
iNumberiField Name IIdentificationlLength I Representation I Usage I 
.------t-----------+--------------t--------t--------------t-------------------------------------------~ 
11 !Key Identi-IDSVNME 14 bytes Ihexadecimal 1'03030303' I 
i lfication I I I I I 
I lCin key) I I I I i 
t------t-----------t--------------t--------t--------------+------------------------------------------~ 
12-17 I Extents IOSCEX4 140 bytesl Isame as fields 21-24 of format-1 DSCB. I 
I I (in key) I I I IFour extents. I 
r-----+---------+--------------+--------+-------------+---------------.. ----------------------.----.; 
118 I Format IOSCFID 11 byte I hexadecimal I 'F3' I 
I I Identifier I I I I I 
t-----t-----------+--------------+--------+--------------+------------------------------------------~ 
119-Sq iAdditional IDSCEX9 190 bytes I ISame as fields 21-24 of Iormat-1 DSCB. I 
I I Extents I I I I Nine extents. . I 
t-------t----------+--------------t--------+--------------+-----------------------------------------1 
155 {Pointer to IDSCCHN 15 bytes I ICCHHR for next format-3 DSCB. I 
I !Next DSCB I I I IZero in field signifies this is the last I 
I I I I I I Dsce. I l ______ ~ ___________ ~ _____________ ~ ________ ~ ___________ ___ k __________________________________________ ~ 

Figure 10. Format-3 DSCB 

,..------T-----------T--------------T--------T--------------T----------------------------------------------, 
IField IField I I I I I 
!Number!Name IIdentificationlLength IRepresentationlUsage I 
t----+-----------+--------------t--------+--------------+--------------------------------------------1 
\1 IKey Field IVTC Key Iqq byteslhexadeciroal ,"04's· I 
t------f-----------t--------------f--------t--------------+-------------------------------------------~ 
12 i Format ID ! VTCFID 11 byte I hexadecimal I • F4' I 
~------+-----------t--------------+--------t--------------+------------------------------------------~ 
13 IHighest IVTCHPC 15 tytes I IThis field contains the address of the lastl 
I I prime I I I lactive format-lor -A OSCB. It is used to i 
I ICCHHR 1 I I Istop a search for a data set name. I 
r------f-----------+--------------t--------t--------------f-------------------------------------------~ 
14 I Available IVTCHCT 12 bytes Ibinary ICount of number of unused records in VTOC. I 
I I DSCB I I I I I 
I ! Records 1 1 1 I I 
t------+----------+--------------+--------+--------------+------------------------------------------.; 
15 iThe CCHH IVTCHCA 1 q tytes I I (See Note 1 in field 7.) I 
I i of the Next I I I I I 
I IAvailable I I I I I 
I I Alternate I I I I I 
I i Track I I I I I 
1-------+-----------+--------------+--------+--------------+--------------------------------------------~ 
16 INumber of IVTCNAT 12 bytes Ibinary IThis fiE!ld contains the number of alternate I 
I I Alternate 1 I 1 itracks available. For the 2321 the I 
I ! Tracks I I I I assigned alternate area will be the last I 
i I I I 1 I four strips in each cell. (See Note 1 in I 
I I I 1 I Ifield7.) I 
t------+-----------+--------------+--------t--------------+------------------------------------------~ 
17 IVTOC IVTCFLl 11 byte 1 IBit 0 - If on, means that either no I 
! !Indicators I I I Iformat-5 or -C DSCBs exist or that they do I 
I I I 1 I Inot reflect the true status of the volume. I 
I I I I I I I 
I I I I I I Bi t 1 - If on, means that the format-C DSCBI 
I I I I I lis being used for storage management. The I 
I t I I I I volWIle is formatted for VAl'!. I 
I I I I I I I 
I I I I I IBit 2- If on, indicates that the volume isl 
!! I I I ja system (putlicl volume, and should have I 
ill I I I space allocated (by TSS/360) accordingly. I 
I I I 1 I I I 
I I I 1 I IBits 3-7 - Spare. I 
i I I II! I 
I I I I I !Note 1: Alternate tracks will be assigned I 
I i I I I lin ascending sequences. Thus, field 5 willi 
i I I I !be incremented and field 6 decremented by I 
I I I I I lone when an alternate track is used. 1 
t------+-----------+-------------+--------+---------------+------------------------------------------~ 
18a INumber of IVTCNEX 11 byte Ihexadecirr,al I This field contains the hexadecimal I 
i I Extents I 1 1 I constant • 01' to indicate one extent in the I 
! I I 1 I I VTOC . I I. _____ ..l ___________ ~ ______________ ..l ________ ~ ______________ ~ _________________________________________ J 

Figure 11. Format-4 DSCB (Part 1 of 3) 

Appendix A: Data Set Control Block (DSCB) Format 265 



r------T-----------T--------------T--------T-------------~-------------------------------------------, 
IField IField I I! I I 
I Number I Name IIdentificationlLength I RepresentationlUsage I 
~------t-----------t--------------+--------+--------------+-------------------------------------------~ 
ISb I Reserved I VTC$02 12 bytes I I I 
I Ifor Future I ! I I I 
I IUse I I I I I 
r------t-----------t--------------t--------t--------------t-------------------------------------------; 
19 IDevice IVTCDVC 114 byteslbinary IThis field contains physical constants I 
I I Constants I I I Idescribing the device on which this volume I 
I I I I I !was mounted ~hen the VTOC was created. I 
1 I I I I IThis field contains the follo~ing I 
I I I I I I informa tioD: I 
r I I I I I I 
I I I I I I Device si ze (2 bytes) - 'I'he number of I 
I I I I I I logical cylinders in a volume on this I 
I I I I I I device. (A logical cylinder is the I 
I I I I I , smallest collection of t~o or more I 
I I I I I I tracks that can be protected by a Set I 
I I I I I I File Mask CCW.) I 
I I I I I I I 
I I I I I I Logical Cylinder Size (2 bytes) - The I 
I I I I I I number of tracks in a logical cylinder I 
I I I I I I on this device. I 
I I I I I I I 
I I I I I ITrack Length (2 bytes) - The number of I 
I I I I I lavailable bytes on a track exclusive of I 
I I I I I I hOIT,e address and record zero (record zero I 
I I I I I lis assumed to be a non-keyed record with ani 
I I I I I I eight byte data field). I 
I I I I I I I 
I I I I I IRecord Overhead (3 bytes) - The number of I 
I I I !! Ibytes required for gaps, check bits, and I 
I I I I I Icount field for each record. This value I 
I I I I I Ivaries according to the record I 
I I I I I {characteristics and thus is broken down I 
I I I I I I into three subfields: I 
I I I I I I I 
I I I I I II Overhead required for a keyed record I 
I I I I I I other than the last record on the track. I 
I I I I I I This is the first byte. I 
I I I I I I I 
'I I I I IL Overhead required for a keyed record thatl 
I I I I I I is the last record on the track. This isl 
I I I I I I the second byte. I 
I I I I I I I 
I I I I I IK Overhead bytes to be subtracted from the I 
I' I I I I I and L tytes if the record does not have, 
I I I I I I a key field. This is the third byte. I 
I I I i I I I 
I I I I I IFlag (1 byte) - Further defines unique I 
I I I I I Icharacteristics of the device. I 
I I I I I I I 
I I I I I I Bit Descrif!-ion I 
I I I I I 10-4 Reserved for future use. I 
I I I I I I I 
I I I I I 15 CCHH of an absolute address (CCHH) I 
'I I I I I is used as a continuous binary value 1 
I' I I I I as in the case of the 2301. I 
'I , I I I I 
I I I 'I 16 CCHH of an absolute address (CCHS) is I 
1 I , I I I used as four separate one-byte binary I 
I I I I I I values as in the case of the 2321. I 
I I I I I I I 
I I , I I 17 A tolerance factor must be aFplied to I 
I I I 1 I I all tut the last record on the track. I 
I I I I I I I 
I 1 , I I INote that if bits 5 and 6 are off, the cc I 
I I I I I land the HH of an absolute address (CCHHR) I 
I I I I I tare used as half-word binary values as in I 
I I , I I I the case of the 2311. I 
l ______ ~ __________ ~ ______________ ~ ________ ~ ____________ --~---------------------______________________ J 

Figure 11. Format-4 DseB (Part 2 of 3) 

266 



r------T-'----------T--------------,.--------T--------------T---------- .. ·-------.. -·-----·-------·--------, 
!Field 'field I I I t I 
I Number I Name I Identification I Length I Representation I Usage f 
t------+-----------+--------------t--------t--------------+-------------------------------------------1 
! I I I I ITo1erance (2 bytes) - A value that when I 
I I I I I Idivided by 512 is used to determine the I 
I I I I I I effective length of the record on the I 
i I I I I Itrack. I 
I I I I I I ! 
I I I I I IDSCBS per track (1 byte) - Contains the I 
! I I I I ! numbel: of full records of 44-byte key and I 
I I I I I 196-byte data length that can be contained I 
i I I I I i on one track of this device. I 
I I I I I I I 
I 1 I i I I Directory blocks per track (1 byte) - I 
I I I 1 I I Contains the number of full records of I 
I I I I I IS-byte key and 256-hyte data lengtb that I 
I I I I I lean be contained on one track of this I 
I j I I I I device. I 
t-· ... ---·--t---·-·-------t------· .. -------+--------+--------------t-----------·---------------------------·-----~ 
110A i Spare ! VTC$04 119 bytes j I I 
t----·--f-----------+--------------t--------+--------------+-------------------------------------------1 
110B IGross I 15 bytes Ihexadecimal IRight-most four bytes indicate number of I 
! IAvailable I 1 1 !~ages available if it is a VA~ volume I 
I ISpace I I I I (field 1, bit 1 on); otherwise the first I 
I I II! I two bytes indicate the number of cylinders I 
I I I I I IloIhich are entirely free and the next two I 
I I I I I Ibytes indicate the tracks not on the I 
I I ! I I lcyclinder which are free. Left-most byte I 
I I I I I I (X' FF') indicates space allocation by I 
I I I I I ITSS/360 only. I 
~------f-----------t--------------+--------+--------------t-------------------------------------------i 
!lOC lPointer to IVTCPTR 15 bytes Ibinary !This field contains the CCBBR of the first I 
I I Format-6 I I I Iforrnat-6 DseB if it exists. Otherwise it I 
I I DSCB I I 1 I conta i TIS binary zeros. I 
t-------+-----------f--------------+---·-----f---------_.----+-----------------------.------------------1 
111-14 IVTOC I 110 bytes! IThese fields describe the extent of the I 
I 1 Extent I I I IVTOC, and are identical in format to fieldsl 
I I I I I J 21-24 of the fm:mat-l DSCB. I 
.------+-----------+--------------+--------+--------------+-------------------------------------------~ 
115 I Spare I VTC$05 125 bytes I! I L ______ ~ ___________ ~ ______________ ~ ________ ~ __________ ----~ ___________________________________________ J 

Figure 11. Format-4 DSeB (Part 3 of 3) 

r------T-----------T--------------T--------T--------------T-------------------------------------------l 
IField IField 1 I 1 I I 
!NumberlName I Identificationl Length IRepresentationlUsage I 
t------t-----------t--------------+--------f--------------+-------------------------------------------1 
11 I Key Identi-I DASKEY III bytes I hexadecimal 1 • 05050~,05' I 
1 Ification I I I I I 
! I lin Key} I I j I I 
~------+-----------+--------------+--------+---------.-----+-------------------------------------------~ 
12 IAvailable IDASE1 15 bytes I jExtent of space available for allocation tol 
I I Extent I Ilia dat.a set. First two bytes ~ relat.ive I 
I ! (in key) I I I I t rack address. Next. two bytes = number of I 
I I I 1 I If ull cylinders included in extent. The I 
I! I I 1 Ilast byte = number of tracKS in addition tol 
I I I 1 I I cylinders in the extent. I 
~------t-----------t--------------+--------+--------------+-------------------------------------------1 
13-9 jAvailable IDASE2 135 bytesl ISall,e as field 2; they are in relative trackl 
! I Extents I I I I address sequence. I 
! I (in Key) I 1 1 I I 
~------+-----------+--------------f--------f--------------+-------------------------------------------1 
110 Il"ormat IDASFID 11 byte I hexadecimal I'FS' i 
i i Identifier 1 I I I I 
j-------+-----------+--------------+-----.-... -+--------------+------.--------.. -.... ------.--------------------1 
111-28 IAvailable ICASE9 190 bytesl ISame as field 2. There are 26 available I 
i I Extents I I I I extent fields in this OSCB (.key and data). I 
t------+-----------+--------------+--------f--------------+-------------------------------------------~ 
!29 IPointer to IDASCHA 15 tytes Ibinary IThis field contains t.he CCHHR address of I 
I I Next I 1 I I the next format- 5 OSCB if it exists. It I 
! IFormat 5 I I I Icontdins binary zeros otherwise. I l ______ ..L_. __________ ~ _______ •• ______ ..L _________ ~ _________ ... ____ ~_ •. _________ ... __ .... __________ ." __________________ .1 

Figure 12. Format-5 DSeE 

Appendix A: Data Set control Block (DSeB) Format 267 



r------T-----------T--------------r--------T--------------T-------------------------------------------l 
I Field I Field I I I I I 
I Number I Name IIdentificationlLength IRepresentationlUsage I 
~------+-----------+-------------_+--------+--------------+-------------------------------------------1 
11 IData Set IDSVNME 144 byteslalphameric ISame as format-I, field 1. I 
I I Name I I I (EBCDIC) I I 
r------+-----------+--------------t--------+--------------+-------------------------------------------1 
12 I Format I DSVFID 11 byte Ihexadecimal I'FA' I 
I I Identifier I I I I I 
r------+-----------+--------------t--------+--------------+-------------------------------------------1 
13a IDate Last I DSVDLU 13 bytes! IYDD, where Y=year (0-99) and DD=day I 
I lUsed I I 1 1(1-366). I 
t------t-----------+--------------+--------+--------------+-------------------------------------------1 
I 3b I Rate of I DSVROU 13 bytes I I I 
I I Usage I I I I 1 
r------+-----------+--------------+--------+--------------+-------------------------------------------1 
14 I Volume I DSVVSQ 12 bytes I binary I SalT,e as format-1, field 4. I 
I ISequence I I I l I 
I I Number I I 1 1 I 
t------+-----------t--------------+--------+--------------+-------------------------------------------1 
15 Icreation I DSVCRD 13 rytes Idiscontinuous ISame as format-1, field 5. I 
I IDate l I Ibinary l I 
~------+-----------+--------------+--------+--------------+-------------------------------------------1 
16 IExpiration IDSVEXD 13 rytes ldiscontinuous ISame as format-1, field 5. I 
I I Date I I I binary I I 
t------+-----------+--------------+--------+---------------+-------------------------------------------1 
17a I Number of I DSVNEX 11 l::yte I I I 
I I Extents of I I I I I 
I IVolume I 1 1 I I 
t------+-----------+--------------+--------+--------------+-------------------------------------------1 
pb INumber of I DSVLPB 12 bytes Ibinary ISane as format-1, field 7b. I 
I IBytes Used I I I I I 
I l in Last I I I I I 
I I Data Page I I I I I 
r------+-----------+--------------+--------+--------------+-------------------------------------------1 
18 ISystem codelDSVSCD 113 byteslalphameric ISane as format-I, field 8. I 
I I I I 1 (EBCDIC) 1 I 
r------+-----------+--------------+--------+--------------+-------------------------------------------1 
18a I PAD for I DSVXPD 11 byte I I I 
I lindex I I I I I 
I I sequential I I I I I 
I I data set I I 1 I I 
r------t-----------+--------------+--------+--------------+-------------------------------------------1 
I 9 I Spare I DSV 01 16 bytes 1 I I 
t------+-----------+--------------+--------+--------------+-------------------------------------------1 
I 10 I Jo'ile I DSVFTP 12 l::ytes I !X'7100' VAM Index Sequential I 
I IType I I I IX'7200' VAl'Sequential I 
I I I I I IX'7300' VAM Partitioned Index Sequential I 
I I I I I IX'7400' VA~ Partitioned Sequential I 
I I I I I IX'7500' VAM Partitioned I 
~------+-----------t--------------+--------+--------------+-------------------------------------------1 
I 11 I Record I DSVRFM 11 byte lbinary ISane as format-I, field 11. , 
I I Format, I I I I 
~------+-----------+--------------+--------+--------------+-------------------------------------------1 
I 12 IOption I DSVOPC 11 byte Ibinary iSan,e as format-I, field 12. I 
I I Codes I I II! 
~------t-----------t--------------+--------+--------------+-------------------------------------------1 
I 13 'Record I DSVRCL 14 bytes Ibinary ISa~e as fermat-l, field lQ. 1 
I ILength! I I I I 
r------+-----------t--------------+--------+--------------+-------------------------------------------1 
I 14 IKey Length IDSVKYL 11 byte Ibinary IsalI.e as format-I, field 15. 1 
r------+-----------+--------------+--------+--------------+-------------------------------------------1 
I 15 ,Key 1 DSVKLC 12 bytes I binary I SaIl1e as format-l, field 16. I 
I iLocation I I I 1 I 
~------+-----------+--------------t--------+--------------+-------------------------------------------1 
I 16 IData Set I DSVDSI 11 byte I binary (Same as format-l, field 17. I 
I I Indicators I I I I I 
r------+-----------+--------------t--------+--------------+-------------------------------------------1 
I 17a (Original I !1 l:yte I hexadecimal IX'OO' No secondary allocation. I 
( (Request fori I I I I 
I ISpace I I I ( I 
I I Indicators ( I I I I 
~------+-----------+--------------+--------+--------------+-------------------------------------------1 
117b I Secondary I DSVSAL 13 l::ytes Ibinary ISane as format-1, field 18. I 
I IAllocation I 1 I I I l ______ ~ ___________ ~ ______________ ~ ________ ~ __________ ----~ ___________________________________________ J 

Figure 13. Format-A DSCB (Part 1 of 2) 

268 



r------T-----------T-------------,.--------T--------------T--'--------------------------------------, 
jF'ield lField I I I . I \ 
I Number I Name I Identification \ Length IRepresentat~onlusage I 
t------+-----------+--------------t--------+--------------+------------------------------------------~ 
! 18 I Number of ! DSVNDP I 2 bytes I I ! 
I I Data Pages ! I I I I 
1-------+--,--------+--------------+--------+--------------+---------------.--------------------------~ 
! 19 INumber of I DSVDOP 12 bytes I INumber of page in POD or index directory. I 
I !Directory I I I' I 
i I Pages I I I I I 
~---_-__ +-----------+--------------+--.------+--------------t-------------------------------------------i 
i 19a 'Number of I DSVNOP 11 byte I I I 
i I Overflow I I I i I 
I I pages I I I I . I 
~-_----+-----------+--------------+--------+------_-------+-------------------------------------------1 
I 20 ITotal I DSVTNP I 2 bytes I I I 
I I Number of I I I I I 
I I Pages Thus I I i I I 
I iFar! I I I i 
I IAssigned I I I I I 
~-_-----+-----------+--------------+--------t-----'---------+-------,------------------------------------~ 
! 21 I Extent I 16 bytes I I I 
~------+---------+-------------t--------t--------------+--------------------------------------------1 
I 21a I I DSVXTS I I I Bits Description I 
I I I I I I 2 00 - pages are in use I 
! I I I I I 01 = pages are not in use I 
! 21b I I I I I lit number of continuous external pages I 
I 2Ie I I I I 116 first external page number I 
I 2ld I I I I 116 first virtual page number I 
t------t-----------+--------------t-------+--------------+-------------------------------------------~ 
I 22- 25 I Extents I 121t bytes I I Four more extents. I 
r------+-----------+--------------t--------+--------------+-------------------------------------------1 
I 26 INext OSCB IDSVWXT 15 cytes Ibinary ICCHHR of a continuation DSCB (format-B). I 
I I I I I I If there a.re no format-B DSCSs for the data I 
! I I I 1 Iset, then this field contains binary zeros·1 
l ______ ~ __________ ~ ______________ ~ __ , ______ ~ __________ ----~------------------------------------------~ 

Fi.gure 13. Format-A DSCB (Part 2 of 2) 

r------,.-----------T--------------,.---------,.--------------T-----------------------------------------l 
I Field I Field I 1 I I I 
jNumberlName IIdentificationlLength I Representation I Usage I 
t------+-----------+--------------+--------+--------------+-------.----------------------------------1 
I 1 IKey Field I DSV1KY 12 bytes Ihexadecimal ,'OBOB' I 
I I (in key) I I I I I 
!--------+-----------+--------------+--------+--------------+-------.------------------------------------1 
I 2 I Extent !DSV1Xl Iq2 bytes I (Seven extents as described in format-A I 
I I (in key) I I I I field 21. • I 
t------+-----------+--------------t--------+--------------+-------------------------------------------1 
I 9 [Format I DSV1ID 11 byte I hexadecimal I'FS' I 
I I Identifier I I I I I 
r------+-----------+--------------+--------+--------------+-------------------------------------------1 
I lO-2 Q IExtents I DSV1XZ 190 bytes I 115 extents as described in format-A, field I 
! I I . I I 121. I 
~------+-----------+--------------+--------+--------------+-------------------------------------------1 
I 25 IPointer to IDSV1NX 15 I:ytes Ibinary ICCIlHR format. Binqry zero if there are no I 
I I Next for- I I I I chained format-B DSCBs. I 
I Imat-B DseB I I I I I l ______ J. ___________ J. _____________ -J. ___ . _____ ~ ______________ ~ _______ . ____________________________________ J 

Figure 14. Format-B DSCB 

Appendix A: Data Set Control Block (DSCB) Format 269 



r------T-----------T-------------~--------T--------------T-------------------------------------------, 
IField IField I I I I I 
I Number I Name I Identificationl Length j Representation I Usage I 
~------+-----------t--------------t--------t--------------t------------------------------------------~ 
I 1 IKey Field IDAVKEY 14 bytes Ihexadecimal I'OCOCOCOC' j 
I I (in key) I ! I I I 
t------t-----------t--------------t--------t--------------t------------------------------------------~ 
1 2 I Extents IDAVEl 14 bytes I I I 
I I (in key) 1 I 1 I I 
r------t-----------t--------------t--------t--------------t------------------------------------------~ 
I 2a 1 I DAVEll I I I Bi ts Description I 
1 I I I I 116 nUDlber of continuous external pages 1 
~----+_----------+--------------t--------t-----------·---t-------------------------------------------~ 
I 2b I IDAVE12 j I 116 first external page number I 
~------t-----------t--------------t--------t--------------+-------------------------------------------~ 
I 3-111 Extents I DAVE 2 136 bytes I Isame as field 2 above. I 
I I(in key) I I I I I 
r------t-----------t--------------t--------t--------------t-------------------------------------------~ 
I 12 lFormat IDAVFID 11 byte Ihexadecimal I'FC' I 
I I Identifier I I I I I 
t------t-----------t--------------t--------t--------------t-------------------------------------------~ 
I 13 I Spare IDAVSl 13 bytes 1 I I 
r------t-----------t--------------t--------t--------------t------------~-----------------------------~ 
I 14-34lExtents IDAVEB 184 bytes I ISaDle as field 2 above. I 
I I IDAVEIF (last I I I I 
I I I ext ent ) I I I I 
r------t-----------t--------------t--------t--------------+-------------------------------------------~ 
1 3~ I Spare IDAVS2 13 bytes I I I 
r------t-----------t--------------t--------t--------------t-------------------------------------------~ 
I 36 IPointer to IDAVCHA 15 bytes Ibinary ICCHHR format. Binary zero if there are no I 
I jNext I I I Ichained format-C DSCBs. 
I I Format-C I I I I 
I I (DSCB) I I I I I L ______ ~ ___________ ~ _____________ _i ________ i ______________ i ___________________________________________ , 

Figure 15. Format-C DSCB 

r----T------T------------------------T-------T------------------------------------------, 
(Bytel ID I Full Name ILength I Representation , 
I No. I I I (bytes) I , 
t----t------t------------------------t-------t------------------------------------------~ 
I OOIDSENME!Data Set Name I 44 , I 
I I I I I I 
I 441DSESCDISystem Code I 13 , I 
! I I I I I 
I 511DSEXPDIPad for Indexed I 1 , I 
I I I Sequential 'I I 
I I I I' I 
I 58IDSELPBINO. of Bytes in Last I 2 I I 
I I IData Page I I I 
I I , I I , 
1 601 DSERFM I Record Forma til , I 
I I I 1 I 1 
I 611DSEOPCIOption Codes I 1 I I 
I 1 I I I I 
I 621DSEFTPIFile Type I 2 I I 
I I I I I I 
,641 I I 1 'Spare I 
I I I I I I 
I 651DSERCLIRecord Length I 3 , , 
I I I I I I 
I 681 DSEDSI 1 Data Set Indica tors I 1 I I 
I I I I' I 
I 691DSEKYLIKey Length I 1 I I 
I I I I I I 
I 10 I DSEKLC I Key Location I 2 I I 
I I I I I I 
I 721 DSESAI I Secondary Allocation I 1 I I 
I I I Indicator I I I 
I I I I I 1 
I 131DSESALISecondary Allocation I 3 I I 
L-___ i ______ i ________________________ ~ ______ i _______________ -----------------_________ -J 

Figure 16. Format-E DSCB (Part 1 of 2) 

270 



r----T------T------------------------T-------y------------------------------------------, 
I By tel ID I Full Name I Length I Representation I 
I No. I I I (bytes) I I 
r----+------+------------------------+-------+------------------------------------------~ 
I 76IDSENDPINo. of Data pages I 2 I I 
I I I I I I 
I 78IDSEDOPINo. of Directory Pages I 2 I I 
I I I I I I 
I 80 1 DSENOP I No. of Overf low Pages I 1 I I 
I I I I I I 
I 811 DSENVLI No. of Private Volumes I 1 ! I 
I I I I I I 
I 821DSETNPIData Set size at Close I 2 ! I 
I I I I I I 
I 841 I I 1 I Spare I 
I I I I I I 
I 851 DSECRD I Reference Date I 3 I i 
I I I I I I 
I 881 DSEEXD I Change Date I 3 I I 
I I I I I I 
! 911 I I 5 I Spare I 
I I I I I I 
I 961 I I IList of Vol. IDs for volumes of a private I 
I ! I I I data set in 6-byte entries. Length is I 
I I I I Idependent on the value of DSENVL I 
I I I I I I 

i DSEENT I Page Entries (1 word) I I Format: I 
I I I I r-----T---y--------------T--------------, I 
! I I IIAP(2) I (2) IRel Vol No(2) I Ext Pg. No(16) I I I I I I l _____ J. ___ J. _____________ ..l ______________ J I 

2481DSECHNIPointer to Next DSCB I 4 I I 
I I I I I 

2521 DSETYP I DSCB Type I 1 I I 
I I I I I 

2531 I I 1 1 Spare I 
I I I I I 

I 2541DSECKSIchecksum I 21 I l ____ ..l ______ ..l ________________________ ..l ______ J. __________________________________________ J 

Figure 16. Format-E DSCB (Part 2 of 2) 

r----y-----y------------------------T-------y------------------------------------------, 
IBytel I ILength I I 
I No. I ID I Field Name I (bytes) I Representation I 
t----+------+------------------------+-------+------------------------------------------~ 
! 0 I I I I List of volume IDs for volumes of a pri- I 
i I I I I vate data set in 6-byte entries. variablel 
! I I I Ilength field depending on value of DSENVL I 
i I I I Ifrom the format-E DSCB. I 
I I I I I I 
I I DSFENTI Page Entries I I Format: I 
I I I I I r-----T---y"--------------T--------------, I 
I I I I lIAP(2) I IRel Vol No(2) I Ext Pg. No(6) I I ! I I I Il-----J.---J.----__________ ..l ______________ J I 

I I I I I I 
I 2481 I Pointer to next DSCB I 4 I Format: I 
I I I I I r-----T---y--------------y--------------, I 
I I I I I I DSCE I 1 I I I 
I I I I IISlot I I I I I 
I 1 I I II (4) I IRelVoINo(12)\ExtPg. No(16) I I I I I I I l _____ J. ___ ..l ______________ ..l ______________ J I 

I 2521DSFTYPIDSCB Type I 1 I I 
I I I I I I 
I 2531 I I 1 (Spare I 
I I I I I I 
I 254 I DSFCKS I Checksum I 2 I I l ____ J. ______ ..l ________________________ J. ________ ~ _________________________________________ -J 

Figure 17. Format-F DSCB 

Appendix A: Data set Control Block CDSCB) Format 271 



APPENDIX B: CATALOG SBLOCK FORMAT 

Each member in the catalog data set is 
comprised of an integral number of pages. 
Each page is divided into 64-byte blocks, 
called SBLOCKs, which serve as the basic 
unit of storage within the catalog. 

Each logical entity within the catalog 
is comprised of a chain of one or more 
SBLOCKs. These logical entities are: 

• Indexes 

• Generation Indexes 

• Data Set Descriptors 

• Sharing Descriptors 

• Sharer Lists 

Catalog service routines receive data in 
varied parameter lists and pack it into 
available SBLOCKs. Data is retrieved from 
the catalog, via the LOCATE routine, in the 
SBLOCK form. Various command language 
service routines retrieve data in this 
form. 

SBLOCK Format 

The first eight bytes of an SBLOCK 
always have the same format. The last 56 
bytes of an SBLOCK vary in format depending 
on the logical entity which the SBLOCK is 
part of. 

Figure 18 shows the format of a general­
ized SBLOCK; Figures 19 through 25 illustr­
ate specific SBLOCK formats. 

r-------T-----T-------T--------------------------------------------------------T--------, 
1 I ILength I I Symbolic I 
IField #IBytesl <Bytes) I Description I ID I 
r-------+-----t-------t--------------------------------------------------------+--------~ 
I 1 11-3 1 3 IForward pointer to the first character of the next ICCCFWD 1 
I I I ISBLOCK in the chain. Pointer is of the form Pbb where PI I 
I I I lis the logical page number within the member and bb is I I 
I I I Ithe relative byte within the page. I I 
t-------t-----t-------t--------------------------------------------------------+--------~ 
I 2 14 I 1 IBinary count of SBLOCKs allocated from a page. This ICCCCT1 I 
I I I Ifield is maintained by Catalog Services in the first I I 
I I I I SBLOCK of each page. 1 I 
t-------t-----t-------+--------------------------------------------------------+--------~ 
I 3 15-7 I 3 IBackward pointer to the preceding SBLOCK in a chain. ICCCBWD 1 
1 I I 1 Pointer is of the form Pbb. I I 
t-------+-----+-------+--------------------------------------------------------+--------~ 
1 4 18 I 1 IBinary count of bytes allocated from the field to ICCCCT2 I 
I I I I follm.. I I 
t-------+-----+-------+--------------------------------------------------------+--------~ 
1 5 19-64 1 56 IAllocatable field; format is variable according to I 1 
1 I I ISBLOCK usage. See following descriptions for this I I 
I I I I field. I I L-______ ~ ____ _L _______ ~ ___________________________________ ---__________________ ~ _______ _J 

Figure 18. General SBLOCK Format 

272 



r-------T-----T-------T--------------------------------------------------------T--------, 
I I ILength I I Symbolic I 
IField #IBytesl (Bytes) I Description I 1D I 
r-------+-----t-------+--------------------------------------------------------+--------~ 
I 11-8 I 8 ISBLOCK control field (see Table 11) I I 
t-------+-----t-------t--------------------------------------------------------+--------~ 
I 1 19-16 I 8 IName of Data set Descriptor; left adjusted and padded ICCCNME I 
I I I Iwith blanks. I I 
r-------+-----t-------t--------------------------------------------------------t--------~ 
I 2 117 I 1 IIdentification flag: ICCFLl I 
I I I I X' 03' Data Set Descriptor - Private DSD I I 
I I I I X '06' Data Set Descriptor - Public DSD I I 
r-------+-----t-------+--------------------------------------------------------+--------~ 
I 3 118- 2 a I 3 I pointer to Sharer Lis t. I CCCPTL I 
I I I !Pointer is of the form Pbb, where: I I 
I I I I P = page number I I 
! I I I bb = location within the page I I 
~-------t-----+-------t--------------------------------------------------------+--------~ 
I 4 121 I 1 IShare flags; ICCCFL2 I 
I I I I X'OO' Private I I 
I I I I X· 01' Shared Universally I I 
I I I I x' 02' Shared by Listed Sharers I I 
~-------t-----t-------t---------------------------------·-----------------------t--------~ 
I 5 122 I 1 (Share privileges; used only if the Data Set Descriptor iCCCFL3 I 
I I I lis universally shareable: I I 
I I I I x· 00' Unlimited Access I I 
I I I I X' 01' R/W Access I I 
I I I I X· 02' RO Access I I 
t-------t-----+-------t--------------------------------------------------------t--------~ 
I 6 123 I 1 IRET Parameter ICCCFL4 I 
I I I I I I 
I I I I r------------T--------T------------, I I 
I I I I IStorage TypelDeletionlOwner Accessl I I 
I I I I t------------+--------t------------~ I I 
I I I I I 00 I 0000 I 00 I I I I I I I l ____________ J. ________ l. _________ . ___ J I I 

I I I I I I 
I I I I storage Type 00 - Perrranent I I 
I I I I 10 - Temporary I I 
I I I I I I 
I I I I Deletion 0000 - No Deletion I I 
I I I I 0001 - Delete at LOGOFF I I 
I I I I 0010 - Delete at CLOSE I I 
I I I I I I 
I I I IOwner Access 01 - R/W Access I I 
I I I I 10 - RO Access I I 
r-------+-----t-------t--------------------------------------------------------t--------~ 
I 7 124 I 1 ILabel Data: ICCCLAB I 
I I ! I X' 01' No labels (tape only) I 1 
! I I I X'02' Standard labels 1 I 
I I I I X· 04' standard and user labels I I 
t-------t-----t-------t--------------------------------------------------------+--------~ 
I 8 125 I 1 IData set organization ICCCORG I 
r-------t-----t-------t---------------------------------·-----------------------t--------~ 
I 9 126-401 15 IUser data; includes accounting and frequency of use datalCccUSE I 
I I I Iwhich is maintained by the Command System. I I 
t-------t-----t-------t--------------------------------------------------------t--------~ 
I I I I r----------T--------------T-----------, I I 
I 10 141-441 4 IDSCB Pointer IDSCB No(4)IRel Vol No(12)IPage No(16} I I I I I I I l __________ l. ______________ J. __________ J I I 

r-------+-----+-------t--------------------------------------------------------+--------~ 
I 11 145-501 6 ISpare I I L-______ .1.-____ J. _______ J. ________________________________________________________ ~ ________ J 

Figure 19. SBLOCK Format. - Data Set Descriptor (First Block) (Part 1 of 2) 

Appendix B: catalog SBLOCK Format 273 



r-------~-----T-------T--------------------------------------------------------T--------, 
I , 1 Length , 1 Symbolic I 
IField IBytes!{Bytes)1 Description ! ID , 
~-------+-----+-------+--------------------------------------------------------+--------~ 
1 12 151-641 14 IVolume Infourdtion ! 1 
I I , I I I 
I I I I 51 52 53 56 57 60 61 64 I I 
I I I I r---------T-----T------T-------------,! I 
I I I I Public I Spare I Type 1 Spare I Reserved I I I I I ! I L-________ ..L ____ .1 ______ L ____________ J I I 

I I I I I I 
I I I I r---------T-----T------T-------------, I 1 
I I I IPrivate SAM IVaI countlType IVaI IDIFile Seq. No. I I I I I 1 I L _________ .1 _____ .l ______ .l _____________ J I I 

I I 1 I I I 
I I I I r----------T-----T------r------------, I I 
1 I 1 1 Private VAM I Spare 1 TYFe I ValID I Spare I 1 I L-______ .1 _____ .l _______ .1 ____________ .1 _________ .1 _____ .1 ______ .1 _____________ .1 ______ .1 ________ J 

Figure 19. SBLOCK Format - Data Set Descriptor (First Block) (Part 2 of 2) 

r-------T-----T-------T--------------------------------------------------------T--------, 
I I I Length I 1 Syrrbolic 1 
IField #IBytesl(Bytes)I Description I ID I 
r-------+-----+-------+---------------------------------------------------------+--------~ 
I 11-8 I 8 ISBLOCK Control field (see Table 11) I I 
~------t-----+-------+--------------------------------------------------------+--------~ 
I 1 19-20 I 12 ,volume field: , I 
1 1 I 1 I I 
1 I , Ibytes 0- code identifying type of underlying device I I 
I 1 , , I , 
1 , I ,bytes 4-9 volume serial numcer " 
I I I I I I 
, I , Ibytes 10-11 file sequence number I I 
t-------+-----+-------+--------------------------------------------------------+--------~ 
I 2 121-321 12 1 volume field - same as field 1 I' 
t-------f-----+-------+--------------------------------------------------------+--------~ 
I 3 133-941 12 1 volume field - sarr.e as field 1 I' 
r-------+-----+-------+--------------------------------------------------------+--------~ 
I 4 145-561 12 Ivolume field - same as field 1 I' 
~-------f-----+-------+--------------------------------------------------------+--------~ 
I 5 157-641 8 IUnused , 1 l _______ .1 _____ .l _______ .1 ________________________________________________________ .1 ________ J 

Figure 20. SBLOCK Format - Data Set Descriptor (Chained SBLOCKs) 

274 



r-------T--·---T-------~------------------------------------------------------T--------, 

I I ILength I I Symbolic I 
I Field 1# I Bytes I (Bytes) I Description I ID I 
r-------+-----+-------+--------------------------------------------------------+--------~ 
I 11-8 I 8 ISBLOCK control field (see Table 1U I I 
~-------+-----t-------t--------------------------------------------------------t--------~ 
I 1 19-16 I 8 lName of Index; left adjusted and padded with blanks. ICCCNME I 
f-------+-----+-------t------------------------------------.----------------.----+--------~ 
I 2 t7 I 1 I Identification Flags: ICCCFL1 I 
I I I I X'01' Index I I 
I I I I X'02' Generation Index I I 
t-------t-----t-------t--------------------------------------------------------t--------~ 
I 3 118-201 3 !Pointer to Sharer List. lCCCPTL I 
I I I I Point.er is of the form Pbb, where: I I 
I I I I I I 
I I I I P = pagE: number: I I 
I I I I bb = location wi thin the rage I! 
~- ------+ ------+-------+--- ---------- -.-------------- ------------------------- ---+--------~ 
I 4 121 I 1 I Share Flags: ICCCFL2 I 
I I I I X'OO' Private I I 
I I ! I X'Ol' Shared Universally I I 
! I I I X' 02' Shared by Listed Sharers l I 
t-------+-----+-------t--------------------------------------------------------t--------~ 
I 5 122 I 1 I Share privileges; used only if index is universally ICCCFL3 I 
I I I I sharable: ! I 
I I I I I I 
I I I I X'OO' Unlimited Access I I 
I I I I X' 01' R/W Access I I 
I I I I X' 02' RO Access , I 
~-------t-----t-------+--------------------------------------------------------+--------~ 
I 6 123-241 2 IBinary count of pointers in the index. ICCCCT4 I 
t-------t-----t-------t---------------------------------------------------------+--------~ 
I 7 125-261 2 IRinary count of maximUll' nurr.l:er of generations allowed. ICCCCT9 I 
t-------+-----t-------+-----------·---------------------------------------------+--------~ 
I 8 127 I 1 IGeneration Flags: ICCCFL5 I 
I I I I bits 0-3 I I 
I I I I X'l' Save deleted generations I I 
I I I I X' 2' Scratch deleted generations I I 
I I I I I I 
I I I I bi ts 4 - 7 I I 
I I I I X'1' Delete oldest generations I I 
I I I I X' 2' Delete all generatiuns in index I I 
r-------t-----t-------t--------------------------------------------------------+--------~ 
I 9 128 I 1 IInterlock byt.e ICCCILK I 
~-------+-----t-------t---------------------------------------------------------t--------~ 
I 10 129-1101 12 IPointer Entry: I I 
I I I I I I 
I I I Ibytes 0-7 I I 
I I I I Name of entity pointed to; left adjusted and padded I I 
I ! I I wi th blanks I I 
I I I I I I 
I I 1 I hyte 8 I I 
I I I I Flags to indentify entity Fointed to: I I 
I I I I X' 01' Index I I 
I I I I X' 02' GEcnerat~ion Inclf'x i I 
I I I I X'03' Data :3et Descriptor I I 
I I I I X'04' Sharing Descriptor I I 
I I I I I 1 
! I I Itytes 9-11 I I 
I I I I Pointer of the farro Pbb, where: I I 
I 1 I I P '" page number I 
I I I I bb = location wi thin the page 1 I 
.-------+-----+-------+--------------------------------------------------------+--------~ 
I 11 141-521 12 IPointer ent.ry - same format as field 10. I I 
~-------+-----t-------+--------------------------------------------------------+--------~ 
I 12 153-641 12 IPointer entry - same format as field 10. ! I l _______ ~ _____ ~ _______ ~ ___________________________________________ ~ ___________ ~ ________ J 

Figure 21. SBLOCK Forll'iat - Index (Gener<1t.ion Index) -- First SBLOCK 

Appendix B: Catalog SBLOCK Format 275 



r-------T----~-------T--------------------------------------------------------T--------, 
I I ILength \ ,Symbolic\ 
,Field #\Bytes\ (Bytes) I Description , ID I 
~------+-----+-------t--------------------------------------------------------+--------1 
I 11-8 I 8 ISBLOCK control field (see Table 11) I I 
~-------t-----+-------t--------------------------------------------------------t--------~ 
I 1 9-20 I 12 \Pointer entry: I 
I I I \ 
1 \ Ibytes 0-7 I 
, \ I Name of entity pointed to; I 
I I I left adjusted and padded with blanks I 
, I I \ 
, I \byte 8 I 
I I I Flags to identify entity pointed to: I 
I 1 I X· 01' Index I 
I I I X'02' Generation Index 1 
I I I I 
I I I bytes 9-11 I 
I I I Pointer of the form Pbb, where: \ 

1 'I I 
I \ I I P = page number 1 I 
I 1 I I bb = location within the page 'I 
~-------+-----+-------t--------------------------------------------------------+--------~ 
, 2 121-321 12 ,painter entry - same as field 1 1 \ 
~-------+-----+-------+--------------------------------------------------------+--------~ 
1 3 133-441 12 1 Pointer entry - same as field 1 1 I 
~-------+-----t-------+--------------------------------------------------------t--------~ 
, 4 145-56\ 12 IPointer entry - same as field 1 " 
~-------+-----+-------+--------------------------------------------------------+--------~ 
1 5 157-6 4 1 8 IUnused I I L-______ i-____ ~ _______ ~ _________________________________ -----------____________ ~ ________ J 

Figure 22. SBLOCK Format - Index (Generation Index) - Chained SBLOCK 

r-------T-----r-------T--------------------------------------------------------T--------, 
I \ \ Length \ I Symbol ic \ 
IField ItIBytesl(Bytes)I Description I ID 1 
~-------t-----+-------+--------------------------------------------------------+--------~ 
I 11-8 I 8 ISBLOCK control field (see Table 11) I I 
t-------+-----+-------t--------------------------------------------------------+--------~ 
1 1 19-16 I 8 IName of Sharing Descriptor; left adjusted and padded ICCCNME I 
I 1 \ Iwith blanks. I I 
t-------+-----+-------t--------------------------------------------------------+--------~ 
1 2 117 I 1 IIdentification flag: X'04' sharing descriptor ICCCFLl I 
~-------+-----+-------+--------------------------------------------------------t--------~ 
I 3 118-611 44 IOwner's name for shared catalog level; left adjusted andlCCCNMO 1 
I I 1 I padded with blanks. I \ 
~------+-----+-------t--------------------------------------------------------t--------~ 
1 4 162-641 3 IUnused I I L _______ ~ _____ ~ _______ ~ _______________________________ -------------____________ ~ ________ J 

Figure 23. SBLOCK Format - Sharing Descriptor 

27-6 



.------T-----T-------T--------------·------------------------------------------y--------, 
I I ILength I I Symbolic I 
IField #IBytesl (Bytes) I Description I ID I 
r-------t-----t-------t--------------------------------------------------------t--------~ 
I 11-8 i 8 ISBLOCK control ~1eld (see Table 11) I I 
r--------t-----t-------t---------------------------------·-----------------------t--------~ 
I 1 19-10 I 2 (Binary count of number of shares ICCCCT5 I 
~-------t-----t-------t--------------------------------------------------------t-------~ 
I 2 111-161 6 I Unused I I 
t-------f-----+-------t--------------------------------------------------------t--------~ 
I 3 I 17 I 1 IIdentification flag: X'05' Share List ICCCFLl I 
~-------t-----+-------t--------------------------------------------------------t--------~ 
I 4 118-261 9 ISharer entry: ICCCNM2 I 
I i I I I I 
I I I I byt es 0- 7 I I 
I I I I Share indentification (3-8 characters); left-adjustedl 1 
I I I I and padded with blanks I 1 
I I I I I CCCFL8 1 
I I I I byte 8 I I 
I I I I Share privileges: 1 I 
I I I I I I 
I I I I X'OO' unlimited access I I 
I I I I X'Ol' R/W Access I I 
I I I I X' 02' RO Access I I 
r-------t-----+-------t--------------------------------------------------------t--------~ 
I 5 127-351 9 ISharer entry - same format as field 4 I I 
~------+-----t-------t---------------------------------------------------------t--------~ 
I 6 136-441 9 ISharer entry - same forrrat as field 4 I I 
r------t-----+-------+--------------------------------------------------------t--------~ 
I 7 145-531 9 ISharer entry - same format as field 4 I I 
~------t-----t-------+--------------------------------------------------------+--------~ 
I 8 154-621 9 ISharer entry - same format as field 4 I I 
t-------t-----t-------t--------------------------------------------------------+--------~ 
I 9 163-641 2 I Unused I I L ______ .L-____ .L _______ .L __________________________________________________________ .L ________ J 

Figure 24. SBLOCK Format - Sharer List (First SBLOCK) 

APFendix B: catalog SBLOCK Format 277 



r-------,-----T-------T---------------------------------------------------------T--------l 
I I ILength I ISymbolic\ 
I Field It \Bytes I (Bytes) I Description I ID I 
t-------t-----t--------t-----------------------------------------------------------t--------~ 
I 11-8 I 8 ISBLOCK control field (see Table 11) I I 
~-------t-----+-------+--------------------------------------------------------+--------f 
I 1 I I 9 ISharer entry: I I 
I I I I I I 
I I I I bytes 0-7 I I 
I I I I Sharer indentification (3-8 characters); left- I I 
I I I I adjusted and Fadded ~ith blanks. I I 
I I I I I I 
I I I ! byte 8 I I 
I I I I Share pTiviJeges: I I 
I I I ! I I 
I I I 1 X'OO' Unlimited Access I I 
II! I X' 01' Read/wri te Access I I 
I I I I X'02' Read only Access I 1 
~-------t-----t- ------t--------------------------------------------------------+--------f 
I 2 19-17 I 9 I Sharer entry - same as field 1 I I 
t------t-----t--------+------------------------- --------------------------- ---------t--------~ 
1 3 118-261 9 ISharer entry - same as field 1 I 1 
t-------t-----t-------t--------------------------------------------------------t--------f 
I 4 127-351 9 ISharer entry - same as field 1 I I 
r-------+-----t--------t--------------------------------------------------------------+--------~ 
I 5 136-441 9 I Sharer entry - same as field 1 I I 
~-------+-----t-------t--------------------------------------------------------t--------f 
I 6 1'15-531 9 I Sharer entry- same as field 1 I I 
t------+-----+----------t------------------------------------------------------------+--------~ 
I 7 154-621 9 1 Sharer entry - same as field 1 I I 
t-------+-----t--------+---------------------------------------------------------+--------~ 
I 8 \63-641 2 IUnused I I L _______ L ______ L _______ L ________________________________________________________ L ________ J 

Figure 25. SBIDCK Format - Sharer List (Chained SBLOCKs) 

278 



This module directory is pl€sented as an 
aid to the field engineer. It provides a 
convenient cross-reference between the PLM 
and the microfiche, enabling tile FE to 
quickly find the microfiche card that con­
tains a particular entry point name, con­
trol section name, or module name. 

Figure 26 is an alphabetical listing of 
the modules contained in this PLM. accord­
ing to the module title (for example, 
OBTAIN). In addition to the title of the 
module, this table provides the module name 
(for example, CZCFO), the type of service 

APPENDIX C: MODULE DIRECTORY 

routine to which the module belongs, the 
related flowchart, and a brief synopsis of 
the functions the module performs. 

Figure 21 lists the modules alphabetic­
ally, according to module name (for 
example, CZCFQ), and is intended for use 
when working with a dump containing load 
module names. The table identifies the 
n.odule title (for example, OBTAIN). the 
flowchart. CSECT. and entry p,)ints. The 
lIlodule lIlay then be found on microfiche, via 
the module name. 

r--------------------T------T----~-------------T-----------------------------------------------T-----' 
I IModulelType of I ICharti 
(Title I Name IService Routine ISynopsis I ID I 
t--------------------+------+------------------+-----------------------------.-------------------+.-----~ 
IADDCAT ICZCFA ICatalog Services 11. creates a data set descript.or in t.he user'sl All I 
I I I I catalog, associa tingthe VTOCs of a data I I 
I I I I set with t.he index levels in tne user's I i 
I I I I catalog. I I 
I I I 12. Creates any index levels defined by the FQNI i 
I I! I whi,:h must precede the data set: descrirtors I 
I I 1 1 and do nct currently exist. J 
I I 1 13. Allows updating of a data set descrirtor. I 
I I 1 14. Controls the number of generations allowed 1 
I I 1 I under a generation index by perforrring I 
I I I I delet.ion of out-modea generat.ions, as I 
I I I I required. 1 I 
~--------------------t------+-------------------+-----------------------------------------------+-----~ 
IADDDSCB ICZCEK IExternal Storage IAssign srace for a new format-J::: or format-F I BJ I 
I 1 IAllocation (ESA) IDSCE. I ! 
~--------------------+------+-------------------t-----------------------------------------------+-----~ 
1 ALLOCATE !CZCEA IES1I 1 Provides the initial allocation of direct ! Ell I 
I I I laccess storage for new output data SEts, one I I 
I I 1 1 volurre I er allocation. I I 
~--------------------+------+-------------------+-----------------------------------------------t-----i 
I BUMP ICZCAB IDevice IUsed to mount subsequent volumes of a I C[; I 
I I 1 Management Irr,ulti-voluIH: SAM data set. I I 
~------------------+------t -------------------+------- -- ~~ - ~- ----------. --------------- ------.----+ -----i 
ICATALOG ERROR ICZCFE ICatalog Services IInvokes a completion code 1 ABEND whenever a 1 A~ I 

I PROCESSOR I 1 1 catalog service routine encounters a user input I I 
I I I Idata format error. Also. executes a SYSER and 1 I 
f I I IABENL and writes a message to SYSLOG describing I I 
I I 1 I the type and location of the error i.n the I I 
I I I Icatalog. I I 
t--------------------+------+-------------------+-----------------------------------------------t-----i 
ICATFLUSH ICZCFX Icatalog Services ICopies members of the scratch catalog to I Ai I 
1 I I lindividual user catalogs at task termination. I I 
t--------------------f------+-------------------t---------·--------------------------------------+-----i 
ICSECT STORE ICZCKZ ICSECT Store IProcesses user requests made through the CSTOREI GA I 
I I I I macro, which ellaties the user to create, during 1 ! 
I I I I program execution, a control section t~hat is I I 
I I I IFlaced in the current job library as a module. I I 
.--------------------+------+-------------------+-----------------------------------------------+-----~ 
I DELCAT ICZCFD I Catalog Services 11. Deletes index level,: from the catalog I AB I 
I I I I structure. I I 
! 1 I 12. Recatalogs index levels under d different I I 
I I I I fully qualified name (FQN). I I l ____________________ ~ ______ ~ ___________________ ~ _______________________________________________ ~ _____ J 

Figure 26. Module Directory, Indexed Alphabetically by Module Title (Part 1 of 4) 

Appendix C: Module Directory 279 



r-------------------~------T-------------------T------------------------------------------------T-----' 
I IModulelType of I IChartl 
ITitle IName IService Routine I Synopsis lID I 
~--------------------+------t-------------------t-----------------------------------------------+-----~ 
I Drum Access ICZASY IServiceability Aids!Used by those virtual memory programs. such I He I 
IModule (DRAM) I I las VMER and VMEREP, Which must access the errorl I 
I I I Irecords stored on the dummy spaces of the I I 
I I I Ipaging drum. I I 
~--------------------+------+-------------------t-----------------------------------------------+.----~ 
I DSCB/CAT ICZUFX Icatalog Services IRebuilds a user catalog if the current member I AK I 
I RECOVERY I I lin the scratch catalog is unusable; retuilds a I I 
I I I Imember in the scratch catalog if the user I I 
I I I Icatalog is unusable. I I 
t--------------------t------t-------------------t-----------------------------------------------+-----~ 
I DSCBREC ICZCEF IESA IUsed to recover from a checksum error. if I BM I 
I I I lpossible. I I 
r--------------------t------t-------------------t-----------------------------------------------t-----~ 
IEREP67 ICMASN IServiceability Aids I Stand alone program, used to edit and print thel BE I 
I I I linformation recorded on the paging drum ty I I 
I I I I error recording programs. I I 
r--------------------t------t-------------------t-----------------------------------------------+-----~ 
IESA LOCK ICZCEJ IESA IUsed to set, clear and record virtual merrory I BQ I 
I I I I locks. I I 
r--------------------t------t-------------------t-----------------------------------------------t-----~ 
I EXTEND ICZCEX IESA ISecondary allocation routine. called when I BD I 
I I I ladditional space on a direct access volume is I I 
I I I I required for a data set. I I 
r-------------------_t------t-------------------t-----------------------------------------------t-----~ 
IFINDEXPG ICZCEL IESA IGets pages of external storage for a data set. I BI I 
r--------------------t------+-------------------t-----------------------------------------------t-----~ 
IGET SBLOCK ICZCFG Icatalog Services IReceives a pointer containing the relative I AF I 
I I I laddress of an SBLOCK and calculates its virtual I I 
I I I I storage address for the user. I I 
t--------------------t------t-------------------t-----------------------------------------------t-----~ 
IGIVBKSAH ICZCEG IESA IReturns unused external storage from physical I BE I 
I I ' I Isequential data sets to ESA control. and ! I 
I I I I deletes the references to the storage fn>m the I I 
I I I I format -1 and -] data set DSCBs. It is called I I 
I I I lonly by SAM CLOSE. I I 
~--------------------t------t-------------------t-----------------------------------------------t-----1 
1 INDEX ICZCFI Icatalog Services IConstructs chained index levels in the catalog. I AI I 
I 1 1 land creates new members within the catalog datal I 
1 I I I set. I I 
~--------------------t------t-------------------t-----------------------------------------------t-----~ 
1 LOCATE lCZCFL Icatalog Services ILocates and returns SB10CKs from the catalog. I AH I 
I I I leither by name or relative address. I I 
~--------------------t------t-------------------t-----------------------------------------------+-----~ 
IMERGE SAM ICZCEE IESA IReturns extents from physical sequential data I BF I 
I 1 I Isets passed to it by scratch or GIVBKSAM. and I I 
I I I Imerges them with the DADSM extents on their I I 
I I 1 1 volume. I I 
~--------------------+_-----t------------------_t-----------------------------------------------t-----~ 
IMOUNTVOL ICZCAM IDevice Management 1 Mounts , initializes, and builds PVT for all I CE I 
I I I lvolumes of a VAM private data set. I I 
~-----------------~--t------t-------------------t-----------------------------------------------+-----~ 
IMTREQ ICZCAA IDevice IAlloc~es and mounts unit record devices, such I CA I 
I I I Management las disk or tape drives. used for private I I 
I I I Ivoluues. This routine can also be called by I I 
I I I Iprivileged system programs to obtain the 1 I 
I I I Isymbolic device address of a public volume. I I 
r--------------------t------t-------------------t-----------------------------------------------t-----i 
I OBTAIN/RETAIN ICZCFO IESA IReads VTOC and places DSCBs and volume labels I BG I 
1 I I lin designated virtual storage locations. I I 
I I I I Writes DSCBs, user labels. and end-of-file I I 
1 I I Imarkers to sFecified addresses. I I 
r-------------------_t------t-------------------+-----------------------------------------------+-----~ 
I PAUSE ICZCAC IDevice ISends mount request messages to the system I CB I 
I I I Management I operator. asking him to mount volumes or to I I 
I 1 I Iready unit-record devices. It also verifies I I 
I I 1 Ithe operator's reply and. for tape or direct I I 
I I I I access, checks the label of the newly-mounted I I 
I 1 I IvoluRe. I I L ____________________ L ______ L ___________________ L _______________________________________________ L _____ J 

Figure 26. Module Directory, Indexed Alphabetically by Module Title (Part 2 of ij) 

280 



r------ -- -, -,------.----T------T-------'------- -----T--- --- ----,- ,---- ,----- .. ---- -_._-----.------.------ ._-- ---·------T-----1 
I I Module I Type of I lehart! 
ITitle !Name IService Routine iSynop;i<] lID i 
1-------------------+------+-------------------+-----'-.--------------'----.-------------------------+-----~ 
!READWRIT ICZCEM I ESA IReads DSeE pages into virtcual storage and I BP I 
! I j Iwrite'~ DSCE or- PAT pages t.o external storage. I I 
.------ -------------,--+----- -+--------------------+--------_._- ---------- ,._,-----,---. -- .... _--,---,- ,-_. --.------.--+-----~ 
IRELEAS ICZCAD IDevice IInforms the system that the device upon I CC I 
I I I Management ! which a rr ivate volume was mounted is no ... free I I 

I I Ifor other use. and notifies any task awaiting I I 
I I! !the freed device that it iei now available. I ! 
~--------------------+------, +-------------------.-+ ---- "-, -.. - -- -- -- -,- -- -,- ---'-------.. _.-, - --'-' ----------------+ --- --1 
i RELEXPG I CZCEN ! ESA I Makes ext.<, rnal and DSCJ:l [Ja<]cs available to the I BL I 
I I I !system. I I 
~--------------------t------+-------------------t-----------------------------------------------+-----i 
I RENAME lCZCFZ ICatalog Services IChanges the name in the key field of a format ! BH I 
I I I I-lor -A DSCE to the name specified for all I I 
til I volumes by the calling program. I I 
~-------------------t------t-------------------+ ----.--- .--- -- --------- -_ .. --- --- -- -- -- ------.------------,+ -----1 
jRERIM ICZCTR IServiceability Aids I Passe,; erIcr infcrmat~on between the RTAM i HG I 
I I I I subsyst,e![ and the subroutilJes VMER and VMSDR. I I 
~--------------------t------t-------------------+-----------------------------------------------t-----i 
ISAM SEARCH ICZCEC IESA ICalled by either ALLOCATE or EXTEND to search I EE I 
! ! I I the DADSM-DSCBs for available space to fill a I I 
1 I I I request. The DAl)SM DSCBs are then updated to I I 
I I I I reflect the allocation. I I 
I---------------------+------t-------------------+-----------'------'----------·--------------------t-----~ 
!SCRJl.TCH !CZCES IESA IDeletes datea set DSCBS on all volumes of a I BC I 
I I! Ispecified data set_ and assimilates the externall I 
I I I Istorage tack into the available space <the I I 
I I I I DADS,..) on the volume. I I 
t ------------------+------+-------------------+--------.---- ---- -- ---------, ----- ----, -- ----------+ --- --~ 
ISEARCH SBLOCK ICZCFH ICatalog Services lAcquires and chains an empty SBLOCK as either I AG I 
1 I I I an extended SBLOCK of a cataloged entity, or as I I 
I I I Ithe first SBLOCK of a cataloged entity. I I 
r--------------------+------+ ------------- --- - -- -+------ -------- - -----------------------------.-----+ --- ---~ 
iSHARE ICZCFS I Catalog Services IAdds sharing privileges to a catalog level. Ani AC I 
! I I !unshared level Ciln be set to sharable, or a I I 
I I I Ishared level can have its sharing access I I 
iii Imodified. I I 
t------- - - ----- ------+------+------------------t -----'---------------, -... --------------, --, - -------,--+-----\ 
ISHAREUP ICZCFU ICatalog services I Links one user's private catalog to a level in I AE I 
! I I lanother user's private catalog t.hat is I I 
I I I Isharable. I I 
~--------------------+------+-------------------t-----------------"----------,---------------------+-----~ 
ISVMA (Small Virtual ICZCHA !SVMA ISVMA serves the same function for bytes that I EA I 
IMemory Allocation) I I IVMA serves for pages. SVMA calls VMA for bytes I I 
I I I Itotaling integral number: of pages. I I 
r--------------------+------t------------------+-----------------.--'----------------------------+-----\ 
I SYSEARCH I CGac I Symbolic Library I Called by a systE'Il\ or user [:rog ram to locate I FC I 
I I I Service lany individual parcel of a symbolic library, I I 
I I I i using its index as created by SYSINDEX. I I 
t--------------------t------t------------------·-+----------------,--------·-----------------------t-----~ 
! SYSINDEX ICGCKA I Symbolic Library I Automatically indexes t.he symbolic com- I FA I 
I I I Service I ponent of a symbolic libraI-y to create an I I 
I I I lalphabetical index of all the parcels, and i~i! I 
I I I I invoked when the user issues the a[:propriate I ! 
I I I 'RUN cO\lUlland or executes a program calling this I I 
I I! lroutine. I I 
i-------------------+------+-------- -----------+---------- --,--_. - -,,- ---- -.- -.- "'-------,--------------+ --- --1 
I SYS'rlME ICZCTA IServiceability Aids I Converts timE from system format to EBCDIC i Ill: I 
! ! I I format. I I 
t------'-·_-----"---- -t------t---------.---------+-__ 0 __ --- --- •• ---- ---- -, ,--.-- - ----- ---- -.- -- •• -.--------- -+---.-.--~ 
I SYSXBLD I CGCKB I Symbolic Library ! Bui 1 135 the symboli c lit:rary index by scanning I FE I 
I I I Service I each line of t.he source dat.a set to locate, I I 
I I I lextract., and place ent.ries i.n a temporary I i 
i I I ! index. and thEn forrring a ti nal and cOI];[:lete I I 
I I I I index. I I r---- --"- -.------------+------t -------- -----------t--- -- ----.--------- - ... ----------,- - ---------- ,------,---+-----~ 
IUNSHARE ICZCFV ICatalog Services \Removes shar1ng rrivileges from a catalog I AL ! 
I I I I level. I I l ______ ._, ___________ _ i ______ i ____________ , ______ A _______ . ____________ ... ,_._ ... ___________ .. _________ , _______ , .I. _____ J 

Figure 26. Module Directory, Indexed Alphabetically by Module Title [Part 3 of Q) 

A~pendix C: Module Directory 281 



r -------- -- - - -----------.------T---------- - --------T -- -< - - -- - --- - ------------------------------------,-----, 

I IModulel Type of I IChart 
ITitle I Name IService Routine ISynorsis 110 
r-------------------t------t --------------------··-+-----------------------------------------------+-----
IUSERCAT SCAN ICZUFY ICatalog Services IRebuilds the SYSSVCT data set after OPEN VAM orl AJ 
I I I IDSCB/CAT RECOVERY discovers an error when I 
I I I Ireading the DSCB for SYSSVCT. I 
r---------------------+------t-------------------t------------------------------------------------+-----1 
t VAMINI'I ICZCEQ I ESA I Initializes rrivate VAl!' volumes when they are 'BO I 
I I I I entered into the system. I I 
r--------------------+------+-------------------+-----------------------------------------------+-----1 
I VMA (Virtual Memory ICZCGA I VMA I A centralized routine which dynamically I DA I 
I Alloca tion) I I I services a 11 requests for vi rtual memory I and I 
I I I lissued by the syste~ or user's programs during, DB I 
I 'I I t_he execution of a task. There are six entry I , 
I 'I IFoints to VAM: I I 
I I I I I I 
I I I I GETMAIN (CZCGA2) - Get virtual storage by I I 
! I I I fJages. I I 

/ I I ~REEMAIN (CZCGA3) - Free virtual storage by I I 
/ I I pages. ! I 
I I I EXPAND (CZCGA4) - Expand an existing block I I 
I I I of virtual memory. I I 
I I , GfT~;MAIN (CZCGA6) - Get_ shared virtual , I 
'I I storage. I , 
I I I CGNNECf (CZCGA7) - connect to a sharpd page , I 
I' I table. I I 

I I I ! DISCONNECT (CZCGA8) - Disconnect from a I I 
1 I I / shared page table. I I 
r--------------- ---t------+ --------------------t --- - ------ - - - - ---------- --< - - ---- - --- - -- - - - - - ---+-----~ 
I VMER (Virtual Memory!CZCRX ,serviceability Aids / Informs the cp~rator of a failing task I/O I HE I 
IError Recording) I I I component, if the immediate refort flag is on, I I 
! I I land generates I/O error records that are to be I I 
I I I loutput for preservation recording on drum via I I 
I I I Ithe [rum Access Module (DRAM). 'I 
r--------- -------.----+------+-------------------.+-----------------------------------------------+-----~ 
IVOLSRCH ICZCEH I£SA IDetermines the most suitable volume from which, BK I 
I I' Ito allccate space. I I 
~--------------------+------+-------------------+-----------------------------------------------+----~ 
IVMEREP /CZASE IServiceatility AidslRetrieves. tormats, and prints the environment I HD , 
I I I Irecording information stored on tbe paging I I 
I / j I dr Wll • I I 
~--------------------t------t-------------------+---------------------·--------------------------t-----i 
IVMSDR /CZCRY IServiceability AidslAccurrulates error statistics on task I/C I HA I 
I I I Idevices in the Statistical Data Table (SOT) andl I 
I I I ,calls VMER to record I/O errors. It is called I I 
I I I I whtn a task I/O retry operation ei ther ends I I 
I I I Isuccessfully (intermittent outboard failure) orl I 
I I I I is completed with error after a prescribed I I 
I ! I I number of retries (soli,j outboard failure). I I 
t--------------------t------t--------------------t-------------------------.----------------------+-----~ 
IWRITDSCB ICZCEW IESA IUsed to construct a DSCB chain from the RESTBL,I BN I 
I I I IJFCB, DCB, and PVT. I I L ____________________ L ______ L ___________________ L _____ ___________________________________________ L _____ J 

Figure 26. Module Directory, Indexed Alphabetically by Module Title (Part q of 4) 

282 



r---------------T----------------------T-----------T-----------------------------T----------, 
I Module I I I I Chart I 
! Name I Title I CSECT I Entry Point I ID I 
~--------------+----------------------+----------+--------------------------------+----------~ 
I CGCKA I SYSINDEX I CGCKAA I SYSINDEX I FA I 
I CGCKB ! SYSXBLD I CGCKBA I SYSXBLD I FB I 
I CGCKC I SYSEARCH I CGCKCA I SYSEARCH I Fe I 
I CMASN I EREP61 I I Stand Alone I HE I 
I CZASE I VMEREP I CZASEC I CZASEl I HD I 
I CZASY I DRAM I CZASY I CZASYl I HC I 
! CZCAA I MTREQ I CZCAAC I CZCAA1. CZCAA3 I CA I 
I CZCAB I BUMP I CZCABV I CZCAEl I CD I 
I CZCAC I PAUSE I CZCACC I CZCAC1, CZCAC2 I CB I 
I CZCAD I RELEAS I CZCADU I CZCAD1. CZCAD2, CZCAD3 I CC I 
I CZCAM I MOUNTVOL I CZCAMC I CZCAMl I CE I 
I CZCEA I ALLOCATE I CZCEAC I CZCEAl I BA I 
I CZCEC I SAMSEARCB I CZCECC I CZCECl I BB I 
I CZCEE I MERGES AM I CZCEEC I CZCEEl I BF I 
I CZCEF I DSCBREC I CZCEFC I CZCEFl I BM I 
I CZCEG I GIVBKSAM I CZCEGC I CZCEGl I BE I 
i CZCEH I VOLSRCH I CZCEHC I CZECHl I BK I 
I CZCEJ I ESA LOCK I CZCEJC I CZCEJ1, CZCEJ2, CZCEJ3 I BQ I 
I CZCEK I ADDDSCB I CZCEKC I CZCEKl I BJ I 
I CZCEL ! l-'INDEXPG I CZCELC I CZCELl I BI I 
I CZCEM I REAmmIT I CZCEMC I CZCEMI I BP I 
I CZCEN I RELEXPG I CZCENC I CZCENl I BL I 
I CZCEQ I VAMINIT I CZCEQC I CZCEQl I BO I 
! CZCES I SCRATCH I CZCESC I CZCESl I BC I 
I CZCEW (WRITDSCB I CZCEWC I CZCEWl I BN I 
I CZCEX I EXTEND I CZCEXC I CZCEX1. CZCEX2 I BD I 
I CZCFA I ADDCAT I CZCKAT I CZCFA1, CZCFA2 I AA I 
I CZCFD I DELCAT I CZCFDY I CZ CFD1 I AB I 
I CZCFE I CATALOG ERROR I CZCFEC I CZCFEl I AM I 
I I PROCESSOR I I i I 
I CZCFG I GET SBWCR I CZCFGY I CZCFGl, CZCFG2 f CZCFG3 I AF I 
I I I I CZCFG4 I I 
I CZCFH I SEARCH SBWCR I CZCFHC I CZCFH1 I AG I 
I CZCFI I INDEX I CZCIND I CZCFI1 I AI I 
I CZCFL i WCATE I CZCFLY I CZCFLl I AH I 
I CZCFO I OBTAIN/RETAIN I CZDFOB I CZCF01, C2CF02, CZCFR1 I BG I 
I CZCFS I SHARE I CZCFSC I CZCFSl I AC I 
I CZCFU I SHAREUP I CZCFUC I CZCFUl I AE I 
I CZCFV I UNSHARE I CZCFVC I CZCFVl I AD I 
I CZCFX I CATFLUSH I CZCFXC I CZCFX1, CZCFX2, CZCFX3, I AL I 
I I I I CZCFX4. CZCFX5 f CZCFX6, I I 
I I I i CZCFX7, CZCFX8 I I 
! CZCFZ I RENAME I CZCFZC I CZCFZl I Bll I 
I CZCGA I VMA I CZCGAC I CZCGA2 - GETMAIN {pages} I DA I 
I I I I CZCGA3 - FREEMAIN (pages) I I 
! I I I CZCGM - EXPAND I I 
I I I I CZCGA6 - GETSMAIN I I 
I I I I CZCGA7 - CONNECT I I 
I I I I CZCGAS - DISCONNECT I I 
I CZCHA I SVMA I CZCHAC I CZCHA2 - GET~~IN (bytes) I EA I 
I I I I CZCHA3 - FREEMAIN (bytes) I I 
I CZCKZ I CSECT STORE I I CZCKZl I GA I 
I CZCRX I VMER I CZCRXC I CZCRXI. CZCRX2, CZCRX3 I HB I 
I I I I CZCRX4 I I 
I CZCRY I VMSDR I CZCRYC I CZCRYY I HA I 
I CZC'I'A I SYSTIME I I SYSKAI i HF I 
I CZCTR I RERIM I CZCTRC I CZCTRl, CZCTR2 I HG I 
I CZUFX I DSCB/CAT RECOVERY I CZUFXC I CZUFX1. CZUFX2 I AR I 
I CZUFY I USERCAT SCAN I CZUFYC I CZUFYI. CZUFY2 I AJ I l _____________ .1. ______________________ .1. __________ .L _____________________________ .1. __________ J 

Figure 27. Module Directory. Indexed Alphabetically by Module Name 

Appendix C: Module Directory 283 



INDEX 

Where more than one page reference is 
given, the major reference is first. 

access code 12 
accessing error records on paging 

drum 90-91,92-93 
accumulation of error statistics in 

SDT 86-88 
acquisition of SBLDCKs 24 
add entry to index (see AETI subroutine) 
add to catalog (see ADDCAT routine) 
ADDCAT routine (CZCFA) 5-8 

flowchart 95 
ADDDSCB routine (CZCEK) 43-46 

flowchart 160 
adding to sharer lists 3 
AETI subroutine 82 
alias 78 
ALLOCATE routine (CZCEA) 32 

flowchart 146 
allocation 

in another segment 68 
(see also EXPAND) 

in current segment 68 
(see also EXPAND) 

of auxiliary storage 30 
of devices 60-62 
of non-packed virtual storage 67 
of packed virtual storage 67 

(see also ALLOCATE) 

bucket overflow, SDR 86 
buffer sizing, VAM 23 
build symbolic library index routine 

(see SYSXBLD) 
BUMP routine (CZCAB) 59-60 

flowchart 210 

catalog 2 
adding to (see ADDCAT) 
creation of 2 
deleting from (see DELCAT) 
entry 2 
logical entities 2 

data set descriptors 2 
generation indexes 2 
indexes 2 
sharer lists 2 
sharing descriptors 2 

modification 3 
protection 4 
SBLDCK format 272-278 

CATALOG command 4 
catalog error {:rocessor (CZCFE) 20 

flowchart 145 
catalog service routines 4-29 

ADDCAT (CZCFA) 5-8 
flowchart 95 
CATFLUSH (CZCFX) 26-27 

284 

flowchart 141 
DELCAT (CZCFD) 9-10 

flowchart 102 
DSCB/CAT recovery (CZUFX) 28-29 

flowchart 130 
GETSBLOCK (CZCFG) 23-24 

flowchart 109 
INDEX (CZCFI) 21-22 

flowchart 123 
LOCATE (CZCFL) 15-17 

flowchart 112 
SEARCHSBLOCK (CZCFH) 24 

flowchart 111 
SHARE (CZCFS) 10-12 

flowchart 105 
SHAREUP (CZCFU) 14-15 

flowchart 108 
UNSHARE (CZCFV) 12-14 

flowchart 106 
USERCAT SCAN (CZUFY) 24-25 

flowchart 126 
CATFLUSH routine (CZCFX) 26-27 

flowchart 141 
CATVAM option 7 
CEAIA (auxiliary storage allocation) 30 
CGCKA (SYSINDEX) 78-80 

flowchart 240 
CGCKB (SYSXBLD) 80-82 

flowchart 241 
CGCKC (SYSEARCH) 82 

flowchart 242 
chain 

of DSCBs 49-50 
of SBLOCKs 24 

checksum error 24 
CMASN (EREP67) 91-92 

flowchart 254 
collective removal of sharing 
privileges 14 

COMPUT subroutine 34 
condition code recovery procedure 

(DRAM) 88 
CONNECT (CZCGA7) 92 
control section store routine (CSECT store) 

(CZCKZ) 83-84 
flowchart 243 

conversion, time 93-94 
creation 

of catalog 2 
of sharer lists (see SHARE) 

CSECT store routine (CZCKZ) 83-84 
flowchart 243 

CSTORE macro instruction 1,83 
CZASE (Vt-'EREP) 89-90 

flowchart 253 
CZASY (DRAM) 88,89 

flowchart 252 
CZCAA (MTREQ) 57-59 

flowchart 194 
CZCAA3 204 
CZCAB (BUMP) 59-60 

flowchart 210 



CZCAC (PAUSE) 61-62 
flowchart 205 

CZCAC2 201 
CZCAD (RELEAS) 60-61 

flowchart 208 
CZCADl 208 
CZCAD2 209 
CZCAD3 208 
CZCAM (MOUNTVOL) 55-56 

flowchart 212 
CZCEA (ALLOCATE) 32 

flowchart 146 
CZCEC (SAMSEARCH) 32 

flowchart 147 
CZCEE (MERGESAM) 38 

flowchart 152 
CZCEF (DSCBREC) 47 

flowchart 172 
CZCEG (GIVBKS) 36 

flowchart 151 
CZCEH (VOLSRCH) 45 

flowchart 163 
CZCEJ (ESA LOCK) 52 

flowchart 191 
CZCEK (ADDDSCB) 43 

flowchart 160 
CZCEL (FINDEXPG) 42 

flowchart 158 
CZCEM (READWRIT) 51 

flowchart 189 
CZCEN (RELEXPG) 46 

flowchart 168 
CZCEQ (VAMINIT) 50 

flowchart 188 
CZCES (SCRATCH) 35 

flowchart 149 
CZCEW (WRITDSCB) 49 

flowchart 181 
CZCEX (EXTEND) 35 

flowchart 150 
CZCFA (ADDCAT) 5-8 

flowchart 95 
CZCFA1 95 
CZCFA2 99 
CZCFD (DELCAT) 9 

flowchart 102 
CZCFE (Catalog Error Processor) 20 

flowchart 145 
CZCFG (GETSBLOCK) 23 

flowchart 109 
CZCFH (SEARCHSBLOCK) 24 

flowchart 111 
CZCFI (INDEX) 21 

flowchart 123 
CZCFL (LOCATE) 15 

flowchart 112 
CZCFO (OBTAIN/RETAIN) 38 

flowchart 155 
CZCFS (SHARE) 10 

flowchart 105 
CZCFU (SHAREUP) 14 

flowchart 108 
CZCFV (UNSBARE) 12 

flowchart 106 
CZCFX (CAT FLUSH) 26 

flowchart 141 
CZCFZ (RENAME) 42 

flowchart 157 

CZCGA (VMA) 64 
flowchart 221 

CZCGA2 (GETMAIN) 66 
flowchart 221 

CZCGA3 (FREEMAIN) 67 
flowchart 226 

CZCGA4 (EXPAND) 68 
flowchart 231 

CZCGA6 (GETSMAIN) 69 
flowchart 232 

CZCGA7 (CONNECT) 70 
flowchart 233 

CZCGA8 (DISCONNECT) 11 
flowchart 233 

CZCHA (SVMA) 74 
flowchart 234 

CZCKZ (CSTORE) 82 
flowchart 243 

CZCRX (VMER) 86 
flowchart 245 

CZCRY (VMSDR) 85 
flowchart 244 

CZCTA (SYSTIME) 92 
flowchar1: 255 

CZCTR (RERIM) 91 
flowchart 259 

CZUFX (DSCE/CAT RECOVERY) 28 
flowchart 130 

CZUFY (USERCAT SCAN) 24 
flowchart 126 

DADSM-DSCB updating 34 
DADSM hole count 38 
data set controi block (OSCB) 

chain construction 48 
deletion 35 
formats 260 

data set descriptors 273 
data sets 

generation 7 
nongeneration 6 

default (standard) virtual memory 
allocation 63 

DELCAT routine (CZCFD) 9 
flowchart 102 

Delete 
data set DSCBs 35 
index levels 9 

DELETE routine 3 
DELINK 74 
descriptors 

data set 273 
sharing 2 

device address, symbolic 30 
device allocation 59 
device management routines 54 

BUMP (CZCAB) 59 
flowchart 210 
general operation diagram 55 
MOUNTVOL (CZCAM) 55 

flowchart 212 
MTREQ (CZCAA) 57 

flowchart 194 
PAUSE <CZCAC) 61 

flowchart 205 
RBLEAS (CZCAD) 60 

flowchart 208 

Index 285 



direct access volumes 30 
DISCONNECT (CZCGA8) 72,233 
dismount/mount volume 59 
DRAM condition code recovery procedures 88 
DRAM flag bit in lORCB (IORAMM) 89 
DRAM routine (CZASY) 88 

flowchart 252 
drum access module 88 
DSCB/CAT recovery routine (CZUFX) 28 

flowchart 130 
DSCB format 260 
DSCBREC routine (CZCEF) 47 

flowchart 172 
duplexing for user data sets 30 

EBCDTIME macro instruction 62 
enlarging a block of existing storage 35 
entity, logical 2 
entry, catalog 2 
entry format, sharer lists 13,277 
environment recording edit and print, 

model 67 (see EREP67) 
EREP67 Routine (CMASN) 91 

flowchart 254 
error information 

recording 85 
retrieval 85 
retrieve, format, and print 89 

error records 
generation of 85 
on paging drum 88 

errors 
checksum 47 
intermittent 85 
solid 85 

error statistics in SDT 
accumulation of 85 

ESA (External Storage Allocation) 30 
ESA LOCK (CZCEJ) 52 

flowchart 191 
EXPAND (CZCGA4) 68,231 
EXTEND routine (CZCEX) 35 

flowchart 150 
external storage allocation (ESA) 1 

external volumes 30 
SAM 31 
VAM 31 

routines 30 
ADDSCB (CZCEK) 43,160 
ALLOCATE (CZCEA) 32,146 
DSCBREC (CZCEF) 47,172 
ESA LOCK (CZCEJ) 52,191 
EXTEND (CZCEX) 35,150 
FINDEXPG (CZCEL) 42,158 
GIVBKS (CZCEG) 36,151 
MERGESAM (CZCEE) 38,152 
OBTAIN/RETAIN (CZCFO) 38,155 
READWRIT (CZCEM) 51,189 
RELEXPG (CZCEN) 46,168 
RENAME (CZCFZ) 42,157 
SAMSEARCB (CZCEC) 32,147 
SCRATCH (CZCES) 35,149 
VAMINIT (CZCEQ) 50,188 
VOLSRCH (CZCEH) 45,163 
WRITDSCB (CZCEW) 49,181 

extents 
list format 35 

286 

page-oriented 30 
push-down list 31 
return 36 

fields in the SDT 85 
FIND 3 
FINDEXP~ routine (CZCEL) 42 

flowchart 158 
flowcharts 94-259 
format 

of catalog SBLOCK 273-278 
of typical SBLOCK 3 

Format-A DSCB 268 
Forrnat-B DSCB 269 
Format-C DSCB 270 
Forrnat-E DSCB 270 
Format-F DSCB 271 
Forrnat-1 DSCB 261 
Format-3 DSCB 265 
Format-4 DSCE 265 
Format-5 DSCB 267 
FQN (fully qualified name) 2 
FREE~AIN (CZCGA3) 67 
FREEMAIN Macro R option 76 
fully-qualified name (FQN) 2 

generation data sets 7 
generation indexes 2 
generation of I/O error records 86 
GETMAIN (CZCGA2) 66 
GETMAIN macro R option 74 
GETSELOCK (CZCFG) 23 

flowchart 109 
GETSMAIN (CZCGA6) 69 
GIVBRS routine (CZCEG) 36 

flowchart 151 
give back SAM storage 

(see GIVBRS routine) 

header lines 77 
hole count 38 

1/0 error records, generation of 86 
I/O operation aids 85 
I/O Request Control Block (IORCB) 85 
I/O Statistical Data Table (SDT) 85 
implicit shareability 2 
index 2,77 

fully qualified name 2 
generation 2 
levels, deletion 9 
names 2 
partially qualified name 2 
qualified name 2 
search (see LOCATE) 
simple name 2 
temporary (TINDEX) 77 

INDEX routine (CZCFI) 21 
flowchart 123 

initial allocation of external storage 31 
ini tializa tion 

of external volumes 30 
of private volumes 49 

interlock 3 



intermittent error 85 
internal tables 73 
interrupt storage area 63 
10RAMM (DRAM flag bit in 10RCB) 89 
IORCB (1/0 request control block) 84 

DRAM flag bit in 89 
ISA Table 

ISALCK 73 
ISATMP 13 
ISAUPS 13 

JFCB (job file control block) 4,31 
primary allocation field (TDTSPO) 32 
secondary allocation field (TDTSP2) 32 

length indicator, variable 63 
list 

format, extents 31 
push-down 31 

LOCATE routine (CZCFL) 15 
flowchart 112 

logical entity 2 

machine checks 84 
macro instructions 

CSTORE 1 
EBCDTIME 62 

master index 2 
MERGES AM routine (CZCEE) 38 

flowchart 52 
Modifying sharer lists 3 
Module CSECTS 283 
module directory 279,283 
modules, synopsis of 219,283 
mount request message 62 
mounting volumes 51 
MOUNTVOL routine (CZCAM) 55 

flowchart 212 
MTREQ routine (CZCAA) 51 

flowchart 194 

name 
fully qualified (FQN) 2 
partially qualified 2 
qualified 2 
simple 2 

NAPHR 74 
newly shared mode 12 
next available segment pointer 63 
nongeneration data sets 6 
nonpacked virtual storage allocation 61 

OBTAIN/RETAIN routine (CZCFO) 38 
flowchart 155 

OBTAIN posting 155 
OBTAIN requests, types 40 
option codes for VAM 6 
origin address 3 

PACK subroutine 34 
packed virtual storage allocation 67 
packing parameter 63 

page-oriented extents 30 
Page Assignment Table (PAT) 30 
Page Header Table 73 
paging drum 84 
page table, shared 69 
parcels 77 
partially qualified name 2 
partitioned access method. virtual 3 
partitioned organization directory (POD) 2 
PAT (page assignment table) 30 
PAT Summary Table (PST) 44 
PAUSE routine (CZCAC) 61 

flowchart 205 
PERMIT command 3,4 
PHLINK 74 
PHTBLINK 74 
PHTDE 74 
physical sequential data sets 30 

allocation restriction 36 
POD (partitioned organization directory) 
updating 3 

posting 
OBTAIN 155 
RETAIN 156 

primary allocation field of JFCB 
(TDTSPO) 32 

print error information 89 
private devices, allocation of 54 
private storage 

for SAM volumes 30 
for VAM volumes 30 

private volumes 30 
protection key 4 
public devices 57 
~ublic segment indicator 63 
public storage 

for VAM volumes 30 
public volumes 30 
push-down list of extents 31 
PUT macro 3 

simulated 24 

qualified name 
fully (FQN) 2 
partially 2 
tests for 22 

RCR 43 
READWRIT (CZCEM) 51 

flolllchar·t 189 
recovery procedure, DRAM condition 
code 89,252 

RELEJIS routine (CZCAD) 60 
flowchart 208 

release devices associated with data 
set 60 

list format 46 
.release virtual storage 68 

restriction 68 
24-bit system 68 
32-bit system 68 

(see also FREEMAlN) 
RELEXPG routine (CZCEN) 46 

flowchart 168 
removing sharing privileges 

collective 14 

Index 287 



selective 14 
(see also UNSHARE) 

RENAME routine (CZCFZ) 42 
flowchart 157 

rename option 9 
Resource Control Routine (RCR) 43 
RERIM 91 
RESTBL 48 
RETAIN posting 156 
RETAIN type parameter 38 

(see also OBTAIN/RETAIN routine) 
retrieve error information 89 
R option 

FREEMAIN 76 
GETMAIN 74 

routines invoked by the user program 4 
routines invoked by other catalog service 
routines 5 

routines used with 
SAM format volumes 32 
VAM format volumes 42 

RTAM error recording interface module 
(CZCTR) 91 

flowchart 259 

SAM data sets 6 
SAMSEARCH routine (CZCEC) 32 

flowchart 147 
SAM volume processing 31 

routines 32 
SBLOCKs 2 

acquisition 24 
chain 24 
format 272 

data set descriptor 273 
general 272 
generation index 275 
index 276 
sharer list 277 
sharing descriptor 276 

location 15 
typical 2 

SCAN subroutine 79 
SCRATCH routine (CZCES) 35 

flowchart 149 
SDAT (symbolic device allocation table) 30 
SDAT PSM 44 
SOAT PST 44 
SDR (Statistical Data Record) 84 
SOR bucket overflow 86 
SOT (Statistical Data Table) 84 
search 

OADSM-DSCBs for space 33 
index (see LOCATE routine) 

SEARCHSBLOCK routine (CZCFH) 24 
flowchart 111 

SEARCH subroutine 33 
secondary allocation field of JFCB 

(TOTSP2) 32 
selective shareability 15 

removal 14 
sending mount request messages to 

system operator 57 
SERR (system Error Recording and Retry 

program) 84 
serviceability aids 84 

DRAM (CZASY) 88,252 
EREP67 (CMASN) 91,254 

288 

RERIM (CZCTR) 91,259 
VMER (CZCRX) 86,245 
VMEREP (CZASE) 89,253 
VMSOR (CZCRY) 85,244 

SHARE control field 11 
SHARE routine (CZCFS) 10 

flowchart 105 
shareability 

implicit 15 
selective 15 
universal 15 

shared page table, disconnect from 69 
shared virtual storage allocation 69 
sharer lists 3 

adding to or modifying 3 
entry format 13.211 

SHAREUP routine (CZCFU) 14 
flowchart 108 

sharing descriptors 2 
sharing privileges 

collective removal of 14 
selective removal of 14 

simple name 2 
simulated PUT macro 24 
Small Virtual Memory Allocation (SVMA) 

(CZCHA) 74 
flowchart 234 
restrictions 15 

solid error 84 
space requirement computation 37 
Standard User Label (SUL) 33 
standard virtual memory allocation 63 
statistical data record 84 
Statistical Data Table (SDT) 84 
storage protection key 4 
STOW macro 3 
SUL (Standard User Label) 33 
SVMA routine (CZCHA) 74 

flowchart 234 
symbolic device address 30 
Symbolic Device Allocation Table (SDAT) 30 
symbolic library indexing routine 

(SYSINDEX) (CGCKA) 78 
flowchart 240 

symbolic library service routines 
SYSEARCH (CGCKC) 82,242 
SYSINDEX (CGCKA) 18,240 
SYSXBLD (CGCKB) 80,241 

symbolic line 77 
synoFSis of modules 279 
SYS (System Table) 63 
SYSEARCH routine (CGCRC) 82 

flowchart 242 
SYSINDEX routine (cGCKA) 78 

flowchart 240 
System Error Recording and Retry (SERR) 84 
system packing parameter 63 
system table (SYS) 63 
SYSTIME routine (CZCTA) 92 

flowchart 255 
SYSXBLD routine (CGCKB) 80 

flowchart 241 

task initialization, virtual memory 
(VMTI> 3 

TDTSPO, primary allocation field of 
JFCB 32 



TDTSP2, secondary allocation field of 
JFCB 32 

temporary index (TINDEX) 77 
TEST subroutine 36 
time conversion 92 
TINDEX (t:emporary index) 77 
t.ype parameter 

OBTAIN 38 
RET.AIN 38 

unlink trom shared page table 72 
(see also DISCONNECT) 

unit table 74 
universal shareability 15 
UNPACK subroutine 34 
USERCAT SCAN routine (CZUFY) 24 

flowchart 126 
UNSHARE routine (CZCFV) 12 

collective removal 14 
flowchart 106 
restrictions 13 
selective removal 14 

update mode 12 
updating 

DADSM-DSCBs 34 
the POD 3 
the SDT 86 

UPDATE subroutine 34 
user subroutine for SYSXBLD 78 
utility programs 30 

VAM buffer sizing 23 
VAM data sets 

adding to catalog 8 
option codes 6 

VAMINIT routine (CZCEQ) 50 
flowchart 188 
restriction 49 

VAM volume 
initializing, private 49 
processing 31 
routines 43 

variahle allocation parameters 63 
variable length indicator 63 
Virtual Memory Allocation (VMA) 63 
virtual memory allocation routine 

(CZCGA) 64.221 
CONNECT (CZCGA7) 70 
DISCONNECT (CZCGA8) 71 
EXPAND (CZCGA4) 68 
FREEMAIN (CZCGA3) 67 
GETMAIN (CZCGA2) 66 
GETSMAIN (CZCGA6) 69 

Virtual Memory Allocation, Small routine 
(CZCHA) 74 

flowchart 234 
restrictions 75 

Virtual Memory Environment Recording Edit 
and Print (see VMEREP) 

Virtual Meulory Error Recording (see VMER) 
Virtual Memory Statistical Data Recording 

(see VMSDR) 
Virtual Memory Task Initialization 

(see VMTI) 
virtual fartitioned access method 3 
virtual storage 

allocation 67 
1/0 operation aids 84 
pOinter 63 
release 67 

VMl\ (Virtual Memory Allocation) 63 
VMA (virtual memory allocation) routine 

(CZCGA) 64 
flowchart 221 

VMAINIT 222 
VMER routine (CZCRX) 86 

flowchart 245 
VMEREP routine (CZASE) 89 

flowchart 253 
VMSDR routine (CZCRY) 85 

flowchart 244 
restrict. ion 85 

VMTI routine 3 
volume label 30 
volumes 

containing physical sequential data 
sets 30 

containing virtual storage data sets 30 
direct access 30 
external 30 
mounting 57 
private 30 
public 30 

Voluree Table of Contents (VTOC) 30 
VOLSRCH routine (CZCEH) 45 

flowchart 163 
restrictions 45 

VPAM 3 
VTOC, standard location of 30 
VTOC, hole count 38 

WRITDSCB routine (CZCEW) 49 
flowchart 181 

lWRITE subroutine 36 
2WRITE subroutine 36 

Index 289 



GY28-2018-3 

co 
S; 
U'l 
-< 
'" .-+ 
<tl 

3 
---w 
en 
0 
-i 
3 
<1> 

U'l 
:::r 
Q) -. 
:::l 
<0 

U'l 
-< en 
.-+ 
<tl 

3 
< 
<tl .., 
til 

0 
:::l 

!Xl 

U'l 
-< 
'" .-+ 
<tl 

3 
U'l 
'" --. 
< 
(')' 

'" ::0 
0 
c: 
~, 
:::l 
<1> 

'" 

" 
'" Z 
~ 
U'l w 
en 
0 
W 

" :::!, 
:::l 
.-+ 

'" C. 

:::l 

C 
U'l 

~ 
Gl 
-< 
r--) 

co 
~ 
0 ..... 
co 
W 

--- ---- -- - -- - -- ---- - - ---------~-, 


