File No.

§360-31

GY28-2018-3

Program

Version 8.1

IBM Systern /360 Time Sharing System

System Service Routines

Describes the internal logic of the system service
routine used in TSS/360. The system service routines
are non-resident programs that can be invoked either
directly by the user, through the use of system com-
mands and macro instructions, or indirectly, in res-
ponse to requests from other system components.

The system service routines are divided into eight
categories: catalog services; external storage allo-
cation; device management; virtual memory allocation;
small virtual memory allocation; symbolic library
services; control section store; and serviceability
aids. Appendixes describe VAM and SAM DSCB formats
and catalog SBLOCK formats.

This material is intended for persons involved in
program maintenance, and system programmers who are
altering the program design. It can be used to locate
specific areas of the program, and it enables the
reader to relate these areas to the corresponding pro-
gram listings. Program logic information is not nec-
essary for the use and operation of the program.

Prerequisite Publications

The reader must be familiar with the information
presented in:

IBM System/360 Time Sharing System: System
Programmer's Guide, GC28-2008

IBM System/360 Time Sharing System: System
Logic Summary PLM, GY28-2009

Logic

PREFACE

This book describes the internal logic
of the system service routines used in
TSS/360. The system service routines are
divided into eight categories and each
category is discussed in a separate section
of this book:

1. Catalog Services

2. External Storage Allocation

3. Device Management

4. Virtual Memory Allocation

5. Small Virtual Memcry Allocation
6. Symbolic Library Services

7. Control Section Store

8. Serviceability Aids

Each of the 8 sections provides a general
description of the catagory and also
individual routine descriptions. Section 9

Fourth Edition (September 1971)

This is a major revision of, and makes obsolete,
GY28-2018-2 and Technical Newsletters GN28-3124 and
GN28-3152. Changes since the latest Technical
Newsletter include four new Catalog Service routines --
USERCAT SCAN (CZUFY), CATFLUSB (CZCFX)}, DSCB/CAT
RECOVERY (CZUFX), Catalog Error Processor (CZCFE), and
a new External Storage Allocation routine, READWRIT
(CZCEM). SHAREUP (CZCFU) and LOCATE (CZICFL) have keen
changed extensively and smaller changes have been made
to INDEX (C2CFI1) and MOUNTVOL (CZCAM).

This edition applies to Version 8, Modification 1,
of the IBM System/360 Time Sharing System, and to all
subsequent releases until otherwise indicated in new
editions or Techincal Newsletters. Before using this
publication, please refer to the latest edition of IBM
System/360 Time Sharing System: Addendum, GC28-2043,
which lists the current editions of publications.

contains the flowcharts for all the
routines. Appendixes include a module
directory and descriptions of VAM and SAM
DSCB formats and catalog SBLOCK formats.

The material in this book is intended
for persons involved in program
maintenance, and system programmers who are
altering the program design. It can be
used to locate specific areas of the
program and it enables the reader to relate
these areas to the corresponding program
listings. Program logic information is not
necessary for the use and operation of the
program.

The reader must be familiar with the
information presented in:

IBM Systemn/360 Time Sharing System:
System Programmers Guide, GC28-2008

IBM System/360 Time Sharing System:
System Logic Summary PLM, GY28-2009

This publication was prepared for production using an IBM computer to

update the text and to control the page and line format.

Page

impressions for photo-offset printing were obtained from an IBM 1403

Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's

comments.

If the form has been removed, comments may be addressed to

IBM Corporation, Dept. 643, Neighborhood Road, Kingston, New York 12401

© Copyright International Business Machines Corporation
1967,1969,1970,1971

INTRODUCTION . ¢ < ¢ & o «a o o o o o =

SECTION 1: CATALOG SERVICES
General Descrirption of Catalog Services
The Catalog . . « ¢ « « o <« o« « « o «
Catalog Protection . . .« . <«
Catalog Services Routines

Routines Invoked by the User Program

Routines Invoked by Other Catalog Service
Routines Invoked by Cther System Routines

Operation . .« « ¢ « 4 « ¢ o o 4 o
ADDCAT ({(CZCFA) e e e« & 2 = s e e @
DELCAT (CZCFD) e e e a s e s e s o
SHARE {(CZCFS) « v 4 « o o« a « s « «
UNSHARE (CZCFV) . ¢ ¢ o &+ « o o = «
Collective Removal . . . « o « .+
Selective Removal « « <« .
SHAREUP (CZCFU) . ¢« ¢ « o o « o « =
LOCATE (CZCFL) « o . « e o o = o
CATALOG ERROR PROCESSOR {CZCFE) . .
INDEX (CZCFI) ¢ v ¢ 2o o« o a o o« o =
GETSBLOCK {CZCFG) .« + v « & o o« o «
SERRCHSBLOCK (CZCFBH) e . & e o = s
USERCAT SCAN (CZUFY) s o ® o e o
CATFLUSH (CZCFX) « o @ « e e =
DSCB/CAT RECOVERY (CZUFX) « e e & @

SECTION 2: EXTERNAL STCRAGE ALLOCATION
External Volumes . « « + 4+ o + o s «
Public and Private Volumes

.

-

Duplexing Capability for USER Data Sets

SAM Volume Processing

VAM Volume Processing . « . « . « . .

Routines Used With SAM Format Volumes
ALLOCATE (CZCER) e o o s e e w s e
SAMSEARCH (CZCEC) .« .« « + o o« o o« o
SCRATCH (CZCES) .« « « & o v « o o« @
EXTEND (CZCEX) « e . . . N

GIVBKS -- Give Back SAM Storage (CZCEG)

MERGESAM (CZCEE) " % = 4 = + =+ =« =
OBTAIN/RETAIN (CZCFO) . . « .« o« « &
OBTAIN Request .« . ¢ « « o« ¢ o « « =« &
RETAIN Request . . . <« ¢ « 4 o « o« « o
RENAME (CZCFZ) . « o o « o « o o &«
Routines Used With VAM Format Volumes
FINDEXPG (CZCEL) « 4 e« & « s s o =
ADDDSCB (CZCEK) ¢ o « o o« o s o o =
VOLSRCH (CZCEH) . ¢ ¢ ¢« & o o o« o «
RELEXPG (CZCEN) . . & <« ¢« « « « o =«
DSCBREC (CZCEF) . .« <« ¢ v o o o o &
WRITDSCB ({CZCEW) « = e s 8 e s e
VAMINIT (CZCEQ) . . . « ¢ « o o o =
READWRIT (CZCEM) « e s e« o s = w =

ESA LOCK (CZCEJ) . ¢ ¢ « « o o « «

SECTION 3: DEVICE MANAGEMENT
General Operation . . . « a e e e
MOUNTVOL Routine (CZCAM) “ o e o =
MTREQ Routine (CZCRA) « .
BUMP Routine (CZCAB)
RELEAS Routine (CZCAD)
PAUSE Routine (CZCAC)

-

-

- e
« .
o .
« -
- e
. e
. .

Routines .

for
.« .
. .
. .
. .
.« .
.- .
-
e .
. .
I
« .
. .
. .
.« .
-
. .
. .
. .
. .
. .
.- .
. .
.« .
« .
.« .
.o .
“ .
. .
.« .
.« .
e .
.« .
.« .
o .
- .
.« .
« .
.« .
.- .
P
.« .
. .
. .
. .
. .
.o .
. .
. .
. .
. .

Dynamic
« e e
.« . e .
« . e .
. e e .
- e e .
- e e .
- e e .
« e e
« e -
« e e e
« e e e
.« e e s
e . e
« e e
« e e .
« . e
« e e .
- e . e
« e e e
« e e
e e e
« e e
« e e o
. - - =
« e e .
« . e
« o . e
.« e ..
.« e e e
« o e
« e o«
« o ..
« o e
« o o
« o .
« o e e
.« . e
« o e .
« e e e
« o e
« ...
« e e e
« e e
“ e e .
e e e e
« e e .
« . e .
« . e .
« e e
« s e

CONTENTS

.
.
L3
.
.
.
-

e e« s e o« 2
e e e e e . 2
« e e e .. 2
« s« s+ 4 e . U
e e+ o = . b
e« s e « =« « 4
« + + . « 5
Catalog
e« « e a =« « 5
e e+ e e e« 5

iii

SECTION 4: VIRTUAL MEMORY ALLOCATION
VMA -- Virtual Memory Allocation (CZCGA)
GETMAIN (CZCGA2) e« o a o s e e e s o e =
Allocation of Packed Virtual Storage . .
Allocation of Non-Packed Virtual Storage
Allocation of Virtual Storage« . .
FREEMAIN (CZCGA3) . . ¢ o ¢ o« o o o o o« «
Release of a Variable Allocation
Releasing Storage . . . <« « « « o « o o
EXPAND (CZCGAU) . ¢ & ¢ o o o o o o« o« o =
GETSMAIN (CZCGA6) . v v « o o o o o o« o o
CONNECT {(CZCGA7) a e e s e e & a e s e o
DISCONNECT (CZCGA8) . « . <« o o o o o o o

SECTION 5: SMALL VIRTUAL MEMORY ALLOCATION .
General Description . . . « ¢« ¢ « ¢ ¢ « o o
Internal Tables « e e e e
Internal Subroutines Avallable e s s e e
Small Virtual Memory Allocation (CZCHA) . . .

SECTION 6: SYMBOLIC LIBRARY SERVICE ROUTINES

Symbolic Library Indexing Routine (SYSINDEX) . . .

Symbolic Library Search Routine (SYSEARCH)

User Subroutine for SYSXBID

. e

SYSINDEX -- Symbolic Library Indexing Routine
SYSXBLD -- Build Symbolic Library Index (CGCKB) . .
SYSEARCH -- Symbolic Library Search Routine (CGCEKC)

SECTION 7: CONTROL SECTION STORE ROUTINE . .
Control Section Store (CZCKZ) . . . <« . .« .

SECTION 8: SERVICEABILITY AIDS « .
Error Information Recording and Retrieval . .
Error Information Recording
Error Information Retrieval
Virtual Storage I/0 Operation Aids
I/0 Request Control Block (IORCB)

I/0 Statistical Data Table (SDT)
Virtual Memory Statistical Data Recording
Virtual Memory Error Recording (CZCRX) .
Drum Access Module (CZASY)
Virtual Memory Environment Recording Edlt

(CZCRY) .

and Print

(CGCKA) . . .

o s s e

(CZASE)

Environment Recording Edit and Print, Model 67 (CMASN) . .
RTAM Error Recording Interface Module (CZCTR) . . .

Time Conversion e e e e e e e e e .
SYSTIME Routine (CZCTA) e e« s e s e s =

SECTION 9: FLOWCHARTS . <« « o o« « o « « « « =

e« e s e =

APPENDIX A: DATA SET CONTROL BLOCK (DSCB) FORMAT . . .

APPENDIX B: CATALOG SBLOCK FORMAT« .
SBLOCK Format . . . ¢« o ¢ o ¢ o« « = s o o

APPENDIX C: MODULE DIRECTORY

INDEX « 4 4 ¢ ¢« o« o 4 o o o o o o = o « s o o

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
SBLOCK
Figure
Figure
Figure
Figure
Figure

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

1.
3.
q.

6.
7.
8.

10.
11.
12.
13.
14.
15.
16.
17.
i8.
19.
20.
21.
22.
23.
24.
25.
26.
27.

AB.
AC.
AD.

AF.
AG.
AH.

ILLUSTRATIONS

Typical SBLCCK Format @ 4 a4 e 4 4 e s s e e e « « « « 3
Opticn Codes for VAM Input Parameter . . « « « « « « « « 6
Format of SHARE Control field « v ¢ &« « ¢ « « « « 11
Types of OBTAIN RequesStS . . . ¢ v 4« o « o o o« « +» « « . 40
General Diagram of Device Management Operation 55
Standard (Default) Virtual Memory Allocation 63
Location of Input Parameters for GETMAIN . . .« 66
DRAM Condition Code Recovery Procedures . . . B8
FOrmat-1 DSCB 4 o« ¢ o ¢ o o « o « o o = s » o a o« o « « 2261
Format-3 DSCB . © e e e 4 s 4 e e e e e e s e o o« o o 265
Format-4 DSCB « « < +v 4 o « & a « o o o « o s o o o o« « 2265
Format-5 DSCB . . & & v o ¢ 4 4 4 o o s « « s o = o« « « <267
Foxrmat—A DSCB « « v 4 ¢ 4 o 4 4 4« ¢ o 4 o o« o o o« =« « « 268
Format—B DSCB .+ . &« v 4 o o 4 ¢ o o o = o a = o« o o « o« +269
Format—C DSCB .4 + 4« 4 4 o« « o 2 o o o o o« 2 2 s o « « =« 2270
FOormat-E DSCB « & ¢ & ¢ o ¢ o o o « o = « s s o« o« » « « 270
Format-F DSCB .« ¢ 4 o ¢ o ¢ 4 e 4 e o 2 o « s« o « o o« « 271
General SBLOCK Format N - 272
SBLOCK Format - Data Set Descrlptor (Flrst Block) . 273
SBLOCK Format - Data Set Descriptor (Chained SBLOCKS) - <274
SBLOCK Format - Index (Generation Index) -- First SBLOCK 275
SBLOCK Format - Index (Generation Index} - Chained
« v e e e e e e 1
SBLOCK Format - Sharlng Descriptor . . c e e s« = e o« 2276
SBLOCK Format - Sharer List (First SBLOCK) e e e e e e K277
SBLOCK Format - Sharer List {(Chained SBLOCKs)278
Module Directory, Indexed Alphabetically by Module Title 279
Module Directory, Indexed Alphabetically by Module Name .283
ADDCAT (CZCFB) <« v v ¢ o o o s« o « « o o « 4 . . 95
DELCAT (CZCFD) ¢ ¢ v ¢ v ¢« 4 a « o « s « « . 102
SHARE (CZCFS) « + 4 v 4« = o o o « o « o« « & . .105
UNSHARE (CZCFV) “ s s e e s s e ae e e e . «106
SHAREUP (CZCFU) v e 4 e e 4 s e e e % & e @ . .108
GETSBLOCK (CZCFG} e a4 e 4 e % s e s e & o - -.109
GSEARCHSBLOCK (CZCFH) . . .+ o &« o « o « « o & < <111
LOCATE (CZCFL) @« v v o ¢ o« & » o « a « o o« = . <112
INDEX (CZCFI) e s e e e 4 e s e s e e = e . . 123
USERCAT SCAN (CZUFY) e« o s e e w « o o o - .126
DSCB/CAT RECOVERY (CZUFX) e s s e e 4 e e . . .130
CATFLUSH (C2CFX) « e e e e . . . 141
Catalog Error Processor (CZCFE) e e e e e . . 145
ALLOCATE (C2ZCEA)Y . . « ¢ o ¢ 4 o o o o o o = . 146
SAMSEARCH (CZCEC) s e s e e e o = e & a wu = < 147
SCRATCH (CZCES) e e 8 5 s s e s e e e« s o < .1u49
EXTEND (CZCEX) . ¢ ¢ ¢« v 4 4 o ¢« o o « o « = . .150
GIVBKSAM (CZCEG) . v &« & & v o o o o « o o = . <151
MFRGESAM (CZCEE) ¢ « <« + 5 ¢ 4 o o o « o « » . 152
OBTAIN/RETAIN (CZCFO) e v e s e e e e e s e . .155
RENAME (CZCEZ) & « o o« + o « o =« a « a = « = . 157
FINDCEXPG (CZCEL) . 5 @ v v 4 v a o o o 2 o « . .158
ACDLSCE (CZCEK) s e e v 4 e e e e e e v s e . .160
VOLSRCH (CZCEH) e e a a = e e e e e e s e . -163
RELEXPG (CZCEN) e e e o a a4 o o e o o s o a . .168
DSCBREC (CZCEF) « e s e e e e e s s A e e a . <172
WRITDSCB (CZCEW) . « « « v & « o o« o o « « . <181
VAMINIT (CZCEQ) “ e e e e e e e e e s e w . . .188
REACWRIT (CZCEM) + v o o &« o o = . .189

ESA LOCK (CZCEJY . < v v 4 & o o o a « = =+

. .191

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

vi

CA.
CB.
CcC.
CD.
CE.
DA.
EA.
FA.
FB.
FC.
GA.
HA.
HB.
HC.
HD.
HE.
HF.
HG.

MTREQ (CZCAA) .
PAUSE (CZC2Z2C) .
RELEAS (CZCAD) .
BUMP (CZCAB) . .
MOUNTVOL (CZCAM)
VMA (CZCGAR) . .
SVMA (CZCHA) . .
SYSINDEX (CGCKA)
SYSXBLD (CGCKB)

SYSEARCH (CGCKC)

CSECT STORE (CZCKZ)

VMSCR (CZCRY) .
VMER (CZCRX) . .
DRAM (CZASY) . .
VMEREP (CZASE) .
EREP67 (CMASN) .
SYSTIME (CZCTA)

RERIM (CZCTR) .

-194
. 205
.208
. 210
.212
.221
.234
.240
- 241
<242
.243
. 244
. 245
.252
.253
. 254
. 255
<259

IBM System/360 Time Sharing System,
hereafter referred to in this publication
as Time Sharing System/360 (TSS/360), pro-
vides eight categories of system service
routines. These routines are invoked eith-
er directly by the user through use of sys-
tem commands and macro instructions, or
indirectly, in response to reguests from
other system components.

The eight categories are:

e Cataloq Services: These routines allow
the user to read, write, update, and
share his user catalcg and the data
sets contained in it. The catalog is a
hierarchial index structure; each index
level is made up of 6u-byte blocks of
storage called SBLOCKs. Catalog ser-
vice routines operate on the index
levels and the SBLOCKs.

e External Storage Allocation: These
routines control the storage on direct
access volumes used for data storage.
One group of routines controls the ini-
tial allocation of storage to a data
set and the secondary allccation of
storage as it is needed. When storage
is no longer needed, it can be returned
in part, or all the space assigned to
the data set can be returned when the
data set is deleted. One set of ESA
routines is used for the processing of
SAM format volumes and ancther for VAM
format.

e Device Manaqement: These routines are
used to allocate, mount, and release
private devices. Mounting messages are
issued to the operator; and his reply
is awaited. Facilities are provided to
mount subsequent volumes of a multi-
volume physical sequential data set on
the same device as earlier volumes of
the same data set.

INTRODUCTION

e Virtual Memory Allocation: This rou-

tine provides for problem program
requests for dynamic allocation and
release of virtual storage during pro-
gram execution. In addition, an exist-
ing block of storage can be dynamically
expanded. The storage obtained can be
either private or shared.

Small Virtual Memory Allocation: This
routine provides the system or user
rrogram with dynamic allocation of vir-
tual storage by bytes. SVMA obtains
integral numbers of pages from VMA
which are then segmented to satisfy the
requests.

Symbolic Library Service Routines: 2
symbolic library is composed of two
portions: an index and a symbolic com-
ponent. Each portion may be a distinct
data set, or they may be members of
different partitioned data sets. The
symbolic portion contains source state-
ments; the index portion is used to
locate the desired group of symbolic
statements. Routines are provided to
automatically index and retrieve indi-
vidual sections from the library.

Control Section Store Routine: This
routine is invoked by the CSTORE macro
instruction. It enables the user to
create, during program execution, a
contrcl section that is placed as a
module in the current JOBLIB.

Serviceability Aids: These aids con-

sist of service programs to record and
retrieve statistical data concerning
system performance and hardware fai-
lures, and a routine which converts
time and date from system format to
EBCDIC form.

Introduction 1

SECTION 1: CATALCG SERVICES

GENERAL DESCRIPTION OF CATALOG SERVICES

THE CATALOG

The system catalog (called the scratch
catalog) is a VAM partitioned data set that
exists in virtual storage fr..m startup to
shutdown. This is a dynamic catalog since
only members (users) that are active during
a session exist in the scratch catalog.

The individual user catalogs are VS data
sets with format U records that reside on
public storage.

When a user logs on, the scratch catalog
is searched for the user's member, and
normal logon procedure follows if it is
found. If the user's member is not found,
the external VS member will be copied into
the scratch catalog. Subsequent references
will use the scratch catalog.

When the user logs off (or abends), a
check is made to see if the scratch catalog
member has been changed. If it has, the
system copies the scratch catalog member
into the external VS data set. At shut-
down, the scratch catalog is erased. If a
scratch catalog exists at startup (no shut-
down), it will be used as the system cata-
log. Entries in the catalog contain
infomation about the physical location of
data, a list of users who have access to
the data, and how the data may be accessed.
The catalog is a hierarchical structure of
indexes, each uniquely identifiable by its
symbolic name plus the symbolic name of
each higher-level index in its structure.
The highest level of index in the catalog
contains one entry for each authorized user
of the system. Each entry is the eight-
character userid, which is concatenated
automatically by the system to the name
that the user assigns to his data set.

This highest level index is called the
master index, and is actually the parti-
tiored organization directory (POD} of the
catalog data set.

Each index name is referred to as a
simple name; combining the names produces a
gqualified name. If the name of each level,
from highest to lowest, is specified, a
single data set is identified by its fully
qualified name. If one or more of the low-
est levels are not included in the name, a
collection of data sets is identified by
its partially gualified name. Including
all simple names and separating periods
{but excluding the user identification},
the length of a data set name must not
exceed 35 characters. The concatenation of

the user identification gives the name a
maximum length of 44 characters for catalog
references.

A data set is cataloged at OPEN time,
using information placed in the JFCB by the
DDEF command. As pages are assigned to
members, they are formatted into 64-byte
blocks called SBLOCKs which are the basic
unit of information in the catalog. Each
SBLOCK contains indexing information and
pointers to related SBLOCKs. Space for
each user catalog is allocated in whole
page units, 64 available SBLOCKs per page.
Related SBLOCKs are chained together in
groups called indexes, each of which corre-
spond to a level of qualification in the
data set name structure adopted by the
user. '

A logical entity within the catalog con-
sists of one or more chained SBLOCKs. The
logical entities defined in an SBLOCK are:

e Indexes

e Generation indexes

¢ Data set descriptors
¢ Sharing descriptors
s Sharer lists

As pages are assigned to user catalogs,
the fields are zerced and information is
inserted in groups of 64 bytes. Unused
SBLOCKs are identified by a control field
of binary zeros. The form of a typical
SBLOCK is shown in Figure 1. (Refer to
Appendix B for a detailed description of
SBLOCKs.)

The SBLOCKs within an index need not be
contiquous. Forward and backward links in
each SBLOCK give the relative location of
the next succeeding and preceding SBLOCKs
in the index level, which may be in the
same or different pages. Within each index
are SBLOCKs containing the name of each
subordinate index, and a pointer to the
beginning of the SBLOCK chain of each sub-
ordinate index. For a fully qualified data
set name in SAM, the lowest level index in
the catalog of the data set owner contains
one or more SBLOCKs identifying the volume
or volumes on which the data set resides.
In VAM if the data set is public, the
SBLOCK points to the format E DSCB and
gives the volume type. If private, it
points tc the format E DSCB and the volume

S
{F1eLD| #BYTES |DESCRIPTION |
R T |
0 3 | (CCCFWD) Forward Pointer to |
|the first character of the

| next SBLOCK in the chain.
{Pointer is of the form Pbb:
|P is the logical page number
|within the member; bb is the
| relative byte within the
|page.

|
|
{
|
|
|
|
| {
1 { {(CCCCT1) Binary Cocunt of |
|SBLOCKs allocated from a {
|page. This field is main- |
|tained by Catalog Services |
|in the first SBLOCK of each |
|
{ (CCCBWD) Backward pointer toj
jthe preceding SBLOCK in a }
|chain. Pointer is of the
| form Pbb. |
|
|
|
|
|

1 | (CCCCT2) Binary count of
|bytes allocated from the
|field to follow.

]
56 |Allocatable field; format is|
|variable according to SBLOCK]
|usage. |
1

o o v W e e s . e S s S i P e, S e, e Bl e G e . = A s o

i
i
i
f
|
|
|
|
!
|
|
]
|
{
|
3 1 3
|
I
|
|
!
I
{
!
|
]
|
[S—

Figure 1. Typical SBLOCK Format

on which it resides. Such SBLOCKs are
called data set descriptors. The lowest
level index of a sharer's fully qualified
name (FQN) in the catalog of a data set
sharer consists instead of an SBLOCK con-
taining the owner's FQN for the data set,
which may in turn be used to locate the
SBLOCK in the owner's catalog that identi-
fies the volume. Such an SBLOCK in the
sharer's catalog is called a sharing
descriptor.

In addition to pointers to subordinate
indexes and other user catalogs, SBLOCKs
within an index level may contain names of
other users who may share data sets defined
in {(or subordinate to) this index level.
Such SBLOCKs are called sharer lists.

If, in the course of searching through a
user catalog according to a fully qualified
name (FQN), the lowest level index is found
to contain a sharing descriptor pointing to
another owner's catalog, then the search
continues in the owner's catalog using the
owner®s FQON. When the last index level
pointed to by the owner's FQN is found, a
check is made in the owner's catalog to see
if the sharer is allowed to access the data
set. The search for sharing information
kegins at the lowest level (last level
found) and will continue up to the highest
level (userid) if necessary, until an

access for the sharer is found. If an
access is not found, permission is denied
the user to access the data set being
searched for in the owner's catalog. The
PFERMIT command enables the user to add to
or modify sharer lists in any index level
of his catalog, and thus enables him to
contrcl the sharing privileges associated
with a particular data set or group of data
sets defined in his catalog, depending on
which index level is affected by the
command.

The catalog modification is always made
to the index level corresponding to the
last component of the name contained in the
command. This level might consist of a
single data set descriptor or sharing
descriptor, or if this level is sharable,
it might indicate the presence of subordi-
nate levels, which are sharable as a unit.

The virtual partitioned access method is
used to load the user catalog into a user's
virtual storage. When a user enters a
LOGON command into the system, a constant
job file control block (JFCB) for the cata-
log is entered into his virtual storage.
This JFCB points to the format E DSCE for
the catalog and indicates that the catalog
is a shared data set. Once the user iden-
tification is established, virtual memory
task initialization (VMTI) is used to open
the catalog data set; this causes the
RESTEL and POD to ke brought intc the
user's virtual storage. A subsequent FIND
and GET bring the member corresponding to
the user's catalog into virtual storage.
Any of the various catalog services to be
performed on the member are performed by a
catalog service routine. A member appears
in virtual storage as a contiguous piece of
data. Addresses used within a member are
relative to an origin address of zero.
Catalog service routines use the origin
address of the member as an index so that
the members are effectively address-free
and can be located in any contiguous area
of virtual storage.

The *‘STOW macro instruction can be used
to update the POD of the catalog to indi-
cate compression or expansion for new or
deleted members. If a page is required to
expand a member in virtual storage, the
FINDEXPG routine adds on a contiguous page.
The external address is assigned through
the PUT macro instruction. Access method
routines will assign an extermnal page from
extents already allocated to the catalog if
there is a page available; if not, the rou-
tines will request another extent from
external storage allocation. If a user
should QUIT the system, the DELETE routine
updates the POD and returns the external
storage used by that user's catalog for
alloccation to other members.

Section 1: Catalog Services 3

CATALOG PROTECTION

Any portion of storage containing the
catalog is assigned a storage protection
key different from that of the user data
and programs. In addition, ancother form of
protection is required because catalog ser-
vices may be executed in parallel; this
protection is called an interlock.

Parallel catalog accesses may be data
dependent (i.e., they may modify the same
data, causing interference if the wodifica-
tion is concurrent). In order to avoid
interference problems, an interlock is
placed in the first index level of each
user catalog. The interlock operates in
such a manner that a user catalog can be
accessed only in a serial manner. A cata-
log service routine will force a time-slice
end if it finds itself locked out of a
member.

CATALOG SERVICES ROUTINES

Time Sharing System/360 contains catalog
service routines designed to allow the user
to update, add to, and delete from his
private catalog. Catalog service routines
are reenterable, closed service routines
residing in virtual storage. They operate
only in the privileged state and are enter-
able only by a privileged program. The
privileged program calls the catalog ser-
vice routine, supplying a list of input
parameters.

Catalog service routines are divided
into two groups:

e Routines invoked by the user program.
s Routines invoked by other catalog ser-

vice routines.

Routines Invoked by the User Program

The following catalog service routines
can be invoked by the user from his termi-
nal by means of commands. The routines are
privileged, however, and cannot be called
directly by the user's program.

ADDCAT (CZCFA)
is invoked at OPEN time. This routine
establishes the required new entries
in the index levels of the user
catalog.

DELCAT (CZCFD)
is invoked when a user issues a DELETE
command, or a CATALOG command renaming
a data set. This routine removes the
lowest level qualifier(s) of the old
data set name from the user catalog.

SHARE (CZCFS)
is invoked when a data set owner
issues a PERMIT command extending
sharing privileges. SHARE creates
within the specified index level of
the owner's catalog a list of sharers
and their privilege codes.

UNSHARE (CZCFV)
is invoked when a data set owner
issues a PERMIT command rescinding
sharing privileges. This routine
reverses the operation performed by
the SHARE routine by removing names
from a sharer list in the owner's
catalog or by restricting the access
privileges of some sharers.

SHAREUP (CZCFU)
is invoked when a user other than the
data set owner issues a SHARE command.
SHAREUP places a reference to the
owner's catalog (the owner's FQN) into
the sharer's catalog {(under the
sharer's FQN).

LOCATE (CZCFL)
is invoked to locate the index level
in the catalog that corresponds tc the
lowest level qualifier in a fully or
partially gqualified data set name.

" LOCATE does this by searching through
each index level corresponding to the
compeonents of the name. At the same
time, if a sharing descriptor is
encountered during the search, the
owner's FQON is prefixed to the remain-
ing comgponents of the user's FQN, and
at the last stage of the search the
owner's lowest index level is checked
for being sharable by the user. Every
catalog service routine except GETSB-
LOCK and SEARCHSBLOCK calls ugon
LOCATE to find a path leading to par-
ticular index levels within the user
catalog. In response to one user CoOm-
mand, LOCATE may thus be called many
times.

INDEX (CZCFI)
is invoked to make a catalog entry for
a new name during the processing of a
CATALOG or SHARE command. This rou-
tine directs a search for existing
index levels corresponding to the
first components of the name, and then
constructs new index levels for the
remaining qualifiers for which no
index levels previously existed.

CATALOG ERRCR PROCESSOR (CZCFE)
is invoked to execute all SYSER and
ABEND macro instructions currently
claimed by the catalog service rou-
tines. Whenever one of these routines
encounters a user input data format
error and no appropriate return codes
are available, CZCFE is called to

invoke a completion code 1 ABEND.
CZCFE will also be called to execute a
SYSER and ABEND when one of the rou-
tines discovers a catalog structure
error. In this case, CZCFE will alsoco
write a message to SYSLOG describing
the type and location of the error in
the catalog.

Routines Invoked by Othexr Catalog Service
Routines

The following additicnal catalog service
routines are not invoked directly by the
user, but are called by other catalog ser-
vice routines in order to carry out fre-
quently performed operations upon the
catalog.

GETSBLOCK (CZCFG)
As the need arises to process various
SBLOCKs within the catalog, this rou-
tine finds each SBLOCK by means of its
page and byte displacement relative to
the catalog member, reads the page
containing the SBLOCK into storage if
necessary, and gives its virtual
address to the caller.

SEARCHSBLOCK (CZCFH)
As empty SBLOCKs are required to
expand or create new catalog entries,
this routine locates an unused 6u-byte
block within the catalog member and
also fills in the forward and backward
links to chain the new empty SBLOCK
into an existing index.

Routines Invoked by Other System Routines
for Dynamic Catalog Operation

The following routines perform the
dynamic catalog function, which consists of
bringing individual user catalogs into a
scratch catalog as users log on the system.
The scratch catalog is then used as a sys-
tem catalog.

USERCAT SCAN (CZUFY)
If the system finds that the DSCB for
the SYSSVCT data set is in error, this
routine is called to rebuild the SYS-
SVCT data set.

CATFLUSH (CZCFX)
This routine is used to copy members
into the user catalog and delete mem-
bers from the scratch catalog.

DSCB/CAT RECOVERY (CZUFX)

This routine is used to rebuild a user
catalog if the current member in the
scratch catalog cannot be used. Also,
this routine is used to rebuild a user
catalog if no member exists in the
scratch catalog, and the user catalog
is not usable. If the user catalog is
rebuilt, all sharing information must

be reentered by the user because it is
lost when the user catalog is rebuild
from public DSCBs.

ADDCAT (CZCFA)

ADDCAT is a reentrant, privileged rou-
tine residing in virtual storage. This
routine adds new data sets to the catalog,
updates the catalog for new data sets, and
deletes outmoded generations as required.
(See Chart AA.)

Entry Points:
CZCFA1 - for SAM data sets.
CZCFA2 - for VAM data sets.

Input: ADDCAT has two separate sets of
input parameters. Register 1 contains the
address of a parameter list utilized as
follows:

For SAM data sets (CZCFAl)

Word 1
Word 2

Address of a 44-byte FQN
hAddress of a halfword option code

byte 1
byte 1
byte 2
byte 2

00 Normal processing
80 Update requested
Do not update user field
80 Update user field

W un
o
[=]

word 3
Word 4

Address of 26-byte user field
Address of a packed parameter word

kits 0~-7 = 00 Read only user priv.
= 01 Read/write user rriv.

kits 8-15 label data
bits 16-23 data set origin
bits 24-31 vclume count
Wword 5 Address of the start of volume

serial numbers

For VAM data sets (CZCFA2)

Word 1 Address of JFCB

Word 2 Address of fullword option code
Word 3 Address of 64-byte return area

wWord 4 Address of fullword pointer to

public/private volume table.

The option code functions are as shown
in Figure 2. No entry implies the bit is
unused.

Output: The catalog is updated.
Assumptions: A new data set is not a
generation data set unless so indicated in
the SBLOCK.

Section 1: Catalog Services 5

T T 1
| Bit | % ‘ I
| Number | Bit=0 | Bit=1 |
— t + {
(Y |No update |Update |
{1-3 | | |
| 4 | { RET i
5 i	CATVAM	
6	DSD update	JFCB update
7	Complete update	Update specific
	fields	
[8-10	: o	
{11	No change	Share privileges
112	{RET and access	
		privileges
{13 i	Label data	
4		pata set
		organization
15		DSCB/CATALOG
116-18		RECOVERY
19		Tape density
20		Tape parity
21		_ I
22		DSCB pointer
[23-30		
31		Device type code
b Ao . i
Figure 2. Option Ccdes for VAM Input

Parameter

If the maximum number of generations has
been reached and the 'delete oldest only"'
indicator is not on, all generations shall
be deleted from the catalog and erased.

Modules called: »

INDEX (CZCFI) -- To create the necessary
index levels for a new nongeneration cata-
log entry.

GETSBLOCK (CZCFG1) -- To locate an SBLOCK
and calculate its VMA. (CZICFG4) -- To per-
form PUT/PUTX/STOW sequence as necessary.

DELCAT (CZCFD) -- To delete SAM data sets.

DELVAM (CZICFT2) -- To delete and erase VAM
generation data sets.

LOCATE (CZCFL) -- To locate and retrieve
SBLOCKs in the catalog to determine whether
a data set is new and to provide the
address of the last catalog SBLOCK and an
image of the last SBLOCK located.

GATE (CZATC) -- To write messages to inform
the user that a data set was not scratched
when deleted or when DELVAM was
unsuccessful.

SCRATCH (CZCES) -- To delete DSCBs from a
SAM generation data set.

ADDDSCB (CZCEK) -- To assign space for a
new format E DSCB.

SEARCH SBLOCK (CZCFH) -- To acquire and
chain an empty SBLOCK for DSD or an
extended SBLOCK.

FINDJFCE (CZAEB) -- To locate a JFCB for a
SAM generation data set.

RELEASE (CZAFJ) -- To free a JFCB for a SAM
generation data set.

ABEND (CZACP) -- To terminate processing
after a system error.

CATALOG ERROR PROCESSOR (CZCFE) -- To
execute SYSERs and ABENDs when claimed by
ADCAT or when a catalog structure error is
discovered.

Exits:
Normal - Register 15 contains 00.

Error - Register 15 contains one of the
following codes:

SAM DATA SETS

04 - Userid not found in POD
08 -~ FQN not found

0C - No sharing allowed

VAM DATA SETS
08 - FQON already in catalog

Operation: ADDCAT is entered with a Type I
linkage and has two entry points; one for
VAM data sets and one for SAM data sets.

A. SAM Data Sets:

ADDCAT checks for generation and non-
generation data sets.

1. Nongeneration: For nongeneration data
sets, Type I linkage is used to enter INDEX
to create the necessary index levels for
the FQN. ADDCAT takes one of the following
acticns according to the return code from
INDEX:

Code *'0'
indicates that the INDEX operation was
completed successfully. All necessary
‘index levels of the FCN were created,
and INDEX has obtained an SBLOCK for
the creation of a data set descriptor
(DsD) and back chained it to the index
level pointer. ADDCAT then proceeds
to build a data set descriptor in the
SBLOCK provided by INDEX. If the data
set resides on more than one volume,
additional SBLOCKs as required are
assigned via the SEARCHSBLOCK program
for the recording of the additional
volume control fields.

Code *'4°*
indicates the LOCATE function was
unsuccessful due to invalid USERID and

this code is passed back to ADDCAT's
calling routine.

Code '8¢
indicates the FQON is currently in the
user's catalog. If the last level
lpocated is a DSD, the input parameters
are checked toc see if the user wishes
to update the DSD in the catalog
(attributes or vol. control fields).
If no update option was indicated,
processing is terminated and control
is returned to the calling program.
When the option of updating is taken,
further checks are taken to determine
the exact fields to be updated. Data
must appear in the correct relative
locations and if the volume control
fields are being updated, a complete
update of the field must be done,
including the count field.

Code 'C*
indicates that no sharing is allowed
of the catalog the user is trying to
extend. Control is returped to the
calling routine with this return ccde.

2. Generation: For a generation asso-
ciated FQN, Type I linkage is used to enter
LOCATE. ADDCAT takes one of the following
actions according to the return code from
LOCATE:

Code '0°
indicates that the FQN was found in
the cataleg implying that the user
wants to perform an update. A branch
is made to the code which checks and
processes the update options.

Code '4°*
indicates that the user's ID was not
found in the POD and the code is
returned to the user along with
control.

Code '8°
indicates the full FQN was not found
which should be the normal condition
when processing generations. ADDCAT
checks the last index found to deter-
mine if it is a generation index and,
if not, the error code is returned to
the user. If the index was a genera-
tion index, ADDCAT checks the number
of generations existing against the
maximum allowed. If the maximum is
not exceeded, the non-generation pro-
cedure for a new data set is followed,
except that a generation flag is set
prior to calling INDEX and construct-
ing the DSD.

ADCAT checks for catalog structure
errors in the generation index. If an
error is detected, the ERROR PROCESSOR
is called (with information describing

the type of error and its location in
the index) to issue a SYSER and a com-
pletion code 1 ABEND.

When the maximum number of genera-
tions is exceeded, the delete options
are checked to determine whether to
scratch or delete all existing genera-
tions or only the oldest. If a data
set is to be scratched, FINDJFCB is
called to find or create a JFCB,
SCRATCH is called with the JFCB
returned, the JFCB is released, and
DELCAT is called to remove the catalog
entry. If a data set is to be
deleted, FINDJFCB is called to find a
JFCB, DELCAT is called to remove the
catalog entry, and RELEASE is called
to free the JFCB if one was found.
This process is repeated until all the
necessary generations have been
deleted &s specified at which time
ADDCAT returns with a successful
return code.

Code 'C*
indicates the user is not allowed to
share.

B. VAM Data Sets:

LOCATE is entered to determine whether
the data set is old or new, and, in the
case of a generation data set, to convert
the generation-version number to absclute
form if it is relative. If the index
levels are not all found (RC = '08'), the
data set is treated as new; RC='00' indi-
cates an old data set. Return codes of
*04° and '0C' result in SYSERs {(minor soft-
ware) followed by ABEND.

After return from LOCATE, ADDCAT checks
for the RET option in the parameter list
(word 2). If the option is 1, a branch is
taken to the code for urpdating the catalog;
if the RET option is not on, ADDCAT
examines the CATVAM option to add a private
VAM data set to the catalog without going
to ACLDDSCB (since the data set already has
a DSCB). If the option is on for an old
data set, control is returned to the user
with a code of '08' indication that the
fully qualified name given by CATVAM was
not unique. The DSD is also returned to
the user.

If the CATVAM option is on for a new
data set ADDCAT checks for a generation
qualifier and calls INDEX if necessary, to
create a generation index.

Processing differs for new nongeneration
data sets, new generation data sets, and
0ld data sets, as follows:

Section 1: Catalog Services 7

1. New Nongeneration Data Sets: For a new
data set it is assumed that if the last
index pointer found by LOCATE is not a
generation index (CCCFL1 # 02), the new
data set is not generation associated.
Therefore, if the last gualifier is in
absolute G0O0OO0OV0O0 format, ADDCAT will
return with a code of '08', except in the
case of the CATVAM ortion keing set as men-
tioned above. ADDDSCB is entered to obtain
a DSCB for the new data set and its point-
er. In the event of an error return from
ADDD3CB, processing will be *erminated with
a SYSER (minor software) followed by ABEND.
The pointer to the DSCB is inserted into
the JFCB and INDEX is entered to create the
necessary index levels for the FCN in the
catalog. A return code of '00' from INDEX
indicates an SBLOCK has been obtained for
the creation of a DSD. GETSBLOCK is
entered with the pointer tc the SRLOCK from
INDEX to get the SBLOCK; ADDCAT then gets
the backward pointer tc the index SBLOCK
and enters GETSBLOCK to indicate in the
SBLOCK the type of DSD (public or private).
GETSBLOCK is entered to again get the DSD
SBLOCK. {Returns of *04° or '0C' from
INDEX result in SYSER and ABEND; a return
of *08' indicates that the FCQN was already
in the catalog and results in a return to
the user with a code of '08'.) ADDCAT then
proceeds to construct the DSD using infor-
mation in the DSD portion of the JFCB and
calls CZICFG4 for PUT/PUTX/STOW. cControl is
returned to the user with a successful
return code of '00' in general register 15
and an image of the DSD in the user's 64-
byte return area.

2. New Generation Data Sets: If ADCAT is
called to perform an operation on a genera-
tion data set, validity checks are per-
formed on the generation index in the cata-
log. If an error is detected, the ERROR
PRCCESSOR is called with information
describing the type and location of the
error in the catalog index. The ERROR PRO-
CESSOR issues a SYSER and completion code 1
ABEND. Othexwise ADDCAT checks the sharing
access and only the owner or a sharer with
unlimited access will be allowed to proceed
(ABEND is otherwise invoked). GETSBLOCK is
entered to get the generation index and the
number of pointers to existing generations
is incremented by the one to be added and
compared tc the maximum allowed. When a
user requests deletion of generation data
sets, the data sets are automatically
scratched by DELVAM as well because once a
data set is deleted from the catalog it is
inaccessible.

If the maximum number of generations is
not exceeded, ADDCAT will search through
the pointers to previously existing genera-
tion data sets, comparing the new genera-
tion name to those already cataloged. The

pointer to the new generation data set
descriptor is sorted by generation number
into the list of pointers. INDEX is
entered to find and chain an SBLOCK in
which to construct the DSD for the new data
set.

If the maximum number of generations is
exceeded, the delete options are examined
to calculate the number of generations to
be deleted and erased. DELVAM is entered
with the FQN of the generation to be
deleted. If DELVAM was unsuccessful, a
message is sent to the user with the reason
for no deletion and the data set name (via
the GATWR macro). The number of genera-
tions to be deleted is decremented and pro-
cessing continues with the next generation.
DELVAM is called for each generaticn until
the count is zero. ADDCAT then processes
the new generation as above when there are
no deleticons to be made.

0ld Data Sets: For an old data set, ADDCAT
examines the ortion code to see if an up-
date is requested. If not, processing is
terminated with a SYSER (minor software)
and an ABEND. To process the update
options, ADDCAT must first determine wheth-
er the DSD or the JFCB is to be updated.
(Note: Only bytes 21-55 of either the DSD
or the DSD portion of the JFCB may be
updated at one time. Not both.)

If the JFCB is to be updated from the
DSD, the option code is examined to deter-
rine whether a complete or partial update
should be performed. If a complete update
is requested, ADDCAT moves each field of
the DSD into the corresponding field in the
JFCB. A partial update is requested, the
last three bytes of the option are examined
bit by bit to determine which fields are to
be updated. 1In either case, when updating
TDTAQL, the userid in Task Common is com-
pared to the userid in the FQN to determine
whether to move the owner's (CCCFL4) or
sharer's (CCCFl3) access privileges into
the JFCB.

If the DSD is to be updated from the
JFCB, GETSBLOCK is entered to obtain the
DSD SBLOCK from the catalog. The option
code is examined to see if a complete or
partial update is requested and the update
is performed the same as the JFCB update.
When the SBLOCK has been updated as
required, CZCFGH4 is called.

Upon completion of the updating, control
is returned to the user. ADDCAT passes
kack an image of the DSD, and the proper
return code, as indicated under ‘exits', in
register 15.

DELCAT (CZCFD)

DELCAT is a reenterable, nonrecursive,
privileged subroutine, residing in virtual
storage. It deletes index levels from the
catalog structure and recatalogs index
levels under a different fully qualified
name. DELCAT calls LOCATE to get the spec-
ified index level and then determines if an
owner's catalog is referred to by checking
the first byte of the u45-byte buffer used
as an entry parameter to LOCATE. If the
flag is set, the sharer disposition flag in
the 64-byte SBLOCK retrieval buffer is
checked. (See Chart AB.)

Entry Point: CZCFD1

Input: Register 1 contains a pointer to

this list.

Word 1 Pointer to fully qualified name

Word 2 Pointer to option (if RENAME
option is selected, bits 0-15
contain X°'04°)

Word 3 Pointer to new fully gualified
name (applicable only if RENAME
option is selected)

Output: Register 1 contains a pointer to

the input parameter list.

Modules Called:
LOCATE (CZCFL) -- To locate an index level.

INDEX (CZCFI) -- To construct chained index
levels and create new members in catalog
data sets.

GETSBLOCK (CZCFGl) -- To locate SBLOCK and
calculate virtual storage address.

(CZCFGU4) -- To perform PUT/PUTX/STOW
functions.

CATALOG ERROR PROCESSOR (CZCFE)} -- To claim

a SYSER and a completion code 1 ABEND when
a catalog structure error 1is encountered or
an end-of-data-set is detected by
GETSBLOCK.

Exits:

Normal - register 15 contains 00 - DELCAT
successful.

Error -~ DELCAT returns one of the follow-

ing codes:
04 - userid not in the POD

08 - the DELETE fully qualified
name not found by LOCATE

08 - the DELETE fully qgualified
name is an index level con-

taining pointers to lower
levels

08 -~ the DELETE fully qualified
name and RENAME fully gquali-
fied name refer to different
user catalogs

08 - the RENAME fully qualified
name is not unigque

0C - indicates a sharing error

Operation: The fully qualified name sup-
plied in the entry parameter list is used
to locate the specified index level,
through use of the LOCATE routine. If
LOCATE returns with a non-zero return code,
indicating an unsuccessful locate, DELCAT
terminates with an appropriate error return
code.

Upon a successful return from LOCATE,
DELCAT determines if an owner's catalog was
referred to by checking the first byte of
the 45-byte buffer used as an entry parame-
ter to LOCATE. 1If the flag is on, the
sharer disposition flag in the 6U4-byte
SBLOCK retrieval buffer is checked. 1In
order to be able to delete from the owner's
catalog, the sharer must have unlimited
sharing privileges.

The fully qualified name can only
descrike cne of the following:

e An empty index level
e« A data set descriptor
e A sharing descriptor

Ctherwise, DELCAT is terminated with an
error indication.

DELCAT can ke entered with one of the
following options: DELETE or RENAME.

If the delete option is selected, the
entire entity located is zeroed and the
SBLOCK-count for the page is decremented by
one for each SELOCK freed. The deletion
includes extended SBLOCKs and any attached
sharer®s lists. Next, the pointer field
referred toc by the back-chain in the first
SBLOCK of the deleted entity, is retrieved
and deleted. If the deleted pointer was
the sole member of that index level, the
entire index level is, in turn, deleted as
described above. However, if the first
SBLOCK in the user®s catalog becomes empty
or if the SBLOCK is a generation index, it
is not deleted. 1If the index level is not
emptied, the zeroed pointer entry is left
in the index level for future use. Howev-
er, if the deleted member is located in an
extended SBLOCK which has become empty as a
result of the deletion, the extended SELOCK

Section 1: Catalog Services 9

is removed from the chain. The empty node
SBLOCK is not deleted unless there are no
extended SBLOCKsS chained to it. DELCAT
updates the respective allocated byte
fields and forward and backward chains
involved in the deletion and justification.

When deleting a data set descriptor from
the catalog, the structure of any sharing
lists or volume lists attached to it are
checked for errors. If an error is encoun-
tered the ERROR PROCESSOR is called (with
information describing the type and loca-
tion of the error in the catalog) to
execute a SYSER and a completion code 1
ABEND.

If the rename option is selected, DELCAT
verifies via LOCATE that the RENAME fully
qualified name and the DELETE fully quali-
fied name refer to the same user's catalcq.
1f they refer to different user catalogs,
an error return results. DELCAT then
enters INDEX to construct the new fully
gualified name and transfers the contents
of the last qualified level in the old
fully qualified name to the new one.
the data is successfully transferred,
DELCAT proceeds to delete the last quali-
fied level of the o0ld fully qualified name
as described above, except for deleting any
sharer's list or extended SBLOCKs that are
now associated with the new fully qualified
name.

Once

If the last qualified level of a fully
qualified name is a sharing descriptor, the
sharing descriptor is deleted, rather than
the shared index level referred to.

SHARE (CZCFS)

SHARE is a reenterable, nonrecursive,
privileged subroutine residing in virtual
storage, that adds sharing privileges to a
catalog level. An unshared level can be
set to shareable, or a shared level can
have its sharing access modified. Sharing
can be universal (meaning that any user may
share), or selective {(meaning that only
those users whose userid is included in the
input parameter list are allowed to share).
LOCATE is called to retrieve the proper
level for the fully qualified name sup-
plied. For selective sharing, a sharing
list is created or updated, depending on
the type of request. (See Chart AC.)

Entry Point: CZCFS1
Input: Register 1 contains a pointer to
this parameter list:
Word 1 Virtual storage address of a 44-
byte field containing the fully

10

qualified name, left-justified

wWord 2 Virtual storage address of a ful-
lword control field

Word 3 Count field - number of sharers
to be added to the sharers list
(used only for universal sharing)

word 4 Virtual storage address of a list

of sharers

The format of the control field pointed
to by Word 2 is shown in Figure 3.

Notes to Fiqure 3:

Byte O0:
nct used.

Byte 1:
bit 0=0
indicates that a Universal/Selective
sharing parameter is not present.

bit 0=1
indicates that a Universals/Selective
sharing parameter is present in byte
2. This bit is examined only in the
update mode. If it is 0, the sharing
mode is taken from the catalog itself.

bit 1=0
access code is not present in byte 3
of the control word or in the list of
new sharers. The default is unlimited
access for all sharers on the list of
new sharers.

bit 1=1
access code is present.

Byte 2: Universal/Selective parameter
bit 6=1
indicates that the request is for
selective sharing.

bit 7=1
indicates that the request is for
universal sharing. If this bit is
set, the access code must be specified
in byte 3.

Byte 3: access code
bits 0-7
all zero indicates unlimited sharing.

bit 1=1
indicates read/write access.

bit 2=1
indicates read-only access.

|
i
byie O Not Used
4 | {must be binary zeros)
i
i
T
bits 0 1 2 |3 4| 5 6 7
N ,A L
T
Univenal Access Not Used
e et | Cue b by 2
Indicator
: bits 0 1 2 3 4 5 6 7
E Not Used Selective Universal
: i ‘ Sharing Sharing
byte 2 (must be binary zeros) (Indicator Indicator
{
— i -
| |
bits 0] 1 ; 2 3 4 5 6 7
b | l
Read/write Recd only
byte 3 Indicator Indicator
T
bits 0 1 o2 3 |4 6 7
B S | |
Figure 3. Format of SHARE Control field

The list of sharers pointed to by param-
eter 4 has a length of 9#N bytes, when N is
the number of sharers indicated in Word 3
of the input parameter list. Each entry
has the following format:

| D 1
i SHARER ID | ACCESS |

| | CODE |
}_—T"“T—-T’“T"T‘-T“-T --------- 1
11 2 3 4 5 6 7 8/ 9 |
14 __A_ A __i_ _L_ A3

Bytes

The access code has the same meaning as
in the control field pointed to by parame-
ter 2 (byte 3). This list is not meaning-
ful for universal sharing.

Output: Register 1 contains a pointer to
the input parameter 1list.

Restrictions: A user can authorize sharing
only if those index levels are in his own
user catalog.

Modules Called:
LOCATE (CZCFL)

-- To locate an index level.

GETSBLOCK ({C2Z2CFG1l) -- To locate SBLOCK and
calculate virtual storage address.
(CZCFG4) -- to update external storage.

SEARCHSBLOCR (CZCFH) -~ To acquire and
chain an empty SBLOCK to an index level.

CATALOG ERROR PROCESSOR (CZCFE) ~-- To
execute & SYSER and a completion code 1
ABEND when a catalog error is encountered
or if an end-of-data-set is detected by
GETSBLOCK.

Exits:

Normal - register 15 contains 00: SHARE
successful

Error - if SHARE is unsuccessful, register

15 contains one of the following
codes:

Section 1: Catalog Services 11

04 - Owner-id not in the POD

08 - Fully qualified name not in
catalog

0C - Owner 1is not allowed
10 - Not used

14 - A request to share 1is
directed to a sharing
descriptor

18 - Not used
1C - Not used

20 - Request to update from a list
of shares toc a universal
shared level or vice versa

Operation: The owner of a catalog can set
a level in the catalog to "universally
shareable, ™ meaning that any user can
share, or to "selectively shareable™ mean-
ing that only those users whose ID 1is
included in the input parameter list are
allowed to share.

The user can specify whether the level
for a newly shared data set is to become
universally shared or selectively shared.

If the level is to be universally share-
able, the user can supply the access code
(read-only, read/write, or unlimited
access). 1f the user dcoes not specify any
access code, as indicated by byte 1 of the
control field, unlimited access is assumed.
If a sharer has unlimited access, he can
add to or delete from the shared portion of
the catalog. SHARE surplies LOCATE with
the fully gualified name to get the proper
index level. SHARE sets the sharing flag
in that level to universal and sets the
sharing privileges from the access code in
the parameter list or will default the
access to unlimited if none is given.

If the level is to be selectively
shared, the user must supply a count of the
number of sharers plus a list of these
sharers in the form: sharer's-id (8 bytes)
followed by his sharing privilege (1-byte
access code). If the user does not supply
any sharing privilege for the sharers on
the sharing list, each sharer will be given
unlimited access. This is indicated when
bit 1 of byte 1 of the control field is
zero. After locating and retrieving the
SBLOCK associated with the fully qualified
name, SHBARE sets the sharing flag in the
level to "selective.” A sharing list is
constructed and attached to the level by
filling in the pointer to the sharer list.
SBLOCKs to create the sharer list are
obtained using SEARCHSBLOCK. CZCFGY is

12

used, in all cases, to update external
storage when necessary.

The user can share a data set which is
aiready keing shared, but a request to
change the sharing mode from selective to
universal, or from universal to selective,
without first restricting the data set,
will not be honored and will result in a
return code of 20.

If the sharing mode is universal and the
user wants to leave it as universal, SHARE
simply changes the sharing privileges by
using the access code from the input. If
none 1is supplied in the input parameter
list, unlimited sharing privilege is
assumed. When the sharing mode is selec-
tive and the user wants it to remain selec-
tive, the user must surply a count of the
nurbexr of users to be added to the present
sharing list plus a list of new sharers
containing sharerids followed by their
sharing privileges. Before updating the
selective sharing, SHARE checks the struc-
ture of the sharing list for errors. If an
error 1is encourrtered the ERROR PROCESSOR is
called (with information describing the
type and location of the error in the shar-
ing list) to execute a SYSER and a comple-
tion code 1 ABEND. The sharing privileges
for the new sharers on the sharing list can
be defaulted as indicated by byte 1 of the
control word. When this happens, the new
sharers will be given the sharing privilege
of the last sharer on the present sharing
list. SHARE checks each userid to ensure
that it does not already belong to the
user's list. If it already belongs to the
list, the access code from the input is
inserted in the existing entry; if it does
not already belong to the list, it is
added. After the list has been completely
updated, the count of sharers in the cata-
log level is updated by the number of IDs
added.

CZCFGY4 is used, in all cases, to update
external storage when necessary.

UNSHARE (CZCFV)

UNSHARE is a reenterable, nonrecursive,
privileged subroutine residing in virtual
storage, that removes sharing privileges
from a catalog level. First the proper
level is located and checks are made to see
that the sharing mode of the level is com-
patible with the type requested. If the
sharing mode is universal and the request
is to delete all sharers, the sharing flag
is set to private and the new index level
is updated in the catalog. If the sharing
mode is selective and the request is to
delete all sharers, the additional ogera-
tion of deleting the sharer's list is per-
formed. When the sharing mode is selective
and the request is not to delete all mem-

Ictrs, the sharer's list is searched and
only the members passed in the parameter
iist are deleted. (See Chart AD.)

Entry Point: CIZICFV1

Input: Register 1 contains a pointer to

this parameter list:

Word 1 Pointer to a 44-byte field con-
taining the fully qualified name,
left-justified.

Word 2 Pointer to a fullword control
field.

Word 3 Pointer to halfword count field.
Word & Pointer to a list of sharers.

The control field pointed to by Parame-

ter 2 is aligned on a fullword boundary and

has the following structure.
Byte 0 - unused

Byte 1 - unused

Byte 2
bits 0-5 -- unused
bit 6=1 -- delete all sharers
bit 7=1 -- delete only those sharers

identified in the input pa-
rameter list

Byte 3 - unused
All unused bits must be set to zero.

The count field pointed to by Parameter
3 is a halfword binary count of the number
of sharers to be removed from the sharer
list of a selectively shared level; it is
aligned on a halfword boundary. This pa-
rameter is meaningful cnly for selective
sharing.

The list of sharers pointed to by Param-
eter 4 has a length of 9*N bytes, where N
is the number of sharers identified in the
count field above. Each entry in the list
has the following format:

S b 1
f | 00 |
| SHARER ID | (hex) |
b——r—v—7-—y—v———v- oyt
Byte |1 2 3 4 5 6 7 8 | 9 |
S SRR SR AU DRSNS UHN SRS U SR 4
Outpuii: Register 1 contains a pointer to

the input parameter list.

Restrictions:

1. Sharing privilege can be removed from

a cata
the ca

2. To det
a cata
the sh
the fu
that £

log level only by the owner of
talog.

ermine the sharing privilege of
log level, UNSHARE examines <nly
aring privilege pointed to Ly
11y qualified name. This means
or UNSHARE, the sharing privi-

lege of any higher level in the cata-

lcg ha

s no effect on the sharing gpri-

vilege of subordinate levels. The

owner

must specifically establish the

sharing privilege of a level via SHARE

if any
sgpecif

other user is to link to the
ic level via SHAREUP.

3. A level is considered private by
UNSHARE until a SHARE is given for it.

Modules cCal

led:

LOCATE (CZC

GETSBLOCK (
calculate v
(CZCFGY4) --
functions.

CATALOG ERR
execute a S
when a cata
tered or an

CZCFG1.
Exits:
Normal - re
su
Error - re
co
o4
08
ocC
10
14
18
1cC
Cperation:

one of two

s Making
shared

FL) -- To locate an index level.

CZCFG1) -- To locate SBLOCK and
irtual storage address.
To effect PUT/PUTX/STOW

OR PROCESSOR (CZCFE) -- To

YSER and completion code 1 ABEND
log structure error is encoun-
end-of-data-set is detected by

gister 15 contains 00, UNSHARE
ccessful

gister 15 contains one of these
des:

- Owner-id not in POD

- Fully qualified name not in
catalog

- Owner is not allowed to share

- A list of sharers was pro-
vided for a universally
shared level

- Request to unshare is
directed to a sharing
descriptor

~ Level is not now shareable

- Input ids are not in the
sharer's list

The o«ner of a catalog can use
options with UNSHARE:

a universally or selectively
level in the catalog private.

Section 1: Catalog Services 13

s Removing sharing privileges from a list
of users for a selectively shared cata-
log level.

In either case, UNSHARE locates the
fully qualified name to get the proper
level in the catalog. If the level indi-
cated is a sharing descriptor or if the
level is not already shared, an error
return is made.

Before removing any userifs from a shar-
ing list, the sharing 1ist is checked for
catalog structure errcrs. If an error is
encountered, the ERROR PROCESSOR is called
{with information describing the type and
location of the error) to issue a SYSER and
a completion code 1 ABEND.

Collective Removal

If sharing privileges are to be removed
collectively, (that is, the catalog level
is to be made private), UNSHARE checks the
sharing mode of the level to see if it is
universal. If so, it resets the sharing
flag to make the level private. The point-
er to the sharing list 1is saved and zeroed;
all SBLOCKs in the sharing list are then
returned to the catalog.

Selective Removal

If the sharing privileges are toc be
removed selectively, UNSHARE checks the
sharing flag in the cataluy level. If
selective sharing is not indicated, an
error return is made. UNCHARE next
searches the sharing list for the userid.
I1f the userid is not present, a flag is set
in the access byte following the userid on
the input list and UNSHARE begins to search
for the next userid in the input list. If
the userid is present, its entry is zeroed
on the sharing list. If the deletion
results in an empty sharing list SBLOCK
which is not the node sharing list SBLOCK,
the SBLOCK will be removed from the sharing
list chain. Processing is completed when
all the userids on the input list have been
removed from the sharing list. If any
deletion results in the removal of all of
the members from the sharing list, the
catalog level is set to private.

Note: For both collective and selective
removal, CZCFG4 is used to update external
storage when necessary.

SHAREUP (CZCFU)

SHAREUP is a reenterakle, nonrecursive,
privileged subroutine, residing in virtual
storage. It links a user's private catalog
to a level in another user's shareatle
catalog by constructing a sharing descrigp-
tor in the sharer's catalog that points to
a node in a user's catalog that was pre-

14

viously designated as shareable. The
shared index level is retrieved to detexr-
mine if the calling program is allowed to
share. If the calling program or user is
allowed to share and his fully gualified
name is unique, a sharing descriptor is
constructed by the INDEX routine. (See
Chart AE.)

Entry Point: CZICFU1l

Input: Register 1 contains a pointer to
the following parameter 1list:

Word 1 Pointer to owner's fully quali-
fied name.

Word 2 Pointer to user's fully gualified
name.

Qutput: Register 1 contains a pointer to

the input parameter 1list.

Modules Called:
LOCATE (CZCFL) -- To locate an index level.

INDEX (CZCFI) ~- To construct a chained
index level and create new members in the
catalog data set.

GETSBLOCK (CZCFGl) -- To locate an SBLOCK
and calculate virtual storage address.
(CZCFG4) -- To perform PUTX function.

CATALOG ERROR PRCCESSOR (CZCFE) -- To
execute a SYSER and completion code 1 ABEND
when a catalog structure error is encoun-
tered or an end-of-data-set is detected by
CZCFG1 or an unsuccessful return code is
obtained from INDEX.

Exits:

Normal - register 15 contains 00; SHAREUP
successful

Error - register 15 contains one of the

following ccdes:
04 - userid not in POD
08 - user name not unique

0C - index level requested to
share is not shareable

10 - owner FQN nonexistant
14 - ownerid not in POD

18 - request to add sharing
descriptor with gdg.

1C - user is attempting to share
another catalog in the owners
catalog.

Operation: LOCATE is called to retrieve
the owner's fully qualified name that is in
the parameter list. If a X'04' return code
is returned from LOCATE, it is converted by
SHARFUF to a X'14' return code which is
returned to the caller after the sharing
descriptor is built. Similarly, a X'08°"
return code (level to be shared is not in
the catalog) is converted to a X'10' return
code which is sent to the caller after the
sharing descriptor is built. A X'0cC®
return code (level cannot be shared) is
sent to the caller after the sharing
descriptor is built. Before processing is
continued, a check is made to see if LOCATE
crossed a catalog boundary. If it did,
processing is terminated and the sharing
descriptor is not built since sharing
across multiple members is not permitted.

LOCATE is then called with the sharer's
FQN that is in the parameter list. If a
X'0u' return ccde is received, processing
terminates and a X'04' return code is sent
to the callexr. If a X'00' return code is
received, a check is made to see if the
user is trying to build a sharing descrip-
tor in a generation index. If so, proces-
sing terminates with a X'18' return code.
A check is made to see if the user has
already shared the data set. If he has,
the caller is sent a X'00' return code.
Otherwise a X'08' return code, indicating
that the name is not unique, is returned.
A X'0C' return code means that a subset of
the name is the name of a previously
created sharing descriptor and the caller
receives a return code of X'08°'.

A X'08* return code means that only a
subset of the name was found. The catalog
entity on which the search terminated could
be either an index or a data set descrip-
tor; the SBLOCK retrieved by LOCATE is
checked to determine which. If the search
terminated on an index, the name is unique
and SHAREUP continues to build a sharing
descriptor. If the search terminated on a
data set descriptor, there can be no addi-
tional subordinate levels; thus the name is
not unique and SHAREUP returns with a
return code of '08'. 1If the SBLOCK
returned is a generation index, SHAREUP
returns with a return code of '18°'.

If the name is unique, INDEX is called
to construct the necessary levels for
building a sharing descriptor. INDEX
builds all required levels including the
level that the sharing descriptor occupies.
On return from INDEX, it is necessary to
change the last level created by INDEX into
the completed sharing descriptor. A non-
zero return code causes SYSER to be
invoked, since all conditions causing non-
zero return codes should have keen disco-
vered by the previous LOCATE.

Before the sharing descriptor is built,
a check is made to see if INDEX added the
new levels to the catalog correctly. If an
error is detected, the CATALOG ERROR PRO-
CESSCR is called to claim a SYSER and a
comp code 1 ABEND. If the new levels are
satisfactory, the sharing descriptor is
built and the catalog is updated externally
with a call to CZCFGH.

If the final return code is X*00', LOC-
ATE is called again with the sharer's name
to see if the sharer is allowed to access
the data set. If no access is permitted
the caller receives a X'0C® return code.

LOCATE (CZCFL)

LOCATE is a reentrant, privileged rou-
tine that resides in public storage. The
first entry point (CZCFL1) is called to
retrieve SBLOCKs from the user catalocg,
either by fully quaiified name (FQN) or
relative address. Conversion of relative
numbers (for example, NAME(+1)) tc aksolute
generaticn numkers (for example, NAME.
G0001V00) is performed when required. The
second entry point (CZCFL2) is called to
locate the catalog level and any lower
levels implied for an FQN. Catalog infor-
nation is placed in one or more TBLOCKsS
(logical entities containing output catalog
data which are located in a GETMAIN area)
for each terminal level found in the
catalog.

Entry Pcints:

CZCFL1 -- for LOCATE
CZCFL2 -- for LOCFQN
Input: LOCATE has two separate sets of

input parameters. Register 1 contains the
address of the following parameter list:

For LOCATE (CZCFIL1)

Word 1 Pointer to a fully qualified name
or relative address, depending on
the option code specified in Word
2

Word 2 Ortion pointer

0004 -- locate on fully qualified
name and unlock

0008 -~ locate on relative
address and unlock

000C -- locate on fully qualified
name and hold interlock

0010 -- locate on relative
address and hold
interlock

0014 -- release interlock

Section 1: Catalog Services 15

Word 3 Pointer to SBLOCK return area
{64-byte buffer)
Word o Pointer to owner's name and flag

return area (45-byte buffer)

For LOCFQN (CZCFL2)

Word 1 pPointer to a fully qualified name
Word 2 Pointer to a fullword area for the
return of the numker of TBLOCK
pages
Word 3 Pointer to a fullword area for the
return of the first TBLOCK page
virtual memory address
Word 4 Pointer to a 1l-byte option code
01 -- cross catalog when
necessary
02 -- cross catalog implicitly
03 -- don't cross catalog
Cutput: Register 1 contains a pointer to

the input parameter 1list.

Modules Called:

GETSBLOCK (CZCFGl) -- To calculate the
SBLOCK virtual memory address.

(CZCFG3) -- To provide the initial sizing
of the VAM buffer used in processing the
user catalog.

(CZCFG4) -- To effect the necessary PUT/
PUTX/STOW and CLOSE (TYPE T) sequence.

FIND (CZCQJ) -- To search the POD or entry.

STOW (CZCOK) -- To replace the member
descriptor and to close the member.

ERROR PROCESSOR (CZCFE) -- To record a
catalog structure error in SYSLOG and issue
SYSER and/or ABEND.

DSCB/CAT RECOVERY (CZUFX1) -- To rebuild
the catalog in SYSCAT.

GETMAIN (CZCGA2)
virtual storage.

-- To reserve pages of

READ (CZCPE)
SYSSVCT.

-- To read a record from
WRITE (CZCPE) -- To write a record in
SYSSVCT.

FINDJFCB (CZAEB)
user catalog.

-- To find a JFCB for the

OPEN (CZCLA) -- To open the USERCAT DCB.
GET -- To bring the user catalog into the
buffer.

16

PUT -- To move the user catalog into
SYSCAT.

CLOSE (CZCLB) -- To close the user catalog
DCB.
CATFLUSH (CZCFX) -- To remove the catalogs

for inactive member from SYSCAT.

INDEX (CZCFI) -- To build the first page of
a catalcg for a userid.

Exits: LOCATE (CZCF1L1l)
Normal - register 15 contains X'00°'.
Error - register 15 contains one cf the

following hexadecimal codes:

04 - The userid supplied to the FIND macro
instruction is not in the POD of the
catalog data set. If the owner's
userid is not found, a flag is set in
the first byte of the 45-byte buffer,
and the owner's fully gqualified name
is in the remaining 44 bytes.

08 - Not all the qualifiers of the fully
qualified name were located. The last
qualified SBLOCK located is in the
64-byte retrieval area. If an owner's
catalog was entered, a flag is set in
the first kyte of the 45-byte buffer
and the owner's fully gqualified name
is in the remaining 44 bytes.

0C - The user is attempting to retrieve an
entity in an cwner's catalog that he
is not allowed to share. No SBLOCKs
are retrieved in the 6u4-byte buffer,
nor is the owner's fully qualified
name inserted in the 45-byte buffer.

LOCFQN (CZCFL2). Same exits as for CZCFL1.

Same as abaove.

LOCATE calls the ERROR PROCESSOR (CZCFE)
to issue a SYSER for any of the following
conditions:

1. 80102501 - The FQN in the parameter
list contains an error (for example,
the userid or qualifier exceeds 8
characters in length).

2. 80102502 - An FQN generation data set
name contains an error (for example,
if there is a non-numeric character
between parentheses).

3. 80102503 - There is an invalid option
ccde in the input parameter 1list.

4. 80102504 - An unexpected return code
is returned from FIND.

80102506 - Another catalog member has
to be opened thus forcing LOCATE to
implicitly release the current member
which has been locked up for an
update.

6. 80102507 - The userid is not in the
first SBLOCK of a catalog.

7. 80102508 - A catalog cannot be
accessed (for example, the member can-
not be located by FIND or a STOW can-
not be issued successfully).

8. 80102509 - A SYNAD was taken on a READ
or WRITE operation on SYSSVCT for a
reason other than that the key was not
found.

9. 80109902 - This is a general SYSER
that CZCFE issues when reguested to
issue a SYSER but the parameter 1list
to CZCFE does not contain a SYSER.
The following conditions in LOCATE
cause this SYSER:

The number cof qualifiers exceeds 19.

The primary catalog tuffer has been
destroyed after processing an owner's
catalog.

There was an error return from last
call to GETSBLOCK (CZCFG1) Lkefore
exit.

10. 80109901 - This SYSER is issued by
CZCFE when LOCATE detects a catalog
structure error.

Cperation: LOCATE (CZCFL1)

LOCATE is entered with a request to
retrieve an SBLOCK either by its fully
qualified name (FQN) or its relative
address.

After initialization, the option code is
examined. If it is not zero or a multiple
of four a SYSER and ABEND will be issued
informing the user of an invalid option
code. If the input opticon regquests a LOC-
ATE on an FQN, a trace table is built. A
24-byte entry is made for each qualifier in
the FQN. First, the qualifier is moved
into the table after it is validated. A
flag is set in the entry to indicate that
the level is an explicit one and a second
flag is set if the FQN points to a data set
in an owner's catalog. A third flag is set
for the last qualifier in the FQN. If the
FON is a relative generation, it is con-
verted to binary and the qualifier for the
current level contains the binary number
followed by a plus or minus sign. A SYSER
and ABEND are claimed if any irregularity
is detected in the FQN. The trace table is
updated when the SBLOCK for the level is

found in the catalog. Sharing infcrmation
and the type and relative address of the
SBLOCK are saved in the table. A flag is
alsc set to indicate that the gualifier was
found in the catalcg.

LOCATE calls CZCFG3 after issuing the
FIND against the user's catalog, to initia-
lize the VAM buffer in which the catalog is
processed. LOCATE must also determine if
the member for which the FIND is to ke
issued is already open. If it is, LOCATE
bypasses issuing the FIND and the call to
CZCFG3. If a member is open but does not
correspond to the wember for which the FIND
is to be issued, CZCFG4 is called toc issue
the necessary PUTX, PUT, STOW and CLOSE
(TYPE=T) sequence. Before calling CICFG4 a
check is made to see if the catalog is
locked up. If it is, a SYSER and ABEND are
claimed and the user receives the message:
LOCATE HAD TCO IMPLICITLY RELEASE A MEMBER
LOCKED UP FOR UPDATE.

If the return code from FIND indicates
that the userid in the FCN is not in the
SYSCAT POD and if the attempted access is
to his own catalog, the address of the user
catalog is extracted from SYSSVCT with a
READ operation. If a SYNAD is taken on the
READ because the key is not found, a return
with RC='04"' is made. If a SYNAD is taken
on the WRITE operation or on the READ
operation for any other reason than kecause
the key can not ke found the program will
issue a SYSER and ABEND and the user
receives the message; UNRECOVERABLE ERROR
IN SYSSVCT. A STOW 'N' is issued to create
a member entry in the POD and this is fol-
lowed by a FIND to copen the member of SYS-
CAT. If the STOW fails because the POD is
full, CATFLUSH is called to delete inactive
members from the SYSCAT POD and a branch is
taken to reissue the STOW *N' again. If
the CATFLUSH return code is not zero, LOC-
ATE terminates with a '04°' return code. If
the return code from FIND is other than
00 or '14' (member already open), SYSER
80102508 and an ABEND are issued. The user
receives the message: SYSTEM FAULT:

UNABLE TO ACCESS CATALOG. If the FIND is
successful and the DCB indicates there are
pages in the SYSCAT member, a branch is
taken to continue normal processing in LOC-
ATE. 1If there are no pages in the SYSCAT
member and SYSSVCT indicates a USERCAT does
not exist, INDEX is called to create the
first page of a catalog in SYSCAT. The
flag UCTSYNC in SYSSVCT is then set to ind-
icate that the SYSCAT member and the USER-
CAT are not the same by issuing a WRITE or
SYSSVCT. Then a branch is taken to con-
tinue normal processing.

If there is no SYSCAT member but there
is a USERCAT, the USERCAT is moved into
SYSCAT. FINDJFCB is called to get the JFCB
for the USERCAT. The USERCAT DSCB pointer

Section 1: Catalog Services 17

is moved from SYSSVCT to the JFCB, TDTVPY
is set to indicate that the USERCAT is 4
privileged data set and the DCB for USERCAT
is opened. & GET moves the USERCAT to the
buffer, a PUT moves it to SYSCAT and the
DCB is then <losed. & STOW is executed to
close the catalog member. If the return
code from STOW is not zero, a SYSER and an
ABEND are issued and the user receives the
wessage: SYSTEM FAULT: UNABLE TO ACCESS
CATALOG. Before returning to reissue the
FIND, SYSCAT is checked to see ij it
exceeds 800 pages. If it does, CATFLUSH is
called to delete inactive SY:oCAT members.

After the FIND is complete, CZCFGL is
called to obtain the virtual memory address
(VMA) of the first SBLCCK in the catalog.
If the return code from CZCFGl is not zero
or if the FQN userid is not in the first
catalog SBLOCK, a SYSER is claimed &nd the
ERROR PROCESSOR (CZCFE)} is requested to
call CZUFX to rebuild the catalcy. CZCFE
then issues a completion code 1 ABEND after
CZUFX returns control. '

When the catalog SBLOCK for one of the
FQN qualifiers is found, the corresponding
entry in the trace table is updated as
described above. If this is the SBLCCK for
the last qualifier in the FQON and it is not
a sharing descriptor, the catalog search is
finished. If LOCATE is called by LOCFQN,
LOCATE branches back to LOCFQN. Otherwise
the caller receives a zero return code and
LOCATE exits. The exit procedure consists
of moving the last located SBLOCK into the
calling routine's 6U4-byte buffer (given as
an entry parameter to LOCATE). This SBLOCK
may be an index, a data set descriptor or a
sharing descriptor. Sharing information
extracted from the current or a higher
level is returned in the 64-byte bhuffer (if
a sharing descriptor is not being
returned). LOCATE also fills in CDSNPT,
CDSCLS and CDSCLC in the catalog common
area (CHBCDS)Y. If the input option
requests the closing of the catalcg member,
CZCFGU4 is called to close it before return-
ing to the caller.

If the SBLOCK is an index SBLOCK (and
there are more FON qualifiers to be
located), a search is made in this index
level for the pointer entry containing the
next FQN gqualifier. If found, CZCFGl is
called to obtain the VMA of the SBLOCK and
a branch is made to update the trace table
as described previously. 1If the next FQN
qualifier is not found in the index level,
the caller receives an X'08"' return code.
If LOCATE is called by LOCFQN the module
branches to it. If not the module exits as
described previously.

If the SBLOCK is a sharing descriptor

and processing is already in an owner's
catalog, a X'0C®' return code is sent to the

18

caller or LOCFQN. If LOCATE was called by
LELCAT, the catalog search is complete and
this sharing descriptor is returned to
DELCAT. Otherwise LOCATE moves the owner's
FON from the sharing descriptor to the cal-
iing rouvtine's 45-kyte buffer. Any remain-
ing qualifiers in the original FQN are then
concatenated with the owner's FQON in the
ruffer. 1If adding these qualifiers causes
the FQN to exceed 44 characters a SYSER and
ABENL are claimed. The sharing descriptor
is then moved into the 64-byte buffer in
case the owner userid is not found. If the
vwner and sharer userids are not the same
the current catalog member is closed before
kranching back to build a new trace table
for the owner's FQN. Before closing the
catalog rember a check is made to see if
the caller requested LOCATE to keep the
catalog locked until it is updated (CDSLOC
flag was set). 1If so, a SYSER and ABEND
are claimed and the user receives the mes-
sage: LOCATE HAD TO IMPLICITLY RELEASE A
MEMBER LOCKED UP FOR UPDATE.

1f the catalog level pointed to by the
owner's FCN is successfully retrieved, and
the user is allowed to share, a flag
(X'04') is set in the first byte of the
45-byte buffer to indicate that an owner's
catalog was entered and LOCATE will exit
with a zero return code. 1If the user is
not allowed to share the owner's data set,
the kuffer flag is set to zeroc and LOCATE
exits with a X'0C®* return code.

When LOCATE is given a fully qualified
name containing a relative generation num-
ber, the relative generation number is con-
verted tc an absolute generation name. The
last qualifier before the relative numker
must point tc a generation index, or LOCATE
terminates with an error condition. When
the absolute name associated with a zero or
negative relative number is located, the
relative numker is overlayed in the fully
qualified name by the absclute name. If a
positive number is given, a new absolute
name is generated by adding the last
generation number to the relative number.
The result is put in the fully qualified
name, as with zero or negative numbers.
LOCATE then proceeds as usual, retrieving
the data set descriptor for zero or nega-
tive numbers, and returning an error code
for positive numkers. If the generation
index is in an owner's catalog, the rela-
tive number is replaced in the 45-byte
buffer, not in the original fully qualified
name.

Sharing information is extracted from
the catalog by searching all levels of the
catalog until an access is found. The
search begins at the lowest level (the last
level found) and can continue up to the
highest (userid). The first access that is
found is returned. If a level is shared

selectively, the sharing list is searched
for the userid. If a level is shared
universally, that access 1s returned.

A request by relative address may be
made only after a LOCATE has been executed
for a fully qualified name and it is neces-
sary to retrieve subsequent chained
SBLOCKs. However, if any intermediate re-
quest causes LOCATE to enter another user's
catalog, a request by relative address is
not valid for any relative address within
the first user's catalcg. When this option
is used, no fields in the SBLOCK are
changed.

LOCATE checks for catalog structure
errors when searching through a catalog.
I1f an error is detected, the CATALOG ERROR
PROCESSOR (CZCFE) is called with an errox
code to describe the type of error and with
other data such as the location of the
error in the catalog. If LOCATE is called
by LOCFQN a flag may be set requesting
CZCFE to return after claiming a SYSER and
processing continues in LOCATE. Otherwise
CZCFE issues an ABEND.

Note: LOCATE's PSECT (CZCFLX) contains a
data control block (DCB) for SYSCAT.

LOCFQN CZCFL2

LOCFQN is entered to find the catalog
level and any lower levels implied for an
FON. This information will be returned to
the caller in 96-byte blocks called
TBLOCKs. The TBLOCKs are all chained
together on storage obtained by a GETMAIN
operation. The caller must free this
storage when the TBLOCKs are noc longer
required.

LOCFQN calls LOCATE (CZCFL1) with the
FQN in the input parameter list. Upon
returning from LOCATE the return code is
saved and a switch is set to activate error
recovery if an error is encountered during
a lower level implicit search of the
catalog. If an error is detected a call is
made to the ERROR PROCESSOR (CZCFE) to
issue a SYSER and ABEND. If the flag is
set the ERROR PROCESSOR may be requested
for certain recoverable situations to
return to the caller after issuing the
SYSER.

If a zero return code is obtained from
the LOCATE call the virtual memory address
(VMA) of the catalog SBLOCK associated with
the last qualifier in the FQN is obtained
by calling GETSBLOCK (CZCFGl). If a non-
zero return code is obtained for GETSBLOCK,
the ERROR PROCESSOR is called to issue a
SYSER and ABEND and the user will get the
nessage: SOFTWARE ERROCR-ERROR RTN ON LAST
GETSBLOCK BEFORE EXIT.

The SBLOCK is then analyzed to determine
its type. If it is a data set descriptor
SBLOCK and a entry was not made into an
cwner's catalog, a TBD type TBLOCK will be
built. TBS TBLOCKs containing permwissive
information for all qualifier levels of the
FON will also be built and chained tc¢ the
TBD TBLOCK. If entry was made into an
owner's catalog a TBD TBLOCK is built only
if the sharer has access to the data set.
After building the TBLOCK for this level in
the FQN, & check is made to see if this
gualifier level is in the FQN in the param-
eter list to LOCFQN. If so, it is the end
of the rrocessing in the current catalog
and the catalog is closed. This is the
same proceedure followed when a return code
of X'08' or X'0C' is received from the ini-
tial call to LOCATE. If the closed catalog
is not an cwner's catalog, processing is
complete and a return is made to the
caller.

If processing is in an owner's catalog,
a check is made to see if the sharer's
catalog was previously closed. This is the
same procedure to ke followed for a return
code of X*C4*' from the initial LOCATE call.
1f it was closed the buffer is checked to
see if the first SBLOCK in the catalog con-
tains a userid. If it does not, a SYSER is
clairmred and the ERROR PROCESSOR is asked to
return instead of issuing an ABEND. If
there had been an explicit search into an
owner's catalog but no TBLOCKs were built
kecause of a lack of sharing information,
an initial return code of X'00° from LOCATE
is changed to X'0C' before exiting from the
module. If an explicit search into the
owner's catalog yields no output, a TED
TBLOCK is built containing the sharer's
FQN. A TBO TBLOCK is also built containing
the owner's FQN and a flag, which is set to
explain why there is no output.

The module then checks to see if the
current qualifier level is explicit (that
is, the qualifier is in the input FQN).
This procedure is also followed after out-
put of a TBD TBLOCK. If the level is
explicit, rprocessing in this catalog is
complete and the member is closed as pre-
viously described. If not, a search is
made for the next lowest qualifier. If
none is found, the entry in the trace table
(see LOCATE for explanation of trace table)
for this gualifier is erased and the module
will back up tc the next higher qualifier
to see if it is explicit. When a qualifier
is found a check is made to see if the num-
ber of qualifier levels exceeds 19. If so,
a SYSER is claimed, all the lower qualifier
levels are ignored and a TBD TBLOCK is
kuilt as described above. If the number of
qualifier levels is fewer than 19, a new
trace table entry is built for this guali-
fier level and the module branches to ana-
lyze the type of SBLOCK in the catalog for

Section 1: Catalog Services 19

this level as described after the initial
call tce LOCATE.

If the SBLOCK that is returned after the
initial call to LOCATE is a sharing descri-
ptor, a check is made to see if an ownex's
catalog has been entered. If so, LOCFQN
backs up to examine the next higher quali-
fier as described above. If an owner's
catalog has not been entered and LOCFCN is
requested not to enter a catalog, a TBD and
TBO TBLOCK are built and LOCFON hacks up
again to examine the next higier gqualifier.
If LOCFUN 1is requested to implicitly enter
a catalcg, a flag is set indicating an
owner's catalog has been entered and the
sharer's catalog is closed. Since it will
not be reopened again, each page in the
buffer is marked as changed so that page-
ins can be done from the drum cr auxiliary
storage instead of external storage which
could be changed since the catalog is
closed. If sharer and owner userids are
the same the catalog is not closed. LOCATE
is now entered for the second time using
the FON in the sharing descriptor. Final-
i1y, if none of the above options is
requested, LOCFQN enters an owner's catalog
only if the qualifier level which points to
the sharing descriptor is in the input FQN
(that is, is an explicit gualifier level).
Otherwise a TBD and TBO TBLOCK are built
before branching back to look at the next
higher qualifier.

If the SBLOCK that is returned after the
initial LOCATE call is an index, LOCFQN
looks for the first memker in this index
level. 1If none can be found, a TBD TBLOCK
is built as described previously. If a
member is found, LOCFQN branches to check
i1f the number of qualifier levels exceeds
19.

A TBD TBLOCK contains an FQN (TBDDSI),
the DSCB pointer if it is a VAM data set
(TBDDSC), the owner's or sharer's access to
the data set (TBDACC), the owner's userid
if the data set is shared (TBDOWN) and data
set organization (TBDCRG). The TBLOCK has
room for two volume fields (TBDDVF, TBDDVL)
for a SAM data set. If the data set exists
on more than two volumes, this information
is stored in TBC TBLOCKS which are chained
to the TBD TELOCK. A TBDFLL tlag is also
set if the data set has BULKIO pending for
it or if it is a temporary data set.

If a TBD TBLOCK is built for a sharing
descriptor, either because of the ingput
option, or because of an unsuccessful
search into the owner catalog, a TBO TBLOCK
is also built and chained to the TBD
TBLOCK. The TBO TBLOCK contains the owner
data set name issued by the user at SHARE
time and flags, if applicable, indicating
the reason for the unsuccessful search (for

20

example, userid not found, data set non-
existent or non-sharable).

Sharing information is stored in TBS
TBLOCKs which are chained to the TBD
TBLOCK. EFach entry in the TBLOCK (ten
bytes) consists of a userid, the access,
and the FQN level associated with the
access. If a level is shared universally,
the userid is set to *ALL.

CATALOG ERROR PROCESSOR (CZCFE)

The CATAILOG ERROR PROCESSOR is a reent-
<rable, nonrecursive, privileged sukroutine
residing in virtual storage. Its function
15 to execute catalog SYSERs and to take
action when a catalog structure error or a
user format error is discovered by one of
the catalog service routine modules. If
the module is called to execute a catalog
S5YSER (errcr codes FO-FF) the SYSER and
ABEND in the parameter list are checked and
then issued from this module. When a
catalog structure error (erxror codes 00-9F)
is discovered by one of the catalog service
modules, the ERROCR PROCESSOR is called with
the type and location of the SYSER in the
catalog. This information is recorded in
the system lcg and a SYSER and an ABEND are
then issued. If a user format error (error
codes EO-EF) is detected, the error proces-
sor is called to issue an ABEND to the
user.

Entry Point: CZCFEl

Input: The parameter list to the module is
in the PSECT CHBBCEP. It contains the fol-
lowing information:

Wword 1/Word 2 Module name of caller

Word 3: Contains the following:
kyte 1 - hexadecimal error code
byte 2 - exit option code
kyte 3 - flag byte (not used)
byte 4 - not used
Word 4 Address of FQN (44-byte area)l.
Word 5 Address of qualifier level at
which error occurs (this address
should be in the range of the
FQN).
word 6 Address of minor SYSER in caller's
PSECT.
word 7 Address of ABEND message in cal-
ler's PSECT (the first byte gives
the length of the text that
follows).
Word 8 Primaxry address of the error.

Woxrd 9 Secondary address associated with
the error.
Word 10 Contains the following:

bytes 1,2 - actual count of entries
byte 3 - not used
byte 4 - not used
Cutput: None
Modules Called: SYSER (CEAIS) -- system
error routine: invoked when the error pro-
cessor is called with :tcrrors codes 00 to 9F
and EO-EF.

Exits: Return, to the caller, if specified
by the option code (CEPOPT). Otherwise,
issues an ABEND.

SYSERs:

80109901 This SYSER is issued when CZCFE is
called when one of the catalog
service routines discovers a
catalog structure error (error
code 00-9F)

80109902 This SYSER is issued when CZCFE is
called to issue a SYSER but the
parameter list does not contain
one (errxor code FO-FF)

80109903 This SYSER is issued if the param-
eter list contains a SYSER that is
not type 1 (error code FO-FF).

Operation: The CATALOG ERROR PROCESSCR is
called for three types of errors detected
by the Catalog Service Routines:

1. Type 1 (error codes 10-9F) a catalog
structure error.

2. Type 2 (error ccdes EO-EF) a user
input format error with no agpropriate
return code available for returning to
the caller.

3. Type 3 (error ccdes FO-FF) other sys-
tem error conditions for which the
caller supplied a SYSER code and a
comp code 1 ABEND message.

If the parameter list contains a fully
qualified name (FQN), it is added to all
ABEND and WTL messages. If the name
exceeds 44 characters only the first 44 are
added. If the parameter list contains an
address of a qualifier that is in the FQN
range, the qualifier is also added to the
messages.

When called for a type 1 error, the
CATALOG ERROR PROCESSOR checks to see if
the parameter list contains a SYSER. If it
does not, SYSER 80109902 is executed. If
the SYSER is not a type 1 SYSER, the module
issues a 80109903 SYSER. Otherwise the

SYSER in the parameter list is issued. If
the rarameter 1list contains an ABENL mes-
sage, the FCN and the calling routine are
added to it before writing the message to
5YSLOG. 1If the parameter list does not
contain an ABEND, a standard message is
written in SYSLOG instead. Before issuing
the ABEND (either the one in the parameter
list or the standard ABEND message), the
option code is checked. If it specifies a
return, the CATALOG ERRCR PROCESSOR returns
to the caller. If it specifies that the
catalog is to be rebuilt, CZUFX is called
to do this before return is made to the
caller. Otherwise the ABEND message is
issued.

When called for a type 2 error the
CATALOG ERROR PROCESSOR checks the parame-
ter list to see if it contains an ABERD
message. If it does, the message is conca-
tenated with the error code, the module
name of CZCFE's calls an FQN. Then a comp
code 1 ABEND is issued. If the paramneter
list does not contain an ABEND, a standard
message 1is issued.

1f called for a type 3 error, the
CATALOG ERROR PROCESSOR writes a message to
S5YSLOG describing the type and location of
the error in the user's catalog. The FQN
and the module which discovers the error
are alsc included in the message. The
option code is again checked. If a return
is requested, the module returns to the
caller. If it requests that the catalog be
rebuilt, CZCFX is called to do this before
returning to the caller. Otherwise, a comp
code 1 ABEND is issued and the user
receives a standard message along with the
error code, the module which detected the
error and the FQN.

Note: CZCFE8 is the location in CZCFE
where all SYSERs are executed. CZCFER is
the location of the area in CZCFE's PSECT
which contains the write-to-log message.

INDEX (CZCFI)

INDEX is a reenterable, nonrecursive,
privileged subroutine residing in virtual
storage, that constructs chained index
levels in the catalog and creates new mem-—
kers within the catalog data set. The
fully qualified name input parameter is
inspected to determine if a new member is
Feing created or a new index level is to be
added to the user. If the FQN consists of
just one component, INDEX will build the
userid SBLOCK in the catalog and exit.

When index levels are to be chained for the
user, the lowest level found is searched
for an empty pointer and a pointer is con-
structed to the first SBLOCK of the level
Feing created. (See Chart AIl.)

Section 1: Catalog Services 21

Entry Point: CZCFI1

Input: Register 1 contains a pointer to
the pararmeter list:

Word 1 Pointer to fully gualified name
word 2 Pointer to special parameters
bits 0-7 - generation code 40;
create generation
index
pits 8-15 - maximum generation
number
bits 24-31 - generation flags
Qutput: Register 1 points to the input pa-

rameter list.

Modules Called:

GETSBLOCK (CZCFG1l) -- To locate SBLOCK and
calculate virtual storage address.
(CZCFGU4) -- To update the catalog.

SEARCHSBLOCK {(CZCFH) -- To acquire and
chain an empty SBLOCK.

PUT (locate mode) (C2CCS) ~-- To locate a
buffer to be the next record put 1in the
data set.

LOCATE (CZCFL) -- To locate an index level.

CATALOG ERROR PROCESSOR (CZCFE) -- To claim
a SYSER and a completion code 1 ABEND when
a catalog structure error is detected, cr
when an end-of-data-set condition is
detected by CZCFGl. CZCFE is alsoc called
whenever a SYSER is claimed ktecause the
userid in FQN is not 8 characters in
length.

Exits:

Normal - register 15 contains 00 - a new
nember was successfully added, or
all gqualifiers (index levels) not
previously cataloged were added.

Error - if INDEX was unsuccessful, regis-

ter 15 contains one c¢f the follow-
ing codes:

04 -~ userid not found in POD.

08 - all compcnents of the fully
qualified names were already
in the catalogs, or the
generaticn name had a format
error.

0C - user 1is attempting to update
a user catalog for which he
is not authocrized.

Cperation: INDEX inspects the fully quali-
fied name supplied as an input parameter to
determine whether the name has one com-
ponent or more than one. If there is only
one component (the userid), the PUT macroc
instruction is issued to acquire a buffer
in which to construct the userid SBLOCK.
INDEX returns with a X'00' return code
after building the userid SBLOCK. The STOW
macrc instructicn is issued in LOCATE.

If the fully gualified name is ccmposed
of mcre than one ccmponent, INDEX will
enter LOCATE to determine if the same name
already exists. If LOCATE indicates that
all the components of the fully qualified
name were found (code 0), INDEX will return
a code of '08' tc the calling routine. A
return ccde cf '04°' or *OC*' is passed c¢n as
a return ccde from INDEX, and no further
processing takes place.

Upon locating some, but not all of the
levels cf the fully qualified name, INDEX
determines, in the case of a sharer, if the
sharer is privileged to update the catalog.
If not, an error code of '0C' is returned.
If the lcwest level found is a generation
index, the next component of the fully
gualified name must have the aksolute
generaticn name format. Otherwise, an
errcr ccde of '08' is returned.

The lowest level fcund is then searched
fcr an empty pointer. If none exists, the
SEARCHSBLOCK routine is entered to acquire
and chain an empty SBLOCK in which a point-
er is tc ke placed. This is a pointer to
the first SBLOCK of the level being added.
This process is continued until the entire
fully gualified name has been cataloged.

If the rarameter list indicates that a
generaticn index is keing created, the
~ieraticn options are put in the SBLOCK of
tne lowest level created.

When the level is being added tc an
existing generation index, the pointer to
the new level is sorted by generation num-
ter intc the list cf pcinters belonging to
that generation index.

Validity checks are performed on data in
the catalog when INDEX is searching the
catalog. I1f an error is detected, the
CRTALOG ERKRCR PROCESSOR 1s called with
rarameters describing the type and location
cf the errcr in the catalog, to claim a
SYSEF and a corpleticn code 1 ABENLC.

A call tc CICFG4 is made to update the
catalog cn external storage.

GETSBLOCK (CZCFG)

GETSBLOCK is a reenterakle, nonrecur-
sive, privileged subroutine residing in
virtual storage. When entered at its pri-
mary entry point {(CZCFGl), it receives a
pointer containing the relative address of
an SBLOCK and calculates its virtual
storage address for the user. The user
submits the pointer to the desired SBLOCK
in the format OPbb, where P is the page
number relative to the member and kb is the
relative byte within the page. If the
requested SBLOCK is in the page buffer, the
virtual storage address is calculated and
returned to the user. If the P value
exceeds the size of the user's catalog,
CZCFG2 is called which returns to the user
with a return code of X*'04°.

Entry point CZCFG3 is invoked by LOCATE
to provide initial sizing of the VAM buffer
used in processing the user catalog.

Entry point CZCFGY4 is used to perform
the PUT or PUTX functions as indicated by
the bit settings in the CHACDS table. (See
Chart AF.)

Entry Point:
CZCFG1 - Primary entry point. Used to con-

vert a "Pbb' address into a 32-bit
Virtual Memory address.

CZCFG2Z - EODAD exit.

CZCFG3 -~ Entry point from LOCATE (CZICFL) to
provide initial sizing of the VAM
buffer used in processing the user
catalog.

CZCFGY4 - Used to effect PUTX/PUT/STOW/CLOSE
sequence as indicated by the bit
settings in the CHACDS table
(CDSFIG) .

Input: Register 1 contains a pointer to
the relative address of the requested
SBLOCK.

Qutput: Register 1 contains a pointer to
the virtual storage address of the
requested SBLOCK.

Modules called:
SETL (CZCOT) -- To locate the specified
page of a catalog member.

GET (CZCOR} -- To move the specified page
to the catalog buffer.

STOW (CZCOK)
POD.

-- To unlock a member in the
CLOSE (CZC0Q) =-- To disconnect a data set
from the system.

PUT (CZCPA)
data set.

-- To add a record to an output

PUTX (CZCOU) -- To exchange a record in an
output data set.

READ (CZCPE)} ~- To read a record of
SYSSVCT.

WRITE (CZCPE) -- To write a record of
SYSSVCT.

CATALOG ERROR PROCESSOR (CZCFE) -- To issue
any SYSERs and ABENDs claimed by GETSBLOCK.

Exits: If the return code from STOW is not
zero a SYSER is issued followed by an
ABEND. If end-of-data set occurs, control
is returned to the user with 04 in register
15; otherwise, control is returned with 00
in register 15.

Operation: CZCFGl - This is the primary
entry point used to convert a ‘Pbb' address
into a 32-bit Virtual Memory address. This
is done by multiplying (P-1) by 4096, and
adding the product to the beginning of the
user's catalog buffer. BAdding the bb value
yields the required Virtual Memory address.

No physical GET operations are pexr-
formed. If the P value exceeds the size of
the user's catalog, CZCFG2 is entered.

CZCFG2 - This is the EODAD exit after a GET
or PUT is issued for a catalog wmember. A
SYSER and ABEND will be claimed if the
EODAD occurs.

CZCFG3 - This entry point is invoked by
LOCATE (C2CFL) after the call to FIND
(CZCOJ), to provide initial sizing of the
VAM kuffer used in processing the user
catalog. The buffer must be at least one
rage greater than the current size of the
member (CCBDMS). 1If the buffer is too
small, a FREEMAIN and GETMAIN sequence is
performed to release the current buffer and
obtain the required space for the new hkuff-
er, storing these parameters in the DCB
Header. DCBEXL, DCBBCN, DHDDXP, and DHDCPR
are cleared to ensure that paging of the
member will ke effected on a subsequent GET
operation.

The DHDMRL field is set to one page
greater than the current size of the memb-
er. This field is set to ensure proger
execution of CZCFG4 and the edit performed
by SEARCHSBLOCK {(CZCFH).

A SETL is issued to the beginning of the
member, followed by a GET (locate mode).
The address returned by GET is stored in
BUFFAD and used ky CZCFG1 to calculate the
Virtual Memory address requested.

CZCFG4 - This entry point is used tc effect
the necessary PUTX/PUT as indicated by the
bit settings in the CHACDS table (CDSFLG).
The CDSFLG bits are then reset, and a STOW

Section 1: Catalog Services 23

{type K) is issued against the DCB pointed
to by CZCFL2. The CZICFL2 field is reset to
point to the primary DCB (CDSCOM).

If a PUTX was issued, a check is made to
see if the flag byte in the SYSSVCT record
indicates that the USERCAT and the SYSCAT
(SCRATCHCAT) members are the same. (They
should not be the same since the PUTX
changed SYSCAT.) If the flag indicates the
catalogs are the same, the record is reset
and written back into SYSSVCT. 1If a SYNAD
is taken on a READ or on a WRITE, the
CATALOG ERROR PROCESSOR is called to issue
a4 SYSER and ABEND and the user receives the
message: UNRECOVERABLE ERROR IN SYSSVCT.

If a PUT is issued against a member due
to an added page, a CLOSE (TYPE=T) is
issued instead of the STOW.

SEARCHSBLOCK (CZCFH)

SEARCHSBLOCK is a reenterable, nonrecur-
sive, privileged subroutine residing in
virtual storage. It acquires and chains an
empty SBLOCK as either:

* An extended SBLOCK of a cataloged
entity.

e The first SBLOCK of a cataloged entity.

The count of SBLOCKs in each page is
checked until an available SBLCCK is found.
The relative address of the SBLOCK within
the page is then located by searching for a
control byte of zeros. The new SBLOCK is
retrieved by GETSBLOCK and its virtual
storage address is returned to the user.
The new SBLOCK is linked to the parent
SBLOCK before returning control to the
user. (See Chart AG.)

Entry Point: CZCFH1

Input: Register 1 contains a pointér to
the address of the SBLOCK to which the new
SBLOCK is to be chained.

Cutput: Same as input
Modules Called:

GETSBLOCK -- locate SBLOCK and calculate
virtual storage address.

CATALOG ERROR PROCESSOR (CZCFE) -- To claim
any SYSERs and comp code 1 ABENDs issued by
SEARCHSBLOCK.

Exits:
Normal - return without return code

Error - to SYSER without return code
Operation: SEARCHSBLOCK scans the existing

pages of the user's catalog. By testing
the count of SBLOCKs in the page (64 is the

24

maximum), a page containing an available
SBLOCK can be located. When an end-of-data
set condition is encountered while scanning
through the pages, SEARCHSBLOCK appends a
new page to the user's catalog through use
of a simulated PUT (locate mode). SEARCHS-
BLOCK sets the PUT indicator in the CHACDS
table, calculates the VMA of the new page
ky adding the current value of LRECL to
that of DCBBCN, and then increases the
value of LRECL by 4096. The new page is
zeroed out and thereby initialized.

Once the page is retrieved, SEARCHSBLOCK
scans the allocated byte field of each
SBLCCK in the page. If this field is zero,
the SBLOCK 1is free; if this field is not
zero, the next SBLOCK is examined. This
crocedure is repeated until an empty SBLOCK
is found. SEARCHSBLOCK inserts a tackward
pointer in the new SBLCCK, and retrieves
the parent SBLOCK to which it is chained.
The forward chain in this SBLOCK can be one
of the following:

s Extended SBLOCK pointer.
e Pointer to a list of sharers.

e Pointer field in a member of an index
level.

SEARCHSBLOCK determines the proper field
and inserts the forward chain.

The new SBLOCK is retrieved via

GETSBLOCK and control is returned to the
calling program.

USERCAT SCAN (CZUFY)

USERCAT SCAN is a reenterable, nonrecur-
sive, priviliged subroutine that resides in
virtual storage. It is called at entry
point CZUFY1 when OPEN VAM or DSCB/CAT
RECOVERY discovers an error while reading
the DSCE for the SYSSVCT data set. The
first data page of the data set is examined
to see if it contains records for userids
TSS*#**%3%, SYSOPER0O, and SYSMANGR, and if
the locators at the bottom of the VISAM
page for the records are correct. If all
these conditions are true, the checksum is
computed for the SYSSVCT DSCB, and the DSCB
Fage 1s written out before leaving the
module. Otherwise, the first page of SYS-
SVCT is constructed with records for the
three userids and the page is written onto
a direct access device. The DSCB for SYS-
SVCT is initialized, the checksum is com-
ruted, and this page is written out. The
operator is then prompted with a message
telling him to call CZUFY2 after startup is
complete.

The data set SYSSVCT is rebuilt at entry
point CZUFY1l. First, the DSCB pointer for

each record in SYSSVCT is filled with
zeros. The public volumes are then scanned
for usercat DSCBs. When found, the DSCB
pointer is computed and entered into SYS-
SVCT for the userid. (See Chart AJ.)

Entry Points:
CZUFY1 - To compute checksum for SYSSVCT

DSCB and to construct the first
page of SYSSVCT data set if
necessary.

CZUFY2 - To initialize SYSSVCT and then
rebuild it by roving in the DSCB
pointer for all of the usercat
data sets.

Input: None
Cutput: None

Modules Called: i
SETL (CZCOT) - To position to beginning of
SYSUSE data set.

GET (CZCOR) - To retrieve a record in
SYSUSE.

OPEN (CZCLAO) - To open SYSUSE and SYSSVCT
data sets.
READ (CZCPE) - To read a record in SYSSVCT.

WRITE (CZCPE)
SYSSVCT.

To write a reccrd in
PRMPT (CZATJ) - Tc issue a message to user
and operator.

CLOSE (CZcCLB)
data sets.

To close SYSSVCT and SYSUSE

READWRIT (CZCEM) - To read and write a DSCER
page.

ESALOCK (CZCEJ) - To lcock and unlock the
SDAT PAT lock.

FINDJFCB (CZAEB) - To find the JFCB for
SYSSVCT.

DDEF (CZAEA) - To build a JFCB for SYSSVCT.

FINDEXPG (CZCEL) - To get a page of storage
cn a direct access device.

GETMAIN (CZCGR) - To get a page of virtual
storage.

FREEMAIN (CZCGA) - To free a page of virtu-
al storage.

ABEND (CZCAP) - To abort from a module.

Exits: The module does not set a return

code on normal exit.

ABEND: If DDEF could not create a JFCB for
SYSSVCT.

If FINDEXPG could nct get a free
page on a direct access device.

If READWRIT could not write out a
SCB page containing the
corrected DSCB for SYSSVCT.

if READWRIT could not read a DSCB
page containing the DSCB fcr
SYSSVCT.

Cperatica: The entry pouint CZUFY1 is
called when OPENVAM or DSCB/CATALOG RECO-
VERY encounters an error in the SYSSVCT
DSCB. FINDJFCB is called to retrieve the
JFCB. If one is not found, DDEF is called
to create one. If a JFCB cannot be
created, an ABEND is issued and the userx
receives the following message:

SYSTEM FAULT: 001, UNABLE TO ACCESS USERCAT

The LCSCB pointer is obtained from the JFCB
and READWRIT is then called to read the
CSCB page into virtual storage. If no
error is detected in reading the DSCB page,
the module returns to the caller. If an
error cther than checksum is detected, an
ABENLC is issued, and the user receives the
following message:

SYSTEM FAULT: 002, UNABLE TO ACCESS USERCAT
If a checksum error is detected by READ-
WRIT, the first page of the SYSSVCT data
set is read into main storage at CZCOW1l by
issuing a SETXP macro instruction. The
page is examined to see if it contains
records for userids TSS###%#*%, SYSOPERO, and
SYSMANGR, and to see if the locators at the
bottom of the VISAM page for these userids
are correct. If these conditions are true,
the checksum for the SYSSVCT DSCB is com-
puted and the DSCB page is written cut Ly
calling READWRIT before leaving the module.
(ESALOCK has to be called to lock the SDAT
PAT page before writing the DSCB page.

When the write is completed, ESALOCK must
ke called again to unlock the SDAT PAT
lock.) 1f the write operation is unsucces-
sful, an ABEND is issued, and the user
receives the following message:

SYSTEM FAULT: UNABLE TO WRITE DSCEB OR PAT
PAGE

If the first page of the SYSSVCT data
set is not correct, the data set is rebuilt
with records for userids TSS*#*%%3%, SYS-
OPERO, and SYSMANGR on a page of virtual
storage obtained by a GETMAIN macro call.
The DSCB pointer for the USERCAT of each
userid is computed and put into SYSSVCT.
The page is then written out to a page on a
direct access device which was obtained by
calling FINDEXPG. If FINDEXPG can not
obtain a page of storage an ABEND is issued

Section 1: <Catalog Services 25

and the user receives the following
nessage:

SYSTEM FAULT: EXTERNAL STORAGE EXHAUSTED

The DSCB for SYSSVCT is then initia-
lized, and the page containing the DSCB is
written out as described above. The opera-
tor is prompted with a message telling him
to call entry point CZUFY2 after startup is
complete. FREEMAIN is then called to free
the page of storage obtained Ly calling
GETMAIN. The corresponding by:te in the PAT
page table is found and set to indicate
that the page is in use. The PAT page is
then written out by READWRIT.

Entry point CZUFY2 is called to rebuild
the SYSSVCT data sets. First, the SYSUSE
data set is opened if it is not already
open, and a SETL macro instruction is
issued to position the beginning of the
data set. Then, a record is obtained by a
GET. A userid is obtained from the SYSUSE
record, and it is used as the key to read a
record in SYSSVCT after it has been opened.
If the read is unsuccessful, the DSCB
pointer in the SYSSVCT record will be
filled with zeros, a WRITE UPDATE will be
issued on SYSSVCT, and the program will get
the next record in SYSUSE. If the READ or
WRITE UPDATE results in a SYNAD for a
reason other than because the userid was
not found, the user is prompted with the
following message:

UNABLE TO ACCESS USERCAT FOR THE USERID

and the program looks at the next record in
SYSUSE. If a SYNAD is taken because the
userid was not found in SY¥SSVCT, a WRITE
NEW will be issued on SYSSVCT, and the pro-
gram will get the next record in SYSUSE.

If a SYNAD is taken on a WRITE NEW, the
user is prompted with the following
message:

USERID CANNOT BE ADDED TO USERCAT TABLE

and again the program tranches back to get
the next SYSUSE record.

When all the records in SYSUSE have been
read, SYSUSE is closed if it was opened in
this module. SYSSVCT is now initialized so
that all of the records have a zero DSCB
pointer. Aall of the public volumes are
then searched for USERCATs by examining the
PAT page on each public volume for a DSCB
page. When one is found, READWRIT is
called to read the page into main storage
at CzC0zZl. Each format E DSCB is examined
for an FQN of userid.USERCAT. If found,
the DSCB pointer is computed and moved into
SYSSVCT with a WRITE UPDATE using the
userid in the DSCB as the key. If the
WRITE results in a SYNAD, the user is pro-
mpted with the following message:

26

UNABLE TO ACCESS USERCAT FOR THE USERID

When all of the DSCBs on all of the volumes
have been checked, the module returns.

CATFLUSH (CZCFX)

CATFLUSH is a public, reenterable, pri-
vileged subroutine that copies members of
the scratch catalog (SYSCAT) into individu-
al user catalogs at task termination,
deletes closed members from the scratch
catalog when the virtual storage POD becom-
es full, and erases the scratch catalog at
shutdown. (See Chart AL.)

Entry Points:

CZCFX1 - To copy specific members into the

user catalog.

To copy inactive members into the

user catalog and erase them from

the scratch catalog (SYSER if
erase is impossible).

CZCFX3 - To copy all memkbers into the user
catalog and erase the scratch
catalog.

CZCFX4 - To copy SYSOPERO member intc the
user catalog.

CZCFX5 - SYSSVCT DCB

CZCFX6 - USERCAT DCB

C2ZCFX7 - SYNAD entry

CZCFX8 - Toc copy inactive members into the
user catalog and erase them from
the scratch catalog (no SYSER if
erase is impossible).

CZCFX2

Input: Register 1 points to a userid.
(The parameter list is for entry point
CZCFX1 only.)

Output: None

Modules Called:

READ/WRITE (CZCPE) -- To read or write a
reccrd into SYSSVCT.

FINDJFCB (CZAEB) -- To find the SYSCAT and .
USERCAT JFCBs.

CDEF (CZAEA) -- To create a USERCAT JFCB if
none is found.

ADDDSCB (CZCEK) -- To allocate a DSCE for a
new USERCAT.

OPEN (CZCLA) -- To open a USERCAT DCB.

SETL (CZCOT) -- To position the data set

(old USERCAT).

PUT (CZCOS) -- To copy the user catalog
from the scratch catalog.

CLOSE (CZCLB) -- To close the USERCAT DCB.

STOW (CZCOK) -- To unlock a scratch catalog

member (type R), and to erase a scratch
catalog member (type D).

FIND {CZCOJ) -- To lock a member of the
scratch catalog.

GETSBLOCK (CZCFG) -- To set up the scratch
catalog buffer (entry point CZCFX3).
RELEXPG (CZCEN) -- To give back pages of
the scratch catalog at shutdown.

READWRIT (CZCEM) -- To read or write the
scratch catalog DSCB.

DSCBREC (CZCEF) -- To handle a DSCB error.
PATLOCK (CZCEJ) -- To lock or unlock a PAT
when writing a DSCB.

SYSER (CEAIS) -- To indicate an error
condition.

ABEND (CZACP) -- To terminate processing

for an error condition.

Exits:
Normal - register 15 will contain a zero
return code.

Exrror -~ SYSER or ABEND

Operation: The input parameter list (con-
sisting of a pointer in register 1 to an
eight-character userid) 1is required for
entry point CZCFX1. All other entry points
work on the entire scratch catalog, except
CZCFX4 which works only on SYSOPERO.

Before a member of SCRATCHCAT is copied to
USERCAT, the entry for this user in SYSSVCT
is checked for UCTFLG=X'00*' or *01'. If
this sync byte is '01*', no changes have
been made to SCRATCHCAT and no update is
necessary. If the sync byte is '00', USER-
CAT is updated from SCRATCHCAT and UCTFLG
is set to '01°'. (In this description
"sync®™ means the scratch catalog and the
user catalog for a memker are the same.)

CZCFX1 (entry point 1) is called by
LOGOFF or ABEND to update a user catalog.
This will ensure that a user's catalog con-
tains any changes made to the scratch
catalog. The member is not deleted from
the scratch catalog at this time.

CZCFX2 (entry point 2) is called by LOC-
ATE if it is necessary to add a member to
the scratch catalog and there is no room in
the virtual storage POD to insert the memb-
er. If all members are active, a minor
SYSER 1is declared and the task is ter-
minated. Before any member is deleted (by
the STOW D macro instruction), the UCTFLG
bkyte is checked for the RCR Ration Flag
(UCTFLG=X'02') and if it is set, the member
is skipped and not deleted.

CZCFX3 (entry point 3) is called by SHU-
TDOWN to update all members not already
updated and then erase the scratch catalog.
When entered at CZCFX3, CATFLUSH checks the
RCR Ration Flag for each member and, if it
is set for a member, bypasses that member
and does not erase the scratch catalog.

211 successfully updated members are
deleted. All members in SCRATCHCAT updated
with no RCR ration flag set are also
deleted.

To erase the scratch catalog, RELEXPG
(CZCEN) is called to release all pages from
the scratch catalog except the format E
DSCB slot. Then, the DSCB is read into
CZCOZ by a call to READWRIT (CZCEM). The
following fields in the format E slot are
filled with zeros:

DSELBP bytes in last page
CSENCP data pages

CSEDOP directory pages
DSENOP overflow pages
CSETNP total pages

DSEENT (38 full words)
DSECHN chain pointer

The checksum for the DSCB is then recalcu-
lated and written to external storage by
READWRIT.

CZCFX4 (entry point 4) is called by MOHR
(STARTUP) to force a refresh of SYSCPERO to
ensure that this particular user catalog is
updated.

CZCFX8 (entry point 5) is called by LOC-
ATE to reduce the size of the scratch
catalog when it reaches 800 data pages. If
all members are currently active, a return
is made to the caller.

CATFLUSH uses the following method to
copy from the scratch catalog to the user
catalog. If no user catalog exists (no
address in UCTDSCB in S¥SSVCT), FIND JFCB
is called to locate the JFCB for this user
catalog. If no JFCB exists, DDEF is called
to create one. ADDDSCB is then called to
assign a format 'E' DSCB for this user
catalog, the pointer to which is placed in
IDTDSC kefore the call to OPEN. Prior to
opening the USERCAT, CATFLUSH ensures that
the member to be copied from the scratch
catalog is write-interlocked and if it is
not, a write interlock is imposed Lkefore
the user catalog is opened. Read inter-
locks are cleared before setting a write
interlock.

Section 1: Catalog Services 27

Also before opening the user catalog,
CATFLUSH sets the RCR Raticn Flag in SYS-
svCcT for this entry. CATFLUSH then opens
the user catalog for output. If the OPEN
is successful the DSCB peointer is placed in
UCTDSCB and a WRITE is issued. CATFLUSH
reads pages from the scratch catalog (by
GET macro instructions), writes pages to
the user catalog (by PUT macro instruc-
tions), and then closes the user catalog.

When a user catalog exists, CATFLUSH
moves the DSCB pointer for ti.e user catalog
from UCTDSCB to TDTDSC. Before opening the
user catalog, CATFLUSH SETS THE RCR Ration
Flag in SYSSVCT for this entry. A SETL ‘B’
is done after the user catalog is opened.
The PUT macro instruction that follows will
truncate any pages no longer needed, or add
pages if necessary. On the successful com-
pletion of the PUTs to the user catalog,
the UCTFLG is set to X'01' to indicate that
the update is complete and the RCR Ration
Flag is cleared.

DSCB/CAT RECOVERY (CZUFX)

DSCB/CAT RECOVERY is a public, reenter-
able, privileged subroutine that provides
dynamic error recovery for either the
scratch catalog or the user catalogs. It
updates a user catalog if the current memb-
er in the scratch catalog cannot be used,
or rebuilds a user catalog if no member
exists in the scratch catalog and the user
catalog is unusable. If the user catalog
is rebuilt, the user must reenter all shar-
ing information because it is lost in
rebuilding from public DSCBs. (See Chart
AK.)

Entry Point: CZUFX1

Input: Register 1 contains a pointer to a
two-word parameter list that is organized
as follows:

Word 1 address of an eight-character
userid
Word 2 address of a one-byte flag field

The flag will be set to the following hexa-
decimal values:

X'01' - cannot open the user catalog for
input

X'02*' - cannot open the user catalog for
output

X*04' - the scratch catalog member is
unusable .

X*08' - the user catalog is unusable

X'10"' - user catalog input paging error

X*'11' - user catalog DSCB input paging
error

28

Cutput: None

Modules Called:

READ/WRITE (CZCPE} -~ To read or write a
record in SYSSVCT.

READWRIT (CZCEM) -- To read or write a
DSCB.
VMA (CZCGA) -- To get work and buffer pages

(GETMAIN).

ACDDSCB (CZCEK) -- To allocate a new DSCB
for a user catalog.

INDEX (CZCFI) -- To create a userid SBLOCK
level when rebuilding the catalog.

GET SBLOCK (CZCFG) -- To set up the scratch
catalog buffer (entry point 3). --To do
PUT/PUTX/STOW on the scratch catalog member
(entry point 4).

CPEN (CZCLA) -- To open a user catalog DCB.
PUT (CZ2C0OS) -- To copy the scratch catalcg

member to the user catalog. --To copy the
user catalog to the scratch catalog.

CLOSE (CZCLB) -- To close the user catalog
DCB.

DELCAT (CZICFD) -- To delete a catalcg
entry.

VMA (CZCGA) -- To free the buffer and work
pages (FREEMAIN).

LOCATE (CZCFL) -- To verify data set names
with puklic DSCEs.

ADDCAT (CZCFA) ~- To update DSDs. --To
catalog public data sets during rebuilding
process.

RELEXPG (CZCEN) -~ To free up data pages
and LCSCE slots.

GET (CZCOR) -- To copy the scratch catalog
member to a work area. --To copy the user
catalcg into a buffer for copy to the
scratch catalog.

USER PROMPTER (CZATJ) -- To issue diagnos-
tics to the user.

PAT LOCK (CZCEJ) -- To lock or unlock a PAT
when writing a DSCB.

SRCH SDST (CZCQE) -- To clean up the SDST
entry when called during the open process.
FIND (C2COJ) -- To lock a scratch catalog
member.

ABEND (CZACP) -- To terminate processing

when an error occurs.

Exits:)
Normal - Return to caller if input code is
X'04"' (SCRATCHCAT is unusable)

Errcx - ABEND (CC1l)

Operation: DSCB/CAT RECOVERY assumes upon
entry that the user catalog member is
locked in the scratch catalog. This lock
prevents multiple users from attempting
recovery of a user catalog.

The userid is used as a key to extract
the entry for this user from SYSSVCT. The
pointer to the user catalog (UCTDSCB) is
checked for a nonzero pointer.

If a user catalog exists (UCTDSCB is not
zero), the DSCB is read into CZCOZ by a
call to READWRIT (CZCEM). The return cocde
is tested, and if the data set name agrees,
this DSCB is used to update the catalog.
The return code from REALCWRIT is saved for
later use. The DSCB is checked for the

following:
1. VS organization
2. U-format records

3. Number of pages in DSCB = Number of
page entries

4. LRECL = a multiple of 4096
5. A checksum error

If any of these checks fails, the DSCB is
declared invalid, and the DSNAME field in
the invalid DSCB, the DSCB pointers in
UCTDSCB and the JFCB for this user catalog
are all filled with zeros.

The DSCB is then written back to extern-
al storage by READWRIT. ADDDSCB is called
to assign a new DSCB slot, and the pointers
in the JFCB and UCTDSCB are updated. The
user catalog is then rebuilt in SCRATCHCAT
by scanning public storage for the user's
data sets and calling ADLCCAT2 with the CAT-
VAM opticn to catalog them. Upon comple-
tion of the rebuild, SCRATCHCAT is used to
create a new USERCAT.

If the tests on the original DSCB were
successful, a GETMAIN is done for a buffer
large enough to hold all pages of the user
catalog. A SETXP is then issued to read
these pages into the buffer and the first
page is checked for an index level SBLOCK
with the correct userid in the name field.

If the userid is incorrect, the user
catalog is bad and the procedure described
above for a bad DSCB is followed.

If the userid in the first SBLOCK on the
first page of the user catalog is correct,
all catalog chains are searched for guklic
DSDs. For this search, the following tests
are made to ensure catalog integrity:

1. Focrward and backward pointers for each
SBLOCK are good.

2. Number of bytes used in each SBLOCK is
correct.

The ccunt in the above test is corrected
if it is wrong. If the pointers are wrong,
the user catalog is bad, and it is rebuilt
from the public DSCBs. At the completion
of the search and corrections, the buffer
is written (by PUT) into the scratch
catalog for the completion of the recovery
procedure.

Following the copy to the scratch
catalog, all DSCBs on public volumes are
searched and as each data set for this user
is found, a LOCATE is done. If the data
set does not exist in the catalog, it is
cataloged by a call to ADDCAT2 with the
CATVAM ortion specified. A dummy JFCB is
used for this call with the data set name
roved into it from the DSCB. If the data
set does exist in the catalog, the DSCRB
pointer is compared to the address of the
DSCB on public storage. If the pointers
agree, the DSCB search is continued. If
the DSCB pointers do not agree, the LSCB
pointed to by the catalog is checked and,
if it is a valid DSCB, the DSCB search is
continued. If it is an invalid DSCB, the
LSCB just located is checked: if it is
valid, a pointer to it is put in the
catalog; if it is not valid, the data set
is erased. At the completion of the DSCB
search, the scratch catalog member is again
searched for public DSDs and any DSDs that
are not marked as pubklic are deleted from
the scratch catalog by a call toc DELCAT.

At the completion of the scratch catalog
search, the member is copied to the user
catalog as described in the CATFLUSH module
description.

If UCTDSCB is zero, public storage is
searched for a USERCAT DSCB. If one is
found, both the DSCB and the USERCAT are
validated as described akove. If a USERCAT
DSCB is not found, the scratch catalog is
rekbuilt.

Section 1: Catalog Services 29

SECTION 2: EXTERNAL STORAGE ALLCCATION

External storage allocation (ES2)
includes those service routines that alloc-
ate storage from direct access volumes
designated as extermnal volumes. External
volumes are those volumes of secondary
storage used for data, as opposed to
volumes used as auxiliary storage. Auxi-
liary volumes are used for virtual storage
(paging) and, as such, are controclled by
auxiliary storage allocation (CEAIA).

EXTERNAL VOLUMES

The external storage allocation routines
deal only with direct access volumes (IBM
2311 Disk Pack or IBM 2314 Disk Pack). All
public storage volumes are assumed mounted.

Each volume in the system has a 6-byte
identification associated with it. The
volume identification is included in the
volume label on each volume. When a device
becomes accessible to the system, a unique
2-byte logical (symbolic) device address is
associated with it; this logical address
can then be used to refer to any volume
mounted on that device. The logical device
address is converted to a true physical
address by the supervisor path finding
mechanism whenever the volume is accessed.
The symbolic device allocation table (SDAT)
contains an entry for each on-line device.
Within the entry is control data used by
ESA routines to determine volume type, page
availability information, Page Assignment
Table (PAT) origin, PAT VMA for VAM
volumes, and VTOC space available or gross
space available for SAM volumes.

Each volume is identified by a volume
label located on cylinder 0, track 0. The
volume label points to the Page Assignment
Takle (PAT) for VAM volumes, which 1is used
to indicate the current assignment status
of each page on the volume. The PAT occu-
pies some number of pages on the volume,
the number derendent con device type (1 on
the 2311 Disk Pack; 2 on the 2314 Disk
Pack). The remaining pages can ke allo-
cated as Data Set Control Block (DSCB)
pages or data pages. For SAM volumes the
volume label points to the VTOC which is
itself variable in length but composed of
fixed length {140 byte) records (DSCBs).

SAM volumes use format-0, -1, -4, -5,
~-A, -B, and -C DSCBs. VAM volumes use
format—-E and -F DSCBs. The DSCB formats
are described in detail in Appendix A.

30

There are two types of external volumes,
those containing physical sequential data
sets (SAM volumes) and those containing
virtual storage data sets (VAM volumes).
EFach external volume may contain either,
but not both, types on the same volurme.

VAM volumes are characterized by the fact
that they are formatted into page-sized
records and space is maintained and allo-
cated in page-oriented extents. SAM
volumes are not pre-formatted and can be
used for interchange with Operxating System/
360. Space is maintained in terms of
tracks and cylinders and can be allocated
in increments of either tracks or
cylinders.

Utility programs are provided with TSS/
360 for volume initialization. Initializa-
tion of volumes containing physical sequen-
tial data sets is described in the publica-
tion IBM Systems/360 Time Sharing System:
Inderendent Utilities, GC28-2038. Initia-
lization of volumes containing virtual
storage data sets differs from those con-
taining physical sequential data sets in
that VAM volumes are formatted into page-
sized segments (to be consistent with page
number conversion algorithms in the resi-
dent monitor) and the PAT table is then
formatted and initialized. The PAT table
will be pointed to by the Volume Lakel, and
will contain one one-byte entry for each
page on the volume.

PUBLIC AND PRIVATE VOLUMES

All external volumes can be classified
as either public or private. Space is not
allocated on a private volume unless a user
explicitly declares in a DDEF command or
DDEF macro instruction that he wants sgace
cn that volume. If the user does not
declare a specific volume, space will ke
allocated on a public volume. All public
volumes are VAM volumes, and the system
specifies the storage device for the user.

DUPLEXING CAPABILITY FOR USER DATA SETS

Through the DUPOPEN command, the user
has the capakility of duplicating his data
set on twc separate physical volumes. This
function is transparent to the user and is
available only for public VAM data sets.
The external storage required is exactly
double for this duplicating facility, and
the time required for data output is
aprproximately doubled. The routines that

operate on VAM data sets must be aware of
the possibility of the duplicate set.

Note: If either copy of a duplexed data
set is changed independently of the other,
duplexing is invalidated in a manner which
is transparent to the duplexing mechanism,
and may cause false recoveries.

SAM VOLUME PROCESSING

ALLOCATE is called to inspect the job
file control block (JFCB) for the size of
the initial allocation. The sgecification
will be in terms of tracks, cylinders, or
records, and only from a single volume hav-
ing enough space for the entire amount of
requested storage. ALLOCATE returns the
aprropriate code if the request cannot be
satisfied, and updates the SDAT and volume
fields of the JFCB.

ALLOCATE calls SAMSEARCH to find the
extents for physical sequential data sets.
During the scan, SAMSEARCH creates a push-
down list of five extents smaller than the
request. If an extent equal tc the request
is found, the scan is terminated and the
extent allocated. TIf an extent equal to
the request is not found, the smallest
extent larger than the request is allo-
cated. If an extent equal to o¢or greater
than the request is not found, space is
allocated from the extents in the push-down
list. Up to five separate contiguous
extents as necessary are combined until the
request is satisfied. Requests must be
made for integral numbers of tracks or
cylinders.

When the access method routine detects
that extent limits have been reached, and
additional space is required fcor a data
set, EXTEND is used to obtain additional
storage. The secondary allocation field of
the JFCB is used to determine the amount of
storage required. EXTEND always makes the
total requested allocation from one volume.
If there is not sufficient space available,
EXTEND links to the calling pragram {(end of
volume - EOV) for label processing and the
mounting of a new volume. EQV returns to
EXTEND for the allocation from a new
volume.

When a data set is closed, the CLOSE
routine checks the space release flag in
the JFCB to determine whether unused space
is to be returned (that is, made available
for reallocation, and made unavailable to
the data set from which it is released).
GIVBKS is called to merge the returned
extents into the list of extents in the
DADSM-DSCBs of the proper volume. BAdjacent
extents are combined whenever possible. If
any extents are given back, the DADSM-DSCBs
are updated.

Section 2:

Tc return the extents to the available
space on the volume, MERGESAM is called by
GIVBKS. It is MERGESAM that adds the
returned extents to the list of extents in
the LCADSM-DSCBs, maintaining the ordexr by
location and combining extents whenever
possible.

When the user commands the system to
erase a data set, or when any data set
remains on a public volume at the end of a
task, the SCRATCH routine is used to remove
it from the volume or volumes on which it
resides. All the allocated extents are
merged kack into the available extents on
the volume(s) and the data set DSCBs are
over-written with zeros to indicate that
the extents are available for reallocation.

The various SAM routines call the
CBTAIN/RETAIN routine for reading and writ-
ing DSCBs. The RENAME routine can ke used
to change the FQN in the key field of a
format-1 DSCB.

VAM VOLUME PROCESSING

VAM volumes may be either public cr pri-
vate. FiNDEXPG is called to allocate the
number of pages specified in the allocation
fields of the JFCB. The new DSCB will be
constructed using the list of external page
entries returned from FINDEXPG.

To find and commit an unassigned DSCB
slot, ADEDSCB is called. For a format-E
DSCB, ADDDSCB will call VOLSRCH and will
search the PAT of the returned RVN to find
an unused DSCB or a data page which can be
assigned as a DSCB page. For a format-F
LSCB, ALCDDSCB will try to assign it from
the rage or volume on which the format-E
CSCB resides. Failing this, it will call
VOLSRCH as for a format-E DSCB. RELEXPG is
used to return data pages and DSCBs for
subsequent reallocation.

DSCBREC is called to recover from a
checksum error. If the data set has been
opened, the bad format-E DSCB is regplaced
ky a new one. This is because the call is
assumed to have come from WRITDSCB after
having found a kad format-E DSCB. All the
data set pointers are present in the
RESTBL, and the DSCB chain is about to be
updated anyway. If the data set has not
Leen crened and there is no duplexed copy,
the data set is deleted from the catalog
and all DSCBs associated are released. If
the data set is not open, but is duplexed,
recovery is made from the duplexed cogpy.

WRITDSCB updates and writes the DSCBs to

external storage, using an in-line subrou-
tine to obtain the DSCBs to be updated.

External Storage Allocation 31

When private VAM volumes require mount-
ing, the VAMINIT routine is used to read
the volurme label record, and set up the
SDAT entry.

ROUTINES USED WITH SAM FORMAT VOLUMES

ALLOCATE (CZCEA)

ALLOCATE is a reentrant, nonrecursive,
rrivileged routine residing in virtual
storage. This routine is cal .ed ky DATADEF
to provide the initial allocaticn of direct
access external storage for new output data
sets. ALLOCATE finds a private volume in
the JFCB. DSCBs describing the extents
allocated are written and the VITOC DSCB,

JFCB, and SDAT entry ugdated. (See Chart
BA.)

Entry Points:

CZCEA1l -- Normal entry via Type 1 linkage.
CZCEA2 -- Called by ABENLC for resetting

interlocks.

Input: Register 1 contains a gointer to a
cne-word parameter list:

Word 1 Address of the JFCB
Qutput: The JFCB, VTOC, and SDAT are
updated.

Restrictions:
1. Allocation is from one volume only.

2. There is a maximum of five extents
allocated to one SAM data set.

Modules Called:
OBTAIN/RETAIN (CZCFO)

-- Read/Write DSCBs

SAMSEARCH (CZCEC) -- Assigns extents

PAIR (CZCACS) -- Set and delete ABEND table
entry

SYSER (CEAIS) -- Minor system error

ABEND (CZACP) -- End task and return con-

trol to terminal

Exits:

Normal - Register 15 contains 00.

Error - Register 15 contains one of the
follcwing codes:

04 - No space found

08 - Unrecoverable I/0 errcor

ac Duplicate DS name found

10 Volume not formatted progperly

SYSER and ABEND occur when the JFCB does
not indicate any mounted volume.

32

Cperation: ALLOCATE searches the volume
fields of the JFCB to find the last mounted
velurne. If none are found, SYSER 1is
called, followed by ABEND with the fcllow-
ing message to the user:

NGO MOUNTED VOIUME INDICATED BY JFCB

If one is tound it is checked to be sure
it iv a SAM fermatted volume on a private
device. If it is on a public device, SYSER
15 called and return is made with the
return code set to '04'. If the volume is
not 5AM formatted, a return is made with
the return code set to '10°'. If these
checks are successful, the VTOC is locked
and the gross space and hole ccunt fields
cf the SDAT are examined. Return is made
with a code of '04' if there is not enough
gross sgace on the volume. If there is
space enough, OBTAIN is called to read the
D5CB with the same data set name on the
velume. It such a DSCB is found, through a
SEARCH KEY EQUAL on DSNAME, a duplicate
data set name exists, and return is made
with a code of *0C'. 1If none is found,
ALLOCATE calls SAMSEARRCH to allocate stace
for the LSCB. OBTAIN then reads in two
format-0 (i.e., unused) DSCBs to become the
data set DSCBs (format-1), sets up all
fixed CSCB fields and fills in the extents
just allocated. The original data set flag
is set in the JFCB; the VTOC is updated,
the lock bytes reset, and return is made
with a code of '00'. An unrecoverakle I/0
error will cause the program to return with
a code of '08°'.

SAMSEARCH (CZCEC)

SAMSEARCH 1s called by either ALLOCATE
or EXTENL to search the DADSM-DSCBs for
available space to fill a request. The
DADSM-DSCBs are then updated to reflect the
allocation. (See Chart BB.)

Entry Point: CZCEC1

Input: General Register 1 contains a
pointer to the following parameter list:

Word 1 Address of either the primary
allocation field (TDTSPO) or the
secondary allocation field
(TDTSP2) of the JFCB

Word 2 Address of the VTOC-DSCB

Word 3 Address of the SDAT entry

Word 4 Address of a 12-word output area.
The first byte of the area con-
tains a flag indicating the type
of reguest.

Cutput: General register 1 contains a

pointer to the input parameter list; the
list is unchanged, but the work area

pointed to by Word 4 now describes the
extents allocated.

Ifi a standard user label (SUL) track was
requested, the output area has the follow-
ing format:

word 1 Ccount of extents allocated

Word 2 CCHH of SUL track

Word 3 CCHH of lower 1limit of first
extent

Word 4 CCHH of upper limit of first
extent

words CCH of lower and upper limits of
other extents

If no SUL track was requested, the out-

put area has the following format:

Word 1 Count of extents allocated

Word 2 CCHH of lower 1limit of first
extent

Word 3 CCHH of upper limit of first
extent

Words CCHH of lower and upper limits of

4-11 other extents

Word 12 Unused

Modules Called:
OBTAIN/RETAIN (CZCFO) -- read/write format-
5 DADSM-DSCBs from/to external volume

WTO macrec (CZABQ)
system operator

-- Wwrite error message to

SYSER (CEAIS) -- minor system error

ABEND (CZACP) -- force abnormal end of task

Exits:

Normal - registers 15 contain 0,
0-14 are restored

registers

Error - register 15 contains O4, meaning
request cannot be satisfied; reqgi-

sters 0-14 are restored

Operation: The size of the requested area
is extracted from the JFCB. On a regquest
for track allocation, the number of tracks
requested is incremented by 1 if a standard
user labeling (SUL) track is requested; if
a SUL track is requested the "SUL added"”
flag is set.

The SEARCH routine (described below)
then finds the extent or extents to satisfy
the request. The CCMPUT routine (described
below) examines the extents to see if they
£il1l the request, sets appropriate pages,

and updates the DSCB. UPDATE (described
below) updates the DADSM-DSCBs to reflect
the allccation of extents. Return is then
made to the calling routine.

SEARCH SUBROUTINE: OBTAIN reads the DADSM-
CSCBs, one at a time, into a work area.
UNPACK (described later) examines the
extents and computes the size of the re-
guest. The request can be in terms cf
tracks (in which case the allocation can
tegin at any available track) or in terms
of cylinders (in which case only full
cylinders can be allocated). The request
can ke satisfied in one of three ways:

® An extent equal to the request.
e An extent larger than the request.

s A combination of extents, each cf which
is smaller than the request.

If an extent equal to the request is
found, the extent is placed in COMPUT's
work area, and, if no SUL track is
requested, exit is made. 1f, however, a
SUL track is requested, the extents are
searched for a surplus track tc be used as
a SUL track. If the DSCB is chained,
OBTAIN reads in the continuation DSCBs and
they are searched for an available track.
If a SUL track is found, a successful
return is made. If no such track is found,
a no-space-available return is made.

If an extent greater than the request is
found, it is saved until an extent egual to
the request, or a smaller extent that is
larger than the request is found. If the
LSCB is chained, all continuation DSCBs in
the chain are searched. If an extent equal
to the request is found, the procedure
described in the preceding paragratgh is
followed. 1If no extent equal to the re-
guest is found during the search, the re-
quest is satisfied from the smallest extent
that is larger than the request. The
excess space is subtracted from the extent
and the result is entered into the DSCB as
an update to the old extent. If a SUL
track is requested, the procedure described
in the previous paragraph is followed.

During the search of the DSCBs, a push-
down list of extents smaller than the re-
gquest is accumulated. The list has five
entries, and only extents larger than the
smallest extent in the list are added.
When a new extent is added, the smallest is
deleted from the list. This list is aban-
doned as soon as an extent equal to orx
larger than the request is found. If no
such extent is found, space is allocated
from the extents in this list, combining
the smaller extents (with a maximum of
five) for the allocation.

Section 2: External Storage Allccation 33

COMPUT SUBROUTINE: COMPUT determines if an
extent can fill the reguest and sets the
appropriate flag accordingly. It also
determines if the entire extent is allo-
cated and updates the DSCP accordingly.

If a SUL track is requested, the output
parameter list pointer is incremented to
include the SUL track. The requested allo-
cation can be in terms of tracks or
cylinders.

e If a cylinder reguest al:> includes an
SUL request, COMPUT determines 1if there
are any available tracks preceding the
cylinder. If there are, the SUL track
is made the first track cf the extent.
If there are no preceding tracks, the
last track on the cylinder is used as
the SUL track. If the entire extent
was allocated, its entry in the DSCB is
flagged for deleticn by UPDATE; 1f only
part of the extent was allocated, the
DSCB entry is flagged for updating (Ly
UPDATE) to reflect the new limits of
the extent. If space in addition to a
SUL track was allocated, COMPUT plsces
the upper and lower limit CCHH of the
extent in the output parameter 1list,
and checks the input parameter list for
additional extent requests.

e If a track request also includes a SUL
track, the first available track in the
extent is used as the SUL track and its
CCHH is placed in the output parameter
list. If the entire extent was allo-
cated, the extent entry is flagged for
deletion. If the extent allocated was
only a SUL track, COMPUT examines the
next entry in the input list; if the
extent included other tracks in addi-
tion to this SUL track, the upper and
lower limit CCHBs are placed in the
output list before examining the next
input entry.

When all entries in the input list have
been processed, a count of extents allo-
cated is placed in the output list, and the
gross available space indicator for the
volume is updated. Exit 1s then made.

UPDATE SUBROUTINE: UPDATE updates the
DADSM-DSCBs as extents are allocated.
OBTAIN is called to read in the DSCBs if
they are not already in storaje. The CCHHR
and chain address in the input list are
moved to the output list, if needed; other-
wise, they are saved.

If the extent in the CADSM-DSCB eguals
zerco and UPDATE's work area list is not
exhausted, SYSER is invoked. If the extent
in the DADSM-DSCB is not zero, the avail-
able tracks in the DSCR extent is compared
to the original request for track alloca-
tion of the entry to UFDATE. If the DSCB

34

extent available tracks is greater, SYSER
1s invcked; if it is lesser, PACK is called
to move the DSCB extent to the output list.
If there are more extents in this DSCB, the
DSE preinter is incremented, and the next
¢xtent 1m the DSCB is examined, as above.
If there are no more extents in the DSCB,
CBTAIN is called to read in the next DSCB,
and its extents are examined as previously
described.

If, however, the number of availakle
tracks in the DSCB extent is equal to the
original request of the UPDATE entry, the
following procedure is used.

PACK is used to move the UPDATE extent
to the output work area, if it is not
flagged "delete extent.™ If the next entry
is a new entry to be added toc the DSCB,
PACK is called to move it to the output
work areas; otherwise, the pointer tc the
next UPDATE entry is incremented. If there
are more extents in this DSCB or if there
are no more UPDATE entries, the DSCB point-
er 1s incremented, and the next extent in
the DSCB is examined, as described pre-
vicusly. If there are no more extents in
the DSCB, OBTAIN is called to read in the
next DSCB, and its extents are examined.

If the extent in the DADSM-DSCB egquals
zero and the UPDATE work area list finally
kecomes zero (all DSCBs have been
examined), the output area is zerced and
the hole count in the VTCC-DSCB is incre-
nmented by one, if the DSCB is not the first
in the chain. RETAIN is then used to write
the CADSM-DSCB.

If a hardware error occurs, the WTO
macro instruction is issued to inform the
operatcr; registers are restored, a return
code of 8 is set, and return is made. For
all the errors, SYSER is invoked, the WTO
macro incstruction is issued to inform the
cperator, registers are restored, a return
code of O4 is set, and return is made.

PACK SUBROUTINE: If the output-DSCB-full
flag is set, OBTAIN is called to get the
CCHHR for available continuation DSCBs, if
any. RETAIN is called to write the DALDSM-
CSCB. A CCHHR, if one was saved, is used
as the address of a new output DSCB. Allo-
cated extents are moved to the cutput DSCB.
If there are more extent slots in the out-
put DSCB, PACK mcves its pointer tc the
next available slot and exits. If there
are no extent slots in the output DSCB, the
cutput-DSCB-full flag is set, and exit is
rade.

UNPACK SUBROUTINE: If the next extent in

the LSCB is 0, the DSCB is scanned for a
chain address; if there is none, normal

exit is made; if there is one, an error

exit 1is taken.

If the next DSCB extent is not 0, it is
put in a work area; the count of extents in
the DSCB is incremented by one. The size
of the extent in tracks is computed or set
equal to the cylinder count, depending on
the type of request. If there is room for
more extents in the DSCB, this process is
repeated. When all the extent fields of
the DSCB are filled, exit is made.

SCRATCH {(CZCES)

SCRATCH deletes data set DSCBs on all
volumes of a specified data set and assimi-
lates the external storage back into the
available space (the DADSM) on the volume.
(See Chart BC.)

Entry Point: CZCES1

Input: Register 1 contains a pointer to a
word containing the address of a JFCB.
Qutput: None

Assumptions: At least one of the volumes

indicated in the JFCB is mounted upon entry
to SCRATCH.

Modules Called:
BUMP (CZCAB) -~ dismount and mount external
volume on same device

OBTAIN/RETAIN (CZCFO)} -~
from/to external volume

read/write DSCBs
MERGESAM (CZCEE) -- mexrge physical sequen-
tial data set extents with DADSM extents

VMA (CZCGA)
storage

-- allocate and release virtual

WTO macro (CZABQ)
system operator

-- write error message to

SYSER (CEAIS) -- minor system error

ABEND (CZACP) -- force abnormal end of task

PAIR (CZACS) -- set and delete ABEND Table

Entry

Exits:

Normal - register 15 contains 0; registers
0-14 are restored.

Error - register 15 contains 04, meaning

SCRATCH was unsuccessful on one or
more volumes as indicated in JFCB
volume fields, as follows:

TDTV8 = 0; TDIV9 0 - successful

i

TDTV8 = ¢; TDTVY9 = 1 -
to system problems

error due

TDTV8 = 1; TDTV? = 1 -
not found

data set

Registers 0-14 are restored.

Exit to ABEND if a mounted volume cannot be

found, or if an error is encountered by
RUMP.

Operation: The first volume field in the
JFCB is examined. If a JFCB chain field or
other than a data set volume is selected,
the next volume field in the JFCB is

selected until a data set volume is found.
1f the selected volume is mounted but can-
not be found, the next volume field in the
JFCB is selected. If a mounted data set
volume is found but has already been pro-
cessed, BUMP is called to mount the next
volume of the data set. If a mounted
veolume is not found, the mounted-volume-
found indicator is set, the relative volume
number of the volume that was found is
saved, and the parameter list for BUMP is
initialized.

If the VTOC is locked, time~slice end is
invoked until such time as the VTOC becomes
available. The VTOC lock byte is then set,
and OBTAIN is called to read in the first
data set DSCB (format-1) and the VTOC-DSCB.
GETMAIN 1s called to get storage for the
extent list, and the list is constructed
from the format-1 DSCB. The DSCB is then
zeroed out, and RETAIN is called to write
it back as a zerco record; the VTOC hole
count is incremented by one. If the data
set [LSCB is chained, the continuation DSCBs
(format-3 or -0) are read in by OBTAIN,
zerced out, and written back as zero rec-
ords by RETAIN. The VTOC hole count is
incremented by one for each such DSCB
returned.

MERGESAM is then called to return the
free extents to the available space on the
volume. FREEMAIN then releases the storage
used for the extent list. RETAIN writes
back the updated VTOC-DSCB, and the hole
count in the VTOC and the gross available
space indicator in the SDAT are urpdated.
The VTOC lock Lkyte is reset and the next
volume field in the JFCB is examined. This
process is repeated for each volume on
which the data set resides.

When all volumes have been processed,

SCRATCH returns with a return code as indi-
cated under Exits.

EXTEND (CZCEX)

EXTEND is the external storage alloca-
tion routine that is called when additional
space on a direct access volume is required
for a data set. EXTEND makes the alloca-
tion and updates the VTOC, JFCB, and SDAT.

Secticn 2: External Storage Allocation 35

This routine is called by SRM EOV when dan
ené-of-volume condition is encountered and
additional direct access space must be
allocated. {S5ee Chart BD.)

Entry Points:
CZCEX1, normal entry point.

CZCEX2, used only by SAM EOV when calling
EXTEND after having a new private volume
mrounted.

Input: Register 1 contains a pointer to a
two-word parameter list.

Word 1 Address of JFCB

Word 2 Address of a word in which EXTEND
places output address. If this
wcrd has a value of 1, FEGV has
been requested on current vclume.

Output: The word pointed to by parameter

two contains an address pointing to the
first DSCB containing the new extents, fol-
lowed by a doubleword containing the CCHHR
address of the DSCB. If extents are con-
tained in a second DSCB, the word following
the doubleword contains the address of the
DSCB followed by its CCHHR. 1If no such
DSCB exists, the address is zero.

Restrictions: Each allocation is made from
one volume only; a maximum of 5 extents are
allocated to a physical sequential data
set.

Modules Called:
OBTAIN/RETAIN (CZCFO) -- reads/write DSCBs

SAMSEARCH (CZCFC)
set

-- assign extents to data

MTREQ (CZCAR)
vate volume

-- allocate additional pri-

SYSER (CEAIS) -- minor system error

ABEND (CZACP) -- force abnormal task end

PAIR (CZACS) -- ABEND deinterlock routine

Exits:

Normal - Register 15 contains 00.
Register 15 contains 04 - New
Volure.

Error - Register 15 contains 08 - No space
available.

Exit to ABEND if either of these
conditions exists:

1. No mounted volumes in JFCB.

36

2. Unakle to obtain Format-1 DSCB
from data set volume.

Cperation: The internal subroutine GET is
used to retrieve the last mounted volume in
the JFCE. The TEST subroutine is used to
determine if there is sufficient space on
the volure. It checks the SDAT hole count,
the grcss space field, and the VTOC lock
cyte. If the volumre satisfies the request,
TEST OBTAINs the VTOC-DSCB and calls
SAMSEARCH tc allocate space for the re-
quest. OBTAIN reads in a data set DSCB
(Forrmat-1) and 1WRITE enters the newly
allocated extents into it. The 1WRITE
internal subroutine is used to write
extents in a DSCB when space allocation is
from an cld volume. 2WRITE is used when
space allocation 1is from a new volume (see
kelcw). The VTOC-DSCB, JFCB, and SDAT are
updated, and a successful return is taken.

If the last volume in the JFCB list does
not contain enough available space, EXTEND
will return to the calling program (SAMEOV)
with a return code of 08. SAM EOV then has
a new volume mounted. EXTEND is then
entered at its secondary entry point
(CZCEX2); the newly mounted volume is then
the last volume in the JFCB list. The TEST
internal subroutine is used to determine if
the volume is suitable. If the volume does
not contain sufficient space, return is
made with a ccde of 08; if sufficient srpace
is availakle, the 2WRITE subroutine sets up
a new Format-1 DSCB and writes the extents.
Continuation DSCBs, if needed, are read and
written using OBTAIN and RETAIN respective-
ly. The VTOC-DSCB, JFCB, and SDAT are
updated and return is made with a code of
0.

GIVBKS -- Give Back SAM Storage (CZCEG)

GIVBKS returns unused extermnal storage
from physical sequential data sets to ESA
control and deletes the references tc the
storage from the format-1 and -3 data set
DSCBs. GIVBKS is called only by SAM CLOSE.
(See Chart BE.)

Entry Point: CZCEG1

Input: General Register 1 contains a
Fointer to this list:

Word 1 Address of the JFCB

Word 2 Address of extent 1list

The extent list contains a 4-word entry
for each extent being returned; there can
be a maximum of 256 entries. The entry has
this format:

Word 1 extent

X'80" Ssequence unused
number

byte 1 byte 2 byte 3 Dbyte 4

Word 2 Lower cylinder and track CCHH of
the extent

Word 3 upper cylinder and track CCHH of
the extent

Word 4 unused symbolic device

address of the

byte 1 byte 2 volume

Notes: The flag in byte 1 of Word 1

denotes the last extent in the list; this
byte contains binary 0, for all other
entries. The symbolic device address of
the volume in bytes 3 and 4 of wWord 4 is
only in the first extent of the list.
These bytes are unused in all other
entries, since extents can be returned
only for one volume.

Qutput: None

Restrictions: Extents can be returned for
one volume only.

Modules Called:

OBTAIN/RETAIN (CZCFQ) -- reads/write formats
-1, -3, and -4 DSCBs from/to external
volume

MERGESAM (CZCEE) -- merge physical sequen-
tial data set extents with DADSM extents
VMA (CZCGA) -- allocate and release virtual
storage

SYSER (CEAIS) -- minor system error

ABEND (CZACP) -- force abnormal end of task
Exits:

Normal - registers 0-14 are restored: re-

gister 15 contains 0, meaning
GIVBKS successful or 04, meaning
GIVBKS successful and the entire
prime data set DSCB (format-1) has
keen zeroed.

Error - registers 0-14 are restored, re-
gister 15 contains 08, meaning
GIVBKS unsuccessful.

Operation: A JFCB and the symbolic device
address are passed as input; from this,
GIVBKS finds the volume on which space is
to be returned. GIVBKS obtains the SDAT
pointer, sets the VTOC lock byte, and calls
OBTAIN to read the VTOC-DSCB and the format
-1 DSCB for the data set. The amount of
space required for reading continuation
DSCBs and constructing the extent list for
MERGESAM is computed from the number-of-

Section 2:

extents field of the format-1 DSCB. This
figure must be increased by one if the
first extent is a label track, since that
extent is not included in the count. A
list of extents is then constructed: the
manner in which this is done depends on the
nurber cf extents keing returned.

More Than Three Extents: If there are more
than three extents described, the sgace
required for format-3 DSCBs and the
MERGESAM list is computed as follows:

Every record read into the work area is
preceded by a marker doubleword to identify
end-cf-record condition during the scan
process. Consequently, 148 bytes of
storage are required for every reccrd (144
for the DSCE and four for the marker), con-
taining up to thirteen extents, and eight
bytes are required for every extent to con-
struct the MERGESAM paramweter list. The
space-reguirement computation is therefore:

) bytes, where N is the
count of extents,

| adiusted for label

5 track if necessary.

~~~~~~ x1u8] +8N

This space is obtained by use of GETMAIN.

The marker words are moved into the
area. OBTAIN is called to bkring in the
format-3 DSCBs; a continuation character
indicates that there are more to be read
in.

The last extent in the last format-3
LSCB is located; then the last extent in
the list is found. The index is set to the
end cf MERGESAM's list, to enter the DSCB
bteing returned.

Not More Than Three Extents: If there are
not more than three extents, MERGESAM's
list index is set to the end of the PSECT
work area. The last valid extent in the
format-1 DSCE is found, the number of
extents returned is counted, and an index
is set to the end of the input list. The
last extent in the last format-3 DSCB is
located; then the last extent in the list
is found. The index is then set to the end
f MERGESAM's list to enter the DSCB being
returned.

Each extent in the DSCRB is zeroed out,
and the count of extents still to ke
returned is decremented by one for each
extent. This process is repeated until the
count of extents to be returned is zero
{i.e., there are nc more extents to
return), cor until the lower level CCHH of
the extent being returned does not comrare
with that of the extent in the DSCRBR (mean-
ing that part of the extent was used and

External Storage Allcocation 37



the entry in the DSCB must be changad to
reflect this condition). The numher of
extents in the format-1 DSCE is adjusted by
the number being returned. However, when
only part of an extent is returned, the
resultant number of extents must be incre-
mented by one.

When a continuation record (a format-3
DSCB) is zeroed out because of returned
extents, RETAIN is called to write it back
as a zero record, and the hole count in the
VTOC-DSCB is incremented by one. If all
extents for a data s et cn a particular
volume are returned, the format-1 DSCB is
also zerned; RETAIN is again used to write
it back as a format-0 DSCB, and the hole
count in the VTOC-DSCB is incremented by
one. The format-1 DSCB is updated, and
RETAIN is called to write it back.

After all the data set DSCBs {formats-1
and -3) have been adjusted, MERGESAM is
called tc merge the returned extents with
the available space on the volume. RETAIN
is called to rewrite the VTOC-DSCB. The
hole count indicator and gross available
space field in the SDAT are adjusted
according to the values in the VTOC-DSCB.
The VTOC lock-byte is reset, and FREEMAIN
is called to release work areas. Return is
then made to SAM CLOSE.

MERGESAM (CZCEE)

MERGESAM returns extents from physical
sequential data sets passed to it by
SCRATCH or GIVBKS and merges them with the
DADSM extents on their volume. (See Chart
BF.)

Entry Point: CZICEE1l

Input: Register 1 contains a pointer to
the following parameter list:

wWord 1 Address of an SDAT entry

Word 2 Pointer to a list of data set
extents

Word 3 Address of the VTOC DSCB

Word 4 Pointer to HW containing number of
extents

Output: None

Modules Called:

OBTAIN/RETAIN (CZCFO) -- read/write format-

5 DADSM-DSCBs from/to external volumes

WTO macrc (CZABQ)
to system coperator

-- write error messages
SYSER (CEAIS)

-- mincr system error

38

- yeol.c+ter 15 contains 0;
0-14 are restored

registers

Yrror -~ Hone

Coeraticn: The list of extents to be
nerg»d wishh the DADSM extents is first
scrted; contiguous extents are merged and
the ruuber cf extents is adjusted accord-
ingly. The extents are put into DADSM
form. OBTAIN reads the DADSM-DSCBs until
the first extent is within the range of the
CADSM extents in that DADSM-DSCB. If the
extent cannot be merged with a DADSM
extent, it is inserted, and following
extents are pushed down to make rcom. If
this causes the DADSM extents to overflow
thie DADSM-DSCB, COBTAIN reads an available
DUCE to create a new DADSM-DSCE chained to
the other with the overflow extent
inzerted. The hole count (available DSCB
recordc) in the VTOC-DSCB is decremented by
cne. If the list extent can be merged with
cne cf the DADSM extents, the DADSM extent
is modified to reflect the list extent
also; nc other action is required in this
case. 1If, however, the list extent can be
merged with two of the DADSM extents, the
three extents are merged into one DADSM
extent and the following extents are
shifted up to fill the hole created. The
last vacated DADSM extent field is zeroced
out. 1If, in this process a DADSM-DSCB
btecomes empty, its key and data are zerced
out (making it a zero DSCB), and RETAIN
writes it back; the hole count in the VTOC-
DSCB is incremented by one. This procedure
is repeated for all extents in the list.

Wher the list of extents to be returned
is exhausted, the holes, if any, in the
CADSM-LCSCR are filled. OBTAIN is called
toread in DSCBs and the DADSM extents are
pushed up. RETAIN writes out the DSCBs
after the holes have been filled. This
process continues until either there are no
more holes or until all DADSM-DSCBs have
keen processed.

Should a DSCB become vacant as a result
of the push-up process, it is zeroed out,
and written back as a zero DSCB. When the
extents in all the DADSM-DSCBs have been
processed, successful return is made.

CBTAIN/RETAIN (CZICFO)

OBTAIN/RETAIN is a reenterable, nonre-
cursive, privileged routine residing in
virtual storage. This routine is used for
SAM format DSCBs with the exception of the
opticn for reading or writing volume
labels, which can be used with either VAM
cr SAM. .

ORTAIN reads the VIOC, obtains wvirtual
storage, and builds an IORCB. A channel



prograep is constructed in the IORCB accord-
ing to the type of OBTAIN requested. When
the IORCB is completed, an IOCAL is issued
followed by an internal check routine
(AWALT if I/0 is not complete). A posting
routine checks for errcrs when I/0 is com-
pleted and links to SYSER if necessary. If
successful, the data is moved from the
IORCB buffer to the user's input area.

RETAIN writes one c¢r more DSCBs, volume
labels, or end-of-file markexs to specified
addresses. Virtual storage is assigned and
an ICRCB constructed. i channel program is
then developed and an IOCAL is executed.
When I/0 is complete, a posting routine
checks for errors and links to SYSER if
necessary. (See Chart BG.)

Entry Points:

CZCF01 -~ OBTAIN

CZCFQO2 - RETAIN

CZCFR1 - RETAIN —-- Same entry point as
CZCFO02.

Input: General register 1 contains a

pointer to the parameter list:
word 1 A pointer to the symbclic device
address entry table (SDAT) for
the volume containing the VTOC
or data set. This field is a
32-bit virtual storage address.
Word 2 A pointer to a packed word that
is arranged as follows:

bits 0-7 - Type of OBTAIN re-
quest desired. The type is
designated by a binary
number as indicated in
Table 1. The type is desi-
gnated by a binary number
as indicated in the "RETAIN
REQUEST' section.
bits 8-15 - used type of RETAIN
request.
bits 16-31 - count of RETAIN
requests; otherwise -
binary zercs.
Word 3 A pointer to a field containing
a data set key or a lakel key
when requesting a Type 1, 2, or
5 OBTAIN. When this field does
not apply to the function
requested, it must be defined
but can be left blank. The data
set key is assumed to be 44
bytes in length, and a label key
is assumed to ke 4 bytes in
iength.
Word 4 A pointer tc a CCHHR when per-
forming direct reads for formats
3, 5, B, and D DSCBs, ¢r when

writing DSCBs. When reading a
label, this field will point to
the CCHH of the track upon which
the label resides.

Note: When writing records,
fields 4 and 5 are repeated as
many times as the count in word

2.

Word 5 A pointer to the input area for
the OBTAIN request being made or
the address of the reccrd to be
written.

Type Length
0 140 bytes
1 101 bytes
2 244 bytes
3 5 bytes
i 10 bytes
5 80 bytes
or
A pointer to the input area for
the RETAIN request being made.
Tyge Length
0 140 bytes
1 84 bytes
2 user specified
Ncte: OBTAIN and RETAIN use identical

parameter lists.

Output: Register 1 points to the input
parameter list.

Restrictions:
1. The writing of DSCBs, labels, and end-
of-file marks cannot be intermixed.

2. OBTAIN/RETAIN does not set the inter-
lock byte in the symbolic device allo-
cation table (SDAT). To prevent con-
current references to a particular
VTOC, the user must test and set the
lock byte.

Modules Called:
IOCAL (CERH16) --

execute request for 1I/0.
AWAIT (CEAP7) -- wait for I/0 completion.

VMA (CZCGA) ~-- GETMAIN for the virtual
storage used to construct the IORCB.
RESET (CEABAH) -- re-enable an I/0 device.

SYSER (CEAIS) -- entered when request type
cr parameter is invalid.

ERRORRETRY (CZCRH) --
retries.

direct access erxor

VMSDR (CZCRY)
recording.

-- VM statistical data

Section 2: External Storage Allocation 39



axits: event control block (ECB) are constructed

normal - register 15 contains 00U, in order to maintain compatible linkage
Error - register 15 ccntains ont of the with common system hardware error routines
following codes: and the tesk monitor. A page of virtual
steiage is allocated through GETMAIN, and
04 - write error (RETAING an ipitialized copy of an input/output re-
04 - DSCE record not fcund gquest control klock (ICRCE) is moved into a
(OBTAIN) recerved section of the pags.
08 - hardware error couidition
(OBTAIN)
08 - error in input pavameter lizt GBTAIN REQUEST
(RETAIN)
0C - unit exception : JBTAIHN) This copy ¢©f the IORCE is then updated
16 - intervention required (OHCELIN to pz2rform the requested read function.
type 5) Tz locaticn of the symbolic device address

and the= location of the VTOC are computed,
fetched, and placed in the IORCB. A chan-

Uperation: For both OBTAIN and RETAIN nel rrogram is developed within the ICRCB
requests, upon entry a data control klock as required to perform one of the types of
(DCB), a data extent block (DEE}, and an reguest shown in Figure 4.

fm———pm—m U —— - - e e e e S 1
| Typel| Function |Input Area|Descriptiocn ]
-____+ ____________________________________________________ o e e o e e o e e e o o . . e e e e e e i et o {

0 |Direct 140 bytes |This request i35 initiated tc¢ read Format 3, ¢, 5, B, and

i l I
i | Reference | |C DSCkBs where the lcegical address of the record is known |
i | bSCB | |from a previous operaticn such as Type 2 (below). The |
{ i | jaddress ot the read is gprovided tc the OBTAIN routine in |
| | | |the form CCHHR. A search for an equal ID is performed. |
| i | |“hen the ID is fcund, the key and data fields are read |
i | | 1 (140 bytes). |
l,_._-_+ _____________ et e e e e e e e e i i i St e o i e e o e s i 20, o e e e . e o o 2 B e ot
| 1 |[Search for 1101 bytes |This request is initiated to read type 1 and A DSCBs. Anj| |
| | DSCB key and | | in-channel search is performed on a key, which is the |
| |read count | {dsname of the data set whose DSCB is being searched for. |
| | i IWhen an equal key is found, the catalog data field (96 {
| | | jbytes} is read intoc the IORCB buffer area. The count |
| | | jfield (S bytes) is then read into the buffer area to |
| | | joccupy the byte of the data field. The count field is |
| | | jdecremented by one to adjust it to the correct address of|
i | | {the data field on files. |
e B oo oo e e 1
| 2 |Search for | 244 bytes |[This request is the same as type 1 above, except that the|
| |DSCB -- | |VTOC-DSCB is alsc read and placed in the area contiguous |
| | Read Count i |to the right-hand byte of the count field starting c¢n thej
| |and Read | next fullword kcundary. |
L | DSCB [ | |
| 3 |Search for |5 bytes [Unassigned CSCBs contain a field of binary zeros. This |
| |one availablej| | request causes an in-channel search on a field of binary |
H | DSCB | |zeros. The count field 1is read in the form CCHHR and is |
| | | |placed in the input area. |
T D S o e 1
|} 4 |Search for |10 bytes |This request performs the same functions as types above |
| |two available| | except that it searches for two available DSCBs. The |
i | DSCBs | jfirst address is placed in the first five bytes of the |
| | | |input arxea; the second address is placed in the second |
| | | |five bytes. |
S e B e T ~
| 5 |VolumesUser |80 bytes |This request initiates a track search for a data set or |
| |label read | |volume label key. When an equal is found on the key, thej
| | | |data field is read. If an end-of-file is detected on the|
| | | |read, a code is placed in register 15 and control is I
| | | [returned to the user. This request can be used for eith-|
| | [ |er VAM or SAM data sets. |
AR W, A A 4

Figure 4. Tygpes of OBTARIN Requests



The initial DADSM-DSCB {the DSCB used to
define available extents) can be accessed
directly by incrementing the record address
of the VTOC.

After the IORCB has been built, the
IOCAL SVC is executed, followed by the
OBTAIN routine and an AWAIT. When I/0 is
complete, the task monitor links to OBTAIN
posting, which checks for errcors. If no
errors occurred, posting moves the data
from the IORCB buffer area (now lccated in
the ISA) to the user*'s input area. If an
error occurred, posting links to common
system error routines. Posting, however,
selects out end-of-cylinder and end-of-file
for further processing by OBTAIN and the
user. If the IORNP or the IORPG flag 1in
the IORCR has been set by either the HOLD/
DROP facility, paging error recovery proce-
dures, or the Purge I/0 facility to indic-
ate that no path is available, OBTAIN post-
ing will post the I/0 action as incomplete
and intercepted. When posting completes,
it returns control to the user with an
indicative code in register 15, or updates
the IORCB for another search if the VTOC
exceeds a cylinder and end-ocf-cylinder was
detected.

KETAIN REQUEST

Types of RETAIN requests are:

Input
Type Function Area Cescription
0 WRITE 140 This request is ini-
DSCB bytes tiated to write one or
more DSCBs. Available
location found by type-
3 OBTAIN
1 WRITE 8u To write a user label
LABEL bytes or standard label on a
volume -- key must be
included
2 EOF user
markers spec-
ified

When the initialized IORCB, which con-
tains an appropriate channel program to
write the DSCB or label, 1s moved into a
reserved section of the page allocated
through GETMAIN, the symbolic device
address is obtained from the symbolic
device address table (SDAT) and placed in
the IORCB. The seek and search address is
directed to constant fields in the IORCB
that are filled in with data indicated by
the input parameter list. The write is
also addressed to a constant buffer area in
the IORCB into which the DSCBs or labels
are moved. Note that a type 1 RETAIN re-
quest writes an 84 byte label. When the

IORCB has been built, the IOCAL SVC is
executed, followed by the RETAIN CHECK rou-
tine which checks the flag in the DECB.

The RETAIN routine branches to an AWAIT
macre instruction if the I/0 is not
complete.

Upon completion of the 1/0, the task
monitor invokes the RETAIN posting routine
tc check for hardware errors. If no errors
have occurred, posting places an agpprogpri-
ate code in the LECB and returns control to
the task monitor which, in turn, returns
control to RETAIN at the instruction imme-
diately following the AWAIT. If an error
is detected, posting links to the system
error routine for retry procedures.

If the IORNP or the IORPG flag in the
IORCB has Lkeen set by either the HOLD/DROP
facility, paging error recovery prccedures,
cr the Purge I/0 facility to indicate that
no path 1s available, RETAIN posting will
pest the I/0 action as incomplete and
intercepted. Whether or not the retry was
successful, control is returned to RETAIN
bty pcsting. RETAIN checks the DECB for an
unsuccessful write, and if cne has
cccurred, the hexadecimal error code *'04°
is placed in register 16. The count of the
number of RETAIN requests in the parameter
area is set to indicate the number of
writes completed. Thus, the record causing
the error can ke lccated by multiplying the
count by eight and incrementing the address
of the first CCHHR pointer by the result.
Control is returned to the user upon detec-
tion of the first error.

If no error is indicated, the ccunt of
records to be written is checked for zero;
if the count is zeroc, control is returned
to the user. When the count is not zero,
the next record specified in the parameter
list is written. Although an indefinite
number of records can be specified in the
RETAIN macro instruction, the RETAIN rou-
tine writes them one at a time in order to
facilitate error recovery procedures.

The OBTAIN/RETAIN routine does not set
an interlock in the symbolic device alloca-
tion takle (SDAT) to prevent concurrent
reference to a particular VTOC. 1Interlock
nust be estaklished prior to issuing an
OBTAIN or RETAIN if it is desired tc pre-
vent concurrent access to a VIOC. The fol-
lowing error checks will be made:

1. Validity of request type
2. Reasonableness of parameters
An invalid request type or parameter

will cause the System Error Routine to be
invoked.

Section 2: External Storage Allccation 41



RENAME (CZCFZ)

RENAME is & reenterable, nonrecursive,
privileged subroutine residing in virtual
storage. It changes the fully gqualified
name in the key field of a format-1 DSCB
for all volumes specified in the JFCB to
the name specified by the calling program.
{See Chart BH.)

Entry Point: CZCFZ1

Input: Register 1 contains a pointer to
the following parameter list:

word 1 Address of a JFCB

Woxrd 2 Address of a U4-byte area con-
taining the new data set name

Qutput: None

Assumption: At least one of the volumes
indicated in the JFCB is mounted upon entry
to this routine.

Modules Called:
OBTAIN/RETAIN (CZCFO) ~- read/write format-
1 DSCBs from/onto external volumes.

BUMP (CZCAB) -- dismount and mount external
volumes on same device.

WTO (CZCABQ)
tem operator.

~~ write error message to sys-

SYSER (CEAIS) -- minor system error.

ABEND (CZACP) -- force akncrmal end of

task.

Exits:

Normal - register 15 contains 00: regis-
ters 0-14 are restored.

Error - register 15 contains 04; RENAME

was unsuccessful on one or more
volumes as indicated by flags:

TDTV8 = 0 and TDTV9 = 0 -
Successful.

TDTV8 = 0 and TDTVY = 1 - error
due to system problems.

TDTV8 = 1 and TLCTV9 = 0 - data set
not found.

TDTV8 = 1 and TDTV9 = 1 - new data
set name already exists.

Registers 0-14 are restored.

Operation: This routine uses CBTAIN to
search the VTOC to determine if there is
already a DSCB with the new data name and
to retrieve the DSCB with the data set name
to be changed. 1If a DSCB with the new data

42

set name is encountered, an error return is
made indicating that the name is not unique
in the volume.

The routine performs the renaming for
each vclume on which the data set resides
as specified in the JFCB. If any of the
volumes is not mounted, the BUMP routine
(CZCAB) is called to dismount a volume on
which RENAME has already been performed and
to mount the unmounted volume on that
device.

If RENAME cannot perform its service on
a volume, an indicator in the JFCB is set
to pass the information back to the calling
program. There are two bits within the
volume flags of the JFCB defined as
follows:

(Fields TDTV8 and TDTV9 in the systen table
CHATDT)

00 -- successful
01 -- unsuccessful due to system problems
10 -- data set name in JFCB not found in

VTOC of this wvolume

11 -- data set name not unique in this
volume

After changing the key {(the data set
name), the DSCB is rewritten by use of
RETAIN.

ROUTINES USED WITH VAM FORMAT VOLUMES

FINDEXPG (CZCEL)

FINDEXPG is a reentrant, nonrecursive,
grivileged routine, which resides in virtu-
al storage. This routine is entered when
rages of external storage are required for
a data set. (See Chart BI.)

Entry Point:

CZCELl1 -- Normal entry. Type I linkage.
Input: Register 1 contains a pointer to a

parameter 1list:

wWord 1 JFCB address

word 2 Address of the receiving area

word 3 Address of a word containing the
number of pages required (negative
if WRITDSCB is not to be called)

Qutput: Each page assigned will be indi-

cated by one word in the receiving area of
parameter two, in the following format.

Bits 0-15 - Relative Volume Nunker
Bits 16-31 - Relative Page Number



Assumptions: The format of the volume list
for private data sets is exactly the same
as the PVT.

Modules Called:
VOLSRCHB (CZCEH) -- To find suitaible volumes
from which to allocate space.

RELEXPG (CZCEN) -- To return assigned pages
and adjust user resource count if =ntire
allocation cannot be made.

WRITDSCB (CZCEW) -~
chain.

To update the DSCB

ESA LOCK (CZCEJ) --
pages.

To lock and unlock PAT

RCR (Macro) -- Used
public resources.

in accounting for user

READWRIT (CZCEM) -- To write PAT pages.

Exits:

Normal - Register 15 contains 00.

Error - Register 15 contains one of the
following codes:

04 Insufficient space.
08 Resource limits exceeded.
The following errors cause an ABEND.
1. Error writing a PAT page
2. 1Illegal device code in the SDAT

Operation: The JFCB address, the address
of a receiving area, and the address of the
number of pages required are presented to
the routine. If the data set is public,
FINDEXPG passes this information to the
Resource Control Routine which determines
if the request is allowed, or if the user
has already reached his resource limits.
I1f RCR makes an error return, FINDEXPG
returns to the calling routine wWith an
indicator (08) in GR 15.

Otherwise, VOLSRCH is called to locate a
volume from which allocation may be made.
When a suitable volume has been located,
the PAT is obtained, by using the PVMA in
the SDAT, and locked. The PAT is scanned
for invalid codes. If one is found, a mes-
sage is sent either to the operator if the
volume is public or to the user 1if the
volume is private. Then VOLSRCH is called
for a new volume. The PAT is next
inspected for unallocated pages. As one is
found, the user count is incremented in the
PAT entry for this page and a word entry,
consisting of relative vclume number and
relative page number is stored in the
user's receiving area, the address of which
is an input parameter. If more pages are

needed, the PAT is scanned for more zero
entries, as above. When either the alloca-
tion is complete, or there are no more
unallocated slots in the PAT, the PAT page
is written out via READWRIT and the lock
released.

In the second case, the appropriate PAM
kit in the SDAT is set to indicate no
further space. If there are more PAT pages
for this volume, they are inspected in
turn. When the space request cannot be
satisfied from the current volume, VOLSRCH
is called at the second entry point to find
another volume.

If VOLSRCH is unable to find a suitable
volume, RELEXPG will be called to release
any rages already assigned and the callers
receiving area will be zeroced out. If the
data set is public, RCR will be called to
delete those pages requested but not
assigned, the return code will be set to
(04) and the following message will ke sent
to the operator:

ZCEL - NO MORE DATA PAGES AVAILABLE ON
PUBLIC VOLS

The following message will then be writ-
ten to the user:

ZCEL - INSUFFICIENT SPACE TO BUILD DATA
SET (data set name)

When the request has keen satisfied,
control is returned to the calling routine
with GR15 zeroed, to indicate success.
Just before a successful return, WRITDSCB
will be called to update the DSCB chain,
unless the word containing the number of
required pages 1S negative.

ACDDSCE (CZCEK)

ALCDLSCB is a reentrant,
privileged routine, residing in virtual
mremory. ALCDDSCB is called by ADDCAT,
WRITDSCB, and DSCBREC to assign space for a
new format E or format F DSCB. (See Chart
BJ.)

nonrecursive,

Entry Points: CZCEK1 -- Normal entry.

Input: Register 1 points to a parameter

list:

Word 1 Address of the JFCB associated
with the VAM data set for which
the DSCB assignment is to be made.

Word 2 Address of the volume table asso-
ciated with this data set.

Word 3 Address of a one-word return area.

Word U4 Address of a control word that has

the following format:

Section 2: External Storage Allocation 43



Bits 0-7 - X*80"' if call is for a for-
mat E DSCB
X'00' if call is for a for-
mat F DSCR

Bits 8-15 - unused

pBits 16-31 - The RVN cof the current DSCB
page if the call is for a
format F DSCB.

(Note: If the call is from
DSCBREC (CZCEF) for a format E
DScB, word 4 will be set to zero.)

Output: A pointer to the newly assigned
DSCB will be placed in the return area
whose address is the third input parameter.
The pointer is in the form:

0-3 - DSCB slilot number
4-15 - Relative Volume Numrber
16-31 - Page numker

Bits

Workpage CZCOZ will contain the new DSCB
page.

Assumptions: If the call is for a format F
DSCB, the device indicated by parameter
four is assumed locked and will ke used,
then left locked upon return. The new
device obtained from VOLSRCH will be locked
and left locked, and the pointer of parame-
ter four will be changed to point tc this
new device.

Modules Called:
VOLSRCH (CZCEH) -- To find suitable volumes
from which to allocate space.

ESA LOCK (CZCEJ) —-- To unlock or lock PAT
pages.
READWRIT (CZCEM) ~-- To read and write DSCB

pages and to write the PAT.

Exits:
Neormal - Register 15 contains 00.
as described.

Output

Error - 1. No DSCB space available.

ABEND.

2. Error reading or writing DSCB
or PAT. Message to operator.

3. Illegal device code. ABEND.

Operation: ADDDSCB requires that, on
entry, general register I contain a pointer
to a parameter list containing:

1. The address of the JFCB associated
with the VAM data set for which the
DSCB assignment is to be made;

2. The address of the vclume table asso-
ciated with this data set;

44

3. The address of a one-word return area.

In addition, if the call is to request
space for a format F DSCB, it is assumed
that a DSCB page is being used by the call-
ing routine and that the device containing
this DSCB page is locked. 1In this case a
fourth parameter is necessary. This fourth
parameter will be the address of a word
containing the RVN of the locked device.
The calling routine will signify a request
for a format E DSCB by making the fourth
parameter zero.

To find sgpace for a format F DSCB,
ADDDSCB will scan first the DSCB page and
then the volume on which the format E DSCB
resides. If there are no usable pages on
that vclume, or if the call is for a format
E DSCB, ADDDSCBE wiil obtain a volume to
search by calling VOLSRCH {CZCEH). VOLSRCH
will select a suitable vclume, place its
relative volume number in an address sup-
plied by ADDDSCE, set a successful return
code, and return to ADDDSCB.

If VOLSRCH returns with an unsuccessful
return code (no suitable vclume found),
ADDDSCB will call VOLSRCH again at the ini-
tial entry (CZCEH1) and this time will
attempt to allocate DSCB space from any
continuation slots. If, in this attempt,
VOLSRCH again returns unsuccessfully,
ADDDSCE will call ABEND with a message to
the user.

Uron a successful return, the PAT page
of the returned volume is checked for inva-
lid codes. 1If cne is found, a message is
sent to the user if the volume is private
or to the operator if the volume is public.
An attempt is made to get another volume.
If no invalid code is found, VOLSRCH return
indicators are checked for one of two poss-
ible cases: (a) space exists on an
unfilled DSCB page, or (b) all DSCB rages
presently assigned are full but unassigned
pages exist from which a new DSCB page may
be allocated. These two cases are
described below.

(Case a) SDAT PSM indicates unfilled
DSCB page(s) exist:

VOLSRCH returns a volume pointer and
indicates the PAT page for that volume
which describes an unfilled DSCB page. A
search of this PAT page is made for an
unfilled DSCB page entry. If no unfilled
DSCB pages exist, it indicates that the PAT
Summary Table (PST) must be updated and a
new DSCB page assigned from this PAT if
possible. See case (b) for this procedure.
When an apparently usable DSCB page entry
is located, the DSCB page on external
storage is read into the workpage CZCOZ by
a call to CZCEM. If this DSCB page was
just assigned (see case (b)), the PAT entry



has already been updated; the first DSCB
slot in the page is assigned by setting
bits 6-7 of DSETYP of the DSCBE slcot to 01
for format E or 10 for *format F. The DSCB
is then checksummed and written back to
external storage via CZCEM. The new DSCB
assignment is passed back to the calling
module in the form of relative volume num-
ter, page number and DSCB siot number.

If this DSCE page was not & newly
assigned page, the DSCB page is searched
for an available [SCB slot {bits 6-7 of
DSETYP equal to 00). If assigning a slot
will leave four or more avalilablie slots on
the page, the slot is assigned. 1f it
leaves tust four, the PAT entry will be
changed :rom '80' tc '82'. A page so
rarked will not thereafter be searched
except to find space fcr a format F DLCB
whose format E DSCB is on that page, or 1if
no other space is availakle. If no avail-
able slots are found in this DSCER page, the
PAT entry is set to '83' to indicate a com-
pletely full page and the search tor anoth-
er page continues. When an available slot
is found, it is assigned by setting bits
6-7 of DSETYP. The DSCE is checksummed
and, if call is for a format E DSCB, writ-
ten back to external storaqge via CZCEM. 1If
the PAT page has been changed, it is writ-
ten back to external storage via CZCEM.

The new DSCB assignment is passed back to
the calling module as noted in the previous
paragraph. If the calling program is
ADDCAT (CZCFA), any devices locked by
ADDDSCBE will be unlocked before returning.

(Case b) SDAT PST indicates all DSCB
pages full but unassigned pages exist.

When VOLSRCH returns a volume pointer
and indicates a PAT page from whch a new
DSCE page may be assigned, ALDDL3CR searches
that PAT page and, upon finding an unas-
signed page, assigns that page as a DSCB
page by setting the PAT entry to *80'. The
SDAT PST DAM (DSCBE Availability Mask) is
updated to reflect this newly assigned DSCB
page. The new page is read into workpage
CZCOZ. All DSCB slots an the page are made
available for future assignment by setting
them to zero. DSCB assignment then con-
tinues as described in case (a) for a newly
assigned DSCB page.

If no unassigned pages are available for
LSCB assignment, the PST is updated to
reflect the fact that no more space 1is
available on the volume page described by
the PAT page under examination. ADDDSCB
will then examine the next PAT page (if
more than one exist) for the volume and
repeat the above process. If no space can
be found on this volume, VOLLRCH is re-
entered at its second entry point (CZCEH2),
and a new volume is obtained. The entire
procedure 1s then repeated.

Section 2:

VOLSRCH (CZCEH)

VOLSRCH is a privileged, reentrant non-
recursive routine which is called by
ADDDSCE and FINDEXPG to determine the most
suitable volume in a given list, puklic or
private, from which to allocate space.
(See Chart BK.)

Entry Points:

CZCEH1 -- Forxr initial call.

CZCEH2 -- For subsequent calls.

Input: Register 1 contains a pointer to a

rarareter list:

Word 1 Address of control word. (Control

word format is as follows:
Byte 0 - X'00' DAM, PAM search
- X'80' PAM search only
- X*'CO0' Primary allocation
set by OPENVAM
(CZCORn)
Bytes 1-3 - Number of pages
requested by FINDEXPG
{(CZCEL) ; Not used when
Byte 0 is X'00°'.)

Word 2 JFCB adress.

Word 3 Address of the halfword return
slot for the relative
volume number.

Word 4 Address of the volume list.

Cutput: The relative volume number of the

selected volume will be placed in the half-
word which is addressed by word 3 of the
input gparameter list. Register 1 contains
a pointer to the input parameter 1list.

Restrictions: The second entry point
(CZCEH2) may be entered only after the
first (CZCEH1) has been entered.

The task will SYSER and ABEND if the
data set is public and there are nc volumes
in the PVT.

Modules Called:

SYSER (CEAIS) -- Full VM dump.

ABENLD (CZACP) -- Terminate task and return
control to the terminal.

Interlock (CZCOH) -- To lock RESTBL.
Release Interlock (CZCOI) -- To unlock
RESTBL.

Exits:

Normal - Register 15 contains 00.

Frror -~ Register 15 contains one of the

following codes:

External Storage Allccation 45



ou No space on any volume.
08 CZCEH2 called out of turn.

Operation: The first input parameter is
the address of a control byte which indi-
cates the type of search required. If the
control byte contains an '80°', VOLSRCH will
examine the PAM bits of each volume to find
one containing available data pages. If
the control byte is '00', VOLSRCH will test
each volume, examining first the DAM bits
to find one containing an available DSCB
page. If the DAM bits indica ‘e that no
such page is available, the PAM is then
examined to see if a data page is present
which may be assigned as a DSCB page. 1If
one is, the control byte is changed to *'80°
to inform the calling routine that such is
the case. If there are none, the next
volume is then examined. If the second bit
of the control byte is on, VOLSRCH is being
called for primary allocation and the
RESTBLE will not be searched to determine
on which volumes the data set is currently
located.

Whenever a suitable voclume is found, the
relative volume nurber is placed in the
halfword return slot whose address is the
third input parameter. If no suitable
volume is found, return will be made to the
calling routine with general register 15
set to '04°.

For a private new data set, the volume
list is examined for the device having the
most available space. For an existing pri-
vate data set, the search begins with the
volume containing the format E DSCB, and
cycles from the last in the list to the
first.

For public data sets, the volume entries
in the JFCB will be examined for wvalid,
mounted, public volumes. If any are found,
the search will be restricted to them. If
none are found in the JFCB, the pukblic
volume table will be searched.

For public data sets, the first volume
of the PVT is reserved for system use and
will be examined last. For a new puklic
data set, a search will be made for the
device having the most available sgace.
For existing public data sets, the search
tegins with the volume containing the for-
mat E DSCB.

When the data set is duplexed, the
volumes containing the duplexed copy are
not examined unless there is no space on
any other public voclume, including the sys-
tem volume.

If the calling routine needs more than
one volume, the second entry (CZCEH2)
should be called. VOLSRCH will then con-
tinue the search. If multivolume data sets

u6

have been inhibited, data sets will not be
allowed to expand to more than one device.
If an old data set is already multivolume,
it will be restricted to those volumes on

which it already exists.

RELEXPG (CZCEN)

RELEXPG is a reentrant, nonrecursive,
privileged routine residing in wvirtual
storage, which is called by CLOSEVAM,
DELVAM, WRITDSCB, DSCBREC, and FINDEXPG
when external pages and DSCBs are tc ke
made available. (See Chart BL.)

Entry Point: CZCEN1l -- Normal entry by
tyre I linkage.

Input: Register 1 points tc the following
parameter list:

Word 1 JFCB address

Word 2 Address of the list of entries to
be released.

word 3 Address of a word containing the

number cf entries in the list.

The format of entries in the release
list is:

oo B At - L 1

|External Page}
|Field A|Relative Volume No.| Number |
— e S
10 314 15]16 314
b A A 1

The release list must be aligned c¢n a
fullword boundary. Field A contains a DSCB
slot number when a DSCB is being released.

Cutput: Relevant PAT entries and DSCB
pages will be changed to reflect the
requested releases.

Assunption: Private data sets will have a
volume list in exactly the same format as
the PVT.

Modules Called:
CZCOY -- Workpage for reading DSCB pages.

RCR -- To credit user with pages being
returned.

ESA LOCK (CZCEJ) -- To lcck and unlock
devices.
READWRIT (CZCEM) -- To read and write DSCB

pages and to write PAT pages.

Exits:
Normal - Register 15 contains 00.
Error - None.



Operation: The routine is entered with the
address cof the JFCB, the address of the
list of entries to be released (these can
be mixed data pages and DSCBs), and the
address c¢f a word containing the number of
entries in the release list. These last
two parameters are set up as indices and a
locop count and the first entry in the
release list is obtained.

The relative volume number is stored in
a comparison field so that the current PAT
page can be used to release consecutive
entries for the same relative volume before
being rewritten. The relative vclume numn-
ber is used to index the volume list; the
SDA is extracted and used to calculate the
appropriate SDAT entry.

The external page number of the entry in
the release list is examined for validity
ky type of device and set to modulo 4096 to
get the relative PAT page and entry within
the page. The device is locked and the
virtual memory address of the PAT obtained
using the PVMA field in the SDAT.

The PAT is scanned for invalid codes.
If one is found, a message is sent either
to the user if the volume is private or to
the operator if the volume is public. If
the PAT is invalid, it will not Le changed
or written.

The PAT entry is examined. If it is 80,

82, or 83 (a DSCB page) the proper DSCB
page, if not already in core, will ke read
in. The indicated slot will be released

and the PAT entry changed, 1f necessary,
according to the number of slots still
assigned. If no slots are left assigned,
the PAT entry will be set to zero, making
the entire page availakle, and the appro-
priate PAM bit set to show at least one
available page entry. Otherwise, the rele-
vant DAM kit will be set to show at least
one DSCB available.

When a data page 1s being released,
count of users is decremented. If the
resulting count is non-zero, the page can-
not he released. Otherwise, the PAM bit is
set toc show at least one available page
entry in this PAT rage.

the

If the PAT entry of the page to be
released is 'C0°', an errcr entry, the relo-
cation field will be searched to find the
relocated page number. If none is found,
SYSER 002 is called and the program con-
tinues with the next entry to be released.

A special feature cf RELEXPG allows
external PAT page entries to be marked as
error pages. When a data page is kbeing
released, bit 1 of the release entry is
examined. If it is on, the PAT page entry

Secticn 2:

is set to CO,
entry.

thus making it an errxror

As pages are made available, PVTAVS,
number of available pages is updated.

the

Processing continues by increrenting
indices and decrementing the count of
entries in the release list. When more
entries are to be released, the relative
volure number of the next entry is compared
with that of the previous entry. If these
are equal, the routine will loop to process
this entry. Otherwise, any altered PAT
pages must be rewritten using READWRIT and
this relative volume numker saved. The
routine then loops to use the relative
volure number as an index to the volume
list.

When all entries have been processed,
the altered PAT pages on the current volume
are written using READWRIT. The Resocurce
Control Routine is called to adjust the
resource limits when any public pages are
returned. RELEXPG then returns to the
calling routine.

DSCBREC (CZCEF)

DSCBREC is a reentrant, nonrecursive,
privileged routine residing in virtual
memory. This routine is used to recover as
far as possikle from a checksum error.

(See Chart BM.)

Entry Points:
type I linkage.

CZCEF1 - Normal entry via

Input: Register 1 contains a pointer to
the follcwing parameter list:

Word 1 JFCB address

wWord 2 Address of a fullword describing
the bad DSCB, which will be
changed upon successful return to
the address of a replacement DSCB
which should be re-read.

Word 3 ARddress of the Volume Table.

The format of the second parameter word
is:

| No. { No. | No. ]
. e S !
[0 34 15|16 31
[ S, S, 3
Cutput: Register 1 contains a pointer to

the input parameter list.

Modules Called:
ADDCAT (CZCFA)
the DSD.

-- To update DSCB pointer in

External Storage Allocation 47



ADDDSCR (CZCEK) -- Tc surply new DSCB
slots.

DELCAT (CZCFL)
entry.

-- To delete a catalog
DSCB/PAT RECOVERY (C2UfX) -- To rebuild a
user catalog from public DSCEs.

FINDEXPG (CZCEL) -- To oktain new data

rages.

RELEXPG (CZCEN) -- To release to the systern
LSCB slots and data pages.

ESA LOCK (CZCEJ) -- To lock and unlock
devices.

KCR -- Resgcurce control macrc to credit the

data set owner with lost public pages.

GETMAIN/FREEMAIN (CZCGlR) -- Get or free
virtual storage.

SETXP (SVC 244) -- To read a data rpage.

PGOUT (SVC 242) -- To write a data page.
KEADWRIT (CZCEM) -- To read and write DSCE
pages and write the PAT.

USERCAT SCAN (CZUFY) -- To compute the che-
cksum for the SYSSVCT DSCB and to construct
the first page of the SYSSVCT data set if
necessary.

bxits:
Normal - Register 15 ccntains 00.

Error - Register 15 ccntains one of the
following codes:
ou Recovery is impractical - (not du-

plexed or, data set shared and for-
mat E LSCE bad).
08 Not enough pages available.

QcC Unreccverakle write error
encountered.
10 Error page found with no relocation
entry.
Operation: DSCBREC requires, ¢n entry, a

pointer in General Register 1 to a parame-
ter list containing the address of the JFCB
with which the DSCB in error is associated,
the address of a pointer to the DSCB, and
the address of the volume table.

Upon entry, the following message will
be written to the operator:

ZCEF - CHECKSUM ERROR ON SLOT XX,
XXXX, R.V.N.XX, V.S.N.XXXXXX

PAGE

Following this, DSCEBREC will check to
see 1f the DSCB in errxcr is the format E
DSCB of a shared data set. If so, complete
recovery is not practical. If not, a check

48

will be made to see if the calling prcgram
is WRITDSCB. WRITLDSCB calls DSCBREC only
if the format E DSCB is found to be Fkad.

No attemgt to "save" the data set is
required as all data page pointers are
present in the RESTBL and the DSCE chain is
about to be updated anyway. In this sge-
cial case DSCBREC will assign a new format
E DSCB, update the E DSCB pointers in the
RESTBL, JFCB and DSD, then checksum and
write to external storage the new DSCB
slot. If the calling program is not
WRITLCSCBE, a check will be made as to wheth-
er or not the data set is duplexed.

If the data set is not duplexed, com-
plete recovery is not practical but an
attermpt will ke made to save as many pages
as possible. DEICAT will be called tc
delete the data set from the catalog and
the user will be notified that this has
Feen dcne. The DSCB chain will then be
scanned and all DSCBs preceding the kad
cne, together with their descrikbed data
pages, will be returned to the systen via
RELEXPG. All other DSCBs and data pages in
the chain will be lost. The nurber cf lost
rages will be calculated and credited to
the user via the Resource Control macrc.
The user or the operator, depending upon
whether the data set is on private cr gpuk-
lic volurmes, will ke informed cf the number
of pages lost. Return is then made with
'04' in register 15.

1f the data set is duplexed, the DSCB
chain will be searched to find the relative
rosition of the bad DSCB and the nurmker of
rages that will ke lost. The Resource Con-
trol macro will be called to credit the
user with the number of pages lost and
FINDEXPG will be called toc replace these
rages. At this time TDTDCI will ke checked
to see if this is the primary cr the seccn-
dary cofpy.

If it is primary, a dummy secondary
RESTBL will be ccnstructed from the seccn-
dary DSCPE chain and the data set will be
transferred from these addresses to those
supplied by FINLEXPG for the primary data
set.

If it is the secondary copy, the same
procedure will be followed except that nc
durnmy RESTRL need ke constructed as the
primary RESTBL already exists. The data
set will be transferred from addresses in
the primary RESTEL to those supplied by
FINDEXPG.

Cnce this transfer is complete, DSCEREC
wi1ll check the format type of the kad DSCB.
If it was a format F DSCB, the DSCE string
will be updated from those pages found by
FINDEXPG. If it was a format E DSCR,
LSCBREC will first update the DSCB header



and the E DSCB pointers in the JFCB and
DSD.

If the data set is shared, DSCBREC has
no knowledge of the location of the sharing
JFCBs and 1is therefore unable to update
their format E DSCB pointers. Therefore,
if the bad DSCR is format E and the data
set is found to be shared, DSCEREC will
consider the data set as one that has no
duplex copy. The data set will be deleted
via DELCAT and register 15 will hold the
return code of '04°.

pefore exiting, the fcllowing messages
will be printed:

1. To the operator (if data cet is
public):

ZCEF - RECOVERY (SUCCESSFUL.XXXX)/
(IMPOSSIBLE.ALL) PAGES LOST

2. To the user:

ZCEF - CHECKSUM ERROR ON SLCT XX, PAGE

XXXX, R.V.N. XX, V.S.N. XXXXXX

ZCEF - RECOVERY (SUCCESSFUL.XXXX)/
(IMPOSSIELE.ALL) PAGES LOST

3. To the user if recovery was not
successful:

ZCEF —~ CHECKSUM ERR HAS CAUSED DELE-
TION OF DATA SET (d.s.name)

WRITDSCB (CZCEW)

WRITDSCE 1s a reentrant, nonrecursive,
privileged routine which resides in virtual
memory. WRITDSCB is called by OPENVAM,
CLOSEVAM, and FINDEXPG to construct a DSCB
chain from the RESTBL, JFCB, DCB, and PVI.
(See Chart BN.)

Entry Points: CZCEW1 - Normal entry. Type

I linkage.

Input: General Register 1 contains a
pointer to the parameter list:

Word 1 Address of the RESTBL reader

Word 2 Address of a control tyte
bits 0~3 - 'F' - new data set
'0' - 0ld data set

bits 4-7 - 'F' - write all rages in
RESTBL
'0' -~ write only pages in use

Word 3 Address of the JFCB

Word 4 Address of the DCB

Secticn 2:

Cutput: Register 1 contains a pointer to
the input parameter list.

Assunpticns: The format of the volume
lists of both public and private data sets
are ldentical.

Nodules Called:

ACDDSCE (CZCEK1) -- To find a new format E
or F DSCR.

RELEXPG (CZCEN1) -- To return excess DSCB
slots.

LSCBREC (CZCEF1l) -- To set up new format E
DSCB.

ESA LOCK (CZCEJ) -- To lock and unlock

devices.

KREADWRIT (CZCEM) -- To read and write LCSCB
rages and to write the PAT.

Exits:
Normal - Register 15 contains 00.
Error - 1. Error reading DSCE page.
AEEND.
2. EIXxror writing DSCE page or
PAT. ABEND.
3. Unrecoverakle checksunm error.
ABEND.
Cperation: Input parameters for WRITLSCR

are the address of the RESTBL and the
address of a contrcl byte which is "FF" for
a new data set and '00' for an old one. If
the data set is new, two additional parame-
ters, the address cf the JFCB and the DCB
are also required.

After initial housekeeping activities,
the fage containing the format E DSCB will
be read in using subroutine 1. If a check-
sun error 1is encountered and the data set
is not Lbeing shared, DSCBREC will be called
to provide a new format E DSCB. If the
return from DSCBREC indicates an unsuccess-
ful recovery or if the data set is shared,
WRITCSCE will and ABEND with appropriate
messages.

Once a good forrat E DSCB has been read
in, the page totals in the DSCR header will
ke updated from the RESTBL header. At this
time alsc, if the data set is not parti-
ticned the DSCE header will be filled in
from information in the JFCB and DCE.

If the data set resides on private
volunes, the numkter of volumes in the DSCB
will be checked against the nurber of pri-
vate vclures. 1f they are equal or if the
volume count is equal to one, no vclume
updating is required. 1f they are not
equal, the DSCB volume count will be

updated from the numker in the PVT. Volume

External Storage Allocation 49



IDs from the PVT will then be moved into
the format E DSCB. If more DSCBs are
required, the next DSCB in the chain will
be used. If there is no entry in the chain
field, subroutine 3 will be called to get a
new one. This will continue until all
volume IDs have been entered.

Following any vclume updating, WRITDSCB
will begin updating page entries in the
DSCB from the RESTBL, obtaining any addi-
tionally needed DSCBs as in the volume
updating procedure. Whenever a DSCB has
been filled and its chain field updated,
its checksum will be computed and stored
using subroutine 2. When all extents have
been moved into the DSCB chain, any
unfilled entry space in the last DSCB will
be set to zero and any unused DSCBs will be
released via RELEXPG.

Subroutine 1: This subroutine will read
in the page containing the indicated DSCB
and set the base register for that DSCB.
The checksum will then be tested and a
branch will be made accordingly to either
the normal or the error return.

Subroutine 2: This subroutine has two
entries. When the first entry is used,
DSETYP will be checked to see if this is a
format E DSCB. If it is not, DSETYP will
be set to indicate a fcrmat F DSCB. The
checksum value for the DSCB will then be
computed and rlaced in the checksum field
(DSECKS). When the second entry is used,
only the checksumming will ke done.

Subroutine 3: This subroutine will
search tne currently held DSCB page in
CzCOY for a usable DSCB slot. If one is
found, it will be assigned and the PAT
entry updated as necessary. If one is not
found, the PAT entry will ke set toc indi-
cate a full page and ALCDDSCB will be called
to furnish a new DSCB slot. The value
returned from ADDDSCE will be placed in the
chain field (DSECHN) of the previous DSCER,
that DSCB will be checksummed via Subrou-
tine 2, and the old DSCB page will be writ-
ten out. The new DSCB page, placed in
CZCOZ by ADDDSCB, will be transferred to
CZCOY.

VAMINIT (CZCEQ)

VAMINIT is a privileged, reentrant,
recursive routine residing in virtual
memory. This routine initializes private
VAM volumes when they are entered into the
system. (See Chart EO.)

non-—

Entry Point: CZCEQl via type I linkage.
Ingut: Register 1 contains the address of
the SDAT entry for the volume to be
initialized.

Cutprut: The takles associated with the
volume are updated.

Restriction: VAMINIT must not be invoked
for a rpuklic volume.

Modules Called:
SETXP (CEAH7) -- To read the PAT into vir-
tual storage.

GETMAIN (CZCGA2) -- To get the virtual
storage for the PAT.

CBTAIN (CZCFCl) -- To read the volume
label.

ABENL (CZACP)
terminal.

~-- Returns control tc the

Exits:
Normal - Register 15 contains 00.

Errocr - ABEND -- Routine was invoked for a
public volume.
ABEND -- Device code other than

2311 cr 2314.

Operation: VAMINIT is entered with Type 1
linkage and is passed the following
rarareter:

Address of SDAT entry

After a normal initializaticn procedure
(storing registers, setting up base regis-
ters, etc.), VAMINIT will check SCAT loca-
tion SCAPP to determine whether this is a
private or public volume. If public,
VAMINIT will invoke the ABEND procedure
with an appropriate error message.

If private, VAMINIT will have the voclume
lakel read into virtual memory by invoking
the OBTAIN routine. From informaticn in
the volume label VAMINIT will then enter
the volume ID and the PAT origin (PTC) in
the SDAT.

VAMINIT will then invoke the GETMAIN
routine to obtain virtual memory for the
page assignment takle (PAT). If the device
is a 2311, PAT will be one page in length;
if 2314, two pages in length. The PAT sum—
rary mask (PSM) in the SDAT is set up and
VAMINIT invokes the SETXP routine to read
in the PAT. After reading in the FPAT,
VAMINIT will set the VAM/SAM flag (SDAAM)
to 0 and set up the PAT Virtual Menory
address (PVMA).

VANINIT will verify that the PAT pages
read in by SETXP are valid. If they are
not valid, a message will be written to the
system log and to the user, and the invalid
FAT kit will ke set in the SDA.

VAMINIT will then return to the routine
which called it via Type 1 return linkage.



READWRIT (CZCEM)

READWRIT is a reentrant, nonrecursive,
privileged routine residing in virtual
sterage. It is used to read DSCB pages
into virtual storage or write DSCB or PAT
pages to external storage. (See Chart BFP.}

Entry Point: CZCEM1 - Normal entry via
Type I linkage.

Input: Register 1 contains the address of
the following parameter list:

Word 1 Address of the volume table or, if
none exists, of the haifword con-
taining the SLA number.

wWord 2 Address of a one-byte request
flag. The first half-byte is '0°*
to write a DSCRBR page, '4' tc read
a DSCB page or '8' to write the
PAT. The seccond half-byte is in
the following format:

bit 1 unused.

bit 2 = rarameter 1 has address
PVT.
parameter 1 has address

SDA no.

-0 O
[

o}
h

bit 3 = 0, slot no.
used.

= 1, slot no.

in parameter 3
ignored.

bit 4 = 0, address of JFCRBR in pa-
rameter 5.
= 1, parameter 5 contains
address of FQON or is
ignored.
WORD 3 Address of a one word pointer to
the LSCB or RVN in the following
format:
bits 0-3

DSCE slot number.

bits 4-15 Relative volume

numker.

bits 16-31 Relative page number.

For a write DSCB request, the
number will always ke ignored.
For a write PAT request, cnly the
relative volume field will be
used.

slot

Word 4 Address of a page boundary buffer
into or from which the DSCB page
will be read or written. Parame-
ters 4 and 5 are not required for
a write PAT request.

Word S Address of the JFCB or, 1f there
1is none, the address of the fully
qualified data set name (FQN).

Cutput: If the requested DSCB page is
found to have keen relocated, the new page
number will be used to update the DSCB
pointer supplied in parameter 3.

Assumptions: It is assumed that the device
tc be read from or written to has teen
locked, 1f necessary, prior to the call to
READWRIT. No device locks will be set or
reset within READWRIT. BHBowever, if the re-
quest 1is to write to a public device, a
check will be made to be sure the device
has keen locked ky this task.

Modules Called:
SETXP (SVC 2u44) --

To read DSCB pages.

PGOUT (SVC 2u42) -- To write DSCB and PAT

rages.

Exits:

Normal - Register 15 contains 00.

Error - Register 15 may be set to one of

the following return codes:

04 Indicated volume beyond PVT
limit.

08 JFCB and RESTBL DSCB pointers
disagree.

0C Relocation entry cannot be
found.

10 Pointer indicates a non-DSCB
page.

14 Checksum error on indicated
DSCB slot.

18 Data set names disagree.

1C Unable to write PAT.

20 Unable to write DSCB page.

24 Device not locked by this task
for a write operation.

28 Page number beyond device
limits.

2C Invalid buffer area address.

Cperation: 1If the PVT address is given,
the input RVN is checked to see that it is
within PVT limits and the SDA number
obtained from the proper PVT entry. The
5DA nurkber is then used to compute the SDAT
entry address. I1f the request is to write
the PAT, control passes to the write PAT
subroutine.

Otherwise, the address of the buffer
area (parameter 4) 1is checked to ke sure it
is non-zero and on a page boundary. The
rage nurker to ke read or written is
checked against the limits for that device.
If the JFCB has been supplied (in parameter
5), and 1f a RESTBL exists for this data
set, the DSCB pointers in the JFCB and
RESTBL are compared tc be sure they agree.
The PAT entry is then checked to see that
it indicates a DSCB page. 1f the entry is

*CO0', READWKIT scans the PAT relocation
entries to find the correct page. 1If the
request is to write the DSCB page, contrcl

Secticn 2: External Storage Allocaticn 51



is passed to the write sukroutine. If not,
the DSCRBR page is read in. If the slot num-
ber has been specified, the checksum is
computed and compared and, if this is a
completed format *‘E' DSCB, the data set
name 1s compared to that in the JFCB or the
FUN supplied in parameter 5.

READWRIT then returns control tc the
routine which called it via type I return
linkage.

Write DSCB Subroutine: If the device to
ke written to is pubklic, the SLCAT entry 15
checked to see that it has been locked by
this task. 7The page is then written out
+ia PGCUT.

Write PAT Subroutine: If the device is
gublic the SLCAT entry is checked to ke sure
the device was locked Ly this task. The
PAT page number is obtained from the SDAT
and compared with the page limits for this
device. The PGOUT parameter list is then
filled in from the SDAT and the PAT pages
written.

Any error found results in a diagnostic

ressage to the operator and a nonzero
return code to the caller. (See Exits.)

LSA LOCK (CZCEJ)

ESA LOCK is a reentrant, nonrecursive,
privileged routine residing in virtual
storage. It is called to set and clear
virtual memory locks and tc record the task
and module which applied the lock. C2ZCEJ
is called for the SDAPLO lock by all rou-
tines reading and writing DSCB and PAT
pages. (See Chart BQ.)

Entry Points:

CZCEJ1 -- to set lock.

CZCEJ2 -- to clear lock.

CZCEJ3 -- ABEND reset of locks.

Input: Kegister 1 points to the following

parameter 1list:
word 1 Address of a rparameter word for-
matted as follows:

byte 1 - Type code. (X'01' for
the SDAPLGC lock.)

byte 2 - wWait count. This speci-
fies the numker of
TSEND's to wait for the
lock to ke released.
When the lock cannot be
set in the requested
time, control is returned
tc the caller with return
code set to X*04°.

52

byte 3 - Lock code. If this Lyte
is set to X*80', the cal-
ling task is allowed tc
lock more than two PATs.

byte 4 - Reserved

word 2 Address of the SDAT entry.
Cutput: Lock processing will be performed

as requested.

Modules Called:

PAIR (CZACS) -- To put an entry in the AIR
takle.

SYSER {(CEAIS) -- Minor system error.
Exits:

Normal - Return to calling routine with re-
gister 15 set to 00.

Error - Return to calling routine with
return code 04; lock could not be
set in limited attempts requested.

Creration: The type code is first edited
to determine the type of lock to be set.
Currently any code but X'01' (SDAPLO lock)
will cause a SYSER. PAIR is then called to
put the address cf the ABEND reset routine
(CZCEJ3) into the AIR table. Entry is then
nade to the apgpropriate lock set or lock
reset routine.

The lcck set routine first determines
whether the lock is already set. If set by
this task it returns control to the calling
routine with return code of 00. If set Ly
another task it forces time slice ends
until the lock is cleared or until the
maximun number of TSEND's specified bky the
walit count parameter is reached. 1In the
latter case, it exits to the calling rou-
tine with return code 04.

If the lock is clear, the lock set rou-
tine determines whether this task is
aliowed to lock more than two PATs. If so,
the lock is set; the task 1D and PSECT
address cf the routine setting the lock are
recorded in the SDAT and control is
returned to the calling routine with return
code 00. If the task is not allowed to set
more than two FATs, the lock set routine
determines whether the task already has the
maximum number of locks allowed (currently
two for SLCAPLO). If so, SYSER is called.
If not, the lock is set; the task ID and
PSECT address cof the routine setting the
lock are recorded in the SDAT and control
is returned to the calling routine with
return code 00.

The lock reset routine first determines
whether the lock was set by this task. If
not, SYSER is called. It then checks if it
was set Ly this module. If not, it returns



control to the caller with return ccde 00,
but does not reset the lock. If locked by
this module, the lock reset routine clears
the lock task ID and PSECT address and
returns control to the caller with return
code (0.

The ABEND reset routine is called by
ABEND to clear all locks set by the task if
an abnormal terminate Lbecomes necessary.

Section 2:

External Storage Allocaticn

53



SECTION 3: DEVICE MANAGEMENT

Device management allocates, mounts, and
releases private devices used by all tasks
except the BULKIO task. Devices required
by the BULKIO task are allocated by BULKIO;
MTREQ is called only to update tables in
this case. At system startup, each device
attached to the time sharing cystem is
designated as either public or private.
Public (system) devices are assumed to be
permanently mounted. TDevice management
also restricts tasks to the limits allowed
for private devices, and maintains charges
for their use.

Five routines make up device management
as follows:

MTREQ - allocates devices, restricts tasks
to preestablished resource limits, and
starts charges for private devices.

PAUSE - issues mount requests to the opera-
tor and awaits his response and validates
the suitability of the mounted volume.

RELEAS - releases a device that has Lteen
allocated, services requests for devices
enqueued on the request gueue, and updates
and/or stops charges.

BUMP - called to mount subsequent volumes
of a multi~-volume SAM data set.

MOUNTVOL - initializes, tuilds the PVT for,
and calls MTREQ to mount, all volumes of a
VAM rrivate data set.

GENERAL OPERATION

For a conversational task, the DDEF com-
mand routine will call MTREQ each time a
rrivate device is requested for non-VaM
data sets. If a private device 1is
requested for a VAM data set, the DDEF com-
mand routine will invoke MOUNTVOL to
initialize the PVT. MOUNTVOL will call
MTREQ and return control to the LCDEF com-
mand routine. If the USER's ration allows
the allocation, MTREQ first checks to see
if a device of the required type is avail-
able and whether or not the desired volume
is already mounted. If the device and
volume are ready, allocation is carried out
at once. If a device is available but the
required volume is not mounted, MTREQ calls
the PAUSE routine to issue a mount request
to the operator. Allocation is completed
as soon as the operator indicates that
mounting was done. Finally, if the USER's
ration allows, and a device of the reguired
type 1is not available, MTREC places an

54

entry in the request queue table. This
takle is scanned by the RELEAS routine each
time it releases a device, to see if the
just-released device has been requested.

If requested, it allocates the device and
rasses to MTRE(C for table updates.

Note that every task needing a private
device has its own copy of the MTREQ rou-
tine. 1If that routine finds a requested
private device unavailable, it adds a re-
quest to the request queue table, which is
shared by all tasks, and then puts itself
and its task into wait status. When the
RELEAS rcutine corerates, it scans the re-
quest queue and interrupts the first task
awaiting the just-released device according
to a three level priority; SDA requests
first, conversational requests second, and
all cther requests in the third level.

Device management operations for a non-
conversational task are similar except that
every private device required by the task
must be allocated kefore the task is
allowed to proceed. Tc do this, device
management performs in two phases. 1In the
first phase, the SECURE command routine
(resgonding tc a SECURE command) calls
MTREQ tc allocate every rrivate device
needed ky the task. Only when the alloca-
tion is conplete does the nonconversational
task start executicn; until then, the task
is suspended. In the second phase, when
the nonconversational task is executing,
the LCLDEF corrmand routine calls MTREQ or
MOUNTVOL for each private device request,
asking that the desired device and volume
ke allcocated from the set of devices
secured for the task. On each call, MTREQ
makes an allocation from the set cf grivate
devices it has secured for that task. This
continues until the nonconversaticnal task
terminates. During the second phase MTREQ
will determine if the volume is mcunted
elsewhere, and if so, will exchange the
reservation for the device on which the
volume is mounted.

MIRELC handles the mounting of VAM
volumes or the mounting of an initial SAM
volume, as well as the allocation of unit-
record devices. Mounting of subsequent
volures of a multi-volume SAM data set is
the function of the BUMP routine. EUMP
calls PAUSE to ask the operator to dismount
the currently mounted volume and replace it
with the next volure. Only one device is
assigned toc a SAM data set, since only cne
volume is mounted at a time.



The general flow of device management is
illustrated in Figure 5.

MOUNTVOL Routine (CZCAM)

MOUNTVOL is a reentrant, nonrecursive,
privileged routine which resides in virtual
storage. This routine will mount and
initialize all volumes of a VAM private
data set and build for it a Frivate Volume
Table to be in the same format as a Public
volume Table. (See Chart CE.)

Entry Point: CZCAM1 via type I linkage.

Input: Register 1 contains a pointer to
the parameter list:

Word 1 Pointer toc JFCB

word 2 pPointer to DSD (optional)

word 3 Pointer to a fullword return area
Qutput: Register 1 contains a pointer to

the input parameter list. A pointer to the
PVT is placed in the third input parameter
word.

[ MTREQ
N

Task Y

|
Check to see |
if device is |

available |
J
/}\ |
e ~. i
/"/ ~, No | Put reguest in
(/\ Available ///: — '.’ Request Queue
~ /
S~ l
/}\ Yes
1
— | JEE B
PAUSE

| i Enter Wait "‘;
e (g

i Ask operator to
| mount device

— -L«; N L
Return J o
/

. y -

Ask operator

to mount next
volume

( CEnter O\

\ BUMP J

N — ,,L.-
For subsequent volumes of o RETURN /\

multivolume SAM data set

Figure 5.

Restrictions:

This routine can be used
only on PAT formatted private volures.

Modules Called:

MTREQ (CZCAA) -- To mount all volumes 1in
the JFCB.
VAMINIT (CZCEQ) -- To initialize the SDAT

entry of a mounted VAM volume.

LOCATE (CZCFL) -- To retrieve the DSD of a
data set if one was not provided as an
input parameter.

SETXP (SVC 244) -- To prepare to read an
external page into virtual storage.

GETMAIN (CZCGA) -- To obtain space for the
FVT and the JFCB volume field extensions.

SYSER (SVC 228)
al storage dump.

SECURE To allocate the devices needed
for the task, if BULKIO.

READWRIT (CZCEM) -- To read DSCBE rages and
to write PAT pages.

RELEASE

-- To provide a full virtu-

Search
Request
Queue

b}

l 1 TN
| Yes -7 This
|

Interrupt
device needed

waiting task

|

L N
; No

Y, Indicate

R
Q 1

« ——

 MOUNTVOL |

available
e

device is

1 -
MTREQ S
o "/ Return 3
Mount ! I N H)
]

Volume }

i
initialize | P ——

| and Build L__{ Return w
PVT Entry 1 /

S— —

General Diagram cf Device Management Operation

Section 3:

Device Management 55



rxits:
Normal - Register 15 contains 00.
Error - Register 15 contains cne of the

following return codes:

ou Not a VAM data set.

08 Not a private data set.

0c DSD not found by LOCATE, or
unmounted volume returned
from MTREC.

10 Non-zero return code returned
from MTREQ or LCCATE.
14 More than three volumes in

JFCB appendage.

Operation: Upon entry the JFCB field,
IDTDSV, is checked for data set organiza-
tion. If other than VAM crganization, a
return to the caller is mwade with a code of
*04'. MOUNTVOL assumes it will only be
called for private data sets.

If a RESTBL is indicated by the JFCB and
a PVT is indicated by RESTBL field RBDVTA,
the PVT pointer is placed in the return pa-
rameter list and a return is made to the
caller with a code of '00°'.

The disposition field, TDTDSP, is
examined. If zero, the data set 1is 'new';
if non-zerc, the data set is 'old'. In
either case, if the task is BULKIO, SECURE
is called to allocate the devices needed
for the task.

For new data sets, MTRE( is called to
mount all volumes indicated bty the JFCB
volume fields. If a non-zero return code
is received from MTREQ, a call tc RELEAS is
issued if one or more of the vclumes in the
JrCB is mounted. Control is returned to
the calling routine with a return code of
'10*. On a zero return from MTREQ, PVT
size is calculated and GETMAIN is called to
acquire the PVT space. The volume count is
rlaced in the PVT header. A loop is set up
to initialize each volume entry, build the
PVT entries, and set the flag field if the
PAT table indicates that relocated PAT
pages exist. All assigned pages which are
not in use are set to available in the PAT.
VAMINIT is called to initialize each
volume. After the volume is initialized,
the SDAT entry is used to kuild the PVT
entry (VSN, dev code, and SDA). The crder-
ing of the volume entries in the JFCB is
the ordering of the entries in the PVT.
While scanning the JFCB volume fields if an
unmounted volume or different number of
volumes than the JFCB volume count are
found, a SYSER {(minor software) occurs and
a call to RELEAS is issued for all the
mounted volumes followed by a return to the
calling routine with a return code of 'i0°*.
After the PVT is built, a pointer to it 1is
placed in the return parameter list and a

56

return is made to the caller with a code of
*go°r.

For an old data set, MOUNTVOL will first
check the JFCB to determine whether the
user specified any volumes in his DDEF. 1If
he did, the volume IDs are moved intc a
save area to be examined later for duplica-
tion or addition.

The parameter list DSD pointer is
examined; if zero, LOCATE is called to
return the DSD of the data set. If a non-
zero return code or other than a DSD is
returned by LOCATE, SYSER (minor software)
1s invcked and a return is made to the
caller with a code of '0cC".

Once the LSLE is located, the JFCB volume
count 1s set initially to one, and the
first JFCB volume field is set up with the
DSD volume ID. Task Common is checked to
see if the BULKIO flag is set; if it is,
MTRE¢ must be called with an SDA request,
using the SDA which will be in the JFCB, to
mount the first volume cf the data set. 1If
the BULKIO flag is not set, MTREQ will be
called with the usual JFCB request to mount
that volume. If a non-zero code is
returned, a call to RELEAS is issued if one
cr more of the volumes in the JFCB is
mounted. Control is returned to the cal-
ling routine with a return code of "10°.

If the vcoclume was already mounted and SDAP-
VMA has been initialized, the call tc
VAMINIT will ke kypassed; if not, VAMINIT
is called to initialize the first vclume.

A durmy cne-entry PVT is built using this
volume and the PVTFLG is set to '80°' if the
PAT takle indicates any relocated pages.
The REALDSCB subroutine is called to read
the 'E' LSCB pointer from the DSD using the
VAM workpage (CZCOY) for the DSCB fpage.

The volume count in the 'E' DSCB is
examined. If the count is zero, the data
set resides on only one volume which is
already mounted. If no additional volumes
were specified in the JFCB, GETMAIN is
called tc get 32 bytes for a one-entry PVT.
The PVT is built from the previously built
dummy PVT, the pointer is placed in the
return parameter list, and a return is made
to the caller with a code of '00°'.

If the DSCB volume count is greater than
one, the DSCB string contains a volume
entry for each volume of the data set -
including the first volume. The volume
count plus one, times sixteen, is used tc
calculate the space required for the PVT.
GETMAIN is called to acquire the PVT space.
The volume entries of the first DSCB are
transferred to the JFCB volume fields.
GETMAIN is called to acquire all the srace
needed for the JFCB volume field appendages
(numkber of volumes divided by 3 and multi-
rlied by 32). Then, as each 32-byte ap-



pendage is needed, it is taken from this
area. When all volume entxies of the DSCB
are transferred to the JFCB voiurme fields,
MTREQ is called with a request to mount all
volumes just entered. If a non-zero return
code is returned by MIREyg, & <~all to RELEAS
is issued if one or more of the volumes 1in
the JFCB is mounted. Control 1s returned
to the calling routine with « retuvrn code
of *10'. Otherwise a 100y 15 set 2p to
call VAMINIT to initialize each volume,
build the PVT entry trom the sorresponding
SDAT entry, and to exanine the PAT table
for relocated entries, s:tting PVTFLG to
'80' if any are found. Ali assigned pages
which are not in use are set available in
the PAT. A SYSER (mincr software) is
invoked if a null field, unmounted volume,
or more than three volume fields are dis-
covered in a JFCB appendage. A return code
of "10' is issued for the firsr two condi-
tions and '14' for the third.

After all volumes are initialized, a
check 1s made to determine 1f iLhere are
data set volumes that have not yet been
mounted. If unmounted volumes remain,
another DSCB must be read to obktain the
next volume fields. 1f the "next"™ DSCB
pointer is zero, a SYSER (minor software)
and an ABEND (comp code 1) are invoked.
Otherwise the READDSCP subrcutine is
entered to read the next DSCB (if neces-
sary). A branch is made to the previously
described code to process the volume
entries in this DSCB. D[LSCREs are read until
all volumes of the data set have been pro-
cessed and the PVT has been built.

Once this has been accomplished,
MOUNTVOL will check to see if any volumes
had been specified in the JFCB. If not,
the PVT pointer is moved to the return pa-
rameter list and a return 1is made to the
caller with a code of '00°'. If there were
volumes specified, the volume serial num-
bers in the JFCB will be compared to those
from the DSCB(s). If the serial numbers do
not compare, they will be placed in the
JFCB in the sequence defined by the user,
sut immediately following those placed
there from the DSCB(s). If the volume
serial numbers do compare, they will be
ignored. The new volumes are then mounted,
initialized, and entered into the end of
the PVT via normal processing; return is
made to the caller with a code of *00' and
the PVT pointer in the third input parame-
texr word.

MOUNTVOL also contains the READDSCB sub-
routine that is branched to when a DSCB is
to be read. The READDSCB subroutine 1is
entered with register 1 pointing to the
DSCB to be read, and a word at location
MNTDSCB that points to an aligned page of
virtual storage (a page-boundary buffer)
into which the DSCB page is to be read.

READDSCB stores the DSCB address for the
READWRIT routine (CZCEM) and then puts the
address cf the page-boundary buffer into
the parameter list for READWRIT. READDSCB
assumes that the address of the JFCRBR is
already in the parameter list. READDSCB
then calls READWRIT to read in the DSCB
rage.

When RFADWRIT returns to REALCDSCB, the
return code in register 15 is checked. If
the return code is zero {good), REARDLSCR
calculates the address of the format E DSCB
and puts it into register 6. READDSCB then
branches back to MOUNTVOL with register 6
pointing to the requested DSCB. If, ugon
return from READWRIT, READDSCB finds a non-
zero return code in register 15, the return
code is saved and then examined to see if
it indicates a DSCR checksum error. If it
does, REALLSCB issues the following
ressaqge:

CHECKSUM DID NOT COMPARE UPON REALCDSCB.

READDSCEB then sets a return code to indic-
ate a bhad return from READWRIT and checks
to see if the volume has already been
mounted. If it has, then READDSCB calls
RELEAS (CZCAD) to release the volume. Upon
return from RELEAS, READDSCB returns to
MOUNTVOL with the return coce (F'28°) indi-
cating a bad return from READWRIT in
registexr 15.

MITRE¢ Routine (CZCAR)

MTREQ is a reenterable, recursive, pri-
vileged routine residing in virtual
storage, used to allocate unit-record
devices, and devices such as disk or tape
drives required for private volumes. For a
nonconversational task, the routine tries
to allocate every device needed for that
task. For a conversational task, it allo-
cates the requested device as soon as it
tecomes availakle. (See Chart CA.)

Entry Points: C2CAA1l - Type I linkage.
Entry is made under any of these
conditions:

1. During conversational task execution.

2. During nonconversational task
execution.

3. Prior to nonconversational task execu-
tion, that is, entry from the SECURE
conmand routine.

4. When a specific device, rather than a
type of device, is specified.

o

To exchange reservations when BUMP
discovers the volume requested is
presently mounted on another device
(Ncnconversational).

Section 3: Device Management 57



CZCAA3 - Entry at this point is for the
purpose of resetting lock bytes when a task
is abnormally ended or when SYSERR
080502509 occurs.

Input: On entry register 1 contains a
pointer to one of the following U4-word pa-
rameter lists:

Entry Point 1 (private devices)
Word 1 Number of parameters minus cone
Word 2 Pointer to a flag word

byte 0 - bit 0 - No msg to user
bit 1 - Mount all volumes

in JFCB

bit 2 - JFCB pointed to by
word 4

bit 3 - Dev Code pointed to by
word 4

bit 4 - SDA pointed to by
word 4

bit 5 - This is a reserve
request

bit 6 - Scratch volume

bit 7 - CE is caller
byte 1 - Tape density code
byte 2 - not used

byte 3 - bits 0-2 not used

bit 3 - label status
(unlabeled=1)

bit 4 - RING flag set
(RECOGNITION=1)

bit S5 - tape ring required
(RING=1)

bit 6 - ASCII reguest

bit 7 - do not verify vol-
ume label on call

to PAUSE
Word 3 Pointer to a volume serial field
or the number of device codes for
reserve requests
Word 4 Pointer to a JFCB, to a list of

device codes, or to an SDA

Parameters 3 and 4 may be repeated for
device code or SDA requests.

Modules Called:
MSGWR (CZAAD2) -- To issue messages to a
conversational user.

PAUSE (CZCAC1l) -- To issue volume mounting
messages to the operator.

AWAIT (CEAP7) —-- To place the task in wait
status.

GETMAIN (CZCGA2)
storage.

-- To obtain more virtual

58

FREEMAIN (CZCGA3) -- To release storage
obtained by GETMAIN.

RELEARS (CZCAD1l) -- To free any device that
has been reserved but could not be used
btecause of a non-zero return from PAUSE.

(CZcAD3) -- To update tables and/or
release devices.

ADDEV -- To add symbolic device address to
the Task Device List.

SETAE -- To set asynchronous entry for SaM
modules.
RMDEV -- To remove the symbolic device

address from the Task Device List.

PAIR (CZACS) -- To interface with the ABEND
routine for the release of SDAT locks.

PRMPT -- To inform the user that he has
attermpted to exceed his device ration.

Exits: The routine normally returns to the
caller, via the RETURN macro. If a minor
system error occurs, the routine exits to
ABEND. In the event that a major system
error occurs the routine calls SYSER.

MTREC checks for the following errors,
rlacing a hexadecimal code in register 15
before returning control to the caller:

Code Significance
00 No error detected
o4 Volume not found
08 User canceled request
0ocC Label error detected
i¢ Invalid device code or SDA
14 Private volume count exceeds limit
18 No room in request gueue
1c Noc reservation for this request
20 Volume requested is public
24 Volume-Id not found in SDAT
28 Flag incorrect in SDAT
2C Volume in use
30 Error return from MSGWR
34 SCA requested device detached, par-
titioned or system reserve
38 CE requested partitioned device
3C Ration exceeded
40 Non-zero return code from PAUSE

MTREQ also issues three messages to the
user:

D301 NO PRIVATE DEVICE AVAILABLE FOR
volume AT THIS TIME WILL YOU WAIT?
D302 PRIVATE VOLUME volume IS IN USE -

WILL YOU WAIT?

CZCAA100 devcie NOT AVAILABLE - YOUR
PRIVATE DEVICE RATION IS USEL
upP



OPERATION: For a conversational task,
MTREG allcocates requested devices one at a
time, as each becomes available. Alloca-
tion and volume mounting are done at once.

For a nonconversational task, MIREQ
actually operates twice. First it 1is
called by the SECURE command routine to
reserve, as a set, all devices needed by
the task. A nonconversational task cannot
start until all of its required devices
have been secured. Latexr it 1is called as
each DDEF command is executed. MOUNTVOL
calls MTREQ for VAM data sets, and it 1is
alsoc called if BUMP discovers the volume on
another device. In SECURE processing,
MTREQ reserves only private devices until
the entire set is available; unit-record
devices are reserved after all private
devices have been reserved for the task.

if the caller furnishes a symbolic
device address, and thus requests a speci-
fic device, that device will be allocated
as soon as it becomes available.

When MTREQ allocates a device, it flags
the symbolic device allocation table (SDAT)
entry for that device as unavailable. Next
it increments the TSI device queue, via
ADDEV. Finally it calls PAUSE to carry out
the volume mounting required.

When a required volume is mounted but
not yet available, or if no device of the
required type is available, or if the spec-
ific device requested is currently unavail-
able, MTREQ enqueues the request in the re-
quest queue (RQUE). A conversational user
will be asked at this point if he wants to
wait; he can cancel his request and end the
wait at any time simply Ly pressing the
ATTENTION key at his terminal. After queu-
ing the request, MTREQ places itself in
wait status which continues until RELEAS
operates, allocates the device, and inter-
rupts MTREQ. RELEAS will supply a pointer
to the SDAT entry of the just-released
device, and MTREQ then proceeds with its
customary takle and pcinter update
functions.

BUMP Routine (CZCAB)

BUMP is a reenterable, non-recursive,
privileged routine, residing in virtual
storage, used to dismount a specified pri-
vate volume and mount another private
volume on the same tape or disk drive. If
the second volume is already mounted,
device pointers are interchanged. The rou-
tine may be used just to reverify the lakel
of an already mounted tape volume. (See
Chart CD.)

Entry Point:
CZCAB1 - Type I linkage

CZCAB2 - Entry at this point is used to
reset lock bytes when a task is
abnormally ended.

Input: upon entry to this routine, regist-
er 1 points to the following parameter
list:

Word 1 Address of first JFCB
Word 2 Address of wolume serial field
Word 3 Address of second JFCB
Word 4 Address of second volume serial

field

Modules Called:
Vol Label Processor (CZCWX) -- To read
tape volume label for reverification.

PAUSE (CZICAC1l) -- To issue mounting message
to system operatcr and await operator
respcnse.

PAIR (CZACS) -- To provide for the release
ct SDAT locks when a task is abnormally
ended.

RELEAS (CZCADl) -- To release the original
device if an exchange is made for a conver-
saticnal task.

(CZAD3) -- Release for a nonconver-
sational task.

MTREQ (CZCBAl) -- To reclaim the released
device when an exchange is made for a non-
conversational task.

Exits: BUMP returns control to the calling
program, and sets a return code to show the
results of BUMP operation. If a system
error occurs, the routine is terminated Ly
ABENL.

Return Code

(Hexadecimal) Significance

00 Normal return; no errcr
detected.

oc Reverification found incor-
rect lakel.

10 01ld volume not mounted.

14 Device not available, that
is, another task is using
old volume.

18 Device codes differ but con-
catenation is not indicated.

ic Reverification requested for
a non-tape volure.

24 Device not tape or direct
access.

28 New volume has already been

mounted and is in use.
BUMP will also return any error code

received from the PAUSE routine. See the

Section 3: ©Device Management 59



description of PAUSE for that routine's
return codes.

Operation: BUMP begins Ly checking its
input parameters to see if reverification
is desired. This is indicated if the para-
neters (JFCB pointer and volume serial
field) for both o0ld and new volumes are the
same. In this case, only a tape label
check is made. BUMP sets a return code to
show the result of the check before return-
ing control to the calling program.

When a dismount/mount operation is
requested, BUMP checks that the old volume
is mounted, that the new volume is not
mounted, and that the specified device is
available. A comparison of the device
codes for the two volumes decides the next
action. If the volume is presently on
another device, the pointers are exchanged.

If the device codes are the same (i.e.,
the new volume is to ke mounted on the
device used for the old volume), the rou-
tine builds a message to the system opera-
tor, asking him to mount the appropriate
volume. BUMP then calls the PAUSE routine
to transmit the message and wait for the
cperator's regply. If PAUSE reports a suc-
cessful mount, BUMP updates the SDAT (sym-
bolic device allccation takle) entry for
the device and adjusts the JFCBs to indi-
cate that the old volume has been dis-
mounted and the new volure mounted.

If the device codes differ and conca-
tenation is sgpecified, BUMP will try to
mount the next volume in the concatenation
that uses the same type cf device. To do
this, BUMP searches the concatenated JFCBs
to find the next one with the same device
code as the ©ld volume. The JFCB and
volume serial field of this volume are then
accepted as the new volume parameters. The
remainder of BUMP processing is the same as
for volumes with identical device codes.

RELEAS Routine (CZCAD)

RELEAS is a reenterable, non-recursive,
privileged routine residing in virtual
storage, used to decrement the user count
or, if the user count reaches zeroc, to
release either a single device or all
devices associated with a private data set.
Release means to inform the system that the
device upon which a private volume was
mounted is now free for other use. The
routine also notifies any task(s) awaiting
the freed device(s) that the devicel(s) is
now available. (See Chart CC.)

Entry Point:
CZCAD1 - To update the user count and/or

release devices, and to calculate charges
against a task for device utilization.

60

CZCAD2 - To reset lock bytes when a task is
abnormally ended.

CZCAL3 - Same as CZCAD]1 with no charges
calculated.

Input: Register 1 contains a pointer to
the parameter list:

Word 1 Pointer to a flag byte which con-
tains one of the following:
X'80' JFCB pointer is given
X*00* SDAT pointer is given
X*'40" SDAT pointer is given and
drive is to be completely
released.
Word 2 Pointer toc a JFCB or SDAT entry

Modules Called:
VSENL (CEAQS) -- To send message to task
that was awaiting just-released device.

PAIR (CZACS1l) -- To provide for the release
cf SDAT locks when a task is abnormally
ended.

SETAE -- Toc set asynchronous entry.

PURGE -- To remove a device from a task's
list of available devices.

Exits: RELEAS always returns contrcl to
the calling program, setting a return code
to show the results of the RELEAS
operation:

Return Code Significance

X'00" No error was detected.

X'o4! Release was for a public
device; request was ignored.

x'oc* Release was for device not
assigned to this task; request
was ignored.

Cperaticn: RELEAS first inspects the input

parareter list to see if an SDAT or a JFCB
pointer was supplied. The parameter list
consists of a pointer to a flag byte and a
peinter to an SDAT entry or a JFCB (which
resides in the task data definition takle).
An SLCAT pointer is given when just one
device is to be released. A JFCB gointer
1s given to release more than one device.
The flag byte equal to *80' implies that
the second pointer is to a JFCB.

When the pointer is to an SDAT entry,
RELEAS reduces ky one the user count in
that entry. When the pointer is tc a JFCB,
the routine scans the volume serial numbers
in that JFCB to see if any volumes are
mounted. For each volume that is mounted,
RELEAS reduces Lky one the user count in the
corresponding SDAT entry, resets the



volume-Id field in the JFCB to the volume
serial number, and zercs the vclume mounted
flag.

If the user count is now non—-z€xro, NO
further action is taken. If an SLCAT re-~
quest, RELEAS merely returns to the calling
program. If a JFCB request, the routine
looks for the next mounted volume.

If the user count is zero, a PURGE is
done to remove the device from the task's
list of available devices. Then, if the
release is being done duiring a nonconversa-
tional task, no further action is taken.
Otherwise, the device is now free, and
RELEAS searches the request queue for a re-
quest involving the device type just
released. Priority is given to requests in
this order:

1. Reguest for a specific device, by sym-
bolic device address

2. Request from a conversational task
3. Any other kind of request

When a request can ke filled, RELEAS
sends a message to interrupt the task that
made the request and sugplies the appropri-
ate SDAT pointer. Whether or not there is
a request for the just-released device,
RELEAS flags the SDAT entry for that device
to show its availability.

PAUSE Routine (CZCAC)

PAUSE is a reenterable, non-recursive,
privileged routine residing in virtual
storage, used to send mount request mes-
sages to the system operator, asking him to
mount volumes. It also verifies the opera-
tor's reply and, for tape or direct access,
checks the label of the newly mounted
volume. (See Chart CB.)

Entry Peint:
CZCAC1 - Type I linkage.

CZCAC2 -~ Entry at this point is used to
reset lock bytes when a task is abnormally
ended.

Input: Upon entry to PAUSE, register 1
contains a pointer to a parameter list:
Word 1 Flagword address
The flagword is formatted as
follows:
Bits 0-7 unused
Bit 8 volume verification
Bit 9 tape volume
Bit 10 scratch volume
Bit 11 unlabelled volume
Bit 12 no message to user
Bit 13 SAM volume
Bit 14 ASCII

Bit 15 unused
Bits 16-23 tape density
Bit 24 tape ring required
Bit 25 RING flag set
Bit 26 remount volume
Bit 27 reverify volume
Bits 28-31 unused
Word 2 SpAT entry address
¥odules Called:
MSGWR {CZAAD) -- To issue messages to a
conversaticnal user.

SAM Vol Label Rdr (CZCWX3
unload a tape volume.

-- To rewind and

VSENLC (CEAQS) -- To send a message to the
operator.

AWAIT (CEAP?) -- To place the task in wait
status.

OBTAIN (CZCFQ) -- To read a volume lakel

and to read the VTOC DSCB or SAM corganized
volumes.

PAIR (CZACS) -- To provide for the release
of SDAT locks when a task is abnormally
ended.

ESAM REAL/WRITE (CZCRA) -- To read a tape
header label.

Tape Volume Label Reader (CZCWX)
tare volume lakels.

-- To read

Exits: PAUSE always returns control to its
caller, rplacing a hexadecimal code in
register 15 to show the results of fprocess-

ing. The codes are as follows:
Code Sigrificance
00 Nc error detected.
0y Operator has made a negative reply,
indicating he could not perform
rount request.
08 Attrention interrupt or notice of
shutdown received.
0c Latel error or read error detected.

Operation: For a conversational task the
routine pext issues a message (via MSGWR)
to inform the user that his task is now
waiting operator action.

The mount request message, built ky
PAUSE, is sent to the operator via WTOR.

When PAUSE regains control, it checks
first to see if an attention has occurred;
1f so it merely returns control to its
caller after setting an appropriate return
code. The action taken depends on the re-
quest. PAUSE now informs the user (gro-

Section 3: Device Management 61



vided he is cenversationai) that his task
ie no longexr waiting, and returns control
tc the caller.

Whep verification has bheen stipulated,
PAUSE proceeds according to the type of
volume involved. The volume identification
supplied by the caller (or by the operator,
if a scratch volume) is compared against
the actual volume label. For a disk, the
routine copies the volumwe lakel. Some of
the information frow the volume label 1s
used to update the SDAT entries designated
by the caller. On SAM organized packs the
volume lakel contains a pointex to the VTOC
DSCB, which PAUSE calls OBTAIN to read.
Some of the device constants and space
information contained in the DSCB are also
used to update the SDAT entry.

The density at which a new or existing
tape is to be processed is always deter-
mined at mount time. The PAUSE routine
uses the density specified in a newly
defined field in SDAT (SDADN) for its label
processing.

For lakeled tapes, PARUSE attempts to
read the volume label at the density speci-
fied in SDADN. If the lakel 1is not read-
able at the density specified in SDAT or if
the label could not ke read, a check is
made to see if a scratch tape or user targpe
was requested. 1If a scratch tape was
requested, the operator is instructed to
mount another tape with the correct densi-
ty. If a user tape was requested, PRUSE
returns a "label error" return code (X*0C")
to the calling routine. OCnce the volume
label has been read successfully, an
attempt is made to read header label 2, if
any, at the density specified in SDADN. If
there are header labels and the density
specified in the header lakel does not
agree with the density specified in SDAT or
if the label cculd not be read, the same
processing as for the vclume label verifi-
cation is performed. If there are no head-
er labels and the volune label is read
correctly, the density in SDAT 1is consi-
dered correct. The tape is always backs-
paced to its original position following
the volume label, and processing continues.

If an unlakeled tape was requested,
PAUSE attempts to read the volume label at
all densities in order to verify that a
label does not exist. If a label was found
on a SCRATCH tape that was requested with
no labels, the operator is asked to mount
another tape. If a lakel was found on a
user tape defined as unlabeled, PRUSE
returns a "label error” return code (X'0C')
to the calling routine. Note that the sys-
tem cannot protect against the user speci-
fying the wrong density for unlabeled,
uncataloged user tapes.

62

kPor SCRATCH tapes only, PAUSE checks the
expiration date in the first header lakel 1
on the tape to determine if the expiration
date has been exceeded. The current date
is ottained by use of the EBCDTIME macro
instruction. If the header label 1 was
rraperly read and the expiration date has
keen reached, or if the header label 1 did
nct exist or could not ke read, the tape is
bEackspaced to its original position follow-—
ing the volume label, and processing
continues.

1f the expiration date was not reached,
a4 message is sent to the operator stating
"EXPIRATION DATE NOT REACHED, (original
mount ressage inserted here), OR REWRITE
THIS TAPE BY REPLYING R.™ If the operator
respends to rewrite the tape, a new expira-
ticon date is assigned and recorded in head-
er label 1.

When the PAUSE routine requests the
operator to mount a SCRATCH volume (lakeled
cr unlakeled), it expects the cperator to
respond with the volume serial numker cof
the volume mounted. If the volume is
labeled and the operator's response does
not match the volume serial number in the
label, the operator is told to mount a new
volure. If the operator's response is
correct, the volume serial number is placed
in SCAT. If the volume is not labeled the
volume serial number supplied by the cpera-
tor is placed in SDAT.

The PRUSE routine issues the following
messages to inform the user of task
Erocessing: :

BO75 WAITING: YOUR VOLUME IS BEING
MOUNTED

B0O76 VOLUME MOUNTED

E077 VOLUME SERIAL NUMBER number HAS BEEN

ASSIGNED TC YOU

Fer a scratch volume that is not identi-
fied by the operator, the routine sends a
request to the operator to provide the mis-
sing volume identification. When a volurxe
cannct ke verified, the operator will be
prompted to inform him of the error. The
nurnkber of times the operator message is
issued depends on the limit set in systemnm
conmen by the installation. The message is:

ENTER SERIAL NO.
device address).

OF VOL. ON {symbolic

Cther messages sent to the operatcr by
the PAUSE routine are:

REALD ERRCR ON (symkolic device address).
CORRECT IF POCSSIBLE.

VOL. LABEL ERROR ON (symbclic device
address) .




Virtual Memory Allocation (VMA) provides
a centralized routine for dynarically serv-
icing all requests for virtual storage
issued by the system or user's grograms
during the execution of a task. VMA deter-
mines if a request for virtual stcrage
should be packed or placed in a unique seg-
ment, starting on a segment boundary. The
general allocation requirements are for
segmentation on a 32-bit system, and for
packing on the 24-bit system. However,
there is no firm division ketween the two
systems, regarding the method of allocation
used. Sharable data sets will always be
located on segment boundaries, and private
PSECTS will always be packed regardless of
system type. In order that installations
may choose other than the basic philosophy,
and may arbitrarily allocate on segment or
rage boundaries, VMA is designed to allow
implementation of either form of allocation
on either system.

To provide VMA with this facility, the
following parameters are presented to the
system and are interrogated by VMA in the
course of determining the pages to ke
allocated:

e System Packing Parameter: an indica-
tion of whether or not private control
sections and private data sets should
be packed.

» Public Segment Indicator: an indica-
tion of whether a gpuklic segment is
being used.

e System Indicator: an indication of
whether the system has 16 (24-bit
addressing) or 4096 (32-bit addressing)
segments.

e Virtual Storage Pointer: the virtual
storage address at which packing can
begin.

e Variable Length Indicator: 1Indicates
variable or nonvariakle allocation for
next segment informaticn.

¢ Next Available Segment Pointer: the
virtual storage address of the next
full segment available for allocation.

» Public Segment Number: the shared page
table number of the public segment, if
a puklic segment exists.

e Variable Allocation Parameters: the
number of pages that must be added to

SECTION 4: VIRTUAL MEMORY AILLOCATION

the number of pages in a variable
reguest.

These parameters, initialized in the
System Table (SYS) or in the Interrurt
Storage Area (ISA) -- page 0, segment 0 —-
are copied into the PSECT of VMA the first
time VMA is entered. In order to alter the
basic algorithm to meet the need of a par-
ticular allocation, the GETMAIN macrc may
specify parameters which override, for that
allocation, those which Startup presented
to the system. The standard method of
allocation is shown in Figure 6.

T 1
| TYPE OF DATA NON-PACKED |

| I
| |
| | PACKEL ) |
T o e 11
| | Private | Packed | Private (|
| | CSECT | Private | Segment 1
[ | Segment | I
| b B e 11
| | Puklic | Packed | Shared |1
| | CSECT | Public | Segment (|
{1 | Segment | |
I R i - 11
[ PSECTS | Packed | Packed [
|| | Private | Private (]
[ | Segment | Segment (|
I - - 1|
| | Private VAM | Packed | Private I
| | Data Set | Private | Segmrent |1
| | (RESTBL) | Segment | 1
I it Fom e 1|
| | Public VAM | Shared | Shared I
| | Data Set | Segment | Segment 11
| | (RESTBL) | | ||
| b Lo S T
| |
|Definitions: |
{Packed - Allocate on page boundary. |
I

|Private - Pages Takles are in the task® E
| XTSI and are available only to |
| this task. |
{ |
| Puklic - Page Table is in real ccre and |
| is pointed to by a segment |
| table entry for all tasks wish-|
| ing to reference it. Facked by]
| page toundary. |
|

|Shared - Page Takle exists in real core {
| and is pointed to by a segment |
| table entry fcr all tasks who o |
| wish to reterence it. 2lloca- |
| tion is on a segment lkoundary. |
e e e e e
Figure 6. Standerd (Cefcult) Viritunl

Merory Allocation

Section B: Virtuol docory sllocation 63



VMA has two primary functions. It con-
trols the allocation of virtual storage and
it controls the construction of segment and
page tables by issuing the approgpriate
$SVCs. The various control fields in the
VMA PSECT provide a virtual storage picture
of various aspects of the task's segment
and page tables. On examining tne nature
of a request for virtual storage alloca-
tion, VMA (either private or shared) will
examine its parameters under various
algorithms, select the proper address for
the allocation, update its parameters, and
issue the appropriate SVC for updating the
segment and page tables.

There are six entry points to Virtual
Memory Alloccation:

e GETMAIN (CZCGA2) - Get virtual storage
ky pages

s FREEMAIN (CZCGA3) - free virtual
storage by pages

e EXPAND (CZCGAU4)* - Expand an existing
block of wvirtual storage

e GETSMAIN (CZCGA6)* - Get shared virtual

storage

s CONNECT (CZCGA7)* - Connect to a shared
page table

¢ DISCONNECT (CZCGA8)* - Disconnect from
a shared page tabkle

Note: Entry points marked * are available
to privileged programs only.

Input and output parameters are dis-
cussed in the descriptiocons of the various
sukroutines.

VMA -- Virtual Memory Allocation (CZCGA)

The Virtual Memory Allocaticn Routine 1is
a closed, re—-enterakle, privileged service
routine located in the task's initial vir-
tual storage. It is called via Type I or
Type II1 linkage depending on the privilege
class of the user. The primary functions
of the module are to control the allocation
of virtual storage, and to contrcl the con-
struction of segment and page tables by
issuing the required SVCs. VMA is used by
system routines that require storage space
for a user's task as well as by user's
programs.

Task interrupts (synchronous 1I/0, asyn-
chronous 1I/0, external, timer) are inhibi-
ted on entry by use of an ITI (inhibit task
interrupt) macro. The mask field is
restored to its original state on return.
(See Charts DA and DB.)

64

Entry Points:

CZCGR2 (GETMAIN) ~-- called via GETMAIN
macro

(CZCGA3) FREEMAIN -- called via FREEMAIN
macroe

(CZCGAU4) EXPANL --
Type I linkage

called via CALL MACRO;

(CZCGA6) GETSMAIN -- called via CALL macro;
Type 1 linkage

CZCGA7 (CONNECT) -- called via CALL macro;
Type I linkage

(CZCGA8) DISCONNECT -- CALLED VIA CALL
racro; Type I linkage

Input: GETMAIN - register 0 contains:

e Binary count of pages in lower three
tytes

e Protection class (in binary) in kits
4-7 of the high-order byte

e Packing parameter (binary) in kits 1-3
e Variable parameter in kit O

FREEMAIN - binary count of pages in regis-

ter 0; variable parameter in sign kit of
register 0; virtual storage address in re-
gister 1.

EXPAND - register 1 contains a pointer to
the following two-word parameter list:

word 1 |P01nter to a four-word parameter |
|area ]
word 2 |Location of output parameter list |

The four-word parameter area pointed to by
Word 1 above is as follows:

word 1 |V1:tual storage address of block |

| to be expanded |
Word 2 |Einary count of pages in block |
Word 3 |Increment of pages (binary) 1
word 4 |LE;ZZ;ZEZ;;‘ZI;;;’?EI;;;? ''''''' |

__________________________________ J
GETSMAIN - register 1 contains a pointer to

the following two-word parameter list:

Word 1 IP01nter to a five-word parameter|
|area I
__________________________________ 4

Word 2 |Locat10n of output parameter list |



The parameter area pointed to by Word 1
abcve is as fcllows:

Word 1 tﬁlgh crder bit sgecifies |
| EXIT=RETURN option if 1; remaining|

|bits specify binary nurber of |
|pages required. |

Word 2 |shared page table (5PD) namber|

| (binary) |
Word 3 |pata type (binazn }
wora « (protaction eiase Gimip T :
Word 5 |Variable length indicator *,

CONNECT - register 1 contains a pointer to
the following parameter list:

Word 1 |P01nter to a

area | |
ORI,
Word 2 |lLocation of output parameter list |
b e 1
The parareter area pcinted tc Ly Word 1
above is as follows:
[ T T e e e 1
wWord 1 |Shared page table (SPT) number|
| (binary) i
__________________________________ 4
word 2 |Relative page location (binary) |
e 1

DISCONNECT - register 1 contains the
following:

Word 1 ;P01nter to a

Word 1 |Shared page table (SPT)
| (binaxy) |

Word 2 |Relat1v9 page location {(binary) |
Cutput: GETMAIN - Virtual Storage address
of allocated block is returned in register
0

FREEMAIN - nc cutput

EXPAND - the second pointer in the parame-

ter list points to the word where EXPAND
returns the virtual storage address

GETSMAIN - the second pointer in the param-
eter list points tc the following parameter
area:

Word 1 iShdred page table (SPT) outgput |

Word 2 |Virtual storage address of allo-|
icated block i
___________________________________ J

CONNECT - the second pointer in the parame-

ter list points to a word where the virtual
storage output is stored

DISCCNNECT - no output
Mcdules Called:

ADDPG - builds page takle and external page
table entries

DELPG - deletes page table and external
Fage takle entries and releases main
storage and external storage

MOVXP - noves page table and external page
table entries from one location in XTSI to
another

ADSPG - kuilds page takle and external page
table entries for shared pages

CNSEG - connects a segment table entry to a
shared page takle

DNSEG - disconnects a seqgment table entry
fror a shared page table

CKCLS - checks the privilege of pages being
freed.

Exits:
Normal - registers 2-14 are restored
krrcr - VMA returns a code 8 in Register

15 if it receives a bad parameter
or a code of 4 if insufficient
virtual storage exists and the
EXIT=RETURN option is sgpecified.
If the option EXIT=RETURN is not
specified ABEND is invoked. An
errcr exit is also taken when a
nonprivileged user tries to free a
page with a protection class other
than user read/write, tries to
free unallocated virtual storage,
or in a 32-bit system, tries to
free with a variable request a
segment not marked as variakle.

Flowchart References:

GETMAIN - DA
FREEMAIN - DB
EXPAND - DA
GETSMAIN -~ LB
CONNECT - DB

CISCONNECT DB

Section 4: Virtual Memory Allccation 65



GETMAIN (CZCGA2)

The functicn of GETMAIN is to obtain
virtual storage for the user's program and
system service routines (see Chart DA).

Entry Points: CZICGA2, Type IM or Type II
linkage, via GETMAIN macro.

Input: Upon entry to this routine, general
registers 0 and 1 contain input parameters
as shown in Figure 7.

Parameter 1
count of contiguous pages requested by
LV parameter of GETMAIN macro
instruction

Parameter 2
packing parameter, as specified by
PACK parameter of GETMAIN macro
instructicn

Parameter 3
protection class - specified by PR pa-
rareter of GETMAIN macro instruction

Parareter 4
specifies return code, as specified by
EXIT parameter of GETMAIN macro
instruction. Indicates if ABEND
should be called if the request cannot
be satisfied

Paramreter 5
variable bit parameter

Modules Called:
ADDPG by macrc.
CKCLS by macro.

Exits: Return, type IM linkage

Register 1 - contains the virtual storage
address of the allocated vir-
tual storage

Register 15 - contains one of the following
return ccdes:

0 - request fulfilled;

4 - not enough virtual storage to
fulfill reguest;

8 - invalid parameter passed to

VMA.

Operation: GETMAIN examines the input
parameters to determine the type of alloca-
tion required. If the number of contiguous
pages is zero, a variakle-length allocation
is implied. 1In this case, the number of
contiguous pages for the request is taken
from the variakle allocation parameter,
initialized by STARTUP. In the 24-kit sys-
tem, this -amount is some number of pages
less than 256 (20 if the variable allocca-
tion parameter is 0); in the 32-bit system
variable segments are assigned. The user
can also sgecify a variaklie allocation to
GETMAIN through an input parameter. In
this case, the numkter of pages in the vari-
able allocation parameter is added tc the
number of pages requested and, for the 24-
bit system, allocation of this sum is made.
In the 32-bit system a full segment is
added to the request and the allocaticn is
indicated as variakle to ADDPG.

Allocation occurs in cne of the follow-
ing two manners:

Packed: Allocation of packed virtual
storage can be specified in either of two
ways:

e If the system packing parameter 1is on;
in the absence of an input packing pa-
rameter specifying a unigque segment,
virtual storage is packed.

e If the system packing parameter is off,
and an input parameter to GETMAIN sgec-
ifies packing, virtual storage is
packed.

Non-packed: Allocated virtual storage is
placed in a unique segment if the system
racking indicator is off and the packing
input parameter is not specified, or if the

(oo B S ToTT T s 1
| parameter | parameter | parameter | parameter |
| | | | { general
| 5 | 2 | 3 | 1 | register 0
pmm e fommm e e e T e 1
| bit | bits ] bits i | | i
| | ! 1 | | ]
| 0 | 1-3 { 4-7 | byte 2 | kEkyte 3 { byte & |
b L Ao N B S ¥
e 1
| parameter 4 | general
| ] register 1
o A i
| byte 1 | byte 2 | byte 3 | byte 4 {
e B R e Lo e 1

Figure 7.

66

Location of Input Parameters for GETMAIN



input packing indicator specifies a unique
segment.

Bllocation of Packed Virtual Storage

In a 24-bit system GETMAIN first checks
for freed pages to reassign. If the re-
quest is for eight pages or less, GETMAIN
then checks to see if the request fits in
the segment indicated by the virtual
storage pointer. If it does, the klock is
allocated, and the wvirtual storage pointer
is updated by the number of pages allo-
cated. If the request does not fit,
GETMAIN checks the segment map to determine
if there is a segment available for reallo-
cation. If a freed segment exists, GETMAIN
allocates from the segment, starting at the
segment boundary. The virtual storage
pointer is set to the segment boundary plus
the number of pages allocated, unless the
entire segment was assigned. If no freed
segment exists, GETMAIN checks to see if
the next available segment is contiguous to
the segment indicated by the virtual
storage pointer.

If the segment is contigquous, GETMAIN
determines if the request will fit in the
space remaining from the virtual storage
pointer to the end of virtual storage. If
it does not, the user has exceeded the size
of virtual storage, and ABEND is invoked.
1f it does fit, the virtual storage pointer
is updated by the number of pages allo-
cated. The next available segment pointer
is updated if the allocation causes the
virtual storage pointer to cross a segment
toundary.

If the next available segment is not
contiguous to the segment indicated by the
virtual storage pointer, GETMAIN determines
if the request will fit in the space
remaining from the next availakle segment
to the end of virtual storage. If it does
not fit, the user has exceeded the size cf
virtual storage, and an error return 1is
made. 1f the allocation does fit, the vir-
tual storage pointer is set to the location
of the next available segment plus the num-
ter of pages allccated.

In both of these cases, 1f the number of
pages requested 1is greater than 256, no
check fcr a freed segment is made. If the
tlock cannot be allocated in any of the
above manners, the page rap, in the 24-bit
system, is searched for a contiguous string
of zeros for as many pages as are
requested, and allocaticn 1s made at the
corresponding virtual storage address. In
the 32-bit system, the user has exceeded
the size of virtual storage, and an error
return is made.

Allocation of Non-Packed Virtual Storage

If the requested allocation can be con-
tained in cne segment, a check is made for
a freed segment. 1If one exists, it is
allocated, and its entry in the segment
table is set to "1". If no freed segment
exists, the next available segment is allo-
cated, and the next availaktle segment
rointer is updated by cne segment.

If the request cannot be put intoc one
segment {(i.e., the request is for more than
256 pages), the next available segmrent is
checked to see if the request will fit in
the space between the next available seg-
nment and the end of virtual storage. If it
will, virtual storage is allocated there;
if nct, the segment map is searched for a
large enough space to reallocate.

Allocation of Virtual Storage

When sufficient space is found, VMA
issues the ADDPG supervisor call tc create
the page table and external page tatle
entries. If the request is for more than
16 segments, the calls to ADDPG are broken
into multiples of 16 segments. ADDPG sets
the page takle entries to "not available™,
the external page table entries are set to
"assigned” and the file addresses are set
to zero. ALLCPG receives the protection
class and sets the proper protection code
in the external page table entries.
GETMAIN returns the virtual storage address
to the requestcer.

If a request cannot be satisfied, the
user has the ortion of retaining controcl or
having GETMAIN go to AEEND by specifying
the EXIT parameter. If this parameter is
.ot supplied, GETMAIN goes to ABENL.

kestricticons: The reguestor cannot assume
that two consecutive requests for virtual
storage will result in allocation cf one
contiguous area; this can only be done by
issuing one request for the entire amount.
2 contiguous block of virtual storage,
within the limits of the syster can ke
requested; however, it must exist at the
time of the request.

FREEMAIN (CZCGA3)

The function of FREEMAIN is to release
virtual storage allocated through GETMAIN
cr GETSMAIN. (See Chart DB.)

Entry Point: C2CGA3, type IM or type II
linkage, via FREEMAIN macro

Input: Upon entry, general register 0 con-
tains a fullword count of the number of
contiquous pages tc be released; general
register 1 contains the wvirtual stcrage
address cf the area to ke released.

Section 4: Virtual Memory Allocation 67




.ue variable allocation indicator is con-
tained in the sign bit of register 0. 1If
this bit is set to "1®", a variable alloca-
tiocn is indicated; if it is set to zero,
the request is treated normally.

Restrictions: Virtual storage oktained in
pages must be freed by pages.

Modules Called:
DELPG - by macro.
CKCLS - by macro.

Exits:
Normal - Return via type 1M linkage.

- If a parameter is invalid, or if
there is a protection violation,
or if the storage to be freed is
unassigned, an error exit is
taken.

Error

Operation: The operation of FREEMAIN
depénds on whether a variable allocation or
fixed amount of virtual storage is to be
released.

Release of a Variable Allocation

24-bit System: If the number of pages to
be released specified as an input parameter
is zero, release of a variable allocation
is indicated. In this case, FREEMAIN
releases the number of pages indicated in
the variable allocation parameter. If the
variable allocation indicator is on, a
variable allocation is alsc specified to be
released. FREEMAIN adds the number of
pages specified in the variakle allocation
parameter to determine the number of pages
to be released. The numker defaults to 20
if the variable allocation parameter is 0.
FREEMAIN uses the CKCLS supervisor call to
determine the protection class of the vir-
tual storage area to be released; it then
determines if the user has sufficient pri-
vileges to release the area of virtual
storage. (A nonprivileged user cannot
release an area of privileged virtual
storage.) I1f the user can release the
area, it is released; if he does not have
the privilege to release it, VMA will ABEND
the task. FREEMAIN uses the virtual
storage address and count of pages to up-
date the page map.

32-bit System: If the number of pages
specified in the LV parameter is zero, the
release of a variable allocation is indi-
cated. FREEMAIN indicates to DELPG that a
variable-length segment is being released.
The variable allocation indicator input to
FREEMAIN also specifies the release of a
variable allocation. FREEMAIN passes to
DELPG the user count and indicates that the
request is variable. DELPG returns page
and segment counts to FREEMAIN so that an
exact accounting of ‘variable' pages can be
made. FREEMAIN uses the CKCLS supervisor

68

call to determine the protection class of
the virtual storage area to be released,
and to determine if, on a variable freemain
request, the segment is variable.

Releasing Storage

FREEMAIN uses the DELPG supervisocr call
tc free any auxiliary storage and main
storage committed to these pages. DELPG
sets the corresponding page takble entries
to "not availakle™, the external page table
entries to "not assigned®™, and the file
addresses to zero. Except in the case of
32-bit variable segments, FREEMAIN divides
all requests that overlap segment ktounda-
ries into multiple requests, so that each
virtual storage request is contained within
a single segment. DELPG supplies an output
parameter that specifies the length of the
segment after the deletion. In this way,
FREEMAIN will update the segment mag,
enabling GETMAIN to reuse segments that
were previcusly allocated.

DFLPG packs the page takles and removes
page takle entries for a deletion at the
end cf a segment. Therefore, if the dele-
tion is at the end of a segment, FREEMAIN
moves the virtual storage pointer bkack
whenever possikle in the 24-bit systerm, and
the next available segment pointer back in
the 32-bit system.

EXPAND (CZCGAY)

The function of EXPAND is to enlarge an
existing klock of virtual storage. EXPAND
can ke used only by privileged systerm serv-
ice routines. (See Chart DA.)

CZCGAY,

Entry Point: type 1 linkage, via

CALL macro.

Infut: Upon entry to EXPAND, general re-
gister 1 contains a pointer to the follow-
ing two-word parameter list; aligned on a
fullword bcundary:

word 1 |V1rtua1 storage address of the ]
|four-word parameter area shown
|below |
, T e e e 1
Word 2 |Virtual storage address of where |
|cutput parameter list is to be |
[stored |
_________________________________ 3
Word 1 1V1rtual storage address of the |
|block that is to be expanded i
_________________________________ 4
Word 2 |N- a binary count of the number |
jcf rages in the above block H
_________________________________ 4
Word 3 |N*- a binary count of the number |

|of pages to be added contiguouslyi
|to the above block |



word & iProtectlon Class - a binary num- |
|ber, right-adjusted, representingj
jthe protection class of the blockj|
jto be expanded. It can assume

{the following values:

I
!
[
0 - user read/swrite |
1 - user read cnly |
2 - private privileged |

Modules Called:
CKCL5 by macro.
MCVXPF by macro.

Output Parameters EXPANDC returns the
virtual storage addr@ s of the expanded
block at the location sprecified ky parame-
ter 2 of the input parameter list.

Exits:

Normal ~ Return via type 1 linkage.

Exror - If a parameter is invalid or if
the user tries to expand unallo-
cated virtual stcrage, an error
exit is taken.

Operation: EXPAND receives the size of

the original block of virtual storage, the
size of the block to be added, the virtual
storage address of the block, and the pro-
tection class of the block.

If the virtual storage pointer minus
the size of the existing block is equal to
the input virtual storage address, the
added block can be appended to the exist-
ing block. The virtual stcrage address
plus the size of the block are passed to a
special GETMAIN entry to perform the allo-
cation. The new virtual storage address
is set up as an output parameter.
Accounting calculations are performed,
task interrupts are enabled, and return is
made to the calling routine.

In the 24-bit system, 1f the virtual
storage pointer minus N 1is not equal to
the input virtual storage address, a check
is made to determine if there is a hole of
N* in the page map at the virtual storage
address +N. If there is, the hole in the
map is deleted, and GETMAIN 1s used as in
the previous case.

In the 32-bit system {(or in the 2u4-bit
system when there is no available hole),
EXPAND proceeds as follows.

The blcck must be relocated so a count
of N ¢ N* is passed to GETMAIN to obtain
the block of storage. The supervisor call
MCVXP is used to move the page and asso-
ciated external page table entries to
their new position. FREEMAIN code is then
used to delete pages of the old block,

ask interrupts are enabled,
made tc the calling routine.

and return 1is

In the 32-bit system, or in the 24-bit
system with no hcle of N+N#* or greater in
the page wagp, a user error has occurred;
virtual storage is exceeded. A user error
exit is made.

GETSMAIN (CZCGA6)

GETSMAIN is used to create a shared
rage table when cne does not exist, and to
obtain additional space in a segment when
a shared page takle has already been
created. GETSMAIN is used by VAM and the
dynarmic loader tc obtain shared virtual
storage. (See Chart DRB.)

Entry Point: CZCGA6 - via CALL macro.

Type I linkage

Input: Upcn entry, general register 1
contains a pointer to the following gparam-
eter list; two contiguous words aligned on
a fullword boundary.

word 1 lvlrtual storage address of the |
|five word parameter area shcwn |
{below. |
Word 2 |Virtual storage address, where ]
|output parameter 1s to be stored.|

Word 1 |N = binary number of pages re- |
|quired. N cannot exceed 1 segment|
| (256 pages). When a request for |
lrages cannot ke filled, the high-|
jorder bit in this word indicates |
| EXIT=RETURN orption if bit is 1.
Word 2 |[SPT# - binary number cf the
{shared rage takle when virtual
|storage is to be acquired. If
|this number is not known, an SPT#|
jof binary 0 should be used, and aj
|new unique number will be sup- |
Iplied by the system. |

Word 3 |Cata type - one of the following
|numbers (in binary) with the fol-

| lowing meanings:

1 - data set
2 - CSECT
3 - PSECT

word 4 |Protection class - one of the
|following numkers (in binary)

fwith the following meanings:

{

{ 0 - user readswrite

i 1 - user read only

{ 2 - private privileged

Secticn 4: Virtual Memory Allocation 69



S —
|variable length indicator - one

jof the following numbers (in
|binary) with the following
|meanings:

Word 5

| 0 - nonvariable allocation
| 1 - variable allocation

S s s, . st W e, e sund

,...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
I
|
|
]

Exits:

Normal - Return, by macro.
GETSMAIN returns the shared page
table number at the location spec-
ified by the second parameter of
the input parameter list. The
full word following the SPT number
contains the address of the allo-
cated virtual storage.

Exrror - If a parameter is invalid or if
the request for pages cannot be
filled, a check is made to see if
the high-order bit is on in the
first word (N pages required) of
the input parameter area. If this
bit is off, an error exit is
taken. If it is on, return is
made to the calling routine with
one of the following return codes
in register 15:

X*'04°' Request cannot be filled
X*08*' Invalid rarameter received

Restrictions: The amount of shared storage
requested, N, cannot exceed one segment
(256 pages).

Modules Called: ADSPG by macrc.

Operation: GETSMAIN disables task inter-
rupts and obtains the input parameter.

If the variable length indicator input
parameter is off (that is, set to "0"),
GETSMAIN gets the next segment (which is
either the next available segment, or the
next available deleted segment). If the
variable length indicaticn input parameter
is on {(that is, set tc '1'), the action
taken depends on whether the system has
24-bit or 32-kit addressing. For the 24-
kit system, GETSMAIN adds the pages indi-
cated in the variable allocation parameter
in the ISA to N (the number of pages
requested) ; it then gets the next segment.
In the 32-bit system, a request is made for
a variable length segment, and this is
indicated to ADSPG.

If the public segment indicator is off,
(that is, a public segment does not exist),
ADSPG is called; if this indicator is on,
the type is tested. TIf the type is CSECT,
the shared page table number of the last
assigned segwent 1s used as input to ADSPG;
ADSPG is then called. 1If the type is not

70

CSECT, the shared page table number is not
known (except for the case where data sets
are keing packed into a segment and the
shared page table number is known from the
first GETSMAIN). When the shared page
table number is not known, ADSPG creates a
shared page takle and sets up the corre-
sponding segment and auxiliary segment
table entries. When a shared page table
nunber is sugplied to ADSPG, ADSPG checks
to see if the request will fit into the
segment already assigned. In order to
determine if ALSPG has used the segment
supplied to it, GETSMAIN compares the
shared page takle number input to ADSPG
with the shared page table number output.

If the request fits into the segment
already assigned, the virtual storage
address is set up as an output parameter
(the second word of the output parameter
l1ist). Task interrupts are enabled, and an
exit is made to the calling routine.

If the request does not fit intoc the
segment already assigned, ADDSPG uses the
virtual storage address supplied by
GETSMAIN to create a new shared page table,
segment, and auxiliary segment table entry.
Therefore, in the case of packing within
segments, it is ADSPG that keeps track of
page allocation; however, GETSMAIN still
keeps track of segment allocation.

GETSMAIN then saves the new Shared Page
Table number and checks to see if the next
segment was the next available segment.

If it was not, the next available
deleted segment is deleted from the segment
map, and the segment map is searched for a
deleted segment less than the next avail-
able segment. If such a segment was found,
the next available deleted segment is set
to the found segment, the virtual storage
address is set ur as an output parameter,
task interrupts are enabled, and return is
made tc the calling routine.

If the next segment was not the next
available segment, a test is made to deter-
rmine if it is the last segment, and if it
is, it is set to "defunct®", and its virtual
storage address set up as an output parame-
ter. After enabling interrupts, an exit is
nade. If the next segment is not the last
segment the procedure is as stated akove.
The virtual stcorage address is placed in
the output parameter list, task interrupts
are enabled, and return is made to the
user.

CONNECT (CZCGA7)

The function of CONNECT is to allocate
shared virtual storage when a shared page
table already exists for the data object.
(See Chart DB.)



Entry Point: CZCGA7, type I linkage,
available to privileged users only.

Input: Upon entry to CONNECT, general re-
gister 1 must contain the address of a pa-
rameter list. The parameter list, which
must start on a full-word boundary, is as
follows:

________________________________ 1
lvlrtual storage address of the {
| two-word parameter area shown |
{below |

Word 1

Word 2 |Virtual storage address where |
|output parameters are to be |
|

| stored

ISPT# - the binary number a351gned|
|to the shared page takle to be |
| connected |

Word 1

Word 2 |Relative Page Location - the page|
jnumber, in binary, within a ]
|shared segment of the beginning |}

;of the shared data object |

Exits:

Normal -~ Return by macro.
CONNECT returns the virtual
storage address of the shared data
object at the location specified
by the second input parameter.

Error - If a parameter is invalid or if
there are no availakle segments,
an error exit is taken.

Restrictions:
users only.

Available to privileged

Modules called: CNSEG by macro.

Operation: CONNECT checks for the next
available deleted segment; 1if found, this
segment is passed as input to the supervi-
sor call, CNSEG. If a deleted segment is
not found, the next available segment is
used. The shared page table number and
relative page location are also passed to
CNSEG.

If a segment is already connected to the
shared page table, CNSEG notes the corre-
sponding segment number and segment address
and passes it back to CONNECT. If not,
CNSEG creates a segment table and auxiliary
segment table entry and connects them to
the shared page table and passes the seg-
ment address to CONNECT.

If the segment returned from CNSEG is
not the same one passed as input, CONNECT
adds the relative location to the returned

segment and sets it up as an output parame~
ter, enables task interrupts and exits.

If the segment numbexr returned from
CNSEG is the same as was input to CNSEG,
CONNECT gproceeds as follows:

If the segment is the next available
segment, CONNECT sets it to "defunct™ if it
is the last segment or increases the number
of the next available segment by *1™ if it
is not the last segment. It then adds the
relative location to the address of the
returned segment and places the output pa-
rameter area. After enabling task inter-
rupts, it exits.

If the segment returned is not the next
available segment, the entry for the next
available deleted segment is removed from
the segment mag, and the segment map is
searched for a deleted segment less than
the next available segment. CONNECT then
sets the next available deleted segment to
zero if nc such segment was found, or, if
such a segment was found, sets the next
available deleted segment to the number of
the found segment. CONNECT adds the rela-
tive location to the returned segment and
places it in the output area. Task inter-
rupts are enabled, and CONNECT exits.

CISCONNECT (CZCGA8)

The function of DISCORNECT is to unlink
a task's segment table entry from an exist-
ing shared page takle. ({See Chart DB.)

Entry Point: CZICGAS8,

CALL macro.

type I linkage, via

Input: Upon entry to DISCONNECT, dgeneral
register 1 contains the address of the fol-
lowing parameter list

3

1 word lvlrtual storage address of a two-—|

aligned |word parameter area |

on a b e e 4

fullword

btoundary
________________________________ -

wWord 1 lSPTﬂ - the number, in binary, |
|assigned to the shared page table]
{to be disconnected }
_________________________________ 4

word 2 {Relative Page Location - the page}
|number, in binary, within a |
|shared segment, at which the |
|shared data object begins |
b e e 1

Exits:

Normal - Return ky macro.

Error - If a parameter is invalid an exrror

exit 1s taken.

Section 4: Virtuval Memory Allocaticn 71



Modules Called: DSSEG by macro.

Restrictions: DISCONNECT is available for
privileged users only.

Operation: DISCONNECT receives the shared
page table number and relative page loca-
tion as input parameters:
page location should not be disconnected.
If this segment is specified, DISCONNECT
does not process the request. It merely
enables task interrupts and exits. The
public segment cannot ke disconnected;
therefore, DISCONNECT checks the shared
page table number given as input against
any public segment shared page table num-
bers. If the puklic segment is specified,

72

nonzero relative

CISCONNECT enakles task interrupts and
exits, as for the previous case.

If the segment specified can be discon-
nected, LISCONNECT uses the supervisor call
DSSEG. DSSEG searches the auxiliary seg-
nment takle, and when the corresponding
entry is found, the segment is set to "not
availakble", and auxiliary segment takle is
set to "not assigned®. DSSEG supplies an
cutput parameter specifying the virtual
storage address of the segment correspond-
ing to the input shared page table nurxker.
CISCCHNNECT updates the next availakle
deleted segment and segment map according-
ly, thereby making the segment available
for reallocation.



Small Virtual Memory Allocation (SVMA)
is used to assign or free virtual storage
in multiples of doublewords expressed as a
byte count. The routines may be used by
all system service routines and users for
dynamic virtual storage. Execution results
from the R option of the GETMAIN and
FREEMAIN macros.

GENERAL DESCRIPTION

Requests for virtual storage are made
via the GETMAIN macroc, R form. Requests to
free previously assigned virtual storage
are made via the FREEMAIN macrc, R form.
Requests for assignment of virtual storage
must specify the number of bytes, and this
value should represent a count cf double-
words. If the request is not a multiple of
eight (a doubleword multiple) the request
value is increased to the next higher mul-
tiple of eight.

Virtual storage under contrcl of SVMA is
divided into two classes by type of user
(privileged and nonprivileged) with a page
header takle for each tyre. This insures
that the virtual storage of the system
service routines is not availakle for use
by user programs, nor can it be freed by
them.

Each page of virtual storage controlled
by SVMA is assigned a storage key.
Requests for storage with a given key will
be assigned areas within the same page if
possible.

Requests are also classified into those
for less than one page and those of one
page or more. Requests for less than one
page are aligned on a doubleword boundary,
while those for a page or more are
page-aligned.

Except for the program itself, all
storage required for internal tables and
allocation is obtained dynamically from
GETMAIN (pages), thus the program only
occupies the storage required for its
operation.

The program uses three entries in the
ISA table (CHAISA). These are:

ISAVPS
Contains the address of this program's
PSECT. It is not necessary for the
user to supply the PSECT address.

Section 5:

SECTION 5: SMALL VIRTUAL MEMORY ALLOCATION

ISALCK
Task interrupt inhikitation lock byte.
This is set whenever this program is
called, then reset to its initial
state on exit.

ISATMP
Address of the Task Monitor's PSECT 1is
used to determine whether the caller
is the ENTER routine.

COMMENTS: The user should be aware that he
ray actuvally use more SVMA than he requests
tut he may then overlay this area with a
subsequent get SVMA request. He may also
te akle to retrieve data after he has given
a FREEMAIN SVMA request for the area.

Area that has been freed by the user
will nct be reallocated.

Internal Tables

There are three internal tables: (1)
Page Header Takle; (2) Page Headers; (3)
Unit Table.

The Page Header Table Page represents
rages cof virtual storage. Each page is one
entry in the table. Each page header tatle
page has forward and backward links, a
count of active page headers, and up to 51
page headers.

The page headers consist of 20-word
entries within the Page Header Table. A
page header contains all the information
about a page of virtual storage which is
assigned or availakle for assignment,
including a Unit Table.

The Unit Table is used only by the
FREEMAIN routine, and consists of 512 bits
- one bit for each doubleword of the page
defined ky the Page Header.

The Entry Definitions for the Page Head-
er Table are as follows:

PHT Page Header Table

FORPAGE Forward link - points tc next

Page Header Table in chain.

BACKPAGE Backward link - points to last
Page Header Table in chain.

PHCOUNT Count of active page headers -
those currently in use.

PHEADERS Page headers - 20 words.

Small Virtual Memory Allocation 73



BACKPH Backward link - points to last
page header in chain.

FORPH Forward link - points to next
page header in chain.

PASK Page address - (20 bits)
address of the first byte of a
page available for or current-
ly in use by user; and Storage
key - (12 bits) The storage
key assigned to the page.

NAU Next available unit - The
address of the next available
doubleword within the page
{when combined with the page
address it forms the address
returned to the user).

NFU Number of freed units - a
count of the number of bytes
which have been freed via
FREEMAIN. This will equal the
NAU address when all assigned
bytes on the page have Lkeen
freed.

UNIT Unit Takle -~ 512 bits initial-
ly zero. When FREEMAIN has
freed a unit the corresponding
bit is set to one.

Picture of Page Header Takle

Name Operation Orerand
PHT DSECT

FORPAGE DS F
BACKPAGE DS F
PHCOUNT DS 0CL80O
PHEADERS DS F
FORPH DS F
BACKPH DS F
PASK DS F

NAU DS H

NFU DS H
UNIT DS Cl6u

Internal Subroutines Available

PHTBLINK

This subroutine is used to connect one
page header table page to the last one
in the chain. It calls GETMAIN
(pages) requesting one page with a
storage key which is user-fetch-
protected. It then inserts the back-
ward link address and zeros the for-
ward link address, the page header
counter, sets the next available page
header address to the address of the
first page header in this entry,
updates the forward link address of
the last page header table (pocinted to
by the backward 1link}, and returns.

PHLINK

This subroutine zeros the page header

to be linked in, inserts the backward
link address, updates the forward link
address of the last page header
(pointed to by the backward 1link),
sets the storage key required, obtains
a rage, inserts the address in the
entry, calls NAPHR and returns.

NAPHR
This sutkroutine locates the next
available page header. It first
searches the page header table page in
which the next page header was
located. 1If there are no page headers
available, it then searches all other
page header table pages for an avail-
able page header. If none can be
found it sets the next available page
header address (NAPH) to zero and
returns. If one is found it inserts
the address into NAPH, updates the
page header count for this page header
table page, and returns.

CELINK
This sutrocutine removes a page header
from the chain. It updates the for-
ward and kackward pointers of all
headers involved, subtracts one from
the page header count, calls PHTDE if
the count reaches zero and then
returns.

FHTDE
This subroutine disconnects a gage
header table page from its chain.
However, kefore disconnecting the
entry it checks to see if there is
only one page and if so it sets NAPH
tc point at the first page header and
returns. 1If there are other pages it
updates all the forward and backward
iinks invoclved. Then if the next
available page header (NAPH) points to
a header in this page, the NAPHR rou-
tine is called to obtain an address in
an existing page. The page is then
released via FREEMAIN (pages) and con-
trol is returned to the main program.

SMALL VIRTUAL MENCRY ALLOCATION (CZCHA)

SVMA 1s used with GETMAIN macro R
cpticn, and FREEMAIN macro R option.

For GETMAIN macro R option:
This routine is a closed, reenterable,
privileged service routine used by any sys-

temr service routine or user to assign vir-
tual storage in multiples of doublewcrds.

Entry Point: CZCHA2 (See Chart EA.)



Input: On entry Register 0 contains:
¢ The byte count in the low oxder 3
bytes.

e The protection class (0, 1, or 2) in
bits 4-7 cf the high order byte.

e Packing parameters in kits 1 to 3 of
the high order byte.

Cutput: Register 1 contains the Virtual
storage address and/or Register 15 contains
one of the following codes:

00 Normal return. Successful
completion.

ou Insufficient contiguous wvirtual
storage available, 1if EXIT =
RETURN.

08 Protection class is invalid.

Internal Subroutine Used:

PHIBLINK -~ Page Header Takble Page Link.
PHLINK - Page Header Link.
NAPHR - Next Available Page Header

Rcutine.

Modules Used:
GETMAIN (CZCGA2} To supply integral pages.

ABEND (CZACP) To force abnormal end of
task.

Exits:

Normal - Return to calling routine with Re-
gister 15 containing 00 and Regis-
ter 1 containing the virtual
storage address.

Error - If EXIT = RETURN option has been
used, control is returned to the
user and Register 15 contains a
code of 0u.

If EXIT = RETURN and not enough
virtual storage exists, ABEND is
invoked.

1f the protection class is inval-
id, a code of 08 is returned in
Register 15.

Restrictions: Two separate requests for
virtual storage do not assure contiguous
allocation of the two areas. The only way
to ensure a contiguous allocation of N
pages or bytes is the GETMAIN cof N pages or
bytes.

Operation: When a request is made, GETMAIN
saves the present value of ISALK and sets

it on. This inhibits task interrupts while
GETMAIN is in execution. The type of user

Section 5:

is then determined by comparing tre calling
routine’s PSECT address with the PSECT
address of the ENTER routine (CZCUF). If
it is the ENTER routine the user is nonpri-
vileged; if not, the user is considered
privileged.

The request is then adjusted to the next
higher multiple of eight, if not on a mul-
tiple at present. If the request is for a
page or more, a flag (MULTI) is set on.

The program then seaxrches the proper
page header table (privileged or nonprivi-
leged) for a page with a storage key which
matches the requested key. If, in this
search, it is found that all the page head-
ers have been used (that is, the next
availakle page header field (NAPH) is
zero), the subroutine PHTBLINK is used to
connect ancther page header takble page into
the chain and to initialize it. If NAPH is
not zero, but a new page header is needed,
the subroutine PHLINK is called to link a
new rage header into the chain.

The search can end in four ways: (1) A
page is found which has enough storage
availakle tc satisfy the request. The next
availakle unit (NAU) address is saved for
cutput to the user and the NAU address is
then advanced by the amount of the request.
The return code (in Register 15) is set to
zero and the page and unit address put in
Register 1. All program switches are then
reset, the ISAICK value is restored, and
control is returned to the caller. (2) The
request is for greater than a page sc that
cne page cannot satisfy the request.
GETMAIN (pages) is called to supply enough
pages to fulfill the request. The NAU
address of all full pages is set to 4096.
The gprogram then handlies the fractional
page (if one was requested) as described in
1, with the exception that the address
returned to the user is the address of the
first page assigned to the user. (3) There
is nc page which has enough storage avail-
able. GETMAIN (pages) is called toc suprly
one page and the program proceeds as
described in (1). ({(4) There are nc gages
which have enough availakle storage and
GETMAIN (pages) cannot supply the reguired
rage (or pages). The program will either
return ccntrol to the calling routine with
Register 15 set to 4 (if the EXIT = RETURN
parameter was used), or will call ABEND.

SVMA does not attempt to back-fill
rages. This means that if FREEMAIN (bytes)
has freed a portion of a page, the areas
will nct be reassigned until all units of
the page which were assigned (via GETMAIN
kytes) are freed. The page is then
released (via FREEMAIN pages), allowing
reassignment of the page. The NAU address,
the number of freed units, and the unit
table are all set to zero.

Small Virtual Memory Allccaticon 75



For FREEMAIN macro R option:

This routine is a closed, reenterable,
privileged service routine used by any sys-
tem service rcutine or user to free virtual
storage in multiples of doublewords.

Entry Point: CZCHA3 (See Chart EB.)

Input: Cn entry:
s Register 0 contains a kinary count of
the bytes to be released.

e Register 1 contains the virtual memory
address of the bytes to be released.

Output: Register 15 is returned to the
user with cne of the fcllowing codes:
00 Normal return. Successful
completion.

o4 Address to be released cannot be
located, is unassigned, or has been
freed.

08 Address to be released is not doub-
leword address.

Internal Subroutines Used:
DELINK Delink a page header.
PHTDE Page Header Table Delink.

Modules Used:

FREEMAIN (CZCGA3) To free integral pages.

Exits:

Normal - Return to the calling routine with
Register 15 ccntaining 00.

Error - If address to be released cannot
be located, is unassigned, or has
been freed, control is returned to
the calling routine with a code of
C4 in Register 15.

If the area to be released is not
a doubleword address, control is
returned to the calling routine
with a code of 08 in Register 15.

Operation: When a request is made,
FREEMAIN operates in the same manner as
described for GETMAIN to save ISALCK,
determine the type of user, adjust the
requested byte count, and set MULTI (one
page or more indicator). The VMA is
checked for a doubleword boundary. If it
is not a doubleword boundary, a cocde of 08
is returned to the user.

The routine then searches the correct
page header table (privileged or nonprivi-

76

leged) for the page header which has the
specified page address (high order 20 bits
of the input address). This search ends
when the page header controlling the gpage
is lccated. If the page header cannot ke
found, a code of 04 is returned in Register
15.

Once the correct page header is located,
the program checks that the next available
unit address is not less than the maximum
address to be freed. This is an error con-
diticn, unless the request was for more
than a page, and results in a return tc the
caller with a code of 04 in Register 15.

If the request exceeded one page, then the
prage being freed is checked to insure that
all units were assigned and that no units
were previously freed. If either of these
conditicns is not met, an error is indi-
cated and control is returned to the caller
with a code of 04 in Register 15. If these
conditions are met then the page is removed
from the chain via the DELINK subroutine,
the request is decreased by 4096, the
starting address (address cf first unit to
ke freed) is increased by 4096, and the
search is re-started for the next page
involved. This process continues until the
request value is reduced tc one page or
less. When the correct page is located
this time, or if the initial request was
for less than a page, and the next avail-
able unit address is not less than the
raximum address to be freed, the program
checks tc insure that all units tc ke freed
are now assigned (the unit table contains
0's in each unit position to be freed). If
all units are not assigned (one or more
contains a 1 bit), an error conditicn
exists and control is returned to the call-
er with a code ¢f 04 in Register 15.
However, 1f all units are assigned, the
program frees them by placing 1-bits in
each pcsiticn to ke freed.

The next step is to determine if all
units are now free for that page. This is
done by comparing the next available unit
(NAU) address with the number of freed
units. If they are equal, the page is
freed via FREEMAIN (pages) Lefore beginning
the normal return sequence. Any fpages fpre-
viously processed to be freed are freed via
FREEMAIN (pages), Register 15 is set to 0
{in case of an error resulting in a return
code in Register 15, these two operaticns
are kyrassed when returning), program
switches are reset, all other registers are
restcred and control is returned to the
user.



A symbolic library is a collection of
separate components called parcels, each
parcel being a named group of symbolic
statements, which are combined intoc one
VISAM line data set and indexed so that any
single parcel may be retrieved by specify-
ing its name. The parcels of a symbolic
liktrary may be macro definitions for use by
the TSS/360 Assembler, or they may be any
other groups of statements which the user
might wish to store within the system and
retrieve during the executicn of his
programs.

Associated with the symbolic component
of each symbolic library is a separate data
set called the index which contains in
alphabetic order the names of all the par-
cels in the symbolic component and the line
number of the first symbolic statement in
each named parcel. Once the symkolic com-
ponent and the index have Leen created,
system programs (such as the assembler) or
user programs may call a system routine to
automatically search the index for a given
parcel name and thus lccate the desired
parcel to be processed.

The symbolic component of a symbolic
library may ke created kty the user using
the system DATA command, and may be modi-
fied using the system MOLDIFY command.
Alternatively, the user may employ any pro-
gram that constructs a VISAM line data set.
Once the symbolic component has been
created, a system routine may ke called Ly
the user to automatically construct the
index for the entire library. If the
library is replaced or modified it may be
automatically re-indexed after each such
modification, by invoking the indexing pro-
gram via an appropriate RUN command.

The following routines are invoked by
the user to index and retrieve symbolic
libraries:

Symbolic Library Indexing Routine
(SYSINDEX)

This routine automatically indexes the
symbolic component of a symbolic library to
create an alphabetical index of all the
parcels, and is invoked when the user
issues the appropriate RUN command or
executes a program calling this routine.
Before execution, DATALDEF commands must ke
issued for both the symbolic component and
indexed data sets. The ddname SOURCE and
dsorg (data set organization) VI must be
specified in the DATADEF for the symbolic
component. The DATADEF for the indexed

Section 6:

SECTION 6:

SYMBOLIC LIBRARY SERVICE ROUTINES

data set must specify the ddname INDEX and
dsorg of VS. The individual parcels are
identified by SYSINDEX either automatically
cr by means cf a user-supplied subprogram.

In the automatic method, parcels are
identified by keing immediately preceded by
one or more header lines, which are distin-
guished ty having a unique first byte dis-
tinct frcm the first byte of any synkolic
line. Each header contains one naxe or
alias for the following parcel. The parcel
name (or alias) begins with the second byte
cf each header and may have at most the
number of bytes specified by the user in
his LENGTH parameter (see below). Alterna-
tively, the user may employ any means for
identifying parcels and their names, and
may supply a subprogram to examine each
SOURCE 1line provided by SYSINDEX and pass
the name, aliases and retrieval line number
for each parcel back to SYSINDEX.

The SYSINDEX routine analyzes the user-
supplied parameters and calls the actual
index-buillding routine SYSXBLD, which scans
the entire SOURCE data set, testing each
line for the user-supplied header identifi-
er byte or allowing the user-supplied sub-
program to perform the test and extract
each name and alias. SYSXBLD collects a
list of the name and aliases of each parcel
in the temporary array LIST until the first
non-header line is detected; then the names
in LIST are placed one ky one into a tem-
porary index TINDEX along with the retriev-
al line number of the first non-header line
in the rarcel.

The temporary index TINDEX is used in
crder to sort the entries into EBCLIC
ccllating sequence in the final index
CHASLX. Each TINDEX entry consists of the
fields (name, retrieval line number) which
will be entered in the final index, plus a
forward link peinting to the relative loca-
tion of the TINDEX entry for the next high-
er name in EBCDIC sequence. As each name
is received for entry into TINDEX it is
compared with all previously entered names,
in ascending sequence, until its prcger
locaticn in the ascending chain is deter-
mined. Then it is placed at the end of
TINLCEX with a link field pointing to the
next higher name, and the link field of the
next lower name is adjusted to point to the
new entry.

Once the entire SOURCE data set has been
scanned and the complete TINDEX created,
the last phase of SYSXBLD extracts all the
entries from TINDEX in ascending name

Symbclic Library Service Routines 77



sequence and places them, without the link
field, into the final index CHASLX.

Symbolic Library Search Routine (SYSEARCH)

This routine may be called by a system
or user program to locate any individual
parcel of a symbolic library, using its
index as created by SYSINDEX. The virtual
address of the index and the name of the
parcel are given to SYSEARCH, and the
retrieval line number of the first line of
the parcel is returned. The calling pro-
gram should, before calling SYSEARCH using
a given index for the first time, open the
data set containing the index, find the
index member and GET the index in order to
give its address to SYSEARCH.

It is the function of SYSEARCH only to
locate the line number beginning & parcel;
the calling program must then access and
process the parcel as required. Once the
retrieval line number of a particular par-
cel is oktained and the data set containing
the symbolic component is open, the calling
program may use the SETL macro instruction
to position the symbolic data set to the
beginning of the parcel and then get each
line of the parcel in turn until the end of
the parcel is detected. The assembler, for
example, may detect the MEND symkolic
statement as the end of the parcel; a user
program might either use a special symbolic
line within the parcel or detect the next
parcel header as the delimiter of this
parcel.

Usexr Subroutine for SYSXBID

The user subroutine for scanning the
symbolic statements, if provided to
SYSINDEX, will be entered by SYSXBLD after
each SOURCE line is obtained, and will be
supplied with the virtual address of the
last source line, the address of the DCB
for the SOURCE data set, and the addresses
where a retrieval line number (in 8-Lyte
EBCDIC format) and a name or alias may be
returned to SYSXBLD Ly the user. The user
subrcutine may inspect the line and return
one of the following condition codes to
SYSXBLD:

0 - No index entry to be made;
get next SOURCE line

proceed to

4 - Enter the returned name and retrieval
line number into TINDEX and return to
user subkroutine without getting
another source line

8 - Enter the returned name and retrieval
line number into TINDEX and proceed
to get next SOURCE line

If there are one or more header lines
(not considered part of the parcel) con-

78

taining the name and aliases of the follow-
ing parcel, then before returning either
code % or 8 the user routine must have
located the proper retrieval line number to
be associated with the following parcel by
repeating the VAM GET macro instruction
until the first line of the parcel is
obtained; the DCB address supplied to the
user routine must Lte used in this macro.
During this process, the name and any
aliases must be accumulated internally by
the user routine until the proper retrieval
line numker for the following parcel is
available to be passed back to SYSXBLD.
Return ccde 4 is then used repeatedly to
pass back all but the last alias and return
code 8 is used to passtack the last (or
only) name for entry into TINDEX. The user
routine is always entered at the same foint
and must therefore rememker when returning
code 4 not to re-process the last line
cktained by SYSXELD.

When the SOURCE data set is exhausted,
whether it is SYSXBLD or the user routine
issuing the last GET macro, control auto-
matically passes to the last phase of
SYSXRLD for constructing the final index.

SYSINDEX -- Symbolic Library Indexing
Routine (CGCKA)

SYSINDEX receives the user's input pa-
rameters, prompts the user for missing pa-
rameters, and processes the parameters.
After the parameters have been processed,
GCYSINDEX calls SYSXBALD, the routine that
actually kuilds the index (CHASLX). (See
Chart FA.)

Entry Point: SYSINDEX
Input: Parameters are received in one or
more control statements in the fornm:

keyword=parameter, keyword-parameter

== ————— e 1
i !

| LENGTH |Number of characters in each narej|
| |tc be entered in the index |

|HEARDEK |Single character that is ccorpared|
| jwith the tirst byte of each i
1 |source line to determine whether |
| |that line requires an index entry|
e O i
| |The symbolic name of a user-

| {surrlied routine to be called for|
| |each scurce line to determine if |
| |the line is an index entry |
b e e i
| : HEADER or SCAN, but not Lkoth, must]
|be specified. |
L



Qutput: Symbolic library index - a virtual
sequential data set. The index contains
the names of, and line number pointers to,
the elements ccontained in the source data
set.

Restrictions:

1. If the user is operating in nonconver-

sational mode, all ingput parameters tc

SYSINDEX must be correctly spelled in
a single control statement.

2. tNames to be placed in the index must
nct be longer than 255 characters.

3. An input parameter must not be split
between two control statements.

4. Continuation records are not
permitted.

Assumptions:

1. Before SYSINDEX is executed, the user
must have stored the symkbolic com-
ponent as a line data set, organized
sequentially by line number.

2. The user must have supplied two DDEF
commrands: one named SOURCE that
defines the data set containing the
source lines to be processed, and one
named INDEX that defines the index to
be created.

Modules Called:

VAM

GTWAR

GATWR

SYSXBLD-CGCKB - to create the index CHASLX

Exits:

Normal - end of job

krror - if user is nonccnversational, any
parameter errors cause the index
generation process tc be ter-
minated and a return to SYSIN for
the next command

Operation: Using the GTWAR macro instruc-
tion, SYSINDEX requests the user to enter
his ingput parameters. Records received
with errors are not processed. The SCAN
routine (described below) scans the record
for a delimiter (equal sign, comma, or
blank}. The first scan obtains a keyword;
the second, a parameter; the third, a key-
word; and the fourth, a parameter.

If the length operand is specified as
zero or is not specified, the conversation-
al user is prompted to sugply the length,
execution is terminated for the nonccocnver-
sational user. If a valid length 1s speci
fied, it is converted to binarv and storead.

Sceticn 6

SYSINLCEX then checks that either the
HEADER or SCAN keyword {(but not both) has
Eeen specified. The header character or
address cf the scan routine is stored.

When SYSINDEX determines that either
HEADER or SCAN and a non-zero length have
Eeen sgecified, it calls SYSXBLD to gener-
ate the index. Upon return from SYSXBLD,
SYSINDEX returns to the Command Language
Interpreter.

If the user makes an exrror in entering
his parameters or owits a required parame-
ter, the GATWR macro instruction is used to
write the appropriate error message.

SCAN SUBRQUTINE: SCAN is an internal sub-
routine used exclusively by SYSINDEX. It
scans the user's control statement tc
extract keywcrd symbols and parameter
values. The scan detects delimiters, which
may ke: comma, equal sign, or an EOR mark-
er. Imbedded blanks, which also halt the
scan, are discarded. SYSINDEX and SCAN
allows blanks to surround delimiters, Lkut
not within a keyword symbol or a parameter
value. From its normal exit, the SCAN rou-
tine provides the character field scanned
(left-adjusted with trailing blanks), the
length of this field, and the delimiter.
Delimiters obtained by SCAN are retained in
a stcrage area until replaced by the next
delimiter. When SCAN detects that the
delimiter of the last field scanned was an
end-of-record marker, all informaticn on
the control statement has been processed,
and SCAN makes an end-of-record exit.

SYSXBLD -- Build Symbolic Library Index
{CGCKB)

SYSXBLID consists of two major com-
ponents: LOCOP, which scans each line of
the source data set to locate, extract, and
place entries in a temporaxry index; and
TERM, which operates on the temporary index
to form a final and complete index. {(See
Chart FR.)

Entry Point: SYSXELD

Input: FKegister 1 contains a pointer to
this list:
[T T e e e 1
Word 1 }|Pointer tc full word containing |
{length ¢f parcel names in index |
T —— 1
word 2 jPointer to one-byte field ccn-
{taining header character, if
{specified
gy
word 3

j (with maximum of eight bvtes)
jcontaininag name of users scan
lroutine, it specified

|

[

l

- 1

{Pointer to variable-length field |
|

!

|

i

Syvwroelic Iibrary Servics Roubines 79



output: The index CHASLX to be used in the
subsequent retrieval of information from
the symbolic library.

Modules called:
VAM

FINDJFCB

OPEN

FIND

GET

PUT

STOW

CLOSE

User's scan routine
specified)

(if scan option is

Exits:
Normal - return to calling program

krror -
1. If the same name is specified more
than once, SYSXBLLC terminates.

2. If an unreadable record is encountered
in the source memker, control is
transferred to the SYNAL exit.

SYSXBLD provdies no SYNAD exit for the
CHASLX DCB; any unrecoverakle I/0
error associated with CHASLX invokes
the system error procedure.

Operation: FINDJFCB is used to determine
the nature of the symbelic component; it is
assumed that this data set has been
described by a DEFINE LCATA command with the
ddnane SOURCE. The data set is opened and
a FIND is issued for the memker. GETMAIN
obtains a page of virtual storage for the
terpcrary index. The VISAM GET macro
instructicon (locate mode) is used to obtain
a4 line from the symbcoclic component. If an
unreadable record is encountered, control
is transferred tc the I/0 error routine
(IOERR) by means of the SYNAD exit in the
DCB; GATWR is used to write an error mes-
sage, and exit is made. Upon normal exit
from GET, the input parameters are checked
to determine the option selected - scan or
header.

If scan was supplied, a CAIL is mwade to
the named routine. If the user's scan rou-
tine determines that no entry is to be
placed in the index for a given line, it
returns with a code of 0. If a name and
line number are to be placed in the index,
the AETI (add entry to index) subroutine is
alled to supply the appropriate entry to
TINDEX. A return code of entries 4 or 8 is
returned.

If the return code is 4, SYSXBLD returns
to the user's scan routine to obtain a
synonym for the entry. This process is
repeated as long as the user's scan routine
returns a code of 4. (Note that it 1is the
user's responsibility to avoid an infinite
loop here.) The user must alsc make cer-

80

tain that the correct retrieval line nunker
pointer is returned in the parameter list.
This retrieval line number must be that of
the first symbolic statement to be input
following a CALL to SYSEARCH for a given
name. Consequently, it is the first sym-
kolic line of a parcel following the line
containing the parcel name; the user's scan
routine must get the former line to coktain
the apprcpriate line numker. For this
reason, and so that the user can obtain
synonyms already in the symbolic component,
the DCB location is given in the CALL to
the user's scan routine.

If the user's scan routine returns a
code cf 8, SY53XBID makes the approrriate
entry in TINDEX, gets the next source line,
and then calls the user's scan routine as
described in the previous paragraph.

If the user suprlied a header character
in the CALL to SYSXBLD, the character is
corpared with the first kyte of the symbol-
ic line. When an equal compariscon is made,
the name is placed in LIST; this name
Eegins in the second byte of the syrtolic
line. The length of this name 1is given in
the CALL to SYSXBLD. Note that the names
are not rlaced in the index at this time,
since this header may be immediately fol-
lowed by other headers carrying synonymous
names.

Entering of names in the index is post-
poned until a non-header is encountered, so
that the ccrrect retrieval line number may
ke obtained. When a ncon-header 1line is
encountered, the 1list of names is dequeued,
and AETI places the names in the index.

GET then oktains the next scurce line.

This process is repeated until there are
no more symbolic lines to process; the
ECDAD exit in the LCCB associated with the
SOURCE data set is then taken. The SOURCE
CCB is closed, and the DCB associated with
the index 1s opened. FINDJFCB is used to
determine the nature of the index. Members
cf partiticned data sets are located by the
FIND macro instruction, which also indi-
cates if the merber is new or a replace-
ment; this influences the type of STOW
racrc instructicn to be used later. For
replacement members, a SETL macro instruc-
tion is issued to position to the beginning
cf the index. PUT (locate mode) is then
used tc obtain the address of this index.

The length of the entry is extracted
from the operand field of the CALL macro
lnstruction. LINK, a link pointer to the
next-higher entry in the index, is estak-
lished. The entries are placed in the
index until LINK attains a value of zero,
indicating that the highest value name has
Eeen reached. Processing is then ccrglete.



AETI SUBROUTINE: The add entry to index
routine (AETI) is an internal sukroutine
used exclusively by LOOP. AETI shares the
PSECT used by SYSXBLD. It expects a param-
eter list containing the location of the
name to be an index and the location of the
associated retrieval line number.

Entries are made in a temporary index
(TINDEX), not in the final index. Entries
in TINDEX are ordered physically in the
order cf submittal, but are linked together
by ascending EBCDIC collating segquence.
TINDEX entries contain:

1. A left-adjusted purcel name (NAME),
the length of which was specified in
the CALL to SYSXBLD.

2. The retrieval 1lin¢ number (RLN) con-
tained in an &-byte EBCDIC field.

3. A link pointer (LINK) to the highest
name in ascending EBCLIC collating
sequence contained in a 4-byte field.

The highest wvalue name has a zero link

AET1 maintains NEXT, a pointer to the
first unused byte in TINDEX. Since the size
of TINLEX is not predictaktle, the GETMAIN
macro instruction is used, as needed, to
acquire additional working :torage.

SYSEARCH -- Symbolic Likrary Search Routine
{CGCKC)

The SYSEARCH routine is used to locate
information stored in a symbolic library.
(See Chart FC.)

Entry Point: SYSEARCH

Input: Register 1 contains the address of
this list.
Sttt st 1
word 1 |Address of the index component of |
|the library to Le searched. i
_________________________________ 1
viord 2 |Address of first bhyte of name to |
|be located. This name must bLe of|
jthe length uspecified to SYSINDEX |
jor SYSXELD and must ke left- |
| justified with treiling blanks. |
_________________________________ 4
Word 3 |JLocation at which SYSEARCH is to |
|store the retrieval line number |
jit obtains. |
b e e i

Section 6:

Cutput: If the index entry is fcund,
SYSEARRCH places the retrieval line number
at the location specified by word 3 cof the
input parameter list and returns with a
code cf 0. If the name does not exist in
the index, return is made with a ccode of 4.

FMedules Called: None

Exit: Ncrmal - return to calling routine

Qperation: SYSEARCH executes a convention-
al binary search using the starting point
(SLXSSP) established by SYSINDEX or
SYSXEBLL.

DELTA, the increment value used in the
tinary search, is initially set to a value
cf SLXSSP-U44SLXNLN. SLXNLN is the length
of a line in the index. The input name is
conpared with the name retrieved from the
index. If an equal comparison is made, the
line nurker is returned to the calling pro-
gram. SYSEARCH exits with a return cocde of
0.

If an unequal comparison is made, DELTA
is divided by 2 (by a shift-register
instruction) and added to, or subtracted
from, the current position pointer {regis-
ter 15), depending on whether the routine
rust mcve forward or backward in the index
to find the desired name. The current
fositicn pointer is initialized to the
tinary search starting point.

The input name is compared to the index
name indicated by register 15. If the
input name is greater, SYSEARCH mcves for-
ward in the index; if the input name is
less, SYSEARCH moves backward. Register 15
is adjusted and the comparison regeated.

On an equal comparison, SYSEARCH gplaces
the retrieval line numter associated with
the input name at the location indicated by
word 3 cf the input parameter list, sets
the return code to 0, and exits. 1If DELTA
reaches a value of SLXNLN48, the input name
does nct exist in the index. SYSEARCH
exits with a return code of 4.

Symbelic Library Service Routines 81



SECTION 7: CONTROL SECTION STORE ROUTINE

The Control Section Store routine pro-
cesses user requests made through the
CSTORE macro instruction. During program
execution, any set of contiguous virtual
storage bytes may be transformed into an
object module consisting of a single con-
trol section. The module is stowed in the
current JOBLIB. It can then be loaded by
the program that created it, or by a subse-
guent program. When the module is loaded,
no relocation takes place; therefore, it
may contain no relocatable items.

The resulting module will consist of an
unnamed control section which contains a
copy of the hexadecimal text beginning at
the page boundary preceding the address
specified as the starting address parame-
ter, and terminating at the page boundary
following the address computed from the
fourth parameter. Thus the resulting con-
trol section will always be an integral
number of pages in length.

When the module is loaded by the user,
the module name, as well as the entry point
name, wWill point to the address computed by
adding to the address of the new mcdule the
page offset (if any) implied by the start-
ing address. For example, assume that the
user requests that a control section of
4048 bytes be created from the bytes begin-
ning at virtual storage address 5D050.

Also assume that the new module is later
loaded at 70000. The loaded module and
control section will occupy the full two
pages beginning at 70000. The second page
is required sc that the new control section
will include the last two bytes requested
by the user. The module and entry point
names wWill both point to 70050.

Maximum control section size is one
segment.

CONTROL SECTICN STORE (CZCK2)

The Control Section Store routine is a
privileged, reenterable, public system rou-
tine which permits the user to create a
control section during program execution.
(See Chart GA.)

Entry Point: CZCKZ, type I or II linkage

Input: General register 1 contains a
pointer to the following parameter 1list:

82

————== T 1
| Wword |Contents |
_______ 4 4

T h )
{1 and 2|Module Name |
b —— 4
|3 and 4]|Entry Point Name |
b + ~-——- --4
i 5 |Virtual storage address of first |
| |byte of text |
bt - 1
| 6 |Length of text, in bytes |
b 1
| 7 |Control section attribute code, |
| |as follows: i
[ | |
| |Bit 24 on - System |
| |Bit 25 cn - Privileged |
| |Bit 26 on - Common |
{ |Bit 27 on - Prototype (PSECT) |
| |Bit 28 on - Pullic }
| |Bit 29 on - Read-only |
| |Bit 30 on - Variable length i
| |Bit 30 off - Fixed-length |
[ § S —_— -3

Restrictions: The module name and entry
Foint name must ke unique in the job
library. The control section to be created
gust not ke more than a segment in length.

Modules Called:

CZCLA (OPEN)
CZCLB. (CLOSE) To detect duplication and
CZC0J (FIND) to place the created

CZCOK (STOW)
CZCos (PUT)

rodule in the likrary

Exit: Return, with register 14 containing
the exit address, and register 15 contain-
ing cne of the following return codes:

00 - normal return

04 - mcdule name or CSECT name already in
use.

Cperaticn: This routine receives input
rarameters passed to it by the CSTORE macro
instruction. After opening the DCB for the
current job libkrary, it checks for pcten-
tial duplication of the module and entry
point names by issuing a FIND. If duglica-
tion exists, the DCB is closed, the return
code in register 15 is set for duplication
(X '04'), and the routine exits.

The PMD is now constructed in this rou-
tine's PSECT work area. The def for the
CSECT is given a name of eight hexadecimal
zeros, and V- and R- value displacements of
zero.



The offset between the address given as
the third parameter and the preceding page
toundary is installed as the V- and R-
value displacements in the def for the
entry point name. The ref for the module
name (standard entry point) is set to name
this def.

The new PMD and the specified text are
placed in the current JOBLIB with succes-
sive calls to move mode PUT.

The STOW routine is then called to enter
the specified module name in the PCD as the
member name, and the srpecified entry point
name as an alias.

The DCB is closed, the register 15
return code set to zero, and the routine
exits.

Secticn 7:

Control Section Store Routine

g

3

b1



SECTION 8: SERVICEABILITY AIDS

The serviceability aids counsist of rou-
tines recording error information, routines
retrieving error information, and a time
conversion routine, SYSTIME, which converts
time from machine format to EBCDIC time and
date.

ERROR INFORMATION RECORDING ANLC RETRIEVAL

During the course of TSS/360 operations,
a history is maintained cf the environment
of the system at the occurrence of any
hardware failures or major software errors.
The pertinent information for each error --
error indications, machine status informa-
tion, instruction retry data -- is
collected by various TSS/360 programs and
recorded on the paging drum for later
retrieval and analysis by the Customer
Engineer.

The paging drum is formatted so that
following every pzge of 4096 bytes there is
an unused record of 246 bytes into which
error statistics may be placed. The error
environment information is recorded on the
even numbered records cn each track. The
first of these records {(track O, record 2)
contains a pointer to the end of the error
information on the drum, as well as some
summary information. Aprproximately 192,000
bytes, capable of storing information about
500 error incidents, are available per pag-
ing drum. If additional incidents occur
after the recording area is full, further
recording will be bypassed until a retriev-
al program is run, freeing the recording
area.

ERROR INFORMATION RECORDING

Machine checks resulting from central
processor and storage unit hardware
detected errors, system errors, and solid
outboard errors on direct access devices
are accumulated and recorded on the paging
drum by the system error recording and
retry (SERR) frrogram.

The virtual memory statistical data
recording (VMSDR) and virtual memory error
recording (VMER) programs are called when a
task I/0 retry operation for a sequential
device either ends successfully (intermit-
tent error) or with error afer a pre-
scribed number of retries (solid error).
VMSDR accumulates intermittent errcr infor-
mation on the statistical data table (SDT),
and calls VMER to record error information
on the paging drum when a SDT field over-

84

flows or in the case of a solid outboard
error. VMER is also called by SAM posting,
TAM posting, MSAM posting, and RTAM report-
ing interface routines in the event of a
solid inboard error.

ERROR INFORMATION RETRIEVAL

Two programs have been developed fox
retrieving the information from the drum,
organizing the data into a useful format,
and sending it to an output device. The
first of these, virtual memory envircnment
recording edit and print (VMEREP), runs as
a virtual storage program under the Time
Sharing System. The second program,
environment reccrding edit and print --
vModel 67 (EREP67), is a stand-alone program
operating in real core. These retrieval
pregrams are reserved for the use of the
customer engineer.

VIRTUAL STORAGE 1/0 OPERATION AIDS

Two I/0 operation aids are fundamental
to virtual storage error recording and
retrieval: the I/0 regquest control Lklock
(IORCB) and the I/0 statistical data table
(SET).

1/0 Request Contrcl Block (IORCB)

The ICRCB is the basic I/0 communication
link between virtual storage and the resi-
dent sugpervisor. A virtual storage program
requests the execution of an I/0 creration
ky issuing the LOCAL supervisor call. Fol-
lowing the LOCAL is a variable length ga-
rareter list termed the IORCBE. '

The IORCB is variable in size, but the
first 80 bytes are considered to be a fixed
length sub-area whose internal fields are
all in fixed and known locations relative
to the keginning of the IORCB. There are
three variable sub-areas:

e Cata buffer

e Page list

e CCW list

The page list has a maximum size of

eight doublewords. The maximum collective
size of the three sub-areas is 1840 Lytes.



I/0 Statistical Data Table (SDT)

The I/0 statistical data table (SDT)
accunmulates statistical data on ocutkoard
failures of task 1/0 devices. The SDT con-
tains one statistical data record (SDR)
entry for each task 1I/0 device on the sys-
tem. Each of these SDR entries consists of
statistical data on cutboard failures of
the associated task symbolic I/0 device.

Fields in the SIT are:

SDTLSD - Length of an SDR entry (72 kytes)

SDTLBA - Address of byte following last
byte of SCT

SDTSDA - Symbclic device address

SDTFB - Flag bytes (Example: write-to-
operator flag)

SDTLF - Last path used (actual 1I/C
address)

SDTEIC - Total error incident count

SDTRET - Total retry ccunt

SDTRTH - Retry threshhclds (specific error
condition for device)

SDTTS1 - Time stamp at error n-2

SDITS2- Time stamp at error n-1

SDTTS3- Time stamp at error n

SDTSDB - SDR save area (64 half-bytes)- a

4-bit frequency counter for each
bit of sense data

If an SDT field (bucket) overflow
occurs, the SDR entry of a symbolic I/0
device is written on the drum for preserva-
tion recording.

Virtual Memory Statistical Data Recording
(CZCRY)

The purpose of the virtual memory sta-
tistical data recording (VMSDR) sukroutine
is to accumulate error statistics on task
I/0 devices in the statistical data table
(SDT). VMSDR is a privileged, reenterable
subroutine operating in virtual storage,
and is called by SAM posting, TAM posting,
MSAM posting, and RTAM reporting interface
routines when a task I/0 retry operation
either ends successfully (intermittant out-
board failure) or is completed with error
after a prescribed number of retries (solid
ocutboard failure). (See Chart HA.)

Entry Point: CZCRYY, type-1 linkage, via

CALL macro.

Input: Register 0 contains the following
error codes:

1 - intermittent outboard error.
2 - so0lid outkoard error.

Register 1 contains a full word pointer
to the failing CCW address in the IORCB.

Modules Called:

CZCRX1 - Virtual memory error recording
(VMER) - generates I/C error rec-
ords to be output on drum via drum
access rmodule (DRAM), and informs
operator cf the failing task 1/0
component if the immediate rerort
flag is on for the device.

CZABGl - Write tc cperator (WTQO) - trans-
mits a message to the main cpera-
tcr contrcl program (MOCP) which
will print the message on the
operator's terminal.

Fxits:

Normal - when recording is comgpleted, con-
trol is returned to the caller via
a RETURN.

Error - if the statistical data reccrd
(SDR) entry for the failing device
cannot be found in the SDT, a
SYSERR of the mincr software error
type is invoked, followed Ly an
ABEND macro.

Operation: VMSDR is called by the gosting

routines to record hardware outbcard errocrs
on I/0 devices. The posting routines dis-
tinguish between two types of exrors; solid
and intermittent. VMSDR recognizes four
types cf errors; solid, immediate report,
critical intermittent, and statistical data
recording.

A solid error {(call type 2B) is any
error which was not recovered from after a
specified number of retries by the access
method. Intermittent errors are those
which have been recovered from
successfully.

If the immediate report flag is on in
the SDT entry all intermittent errors for
that device will be recorded as immediate
report errors (call type 261). If the
imrnediate report flag is not set, a test is
rade to determine if the error is any one
cf five critical errors on direct access.
Critical direct access errors are recorded
as intermittent errors {call type 2F).

If the error is neither a solid nor
critical error and the immediate report
flag is off, the statistical data takle

Section 8: Serviceability Aids 85



entry for the device will ke updated and
tested for bucket cverflcow.

Updating the SDT takle consists of re-
ccrding the current system time if this is
the first error incident {(indicated Ly a
zero error incident count) and incrementing
the error incident count ky one. The 64
sense bits are checked individually and the
corresponding SDT bucket is incremented by
one if the bit is on. There are 64 buckets
of a half byte each. An overflow indicator
is set whenever a bucket valu¢ reached 15.
in the event of bucket overflow an SDR
error (call type 2A) wiil ke reccrded.

If there is no cverflcw VMSDR sets the
retry count in the SDT entry tc zeroc thus
completing the update of the statistical
data table. VMSDR then returns coentrol to
the posting mcdule.

If the error was sclid, immediate
report, or intermittent, or if there is a
bucket overflow condition, the retry count
remains in the SDT and the last path is
nmoved from the IORCB intc the SDT. The pa-
rameter list is completed and a call is
made to VMER to record the error on the
drum. On return from VMER a test is made
for error type. If the error was either an
immediate report or SDT type, the SDT buck-
ets and error incident count are reset.

The retry count is then reset and a return
is made to the posting routine.

Virtual Memory Error Recording (CZCRX)

Virtual memory error recording (VMER) 1is
a privileged, reenterakle, subroutine,
operating in virtual storage, which informs
the operator of the failing task I/0 com-—
ponent and generates I/0 error reccords that
are to be output for preservation recording
on drum via the drum access module (DRAM).
VMER is called by VMSLCR in the event of a
solid outboard failure or an SCR kucket
overflow, and by SAM posting, TAM posting,
MSAM posting, and RTAM reporting interface
routines con a solid inkoard failure of a
task I/0 operation. (See Chart HB.)

Entry Points: CZCRX1 - Entry from virtual
memory statistical data recording (VMSDR)
to form the I/O outboard error record
(CHADER) and reset to zero the SDR buckets
in the SDT entry. Type-I linkage, via CALL
RacCro.

CZCRX2 - Entry from SAM posting and TAM
error posting routines tc form an I/0
inboard error record. Type-I linkage, via
CALL macro.

CZCRX3 - Entry from task monitor to call

DRAM for recording 1/0 error records on
drum. This is a gueued linkage entry.

86

CZCRX4 - Entry from Main Operator House-
keeping Routine (MOHR) to initialize the
drum index if it is invalid.

Input: Upon entry at CZCRX1l, register 1
Ecints tc a parameter list which contains
the following:

Word 1 - SCT entry address of failing
component.

Word 2 - Failing CCW address (zero if
unpredictakle).

word 3 - Sense Lbytes 0-3.
Word 4 - Sense bytes 4-7.

Word 5 - One of the following error codes:
X'00* - call type 2B solid error
X'08' -~ call type 26 immediate
report error
X'10* - call type 2F intermittent
error
X'18" - call type 2A SDA error

Word 6 - Address of SDAT entry for failing
component.

Upon entry at CZCRX2, register 1 points
to a parameter list that contains the
following:

Word 1 - Address of failing CCW (Zero if
unpredictable).

word 2 - Pointer to failing symbolic
address.

Upon entry at CZCRX3, register 0 con-
tains 22 minus the buffer number tc ke re-
corded. Register 1 contains the address of
the page containing the buffer.

Cutput: If VMER is entered from VMSDR, and
if the immediate report flag is on, the
following message is printed on the opera-
tor's terminal for all solid outboard
errcrs:

I/C OUTBOARD ERROR ON SDA XXXX,SOLID

For all other outbcard errors the message
is:

I/0 OUTEBOARD ERRCR ON SDA XXXX,I.R.

The variakle is the symkolic device
address field taken from the SDT entry for
the device in error.

If VMER is entered from a posting rou-
tine, and if the irmrmediate report flag is
cn, the following message is printed con the
operator's terminal:

I/C INBOARD ERROR ON LP XXXX




The variakble is the last path used taken
from the SDT entry for the device error.

Modules Called:

CZASY ~ Drum access module (CRAM) - outputs
I/C error records on the dummy Spaces on
the paging drum.

CZABC1 - Write to operator (WTO) - trans-
mits a message to the main operator control
program (MOCP) which will print the message
on the operator®’s terminal.

CZGG2 - GETMAIN routine used to allocate
space for buffering data which is to be
recorded.

CZGG3 - FREEMAIN routine used to release
buffer space when no lcnger required.

CZCITQ ~ Queue linkage entry routine used
to set up later entry at CZCRX3 by task
monitor.

Exits:
Normal - (After entry at CZCRX1 or CZCRX2)
When Queued Linkage entry has been
set up, VMER returns to caller via

RETURN.

(After entry of CZCRX3) After 1I/0
error records have been recorded
on drum, VMER returns to caller
via RETURN.

Exror - If an 170 error occurred while
outputting the I/0 error records
on drum, the following message is
printed:

I/0 CRUM FAILURE ON SDA XXXX

If no available drum path can be
located, the following message is
printed on the cperator's
terminal:

NO DRUM PATH AVAILABLE

If the drum used for recording is full, the
following message will ke issued:

DRUM OVERFLOW ON SDA XXXX

Operation: When VMER is called by VMSDR to
format and record task outboard errors, the
code in word five of the parameter list is
used to set the proper error type in the
outboard error record. Error information
is moved from the SDT entry for the failing
task 170 device and from the ICRCB in the
interrupt storage area and the ISA to the
outboard error record. An in-line routine
is then entered to determine the proper CCW
list, failing CCW, number of CCWs, and OER
record length all of which are then stored
in the outboard error record. 1I1f the fail-
ing CCW is unpredictable all of the CCWs

(up to a maximum of 10) are saved in the
error record. If the failing CCW is known
and its relative number is 10 or less, all
the CCWs (up to a maximum of 10) are saved
along with a pointer to the failing CCW.
If the failing CCW is known, but its rela-
tive number is greater than 10, the number
cf CCWs and relative number of the failing
CCW are both set to 10 and the failing CCW
and the nine CCWs preceding it are saved in
the outboard error record.

If the failing device is tape cor disk,
the volume ID and the current system time
are put in the outboard error record. Cur-
rent system time reflects the time of the
last error for an SDR record or the time of
error for the other types of task ocutboard
€rrors.

When VMER is called by posting routines
to record task I/0 inboard errors (call
type 2C) the time of error is put in the
inboard error record and an immediate
report message is set up for the ogerator.
The CSW, Channel log, user ID, last gath,
last seek address, and SDA are stored in
the inboard error record. If the failing
CCW 1s known the CCWs are moved to the
inboard error record.

The remaining procedure is the same for
kFoth types of entry (CZCRX1 and CZCRX2).
If the irmediate report flag is on, the WTO
macro is invoked to transmit the message to
the main operator control program which
Erints the message cut on the coperator's
terminal.

If there is no kuffer space available,
the GETMAIN routine is called toc allccate a
page for use as kuffers. The I/0 error
information to be recorded is moved into an
availakle buffer space and a queued linkage
entry is set up to provide a letter entry
ky task monitor at CZCRX3. The parameters
required to locate the buffer are also pro-
vided. VMER then returns to caller via
RETURN.

Task monitor then calls VMER at CZCRX3
and passes the parameters used to locate
the kuffer containing the 1I/0 error infor-
maticn tc be recorded.

A CCW list is constructed for a channel
program to locate and read in the environ-
ment recording (ER) index record. The CCW
list is descriked in the drum access module
(DRAM) description. The drum access module
(DRAM) subroutine is then called to execute
the channel program.

Upcon return from DRAM, the return code
is checked to determine if the file protect
tit is on (set to onel), indicating that the
task-supervisor interlock is locked or the
task-task interlock is locked for ancther

Section 8: Serviceability Aids 87



B 25 L I
jConditicn] |
| Code | Errorx |
e oo G
R S :
{ { |failure.
S — I ——
| 2 |Operaticon complete
| jwith error |
e T ———
i 2 {Drum Path unavailable
| | ilist and repeat recording sequence.
| [
| i
S U R —

task. If the file protect bit is cn, the
sequence of operations bkeginning with the
construction of a CCW list is repeated. If
not, the condition code is checked to
determine if the I/0 operaticns have suc-
cessfully completed. If successful, a
check is made to see if the time stamp
exists. If there is nc time stamp, the
current system time is obtained via the
REDTIME macro and stored in the index time
stamp. If the index record is invalid, it
is initialized and the current system time
is stored in the error index time stamp.

DRAM is then called to read the first
available 246 byte dummry record from the
drum. . The error record is moved from the
error buffer to the dummy record.

If the entire record did not fit in the
durmy record, LCRAM is called to write the
dummy record onto the drum and the record
number portion of the index is updated.

The remainder of the error record is then
moved to the drum buffer and DRAM is called
again to write the next dummy record on the
drumn.

If the entire record fits in the dummy
record which was read, DRAM is only called
once to write the dummy record on the drum
and the record number is left unchanged.

The byte count portion of the index
record is updated and DRAM is called to
write the index back onto the drum.

If the condition code indicates that I/0
operations have not been successfully com-
pleted, one of the following recovery pro-
cedures is taken, depending upon the condi-
tion code returned by DRAM. See Figure 8.

When the I/0 error record has been re-
corded on the drum, VMER resets the task
interlock ky issuing the extended instruc-
tion RESET DRUM INTERLOCK (RDI). If the
buffer which was recorded was the first
buffer in the buffer page, the page is

88

|Issue RDI and return to caller.

SIC instruction reject|Generate message to cperator informing him of drum 1/0|

|Get new drumr SDA from first half word of parameter |

If new SDA is |

|zero, issue RDI and inform operator that no drum path |
|is available. |

released ky calling the FREEMAIN routine.
VMER then returns to the caller via RETURN.

When VMER is called by the Main Operator
Housekeeping Routine (MOHR) during the
startug gprocess, entry point CZCRX4 is
used. A flag is set to indicate entry from
MOHR, and a branch is made to the routine
normally entered at CZCRX3. The drum index
is read, and the current system time is
stored in the index record. The updated
index record is written on the drur, the
drum index interlock is reset, and control
is returned to MOHR.

Crum Access Module (CZASY)

The drum access module (DRAM) is a spe-
cial purpose, privileged, closed, reenter-
able, virtual storage subroutine provided
for the use of those virtual storage pro-
grams, such as VMER and VMEREP, which nust
access the error records stored on the
dummy spaces of the paging drum. This sge-
cial access method is needed primarily to
prevent interfering with the drum paging
operations. (See Chart HC.)

Entry Point: CZASY1 - Type-1 linkage, via

CALL macro

Input: Register 1 contains a pointer to a
location containing a pointer to a parame-
ter list which contains the following:

3

byte |0 1 2 3 i
prmmmm e B  —— i

Word 1|Device Address| Flags®* |[CCW Count|
b 1 i 4

*kit 2 of the Flag Byte contains the
"ignore sick unit®" indication.

The rermaining input parameter list is in
the form of a CCW list:



wWord 2 | First CCW |

e — -4

. | - !

- | - {

e m = e e i

word n | nth CCW j
b e e

CCW n must be a NOP VCCW.

Qutput: Register 1 is returned to the
calling program unchanged; the parameter
list is unchanged, except for the following
changes in Word 1:

Flag Byte:
Bit(s) Meaning
0 File protect was on.
1% Device address has been changed.
6,7 Condition Code after SIO:
-00- Operation complete
-01- Error after SIO
-10- Complete with erxror

-11-#* Drum unavailaktle

+#+ In the event that condition code 3 has
been received, a new device address is
returned in bytes 0 and 1 of Word 1.

Modules called: IOCAL (SVC) - called to
initiate the 1I/0 operation.

Exits:
Normal - when I1/0 operations are complete,
DRAM RETURNs to caller.

Error - when I/0 coperations are either
complete with error or incomplete,
DRAM RETURNs to caller with condi-
tion code indications.

Operation: The calling routine provides
DRAM with a CCW list, which is used to
build an I/0 request control klock (IORCB).
A page list for the IORCB is constructed by
inserting the high-order 20 bits of each
CCW address into the 1list. The origin of
the CCW list is calculated, and each output
CCW is created relative to the page table.
The length of the IORCB is then calculated
in 64-byte blocks, and, when creation of
the IORCB is complete, the I/O operation is
initiated by executing an IOCAL SVC.

A special DRAM flag bit (IORAMM) is set
in the IORCB to notify the page drum queue
processor and other programs concerned that
the call is from DRAM. When the I/0 opera-
tion completes, the DRAM posting routine
(CZASX) is given control. When posting is
completed, control is returned to DRAM,
which determines if a new device address
was posted, as indicated in the condition
code bits of the flag byte.

If a new device address was posted, the
new one is placed in the first two kytes of
the parameter list; otherwise, these bytes
rerain unchanged. The appropriate flags
and CCW count are inserted, parameters
replaced, and the registers are restored.
DRAM then RETURNs to the calling program.

Virtual Memory Environment Recoxrding Edit
and Print (CZASE)

Virtual memory environment recording
edit and print (VMEREP) retrieves, fornats,
and prints the environment recording infor-
ration stored on the paging drum. VMEREP
is a non-reenterable, privileged, wvirtual
storage service routine reserved focr the
custcmer engineer. The routine receives
job requests from the C.E. or a user with
a privilege class of A cr E, and ccmmuni-
cates with him via the GATE subroutine
(CZAAB). (See Chart HD.)

Entxry Point: CZASEl1 - Type-1 linkage, via
VMEREP command.

Input: Error history reports located on
the dummy spaces on the paging drurm.

Gutput: Formatted reports are sent to
frinter or SYSOUT.

Modules Called:
CLEF (CZAEA) - Obtains use of printer for
output.

CPEN (CZCEA) - Opens output data set.

CRAM (CZASY) -
raging drum.

Accesses error records on

CLOSE (CZCLB) - Closes output data set.

RELEASE (CZAFJ) - Releases DDEF for
printer.

GTWSR (CZATC)
user.

- Communicates with C.E. or

Exits: Normal - Exit is made when user
enters job request END.

Operaticn: BAfter identifying himself as a
C.E. or user with proper privilege class,
the C.E./user enters the command verkb
VMEREP which is interpreted by CLI. VMEREP
is then krought intc the system and given
contrcl. The C.E. then enters the follow-
ing information via the console tyfpewriter:

» Symbeclic Device Address of the paging
drum.

¢ Jobk Request.

Section 8: Serviceability Aids 89



If the desired output device is a print-
er, the VMEREP routine calls DDEF (CZAEA)
to obtain a printer.

The job request specifies the type of
information to be retrieved, and the
options applicable. The following job
requests and options are valid:

LIST FAILURES - Lists all errors recorded
on the drum by record-id and error type.

PRINT INDEX - Print contents of the index
record (track 0, record 2}.

PRINT ALL - Print contents of the index
record and all error information on the
drum.

PRINT ID HHRRNN - This job request is given
when information about a particular error
is desired. HH, RR, and BN are the hexa-
decimal values of the track number, head
number, and byte number respectively.

SEARCH CSEE - This request is used when a
particular class of errors is to be re-
trieved and processed.

C is the CPU number (1-8) to which fail-
ure was atributed.

S is the storage element identification
(A-H) to which failure was attributed.

EE is error type, as follows:

01 - Internal machine check.
09 - Multiple internal machine checks.
26 - Immediate regort.

27 - Paging I/0 statistical data record.

28 - Sclid paging 1/0 outkoard error.

29 - External machine check.

2A - Task 1/0 statistical data record.

2B - Solid task I/0 outboard error.

2C - Task channel failure.

2D - Paging channel failure.

2E - Intermittent paging 1/0 cutboard
error.

2F - Intermittent task 170 outboard
error.

41 - System error.

Any parameter not used should be replaced
with an X.

Example: SEARCH XX29 means print all rec-
ords whose error type is 29.

RESTART - This request causes VMEREP to
return to its initial routines.

RESET INDEX - This request should oniy be
used whenever all the data on the drum has
Leen retrieved, so that programs which
record information on the drum can start at
the first record (track 0, record 4).

920

SET INDEX TO HHRRNN - The pointer in the
index record is changed to HHRRNN. Any new
records written on the drum will be re-
corded just after the byte located at track
HH, record RR, byte number NN.

SET IR #*#**(SDA in four hexadecimal digits)
- This job request sets the immediate
report to operator flag in the SDT which
causes each error for the particular device
to be recorded.

RESET IR #*#**#(SDA in four hexadecimal
digits) - This request causes the immediate
report flag to be set off.

END - This job request is used when no
further requests are to follow, and indi-
cates that data sets should be closed,
devices relinquished, etc.

The following options are available to
the user:

PRINT ZEROES - This option forces the
printing of the complete CPU log, zeroes as
well as non-zeroes.

Note: This option is applicable only to
error types 01 and 09 and must be entered
in one of these three ways:

SEARCH CS01 PRINT ZEROES
SEARCH CS09 PRINT ZERCES
PRINT ALL PRINT ZEROES

SYSOUT - This option causes the output of
this jck request to be sent to SYSOUT
instead of the printer.

After the user enters his job request,
VMEREP retrieves the desired information
via the drum access module {(LCRAM), formats
the data, and prints it on the specified
cutput device. If VMER or SERR stored
additional information on the drum while
the servicing of the jok request was in
progress, and is applicable to the type of
information requested, this new informaticn
is fcrmatted and printed.

When the jok requested has been com-
pleted, VMEREP asks the user for his next
job request. When no more error data is to
ke retrieved, the user normally issues a
RESET INLCEX job request followed by an END
request. VMEREP terminates via normal pro-
gram end.

Environment Recording Edit and Print, Model
67 (CMASN)

The environment recording edit and print
rrogram for Model 67 (EREP67) is an off-
line, self-loading, and self-controlled
rrogram used by the customer engineer to
edit and print the information recorded on
the paging drum by error recording programs



(SERR and VMER). This program does not run
with the TSS monitor. It loads itself into
storage and operates under its own control.
{See Chart HE.)

Entry Point: The deck provided is self-
loading. The program is assumed to be the
sole user of the system at execution time.

Input: Error information stored on the
dummy spaces on the paging drum.

Formatted reports are sent to the output
device {(usually a hiqh-speed printer.

Assumptions:

¢ The 1TSS monitor will have to be stopped
before this program can be used.

e The EREP67 program will have access to
paging drum and a print device.

e EREP67 does not save or restore any
environment.

Exits: Ncrmal - exit is made when C.E.
enters job request END.-

Operation: EREP67 cannot be run concur-
rently with the TSS/360 monitor, since
access to the paging device is required.
After loading the program, the ogerator
enters the following information via the
console typewriter.

o Address of the paging drum.
e Address of the ocutput device.
e Job request.

The focllowing job requests, which specify
the type of information to be retrieved and
the options availakle, are valid:

PRINT INLEX - Print contents of the index
record (track 0, record 2).

PRINT ALL - Print contents of the index
record and all error informaticn on the
drum.

PRINT ID HHRRNN - This job reguest is given
when information about a particular error
is desired. HH, RR, and NN are the hexa-
decimal values of the track numker, head
number, and byte number respectively. *

SEARCH CSEE - This request is used when a
particular class of errors is to be re-
trieved and processed.

C is the CPU number (1-8) to which fail-
ure was attributed.

S is the Storage Element identification
(A-H) to which failure is attributed.

E is the error type as follows:

01 - Intermnal machine check.

09 - Multiple internal machine checks.

26 - Immediate report.

27 -~ Paging I/0 statistical data record.

28 - Sclid paging I/0 outboard error.

29 - External machine check.

2A - Task I/0 statistical data record.

2B - Solid task I/0 outbhoard error.

2C - Task channel failure.

2L - Paging channel failure.

2E - Intermittent paging 1/0 outkoard
error.

2F - Intermittent task I/O outboard
error.

41 - System error.

Any parameter nct used should be
rerlaced with an X.

Example: SEARCH 3X01 means print all type-
01 records pertaining to CPU 3.

PRINT ZEROES - This option is used in con-
nection with the PRINT ALL, PRINT ID, and

SEARCH job requests, to force the printing
©of the complete CPU log, zeroes as well as
non-zeroes.

RESET INLCEX - This request should cnly be
used whenever all the data on the drum has
keen retrieved, so that programs which
record inforwmation cn the drum can start at
the first record (track 0, record 4).

SET INDEX TO HHRRNN - The pointer in the
index record is to ke changed to HHRRNN.
Any new records written on the drun will be
recorded just after the byte located at
track HH, record RR, byte number HNK.

END - This job request indicates that no
nore jok requests follow, and that the pro-
gram is to be terminated.

After the C.E. enters his job request,
EREP67 retrieves the desired information
from the paging drum, formats the data, and
prints it on the specified output device.
when no more jobs are requested, the C.E.
norrally issues the RESET INDEX jok request
followed by an END request.

RTAM Error Recording Interface Module
{CZCTR)

The RTAM error recording interface
module (RERIM) is a privileged, reenter-
able, sukroutine residing in virtual memory
which acts as the central point for gassing
error information ketween the RTAM subsys-
ter and the TSS subroutines VMSDR and VMER.
The purpose of this interface routine is to
allow terminal error recording information
to be stored in virtual memory and nct tie
up real core space unnecessarily. RERIM is
passed error information in the MCB messa-

Section 8: Serviceability Aids 91



gearea frcm the real core RTAM error rou-
tine CEATCS. RERIM then analyzes the
information and passes it on to either
VMSDR or VMER for recording. (See Chart
HG.)

Entry Points: CZCTR1 - Entry from LOGON of
Main Operator, and SHUTDOWN. When entered
from LOGON this entry goint is used to
establish CZCTR2 as the entry point for
processing external interrupts with code
value 255. When entered from SHUTDOWN,
this entry point is used to delete CZCTR2.
This is a Type-I linkage entry point,
entered via the CALL macro.

CZCTR2 - Entxy from the task monitor for
recording external interrurpt 255 (X'FF').
This is a queued linkage entry.

Input: Upon entxry at CZCTR1l, register 1
contains a value of X'04' if called by
SHUTDOWN.

Modules Called: CZCRYY - Virtual memory
statistical data recording (VMSDR) - to
accunulate error statistics on task 170
devices in the statistical data table (SDT)
and to inform the operator of the device
failure if the system is in the immediate
report mode.

CZCRX2 - Virtual memory error recording
(VMER) - to inform the operator of a solid
inboard failure of a task I/O operation and
record error records on drum.

Exits:
Normal - control is returned to the calling
routine via a RETURN macro.

Exror - 1if CZICTR2 receives control for an
errcr other than a solid outboard,
sclid inboard, or intermittent
error, a SYSER is issued and con-
trol is returned to the caller via
a RETURN macro.

- if the SDA of the terminal is not
found in CHBSDT a SYSER is issued
and control is returned to the
caller via a RETURN macro.

Operation: When CZICTR is entered at
CZCTR1, register 1 is checked to see if the
routine was called by LOGOFF. If it was,
CZCTR1 issues a DIR macro to end CZICTR2
external interrupt processing and then
returns to LOGOFF. Otherwise, CZCTR1
issues a SEEC to create an ICB and a mes-
sage area for external interrupts. CZCTR1
then issues a SIR designating CZCTR2 as the
external interrupt 255 handling routine and
returns to the caller.

When C2ZCTR is entered at CZCTR2 an ITI

macro is issued to inhibit interrupts.
CZCTR2 then examines the error recording

92

klock in the message area defined with the
SEEC macro issued by CZCTR1.

If the errxor is an intermittent or solid
cutboard error, VMSDR is called to record
the error information. If it is a solid
inboard errocr, VMER is called to record it.
If the error is none of these, SYSER is
called tc indicate a system error. After
recording the error information, CZCTR2
restores ISA fields so they contain the
same information they had when CZCTR2 first
received control. CZCTR2 then issues a PTI
tc permit interrupts and returns control to
the task monitor.

TIME CONVERSION

SYSTIME ROUTINE (CZCTA)

The SYSTIME routine is a closed, re-
enterable, nonrecursive, virtual storage
routine. It is used by the EBCDTIME macro
to convert time from the format in which it
is maintained by the system (that is,
double precision fixed point binary number
of micro seconds that have elapsed since
3/1/1900) into various EBCDIC forms of time
andscr date. The privilege is the same as
that of the calling routine, implying that
SYSTIME is a fence straddler. (See Chart
BF.)

Entry Point: SYSKAl via type 1 linkage.

Input: General register 1 contains a
pointer to the following parameter list:

Word 1 Address of a halfword containing
the length in bytes of the text
field. Maximum allowable length is
50 bytes.

Word 2 Address of the text field in which

the output of SYSTIME is to be
placed.

Cn input, the text field contains
special character groups which
specify to SYSTIME the form that
its output should have. The spe-
cial character groups are as

follows:

YY Year, from 00 to 99.

YYY Year, from 1900 to 1999.

MO Numeric month, from 01 to 12.

DDD Day of year, from 001 to 366.

LD Cay of month, from 01 to 31.

HH Hour of day, from 00 to 23.

MM Minutes past hour, from 00 to
59.

ss Seconds, from 00 to 59.

SSsS Tenths of seconds, from 000
to 599.

Bundredths of seconds, from
0000 to 5999.

SSSS



MON First 3 characters of month.
DAY First 3 characters of day.

CAYW First 4 characters of day.
Wword 3 Zero, or the address of a binary
number to be converted to time ands
or date.
Output: All special character groups

within the text field are converted. All
characters which are not part nf the spe-
cial character group are unchanged. Regis-
ter 15 contains the focllowing information:

Bits 0-15 yy Year, from 00 to 99 in binary.

Bits 16-31 ddd Day of year, from 001 to 366
in binary.
Example: An input text field appearing,

*MO/DD/YYbBH:MMbHOURS*

would give the following output from
SYSTIME:

*01/06/68b23: 59bHOURS"
b = blank.

If the length field is zero (the field
pointed to by the first word of the parame-
ter list) or if the text field is zexo or
blank, a default field as follows is
inserted in the text field, left justified:

'MO/DD/YYbHH: MM*

Module Called: REDTIME (CEAR6) Read
elapsed time SVC. SVC 218.

Exits:
Normal - Return to calling routine.
Error - ERR1 ABEND Using register notation

with length greater
than 50.

FRR2 ABEND Branch Array R2 value
greater than 48 (i.e.,
indexing by R2 value
would exceed length of
takle).

Operation: The date and time are comgputed
from the time parameter supplied by the
user or obtained from the REDTIME macro and
are converted to the equivalent EBCDIC
values.

The input text length is tested for
zero. If it is zero, the default format of
time and date is assumed. If the length is
non-zero, the input field is scanned for
special character groups. Each time a sge-
cial character group is found, the appro-
priate date or time EBCDIC value is stored
as indicated in the text. When the entire
text has been processed, a return is made
to the calling progran.

Section B8: Serviceability Aids 93



SECTION 9: FLOWCHARTS

The flowcharts in this manual have been produced by an IBM program, using ANSI sym-
bols. The symbols are defined in the left column below, and examples of their use are

shown at the right.

SYMBOL DEFINITION EXAMPLE COMMENTS
B3: MODNAME IS THE LOAD MODULE OR LIBRARY
INDICATES_AN ENTRY OR MODNAME NAME OF THE ROUTINE DESCRIBED BY THI
TERMINAL POINT IN A°FLOW- FLOWCHART s
! GALT ;ngs gm'hzmr' COMNAME IS THE COMMON NAME OF TH
TERMINAL BLOCK I ON Tngvf#xz.su NDICATE ROUTIN E
PROGRAM . . OTHERMOD INDICATES THE MODULES PASSING
QTHERMOD CONTROL TO THIS MODULE AND S T
CHART AZ
CSECT
LABEL)
F e | INDICATES A PROCESSING Y €3: CSECT IS THE CSECT NAME OR OTHER ENTRY
EUNCTION OR A DEFINED OP- BOINT AT GHIch PRoCRSSTwe sSLiRR.
PROCESS BLOCK VALUE, PORM OR LOCATION LABELY IS THE LABEL OF THE FIRST
OF INPORMATION. INSTRUCTION.
INDICATES A DECISION OR
SWITCHING-TYPE OPERATION D3: PROGRAM EXECUTION CONTINUES WITH BLOCK
DECISION THAT DETERMINES WHICH OF NO H3 WHEN THE DECISION IS NO, O
BLOCK A NUMBER OF ALTERNAT BLOCK E3 WHEN THE DECISON iS YES.
PATHS SHOULD BE FOLLOWED.
) @
E3: LABEL2 IS THE LABEL OF THE SECTION OF
CODE I8 THIS ROUTINE FROM WHICH CONTROL
LABEL2 ENTRYPT IS PASSED T E SUBROUTINE. COI
E1 E 3 AETURNS TO THE NEXT ms-mucnou FOLLowW-
INDICATES A SUBROUTINE OR SUBRTN AG ING THE SUBROUTINE CALL.
MODULE THAT 1S DESCRIBED
SUBROUTINE IN THIS MANUAL ENTRYPT IS THE ENTRY POINT.
LOC SUBRTN IS THE COMMON NAME OF THE SuB-
ROUTINE IN FLOWCHART
VIA: PASSMECH
VIA; PASSMECH INDICATES HOW CONTROL
PASSES FROM COMNAME TO SUBRTN.,
LABEL3
£1 F F3: LABEL3 LS THE LABEL OF THE SECTION OF
! INDICATES A SUBRQUTINE OR - PDPNM~- ODE WHICH CONTROL IS PASSED TO THE
PREDEF ! NEL MODULE THAT IS INCLUDED PREDEEINED PROCESS PDPNM, * Wi L
PROCESS BLOCK IN THE FLOWCHARTS OF AN- DOCUMENTED ANOTHER BUBLICATION
OTHER MANUAL. i-pnpxn-K”uv ALSO BE USED IN A PROCESS-
G3:  EXECUTION CONTINUES WITH BLOCK H3 WHEN
THE DECISION 1S _YES, OR WITH BLOCK Al ON
INDICATES GENERAL 1/0 G PAGFE 2 OF THIS SET OF FLOWCHARTS WHEN
opuer | BECTIBE RoeR bR o THE DECISION s No.
INP
BLOCK AND stxct CONTROL™ MACRO THE OFFPAGE CONNECTOR KED N1H3 INDI-
INSTRUCTIONS . LATEE QAT EXECUTION CONTINUES WiTH BLOCK

PAGE THIS Si aF
RTS. THIS CONNECTOR 1S ALSO PAIRED
WITN THE ONPAGE CONNECTOR FROM BLOCK D3.

H3: LABEL4 IS THE LABEL UF A SECTION OF CODE

Cl
P oN XAMPLE SWITEH
REPARATLO FOR E. LE, SETS A . OF TH1S ROUTINE THAT INITIATES

MODIFI
OR INITIALIZES A ROUTINE.

ONPAGE
J3: NEXTRTN 1S THE COMMON NAME OF THE ROUT-
C?NNECTOR INDICATES ENTRY TO OR EXIT 3 INE THAT EXECUTES AFTER THIS ROUTINE.
ave -
. . ROM ANOTHER BLOCK ON THE ENTRYPT 15 THE ENTRY POINT OF NEXTRTN
H : SAME FLOWCHART PAGE. WHICH IS DESCRIBED IN CHART

PASSMECH INDICATES HOW CONTROL

ssss
PASSES FROM COMNAME TO NEXTRTN.

QF FPAGE
CONNECTOR
s INDICATES ENTRY TO OR EXIT
bd . FROM A BLOCI HER
. . PAGE OF THE SAME SET OF
b FLOWCHARTS .

.

Sy



Program Logic Manual
GY28-2018-3

System Service Routines

Flowcharts on pages 95-258 were not scanned.



Chart HG. RERIM

SAVE REGISTERS

“ALLED BY
SHUTDOWN

(CZCTR)

2

INTERRUPT
CONTROL BLUCK

D2
RETURN

INHIBIT
INTERRUPTS

A

e

SAVE REGISTERS
ISA ANL I1ORCR

KESTISA
s, |

FR2RET
K

SOLID ERRUR

YES

AITBOARD
FRROR

et ;.
PUT LA~ FROM
ERE BLLt - INT:
> N [ORCB
FiF: S

CLOEYY HA1A.

KFCORD ERROR

KESTORFE TSA AND
1ORCB

ENARLE
INTEFRUPTS

MINOR SYSTEM
FRR( &

FINTODATA FROUM

Pk BLOOKX CINTO

[8A AND LGRCB
FIFID

TR S ————
VLRR2 HBIA3

NO

Bre ORGOERRPOR

K 4
RETUEN

s )
PUT DATA FROM CZCRYY HATA2
ERE BLUK_ INTD
I[SA_ANL TORCB J———ep
FIELIS WECOURD ERPOR
-CERIS- :

-0

“FEAIS-
MINOR SYSTEM
ERRI R

LO

‘CEALS
MINOR % ¢{STEM
ERFOR

propmact

1

Section 9:

Flowcharts

259



AFPENDIX A:

DATA SET CONTROL BLOCK (DSCB) FORMAT

Each SAM direct access volume has a
volume table of contents (VTOC) that
describes its contents; the VTOC contains
all the data set control blocks (DSCBs) for
the data sets contained on that volume.

Each VAM volume has a PAT table describ-
ing whether a page is used for DSCB or
Data. The VAM DSCBs are of E and F
formats.

For SAM formatted volumes, the TSS/360
DSCB formats are:

Format-0 - an unused DSCB; contains binary
Zeros.

Format-1 - the data set label for direct
access volumes containing phys-
ical sequential data sets. (See
Figure 9.)

Format-3 - used to describe additional
extents of a physical sequential
data set if there are more than
can be described in a format-1
DSCB. (See Figure 10.)

Format-4 - the first DSCB in the VTOC.
(See Figure 11.)

Format-5 - describes available extents on a
volume containing physical

260

sequential data sets. (See

Figure 12.)

Format-A - the data set label for direct
access volumes containing virtu-
al storage data sets. (See
Figure 13.)

Format-B - used to describe additional
extents of a virtual storage
data set if there are more than
can be described in a format-A
DSCB. (See Figure 14.)

Format-C - describes available extents on a
volume containing virtual
storage data sets. (See Figure
15.)

For VAM formatted volumes, the TSS/360
DSCB formats are:

Format-E - This DSCB is used for single or
multi-volume VAM public or pri-
vate data sets. (See Figure
16.)

Format-F - This DSCB is used as an exten-
sion of the format E DSCB. (See
Figure 17.)



Appendix A:

Y T T T mmm————T - - 1
|F1eld | | i | i
INumberlFleld Name ]IdentxflcatloniLength }Representation[Usage |
+ 3
?1 {Data Set |DSCNME |uu bytes;alphamerxc fMay have one of two forms: E
| | Name | i | (EBCDIC) } ]
{ i | | { | 1. User ID.User Name {
| i | i } | 2. User ID.User Name.Generation |
| | | i t |
I i | | | |The user ID is eight bytes in length. The |
| | i | | luser name is a maximum of 35 bytes in form |
! | | | | {1, and 26 bytes in form 2. The generator |
| { | | { iis of the form GNNNNVNN (eight characters) |
| i | | | fwhere N is a decimal number. |
| i | | | ] i
] i i | | {No If a user declares himself an 0S/360]
| i i i | §user. the User ID is not concatenated and |
| | i | | jhe is allowed a 44-character name in form 1|
| { | | | land 35 characters in form 2. {
b = 1 I S -~ -1
12 {Format | DSCFID |1 byte |hexadecimal | Contains X°'F1° |
{ |Identifier | I | | |
b + 4 } t o - —
I3 {Data Set | DSCVSR {6 bytes |alphameric [Used for datasvolume relationship. This |
| {serial | | | (tEBCDIC) |field contains the volume serial number of |
i | Number i { | i{the first (or only) volume which contains |
| | | | | | the data set. {
t + 4 $ t Tt i
| {Volume |DSCVSQ |2 bytes |binary {Used to indicate the order of the present | | |
| |Sequence | | | |volume relative to the first volume, |
| { Number i | | {containing the data set. Range is from |
i | | | I [0001 to 9999. ]
’ + + — fre e -4 mmemmmmee :
| {Creation | DSCCRD |3 bytes {discontinuous |YLD where Y—year (0-99) and DD=day (1-366) |
| |Date | | | binary | H
F + - + + e e e e 1
| {Expiration |DSCEXP |3 bytes |discontinuous [Indlcates the year and day the data set mayj
| |Date | | | binary | be purged. Has same form as the Creation |
| f i { | Date. |
~~~~~~ I 1 -t T + -—- {
{Number of |DCBNEX |1 kyte |binary | The number of total separate extents in |
{Extents on | | | |which the data set resides on this volume; |
{Volume i | | | count does not include extent describing a |
i | | | juser*s label track. |
P + e fommmmmmee -+ --- e
|Number of |DCBFL1 {1 byte |binary |Used only for an 0S/360 partitioned data i
|Bytes Used | | | |set. It contains a binary number indicating|
{in Last | i | |the total number of bytes being used in the|
{Directory | | | |last available directory block. Value of |
}|Block i | | | zexro indicates that the last available }
{ i | { | block is not being used. |
¢ t: —-—+ S — e :
|Spare | DCBSP1 |1 kyte | | |
+- - I T S -- --{
| System | DCBSCD 113 bytes|alphamer1c |To identify the programming system. Only |
|Code | | | (tEBCDIC) jcharacters A-Z, 0-9, and blanks are used. |
T —— e I e 1
|Reserved | |7 bytes | | {
j|For Future | | | i i
{Use i I | [|
+ b~ e B e e e 4
|File Type |l BFTY |2 bytes |hexadecimal |Bex Code Description |
i | | | | 4000 Sequential Crganization |
i | | | | 2000 Cirect Organization |
| I | | | 0200 Partitioned Organization |
i | | | | 0000 Organization not defined |
| { I | | 8000 Index Seqguential Organization i
| I] | | |

| i { | [Note: If bit 7 of byte zero is cn, the
{ | | | |data set described by this DSCE must remain|
i | | | | in the same absolute location of the direct|
| { | { | access device. |
¥ P —— —— e S —— e e e e e e e 2 o 2 e e e i e o o e ~4

Figure 9. Format-1 DSCB (Part 1 of 4)

pata Set Control Block (DSCB) Format 261

1 T T T T
|Field | | |
{NumberlFleld Name |Ident1f1catlon|Length

-
|

Representation|Usage |
b

—

[
[
-4

|Record [DSCRFM |1 byte

inary !Blt Blnary Code
| Format 10

fixed-length record (F)
variable-length record (V)
undefined-format record (U)

(=
[)
oo

N
[}

track overflow feature must be
used

3 = blocked (B)
truncated records in data set (T)
control character ASA code (A)

control character machine code (M)
contrxol character stated

(=3
=
Wonon

7 Not used

+.___..___.-_...__....._._._..._
&
it

[
N

1 byte binary |The 8 bits of this field are used to
|indicate various options used in building
|the data set. The bit configuration of
jthis field is exactly the same as that
|described for the OPTCD field in the DCB.
|Bit 0 of this field is common across the

| various data set organizations, as follows:

e e o i S e P e . e, o e . Bt S s

Bit Description
0 If on, indicates data set was created
using Write Validity Check

|
|
%
{b
t
]
i
|
]
|
1
|
|
!
i
|
|
|
|
|
t
|
t
I
|
|
|
|
|
|
|
|
]
i
,‘ir

[uy
W

2 bytes \{binary {Block length for flxed-length records or
] |maximum block size for variable-length
| | records (1-32,767 bytes).

4
|
|

o -—- ~
|
i
|

[
&

2 bytes |binary |Record length for fixed-length records cor
{ |the maximum record length for
| |variable-length records. (1-32,767 bytes)
R e R - -—-—4
1 byte |binary | Length (1-255 bytes) of the key of the datal
|record in the data set. A value of zero |
|means no key exists. |
e O {
binary {High order position (byte 1 through byte |
|
|
|
|

[
wn

[N
=23

Key
Location 132,767) of the key in the data record. 2
|value of zero indicates that the key is not
{in the data portion but corresponds to the

|physical key on the direct access volume.

ey
~
f
{
|
|
|
|
!
i
|
|
|
1
]
{
|
|
|
i
{
|
{
\
t
|
|
1
|
|
]
|
i
|
]
]
|
1]
|
i
|
]
]
R

Data Set Bi

Indicators

[ad

Description

If on, indicates that this is the last
volume which normally contains this
data set.

7]

oy

Sgare

N

If on, indicates that the block length
must always be a multiple of eight
bytes.

w

security protected and a password must
be provided in order to access it.

=

(Cata Set Abnormal Close) if on,
indicates that this data set may be
invalid due to abnormal termination of
a task which was writing or updating

|
|
|
|
!
|
|
|
:
If on, indicates that this data set is|
|
|
|
i
|
|
|
the data set. {

!

|

o o e e e i T e S . S s, i S s o i, T e . S Bt R . D o o T . S e Al s Qg = st S T . T St T o, S o e . S e . T S e e e S, S . T S, S e P S i e . o st S
|
| .
|
o e e o e o i o S i e B e o e e e e o o o T i W s, e . i S e, . s i, e s S W s e S s, S s S e, . e S o i o i B e e et i, S s, W . W s i
|

e e e e e s o i e S i ot S S e S e, . s . s o O s o . e P s . s S . s S = G e s G T . . g S e o e s

o ————— e

Figure 9. Format-1 DSCB (Part 2 of 4)

262

r]
|Field | | o _
| Number {Field Name |Identification

T

[— ro——

[
o)
o1

|
]

{Original
{Request For
| Space

s S o, S S s, S i, B . . i, U o i e S i D oo . S S i, O s W, S S S O S . s e . i, AT i, S o e W T o S,

[y
O

e e st e ot s A e St s

Secondary
Allocation

|

a

s
c

»
|

|
i

|
i
[

i
|
|
i
|
s
!
I
i
[
|
|
|
l
e
[
|
|
|
|
|
|
|
1
|
|
|
1
|

i
|
|
|

{.
f
t
l
|
1
|

1
|

|

----------- t
Last Record}
Pointer |

{
|
1
|
|
{
|
t
|Spare |
[S S 1

9. Format-1l DSCB (Part 3 of 4)

Appendix A:

1
| {
]

epresentation|Usage

+
|This field indicates the type of reguest
| that was issued for the initial allocation:

Bit Description

0,1 00 indicates original request was in
absolute tracks; no secondary
allocation is made.

01 indicates request is in number of
records.

10 indicates request is in number of
tracks.

11 indicates request is in number of
cylinders.

2 If on, indicates original request was
for an indexed sequential data set
with embedded index.

3 Spare

guantity on the volume.

5 If on, indicates that the original
request was for the maximum contiguous
gquantity on the volume.

6 if on, indicates that the original
request was for the five or fewer
extents that were larger than or equal
to a specified minimum.

7 1f on, indicates that the original
request was a rececrd request and was
to be rounded upward to a cylinder
boundary.

|
|
|
i
t
|
|
|
|
|
]
|
{
|
|
|
|
|
%
| request was for the maximum contiguous
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
+

{binary number indicating how many blocks,
|tracks, or cylinders are to be requested at
| the end of the initial extent when

|
|
I
|
|
|
|
|
!
!
]
|
|
|
|
|
|
i
|
|
|
|
%
4 1f on, indicates that the original |
|
|
|
|
|
|
[
{
!
!
t
|
|
1
|
!
1
|
|
:
|processing a sequential data set. |

L

| {(Direct Access Address) -- identifies the
|last recocrd. It is in the format TTRLL

| (where TT is the relative address of the
|track containing the last record, R is the
|ID on that track, and LL is the number of
|bytes remaining on that track following the
| recoxd). If all five bytes equal binary

| zeros, the last record pointer does not
lagply.

Data Set Contrcl Block (DSCB) Format 263

F T T T
{Field |)

| Number |Field Name |Identification|Length
i 4 '

Representation|Usage

T - - 1

|

4

4
1 T T
|Extent Type|DSCXTS i1 byte
{Indicator

|Hex

N
[t

hexadecimal

e e i e s e g e . S e S st S s SV e S e . e,
e e e s e s e s, o s S s, S e T e e e S, i . o B e e s

N
N

|Extent
|Sequence
| Number

DSCMVL

[N
w

Lower Limit |DSCLCH

e e e e e e s o e e e e e e e i i S e G S i . . e e e s S e, S i e, e B S . e, e W .

} ——

|Hex Code Meaning

00 Next three fields do not indicate
any extent.

[
ey

Prime Areas (Index Sequential)

or consecutive area, that is, the
extent containing the data rec-
ords (user's).

02 Overflow area of an indexed
sequential data set.

(o1} INDEX area of an Index Sequential
data set.

40 Next three fields indicate one
track is used to contain user's
data set labels.

80 The extent described is sharing
one or more cylinders with one
or more data sets.

81 The extent described begins and
ends on cylinder boundaries,
i.e., the extent is composed of
one or more cylinders.

e em §
|This field uniquely identifies each |
| separate extent on a given volume for a {
{data set. For all organizations but |
jindexed sequential the first extent of the |
|data set on each volume is identified with |
|
i
|
i
|
i

e e s i e o S st i St . i e e . . S i . S i S v S

la zero in this field. The first extent on
jeach volume of an indexed sequential data

| set is identified with a value of one in
|this field. Additional extents on the

| volume axe identified with sequentially
|increasing binary values. This field is
jalways zero for an extent field pointing toj|
{a user label track. i
+ -
| (Direct Access Address) - the cylinder and |
jtrack address (CCBB) specifying the |
|starting point of this extent component. |

N
&

Upper Limit|DSCLCH

== T
|Additional |DSCEX2
|Extents |
4 4

o e e . e . e T T e S st i o i P

25-28

|
|
|
|
]
i
}
I
|
|
|
|
|
|
i
|
|
|
|
|
|
|
i
|
|
1
- T

{1 byte |{binary
|
|
|
|
|
|
i
|
i
|
|
|
+
!
|
|
+
|
|
|
4
10 bytesi
{

______ e - P

| (Direct Access Address) - the cylinder and |
|track address (CCHH) specifying the ending |
|pcint of this extent component. |

-
| Same as fields 21-24. |

| |

T T
jAdditional |DSCEX3

| Extents |
} 4

[8]
Y]
|
w
L)

10 bytes|
|
—_— -4

-+ - -
|Same as fields 21-24.

|

w
w

T T
{Pointer to |DSCCN3
| Next DSCB
| Record

5 bytes

[et s i, S 4 e s S . e S i Sy i iy e O s A G e, i s, R PO, S . s O S o Y D S e s O A" i, S i, MO e, A S S ek A A e B o, SO A Y S T . G W S S i €

R
[e e e s s e e e e e St s s e e i e e e o s . o e e B o Bt e e . e

|
!
]
i
|
!
|
1
!
j .

o o gt e

P _—
|This field contains the CCHHR of a
{continuation DSCB, if needed, to further
|describe the data set. The next DSCB will
|be of the format-3 type. All zeros signify
jthat this is the last DSCB.

L

| (If field 10 indicates Index Sequential

|Organization, this field will point to a

| format-2 DSCB.)
———ld

264

B e e e s e S S, v s

T ' ¥ T T T - 1
{Field | | . |
|Number {Field Name |Identification|Length |Representation|Usage i
[% 4 4+ EN i 4 4
) 3 T L A]
i1 {Key Identi- |DSVNME |4 bytes |hexadecimal |'03030303° i
i {fication | | | | !
i i in key) i |] | i
=t . 1 } e q
12-17 |Extents | DSCEX#4 40 bytes| |Same as fields 21-24 of format-1 DSCB. i
{ j (in key) i { | | Four extents. |
L 4 i 4 it 3 i
¥ T 14 v T R T <
j18 | Format | DSCFID {1 byte |hexadecimal |"F3° i
| {Identifier { |] | !
b + t 1 t 4 4
{19-54 }additional |DSCEX9 |90 bytes| |Same as fields 21-24 of format-1 DSCB. i
i jExtents i { | |Nine extents. |
b & + ¥ pommmm e -4
|55 {Pointer to |DSCCHN {5 bytes | | CCHHR for next format-3 DSCB. |
| |Next DSCB | | | |2exo in field signifies this is the last |
i | | [| | DSCB. |
L | S i L 4 — 4. e . o s e . 200 e i s e 2 -]
Figure 10. Format-3 DSCB
o B SIS b St et ¢ Y e o o—— 1
[Field |Field |] | i
| Number | Name |Identification|Length |Representation|Usage i
t + T ¥ + -—-——4 - ——
i1 {Key Field |VTC Key {44 bytes|hexadecimal |"04*s*™ i
e + t - 4
12 | Format ID {VTCFID {1 byte |hexadecimal {"F4" |
e + -—- - e e ~
13 jHighest | VTCHPC |5 kytes | |This field contains the address of the last]
i {Prime | | | lactive format-1 or ~-A DSCB. It is used to |
| j CCHHR | | | |stop a search for a data set name. |
i U l 4 -4 S, 3
T R T v v ——— 1
K] |Available |VTCHCT |2 bytes |binary jCount of numter of unused records in VTOC. |
[| DSCB | | | i [
i |Records { i | i i
— e TR +—- TR t- - -4
15 {The CCHH | VTCHCA |4 Eytes | | (See Hote 1 in field 7.) {
| jof the Nextj | | { |
i |Available | | I | |
I {Alternate | | | | |
| {Track i | | | |
t + e S T - - oo 1
|6 {Number of | VICNAT |2 bytes |binary |This field contains the number of alternatej
| {Alternate | i | |tracks available. For the 2321 the
| {Tracks | | | |assigned alternate area will be the last |
i | | | | |four strips in each cell. (See Note 1 in |
| | | [| [field 7.) i
— - fomomeemmm e + oo e
17 |VTOC | VICFL1 {1 byte | |Bit 0 - If on, means that either no |
| {Indicators | | | |format-5 or -C DSCBs exist or that they do |
i | | | | |not reflect the true status of the volume. |
| i | | | | i
i i | { | |Bit 1 - If on, means that the format-C DSCB{
| H | | | |is bkeing used for storage management. The |
i | {] | {volume is formatted for VAM. |
|] {] | |
| { { | | |Bit 2 - If on, indicates that the volume isj|
i | { | | |a system (puklic) wvolume, and should have |
| | | | | | space allocated (by TSS/360) accordingly. |
|] | 1 |]]
i { | | | |Bits 3-7 - Spare. |
I s [1 | i) |
|] i | | |Note 1: BAlternate tracks will ke assigned |
| i i { | }in ascending sequences. Thus, field 5 will]
| | | } i |be incremented and field 6 decremented by |
| { { | | |one when an alternate track is used. |
e — +- + ——-——t T S - e i
| 8a {Number of |VTCNEX |1 byte |hexadecimal |This field contains the hexadecimal |
i | Extents { | | |constant *01°' to indicate one extent in thej
| | i]] {vTocC. |
| A L A e e e e L — i - -t 4
Figure 11. Format-4 DSCB (Part 1 of 3)

Appendix A:

Data Set Control Block (DSCB) Format

265

'3 T T T - -1
|Field |Field

| Number | Name Representation|Usage |
i $

Identification|Length
¥ AT 1

T T -
|Resexrved VIC$02 |2 bytes
|for Future

| Use
1

)
=2

+
| Device VTCDVC

|Constants

-]

14 bytes|binary |This field contains physical constants
|descriting the device on which this volume
|was mounted when the VIOC was created.
| This field contains the following
finformation:

Device Size (2 bytes) - The number of
logical cylinders in a volume on this
device. (A logical cylinder is the
smallest collection of two or more
tracks that can be protected by a Set
File Mask CCW.)

Logical Cylinder Size (2 bytes) - The
numbexr of tracks in a logical cylinder
on this device.

|Track Length (2 bytes) - The number of
lavailable kytes on a track exclusive of
|home address and record zero (record zero
|is assumed to be a non-keyed record with an
|eight Lkyte data field).

|
| Record Overhead (3 bytes) - The number of
|bytes required for gaps, check bits, and
|count field for each record. This value
|varies according to the record
|characteristics and thus is broken down
|into three subfields:

I Cverhead required for a keyed record
cther than the last record on the track.

|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This 1s the first byte. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|

[l

Overhead required for a keyed record that
is the last record on the track. This is
the secaond byte.

K Overhead bytes to be subtracted from the
1 and L kytes if the record does not have
a key field. This is the third byte.

Flag (1 byte) - Further defines unique
characteristics of the device.

Bit Description
0_

4 Reserved for future use.

wn

CCHH of an absolute address (CCHH)
is used as a continuous binary value
as in the case of the 2301.

6 CCHH of an absolute address (CCHH) is
used as four separate one-byte binary
values as in the case of the 2321.

7 A tolerance factor must be applied to
all kut the last record on the track.

|Note that if bits 5 and 6 are off, the CC
land the HH of an absolute address (CCHHR)
|are used as half-word binary values as in

{the case of the 2311.
..... 8 U,

.
|
H
H
|
|
1
|
|
|
x
|
|
|
|
|
|
:
1
|
|
t
!
|
|
!
a
|
s
|
a
|
|
n
|
;
!
1
|
!
!
|
!
|
|
|
|
:
n
1
:
|
|
|
|
|
|
|
1
|
|
n
|
|
|
|
1
|
|
i

(o S e . Ao g i e 4805 . e it S o S S S it A . e i SRS i, ! G i G S . e . A i S . AL, s e A e e . e AN i S . . e S . s e, M Sl e, O . . b, W . s O
o s i e s . B s s S Tt " . o — e S G, . i, e i, T s S . S s S i, i, T e o o . e S . S e S s S S o e S e S, g . e

o e e o e S o S e S . B e, o gt o o, i i S e S s, S S i S " o, St ot S . . it W e, o . e s, Ot W i, S . o . o St . s, S . o g e, W it B s, i,

P o i S e o s S . s S e i Tt . 5 i S e R e T e S . T e S e A e S s, P o e . . T S e A e, st B i S i A S S in W i S e e . St o e o o 2 i e S s

{
i

———— ———d

Figure 11. Format-4 DSCB (Part 2 of 3)

266

T

LE

T T 4
1Fleld]Fleld i | | i
| Number | Name |Ident1f1cation|Length !RepresentationlUsaqe i
5 } + + t == {
{ | § | | | Tolerance (2 bytes) - A value that when _]
{] | | | jdivided by 512 is wsed to determine the |
1 { | | | |effective length of the record on the |
i | | | | {track. |
| l I ; I i
| i | |] | DSCBs per track (1 byte) - Contains the i
] | | | | |number of full records of 44-byte key and |
| | i | | |96-byte data length that can be contained | |
| | | | | |on one track of this device. |
| | ! | |
| [i i | |Birectory blocks per track (1 byte) - }
i | { | { |Contains the number of full records of |
| i | i | |8-byte key and 256-byte data length that i
i { | | | jcan be contained on one track of this |
[i I t [jdevice. ;
pomm e A e prommmmee oo oo e -4
j10a |spare | vIc$0u 119 bytes| | |
S e T R —— oo —
110B |Gross | {5 bytes {hexadecimal |Right-most four bytes indicate number of {
} {Available | i | | pages available if it is a VAM volume {
i {Space i | | | (field 7, bit 1 on); otherwise the first {
| { | { | |two bytes indicate the number of cylinders | | |
| { i | | |which are entirely free and the next two |
| { | | | |bytes indicate the tracks not on the |
| | | | | |cyclinder which are free. Left-most byte |
| | i i { | (X*FF') indicates space allocation by |
l | I | | | TSS/360 only. |
e e mmm e e oo T T e !
jiocC [Pointer to |VICPTR |5 bytes |binary | This field contains the CCHHR of the first |
| | Format~6 | | | |format-6 DSCB if it exists. Otherwise it |
i | DSCB | | | jcontains binary zeros. {
———————— -t T DO B e
|11-14 jvTCC | |10 bytes| | These fields describe the extent of the | |
| | Extent | | | |VIOC, and are identical in format to fields|
| { | | | | 21-24 of the format-1 DSCB. |
—————————————————— O S - e
|15 | Spare { VICS05 125 hytes| |]
[- T S [S S F S, e e e e e i et e e e 1
Figure 11. Format-4 DSCB (Part 3 of 3)
—————————————————— T e e e e e s —————— e ———n
;meld iPleld] | | i i
| Number { Name {Identification|Length |Representation|Usage {
— o am T T fommmmr— - o -- -
i1 |Key Identi-|DASKEY {4 kytes |hexadecimal | T05050505"° }
| {fication | | | | I
| | (in Key) | | | | |
— fommmmmmmmem o= e oo e Tt 4
|12 fAvailable |DASEl {5 bytes | | Extent of space available for allocation toj
| |Extent | | | l]a data set. First two bytes = relative |
| {{in key) | | | jtrack aeddress. Next two bytes = number of |
| | { { | |full cylinders included in extent. The |
| i { | | |last byte = number of tracks in addition to}
| { { | | |cylinders in the extent. |
e e fommmmm e + R T
|3-9 |Available |DASE2 135 bytes| |Same as field 2; they are in relative track]|
| {Extents | | | faddress sequence. {
| | Gin Kkey) | [I | [
e S e S oo ae e o -
{10 | Format | DASFID {1 tyte |hexadecimal | *F5° i
i {Identifier | | | |
o e fom e e
{11~-28 |Available |LCASES9 |90 bytes| |same as field 2. Theze are 26 available |
| | Extents 1 | | |extent fields in this DSCB (key and data). |
T e o e pommmm oo e
{29 |Pointer to |DASCHA |S kytes |binary |This field contains the CCHHR address of |
| | Next i { | {the next format-5 DSCB if it exists. It |
| {Format 5 i | | |contains binary zeros otherwise. |
| S . i G, S, e e e e e e e e e e e i o e 3
Figure 12. Format-5 DSCB

Appendix A: Data Set Control Block (DSCB) Format 267

e B

r T T T T h]
| Field |Field | | | |
| Number | Name | Identification|{Length |Representation|Usage]
— $ e t R 1
i1 |pata Set { DSVNME |44 bytesjalphameric {Same as format-1, field 1. |
| | Name ! i i(EBCDIC) 1 i
3 + L) - T ¥ - T T T T T - _—_‘l
{2 ;Format | DSVFID |1 byte |hexadecimal | *FA* |
| |Identifier | i | | |
b t t t t T -— 4
| 3a |Date Last |DSVDLU |3 bytes | | ¥DC, where Y=year (0-99) and DD=day |
i iUsed 1 i l i(1—366) . 4|
T T b v IR S - Tm——
|3b |Rate of | DSVROU |3 bytes | |]
i {Usage |] i | !
b + + + t N S 1
{4 { Vvolume | DSVVSQ |2 bytes |binary | Same as format-1, field 4. {
[|Sequence | |] | !
| | Number | | | | |
b + + - O it S -
|5 |Creation | DSVCRD {3 kytes |discontinuous |Same as format-1, field 5. {
Date |binary
- 1, R 2 -
|6 |Expiration |DSVEXD {3 kytes |discontinuous |Same as format-1, field 5. |
l IDate { i ibinary l j
r T T - 1 e 2
|7a |Number of |DSVNEX 11 kyte | } | | |
| | Extents of | | | | |
| |Volume | | i i |
S oo +- G e - e 1
|7k |Number of |DSVLPB |2 bytes |binary }|Sane as format-1, field 7b. i
[|Bytes Used | | | | |
i |in Last | | ! | |
| |Data Page | | | | |
S t t U O — - i
|8 | System Code|DSVSCD |13 bytes|alphameric | Sare as format-1, field 8. |
| J| 4‘ '|} I(EBCDIC) i }
1 —— - ———— - —— _
3 T - Tv—— " B
|8a |PAD for | DSVXPD {1 byte | | i
i {index | | i | |
{ | sequential | | { | |
i |data set | | | { |
¢ p---- t —t - e - -4
1 9 | Spare LDSV 01 16 bytes i i |
b R O e e e -— -
3
| 10 |File | DSVFTP [2 bytes | |X*7100' VAM Index Sequential |
| | Type | | { | X*7200" VAM Sequential |
} | i | | |X*7300' VAM Partitioned Index Sequential |
i i | | | [X*"7400' VAN Partitioned Sequential |
| | | | i | X*7500' VAM Partitioned |
T e T & oo A e e 4
| 11 |Record | DSVRFM |1 byte |binary |Sare as format-1, field 11. |
| | Format | | | | |
e pommmmm oo pommmm e pommmm oo e i
} 12 |Option | DSVOPC {1 byte |binary |Same as format-1, field 12. |
I [Codes |] i | |
e + pommmm e 1- oo e 1
| 13 {Record | DSVRCL {4 bytes |binary | Sare as format-1, field 14. i
} | Length | |] [
f----—- + fommmmm e 1 P D - e -4
| 14 | Key Length |DSVKYL |1 byte |binary | Same as format-1, field 15. |
- + $-- -4 pommmmmmmmoee pommmmmmme -—- {
{ 15 |Key | DSVKLC |2 bytes |binary |Same as format-1, field 16. |
i | Location | | | § |
1 4 - S +__. e + ___ .{
r L3 T
| 16 |Data Set | DSVDSI {1 tyte |binary | same as format-1, field 17. i
{ | Indicators | | | { |
b + pommm s - fm oo e i
{ 17a |Original | |1 ktyte |hexadecimal |X*00*' No secondary allocaticn. |
| |Request for| | | | |
| |Space |] | | |
| fIndicators | i | | i
¢ + O + frmmmm e eeeee fmmm o —mmmmm oo -
| 17b |Secondary |DSVSAL |3 kytes |binary |Sare as format-1, field 18. |
{ jAllocation | | | { |
[| | Lo § U 1

Figure 13. Format-A DSCBE (Part 1 of 2)

268

T

T L] T T 1
|Field |Field |) o | . |
| Number | Name {Identification|Length iRepresentatlonlusage _J

4 - —
P + --+ + T T X
i 18 ENumber of | DSVNDP |2 bytes | |]
i {Data Pages | | | | s
pommmm +- - et + i
i 19 |Number of |DSVDOP |2 bytes 1 {Numbet of page in POD or index directory. %
| |Directory | |
Pages | | | | |
S G s ; ; S i
| 19a |Number of |DSVNOP {1 byte | { |
{ joverflow | | | | |
i |pages i i | { J
RS s + + oo m et 4
| 20 {Total | DSVTNP |2 bytes | | |
| | Number of | i | | |
i |pages Thus | | | | |
i | Far |] | | |
| {Assigned | | | | {
1 + + - + ———=t -—~~—t e e 1
1 21 | Extent { {6 bytes | | i
1 4 4 4 4+ - ._{
& _—+- T v T T R N R
| 21a | | DSVXTS i | |Bits Description . i
{ i | | | |2 00 = pages are in use |
1 I | | | i 01 = pages areﬁnot in use |
| 2ib | | | | |14 number of continuous external pages |
| 21c | | | | |16 first external page number |
| 214 | | { | |16 first virtual page number |
i U 4 4 - i - {
o ——— e T T T
{22-25 {Extents [|24 bytesi 1F ur more extents. -j
______________ 4 } $ + ————
t 26 [Next DSCB {DSVWXT :S kytes |binary jCCHHR of a continuation DSCB (format-B). |
| { | | | {1f there are no format-B DSCBs for the data|
] 1 | | | |set, then this field contains binary zeros.|
L R . i ——— 4 4 4 —— JU—)
Figure 13. Format-A DSCB (Part 2 of 2)
""""" - T 1' T - -T— .
|F1eld IField i | I
iNumber{Name]IdentxflcatlonlLength |Representation|Usage |
pom—mm t T S §
1 {Key Field |DSV7KY |2 bytes | hexadecimal | *OBOB* ‘7
| | tin key) | | | | i
e e Ve oo $-—- -4 |
i 2 | Extent | DSV7X1 j42 bytes]| |Seven extents as described in format-A, i
| | {in key) | i | |field 21. |
b + + --- + % + - -
I 9 | Format | DSV71ID |1 byte |hexadecimal | 'FB* |
| | Identifier | | | | i
l 4 — I, $ -+_..._ - 4 - __.'
T T + + +
| 10-24|Extents | DSV7XZ } 90 bytes| {15 extents as described in format-A, field |
| x | | l |21. |
o o pommm et eee oo pommmm e - - -
{ 25 {Pointer to |DSVTNX |5 kytes |binary |CCHHR format. Binary zero if there are no |
| {Next for- | { | {chained format-B DSCBs. |
i ;mat B DSCB | | | i i
| Y U — i i) S _i

Figure 14. Format-B DSCB

Appendix A: Data Set Control Block (DSCB) Format 269

r T T T T -—T ————
|Field |Field | | | |
| Number | Name |Identification|{Length |Representation|Usage i
| } f -——+ + g e -
{ 1 IKey Field iDAVKEY |4 bytes]|hexadecimal { *ococococ®
| | tin key) { | | | |
¢ + oo b prmmmm e 1 e
| 2 | Extents | DAVE1 |4 kytes | | i
{ | tin key) | | | | |
b t 1 -t ¥ o —— -——
I 2a | | DAVE1l | | {Bits Description |
| i | | | {16 number of continuous external pages |
b e s t $ - ¢ 4
| 2b | | DAVE12 | | {16 first external page number |
'_ i i 1 _Pi %
| 3—111Extents {DAVEZ {36 bytes| |Same as field 2 above. 1
[| tin key) | | | | |
b 1 t { + - 1 1
| 12 | Format | DAVFID |1 byte |hexadecimal | *FC* i
| |Identifier | | | | |
t + t + 1 + - -4
| 13 | Spare | DAVS1 |3 bytes | | l
% + + -t t + -
} 14-34 |Extents | DAVEB | 84 bytes]| | Same as field 2 above. |
] | | DAVELF (last | | |
| | | extent) | | i
L } } Il e 4 N
i o 1 T T 1 T 4
| 35 | Spare | DAVS2 |3 bytes | | |
3 ¥ 1 t $-- + -
| 36 |Pointer to |DAVCHA |5 tytes |binary |CCHHR format. Binary zerc if there are no |
} | Next | i {chained format-C DSCBs. {
i |Format-c | | | } [
{ | (DSCB) | | | i !
L i 1 k X i J
Figure 15. Format-C DSCB

T T T T - 1
{Byte| ID | Full Name |Length | Representation i
| No.| } | (bytes) | |
P Pt -~ ¢ - —mm e
| OO|DSENME|Data Set Name | uu | |
| | | | | |
{ U44|DSESCD|System Code | 13 | |
| l | | | |
| 57|DSEXpPD|Pad for Indexed | 1 | |
} | |Sequential | | |
| | | | |]
| 58|DSELPB|No. of Bytes in Last { 2 |]
| | |pata Page | | i
i | I , | | |
| ©60|DSERFM|Record Format | 1 | |
| | | | |
| 61|DSECPC|Option Codes { 1 | g
| | | | | |
| ©62|DSEFTP|File Type | 2 | |
| | |] | |
| 64 | | 1 | Spare i
| | | | | |
| 65|DSERCL|Record Length | 3 i |
|] i | I |
| 68|DSEDSI|Data Set Indicators | 1 |]
{ | | i |
{ ©69|DSEKYL|{Key Length | 1 | :
| | | | o
{ 70|DSEKIC|{Key Location | 2 | :
| | | |]
| 72|DSESAI|Secondary Allocation | 1 | g
i | |Indicator { | i
| | | | | |
| 73|DSESAL|Secondary Allocation | 3 | i
| . 4 i L L ———— 1
Figure 16. Format-E DSCB (Part 1 of 2)

270

| S el B S - T DU A - 1
jByte| ID | Full Name |Length | Representation |
|No. | | | (bytes) | {
s o T — 1 + - -
| 76|DSENDP|No. of Data Pages | 2 | i
|] | | |
{ 78|DSEDOP|No. of Directory Pages | 2 | |
| | | | | |
| BO|{DSENOP|No. of Overflow Pages | 1 | |
| | | | |]
| B1|DSENVL|No. of Private Volumes | 1 | |
| | ! | | |
| B2|DSETNP|Data Set Size at Close | 2 i |
|] | | | |
i 84} | | 1 | Spare |
| | | | ! | |
| 85|DSECRD|Reference Date | 3 | |
| | | | I |
| B88|DSEEXD|Change Date | 3 i |
| !]] | |
| 91 | | 5 |spare |
] I | | i |
| 96| | | jList of Vol. 1IDs for volumes of a privatej
| | | | |data set in 6-byte entries. Length is | | | | |
| | i | |dependent on the value of DSENVL |
| [| | I |
| | DSEENT | Page Entries (1 word) | | Format : |
| | | | N S Gt |
| 1 | | | |AF (2) | (2) |Rel Vol No(12)|Ext Pg. No(16)| |
i | e e i
| 248|DSECHN|Pointer to Next DSCB | 4 | |
| | | | | |
| 252|DSETYP|DSCB Type | 1 | |
| | | | | |
| 253} | | 1 {Spare |
| | | | | |
| 25u|DSECKS|Checksum | 2 i |
L e e S, O 3
Figure 16. Format-E DSCB (Part 2 of 2)

 SubnS St S Gaa I - IDREES St - = 1
|Byte| | iLength i |
| No.} IDp | Field Name | (bytes) | Representation |
o, G ommm oo T - —
| 0} | | |List of volume IDs for volumes of a pri- |
| | | | |vate data set in 6-byte entries. Variablej
| | | | |length field depending on value of DSENVL |
{ | | | |from the format-E DSCB. |
| | | I i | |
| { DSFENT| Page Entries | | Format : |
| | | [fr————- B e St |
] | | | | |AF (2) | |Re1 Vol No(12)}Ext Pg. No(lé){ i
I | | [t-mmmm A e 1
|] | | | |
| 248| | Pointer to next DSCB | 4 | Format: |
] | | | o R et bttt 11
| I | | | |DSCB | | } 1
| | | | i |Slot | | | I
| | | | R C R |Rel Vol No(12)|hxt Pg. No(16)| |
| | | | j - e |
| 252|DSFTYP|DSCB Type | 1 |]
| | | | f |
| 253} | | 1 | Spare H
| | | |]]
| 25u|DSFCKS|Checksuw | 2 i |
O S A e -

Flgure 17. Format F DSCB

Appendix A: Data Set Contrcl Block (DSCB) Format 271

APPENDIX B: CATALOG SBLOCK FORMAT

Each member in the catalog data set is

Catalog sexrvice routines receive data in

comprised of an integral number of pages. varied parameter lists and pack it into
Each page is divided into 64-byte blocks, available SBLOCKs. Data is retrieved from
called SBLOCKs, which serve as the basic the catalog, via the LOCATE routine, in the
unit of storage within the catalog. SBLOCK form. Various command language
service routines retrieve data in this
form.
Each logical entity within the catalog
is comprised of a chain of one or more
SBLOCKsS. These logical entities are: SBLOCK Format
e Indexes The first eight bytes of an SBLOCK

Generation Indexes

¢ Sharer Lists

always have the same format. The last 56

bytes of an SBLOCK vary in format depending

on the logical entity which the SBLOCK is

Data Set Descriptors part of.

Sharing Descriptors Figure 18 shows the format o

f a general-

ized SBLOCK; Figures 19 through 25 illustr-

ate specific SBLOCK formats.

o T T T ~—
| | Length | o | Symbolic|
|Field #|Bytes| (Bytes)| Description | 1D i
———————————— R i S S :
r 1 {1-3 | 3 |Forward pointer to the first character of the next | CCCFWD |
{ i { |SBLOCK in the chain. Pointer is of the form Pbb where P| |
} i {]is the logical page numker within the member and bb is | |
| i | {the relative byte within the page. | |
e f-—nt t S — ‘ S
| 2 |4 | 1 |Binary count of SBLOCKs allocated from a page. This jcceeTr |
i | | |field is maintained by Catalog Services in the first | |
i | | |SBLOCK of each page. | |
bt Bt S — 4
| 3 15-7 | 3 |Backward pointer to the preceding SBLOCK in a chain. |CCCBWD |
| | | {Pointer is of the form Pbb. | i
p-—- S oo : o {
| 4 |8 | 1 |Binary count of bytes allocated from the field to |ccecTe |
1 l [|follow. [|
b e - e I oo 4
| 5 }9-64 | 56 |Allocatable field; format is variable according to |]
| | | }|SBLOCK usage. See following descriptions for this | |
| | | |field. | |
[SV S, g S P S S R——— 4

Figure 18. General SBLOCK Format

272

fm——————y———

-
| |

|
|Field ﬂlBytes](Bytes)]

Length

et e |
| Symbolic|

| ID

T
|

Description

B e T T O s s S A e B s

N
(*Y)

|
|
|

s i S . . o s Do (e S G S i St e . S A G i S S, S e e, P s,
N
&

e e o e i v o o . . o e B S e T S— — — —— . S — —

N
[+
|
=
o

=
et
|
F~4
=

F—
[%,]
1
o
o
e e e e o o

SBLOCK Format - Data Set Descriptor (First Block)

|SBLOCK control field (see Table 11)
S
|Name of Data Set Descriptor;
|with blanks.
Identification flag:
X '03' Data Set Descriptor - Private DSD
X '06° Data Set Descriptor - Public DSD
to Sharer List.
is of the form Pbb, where:
page number
location within the page

left adjusted and padded

CCFL1

Share flags;
X*'00*' Private
X'01' Shared Universally
X*02' Shared by Listed Sharers

Share privileges; used cnly if the Data Set Descrlptor
is universally shareable:

X*'00' Unlimited Access

X'01' R/W Access

X*02' RO Access

|RET Parameter

CCCFL4

| Storage Type|Delet10n§Owner Access|

Permanent
Temporary

Storage Type 00
10
0000

0001
0010

No Deletion
Delete at LOGOFF
Delete at CILOSE

Deletion

- o — . AT o e e T S i W S —

01 R/W Access
10 RO Access
Label Data:

X'01' No labels (tape only)

X'02*' Standard labels

X'04' standard and user latkels

Owner Access

e o e e e S s e e S . . S A8 . . e

0
(9]
0
5
w

]
]
]
i
I
I
i
|
{
|
i
{
]
]
|
I
i
i
}
i
1
i
]
i
|
|
]
|
|
|
i
|
i
i
t
i
]
]
}
i
]
i
i

Data set organization

User data; includes accounting and frequency of use data
which is maintained by the Command System.

DSCB Pointer

e e o e e e o e e o e e

(Part 1 of 2)

Appendix B: Catalog SBLOCK Format 273

[5 Subabaietat B 5 - IS 1
| | 1Length | | Symbolic}|
|Field |Bytes|{Bytes)| Description | iD |
pommm - - - o e s fommm 1
| 12 | 51-64] 14 |Volume Inforwation | i
| I] | | |
i | i | 51 52 53 56 57 60 61 6u | |
| I | | ittt et NS et 1 | |
| |] |Public | Spare iType 1bpare |Re5erved | | i
x l s l bomm oo oo Ao . | |
|] | { | |
| | i | Y ot L St SRR St 1 | |
i | i |Private SAM |Vol Count{Type ;Vol ID{Flle Seq. No. | | |
| | 1 1 b e 4 l t
| | I ! | !
| | | Y Snitteintuit Sttt Setuteinteth Sttt 1 | |
i | | [Private VAM [Spare]Type {Vol ID]Spaxe | | |
(S F — 3 G— § G S ISUVHCS WU S S —— ¥ S Lo 1
Figure 19. SBLOCK Format - Data Set Descrlptor (Flrst Block) (pPart 2 of 2)

r T L e T TTmT T 1
| | |Length | |Symbolic]|
|Field #|Bytes] (Bytes) | Descrigption | 1D |
. S e e e {
{ f1-8 | 8 |SBLOCK Control field (see Table 11) | {
fmmmn S pommmmm 1
| 1 19-20 | 12 jvolume field: | {
| | I | | |
| i | |bytes 0- code identifying type of underlying device | |
| |]] | |
i | | |bytes 4-9 volume serial numker | |
| | i | |
i | | |bytes 10-11 file sequence number | |
e o o e oo !
| 2 }21-32| 12 |volume field - same as field 1 | i
e T e pommm e 1
| 3 | 33-94}| 12 |volume field - same as field 1 | |
- - fommmm s o e fommmmm o i
| 4 j45-56| 12 |volume field - same as field 1 | |
p-mm - e S e oo :
} 5 |57-64} 8 {Unused | i
[L __ § S — S Ao 1
Figure 20. SBLOCK Format - Data Set Descriptor (Chained SBLOCKs)

274

| S T"""“'WI'

|

{Field #|Bytes| (Bytes) |
e . +
| j1-8 |
o o +
| 1 |9-16 |
——— e
2 7 f
| | |
| | |
L St +
{ 3 118-20}
|] |
| | |
| | [
| | |
b S SO +
[S |
] I |
I ! |
| | |
S o +
I 5 |22 |
| | |
| | |
{ ! |
| | |
| | |
b = +
| 6 |23-24)
b t-——- t
| 7 | 25-26}
pm=mm—= t-—-—- +
| 8 |27 |
| | |
| I |
I I |
| | |
| ! |
| | |
| | l
frmm—— - +
| 9 {28 I
- t-———= +
| 10 {29-40]|
| I I
I I I
| ! |
| ! |
| I |
| | |
| | |
I | |
| ! I
! | |
| ! |
| []
| | |
| I |
| I I
| I |
b - +
| 11 {41-52]
e - +
| 12 {53-64]|
L B S 1
Figure 21

Length

. SBLOCK Format -

e

Identification Flags:
X'01' Index
X*'02' Generation Index

Fointer to Sharer List.
Pointer is of the form Pbb, where:

page number
location within the page
Share Flags:
X'00* Private
X'01* Shared Universally
X'02* Shared by Listed Sharers

| Share privileges;
|sharable:

used only if index is universally

X'00"
X*01"
X"02"

Unlimited Access
R/7W Access
RO Access

Binary count of pointers in the index.
Binary count of maximum numker of generations allowed.

Generaticn Flags:
bits 0-3
X'1' Save deleted generaticons
X'2' Scratch deleted generations

bits
X'
X*2

-7
Delete oldest generations
LCelete all generatiuns in index

Interlock byte
Pocinter Entry:
bytes 0-7

Name c¢f entity pointed to;
with blanks

left adjusted and padded

to indentify entity pointed to:
Index

Generation Index

Data 5et Descriptor

Sharing Descriptor

bEytes 9-11

pointer of the form Pbb, whexre:
page number
location within the page

Pointer

o o e e e e et e e e e e e e

|Pointer entry - same format as field 10.

Index (Generation Index) -- First SBLOCK

appendix B: Catalog

SBLOCK

1
| Symbolic|
I 10 |
rmmmmm e i
| |
S 1
| CCCNME |
o 1
|CCCFL1 |
| |
] |
S P 1
jccepTL |
i |
| |
| |
| |
S i
JCCCFL2 |
| |
| |
| |
e .
|CCCFL3 |
| |
] f
| |
| |
i |
—mmmmmae 4
jcceeTy |
. y
jcceccTy |
S — 4
[CCCFLS |
| |
| |
| |
| |
| |
| |
I |
I S 1
|CCCILK |
e i
| |
] |
| [
| |
| |
| |
| |
] |
| |
| |
! |
| 1
| |
| |
| |
| I
| |
e 1
| |
e 1
i |
j S J
Format 275

T —— —— P J——

r T T 3
i |Length | | Symbolic]|
|Field #|Bytes| (Bytes) | Description | iDp {
e Pare + e - e + {
| |1-8 | 8 | SBLOCK control field (see Table 11) | |
b s e o - - o i
| 1 |9-20 | 12 |pPointer entry: | i
]] i | | |
| |] |bytes 0-7 . | |
| | | | Name of entity pointed to; | i
| i | | left adjusted and padded with blanks | |
| | |] | |
i | | |byte 8 , ‘ , _ | 1
} i | | Flags to identify entity pointed to: i]
| | | | X*01' Index | |
| i | | X'02' Generation Index | |
| | | | | |
1 [| |bytes 9-11 [|
{ | { | Pointer of the form Pbb, where: | |
| | i { |]
| | | | P = page number | |
i i | | bb = location within the page i |
e 3= - e e pommmm e i
| 2 | 21-32} 12 |Pointer entry - same as field 1 | |
e o e e - e i
| 3 |33-u44} 12 |Pointer entry - same as field 1 | |
pmmmm - s — T oo em 1
| 4 {45-56} 12 |Pointer entry - same as field 1 | |
L e 4 o o e e e e e e e e e e e e e o 4 ._._.{
T T T T T
| 5 |57-64}| 8 |Unused]
b 5 U SR i S e —_——1 —d
Figure 22. SBLOCK Format - Index (Generation Index) - Chained SBLOCK
S T T 25 } Sttt
| |Length | | Symbolic|
|Field #|Bytes| (Bytes)| Description | 8] |
e e e e i
| |11-8 | 8 |SBLOCK control field (see Table 11) | i
b PO A T T oo 1
i 1 }9-16 | 8 |Name of Sharing Descriptor; left adjusted and padded |CCCNME |
| | | |with blanks. | |
e e 7t e Do
| 2 117 | 1 jIdentification flag: X'04' sharing descriptor |CCCFL1 |
— omme f-mmmm- T T pmmmmmme
| 3 |18-61} 44 |Owner's name for shared catalog level; left adjusted and|{CCCNMO |
| | | | padded with blanks. |]
e G S pommmem e 1
| 4 | 62-64} 3 | Unused | |
b Lo __ F G e e ¥ S 1
Figure 23. SBLOCK Format - Sharing Descriptor

276

| S T

T T 1
| |Length | | Symbolic]|
|Field #|Bytes]| (Bytes}| Description | ID i
. + t - e —- - t 4
| j1-8 | 8 | SBLOCK control tield (see Table 11) | |
I — = 1 e e -—- o
| 1 19-10 | 2 {Binary count of number of shares |CcCCcCcTS |
o e R — + -
| 2 j11-16]| 6 | Unused | |
pmmme e et S —=—==- S + i
| 3 | 17 | 1 |Identification flag: X'05' Share List jCCCFL1 |
——— e e fmm e o + 4
| 4 |18~26} 9 | Sharer entry: {CCCNM2 |
| i | i ! |
[1 l | bytes 0-7 | |
| | | | Share indentification (3-8 characters); left-adjustedj |
| | i | and padded with blanks | |
| | | | {cccrLs |
! | l | bytes | |
| | | | Share privileges: | |
| | I | |]
| | | | X*'00*' Unlimited access | i
| | | i X'01"' R/W Access | |
| | | | X'02' RO Access | |
e —— $-—- e e e e e e i
| 5 127-35{ 9 |Sharer entry - same format as field 4 | |
e e N e oo mm e e e i
| 6 {36-44 9 |Sharer entry - same format as field 4 | |
R e Mt oo e - i 4
| 7 }45-53| 9 | Sharer entry - same format as field 4 | |

e B eI —— e ommmmoee 1
| 8 | 54-62] 9 |Sharer entry - same format as field 4 | {
G T S fommmmm 4
| 9 {63-64| 2 | Unused | |
[SR EEGINNVEY S S —_— _— SO S 1

Figure 24. SBLOCK Format - Sharer List (First SBLOCK)

Aprendix B: Catalog SBLOCK Format 277

f —==—

T T

| |Length l |Symbolict
{Field #|[Bytes| (Bytes) | Description | 1D |
—— P Frmm o e - e .
| |1-8 | 8 | SBLOCK control field (see Table 11) | |
o S e oo 1
| 1 | | 9 |{Sharer entry: I I
| | | i | | |
| | | | bytes 0-7 o . | |
| | | | Sharer indentification (3-8 characters); left- | |
i | i] adjusted and padded with blanks. | i
{ ! | | | |
1 | [| byte s | |
| i | | Share privileges: | i
|] | | | I
| |] | X'00' Unlimited Access | |
| | | | X'01*' read/Write Access | |
] | i | X'02"' Read only Access 1 |
 — $=—m fommme o e e fom - 4
| 2 [9-17 | 9 |Sharer entry - same as field 1 | |
p-m——— e o e e {
| 3 |18-26| 9 |Sharer entry - same as field 1 | |
e ey b e 1
| 4 |27-35]| 9 |Sharer entry - same as field 1 |]
e o s o e 4o i
| 5 |36-unj 9 |Sharer entry - same as field 1 l i
pmm - oo p-mmmes e e $om s :
| 6 {45-53}| 9 |Sharer entry - same as field 1 | i
—— - e o e gemmmeem 4
| 7 |54-62] 9 | Sharer entry - same as field 1 | |
R D~ oo e e e e s pommmmm 4
| 8 | 63-64} 2 | Unused | |
[J A— § e 3 S 1
Figure 25. SBLOCK Format - Sharer List (Lhalned SBLOCKs)

278

This module directory is presented as an
aid to the field engineer. It provides a
convenient cross-reference between the PLM
and the microfiche, enabling the FE to
quickly find the microfiche card that con-
tains a particular entry point name, con-
trol section name, or module name.

Figure 26 is an alphabetical listing of
the modules contained in this PLM, accord-
ing to the module title (for example,
OBTAIN). 1In addition to the title of the
module, this table provides the module name
(for example, CZCFO), the type of service

APPENDIX C: . MODULE DIRECTORY

routine to which the module belongs, the
related flowchart, ard a brief synopsis of
the functions the module performs.

a

Figure 27 lists the modules alphabetic-
ally, according to module name (for
example, CZCFQO), and is intended for use
when working with a dump containing load
module names. The table identifies the
module title (for example, OBTAIN), the
flowchart, CSECT, and entry points. The
module may then be found on microfiche,
the module name.

via

""" T T
{Module|Type of

Name |Service Routine
4

+
CZCFA |Catalog Services

i
|
!
|
|
|
|
|
|
|
|
|
|

|External Storage
|Allocaticon (ESA)

e o e e A e e e e

Device
Management

| CATALOG ERROR
| PROCESSOR

| Catalog Services

CSECT STORE

CSECT Store

|
|
i
|
t
DELCAT

i
|
|
I
L

|
§
i
{
i
i
i
H
1
§
i
]
]
1
i
1
1}
i
i
§
p..u“_u.T"____"_
i
|
1
{

t
1
i
1
:
1
{
1

Figure 26. Module Directory,

|Assign space for a new format-: or format-F
| DSCB.

|Provides the initial allocation of direct

access storage for new output data sets,
g i P

jvolume jer allocation.

|Used to mount subsequent volumes of a
jmulti-volume SAM data set.

| Invokes a completion code 1 ABEND whenever a
|catalog service routine encounters a user input|
|data format error.
|ABENL and writes a message to SYSLOG describing]
|the type and location of the exrxcr in the
|catalog.

- o S O——
jCopies members of the scratch catalog to
Jindividual user catalogs at task termination.

|
|
+
|
|
4

| Processes user requests made through the CSTORE| GA
|racro, |
fprogram execution, |
{placed in the current job library as a module. |
+
|
i
|
|

Indexed Alphabetically by Module Title

Creates a data set descriptor in the user's
catalog, assgciating the VT0Cs of a data
set with the index levels in tne user’'s
catalog.

Creates any index levels defined by the FQN
which must precede the data set descrirptors
and do nct currently exist.

Allows updating of a data set descrirtor.
Contrcls the numker of generations allowed
under a generation index by performing
deletion of out-moded generations, as
required.

one

Alsco, executes a SYSER and |

which enaktles the user to create, during

a control section that is

Deletes index levels from the catalog
structure.

Recatalogs index levels under a different
fully gualified name (FQN).

{(Part 1 of 4)

Appendix C: Module Directory 279

-

Title | Name

L] L]
{Module|Tyre of

|Serv1ce Routine

L]

|Synopsis

1
¥
Drum Access |C2ASY

Module (DRAM)

I

{Serviceability AldSlUSed by those virtual memory programs, such

|as VMER and VMEREP, which must access the error

| records stored on the dummy spaces of the

|paging drum.
4

— e ———

DSCB/CAT CZUFX

RECOVERY

Catalog Services

LS

|Rebuilds a user catalog if the current member
|in the scratch catalog is unusable; retuilds a
|member in the scratch catalog if the user
lcatalog is unusable.

— s e e S o s o s S . s S

DSCBREC CZCEF

s
(4]
>

|Used to recover from a checksum error,

| possible.
4

CMASN

at _—
serviceability Aids|Stand alone program, used to edit and print the

|information recorded on the paging drum Ly
|error recording programs.
4

CZCEJ

B
>

v
|Used to set, clear and record virtual memory
Ilocks.

B B B
E g §\
g1 B 3
0
=
R S S ————— S

FINDEXPG

B
>

|Secondary allocation routine, called when
jadditional srace on a direct access volume is
|required for a data set.

e e . s i e e S e o i e M S i . s W S i

ESA

GET SBLOCK

Catalog Services

lRecelves a pointer containing the relative
|address of an SBLOCK and calculates its virtua
| storage address for the user.

4

1

GIVBKSAM CZCEG

PRV SypE—

ESA

$ - _— -
|Returns unused external storage from physical
| sequential data sets to ESA control, and
jdeletes the references to the storage from the
| format -1 and -3 data set DSCBs. It is called

jonly by SAM CLOSE.
4

J S

INDEX CZCFI

Catalog Serxrvices

T
|Constructs chained index levels in the catalog

|and creates new members within the catalog datal

|set.

ATE CZCFL

1
%
|
i
|
+
|
o
|
{
i
+
|
|
|
t
|

Catalog Services

/1 AI

|Locates and returns SBIOCKs from the catalog,
|e1ther by name or relative address.

2l R

GE SAM CZCEE

ES

IReturns extents from physical sequential data
| sets passed to it by scratch or GIVBKSAM, and
|merges them with the DADSM extents on their

| volume.
4

MOUNTVOL CZCAM

Device Management

T

|Mounts, initializes, and builds PVT for all
{volumes of a VAM private data set.

4

o]
it

MTREQ

8]
[
¢]
5

Device
Management

T

}Allocates and mounts unit record devices,
|as disk or tape drives, used for private
|volumes. This routine can also be called by
|privileged system programs to obtain the
|symbolic device address of a public volume.
4

such

|
t

S Sy S R A

OBTAIN/RETAIN CZCFO

ESA

T

|Reads VTOC and places DSCBs and volume labels
|in designated virtual storage locations.
|Writes DSCBs, user labels, and end-of-file
Imarkers to sgpecified addresses.

PAUSE CZCAC

,...._._.....-—.._.,,...._..—-....,—-.-—_..—.-._——q,—_.—q,-....—_.—..,,-__.—qp.....«-—_.‘,......_.._....,—._..._,,.-.,—_—__,,_..-.-.-,.—-__.q.-_..
1

o e e e e s s s e e, S, s s e e S s, S e . e e e e . i s G e s e e S el e S

Device
Management

|
t
|
i
|
|
+
|
!
|
|
|
|
|
+
|
{
|
|
t
!
|
|
|
|
!

|Sends mount request messages to the system
|operator, asking him to mount volumes or to

| ready unit-record devices. 1t also verifies
|the operator's reply and, for tape or direct
{access, checks the label of the newly-mounted
|volunre.

1

Figure 26.

280

Module Directory, Indexed Alphabetically by Module Title (Part 2 of 4)

0
>
e e e b e e oo e i s e b e s e e b

e e e ing e s e s o s s

—h e 4

gomm T e e m m— T T
i {Module| Type of
iName |Service Routine

.......... 1 PR S
| READWRIT {CZCEM | ESA
| | |

B e e e

| |Chart}
|synogsis | ID |

+
{Reads DECB pages into virtual storage and { BP
jwrites DSCB oxr PAT pages to external storage. | |

SRR SUPNBIPIIS T _——
| RELEAS {CZCAD |Device
| Management

{ RENAME
|
|

o o e e e

|
mmmmmment
SAM SEARCH {

|
!
|
|

Services

e S 4

| Informs the system that the device upon cC
fwhich a private volume was mounted is now free

| fox other use, and notifies any task awaiting

lthe freed device that it is

|Makes external and DSCB pages
|system.

|Changes the name in the key field of a format
{~1 or -A DSCPR to the name specified for all
jvolumes by the calling program.

[Called by either ALLOCATE or EXTEND to search
| the DADSM-DSCBs for available space to fill a
|request. The DADSM DSCBs are then updated to
freflect the allocation.

|Deletes data set DSCBs on all volumes of a
[specified data set and assimilates the external
{storage back intc the available space (the

| DADSM) on the volume.

|Acquires and chains an empty ;B{ﬁCK as either
lan extended SBLOCK of a cataloged entity, or as
|the first SBLOCK of a cataloged entity.

|Adds sharing privileges to a catalog level. |
junshared level can be set to sharakle, or a | |
|shared level can have its sharing access i |
{modified. | |

| SHAREUP Services

i
|

Catalog

{SVMA {Small Virtual
|Memory Alilocation)

SVMA

-- . G
|Links one user's private catalog to a level in | AE |
|another user's private catalog that is
jsharable.

|SVMA serves the same function for bytes that
{VMA serves for pages. SVMA calls VMA for bytes
|totd11ng integral number of pages.

| SYSEARCH CGCRC |Symbolic Library
| Service

|Called by a system Or user program to locate
{any individual parcel of a symbolic library,
|using its index as created by SYSINDEX.

CGCKA |Symbolic Library
| Sexrvice

i
s
s
|
+
|
|
|
_{,
|
|
|
e — 4 $-- -
|
1
|
i
i
|
|
|
l
|
+

Figure 26. Module Directory,

{
{
i
¢
f
i
i
t
{
|
|
t
i
t
]
§
i
i
{
!
|
1]
t
{
1
1
{
|
i
i
{
i
|
i
{
§
i
i
{
i
t
i

jAutomatically indexes the symbolic com-
|ponent of a symbolic library to create an
{alphabetical index of all the parcels, and is
| invoked when the user issues the appropriate
|RUN command or executes a program calling this
|routine.

o e e e et e e s e e e e i o e
]
a

|
!
__ +
{Builds the ymbollc likrary index by scanning |
leach line of the scurce data set to locate, {
{extract, and place entries in a temporary i
5index, and then forming a final and complete i

!

+

{

|

4

Indexed Alphabetically by Module Title (Part 3 of 4)

Appendix C: Module Directory 281

Title

-
|

Module
Name

| Type of |) |Chart’
|Service Routine | Syncgsis | ID

USERCAT SCAN

VAMINIT

Allocaticn)

|
|
k
|
|
I
k
{
|
F
|
]

I
|
|
|
i
!
|
|
|
|
|
|
|
|
|
|
F
!
!
|
|
|

VMER (Virtual Memory
Error Recording)

+

|CZUFY {Catalog Services |Rebuilds the SYSSVCT data set after OPEN VAM or

e e e e e e e o e . S e o S S o e . o B S i i e i e e i s e

| | DSCB/CAT RECOVERY discovers an error when

VMA (Virtual Memory |CZCGA |VMA

CZCRX

CZASE

Figure 26,

282

$
|
|
|
+
!
| |entered into the systen. |
- I T f--mme 1
|A centralized routine which dynamically | BA
|services all requests for virtual memory | and
|issued by the system or user's programs during | DB
| the execution of a task. There are six entry |
]
|
]
]
|
}
|
|
!
I
I
|
I
|
+

jpoints to VAM:

GETMAIN (CZCGA2) - Get virtual storage by
pages.

FREEMBIN (CZCGA3) - Free virtual storage by
pages.

EXPAND (CZCGA4) - Expand an existing block

|
|
i
|
| |
I |
| |
| [
] |
! |
| | of virtual memory.
| | GETSMAIN (CZCGA6) - Get shared virtual
| | storage.
| | CONNECT (CZCGA7) - Connect to a shared page
| { table.
| | DISCONNECT (CZCGA8) - Disconnect from a
| | shared page table.

oo oo m e
|

i

|

l

I

+

I

I

+

|

|

!

Serviceability Aids|Informs the cperator of a failing task I/0 |
| component, if the immediate report flag is on, |

{and generates 1/C error records that are to be |

Joutput for preservation recording on drum via |

|the Crum Access Module (DRAM). |

1

———————————————————— e - o]

ESA | Detcermines the most suitable volume from which | BK
Jto allccate space. |

|
|
------------------- oo ol
|
|

Serviceakility Aids|Retrieves, formats, and prints the environment | HD
|recording information stored on the paging
| drum.

1
Serviceability Aids|Accunulates error statistics on task I/C |
|devices in the Statistical Data Table (SDT) and| |

|calls VMER to record 1/0 errors. It is called | |

|when a task I/0 retry operation either ends | |

|successfully (interxmittent outboard failure) or| i

|is completed with error after a prescribed | |

| number of retries {(sclid outboard failure). | |

|Used to construct a DSCB chain from the RESTBL,| BN |
JFCB, DCB, and PVT. | |

o e e e e e
t
4]
>

|
___________________ 1

Module Directory, Indexed Alphabetically by Module Title (Part 4 of 4)

g -7 T T T -
| Module | | i | Chart |
| Name | Title | CSECT | Entry Point | iD |
e e - T -+ -
| CGCKA | SYSINDEX | CGCKARA | SYSINDEX | FA |
1 CGCKB | SYSXBLD | CGCKBA | SYSXBLD | FB |
| CGCKC | SYSEARCH | CGCRCA | SYSEARCH i Fc i
| CMAS | EREP67 | | Stand Alone | HE |
| CZASE | VMEREP | CZASEC | CZASE1l | HD]
| CzAsY | DRAM | CzZAsY | czasyi | HC |
] CZCAA { MTREQ | CZCAARC | CZCARAl, CZCAA3 | ca]
i CZCaB | BUMP | C2CaBV | CZCARB1 | CD |
| CZCAC | PAUSE | CczcAacc | CZCAC1l, CZCAC2 i cB | |
| CZCAD | RELEAS | CZCADU | CZCADi, CLZCAD2, CZCAD3 | cC |
| czcaM | MOUNTVOL | CzCAMC | CZCAML | CE |
| CuCEA | ALLOCATE | CZCEAC | CZCEAR1 | BA |
| CZCEC | SAMSEARCH | CZCECC | CZCEC1 | BB |
| CZCEE { MERGESAM | CZCEEC | CZCEE1l | BF |
| CZCEF | DSCBREC | CZCEFC | CZCEF1 | BM |
| CZCEG | GIVBKSAM | CZCEGC | CZCEG1 i BE {
] CZCEH | VOLSRCH | C2ZCEHC | CZECH1 | BK i
i CZCEJ | ESA LOCK | CZICEJC | CZCEJ1, CZCEJ2, CZCEJ3 | BQ |
| CZCEK | ADDDSCB | C2CEKC | CZCEK1 | BJ |
| CZCEL | FINDEXPG | C2CELC | CZCEL1 | BI |
| CZCEM | READWRIT | CZCEMC | CzZCEM | BP |
| CIZCEN | RELEXPG | CZCENC | CZCEN1 i BL |
| CZCEQ | VAMINIT | CZCEQC | CZCEQ1 } BO |
| CZCEs | SCRATCH | CZCESC | CzZCES1 | BC |
i CZCEW | WRITDSCE | CZICEWC | CZCEWl | BN |
| C2CEX | EXTEND | CzCEXC | CZCEX1, CZCEX2 I BD | |
| CZCFA | ADDCAT | C2ZCKAT | CZICFAl, CZICFA2 | A3 |
| CZCFD | DELCAT | CZCFDY | CZCFD1 | AB |
| CZCFE | CATALOG ERROR | C2ZCFEC | CZCFE1 i AM |
| | PROCESSOR | i] |
| CZCFG | GET SBLOCK | CZCFGY | CZICFGl, CZCFG2, CZCFG3 | AF |
t x | | czcrey | |
| CZCFH | SEARCH SBLOCK | CZICFHC | CZICFH1 | AG i
| CZCF1I | INDEX | CZCIND | CZCFIl] AI | |
| CZCFL | LOCATE | CZCFLY | C2ZCFL1 | BAB |
| CZCFO | OBTAIN/RETAIN | CZDFOB | CZCFO1, CZCF0O2, CZICFR1 | BG |
| CZCFS | SHARE | CZCFSC | CICFsi | AC |
| CZCFU | SHAREUP | CZCFUC | CZCFul | AE |
| CZCFV | UNSHARE | CzZCFVC | CZCFV1] 2D]
| CZCFX | CATFLUSH | CZCFXC | C2CFX1, CZCFX2, CZCFX3,] AL |
| | | | CZCFX4, CZICFX5, CZCFX6, i |
I I | | C2CFXx7, CZICFX8 | |
| CZCFZ | RENAME | CZCFZC | CZCFZ1 | BH |
| czcea | Vvma { CZCGAC | CZCGA2 - GETMAIN (pages)] DA |
| | | ‘ | CZCGA3 -~ FREEMAIN (pages) | |
i | | | CZCGA4 - EXPAND i |
| | | | C2CGA& ~ GETSMAIN i i
I { i | CZCGA7 - CONNECT i |
| | | | CZCGA8 - DISCONNECT | |
| CZCHA | SVMA | CZCBAC | CZCHA2 - GETMAIN (bytes) | EA |
| | | | CZCHA3 - FREEMAIN (bytes) | |
| CZCKZ | CSECT STORE | | CzcKzl | GA |
| CZCRX | VMER | C2ZCRXC | CZCRX1, CZCRX2, CZCRX3 i HB |
[| | | CZCRXY4 1 l
| czZery | VMSDR | CZCRYC | CZCRYY i HA |
i CZCTA | SYSTIME | | SYSRAl | HF |
| C2CTIR | RERIM | CZCTRC | CZCTR1, CZCTR2 | HG |
| CZUrX | DSCB/CAT RECOVERY | CZUFXC | CZUFX1, CZUFX2 | AK |
| CZUFY | USERCAT SCAN | CZUFYC | CZUFY1, CZUFY2 | AJd |
e) e o -3

Figure 27. Module birectory, Indexed Alphabetically by Module Name

Appendix C: Module Directory 283

INDEX

wWhere more than one page reference is
given, the major reference is first.

access code 12
accessing error records on paging
drum 90-91,92-93
accumulation ¢of error statistics in
SDT 86-88 ,
acquisition of SBLOCKs 2U4
add entry to index (see AETI subroutine)
add to catalog (see ADDCAT routine)
ADDCAT routine (CZCFA) 5-8
flowchart 95
ADDDSCB routine (CZCEK)
flowchart 160
adding to sharer lists 3
AETI subroutine 82
alias 78
ALLOCATE rcutine (CZCEA) 32
flowchart 146
allocatiocn
in another segment 68
(see alsoc EXPAND)
in current segment 68
(see alsoc EXPAND)
of auxiliary storage 30
of devices 60-62
of non-packed virtual storage 67
of packed virtual storage 67
(see also ALLOCATE)

43-46

bucket overflow, SDR 86
buffer sizing, VAM 23
build symbolic library index routine
(see SYSXBLD)
BUMP routine (CZCAB)
flowchart 210

59-60

catalog 2
adding to (see ADDCAT)
creation of 2
deleting from (see DELCAT)
entry 2
logical entities 2

data set descriptors 2

generation indexes 2

indexes 2

sharer lists 2

sharing descriptors 2
modification 3
protection &
SBLOCK format

CATALOG command 4

catalog error processor {(CZCFE) 20
flowchart 145

catalog service routines 4-29
ADDCAT (CZCFA) 5-8
flowchart 95
CATFLUSH (CZCFX)

272-278

26~27

-284

flowchart 141
DELCAT (CZCFD) 9-10
flowchart 102

DSCB/CAT recovery (CZUFX) 28-29
flowchart 130

GETSBLOCK (CZCFG) 23-24
flowchart 109

INDEX (CZCFI) 21-22
flowchart 123

LOCATE (CZCFL) 15-17
flowchart 112

SEARCHSBLCCK (CZCFH) 24
flowchart 111

SHARE (CZCFS) 10-12
flowchart 105

SHAREUP (CZCFU) 14-15
flowchart 108

UNSHARE (CZCFV) 12-14
flowchart 106

USERCAT SCAN (CZUFY) 24-25
flowchart 126

CATFLUSH routine (CZCFX) 26-27

flowchart 141
CATVAM option 7
CEAIA (auxiliary storage allocation)

CGCKA (SYSINDEX) 78-80
flowchart 240
CGCKB (SYSXELD) 80-82

flowchart 241
CGCKC (SYSEARCH) 82
flowchart 242
chain
of DSCBs 49-50
of SBLOCKs 24
checksum error 24
CMASN (EREP67) 91-92
flowchart 254
collective removal of sharing
privileges 14
COMPUT subrcutine 34
condition code recovery procedure
(DRAM) 88
CONNECT (CZCGA7) 92

control section store routine (CSECT store)

(CZCKZ) 83-84U
flowchart 243
conversion, time
creation
of catalog 2
of sharer lists (see SHARE)
CSECT store routine (CZCKZ) 83-84
filowchart 243
CSTORE macro instruction 1,83
CZASE (VMEREP) 89-90
flowchart 253
CZASY (DRAM) 88,89
flowchart 252
CZCAA (MTREQ) 57-59
flowchart 194
CZCAA3 204
CZCAB (BUMP) 59-60
flowchart 210

93-94

30

CZCcAC (PAUSE) 61-62
flowchart 205

CZCAac2 207

CZCAD (RELEAS) 60-61
flowchart 208

CZCAD1 208

CZCADZz 209

czcaDp3 208 .

CZCAM (MOUNTVOL) 55-56
flowchart 212
CZCEA (ALLOCATE) 32
flowchaxrt 146
CZCEC {(SAMSEARCH) 32
filowchaxt 147
CZCEE (MERGESAM) 38
flowchart 152
CZCEF {(DSCBREC) 47
flowchart 172

CZCEG (GIVBKS) 36
flowchart 151
CZCEH (VOLSRCH) 45
flowchart 163
CZCEJ (ESA LOCK) 52
flowchart 191
CZCEK (ADDDSCB) 43
flowchart 160
CZCEL {FINDEXPG) 42
flowchart 158
CZCEM {(READWRIT) 51
flowchart 189
CZCEN (RELEXPG) 46
flowchart 168
CZCEQ (VAMINIT) 50
flowchart 188
CZCES {SCRATCH) 35
flowchart 149
CZCEW (WRITDSCB) 49
flowchart 181
CZCEX (EXTEND) 35
flowchart 150
CZCFA {ADDCAT) 5-8
f lowchart 95
CZCFAl1L 95
CZCFR2 99
CZCFD {(DELCAT) 9
flowchart 102
CZCFE (Catalog Error Processor) 20
flowchart 145
CZCFG (GETSBLOCK) 23
flowchart 109
CZCFB (SEARCHSBLOCK) 24
flowchart 111
CZCFI (INDEX) 21
flowchart 123
CZCFL (LOCATE) 15
flowchart 112
CZCFO (OBTAIN/RETAIN) 38
flowchart 155
CZCFS (SHARE) 10
flowchart 105
CZCFU (SHAREUP) 14
flowchart 108
CZCFV (UNSHARE) 12
flowchart 106
CZCFX {CATFLUSH) 26
flowchart 141
CZCFZ {(RENAME) 42
flowchart 157

CZCGA (VMA} 64
flowchart 221

CZCGA2 (GETMAIN) 66
flowchart 221

CZCGA3 (FREEMAIN) 67
flowchart 226

CZCGAL (EXPAND) 68
flowchart 231

CZCGA6 (GETSMAIN) 69
flowchart 232

CZCGA7 (CONNECT) 70
flowchaxrt 233

CZCGA8 (DISCONNECT) 71
flowchart 233

CZCHA (SVMA) 74
flowchart 234

CZCKRZ (CSTORE) 82
flowchart 243

CZCRX (VMER) 86
flowchart 245

CZCRY (VMSDR} 85
flowchart 244

CZCTA (SYSTIME) 92
flowchart 255

CZCTR (RERIM) 91
flowchart 259

CZUFX (DSCB/CAT RECOVERY) 28
flowchart 130

CZUFY (USERCAT SCAN) 24
flowchart 126

DADSM-DSCB updating 34
DADSM hole count 38
data set control block (DSCB)
chain construction 48
deletion 35
formats 260
data set descriptors 273
data sets
generation 7
nongeneraticn 6
default (standard) virtual memory
allocation 63
DELCAT xroutine (CZICFD) 9
flowchart 102
Delete
data set DSCBs 35
index levels 9
DELETE routine 3
DELINK 74
descriptors
data set 273
sharing 2
device address, symbolic 30
device allocation 59
device management routines 54
BUMP (CZCAB) 59
flowchart 210
general operation diagram 55
MOUNTVOL (CZCAM) 55
flowchart 212
MTREQ (CZCAA) 57
flowchart 194
PAUSE (CZCAC) 61
flowchart 205
RELEAS (CZCAD) 60
flowchart 208

Index

285

direct access volumes 30
DISCONNECT (CZCGAS8) 72,233
dismount/mount volume 59
DRAM condition code recovery procedures
DRAM flag bit in IORCB (IORAMM) 89
DRAM routine (CZASY) 88
flowchart 252
drum access module 88
DSCB/CAT recovery routine (CZUFX)
flowchart 130
DSCB format 260
DSCBREC routine (CZCEF)
flowchart 172
duplexing for user data sets

28

47

30

EBCDTIME macro instruction 62

enlarging a block of existing storage

entity, logical 2

entry, catalog 2

entry format, sharer lists 13,277

environment recording edit and print,
model 67 (see EREP67)

EREP67 Routine (CMASN)
flowchart 254

error information
recording 85
retrieval 85
retrieve, format,

error records
generation of
on paging drum

€errors
checksum 47
intermittent
solid 85

error statistics in SDT
accumulation of 85

ESA (External Storage Allocation)

91

and print 89

85
88

85

30

ESA LOCK (CZCEJ) 52
flowchart 191
EXPAND (CZCGA4) 68,231

EXTEND routine (CZCEX) 35
flowchart 150

external storage allocation (EsSa) 1

external volumes 30
SAaM 31
vaM 31
routines 30
ADDSCB (CZCEK) 43,160

ALLOCATE (CZCER) 32,146
DSCBREC (CZCEF) 47,172
ESA LOCK (CZCEJ) 52,191
EXTEND (CZCEX) 35,150
FINDEXPG (CZCEL) 42,158
GIVBKS (CZCEG) 36,151
MERGESAM (CZCEE) 38,152

OBTAIN/RETAIN (CZCFO) 38,155
READWRIT (CZCEM) 51,189
RELEXPG (CZCEN) 46,168
RENAME (CZICFZ) 42,157
SAMSEARCH (CZCEC) 32,147
SCRATCH (CZCES) 35,149
VAMINIT (CZCEQ) 50,188
VOLSRCH (CZCEH) 45,163
WRITDSCB (CZCEW) 49,181

extents

list format 35

286

35

page-oriented 30
push-down list 31
return 36

fields in the SDT 85

FIND 3

FINDEXPG& routine {(CZCEL) 42
flowchart 158

flowcharts 94-259

format
of catalog SBLOCK 273-278
of typical SBLOCK 3

Format—-A DSCB 268

Format-B DSCB 269

Format-C DSCB 270

Format-E DSCB 270

Format-F DSCB 271

Format-1 DSCB 261

Format-3 DSCB 265

Format-4 DSCB 265

Format-5 DSCB 267

FON (fully qualified name) 2
FREEMAIN (CZCGA3) 67
FREEMAIN Macro R option 76
fully-qualified name (FQN) 2

generation data sets 7
generation indexes 2
generation of 1/0 error records
GETMAIN (CZCGAZ2) 66
GETMAIN macro R option
GETSBLOCK (CZCFG) 23
flowchart 109
GETSMAIN (CZCGAS) 69
GIVBKS routine (CZCEG)
flowchart 151
give back SAM storage
(see GIVBKS routine)

86

T4

36

header lines 77

hole count 38

170 error records, generation of 86
I/0 operaticn aids 85
I1/0 Request Control Block (IORCB)
1/0 statistical Data Table (SDT)
implicit shareability 2
index 2,77
fully qualified name 2
generation 2
levels, deletion 9
names 2
partially qualified name 2
qualified name 2
search (see LOCATE)
simple name 2
temporary (TINDEX)
INDEX routine (CZCFI)
flowchart 123
initial allocation of external storage
initialization
of external volumes
of private volumes
interlock 3

85
85

77
21

30
49

31

intermittent error 85 rage~-oriented extents 30

internal tables 73 Page Assignment Table (PAT) 30

interrupt storage area 63 Page Header Table 73

IORAMM (DRAM flag bit in IORCB) 89 paging drum 84

IORCB (10 request control block) 84 page table, shared 69
DRAM flag bit in 89 parcels 77

ISA Table partially gualified name 2
ISAICK 73 partitioned access method, virtual 3
ISATMP 73 partitioned organization directory (POD) 2
IsaupPs 173 PAT (page assignment table) 30

PAT Summary Table (PST) 44
PAUSE routine (CZCAC) 61

JFCB (job file control block) 4,31 flowchart 205
primary allocation field (TDTSPQ) 32 PERMIT command 3,4
secondary allocation field (TDTSP2) 32 PHLINK 74
PHTBLINK 74
PHTDE 74
length indicator, variable 63 physical sequential data sets 30
list allocation restriction 36
format, extents 37 POD (partitioned organization directory)
push-down 31 updating 3
LOCATE routine (CZCFL) 15 posting
flowchart 112 OBTAIN 155
logical entity 2 RETAIN 156

primary allocation field of JFCB
(TDTSPO) 32

machine checks 84 print error information B89
macro instructions private devices, allocation of 54
CSTORE 1 private storage
EBCDTIME 62 for SAM volumes 30
master index 2 for VAM volumes 30
MERGESAM routine (CZCEE) 38 private volumes 30
flowchart 52 protection key 4
Modifying sharer lists 3 public devices 57
Module CSECTS 283 public segment indicator 63
module directory 279,283 public storage
modules, synopsis of 279,283 for VAM volumes 30
mount request message 62 public volumes 30
mounting volumes 57 fFush-down list of extents 31
MOUNTVOL routine (CZCAM) 55 PUT macro 3
flowchart 212 simulated 24

MTREQ routine (CZCAA) 57
flowchart 194
qualified name
fully (FQON) 2
name partially 2
fully gualified (FQN) 2 tests for 22
partially qualified 2
qualified 2

simple 2 RCR 43
NAPHR 74 READWRIT (CZCEM) 51
newly shared mode 12 flowchart 189
next available segment pointer 63 recovery procedure, DRAM condition
nongeneration data sets 6 code 89,252
nonpacked virtual storage allocation 67 RELEAS routine (CZCAD) 60

flowchart 208
release devices associated with data

OBTAIN/RETAIN routine (CZCFO) 38 set 60
flowchart 155 list format 46
OBTAIN posting 155 release virtual storage 68
OBTAIN requests, types 40 restriction 68
option codes for VAM 6 24-bit system 68
origin address 3 32-bit system 68

(see also FREEMAIN)
RELEXPG routine (CZCEN) 46

PACK subroutine 384 flowchart 168
packed virtual storage allocation 67 removing sharing privileges
packing parameter 63 collective 14

Index 287

selective 14
(see also UNSHARE)

RENAME routine (CZCFZ) 42

flowchart 157
rename option 9
Resource Control Routine (RCR) 43
RERIM 91
RESTBL 48
RETAIN posting 156
RETAIN type parameter 38

(see also OBTAIN/RETAIN routine)
retrieve error information 89
R option

FREEMAIN 76

GETMAIN 74 .
routines invoked by the user program &
routines invoked by other catalog service
routines 5
routines used with

SsAM format volumes 32

VAM format volumes 42
RTAM error recording interface moduile

(CZCTR) 91
flowchart 259

SAM data sets 6
SAMSEARCH routine (CZCEC) 32
flowchart 147
SAM volume processing 31
routines 32
SBLOCKs 2
acquisition 24
chain 24
format 272
data set descriptor 273
general 272
generation index 275
index 276
sharer list 277
sharing descriptor 276
location 15
typical 2
SCAN subroutine 79
SCRATCH routine (CZCES) 35
flowchart 149
SDAT (symbolic device allocation table) 30
SDAT PSM 44
SDAT PST 44
SDR (Statistical Data Record) 84
SDR bucket overflow 86
SDT (Statistical Data Table) 84
search
DADSM-DSCBs for space 33
index (see LOCATE routine)
SEARCHSBLOCK routine (CZCFB) 24
flowchart 111
SEARCH subroutine 33
secondary allocation field of JFCB
(TDTSP2) 32
selective shareability 15
removal 14
sending mount request messages to
system operator 57
SERR (System Error Recording and Retry
program) 84
serviceability aids 84
DRAM (CZASY) 88,252
EREP67 (CMASN) 91,254

288

RERIM (CZICTR) 91,259
VMER (CZCRX) 86,245
VMEREP (CZASE) 89,253
VMSDR (CZCRY) 85,244

SHARE control field 11
SHARE routine {(CZICFS) 10
flowchart 105
shareability
implicit 15
selective 15
universal 15
shared page table, disconnect from 69
shared virtual storage allocation 69
sharer lists 3
adding to or modifying 3
entry format 13,277
SHAREUP routine (CZCFU) 14
flowchart 108
sharing descriptors 2
sharing privileges
collective removal of 14
selective removal of 14
simple name 2
simulated PUT macro 24
Small Virtual Memory Allocation (SVMA)
(CZCHA) 74
flowchart 234
restrictions 75
solid error 84
space requirement computation 37
Standard User Label (SUL) 33
standard virtual memory allocation 63
statistical data record 84
Statistical Data Table (SDT) 84
storage protection key 4
STOW macro 3
SUL (Standard User Label) 33
SVMA routine (CZCHA) 74
flowchart 234
symbolic device address 30
Symbolic Device ARllocation Table (SDAT)
symbolic library indexing routine
(SYSINDEX) (CGCKA) 78
flowchart 240
symbolic library service routines

SYSEARRCH (CGCKC) 82,242
SYSINDEX (CGCKA) 78,240
SYSXBLD (CGCKB) 80,241

symbolic line 77

synogpsis of modules 279

SYS (System Table) 63

SYSEARCH routine {CGCKC) 82
flowchart 242

SYSINDEX routine (CGCKA) 78
flowchart 240

System Error Recording and Retry (SERR)

system packing parameter 63

system table (SYS} 63

SYSTIME routine (CZCTA) 92
flowchart 255 :

SYSXBLD routine (CGCKB) 80
flowchart 241

task initialization, virtual memory
(VMTI) 3

TDTSPO, primary allocation field of
JFCB 32

30

84

TDTSP2, secondary allocation field of

JFCB 32
temporary index (TINDEX) 77
TEST subroutine 36
time conversion 92
TINDEX (temporary index) 77
type parameter

OBTAIN 38

RETAIN 38

unlink from shared page table 72
(see also DISCONNECT)

unit table 74

universal shareability 15

UNPACK subroutine 34

USERCAT SCAN routine (CZUFY) 24
flowchart 126

UNSHARE routine {(CZICFV) 12
collective removal 14
filowchart 106
restrictions 13
selective removal 14

update mode 12

updating
DADSM-DSCBs 34
the PCD 3

the SDT 86
UPDATE subroutine 34
user subroutine for SYSXBLD 78
utility programs 30

VAM buffer sizing 23
VAM data sets
adding to catalog 8
option codes 6
VAMINIT routine (CZCEQ) 50
flowchart 188
restriction 49
VAM volume
initializing, private 49
processing 31
routines 43
variable allocation parameters 63
variable length indicator 63
Virtual Memory Allocation (VMA) 63
virtual memory allocation routine
(CZCGA) 64,221
CONNECT (CZCGA7) 70
DISCONNECT (CZCGAS8) 71
EXPAND (CZCGAWY) 68
FREEMAIN (CZCGA3) 67
GETMAIN (CZCGA2) 66
GETSMAIN (CZCGA6) 69

Virtual Memory Allocation, Small routine

(CZCHR) 74
flowchart 234
restrictions 75
Virtual Memory Environment Record
and Print (see VMEREP)
Virtual Memory Error Recording (s
Virtual Memory Statistical Data R
(see VMSDR)

ing Edit

ee VMER)
ecording

Virtual Memory Task Initialization

(see VMTI)
virtual partitioned access method
virtual storage
allocation 67
I/0 operation aids 84
pointer 63
release 67
VMA (Virtual Memory Allocation)
VMA (virtual memory allocation) r
{CczcaGa) &4
flowchart 221
VMAINIT 222
VMER routine (CZCRX) 86
flowchart 245
VMEREP rcutine (CZASE) 89
flowchart 253
VMSDR routine (CZCRY) 85
flowchart 244
restriction 85
VMTI routine 3
volume label 30

volumes
containing physical sequential
sets 30

containing virtual storage dat
direct access 30
external 30
mounting 57
private 30
public 30
Volume Table of Contents (VTOC)
VOLSRCH routine (CZCEH) 45
flowchart 163
restrictions 45
VPAM 3
VTOC, standard location of 30
VTOC, hole count 38

WRITDSCB routine (CZCEW) 49
flowchart 181

1WRITE subroutine 36
2WRITE subroutine 36

3

63
outine

data

a sets 30

30

Index 289

GY28-2018-3

IBM System/360 Time Sharing System Version 8.1 System Service Routines (File No. $360-31} Printed in U.S.A. GY28-2018-3

-

____:__®

