
Version 8.1

IBM System/360 Time Sharing System

Linkage EditDr

File No. S360-31
GY28-2030-2

Program Logic

Describes the internal logic of the linkage editor for
the IBM System/360 Time Sharing System (TSS/360).
(Another publication, IBM System/360 Time Sharing System:
Linkage Editor, Ge28-2005, explains how the linkage edi­
tor is used.) The linkage editor is an optional facili­
ty: its use is not required to successfully run programs
in TSS/360.

• Explains the structure of an object module and its
program module dictionary.

• Describes the relationship between the linkage editor
and TSS/360.

• Provides details on the three phases of linkage edi­
tor processing - control statement, output, and
early-end. (Flowcharts are also provided.)

In TSS/360, the output of a language processor or the
linkage editor is an object module: it is input to the
dynamic loader. With the linkage editor, a user may per­
manently link separate but related object modules into
one object module, reducing dynamic loader processing
time. He may also, without having to reassemble or
recompile his program, use the linkage editor to: com­
bine control sections within a module (possibly saving
storage and reducing paging activity during execution):
change control section attributes: change or delete con­
trol section and entry point names: or change external
references.

This book is for customer engineers, system engineers,
and programmers who need to pinpoint problems, and system
programmers involved in altering the linkage editor
design.

Before using, be familiar with the contents of:

IBM System/360 operating System: Principles of Opera­
tion, GA22-682l

IBM-syEtem/360 Time Sharing System: Concepts and
Facilities, GC28-2003

Third Edition (September 1971)

This pubLication has been revised to incorporate cumu­
lative changes added by Technical Newsletters and to
follow new IBM guidelines for program logic manuals.
The book has been reorganized and much of it has been
rewritten. (The Preface explains the new organiza­
tion.) Significant changes will be indicated by a
vertical line beside the changed text. A glossary has
been added.

Inclusion of the DXD and CXD instructions and the Q­
type address constant to the TSS/360 assembler (to
allow assembler-produced object modules to interface
with PL/I-produced modules) requires the use of new
fields in the program module dictionary (PMD) and new
lines in the PMD listing. These changes to TSs/360 are
reflected in the linkage editor in the addition of
MOSOO, a subroutine of the LSTPMD (PMD Listing) rou­
tine. This subroutine is described as well as new

• changes to the PMO format (Appendix A).

This edition is current with Version 8, Modification 1,
of the IBM System/360 Time Sharing System (TSS/360),
and remains in effect for all subsequent versions or
modifications of TSS/360 unless otherwise noted. Sig­
nificant changes or additions to this publication will
be provided in new editions or Technical Newsletters.
Before using this publication, refer to the latest edi­
tion of IBM System/360 Time Sharing System: Addendum,
Gc28-20Q3. which may contain information pertinent to
the topics covered in this edition. The Addendum also
lists the editions of TSS/360 publications that are
applicable and current.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page impre­
ssions for photo-offset printing were obtained from an IBM 1403 Printer
using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's co~
ments. If the form has been removed, comments may be addressed to the
IBM Corporation, System/360 Time Sharing System Programming Publica­
tions, Department 6Q3, Neighborhood Road, Kingston, New York 12Q01.

© Copyright International Business Machines Corporation 1967,1971

THE PURPOSE OF THIS BOOK

This book is one of a series of TSS/360
program logic manuals; it describes in gen­
eral and in detail how the TSS/360 linkage
editor works. The book is intended for use
by programmers and customer engineers who
need detailed information about the linkage
editor and system programmers responsible
for changing it. Using this book for gui­
dance, even more detailed information about
the linkage editor can be found in a
printed or microfiche listing of the pro­
gram. (The linkage editor is contained in
the TSS/360 object module CEYTS.)

TO USE THIS BOOK, YOU NEED •••

An understanding of the general principles
of System/360 and the main concepts of TSS/
360, such as virtual storage. This infor­
mation is available in:

IBM System/360 Operating System: Prin­
ciples of Operation, GA22-6821.

IBM System/360 Time Sharing System:
concepts and Facilities, GC2S-2003.

OTHER BOOKS YOU MAY NEED •.•

This book contains a brief summary of how
the linkage editor is used. The basic how­
to-use-it book, containing more extensive
information, is:

IBM System/360 Time Sharing System:
Linkage Editor, Ge28-2005.

Input to the linkage editor comes from lan-­
guage processor control (LPC). This book
describes the LPC interface; however, a
more thorough treatment is provided in:

IBM System/360 Time Sharing System:
Command System Program Logic Manual,
GY28-2013.

Output from the linkage editor -- the
object module -- becomes input, prior to
execution, to the dynamic loader. How the
dynamic loader processes the object module
is described in:

IBM System/360 Time Sharing System:
Dynamic Loader Program LCXJic Manual,
GY28-2031.

PREFACE

HOW THIS BOOK IS ORGANIZED

The book is divided into these sections:

• "Section 1: Introduction" -- Defines
the linkage editor, describes input and
output, and explains the general struc­
ture of an object module.

• "section 2: Method of Operation" -­
Describes the linkage editor's rela­
tionship to the user and TSS/360, and
discusses its three phases of
processing.

• "Section 3: Program Organization" -­
Describes individual routines and sub­
routines within the linkage editor, and
contains flowcharts for the routines.

• "Section 4: Directory" -- Contains a
directory to routines, correlating
entry point and routine names to flow­
chart designation.

• "Section 5: Data Areas" -- Describes
tables, lists, and work areas used by
linkage editor routines; also contains
a PSECT organization table.

• "Section 6: Diagnostic Aids· -- Con­
tains suggestions for debugging (for
instance, where to take dynamic dumps).

• "Appendix A: The Program Module Dic­
tionary" -- Illustrates and describes
the format of the PMD.

• "Appendix B: The Internal Symbol Dic­
tionary· -- Discusses the lSD, and
illustrates and describes the format of
the composite ISD directory.

• "Appendix C: Diagnostic Messages"
Contains a numbered list, with error
levels, of messages the linkage editor
may issue to the user.

• "Appendix D: Glossary" -- Defines spe­
cial terms used in this book.

iii

CONTENTS

SECTION 1: INTRODUCTION ••••
What the Linkage Editor Does
How the Linkage Editor is Used
Input • • • • • . • •
Output • • • • • • • • •
What An Object Module is • • • •
Structure of an Object Module

Program Module Dictionary • • • • • • • • • •
Text •••••••••••
Internal Symbol Dictionary

Control Sections •••••••
Attributes of Control Sections ••••
Common Control Sections •

Mixing Object Modules • • • • • •
Managing Program Libraries • • • • •
Comparison Between TSS/360 and OS/360 Linkage Editors •
Linkage Editor Size Requirements and Limitations

SECTION 2: METHOD OF OPERATION • • • • •
Relationship to the System • • • •
The Three Phases of the Linkage Editor •••• •

Control Statement Processing
Output Processing • • • • • • • • • •
Early-End Processing • • • • • • • • •

The Language Processor Control Interface

1
1
1
2
3
3
3
4
4
4
5
5
5
5
5
6
6

7
7
8
8
9
9
9

SECTION 3: PROGRAM ORGANIZATION. • 10
Control Statement Processor • • • • • • • • • • • • 10

Function Summary • • • • • • • 10
APENCX. APENEX, APENIN -- Append RLD (CEYCX, CEYEX. CEYIN) • 10
BRING -- Bring PMD. Text, and ISD from Library (CEYBR) ••••• 16
COMBINE -- COMBINE Statement Processor (CEYCO) • 17
END -- END Statement Processor (CEYEN) • • 18
ERROR -- Error Message Processor (CEYER) • • • • • • • 20
EXTREF -- External Reference Search (CEYXR) • • • • • 20
GETCSD -- Locate Control Section Dictionary (CEYGC) • • 21
GETLINE Routine (CFADB) • • • • • • • • • • • • • • • • 21
GTCSAD -- Get CSD Table Addresses (CEYGA) • • • • • • • 21
INANAL -- Control Statement Input/Analyze Processor (CEYIA1) •• 22
INCLUDE -- INCLUDE Statement Processor (CEYIC) • • • • 23
LINK -- Link Modules (CEYLK) •••••••••••••••••• 24
PUTDIAG (CFADCl in Module CFADC) •••••• • • • • • 26
RENAME -- RENAME Statement Processor (CEYRN) • • • • • • 26
SCAN -- Scan (CEYSC) ••••••••••••• • • • • • • • 27
TRAITS -- TRAITS Statement Processor (CEYTR) • 28

Output Processor • • • • • • • • • • • 29
Function Summary • • • • • • • • • • • • 29
OUTPUT -- Output Processor (CEYOP) • 31

Early-End Processor • • • • • • • • • • • 34
FUnction Summary •••••••••• • • • • • 34
EARLY END -- Early-End Processor (CEYEE1) • • • • • • • • • 34

FLOWCHARTS

SECTION 4: DIRECTORY
Linkage Editor Routine Directory

SECTION 5: DATA AREAS • • • • • • • • • •
Common Areas (Storage Areas, Tables, and Lists) •

Common Internal Storage Areas • • • • •
Work Areas •••••• • • • • • • • •
TEMP Storage • • • • • • • • • • • •

iv

• 35

• 68
· 68

• 69
• • 69

69
• 69

• • 69

Common Internal Tables and Lists
Exclusion Table (EXCLUD) ••••
External Name List (NAMES)
Hash Table (HASHTB) ••••
Rename/Combine Table (RCTBL)
Stack Table (STACK) •

Reference to Tables and Lists •
PSECT Organization

SECTION 6: DIAGNOSTIC AIDS
General Debugging Aids

APPENDIX A: THE PROGRAM MODULE DICTIONARY •
PMD HEADING • • • • • • • • . • •
Control Section Dictionary (CSD)

CSD Heading • • • • •
Definition Table • • • •
Reference Table • • • • •
Relocation Dictionary (RLD) • • • •

Modifier Pointer • • • • •
Modifier • • • • • • • • •
RLD for Complex Definitions •
RLD for Text External Reference •
RLD for Text Internal Reference •

Virtual Memory Page Tabl e (VMPT)

APPENDIX B: THE INTERNAL SYMBOL DICTIONARY
The Composite ISD • • • • • • • •
The composite ISD Directory • •

Directory Heading • • . • • •
Entries for Each Input Module •

composite ISDs as Input • • • •

APPENDIX C: DIAGNOSTIC MESSAGES •

APPENDIX D: GLOSSARY

INDEX •••

• 69
• 69

• • 69
• • • 69

• • • • 70
• 70
· 71

• • • • • • • 71

73
• 73

• 75
• • • • • • • • 75

• 77
• 78
• 79
• BO

• • • • 81
• • • 81

81
• • • • • • • • • • • 82

• 82
• 82
• 82

• • 83
• • 83

84
• 84
• 84

• • 84

• 85

• 87

• 93

v

ILLUSTRATIONS

Figure 1-
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11-
Figure 12.
Figure 13.
Figure 14.

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Structure of an object module • • • • •
Overview of linkage editor processing •
Relationship between linkage editor and LPC •
Control statement processing flow
Overview of the control statement processor •
Overview of the output processor • • • •
Overview of the early-end processor
Exclusion table (EXCLUD) format •

4
• • • • 7

8
9

• • 11
• 29
• 34

69
External name list format • • • • • • • • • • • • • • •
Hash table (HASHTB) format . • . • •

• 69
• 70

Rename/combine table (RCTBL) format •
Stack table (STACK) format
Program module dictionary format
Composite ISD directory format • • • • •

• 70
• 70

76
• • 83

Controlling the linkage editor . • • • • • • • • 2
Control statement processing hierarchical table • 12
Output processing hierarchical table • • • • • • • • 30
Early-End processing hierarchical table • • • • • • • 34
Linkage editor routine directory • • • • • • • • 68
Data references by routines • 71
PSECT organization • • • • • • • • • 72
Register usage • • • • • • • • • • • • • • • • 73
Size limitations and requirements • 74

Chart AA. INANAL, INCLUDE, COMBINE, RENAME/DELNAME, TRAITS, and
END statement processors • • • • • • • • • • • • • • • • • 36
Chart AD. COMSUB - combine Control Section subroutine
Chart AB. CLEANUP - Cleanup Final Module subroutine
Chart AI. COLLECT - Collect Common Requirements subroutine and

• • 45
• 46

FIXISD - Fix ISD subroutine • • • • • • • • • • • • • 47
Chart AJ. LINK - Link Modules subroutine. • • • • • • • 48
Chart AK. UPISD - Update ISD subroutine • • • • • • • • • 53
Chart AL. APENDF - Append Definition Table subroutine • 54
Chart AM. APENCX, APENEX, and APENIN • • • • • • • • • • •• 55
Chart AN. BRING - Bring PMD, Text, and ISD from Library •• 56
Chart AO. ERROR - Error Message Processor • • • • • • • • • • 58
Chart AP. EXTREF - External Reference Search and GETCSD - Locate
Control Section Dictionary • • • •• • • • • • • •
Chart AQ. GTCSAD - Get CSD Table Addresses and SCAN - Scan
subroutine • • • • • • • • • • • • • • • • • •
Chart BA. OUTPUT - Output routine • • • • • • • • •
Chart BB. LSTPMD - Program Module Dictionary Listing subroutine

• • 59

• 60
61

• • 62 and MD240 subroutine • • • • • • • • • • • • • • • • • • •
Chart BC. MD300 and MD350 subroutines • • • • • 64
Chart BD. MD450 and MD500 SUbroutines
Chart BE. MD600 subroutine • • • • • • •
Chart CA. EARLY END - Early-End routine

vi

• • • • • • 65
• • • • • • 66

. • • • 61

The linkage editor is a TSS/360 program
called into operation when a user issues an
LNK command. The LNK command causes the
linkage editor, contained in a single
object module named CEYTS, to be loaded
into the user's virtual storage.

While the linkage editor can be consi­
dered a service program, it has some char­
acteristics of a language processor. As a
result of linkage editor processing, a
source data set is created consisting of
linkage editor control statements, and, as
with language processing, the primary out­
put is an object module.

WHAT THE LINKAGE EDITOR DOES

The linkage editor has two distinct
functions:

1. It links two or more existing object
modules into one new object module.

2. It edits, that is, changes, control
information in an object module,
obViating the need to reassemble or
recompile the source program. The
linkage editor can change or delete
control section names or entry point
names, change external references,
change control section attributes, or
cause control sections within a module
to be combined.

Besides these two primary functions, the
linkage editor can also be used to recreate
an existing object module in another pro­
gram library.

The linkage editor, on completion of
successful processing, has produced a new
object module; the object module or modules
used as input still exist, to be retained
or erased as the programmer desires.

HOW THE LINKAGE EDITOR IS USED

A TSS/360 user may wish to link two or
more related object modules into one
module. He may have written a large pro­
gram and, for convenience, divided it into
parts that he assembled or compiled separ­
ately. These separate object modules con-

SECTION 1: INTRODUCTION

tain control information (provided as the
result of the user's language statements)
that relates them to each other. When the
user calls one object module to be
executed, the TSS/360 dynamic loader will
load not only that module but all others
that it references. If the linkage editor
is used to permanently join these object
modules into one Object module, dynamic
loader processing time will be saved. The
TSS/360 user must decide whether the load­
ing time saved on subsequent runs is worth
the one-time investment in linkage editor
processing.

The user may wish to combine control
sections within a module. Since in TSS/360
each control section, regardless of length,
begins on a page boundary, combining short
control sections (those much less than 4096
bytes) can mean better utilization of
external storage and less paging activity
during program execution. With the linkage
editor, the user can combine control sec­
tions without having to rewrite and then
reassemble or recompile his program.

The user may also use the linkage edi­
tor, without. having to reassemble or recom­
pile, to change or delete control section
names and entry point names, to change
external references, or to change control
section attributes.

The user may find it convenient to use
the linkage editor for several purposes,
and he can do so within a single linkage
editor run.

The linkage editor is invoked in either
a conversational or nonconversational task
with the LNK command. The user follows
immediately with a sequence of linkage edi­
tor control statements which must terminate
with an END statement. (These control
statements are described in Table 1.) The
linkage editor provides diagnostic messages
as the statements are entered; the terminal
user may make immediate corrections. Fol­
lowing the END statement, the linkage edi­
tor provides a list of unresolved external
references (presumably these references
will either be resolved in subsequent link­
age editor processing or be left for reso­
lution by the dynamic loader).

Section 1: Introduction 1

Table 1. Controlling the linkage editor

r------------------T---------,----------T-----------T-------y---------T----------T---------T-------,
I I Name of I Whether I P~ogram > I > I Whether I Whether I Where to I Line I
I TSS/360 user I Output I Control ! Llbrary In I VerSlon I to Produce I to Produce I Put PMD I Number, I
I issues LNK command I Object I Statements I WhlCh to I ID I I > > I > > I I
I specifying: I Module I Prestored I Place Output I I ISD t PMD Llstlng I Llstlng I Increment I
I ~---------+---------+------------+-------_+----------+-----------+--------+---------~
I Default: I Must I Not I Latest library I System- I Produce I Don't produce Iconv: Stord I
I I specify I prestored I created I provided I ISD I PMD listing I Name: Print I 100,lOO !
t----------------~T------i-------~------T-----~-------L-------+-----------~--------~-------_i
I Then issues any I I I I
I of the control I I Placing the I I
I statements below: I Also specifying: I control statement:* lAs a result, the linkage editor: I
~--------------------+-----------------------+-----------------------+--------------------------------i
I COMBINE INames of control sectionslAhead of a form-l INCLUDEIAt the next form-l INCLUDE, com-I
! Ito be combined. Iwhich will specify the Ibines all control sections named I
I I lobject module containing I into the first control section I
I I Ithe control sections. Inamed in the COMBINE statement. I
t--------------------+-------------------------+-----------------------+------------------------------i
I RENAME IOld and new external IAhead of a form-i INCLUDElchanges or deletes specified I
I I references, entry point Iwhich will specify objectlnames in first object module I
I Inames, control section Imodule containing names. !named in next form-i INCLUDE. I
I I names. I I I
t--------------------+-------------------------+-------------------------+--------------------------------1
I TRAITS IName of control section IAhead of a form-l INCLUDE I changes attributes of specified I
I land new attributes. Iwhich will specify objectlcontrol section in first module I
I I Icontaining control sec- Inamed in next form-l INCLUDE. I
I I Ition. I I
~--------------------+-------------------------t-------------------------+--------------------------------1
I INCLUDE (form-l) IThe ddname of a program IBefore END. Icauses the specified object mod-I
I Ilibrary and obj ect module I I ule to be included in the ou tput I
I I in it. I lobject module and any stacked I
I I I \ COMBINE, RENAME, and TRAITS \
I I ! I statements to be processed. I

2

~--------------------+-------------------------t-------------------------+--------------------------------1
I INCLUDE (form-2) IThe ddname of a program IAfter at least one pre- ISearches library, includes in I
I Ilibrary to be searched. Ivious form-l INCLUDE. loutput module all modules I
I I I ! referenced by previously I
I I I lincluded modules. I
t--------------------t-------------------------t-------------------------+--------------------------------~
I INCLUDE (form-3) IThe ddname of a program IAfter at least one pre- \Searches library, includes in \
I Ilibrary followed by a Ivious form-l INCLUDE. (output module all modules refer-I
I lminus Sign; names of ex- I I enced by previously included I
I Iternal references not to I Imodules, except those containing I
I I be resolved. I I the external ref erences I
I I I I specified. I
t--------------------+-------------------------+-------------------------+--------------------------------1
I END I Blank. I Last. I Searches a1l libraries on the I
I I I I current program library list for I
I I I Imodules satisfying unresolved I
I I I I references, includes modules in I
! I I loutput modu1e. Furnishes mes- I
I I I Isage listing unresolved refer- I
I I I I ences and those resolvable in I
I I I I SYSLIB. I
~--------------------~-------------------------~-------------------------~--------------------------------1
I*Placement Rules: I
I 1. A COMBINE, TRAITS, or RENAME statement may precede any other COMBINE, TRAITS, or RENAME statement, \
I a form-l INCLUDE, or END (it will not be processed if it is stacked when the END statement I
I occurs). It cannot be immediately followed by a form-2 or -3 INCLUDE. I
I 2. A form-l INCLUDE can be placed before, between, or after any other statement except END (it may I
I not be placed after END). I
I 3. A form-2 or -3 INCLUDE must have been immediately preceded by a form-i, -2, or -3 INCLUDE, and at I
I least one previous form-i INCLUDE must have occurred. I
I q. The END statement must be last. I L ___ J

INPUT

Input to the linkage editor consists of:

1. LNK command parameters.

2. Control statements.

3. One or more object modules.

Following an LNK command, the user pro­
vides control statements specifying actions
for the linkage editor to take. A summary
of LNK command parameters and linkage edi-·
tor control statements is provided in Table
1. More detailed information on the com­
mand and control statements is in IBM
System/360 Time Sharing System: Linkage
Editor, GC28-200S.

The names of one or more input object
modules are specified by the user as
operands in his control statements.

OUTPUT

Output from the linkage editor consists
of:

1. A new object module.

2. A listing of the program module dic­
tionary (PMD), if requested.

3. An external name list.

The object module is placed in the pro­
gram library (virtual partitioned data set)
named by the user in his LNK command. It
must be a different library from those con­
taining the input modules.

The PMD listing shows the contents of
the program module dictionary (the control
information) of the new object module. The
format of this listing is illustrated in
Appendix A of IBM System/360 Time Sharing
System: Linkage Editor. (The format of
the PMD itself is shown in Appendix A of
this book.)

The PMD listing must be requested in the
LNK command. The listing is either stored
as a list data set for future access or
printed immediately and not retained in
storage. Unless the user specifies the
opposite, the PMD listing for a terminal
(conversational) user is written as a data
set on external storage; the PMD listing
for a batch (nonconversational) user is
printed. If a terminal user specifies
LISTDS=N, the listing is typed out at his
terminal (and is not stored as a data set).

In addition to the output object module
and optional PMD listing, the linkage edi­
tor produces an external name list. The

user does not see the external name list
(which contains a list of external defini­
tions in the output module); it is passed
to the system for use in storing the module
so that it may later be accessed by
reference to any of the external names.

In additlon to the linkage editor out­
put, a source data set containing the link­
age editor control statements is created by
TSS/360's language processor control as a
result of linkage editor processing.. The
user thus has a stored set of control
statements vlhich he may use in or modify
for later linkage editor processing.

WHAT AN OBJECT MODULE IS

In TSS/360, the primary output of a lan­
guage processor (assembler, FORTRAN compil­
er, or PL/I compiler) or the linkage editor
is an object module. (Other TSS/360 publi­
cations may use the terms "program module"
and "object program module" for "object
module.") The object module contains the
user's program (instructions, data con­
stants, and reserved areas) plus informa­
tion that the system requires to inspect
the program or set it up for execution.
The user may think of this as his program;
the system sees the object module.

After the object module has been pro­
duced by language processing or linkage
editing, the module is stored (until
erased) as a named member of a program
library (a virtual partitioned data set
containing object modules as members). The
user runs his program by issuing the CALL
command or by using a direct call (that is,
by simply using the object module name as a
command); thee! system responds by locating
the object module, loading it (and any
other modules to which the called module
refers) into the user's virtual storage,
and executing those pages of the object
module(s) that are required.

STRUCTURE OF AN OBJECT MODULE

An object module is divided into:

1. A program module dictionary (PMD).

2. Text (the program itself, consisting
of machine-coded instructions, data
constants, and reserved data areas).

3. An internal symbol dictionary (ISD).

Figure 1 illustrates this structure.

Section 1: Introduction 3

Program module

dictionary (PMD)

PMD Header

Contro 1 Section 1 Dictionary

Contro\ Section 2 Dictionary

Control Section 3 Dictionary

" ,

Contro I Section n Dictionary

Control Section 1

Control Section 2

Text: Instruction5 and/or
dota

Control Section 3

Control Section n

Optional. in,ternal {I
symbol dIctIonary L... _______________ --'

ISD

Figure L Structure of an object modu~e

Program Module Dictionary

A program modu~e dictionary consists of:

1. A heading containing the standard
entry point to the modu~e, version
identifier, and other information com­
mon to the entire module. The heading
begins on a page boundary.

2. One control section dictionary (CSD)
for each control section in the
modu~e. Each CSD contains information
regarding the CSECT version, external
symbol definitions and references,
relocation pointers, and information
relating text pages in the control
section to virtual storage pages.

When linkage editing input modules, the
program module dictionary of each module is
referenced to produce a single program
modu~e dictionary for the output modu~e.

4

A picture of the program module dic­
tionary and detai~ed explanation of each
field in the PMD is contained in Appendix
A.

Text

The text contains the program itself;
the instructions, data constants, and
reserved but non-initialized data areas. A
control section is composed of one or more
pages (Units of 4096 contiguous bytes);
these pages may be text pages or empty
pages (pages that simply reserve 4096 bytes
as the result of some DS or ORG assembler
instruction). Text pages actually exist on
some external storage medium; empty pages
exist only within virtual storage allocated
to the control section. Information in the
CSD relates text pages to the control sec­
tion's total virtual storage.

The text is not changed during linkage
editor processing.

Internal Symbol Dictionary

The internal symbol dictionary (ISD)
contains the location, length, and type of
all internal symbo~s. The ISD enables the
user to debug his program using TSS/360's
program contro~ system (PCS). The ISD
begins on a page boundary.

The assemb~er, FORTRAN, or linkage edi­
tor user will automatically receive an
object modu~e containing an lSD, unless he
explicitly states otherwise in his language
command. If no ISD is present, internal
symbols in the module will not be access­
ible to the user with PCS commands. (The
PL/I user does not have an option; the PL/I
compiler does not produce an ISD.)

The linkage editor simply inCludes as
part of its output module each ISD present
in input modules; it does not develop its
own list of internal symbols. This linkage
editor-generated ISD is called a composite
lSD, and consists of:

1. A directory pointing to each included
ISD in the output module.

2. A chain of the included ISDs.

If one of several input modules does not
have an lSD, the composite ISD will contain
all other input ISDs. The user will simp~y
not be able to access internal symbols in
the part of the output module for which
there was no input ISD.

The composite ISD can contain both
compiler- and assembler-produced ISDs as
well as composite ISDs produced by previous
passes through the linkage editor.

Appendix B illustrates and describes the
format of the directory portion of the com­
posite ISO. The ISDs produced by the
assembler and the FORTRAN compiler differ
slightly and are shown, respectively, in
IBM Systeml360 Time Sharing System:
Assembler Program Logic Manual, GY28-2021,
and FORTRAN Compiler Program Logic Manual,
GY28-2019.

Unlike the assembler, the linkage editor
does not produce an ISO listing.

CONTROL SECTIONS

Programs are divided into control sec­
tions, the basic logical programming unit.
It is by the use of a dictionary associated
with a control section that programmers can
make changes to the object module without
recompiling. Each control section in the
module is assigned attributes which can be
overridden with the TRAITS control
statement.

ATTRIBUTES OF CONTROL SECTIONS

A control section may have one or more
of the following attributes:

• Variable length -- a number of pages is
allocated in addition to the declared
length (a control section without this
attribute is considered fixed-length).

• Read-only data may not be stored
into the control section.

• Common -- common to all object modules
in which it is declared.

• Privileged -- eligible to be classed as
a privileged system program when placed
into the system library (SYSLIB).

• system -- part of a system (as opposed
to user) object module.

• Public -- assigned storage so it is
available to other tasks.

• Prototype (PSECT) -- storage containiWJ
the private copy of modifiable storage
made available to each task for public
routines.

COMMON CONTROL SECTIONS

Common control sections are created by
the assembler and FORTRAN compiler to allow
separate programs to access the same
storage area. The sizes of blank (unnamed)
common areas are examined by the linkage
editor. If more than one blank common area
is found in the input, the linkage editor

reserves an area equivalent to the largest
blank common area encountered and ignores
the rest; the data content of the first
common control section encountered is
retained. Named cornmon control sections
are treated similarly to noncommon control
sections, except that common control sec­
tion names are not placed in the external
name list and hence do not become part of
the partitioned organization directory
(POD) of a library.

MIXING OBJECT MODULES

Object modules produced by different
language processors can be linked into one
object module by the linkage editor. This
is because the PMOs produced by the
assembler, the FORTRAN compiler, the PL/I
compiler, and the linkage editor are ident­
ical, except: for flags indicating which
processor produced them. The user must
ensure, however, that he has followed link­
age conventions and provided compatible
data forms. He must also be familiar with
the control section names and functions of
PLiI and FORTRAN produced modules.

MANAGING PROGRAM LIBRARIES

Object modules in TSS/360 are stored in
libraries. A library is a partitioned data
set whose members are object modules. TSS/
360 users have access to four kinds of
libraries:

• System library (with the data set name
SYSLIB) -- This library contains pro­
grams accessible to all users, both
TSS/360's programs (including the link­
age editor) and the installation's own
standard subroutines and functions.

• User library (with the data set name
USERLIB) -- This is the private library
assigned to each user when he is joined
to the system. If the user does not
specify a library to receive his link­
age editor output, the output object
module is automatically placed in his
user library.

• Job library (with a user-defined data
set name) -- This is a library that the
user defines during a task by using the
JOBLIB option of the DDEF command.
Commonly, job libraries are used to
hold object modules temporarily; when
debugged, the object module, especially
if it is to be run often, may be trans­
ferred to the user library. A user may
designate the name of a job library in
which the output of linkage editor pre­
cessing is to be placed.

Section 1: Introduction 5

• Other library (with a user-defined data
set name) -- A user may also place the
output of the linkage editor in a
library that is not a job library, by
using the DDEF command without specify­
ing the JOBLIB option. Such a library
may be designated as the source of
input modu1es or as the destination for
the output module. The linkage editor
does not search this kind of library
for modules containing external defini­
tions that would resolve unresolved
references in the module being deve­
loped by the linkage editor. Modules
in this kind of library cannot be
loaded or called for execution. This
kind of library is not on the user's
program library list.

A more detailed discussion of program
libraries as they relate to the linkage
editor is contained in IBM system/360 Time
Sharing System: Linkage Editor.

Prior to issuing the LNK command, the
user must have defined any libraries from
which he wishes to obtain object modules or
which he wishes to be searched to resolve
external references. He must a1so define
the library in which the output is to be
placed. (He does not, however, have to
define USERLIB.) Since the output must go
in a library different from any that con­
tained input modules, at least one DDEF

6

command will be required prior to linkage
editing.

COMPARISON BETWEEN TSS/360 AND OS/360
LINKAGE EDITORS

Although similar in function, TSS/360
and OS/360 (IBM System/360 Operating Sys­
tem) linkage editors are different pro­
grams. Control statements for one linkage
editor are incompatible with the other. In
08/360, a distinction is made between the
output of a language processor (an ftobject
module") and the output of the linkage edi­
tor (a "load module"). TSS/360 does not
make this distinction; the output of both
kinds of processor is called an "object
module." OS/360 object modules containing
external references (references to other
modules) must be linked into a load module
prior to being input to the loader. In
TSS/360, the linkage editor is always an
optional facility; any object module may
become input to the dynamic loader.

LINKAGE EDITOR SIZE REQUIREMENTS AND
LIMITATIONS

Tab1e 9 in "Section 6: Diagnostic Aids·
lists size requirements and limitations on
the number and size of input modules.

RELAT IONSHIP TO THE SYSTEM

When the user issues an LNK command,
TSS/360 passes control to:

The command analyzer and executor
(CA&E), which passes control to:

Language processor control (LPC), which
passes control to:

The linkage editor.

During linkage editor processing, the
linkage editor calls LPC:

• To get each control statement.

• When a diagnostic message is to be
issued.

Commands and control
statements existing in
a pre -stored data set
(non-conversational

mode)

:
I
I

Output

SECTION 2: METHOD OF OPERATION

• When a phase of processing is
completed.

• If, for some reason, it cannot continue
processing.

The .linkage edi tor also uses system rou­
tines called as the result of OPEN, CLOSE,
FIND, GETMAIN, and FREEMAIN macro instruc­
tions, and directly calls the dynamic load­
er for library searches.

This general relationship between the
linkage editor and the system is shown in
Figure 2. The relationship between the
linkage editor and LPC is shown in Figure
3.

Object Module Program Libraries
(Partitioned
Octo Sets)

Input Object Modules

I

,--------- -1
Linkage Editor Parameters

1-___ on_d_C_o_~trol Statements

I I
I I

I L _____ ~ DDEF -
LNK, Other Cmnds __

Linkage Editor Parameters
r - - - - - l. E. Control Statements

language Processor
Control (lPC) I

I Diagnostic Messages
~.--~-----~~----~

Control Statement
Processor I

(Initiation Entry) I
I -
I
I
I

User Terminal Diagnostic Messages
(conversational mode) 14-------"-.-1----''----------'
SYSIN and SYSOUT

~

SYSOUT for
non-conversational mode

I
I
I
I
I

Output Object Module
and External Name List

: Optional PMD listing I
L _______ ~---

list Doto Set
or SYSOUT

Figure 2. Overview of linkage editor processing

Section 2:

1 I
I I
I I
I I
I I

: Output Processor I
(Continuation Entry) I

I I
I

I I
-I I

I Early-End I
I Processor I
I

(Early Termination
1

I
Entry)

I

Method of Operation 7

,----------,
I Language Processor Control (LPC)I

I
I
I
I
I

I Output Parameter List

I
I
I
I
I
I
I
I
I
I
!
I
I
I
I
I
I
I
!
I
L _

PUTDIAG I
I I n put Parameter List

I
I
I

! Output Parameter Li st

GETLINE ! Input Parameter List

I
I
I
I I nput Parameter List

I Output Parameter List

I
I Input Parameter List

LPCMAIN I Output Parameter List
I

! Input Parameter List

I
I Output Parameter List
I

I _________ ...1

I

I

1

I

I

I

,-------------I Linkage Editor
--,

!
I
I

I
Control

Statement
Processing

Initiation Entry !
I
I
I
I
I

Cont i nuat i on Entry I

I Output

I Praces>ing

I
I
I
I

Early - End Entry I

I
I
I
I
I
I
I
I
I
I
!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I Early - End
I Processing

I L _______________ ~

Figure 3. Relationship between linkage editor and LPC

THE THREE PHASES OF THE LINKAGE EDITOR

The linkage editor is divided into the
three main phases or routines:

• control Statement Processor (entry
point CEYIAD

• output Processor (entry point CEYOP1)

• Early-End Processor (entry point CEYEE1)

When a user requests the services of the
linkage editor, LPC calls the linkage edi­
tor at the initiation (Control Statement
Processor) entry point. Control is
returned to LPC after all control statement
proceSSing has been performed (an END
statement has been received). LPC then
calls the linkage editor at the continua­
tion (Output Processor) entry point to
deliver the final module, the external name
list, and, if the user has requested it, a
PMD listing. After this, control is
returned to LPC and linkage processing is
complete. If it is necessary to premature­
ly terminate processing, LPC enters the

8

linkage editor at its early-end (Early-End
Processor) entry point for necessary
clean-up.

CONTROL STATEMENT PROCESSING

This phase of linkage editor processing
is illustrated in Figure 4 and is sum­
marized below.

During initialization, work areas are
obtained, and switches and tables are
initialized. Control statements are then
requested from LPC, one at a time. Each
statement is checked for accuracy and
correct sequence in relation to other con­
trol statements. (See the Placement Rules
footnote at the bottom of Table 1 in Sec­
tion 1.) When a COMBINE, RENAME, or TRAITS
statement is received, the statement is
stacked until the next f orm-1 INCLUDE
statement is received, at which time the
INCLUDE statement processing routine calls
individual subroutines to process each
stacked COMBINE, RENAME, or TRAITS on a
first-in, first-out basis. When an INCLUDE

[
ContrOl]

Statement __ _
Received
from LPC

I

Initialize
Tables and
Work Areas

Read
Control

Statement

COMBINE
RENAME

TRAITS
Analyze
Statement

L_~
INCLUDE

Process
Stacked

Stafements

END

Perform Fi nol
Housekeeping
Operations

-l
Stack

Statement
for Later

Processing

Process
INCLUDE
Statement

Figure 4. control statement processing
flow

or END control statement is received, the
appropriate routine to process that state­
ment is called immediately.

Each time processing of a statement is
completed, control returns to the main con­
trol statement processing routine, INANAL,
which then requests the next statement from
LPC.

The ERROR processor routine is used by
INANAL and other control statement proces­
sor routines to set up diagnostic messages
to be sent to the user via LPC.

Control statement processing is ter­
minated when, after processing an END
statement, control is returned to LPC.

OUTPUT PROCESSING

After all statements have been pro­
cessed, LPC calls the linkage editor at the
entry point for output processing, which
produces the final module, including PMD,
text, and ISD (if required). The output
processing function also prepares the
external name list and PMD listing; on com­
pletion, it passes to LPC the location of
the output module and the external name
list.

EARLY-END PROCESSING

Early-end processing releases storage
areas and closes any open libraries. It is
entered if the linkage editor is to be ter­
minated before normal completion.

THE LANGUAGE PROCESSOR CONTROL INTERFACE

LPC serves as the system link between
the user and the linkage editor; LPC action
is not evident to the user. LPC gathers
the input parameters for the linkage edi­
tor, loads the linkage editor, and passes
on the parameters. The linkage editor
calls upon LPC to issue diagnostic
messages.

LPC consists of three routines:

1. LPCMAIN collects input parameters
and stores the object module in a pro­
gram library.

2. GETLINE -- receives the linkage editor
control statement source lines, one at
a time, from the user and creates a
source data set (or takes the source
lines one at a time from a pre-stored
data set), and passes them on to the
linkage editor upon request. When
necessary, GETLINE issues diagnostic
messages stacked by PUTDIAG and
prompts for corrections before getting
the next source line.

3. PUTDIAG -- collects and stacks diag­
nostic messages from the linkage
editor.

Detailed descriptions of these routines
can be found in Command System Program
Logic Manual, GY28-2013.

Section 2: Method of Operation 9

SECTION 3: PROGRAM ORGANIZATION

This section is divided into three
parts, corresponding to the three main rou­
tines of the linkage editor:

• Control Statement Processor (entry
point CEYIAl)

• Output Processor (entry pOint CEYOP1)

o Early-End Processor (entry point
CEYEEl)

Each part contains a fUnction summary,
an overview figure, a hierarchical table,
and individual routine descriptions. The
routine descriptions for the Control State­
ment Processor are arranged alphabetically;
the routine descriptions for the output
Processor are arranged alphabetically
within an overall Output Processor routine
description. There is only one Early-End
routine.

Flowcharts for the routines appear at
the end of this section.

Entry point names provided in the
figures, hierarchical tables, routine
descriptions, and flowcharts enable quick
reference, through use of the cross­
reference listing, to any desired section
of code in the object program listing of
the linkage editor (object module CEYTS).

CONTROL STATEMENT PROCESSOR

Function Summary

The routines that constitute the Control
Statement Processor do the following:

10

• Get a line of input from LPC (language
processor control).

• Scan it for validity. Call LPC to tell
the user if the line is invalid.

• Stack any COMBINE, RENAME, or TRAITS
statements until the next form-1
INCLUDE; process them when the form-1
INCLUDE is received.

• Process any form-2 or -3 INCLUDE
statements.

• Link specified input modules to the
output.

• Call the dynamic loader via the
LIBESRCH macro instruction to search

for modules to satisfy unresolved
external references.

• perform final linkage and cleaning up
when an END statement is received.

On completion of END statement proces­
sing. control statement processing is con­
cluded, and control is returned to LPC,
which then invokes the linkage editor at
its second or continuation entry point for
output processing.

Routines shown in blocks in Figure 5
correspond to entries in Table 2. The
level number in the blocks (upper right­
hand corner) corresponds to the level the
routine occupies in Table 2. Routines in
LPC and the dynamic loader and macro
instructions used to call other system rou­
tines are shown under called routines in
Table 2. but are not otherwise described.

Descriptions of the individual routines
follow Table 2 and are arranged alphabetic­
ally by routine name.

APENCX, APENEX. APENIN Append RLD
(CEYCX, CEYEX, CEYIN)

This routine appends the RLD for complex
definitions and references of a CSD in the
input PMD to the output PMD. (See Chart
AM.)

Entry: Entry points CEYCX, CEYEX. CEYINi
entry parameters:

Registers:
2, 4, 5

3

12

pseudo parameters whose values are
preserved.

location of next available position in
task dictionary.

common register which contains a
pointer to the CSD heading in the task
dictionary.

Callinq Sequences: INVOKE ACEYCX; INVOKE
ACEYEXi INVOKE ACEYIN.

Routines Called: None.

Exit: Normal; exit parameter:

Register 3
pointer to next position in output
PMD.

CIJ
(1)
n
rt
fJ·
o
::1

w

"0 a
<.Q
Ii
III
E3

o
Ii

<.Q
III
:;l
fJ·
N
III
rt
fJ·
g
....

Legend:

Level
Routi ne nvmber
or subrouti ne
(Entry point)

GJ

SCAN
(CEYSC)

Scans operation
field of statement

OPEN and
CLOSE Macros

GETMAIN
and FREEMAIN
Macres

",CMAI" {

ERROR
(CEYER)

If statement
invalid

Entry point CEYIA 1

INANAL
Control Statement
Input/Analyze
(CEYIA 1)

Bring PMD and
ISD from library

3

___ ---.-! A Iso calls
ERROR

GTCSAD
(CEYGA)

Get addresses of
tables in CSD

3

Also calls
statement received I ERROR

3
LINK

(CEYLK)
link

module

A Iso calls
ERROR and
GrCSAD

EXT REF
(CEYXR)

Externa I
reference search

TRAITS
(CEYTR)

RENAME
(CEYRN)

Process stacked
RENAME statements

r-
Process stacked
TRAITS statements

Calls SCAN
and ERROR

GETCSD
(CEYGC)

Locates CSD
within PMD

COMSUB
(CO 100)

(Subroutine of
COMBINE)

Process stocked
COMBINE
statements

4

4

Also calls
SCAN,
GTCSAD,
and ERROR

DELNAME
(CEYDN)

(Subroutine of
RENAME)
De letes names

4

Calls SCAN
and ERROR

4 4
APENDF UPISD

(Subreuti ne
of LINK)
Updates ISD

f4--+---l (Subroutine
"I UNn
Append DEF tables

APENCX
(CEYCX)

Append complex
DEF RLD

4

APENIN
(CEYIN)

Append internal
REF RLD

4
APENEX
(CEYEX)

Append external
REF RLD

FREEMAIN
and CLOSE
Macros

COLLECT
(CEYCT)

(Subroutine
of END)

FIXISD
(Subroutine
of END)

CLEANUP
(CEYCl)

(Subroutine
of END)

Figure 5. Overview of the control statement processor

3

3

3

Table 2. control statement processing hierarchical table (part 1 of 4)

r---,
I Routine: Control Statement Processor -- Level: 1 I
~----------------T---------------------------------T----------------------T--------------------------------~
I Routine I Purpose I Called Routines I Calling Conditions I
~----------------+--------------------------------+----------------------+-------------------------------_1
I :HANAL - Control I Initiation entry point from LPC. I GETMAIN macro instruc-IAlways called. I
IStatement Input/IAllocates virtual storage. Readsltion. i I
IAnalyze (CEYIA1; land analyzes statement, branchesr----------------------+--------------------------------~
ICEYIA) Ito appropriate processor. IGETLINE (CFADB) ITo get next line of input. I
I I stacks RENAME, TRAITS. and I (routine of LPC) I I
I ICOMBINE statements. ~----------------------+-------------------------------_1
I I I SCAN (CEYSC) ITo scan linkage editor statement I
I I I loperation field. I
I I ~----------------------+_------------------------------_1
I I I ERROR !CEYER) I For invalid delimiter or invalid I
I I I I statement. I
I I ~---------------------+------------------------------_1
I I lINCLUDE Statement lWhen INCLUDE statement is I
I I I (CEYIC) Ireceived as input. I
I I r--------------------+--------------------------------{
I I I END Statement IWhen END statement is received I
I I I (CEYEN) I as input. I
r----------------.L-------------------------------.L----------------------.1.--------------------------------\
I Routine: Control Statement Processor -- Level: 2 I
~----------------T------------------------------T----------------------T---------------------------------i
ISCAN (CEYSC) IScans a name of 8 or fewer char-IERROR (CEYER) IIf name contains more than 8 I
I laeters until a delimiter is I (also a level 2 {characters. I
I I found. I routine} I I
~---------------+--------------------------------+----------------------+------------------------------{
IERROR (CEYER) IDelivers a diagnostic message. IPUTDIAG (CFADCl IAlways called. I
I I I (routine of LPC) I I
~----------------+--------------------------------+--------------------+--------------------------------~
IINCLUDE - State-IProcesses INCLUDE statement. ISCAN (CEYSC) IFor each name appearing in the I
Iment Processor I I (also a level 2 \INCLUDE statement operand. I
I (CEYIC) I I routine) I I
I I ~----------------------+-------------------------------1
I I IERROR (CEYh~) IFor reference to SYSLIB, non- I
I I I (also a level 2 lexistent module, no form-l I
I I I routine) IINCLUDE given, or invalid deli- I
I I I lmiter in operand. I
I I ~---------------------t--------------------------------~
I I IOPEN macro instructionlFor the library name in a form-II
(I I I INCLUDE statement. I
I I ~----------------------+--------------------------------~
I I ICLOSE macro instruc- IAfter form-l INCLUDE statement I
I J I tion I processing completed. I
I I ~---------------------+--------------------------------~
I I IBRING (CEYBR) IFor each external name appearing I
I J I lin a forrn-l INCLUDE statement, I
I I I lor for each unresolved external!
I I I I reference in the output module I
I I I I (for form-2 and -3 INCLUDE I
I I I I statements) which is not in I
I I I I EXCLUD table. I
I I ~---------~------------+--------------------------------~
I I I TRAITS Statement IFor each TRAITS statement I
I I I (CEYTR) I appearing in STACK table. i
I I ~----------------------+-------------------------------1
I I I COMBINE Statement I For each COMBINE statement. I
I I I (CEYCO) lappearing in STACK table. I
I I ~----------------------+-------------------------------1
I I IRENAME Statement IFor each RENAME statement !
I I I (CEYRN) lappearing in a STACK table. I
I I ~-----------------------+---------------------------------1
I I ILINK (CEYLK) IFor each external name appearing I
I I I lin a forrn-l INCLUDE statement; I
I I I lor for each unresolved external I
I I I I reference in the output module I
I I I I (for form-2 and '-3 INCI.UDE I
I I I I statements). which is not in I
I I I I EXCLUD table. I
I I ~----------------------+--------------------------------1
I I I GTCSAD (CEYGA) ITo get address of REF table in I
I I I I first CSD of input PMD (for I
I I I Iform-2 and -) INCLUDE statements!
I I I I only). I
I I ~----------------------+---------------------------------1
I I I EXTREF (CEYXR) I For each unresolved externa 1 i
I I I I reference in the output module I
I I I I (for form-2 and -) INCLUDE I
I I I I statements only). I L ________________ L ________________________________ ~ ____ - _________________ ~ ________________________________ j

12

Table 2. Control statement processing hierarchical table (part 2 of 4)

r---,
I Routine: Control statement Processor -- Level: 2 (cont' d) I
r---------------~--------------------------------T----------------------T-------------------------------~
I Routine I Purpose I Called Routines I Calling Conditions I
r----------------+--------------------------------+----------------------t--------------------------------;
lEND Statement IResolves references,-attaches IFREEMAIN macro IAlways called. I
I Processor ILSD if required. I instruction I I
I (CEYEN) I j-----------------------+--------------------------------~
I I IElCTREF (CEYXR) IAlways called. (Searches PMD I
I I I Ifor external references.) I
I I 1-----------------------+--------------------------------~
I I IGTCSAD (CEYGA) IAlways called. (Calculates I
I I I Ilocation of CSD tables.) I
I I t----------------------t---------------------------------;
I I IBRING (CEYBR) IIfthere are unresolved I
I I ! ! references in the output module. I
I I 1-----------------------+------------------------------;
I I I COLLECT {CEYCT} I If an input module that satis- I
I I I (subroutine of END) Ifies an unresolved reference is I
I I I lin SYSLIB. I
I I t----------------------t-_·----------------------------;
I I I LINK (CEYLK) ITo Link modules (not in SYSLIB) I
I I I Ithat resolve references in the I
I I I I out put module and do not satisfy I
I I I I nam'es in the EXCLUD table. I
I I ~----------------------t--------------------------------~
I I I ERROR (CEYER) I If there are unresolved refer- I
! I ! (also a level 2 I ences in the output module. I
I I I routine) I I
t I 1-----------------------+--------------------------------;
I I ICLEANUP (CEYCL) IAlways called. I
t I I (subroutine of END) I I
I I 1------------------------+---------------------------------~
I I !FIXISD (subroutine of IIf ISD is required. I
I I I END) I I
I I j------------------------t---------------------------------;
I I ICLOSE macro inst_ruc- I If t;here is an open library. I
I I Ition I I
t----------------L--------------------------------L----------------------L--------------------------------i
! Routine: Control Statement Processor -- Level: :1 I
r----------------T-------------------------------T-----------------------T------------------------------;
IBRING (CEYBRl IGets PMD, text, and ISD from IFIND macro instructionlIf l.ibrary name given. I
I 11 ibrary. j------.. ----------------+---._----------------------------;
I I IOPEN macro instructionl If library is not open. I
I I j-----------------------+------------------------------~
I I I CLOSE macro instruc- I If open library is not library I
I I ltion Inam,,· given. I
I I I------.-----------------+-------------------------------~
I I lLIBE SEARCH (CZDC3 in IIf library name is not given. I
I I I dynamic loader) I I
I I t----------------------+--------------------------------;
I I I GET macro instruction I Alwa ys called. I
I I t----------------------+---- ---------------------------;
I I IFREEMALN macro ITo free old virtual storage if I
I I I instruction I the input module exceeds the I
I I I I SiZE- allotted. I
I I t---------------------t-------------------------------~
I I IGETMAIN macro instruc-ITo get virtual storage for the I
I I I tion I input module if its size is I
I I I I larger than that allotted. I
I I I-----------------------t--------------------------------;
I I IERROR (CEYER) IIf the input or output module I
I I I (a level 2 routine) I size exceeds available virtual I
I I I I storage. I
~----------------t--------------------------------+----------------------+-------------------------------~
ITRAITS Statement I Processes TRAITS statement. ISCAN (CEYSE) IAlways called. I
I Processor I I (a level 2 routine) I I
I (CEYTR) I ~----------------------+--------------------------------1
I I IERROR (CEYER) IIf a name does not exist, or is I
I I I (a level 2 routine) I invalid, or if an invalid deli- I
I I I Imiter is used. I
t----------------t--------------------------------t----------------------+---------------------------------i
ICOMBINE State- IProcesses COMBINE statement. ISCAN (CEYSC) IAlways called. I
I ment Processor I I (a level 2 routine) I I
I (CEYCO) I ~----------------------+-------------------------------~
I I I GETCSD (CEl'GC) I Always called unless statement I
I I I I errors are discovered. I
I I t----------------------t-----·--------------------------~
I I IGTCSAD (CEYGA) (also alAlways called unless statement I
I I Ilevel 3 routine) I errors are discovered. I l ________________ ~ ________________________________ L ______________________ ~ ________________________________ J

section 3: Program Organization 13

Table 2. control statement processing hierarchical table (part 3 of 4)

r--~--------l
I Routine: Control Statement Processor -- Level: 3 (cont'd) I
~----------------T--------------------------------T----------------------T-------------------------------~
I Routine I Purpose I Called Routines I Calling Conditions I
t----------------+--------------------------------+----------------------+--------------------------------~
I I ICOMSUB (C0100) IAlways called un1ess statement I
I I I (a COMBINE subroutinellerrors are discovered. I
I I t----------------------+--------------------------------~
I I IERROR (CEYER) ICalled if a nonexistent name I
I I ! (a level 2 routine) lused in operand, if CSECTs to bel
I I I I combined have unlike attributes, I
I I I lor if an invalid delimiter is I
I I I I used. I
~----------------+--------------------------------+----------------------+-------------------------------~
IRENAME Statement I Processes RENAME statement. ISCAN (CEYSE) IAlways cal1ed. I
I Processor I I (a level 2 routine) I I
I (CEYRN) I ~----------------------+_------------------------------~
I I IERROR (CEYER) IIf a duplicate or nonexistent I
I I I<a 1evel 2 routine) Iname is supplied or if invalid I
I I I Idelimiter is used. I
I (t----------------------+--------------------------------~
I I I DELNAME <subroutine of I TO delete entry point names. I
I I I RENAME) I I
~----------------t--------------------------------+----------------------+--------------------------------1
ILINK <CEYLK) ILinks input module to output IERROR (CEYER) Icalled if there are duplicate I
I \ module, deletes duplicate CSECTSI (a level 2 routine] lentry names, or if attribute I
I land those marked for deletion. I Iconflicts existed during CSECT t
I I Updates lSD, CSDs, and HASHTB. I I rejection. I
I I t----------------------+--------------------------------1
I' I UPISD (subroutine of I If ISD is required. I
I I ,LINK) I I
I I t----------------------+--------------------------------~
I I IAPENDF (subroutine of Icalled to append Definition I
I I I LINK) ITable to output CSD if at least I
I I I lone CSECT from the input module I
I I I lis linked. I
I I t----------------------+--------------------------------~
I I IAPENCX (CEYCX) ICalled to append complex RLD to I
I I I loutput CSD if at least one CSECTl
I I I I from the input module is linked. I
(I t----------------------t-------------------------------~
I, IAPENEX (CEYEX) (Called to append external RLD tal
(I I I out put CSD if at least one CSECT I
I I I I f rom the input module is linked. I
I I t----------------------+--------------------------------~
I I IAPENIN <CEYIN) Icalled to append internal RLD to!
I I I loutput CSD if at least one CSECTI
I I I I from the input module is linked. I
I I t----------------------+-------------------------------~
I I I GTCSAD (CEYGA) I Called to get CSD table address-I
I I I (also a level 3 I es if at least one CSECT from I
I I I routine) I the input module is linked. I
t----------------t--------------------------------t----------------------+----------------------.----------~
IGTCSAD (CEYGA) ICalculates locations of the six INane I I
I Itables in a CSD: I I I
I I Definition Table I I I
I I Reference Table I I I
I I Complex DEF RLD I I I
I I External REF RLD I I I
I I Internal REF RLD, , ,
I I Virtual Memory Page Table I I I
t----------------+--------------------------------t----------------------+-------------------------------~
IEXTREF (CEYXR) ,Searches output module for next INone I I
I I unresolved reference. I I I
t----------------+--------------------------------t----------------------+-------------------------------~
ICOLLECT (CEYCT) IUpdate blank common CSECT size. INone I I
I (subroutine of I I I I
I END) I I I I
~----------------+--------------------------------+----------------------+-------------------------------~
ICLEANUP (CEYCL) IDeletes entries marked for IGTCSAD (CEYGA) IAlways called to get location ofl
I (subroutine of I deletion in the output module, I (also a level 3 I tables in CSD. I
lEND) Imoves output module to final I routine) I I
I !output area, updates sizes of ~----------------------+--------------------------------~
I I common CSECTs. I APENCX (CEYCX) I Always called to append t.he com-I
I I I Iplex RLD to the output area. I
I I t----------------------t--------------------------------~
I I IAPENEX (CEYEXl IAlways called to append the I
I I I lexternal reference RLD to the !
I I I loutput area and delete marked I
I I I IRLDs. I l ________________ i-_______________________________ i ______________________ ~ ________________________________ J

14

Table 2. Control statement processing hierarchical table (part 4 of 4)

r---,
I Routine: Control Statement Processor -- Level: 3 Cont'd} I
~----------------T--------------------------------T-----------------------T----------------------------------~
I Routine I Purpose I Called Routines I Calling Conditions I
~----------------+--------------------------------+----------------------+--------------------------------~
I I I APENIN (CEYIN) I Always called to delete marked /
/ I I I RLDs and append the interna 1 I
I I I I r"ference RLD to the output (
I I I larea. I
t----------------+--------------------------------+-----------------------+--------------------------------~
IFIXISD ICompletes table at beginning of INone I I
I (subroutine of (composite ISD and appends input I I I
I END> (ISDs. I I I
~----------------.L---------------------------------.L--_____________________ .L ________________________________ ~
1 Routine: Control Statement Processor -- Level: 4 I
~----------------r_-------------------------------T-----------------------T-------------------------------~
!GETCSD (CEYGC) ILocates a CSD within the PMD. (Non" I I

~----------------+--------------------------------+----------------------+--------------------------------~
ICOMSUB (COlaO) /Combines two CSDs and text into INane! I
I (a subroutine of I a working area and updates com- I ! I
I COMBINE) I bined CSD. I I I
~----------------+--------------------------------+-----------------------+-------------------------------~
jDELNAME ID"letes "ntry point nam"s. I Non" , I
I (subroutine of , I I I
I RENAME) I I I I
~----------------+--------------------------------+----------------------+--------------------------------~
IUPISD IUpdat"s the ISD as "ach CSECT is I None I I
I (a subroutin" of I linked to the output modul,,_ I I I
I LINK) I I I I
~----------------+--------------------------------+----------------------+--------------------------------~
I APENDF ,Appends the DEF table of a CSD ,Non" I I
I (a subroutine of I to th" output module. I I I
1 LINK) I I 1 I
1-----------------+--------------------------------+----------------------+----------------------------------~
IAPENCX (CEYCX) IAppends the RLD for complex DEFsINon" I I
I I of a CSD to the output module. I I I
~----------------+--------------------------------+-----------------------+---------------------------------~
IAPENEX (CEYEX) IAppends the RLD for external INane I I
, I REFs of a CSD to the output I I ,
'Imodule. I I ,
1-----------------+--------------------------------+-----------------------+--------------------------------~
IAPENIN (CEYIN) IAppends the RLD for internal I Non" , I
, I REFs of a CSD to the output , , I
I ,module. I I I l ________________ ~ ________________________________ ~ ______________________ ~ _________________ ~ _______________ J

Operation:

APENCX: RLDs for complex definitions that
have previously been marked for deletion
are deleted. Additions or deletions to any
of the previous control sections that have
already been moved to the output PMD change
the relative locations of complex defini­
tions for the CSD being processed, or the
number of entry pages in the RLD for com­
plex definitions.

If such additions or deletions have been
made, the RLD entry pages and the byte dis-­
placement in the modifier entry are
adjusted in a work area, and the RLD for
complex definitions is moved to the output
module.

APENEX: Modifiers for external RLD
references are checked. Those that have
previously been marked for deletion are
deleted; those that have not been marked
for deletion are moved to the output
module.

APENIN: Modifiers for internal RLD
references are checked. Those that have
previously been marked for deletion are
deleted; those that have not been marked
for deletion are moved to the output
module.

APENDF -- Append Definition Table Subrou­
tine (Chart AL): APENDF, an open subrou­
tine used exclusively by LINK, is entered
by a direct branch. It appends the CSD's
definition table to the output module and
updates the external name list (NAMES).

This subroutine is entered with a point­
er to the next available position in the
output module, a pointer to the CSD's
definition table, and a pointer to the CSD
heading in the output module. All defini­
tions previously marked for deletion are
deleted_ All RLDs for complex definitions
whose byte value must be decremented
because of the deletion of one or more
definitions are adjusted accordingly. As
each definiti.on is moved from the PMD to
the output module, the definition name is
added to the external name list (NAMES).

section 3: Program Organization 15

control is returned to LINK with a pointer
to the next available position in the out­
put module.

BRING -- Bring PMD, Text, and ISD from
Library (CEYBR)

This routine fetches the PMD and text
from a library, places them in the desig­
nated areas of storage, and, if required,
brings the ISD to the next position in the
ISD chain. <See Chart AN.)

Entry: Entry point CEYBR; entry
parameters:

Registers:
0, 1

2, 3

name to be found, left-justified,
blank-filled.

ddname for library to be searched,
left-justified, blank-filled; zero if
entire program library list is to be
searched.

4, 5, 6, 7
pseudo parameters, whose values are
preserved.

calling Seguence: INVOKE ACEYBR.

Routines Called: ERROR, OPEN (VAM), FIND
(VAM), CLOSE (VAM). GET (VPAM). LIBE SEARCH
(part of Dynamic Loader).

Exit:

To Calling Routine: Normal for a "not
found" exit, or with register 14 incre­
mented by 4 for a "found" exit.

To LPC: The "can't continue" return is
made to LPC in the event of an abnormal end
return from GETLINE or in the event of
storage overflow of a PMO, text, or ISO.
The return code is set to 4.

operation: This routine is entered with
the name to be found, the ddname for the
library to be searched, or a zero code if
the entire program library list is to be
searched.

If the ddname is given on entry, the
FIND macro instruction is used to locate
the module in the named library that satis­
fies the symbol. Control is returned to
the calling routine via its "not found"
exit if the named module cannot be found.

When a ddname is not given, the Library
Search (LIBE SEARCH) subroutine is called
through restricted linkage to search the
entire program library list. LIBE SEARCH
searches the job libraries, user library,
and the system library to get the ddname of

16

the library containing the module that will
define a given symbol. If LIBE SEARCH does
not find the module, it returns control to
BRING via its "not found" exit, and control
is returned to the calling module. If LIBE
SEARCH finds the module, and it resides in
SYSLIB, the SYSSW switch is set to ·yes."
The ddnarne for the library is placed in the
DCB, and the DCB is opened.

If the module is in SYSLIB, the PMD is
obtained using GET so that the size of any
blank common CSECTs can be found. Text and
ISD for modules in SYSLIB are ignored, and
the module is not linked to the output
module.

When the FIND macro instruction returns
control to BRING via its "found" exit,
BRING has a pointer which gives the length
in bytes of the PMD, text, and ISO (if
present).

Upon return from FIND, the size of the
PMD is checked. If the PMD is too large
for the current GETMAIN area, the FREEMAIN
macro instruction releases areas occupied
by the old PMD and text, and the GETMAIN
macro instruction obtains space for the
input PMD. If GETMAIN returns control to
BRING via the error exit, ERROR is invoked
to issue message 12, the FREEMAIN macro
instruction releases all storage areas, and
BRING returns control to LPC via the ·can't
continue" exit.

If the PMD is not too large or if GET­
MAIN returns via its normal exit, the esti­
mated size of the output module is checked.
If it is not too large, the GET macro
instruction places the PMD in the module
area. If the input text is too large,
FREEMAIN releases the old text area, and
GETMAIN obtains storage for the input text.
If GETMAIN returns control to BRING via the
error exit, ERROR is invoked to issue mes­
sage 13, FREEMAIN releases all storage, and
BRING returns control to LPC via the "can't
continue" exit.

If the combined area of the input text
and the old text is not too large for the
total storage area, GET places the next
pages of text in the work area. If the
combined area of the input text and the old
text is too large for the total storage
area, ERROR is invoked to issue message 13,
FREEMAIN releases all storage areas, and
BRING returns control to LPC via the "can't
contil-me" exit.

After GET places all text pages in the
work area, BRING returns control to the
caller via the "found" exit if the ISD is
not required; if the ISD is required and
there is no ISD input, control is returned
via the "found" exit.

,
A check is made to determine if the new

ISD combined with the previous ISD is too
large for the storage area: if the combined
ISDs are too large, ERROR is invoked to
issue diagnostic message 12, FREEMAIN
releases all storage areas, and BRING
returns control to LPC via the ·can't con­
tinue" exit. When the combined ISDs are
not too large, GET chains the new ISD to
previous ISDs.

If the estimated size of the ISD to be
generated is too large for the storage
area, ERROR issues message 13, FREEMAIN
releases all storage areas, and BRING
returns control to LPC via the ·can't con­
tinue" exit. If the estimated size with
the old PMD fits within the storage area,
BRING returns control to the caller via the
"found" exit. Any library opened in the
BRING routine is closed before control is
returned to the caller.

CLEANUP -- Cleanup Final Module Subroutine
(Chart AH): The Cleanup Final Module
(CLEANUP) subroutine deletes marked entries
for entry pOint references and modifiers
and moves the output PMD to the final out­
put area. CLEANUP locates the first CSD in
the output module. If no CSDs remain to be
processed in the output module, control is
returned to END. When a CSD is found,
CLEANUP calls GTCSAD.

GTCSAD is entered at CEYGA via
restricted linkage, with a pOinter to the
CSD heading. GTCSAD calculates the loca­
tions of the six tables for the CSD.
GTCSAD returns control to CLEANUP with the
address of the TABLE for CSD addresses.
CLEANUP moves the CSD heading and defini­
tions to the next position in the output
area, clears the definition search and CSD
links, moves the reference table to the
next pOSition in the work area, and clears
the reference CSD links.

CLEANUP calls APENCX, via restricted
linkage, to append the CSD's RLD for com­
plex definitions to the final output area
and to update the byte address modifiers.
APENCX is entered with a pointer to the
next available position in the PMD and a
pointer to the CSD heading in the output
module.

CLEANUP calls APENEX via restricted
linkage. APENEX deletes RLDs for text
(external reference) that have been marked
and appends the CSD's RLD for text (extern<­
al reference) to the output area.

CLEANUP calls the APENIN subroutine via
restricted linkage. APENIN deletes RLDs
for text (internal reference) that have
been marked and appends the CSD's RLD for
text (internal reference) to the output
area. If there is text for the control

section, the page table is moved to the
output area; if the control section is
blank COMMON, its size is updated in the
CSD.

CLEANUP then checks to determine whether
there are other CSDs in the module. When
other CSDs are present, they are processed
in a manner identical to the first CSD.
After all CSDs are processed, control is
returned to END.

COLLECT -- collect Common Requirements Sub­
routine (Chart AI): COLLECT is entered by
a direct branch from END when an external
reference is resolved by a module in the
system library. It steps through each CSD
of the module; when it finds a blank common
section, its size is checked, and CSIZE is
updated if required. CSIZE thus holds the
largest blank common size required by the
output module. Exit is back to END.

COMBINE -- COMBINE Statement Processor
(CEYCO>

This routine processes the COMBINE
statement. (See Chart AA, Part 5.)

Entry: Entry point CEYCOi entry
paramet.ers:

Registers:
8

9

a common register pointing to the
first character pOSition of the state­
ment operand.

a common register pointing to the
input PMD.

calling Sequence: Direct branch to loca­
tion CEYCO from the INCLUDE routine.

Routines Called: GETSCD, SCAN, ERROR,
GTCSAD.

Exit: Direct branch back to location ICRET
in the INCLUDE routine.

Operation: This routine is entered with a
pointer to the first character position of
the operand and a pointer to the input
module's PMD. The COMBINE statement is
checked for an invalid delimiter and to
determine if an operand exists. A call is
made to ERROR to issue diagnostic message
11 if an invalid delimiter is found, or
message 6 if the statement contains a name
not present in the module. ERROR is called
to issue diagnostic message 8 if the con­
trol sections have different attributes.
SCAN is entered at CEYSC with a pointer to
the first byte of the statement's first
operand. SCAN ensures that the operand is
correct (contains fewer than nine charac­
ters) and returns control. GETSCD is

Section 3: Program Organization 17

entered at CEYGC via restricted linkage,
with a pointer to the PMD that contains the
CSD and the name, located in TEMP, of the
control section to be combined. Each con­
trol section name in the PMD is checked to
see if it matches the name in TEMP. When a
matching name is found, exit is taken with
a pointer to the CSD heading. The affected
CSD is then marked for combining, and
GTCSAD is called.

GTCSAD is entered at CEYGA, via
restricted linkage, with a pOinter to the
CSD heading. GTCSAD calculates the loca­
tions of the six CSD tables. Locations for
these tables are stored in a 6-fullword
area, TABLE (for CSD addresses). If an ISD
is required, the control section name and
its text displacement is placed in the
Rename/Combine Table (RCTBL).

Note: All control sections to be combined
cause the name and text displacement to be
placed in the RCTBL, which contains entries
that are to be placed in the ISD when the
control section is linked to the output
module. RCTBL is used by UPISD.

Processing for a multiple-entry state­
ment is indicated by a comma; the following
processing is required. GTCSAD is entered
at CEYGA, along with a pointer to the first
byte of the CSD heading of the first CSECT
to be combined. GTCSAD calculates the
locations for the six tables associated
with this CSD. The location of each table
is stored in TABLE. A call is made to SCAN
to check the next control section name.
After SCAN returns control, GTCSAD is again
called to compute the location of the
tables associated with the next control
section to be combined. The control sec­
tion name is marked for deletion. If an
ISD is required, the control section name
and its associated text displacement is
placed in RCTBL; otherwise, such an entry
is unnecessary. The COMSUB subroutine
(described below) is entered by a direct
branch to combine the two control sections
and their applicable text. COMSUB also
adjusts the tables associated with these
two control sections. Identical processing
is provided for each remaining control sec­
tion name in the operand until a blank
delimiter is encountered.

Termination of processing is denoted by
a blank delimiter, in which case the point­
ers for the work areas are updated to indi­
cate the next available position, and the
pointers in the RCTBL are also updated, if
the ISD is required. Control is then
returned to location ICRET in the INCLUDE
statement processor.

COMEUB -- combine Control Section Subrou­
tine (Chart AD): COMSUB, an open subrou­
tine, is used exclusively by COMBINE. It

18

performs the mechanics of combining two
CSDs and their associated text and provides
for the updating of the tables within the
combined CSD.

This subroutine uses a work area for
combining the CSDs, which is referred to in
the description below and in the flowchart
as work area A. It also uses a second work
area for combining text; this is referred
to as work area B.

Upon entry. COMEUB merges in work area A
the CSD headings for each control section
and updates the entries in the headings.
Associated text for each control section is
relocated to work area B, where the text
for the first control section is placed
before that for the second control section.
Relocation values are applied to relocat­
able definitions and to relocat:able and
complex definitions displacements for R­
values located in the second control sec­
tion CSD. The definition and reference
tables for both control sections are com­
bined in work area A. Also, for the second
control section, relocation values are app­
lied to entries in the relocation dic­
tionary (RLD) for complex definitions, the
RLD for text external references, and the
RLD for text internal references. The RLD
entries, with relocation values applied,
are combined with their counterpart entries
in the RLDs for the first control section;
combined entries are moved to work area A.
The virtual memory page tables for both
control sections are also combined and
placed in a text work area. COMSUB then
calculates and stores the length of the
reSUltant CSD into the CSD heading.

DELNAME -- Delete Entry Name Subroutine
(Chart AA, Part 7): DELNAME, an open sub­
routine used solely by RENAME, is entered
by a direct branch.

This subroutine is entered with a point­
er to the entry name to be deleted and a
pointer to the associated CSD heading. The
entry name is located in the definition
table and marked for deletion. The RLD for
complex definitions is found, and a search
is made for modifiers referencing the
deleted definition entry. All modifiers
referencing a deleted definition are marked
for deletion, and control is returned to
tbe RENAME routine.

END -- END Statement Processor (CEYEN)

This routine processes the END state­
ment. (See Chart AA, Part 9.)

Entry: Entry point CEYEN: entry
parameters:

Register 10
a common register pointing to the out­
put PMD.

Calling Sequence: Direct branch to loca­
tion CEYEN from the INANAL module.

Routines Called: EXTREF, BRING, ERROR,
LINK and GTCSAD.

Exit: Normal RETURN to LPC from the
initiation entry. The exit parameters are:

Register 15 contains an exit code, as
follows:

Exit code 0
normal return. It is assumed that LPC
will respond with a call to either the
linkage editor'S continuation entry
pOint or its early-end entry point.

Exit code 4
linkage editor cannot continue. The
assumption is that LPC will respond
with a call to either the linkage edi­
tor's initiation entry pOint, or its
early-end entry point.

Operation: This routine is entered by
INANAL with a pointer to the output module.
The fo~l switch (FRM1SW) is checked for a
state of one or zero. Control is returned
to the LPC when the form-l switch is zero,
since no output module exists. When a
form-I INCLUDE statement has been processed
(form-l switch is one), EXTREF is invoked
to search the output module for unresolved
references.

EXTREF is entered at CEYXR via
restricted linkage, with the following
information: a pointer to the first
reference to be checked, a count of the
number of references remaining in the CSD's
reference table, a pointer to the CSD head-­
ing, and a pointer to the output PMD. When
an unresolved external reference is found,
control is returned to END with a pointer
to the unresolved reference, a count of the
remaining references in the CSD, and a
pointer to the CSD heading.

The CLEANUP subroutine is called when
EXTREF returns control via its "not found"
exit. CLEANUP is entered via direct branch
to delete entries so marked by other pro­
cessors, to update a blank common section
size, and to move the output PMD to the
final output area.

If the linkage editor's ISD has been
generated, END then calls the Fix ISD
(FIXISD) subroutine. FIXISD is entered by
a direct branch and is used to place in the
output ISD the length of the lSD, the name
of the output module, and the displacement
from each module heading to the correspond-

ing input ISD. Also, FIXISD strings the
input ISDs together, and returns control to
END. After FIXISD returns control, or when
the ISD is not required, the NONA ME table
is checked for entries, and ERROR is called
to issue djagnostic message 7.

The NONAME table consists of 8-byte
entries, representing the alphameric names
of external references, which cannot be
resolved from the program library list.
These names are sent to the user via mes­
sage 7.

The SLBN.AM table is also checked for
name entries (references resolvable from
SYSLIB) and, when a name entry is found,
ERROR is cailed to issue diagnostic message
19. If a name entry does not exist in
SLBNAM, or after processing by ERROR. the
diagnostiC code is set in the module head­
ing, the return code is set, and control is
returned to LPC.

During the initial part of END activi­
ties, EXTREF' searches the output module for
unresolved external references; if such
references exist during that time, a check
is made to determine if there is an RLD
modifier. If there is no modifier, the
unresolved reference is deleted, and the
RLD reference numbers are updated. In any
case, the following processing occurs.

BRING is called via restricted linkage,
with the following information: a pointer
to the name (unresolved external reference>
to be found, and the ddname set to zero,
denoting a search of the entire program
library list. BRING, a closed subroutine
entered at CEYBR, obtains the PMD, text,
and ISD (if required) for the module that
will satisfy the unresolved external
reference. BRING returns control to END
whether or not a name satisfying the
reference is found. A check is made to
determine whether the "found" reference is
present in the EXCLUD table, when BRING
returns control via the "found" exit. If
the found reference is in the EXCLUD table,
and the module in which the reference was
located is in SYSLIB, the reference is
entered in the SLBNAM table, EXTREF is
again called to search the output module
for the next unresolved external reference,
and processing identical to that for the
first reference is repeated.

When BRING returns via its "not found"
exit, or when the found reference is in the
EXCLUD table but not in a SYSLIB, the
reference is placed in the NONAME table,
and EXTREF is again called to search the
output module for the next unresolved
external refe:cence, and processing identic­
al to that for the first reference is
repeated.

Section 3: Program organization 19

When the name satisfying the unresolved
reference is not in the EXCLUD table, and
when names in the module do not satisfy any
of those in the EXCLUD table, a check is
made to determine if the module resolving
the reference is contained within SYSLIB.

If the module is not in SYSLIB, and it
is not the second attempt to link a FORTRAN
main program, LINK is entered at CEYLK via
restricted linkage with pointers to the
input PMD and the output module. LINK
joins the module that resolves the unre­
solved external reference to the linkage
editor's output module. LINK deletes dup­
licated control section names and control
sections previously marked for deletion,
ensures that there is only one COMMON con­
trol section, and updates the module's CSDs
and their associated text. LINK then
returns control to END. The reference is
checked to determine if it was resolved; if
it was resolved, EXTREF is again called to
search the output module for the next unre­
solved external reference, and processing
identical to that for the first reference
is repeated. If the reference was not
resolved, the reference is placed in the
NONAME table, and EXTREF is again called to
provide processing identical to that pro­
vided when the first reference was not
resolved.

When the module returned by BRING is
contained in SYSLIB, the Collect Common
Requirements (COLLECT) subroutine is
called. COLLECT, entered by a direct
branch, locates a blank common control sec­
tion in a SYSLIB module, and after checking
the common size of the section, updates
CSIZE.

ERROR -- Error Message Processor (CEYER)

This routine provides error messages
during linkage editor actiVity, via the
PUTDIAG routine of LPC. (See Chart AO.)

Entry: Entry point CEYERi entry
parameters:

Registers:
o

1

a parameter indicating the type of
exit. Zero signifies exit to INANAL,
and nonzero signifies return to the
caller.

error code, identifying the message to
be delivered.

Calling Sequence: INVOKE ACEYER, or direct
branch to location CEYER.

Routines: Called PUTDIAG routine of LPC.

20

To Calling Routine: If register 0 contains
0, exit is via a direct branch to location
IARET (CEYIA) in INANAL. If register 0 is
nonzero, return is made to the caller.
There are no output parameters.

To LPC: A ·can't continue" return is made
to LPC in the event of an abnormal end
return from PUTDIAG.

Operation: In nonconversational mode,
switch ERDIAG is set to denote a level-2
diagnostic code. If the mode is conversa­
tional, a switch (MSGSW) is set which noti­
fies INANAL that an altered line is
expected on the next entrance to the GET­
LINE routine of LPC.

The PUTDIAG routine of LPC is called
with type-I linkage when an error message
is to be delivered. Upon entry. ERROR
stores the user response indicator. and the
appropriate error message is formatted and
moved to the buffer area. The LPC parame­
ter is set to indicate user response, and
the PUTDIAG routine of LPC is called with
type-I linkage. PUTDIAG stacks the message
until the next time the linkage editor
calls the GETLINE routine of LPCi at that
time the message is delivered. ERROR
returns control to LPC MAIN with a "can't
continueR indication on an ABEND return
from PUTDIAG. Otherwise, it returns to the
calling routine or to INANAL.

EXTREF -- External Reference Search (CEYXR)

This routine searches the output PMD for
the next unresolved external reference.
(See Chart AP.)

Entry: Entry point CEYXR; entry
parameters:

Registers:
0, 1, 6, 7

2

3

4

5

pseudo parameters whose values are
preserved.

pointer to the first reference to be
checked.

count of the number of references
remaining in the reference table.

pointer to the CSD heading.

pseudo parameter whose value is
preserved.

calling Sequence: INVOKE ACEYXR.

Routines Called: None.

Exit: Normal for a "not found" exit. On a
"found" exit register 14 is incremented by
4. Exit parameters:

Registers:
2

3

pointer to an unresolved reference, if
any, or to the end of the PMD.

updated count of remaining references
in the CSD.

Operation: References located in the CSDs
are checked to see if they are unresolved
external references; i.e., references that
have not been satisfied by a definition.
If such a reference is found, control is
returned to the calling module via the
found exit, along with a pointer to the
unresolved reference and the count of
remaining references in the CSD. All
references in the CSD are checked in the
same way the first reference is checked. A
"not found" exit is taken when all the CSDs
in the output module have been checked for
unresolved references.

FIXISD -- Fix ISD Subroutine (Chart AI):
FIXISD is entered by a direct branch from
END when an ISD has been generated. FIXISD
completes the ISD by filling in the length
of the lSD, the name of the output module,
and displacements from each module heading
to the corresponding input ISD. It then
attaches the string of input ISDS, thus
forming a composite ISD. Exit is back to
END.

GETCSD
(CEYGC)

Locate Control Section Dictionar~

This routine locates a CSD in a PMD.
(See Chart AP.)

Entry: Entry point CEYCG; entry parameters:

Registers:
0-2, 4, 5, 6, 7

9

pseudo parameters, whose values are
preserved.

cornmon register which contains a
pointer to the PMD.

calling sequence: INVOKE ACEYGC.

Routines Called: None.

Exit: Normal for the "not found" exit. On
a "found" exit, register 14 is incremented
by 4. Exit parameters:

Register 3
pOinter to the CSD heading on a
"found" exit, or a pOinter to the end
of the PMD on a ~not found" exit.

Operation: GETCSD is entered with the name
of the control section in the PMD that is
to be located and a pointer to the PMD.
The control section name is located in a
temporary storage (TEMP) of eight charac­
ters in the PSECT. Each control section
name in the PMD is checked to see if it
matches the name in TEMP. If a matching
name is found, the normal exit is taken;
otherwise, the "not found" error exit is
taken.

GET LINE Routine (CFADB)

This routine is part of language proces­
sor control and is described in Command
System Program Logic Manual, GY28-2013.

GTCSAD -- Get CSD Table Addresses (CEYGA)

This routine calculates the locations of
the six tables for a given CSD. (See Chart
AQ.)

Entry: Entry point CEYGA; entry
parameters:

Registers:
3

a point:er to the first byte of the CSD
heading.

0-2, 1.1, 5, 6, 7
pseudo parameters, whose value is
preserved.

Calling Sequence: INVOKE ACEYGA.

Routines Called: None.

Exit: Normal; exit parameters:

The following information is placed
location TABLE:

Word 1 Location of Definition Table
Word 2 Location of Reference Table
Word 3 Location of RLD for Complex

Definitions
Word 4 Location of RLD for External

References
Word 5 Location of RLD for Internal

References
Word 6 Location of Virtual Memory Page

Table

in

Operation: This routine is entered with a
pointer to a CSD heading in a PMD and cal­
culates the location of the six tables for
that CSD; that is, the Definition and
Reference Tables, the RLDs for Complex
Definitions, External References, and
Internal References, and the Virtual Memory
Page Table. This information is stored in
a temporary save area of six full words
called TABLE, in a PSECT.

Section 3: Program organization 21

INANAL -- Control statement Input/Analyze
Processor (CEYIAi)

This routine performs initialization,
receives linkage editor statements from
LPC, and transfers control to the routine
that processes the particular statement.
(See Chart AA, Part 1.)

Entry: Entry pOint CEYIA1; entry
parameters :

Register 1
address of a parameter list.

The parameter list pointed to by regist­
er 1 consists of a series of address con­
stants aligned on word boundaries as
follows:

Word 1 Address of a field containing the
output module name.

Word 2 Address of a i-byte field that con­
tains 00000000 if batch mode app­
lies; 00000001 if conversational.

Word 3 Address of a 3-byte option table
with the following significance:

Byte 1 - Produce ISD
Byte 2 - Produce PMD Listing

Each of the above bytes contains
the EBCDIC character Y if the
option is desired; N, if it is not.
The presence of any other character
causes the linkage editor to take
the built-in default action for the
specified option.

Byte 3 - Produce List Data Set

The above byte contains Y if the
selected PMD listing is to be
stored in a list data set, and N if
it is to go to SYSOUT.

Word 4 Address of the data control block
(DCB) for the PMD list data set.
Unless the data set is to be writ­
ten on SYSOUT (byte 3 above con­
tains N), the linkage editor opens,
uses, and closes this data set.

Routines Called: CZCGA (via GETMAIN
macro), GETLINE (in LPC), SCAN, ERROR,
INCLUDE, and END.

Exits:

Normal Returns to LPC from the END rou-
tine with a return code of O.

Abnormal -- Returns to LPC with a return
code of 4 if the GETLINE routine returns an
abnormal end indication.

22

Operation: This routine is entered with a
parameter list containing address pOinters
to:

• The name of the list data set that will
ultimately be the name of the output
module.

• Data stating mode of linkage editor
operation, conversational, or
nonconversational.

• Data indicating whether to produce the
Internal Symbol Dictionary and PMD
listing, and whether the PMD listing,
if requested, is to go into a list data
set or on SYSOUT.

• The address of the data control block
(DCB) for the list data set. (Ignored
if requested PMD listing goes to
SYSOUT.)

program switches are set acoording to
these input parameters.

The following major work areas and
tables are initialized: Common Internal
Storage Areas, Rename/Combine Table
(RCTBL), lSD, and Exclusion Table (EXCLUD).
The name assigned to the output module is
placed in the NAMES table. The GETMAIN
macro instruction is used to obtain storage
for the input and output PMD, text, and
ISO, as well as for work areas WORKC1,
WORKC2, and WORKT.

After initialization the GETLINE macro
instruction is used to read a control
statement from LPC. The return code is
analyzed to determine if there is an
abnormal end, batch end of data set, or
altered line return. Processing is ter­
minated if GETLINE returns a code of 12
(abnormal end), and the linkage editor
returns control to LPCMAIN with the return
code set to 4 (can't continue). If GETLINE
returns a code of 8 (batch end of data
set), END is entered. If the user makes a
correction in his statements (GETLINE
return code = 4), the corrected set of
statements is processed again; if state­
ments already completely processed are
changed by the user, or if an error occurs
in an INCLUDE statement which links more
than one module, processing starts over
from the beginning. GETLINE is again used
to get the line following the first state­
ment of the statement group which is in
error; i.e., the previous INCLUDE state­
ment. If no corrections are made by the
user to incorrect statements, the output
module is marked with a diagnostic code.

Extraneous blank characters are stripped
from the control statement, and after a
check that the statement is within the 256-
character length limit, it is placed in a

statement store area (SAVLN1). If the
operand of the input statement contains
more than one entry, GETLINE is used to
obtain the next statement from LPC. SCAN
is invoked, using restricted linkage, to
verify that the operands contain fewer than
nine characters. SCAN processing is ter­
minated when a delimiter (which is saved
for later reference) is encountered. The
recorded delimiter is then examined, and
ERROR is invoked for a nonblank delimiter.
ERROR issues message 11 and returns con­
trol. COMBINE, RENAME, and TRAITS state­
ments are placed in the stack table (STACK)
to await processing of an INCLUDE state­
ment. INCLUDE and END statements cause a
direct branch to the routine that processes
the particular statement. Invalid state­
ment verbs cause ERROR to be invoked to
issue message 3.

INCLUDE -- INCLUDE Statement Processor
(CEYIC)

This routine processes the three forms
of the INCLUDE statement. (See Chart AA,
Part 2.)

Entry: Entry point CEYICi entry
parameters:

Registers:
8

9

10

a common register pointing to the
first unprocessed character position
of the statement operand.

a common register pointing to the
input PMD.

a common register pointing to the out­
put PMD.

Callinq Sequence: Direct branch to loca­
tion CEYIC from INANAL.

Routines Called: LINK, SCAN, BRING, ERROR,
EXTREF. RENAME. TRAITS, and COMBINE.

Exit: Direct branch to INANAL (location
IARET) •

Operation: Register 8 points to the first
unprocessed character position of the
statement operand. Upon entry, SCAN is
invoked at CEYSC, using restricted linkage.
SCAN is entered with a pointer to the
first-byte position of the library name.
SCAN verifies that the library name con­
tains fewer than nine characters. The
delimiter following library name is reco­
rded, the library name is placed in TEMP,
and SCAN returns control, with pOinters to
the first-byte position after the delimit­
er, to TEMP and to the library name.

If the library name in the INCLUDE
statement is the name SYSLIB, ERROR is
invoked to print message 10, and INCLUDE
statement processing is terminated. When
the library name indicates a library other
than SYSLIB, the ddname of the specified
library name is planted in the DCB. The
OPEN macro instruction is used to open the
indicated partitioned library. The deli­
miter provided by SCAN is used to determine
the form of the INCLUDE statement being
processed.

Form-1 INCLUDE Processing: SCAN is invoked
to process each module or entry name to
ensure the correctness of the operand. If
there is any delimiter between module names
other than a comma, a direct branch is made
to ERROR to generate message 11.

SCAN is inVOked to process the first
module or entry name in the control state­
ment operand. BRING is i.nvoked at CEYBR,
usi.ng restricted linkage, with the name to
be found and the ddname for the library to
be searched. BRING fetches the PMD and
text from the indicated library and places
them in a work area. If required, the ISD
is moved to the next position in the ISD
chain. When the object module is not found
in the indicated library or is found in
SYSLIB, ERROR is invoked to generate mes­
sage 1 or 2. If this is the end of the
INCLUDE statement processing, control is
returned to INANALi otherwise, processing
identical to that for the first module or
entry name continues for the other entries
in the operand of the statement.

If BRING finds the module, the STACK
table is searched to determine whether a
RENAME, COMBINE, or TRAITS statement
exists; if any of these statements is
found, a direct branch is made to the
appropriate control statement processor.
When the STACK table is empty (no RENAME,
COMBINE, TRAITS statements), the work areas
are initialized.

If the module being included is a FOR­
TRAN main program and a FORTRAN main pro­
gram has already been included, ERROR is
invoked to generate diagnostic message 22.
The input parameters will indicate to ERROR
that user response is expected and that it
shall exit to INANAL. If there is no
attempt to linkage edit two FORTRAN main
programs, LINK is invoked at CEYLK.

LINK is invoked, using restricted link­
age; input parameters are pointers to the
PMD and the output module. LINK links the
module indicated in the form-l INCLUDE
statement to the linkage output module.
After the module is linked, the form-1
switch (FRM1SW) is set to 1, and the deli­
miter is again checked. A delimiter other
than a right parenthesis or comma causes

Section 3: Program Organization 23

ERROR to issue message 11. A comma indi­
cates another name in the operand of the
current forrn-1 INCLUDE statement; there­
fore, processing identical to that for the
first name is repeated. A right parenthe­
sis indicates no other entries in the cur­
rent form-1 INCLUDE statement. Control is
returned to I NAN AL , indicating the end of
form-l INCLUDE statement processing.

F'orm-2 INCLUDE Processing: F'orrn- 2 proces­
sing is allowed only after at least one
forrn-1 stat.ement has been processed; if a
form-2 statement appears before a form-I,
ERROR will issue message 9. The STACK
table is then searched for entries; any
entry causes ERROR to issue message 9. If
no entries exist in the STACK table, GTCSAD
is invoked at CEYGA through restricted
linkage with a pointer to the CSD heading
in the PMD. GTCSAD builds a table that
contains the location of the six tables in
the CSD. These tables are definition and
reference tables, the relocation dic­
tionaries (RLDs) for complex definitions
and external and internal references, and
the virtual memory page table. EXTREF is
invoked at CEYXR using restricted linkage
with a pointer to the first reference to be
checked. a count of the number of
references remaining in the reference
table, and a pointer to the CSD heading.

EXTREF' searches the output module for
unresolved references and provides a point­
er to an unresolved reference if any is
found, a pointer to the CSD heading, and
the updated count of remaining references
in the CSD. If the unresolved reference is
not in the EXCLUD table, BRING is invoked
to fetch the PMD and text of the module
that satisfies the unresolved reference and
to bring the ISD to the next position in
the ISD chain. The module is contained in
the library specified by the ddname in the
form-2 INCLUDE statement. LINK is called
to link the module, found by BRING, to the
output module when the following conditions
are satisfied: external names in the
retrieved module do not match entries in
the EXCLUD table, the retrieved module is
not located in SYSLIB, none of the names in
the module are to be excluded, and it is
not an attempt to linkage edit more than
one F'ORTRAN main program.

When EXTREF returns control with an
unresolved reference, processing identical
to that for the first reference is pro­
vided. If an unresolved reference is not
found, the CLOSE macro instruction closes
the partitioned library, the library name
is removed from LBOPEN, and control is
returned to INANAL, indicating the termina­
tion of processing for the form-2 INCLUDE
statement.

24

Forrn-3 INCLUDE Processing: During form-3
processing, the forrn-l switch (FRM1SW) must
be set to 1; if FRM1SW is not 1, ERROR
issues message 9. The first character in
the statement's operand is checked; a
character other than a left parenthesis
causes ERROR to issue message 11. SCAN is
invoked to ensure that the external
reference name specified in the statement's
operand contains fewer than nine charac­
ters. The external reference name is re­
corded in the EXCLUD list (defined in the
introduction>. Upon checking the delimiter
following "external reference name," ERROR
is called to issue message 11 if the deli­
miter is other than a comma or a right
parenthesis. If the delimiter is a comma,
indicating more than one entry in the
statement, processing identical to that
performed for the statement's first entry
(external reference name) is repeated. If
the delimiter is a right parenthesis, indi­
cating no more entries in the statement's
operand, processing identical to that pro­
vided for the forrn-2 INCLUDE statement is
provided.

LIBE SEARCH -- Library Search Subroutine
(CZCDC3): LIBE SEARCH is a closed subrou­
tine in the dynamic loader that locates an
object module which contains a particular
symbol, and is used to supply BRING with
the ddname of the library containing the
module. LIBE SEARCH is described in Dynam­
ic Loader Program Logic Manual, GY28-2031.

LINK -- Link Modules (CEYLK)

This routine attaches an input module to
the linkage editor output module. (See
Chart AJ.)

Entry: Entry point CEYLK; entry
parameters:

Registers:
0-5, 6-7

9

10

pseudo parameters whose values are
preserved.

cornmon register which contains a
pointer to the input PMD.

cornman register which contains a
pointer to the output PMD.

calling Sequence: INVOKE ACEYLK.

Routines Called: APENEX, APENIN, APENCX,
GTCSAD, ERROR.

Operation: This routine is entered with a
pointer to the input module"s PMD and a
pointer to the output module. If it is the
first module to be attached, its PMD head-

ing is moved to the output module, the PCS
communication indicator (TDYPCS) is set,
and the name to be assigned to the output
module is placed in the output module.

When a FORTRAN main program is linkage
edited, the standard entry pOint of the
output module will correspond to the exist­
ing standard entry point of the FORTRAN
main program. The LINK routine will
achieve this standard entry point similari­
ty by saving the main FORTRAN header and by
returning to INANAL to reinitiate the
INCLUDE statement processing. When the
LINK routine is again called to link the
first input module, it will determine
whether a Irtain FORTRAN header has been pre­
viously saved. If a saved header exists,
it will be stored into the output PMD
header.

The CSD pointer is set to the first CSD
in the module, and the COMBINE switch
(LKCMSW) is set to zero. The CSD in the
input module's PMD is checked to determine
if it is to be deleted or combined, or if
it is a blank common control section. Con­
trol sections that were combined are placed
in the combine section of Work Area by COM­
BINE. Blank common control sections, other
than the first encountered, are marked for
deletion. The size of the largest blank
common section encountered becomes the size
of the retained control section.

The following checks are made for each
CSD; if necessary, ERROR is called to issue
each message mentioned:

• A nonblank definition name which is not
a control section name, and which
matches a definition name in the output
module, results in message 4; the input
PMD definition is marked for deletion.

• A nonblank definition name which is a
control section name, and which matches
a definition name in the output module,
results in message 14; the duplicate
(input) control section is marked for
deletion.

• Names in the PMD and output module that
name control sections without common
attributes result in message 15.

• When the output module CSECT is read­
only or privileged and the input PMD
CSECT is nonread-only or nonprivileged,
respectively, message 16 is delivered.

• A nonprivileged output module CSECT and
a privileged input PMD CSECT result in
message 17.

• An input PMD CSECT with a length great­
er than the output module CSECT results
in message 18.

After the above error checks have been
completed for each CSD in the input PMD,
actual linking of CSECTs begins. The out­
put ISD module heading is updated only if
the ISD is required.

The LINK routine now determines whether
the standard entry point (SEP) of the input
module may be included as a DEF in the out­
put module's PMD. To be retained in one of
the CSDs of the output module's PMD, the
DEF created must be able to retain V- and
R-values which will reference exactly the
same areas of text referenced by the stan­
dard entry point DEF in the input module.
If LINK determines this is not possible.
warning is provided with message 24.

LINK records all information needed by
subroutine APENDF to preserve the original
standard entry point as either a relocat­
able or complex DEF. The DEF retained will
be relocatable if the input module has only
PSECTs or only CSECTs and the standard
entry point's REF is the first control sec­
tion's name. The DEF will be complex if
the text and DEF still exist for both the
first PSECT of the input module and the
CSECT named in the standard entry pOint
REF. It will also be complex if the input
module has more than one control section,
all of which are the same type, and if the
standard ent.ry point REF name of the input
modUle is not the name of the module's
first control section.

If the control section name DEF in which
the standard entry point DEF is to be
retained has been marked for deletion in
the output module, LINK issues warning mes­
sage 24, unless the control section is
found to have been combined with another.
In this event, the standard entry point DEF
will be placed in the combined CSD which
contains the deleted control section name
DEF.

LINK now begins processing each control
section in the input module by calculating
the number of text pages for each section.
If the end of the input PMD containing the
CSD has not been reached, a check is made
to determine whether the control section
has been marked for deletion or combining.
If the control section is marked for dele­
tion, the CSD pointer is bumped to the next
CSD in the PMD; the text pointer is bumped
to the next control section text page.

When the control section is marked for
combining, the CSD pointer is saved in the
combine switch (LKCMSW), the text page
count and text pointer are saved; the CSD
pointer and text pointer to the combined
section in work area are set; and the num­
ber of text pages that have been combined
is computed.

Section 3: Program organization 25

If necessary, the Update ISD (UPISD)
subroutine is called by a direct branch to
update the ISD as each control section in
the PMD is processed. If it is not neces­
sary to update the lSD, GTCSAD is called.
GTCSAD. entered at CEYGA via restricted
linkage, calculates the locations of the
following six tables for the CSD: the
Definition and Reference Tables; the RLDs
for Complex Definitions, External
References, and Internal References; and,
the Virtual Memory Page Table. GTCSAD
places these locations in the TABLE (CSD
Addresses) and returns control to LINK.
LINK appends the CSD heading to the output
module and calls the Append Definition
Table (APENDF) Subroutine.

APENDF is entered with a pointer to the
next available pOSition in the output
module, a pointer to the CSD definition
table, and a pointer to the CSD heading in
the output module. LINK also passes infor­
mation indicating whether the input mod­
ule's standard entry point DEF is to be
included as a DEF in this CSD. APENDF
first appends the CSD's definition table to
the output module. Then, if the standard
entry point DEF is to be saved as a relo­
eatable DEF, it is added following the DEF
for the control section name, and the count
of relocatable DEFs kept in the output CSD
is updated. If the SEP DEF is to be com­
plex, it is added as the last DEF in the
definition table. and the count of complex
DEFs is updated. APENDF then updates the
external name list (NAMES) and returns con­
trol to LINK. LINK appends the CSD
reference table to the output module and
calls subroutine APENCX.

APENCX is entered at CEYCX via
restricted linkage, and is used to append
the CSD'S complex RLD to the output module.
LINK prepares to call APENCX (Append Com­
plex DEF RLD) by determining if the present
CSD contains the standard entry point DEF
which has been saved. If it has and is a
complex DEF, then any new modifier pOinters
needed are added to the complex DEF RLD
modifier pointer list, previous pointers
are updated, and a new modifier is added
for the new complex DEF. APENEX is entered
at CEYEX to append the CSD's RLD for text
(external references) to the output module;
and APENIN is entered at CEYIN to append
the CSD's RLD for text (internal reference)
to the output module. After control is
returned to LINK, the virtual memory page
table entries are appended to the output
module. If there is text for the CSD, it
is appended to the output module. If the
control section just appended to the output
module was a combined control section, the
CSD and text pointers and page count are
restored to their former values, and the
pointers are advanced to the next control
section.

26

When the end of the PMD is reached, the
cumulative length of the input ISDs is
incremented by the length of the current
ISD. the ISD pointer is moved to the next
vacancy. and the RCTBL table heading is
initialized. Control is returned to the
calling module if all control sections from
the PMD have been deleted. If all control
sections in the PMD have not been deleted,
the number of definitions in the table is
computed, all new definitions are chained
to the hash table via the definition search
links, and the index to the CSD heading is
placed in the new definition CS links. The
pointer to the next CSD is obtained, and
the processing for its definitions identi­
cal to the first CSD is performed if the
end of the output module has not been
reached. If the end of the output module
has been reached, the CSD pointer is set to
the first CSD in the output module, and
GTCSAD is called.

GTCSAD is entered at CEYGA via
restricted linkage, with a pointer to the
CSD's Definitions. References, RLD for Com­
plex Definitions, RLD for External
References, RLD for Internal References,
and the Virtual Memory Page Tables. GTCSAD
returns control to LINK, and LINK chains as
many references in the CSD as possible to
the corresponding definitions in the CSD
via the reference use links.

After all references in this CSD are
processed, the CSD pointer is advanced to
the next CSD; if the end of the output
module has been reached, control is
returned to the ca Iling module; if the end
of o.utput module has not been reached,
remaining CSDs in the output module are
processed similarly to the first CSD.

PUTDIAG (CFADCl in Module CFADC)

This routine is part of LPC and is
explained in Command System Program Logic
Manual, GY28-2013.

RENAME -- RENAME Statement Processor
(CEYRN)

This routine processes the RENAME state­
ment. (See Chart AA, Part 6.>

Entry: Entry point CEYEN; entry
parameters:

Registers:
8

9

a common register point.ing to the
first character position of the state­
men operand.

a common register pointing to the
input PMD.

Calling Sequence: Direct branch to loca­
tion CEYEN from the INCLUDE routine.

Routines Called: ERROR, SCAN.

Exit: Exit from this routine is made by a
direct branch back to location ICREI' of the
INCLUDE routine.

Operation: This routine is entered with a
pointer to the input PMD and a pOinter to
the first character position of the state­
ment operand. Using restricted linkage,
SCAN is entered at CEYSC with a pointer to
the first byte of the statement's old name.
The old name is scanned until a delimiter
character (left or right parenthesis, minus
sign, comma, or blank) is encountered. If
the old name contains more than eight char­
acters, SCAN calls ERROR which issues mes­
sage 10. SCAN returns control with a
pointer to the first byte that follows the
delimiter. The delimiter is examined to
determine the processing required for the
RENAME statement:

• A left parenthesis for a delimiter
causes a control section, entry name,
or an external reference to be renamed.

• A blank or comma for a delimiter causes
a control section or entry name to be
deleted.

Delimiters other than a blank, comma, or
left parenthesis causes ERROR to issue mes­
sage 11.

If the delimiter is a left parenthesis,
SCAN is called again to process the new
name in the RENAME statement in the same
way provided for the old name. If the next
delimiter is other than a right parenthe­
sis, ERROR is called to issue message 11.

A pointer is set to the first control
section dictionary in the module denoted by
the old name, and another pointer is set to
the combined section (which is in a work
area) if the control section has been com­
bined. When the old name is a definition
and the new name is already defined in the
output module, ERROR is called to issue
message 5, after which control is returned
to INCLUDE. If the old name is a defini­
tion and the new name is not defined in the
output module, the old name in the input
PMD is replaced by the new name.

When the old name is a definition denot­
ing a control section name and the ISD is
required, the control section name is
placed in the Rename/Combine Table (RCTBL).
(Note that all renamed control sections
cause entries to be placed in the RCTBL.)
These entries will be placed in the ISD
when the control section is linked to the
output module. RCTBL is used by the Update

ISD (UPISD) subroutine, which is a part of
the LINK module. The old name in the
RENAME statement may also denote an extern­
al reference; if so, that external
reference is replaced by the external
reference denoted by the new name. After
the first control section is processed, the
input module's PMD is checked for remaining
control sections; if additional control
sections are present, they are- processed in
the same way the first control section was
processed.

If, at the completion of the PMD search,
the external name denoted by the old name
did not match a name in the PMD, ERROR is
called to issue message 6.

The delimiter following the old name
operand in the RENAME statement is checked;
delimiters other than a comma or blank
cause ERROR to issue message 11. RENAME
statement processing is terminated when a
blank delimiter is encountered, at which
time control is returned to the INCLUDE
routine •

If a control section or entry name is to
be deleted (delimiter was a comma or blank
during the time the old name was first
scanned), a pointer is set to the first CSD
in the input PMD. A CSD pointer is also
set to the combined section (which is in a
work area) when the control section is
marked for combining. The control section
denoted by the old name causes that control
section to be marked for deletion. A
direct branch is made to the Delete Entry
Name (DELNAME) subroutine if the old name
denotes an entry name. DELNAME is entered
with a pOinter to the entry name to be
deleted and a pointer to the associated CSD
heading. DELNAME locates and marks for
later deletion the desired entry name, and
updates the related CSD tables. On return
to RENAME, the input PMD is checked for
remaining CSDs. Remaining CSDs are pro­
cessed in the same way the first CSD was
processed. ERROR is called to issue mes­
sage 6 if no CSDs remain in the PMD, and
when the name denoted by the old name has
not been matched with an identical defini­
tion in the input PMD. A check is made of
the delimiter following the old name; pro­
ceSSing is terminated when a blank delimit­
er is encountered, and control is returned
to the INCLUDE routine.

SCAN -- Scan (CEYSC)

This routine scans a name in search of a
delimiter. (See Chart AQ.)

Entry: Entry point CEYSC; entry
parameters:

Section 3: Program Organization 27

Registers:
0, 1, 3, 4, 5, 6, 7

pseudo parameters, whose va~ues are
preserved.

common register which points to the
first byte position of a name.

~?lling Sequence: INVOKE ACEYSC.

Rout-,ines Called: ERROR.

Exit: Returns to calling routine unless
more than eight characters appear before a
delimiter. In this case, a direct branch
exit is made to ERROR at location CEYER.
Exit parameters:

Registers:
2

8

delimiting character in low-order
eight bits.

conunon register which pOints to the
byte position following the delimiter.

Operation: The name passed to this routine
is examined (by means of a translate and
test table) for a delimiting character. If
more than eight characters are encountered
before a proper de~imiter is found, a
direct branch is made to ERROR to issue
message 10. The delimiter character is re­
corded and the scanned name is placed in
TEMP (a temporary save area of eight char­
acters). TEMP is filled with blanks when
the first character scanned is a delimiter.

Exit from SCAN is made using restricted
linkage. SCAN provides the calling routine
with the delimiter character and pointers
to the byte position fo~lowing the
delimiter.

Allowable delimiters are left parenthe­
sis, right parenthesis, hyphen, comma, and
blank.

TRAITS TRAITS Statement Processor
(CEYTR)

This routine processes the TRAITS state­
ment. (See Chart AA, Part 8.)

Entry: Entry point CEYTR; entry
parameters:

Registers:
8

9

28

a common register pointing to the
first character position of the state­
ment operand.

a common register pointing to the
input PMD.

Calling Seguence: Direct branch to CEYTR
from the INCLUDE routine.

Routines Called: SCAN, ERROR.

Exit: Direct branch back to location ICREf
in the INCLUDE routine.

Operation: This routine is entered with a
pointer to the first character position of
the TRAITS statement operand and a pointer
to the input module's PMD. SCAN is entered
at CEYSC with a pointer to the first byte
of the statement operand, which indicates
the control section to be processed. SCAN
scans the control section name until a
delimiter character is found. when the
control section name contains more than
eight characters, SCAN calls ERROR, which
issues message 10. A delimiter other than
a ~eft parenthesis or blank causes TRAITS
to branch to ERROR to issue message 11.

The input PMD is searched for the con­
trol section's CSD by comparing the control
section name defined by the TRAITS state­
ment to the control section name in the CSD
header. If a CSD is marked for combining,
the control section name of the CSD header
in the work area (not in the input PMD) is
compared to the control section name
defined by the TRAITS statement. (The name
is stored in TEMP.) ERROR is called to
issue message 11 if the control section
name is not found in the input PMD, or the
work area when processing combined control
sections. The attributes word is cleared;
that is the FIXED attribute is assigned.
The delimiter following the statement's
operation code is then checked. If the
delimi ter is a blank, control is ret.urned
to INCLUDE, and the FIXED attribute is thus
automatically assigned to the control sec­
tion. If the delimiter is other than a
blank, SCAN is called to process the TRAITS
statement's trait operand. ERROR is called
to issue message 10 if the attribute word
is inva~id. When a valid attribute is
detected. the appropriate trait code is
assigned to the applicable attributes word
in the CSD heading. A check is again made
of the delimiter to determine whether or
not it is a comma. right parentheSiS, or
neither of these. A comma is indicative of
more than one operand; consequent.ly, pro­
cessing for the additional operand or
operands is identical to that processing
provided for the first operand. Control is
returned to INCLUDE for a right parenthe­
Sis, which indicates end-of-statement pro­
cessing. Delimiters other than a comma or
a right parenthesis cause ERROR to be
called to deliver message 11.

UPISD Update ISD Subroutine (Chart AK):
UPISD is an open subroutine, used exclus­
viely by LINK, that updates the ISD when
the input module control section is being

attached to the output module. After being
entered by a direct branch, the RCTBL table
is searched for an output control section
name that matches the current PMD control
section name. If the name found is a
RENAME entry, RCTBL is searched for an out­
put control section name matching the input
control section name. In essence, this is
a check for a COMBINE entry with its name
subsequently renamed. If such a name is
found, the output control section name
(from the RENAME entry) is moved from RCTBL
to the COMBINE entry in the ISD.

If a match is not found in RCTBL, the
ISD receives the existing output control
section name, and control is returned to
LINK.

OUTPUT PROCESSOR

Function Summary

After all linkage editor control state­
ments (concluding with an END statement)

MD600
(Part of
OUTPUT)

MD450
(Part of
OUTPUT)

lPCMAIN{

MD300
{part of
OUTPUT)

Entry point CEYOP 1

OUTPUT
(CEYQP)

Output
Processor

LSTPMD
(Part of
OUTPUT'!

MD350
(Part of
OUTPUT)

have been successfully handled by the Con­
trol Statement Processor and return has
been made to J:'PCMAIN, LPCMAIN invokes the
linkage editor at its second (continuation)
entry point to produce the output module
and, if necessary, a PMD listing. This
output processing is performed by the Out­
put Processor routine (OUTPUT) and a number
of subroutines.

OUTPUT puts together the components of
the module (PMD, text, and, if requested,
the composite ISD), produces an external
name list (a list of alias names by which
the module to be stored may later be
found>, and prepares a PMD listing, if the
user has requested it. At the completion
of this processing, OUTPUT returns to
LPCMAIN, having filled in a parameter list
containing the locations of the output mod­
ule's components and the external name
list.

A more detailed description of the link­
age editor's OUTPUT Routine follows Figure
6 and Table 3.

MD240
(Part of
OUTPUT)

MD500

I

L-______________ ~~~~---_-_-_-_-_-_-_____________ ~--------~I~._---------~
Legend:

Figure 6. Overview of the output processor

Section 3: Program Organization 29

Table 3. Output processing hierarchical table
r---,
I Routine: Output Processor -- Level: 1 I
~---------~----------------------------T-----------------T-----------------------------~
I Routine I Purpose I called Routines I calling Conditions I
r---------+-----------------------------+-----------------+-----------------------------~
,output IContinuation entry point fromlLSTPMD (CEYLP) IIf PMD listing is required. I
IProcessorlLPC. Delivers output module, I I I
I (CEYOPl) I prepares PMD listing. I I I
~---------~-----------------------------~-----------------~-----------------------------~
I Routine: Output Processor -- Level: 2 I
r---------T-----------------------------T-----------------T----------------------------~
ILSTPMD IPrepares PMD listing, place IMD600 IFor each line of output. I
I (CEYLP) lit in a VISAM data set or ~-----------------+-----------------------------~
I ISYSOUT. iMD450 IWhen 'NAME' and 'VALUE' linesl
I I I lare to be listed for a DEF I
! I I Itable. I
I I ~-----------------+----------------------------~
I I IMD300 IWhen 'REF#' and 'NAME' lines I
I I I I are to be listed for a REF I
I I I Itable. I
I I ~-----------------+-----------------------------~
I I IMD350 (When 'LENGTH', 'REF#', 'TYPE'I
I I I land • BYTE' lines are to be I
I I I Ilisted for an RLD table. ,
I I ~-----------------+----------------------------~
" I MD240 IWhen external or internal REFI
I I I IRLD modifiers are to be I
I I 'Ilisted. I
I I ~-----------------+-----------------------------~
'I I MD500 I When Q REFs or CXD REFs I
I I "are to be listed. I 'I ~-----------------+-----------------------------~
I I IOPEN macro ,When listing goes to list ,
I I I instruction Idata set. I
I' t-----------------+-----------------------------~
I I 'CLOSE macro IWhen listing goes to list I
I I I instruction Ida ta set. I
~---------L-----------------------------~--------------___ ~ _____________________________ ~
I Routine: Output Processor -- Level: 3 I
t---------T-----------------------------T-----------------T----------------------------~
IMD600 IPlaces line of PMD listing IPUT or GTWRC IPUT: for list data set. I
I linto VISAM data set or linstruction IGTWRC: listing to SYSOUT. I
, I SYSOUT. I I I
~---------+-----------------------------+-----------------+-----------------------------~
IMD450 IWrites 'NAME' and 'VALUE' IMD600 IAlways called. I
, Ilines for a DEF table in the I I I
I IPMD. I I I
t---------+-----------------------------+-----------------+-----------------------------~
IMD300 IWrites 'REF#' and 'NAME' IMD600 IAlways called. I
I Ilines for a REF table in the I I I
I IPMD. I I I
t---------+-----------------------------t-----------------+-----------------------------~
IMD350 IWrites 'LENGTH', 'REF#', IMD600 IAlways called. I
I I 'TYPE' and • BYTE' lines for I I I
I Ian RLD table. I I I
t---------+-----------------------------+-----------------+----------------------------~
IMD240 IWrites external or internal IMD350 IAlways called. I
I IREF RLD modifiers. t-----------------+-----------------------------~
I I I MD600 I Always called. I
t---------+-----------------------------+-----------------+----------------------------~
IMD500 IWrites detail lines for IMD600 IAlways called. I
I I Q REFs and CXD REFs. I I I l _________ ~ _____________________________ ~ _________________ ~ _____________________________ J

30

OUTPUT -- output Processor (CEYOP)

This routine delivers the final output
module (PMD, text, and ISD), external name
list, and the necessary return codes to the
LPC. It also prepares a PMD listing, if
the user has requested it. (See Chart BA.)

Entry: Entry point CEYOP1; entry
parameters:

Register 1
address of a parameter list.

The parameter list consists of a series
of address constants aligned on word
boundaries:

Word 1 Address of a 1-byte field. The
linkage editor fills this field
with 00000001 if the list data set
(PMD listing) contains lines to be
listed; with 00000000, if the list
data set is empty.

Word 2 Address of a 1-word field. The
linkage editor fills this field
with the number of bytes in the
PMD.

Word 3 Address of a 1-word field. The
linkage editor fills this field
with the location of the first byte
of the PMD.

Word 4 Address of a 1-word field. The
linkage editor fills this field
with the number of bytes in the
output text.

Word 5 Address of a 1-word field. The
linkage editor fills this field
with the location of the first byte
of the output text.

Word 6 Address of a 1-word field. The
linkage editor fills this field
with the number of bytes in the
ISD.

Word 7 Address of a 1-word field. The
linkage editor fills this field
with the location of the first byte
of the ISO.

Word 8 Address of a 1-word field. The
linkage editor fills this field
with the location of the first byte
of the list of external names.

Calling Sequence: CALL CEYOP1.

Routines Called: LSTPMD, if PMD listing
required.

Exit: Normal; exit parameters:

Register 15 contains a condition code, as
follows:

Condition code 0
no errors. The field specified by pa­
rameter words 1-8 is filled in. If no
ISD was produced, the fields specified
by words 6 and 7 of the parameter list
are zero.

condition code 4
minor errors, parameter output as for
code O.

Condition code 8
major errors, parameter output as for
code O.

Condition code 12
no object module. Only the field
specified by parameter word 1 is
filled.

Condition code 16
abnormal end condition; parameter out­
put not currently defined.

operation: This routine is entered by LPC
~AIN at location CEYOP1 with the addresses
of locations where the following informa­
tion is to be stored:

• Lines from the list data set (PMD
listing> •

• Number of bytes in the PMD.

• Location of first byte in the PMD.

• Number of bytes in the output text.

• Location of first byte in output text.

• Number of bytes in the ISO.

• Location of first byte in the ISO.

• Location of first byte in the external
name list.

Initially, a check is made of the form-1
switch (FRM1SW), maintained by INANAL, to
determine if at least one form-1 INCLUDE
statement has been given. If a form-1
INCLUDE statement has not been given. the
-lists exists· indicator is set to zero,
the return code is set to 12 (no object
module), and control is returned to the
LPC. If a form-1 INCLUDE statement has
been given and a PMD listing is required,
the Program Module Dictionary Listing
(LSTPMD) subroutine (described below) is
called. LSTPMD is entered at CEYLP via
restricted linkage with pointers to the
location of the PMD, the length of the PMD,
page number to be assigned to the first

Section 3: Program Organization 31

page of output, and the address of the DCB
for the list data set. LSTP~ID prepares a
PMD listing, places it in the list data set
or on SYSOUT, and returns control to this
routine.

Before returning control to LPC, this
routine prepares a return code and a param­
eter list for the LPC. If no errors were
encountered during linkage editor proces­
sing, the return code is set to zero (no
errors). If one or more errors were
encountered, the return code is set to 8
(major error). The following parameter
information is provided: a code specifying
whether the list data set contains lines to
be listed; the number of bytes in the PMD
and the location of the first byte; the
number of bytes in the text and the loca­
tion of the first byte; the number of bytes
in the ISD and the location of the first
byte (if the ISD is to be generated); and
the location of the first byte in the
external name list.

LSTPMD -- Program Module Dictionary Listing
Subroutine (Chart BB): LSTPMD (CEYLP), a
closed subroutine, is entered with INVOKE
ACEYLS if the PMD listing option was taken.
Information required for the listing is
extracted from:

Register 1
address of a five-word list that con­
tains the following information:

Hord 1 Location of program module
dictionary.

Word 2 Length of PMD.

Hord 3 Page of number -1 to be
assigned to first page of
output.

Word 4 Address of 720-byte work area.

Word 5 Address of the DCB for the
list data set.

Upon entry to this subroutine, the
information listed above is stored, and a
switch (GATESW) tested to determine the
destination of the PMD listing (whether to
a list data set or to SYSOUT). The output
buffer is initialized, and the MD600 sub­
routine (described below) is entered to
write the following module and control sec­
tion header lines:

32

• Module Header Lines

MODULE NAME
LENGTH
DIAG SEVERITY

• Control Section Header Lines

CONTROL SECTION NUMBER
NAME
TYPE
ATTRIBUTES
VERSION
CSD LENGTH
TEXT LENGTH

If relocatable definitions exist for the
PMD listing, the MD600 subroutine is
entered to write the RELOCATABLE DEFINI­
TIONS header line, and the MD450 subroutine
(described below) is ent-ered to list the
detail (NAME and VALUE lines). If absolute
definitions exist for the PMD listing, the
MD600 subroutine is entered to write the
ABSOLUTE DEFINITIONS header line, and the
MD450 subroutine is entered to list the
detail lines. If complex definitions exist
for the PMD listing, the MD600 and MD450
subroutines are entered to list the COMPLEX
DEFINITIONS header line and the detail
lines. If references exist for the PMD
listing, the MD600 and MD300 subroutines
are entered to list the REFERENCES header
line and the detail lines. If Q REFs or a
CXD REF exist, they are listed separately
from other references; MD600 and MD500 are
entered to list header and detail lines.

After all REFs have been listed, LSTPMD
determines if the complex DEF RLD contains
any modifiers. If so, MD600 is called to
write the MODIFIERS FOR COMPLEX DEFs head­
ing. For each modifier pointer with modi­
fiers, MD600 is called to list the header
for the corresponding virtual page of the
PMD:

PAGE xx # MODIFIERS xxxx

and MD350 is called to list the contents of
each modifier:

LENGTH
REF #
TYPE
BYTE

The external REF (including Q REFs and
CXD REF) and internal REF RLDs are listed
in a similar fashion. The header for each
modifier pointer's modifier, however,
reads:

TEXT PAGE xx VIRTUAL PAGE xx # MODIFIERS
xxxx

The text page is relative to the first
page of text produced by the language pro­
cessor; the virtual page is relative to the
first page of virtual storage allocated to
the control section when the module is
loaded. (Text pages plus "empty· pages -
those resulting from DS or ORG instructions
and not actually on external storage -
equal virtual storage pages.)

After the first control section has been
processed, the address of the next control
section is obtained and processing con­
tinues. When the PMD has been completely
processed, the CLOSE macro instruction is
used to close the list data set (unless the
listing went to SYSOUT) and control is
returned to the caller.

MD240 Subroutine (Chart BB): Upon entry,
the MD240 subroutine finds the virtual
memory page in which the text page for the
control section is located. MD240 writes
the PMD listing header lines for both the
modifiers for text (external and internal
refs) entries (text page, virtual page, and
modifiers). After writing the detail
header lines, MD600 is entered to list the
detail lines applicable to the header
lines. MD350 is also entered to complete
processing for the PMD listings' modifiers
for text (external REFs and internal REFs)
entries. The text page count is incre­
mented and the address of the next modifier
for text (external REFs or internal REFs)
pointer is obtained. If the pointer does
not point to an external or internal
reference, control is returned to LSTPMD.
If the pointer points to an external or
internal reference, and there are modifiers
for this pointer, remaining pointers for
external and internal references are
checked in the same manner as the previous
pointers. But if there are modifiers for
this pointer, they are processed in a mann"
er identical to that for the first internal
or external reference modifier.

MD300 Subroutine (Chart BC): The MD300
subroutine is used by LSTPMD to list detail
lines for the references entries in the PMD
listing. Upon entry, MD300 sets the REF #
and NAME heading in their positions,
assigns a reference number (beginning with
zero) to the entry, and gets the associated
name. The MD600 subroutine is entered to
write the header and detail lines as for­
matted, and if all entries have been pro­
cessed, control is returned to LSTPMD.
MD600 is entered to write the lines if the
print line is filled, even if all entries
have not been processed. After MD600
writes the lines or if the print line is
not filled, a reference number is aSSigned
to the next entry, and processing for this
is identical to that for the previous
entry.

MD350 Subroutine (Chart BC): The MD350
subroutine is used by LSTPMD and M0240,
respectively, to list detail lines for the
modifiers for complex DEFs and to complete
processing for the modifiers associated
with text (external REFs and internal REFs)

pointers. Initially, the LENGTH and REF #
heading is set into position and the
reference number associated with the pre­
sent modifier entry is obt.ained. After the
reference number for all entries is
obtained, MD600 is entered to write the
lines as current.ly formatted. The TYPE and
BYTE heading are set into position, and the
"type" and -byte" information for the first
entry. whose length and number were just.
written, is obtained. The type and byte
informatcion for the remaining entries is
obtained, and MD600 is entered to write the
lines as formatted. When all modifiers are
processed, control is returned to the cal­
ling subroutine. (If all modifiers have
not been processed, MD350 starts at its
beginning to provide the same processing
for the subsequent modifier.)

MD450 Subroutine (Chart BD): The MD450
subroutine is used by LSTPMD to list detail
lines for relocatable, absolute, and com­
plex definitions entries in the PMD list­
ing. The NAME and VALUE heading are set in
position, and the name and value for the
associated entry is placed into the print
area. When all entries have been pro­
cessed, MD600 is entered to write the lines
as currently formatted, after which control
is returned to I,STPMD. MD600 is entered to
write the 1ines if the print line is
filled, even if a11 entries have not been
processed.

MD500 Subroutine (Chart BD): This subrou­
tine is used by LSTPMD to list detail lines
of Q REF and CXD REF types of externa1
reference; these are listed separately from
other references in the PMD listing. The
REF number and name is set into position
for each Q REF or CXD REF: then a call is
made to MD600 to write the formatted lines.
Next, length and align values are set up
and MD600 is called to write these lines.
Control is then returned to LSTPMD.

MD600 Subroutine (Chart BE): The MD600
subroutine is used by LSTPMD, MD240, M0300,
MD350, MD450. and M0500, to list detail
lines for entries in the PMD listing. Ini­
tially, the detail line is checked to
determine whether it is being ejected. if
so, ei·ther a PUT (to a list data set) or
GTWRC (to SYSOUT) macro instruction is used
to set and write the page header. The line
count is then reset. Anot_her test is made
to determine the :listing destination,
whether list data set or SYSOUT. and an
appropriate macro instruct. ion (PUT or
GTWRC) is issued t:o write the current li.ne.
The line count is incremented, and control
is returned to t.he calling subrout"_ine.

Section 3: Program Organization 33

EARLY-END PROCESSOR

Function Summary

The Early-End Processor phase of the
linkage editor, entered at CEYEEl from
LPCMAIN, is called as a result of early
termination of linkage editor processing in
the Control Statement Processor phase. The
Early-End Processor consists of one rou­
tine, EARLY END; this routine closes the
list data set if open, closes any libraries
that may be open, and frees virtual storage
secured previously for work areas. Figure
7 and Table 4 illustrate the Early-End Pro­
cessor's general operation and hierarchy,
respectively.

EARLY END -- Early-End Processor (CEYEE1)

This routine performs all activities
required if linkage editor processing must
be terminated before normal completion of a
task. (See Chart CA.)

Entry: Entry point CEYEE1; entry
parameters:

Register 1
address of a one-byte field. EARLY
END will fill this field with X'Ol' if
the list data set contains lines to be
listed; with X'OO', if the list data
set is empty.

calling Sequence: CALL CEYEE1.

Routines Called: Via CLOSE and FREEMAIN
macros.

Exit: Normal; exit parameters:

Register 15

CEYEEl

L PCMA I N {-4----j
EARLY END
(CEYEE1)
Early-End
Processor

CLOSE
Macro

Figure 7. Overview of the early-end
processor

End Code 0
normal end; the field specified by
register 1 is completed.

Operation: Upon entry, a check is made to
determine whether the list data set con­
tains lines (PMD listing) to be listed; if
lines are to be listed, the field whose
address has been passed in register 1, is
set to one, and the CLOSE macro instruction
is used to close the list data set if it
was opened. If the list data set contains
no lines to be listed, the field is set to
zero. A check is made to determine whether
any library is still openi if so, the CLOSE
macro instruction is again used to close
the open library. If no lines are to be
listed, or no library is open, or after
CLOSE closes the open library, the FREEMAIN
macro instruction is used to release all
work areas, and control is returned to LPC.

Table 4. Early-End processing hierarchical table
r---,
I Routine: Early End -- Level: 1 I
r---------T-----------------------------T-----------------~----------------------------~
I Routine I Purpose ICalled Routines I calling Conditions I
~---------+-----------------------------+-----------------+-----------------------------~
IEarly End\Early-end entry point from \CLOSE macro IAlways called to close opened I
I (CEYEEl) ILPC. Terminates linkage I instruction I libraries. I
I leditor processing prior to ~-----------------+-----------------------------~
I I completion. IFREEMAIN macro IAlways called to free virtual I
I I I instruction I storage areas. I L ________ L-____________________________ ~ _________________ ~ _____________________________ J

FLOWCHARTS

The flowcharts in this manual have been produced by an IBM program, using ANSI sym­
bols. The symbols are defined in the left column below, and examples of their use are
shown at the right.

SYPB()L

"' .. ~ . .

DEFINITl()N

~:mI(,AT£S A!\ ENTRY OR
TERME~i\L prJINT I N A FLOW­
CHART; SHO-WS START STOP I

~1~~: D~k~Y AL~~ !~6I~·~,¥r-
RETURN TO THE C;"LLIN~
PR(Y~RAM .

:~mh:ATES A PR~!CESS:::~G
FUNCTION OR A DEFINED op­
ERATION Ul,.US::NG CHAN''':;E IN

;~~L¥~FO~~~~fIg~. U)CATJON

EXiT
TH[

EXAMPLE

MOD NAME

C~MNAME)

I FRI in {T'HERr<i'JD
rHAFil AZ

(""EC'l "or' I

~~
LABEL2 ~ 1 ;;NT?Y": J

~'{ F:" Acj

83:

CJ:

E.J:

Fl:

H3 :

,)3 :

Mf;DU~f; OE L 1 BRAPY
DE:'iCRIBED BY THIS

COMNAI'-':E IS THE CC·!-'tMUN NAME f}f THE
R(lUTINE.

~-10DULES PASSING
AND THE IR FLO',·;-

C:3ECT IS THE CSECT NA.,%JjE OR OTHER ENTEY
POINT AT WHICH PRCCESSI~G BEGI:';S

LABEL 1 I S THE LABEL OF THE FIRST
l~~STRUCTltJN.

E~Hk'lf-'1 l::; THE FNTR':> 1--(,];::;-.

'--UbI-' fN 1S fHE ,_"j"'Ll"i()N 'U\ME
1<;1IT1N~ TN F1uWl~HAET i\l,.

BLOCK

"fl>,: F-'AS:--;MECH I N[;r CATES Ht)W \''-)N';'R()l
~ASSE:; FRO!'-1 C'UMNr",'4f, "1',) NEXTPTN.

Flowcharts 35

Chart AA.

36

Linkage Editor:
(page 1 of 9)

lNANAL - Control Statement Input/Analyze processor

ERROR

H4:-::::=\
GRORCEYER J

Ci-L4.RT AO

1
8

chart AA. Linkage Editor: INCLUDE - INCLUDE statement processor (page 2 of 9)

CHM·{T AC

C2~")
IS Ll BRARY
l\M~E SYSlIB

'0

I

~~
~

'" [§J

"-
.3LANK rtHI

, ,

~~y,:s
~-lK'

le01 'j \')THER
Y:2

L~ L/

Flowcharts 31

Chart AA. Linkage Editor:

38

INCLUDE - INCLUDE statement processor (page 3 of 9)

!
0)

NOTE: J4. lflNDICATES MORE THAN
ONE MODULE L INK.l::D
BY THIS INCLUDE

Chart AA. Linkage Editor:

leo"'!: S

Ic350 ERF.OR

INCLUDE - INCLUDE statement processor (page 4 of 9)

N()

t'RROR
fI"'E~;Sf,CF 9

---8
'---......,.--~

F10wcharts 39

Chart AA. Linkage Editor:

C'0090

CHART AO

40

COMBINE - COMBINE statement processor (page 5 of 9)

cooos SCAN

roD
~

Chart M.

CEYRN

RENAME

Linkage Editor: RENAME/DELNAME - RENAME statement processor and Delete Entry
Name subroutine (page 6 of 9)

~
t~~~ __ ~~~.------~(ELIMIT~~~R

CHARACTE2 !
RIGHT (0 PAR EN

El

Flowcharts ql

Chart AA. Linkage Editor:
Name subroutine

42

RENAME/DELNAME - RENAME statement processor and Delete Entry
(page 7 of 9)

ENTER 1'0 PERFORM
A DELETION

DELNAMF.

CA~::=J

j DELETE ENTRY
NAME IN PMD

B4,-'----,

r-O RENAME

*NOTE: ATTEMPTS TO DELETE
~~s fG20~~b~ , OR CXD REFS

Chart AA.

'[R040

1
G

Linkage Editor: TRAITS - TRAITS statement processor (page B of 9)

OTHERS
~

DELIMITER Cl
COMMA

IGHT

L~

I-----~~~~~~~
L.. ______ J CHART AO

F10wcharts 43

Chart AA. Linkage Editor: END - END statement processor (page 9 of 9)

44

Chart AD. COMSUB - combine Control section subroutine

COlon

C;~:::=)

C()105

TO C00 10 IN
COMBINE

Flowcharts 45

chart AB. CLEANUP - cleanup Final Module subroutine

46

Chart AI. COLLECT - Collect Common Requirements subroutine and FIXISD - Fix ISD
subroutine

Flowcharts 47

chart AJ. LINK - Link Modules subroutine (page 1 of 5)

CI- i'LK

CHj'l,RT A..."4

--'-----IJ

48

Chart AJ. LINK - Link Modules subroutine (page 2 of 5)

Flowcharts q9

Chart AJ.

so

i
8

LINK - Link Modules subroutine (page 3 of S)

j

Chart AJ. LINK - Link Modules subroutine (page 4 of 5)

Flowcharts 51

Chart AJ. LINK - Link Modules subroutine (page 5 of 5)

NO YES

52

Chart AK. UPISD - Update ISD sUbroutine

UPISD

CA~~

LK240

NO C'F INPUT
C,S. 'S=l

SEARCH RCTBL, FOR OUTPUT
e.s. (RCOP) NA...JI.1E MATCH­
LNG INPUT C. S. NAME
':PCIP) FROM RENNllE Ef'.;TRY

MOVE OUTPUT C. S. NAME
FROM RENAME ENTRY iN
RCTBL TO OUTPUT C. S _
NAME OF COMBE·lE ENTRY
IN ISO

Flowcharts 53

Chart AL. APENDF - Append Definition Table subroutine

54

fA ':::::----\
,-AP~

j <' F {l-LL T~ROUGH FRGM
LI.>JK; NU LABEL)

81-'----,

Chart AM.

CEYCX

APENCX, APENEX, and APENIN

TO LINK
OR CLEANUP

CEYEX

C:~~

J

COMPLEX DEFS hRE: IN
WORK AREA AND REQUIRE
F.EADJUSTMENT DUE "TO
PREVIOUS DELE,]'IONS
OR ADDITIONS TO PMD

CE\'P-l

C;~~

J

~
G

TO LINK
OR CLEA...-l\ll)P

Flowcharts 55

Chart AN.

56

TO INCLJDE
OR END

BRING - Bring PMD, Text, and ISD from Library (page 1 of 2)

CEYBR

CA!~

fOIl
'./

ERROR

Chart AN. BRING - Bring PMD, Text, and ISD from Library (page 2 of 2)

J
CRE~

'CAN'T CONT INUE'
EXIT TO LPC

NEW P!-tD SIZE
TO APPROXIMATE
SIZE OF I SO TO

BE GENERATED

8 j'
C:~~

'FOUND' EXIT
TO INCi,\JDE
OR E~D

~"'
~,~

~
'FOUND' EXIT

TO INCLUDE
OR END

Flowcharts 57

Chart AO. ERROR - Error Message Processor

CEYFR ER030

R

~'OPMAL EE.T.URN ':~BU'D! C::ru:=J
C'AN"l' UAnINUE

'.:/<.5 RETURN TO I,pr

-L

58

Chart AP. EXTREF - External Reference Search and GETCSD - Locate COntrol Section
Dictionary

CEYXR

C:~~

XR020

SEARCH OUTPUT MODULE
FOR NEXT UNR~S(JLV.ED
EXT REF.

!"'""
C~;~

I ,:" ",. ""~
C:~~

Tu IheUJDE
C'R EKD

csns

Flowcharts 59

Chart AQ. GTCSAD - Get CSD Table Addresses and SCAN - Scan subroutine

CEYGA

60

C~;~

1'0 ft>lCLIJDE,
UMBINE, LINK,

CLEANUP, OR E~rD

CEYSC

C'o
-~'R3

CHAFT ;'/J

TO

Chart BA. OUTPUT - output routine

CEYOP'1

C~~~

OP020

J
CRE~
RETURN CONTROL
Te, lPC

.,1--
CRE~
RETURN CONTROL
TO L1"f::

Flowcharts 61

Chart BB. LSTPMD - Program Modu1e Dictionary Listing subroutine (page 1 of 2)

G
CEYLP

C:~~

62

Chart BB. LSTPMD - Program Module Dictionary Listing subroutine and MD240 subroutine
(page 2 of 2)

MD24lj

!
G

j'G
0:~

LSTPMD

Flowcharts 63

Chart BC. MD300 and MD350 sUbroutines

MOJOO

jG
C:~~
TO LSTPMD

64

Chart BD. MD450 and MD500 subroutines

MD4S-0

CA~~

8-

YES

1 e

Flowcharts 65

Chart BE. MD600 subroutine

MOGOO

CA~n:oo=)

NO (LISTING TO SYSQUT)

NO (LISTING TO SYSOUT)

66

Chart CA. EARLY END - Early-End routine

CEYEE1

RETURN CONTROL
TO LPC

Flowcharts 67

SECTION 4: DIRECTORY

LINKAGE EDITOR ROUTINE DIRECTORY

The TSS/360 linkage editor consists of a
single object module. CEYTS. It includes
one prototype control section, CEYPSC, and
one CSECT, CEYTS1. The routines described
in this PLM are all in CEYTS1.

Table 5 provides a cross-reference
between entry pOints to routines, routine
names. and flowcharts.

Table 5. Linkage editor routine directory

Each routine is assigned an entry point
of the form CEYxx, where xx are alphabetic
characters identifying the routine. Within
a routine. names are of the form xxnnn.
where n is numeric. For example. the IN­
CLUDE statement routine is entered at CEYIC.
A typical instruction is labeled IC200.

Except for the external entry points
CEYIA1. CEYOP1. and CEYEE1, all entry
points in Table 5 are internal entry points.

r--------------------T--T-------------,
I Routine Label or I I I
I Entry Point Name I Name of Routine <Short name; long name) I Flowchart I
t--------------------+--+-------------~
I CEYBR I BRING; Bring PMD, Text and ISD from Library I AN I
I I I I
I CEYCL I CLEANUP; Cleanup Final Module I AH I
I I I I
I CEYCO I COMBINE; COMBINE statement Processor I AC I
I I I I
I CEYCT I COLLECT; Collect Common Requirements I AI I
I I I I
I CEYCX I APENCX; Append Complex RLD I AM i
I I I I
! CEYDN I DELNAME; Delete Entry Point Name I AE I
I I I I
I ~CEYEE I I I I
I (CEYEE1\ I EARLY; Early End Processor I CA I
I I I I
I CEYEN I END; END Statement Processor I AG I
I I I !
! CEYER I ERROR; Error Message Processor I AO I
I I I I
I CEYEX I APENEX; Append External RLD I AM I
I I I I
I CEYGA I GTCSAD; Get CSD Table Addresses I AQ I
I I I I
I CEYGC I GETCSD; Locate Control Section Dictionary I AP I
I I I I

I ~~~~~f I INANAL; Input/Analyze Routine I AA I
I I I I
I CEYIC I INCLUDE; INCLUDE Statement Processor I AB I
I I I I
I CEYIN I APENIN; Append Internal RLD I AM I
I I I I
I CEYLK I LINK; Link Modules Subroutine I AJ I
I I I I
I CEYLP I I..STPMD; List PMD I BB I
I I I I
I j CEYOP t I I I
I lCEYOPll I OUTPUT; Output Processor I BA I
I I I I
I CEYRN I RENAME; RENAME Statement Proceesor I AE I
! I I I
I CEYSC I SCAN; Scan Subroutine I AQ I
I I I I
I CEYTR I TRAITS; TRAITS Statement Processor I AF I
I I I I
I CEYXR I EXTREF; External Reference Search subroutine I AP I l ____________________ ~ __ ~ ____________ ~

68

COMMON AREAS (STORAGE AREAS, TABLES, AND
LISTS)

The linkage editor contains internal
storage areas, tables, and lists that are
used by more than one processor. The link­
age editor also makes repeated references
to a module's PMD, text, and ISD. The PMD
and ISO formats are described in detail in
Appendixes A and B.

COMMON INTERNAL STORAGE AREAS

Work Areas

Three work areas (WORKC1, WORKC2, and
WORKT) are used by the COMBINE statement
processor and are obtained via GETMAIN.
WORKA is a 2000-word work area which
resides in the PSECT. It is used by the
COMBINE routine and the Append RLD subrou­
tine to hold a combined RLD (Relocation
Dictionary) or a complex RLD to be linked.

TEMP Storage

TEMP is a temporary storage area that is
used for passing parameters to and from
subroutines. TEMP is in the PSECT. (The
PSECT is described at the end of this
section.)

COMMON INTERNAL TABLES AND LISTS

The tables and lists in this subsection
are presented in alphabetic order.

Exclusion Table (EXCLUD)

The EXCLUD table (Figure 8) is generated
and used by the form-3 INCLUDE statement.
It is also used by the END statement pro­
cessor. It is a variable-length table,
which consists of 2-word entries represent­
ing the alphameric names of user-supplied
external references that are not to be
resolved by linking of modules. Two point­
ers preface the table: the first pointer
is the displacement in bytes to the first
name in the table; the second pointer is
the displacement from the head of the table
to the first vacant position in the table.

While an INCLUDE statement is being PI:O­
cess ed, only those entries in the table
that were mentioned in the statement are
used.

When the END statement processor is in
operation, the entire EXCLUD table is
accessed. The table is in the PSECT.

~

SECTION 5: DATA AREAS

8 bytes

Ponter to 1st Name for this INCLUDE

Pointer to 1st Vacant Position

Alphameric Name

Alphameric Name (Cont'd.)

Alphameric Name

Alphameric Name (Cont'd.)

Figure 8. Exclusion table (EXCLUD) format

5 bytes 4 by~e$ 3 b; t f?'J

Figure 9. External name list format

External Name List (NAMES)

The External Name List (NAMES) is
generated by the APENDF (Append Definition
Table) subroutine as each module is linked.
It contains the alphameric names of all
external definitions appearing in the out­
put PMD. It is used during output proces­
sing, at which time the list location is
delivered to LPC as part of the output
parameters.

The format (Figure 9) consists of the
a-byte alphameric member name assigned to
the module, followed by a 4-byte field con­
taining the number of external definitions.
This is followed by the list of a-byte
external names. All a-byte fields are
left-justified and filled with blanks.
This area is obtained via GETMAIN.

Hash Table (HASHTB)

HASHTB is used to direct the search in
the definition tables of the output module
whenever references are chained to a
definition, or when names are checked for
existence in a definition table. HASHTB is
updated each time a module is linked by the
LINK subroutine. The hashing algorithm
produces a value representing the relative
pOSition in the hash table of a pointer
into the module. Thus, HASHTB consists of

Section 5: Data Areas 69

i-word pointers into the module. HASHTB is
127 words long and is contained in the
PSECT.

The hash value is derived in the follow­
ing manner:

1. The first four characters of the name
are -exclusively ORed" with the last
four characters of the name.

2. The result is divided by 121 and the
remainder is multiplied by 4 to get
the displacement in bytes from the
base of the hash table to the first
link in the proper hash chain. Figure
10 shows the format of HASHTB.

Rename/Combine Table (RCTBL)

An entry in the RCTBL table (Figure 11)
is generated by the RENAME statement pro­
cessor for each renamed control section and
by the COMBINE statement processor for each
combined control section. The table varies
in length and contains entries that are to
be placed in the ISD when the control sec­
tion is linked to the output module.

The table is used by the UPISD (Update
ISD) subroutine, which removes entries from
the table and places them in the composite
ISD directory. The table is reinitialized
for each module linked.

Stack Table (STACK)

The STACK table (Figure 12) holds COM­
BINE, RENAME, or TRAITS statements, as
received from LPC, until receipt of a form-
1 INCLUDE statement. The COMBINE, RENAME,
and TRAITS statement processors place
entries in STACK. STACK varies in length
and is in the PSECT. The following example
shows statements entered in the STACK
table.

Example Statements:

RENAME
TRAITS

NAME1 (NAME2)
CSECT1(PUBLIC)

WordO J[~ _________ H_e_ad __ of_s_e_a_rC_h_C_h_a_in_t_o_r_H_QS_h_V_a_lu_e_o ________ ~Jl

\Nord 126 Head of Searcn Chain for Hash Val ue 126

Hash Value 4r, where r = remainder resulting from

(LH XOR RH)

127

Where: LH ~ Left four Bytes of Name
RH ~ Right four Bytes of Name
XOR ~ Exclusive OR

Figure 10. Hash table (HASHTB) format

10

4 Bytes 4 Bytes

Pointer to Next I # Entr; es
Avai lable Position in Table

Alphameri c Output

1----- -------------
Control Section (C.S.) Name

Pointer to Next

I
Input C.S.s

Entry Used to Form Output

Alphameri c Input

1----- -- -----------

Control Section Nome

Entry 1

Text Displocement

-I.- -- -
Alphameric Input

1-------------------
Control Section Name

Text Displacement

Remaining { _l-

Entries TL _____________________________________ T...J

Figure 11. Rename/combine table (ReTBL)
format

Stack Table Format

1 Byte J Byte I Byte 1 Byte

R F N A

M E b N

A M E J

(N A M

E 2) 0

T R A J

--
T 5 b C

S E C T

I (P U

B l J C

) b

-
Figure 12. Stack table (STACK) format

Table 6. Data references by routines
r----------------T----_r------T-----T------T-----T------------~-----------T------------,

I I I I I I I PMD I Text I ISD I
I Routine Name IRCTBLIHASHTBISTACKIEXCLUDINAMES~----_r------t-----T------t-----T------I
I I I I I I I Input I Output I Input I Output I Input I Output I
~----------------t-----t------t-----+------t-----+-----+------+-----+------+-----+------1
I INANAL I X I X I X I X I X I I I I I I
I I I I I I I I I I I I
I INCLUDE I I I X I X I X I X I X I X I X I X I
I I I I I I I I I I I
I COMBINE I X I I X I I X I I X I I I
I I I I I I I I I I I
I RENAME I X I X I X I I X I I I I I
I I I I I I I I I I I
I TRAITS I I I X I I X I I I I I
I I I I I I I I I I I
I END I I I I X I I X I I X I X I
I I' I I I I I 'I I
I LINK I X I X I , I X X I X I X X I I X I
I I I , I I I I I I I
IAPENCX, APENEX, I I I I I I I I I I
I APENIN I I I I I X I X I I I I
I I I I I I I I I I I
I BRING I I I , I X I I X I X I I
I I I I I I I I I I I
I ERROR I I I I I I I I I I
I I I I I I I I I I I
I EXTREF I I I I I I X I I I I
I I I I I I I I I"
IGETCSD I I I I I X I X I I I I
I I I I I I I I I I I
I GTCSAD I I I I I X I X ! I! I
I I I I I I I I I I I
'SCAN I I I I I I I 'I'
I I I I I I 'I I I I
I OUTPUT 'I I 'I I X I I I I
I I I I I I I I I I I
I EARLY I I I I I I I I I I I I L ________________ ..l _____ i ______ ..l _____ i ______ -l. _____ ..l _____ ..l ______ ..l _____ ..l ______ ..l _____ i ______ J

REFERENCE TO TABLES AND LISTS

Table 6 shows the tables and lists
referred to by linkage editor routines.

PSECT ORGANIZATION

A general description of the contents of
the linkage editor PSECT is outlined in
Table 7. The following breakdown will help
in understanding the organization.

1. PSECT Storage

This area is always covered by regist­
er 13 and contains the following
items, grouped according to their par­
ticular function:

a. Register save area.

b. Address constants (adcons) for t.he
entry points to all routines

internal to the linkage editor.
The name fields are prefixed by
the letter A.

c. Adcons for the PSECT tables. The
name fields are prefixed by the
letter A.

d. Constants that are used by more
than one routine.

e. Register save areas: in general,
the name field is prefixed by the
letter Z.

f. Switches: in genera1 the name
field is suffixed by the letters
SW.

g. Pointers (other than those that
are maintained in general
registers) •

Section 5: Data Areas 71

h. Counters.

i. Miscellaneous storage, including
various save areas, parameter
lists for the GETLINE and POTDIAG
routines (PARGET and POTPAR), pa­
rameter list for the PMD list rou­
tine (LSPAR), storage area for
diagnostic messages (ERBOFF), ini­
tial values for GETMAIN macro

Table 7. PSECT organization

instructions, and the skeleton DCB for
accessing VPAM modules.

2. PSECT Tables

This area contains the various tables
used by the linkage editor. Adcons
for these tables are contained in the
PSECT storage area. The tables are
described earlier in this section,
under the heading "Common Internal
Tables and Lists."

r------------------T--------------T---1
I Label at Beginning I Length I I
lof Area I in bytes I Description I
~------------------+--------------+---~
I SAVE I 76 Save area. I
I PATCH I 200 Area for patches. I
I ACEYER I 80 Address constants for routines. I
IAPMD I 100 Address constants for storage areas. I
IADBl I 16 Address constants for GETLINE and POTDIAG. I
I LEBLNK I 36 Miscellaneous constants. I
IZLEl I 1,188 Temporary register save areas. I
IFTNMAIN I 60 Various switches. I
I CONSWA I 148 Pointers. I
I TOPGCT I 60 Counters. I
ICSIZE I 168 Miscellaneous storage. I
I PARGET I 40 Parameter list for GETLINE. I
IPUTPAR I 20 Parameter list for POTDIAG. I
I TEMP I 32 Temporary save areas for inter-routine parameters. I
I LBSLST I 36 Parameter list for LIBESRCH macro. I
lOSER ! 28 User information from FIND or VPAM library POD I
I I (describes modules' PMD, text, ISD location). I
ICOTBL I 24 Table of addresses of CSD tables for control sec- I
I I tions being combined. I
I LSPAR I 20 Parameter list for LSTPMD. I
I ERBOFF I 132 Diagnostic message area. I
ICINPMD I 76 Constants and page number for GETMAIN and FREEMAIN I
I I requests. I
ILBDCB I (depends on I 1
I IDCB expansion}1 DCB macro, used for getting modules from libraries. I
I TABLE I 24 I Table for GTCSAD routine (addresses of CSD tables). I
ISTMENT I 257 I Area for current linkage editor control statement. I
I MDWK I 544 I storage for PMD listing routine. I
I (A macro- I (depends on I I
Igenerated label) lmacro used) I Macro expansions into PSECT. I
IFTNSAVE I 512 I Save area for FORTRAN header. I
I MSGDIA I 3,400 I Table of diagnostic messages. I
IERTBL I 400 I Table of addresses for diagnostic messages. I
I WKPGT I 1,024 I Work area to build VMPT. I
ICOWKEMPT I 512 I Work area for external reference RLD modifier I
I I I pointers. I
ICOWKIMPT I 512 ! Work area for internal reference RLD modifier I
I I I pointers. I
I STACK I 24,000 I Stack area for control statements. I
I EX CLOD I 8,008 I External reference exclusion table built by form-3 I
I I I INCLUDE processor. I l __________________ ~ ______________ ~ ___ J

72

Page of GY28-20.30-2, Issued Fetruary 1, 1972 by TNL GN28-3216

GENERAL DEBUGGING AIDS

The system programmer (authority code 0
or P) may obtain dynamic dumps of the link­
age editor through use of the TSSS facili­
ties. See Time Sharing Support System,
GC28-2006. TSS/360's program control sys­
tem (PCS) is available to all users; to USf:

PCS, however, the user must have a copy of
the linkage editor with the PUBLIC attri­
bute removed. See Command System User's
Guide, GC2S-2001, for how to use PCS
commands.

In debugging and checkout, the followin9
points may be useful to consider:

1. Dynamic dumps of each input PMD, text,
and ISD may be taken in the BRING sub-­
routine (CEYBR) following the GET
macro instruction.

2. Dynamic dumps of the output module as
it develops following each INCLUDE
statement may be taken in the INCLUDE
statement processor (CEYIC) upon
return from the LINK subroutine; that

Table 8. Register usage

SECTION 6: DIAGNOSTIC AIDS

is, after the INVOKE ACEYLK
instruct:ions.

3. Register 8 is a pointer to the current
character position in the statement
operand.

4. Register 11 is used for local cover.

5. Register 13 is the PSECT storage cover
register.

6. Register 14 contains the subroutine
return address.

7. Register 15 contains the subroutine
entry point address (uses for the
other registers are shown in Table 8).

8. Other clues can be gained from the
counters, switches, pointers, etc. in
the PSECT (see Table 7 in Section 5).

9. Limitations exist for object module
size and number of linkage editor
statements (see Table 9).

r-----------------------T--------------T--------------T---------------------------------,
ICategory of Registers I Label I Register I Use I
t-----------------------t--------------t--------------t------.---------------------------~
I Parameter Registers I I I I
I I PO I 0 I Parameters, General Use I
I I Pi I 1 I Parameters. General Use I
I I P2 I 2 I Parameters, General Use I
I I P3 I 3 I Parameters, General Use i
I I P4 I 4 I Parameters, General Use I
I I P5 I 5 I Pa rameters, General Use I
I Volatile Registers I I I I
I I V6 I 6 I General Use I
I I V7 I 7 I General Use I
I Common RF'gis·ters I I I I
I I C8,RSTA I 8 I Statement Pointer I
I I C9, RPMD I 9 I Input PMD Pointer I
I I ClO, RTSD I 10 I Output PMD Pointer I
I I Cl1 I 11 I Local. Cover Register I
I I C12 I 12 I General Use I
I Linkage Registers I I I I
I I L13.RPSC I 13 I PSECT COVER I
I I L14 I 14 I Subroutine Return Register I
I I L1S I 15 I Branch Regist.er I L _______________________ .l ______________ .1. ______________ .l _____________________________________ J

Section 6: Diagnosti c Aids 73

Page of GY28-2030-2, Issued February 1, 1972 by TNL GN28-3216

Table 9. Size limitations and requirements
r--T----------------,
I Limitation ori I Maximum !
~---+----------------~
I Input or output object module I

II PMD 256 pages I
I Text. 256 pages I

I I ISD (Combined length of all input ISDs and the generated output 512 pages I
I ISD) I
I I
I Number of statements I
I INCLUDE No limit I
I RENAME, COMBINE, TRAITS 64 stacked I
I END 1 I
I I
I Statement length (excluding extraneous blanks and continuation 256 characters I
I characters) I
~---~----------------~
I Virtual storage requirements for linkage editor processing I
I (approximate) : I
I I
I 28 + p(m + 3) pages I
I I
I where: I
I p = the average numcer of pages per object module, including PMD, I
I text, and lSD, input to linkage editor. I
I m = the total number of input object modules. I L ___ J

74

The output from an assembler, compiler,
or the linkage editor is known as an object
module. The object module is composed of a
program module dictionary (PMD), text, and
possibly an internal symbol dictionary
(lSD) •

Each PMD consists of one PMD beading
plus as many control section dictionaries
(CSD) as there are control sections in the
module. Address pointers in the PMD are
relative to the beginning of tbe PMD,
except where otherwise specified. Some
fields in tbe PMD are filled in by the
dynamic loader. These are left zero by the
language processor or linkage editor. The
PMD format is shown in Figure 13.

PMD HEADING

1.

2.

3.

o

Length of PMD in bytes - This length
does not include the PMD preface.

Diagnostic code (1 byte) - The diag­
nostic code indicates the highest
level diagnostic message encountered
during generation of the module by the
language processor.

Flags (1 byte) - The flag bits are
numbered from left to right starting
with zero and are defined as follows:

7

L ____ Version I D Flag

I '------- FORTRAN Flag l '-------- FORTRAN Iv\oin Prog. Flag

_
____ L_--_-_-_-_-__ --_-_-_--_-------- pes Communication Flog '------------------ Link Editor Flag
'---------------"---- ISD Flag

---- Modification Flag

Bit 0 - System module; was modified by
other than a language processor.

Bit 1 - Module has an ISD. This bit
is set by the processor that creates
the PMD.

Bit 2 - Module was produced by linkage
editing. This bit is set by the link­
age editor.

APPENDIX A: THE PROGRAM MODULE DICTIONARY

Bit 3 - PCS is to be called before
module is dynamically unlinked. This
bit is set by PCS.

Not used.

Bit 5 - Module was produced by tbe
FORTRAN compiler.

Bit 6 - FORTRAN module is a main pro­
gram, not a SUBROUTINE FUNCTION or
BLOCK DATA subprogram.

Bit 7 - Version ID indicator. If this
bit is set, the module version ID is
to be interpreted as a 64-bit binary
number which is the creation date of
the module. If this bit is not set,
the version ID is eigbt alphameric
EBCDIC characters.

4. Length of PMD beading - This is tbe
lengtb in bytes of tbe PMD heading.

5.

6.

7.

8.

9.

4-Character I.D. name - The 4-
character I.D. name is supplied by the
user to serve as deck identification
if the module is puncbed into cards.
This field is currently unused.

Version I.D. - See item 3 (Bit 7 dis­
cussion) for interpretation of version
I.D.

Number of REFs for the standard entry
point - The DEF for the standard entry
point is always treated as a complex
DEF. This field contains the number
of REFs. It may be zero.

Number of modifiers for the standard
entry point - This field contains the
number of modifiers that are to be
used to compute the DEF for the stan­
dard entry point.

DEF for standard entry point - This
7-word entry describes the DEF for the
standard entry point of tbe module.
It has the same form as a DEF entry
within a CSD. The standard entry
point DEF for the module is considered
to belong to the first PSECT of the
module and is treated the same as a
complex DEF whose ENTRY statement
appears within that PSECT. If no
PSECT is declared, the standard entry
point is associated with the first
CSECT instead. This DEF entry con­
tains the following subfields which
are described under the heading
RDefinition Table" in this appendix.

Appendix A: Tbe Program Module Dictionary 75

The PMD p,e iaee r
~SyP;~t~:~dS::~;UPl
or the dynamic
loader.

o

~--------------------------~

length of PM Din Bytes

I -9-1:;.~--r-~gth :I-P-M-D----

Code __ L~gs I Heading to Bytes

PMD
Heading

4

7

10

II

12

13

14

15

16

17

18

-------- 1
For Deck

4 - Character I. D. Nome
1-_________________________ J Punchou t

Versron ID

of Module

A tphameri c Nome

t----------- - ------- ------

of Module

~------------------

Va!.Je of DEF

~---------------------------

R-Value Displocef1'\ent
(Created by 17rlkage Ed;-tor)

------------ ----------------

[CSD LINK]

I--------------------------~

(Reserved for Future Use)

1------------------------

[Search li nkJ

---------- --------------------~

A Iphameri c Name

--------- --- -------

01 REF

[Value of REF]

1---------------------------
[R-Value of REF]

[CSD LINK]

1--------------------
(Reserved for Future Use)

DEF for
Standard
Entry
Point

REF(s! for

Entry Point

~l I REF Numb., I I Byte, J McdHle,(" lor

l:f---L--------..-J-..-J-..l--------f{ Entry Point

CSD
Heading

Definition
Table

Definition(s)
Re!ocatable
Abso!ute
Complex

t'~umber Bytes in CSD

f------------------- ------I

Length of Control Section in Bytes

1-------------------

Page Number in Text of Page 0 of CS Text

CSECT

f--------------------

Version [D

.---------------------------------
[PMD lInkJ

CXD REF and----1-[-N-u-m-b-~;:REF-~~
Q REF count Control Section {user

r------------------r coun~ _______ ~
Number Relocotoble DEFs I Number Absolute DEFs

r-------------t~ber of Ext;;·~~
Number Camp lex DEFs , 1 ntemo! REfs in

1----________ I Reference Tob!~~

Attr;but., of C. S. I Numbe, Page, 01 Text

r-----------------~------------

Alphameric Nome

t----------------- -

01 DEF

--------- --------------------
Value of DEF

[Modified by LoaderJ

R-Value Displacement
[Modified by Loader]

r---------------------------- -----

[CSD Link]

1------------------------

(Reserved for f:ulure Use)

1--------------------------

[S"",eh link 1

",OTE, SRACKETED ! J ITEMS ARc FILLED IN BY THE DYNAMIC LOADER.

Figure 13. Program module dictionary format (part 1 of 2)

76

Reference
Table

A!phameric Name

~---------------

of REF

~------~--~~~---

[Volue of REF]

[R-Value of REF]

[CSD link]

{Reserved for Future Use)

~...jame of

f----------------------~---

DXD Instruction

I----------------------------j

[O-volue of REFJ

~::m~n~I~~----=::-~-----

[link to Next DXD Name J
~-~---------------------

[link to Some DXD Name]

(Resef\led for Future Use)

e---------------------------~

{Reserved for Future Use}

~-----------------

l Value of CXD 1
1-------------------------

(Reserved for Future Use)

f----------------------------~~----

(Reserved for Future Use)

[CXD REF link)

External or
Internal REF

Q REF

CXD REF

""I;od;fier
Pointers fc,r
Externa! REFs

tv\cdifiers for
External REFs

Modifier
Poi nters f,)f
Internal REFs

Modif1ers for

Intemol REFs

Virtual
Memory Page
Table

Number Modifiers for Relative location of Firs~

Page 0 of PM~ _____ ~~_~~er for P MD Page 0

Page Number in Text of 1 P~ge Number in Text?f,
Virtual Memory Page 'rn-l'! VIrtual Memory Page m

R:emoi ni n·:j CSDs

-

Complex OEF RlD

page for whiet> there

J are any Complex DEF
modifiers.

External REF RLD

Notes'
1. Modifiers for Q REFs and

CXD REFs are included in
thiS" RLD.

2. Page y is ~~e !mt text page
for which there are any
external REF modifiers.

Internal REF RLD
Note: Page z is the last text page

for which there Ofe CPI

Internol REF modifiers.

t:!!:-'!!, BRACKETED I J ITEMS ARE FILLED IN BY THE DYNAMIC LOADER.

Figure 13. Program module dictionary format (part 2 of 2)

10.

11.

a. Alphameric name of module

b. Value of DEF

c. R-Value displacement

d. CSD link

e. Reserved word

f. Search link

The alphameric name is also the name
of the module.

REF(s) for entry point - These have
the same form and function as the REFs
described in the CSD discussion below.

Modifier(s} for entry point - These
have the same form and function as the

modifiers for the RLD for complex
definitions described in the CSD dis­
cussion below, except that they apply
to the standard entry point DEF.

CONTROL SECTION DICTIONARY (CSD)

The control section dictionary has the
following components:

1. CSD heading

2. Definition table

3. Reference table

4. Relocation dictionaries (RLDs)

5. Virtual memory page table (VMPT)

Appendix A: The Program Module Dictionary 77

CSD HEADING

1. Number of bytes in CSD - This field
specifies the length of the control
section dictionary in bytes.

2. Length of control section in bytes -
This specifies the virtual memory span
of the control section. The length of
the virtual memory page table is
derived from this length. For
example, if the length of the control
section is 8192, the virtual memory
page table will contain two pages; but
if the length is 8193 bytes, the vir­
tual memory page table will contain
three pages. This value will be equal
to the highest location counter value
assigned by the language processor,
plus one.

3. Page number in text of page 0 of CSECT
text - The text for each control sec­
tion in the module occupies an inte­
gral number of pages in its resident
data set. The text pages for all con­
trol sections in a module are contigu­
ous. This number is the page number,
relative to the first page of text for
this module, of the first page of text
for this CSECT. (Numbering begins
with 0.)

4. Version I.D. - This is a 64-bit
bina.ry number which is the creation
date of the control section expressed
as the number of microseconds that
have elapsed from March 1, 1900, until
the time of CSECT creation. This num­
ber is changed by the linkage editor
when CSECT combining occurs.

5. PMD link - The PMD link is filled in
by STARTUP or the dynamic loader. It
paints to the beginning of the PMD
preface.

6. Whether CXD REF exists and number of ~
REFs. Bits from left to right
contain:

Bit 0 - Set to 0 if no CXD REF exists;
set to 1 if a CXD REF exists. (Only
one CXD REF is possible.)

Bit 1 - Not used.

Bits 2 through 14 - Number of Q REFs
(contains all zeros if none) •

7. Number of implicit references to this
control section (user count) - This is
a count of the number of REF entries
that refer to this control section and
are linked to this CSD through their
CSD link. It is computed by the load­
er. It includes both external and
internal references. This number is

18

arbitrarily set to X'7FFF' by STARTUP
for each CSECT in initial virtual
memory to prevent unloading of IVM
modules.

8. Number of relocatable definitions -
This is the number of relocatable
definitions in the definition table.
It is always at least one, namely, the
control section name DEF.

9. Number of absolute definitions - This
is the number of absolute definitions
in the definition table. It may be
zero.

10. Number of complex definitions - This
is the number of complex definitions
in the definition table. It may be
zero.

11. Number of references from this CSD -
This is the sum of external and
internal references in the reference
table. It may be zero.

12. Attributes - This halfword has one bit
set for each attribute possessed by
the control section. currently
defined attributes are shown below.
Bits are numbered from left to right
starting with o.

a. Public name (Bit 0 on) - This is
used only by the dynamic loader to
specify nonblank control sections
whose names appear in the SDST
(Shared Data Set Table). The
first such control section will
appear in the SDST under the
module name. A section may be
indicated as both having a public
name and rejected.

b. CSD has been allocated storage
(Bit 1 on) - Set by the dynamic
loader, if it applies.

c. PCSA (CGCCT) called for this CSD
(Bit 2 on) - Set by the dynamic
loader. if it applies.

d.

e.

f.

Public storage assigned by CONNECT
(CZCGA7) (Bit 3 on) - Set by the
dynamic loader, if it appli es.

Bits 4 and 5 are not used.

Common CSECT rejected (Bit 6 on) -
The dynamic loader sets this flag
to indicate to the program control
system that the CSECT was rejected
as a common CSECT that was already
loaded in another module.

g. Q REF count validity (Bit 7 on) -
The assembler, PL/I compiler, and
the linkage editor set this flag

to indicate that the count of Q
REFs in field TDYCQR is valid. If
bit 7 is off, the count is not
valid.

h. System (Bit 8 on) - Any external
symbol that appears in a CSECT
with the system attribute cannot
be referenced by a user program
unless the symbol begins with
"SYS." conversely, no reference
from a control section with a sys­
tem attribute may be to a "user"
symbol.

i. privileged (Bit 9 on) - A CSECT
with a privileged attribute is
assigned storage key C which pro­
vides fetch as well as store pro­
tect. This attribute overrides
the read-only attribute. Anything
in a privileged CSECT may be
referenced only when the PSW key
is zero.

j. Common (Bit 10) - A common section
is a control section common to all
modules in which it is declared.
Common sections are more fully
discussed in the Linkage Editor
and Assembler Language SRLs.

Common sections are of two types:

(1) Named common sections (those
with a name not all blanks).
These are treated as fixed­
length sections.

(2) Blank common sections, whose
name consists of eight blanks.
FORTRAN blank common is
assigned the variable and com­
mon attributes by the FORTRAN
compiler.

The treatment of blank common sec-­
tions differs from that of blank
non-common sections. Control sec-­
tion rejection is instituted
between blank common sections of
different modules whereas blank
non-common sections of different
modules are treated as independent
control sections. The latter are
called unnamed control sections.

k. PSECT (Bit 11 on) - If this bit is
set, it causes the dynamic loader
to override the system packing
indicator and insert this control
section as packed.

1. Public (Bit 12 on) - Control sec­
tions are not shared by CSECT name
alone. A public control section
of a module residing in a given
data set (library) is shared if

another user has access to the
same data set and module. CSECTs
of a given module need not all be
public or non-public. Fixed­
length public CSECTs with the same
attributes are assigned storage in
the same assignment. A public
CSl!:CT must not contain. relocatable
adcons (A-, V-, or R-type).

m. Read-only (Bit 13 on) - Read-only
spE'cifies that no data can be
stored in the control section.
Causes memory protection by means
of a storage class B assignment to
all pages of the control section.
Nonread-only and nonprivileged
CSECTs are assigned storage class
A.

n. Variable-length (Bit 14 on) - A
variable-length control section is
of indeterminate length. It will
be allocated pages in excess of
the length stated in the CSD
headers.

o. Fixed-length (Bit 14 off) - A
fixed-length control section is a
section of fixed length. It will
be allocated a fixed number of
pages at load time.

13. Number of pages of text - This speci­
fies the number of pages of text for
this control section in the data set.
It should be noted that this generally
does not correspond to the number of
pages in the virtual memory page
table. It cannot be larger.

DEFINITION TABLE

The definition table contains 7-word
entries, one for each external definition
in the current control section. Defini­
tions are grouped as relocatable, absolute,
and complex in that order. The first
definition in t.he table is the name of the
current. cont.col section.

A relocatable definition is an external
definition whose value may be computed as
the sum of the origin of the control sec­
tion wherein it appears, and a constant
that is the symbol's displacement from the
section origin.

An absolute definition is an EQU item
with an absolute value whose name has been
declared an entry point in the CSECT in
which the name is defined.

A complex definition is either an EQU
item with a complex relocatable value
(i.e., containing external symbols) or a
simple relocatable definition whose ENTRY

Appendix A: ThE! Program Module Dictionary 79

statement appeared within a contro~ section
other than the section in which it is
defined. The definition entry appears
within the CSD of the contro~ section that
contains the ENTRY statement. (Note that
the origin of the same contro~ section is
the R-va~ue for the DEF.) The comp~ex DEF
is required in this case, with one REF
entry that names the contro~ section in
which the DEF symbol is actually defined.

Each DEF in the definition table con­
tains the following entries:

1. Alphameric name of DEF - This field
contains the 8-character alphameric
name of the DEF.

2. Value of DEF - The va~ue of DEF is set
by the language processor and is modi­
fied by STARTUP or the loader in the
case of complex and relocatable
definitions. For re~ocatable DEFs,
the va~ue portion of the definition
entry contains the displacement value
of the symbol relative to the base of
its contro~ section. For absolute
DEFs, this entry contains the absolute
value; for complex DEFs it contains
the absolute portion of the DEF value,
which may be zero.

3. R-va~ue displacement - The "displace­
ment for R-va~uen word contains the
disp~acement of the original defining
contro~ section origin with respect to
the head of the contro~ section within
which the definition now appears.
This is required to compute valid R­
va~ues for control sections which have
been combined by ~inkage editing. In
creating the PMD, only the linkage
editor will ever produce a nonzero
value in this word.

4. CSD link - The CSD link is initially
zero. It is filled in by STARTUP or
the dynamic loader when the contro~
section is loaded. It is a pOinter to
the beginning of the CSD in which this
DEF appears, provided that neither the
DEF nor the control section has been
rejected.

5. Reserved for future use.

6. Search link - This field is filled by
the HASH SEARCH routine of either the
loader or STARTUP. It contains the
address of the beginning of the next
DEF entry, which hashes to the same
value. It contains zero if there are
no more DEFs with the same hash value
in this chain.

80

REFERENCE TABLE

The reference table is made up of 6-word
entries, one for each external symbol
referenced within the control section.
Each entry for an external or internal REF
contains the following:

1. Alphameric name of REF - This field
contains the 8-character alphameric
name of the REF.

2. Value of REF - This is filled in by
STARTUP or the dynamic loader. It
contains the value of the DEF to which
the REF refers. If the DEF is unde­
fined, it contains the address of a
portion of virtual storage wherein
reference is illegal.

3. R-value of REF - This is fi~led in by
STARTUP or the dynamic loader. It
contains the virtual storage address
of the beginning of the control sec­
tion wherein the DEF appears. This
value is obtained from the "R-value
displacement" word of the satisfying
DEF entry.

If the DEF is undefined, this word
contains the address of a portion of
virtual storage wherein reference is
illegal.

4. CSD link - This pOinter, initially
zero, is filled by STARTUP or the
dynamic loader. It points to the
beginning of the CSD wherein the DEF
that defines this REF appears. If a
corresponding DEF could not be found
upon the appearance of a REF, the CSD
link is to the beginning of t.he CSD
wherein the REF itself appears.

5. Reserved for future use.

Each entry for a Q REF contains:

1. Name of Q REF - This is the 8-
character alphameric name of a DXD
instruction or of a DSECT instruct.ion
referred to in a Q-type address
constant.

2. Q-value of REF - This is filled in by
the RESOLVE Q-REF routine of the
dynamic ~oader. It contains the dis­
placement of the dummy section defined
by the DXD instruction from the begin­
ning of the combined external dummy
sections.

3. Alignment, Length - The alignment and
length specified by the assembler or
another language processor.

4. Link to next DXD name - This is filled
in by the Q-CHAIN routine of the

dynamic loader when Q-CHAIN posts the
REF on one of the 11 hash chains for Q
REFs.

5. Link to same DXD name - This is filled
in by the Q-CHAIN routine of the
dynamic loader when Q-CHAIN posts the
REF on one of the secondary Q REF
chains for duplicate name DXDs.

Bach entry for a CXD REF contains:

1. For future use.

2. Value of CXD - This is filled in by
the EXPLICIT LINK routine of the
dynamic loader. It contains the
length of the combined external dummy
sections for modules currently loaded
in the present task.

3. For future use.

4. CXD REF link - This is filled in by
the ALLOCATE MODULE routine of the
dynamic loader as CXD REFs are chained
together.

RELOCATION DICTIONARY (RLD)

Three RLDs appear in each control sec­
tion dictionary. The three RLDs are:

1. RLD for complex definitions

2. RLD for internal references

3. RLD for external references

Each RLD has the same format consisting
of modifier pointers and modifiers. The
RLD for complex definitions differs in that
pages mentioned in this table are pages of
the PMD rather than the text.

Modifier Pointer

Modifier pointers are used to designate
the application of modifiers to adcons on
appropriate pages of text (or of the PMD
for complex DEFs). The first modifier
pointer applies to the first page; the
second modifier pointer, the second page;
etc. For an RLD there always exists at
least one modifier pointer. However, there
need not necessarily be a modifier pointer
for each page of text; the modifier point­
ers may be ended at the last text page for
which there exists any modifier.

The modifier pOinters consist of two
fields, in the left and right halfwords.

Left half - Number of modifiers of page.
This field contains the number of
modifiers that apply in this page.

Right half - Location of first modifier for
this page. This contains the location
in bytes relative to the right half of
the pointer itself for the first modi­
fier for this page. If there are
none, it points to the location where
one would have appeared if there had
been one.

A special note should be made of the
technique for determining the length
of an RLD. If one looks in the right
half of the first pointer for an RLD,
one finds the location of the first
modifier for this page. In the word
preceding the first modifier word is
the last~ modifier pointer for the RLD.
By adding the location of the right
half (of the last pointer) to the con­
tents of the right half (of the last
pointer), one gets the beginning of
the last set of modifiers. Adding to
this four times the number of modi­
fiers in the last set, one gets the
end of the RLD.

Modifier

1. L - L (2 bits) is the length in bytes
of the adcon to be modified. A value
of zero indicates a fullword (4
bytes).

2. Ref number - Reference number (14
bits) is the ordinal number in this
CSD's reference table of the reference
whose definition value is to be used
in modifying the adcon. References
are numbered starting with zero.

3. ! - T (4 bits> is the operation to be
performed in modifying the adcon by
the reference value. The values of T
currently defined are as follows:

a. Addition (T = 1) - The definition
value of the reference at
"Reference Number- is added to the
field of L bytes at the location
specified by "Byte."

b. Subtraction (T = 2) - Same as
addition, except read "subtracted
fromw for "added to."

c. R-value (T = 3) - The -R-value" of
the REF is stored into the field
of length L at the location speci­
fied by "Byte. '"

d. ~value (T = 4) - The RQ-valuew of
the REF is stored into the field
of length L at the location speci­
fied by "Byte."

e. Value of CXD (T = 5) - The value
of the CXD instruction is stored

Appendix A: The Program Module Dictionary 81

into the field of length L at the
location specified by "Byte."

4. Byte - Byte (12 bits) is the displace­
ment in bytes (from the origin of its
original containing page) of the adcon
to be modified. It should be noted
that since PMOs are packed to word
boundaries, this displacement will be
added to an address for complex DEFs
which generally is not a page
boundary.

RLD for Complex Definitions

The format of these modifiers is as
described above under "Modifier." These
modifiers apply to the values of complex
definitions; that is, the byte addresses in
the modifier will be added to the value
words of complex DEF entries in the defini­
tion table, and the page numbers in the
modifier pOinters are for pages of the pro­
gram module dictionary itself.

RLD for Text External Reference

This relocation dictionary is in the
same form as described above. It has one
pointer for each page of program text up to
that text page, which is the last to con­
tain an adcon, and appropriate modifiers
for each adcon in the text, which refers to
a symbol defined externally to this module,
to a DXD symbol, or to a CXD value. The
page numbers are based on the first page
for this control section, beginning with O.

RLD for Text Internal Reference

This is identical to RLD for text
external reference above, except that the
modifiers are to adcons in the text that
reference symbols defined within this
module, such as control section names.
This permits communication between control
sections of the same module that may be
allocated noncontiguous virtual storage.

82

VIRTUAL MEMORY PAGE TABLE (VMPT)

This table has a halfword for each page
of virtual storage that the CSECT occupies,
beginning with page 0 and continuing upward
in order.

The contents of each entry will be
either:

1. All 1-bits if the corresponding page
is empty as a result of a DS or ORG
statement.

2. The number of the page in the text
relative to the beginning of text for
this CS if the page contains code or
data.

This table is the means by which the
text of the control section is related to
the virtual memory (virtual storage)
assigned the control section. This is
because language processors do not neces­
sarily output a byte of text for each byte
of virtual storage assigned; that is, large
ORG and OS statements may result in pages
of text being skipped.

If, for example, a source program were
to begin with

ORG 10000

there would be no text output for the first
two pages of virtual storage, and the first
page of text would correspond to the third
page of the user's virtual storage. The
first two VMPT entries would be all bits,
and the third would contain zero. Within a
page, however, the bytes of text correspond
directly to the bytes of virtual storage.
ThUS, in the example above, the first page
of text would represent virtual storage
locations 8192-12,287, and the first 1808
bytes of the page of text would be vacant
(10,000-8192 = 1808). The pages of text
always begin on page boundaries within the
text module.

APPENOIX_~ THE INTERNAL SYMBOL DICTIONARY

THE COMPOSITE ~§JR In TSS/360, at user option, an internal
symbol dictionary (ISO) is built for an
object module. The ISD enables the user to
later use the cOIT@ands of the program con­
trol system (PCS> for debugging; PCS uses
the ISO to find internal symbols.

The ISDs produced by the assembler and
FORTRAN compiler differ slightly; the for­
mat of each is shown, respectively, in IBM
System/360 Time Sharing System: Assembler
Program Logic Manual, GY28-2021, and FOR­
TRAN compiler Program Logic Manual, GY28-
2019. (The PL/I compiler does not produce
an ISO.)

The linkage editor produces an object
module containing a composite ISO. This
composi·te ISD contains all ISOs from input
modules, retained just as they were upon
input and chained in the order in which the
input modules were included. In addition,
the linkage editor produces a directory
pointing to t.he retained ISDs. The format
of this directory is shown in Figure 14.
The directory and the retained input ISDs
constitute the composite ISO.

Input
Module

Remaining
Input Modu les

Figure 14.

2 B ~ytes 2 Bytes

ISD Type {OJ -~ Linkage Edit Level --------_._--._---_.---
Length of ISD (Number of Bytes)

._-------------
Displacement to Preceding ISD (Bytes)

-.---~--.-----.--------~-."---------'--'--~---------

r-- Alphameric Name of Output Module -

r--·--------------·----------------·-
Number of Input Modules

r--···---------------- -- -_._-----

r-- Alphameric Name of Input Module 1 ----
--

Displacement to Next Input Made Name (Bytes)

Displacement to ISD For Input Module (Bytes)
-- _.

Number of Output CS 's Formed from Input Module
--------------- -----,-- --~----

- Alphameric Name of Output Control Section 1 -
--------,.-.-

Number of Input CS's Used to Form Output CS
.-.----

Alphameric Name of Input
,.-- -

Control Section 1 Used to Form Output CS

-- -
Text Displacement, Control Section 1

.>--------------
....- ..-----

f---------------------- ----.---,~~---"-----,-----------

Alphameric Name of Input
r- Control Section 'n' Used to Form Output CS --
c----- ----_._------------

Text Displacement, Control Section 'n'
-.------.---

Composite ISD directory format

1

ISD Heading

Modu Ie Heading

}
Control Section
Heading

Output Control

Section 1 from
Input Module 1

Remaining Output

Control Sections from
Input Module 1

Appendix B: The Internal Symbol Dictionary 83

THE COMPOSITE ISO DIRECTORY

The directory consists of a heading and
a list of entries for each input ISD.

DIRECTORY HEADING

1. ISO type (2 bytes) - Contains 0 to in­
dicate this is a linkage-editor pro­
duced ISO.

2. Link edit level (2 bytes) - A counter
equal to 1 plus the highest linkage
edit level value present in any pre­
viously generated composite ISO. If
there are no previous composite ISOs
present, the value is 1.

3. Length of ISD (4 bytes) - The number
of bytes in the composite ISD.

4. Pointer to the first composite ISD
included (4 bytes) - A displacement in
bytes from an input ISO (if present)
which was itself the product of a pre­
vious linkage edit.

5. Alphameric name of output module (8
bytes) .

6. Number of input modules (4 bytes) -
The number of object modules used to
produce the output module.

ENTRIES FOR EACH INPUT MODULE

The composite ISD directory contains an
entry for each input module. The entry, of
variable length, relates the control sec­
tions produced in the output module to the
control sections from input modules. The
entries described below are each fullword
aligned.

1. Alphameric name of input module (8
bytes) •

2. Displacement to next input module name
(4 bytes) - The number of bytes from
the beginning of this entry to the
beginning of the next input module
entry. It will be zero if this is the
last entry.

3. Displacement to ISD for input module
(4 bytes) - The number of bytes from
the beginning of this entry to the

84

beginning of the input module's ISD.
It will be zero if the module has no
ISD.

4. Number of output control sections pro­
duced from input modules (4 bytes) -
May be less than the number of control
sections in the input module. This is
the case if any control sections are
renamed or combined.

5. Entries for output control sec~ion~ in
this form:

a. Alphameric name of output control
section (8 bytes).

b. Number of input control sections
used to produce the output control
section (4 bytes) - Zero if the
output control section is merely
one of the input control sections.
One if the output control section
was produced by renaming an input
control section. Two or more if
the control section was produced
by combining two or more input
control sections.

c. Entries for each input control
section used to produce the output
control section in this form:

el} Alphameric name of input con­
trol section (8 bytes).

(2) Displacement to text for input
control section (4 bytes) -
The number of bytes to the
first byte of the input con­
trol section's text from the
beginning of the output con­
trol section's text as pro­
duced by the linkage editor.
A non-zero value will appear
here only for second and sub­
sequent input control sections
combined to make the output
control section.

COMPOSITE ISOS AS INPUT

Object modules containing composite ISDs
(that is, modules that were produced by the
linkage editor) may be specified as input
to the linkage editor. The resultant com­
posite ISD will note that t.he particular
input ISD was itself a composite ISD.

APPENDIX C: DIAGNOSTIC MESSAGES

The message delivered by the ERROR routine is chosen from the following list according
to the error code in register 1. The number preceding each message is not part of the
message, but is used to relate the message to the error code. Each message will, at the
time it is delivered to PUDIAG, be prefaced by:

nnnnnnnbsb***

where nnnnnnn is the line number of the linkage editor control statement, b is blank, and
s is either E or W: E denotes a major error (severity level 2) and W denotes a warning
message (severity level 0).

Following is a list of the diagnostic messages, with the message numbers used on the
flowcharts and appearing in the text.

Message
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

severity
Level

2

2

2

2

2

2

o

2

2

2

2

2

2

2

o

o

o

Message Text
MODULE name IS IN SYSLIB

MODULE name DOES NOT EXIST

ILLEGAL OPERATION SYMBOL

ENTRY NAME name APPEARS IN BOTH CSECT name OF OUTPUT MODULE AND CSECT
name OF MODULE name

ENTRY NAME name ALREADY EXISTS IN CONTROL SECTION name

EXTERNAL SYMBOL name DOES NOT EXIST

THE FOLLOWING EXTERNAL REFERENCES ARE UNRESOLVED (followed by list of
names)

CONTROL SECTION name AND name TO BE COMBINED 00 NOT HAVE IDENTICAL
ATTRIBUTES

FORM-l INCLUDE STATEMENT NOT YET GIVEN

ILLEGAL USE OF NAME name

ILLEGAL DELIMITER

{ ~~;:}OF MODULE name EXCEEDS AVAILABLE VIRTUAL MEMORY. CANNOT
ISD CONTINUE

{'~~T}OF OUTPUT MODULE EXCEEDS AVAILABLE VIRTUAL MEMORY. CANNOT
ISD CONTINUE

CONTROL SECTION name OF MODULE name DUPLICATES PREVIOUSLY NAMED ENTRY
POINT

WARNING - CONTROL SECTION name OF MODULE name REJECTED. COMMON ATTRI­
BUTE CONFLICT

WARNING - CONTROL SECTION name OF MODULE name REJECTED. STORAGE PRO­
TECTION ERROR POSSIBLE

WARNING - PRIVILEGED CSECT name OF MODULE name REJECTED BY NONPRIVI­
LEGED CSECT

Appendix C: Diagnostic Messages 85

18 o

19 o

20 2

21 2

22 2

23 2

24 o

25 o

26 o

86

WARNING - REJECTED CSECT name OF MODULE name EXCEEDS LENGTH OF PRE­
VIOUS CSECT. STORAGE PROTECT ERROR POSSIBLE

THE FOLLOWING REFERENCES ARE RESOLVABLE FROM SYSLIB - (followed by
list of names)

EXTERNAL SYMBOL name DUPLICATES OUTPUT MODULE NAME

CONTROL SECTION name HAS ALREADY BEEN COMBINED

FORTRAN MAIN PROGRAM name CANNOT BE LINKED. THE OUTPUT MODULE CANNOT
CONTAIN 2 FORTRAN MAIN PROGRAMS.

STATEMENl' IS MORE THAN 256 CHARACTERS IN LENGTH.

THE STANDARD ENTRY POINT OF INPUT MODULE name CANNOT BE SAVED AS AN
AUXILIARY ENTRY POINT.

MODULE (name) PRODUCED WITH LEVEL number ERRORS.

ISD OF OUTPUT MODULE EXCEEDS 256 PAGES IN LENGTH. ISD NOT PRODUCED.

The meanings of the words defined in
this glossary apply only to their· use in
this book; these words may have slightly
different meanings in other TSS/360 publi­
cations. General TSS/360 definitions are
provided in IBM System/360 Time Sharing
System: Concepts and Faci.lities,
GC2S-2003.

absolute DEF: A DEF (external definition)
established by an assembler EQu statement
whose operand is an absolute value. For
instance, this example would produce in the
control section dictionary an absolute DEF
entry for symbol A10l whose value would be
100:

ENTRY A10l
A10l EQU 100

adcon: See address constant.

address constant: Space reserved in a pro­
gram for the address of a symbol; program
text that changes as the result of relocat­
ing the program in storage. The address
constant reserves storage in a program for
an address that cannot be known when the
program is written and ensures that the
address value will be filled in before the
code containing the address constant is
brought into main storage. In the follow­
ing assembler statement, NAMEl contains an
address constant and SUBPROG is the symbol
whose address is furnished:

NAMEl DC A(SUBPROG)

In processing address constants, the lan­
guage processors and linkage editor create
external reference (REF) entries in the
control section dictionary. These entries
enable the dynamic loader to resolve the
address constant (that is, compute the vir­
tual storage address and insert it in the
reserved text word) when the page contain­
ing the address constant is referred to
during program execution.

alias:

1. An alternate name that may be used to
refer to a member of a partitioned
data set.

2. An alternate entry point by which a
program (that is, a stored member of a
partitioned data set) may be called.

The linkage editor and language processors
all produce an external name list which is
used by the VPAM STOW system routine to

APPENDIX D: GLOSSARY

compile a list of aliases by which a pro­
gram (that is, object module) may be
called.

COMBINE:

1. A linkage editor control statement
that combines two or more control sec­
tions from an input object module into
one control section in the object
module being built by the linkage
editor.

2. The nanll~ of the linkage editor routine
that processes this statement.

Since each control section must start on a
page boundary, combining several short con­
trol sections may reduce the total number
of pages required. Page compaction in
terms of virtual or main storage may also
be achieved in TSS/360 through CSECT pack­
ing (specified as a LOGON command parame­
ter); an advantage of combining with the
linkage editor is that space is saved on
external storage as well.

common control section: A type of control
section (created with the COM assembler
language instruction or the FORTRAN COMMON
statement) which may contain areas and con­
stants referred to by independent assemb­
lies or compilations (separate object
modules) that are to be loaded for execu­
tion as one overall program. (See also
control section.)

complex DEF: Either of two types of
external definition (DEF): A type-l com­
plex DEF results from a symbol being named
as the operand of an ENTRY statement in a
control sect.ion other than the one in which
the symbol occurs as the name of a state­
ment. This DEF is an entry in the CSD of
the control section containing the ENTRY
statement. A related REF (external
reference) is created in that CSD to refer
to the control section in which the symbol
names a sta-t~ement.

A type-2 complex DEF results from an EQU
statement whose name is the operand of an
ENTRY statement and whose operands are one
or more symbols defined as external in an
EXTRN statement.

complex RLD: The part of the RLD (reloca­
tion dictionary) that contains modification
values for complex DEFs.

Appendix D: Glossary 87

composite ISD: The ISO (internal symbol
dictionary) produced by the linkage editor.
The linkage editor does not recompile a
list of internal symbols, but simply
includes in its output module each ISD
existing in input modules. The composite
ISD thus consists of:

1. Each ISD just as it appeared in its
input module, and

2. A directory which heads the composite
ISD and relates the external defini­
tions and references of each input
module to those in the output module.

control section: The smallest unit of a
program that is relocatable to virtual
storage; that portion of text specified by
the programmer to be an entity, all ele­
ments of which are to be allocated contigu­
ous virtual storage locations. A control
section begins on a page boundary and con­
sists of an integral number of pages; the
page (4096 bytes) is the smallest unit of a
program that can be placed in main storage.
Control section may refer to any section
created by the assembler language START,
CSECT, DSECT, COM, PSECT, or DXD instruc­
tions (whether directly by an assembler
programmer or indirectly by the FORTRAN or
PL/I compilers or the linkage editor) or to
the type of section created by the START or
CSECT instruction as distinguished from the
other instructions.

control section dictionary (CSD): A table
within the program module dictionary (PMD)
which contains information on the external
definitions and external references within
a particular control section. This table
makes possible communication between con­
trol sections in the same or different
object modules. There is one CSO for each
control section; the program module dic­
tionary is essentially a collection of con­
trol section dictionaries. The CSD is
divided into: a heading, a definition
table, a reference table, a relocation dic­
tionary containing modification values, and
a virtual memory page table which relates
virtual storage assigned to the object
module to the text pages it contains.

control statement: A source statement for
the linkage editor. Control statements in
the TSS/360 linkage editor are: INCLUDE
(three forms), RENAME, COMBINE, TRAITS, and
END.

CSD: See control section dictionary.

CSECT:

1. The assembler language instruction
that creates and names a control
section.

88

2. The type of control section that is
created by a START or CSECT
instruction.

CXD REF: A REF (external reference) entry
created in the reference table of the con­
trol section dictionary by a compiler or as
the result of a CXD assembler instruction.
The value of the CXD REF (which is the
length of combined external dummy sections)
is calculated and filled in by the dynamic
loader. There can be no more than one CXD
REF in any CSD.

CXD-type reference: See CXD REF.

OEF: See external definition.

definition: See external definition.

definition table: A component of the con­
trol section dictionary which contains an
entry for each external definition appear­
ing in the control section. (See also con­
trol section dictionary.)

delimiter: An indicator that separates and
organizes items of data. This indicator is
often a character (such as a blank or a
parenthesis) •

dynamic loader: A TSS/360 system component
which has two main functions:

1. As the result of some demand (such as
a CALL command), to allocate virtual
storage to object modules residing in
external storage, and

2. To resolve address constants when a
page of text within a module is actu­
ally referred to during program
execution.

The dynamic loader does not load anything
into main storage (the resident supervisor
does this); the dynamic loader merely
relates an object module's external loca­
tion on an I/O device to a logical (virtu­
al) address within a user's task by chang­
ing relative addresses within a module to
virtual addresses within a task. The
second function, resolution of address con­
stants, is dynamic in that it does not
occur until a page containing address con­
stants is referred to by a page executing
in main storage. Resolution consists of
computing the virtual storage address value
and inserting it into the space reserved
for it in the text.

END: The linkage editor control statement
which terminates control statement
processing.

entry point: Generally, any location in a
program or routine to which control can be
passed by another program or routine. (See
also standard entry pOint.)

en try po in t name:

1. A symbol whose value locates an entry
point.

2. An operand in the RENAME control
statement which must be an external
entry pOint (one defined by an ENTRY
assembler instruction or the name of a
control section statement such as
CSECT), not an internal entry point
(accessible only from some other place
within the same control section).

exclude: Pertaining to linkage editor out­
put, not to include in the output module
those object modules containing definitions
that would resolve specified external
references. The user specifies external
references he does not want resolved in a
form-3 INCLUDE statement. Presumably the
unresolved references will be resolved by
subsequent INCLUDE statements or by the
dynamic loader.

external definition (DEF): Synonymous with
external symbol definition. A type of
entry in a control section dictionary for
each external symbol in the control sec­
tion. A DEF resolves a corresponding REF
in some other control section. A DEF is
created in the control section dictionary
as the result of:

1. An object module being created (its
name is made the standard entry point
DEF and placed in the PMD header).

2. A control section being declared (its
name is made a DEF), or

3. A symbol occurring as
an ENTRY instruction.
lute DEF, relocatable
DEF.)

the operand of
(See also abso­

DEF, and complex

external dummy control section: A dummy
section (displacement map) known externally
to the module in which it is defined. Each
of different object modules forming a com­
mon program may contain one or more extern­
al dummy sections; the storage may be
secured for all of them as one block. Each
module will be able to refer to any displa­
cement represented by a dummy section
within that block. The external dummy sec­
tion is created as the result of an
assembler DXD instruction or a DSECT
instruction in association with a Q-type
address constant. (The total length of all
external dummy sections defined in object
modules loaded together must be provided
for by a CXD instruction in one of the

modules.) The external dummy section is
used mainly by the PLiI compiler and
assembler language programs that interface
with PL/I programs.

external name list: A list of control sec­
tion and entry point names produced from
external definitions by language processors
and the linkage editor and passed to lan­
guage processor control (in the case of the
PL/I compiler, to program language con­
trol). The VPAM STOW routine places these
names in the partitioned organization dire­
ctory (POD) of the library in which the
module is placed. These names become
aliases, or alternate names, by which the
module can be referred to and retrieved.

external reference (REF): Synonymous with
external symbol reference. A type of entry
in the control section dictionary for each
external symbol referred to but not neces­
sarily defined (by an ENTRY statement) in
the control section. The assembler user
creates a REF as the result of an EXTRN
instruction or by setting up a V-type, R­
type, or Q-type address constant. A REF
may also be created as the result of a com­
plex DEF (external definition). If no
corresponding external definition (DEF)
exists or is found, the REF is unresolved.

external symbol: A symbol used by more
than one control section within the same or
different object modules. (See also
external definition and external
reference.)

external symbol definition: See external
definition.

external symbol reference: See external
reference.

INCLUDE:

1. A linkage editor control statement
which has three forms:

• Form-1 -- includes into the Object
module being developed by the link­
age editor one or more input object
modules from a specified library,
and defines the input module to
which any preceding TRAITS, COMBINE,
or RENAME statements apply.

• Form-2 -- includes from a specified
library all object modules whose
external definitions resolve extern­
al references in the module being
developed by the linkage editor.

• Forro-3-- includes from a specified
library all object modules whose
external definitions resolve extern­
al references in the module being
developed by the linkage editor,

Appendix D: Glossary 89

exce2t those external references
specified.

2. The name of the linkage editor routine
that processes this statement.

inter"nal reference: A type of external
reference (REF) for a syrr~ol which is
internal to the object module (that is, it
can be resolved by an external definition
in some control section within the same
object module).

internal symbol dictionary (ISD): A table
containing the location, length, and type
of all symbols that name program elements
(the module, control sections, instruction
labels, and data areas) within an object
module. The assembler, FORTRAN compiler,
and linkage editor produce an lSD unless
the user suppresses it; the TSS/360 PLiI
compiler does not produce an lSD. The
linkage editor produces a composite lSD,
containing all ISDs present in input
modules and an initial directory pointing
to these retained ISDs. The ISD makes
possible program analysis using the TSS/360
program control system (PCS) commands.

ISD: See internal symbol dictionary.

linkage editor: A system-provided program,
in some respects similar to a language pro­
cessor, which may be optiona1ly used to:

1. Join, or link two or more object
modules into a new, comprehensive
object module, and

2. Change, or edit, control section
attributes or names, entry point
names, or external references in an
object module by producing a new
module that includes the desired
changes.

Using the linkage editor eliminates the
need to reassemble or recompile, may save
external storage and dynamic loader proces­
sing time, and may reduce paging activity
when the program is executed.

load:

1. Generally, to place data into main
storage or registers.

2. Also, in TSS/360, to place programs
(one or more related object modules)
into virtual storage.

The dynamic loader loads an object module
(that is, allocates virtual storage
addresses to it within a task) as a conse­
quence of some user or system invocation;
the program, or module, is not yet moved
into main storage. Physical transfer of
the program, or module, into main storage

90

is performed in page units by the resident
supervisor. When a page is physically
loaded into main storage, hardware­
implemented dynamic address trans1at:ion
converts the virtual address of the page
into a real main storage address.

loader: See dynamic loader.

object module: Also called a program
module or an object program module, an
object module in TSS/360 is the primary
output of a language processor or the link­
age editor. The object module is made up
of a program module dictionary (PMD) con­
taining control information, the text (that
is, the program itself), and, at the user's
option, an internal symbol dictionary
(ISD), used for program analysis. When
invoked by a user, an object module becomes
input to the dynamic loader (unless it is
already loaded).

object program module: Synonymous with
object module.

PMD: See program module dictionary.

2rogram module: Synonymous with object
module.

2rogram module dictionary (PMD): A table
at the logical beginning of an object
module containing control and descriptive
information required by routines that must
process the module. A PMD consists of a
header and one or more control section dic­
tionaries (CSDs).

2seudo-register: Synonymous with external
dummy section.

Q REF: A reference to an external symbol
that defines an external dummy section (for
instance, the name of a DXD statement).

Q-type address constant: A constant that
reserves storage for the value of the dis­
placement of a symbol into an external
dummy section into an area described by the
dynamic loader. The symbol in the Q-type
address constant must have been previously
used as the name of a DXD or DSECT instruc­
tion. (See also address constant.)

Q-type reference: See Q REF.

Q-value: A value that represents the dis­
placement of an external dummy section into
the storage area reserved for external
dummy sections. The dynamic loader supp­
lies the Q-value. A program using the Q­
value must get or reserve the storage
required for the combined external dummy
sections.

REI" : See external reference.

reference: See external reference.

relocatable DEF: A DEF (external defini­
tion) whose value during execution is
storage-location dependent. The value of a
relocatable DEF as the result of language
processing or linkage editing will be some
displacement from the beginning of the con­
trol section in which the definition
occurs. For example, if some statement at
byte location 1000, relative to the origin
of its control section, is named CHXAAA,
then

ENTRY CHXAAA

will produce a relocatable DEF entry for
the symbol CHXAAA whose value will be 1000.
The dynamic loader processes relocatable
DEFs by adding, to the value assigned by
the language processor or linkage editor,
the virtual storage address of the defining
control section.

relocation dictionary (RLD): A table
within each control section dictionary
which contains modifier pointers and modi­
fiers for address constants (adcons). Each
modifier pointer indicates a text page
within the control section that contains
address constants; each modifier contains
information which the dynamic loader uses
to determine the final value of the address
constant. There are three RLDs in each
control section dictionary: one for com­
plex DEFs, one for external references, and
one for internal references.

RLD: See relocation dictionary.

RENAME:

1. A linkage editor control statement
that changes entry paint names, con­
trol section names, or external
references, or deletes entry pOint or
control section names;

2. The name of the linkage editor routine
that processes this statement.

resolved: Applied to external reference
for which the linkage editor or dynamic
loader is able to find a corresponding
external definition.

R-type address constant: An address con­
stant whose value is the address of the
control section in which a specified symbol
was defined. For example, in

A DC R (ENTRY1)

the value inserted in location A by the
dynamic loader will be the address of the
control section in which ENTRYl was defined
<in which an ENTRY statement occurred with

ENTRYl as the operand).
constant.)

<See also address

R-value: The virtual storage location of
the origin of the control section in which
an ENTRY statement for a symbol appeared.
Conventionally, when linking to reenterable
(nonmodifiable> code in TSS/360, the v­
value locates an executable instruction to
which control is passed; the R-value of a
symbol locates the beginning of a control
section (usually a PSECT) which may be used
for modifiable storage. An R-value is also
assigned to symbols that are the names of
object modules and control sections. The
R-value of the control section is simply
the value of the control section name. The
R-value of a module is either the address
of the first PSECT in the module, or, if no
PSECT exists, of the first CSECT.

stack: To collect and hold language state­
ments pending the occurrence of some unify­
ing or clarifying statement. In the TSS/
360 linkage editor, RENAME, COMBINE, and
TRAITS control statements are stacked until
a form-l INCLUDE statement occurs; then
they are processed.

standard entry point: The location in an
object module at which program execution
will begin if the module is invoked by its
name. A user may call a program to run
(via the CALL command or by direct call) by
specifying the object module name; execu­
tion will begin at the standard entry
point. An object module may have several
entry pOints to which other programs can
pass control; it can have only one standard
entry point. The FORTRAN and PL/I compi­
lers generate a value which is the location
of the beginning of the main procedure in
the module. The assembler uses the address
of the first control section (CSECT) in the
module as the standard entry point unless
the user has specified another location as
the operand of an END statement. The stan­
dard entry point name is contained as a DEF
in the header of the PMD. The linkage edi­
tor produces a module whose standard entry
point is that of the first input module; it
also retains the standard entry point of
each input module, enabling the user to run
by name not only the linkage edited module
but any of its component input modules.

symbol: A character or combination of
characters that represents addresses or
specified absolute values. Through their
use as names and in operands, symbols pro­
vide the programmer with a way to name and
refer to elements (control sections,
instructionf5, and data areas) of a program.

text: The instructions, constants, and
reserved dai:a areas of an object module;
the program itself.

Appendix D: Glossary 91

TRAITS:

1. A linkage editor control statement
that specifies new attributes for a
designated control section.

2. The name of the linkage editor routine
that processes this statement.

type-l complex DEF: See complex DEF.

type-2 complex DEF: See complex DEF.

unresolved: Applied to external references
for which the linkage editor or dynamic
loader is unable to find a corresponding
external definition in another object
module or control section. The linkage
editor provides a list of unresolved
references at the termination of its pro­
cessing (as well as those unresolved but
resolvable by definitions in programs in
SYSLIB).

version identifier: A character string
that identifies a particular assembly, com­
pilation, or linkage editor run. The
character string can be one-to-eight
alphameric characters specified by the user
in his command, or, if defaulted, will be
the data and time of the run, supplied by
the system. The version identifier is
placed in the program module dictionary and
appears in the PMD listing section of the
list data set.

virtual address: Also called logical
address, and address generated by a program
that references virtual storage and must,
therefore, be translated into a main
storage address as it is used.

virtual memory page table (VMPT): A table
in each control section dictionary which
relates pages of text within the control

92

section to virtual storage assigned the
control section. A control section may
occupy more space in virtual storage than
its text pages require; ORG instructions
will cause virtual storage to be allocated
which does not contain text pages. The
VMPT tells whether a page is empty
(reserved) or, if it contains text, which
page it is relative to the first page in
the control section containing text.

VMPT: See virtual memory page table.

V-type address constant: A type of address
constant that reserves storage for and
whose value during program execution is the
address of an external symbol. By specify­
ing a symbol in a V-type address constant,
the assembler language EXTRN instruction
need not be used. Conventionally, when
linking to a reenterable (nonrnodifiable)
program in TSS/360, the V-type address con­
stant loaded into a register provides the
address to which control is to be passed;
the R-type address constant loaded in
another register provides the location of a
modifiable control section. For each V­
type address constant, an external
reference (REF) is created in the control
section dictionary. (See also address
constant.)

V-value: A virtual storage location that
an external symbol labelS. By convention
in TSS/360, when linking to reenterable
(nonrnodifiable) code, the V-value of a sym­
bol locates the symbol itself (provides its
address); the R-value of a symbol locates
the beginning of a PSECT which the execut­
able code may use to obtain and modify
data. V-values are provided by the dynamic
loader.

Where more than one page reference is
given, the major reference is first.

APENCX - append complex RLD
external table references 71
flowchart (Chart AM) 55
subroutine description 10,16

APENDF - append definition table
subroutine

flowchart (Chart AL) 54
subroutine description 16

APENEX - append external RLD
external table references 71
flowchart (Chart AM) 55
subroutine description 10,16

APENIN - append internal RLD
external table references 71
flowchart (Chart AM) 55
subroutine description 10,16

append complex RLD
(see APENCX)

append definition table
(see APENDF)

append external RLD
(see APENX)

append internal RLD
(see APENIN)

attributes of control sections 5

blank control sections 5
BRING - Bring PMD, Text, and ISD from
library

external table references 71
flowchart (Chart AN) 56
subroutine description 16

Bring PMD, Text, and ISD from library
(see BRING)

CFADA
(see CPC MAIN)

CFADB
(see GETLINE)

CFADC
(see PUTDIAG)

CEYBR
(see BRING)

CEYCO
(see COMBINE)

CEYCX
(see APENCX)

CEYEE
(see EARLY)

CEYEN
(see END)

CEYER
(see ERROR)

CEYEX
(see APENEX)

CEYGA

(see GTCSAD)
CEYGC

(see GETCSD)
CEYIA

(see INANAL)
CEYIC

(see INCLUDE)
CEYIN

(see APENIN)
CEYLK

(see LINN)
CEYOP

(see OUTPUT)
CEYRN

(see RENA,ME)
CEYSC

(see SCAN)
CEYTR

(see TRAITS)
CEYTS

(see linkage editor>
CEYXR

(see EXTREF)
CLEANUP - cleanup final module subroutine

flowchart~ (Chart AH) 46
subroutine description 17

Cleanup final module
(see CLEANUP)

COLLECT - collect common requirements
subroutine

flowchart (Chart AI) 47
subroutine description 17

Collect common requirements
(see COLLECT)

COMBINE - COMBINE statement processor
definition 87
external table references 71
flowchart (Chart AA) 40
subroutine description 17

Combine control sections
(see COMSUB)

COMBINE statement processor
(see COMBINE)

Command Analyzer & Executor (CA&E)
GETLINE subroutine (CFADB) 9,21
LPC MAIN routine (CFADA) 9
PUTDIAG subroutine (CFADC) 9,26

common areas
exclusion table (EXCLUD) 69
external name list (NAMES) 69
hash table (HASHTB) 69
rename/combine table (RCTBL) 70
statement stack list (STACK) 70
TEMP storage 69
work areas 69

common attribute 5
common internal storage areas

TEMP storage 69
work areas 69

common internal lists
external. name l.ist (NAMES) 69
statement stack list {STACN} 70

Index 93

common internal tables
exclusion table (EXCLUD> 69
hash table (HASHTB) 69
rename/combine table (RCTBL) 70

COMSUB - combine control sections
subroutine

flowchart (Chart AD) 45
subroutine description 18

confirmation messages 85
control section dictionary (CSD) 77-79,4

definition 88
control sections (CSECT)

attributes of 5
common 5
definition 88

control statement input/analyze
(see INANAL)

control statement processing 8
conversational mode

(see mode of operation)
CSD

(control section dictionary) 77-79,4

data areas 69
debugging aids 73
decision tables

control statement processing 12
early-end processing 34
output processing 30

DEF 89
definition table 79,88
delete entry name

(see DELNAME)
DELNAME - delete entry name subroutine

flowchart (Chart AA) 41
subroutine description 18

diagnostic aids 73
diagnostic codes 85

EARLY - early-end processor
external table references 71
flowchart (Chart CAl 67
subroutine description 34

early-end processing 34,8
Early-End processor

(see EARLY)
END - END statement processor

definition 88
external table references 71
flowchart (Chart AA) 44
subroutine description 18

END statement processor
(see END)

ERROR - error message processor
external table references 71
flowchart (Chart AO> 58
subroutine description 20

error message processor
(see ERROR)

error messages 85
EXCLUD - exclusion tabJ_e 69
Exclusion table

(see EXCLUD)
External name list

(see NAMES)
external references 11

94

External reference search
(see EXTREF)

EXTREF - external reference search
external table references 11
flowchart (Chart AP) 59
subroutine description 20

Fix ISD
(see FIXISD)

FIXISD - FIX ISD subroutine
flowchart (Chart AI) 47
subroutine description 21

general register assignments 73
GETCSD - locate control section dictionary

flowchart (Chart AP) 59
subroutine description 21

Get CSD table addresses
(see GTCSAD)

GETLINE routine (CFADB) 9,21
glossary 87
GTCSAD - get CSD table addresses

external table references 11
flowchart (Chart AQ) 60
subroutine description 21

hash table (HASHTB) 69
hashing algorithm 70
HASHTB - hash table 69

INANAL - control statement input/analyze
processor

external table references 71
flowchart (Chart AA) 36
subroutine description 22

INCLUDE - INCLUDE statement processor
'definition 89
external table references 71
flowchart (Chart AA) 37
subroutine description 23

form-l INCLUDE processing 23
form-2 INCLUDE processing 24
form-3 INCLUDE processing 24

INCLUDE statement processor
(see INCLUDE)

input modules (maximum number) 74
internal symbol dictionary (ISD) 83-84,4

composite ISD 84
composition of ISD 84
definition 90
external table references 71

ISD (internal symbol dictionary) 83,4

job library (JOBLIB) 5

language processor control (LPC> 9
LIBE SEARCH - (part of dynamic loader)

subroutine description 24
limitations 74
linkage editor

characteristics of routines 8
control sections 5

definition 90
error detection and messages 85
functions 3
input 3
interface with language processor 9
library calls 5
limitations 74
major divisions 8
object module structure 3
output 3,29
programming aids 73,85
program module dictionary 75-82,4
relationship to language processors 9,7
relationship to TSS/360 6
size considerations 74

LINK - link modules subroutine
external table references 71
flowchart (Chart AJ) 48
subroutine description 24

link modules
(see LINK)

LNK command 2
locate control section dictionary

(see GETCSD)
LPC MAIN routine (CFADA) 9
LSTPMO - program module dictionary listing
subroutine

flowchart (Chart BB) 62
subroutine description 32

Messages, diagnostic 85
MD240 subroutine

flowchart (Chart BB) 62
subroutine description 33

MD300 subroutine
flowchart (chart BC> 64
subroutine description 33

MD350 subroutine
flowchart (Chart BC) 64
subroutine description 33

MD450 subroutine
flowchart (Chart BD) 65
subroutine description 33

M0500 subroutine
flowchart(Chart BD) 65
subroutine description 33

M0600 subroutine
flowchart (Chart BE) 66
subroutine description 33

Mode of operation
conversational mode 1,3
error handling 9,20
nonconversational mode 1,3

modUles (input) 74
maximum number

modules (output) 74
size

name designations in program listings 68
NAMES - external name list 69
nonconversational mode

(see mode of operation)

object modules
definition 3,90

structure 3
(see also output modules)

output modules 3,74
OUTPUT - output processor 29

external table references 71
flowchart (Chart BA) 61
subroutine description 31

output processing 29,3
output processor

(see OUTPUT)

partitioned data sets 3
partitioned organization dictionary

(POD) 5
PMD (program module dictionary) 75-82,4
privileged attribute 5
program control system (PCS) 4
program module dictionary (PMD) 75-82,4

external table references 71
PMD listing 3

program module dictionary listing
subroutine

(see LSTPMD)
prototype attribute 5
PSECT

organization 72
storage 71

public attribute 5
PUTDIAG routine (CFADC) 9,26

RCTBL - rename/combine table 70
read-only attribute 5
REF 89
reference table 80
register assignment and usage 73
relocation dictionary (RLD) 81
rename/combine table (RCTBL) 70
RENAME - RENAME statement processor

external table references 71
flowchart (Chart AA) 41
subroutine description 26

RENAME statement processor
(see RENAME)

RLD 81,91

SCAN - scan subroutine
external table references 71
flowchart (Chart AQ) 60
subroutine description 27

scan subroutine
(see SCAN)

size requirements and limitations 74
STACK - statement stack list
statement stack list (STACK) 70
statement store area (SAVLN1) 23
storage areas (PSECT) 71
system attribute 5
system library (SYSLIB) 5

TEMP storage 69
TRAITS statement processor

(see TRAITS)
TRAITS - traits statement processor

definition 92

Index 95

external table references 71
flowchart (Chart AA) 43
subroutine description 28

update ISO subroutine
(see UPISO)

UPISO - update ISO subroutine
flowchart (Chart AK) 53
subroutine description 28

user library (USERLIB) 5

96

variable length attribute 5
virtual memory page table (VMPT) 82,92
virtual storage requirements 74

WORRC1, WORKC2, WORRT
(see common areas)

Technical Newsletter File Number 8360-31

Base Publication No. GY28-2030-2

This Newsletter No. GN28-3216

Date February 1, 1972

Previous Newsletters

IBM 8ystem/360 Time Sharing System:
Linkage Editor

OIBM Corp. 1967, 1971

This Technical Newsletter provides replacement pages for the
subject publication. Pages to be inserted and/or removed are:

73-74

A change to the text is indicated by a vertical line to the
left of the change.

Summary of Amendments

Errors concerning the size limitations imposed by the
linkage editor have been corrected.

IBM Cor/,oration. Dept. 643. NeighbOl'hood Road, Kingston. N. Y. 12401

None

PRINTED ,~ USA

GY28-2030-2

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I060t
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
I International i

t:-<
H
Z

~
Gl
I7J

I7J
tl
H
>-3
o
:;0

G)

><
tv
co
I

N
o
W
o
I

N

