File No. 360-25
GY28-2020-2

Program Logic

Version 8.1

IBM System/360 Time Sharing System
FORTRAN IV Library Subprograms

- This publication describes the internal logic of the
IBM Systemv360 Time Sharing System FORTRAN 1V
mathematical and I/0 libraries, including the
mathematical, service, and I/0 routines.

This material is intended for persons involved in
program maintenance, and system programmers who are
altering the program design. It can be used to locate
specific areas of the program, and it enables the
reader to relate these areas to the corresponding
program listings. Program logic information is not
necessary for the use and operation of the program.

PREFACE

This publication is organized into six
sections and two appendixes.

Section 1 is an introduction to the
FORTRAN mathematical and I/0 libraries,
including service subprograms, and provides
a brief description of their contents and
functions.

Section 2 contains descriptions, in
figure form, of how the library routines
interact in fulfilling user requests.

Section 3 describes each mathematical
subprogram ~-- its entry names, function,
attributes, entry, exit, storage
requirement, error checks, and (where
applicable) accuracy figures.

Section 4 describes the service routines
residing in the mathematical and I/0
libraries -- their subprograms, attributes,
entry names and entry parameters, storage
requirements, error checks, and their
operation,

Section 5 describes each I1/0 routine --
its purpose, entry point and entry
parameters, external references, and the
details of its operation.

Section 6 gives the flowcharts of the
service and I/0 routines.

Third Edition (September 1971)

Significant changes or additions to this pukblication will
be provided in new editions or Technical Newsletters.

This edition is current with Version 8, Modification 1 of
IBM System/360 Time Sharing System (TSS/360) and remains in
effect for all subsequent versions or modifications of IEM
System/360 Time Sharing System unless otherwise indicated.
Before using this publication, refer to the latest edition of
IBM System/360 Time Sharing System: Addendum, GC28-2043,
which may contain information pertinent to the topics covered
in this edition. The Addendum also lists the editions ot all
TSS5/360 publications that are applicable and current.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 Printer using a special print
chain.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
reader's comments. If the form has been removed, comments
may be addressed to IBM Corporation, System/360 Time Sharing
System Programming Publications, Department 6413, Neighborhood
Road, Kingston, New York 12401

7 Copyright International Business Machines Corporation 1969,

Appendix A describes those aspects of
FORTRAN data management that are unique to
the FORTRAN environment. Appendix B is a
guide to external names of FORTRAN library
routines.

PREREQUISITE PUBLICATIONS

Familiarity with the material contained
in the following publications is essential
to the use of this manual:

IBM System/360 Time Sharing System:
Concepts and Facilities, GC28-2003
IBM FORTRAN IV, GC28-2007
FORTRAN Programmer's Guide, GC28-2025

REFERENCE PUBLICATIONS

Knowledge of the following publications
will be helpful in understanding the
concepts and logic of the FORTRAN Library
routines:

IBM System/360 Time Sharing System:
FORTRAN IV Library Subprograms,
GC28-2026
System Programmer's Guide, GC28-2008
Assembler User Macro Instructions,
GC28-2004
FORTRAN IV Compiler PLM, GY28-2019
System Control Blocks PLM, GY28-2011
System Logic Summary, GY28-2009

1970, 1971

SECTION 1: INTRODUCTION « v « ¢ o o o « o o s o o a =

SECTION 2: OVERVIEW . . . « « « &

Mathematical Library . . « « ¢ ¢ ¢« ¢ ¢ & ¢ ¢ o o o .
Subdivisions . ¢ . ¢ ¢ ¢ ¢ e o e e e e s e o o o =
Internal Relationships . ¢ « ¢ « ¢ ¢« o o o o ¢ o »

I/0 LiBbrary « « « o« o o o o o o o o a o s = o o o o @
Subdivisions . . . : s e s x s e w e o @

I/0 Language COntrol Routlnes e o e s s e e o e @
Data conversion Routines . . « ¢ o« v ¢ ¢ o ¢ o
Internal Relationships . « « ¢ « ¢ 4« ¢ o ¢« o o & «

SECTION 3: MATHEMATICAL SUBPROGRAM DESCRIPTIONS

General INformation . « « v o ¢ o o o ¢ s« o o o o o =
Routine NAameS . « o « « o s = o o o s o o o s o &«
Attributes . . ¢ ¢ ¢ « ¢ 4 s e s e 2 o 2 s e = =
Entry Parameters . « « ¢ o « o « o o o o o o o o
EXrror Action .« ¢« ¢« ¢ ¢« ¢ o c.2 o o o s o s o o »
EXit ParametersS . « « « s« o o o « 2« o o o s s o @

Subprogram SUMMAYIieS .« . ¢ o o« o s s « o « @ « . .

Tables .« ¢ o 4 ¢ ¢ 4 ¢ ¢ ¢ 6 o o o o o o s o o o
CHCBZ —= EIXOY PrOCESSOX « » « o o s s s o o o =

SECTION 4: SERVICE SUBPROGRAM DESCRIPTIONS . .
General Information . ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ o « o o e o o =
Subprogram Summaries . . . - .
CHCBE -- Interrupt and Machlne Indlcator Routlne
CHCIV -- Dump ROUtine . + « ¢ 2o « ¢ « o o o o o &
CHCIW -- Exit Routine . « ¢« + « « o o« « « o « o «

SECTION 5: I/OC ROUTINE DESCRIPTIONS . .

General Information . . .« .« . . . ¢ o .
Attributes ¢ 4 ¢ ¢ o o .
Work Areas and Register Save Areas

Routine Summari€s . « « « « « o « o « o
CHCIA -- I/0 Initialization .
CHCIB -- DCB Maintenance . .
CHCIC -- I/0 Control
CHCID -- NAMELIST Processor .
CHCIE -- List Item Processor
CHCIF -- Format Processor
CHCIH -- Integer OQutput Conversxon « ..
CHCII -- Real and Integer Input Conversion
CHCIJ -- Real Output Conversion
CHCIM -- Complex Input Conversion
CHCIN -- Complex Output Conversion . . . « « « .

« ¢ s o s 3
.
« & 35 & o 3 &
* s s s s @
« o ¢ & & @
¢« & ® & & s ¢
.

« & & &

-
-
*+ o w
.
.

°
.

o & » 3 s

LI

LR)

¢ o s & @

« o & &
.

.
.
s 5 & 2 & ® s 0 8 & 4 o

s & o 0

CHCIO -- Alphameric and Hexadecimal Input Conversion

. S & & o 8 5 o ¢ &

a ® s % o & ¢ &

» a8 o &

" & 8 8 & s o

« & & & e ® o ® o & & & g s LI Y) .

CHCIP -- Alphameric and Hexadecimal Output Conversion

CHCIQ -- Logical Input Conversion
CHCIR -- Logical Output Conversion . . . « « « =«
CHBCIS -- General Input COnversion . . . « « « « .
CHCIT -- General Output Conversion

CHCIU -- List Termination . . « « « 2 « o « ¢ o =
CHCIW == EXit v ¢ & ¢ ¢ & o o o o« s 2 s o o o« o

.

¢ & & 4 & s * 2 o

¢ o

.

« 8 o o o & 0

¢ g & o 8 5 & s & & ¢ v a4 b+

.

.

CHCBD -- I/0 Interruption and Machine Indicator Routine

SECTION 6: FLOWCHARTS <« « « « s o ¢ o « o o« o

APPENDIX A: FORTRAN DATA MANAGEMENT . .

DCB USE v v 4 4 ¢ o 2 o 5 2 s o« s 2 s s o o s« o «
DCB Content . o« v « o « o 2 2 o o s s s s o « o =
DCB Initialization . ¢« ¢ ¢ o« ¢ o o 4 « o o o o

s & s 0

¢ s b o 0

e & o o

e ¢ » s

¢ & 8 & * & " & & 4 & g

a &t o & 4

« & o o

8 % o o 4§ ¥ & 8 4 & @ .

« b oo s

s 5 o 0

CONTENTS

L]
WWWWRORNNNDN -

.
¢ o & & B o @
.

..
. [
.
B
s &

s« & & @

.
« ¢ & & o 8 ¢ »

.
.

. s 0 e
w
o

s 8 ¢ o 8 e
w
&

. .
» e s s e e
.
w
0

P
.
w
o

.
0

P S
@
[~

iii

Combinations of DSORG and RECFM
Unformatted FORTRAN Logical Records« .

APPENDIX

INDEX

B:

EXTERNAL NAMES SUMMARY . .« « « « « « =

» = e ®w ® e ® » ®» e ® ® 8 * W e @& = o @ @

ILLUSTRATIONS

Figure 1.

Figure 2. Functional flow of I/0 library routines « e e o e o =
Figure 3. Formatted READ with list . . . ¢ ¢ ¢ o « o o o s o o o
Figure 4. Formatted READ without list s e e e e e e s e e e e .
Figure 5. READ with NAMELIST . ¢ + @« o o« « 4« o = s o« 2 a o« o« = =
Figure 6. Unformatted READ with list ¢ « o « ¢ o « « « =«
Figure 7. Unformatted READ without list e o s e e e e s e e e e
Figure 8. Formatted WRITE with list s e 4 s s % e e e w e e e =
Figure 9, Formatted WRITE without list . . . « ¢ o« ¢ ¢ « « o« o =
Figure 10. WRITE with NAMELIST « s s e e = e s e & e &« a«a a o o o
Figure 11. Unformatted WRITE with 1list s+ e 4 2 e e w e e e e
Figure 12. Unformatted WRITE without list & « ¢ o & o « =
Figure 13, BACKSPACE, REWIND, and END FILE “ e s e e o 8w a s e =
Figure 14. EXIT and STOP e 4 e e e e m s s e s s s e e s s e e e
Table 1. I/0 library calling relationships . « . . . « % e e e
Table 2. Summary of directly referenced mathematical subprograms
Table 3. Summary of indirectly referenced mathematical subprograms
Table 4. Exponentiation with integer base and exponent
Table 5. Exponentiation with real or double-precision base and
integer exponent ¢ 4 4 4« . e e 4 s e 4 = s e e e & o s o =
Table 6. Exponentiation with real or double-precision base and -
exponent @« e e e s 4 a s e s s a e s 8 & = = = 2 e e e = w s e =
Table 7. Entry names of indirect-reference mathematical routines
Table 8. Mathematical library macro instruction.summary « . « . .
Table 9. Summary of service subprogram characteristics,
Table 10. Format and content of DCB prefix« « ¢ « « o a o «
Table 11. Translation of FORMAT code€S .« « « +v « o o o o o o o o =
Table 12. Combinations of DSORG and RECFM values . < « &+ « « « «
Table 13. External names of FORTRAN IV library subprograms
Chart BD. I/O interruption and machine indicator routine (CHCBD) .
Chart BE. Interrupt and machine indicator routine (CHCBE)
Chart BZ. Error processor, math library (CHCBZ) e o o s a » e & @
Chart IA. I/O initialization (CHCIA) . . o < o o o « o o s o o o =
Chart IB. DCB maintenance (CHCIB) . + « o « o o o o = » = @« 2 o =
Chart IC. I/0 control (CHCIC) .« . 4 ¢ o o « s o s o o a s « = s o
Chart ID. NAMELIST processor (CHCID) . . o « 4 ¢ o o « o o 2 o o &«
Chart IE. List item processor (CHCIE) . . & « « s o o o s = = o« =
Chart IF. FORMAT processor (CHCIF) . . . c o s o e e e s o @ o @
Chart IH. Integer output conversion (CHCIH) . e e 4 e e e e e
Chart II. Real and integer input conversion (CHCII) c e o o a e @
Chart IJ. Real output conversion {(CHCIJ) . « + « ¢ « o « = « « = =«
Chart IM. Complex input conversion (CHCIM)Y . . . o « « « = - « « «
Chart IN. Complex output conversion (CHCIN) o o o
Chart I0. Alphameric and hexadecimal input conversion (CHCIO) .
Chart IP. Alphameric and hexadecimal output conversion (CHCIP) . .
Chart IQ. Logical input conversion (CHCIQ) . . . « « « « = « =« =« =«
Chart IR. Logical output conversion (CHCIR) . .+ « =« « « & « o o =«
Chart 1IS. General input conversion (CHCIS) . . « « o & « = « o « =
Chart IT. General output conversion (CHCIT) . . < « « = = o « « =
Chart IU. List termination (CHCIU) . . . « « s « o« o o o c ¢ o = =
Chart IV. Dump routine (CHCIV) . . . < « « & ¢ o o o s « « o o « =
Chart IW. Exit routine (CHCIW) . . . <« ¢ o &« « « o o = o =« = o o o

iv

Functional flow of mathematical library

subprograms

89
90

91

92

The two FORTRAN IV likraries, mathemat-
ical and input/output (I/0), are written in
assembler language and stored in the system
library (SYSLIB). They are available to
all users.

Each routine in the mathematical library
is a collection of one or more subprograms.
In this puklication, the term subprogram
means a routine or part of a routine that
has a single entry point and performs or
controls the performance of a single func-
tion. Mathematical likrary sulkprograms are
generally rmathematical or computational in
nature, and generally return one answer
(function value) to the calling program.
Mathematical subprograms can ke categorized
by use:

1. Direct reference, as in reference to
the sine subprogram in the statement

X = SIN(Y)

2. Indirect reference, as in reference to
an exponentiation subprogram in the
statement

X = Y**I

The 1I/0 likrary is a grour of routines
that function as a single program complex

SECTION 1: INTRODUCTICN

for processing the 1I/0 statements READ,
WRITE, PRINT, PUNCH, BARCKSPACE, REWINLC, and
ENC FILE. Processing cf READ and WRITE
statements can include list control, NAME-
LIST control, FORMAT contrcl, or none of
these ccntrols. The routines within this
corplex can ke categorized by function:

1. Language control rcutines, which ana-
lyze the user's I/0 regquest.

2. Data conversion Rcutines, which ccn-
vert data from intermal tc external
form or from external to internal

" form.

Both libraries also ccntain service rcu-
tines, each of which is a collection of
subprograms. Sexrvice subprograms are
called with CALL statements or are implic-
itly called by the occurrence of certain
situations during executicn. The service
sukprograms in the mathematical library
handle machine excepticns and test program-
sirulated wachine indicators. The service
subprograws in the I/0 library dump program
data onto SYSOUTs and terminate executicn
cf user gprograms.

Each of the two libraries alsc ccntains
an erxror-handling routine.

Section 1: Introduction 1

SECTION 2: OVERVIEW

This section explains the subdivisions
of the FORTRAN IV mathematical and 1I/0
libraries and gives in figure form an over-
view of each library. Note that the ser-
vice subpreograms are divided ketween the
two likraries.

MATHEMATICAL LIBRARY

SUBDIVISIONS

The FORTRAN IV mathematical library con-
sists of two types of relocatable routines:
mathematical and service. Each routine
contains one or more subprograms; there is
a separate entry point for each subprogram.

Like a FORTRAN subprogram defined with a
FUNCTION statement, a mathematical subpro-
gram always returns an answer (function
value) to the calling program. Mathemati-
cal subprograms can be categorized as
direct reference or as indirect reference.

Since the user refers to direct-
reference subprograms by name, they are
explicitly called. For example, in the
statement X = SIN(Y), the user invokes the
SIN subprogram. The direct-reference math-
ematical subprograms are the logarithmic,
trigonometric, hyperbolic, square root,
absolute value, gamma function, and error
function subprograms, and some exponentia-
tion subprograms.

Since the user does not refer to
indirect-reference subprograms by name,
they are implicitly called. For example,
to invoke an exponentiation subprogram, the
user employs the exponentiation operator
(i.e., **). The FORTRAN compiler then
causes the user program to call the appro-
priate exponentiation subprogram. To
invoke CHCBZA, the error-handling subpro-
gram, the user invokes a mathematical sub-
program without specifying the proper argu-
ments. With the exception of CHCBZA, all
indirect-reference mathematical subprograms
are exponential (compute powers of
numbers).

The mathematical library service subpro-
grams can also be categorized as direct-
reference or as indirect-reference. The
direct-reference subprograms SLITE, SLITET,
OVERFL, and DVCHK test program-simulated
machine indicators. The indirect-reference
subprograms CHCBD1, CHCBDZ2, CHCBD3, CHCBD4,
CHCBD5, and CHCBE1l handle interruptions
resulting from machine exceptions.

Each entry to an indirect-reference
nrathematical subprogram (and some entries
to service sukrprcgrams) in the rathematical
likrary is made with two entry names:

1. Corgiler—~generated entry name. When
the user employs the exponentiaticn
operator, the compiler examines the
terxs cn both sides of the cgeratcr
‘and determines which exponentiation
subprogram to call. It then generates
~an entry name that is later translated
into the system entry name.

2. System entry name. This is the name
defined by the subprogram itself, the
name of the entry point.

Each entry to a direct-reference subpro-
gram is made with the name employed by the
user. (The system entry name is the same
as the user-employed name.)

INTERNAL RELATIONSHIPS

Figure 1 gives a functional overview of
the mathematical library. The subprogram
entry names of each routine are shown under
the name of the routine. The entry names
shown for the directly referenced subpro-
grams are the user entry names. System
entry names of these subprograms are shown
in Table 7. The entry names shown for the
indirectly referenced subprograms are the
system entry names of these subprograms are
shown in Table 8. The error-processing
routine CHCBZ is not included in Figure 1.

1/0 LIBRARY

Since the user has 10 entry points to
the FORTRAN IV I/O library, this library
can be thought of as 10 subprograms and a
number of subroutines for these subpro-
grams. The I/0O library can also be

| described as a group of 21 routines that

interact in various ways, depending upon
the user‘'s request. Except in "Section U4:
Service Subprograms," this publication
describes the I/0 library in terms of its
routines.

Three of the ten entry points to the I/0
library are for processing the I/0 state-
ments READ, WRITE, REWIND, BACKSPACE, END
FILE, PRINT, and PUNCH. Processing of READ
or WRITE statements can include list con-
trol, NAMELIST control, FORMAT control, or
none of these controls. The other seven
entry points are to service subprograms, in

two routines, that execute the statements
STOP, PAUSE, CALL DUMP, CALL PDUMP, and
CALL EXIT, and act upon requests by other
library routines for termination of program
execution.

SUBDIVISIONS

There are two groups of I/0 routines:
170 language control routines and data con-
version routines. These groups interact,
in fulfilling an I/0 request, by means of a
common communication and work region.

170 Language Control Routines

There are three types of I/0 language
control routines: I/O operation control,
1I/0 list control, and I1/0 services control.
These routines analyze the usex's I1I/0
requests to determine information such as:
the type of 1/0 operation to be performed;
the number and type of list items present,
if any; the type of NAMELIST or FORMAT con-
trol, if any; and the I/0 statement rela-
tionships with a user-specified DDEF
command.

I/0 OPERATION CONTROL ROUTINES: These rou-
tines control the 1I/0 request by creating,
if necessary, a data control block (DCB),
and analyzing FORMAT and NAMELIST control
specified by the user. After this informa-
tion is processed, the I/0 operation con-
trol routines interface with the TSS/360
data management routines that actually ful-
fill the 1/0 request. The interface with
data management is accomplished by the rou-
tines CHCIB and CHCIC, via the data manage-
ment macro instruction facilities.

I/0 LIST CONTROL ROUTINES: These routines
examine the list items, if any, in each I/0
request to determine the type of conversion
to be performed. After the type of data
conversion is determined, control is given
to the I/0 operation control routines which
in turn call the appropriate data conver-
sion routines for final processing.,

I/0 SERVICES CONTROL ROUTINES: These rou-
tines are responsible for creating user-
requested dumps, initiating a pause in the
user program, and terminating a user pro-
gram as a result of either normal proces-
sing completion or program errors. I/O
services control routines also interact
with the I/0 operation control and with the
group of data conversion routines for the
preparation of the user's data in virtual
storage for subsequent output on SYSOUT.

Data Conversion Routines

The data conversion routines are subdi-
vided into routines used for input proces-
sing and routines used for the preparation
of output. These routines can process all
the permissible types of FORTRAN-formatted
data specified in either a FORMAT or NAME-
LIST statement.

When converting a user's data, the data
conversion routines interact with each
other according to the requirements of the
user-specified FORMAT or NAMELIST control.
For example, for input data that is defined
by a G-format conversion code, General
Input Conversion (CHCIS) is called. This
routine analyzes the data to determine
whether it is integer, real, logical, or
alphameric and calls the appropriate data
conversion routine.

INTERNAL RELATIONSHIPS

Figure 2 gives a functional overview of
the I1I/0 library.

Table 1 shows the calling relationships
between the user program, the FORTRAN I/0
library routines, Data Management, and the
Supervisor.

Since the routine functions and interre-
lationships vary, depending on the kind of
I/0 operation being performed, separate
diagrams (Figures 3-14) describe the dif-
ferent kinds of I/0 operations. Exceptions
to the logical flows shown in Figures 3-14
are covered under the individual routine
descriptions in “Section 5: I/0 Routine
Descriptions."

The types of I/0 operations and their
figure references are:

Figure
Type of Operation (Function) Reference
Formatted READ with List Figure 3
Formatted READ without List Figure 4
READ with NAMELIST Figure 5
Unformatted READ with List Figure 6
Unformatted READ without List Figure 7
Formatted WRITE with List Figure 8
Formatted WRITE without List Figure 9
WRITE with NAMELIST Figure 10
Unformatted WRITE with List Figure 11
Unformatted WRITE without List Figure 12
REWIND, BACKSPACE, and END FILE Figure 13
EXIT and STOP Figure 14

Section 2: Overview 3

MATHEMATICAL

SERVICES CONTROL

ROUTINE

|
|
3
|
l
I
1
l
|
|
|
|
|

Figure 1.

INTERRUPT AND
MACHINE INDICATOR

CHCRE™

CHCBE2
CHCBE3
CHCBE4
CHCBES
OVERFL
DVCHK
SLITE
SLITET

DATAN2

-]

ARCTANGENT

]
| CHCBR CHCBQ |
DATAN ATAN
| DATAN2 ATAN2 g
|
|
et — COMMON & NATURAL LOGARITHM
e COMMON & NATURAL LOGARTY
‘ CHCAF l
CHCAE
| L cncar St ioa cicao | | |
| CpLOG DLOG 10 ALOG10 cLoG '
L

SQUARE ROOT

r“”“__—‘-“ﬂ

- \ l CHCAB CHCAA ’
@ i DSQRT SQRT % @

. } |

| |

| CHCAT CHCAS !

; CDSQRT CSQRT ;

CHCAV

CDABS

i._..
l CHCAX CHCAW g
. DARSIN ARSIN }
| DARCOS ARCOS l
I S |
TRIGONOMETRIC
TANGENT
e e e —— —
| CHCAZ CHCAY 1
| OTAN TAN |
l DCOTAN COTAN |
U |

Functional flow of mathematical library subprograms (page 1 of 2)

ATAN2

Figure 1.

REAL OR INTEGER

BASE TO REAL
POWER

INTEGER BASE
TO INTEGER
POWER

REAL BASE TC
INTEGER POWER

COMPLEX BASE
TO INTEGER
POWER

Lo

CHCBJ*
CHCBJA
CHCBJB
CHCBJC

GAMMA;

LOG-GAMMA
CHCBT CHCBY |
| GAMMA DGAMMA T
1 ALGAMMA DLGAMMA I
L -

ERROR FUNCTION;
COMPLEMENTED
ERROR FUNCTION

CHCBU CHCBW
| |
ERF DERF
| ERFC DERFC |
-

b s s — — — —— it s st

EXPONENTIAL

CHCAC . CHCAM CHCAN | o CHCAD
EXP CEXP CDEXP DEXP

3 1

CHCBG*

CHCBGA
CHCBG B
CHCBGC
CHCBGD

CHCBH*
CHCBHA
CHCBHB

CHCBC*
CHCBCA
CHCBCB

TRIGONOMETRIC
SINE & COSINE

L]

| 2 |
CHCAQ CHCAR 1
CSIN_ | 4 CDSIN ‘
1 CCcos cocos [
CHCAI CHCAJ |
SIN DSIN
cos DCOS ‘
U s ol I s 1 ¥
D @ 6 &
HYPERBOLIC
SINE & COSINE

CHCBA CHCBB |

Functional Flow

SINH DSINH =
COSH DCOSH ‘

.
I

l

!

l

|

|

l

|

g—:gg—% REAL DOUBLE
CHCekp | PRECISION BASE
CHepre | TO REAL DOUBLE
CHCekp | PRECISION POWER
CHCBKE

CHCBI* | DOUBLE PRECISION
CHCBIA | BASE TO INTEGER
CHCBIB | POWER

CHCBM* | COMPLEX, DOUBLE

CHCBMA
CHCBMB

PRECISION BASE TO
INTEGER POWER

Note: Asterisk (*) denotes
that following subprograms
are implicitly called
(indirect reference).

of Mathematical Library Subprograms (Page 2 of 2)

Section 2: Overview

Table 1.

I/0 library calling relationships

Routines
Called

Calling
Routines

CHCIA

CHCIB

CHCIC

CHCID

CHCIE

CHCIF

CHCIH

CHCHI

CHClJ

CHCIM

CHCIN

CHCIO

CHCIP

CHCIQ

CHCIR

CHCIS

CHCIT

CHCIU

CHCIV

CHCIW

CHCBD

Data

Management

Supervisor

USER
PROGRAM

pad

>

=

P

=

CHCIA

CHCIB

CHCIC

CHCID

CHCIE

CHCIF

CHCIH

CHCH

CHCIJ

CHCIM

CHCIN

CHCIC

CHCIP

CHCIQ

CHCIR

CHCI5

CHCIT

CHCIU

CHCIY

CHCIW

CHCBD

$Z uOT403C

SAD

MmITA

L

21nb1a

SeuTINOY A1e1aTl O/I 40 MOT4 Teuoriound

Control

- —

1

DUMP
({CHCiv)

|
|
|
|

EXIT
(CHCIw)

f“”“m”L"““‘“']

DC8

(CHCiB)

Maintenance

|

User Progrom
P st o —— —— — ——— wa——— —— —
DUMF, PDUMP, | READ, WRITE, PRINT,
EXIT, STOP, PUNCH,BACKSPACE, List Items
PAUSE { REWIND, END FILE
|
1/O Language Control Routines // \
Control
Initialization
(CHCIA) "
O List
1/0 Services 1/O Operation Contral Control

—

List ltem
Processor

l
l
I
|
I
I
I
l
|

R

IS USRS

FORMAT
Processor 1
{CHCIR
1/0 Control ~ I
(CHCIC)
NAMELIST ‘
Processor l
(CHCID)

{CHCIE)

S S

List
Termination

(CHCIY)

L

—
|
|
|
|
|
|

|

Data Conversion

Routines

|
|
|
|
|
|
|
l
|
|
l

General
@cHers) [

!

Integer and
Real
{CHCH)

1

Complex
(CHCIM)

Alphameric and
Hexadecima!

(CHCIO)

logical
(CHCIQ) i

—

General

(CHCIT)

-)

!

integer
(CHCIH)

Real
(CHCL)

|

Complex J
(CHCINY

Lol

Logicol
(CHCIR)

Alphameric ond
Hexodecimal
(CHCIP)

L

User
Program

!

ey p——

CHCIA
/O Initial-

ization

2 |

1
CHCIB
Find o DCB
defining associ=-
ated data set

[_...__._____J

!

. &

CHCIE

List Processing
Enter for each
item

I ER

CHCIC
Read a logical
record

—
CHCIF

FORMAT Processor
process each item
according to
FORMAT speci-
fication

—_——— d

b s e — o

‘4 1

Read sub-
sequent records
if necessary

CHCII, Im, 10,
Ty
Appropriate data
conversion routine
for each item

Termination

Figure 3.

Formatted READ With List

User

Program

!

]

I

4 CHCIF
CHCIA, . FORMAT Processor
.I/O'lnn‘laf— e — —— —— o — ' e _—_ _ | move data items
ization from buffer into
* FORMAT
e I A
| |
—_
™~ B
1 |
CHCIB Read
Find a DCB %e%log?o ical subsequent
defining associ- record gteat record if
ated data set necessary
Figure 4. Formatted READ Without List

User Program

v |
2 4
CHCIA - - - - - '
-r—— —— — -] | /O Initialization i l
A 1
T CHCID
gﬁgwocs 3 | NAMELIST
inda f_ - Processor
cHeic ‘ |
Read a logical ' 5A 5 ‘
record
— ‘ CHCII, 1M,
ea 10, 1Q, 1S
subseque'nt ‘ Appropriate
records if - I data conversion
necessary routine
Figure 5. READ With NAMELIST
f— — —— — — —— —-]
User Program I 5
—— —— ——
__' t
R ! !
4
! | 1
CHCIA CHCI
l——— —— e e /O Initialization ‘ List Termination
| |
2| | 3 I |
1 | | l
CHCIE
CHCIB CHCIC . List Processor
Find o DCB f:::r: logical l_- {En?:r for)
each item
Read |
subsequent 4A
records if ____]
necessary
Figure 6. Unformatted READ With List

Section 2:

Overview 9

User Program

CHCIA
1/0 initialization

CHCIB CHCIC
Find a DCB Read a logical
record
Figure 7. Unformatted READ Without List
User e — — e — e ———— — —
Program _-i
!
4
1 | L 4 l
e — |
H 1 |

CHOIA CHCIE |
mf' I List Processingzenter I

;zcﬁonl ia for each item, put
s list in buffer 7 !
2 I ! NS R 4
| = |
| 3 CHCIF |

Thce l FORMAT Processor
process each item e CHCIU
Find a DCB I according to T List

defining asso~
ciated data set

cHeic
Initialize pointers

to buffer in which
to construct date
record

~
|
l
|
|

Write buffer in
output data set,

il
when full

’L_____..,.__

]
FORMAT speci~
; fication

&A 6l f

t .
CHCIH, 1J, TN, 1P,

R,TT T T
Appropriate data con=-
version routine for

each item in buffer

Termination

_——]

!
|
l

Figure 8.

10

Formatted WRITE With L.ist

User
Program

HCIA

/O Initialization

CHCIF
FORMAT Processor

move data items

_— e —— = — — -— — — into buffer from
FORMAT
e B ¥
b ‘
S B !
— 1 | 5
A | |
CHC1B CHCIC
Find a DCB Initialize pointers | write bufferin [~ — — — -
defining associ- to buffer in which output data set
ated data set to construct data when full !
record
Figure 9. Formatted WRITE Without List
User
Program
1 |
2 l 4
CHCIA
e 1/O Initial-
- ization "__—_———-—1
i
T CHCID
gi*:z:!: oCB 3 [- R NAMELIST
processor
CHCIC | f
Initialize pointers
to buffer for data ‘ > l
record construction
’ SA CHCIH, 1J, IN,
Write buffer in { —‘l&g’ IR, H‘f dot
t dat ppropricte dota
:l;::: fuﬁ Q set, . __J conversion routine
for each item

Figure 10.

WRITE With NAMELIST

Section 2:

Overview

11

User Program

] 4 t

4

- T T

I |

i
[
|
;

CHCIE

item)

List Processor
(enter for each

CHCIU

List Termination
insure last
record is written

[}
|
3
L | CHCIC - Initialize

pointers to buffer
in which fo con-

—
l
CHCIA
/O Initial-
ization
)
2 I
r—-
|
CHCIB
Find o DCB

struct dato record

Write buffer in
output data set,
when full

Figure 11.

Unformatted WRITE With List

User Program

L
CHCIA = — e — e —
1/Q Initial- |
ization I
t t 2 |
|
2 | 1 | |
CHCIC -~ Initial= 14
L ize pointers ro
buffer in which |
CHCIB to construct
Find o DCB dummy record l
Write buffer l
consisting of
two bytes of A _.__]
zeros
Figure 12. Unformatted WRITF Without List

12

User Program

U —

ization

CHCIA
TS nitial- N

~
~N
) S

CHCIC - Perform
REWIND and

BACKSPACE copera-
tion. END FILE is
gi:;:': DCB performed on subse~
quent WRITE
Figure 13. BACKSPACF,, RFWIND, and END FILE
User Program
1
2 3 [croc
CHCI8B -) For each open
Find all DCBs cHEW

currently open P == =t Exit Routine

Exit to Com=
mand System

DCE found by
CHCI8, the
DCB is closed

Figure 14&.

EXIT and STOP

Section 2:

Overview

13

SECTION 3:

MATHEMATICAL SUBPROGRAM DESCRIPTIONS

This section gives the following infor-
mation on each mathematical library subpro-
gram, excluding the service subprograms,
which are described in Section 4:

Name

Name of containing routine
Function

Attributes

Entry

Exit parameter (function value}
Storage requirement

Exrrox check

Accuracy figures {(where applicable)

$ & © 06 @ & © & &

Since mathematical subprograms perform
standardized computations, a detailed
description of operation is given only for
CHCBZ, the error-handling routine. The
algorithms of direct-reference mathematical
subprograms are described in FORTRAN IV
Library Subprograms, GC28-2026.

GENERAL INFORMATION

Certain information is common to all
mathematical routines and their subpro-
grams. This information includes:

Routine names
Attributes

Entry parameters
Error action
Exit parameters

® & ¢ & @

Routine Names

All mathematical library routines have
five-letter names beginning with 'CHCA' or
* CHCB® .

Attributes
All mathematical library routines use

type-I linkage and are nonprivileged,
reenterable, and closed.

Entry Parameters

Each mathematical subprogram receives
one or two arguments from the calling pro-
gram, in the form of a parameter list
pointed to by register 1. The parameter
list must contain the addresses of the
arguments in the proper order:

i4

e Directly referenced subprograms. The
order is the same as that in the list
of operands within the parentheses in
the corresponding FORTRAN source state-
ment. For example the source statement

ANS=SIN(RADIAN)

in FORTRAN coding corresponds to an
assembler-language call containing one
address in the parameter list -- the
address of RADIAN. The FORTRAN
statement

ANS=ATAN2(X,Y)

produces a linkage with a parameter
list containing the addresses of X and
Y, in that order. The assembler lan-
guage programmer's linkage to ATAN2
must do the same.

» Indirectly referenced subprograms. The
order for the exponentiation subpro-
grams is: address of the number to be
raised to a power and the address of
the power itself.

Exrroxr Action

All mathematical subprograms that check
for error call CHCBZ upon finding such
erroxr. CHCBZ then prints an error message
and terminates execution. See the descrip-
tion of CHCBZ at the end of this section.

Exit Parameters

All subprogram results are returned in
registers, as follows:

Integer - General register 0
Real - Floating register 0
Complex - Real part in floating register

0, complex part in floating
register 2

SUBPROGRAM SUMMARIES

TABLES

Tables 2 and 3 give the following infor-
mation concerning the mathematical
subprograms:

FUNCTION: A brief description of the type
of mathematical operation performed.

| Table 2. Summary of directly referenced mathematical subprograms (page 1 of 3)
1 2 3 4 5 6 7 8 3 10
. Storage Accurocy Figures
A #(Function . . Routine
Function Entry Definition raument(s Value Error Condition Estimates Other Subprogroms Required Nome Argument Sample relative sbealute
N
o No. Type Range Returned Hex Dec Range E/U M («) o () M) e (E)
Ln (arg) or Log, (arg) ; 168 | 488 |CDABS, DLOG, DATANZ, DSQRT | cHcAp | The full range oy _16 17
CDLOG Soe Note 8 9e 1919, 1 COMPLEX * 16 arg # 0 +0i COMPLEX * 16 |Argument =0 +0i . , . except (1 +0i) 2.72x 10 5.38x 10
L) or Log, (arg) . . . - The full range _ _
cLOG sZ,‘TSi.e'a 9e 119 ! COMPLEX * 8 arg £ 0+ 0i COMPLEX * 8 Argument =0+ Of 100 | 464 | CABS, ALOG, ATAN2, SQRT CHCAO encept (1 +.00) Note 1 715 x 10~ V36 107
COMMON AND 055 x5 1.5 u 4.60 x 1077 2.09x10""7
NATURAL DLOG Ln (org) or Loge (arg) 1 REAL * 8 arg > 0 REAL * 8 Argument £ 0 21A | 538 CHCAF e 7
LOGARITHM X<0.,5, X>1,5 3 3.32x 10 5.52x 10)
. -7
0.58%x51.5 u 2.73x 10" 1.07 x 10
DLOGI0 Log, forg) ¥ REAL* 8 arg >0 REAL * 8 Argument £ 0 21A 538 CHCAF - -
0 X<0,5 X>1.5 E 3.02x 10716 6.65x 1077
<x) 8
ALOG tn (arg) or Log, farg) | 1 REAL * 4 arg > 0 REAL * 4 Argument € 0 100 | 464 CHCAE 0.52 X31.5 v . 5.85x10 2.33x 10
X<0.5, X >1.5 £ 8.32x 107 1.19x 107
055 X $1.5 u 713107 2.26x 10
i AL * 4 0 REAL * 4 A <0 100 | 464 CHCAE [X<0,5 X>1.5 3 .
ALOGIO | Log)g (org) REAL oe>0 EALT 4 roument 1.6x 1078 1 207.007
CDEXP o 1 COMPLEX * 16 | real arg 174,673 COMPLEX * 16 |Real Argument > 174,673 270 | 424 | DEXP, DSIN, DCOS cHCAN | xSt xS B 3.76x 10718 110X 10718
limag org] < 207 maginary Argument] 2 29 [xi| S 20, [x4S20] v 2.74x 10 | g.e4x107'
CEXP earg 1 COMPLEX * 8 real org 174.673 COMPLEX * 8 |Real Argument > 174,673 250 | 592 |EXP, SIN, COS cHeam | [Xq[S170, [X4 8] v 9.93x 107 2.67x 107
{imag arg] < 218" limaginary Argument| 2 2'8¥ lx‘l s170, u
EXPONENTIAL ¥ |xBs2 1.07x 107 2.73x 107
DEXP corg 1 REAL* 8 org < 174.673 REAL * 8 Argument > 174,673 200 | 704 cHcaD | [X|8) u 2.04x 1078 5.43x 107
1<|x]520 u 2.03x 107 | 4871077
20 <| x| $170 v 1.97x 107 | 4980107V
=7 =
EXP L0rg 1 REAL * 4 arg € 174.673 REAL * 4 Argument 2 174,673 1A8 | 424 CHCAC |[x]|$) U 4.65x 10 1.28x 107
1< |x] €170 U 4422107 105 x 107
CDSQRT | (arg)2or . /arg | COMPLEX * 16 | Any COMPLEX * 16 | None 148 | 328 | CDABS, DSGRT CHCAT | The full range Note] | 1.76x 10716 4.06x 1077
CSQRT org)Zor [arg | COMPLEX * 8 Any COMPLEX "8 |None 138 | 312 |CABS, SQRT CHCAS |The full range Note 1 | 7.00x 107 1.71x 107
SQUARE ROOT 16 7
DSQRY (org)/2or 1/ arg | REAL* 8 arg #0 REAL * 8 Negative Argument 160 | as2 CHCAB [The full range E 1.06x 10 2.16x 10
SQRT (arg)‘/zor ~/ org 1 REAL * 4 arg # 0 REAL * 4 Negative Argument 158 344 CHCAA The full range E 4.45 x 10'7 8.43 x 10-8
DARSIN |arcsine (arg) 1 REAL * 8 nrg| < REAL * 8 |Argument] > 1 288 | 648 |DSGRT CHCAX -1 E X S+ v 2.04x 107 5a5x 107"
16 217
ARCSINE DARCOS arceosine (arg) 1 REAL * 8 arg| %1 REAL * 8 |Argumem| > 288 648 | DSQRT CHCAX 1S XS+ V] 2.07x 10 7.05 x 10
AND .
-7 -7
ARCCOSINE ARSIN arcsine farg) ! REAL * 4 ‘a,g] < REAL * 4 | Argument| > 1 IFO | 496 |SQRT CHCAW [-1 § X £+1 v 9.34x 10 2.06x 10
ARCOS arccosine (arg) 1 REAL * 4 arg| <1 REAL * 4 |Argument| > 1 1F0 496 | SQRT CHCAW -1 S X S+ u 8.85x 107 3.19x 107
DATAN arctan (arg) 1 REAL * 8 Any REAL * 8 None 288 648 CHCBR The full range Note 7 2.18 x IO"6 7.04 x 10-]7
) 16 17
DATAN2 | arcton (arg)/argy) 2 REAL * 8 arg #0 REAL * 8 Xy =Xp=0 288 648 CHCBR The full range Note 7 | 2-18x 10 7.04x 10
ARCTANGENT .
ATAN arctan (arg) 1 REAL * 4 Any REAL * 4 None 1€8 488 CHCBQ The full range Note 7 | 1.01x 107 4.68x 107
9]
ATANZ | orctan (arg, /arg,) 2 | REAL* 4 org #0 REAL * 4 X, =%, =0 168 | 488 CHCBQ |The full range Note 7 | 1.01x 1078 488107
CDSIN sin {arg), arg in) COMPLEX * 16 | |real arg| < P COMPLEX * 16 | |Real Argument| 2 L 340 | 832 |DSIN, DCOS, DEXP CHCAR [xj S0z €1 | v 2.35x 1077 2.25x 10718
rodians !imug mgl < 174,673 ilmoginavy Avgumem1 > 174,673 See Note 4
coCos cos (org), org in) COMPLEX * 18| |real org| < 25 COMPLEX * 16 | |Real Argument| 2 2P 340 | 832 |DSIN, DCOS, DEXP CHCAR |[x)| S10,xg £1 | U 3.98x10° "7 2.50x 1076
TRIGONOMETRIC radians I . See Note 3
SINE & COSINE limag arg| < 174,673 |imoginary Argument| > 174,673
CSIN sin (arg), arg in 1 COMPLEX * 8 |reat arg| < 218w COMPLEX * 8 [Real Argument| 2 218 2F8 760 | SIN, COS, EXP CHCAQ [|x)| S 10,5 S U 1.92 x 1078 7.98x 107
radians ’imng orgi < 174,673 i ilmuginary Avgumeml > 174,673 See Note &

Section 3:

Mathematical Subprogram Descriptions

|Table 2. Summary of directly referenced mathematical subprograms (page 2 of 3)

) 2 3 4 5 6 7 8 9 10
A) { Function i Storage ; Accuracy Figures
rgument (s - i . Routi
Function Sc:::e Definition T 1 ;/eru-ipd frrer Conditien "‘*E'lma'ﬁ‘s"fj Other Subprograms Required V\Iaumlene Argument Sample Retative g(e) M (E) Absolute a(E)
No. Type Range ‘{ erurne Hex Dec | Range E/U M (€) «
~ ’ | -6 -7
: i ! < s . 0 7.
ccos cos (arg), arg in | COMPLEX * 8 ‘reci arg| <287 | COMPLEX 8 | |Real Argument| 22'8% 2F8 | 760 | SIN, COS, EXP CHCAQ |]x)| £10,|xg| u :.for:o:, \ 66x 10
rodions gimog arg| < 174,673 | ‘lmugincry Avgumeml > 174,673
50x > 290 8 | 69 cHeas || x|sz U | 3.60x107% 4.82x 107 7.74x 107" 1.98x 107
DSIN sin (arg), arg in 1 REAL* 8 ’arg] <2 REAL * 8 [Argument| 2 2 P i1 . .
radians
£ <|x|g0 v 1.64x 10718 6.49x 107"
10 <[x] € 100 u 2.68x 107" 1.03x 107"
0S XS * u 1.79x 10716 6.53x 1077
. 50 . 2 2%0r 88 | 6% CHCAJ
(o} (arg), 1 REAL * 8 arg] < 272V REAL * 8 Argument| 2 2 -
ricoNomemic | > cos lorg), erg in o] | | -0gx<o u 175x107" | 5930107
SINE & COSINE ¥ <XS10
(Continued) 0<|x|sw00 | v 2.60x 0% | roreao™®
1 -6 -7 -7 -8
SIN sin (arg), arg in 1 REAL * 4 ‘urg| <718y REAL * 4 ’Avgumeml 2 2'8x I8 | 504 CHCAL | x|$ 1 U 1.32% 10 1.82x 10 1.18 % 10 4.55x 10
radions 7 8
§<|x|5|o u 1.15x 107 464 x 107
10<|x]Sw00 | U 1.28x107 | 4.52510°
=7 -8
S XS w U 1.19 % 10 4.60x 10
. . 18y . A > 218w 1F8 504 CHCAI 0=
COs cos (arg), arg in 1 REAL * 4]urgl <2 REAL * 4 ! rgumenvl 4 - — =
radians -10 3 X<< 0 U 1.28x 10 4.55x 10
v < X =10
10<|x|&100 u Vaex 107 4.60x 1078
50 <
DTAN tan (arg), arg in) REAL * 8 |°f9E < 290 REAL * 8 IA”""“""I 22 #8780 CHeAZ Ix|s ¥ U lsaxiote 6.27x 107"
rodians . .
Argument too close to a Singularity -12
(i.e., too close to an odd f <|x|$ '; u ;'43; 105 2,95x10_“
multiple of 7 /2) ee Note -
< [¥] " -
¥ < X| =10 2.78x 10 15
.2.“ | I See Note 5 7-23x 10
p y -12
10<| x| $100 U 3.79 x 10 -14
| ' See Note 5 9-50x 10
16
) 50 46x 10 17
DCOTAN | cotan (arg), arg in 1 | ReAL+8 arg| < 290w REAL * 8 |Argument| 2 2%0% 8 | 780 CHCAZ ix|s x u o Rdex 0 8.79x 10
rodians Argument too close to a Singularity <y u 2.78 x ‘0-13 _15
(i.e., too close to a f<|xlt§- See Note 5 8.61x 10
multiple of 7) 13
< U |5.40x 10 14
5<IX’-]0 See Note 5 1-13x 10
o<fx|sw00 | U Jeex0? L
TRIGONOMETRIC See Note 5
TANGENT <
TAN tan (arg), arg in 1 REAL * 4 Iarg| < 98¥ REAL * 4 ‘Argumen' 2 28 288 648 CHCAY \ Xl = 4‘! u 1.71 x IO‘& 2.64 x ‘0"7
rodians Argument too close to a Singularity v < v 1.05x 10°¢ -7
(i.e., too close to an odd 1 <IX':2 See Note 5 3.59x 10
multiple of 7 /2) -6
» < u 6.49x 10 _7
3 <|x|%10 Soe Note 5 3.38x 10
s
10<| x| 100 u 1.57x 10 -7
| I See Note 5 3.07x 10
1 <
COTAN | cotan (arg), arg in | REAL * 4 arg] < 2'8 REAL * 4 Argument| 2 2'8 ¥ 648 cHcay [xS x U orx 107 3.58x 107
rodians A | S | 73
rgument too close to a Singularity < U 1.40x 10 -7
(i.e., too close to o ;<|X|-5 See Note 5 2.56x 10
Itiple of =
multiple of 7) 1<|XI3\0 U ‘_30“06 .]0_7
2 See Note 5 S
10<| x| %100 U {1 x07 3.15x 107
See Note 5
< -6 17
X|= 0.88137 u Ax 1
DSINH sink {arg) | REAL * 8 lorg| < 175.366 REAL * 8 1Nmmm|2W£U3 250 | s92 | DExp enem X L“‘mqb 3.74 x {w
0.88137<|x|$5| U |3.80x10 9.21 x 10
DCOSH cosh (arg) ! REAL * 8 |°f9|< 175.366 REAL * 8]Argumen' 2 174,673 250 592 | DEXP CHCBB .58 X S +5 u 3.63x 1071 9.05x 107"
HYPERBOLIC
SINE & COSINE <y < -6 .7
SINH sinh {org) 1 REAL * 4 farg] < 175.366 REAL * 4 IAvgumenl 2 174,673 IF8 | 504 | EXP CHCBA |5 S X § +5 U 1.26 x 10 2.17x 10
. =7
COSH cosh (ar 1 REAL * 4 forg| < 175,366 REAL * 4 Argument | 2 174,673 1F8 504 | EXP CHCBA 58 XS 45 U 1.27x 107 2.63x 10
(arg)

Section 3: Mathematical Subprogram Descriptions 17

S

-

| Table 2. sSummary of directly referenced mathematical subprograms (page 3 of 3)
} 2 3 4 5 6 7 8 9 10
T .
. F
[Entr Argument(s) Function Sw.rcge) Routine . Accuracy Figures
Function 4 Definition Value Error Condition Estimates Other Subpragrams Required Telative absolute
Name S S — S —— e e Returned - Name Argument Sample | o
i : p M () a(€) M (E) (E)
No. Type H Range Hex Dec Range (34V] |
‘ , Dexe cheaL LML 0509 U sx10’® | assxa0’”
) . [REAL* 8 130 304 e T -
HYPERBOLIC pran forh fore)] ReaL e Ay ‘ 0.54931< |x| £ 5 U 1.54x 10710 |.87x 107"
TANGENT ' U | 8.48x107 1.48x 107
TANH tanh (arg) | REAL * 4 Any REAL * 4 164 | 356 |EXP CHCAK 4 ~ =
U 2.44x 10 4.23x 10
Any DSQRT CHCAV | The full range Note 1 - _\7
ABSOLUTE CDABS |cng| 1 COMPLEX * 16 | &7 o REAL * 8 cs 200 ¢ full rang 1 2.03x 1078 4.83% 10
VALUE An
CABS a9 D COMPLEX 8 | 5 Nore 9 REAL * 4 co | 192 |SGRT CHCAU |The full range Note 1 | o
ERF x -2 | | REAL* 4 Any REAL * 4 208 | 520 |Exp cresu M £1 yvolE
J;zvfoe du 1<|xg2.04] U 1
2.04< |X|£3.9192) U 5.
ERROR ‘
FUNCTION 2 U
DERF } fxe—u i 1 Real * 8 Any Real * 8 328 308 DEXP CHCBW y B
w 70 l u b
— — e S : U
ERFC 1 - erf (x) or ! REAL * 4 Any | REAL * 4 208 | 520 |ExP CHCBU 9
@ 2 U 7.
2 f eV du v !
Vo -
U 2 .
COMPLEMENTED , | tex< s U I
ERROR FUNCTION O T it JO - S PN S - e 2OUF K
!) -
1= erf () or i | 6 cX< 0 vz :
i E 05 x 1 U v40x10 " J259x0 C
DERFC 20 224 1| Real * B An Real * 8 328 | 808 | DEXP CHCaw | < x£2.04 u |4
VA !
T x 2.04 < X<4 U 3.
4£X<133 U 3.
’’’’ -7 -7
® - 0< X<l u 9.86 x 10 3.66x 10
GAMMA f Sl e REAL * 4 x> 277 REAL * 4 Reol Argument > 57.5744 350 | 848 | EXP, ALOG CHCBT =5 5
A s 1S xg2 J 1.13x 10 3.22x 10
X <« 57,5744 Real Argument < 2 -7
2 x5 4 u 9. 1379107
l4< x<8 U |2 8.32x 1077
BE X < 16 U |2 7.61x 107
GAMMA (T) 165 X < 57 U 4. 1.51% 107 {
© ey 252 0<x<1 U J214x10 | 7e4x107
X1 e - . HCBY — — -
DGAMMA ‘/‘; u e du 1 REAL * 8 X > 2 REAL * 8 Real Argument > 57,5744 420 1056 | DEXP, DLOG CHCB 1€ xs2 U 2.52x 10 17 6.07 x 10 18
-252 R - -
X < 57.5744 Rea) Argument < 2 2<X < 4 U 2.21x 10718 8.49x 107"
- =T
4< X< 8 U 5.05x 1078 1.90x 107
B X<t U le02x107® [17ex10’®
165 X< 57 v 1.06x 10714 410"
® el -y 7 0< X <0.5 U |1.16x10° 3.54x 107
ALGAMA '°9ef utoe Tdul REAL * 4 x>0 . REAL * 4 Real Argument > 4.2937 x 10 350 | 84g | EXP, ALOG CHCBT [o< x < 3 N o 43x 10 3.42x107
0 X< 4.2913 10 Real Argument < 0 TEx<8 U lisai0® | soaxio
BEX< 6 u_ J1asx0® 3.80x 107
LOG - GAMMA - 16 £ X < 500 U Joesx10” | 1.90x107
T < -16 17
DLGAMA | [@ X v || ReAL* 8 x>0 s REAL * 8 Real Argument > 4,2937 x 107 420 | 108 |DEXP, DLOG cHepy (LS X205 Y 12:77x10 9:75x 10 = =5
°9ef vooed X< 4.2913 x 10 0.5<x<3 U 2.24x 10 7.77x 10 !
0 Real Argument < 0 » T =7 |
32 X< 8 U 2.89x 10 8.80x 10
85 X< 16 y 2.86x 107° 8.92x 107" .
16 £ X < 500 U 1.99x 107 3.93x 107
Notes 1. The distribution of somple arguments upon which 3. The maximum relative error cited for the CDCOS 5. The figures cited as the maximum relotive errors are 7. The sample arguments were tangents of numbe/rs
these statistics are based is exponential radially function is based upon a set of 1500 random arguments those encountered in a sample of 2500 random arguments uniformly distributed between - w /2 and + 7 /2.
ond is uniform around the origin. within the range. In the immediate proximity of the within the respective ranges. See the appropriate
points (n + 1/2)m + 0i (where n =0, £1, 22, ...,) section in Appendix F for a description of the behavioi 8. The answer given is the principal value,i.e.,
2. The maximum relative error cited for the CCOS the relative error can be quite high although the of errors when the argument is near a singularity or a the one whose imaginary part lies between
function is based upon a set of 2000 random absolute error is small. zero of the function. cmoand + .
arguments within the range. In the immediate
proximity of the points (n + 1/2) x + 0i (where 4, The maximum relative error cited for the CDSIN 6, The maximum relative error cited for the GSIN function . .
a=0,), 2, ...,) the relative error can be function is based upon o set of 1500 random arguments is based upon a set of 2000 randem arguments within the 9. Floating=point overflow can occur.
quite high, although the absolute error is small. within the range. In the immediate proximity of the range. in the immediate proximity of the points
points nw +0i (wheren==%1, 22, _,.,) the relative nw +0i (where n=1:1, 22, .. .} the relative error
error can be quite high although the absolute error is smail. can be quite high although the absolute error is small.
:
Section 3: Mathematical Subprogram Descriptions 19

I Table 3. Summary of indirectly referenced mathematical subprograms
2 3 4 5 6 7 8 10
‘ Entry Argument(s) Function gi't:‘ragf Routine
Function Name Definition Value Error Condition stimates Other Subprograms Required Name
No. Type Returned Hex Dec
CHCBGA y=i**i 2 i = INTEGER * 4 INTEGER * 4 Base is zero 184 436 —_— CHCBG
RAISE AN INTEGER | CHCBGB |y = j**j 2 | {=INTEGER * 2 INTEGER * 2 Bmehzwoyﬂenmmmis 184 436 i CHCBG
zero or negative
BASE TO AN
! INTEGER POWER CHCBGC y=i**i 2 i=INTEGER * 2 INTEGER * 4 Base is zero and exponent is 184 436 CHCBG
i = INTEGER * 4 zero or negative
CHCBGD y=i**j 2 i =INTEGER * 4 INTEGER * 4 Base is zero and exponent is 184 436 CHCBG
i =INTEGER * 2 zero or negative
CHCBHA y=a**i 2 a=REAL* 4 REAL * 4 Base is zero and exponent is 144 324 CHCBH
RAISE A REAL i = INTEGER * 4 zero or negative
BASE TO AN e
INTEGER POWER CHCBHB y=a**j 2 a =REAL™* 4 REAL * 4 Base is zero and exponent is 144 324 CHCBH
i = INTEGER * 2 2ero or negotive
CHCBIA y=a**i 2 a=REAL* 8 REAL * 8 Base is zero and exponent is 14C 332 CHCBI
RAISE A DOUBLE = INTEGER * 4 zero or negative -
PRECISION BASE TO
AN INTEGER POWER | CHCBIB y=a**j 2 a =REAL * 8 REAL * 8 Base is zero and exponent is 14C 332 CHCBI
i = INTEGER * 2 zero or negative
i RAISE A REAL CHCBJA y=a**b 2 | o=REAL* 4 REAL * 4 Base is zero and exponent is 1C0 448 EXP ALOG CHCBJ
BASE TO A REAL b = REAL * 4 zero or negotive
POWER
CHCBJB y=i**b 2 b =REAL * 4 REAL * 4 Base is zero and exponent is 1C0 448 EXP, ALOG CHCBJ
RAISE AN INTEGER i = INTEGER * 2 zero or negative
BASE TO A REAL
POWER CHCBJC y=i**b 2 b = REAL * 4 REAL * 4 Base is zero and exponent is 1CO 448 EXP, ALOG CHCBJ
i = INTEGER * 4 zero or negative
CHCBKA y=a**b 2 a=REAL* 8 REAL * 8 Base is zero ard exponent is 230 560 DEXP, DLOG CHCBK
b =REAL * 8 | zero or negotive
RAISE A REAL OR CHCBKB y=]**b 2 b =REAL *8 REAL * 8 Base is zero and exponent is 230 560 DEXD, DLOG CHCBK
INTEGER BASE TO i = INTEGER * 2 zero or negative
A REAL POWER;
BASE AND/OR CHCBKC y=i**b 2 b =REAL * 8 REAL * 8 Base is zero and exponent is 230 560 DEXP, DLOG CHCBK
EXPONENT i=INTEGER * 4 zero or negotive
DOUBLE CHCBKD y=a**b 2 | o=REAL* 4 REAL * 8 Base is zero and exponent is 230 560 DEXP, DLOG CHCBK
PRECISION b = REAL * 8 See Note, zero or negative
CHCBKE |y=a**b 2 |o=REAL*8 REAL* 8 Base is zero and exponent is 230 | 560 | DEXP, DLOG CHCBK
b = REAL * 4 zero or negative
CHCBMA y=a**i 2 a = COMPLEX * 16 | COMPLEX * 16 Base is zero and exponent is 274 628 CHCBM
i =INTEGER * 4 zero or negative -
CHCBMB y=a**j 2 a=COMPLEX * 16 | COMPLEX * 16 Base is zero and exponent is 274 628 CHCBM
RAISE A COMPLEX i = INTEGER * 2 zero or negative -
BASE TO AN
INTEGER POWER CHCBCA y=a**i 2 a=COMPLEX *8 | COMPLEX * 8 Base is zero and exponent is 24C 588 CHCBC
i = INTEGER * 4 zero or negative
CHCBCB y=a**] 2 o =COMPLEX * 8 | COMPLEX * 8 Base is zero and exponent is 24C 588 CHCBC
i = INTEGER * 2 zero or negative -
PRODUCE ERROR CHCBZA E8 232 As required by use of the CHCBZ
MESSAGE AND EXIT macro instruction
TERMINATE
EXECUTION
NOTE: The REAL*8 function value returned by CHCBKD is not more accurate than the REAL*4 base
given as an argument,

Section 3: Mathematical Subprogram Descriptions 21

ENTRY NAME: 1In Table 2, this column shows
the user entry name. In Table 3, this
column shows the system entry name.

DEFINITION: This column gives a mathemati-
cal equation that represents the computa-
tion. (It is not meant to represent the
way the subprogram is called.) An alterna-
tive equation is given when there is anoth-
er way of representing the computation in
mathematical notation. For example, the
square root can be represented as either

VX or xks

ARGUMENT(S): These columns describe the
values{s) for which the function value is
to be computed.

e Argument Number -- The number of argu-
ments (one or two) that the user must
supply.

e Argument Type -- The type and length of
the argument. Inteqer, real, and com-
plex represent the type of number; the
notations *4, *8, and *16 represent the
length, in bytes, of the argqument.

Note: In FORTRAN IV, a real argument is a
REAL#*4 argument, and a double-precision
argument is a REAL*8 argument. A single-
precision complex argument is a COMPLEX#*8
argument, and a double-precision complex
argument is a COMPLEX#*16 argument.

e Argument Range -- The valid range for
an argument. (See the Error Condition
and Error Message column descriptions
below.)

FUNCTION VALUE RETURNED: This column
describes the function value returned by
the subprogram; the notation is the same as
that used for the argqument type.

ERROR CONDITION: This column shows the
argument range not allowed when using the
subprogram. If the argument is within this
range, the subprogram will call CHCBZ.

(See the description of CHCBZ, at the end
of this section.)

STORAGE ESTIMATES: This column shows the
approximate number of bytes required for
each mathematical routine: the approximate
total size of each routine's CSECT and
PSECT. {FORTRAN IV mathematical routines
each contain one public, read-only, reent-
erable CSECT and one PSECT. The length of
each of the control sections is less than

Section 3:

4096 bytes. The routines are link edited,
and their CSECTs are combined.)

OTHER_SUBPROGRAMS REQUIRED: Many mathemat-
ical subprograms require other mathematical
subprograms to perform their function. The
entry names of the other subprograms are
listed in this column. (This column does
not include CHCBZA, which is called by all
mathematical subprograms where error exit
is possible.)}

ROUTINE NAME: The name of the routine con-
taining the subprogram.

ACCURACY FIGURES (TABLE 2 ONLY): These
columns give accuracy fiqures for one or
more representative segments within the
valid argument range. The accuracy figures
are based upon the assumption that the
arguments are perfect (that is, without
error and, therefore, having no error-
propagation effect on the answers). The
only errors in the answers are those intro-
duced by the subprograms. Information
given in the accuracy-figures columns is:

¢ Argument Range -- This column gives the
argument range used to obtain the
accuracy figures. For each function,
accuracy figures are given more repre-
sentative segments within the valid
argument range. These figures are the
most meaningful to the function and
range under consideration.

The maximum relative error and standard
deviation of the relative error are
generally useful and revealing statis-
tics. However, they are useless for
the range of a function where its value
becomes 0, because the slightest error
in the argument can cause an unpredict-
able fluctuation in the magnitude of
the answer. When a small argument
error would have this effect, the maxi-
mum absclute error and standard devia-
tion of the absolute error are given
for the range. For example, absolute
error is given for -sin (x) for values
of x near «.

» Sample -- This column indicates the
type of sample used for the accuracy
figures; the type depends upon the
function and range under consideration.
The statistics may be based either upon
an exponentially (E) distributed argu-
ment sample or a uniformly (U) distrib-
uted argument sample.

Mathematical Subprogram Descriptions 23

® Statistical results:

- f(x)—glx) Maximum relative error
M(9)=Max f(x) produced during testing
1 f(x)—glx) |2 Standard deviation (root-

a(e)= '&_2 T) mean-square) of the rela-

tive error

M(E)=Max | f(x)—g(x) |

Maximum absolute error
produced during testing

: Standard deviation (root-
mean-square) of the ab-
solute error.

f(xi)—glxi)

[10
¢(E)= ‘I:"Li

In the formulas for the standard devia-
tion, N represents the total number of
arguments in the sample; i is a subscript
that varies from 1 to N.

Test ranges, where they do not cover the
entire legal range of a subroutine, were
selected so that users may infer from the
accuracy figures presented the trend of
€errors as an argument moves away from the
principal range. The accuracy of the an-
swer deteriorates substantially as the
argument approaches the limit of the per-
mitted range in several of the subroutines.
This is particularly true for trigonometric
functions. However, an error generated by
any of these subroutines is, at worst, com-
Aarable in order of magnitude to the effect
<. the inherent rounding error of the
argument.

Tables 4, 5, and 6 show how the values

|Tahle 5. Exponentiation with real or
double-precision base and inte-
ger exponent
Exponent
Base (A) P ()
J>0 J=0 J<0
A > 0 |Compute Function Compute
function value |value =1 function value

of the base and exponent affect the
exponentiation subprograms.

Table 7 shows the system entry names and
compiler-generated entry names of indirect-
reference mathematical routines.

| Table 4. Exponentiation with integer base
and exponent
Exponent (J)
Base (I}
J>0 J=0 J <0
Compute the Function Funetion
I1>1 N R .
function vajue value = | value = 0
Comgrute the Function Eunction
I=1))
furction value value = 1 vajne =1
= Function Error Message Erros Messag
=0 value = 0 241
I=-1 Compute the Function If J is an odd
function value value = 1 number, function
value = -1
; wn even
r, function
value = 1 -
Compune the Function Function
f<- function value value =1 vatue = 0

}*Called by mathematical library routines
to

A = 0 | Function Error message | Error message
value = 0
A < 0 | Compute Function Compute
function value |value = 1 function value
| Table 6. Exponentiation with real or
double-precision base and
exponent
Base (A) Exponent (B)
B>0 B=0 B<0
A >0 | Compute Function Compute
function value | value = 1 function value
A = 0 | Function Error message | Error message
value = 0
A < 0 | Error Message | Function Error message
value = 1
Table 7. Entry names of indirect-
reference mathematical routines
r -T T 1
Compiler-		
Generated	Routine	System
Entry Name	Name	Entry Name
: ¢ $ ~		
FCXPJ	CHCBC { CHCBCA	
FCXPI	CHCBC	CHCBCB
FIXPI	CHCBG	CHCBGA
FJIXPJ	CHCBG	CHCBGB
FJXPI	CHCBG	CHCBGC
FIXPJ	CHCBG i CHCBGD	
i FRXPI	CHCBH i CHCBHA	
FRXPJ	CHCRH i CHCBHB	
i FDXPI	CHCBI	CHCRBIA
FDXPJ	CHCBI	CHCBIB
FRXPR	CHCBJ	CHCBJA
FJXPR	CHCBJ	CHCBJB
FIXPR	CHCBJ	CHCBJC
FDXPD	CHCBK	CHCBKA i
FJXPD i CHCBK	CHCBKB 1	
. FIXPD	CHCBK	CHCBKC {
FRXPD { CHCBK	CHCBKD	
FDXPR	CHCBK	CHCBKE
FCDXI	CHCBM { CHCBMA	
i FCDXJ	CHCBM	CHCBMB
	CHCBZ	CHCBZA®*
i, _____ L L {		
]

24

Table 8 describes the macrc instructions
used by mathematical library routines. The
mathematical library makes extensive use of
macro instructions for code similarity,
programming efficiency, and ease of inter-
face modification.

CHCBZ -—-- ErXrror Processor

Entry Parameters: CHCBZ expects general
register 1 to point to a two-word parameter
list. The first word is the address of a
one-byte code indicating the error condi-
tion; codes and meanings are:

- zero

- not positive

- exceeds limit

negative

- absolute value exceeds limit
- Zero or negative

- close to singularity

oW O
)

The second word is a pointer to the name of
the mathematical routine in which the error
occurred, with a one-byte length preceding

the name. CHCBZ does a trace back to
obtain the address of the call to the math-
ematical routine in the user's program.
CHCBZ issues a standard message, inserting
the supplied values and issues the EXIT
macro instruction. The message is:

CHCBZ100 TERMINATED: ARGUMENT $1° FOR
$2 AT $3

where $1 represents the code
$2 represents the name
$3 represents the trace-
back address

Entry Point: CHCBZA

Operation: CHCBZ adds the error code to
the standard system message and issues the
EXIT macro instruction. The standard sys-
tem message is:

OUT OF RANGE PARAMETER GIVEN A FORTRAN
IV SUPPLIED SUBPROGRAM. ERROR CODE IS
nnne.

Table 8. Mathematical library macro instruction summary

r 1 - -
| Macro Name | Purpose |
i 1

L 3 T - T - - - '!
| CEKZA | Generates the V-Con/R-Con pair required when other TSS/360 subrou- |
| | tines must be called. |
1 I d
1] Ll 2 |
CEKZD	Generates the code following a SAVE macro instruction, to add to the
	backward and forward chains and load register 13 with the current
	PSECT location.
1 4 1	
L	T 1
CEKT1	Generates the CSECT label, register EQUs, ENTRY statement, and other
	code duplicated at the beginning of every subroutine.
p=—- e e -	
CEKT2	Used for error exits. i
i R 4	
) v 1	
CEKT3	Generates PSECT label and save area. {
L 4 5	
T k) —	
CEKT4	Generates code similar to that of CEKT1, for additional entry
	points.
b + =	
i CEKT5	Similar to CEKT3, but used for PSECT items required for additional {
	entry points. i
I et ~	
CEKTé6	Used to reload register 13, stop the forward chain, and return.
L L J

Section 3:

Mathematical Subprogram Descriptions 25

SECTION 4: SERVICE SUBPROGRAM DESCRIPTIONS

This section gives the following infor-
mation on each service subprogram:

® Name

*» Name cf containing routine
e Function

e Attributes

® Entry

e Routines called

® Error checks

e Data references

e Operation

GENERAL INFORMATION

The three service routines are:

e CHCBE ~- interrupt and machine indica-
tor subprograms

e CHCIV -- DUMP and PDUMP subprograms
e CHCIW -- EXIT, STOP, and PAUSE
subprograums

CHCBE resides in the mathematical
library; CHCIV and CHCIW reside in the 1I/0
library.

Like other FORTRAN IV library routines,
the service routines use type-I linkage and
are nonprivileged, reenterable, and closed.

Service subprograms that are user-
referenced have user entry names. No ser-
vice subprograms have compiler-generated
entry names.

Information on entry parameters is con-
tained in the individual routine summaries.
Service subprograms do not pass exit param-
eters, except for the calls to CHCBZ (math-
ematical library error-handling routine) by
the SLITE and SLITET subprograms. (See
subprogram summnaries.)

SUBPROGRAM UUMMARIES

Table 9 briefly describes all service
subprograms except the Exit Routine subpro-
grams CHCIW4 and CHCIWS, which are
referenced by the I/0 library routines.

26

The following summaries should be read
in conjunction with flowcharts BD, BE, IV,
and IW.

CHCBE -- Interrxrupt and Machine Indicator
Routine

Subprograms:

CHCBE2 -- Specification Exception Handler
CHCBE3 -- Exponent Overflow Handler
CHCBE4 -- Exponent Underflow Handler
CHCBE5 -- Divide Check Handler

OVERFL -- Exponent Overflow and Underflow

Tester

DVCHK -- Divide Check Tester

SLITE -- Sense Light Handler
SLITET -- Sense Light Tester
Function: To simulate certain machine

indicators, and to mask off or process
interruptions caused by these exceptions:

¢ Fixed point overflow

¢ Fixed point divide

¢ Exponent overflow

* Exponent underflow

. Significance

e Floating point divide
(See'chart BE.)

Entry Parameters: CHCBEZ through CHCBES

have no entry parameters. OVERFL, DVCHK,
and SLITE each receive one parameter, the
address of an integer variable. A pointer
to this address is passed in register 1.
For SLITET, register 1 points to two
addresses, the address of the integer vari-
able indicating the sense light number and
the address of the integer variable to
receive the result code.

Routines Called: CHCBZ -- Error Processor
(CHCBZ)

Exror Checks: If entered at either SLITE
or SLITET, this routine tests the integer
variable and notes an erxor condition if it
is any value but 0 to 4 for SLITE, or 1 to

Table 9.

Summary of service subprogram characteristics

1 2 3 4 5
Storage
Function Entry Name Error Estimates Module
Condition Nome
HEX DEC
. Argument
Pseudo sense light Z?f":,,o L‘,:::emilgm SLITE other than 324 804 CHCBE
subprograms light on 0, 1,234
Argument
Test o sense light SLITET other than CHCBE
or record its status 1,2,3,4
Overflow and Test and record
underflow status of exponent OVERFL CHCBD
b am overflow and
subprogr underflow indicators
.. Test and record
D;;;de check status of divide DVCHK CHCBD
subprogram check indicator
Exception CHCBE3 (EXPONENT OVERFLOW)
processing Process , CHCBE4 (EXPONENT UNDERFLOW) CHCBE
subprograms arithmetic exceptions CHCBES (DIVIDE CHECK)
Process specification
exceptions CHCBE2 (SPECIFICATION) CHCBE
EXIT
Exit subprogrom Terminate execution CHCIW2 (STOP) 1AC 428 CHCIW
CHCIW3 (PAUSE)
Dump specified
D storage area DUMP, PDUMP 48 168 CHCIV
ump subprogram with or without !
termination

4 for SLITET. If there is an error condi-
tion, CHCBE calls CHCBZA, passing the
appropriate error code as a parameter.
CHCBZA terminates the task after printing
the error code. If entered at CHCBE2,
CHCBE checks for an interruption that
should not occur and allows the standard
system action for such an interruption.

Operation: At the beginning of all FORTRAN
main programs, the compiler generates code
that calls CHCBD1l, the exception processing
enabler and I/0 initialization routine
included in the I/0 library.

The system interruption handler, CHCBD1,
calls one of the CHCBEZ through CHCBES sub-
programs whenever an exception occcurs.

CHCBE2 passes control to CHCBE1l to con-
trol fixup of a specification exception.

Section U4:

CHCBE2 checks the interruption address
and the instruction that caused the inter-
ruption to determine whether the interrup-
tion was due to a condition that should not
occur. If so, the standard system action
is invoked. If not, CHCBE1l interprets the
instruction causing the interruption and
executes it as though the alignment restr-
iction was removed. The save area referred

‘t0 by register 0 at entry is changed to

reflect instruction execution.

CHCBE3 sets to one the flag which CHCBDé6
tests if an "OVERFL (j)" statement occurs
in the user program.

CHCBE4 does the same as CHCBD3,

except
that the flag is set to three.

Service Subprogram Descriptions 27

CHCBES sets to one the flag which CHCBD7
tests if a "DVCHK (j)" statement occurs in
the user program.

OVERFL puts the value of the overflow-
underflow indicator into the user-specified
variable, resets the indicator, and returns
control to the user.

DVCHK puts the value of the divide check
indicator into the user-specified variable,
resets the indicator, and returns control
to the user.

SLITE tests the user-specified variable
for a value of zero. If it is zero, all
four indicators are set to zero and control
is returned to the user. If the variable
is not zero, it is tested for values of
one, two, three, and four. If it is one of
these values, the corresponding indicator
is set to one and control is returned to
the user. If the variable is not one of
these values, SLITE calls CHCBZA and then
returns control to the user.

SLITET tests the first user-specified
variable to see that it is within the prop-
er range. If the variable is in error,
CHCBD9 calls CHCBZA and returns control to
the user. If the variable is from one to
four, the corresponding indicator is
tested. If the indicator is zero, SLITET
sets the second user-specified variable to
two and returns control to the user. If
the indicator is one, SLITET sets the
second variable to one, resets the indica-
tor to zexro, and returns control to the
user.

CHCIV -- Dump Routine

This routine causes the user-indicated
limits of storage to be dumped in the for-
mat desired, with or without program ter-
mination. The user calls this module by
specifying either of the statements CALL
DUMP (Ay, By, Fi, +ees An, Bnrs Fpn) or CALL
PDUMP (A;, By, Fy, --., An, Bn, Fn) in his
source program. The variable data names, A
and B, indicate the limits of storage to be
dumped and the integer, F, indicates the
dump format desired. {See Chart 1IV.)

For sample printouts by the DUMP and
PDUMP subprograms, see FORTRAN IV Library

Subprograms, GC28-2026, “Appendix D: DUMP
and PDUMP Sample Storage Printouts.”

Entry: There are two entry points: CHCIV1
and CHCIV2, for DUMP and PDUMP, respective-

ly. Standard type-I linkage is used with
register 1 pointing to the first address
constant in the parameter list. The param-
eter list is variable-length and has the
following format:

28

—

-

|Word size of this parameter
Word 1 |1ist, minus one.
;3

Word 2

$
|Address constant pointing
|to the starting location
|symbol for the dump.

r
{

]

¥

!

I

|

| |
| First |
|Word 3 |Address constant pointing
| Group |to the end location symbol
| |for the dump.

| |

i |Address constant pointing
| |to the FORMAT code word.
| |When FORMAT code is zero,
|

|

|

|

!

F

|

|

|

|

|

b

|

i

|

[

Word 4

|the FORMAT code word is
jdivided into two parts:
|first half-length of end
{location symbol minus one
{second half - 0.

Word S

o o

Second|
|Same as words 2, 3, and 4
Group |respectively.

I
]
]

b s e e ks v s s, . . e vty o P, . . W S S bt St . g Sy S S S i, b s

The entries in the parameter list
{excluding the first word) are groups of
three words. There may be more than one
group depending on the number of different
areas of virtual storage the user wants
dumped. The first two words of a group may
be in either order; but the dump is always
taken in ascending order. The third word
of a group, the format code word, repre-
sents the type of data conversion to be

performed, as follows:
0 hexadecimal 5 real#*y
1 logical#*l 6 real*8
2 logical=*y 7 complex*8
3 integer*2 8 complex*16
4 integer#y 9 1literal

The format code 0 is the default value.

Routines Called:

» Integer Output Conversion (CHCIH)
e Complex Qutput Conversion (CHCIN)
e Logical oOutput Conversion (CHCIR)
e General Output Conversion (CHCIT)
*» Exit (CHCIW)

e GATE facilities (GATWR macro
instruction)

Error Checks: CHCIV makes no error checks;
all error checking is done by the called
data conversion routines.

Operation: CHCIV scans the parameter list
to locate a parameter group. The specified
dump area is then formatted and written on
SYSOUT using the GATE macro instruction
facility. After the parameter list has
been completely processed, control returns
to the user program, if PDUMP was speci-
fied. If DUMP was specified, control
passes to the exit routine (CHCIW) for pro-
gram termination.

CHCIV determines the presence of the
third word in a parameter group by testing
the value of the word in storage to which
it refers. If the value is 9 or less, it
is assumed to be the format code. If the
value is greater than 9 (or if it is nega-
tive), it is assumed that the third word
was omitted and a format code of zero
(hexadecimal) is taken as a default. If
the format code is either 0 or 9 (hexade-
cimal or literal), the conversion format-
ting is done within this routine; other-
wise, the appropriate output conversion
routine is called.

CHCIW -- Exit Routine

This routine performs user-program exit
functions whenever any of the following
FORTRAN statements are executed:

CALL EXIT
STOP n

PAUSE n

PAUSE ‘message’

In the case of a STOP or PAUSE state-
ment, this module causes a one- through
five-digit integer (n) or a message (‘'mes-
sage') to be produced at the user's SYSOUT.
With the exception of the PAUSE statement,
CHCIW causes all DCBs in use in the DCB
table to be closed. (See Chart IW.)

Entry: The five entry points and their
associated causes of entry are as follows:

CHCIW1 Execution of a CALL EXIT
statement
CHCIW2 Execution of a STOP statement

Section U4:

CHCIW3 Execution of a PAUSE statement

CHCIWY Exit requested by other I1/0
library routines

CHCIWS Exit requested by a user subpro-

gram error

Standard type-1 linkage is used with all
entries except CHCIW4, which uses type-u
restricted linkage. 1In the case of STOP
and PAUSE statements, the address of a pa-
rameter list is passed in register 1. The
parameter list is fixed-length and has the
following format:

T -
Word 1jAddress of byte containing the i
|length of the integer or message |
| (n or 'message’). A length of |
jzero indicates that no integer or |
|message was defined by the user. |
¥ ———m—{
Word 2|Address of the integer or message, |
|if any. |
4 J

[o s S . oo, WA e bt

There is no parameter list for entry to
CHCIW1l, CHCIW4, or CHCIWS.

Routines Called:

e DCB Maintenance (CHCIB)
e I/0 Control (CHCIC)

e Task Supervisor Routines (CZAFQ1),
“entered by use of a supervisor call
(svc)

e I/0 Communication (CHCIY)
¢ PRMPT (CZATJ1)

Operation: If this routine is entered via
CHCIW4 or CHCIWS, a message is issued to
the user indicating the reason it was
called. If this routine is entered via
CHCIWl1l, CHCIW2, or CHCIW3, a message is
issued (including a user-supplied message,
if any) to the user by the PRMPT macro
instruction facility (CZATJ1l) indicating
the reason it was called. In the case of
PAUSE, return is then made to the user pro-
gram. If entry to this routine was not
caused by a PAUSE statement, the DCB table,
maintained by CHCIB, is searched and each
open DCB is closed. The DCB table pointers
are then cleared, and exit is made to the
system exit routine.

Service Subprogram Descriptions 29

SECTION 5: I,/0 ROUTINE DESCRIPTIONS

This section gives the following infor-
mation on each I/0 library routine, exclud-
ing the sexvice routines, which are
described in Section 4:

® Name

e Function

e Attributes

e Entry

® Routines called (where applicable)
e Error checks (where applicable)

® Data references (where applicable)

e Operation

The routines are described in the alpha-
betical order of their names.

GENERAL INFORMATION

Certain information is common to most
I/0 routines. This information includes:

e Names
e Attributes

e Format of parameters passed to data
conversion routines

Attributes

All FORTRAN I/0 routines are nonprivi-
leged, reenterable, and closed. CHCIA,
CHCIE, CHCIU, CHCIW1l, CHCIW2, CHCIW3,
CHCIWS, CHCIV1, CHCIV2, and CHCBD1l are
entered by standard type-1 linkage with the
address of a parameter list (where applic-
able) in register 1; exit is a return to
the calling routine. All of the other I/0
routines are entered by restricted type-i
linkage.

Work Areas and Register Save Areas

The FORTRAN I/0 routine has one common
PSECT —-- CHCRWW -- which contains all
necessary work and storage areas and a 19-
word register save area. All parameters
used by the data conversion routines are
stored in this PSECT.

30

ROUTINE SUMMARIES

CHCIA =-- I/0 Initialization

This routine is the initial FORTRAN I1/0
library interface with the user. It
manages the disposition of each I/0 request
by setting switches about formatted and
unformatted I/0 for the information of
other I/O routines, by allocating a buffer
area for output requests, and by obtalnlng
a logical record for input requests.

Every I/0 request in the FORTRAN user
program causes the compiler to generate one
call to CHCIA. On this call, if there is
no list, CHCIA supervises the complete
execution of an I/0 request. If the I/0
request is a READ, WRITE, PRINT, or PUNCH
with list, CHCIA simply prepares the I/0
library for compiler-generated calls to
List Item Processor (CHCIE) and List Ter-
mination (CHCIU).

Entry: The entry point is CHCIAl. The pa-
rameter list is variable-length and has
this format:

12 T

{Word 1|Address of a fullword containing
|the user-specified data set
|reference number.

PRNSS SRR ———

Word 2|Address of a control byte in 1I/0
|Control (CHCIC) indicating type of|
|operation: READ, WRITE, PRINT, |
|PUNCH, REWIND, BACKSPACE, ENDFILE. |

|
I
|
!
|
I
b= !
|
|
|
|
f
|
I,
!

WOrd 3|Address of a control byte in I/0O |
| control (CHCIC) indicating whether|
la list was present in the I/0 |
| statement and whether any of the
| following parameters in this 1list
lare present.

WOrd QIAddress of a FORMAT string or

[(Op~ [|NAMELIST table. This parameter
|tion- |is included only if the I/0 source
jal) | statement has an associated FORMAT

| lor NAMELIST source statement.
t.

T

|Word SIAddress of an error exit.

| (Op~ |Included only if the I/0O source
jtion- |statement has an ERR operand.
jal) |

i___ 4

+
jWword 6|Address of an end-of-file exit.

|
I
|
1
I
|
|
!
|
%
|
|
[
|
%
|
|
|
|

| (Op- |Included only if the I/0 source
jtion- |statement has an END operand.
lal) |

| - i

If any optional parameter is missing,
any parameters following it are moved up in
the list and the list is shortened. For
example, if there is no FORMAT or NAMELIST
address and no error exit address, word 4
of the parameter list would be the end-of-
file exit address.

Routines Called:
e DCB Maintenance (CHCIB)

e I/0 Control (CHCIC)

FORMAT Processor (CHCIF)

* NAMELIST Processor (CHCID)
e Exit (CHCIW)

e PRMPT (CZATJ1)

Erxor Checks: 1f the user-specified data
set reference number is negative, an error
message is issued by the PRMPT macro
instruction facility (CZATJ1l), and CHCIW is
entered to terminate the user program.

Operation: Upon entry, the FORTRAN 170
PSECT switches are cleared, control parame-
ters are set, and CHCIB is called to find a
DCB corresponding to a user-specified data
set reference number (or to create a DCB if
one is not found). CHCIC is then called to
complete the I/0 request.

If the operation is a REWIND, BACKSPACE,
or ENDFILE, return is made to the user. If
the operation is READ or WRITE according to
a NAMELIST, CHCID is called before return-
ing to the user.

If the operation is a WRITE with no list
and no format, a dummy record containing
two bytes of zeros is written with a call
to CHCIC before returning to the user. If
a FORMAT statement is involved, CHCIF is
called. If the operation is a WRITE with
no list and CHCIF is called for construc-
tion of a record anyway, CHCIC is called to
write the record before returning to the
user; otherwise, return is made immediately
after calling CHCIF. If a FORMAT statement
is not involved, return is made to the
user.

CHCIB -- DCB Maintenance

This routine finds or initializes the
data control block (DCB) that contains a
description of the data to be transmitted
by a user-specified I/0 operation. If an
appropriate DCB is not found, this routine
allocates the necessary space in the DCB
table and constructs a new DCB, including
within it information about the data to be
transmitted that the user defined in his
DDEF command. (See Chart IB.)

Entry: The entry point is CHCIB1. CHCIA
stores the address of the user-supplied
data set reference number and the data set
reference number itself if present in the
I/0 common PSECT.

Routines Called:

e Data management routines used to search
for and read JFCBs (CZAEB)

* Data management routines used to allo-
cate storage for DCB construction
(CzcGa)

e Exit (CHCIW)

s PRMPT (CZATJ1)

Error Checks: If the user-specified data
set reference number exceeds 99, an error
message is issued by the PRMPT macro
instruction facility (CZATJ1), and CHCIW is
entered to terminate the user program. No
alternate data set reference number is
established.

If a discrepancy exists in the user DDEF
command between permissible RECFM, KEYLEN,
and DSORG values, an error message is
issued by the PRMPT macro instruction faci-
lity (CZATJ1), and CHCIN is called to ter-
minate processing. A description of the
assumptions FORTRAN I/0 makes an initializ-
ing associated DCBs is contained in Appen-
dix A.

Format and Content of the DCB Prefix: The
DCB Prefix is used by the FORTRAN I/0O rou-
tines, in conjunction with the DCB, when
performing any type of I/0 operation. The
DCB Prefix, created by the DCB Maintenance
routine (CHCIB), is eight words long and
always immediately precedes the DCB itself.
(See Table 10.)

Operation: This routine is called to per-
form one of three functions: to supply the
address of an initialized DCB corresponding
to a specified data set reference number;
to locate the first open DCB in the DCB
table used by the I/0 library routines; or
to obtain a GATE DCB. The first function
is performed by searching the table of DCB
entries. If the appropriate DCB is found,
the address of that DCB is returned. If
the search fails, the data management rou-
tine CZAEB is called to determine whether
the user has issued a DDEF command (which
causes the creation of a Job File Control
Block -- JFCB) for the specified data set
reference number. If CZAEB finds a JFCB
that corresponds, space is reserved in the
DCB table, a DCB is constructed, and the
new DCB is "™chained®™ into the DCB table.

1f CZAEB cannot locate a corresponding JFCB
(meaning that the user did not supply a

Section 5: I/0 Routine Descriptions 31

Table 10. Format and content of DCB prefix

] 1 1
|Word 1]jAddress of the starting location |

|in the buffer area for the current|
{logical record. |
4

+
2}{Address of the current location in|
| the buffer area for the current |
|logical record. |
t -~
3|{Address of the end location in the|
|buffer area for the current logic-|
|al record.

E
o}
[a}
o7

by
O
2]
[o

G G ez S GRS i e ks S, TS S

b ad

o
o]
o+
®
=

: Current operation (READ,
WRITE, etc.)

Byte 2: Control flags (FORMAT,
NAMELIST, List, ERR exit,
END exit)

Word

f -4

B T T Lty Spup—

Byte 3: Control flags (Span, GATE,
recent READ, END o©or ERR
encountered)

Byte U4: Previous operation (byte 1
from last call on CHCIC
with this DCB)

Address of current DECB, if
required (BSAM).
6|User-specified data set reference
|number, plus one.
I

X
5
Q

5

X
[¢)
H
Q

b
5
Q

4
7|Address of the next DCB.
4

} _
8{Address of last DCB associated
|with this data set reference
| number.

4

§
Ial
Q

o i e E3 o S QIR s B R s B ST o Ko S s TS . I e R s S s S i S
e mares codem cm. a cvmsne ad ors ol oo o iy s . Sl e, N A S o, S . S o WOV, s, S s o ol e

L)
Word 9|DCB begins here.
1.

DDEF command) , a GATE DCB is constructed
and initialized.

The GATE DCB causes SYSIN and SYSOUT to
be treated as the input origin and output
destination, respectively.

CHCIB performs its second function,
locating the first open DCB in the DCB
table, when a negative data set reference
number has been specified by CHCIW at
final close of the file. If an open DCB
is not found in the DCB table, nocrmal
return is made to the calling routine.

CHCIB performs its third function,
obtaining a GATE DCB, when the address of
the data set reference number is zero. In
this case, the I1/0 request is assumed to
be for the first data set reference number
that this routine defines by a GATE DCB.

32

Therefore, as before, SYSIN and SYSOUT are
treated as the input origin and output
destination, respectively. Note that the
GATE DCB is a dummy DCB (with a prefix),
used to allow other I/0 routines to treat
the case of GATE I1/0 the same as the case
of data sets defined by a DDEF command.

CHCIC -- I/0 Control

This routine fulfills I/0O requests made
through other I/0 library routines by
using the data management macro instruc-
tion facilities of TSS/360. The particu-
lar data management facilities to be used
are determined both by the type of I/0
statement issued in the user program, and
by related DDEF commands, if any, defining
such things as the type of records being
transferred and the manner in which they
should be processed.

The following list identifies the more
significant macro instructions used by
CHCIC for each of the FORTRAN 1/0 state-
ments. Other macros used in conjunction
with those listed below (e.g., OPEN and
CLOSE) are identified in the "Operation”
section of this routine description. (See
Chart IC.)

FORTRAN I/0

Statement CHCIC Function

READ Obtains a logical record
from a user-specified input
source by using the READ,
GATRD, or GET macro
instruction.

WRITE Initializes the writing of a
logical record by establish-
ing pointers to the output
buffer area. Subsequent
output processing is per-
formed by using the WRITE,
GATWR, or PUT macro
instruction.

REWIND Repositions the user-
specified volume of one or
more data sets to the first
record of the first data set
by using the POINT or SETL
macro instruction.

BACKSPACE Repositions the user-
specified data set to the
previous logical record by
using the NOTE, POINT, SETL,
and BSP macro instructions.

Defines the end of the user-
specified data set by using
the WRITE and STOW macro
instructions.

ENDFILE

Entry: The entry point is CHCIC1.
Zntry y

Routines Called:

e DCB Maintenance (CHCIB)
e Exit (CHCIW)

e Data management routines to perform
170 functions as determined by the
macro instruction issued.

e PRMPT (CZATJ1)

Error Checks: If the 1I/0 operations per-
formed by data management cause either a
SYNAD or EODAD exit, and if the user pro-
vides an ERR or END return point, CHCIC
locates the adcons for these return points
in the work area CHCRWW, and locates the
register save area for the user's program
registers. Return is then made to the ERR
or END return point rather than to the
calling I/0 routine.

If the user does not provide return
points (or if the operation is other than
a READ statement), an error message is
issued and the program is terminated.

If an invalid character is encountered
in hexadecimal input from a GATRD opera-
tion performed for an unformatted READ
statement, an error message is issued and
the erroneous character is treated as the
termination of the hexadecimal input.
Processing then continues.

In addition to the above error checks,
error messages are issued (PRMPT macro
instruction) and the user program is ter-
minated by CHCIW for any of the following
reasons:

1. The record is not format-V for unfor-
matted READ statement.

2. Error return code received from the
use of the FIND or STOW macro
instruction for a member in a VPAM
data set.

3. Invalid sequence of I/0 operations
for a user-specified data set
reference number. The invalid
sequences are: READ preceded by END
FILE; END FILE preceded by READ; and
READ preceded by WRITE (except when
using GATE 1/0).

Operation: 1In fulfilling the I/0 request,
this module ensures that the DCB asso-
ciated with the DDEF command is properly
opened by examining the access qualifier
(for example, read-only) of the data set.
If the data set is read-only, the OPEN
macro instruction is issued for INPUT.
Otherwise, the OPEN macro instruction is

issued for UPDAT, when the Virtual Access
Methods (VAM) are specified, or INOUT,
when the Basic Sequential Access Method
(BSAM) is specified. When a data set is
opened for UPDAT or INOUT, both reading
and writing may be performed. However, if
an attempt is made to write on a read-only
data set that is opened for INPUT, the
user program is abnormally terminated.
When the user does not issue a DDEF com-
mand for a given I/0 request, CHCIC uses
the GATE macro instruction facility to
perform reading and writing. This facili-
ty does not require issuance of an asso-
ciated OPEN macro instruction. CHCIC
first checks whether the I/0O operation
requested is compatible with the previous
operation. If it is not, an error message
is issued and the user program is ter-
minated. If it is compatible, processing
continues according to the particular type
of I/0 request involved (that is, READ,
WRITE, WRITE Initialize, REWIND, BACKS-
PACE, and ENDFILE).

If a READ is issued, the data set is
opened, if necessary, and the pointers in
the DCB prefix are set to the beginning
and end of the data. CHCIC then checks
which access method is being used. If vaM
is used, a GET macro instruction is
issued. If the GATE macro instruction
facility is used, a GATRD macro instruc-
tion is issued. If BSAM is used, the
record format is examined to determine
whether the records are blocked. If they
are not blocked or if the previous record
was the last record of the block, a READ
is issued; otherwise, the next logical
record within the current block is used.
In any case, after the data is located,
the beginning and end are determined and
the pointers are saved in the DCB prefix.
Return is then made to the calling
routine.

If a WRITE Initialize is issued for an
open data set for which the last operation
was an END FILE, the data set is closed
and an end file lockout indicator is set
on in the DCB prefix, indicating to DCB
Maintenance (CHCIB) that this DCB should
be ignored when looking for a DCB for this
data set reference number. As a result of
this indicator being set, any subsequent
WRITE statements referring to the same
data set reference number causes the crea-
tion of a new data set. A call is then
made to CHCIB to obtain a new DCB describ-
ing the new data set.

Whether or not the previous operation
was an END FILE, the DCB is opened, if
necessary. If VAM is used, a SETL macro
instruction is issued to point to the
beginning of the specified data set. 1In
all cases, the pointers to the output

Section 5: I/0 Routine Descriptions 33

buffer area are then set in the DCB prefix
and return is made to the calling routine.

If a WRITE is issued, CHCIC checks the
record format type. For non-format-V rec-
ords, fill characters (padding) are
inserted, if necessary, to the end of the
record. Blanks are used for NAMELIST or
formatted WRITE; binary zeros are used
otherwise. For format-V records, the
record length and any needed spanning bits
are set. The spanning bits are used to
define the relationship between the FOR-
TRAN logical record and the data manage-
ment logical record when the FORTRAN log-
ical record exceeds the length of the
maximum record supported by the access
methods being employed. (See Appendix A
for more details on spanning bits.)

CHCIC next checks the access method
being used for the write request. For
VaM, a PUT macro instruction is issued.
For the GATE macro instruction facility, a
GTWRC is issued. For BSAM, the record
format is examined to determine whether
the records are blocked. If the recorxds
are not blocked or the block is full, a
WRITE macro instruction is issued. For
blocked records, where the block is not
full, the output area pointers in the DCB
prefix are updated to the next record area
in the block. 1In all cases, the DCB pre-
fix is re-initialized and return is made
to the calling routine.

If a REWIND is issued, CHCIC searches
the DCB table for all DCBs relating to the
user-specified data set reference number.
For each such DCB found, the end file
lockout indicator within it is turned off.
The POINT macro instruction is then used
to reposition the volume to the first
record of the first data set, if the data
set is BSAM; the SETL macro instruction is
used for VAM. Return is then made to the
calling routine.

If a BACKSPACE is issued, CHCIC checks
the access method being employed. For
VAM, CHCIC checks to see whether the last
operation was an ENDFILE. If so, a CLOSE
macro instruction is issued followed by an
OPEN macro instruction and a SETL macro
instruction pointing to the end of the
data set. In either case, a SETL macro
instruction is then issued to point to the
previous record.

If BSAM is used, CHCIC examines the
record format to determine whether the
records are blocked. If unblocked and if
the last operation was an END FILE, a NOTE
macro instruction is issued to establish
the current location, CLOSE and OPEN macro
instructions are issued, and a POINT macro
instruction is issued to reposition the
data set to the position prior to closing.

34

A BSP macro instruction is then issued to
backspace. If double buffering is used, a
second BSP is issued. If the last opera-
tion was not an END FILE, only the BSP
macro instruction is issued. If the rec-
ords are blocked, a scan is made backwards
through the block to locate the beginning
of the previous record. In some cases it
may be necessary to issue a BSP macro
instruction and then read the previous
block in order to position to the previous
record. In all cases, it is not possible
to position to a record in a previous data
set if a READ or WRITE was issued after an
END FILE operation. Upon completion of
processing, return is made to the calling
routine.

If an END FILE is issued, it is noted
but cotherwise ignored; the actual END FILE
operation is performed only when the next
operation is a WRITE Initialize or a
BACKSPACE.

CHCID -- NAMELIST Processor

This routine interacts with CHCIC to
control the I/0 for each NAMELIST record
and interacts with the appropriate data
conversion routines to effect the desired
item-by-item conversion. (See Chart ID.)
Entry: The entry point is CHCID1.

Routines Called:

s I/0 Control {(CHCIC)

¢ Complex Input Conversion (CHCIM)

¢ Complex Output Conversion (CHCIN)

+ General Input Conversion {(CHCIS)

* General Output Conversion (CHCIT)

* Exit (CHCIW)

* PRMPT (CZATJ1)
Error Checks: There are no error checks
for output. For input, if errors are
detected in the NAMELIST table, a message
is issued via PRMPT, and CHCIW is called
to terminate the user program. Other
error messages are generated for any of
the conditions listed below. In these
cases, processing continues with the next
entry of the input record.

s Name exceeds six characters

v First character of each input record
is not blank

e Subscripts appear on a name that is
not an array name

e Incorrect number or range of
subscripts"

s Subscripting causes array size to be
exceeded

¢ Multiple constants or repeated con-
stants appear with a name that is not
an array or a subscripted array name

e Multiple constants or repeated con-
stants exceed the size of an array or
the size of an array portion beginning
at a specified element

e An equal sign or left parenthesis is
not preceded by the variable or array
name for that item

e An invalid character appears in a
repeat constant

» End of a logical record caused an item
to be logically incomplete

¢ The NAMELIST name is not in the NAME-
LIST table

NAMELIST Table: The address of the NAME-
LIST table generated by the FORTRAN com-
piler is communicated in the call to I/0
Initialization (CHCIA) and then passed to
this routine. The table is made up of
two-word entries, each of which contains
an identifier in the first halfword.

NAMELIST Name Entry:

Bytes 0-1 Identifier (X'0100")
2-7 Name (left-justified)

Variable Name Entry:

Bytes 0-1 Identifier (X'0200°%)
2-7 Name (left-justified)

Variable Type and Location Entry:

Bytes 0-1 Identifier (X'300')

2 Length and Type (4 bits each)

Length: Number of bytes

minus 1
Type: X'01*' Logical
X'02' Integer
X'03' Real
X*04' Complex
3 Class: Letter A for array;
otherwise, an S

4-7 Storage Location

Array Size Entry:

Bytes 0-1 Identifier (X'0400°)
2-3 Not used
4-7 Number of bytes in array

Dimension Product Entry:

Bytes 0-1 Identifier (X*'0500")
2-3 Not used
4-7 Dimension Product (see
explanation below)

Terminal Entry:

Bytes 0-3 Zero
4-7 Not used

A dimension is a level of subdivision,
or level of subscripting, within an array.
For example, an array could be a string of
seven thirty-word elements (first dimen-
sion), each subdivided into six five-word
elements (second dimension), each subdi-
vided. into five one-word elements (third
dimension). An array may have as many as
seven dimensions.

For each dimension there is a corres-
ponding dimension product, which is the
product of: (1) the byte-size of the
array's smallest element, (2) the number
of elements within all lower dimensions
except the first dimension, and (3) the
number of elements within that dimension.
In the example just given, the dimension
product for the third dimension would be
4x6x5, or 120. This dimension product
would be seven times greater if there were
another dimension before the seven-element
dimension. The dimension product for the
first dimension is always the byte-size of
the array's smallest element -- this
dimension product is never entered. If
there is only one level of subdivision,
there is no Dimension Product Entry.

Operation: For a WRITE, CHCID calls CHCIT
to write, in the following format, the
data for each variable or array in the
NAMELIST:

For Variables:
variable name = constant

For Arrays:
array name or array element name =
constantl, constant2, ...

In the second case, each constant may
have a repetition notation appended in the
form that is also usable for input.

CHCID also produces header and trailer
records so that the information can be
read with the same NAMELIST.

Section 5: I/0 Routine Descriptions 35

For a READ, CHCID reads records until a
correct header record is located. It then
uses a scanning procedure to locate the
input entries. As each is found, the rou-
tine locates the variable or array name in
the NAMELIST Table, determines its size
and type, and converts the input.

Error checking functions performed by

CHCID for a READ operation have already
been described under "Error Checks".

CHCIE -- List Item Processor

Every I/0 statement in the user's
source program generates one or more calls
to this routine if there is a list asso-
ciated with a READ, WRITE, PRINT, or
PUNCH. A list item may be a simple vari-
able, an array element {(a subscripted
variable), or an entire array. If a FOR-
MAT statement is specified, this routine
calls on FORMAT Processor (CHCIF) to con-
trol any necessary conversion. If there
is no FORMAT statement, CHCIE is directly
responsible for filling or emptying the
output or input buffer area. (See Chart
IE.)

Entry: The entry point is CHCIEl. Regis-
ter 0 contains either zeros, if the list
item is a single element, or a number
expressing the array length, in bytes, if
the list item is an entire array. The pa-
rameter list is fixed-length and has the
following format:

-

e e

T

Word 1}jAddress of a control byte. The
|first four bits of the control
|byte contain the size of the
jelement, minus one. The second
jfour bits contain a flag
}indicating the type of item as

|
! |
| |
! I
| I
| |
: gfollows: {
i |Flag Type of Item |
| | 01 logical |
1 | 62 integer |
{ | 03 real |
i | Cu complex |
f + - {
|Word 2|Address of a first (or only) ele- |
i {ment of the list item. |
i 4. 3

Routines Called:

® Format Processor (CHCIF)
e I/0 Control (CHCIC)
e Exit (CHCIW)

» PRMPT (CZATJ1)

36

Error Check: With unformatted input, if a
list item is requested after the logical
record is exhausted, an error message is
transmitted to the user via PRMPT, and
CHCIW is called to terminate the user's
program.

Operation: At entry, register 0 either
contains zeros if the list item is a single
element, or a number expressing the array-
length, in bytes, if the list item is an
entire array. Another parameter indicates
the length of the list item {(in the case of
an array, the length of each individual
item in the array). The transfer of data
between I/0 buffers and item storage loca-
tions is performed by CHCIE if there is no
FORMAT statement; if there is a FORMAT
statement, the transfer of data is accomp-
lished by a call to CHCIF. After the
transfer of information between the I/0
buffer and the storage location specified
for the item, the item length is subtracted
from the array length. A negative or zero
result indicates either that the item was a
single element or that the last element in
the array has been processed; the routine
returns to the caller. If the result is
positive, the storage location of the list
item and the location in the buffer are
each incremented by the item length and
transfer is made to the beginning of the
loop to process the next element of the
array. If, after incrementing the buffer
location, the end of the buffer has been
reached, further processing depends on
whether the operation is for input or
cutput.

For output, the current buffer is writ-
ten and flagged to indicate that this log-
ical record continues on the next physical
record. A new output buffer is then
initialized.

For input, a check is made to see if the
current physical record is flagged in this
manner, and if it is, the next physical
record is read. If the current physical
record is the last one written as part of
this logical record, an error message is
transmitted to the user and the task is
terminated. The reading and writing of
additional physical records as part of this
logical record is accomplished by a call to
1/0 control (CHCIC).

CHCIF -- Format Processor

This routine scans the FORMAT string,
interacts with CHCIC to control the 1I/0 for
each FORMAT-referenced record, and
interacts with the appropriate data conver-
sion routines to effect the item-by-item
conversion specified by the referencing
FORMAT statement. CHCIF is entered once
for each list item in the I/0 request.

(See Chart IF.)

Entry: The entry point is CHCIFl. Before
the first entry to CHCIF to process a
reference to a FORMAT statement, CHCIA (I/O
Initialization) stores the address of the
FORMAT string in CHCRWW.

Routines Called:

e I/0 Control (CHCIC)
e Exit (CHCIW)

e One of the eleven conversion routines
(CHCIH through CHCIT)

e The FORTRAN compiler routine for trans-
lating FORMAT statements (CEKBF), at
entry point SYSPFMT

e PRMPT (CZATJ1)

Error Checks: Since FORMAT statements may
be dynamically modified, certain error con-
ditions may arise due to the syntax of the
FORMAT string. If there are no syntax
errors, errors could arise due to conver-
sion of the data. In such cases the con-
version routines issue messages describing
the errors before returning. All syntax
error checks produce messages describing
the error.

Processing is terminated upcn encounter-
ing invalid control characters in the
string, strings that exceed the maximum, or
too many levels of parentheses. When it is
possible to assume values other than those
specified (as in the case of invalid size
of w or 4 fields after a control charac-
ter), processing continues on the current
item after the error message is issued.
Otherwise, the erronecus FORMAT item is
skipped, and processing continues with the
next control character.

Operation:
a given 1/0 request, CHCIF tests whether
the FORMAT statement has been translated.
If not, CHCIF calls CEKBF at entry point
SYSPFMT. CEKBF enters translations of FOR-
MAT codes into a FORMAT table, as shown in
Table 11.

CHCIF scans the translated FORMAT
string, tests each entry for validity, and
performs these actions:

e Initialization of repetition factors
both inside and outside the FORMAT
parentheses

e Immediate input or output of character
strings or spaces (wH or w or Tw or
L")

e Initialization of scale factors before
FORMAT control units

At the first entry to CHCIF for

¢ Immediate input or output of logical
records

e Initialization of return points to be
used when closing parentheses are
reached

s Immediate conversion of input or output
data in accordance with the FORMAT con-
version code

In the last case, if an item is known to
be available, the appropriate conversion
routine is called and return is made to the
calling routine. If no item is available,
the scan continues.

On entries for subsequent list items in
the I1I/0 request, CHCIF keeps track of its
position in the FORMAT table.

The scan ends when a closing parenthesis
is reached.

CHCIH -- Integer OQutput Conversion

This routine converts a two-byte or
four-byte binary list item to an integer
field in the output buffer, according to
the format In, where n is the integer
field's size. (See Chart IH.) '

Entry: The entry point is CHCIHl1l. The pa-
rameter list is described under "Data Con-
version Routine Parameter Lists,” in this
section.

Routine Called: PRMPT (CZATJ1)

Error Checks: If the output buffer area is
too small to contain the integer field, the
field is filled with asterisks and a mes-
sage is issued by PRMPT.

Operation: The contents of the list item
are converted in a work area to packed
decimal, then into zoned decimal. The
sign, if negative, is set in the conven-
tional FORTRAN position. The work area is
moved into the output buffer field from
right to left, to check whether sufficient
space is supplied by the field width.
Blanks are inserted as padding if the buff-
er size is larger than the converted field
size.

CHCII -- Real and Integer Input Conversion

This routine converts a data field in an
input buffer to the appropriate type of
list item. An integer field is converted
to a binary list item. A real field is
converted to a single- or double-precision,
floating-point list item. The integer
field has the format In, where n is the
field width. The real field has the format
Fw.d, Ew.d, or Dw.d, where w is the field

Section 5: I/0 Routine Descriptions 37

Table 11. Translation of FORMAT codes

FORMAT
CODE FORMAT TABLE ENTRY
SIZE BYTE BYTE BYTE | BYTE BYTE BYTE
(BYTES) 0 ! 2 3 4 5
STRING CHARACTER STRING
H LENGTH+2 | SN LENGTH AS MANY BYTES AS NEEDED (MAX 255)
/ 1 X
REPEAT
X 2 X2 COUNT
T 2 ! X3 W
[SCALE
P 2 ‘ X4 FACTOR
NEST
) 2 X5 LEVEL
‘ NEST REPEAT
(3 X'6" LEVEL COUNT
REPEAT
A 3 X7 COUNT w-1
REPEAT
z 3 X8 COUNT w-1
|
1
REPEAT !
L 3 X'9r COUNT w-1 ,
| REPEAT [
1 3 XA J COUNT w-1
REPEAT
G 4 X'B! COUNT] wW-1 o
REPEAT
F 4 |oxc COUNT w-1 D
REPEAT
D ' 4 X'D! COUNT w-1 D
REPEAT |
3 4 LoRE COUNT | wal D
SPECIAL ADDRESS OF CHARACTER
H 6 XUE LENGTH STRING
width and 4 is the width of the decimal 2. Position of the base number's first
fraction. (See Chart II.) digit.
Entry: There are three entry points: 3. Number of digits before the decimal
CHCII, CHCIK, and CHCIG. point, if real.
Routine Called: PRMPT (CZATJ1) . Position of first digit after decimal
point, if real.
Error Checks: If the FORMAT specification 5. Number of digits after decimal point,
(F, E, D, or I) is improperly specified or if real.
the data field is greater than the permis-
sible range, PRMPT is called. 6. The letter E or D, if present.
7. Sign preceding exponent, if any.
Operation: The input data field is scanned
from left to right to determine: 8. Position of exponent's first digit.
1. The value of the sign, if any. 9. Number of exponent digits.

38

During the scan a test is made for in-
valid characters in the numeric fields. 1In
addition, a test is made to determine if
the integer or real data exceeds the per-
missible maximum. If such errors are
encountered, the scan is terminated and
control is passed to PRMPT to issue an
error message. Otherwise, conversion con-
tinues and a normal return is made.

CBCIJ ~- Real Output Conversion

This routine converts a single- or
double~-precision floating-point list item
to a real field in the output buffer. The
real field has a format of either Ew.d,
Dw.d, or Fw.d, where w is the field width
and 4 is the size, in digit positions, of
the fractionmal position. (See Chart 1J.)
Entry: There are two entry points: CHCILJ1
and CHCIL1.

Routines Called:
calling routine.

Return is made to the

Error Checks: If the output buffer is too
small to contain the real field, the real
field is filled with asterisks.

Operation: A test is made against a table
of powers of ten to determine the required
output exponent, if any, and the item is
divided by the appropriate power of ten.
If there is an exponent, it is moved into
the output buffer from right to left, fol-
lowed by its sign and the letter E or D.
If there is no exponent, the data field,
after processing is complete, is moved into
the output buffer and control is passed to
the calling routine.

CHCIM -- Complex Input Conversion

This routine converts a complex data
field in the input buffer to a complex list
item consisting of two real data fields.
Each real field is converted to a single-
or double-precision floating-point list
item according toc the format Fw.d, Ew.d, or
Dw.d, where w is the real field width and g
is the width of the decimal fraction. (See
Chart IM.)

Entry: The entry point is CHCIM1.

Routines Called:

¢ Real and Integer Input Conversion
(CHCII)

e PRMPT (CZATJ1)
Error Checks: If the complex data field in

the input buffer contains no real field or
only one real field, or if there is a mis-

sing parenthesis or central comma, CHCIM
issues an error message via PRMPT. No
further action is taken and the list items
remain unchanged. If either or both real
fields contain invalid characters or exceed
the permissible magnitude, CHCII issues an
error message.

Operation: The input buffer is scanned to
find the size of each real data field.

Once it is determined that the user proper-
ly specified these data fields and included
the correct delimiters (parentheses and
central comma), the first real data field
is passed as a parameter to CHCII for con-
version to a single- or double-precision
floating-point list item. When CHCII
returns control to CHCIM, CHCIM passes the
second real data field to CHCII for conver-
sion, completing the complex input
conversion.

CHCIN -- Complex Qutput Conversion

This routine converts a complex list
item consisting of two single- or double-
precision floating-point items to a complex
data field in an output buffer. Each
floating-point list item is converted to a
real data field according to the format
code Fw.d, Ew.d, Dw.d, or Gw.s, where w is
the real field width, 4 is the width of the
decimal fraction, and s is the number of
significant digits. (See Chart IN.)

Entry: The entry point is CHCINI1.

Routine Called:
{CHCIT)

General Output Conversion

Error Check: If the FORMAT specification

(F, E, D, or G) is improperly given or the
real data field is greater than the permis-
sible range, CHCIT issues an error message.

Cperation: CHCIN passes the first list
item as a parameter to CHCIT for conversion
to a real data field. When CHCIT completes
the conversion process and returns to
CHCIN, CHCIN passes the second list item to
CHCIT for conversion, completing the com-
plex output conversion.

CHCIO ~- Alphameric and Hexadecimal Input
Conversion

This routine transfers a specified num-
ber of bytes (alphameric or hexadecimal
characters) from an input buffer area to a
list item. The format is Aw (alphameric)
or ZWw (hexadecimal), where w, field width,
is the number of characters being trans-
ferred. (See Chart I0.)

Section 5: I/0 Routine Descriptions 39

Entry: The entry points are CHCIO1
(alphameric data) and CHCIO2 (hexadecimal
data).

Operation: When the conversion format is
alphameric, this occurs:

e If the byte size of the list item
equals the number of alphameric charac-
ters in the buffer, a simple move is
executed, with no data test made.

e If the byte size of the list item is
less than the number of alphameric
characters in the buffer, the excess,
left-most characters are truncated in
the list item field.

e If the byte size of the list item is
larger than the number of alphameric
characters in the buffer, the charac-
ters are transferred into the list item
field, left-justified.

When the conversion format is hexadeci-
mal, the field is scanned for valid hexa-
decimal characters. If invalid, a call is
made to PRMPT. If valid, the characters
are converted to binary and moved to the
input item. If the input field was pre-
ceded by a minus sign, the result is com-

plemented. 1In either case, a return is
made to the calling routine.

CHCIP -- Alphameric and Hexadecimal Output
conversion

This routine transfers a list item con-
taining a specified number of bytes
(alphameric or hexadecimal characters) to
an output buffer area. The format is Aw
(alphameric) or Zw (hexadecimal), where w,
field width, is the number of characters
being transferred. (See Chart IP.)

Entry: The entry points are CHCIP1
(alphameric data) and CHCIP2 (hexadecimal
data).

Operation: When the list item contains
alphameric data, this occurs:

e If the byte size of the list item
equals the size of the buffer area, a
simple move is executed, with no data
test made.

e If the byte size of the list item is
less than the size of the buffer area,
the list item is entered right-
justified and padded to the left with
blanks.

e If the byte size of the list item is
greater than the size of the buffer,
the list item is transferred to the
buffer area left-justified with excess
characters truncated.

40

When the list item contains hexadecimal
data, it is unpacked and translated to hex-
adecimal digits in the cutput buffer.

CHCIQ -- Logical Input Conversion

This routine converts a logical field in
the input buffer area. The field has the
format Lw, where w is the field width.

(See Chart IQ.)

Entry: The entry point is CHCIQl.
Operation: The list itew is set to an
internal value of .FALSE. (binary zero).
The logical data field is then scanned
until either an F or a T is encountered.

In the first case, immediate return occurs.
In the second case, the list item is set to
an internal value of .TRUE. (binary one)
before returning.

CHCIR =-- Logical Output conversion

This routine converts & list item to a
logical field in the output buffer area.
The field has the format [w, where w is the
field width. (See Chart 1R.)

Entry: The entry point is CHCIR1.
Operation: The output bitffer area is first
filled with blanks. If the list item con-
tains a value of zero, the letter F is
rlaced in the last buffer area position;
octherwise, the letter T is inserted.

CHCIS -- General Input Conversion

This routine converts a data field in
the input buffer to a liut item according
to the format Gw.s, where w is the field
width and s is an optionil specification of
the number of significant digits. (See
Chart IS.)

Entry: The entry point is CHCIS1.

Routines Called:

e Real and Integer Input Conversion
(CHCII)

e Logical Input Conversion (CHCIQ)

. Alphameric and Hexadecimal Input Con-
version (CHCIO)

Error Checks: CHCIS does no error check-
ing. Error checks, if any, are made by the
called data conversion routines.

Operation: If the conversion type is "N',
indicating a call from ti:¢ NAMELIST Proces-
sor (CHCID), this happens:

¢ If the data field begins with a quote,
a literal character string is moved to
the list item.

s If the data field begins with a 'Z°,
hexadecimal conversion is performed.

If the conversion type is not 'N', the
list item is checked to determine which
conversion routine should be called:

Type of Data Routine Called

Integer CHCII (Entry point CHCIG)

Real CHCII (Entry point CHCIK)

Logical CHCIQ (Entry point CHCIQ1)

Alphameric CHCIO (Entry point CHCIO1l}

Hexadecimal CHCIO (Entry point CHCIO2)
CHCIT -~ General Qutput Conversion

This routine converts a list item to a
data field in the output buffer, according
to the format Gw.s; where w is the field
width and s is an optional specification of
the number of significant digits. (See
Chart IT.}

Entry: The entry point is CHCIT1.

Routines Called:

e Integer Output Conversion (CHCIR)
s Real Output Conversion (CHCIJ)

s Logical Output Conversion (CHCIR)

Exrror Checks: CHCIT performs no error
checks. Discrepancies between the size and
type specification of the list item and the
data field are detected by the called con-
version routine.

Operation: CHCIT examines the list item
type. If logical, a call is made to CHCIR.
If integer, a call is made to CHCIH. If
real, the magnitude of the item is tested.
Should it fall in the range 0.1 to 10%*#*s, a
call is made to CHCIJ using F format speci-
fication. If real, and outside this range,
a call is made to CHCIJ using E or D format
specification.

CHCIU -~ List Termination

This routine terminates list processing
for a READ, WRITE, PRINT, or PUNCH state-
ment, and completes any I/O operation that
is pending. (See Chart IU.)

Entry: The entry point is CHCIU1.

Routines Called:

e Format Processor (CHCIF)
e 1I/0 Control (CHCIC)

The final return is made with registers
unchanged, except that register 13 is set
to the address of the calling module's
PSECT and register 15 is set to zero.

Operation: If the previous list processing
was an unformatted READ, no further action
is necessary, and control returns to the
caller. If the previous action was a for-
matted READ, CHCIF is entered with a zero
list item to indicate termination of the
FORMAT scan. This permits scanning for
Hollerith format controls that have still
not been processed, or skipping records
until the end of the format character
string.

If the previous action was an unfor-
matted WRITE, a final call is made to CHCIC
to write the complete logical record.

If. the previous action was a formatted

WRITE, CHCIF is entered as above, followed
by CHCIC.

CHCIW -- Exit

CHCIW is described in "Section 4:
vice Subprogram Descriptions.”

Ser-

CHCBD -- I/0 Interruption and Machine
Indicator Routine

At the beginning of all FORTRAN main
programs, the compiler generates code that
calls this routine at entry point CHCBD1.

Entry: The entry point is CHCBD1.

Operation: This routine sets bits in the
PSW such that the fixed-point overflow and
significance exceptions will be ignored,
and directs the system interruption handler
as to where to pass control if any of the
following exceptions occur:

Exception Subprogram
Specification CHCBEZ2
Exponent Overflow CHCBE3
Exponent Underflow CHCBEY4
Divide Check CHCBES

In addition, this routine initializes the
machine indicator flags and the sense light
simulators, and clears any pointers to
entries in the DCB table. It then returns
control to the calling program.

Section 5: 1I/0 Routine Descriptions 41

SECTION 6: FLOWCHARTS

The flowcharts in this manual have been produced by an IBM program, using ANSI sym-—
bols. The symbols are defined in the left column below, and examples o©f their use are
shown at the right.

SYMBOL DEFINITION FRAMPLE CUMMENTS
B3: MODNAME IS THE LOAD (0! £ B ke
I MODNAME NAME OF THE ROUTINE Lt THIS
In FLOWCHART .
¢ !
i COMNAME 1S THE COMMON NAME CF THi
TERMINAL BLOCK T MNAME ROUTTNE .
R
b HERRD 1%
1¢
CSEC
LRBEL1)
SF [P S — I C3: CSECT IS R THER ENTRY
S POINT AT BESTNS .
E
g LABEL1 IS THE LABEL F THE FipS
PROCESS BLOCK OF TNSTRUCTION.
A nt” .
: . DA RRGRAY EXECUT B BLOCK
HE2 o Ny i T IR Ta
DESEENN e BLOCK €3 WHEN TEE DECTEON w0
Barha b (Lo l
Y ES
E3:
LABEL2Z ENTRYPT
. Sl
IROSCRTES A SUBROUTINE ik SUBR N AG
MOBULE THAT 1S PFSCRIBEL
SUBROUT INE INOTHIS MANUAT ' ENTRYBT 16 THE ENTRY poinr
LoCH
BLOCK SUBETN 15 THE oM FoLAE SUE
TINE IN FLoWOHAR
VTA: FASSMECH
UIh: | PASSMECH INDICAT s ONTEA
pabsee PRRAMECdRRE & T
LRBEL3
£ o F Fi:
INDLOATES A o
PREDEF INED MOD
PROCESS BLOCK o
4G BLUCK
|
; G3: o EXECUT P HUOT RS CWHEN
THE DEC FTH BL00 Al N
1 PAGE » FLOWCHARTE WHE R
5 THE BEC
INPUT/OUTPUT NG
T THE OFEPAGE
BLOCK “ATES
§i3 FROM Aht
CHARTS .

WITH TiE aum\ur Bt

H1

PREPARATIO H3: LABEL4 1S THE LABEL CUDE
PREEARATION CEOTHIS ROUTINE THAT '
ONPAGE o o
NG J3: NEXTRTN IS THE COMM e THE RIZUT-
CONNECTOR INE THAT EXECUTES ASTER TH SUTINE.
s S
S HDE ARERLERTRY ”x) o5 M ENTRYPT 15 THE ENTRY FOINT oF NEXTRTN,
s s SAME ELOWCHART P RHICH 15 DESCRIBED In ChAWL b
TP V1AL PASSMECK LUDITALES 1 o TR
S ERTEPT FASS s RROM COMNAME 50 RiMThTY .
RT
VIR RS sMECH
OFFPAGE
CONNECTOR
saxse INDICATES ENTRY TO OR EXIT
s e FROM A B ANOTHER
P b r
L R
.

42

Program Logic Manual
GY28-2020-2

FORTRAN |V Library Subprograms

Flowcharts on pages 43-88 were not scanned.

This appendix describes the assumptions
that the FORTRAN 1/0 -library makes in
initializing DCBs with information concern-
ing record format (RECFM) and data set
organization (DSORG). These asumptions are
described in this appendix to help reduce a
frequent source of error encountered by the
user when performing I/O.

Introductory material is presented on
the DCB describing its general use, con-
tents, and sources of initialization,
before discussing the permissible record
formats and data set organizations. (For a
description of the DCB in terms of its
size, format, and use by the rest of TsS/
360, see System Control Blocks PLM.)

DCB_Use

The Data Control Block (DCB) is created
by DCB Management (CHCIB) and is used by
certain data management routines which are
invoked by macro instruction references in
1/0 Control (CHCIC). The DCB is required
for all 1/0 performed using either BSAM or
VAM, However, the DCB is not required for
170 when using the GATE macro instructions,
even though CECIR reserves space for one.
In this case, the DDNAME field is used to
save the name that the data set would have
had if GATE were not used. The principal
reason for constructing this dummy DCB for
GATE is to retain consistency for various
routines when handling data set reference
numpers with no corresponding DDEF
commands.

DCB _Content

The DCB contains information such as the
DDNAME, type of data set organization, the
type and size of records, block size for
blocked data sets, number of buffer areas,
exits for SYNAD and EODAD, and various con-
trol flags used by data management.

DCB Initialization

The FORTRAN I/0 routines, when proces-
sing an input data set, take advantage of
information in the DCB to adapt to the
characteristics of the data set and read it
correctly. Characteristics are based on
the parameters for a DCB that can be sup-
plied from:

e The user program -- type of I/0 used
and associated data format.

e User-supplied DDEF commands -- some of
the information in the DCB can be
changed in this manner; however, the
extent of change is limited.

FORTRAN DATA MANAGEMENT

APPENDIX A:

¢ Input data set labels -- these override
both of thz above sources of informa-
tion, within limits set by data
management.

Combinations of DSORG and RECFM

Table 12 gives the permissible combina-
tions of record formats and data set
organizations that may be specified when
using the FORTRAN 1/0 library.

Table 12. <Combinations of DSORG and RECFM
values
r L 1
I | DSORG VALUES i
| RECFM } -T T T T 4
| | v§ | Pps | vsp | VI | VIP |
L) i } 1 4 4
1] | T 3 ¥ 1 1
v I & | A | a | A | A& |
{ vB | N | A | N | N { N |
j vo | N | A | N | N | N |
F { A&	a	A	A&	A	
FB i N	A	N	N	N	
P	8	A	N	N	N
PT	N	&	N	N	N
{ FBS	N	A	N	N	N
FBT	N	A {f N	N	N	
{ FBST	N	A	N	N { N i	
FST	N i a] N	N	N		
v §{ L	A { L	N	N		
PR— 1 A i 1 L _	I				
Codes mean:					
A - Acceptable					
L - Limited acceptable					
N - Not accepgtable					
DSORG abbreviations mean:					
VS - Virtual sequential (direct access					
only)					

{PS - pPhysical sequential (any device
except terminals)

|VSP - Virtual sequential partitioned

| (direct access only)

|[VI - virtual index sequential
(direct access only)

|VIP - Virtual index seguential partition-
ed {(direct access only)

|RECFM abbreviations mean:

v - Variable-length unblocked records

|VB - Variable-length blocked records

|[VT - vVariable-length unblocked with

| track overflow

|F - Fixed-length unblocked records
|FB - Fixed-length blocked records

|FS - Same as F, no truncated blocks or
| unfilled tracks

|FT - Same as F, track overflow

|FBS - Same as FB, no truncated blocks
| or unfilled tracks

|FBT - Same as FB, track overflow
|FBST- Same as FBS, track overflow
|FST - Same as F, no truncated blocks,
| track overflow

|0 - Undefined record length

e s s e . . . M i, S . S g S — 7 S G T i, T o i, . St O S, T WO e S s

3

Appendix A: FORTRAN Data Management 89

Any of the RECFM codes shown can be fol-
lowed by the letter A or the letter M. A
indicates that the first character of every
logical record is a FORTRAN carriage or
punch control character. M indicates that
the first character of every record is a
.TSS/7360 machine control byte. In general,
the M option cannot be used by FORTRAN out-
put data sets, since the control codes are
unprintable and do not conform to FORTRAN
conventions.

Unformatted FORTRAN Logical Records

Under any of the organization techniques
used, an unformatted WRITE statement may
lead to a logical record that exceeds the
length of the maximum record supported by
the access method. PFurthermore, it is not
possible to enter the byte size of the
entire FORTRAN logical record into the
beginning of the I/0 physical record
without the possibility of tying up an
indefinite amount of virtual storage.
Therefore, unformatted FORTRAN logical

90

records may span over data management phys-
ical records. 1In the management of unfor-

| matted FORTRAN data, the first two bits of

every VS physical record or the third byte
of every PS physical record is a control
byte defined as follows:

X*'00°* A FORTRAN logical record does
not span into or out of the
data management physical
record.

X'o1' This data management physical
record is the first of a span.
X*o02* This data management physical
record is the last of a span.
X*'03" This data management physical
record is within the range of a
span.

No data management logical record will
be written containing more than one unfor-
matted FORTRAN logical record.

APPENDIX B: EXTERNAL NAMES SUMMARY

All FORTRAN library routines have five-letter names bheginning with the letters ‘'CHC'.

The names of mathematical library routines begin with ‘CHCA'
170 library routines begin with 'CHCI'

or 'CHCB', and the names of

except one -- CHCBD. All other external names

consist of the routine names with suffixes.

Table 13. External names of FORTRAN IV library subprograms
¥ . L] L i |
| Mathematical | | |
| Subprograms | Service Subprograms | I/0 Subprograms |
i IR IS 4
r T T T 1
| Entry | See Tables 2, 3,|See Tables 7 and 9, and |See Section 5. |
| Name fand 7. |Section 4. | |
¥ +-- ¥ -—4- - 1
| Routine |See Tables 2, 3,|See Tables 7 and 9, and |See Section 5. |
| Name jand 7. |Section 4. | |
F + + 1 -
| CSECT |Routine name |CHCBE: Routine name suffixed [Routine name suffixed by 'C'.|
| Name |suffixed by *'W'.|by 'W'. CHCIV and CHCIW: | |
| | | Routine name suffixed by ‘C'. |]
k + -+ + - -
PSECT	Routine name	CHCBE: Routine name suffixed	Routine name suffixed by °'W'.
Name	suffixed by 'R'.	by *R*'. CHCIV and CHCIW:	
		Routine name suffixed by "W'.	
L i i 1. S |

Appendix B: External Names Summary 91

-
g
o]
>

Where more than one page reference is
given, the major reference is first.

.FALSE logical constant 41
.TRUE logical constant 41

A conversion code 40
Absolute value subprograms 19,4
Access methods
basic sequential (BSAM) 34,35
virtual (VAM) 34,35
Access qualifier 34
Accuracy figures, mathematical
subprograms 15-24
ALGAMA subprogram 19,5
Algorithms of mathematical subprograms
ALOG subprogram 15,4
ALOG10 subprogram 15,4

Alphameric and Hexadecimal Input Conversion

(CHCIO) 40,41
calls from other routines
CHCIF 37,38
CHCIS 41
(see also 1I/0 library, overview)
flowchart 80
Alphameric and Hexadecimal Output
Conversion {(CHCIP)} 41
calls from other routines
CHCIF 37,38
CHCIS 41
(see also I/0 library, overview)
Arccosine and arcsine subprograms 15,4
ARCOS subprogram 15,4
Arcsine and arccosine subprograms 15,4
Arctangent subprograms 15,4
Argument ranges, mathematical
subprograms 15-23

Arguments, mathematical subprograms 14-23

Arrays
dimensions 36
elements 35-37

length 36
names 35,36
size 36

subdivision, levels of 36
subscripting 36
ARSIN subprogram 15,4
Asterisks 40,41
ATAN subprogram 15,4
ATAN2 subprogram 15,4
Attributes
I/0 routines 30
mathematical subprograms 14
service subprograms 26

BACKSPACE operation 13,1
CHCIA 31,32
CHCIC 33-35
(see also I/0 library, overview)

92

Basic Sequential Access Method
(BSAM) 32,34,35

Binary list item 39

Blanks 39

Blocked records 34,35

BSAM (see Basic Sequential Access Method)

BSP macro instruction 35
Buffering 34-42

CABS subprogram 19,4

CALL statement 1

Calling relationships
I/0 library 3-13
mathematical library 4,5

Carriage control 90

CCOS subprogram 17,5

CDABS subprogram 19,4

CDCOS subprogram 15,5

CDEXP subprogram 15,5

CDLOG subprogram 15,4

CDSIN subprogram 15,5

CDSQRT subprogram 15,4

CEKBF routine 38,39

CEKT1 ... CEKT6é macro instructions 25

CEKZA macro instruction 25

CEKZD macro instruction 25

CEXP subprogram 15,5

Character string 38-42

CHCAA routine 15,4

CHCAB routine 15,4

CHCAC routine 15,5

CHCAD routine 15,5

CHCAE routine 15,4

CHCAF routine 15,4

CHCAI routine 17,5

CBCAJ routine 17,5

CHCAK routine 19,5

CHCAL routine 19,5

CHCAM routine 15,5

CHCAN routine 15,5

CHCAO routine 15,4

CHCAP routine 15,4

CHCAQ routine 15,17,5

CHCAR routine 15,5

CHCAS routine 15,4

CHCAT routine 15,4

CHCAU routine 19,4

CHCAV routine 19,4

CHCAW routine 15,4

CHCAX routine 15,4

CHCAY routine 17,4

CHCAZ routine 17,4

CHCBA routine 17,5

CHCBB routine 17,5

CHCBC routine 21,25
mathematical library overview 5

CHCBD (see I/0 Interruption and Machine

Indicator Routine)
CHCBE (see Interrupt and Machine
Indicator Routine)
CHCBG routine 21,25,5

CHCBH routine 21,25,5
CHCBI routine 21,25,5
CHCBJ routine 21,25,5"
CHCBK routine 21,25,5
CHCBM routine 21,25,5
CHCBQ rcoutine 15,4
CHCBR routine 15,4
CHCBT routine 19,5
CHCBU routine 19,5
CHCBV routine 19,5
CHCBW routine 19,5
CHCBZ (see Error Processor)
CHCIA (see I/0 Initialization)
CHCIB ({see DCB Maintenance)
CHCIC (see I/0 Control
CHCID (see NAMELIST Prccessor)
CHCIE (see List Item Processor)
CHCIF (see FORMAT Processor
CHCIG entry point 42 :
CHCIH (see Integer Output Conversion)
CHCII (see Real and Integer Input
conversion)
CHCIJ (see Real Output Conversion)
CHCIK entry point 42
CHCILl1 entry point 40
CHCIM (see Complex Input Conversion)
CHCIN (see Complex Output Conversion)
CHCIO (see Alphameric and Hexadecimal
Input Conversion)
CHCIP (see Alphameric and Hexadecimal
Output Conversion)
CHCIQ (see Logical Input Conversion)
CHCIR (see Logical Qutput Conversion)
CHCIS (see General Input Conversion)
CHCIT (see General Qutput Conversion)
CHCIU (see List Termination)
CHCIV (see Dump Routine)
CHCIW (see Exit Routine)
Class (see also Type)
of variable 36
CLOG subprogram 15,4
CLOSE macreo instruction 35
Closing parenthesis 39
Combinations of DSORG and RECFM §9
Common and natural logarithm
subprograms 15,4
Compiler 31,35
Compiler-generated entry names 25,2
Complemented error function
subprograms 19,5
Complex Input Conversion (CHCIM) 40
calls from other routines
CHCID 35
CHCIF 37,38
{see also 1/0 library, overview)
flowchart 78
Complex list item 40
Complex Output Conversion (CHCIN) 40
calls from other routines
CHCID 35
CHCIF 37,38
(see also 1I/0 library, overview)
flowchart 76
Complex result, how passed 14
Computations of mathematical
subprograms 15-23
Control Initialization
(see 1I/0 Initialization)

Conversion codes 39,3

data conversion routines, use by 39-42

Conversion routines
{(see Data conversion routines)
COS subprogram 17,5
COSH subprogram 17,5
COTAN subprogram 17,4
CSECTs 89,23,25
CSIN subprogram 15,5
CSQRT subprogram 15,4
CZAEB routine 32,33
CZAFQl routines 30
CZCGA routine 32

d Field 38-40

D conversion code 39,40

DARCOS subprogram 15,4

DARSIN subprogram 15,4

Data Control Block (DCB) 32,33,3
CHCIA 31
CHCIC 33-35
CHCIW 29,30
contents 89
initialization 89
prefix 32,34
table used by CHCIC 35,43
use 89

Data conversion routines 35,37
parameter lists 30,31

(see also I/0 library, overview; CHCIH;

CHCII; CHCIJ; CHCIM; CHCIN; CHCIO;
CHCIP; CHCIQ; CHCIR; CHCIS; CHCIT)
Data event control block (DECB) 32
bata field, 170 38-u42
Data management routines 32,33,3,6
Data set
access qualifier 34
label 89
read-only 34
reference number 31-35
DATAN subprogram 15,4
DATAN2 subprogram 15,4
DCB (see Data Control Block; DCB
Maintenance)
DCB Maintenance (CHCIB) 32-34
calls from other routines

CHCIA 31
CHCIC 33,34
CHCIW 30

(see also I1I/0 library, overview)
flowchart 49
DCOS subprogram 17,5
DCOSH subprogram 17,5
DCOTAN subprogram 17,4
DDEF command 32-34,3
DDNAME 89
DECB (Data Event Control Block) 32
Decimal conversion 39
Definitions of subprogram
computations 15-23
DERF subprogram 19,5
DERFC subprogram 19,5
DEXP subprogram 15,4
DGAMMA subprogram 19,5
pigit 39-42
Dimension 36
Dimension product 36

Index

93

Direct-reference mathematical

subprograms 14-25,1,2

Direct-reference service subprograms

14-25,1,2

Divide Check Handler 26-28

Divide Check Tester 26-28

DLGAMMA subprogram 19,5

DLOG subprogram 15,4

DLOG10 subprogram 15,4

Double buffering 35

Double-precision
argument (notation) 23
complex argument (notation) 23
list item 39,40

DSIN subprogram 17,%

DSINH subprogram 17,5

DSORG values 32,89

DSQRT subprogram 15,4

DTAN subprogram 17,4

DTANH subprogram 19,5

Dummy DCB 33

Dump Routine (CHCIV) 28-29, 26
flowchart 87
(see also 1I/0 library, overview)

DUMP subprogram 28,29
{see also Dump Routine)

E conversion code 39-41
Elements, array 35,37
END exit 30-33
control flag in DCB prefix 32
End file lockout indicator 34,35
END FILE operation 1,13
CHCIA 31,32
CHCIC 33-35
(see also I/0 library, overview}
Entry names
I/0 subprograms 91
mathematical subprograms 15-25
service subprograms 26-30,2
EODAD exit 33,89
Egqual sign 35
Equations showing subprogram
computations 15-23
ERF subprogram 19,5
ERFC subprogram 19,5
ERR exit 30-33
control flag in DCB prefix 32
Error checks
mathematical subprograms 14-23
service subprograms 26-29
Error conditions (see Error checks)
Error function subprograms 19,5
Error Processor (CHCBZ, math
library) 25,23
calls from other routines 14,2
CHCBE 28
(see also Mathematical library,
overview)
flowchart 47
Error routines
CHCBZ 25,23
Exceptions 26,28
Exception Processing Enabler
(CHCBD1) 26-28
Exit Routine (CHCIW) 29-35,26,27
calls from other routines 30

94

CHCIA 31
CHCIB 32
CHCIC 33,34
CHCID 35
CHCIE 37
CHCIF 37

FORTRAN compiler (user prograiu)
(see also 170 library, overview}
flowchart 88
EXIT subprogram 29,30
(see also 1/0 library, overview)
EXP subprogyram 15,4
Exponent, I/0 involving 39,40
Exponent Overflow Handler 26-28
Exponent Overflow and Underflow
Tester 26-28

Exponent Underflow Handler (CHCBD4) 26-28

Exponentiation subprograms 21
entry parameters 14
(se¢ also CDEXP subprogram; CEX¥
subprogram; DEXP subprogram; EXP
subprogram; Indirect-reference

mathematical subprograms; Mathematical

library, overview)
External entry name (definition)y 2
External names 91

F conversion code 39-41
FCDXI entry name 25
FCDXJ entry name 25
FCXPI entry name 25
FCXPJ entry name 25
FDXPD entry name 25
FDXPI entry name 25
FDXPJ entry name 25
Field width, I/0 38-42
Fill characters 34
FIXPD entry name 25
FIXPI entry name 25
FIXPJ entry name 25
FIXPR entry name 2%
FJXPD entry name 25
FIXPI entrcy name 25
FIXPJI entry name 25
FIXPR entry name 25
Floating-point list item 39,40
Flowcharts 42-88
Format
controls, Hellerith 42
of FORTRAN loyical records 88
of NAMELLSY output 36
FORMAT
(see alsco FORMAT Processor)
closing parenthesis 39
ccdes 38-42
control 37-42,1
CEKBF 37,38
CHCIA 31,32
cnery 32
CHCIE 36,37
CHCIF 37-39
(see also I/0 library, overview;
Conversion routines)
conversion code 39-42
parenthesis 38,39
repetition factor 38
scale fa~tor 39

statement, operations involving
(see FORMAT control)
string 37,38
table 38,39
FORMAT Processor (CHCIF) 37-39
calls from other rcutines
CHCIA 31,32
CHCIE 36,37
CHCIU 42
(see also I/0 library, overview)
flowchart 69
Format-V records 34
Formatted READ 37-42,8
Formatted WRITE 37-42
with list 10
without list 11
FORTRAN
compiler 31,35
CEKBF routine 37,38
SYSPFMT entry point to CEKBF 37,38
data management 87,88
combinations of DSORG and
RECFM 87,88
logical records 88
unformatted logical records 88
(see also Data Control Block)
source statements 14
Fraction- I/0 involving 39,42
FRXPD entry name 25
FRXPI entry name 25
FRXPJ entry name 25
FRXPR entry name 25
Functional flow
170 library routines 7
mathematical library subprograms 4,5
Function values of mathematical
subprograms 14-23
Functions
mathematical subprograms 14-21
service subprograms 26-29

G conversion code 40-42
GAMMA subprogram 19,5
GATE
DCB 33
/0 29,33,34
macro instruction facility 29,33,34
GATRD macro instruction 34
GATWR macro instruction 33,34
General Input Conversion (CHCIS) 41
calls from other routines
CHCID 35
CHCIF 37,38
{see also I/0 library, overview)
flowchart 81
General Output Conversion (CHCIT) 42
calls from other routines
CHCID 35,36
CHCIF 37,38
CHCIN 40
(see also 1I/0 library, overview)
flowchart 82
GET macro instruction 34
GTWRC macro instruction 34

H conversion code 38
Header and trailer records in NAMELIST

output 36

Hexadecimal input conversion (see
Alphameric and Hexadecimal Input
Conversion}

Hexadecimal ocutput conversion (see
Alphameric and Hexadecimal Output
Conversion)

Hollerith format controls 42

Housekeeping functions, I/O 43

Hyperbolic sine and cosine
subprograms 17,5

Hyperbolic tangent subprograms 19,5

1 conversion code 38, 39
I/0 Control (CHCIC) 33-35
calls by other routines 30
CHCIA 31,32

CHCID 35
CHCIE 37
CHCIF 37
CHCIU 42
CHCIW 30

(see also 1I/0 library, overview)
flowcharts 50-67
I/0 Initialization (CHCIA) 30-32
called by FORTRAN compiler 35,66
flowchart 50
(see also I/O0 library, overview)
1/0 Interruption and Machine Indicator
Routine (CHCBD) 41
I/0 library 30-42,2-13
calling relationships 6,7
housekeeping functions 42
internal relationships 3-13
overview 2,3-13
subdivisions 3
(see also I/0 routines)
170 list control routines 3,7
1/0 operation control routines 3,7
I/0 operations (see BACKSPACE operation;
END FILE operation; PRINT operation; PUNCH
operation; READ operation; REWIND
operation; WRITE operation; WRITE
Initialize operation)
I/0 PSECT 42
I/0 routines 30-42,2-13
attributes 30
names 30,89
PSECTs 30
save areas 30
work areas 30
(see also Data Conversion routines)
1/0 services control routines 3,7
I/0 statement (see 1/0 operations)
Indirect-reference mathematical
subprograms 25,1,2,1t
Indirect-reference service subprograms 2
INOUT (OPEN coption) 3&
INPUT (OPEN option) 34
Integer input conversion (see Real and
Integer Input Conversion)
Integer Output Conversion (CHCIH) 39
calls from other routines
CHCIF 137,38
CHCIT 42
(see also I/0 library, overview)
flowchart 71

Index 95

Integer result, how passed 1u
Interrupt and Machine Indicator Routine
(CHCBE) 26-28,4
flowcharts 4u-46
Item length 37
Item type 15-23,36-41

JFCB (Job File Control Block) 33
KEYLEN values 32

L conversion code &1
Label, data set 89
Left parenthesis 35
Linkage
I/0 routines 30
(see also I/0 Communication)}
mathematical subprograms 14
service subprograms 26
(see also Calling relatiounships)
List control 2,3
flag in DCB prefix 32
(see also 170 library, overview; List
Item Processor)
List item 36-42
binary 39
complex 40
double-precision 39,40
floating-point 39,40
single-precision 39
List Item Processor (CHCIE) 30,36-~37
called by FORTRAN compiler 31
{see alsc I/0 library, overview)
flowchart 70
List processing (see List ccntrol)
List Termination (CHCIU) 30,42
called by FORTRAN compilier 31
flowchart 86
(see also I/0 library, overview)
Literal character string 42
Log-gamms and gamma subprograms 19,5
Logical constan: 41
Logical Input Conversion (CHCIG) 41
calls from other routines
CHCIF 37,38
CHCIS 41,42
(see also I/0 library, overview)
flowchart 82 :
Logical Output Conveysion (CHCIR) 41
calls from other routines
CHCIF 37,38
CHCIT 42
(see also I/0 library, overview)
filowchart 83
Logical record 90

CHCIC 34
CHCID 35
CHCIE 37
CHCIF 39

Macro instructions
BSP 33,35
CEKT1...CEKT6 - 25

96

CEKZA 25
CEKZD 25
 CLOSE 35
GATE farvility
GATWR 33, 34
GATRD 33, 34
GTWRC 34
GET 33,34
in I/0 library 33
in mathematical library 25
NOTE 33,35
OPEN 34,35
POINT 33,35
PUT 33,34
READ 33
SAVE 25
SETL 33-35%
STOwW 33
WRITE 33,34
Mathematical library 14-25,
calling relationships 4,
internal relationships 2-5%
overview 2-5
subdivisions 2
Mathematical subprograms 14-25,2-5
accuracy figures 15-19,23,24
arguments 15-23
attributes 14
computations 15-23
definitions (descriptive
equations) 1%-23
direct-reference. 15-2%
entry names 15-295,91
entry parameters 16
equations 15-23
error action 14
exit parameters 14
functions 14-21
indirect~reference 23-2%
interrelationships 4,9
overview 3-5
purposes 15-23
storage estimates 15%-23
tables 4,5,1%-21
Minus sign, I/70 involving 39~41

-5

-y
E4
o
>

n field 39
N conversion code 42
NAMELIGT
controis 1,3
CHCIA 31,32
CHCIB 32
CHCIC 34
CHCID 35,36
CHCIS 32
{see also I/0 library, overview)
dimension product 136
foruwat for outrput 36
header and trailer records 36
input 36
name 35,36
notation 36
output 36
record 35
statewent {(se¢ NAMELIZT control:
tabie 35,36
‘trailer and header records 3o

variable 36
(see also NAMELIST Processor)
NAMELIST Processor (CHCID) 35,36
called by CHCIaA 31,32
{see also I/0 library, overview)

flowcharts 68-69
Names
I/0 routines 30,91 1

mathematical subprograms 14-23,91
service subprograms 27,91
Natural and common logarithm
subprograms 15,4
Non-format-V records 34
Notation, NAMELIST 36
NOTE macro instruction 35

e

OPEN macro instruction
Ooutput buffer 34
Overview 2-13

34,35

Packed decimal conversion 39
Padding 34,39
Parameter lists (general information)
I1/0 routines 30 .
mathematical subprograms 14
service subprograms 26,28~30
Parenthesis 35,38,39
PAUSE subprogram 29-30 :
(see also Exit Routine; I/0 library,
overview)
PDUMP subprogram 29
(see also Dump Routine; I/0 library,
overview)
Physical record 37,90
POINT macro instruction 35
Powers of ten, table 39
PRINT operation 7

CHCia 31
CHCIE 36
CHCIU 42

(see also L/0 library, overview)
Program interruptions 26
PSECTs
I/0 routines 30,91
(see also I/0 Communications)
mathematical routines 23,91
label generation 1
locations passed in register 13 25
PUNCH operation 7

CHCIA 31
CHCIE 36
CHCIU 42

(see also 1I/0 library, overview)
PUT macro instruction 34

Quote 42

Range of data field 39,40
READ macro instruction 33
Read-only data set 34
READ operation 31-42

formatted 8

with list 8,9

with NAMELIST 9

without list 8,10
unformatted 9,10
(see also I/0 library, overview)
Real argument (notation) 23
Real and Integer Input Conversion
(CHCII) 139
calls from other routines

CHCIF 37,38 T
CHCIM 40
CHCIS 41,42

(see also 1/0 library, overview)
flowchart 75
Real Output Conversion (CHCIJ) 40
calls from other routines
CHCIF 37,38 .
CHCIT 42 ¢ o
(see also I/0 library, overview)
flowcharts 73,74
Real result, how passed 1u
RECFM (see Record format)
Record format (RECFM)

v
DSORG considerations gggﬁ 32
format-v 34 £ g
non-format-v 34 b
Records T
blocked 34,35
logical (see Logical record)

physical 90,37

unblocked 35
Register save areas (I1/0 routines) 3Q,
Repeat constant 35)
Repetition factor, FORMAT 38
Repetition notation for NAMELIST I/0 36
Return parameters (see Exit parameters)
REWIND operation 13 o

CHCIA 31,32 o

CHCIC 33-35

(see also I/0 library, overview)
Right parenthesis 38,39
Routine names

I/0 91,30 .

(for 1list, see Table of Cpntents)
mathematical 91,14-21

MIE 6

for indirect-referengg .o
subprograms 21,2% T
service subprograms 26-29,
RE A |

NIE a
s field 40-42 P
Save areas for I/0 routines 30
(see also 1I/0 Communication)
SAVE macro instruction - 25
Scale factor, FORMAT 39
Sense light subprograms (SLITE,
SLITET) 26-28
Service subprograms
attributes 27
entry names 26,27
entry parameters 26
error checks 26-27
parameters 26
SETL macro instruction 35
Sign of number, I/0 involving 39-41
Significant digits 42
Simple variable 36
SIN subprogram 17,5
Sine and cosine subprograms
hyperbolic 17,5
trigonometric 17,5,16

26-29,2 Y,

Index

97

Single-precision
argument (notatiom) 23
list item 39
SINH subprogram 17,5
Size of data field 39,40
SLITE and SLITET subprograms 26-28
Source program (see User program)
Spaces, in FORMAT I/0O 38
(see also Blanks)
Spanning 34,90
Specification Exception Handler 26-28
Square root subprograms (CSQRT, CDSQRT,
DSQRT, SQRT) 15,4
STOP subprogram 29,30
(see also Exit Routine; I/0 library,
overview)
Storage estimates
mathematical subprograms 15-23
service subprograms 27
STOW macro instruction 33
Subdivision, arxay 36
Subscripted variable 36
Subscripts 35,36
Supervisor 6
SVC imstruction 30
SYNAD exit 33,89
Syntax of FORMAT string 37,38
SYSIN 33
S¥YSLIB 1
sysour 1,3
CHCIB 33
CHCIW 29
CHCIX &2
SYSPFMT entry point to CEKBF 37,38
System entry name 21,23,25
System intexrruption handler 28

T conversion code 38,41
Table of powers ten 40
TAN subprogram 17,8
Tangent subprograms
hyperbolic 19,5
trigonometric 17,8
TANH subprogram 19,5
Task Supervisor 37
Ten, powers of, &)
Terminal entxy to RAMELIST table 36

- 98

Trailer and header records in NAMELIST
output 36

Trigonometric sine and cosine
subprograms 15-17,5

Trigonometriec tangent subprograms 17,4
Truncation, in I/0 41

Type (real, integer, etc.’) 36-42,15-23

Unblocked records 35
Unforiwatted@ FORTRAN logical records 90
Unformatted READ 9,10,33
with list 9
without list 10
Unformatted WRITE 12
UPDATLE (CPEN option) 34
User entry name 24
User program 30,36, 37
diagram showing interface with 1/0
library 6

VAM 34,35
Variable
class 15-23,36
location 36
name 35,36
NAMELIST 36
‘simple 36
subscripted 36
type 15-21,36
Virtual Acaoess Method (VAM) 34,35
VPAM data set 34

w field 39-43
Width of data field 38-42
Work areas (see PSECTs})
WRITE Initialize operation 34,35
WRITE macro instruction 34
WRITE operation 31-42
forwatted 10,11, 34
with list 10-12,36
with NAMELIST 11,34, 36
without list 11,12
unformatted 12
(see also I/C library, overview)

Z conversion code 41,42
Zoned decimali conversion 39

