File No.

Program

Version 8.1

IBM System/360 Time Sharing System
Linkage Editor

Describes the internal logic of the linkage editor for
the IBM Systemv/ 360 Time Sharing System (TSS/360).
(Another publication, IBM System/360 Time Sharing System:
Linkage Editor, GC28-2005, explains how the linkage edi-
tor is used.) The linkage editor is an optional facili-
ty; its use is not required to successfully run programs
in TSS/360.

e Explains the structure of an object module and its
program module dictionary.

* Describes the relationship between the linkage editor
and TSS/360.

¢ Provides details on the three phases of linkage edi-
tor processing - control statement, output, and
early-end. (Flowcharts are also provided.)

In TSS/360, the output of a language processor or the
linkage editor is an object module; it is input to the
dynamic loader. With the linkage editor, a user may per-
manently link separate but related object modules into
one object module, reducing dynamic loader processing
time. He may also, without having to reassemble or
recompile his program, use the linkage editor to: com-
bine control sections within a module (possibly saving
storage and reducing paging activity during execution);
change control section attributes; change or delete con-
trol section and entry point names; or change external
references.

This book is for customer engineers, system engineers,
and programmers who need to pinpoint problems, and system
programmers involved in altering the linkage editor
design.

Before using, be familiar with the contents of:

IBM System/360 Operating System: Principles of Opera-
tion, GA22-6821

IBM System/360 Time Sharing System: Concepts and
Facilities, GC28-2003

5360-31

GY28-2030-2

Logic

Third Edition (September 1971)

This publication has been revised to incorporate cumu-
lative changes added by Technical Newsletters and to
follow new IBM guidelines for program logic manuals.
The book has been reorganized and much of it has been
rewritten. (The Preface explains the new organiza-
tion.) sSignificant changes will be indicated by a
vertical line beside the changed text. A glossary has
been added.

Inclusion of the DXD and CXD instructions and the Q-
type address constant to the TSS/360 assembler (to
allow assembler-produced object modules to interface
with PL/I-produced modules) requires the use of new
fields in the program module dictionary (PMD) and new
lines in the PMD listing. These changes to TSS/360 are
reflected in the linkage editor in the addition of
MD500, a subroutine of the LSTPMD (PMD Listing) xou-
tine. This subroutine is described as well as new

" changes to the PMD format (Appendix A).

This edition is current with Version 8, Modification 1,
of the IBM System/360 Time Sharing System (TSS/360),
and remains in effect for all subsequent versions or
modifications of TSS/360 unless otherwise noted. Sig-
nificant changes or additions to this publication will
be provided in new editions or Technical Newsletters.
Before using this publication, refer to the latest edi-
tion of IBM System/360 Time Sharing System: Addendum,
GC28-2043, which may contain information pertinent to
the topics covered in this edition. The Addendum also
lists the editions of TSS/360 publications that are
applicable and current.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page impre-
ssions for photo-offset printing were obtained from an IBM 1403 Printer
using a special print chain.

Requests for copies of IBM publications shculd be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's com-
ments. If the form has been removed, comments may be addressed to the
IBM Corporation, System/360 Time Sharing System Programming Publica-
tions, Department 643, Neighborhood Road, Kingston, New York 12401.

© Copyright International Business Machines Corporation 1967,1971

THE PURPOSE OF THIS BOOK

This book is one of a series of TSS/360
program logic manuals; it describes in gen-
eral and in detail how the TSS/360 linkage
editor works. The book is intended for use
by programmers and customer engineers who
need detailed information about the linkage
editor and system programmers responsible
for changing it. Using this boock for gui-
dance, even more detailed information about
the linkage editor can be found in a
printed or microfiche listing of the pro-
gram. (The linkage editor is contained in
the TSS/360 object module CEYTS.)

TO USE THIS BOOK, YOU NEED ...

An understanding of the general principles
of System/ 360 and the main concepts of TSS/
360, such as virtual storage. This infor-
mation is available in:
IBM System/360 Operating System: Prin-
ciples of Operation, GA22-6821.
IBM System/360 Time Sharing System:
Concepts and Facilities, GC28-2003.

OTHER BOOKS YOU MAY NEED ...

This book contains a brief summary of how
the linkage editor is used. The basic how-
to-use-it book, containing more extensive
information, is:

IBM System/360 Time Sharing System:
Linkage Editor, GC28-2005.

Input to the linkage editor comes from lan-
guage processor control (LPC). This book
describes the LPC interface; however, a
more thorough treatment is provided in:

IBM System/360 Time Sharing System:
Command System Program L.ogic Manual,

GY28-2013.
Output from the linkage editor -- the
object module -- becomes input, prior to

execution, to the dynamic loader. How the
dynamic loader processes the object module
is described in:

IBM System/360 Time Sharing System:
Dynamic Loader Program Logic Manual,
GY28-2031.

HOW

The

PREFACE

THIS BOOK IS ORGANIZED

book is divided into these sections:

Introduction™ -- Defines
the linkage editor, describes input and
output, and explains the general struc-
ture of an object module.

"Section 1:

"Section 2: Method of Operation"™ --
Describes the linkage editor's rela-
tionship to the user and TSS/360, and
discusses its three phases of
processing.

"Section 3: Program Organization™ --
Describes individual routines and sub-
routines within the linkage editor, and
contains flowcharts for the routines.

"Section #4: Directory®™ -- Contains a
directory to routines, correlating
entry point and routine names to flow-
chart designation.

"Section 5: Data Areas"™ -- Describes
tables, 1lists, and work areas used by
linkage editor routines; also contains
a PSECT organization table.

"Section 6: Diagnostic Aids" -- Con-
tains suggestions for debugging (for
instance, where to take dynamic dumps).

"Appendix A: The Program Module Dic-
tionary"™ -- Illustrates and describes
the format of the PMD.

"Appendix B: The Internal Symbol Dic-
tionary® -- Discusses the ISD, and
illustrates and describes the format of
the composite ISD directory.

"Appendix C: Diagnostic Messages" --
Contains a numbered 1list, with error
levels, of messages the linkage editor
may issue to the user.

"Appendix D: Glossary™ -- Defines spe-
cial terms used in this book.

iii

CONTENTS

SECTION 1: INTRODUCTION .+ 2« « o o o « o o o o« =
What the Linkage Editor Does
How the Linkage Editor is Used . . . «
Inpat < <« ¢ ¢ ¢« ¢ ¢ 4 4t e e e 4 e a e e e e s
Output e e « s s e e « e ® e o e =
What An Obiject Module iIs v 4 4 e i h e e e e .
Structure of an Object Module
Program Module Dictionary
Text © e o o o o ° 4 o a o s o =
Internal Symbol Dictionary . « « « « « .« .
Ccontrol Sections . .« ¢ ¢ v ¢ ¢ 4 4 e 4 e s e w
Attributes of Control Sections « . .
Common Control Sections « « ¢« « « & + ¢« « o« &
Mixing Object Modules« . &« v « « « « .
Managing Program Libraries . . . - o

Comparison Between TSS/360 and OS/360 Linkage Editors
Linkage Editor Size Requirements and Limitations

SECTION 2: METHOD OF OPERATION
Relationship to the System . . s e s o
The Three Phases of the Linkage Edltor e e
Control Statement Processing . «
Output Processing . « « ¢ « o o o o o « « o =
Early-End Processing . .« « ¢« ¢ o o o o o o« =
The Language Processor Control Interface . . .

SECTION 3: PROGRAM ORGANIZATION . . . & o o« + o
Control Statement ProcesSSOr « « « « « o » o o =

« ® o e e

Function Summary « . B . - e e e e e
APENCX, APENEX, APENIN -- Append RLD (CEYCX, CEYEX, CEYIN) .
BRING -- Bring PMD, Text, and ISD from Library (CEYBR) . . .
COMBINE -- COMBINE Statement Processor (CEYCO) e o o ® e« o @
END —-- END Statement Processor (CEYEN) . . . < « ¢ o o « o =
ERROR -- Error Message Processor (CEYER) . . . ¢ ¢ o o « o =«
EXTREF -~ External Reference Search (CEYXR} . . . « « . + .« .
GETCSD -- Locate Control Section Dictionary (CEYGC) . « . . .
GETLINE Routine (CFADB) . . ¢ o« o o « o 2 s o« s o = s« @ s =» =
GTCSAD -- Get CSD Table Addresses (CEYGA)« . .
INANAL -- Control Statement Input/Analyze Processor (CEYIA1l)

INCLUDE —-- INCLUDE Statement Processor (CEYIC) e e o s o e @
LINK -- Link Modules (CEYIK) . . . ¢ ¢ ¢ o a o o o o« « « « =
PUTDIAG (CFADC1 in Module CFADC) « o e = « o 8 o = s o e =
RENAME -— RENAME Statement Processor (CEYRN) « « o s o = &
SCAN -- Scan (CEYSC) . . « « + « . - s s = @ s « o « =
TRAITS -- TRAITS Statement Processor (CEYTR) « s e e e s o o

Output PXOCESSOr =« o ¢ o 2 o o « o o o o a o o « o « =

Function Summary e« e o o 2 e o o o
OUTPUT -- Output Processor (CEYOP) « e e e e e e .

Early-End PIOCESSOT « « « o « « « o « o o » s« o o o o @

Function Summary - . e . e e .
EARLY END =-- Early—End Processor (CEYEEl) « e e e

FLOWCHARTS .+ ¢ v o o o o « o o o o« « s s o =2 o s o o =

SECTION 4: DIRECTORY =« <« « o o « o o o o s o o « o a s
Linkage Editor Routine Directory . .« « « « « « « « « =

SECTION 5: DATA AREAS v v 2 o o = o » o o o o =« 2 o s« =
Common Areas (Storage Areas, Tables, and Lists)

WOWwomod AV ELIPWWRNRRERE

Common Internal Storage ATeas . . ¢ « « « « s « = o« &«
WOXK ATEAS « v o o o o o o s o o o o o o o a = o « « « s «
TEMP StOrage =« « « « o o« o o« o s s s o o « a o a o =« = =« =

iv

Common Internal Tables and Lists
Exclusion Table (EXCLUD)
External Name List (NAMES)
Hash Table (HASHTB) . . . e e e e = .
Rename/Combine Table (RCTBL) e e o e @
Stack Table (STACK) . « + ¢ « o a s o o

Reference to Tables and Lists « .

PSECT Organization « « & ¢« « . .

SECTION 6: DIAGNOSTIC AIDS . 2 o « o « « =
General Debugging Aids < . .

APPENDIX A: THE PROGRAM MODULE DICTIONARY .
PMD HEADING e« e e+ e e @
Control Section chtlonary (CSD) « o s e e
CSD Heading . « « ¢ 4 o o o o o « o o« o «
Definition Table « « « « . . .
Reference Table e e e s e e
Relocation Dictionary (RLD) « e e e = o« .
Modifier Pointer+« .« . <« ¢« . .
Modifier .+ « o o ¢ o o o o o o « o o =
RLD for Complex Definitions « e e .

RILD for Text External Reference « e e .

RLD for Text Internal Reference
Virtual Memory Page Table (VMPT)

APPENDIX B: THE INTERNAL SYMBOL DICTIONARY
The Composite ISD . . . « ¢ v o « o o o =« =
The Composite ISD Directory + . .
Directory Heading « o e e e
Entries for Each Input Module « s e o o o
Composite ISDs as Input « « « « .

APPENDIX C: DIAGNOSTIC MESSAGES
APPENDIX D: GLOSSARY .+ « & « ¢« o o o « « =

INDEX ¢ o ¢ o o o o o o o o a o s« = « o o« =

ILLUSTRATIONS

Figure 1. Structure of an object module « « . .
Figure 2. Overview of linkage editor processing
Figure 3. Relationship between linkage editor and LPC
Figure 4. Control statement processing flow«
Figure 5. Overview of the control statement processor
Figure 6. Overview of the output processor « « + o« =
Figure 7. Overview of the early-end processor . . . « « « + « =«
Figure 8. Exclusion table (EXCLUD) format
Figure 9. External name list format <« . . ¢ ¢« ¢« ¢ &« « .
Figure 10. Hash table (HASHTB) format . . . e o e e o s = o
Figure 11. Rename/combine table (RCTBL) format « e o o 4« = e o e
Figure 12. Stack table (STACK) format . . « o & o« o « « o « « =
Figure 13. Program module dictionary format
Figure 14. Composite ISD directory format & . . .

Table 1. Controlling the linkage editor « e e e
Table 2. Control statement processing hierarchical table « o
Table 3. Output processing hierarchical table
Table 4. Early-End processing hierarchical table
Table 5. Linkage editor routine directory . .« . « «
Table 6. Data references by routines . . . <« ¢ &« ¢ ¢« &« ¢+ o« « &
Table 7. PSECT organization . . .« « « o o o o o o « o o o + = =
Table 8. Register USAge « « « o o « o « o o o 2 o o o o« o« = o &
Table 9. Size limitations and requirements

Chart AA. INANAL, INCLUDE, COMBINE, RENAME/DELNAME, TRAITS, and
END statement pProCeSSOIrS . « « o o « « « « o o o = « e e e e .
Chart AD. COMSUB - Combine Control Section subroutlne e o o o @
Chart AH. CLEANUP - Cleanup Final Module subroutine
Chart AI. COLLECT - Collect Common Requirements subroutine and

FIXISD - Fix ISD subroutine < ¢ ¢ ¢« ¢ ¢ o o ¢ o o o o« o «
Chart AJ. LINK - Link Modules subroutine« <« . . .
Chart AK. UPISD - Update ISD subroutine « « « . .
Chart AL. APENDF - Append Definition Table subroutine

Chart AM. APENCX, APENEX, and APENIN e e * »
Chart AN. BRING - Bring PMD, Text, and ISD from lerary « e e .
Chart AO. ERROR - Error Message Processor . . « . . « o e e
Chart AP. EXTREF - External Reference Search and GETCSD - Locate
Control Section Dictionary « . e e e e e e =

Chart AQ. GTCSAD - Get CSD Table Addresses and SCAN - Scan

SUDroutine .+ « o o« « « o« o« o o « o s « a« o« a o s s s a o o o o o
Chart BA. OUTPUT - Output routine . ¢ ¢ ¢ « ¢ 4 o« o « o o o o =
Chart BB. LSTPMD - Program Module Dictionary Listing subroutine
and MD240 subroutine . . . e 4 « 2 2 a o e o e e o 8 = @ o o
Chart BC. MD300 and MD350 subroutlnes s e s o o e = s e = s s @
Chart BD. MD450 and MD500 subroutines . .« ¢« « « ¢ o ¢ o o =« « =
Chart BE. MD600 subroutine ¢ ¢ ¢ ¢ &t @ « o« o o o o o« « =
Chart CA. EARLY END - Early-End routine « & « .« .

vi

The linkage editor is a TSS/360 program
called into operation when a user issues an
LNK command. The LNK command causes the
linkage editor, contained in a single
object module named CEYTS, to be loaded
into the user's virtual storage.

While the linkage editor can be consi-
dered a service program, it has some char-
acteristics of a language processor. As a
result of linkage editor processing, a
source data set is created consisting of
linkage editor control statements, and, as
with language processing, the primary out-
put is an object module.

WHAT THE LINKAGE EDITOR DOES

The linkage editor has two distinct
functions:

1. It links two or more existing object
modules into one new object module.

2. It edits, that is, changes, control
information in an object module,
obviating the need to reassemble or
recompile the source program. The
linkage editor can change or delete
control section names or entry point
names, change external references,
change control section attributes, or
cause control sections within a module
to be combined.

Besides these two primary functions, the
linkage editor can also be used to recreate
an existing object module in another pro-
gram library.

The linkage editor, on completion of
successful processing, has produced a new
object module; the object module or modules
used as input still exist, to be retained
or erased as the programmer desires.

HOW THE LINKAGE EDITOR IS USED

A TSS/360 user may wish to link two or
more related object modules into one
module. He may have written a large pro-
gram and, for convenience, divided it into
parts that he assembled or compiled separ-
ately. These separate object modules con-

SECTION 1: INTRODUCTION

tain control information (provided as the
result of the user's language statements)
that relates them to each other. When the
user calls one object module to be
executed, the TSS/360 dynamic loader will
load not only that module but all others
that it references. If the linkage editor
is used to permanently join these object
modules into one object module, dynamic
loader processing time will be saved. The
TSS/360 user must decide whether the load-
ing time saved on subsequent runs is worth
the one-time investment in linkage editor
processing.

The user may wish to combine control
sections within a module. Since in TSS/360
each control section, regardless of length,
begins on a page boundary, combining short
control sections (those much less than 4096
bytes) can mean better utilization of
external storage and less paging activity
during program execution. With the linkage
editor, the user can combine control sec-
tions without having to rewrite and then
reassemble or recompile his program.

The user may also use the linkage edi-
tor, without having to reassemble or recom-
pile, to change or delete control section
names and entry point names, to change
external references, or to change control
section attributes.

The user may find it convenient to use
the linkage editor for several purposes,
and he can do so within a single linkage
editor run.

The linkage editor is invoked in either
a conversational or nonconversational task
with the LNK command. The user follows
immediately with a sequence of linkage edi-
tor control statements which must terminate
with an END statement. (These control
statements are described in Table 1.) The
linkage editor provides diagnostic messages
as the statements are entered; the terminal
user may make immediate corrections. Fol-
lowing the END statement, the linkage edi-
tor provides a list of unresolved external
references (presumably these references
will either be resolved in subsegquent link-
age editor processing or be left for reso-
lution by the dynamic loader).

Section 1: Introduction 1

Table 1. Controlling the linkage editor

*Placement Ruless

not be placed after END).

least one previous form-1 INCLUDE must have occurred.
4. The END statement must be last.

1. A COMBINE, TRAITS, or RENAME statement may precede any other COMBINE, TRAITS, or RENAME statement,
a form-1 INCLUDE, or END (it will not be processed if it is stacked when the END statement
occurs). It cannot be immediately followed by a form—2 or -3 INCLUDE.

2. A form-1 INCLUDE can be placed before, between, or after any other statement except END (it may

3. A form-2 or -3 INCLUDE must have been immediately preceded by a form-1, -2, or -3 INCLUDE, and at

¥ T T T ¥ T L] T L] 1
| | Name of { Whether i Program { i] i . | - |
§ TSS/360 user | output | control | Library in | Version | zgenguce | ‘:}(jegziguce I V;Eirgmgo ! 1;;2; r !
| issues INK command | Object | Statements | Which to | I R | pup pisting | Listin i llvrerént i
{ specifying: | Moaule | Prestored | Place Output | | i 9 P |
| t t t + + + + 4
i Default: | Must | Not | Latest library | System- Produce | Don't produce |conv: Storel |
| | specify | prestored | created | provided IsD | PMD listing |Name: Print} 106,100 |
[1 L 1 L 1 1 i 4
L) L) T] 1
| Then issues any | i | |
} of the control | | Placing the { |
| statements below: | Also specifying: | control statement:* jas a result, the linkage editor:|
% + t + 1
| COMBINE |Names of control sections{Ahead of a form-1 INCLUDE{At the next form-1 INCLUDE, com-|
I [to be combined. |which will specify the |bines all contxol sections named|
| | |object module containing |into the first control section |
| | | the control sections. jnamed in the COMBINE statement. |
k i + t 1
| RENAME j0old and new external |ahead of a form—-1 INCLUDE|Changes or deletes specified |
i | references, entry point |which will specify objectinames in first object module

i |names, control section |module containing names. |named in next form-1 INCLUDE. i

names.
; 1 ; ; ;
{ TRAITS |Name of control section |Ahead of a form-1 INCLUDE|Changes attributes of specified |
| |and new attributes. |which will specify object|control section in first module |
i | |containing control sec- |named in next form-1 INCLUDE. |
tion.

é ; ; ; |
| INCLUDE (form-1) |{The ddname of a program |Before END. |causes the specified object mod-|
{ {library and object module| {ule to be included in the output|
i {in it. | jobject module and any stacked |
i | { | COMBINE, RENAME, and TRAITS i
i | i | statements to be processed. i
L 4 L i 4
¥ T T) a1
§{ INCLUDE (form-2) |The ddname of a program |After at least one pre- |Searches library, includes in |
i |library to be searched. |vious form-1 INCLUDE. |output module all modules |
| | | |referenced by previously i
i i | fincluded modules. |
k + t + 1
| INCLUDE (form-3) |The ddname of a program |After at least one pre- |Searches library, includes in {
i |1ibrary followed by a {vious form-1 INCLUDE. Joutput module all modules refer-|
| |minus sign; names of ex- | enced by previously included |
i |ternal references not to | |modules, except those containing]
| | be resolved. | |the external references |
{ | | Ispecified. 1
i + 1 + 1
| END |Blank. jLast. |Searches all libraries on the |
I 1 | {current program library list for}
i | { {modules satisfying unresolved |
i | | | references, includes modules in |
| | | jocutput module. Furnishes mes- |
i | | |sage listing unresolved refer- |
i | | |ences and those resolvable in |
| | | | SYSLIB. |
i i i L 4
Ly L)
| |
{ |
i |
| |
| 1
| |
| |
| |
|]
1 J

INPUT

Input to the linkage editor consists of:
1. LNK command parameters.

2. Control statements.

3. ©One or more object modules.

Following an LNK command, the user pro-
vides control statements specifying actions
for the linkage editor to take. A summary
of LNK command parameters and linkage edi-
tor control statements is provided in Table
1. More detailed information on the com-
mand and control statements is in IBM
System/360 Time Sharing System: Linkage
Editor, GC28-2005.

The names of one or more input object
modules are specified by the user as
operands in his control statements.

OUTPUT

Output from the linkage editor consists
of :

1. A new object module.

2. A listing of the program module dic-
tionary (PMD), if requested.

3. An external name list.

The object module is placed in the pro-
gram library (virtual partitioned data set)
named by the user in his LNK command. It
must be a different library from those con-
taining the input modules.

The PMD listing shows the contents of
the program module dictionary (the control
information) of the new object module. The
format of this listing is illustrated in
Appendix A of IBM System/360 Time Sharing
System: Linkage Editor. (The format of
the PMD itself is shown in Appendix A of
this book.) ‘

The PMD listing must be requested in the
LNK command. The listing is either stored
as a list data set for future access or
printed immediately and not retained in
storage. Unless the user specifies the
opposite, the PMD listing for a terminal
(conversational) user is written as a data
set on external storage; the PMD listing
for a batch (nonconversational) user is
printed. If a terminal user specifies
LISTDS=N, the listing is typed out at his
terminal (and is not stored as a data set}.

In addition to the output object module
and optional PMD listing, the linkage edi-
tor produces an external name list. The

user does not see the external name list
(which contains a list of external defini-
tions in the output module); it is passed
to the system for use in storing the module
so that it may later be accessed by
reference to any of the external names.

In addition to the linkage editor out-
put, a source data set containing the link-
age editor control statements is created by
TSS/360's language processor control as a
result of linkage editor processing. The
user thus has a stored set of control
statements which he may use in or modify
for later linkage editor processing.

WHAT AN OBJECT MODULE IS

In TSS/3€0, the primary output of a lan-
guage processor (assembler, FORTRAN compil-
er, or PL/I compiler) or the linkage editor
is an object module. (Other TSS/360 publi-
cations may use the terms "program module”
and "object program module" for "object
module.") The object module contains the
user's program (instructions, data con-
stants, and reserved areas) plus informa-
tion that the system requires to inspect
the program or set it up for execution.

The user may think of this as his program;
the system sees the object module.

After the object module has been pro-
duced by language processing or linkage
editing, the module is stored (until
erased) as a named member of a program
library {(a virtual partitioned data set
containing object modules as members). The
user runs his program by issuing the CALL
command or by using a direct call (that is,
by simply using the object module name as a
command) ; the system responds by locating
the object module, loading it (and any
other modules to which the called module
refers) into the user's virtual storage,
and executing those pages of the object
module(s) that are required.

STRUCTURE OF AN OBJECT MODULE

An object module is divided into:
1. A program module dictionary (PMD).
2. Text (the program itself, consisting
of machine~coded instructions, data

constants, and reserved data areas).
3. An internal symbol dictionary (ISD).
Figure 1 illustrates this structure.

Section l: Introduction 3

PMD Header

Contrel Section 1 Dictionary

Control Section 2 Dictionary
Program module

A picture of the program module dic-
tionary and detailed explanation of each
field in the PMD is contained in Appendix
Aa.

Text

dictionary (PMD) 3
Controf Section 3 Dictionary

Contral Section n Dictionary

Control Section 1

Control Section 2

Text: Instructions and/or _<

dota Cantrol Section 3

Control Section n
Optional internal ISD
symbol dictionary

Figure 1. Structure of an object module

Program Module Dictionary

A program module dictionary consists of:

1. A heading containing the standard
entry point to the module, version
identifier, and other information com-
mon to the entire module. The heading
begins on a page boundary.

2. One control section dictionary (CSD)
for each control section in the
module. Each CSD contains information
regarding the CSECT version, external
symbol definitions and references,
relocation pointers, and information
relating text pages in the control
section to virtual storage pages.

When linkage editing input modules, the
program module dictionary of each module is
referenced to produce a single program
module dictionary for the output module.

The text contains the program itself;
the instructions, data constants, and
reserved but non-initialized data areas. A
control section is composed of one or more
pages (units of 4096 contiquous bytes);
these pages may be text pages or empty
pages (pages that simply reserve 4096 bytes
as the result of some DS or ORG assembler
instruction). Text pages actually exist on
some external storage medium; empty pages
exist only within virtual storage allocated
to the control section. Information in the
CSD relates text pages to the control sec-
tion's total virtual storage.

The text is not changed during linkage
editor processing.

Internal Symbol Dictionary

The internal symbol dictionary (ISD)
contains the location, length, and type of
all internal symbols. The ISD enables the
user to debug his program using TSS/360°'s
program control system (PCS). The ISD
begins on a page boundary.

The assemblex, FORTRAN, or linkage edi-
tor user will automatically receive an
object module containing an ISD, unless he
explicitly states otherwise in his language
command. If no ISD is present, internal
symbols in the module will not be access-
ible to the user with PCS commands. (The
PL/I user does not have an option; the PL/I
compiler does not produce an ISD.)

The linkage editor simply includes as
part of its output module each ISD present
in input modules; it does not develop its
own list of internal symbols. This linkage
editor—generated ISD is called a composite
IsD, and consists of:

1. A directory pointing to each included
ISD in the output module.

2. A chain of the included ISDs.

If one of several input modules does not
have an ISD, the composite ISD will contain
all other input ISDs. The user will simply
not be able to access internal symbols in
the part of the output module for which
there was no input ISD.

The compocsite 1ISD can contain both
compiler- and assembler-produced ISDs as
well as composite ISDs produced by previous
passes through the linkage editor.

Appendix B illustrates and describes the
format of the directory portion of the com-
posite ISD. The ISDs produced by the
assembler and the FORTRAN compiler differ
slightly and are shown, respectively, in
IBM Systemnv/360 Time Sharing System:
Assembler Program Logic Manual, GY28-2021,
and FORTRAN Compiler Program Logic Manual,
GY28-2019.

Unlike the assembler, the linkage editor
does not produce an ISD listing.

CONTROL SECTIONS

Programs are divided into control sec-
tions, the basic logical programming unit.
It is by the use of a dictionary associated
with a control section that programmers can
make changes to the object module without
recompiling. Each control section in the
module is assigned attributes which can be
overridden with the TRAITS control
statement.

ATTRIBUTES OF CONTROL SECTIONS

A control section may have one or more
of the following attributes:

e Variable length -- a number of pages is
allocated in addition to the declared
length (a control section without this
attribute is considered fixed-length).

e Read-only -- data may not be stored
into the control section.

e Common —-- common to all object modules
in which it is declared.

e Privileged -- eligible to be classed as
a privileged system program when placed
into the system library (SYSLIB).

s System -- part of a system (as opposed
to user) object module.

e Public -- assigned storage so it is
available to other tasks.

e Prototype (PSECT) -- storage containing
the private copy of modifiable storage
made available to each task for public
routines.

COMMON CONTROL SECTIONS

Common control sections are created by
the assembler and FORTRAN compiler to allow
separate programs to access the same
storage area. The sizes of blank (unnamed)
common areas are examined by the linkage
editor. If more than one blank common area
is found in the input, the linkage editor

reserves an area equivalent to the largest
blank common area encountered and ignores
the rest; the data content of the first
common control section encountered is
retained. Named common control sections
are treated similarly to noncommon control
sections, except that common control sec-
tion names are not placed in the external
name list and hence do not become part of
the partitioned organization directory
(POD) of a library.

MIXING OBJECT MODULES

Object modules produced by different
language processors can be linked into one
ocbject module by the linkage editor. This
is because the PMDs produced by the
assembler, the FORTRAN compiler, the PL/I
compiler, and the linkage editor are ident-
ical, except for flags indicating which
processor produced them. The user must
ensure, however, that he has followed link-
age conventions and provided compatible
data forms. He must also be familiar with
the control section mames and functions of
PL/I and FORTRAN produced modules.

MANAGING PROGRAM LIBRARIES

Object modules in TSS/360 are stored in
libraries. A library is a partitioned data
set whose members are object modules. TSS/
360 users have access to four kinds of
libraries:

¢ System library (with the data set name
SYSLIB) -- This library contains pro-
grams accessible to all users, both
TSS/360's programs {(including the 1ink-
age editor) and the installation's own
standard subroutines and functions.

e User library (with the data set name
USERLIB) -- This is the private library
assigned to each user when he is joined
to the system. If the user does not
specify a library to receive his link-
age editor output, the output object
module is automatically placed in his
user library.

¢ Job library (with a user-defined data
set name) -- This is a library that the
user defines during a task by using the
JOBLIB option of the DDEF command.
Commonly, job libraries are used to
hold object modules temporarily; when
debugged, the object module, especially
if it is to be run often, may be trans-
ferred to the user library. A user may
designate the name of a job library in
which the output of linkage editor pro-
cessing is to be placed.

Section 1: Introduction 5

e Other library (with a user-defined data
set name) -- A user may also place the
output of the linkage editor in a
library that is not a job library, by
using the DDEF command without specify-
ing the JOBLIB option. Such a library
may be designated as the source of
input modules or as the destination for
the output module. The linkage editor
does not search this kind of library
for modules containing external defini-
tions that would resolve unresolved
references in the module being deve-
loped by the linkage editor. Modules
in this kind of library cannot be
loaded or called for execution. This
kind of library is not on the user's
program library list.

A more detailed discussion of program
libraries as they relate to the linkage
editor is contained in IBM System/360 Time
Sharing System: Linkage Editor.

Prior to issuing the LNK command, the
user must have defined any libraries from
which he wishes to obtain object modules or
which he wishes to be searched to resolve
external references. He must also define
the library in which the output is to be
placed. (He does not, however, have to
define USERLIB.) Since the output must go
in a library different from any that con-
tained input modules, at least one DDEF

command will be required prior to linkage
editing.

COMPARISON BETWEEN TSS/360 AND 0OS/360
LINKAGE EDITORS

Although similar in function, TSS/360
and 0S/360 (IBM System/360 Operating Sys-
tem) linkage editors are different pro-
grams. Control statements for one linkage
editor are incompatible with the other. 1In
0S/360, a distinction is made between the
output of a language processor (an "object
module®) and the output of the linkage edi-
tor (a "load module"). TSS/360 does not
make this distinction; the output of both
kinds of processor is called an "object
module.™ 0S/360 object modules containing
external references (references to other
modules) must be linked into a load module
prior to being input to the loader. 1In
TSS/360, the linkage editor is always an
optional facility; any object module may
become input to the dynamic loader.

LINKAGE EDITOR SIZE REQUIREMENTS AND

LIMITATIONS

Table 9 in "Section 6: Diagnostic Aids"
lists size requirements and limitations on
the number and size of input modules.

RELATIONSHIP TO THE SYSTEM

When the user issues an
TSS/360 passes control to:

LNK command,
The command analyzer and executor
(CAEE), which passes control to:

Language processor control (LPC), which
passes control to:

The linkage editor.

During linkage editor processing, the

linkage editor calls LPC:
¢ To get each control statement.

e When a diagnostic message is to be
issued.

Commands and control
statements existing in
a pre~stored dota set
(non-conversational

SECTION 2: METHOD OF OPERATION

When a phase of processing is
completed.

I1f, for some reason,
processing.

it cannot continue

The linkage editor also uses system rou-
tines called as the result of OPEN, CLOSE,
FIND, GETMAIN, and FREEMAIN macro instruc-
tions, and directly calls the dynamic load-
er for library searches.

This general relationship between the
linkage editor and the system is shown in
Figure 2. The relationship between the
linkage editor and LPC is shown in Figure
3.

Qutput L

Object Module Program Libraries Input Object Modules
(Partitioned
Dcta Sets)

mode)
]
(N
} Linkage Editor Parameters l |
L and Cortrol Statements |
————— DDEF T Control Statement l
LNK, Other Cmnds Language Processor | Processor |
_____ Linkage Editor Parameters Control {LPC) Diognostic Messages | (Initiation Entry) I
i_‘ L. E. Control Statements i |
| 5 ! |
: | | |
1 l Output Object Module | !
! and External Name List] I
User]ierminal Diagnostic Messages I Qutput Processor i
(conversational mode) } | (Continuation Entry) |
SYSIN and SYSOUT I Optional PMD fisting t |
) i | I
; !]
SYSOUT for R |- !
non-conversational mode | Early-End |
| ® IPn;—cess.cr - |
List Dota Set | Y ey I
or SYSOUT i v |
L Linkoge Editor !
_______ —J
Figure 2. Overview of linkage editor processing
Section 2: Method of Operation 7

| I a
Language Processor Control (LPC)

l
, { Qutput Parameter List
l PUTDIAG I {_ Linkage Edifor i
l ‘ Input Parameter List) l
! T
l | | |
I l I |
| | | |
j Output Parameter List | !
i T Control |
| GETLINE | ! Statement
[} Input Parameter List Processing l
I
| | I |
| | Initiation Entry |
i | | I
l | Input Parameter List } ‘
| l | |
a | Output Parameter List | |
i ! § |
| ! Input Parameter List Continuation Entry ! !
T T
, LPCMAIN ! | Output i
] , Output Parameter List | Pracessing !
| ! I |
! } Input Parameter List] |
| T | |
| ! | ‘
| t Output Parameter List Early - End Entry | |
| | | Early - End |
L. | | Processing |
__________ 1 I
| |
- -
Figure 3. Relationship between linkage editor and LPC

THE THREE PHASES OF THE LINKAGE EDITOR

The linkage editor is divided into the
three main phases or routines:

e Control Statement Processor (entry
point CEYIA1)

e Qutput Processor (entry point CEYOP1)
e Early-End Processor {(entry point CEYEE1l)

When a user requests the services of the
linkage editor, LPC calls the linkage edi-
tor at the initiation (Control Statement
Processor) entry point. Control is
returned to LPC after all control statement
processing has been performed (an END
statement has been received). LPC then
calls the linkage editor at the continua-
tion (Output Processor) entry point to
deliver the final module, the external name
list, and, if the user has requested it, a
PMD listing. After this, control is
returned to LPC and linkage processing is
complete. If it is necessary to premature-
ly terminate processing, LPC enters the

linkage editor at its early-end (Early-End
Processor) entry point for necessary
clean-up.

CONTROL STATEMENT PROCESSING

This phase of linkage editor processing
is illustrated in Figure 4 and is sum-
marized below.

During initialization, work areas are
obtained, and switches and tables are
initialized. Control statements are then
requested from LPC, one at a time. Each
statement is checked for accuracy and
correct sequence in relation to other con-
trol statements. (See the Placement Rules
footnote at the bottom of Table 1 in Sec-
tion 1.) When a COMBINE, RENAME, or TRAITS
statement is received, the statement is
stacked until the next form-1 INCLUDE
statement is received, at which time the
INCLUDE statement processing routine calls
individual subroutines to process each
stacked COMBINE, RENAME, or TRAITS on a
first-in, first-out basis. When an INCLUDE

(Enter)

Initialize
Tables and
Work Areas

Control
Statement
Received
from LPC

Read
Control
Statement

COMBINE
RENAME
TRAITS

Stack
Statement
for Later
Processing

END Analyze

Statement

INCLUDE

Process
INCLUDE

Statement

Process
Stacked g
Statements

END

Perform Final
Housekeeping
Operations

A
(Return to LPC >

Control statement processing
flow

Figqure 4.

or END control statement is received, the
appropriate routine to process that state-
ment is called immediately.

Each time processing of a statement is
completed, control returns to the main con-
trol statement processing routine, INANAL,
which then requests the next statement from
LPC.

The ERROR processor routine is used by
INANAL and other control statement proces-
sor routines to set up diagnostic messages
to be sent to the user via LPC.

Control statement processing is ter-
minated when, after processing an END
statement, control is returned to LPC.

OUTPUT PROCESSING

After all statements have been pro-
cessed, LPC calls the linkage editor at the
entry point for output processing, which
produces the final module, including PMD,
text, and ISD (if required). The output
processing function also prepares the
external name list and PMD listing; on com-
pletion, it passes to LPC the location of
the output module and the external name
list.

EARLY-END PROCESSING

Early-end processing releases storage
areas and closes any open libraries. It is
entered if the linkage editor is to be ter-
minated before normal completion.

THE IANGUAGE PROCESSOR_CONTROL INTERFACE

LPC serves as the system link between
the user and the linkage editor; LPC action
is not evident to the user. LPC gathers
the input parameters for the linkage edi-
tor, loads the linkage editor, and passes
on the parameters. The linkage editor
calls upon LPC to issue diagnostic
messages.

LPC consists of three routines:

1. LPCMAIN -- collects input parameters
and stores the object module in a pro-
gram library.

2. GETLINE -- receives the linkage editor
control statement source lines, one at
a time, from the user and creates a
source data set (or takes the source
lines one at a time from a pre-stored
data set), and passes them on to the
linkage editor upon request. When
necessary, GETLINE issues diagnostic
messages stacked by PUTDIAG and
prompts for corrections before getting
the next source line.

3. PUTDIAG -- collects and stacks diag-
nostic messages from the linkage
editor.

Detailed descriptions of these routines
can be found in Command System Program
Logic_Manual, GY28-2013.

Section 2: Method of Operation 9

SECTION 3: PROGRAM ORGANIZATION

This section is divided into three
parts, corresponding to the three main rou-
tines of the linkage editor:

s Control Statement Processor (entry
point CEYIA1l)

¢ Output Processor (entry point CEYOP1)

e Early-End Processor (entry point
CEYEE1l)

Each part contains a function summary,
an overview figure, a hierarchical table,
and individual routine descriptions. The
routine descriptions for the Control State-
ment Processor are arranged alphabetically;
the routine descriptions for the Output
Processor are arranged alphabetically
within an overall Output Processor routine
description. There is only one Early-End
routine.

Flowcharts for the routines appear at
the end of this section.

Entry point names provided in the
figures, hierarchical tables, routine
descriptions, and flowcharts enable quick
reference, through use of the cross-
reference listing, to any desired section
of code in the object program listing of
the linkage editor (object module CEYTS).

CONTROL STATEMENT PROCESSOR

Function Summary

The routines that constitute the Control
Statement Processor do the following:

*» Get a line of input from LPC (language
processor control).

e Scan it for validity. cCall LPC to tell
the user if the line is invalid.

e Stack any COMBINE, RENAME, or TRAITS
statements until the next form-1
INCLUDE; process them when the form-1
INCLUDE is received.

e Process any form-2 or -3 INCLUDE
statements.

e Link specified input modules to the
output.

e Call the dynamic loader via the
LIBESRCH macro instruction to search

10

for modules to satisfy unresolved
external references.

e Perform final linkage and cleaning up
when an END statement is received.

On completicn of END statement proces-
sing, control statement processing is con-
cluded, and control is returned to LPC,
which then invokes the linkage editor at
its second or continuation entry point for
output processing.

Routines shown in blocks in Figure 5
correspond to entries in Table 2. The
level number in the blocks (upper right-
hand corner) corresponds to the level the
routine occupies in Table 2. Routines in
LPC and the dynamic loader and macro
instructions used to call other system rou-
tines are shown under called routines in
Table 2, but are not otherwise described.

Descriptions of the individual routines
follow Table 2 and are arranged alphabetic-
ally by routine name.

APENCX, APENEX, APENIN -- Append RLD
(CEYCX, CEYEX, CEYIN)

This routine appends the RLD for complex
definitions and references of a CSD in the
input PMD to the output PMD. (See Chart
AM.)

Entry: Entry points CEYCX, CEYEX, CEYIN;
entry parameters:

Registers:
2, 4,5
pseudo parameters whose values are
preserved.

location of next available position in
task dictionary.

12
common register which contains a
pointer to the CSD heading in the task
dictionary.

Calling Sequences: INVOKE ACEYCX;
ACEYEX; INVOKE ACEYIN.

INVOKE

Routines Called: None.

Exit: Normal; exit parameter:

Register 3
pointer to next position in output
PMD.

€ UOT3D3g

uotjeztTuebio wexboxg

11

Entry point CEYIAT1

] INANAL
LPCMAIN Control Statement
Input/Analyze
(CEYIAT)
ERROR INCLUDE 2 END 2
GETMAIN
F (CEYER) (CEYIC) (CEYEN)
Gets virtual storage If statement Processes INCLUDE| Also calls When END Also calls
© invalid statement SCAN and statement received
* ERROR
BRING GTCSAD LINK EXTREF
OPEN and (CEYBR) (CEYGA) (CEYLK) (CEYXR)
CLOSE Macros Bring PMD and Get addresses of Link External
ISD from library tables in CSD module reference search
}Also colls Also calls
ERROR ERROR and
; } l GTCSAD
SCAN COMBINE 3 RENAME
crvse AT (CEYCO) e FREEMAIN
(CEY ""_) (CEYTR) Process stacked o (CEYRM) and CLOSE
Scans operation Process stacked COMBINE Process stacked M
field of statement TRAITS statement: RENAME statements acras
e s statements
Calls ERROR Calls SCAN Also calls Calls SCAN
and ERROR SCAN, and ERROR
GTCSAD,
QE“TDMG"@‘ and ERROR
L d- acros 4
egen GETCSD UPISD APENDF COLLECT
Level (CEYGC) ’ (Subroutine (Subroutine (CEYCT)
Routt number Locates CSD of LINK) of LINK) {Subrouvtine
outine within PMD Updates ISD Append DEF tables of END)
or subroutine
(Entry point) OPEN and
CLOSE Macros
4
comsuB APENCX APENEX fx :
(colony [+ (CEYCX) >l (CEYEX) L 1sD
(Subroutine of Append complex Append external (SFUE;?Shne
GETMAIN COMBINE) DEF RLD REF RLD of END)
and FREEMAIN
Macros
DELNAME 4
(CEYDN) APENIN CLEANUP
Macro (Subroutine of (CEYIN) (CEYCL)
RENAME) Append internal (Subroutine
Deletes names REF RLD of END)
1 Also calls
GTCSAD
Figure 5. Overview of the control statement processor

INCLUDE - State-]Processes INCLUDE statement.

SCAN (CE¥YSC)

For each name appearing in the

Table 2. Control statement processing hierarchical table (part 1 of 4)
r 1
{ Routine: Control Statement Processor —- Level: 1 i
L i
r T T T 1
} Routine } Purpose | Called Routines [} Calling Conditions i
1 } i 4 i
T T ¥ T R}
| INANAL - ControljInitiation entry point from LPC.|GETMAIN macro instruc-|Always called.]
| Statement Input/{Allocates virtual storage. Reads|tion. | |
|2nalyze (CEYIAl;|and analyzes statement, branches} + 4
|CEYIR) {to appropriate processor. |GETLINE (CFADB) {To get next line of input. |
| {Stacks RENAME, TRAITS, and {{routine of LPC) | |
| | COMBINE statements. t + 4
| | | SCAN (CEY¥SC) |To scan linkage editor statement|
| | | operation field. |
| | t 4
| | | ERROR (CEYER) For invalid delimiter or invalid|
i { | statement. |
| | 3 -
{ i } INCLUDE Statement |When INCLUDE statement is
| | | (CEYIC) |received as input.
| | F +
l } | END Statement |When END statement is received
| | { (CEYEN) {as input.
% L 1 1
} Routine: Control Statement Processor -- Level: 2
" T T T
| SCAN (CEYSC) |Scans a name of 8 or fewer char-|ERROR (CEYER) | If name contains more than 8
| |acters until a delimiter is | (also a level 2 |characters.
| { found. {routine)
[i
r T
{ ERROR (CEYER) |Delivers a diagnostic message. PUTDIAG (CFADC) Always called.
{ | (routine of LPC}
t t
i
|

ment Processor
(CEYIC)

e s s e . e e, . A e S . i A P e e . i, et S e, S . S, e e S . S e S . i i, S T e S P . e

[e e o . . e e e T e S S e, i o o e S, e . S, P e e, 2t o S P P o S o e . g s S e s

(also a level 2
routine)

INCLUDE statement operand.

e e e ans et o e

| ERROR (CEYER)
| talso a level 2

|
+
|
|
1
|
|
|
T

| For reference to SYSLIB, non-
|existent module, no form-1

| routine) | INCLUDE given, or invalid deli-
|miter in operand.
S
v
OPEN macro instruction|For the library name in a form-1
JINCLUDE statement.
1
T
CLOSE macro instruc- |After form—1 INCLUDE statement
ion | processing completed.
}
T
RING (CEYBR) | For each external name appearing

A o S e B i S e S P o s . g A
Wl ot

e i s . b e e b e o e e s e e s ek e e b e . e, e e el . e i e e b

{in a form-1 INCLUDE statement,
|or for each unresolved external
|reference in the output medule
{ (for form-2 and -3 INCLUDE
|statements) which is not in

| EXCLUD table.

4

| TRAITS Statement
| (CEYTR)

T
|For each TRAITS statement
|appearing in STACK table.
}

t

|COMBINE Statement
{ (CEYCO)

t

T

| For each COMBINE statement
|appearing in STACK table.
}

1
{ RENAME Statement
| (CEYRN)

T

|For each RENAME statement
{appearing in a STACK table.
}

t
| LINK (CEYLK)

L]

|For each external name appearing
|in a form-1 INCLUDE statement;
|or for each unresolved external
{reference in the output module

| (for form-2 and -3 INCLUDE

| statements) , which is not in

| EXCLUD table.

I

GTCSAD (CEYGA)

iTo get address of REF table in

| first CSD of input PMD (for
|form-2 and -3 INCLUDE statements
lonly}.
{

et s o . e e e s e i e el e e o e . e e ek o s e o s

EXTREF (CEYXR)

o e e s i G e e e o, A s e e P

i _—
|For each unresolved external
|reference in the output module
| (for form-2 and -3 INCLUDE

| statements only).

1

Lol

12

Table 2.

Control statement processing hierarchical table (part 2 of 4)

r 3
| Routine: Control Statement Processor -- Level: 2 (cont'd) |
! |
2 H T H
| Routine Purpose | Called Routines | Calling Conditions {
i i 4]
H T T 1
| END Statement Resolves references, *attaches | FREEMAIN macro |Always called. I
| Processor ISD if required. | instruction]

| (CEYEN) $

i
r
| EXTREF (CEYXR)

|Always called. (Searches PMD

|for external references.)
4.

ERROR (CEYER)
(a level 2 routine)

T

}If the input or output module
|size exceeds available virtual
|storage.

4.

¥
|
}
T
|
|
|
|
! |
L2 T
| | GTCSAD (CEYGA) {Always called. (Calculates
i | flocation of CSD tables.)
| b t
| | BRING {(CEYBR) J1If there are unresolved
| [} |references in the output module.
| t t
| | COLLECT (CEYCT) |If an input module that satis-
] | (subroutine of END) {fies an unresolved reference is |
| { {in SYSLIB. {
| b - i
	LINK (CEYLK) {To link modules (not in SYSLIB)
{	that resolve references in the
i	Joutput module and do not satisfy
]	
k + 4	
	ERROR (CEYER) JIf there are unresolved refer-
	alsc a level 2
routine)	
‘ 4	
CLEANUP (CEYCL)	Always called.
(subroutine of END) i	
‘	}
FIXISD (subroutine of	If ISD is required.
	END)]]
b + - 1	
	CLOSE macro instruc-
	tion
4 4 y e	
Routine: Control Statement Processor -- Level: 3	
3	
L] T T k3	
BRING (CEYBR)	Gets PMD, text, and ISD from
[library. t + §	
OPEN macro instruction	If library is not open. i
N $ ’'	
¥ 1	
CLOSE macro instruc-	If open library is not library
tion	name given.
b + 1	
LIBE SEARCH (CZDC3 in	If library name is not given.
dynawic loader)	
IR 4 1	
T T 1	
GET macro instruction jAlways called. {	
} 4+ Fl	
L ¥ 1	
FREEMAIN macro {To free old virtual storage if	
{instruction	the input module exceeds the {
	size allotted.
fl 4 i	
r 1 H	
GETMAIN macro instruc-	To get virtual storage for the
tion finput module if its size is	
{larger than that allotted. {	
t i	
{

TRAITS Statement
Processor
(CEYTR)

Processes TRAITS statement.

| SCAN (CEYSE)
| (a level 2 routine)
}

}always called.

T
| ERROR (CEYER)
| (a level 2 routine)

e

e

|1f a name does
{invalid, or if
{miter is used.

not exist, or is |
an invalid deli-

COMBINE State-
ment Processor
(CEYCO)

|
|
|
|
|
|
|
|
i
|
|
|
i
|
!
|
|
|
|

|

|

|

|
|
|

|
|
|
I

|
t
|

r
I
|

|
|
I

|
|
|

|

|
|

|

|
|
|
|
|

|

|
|
{
|
|

t
|

|

|
|
|
|
b
|
|
|
|
|
|
|

|

L

Processes COMBINE statement.

[o e e e i e o i s s e S o S . S e S e e S . e S . e e S e o . s e

SCAN (CEYSC)
(a level 2 routine)

4
T
{Always called. |

GETCSD (CEYGC)

Jra—

called unless statement
are discovered.

|Always
|erroxrs
i

e e e o S s e

| level 3 routine)
1

+
| GTCSAD (CEYGA) (also alAlways

called unless statement |

|errors are discovered.
AL

Section 3: Program Organization 13

Table 2.

Control statement processing hierarchical table (part 3 of %)

r

| CLEANUP (CEYCL)
{ {(subroutine of
{ END)

|Deletes entries marked for
fdeletion in the output module,
|moves output module to final

H
]
|

GTCSAD (CEYGA)
(also a level 3
routine)

Always called to get location of
tables in CSD.

L) 1
] Routine: Control Statement Processor -- Level: 3 (cont'd) |
} T T T 1‘
| Routine | Purpose { Called Routines | Calling Conditions {
F H 1 t {
| | {COMSUB (C0O100) {Always called unless statement k
: | { (a COMBINE subroutine) |errors are discovered. |
{ k t 1
i { JERROR (CEYER) |called if a nonexistent name |
i | {{a level 2 routine) jused in operand, if CSECTs to bej}
i] | | combined have unlike attributes, |
| | I Jor if an invalid delimiter is |
| | | |used. |
r t + 1 |
| RENAME Statement |Processes RENAME statement. { SCAN (CEYSE) |Always called. |
{Processor | {(a level 2 routine) |]
{ (CEYRN) { b + 4
| i | ERROR (CEYER) |If a duplicate or nonexistent |
{ i | (a level 2 routine) |name is supplied or if invalid |
{ | | |delimiter is used. |
| b + 1
i } | DELNAME (subroutine of|To delete entry point names. i
i | | RENAME) 1
F + + + 1
{LINK (CEYLK) {Links input module to output | ERROR (CEYER) [called if there are duplicate |
| {module, deletes duplicate CSECTs|(a level 2 routines |entry names, oxr if attribute
1 |and those marked for deletion. | {conflicts existed during CSECT |
| |Updates ISD, CSDs, and HASHTB. jrejection. |
| | + i
{ | UPISD (subroutine of |If ISD is required. 1
i i LINK) | |
| | t i
I I APENDF (subroutine of |[Called to append Definition |
H i | LINK) {Table to output CSD if at least |
| | i |one CSECT from the input module |
| i { |is linked. {
| i t + 1
| | | APENCX (CEYCX) |called to append complex RLD to |
]] | |output CSD if at least one CSECT}
| i | {from the input module is linked.|
| | | S + =
{ § | APENEX (CEYEX} jCalled to append external RLD to]
| | | joutput ¢Sp if at least one CSECT|
| | i {from the input module is 1linked.|
I i t + 1
| | | APENIN {(CEYIN) {called to append internal RLD tol
| | 1 |output CSD if at least one CSECT|
| i | |from the input module is linked.|
| | b + h
| | |GTCSAD (CEYGA) |called to get CSD table address-|
i { | (also a level 3 |es if at least one CSECT from |
] | { routine) | the input module is linked. |
t Fl 3 L 3
3 T + + :]
{GTCSAD (CEYGA) |{Calculates locations of the six |None { |
| |tables in a CSD: { 1
| } Definition Table i { |
1} | Reference Table] | |
| | Complex DEF RLD | | |
{ | External REF RLD | | |
{ | 1Internal REF RLD | |
| | Virtual Memory Page Table { | |
b i : + —
| EXTREF (CEYXR) |Searches output module for next |None |
| |unresolved reference. i |
P ¢ t ¢ —
| COLLECT (CEYCT) |Update blank common CSECT size. |None {
| (subroutine of | |
| END) i | |
[l i } 1
T ¥ H
|
|
|
+

{output area, updates sizes of
{ common CSECTS.

S —

i
T
|

APENCX (CEYCX})

|Always called to append the com-
|plex RLD to the output area.
'l

S ——

APENEX (CEYEX)

T

{Always called to append the
|external reference RLD to the
|output area and delete marked
| RLDs.

1

U PN SIIPIET SNSRI NP

14

Table 2. Control statement processing hierarchical table (part 4 of 4)

13 1
| Routine: Control Statement Processor -- Level: 3 Cont'd) 1
3 T T - i
| Routine | Purpose | Called Routines | Calling Conditions |
i 4 i i ¥
T T T T L
| { | APENIN (CEYIN) |Always called to delete marked |
{ | | |RLDs and append the internal |
| | | |reference RLD to the output |
| 1 | |area. i
b + 1 % 4
FIXISD	Completes table at beginning of	None	
(subroutine of {composite ISD and appends input			
END}	ISDs.		
} L 4 1 {			
[Routine: Control Statement Processor -—- Level: &			
L 4			
r T T T			
GETCSD (CEYGC)	Locates a CSD within the PMD.	None { i	
b i 4 4 4			
T T T T			
COMSUB {(C0100) {combines two CSDs and text into	None	i	
(@ subroutine of	a working area and updates com-		
COMBINE)	bined csD.		
} i i 4 1			
T L3 T T 1			
{ DELNAME	Deletes entry point names.	None]	
(subroutine of	{ ! i		
RENAME) 1			
t t + t !			
UPISD	Updates the ISD as each CSECT is	None {	
(a subroutine of	linked to the output module. {		
LINK)			
b ¢ + { {			
APENDF	Appends the DEF table of a CSD	None {	
{a subroutine of	to the output module.	§	
LINK)] i		
¢ : t H 1			
APENCX (CEYCX)	Appends the RLD for complex DEFs	None	
Jof a CSD to the output module.]	
t 4 4 1]			
r T T T 1			
APENEX (CEYEX)	Appends the RLD for external	None	I
	REFs of a CSD to the output	[}	
	module.		
t + + t !			
APENIN (CEYIN)	Appends the RLD for internal	None	
	REFs of a CSD to the output	}	
i jmodule. | | |
L i 1 i i
Operation: APENIN: Modifiers for internal RLD
references are checked. Those that have
previously been marked for deletion are
APENCX: RIDs for complex definitions that deleted; those that have not been marked
have previously been marked for deletion for deletion are moved to the output

are deleted. Additions or deletions to any module.
of the previous control sections that have

already been moved to the output PMD change APENDF_ -~ Append Definition Table Subrou-

- the relative locations of complex defini- tine (Chart AL): APENDF, an open subrou-
‘ tions for the CSD being processed, or the tine used exclusively by LINK, is entered
number of entry pages in the RLD for com- by a direct branch. It appends the CSD's

plex definitions. definition table to the output module and

updates the external name list (NAMES).
If such additions or deletions have been

made, the RLD entry pages and the byte dis- This subroutine is entered with a point-
placement in the modifier entry are er to the next available position in the
adjusted in a work area, and the RLD for output module, a pointer to the CSD's
complex definitions is moved to the output definition table, and a pointer to the CSD
module. heading in the output module. All defini-

tions previously marked for deletion are
deleted. All RLDs for complex definitions

APENEX: Modifiers for external RLD whose byte value must be decremented
references are checked. Those that have because of the deletion of one or more
previously been marked for deletion are definitions are adjusted accordingly. As
deleted; those that have not been marked each definition is moved from the PMD to
for deletion are moved to the output the output module, the definition name is
module. added to the external name list (NAMES).

Section 3: Program Organization 15

Control is returned to LINK with a pointer
to the next available position in the ocut-
put module.

BRING -- Bring PMD, Text, and ISD from
Library (CEYBR)

This routine fetches the PMD and text
from a library, places them in the desig-
nated areas of storage, and, if required,
brings the ISD to the next position in the
ISD chain. (See Chart AN.)

Entry: Entry point CEYBR; entry
parameters:

Registers:
0, 1
name to be found, left-justified,
blank-filled.

2, 3
ddname for library to be searched,
left-justified, blank-filled; zero if
entire program library list is to be
searched.

4, 5, 6, 7
pseudo parameters, whose values are
preserved.

Calling Sequence: INVOKE ACEYBR.

Routines Called: ERROR, OPEN (VAM), FIND
(VAM), CLOSE (VAaM), GET (VPAM), LIBE SEARCH
(part of Dynamic Loader).

Exit:

To Calling Routine: Normal for a "not
found" exit, or with register 14 incre-
mented by 4 for a "found" exit.

To LPC: The "can't continue® return is
made to LPC in the event of an abnormal end
return from GETLINE or in the event of
storage overflow of a PMD, text, or ISD.
The return code is set to 4.

Operation: This routine is entered with
the name to be found, the ddname for the
library to be searched, or a zero code if
the entire program library list is to be
searched.

If the ddname is given on entry, the
FIND macro instruction is used to locate
the module in the named library that satis-
fies the symbol. Control is returned to
the calling routine via its "not found"
exit if the named module cannot be found.

When a ddname is not given, the Library
Search (LIBE SEARCH) subroutine is called
through restricted linkage to search the
entire program library list. LIBE SEARCH
searches the job libraries, user library,
and the system library to get the ddname of

16

the library containing the module that will
define a given symbol. If LIBE SEARCH does
not find the module, it returns control to
BRING via its "not found" exit, and control
is returned to the calling module. If LIBE
SEARCH finds the module, and it resides in
SYSLIB, the SYSSW switch is set to "yes."
The ddname for the library is placed in the
DCB, and the DCB is opened.

If the module is in SYSLIB, the PMD is
obtained using GET so that the size of any
blank common CSECTs can be found. Text and
ISD for modules in SYSLIB are ignored, and
the module is not linked to the output
module.

When the FIND macro instruction returns
control to BRING via its "found®™ exit,
BRING has a pointer which gives the length
in bytes of the PMD, text, and ISD (if
present).

Upon return from FIND, the size of the
PMD is checked. If the PMD is too large
for the current GETMAIN area, the FREEMAIN
macro instruction releases areas occupied
by the old PMD and text, and the GETMAIN
macro instruction obtains space for the
input PMD. If GETMAIN returns control to
BRING via the error exit, ERROR is invoked
to issue message 12, the FREEMAIN macro
instruction releases all storage areas, and
BRING returns control to LPC via the “can't
continue”™ exit.

If the PMD is not too large or if GET-
MAIN returns via its normal exit, the esti-
mated size of the output module is checked.
If it is not too large, the GET macro
instruction places the PMD in the module
area. If the input text is too large,
FREEMAIN releases the old text area, and
GETMAIN obtains storage for the input text.
If GETMAIN returns control to BRING via the
error exit, ERROR is invoked to issue mes-
sage 13, FREEMAIN releases all storage, and
BRING returns control to LPC via the "can't
continue®™ exit.

If the combined area of the input text
and the old text is not too large for the
total storage area, GET places the next
pages of text in the work area. If the
combined area of the input text and the old
text is too large for the total storage
area, ERROR is invoked to issue message 13,
FREEMAIN releases all storage areas, and
BRING returns control to LPC via the "can't
continue" exit.

After GET places all text pages in the
work area, BRING returns control to the
caller via the “found" exit if the ISD is
not required; if the ISD is required and
there is no ISD input, control is returned
via the "found" exit.

%

A check is made to determine if the new
ISD combined with the previous ISD is too
large for the storage area; if the combined
ISDs are too large, ERROR is invoked to
issue diagnostic message 12, FREEMAIN
releases all storage areas, and BRING
returns control to LPC via the "can't con-
tinue®™ exit. When the combined ISDs are
not too large, GET chains the new ISD to
previous ISDs.

If the estimated size of the ISD to be
generated is too large for the storage
area, ERROR issues message 13, FREEMAIN
releases all storage areas, and BRING
returns control to LPC via the "can't con-
tinue®™ exit. If the estimated size with
the old PMD fits within the storage area,
BRING returns control to the caller via the
"found" exit. Any library opened in the
BRING routine is closed before control is
returned to the caller.

CLEANUP -~ Cleanup Final Module Subroutine

section, the page table is moved to the
output area; if the control section is
blank COMMON, its size is updated in the
CSD.

CLEANUP then checks to determine whether
there are cther CSDs in the module. When
other CSDs are present, they are processed
in a manner identical to the first CSD.
After all CSDs are processed, control is
returned to END.

COLLECT -- Collect Common Requirements Sub-
routine (Chart AI): COLLECT is entered by
a direct branch from END when an external
reference is resolved by a module in the
system library. It steps through each CSD
of the module; when it finds a blank common
section, its size is checked, and CSIZE is
updated if required. CSIZE thus holds the
largest blank common size required by the
output module. Exit is back to END.

COMBINE -- COMBINE Statement Processor

(Chart AH): The Cleanup Final Module
(CLEANUP) subroutine deletes marked entries
for entry point references and modifiers
and moves the output PMD to the final out-
put area. CLEANUP locates the first CSD in
the output module. If no CSDs remain to be
processed in the output module, control is
returned to END. When a CSD is found,
CLEANUP calls GTCSAD.

GTCSAD is entered at CEYGA via
restricted linkage, with a pointer to the
CSD heading. GTCSAD calculates the loca-
tions of the six tables for the CSD.
GTCSAD returns control to CLEANUP with the
address of the TABLE for CSD addresses.
CLEANUP moves the CSD heading and defini-
tions to the next position in the output
area, clears the definition search and CSD
links, moves the reference table to the
next position in the work area, and clears
the reference CSD links.

CLEANUP calls APENCX, via restricted
linkage, to append the CSD's RLD for com-
plex definitions to the final output area
and to update the byte address modifiers.
APENCX is entered with a pointer to the
next available position in the PMD and a
pointer to the CSD heading in the output
module.

CLEANUP calls APENEX via restricted
linkage. APENEX deletes RLDs for text
(external reference) that have been marked
and appends the CSD's RLD for text (extern-
al reference) to the output area.

CLEANUP calls the APENIN subroutine via
restricted linkage. APENIN deletes RLDs
for text (internal reference) that have
been marked and appends the CSD's RLD for
text (internal reference) to the output
If there is text for the control

area.

(CEYCO)

This routine processes the COMBINE

statement. {See Chart AA, Part 5.)
Entry: Entry point CEYCO; entry

parameters:

Registers:

8
a common register pointing to the
first character position of the state-
ment operand.

9

a common register pointing to the
input PMD.

Calling Sequence: Direct branch to loca-
tion CEYCO from the INCLUDE routine.

Routines Called: GETSCD, SCAN, ERROR,
GTCSAD.
Exit: Direct branch back to location ICRET

in the INCLUDE routine.

Operation: This routine is entered with a
pointer to the first character position of
the operand and a pointer to the input
module®'s PMD. The COMBINE statement is
checked for an invalid delimiter and to
determine if an operand exists. A call is
made tc ERRCR to issue diagnostic message
11 if an invalid delimiter is found, or
message 6 if the statement contains a name
not present in the module. ERROR is called
to issue diagnostic message 8 if the con-
trol sections have different attributes.
SCAN is entered at CEYSC with a pointer to
the first byte of the statement's first
operand. SCAN ensures that the operand is
correct (contains fewer than nine charac-
ters) and returns control. GETSCD is

Section 3: Program Organization 17

entered at CEYGC via restricted linkage,
with a pointer to the PMD that contains the
CSD and the name, located in TEMP, of the
control section to be combined. Each con-
trol section name in the PMD is checked to
see if it matches the name in TEMP. When a
matching name is found, exit is taken with
a pointer to the CSD heading. The affected
CSD is then marked for combining, and
GTCSAD is called.

GTCSAD is entered at CEYGA, via
restricted linkage, with a pointer to the
CSD heading. GTCSAD calculates the loca-
tions of the six CSD tables. Locations for
these tables are stored in a 6-fullword
area, TABLE (for CSD addresses). If an ISD
is required, the control section name and
its text displacement is placed in the
Rename/Combine Table (RCTBL).

Note: All control sections to be combined
cause the name and text displacement to be
placed in the RCTBL, which contains entries
that are to be placed in the ISD when the
control section is linked to the output
module. RCTBL is used by UPISD.

Processing for a multiple-entry state-
ment is indicated by a comma; the following
processing is required. GTCSAD is entered
at CEYGA, along with a pointer to the first
byte of the CSD heading of the first CSECT
to be combined. GTCSAD calculates the
locations for the six tables associated
with this CSD. The location of each table
is stored in TABLE. A call is made to SCAN
to check the next control section name.
After SCAN returns control, GTCSAD is again
called to compute the location of the
tables associated with the next control
section to be combined. The control sec-
tion name is marked for deletion. If an
ISD is required, the control section name
and its associated text displacement is
placed in RCTBL; otherwise, such an entry
is unnecessary. The COMSUB subroutine
(described below) is entered by a direct
branch to combine the two control sections
and their applicable text. COMSUB also
adjusts the tables associated with these
two control sections. Identical processing
is provided for each remaining control sec-
tion name in the operand until a blank
delimiter is encountered.

Termination of processing is denoted by
a blank delimiter, in which case the point-
ers for the work areas are updated to indi-
cate the next available position, and the
pointers in the RCTBL are also updated, if
the ISD is required. Control is then
returned to location ICRET in the INCLUDE
statement processor.

COMSUB —-- Combine Control Section Subrou-
tine (Chart AD): COMSUB, an open subrou-
tine, is used exclusively by COMBINE. It

18

performs the mechanics of combining two
CSDs and their associated text and provides
for the updating of the tables within the
combined CSD.

This subroutine uses a work area for
combining the CSDs, which is referred to in
the description below and in the flowchart
as work area A. It also uses a second work
area for combining text; this is referred
to as work area B.

Upon entry, COMSUB merges in work area A
the CSD headings for each control section
and updates the entries in the headings.
Associated text for each control section is
relocated to work area B, where the text
for the first control section is placed
before that for the second control section.
Relocation values are applied to relocat-
able definitions and to relocatable and
complex definitions displacements for R-
values located in the second control sec-
tion CSD. The definition and reference
tables for both control sections are com-
bined in work area A. Also, for the second
control section, relocation values are app-
lied to entries in the relocation dic-
tionary (RLD) for complex definitions, the
RLD for text external references, and the
RLD for text internal references. The RLD
entries, with relocation values applied,
are combined with their counterpart entries
in the RLDs for the first control section;
combined entries are moved to work area A.
The virtual memory page tables for both
control sections are also combined and
placed in a text work area. COMSUB then
calculates and stores the length of the
resultant CSD into the CSD heading.

DELNAME -- Delete Entry Name Subroutine
(Chart AA, Part 7): DELNAME, an open sub-
routine used solely by RENAME, is entered
by a direct branch.

This subroutine is entered with a point-
er to the entry name to be deleted and a
pointer to the associated CSD heading. The
entry name is located in the definition
table and marked for deletion. The RLD for
complex definitions is found, and a search
is made for modifiers referencing the
deleted definition entry. All modifiers
referencing a deleted definition are marked
for deletion, and control is returned to
the RENAME routine.

END -- END Statement Processor (CEYEN)

This routine processes the END state-

ment. (See Chart BAA, Part 9.)
Entry: Entry point CEYEN; entry
parameters:

Register 10
a common register pointing to the out-
put PMD.

Calling Sequence: Direct branch to loca-
tion CEYEN from the INANAL module.

Routines Called:
LINK and GTCSAD.

EXTREF, BRING, ERROR,

Exit: Normal RETURN to LPC from the
initiation entry. The exit parameters are:

Register 15 contains an exit code, as
follows:

Exit code 0
normal return. It is assumed that LPC
will respond with a call to either the
linkage editor's continuation entry
point or its early-end entry point.

Exit code 4
linkage editor cannot continue. The
assumption is that LPC will respond
with a call to either the linkage edi-
tor's initiation entry point, or its
early-end entry point.

Operation: This routine is entered by
INANAL with a pointer to the output module.
The form-1 switch (FRMISW) is checked for a
state of one or zero. Control is returned
to the LPC when the form-1 switch is zero,
since no output module exists. When a
form-1 INCLUDE statement has been processed
(form—-1 switch is one), EXTREF is invoked
to search the output module for unresolved
references.

EXTREF is entered at CEYXR via
restricted linkage, with the following
information: a pointer to the first
reference to be checked, a count of the
number of references remaining in the CSD's
reference table, a pointer to the CSD head-
ing, and a pointer to the output PMD. When
an unresoclved external reference is found,
control is returned to END with a pointer
to the unresolved reference, a count of the
remaining references in the CSD, and a
pointer to the CSD heading.

The CLEANUP subroutine is called when
EXTREF returns control via its "not found”
exit. CLEANUP is entered via direct branch
to delete entries so marked by other pro-
cessors, to update a blank common section
size, and to move the output PMD to the
final output area.

If the linkage editor's ISD has been
generated, END then calls the Fix ISD
(FIXISD) subroutine. FIXISD is entered by
a direct branch and is used to place in the
output ISD the length of the 1ISD, the name
of the output module, and the displacement
from each module heading to the correspond-

ing input ISD. Also, FIXISD strings the
input ISDs together, and returns control to
END. After FIXISD returns control, or when
the ISD is not required, the NONAME table
is checked for entries, and ERROR is called
to issue diagnostic message 7.

The NONAME table consists of 8-byte
entries, representing the alphameric names
of external references, which cannot be
resolved from the program library list.
These names are sent to the user via mes-
sage 7.

The SLBNAM table is also checked for
name entries (references resolvable from
SYSLIB) and, when a name entry is found,
ERROR is called to issue diagnostic message
19. If a name entry does not exist in
SLBNAM, or after processing by ERROR, the
diagnostic c¢ode is set in the module head-
ing, the return code is set, and control is
returned to LPC.

During the initial part of END activi-
ties, EXTREF searches the output module for
unresclved external references; if such
references exist during that time, a check
is made to determine if there is an RLD
modifier. If there is no modifier, the
unresolved reference is deleted, and the
RILD reference numbers are updated. 1In any
case, the following processing occurs.

BRING is called via restricted linkage,
with the following information: a pointer
to the name (unresolved external reference)
to be found, and the ddname set to zero,
denoting a search of the entire program
library list. BRING, a closed subroutine
entered at CEYBR, obtains the PMD, text,
and ISD {(if required) for the module that
will satisfy the unresolved external
reference. BRING returns control to END
whether or not a name satisfying the
reference is found. A check is made to
determine whether the "found"™ reference is
present in the EXCLUD table, when BRING
returns control via the "found"™ exit. If
the found reference is in the EXCLUD table,
and the module in which the reference was
located is in SYSLIB, the reference is
entered in the SLBNAM table, EXTREF is
again called to search the output module
for the next unresclved external reference,
and processing identical to that for the
first reference is repeated.

When BRING returns via its "not found”
exit, or when the found reference is in the
EXCLUD table but not in a SYSLIB, the
reference is placed in the NONAME table,
and EXTREF is again called to search the
output module for the next unresolved
external reference, and processing identic-
al to that for the first reference is
repeated.

Section 3: Program Organization 19

When the name satisfying the unresolved
reference is not in the EXCLUD table, and
when names in the module do not satisfy any
of those in the EXCLUD table, a check is
made to determine if the module resolving
the reference is contained within SYSLIB.

If the module is not in SYSLIB, and it
is not the second attempt to 1link a FORTRAN
main program, LINK is entered at CEYLK via
restricted linkage with pointers to the
input PMD and the output module. LINK
joins the module that resolves the unre-
solved external reference to the linkage
editor's output module. LINK deletes dup-
licated control section names and control
sections previously marked for deletion,
ensures that there is only one COMMON con-
trol section, and updates the module's CSDs
and their associated text. LINK then
returns control to END. The reference is
checked to determine if it was resolved; if
it was resolved, EXTREF is again called to
search the output module for the next unre-
solved external reference, and processing
identical to that for the first reference
is repeated. 1If the reference was not
resolved, the reference is placed in the
NONAME table, and EXTREF is again called to
provide processing identical to that pro-
vided when the first reference was not
resolved.

When the module returned by BRING is
contained in SYSLIB, the Collect Common
Requirements (COLLECT) subroutine is
called. COLLECT, entered by a direct
branch, locates a blank common control sec-
tion in a SYSLIB module, and after checking
the common size of the section, updates
CSIZE.

ERROR -- Error Messaqe Processor (CEYER)

This routine provides error messages
during linkage editor activity, via the
PUTDIAG routine of LPC. (See Chart AO.)

Entry: Entry point CEYER; entry
parameters:

Registers:
0
a parameter indicating the type of
exit. Zero signifies exit to INANAL,
and nonzero signifies return to the
caller.

error code, identifying the message to
be delivered.

Calling Sequence: INVOKE ACEYER, or direct
branch to location CEYER.

Routines: Called PUTDIAG routine of LPC.

Exit:

20

To Calling Routine: If register 0 contains
0, exit is via a direct branch to location
IARET (CEYIA) in INANAL. If register 0 is
nonzero, return is made to the caller.
There are no output parameters.

To LPC: A "can't continue®™ return is made
to LPC in the event of an abnormal end
return from PUTDIAG.

Operation: In nonconversational mode,
switch ERDIAG is set to denote a level-2
diagnostic code. If the mode is conversa-
tional, a switch (MSGSW) is set which noti-
fies INANAL that an altered line is
expected on the next entrance to the GET-
LINE routine of LPC.

The PUTDIAG routine of LPC is called
with type-I linkage when an error message
is to be delivered. Upon entry, ERROR
stores the user response indicator, and the
appropriate error message is formatted and
moved to the buffer area. The LPC parame-
ter is set to indicate user response, and
the PUTDIAG routine of LPC is called with
type-I linkage. PUTDIAG stacks the message
until the next time the linkage editor
calls the GETLINE routine of LPC; at that
time the message is delivered. ERROR
returns control to LPC MAIN with a "can't
continue®™ indication on an ABEND return
from PUTDIAG. Otherwise, it returns to the
calling routine or to INANAL.

EXTREF -- External Reference Search (CEYXR)

This routine searches the output PMD for
the next unresolved external reference.
(See Chart AP.)

Entry: Entry point CEYXR; entry
parameters:

Registers:

0, 1, 6, 7
pseudo parameters whose values are
preserved.
2
pointer to the first reference to be
checked.
3
count of the number of references
remaining in the reference table.
4
pointer to the CSD heading.
5

pseudo parameter whose value is
preserved.

Calling Sequence: INVOKE ACEYXR.

Routines Called: None.

Exit: Normal for a "not found"™ exit. On a
"found™ exit register 14 is incremented by
4. Exit parameters:

Registers:
2
pointer to an unresolved reference, if
any, or to the end of the PMD.

updated count of remaining references
in the CSD.

Operation: References located in the CSDs
are checked to see if they are unresolved
external references; i.e., references that
have not been satisfied by a definition.

If such a reference is found, control is
returned to the calling module via the
found exit, along with a pointer to the
unresolved reference and the count of
remaining references in the CSD. All
references in the CSD are checked in the
same way the first reference is checked. A
"not found" exit is taken when all the CSDs
in the output module have been checked for
unresolved references.

FIXISD -- Fix ISD Subroutine (Chart AI):
FIXISD is entered by a direct branch from
END when an ISD has been generated. FIXISD
completes the ISD by filling in the length
of the ISD, the name of the ocutput module,
and displacements from each module heading
to the corresponding input ISD. It then
attaches the string of input ISDs, thus
forming a composite ISD. Exit is back to
END.

GETCSD -- locate Control Section Dictionary
(CEYGC)

This routine locates a CSD in a PMD.
(See Chart AP.)

Entry: Entry point CEYCG; entry parameters:

Registers:
0-2, 4, 5, 6, 7
pseudo parameters, whose values are
preserved.

common register which contains a
pointer to the PMD.

Calling Segquence: INVOKE ACEYGC.

Routines Called: None.

Exit: Normal for the "not found"” exit. On
a "found" exit, register 14 is incremented
by 4. Exit parameters:

Register 3
pecinter to the CSD heading on a
"found® exit, or a pointer to the end
of the PMD on a "not found" exit.

Operation: GETCSD is entered with the name
of the control section in the PMD that is
to be located and a pointer to the PMD.
The control section name is located in a
temporary storage (TEMP) of eight charac-
ters in the PSECT. Each control section
name in the PMD is checked to see if it
matches the name in TEMP. If a matching
name is found, the normal exit is taken;
otherwise, the "not found™ error exit is
taken.

GETLINE Routine (CFADB)

This routine is part of language proces-
sor control and is described in Command
System Program Logic Manual, GY28-2013.

GTCSAD -- Get CSD Table Addresses (CEYGA)

This routine calculates the locations of
the six tables for a given CSD. (See Chart
AQ.)

Entry: Entry point CEYGA; entry
parameters:

Registers:

3
a pointer to the first byte of the CSD
heading.

0-2, 4, 5, 6, 7
pseudo parameters, whose value is
preserved.

Calling Sequence: INVOKE ACEYGA.

Routines Cailed: None.

Exit: Normal; exit parameters:

The following information is placed in
location TABLE:

Word 1 Location of Definition Table

Word 2 Location of Reference Table

Word 3 ILocation of RLD for Complex
Definitions

Word 4 Location of RLD for External
References

Word 5 Location of RLD for Internal
References

Word 6 Location of Virtual Memory Page
Table

Operation: This routine is entered with a

pointer to a CSD heading in a PMD and cal-
culates the location of the six tables for
that CSD; that is, the Definitjion and
Reference Tables, the RLDs for Complex
Definitions, External References, and
Internal References, and the Virtual Memory
Page Table. This information is stored in
a temporary save area of six fullwords
called TABLE, in a PSECT.

Section 3: Program Organization 21

INANAL -- Control Statement Input/Analyze

Operation: This routine is entered with a

Processor (CEYIAl)

This routine performs initialization,
receives linkage editor statements from
LPC, and transfers control to the routine
that processes the particular statement.
(See Chart AA, Part 1.)

Entry: Entry point CEYIAl; entry
parameters:

Register 1
address of a parameter list.

The parameter list pointed to by regist-
er 1 consists of a series of address con-
stants aligned on word boundaries as
follows:
Word 1 Address of a field containing the
output module name.

Word 2 Address of a 1-byte field that con-
tains 00000000 if batch mode app-
lies; 00000001 if conversational.

Address of a 3-byte 6ption table
with the following significance:

Word 3

Byte 1 - Produce ISD
Byte 2 - Produce PMD Listing

Each of the above bytes contains
the EBCDIC character Y if the
option is desired; N, if it is not.
The presence of any other character
causes the linkage editor to take
the built-in default action for the
specified option.

Byte 3 - Produce List Data Set

The above byte contains Y if the
selected PMD listing is to be
stored in a list data set, and N if
it is to go to SYSOUT.
Word 4 Address of the data control block
(DCB) for the PMD list data set.
Unless the data set is to be writ-
ten on SYSOUT (byte 3 above con-
tains N), the linkage editor opens,
uses, and closes this data set.

Routines Called: CZCGA {via GETMAIN
macro), GETLINE {(in LPC), SCAN, ERROR,
INCLUDE, and END.

Exits:

Normal -- Returns to LPC from the END rou-
tine with a return code of 0.

Abnormal -- Returns to LPC with a return

code of 4 if the GETLINE routine returns an
abnormal end indication.

22

parameter list containing address pointers
to:

* The name of the list data set that will
ultimately be the name of the output
module.

e Data stating mode of linkage editor
operation, conversational, or
nonconversational.

» Data indicating whether to produce the
Internal Symbol Dictionary and PMD
listing, and whether the PMD listing,
if requested, is to go into a list data
set or on SYSOUT.

» The address of the data control block
(DCB) for the list data set. (Ignored
if requested PMD listing goes to
SYSOUT.)

Program switches are set according to
these input parameters.

The following major work areas and
tables are initialized: Common Internal
Storage Areas, Rename/Combine Table
(RCTBL), 1ISD, and Exclusion Table (EXCLUD).
The name assigned to the output module is
placed in the NAMES table. The GETMAIN
macro instruction is used to obtain storage
for the input and output PMD, text, and
1SD, as well as for work areas WORKC1,
WORKC2, and WORKT.

After initialization the GETLINE macro
instruction is used to read a control
statement from LPC. The return code is
analyzed to determine if there is an
abnormal end, batch end of data set, or
altered line return. Processing is ter-
minated if GETLINE returns a code of 12
(abnormal end), and the linkage editor
returns control to LPCMAIN with the return
code set to 4 (can't continue). If GETLINE
returns a code of 8 (batch end of data
set), END is entered. If the user makes a
correction in his statements (GETLINE
return code = 4§), the corrected set of
statements is processed again; if state-
ments already completely processed are
changed by the user, or if an error occurs
in an INCLUDE statement which links more
than one module, processing starts over
from the beginning. GETLINE is again used
to get the line following the first state-
ment of the statement group which is in
error; i.e., the previous INCLUDE state-
ment. If no corrections are made by the
user to incorrect statements, the output
module is marked with a diagnostic code.

Extraneous blank characters are stripped
from the control statement, and after a
check that the statement is within the 256-
character length limit, it is placed in a

statement store area (SAVLNl). If the
operand of the input statement contains
more than one entry, GETLINE is used to
obtain the next statement from LPC. SCAN
is invoked, using restricted linkage, to
verify that the operands contain fewer than
nine characters. SCAN processing is ter-
minated when a delimiter (which is saved
for later reference) is encountered. The
recorded delimiter is then examined, and
ERROR is invoked for a nonblank delimiter.
ERROR issues message 11 and returns con-
trol. COMBINE, RENAME, and TRAITS state-
ments are placed in the stack table (STACK)
to await processing of an INCLUDE state-
ment. INCLUDE and END statements cause a
direct branch to the routine that processes
the particular statement. Invalid state-
ment verbs cause ERROR to be invoked to
issue message 3.

INCLUDE -- INCLUDE Statement Processor
(CEYIC)

This routine processes the three forms
of the INCLUDE statement. (See Chart AA,
Part 2.)

Entry: Entry point CEYIC; entry
parameters:

Registers:
8
a common register pointing to the
first unprocessed character position
of the statement operand.

a common register pointing to the
input PMD.

10
a common register pointing to the out-
put PMD.

Calling Sequence: Direct branch to loca-
tion CEYIC from INANAL.

Routines Called: LINK, SCAN, BRING, ERROR,
EXTREF, RENAME, TRAITS, and COMBINE.

Exit:
IARET).

Direct branch to INANAL (location

Operation: Register 8 points to the first
unprocessed character position of the
statement operand. Upon entry, SCAN is
invoked at CEYSC, using restricted linkage.
SCAN is entered with a pointer to the
first-byte position of the library name.
SCAN verifies that the library name con-
tains fewer than nine characters. The
delimiter following library name is reco-
rded, the library name is placed in TEMP,
and SCAN returns control, with pointers to
the first-byte position after the delimit-
er, to TEMP and to the library name.

If the library name in the INCLUDE
statement is the name SYSLIB, ERROR is
invoked to print message 10, and INCLUDE
statement processing is terminated. When
the library name indicates a library other
than SYSLIB, the ddname of the specified
library name is planted in the DCB. The
OPEN macro instruction is used to open the
indicated partitioned library. The deli-
miter provided by SCAN is used to determine
the form of the INCLUDE statement being
processed.

Form-1 INCLUDE Processing: SCAN is invoked
to process each module or entry name to
ensure the correctness of the operand. If
there is any delimiter between module names
other than a comma, a direct branch is made
to ERROR to generate message 11.

SCAN is invoked to process the first
module or entry name in the control state-
ment operand. BRING is invoked at CEYEBR,
using restricted linkage, with the name to
be found and the ddname for the library to
be searched. BRING fetches the PMD and
text from the indicated library and places
them in a work area. If required, the ISD
is moved to the next position in the ISD
chain. When the object module is not found
in the indicated library or is found in
SYSLIB, ERROR is invoked to generate mes-
sage 1 or 2. If this is the end of the
INCLUDE statement processing, control is
returned to INANAL; otherwise, processing
identical to that for the first module or
entry name continues for the other entries
in the operand of the statement.

If BRING finds the module, the STACK
table is searched to determine whether a
RENAME, COMBINE, or TRAITS statement
exists; if any of these statements is
found, a direct branch is made to the
appropriate control statement processor.
When the STACK table is empty (no RENAME,
COMBINE, TRAITS statements), the work areas
are initialized.

If the module being included is a FOR-
TRAN main program and a FORTRAN main pro-
gram has already been included, ERROR is
invoked to generate diagnostic message 22.
The input parameters will indicate to ERROR
that user response is expected and that it
shall exit to INANAL. If there is no
attempt to linkage edit two FORTRAN main
programs, LINK is invoked at CEYLK.

LINK is invoked, using restricted link-
age; input parameters are pointers to the
PMD and the output module. LINK links the
module indicated in the form-1 INCLUDE
statement tc¢ the linkage output module.
After the module is linked, the form-1
switch (FRM1SW) is set to 1, and the deli-
miter is again checked. A delimiter other
than a right parenthesis or comma causes

Section 3: Program Organization 23

ERROR to issue message 11. A comma indi-
cates another name in the operand of the
current form—-1 INCLUDE statement; there-
fore, processing identical to that for the
first name is repeated. A right parenthe-
sis indicates no other entries in the cur-
rent form-1 INCLUDE statement. Control is
returned to INANAL, indicating the end of
form-1 INCLUDE statement processing.

Form-2 INCLUDE Processing: Form-2 proces-
sing is allowed only after at least one
form-1 statement has been processed; if a
form-2 statement appears before a form-1,
ERROR will issue message 9. The STACK
table is then searched for entries; any
entry causes ERROR to issue message 9. If
no entries exist in the STACK table, GTCSAD
is invoked at CEYGA through restricted
linkage with a pointer to the CSD heading
in the PMD. GTCSAD builds a table that
contains the location of the six tables in
the CSD. These tables are definition and
reference tables, the relocation dic-
tionaries (RLDs) for complex definitions
and external and internal references, and
the virtual memory page table. EXTREF is
invoked at CEYXR using restricted linkage
with a pointer to the first reference to be
checked, a count of the number of
references remaining in the reference
table, and a pointer to the CSD heading.

EXTREF searches the output module for
unresolved references and provides a point-
er to an unresolved reference if any is
found, a pointer to the CSD heading, and
the updated count of remaining references
in the CSD. If the unresolved reference is
not in the EXCLUD table, BRING is invoked
to fetch the PMD and text of the module
that satisfies the unresolved reference and
to bring the ISD to the next position in
the ISD chain. The module is contained in
the library specified by the ddname in the
form-2 INCLUDE statement. LINK is called
to link the module, found by BRING, to the
output module when the following conditions
are satisfied: external names in the
retrieved module do not match entries in
the EXCLUD table, the retrieved module is
not located in SYSLIB, none of the names in
the module are to be excluded, and it is
not an attempt to linkage edit more than
one FORTRAN main program.

When EXTREF returns control with an
unresolved reference, processing identical
to that for the first reference is pro-
vided. If an unresolved reference is not
found, the CLOSE macro instruction closes
the partitioned library, the library name
is removed from LBOPEN, and control is
returned to INANAL, indicating the termina-
tion of processing for the form-2 INCLUDE
statement.

24

Form-3 INCLUDE Processing: During form-3

processing, the form-1 switch (FRM1SW) must
be set to 1; if FRM1SW is not 1, ERROR
issues message 9. The first character in
the statement's operand is checked; a
character other than a left parenthesis
causes ERROR to issue message 11. SCAN is
invoked to ensure that the external
reference name specified in the statement's
operand contains fewer than nine charac-
ters. The external reference name is re-
corded in the EXCLUD list {(defined in the
introduction). Upon checking the delimiter
following "external reference name,” ERROR
is called to issue message 11 if the deli-
miter is other than a comma or a right
parenthesis. If the delimiter is a comma,
indicating more than one entry in the
statement, processing identical to that
performed for the statement's first entry
(external reference name) is repeated. If
the delimiter is a right parenthesis, indi-
cating no more entries in the statement's
operand, processing identical to that pro-
vided for the form-2 INCLUDE statement is
provided.

LIBE SEARCH -- Library Search Subrocutine
(CZCDC3): LIBE SEARCH is a closed subrou-
tine in the dynamic loader that locates an
object module which contains a particular
symbol, and is used to supply BRING with
the ddname of the library containing the
module. LIBE SEARCH is described in Dynam-
ic Loader Program Logic Manual, GY28-2031.

LINK -- Link Mcdules (CEYLK)

This routine attaches an input module to
the linkage editor output module. (See
Chart AJ.)

Entry: Entry point CEYLK; entry
parameters:

Registers:
0-5, 6-7
pseudo parameters whose values are
preserved.

common register which contains a
pointer to the input PMD.

10
common register which contains a
pointer to the output PMD.

Calling Sequence: INVOKE ACEYLK.

Routines Called:
GTCSAD, ERROR.

APENEX, APENIN, APENCX,

Cperation: This routine is entered with a
pointer to the input module's PMD and a
pointer to the output module. If it is the
first module to be attached, its PMD head-

ing is moved to the output module, the PCS
communication indicator (TDYPCS) is set,
and the name to be assigned to the output
module is placed in the output module.

When a FORTRAN main program is linkage
edited, the standard entry point of the
output module will correspond to the exist-
ing standard entry point of the FORTRAN
main program. The LINK routine will
achieve this standard entry point similari-
ty by saving the main FORTRAN header and by
returning to INANAL to reinitiate the
INCLUDE statement processing. When the
LINK routine is again called to link the
first input module, it will determine
whether a main FORTRAN header has been pre-
viously saved. If a saved header exists,
it will be stored into the output PMD
header.

The CSD pointer is set to the first CSD
in the module, and the COMBINE switch
(LKCMSW) is set to zero. The CSD in the
input module's PMD is checked to determine
if it is to be deleted or combined, or if
it is a blank common control section. Con-
trol sections that were combined are placed
in the combine section of Work Area by COM-
BINE. Blank common control sections, other
than the first encountered, are marked for
deletion. The size of the largest blank
common section encountered becomes the size
of the retained control section.

The following checks are made for each
CSD; if necessary, ERROR is called to issue
each message mentioned:

¢ A nonblank definition name which is_not
a control section name, and which
matches a definition name in the output
module, results in message 4; the input
PMD definition is marked for deletion.

e A nonblank definition name which is a
contrcl section name, and which matches
a definition name in the output module,
results in message 14; the duplicate
(input) control section is marked for
deletion.

s Names in the PMD and output module that
name control sections without common
attributes result in message 15.

e When the output module CSECT is read-
only or privileged and the input PMD
CSECT is nonread-only or nonprivileged,
respectively, message 16 is delivered.

e A nonprivileged output module CSECT and
a privileged input PMD CSECT result in
message 17.

e An input PMD CSECT with a length great-—
er than the output module CSECT results
in message 18.

After the above error checks have been
completed for each CSD in the input PMD,
actual linking of CSECTs begins. The out-
put ISD module heading is updated only if
the ISD is required.

The LINK routine now determines whether
the standard entry point (SEP) of the input
module may be included as a DEF in the out-
put module's PMD. To be retained in one of
the CSDs of the output module's PMD, the
DEF created must be able to retain V- and
R-values which will reference exactly the
same areas of text referenced by the stan-
dard entry point DEF in the input module.
If LINK determines this is not possible,
warning is provided with message 24.

LINK reccords all information needed by
subroutine APENDF to preserve the original
standard entry point as either a relocat-
able or complex DEF. The DEF retained will
be relocatable if the input module has only
PSECTs or only CSECTs and the standard
entry point's REF is the first control sec-
tion's name. The DEF will be complex if
the text and DEF still exist for both the
first PSECT of the input module and the
CSECT named in the standard entry point
REF. It will also be complex if the input
module has more than one control section,
all of which are the same type, and if the
standard entry point REF name of the input
module is not the name of the module's
first control section.

If the control section name DEF in which
the standard entry point DEF is to be
retained has been marked for deletion in
the output module, LINK issues warning mes-
sage 24, unless the control section is
found to have been combined with another.
In this event, the standard entry point DEF
will be placed in the combined CSD which
contains the deleted control section name
DEF.

LINK now begins processing each control
section in the input module by calculating
the number of text pages for each section.
If the end of the input PMD containing the
CSD has not been reached, a check is made
to determine whether the control section
has been marked for deletion or combining.
If the control section is marked for dele-
tion, the CSD pointer is bumped to the next
CSD in the PMD; the text pointer is bumped
to the next control section text page.

When the control section is marked for
combining, the CSD pointer is saved in the
combine switch (LKCMSW)}, the text page
count and text pointer are saved; the CSD
pointer and text pointer to the combined
section in work area are set; and the num-
ber of text pages that have been combined
is computed.

Section 3: Program Organization 25

If necessary, the Update ISD (UPISD)
subroutine is called by a direct branch to
update the ISD as each control section in
the PMD is processed. If it is not neces-
sary to update the ISD, GICSAD is called.
GTCSAD, entered at CEYGA via restricted
linkage, calculates the locations of the
following six tables for the CSD: the
Definition and Reference Tables; the RLDs
for Complex Definitions, External
References, and Internal References; and,
the Virtual Memory Page Table. GTCSAD
places these locations in the TABLE (CSD
Addresses) and returns control to LINK.
LINK appends the CSD heading to the output
module and calls the Append Definition
Table (APENDF) Subroutine.

APENDF is entered with a pointer to the
next available position in the output
module, a pointer to the CSD definition
table, and a pointer to the CSD heading in
the output module. LINK also passes infor-
mation indicating whether the input mod-
ule's standard entry point DEF is to be
included as a DEF in this CSD. APENDF
first appends the CSD's definition table to
the output module. Then, if the standard
entry point DEF is to be saved as a relo-
catable DEF, it is added following the DEF
for the control section name, and the count
of relocatable DEFs kept in the output CSD
is updated. If the SEP DEF is to be com-
plex, it is added as the last DEF in the
definition table, and the count of complex
DEFs is updated. APENDF then updates the
external name list (NAMES) and returns con-
trol to LINK. LINK appends the CSD
reference table to the output module and
calls subroutine APENCX.

APENCX is entered at CEYCX via
restricted linkage, and is used to append
the CSD's complex RLD to the output module.
LINK prepares to call APENCX (Append Com-
plex DEF RID) by determining if the present
CSD contains the standard entry point DEF
which has been saved. If it has and is a
complex DEF, then any new modifier pointers
needed are added to the complex DEF RLD
modifier pointer list, previous pointers
are updated, and a new modifier is added
for the new complex DEF. APENEX is entered
at CEYEX to append the CSD's RLD for text
{external references) to the output module;
and APENIN is entered at CEYIN to append
the CSD's RLD for text (internal reference)
to the output module. After control is
returned to LINK, the virtual memory page
table entries are appended to the output
module. If there is text for the CSD, it
is appended to the output module. If the
control section just appended to the output
module was a combined control section, the
CSD and text pointers and page count are
restored to their former values, and the
pointers are advanced to the next control
section.

26

When the end of the PMD is reached, the
cumulative length of the input ISDs is
incremented by the length of the current
ISsD, the ISD pointer is moved to the next
vacancy, and the RCTBL table heading is
initialized. Control is returned to the
calling module if all control sections from
the PMD have been deleted. If all control
sections in the PMD have not been deleted,
the number of definitions in the table is
computed, all new definitions are chained
to the hash table via the definition search
links, and the index to the CSD heading is
placed in the new definition CS links. The
pointer to the next CSD is obtained, and
the processing for its definitions identi-
cal to the first CSD is performed if the
end of the output module has not been
reached. If the end of the output module
has been reached, the CSp pointer is set to
the first CSD in the output module, and
GTCSAD is called.

GTCSAD is entered at CEYGA via
restricted linkage, with a pointer to the
CSp's Definitions, References, RLD for Com-
plex Definitions, RLD for External
References, RLD for Internal References,
and the Virtual Memory Page Tables. GTCSAD
returns control to LINK, and LINK chains as
many references in the CSD as possible to
the corresponding definitions in the CSD
via the reference use links.

After all references in this CSD are
processed, the CSD pointer is advanced to
the next CSD; if the end of the output
module has been reached, control is
returned to the calling module; if the end
of output module has not been reached,
remaining CSDs in the output module are
processed similarly to the first CSD.

PUTDIAG (CFADC1 in Module CFADC)

This routine is part of LPC and is
explained in Command System Program Logic
Manual, GY28-2013.

RENAME -- RENAME Statement Processor
(CEYRN)

This routine processes the RENAME state-

ment. (See Chart AA, Part 6.)
Entry: Entry point CEYEN; entry
parameters:
Registers:

8

a common register pointing to the
first character position of the state-
men operand.

a common register pointing to the
input PMD.

Calling Sequence: Direct branch to loca-
tion CEYEN from the INCLUDE routine.

Routines Called: ERROR, SCAN.

Exit: Exit from this routine is made by a
direct branch back to location ICRET of the
INCLUDE routine.

Operation: This routine is entered with a
pointer to the input PMD and a pointer to
the first character position of the state-
ment operand. Using restricted linkage,
SCAN is entered at CEYSC with a pointer to
the first byte of the statement's old name.
The o0ld name is scanned until a delimiter
character (left or right parenthesis, minus
sign, comma, or blank) is encountered. It
the old name contains more than eight char-
acters, SCAN calls ERROR which issues mes-
sage 10. SCAN returns control with a
pointer to the first byte that follows the
delimiter. The delimiter is examined to
determine the processing required for the
RENAME statement:

e A left parenthesis for a delimiter
causes a control section, entry name,
or an external reference to be renamed.

e A blank or comma for a delimiter causes
a control section or entry name to be
deleted.

Delimiters other than a blank, comma, or
left parenthesis causes ERROR to issue mes-
sage 11.

If the delimiter is a left parenthesis,
SCAN is called again to process the new
name in the RENAME statement in the same
way provided for the old name. If the next
delimiter is other than a right parenthe-
sis, ERROR is called to issue message 11.

A pointer is set to the first control
section dictionary in the module denoted by
the old name, and another pointer is set to
the combined section (which is in a work
area) if the control section has been com-
bined. When the ©ld name is a definition
and the new name is already defined in the
output module, ERROR is called to issue
message 5, after which control is returned
to INCLUDE. If the o0ld name is a defini-~-
tion and the new name is not defined in the
output module, the old name in the input
PMD is replaced by the new name.

When the old name is a definition denot-
ing a control section name and the ISD is
required, the control section name is
placed in the Rename/Combine Table (RCTBL).
(Note that all renamed control sections
cause entries to be placed in the RCTBL.)
These entries will be placed in the ISD
when the control section is linked to the
output module. RCTBL is used by the Update

ISD (UPISD) subroutine, which is a part of
the LINK module. The old name in the
RENAME statement may also denote an extern-
al reference; if so, that external
reference is replaced by the external
reference denoted by the new name. After
the first control section is processed, the
input module's PMD is checked for remaining
control sections; if additional control
sections are present, they are processed in
the same way the first control section was
processed.

If, at the completion of the PMD search,
the external name denoted by the old name
did not match a name in the PMD, ERROR is
called to issue message 6.

The delimiter following the old name
operand in the RENAME statement is checked;
delimiters other than a comma or blank
cause ERROR to issue message 11. RENAME
statement processing is terminated when a
blank delimiter is encountered, at which
time control is returned to the INCLUDE
routine.

If a control section or entry name is to
be deleted (delimiter was a comma or blank
during the time the o0ld name was first
scanned), a pointer is set to the first CSD
in the input PMD. A CSD pointer is also
set to the combined section (which is in a
work area) when the control section is
marked for combining. The control section
denoted by the old name causes that control
section to be marked for deletion. A
direct branch is made to the Delete Entry
Name (DELNAME) subroutine if the o0ld name
denotes an entry name. DELNAME is entered
with a pointer to the entry name to be
deleted and a pointer to the associated CSD
heading. DELNAME locates and marks for
later deletion the desired entry name, and
updates the related CSD tables. On return
to RENAME, the input PMD is checked for
remaining CSDs. Remaining CSDs are pro-
cessed in the same way the first CSD was
processed. ERROR is called to issue mes-
sage 6 if no CSDs remain in the PMD, and
when the name denoted by the o0ld name has
not been matched with an identical defini-
tion in the input PMD. A check is made of
the delimiter following the old name; pro-
cessing is terminated when a blank delimit-
er is encountered, and control is returned
to the INCLUDE routine.

SCAN -- Scan_ (CEYSC)

This routine scans a name in search of a

delimiter. (See Chart AQ.)
Entry: Entry point CEY¥SC; entry

parameters:

Section 3: Program Organization 27

Registers:
0, 1, 3, 4, 5, 6, 7
pseudo parameters, whose values are
preserved.

common register which points to the
first byte position of a name.

Calling Sequence: INVOKE ACEYSC.

Routines Called: ERROR.

Exit: Returns to calling routine unless
more than eight characters appear before a
delimiter. 1In this case, a direct branch
exit is made to ERROR at location CEYER.
Exit parameters:

Registers:
2
delimiting character in low-order
eight bits.

common register which points to the
byte position following the delimiter.

Operation: The name passed to this routine
is examined (by means of a translate and
test table) for a delimiting character. If
more than eight characters are encountered
before a proper delimiter is found, a
direct branch is made to ERROR to issue
message 10. The delimiter character is re-
corded and the scanned name is placed in
TEMP (a temporary save area of eight char-
acters). TEMP is filled with blanks when
the first character scanned is a delimiter.

Exit from SCAN is made using restricted
linkage. SCAN provides the calling routine
with the delimiter character and pointers
to the byte position following the
delimiter.

Allowable delimiters are left parenthe-
sis, right parenthesis, hyphen, comma, and
blank.

TRAITS -—- TRAITS Statement Processor
(CEYTR)

This routine processes the TRAITS state-

ment. (See Chart AA, Part 8.)
Entry: Entry point CEYTR; entry
parameters:
Registers:

8

a common register pointing to the
first character position of the state-
ment operand.

a common register pointing to the
input PMD.

28

Calling Sequence: Direct branch to CEYTR
from the INCLUDE routine.

Routines Called: SCAN, ERROR.

Exit: Direct branch back to location ICRET
in the INCLUDE routine.

Operation: This routine is entered with a
pointer to the first character position of
the TRAITS statement operand and a pointer
to the input module's PMD. SCAN is entered
at CEYSC with a pointer to the first byte
of the statement operand, which indicates
the control section to be processed. SCAN
scans the control section name until a
delimiter character is found. When the
control section name contains more than
eight characters, SCAN calls ERROR, which
issues message 10. A delimiter other than
a left parenthesis or blank causes TRAITS
to branch to ERROR to issue message 11.

The input PMD is searched for the con-
trol section's CSD by comparing the control
section name defined by the TRAITS state-
ment to the control section name in the CSD
header. If a CSD is marked for combining,
the control section name of the CSD header
in the work area (not in the input PMD) is
compared to the control section name
defined by the TRAITS statement. (The name
is stored in TEMP.) ERROR is called to
issue message 11 if the control section
name is not found in the input PMD, or the
work area when processing combined control
sections. The attributes word is cleared;
that is the FIXED attribute is assigned.
The delimiter following the statement's
operation code is then checked. If the
delimiter is a blank, control is returned
to INCLUDE, and the FIXED attribute is thus
automatically assigned to the control sec-
tion. If the delimiter is other than a
blank, SCAN is called to process the TRAITS
statement's trait operand. ERROR is called
to issue message 10 if the attribute word
is invalid. When a valid attribute is
detected, the appropriate trait code is
assigned to the applicable attributes word
in the CSD heading. A check is again made
of the delimiter to determine whether or
not it is a comma, right parenthesis, or
neither of these. A comma is indicative of
more than one operand; consequently, pro-
cessing for the additional operand orx
operands is identical to that processing
provided for the first operand. Contrcl is
returned to INCLUDE for a right parenthe-
sis, which indicates end-of-statement pro-
cessing. Delimiters other than a comma oxr
a right parenthesis cause ERROR to be
called to deliver message 11.

UPISD -- Update ISD Subroutine (Chart AK):
UPISD is an open subroutine, used exclus-
viely by LINK, that updates the ISD when

the input module control section is being

attached to the output module. After being
entered by a direct branch, the RCTBL table
is searched for an output control section
name that matches the current PMD control
section name. If the name found is a
RENAME entry, RCTBL is searched for an out-
put control section name matching the input
control section name. In essence, this is
a check for a COMBINE entry with its name
subsequently renamed. If such a name is
found, the output control section name
(from the RENAME entry) is moved from RCTBL
to the COMBINE entry in the ISD.

If a match is not found in RCTBL, the
ISD receives the existing output control
section name, and control is returned to
LINK.

OUTPUT PROCESSOR

Function Summary

After all linkage editor control state-
ments (concluding with an END statement)

Entry point CEYOP1

have been successfully handled by the Con-
trol Statement Processor and return has
been made to LPCMAIN, LPCMAIN invokes the
linkage editor at its second (continuation)
entry point to produce the output module
and, if necessary, a PMD listing. This
output processing is performed by the Out-
put Processor routine (OUTPUT) and a number
of subroutines.

OUTPUT puts together the components of
the module (PMD, text, and, if requested,
the composite ISD), produces an external
name list (a list of alias names by which
the module to be stored may later be
found), and prepares a PMD listing, if the
user has requested it. At the completion
of this processing, OUTPUT returns to
LPCMAIN, having filled in a parameter list
containing the locations of the output mod-
ule's components and the external name
list.

A more detailed description of the link-
age editor's OUTPUT Routine follows Figure
6 and Table 3.

OUTPUT
—— (CEYOP}
LPCMAIN Output
P E— Processor
LSTPMD
(Part of
OUTPUT)
A
MD600 MD450 MD300 MD350 MD240 MD500
OPEN and
{Part of {Part of {Part of {Part of (Part of (Part of CLOSE Macro
| CUTPUT) QOUTPUT) OUTPUT) QUTPUT} QOUTPUT) QUTPUT
! | |
1 |
1 L
Legend:
Routine or
PUT GTWRC subroutine
Macro Macro

Figure 6. Overview of the output processor

Macro

Section 3: Program Organization 29

Table 3. Output processing hierarchical table

: -1
| Routine: Output Processor -- Level: 1 |
i""“"-f T T T Jl
[Routine | Purpose | called Routines | Calling Conditions |
e 4 + } ¥ |
r T t { 4
Output	Continuation entry point from	LSTPMD (CEYLP)	If PMD listing is required.
Processor	LPC. Delivers output module,		
(CEYOP1)	prepares PMD listing.		
} 1 L 4L 4			
Routine: Output Processor -- Level: 2 i			
R 4			
L} L) T T -1			
LSTPMD	Prepares PMD listing, place	MD600	For each line of output. {
(CEYLP)	it in a VISAM data set or t + i		
	SYSOUT.	MD450 [When *NAME' and °*VALUE®' lines	
			are to be listed for a DEF
% i , itable.			
r T -			
		MD300	[When °*REF#' and 'NAME' lines
			are to be listed for a REF
	[table. :	
]]	} _— —		
i		MD350	When *LENGTH', 'REF#', 'TYPE'
		l]and 'BYTE' lines are to be	
			listed for an RLD table.
	F - + -—		
		MD240	When external or internal REF]
{	{	RLD modifiers are to be	
			1listed.
I b= ———— 1			
		MD500	When Q REFs or CXD REFs
			are to be listed.
	t + -4		
	{OPEN macro	When listing goes to list	
} ; [instruction 1data set. j			
¥ T - 1			
		CLOSE macro	When listing goes to list {
		instruction	data set.
F + ———i- b -1			
Routine: Output Processor -- Level: 3			
O T - T T -			
{MD600 jPlaces line of PMD listing	PUT or GTWRC	PUT: for list data set.	
	into VISAM data set or {instruction	GTWRC: listing to SYSOUT.	
	SYSOUT.		
——- === - + + -— -			
MD450	Writes *NAME' and 'VALUE'	MD600	Always called.
	lines for a DEF table in the		
	PMD. l		
- v —— - + 4
| MD300 |Writes 'REF#' and °*NAME" | MD600 |Always called. |
{ |l1ines for a REF table in the | | |
| | PMD. [| |
b + e e 1- 1
|MD350 |Writes 'LENGTH', 'REF#', {MD600 |Always called. |
| |*TYPE* and 'BYTE' lines for | |
| lan RLD table. | | |
fo—mm 1 - -+ + -
| MD240 |Writes external or internal |MD350 |Always called. |
| JREF RLD modifiers. p——- - + -——1
| | |MD600 |Always called. {
t + - t 1 {
| MD500 |Writes detail lines for | MD600 |Always called. }
| |0 REFs and CXD REFs. | i |
Lo L 4 L [——d

30

OUTPUT -- Output Processor (CEYOP)

This routine delivers the final output
module (PMD, text, and ISD), external name
list, and the necessary return codes to the
LPC. It also prepares a PMD listing, if
the user has requested it. (See Chart BA.)

Entry: Entry point CEYOPl; entry
parameters:

Register 1
address of a parameter list.

The parameter list consists of a series
of address constants aligned on word
boundaries:

Word 1 Address of a 1-byte field. The
linkage editor fills this field
with 00000001 if the list data set
(PMD listing) contains lines to be
listed; with 00000000, if the list
data set is empty.

Word 2 Address of a 1-word field. The
linkage editor fills this field
with the number of bytes in the
PMD.

Word 3 Address of a 1-word field. The
linkage editor fills this field
with the location of the first byte
of the PMD.

Word 4 Address of a 1-word field. The
linkage editor fills this field
with the number of bytes in the
cutput text.

Word 5 Address of a 1-word field. The
linkage editor fills this field
with the location of the first byte
of the output text.

Word 6 Address of a 1-word field. The
linkage editor fills this field
with the number of bytes in the
IsD.

Word 7 Address of a 1-word field. The
linkage editor fills this field
with the location of the first byte
of the ISD.

Word 8 Address of a 1-word field. The
linkage editor fills this field
with the location of the first byte
of the list of external names.

Calling Sequence: CALL CEYOPI1.

Routines Called:
required.

LSTPMD, if PMD listing

Exit: Normal; exit parameters:
Register 15 contains a condition code, as
follows:

Condition code 0
no errors. The field specified by pa-
rameter words 1-8 is filled in. If no
ISD was produced, the fields specified
by words 6 and 7 of the parameter 1list
are zero.

Condition code 4§
minor errors, parameter output as for
code 0.

Condition code 8
major errors, parameter output as for
code 0.

Condition code 12
no object module. Only the field
specified by parameter word 1 is
filled.

Condition code 16
abnormal end condition; parameter out-
put not currently defined.

Operation: This routine is entered by LPC
MAIN at location CEYOP1 with the addresses
of locations where the following informa-
tion is to be stored:

e Lines from the list data set (PMD
listing).

e Number of bytes in the PMD.

e Location of first byte in the PMD.

e Number ¢f bytes in the output text.

e Iocation of first byte in output text.
e Number of bytes in the ISD.

e Location of first byte in the ISD.

e Tocation of first byte in the external
name list.

Initially, a check is made of the form-1
switch (FRM1SW), maintained by INANAL, to
determine if at least one form-1 INCLUDE
statement has been given. 1If a form-1
INCLUDE statement has not been given, the
"lists exists™ indicator is set to zero,
the return code is set to 12 (no object
module), and control is returned to the
LPC. If a form1 INCLUDE statement has
been given and a PMD listing is required,
the Program Module Dictionary Listing
(LSTPMD) subroutine {described below) is
called. LSTPMD is entered at CEYLP via
restricted linkage with pointers to the
location of the PMD, the length of the PMD,
page number to be assigned to the first

Section 3: Program Organization 31

page of output, and the address of the DCB
for the list data set. LSTPMD prepares a
PMD listing, places it in the list data set
or on SYSOUT, and returns control to this
routine.

Before returning control to LPC, this
routine prepares a return code and a param-
eter list for the LPC. If no errors were
encountered during linkage editor proces-
sing, the return code is set to zero (no
errors). If one or more errors were
encountered, the return code is set to 8
{major error). The following parameter
information is provided: a code specifying
whether the list data set contains lines to
be listed; the number of bytes in the PMD
and the location of the first byte; the
number of bytes in the text and the loca-
tion of the first byte; the number of bytes
in the ISD and the location of the first
byte (if the ISD is to be generated); and
the location of the first byte in the
external name list.

LSTPMD -- Program Module Dictionary Listing
Subroutine (Chart BB): LSTPMD (CEYLP), a
closed subroutine, is entered with INVOKE
ACEYLS if the PMD listing option was taken.
Information required for the listing is
extracted from:

Register 1
address of a five—-word list that con-
tains the following informaticn:

Word 1 Location of program module
dictionary.

Word 2 Length of PMD.

Word 3 Page of number -1 to be
assigned to first page of
output.

Word 4 Address of 720-byte work area.

Word 5 Address of the DCB for the

list data set.

Upon entry to this subroutine, the
information listed above is stored, and a
switch (GATESW) tested to determine the
destination of the PMD listing (whether to
a list data set or to SYSOUT). The output
buffer is initialized, and the MD600 sub-
routine (described below) is entered to
write the following module and control sec-
tion header lines:

e Module Header Lines
MODULE NAME
LENGTH
DIAG SEVERITY

e Control Section Header Lines

32

CONTROL SECTION NUMBER
NAME

TYPE

ATTRIBUTES

VERSION

CSD LENGTH

TEXT LENGTH

If relocatable definitions exist for the
PMD listing, the MD600 subroutine is
entered to write the RELOCATABLE DEFINI-
TIONS header line, and the MD450 subroutine
(described below) is entered to list the
detail (NAME and VALUE lines). If absolute
definitions exist for the PMD listing, the
MD600 subroutine is entered to write the
ABSOLUTE DEFINITIONS header line, and the
MD450 subroutine is entered to list the
detail lines. If complex definitions exist
for the PMD listing, the MD600 and MD450
subroutines are entered to list the COMPLEX
DEFINITIONS header line and the detail
lines. If references exist for the PMD
listing, the MD600 and MD300 subroutines
are entered to list the REFERENCES header
line and the detail lines. If Q REFs or a
CXD REF exist, they are listed separately
from other references; MD600 and MD500 are
entered to list header and detail lines.

After all REFs have been listed, LSTPMD
determines if the complex DEF RLD contains
any modifiers. If so, MD600 is called to
write the MODIFIERS FOR COMPLEX DEFs head-
ing. For each modifier pointer with modi-
fiers, MD600 is called to list the header
for the corresponding virtual page of the
PMD:

PAGE xx # MODIFIERS XXXX

and MD350 is called to 1list the contents of
each modifier:

LENGTH
REF #
TYPE
BYTE

The external REF (including Q REFs and
CXD REF) and internal REF RILDs are listed
in a similar fashion. The header for each
modifier pointer's modifier, however,
reads:

TEXT PAGE xx VIRTUAL PAGE xx # MODIFIERS
XXXX

The text page is relative to the first
page of text produced by the language pro-
cessor; the virtual page is relative to the
first page of virtual storage allocated to
the control section when the module is
loaded. (Text pages plus "empty"™ pages -
those resulting from DS or ORG instructions
and not actually on external storage -
equal virtual storage pages.)}

After the first control section has been
processed, the address of the next control
section is obtained and processing con-
tinues. When the PMD has been completely
processed, the CLOSE macro instruction is
used to close the list data set (unless the
listing went to SYSOUT) and control is
returned to the caller.

MD240 Subroutine {(Chart BB): Upon entry,
the MD240 subroutine finds the virtual
memory page in which the text page for the
control section is located. MD240 writes
the PMD listing header lines for both the
modifiers for text (external and internal
refs) entries (text page, virtual page, and
modifiers). After writing the detail
header lines, MD600 is entered to list the
detail lines applicable to the header
lines. MD350 is also entered to complete
processing for the PMD listings' modifiers
for text (external REFs and internal REFs)
entries. The text page count is incre-
mented and the address of the next modifier
for text (external REFs or internal REFSs)
pointer is obtained. If the pointer does
not point to an external or internal
reference, control is returned to LSTPMD.
If the pointer points to an external or
internal reference, and there are modifiers
for this pointer, remaining pointers for
external and internal references are
checked in the same manner as the previous
pointers. But if there are modifiers for
this pointer, they are processed in a mann-
er identical to that for the first internal
or external reference modifier.

MD300 Subroutine (Chart BC): The MD300
subroutine is used by LSTPMD to list detail
lines for the references entries in the PMD
listing. Upon entry, MD300 sets the REF #
and NAME heading in their positions,
assigns a reference number (beginning with
zero) to the entry, and gets the associated
name. The MD600 subroutine is entered to
write the header and detail lines as for-
matted, and if all entries have been pro-
cessed, control is returned to LSTPMD.
MD600 is entered to write the lines if the
print line is filled, even if all entries
have not been processed. After MD600
writes the lines or if the print line is
not filled, a reference number is assigned
to the next entry, and processing for this
is identical to that for the previous
entry.

MD350 Subroutine (Chart BC): The MD350
subroutine is used by LSTPMD and MD240,
respectively, to list detail limnes for the
modifiers for complex DEFs and to complete
processing for the modifiers associated
with text (external REFs and internal REFs}

pointers. Initially, the LENGTH and REF #
heading is set into position and the
reference number associated with the pre-
sent modifier entry is obtained. After the
reference number for all entries is
obtained, MD600 is entered to write the
lines as currently formatted. The TYPE and
BYTE heading are set into position, and the
"type"™ and "byte"™ information for the first
entry, whose length and number were just
written, is obtained. The type and byte
information for the remaining entries is
obtained, and MD600 is entered to write the
lines as formatted. When all modifiers are
processed, control is returned to the cal-
ling subroutine. (If all modifiers have
not been processed, MD350 starts at its
beginning to provide the same processing
for the subsequent modifier.)

MD450 Subroutine {(Chart BD): The MDu450
subroutine is used by LSTPMD to list detail
lines for relocatable, absolute, and com-
plex definitions entries in the PMD list-
ing. The NAME and VALUE heading are set in
position, and the name and value for the
associated entry is placed into the print
area. When all entries have been pro-
cessed, MD600 is entered to write the lines
as currently formatted, after which control
is returned to LSTPMD. MD600 is entered to
write the lines if the print line is
filled, even if all entries have not been
processed.

MD500 Subroutine (Chart BD): This subrou-~
tine is used by LSTPMD to list detail lines
of Q REF and CXD REF types of external
reference; these are listed separately from
other references in the PMD listing. The
REF number and name is set into position
for each Q REF or CXD REF; then a call is
made to MD600 to write the formatted lines.
Next, length and align values are set up
and MD600 is called to write these lines.
Control is then returned to LSTPMD.

MD600 Subroutine (Chart BE): The MD600

subroutine is used by LSTPMD, MD240, MD300,
MD350, MD450, and MD500, to list detail
lines for entries in the PMD listing.
tially, the detail line is checked to
determine whether it is being ejected; if
so, either a PUT (to a list data set) or
GTWRC (to SYS0UT) macro instruction is used
to set and write the page header. The line
count is then reset. Another test is made
to determine the listing destination,
whether list data set or SYSOUT, and an
appropriate macro instruction {(PUT or
GTWRC) is issued to write the current line.
The line count is incremented, and control
is returned to the calling subroutine.

Ini-

Section 3: Program Organization 33

EARLY-END PROCESSOR

Function Summary

The Early-End Processor phase of the
linkage editor, entered at CEYEEl from
LPCMAIN, is called as a result of early
termination of linkage editor processing in
the Control Statement Processor phase. The
Early-End Processor consists of one rou-
tine, EARLY END; this routine closes the
list data set if open, closes any libraries
that may be open, and frees virtual storage
secured previously for work areas. Figure
7 and Table 4 illustrate the Early-End Pro-
cessor's general operation and hierarchy,
respectively.

EARLY END -- Early-End Processor (CEYEE1l)

This routine performs all activities
required if linkage editor processing must
be terminated before normal completion of a

task. (See Chart CA.)
Entry: Entry point CEYEEl; entry

parameters:

Register 1
address of a one-byte field. EARLY
END will fill this field with X'01* if
the list data set contains lines to be
listed; with X*'00', if the list data
set is enmpty.

Calling Sequence: CALL CEYEEl.

Routines Called: Via CLOSE and FREEMAIN

nacros .

Exit: Normal; exit parameters:

Register 15

CEYEE!
EARLY END
LPCMAIN (CEVEE1)
Early-End
‘_____
Processor

CLOSE

Macro

FREEMAIN

Macro

Figure 7. Overview of the early-end

processor

End Code 0
normal end; the field specified by
register 1 is completed.

Operation: Upon entry, a check is made to
determine whether the list data set con-
tains lines (PMD listing) to be listed; if
lines are to be listed, the field whose
address has been passed in register 1, is
set to one, and the CLOSE macro instruction
is used to close the list data set if it
was opened. If the list data set contains
no lines to be listed, the field is set to
zero. A check is made to determine whether
any library is still open; if so, the CLOSE
macro instruction is again used to close
the open library. If no lines are to be
listed, or no library is open, or after
CLOSE closes the open library, the FREEMAIN
macro instruction is used to release all
work areas, and control is returned to LPC.

Table 4. Early-End processing hierarchical table

r - I
| Routine: Early End -- Level: 1 |
" T - T T _._.{
|Routine | Purpose |Called Routines | Calling Conditions |
k- t t t 4

| Early EndTEarly-end entry point from
| (CEYEE1l) |LPC. Terminates linkage

| jeditor processing prior to
| | completion.
I |
L

L

T
{CLOSE macro
{instruction

| FREEMAIN macro
|instruction
L

i
|Always called to close opened]

|libraries. |

|Always called to free virtual]

istorage areas. |
- o i

34

The flowcharts in this manual have been produced by an IBM program,

bols.
shown at the right.

SYMBOL

TERMINAL BLOCK

-1

PROCESS

BLOCK

e

SUBROUTIN
BI ¥

F1

PR}'DFFI”HJ’
FROCESS BLOCK

31

INPUT/OUTPUT
BLOCK

H1

PREPARATIN
BLOCK

AGE

EPA
7 IN?\v {CTOR

LRSS

DEFINITION EXAMPLE
NDICATES AN ENTRY OR MODNAME
TEFMI‘\IF\L POINT IN A FLOW-
ART; SHOWS START, STGP, B3
HALT, DEIAY QR INTERRUP-
TION, AY ALSO INDICATE COMNAME

RETURN TU THE CALLING
PROGRAM.

CSECT
LABEL1
INDICATES A PROCESSING e S—
FUNCTION OR A DEFINED OP-
ERATION CRUSING CHANCE IN
RM_OR LOCATION
SR IR EORMATION .
DLCATES A DECISION oR
TTCHING - TYPE T
THAT DETFRMINES “w lfH OF
A NUMBER ALT Tt
BATHE “EloULD BE PO LOWED
LABEL2
SUBRTN
LABEL3
INDICATES A SUBKOUTINE OR SFDPNM
SOLULE THAT TS INCLU

IN THE FLOWCHARTS {,l’
*THER MANLU. /\L

4,,

|

CATES ENTRY TQ OR EX1T
GH THE

INDICATES ENTRY
F‘hiM A BLOCK ON
GE OF THE ¢

LI MWCHARTS |

E. NEXTRTN

COMMENTS

MODNAME 1S THE LOAD MO
\ME OF THE ROUTINE DE
FLOWCHART .

COMNAME 1S THE COMMON NAME OF THE
ROUTINE.

ULE OR LIBRARY
SCRIBED BY THIS

J”HERMOD INDICATES ng MODULES PASSING

UNT$ TG THIS MODU AND THEIR FLOW-

CH,

T IS THE CSECT NAME OR OTHER ENTRY
P“INT AT WHICH PROCESSING BEGINS

LABEL1 IS THE LABEL OF THE FIRST
INSTRUCTION.

PRUGRAM EXFC]
H3 WHEN THE [
BLOCK E3 WHEN

NO, OR
ON IS YES.

R IRN N

ING THE ST BR)U“ NE [n Ax I.A
ENTRYPT 1 THE ENTRY POINT.

SUBKETN 1S THE COMMMN XNaAME OF THE SUB-
ROUTINE TN FLUWOHAKT AG.

iR FASSMECH INDICATES HOW tf»N"'R(,‘L
ASSES FROM COMNAME TO SUBRTN

5

.2 IS THE LABEL OF THE
- PRI WHICH (\O\IT?HI
FFEDEFINED l'R

M- Tv'A'u‘

E USED

WTION CONTINU
D I

W1TH
OR

BLOUK H3
H O

THI
ISION

THE

THE OFFPAGE
CATES THAT
A

JES WITH BLOCK

E THI: SE TION OF
FROI HIC H CONTRCL

LBF(UTI(\«E "ONTROL,
RUC TIUN FOLLOW-

IN A FJ(O(ESS -

WHEN
{ AV

FLOWCHARTS

using ANSI sym-
The symbols are defined in the left column below, and examples of their use are

{ABELSY IS THE LA\BF' OF SECTION (\!E’ CODE
1/0.

E(
©F THIS ROUTINE THAT l’ﬂt'l ATES

NE THAT EXECUTE

AFTER THIS ROUTINE.

SNTRYPT IS5 THE ENTRY POINT OE NEXTRTN,
.

WHICH IS DESCRIBEL I% THART

TIA: PASSMECE INLCICATES HOW CONTROL
ES FROM COMNAME TO NEXTRTN.

Flowcharts

XTRTN 15 THE COMMON NAME OF THE RQUT-

35

Chart AA. Linkage Editor: INANAL - Control Statement Input/Analyze processor
(page 1 of 9)

CEVIAI

i
KAGE EDITOR
NANAL}

Y

1A120

STCRE GUTPUT STATEMENT
MODULE NAMh I‘\l 15 INCLUDE
NAMES

IA1230

SET
SWITCHES NO

WAS AN
ALTERED LINE

TUMBINE

CORDING TG
INPU EXPECTED
PAR
1A200
GETMAIN FOR MARK OUTPLT
PUT AND MODULE wITi YES ENTER STATEMENT
CUALUT FHD DIAGNOSTIC RENAME —» IN STACK
TEXT AND 1SD VEL 2
O
-
LEIN1 IA70
: E
PREPARE_TC GET
TABLE~ QoK LINE NUMBER LINE_AND YES
R ﬁuINTERs ING DETEFVIVL TOTAL TRAITS
PREVTOUS
INCLUDE

STATEMENT
MORE THA\I 256

YES

IA106
T e |
CEYER AOAT
MOVE LINE TO
Q‘TATEMENT STORE
AREA (SAVLNT) ISSUE MESSAGE 3

ERROR

H 4.
ERROR CEYER

YESI////H
NTINUATION

CHARACTE

CHART AO

IA115 SCAN
ISR, TR S
SET RETURN CEYSC AQAZ

CODE {IACQODE)
TO 4 {(CAN'T

CONTINUE} SCAN OPERATION

DELIMI TFR
WAS BL.

K
K1 CEYER AOAT
‘ RETURN TO ’ ISSUE‘IQ{!ESSAGE

|
©

36

Chart BA. Linkage Editor: INCLUDE - INCLUDE statement processor (page 2 of 9)

AN
CEYSC AQR3
SCAN_ LIBRARY
NAME

1S LIBRARY
NAME BLANK

Coa?

" LIBRARY
AME_IN DCB
¢DC BDDNAM)

~OPEN-
OPEN
PARTITIONED
LIBRARY
—
1enio IC020
BRANCH ON SAVE POINTER TO
DELIMITER CHAR OPERAND
10023 N
AQA Y
SCAN_NEXT
MODULE OR ENTR?
NAME

JELIMITER
CHAR WAS

COMMA\\\\\\\V,z/’/’
lJTEhF

RIGHT
PAREN.

LEFT PAREN
(FORM 1)

T RETURN
E 'NO'

CHART AC

CHART AG

Flowcharts 37

Chart AA. Linkage Editor: INCLUDE - INCLUDE statement processor (page 3 of 9)

BRING
CEYBR ANTAZ
MODULE NO
EX SEARCH LIBRARY FOUND & NCT
MODULE NAME OR PUT MCDULE IN IN SYSLIB
ENTRY NAME WORK AREA

SCAN
—C
CEYSC AQA3

1

ANY
STATEMENTS
IN STARCK LIST

18T
MODULE
PROCESSED BY
THIS
INCL.

SET INCLSW
SWITCH ON

SCAN OPERATION

IC071 B ERROR IC0e4
e | 2 ey
CEYER AQA1
MAIN FTN
PROGRAM

ISSUE MESSAGE 1
OR 2

N
18T
MODULE
PROCESSED BY
THIS

SWITCH

IC068 ERROR

2 F 3
CEYER AGAT SET MAIN
FTN PROGRAM
ISSUE_MESSAGE INDICATOR ©N
22 (FTNMAIN]
IEI’»

IC066 3 LINK
L g VU A
CEYLK AJTA1

LINK INPUT PMD
TC OUTPUT PMD

ICo8o

SET INCLSW ON

J4. #INDICATES MOKRE THAN
ONE MODULE LINKED
BY THIS INCLUDE

NOTE:

38

- Chart AA. Linkage Editor: INCLUDE - INCLUDE statement processor (page 4 of 9)

GTCSAD
CEYGA AQAT

GET TABLE
ADDRESSES IN
PMD

% - %
1200 B IC320 EXTREF 1C300 A
E B
FORM 1 CEYXR APA2 ANY
) NO NO STATEMENTS

SWITCH
(FRM15W) EQ SEEK UNRESOLVED IN STACK LIST
TO 1 EXTERNAL REF 1IN

OUTPUT MOD

ERROR
MESSAGE 9

CEYXR EXTREF

2 C
NEXT CHAR
18 LEFT PAREN

A YES ERROR

MES

SCAN 1c32s 10340 l
— D D4
AQA3

BUMP TO NEXT
i SCAN EXTERNAL EXTERNAL —_—
3 E REFERENCE

AN
REFERENCE NAM

y 1C330 BRING

CEYBR ANTA2
RECCORD NAME IN
EXCLUDE LIST SEARCH LIB ﬂF()R

MATC! G
EXTERNAL NAME

RIGHT
ELIMITING PAREN NO
CHAR WAS

COMMA
OTHER °
1C015 N ERROR
CEYER AOA1
I5SUE }I:;!ESSAGE

LD

IC339 LINK
s, ey
CEYLK AJI1A1

LINK INPUT PMD
TO CUTPUT PMD

FTN MAIN
PROGRAM

YES 3

IC350 N ERROR
CEYER AOAY
1ST MAIN SET MAIN FTN
ISSUE_MESSAGE FTN_PROGRAM
22 LINKED

Flowcharts 39

Chart AA. Linkage Editor: COMBINE COMBINE statement processor (page 5 of 9)

o010 o050
UPDATE POINTERS
ELIMITING TO_NEXT
CHARACTER AVAILABLE
POSITIONS IN
WORK AREA
CEYCO l Cco0o8 SCAN GTCSAD
CEYSC AQA3 CEYGA AQAT
EDIT COMBINE
STATEMENT FOR SCAN FIRST C.S. GET TABLE
ERRORS NAME ADDRESSES OF
1ST CSD
¥ GETCSD SCAN
C o g
- CEYGC APA4 CEYSCT AQA3
ERROR - CEYER - UPDATE_POINTEKS
(MESSAGE 11) LOCATE CSD IN SCAN NEXT C.S. TN RCTBL
BMD NAME
CHART AO
CO080 0009 ¥ ¥ GETCSD
D1 S Y} -
CEYGC APA4
SET RETURN TLLEGAL MARK CSD FOR
CODE TO "NO' DELIMITER COMBINING LC‘CATgMgSD IN
co090 . GTCSAD co01s ¥ GTCSAD
- CEYGA AQA1 CEYGA AQAT
SET RETURN NO 7" DOES_NAME
CODE TO ‘MO’ EXIST GET TABLE GET TABLE
ADDRESSES OF ADDRESSES OF
FIRST CSD REXT CSD
TES
ERROR v 3
. CEYER AOA 1
ERROR - CEYER MOVE TEXT 1 TO MARK CSD FOR
(MESSAGE 6) ISSUE_MESSAGE WORK AREA B DELETION
CHART AO
G G
NO
ISD REQUIRED 1SD REQUIRED
ES ES
RDD C.S, NAME & ADD C S NAME
DISPLACEMENT TO|—d DISPLACEMENT TO
RCTBL, RCTBL
-
€0020
DETERMINE
PROPER WORK
ARFA TO BE USED

C0100 COMSUB
.} ey

COMBINE_CSD'S
AND TEXTS

l

40

Chart AA. Linkage Editor: RENAME/DELNAME - RENAME statement processor and Delete Entry
P Name subroutine (page 6 of 9)

CEYSC AQA3
ELIMITING OTHER
— CHARACTER WAS
CEYRN SCAN 'NEW NAME'
RENAME
RIGHT
PAREN (::)
RNO10 l SCAN RNO4C
CEYSC AQA3
SET POINTER TO 1S OLD NAM NG
1ST CSD REF, O REF,
SCAN 'OLD NAME' OR’ CXDREF
SYES
@_.
RN200
NO 1S CSD RENAME OLD REF
MARKED FOR WITH A NEW REF
COMBINING IN FMD
-~
RNO20
D) S ———
POINTER
INED INCREMENT TO
ECT. IN WCRK END OF PMD NEXT CSD
AREA
L 5
—
RN120 RNO18 p.
E E3

SET TC ISSUE
MESSAGE 11

1S 'OLD NO SET RETURN
NAME' A DEF.

CODE TG 'NO'

MESSAGE 6

@ RNO16
CEYER AQA1

ISSUE MESSAGE
NO. 5

LB

RENAME OLD DEF
WITH NEW DEF IN
PMD

] S
———————{ ERROR CEYER

SET RETURN
CCDE TO ‘'NO'

CHART AOQ
MESSAGE 11

ISD REQUIRED

YES

ADD C.S. NAME
TO RCTBL

Flowcharts 41

Chart AA. Linkage Editor: RENAME/DELNAME - RENAME statement processor and Delete Entry
Name subroutine (page 7 of 9)
DELNAME
A4
CEYDN
DELETE ENTRY
NAME IN PMD
ENTER TO PERFORM
A DELETION
RNOS0 v
SET POINTER TO MARK DEF TABLE
1ST CSD FOR DELETION
A
FIND RLD FOR
IS C.&8, COMPLEX DEFS &
MARKED FCR "COUNT FOR
COMBINING XTRA SIZE OF
REF TABLE
DNO1O
D2: 4 D5
SEARCH FOR
SET CSD POINTER MODIFIER MARK MODIFIER
TO COMB SECT. REFERENCING —_—— ENTRY FOR
IN WORK AREA DELETED DEF DELETION
ENTRY
RN110
h E4
MARK C.S. FOR
DELETION RETURN
TO RENAME
é-~> *NOTE: ATTEMPTS TO DELETE
REFS S REFS, R CXD REFS
ARE IGRORED.
DELNAME
CEYDN AE2A4
DELETE ENTRY
NAME IN PMD
RNO60

INCRMT. TO NEXT
CsD

END OF PMD

ELIMITING
CHARACTER WAS

COMMA

SET RETURN
CODE TG 'NO'

CHART AC

42

Chart AA. Linkage Editor: TRAITS - TRAITS statement processor (page 8 of 9)

TROO7 l

CLEAR CSD
o ATTRIBUTE
VALIDATE

FIELD;
COUNT ' OF QREFS
08
B2
TRAITS l

CEYTR SCAN
CEYSC AQA3

" BLANK
DELIMITER
SCAN C.S. NAME

. TROTO SCAN
[" 3 ettty
) CEY AQA3
NO ANY NAME
GIVEN —>
SCAN TRAIT
YES
TRO60
Dq————ﬁw
NC LEFT PAREN SPECIFY MESSAGE
OR_BLANK VALID TRAIT 10; ' ILLEGAL
DELIMITER ust OF NaME"
ES
TROOS TRO30

E 3

SET TRAIT
FLAG IN CSD

LOCARTE 18T CSD
IN PMD

IS CsD
MARKED FOR
COMBINE

LOCATE COMBINED
CSD IN WKC1 OR
WKC2

TROO6

IS THIS

HL YES
DESIRED

TH.
CSD

2
CALCULATE
ADDRESS FOR
NEXT CSD

TROSO TRO70 v

SPECIFY MESSAGE SET UP TQ CALL K 5
6; "EXTERNAL

END OF PMD S¢M_DOES NOT 0 ISSUEI ——— -
kS, ERROR CEYER

-
©,

CHART AO

Flowcharts 43

44

Chart AA.

Linkage Editor:

END - END statement processor (page 9 of 9)

OES
UNRESOLVED
REF HAVE RLD

MODIFIER

DELETE
UNRESOIVED REF
AND_UPDATE RLD
REF NUMBERS
-
EN103 ERDT0 EXTREF ENT05 BRING
— —
CEYXR APA2 CEYBR AN1A2
e ANY NAMES
TN_SLENAM SEARCH FOR SEARCH LIB POR |<—
TAELE UNRESOLVED MATCH ING
EXTERNAL REF EXTERNAL NAME
NEXTREF BRING
v D3"L\
YES
ANY FOUND
AN
¢ Y ERROR CLEANUP
CEYER AOR) CEYCL AHA2
TPUT ADD_AND DELETE
YABLE MARKED ENTRIES
FROM LTB @
ENO45
73
1S MODULE 1ST MAIN
IN SYSLIB FTN_PROGRAM
LINKED
YES
(:::) -
ENO30
G G2
FIX1SD ATAZ EXT.
CAMES EOUAD
COMPLETE_1SD ANY EXLUD
ATTACH TwPOT ENTRIES

ORMAL
RETURN)

EN10GO

T}
RETURN TO LPC

'ORTRAN

ENO4T

¥ LINK

NI
CEYLK Ad it

LINK INPUT
MODU TO

g TO
OUTPUT MODULE

COLLECT
] J
CEYCT AIAT
SET USER WAS REF
RESPONSE TO COLLECT COMMON RESOLVED
PNOT REQUIREMENTS
—_—
- . d
ERROR ENO55 ENO6O i ENOSO
CEYER AOA1 - ADD REF, NAME
ADD REF. NAME BUMP POINTER TO TO NONAME
SG_ 7 QUTPUT TO SLBNAM TABLE§——————p NEXT REF -+ TABLE, BUMP
UNRESOLVED BUMP COUNTER COUNTER
EXTERNAL REFS

Chart AD. COMSUB - Combine Control

Section subroutine

€0100
Al
S COMSUB
0105 '
- MERGE APPLY RELOC.
HEADTNGS INTO VALUES & REF
WORK AREA A. | CHENGEs rc EYT
UPDATE HEADTHG
0110

el A
RELOCATE TEXT 2

INE BX AT .
TC_ROUBLEWORD RL[H & RLD2 AND
BOUNDAR MOVE_TO
FOLLOM[HU AFXT ARE.
17 IN WORK AREA

Y

e)
APPLY RELOC
VALUES INT
RELOCATABLE DEF S EnTRIES
YALUES IN €SD 2
A Y
1 2
APPLY RELOC
VALUE_TO DEF COMBINE RLD2
R-VAL DISPL IN WETH RLDT . MOVE
cSD 2 TO WORK AREA

corze v

E
COMBINE VIRTUAL
MEMORY PAGE

TABLE:
INTC WORK AREA

120

¥

ELOC
REF .
OR
RLD1

VAL -
C HA\’GL

CALCULATE AND
STORE QENGTH

OF
AND RLDZ

COMBINE REF

H 2
EXIT

{BRANCH)
WORK AREA A

TO CO010 IN
COMBINE

p——J 1

APPLY REL
VALUE:

S TG NP
RLD2 EN'! RIES

COMBINE RLDZ
WITH RLD1 MOVE
TO WORK AREA A

Flowcharts

45

Chart AH.

CEYCL
A2
CLEANUP

DELETE MARKED
ENTRIES FROM

MODIFIERS FOR
ENTRY POINT

k

——
DECREMENT

LENGTH OF
MCDULE

19

MOVE MCDULE
HEADING TO WORK
AREA

E2

SET I TO 1 TO
COUNT CSD'S

F2

LOCATE
ALL CSD's
IN OUTPUT
MODULE

46

GTCSAD
CEYGA AQA1

F—P GET TABLE
ADDRESSES IN
THIS CSD

MOVE CSD
HEADING TO NEXT
POSITION OF
WORK AREA

CLO30]
—

S
POSITION

MOVE DEFS TO
NEXT
OF WORK AREA

S

1
CLEAR DEF
SEAFC}IJIA.\JLS? CsD

MCOVE _REF TABLE
TC NEXT

POSITION OF

WORK AREA

v

e |

CLEAR REF CSD
LINKS

APENCX
AMAT

CEYC

OVE COM LD
TO NEXT POS. OF
WORK AREA

AFPENEX
H S i

YEX AMA
‘OVE EXT. RLD
o} XT POS.
WORK AREA

CEYIN

NEXT FOS. OF
WORK AREA

MOVE INT RED TOf——

CLEANUP - Cleanup Final Module subroutine

A

ANY TEXT

YES

MOVE PAGE TABLE
TO NEXT

POSITION OF
WORK AREA

CLG70

1S THIS A
BLANK COMMON
SECTION

D4
UPDATE PAGES OF

VIRTUAL MEMCRY

|

AGE

W
4

vy

UPDATE
HEADI

z0

i«

CLIED

ADD T TC I -

Chart AI. COLLECT - Collect Common Requirements subroutine and FIXISD - Fix ISD
. subroutine

CEYCT l

2 3 ATTACH STRING
OF INPUT ISD'S.
FIXISD BUMP C TE

LOCATE NEXT CSD SET COVER REG
HEADIN FOR 1ISD HEADING
SYSLIB MODULE

-
) ENCYO !
e 3 e —
NG -2 SET_LNGTH OF
MCRE ISD IN ISD HD
FCUND RETURN INIT. COMPOSIYE L=L+LGTH GF ISD}#—r——

LNGTH_TO LNGTH
OF 18D

!

F1RS ISD
MODULE HEADING

SET
REGIST

IS THERE AN
ENTIRY IN
CSIZE

A

ENO85

COMPUTE LGTH
FROM _HDNG T
END ¢ ISD.
TO DISPLACEMENT
FOR MCDULE

BUMP
COVER REGISTER
TO NEXT ISD
MODULE HEADING

Flowcharts 47

Chart AJ. LINK - Link Modules subroutine (page 1 of 5)

LKOUS

CEYLK

AZ
A1
MAIN 7ST_MODULE NO
LINK FCRTRAN LINKED
PROGRAM
YES
MOD
LOAD INTQ INPUT
PMD BASE REG
<«——| ADDR OF SAVED
FTN HDR
LKOO4A LKOO4
D1 ' D2
MAIN
SAVE MAIN WO FORTRAN HDR SET ©SD POINTEK
FORTRAN HEADER, EQUAL_OUTPUT —>] To 1sT CsD -
TURN FTREW oON HEADER

p e
LKO25
r——.—gg.___.._._ 3
SAVE OUTPUT PMD
LENGTH, SET EACHED END
FTNEQUAL ' SWITCH OF FMD
O
U
1'HII»_>
LKOTO R LKO27 ”
MOVE INPUT_ PMD INITIALIZE
HEADER TO COMBINE SWITCH BLANK
QUTPUT _PMD TQ ZERC COMMON
HEADER (LKCMSW) SECTION

LKO17

fr——C 5

a

“CSECT
OUTFUT PMD FTNEQUAL CARKED FO TS THERE AM ENTER SIZE IN
LENGTH BACK SWITOH ON BELETION ENTRY TN CsTZE
COMBINING “SIZE

OUTPUT PMD
HEADER

LB

woiTa ‘ LU
SET P
COCVMURYTCA NEW SIZE NC
INDICATOR GREATER _THAN
{TDYPCS} OLD SIZE
e,] 2. J3) 74)
SHVE 0SD
STGRE QUTPUT POINTER 1N ENTER NEW SIZE
MODULE NAME IN COMBINE SWITCH IN CSIZE
DUTFUT MODULE {LKCMSW Y
K070
K e———— K 4
SET CSD POINTER
TO COMBINED MARK DUPLICATE
SECTION IN WORK C.S. FOR -
AREA DELETION

l l

48

Chart AJ. LINK - Link Modules subroutine (page 2 of 5)

LKSW
ERROR
CEYER AOA1
ISSUE MESSAGE
NO. 4

1S THIS 18T
MCDULE TO BE
LINKED

G2
g

LK11E

BATCH MODE

CHECK NEW CSD
FOR_NONBLANK
DEFS WHIC

ERRCR

CEYER ADAY
[SSUE MESSAGE
15,716, OR 17

LK120
D2
LENGTH
OF _INPUT
PMD CSECT GR
THAN OUT
CSECT

ERROR _ ¥ ERROR
CEYER ACAT CEYER ROAT
TSSUE MESSAGE ISSUE MESSAGE
NO, 4 NO. 15
RS ALL MODES

MARK DEF FOR
DELETION

oK) —

RESTORE
POINTER TO
OF PMD

D

Flowcharts 49

Chart AJ. LINK - Link Modules subroutine (page 3 of 5)

LK215E

LKZ2158

B =

B

oot
THAT

RCH FOR A
2 ‘T DEF EQUAL
TG S.E.P. HEF

TURN ON PSECT
1TCH

SW
[BPSECTSW!)

TG CSD
NTER

FOUND
i

LK21E

D1

OS50
UPDATE OUTPUT CONTAIN A
IS0 MODULE —»| LOCATE NEXT CSD
HEADING

TURN ON
LOCATE NEXT CSD END OF PMD COMPLEX DEF
SWITCH

.!‘ [Xis]

¥ o

ADD ONE TO 35D LSSUE MESSACGE
424

OUNTER
{LKCCTR1)

ENE CF PMD

YES

CSD MARKED
COMBINE

|
. ¢ LKZ15K

SAVE DEF
V-VALUE R-VALIUE

RN ON
E SWITCH
OMSW)

MR

LK215D

TURN ON

TURN ON REL
D COMPLEX DEF
SWITCH

DEF SWITCH

50

Chart AJ. LINK - Link Modules subroutine (page 4 of 5)

o8

LK216 R BPENCR . APENEX
SET POINTERS TO B CEYCX AMA1 CEYEX AMA3
1ST INPUT CSD
AND V5T _CS TEXT ISD REQUIRED PPEND COMPLEX APPEND EXTERNAL
ARLE RABLE T RLD TABLE
OUTPUT CSD SorROR Esb”
TES |
_>
Y APENTN
Bl S B
UF; AKAT CEYIN AMAY
COMPUTE
CF © UEDATE OR APFEY
THIS BLD
HU

CTCSAD

CMPLXDEFR
SWITCH ON —

END OF PMD

RE C
TABLES JN THE
D

Cs

Y

N—— 3

APFPEND
HEADI J(J TU
GUTPUT CSD

APENDF ATA1 -
UPDATE THE
APPEND DEF XESTING
TABLE TO OUTPUT MODIEIER PTRD
25D
YES
LK520) -
APPEND REF APPEND C.S,
TABLE 10 OUTPUT TEXT TG NEXT
GUTPUT PAGE
e

—
ADD ’“Hg NUMEER

M(JL\IF;
LAST _ Mw(‘l}l R

SAvr Cop D
TEXT PTRS, TEXT RESTORE CSD
L BGE, C2ONT PTR, TF
(SVEShe, T LKCMSY
SUTYPT)

K

R, B PR —— e
ADD_THE NUMBER
s. REFS

T
OF ()LT PU

Y

K1 K
AT PhE REE (S) ADD S.E.B.
ADD ONE T CSD NUMBERS (WILL REF () TO BUMP TEXT PTR
UNT BE_USED TO - ()UTFUT KGED REF TC NEXT INPUT
c C.S. TEXT
MODTFLERS) s XU PAGE

a4

Flowcharts 51

Chart AJ. LINK - Link Modules subroutine (page 5 of 5)

ENTER AFTER ALL CSD'S
IN PMD HAVE BEEN MOVED
TO OUTFUT MODULE.

SET CSD PCINTER
TO 1ST CSD_IN

—»{ NEWLY LINKED
MODULE

y

HAIN NFW DEFS
N CSD TQ HASH
TABLE VIA
SEARCH LINKS

1
BUMP CUMULATIVE
LENGTH OF INPUT

LSD'S BY
CURRENT ISD
LENGTH

3

D7 D)
UPDATE 1ISD PLACE "INDEX TO
NTER CSD HEADING IN
(ISDPTR) TO NEW DEF.C.S3
NEXT VACANCY LINKS3

LK702

E1

INITIALIZE
RCTBL HEADING

*

S
BEEN
D

ALL C.S.
FROM PMD
DELETE

LK760 GTCSAD
2 e O G
G CEYGA AQAT
SET CSD POINTER AIN REFS IN
RETURN (BR} TO 15T CSD OF »|GET ADDRESS QF |————» DEFS VIA
QUTPUT MODULE TABLES IN CSD REF USE LINKS

T

BUMP CSD
POINTERS TO
NEXT CSD

N, | ——
SET FORTRAN
BITS FOR

FORTRAN AND
MAIN PROGRAM

MCODULE

K
RETURN (BR]

52

Chart AK. UPISD - Update ISD subroutine
UPISD
AT
UPISD

LK240
SEARCH RCTBL
ANY ENTRIE. YES FOR OUTPUT C.35.
IN RCTBL NAME MATCHING
MD C.S. NAME
LK245
C3

C1
STORE OUEPUT

-5. N N
C.S. HEADING OF
ISD (ISDCSN)

D1
SET NUMBER
INPUTCS'S = O
IN ISD (ISDNCS)

|

NO OF INPUT
C.8.'s=1

LK255

SAVE PO
TO'FOUND’ ENTRY

NOAAS NAME
FOUND

INTEE

IS IT A
RENAME ENTRY

' YES

SEARCH RCTBL_ FOR OUTPUT
C.S8. (RCOP) NAME MATCH-
ING INPUT C

C.S. NAME
{PCIP) FROM RENAME ENTRY

CHECK FOR A
COMBINE ENTRY
WITH A 1]
SUBSE%UENTLY
RENAMED

o

WAS NAME NO
FCUND

EAN

LK265

MOVE CUTPUT C.S. NAME
FROM RENAME ENTRY IN

RCTBL TC QUTPUT C.S.

NAME OF COMBINE ENTRY
IN ISD

ASSIGN REN?MED

H3

IS IT A NO
COMBINE ENTRY

<
m
o

3

LK275

ENTRY FROM _

COMBINED C.S.

RCT TO C.35.
ENTRY IN ISD

T L} ey
MOVE 'FOUND'

LK2BO

BUMP ISD
PO%NTERSRAND
ISDONX, ISDOCS,
ISCSPT

K 5
e { RETURN { BRANCH)

Flowcharts

53

Chart AL.

AT
APENDF

(FALL THROUGH FROM
LINK; NO LABEL

SET PUINTLRS TO
18T PUT AND
UU”PUT DEF

THIS CSD
RETAIN_THE
S.E.P.

MODIFIER
MARKED FOR
DELETION

RLD FOR
OWPK DEF
AFFECTED

—t2
UPDATE RLD FOR
COMPLEX DEFS

IS DEFE
MARKED FOR
DELETION

TES
-—
LK36C
31 —C2
UPDATE _CSD BUMP FOINTEH TO
HEADING NEX' DIFIER

FOR THIS PAGE

ET LKCXSW
OFV(DFF T) RE

SET LKCXSW ON

K
BUMP_POINTER TO
NEXT PAGE

54

APENDF - Append Definition Table

LK390

ADD NONBLANK
NONCOMMON_DEF
TO EXT NAME
LIST (NAMES)

LK393
B3

VE DEF TO
OUFPUT CSD

e 3,

BUMP PTR TQ
NEXT DEF IN
OUTPUT CSD

—’

LK395
——D3

BUME PTR TO
NEXT DEF IN
INPUT CSD

COMPLEX DEF
SWITCH ON

3
ADD ONE TO
NUMBER OF
COMPLEX DEFS IN
QUTPUT CSD

subroutine

LK400

ADD ONE TO
NUMBER OF
—> RELOCATABLE
DEFS IgSgUTPUT

NAME

MOVE S§.E.P. DEF
TO OUTPUT CSD

Iy
COMBINI

SWITCH
(COMBSW)

ON

Y

COMPLEX DEF
SWITCH ON

ADD DAVED V AND
R-VALUE
AND R VATUE FOR

Uﬂ? PTR
NEX
T

OUTPUT CSD

ADD_SAVED

G

SYEREL
SWITCH ON

RETURN {BRANCH)

TO LINK

LK425

TURN OFF
SVEREL SWITCH

Chart AM. APENCX, APENEX,

CEYCX
AT
APENCX

B1

TURN COMPX
DEF SWIT(”H ON
(CXCXSW

Cz005

DELETIONS
OR AD I’"[(\NS

CX008

C‘HANGF REG. TO

INSTE. F
QUTPUT MODULE

and APENIN

CEYEX
A

APENEX

TURN COMPX
DEF. SWITCH OFF,
(CXCXSW)

'

SET PWKNTERS TO

BEG. AND END OF

RLD FOR EXT.
REFS

CEYIN
LY
APENIN

B omen

TURH COMPX
DEF SWIT(H OFF
(CXCXSW)

R——
EET POINTERS T4

MODIFIER
MARKED FOR
DELETE

SCREMENT \ZJ,
MO]
1S PAGE BY 1

X050 ¥
e

FOLLOW IN TBL

X010
DL

S H
{CXCXSW)

MOVE RL7 TABLF
M PMD TO
PUT MODULF

05
UPDATE
HEAD

SET POINTERS T'C
18T _MODIFIER OF
1ST §

OVERLAY DELETED
ENTRY

CX020
Py

‘l,/ﬁgy MODIF .

FOR THIS PAG:H

P 4

BUMP POINTER TO

K 2
RETURN

TO LINK
OR CLEANUR

NEXT PAGE

s] {f s e
MOVE AND ADJUST

1ON.
OR ADDITIONS TO PMD

CKO60 Y

BUMP POINTER_TO

NEXT MODIE. FOR
PAGE

CXCT0 P

NO Y MODIF.
LEYT Y‘OF THIS

5

RLD "OMPLEX UPDATE _CSD
» | DEFS TO OU ————— HEADING
5
RETURN

TO LINK
OR CLEANUP

Flowcharts

55

Chart AN.

CEYBR

BRING

IS LIBRARY
NAME GIVEN

BRING - Bring PMD, Text,

YES

and ISD

FIND SYMBOL
IN LIBRARY

2
SET SYSTEM
SWITCH (SYSSW)
TO "NOT

D.
LIBE SEARCH
SEARCH
LIBRARIES FOR
MODULE

£ 1
RETURN "NOT NO
FOUND™

TCO INCLUDE
OR END

[S MODULE
IN SYSLIB

PLACE LIBRARY

DDNAME 1N DCE
A
OPEN
PARTITIONED
LIBRARY

p— K

SAVE_LIBRARY
NAME IN LBOPEN

56

BRO20O

C

o]
RETURN "NOT
FOUND FOUND"

TO INCLUDE
OR END

D3

NO

PMD TOC LARGE

JoK

FREEMAIN OLD
PMD AND TEXT
AREA

GETMAIN FOR
INPUT PMD

.
LU

ERROR

NORMAL
RETURN

from Library (page 1 of 2)

Chart AN.

BRO2S

PMD OUPUT
MODULE TOO
LARGE

ERROR
AOAT

ISSUE MESSAGE
NG. 13

1

CEYER

£1

FREEMAIN ALL
STORAGE AREAS

F1
RETURN

"CAN'T CONTINUE'
EXIT TG LPC

NEW PMD SIZE
TO APPROXIMATE
SéZ

E OF ISD TO
E GENERATED

BRO28

BRING - Bring PMD, Text, and ISD from Library (page 2 of 2)

~GET-
PLACE_PMD
IN MODULE

AREA

A
IS SYSSW
SET TO 'YES'

og

g [2

CEYER AOAT

ERROR

~NO

%
NO IS INPUT
TEXT_TOO
LARGE
AYES
REEMAIN OLD
TEXT AREA

BRO3O

D3

ISSUE MESSAGE
NG, 12

GETMAIN FOR
INPUT TEXT

s

IsD +
PREVIOUS ISD
TOO LARGE

-GET~
CHAIN ISD
TO_OTHER

1SD'S

BRO6O

NEW PMD
GUTPUT ISD
TOC LARGE

K 2:
RETURN

'FOUND" EXIT

TO INCLUDE
OR END

-GET-
PLACE NEXT
PAGE IN WORK

AREA

ALL PAGES
OF TEXT
GOTTEN

1SD REQUIRED

ES

YES
ANY INPUT ISD

K3
RETURN

'FOUND' EXIT
TO INCLUDE
OR END

Flowcharts

Chart AO. ERROR - Error Message Processor

CALL
PUTDIAG TO
SUE MESSAGE

B4
RETURN

NORMAL RETURN

{ABEND)

2 CONTINUE
RETURN TC LPC

ole]

ERDS0
ESS
ABLE CLEAR BUYFER
NUMBER O AREA. MOVE NAME
O TL) BUFFER
I

SES FCR
ERROR CCDE

ERDED

YES

M
CHARACTER T
VESSAGE

ERROR CODE 11

EROTD
U |
PARAMETER
¥ Dg 1O
MESSAGE

RESPONSE
POSSIBLE

YES

MOVE YESS, CONVERSA—
BUFFER Al TIONAL MORE

e s,
CLOSE_GPENED BRANCH TO IARFE
LIBRARY —_— IN INANAL

CHART AA

SET LPC
METER FOR
SPONSE

0 UUSER RFE
UNSE (PUTINDY

K2
ETURN

IS RETURN
COnE TYEST

T INANAL

CLULE,

RENAME ,
0K END

58

Chart AP. EXTREF - External Reference Search and GETCSD - Locate Control Section
Dictionary

CEYXR CEYGC

A4
SEARCH OUTPUT MODULE
FOR NEXT UNRESOLVED GETCSD
EXT REF.
LOK K

B3
SET_POINTER
TO REF TABLE

- SET POINTER_TO
4————————————(SET REF COUNTER, PMD

1ST CSD IN

XR0O20 .3 FOUND CCO0 ”
T — s
DOE.
SKIP TO NEXT C.S. NAME
C.S.D. MATCH _NAME IN
TEMP
TG COMBINE

INO MORE CSDS

Th Y A——— o3 D4
DECREMENT REF - BUMP POINTER Tir
COUNTER RETURN NEXT CSD

HEADING

E1

INCREMENT REF
TABLE POINTER

<SD LINK NULL

TG INCLUDE TO COMBINE
OR END

Flowcharts 59

Chart AQ. GTCSAD - Get CSD Table Addresses and SCAN - Scan

60

CEYGA
A1
GTCSAD

1

CALCULATE AND
STORE _LOCATION
OF DEF TABLE

prmame~ |

CALCULATE AND
STORE LOCATION
©F REF TABLE

—D1
CALCULATE AND
STORE LOCATICN
OF RLD FOR
COMPLEX DEF

£ e
CALCULATE_AND
STORE LOCATION
OF RLD FOR EXT.

e " | ey
CALCULATE AND
STORE LOCATION
OF RLD_FOR INT.
REF

CALCULATE AND
STORE LOCATION
OF VIRTUAL
MEMORY PAGE
TABLE

H Y
RETURN

TO INCLUDE,
COMBINE, LINK
CLEANUP, OR ESD

subroutine

CEYSC
A3
SCAN

SCAN_NAME FOR
DELIMITING
CHARACTER

4

SET RETURN
COBDE TGO "NO'

CS:

——————9{ ERROR - CEYER

CHART 20

RECORD
DELIMITING
CHARACTER

E3

FILL _TEME WITH
BLANKS

7
N

050

H 3=
RETURN

TO INANAL, INCLUDE,
TRAITS, COMBINE,
OR RENAME

Chart BA.

NO MD LISTIN

CEYOP1

A
‘ QUTPUT ’

'RIOR FORM
1 INCLUDE
GIVEN

FORM 1
SWITCH
EQUAL 1

DESIRED

SYES

o1 1.STPMD
CEYLP BB1A2

PREPARE LISTING

3

E1

SET OUTPUT
PARAMETERS FOR
LPC

ANY ERRORS
DURING LINK

EDIT

NO

SET RETURN

CODE = (NO
ERRORS)

OUTPUT - Output routine

B2

SET LIST
EXISTS
INDICATOR =

o2
SET RETURN
CODE TO 12
{NC OBJECT
MODULE)

RETURN

RETURN CONTROL
TO LPC

F2

SET RETURN
CODE_= 8 (MAJOR
ERRORS)

H Y
RETURN

RETURN CONTROL
TO LPC

Flowcharts

61

Chart BB.

LSTPMD - Program

Module Dictionary Listing subroutine (page

CEYLP MD120 MD145
A2
COMPLE! ANY MODIFS
LSTPMD SFINITIONS FOR Tr{IS MOD
A YES
B MD150
MD600 BEA1 MD6GO BEA1
NO LIST DS
WANTED LIST HDR LINES I1ST HDR FOR
OR 'COMPLEX ‘MODIF‘IFRS FOR
DEFINITIONS® COMPLEX DEFS'
@»
y 158
o [’
MD45G BODA1
OPEN LIST ANY MODIFS
DATA SET LIST DETAIL FOR THIS MOD
LINES PTR
o —
MDO20 MD130) MD157
o) 2 3 D
MDEOOG BEA1 #D600 BEA1T
ANY_EXTER-
LIST_HEADER NAL/INTERNAL ST HEADER FOR
LINES REFS TH 5 M\ PTR'S
PAGE
MD160
R, ¥ 00, ——)
MD600 BEA1 MD600 BEA1 MD350 BCA3
LIST HEADER LIST HEADER LIST DETAIL
LINES FOR .S. LINES FOR LINES
'REFERENCES'
FZr —]
AN/ MD300 BCA1
NO ELOCATABLE ALL
DEFINITIONS IST_DETAIL MODIFIERS
LT\EQ PROCESSED
AYES
— -«

W—
MD600 BEA1
LIST HEADER FOR

OCATABLE

DEFINITIONS'

MD450 BDA1

LIST DETAIL
LINES

MD1

YES

10

WO

ANY
ABSOLUTE
DEFINITIONS

K 1 K2
MDE0O BEAT MD450 BDA1
LIST HDR LINES {———— LIST DETAIL
FOR_'ABSOLUTE LINES
DEFINITIONS'

62

i
O

MD142

ANY O REFS NO

OR A UXD REF
YES

MDE0D BEA1

LIST HDR LINES

FOR_'DXD_AND
CXD REFERENCES’

—

MD506 BEA3

LIST DETAIL
LINES

—
GET _ADDRESS OF

T COMPLEX
DEF RLD MOD PTR

MD170

CALCULATE AND
SAVE VMPT ADDR

GET ADDR TO
NEXT CMPX DEF
MOD PTR

L

GET_ADDRESS TO
NEXT MODIFIEER
POINTER

——F5
GET ADDRESS_OF
FIRST MOD PTR
OF EXTREF RLD

1 of 2)

Chart BB.

MD180

ANY
MCDIFIERS
FOR THIS EXT

EF PTR

MD184
—
MD24C BB2A4
LIST TEXT MOD-

IFIERS {(EXTREFS
(0 CONs, CxDS)

MD130 D1/

MD194
MD2QU

BB2A4

LI TEXT
MODIFIER§ {INT

MD200

MD299 .
MD60G BEA1
LIST 'END OF
MODULE '

HY

LIST DS
WANTED

SYES

4

CLOSE LIST
DATA SET

K
RETURN

TO OUTPUT

LSTPMD - Program
(page 2 of 2)

MDIBY

{

ALL
RLD MCD PTRS

EXT REF

PROCESSED

ADDR_QF 18T
NEXT) INTREF
RLD MOD PTR

LO

YES

»Z

MY MORE
‘TREF RLD

F

JCATE NEXT CSD

MD600

CHART BE

Module

Dictionary Listing subroutine and MD240

MD240
Al
MDZ40

»

GET ADDR _OF
NEXT MODIFIER
POINTER

FIND, VXRTUAL
MEMORY GE
WHICH TEYT PAGE

IS LOCAT

o4

SET UP DETAIL
HEADER LINE

U
MDEOD BEAT
PRINT DETAIL
HEARDER LINE
MD350 BCA3

.

INPRENENT TEXT
ZOUNT

GET ADDRESS OF
NEXT POINTER

TEXT
CURRENT TYPE

J 4
RETURN

LSTPMD

TEXT PAGE
VIRTUAL FAGE
AND NUMBER
OF MODIFIERS

ANY
MODIFIERS
FOR_THIS
POINTER

subroutine

Flowcharts

63

Chart BC.

MD300
A1
MD30C

1

SET 'REFNO' AND
NAME HEADINGS
IN POSITICN

ASSIGN A REF

NUMBER TO THE

ENTRY. BEGIN
WITH ZERG

GET ASSOCIATED
8-CHAR. NAME

ALL ENTRIES
PROCESSED

NG IS PRINT
LINE FILLED

S YES

—G1
MD60O BEA1

WRITE LINES

64

e, 2 e
MD600 BEA1

WRITE LINES AS
FORMATTED

F2
RETURN

TO LSTPMD

MD300 and MD350 subroutines

MD350C
A3
MB350
"II"V’

TLENGTH'
"REFNO'

D
GET_REFERENCE

NUMBER
ASSOCIATED WITH

THIS ENTRY

MDE0G~ BEA!
WRITE LINES AS
CURRE

NTLY
FPORMATTED

-0

GET ADDRESS OF
NEXT ENTRY

24
ET 'TYPE' AND
BYTE' HEADINGS
INTO POSITION

TH _AND NO.
JUST PRINTED

ACH ENTRY
PROCESSED
TWICE

e | (| ey
MD60O BEA1

WRITE LINES AS
FORMATTED

ALL NO

MODIFIERS
PROCESSED

YES IE

H
RETURN

TO LSTPMD

ES

GET_ADDRESS CF
RY

NEXT

ENTI

Chart BD. MD450 and MD500 subroutines

MD450 MD500
AT A3
(MD ’ (MDS00 ’

P ¥ *

SET 'NAME'AND CALCULATE # PUT 'LENGTH!
'VALUE' HEADING gREFS + 1 (IF AND Al N
IN POSITION CZXD REF EXISTS) INTO BUFFERS
@_> @_>
MDS 30 . MD570C
PLACE NAME AND
‘JALU E‘QA PUT REF £ AND PUT_QREF iLENGTH
"NAME' HEADERS —3»1 AND ALIGNMENT
EN‘TRY IN PRINT INTO BUFFERS INTO BU RS

or” D540 .

S ——
¥D6EOO BEA1

ALL ENTRIE! YES
PROCESSED WRITE LINES AS

PUT REF _# AND YES

LAST ENTRY

NAME FOR %RFF‘
CURRENTLY INTO BUFFERS
FORMATTED
E E 5
E2: BLANK OUT
RINT LIST RINT LINES LENGTH
FILLED RETURN > FILLED ALIGNM. "NT
i FIELDS IN
BUFFERS
TO LSTPMD
-

PRGN - [AU —
MD600 BEA1

MD600O BEA1

LIST LENGTH_AND
ALIGNMENT LINES

IS LAST
ENTRY A CXD
WRITE LINES REF

3 MD560
W L | 2 A
MD600 BEA1
GET ADDRESS OF PUT ' (CXD)"'
ENTRY INTO NAME LIST REF AND
NAME LINES

@ @
‘ RETURN ’

Flowcharts 65

Chart BE. MD600 subroutine

66

WANT LIST KO (LISTING TO SYSOUT)
DATA SET

'YES

r——D1—
~PUT- SELECT

AND WRITE PAGE
HEADER

E1

RESET LINE
COUNT

F
WANT g%gT NO (LISTING TO SYSGQUT)

DATA

ES

-PUT~ WRITE
CURRENT LINE

~GTWRC ~
CURRENT

H

INCREMENT LINE
COUNT

1

RETURN

TO LSTPMD

WRITE
LINE

Chart CA. EARLY END - Early-End routine

CEYEE1

A2
‘ EARLY ’

B

INES TO B
LISTED

B
SET RETURN

SET EMPTY

SET RETURN
PARAMETER TC 1
(LINES TO BE

LISTED)

NO LIST DATA
SET OPENED

E.

-CLOSE- CLOSE
LIST DATA SET

¥

NO 1S THERE A?
OPEN LIBRARY

YES

—CLOSE-
OPENED
LIBRARY

2T RETURN
CODE TO 0
(NORMAL END)

K 2
RETURN

RETURN CONTROL
TC LPC

Flowcharts

67

SECTION 4: DIRECTORY

LINKAGE EDITOR ROUTINE DIRECTORY Each routine is assigned an entry point
of the form CEYxx, where xx are alphabetic
The TSS/360 linkage editor consists of a characters identifying the routine. Within

single object module, CEYTS. It includes a routine, names are of the form xxnnn,

one prototype control section, CEYPSC, and where n is numeric. For example, the IN-

one CSECT, CEYTS1. The routines described CLUDE statement routine is entered at CEYIC.

in this PLM are all in CEYTS1. A typical instruction is labeled IC200.
Table 5 provides a cross-reference Except for the external entry points

between entry points to routines, routine CEYIAl, CEYOP1, and CEYEE1l, all entry

names, and flowcharts. points in Table 5 are internal entry points.

Table 5. Linkage editor routine directory

- - T i B S 1
{ Routine Label or | | |
| Entry Point Name | Name of Routine (Short name; long name) | Flowchart |
L ——— 4 i J
T 1 - T 1
| CEYBR | BRING; Bring PMD, Text and ISD from Library] AN |
| I | I
| CEYCL | CLEANUP; Cleanup Final Module | AH |
] I | |
| CEYCO | COMBINE; COMBINE Statement Processor] AC |
l] | !
| CEYCT | COLLECT; Collect Common Regquirements | AT |
| I I I
| CEYCX | APENCX; Append Complex RLD | AM {
| I | |
| CEYDN | DELNAME; Delete Entry Point Name | AE |
] I | |
| CEYEE | i i
| CEYEE1 | EARLY; Early End Processor | CA |
| | I I
| CEYEN | END; END Statement Processor | AG |
| I | |
| CEYER | ERROR; Error Message Processor | AO |
| | | |
| CEYEX | APENEX; Append External RLD | AM |
] | I |
| CEYGA | GTCSAD; Get CSD Table Addresses H AQ |
I | | !
| CEYGC | GETCSD; Locate Control Section Dictionary | AP |
I | [I
| CEYIA | | !
| CEYIAl | INANAL; Input/Analyze Routine | ARA

| i | |
l CEYIC | INCLUDE; INCLUDE Statement Processor | AB |
| | | I
CEYIN	APENIN; Append Internal RLD	AM
	I	
CEYLK	LINK; Link Modules Subroutine	AJ
CEYLP	ISTPMD; List PMD	BB
		!
i CEYOP		
CEYOP1	OUTPUT; Output Processor	BA
CEYRN	RENAME; RENAME Statement Proceesor i AE	
		I
CEYSC l SCAN; Scan Subroutine	AQ	
]		i
CEYTR	TRAITS; TRAITS Statement Processor	AF
] [
CEYXR	EXTREF; External Reference Search Subroutine	AP

L L 1]

68

COMMON AREAS (STORAGE AREAS, TABLES, AND
LISTS)

The linkage editor contains internal
storage areas, tables, and lists that are
used by more than one processor. The link-
age editor also makes repeated references
to a module's PMD, text, and ISD. The PMD
and ISD formats are described in detail in
Appendixes A and B.

COMMON INTERNAL STORAGE AREAS
Work Areas

Three work areas (WORKC1l, WORKC2, and
WORKT) are used by the COMBINE statement
processor and are obtained via GETMAIN.
WORKA is a 2000-word work area which
resides in the PSECT. It is used by the
COMBINE routine and the Append RLD subrou-
tine to hold a combined RLD (Relocation
Dictionary) or a complex RLD to be linked.

TEMP Storage

TEMP is a temporary storage area that is
used for passing parameters to and from
subroutines. TEMP is in the PSECT. (The
PSECT is described at the end of this
section.)

COMMON INTERNAL TABLES AND LISTS

The tables and lists in this subsection
are presented in alphabetic order.

Exclusion Table (EXCLUD)

The EXCLUD table (Figure 8) is generated
and used by the form-3 INCLUDE statement.
It is also used by the END statement pro-
cessor. It is a variable-length table,
which consists of 2-word entries represent-
ing the alphameric names of user-supplied
external references that are not to be
resolved by linking of modules. Two point-
ers preface the table: the first pointer
is the displacement in bytes to the first
name in the table; the second pointer is
the displacement from the head of the table
to the first vacant position in the table.

While an INCLUDE statement is being pro-
cessed, only those entries in the table
that were mentioned in the statement are
used.

When the END statement processor is in
operation, the entire EXCLUD table is
accessed. The table is in the PSECT.

SECTION 5: DATA AREAS

8 bytes

Pointer to Ist Name for this INCLUDE

Pointer to Ist Vacant Position

Alphameric Name

Alphameric Name (Cont'd.)

Alphameric Name

Alphameric Name {Cont'd.)

- ~

Figure 8. Exclusion table (EXCLUD) format

8§ bytes 4 bytes 8 bytes
3
4 -
Member of Ex External 1 { Externcl 2 | External 3 External n
Name ternals

)1
W

Figure 9. External name list format

External Name List (NAMES)

The External Name List (NAMES) is
generated by the APENDF (Append Definition
Table) subroutine as each module is linked.
It contains the alphameric names of all
external definitions appearing in the out-
put PMD. It is used during output proces-
sing, at which time the list location is
delivered to LPC as part of the output
parameters.

The format (Figure 9) consists of the
8-byte alphameric member name assigned to
the module, followed by a u4-byte field con-
taining the number of external definitions.
This is followed by the list of 8-byte
external names. All 8-byte fields are
left-justified and filled with blanks.

This area is obtained via GETMAIN.

Hash Table (HASHTB)

HASHTB is used to direct the search in
the definition tables of the ocutput module
whenever references are chained to a
definition, or when names are checked for
existence in a definition table. HASHTB is
updated each time a module is linked by the
LINK subroutine. The hashing algorithm
produces a value representing the relative
position in the hash table of a pointer
into the module. Thus, HASHTB consists of

Section 5: Data Areas 69

1-word pointers into the module. HASHTB is
127 words long and is contained in the
PSECT.

The hash value is derived in the follow-
ing manner:

1. The first four characters of the name
are "exclusively ORed"™ with the last
four characters of the name.

The result is divided by 127 and the
remainder is multiplied by 4 to get
the displacement in bytes from the
base of the hash table to the first
link in the proper hash chain. Figure
10 shows the format of HASHTB.

Rename/Combine Table (RCTBL)

An entry in the RCTBL table (Figure 11)
is generated by the RENAME statement pro-
cessor for each renamed control section and
by the COMBINE statement processor for each
combined control section. The table varies
in length and contains entries that are to
be placed in the ISD when the control sec-
tion is linked to the output module.

The table is used by the UPISD (Update
ISD) subroutine, which removes entries from
the table and places them in the composite
ISD directory. The table is reinitialized
for each module linked.

Stack Table (STACK)

The STACK table (Figure 12) holds COM-
BINE, RENAME, or TRAITS statements, as
received from LPC, until receipt of a form-
1 INCLUDE statement. The COMBINE, RENAME,
and TRAITS statement processors place
entries in STACK. STACK varies in length
and is in the PSECT. The following example
shows statements entered in the STACK
table.

Example Statements:

RENAME
TRAITS

NAME1 (NAME2)
CSECT1 (PUBLIC)

Word O Head of Search Chain for Hash Value 0

4 Bytes 4 Bytes

Entries
in Table

Pointer to Next
Available Position

Alphameric Output

Control Section (C.S.) Name

Input C.S.s
Used to Form Qutput

Pointer to Next
Entry

Alphameric Input
Control Section Name

Entry 1<

Text Displacement

))

Alphameric input

Control Section Name

Text Displacement

(

Remaining . —
Entries

¢

Rename/combine table (RCTBL)
format

Figure 11.

Stuck Table Format

1 Byte 1 Byte 1 Byte 1 Byte

R F N A

M E b N

A M E 1

Head of Search Chain for Hash Value 126

Word 126

Hash Value = 4r, where r = remainder resulting from
(LHXORRH)
127

Where: LH = Left four Bytes of Name
RH = Right four Bytes of Name
XOR = Exclusive OR

Figure 10. Hash table (HASHTB) format

70

L L L L L

Figure 12. Stack table (STACK) format

Table 6. Data references by routines

r] T 1 T T T T T L3
| | | | | | | PMD | Text | ISD |
| Routine Name |[RCTBL|HASHTB{STACK|EXCLUD|NAMES} T 4 T + T i
I | | i | | | Input |Output | Input |Output| Input|Output |
b + + + + + t + + + + + i
INANAL	x	x	X	X	x]					
INCLUDE			X	X		X	X	X	X] X	X	
] I											
COMBINE	x	1 x]	X	I X						
						i					
RENAME b x 1 x	X		I X		I						
											I
ITRAITS		x		I x							
				[[
END]		x		I X		I x	x				
]											
LINK i x	x		b x	x	x	x	x	x			
]	i						
APENCX, APENEX,				I	I	1					
APENIN					I x	x					
I I											
BRING						x	I X	I x			
							I				
ERROR !]		
		i] I							
EXTREF]	P x						
		I !									
GETCSD					x	x					
]			
GTCSAD i				I x	X	I	I				
l !			{ I								
SCAN]]]		I			
i l i			I				[
OUTPUT	I]	I x]					
				i					I		
EARLY]								I	
L L L L L L 4 1 L | L 1 J
REFERENCE TO TABLES AND LISTS internal to the linkage editor.
The name fields are prefixed by
Table 6 shows the tables and lists the letter A.
referred to by linkage editor routines.
c. Adcons for the PSECT tables. The
PSECT ORGANIZATION name fields are prefixed by the
letter A.
A general description of the contents of
the linkage editor PSECT is outlined in
Table 7. The following breakdown will help d. Cocnstants that are used by more
in understanding the organization. than one routine.
1. PSECT Storage e. Register save areas; in general,
the name field is prefixed by the
letter Z.
This area is always covered by regist-
er 13 and contains the following
items, grouped according to their par- f. Switches; in general the name
ticular function: field is suffixed by the letters
SW.
a. Register save area.
g. Pointers (other than those that
b. Address constants (adcons) for the are maintained in general
entry points to all routines registers).

Section 5: Data Areas 71

h. Counters.

instructions, and the skeleton DCB for
accessing VPAM modules.

i. Miscellaneous storage, including 2. PSECT Tables

various save areas, parameter

lists for the GETLINE and PUTDIAG This area contains the various tables

routines (PARGET and PUTPAR), pa- used by the linkage editor. Adcons

rameter list for the PMD list rou- for these tables are contained in the

tine (LSPAR), storage area for PSECT storage area. The tables are

diagnostic messages (ERBUFF), ini- described earlier in this section,

tial values for GETMAIN macro under the heading "Common Internal

Tables and Lists.”

Table 7. PSECT organization
r T T 1
|Label at Beginning| Length | i
|of Area | in bytes |Description]
¢ t o 4
| SAVE | 76 | Save area.]
PATCH	200	Area for patches.
ACEYER	80	Address constants for routines.
APMD	100	Address constants for storage areas.
ADB1	16	Address constants for GETLINE and PUTDIAG.
LEBLNK	36	Miscellaneous constants.
ZLE1	1,188	Temporary register save areas.
FTNMAIN	60	Various switches. H
CONSWA	148	Pointers.
TOPGCT	60	Counters.
CSIZE	168	Miscellanecus storage.
PARGET	40	Parameter list for GETLINE.
PUTPAR	20	Parameter list for PUTDIAG.
TEMP	32	Temporary save areas for inter-routine parameters.
LBSLST	36	Parameter list for LIBESRCH macro. i
USER	28	User information from FIND or VPAM library POD
		(describes modules' PMD, text, ISD location).
COTBL	24	Table of addresses of CSD tables for control sec-
		tions being combined.
LSPAR	20	Parameter 1list for LSTPMD.
ERBUFF	132	Diagnostic message area.
CINPMD	76	Constants and page number for GETMAIN and FREEMAIN
		requests.
LBDCB	(depends on {	
	DCB expansion)	DCB macro, used for getting modules from libraries.
TABLE	24	Table for GTCSAD routine (addresses of CSD tables).
STMENT] 257	Area for current linkage editor control statement.	
MDWK	544	storage for PMD listing routine.
(A macro-	(depends on	
generated label)	macro used)	Macro expansions into PSECT.
FTNSAVE	512	Save area for FORTRAN header.
MSGDIA	3,400	Table of diagnostic messages.
ERTBL	400	Table of addresses for diagnostic messages.
WKPGT	1,024	Work area to build VMPT.
COWKEMPT	512	Work area for external reference RLD modifier
		pointers.
COWKIMPT	512	Work area for internal reference RLD modifier
		pointers.
STACK	24,000	stack area for control statements.
EXCLUD	8,008	External reference exclusion table built by form-3
		INCLUDE processor.
L 4 i J

72

Page of GY28-2030-2, Issued February 1, 1972 by TNL GN28-3216

SECTION 6: DIAGNOSTIC AIDS

GENERAIL DEBUGGING AIDS is, after the INVOKE ACEYLK
instructions.

The system programmer (authority code O
or P) may obtain dynamic dumps of the link-

age editor through use of the TSSS facili- 3. Register 8 is a pointer to the current
ties. See Time Sharing Support System, character position in the statement
GC28-2006. TSS/360's program control sys-— operand.

tem (PCS) is available to all users; to use

PCS, however, the user must have a copy of 4. Register 11 is used for local cover.
the linkage editor with the PUBLIC attri-

bute removed. See Command System User's 5. Register 13 is the PSECT storage cover
Guide, GC28-2001, for how to use PCS register.

commands.

6. Register 14 contains the subroutine
In debugging and checkout, the following return address.
points may be useful to consider:

7. Register 15 contains the subroutine

1. Dynamic dumps of each input PMD, text, entry point address (uses for the
and ISD may be taken in the BRING sub- other registers are shown in Table 8).
routine (CEYBR) following the GET
macro instruction. 8. Other clues can be gained from the
counters, switches, pointers, etc. in
2. Dynamic dumps of the output module as the PSECT (see Table 7 in Section 5).
it develops following each INCLUDE
statement may be taken in the INCLUDE 9. Limitations exist for object module
statement processor (CEYIC) upon size and number of linkage editor
return from the LINK subroutine; that statements (see Table 9).

Table 8. Register usage

T T T - -
{Category of Registers | Label | Register | Use |
pmmmm ————4 1 — - - 1
| Parameter Registers | | | |
| | PO | 0 { Parameters, General Use |
| | Pl | 1 | Parameters, General Use
	P2	2	Parameters, General Use
	P3	3	Parameters, General Use
	P4	q	Parameters, General Use
	P5	5	Parameters, General Use
Volatile Registers			
	Vé } 6	General Use	
] v7	7	General Use	
Common Registers			
	C8,RSTA i 8 i Statement Pointer		
	C9,RPMD	9	Input PMD Pointer
	C10,RTSD	10	Output PMD Pointer
	cli	11 { Local Cover Register	
	c12	12	General Use
Linkage Registers			
i] 113,RPSC	13 i PSECT COVER i		
	Liu	14	Subroutine Return Register
	115	15	Branch Register
S, —_1 B S, L i}			

Section 6: Diagnostic Aids 73

Page of GY28-2030-2, Issued February 1, 1972 by TNL GN28-3216

Table 9. Size limitations and requirements

r -
| Limitation on

L] 1

| Maximum |

= - + i
| Input or output object module | |
1 PMD | 256 pages |
Text	256 pages	
	ISD (Combined length of all input ISDs and the generated output	512 pages
Isp)		
]		
Number of statements		
INCLUDE	No limit	
RENAME, COMBINE, TRAITS	64 stacked	
[END	1	
Statement length (excluding extraneous blanks and continuation	256 characters	
characters) I		
- - —— - 1 8|
| Virtual storage requirements for linkage editor processing |
| (approximate): |
| |
| 28 + p(m + 3) pages |
|

} where: |
| p = the average numter of pages per object module, including PMD, |
| text, and ISD, input to linkage editor. |
| m = the total number of input object modules. |
L - 4

74

The output from an assembler, compiler,
or the linkage editor is known as an object
module. The object module is composed of a
program module dictionary (PMD}, text, and
possibly an internal symbol dictionary
(ISD).

Each PMD consists of one PMD heading
plus as many control section dictionaries
(CSD) as there are control sections in the
module. Address pointers in the PMD are
relative to the beginning of the PMD,
except where otherwise specified. Some
fields in the PMD are filled in by the
dynamic loader. These are left zero by the
language processor or linkage editor. The
PMD format is shown in Figure 13.

PMD HEADING

1. Length of PMD in bytes - This length
does not include the PMD preface.

2. Diagnostic code (1 byte) - The diag-
nostic code indicates the highest
level diagnostic message encountered
during generation of the module by the
language processor.

3. Flags (1 byte) - The flag bits are
numbered from left to right starting
with zero and are defined as follows:

0 7

; Version {D Flag

L FORTRAN Flag
L FORTRAN Main Prog. Flag
PCS Communication Flag
Link Editor Flag

1SD Flag

Modification Flag

Bit 0 - System module; was modified by
other than a language processor.

Bit 1 - Module has an ISD. This bit
is set by the processor that creates

the PMD.

Bit 2 - Module was produced by linkage
editing. This bit is set by the link-
age editor.

APPENDIX A:

THE PROGRAM MODULE DICTIONARY

Appendix A:

Bit 3 - PCS is to be called before
module is dynamically unlinked. This
bit is set by PCS.

Bit 4 - Not used.

Bit 5 - Module was produced by the
FORTRAN compiler.

Bit 6 - FORTRAN module is a main pro-
gram, not a SUBROUTINE FUNCTION or
BLOCK DATA subprogram.

Bit 7 - Version ID indicator. If this
bit is set, the module version ID is
to be interpreted as a 64-bit binary
number which is the creation date of
the module. If this bit is not set,
the version ID is eight alphameric
EBCDIC characters.

Length of PMD heading - This is the
length in bytes of the PMD heading.

4-Character I.D. name - The -
character I.D. name is supplied by the
user to serve as deck identification
if the module is punched into cards.
This field is currently unused.

Version I.D. - See item 3 (Bit 7 dis-—
cussion) for interpretation of version
I.D.

Number cf REFs for the standard entry
point - The DEF for the standard entry
point is always treated as a complex
DEF. This field contains the number
of REFs. It may be zero.

Number of modifiers for the standard
entry point - This field contains the
number of modifiers that are to be
used to compute the DEF for the stan-
dard entry point.

DEF for standard entry point - This
7-word entry describes the DEF for the
standard entry point of the module.

It has the same form as a DEF entry
within a CSD. The standard entry
point DEF for the module is considered
to belong to the first PSECT of the
module and is treated the same as a
complex DEF whose ENTRY statement
appears within that PSECT. If no
PSECT is declared, the standard entry
point is associated with the first
CSECT instead. This DEF entry con-
tains the following subfields which
are described under the heading
"Definition Table™ in this appendix.

The Program Module Dictionary 75

Number Bytes in CSD

The PMD preface |
is prefixed here i
by either STARTUP. Length of Control Section in Bytes
or the dynamic
foader.

Page Number in Text of Page 0 of CS Text

—

CSECT
0 Length of PMD in Bytes Version 1D
CcsD

;| Dies. f Length of PMD Heading o]

Code ags Heading in Bytes [PMD Link]

For Deck CXD REF and [Number REFs into this
2 4 - Character |, D. Name Punchout Q REF co::f Control Section {(user
count)]

3 Version ID Number Relocatable DEFs Number Absolute DEFs

Number of External and

4 of Module Number Complex DEFs Internal REFs in
Reference Table

5 !?lumber REFs for i Number'Mcds. for Attributes of C. S, Number Pages of Text
Entry Point % Entry Point
6 Alphameric Nome Alphameric Name
7 of Module of DEF
Definition
Tobfe Value of DEF
8 Value of e ©
alue of DEF [Modified by Loader]
. DEF for o e \ .
9 R-Value Displacement Standard Definition(s) R-Volue Displacement
{Created by Linkage Editor) Emr" ar Relocatable [Modiﬂed by Locder]
mry Absolute
Point Complex .
PMD | 10 [csp LiNK] [€SD Link]
Heading
11 (Reserved for Future Use) {Reserved for Future Use)
12 {Secrch Lerk} [Seurch Link]
~ £
13 Alphameric Name
14 of REF
15 [Value of REF]
REF(s) for
Entry Point
16 [R-Value of REF]
7 [csb LINK] NOTE; BRACKETED [] ITEMS ARE FILLED IN BY THE DYNAMIC LOADER.
18 (Reserved for Future Use)
e
NS
L REF Number T Bytes Modifier(s) for
Entry Point
L A

Figure 13. Program module dictionary format (part 1 of 2}

76

P
Aloh e N Number Maodifiers for | Relative Location of First |
phamenic Home Page 0 of PMD | Modifier for PMD Page 0
_________________ Modifier
of REF Pointers for o~ :;
Complex DEFs . . Complex DEF RLD
] 1 Number Modifiers for | Relative Location of First Nm:%w?kﬁ?ﬁ?MD
[Vel ¥ REF ' I page for whicl ere
tVelue o External or Page x of PMD Modifier for PMD Page x are any Complex DEF
Internal REF .J modifiers.
R-Value of REF L REF Number T Byte -
. (R-Valve of REF] Modifiers for
Complex DEFs
[CSD Link] -~ ¥
Number Modifiers for | Relafive Location of First |
(Reserved for Future Use) Page 0 of Text thodifier for Text Page 0 |
i X Modifier
- Pointers for = -~
t REF:
ExternalREFe | | — . External REF RLD
| Number Modifiers for Relative Location of First Notes:
Name of Page y of Text Modifier for Text Page y 1. Modifiers for Q REFs and
—1 | CXD REFs are included in
i [L REF Number T Byte | this RLD.
DXD fnstruction Modifiers for 2. Page y is the last text page
External REFs for which there are any
; A - external REF modifiers.
[Q-value of REF] ~ -+
Reference Q REF
Toble X . Number Modifiers for | Relative Location of First | _
Alignment LengH i Page 0 of Text Modifier for Text Page O
Modifier L
[Link to Next DXD Name! Pointers for ¢ 2= ﬁ:
Internal REFs _ |} Internc! REF RLD
Flink 10 Same DXD Name] Number Modifiers for | Relative Location of First 1 Nm’%ﬁ;ﬁtfi?W%e
iLink fo Same DXD Name| Modifier for Text P ich there are any
| _Page z of Text oditier for Text Fase = Internal REF modifiers.
- -~ L{ REF Mumber | T Byte
Modifiers for i i]
Internal REFs L T L
(Reserved for Future Use) - -~
\ Page Number in Text of Page Number in Text of
(Reserved for Future Use) Virtual Memory Page 0 | Virtual Memory Page 1
7 Virtua) B
[Value of CxD]} Mebrimrv Fage ¢ o2 ~
- Y CXD REF Table | s
Page Number in Text of | Poge Number in Text of
(Reserved for Future Use) L Virtual Memory Page w,n__]vi Virtual Memory Page "m*
(Reserved for Future Use) - Remaining CSDs
[CXD REF Link]
INOTE: BRACKETED | } ITEMS ARE FILLED IN BY THE DYNAMIC LOADER.

Figure 13. Program module dictionary format (part 2 of 2)

a. Alphameric name of module modifiers for the RLD for complex
definitions described in the CSD dis-
b. Value of DEF cussion below, except that they apply

to the standard entry point DEF.
c. R-Value displacement

. d. CSD link
CONTROL SECTION DICTIONARY (CSD)

e. Reserved word

The control section dictionary has the
f. Search link following components:

The alphameric name is also the name 1. CSD heading
of the module.
2. Definition table
10. REF(s) for entry point - These have
the same form and function as the REFs 3. Reference table
described in the CSD discussion below.

4. Relocation dictionaries (RLDs)
11. Modifier(s) for entry point - These

have the same form and function as the 5. Virtual memory page table (VMPT)

Appendix A: The Program Module Dictionary 77

CSD HEADING

1.

78

Number of bytes in CSD - This field
specifies the length of the control
section dictionary in bytes.

Length of control section in bytes -
This specifies the virtual memory span
of the control section. The length of
the virtual memory page table is
derived from this length. For
example, if the length of the control
section is 8192, the virtual memory
page table will contain two pages; but
if the length is 8193 bytes, the vir-
tual memory page table will contain
three pages. This value will be equal
to the highest location counter value
assigned by the language processor,
plus one.

Page number in text of page 0 of CSECT
text - The text for each control sec-
tion in the module occupies an inte-
gral number of pages in its resident
data set. The text pages for all con-
trol sections in a module are contigu-
ous. This number is the page number,
relative to the first page of text for
this module, of the first page of text
for this CSECT. (Numbering begins
with 0.)

Version I.D. - This is a 6U-bit
binary number which is the creation
date of the control section expressed
as the number of microseconds that
have elapsed from March 1, 1900, until
the time of CSECT creation. This num-
ber is changed by the linkage editor
when CSECT combining occurs.

PMD link - The PMD 1link is filled in
by STARTUP or the dynamic loader. It
points to the beginning of the PMD
preface.

Whether CXD REF exists and number of O
REFs. Bits from left to right
contain:

Bit 0 - Set to 0 if no CXD REF exists;
set to 1 if a CXD REF exists. (Only
one CXD REF is possible.)

Bit 1 - Not used.

Bits 2 through 14 - Number of Q REFs
(contains all zeros if none).

Number of implicit references to this
control section (user count) - This is
a count of the number of REF entries
that refer to this control section and
are linked to this CSD through their
CSD 1link. It is computed by the load-
er. It includes both external and
internal references. This number is

10.

11.

12.

arbitrarily set to X'7FFF' by STARTUP
for each CSECT in initial virtual
memory to prevent unloading of IVM
modules.

Number of relocatable definitions -
This is the number of relocatable
definitions in the definition table.
It is always at least one, namely, the
control section name DEF.

Number of absolute definitions - This
is the number of absolute definitions
in the definition table. It may be
Zero.

Number of complex definitions - This
is the number of complex definitions
in the definition table. It may be
zero.

Number of references from this CSD -
This is the sum of external and
internal references in the reference
table. It may be zero.

Attributes - This halfword has one bit
set for each attribute possessed by
the control section. Currently
defined attributes are shown below.
Bits are numbered from left to right
starting with O.

a. Public _name (Bit 0 on) - This is
used only by the dynamic loader to
specify nonblank control sections
whose names appear in the SDST
(Shared Data Set Table). The
first such control section will
appear in the SDST under the
module name. A section may be
indicated as both having a public
name and rejected.

b. CSD has been allocated storage
(Bit 1 on) - Set by the dynamic
loader, if it applies.

c. PCSA (CGCCT) called for this CSD
(Bit 2 on) - Set by the dynamic
loader, if it applies.

d. Public storage assigned by CONNECT
(CZCGA7) (Bit 3 on) - Set by the
dynamic loader, if it applies.

e. Bits # and 5 are not used.

f. Common CSECT re-jected (Bit 6 on) -
The dynamic loader sets this flag
to indicate to the program control
system that the CSECT was rejected
as a common CSECT that was already
loaded in another module.

g. @ REF count validity (Bit 7 on} -
The assembler, PL/I compiler, and
the linkage editor set this flag

i.

to indicate that the count of Q
REFs in field TDYCQR is wvalid. 1If
bit 7 is off, the count is not
valid.

System (Bit 8 on) - Any external
symbol that appears in a CSECT
with the system attribute cannot
be referenced by a user program
unless the symbol begins with
"SYs." Conversely, nc reference
from a control section with a sys-
tem attribute may be to a "user™
symbol.

Privileqged (Bit 9 on) - A CSECT
with a privileged attribute is
assigned storage key C which pro-
vides fetch as well as store pro-
tect. This attribute overrides
the read-only attribute. Anything
in a privileged CSECT may be
referenced only when the PSW key
is zero.

Common {(Bit 10) - A common section
is a control section common to all
modules in which it is declared.
Ccommon sections are more fully
discussed in the lLinkage Editor
and Assembler Langquage SRLs.

Common sections are of two types:

(1) Named common sections (those
with a name not all blanks).
These are treated as fixed-
length sections.

(2) Blank common sections, whose
name consists of eight blanks.
FORTRAN blank common is
assigned the variable and com-
mon attributes by the FORTRAN
compiler.

The treatment of blank common sec-—-
tions differs from that of blank
non—-common sections. Control sec-
tion rejection is instituted
between blank common sections of
different modules whereas blank
non-common sections of different
modules are treated as independent
control sections. The latter are
called unnamed control sections.

PSECT (Bit 11 on) - If this bit is
set, it causes the dynamic loader
to override the system packing
indicator and insert this control
section as packed.

Public (Bit 12 on) -~ Control sec-
tions are not shared by CSECT name
alone. A public control section
of a module residing in a given
data set (library) is shared if

Appendix A:

another user has access to the
same data set and module. CSECTs
of a given module need not all be
public or non-public. Fixed-
length public CSECTs with the same
attributes are assigned storage in
the same assignment. A public
CSECT must not contain relocatable
adcons (A-, V-, or R-type).

m. Read-only (Bit 13 on) - Read-only
specifies that no data can be
stered in the control section.
Causes memory protection by means
of a storage class B assignment to
all pages of the control section.
Nonread-only and nonprivileged
CSECTs are assigned storage class
A.

n. Variable-length (Bit 14 on) - A
variable-length contrcl section is
of indeterminate length. It will
be allocated pages in excess of
the length stated in the CSD
headers.

0. Fixed-length (Bit 14 off) - A
fixed-length control section is a
section of fixed length. It will
be allocated a fixed number of
pages at load time.

13. Number of pages of text - This speci-
fies the number of pages of text for
this control section in the data set.
It should be noted that this generally
does not correspond to the number of
pages in the virtual memory page
table. It cannot be larger.

DEFINITION TABLE

The definition table contains 7-word
entries, one for each external definition
in the current control section. Defini-
tions are grouped as relocatable, absolute,
and complex in that ordex. The first
definition in the table is the name of the
current control section.

A relocatable definition is an external
definition whose value may be computed as
the sum of the origin of the control sec-
tion wherein it appears, and a constant
that is the symbol's displacement from the
section origin.

An absolute definition is an EQU item
with an absolute value whose name has been
declared an entry point in the CSECT in
which the name is defined.

A complex definition is either an EQU
item with a complex relocatable value
(i.e., containing external symbols) or a
simple relocatable definition whose ENTRY

The Program Module Dictionary 79

statement appeared within a control section
other than the section in which it is
defined. The definition entry appears
within the CSD of the control section that
contains the ENTRY statement. (Note that
the origin of the same control section is
the R-value for the DEF.) The complex DEF
is required in this case, with one REF
entry that names the control section in
which the DEF symbol is actually defined.

Each DEF in the definition table con-
tains the following entries:

1. Alphameric name of DEF - This field
contains the 8-character alphameric
name of the DEF.

2. Value of DEF - The value of DEF is set
by the language processor and is modi-
fied by STARTUP or the loader in the
case of complex and relocatable
definitions. For relocatable DEFs,
the value portion of the definition
entry contains the displacement value
of the symbol relative to the base of
its control section. For absolute
DEFs, this entry contains the absolute
value; for complex DEFs it contains
the absolute portion of the DEF value,
which may be zero.

3. R-value displacement - The "displace-
ment for R-value"™ word contains the
displacement of the original defining
control section origin with respect to
the head of the control section within
which the definition now appears.

This is required to compute valid R-
values for control sections which have
been combined by linkage editing. 1In
creating the PMD, only the linkage
editor will ever produce a nonzero
value in this word.

4. ¢SD link - The CSD link is initially
zero. It is filled in by STARTUP or
the dynamic loader when the control
section is loaded. It is a pointer to
the beginning of the CSD in which this
DEF appears, provided that neither the
DEF nor the control section has been
rejected.

5. Reserved for future use.

6. Search link - This field is filled by
the HASH SEARCH routine of either the
loader or STARTUP. It contains the
address of the beginning of the next
DEF entry, which hashes to the same
value. It contains zero if there are
no more DEFs with the same hash value
in this chain.

80

REFERENCE TABLE

The reference table is made up of 6-word
entries, one for each external symbol
referenced within the control section.

Each entry for an external or internal REF
contains the following:

1. Alphameric name of REF - This field
contains the 8-character alphameric
name of the REF.

2. Value of REF - This is filled in by
STARTUP or the dynamic loader. It
contains the value of the DEF to which
the REF refers. If the DEF is unde-
fined, it contains the address of a
portion of virtual storage wherein
reference is illegal.

3. R-value of REF - This is filled in by
STARTUP or the dynamic loader. It
contains the virtual storage address
of the beginning of the control sec-
tion wherein the DEF appears. This
value is obtained from the "R-value
displacement™ word of the satisfying
DEF entry.

If the DEF is undefined, this word
contains the address of a portion of
virtual storage wherein reference is
illegal.

4. ¢csD link - This pointer, initially
zero, is filled by STARTUP or the
dynamic loader. It points to the
beginning of the CSD wherein the DEF
that defines this REF appears. If a
corresponding DEF could not be found
upon the appearance of a REF, the CSD
link is to the beginning of the CSD
wherein the REF itself appears.

5. Reserved for future use.
Each entry for a Q REF contains:

1. Name of Q REF - This is the 8-
character alphameric name of a DXD
instruction or of a DSECT instruction
referred to in a Q-type address
constant.

2. Q-value of REF - This is filled in by
the RESOLVE Q-REF routine of the
dynamic loader. It contains the dis-
placement of the dummy section defined
by the DXD instruction from the begin-
ning of the combined external dummy
sections.

3. Alignment, Length - The alignment and
length specified by the assembler or
another language processor.

4. Link to next DXD name - This is filled
in by the Q-CHAIN routine of the

dynamic loader when Q-CHAIN posts the
REF on one of the 11 hash chains for Q
REFs.

5. Link to same DXD name - This is filled
in by the Q-CHAIN rcutine of the
dynamic loader when Q-CHAIN posts the
REF on one of the secondary Q REF
chains for duplicate name DXDs.

Each entry for a CXD REF contains:
1. For future use.

2. Value of CXD - This is filled in by
the EXPLICIT LINK routine of the
dynamic loader. It contains the
length of the combined external dummy
sections for modules currently loaded
in the present task.

3. For future use.
4. CXD REF link - This is filled in by
the ALLOCATE MODULE routine of the

dynamic loader as CXD REFs are chained
together.

RELOCATION DICTIONARY (RLD)

Three RLDs appear in each control sec-
tion dictionary. The three RLDs are:

1. RLD for complex definitions
2. RLD for internal references
3. RLD for external references
Each RLD has the same format consisting
of modifier pointers and modifiers. The
RLD for complex definitions differs in that
pages mentioned in this table are pages of

the PMD rather than the text.

Modifier Pointer

Modifier pointers are used to designate
the application of modifiers to adcons on
appropriate pages of text (or of the PMD
for complex DEFs). The first modifier
pointer applies to the first page; the
second modifier pointer, the second page;
etc. For an RLD there always exists at
least one modifier pointer. However, there
need not necessarily be a modifier pointer
for each page of text; the modifier point-
ers may be ended at the last text page for
which there exists any modifier.

The modifier pointers consist of two
fields, in the left and right halfwords.

Left half - Number of modifiers of page.

This field contains the number of
modifiers that apply in this page.

Appendix A:

Right half - Location of first modifier for
this page. This contains the location
in bytes relative to the right half of
the pointer itself for the first modi-
fier for this page. 1If there are
none, it points to the location where
one would have appeared if there had
been one.

A special note should be made of the
technigue for determining the length
of an RLD. If one looks in the right
half of the first pointer for an RLD,
one finds the location of the first
modifier for this page. 1In the word
preceding the first modifier word is
the last modifier pointer for the RLD.
By adding the location of the right
half (of the last pointer) tc the con-
tents of the right half (of the last
peinter), one gets the beginning of
the last set of modifiers. Adding to
this four times the number of modi-
fiers in the last set, one gets the
end of the RLD.

Modifier

1. L - L (2 bits) is the length in bytes
of the adcon to be modified. A value
of zero indicates a fullword (4

bytes).

2. Ref number - Reference number (14
bits) is the ordinal number in this
CSD's reference table of the reference
whose definition value is to be used
in modifying the adcon. References
are numbered starting with zero.

3. T - T (4 bits) is the operation to be
performed in modifying the adcon by
the reference value. The values of T
currently defined are as follows:

a. Addition (T = 1) - The definition
value of the reference at
"Reference Number"™ is added to the
field of L bytes at the location
specified by "Byte."

b. Subtraction (T = 2) - Same as
adaition, except read "subtracted
from®™ for "added to."

¢. R-value (T = 3) - The "R-value" of
the REF is stored into the field
of length L at the location speci-
fied by "Byte.®

d. @Q-value (T = 4) - The "Q-value™ of
the REF is stored into the field
of length I. at the location speci-
fied by "Byte."

e. Value of CXD (T = 5) - The value
of the CXD instruction is stored

The Program Module Dictionary 81

into the field of length L at the
location specified by "Byte."

4. Byte - Byte (12 bits) is the displace-
ment in bytes (from the origin of its
original containing page) of the adcon
to be modified. It should be noted
that since PMDs are packed to word
boundaries, this displacement will be
added to an address for complex DEFs
which generally is not a page
boundary.

RLD for Complex Definitions

The format of these modifiers is as
described above under "Modifier." These
modifiers apply to the values of complex
definitions; that is, the byte addresses in
the modifier will be added to the value
words of complex DEF entries in the defini-
tion table, and the page numbers in the
modifier pointers are for pages of the pro-
gram module dictionary itself.

RLD for Text External Reference

This relocation dictionary is in the
same form as described above. It has one
pointer for each page of program text up to
that text page, which is the last to con-
tain an adcon, and appropriate modifiers
for each adcon in the text, which refers to
a symbol defined externally to this module,
to a DXD symbol, or to a CXD value. The
page numbers are based on the first page
for this control section, beginning with O.

RLD for Text Internal Reference

This is identical to RLD for text
external reference above, except that the
modifiers are to adcons in the text that
reference symbols defined within this
module, such as control section names.
This permits communication between control
sections of the same module that may be
allocated noncontiguous virtual storage.

82

VIRTUAL MEMORY PAGE TABLE (VMPT)

This table has a halfword for each page
of virtual storage that the CSECT occupies,
beginning with page 0 and continuing upward
in order.

The contents of each entry will be
either:

1. All 1-bits if the corresponding page
is empty as a result of a DS or ORG
statement.

2. The number of the page in the text
relative to the beginning of text for
this CS if the page contains code or
data.

This table is the means by which the
text of the control section is related to
the virtual memory (virtual storage)
assigned the control section. This is
because language processors do not neces-
sarily output a byte of text for each byte
of virtual storage assigned; that is, large
ORG and DS statements may result in pages
of text being skipped.

If, for example, a source program were
to begin with

ORG 10000

there would be no text output for the first
two pages of virtual storage, and the first
page of text would correspond to the third
page of the user's virtual storage. The
first two VMPT entries would be all bits,
and the third would contain zero. Within a
page, however, the bytes of text correspond
directly to the bytes of wirtual storage.
Thus, in the example above, the first page
of text would represent virtual storage
locations 8192-12,287, and the first 1808
bytes of the page of text would be vacant
(10,000-8192 = 1808). The pages of text
always begin on page boundaries within the
text module.

In TSS/360, at user option, an internal
symbol dictionary (ISD) is built for an
object module. The ISD enables the user to
later use the commands of the program con-
trol system (PCS) for debugging; PCS uses
the ISD to find internal symbols.

The ISDs produced by the assembler and
FORTRAN compiler differ slightly; the for-
mat of each is shown, respectively, in IBM
System/360 Time Sharing System: Assembler
Program Logic Manual, GY28-2021, and FOR-
TRAN Compiler Program Logic Manual, GY28-
2019. (The PL/I compiler does not produce

APPENDIX B: THE INTERNAIL SYMBOL DICTIONARY

THE COMPOSITE ISD

The linkage editor produces an object
module containing a composite ISD. This
composite ISD contains all ISDs from input
modules, retained just as they were upon
input and chained in the order in which the
input modules were included. In addition,
the linkage editor produces a directory
pointing tc the retained ISDs. The format
of this directory is shown in Figure 14.
The directory and the retained input ISDs

an 1IsSD.} constitute the composite ISD.
2 Bytes 2 Bytes
ISD Type (0) Linkage Edit Level
Length of ISD (Number of Bytes)
Displacement to Preceding ISD (Bytes)
” 1SD Heading
— Alphameric Name of Qutput Module —e]
Number of input Modules
r]
— Alphameric Name of Input Module 1 —
Displacement to Next Input Mode Name (Bytes) > Module Heading
Displacement to 1SD For Input Module (Byfes)
Number of Output CS's Formed from Input Module J
—— Alphameric Name of Output Control Section 1 Control Secti
ontrol Section
Heading
Number of Input CS's Used to Form QOutput CS
Input { Alphameric Name of Input
Module 1 Control Section 1 Used to Form Output C5
Output Control
Text Displacement, Control Section 1 Section 1 from
Input Module 1
P e et e ~————
Alphameric Name of Input
r——' Control Section 'n' Used to Form Output CS -
Text Displacement, Control Section 'n'
—] Remaining Qutput
Control Sections from
Input Module 1
Remaining e e T T e T T]

Input Modules

—

T/

Figure 14. Composite ISD directory format

Appendix B:

The Internal Symbol Dictionary 83

THE COMPOSITE ISD DIRECTORY

The directory consists of a heading and
a list of entries for each input 1SD.

DIRECTORY HEADING

1. ISD type (2 bytes) - Contains 0 to in-
dicate this is a linkage-editor pro-
duced ISD.

2. Link edit level (2 bytes) - A counter
equal to 1 plus the highest linkage
edit level value present in any pre-
viously generated composite ISD. If
there are no previous composite ISDs
present, the value is 1.

3. Length of ISD (4 bytes) - The number
of bytes in the composite ISD.

4. Pointer to the first composite ISD
included (4 bytes) - A displacement in
bytes from an input ISD (if present)
which was itself the product of a pre-
vious linkage edit.

5. Alphameric name of output module (8
bytes).

6. Number of input modules (4 bytes) -
The number of object mocdules used to
produce the output module.

ENTRIES FOR EACH INPUT MODULE

The composite ISD directory contains an
entry for each input module. The entry, of
variable length, relates the control sec-
tions produced in the output module to the
control sections from input modules. The
entries described below are each fullword
aligned.

1. Alphameric name of input module (8
bytes).

2. Displacement to next input module name

(4 bytes) - The number of bytes from
the beginning of this entry to the
beginning of the next input module
entry. It will be zero if this is the
last entry.

3. Displacement to ISD for input module
(4 bytes) - The number of bytes from
the beginning of this entry to the

84

beginning of the input module's ISD.
It will be zero if the module has no
ISD.

4. Number of output control sections pro-
duced from input modules (4 bytes) -
May be less than the number of control
sections in the input module. This is
the case if any control sections are
renamed or combined.

5. Entries for output control sections in
this form:

a. Alphameric name of output control
section (8 bytes).

b. Number of input control sections
used to produce the cutput control
section (4 bytes) - Zero if the
output control section is merely
one of the input control sections.
One if the output control section
was produced by renaming an input
control section. Two or more if
the control section was produced
by combining two or mcre input
control sections.

c. Entries for each input control
section used to produce the output
control section in this form:

(1) Alphameric name of input con-
trol section (8 bytes).

(2) Displacement to text for input
control section (4 bytes) -
The number of bytes to the
first byte of the input con-
trol section's text from the
beginning of the output con-
trol section's text as pro-
duced by the linkage editor.

A non-zero value will appear
here only for second and sub-
sequent input control sections
combined to make the output
control section.

COMPOSITE ISDS AS INPUT

Object modules containing composite ISDs
(that is, modules that were produced by the
linkage editor) may be specified as input
to the linkage editor. The resultant com—
posite ISD will note that the particular
input ISD was itself a composite ISD.

APPENDIX C: DIAGNOSTIC MESSAGES

The message delivered by the ERROR routine is chosen from the following list according
to the error code in register 1. The number preceding each message is not part of the
message, but is used to relate the message to the error code. Each message will, at the
time it is delivered to PUDIAG, be prefaced by:

nnnnnnnbsb¥** *
where nnnnnnn is the line number of the linkage editor control statement, b is blank, and

S is either E or W: E denotes a major error (severity level 2) and W denotes a warning
message (severity level 0).

Following is a list of the diagnostic messages, with the message numbers used on the
flowcharts and appearing in the text.

Message Severity

Number Level Message Text
1 2 MODULE name IS IN SYSLIB
2 2 MODULE name DOES NOT EXIST
3 2 ILLEGAL OPERATION SYMBOL
u 2 ENTRY NAME name APPEARS IN BOTH CSECT name OF OUTPUT MODULE AND CSECT
name OF MODULE name
5 2 ENTRY NAME name ALREADY EXISTS IN CONTROL SECTION name
6 2 EXTERNAL SYMBOL name DOES NOT EXIST
7 0 THE FOLLOWING EXTERNAL REFERENCES ARE UNRESOLVED (followed by 1list of
names)
8 2 CONTROL SECTION name AND name TO BE COMBINED DO NOT HAVE IDENTICAL
ATTRIBUTES
9 2 FORM-1 INCLUDE STATEMENT NOT YET GIVEN
10 2 ILLEGAL USE OF NAME name
11 2 ILLEGAL DELIMITER
TEXT
12 2 PMD ,OF MODULE name EXCEEDS AVAILABLE VIRTUAL MEMORY. CANNOT
ISD) CONTINUE
TEXT
13 2 PMD OF OUTPUT MODULE EXCEEDS AVAILAELE VIRTUAL MEMORY. CANNOT
ISD) CONTINUE
14 2 CONTROL SECTION name OF MODULE name DUPLICATES PREVIOUSLY NAMED ENTRY
POINT
15 (4] WARNING - CONTROL SECTION name OF MODULE name REJECTED. COMMON ATTRI-

BUTE CONFLICT

16 0 WARNING - CONTROL SECTION name OF MODULE name REJECTED. STORAGE PRO-
TECTION ERROR POSSIBLE

17 0 WARNING - PRIVILEGED CSECT name OF MODULE name REJECTED BY NONPRIVI-
LEGED CSECT

Appendix C: Diagnostic Messages 85

18 0 WARNING - REJECTED CSECT name OF MODULE name EXCEEDS LENGTH OF PRE-
VIOUS CSECT. STORAGE PROTECT ERROR POSSIBLE

19 v} THE FOLLOWING REFERENCES ARE RESOLVABLE FROM SYSLIB - (followed by
list of names)

20 2 EXTERNAL SYMBOL name DUPLICATES OUTPUT MODULE NAME

21 2 CONTROL SECTION name HAS ALREADY BEEN COMBINED

22 2 FORTRAN MAIN PROGRAM name CANNOT BE LINKED. THE OUTPUT MODULE CANNOT
CONTAIN 2 FORTRAN MAIN PROGRAMS.

23 2 STATEMENT IS MORE THAN 256 CHARACTERS IN LENGTH.

24 4] THE STANDARD ENTRY POINT OF INPUT MODULE name CANNOT BE SAVED AS AN
AUXILIARY ENTRY POINT.

25 0 MODULE {name) PRODUCED WITH LEVEL number ERRORS.

26 0 ISD OF OUTPUT MODULE EXCEEDS 256 PAGES IN LENGTH. ISD NOT PRODUCED.

36

The meanings of the words defined in
this glossary apply only to their use in
this book; these words may have slightly
different meanings in other TSS/360 publi-
cations. General TSS/360 definitions are
provided in IBM System/360 Time Sharing
System: Concepts and Facilities,
GC28-2003.

absolute DEF: A DEF (external definition)
established by an assembler EQJ statement
whose operand is an absolute value. For
instance, this example would produce in the
control section dictionary an absolute DEF
entry for symbol A101 whose value would be
100:

ENTRY A101

A101 EQU 100
adcon: See address constant.
address constant: Space reserved in a pro-
gram for the address of a symbol; program
text that changes as the result of relocat-
ing the program in storage. The address
constant reserves storage in a program for
an address that cannot be known when the
program is written and ensures that the
address value will be filled in before the
code containing the address constant is
brought into main storage. 1In the follow-
ing assembler statement, NAMEl contains an
address constant and SUBPROG is the symbol
whose address is furnished:

NAME1 DC A (SUBPROG)

In processing address constants, the lan-
guage processors and linkage editor create
external reference (REF) entries in the
control section dictionary. These entries
enable the dynamic loader to resolve the
address constant (that is, compute the vir-
tual storage address and insert it in the
reserved text word) when the page contain-
ing the address constant is referred to
during program execution.

alias:

1. An alternate name that may be used to
refer to a member of a partitioned
data set.

2. An alternate entry point by which a
: program (that is, a stored member of a
partitioned data set) may be called.

The linkage editor and language processors
all produce an external name list which is
used by the VPAM STOW system routine to

APPENDIX D: GLOSSARY

compile a list of aliases by which a pro-
gram (that is, object module) may be
called.

COMBINE:

1. A linkage editor control statement
that combines two or more control sec-
tions from an input object module into
one control section in the object
module being built by the linkage
editor.

2. The name of the linkage editor routine
that processes this statement.

Since each control section must start on a
page boundary, combining several short con-
trol sections may reduce the total number
of pages required. Page compaction in
terms of virtual or main storage may also
be achieved in TSS/360 through CSECT pack-
ing (specified as a LOGON command parame-
ter); an advantage of combining with the
linkage editor is that space is saved on
external storage as well.

common control section: A type of control
section (created with the COM assembler
language instruction or the FORTRAN COMMON
statement) which may contain areas and con-
stants referred to by independent assemb-
lies or compilations (separate object
modules) that are to be loaded for execu-
tion as one overall program. (See also
control section.)

complex DEF: Either of two types of
external definition (DEF): A type-1 com-
plex DEF results from a symbol being named
as the operand of an ENTRY statement in a
control section other than the one in which
the symbol occurs as the name of a state-
ment. This DEF is an entry in the CSD of
the control section containing the ENTRY
statement. A related REF (external
reference) is created in that CSD to refer
to the control section in which the symbol
names a statement.

A type-2 complex DEF results from an EQU
statement whose name is the operand of an
ENTRY statement and whose operands are one
or more symbols defined as external in an
EXTRN statement.

complex RLD: The part of the RLD (reloca-
tion dictionary) that contains modification
values for complex DEFs.

Appendix D: Glossary 87

composite ISD: The ISD (internal symbol
dictionary) produced by the linkage editor.
The linkage editor does not recompile a
list of internal symbols, but simply
includes in its output module each ISD
existing in input modules. The composite
ISD thus consists of:

1. Each ISD just as it appeared in its
input module, and

2. A directory which heads the composite
ISD and relates the external defini-
tions and references of each input
module to those in the output module.

control section: The smallest unit of a
program that is relocatable to virtual
storage; that portion of text specified by
the programmer to be an entity, all ele-
ments of which are to be allocated contigu-
ous virtual storage locations. A control
section begins on a page boundary and con-
sists of an integral number of pages; the
page (4096 bytes) is the smallest unit of a
program that can be placed in main storage.
Control section may refer to any section
created by the assembler language START,
CSECT, DSECT, COM, PSECT, or DXD instruc-
tions (whether directly by an assembler
programmer or indirectly by the FORTRAN or
PL/I compilers or the linkage editor) or to
the type of section created by the START or
CSECT instruction as distinguished from the
other instructions.

control section dictionary (CSD): A table
within the program module dictionary (PMD)
which contains information on the external
definitions and external references within
a particular control section. This table
makes possible communication between con-
trol sections in the same or different
object modules. There is one CSD for each
control section; the program module dic-
tionary is essentially a collection of con-
trol section dictionaries. The CSD is
divided into: a heading, a definition
table, a reference table, a relocation dic-
tionary containing modification values, and
a virtual memory page table which relates
virtual storage assigned to the object
module to the text pages it contains.

control statement: A source statement for
the linkage editor. Control statements in
the TSS/360 linkage editor are: INCLUDE
(three forms), RENAME, COMBINE, TRAITS, and
END.

CSD: See control section dictionary.

CSECT:
1. The assembler language instruction

that creates and names a control
section.

88

2. The type of control section that is
created by a START or CSECT
instruction.

CXD REF: A REF (external reference) entry
created in the reference table of the con-
trol section dicticnary by a compiler or as
the result of a CXD assembler instruction.
The value of the CXD REF (which is the
length of combined external dummy sections)
is calculated and filled in by the dynamic
loader. There can be no more than one CXD
REF in any CSD.

CXD~-type reference: See CXD REF.

DEF: See external definition.

definition: See external definition.
definition table: A component of the con-
trol section dictionary which contains an
entry for each external definition appear-
ing in the control section. (See also con-
trol section dictionary.)

delimiter: An indicator that separates and
organizes items of data. This indicator is
often a character (such as a blank or a
parenthesis).

dynamic loader: A TSS/360 system component
which has two main functions:

1. As the result of some demand (such as
a CALL command), to allocate virtual
storage to object modules residing in
external storage, and

2. To resolve address constants when a
page of text within a module is actu-
ally referred to during program
execution.

The dynamic loader does not load anything
into main storage (the resident supervisor
does this); the dynamic loader merely
relates an object module's external loca-
tion on an I/0 device to a logical (virtu-
al) address within a user's task by chang-
ing relative addresses within a module to
virtual addresses within a task. The
second function, resolution of address con-
stants, is dynamic in that it does not
occur until a page containing address con-
stants is referred to by a page executing
in main storage. Resolution consists of
computing the virtual storage address value
and inserting it into the space reserved
for it in the text.

END: The linkage editor control statement
which terminates control statement
processing. -

entry point: Generally, any location in a

program or routine to which control can be

passed by another program or routine. (See
also standard entry point.)

entry point name:

1. A symbol whose value locates an entry
point.

2. An operand in the RENAME control
statement which must be an external
entry point {one defined by an ENTRY
assembler instruction or the name of a
control section statement such as
CSECT), not an internal entry point
(accessible only from some other place
within the same control section).

exclude: Pertaining to linkage editor out-
put, not to include in the output module
those object modules containing definitions
that would resolve specified external
references. The user specifies external
references he does not want resolved in a
form-3 INCLUDE statement. Presumably the
unresolved references will be resolved by
subsequent INCLUDE statements or by the
dynamic loader.

external definition (DEF): Synonymous with
external symbol definition. A type of
entry in a control section dictionary for
each external symbol in the control sec-
tion. A DEF resclves a corresponding REF
in some other control section. A DEF is
created in the control section dictionary
as the result of:

1. An object module being created (its
name is made the standard entry point
DEF and placed in the PMD header).

2. A control section being declared (its
name is made a DEF), or

3. A symbol occurring as the operand of
an ENTRY instruction. {See also abso-
lute DEF, relocatable DEF, and complex
DEF.)

external dummy control section: A dummy
section (displacement map) known externally
to the module in which it is defined. Each
of different object modules forming a com-
mon program may contain one or more extern-
al dummy sections; the storage may be
secured for all of them as one block. Each
module will be able to refer to any displa-
cement represented by a dummy section
within that block. The external dummy sec-
tion is created as the result of an
assembler DXD instruction or a DSECT
instruction in association with a Q-type
address constant. (The total length of all
external dummy sections defined in object
modules loaded together must be provided
for by a CXD instruction in one of the

modules.) The external dummy section is
used mainly by the PL/I compiler and
assembler language programs that interface
with PL/I programs.

external name list: A list of control sec-
tion and entry point names produced from
external definitions by language processors
and the linkage editor and passed to lan-
guage processor control (in the case of the
PL/I compiler, to program language con-
trol). The VPAM STOW routine places these
names in the partitioned organization dire-
ctory (POD) of the library in which the
module is placed. These names become
aliases, or alternate names, by which the
module can be referred to and retrieved.

external reference (REF): Synonymous with

external symbol reference. A type of entry
in the control section dictionary for each
external symbol referred to but not neces-
sarily defined (by an ENTRY statement) in
the control section. The assembler user
creates a REF as the result of an EXTRN
instruction or by setting up a V-type, R-
type, or Q-type address constant. A REF
may also be created as the result of a com-
plex DEF (external definition). If no
corresponding external definition (DEF)
exists or is found, the REF is unresolved.

external symbol: A symbol used by more
than one control section within the same or
different object modules. (See also
external definition and external
reference.)

external symbol definition:
definition.

See external

external symbol reference: See external

reference.

INCLUDE:

1. A linkage editor control statement
which has three forms:

e Form-1 -- includes into the object
module being developed by the link-
age editor one or more input object
modules from a specified library,
and defines the input module to
which any preceding TRAITS, COMBINE,
or RENAME statements apply.

e Form-2 -- includes from a specified
library all object modules whose
external definitions resolve extern-
al references in the module being
developed by the linkage editor.

e Form-3 -- includes from a specified
library all object modules whose
external definitions resolve extern-
al references in the module being
developed by the linkage editor,

Appendix D: Glossary 89

except those external references
specified.

2. The name of the linkage editor routine
that processes this statement.

internal reference: A type of external
reference (REF) for a symbol which is
internal to the object module (that is, it
can be resolved by an external definition
in some control section within the same
object module).

internal symbol dictionary (ISD): A table
containing the location, length, and type
of all symbols that name program elements
{(the module, control sections, instruction
labels, and data areas) within an object
module. The assembler, FORTRAN compiler,
and linkage editor produce an ISD unless
the user suppresses it; the TSS/360 PL/I
compiler does not produce an ISD. The
linkage editor produces a composite ISD,
containing all ISDs present in input
modules and an initial directory pointing
to these retained ISDs. The ISD makes
possible program analysis using the TSS/360
program control system (PCS) commands.

ISD: See internal symbol dictionary.
linkage editor: A system—provided program,
in some respects similar to a language pro-
cessor, which may be optionally used to:

1. Join, or link two or more object
modules into a new, comprehensive
object module, and

2. Change, or edit, control section
attributes or names, entry point
names, or external references in an
object module by producing a new
module that includes the desired
changes.

Using the linkage editor eliminates the
need to reassemble or recompile, may save
external storage and dynamic loader proces-
sing time, and may reduce paging activity
when the program is executed.

load:

1. Generally, to place data into main
storage or registers.

2. Also, in TSS/360, to place programs
(one or more related object modules)
into virtual storage.

The dynamic loader loads an object module
{that is, allocates virtual storage
addresses to it within a task) as a conse-
quence of some user or system invocation;
the program, or module, is not yet moved
into main storage. Physical transfer of
the program, or module, into main storage

90

is performed in page units by the resident
supervisor. When a page is physically
loaded into main storage, hardware-
implemented dynamic address translation
converts the wvirtual address of the page
into a real main storage address.

loader: See dynamic loader.

object module: Also called a program
module or an object program module, an
object module in TSS/360 is the primary
output of a language processor or the link-
age editor. The object module is made up
of a program module dictionary (PMD) con-
taining control information, the text (that
is, the program itself), and, at the user's
option, an internal symbol dictionary
(Isp}, used for program analysis. When
invoked by a user, an object module becomes
input to the dynamic loader (unless it is
already loaded).

object program module:
object module.

Synonymous with

PMD: See program module dictionary.

program module:
module.

Synonymous with object

program module dictionary (PMD): A table
at the logical beginning of an object
module containing control and descriptive
information required by routines that must
process the module. A PMD consists of a
header and one or more control section dic-
tionaries (CSDs).

pseudo-register:
dummy section.

Synonymous with external

Q REF: A reference to an external symbol
that defines an external dummy section (for
instance, the name of a DXD statement).

O-type address constant: A constant that
reserves storage for the value of the dis-
placement of a symbol into an external
dummy section into an area described by the
dynamic loader. The symbol in the Q-type
address constant must have been previously
used as the name of a DXD or DSECT instruc-
tion. (See also address constant.)

Oo-type reference:

Q-value: A value that represents the dis-
placement of an external dummy section into
the storage area reserved for external
dummy sections. The dynamic loader supp-
lies the Q-value. A program using the Q-
value must get or reserve the storage
required for the combined external dummy
sections.

See Q REF.

REF: See external reference.

reference: See external reference.

relocatable DEF: A DEF (external defini-
tion) whose value during execution is
storage-location dependent. The value of a
relocatable DEF as the result of language
processing or linkage editing will be some
displacement from the beginning of the con-
trol section in which the definition
occurs. For example, if some statement at
byte location 1000, relative to the origin
of its control section, is named CHXARA,
then

ENTRY CHXAAA

will produce a relocatable DEF entry for
the symbol CHXAAA whose value will be 1000.
The dynamic loader processes relocatable
DEPFs by adding, to the value assigned by
the language processor or linkage editor,
the virtual storage address of the defining
control section.

relocation dictionary (RLD): A table
within each control section dictionary
which contains modifier pointers and modi-
fiers for address constants (adcons). Each
modifier pointer indicates a text page
within the control section that contains
address constants; each modifier contains
information which the dynamic loader uses
to determine the final value of the address
constant. There are three RLDs in each
control section dictionary: one for com-
plex DEFs, one for external references, and
one for internal references.

RLD: See relocation dictionary.

RENAME :

1. A linkage editor control statement
that changes entry point names, con-
trol section names, or external
references, or deletes entry point or
control section names;

2. The name of the linkage editor routine
that processes this statement.

resolved: Applied to external reference
for which the linkage editor or dynamic
loader is able to find a corresponding
external definition.

R-type address constant: An address con-
stant whose value is the address of the
control section in which a specified symbol
was defined. For example, in

A DC R(ENTRY1)

the value inserted in location A by the
dynamic loader will be the address of the
control section in which ENTRY1 was defined
(in which an ENTRY statement occurred with

ENTRY1 as the operand).
constant.)

(See also address

R-value: The virtual storage location of
the origin of the control section in which
an ENTRY statement for a symbol appeared.
Conventionally, when linking to reenterable
{(nonmodifiable) code in TSS/360, the V-
value locates an executable instruction to
which control is passed; the R-value of a
symbol locates the beginning of a control
section (usually a PSECT) which may be used
for modifiable storage. An R-value is also
assigned to symbols that are the names of
object modules and control sections. The
R-value of the control section is simply
the value of the contrel section name. The
R-value of a module is either the address
of the first PSECT in the module, or, if no
PSECT exists, of the first CSECT.

stack: To collect and hold language state-
ments pending the occurrence of some unify-
ing or clarifying statement. In the TSS/
360 linkage editor, RENAME, COMBINE, and
TRAITS control statements are stacked until
a form-1 INCLUDE statement occurs; then
they are processed.

standard entxy point: The location in an
object module at which program execution .
will begin if the module is invoked by its
name. A user may call a program to run
(via the CALL command or by direct call) by
specifying the object module name; execu-
tion will begin at the standard entry
point. An object module may have several
entry points to which other programs can
pass control; it can have only one standard
entry point. The FORTRAN and PL/I compi-
lers generate a value which is the location
of the beginning of the main procedure in
the module. The assembler uses the address
of the first control section (CSECT) in the
module as the standard entry point unless
the user has specified another location as
the operand of an END statement. The stan-
dard entry point name is contained as a DEF
in the header of the PMD. The linkage edi-
tor produces a module whose standard entry
point is that of the first input module; it
also retains the standard entry point of
each input module, enabling the user to run
by name not only the linkage edited module
but any of its component input modules.

symbol: A character or combination of
characters that represents addresses or
specified absolute values. Through their
use as names and in operands, symbols pro-
vide the programmer with a way to name and
refer to elements (control sections,
instructions, and data areas) of a program.

text: The instructions, constants, and
reserved data areas of an object module;
the program itself.

Appendix D: Glossary 91

TRAITS:

1. A linkage editor control statement
that specifies new attributes for a
designated control section.

2. The name of the linkage editor routine
that processes this statement.

type-1 complex DEF: See complex DEF.

type-2 complex DEF: See complex DEF.

unresolved: Applied to external references
for which the linkage editor or dynamic
loader is unable to find a corresponding
external definition in another object
module or control section. The linkage
editor provides a list of unresolved
references at the termination of its pro-
cessing (as well as those unresolved but
resolvable by definitions in programs in
SYSLIB).

version identifier: A character string
that identifies a particular assembly,
pilation, or linkage editor run. The
character string can be one-to-eight
alphameric characters specified by the user
in his command, or, if defaulted, will be
the data and time of the run, supplied by
the system. The version identifier is
placed in the program module dictionary and
appears in the PMD listing section of the
list data set.

com-

virtual address: Also called logical
address, and address generated by a program
that references virtual storage and must,
therefore, be translated into a main
storage address as it is used.

virtual memory pagqge table (VMPT): A table
in each control section dictionary which
relates pages of text within the controil

92

section to virtual storage assigned the
control section. A control section may
occupy more space in virtual storage than
its text pages require; ORG instructions
will cause virtual storage to be allocated
which does not contain text pages. The
VMPT tells whether a page is empty
(reserved) or, if it contains text, which
page it is relative to the first page in
the control section containing text.

VMPT: See virtual memory page table.

V-type address constant: A type of address
constant that reserves storage for and
whose value during program execution is the
address of an external symbol. By specify-
ing a symbol in a V-type address constant,
the assembler language EXTRN instruction
need not be used. Conventionally, when
linking to a reenterable (nonmmodifiable)
program in TSS/360, the V-type address con-
stant loaded intoc a register provides the
address to which control is to be passed;
the R-type address constant loaded in
another register provides the location of a
modifiable control section. For each V-
type address constant, an external
reference (REF) is created in the control
section dictionary. (See also address
constant.)

V-value: A virtual storage location that
an external symbol labels. By convention
in TSS/360, when linking to reenterable
(nonmodifiable) code, the V-value of a sym~
bol locates the symbol itself (provides its
address); the R-value of a symbol locates
the beginning of a PSECT which the execut-
able code may use to obtain and modify
data. V-values are provided by the dynamic
loader.

Where more than one page reference is
given, the major reference is first.

APENCX - append complex RLD
external table references 71
flowchart (Chart aM) 55
subroutine description 10,16

APENDF - append definition table

subroutine
flowchart (Chart AL) 54
subroutine description 16

APENEX - append external RLD
external table references 71
flowchart (Chart AM) 55
subroutine description 10,16

APENIN - append internal RLD
external table references 71
flowchart (Chart AM) 55
subroutine description 10,16

append complex RLD
(see APENCX)

append definition table
(see APENDF)

append external RLD
(see APENX)

append internal RLD
{see APENIN)

attributes of control sections 5

blank control sections 5
BRING - Bring PMD, Text, and ISD from
library

external table references 71
flowchart (Chart AN) 56
subroutine description 16

Bring PMD, Text, and ISD from library
(see BRING)

CFADA

(see CPC MAIN)
CFADB

(see GETLINE)
CFADC

(see PUTDIAG)
CEYBR

(see BRING)
CEYCO

(see COMBINE)
CEYCX

(see APENCX)
CEYEE

(see EARLY)
CEYEN

{see END)
CEYER

{see ERROR)
CEYEX

{see APENEX)
CEYGA

(see GTCSAD)

CEYGC
(see GETCSD)

CEYIA
(see INANAL)

CEYIC
(see INCLUDE)

CEYIN
(see APENIN)

CEYLK
(see LINK)

CEYOP
(see OUTPUT)

CEYRN
(see RENAME)

CEYSC
(see SCAN)

CEYTR
(see TRAITS)

CEYTS
(see linkage editor)

CEYXR
(see EXTREF)

CLEANUP - cleanup final module subroutine
flowchart (Chart AH) 46
subroutine description 17

Cleanup final module
(see CLEANUP)

COLLECT - collect common requirements

subroutine
flowchart (Chart AI) 47
subroutine description 17

Collect common requirements
(see COLLECT)

COMBINE - COMBINE statement processor
definition 87
external table references 71
flowchart (Chart AA) 40
subroutine description 17

Combine control sections
(see COMSUB)

COMBINE statement processor
{see COMBINE)

Command Analyzer & Executor (CAEE)
GETLINE subroutine (CFADB) 9,21
LPC MAIN routine (CFADA) 9
PUTDIAG subroutine (CFADC) 9,26

common areas
exclusion table (EXCLUD) 69
external name list (NAMES) 69
hash table (HASHTB) 69
rename/combine table (RCTBL) 70
statement stack list {STACK) 70
TEMP storage 69
work areas 69

common attribute 5

common internal storage areas
TEMP storage 69
work areas 69

common internal lists
external name list (NAMES) 69
statement stack list (STACK) 70

Index 93

common internal tables
exclusion table (EXCLUD) 69
hash table (HASHTB) 69
rename/combine table (RCTBL)
COMSUB - combine control sections
subroutine
flowchart (Chart AD) 45
subroutine descripticn 18
confirmation messages 85
control section dictionary (CSD)
definition 88
control sections (CSECT)
attributes of 5
common 5
definition 88
control statement input/analyze
(see INANAL)
control statement processing 8
conversational mode
(see mode of operation)
CSD
(control section dictionary)

data areas 69

debugging aids 73

decision tables
control statement processing
early-end processing 34
output processing 30

DEF 89

definition table

delete entry name
(see DELNAME)

DELNAME - delete entry name subro
flowchart {(Chart AA) 41
subroutine description 18

diagnostic aids 73

diagnostic codes 85

79,88

EARLY - early-end processor
external table references 71
filowchart {(Chart CA) 67
subroutine description 34

early-end processing 34,8

Early-End processor
(see EARLY)

END - END statement processor
definition 88
external table references 71
flowchart (Chart AA) 44
subroutine description 18

END statement processor
(see END)

ERROR - error message processor
external table references 71
flowchart (Chart AO) 58
subroutine description 20

error message processor
(see ERROR)

error messages 85

EXCLUD - exclusion table 69

Exclusion table
(see EXCLUD)

External name list
(see NAMES)

external references 71

94

70

77-79,4

77-79 .4

12

utine

External reference search
(see EXTREF)

EXTREF - external reference search
external table references 71
flowchart (Chart AP) 59
subroutine description 20

Fix 1ISD
(see FIXISD)

FIXISD - FIX ISD subroutine
flowchart (Chart AI) 47
subroutine description 21

general register assignments 73

GETCSD - locate control section dictionary

flowchart (Chart aP) 59
subroutine description 21

Get CSD table addresses
(see GTCSAD)

GETLINE routine (CFADB)

glossary 87

GTCSAD - get CSD table addresses
external table references 71
flowchart (Chart AQ) 60
subroutine description 21

9,21

hash table (HASHTB) 69
hashing algorithm 70
HASHTB - hash table 69

INANAL - control statement input/analyze

processor
external table references 71
flowchart (Chart AA) 36
subroutine description 22

INCLUDE - INCLUDE statement processor

definition 89
external table references 71
flowchart (Chart AA) 37
subroutine description 23
form-1 INCLUDE processing 23
form-2 INCLUDE processing 24
form-3 INCLUDE processing 24
INCLUDE statement processor
{see INCLUDE)
input modules (maximum number) 74

internal symbol dictionary (ISD)
composite ISD 84
composition of ISD 84
definition 90
external table references 71
ISD (internal symbol dictionary)

job library (JOBLIB) 5

language processor control (LPC) 9

LIBE SEARCH - (part of dynamic loader)

subroutine description 24
limitations 74
linkage editor
characteristics of routines 8
control sections 5

83-~-84,4

83,4

definition 90

error detection and messages 85
functions 3

input 3

interface with language processor 9
library calls 5

limitations 74

major divisions 8

object module structure 3

output 3,29

programming aids 73,85

program module dictionary 75-82,4

relationship to language processors 9,7

relationship to TSS/360 6
size considerations 74

LINK - link modules subroutine
external table references 71
flowchart (Chart AJ) 48
subroutine description 24

link modules
(see LINK)

LNK command 2

locate control section dictionary
(see GETCSD)

LPC MAIN routine (CFADA) 9

LSTPMD - program module dictionary listing

subroutine
flowchart (Chart BB) 62
subroutine description 32

Messages, diagnostic 85
MD240 subroutine
flowchart (Chart BB) 62
subroutine description 33
MD300 subroutine
flowchart (Chart BC) 64
subroutine description 33
MD350 subroutine
flowchart (Chart BC) 64
subroutine description 33
MD450 subroutine
flowchart (Chart BD) 65
subroutine description 33
MD500 subroutine
flowchart(Chart BD) 65
subroutine description 33
MD600 subroutine
flowchart (Chart BE) 66
subroutine description 33
Mode of operation
conversational mode 1,3
error handling 9,20
nonconversational mode 1,3
modules (input) 74
maximum number
modules (output) 78
size

name designations in program listings 68
NAMES - external name list 69
nonconversational mode

(see mode of operation)

object modules

definition 3,90

structure 3
(see also output modules)
output modules 3,74
OUTPUT - output processor 29
external table references 71
flowchart (Chart BAa) 61
subroutine description 31
output processing 29,3
output processor
(see OUTPUT)

partitioned data sets 3
partitioned organization dictionary
(POD) 5

PMD (program module dictionary) 75-82,4
privileged attribute 5

program control system (PCS) 4

program module dictionary (PMD) 75-82,4

external table references 71
PMD listing 3
program module dictionary listing
subroutine
(see LSTPMD)
prototype attribute 5
PSECT
organization 72
storage 71
public attribute 5

PUTDIAG routine (CFADC) 9,26

RCTBL - rename/combine table 70
read-only attribute 5
REF 89
reference table 80
register assignment and usage 73
relocation dictionary (RLD) 81
rename/combine table (RCTBL) 70
RENAME - RENAME statement processor
external table references 71
flowchart (Chart AA) 41
subroutine description 26
RENAME statement processor
(see RENAME)
RILD 81,91

SCAN - scan subroutine
external table references 71
flowchart (Chart AR) 60
subroutine description 27
scan subroutine
(see SCAN)
size requirements and limitations 74
STACK - statement stack list
statement stack list (STACK) 70
statement store area (SAVLN1) 23
storage areas (PSECT) 71
system attribute 5
system library (SYSLIB) 5

TEMP storage 69

TRAITS statement processor
(see TRAITS)

TRAITS - traits statement processor
definition 92

Index

95

external table references 71
flowchart (Chart AA) 43
subroutine description 28

update ISD subroutine
(see UPISD)

UPISD - update ISD subroutine

flowchart (Chart AK) 53
subroutine description 28

user library (USERLIB) 5

96

variable length attribute 5
virtual memory page table (VMPT)
virtual storage requirements 74

WORKC1, WORKC2, WORKT
(see common areas)

82,92

IBM Technical Newsletter File Number $360-31

Base Publication No. GY28-2030-2

This Newsletter No. GN28-3216
Date February 1, 1972
Previous Newsletters None

IBM System/360 Time Sharing System:
Linkage Editor

©18M Corp. 1967, 1971

This Technical Newsletter provides replacement pages for the
subject publication. Pages to be inserted and/or removed are:

73-74

A change to the text is indicated by a vertical line to the
left of the change.

Summary of Amendments

Errors concerning the size limitations imposed by the
linkage editor have been corrected.

IBM Corporation, Dept. 643, Neighborbhood Road, Kingston, N. Y. 12401

PRINTED IN U S A

GY28-2030-2

BBV

B

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only|

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[Internationali

IOWINIT SSL

dOLIaE

*Y*g*n UT pejuTid

Z-0€02-8ZXD

