
Version B.l

IBM System/360 Time Sharing System
FORTRAN IV Library Subprograms

File No. 360-25
GY28-2020-2

Program Logic

This publication describes the internal logic of the
IBM System/360 Time Sharing System FORTRAN IV
mathematical and I/O libraries, including the
mathematical, service, and I/O routines.

This material is intended for persons involved in
program maintenance, and system" programmers who are
altering the program design. It can be used to locate
specific areas of the program, and it enables the
reader to relate these areas to the corresponding
program listings. Program logic information is not
necessary for the use and operation of the program.

PREFACE

This publication is organized into six
sections and two appendixes.

Section 1 is an introduction to the
FORTRAN mathematical and I/O libraries,
including service subprograms, and provides
a brief description of their contents and
functions.

Section 2 contains descriptions, in
figure form, of how the library routines
interact in fulfilling user requests.

Section 3 describes each mathematical
subprogram -- its entry names, function,
attributes, entry, exit, storage
requirement, error checks, and (where
applicable) accuracy figures.

Section 4 describes the service routines
residing in the mathematical and I/O
libraries -- their subprograms, attributes,
entry names and entry parameters, storage
requirements, error checks, and their
operation.

Section 5 describes each I/O routine -­
its purpose, entry point and entry
parameters, external references, and the
details of its operation.

Section 6 gives the flowcharts of the
service and I/O routines.

Third Edition (September 1971)

Significant changes or additions to this putlication will
be provided in new editions or Tecru,ical Newsletters.

This edition is current with Ver~ion 8, Modification 1 of
IBM System/360 Time Sharing System (TSS/360) and remains in
effect for all subsequent versions or n,odifications of IBM
Systern/360 Time Sharing System unless otherwise indicated.
Before using this publication, refer to the ldtest edition of
IBM System/360 Time Sharing System: AddendUll', GC28- 204 J,
~hl.ch may contain information pertifH-·nt LO ttH·~ topic::; cov(-_'rf:~<i
l.n this edition4 'l"'he Addendum also .lists the !-;Jitions vi all
TSS/360 publications that are applicable and current.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impreSSions for photo-offset printing were
obtained from an IBM 1403 Printer using a special print
chain.

Requests for copies of IBM publications should be ll',ade to
your IBM representative or to the IBM Dranch office serving
your locality.

A form is provided at the back of this publlcatl.On f01

reader's comments. If the form has been removea T comments
may be addressed to IBM Corporation, SystellV360 Time Sharing
System Programming Publications, Department 64J, Neighborhood
Road, Kingston, New York 12401

Appendix A describes those aspects of
FORTRAN data management that are unique to
the FORTRAN environment. Appendix B is a
guide to external names of FORTRAN library
routines.

PREREQUISITE PUBLICATIONS

Familiarity with the material contained
in the following publications is essential
to the use of this manual:

IBM System/360 Time Sharing System:
Concepts and Facilities, GC28-2003
IBM FORTRAN IV, GC28-2007
FORTRAN Programmer's Guide, GC28-2025

REFERENCE PUBLICATIONS

Knowledge of the following publications
will be helpful in understanding the
concepts and logic of the FORTRAN Library
routines:

IBM System/360 Time Sharing System:
FORTRAN IV Library Subprograms,
GC28-2026
System Programmer's Guide, GC28-2008
Assembler User Macro Instructions,
GC28-2004
FORTRAN IV Compiler PLM, GY28-20l9
System Control Blocks PLM, GY28-20l1
System Logic Summary, GY28-2009

~': Copyright Int,ernational Business Machines Corporation 1969, 1:'l70" 1971

SECTION 1: INTRODUCTION •

SECTION 2: OVERVIEW •
Mathematical Library

subdivisions
Internal Relationships

I/O Library
Subdivisions • ~

I/O Language Control Routines •
Data Conversion Routines

Internal Relationships

SECTION 3: MATHEMATICAL SUBPROGRAM 'DESCRIPTIONS •
General Information •

Routine Names
Attributes
Entry Paramet ers
Error Action
Exit Parameters

Subprogram Summaries
Tables

CHCBZ -- Error Processor

SECTION 4: SERVICE SUBPROGRAM DESCRIPTIONS
General Information •
Subprogram Summaries

CHCBE Interrupt and Machine Indicator Routine
CHerv Dump Routine •
CHCIW Exit Routine.

SECTION 5: I/O ROUTINE DESCRIPTIONS •
General Information •

Attributes
Work Areas and Register Save Areas

Routine Summaries •
CHCIA I/O Initialization
CHCla DCB Maintenance
CHCIC I/O Control
CHCID NAMELIST Processor •
CHCIE List Item Processor
CHCIF Format Processor. •.•
CHCIH Integer Output Conversion
CHCII Real and Integer Input Conversion
CHCIJ Real Output Conversion •
CHCIM Complex Input Conversion
CHCIN Complex Output Conversion
CHeIO Alphameric and Hexadecimal Input Conversion
CHCIP Alphameric and Hexadecimal Output Conversion •
CHCIQ Logical Input Conversion
CHCIR Logical Output Conversion
CHCIS General Input Conversion
CHCIT General Output Conversion
CBClU List Termination
CHCIW Exit.
CHCBD I/O Interruption and Machine Indicator Routine •

SECTION 6: FLOWCHARTS

APPENDIX A: FORTRAN DATA MANAGEMENT •
DCB Use •
DCB Content •
DCB Initialization

CONTENTS

1

2
2
2
2
2
3
3
3
3

14
14
14
14
14
14
14
14
14
25

26
26
26
26
28
29

30
30
30
30
30
30
n
32
34
36
36
37
37
39
39
39
39
40
40
40
40
41
41
41
41

42

89
89
89
89

iii

Combinations of DSORG and RECFM . .
Unformatted FORTRAN Logical Records •

89
• 90

APPENDIX B: EXTERNAL NAMES SUMMARY • • 91

INDEX • • • • 92

ILLUSTRATIONS

Figure 1- Functional flow of mathematical library subprograms · 4
Figure 2. Functional flow of I/O library routines 7
Figure 3. Formatted READ with list · · · · 8
Figure 4. Formatted READ without list · · · · 8
Figure 5. READ with NAMELIST . · · · · · · · · 9
Figure 6. Unformatted READ with list · . . · · · · · 9
Figure 7. Unformatted READ without list · · · · · · · · 10
Figure 8. Formatted WRITE with list . · · · · · 10
Figure 9. Formatted WRITE without list · · 11
Figure 10. WRITE with NAMELIST · · · · · · 11
Figure 11. Unformatted WRITE with list · · 12
Figure 12. Unformatted WRITE without list · · · · · · 12
Figure 13. BACKSPACE, REWIND, and END FILE · · 13
Figure 14. EXIT and STOP . . . · · · · · . . · · · · 13

Table 1. I/O library calling relationships • • • • • • • •• 6
Table 2. Summary of directly referenced mathematical subprograms • 15
Table 3. Summary of indirectly referenced mathematical subprograms 21
Table 4. Exponentiation with integer base and exponent •••••• 24
Table 5. Exponentiation with real or double-precision base and
integer exponent • . • • . • • . . • • . • • • • 24
Table 6. Exponentiation with redl or double-precision base and -
exponent
Table 7.
Table 8.
Table 9.
Table 10.
Table 11-
Table 12.
Table 13.

Chart BD.
Chart BE.
Chart BZ.
Chart IA.
Chart lB.
Chart IC.
Chart 10.
Chart IE.
Chart IF.
Chart IH.
Chart II.
Chart IJ.
Chart 1M.
Chart IN.
Chart 10.
Chart IP.
Chart IQ.
Chart IR.
Chart IS.
Chart IT.
Chart IU.
Chart IV.
Chart IW.

if?

• • • • • • 24
Entry names of indirect-reference mathematical routines • 24

25 Mathematical library macro instruction summary •
Summary of service subprogram characteristics.
Format and content of DCB prefix • • •
Translation of FORMAT codes • • • • •
Combinations of DSORG and RECFM values • • • •
External names of FORTRAN IV library subprograms •

• • • 27
• • 32

• • • • 38
89

• 91

I/O interruption and machine indicator routine (CHCBD> • • 43
Interrupt and machine indicator routine (CHCBE) • 44
Error processor, math library (CHCBZ) • 47
I/O initialization (CHCIA) . • • • • • • • • 48
DCB maintenance (CHCIB) • • • • • • ••• 49
I/O control (CHClC) • 50
NAMELIST processor (CHCID) • • • • • •• • • 68
List item processor (CHCIE) ••••••••••••••• 70
FORMAT processor (CHClF) • • • • 71
Integer output conversion (CHClH) •••.•••• • 74
Real and integer input conversion (CHCII) • 75
Real output conversion (CHCIJ) • • . • • • • • 76
complex input conversion (CHCIM) • • • • • • • • • • 78
Complex output conversion (CHcIN> ..•• • ••• 79
Alphameric and hexadecimal input conversion (CHClO). 80
Alphameric and hexadecimal output conversion (CHCIP) 81
Logical input conversion (CHCIQ) . • . • • • • 82
Logical output conversion (CHCIR) ••••• • 83
General input conversion (CHCrS) • • • • • • • • 84
General output conversion (CHCIT) •••• • • 85
List termination (CHCIU) • • 86
Dump routine (CHCIV) • • • • • • 87
Exit routine {CHCIW} • . • 88

The two FORTRAN IV libraries, mathemat­
ical and input/output (I/O), are written in
assembler language and stored in the system
library (SYSLIB). They are available to
all users.

Each routine in the mathematical library
is a collection of one or more subprograms.
In this publication, the tern subFrogram
means a routine or part of a routine that
has a Single entry point and performs or
controls the performance of a single func­
tion. Mathematical IH:rary subprograms are
generally ll'athematical or computational in
nature, and generally return one answer
(fUnction value) to the calling program.
Mathematical subprograns can be categorized
by use:

1. Direct reference, as in reference to
the sine subprogram in the statement

x = SIN(Y)

2. Indirect reference, as in reference to
an exponentiation subprogran in the
statement

x = Y**I

The I/O library is a group of routines
that function as a single progran. complex

SECTION 1: INTRODUCTION

for processing the I/O statements READ,
wRITE, PRINT, PUNCH, BACKSPACE, REWIND, and
END FILE. Processing ef READ and wRITE
statements can include list control, NAME­
LIST control, F'ORMAT contrel. or none of
these controls. The routines within this
conplex can be categorized by function:

1. Language control rcutines, which ana­
lyze the user's I/O request.

2. Data conversion Routines, which con­
vert data fron internal to external
forn or froll' external to internal
forn.

Both libraries also contain service rou­
tines, each of which is a collection of
subprograms. Service subprograms are
called with CALL staten,ents or are inplic­
itly called by the occurrence of certain
situations during execution. The service
subprograms in the mathematical library
handle machine exceptions and test frograrr.­
siIrulated n.achine indicators. The service
subprogralI,s in the I/O library dump program
data onto SYSOUTs and terminate execution
ef user programs.

Each of the two libraries alse contains
an error-handling routine.

Section 1: Introduction 1

SECTION 2: OVERVIEW

This section explains the subd~visions
of the FORTRAN IV rnath€Ir,atical and I/O
libraries and gives in figure forn an over­
view of each library. Note that the ser­
vice subprograms are divided tetween the
two libraries.

MATHEMATICAL LIBRARY

SUBDIVISIONS

The FORTRAN IV mathematical library CQn­
sists of two types of relocatable routines:
mathematical and service. Each routine
contains one or more subprograms; there is
a separate entry point for each subprogram.

Like a FORTRAN subprogram defined with a
FUNCTION statement, a mathematical subpro­
gram always returns an answer (function
value) to the calling program. Mathemati­
cal subprograms can be categorized as
direct reference or as indirect reference.

Since the user refers to direct­
reference subprograms by name, they are
explicitly called. For example, in the
statement X - SIN(Y). the user invokes the
SIN subprogram. The direct-reference math­
ematical subprograms are the logarithmic,
trigonometric, hyperbolic, square root,
absolute value, gamma function, and error
function subprograms, and some exponentia­
tion subprograms.

Since the user does not refer to
indirect-reference subprograms by name,
they are implicitly called. For example,
to invoke an exponentiation subprogram, the
user employs the exponentiation operator
(i.e., ••). The FORTRAN compiler then
causes the user program to call the appro­
priate exponentiation subprogram. To
invoke CHCBZA, the error-handling subpro­
gram, the user invokes a mathematical sub­
program without specifying the proper argu­
ments. With the exception of CHCBZA, all
indirect-reference mathematical subprograms
are exponential (compute powers of
numbers) •

The mathematical library service subpro­
grams can also be categorized as direct­
reference or as indirect-reference. The
direct-reference subprograms SLITE, SLITET,
OVERFL, and DVCHK test program-simulated
machine indicators. The indirect-reference
subprograms CHCBD1, CHCBD2, CHCBD3 f CHCBD4.
CHCBD5, and CHCBE1 handle interruptions
reSUlting from machine exceptions.

2

Each entry to an indirect-reference
mathematical subfrogram (and some entries
to service sutfrcgrarrs) in the rratherratical
litrary is made with two entry names:

1. Corr~iler-g€nerated entry name. When
the user err.~loys the eXfonentiaticn
of era tor, the compiler examines the
terrrs en both sides of the oferatcr
and determines which exponentiation
subprogram to call. It then generates

.an entry name that is later translated
into the system entry name.

2. System entry name. This is the name
defined by the subprogram itself, the
name of the entry point.

Each entry to a direct-reference subpro­
gram is made with the name employed by the
user. (The system entry name is the same
as the user-employed name.)

INTERNAL RELATIONSHIPS

Figure 1 gives a fUnctional overview of
the mathematical library. The subprogram
entry names of each routine are shown under
the name of the routine. The entry names
shown for the directly referenced subpro­
grams are the user entry names. System
entry names of these subprograms are shown
in Table 7. The entry names shown for the
indirectly referenced subprograms are the
system entry names of these subprograms are
shown in Table 8. The error-processing
routine CHCBZ is not included in Figure 1.

VO LIBRARY

Since the user has 10 entry points to
the FORTRAN IV I/O library, this library
can be thought of as 10 subprograms and a
number of subroutines for these subpro­
grams. The I/O library can also be

I described as a group of 21 routines that
interact in various ways, depending upon
the user's request. Except in ·Section 4:
Service Subprograms,· this publication
describes the I/O library in terms of its
routines.

Three of the ten entry points to the I/O
library are for processing the I/O state­
ments READ, WRITE, REWIND, BACKSPACE, END
FILE, PRINT, and PUNCH. Processing of READ
or WRITE statements can include list con­
trol, NAMELIST control, FORMAT control, or
none of these controls. The other seven
entry points are to service subprograms, in

two routines, that execute the statements
STOP, PAUSE, CALL DUMP, CALL PDUMP, and
CALL EXIT, and act upon requests by other
library routines for termination of program
execution.

SUBDIVISIONS

There are two groups of I/O routines:
I/O language control routines and data con­
version routines. These groups interact,
in fulfilling an I/O request, by means of a
common communication and work region.

I/O Language Control Routines

There are three types of I/O language
control routines: I/O operation control,
I/O list control, and I/O services control.
These routines analyze the user's I/O
requests to determine information such as:
the type of I/O operation to be performed;
the number and type of list items present,
if any; the type of NAMELIST or FORMAT con­
trol, if any; and the I/O statement rela­
tionships with a user-specified DDEF
conunand.

I/O OPERATION CONTROL ROUTINES: These rou­
tines control the I/O request by creating,
if necessary, a data control block (DCB),
and analyzing FORMAT and NAMELIST control
specified by the user. After this informa­
tion is processed, the I/O operation con­
trol routines interface with the TSS/360
data management routines that actually ful­
fill the I/O request. The interface with
data management is accomplished by the rou­
tines CHCIB and CBCIC, via the data manage­
ment macro instruction facilities.

I/O LIST CONTROL ROUTINES: These routines
examine the list items, if any, in each I/O
request to determine the type of conversion
to be performed. After the type of data
conversion is determined, control is given
to the I/O operation control routines which
in turn call the appropriate data conver­
sion routines for final processing.

I/O SERVICES CONTROL ROUTINES: These rou­
tines are responsible for creating user­
requested dumps, initiating a pause in the
user program, and terminating a user pro­
gram as a result of either normal proces­
Sing completion or program errors. I/O
services control routines also interact
with the I/O operation control and with the
group of data conversion routines for the
preparation of the user's data in virtual
storage for subsequent output on SYSOUT.

Data Conversion Routines

The data conversion routines are subdi­
vided into routines used for input proces­
Sing and routines used for the preparation
of output. These routines can process all
the permissible types of FORTRAN-formatted
data specified in either a FORMAT or NAME­
LIST statement.

When converting a user's data, the data
conversion routines interact with each
other according to the requirements of the
user-specified FORMAT or NAMELIST control.
For example, for input data that is defined
by a G-format conversion code, General
Input Conversion (CBCIS) is called. This
routine analyzes the data to determine
whether it is integer, real, logical, or
alphameric and calls the appropriate data
conversion routine.

INTERNAL RELATIONSHIPS

Figure 2 gives a functional overview of
the I/O library.

Table 1 shows the calling relationships
between the user program, the FORTRAN I/O
library routines, Data Management, and the
Supervisor.

Since the routine functions and interre­
lationships vary, depending on the kind of
I/O operation being performed, separate
diagrams (Figures 3-14) describe the dif­
ferent kinds of I/O operations. Exceptions
to the logical flows shown in Figures 3-14
are covered under the individual routine
descriptions in ·Section 5: I/O Routine
Descriptions. •

The types of I/O operations and their
figure references are:

Type of Operation (Function)

Formatted READ with List
Formatted READ without List
READ with NAMELIST
Unformatted READ with List
Unformatted READ without List
Formatted WRITE with List
Formatted WRITE without List
WRITE with NAMELIST
Unformatted WRITE with List
Unformatted WRITE without List
REWIND, BACKSPACE, and END FILE
EXIT and STOP

Figure
Reference

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Section 2: Overview 3

MATHEMATICAL
SERVICES CONTROL r---------- i

I INTERRUPT AND CHCBE' I
I MACHINE INDICATOR I

ROUTINE CHCSE2

I CHCBE3 I
I CHCBE4 I

CHCBE5

I OVERFL I
DVCHK

I SLiTE I
S LlTET

I :
I I
I I
I I
! I
I I
I I L ________ -.J

r
I
1

I
L_

ARCTANGENT j--------,
CHCBR
DATAN
DATAN2

CHCBO
AlAN I
ATAN2

I I L _________ J

CHCAP
CDLOG

COMMON & NATURAL LOGARITHM

CHCAF
DLOG
DLOG 10

DSQRT

CHCAE
MOG
ALOGlO

CHCAA
SORT

CHCAO
CLOG

I
I

-,
I
I
I

_...1

I t ~J:i~~_ CHCAS f--jI~-----.o-1
I CDSQRT CSORT i I

L - - -A-BS-O-LUT-E-VA-L-UE- - _J ',II

r-----------1

ARCSINE & ARCCOSINE ,..----------,
I ~ ~ I

,----1---1 DARSIN ARSIN ~-+----"

I DARCOS ARCOS I
L _________ ...1

TRIGONOMETRIC
TANGENT r---------,

11~1::iQ<.L. CH CAY I
DTb,N TAN I

I DCOTAN COTAN I
L _________ -l

Figure 1. Functional flow of mathematical library subprograms (page 1 of 2)

GAMMA;
LOG-GAMMA r--------,

lOGloo_-----+--i CHeST
GAMMA

CHCBY
DGAMMA
DLGAMMA

~+---------__ ~LO

REAL OR INTEGER ...--..1-_..,
SASE TO REAL
POWER

INTEGER BASE
TO INTEGER
POWER

REAL SASE TO
INTEGER POWER

COMPLEX BASE
TO INTEGER
POWER

CHC!!j*
CHCBJA
CHCBJB
CHCBJC

CHCBG*
CHCSGA
CHCBGB
CHCBGC
CHCSGD

CHCBH*
CHCBHA
CHCBHB

CHCBC'
CHCBCA
CHCIKB

---I ALGAMMA

L _______ .J
ERROR FUNCTION;
COMPLEMENTED
ERROR FUNCTION

r--------~

CHCBU CHCBW
ERF DERF

I ERFC DERFC I
L _______ .J

HYPERBOLIC TANGENT j-------:I
CHCAK CHCAl i TANH DTANH r

L _______ J

EXPONENTIAL ---------

TRIGONOMETRIC
SINE & COSINE r---------..,

I CHCAQ CHCAR I
I Csi'N CDSIN I

CCOS CDCOS

I I
I CHCAI CHCAJ I
I ~ DSIN
l cos DCOS I

HYPERBOLIC
SINE &COSINE

i-------l
CHCBA CHCBB
SINH DSiNH j......,..~-J

I COSH DCOSH I
L _______ -.l

CHCBKA
CHCBKB
CHCBKC
CHCBKD
CHCBKE

CHCBI*
CHCBIA
CHCBIS

CHCBM*
CHCSMA
CHCBMB

REAL DOUBLE
PRECISION BASE
TO REAL DOUBLE
PRECISION POWER

DOUSLE PRECISION
SASE TO INTEGER
POWER

COMPLEX, DOUBLE
PRECISION BASE TO
INTEGER POWER

Note: Asterisk (*) denotes
that following subprograms
are implicitly called
(indirect reference).

Figure 1. Functional Flow of Mathematical Library Subprograms (Page 2 of 2)

Section 2: Overview 5

Table 1. I/O library calling relationships

Calling
Routines

CHCIB

CHC!C

CHCID

CHCIE

CHCIF

CHC1H

CHCII

CHCIJ

Routines.
Called

CHCIM

CHCIN

CHCIO

CHelP

CHCIQ

I~
liS

I I
! i
I i
I

I
I
i

co
V
:z:
V

X

~
V
I
V

I X

X

x

I

Q
V
:r:
V

i

u.J

U
:z:
u

!

!

:::
V
I
V

I
X I

I

I

V
J:
U

I

V
J:
V

I
!

I
I

xl
I

I ~1

:::!
u
:z:
u

T
!

1

;

~
u
:z:
u

z
V
J:
U

x I X

i
i i

!

I
I I
[

Q
V
:r:
V

0..

U
I
V

Q
u
:z:
V

"" u
:z:
V

~
V
J:
U

....
U
:z:
u

x X

X

2
V

is
~
V
:z:
V

~
v
:z:
u

x
x

x

x

X

c

E ~
~ ~.~
U E g ~
:r:: 0 0 J
V 0:;:;: Vl

I X
i

X

X X

i
I

~---:-:-:_::----~I~-+--4---+---t---r--- "--1--x~t"--J!---+I--~-x-+--~-x-+--~--+---~-+---r--~-j!---+!--~
CHcn X X

CHClU Xi X I
- t

X x

X

,I X I X i I

----11-+---+-1 --+-i -- i
CHCIW X X I !

CHCIV
T ,

x i X i i x

CHCBD I I

6

eiJ
ill
n
-t
1-­

o
.::l

N

')

<
,~

ri
<
1-"

~.

-...J

"l
c.Q

~
(!)

N

"l

" ::I
o
("f'
o
~
t-'

"l
t-'
o
~

o
"i\

H

" o
C"
o
H
Q)

H
"<
;:0
o
w
rt ,...
::l
~

:Jl

I/O I..angvage Conlro I Routine.

User Program

--..... --- -r--
DUMP, PDUMP, I READ, WRITE, PRINT, I
EXIT, STOP, I PUNCH,SACKSPACE, lh.I •• ""
PAUSE REWIND, END FILE I

I/o Opera.ion Conh'ol

Initialization
(CHCIA)

Control I/O Service.
Con.rol r-- r----

I
---, I~-I

I
I
I
I
I
I
I
I
I
L

II I I I
DUMP ! ,1 DCB FORMAT .; i I to" Item
(CHCiV) I M·,;w-.tenoncc f4- Process.or P~CeU(H I I (CHCIS) I (OK IF_l_j i I ICHClt}

I I I I
EXIT rt I I/o Con.rol I ~ l;" - .

IC""W, I 1 ~ IC"'" I- : I :;~;~:."

-~ I I L __
I NAMELIST I

Proces.sor I I (CHCID)

L--1----

I
I
I
I
I
~

Data Con .. "ion
Routine,

User
Program 1--------

L-....-....-_....-~

.---____ 1 ---J1 tIL ____ -,
• .------1 • i P-__ ~ __ _L __ _. 4

CHC!A
I/O Initial­
ization

.......--_2 _---A] f
_-.J

t
I
I
I 3

list Processing
Enter far each
item

____115 ,

r ,-----1
...----lL--'----.

CHCIF

--,
I
I
I
I
I
I
I
I

7

Find a OC8 I r­
I r--

FORMA T Processor
process each ; tem
according to ,.------- CHCIU u;-

defining associ­
ated data set

I

Read a logical
record

Read sub­
sequent records

if necessary

I
I

U

Figure 3. Formatte,j RE1\D With List

I

r - -- -
I

CHCIA
I/o Initial-

I

5A

User

F ORW, T spec i·
ficatton

6 ~
CHClI, 1M, 12,
IQ, '2
Appropriate dota
conver",)lon routine

for each item

Program

i
I

_-.J

4

ization 1-- -- - - -- -- --
2 T1 1" 3

i I

r
__ ...1 L_,

I I
CHCIS Read

CHCIC subsequent Find a DeB
Read a log icc I

defining associ-
record

record if

oled data se I neces~ory

Figure If. Formatted REA.D Without Li,;t

8

Termination

CHCIF
F ORNIA T Processor
moye data items
from buffer into
FORNIAT

Figure 5.

User Program

1

,
I
I

2 4
CHCIA - -- -- - I ! -- I/O Initial ization r-- -- • I i

i CHCID
CHCIS 3 NAMELlST
Find a DCS I r- Processor

READ With NAMELIST

CHCIC I I
Reed a logical ISA 5

I recard

I CHCII, IM(
Read I 10,10, IS
subsequent Appropriate
records if _---1 data conversion
neces.sory r-

routine

1------ --,
~-----------------~

15
User Program ---,

L---r-r-J --.J--, I
1, I 4

I

I
I

r---------t CHCIA I
I
I

Q:!Ql,L

r---'- I.7(5I;;Ttial ization

2
: ~-3~t--~

I :
CHCIS

Find a DCB

CHCIC
Read a logical
record

Read
subsequent
records if
necessary

I
CHClf
list Processor
(Enter far

~ each item) ,"-------'
i- 14A
f---'

List Termination

Figur~ 6. Unformatted READ With List

Section 2: Overview 9

CHCIB
Find a DCB

2

User Program

CHCIA
I/O Initialization

CHCIC
Read a logical
record

Figure 7. Unformatted RE~D Without List

User
Program

f..------

4 I 1 • .---,-------' -1 - ----,
t I

CHCIA
I/O Initial­
ization

..---__ 2 _----'J f
_-.I

CHCIB

1
I 3

CHCIE
list Processing:enter
for each item, put
I ist in buffer

5
r----__ J •

l r-----l
-_--1'--....... ----,

<;:;.l:KIF
FORMA T Processor

-----l
I
I
I
I
I

7 I
I
I
I

1

Find a DCB
defining OIS0-

cioted doto set

I process each i tern r - according to f-------
List

I
Figure 8.

10

CHCIC
Initialize ~inters
to buffer in which
to construe t data
record

INrire buffer in
output data ,et,
when fuli

fication
I [FORMAT speci-

: ! 6A 6 ~ t
I i c:~_\I~, ~ ~-' ~

I I I~I~
~ ! Appropriate doto con-
~ vers;on routine for

each item in buffer

Formatted WRITE With LL'it

Termination

i
I
I
I
~

8

User
Program

1 I i
I

r - - - _.-3

• I
CHClf

4 FORMAT Processor
Q:!Q8 move data iterM
I/O Initialization

~- -- -- - - -- into buffer from
FORMAT

I f f 2 3 f I I
..J L, I

r - t 5
I I I

~ CHCIC ...J Find a DCB Initialize pointers Wri Ie buffer In 1--- -
defining aS$Oci- to buffer in which output data se t ,
ated data set to construct data when full

record

Figure 9. Formatted WRITE Without List

User
Program

t
I I

2
I

4

1
~

11 - - -- I/O Initial-
~---- --:- -- ization

1 CHCID
CHCIB 3 NAMELIST
Find a DCB I 1- processor

CHCIC I ,
Initialize pointers

I 5 to buffer for data I recard construe lion I CHCIH, IJ, 5A IN,

Write buffer in I E,~IT
output doto set, _ --.J

Appropriate dota

when full ~ conversion routine
for each item

Figure 10. WRITE With NAMELIST

Sf"ction 2: Overview 11

fo---- - - - -- -j User Program

I J 4 I t I l_ - - I

1
---,

r- -- - __ ..J

I

CHCIA
I/O Inifial-
ization

2 I i +
I

! r--.J L
3

---- CHCIC - Initialize

I po inters to buffer
in which to con-

CHCIB
struet dato record

Find a DCB

Write buffer in
output data set,
when full

Figure 11. Unformatt.ed WRITE With Lif;t

User Prog rom

1 I +

! r- - - _-.J
I

CHCIA I-- -- -- - -flO Initial-
ization

t I L_3 - -,
2 i • I I CHCIC - Initial-

I ize pointers ro
buffer in '.--!hid'

CHCIB to con~hv(r

Find a DCB aummy record

\Nrite buffer

conststing or
two bytes of
zeros

?igure 12. Unformatted WRITF Without List

12

6
I , I I

QiQL CHClU
list Processor List T ermi nat ion
(enter for each insure last
item) record is written

f f
I I
I

5 7

I I I I
_.J I

f- -- I
1---------- .-J

- - --,

fo-- -

I
I
I
14
I
I
I

-1

CHCIB
Find a DeB

User Program

CHCIA
I/O Initial­
ization

Fiqure 13. B1I.CKSP1I.Cr:, RF'WIND, ant'! END FILE

User Program

1

2
CHCIB

CHCIIN Find all DeBs
currently open I- -- Exit Rovtine

4

Exit to Com-
mand System

Figure lq. EXIT and STOP

CHCIC - Perform
REWIND and
BACKSPACE opera­
tion. END FILE is
performed on s.ub~e­

quent WRiTE

CHelC 3
~ ~~hopen

DeB found by

1--- CHCIB, the
DC8 is closed

Section 2: Overview 13

SECTION 3: MATHEf-lNrICAL SUBPROGRAM DESCRIPTIONS

This section gives the following infor­
mation on each mathematical library subpro­
gram, excluding the service subprograms,
which are described in Section 4:

III Name
• Name of containing routine
• Function
• Attributes
,. Entry
• Exit parameter (function value)
III Storage requirement
III Error check
• Accuracy figures (where applicable)

Since mathematical subprograms perform
standardized computations, a detailed
description of operation is given only fo:::
CHCBZ, the error-handling routine. The
algorithms of direct-reference mathematical
subprograms are described in FORTRAN IV
Library Subproqram:3, GC28-2026.

GENERAL INFORMATION

Certain information is common to all
mathematical routines and their subpro­
grams. This information includes:

III Routine names
• Attributes
,. Entry parameters
III Error action
III Exit parameters

Routine Names

All mathematical library routines have
five-letter names beginning with 'CHCA' or
'CHCB',

Attributes

All mathematical library routines use
type-I linkage and are nonprivileged,
reenterable, and closed.

Entry Parameters

Each mathematical subprogram receives
one or two arguments from the calling pro­
gram, in the form of a parameter list
pointed to by register 1. The parameter
list must contain the addresses of the
arguments in the proper order:

14

III Directly referenced subprograms. The
order is the same as that in the list
of operands within the parentheses in
the corresponding FORTRAN source state­
ment. For example the source statement

ANS=SIN(RADIAN)

in FORTRAN coding corresponds to an
assembler-language call containing one
address in the parameter list -- the
address of RADIAN. The FORTRAN
statement

ANS=ATAN2(X,Y)

produces a linkage with a parameter
list containing the addresses of X and
Y, in that order. The assembler lan­
guage programmer's linkage to ATAN2
must do the same.

• Indirectly referenced subprograms. The
order for the exponentiation subpro­
grams is: address of the number to be
raised to a power and the address of
the power itself.

Error Action

All mathematical subprograms that check
for error call CHCBZ upon finding such
error. CHCBZ then prints an error message
and terminates execution. See the descrip­
tion of CHCBZ at the end of this section.

Exit Parameters

All subprogram results are returned in
registers, as follows:

Integer

Real

complex

General register 0

Floating register 0

Real part in floating register
0, complex part in floating
register 2

SUBPROGRAM SUMMARIES

TABLES

Tables 2 and 3 give the following infor­
mation concerning the mathematical
subprograms:

FUNCTION: A brief description of the type
of mathematical operation performed.

I Table 2.

Function

COMMON AND
NATURAL
LOGARITHM

EXPONENTIAL

SQUARE ROOT

ARCSINE
AND
ARCCOSINE

ARCT~NGENT

TRIGONOMETRIC
SINE & COSINE

Summary of directly referenced mathematical subprograms (page 1 of 3)

6 7 8 9 10

Entry
Nome

Definition
Argument(s) Function

Value
Returned

Error Cond i' i on

Storage
Estimates Othel Subprogram$ Required

Routine

Name

AeeUMGY Figures
I---------·-·-,,.---.,.------,-.-;-Io:-ti:-.... -----,-------o--;b-"'--;I,-ut:-.--------j

Argument Sampl*
M (.) a (.) .---.--.--------------------

TyP«' Range No. Hex Oec Range E!\J

Ln (a'g) 0' Log. (0'9) " 2 DSQRT C CAP The full 'onge Not. 1 COlOG See Nat. 8 COMPLEX' 16 0'9 # 0 + Oi COMPLEX' 16 A'gument ~ 0 t 01 lE8 88 COABS, OLOG, OATAN , H •• cept (1 + Oil 2.72. 10· U> S.38. 10. 17

~--.--~----------~--~--------4------------------~--------~------------------+---4---~----------------4------+--~--~~----~~-----+~~
CLOG Ln (0'9) 0' Log. (a'g)

S •• Not. a
j-------'f-

COMPLEX' 8 org;o!O+Oi

REAL' 8 org > 0

COMPLEX' 8 Argument :. 0 + 01

REAL' B Argument ~ 0

100 CABS, AlOG, ATAN2, SQRT CHCAO

21A S38 CHCAF

The full range
except (I -t OJ)

Note 1

U

7.15. 10.7

a (E)

X<O.S,X>l.S E 3.32>10. 16 5.5,"10. 17
----f--------------+--.--1--- ----~---~·-------+----_+-r--'~c-- .------~ t--.-._. -17--

A,gumentSO 21A S38 CHCAF O.5~X!>I.5 _.t::... __ .~ __ .. __ 2.73.10. 17 1.07.10 __

___ . ________ -t __ _+--+------------_+----f-X-<--O=~.?-~:~!--~_.2-02x.J.O'-:'~~ __ J6!c..!'i6S"...~1J!.0-_1_7__11_---_".-+_----..-_l
0.5 ~ X:; 1.5 --f-- .. ~ .. - 6.85.10.8 2.33.,0.8

org ,. 0 DlOGlO l0910 (0'9) REAL' 8

1------- -- .-.... -.-.-----1-- .. -.

REAL' 8

AlOG

AlOG10

COEXP

SQRT

DARSIN

OARCOS

Ln (0'9) "' Loge (o,g)

Log 10 (0'9)

1/2 c:­
(arg) I or -xl Qrg

arcsi ne (org)

arccosine (org)

REAL' 4 arg > 0

a'g ill! 0

REAL' 8

la.gl !S 1
--+------1-----------_ ...

REAL' a

REAL' 4 Argument S 0 100 CHCAE
·---·-~7- -- ·7

X < 0.5, X > 1 .5 Ea. 32. 1 0 "~f--_.'.I:..'. 1'.:9~.~1 O~ ___ +_-----;.-_+----..,,---I

7.13. 10.8 2.26. 10.8

·7 }.17. 10

...... _ _ _._ .. 4---------- ------+--+----1-----------+---+------+-----.1_------1-------1--.-----I--

REAL' 4 N*9otive Argument 158 CHeAA The full range

REAL' 8 IArgumentl > 1 288 648 OSQRT CHCAX -I~X~~J U 5.15 x 10. 17

REAL' 8 IArgumentl > 1 288 648 OSQRT CHCAX U 2.07.10. 16

~~:m-.-n-tl->-~·-·---·-·-------+-I-F-O-t-4-96-+S-Q-R-T---.-------f-C-H-C-A·-W---~~·-X-S-+-l--t--U--~9-. 34-.-10---7--+-2-.06-.-1-0-.-7--+--------+-.. --.--.----
ARSIN arcsine (org) REAL· .. [org I ~ 1

I----.---f-------------+--~----------~-----

-I ;;A-:~~-·-----·
t R;;l'4 --!-,·A-'-gu-m-.-n-t l-,-I-------+-1-FO-+-496--+S-Q-R-T----------+-C-H-C-A-W--+.-l-:;-X-:;-+-1--+--U--+-a-.-85-.-1-0·-7---11-3-.-19-.-10-·-7--+------+------~ ARCOS arccosine (Of g) REAL· • lor9 I :5. 1

t ~EA·l:·; None 288 648 CHCBR The lull ,ange Not. 7 2.18.10. 16 7.04.10. 17 DATAN REAL' 8 Any arctan (org)

f------j .. t ------- . -_.-.... !_.---.-- --... _ .. --- .. --. ..----.- .. ·------·-·--1f-·-·-·--·.---·-·-·-- --.-.---.-+------ --+------1
0'9#0 !REAl'B Xl"X2~O 288648 CHCBR Th. full 'onge Note 7 2.18.10. 16 7.04.10. 17 DATAN2

1-----_.

ATAN
.. _._--

ATAN2

CDSIN

arcton (org)

sin (erg) I erg in
radians

REAL' 8 .. f:~ - . -------·-------r REAL' 4 ::-.-.-.. ------------ lE8 488 ---.. ------------ ~~~~-.-- Th:~-::--- Nol.7 1.01. 10.6 --~~0-.-7-- ---.-------+------1

.• '" ---- ·1;,:", ••. :1, . ',.0 ····------···----+-IE-8-+-4-as-+-·--·---·-- -------- -CH~;- T~:-f:I~'a~:·-- Not·-.-7-~1.-O-I-.-1-0-·6--+-4-.-68-X--l-0--7---+------·-----jf---------i
I,eola,g, <2511 • VoMPlEX'16 I'ReOIA,gUment' ~25f1. 340 832 OSIN, DCOS,OEXP CHCAR IX1/Sl0,/X2IS1 U 2.35xl0· 15 2.25.10. 16

, I I I , I See Note ..

REAL' 4

REAL' 4

COMPLEX' 16

Imog mg ~ 174.673 I , Imaginary A'gument > 174.673 I I

f-----+------ ---~--.+---------+--- .. ----=- t --+------c-- 1
cocos co. (o'g). 0'9 in COMPLEX' 16 leeal a.gl < 2511 , .-.---- --- I COMPLEX' 16 I 'Real A,gumentl ~ ~5/; I, 340 832 DSIN, OCOS, OEXP CHCAR

radians I I I limog Olgl ~ 174,673 ~i'moginorY Argument! > 174.673

i I I

u 3.98.10. 15

See Note 3
2.SO.10· 16

j-~ -- -CO~;~-0-':I:~r;-;-18~ F~MPLE;-:;--I'Reol A,gument' ~ 2-;1~8;-'----~~2-F8-+-760 jSIN' COS, EXP I CHCAQ IX 11 ~ 10./X~ ~ 1

! limog orgj ~ 174.673 IIImOginOry Argument! > 174.673 I' I
I :

(SIN I sin (org) , or9 in

I radions

Section 3:

U 1.92.10.6

See Note 6

·7
7.38.10

Mathematical Subprogram Descriptions 15

I Table 2.

Function

TRIGONOMETRIC
SINE & COSINE
(Continued)

I
i
i

Summary of directly referenced mathematical subprograms (page 2 of 3)

Entf'l I
Nome

I
i

Definition
r -- r--

: No.

Argument(s!

Type Range

Function

ValuE'
Reh.Jlned

Error Condition

10

Icc05 1 COMPLEX'S 11".'or91 <2 18 .. ICOMPlEX'S ilRealAI9umenti ~218. 2F8 1760 ISIN.COS,EXP iCHCAQ IIXII~IO'IX21~ I u

I, REAL'S __ I,i I ilo'mrgOlgo~rg~15O~_174-'6-73-- I _ xog,norYAIgumentl >174.673 i ~ I i

12.50.10-6
See Note 2

I -7
,7.66.10

~'D-S-'N--~-~-dl-~-Z-)-,.-r-g-In--+-1-4---~-IT ~------~:;-II~_I!~· ---~2-~-~I----~~-b-_=-=~-_-_~-~-u-4-3-'~-'-1-0--l-6-4-4-.8-2-'-10---7--~-7.-7-4-X-l-~-1-7-~-I'-~-'-I-~-1-7~
I I ~<IXI~IO u

f-
OC
- 0

-
S
--+

1

C-0-'-(0-'9-)-, --ar-9--in----+---+R~-E-A--L-'---.---~ --~jl:~ I;~' - 'W • • 1',,"_"'1 • ,.. ~. .% '"''' I-~O_S_<_X 1_~_I .. _s_IOO~~:~-~-+-----+-----+-~-: ~-9-:-:~:~~ :~:~~~:~:~:~~:~:~:~:~~ I:::I_~~~:
",di.n. I I -10 S X < 0 U 1.75.10- 16 5.93- 10- 17

! 1 .. < X :5 10 " F-I i t I 10 < I X 1:5 100 U 2.64. 10- 15 1.01.10- 15

SIN j,ln(.rg),argin I' I 1 REAL'4 II.rgl <2 18 • IREAL'. I Argumentl ! 218 • IF8 504 I CHCAI Ixl~ ~ u 1.32x10-6 1.82x1O-7 1.18.10-7 4.55.10-8

I radiCH'll I

! I I I I 'I- II I I f < 1 X I ~ 10 U 1.15. 10-
7

4.64 x 10-
8

~ 1 -------J--L --t _ _ I . 10-~I~ 1 s I~- f--U--t-------+-----+--I -28-10--'7 -+-4.-52-.-1-0--=-8---1

I I rod'on. ! -10 ~)(< 0 U I 1.28, 10-7 4.55. 10.8
I'C~----;~~:~in I I I-~E-A-L-'-.-~ 1-~r~~----------~lli-RE-A-l-'-4---~I-I-A-~---e-~~~-18-.. -------+-IF-a-~1-5-04-+------------ ~~-- o~x5. U 1:19:1~7 4.~.1~8

I I ~_< X S 10

~-----k~~,q,n 'I R~'B~~~~----~I~~--+1~12~-~-'------~2-F-B~-~-+-----------f-C-~-A-Z-41-:-I-:~I;-:~II-100-~--:-43-.-.-I.-IO---16-~~6-'-V-X-lo-_-I-~~_1-4-'_I_~-7_~-4-'_~_'-I-~-6-~
I radion. Argu"",", too clo .. '" a Singularity -~------- ~----=-i-2- f-=:.......-----f-----~---
I I I (l.e.,tQo do •• to an odd 11~<lxl~~2 U 1.43.10 2.95xIO- 14

TRIGONOMETRIC
TANGENT

HYPERBOLIC
SINE & COSINE

I
multiple of'" /2) • S.e Not. 5

i I l~<lxl~IO U 2.7B,10- 13 7.23.10- 15

I I ! I ~o~ S 100 -+---~-t;.;::o;~~~--------_1-,,--4-----+--------l

~~TA~t~?a-nn-;.-r-9-)-,--.-'9--i-n-+--I-~!-R-E-A-L-'-a---+-I ~1-a'-9~1-<-2~-.---------- l~~AL-:-;---iIAr~::~1 U 5O • 2FS 760 CHCAl r X 1 ~ :-~-1~~:::~16 ::::: ::-1;---"----

I I A'9u,,",nt too clo •• to a Singularity ·13 ------~--.----
(i. •. , 100 close "'0 !<lxl~-2" U 2.78.10- 8.6IxI0- 15

I multiple of1r) Of See Note 5
1 ~-I -1-<---t--U-+5-.-40-.-10--'13o--f-I-.-13-X-10---14----j~-------jf---------j
I ~< X - 10 Se. Note 5

10 < I Xl S 100 U 8.61.10- 13 ".61.10-14

f----~------~ -----+-------+------------1------+--------------.. - .. _ .. __ +-__ f--_-+ ___________ +-___ +-_____ + __ -+=S.= • ...:N.::.::.t.=5 __ +-_----+------+-------1
TAN ton (org), org in

radians
REAL' • largl < 21S • REAL' 4 I Argument! ~ 2 18 ... 288 648

Argument too close to a Singularity

I (i.e., 100 clo •• to on odQ I

1--__ --1 ________________ . __ ~ _____ +---_+I---------+---~--+-mu-'t_iPI-e 0_(,_r/_2) _____ +I _______ ._._. __

COTAN cotao (org), arg in I ~EAL' 4 largl < 218 • REAL' 4 IArgumentl ~ 216 • 648
radians

Argument too close to a Singularity
(i.e., too close to a
multiple of 'ff)

DSINH sinh (org) REAL' 8 Iorgl< 175.366 ~EAL ' 8 I Argument ! ~ 17-4.673 250 592 DEXP

OCOSH co.h (.rg) I REAL' 8 I.r~< 175.366 REAL' 8 IArgumen'l ~ 174.673 2~ 592 DEXP

CHCAY U

-7
3.59. 10

CHCAY 1 XI~ i U 1.07. 10-6 3.5S.10-7
1--------~----~-:.......:-6 -- ~---~--.-.--- -------I---.--~--_1

~<IXI::~ U 1.40.10 2.56xI0-7
"10 £ See Note 5

.. 1 1< U 1.30,iOc6 3.llxI0-7 2 < X - 10 5 •• Not. 5

See Note 5

CHCBB 1 X 1 ~ 0.88137 U

0.BB137 <I xl:s 5 U 3.80.10- 16 9.21.10- 17

CHCBS -5~X:S+5 U 3.63 x 10- 16 9.05. 10- 17

1------+--------1----+--.------- ---- ------.---------.-+------t-----------+--t--+----------+----+-----1----+-----1-------11-------+------
~,gl < 175.366 REAL'. I Argumen,I ~ 174.673 SINH .Inh (org) REAL' 4 lF8 504 EXP CHCBA -5:5x:5+5 U 1.26. 10-6 -7

2.17. 10
r-----~-------+---+_-------~,----------~-------~--~------~-~--~-----------__I-----I----1---+----~--~--+-----_r----__I

10 '91<175.366 REAL'. IAr9umentl!174.673 IFS 504 EXP CHCBA -5$X::+5 U 1.27.10-6 2.63.10-7 COSH cosh (org) ~EAl ' 4

Section 3: Mathematical subprogram Descriptions 17

-- ;:z wu

I Table

Function

HYPERBOLIC
TANGENT

ERROR
FUNCTION

GAMMA (r)

LOG-GAMMA

2. Summary of directly referenced mathematical subprograms (page 3 of 3)

9 10

Entry
Nome

Definition
I Function I Storoge Routine '

r
Afgurnent(s) Valup I Error Condition Estimatc5 Other Subprograms Required t---·~·--·------rI---'I------'.'lo"'t7;v-e-··-----'-~

I I Rctur~ed I--~-~-""" I Nom!;' I: Argument Sample I M (") Ii 0' (,,)
--No. Type Ro nge : i Hex Dec I Range I E/U

Accuracy Figures

DGAMMA

ALGAMA f cc)(-1 -u
loge u e du

o

DlGAMA

Notes 1. The distribution of sample arguments upon whi(;h
these statistics are based i$ exponential radiolly
and j, uniform (Hound the origin.

2. The maximum relative errOr cited for the (COS
function is based upon 0 set of 2000 random
arguments within the ronge. In the immediate
proximity of the points (n + 1/2)., + Oi (whp.re
n=O, ±1, ±2, ... ,) the relative error ~on be
quite high, although the absolute error i~ small.

3. The maximum relative error cited for the COCOS
function is bosed upon a set of 1500 random o(guments
within the ronge. In the immediate proximity of the
points (n + 1/2)". + OJ (where n =:. 0, ± 1, ±2, •.. ,)
the relative error con bt" quite high although the
absolute error is small.

4. The maximum t'clative error cited for the CDSIN
function is based upon a set of 1500 random arguments
within the range. In the immediate proximity of the
pOInts n .. + Oi (where n = ± 1f ±2, ... ,) the relative
t:-rrOr cun be quite high although the ab~lute error is smoll.

5, The figures cited 05 the moximum relative errors are
those encountered in a Klmple of 2500 random argumenh
within the respective ranges. See the appropriate

section in Appendix F for a description of the behoviol
of elrors when the argument is near a ~ingulQfity or 0

zero of the function.

6. The maximum relative errOr cited for the (SIN function
is hosed upon 0 set of 2000 random arguments within the
ronge. In the immediate pro)(imity of the points
nw + Oi (where n '"' iI, ± 2, .•• ,) the relative errOr

con be quite high although the absolute error is small.

7. The sample arglJment~ were tongents of numbers
uniformly di~trjbuted between - .. /2 and + T /2.

a. The on$wer given is the principal value, i.e. t

the one whose imaginary part lies between
- ".. and + "rr •

9. Floating-point overflow con occur.

M (E) • (E)

Section 3: Mathematical Subprogram Descriptions 19

SW3:::a::ttUS

I Table 3. Summary of indirectly referenced mathematical subprograms

Function

RAISE AN INTEGER
BASE TO AN
INTEGER POWER

2

Entry
Nome

CHCBGA

Definition

y :::= i '* * i

4

Argument(s)

5

Function
Value

'N~ Type Returned

6

I Error Condition

7

Storage
Estimates

Hex Dec

8

Other Subprograms Required

10

Routine

Name

2 Ii" INTEGER * 4 INTEGER * 4 -- CHCBG IB4 436 Base is zero

--.-+--.-._----------.------if-------------+--+--+------------+-----I
CHCBGB y ~ i * * i 2 I i ~ INTEGER * 2 INTEGER * 2 80se is zero and exponent is
f------.J-----"--.-~r----+! ---_____ + _______ _+.-=z:.:e"'ro=-=o"'r"'nc::e,Jl.o::.:t.:..iv:..:e=--------+----+---if--------------+-.... -----l

CHCBG 1 B4 436

CHCBGC y = i * • i 2 I!, i ~ INTEGER * 2 INTEGER * 4 Bose is zerO and exponent is
i ~ INTEGER * 4 zero or negative

y =-i-'-*-'-I --f.I' -Z--+I-i-=-'-NTEGER * 4 INTEGER * 4 Base i-s-z-e-ro-,,'-nd-e-xpo-n-e-n-t -is---+--I-B4--+--4-36--+-------------4-C-H-C-B-G--I
CHC8GD

CHCBG IB4 436

I i ~ INTEGER * 2 i zero or negative ---
~---------+------~-------+---~--------+---------~--

, y ~ a • * i 2 I a ~ REA L * 4 ! REA L * 4 ' Base is zero and exponent is CHCBH 144 324

RAISE A REAL
BASE TO AN
INTEGER POWER

CHCBHA
zero or negative

144 324 CHCBH CH-C-B-H-B- --j...y-~-a-*-*-i --+--2--i·~ = 1~~L~~E;'~jREAL-*-4--- Base is zero and exponent is

I i = INTEGER * 2 zero or negative

I-:~-E-I~-~-t-Io-D-:::·-~A-B-;~-T-o-~-C~-H~C~B~I-A-------..j.+_-y·~=~_a-_-*-:i '~J~~l-~':I* 4 I REA~_*.~ .. _-_-_--_·-_-+_!-:-:-:·-·~-'r-:n~:-r-;~a-;-ind~v-e:e_-x_po~~n~.e-n_-t_-_is~~~~~~:~~1-4_C~~~~~3~3~2~~:~~~~~~~~~=_-~=_-~=_-._-_-_-_-_-_-_-_-:_-+.j..----C~H~C~B--I--I
AN INTEGER POWER i CHCBIB I' Y = a * * i .1 2 ,a = REAL * 8 I REAL * 8 Base is zero and exponent is 14C 332 CHCBI

I-----------+Ii-C-H-C-SJ-A--f..-. _____ _~INTEGER * 2 I zero or ~~g_a_t_iv_e. _______ -+-:c-__ -+---1r=---~~~~~-----l-.,,_-::---_l
RAISE A REAL I y = 0 • * b I 2 I a = REAL * 4 ' REAL' 4 I Base is zero and exponent is I lCO 446 EXP ALOG CHCBJ
BASE TO A REAL I ' I I b = REAL * 4 I zerO or negative

~P_O_W_E_R -----+-I---l-----~o--.. - .--J----tI-------1'---~ ... o .. __ ._III--_______ .. ____ .. +_-+ __ +-~--:___ .. --._- 4------1
i CHCBJB y ~ i * * b iii 2 I b ~ REAL * 4 REAL * 4 Base is zero and exponent is 1(0 448 EXP, ALOG CHCBJ

RAISE AN INTEGER i ~ INTEGER * 2 zero or negative
BASE TO A REAL l-----~f_.------_f_-_+-------+--o-.. ---·----_+II---------~---I---+--f-------------l-------l
POWER CHCBJC y ~ i" b i 2 b = REAL' 4 REAL' 4 Base is zerO and exponent is ICO 446 EXP, AlOG CHCBJ J i ~ INTEGER' 4 zero or negative

RAISE A REAL OR
INTEGER BASE TO
A REAL POWER;
BASE AND/OR
EXPONENT
DOUBLE
PRECISION

CHCBKA y~a"b I 2 a ~ REAL * 8 REAL * 8 Base is zero and exponent is 230 560 DEXP, DLOG CHC8K
b = REAL * 8 zero or negative

1------~-------_4-_4----------+_---~ .. ----+----------~---4---+---------+-----I
CHCBK 230 560 DEXD, DLOG CHCBKB 2

CHCBKC y=i**b 2

b = REAL' 8
i '" INTEGER * 2

REAL * 8 Base is zero and exponent is
zero or negative

b '" REAL * 6 REAL' 8 Base is zero and exponent is
i '" INTEGER • 4 I zero or negative

r-----+------+--j-·-----------I-------+-·-o~
CHCBKD y:::o**b 2

b = REAL' 8 See Note. zero or negative

230 560 DEXP, DLOG CHeBK

230 560 DEXP, DLOG CHCBK

CHCBKE 2

a = REAL * 4 -+REAL * 8 Base is zero and exponent is

~----~--------~--_4-------
a ~ REAL * 8 REAL * 8 Bose is zero and exponent is 230 560 DEXP, DLOG ' CHC-BKo,-
b = REAL' 4 I zero or negative I ,-,

r---------Ir-C-H-C-B-M-A--+-y-=-a-.-.-i --+--2-+-o~~-C-0-M-P-L~E·~C::::O-:M-P::-L-:E::-X-*-:1-6---+-8ci-·-S-e-i-s -ze-r-o-a~n-d-e-x-po-n-e-n-t-i-' ---+-2°C7-4c -1C-6C"2:c:8:--t----------- ·-tcHCBM --

i ~ INTEGER' 4 zero or negative

CHCBMB y=a**j 2 0_ COMPLEX * 16 COMPLEX * 16 274 628 CHCBM
i = INTEGER' 2 RAISE A COMPLEX

BASE TO AN
INTEGER POWER

Bose is zero and exponent i:s.
zero or negative

\-----+------+---f...---------+-------- .. ---.----------if.---l---+---------.-.-.. -----l-----I
CHC8CA y ::: 0 .., * i

CHCBCB y:a**j

2

2

a = COMPLEX * 8 COMPLEX * 8
i = INTEGER * 4

a = COMPLEX * 8
i = INTEGER' 2

COMPLEX' 8

Base i5 zero and exponent is
zero or negative

24C

24C

588 CHCBC

588 CHCBC Bose is zero and exponent is
zero or negative

~------r-----r_----+--+_-------+--------_+---.-----------+_--+--+-----.. -----.--+------1
CHCBZ 232 As required by use of the

EXIT macrO instruction
PRODUCE ERROR CHCBZA
MESSAGE AND
TERMINATE
EXECUTION

NOTE: The REAL *S function value returned by CHCBKD i, not more accurate than the REAL·4 base
given as on argument.

E8

Section 3: Mathematical subprogram Descriptions 21

I

ENTRY NAME: In Table 2, this column shows
the user entry name. In Table 3, this
column shows the system entry name.

DEFINITION: This column gives a mathemati­
cal equation that represents the computa­
tion. (It is not meant to represent the
way the subprogram is called.) An alterna­
tive equation is given when there is anoth­
er way of representing the computation in
mathematical notation. For example, the
square root can be represented as either

Vxor x%-

ARGUMENT(S}: These columns describe the
values(s) for which the fUnction value is
to be computed.

• Argument Number The number of argu-
ments (one or tWO) that the user must
supply.

• Argument Type -- The type and length of
the argument. Integer, real, and ~
plex represent the type of number: the
notations *4, *8, and *16 represent the
length, in bytes, of the argument.

Note: In FORTRAN IV, a real argument is a
REAL*4 argument, and a double-precision
argument is a REAL*S argument. A single­
precision complex argument is a COMPLEX*8
argument, and a double-precision complex
argument is a COMPLEX*16 argument.

• Argument Range -- The valid range for
an argument. (See the Error Condition
and Error Message column descriptions
below.)

FUNCTION VALUE RETURNED: This column
describes the function value returned by
the subprogram; the notation is the same as
that used for the argument type.

ERROR CONDITION: This column shows the
argument range not allowed when using the
subprogram. If the argument is within this
range, the subprogram will call CHCBZ.
(See the description of CHCBZ, at the end
of this section.)

STORAGE ESTIMATES: This column shows the
approximate number of bytes required for
each mathematical routine: the approximate
total size of each routine's CSECT and
PSECT. (FORTRAN IV mathematical routines
each contain one publiC, read-only, reent­
erable CSECT and one PSECT. The length of
each of the control sections is less than

4096 bytes. The routines are link edited,
and their CSECTs are combined.)

OTHER SUBPROGRAMS REQUIRED: Many mathemat­
ical subprograms require other mathematical
subprograms to perform their function. The
entry names of the other subprograms are
listed in this column. (This column does
not include CHCBZA, which is called by all
mathematical subprograms where error exit
is possible.)

ROUTINE NAME: The name of the routine con­
taining the subprogram.

ACCURACY FIGURES (TABLE 2 ONLY): These
columns give accuracy figures for one or
more representative segments within the
valid argument range. The accuracy figures
are based upon the assumption that the
arguments are perfect (that is, without
error and, therefore, having no error­
propagation effect on the answers). The
only errors in the answers are those intro­
duced by the subprograms. Information
given in the accuracy-figures columns is:

• Argument Range -- This column gives the
argument range used to obtain the
accuracy figures. .For each function,
accuracy figures are given more repre­
sentative segments within the valid
argument range. These figures are the
most meaningful to the function and
range under consideration.

The maximum relative error and standard
deviation of the relative error are
generally useful and revealing statis­
tics. However, they are useless for
the range of a function where its value
becomes O. because the slightest error
in the argument can cause an unpredict­
able fluctuation in the magnitude of
the answer. When a small argument
error would have this effect, the maxi­
mum absolute error and standard devia­
tion of the absolute error are given
for the range. For example, absolute
error is given for sin (x) for values
of x near 7r •

• Sample -- This column indicates the
type of sample used for the accuracy
figures; the type depends upon the
function and range under consideration.
The statistics may be based either upon
an exponentially (E) distributed argu­
ment sample or a uniformly (U) distrib­
uted argument sample.

Section 3: Mathematical Subprogram Descriptions 23

• Statistical results:

Me- ax -----()-M I f(x)-g(x) I
fix)

()- _ 1_1" ! f(x,)-g(x,) I'
tT • - '\J N L;, . f(x,)

M(E)=Max i f(x)-g(x)

_/1\---\, [' <T(E)= "N L-t' f(x,)-g(x,)

Maximum relative (,ITor
produced during testing

Standard deviation (root­
mean-square) of the rela­
tive error

Maximum absolute (,fror
produced during testing

Standard deviation (lOot­
mean-square) of the abo
solute error.

I Table

Base (A)

A>O

A=O

A<O

5. Exponentiation with real or
double-precision base and inte­
ger exponent

Exponent (J)

J>O J=O J<O
Compute Function Compute
function value value = 1 function value

Function Error message Error message
value = 0

Compute Function Compute
function value value = 1 function value

In the formulas for the standard devia- I Table 6.
tion, N represents the total number of

Exponentiation with real or
double-precision base and
exponent arguments in the sample; i is a subscrip-c

that varies from 1 to N.

Test ranges, where they do not cover the
entire legal range of a subroutine, were
selected so that users may infer from the
accuracy figures presented the trend of
errors as an argument moves away from the
principal range. The accuracy of the an­
swer deteriorates substantially as the
argument approaches the limit of the per­
mitted range in several of the subroutines.
This is particularly true for trigonometric
functions. However, an error generated by
any of these subroutines is, at worst, com­
EY'rable in order of magnitude to the effect
..... _ the inherent rounding error of the

Base (A)

A>O

A=:: 0

A<O

B >0

Compute
function value

Function
value = 0

Error I\lessage

Exponent (B)

B=O B<O
Function Compute
value = 1 function value

Error rnessage Error message

Function Error message
value = 1

argument. Table 7. Entry names of indirect­
reference mathematical routines

Tdb18s 4, 5, and 6 show how the value:o
of the base and exponent affect the
exponentiation subprograms.

Table 7 shows the system entry names and
compiler-generated entry names of indirect­
reference mdthen~tical routines.

I Table 4. Exponentiation with integer base
and exponent

Base (1) I
J > 0

I > 1 CO~L1fJL1t.(;' the ¢r lund!"n value

1 :::: 1 Culllpllll' the
fund jqn value

:Fundinn

£=0- j-- vdiiJ!::""'O

Exponent (J)

J '0: n

Function
value cc: 1

If J is an odd I - 1 Compute the Function
- - I function value value:=: 1 number', funl"tivn

r value ·--'-1

I I If J is all even

I 'It!mfwr, fU)):·tH)!;

~ ___ ·_· __ · ______ t-_____ --+i ____ :]d-",:_-_l __

i
I

COlll;lutc t.he Function ! FUilct.j.--,n J
flllldlon value value = 1 v'llue = 0 L-_____ L-__________ ~ _________ -L ___ . ________ _

I < -1

24

r-------------~-----------T--------------,
, compiler- I [I
I Generated I Routine I System I
I Entry Name I Name I Entry Name I
~--------------+-----------+-------------~
I FCXPJ I CHCBC I CHCBCA I
I FCXPI I CHCBC I CHCBCB I
I FIXPI I CHCBG I CHCBGA I
I FJXPJ I CHCBG I CHCBGB I
I FJXPI I CHCBG I CHCBGC I
I FIXPJ I CHCBG I CHCBGD I
I FRXPI I CHCBH I CHCBHA I
I FRXPJ I CHCBH I CHCBHB I
I FDXPI I CHCBI I CHCBIA I
I FDXPJ I CHCBI I CHCBIB I
I FRXPR I CHCBJ I CHCBJA I
I FJXPR I CHCBJ I CHCBJB I
I FIXPR I CHCBJ I CHCBJC I
I FDXPD I CHCBK I CHCBKA I
I FJXPD I CHCBK I CHCBKB I
! FIXPD I CHCBK I CHCBKC I
I FRXPD I CHCBK I CHCBKD I
I FDXPR I CHCBK I CHCBKE I
I FCDXI I CHCBM I CHCBMA I
I FCDXJ I CHCBM I CHCBMB I
I I CHCBZ I CHCBZA· I
r--------------L-----------~------------~
I.Called by mathematical library routines I l ___ J

Table 8 describes the macro instructions
used by mathematical library routines. The
mathematical library makes extensive use of
macro instructions for code similarity,
programming efficiency, and ease of inter­
face modification.

CHCBZ -- Error Processor

Entry Parameters: CHCBZ expects general
register 1 to point to a two-word parameter
list. The first word is the address of a
one-byte code indicating the error condi­
tion; codes and meanings are:

o - zero
1 - not positive
2 - exceeds limit
3 - negative
4 - absolute value exceeds limit
5 - zero or negative
6 - close to singularity

The second word is a pOinter to the name of
the mathematical routine in which the error
occurred, with a one-byte length preceding

the name. CHCBZ does a trace back to
obtain the address of the call to the math­
ematical routine in the user's program.
CHCBZ issues a standard message, inserting
the supplied values and issues the EXIT
macro instruction. The message is:

CHCBZ100 TERMINATED: ARGUMENT $1 FOR
$2 AT $3

where $1 represents the code
$2 represents the name
$3 represents the trace­

back address

Entry Point: CHCBZA

Operation: CHCBZ adds the error code to
the standard system message and issues the
EXIT macro instruction. The standard sys­
tem message is:

OUT OF RANGE PARAMETER GIVEN A FORTRAN
IV SUPPLIED SUBPROGRAM. ERROR CODE IS
nnn.

Table 8. Mathematical library macro instruction summary

r------------~--, I Macro Name I Purpose I
~--------------+--1 I CEKZA I Generates the V-Con/R-Con pair required when other TSS/360 subrou- I
I I tines must be called. I
~--------------+--1 I CEKZD I Generates the code following a SAVE macro instruction, to add to the I
I I backward and forward chains and load register 13 with the current I
I I PSECT location. I
~--------------+-----------------------------------~-----------------------------------~ I CEKT1 I Generates the CSECT label, register EQUs, ENTRY statement, and other I
I I code duplicated at the beginning of every subroutine. I
~--------------+-------------,---1
I CEKT2 I Used for error exits. I
t--------------t-------------,---1 I CEKT3 I Generates PSECT label and save area. I
t--------------t---~ I CEKT4 I Generates code similar to that of CEKT1, for additional entry I
I I points. I
t--------------+--~ I CEKT5 I Similar to CEKT3, but used for PSECT items required for additional 1
I I entry points. I
~--------------+---~
I CEKT6 I Used to reload register 13, stop the forward chain, and return. I L-___________ --L ___ -J

Section 3: Mathematical Subprogram Descriptions 25

SECTION 4: SERVICE SUBPROGRAM DESCRIPTIONS

This section gives the following infor­
mation on ",.:..eIl service subprogram:

• Name

• Name of containing routine

• Function

• Attributes

• Entry

• Routines called

• Error checks

• Data references

• Operation

GENERAL INF'OIU-IATION

The three service routines are:

• CHCBE -- interrupt and machine indica­
tor sut.programs

• CHCIV DUMP and PDUMP subprograms

• CHCIW EXIT, S'IQP, and PAUSE
subprograllls

CHCBE resides in the mathematical
library; CHCIV and CHCIW reside in the I/O
library.

Like other FORTRAN IV library routines,
the service routines use type-I linkage and
are nonprivileged, reenterable, and clo.sed.

Service subprograms that are user­
referenced have user entry names. No ser­
vice subprograms have compiler-generate:1
entry names.

Information on entry parameters is con­
tained in the individual routine summaries.
Service sublJrograms do not pass exit paralll­
eters, except for the calls to CHCBZ (rna th­
ematical library error-handling routine) by
the SLITE and SLITET subprograms. (See
subprogram S wll;J.aries.)

SUB PROGRA f'.'l ,~;u fYiMARIES

Table 9 briefly describes all servic~
subprograms except the Exit Routine subpro­
grams CHCIW4 and CHCIW5, which are
referenced by the I/O library routines.

26

The following summaries should be read
in conjunction with flowcharts BD. BE, IV,
and IW.

CHCBE -- Interrupt and Machine Indicator
Routine

Subprograms:

CHCBE2

CHCBE3

CHCBE4

CHCBE5

OVERFL

DVCHK

SLITE

Specification Exception Handler

Exponent Overflow Handler

Exponent Underflow Handler

Divide Check Handler

Exponent Overflow and Underflow
Tester

Divide Check Tester

Sense Light Handler

SLITET -- Sense Light Tester

Function: To simulate certain machine
indicators, and to mask off or process
interruptions caused by these exceptions:

• Fixed point overflow

• Fixed point divide

• Exponent overflow

• Exponent underflow

• Significance

• Floating point divide

(See Chart BE.)

Entry Parameters: CHCBE2 through CHCBE5
have no entry parameters. OVERFL, DVCHK,
and SLITE each receive one parameter, the
address of an integer variable. A pointer
to this address is passed in register 1.
For SLITET, register 1 points to two
addresses, the address of the integer vari­
able indicating the sense light number and
the address of the integer variable to
receive the result code.

Routines Called: CHCBZ -- Error Processor
(CHCBZ)

Error Checks: If entered at either SLITE
or SLITET, this routine tests the integer
variable and notes an error condition if it
is any value but 0 to 4 for SLITEr or 1 to

Table 9. Summary of service subprogram characteristics

2 3 4 5

Storage

Function Entry Nome Error Estimates Module
Condition Name

HEX DEC

T urn all sense lights Argument
Pseudo sense light

off or one sense SllTE other than 324 804 CHCBE
subprograms

light on 0, I, 2, 3, 4

Argument
Test a sense light SLITET other than CHCBE
or record i Is status 1,2,3,4

Overflow and T est and record

underflow
status of exponent OVERFL CHCBD

subprogram
overflow and
underfl ow j ndi cotors

Divide check
Test and record
status of divide DVCHl< CHCBD

subprogram
check indicator

Exception
Process

CHCBE3 (EXPONENT OVERFLOW)
processing

arithmetic exceptions
CHCBE4 (EXPONENT UNDERFLOW) CHCBE

subprograms CHCBE5 (DIVIDE CHECK)

Process specification
CHCBE2 (SPECIFICATION) CHCBE exceptions

EXIT
Exit subprogram Terminate execution CHCIW2 (STOP)

CHCIW3 (PAUSE)

Dump specified

Dump subprogram storage area DUMP, PDUMP
with or without
termination

q for SLITET. If there is an error condi­
tion, CHCBE calls CHCBZA, passing the
appropriate error code as a parameter.
CHCBZA terminates the task after printing
the error code. If entered at CBCBE2,
CHCBE checks for an interruption that
should not occur and allows the standard
system action for such an interruption.

Operation: At the beginning of all FORTRAN
main programs, the compiler generates code
that calls CHCBD!, the exception processing
enabler and I/O initialization routine
included in the I/O library.

The system interruption handler, CHCBD1,
calls one of the CHCBE2 through CHCBES sub­
programs whenever an exception occurs.

CHCBE2 passes control to CHCBEl to con­
trol fixup of a specification exception.

lAC 428 CHClW

48 168 CHCIV

CHCBE2 checks the interruption address
and the instruction that caused the inter­
ruption to determine whether the interrup­
tion was due to a condition that should not
occur. If so, the standard system action
is invoked. If not, CHCBEl interprets the
instruction causing the interruption and
executes it as though the alignment restr­
iction was removed. The save area referred
to by register 0 at entry is changed to
reflect instruction execution.

CHCBE3 sets to one the flag which CHCBD6
tests if an ·OVERFL (j). statement occurs
in the user program.

CHCBE4 does the same as CHCBD3, except
that the flag is set to three.

Section q: Service Subprogram Descriptions 27

CHCBE5 sets to one the flag which CHCB07
tests if a "OVCHK (j)1I statement occur~; in
the user program.

OVERFL puts the value of the overflow­
underflow indicator into the user-specified
variable, resets the indicator, and returns
control to the user.

DVCHK puts the value of the divide check
indicator into the user-specified varidble,
resets the indicator, and returns control
to the user.

SLlTE tests the user-specified variable
for a value of zero. If it is zero, all
four indicators are set to zero and control
is returned to the user. If the variable
is not zero, it is tested for values of
one, two, three, and four. If it is one of
these values, the corresponding indicator
is set to one and control is returned to
the user. If the variable is not one of
these values, SLITE calls CHCBZA and then
returns control to the user.

SLITET tests the first user-specifi(~d
variable to see that it is within the prop­
er range. If the variable is in error,
CHCBD9 calls CHCBZI\. and returns control to
the user. If the variable is from one to
four, the corresponding indicator is
tested. If the indicator is zero, SLITET
sets the second user-specified variable to
two and returns control to the user. If
the indica tor is one, SLITET sets the
second variable to one, resets the indtca­
tor to zero, and returns control to the
user.

CHCIV -- Dump Routine

This routine causes the user-indicated
limits of storage to be dumped in the for­
mat desired, with or lo7ithout program ter­
mination. The user calls this module by
specifying either of the statement:s CALL
DUMP {A~, B~, F~ •••• , An. Bn, Fn> or CALL
PDUMP (A~, B1 , F~, ••. , An, Bn, Fn> in his
source program. The variable data names, A
and B, indicate the limits of storage to be
dumped and the integer, F, indicates the
dump format desired. (See Chart IV.)

For sample printouts by the DUMP dnd
PDUMP subprograms, see FORTRAN IV Library
subprograms, GC28-2026, "Appendix D: DUMP
and PDUMP Sample Storage Printouts.-

Entry: There are two entry points: CHCIVl
and CHCIV2, for DUMP and PDUMP, respective­
ly. Standard type-I linkage is used with
register 1 pointing to the first address
constant in the parameter list. The param­
eter list is variable-length and has the
following format:

28

r-------------r---------------------------, I I Word size of this parameter I
I Word 1 Ilist, minus one. I
~-------------t---------------------------1
IWord 2 IAddress constant pointing I
I Ito the starting location I
I I symbol for the dump. I
I I I
I First I I
IWord 3 IAddress constant pointing I
I Group Ito the end location symbol !
I Ifor the dump. I
I I I
IWord 4 IAddress constant pointing I
I Ito the FORMAT code word. I
I IWhen FORMAT code is zero, I
I Ithe FORMAT code word is I
I Idivided into two parts: I
I Ifirst half-length of end I
I Ilocation symbol minus one I
I I second half - O. I
r-------------t---------------------------1
IWord 5 I I
I Second I I
IWord 6 ISame as words 2, 3, and 4 I
I Group I respectively. I
IWord 7 I I
t-------------t---------------------------~
I I I
I I I
I I I L _____________ ~ __________________________ J

The entries in the parameter list
(excluding the first word) are groups of
three words. There may be more than one
group depending on the number of different
areas of virtual storage the user wants
dumped. The first two words of a group may
be in either order; but the dump is always
taken in ascending order. The third word
of a group, the format code word, repre­
sents the type of data conversion to be
performed, as follows:

0 hexadecimal 5 real*4
.1 10gical.1 6 real*8
2 10gical*4 7 complex*8
3 integer*2 8 complex*16
4 integer*4 9 literal

The format code 0 is the default value.

Routines Called:

• Integer output Conversion (CHCIH)

• Complex Output Conversion (CHCIN>

• Logical Output Conversion (CHCIR)

• General Output Conversion (CHCIT)

• Exit (CHCIW)

• GATE facilities (GATWR macro
instruction)

Error Checks: CHCrv makes no error checks;
all error checking is done by the called
data conversion routines.

Operation: CHCIV sc<:.ns 'the parameter list
to locate a parameter group. The specified
dump area is then formatted and written on
SYSOUT using the GATE macro instruction
facility. After the parameter list has
been completely processed, control returns
to the user program, if PDUMP was speci­
fied. If DUMP was specified, control
passes to the exit routine (CHCIW) for pro­
gram termination.

CHCIV determines the presence of the
third word in a parameter group by testing
the value of the word in storage to which
it refers. If the value is 9 or less, it
is assumed to be the format code. If the
value is greater than 9 (or if it is nega­
tive), it is assumed that the third word
was omitted and a format code of zero
(hexadecimal) is taken as a default. If
the format code is either 0 or 9 (hexade­
cimal or literal), the conversion format­
ting is done within this routine; other­
wise, the appropriate output conversion
routine is called.

CHCIW -- Exit Routine

This routine performs user-program exit
fUnctions whenever any of the following
FORTRAN statements are executed:

CALL EXIT

STOP !!

PAUSE n

PAUSE t message'

In the case of a STOP or PAUSE state­
ment, this module causes a one- through
five-digit integer (n) or a message ('mes­
sage') to be produced at the user's SYSOUT.
With the exception of the PAUSE statement,
CHCIW causes all DCBs in use in the DCB
table to be closed. (See Chart IW.)

Entry: The five entry points and their
associated causes of entry are as follows:

CHCIWl

CHCIW2

Execution of a CALL EXIT
statement

Execution of a STOP statement

CHCIW3

CHCIW4

CBCIW5

Execution of a PAUSE statement

Exit requested by other I/O
library routines

Exit requested by a user subpro­
gram error

Standard type-1 linkage is used with all
entries except CHCIW4, which uses type-4
restricted linkage. In the case of STOP
and PAUSE statements, the address of a pa­
rameter list is passed in register 1. The
parameter list is fixed-length and has the
following format:

r------T----------------------------------,
IWord 11Address of byte containing the I
I I length of the integer or message I
I I(n or 'message'). A length of I
I Izero indicates that no integer or I
I Imessage was defined by the user. I
~------t----------------------------------~
Iword 21Address of the integer or message, I
I lif any. I L ______ ~ __________________________________ J

There is no parameter list for entry to
CHCIW1, CHCIW4, or CHCIW5.

Routines called:

• DCB Maintenance <CHClB}

• I/O Control (CHCIC)

• Task supervisor Routines (CZAFQ1),
. entered by use of a supervisor call

(SVC)

• I/O Communication (CHCIY)

• PRMPT (CZATJ1)

Operation: If this routine is entered via
CHCIW4 or CHCIW5, a message is issued to
the user indicating the reason it was
called. If this routine is entered via
CHCIW1, CBCIW2, or CBCIW3, a message is
issued (including a user-supplied message,
if any) to the user by the PRMPT macro
instruction facility <CZATJ1) indicating
the reason it was called. In the case of
PAUSE, return is then made to the user pro­
gram. If entry to this routine was not
caused by a PAUSE statement, the DCB table,
maintained by CHCIB, is searched and each
open DCB is closed. The DCB table pointers
are then cleared, and exit is made to the
system exit routine.

Section 4: Service Subprogram Descriptions 29

SECTION 5: I/O ROUTINE DESCRIPTIONS

This section gives the following infor­
mation on each I/O library routine, exclud­
ing the service routines, which are
described in Section 4:

• Name

• FUnction

• Attributes

• Entry

• Routines called (where applicable)

• Error checks <where applicable)

• Data references (where applicable)

• Operation

The routines are described in the alpha­
betical order of their names.

GENERAL INFORMATION

Certain information is common to most
I/O routines. This information includes:

• Names

• Attributes

• Format of parameters passed to data
conversion routines

Attributes

A11 FORTRAN I/O routines are nonprivi­
leged, reenterable, and closed. CHCIA,
CHCIE, CHCIU, CHCIW1, CHCIW2, CHCIW3,
CHCIW5, CHCIV1, CHCIV2, and CHCBDl are
entered by standard type-l linkage with the
address of a parameter list (where applic­
able) in register 1; exit is a return to
the calling routine. All of the other I/O
routines are entered by restricted type-4
linkage.

Work Areas and Register Save Areas

The FORTRAN I/O routine has one common
PSECT -- CHCRWW -- which contains all
necessary work and storage areas and a 19-
word register save area. All parameters
used by the data conversion routines are
stored in this PSECT.

30

ROUTINE SUMMARIES

CHCIA -- I/O Initialization

This routine is the initial FORTRAN I/O
library interface with the user. It
manages the disposition of each I/O request
by setting switches about formatted and
unformatted I/O for the information of
other I/O routines, by allocating a buffer
area for output requests, and by obtaining
a logical record for input requests.

Every I/O request in the FORTRAN user
program causes the compiler to generate one
call to CHCIA. On this call, if there is
no list, CHCIA supervises the complete
execution of an I/O request. If the I/O
request is a READ, WRITE, PRINT, or PUNCH
with list, CHCIA simply prepares the I/O
library for compiler-generated calls to
List Item Processor (CHCIE) and List Ter­
mination (CHCIU).

Entry: The entry point is CHCIA1. The pa­
rameter list is variable-length and has
this format:

r------r----------------------------------,
Iword llAddress of a fullword containing I
lithe user-specified data set I
I I reference number. I
~------+--------------------------------~
IWord 21Address of a control byte in I/O I
I IControl (CHCrC) indicating type ofl
I I operation: READ, WRITE, PRINT, I
I I PUNCH. REWIND, BACKSPACE, ENDFILE.I

~------t---------------------------------~
IWord 31Address of a control byte in I/O I
I IControl (CHCIC) indicating whether \
I \a list was present in the I/O I
I Istatement and whether any of the I
I Ifollowing parameters in this list I
I I are present. I
t------t----------------------------------~
IWord 41Address of a FORMAT string or I
I (Op- INAMELIST table. This parameter I
Ition- lis included only if the I/O source I
lal) I statement has an associated FORMAT I
I lor NAMELIST source statement. I
r------t----------------------------------4
IWord 51Address of an error exit. I
I (Op- I Included only if the I/O source I
ltion- I statement has an ERR operand. I
laD I I
t------t----------------------------------~
Iword 61Address of an end-ot-file exit. I
I (Op- IIncluded only if the I/O source I
Ition- Istatement has an END operand. I
ial) I I L ______ ~ _________________________________ _J

If any optional parameter is missing,
any parameters following it are moved up in
the list and the list is shortened. For
example, if there is no FORMAT or NAMELIST
address and no error exit address, word 4
of the parameter list would be the end-of­
file exit address.

Routines Called:

• DCB Maintenance (CHClB)

• I/O Control (CHCIC>

• FORMAT Processor (CHCIF)

• NAMELIST Processor (CHCID)

• Exit (CHCIW)

• PRMPT (CZATJl)

Error Checks: If the user-specified data
set reference number is negative, an error
message is issued by the PRMPT macro
instruction facility (CZATJ1), and CHCIW is
entered to terminate the user program.

Operation: Upon entry, the FORTRAN I/O
PSECT switches are cleared, control parame­
ters are set, and CHCIB is called to find a
DCB corresponding to a user-specified data
set reference number (or to create a DCB if
one is not found). CHCIC is then called to
complete the I/O request.

If the operation is a REWIND, BACKSPACE,
or ENDFlLE, return is made to the user. If
the operation is READ or WRITE according to
a NAMELlST, CHCID is called before return­
ing to the user.

If the operation is a WRITE with no list
and no format, a dununy record containing
two bytes of zeros is written with a call
to CHCIC before returning to the user. If
a FORMAT statement is involved, CHCIF is
called. If the operation is a WRITE with
no list and CHCIF is called for construc­
tion of a record anyway, CHCIC is called to
write the record before returning to the
user; otherwise, return is made immediately
after calling CHCIF. If a FORMAT statement
is not involved, return is made to the
user.

CHCIB -- DCB Maintenance

This routine finds or initializes the
data control block (DCB) that contains a
description of the data to be transmitted
by a user-specified I/O operation. If an
appropriate DCB is not found, this routine
allocates the necessary space in the DCB
table and constructs a new DCB, including
within it information about 1~e data to be
transmitted that the user defined in his
DDEF command. (See Chart lB.)

Entry: The entry point is CHCIB1. CHCIA
stores the address of the user-supplied
data set reference number and the data set
reference number itself if present in the
I/O common PSECT.

Routines Called:

• Data management routines used to search
for and read JFCBs (CZAEB)

• Data management routines used to allo­
cate storage for DCB construction
(CZCGA)

• Exit (CHCIW)

• PRMPT (CZATJ1)

Error Checks: If the user-specified data
set reference number exceeds 99, an error
message is issued by the PRMPT macro
instruction facility (CZATJl), and CHCIW is
entered to terminate the user program. No
alternate data set reference number is
established.

If a discrepancy exists in the user DDEF
command between permissible RECFM, KEYLEN,
and DSORG values, an error message is
issued by the PRMPT macro instruction faci­
lity (CZATJ1), and CHCIN is called to ter­
minate processing. A description of the
assumptions FORTRAN I/O makes an initializ­
ing associated DCBs is contained in Appen­
dix A.

Format and Content of the DCB Prefix: The
DCB Prefix is used by the FORTRAN I/O rou­
tines, in conjunction with the DCB, when
performing any type of I/O operation. The
DCB Prefix, created by the DCB Maintenance
routine (CHClB), is eight words long and
always immediately precedes the DCB itself.
(See Table lO.)

Operation: This routine is called to per­
form one of three functions: to supply the
address of an initialized DCB corresponding
to a specified data set reference number;
to locate the first open DCB in the DCB
table used by the I/O library routines; or
to obtain a GATE DCB. The first fUnction
is performed by searching the table of DCB
entries. If the appropriate DCB is found,
the address of that DCB is returned. If
the search fails, the data management rou­
tine CZAEB is called to determine whether
the user has issued a DDEF command (which
causes the creation of a Job File control
Block -- JFCB) for the specified data set
reference number. If CZAEB finds a JFCB
that corresponds, space is reserved in the
DCB table, a DCB is constructed, and the
new DCB is ·chainedW into the DCB table.
If CZAEB cannot locate a corresponding JFCB
(meaning that the user did not supply a

Section 5: I/O Routine Descriptions 31

Table 10. Format and content of DCB prefix

r------~---------------------------------,
IWord 11Address of the starting location I
I lin the buffer area for the current I
I Ilogical record. I
~-----+----------------------------------~
IWord 21Address of the current location inl
I ithe buffer area for the current I
Illogical record. I
~------t----------------------------------~
IWord 31Address of the end location in thel
I Ibuffer area for the current logic-I
I I al record. I
~------+-------------------------------1
I IByte 1: Current operation (READ, I
I I WRITE, etc.) I
I I I
i IByte 2: Control flags (FORMAT, I
I I NAMELIST, List, ERR exit, I
I I END exit) I
I I I
IWord 41Byte 3: Control flags (Span, GATE. I
I I recent READ, END or ERR I
I I encountered) j
I I I
I IByte 4: Previous operation (byte 11
I I from last calIon CHCIC I
I I wi th this DCB) I
~-----+----------------------------------~
IWord SIAddress of current DECB, if I
I I required (BSAM). I
~------+----------------------------------~
IWord 6lUser-specified data set reference I
I Inumber, plus one. I
l------+----------------------------------t
IWord 71Address of the next DCB. I
~----+----.-----------------------------~
IWord 81Address of last DCB associated I
I Iwith this data set reference I
I I m.unber • I
• ------+----------------------------------~
IWord 91DCB begins here. I l ______ L __________________________________ J

DDEF command}, a GATE DCB is constructed
and initialized.

The GATE DCB causes SYSIN and SYSOUT to
be treated as the input origin and output
destination, respectively.

CHCIB performs its second fUnction,
locating the first open DCB in the DCB
table, when a negative data set reference
number has been specified by CHCIW at
final close of the file. If an open DCB
is not found in the DCB table, normal
return is made to the calling routine.

CHClB performs its third function,
obtaining a GATE DCB, when the address of
the data set reference number is zero. In
this case, the I/O request is assumed to
be for the first data set reference number
that this routine defines by a GATE DCB.

32

Therefore, as before, SYSIN and SYSOUT are
treated as the input origin and output
destination, respectively. Note that the
GATE DCB is a dummy DCB (with a prefix),
used to allow other I/O routines to treat
the case of GATE I/O the same as the case
of data sets defined by a DDEF command.

CHCIC -- I/O Control

This routine fulfills I/O requests made
through other I/O library routines by
using the data management macro instruc­
tion facilities of TSS/360. The particu­
lar data management facilities to be used
are determined both by the type of I/O
statement issued in the user program, and
by related DDEF commands, if any, defining
such things as the type of records being
transferred and the manner in which they
should be processed.

The following list identifies the more
significant macro instructions used by
CHCIC for each of the FORTRAN I/O state­
ments. other macros used in conjunction
with those listed below (e.g., OPEN and
CLOSE) are identified in the ·Operation­
section of this routine description. (See
Chart IC.)

FORTRAN I/O
Statement

READ

WRITE

REWIND

BACKSPACE

ENDFILE

CHCIC Function
Obtains a logical record
from a user-specified input
source by using the READ,
GATRD. or GET macro
instructi on •

Initializes the writing of a
logical reoord by establish­
ing pointers to the output
buffer area. Subsequent
output processing is per­
formed by using the WRITE,
GATWR, or PUT macro
instruction.

RepoSitions the user­
specified volume of one or
more data sets to the first
record of the first data set
by using the POINT or SETL
macro instruction.

Repositions the user­
specified data set to the
previous logical record by
using the NOTE, POINT, SETL.
and BSP macro instructions.

Defines the end of the user­
specified data set by using
the WRITE and STOW macro
instructions.

Entry: The entry point is CRCIC!.

Routines Called:

• DCB Maintenance (CHCIB)

• Exit (CRCIW)

• Data management routines to perform
I/O functions as determined by the
macro instruction issued.

• PRMPT (CZATJl)

Error Checks: If the I/O operations per­
formed by data management cause either a
SYNAD or EODAD exit, and if the user pro­
vides an ERR or END return point, CHCIC
locates the adcons for these return points
in the work area CRCRWW, and locates the
register save area for the user's program
registers. Return is then made to the ERR
or END return point rather than to the
calling I/O routine.

If the user does not provide return
points (or if the operation is other than
a READ statement), an error message is
issued and the program is terminated.

If an invalid character is encountered
in hexadecimal input from a GATRD opera­
tion performed for an unformatted READ
statement, an error message is issued and
the erroneous character is treated as the
termination of the hexadecimal input.
Processing then continues.

In addition to the above error checks,
error messages are issued (PRMPT macro
instruction) and the user program is ter­
minated by CHCIW for any of the following
reasons:

1. The record is not format-V for unfor­
matted READ statement.

2. Error return code received from the
use of the FIND or STOW macro
instruction for a member in a VPAM
data set.

3. Invalid sequence of I/O operations
for a user-specified data set
reference number. The invalid
sequences are: READ preceded by END
FILE; END FILE preceded by READ; and
READ preceded by WRITE (except when
using GATE I/O).

Operation: In fulfilling the I/O request,
this module ensures that the DCB asso­
ciated with the DDEF command is properly
opened by examining the access qualifier
(for example, read-only) of the data set.
If the data set is read-only, the OPEN
macro instruction is issued for INPUT.
Otherwise, the OPEN macro instruction is

issued for UPDAT, when the Virtual Access
Methods (VAM) are specified, or INOUT,
when the Basic Sequential Access Method
(BSAM) is specified. When a data set is
opened for UPDAT or INOUT, both reading
and writing may be performed. However, if
an attempt is made to write on a read-only
data set that is opened for INPUT, the
user program is abnormally terminated.
When the user does not issue a DDEF com­
mand for a given I/O request, CHCIC uses
the GATE macro instruction facility to
perform reading and writing. This facili­
ty does not require issuance of an asso­
ciated OPEN macro instruction. CRCIC
first checks whether the I/O operation
requested is compatible with the previous
operation. If it is not, an error message
is issued and the user program is ter­
minated. If it is compatible, processing
continues according to the particular type
of I/O .request involved (that is, READ,
WRITE, WRITE Initialize, REWIND, BACKS­
PACE, and ENDFILE).

If a READ is issued, the data set is
opened, if necessary, and the pointers in
the DCB prefix are set to the beginning
and end of the data. CRCIC then checks
which access method is being used. If VAM
is used, a GET macro instruction is
issued. If the GATE macro instruction
facility is used, a GATRD macro instruc­
tion is issued. If BSAM is used, the
record format is examined to determine
whether the records are blocked. If they
are not blocked or if the previous record
was the last record of the block, a READ
is issued; otherwise, the next logical
record within the current block is used.
In any case, after the data is located,
the beginning and end are determined and
the pointers are saved in the DCB prefix.
Return is then made to the calling
routine.

If a WRITE Initialize is issued for an
open data set for which the last operation
was an END FILE, the data set is closed
and an end file lockout indicator is set
on in the DCB prefix, indicating to DCB
Maintenance (CHCIB) that this DCB should
be ignored when looking for a DCB for this
data set reference number. As a result of
this indicator being set, any subsequent
WRITE statements referring to the same
data set reference number causes the crea­
tion of a new data set. A call is then
made to CHCIB to obtain a new DCB describ­
ing the new data set.

Whether or not the previous operation
was an END FILE, the DCB is opened, if
necessary. If VAM is used, a SETL macro
instruction is issued to point to the
beginning of the specified data set. In
all cases. the pOinters to the output

Section 5: I/O Routine Descriptions 33

buffer area are then set in the DCB prefix
and return is made to the calling routine.

If a WRITE is issued, CHCIC checks the
record format type. For non-format-V rec­
ords, fill characters (padding) are
inserted. if necessary, to the end of the
record. Blanks are used for NAMELIST or
formatted WRITE; binary zeros are used
otherwise. For format-V records, the
record length and any needed spanning bits
are set. The spanning bits are used to
define the relationship between the FOR­
TRAN logical record and the data manage­
ment logical record when the FORTRAN log­
ical record exceeds the length of the
maximum record support ed by the access
methods being employed. (See Appendix A
for more details on spanning bits.)

CHCIC next checks the access method
being used for the write request. For
VAM, a PUT macro instruction is issued.
For the GATE macro instruction facility, a
GTWRC is issued. For BSAM. the record
format is examined to determine whether
the records are blocked. If the records
are not blocked or the block is full, a
WRITE macro instruction is issued. For
blocked records, where the block is not
full, the output area pointers in the DCB
prefix are updated to the next record area
in the block. In all cases, the DeB pre­
fix is re-initialized and return is made
to the calling routine.

If a REWIND is issued, CHCIC searches
the DCB table for all DeBs relating to the
user-specified data set reference number.
For each such DCB found, the end file
lockout indicator within it is turned off.
The POINT macro instruction is then used
to reposition the volume to the first
record of the first data set, if the data
set is BSAMj the SETL macro instruction is
used for VAM. Return is then made to the
calling routine.

If a BACKSPACE is issued, CHCIC checks
the access method being employed. For
VAM, CHCIC checks to see whether the last
operation was an ENDFILE. If so, a CLOSE
macro instruction is issued followed by an
OPEN macro instruction and a SE.TL macro
instruction pOinting to the end of the
data set. In either case, a SETL macro
instruction is then issued to point to the
previous record.

If BSAM is used, CHCIC examines the
record format to determine whether the
records are blocked. If unblocked and if
the last operation was an END FILE, a NOTE
macro instruction is issued to establish
the current location, CLOSE and OPEN macro
instructions are issued, and a POINT macro
instruction is issued to repoSition the
data set to the position prior to closing.

34

A SSP macro instruction is then issued to
backspace. If double buffering is used, a
second BSP is issued. If the last opera­
tion was not an END FILE, only the BSP
macro instruction is issued. If the rec­
ords are blocked, a scan is made backwards
through the block to locate the beginning
of the previous record. In some cases it
may be necessary to issue a BSP macro
instruction and then read the previous
block in order to position to the previous
record. In all cases, it is not possible
to position to a record in a previous data
set if a READ or WRITE was issued after an
END FILE operation. Upon completion .of
processing, return is made to the calling
routine.

If an END FILE is issued, it is noted
but otherwise ignored; the actual END FILE
operation is performed only when the next
operation is a WRITE Initialize or a
BACKSPACE.

~gCID -- NAMELIST Processor

This routine interacts with CHCIC to
control the I/O for each NAMELIST record
and interacts with the appropriate data
conversion routines to effect the desired
item-by-item conversion. (See Chart ID.)

Entry; The entry point is CHCIDI.

Routines Called:

• I/O Control (CHCIC)

• Complex Input Conversion (CHCIM)

• Complex Output Conversion (CHCIN)

• General Input Conversion (CHCIS)

• General Output Conversion (CHCIT)

• Exit (CHCnn

• PRMPT (CZATJ1>

Error Checks: There are no error checks
for output. For input, if errors are
detected in the NAMELIST table, a message
is issued via PRMPT, and CllCIW is called
to terminate the user program. Other
error messages are generated for any of
the conditions listed below. In these
cases, proceSSing continues with the next
entry of the input record.

• Name exceeds six characters

• First character of each input record
is not blank

• subscripts appear on a name that is
not an array name

• Incorrect number or range of
subscripts'

• Subscripting causes array size to be
exceeded

• Multiple constants or repeated con­
stants appear with a name that is not
an array or a subscripted array name

• Multiple constants or repeated con­
stants exceed the size of an array or
the size of an array portion beginning
at a specified element

• An equal sign or left parenthesis is
not preceded ~ the variable or array
name for that item

• An invalid character appears in a
repeat constant

• End of a logical record caused an item
to be logically incomplete

• The NAMELIST name is not in the NAME­
LIST table

NAMELIST Table: The address of the NAME­
LIST table generated by the FORTRAN com­
piler is communicated in the call to 1/0
Initialization (CHCIA) and then passed to
this routine. The table is made up of
two-word entries, each of which contains
an identifier in the first halfword.

NAMELIST Name Entry:

Bytes 0-1
2-7

Identifier (X'OlOO')
Name (left-justified)

Variable Name Entry:

Bytes 0-1
2-7

Identifier (X'0200')
Name (left-justified)

Variable Type and Location Entry:

Bytes 0-1
2

3

4-7

Identifier (X'300')
Length and Type (14 bits each)

Length: Number of bytes
minus 1

Type: X'Ol" Logical
X'02' Integer
X'03' Real
X'Q4' Complex

Class: Letter A for array;
otherwise, an S

storage Location

Array Size Entry:

Bytes 0-1
2-3
4-7

Identifi~ (X'04QO')
Not used
Number of bytes in array

Dimension Product Entry:

Bytes 0-1
2-3
4-7

Identifier (X'OSOO')
Not used
Dimension Product (see
explanation below)

Terminal Entry:

Bytes 0-3 Zero
4-7 Not used

A dimension is a level of subdivision,
or level of subscripting, within an array.
For example, an array could be a string of
seven thirty-word elements (first dimen­
sion), each subdivided into six five-word
elements (second dimension),-each subdi­
vided. into five one-word elements (third
dimension).~ array may have as many as
seven dimensions.

For each dimension there is a corres­
ponding dimension product, which is the
produ~t of: (1) the byte-size of the
array's smallest element, (2) the number
of elements within all lower dimensions
except the first dimension, and (3) the
number of elements within that dimension.
In the example just given, the dimension
product for the third dimension would be
4x6xS, or 120. This dimension product
would be seven times greater if there were
another dimension before the seven-element
dimension. The dimension product for the
first dimension is always the byte-size of
the array's smallest element -- this
dimension product is never entered. If
there is only one level of subdivision,
there is no Dimension Product Entry.

Operation: For a WRITE, CHCID calls CHCIT
to write, in the following format, the
data for each variable or array in the
NAMELIST:

For Variables:
variable name = constant

For Arrays:
array name or array element name =
constant1, constant2, •••

In the second case, each constant may
have a repetition notation appended in the
form that is also usable for input.

CHCID also produces header and trailer
records so that the information can be
read with the same NAMELIST.

Section 5: I/O Routine Descriptions 35

For a READ, CHCIO reads records until a
correct header record is located. It then
uses a scanning procedure to locate the
input entries. As each is found, the rou­
tine locates the variable or array name in
the NAMELIST Table, determines its size
and type, and converts the input.

Error checking functions performed by
CHCIO for a READ operation have already
been described under RError ChecksW.

CHCIE -- List Item Processor

Every I/O statement in the user's
source program generates one or more calls
to this routine if there is a list asso­
ciated with a READ, WRITE, PRINT, or
PUNCH. A list item may be a simple vari­
able, an array element (a subscripted
variable>, or an entire array. If a FOR­
MAT statement is specified, this routine
calls on FORMAT Processor (CHCIF) to con­
trol any necessary conversion. If there
is no FORMAT statement, CHCIE is directly
responsible for filling or emptying the
output or input buffer area. (See Chart
IE.)

Entry: The entry point is CHCIEl. Regis­
ter 0 contains either zeros, if the list
item is a single element, or a number
expressing the array length, in bytes, if
the list item is an entire array_ The pa­
rameter list is fixed-length and has the
following format:

r------T----------------------------------,
IWord llAddress of a control byte. The I
I Ifirst four bits of the control I
I Ibyte contain the size of the I
I lelement, minus one. The second I
I Ifour bits contain a flag I
I I indicating the type of item as I
I I follows: I
I I I
I I Flag Type of Item I
I I 01 logical I
i I 02 integer I
I I 03 real I
I I 04 complex I
t------+----------------------------------~
IWord 21Address of a first (or only) ele- I
i Iment of the list item. I l ______ ~ __________________________________ J

Routines Called:

• Format Processor (CHCIF)

• I/O Control (CHcrc>

• Exit (CHCIW)

• PRMPT (CZATJ1)

36

Error Check: With unformatted input, if a
list item is requested after the logical
record is exhausted, an error message is
t.ransmitted to the user via PRMPT. and
CHCIW is called to terminate the user's
program.

Operation: At entry, register 0 either
contains zeros if the list item is a single
element, or a number expressing the array­
length, in bytes, if the list item is an
entire array. Another parameter indicates
the length of the list item <in the case of
an array, the length of each individual
item in the array). The transfer of data
between I/O buffers and item storage loca­
tions is performed by CHCIE if there is no
FORMAT statement; if there is a FORMAT
statement, the transfer of data is accomp­
lished by a call to CHCIF. After the
transfer of information between the I/O
buffer and the storage location specified
for the item, the item length is subtracted
from the array length. A negative or zero
result indicates either that the item was a
single element or that the last element in
the array has been processed: the routine
returns to the caller. If the result is
positive, the storage location of the list
item and the location in the buffer are
each incremented by the item length and
transfer is made to the beginning of the
loop to process the next element of the
array. If, after incrementing the buffer
location, the end of the buffer has been
reached, further processing depends on
whether the operation is for input or
output.

For output, the current buffer is writ­
ten and flagged to indicate that this log­
ical record continues on the next physical
record. A new output buffer is then
initialized.

For input, a check is made to see if the
current physical record is flagged in this
manner, and if it is, the next physical
record is read. If the current physical
record is the last one written as part of
this logical record, an error message is
transmitted to the user and the task is
terminated. The reading and writing of
additional physical records as part of this
logical record is accomplished by a call to
I/O control (CHCIC).

CHClF -- Format Processor

This routine scans the FORMAT string,
interacts with CHCIC to control the I/O for
each FORMAT-referenced record, and
interacts with the appropriate data conver­
sion routines to effect the item-by-item
conversion specified by the referencing
FORMAT statement. COClF is entered once
for each list item in the I/O request.
(See Chart IF.)

Entry: The entry point is CHClF1. Before
the first entry to CHCIF to process a
reference to a FORMAT statement, CHCIA (I/O
Initialization) stores .the address of the
FORMAT string in CHCRWW.

Routines Called:

• I/O Control (CHCIC)

• Exit (CHCIW)

• One of the eleven conversion routines
(CHClH through CHCIT)

• The FORTRAN compiler routine for trans­
lating FORMAT statements (CEKBF), at
entry point SYSPFMT

• PRMPT (CZATJl)

Error Checks: Since FORMAT statements may
be dynamically modified, certain error con­
ditions may arise due to the syntax of the
FORMAT string. If there are no syntax
errors, errors could arise dUt~ to conver­
sion of the data. In such cases the con­
version routines issue messages describing
the errors before returning. All syntax
error checks produce messages describing
the error.

Processing is terminated upon encounter­
ing invalid control characters in the
string, strings that exceed the maximum, or
too many levels of parentheses. When it is
possible to assume values other than those
specified (as in the case of invalid size
of w or d fields after a control charac­
ter), processing continues on the current
item after the error message is issued.
Otherwise, the erroneous FORMAT item is
skipped, and processing continues with the
next control character.

Operation: At the first entry to CHCIF for
a given I/O request, CHCIF tests whether
the FORMAT statement has been translated.
If not, CHCIF calls CEKBF at entry point
SYSPFMT. CEKBF enters translations of FOR­
MAT codes into a FORMAT table, as shown in
Table 11.

CHCIF scans the translated FORMAT
string, tests each entry for validity, and
performs these actions:

• Initialization of repetition factors
both inside and outSide the FORMAT
parenthes es

• Immediate input or output of character
strings or spaces (wH or w or Tw or ... ')

• Initialization of scale factors before
FORMAT control units

• Immediate input or output of logical
records

• Initialization of return points to be
used when clos1ng parentheses are
reached

• Immediate conversion of input or output
data in accordance with the FORMAT con­
version code

In the last case, if an item is known to
be available, the appropriate conversion
routine is called and return is made to the
calling routine. If no item is available,
the scan continues.

On entries for subsequent list items in
the I/O request, CHClF keeps track of its
position in the FORMAT table.

The scan ends when a clOSing parenthesis
is reached.

CHCla -- Integer Output Conversion

This routine converts a two-byte or
four-byte binary list item to an integer
field in the output buffer, according to
the format IE, where E is the integer
field's size. (See Chart IH.) .

Entry: The entry point is CHClHl. The pa­
rameter list is described under ftData Con­
version Routine Parameter Lists,· in this
section.

Routine Called: PRMPT (CZATJ1)

Error Checks: If the output buffer area is
too small to contain the integer field, the
field is filled with asterisks and a mes­
sage is issued by PRMPT.

Operation: The contents of the list item
are converted in a work area to packed
decimal, then into zoned decimal. The
sign, if negative, is set in the conven­
tional FORTRAN position. The work area is
moved into the output buffer field from
right to left, to check whether sufficient
space is supplied by the field width.
Blanks are inserted as padding if the buff­
er size is larger than the converted field
size.

CHCII -- Real and Integer Input Conversion

This routine converts a data field in an
input buffer to the appropriate type of
list item. An integer field is converted
to a binary list item. A real field is
converted to a single- or double-precision,
floating-point list item. The integer
field has the format In, where n is the
field width. The real-field has the format
~.g, ~.g, or D~.g, where ~ is the field

Section 5: I/O Routine Descriptions 37

Table 11. Translation of FDRMAT codes

FORMAT
CODE

A

z

l

width and d is the width of the decimal
fraction. -(See chart II.)

Entry: There are three entry points:
CHCII, CHCIK, and CHCIG.

Routine Called: PRMPT (CZATJ1)

Error Checks: If the FORMAT specification
(F. E, D f or I) is improperly specified or
the data field is greater than the permis­
sible range, PRMPT is called.

Operation: The input data field is scanned
from left to right to determine:

1. The value of the sign, if any.

38

2. Position of the base number's first
digit.

3. Number of digits before the decimal
point, if real.

4. Position of first digit after decimal
pOint, if real.

5. Number of digits after decimal point,
if real.

6. The letteI E or Dr it present.

7. Sign preceding exponent, if any.

8. Position of exponent's first digit.

9. Number of exponent digits.

During the scan a test is made for in­
valid characters in the numeric fields. In
addition, a test is made to determine if
the integer or real data exceeds the per­
missible maximum. If such errors are
encountered, the scan is terminated and
control is passed to PRMPT to issue an
error message. otherwise, conversion con­
tinues and a normal return is made.

CBCIJ -- Real output Conversio~

This routine converts a single- or
double-precision floating-point list item
to a real field in the output buffer. The
real field has a format of either Ew.d,
OW.d, or Fw.d, where w is the field-wIdth
and-g is the-Size, in-digit poSitions, of
the fractional position. (See Chart IJ.)

Entry: There are two entry points: CHCIJl
and CHCIL1.

Routines Called: Return is made to the
calling routine.

Error Checks: If the output buffer is too
small to contain the real field, the real
field is filled with asterisks.

Operation: A test is made against a table
of powers of ten to determine the required
output exponent, if any, and the item is
divided by the appropriate power of ten.
If there is an exponent, it is moved into
the output buffer from right to left, fol­
lowed by its sign and the letter E or D.
If there is no exponent, the data field,
after processing is complete, is moved into
the output buffer and control is passed to
the calling routine.

CHCIM -- Complex Input Conversion

This routine converts a complex data
field in the input buffer to a complex list
item consisting of two real data fields.
Each real field is converted to a single­
or double-precision floating-point list
item according to the format Fw.d, Ew.d, or
Dw.d, where w is the real field width and d
is the Width-of the decimal fraction. (See
Chart 1M.)

Entry: The entry point is CHCIMl.

Routines Called:

• Real and Integer Input Conversion
(CHCII>

• PRMPT (CZATJl)

Error Checks: If the complex data field in
the input buffer contains no real field or
only one real field, or if there is a mis-

Sing parenthesis or central comma, CHCIM
issues an error message via PRMPT. No
further action is taken and the list items
remain unchanged. If either or both real
fields contain invalid characters or exceed
the permissible magnitude, CHCII issues an
error message.

operation: The input buffer is scanned to
find the size of each real data field.
Once it is determined that the user proper­
ly specified these data fieldS and included
the correct delimiters (parentheses and
central comma), the first real data field
is passed as a parameter to CHCII for con­
version to a single- or double-precision
floating-point list item. When CHClI
returns control to CHCIM, CHCIM passes the
second real data field to CHCII for conver­
sion, completing the complex input
conversion.

CHCIN -- Complex output Conversion

This routine converts a complex list
item ~onsisting of two single- or double­
preciSion floating-point items to a complex
data field in an output buffer. Each
floating-point list item is converted to a
real data field according to the format
code Fw.d, Ew.d, Dw.d, or Gw.s, where w is
the ieal-field-width~ d is the width of the
decimal fraction, and s is the number of
Significant digits. (See Chart IN.)

Entry: The entry point is CHCINi.

Routine Called: General Output Conversion
(CHCIT)

Error Check: If the FORMAT specification
(F, E, D, or G) is improperly given or the
real data field is greater than the permis­
sible range, CHCIT issues an error message.

Operation: CHCIN passes the first list
item as a parameter to CHcrT for conversion
t.o a real data field. When CHCIT completes
the conversion process and returns to
CHCIN, CHCIN passes the second list item to
CHCIT for conversion, completing the com­
plex output conversion.

CHCIO -- Alphameric and Hexadecimal Input
Conversion

This routine transfers a specified num­
ber of bytes (alphameric or hexadecimal
characters> from an input buffer area to a
list item. The format is A~ (alphameric)
or Zw (hexadecimal), where w, field width,
is the number of characters-being trans­
ferred. (See Chart IO.)

Section 5: I/O Routine Descriptions 39

Entry: The entry points are CHCIOl
(alphameric data) and CHCI02 (hexadecimal
data).

Operation: When the conversion format is
alphameric, this occurs:

• If the byte size of the list item
equals the number of alphameric charac­
ters in the buffer, a simple move is
executed, with no data test made.

• If the byte size of the list item is
less than the number of alphameric
characters in the buffer, the excess,
left-most characters are truncated in
the list item field.

• If the byte size of the list item is
larger than the number of alphameric
characters in the buffer, the charac­
ters are transferred into the list item
field, left-justified.

When the conversion format is hexadeci­
mal, the field is scanned for valid hexa­
decimal characters. If invalid, a call is
made to PRMPT. If valid, the characters
are converted to binary and moved to the
input item. If the input field was pre­
ceded by a minus Sign, the result is com­
plemented. In either case, a return is
made to the calling routine.

CHCIP -- Alphameric and Hexadecimal Output
Conversion

This routine transfers a list item con­
taining a specified number of bytes
(alphameric or hexadecimal characters) to
an output buffer area. The format is A~
(alphameric) or z~ (hexadecimal), where ~,
field width. is the number of characters
being transferred. (See Chart IP.)

Entry: The entry points are CHCIPl
(alphameric data) and CHCIP2 (hexadecimal
data).

Operation: When the list item contains
alphameric data, this occurs:

IJO

• If the byte size of the list item
equals the size of the buffer area, a
simple move is executed, with no data
test made.

• If the byte size of the list item is
less than the size of the buffer area,
the list item is entered right­
justified and padded to the left with
blanks.

• If the byte size of the list item is
greater than the size of the buffer,
the list item is transferred to the
buffer area left-justified with excess
characters truncated.

When the list item contains hexadecimal
data, it is unpacked and translated to hex­
adecimal digits in the output buffer.

CHCIQ -- Logical Input Cunversion

This routine converts a logical field in
the input buffer area. The field has the
format Lw, where ~ is the field width.
(See Chart IQ.)

Entry: The entry point is CHCIQ1.

Operation: The list item is set to an
internal value of • FALSE. (binary zero).
The logical data field is then scanned
until either an F or a T is encountered.
In the first case, immediate return occurs.
In the second case, the list item is set to
an internal value of • TIWE. (binary one)
before returning.

CHCIR -- Logical output Conversion

This routine converts a list item to a
logical field in the out.l-Jut: buffer area.
The field has the format L .. , where ~ is the
field width. (See Chart IR.)

Entry: The entry point is CHCIR1.

Operation: The output bd[fer area is first
filled with blanks. If Ule list item con­
tains a value of zero, ttl'" letter F is
placed in the last buffer area position;
otherwise, the letter T is inserted.

CHCIS -- General Input C, ',.version

This routine converts a data field in
the input buffer to a lh,,- item according
to the format Gw.s, where w is the field
width and s is an-optiOIF,l-specification of
the number-of Significant digits. (See
Chart IS.)

Entry: The entry point is CHCIS1.

Routines Called:

• Real and Integer InpuL Conversion
(CHcrI>

• Logical Input Conver;.;.;ion (CHCIQ>

• Alphameric and Hexadecimal Input Con­
version (CHCIO)

Error Checks: CHCIS does no error check­
ing. Error checks, if any, are made by the
called data conversion routines.

Operation: If the conveL,ion type is tN',
indicating a call from tl,,~ NAMELIST Proces­
sor (CHCID), this happens;

• If the data field begins with a quote,
a literal character string is moved to
the list item.

• If the data field begins with a 'Z',
hexadecimal conversion is performed.

If the conversion type is not 'N', the
list item is checked to determine which
conversion routine should be called:

Type of Data
Integer
Real
Logical
Alphameric
Hexadecimal

Routine called
CHClI (Entry point CHCIG)
CHCII (Entry point CHCIK)
CHCIQ (Entry point CHCIQ1)
CHCIO (Entry point CHCIOl)
CHCIO (Entry point CHCI02)

CHCIT -- General Output Conversion

This routine converts a list item to a
data field in the output buffer, according
to the format GW.s: where w is the field
width and s is an-optional-specification of
the number-of significant digits. (See
Chart IT.)

Entry: The entry point is CHCITl.

Routines Called:

• Integer Output Conversion (CHeIH)

• Real Output Conversion (CHCIJ)

• Logical output Conversion (CHCIR)

Error Checks: CHClT performs no error
checks. Discrepancies between the size and
type specification of the list item and the
data field are detected by the called con­
version routine.

Operation: CHCIT examines the list item
type. If logical, a call is made to CHCIR.
If integer, a call is made to CHCIH. If
real, the magnitude of the item is tested.
Should it fall in the range 0.1 to 10.*s, a
call is made to CBClJ using :f' format speci­
fication. If real, and outside this range,
a call is made to CHCIJ using E or D format
specification.

CHCIU -- List Termination

This routine terminates list processing
for a READ, WRITE, PRINT, or PUNCH state­
ment, and completes any I/O operation that
is pending. (See Chart IU.)

Entry: The entry point is CHCIU1.

Routines Called:

• Format Processor (CHClF)

• I/O control (CHCIC)

The final return is made with registers
unchanged, except that register 13 is set
to the address of the calling module'S
PSECT and register 15 is set to zero.

operation: If the previous list processing
was an unformatted READ, no further action
is necessary, and control returns to the
caller. If the previous action was a for­
matted READ, CHClF is entered with a zero
list item to indicate termination of the
FORMAT scan. This permits scanning for
Hollerith format controls that have still
not been processed, or skipping records
until the end of the format character
string.

If the previous action was an unfor­
matted WRITE, a final call is made to CHCIC
to write the complete logical record.

If, the previous action was a formatted
WRITE, CHClF is entered as above, followed
by CHCIC.

CHCIW -- Exit

CHCIW is described in ·Section 4: Ser­
vice Subprogram Descriptions.-

CHCBD -- I/O Interruption and Machine
Indicator Routine

At the beginning of all FORTRAN main
programs, the compiler generates code that
calls this routine at entry point CHCBD1.

Entry: The entry point is CHCBDl.

Operation: This routine sets bits in the
PSW such that the fixed-point overflow and
significance exceptions will be ignored,
and directs the system interruption handler
as to where to pass control if any of the
follOWing exceptions occur:

Exception
Specification
Exponent Overflow
Exponent Underflow
Divide Check

Subprogram
CHCBE2
CHCBE3
CHCBE4
CHCBE5

In addition, this routine initializes the
machine indicator flags and the sense light
simulators, and clears any pointers to
entries in the DCB table. It then returns
control to the calling program.

Section 5: I/O Routine Descriptions 41

SECTION 6: FLOWCHARTS

The flowcharts in this manual have been produced by an IBM program, using ANSI sym­
bols. The symbols are defined in the left column below, and examples of their use are
shown at the right.

42

SYMBOL

ONPA(;[
CON"lI;:CTOR

{JfFPACE
C(lNN ECTC)R

DEfINITION

:i

C"~

I

F1-<'.M: ' !'T'HERM(D
·,'HAF.T AZ

'.'IA:

I '\8F[.u f ,....!..~-"'T1
PIW/1 II

i

I
C~~~

fP;EtHW,PT
KARl ,\C

'.iIA: PI\SSMECH

CU'1MENTS

B.>: MODNAM£ IS THt ('ut.t,
NAME OF THE ~OUT I NE
FLO'..-JeHART.

LABEll IS THE LABEl, :W 1'11:- F:P.<=:T
INSTRUCTIUN.

01 :

E3 :

F 3;

H) :

J:1 :

Slj8PTN IS IHF ,',)MV',N
1-' '~)T!NF rl'. r';','1i·-·H;"f.'"l

Nfl'<: fRTN 1 STilE t, DM!-1,,'!·j ~-;;..."-:::
lNE THAT ~:Xf:CU'TES AFTl-P :'j<;

I:NfRYPT lS THE £NT1<.'; F")! ';~
'.-.'HICH 15 DfSCRH3ED Jh Cfi.tl.i'!

f I

81

s }['-

\lIA- PI\SSl'1fCH lNDlCf,'I]:';:; H b . '\lR f
PASSES rRO~ '-'(JMN~"tE T} ~LXTJ-.:HL

Program Logic Manual

GY28-2020-2

FORTRAN IV Library Subprograms

Flowcharts on pages 43-88 were not scanned.

This appendix describes the assumptions
that the FORTRAN I/O ~ibrary makes in
initializing DCBs with information concern­
ing record format (RECFM) and data set
organization (DSORG). These asumptions are
described in this appendix to help reduce a
frequent source of error encountered by the
user when performing I/O.

Introductory material is presented on
the DCB describing its general use, con­
tents, and sources of initialization,
before discussing the permissible record
formats and data set organizations. (For a
description of the DCB in terms of its
size, format, and use by the rest of TSS/
360, see System Control Blocks PLM.)

DCB Use

The Data Control Block (DCB) is created
by DCB Management (CHCIB) and is used by
certain data management routines which are
invoked by macro instruction references in
I/O Control (CHCIC). The DCB is required
for all I/O performed using either BSAM or
VAM. However, the DCB is not required for
I/O when using the GATE macro instructions,
even though CRCIB reserves space for one.
In this case, the DD~AME field ~$ used to
save the name that the data set would have
had if GATE were not used. The principal
reason for constructing this dummy DCB for
GATE is to retain consistency for various
routines when handling data set reference
numbers with no corresponding DDEF
commands.

DCB Content

The DCB contains information such as the
DDNAME, type of data set organization, the
type and size of records, block size for
blocked data sets, number of buffer areas,
exits for SYNAn and EODAD, and various con­
trol flags used by data management.

DCB Initialization

The FORTRAN I/O routines, when proces­
sing an input data set, take advantage of
information in the DCB to adapt to the
characteristics of the data set and read it
correctly. Characteristics are based on
the parameters for a DCB that can be sup­
plied from:

• The user program -- type of I/O used
and associated data format.

• User-supplied DDEF commands -- some of
the information in the DCB can be
changed in this manner; however, the
extent of change is limited.

APPENDIX A: FORTRAN DATA MANAGEMENT

• Input data set labels -- these override
both of th0 above sources of informa­
tion, within limits set by data
management.

combinations of DSORG and RECFM

Table 12 gives the permissible combina­
tions of record formats and data set
organizations that may be specified when
using the FORTRAN I/O library.

Table 12. Combinations of DSORG and RECFM
values

r-------~-------------------------------_, I I OSORG VALUES I
I RECFM ~-----~----~----~------T------~
I I VS I PS I VSP I VI I VIP I
t-------+------+------+-----+------+------~
IV IA IA IAIA IA I
I VB I N I A I N I N I N I
I VT I N I A I N 1 N I N I
I F I A I A I A I A I A I
I FB 1 N I A I N I N I N ~
I FS I N 1 A I N 1 N I N I
I FT I N I A I N I N I N I
I FBS I N I A I N I N I N I
I FBT I N I A I N I N I N I
1 FBST I N I A I N I N 1 N I
I FST 1 N I A I N I N I N 1
lUi L I A I LIN I N I
t-------L------~------~-----~------~------~
Icodes mean: I
1 A - Acceptable I
I L - Limited acceptable I
IN - Not acceHtable I
IDSORG abbreviations mean: I
IVS - Virtual sequential (direct access I
I only> I

·1 PS - Physical sequential (any device I
1 except terminals) I
IV~P - Virtual sequential partitioned I
I (direct access only) I
IVI - Virtual index sequential I
I (direct access only) I
IVIP - Virtual index sequential partition-I
I ed (direct access only) I
IRECFM abbreviations mean: I
IV - Variable-length unblocked records I
IVB - variable-length blocked records I
IVT - Variable-length unblocked with I
1 track overf low I
IF - Fixed-length unblocked records I
IFB - Fixed-length blocked records I
IFS - Same as F, no truncated blocks or I
I unfilled tracks I
1FT - Same as F, track overflow I
lFBS - Same as FB, no truncated blocks I
I or unfilled tracks 1
I·FBT - Same as FE, track overflow I
IFBST- Same as FRS, track overflow I
IFST - Same as F, no truncated blocks, I
I track overflow I
IU - Undefined record length I L ___ J

Appendix A: FORTRAN Data Management 89

Any of the RECFM codes shown can be fol­
lowed by the letter A or the letter M. A
indicates that the first character of every
logical record is a FORTRAN carriage or
punch control character. M indicates that
the first character of every record is a
TSS/360 machine control byte. In general,
the M option cannot be used by FORTRAN out­
put data sets, since the control codes are
unprintable and do not conform to FORTRAN
conven tions.

Unformatted FORTRAN Logical Records

Under any of the organization techniques
used, an unformatted WRITE statement may
lead to a logical record that exceeds the
length of the maximum record supported by
the access method. Furthermore, it is not
possible to enter the byte size of the
entire FORTRAN logical record into the
beginning of the I/O physical record
without the possibility of tying up an
indefinite amount of virtual storage.
Therefore, unformatted FORTRAN logical

90

records may span over data management phys­
ical records. In the management of unfor­
matted F'ORTRAN data, the first two bits of
every VS physical record or the third byte
of every PS physical record is a control
byte defined as follows:

X'OO'

X'Ol'

X' 02'

X'03"

A FORTRAN logical record does
not span into or out of the
data management physical
record.

This data management physical
record is the first of a span.

This data management physical
record is the last of a span.

This data management physical
record is within the range of a
span.

No data management logical record will
be written containing more than one unfor­
matted FORTRAN logical record.

APPENDIX B: EXTERNAL NAMES SUMMARY

All FORTRAN library routines have five-letter names beginning with the letters 'CHC'.
The names of mathematical library routines begin with 'CHCA' or 'CHCB', and the names of
I/O library routines begin with 'CHCI' except one -- CHCBD. All other external names
consist of the routine names with suffixes.

Table 13. External names of FORTRAN IV library subprograms
r---------------~-----------------------------~-----------------------------, I Mathematical I , I
, Subprograms, Service Subprograms I I/O Subprograms I

r---------t----------------+------------------------------+-----------------------------~ I Entry ISee Tables 2, 3,lsee Tables 7 and 9, and Isee Section 5. I
I Name I and 7. I Section 4. , I
r---------+----------------t------------------------------+-----------------------------~ I Routine I See Tables 2, 3 f I See Tables 7 and 9, and I See Section 5. I
I Name I and 7. IS ection 4. I I
r---------+----------------+------------------------------+-----------------------------~
,CSECT ,Routine name ICHCBE: Routine name suffixed IRoutine name suffixed by 'C'.I
I Name Isuffixed hy 'W".lhy ·W'. CHCIV and CHCIW: , I
I I 'Routine name suffixed by tc'. I I
r---------t----------------+------------------------------t----------------------------~ I PSECT IRoutine name ICHCBE: Routine name suffixed IRoutine name suffixed by ·W'. I
I Name Isuffixed by 'R'.lby 'R'. CHCIV and CHCIW: I I
'I I Routin e name s uf fixed by 'W'. I I L---______ .l.-_______________ J. ________________________________ J. ___________________________ -J

Appendix B:External Names Summary 91

Where more than one page reference is
given, the major reference is first.

.FALSE logical constant 41

.TRUE logical constant 41

A conversion code 40
Absolute value subprograms 19,4
Access methods

basic sequential (BSAM) 34,35
virtual (VAM) 34,35

Access qualifier 34
Accuracy figures, mathematical

subprograms 15-24
ALGAMA subprogram 19,5
Algorithms of mathematical subprograms 14
ALOG subprogram 15,4
ALOG10 subprogram 15,4
Alphameric and Hexadecimal Input Conversion

(CHCIO) 40,41
calls from other routines

CHCIF 37,38
CHCIS 41
(see also I/O library, overview)

flowchart 80
Alphameric and Hexadecimal Output

Conversion (CHCIP) 41
calls from other routines

CHClF 31,38
CHCIS 41
(see also I/O library, overview)

Arccosine and arcsine subprograms 15,4
ARCOS subprogram 15, 4
Arcsine and arccosine subprograms 15.4
Arctangent subprograms 15,4
Argument ranges, mathematical

subprograms 15-23
Arguments, mathematical subprograms 14-23
Arrays

dimensions 36
elements 35- 37
length 36
names 35,36
size 36
subdivision, levels of 36
subscripting 36

ARSIN subprogram 15,4
Asterisks 40,41
ATAN subprogram 15,4
ATAN2 subprogram 15,4
Attributes

I/O routines 30
mathematical subprograms 14
service subprograms 26

BACKSPACE operation 13,1
CHCIA 31,32
CHCIC 33-35
(see also I/O library, overview)

92

Basic Sequential Access Method
(BSAM) 32,34,35

Binary list item 39
Blanks 39
Blocked records 34,35
BSAM (see Basic Sequential Access Method)
BSP macro instruction 35
Buffering 34-42

CABS subprogram 19,4
CALL statement 1
calling relationships

I/O library 3-13
mathematical library 4,5

Carriage control 90
CCOS subprogram 17,5
CDABS subprogram 19,4
CDCOS subprogram 15,5
CDEXP subprogram 15, ")
CDLOG subprogram 15,4
CDS IN subprogram 15,5
CDSQRT subprogram 15,4
CEKBF routine 38,39
CEKT1 CEKT6 macro instructions 25
CEKZA macro instruction 25
CEKZD macro instruction 25
CEXP subprogram 15,5
Character string 38-42
CHCAA routine 15,4
CHCAB routine 15,4
CHCAC routine 15,5
CHCAD routine 15,5
CHCAE routine 15,4
CHCAP routine 15,4
CHCAl routine 17,5
CHCAJ routine 17,5
CHCAK routine 19,5
CHCAL routine 19,5
CHCAM routine 15,5
CHCAN routine 15,5
CHCAO routine 15,4
CHCAP routine 15,4
CHCAQ routine 15,17,5
CHCAR routine 15,5
CHCAS routine 15,4
CHCAT routine 15,4
CHCAU routine 19,4
CHCAV routine 19,4
CHCAW routine 15,4
CHCAX routine 15,4
CHCAY routine 17,4
CHCAZ routine 17,4
CHCBA routine 17,5
CHCBB routine 17,5
CHCBC routine 21,25

mathematical library overview 5
CHCBD (see I/O Interruption and Machine

Indicator Routine)
CHCBE (see Interrupt and Machine

Indicator Routine)
CHCBG routine 21,25,5

CHCBH routine 21,25,5
CHCBI routine 21,25,5
CHCBJ routine 21,25,5
CHCBK routine 21,25,5
CHCBM routine 21,25,5
CHCBQ routine 15,4
CHCBR routine 15,4
CHCBT routine 19,5
CHCBU routine 19,5
CHCBV routine 19,5
CHCBW routine 19,5
CHCBZ (see Error Processor)
CHCIA (see I/O Initialization)
CHCIB (see DCB Maintenance)
CHCIC (see I/O Control
CHCID (see NAMELIST Processor)
CHCIE (see List Item Processor)
CHCIF (see FORMAT Processor)
CHCIG entry point 42
CHCIH (see Integer Output Conversion)
CHCII (see Real and Integer Input

Conversion)
CHCIJ (see Real Output Conversion)
CHClK entry point 42
CHClL1 entry point 40
CHCIM (see Complex Input Conversion)
CHCIN (see complex Output Conversion)
CHCIO (see Alphameric and Hexadecimal
Input Conversion)

CHCIP (see Alphameric and Hexadecimal
output Conversion)

CHCIQ (see Logical Input Conversion)
CHCIR (see Logical Output Conversion)
CHCIS (see General Input Conversion)
CHCIT (see General. Output Conversion)
CHCIU (see List Termination)
CHCIV (see Dump Routine)
CHClW (see Exit Routine)
Class (see also Type)

of variable 36
CLOG subprogram 15,4
CLOSE macro instruction 35
Closing parenthesis 39
Combinations of DSORG and RECFM &9
Common and natural logarithm

subprograms 15,4
compiler 31,35
Compiler-generated entry names 25,2
Complemented error function

subprograms 19,5
complex Input Conversion (CHCIM) 40

calls from other routines
CHCID 35
CHClF 37,38
(see also I/O library, overview)

flowchart 78
Complex list item 40
Complex output Conversion (CHCIN) 40

calls from other routines
CHCID 35
CHCIF 37,38
(see also I/O library, overview)

flowchart 76
Complex result, how passed 14
Computations of mathematical
subprograms 15-23

Control Initialization
(see I/O Initialization)

Conversion codes 39,3
data conversion routines, use by 39-42

Conversion routines
(see Data conversion routines)

COS subprogram 17, 5
COSH subprogram 17,5
COTAN subprogram 17,4
CSECTs 89,23,25
CSIN subprogram 15,5
CSQRT subprogram 15,4
CZAEB routine 32,33
CZAFQl routines 30
CZCGA routine 32

d Field 38-40
D conversion code
DARCOS subprogram
DARSIN subprogram
Data Control Block

CHCIA 31
CHCIC 33-35
CBCIW 29,30
contents 89

39,40 .
15,4
15,4
(DeB)

initialization 89
prefix 32,34

32,33,3

table used by CHCIC 35,43
use 89

Data conversion routines 35,37
parameter lists 30,31
(see also I/O library, overview; CHCIH;
CHClI; CHCIJ; CHCIM; CHCIN; CHCIO;
CHCIP; CHCIQ; CHCIR; CHCIS; CHCIT)

Data event control block (DECB) 32
Data field, I/O 38-42
Data management routines 32,33,3,6
Data set

access qualifier 34
label 89
read-only 34
reference number 31-35

DATAN subprogram 15,4
DATAN2 subprogram 15,4
DCB (see Data Control Block; DCB
Maintenance)

DCB Maintenance (CHCIB) 32-34
calls from other routines

CHCIA 31
CHCIC 33,34
CHCIW 30
(see also I/O library, overview)

flowchart 49
DCOS subprogram 17,5
DeOSH subprogram 17,5
DCOTAN subprogram 17,4
DDEF command 32-34,3
DDNAME 89
DECB (Data Event Control Block) 32
Decimal conversion 39
Definitions of subprogram

computations 15- 23
DERF subprogram 19,5
DERFC subprogram 19,5
DEXP subprogram 15,4
DGAMMA subprogram 19,5
Digit 39-42
Dimension 36
Dimension product 36

Index 93

Direct-reference mathematical
subprograms 14-25.1,2

Direct-reference service subprogr"ams
14-25,1,2

Divide Check Handler 26-28
Divide Check Tester 26-28
DLGAMMA subprogram 19,5
DLOG subprogram 15,4
DLOGIO subprogram 15,4
Double buffering 35
Double-precision

argument (notation) 23
complex argument (notation) 23
list item 39,40

DSIN subprogram 17,~
DSINH subprogram 11,5
DSORG values 32,89
DSQRT subprogram 15,4
DTAN subprogram 17,4
DTANH subprogram 19,5
Dummy DCB 33
DUmp Routine (CHCIV) 28-29,26

flowchart 87
(see also I/O library, overview)

DUMP subprogram 28,29
(see also Dump Routine)

E conversion code 39-41
Elements, array 35,37
END e.xit 30-33

control flag in DCB prefix 32
End file lockout indicator 34,35
END FILE operation 1,13

CHelA 31,32
CHCIC 33-35
(see also I/O library, overview)

Entry names
I/O subprograms 91
mathematical subprograms 15-25
service subprograms 26-30,2

EODAD exit 33,89
Equal sign 35
Equations showing subprogrilln
computations 15-23

ERF subprogram 19,5
ERFC subprogram 19,5
ERR exit 30-33

control flag in DCB prefix 32
Error checks

mathematical subprograms 14-23
service subprograms 26-29

Error conditions (see Error checks)
Error function subprograms 19,5
Error Processor (CliCBZ, math
library) 25,23

calls from other routines 14,2
CHCBE 28
(see also Mathematical library,
overview>

flowchart 47
Error routines

CHCBZ 25,23
Exceptions 26,28
Exception Processing Enabler

(CaCBD!) 26-28
Exit Routine (CHCIW) 29-35,26,27

calls from other routines 30

94

CHCIA 31
CHCIB 32
CHCIC :33,34
CHCIn 35
CHelE 37
CHClF 37
FORTRAN compiler (user" progr;:.lJH) 30
(see also I/O library, overview)

f lowch<.t rt 88
EXIT subprogram 29.30

(see also I/O library, overview]
EXP sulJprograoi 15 f 4
Exponent, I/O involving 39,40
Exponent Overflow Handler 26-28
Exponent overflOW and Underflow
Tester 26-28

Exponent Underflow Handler (CHCBD4) 26-28""
Exponentia ti on subprog rams 21

entl-Y f)ardmeters 14
U~e~, also CDEXP :~uLprogram; CEXl:'
subprogram: DEXP subprogram; EXI'
subprogram; Indi rect-reference
mathematical sUDprograms: Mathewatical
lib.rary t overview)

Externcli (mtry narn~' (definition} /
Externdl naInO;; 91

39-<11
25
2'j
2 :i
25
2':,
2'}
25
38-42

F conVersion code
FCDXI entry name
FCDXJ entry name
FCXPI entry name
FCXPJ entry name
FDXPD <"entry name
FDXPI entry name
FDXPd entry name
Field width, I/O
Fill characters
FIXPD entry name
FIXPI entry nall1e
FIXPJ entry name
FIXPR entry name

3it
25

FJXPD entry name 25
FJXPI c::ntry name 2',
FJXPJ entry name 25
FJXPR entry name 25
Float i ng"- paint 1 iG t i teln 39. 110
Flowcharts 42-88
Format

controls, Hollerith 42
of fUNTkAN loUic~l records 88
0f NAl>li:.:LlS'l' ouq)UL 36

F'OHNA'l'
(se .. also FORl1l'.T Processor)
closing pdrelltil€sis 39
cedes 38-42
control 37-42,1

CEKBF' 37,38
CflCIA 31,32
C[JCIU 32
C lie I IS :'\ 6 , 37
CHClF 37-39
(see ",lso I/O library, overvi",\-,;
Conversion routi;-les)

conversion code 39-42
parenthesis 38,39
repetition factor 38
scale factor 39

Data

statement, operations involving
(see FORMAT control)

string 37,38
table 38,39

FORMAT Processor (CHCIF) 37-3~
calls from other routines

CHClA 31,32
CHClE 36,37
CHCIU 42

(see also I/O library, overview)
flowchart 69

Format-V records 34
Formatted READ 37-42,8
Formatted WRITE 37-42

with list 10
without list 11

FORTRAN
compiler 31,35

CEKBF routine 37,38
SYSPFMr entry point to CEKBF 37 r 38

data management 87,88
combinations of DSORG and

RECFM 87,88
logical records 88
unformatted logical records 88
(see also Data control Block)

source statements 14
Fraction- I/O involving 39,42
FRXPD entry name 25
FRXPI entry name 25
FRXPJ entry name 25
FRXPR entry name 25
Functional fl",""

I/O library routines 7
mathematical library subprograms 4,5

Function values of mathematical
subprograms 14-23

Functions
mathematical subprograms 14-21
service subprograms 26-29

G conversion code 40-42
GAMMA subprogram 19,5
GATE

DCB 33
I/O 29,33,34
macro instruction facility 29,33,34

GATRD macro instruction 34
GATWR macro instruction 33,34
General Input Conversion (CHCIS) 41

calls from other routines
CHCID 35
CHClF 37,38
(see also I/O library, overview)

flowchart 81
General Output Conversion (CHCIT) 42

calls from other routines
CHCID 35,36
CHCIF 37,38
CHCIN 40
(see also I/O library, overview)

flowchart 82
GET macro instruction 34
GTWRC macro instruction 34

H conversion code 38
Header and trailer records in NAMELIST

output 36
Hexadecimal input conversion (see

Alphameric and Hexadecimal Input
Conversion)

Hexadecimal output conversion (see
Alphameric and Hexadecimal output
Conversion)

Hollerith format controls 42
Housekeeping functions, I/O 43
Hyperbolic sine and cosine

subprograms 17,5
Hyperbolic tangent subprograms 19,5

I conversion code 38,39
I/O Control (CHCIC) 33-35

calls by other routines 30
CHCIA 31,32
CHCID 35
CHCIE 37
CHCIF 37
CHClU 42
CHCIW 30
(see also I/O library, overview)

flowcharts 50-67
I/O Initialization (CHCIA) 30-32

called by FORTRAN compiler '35,66
flowchart 50
(see also I/O library, overview)

I/O Interruption and Machine Indicator
Routine (CHCBD) 41

1/0 library 30-42,2-13
calling relationships
housekeeping functions
internal relationships
overview 2,3-13
subdivisions 3
(see also I/O routines)

6,7
42
3-1.3

I/O list control routines 3,7
I/O operation control routines 3,7
I/O operations (see BACKSPACE operation;

END FILE operation; PRINT operation; PUNCH
operation; READ operation; REWIND
operation; WRITE operation; WRITE
Initialize operation)

I/O PSECT 42
I/O routines 30-42,2-13

attributes 30
names 30,89
PSECTs 30
save areas 30
work areas 30
(see also Data Conversion routines)

I/O services control routines 3,7
1/0 statement (see I/O operations)
Indirect-reference mathematical
subprograms 25,1,2,14

Indirect-reference service subprograms 2
INOUT (OPEN option) 34
INPUT (OPEN option) 34
Integer input conversion (see Real and

Integer Input Conversion)
Integer Output Conversion (CHCIH) 39

calls from other routines
CHCIF 37,38
CHCIT 42
(see also 110 library, overview>

flowchart 71

Index 95

Integer result, how passed 14
Interrupt and Machine Indicator Routine

(CHCBE) 26-28,4
flowcharts 44-46

Item length 31
Item type 15-23,36-41

JFCB (Job File Control Block) 33

KEYLEN values 32

L conversion code
Label, data set
Left parenthesis
Linkage

41
89

35

I/O routines 30
(see also I/O comrnunica~ion)

mathematical subprograms 14
service subprograms 26
(see also calling relatim1ships)

List control 2,3
flag in DCB prefix 32
(see also 11'0 library, overview; List
Item Processor)

List item 36-42
binary 39
complex 40
double-precision 39,40
floating-point 39,40
single-precision 39

List Item Processor (CHCIE) 30,36-37
called by FORTRAN compiler 31

(see also I/O library, overview)
flowchart 70

List processing (see List control)
List Termination (CHCIU) 30,42

called by FORTRAN compiier 31
flowchart 86

(see also I/O library. overview)
Literal character string 42
Log-gamma and gamma subprograms 19 r 5
Logical ·constal:'::.s 41
Logical Input Con';.rersion (CHCIG) 41

calls f:com other routines
CHCIF 37,38
CHCIS 41,4:;;
(see also I/O library, overview)

flowchart 82
Logical Output Con'J€'.'sion (CHCIR) 41

calls from other routines
CHCIF 31,38
CHCIT 42
(see also I/O library, overview)

flowchart 83
Logical record 90

CHCIC 34
CHCID 35
CHCIE 37
CHCIF 39

Macro instructions
BSP 33,35
CEKT1 ••• CEKT6 25

96

CEKZA 25
CElCtD 25
CW,;E 35
GAT!.,; fa::::ili ty

C:l\'l'WR 33,34
C;ATRD 33,34
G'l'WRC 34

GE':' 33,34
in 1/0 library 33
in GKJ.thematical library 25
NCfl'E 33,35
OPEN 34,35
POINT 33,35
PUT 33,34
READ 33
SAVE 25
SE'l'I, 33-35
S'lD'", 33
WHITE 33,34

Mathem~tical libr~cy 14-25,2-S
calli ng relatiom;hips 4, S
internal relationship3 2-'.1
overview 2-~)

suLciivisions l
M.':ltttE-matical SUbiJ10<J.t-.tlriti 14-2S,L-~'

accuracy figurdi 1~:)-1':J.23.LII
aryuments 15-23
attributes 14
com[Jutations 1',-23
definitions (descriptive
equations) 1')-/3

uirect·-referen(>(; 1 Lj_ :2~J

E:nrl·Y names l:} -2 <),91
(~nt l'l' paramet ere; 14
equdtions 15-23
en:or action 14
exit parameters 14
functions 14-21
ind i1 "cet-ref e H' nce
tnt ,'rrelationSLi;'s
ov~::r view 3-')
plH !;(:'~3 es 15- 23
storage estimate~ 15-23
table~ 4,~,1~-21

Minus sign, I/O llivolvinq 39- In

n field .39
N cOllvcLsion code 42-
NAMELI:3'l'

conlr·yL·
CHelA
''::ilCIB
CllCIC
CHcrn
C~ICIS

1,3
31,32
32
34
35,30
32

(~ee also 1/0 library, overview)
dim~nsion product]6
iorm~t for out~ut 36
heaJer and trail~r recurds 36
input 36
narc,e 35,36
notCttion 36
out !Alt 36
reco.!:'d 35
~:;t\.!L:.:;.ment (s~:?C\ :'--JA~.ELl:;T c011trol)
tal)lv 35,36
tr Lier and heaJ8r records 3G

variable 36
(see also NAMELIST Processor)'

NAMELIST Processor (CHCID) 35,36
called ~ CHCIA 31,32

(see also I/O library, overview)
flowcharts 68-69

Names
I/O routines 30,91
mathematical subpro9rams 14-23,91
service subpro9rams 27,91

Natural and common I09arithm
subpro9rams 15,4

Non-format-V records 34 ~ .
Notation, NAMELIST 36
NOTE macro instruction 35

OPEN macro instruction 34,35
Output buffer 34
overview 2-13

Packed decimal conVersion 39
Paddin9 34,39
Parameter lists (general information)

I/O routines 30
mathematical subpro9rams 14
service subpro9rams 26,28-30

Parenthesis 35,38,39
PAUSE subprogram 29-30

(see also Exit Routine; I/O library,
overview)

PDUMP subpro9ram 29
(see also Dump Routine; I/O library,
overview)

Physical record 37,90
POINT macro instruction 35
Powers of ten, table 39
PRINT operation 7

CHCIA 31
CHCIE 36
CHCIU 42
(see also I/O library, overview)

Program interruptions 26
PSECTs

I/O routines 30,91
(see also I/O Communications)

mathematical routines 23,91
label generation 1
locations passed in register 13 25

PUNCH operation 7
CHCIA 31
CHCIE 36
CHCIU 42
(see also I/O library, overview)

PUT macro instruction 34

Quote 42

Range of data field 39,40
READ macro instruction 33
Read-only data set 34
READ operation 31-42

formatted 8
with list 8,9
wi. th NAMELIST 9

without list 8,10
unformatted 9,10
(see also I/O library, overview)

Real ar9ument (notation) 23
Real and Integer Input Conversion

(CHCII> 39
calls from other routines

CHCIF 31,38
CHCIM 40
CHCIS 41,42
(see also I/O library, ov.e~~ew)

flowchart 75
Real Output Conversion (CHCIJ) 40

calls from other routines
CHCIF 37,38
CHCIT 42 ';0
(see also I/O library, overview)

flowcharts 73,74
Real result, bow passed 14
RECFM (see Record format)
Record format (RECFM)J f

DSORG considerations ~~~.P,~2
format-V 34
non-format-V 34

Records
blocked 34,35
logical (see Lo9ical reoord)
physical 90,37
unblocked 35

Register save areas (I/O routines) 3~,
Repeat constant 35
Repetition factor, FORMAT 38
Repetition notation for NAMELIST ~/O 36
Return parameters (see Exit parameters)
REWIND operation 13' c'

CHCIA 31,32 ,'"
CHCIC 33-35
(see also I/O library, overview)

Ri9ht parenthesis 38,39
Routine names

I/O 91,30
(for list, see Table of ~Qn~ents)

mathematical 91,14-21 l{U £.I

for indirect-referenqs ':"1e:)

subprograms 21,25
service subprograms 26-2~'I

\f ~

s field 40-42 iJ
Save areas for I/O routines 30

(see also I/O ComIIDilDication)
SAVE macro instruction 25
Scale factor, FORMAT 39
Sense li9ht subprograms (SLITE,

SLITET) 26-28
Service subprograms 26-29,2

attributes 27
entry names 26,27
entry parameters 26
error checks 26-27
parameters 26

SETL macro instruction 35
Sign of number, I/O involving
Significant digits 42

39-41

Simple variable 36
SIN subprogram 17,5
Sine and cosine subprograms

hyperbolic 17,5
trigonometric 17,5,16

Index 97

Single-precision
argument (notation) 23
list item 39

SINH subprogram 17,5
Size of data field 39.40
SLITE and SLITET subprograms 26-28
Source program (see User program)
Spaces, in FORMAT I/O 38

(see also Blanks)
Spanning 34,90
Specification Exception Handler 26-28
Square root subprograms (CSQRT, CDSQRT,

DSQRT. SQRT) 15,4
STOP subprogram 29,30

(see also Exit Routine; I/O library,
overview)

storage estimates
matheaatical subprograms 15-23
service subprograms 27

STOW macro instruction 33
Subdivision, array 36
Subscripted variable 36
SUbscripts 35,36
Supervisor 6
SVC instruction 30
SYNAD exit 33,89
Syntax of FORMAT string 37,38
SYSIN 33
SYSLIB 1
SYSOUT 1,3

CBCIB 33
CHC:IW 29
CHCIX _2

SYSPFMr entry point to CEKBF 37.38
System entry na.e 21,23,25
System interruption handler 28

T conversion code 38,41
Table of powers ten 40
TAN subproqra. 17 ,.
Tangent subprograms

byperbolic 19,5
trigonometric 17,4

TANH subprogram 1 ij ~ 5
Task Supervisor 3')
~en. powers of # l\.J
Terainal entxy to3iAMELIST table 36

98

Trailer and header records III NAMELIST
output 36

Trigonometric sine and cosine
subprograms 15-17,5

Trigonometric tangent SUbprogram,;; 17,4
Truncat ion, in I/O 41
Type (real, integer. (,to·,) 31;-41,1:5-23

Unblocked records 35
Unfo:nlldtted FORTRAN logical records 90
UnforlHdtted READ 9,10,33

wittl list 9
wit bout list 10

Unfonnatted WRITE 12
UPDATL (OPEN option) 34
User ,,'ntry name 24
User rrogram 30,36,37

diagram showin9 interface wi.tl1 I/O
lib.rary 6

VAM 34,35
Variable

class 15-23,36
location 36
name 35,36
NAH1:LIST 36
sll;ljJle 36
sUDscript"E!d 36
type 15-21,36

Virtual Access Method (VAM) 34,35
VPAM data set 34

w field 39-43
Width of data field 38-42
Work ,Hcas (see PSECTs)
WRITE Initialize operation 34,35
WRITE lUacro instruction 34
WRITE operation 31-42

formatted 10,11,34
with list 10-12,36
with NAMELIST 11,34,36
without list 11,12
unf GrrJlatted 12
(see also I/O library, overview)

Z convcrsion code 41,42
Zoned decimal conversion 39

