File No. S360-31
GY28-2031-3

Program Logic

Version 8.1

IBM Systemn/360 Time Sharing System

Dynamic Loader

Follows the organization of the dynamic loader in
the descriptions of the loading, unloading, and special
service routines. Library maintenance, a housekeeping
function not part of the dynamic loader proper, is also
discussed.

This manual is directed to persons involved in
program maintenance, and system programmers who are
altering the program design. ' It can be used to locate
specific areas of the program, and it enables the
reader to relate these areas to the corresponding
program listings. Program logic information is not
necessary for program operation and use.

The dynamic loader assigns virtual storage for a
task's program modules and resolves address constants
for those pages referred to at execution time. In
addition, the dynamic loader deletes modules from the
task and performs several housekeeping functions.

Before using this publication, the reader must be
familiar with the contents of:

IBM System/360 Time Sharing System: Concepts and
Facilities, GC28-2003

IBM System/360 Time Sharing System: Assembler
Lanquage, GC28-2000




Fourth Edition (September 1971)

This is a revision of, and makes obsolete, GY28-2031-2 and
Technical Newsletter GN28-3128. This edition contains the
following changes:

¢ TSS/360 now supports Q-type address constants (Q-cons) and
dummy external definition symbols (DXDs), which allow the
user to define the offsets of variables from the beginning of
a table. To support this function, two new routines are
added to the loader module: (Q-CHAIN and RESOLVE Q-REF. In
addition, changes are made to EXPLICIT LINKING, ALLOCATE
MODULE, DELETE MODULE, and the program module dictionary.

® Extensive changes to DELETE MODULE, as well as changes to GET
STORAGE and LOADER LOGOFF, improve the handling of packed
control sections that are shared.

¢ When the dynamic locader encounters a control-section or
entry-point rejection condition, it checks REJMSG, a new
default value, to determine whether to issue the rejectiocn
message.

* A new routine, SETPAGE, has been added to accept and stack
requests to build external page table entries. SETPAGE will
call the supervisor routine SETXP to have external page table
entries built for contiguous virtual storage pages.

e Miscellaneous corrections and improvements are made to the
manual.

Each change to the manual is indicated by a vertical line in
the margin to the left of the change.

This edition is current with Version 8, Modification 1, of the
IBM System/360 Time Sharing System (TSS/360), and remains in
effect for all subsequent versions or modifications of TSS/360
unless otherwise noted. Significant changes or additions to this
publication will be provided in new editions or Technical
Newsletters. Before using this publication, refer to the latest
edition of IBM System/360 Time Sharing System: Addendum,
GC28-2043, which may contain information pertinent to the topics
covered in this edition. The Addendum alsc lists the editions of
all TSS/360 publications that are applicable and current.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
tormat. Page impressions for photo-offset printing were obtained
from an IBM 1403 Printer using a special print chain.

Requests for copies of IBM publications should be made to your
IBM representative or to the 1IBM branch office serving your
iocality.

A form is provided at the back of this publication for
reader's comments. If the form has been removed, comments may be
addressed to IBM Corporation, Time Sharing System/360 Programming
Publications, Department 643, Neighborhood Road, Kingston, New
York 12401.

© Copyright International Business Machines Corporation 1967,
1968, 1970, 1971



L 4

This manual describes the internal logic
of the dynamic loader of IBM System/360
Time Sharing System (TSS/360). It is
intended for persons involved in program
maintenance, and system programmers who are
altering the program design.

Each of the loader's 36 routines is
described and flowcharted. The manual
follows the organization of the loader:
four sections cover the four modules of the
dynamic loader and the subordinate routines
that each calls. Three autonomous
routines, which are entry points in the
main modules, are discussed in separate
sections.

An introductory section defines terms,
provides an overview of the loader's
operations, and concludes with a set of
decision tables which permit the reader to
trace any possible path through the
loader's routines.

Flowcharts for all routines are grouped
alphabetically in Section 9.

PREFACE

Appendixes contain additional reference
material.

Readers should have a thorough knowledge
of TSS/360 assembler language and a general
knowledge of the entire system as described
in IBM System/360 Time Sharing System:
Concepts and Facilities, GC28-2003.

PREREQUISITE PUBLICATIONS

Before using this publication, the
reader must be familiar with the contents
of:

IBM System/360 Time Sharing System:
Concepts and Facilities, GC28-2003

IBM System/360 Time Sharing System:
Assembler Language, GC28-2000

iii



CONTENTS

SECTION 1: INTRODUCTION . . . . .

Major Functions of the Dynamlc Loader

The

The

Program Modules . . . . . . .

Control Sections . . . . . . .
Module Residence -- External .
Module Residence -- Internal .
External Symbol Definitions . .
External Symbol Values . . . .
External Symbol References . .
External Dummy Sections . . . .

User Authority . . « . « . . .
Split Hash Table . . . . . . .
Load Errors . . . . .

Explicit Linking . . . . . . .
Page Relocation . . . . . . . .
Explicit Unlinking . . . . . .
Loader Logoff . . . . . . . . .
Loader Cleanup . « « « « « « =
Loader Release . . . . . « . .
Library Maintenance . . . . . .
Loading PrXOCeSS « « « « « o o o
Invoking the Loader . . « « .+ .
Allocation . ¢ ¢ ¢ 4 . e o e .
Symbol Lookup « « « «~ « « . . .
PMD Loading . « « ¢ « « « « o &
Control Section Rejection . . .

Control Section Storage Assignment . .

DEF and REF Processing . . . .
Page Relocation « . « . . . . .
Loading Example . . . . . . . .
Unloading Process . . « . « .« =
Invoking the Unloader . . .- .
Creating Deletion Candldates .
Eliminating Deletion Candidates
Module Removal . . . « .« ¢ . .
Unloading Example . . . . . . .

Dynamic Loader Construction . . . .

SECTION 2: EXPLICIT LINKING . . .

iv

Assembly Modules . . . -

Routine Labels and Loader Entry
Loader Module . . . « « « <« « .
Unloader Module . . . . . . . .
LOADER LOGOFF Mcdule . . ., . .
LIBE MAINT Module « . . « + «
Dynamic Loader Routine Linkages

EXPLICIT LINK (CzZzCDL1) . .
MAP SEARCH (CZCDLS) . . . .
BISEARCH (CGCCR)Y . . « . .
RESOLVE SYMBOL (CGCCE) . .
SET SEARCH FLAGS (CZCDL6) . . .
HASH SEARCH (CZCDLZ2) . . . . .
LIBE SEARCH (CZCDL3) . . . . .
LOAD PMD (CGCCH) . <« . « « « .
ADD PMD (CGCCN) . . . « e e e
ALLOCATE MODULE (CGCCA) « e e s
PCSA (CGCCT) . . e « o o o
CHECK DEF LEGAL (CGCCU) « e e .
SELECT HASH (CGCCB) . . . . . .
REJECT DIAG (CGCCPY . . . . . .
GET STORAGE (CGCCW) . . . . . .
SRCHPACK (CGCCC) ¢ « « « « & =

» e & &
. 8 & & &

. e e e
« e e e
« e e e
e e e e
« e e .
e e e .
e e e .
« e e
« . e e
« e e e
« e e .
Points

« e s e
“ e e .
e e e .
« e e .
« e e .
« e e .
« o e e
« o o o
“ e e e
e e e e
e e e e
e e e .
e e e .
« e e .
I
e e e .
e e e .
v e e .
e e e
e e e .
“ e e s
e e e .

s e 3 & &

Py

L S Y

¢ e« 8 & & & e &

« * & & 3 a

s & & o s

s & & & ¢ & &

« & o o & @

LY

LI Y

¢ ¢ 8

¢ a4 & ¢ + + 8 s & a * & & e @«

COODBOOODO AL LRANCUEWWR P



LINK DEFs (CGCCV) . . . . . .
O-CHAIN (CGCQC) v v o o = «
RESOLVE Q-REF (CGCRQ) . . . .
ATTACH TEXT (CGCCK) . . . . .
FIX PMD (CGCCJI) v « v « o « =
FIX (CGCCL) « v o v o o« o «
DEFINE REF (CGCCY) . . .
ADD MUTE (CGCDG) . . . .
LOADER PROMPT (CGCDPR) .
SETPAGE (CGCSP) . . . . .

SECTION 3: PAGE REIOCATION . . .

SECTION 4: EXPLICIT UNLINKING . .
EXPLICIT UNLINK (CZCDU1l) . .
DELETE CALLER MUTES (CGCDB) .
MODIFY MUT COUNTS (CGCDA) . .
MODIFY USE COUNTS (CGCDD) . .
TEST USER COUNTS (CGCDE) . .
DELETED SELECTED MUTES (CGCDC)
DELETE MODULE (CZCDU2) . . .
DROP PMD (CGCCO) . . . . .+ .

SECTION 5: LOADER ILOGOFF . . . .
LOADER LOGOFF (CZCCD1) . . .

SECTION 6: LOADER RELEASE . . . .
LOADER RELEASE (CzZCCD2) . . .

SECTION 7: LOADER CLEANUP . . . .
LOADER CLEANUP (CZCCD4) . . .

SECTION 8: LIBRARY MAINTENANCE .

LIBE MAINT (CZCDH) e o o e e
SECTION 9: FLOWCHARTS . « « o « =«
APPENDIX A: ANALYSIS AIDS . . . .
Symbol Processing « « « ¢ « o o .

Dynamic Loader Routine Index . .
Data References . . . « ¢« o o« .« .

APPENDIX B: TABLES . « o ¢ o« « =«
Access to Loader Tables . . . . .
Task Dictionary Table (TDY) . . .
TDY Heading (CHATDH) . . .
Program Module Dictionary (PMD)
PMD Group Header . . . .+ . .

PMD Preface . . . « o e .
Program Module chtlonary (PMD)

PMD Heading . « « « « « « &
Control Section Dictionary (CSD)
CSD Heading . « « « « « o o &
Definition Table . . . . . .
Reference Table . . . . . .
Relocation Dictionary (RLD) .

s s s e

-

Virtual Storage Page Table (VMPT)

Module Usage Table (CHAMUT) . .
Purpose . . . -

Links and Addresses e s e+ o @
Contents of MUTE . . . . . .
Adding MUTES . « o « « « o o«
Deleting MUTES . « <« « « « =«
MUT Count . . . « o
Storage MAP Table (CHAMAP) « .

Hash Tables (CHASHT and CHAUHT)
Vacant Space Table (VsST) . . .

.
-
-
-
-

« s 8 & s a2 s

£ s & a2 L] s & o &

L Y S

LR S R )

L S )

L T }

LR I )

L R B

LI A L I I O I .

LI T ]

¢« 8 & & &

L2 T B

¢ & & & & 3 & 2 4 0

& % & & & ¥ s s s

O S S S T S ')

4+ 8 & 5 s

.

L T S Y I I N T

¢ & & o @

¢ & o & ¢ & & &

. 8 & & &

e 5 & s 8

¢ s & 8 s s &

¢ 8 ¢ & & & o o 0

[

LI R S S B S )

L T S R

o & & s % 3 4 & & s ¢ &

.

.152
«153
.153
.156
.156
.158
.158
-159
.160
.161
.161
.161
-161
.161
.162
.163
.163
.163
.163



APPENDIX C:

APPENDIX D:

APPENDIX E:

ABBREVIATIONS . . & « o ¢« o o o « o o o =
LOADER RESTRICTIONS ¢« . . « o « o « o » «

DIAGNOSTIC MESSAGES . « & « « ¢ o o « <« &

-

INDEX o & 4 o o o o o o o o o o o« s o o o o a s a o s o o« s« »
ILLUSTRATIONS

Figure 1. Program Module Structure and Residence . . . . . .
Figure 2. Loading Example . . . .+ ¢ « &+ « ¢ o & « o o« « o « =
Figure 3. Loading Example Showing Control Section Rejection .
Figure 4. Unloading Example - Before . . . ¢« « ¢« ¢« « ¢« « « .
Figure 5. Unloading Example -- After . . . . . « . « « « . .
Figure 6. Dynamic Loader Routine Linkages . . . . . . « e .
Figure 7. Explicit Linking . . <« ¢ ¢ + ¢« ¢« ¢ 4« ¢« e s o e 4
Figure 8. Functional Diagram of Explicit Linking . . . . . .
Figure 9. Sample SDST Member Entry .« « ¢ ¢ « o « o « o « o
Figure 10. RLD Modifier Format . . . ¢ « ¢ o« & ¢ o« o o« & o « =
Figure 11. Page ReloCcation . .« o« o o v ¢ o o o o o o o o o o =
Figure 12. Explicit Unlinking . ¢« « ¢ & ¢ ¢ ¢ ¢ ¢ o o o « o« &
Figure 13. Functional Diagram of Explicit Unlinking . . . . .
Figure 14. TLoader Logoff . . . ¢ + ¢ ¢ ¢ v & ¢ e o o o o o o &
Figure 15. Loader Release . . ¢ « « &« ¢ o o o o o o o o o« o« «
Figure 16. Loader CleanuUp .+ « « « « « o « o o = o o o« s+ o «
Figure 17. Library Maintenance . . . . “ o s % e a4 w o
Figure 18. Dynamic Lcader Symbol Lookup Rules e e e e e e e
Figure 19. Symbol Posting Rules . .« .« ¢ ¢ & « 4 o o « o o o« =«
Figure 20. Task Dictionary Organization . . . . ¢ ¢« « o « o .
Figure 21. TDY Heading . . .« « .+ & ¢ o & o & o o o o o o o o =
Figure 22. DPMD Group Header . « « o « « =« « o « o o« o o« o« « «
Figure 23. Sample PMD GIOUDP =+ + « « « « o « o « o o o o o » =
Figure 24, PMD Preface . . . ¢ ¢ ¢ ¢ 4« ¢ o ¢« o« o o o o o o »
Figure 25. Format of PMD Entry . . . . . .

Figure 26. Format of MUT, MUTE Entry, and Avallable Space Entry
Figure 27. Diagram of Sample MUT, Showing Linkages and Approprlate
PMDs « o « o . e« e s+ s s e s e 8 e s a2 e e ® e = = e
Figure 28. Memory MAP Entry c * o % e s 4 ® v e e 8 e e o u »
Table 1. Load EXror SUNMMALY s + « + « o o o« « o« o o « o o o« @
Table 2. Data References by Loader Routines . . « . . . . « .
Chart AA. ADD MUTE = CGCDG « +v « « o o « o s o s o s « o o o
Chart AB. ADD PMD = CGCCN .+ + ¢ & 4 ¢ o o« « s « o o s o o o =
Chart AC. ALLOCATE MODULE - CGCCA &« v ¢ ¢ « o o o o « » o o &«
Chart AD. ATTACH TEXT — CGCCK & @ v v o o« o &« o o o s » o « =
Chart AE. BISEARCH - CGCCR . + v « & & o &« o « o o o « e o e
Chart AF. CHECK DEF LEGAL - CGCCU . . . . .+ +o « « « « e o .
Chart AG. DEFINE REF - CGCCY . « ¢ & v o v v o o o o o o o o =
Chart AH. DELETE CALLER MUTES - CGCDB . . .« + & v o o + o o+
Chart AI. DELETE MODULE - CZCDU2 ¢ v v v v o o = « o o o o « =
Chart AJ. DELETE SELECTED MUTES - CGCDC .« ¢ &4 4 « o o « o = =
Chart AK. DROP PMD = CGCCO v &+ o 4 o o o 2 o o o o o a o o o =
Chart AL. EXPLICIT LINK — CZCDL1I ¢« ¢ 4 ¢ ¢ o o o a o o o o < o
Chart AM. EXPLICIT UNLINK - CZCDU1 . . . . . . . . . s e e e
Chart AN. FIX = CGCCL . & ¢ ¢ o o o « o o o o » 2 o v« = o « =
Chart AO. FIX PMD — CGCCT ¢ e & o o « « 5 4 o « « = o« « o« s =
Chart AP. GET STORAGE = CGCCW . ¢ ¢ o ¢ o v o« ¢« o o o o o o =

- +165

.166
.168

.171



Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

AQ.

AU.

BC.

BG.

BM.

HASH SEARCH - CZCDL2 . . .
LIBE MAINT - CZCDH1T . . .
LIBE SEARCH - CZCDL3 . . .
LINK DEFS - CGCCV . . . .
LOADER CLEANUP - CZCCD4 .
LOADER PROMPT - CGCDPR . .
LOADER LOGOFF - CZCCD1 . .
LOADER RELEASE - CZCCD2 .
LOAD PMD — CGCCH « . . . .
MAPSEARCH - CZCDL5 . . . .
MODIFY MUT COUNTS - CGCDA
MODIFY USE COUNTS - CGCDD
PAGE RELOCATION - CZCDL4 .
PCSA - CGCCT « v « « = « .«
Q-CHAIN - CZCDL7 . . . . .
REJECT DIAG - CGCCP . . .
RESOLVE Q-REF - CGCRQ . .
RESOLVE SYMBOL - CGCCE . .
SELECT HASH - CGCCB . . .
SET SEARCH FLAGS - CZCDL6
SETPAGE - CGCSP . . . . .
SRCHPACK - CGCCC . « + .« .
TEST USER COUNTS - CGCDE .

LI T T S B ]

.115
-116
-117
.118
.119
<120
.121
-123
-124
.125
.126
-127
.128
.129
.130
.132
.133
.137
.139
.140
.141
.144
.145

vii






The dynamic loader operates as a set of
privileged reenterable system service rou-
tines within the virtual storage environ-
ment of IBM System/360 Time Sharing System
(TsSSs/360). The lcader's function is to
allocate virtual storage for user-selected
object modules residing in external
storage. Realizing that partitioned data
sets may be other than object modules (that
is, data that is not executable), the
dynamic loader ascertains, during the load-
ing process, whether or not the found mem—
ber is actually a module. If the member is
determined not to be a mcdule, the member
is rejected as invalid. Included among the
loader's routines is the unloader, whose
function it is to remove user-selected
object modules from the user's virtual
storage. Both loading and unloading are
performed in response to explicit user
request. The loader is dynamic in the
sense that only address constants on text
pages actually referred to at execution
time are resolved by the loader. The aux-
iliary functions of loader logoff and
library maintenance are also included in
the set of loader routines.

Program Modules

The program module is the primary output
of all TSS/360 language processors. The
input to a language processor (that is, the
FORTRAN compiler, the PL/I compiler, or the
assembler) consists of a stream of source
language statements that are translated
into hexadecimal instructions and data.
Input to the linkage editor, a service pro-
gram, consists of directive statements and
a set of object modules to be combined into
one output object module. The object mod-
ule, a member of a partitioned data set, is
divided into three parts: the program mod-
ule dictionary (PMD), one or more control
sections, and, optionally, the internal
symbol dictionary (ISD). The PMD and ISD
contain information used by system pro-
grams; the control sections contain the
"program® -- the hexadecimal instructions
and data that are the translation of the
user's source language statements.

Control Sections

The control section organization is
determined solely by the user in the case
of machine language assembly, by the user
and language processor in the case of the
FORTRAN compiler, and solely by the lan-
guage processor in the case of the PL/I1
compiler. Within the PMD (described in
Appendix B) are the control section dic-

SECTION 1: INTRODUCTION

tionaries (CSDs), which describe each con-
trol section in the mcdule. There is one
CSD for each control section and, indeed,
aside from a small amount of header infor-
mation, the PMD consists mainly of a group
of CSDs.

The language processors assign text
locations within each control section rela-
tive to the base of the control section.
This allows the dynamic loader to allocate
virtual storage independently for each con-
trol section within a module. The dynamic
loader operates on object modules as its
gross building blocks, but allocates virtu-
al storage by control section group. (A
control section group consists of all those
fixed-length control sections in a single
module having identical attributes.) If
the control section packing option is not
used, storage is allocated to the control
section group beginning on a page boundary
and for an integral number of pages; if
control section packing is used, storage is
allocated to the control section group
beginning on a doubleword boundary.
Variable-length control sections are allo-
cated storage beginning on a page boundary,
for an integral number of pages.

At the time the user creates a control
section, he may assign to it one or more of
eight attributes:

1. Fixed-length control sections -- A
fixed-length control section is allo-
cated an integral number of pages of
virtual storage by the loader. This
number of pages is the minimum that
will contain the limits of the control
section. For example, in an assembly
of CSECT A, if the location counter
stops at (decimal) 11,000, the loader
allocates three pages of virtual
storage at load time. Fixed-length is
the default attribute when variable-
length is not set.

2. Variable-length control sections -- A
variable-length control section is
allocated pages in addition to the
required minimum (defined above).

This additional number of pages is an
installation parameter. (If the
variable-length attribute bit is not
set in the CSD, the control section is
fixed-length by default.)

3. Read-only control sections -- Read-
only control sections are allocated
storage with a protection key that
prevents the user from storing or

Section 1: Introduction 1



writing into any byte of the control
section.

Privileged control sections -- Privi-
leged control sections are allocated
storage with a protection key that
disallows reference to the control
section by any other than a privileged
system service routine. An attempt by
a nonprivileged user to write or read
a privileged control section results
in a storage protection error. Privi-
leged control sections contain only
entry points whose names begin with
CHB or CZ. The normal user may not
declare privileged control sections;
the loader will erase such an attri-
bute from control sections in any mod-
ule except those that come from the
system library (SYSLIB).

System control sections =-- Control
sections marked "system" are main-
tained by the loader so as to prohibit
user reference to them, except through
SYS symbols. 8YS symbols are used to
label entry points to nonprivileged
system routines to which the user may
transfer control by a standard CALL
linkage. (Examples of such routines
are GETBUF and FREEBUF of the access
methods.)

The loader will not allow the user to
declare system control sections; the
system attribute will be uncondition-
ally erased from control sections in
any module but those that are loaded
from SYSLIB.

Only system control sections may con-
tain SYS symbols; therefore, the user
is prevented from defining symbols
beginning with SYS. (This is the only
symbol-naming restriction imposed upon
the user.)

Public control sections -- Public con-
trol sections are assigned storage by
the loader in such a way as to make
the control section available to more
than one task at the same time. For
example, if two or more tasks each
reference a public control section
named A, and that reference is
resolved from the same shared data
set, they all share the same physical
copy of A. The first task to
reference A will cause the loader to
allocate A to public (known as shared)
storage. References from other tasks,
then, will be tied to the copy already
allocated to public storage.

The use of public storage techniques
is the method by which TSS/360 imple-
ments reenterable programming. An
attempt is made to place all public

control sections of a given module
within the same segment. Public con-
trol sections must not contain any
relocatable address constants (adcons)
for external references.

7. Prototype control sections -- Proto-
type control sections (PSECTs) are
allocated storage such that they are
packed on page boundaries within a
segment. (The loader ordinarily makes
no such effort to pack nonprototype
control sections from different
modules within a segment.) PSECTs
will normally contain the private copy
of modifiable storage that is made
available to each task for public rou-
tines, the executable control sections
of which have been allocated public
storage. This modifiable storage will
consist of save areas, working
storage, and variable program data.
The normal reenterable module will
consist of a public control section
containing executable instructions and
a prototype control section containing
all the adcons and other modifiable
data.

8. Common control sections -- Any lan-
guage processors may produce control
sections with the common attribute.
The loader examines the common attri-
bute only in the event of control sec-
tion rejection and then only for diag-
nostic purposes (see Appendix E,
"Loader Diagnostics").

Module Residence —-- External

To be available to the user, each object
module must be contained in one of the pro-
gram libraries. Furthermore, the library
that contains a user~required module must
be made accessible by the task. There are
three types of program libraries in the
TSS/360 environment:

1. The system library (SYSLIB) is the
source of all standard system routines
and is available to all users.

2. The user library (USERLIB) is a pri-
vate library assigned to each user
when he joins the system. This
library is associated with the user’'s
ID and is made available to him at
LOGON.

3. The job library (JOBLIB) is a library
that the user defines by means of DDEF
commands. The user is allowed to
define any number of JOBLIBs during
‘his task, and these are normally used
for the purpose of stowing away and
retrieving object program modules
created by the language processors.



Thus, SYSLIB and USERLIB are automatic-
ally accessible to each task and to the
dynamic loader, as are those job libraries
that the user defines during his task.
These libraries form a hierarchy for
searching purposes:

1. Job libraries
2. USERLIB
3. SYSLIB

The job libraries are at the lowest
position in the hierarchy; while SYSLIB is
at the highest position (that is, it is
searched last). Within the job libraries,
a hierarchy is dictated by the order in
which the job libraries were defined; the
last-defined library will be searched
first. The user may review the job library
hierarchy by the DDNAME? command, and may
move a job library to the top of the
library list with the JOBLIBS command.

Each of these libraries must be a parti-
tioned data set. Each program module,
then, is a member of the partitioned data
set, while each entry point and non-common
control section name is an alias for that
member. Thus, a module may be lcaded by
module (that is, member) name, or by any
alias name. Object program libraries
created during the process of assembling,
compiling, or link-editing are automatical-
ly formed as partitioned data sets. The
user's only responsibility is a DDEF com—
mand, with a JOBLIB option, for each job
library that he wants to establish for his
task.

The actual dsname of the system library
is SYSLIB; of the user library, USERLIB,
while the job libraries are named by the
user -- the word JOBLIB being a keyword
operand value in the DDEF command.
Libraries defined by DDEF commands that
omit the JOBLIB keyword are not accessible
by the loader.

The purpose of the library hierarchy is
to allow supersedure of routines by hierar-
chy position. For example, if more than
one open library contains a symbol name
that is the object of search by the loader,
the symbol contained in the lowest library
in the hierarchy will be extracted.

Module Residence -- Internal

Once it has been determined that a mod-
ule is to be loaded from an external
library, it is allocated space within the
user's virtual storage. The dynamic loader
deals only with the module's PMD and text;
the module's ISD, if any, is not examined
or processed in any way. The loader trans-
fers the PMD from the partitioned data set
into a chain of PMDs known collectively as
the task dictionary (TDY). The text pages

of the module are allocated virtual storage
addresses; however, the loader itself does
not transfer the text pages. The resident
supervisor paging mechanism causes a text
page to be transferred physically to real
storage the first time the text page is
referenced by the user's code. Unre-
ferenced text pages are never transferred
into real storage. See Figure 1 for a pic-
torial summary of module structure and
residence.

External Symbol Definitions

External symbol definitions (DEFs) are
symbols within a module, referable by name
from other modules. Referability is
effected by the language processor's crea-
tion of DEF tables within the contrcl sec-
tion dictionary (CSD) which name all sym-
bols referable by other modules. DEFs
arise from three sources:

1. Creating a module causes a DEF entry
to be created for the module namne,
alternatively referred to as the stan-
dard entry point.

2. Declaring a control section (including
common) causes a DEF entry to be
created whose name is the name of the
control section. If blank common is
declared, the name is a name of
blanks. If an unnamed CSECT is
declared, its name is the module
sequence number.

3. Declaring an ENTRY statement for a
symbol causes a DEF entry to be
created whose name is the name appear-
ing in the operand field of the ENTRY
statement.

There are three types of DEFs defined
for the PMD: absolute, relocatable, and
complex.

Absolute DEFs are those whose names are
defined by an EQU statement with an operand
that is an absolute expression. For
example, the code:

ENTRY Al01
Al101 EQU 100

will produce an absolute DEF entry for the
symbol A101 whose value will be 100. The
dynamic loader does not process the value
field of absolute DEFs; the definition as
produced by the assembler becomes the value
of the symbol at execution time.

Relocatable DEFs are those whose value
is storage allocation dependent. For these
DEFs, the language processors always output
a value relative to the base of the defin-
ing control section. For example, if
CHXABA is the label of some statement at

Section 1: Introduction 3



-~
PMD 1 Transferred by Loader
TEXT for — — _ _Transferred by
csect, ([~~~ T T T 0T 7 Task Dictionary
j [ (TDY)
|
_ | ( PMD HEADING
TEXT for _ __ Poging Mechanism ; J s,
CSECT, M
l | CsD,
P
CsD
P L 3 J
! i
I
TEXT for } Only if l
CSECT T T/ |
2 I [ ]
- i | | DU B,
i |
b
oL
TEXT for o __ Referenced __ - | —_—————
CSECT3 | | Virtual Storage Pages
| ‘ > Allocated by Loader
i | for Module's Text
i SN H
i
ISD ’
S - J
a. Module residing in b. Module residing in
portitioned data set virtual storage

Figure 1.

byte location 1000 relative to the origin
of its control section, the code

ENTRY CHXAAA
will produce a relocatable DEF entry for
the symbol CHXAAA whose value will be 1000.
The dynamic loader processes relocatable
DEFs by adding to the value assigned by the
language processor the base address of the
defining control section as allocated by
the loader.

Complex DEFs are of two types. Type 1
are simply relocatable DEFs whose ENTRY
statement appears in a control section
other than the one in which the symbol
itself is defined. The DEF entry for such
a symbol always appears in the CSD of the
control section containing the ENTRY state-
ment. Clearly, then, a means must be pro-
vided to denote the control section whose
base must be added to the symbol value
created by the language processor. This is
effected by an external reference (REF)
which names the control section containing
the definition. Type 2 are DEFs of which
the symbol is defined by an EQU statement

Program Module Structure and Residence

whose operand field contains one or more
external symbols.

There is a special entry point used to
define the nominal execution starting point
for a module: the standard entry point.
The language processor prepares a complex
DEF entry for this entry point whose name
is the module name. This treatment allows
external references to modules by name;
that is, a V-con or R-con naming a module
is a legal coding practice.

External Symbol Values

TSS/360 has adopted a convention for
linkage to reenterable routines, requiring
that any external symbol have associated
with it two values:

1. The V-value, which is the virtual
storage location that the external
symbol labels.

2. The R-value, which is the virutal
storage location of the origin of the
control section in which the ENTRY



statement for that symbol appeared in
the sonrce code.

The V-value is used to identify that
instructiaon in the public, reenti:rable
CSECT that theo user wants to be executed
first s+ routine entry. The R-value is
used ta idcrt ify the origin of the related

private . The user effects this by
writing 12 PSECT an ENTRY statement
namina the 2zl of the first instruction
in the F‘ﬁ(” to be executed. By conven-
tion, +h. ronterable linkage is effected
in the TAIL wacro instruction by branching
to the 1ncation that is the V-value of the
named sywlol and at the same time making
availahls +o the called routine the R-value
of that same symbol (which is normally the
addrsna of 1o called routine's PSECT).
The follring coding example will be

used to domonstrates
A PSECY

ENTRY B

ENTRY E

ORG A+X'500°"
B BT *
c cswese

ENTRY D
E BT *
D ROU 2

Aseuning foother that the loader

aseio;o T 7700 A to virtual storage loca-
tion X*ano0at and CSECT C to virtual

storago Lo

V-val o7

Ton X'205000', these are the
=~-values for all external

Syxtl TV lue R-value DEF Type
r { L OO S —
| A }00“*“”00 100080000 |Relocatable* |
- T o et
| B i000%¢;00 IOQOBOOOO IRelocatable |
- ! Y S —_— ————
| C gOﬂj*%G“O | 00205000 |Relocatable* I
b s IS
| D gﬂ@%ﬁ“%“Z 100205000 lAbsolute |
[ ] S SR ————
i F jonaranag [00080000 xComplex {
b DI U NI WSS, }
| *¥DEF Do 1 section name |
L o e e e 1

Nct o % 0 % in this example is the only
ertry caniot 2t ot i5 properly coded to per-
mit =: 0o Tiakage; that is, the R-value
of ¥ I i “3in of PSECT A.

The DE# ouiry for a control section name
is gereorot 0 T the control section state-

ment -- not by an ENTRY statement. There-
fore, the control section name DEF entry is
always in the CSD for that control section
such that the DEF for a control section
name alilways has an R-value equal to the
V-value. (Note A and C, above.) Given
these definitions, then, a reenterable mod-
ule should not be called by a control sec-
tion name.

The program module name, or standard
entry point DEF, is treated somewhat dif-
ferently. Its V-value is the value of the
expression contained in the END statement
of an assembly; the language processor pre-
pares a complex DEF entry for the standard
entry point from the END card statement.
For example, an assembly might look like:

X CSECT
Y EQU X+U
yA PSECT

END Y

In this example, the assembler will con-
struct a complex DEF for the standard entry
point that references CSECT X. If X is
assigned virtual storage location 212000 by
the loader, the V-value for the standard
entry point will be 212004. The R-value
for the standard entry point is computed at
load time by the dynamic loader. This com-
putation results in an R-value equal to the
origin of the first declared PSECT in the
module or the first CSECT if no PSECT is
declared. Furthermore, the module name
then assumes all the attributes of the
PSECT or CSECT that defines the R~-value.

If, in this example, the module name is
M, the net result of the standard entry
point computation would be as if the fol-
lowing code had been written:

X CSECT

M EQU X+4

Z PSECT
ENTRY M
END

In the case of a blank END statement or
compiler output, the "value of the expres-
sion contained in the END statement®™ may be
taken to mean the address of the first
executable statement in the compilation.

External Symbol References

External symbol references, or REFs, are
symbols referred to within a module but
defined outside the module. The user can
create a REF by means of the assembly EXTRN
statement; symbols appearing in the operand
field of such a statement appear as REF
entries in the CSD of the control section
containing the statement. The symbols
named in V-con and R-con statements will
also generate REF entries.

Section 1: Introduction 5



REFs may also arise due to complex DEFs.
For example, if CSECT AA has some symbol,
X, and PSECT BB has the statement

ENTRY X
there will be a REF to AA within BB's CSD.

There will also be at least one REF for
the module name complex DEF. For example,
the statement

END Z

where Z is contained in CSECT CC, will
result in a REF that names CC.

External references to other modules
provide the means by which the loader links
modules implicitly; that is, in a module
the occurrence of a REF that names a symbol
not defined in the module will provoke a
search to locate that module that contains
some DEF entry whose name matches the REF
name.

External Dummy Sections

External dummy sections facilitate com-
munication between programs by allowing the
user to define work areas in several dif-
ferent programs and then at execution to
combine them into one block of storage
accessible to each program. Several dif-
ferent programs can be assembled together,
each with one or more external dummy sec-
tions; after the loader processes these
programs, the user can allocate storage for
the dummy sections in one block. An
external dummy section is defined through
the use of a DXD instruction, or a DSECT,
in combination with a Q-type DC instruc-
tion. In order to allocate the correct
amount of storage when the program is
executed, the user must use the CXD
instruction in at least one of the
programs.

User Authority

Users of TSS/360 are divided into three
authority classes. A code, identifying the
class, will be assigned to each user in
accordance with the user's programming
assignment and requirements. This assign-
ment, made when the user 1is joined, is
maintained on file by TSS/360. When the
user "logs on" the system, this authority
code is extracted from the file and asso-
ciated with his task. The user himself
never has any program control over his
authority code. The three authority codes
and classifications are:

1. Code U -- Referred to in this document
as the "normal user." This is the
classification normally assigned to

the applications programmer not con-
cerned with system maintenance.

2. Code P -- This identifies the “"system
programmer” who is concerned with a
limited level of system maintenance.

3. Code O -- This identifies the privi-
leged system programmer or system
operator, both of whom are concerned
with the highest level of system
maintenance.

The loader makes use of the authority
code in a variety of ways. In general, the
loader uses the authority code to determine
the level of system "protection" that it
will enforce in loading modules. The load-
er imposes total system protection for the
normal user, and progressively less protec-
tion for the two classes of system program-
mers. Specifically, the loader uses the
authority code to determine in which hash
table to search for or post symbols (see
"Split Hash Table"). The loader alsoc may
alter control section attributes according
to user authority and judge on the admissi-
bility of certain forms of symbols when
loading modules. The total impact of
authority codes on the loader's processing
of symbols and control sections is sum-
marized in Appendix A.

Split Hash Table

The loader employs a common symbol ran-
domizing (hashing) technique to speed sym-
bol lookup during the loading and unloading
process. This technique involves the use
of three separate tables that contain the
origin of the "hash chains" of DEF entries.
Two of the tables are used for system sym-
bols (that is, symbols found in routines
extracted from SYSLIB whose control sec-
tions are marked system). One system table
(SYSHASHP) is for symbols from privileged
control sections, the other (SYSHASHNP) for
symbols from control sections not marked
privileged (that is, nonprivileged). The
nonprivileged system table contains symbols
posted as a result of loading the assem-—
bler, FORTRAN compiler, PL/I compiler, or
linkage editor. When user authority is P
or O, only these two tables are
constructed.

In addition to the system tables, a
third hash table is constructed for the
normal user (authority U). The use of this
additional table gives rise to the term
"split hash." It is employed to provide
close control over the interface between
the normal user and system routines. This
control is effected by separating the norm-
al user's symbols from system symbols, thus
obviating erroneocus linkage from system
routines to normal user routines and vice
versa. The normal user's symbols are



placed into the user hash table (USERHASH); LOADER LOGOE

symbols from system control sections are LOADER CLEaMTY Vidm D ooniliie i
placed into the appropriate system hash . called by the cown
table. When modules are loaded and linked system logoff
together, the loader obeys the general rule procesLor .,

that REFs from system control sections are

satisfied by DEFs in the system tables, LOADER RELZARE

while REFs from control sections not marked 1
system are satisfied by DEFs in the USER- the CcOwnaia

HASH table. An exception is when a REF release roul lne,
from a nonsystem control section begins

with S¥S, in which case it can only be LIBE MATNT A spucial peage
satisfied by a DEF SYSHASHNP. This symbol ibrary seo;
resolution technique is also summarized in routine,

Appendix A.
Explicit Linki:g

*

Load Errors EXPLICITT LANKInG in oallod o L
to a LOAD or CALL muo !
Whenever the loader encounters an anoma- LOAD or RUN cCou: 2 L
lous situation in its processing, it EXPLICIT LINKING 1t = i e
advises the user by means of a message on bol. The syusblc] SUEIN .,

SYSOUT. All such diagnostic messages are control
listed in Appendix E. Certain serious or any
error conditions warrant the loader's mak- module
ing additional load error indications,

either to the task monitor or directly to
the user. Such conditions are those that

are liable to impair further execution of trol sect PR
the task (such as the loader's being unable nostic ¢} R K DR
to locate the module named on a LOAD satisfy extoraal . L
statement). lies valuves for B : ‘ T
up segment, R *
Control over this additional load error entrics Lo cuof ool
indication is in the hands of the user in cated conl ol
the case of the LOAD macro instruction.
The C2 digit within the LOAD adcon group At this poin B TV TR R
can be set by the user. Normally, this phase of the 1c.77 : R
aigit is set to zero; should a serious and virtual P 037 Ce
error occur, the user is given the appro- None of the SRR GeoUhont s y
priate diagnostic by the loader, after been actually mov: T Inta g0l 5
which control is returned with an error Instead, g ! < -t
indication to the task monitor. storage w: listad 3 T
tables as iy .
If the user should set the C2 digit to loader ha: e =
one prior to executing a LOAD or CALL macro containisy oant LI
instruction, and the lcader should detect 4 mAarked the 3 Ty g
serious error, the C2 digit is set to seven cessed by p pt ( FI
as the error indication to the calling pro- placed in Tl K

gram (which may initiate program checks for
such condition). In this case, the loader
returns to the task monitor without error
indication, and the user is not prompted by Whon the o
the command analyzer and executor. tual storage ad3reon
on an "unavailable pago
occurs. The reoid.
to this intercu

ing mechei

A
4

MAJOR FUNCTIONS OF THE DYNAMIC LOADER page frow g

dence into real ] i B

The collection of routines known as the noted that i A . ’ .

dynamic loader performs these privileged cessed by 3o i K N ’
system service functions: calls the t. . ! o

diate link:. s Eata
EXPLICIT LINKING These two make up the entranca o RRSATS
PAGE RELOCATION loading processors.

PAGE RELOCATTON 1w the ceno o

EXPLICIT UNLINKING This is the unloader. process of oo olog b 3

Section *+ Teebvon e 00



page of text in virtual storage. This
function is performed in a given task only
once for each text page with adcons. It
occurs at the first "page unavailable"
interruption; that is, when the text page
is first brought intc real storage.

The resolving of adcons always involves
the application of some REF value to the
text bytes to be resoclved. All such REF
values were already computed during the
EXPLICIT LINKING phase of the loading
process.

Explicit Unlinking

EXPLICIT UNLINKING is called in response
to a DELETE macro instruction or UNLOAD
command. The major argument to EXPLICIT
UNLINKING is the name of some symbol. The
symbol can be a module name, any control
section name, or any other module entry
point. If the argument symbol is defined
in the task, the containing module is
unloaded from the user's virtual storage,
provided the module was explicitly loaded
in the first place, and provided there are
no outstanding external symbol references
from other modules in the task defined by
DEFs within the subject module. Unloading
consists of the removal of the unloaded
module's PMD from the task dictionary and
the freeing of virtual storage for all the
unloaded control sections.

Loader Logoff

LOADER LOGOFF is called at task end by
the logoff processor for terminal house-
keeping. It is called only once per task,
and its function is to adjust the shared
data set table (SDST) to show that the cur-
rent task is no longer a shared user. User
counts for each of the task's public con-
trol sections are decremented in the SDST.
If counts are nonzero after adjustment,
only the current task is disconnected from
the shared page tables. If the user counts
go to zero after adjustment (a task might
be the only one currently using the shared
storage), the public storage is released
through FREEMAIN. Private storage is not
released by LOADER LOGOFF; the private page
tables for the task will be eliminated at
the time the task's TSI is deleted. This
deletion follows LOADER LOGOFF's
processing.

Loader Cleanup

LOADER CLEANUP is called by the command
system logoff processor at the end of each
sub-task during express batch processing.
LOADER CLEANUP calls LOADER RELEASE to
unload from virtual storage all those
modules which were loaded for the specific
sub-task, so that only IVM modules remain
in virutal storage for the next sub-task.

Loader Release

When a 'DDEF' for a job library is
released, the release command routine calls
LOADER RELEASE to unload any non-IVM
modules loaded from that library. LOADER
RELEASE determines which modules should be
unloaded, then calls EXPLICIT UNLINKAGE to
do the unloading. If any module cannot be
unloaded because of outstanding references,
a message to the user is printed and an
error return code set for the release com-
mand routine.

Library Maintenance

The LIBE MAINT routine is called to
maintain the data control block (DCBs) for
the program library list; that is, the
hierarchy of open partitioned data sets in
a task available for access by the dynamic
loader. It is called at the beginning of
each task to open the system library (SYS-
LIB) and the user's private library (USER-
LIB). Furthermore, LIBE MAINT will be
called at times during the life of a task
in response tc any JOBLIB DDEF command
entered by the user.

The dynamic loader has no direct inter-
face with LIBE MAINT. Instead, LIBE MAINT
is called by other system routines to open
and close DCBs for the user's data sets.
The open DCBs are chained together, and the
loader will make use of this chain in
attempting to locate symbols during EXPLI-
CIT LINKING.

THE LOADING PROCESS

Invoking the Loader

The user may initiate the loading pro-
cess by a LOAD or RUN command. This action
causes the command analyzer and executor to
issue a LOAD macro instruction to which the
dynamic loader responds by loading the
named module. The user may also write
inline statements in assembler macro lan-
guage to invoke the loading process. These
will take the form of the LOAD or E-type
CALL macro instruction. The LOAD macro
instruction is used only to effect the
loading of the named module; CALL causes
both loading of and branching to the nameag
module.

When CALL and LOAD macro instructions
are expanded the following code is
generated:

At the point At the point

of CALL of LOAD

DS OH LA 15, CHDESYSNDX
L 15,CHDESYSNDX+12 EX 0,0(0,1%)

L 14, CHDESYSNDX+16

ST 14,72(0,13)

BASR 14,15



while in the user's first declared PSECT
the adcon group is generated as follows:

cNOP 0,4
CHD&ESYSNDX SVC 127 SVC for expli-

cit loading

DC H'C1Cc2' Option codes

DC CL8 *name' Module name
(or alias) of
module to be
loaded

DC A{*-12) V-value of
name filled in
here by loader

DC F R-value of

name filled in
here by loader

When the DLINK SVC is executed, the task
monitor takes control and effects a type-1
implicit linkage to the dynamic loader with
GR1 pointing to a fullword that contains
the virtual storage address of the adcon
group. The loader proceeds to allocate
virtual storage for the named module and to
place the V- and R-value in the adcon
group, lcading any and all modules required
to resolve external symbols.

When the loader has completed these
actions, it returns to the task monitor.
In the case of error-free processing, the
task monitor determines whether a CALL or
LOAD was executed. (The loader's return
code indicates both error condition and
type of adcon group; that is, CALL or
LOAD.)

In the case of a LOAD, the task monitor
merely returns control to the point in vir-
tual storage immediately following the EX
instruction that occasioned the DLINK. In
the case of a CALL, the task monitor picks
up the resolved R-con and places it in the
19th word of the calling program's save
area; that is, in the 19th word following
the address contained in register 13. The
task monitor effects linkage by placing the
resolved V-value into the IC field of the
user's old PSW, so that the next time this
PSW is fetched, the called routine is
entered at the V-value location. At the
point of entry, register 13 will be point-
ing to the caller's save area, the 19th
word of which will contain the R-value, by
convention the PSECT origin of the called
routine.

In the case of an error return from the
loader while in conversational mode, the
task monitor will effect linkage to the
command analyzer and executor to prompt the

user. The task monitor disregards error
codes in the nonconversational mode.

The option codes, €1 and C2, are inter-
preted by the loader as follows:

Cl Code: A CALL is indicated when the low-
order bit is a 1. A LOAD is indicated when
the low-order bit is a 0. If the high-
order bit of the C1 byte is set in an adcon
group located in a system control section,
the loader will resolve the adcon group
symbol from the USERHASH table rather than
from one of the system tables, from which
such system adcon groups are normally
resolved when the bit is not set. This
feature is implemented so that the load
command processor, which is a system rou-
tine, may make explicit LOADs of user rou-
tires in response to the LOAD command.

C2 Code: The C2 digit governs the loader's
actions in the case of serious load errors
encountered during the response to a LOAD
macro instruction. The details of these
actions are described under "Load Errors."

Allocation

The loading process is divided into two
phases: the virtual storage allocation
(explicit linking) phase and the text page
relocation (adcon resolution) phase. The
allocation phase commences in response to
the execution of a LOAD or CALL macro
instruction; text page adcon resolution is
effected as the page to be relocated is
referenced by the user's code.

Symbol Lookup

Allocation begins with the looking up of
the symbol name to be loaded. The appro-
priate hash chain in the TDY is searched
first. If the loader finds the symbol
defined there, no allocation is necessary,
since the module defining the symbol is
already a part of the task and has had
virutal storage allocated. The loader
merely fills in the V-value and R-value in
the adcon group associated with the calling
sequence, and returns to the user via the
task monitor. If the symbol cannot be
found in the TDY, a library search is
initiated. If the symbol is not found, an
error condition exists, that is, the symbol
is undefinable for this task.

PMD Loading

If a library is found that defines the
symbol name, the defining module's PMD is
transferred from the partitioned data set
into the TDY, maintained in each task's
virtual storage. The count of modules
loaded from this library, found in the
TDTBLK portion of the JFCB, is incremented
by 1.

Section 1: Introduction 9



Control Section Rejection

After the PMD is loaded into the TDY,
each control section name within the module
is checked. Those control sections whose
names either duplicate entry point names
already within the TDY or whose names are
determined illegal (see Appendix E, “Loader
Restrictions®™) are rejected. This process
of control section rejection has the side
effect that none of the entry points
defined by the control section will be
entered into the appropriate TDY hash
chain, meaning that references to these
entry points must be satisfied elsewhere or
not at all. Control section rejection
finds its primary application in the treat-
ment of common control sections. The load-
er will accept the first common control
section it encounters of a given name (or
blank), reject all subsequent common con-
trol sections of the same name (or blank),
and tie all common references to the loaded
common control sections. Sometimes control
section rejection may be accompanied by or
caused by the anomalous conditions sum-
marized under "Loader Restrictions."

The treatment of unnamed control sec-
tions deserves some special comment here.
Unnamed common control sections are
assigned a name of eight alphameric blanks.
After the first common control section is
loaded, subsequent unnamed common control
sections will be rejected, as discussed
above.

Unnamed CSECTs are assigned a name of 16
hexadecimal zeros by the assembler. To
render such names unique to the module in
which they were declared, the loader places
a module sequence number in the low-order
16 bits of the first word of the name part
of the DEF entry and all REFs of the same
"zero" name within the module. This tech-
nique eliminates control section rejection
for unnamed CSECTs, since unnamed CSECTs
from different modules will be distinguish-
able one from another. (See Appendix D,
Restriction 12.)

control Section Storage Assignment

Virtual storage is allocated for each of
the nonrejected control sections in the
module. Fixed-length control sections of
identical attributes within a module are
allocated storage as a group. Variable-
length control sections are allocated
storage individually. (The system actually
allocates an additional fixed number of
pages in response to the variable-length
allocation request.)

Storage protection keys are set up for
each control section group at the time
storage is requested for that group.
only control sections are assigned a

Read~-

10

storage key that will not allow the user to
store in the virtual storage assigned.
Privileged control sections are assigned a
storage key that will not allow the user to
store into or to read the assigned virtual
storage. Privileged control sections wili
only be found in certain system service
routines; the user is not allowed to
declare such control sections. All other
control sections are assigned a storage key
that allows unlimited user reading and
writing of the assigned storage.

Public control sections in modules
loaded from shared data sets are assigned
shared storage, to make such control sec-
tions potentially available to other task:.
If some public control section has not pre-
viously been allocated by some other task,
the loader will assign shared storage such
that this task's copy of the control sec-
tion will be loaded into the shared
storage. 1If some public control section
has already been allocated shared storage
by another task, the current task is merely
"connected” to such shared storage; that
is, all references to such public storage
will be tied to the control section already
loaded.

Page table entries are set up for each
of the nonrejected control section text
pages. The external library storage
address is associated with each external
page table entry, and each page is marked
unavailable. The first user reference to
any byte on the page will cause an inter-
ruption. This interruption will cause the
paging supervisor to transfer the page from
the external library into real storage.

At the time the page tables are set up,
the loader checks each page for the pre-
sence of adcons. Those pages containing
adcons are marked unprocessed by the loader
in addition to the unavailable marking.

The referencing of pages marked unprocessed
by loader will cause the paging supervisor
to effect a call via the task monitor on
the page relocation entrance of the loader.
This action is described more fully under
"Relocation. "

DEF and REF Processing

The value of all DEFs in the nonrejected
control sections of the module are computed
except those DEFs whose names duplicate
DEFs previocusly loaded or whose names are
judged illegal. Duplicate or illegal DEF«
are rejected with diagnostics. Relocatable
DEFs are computed by adding to the DEF
value the virtual storage base address
allocated by the loader to the containing
control section. Absolute DEFs require no
computation. Complex DEFs are computed
last. . Recall that complex DEFs have asso-
ciated with them REFs to other control sec-



tions. If the external name to which such
a REF refers is not found in the TDY, the
entire loading process is initiated to load
a module that will so define the REF.

After the complex DEFs are computed, all of
the remaining REFs in the moduie are satis-
fied, which may effect the loading of addi-
tional modules. Such a module loading cas-
cade will proceed until all REFs in all
modules have either been satisfied or been
marked undefinable.

Note that it is quite possible for the
loader to satisfy some REF by locating an
entry point in some external library, only
to have that entry point lost in the allo-
cation process by control section rejec-
tion. For example, some module has a REF
to symbol X which is found in CSECT C in
module A in some library. During alloca-
tion, CSECT C is rejected by the prior
occurrence of some other CSECT C, such that
when allocation for module A is completed,
symbol X is still unsatisfied. The loader
checks for this condition and accommodates
it by initiating the symbol search (and
allocation cycle) once again, this time in
the next library in the hierarchy. A sym-
bol is undefined when all libraries from
the hierarchy starting point to and includ-
ing SYSLIB have been searched, yielding no
definition.

Page Relocation

Whenever a page-unavailable interruption
occurs, the paging supervisor transfers the
page into real storage and checks the
unprocessed-by-loader bit in the external
page table. If this bit is not set, no
loader action is required. If the bit is
set, the paging supervisor effects a call,
via the task monitor, on the page reloca-
tion entrance to the dynamic loader. The
loader's action, in this event, is merely
to compute the correct virtual storage
value of each adcon in the page triggering
the interrupt. The processing of adcons
will always involve the application of some
REF value to that portion of the text occu-
pied by the adcon. There are five possible
applications:

1. Add the V-value of an external or
internal REF to the text value.

2. Subtract the V-value of an external or
internal REF from the text value.

3. Store the R-value of an external or
internal REF into the text.

4. Store the value of a Q-REF into the
text.

5. Store the value of a CXD-REF into the
text.

When this page relocation occurs, all
REF values will have been satisfied (during
the allocation phase of the loader). Once
all adcons have been resolved, the loader
returns to the task monitor and eventually
to the instruction in execution when the
page-unavailable interruption occurred.

Loading Example

Assume that M1, a module already loaded,
executes the following statement:

CALL SINE, E

The loader will search the TDY looking for
some entry point named SINE. Assuming that
SINE is not currently loaded, the loader
will initjate a library search for SINE.

If found, the allocation of the module con-
taining SINE commences. Assume now that
SINE is contained in module M2, and that M2
has two REF entries whose names are R1
(satisfied in module M3) and R2 (satisfied
in module M#)}. Once storage is allocated
for M2, the two REFs will be processed. R1
will cause the loading of M3 if it is not
already loaded, and R2 will cause the load-
ing of M4 if it is not already loaded.
Assuming that M3 and M4 have no external
REFs, following the allocation for M3 and
M4, the V-value and R-value of SINE are
filled in the adcon group in M1, thus com-
pleting the allocation phase of the loading
process. Figure 2 shows the resulting
allocation and links between modules.

During the allocation, of course, all
text pages were marked unavailable and
those with adcons marked unprocessed by

M1 M2 M3
SINE
R1) o — ——— = — = [R]]
(R2) T
|
|
|
|
| M4
|
!
Lo~ i 87
tegend: ———# Indicates explicit link {CALL or LOAD)
~ = |Indicates implicit link {external REF)
[X} Indicotes DEF entry for X
(X) Indicates REF entry for X

Figure 2. Loading Example

Section 1: Introduction 11



loader. At the conclusion of allocation,
control via the task monitor will pass to
the entry point SINE in module M2. When
the branch to SINE or its V-con is inter-
preted for execution, a page unavailable
interruption probably will occur, and the
page containing SINE will be paged into
real core. If there are unprocessed adcons
on this page, the relocation phase of the
loader will be called to compute the
correct virtual storage values of these
adcons and to store them in the text, which
is in storage for the first time.

Altering the above example to show an
example of control section rejection,
assume that M4 refers to some named common
A which is defined in M4 and has also been
previously loaded as a result of being
declared in module M1l. Figure 3 is a dia-
gram of this situation. Note that common A
in M4 is rejected, and that references to A
within M4 are satisfied in module M1's com-
mon A.

THE UNLOADING PROCESS

Invoking the Unloader

The user can initiate the unloading pro-
cess by the terminal command UNLOAD, or by
the inline coding statement DELETE. The
DELETE macro instruction expands as:

EX 0, CHD6SYSNDX
Mi M2 s
T e < I S
Y — ®y e = e [R])

| (R2) S
| T
| |
| ?
: 2
l E M4
i e — {87
J -
i [l
R )

Legend: —— Indicates explicit link {CALL or LOAD)

— — —+ Indicates implicit link {external REF)

[x] Indicotes DEF entry for X
X) Indicates REF entry for X

(-{ 3 tndicates rejected Control Section

Loading Example Showing Control
Section Rejection

Figure 3.

12

at the point of call, while in the user's
first declared PSECT the DELETE adcon group
is generated as:

DS oF
CHDESYSNDX SVC 123 SVC for un-
loading
DC CL8 'name' Module name
(or alias) to
be unloaded
DC H'C3C4" Unload options

and return
code

When the Unload SVC is executed, the
task monitor takes control and effects a
type-I implicit linkage to the unloader,
with GR1 pointing to a word that points to
the DELETE adcon group. The unloader pro-
ceeds to unload the named module and pos-
sibly modules referenced by it from the
user's virtual storage, according to the
option byte, C3. Upon completion of the
unloading process, the unloader returns to
the task monitor, which then xeturns toc the
user's code following the EX instruction.

The first byte of the halfword of
options and return code is used to allow
two variants to the standard DELETE:

1. The high-order bit of C3 may be set to
reverse the effects of the system
attribute of the control section con-
taining the DELETE adcon group. (See
the discussion of the CALL/LOAD adcon
group high-order C1 bit, under "The
Loading Process.") This feature is
implemented so that the UNLOAD command
processor, a system routine, can issue
DELETE macro instructions on user
modules in response to the UNLOAD ter-
minal command.

2. The low-order bit of C3, if set,
directs the loader to unload only the
module defined by name in the DELETE
adcon group. The unloader makes no
attempt in this case to delete modules
referenced by the named module.

C4 is used to contain the unloader's
return code.

Creating Deletion Candidates

The explicit unlinking entrance to the
dynamic loader is called whenever a DELETE
macro instruction is executed. The major
argument is some symbol, either a module
name or alias (control section name or
other entry point name) whose containing
module is to be unlinked from all other
programs and deleted from the task.



Module deletion, or unlinking, includes

several processes:

1. Locating all expiicit references to
the module to be deleted and "rearm-
ing” them.

2. Tracing explicit references from this
module to identify subordinate modules
that may be deleted as well.

3. Tracing implicit references from this
module for the same purpose as (2).

4. Deleting all extant DEFs defined in
the deletable modules from the DEF
chains.

5. Deleting all control sections and fre-
eing allocated storage.

6. Deleting all deletable modules® PMDs
from the TDY.

A deletion candidate, then, is either a
module whose name (or alias) appears in the
DELETE statement (primary candidate), or
another module (secondary candidate) that
is referenced by the primary or by the
other secondary candidate. There are two
ways in which a module may reference anoth-
er module. An explicit reference is
effected by a module's executing a LOAD cxr
CALL macro instruction naming an external
symbol defined in another module. An
implicit reference is effected by a modu-
le's having a REF entry that is satisfied
by a DEF entry in another module.

The allocation phase of the loading pro-
cess sets up appropriate explicit and
implicit chains linking referenced PMDs
with referencing PMDs. Secondary deletion
candidates are located during the unloading
process by tracing these chains and placing
every referenced module on a candidate
list. This tracing process cascades until
all modules referenced by the primary and
secondary deletion candidates have them-
selves become deletion candidates.

Eliminating Deletion Candidates

Only those deletion candidates that have
no outstanding explicit or implicit
references to them are retained on the can-
didate list. The removal of any candidate
on the list may result in the removal of a
previous candidate from the list. Now this
process is reiterated until a stable can-
didate list results, and all those modules
remaining on the list may be deleted from
the task.

There is one exception to the forgoing
algorithm. The primary deletion candidate

is deleted so long as there are no out-
standing implicit references to it. Expli-
cit references to the primary candidate are
traced to their source {CALL or LOAD adcon
group), and the origindl SVC is “"rearmed"
such that subsequent execution thereof will
cause reloading of the deleted module.

Module Removal

At this point, storage is released for
all nonrejected control sections of all
modules to be deleted. The DEFs in each
control section are removed from the TDY
DEF chains, the Q-REFs in each control sec-
tion are removed from the chain of Q-REFs,
and the PMD itself is deleted from the TDY.
This process is repeated for each module to
be deleted. Unloading is complete when the
last module on the deletion list has been
removed from the task.

If the low-order bit of the C3 option
byte is set, only the primary deletion can-
didate is entered on the candidate list;
the tracing of implicit and explicit links
is eliminated.

Unloading Example

Figure 4 shows the allocation for six

modules. Module A has explicit links to B
and E. Mocule B has explicit links to C
and F. Note that module ¢ implicitly links

to D, which implicitly links to E, which
implicitly links to F. If the statement
DELETE B is executed from within module A,
the unloading action is shown in Figure 4.

Legend: ———» indicates explicit reference

— —=» indicates implicit reference

Figure 4. Unloading Example - Before

Section 1: Introduction 13



B is placed on the candidate list. B's
references are traced; this results in C
and F being added to the candidate 1list.
C's references are traced; this results in
D being added to the list. F has no
references, so it causes no new secondary
candidates to be added. WNow D's references
are traced, resulting in E being added to
the list. E references only F, which is
already on the list.

Now all modules are checked for out-
standing references. B has one outstanding
reference (from A); but since B is the pri-
mary deletion candidate, this explicit lin-
kage in A is rearmed in such a way that B
remains in the list. Modules C and D have
no outstanding references, so they also
remain. Note, however, that E has an
explicit link from A that is outstanding.
Thus, E is removed from the list, reestab-
lishing the implicit 1link between E and F.
F is examined, and it is discovered that F
has an outstanding implicit reference (just
reestablished from E). Thus, F is removed
from the list.

At this point, modules B, C, and D are
deletion candidates, and none has any out-
standing references. Unloading proceeds,
then, with the removing of modules B, C,
and D from the task. This results in the
allocation diagrammed in Figure 5.

~~~~~~~~~ -»
- ——» explicit reference
— = — — -»  implicit reference

Figure 5. Unloading Example -- After

DYNAMIC LOADER CONSTRUCTION

Assembly Modules

The routines of the dynamic loader are
contained in four assembly modules:

1. The loader module is composed of
EXPLICIT LINKING and PAGE RELOCATION.
This is the largest of the four
assembly modules and bears the module
name CZCDL.

2. The unloader, EXPLICIT UNLINKING, is
contained in the second assembly mod-
ule, CZCDU.

3. The third assembly module, CZICCD, con-

sists of the LOADER LOGOFF, LOADER

RELEASE and LCADER CLEANUP routines.

14

4. The last assembly module, CZCDH, con-
sists of the LIBE MAINT service
routine.

Routine Labels and Loader Entry Points

The dynamic loader is diwvided into small
functional subroutines that bear mnemonic
titles as well as coded labels. There are
two types of coded labels: those that are
solely internal and those that are made
external symbol definitions as well by
means of ENTRY statements. The internal
labels all begin with the letters CGCC or
CGCD. The external labels are all coded as
complex definitions; the first five charac-
ters are the same as the assembly module
name. For example, PAGE RELOCATION is con-
tained in the loader module CZCDL and bears
the coded label, CZCDL4.

The labels are placed in the assembly
code 50 as to name the first instruction ot
the subroutine. The coded labels used to
describe the loader routines in this docu-
ment will coincide exactly with the coded
labels in the assembly modules. Thus, the
routine mnemonically titled ALLOCATE MODULE
bears the label CGCCA in both this manual
and in the code, while DELETE MODULE is
identified (externally as well as internal-
ly) by the label CZCDU2.

The entry points of the four assembly
modules of the dynamic loader are labeled
as follows:

EXPLICIT LINKING CZCDL1
EXPLICIT UNLINKING CZCDU1
LOADER LOGOFF CZCCD1
LIBE MAINT CZCDH1

In addition to the four main entry
points, certain other subroutines of the
loader have been coded with external
labels. These routines may be entered by
another privileged routine using standard
type-I linkage. One of the routines, LIBE
SEARCH, has a macro instruction associated
with it, LIBESRCH, which will expand into
either type-I or type-II linkage, depending
on the DCLASS of the assembly module in
which the macro instruction is contained.
The loader routines HASH SEARCH, LIBE
SEARCH, MAP SEARCH and PAGE RELOCATION are
used by other system programs and are,
therefore, coded with external labels. The
loader routines Q-CHAIN and RESOLVE Q-REF
were put in a separate control section to
reduce paging. The loader routine SET
SEARCH FLAGS was made external so that it
might be entered from the unloader assembly
module; similarly, the unloader routine
DELETE MODULE was made external so that it
might be entered from the loader assembly



module. The loader logoff routines LOADER
RELEASE and LOADER CLEANUP have external
labels since they are called by other sys-
tem programs.

Each of the four assembly modules is
coded as a set of reenterable virtual
storage subroutines. The executable
instructions and nonvariable data are
placed in control sections with the public,
privileged, and system attributes. The
variable data and save areas are contained
in prototype control sections that have
privileged and system attributes. The con-
trol sections are named using the five
characters of the module name with a P or C
suffixed to indicate PSECT and CSECT,
respectively.

The following tables summarize the con-
struction and content of the dynamic loader
assembly modules. The names of the main
entry points are underlined.

Loader Module

MODULE NAME: CZCDL

CSECT: CZCDLB (PRVLGD, SYSTEM,
PUBLIC)

ENTRY POINTS: CZCDL7 (Q-CHAIN)

OTHER ROUTINES: CGCRQ (RESOLVE Q-REF)

CSECT: CZCDLC (PRVLGD, SYSTEM,
PUBLIC)

CZCDL1 (EXPLICIT LINK)

CZCDL2 (HASH SEARCH)

CZCDL3 (LIBE SEARCH)

CZCDL4 (PAGE RELOCATION)

CZCDLS5 (MAP SEARCH)

ENTRY POINTS:

CZCDL6 (SET SEARCH FLAGS)
OTHER ROUTINES: CGCCA (ALLOCATE MODULE)

CGCCB (SELECT HASH)

CGCCC  (SRCHPACK)

CGCCE (RESOLVE SYMBOL)

CGCCH (LOAD PMD)

CcGCCJ (FIX PMD)

CGCCK (ATTACH TEXT)

CGCCL  (FIX)

CGCCN (ADD PMD)

CGCCP (REJECT DIAG)

CGCCR (BISEARCH)

CGCCT (PCSA)

CGCCU (CHECK DEF LEGAL)

CGCCV (LINK DEFS)

CGCCW (GET STORAGE)

CGCCY (DEFINE REF)

CGCDG (ADD MUTE}

CGCDPR (LOADER PROMPT)

CGCSP (SETPAGE)

PSECT: CZCDLP (PRVLGD, SYSTEM)

Unloader Module

MODULE NAME: CZCDU

CSECT: CZCDUC (PRVLGD, SYSTEM,
PUBLIC)

ENTRY POINTS: CZCDU1 (EXPLICIT
UNLINKING)

CZCpU2 (DELETE MODULE)

OTHER ROUTINES: CGCCO (DROP PMD)
CGCDhA (MODIFY MUT
COUNTS)
CGCDB (DELETE CALLER
MUTES)
CGCDC (DELETE SELECTED
MUTES)
CGCDbD (MODUFY USE
COUNTS)
CGCDE (TEST USER COUNTS)
PSECT: CZCDUP (PRVLGD, SYSTEM)

LOADER LOGOFF_ Module

MODULE NAME:
CSECT:

CZCCD

CZCCDC (PRVIGD, SYSTEM,
PUBLIC)

CZcCD1 (LOADER LOGOFF)

CZCCD2 (LOADER RELEASE)

CZCCD4 (LOADER CLEANUP)

CZCCDP (PRVLGD, SYSTEM)

ENTRY POINTS:

PSECT:

LIBE MAINT Module

MODULE NAME:
CSECT:

CZCDH

CZCDHC (PRVLIGD,
PUBLIC)

CZCDH1 (LIBE MAINT)

CZCDHP (PRVLGD, SYSTEM)

SYSTEM,

ENTRY POINTS:
PSECT:

Dynamic Loader Routine Linkages

The following sections discuss the basic
functions of the dynamic loader: EXPLICIT
LINKING, EXPLICIT UNLINKING, LCADER LOGOFF,
LIBE MAINT, PAGE RELOCATION, LOADER RELEASE
and LOADER CLEANUP. Each of the first
three of these functions consists of a main
routine and several subordinate loader rou-
tines called to support the main routine.
The main routine is discussed first, fol-
lowed by its subordinate routines, in the
order in which they are called by the main
routine. LIBE MAINT has no subordinate
loader routines. PAGE RELOCATION, LOADER
RELEASE and LOADER CLEANUP, although they
are entry points within main modules, are
not subordinate to the main routines, but
are called by other system programs to per-—
form special functions. These routines
call other loader routines during their
execution, and are described in the same
manner as the main routines.

Figure 6 is designed to show at a glance
the calling and called relationship among
the dynamic loader routines. The top row
of the chart shows the main entry points of
the four dynamic loader modules along with
the special purpose PAGE RELOCATION, LOADER
RELEASE, and LOADER CLEANUP routines.

All the routines in rectangular blocks
in Figure 6 are routines with external
entry points, which may be entered by type-
I linkage from other privileged routines.
The other routines, in square blocks, are
internal to their ass=mbly modules and are

Section 1: Introduction 15



entered by restricted linkage. The INVOKE
macro instruction is used for routine
entrance; general registers 2 through 8 are
generally considered volatile and not saved
by the called routine.

Note in Figure 6 that all but two con-
nective links are shown as solid lines in
the downward direction, indicating the
unilateral nature of the linkage. One
exception is the upward dashed arrow from
DEFINE REF to RESOLVE SYMBOL which is shown
to point out the bilateral nature of this
linkage. 1In fact, the four routines
RESOLVE SYMBOL, FIX PMD, FIX, and DEFINE
REF form a unique processing chain in which
it is possible for DEFINE REF to enter
RESOLVE SYMBOL recursively under conditions
described in Section 2. Another exception
is the horizontal dashed arrow from LOADER
RELEASE to EXPLICIT UNLINKING, which indi-
cates that EXPLICIT UNLINKING, one of the
four loader modules, can be entered from
LOADER RELEASE, a routine within another
module.

16

The charts on the following pages sup-
plement Figure 6 by showing, in addition to
the calling relationship, the conditions
prerequisite to the call. The charts are
divided into levels which describe the
relationship between the routines. The
four main lcader routines and the special
purpose routines are at level 1, subordin-
ate routines are shown at level 2 and
below. This series of charts alsc shows
the loader's interfaces with the privileged
system service routines that support the
loader; for example, GETMAIN, FREEMAIN,
SETL, FIND, etc. Asterisks differentiate
these routines from routines local to the
four loader assembly modules.

Given a set of corditions, the reader
can trace through the routine linkages for
any processing sequence. Example:

EXPLICIT LINK to RESOLVE SYMBOL at level 1,
RESOLVE SYMBOL to FIX PMD at level 2,

FIX PMD to LINK DEFs at level 3, LINK DEFs
to HASH SEARCH at level 4.



T uoT399s

LT uoT3IonpoIjuUIl

aanbta

°9

sobexyur] aurznoy Iapeo] OTweuid

Library Page Explicit Loader Explicit _ Loader Loader
Maintenance Relocation Linking Logoff Unlinking [~~~ —~—~~ 7777 Release Cleanup
Add Test Delete Modify Modify Delete
Mute User Caller MUT Use Selected
v Counts Mutes Counts Counts Mutes

e e e e e o e e t o Resolve
| Symbol
|
| l Legend:
|
! Libe Load Fix Allocate Set Search
: Search PMD PMD —| Module Flags
i - —
| Callable
| from
| outside
| the loader
| module
:
| 1
l Fi Add Link Reject Get Attach Delete
: x PMD Defs PCSA Diag Storage Text Module
: ] Callable
| only from
| inside
| R the loader
| module
|
{
|
|
L

|

L ]
. Check
Define et Def Hash Q@-Chain SRCHPACK Map-
Ref page Legal Search Search
Loader Select Resolve - Drop
Prompt Hash Q-Ref BISEARCH PMD




1

r
| Routine: EXPLICIT LINK -- Level: 1 {
L

r - - G -
| Routine | Purpose |Called Routlnesl Calling Conditions |
b~ ~== R S S
{EXPLICIT LINK|{Find the deflnltlon of a called|MAPSEARCH |Always called. |
{ |symbol and allocate storage b —_ + —_—]
| |for its containing module. IRESOLVE SYMBOL |Always called. |
| | ——- + 1
| | | ADD MUTE |Called unless symbol is |
| | | lnot found. i
| | e —-—
| | | LOADER PROMPT leagnostlc when symbol |
| | j |not found. |
a : —- + 1
| | | SETPAGE | SETXP request pending. |
L ' N i 1 J
r - - - e
| Routine: EXPLICIT LINK -~ Level: 2 {
L

b T T — S
| Routine | Purpose jcalled Rout1nes| Calling Conditions |
L } 4 4
¥ T I 1 - 1
| MAPSEARCH |Find, insert, or delete an | BISEARCH |Always called. |
i Jentry in the memory MAP table. } +— 4
| | | ABEND* |Called if MAP is full |
{ | | |and insert requested. |
p— A pomm— - 4
| RESOLVE |Find a DEF entry in the TDY or |GETMAIN#* |Called when next level {
| SYMBOL |external library to match ] [will not fit in recursive|
; {input argument name. L | storage page. }

4
- T
| | |SET SEARCH |Always called. |
FLAGS

| | i S S —— j
| } | HASH SEARCH |Always called. |
| N o e
i | | LIBE SEARCH |Called if hash table |
| | ] |search fails. |
| s e ¥ 3
| | | LOAD PMD |Called if library search |
{ | | |succeeded. |
| ] - + y
i i | ALLOCATE |Called if library search |
| | | MODULE | succeeded. |
| T e i
| i |FIX PMD |Called if library search |
| | | |succeeded. |
| [ — + :
i | |DEFINE REF jCalled if library search |
| | | | succeeded and module not |
| | | |deleted in FIX PMD and |
| | | |there are yet undefined |
| | | !REFs. j
| | fm e e -—-
{ | | STOW* [Called if library search |
{ | } | succeeded. |
k + G e T P 1
| ADD MUTE |Construct a Module Usage Table |GETMAIN#* jCalled when required to |
| |Entry (MUTE) and disarm the | Jexpand MUT table. i
{ |calling SVC. i i ;
- e _—— S 2t U
| LOADER PROMPT|Central routine for output of |PRMPT* |Always called. |
i }all printed matter to SYSOUT. | | |
e S S O 4
j*Privileged system service routine external to the loader. |

L

18



r 1
| Routine: EXPLICIT LINK -- Level: |
b O DA v T {
| Routine | Purpose |Called Routines| Calling Conditions |
k- $ t + 1
| BISEARCH |Find largest virtual storage | None. | |
| |address in MAP table < input | | ]
| |argument address. | | |
b= + t -~ + !
| SET SEARCH |Determine which hash table to |None. | |
| FLAGS |search for a given symbol, and | | |
| |if HASH SEARCH fails, which | | |
| |library to search. | | |
b + + t 1
|HASH SEARCH |Find, insert, or delete a | None. | |
| |symbol in a hash chain. | | |
o ¢ R s ¥ {
| LIBE SEARCH |Search a library for a module |FIND* |Always called. |
| {that defines a given symbol. b - —4
i | } LOADER PRCMPT |[Called on error return |
| | | | from FIND. 1
b= + o + {
| LOAD PMD |Transfer the PMD of a given |ADD PMD |Always called. |
| |module from a library to the t + 5
| | TDY. | SETL* |Always called. |
| | b o
| | |GET (LOCATE |Called for each page of |
| | | MODE) * | PMD. |
| | b t , 4
{ 1 iABEND* |Called if PMD is invalid.|]
——— - i 5]
r T T —T T == T bl
| ALLOCATE |Allocate storage for each |PCSA |Called once for each |
| MODULE |Control Section within a | |control section. |
| |single module, also compute and} + 4
| {1ink its absolute and reloca- |CHECK DEF LEGAL|Called for each control |
| |table DEFs. | |section name. |
a | F ¢ - {
| | | SELECT HASH |If control section name |
| | | |is legal. |
1 | f=—=— ¥ 4
| | | HASH SEARCH | If control section name |
| | | |is legal. |
| | e - 1
| i |REJECT DIAG |If control section name |
| | | |is not unique. |
| I b 4 —
| { |GET STORAGE jCalled when all CSDs of |
| { | |like attributes are pro- |
| i | |cessed; allocates storagej
| | | |for control sections withj|
| | same attributes.
| o i | B
| | for fixed-length | SELECT HASH | For control sections |
| | control sections | |]with same attributes. |
! | b + i
| | |LINK DEFS |For control sections i
| | | |with same attributes. |
| | k + 4
i | |ATTACH TEXT |For control sections |
| | | |with same attributes, not|
i | | |public, or public but |
| | | |storage not assigned by aj
| | { | CONNECT. |
| | b= + i
| | |} SRCHPACK | If CSECT packing is spec-|
| | | |]ified and required stor- |
| | | |age is less than a page. |
L i L L J
Section 1: Introduction 19



r s s e e e o e e e o —
i Routine: EXPLICIT LINK -- Level: 3 }
13 A T T T 1
1 Routine l Purpose |Called Routines| Calling Conditions |
b —_ - _——— ——— -
{ ALLOCATE | | GET STORAGE |Control section of variable 1
| MODULE | { [length. |
| (Cont.) | } } -
| | | SELECT HASH |control section of variable |
| | | |length. |
| } for variable-length t + 1
| i contrel sections | LINK DEFS |Control section of variable |
] { | | length. |
| | k== + i
| | | ATTACH TEXT [Control section of variable |
| | | |length, that is not public, |
| | | jor public but storage |
g : | jnot assigned by a CONNECT. |
pom e 1 —
| | for both fixed- and | LOADER PROMPT |For various diagnostics. |
] | variable-length control S 4
| | sections | MAPSEARCH | For control sections of {
% { | {nonzero text lengths. i
- + ]
| | | Q-CHAIN |Chain Q-REFs after |
% f | |assigning their values. |
b + 4
| | | SETPAGE |RESTBL of shared library is |
i | | | locked. |
| | F-- + -1
| | | GETMAIN* |Called to get scratch |
| | | | page(s) when CSECT |
| | | |packing is requested. |
= + TR —— - T T 4
{FIX PMD | Process all complex DEFSs for a|SELECT HASH |Called unless all control i
| jmodule, including the module | |sections are rejected. |
| {named DEF. S + —
i | | CHECK DEF LEGAL|Called unless all control |
| | | |sections are rejected. |
| | b - - ——
| | | HASH SEARCH |Called unless all control |
| i | | sections are rejected. |
l | prm oo - -
i { | DELETE MODULE |Called when all control |
1 | | |sections are rejected. i
| | — 1 1
} | | LINK DEFS |Called unless all control |
| | | | sections are rejected. |
: | b e s -1
| | | FIX |Called unless all control j
| ] | | sections are rejected, if |
| | | |there are any complex DEFs. |
l r - + -
| | | LOADER PROMPT |Diagnostic when module |
H | | | name rejected. {
F + - e :
|DEFINE REF |Locate a DEF entry whose name |RESOLVE fAlways called. |
| |matches the input REF name. | SYMBOL#*# | ]
| l R e e e 4
| i | LOADER PROMPT |Diagnostic when module |
} | | | name undefined or defined {
| } | |by complex DEF. |
lf__ L —— L 1 - ____-_{
| *Privileged system service routine external to the loader. |
| **Recursive. See discussion of RESOLVE SYMBOL. |
[ — o~ e i . o e A S S o < e 4 e e e o et e o e o e e e S e e 3

20



R P N wn———— e REpE SR P

B S T e

r L}
| Routine: EXPLICIT LINK --—- Level: & I~
v

L T T R
| Routine | Purpcse jCalled koutines| Calling Conditions |
I L i L k|
L ] T T T B
| LOADER PROMPT|Central routine for output of |PRMPT* |Always called. |
| |all printed matter to SYSOUT. | | |
i 1 i 1 1
[ 3 T T T bl
|ADD PMD |Allocate space in the TDY for a|GETMAIN#* |Called when old PMD group
| |new PMD. | |will not accommodate new

| | | |PMD to expand TDY.

¥ t + t

| PCSA |Adjust attributes of a control {[None. |

| |section according to user | |

| |authority. | |

t + } +

| CHECK DEF |Verify acceptability of an | None. |

| LEGAL |external symbol name. | |

L L 4

1 1 ¥

| SELECT HASH |Determ1ne in which hash table aj}None. {

| lgiven symbol is to be posted, | |

| J]or in which it may be found. | |

4 + + t

| HASH SEARCH |Look up, post, or delete a |None. |

| |symbol in a hash chain. | |

- + + +

|REJECT DIAG |[Examine the attributes of | LOADER PROMPT |[Called for various

i | rejected control sections (for | |diagnostics.

{ jdiagnostic purposes) and check ¢ +

| | for l1oad error conditions. | ABEND* |Called when privileged

| | | |control section is re-

| | | | jected by nonprivileged.

L 1 i 4

3 T L T

|GET STORAGE |Request private or public stor- |{GETMAIN#* |]Called for each private

| |age, based on control section | | control section group.

| Jattributes and total pages. b +

| | | SRCHSDST |Called for each public

| | | (CZCQE) * |control section group.

| | t +

| | | CONNECT |Called for each public

| | | {CZCG7) * jcontrol section group

| | | |when SRCHSDST returns

| | | | " found."

| | t +

| | | GETSMAIN |Called for each public

| | | (CZCG6) * |control section group

| | | |when SRCHSDST returns

| | | | *not found."™

| | r +

| | | SRCHPACK |If CSECT packing is

| | | | specified.

| | t +

| | | LOADER PROMPT |Diagnostics for unnamed

| | | |public control sections.

L [l L

T T

|LINK DEFS |Post legal DEF names in a hash |CHECK DEF LEGALlAlways called.

| |chain, and compute values for }-—- —_—

| | relocatable DEFs. | BASH SEARCH tAlways called.

| | t + -

| | | LOADER PROMPT |For various diagnostics.

L L L L

it e ol s el s e it

Section 1:

Introduction 21



E
| Routine: EXPLICIT LI
U S e m
| Routine Purpose

Q-CHAIN Assign values for Q-REFs and

post REFs in a hash chain.

O |

I
|
|
|
|
|
lr ——
I
|
|
|
i
!

|DXD name found. |

|Diagnostic when DXDs have|
|same name but conflicting]

}
+

———————————————————————————— + — =

ATTACH TEXT |Set up page table entries for |LOADER PROMPT |Diagnostic if public |
jtext pages of a control sec- | | CSECT not relocated. |

jtion. b T 4

| | SETPAGE |Requests for external |

] | |page table entries are |

| i |pending. {

———————————— o e e e

| DELETE MODULE|Delete a specified module and |[SELECT HASH }|Always called. |
| |table entries which describe —_—— R 4
| jit. | HASH SEARCH |Always called. |
l | F + -4
| | | DROP PMD |Called unless module name|
| | | jwas not found. ]
fo—— ettt Fommmm e e 4
{FIX |Process the RLDs for external |DEFINE REF fCalled unless REF is |
| |REFs, internal REFs, or complex| jalready defined. |
| |DEFs for a single page of text | i |
] |or PMD. | | ]
b : S —mdeoee e -
|#*Privileged system service routine external to the loader. |
(N e b

22



R e R X

[ SRS IR N TSP SIS SR

r

| Routine: EXPLICIT LINK -- Level: 5

F - T T . H .

| Routine | Purpose |Called Routines| Calling Conditions

L | i 4

3 Rl 13 T

|CHECK DEF |Verify acceptability of an ex- |None. |

| LEGAL |ternal symbol name. | |

F + —+- +

|HASH SEARCH |Look up, post, or delete a sym-|None. |

| |bol in a hash chain. i | )

b B + t 4

|MAPSEARCH jFind, insert, or delete an | BISEARCH |Always called. |

| |entry in the memory MAP table. }jp-———- + 4
| | | ABEND#* |{Called when MAP is full. |
- 4 —t } d

T T T Bl

|SELECT HASH |Determine in which hash table |None. |

| l]a given symbol is to be posted, | |

| jor in which it may be found. } |

k + —- +

| HASH SEARCH |Look up, post, or delete a |None. |

| |symbol in a hash chain. | |

L i L

L ] Ll —+— T

| DROP PMD |Release a PMD from a PMD group. | FREEMAIN#* |Called when PMD group

| | | |collapses.

F + t +

| DEFINE REF |Locate a DEF entry whose name |RESOLVE |Always called.

| |matches the input REF name. | SYMBOL** ]

| | s +

| i | LOADER PROMPT |For various diagnostics.

L 1 i i

T T - T T -

| SRCHPACK | Search a vacant space table or |GETMAIN#* |Called when space not

| |create a host or symbiont | |available for entry.

| |entry. | |

b t -  po— t

| RESOLVE Q-REF|Assign value for a Q-REF (that |GETMAIN®#* |Called to begin or expand
i |is, assign offset value for } {Pseudo Vector Available

| |the DXD). | {Ooffset Table (PVAOT)

| | F 1

| | | FREEMAIN#* |Called after an entire

| | | |PVAOT is deleted.

F + S s t

| LOADER PROMPT|Central routine for output of |PRMPT* |Always called.

| {all printed matter onto SYSOUT | |

| |data set. l |

- + + +

| SETPAGE |Accept and stack requests to | GETNUMBR # | Incorrect member header

| |build external page table ] |in RESTBL.

| |entries, issue any pending b——- +

| | SETXP requests, or unlock the |ABEND* |Invalid return code from

| |RESTBL of a shared library. | | GETNUMBR, RVN too large,

| | | jor RPN too large.

| | b + -

| | | INTLK* |SETPAGE has not been

| | | |called earlier, and

i | | |library is shared.

| | b —t

i | | RLINTLK* |"Write” interlock on

| | | |RESTBL header.

| | ¢ —4-

| | | SETXP* |Request for external page
| | | |table entry is pending.

% i i 4 fR—

| *Privileged system service routine external to the loader.

| **Recursive. See discussion of RESOLVE SYMBOL.

L - —

N e T e D ]
} i

Section 1: Introduction 23



r -
| Routine: EXPLICIT LINK -- Level: 6

I'-_"— 25 T T
| Routine | Purpose |Called Routines| Calling Conditions

I 4
S -+ R TR |
| BISEARCH |Find largest virtual memory | None. | |
| |address in MAP table < input | | |
| |argument address. | | |
- e L i — J
[ Sttt - 1
i Routine: PAGE RELOCATION -- Level: 1 |
5’ . T — -T T - -'.'° _""'{
| Routine | Purpose |Called Routines| Calling Conditions |
1 4 4 l
[ ) T T T —"'1
| PAGE |Compute the correct value of | MAPSEARCH |Always called. |
j RELOCATION |adcons on the referenced page. } $————————————— 4
| | |FIX |Always called. |
1 | F t -———
| | | FREEMAIN#* |Called to release scratchi
I I | | pages. |
%_ 4 — e e e e —d — L e e e e e e e e e 2 2 e e e o e e e e e et e ,,‘
| *Privileged system service routine external to the loader. |
L e e e e o e e e s 2 e ot 2 e e e < e . 2 . 2 . S . 2t S e e e o P . o e e . e ot e T —— — d
—== 1

Routine: PAGE RELOCATION -- Level: 2 |

prm e e e -1 - ——- 1
| Routine | Purpose |Called Routines| Calling Conditions |
8 PRESES —— — e e e e e e 2 2w e e o o o — e e e i o . " i S99 S e e . . S . e o o+ ot s < _4
r T
| MAPSEARCH |Find an entry in the memory MAP|{BISEARCH |Always called. |
| | table. | | |
t 4 I 4 e e e o e e e e s e e e *
T T T T
| FIX |Process RLDs for external REFs, {None. (FIX | |
| |internal REFs, or complex DEFs |will never call| |
| |for a single page of text or |DEFINE REF when| |
} | PMD. jcalled by PAGE | {
| | |RELOCATION.) | |
L 1 —t ——d — i

24




b e cantins s, e i et e e e e e it o, s, il . s s s s e

3 1
| Routine: EXPLICIT UNLINKAGE -- Level: 1 |
{

v T L] T

| Routine { Purpose |Called Routines| Calling Conditions '
L L i 1 ]
L 1] T T 1
| EXPLICIT |Remove a module from alloca- | MAPSEARCH {Always called. {
| UNLINKAGE jtion. t + 4
i | | SET SEARCH |Always called. |
| | | FLAGS | '
| | t +

| | | HASH SEARCH |Always called.

| | k +

| | | PRMPT#* |If the symbol is not

| | | |found. At this point

| | | |exit is taken; otherwise,
| | | |the following:

| | 5 +

| | |DELETE CALLER |Always called.

| | | MUTES |

| | t +

| | | MODIFY MUT |Always called.

| | | COUNTS |

| | t +

| | | MODIFY USE |Always called.

| | | COUNTS |

| | F +

| | | TEST USER |Always called.

| | | COUNTS |

| | t +

| | | DELETE |Called unless all candi-

| | | SELECTED MUTES |dates are disqualified.

| | b ¢ —
i | |DELETE MODULE |[Called unless all candi-

| | | | dates are disqualified.

| | k +

| | | PCS UNLOCAD*¥* |called if PCS "AT" state-
| | | |ments were inserted.

% L L L

| *Privileged system service routine external to the loader.

L

e R

Section 1: Introduction 25



r =
| Routine: EXPLICIT UNLINKAGE -- Level: 2 |
{' T T - T YT T T T T T T T T T T e 4
| Routine | Purpose jCalled Routines| Calling Conditions i
{ 4 —— —— e e e e e e e e e e et e e e e e o ,{
1 ] T T T
| MAPSEARCH |Find an entry in the memory MAP|BISEARCH |Always called. |
| |[table. ] | |
o —— e e omm oo $- - 1
| SET SEARCH |Determine which hash table to |None. | |
| FLAGS |search for a given symbol. | | |
i

e S ORI .
|HASH SEARCH |Find a symbol in a hash chain. |None. | {
H 4 H e e v eeen 4
r v T 1

| DELETE CALLER|Delete all MUTEs for explicit |None. | {
| MUTES |CALLs to a specified module. | | |
o -—t- T frmmmm e e .
| MODIFY MUT ] Increment or decrement the MUT |None. | !
| COUNTS |count in the PMDs of all mod- | | i
| |ules explicitly called by a ] | |
i |given module. i i i
S 1 e - ¥ - + —e ]
| MODIFY USE | Increment or decrement, for | None. | |
| COUNTS |every REF in a specified PMD, | | |
| |the use count in the CSD which | | |
| jcontains the referenced DEF. | | |
i oo e e 1
{TEST USER |Test a specified PMD for any | None. | |
| COUNTS |explicit CALLs or implicit | | |
| | references. | i i
t e e e o e e e e e 2o e e e e e . e e o e o S e e e e e + _____ 4 __,_‘,,+
3 T . K T

| DELETE |Delete all MUTEs for explicit |None. | i
| SELECTED Jcalls by a specified module. | | |
| MUTES | | ! l
~——e Fom oo oo + O .
| BELETE MODULE|Delete a specified module and |MAPSEARCH |Always called for dele- |
i |table entries which describe i |tion of module name. f
| |it. T .
| | | SELECT HASH |Called for each nonre- |
| | | | jected CSD. |
| | e —— 1 "
| | | HASH SEARCH |Called for each nonre- |
| | | | jected CSD. |
l v 1 TR 4
| | | Q-CHAIN jCalled for deletion of |
] | | |O-REFs from selected hash|
| | i |chains. |
| | i ]
} | | FREEMAIN* jCalled for each nonre- |
| | | | jected nonpublic CSD. |
| R — I —m—em e
| | | SRCHSDST jcalled for each public |
| | | (CZCQE) * |CSD group. |
n | - e
| | | FREEMAIN* |Called for each public |
] | ] : |CSD in group of like CSDs|
| | | |when SRCHSDST returns |
| | | |lwith user count zero. |
| | e -—+ -
| | { DROP PMD |Always called. |
| | o " o
| | | DISCONNECT* |called for each public |
] | i |CSD in group of like CSDs|
| | | |when SRCHSDST returns |
| | | |with user count nonzero. |
i L N i i - _,_A.‘
8

[

L

26

*Privileged system service routine external to loader. |

———— ———— PO |



Routine: EXPLICIT UNLINKAGE -- Level:

PR -

B S

B e T

v b e o

\—-db—-.————lh————

o S——

r

| 3

l'- T v . T . . .

| Routine | Purpose |Called Routines| Calling Conditions

L 4 31 4

8 T T T

| BISEARCH |Find largest virtual storage | None. I

| |address in MAP table < input | |

| |argument address. | |

k= ¥ - . +

| SELECT HASH |Determine in wnich hash table |None. |

| |a given symbol may be found for| |

| |deletion. | |

b + - H +

| HASH SERRCH |Find a symbol in a hash chain. |None. |

L 4 - 4

1 3 T T

| DROP PMD |Release a PMD from a PMD group. | FREEMAIN#* |Called when PMD group

| | |collapses.

li —_— i —d

|*Privileged system service routine external to the loader.

L 3

. _

| Routine: LIB MAINT -- Level: 1

If T T T

| Routine | Purpose |Called Routines| Calling Conditions

b —_ L 4 1

4 T T T

|LIB MAINT |Maintain DCBs for the program |GETMAIN* |Called when required to

| |libraries accessible by the | | expand number of avail-

| |loader within a single task. | |able DCBs.

| | e +

| | | OPEN* |Called on the “add"

| | | |function.

| | F 1

| | | CLOSE#* |Called on the "delete"™

| | | | function.

[ | b $-- - 3

| | | GATWR * |Diagnostic on close when |

| | | |unable to match JFCB |

| | | | pointers. |

| | F + 4

| | | SHARE* |Mark USERLIB as shared |

| | | |in catalog. |

% L L L %

|*Privileged system service routine extermal to the loader. i

L —_— - J

r -

| Routine: LOADER LOGOFF -- Level: 1

I

[ 3 T k) T

| Routine ] Purpose |Called Routines| Calling Conditions

i 1 4 ————

3 1 T T

| LOADER LOGOFF|Called at task end to clean | SRCHSDST |Called for each CSD with

| |up the SDST. | (CZCGE) * |"public name®™ bit on.

| | t +

| | | DISCONNECT |Called for each nonre-

| | | (CZCG8) * | jected public CSD group

| | { |when SRCHSDST returns

| I | iwith user count nonzero.

1 | — '

| | | FREEMAIN#* |Called for each nonre-

| | | | jected public CSD group

| | | |when SRCHSDST returns

| | | |with zero user count.

| | b —+

| | |MAPSEARCH |Always called.

l.= 4 L i

| #¥Privileged system service routine external to the loader.

L 3
Section 1: Introduction 27



Routine: LOADER LOGOFF -- Level: 2 |

—_
I

I

|

|

[

|

O e e T {
| Routine | Purpose {Called Routines| Calling Conditions |
- ¥ O T i — 1
{ MAPSEARCH JCalled to find virtual storage |BISEARCH |Always called. |
| |address for control section | | |
I | name. | 1 1
— —— e —_— A e e —— 4
r T T T e e e e e e e e e e e e e e e e e e o o e 1
{ Routine: LOADER RELEASE -~ Level: 1 |
}' . T - = T T T T T T T YT T T T T T {
| Routine i Purpose |Called Routines]| Calling Conditions |
L i 4 4

r T T M - 1
| LOADER RELEASE|CALLED BY RELEASE to unload | EXPLICIT |called if TDTBLK count |
H |modules before releasing DDEF; |UNLINKAGE |is nonzero. |
| | by LOADER CLEANUP to unload frrm e e S {
| {non-IVM modules. { HASH SEARCH [Called to look up module |
] ] | - |in Hash Table. |
I 4 e ~—-—4 1
| | | PRMPT * |Diagnostic for each mod- |
| | |ule not unloaded. |
lf 4L - 1 4 ‘l
|*Privileged system service routine external to the loader. |
teee - e e e e e e e e e e e 2 e e e e e et e e e e 4
~= - T T T T T T T T T T T T T T e T e T T T e e e e e e 1
| Routine: LOADER RELEASE -- Level: 2 |
b - o e T . e — 1
| Routine | Purpose |Called Routines| Calling Conditions |
e — fo—mmam " - + -
| EXPLICIT |Called to unload non-IVM mod- |Described under| |
| UNLINKAGE jules. j EXPLICIT | i
i | {UNLINKAGE. | [
L L e e e I T J— ——d
r - et T T T T T e 1
| Routine: LOADER CLEANUP -- Level: 1 |
l'— = . ToTTTee e YT T i T . N 't"-"-"-—-'*
{ Routine | Purpose [Called Routines| Calling Conditions |
1 e e e e e e e e e e e e s o i . i S e a0t e 202 e e e et e o 4 — {
r T T

| LOADER CLEANUP|Called by LOGOFF to unload | LOADER RELEASE |[Called to unload modules. |
] |all modules loaded during an | | |
| |express batch subtask. { [ !
L - 1 B S, S 4
r—=——-- e e e e e e e e e e e e e e e e e e e e e = 1
H Routine: LOADER CLEANUP -- Level: 2 |
| P —— -1
T T T T

| Routine | Purpose {Called Routines| Calling Conditions |
i 1 ——— —— 4 5 U ,‘
¥ T + +

| LOADER RELEASE|Called to unload modules. |Described under}| |
i | | LOADER RELEASE. | |
| S - A e e [ S, L U |

28



EXPLICIT LINKING's function is to
resolve an adcon group by filling in the
V-value and R-value of the symbol whose
alphameric name appears in the adcon group.
The routine RESOLVE SYMBOL is called by
EXPLICIT LINKING to define the named sym-
bol. There are three possible outcomes to
RESOLVE SYMBOL's processing:

1. The symbol is already defined in the
TDY.

2. The symbol is located in an external
library.

3. The symbol is undefinable for this
task.

Case 1 entails no loading action, but
case 2 will cause the complete loading
mechanism to add the defining module to the
task. The following discussion outlines
the symbol resolution and module loading
process which is the very heart of EXPLICIT
LINKING (see Figure 7).

The first step in the symbol resolution
process within RESOLVE SYMBOL is the call
to SET SEARCH FLAGS. This routine sets the
hash table pointer for the later call on
HASH SEARCH, and sets a library index (a
DCB pointer) for LIBE SEARCH in the event
that HASH SEARCH cannot find the symbol
defined in the TDY. Now HASH SEARCH is
called to attempt to locate the argument
symbol in the TDY hash table selected by
SET SEARCH FLAGS. If the symbol is found,
the resolution process is complete. If the
symbol is not found, then LIBE SEARCH is
called to locate the symbol by executing
successive FINDs on each of the DCBs in the
chain, beginning with the DCB selected by
SET SEARCH FLAGS, until the symbol is found
or the chain exhausted. If the chain is
exhausted, the argument symbol is undefin-
able for the current task. If the symbol
is located, the module loading process is
put into motion.

The first step in loading is the trans-
ferring of the found module®s PMD from the
partitioned data set into the task dic-
tionary (TDY). This function is performed
by LOAD PMD, which further calls on ADD PMD
to allocate space in the TDY.

At this point RESOLVE SYMBOL calls on
ALILOCATE MODULE, which examines each con-
trol section dictionary (CSD)} in the PMD.
ALLOCATE MODULE collects fixed-length CSDs
with the same attributes into single

SECTION 2:

groups. PCSA is called to adjust the
attributes in each CSD, in accordance with
the rules summarized in Appendix A. Con-
trol sections not named uniquely within the
selected hash chain are rejected, and
REJECT DIAG is called to diagnose the con-
ditions causing the rejection for possible
anomalies warranting messages to the user.

SRCHPACK is called if private fixed-
length control section packing is requested
and the amount of storage required is less
than a page. Otherwise GET STORAGE is
called to request virtual pages to satisfy
the storage requirements for either (a)
groups of fixed-length control sections of
like attributes, or (b) individual
variable-length control sections. The
legal DEFs in each nonrejected CSD are
linked into the appropriate hash chains by
LINK DEFs, and the page table entries for
each nonrejected private control section
are set up a text page at a time by calls
on ATTACH TEXT. Pages from a public con-
trol section processed in the current task,
but allocated to a public segment in anoth-
er task, are not "attached.®” However, if
the current task is the first to process a
public control section, ALLOCATE MODULE
will call ATTACH TEXT to set up the shared
page table entries for the public pages
that have been assigned to a public
segment.

During the loading activity, RESOLVE
SYMBOL will call on FIX PMD to process the
complex DEFs in the new module. FIX PMD in
turn will call upon FIX to execute the com-
plex DEF RLD modifiers. FIX will process
the modifiers by applying REF values to the
complex DEF value words. FIX in turn will
call on DEFINE REF to produce the value of
any undefined REF, and DEFINE REF in its
turn will call upon RESOLVE SYMBOL to
obtain that definition. This defines a
recursive entrance to RESOLVE SYMBOL, since
it is called from within the nest of rou-
tines called by RESOLVE SYMBOL prior to the
point of standard exit from the nest back
to RESOLVE SYMBOL.

If the symbol to be defined on this
recursive entrance is found in an external
library, the loading process is begun
again. This recursive process will be
repeated as long as any loaded module con-
tains a REF that is satisfied by a DEF in a
module that requires loading. Only four
routines are contained in the recursive
chain: RESOLVE SYMBOL, FIX PMD, FIX, and
DEFINE REF. Since each of these routines

Section 2: Explicit Linking 29

EXPLICIT LINKING



133

2anbta

A

butTyuTI 3TOTTAdXT

lera;*y Page Explicit Loader Explicit Loader ’h;ader
Mairg!enonce Relocation Linking Logoff Unlinking =~~~ T =] Release iCleanup
Add Test Delete Modify Modify Delete
Mote User Caller MUT Use Selected
Counts Motes Counts Counts Mutes
[ o e e e e e e e — - — 4 Resolve
| Symbol
| !
| l 1 Legend:
|
! Libe Load Fix b Allocate b Set Search
} Search PMD PMD | | Modute Flogs
| L . -
| 1 ‘ Callable
| I from
1 outside
i i the loader
! ! — module
| J t
|
l 1 K
|
: Add Linl Reject Get Artack Delete
CI'K
" ‘ PMD Defs PCSA Diag Storage Text Module
i N 1
' j I IR Calloble
! L N ] only from
| - inside
| the loader
I module
|
| ] L — ;
1
|
| -
L
1
b {
Check
Defi Set-
pefine e Def Hash Q-Chain SRCHPACK Map-
page Legal Search Search
. !
B — T T Loader Select Resolve ~
S ] . . BISEARCH

ast

-Ret




may be reentered to process a new module
prior to completion of its processing of
the "current™ module, variable storage
describing the processing of the current
module must be maintained uniquely at each

recursive level.

The contents of this

recursive storage and the mechanism for its

allocation are described under

“"Resolve

Symbol."

When RESOLVE SYMBOL returns to EXPLICIT
LINKING via the not found exit,

it has been

determined that the symbol is undefinable

for the task.

There are three possible

causes for this inability of the loader to
resolve the V- and R-values of the name
symbol:

1.

The symbol is not defined in the TDY
or in any partitioned data set that is
part of the program library hierarchy
available to the task at the time
EXPLICIT LINKING was entered.

The symbol is defined in the TDY, but
in one of the opposite hash tables --
a condition tantamount to the symbol's
not being available at all. For
example, the user attempts to make
explicit linkage to some symbol, say
CEZYK, whose module is loaded form
SYSLIB, and whose defining control
section is marked with the system
attribute. 1In this case, the module
will be loaded, and all the module's
symbols will be posted in the appro-
priate system hash table according to
the rules summarized in Appendix A.
Symbols in the system hash tables,
excepting those beginning with SYS,
are not available for linkage by the
user, so the explicitly names symbol
is undefinable for this task.

The symbol is located in one of the
partitioned data sets other than SYS-
LIB, and the defining module loaded.
In the process, the control section
containing the adcon argument symbol
is rejected. In this case, the module
loading will be completed after which
RESOLVE SYMBOL will discover that the

RESOLVE SYMBOL to EXPLICIT LINKING,

symbol is not to be found in the TDY
and the not-found exit to EXPLICIT
LINKING is made.

In the event of a found return from

the

adcon V-value and R-value are correctly

filled in, and the adcon group is availabl.

for linkage.

presented in Figure 8.

A general flow of explicit linkage is

It is divided into

functional segments, rather than specific
routines, to aid the reader in following

the explicit linking process.

ENTER

Look up
Symbol in

Found

Y

Look up
Symbol in

Not Found

Not Found

Set Up V -con
and R-con in
CALL/LOAD
Calling
Sequence

External
Libraries

l Found

Load Defining
Module's PMD
Inte TDY

:

Allocate
Storage for
Module

Compute Value
of and Link
All DEFS in

PMD
I

S—

Define All
REFs in

PMD

Figure 8.

Set Error
Mode

D

EXIT

Functional Diagram of Explicit

Linking

Section 2:

Explicit Linking 31



EXPLICIT LINK (CZCDL1)

T T T T T e e s e e === e e e ———— 1
| i i Parameters i
| ROUTINES | b T - —
| CALLED ] Purpose of Call | In | Out |
L 4 } 4

v 1 . T 1 S "
|MAP SEARCH |Locate calling CSD. |Address of adcon group. |Pointer to CSD of |
| | | | control section con-|
| | ] |taining adcon group. |
¢ B S - e —mm e
| RESOLVE l?rov1de value of symbol named|Name of symbol. | Pointer to defining |
!SYMBOL ]in adcon group. | |DEF entry in TDY. |

ES 4 l

1 3 T T 1] - --4
|ADD MUTE |Extend BABY chain for called |Calling PMD address, | None. |
i |module; extend PAPA chain of |Called PMD address, ] i
| {calling module. jAdcon group address. | |
F -t -—- o T ——— e .
| LOADER |Diagnostic on undefined |Pointer to parameter i !
i jargument symbol. |string. | !
pmmmm — ———t-- + e~
| SETPAGE | Issue a pending SETXP |Pointer.to parameter | None. |
| | request. |string; function code | |
| | |is a parameter. | |
L 4 4L - 0 U J

EXPLICIT LINK is
itor in response to
of an explicit LOAD
tion. Its function

called by the task mon-
an SVC executed as part
or CALL macro instruc-
is to provide the wvalue
of some symbol and, in the process, alloc-
ate storage for the containing module if
the module is not already a part of the
current task (see Chart AL).

Attributes: Privileged, public, system,
reenterable.
Restrictions: Entrance to this routine by

a type-I linkage is restricted to the task
monitor.

Entries: The task monitor calls EXPLICIT
LINK with GR1 pointing to a single parame-
ter that is the virtual storage address of
the explicit LOAD or CALL adcon group that
caused task monitor to be entered. The
form of the adcon group is:

CNOP 0,4

CHDESYSNDX sSvVC 127 SVC for explicit
loading

Option codes

Module name (or
alias) of
module to be
loaded

V-value of name
filled in here
by loader

R-value of name
filled in here
by loader

DC H'C1C2*
DC CL8'name*

ol (¥-12)

DS F

32

Exits:
GR15 0, normal LOAD; 8,
. 4, normal CALL; 12,

abnormal LOAL
abnormal CALL

Operation: EXPLICIT LINK first disables
Load Error Switch. This switch may be
enabled by a variety of routines called by
EXPLICIT LINK in the loading process, such
enabling being in response to some detected
anomaly which is always accompanied by a
diagnostic to the user. EXPLICIT LINK next
disables all flags used by SETPAGE and its
other callers.

EXPLICIT LINK now examines the Cl1 option
byte, checking for the setting of the high-
order bit, the "XPOS" bit, and sets the
transpose flag for RESOLVE SYMBOL accor-
dingly. This flag will be used ultimately
by SET SEARCH FLAGS. If the flag is set,
the loader will reverse the normal search
algorithm. The normal search algorithm
requires that (1) adcon groups appearing in
SYSTEM control sections will be resolved
from the system hash table, or that search
failing, from SYSLIB, and (2) adcon grougps
appearing in nonsystem control sections
will be resolved from the user hash table,
or that search failing, from any library in
the program library hierarchy beginning
with the last defined JOBLIB. The presence
of a transpose bit effectively complements
the system attribute bit of the control
section containing the adcon group to be
resolved. In the transpose case (1) adcon
groups appearing in nonsystem control sec-
tions will be resolved from the appropriate
systém hash table, or that search failing,
from SYSLIB, and (2) adcon groups appearing
in system control sections will be resolved
from the user hash table, or that search



failing, from any library in the program
library hierarchy beginning with the last-
defined JOBLIB.

MAP SEARCH is called with the SVC
address as an argument to locate the CSD,
within the TDY, of the control section in
which the adcon group appeared. This
information is obtained to create the prop-
er MUT linkage from calling to called PMD
and back.

Next, an attempt is made to find the
value of the symbol contained in the cal-
ling sequence. This is effected by enter-
ing RESOLVE SYMBOL with the name to be
found. If the symbol is, in fact, resolv-
able, the found exit is taken back to
EXPLICIT LINK. At this point, the module
containing the symbol (the symbol could be
a module name) will have been allocated
virtual storage, and its PMD will have been
completely processed and entered into the
TDY. If RESOLVE SYMBOL must load a new
module from an external library into the
TDY to match the symbol, the following cas-
cading could occur: the processing of the
new PMD consists of computing the value of
its external REFs, if any. Should there
exist a REF whose symbol name cannot be
found in the TDY, an attempt is made to
locate that symbol in an external library.
If such a symbol is resolved in this way,
the module satisfying the REF is also
loaded.

EXPLICIT LINK constructs a MUT entry
(MUTE) for this linkage. (The MUT table is
discussed in Appendix B.) The calling
module's PAPA chain is extended to include
the new MUTE while the called module's BABY
chain is extended to point to this same
MUTE. This MUTE linkage is accomplished
within the subroutine, ADD MUTE, whose last
task it is to disarm the calling SVC. This
disarming consists in replacing a LOAD SVC
with a NOP. This is done so as to prevent
redundant entrance to the dynamic loader in
order to load an already loaded module,
thus reducing system overhead on such
repeatedly executed code.

Having resolved the symbol, EXPLICIT
LINK fills in the V-con portion of the cal-
1ling sequence with the V-value of the sati-
sfying DEF and fills in the R-con portion
of the calling sequence with the R-value of
that same DEF.

Should RESOLVE SYMBOL be unable to
resolve the adcon group, it will return not
found to EXPLICIT LINK. In this event,
EXPLICIT LINK will insert an illegal
address in both the V-value and R~value
slots in the adcon group so that dynamic
reference to such an address will cause an

addressing error interrupt in the task.
EXPLICIT LINK will issue a diagnostic in
the event of an unresolved adcon group.

EXPLICIT LINK's final actions are to set
the return code in GR15, and to determine
if there is a SETPAGE request still pend-
ing.
task monitor as to type of adcon group as
well as to error condition. A normal
return code is set, if the load error
switch is zero, as follows:

0 = Explicit LOAD adcon group pro-
cessed properly.

4 = Explicit CALL adcon group pro-
cessed properly.

If the load error switch is nonzero, the
C2 option byte in the adcon group is
examined. If the C2 option byte value is
1, its value is set to 7 and a normal
return code is set as above.

If the C2 option byte value is zero, an
abnormal return code is set as follows:

8 = Explicit LOAD adcon group pro-
cessed with major error.

12 = Explicit CALL adcon group pro-
cessed with major error.

An abnormal return code enables the task
monitor, if in conversational mode, to
cause the user to be prompted for possible
corrective action. A normal return code
simply causes resumption of the calling
program execution. If the C2 option byte
value is 1 and a locad error occurs, the
task monitor is not made aware of it but
the calling program is (C2 option byte
value set to 7) and it then has the option
of initiating corrective measures.

Had there been a SETPAGE request pend-
ing, EXPLICIT LINK would call SETPAGE with
a function code which tells SETPAGE to
issue a SETXP for pages still in the SETXP
parameter stack. Following this, EXPLICIT
LINK will return to the task monitor.

Table 1 summarizes all conditions that
result in load error switch setting and by
what loader routine the switch is set.

EXPLICIT LINK's final action is to
determine if ALLOCATE MODULE posted any
CXD-REFs, that is, if any of the modules
loaded as a result of the explicit load
contains a CXD instruction. If a CXD-REF
has been found, EXPLICIT LINK places the
CXD value {(the largest current offset plus
the length of that offset's DXD) in all
CXD-REFs.

Section 2: Explicit Linking 33

This return code serves to inform the



Table 1. Load Error Summary

r T T h]
| | Load Error | g
i Error Condition | Switch Setting | Routine Detecting Error |
L i
b - - e + mm e 1
{Adcon group symbol unresolvable. | 1 | EXPLICIT LINK (CZCDL1) |
L i
F - e — + - 1
| Entry point rejected because it duplicates | 5 | LINK DEFS (CGCCV) |
|a previously loaded control section name. | | |
L i i
r T T “‘{
|Public control section loaded with a text | 7 | ATTACH TEXT (CGCCK) |
jpage that contains adcons. | | |
F - - S T $-——— ——4- - N —
|Control section rejected by previously | 8 | REJECT DIAG (CGCCP) i
|loaded entry point not a control section | | |
| name. | | |
b ) ; + + — y
|Control section rejected whose text length | 12 | REJECT DIAG (CGCCP) |
|exceeds that of previously loaded control { | |
| section of same name. | | |
I - s - T .
|Undefined REF. | 13 | DEFINE REF (CGCCY) |
i
r e e e o - 4
|REF found to be defined by a yet undefined | 14 | DEFINE REF (CGCCY) |
|complex DEF. | | |
b : - e 1 e
|A module is loaded during the EXPLICIT ] 19 ] ALLOCATE MODULE (CGCCA) |
| LINKING process that was noted to have been | | |
|created with level 2 errors or greater. | | |
L —_— e e e e e e e e e e e e e e e e [F L e e e e e e e e e o e e e e e e e e e e e e o J
MAP SEARCH (C2CDLS)
~ T T e T e e 1
| | | Parameters {
| ROUTINES | b - —
| CALLED | Purpose of Call | In | out |
k== + - s S - fomm oo !
| BISEARCH |Search MAP table and locate |Argument VMA. | Relative index into |
| |MAP entry whose VMA is the | |MAP of found entry. |
| jhighest < argument VMA. | | |
¢ + e o Frmmm e o 1
| ABEND | Terminate task if MAP is full|Address of error | |
| |and insert requested. |message. | |
L —— 4 R —— L e e e e e e e e e e e e 4

MAP SEARCH is called with a virtual 2. A function code: 0 indicating lookup,
storage address either to find, insert, or 1 indicating insert, and 2 indicating
delete an entry in the memory MAP table delete.
that relates to the argument address (See
Chart AZ). 3. A pointer to a CSD to be inserted in

the event of the insert function; or
pointer to the found CSD in the event
Attributes: Privileged, public, system, of a lookup function.
reenterable, recursive. -
Exits: Normal only, no return code.

Restrictions: MAP SEARCH will accept type-
I linkage only from other privileged system
components.

Entries: Type-I linkage to MAP SEARCH is
made with GR1 pointing to a parameter which
is the address of the following list:

1. A virtual storage address.

34

Operation: A memory MAP entry consists of
two words. The first word contains the
virtual storage address of the base of a
control section. The second word contains
a pointer tc the CSD of this same control
section. The MAP table is maintained in
ascending order of virtual storage
addresses thus facilitating a binary search
for lookup purposes. A MAP entry exists in



the MAP table for each nonrejected control
section in the user's task whose text
length is nonzero.

MAP SEARCH calls BISEARCH with the input
address. BISEARCH will return with a
pointer to the MAP entry whose virtual
storage address is the highest one in the
table that is less than or equal to the
argument address.

The MAP SEARCH find (lookup) function is
complete at this point. The MAP entry
found will point to the CSD of the control
section containing the argument address.

For the add (insert) function, MAP
SEARCH moves all the MAP entries past the
one returned by BISEARCH down one entry
position and physically inserts the argu-
ment address and the CSD pointer supplies.

For the delete function, MAP SEARCH
erases the argument MAP entry by moving all
following MAP entries one entry position up
to (and including) the one to be deleted.

Both the add and delete functions adjust
the current MAP entry count word in the TDY
heading and set the MAP-changed-flag for
BISEARCH.

On the add function, MAP SEARCH checks
for a full MAP (current count equal to
maximum MAP) and if full calls ABEND.

Exror Checks: On lookup, MAP SEARCH does
not perform validity checks to see that the
found control section's text bounds can
contain the argument address.

BISEARCH (CGCCR)

BISEARCH is called by MAP SEARCH to find
the largest virtual storage address in the
MAP table that is less than or equal to the
input argument address (see Chart AE).

Attributes:
reeenterable.

Privileged, public, system,

Restrictions: Internal to the loader mod-
ule, not available to other system
components.

Entries: BISEARCH is executed in-line by
MAP SEARCH. GR1 contains the argument VMA.

Routines Called: None.

Exits: In-line, no return code.
Operation: BISEARCH is designed to make a
minimum of K+1 lookups on the MAP table

where 2**%K is less than N, the current

number of MAP entries, and 2#%**(K-1) is
greater than or equal to N. BISEARCH first
checks the MAP-changed-flag set by MAP
SEARCH on any previous add or delete func-
tion. When the MAP has been changed,
BISEARCH recomputes K in an iterative
fashion.

Initial values are set:

1. Jj is set to K+1.
number of looks.

j will count the

2. 1 is set to 2K*8. i is the index into
the MAP table; the multiplier 8 is
applied because each MAP entry is
eight bytes in length.

3. 4d is set equal to i. 4 is always
maintained in the main loop equal to
i/2 and is the increment or decrement
applied to i (hence the binary nature
of the search).

The main loop is begun with 4 divided by
2. d is not allowed to be reduced past 8
since i must be maintained in multiples of
8 in order to index the MAP table correct-
ly. ©Next, the argument address is compared
against the i MAP entry.

If the argument address is less than the
ith MAP entry, i is reduced by 4, j is
reduced by 1, and the loop reentered, which
will cause an "earlier™ MAP entry to be
examined on the next pass.

If the argument address is greater than
or equal to the ith MAP entry, j is checked
for terminal value (zero or less), in which
case the ith MAP entry is that MAP entry
whose related control section base address
is the highest VMA less than or equal to
the argument VMA. If j does not test for
zero or less, the search is continued. 1
is incremented by 4 and checked to ensure
that it has not exceeded the maximum bounds
of the MAP table. If the bounds are
exceeded, i is decremented by 4 to bring i
back within the limits of the MAP table.
Note that in this latter case, the next
pass will examine the same MAP entry as the
previous pass, but other variables will
have been altered, namely, j and 4, so that
future passes may examine new entries, or
the search will be terminated.

A minimum of K+1 passes guarantees that
the correct MAP entry is found.

On exit, GRU4 will contain the address of
the found MAP entry, which address is rela-
tive to the origin of the MAP table.

Section 2: Explicit Linking 35



RESOLVE SYMBOL_(CGCCE)

r T T T e T ToTTmTEmm 1
} | | Parameters |
| ROUTINES | [ — . -
| CALLED | Purpose of Call | In | Oout |
i + 1
r g - | S '{
|SET SEARCH |Select hash table pointer and|Symbol name, referencing|Hash table pointer, |
| FLAGS Jlibrary index |CsSD |library index |
—————————— pommmmm e - T ST
| HASH JLook up argument symbol in |Symbel name, hash table |[Pointer to matching |
| SEARCH | selected hash table |pointer | DEF entry |
L 4 4 i
3 = T T L {
| LIBE | FIND symbol in external |Symbol name, library |User information |
| SEARCH |library when HASH SEARCH |index | describing library |
| junable to locate in TDY | |if found |
4 4 i
- T - -T== T T == T - "{
| LOAD PMD |Transfer found PMD into TDY |User information | Pointer to PMU |
| | | | preface in TDY i
~ + o t—— + -~
| ALLOCATE |Allocate virtual storage for |PMD address | None |
| MODULE jthe loaded module's control | | |
| | sections | | |
p===—- 1 TG + - -
| FIX PMD |Process complex DEFs in |PMD address | None |
i |loaded module | | !
b= S St e . + - oo
| DEFINE REF |Define each REF in module not|{REF pointer, CSD pointer|{None |
| |defined by FIX PMD. | |
p==—m T - + S 4 ——
| GETMAIN {Obtain storage for recursive |Number of Protection | Location of assigned|
| |levels |class (2) | page |
p— + -- - oo + -
| STOW |Release member interlock set |DCB address | None |
| | by FIND | ! |
L L L i - e e e o i o o e}

RESOLVE SYMBOL is called to find a DEF
entry in the TDY or external library whose
name matches the input argument name (see
Chart BH).

Attributes: Privileged, public, system,
reenterable, recursive.

Restrictions: Internal to loader assembly
module, not available to other system
components.

Entries: GR1 points to a list of five
parameters:

1. The address of the alphameric name of
the symbol to be resolved.

2. A pointer to the CSD of the control
section that contains the reference
(either explicit LOAD/CALL adcon group
or REF entry).

3. A transpose flag, which is merely
passed on to SET SEARCH FLAGS.

4., The not found exit address.
5. Exit parameter: pointer to resolving

DEF entry on found exit.

36

Exits: Normal, or to not found exit pro-
vided as input parameters.

Operation: RESOLVE SYMBOL is called by
only two routines, EXPLICIT LINK and DEFINE
REF. RESOLVE SYMBOL may itself call the
routines DEFINE REF, HASH SEARCH, LIBE
SEARCH LOAD PMD, ALLOCATE MODULE, FIX PMD,
and SET SEARCH FLAGS. RESOLVE SYMBOL
begins a circular chain of routines:
RESOLVE SYMBOL could call FIX PMD, which
will call FIX which could call DEFINE REF
to compute a REF value.

DEFINE REF will in turn call RESOLVE
SYMBOL to obtain the REF value. This
entrance to RESOLVE SYMBOL constitutes the
recursive call described earlier. Since at
the time of recursive entrance each of the
routines RESOLVE SYMBOL, FIX PMD, FIX, and
DEFINE REF will not have completed proces-
sing of the current module, a mechanism is
provided to preserve the variable data
describing the current conditions at each
recursive level.

A DSECT, CHARCS, is defined in the load-
er module which describes all of the vari-
able data used by the four routines requir-
ing récursive preservation. A block of



storage which will accommodate a large
number of recursive levels, is set aside in
the loader module PSECT. Each time RESOLVE
SYMBOL is entered, it assumes that symbolic
general register RC is pointing to the
beginning of the recursive storage block
currently in use. When EXPLICIT LINK makes
its call on RESOLVE SYMBOL, RC is set to
point to the first recursive storage block.
At entrance, RESOLVE SYMBOL saves general
registers 11-1 in the locations defined for
the purpose in CHARCS, which is covered by
RC. RESOLVE SYMBOL pushes down to the next
level by adding to RC the size of the
recursive storage block CHARCS. By this
method, new variable data generated at the
new level will be saved by the four rou-

tines in the current recursive storage
block, leaving intact data stored in the
previous block.

When RESOLVE SYMBOL exits, it reverses
the above procedure by subtracting from RC
the size of the recursive storage block
thus "popping-up®™ to the previous level.

If the amount of space needed for the
current level exceeds the space available,
a GETMAIN is issued to add another page to
the recursive storage block.

The following DSECT describes the con-
tents of the recursive storage block
CHARCS.

RECURSIVE STORAGE FOR RESOLVE
SYMBOL~-FIX PMD-FIX-DEFINE REF
CHAIN RC USED TO COVER,

MAINTAINED IN RESOLVE SYMBOL

FORWARD CHAIN POINTER

CHARCS  DSECT

*

*

*

*

* FORWARD & BACK RECURSIVE STORAGE CHAINS
*

RCSFWD DS F

RCSBAK DS F BACK

*
* *¥*k*F%k

CHAIN POINTER

SAVE AREA FOR RESOLVE SYMBOL (CGCCE)

RCSESV DS 7F SAVE RB/RA

RCSESA DS iF SAVE FOR RA

RCSESC EQU RCSESV+Y SAVE FOR RC

* *xx¥% SAVE AREA FOR FIX PMD (CGCCJ)

RCSJSV DS 6F SAVE RB THRU RZ

RCSJSA Ds 1F SAVE FOR RA

* *****% SAVE AREA FOR FIX (CGCCL)

RCSLSV DS 6F SAVE RB THRU RZ

RCSLSA DS 1F SAVE FOR RA

* ***%*x% SAVE AREA FOR DEFINE REFS (CGCCY)

RCSYSV DS 6F SAVE RB THRU RZ

RCSYSA DS iF SAVE FOR RA

* *+**+%% PARAMETER LIST FOR CALLS ON RESOLVE SYMBOL

RCSFCE DS OF NAME LIST

RCSNAM DS 1F LOC (INPUT SYMBOL NAME)

RCSCSE DS iF CSD POINTER OF REFERENCING CSECT
RCSLDF DS 1F LOAD FLAG - 0 = NOT EXPLICIT LOAD
* 1 = EXPLICIT LOAD, C1(0) =0
RCSNFE Ds 1F NOT-FOUND EXIT ADDRESS

RCSSYE DS 1F POINTER TO DEF ENTRY ON *'FOUND'*
* **%*%%x PARAMETER LIST FOR CALLS ON FIX

RCSFCL DS OF NAME LIST

RCSPAG DS 1F POINTER TO PAGE TO BE FIXED
RCSMCT DS iF MODIFIER COUNT FOR PAGE

RCSPFM DS iF POINTER TO FIRST MODIFIER

RCSRFT Ds 1F PCINTER TO REF TABLE

RCSLCS DS 1F POINTER TO CSD OF REF TABLE

* **%¥+%+ PARAMETER LIST FOR CALLS ON DEFINE REFS

RCSFCY DS OF NAME LIST

RCSSYM DS iF POINTER TO SYMBOL TO DEFINE
RCSCDS DS 1F COMPLEX DEF SWITCH -~ NON-ZERO

* INDICATES REF IS PART OF COMPLEX

Section 2: Explicit Linking 37



* DEF

RCSCSD DS 1F POINTER TO CSD CONTAINING REF
* FERkEK MISCELLANEOUS RECURSIVE STORAGE
RCSLEX DS 1F LIBRARY INDEX - 0 = LAST OPEN
* JOBLIB; N+1 = SYSLIB FOR N OPEN
* JOBLIBS; N = SYSULIB.
* A NEGATIVE VALUE ALSO REFERS TO
* SYSLIB
RCSPMD DS iF POINTER TO PMD PREFACE (R/S)
RCSCRF DS 1F REF COUNT {(R/S)
RCSPCM DS 1F POINTER TO CURRENT MODIFIER
* (FIX)
RCSRFP LS 1F REF ENTRY POINTER (R/S)
RCSPME DS 1F POINTER TO 1ST BYTE PAST PMD END
RCSMNL DS 1F MODULE NAME CSD LINK (FIX PMD)
RCSPMJ DS 1F POINTER TO 1ST BYTE PAST PMD END
RCSFCP DS 1F POINTER TO 1ST CSD (FIX PMD)
RCSHTP DS 1F HASH TABLE POINTER
RCSPMP DS 1F POINTER TO MDFR PRT (FIX PMD)
RCSMPE DS 1F POINTER TO END OF MODIFIER
* POINTERS
RCSREF DS iF REF POINTER FOR FIX
RCSFMC DS 1F MODIFIER COUNT STORAGE (FIX)
RCSSNM DS CL8 CURRENT MODULE NAME (DEFINE REF)
RCSBKL EQU *-CHARCS
RCSMAX EQU 30
RESOLVE SYMBOL calls SET SEARCH FLAGS 2. The ALLOCATE MODULE routine is calledqd,
which: which effects the following:
a. All the control sections are allo-
1. Sets up the hash table pointer for cated storage (except those that
HASH SEARCH. are rejected for duplicate or
illegal control section name).
2. Sets the library index for LIBE
SEARCH, which determines the starting b. The absolute and relocatable DEFs
point in the chain of libraries to be are linked into the hash chain, and
searched in the event HASH SEARCH the relocatable DEFs are relocated.
fails to find the symbol in the
selected hash chain. c. Page table entries are made for
nonre jected control sections.
At this point HASH SEARCH is called to
look up the symbol to be resolved. If the 3. An R-type STOW macro instruction
symbol already exists in the hash chain, closes the member and releases the
the found return is made, and RESOLVE SYM- interlock set by FIND.
BOL's job is done.
4, Following this action, RESOLVE SYMBOL
In the event that the symbol is not enters the routine FIX PMD which:
found in the hash chain, then RESOLVE SYM-
BOL must proceed to look for the symbol in a. Links all complex DEFs into the
the libraries according to the index set hash chain and computes their value.
earlier. LIBE SEARCH is called, and if it
returns not found, RESOLVE SYMBOL takes 1its b. Computes the complex DEF for the
not found exit; that is, the symbol is standard entry point (module name).
undefined.
5. Each REF that was not defined during
If LIBE SEARCH is able to locate the execution of the complex DEF modifiers
sympbol in one of the libraries, there pro- in FIX PMD is computed by DEFINE REF;
ceeds the chain of events that effects the that is, its V-value, R-~-value and CSD
loading and processing of the module that link are filled in. This routine
defines the symbol. This takes place in calls RESOLVE SYMBOL for each unde-
four steps: fined REF (thus the need for the pre-
viously described recursive design).
1. LOAD PMD is called to transfer the PMD
of the defining module into the TDY. If, in its processing, FIX PMD discovers
When LOAD PMD returns, RESOLVE SYMBOL that all the module's control sections were
sets the "loaded by Dynamic Loader" rejected, it sets a return code that forces

flag in the PMD.

38

RESOLVE SYMBOL to loop back to the call on



LIBE SEARCH to continue searching in the
program library hierarchy.

Following a normal return from FIX PMD,
RESOLVE SYMBOL proceeds to make a linear
pass on the REF table in each CSD of the
module to define those REFs not defined
during FIX PMD's processing. DEFINE REF is
called during this sequence, which will
again recursively call RESOLVE SYMBOL.

It is possible during this module load-
ing sequence that although the original
argument symbol to RESCLVE SYMBOL was con-
tained in the lcaded module, the symbol's
containing control section could have been
rejected, thus rejecting the symbol defini-
tion as well. It could also be the case
that the defining module was loaded but in
the opposite hash table to that originally
selected by SET SEARCH FLAGS. 1In either of
these cases, the symbol is, in effect,
undefined. To accommodate this phenomenon,
when RESOLVE SYMBOL completes the REF pro-
cessing, it executes the HASH SEARCH call
once again to verify that the defining sym-
bol was not lost in the PMD loading
Sequence.

In the event that the symbol is so lost,
LIBE SEARCH will be called again to search
the next library to attempt to find the
symbol. The library index is undisturbed
on exit from LIBE SEARCH to allow this
sequential library search, beginning with
the library following the last searched.

On its found exit, RESOLVE SYMBOL places
a pointer to the first word of the defining
DEF entry in the exit parameter cell.

On both the found and not found exits,
RESOLVE SYMBOL pops—-up its storage to main-
tain recursive integrity.

SET SEARCH FLAGS (CZCDLé6)

SET SEARCH FLAGS is called to determine
in which hash table to search for a given
symbol and in which libraries to search in
the event of HASH SEARCH failure {see Chart
BJ).

Attributes: Privileged, public, system,
reenterable.
Restrictions: Will accept type-1I linkage

only from other privileged system
components.

Entries: On entrance to SET SEARCH FLAGS,
GR1 contains the address of a parameter
that points to the following list:

Inputs

1. A pointer to the argument symbol.

2. A pointer to the CSD of the control
section that contains the reference

symbol, which is contained in either
(a) an explicit CALL/LOAD adcon group,
or (b) a REF entry arising from some
adcon.

3. The transpose flag, which when nonzero
indicates that transposed search flags
are to be set.

Outputs

1. A pointer to the hash table to be
searched. This parameter will ultim-
ately be used by HASH SEARCH.

2. A pointer to a DCB header that defines
the first library in the program
library hierarchy to be searched by
LIBE SEARCH in the event of HASH
SEARCH failure.

Routines Called: ©None.

Exits: Normal only, no return code.
Operation: The searching algorithm deve-
loped by SET SEARCH FLAGS is based on a set
of variables. The first variable is the
task authority code. If the authority code
is either P or O, the algorithm is simple:
search only the appropriate system hash
table, and in the event libraries must be
searched, search all, beginning with the
last-opened job library.

If the authority code is U, the rules
are more complex. The second variable is
the name of the symbol to be resolved. If
the symbol begins with SYS, it will appear
only in the nonprivileged system hash
table, and failing the system hash table
search, only SYSLIB will be searched by
LIBE SEARCH.

The third variable is the SYSTEM attri-
bute bit of the calling control section;
that is, the control section containing
either the explicit LOAD/CALL adcon group
or the REF. If the control section is a
SYSTEM control section, the normal case is
to search only the appropriate system hash
table, or, that search failing, LIBE SEARCH
will search only SYSLIB. If the calling
control section does not have the SYSTEM
attribute set, then HASH SEARCH will search
only the user hash table, or, that search
failing, LIBE SEARCH will search the entire
hierarchy of open libraries beginning with
the last-opened job library.

If the transpose flag is set, the effect

of the SYSTEM attribute as described above
is reversed.

HASH SEARCH (CZCDL2)

HASH SEARCH is called to look up, post,
or delete a symbol in a hash chain (see
Chart AQ).

Section 2: Explicit Linking 39



Attributes:
reenterable.

Privileged, public, system,

Restrictions: Accepts type-I linkage only
from other privileged system components.

Entries: On entrance to HASH SEARCH, GR1
contains the address of a parameter which
points to the following list:

1. Hash table pointer, which points to
either the privileged system or user
hash table.

2. The function code, which tells whether
to look up(0), post(1l), or delete (2)
the argument symbol.

3. A pointer to the symbol name, which is
either a REF entry or name part of an
explicit CALL/LOAD adcon group on
lookup, or a DEF entry on post or
delete.

4. The module sequence number of the mod-

ule containing the name in parameter 3.

5. Exit parameter. (See text.)

Routines Called: None.

Exits: Normal only, no return codes.
Operation: The collection of all nonde-
leted DEFs in the TDY constitutes a symbol
table. To speed symbol lookup, a hashing
scheme is employed as follows: There exist
within the TDY three hash tables of length
n, which length is set in the TDY by STAR-
TUP as a system parameter. The three hash
tables are the user hash table and the
privileged and nonprivileged system hash
tables. Each is a list of pointers to the
heads of a possible n chains of DEFs. The
member DEFs of each chain share their hash
value in common. These linear hash chains
are built by the HASH SEARCH "post"”
function.

Pointer to
SYSTEM HASH
Table Privileged System Hash Table
(System symbols beginning n
with CZ and CHB)
Nonpriviieged System Hash Table
{System symbols not beginning n
with CZ and CHB)
Pointer to
USER HASH
Table
User Hash Table n

40

The hash value of a given DEF is com-
puted by performing an "exclusive OR" of
the first four characters of the symbol
with the last four characters. This value
is then divided by n, and the remainder is
the index into the hash table. This index
is multiplied by 4 and added to the base
address of either the privileged system or
user hash table, according to the first
input parameter. If a system symbol begins
with CZ or CHB it is privileged and will be
processed in the privileged system hash
table. For nonprivileged system symbols,
an additional offset equal to the size of
the privileged system table is added.

The problem of relating internal REFs
that reference unnamed control sections to
the correct control section is solved
within HASH SEARCH. Recall that unnamed
CSECTs are given a name of binary zeros by
the assembler. DEFs for and REFs to such
unnamed CSECTs are rendered unique in HASH
SEARCH by replacing the low-order half of
the first word of the name of zeros with
the module seguence number, a unigque number
assigned the module in LOAD PMD. (The
second word of the zero name is reserved
for the linkage editor's use to render such
names uniquely relatable to their defining
unnamed CSECT in the event of link editing
more than one unnamed CSECT.)

The basic search function in HASH SEARCH
proceeds as follows:

1. The hash value is computed.

2. The head of the hash chain in the
correct hash table is obtained. {Both
the head of the hash chain and ail
search links are the 32-bit virtual
storage addresses of the first word of
the next DEF in the chain.)

3. Each DEF Name in the hash chain is
compared with the argument name for a
match.

4. The search terminates on either a name
match or at the end of chain, which is
denoted by a zero search link.

On the lookup function, if no name match
is found, the exit parameter is set to
zero. When a name match is found on look-
up, this exit parameter is set to point to
the defining DEF entry.

Oon the post function, if no match 1is
found, the new DEF is inserted into the top
of the chain. A pointer to the last DEF in
the o0ld chain is placed in the search link
of the new DEF. {The search link of the
first DEF placed in the chain is zero to
mark the end of the chain.) The exit pa-



| N
(

rameter is set to zero to denote posting
performed.

If on the post function a name match is
found, the new DEF is pot inserted in the
chain, and the exit parameter is set to
point to the duplicate DEF entry.

LIBE SEARCH (CZCDL3)

On the delete function, the hash chain
must be relinked. Relinking is accomp-
lished by changing the search link in the
previous DEF in the chain to point to the
DEF in the chain immediately following the
DEF to be deleted.

[} = T T 1
| | | Parameters |
| ROUTINES | - . i
| CALLED | Purpose of Call | In | Out |
i 4 4 d

- T T L] 1
|FIND | LOOK UP ARGUMENT SYMBOL IN |Symbol name, DCB |User information |
| (CZCod) | opened data set. |pointer. |describing found {
| | | module. |
b + - + 4 4
| LOADER | Diagnostic on FIND error. |Pointer to parameter | |
| PROMPT i |string. | |
L L L L i

LIBE SEARCH is called to locate a pro-
gram module in an external library that
defines a certain symbol (see Chart AS).

Attributes:
reenterable.

Privileged, public, system,

Restrictions: LIBE SEARCH accepts type-1

linkage only from other privileged system

components; the LIBESRCH macro instruction
is associated with it and will expand into
type-II linkage for DCLASS USER.

Entries: LIBE SEARCH is entered with GR1
pointing to a parameter that contains the
address of the following list:

Inputs

1. Pointer to argument symbol to be
defined.

2. Library index; that is, pointer to DCB
header of first DCB in the program
library hierarchy to be searched.
{This may also be considered an output
parameter since it is modified by LIBE
SEARCH during its processing.)

3. Caller-supplied location where LIBE
SEARCH will place its user information
on a found exit.

Output
DDNAME of library in which the argu-
ment symbol was found is placed in
this location (8 bytes) by LIBE
SEARCH.

Exits: GR15 = 0 normal, 4 not found.

Operation: LIBE SEARCH begins its proces-
sing by executing a FIND macro instruction,
with the argument symbol to be defined, on
the DCB defined by the second input parame-
ter. Both a zero and an X'1l4' return code
from FIND are treated by LIBE SEARCH as
successful. In these cases, LIBE SEARCH
will have received back from FIND 24 bytes
of information describing the module as a
partitioned data set member. This includes
the retrieval address and length of the
module's PMD, text, and ISD.

The loader will attempt to verify that
the "user data™ received from the FIND
actually represents the user data from an
actual module, and not some other kind of
partitioned data set member. In the user
data there are six words giving the rela-
tive page position (in the member) of the
PMD, TEXT, and ISD, including their respec-
tive lengths in bytes. These are ordered
as follows:

Word 1 - Relative page number of the PMD

Word 2 - PMD length

Word 3 - Relative page number of the
TEXT

Word 4 ~ TEXT length

Word 5 - Relative page number of the ISD

Word 6 - ISD length

The following checks will be made in
LIBE SEARCH after retrieving a "module.”

e The user data is tested for correct
length (24 bytes).

s As the PMD must always be PUT first,
word 1 must equal 0.

e The PMD length (word 2) must be greater
than 76.

Section 2: Explicit Linking 41



® The relative page number of the TEXT
(word 3) must equal 0 (a module without
TEXT) or be equal to the integer por-
tion of (PMD length + 4095) / 4096.

e The relative page number of the ISD
(word 5) must equal 0 (no ISD) or be
equal to word 3 plus the integer por-
tion of (TEXT length + 4095) / 4096.

If the member retrieved cannot be veri-
fied as a module, the member is rejected as
being invalid. Otherwise, LIBE SEARCH pre-
fixes this information with the JFCB
address and the DCB address for the
library. The last word of the user infor-
mation block is set to nonzero if the
defining library is SYSLIB. These nine
words of user information are set up in the
caller's area according to the third param-
eter. LIBE SEARCH will also return the
DDNAME of the library, so that a nonprivi-
leged user of LIBE SEARCH may construct his
own DCB for possible data set manipulation.

On an unsuccessful FIND return, LIBE
SEARCH will link to the next DCB in the
chain and repeat the FIND call, unless the
chain has been exhausted, in which case
LIBE SEARCH will make a not-found exit.
Input parameter 2 is modified by LIBE
SEARCH to point always to the current DCB
header, so that possible successive calls
by the loader routine RESOLVE SYMBOL
(CGCCE) will result in continued chain
Search.

LIBE SEARCH sets GR15 with a return
code:

found
not found

o
[}

Notes:

1. The chain of DCBs that define the pro-
gram library hierarchy is built by the
routine LIBE MAINT (CZCDH). The DCBs
are chained through headers prefixed
to the DCBs by LIBE MAINT. These hea-
ders are four words in length.

{header |
————— - o
1 jLink to word 0 of previous |
| DCB header |
2 |Pointer to JFCB for this |
| library |
bmmmm oo y
3 |Not used |
O 4

The end of the chain is dencted by
header word 0 = zero. ISA location

42

User

Information

returned j

by
FIND

ISAJLC points to the first DCB header
in the chain, which will be for the
last-defined JOBLIB. The last DCE in
the chain is for SYSLIB, and ISA loca-
tion ISASLP points directly to the
SYSLIB DCB header.

When LIBE SEARCH is entered, the
library index will point to one of
these headers or possibly be zero.
Whenever the library index = 0, LIBE
SEARCH takes the not found exit.

The format of the retrieval address in
the user information is as follows:

r
] Page Number
L

The 2-byte page number is relative to
the beginning of the member; that is,
module, of the partitioned data set.
Since a PMD is normally stored as the
first item of the module, its retriev-
al address is normally zero. The
length of the PMD, text, or ISD is not
necessarily an even multiple of 4096,
but the first byte of PMD, text, or
ISD will always fall on a new page in
the data set.

LIBE SEARCH assumes that the user
information returned by FIND in fact
delimits a correctly formatted TSS/360
program module, and not some other
type of partitioned data set member.

The format of the user information
returned by LIBE SEARCH is as follows:

W Address of JFCB for Library in Which
Word 0 Name was Found
Word 1 { DCB Address for Library where Name was Found
- e
Word 2 Retrievel Address of PAMD
Word 3 Length of PMD in Bytes
Word 4 Retrieval Address of Text
Word 5 Length of Text in Bytes
Word 6 Retrieval Address of I1SD
Word 7 Length of 15D in Bytes
Word 8 SYSLIB Switch-Zero if Library Where Mara
g ere was Found is not SYSLIB, Nonzero if it is.




LOAD PMD (CGCCH)

r 3 L3 k]
| | | Parameters |
| ROUTINES | b - T 4
| CALLED | Purpose of Call | In | Out |
p-— + +- + q
|ADD PMD | Find space in new PMD. |Size of new PMD. |Location of new PMD |
{ { i lpreface. j
[ 3 T 1 14 h
| SETL |Initialize DCB for fetching |Pointer to DCB, relativej |
| |first page of PMD from data |page number of first | |
| |set. |page of PMD. | |
t + + + {
{ GET | Transfer pages of PMD from {Pointer to DCB. | |
| (Locate |data set to buffer page. | | |
| mode) | | i |
t + + + {
| ABEND | Incorrect PMD passed. |Address of error | |
i | |message. | |
L L L i d

Error Checks: Error returns from FIND
result in a diagnostic by LIBE SEARCH but
are otherwise treated the same as a not-
found return from FIND.

LOAD PMD is called by RESOLVE SYMBOL to
transfer the PMD of a module from an
external library into the TDY (see Chart
AY).

Attributes:
reenterable.

Privileged, public, system,

Restrictions: Internal to loader assembly
module; not available to other system
components.

Entries: The input parameter to LOAD PMD
is in GR1, which points to the user infor-
mation returned by LIBE SEARCH.

Exits: Normal only, no return code.
Operation: LOAD PMD's first function is to
allocate space for the new PMD in the TDY
and set up the PMD preface. This is accom-
plished by calling ADD PMD.

The SYSLIB flag is set in the PMD pre-
face. This indicator is used later in
checking control section attributes.

The TDTBLK field of the JFCB for this
library is then incremented by 1 to indic-
ate the loading of a module from it.

LOAD FMD now transfers the PMD into the
TDY, through calls to VAM SETL and locate-
mode GET. Following the GET, LOAD PMD
actually block-transfers the data into the
allocated TDY space. The PMD is trans-
ferred a page at a time, as required by the
*undefined record format®™ GET function.

The locate-mode GET will transfer a full
page into a buffer; but if the required
number of bytes is less than a page, LOAD
PMD will only transfer the meaningful numb-
er of bytes from the buffer into the TDY
space.

For example, a PMD 396 bytes long would
be locaded by GET's fetching a full page,
396 bytes of PMD plus 3700 bytes of inap-
plicable information. Then LOAD PMD would
move only 396 bytes into the TDY.

On exit, LOAD PMD returns a pointer to
the newly loaded PMD preface.

Comments: LOAD PMD compares the PMD length
in the user information with the first four
bytes in the PMD returned by GET. If the
values are not equal, ABEND is called.

Section 2: Explicit Linking 43



ADD PMD_(CGCCN)

r T T - 1
| | | Parameters |
| ROUTINES | b — T 4
| CALLED i Purpose of Call | In | Out |
F T o 1
| GETMAIN |Get space for new PMD in TDY. |[Number of pages, | Address of page. |
| | |protection class. | |
L - L —— L ——— ) 4

ADD PMD is called by LOAD PMD to alloc-
ate space in the TDY for a new PMD (see
Chart AB).

Attributes: Privileged, public, system,
reenterable.
Restrictions: Internal to loader mcdule;

not available to other system components.

Entries: GR1 contains the input parameter
to ADD PMD; the length of the new PMD in
bytes.

Routines Called: None.

Exits: Normal only, no return code.
Operation: PMD space is allocated within
the TDY on a group basis. The pointer in
the TDY to the last allocated group is
fetched, and this group is now examined for
available space. The end-of-group pointer
in the PMD group header is fetched. Avail-
able space within a group is that space
between the end of group and the end of the
last (or only) page of that group. If this
space can contain the new PMD, it is
assigned space in that area; otherwise,
GETMAIN is called to fetch storage for a
new PMD group which is created with the new
PMD as the only member. (Note that any PMD

4y

longer than a page will begin a new PMD
group.)

Data References: TDY

The module sequence number is computed
and set into the PMD preface by fetching
the sequence number of the last module
loaded and adding 1.

In the event a new PMD group is begun,
the group header is linked into the PMD
group chain in both directions: the for-
ward link points to the new PMD group; the
back link to the PMD group pointer in the
TDY heading, that is, it is inserted into
the head of the TDY.

Now the new PMD preface is linked within
the PMD group. This linkage is a circular
linkage; that is, the last PMD is linked
back to the PMD group header. (This circu-
lar linkage facilitates recognition of an
empty PMD group, as described under "DROP
PMD.™}

Finally, ADD PMD clears the remainder of
the PMD preface, which effects initializa-
tion of the various flags and links.

ADD PMD returns with the virtual storage
address of the new PMD preface.



ALLOCATE MODULE (CGCCA)

r L T 13
| | | Parameters |
| ROUTINES | b -_— . 4
| CALLED | Purpose of Calil | In | out |
k- t——- - + '
| PCSA | Adjust attributes <i control |Pointer to CSD. | ]
| | section to be allocated. | | |
L 4 i 4 d
T T L T 1
|CHECK DEF |Check leyality of contrcl iPointer to control | ¥il=egal name exit. |
{LEGAL lsection names. 1se9t}on name. ! !
r T T="" w 1
| SELECT HASH|Choose hash table pointer | Pointer to CSD. |Hash table pointer. |
| | for posting of control | | |
| |section's DEFs. | | |
b ¥ , t : + . 4
| HASH | Post control sectlem |Hash takle pointer, |Duplicity indica- |
| SEARCH | names in selected hash |DEF for control jtion. 1
| | table. |section name. | |
1 L 4 I 1
v T R A T . T |
| LOADER |Diagnostic on illegal |Pointer to parameter | |
| PROMPT |control section name. |string. | |
i 1 J— 4 4 ']
[ 3 T T T B
| RETECT |Diagnose rejected control |Pointer to rejected | |
| DIAG | section conditions. |CSD, pointer to | |
| | |rejecting DEF. | |
F + + + 4
| GET |]Obtain virtual storage for |Number of pages |Address of storage |
| STORAGE | control sections. |required, control |assigned, number of |
| | |section attributes. | bytes actually as- |
| | | | signed if variable. |
- + + + i
| LINK DEFs |Compute relocatable DEF |Pointer to first DEF, | Pointer to end of |
| |values and post relocatable |DEF count, pointer {last DEF. |
i }ani 2€sglgtehDE§s.in ;to containing CSD. = }
selecte ash chain.
- - 1 ] 4
| Q-CHAIN |Assign values for QO-type REFs|Address of CSD, functioni |
% %indhpoit.REFs in selected icode (post). : %
ash chain.
F 1 + + 4
|ATTACH TEXT|Set up page table entries |CSD pointer. | |
| | for control section text. | | |
F ¢ —- + + |
|MAP SEARCH |Insert MAP table entry for |VMA of control section, | |
| |allocated control sectioan. |pointer to CSD. { |
L 4 4 L N}
t T H H 1
| SRCHPACK |Locate virtual storage for | Number of bytes |Pointer to host |
{ |a control section group less {required. |entFy found, VMA |
| |than a page long. | |assigned. |
| t ¢ 4
| |Create a host or symbiont |Numker of bytes in the |Pointer to the new |
| |entry for the VST. |control section group |host or symbiont |
| | |and pointer to the | entry created. |
| | |first control section or} ]
| | |pointer to the host { i
entry.
; L fomery ; ,i
| SETPAGE |Unlock RESTBL of the shared |Pointer to parameter | None. {
| |library being used. |string; function code | |
| | lis a parameter. | |
L L i 1 |

Section 2:

Explicit Linking 45



ALLOCATE MODULE is called to allocate
storage for all of the control sections
within a single module and to compute and
link into the hash chain all absolute and
relocatable DEFs in the module (see Chart
AC).

Attributes:
reenterable.

Privileged, public, system,

Restrictions: Internal to loader module;
not available to other system components.

Entries: GR1 contains the input parameter
to ALLOCATE MODULE, which is a pointer to
the PMD preface of the module to be
allocated.

Exits: Normal only, no return code.
Operation: Storage allocation is based on

the following algorithm:

1. Storage is requested in a single block
for all fixed-length control sections
of identical attributes.

2. Storage is requested for variable-
length control sections individually.

3. Storage is not allocated for rejected
non-PUBLIC control sections, but space
is allocated for rejected PUBLIC con-
trol sections so that the allocation
in different tasks is the same for
shared storage.

Upon entry, ALLOCATE MODULE disables the
SETPAGE flag, specifying that SETPAGE has
been called during the loading of the pre-
sent module.

The CSDs are examined in order, the
first unprocessed CSD defining "current
attributes.®™ All CSDs whose attributes
match current attributes are located and
checked for possible rejection. Rejection
is caused if a control section's name is
already in the hash chain, or if the name
is determined illegal by CHECK DEF LEGAL.
If an attribute matching control section is
not rejected, its length is added to the
allocation sum. When all CSDs have been
examined, and each one whose attributes
match is marked as processed, storage is
allocated by a call to GET STORAGE.

If the packing option is set for this
control section group, the loader computes
the storage requirement of the group allow-
ing for all control sections in the group
to be placed on doubleword boundaries.

When a non-page-aligned control section
overlaps into the next page of virtual
storage, since the storage requirement is
computed and alocated by subgroups, the
control section overlapping the page becom-

46

es the first control section in the next
subgroup.

If packing of private control sections
is requested and the group length is less
than one page, an attempt is made to alloc-
ate space from a partially filled page
belonging to another control section of the
same storage-protection class. SRCHPACK is
called to search the vacant space table
(VST). If an adequate vacant area is
found, allocation is made at the specified
VMA, and the VST is updated to reflect the
assignment. If an adequate vacant area is
not available, a full page is allocated by
a call to GET STORAGE as mentioned above.

At this point, DEFs are computed and
linked for each control section just allo-
cated. LINKDEFs is called once for abso-
lute DEFs and once for relocatable DEFs,
with the base address allocated for the
control section as an argument in each
case. Absolute DEF values are, of course,
unmodified, but relocatable DEFs are com-
puted by adding to the DEF value the base
address of the control section. Next, pri-
vate storage page tables are set up for
each control section separately by a call
on the ATTACH TEXT routine. Finally, Q-
REFs are assigned values and chained
together by a call to the Q-CHAIN routine;
CXD-REFs are also chained together. When
all control sections of the current attri-
butes group are processed as described
above, another pass is made on the PMD to
process control sections of different
attributes.

Transfer of private packed control sec-
tions from external storage to virtual
storage is accomplished by assigning
scratch pages and creating entries in the
VsT. If packing is requested, a host or
symbiont VST entry is created for each con-
trol section in the group immediately
before ATTACH TEXT is called. If storage
for the group is allocated from a host
entry, a symbiont entry is created for each
control- section in the group and is linked
to the host entry for the page from which
the storage has been allocated. If storage
has been allocated by GETMAIN, a host entry
is created for the first control section in
the group and symbiont entries are created
for each additional packed control section
in the group. These entries are created by
a call to SRCHPACK. (See the SRCHPACK rou-
tine description for a further discussion
of the vacant space table, VST.)

Control sections of variable length go
through the GET STORAGE, LINK DEFs, and
ATTACH TEXT sequence described above, but
on an individual control section basis.
Also, -the number of bytes actually allo-
cated is filled in the CSD heading.



Public Storage Considerations: The alloca-
tion process for public control sections is
the same as for private control sections,
with these exceptions:

All storage addresses are returned to
ALLOCATE MODULE by GET STORAGE. Private
storage addresses are always obtained by
GETMAIN calls. Public storage, on the
other hand, need be obtained but once for
any given control section group -- or indi-
vidual variable-length control section --
by a call to GETSMAIN (Get Shared Main).
Subsequent tasks loading a public control
section group already allocated are merely
"connected”™ to the aliocated sisrage by a
call to the CONNECT routine. GET STORAGE
sets a flag in the CSD heading <f those
control sections whose public storage
address was returned by CONNECT linkage,
rather than by GETSMAIN linkage. If a sym-
biont entry for this control section alrea-
dy exists in the SDST, (the control section
has been packed on a page obtained by GETS-
MAIN), the CONNECT flag is set without cal-
ling the CONNECT routine and the SPT number
is filled in from the host entry. This
flag is necessary for ALLOCATE MODULE's
processing, for two reasons:

1. Page tables need not be set up for
connected public storage; consequent-
ly, on detection of this flag for
public control sections, ALLOCATE MOD-
ULE bypasses the call to ATTACH TEXT.

2. When storage is obtained by GETSMAIN,
GET STORAGE returns with the newly
created SDST locked to other tasks.
(The locked entry is denoted by the
SPT number being set to all bits on.)

This entry must remain locked to all
other tasks until ALLOCATE MODULE has
finished all processing for the pgublic con-
trol section group, at which point ALLOCATE
MODULE unlocks the entry by filling in the
SPT number returned by GET STORAGE, which
obtained it from GETSMAIN.

Another consideration for public control
sections is packing; if a shared public
control section is already loaded, the
addressing for that control section depends
on whether the control sections in the
group are loaded on page boundaries or are
packed. V- and R-cons are calculated for
either eventuality; GET STORAGE determines
the amount of storage needed (and the set
of V- and R-cons to be used) by checking
the CSECTs-packed flag in the SDST member
entry.

The only other special public storage
consideration involves the "Module Public
Name Switch.®™ This flag is disabled at the
beginning of ALLOCATE MODULE's processing;
that is, it is disabled once for each mod-

ule. It is used and enabled only by the
GET STORAGE routine, and only to cbey nam-
ing conventions within the SDST.

The reader is directed to the descrip-
tion of the GET STORAGE routine for a
detailed discussion of all aspects of publ-
ic storage allocation, packing of public
control sections, the SDST, etc.

Before returning to its caller, ALLOCATE
MODULE checks a SETPAGE flag to determine
it the RESTBL of the present job library is
locked because the 1library is shared. If
this is the case, ALLOCATE MODULE calls
CFTTAGE, requesting it o release the
interlock on the shared library's RESTBL
(Relative External Storage Correspondence
Table) .

Exror Checks: Whenever a control section
is rejected, a call is made on REJECT DIAG
to issue possible diagnostic messages to
warn the user. REJECT DIAG discusses these
cases in detail.

Comment: Whenever a public control section
group is detected all of whose control sec-
tions are rejected, the public name bit is
turned off in the control section of this
group in which it was originally turned on.
Public storage is not allocated for such a
group.

BECSA (CGCCT)
PCSA is called to adjust the attributes
of a control section according to user

authority (see Chart BD).

Attributes:
reenterable.

Privileged, public, system,
Pestrietions: Internal o loader module,
not available to other system components.

Entries:
CSD.

GR1 contains a pointer to the

Routines Called: None.

Exits: Normal only, no return code.
Operation: As a module is allocated, each
control section is processed by a call on
PCSA. PCSA may alter the attributes of the
control section according to the following
rules:

1. User authority O0: Erase PUBLIC and
READONLY attributes unconditionally.

2. User authority P: Erase PRIVILEGED
and SYSTEM attributes from any control
section that was not loaded from SYS-
LIB. Erase PUBLIC and READONLY attri-
butes unconditionally.

Section 2: Explicit Linking 47



3. User authority U: Erase PRIVILEGED
and SYSTEM attributes from any control
sections that were not loaded from
SYSLIB, and set the SYSTEM attribute
if the PRIVILEGED attribute is set in
control sections loaded from SYSLIB.
Erase PUBLIC attribute if module not
loaded from a shared data set.

Rules 1 and 2 above make it possible for
certain system programmers to load their
own copies of various routines for checkout
purposes. In the case of U authority, PCSA
is primarily concerned with not allowing
the normal user to declare PRIVILEGED and
SYSTEM control sections, to eliminate the
danger of resolving improperly external
references from a system routine to a user
routine.

Note: PCSA may reference the SYSLIB switch
and the JFCB pointer in the PMD preface.
This requires that the PMD link be
installed in the CSD prior to invoking
PCsaA.

CHECK DEF LEGAL (CGCCU)

CHECK DEF LEGAL is called to verify the
acceptability of an external symbol name
(see Chart AF).

Attributes: Privileged, public, system,
reenterable.
Restrictions: Internal to loader module;

not available to other system components.
Entries: On entrance to CHECK DEF LEGAL,
GR1 will point to a list of three
parameters:

1. Pointer to the DEF entry whose name is
to be checked.

2. Pointer to the CSD containing the DEF.
3. Reject exit address.

Routines Calied: None.

Exits: Normal DEF ok; to caller-supplied
location if DEF is rejected.

Operation: If user authority is O, any
symbol 1is legal. If user authority is P,
symbols beginning with CZ or CHB must be
defined in modules only from SYSLIB.

If user authority is U, three checks are
made:

1. Symbols beginning with SYS may be

defined only in control sections with
the SYSTEM attribute set.

48

2. Symbols beginning with CZ or CHB may
be defined in any . control section
except a SYSTEM control section that
is not also marked privileged.

3. SYSTEM control sections which are also
marked privileged may define only
those entry points that begin with C2
or CHB.

Illegality of a DEF name is indicated to
the calling routine by CHECK DEF LEGAL's
taking the reject exit.

Note: CHECK DEF LEGAL may have to examine
the PMD preface of the module containing
the DEF; this assumes that the PMD link has
been filled in the CSD heading.

SELECT HASH (CGCCB)

SELECT HASH is called to determine in
which hash table a given symbol is to be
posted during allocation or in which hash
table a given symbol may be found for dele-
tion purposes (see Chart BI).

Attributes: Privileged, public, system,
reenterable.
Restrictions: Internal to loader module;

not available to other system components.

Entries: GR1 contains a pointer to the CSD
for whose symbols the hash table pointer is
being selected.

Routines Called: None.

Exits: Normal only, no return code.
Operation: Given a pointer to a CSD, all
symbols within that CSD are posted in the
same hash chain. For U authority users:

1. If the PMD containing the CSD did not
come from SYSLIB, the hash table
pointer is set to the origin of the
user hash table.

2. If the PMD containing the CSD was
extracted from SYSLIB, the system
attribute bit is checked. System con-
trol sections will have their symbols
posted in the appropriate system hash
table; non-system control sections, in
the user hash table.

P and O authority users have all symbhols
posted into the appropriate system hash
table unconditionally.



REJECT DIAG (CGCCP)

r T T L]
| | | Parameters |
| ROUTINES | s - {
| CALLED | Purpose of Call | In | Oout i
t ¥ : - t {
| LOADER | Diagnostics on rejected |Pointer to parameter | |
| PROMPT |control section conditions. |string. | |
1 s 4 1 ]
r L) Ll T |
| ABEND | Abnormal terminaticn of |Address of diagnostic. | |
| | task. | i |
L 1 i i J

REJECT DIAG is called to examine the
attributes of rejected control sections for
diagnostic purposes and to check for possi-
ble error conditions (see Charc BF). The
purpose of this routine is to provide the
user with diagnostic information so that he
may identify the cauce of potential task
error.

Attributes: Privileged, public, system,
reenterable.

Restrictions: Internal to loader module;
not available to other system components.

Entries: Entrance is made with GR1 point-
ing to the following list:

1. A pointer to the rejected control sec-
tion's CSD.

2. A pointer to the DEF entry of the name
causing rejection.

Exits: Normal with no return code, or
ABEND if a privileged control section is
rejected by a nonprivileged control
section.

Operation: REJECT DIAG'sS processing con-
sists mainly of attribnte comparisons.
Those events causing load errors are as
follows:

1. A control section is rejected by a
non-control section.

A privileged control section is
sejected by a nonprivileged control
section. This could result in a priv-
ileged routine's entering nonprivi-
leged code inadvertently. This
results in an immediate ABEND.

A control section is rejected whose
length exceeds the length of the con-
trol section causing rejection. This
condition could result in possible
storage protection error if the excess
portion of the rejected contrel is
subsequently referenced.

Those events that cause only a warning

nessage to be issued are:

1.

A non-read-only control section is
rejected by a read-only control sec-
tion. This may result in a storage
protect error.

A COMMON control section is rejected
by a non-COMMON control section or
vice-versa.

A COMMON control section is rejected
by another COMMON control section, and
the length of the rejected section
exceeds that of the retained section.

A nonprivileged control section is
rejected by a privileged control sec-
tior. This may result in a storage
protect error or a readout error.

Section 2: Explicit Linking 49



GET STORAGE (CGCCW)

T T T 1
| | | Parameters |
| ROUTINES | - T 1
| CALLED | Purpose of Call | In | out |
S oo oo 1
| LOADER |Diagnostic on unnamed public |Pointer to parameter | |
| PROMPT |control section group. |string. | |
L I
L3 T nteabakatentakabt i - _"'+ """""""" “
|GETMAIN |Request private virtual |Number of pages, storage|VMA of storage as- |
i |storage for nonpublic controljclass. | signed. |
| | sections. | | ]
L § 4
r T hata T __—'{
| SRCHSDST |Open public control section |Member name. | Code indicating |
] |group member entry in SDST. | | whether member |
| | | |already open and |
i | | | being shared by |
| | | |other tasks. |
{ 4 4
F 1 - e } :
|GETSMAIN |Request shared storage for |Number of pages, SPT | SPT number, rela- |
| |public control sections. |number, storage class. |tive page number |
| | | | assigned. |
F T - ¥ TR
| CONNECT |Connect current task to |SPT number, relative |virtual storage |
| |public control section pages |page number. | address. |
| |if public control section | | |
! |group in use by other tasks. | { |
1 } 4
T T - T T '“‘4
| SRCHPACK | Locate virtual storage for a |Number of bytes required|Pointer to host |
| |control section group less | |entry found, VMa |
| |than a page long. | |assigned. |
1 - T T — ]
| |Create a host or symbiont |Number of bytes in the |Pointer to the new |
| jentry for the VST. |control section group lhost or symbiont |
| i jand pointer to the first|entry created. |
{ | |control section or to | |
| | |the host entry. | |
L L — 4 -4 4

Given a set of control section attri-
butes and total pages, GET STORAGE requests
private or public storage for a control
section group (see Chart AP).

Attributes:
reenterable.

Privileged, public, system,

Internal to loader module;
to other system components.

Restrictions:
not available

Entries: GET STORAGE is invoked by
ALLOCATE MODULE to obtain virtual storage
for either a non-variable-length control
section group or for an individual
variable-length control section. GR1 will
contain the address of the following param-
eter list:

Input:
1. The attributes of the current fixed-
length control section grougp or indi-

vidual variable-length control
section.

50

2. The total number of pages required for
the control section group or variable-
length control section.

3. A pointer to the first (or only) CSD
of the group.

4. A pointer to the PMD preface.

Output:

1. The virtual storage address of the
virtual storage block assigned.

2. The actual number of bytes assigned if
it is a wvariable-length control
section.

Exits: Normal only, no return code.
Operation: The first step in this routine

is to establish the storage key for the
group. Privileged control sections are
assigned storage key C, which is both read
and write protected against nonprivileged
users. Read-only control sections are
assigned storage key B, which provides



write protection. All other coni.rol sec-
tions are assigned storage key A, which
allows unrestricted user reads zud writes.

Next, private fixed-length control sec-
tion groups are assigned storage with a
single call on GETMAIN. PSECTs are
assigned storage with the system packing
parameter overridden to effect uncondition-
al packing.

GET STORAGE requests virtual storage for
variable-length control sections by setting
the VAR flag in GRO prior to the call on
GETMAIN. GET STORAGE computes the actual
number of pages assigned in the variable
request, as follows:

The ISAVAR byte in the ISA is examined.
If this value is nonzero, it represents the
number of pages GETMAIN has assigned in
addition to the requested number. If the
ISAVAR byte is zero, then GETMAIN will have
allocated the number of full segments
required to contain the requested number of
pages. GET STORAGE makes the computation,
converts the total pages assigned into
bytes, and sets the second output parameter
accordingly.

The assignment of storage for public
fixed-length control saction grcups and
individual variable-length public control
sections is a more complex process. A sSys-—
tem table, the shared data set table
(SDST), contains entries for each open
shared data set. The table also contains
individual member entries that describe the
control section groups (or individual
variable-length control sections) allocated
storage by GET STORAGE.

The following rules govern the SDST mem-
ber entry naming conventions for a single
module:

1. The first control section group (or
individual variable-length control
section) is entered in the SDST with
the current module name as the member
name.

2. Subsequent member entries from the
module bear the name of the first (or
only) named control section in the
group.

3. Groups of all unnamed control sections
will not be entered in the SDST, and
GET STORAGE will not assign public
storage for such a group.

The module public name switch is dis-
abled at the beginning of ALLOCATE MODULE's
processing. GET STORAGE checks this, and
finding it disabled, sets the item Public
Name equal to the current module name, thus
conforming to rule 1 above. Now GET

STORAGE enables the module public name
switch so that any subsequent assignments
for control section in the current module
will conform to rule 2.

The VAM routine SRCHSDST (CZCQE) is
called by GET STORAGE to search for a mem-
ber entry whose name matches the item Publ-
ic Name. One of the parameters for
SRCHSDST is the address of the JFCB
describing the data set from which the cur-
rent module was loaded. When SRCHSDST
finds a matching member name, it checks
further for a match on data set names, as
follows:

Referring to Figure 9, observe that each
SDST member entry contains a pointer to the
SDST data set entry describing the shared
partitioned data set from which the module
was loaded (the module that contained the
control section group represented by the
member entry). SRCHSDST checks for data
set match by matching the SDST data set
entry name with the data set name contained
in the JFCB whose pointer is passed by GET
STORAGE.

If SRCHSDST finds both member and data
set entry matches, it will increment the
user count in the matching member entry,
set a found return code for GET STORAGE,
and return a pointer to the SDST member
entry. The found return from SRCHSDST
informs GET STORAGE that the current con-
trol section group has been allocated
shared storage by another task, and that
the shared page takle entries have been set
up. In this case, GET STORAGE extracts the
shared page table number from the SDST mem-
ber entry and calls CZCG7 to CONNECT the

Word 0 Hash Link
Word 1 User Count SPT number
Codes {1 byte}
7th bit set if 8 . e
, yte address relative to beginning
y oo
Word 2 CSECTs pocked of segment (3 bytes)
8th bit set if
symbiont entry
Number of pages assigned (first 2 bytes)
Word 3 N . A .
if host entry; Pointer to host entry if symbiont
Word 4 Poinfe.:r to D.cfa Set En(?ry for shared data set
to which this member belongs
Word 5, & Alphameric name of CSECT group

Figure 9. Sample SDST Member Entry

Section 2: Explicit Linking 51



control section group to the shared page
table. This CONNECT linkage merely con-
verts the SPT member into a virtual storage
address for this control section group for
this task.

If SRCHSDST fails to find a member and
data set entry match, it sets up a new
entry for this control section group in the
SDST and returns an indication of this fact
to GET STORAGE. 1In this event, GET STORAGE
will request public storage by calling the
VMA routine GET-SHARED-MAIN (GETSMAIN).

The loader always uses the previously allo-
cated SPT number when calling GETSMAIN,
such that if room exists in the previously
allocated shared segment, the current requ-
est will be satisfied from that same seg-
ment. GET STORAGE fills in the new SDST
entry the relative page number returned by
a GETSMAIN (to be used in subsequent CON-
NECT calls as described above). At this
point, the SDST entry is locked to other
tasks by all bits having been set on by
SRCHSDST in the SPT number slot in the SDST
entry. Later on, the SPT number as actual-
ly returned by GETSMAIN will be inserted in
the SDST entry, but only after all proces-
sing for that PUBLIC storage has been com-
pleted in ALLOCATE MODULE.

If control section packing has been spe-
cified and if SRCHSDST returns a "not
found" and if the control section length is
smaller than a page, an attempt is made to
pack it on a partially filled page before
allocating storage by GETSMAIN as described
above. This is done by locking the SDST
and calling SRCHPACK to thread through the
vacant space table (VST), looking at the
available space entry for each page. (The
section on SRCHPACK describes the vacant
space table.) A host/symbiont relationship
exists among control section groups sharing
the same paqe. The first group on this
page is the host; the remaining groups on
the page are symbionts. This relationship
is established by the ‘code' and 'pointer
to host' entries in the SDST. For control
section groups smaller than a page, when
SRCHSDST has created a member entry, the
vacant space table for this group's storage
class is scanned for space. If vacant
space is found, the group is assigned to
that page, and the relevant vacant space
table entry is modified to reflect the
assigned space. The newly created SDST
entry is flagged as a symbiont entry, and a
pointer to the host SDST entry is filled
in. (Host pointer is obtained from the
relevant vacant space table entry.) The
byte address relative to the segment is
filled in, and the SPT number (obtained
from host SDST entry) is saved. The user
count in the host SDST is incremented and
the SDST is unlocked. If vacant space is
not found, allocation is made via GETSMAIN.
A new vacant space entry is created if more

52

than eight bytes of available space exist
on the last page of the last control sec-
tion in the group (if it is a text page).
This is accomplished by a call to SRCHPACK
with the function code set to create a host
entry in the vacant space table. After the
return from SRCHPACK, a pointer to the host
SDST entry is set in the new packing table
entry and the SDST is unlocked.

Error Checks: GET STORAGE will refuse to
assign PUBLIC storage for an unnamed CSE(CI
group. This condition results in:

1. A diagnostic to the user.

2. Private storage being allocated for
the group.

Comments:

Note that the strict naming rules are
enforced by the dynamic loader so that
PUBLIC storage is allocated identically
within a segment in different tasks.

The SDST is a public system table
accessible by each task in the manner
described above. It is the common link
between tasks that effects the sharing
concept.

considering, for example, a module, M,
of the following structure:

CSECT A (READ ONLY, PUBLIC)
CSECT (unnamed) (PUBLIC)

CSECT B (READ ONLY)

CSECT C (READ ONLY, PUBLIC}
CSECT D (PUBLIC)

PSECT E (PROTOTYPE)

CSECT F (PUBLIC, VARIABLE)
CSECT G (PUBLIC, VARIABLE)

The following SDST entries would appear as
a result of public storage allocation for
M:

An entry name "M" describing the controil
section group composed of A and C.

An entry named "F" describing the
variable-length CSECT F.

An entry named "G" describing the
variable~-length CSECT G.

The module name M is used to identify the

first control section group, composed of A
and C. Variable-length control sections ¥
and G are allocated storage individually,

and have unique SDST entries.

The second control section group is
assigned private storage, rather than publ-
ic, since the first CSECT in the group is
unnamed. The group is identified by the
first named CSECT, D.



SRCHPACK (CGCCC)

r T T 1
{ | | Parameters |
| ROUTINES | X t r .|
| CALLED | Purpose of Cali | In | out |
1 N - o e e 4 L 4
1] - T - Ll T |
| GETMAIN |Get space for new VST entry. |Numbgr of pages, pro- | Address of page. |
| l itectlon class. L j
1

SRCHPACK is called either to search a
vacant space table (VST) for an unused
storage area large enough to meet the
requirements of a control section group or
to create a VST entry (host or symbiont)
(see Chart BL).

Attributes:
reenterable.

Privileged, public, systen,

Restrictions: Internal to the loader mod-
ule; not available to other system
components.

Entries: On entrance to SRCHPACK, GR1
points to the followirg parameter list:

Inputs

1. HNumber of bytes in the control section
group for which storage is needed.

2. Function code (0 = search a VsT, 1 =
create a host entry, 2 = create a sym-
biont entry).

3. For function code = 1, the VMA of the
first control section in the group;
for function code = 2, a pointer to
the host entry.

Output

Function code = 0:

1. A pointer to the host entry found.
2. The VMA assigned.

Function code = 1:

A pointer to the new host entry.
Function code = 2:

A pointer to the new symbiont entry.

Routines Called: None.

Exits:

Function code = 0:

GR15 = 0 means that space was found.

1]

GR15 4 means that vacant space was

not found.
Function code = 1 or 2:

Normal only, no return code.

Cperation: If the function code is 0
(search a VST), the VST is searched for a
text page with sufficient unused space to
accomodate the group. If such a page is
found, the control section group is
assigned to this page and the number of
available bytes in the host table entry is
updated. A pointer to the host entry found
is placed intoc word 3 of the parameter
list, the virtual storage address assigned
is placed into GR1l, a return code of 0 is
placed into GR15, and return is made. If a
page with sufficient unused space is not
found, a return code of 4 is placed into
GR15 and return is made.

If the function code is 1 (create a host
entry), an available space entry is
obtained and the unused space on the last
page of the last control section in the
grcup is then computed. This is placed
into the available space entry along with
the page origin. This new host entry is
then linked into the VST chain. A pointer
to the new host entry is placed into word 3
of the input parameter list and return is
made.

If the function code is 2 (create a sym-
biont entry), an available space entry is
obtained and is linked to the host or to
the last symbiont entry created for this
host if any exist. A pointer to the new
symbiont entry is placed into GR1 and
return is made.

Section 2: Explicit Linking 53



LINK DEFs (CGCCV)

¥ T -T —
| | | Parameters [
| ROUTINES | p————— T - -
| CALLED | Purpose of Call | In | Out |
——————————— L — . -4~ - - e e
|CHECK DEF |[Check legality of DEF name. |DEF name, CSD pointer. | |
| LEGAL | | | |
b + _ 1 e oo 4
| HASH |Post legal DEFs in hash |DEF entry pointer, hash |[Duplicity indi- |
| SEARCH | chain. |table pointer. |cation. |
L 4 4 4
r T - T - T - "{
| LOADER jDiagnostics on DEF |Pointer to parameter | |
| PROMPT |rejections. |string. | |
L i — —— PR . 1 _ ]

LINK DEFs is called to post legal DEF
names in the hash chain for a single type
of DEF for a single nonrejected control
section (see Chart AT). (In the case of
relocatable DEFs, the value is also
computed.)

Attributes: Privileged, public, system,
reenterable.
Restrictions: Internal to loader module;

not available to other system components.

Entries: On entrance to LINK DEFs, GR1
points to the following parameter list:

Inputs

1. DEF type code (0 is absolute, 1 is
relocatable, and 2 is complex).

2. Address of the first DEF entry.
3. The number of DEFs of this type.

4. A pointer to the CSD containing the

DEFs.
5. The base address assigned the control
section.
Output

Pointer to the first byte past the end of
the last DEF linked.

Exits: Normal only, no return code.
Operation: LINK DEFs first checks the name

of the DEF in CHECK DEF LEGAL; illegal DEFs
are not linked. The DEF name is looked up
in the hash chain. If the name already
appears and is a control section name, a

S4

diagnostic is issued if the default value
REIJMSG is set to N, and the load error
switch is set. If the name is duplicated
but is not a control section name, then a
diagnostic is issued if the default value
REJMSG is set to N, and the error switch is
not set. Duplicate DEF names are never
added to the hash chain.

DEFs surviving the above checks are now
posted. First R-values are computed by
adding the base address of this control
section (input parameter 5) to the "R-value
displacement®™ in the DEF entry (nonzero
only if this control section's module hac
been link-edited and this control section
combined to produce an offset).

At this point, the CSD 1link is set in
the DEF entry. For absolute and relocat-
able DEFs, this is set to point to the CSD
heading (input parameter 4). Complex DEFs
are not so linked until later; their CSD
link is set to all 1's to indicate they
have been linked but not processed.

Complex and absolute DEFs are processed
no further. The absolute DEF's V-value
requires no change; complex DEF V-values
are computed later in the FIX PMD routine.
Relocatable DEFs, however, are computed by
adding to the DEF value the base address of
the containing control section. When all
DEFs of a single type have been so pro-
cessed, LINK DEFs returns with a pointer to
the end of the DEF table just processed.

Error Checks: By system convention a DEF
may not duplicate the name of a previously
loaded control section. This condition
produces a faulty load and so indicates by
setting the load error switch.



Q-CHAIN (CGCQC)

r T T 1
| | | Parameters |
| ROUTINES | . b T 4
| CALLED ' Purpose of Call i In { out |
b H t t i
| RESOLVE |Assign DXD offset value for a|A function code indicat-| |
| Q-REF |Q-type REF, or de<ignate |@ng whether the offset | |
| |offset as available. |is to be assigned or | |
| | | freed, and a Q-type REF.| |
1 1 i } 4
L 3 T T t 1
| LOADER |Diagnostic when DXbs have |Pointer to parameter | |
| PROMPT |same name but conflicting |string. | |
| | length or alignment. i | |
L g i 8 — L B |

Q-CHAIN processes Q-REFS. See Chart BE.

Attributes:
reenterable.

Privileged, public, system,

Restrictions: Internal to loader module;
not available to other system components.

Entries: GR1 points to the following pa-
rameter list:

1. The address of a CSD.
2. A function code (post or delete).

Exits: Normal only, no return code.
Operation: When Q-CHAIN is called by
ALLOCATE MODULE (function code = post),
proper chain of Q-REFs is searched to
determine if there is a duplicate. 1If a
duplicate is found, the offset of the pre-
viously loaded Q-REF is assigned and the
duplicate Q-REF is side chained to the pre-
viously loaded Q-REF. The length and alig-
nment of the duplicate DXD is compared with
those of the previously loaded DXD. If a
conflict exists, and if the duplicate DXD
requires more restrictive alignment
(example: doubleword as opposed to word)
or greater length than the first DXD, a
diagnostic is issued:

the

CZCDL022 PROCEEDING: CONFLICTING ALIGNMENT
OR LENGTH WITH DXD(xxxxx)

If no duplicate is found, Q-CHAIN calls
RESOLVE Q-REF to assign an offset to the
Q-REF. Once a value is assigned, Q-CHAIN
chains the Q-REF into the proper primary
chain.

Eleven primary hash chains are main-
tained for posting Q-REFs. The method of
hashing is similar to that employed by the
LINK DEFs routine for DEFs. When posting a
Q-REF to the chains, its name is hashed and
the proper chain is searched for a dupli-
cate. If a duplicate is found in the
chain, the Q-REF is not posted to the pri-

mary chain but is chained to a secondary
chain. The base of this secondary chain is
the sixth word of the Q-REF previously
posted to the primary chain. (This form of
chain is called a binary tree chain.) A
typical chain might look like this:

-
| BASE i

2

Y

T T v T 1
|[NAME 1|OFFSET|LENGTH & |PRIMARY|SECONDARY |

| { | ALIGNMENT | CHAIN |CHAIN |
L 1 4 J

R | T
OFFSET|LENGTH & | O

| ALIGNMENT |

L L

R——
o
b e e o

e o}

r T T T T 1
|NAME 2 |OFFSET|LENGTH & |PRIMARY|SECONDARY|

i | |ALIGNMENT|CHAIN |CHAIN |
| I L 4 1 ! i 3

+

r Ll T Ri T 1
|[NAME 3|OFFSET|LENGTH 6§ | 0  |SECONDARY|
| i | ALIGNMENT | | CHAIN ]
L L 1 Y 1 4
r LE T T T h
|NAME 3|OFFSET|LENGTH § | 0 | 0 |
\ | | ALIGNMENT | ] |
i X i ' L J

QO-CHAIN can also be called by DELETE
MODULE, to delete Q-REFs. If a Q-REF is
the last one of the same name on the chain,
Q-CHAIN calls RESOLVE Q-REF to reclaim the
offset assigned to chat Q-REF.

Once all Q-REFs in the CSD are pro-
cessed, Q-CHAIN returns to the calling
module.

Section 2: Explicit Linking 55



RESOLVE Q-REF (CGCRQ)

r T T -1
| | | Parameters |
| ROUTINES | F T 4
| CALLED | Purpose of Call | In | out |
i 4 4 i

r - T - T T 1
| GETMAIN |Get page for Pseudo Vector |Number of pages (1); | Location of assigned|
| |Available Offset Table |protection class (2). | page. |
| | (PVAOT) . | [ |
i G— R S o 1
| FREEMAIN | Free PVAOT space. |Address and number of | |
| | |pages. | I
Lo L L L J

RESOLVE Q-REF assigns or frees the off-
set for a Q-REF. See Chart BG.

Attributes:
reenterable.

Privileged, public, system,

Internal to loader module;
to other system components.

Restrictions:
not available

Entries: GR1
rameter list:

points to the following pa-

1. A function code (assign or free).

2. A Q-REF.

Exits: ©Normal only, no return code.
Operation: RESOLVE Q-REF uses the Pseudo
Vector Available Offset Table (PVAOT).
PVAOT describes the storage areas available
to combined dummy sections. Each entry is
two words long; the first word contains the
length of an area and the second word con-
tains the offset from the beginning of the
combined sections. The PVAOT entries are
in order of ascending length. When search-

56

ing PVAOT for an available offset, RESOLVE
Q-REF finds an entry with the smallest
length that will satisfy the reguest. It
then adjusts the alignment to see if the
entry will still satisfy the request. If
the entry now fails, RESOLVE Q-REF serially
examines the following entries until an
acceptable entry is found. The needed
length is subtracted from the entry's
length, the offset is updated, and the
table is reordered as regquired.

When an offset is freed, RESOLVE Q-REF
updates the appropriate offset and length
fields.

The space for PVAOT is acquired and
initialized upon encounter of the first
Q-REF. If the table becomes full, RESOLVE
Q-REF expands it with the requirement tha?
it be contiguous in virtual memory.

CGCRQ places the largest offset plus its
DXD's length in the PSECT of the dynamic
loader for future reference by EXPLICIT
LINK (CZCDL1).




ATTACH TEXT (CGCCK)

[} T T 1
| | | Parameters |
| ROUTINES | b - 1
| CALLED | Purpose of Call | In | out |
F - - - -— + 1
| LOADER |Diagnostic when pubiic page |Pointer to parameter | |
| PROMPT | contains adcons. |string. | |
b t NS , + 1
| SETPAGE | {1) Process a request for an |[Fouinter to parameter { None. |
| | external page table |string; function code | |
| | entry. |is a parameter. | |
| | . | ] |
| | (2) Issue pending SETXP | | |
| | request when pac'ed i | |
| | public CSECT text is to | | |
| | be moved from scratch | i |
l l page to unassigned VMA. 1 1 |

—_— J

»

ATTACH TEXT is called to set up page
table entries for text pages of a single
control section (see Chart AD).

Attributes: Privileged, public, system,
reenterable.
Restrictions: Internal to loader module;

not available to other system components.

Entries: Entrance to ATTACH TEXT is made
with GR1 pointing to this parameter list:

1. The address of the CSD whose section
text is to be attached.

2. The address of the PMD preface.

Exits: Normal only, no return code.

Operation: The virtual storage page table
(VMPT) within the CSD is examined an entry
at a time. This table is produced as part
of the CSD by the language processor that
created the module. There will be a VMPT
entry for each page of virtual storage
spanned by the control section, whether
hard text was produced for each page or
not. A VMPT entry is two bytes and may
contain either:

1. X'FFFF', which indicates that no text
page exists to match the virtual
storage page.

A number, not X*FFFF', which is the
number of the text page in the data
set relative to the first page of the
control section text in the data set
member.

For example, a control section may contain
two pages of code, an empty page (say, a D
4096C, to reserve the page), and auother
page of data. The VMPT for such code woul
be:

S

d

0000
FFFF

0001
0002

from which it may be seen that the first
two virtual storage pages have correspond-
ing text pages 0000 and 0001. The third
page of virtual storage spanned by the con-
trol section has no corresponding text
page, and the last virtual storage page
corresponds to text page 0002.

The routine SETPAGE is called to process
requests for a page table entry relating
the virtual storage address of a text page
to the external storage address where the
text page resides in the data set. The
loader does not actually move text pages
from their data sets into real storage.
Instead, the external page table (XPT)
entries are set to point to the data set
text residence, while the page table entry
is marked "unavailable.®™ When the CPU
makes a virtual storage address reference
to a virtual page whose page table entry is
flagged unavailable, an interruption
occurs. The resident supervisor processes
the interruption by assigning a real
storage page to contain the virtual page,
resetting the unavailable bit, filling in
the main storage page address in the page
table, and processing the corresponding XPT
entry. If the XPT entry is zero, no action
is required; that is, the virtual page has
no corresponding external page. If the
entry is not zero, it will contain the
external or auxiliary storage address of
the page that tuc resident supervisor pag-
ing mechanism will transfer into the
assigned real storage page. A bit is also
contained in the XPT entry that when set
causes the task monitor to enter the PAGE
RELOCATION entrance (CZCDL4) of the loader
to process adcons on the referenced page.
This bit is known as the "unprocessed by
loader™ bit and is set or reset by parame-
ter when ATTACH TEXT calls SETPAGE.

Section 2: Explicit Linking 57



For purposes of this discussion the fol-
lowing fields of the page tables and XPT
are discussed:

1. The page table entries are one half-
word. Bits 4-11 contain the main
storage page address, while bit 12 is
the "unavailable™ bit:

Triraa
0123456789012345

‘———~—— “Unavailable bit

Real core page
number

2. The XPT entry is two words in length.
The first word is the external storage
address expressed as symbolic unit and
relative page number on the unit. The
second word is a series of flag bits
including the unprocessed by loader
bit:

0 15 16 31

Symbolic Unit Number Relative Page Number

01234567

L Unprocessed by Loader Bit

ATTACH TEXT examines each VMPT entry in
the argument CSD. There will be a VMPT
entry for each page of virtual storage to
be spanned by the control section. This
count is easily determined by rounding up
the text length to the next integral page.
The CSD field, TDYCTL, contains the number
of bytes of virtual storage to be spanned
by the control section. Adding 4095 to
this value and dividing by 4096 (right
shift of 12) produces the page count and
VMPT entry count.

ATTACH TEXT checks the VMPT entry for
all Fs, in which case the SETPAGE linkage
is skipped, and the next VMPT entry is
examined. When the entry is discovered to
contain a relative text page number, the
number is used as an index into the extern-
al and internal Relocation Dictionary (RLD)
tables. There will be no RLD entry for a

58

given virtual page if there is no corres-
ponding text page.

The RLD tables are constructed so that
the modifier pointers are in order by text
page number, that is, the first pointer is
for page 0 of control section text, the
second for page 1 of control section text,
etc. Virtual pages with no corresponding
text pages have no pointers in the RLD.
(Such pages cannot contain adcons, so RLD
entries are unnecessary.) The RLD is kept
as compact as possible by including poin-
ters only for those text pages through the
last one in the control section to contain
adcons. The pointer for a text page with
no adcons will point to that portion of the
RLD where the modifiers would have been
placed had there been any. In the case of
a control section with no external adcons,
for example, the external RLD would consist
of a single pointer and no modifiers:

Count = 0 0000 l 0002 J
Pointer points to where modifier(s) would have been placed.
In this case, it points to the end of the external RLD.

Referring back to the earlier example,
assuming that only pages 0000 and 0001 con-
tain external adcons while pages 0000 and

0002 contain internal adcons, the RLDs
would look like this:
External RLD:
E( Pointer for Text Page O 0003 0006 ™ Coaart
Poirtor < i
L Pointer for Text Page | 0002 000E - D\’ Croend
( Page O Modifier [ ¥ | |
! | 3 Maodiflers {1
Page O Modifier L% Tows Pace O
.
Meditiers 4 Page O Modifier
Page 1 Mccifier e — R \ )
2 Modislers d
‘?Tex! Page !
Poge 1 Modifier J

Note that since there are no external
adcons on text page 2, there is no modifier
pointer for that text page in the External
RLD.



Internal RLD:

~

Pointer for Text Page O | 0002 000A “"i Count=2

Painters Pointer for Text Page 1 0000 000 |—}-# Count=0
b

Pointer for Text Page 2 0001 000A |—I-#f Count=1

oy ]
i ¥

Page 0 Modifier e i 2 Modifiers for
{ Text Fage 0

;

Modifiers < Page 0 Modifier

|
Iy

_A-f 1 Modifier for
~ Text Page 2

Pnae 2 Modifier

Note that text page 2 corresponds to
virtual page 3, and that there is no point-
er for vacuous virtual page 2.

The location of the last pointer within
an RLD is determined from the fact that the
last pointer and the first modifier are in
adjacent words. The first pointer in each
RLD points to the first modifier; that is,
the location of the second half of the
pointer plus the contents of the second
half of the pointer locate the first modi-
fier. ATTACH TEXT makes this computation
for each RLD separately and uses this loca-
tion to delimit the end of the RLD
pointers.

If a text page exists, ATTACH TEXT will
call SETPAGE with the unprocessed by loader
parameter set, if a nonzero modifier count
for the current page is discovered in eith-
er RLD. ATTACH TEXT will call SETPAGE with
the unprocessed by loader bit reset in the
event that in both RLDs either:

1. The current text page falls beyond the
last page for which there exists a
modifier pointer.

2. The current text page has an RLD modi-
fier pointer but with a zero modifier
count.

If ATTACH TEXT discovers a public page
with adcons, a diagnostic is issued, the
load error switch is set, and ATTACH TEXT
calls SETPAGE with the unprocessed by load-
er bit reset.

When private control section packing has
been specified and the unprocessed by load-
er bit is "on®" at page relocation time,
this infortls the loader that some of the
text page to be relocated may not have been
loaded on the page. The last text page of
any control section group (if this last
page has a corresponding text page) has the
unprocessed by locader bit set uncondition-
ally since this page may be a packed one.
If the control section to be attached is
packed, the virtual storage address of its
scratch page is obtained from the relevant
symbiont entry in the vacant space table.
The control section text is attached to the
scratch page via a call to SETPAGE. The
text is properly packed and the scratch
page released at page relocation time. For
the calls to SETPAGE mentioned above,
ATTACH TEXT supplies a function code speci-
fying that a request for an external page
table be placed in a stack which SETPAGE
maintains.

For public packing, the unprocessed by
loader bit has no significance. If control
sections do not begin on internal page
boundaries, the adjustment must be made by
ATTACH TEXT. ATTACH TEXT calls SETPAGE,
giving a function code specifying that any
pending requests to build external page
table entries must be performed. Then the
control section text is zttached to a
scratch page and immediately transferred to
the assigned storage area in the packed
page.

Section 2: Explicit Linking 59



FIX PMD (CGCCJ)

r T T -
| | | Parameters |
| ROUTINES | p————- - -—4
{ CALLED | Purpose of Call | In | out |
e —— oo e I -t ~— ]
|SELECT HASH|Select hash table pointer for|CSD pointer. |Hash table pointer. |
| |posting of complex DEFs (in- | | |
| | cluding module name DEF). | | |

- - T O +-- ey - e
|CHECK DEF |[Check legality module name |Module name, CSD | I1llegal DEF exit. |
| LEGAL | DEF. |pointer. | |
F 1 -——- e } - -~
| HASH SEARCH|Post module name DEF in |Module name DEF pointer, |Duplicity |
| |selected hash chain. fhash table pointer. lindication. |

——————————— T R e
| LOADER |Diagnostics on rejected |Pointexr to parameter | }
| PROMPT |module name. |string. | |

4 i

“““““““““““ T -= T - “4
| DELETE | Remove PMD from TDY when all |PMD address. | |
| MODULE |control sections rejected. | | |
1 i 4 4
T T - - T - - b et '{
| LINK DEFS |Link complex DEFs into |Pointer to first complex| |
| |selected hash chain. |DEF, DEF count. | i
pmmmm e O ———e T fomm e 1
|FIX | Process complex DEF RLDs and |Modifier count, pointer | |
| |module name RLD. jto first modifier, PMD | |
i | |address. | |
| ——— 4 4 —— L J

FIX PMD processes all the complex DEFs
for a module including the module name DEF
(see Chart AO).

Attributes: Privileged, public, system,
reenterable, recursive.

Restrictions: Internal to loader, not
available to other system components.

Entries: FIX PMD is called with GR1 point-
ing to the PMD preface.

Exits:

Normal - GR15

1
o

module not deleted.

- GR15

n
L~
M

module deleted because
all control sections
rejected.

Lrror

Operation: FIX PMD makes four separate
passes on the CSDs of a module.

Pass 1 finds a control section to be
associated with the module name (standard
entry point) DEF. This involves locating
the first nonrejected PSECT (or CSECT if no
PSECT found) and saving its base address.
buring this process, if it is discovered
that all control sections have been
rejected, the entire module is dropped with
a call to DELETE MODULE. In this case,
GR15 is set to 4, and the exit is taken.

60

The successful locating of such a con-
trol section is followed by a legality
check on the module name. If this test
passes, an attempt is made to insert the
name in the hash chain. If the name is
either illegal or duplicately defined, a
diagnostic is issued advising the user that
the standard entry point is not defined for
this module. If the module name is posted
successfully, the CSD link in the module
name DEF entry is set to X'FFFFFFFD' to
flag the DEF as a module name DEF whose
value is not yet computed. The CSD pointer
is saved in recursive storage for later use
in plugging in the module name DEF CSD
link.

Pass 2 calls LINK DEFs to link the com-
plex DEFs in each CSD into the hash chain
and also to set the CSD 1link to
X'FFFFFFFF'. DEFs not posted because of
illegal or duplicate names will have CSD
links = 0 on return from LINK DEFs.

Pass 3 calls FIX to process the complex
DEF modifiers for each nonrejected control
section.

Pass 4 examines all the complex DEFs for
CSD links equal to all 'F's and changes
these links to point to the defining CSD.
Complex DEFs with zero CSD links will be
unmodified.

This four-pass design is necessary to
avoid possible looping definitions of com-



plex DEFs. Loops could occur because FIX
PMD calls FIX, which, in the processes of
resolving a REF for a complex DEF, might
call DEFINE REF, which calls RESOLVE SYM-
BOL, which could again call FIX PMD. Thus,
the following situation could occur:

Module A has a complex DEF, Y, referring
to symbol X. Symbol X is contained in mod-
ule B, which is then loaded and its complex
DEFs processed; this involves a reference
back to undefined symbol Y in module A. To
protect against this circular definition,
the device of setting the high-order five
digits of the CSD link to all X'F's is emp-
loyed. DEFINE REF always examines the CSD
link in the defining DEF, and if it notes
that the high-order five digits are all
X'F's, it knows a louping possihility
exists and therefore calls the symbol unde-
fined. The low-ordex three digi*s are used.
to distinquish between complex DEFs and the
module name DEF. Complex DEFs are identi-
fied by the low-order three digits =
X'FFF'; the module name DEF is identified
by X'FFD'. This distinction is made solely
for diagnostic purposes, so that when any
REF is defined by a DEF with such a CSD
link, it will be possible to provide more
detailed diagnostic information-

Note that the CSD link is not set for
any complex DEF in the module until all
complex DEFs have been computed by FIX.
This also prevents some situations that
could be resolvable but cannot be distin-

FIX (CGCCL)

quished from the looping case withcut
exceedingly costly checks.

FIX PMD's final task involves processing
the complex DEF for the module name.
First, the module name CSD link is checked
for zero indicating rejection in pass 1;
that is, the CSD link for the module name
DEF is set to point to the CSD of the con-
trol section whose base defines the R-value
for the DEF. In the case of module name
rejection, no further processing takes
rlace. If the module name CSD link is not
zero, the R-value is installed, using the
CSD pointer saved during pass 1. Once the
module name R-value is set, the V-value is
determined by calling FIX to compute the
DEF value. The CSD link = X'FFFFFFFD'
functions like the all *F's CSD link; that
is, to catch possible looping definitions
in a mcdule loading cascade started by cal-
ling FIX.

Associating the module name DEF with
some control section in the module causes
the module name to assume, and be governed
by, the attributes of that control section.
An example of such effect would be the
posting of the module name DEF in the sys-
tem hash table if the system attribute bit
is set in the associated control section.

Comments: See "Resolve Symbol"™ for discus-
sion of recursive chain of routines that
includes FIX PMD.

r T b 1
| | | Parameters |
| ROUTINES | — S 1
| CALLED | Purpose of Call | In | out |
t +__ — PR P—— —— i 4
T T a
| DEFINE REF |Provide value of undefined |REF pointer, CSD | |
| | REF. |pointer. | |
L L ——————— —— -4 o v o ot 1 1

FIX is called to process the RLDs for
either external REFs, internal REFs, or
complex DEFs for a single page of text or
PMD (see Chart AN).

Attributes:
reenterable,

Privileged, public, system,
recursive.

Restrictions: Internal to loader module;
not available to other system components.

Entries: Entrance is made to FIX with GR1
pointing to the following list:

1. A pointer to the page to be fixed

2. Count of modifiers

3. Pointer to the first modifier

4. A pointer to the base of the REF table
to which the modifiers refer

5. A pointer to the CSD containing the

REF entry
Exits: Normal only, no return code.
Operation: FIX is called separately for

each text page to be fixed and for each
type of REF, external and internal. FIX is
called again to compute the complex DEF
values within the PMD. This is also done
by pages individually.

Section 2: Explicit Linking 61



The first step in fixing is to fetch an
RLD medifier (Figure 10), according to the
RLD modifier pointers. For processing, the
modifier is unpacked into its component
parts. The length field, L, determines the
number of bytes of text (or PMD) to be
modified. A zero length field is inter-
preted as a four-byte modification. This
length is taken to mean the number of bytes
beginning with the byte pointed to by the
"byte" field.

Byte Displacement
from Page Origin

L REF Number T

Figure 10. RLD Mcodifier Format

FIX now computes RN, which is the "REF
number® portion of the modifier multiplied
by the size in bytes of a REF ent 'y. (The
REF number is the ordinal position of the
REF in the REF table. The numbering begins
with zero and ascends in increments c. 1.)

The modifier operation, T, determines
the modification to be effected. A value
of 1 means addition of the REF value to the
text (or PMD) slot. A value of 2 means
subtraction of the REF value from the text
(or PMD) slot. A value of 3 means to sub-

DEFINE REF (CGCCY)

. Comments:

stitute in the text slot the R-value of the
REF.

The byte pointer, B, is the relative
location within the page of the word to be
modified.

Unpacking completed, FIX fetches the D
link of the REF at the location determi.
by adding RN to the base of the REF table.
If this CSD link is nonzero, this means the
REF is already defined. The modification

_proceeds by performing the modifier opera-

tion as determined by T on the L right-
adjusted bytes at location B plus the base
of the page being fixed. The REF value to
be applied is right-aligned with the text

‘field to be modified, with high-end trur -

tion applied for text fields less than :
full word.

If the CSD link in the REF entry is
zero, this indicates that the REF has not
yet been satisfied. FIX proceeds then to
call DEFINE REF, with the REF name as the
main argument in order to set the REF's
V-value, R-value, and CSD link in the REF
entry. REFs will always be defined when
FIX is called during page relocation.

See- RESOLVE SYMBOL for discus-
sion of recursive chain of routines that
includes FIX.

r - T it 8 e 1
{ T : L Parameters l
ROUTINES - e ——
| CALLED | Purpose of Call | In { out |
l § 4 o e e e e e e e e e s s e 4
T T T T
| RESOLVE JObtain value of REF symbol. |REF name, CSD address. |Pointer to resolving|
| SYMBOL | | |DEF entry in TDY. |
e — T T + e 1
| LOADER |Diagnostics on REF definition|{Pointer to parameter | {
| PROMPT jstring. | i
i

|anomolies.
L— 1

DEFINE REF is called to locate a DEF
entry whose name matches the input REF name
(see Chart AG).

Attributes: Privileged,
reenterable, recursive.

public, system,

Restrictions: Internal to loader module;
not available to other system components.

Entries: On entrance to DEFINE REF, GR1
contains the address of the following pa-
rameter list:
1. The pointer to the REF entry to be
defined.

62

- ——

e e o s o e e e e e e o e e e e e e e e e o 2 e e e J

2. The complex DEF switch.

3. A pointer to the CSD containing the
REF entry.
Exits: Normal only, no return code.
Operation: RESOLVE SYMBOL is called to

locate a matching DEF. If the return is
"not found," a diagnostic is emitted, a

.dummy wvalue substituted, and the load e c

switch is set. A found return from RESOLVE
SYMBOL is followed by a sequence of checks.

First, the CSD link of the defining DEF
entry is examined for the high-order fi-
digits = X'FFFFF'. If this condition
occurs, a possible loop has been uncovered.



A diagnostic is issued advising tbzat a REF
has been defined by an as-yet-undefined

complex DEF. Again, a dummy vaiue is sub-
stituted, and the load error switch is set.

If the CSD link is a.legitimate 1link,
the complex DEF switch is checked. If the
switch is set (indicating the processing of
complex DEFs), a check is made to see if
the defining DEF, although properly
defined, is a complex DEF. If it is, the
definition is made properly, but the user
is warned. This warning is issued because
following the link-editing of two modules,
one of which has a complex DEF defined by a

ADD MUTE (CGCDG)

complex DEF in the otherxr, such definition
will not be possible because of the all
bits protection device.

Following all diagnostic checks, the REF
entry V-value, R-value, and CSD link are
filled in from the defining DEF entry.
Finally, the use count in the defining
DEF's CSD is incremented to reflect this
implicit reference.

Comments: See "RESOLVE SYMBOL"™ for a dis-

cussion of the recursive chain of routines
that includes DEFINE REF.

r L) L) 1
| | ! Parameters |
| ROUTINES | ¢ - 4
| CALLED | Purpose of Call | In | Oout |
L 4 —— { 4 ) |
T T T RS a1
| GETMAIN | Get page for MUT table when |Number of pages (1); |Location of assigned|
| |current MUT full. |Protection class (2). | page. |
L - L i L J

A new module usage table entry (MUTE) is
constructed, and the calling SVC is dis-
armed (see Chart AA).

Attributes: Privileged, public, system,
reenterable.
Restrictions: Internal to loader module;

not available to other system components.

Entries: GR1 points to a parameter list
with the following:

1. Location of SVC
2. Calling PMD pointer

3. Called PMD pointer

Exits: Normal only, no return code.
Operation: Space for the new MUTE is allo-

cated in the module usage table (MUT) at
the location indicated in the MUT available
space pointer. If there is no available
space, a new page is acquired by GETMAIN,
and all of its space is linked into the
available space chain. The new MUTE is
constructed and linked, as follows:

1. It is linked into the PAPA chain of
the PMD of the module that initiated
the explicit CALL. The head of the
PAPA chain in the calling PMD preface
points to the new MUTE's forward PAPA
link word. (See Appendix B for
description of MUT linkage.)

2. It is linked into the BABY chain of
the PMD that was explicitly called.
The head of the BABY chain in the
called PMD preface now points to the
new MUTE's forward BABY link word.

3. A pointer to the called PMD is
inserted in the new MUTE.

4. The virtual storage address of the SVC
that initiated the CALL is inserted in
the new MUTE.

5. The SVC that initiated the explicit
linkage is disarmed with a NOP.

6. The MUT count in the called PMD is
increased by one.

Section 2: Explicit Linking 63



LOADER PROMPT (CGCDPR)

1 T v 1
| | | Parameters |
|} ROUTINES | p————————— —_ - 4
| CALLED | Purpose of Call | In ] out |
pmmmmm e —- e e S 4
| PRMPT | Issue diagnostic. |Address of message ID. | |
[ -4 1 —_— 1 4

LOADER PROMPT provides a centralized
routine for output of loader diagnostics
through PRMPT, thus making unnecessary the
repetition of the costly PRMPT linkage at
each diagnostic point (see Chart AvV),

Attributes:
reenterable.

Privileged, public, system,

Restrictions: Internal to loader module;
not available to other system components.

Entries: LOADER PROMPT is entered by
restricted linkage.

GR1 contains the address of the parame-
ter string.

RE contains the address of the loader
PSECT, CZCDLP.

SETPAGE (CGCSP)

Routines Called: PRMPT, with the address
of the parameter string in register 1.

Exits: Normal only, no return codes.
Operation: The address of the parameter
list for the diagnostic is passed in
register 1. Symbolic general register RE
is used to cover the loader's PSECT into
which the variable portion of the PRMPT
macro instruction is expanded. Register 13
may not be covering CZCDLP, but will be
covering the save area currently available
when the PRMPT linkage is effected. For
example, LIBE SEARCH, which calls LOADER
PROMPT, operates with GR13 covering the
loader's second save area; other routines
that call LOADER PROMPT operate with GR13
covering the first save area, that is, the
origin of CZCDLP.

r T T - 1
| | | Parameters |
| ROUTINES | b - v —————]
| CALLED } Purpose of Call | In | out |
- -—4 - - R — T — e
| ABEND } (1) Invalid return code from |Pointer to ABEND mes- |None. {
| GETNUMBR. |sage. | |
i 1 {2) RVN found in external | | |
| | page entry in RESTBL too | | i
| I large. | I [
| | (3) Reference beyond data set] | {
| | end (RPN requested too | | i
I | large). I | I
i — T e fom o e 3
| GETNUMBR jCorrect the "first external |[Pointer to word with DCB|Relative page number|
| | page entry" locator field |address. |of page requested |
| |]in the member header of the | |into data set. i
i |RESTBL. It also converts | | |
| | relative page number into | | |
i |member to relative page | | |
| |number into data set. | | |
S T I T oo .
| INTLK |Place "write" interlock on |Pointer to a list of | None. !
| | RESTBL header. |pointers. | i
————————————————— —-———= - - B ettt |
| RLINTLK | Release "write”™ interlock on |Pointer to a list of | None. |
| | RESTBL header. |pointers. | |
k + - ——4- - o T y
{ SETXP {Build one or more external |Pointer to a parameter |None.
| | page table entries. |list. | |
L . e S 3

64



SETPAGE will accept requests to build
external page table entries and will stack
these when possible. SETPAGE will call a
supervisor routine, SETXP, to have external
page table entries built for contiguous
virtual storage pages represented in=3. cpe-
cial parameter list. (See Chart BK.)

Attributes:
system.

Privileged, public, read-only,

Restrictions: Internal to dynamic loader
module; not available to other system or
user modules.

Entries: Entered using "INVOKE CGCSPS$".
Input: A parameter list and a set of
flags:

1. GR1 points to the following two-word,
one-byte parameter list:

Word 1:
code 00).

Pointer to a DCB (if function

s DCBN (halfword) - specifies the
relative page number into the member
which is requested.

e DCBOP (halfword) - specifies opera-
tion performed (that is, value of
X*'8000' is always guaranteed meaning
"input¥; if value of X'4000' is pre-
sent (giving X'C000'), then
"unprocessed-by-loader™ flag setting
for the requested page is wanted.

¢ DCBNI (halfword) - not used by SET-
PAGE. It is changed by GETNUMBR
when it is called.

Word 2: VM address for page
requested.
Byte: A function code for SETPAGE:

00 - Process a page request.

04 - Issue a pending SETXP.

08 - Release the write inter-
lock on the RESTBL of the

present (shared; library.

2. SETPAGE flags {DYSPFLGS):

DYSPCALM (X'01') - SETPAGE called ear-

lier (same module).

DYSPSXPM (X'02') - There is a pending
SETXP.

DYSPSHRM (X*04') - The RECTBL of tne
present (shared) library is locked
(write interlock).

Output: Tne desired function has been per-
formed; one or more of the SETPAGE flags
will have been set on.

Exits:

’ Normal - Return via RESUME macro; no
return code.

Error - ABEND completion code 2, module
name, and library DDNAME arxe
supplied.

Reasons:

1. Invalid return code from CZCO001
(GETNUMBR) .

2. RVN (relative volume number)
found in external page entry
{EPE) in RESTBL was too large.

3. Reference beyond data set end -
RPN (relative page number) passed
in DCBN was too large for data
set.

Cperation: SETPAGE will examine the func-
tion code it receives and will act upon it
in one of these ways:

00 - Process a page request as described
later.

04 - Issue any pending SETXP request and
return.

08 - Unlock the RESTBL header of a
shared library and return.

Page requests (code 00) are processed as
follows:

If SETPAGE has not been called yet for
this member (module), SETPAGE will calcul-
ate the address in the RESTBL (of the
library used) of the first external page
entry for the member. Also, the limiting
address for EPEs will be calculated and
saved for later error checking. GETNUMBR
(Cz2C0O0) will be called to adjust the mem-
ber's header in the RESTBL if the member
EPEs had been moved.

With the 1st member EPE address known,
SETPAGE will now locate the external page
entry (EPE) in the RESTBL for the page
requested by SETPAGE's caller. The rela-
tive page number in the member is passed to
SETPAGE. SETPAGE will use this number
times the proper EPE byte size to look past
the 1st member EPE for the desired page's
EPE.

Having located the proper EPE, SETPAGE
will place the external page number from
the EPE in the next entry being built for
the stack of SETXP parameters. The rela-

Section 2: Explicit Linking 65



tive volume number (RVN) in the EPE must be
used to set into the new SETXP entry the
proper symbolic device address (SDA) on
which to find the external page. If the
RVN is the same as for the last call to
SETPAGE, then the SDA last placed in the
SETXP entry build area is still valid,
otherwise, the RVN must be used to locate
the proper SDA in the public/private volume
table (PVT). This SDA found is placed in
the SETXP entry being built.

SETPAGE will stack the SETXP page requ-
est entry with any preceeding requests if
there are any and if the stack is not full
(1021 entries). As it becomes necessary,
SETPAGE will issue a SETXP request and
empty the stack of page requests. Multiple
page requests must refer to contiguous
ascending VM addresses, so such a check is
made before each new entry is added to the
stack. If "unprocessed-by-loader™ marking

66

is not wanted for a page, a flag is put in
the page's SETXP stack entry to suppress
UPL bit setting by SETXP.

Note: The following are control blocks
used by SETPAGE:

CHADCB

Data Control Block (VPAM for VSP
member)

RHD - RESTBL (Relative External
Storage Correspondence Table)
header

DHD - DCB header (in RESTBL)

MHD - Member header (in RESTBL)

EPE - External Page Entry (in RESTBL)

PVT - Public/Private Volume Table



SECTION 3: PAGE RELOCATION

r T T |
| | . | Parameters |
| ROUTINES | H — T ]
| CALLED | Purpose of Call | In [ out |
== 1 1 + 1

| MAP SEARCH |Locate CSD of control section|VMA of Page. |CSD address. |
| | containing page to be re- | | |
| | located. | i |
t 1 — 1 + .
| FIX | Process external REF FPLD and |Modifier count, Pointer | ]
| |internal REF RLD. jto first modifier, Page | |
{ l laddress. 1 !
- T === L} 1

| FREEMAIN | Release scratch pages. {Address and number of { |
| | | pages. i |
L 4 L - L 3

PAGE RELOCATION is called by the task
monitor whenever a "page unavailable"
interrupt occurs, and the referenced page
is also "unprocessed by loader™ (see Chart
BC and Figure 11).

Attributes:
reenterable.

Privileged, public, svstem,

Restrictions: Entrance by type-I linkage
is restricted to the task monitor.

Entries: The input parameter to PAGE RELO-
CATION is in GR1 and is the address of a
cell that contains the virtual storage
address that caused the interrupt. This
address is used as an input argument to MAP
SEARCH to locate the CSD of the control
section that contains this address.

Exits: Normal only, no return code.
Operation: Once the CSD is located by MAP
SEARCH, the base address of the control
section is extracted from the CSD and sub-
tracted from the argument address. This
difference is shifted right 12 places to
obtain the page number of the referenced
page, relative to the first virtual storage
page of the control section. This page
number is used as an index into the VMPT.
The text page number is extracted from the
VMPT entry and used as a relative index
into the external RLD to locate the correct
modifier pointer. The pointer for the sub-
ject page is obtained and the count
extracted; then the VMA of the first modi-
fier is computed from the pointer. FIX is
called to process the external madifiers.
The internal RLD is now processed in a
fashion parallel to that for the external
RLD. FIX is called again for the internal
modifiers.

For example, PAGE RELOCATION is entered
with an argument VMA = 8A32E. MAP SEARCH
is entered and returns with a pointer to
the related CSD from which the base address
of the CSECT is extracted = 88000. The
difference is computed, 232E, yielding a
relative virtual page number equal to 2.
Assume that the VMPT for this CSECT looks
like:

o oy — -
e = — -

The relative text page number is extracted
from VMPT entry #2, giving 0001. The numb-
er 1 is a "word" index into both the
external and internal RLDs; that is, the
index must be multiplied by 4 to compute
the offset in bytes from the origin of each
of the RLDs to the modifier pointer for the
argument page.

When privage control section packing is
specified, PAGE RELOCATION is aware that
some of the text pages to be relocated may
not have been loaded into the page.

Any privage page that is being packed
into i35 set unprocessed by the loader. The
actual movement into its proper place in
virtual storage takes place when the page
is refereunced. At this time all control
sections to be packed into the page are
read into a scratch page of virtual storage
and transferred to their assigned virtual
storage address in the packed page.

Section 3: Page Relocation 67



89

*1T sInbta

uot3edolay abeg

Page Explic}!“ louder' . Explicit
Relocation Linking Logoff Unlinking
Test - Delete Modify Modify: "Delete
User Caller MUY Use « Selected
Counts Mutes Counts Counts Mutes
e o e e e Lo ] Resol
| Symbol
|
I l Legend:
| R
‘ Libe Lood Fix Allocate }— Set Search
} Search PMD PMD — | Module _] Flags
| ] -
} Callable
l from
| outside
| the loader
| module
1
| 4
|
| R .
. Add Link Reject Get Attach Delete
! Fix PMD Defs PCSA Diog Storage Teit
; :
| | T Tallable
] — anly from
| inside
1 e the loader
| module
|
i —
|
|
‘L
9
b_l |
i
e Check
Defide Sot Def Hash Q-Chain SRCHPACK Map-
Ref poge -Search Search
it Legal
K
Loader J Select Resolve RISEARCH Drop
Prompt [* Hash Q-Ref o PMD




When the relocation entrance of the
loader is called, the low-order 12 bits of
the referenced virtual storage address are
cleared and MAPSEARCH is called to locate
the CSD of the first control section
assigned to the page. -‘The adcoens in the
page are then relocated in the conventional
manner.

Next, the packing table is searthed {by
storage key) for a host entry for the
referenced page. If a host entry exists
for this page, all of the remaining control
section text is processed, one CSD at a
time, by processing each subsequent sym-
biont entry. The text is moved from the
scratch page to the patked page and its
adcons are relocated.

Relocation is complete when the last
symbiont entry has been processed or, if no
packing entry exists, when the referenced
page has been relocated.

Each control section is packed before
any scratch pages are released. Contiguous
pages of storage are released in a block
with a single call to FREEMAIN. Then the
host and symbiont entries (if they exist)
are deleted and linked back into the avail-
able space table to prevent later packing
into the page.

Comments: The techniques used in proces-
sing the RLDs are discussed in the follow-
ing paragraphs.

Each RLD is divided into two parts, the
first of which contains a set of pointers,
the second a set of modifiers. The RLD is
organized by related control section text *
page. Modifiers exist in the RLD only for
those text pages that contain adcons
requiring relocation. A pointer exis*s for
each page of the control section's text, up
to and including the last page that con-
tains a relocatable adcon. The RLD poin-
ters are in linear order by relative text
page number -- the first pointer is for
text page 0; the second, for text page 1;
etc.

Each pointer has two parts. The upper
half contains the modifier count for the

related page; the lower half contains a
pointer (relative to this halfword itself)
to the first of the group of modifiers for
this page. 1If a pointer has a count field
of zero, the pointer field will point to
the location where the modifier group would
have been located had there been any modi-
fiers. The modifiers for each RLD are
packed in such a way that the first modifi-
er is in the word immediately following the
last pointer. Furthermore, the last modi-
fier for the complex DEF RLD immediately
precedes the first pointer of the external
REF RLD, and the last modifier for the
external REF RLD immediately precedes the
first pointer of the internal REF RLD. The
last modifier of the internal REF RLD imme-
diately precedes the virtual memory page
table.

Given the origin of any RLD, the end of
the RLD is located as follows: The first
RLD pointer contains a relative pointer to
the first modifier, which immediately fol-
lows the last pointer. Now the contents of
the lower half of the first pointer are
added to the location of the first pointer.
This computes the location of the lower
half of the last pointer. (Recall that the
pointer is relative to the lower half of
the pointer word and, therefore, adding the
pointer to the location of the upper half
of the pointer -- as is done here -- pro-
duces the location that precedes the modi-
fier by two bytes. 1In the case of the
first modifier, this locates the middle of
the last pointer.) Now the modifier count
is obtaineld from the upper half of the last
pointer. (An index of -2 is used to back
up from the lower half of this last pointer
to obtain the modifier count from the upper
half.) The modifier count is multiplied by
four (the size in bytes of each modifier)
to obtain the size of the last group of
modifiers. Now it remains to compute the
origin of this last group of modifiers by
adding the location of the lower half of
the last pointer (already computed above)
to the contents of the lower half of this
same pointer. The size of the group is
added to this computed origin, and the sum
is the location of the first byte past the
end of the RID.

Section 3: Page Relocation 69



The RLD modifiers are discussed more
fully in Appendix B and in the description
of the routine FIX.

A sample RLD:

VMPT

r B 1
| |
Complex Complex | 06000 0002 | No Complex DDEFs
DEF RLD DEF Pointer | |
t q
| ] No External Modifiers
| 0000 000A | for Page 0
t e 1
External | | 1 External Modifier for
REF Pointers | 0001 0006 | Page 1
{ 1 2 External Modifiers
| 0002 0006 | for Page 2
External t -4
REF RLD { |
| Modifier for Page 1 |
o T
| Modifier for Page 2 | External Modifiers
e 1
I |
| Modifier for Page 2 |
k- 1
Internal | | 2 Internal Modifiers
REF Pointer | 0002 0002 | for Page O
prm e 1
| |
Internal { Modifier for Page 0 |
REF RLD F- 4 Internal Modifiers
I |
| Modifier for Page 0 |
: 1
! ]
| ]
| |

70



EXPLICIT UNLINK (CZCDU1l)

SECTION 4: EXPLICIT UNLINKING

r - T T 1
| Routines | | Parameters |
| Called in | b T |
| Pass 1 | Purpose of Call | in { out ]
1 1 1 ' ]
L ) T T T 1
| MAP SEARCH |Icocate T3D of con*rqgl secticn|VMA of adcHhn.group. |CSD address. |
| | containing DELETE adcon | | |
| igroup. ! | |
—————————— + % 4
|SET SEARCH |Select hash table pointer for|Argument symbol, CSD |Hash table pointer. |
| FLAGS |looking up argument symbol |pointer. { |
| |in DELETE adcon gzcup. | | i
b t 1 + |
| BASH SEARCH|Look up argument symbol in |Symbol name, hash table |Pointer to found DEF|
| |selected hash chain. |pointer. |entry in TDY if |
| | | | found, else zero. |
I 4 4. } 1
[ 3 T N N T N T 1
| PRMPT |Unloader diagnostics. |Pointer to parameter | |
| | |string. | |
t + 4 + 4
| DELETE {Collapse BABY chain for pri- |[PMD address of primary | |
| CALLER |mary deletion candidate and |deletion candidate. | |
| MUTES |rearm all explicit CALL/LOAD | | |
| |adcon groups. | | |
b 1 t ¢ 4
|MODIFY MUT |Identify modules explicitly |Candidate PMD address. | i
| COUNTS | referenced by deletion candi-| | |
| | dates, decrement their MUT | { |
| |counts, and add referenced | | |
| |modules to the candidate | | |
[ |list. | | |
L i i — 'S 1

In response to a user's DELETE macro
instruction, or a call from LOADER RELEASE,
explicit unlink attampts to remove from the
task the module defining the named symbol
and possibly subordinate modules as well
(see Chart AM and Figure 12).

Attributes:
reenterable.

Privileged, public, system,

Restrictions: Entrance by type-I linkage
is restricted to the task monitor.

Entries: EXPLICIT UNLINK is entered with
GR1 pointing to a word that contains the
virtual storage location of the DELETE
adcon group, execution of which caused the
task monitor to be entered. This adcon
group has the format:

D5 0OF
CHDESYSNDX SVC 123 SVC for unloading
DC CL8'name' Module name (or
alias) to be
unloaded
Unload options and
return code

DC H'C3Ch*

Exits:

0

Normal

4 = Symbol to be unloaded not found
(accompanied by diagnostic #16)

8 = Module not deleted because of out-
standing references (accompanied by
diagnostic #17)

Section 4: Explicit Unlinking 71




L

*ZT @anbtg

butyutTun ITOTTAXT

. Page S Explicit “Loader Explicit
~ Relocation - Linking Logoff Unlinking f~ —~ — "7 T T 7]
i Test Delete Modify Modify Delete
SR s User Caller MuT Use Selected
Counts Mutes Counts Counts Mutes
[ e e e e e e e s s e e e o e e el ResOIVE
| " Symbo!
[
i l l Legend:
|
! Libe Load Fix . Allocate Set Search
1 Search PMD PMD | Module Flags
| [ -
| Callable
| - from
| outside
| the loader
| module
|
| |
|
| . g
. Add Link Reject Get Attach Delete

I B PMD Defs PCSA Diag. | | Storage Text Module
| g
| 1 Callable
i B only from
| inside
| the loader
| module
| .
i
|
|
|
L

-

|
R i
. Check e e
- Define Set Def Hash Q-Chain - SRCHPACK Map-
Ref page : Search it Search
Legal - ;
f
I |
. loader Rescive R Drop
bt ,‘_,_J o Rt BISEARCH b



Operation: UNLINK's first action is to
locate the CSD of the control section that
contains the DELETE adcon group by calling
MAP SEARCH (CZCDL5) in the loader module
CZCDL with the adcon group address. Next
SET SEARCH FLAGS (CZCDL6), also in the
loader module, is called to set the hash
table pointer for HASH SEARCH's eventual
use in looking up the argument symbol.
high-order bit of the C3 option byte is
used as a transpose-search flag, similar to
the way in which the Cl1 option byte high-
order bit is used in the loader processing
of the LOAD/CALL adcon group. If this bit
is set in the DELETE adcon group, UNLINK
will set the transpose flag for SET SEARCH
FLAGS. SET SEARCH FLAGS will return to
UNLINK a hash table pointer (and & library
index, which will he ignored). Now the
loader routine HASH SEARCH (CZCDL2) is
called to look up the argument symbol in
the selected hash chain. If the symbol is
not found, UNLINK will issue a diagnostic,
set a return ccde of 4 in the C4 byte, and
return to the task monitor with GR15 aliso
set to 4.

The

If the symbeol is found, UNLINK locates
the containing module by using the defining
DEF's CSD link to locate the containing CSD
whose PMD 1link will locate the defining PMD
preface. This PMD address is passed to
DELETE CALLER MUTES (CGCDB), which will
trace the BABY chain from the defining PMD
preface to delete each MUT entry in the
chain, rearm the original CALIL/LOAD adcon
group, and return the deleted MUTE to the
MUT available-space chain.

Further processing by UNLINK is executed
in four passes on a list of modules that
are candidates for deletion at some time or
other. This “"candidate 1list" is a linear
list of PMD preface addresses and is headed
by the module defining the argument symbol
name in the DELETE group. Construction of
this 1list is under control of the low-crder
bit of the C3 option byte. If this "named-
only”™ bit is set, the module defining wmod-
ule becomes the "primary™ candidate, and
*secondary"” candidates may not be added to
the list. A secondary candidate is one
that either (a) contains a DEF that defines
a REF in the primary candidate o7 ancther
secondary candidate, or (b) has been expli-
citly called or loaded by the primary can-
didate or another secondary candidate. The
module containing the DELETE adcon group is
the only module in the task unconditionally
proscribed from deletion candidacy (to pre-
vent a module from unloading itself).

UNLINK pass 1 constructs the candidate
list. Symbolic general register RN is
initialized to zero and contains the rela-
tive displacement from the top of the list
of the last module to have been entered.
Symbolic general register RM is also
initialized to zero and contains the rela-

tive pointer to the list member currently
being processed in each of the four passes.
The list is constructed by calling the two
routines MODIFY MUT COUNTS (CGCDA) and
MODIFY USE COUNTS (CGCDD) for the current
candidate.

MODIFY MUT COUNTS traces the candidate's
PAPA chain; that is, the chain of MUT
entries describing each explicit CALL or
LOAD made by the module. (This chain is
constructed during EXPLICIT LINKING.) The
MUT count in the PMD preface of each module
explicitly referenced by the current can-
didate is decremented by one, and the
referenced mocdule becomes a secondary can-
didate with RN incremented to reflect the
list addition.

Similarly, MODIFY USE COUNTS processes
the REF table in each CSD of the current
module. During EXPLICIT LINRKING, the CSD
link in each REF entry is set to point to
the CSD containing the defining DEF (except
in the case of undefined REFs whose CSD
link is set to point to the CSD containing
the REF itself). Now each REF's CSD 1link
is used to locate the defining CSD whereu-
pon the "use count™ field is decremented by
one, and the containing module is added to
the candidate 1list as a secondary candid-
ate. Again, RN is incremented to reflect
the addition of the candidate.

Both MODIFY MUT COUNTS and MODIFY USE
COUNTS set a flag in each candidate's PMD
preface, which is checked prior to entering
a new candidate, so as to preclude dupli-
cating candidacy. These two routines are
called for each candidate placed on the
list until all candidates have been pro-
cessed. RM will eventually catch up with
RN, signaling the end of pass 1. Note that
if the named-only option is in force, these
two routines will refuse to post secondary
deletion candidates on the 1list.

Pass 2 is a more coaglex loop designed
to check the validity of each deletion can-
didate. The conditions favoring successful
candidates are:

1. The primary candidate will be unloaded
as long as there are no outstanding
implicit references to any of the
module's control sections. (There are
no more explicit references to the
primary candidate because DELETE CALL-
ER MUTES has eliminated the BABY chain
and rearmed the adcon groups.)

2. Secondary candidates will be unloaded
so long as no implicit or explicit
references to the candidate remain.

3. Any module may be unloaded except the
one containing the DELETE adcon group
being processed.

Section 4: Explicit Unlinking 73



r——-

T T 1
| Routines | | Parameters |
| called in | t 1- 4
| Passes 2-4} Purpose of Call | In | out |
o — o e e e e e 1
|MODIFY USE |Identify modules implicitly |Candidate PMD address. | |
| COUNTS | referenced by deletion candi-| | |
| |dates, decrement their CSD ] | |
| |use counts, and add | | |
| |referenced modules to the | | |
| | candidate list. | | !
b 4 . -4-- t ———{
| TEST USER |[Check each candidate for zero|Candidate PMD address. |Flag indicating all |
| COUNTS |MUT count and zero use | | zero counts, or one |
| |counts. | | count not zero. |
......... 1

—— - - -- : -
|MODIFY MUT |Increment MUT counts in |Candidate PMD address. | |
| COUNTS jmodules explicitly referenced| | |
| |by a disqualified candidate. | | }
i 3 4
v T T T T "_"
|MODIFY USE [Increment use counts in CSDs |Candidate PMD address. | |
| COUNTS |]of modules implicitly | | i
| |referenced by a disqualified | | |
| | candidate. | | |
e e Frmm o fom e :
| DELETE {Collapse PAPA chain for each |[Candidate PMD address. | |
| SELECTED |successful candidate. ] | |
| MUTES | | | |
H + -——+ + -
| DELETE |Remove PMD and text of each |Candidate PMD address. | |
| MODULE | successful candidate from | | |
| |virtual storage. | | |
F t e P O —— S 4
| PCS UNLOAD |Process PCS tables for jCandidate PMD address. | |
| Junloaded modules. | { |
L 1 - i 1 -d

The first two conditions are examined in
pass 2 by the routine TEST USER COUNTS
(CGCDE), which is called for each candid-
ate. TEST USER COUNTS tests for zero the
MUT count field in the PMD preface and the
use count field in each of the candidate's
nonrejected CSDs for zero. If any of these
fields is nonzero, a reference exists from
some module not a candidate, and UNLINK
proceeds to erase the candidate by:

1. Calling MODIFY MUT COUNTS to process
the candidate's PAPA chain by examin-
ing each MUT entry in the chain to
locate the referenced PMD in whose
preface the MUT count field is now
incremented by one.

2. Calling MODIFY USE COUNTS to process
each REF entry in each of the candi-
date's CSDs to locate the defining CSD
in which the use count field is incre-
mented by one.

3. Erasing the candidate flag in the PMD
preface of the disqualified candidate.

4. Marking the candidate "disqualified”

in the candidate list by setting a
low-order 1 bit in the 1list. (Since

74

the list consists of PMD preface
addresses which are fullword address,
the low-order bit is a convenient
method of flagging disqualified
candidates.)

Each time a candidate is disqualified, a
flag is set at the bottom of the pass 2
loop. Restoring the MUT and use counts
during disqualification makes possible the
disqualification of other candidates on the
list. Therefore, after the candidate list
has been completely processed, this flag is
checked. If it has been set, indicating a
disqualification, the flag is reset and the
list processed once again to identify any
newly disqualified candidates. This pro-
cess is repeated until a pass is made on
the list that results in no new disqualifi-
cations. At this point pass 2 is complete,
and all the candidates remaining on the
list will be unloaded.

Pass 3 is a simple pass in which DELETE
SELECTED MUTES (CGCDC) is called for each
candidate to trace the PAPA chain of the
module, deleting all the MUT entries, and
returning the MUTEs to the MUT available
space chain. Since each module explicitly
referenced by the candidate is now a suc-



cessful candidate, the MUTEs serve no
further function.

Pass 4 is the unloading pass in which
DELETE MODULE (CZCDU2) is called ior each
candidate. DELETE MODULE performs the fol-
lowing functions:

1. Deletes all nonrejected DEFs in each
nonrejected control section from the
appropriate hash chain.

2. Frees for reassignment the DXD areas
not referenced by modules that are
still loaded.

3. Frees virtual storage for each nonre-
jected control section.

4. Deletes the MAP entry associcted with
each nonrejected control section.

5. Deletes the candidate's PMD from the
TDY.

Pass 4 is made separate from pass 3
because during the processing of the PAPA
chains in pass 3, the PMD preface of each
candidate will be referenced in the process
of collapsing the chain. Since the preface
must still be intact during this process,
the deletion is placed in a fourth pass.

Normal exit is made after pass 4 with
the C4 byte and GR15 set to zero. UHNote
that if after pass 3 it is discovered that
the primary candidate has been disquali-
fied, pass 4 is bypassed. It is impossible
to have qualified secondary deletion candi-
dates if the primary candidate is disquali-
fied; hence, no unloading can take place.
In this event, a diagnostic is issued, and
GR15 and the C4 byte are set to 8.

Notes:

1. Modules loaded into initial wvirtual
storage (IVM) by STARTUP will have had
their MUT count fields set to an arbi-
trarily high number by STARTUP to pre-
clude the unloading of any IVM module.

2. A corollary to the unloading algorithm
described in this section is that only
modules explicitly loaded (by virtue
of an explicit CALL or LOAD macro
instruction) may ever be successful
primary deletion candidates. *

Comment: Figure 13 shows the general flow
of explicit unlinking. It is separated
into functional segments, rather than spe-
cific routines, to aid the readsr in
obtaining an overview of the unlinking
process.

See Appendix B for a detailed account of
tne MUT structure.

ENTER

Rearm Explicit
LOADs/CALLs to
this Module

'

Build Deletion
Candidate List

with this Module

and all Modules
Explicitly or
tmplicitly Referenced
by this Module

!

Decrement Use Count
in Each Candidate
for Each Explicit

ond Implicit
Reference to it

e

Remove from the
Candidate List

Any Module with
Non ~Zero Use Count

:

Increment User
Counts in Modules
Referenced by
Removed Candidate

Al
Candidates
Examined After
last Candidate

Removal ?

Unlink DEFs for
Each Unremoved
Module

!

Free appropriate
DXD freas

Free CSECTs Delete PMD
§ of Each Meodule
from Storage
from TDY

Functional Diagram of Explicit
Unlinking

Figure 13.

CELETE CALLER MUTES (CGCDB)

For a particular module, all module
usage table (MUT) entries for explicit
CALLs on that module are deleted (see Chart
AH).

Section 4: Explicit Unlinking 75



Attributes:
reenterable.

Privileged, public, system,

Restrictions: 1Internal to unloader module,
not available to other system components.

Entries: On entrance, GR1 contains the
address of the PMD for a specified module
(subject PMD) as an input parameter.

Routines Called: None.

Exits: Normal only, no return code.
Operation: From this PMD preface, the BABY
chain head is fetched that points to the
first MUT entry in the chain. This MUT
entry is then deleted, as follows:

1. It is removed from its BABY chain by
relinking the chain in the forward
direction so that the BABY chain head
in the subject PMD is pointing to the
next MUTE in the chain (or is zero).

2. It is removed from its PAPA chain by
relinking the PAPA chain
bi-directionally.

3.. The space occupied by the MUT entry is
returned to the MUT available space
chain.

4. In the subject PMD preface, the MUT
count field is zeroed. i

5. The SVC within the adcon group that
originally effected the explicit 1link-
age is rearmed with the DLINK SVC.
Additionally, the V-con portion of
this adcon group is set to point tb
the DLINK. (The address of the adcon
group is contained in the MUTE.)

Any additional MUT entries in the sub-
ject PMD's BABY chain are similarly
deleted. The processing stops when the
BABY chain head in the argument PMD preface
is zero.

See Appendix B for a description of MUT.

MODIFY MUT COUNTS (CGCDA)

The MUT count field in the PMD preface
of each module explicitly referenced by the
argument module is decremented or incre-
mented by one, according to a parameter
(see Chart BA).

Attributes: Privileged, public, system,
reenterable.
Restrictions: Internal to unloader module;

not available to other system components.

76

Entries: On entrance to MODIFY MUT COUNTS,
GR1 contains the address of the. argument
PMD preface, and GR2 contains a function
code. The function code is 0 for decrement
and 1 for increment.

Routines Called: None.

Exits: Normal only, no return code.
Operation: The PAPA chain head in the
argument PMD preface begins the chain of
MUT entries that describe each of the
explicit references made by the module.
Each MUTE in this chain'is examined in
turn, and the PMD preface address of the
referenced module is extracted. Within
this referenced PMD preface, the "MUT
count™ field is either incremented or
decremented by one according to GR2.

On the decrement function, MODIFY MUT
COUNTS will check to see if the named-only
option is in force, in which case the next
MUTE is examined, as in the increment case.
If the named-only option is not in force,
the referenced PMD preface is checked for
the setting of the deletion candidate flag.
If this flag is not set, the PMD preface
address is added to the candidate 1list, the
candidate flag is set in the PMD preface,
and symbolic general register RN is incre-
mented by 4 to point to the new candidate's
relative position on the list. If the
deletion candidate flag is found to be set,
MODIFY MUT COUNTS will not again add the
module to the candidate list.

MODIFY USE COUNTS (CGCDD)

For every REF in a specified PMD, the
use count in the CSD that contains the
referenced DEF is incremented or decre-
mented according to an input parameter
Chart BB).

{see

Attributes: Privileged, public, system,
reenterxable. ’

Restrictions: Internal to unloader module;
not available to other system components.

Entries: On entrance to MODIFY USE COUNTS,
GR1 contains the address of the argument
PMD preface, and GR2 contains a function
code., The function code is 0 for decrement
and 1 for increment.

Routines Called: None.

Exits: Normal only, no return code.
Operation: Each REF in each nonrejected
CSD is examined. The CSD link in each REF
entry will point to the CSD of the DEF
entry that defines the REF. (Undefined
REF's CSD links will point to the CSD con-
taining the REF entry.) The user count



field in the defining USD is now decre-
mented or incremented by one according to
GR2.

On the decrement function, MODIFY USE
COUNTS will check to se¢e if thé Zamed-ocaly”
option is in force, in which case the next
REF is examined, as in the increment case.
If the named-only option is not in force,
the PMD containing the defining C3GD is
checked for the setting of the deletion
candidate flag. If this flag is not set,
the PMD preface address is added to the
candidate list, the candidate flag is set
in the PMD preface, and symbolic general
register RN is incremented by 4 to point to
the new candidate's relative position on
the 1list. If the deletion candidate flag
is found to be set, MODIFY USE COUNTS will
not again add the module to the candidate
list.

TEST USER COUNTS (CGCDE)

A specified PMD is tested to discover if
there are any explicit CALLs or implicit
references to it (see Chart BM).

Attributes: Privileged, public, system,
reenterable. .
Restrictions: Internal to unloader module;
not available to other system components.

Entries: On entrance, GR1l contains the
address of the argument PMD preface.

Routines Called: None.

Exits: GR2 is zero if all counts test
zero; GR2 is nonzero if some count tests
nonzexo. i

Cperation: For the argument PMD, the MUT
count field in the PMD preface and the user
count field in each nonrejected CSD heading
is tested for nonzero. On exit, GR2 will
contain a condition code; zero indicates
that all count fields tested zero; and a
positive number indicates that some field

tested nonzero. On a nonzero test, TEST
USER COUNTS exits immediately.

DELETE SELECTED MUTES (CGCDC)

For a particular module, all module
usage table (MUT) entries for explicit
CALLs by that module are deleted (see Chart
AJ).

Attributes:
reenterable.

Privileged, public, systemn,

Restrictions: Internal to unloader module;
not available to other system components.

Entries: On entrance, GR1 will contain the
address of the PMD for a specified module
(subject PMD) as an input parameter.

Routines Called: None.

Exits: Normal only, no return code.
Operation: From the PMD preface, the PAPA
chain head is fetched that points to the
first MUT entry in the chain. This MUT
entry is then deleted as follows:

1. It is removed from its PAPA chain by
relinking the chain in the forward
direction so that the PAPA chain head
in the subject PMD is pointing to the
next MUTE in the chain (or is zero).

2. It is removed from its BABY chain by
relinking the BABY chain
bi-directionally.

3. The space occupied by the MUT entry is
returned to the MUT available space
chain.

Additional MUT entries in the subject
PMD's PAPA chain are similarly deleted.
The processing stops when the head of the
PAPA chain in the argument PMD preface is
zZero.

See Appendix B for a description of MUT.

Section 4: Explicit Unlinking 77



DELETE MODULE (CZCDU2)

3 T 1
| | Parameters
| ROUTINES | + — -1
| CALLED | Purpose of Ccall In | Out |
b t + -
| SELECT |Select hash table for DEF CSD address. | Hash table pointer. |
| HASH |deletion. | |
e } — + -
| HASH |Delete DEFs from selected |Hash table pointer, DEF | |
| SEARCH jhash table. jentry pointer. | f
e ————— - + - --— e
| O-CHAIN |Delete O-REFs from selected |Address of CSD, function] }
| |hash chains. |code (delete). |
¢ 1 ' + 1
|MAP SEARCH |Delete MAP entry for each |Control section address. | |
| |control section. | |
t 1 - + 1
| SRCHSDST |Close control section group |Member name. |Code indicating |
| {member entry in SDST. | whether control sec-—|
| | |tion group is still |
| | | being shared by |
| | | other tasks. [
F + + i
| FREEMAIN |Free private text pages or Page count, address. | i
| | free public text pages if no | !
| other task using. |
F } T e 4
| DISCONNECT |}Disconnect task from control |SPT #, relative page | |
| | section group shared pages if |number. | i
| |]other tasks still using. ] | i
k= + -t i 1
| DROP PMD | belete PMD from TDY. |PMD address. | !
L 4 4 4 3

A specified module and the table entries
that describe it are deleted from the task

(see Chart AI).

Attributes: Privileged, public, system,

reenterable.

Restrictions: Accepts type-I linkage only
from other privileged system components.

Entries: DELETE MODULE is entered by type-
I linkage with GR1 pointing to a parameter
that contains the address of the PMD pre-

face of the module to be deleted.

Exits: Normal only, no return code.

Operation: The first function is the dele-
tion of the module name DEF entry, if the

DEF was not rejected during loading.

SELECT HASH is called with the CSD address
obtained from the module name DEF CSD line;
then HASH SEARCH is called to delete the

DEF entry from the selected hash chain.
Now each CSD is processed as follows:

Private Control Sections:

1. The MAP table entry is deleted by cal-

ling MAP SEARCH with the delete

78

option. Note that only control sec-
tions of nonzero text length have
associated MAP entries; hence, text
length is checked prior to the MAP
SEARCH call.

Q-CHAIN is called to reclaim storage
areas that were reserved by DXD (or
DSECT) and CXD instructions but are no
longer referenced by loaded modules.

SELECT HASH is called to select the
hash chain in which all the DEFs for
the current CSD are posted.

Each relocatable, absolute, and com-
plex DEF is processed, and those with
nonzero CSD links are deleted from the
hash chain by a call on HASH SEARCH.
(Those with zero CSD links were
rejected during the loading processed
and never posted.)

Rejected private CSDs are not pro-
cessed, since no DEFs may be posted
from rejected CSDs, and no virtual
storage is allocated.

Control section text pages, if any,
are freed by calling FREEMAIN. If
control section packing is specified



for private control sections, all but
the last page are released uncondi-
tionally. Tken a3 search is made of
the MAP table for another contrci sec-
tion with the las* page address. Jf
other control sections exist on the
last page, no FREEMAIN is duue, and
the MAP entry for the unloaded control
section is deleted.

Public Control Sections:

1-4 Steps 1 through 4, above, are the same

5.

for public control sections.

Following the DEF deletion process,
the public name bit in the CSD attri-
butes halfword is tested. If the bit
is not set, processing skips to the
next CSD in the module. If this bit
is set, the item "SDST name" is set to
the current control section name,
except the first time through this
path for each module. The first time
through, SDST name is set to the mod-
ule name. The public name bit is set
in the first named CSD of each group
of public CSDs of like attributes by
the EXPLICIT LINKING routine ALLOCATE
MODULE (CGCCA). This bit tells DELETE
MODULE that the name of this control
section is the name carried in the
SDST member entry that describes the
public control section grovp. .
(Remember the exception: the first
public control section group carries
the module name in the SDST member
entry.)

Now SRCHSDST (CZCQE) is called to
close out the SDST member entry whose
name is the same as SDST name, and
whose parent data set SDST entry bears
the same name as the data set name in
the JFCB from which the current module
was loaded. (Each PMD preface con-
tains the address of the JFCB describ-
ing the containing data set.) If
SRCHSDST returns with a code indicat-
ing that the user count for this entry
is nonzero, DELETE MODULE merely calls
DISCONNECT to disconnect the task from
the shared pages. If SRCHSDST returns
indicating a zero use count -- meaning
that there are no more shared users of
the storage -- DELETE MODULE goes

through a loop, processinng each CSD,
and looking for all those whose attri-
butes are an exact match of the cur-
rent CSD. The text pages for those
CENs whose attributes match are freed
by calling FREEMAIN.

If a packed control section in the
group overlaps into the next page of
virtual storage, storage is allocated
by subgroups. The control section
overlapping the page is the first con-
trol section in the next subgroup. If
an overlap is detected in the process
of searching each CSD for the attri-
butes that match the "current®™ CSD,
the search is discontinued and the
text pages for the CSDs in the group
are freed by calling FREEMAIN.

7. Storage is allocated to variable-
length public control sections indivi-
dually, which requires each control
section's CSD to have the public name
attribute bit on. When SRCHSDST
returns, indicating zero use count,
variable-length control section text
pages are freed without going through
the attribute-matching loop described
above.

The conditions under which packed public
control sections are reieased are more com-
plex. When SRCHSDST is called to close out
a member entry, it must decrement the user
count in the found entry and in the host
SDST entry, if the found entry is a sym-
biont SDST entry. SRCHSDST takes the zero
user count exit only if both the symbiont
and host SDST entries have gone to zero.
{Note that the host SDST entry can only go
to zero if all symbiont user counts have
gone to zero as well as user count for the
control section group represented by the
host entry itself.)

In the event that SRCHSDST returns with
user count equal to zero, the unloadex
knows that it is free to release the shared
sStcrage via FREEMAIN. In this case, the
VST is searched for an entry for the last
page of the control section group repre-
sented by the host SDST entry. If none is
found, there is no action. If one is
found, this entry is deleted from the pack-
ing table.

Section 4: Explicit Unlinking 79



DROP PMD (CGCCO)

r L) T 1
} | | Parameters |
| ROUTINES | b Y ——
| CALLED | Purpose of Call | In | out |
T O rmmmmm e R !
| FREEMAIN | Free storage occupied by |Page address, page | |
| |collapsed PMD group. | count. | |
L —— 4 -— i - 1 - )

DROP PMD is called to release a PMD from
a PMD group (see Chart AK).

Attributes:
reenterable.

Privileged, public, system,

Restrictions: 1Internal to unloader module;
not available to other system components.

Entries: GR1 contains the input to DROP
PMD, which is a pointer to the preface of
the PMD to be released.

Exits: Normal only, no return code.
Operation: DROP PMD unlinks the current
PMD from the group. First the TDTBLK field
of the JFCB of the library from which the
module was loaded is decremented, to indic-

80

ate the unloading of a module. Since there
are no back links, the forward links are
traced through the circular chain until the
PMD to be released is found, at which point
the link from the previous PMD is changed
to point to the PMD immediately following
the released PMD.

Because of the circular chain structure,
a collapsed PMD group is defined when a
pointer to the next PMD points to itself,
and this pointer will always be in the PMD
group header. If the PMD group does not
collapse, DROP PMD exits. If the group
does collapse, DROP PMD relinks the PMD
group chain, both forward and backward, and
releases the space occupied by the PMD
group through FREEMAIN.



SECTION 5: LOADER_LOGOFF

LOADER LOGOFF (CZCCD1) “
R

| T T 1
| | | Parameters |
| ROUTINES | b x .|
| CALLED | Purpose of Call | In | out i
b + - : -—- + 4
{ SRCHSDST }Close control section group |Member name. |Code indicating |
| | member entry in SDST. | |whether any other |
| | | | shared users. |
t 4 + + i
| FREEMAIN | Free storage for control sec-|Page count, page | |
| |tion groups with no cther |address. | |
| |shared users. | | |
b t 1 t 4
| DISCONNECT |Disconnect current control |SPT number, relative { |
| |section group shared pages | page number. | |
| | when there remain other i | |
i |shared users. | | |
F t - t + 1
| MAPSEARCH |Find CSD for control section. {Virtual storage address.|Address of CSD for |
| | | | that control |
| | | | section. |
L L i L 1

LOADER LOGOFF {see Pigure 14) is called
at task end for public storage housekeeping
to reflect that the current task is no
longer a shared user (see Chart AW).

Attributes:
reenterable.

Privileged, public, systen,

Restrictions: LOADER LOGOFF is a special
purpose routine available to other privi-
leged system service routines by type-I
linkage, but not designed for gemreral sys-
tem service usage.

Entries: LOADER LOGOFF is entered by type-
I linkage, with no parameters.

Exits: Normal only, no return code.
Operation: LOADER LOGOFF will examine each
non-IVM PMD in each PMD group in the task
dictionary (TDY). The public flag in each
PMD preface is tested. If the flag is not
set, the PMD has no public control sec-
tions, and the next PMD is examined. PMDs
with the public flag set are further pro-
cessed, a CSD at a time, as follows:

1. Public CSDs are checked for public
name attribute bit on.

2. The item SDST name is set to the con-
trol section name for those CSDs with
the public name bit on, except that
the first time each module travels
this path, the item SDST name is set

to the module name. This algorithm is
identical to the one used in the load-
er routines ALLOCATE MODULE and GET
STORAGE in the allocation of public
storaygye during EXFLICIT LINKING.

SRCHSDST (CZCQE) is called to close
out the member entry in the SDST: (1)
whose name matches public name, and
(2) whose parent data set SDST entry
matches the data set name in the JFCB
that describes the data set from wich
the current module was loaded. (The
JFCB pointer is extracted from the PMD
preface.) If SRCHSDST returns, indi-
cating that the user count for this
member is nonzero, LOADER LOGOFF mere-
ly calls DISCONNECT to disconnect the
task from the shared pages used by the
member. (These shared pages are all
pages allocated for the control sec-
tion group when it was first loaded.)
If the user count went to zero on the
close, LOADER LOGOFF executes a loop,
processing each CSD. The CSDs whose
attributes match the current CSD's
will have their text length added to a
running total. At the end of the
loop, the total number of text pages
from the control sections of matching
attributes is computed, and the origin
of this block of pages will be the
origin of the first control section
precessed with the<~s attributes. The
block of pages is now freed through
FREEMAIN, and processing of the module

Section 5: Loader Logoff 81



82

proceeds to the next CSD with public
name on.

If SRCHSDST returns a code of "data
set does not exist,™ a SYSER is
caused. Upon return from SYSER, pro-
cessing continues normally.

The conditions under which packed
public control sections are released
are more complex. When SRCHSDST is
called to close out a member entry, it
must decrement the user count in the
found entry and in the host SDST
entry, if the found entry is a sym-
biont SDST entry. SRCHSDST takes the
zero user count exit only if both the
symbiont and host SDST entries have
gone to zero. (Note that the host
SDST entry can only go to zerc if all
symbiont user counts have gone to zero
as well as user count for the control
section group represented by the host
entry itself.)

In the event that SRCHSDST returns
with user count egual to zero, the

loader knows that it is free to
release the shared storage via FREE-
MAIN. 1In this case, the VST is
searched for an entry for the last
page of the control section group
represented by the host SDST entry.

If none is found, there is no action.
If one is found, this entry is deleted
from the packing table.

If a packed control section in the
group overlaps into the next page of
virtual storage, storage is allocated
by subgroups. The control section
overlapping the page is the first con-
trol section in the next subgroup. If
an overlap is detected in the process
of searching each CSD for the attri-
butes that match the "current" CsSD,
the search is discontinued and the
text pages for the CSDs in the sub-
group are freed by calling FREEMAIN.

LOADER LOGOFF ceases its processing when
the forward PMD group link is equal to the
IVM pointer in the TDY header.



2713095

-y
P4

=5

-
:

JJ0607 IOpPEROIL

€8

*$T @anbta

j3jobo1 ampeOT

Library Page Explicit Loader Explicit loader Loader
Mointenance Relocation Linking Logoff Unlinking ¥~ 77777777777 Release Cleanup
{ 1
Add Test Delete Modify Modify Delete
Mote User Caller MUT Use Selected
Counts Mutes Counts Counts Mutes
I i
|
.
[ e e v o e — - — > Resalve
i Symbol
i
| 1 Legend:
| ]
l Libe Load Fix . Allocate Set Search
{ Search PMD pmo | ] Module Flags ‘
- 4
|
i Callable
| from
| outside
| the loader
| module
: — 1
, t
: Fi Add Link A Reject Get Attach Delete [
l ix PMD Defs PCS Diag Storage Text Module [
[ 1T | |
| | Callable
| t only from
| inside
| l the loader
1 B module
! |
' r T
t
| ) e
|
L
|
{1 ] X
X _ Check
Define Set Def Hash Q-Chain SRCHPACK Map-
Ref page L Search Search
egal
Loader Select Resolve Drop
Prompt [ Hash Q-Ref BISEARCH PMD




SECTION 6: LOADER RELEASE

LOADER RELEASE (CZCCD2)

[ 3 T T - 1
| | | Parameters |
| ROUTINES | F : T i
| CALLED | Purpose of Call | In | out |
¥ e = —- + S 1
|EXPLICIT {Unload modules from library |[|VMA of adcon group. |Code indicating |
JUNLINKING |to be released. | | whether module was |
| | | | unloaded. |

- f - ¥ ¥ {
| HBASH |Look up module in Hash Table.|Module name. |Code indicating |
| SEARCH i i | whether module was |
i | | | found. |
I 1 T + .
| PRMPT jInform user module was not |Pointer to parameter | |
| junloaded due to outstanding |string. i |
| |references. | | |
L i i i PR |

LOADER RELEASE (see Figure 15) is called
to unload from virtual storage all modules
belonging to a library (remove them from
the TDY) before a 'DDEF' is released (see
Chart AX).

Attributes:
reenterable.

Privileged, system,
Restrictions: Accepts type-I linkage only
from other privileged system components.
Entries: LOADER RELEASE is entered by
type-I linkage, with GR1 pointing to the
JFCB of the library to be released.

Exits: Return code in GR15:

0 = no errors found
4 = errors found

84

Operation: LOADER RELEASE searches through
the TDY for all non-IVM modules with TDYJFC
(JFCB pointer in PMD preface) equal to the
parameter passed. Whenever one is found,
an attempt is made to unload it by a call
to EXPLICIT UNLINK (CZCDUl). If the
attempt is not successful {(indicated by an
error return code), the module name is
added to an internal list. When the search
through the TDY is complete, a return code
of zero is set if there were no error codes
returned from EXPLICIT UNLINK. If there
were errors, a return code of four is set
and, if LOFOFF is not in process, HASH
SEARCH is called to look up each module
name in the list. The user receives a dia-
gnostic message containing the module name
for each module still not unloaded.



19 uoT3VeS

asealay aASpeo]

S8

*GT @21nbTa

2seaTayd a3peoT

Library Page Explicit Loader Explicit Loader Loader
Maintenance Relocation Linking Logoff Unlinking [ T T Release Cleanup
Add Test Delete Modi fy Modify Delete
Mute User Caller MuT Use Selected
Counts Mutes Counts Counts Mutes
[ o e o o i e e e {4 Resolve T
| Symbo!
|
I i Legend:
|
|| Libe Load I Fix Allocate Set Search
| Search PMD i PMD Module Flogs
| ) — -
| Callabie
| from
| outside
| the loader
| module
|
| ; ‘ ;
|
. Add Link Reject Get Attach Delete
{ Fix PMD Defs PCSA Diag Storage Text Module
.
! v
| P! Callable
| ‘ only from
| ~ inside
' the loader
| } module
} i
i i
|
i
L
|
b
11 {
Check
Define Set- Hash Che , Map-
Ref page Eef I Seorch Q-Chain SRCHPACK 1 Search
ega i
i
i
Loader Select Resolve Drop
Prompt Hash Q-Ref BISEARCH PMD




SECTION 7: LOADER CLEANUP

LOADER CLEANUP (CZCCDWH)

T BN Bt - PRt 1
| | i Parameters |
| ROUTINES | b-- _— . i
| CALLED { Purpose of Call | In | Out |
i L 4 4 4
r T T T - A
| LOADER |To unload all modules loaded |Pointer to JFCB. | |
| RELEASE | from a JOBLIB. | | i
L B P L 4

LOADER CLEANUP (see Figure 16) is called
by LOGOFF to unload all modules locaded dur-
ing an express batch subtask so that the
TDY is clean for the next subtask (see
Chart AU).

Attributes:
reenterable.

Privileged, public, system,

Restrictions: LOADER CLEANUP is a privi-
leged system service routine available only
to other service routines by type-I link-
age, but not designed for general use.

Entries: LOADER CLEANUP is entered by
type-I linkage with no parameters.

86

Exits: Normal only, no return code.

Operation: LOADER CLEANUP picks up the
ISAJLC pointer to the DCB of the last
defined job library; the JFCB is covered by
the address in the DCB header. The count
of modules loaded (TDTBLK) is checked for
zexo; if nonzero, the address of the JFCB
is passed as a parameter to LOADER RELEASE.
Upon return from LOADER RELEASE, or if the
count was zero, the DCB pointer is moved to
cover the DCB pointed to by the forward
pointer of the DCB header. If this pointer
is nonzero, LOADER CLEANUP loops back to
check the count; if it is zero LOADER
CLEANUP returns to the caller.



L UOT3D3S

L8 dnuesT) a9peoT

*91 2xnbta

dnuest) a9peoT

Library Page Explicit Loader Explicit _ Loader Loader
Maintenance Relocation Linking Logotf Unlinking [~~~ 7777777 Release Cleanup
Add Test Delete Modify Modify Delete
Mute User Caller MUT Use Selected
b Counts Mutes Counts Counts Mutes
[ ——— t~— = Resolve
| Symbol
|
| l Legend:
|
l Libe Load Fix Atlocate Set Search
! Search PMD PMD ] Module [ Flags
| [yt
1 T Calleole
| from
| outside
| the doader
| module
|
| i :
| ; ieet |
. Add Link Reject Get Attach Delete

: Fix PMD Defs PCsA Diog Storage Text Modute
|
| Callable
| only from
| inside
| I i Ea—— the loader
| 1 module
|
| 1
{ H
|
i )
L

1

1 l 4
Check
Define Sef Def Hash Q-Chain SRCHPACK Map-
Ref Dage Legal Search Search
]
Loader Select Resolve Drop
Prompt Hash Q-Ref BISEARCH e




SECTION 8: LIBRARY MAINTENANCE

LIBE MAINT (CZCDH)

r T T —
| | | Parameters |
| ROUTINES | b — - S — ¥
| CALLED | Purpose of Call | In | Out |
{ —_—1 4

b } - G e -—- $om—m oo 1
| GETMAIN |Get storage to expand DCB |Page count, storage |2address of page. |
| | chain. |class. | |
i 4 i 4

r T T T ===
| OPEN |Open new DCB. |DCB address. { |
L 4 4 i

r T T ) ——'—'&
|CLOSE |Close DCB. |DCB address. | |
L 4

b $ T TR frm - 1
| GATWR |Diagnostic when library to be|Pointer to parameter |

| | closed not found. |string. | {
¢ ¢ S P — - e e 1
| SHARE |Mark catalog entry as shared. |Fully qualified data set| |
| (CZCFsS1) | |name, number of sharers,| |
| { |1list of sharers. | |
L 1 4 4 J

LIBE MAINT (see Figure 17) is called
during virtual memory task initialization
to open SYSLIB for the task. It is called
again by LOGON to open the user's private
library (USERLIB), and again in response to
any JOBLIB DDEF command the user has
entered during the life of his task (to
open DCBs for the newly defined libraries).
LIBE MAINT may also be called at various
times to close JOBLIBs opened earlier and
will be called at LOGOFF to close USERLIB
and SYSLIB (see Chart AR).

Attributes: Privileged, public, system,
reenterable.
Restrictions: LIBE MAINT is a special pur-

pose routine available to other privileged

system service routines by type-I linkage,

but not designed for general system service
usage.

Entries: LIBE MAINT is entered by type-I
linkage with GR1 pointing to a word that
contains the address of the following list:

1. A pointer to the JFCB of the data set
to be processed.

2. A function where 0 indicates "add" and
1 indicates "delete"™ the library from
the chain.

Exits:
Normal: GR15=0
Error: GR15=4, library to be closed not

found

88

Operation: LIBE MAINT maintains a chain of
open DCBs, each preceded by a header. The
chain defines the program job library
hierarchy used by both the dynamic loader
and linkage editor to locate symbols
defined in program modules. The libraries
are all in the form of partitioned data
sets. LIBE MAINT's PSECT (CZCDHP) is coded
with a small number of builtin DCBs. Each
of these is preceded by a four-word header,
the first word of which is used to chain
these DCBs together in an available DCB
chain. The DCBs are each coded with DSORG=
VP, LRECL = 4096, and RECFM=U; that is, the
format is virtual partitioned, records will
be transferred a page at a time, and the
record format is undefined (meaning records
are merely single pages of hexadecimal
data). This chain of DCBs resides in priv-
ileged storage, and therefore can be used
cnly by privileged routines. Also main-
tained in LIBE MAINT's PSECT is a model DCB
that is never opened and is used to gener-
ate new DCBs when the available DCB list is
exhausted.

The open DCBs for a single task are
chained together through headers. There
are two pointers in the read-only half of
the ISA which delimit this chain: ISAJLC
points to word 0 of the header for the
last-opened DCB in the chain, and ISASLP
points to word 0 of the header of the first
DCB opened for the task. Both the dynamic
loader and LIBE MAINT assume that the first
opened data set is, in fact, the SYSLIB
data set; SYSLIB is defined for the loader
as the first-opened data set, not one whose
DDNAME is necessarily "SYSLIB."



8 uOT3I09S

sourus3zuUTEN ArexqrTI @

68

LT 2I0bTI

aoueuajurey AIeIqII

=V
Library Page Explicit Loader Explicit Loader Loader
Maintenance Relocation Linking Logoff Unlinking f¥ =~ — 7T T T T T TT Release Cleanup
Add Test Delete Madify Modify Delete
Mute User Caller MUT Use Selected
Counts Mutes Counts Counts Mutes
[ o e o e i e i o e —— o Resolve
| Symbol
| ———]
| 1 Legend:
|
I Libe Load Fix Allocate Set Search
} Search PMD PMD — Modele p— Flogs
! - B — ; r——
| ' Lallakle
| ! from
| i outside
i the loader
| - e reem mnodu'e
: | .
| i 1
i .
) Add Link Reject Get Atrach Delete
: Fix PMD Defs pCsA Diag Storage Text Module
|
| ‘ Callable
| only from
| inside
| the loader
| module
|
|
|
|
{
[
=
|
JE !
N Check
g::‘"‘ Set Def Hash Q-Chain SRCHPACK Map-
poge Legal Search Search
Loader Select Resolve . Drop
Prompt Hash Q-Ref BISEARCH PMD




The DCB headers are chained bi-
directionally through the first two words
of the header. The forward link of the
SYSLIB DCB header will be zero; the back
link of the last-opened JOBLIB will point
to ISAJLC. DCB headers are of the follow-
ing format:

H —-—
|Forward Link: |
jPointer to Word 0 of Next DCB Header |
i

t - -
|Back Link: 1
|Pointer to Word 0 of Previous DCB Header |
-—

Pointer to JFCB for Data Set |

b
4

Not Used |

PO |

P A — ——

The Add Function: The DCB availability
chain is checked: if the pointer is zero,
indicating no available DCBs, one storage
class C page is requested via GETMAIN. The
model DCB with its header is copied into
this until the page contains the maximum
number of DCB/header blocks. The available
space pointer is set to point to the first
word of the new page (which is word 0 of
the first header), and the remainder of the
DCBs are chained together in the availabi-
lity 1list through word 0 of their respec-
tive headers.

Now the first DCB is plucked from the
availability list and chained into the head
of the existing program library chain.

That is, the forward link of the new header
is set to the contents of ISAJLC, the new
header back link is made to point to
ISAJLC, and ISAJLC is set to point to the
new header. The original contents of
ISAJLC are checked for zero -- indicating
the first add call on LIBE MAINT. In the
first call, ISASLP is set to point to the
new header, whose attached DCB is assumed
to be the DCB for SYSLIB.

If ISAJLC was not zero, the back link of
the previous head of the chain is set to
point to word 0 of the new header.

The JFCB pointer -- parameter 2 -- 1is
now placed in the DCB header, and an OPEN
macro instruction is executed to open this
new DCB, making the data set available to
the loader and link editor. 1If the library
opened is USERLIB and the data set is not
shared, CLOSE is called. Then SHARE
(CZCFS1) is called to mark the catalog as
shared by the owner, and then OPEN is
called again. This permits a user to have
multiple tasks running simultaneously.

920

A typical chain might look like this:

ISALC

L fe-— ——
i

- i
L] | -
et - — — e JFCB for JOBLIEZ
/// / / - ——» JFCB for JOBLIBI
: [~ JFCB for USERLIB
DCB for JOBLIB2 o
ECR for SYSLIP
%5 [ JFCB for SysLF |
p
Cop !
— [
—— \’ |
T
PIrS 1 l
7 i |
P
DCB for JOBLIBI |
|
- !
-l
.
—

DCB for USERLIB

ISASLP

o
[ }———-—--w 0 - | k
!

/ /’/ 9/(

DCB8 for SYSLIB

The Delete Function: The chain is searched

from the beginning, and each header is
examined to locate that one whose JFCB
pointer matches the first input parameter.
If no match is found, a diagnostic is
issued via GATWR and an error exit is
taken. If a match is found, the DCB header
is removed from the chain. The DCB with
header is added to the head of the availa-
bility 1list, and a CLOSE macro instruction
is executed on the removed DCB.

Exit on the add function is always made
with GR15 set to zero. Normal exit on the
delete function is made with GR15 set to
zero; error exit on delete is with GR15 set
to 4.



Program Logic Manual
GY28-2031-3

Dynamic Loader

Flowcharts on pages 91-144 were not scanned.



Chart BM. TEST USER COUNTS - CGCDE

CGCDE

A2 INPUT PARAMETER
( ) RA: PMDAD OF CANDIDATE
ENTER

u

SET EXIT
PARAMETER = 9

Section 9: Flowcharts 145



APPENDIX A: ANALYSIS AIDS

Appendix A contains two symbol proces- The conditions set forth in Figure 18
sing tables, a list of loader routines are tested by the routine SET SEARCH FLAGS
indexed by entry point name, a list of (CZCDLG), which produces as output a hash
loader routines indexed by routine title, table pointer and library index (column 5).
and a table of data references listed for
each routine. The routine PCSA (CGCCT) checks the con-

ditions in columns 1 and 2 of Figure 19 and
performs the necessary CSECT attribute
modifications indicated in column 3. The

SYMBOL PROCESSING routine CHECK DEF LEGAL checks the condi-
tions in columns 1, 2, and 4 to judge the
Figures 18 and 19 summarize the symbol admissibility of DEF symbols about to be
processing algorithms performed by the posted. Finally, SELECT HASH (CGCCH)
loader and unloader. Figure 18 shows the checks the conditions in columns 1, 2, and
dynamic loader symbol lookup rules for 4 before selecting the hash table pointer
resolving symbols in either explicit CALL/ (column 5).
LOAD or DELETE adcon groups or in external
REFs. Figure 19 shows the symbol posting The symbols U, P, and O stand for normal
rules for inserting DEFs into TDY hash user, system programmer, and operator or
chains. privileged system programmer, respectively.
v T T T e ettt N
[ 1 | 2 | 3 | 4 I 5 |
L 1 s - -— e
Ly 3 T + T T {
} if | and | and | and | then | or |
F + t + 1 -
|authority|loader is |high-order bit of |control section con-|lookup |If symbol is]|
|code is: |resolving |C1 or C3 byte of |taining adcon group |symbols in |not found inj
{ jsymbol from: }adcon group is: jor REF is: | hash table:|hash table, |
| | i | | |search |
| I ] | | |library: t
! $-- + e pommm - L .
i |Explicit ] | SYSTEM | SYSHASHP or|SYSLIB |
} | LOAD/CALL or |} | | SYSHASHNP | |
| | DELETE adcon | 0 b + 4 ————————d
i |group | | NONSYSTEM |USERHASH#*#* | ALL** |
v e —————t ——— e e T 1
: | | | NONSYSTEM | SYSHASHP or|SYSLIR i
| | | | | SYSHASHNP | ;
| | | e fom e fommm e {
i | { | SYSTEM | USERHASH* *#* | ALL** |
| t $— t + 4 —
| | External REF | | SYSTEM | SYSHASEP or|SYSLIR |
| ! | | | SYSHASHNP | |
| | | NA* " + + |
| | | | NONSYSTEM | USERHASH**# | ALL** |
! 1 e frmmmm oo e T T
| Por o | NA* ] NA* | NA# | SYSHASHP or|ALL** |
| | | | | SYSHASHNP | |
57 L i —_ —— 4 i —— ....._.i
|Notes: |
| *NA - not applicable, in the sense that the condition is not tested by the loader. |
| **ALL - the entire hierarchy of open libraries beginning at the last defined JOBLIBR {
| and ending with SYSLIB (or with that library yielding a valid definition). !
|***If the symbol to be resolved begins with SYS, the loader will look in SYSHASHI or |
| SYSHASHNP, and then in SYSLIB. ' !
L e e e e e e e e e e e e 2 e e e e e e _3

Figure 18. Dynamic Loader Symbol Lookup Rules

146




C T T I B T T 1
I S 2 | 3 | 4 | 5 | 6 |
t + 4 4 + 4 {
| if | and | then | and if | then | and |
F + ¢ 1 + + 4
|authority|control sec- |control section |control section that|DEFs may |all legal |
|class is:|tion that | attributes may {contains DEF has |begin with |symbols from|
| |contains DEF |be altered: |attributes: |only the | control sec-|
| |came from: | | | symbols: |tion are |
4 | | | | |posted in: |
b - t ¢ v + + {
| | | If control sec- | | PRVLGD |CZ, CHB | SYSHASHP |
| i jtion is PRVLGD, |SYSTEM } + + i
| | | loader sets | | NONPRVLGD |[CZ, CHB | SYSHASHP |
| | | SYSTEM attribute;| | 3 + |
| | | | | |All others |SYSHASHNP |
i | SYSLIB |hence, NON- ¢ 1 + + 4
| U | |SYSTEM and | NONSYSTEM | | i
| | | PRVLGD is | | | |
| i | impossible. | | | |
i b + 4 {Any but SYS|USERHASH |
I |USERLIB or |PRVLGD and i NA* I | |
| | JOBLIB | SYSTEM erased. { | | |
F 4 ¢ + t + 4
| | SYSLIB | PUBLIC and | | Any | SYSHASHP or |
i | | READONLY erased. | | | SYSHASHNP |
| b + { Nas b = |
| P 1 | ] | | SYSHASHNP |
| |USERLIB or | PUBLIC, READONLY, | |Any but | |
i | JOBLIB | PRVLGD, i |cz, CHB | |
| | | SYSTEM erased. | | | i
F + + + + 1 4
i | | PUBLIC and { | | SYSHASHP or |
| o | NA* | READONLY erased. | NA#* | Any | SYSHASHNP |
% 1 1 4 L 1 1l
|*NA - not applicable, in the sense that the condition is not tested by the loader. |
L 4

Figure 19.

Symbol Posting Rules

Appendix A:

Analysis aids 147



DYNAMIC LOADER ROUTINE INDEX

For quick reference} both kinds of rou-
tines are listed alphabetically.

These routines may be accessed from out-
side the loader:

Label (Entry Point) Routine Routine Label
CZCCD1 LOADER LOGOFF ADD MUTE CGCDG
CZCCD2 LOADER RELEASE ADD PMD CGCCN
CZCCDh4 LOADER CLEANUP ALLOCATE MODULE CGCCA
CZCDH1 LIB MAINT ATTACH TEXT CGCCK
CZCDL1 EXPLICIT LINK BISEARCH CGCCR
CZCDL2 HASH SEARCH CHECK DEF LEGAL CGCCU
CZCDL3 LIBE SEARCH DEFINE REF : CGCCY
CZCDL4Y4 PAGE RELOCATION DELETE CALLER MUTES - CGCDB
CZCDLS MAP SEARCH *DELETE MODULE CZCDU2
CZCDL6 SET SEARCH FLAGS DELETE SELECTED MUTES CGCDC
CZCDL7 Q-CHAIN DROP PMD CGCCO
CZCDU1 EXPLICIT UNLINK *EXPLICIT LINK CZCDL1
CZCDU2 DELETE MODULE *EXPLICIT UNLINK CZCDhul

FIX CGCCL

These routines are internal to the FIX PMD CGCCJ
loader: GET STORAGE CGCCW
*HASH SEARCH CZCDL2

Label (Entry Point) Routine *ILIB MAINT CZCDH1
CGCCA ALLOCATE MODULE *LIBE SEARCH CZCDL3
CGCCB SELECT HASH LINK -DEFS CGCCV
CGCCC SRCHPACK *LLOADER CLEANUP CZCCD4
CGCCE RESOLVE SYMBOL *LLOADER LOGOFF CZCCD1
CGCCH LOAD PMD LOADER PROMPT CGCDPR
CGCCJa FIX PMD *LLOADER RELEASE CZCCD2
CGCCK ATTACH TEXT LOAD PMD CGCCH
CGCCL FIX *MAP SEARCH CZCDLS
CGCCN ADD PMD MODIFY MUT COUNTS CGCDA
CGCCO DROP PMD MODIFY USE COUNTS CGCDD
CGCCP REJECT DIAG *PAGE RELOCATION CZCDLY
CGCCR BISEARCH PCSA CGCCT
CGCCT PCSA *Q-CHAIN CZCDL7
CGCCU CHECK DEF LEGAL REJECT DIAG CGCCP
CGCCV LINK DEFS RESOLVE Q-REF CGCRQ
CGCCW GET STORAGE RESOLVE SYMBOL CGCCE
CGCCY DEFINE REF SELECT HASH CGCCB
CGCDA MODIFY MUT COUNTS *SET SEARCH FLAGS CZCDL6
CGCDB DELETE CALLER MUTES SETPAGE CGCSP
CGCDC DELETE SELECTED MUTES SRCHPACK CGCCC
CGCDD MODIFY USE COUNTS TEST USER COUNTS CGCDE
CGCDE TEST USER COUNTS
CGCDG ADD MUTE
CGCDPR LOADER PROMPT
CGCRQ RESOLVE Q-REF
CGCSP SETPAGE *Externally referable routines

148



Entries are shown only for tables directly referenced by the routine

Table 2 shows which tables are referenced by the loader's rcutines, by LOADER, LOGOFF,
not for references by a cailed routine.

and by LIB MAINT.

DATA REFERENCES
itself;

| | _
PC * L .
LTnl.LT|.|LT.I..LTll.Ilrll-l!iLTlllln“lll.llLTIILT..||.|1TI|lLTII!IlT..Ill.IlLTIlTIlclIl.Tllln‘“llllLr.llllTIilll“llL
. | ! _ |

| !

LlllLTI....!!LTIILTIII[T:!IlILI'I'Illllltlllr.llllLTl...ILT%....I..lTIInllT:lLTllllll_—llllllT.llLTilIILTlI..l..-“l.I.L
_ L] | | [] [ e |

LT..I.LTI-||LT..|1II|I|1T_.||I.lLTIl:I!I..m..IILTllL1.‘|||.l|lIlLT.I:l....TuIIll..LTI-LTll.|...||“_-I|.l.+|I.I-LTII.|.Lr|.|IcT!..L
|

P
.f.l.f.\l%.!.?.lllrIl.lir.tll....t.l%l.fli.%...i...rll..rl..ll%I.Lrlull..“.l......”..lilrlllri.l.fll
: | T
Lrl...fllirl%.lllv..l.lllrl..ll.“..l.l.?l.."..lilrl.I.Lr.ll.fl.l.llrl.%l.ll.“.

. | e | [ ']
LT.I..TI...\LTI.-m‘I.l.LTI.I.l.f.ll..\:._r.ll..fl:.m..l..tLrlI.Lrul...ir.l.I....irl..f.ll..llr....l..m..lllrl:l%.llnrIi

=3

| TDY | MAP | ISA|{DCB | SDST | TDT | MUT | VST

| . | {
- LT.llT...(!llTlllmn.|.l|LT..I.lInl.iTll.I.llxml...IlllTlliTl..IlJTIul:JIInIL_llt!..tllT..lenllitiTitian“lllllr..ll..n_rlllllr;li
[} ® | [ [} ] “ [] [ [ ] [} L) [ [} [
- LTIILT......-IAT'L..III..IT..!I..lLT-lnl:I.flllLTlLlnllLT..lillT:lllTllliILT.!LTul.l..lLr.llllLYl-llLTlll...Lr.I....ILTIIL
m “ | ﬂ "
z | B O =% =
S| [+ A o] W 4] Mool ) | K e} << [N T [+ Re] Q
ﬂ 3] m _ Q m Py M | 3] Q N Ln m 3] By (G- Bl
m (=] [ - | B | MY | Q o] ] Hx2Z M o] M w ol
212812 127915651885 19518 B8 185 (48 955 (2685138150180 8518
Ol m.P w. 1] MMC.._MUC_P ™~ ®Q MS FS numln EUC .ww mm H O Lm Sﬁ
R Sun WORIIDISRI I SRS SR ST SO e et e b e e i i e s Sl v ity e s curits el ot et e eeerets, s sy o ccsres b — an ooy et wd
[ e e o e i S " o, MU S e S e S s W it Y T e S e A S S i S WY e ST i A T S o S Wt L G i SO S S S S A i T S i e S it e
& | | | | | | | | | |
n L] ° | | e | | | | | o | | |
> | | | | | | | | | |
b e e e s et e o e e e e o e et e e e e e e e e e e e o e e e e e o e o e e e e e e 4- e e e e e ey e =
Bt | | | | | | | | |
W . | | (] _ [] | | | | | | sl
o) | ] | | | lﬁ.. | | |
_.% T.m...llTllT!lLr.l..llT.l|4..||LII||I.|4..||!ILT.I|zl1tl|..!|"ol-ll..llr...ll“l|||ir.|l ...“.. 4.. | ..“.. ..“u..!lnuﬁ.l.ll
g |8 | | 5 | IR A
.w Tm.-.lLTILIIILrI!||Ll|.|..."|l.tltllll.|..“v|l||LTIIIILT‘..IIlmul.I.llLTIIl”llluLT! l“l + IP. ..“l l“:..llll..flllll
ol 9] (] | | | | | _ o | | “
218 n | |
(7] ﬁ.allrlllllrsl|LT|'||T|+ I..T.!I.LT.II.I.LT;!.I.“..I.I.llrl:.T.l.l..T!.Il e e e e o e i e e e e et e e o
[} m | | | | | i | | |
Q m L] | | | i | | [ “
[~} | | | | | |
m TM.LT'LTIlLTnll..LT.ll..“..tllﬁnlull-ﬁit:l:.rll.laﬁl.l;uﬂ'lllrl.nﬁulalLTI..luiTlLTll o s s e caam .._T..llul_Tlclll
[©] n [] | | e | | | . o | o |
YW 0§ | | I | | |
M m T.I.LT.ILT..!LTI!ILTII!J!IIJ:I'ILT.!..llLrll.l.ll..“..-IIlLTllll‘LT'I«.I'LT‘!LT'LTILT"LT|.|4|l|.|.|“:tlull
e m | o | _ | | |
(L] | Lu u.”u | |
;.m AUU T|V|.|LT..I|LTI|LT.I-!ILTII||+|! . ’lll!LTllLTl!llllJnlnlltllll.l-lT‘ ! IllLTIIlLTIllI.IulT.I.‘.LTII.IIl“lllllwull!n.L
Qo mD.. . [] . [] ° “ . [] . “ [} ° [ “ . [} (] . [ [] “ “ []
TIILTl-..LlIILTI-l..LfI.IllLTIIlTIl.IIllLI‘lIl.I-!nInlITlIILI.I:IIILTll-.T.itll.LTl.l-LIl.!LItll_TalllLr.lllllTl'lTl'!lL
. =] <] oo | =] w | H ] | ]
o~ Bl H (O] | 3] [ 4 m ] ! |
SIEISH1E, 151k al8 |EEaiB8 80 T 108 18] 21.81,8
[} WU < M m.c % [l ELE_HU mmmw AN M M jen T I .MS
~— QlA ED me (OB SN TRO] me MT_HD Qe 1 Q1 E | A H o] mm H_B | iy
Q w w Q H o EE m Mg | Q EEW R.HI HN H | H [
o ﬁAM < miloQA ﬁDR ALVE I1AXE Aw ol - O B R Qw0 ik iAQ
T U TR S R R e et R K X T P SIS SR R R N g e e

1!||J_I|I-J‘II'J‘!I‘J‘.II‘II:III"]‘"\!I.I-JIll‘ltnlj1!.llj‘l|¢|IJ_I-.'lll.l1|lIl.!l.lll:llltl-llqllllcl.llll].lnlll'].l'll‘ll.j_inllllj

and
149

DHD,

Analysis Aids

Appendix A

EPE

| #*Also references PVT, RHD, MHD,

|
[



APPENDIX B: TABLES

Appendix B contains descriptions and
examples of the following tables:

Task dictionary table (TDY).

PMD group

PMD group header

PMD preface

PMD

CSD

Definition table
Reference table
Relocation dictionary
Virtual storage page table

Module usage table (MUT)
Memory map table (CHAMAP)
Hash tables (CHASHT and CHAUHT)

Vacant space table (VST)

ACCESS TO LOADER TABLES

Access to PMDs within PMD groups and to
the PMD groups themselves is described in
the discussion of the TDY. Access to the
TDY is gained via the TDY heading; a point-
er to this is set in the read-only half of
the ISA. This pointer is identified sym-
bolically in the ISA DSECT (CHAISA) as
ISATDY.

Access to the hash tables and storage
MAP table is through pointers in the TDY
heading.

The module usage table (MUT) is main-
tained in the loader PSECT (CZCDLP) and is
identified externally as CHBMUT. The loca-
tion CHBMUT actually contains a pointer to
the head of a chain of available blocks of
MUTEs. The various MUT chains must be
traced from their sources in the PMD pre-
faces (PAPA chain heads and BABY chain
heads). If MUT space is exhausted in
CZCDLP, additional space will be obtained
by ADD MUTE (CGCDG).

TASK DICTIONARY TABLE (TDY)

The dictionary table (TDY) contains
information needed to load (and unload) the
modules in a particular task. It consists
of a heading, three hash tables (two system
and one user), the storage map table (MAP),
and one program module dictionary (PMD) for
each module loaded during the task (Figure
20). The PMDs are arranged in irregularly

150

located PMD groups discussed in this appen-
dix. TDY is initialized by STARTUP and
maintained by the dynamic loader.

TDY Heading

Privileged System Hash Table (SYSHASHP)

Nonprivileged System Hash Table (SYSHASHNP)

User Hash Table

MAP

[y
PMD Group -

NULL le—

PMD Group

PMD Group P _ﬁ

Figure 20. Task Dictionary Organization

TDY Heading (CHATDH)

The TDY heading (see Figure 21) 1is 16
words in length and contains:

Word 0 - Link to PMD group: The address
of the first word of the last PMD

group to be entered into the TDY.

Word 1 - Hash divisor: This is some num-
ber less than the length (in
words) of each hash table. It is
provided by STARTUP and remains
unchanged during a task.

Word 2 - Pointer to system hash table:
The virtual storage address of
the beginning of the privileged
system hash table. The nonprivi-
leged system hash table begins at



the end of the privileged system
hash table.

Note: If the user authority is P
or O, LOGON sets word 3- (pointer
to user hLa-t table) equal to the
contents of word 2 (pointer to
privileged system hash table).

Word 3 - Pointer to user hash table: The
virtual storage address of the
beginning of the user hash table.

Word 4 - The virtual storage address of
the origin of MAP table.

Word S - The length, in bytes, of the
maximum space allocated by the
system for the task's storage

MAP.
Word 6 - A count of currently valid MAP
entries.
Words - Several words reserved for
7-15 future expansion.
0 Link to PMD Group
1 Hash Divisor
2 Pointer to Privileged System Hash Tatle
3 Pointer to User Hash Table
4 Pointer to MAP
5 Maximum Length of MAP
6 Length of Current MAP
7-15 Reserved
Figure 21. TDY Heading

PROGRAM MODULE DICTIONARY (PMD) GROUP

Each PMD group consists of at least one
PMD with its associated PMD preface. When
a new PMD is to be added to the TDY, if
room exists in the same page that contains
the last inserted PMD, the new PMD will be
added to that page and become part of that
PMD group. If such space does not exist in
the page, a new PMD group is formed start-
ing with the new PMD. Note that the first
PMD in a group may exceed a page in length,
but that successive PMDs in a group may not
exceed a page. Space for PMD groups is
allocated by the loader subroutine, ADD PMD
(CGCCN) .

PMD groups are chained together bi-
directionally through the first two words

in each PMD group header (see Figure 22).
The TDY heading contains a pointer to the
beginning of the chain of the PMD groups.

Pointer to Next PMC group header

Pointer to Previous PMD group header

Pointer to Last PMD in this group

Pointer to End of group

Figure 22. PMD Group Header

PMD Group Header

Each PMD group header consists of four
pointers:

Word 0 - A pointer to the next PMD group
header.

Word 1 - A back pointer to previous PMD
group header.

Word 2 - A pointer to the last PMD in this

group.

A pointer to the first byte past

the end of this PMD group, which

therefore defines the beginning of

available space in this group.

|

Word 3

The PMD group header is at the beginning
of a page.

POINTER TO NEXT PMD GROUP HEADER: This
either contains the address of the next PMD
group header, or is zero if this is the
last PMD group in the chain.

POINTER TO PREVIOUS PMD GROUP HEADER: This

contains the address of word 0 of the pre-
vious PMD group header in the chain. The
most recently added group will back-link to
word 0 of the TDY heading (CHATDH).

POINTER TO LAST PMD IN THIS GROUP: This is

the beginning of a circular chain of all
PMDs in the group. It contains the address
of the last (most recent) PMD preface in
this PMD group. When the group collapses,
this pointer will point to itself; the
unloader routine DROP PMD (CGCCO) will
recognize this condition and release the
pages containing the collapsed group
through FREEMAIN.

Figure 23 shows a sample PMD group.

POINTER TO END OF GROUP: Contains the

address of the beginning of the available
space at the end of the last page in the
group. Space made available by deletion of
a PMD within a group is not accounted for.
Space is only released on a full group
basis.

Appendix B: Tables 151



Pointer to Next PMD Group
Beginning
of Page

Pointer fo Last PMD in Group

e o e e o e

r* Pointer to End of Group

Released PMD Space

Avgilable Space

End of Page

Figure 23. Sample PMD Group

PMD Preface

Beginning of Page T

This May
Exceed o
Page

This Will
be Less Than
a Page

The PMD preface (Figure 24) is generated
by STARTUP if the PMD preface is part of
initial virtual storage or by the loader if

it is not.
the loader.
PMD at load time;

The contents are maintained by
It immediately precedes the
and when the term PMD is

used in the following description, the PMD

preface is generally inferred.

The PMD

preface contains the following entries:

Word O

- A link to next PMD in the chain

of PMDs within this PMD group.
The PMD group header contains a
pointer to the last PMD of this

group.

Since each new PMD is

inserted at the beginning of the

chain,

PMDs are in reverse order

of appearance within a PMD

group.

The 1link contains the

address of the first word of the
PMD preface of the next PMD.
The last PMD in the chain points
to the third word in the PMD

group header.

Word 1 - A link to the MUTE (module usage
table entry) chain for modules
which explicitly call this mod-

ule.

This chain is further

described under "Module Use

Table."

This entry is the

beginning of the BABY MUTE chain

for this module.

It is zero if

there are no entries in the

152

Word 2 -

chain; otherwise, it contains

-the address of the forward BABY

link entry in the MUT chain.

A link to the MUTE chain for
modules that are explicitly
called by this module. This
chain is further described under
"Module Use Table."™ This entry
is the beginning of the PAPA
MUTE chain for this module. It
is zero if there are no entries
in the chain; otherwise, it con-
tains the address of the respec-
tive forward PAPA link entry in
the MUT chain.

Link to Next PMD Preface in Chain of PMD's within this
PMD Group

Link to MUTE Chain for Modules that Explicitly Call
this Modute (BABY Chain)

Link to MUTE Chain for Modules that are Explicitly
Called by this Module (PAPA Chain)

Number of Explicit CALL's/
LOAD's on this Module
(MUT Count)

PMD Flags

Pointer to JFCB for Library Containing this fodule

DCB Address for Library where Name was Found

Retrieval Address of PMD

Length of PMD ir Bytes

Retrieval Address of Text

Length of Text in Bytes

Retrieval Address of ISD

Length of ISD in Bytes

SYSLIB Switch - Zero if Library where Name was Found
is Not SYSLIB, Non=-Zero if it is

Mcdule Sequence Number

Reserved for Future Use

o]
1
2
3
4
3
-
6
7
User
Information 8
from
Library
for
Module 7
10
1
12
13
14
Figure 24.
Word 3 -
left half

PMD Preface

The number of explicit links
(CALLsS/LOADs) to this module.
For each explicit link to this
module the value of this field
is incremented by one. When the
corresponding MUTE is removed



(see MUTE processing routines),
the value is decremented. The
contents are initially zero.

word 3 - PMD Flags. The PMD flags field

right half is a halfword containing flags
used by the loader. The follow-
ing flags are defined (bits num-
bered from left to right start-
ing with 0):

Bit 15 - Public flag -- this bit
is set if this module
contains any pubiic
control sections.

Bit 14 - Condidate flag -- this
bit is set if this mod-
ule is on the deletion
candidate list.

Word 4 - A pointer to the JFCB for
library containing this module.
Word 5 - Address of DCB for library in
which name resolved.
Words - User information from library
6-11 where this module was obtained.

The form of the retrieval

address is:

Bits 0-15 - Relative page
number.

Bits 16-31 - Zeros.

Note, therefore, that the retri-
eval address for the PMD will
always be zero.

Word 12 - SYSLIB switch: set nonzero if
module was extracted from
SYSLIB.

Word 13 - The module sequence number.

Each module is assigned a conse-
cutive sequence number as it is
loaded. This sequence number is
used to differentiate unnamed
(non-common) control section
references among modules.

Word 14 -~ Reserved for future use.

PROGRAM MODULE DICTIONARY (PMD)

The output from an assembler, compiler,
or the linkage editor is known as a program
module. This is composed of a program mod-
ule dictionary (PMD), text, and internal
symbol dictionary (ISD).

Each PMD consists of one PMD heading
plus as many control section dictionaries
(CSD) as there are control sections in the
module. Address pointers in the PMD are
initially relative to the beginning of the

PMD itself (not the PMD preface), except
where otherwise specified. Some fields in
the PMD are filled in by the loader. These
are left zero by the langquage processor.
The PMD format is shown in Figure 25.

PMD Heading

1. Length of PMD in bytes: This length
does not include the PMD preface.

2. Diagnostic code (1 byte): The diag-
nostic code indicates the highest
level diagnostic encountered during
generation of the module by the lan-
guage processor that created it.

3. Flags (1 byte): The flag bits are
numbered from left to right starting
with zero and are defined as follows:

i r
Version ID Flag

L FORTRAN Flag
e FORTRAN Main Prog. Flag
PCS Communicatien Flag
Link Editor Flag

I1SD Flag

Modification Flag

Bit 0 - In a system module indicates
that module was modified by
other than a language
processor.

Bit 1 - This module has an associated
ISD. This bit is set by the
processor creating the PMD.

Bit 2 - This module was produced by
the link editor.

Bit 3 - PCS is to be called before
module is unlinked. This bit
is set by PCS and examined by
the unloader (CZCDU).

Bit 5 - FORTRAN flag, set by FORTRAN
compiler.

Bit 6 - FORTRAN main program flag, set
by FORTRAN compiler.

Bit 7 - Version ID indicator. If this
bit is set, the module version
ID ‘TDYMID) is to be inter-
preced as a 64-bit binary num-
ber which is the creation date
of the module expressed as the
number of microseconds that
have elapsed from March 1,
1900, until the time of module
creaticn. If this bit is not
set, the version ID is eight
alphameric EBCDIC characters.

Appendix B: Tables 153



—
The PMD
Preface is
Prefixed
here by
either J
STARTUP
or the
Dynamic
Loader. L
~
0 Length of PMD in Bytes
Diag. Length of PMD
"' Code Flags Heading in Bytes
2 4 - Charocter I, D. Nome
3 Version 1D
4 of Module
5 Neo. REFs for Entry No. Mods. for
Point Entry Point
6 Alphameric Nome
7 of Module
8 Value of DEF
9 Value Displccement
(Created by LINK EDITOR)
10 {CSD LINK]
PMD
Heading 1
(Reserved for Future Use)}
12 [Search Link]
13 Alphameric Nome
14 of REF
15 {Value of REF]
16 [R - Value of REF]
17 [CSD LINK}
18 (Reserved for Future Usel
Figure 25.

154

>

[

i

For Deck
Punchout

DEF for
Stordard
Entry Point

REF(s} ¢
Entry !

PMD
Heading

CsD
Heading

Definition
Table

Definition(s)
Relative
Absolute
Complex

Format of PMD Entry (Part 1 of 2)

e

L REF Number T Bytes

Number Bytes in CSD

Length of Control Section
in Bytes

Page Number in Text of Page O
of CS Text

Version {D

(PMD Link]

(No. REFs into this

No. Q-REFs or CXD-REF Control Section {user

Flag (TOYCQR) court) )
Ne. Relocatoble No. Absolute
DEFs DEFs
No. Complex No. of Exiemulvand
Internal REFs in
DEFs

Reference Table

Attributes of C.5.

No. Pages of Tex?

Alphameric Name

Value of DEF
[Modified by Loader]

R-Value Displacement
[Modified by Loader]

[CSD Link)

{Reserved for Future Use)

{Search Link!

Modifier(s) tor
Entry Point



Reference
Table

Figure 25.

4.

{Reserved for Future Use)

{Reserved for Furure Use!l |

(Value of CXD) Virtual Memory
Page Table
{ v F 3
[Reserved for Future Use CXD-Type

REF

{Reserved for Future Use)

(CXD REF Link}

This is the
PMD heading.

Length of PMD heading:
length of bytes of the

4-Character I.D. Name: The U4-
character I.D. name is supplied by the
user to serve as deck identification
if the module is punched into cards.
This field is currently unused.

Version I.D.: See 3. above (bit 7
discussion) for interpretation of ver-
sion I.D.

Number of REFs for the standard entry
point: The DEF for the standard entry
point is always treated as a complex
DEF. This field contains the number
of REFs. It may be zero.

g -
] Alghameric Nome
I I Modifier
of REF Pointers for <
Complex DEFs
{Value of REF] External
or Internal >~
REF
{R-Value of REF]
Modifiers for
Complex DEFs
[CSD Linki
(Reserved for Future Use)
4 fad Modifier Pointers
for External REFs
~ !
Name of ;’
! DXD Instruction Modifiers for
External REFs
{Q-Value of REF}
Q-Tyoe
. REF
Alignment Length
[Link te Next DXD Name ] Meodifier Pointers
for Internal REFs
[Link to Same DXD Name ]
A -~
Modifiers for J
tnternal REFs

No. Modifiers for
Page 0 of PMD

Relative Location of First
Madifier for PMD Page 0

~~
No. Modifiers for Relative Location of First
Page x of PMD Modifier for PMD Page x
L REF Number T Byte
A

No. Modifiers for
Page O of Text

Relative Location of First
Modifier for Text Page O

No. Modifiers for
Poge y of Text

Relative Location of First
Modifier for Text Page y

REF Number

|

T Byte

e

No. Modifiers for
Page 0 of Text

Relative Location of First
Modifier for Text Page 0

A
~ -~
No. Modifiers for Relative Location of First
Page z of Text Modifier for Text Page z
L REF Number T Byte

Page No. in Text
of Virtual Memory Page 0

Page No. in Text
of Virtual Memory Page 1

5 L

Page No. in Text of
Virtual Memory Page'm-1'

Page No. in Text of
Virtug! Memory Page 'm’

L

Format of PMD Entry (Part 2 of 2)

entry point:

Remaining CSDs

Complex DEF RLD
Note: Poge x is the fast
PMD poage for which there
are any Complex
DEF modifiers

| External REF RLD

Note:

1. Modifiers for {2~REFs and
CXD-REFs are included in
this RLD.

2. Page y is the lost taxt
page for which there are
any External REF modifiers.

~ Internal REF RLD

Note: Page z is the lost
text page for which there
are any Internal REF
modifiers

Number of modifiers for the standard
This field contains the

number of modifiers that are to be

used to compute the DEF for the stan-

dard entry point.

DEF for standard entry point:
seven-word entry describes the DEF for

This

the standaru entry point of the mod-

ule.

It has the same form as the

individual DEF entries within the
The standard entry point DEF
for the module belongs to the first

CSDs.

PSECT of the module and is treated the
same as a complex DEF whose ENTRY sta-
tement appears within that PSECT.

no PSECT is declared, the standard
entry point will be associated with

Appendix B:

Tables

If

155



the first CSECT instead. This DEF
entry contains the following sub-
fields, which are described in the
discussion of DEF entries, under "Con-
trol Section Dictionary.”"

a. Alphameric name of module

b. Value of DEF

Cc. R-value displacement 4.
d. CSD 1link

e. Reserved for future use

f. Search link

The alphameric name is also the name
of the module.

5.
10. REF(s) for entry point: These have
the same form and function as the REFs
described in the CSD discussion,
following.
6.
11. Modifier(s) for standard entry point:
These have the same form and function
as the modifiers described in the CSD
discussion below except that they
apply to standard entry point DEF.
CONTROL SECTION DICTIONARY (CSD)
The control section dictionary is made
up of: 7.
1. CSD heading
2. Definition table
3. Reference table
4. Relocation dictionaries (RLDs)
5. Virtual storage page table (VMPT)
CSD Heading
8.

1. Number of bytes in CSD: This field
specifies the length of the control
section dictionary in bytes.

2. Length of control section in bytes:
This specifies the virtual storage 9.
span of the control section. The
length of the virtual storage page
table is derived from this length.
For example, if the length of the con-
trol section is 8192, the virtual 10.
storage page table will contain two
entries, but if the length is 8193
bytes, the virtual storage page table
will contain three entries. This
value will be equal to the highest 11.
location counter value assigned by the
language processor, plus one.

3. Page number in text of page 0 of con-
trol section text: The text for each 12.
control section in the module occupies
an integral number of pages in its
resident data set. The text pages for

156

all control sections in a module are
contiguous. This number is the page
number, relative to the first page of
text for this module, of the first
page of text for this control section.

{Numbering begins with 0.)

Version I.D.: This is a 64-bit binary
number which is the creation date of
the control section expressed as the
number of microseconds that have

_ elapsed from March 1, 1800, until the

time of control section creation.

PMD Link: The PMD link is filled in
by STARTUP or the dynamic locader. It
points to the beginning of the PMD
preface.

Number of Q-REFs or CXD-REF flag

(TDYCQR): The number of Q-REFs in
this control section, and whether
there is a CXD-REF in this control

-section.

Bit 0 (leftmost): Set to 1 if there
. is a CXD-REF.

Bit 1: Not used.

Bits 2-14: The number of Q-REFs.

Number of implicit references to this
control section (user count): This is
a count of the number of REF entries
that refer to this control section and
are linked to this CSD through their
CSD link. It is computed by the load-
er. It includes both external and
internal references. This number is
arbitrarily set to X'7FFF' by STARTUP
for each control section in initial
virtual storage (IVM) to prevent
unloading of IVM modules.

Number of relocatable definitions:
This is the number of relocatable
definitions in the definition table.
It is always at least one; namely, the

- control section name DEF.

Number of absolute definitions: This
is the number of absolute definitions
in the definition table. It may be
ZEero.

Number of complex definitions: This
is the number of complex definitions
in the definition table. It may be
zero.

Number of references from this CSD:
This is the sum of external and
internal references in the reference
table. It may be zero.

Attributes: This halfword has one Dit
set for each attribute possessed by
the control section. Currently
defined attributes are shown below.



Bits are numbered from left to right,
starting with 0.

a.

f.

Public Name (Bit 0 on) .. D
This is used only by the dynamic
loader to specify nonblank control
sections whose names appear in the
shared data set table (SDST). The
first such control will appear in
the SDST under the module name. A
control section may be indicated
as both having a public name and
rejected.

CSD has been allocated storage
(Bit 1 on)

Set by the dynamic loader, if
applies.

PCSA (CGCCTY called for this CSD
{(Bit 2 on)

Set by the dynamic loader, if
applies.

Public Storage Assigned by CONNECT
(CZCGA7) (Bit 3 on)

Set by the dynamic locader, if
applies.

Bits 5 and 4 are not used.

Common CSECT Rejected (Bit 6 on)
The dynamic loader sets this flag
to indicate to the Program Control
System that the CSECT was rejected
as a common CSECT that was already
loaded in another module.

TDYCQR Validity (Bit 7)

The dynamic loader sets this flag
to indicate that the count of Q-
REFs in TDYCQR is valid. If bit 7
is off, the count of QO~REFs is not
valid.

System (Bit 8 on)

Any external symbol that appears
in a control section with the sys-
tem attribute can not be
referenced by a user program
unless the symbol begins with SY¥S.
Conversely, no reference from a
control section with a system
attribute may be to a user symbol.

Privileged (Bit 9 on)

A control section with a privi-
leged attribute is assigned
storage key C, which provides
fetch as well as store protect.
This attribute overrides R/O.
Anything in a privileged CSECT may
be referenced only when the PSW
key is zero.

Common {Bit 10)

A common section is a control sec-
tion common to all modules in
which it is declared. Common sec-

tions are more fully discussed in
Linkage Editor and Assembler

Lanquage.

Common sections are of two types:

(1) Named common sections (those
with a name not all blanks).
These are treated as fixed-
length sections.

(2) Blank common sections, whose
name consists of eight blanks.
FCRTRAN blank common is
assigned the variable and com-
mon attributes by the FORTRAN
compiler.

The treatment of blank common
sections differs from that of
blank non-common sections.
Control section rejection is
instituted between blank com-
mon sections of different
modules, whereas blank noncom-
mon sections of different
modules are treated as inde-
pendent control sections. The
latter are called unnamed con-
trol sections.

PSECT (Bit 11 on)

If this bit is set, the dynamic
loader overrides the system pack-
ing indicator and inserts this
control section as packed.

Public (Bit 12 on)

Control sections are not shared by
control section name alone. A
public control section of a module
residing in a given data set
(library) is shared if another
user has access to the same data
set and module. Control sections
of a given module need not all be
public or nonpublic. Fixed-length
public control sections with the
same attributes are assigned
storage in the same assignment. A
public control section must never
contain relocatable adcons (A-,V-,
or R-type).

Read-only (Bit 13 on)

Read-only specifies that the con-
trol section may not be stored
into. It causes memory protection
by means of a storage class B
assignment to all pages of the
control section. Non-read-only
and nonprivileged control sections
are assigned storage class A.

Variable-length (Bit 14 on)

A variable-length control section
will be allocated pages in excess
of the length stated in the CSD
heading.

Appendix B: Tables 157



o. Fixed-length (Bit 14 off)
A fixed-length control section
will be allocated a fixed number
of pages at load time.

13. Number of pages of text: This speci-
fies the number of pages of text for
this control section in the data set.
It should be noted that this generally
does not correspond to the number of
pages in the virtual memory page
table. It cannot, of course, be
larger.

Definition Table

The definition table is made up of
seven-word entries, one for each external
definition in the current control section.
Definitions are grouped as relocatable,
absolute, and complex in that order. The
first definition in the table is the name
of the current control section.

A relocatable definition is an external
definition whose value may be computed as
the sum of the origin of the control sec-
tion wherein it appears and a constant
which is the symbol's displacement from the
section origin.

An absolute definition is an EQU item
with an absolute value whose name has been
declared an entry point in the control sec-
tion in which the name is defined.

A complex definition is either an EQU
item with a complex relocatable value (that
is, containing external symbols) or a
simple relocatable definition whose ENTRY
statement appeared within a control section
other than the section in which it is
defined. The definition entry appears
within the CSD of the control section that
contains the ENTRY statement. (Note that
the origin of the same control section is
the R-value for the DEF.) The complex DEF
is required in this case, with one REF
entry that names the control section in
which the DEF symbol is actually defined.

Each DEF in the definition table con-
tains entries of the following form:

1. Alphameric name of DEF: This field
contains the eight-character alphamer-
ic name of the DEF.

2. Value of DEF: The value of the DEF is
set by the language processor and is
modified by STARTUP or the loader in
the case of complex and relocatable
definitions. For relocatable DEFs,
the value portion of the definition
entry contains the displacement value
of the symbol relative to the base of
its control section. For absolute
DEFs, this entry contains the absolute
value; for complex DEFs it contains

158

the absolute portion of the DEF value,
which may zero.

3. R-value Displacement: The displace-
‘ment for R-value word contains the
displacement of the original defining
.control section origin with respect to
the head of the control section within
which the definition now appears.

This is required to compute valid R-
values for control sections that have
.been combined by linkage editing. In
creating the PMD, only the linkage
editor will ever produce a nonzero
"value in this word.

4. CSD link: The CSD link is initially
‘zero. It is filled in by STARTUP or
~the dynamic loader when the control

‘_section is loaded as a pointer to the
‘beginning of the CSD in which this DEF
appears, provided neither the DEF nor

.'the control section has been rejected.

5. For future use.

6. Search link: This field is filled by
the HASH SEARCH routine of either the
loader or STARTUP. It contains the
address of the beginning of the next

* DEF entry which hashes to the same
value. It contains zero if there are
no more DEFs with the same hash value
4in this chain.

Reference Table

The reference table is made up of six-—
word entries, one for each external symbol
referenced within the control section.
Each entry for an external or internal REF
contains:

1. . Alphameric Name of REF: This field
contains the eight-character alphamer-
ic name of the REF.

2. Value of REF: This is filled in by
STARTUP or the dynamic loader. It
contains the value of the DEF to which
the REF refers. If the DEF is unde-
fined, it contains the address of a
portion of virtual storage wherein
reference is illegal.

3. R-value of REF: This is filled in by
STARTUP or the dynamic loader. It
contains the virtual storage address
of the beginning of the controi sec-
‘tion in which the DEF appears. Thiu

- value is obtained from the R-valuc

- displacement word of the satistying
DEF entry. If the DEF is undefined,
-this word contains the address of a
portion of virtual storage wherein
reference is illegal.

4., CSD Link: This pointer, initially
" zero, is filled by STARTUP or the



Each

1.

Each

2.

3.

dynamic loader. It points to the
beginning of the CSD in which the DEF
that defines this REF appears. If a
corresponding DEF could nct be found
upon the appeavance of a REF, the CSD
link is to the beginning of cine CSD
wherein the REF itself appears.

For future use.
entry for a Q-REF contains:

Name of DXD instruction: The eight-
character alphameric name of a DXD
instruction.

Q-value of REF: This is filled in by
the RESOLVE Q-REF routine of the
dynamic loader. It contains the dis-
placement from the beginning of the
combined dummy sections of the dummy
section defined by the DXD
instruction.

Alignment, Length: The alignment and
length specified by the assembler lan-
guage processor.

Link to Next DXD Name: This is filled
in by the Q-CHAIN routine of the
dynamic loader when Q-CHAIN posts the
REF on one of the eleven hash chains
for Q-REFs.

Link to Same DXD Name: This is filled
in by the Q-CHAIN routine of the
dynamic loader when Q-CHAIN posts the
REF on one of the secondary Q-type REF
chains for duplicate-name DXDs.

entry for a CXD-REF contains:
For future use.

Value of CXD: This is filled in by
the EXPLICIT LINK routine of the
dynamic loader. It contains the
length of the combined dummy sections.

For future use.

CXD REF Link: This is filled in by
the ALLOCATE MODULE routine of the
dynamic lcader as CXD-REFs are chained
together.

Relocation Dictionary (RLD)

Three RIDs appear in each control sec-

tion
1.
2.

3.

Each RLD has the same format,
of modifier pointers and modifiers.

dictionary. They are:

RLD for complex definitions
RLD for internal references
RLD for external references

consisting
The

Modifier:

RLD for complex definitions differs in that
pages mentioned in this table are pages of
the PMD rather than the text.

Modifier Pointer: Modifier pointers are
used to designate the application of modi-
fiers to adcons on appropriate pages of
text (or of the PMD for complex DEFs). The
first modifier pointer applies to the first
text page, the second modifier pointer to
the second text page, etc. Null (textless)
pages do not have modifier pointers. There
always exists at least one modifier pointer
for an RLD. However, there need not be a
modifier pointer for each page of text; the
modifier pointers may be ended at the last
text page for which there exists any
modifier.

The modifier pointers consist of two
fields, in the left and right halfwords:

Left half - Number of modifiers for page

This field contains the number
of modifiers that apply in
this page.

Right half - Location of first modifier for

this page

This contains the locations,
in bytes, relative to the
right half of the pointer
itself for the first modifier
for this page. If there are
none, it points to the loca-
tion where one would have
appeared if there were any.

A special note should be made
of the technique for determin-
ing the length of an RLD. The
location of the first modifier
for this page is in the right
half of the first pointer for
the RLD. In the word preced-
ing the first modifier word is
the last modifier pointer for
the RLD. Adding the location
of the right half to the con-
tents of the right half of the
last pointer gives the begin-
ning of the last set of modi-
fiers. Add to this four times
the number of modifiers in the
last set to get the end of the
RID.

The modifiers themselves are
each a fullword and are divided into &4
fields:

Appendix B: Tables 159



L REF Number T Byte

1. L: L (2 bits) is the length, in
bytes, of the adcon to be modified. A
value of zero indicates a fullword (4
bytes).

2. Ref Number: Reference number (14
bits) is the ordinal number in this
CSD's reference table of the reference
whose definition value is to be used
in modifying the adcon. References
are numbered starting with zero.

3. T: T (4 bits) is the operation to be
performed in modifying the adcon by
the definition value. The values of T
currently defined are as follows:

a. Addition (T = 1)

The definition value is added to
the field of L bytes at the loca-
tion specified by "Byte."

b. Subtraction (T = 2}

Same as addition, except that the
definition value is subtracted
from the field of L bytes.

c. R-value (T = 3)

The R-value of the REF is stored
into the field of length L at the
location specified by "Byte.”

d. Q-value (T = 4)

The Q-value of the REF is stored
into the field of length L at the
location specified by "Byte."
e. Value of CXD (T = 5)
The value of the CXD instruction
is stored into the field of length
L at the location specified by
"Byte."

4. Byte: Byte (12 bits) is the displace-
ment in bytes (from the origin of its
original containing page) of the adcon
to be modified. Note that since PMDs
are packed to word boundaries, this
displacement will be added to an

160

address for complex DEFs which gener-
ally is not a page boundary.

RLD for complex definitions: The format of
these modifiers is as described above.
These modifiers apply to the values of com-
plex definitions; that is, the byte
addresses in the modifier will be to the
value words of complex DEF entries in the
definition table, and the page numbers in
the modifier pointers are for pages of the
program module dictionary itself.

RLD for text external reference: This
relocation dictionary is in the same form
as described above. It has one pointer for
each page of program text up to that text
page that is the last to contain an adcon,
and appropriate modifiers for each adcon in
the text that refers to a symbol defined
externally to this module. The page num-
bers are based on the first page for this
control section, beginning with 0.

RLD for text internal reference: This is
identical to RLD for text external
reference above, except that the modifierwy
apply to adcons in the text that reference
symbols defined within this module, such as
control section names. This permits com-
munication between control sections of the
same module that may be allocated nonconti-
guous virtual storage.

Virtual Storage Page Table (VMPT)

This table has a halfword for each page
of virtual storage that the control section
occupies, beginning with page 0 and con-
tinuing upward in order.

The contents of each entry will be
either:

1. All bits if the corresponding page is
empty as a result of a DS or ORG
statement.

2. The number of the page in the text
relative to the beginning of text for
this control section if the page con-
tains code or data. This value multi-
plied by four becomes an index into
both the external and internal RLDs,
and is used to select the correct
modified pointer word for adcon
relocation.

This table is the means by which the
text of the control section is related to
the virtual storage assigned the control
section. This is necessary because lan-
guage processors do not necessarily output
a byte of text for each byte of virtual
storage assigned; that is, large ORG and DS
statements may result in pages of text
being skipped.




If for example, a source program were to
begin with
ORG 10000
there would be no text output for the first
two pages of virtual storage and the first
page of text would correspond to the third
page of the user's virtual storage. The
first two VMPT entries would be all bits,
and the third would contain zero. Within a
page, however, the bytes of text correspond
directly to the bytes of virtual storage.
Thus, in the example above, the first page
of text would represent virtual storage
locations 8192-12287, and the first 1808
bytes of the page of text would be vacant
(10000 - 8192=1808). The pages of text
will always begin on page boundaries within
the text module.

MODULE USAGE TABLE (CHAMUT)

Purpase

For each CALL (in this description,
"CALL"™ will be used when referring to
explicit CALL or LOAD) during a task, a MUT
entry (MUTE) is created by the explicit
linkage routine, ADD MUTE (CGCDG). It pro-
vides a record of all CALLs on and by
modules in the task and is used to ensure
correct unlinkage of called modules. See
Figure 26.

Links and Addresses

All addresses and links used in the MUT
are 32-bit virtual storage addresses.

ILocation of MUT: Each task creates and
uses its own MUT. The head of each MUT and
space for a number of MUTEs reside in the
loader PSECT (CZCDLP) for that task. If
additional MUT space is required, the MUT
is extended by allocating a new page via
GETMAIN.

Location of MUTEs: Prior to use, the MUT
is initialized so that a chain of available
space entries is anchored by a pointer in
the loader PSECT. This cell is labeled
externally as CHBMUT. A newly created MUTE
is assigned space in the first available
space, and the available space chain is
relinked. When a MUTE is deleted, the
released space is added to the beginning of
the available space chain.

Contents of MUTE

A MUT entry is linked into two chains
which have their origin in two different
PMDs. The MUTE serves to tie together a
called module and its explicit calling mod-
ule. When a MUTE is created, it is linked
bi-directionally into the calling PMD's

\

j MUT Heading

3

— Pointer to First Available Space Entry

0 Forward PAPA Link

1 Backward PAPA Link

2 Address of CALLing SVC
\ MUT Entry
(MUTE)

3 Ferward BABY Link

4 Backward BABY Link

5 Pointer to PMD CAlLled by SVC

——— e — e —

5 Pointer to Next Available Space

% Availeble Space Entry

Additional MUTEs and Available Space Entries
L e~~~ ——r—— e~

Figure 26. Format of MUT, MUTE Entry, and

Available Space Entry

PAPA chain through the PAPA link words in
the MUTE. The MUTE is also linked bi-
directionally into the called PMD's BABY
chain through the BABY link words in the
MUTE. Thus if A calls B and C, two MUTEs
and three chains are created (see Figure
27):

1. A PAPA chain that originates in A and
links to both MUTEs.

2. A BABY chain that originates in B and
links to one MUTE. ’

3. A BABY chain that originates in C and
links to the other MUTE.

In addition to the 1links,
contains:

each MUTE

1. The address of the SVC that initiated
the CALL. This information is used in
explicit unlinkage to rearm the SVC.

2. The address of the PMD named by the
CALL. This address is required during
explicit unlinkage.

Adding MUTES

When an entry is added to the MUT, its
chains are linked, as follows:

Appendix B: Tables 161



PMD

CALLing Sequence
A colls C
A calls B
MUT N calls B
P e
BABY Chain Head =0
F =Forward
PAPA Chain Head B =Backward
MUT Count=0 F. PAPA
B. PAPA
MUTE
for Address of SVC in A
A colls B
F. BABY =0 . PMDC
B. BABY
Address of PMDB
e e M .
F. PAPA=0 ' BABY Chain Head
MUTE B, PAPA ' PAPA Chain Head =0
for .
A calls C Address of SVC in A . MUT Count =1
F. BABY =0
8. BABY
Address of PMDC
W
o T i I e et
PMDB
MUTE F. PAPA=0
for g
N calls B B. PAPA v PMD
BABY Chain Head Address of SVC in N
e ]
PAPA Chain Head =0 F. BABY
MUT Count=2 B. BABY | BABY Chain Head =0
Address of PMDB e PAPA Chain Head
. e
MUT Count=0
MW .
pa NN, ey M S i NP

’

Figure 27. Diagram of Sample MUT, Showing Linkages and Appropriate PMDs

The new MUTE becomes the first MUTE in and PAPA links of subsequently entered
both its BABY and PAPA chains. The heads MUTEs. Thus, the backward BABY and PAPA
of the respective chains within the chain links of the last MUTE to be entered wil:
origin PMD will point to the new MUTE's point ot the BABY and PAPA chain heads in
forward BABY and PAPA links. The new the respective called and calling PMDs.
MUTE's forward links themselves will point
to the forward links of the previously Deleting MUTEs
entered MUTEs. If there is no previous
entry, the forward link(s) will contain 0. When a module is to be deleted (see

"Explicit Unlinking," Section 4), all MUTEs
The backward BABY and PAPA links of each for CALLs it made, as well as for CALLs
MUTE point to the respective forward BABY made upon it, are deleted. In other words,

162




all entries in both its BABY and PAPA
chains are removed from the MUT. Such
deleted MUTEs are added to the chain of
available MUTEs that are threaded through
the forward PAPA link words.

MUT Count

Each time a MUTE is created, the MUT
count in the called PMD is incremented by
one. When a MUTE is deleted, the corres-
ponding MUT count is decremented by one.
This count is used during the unlinking
process to determine whether or not a mod-
ule may be deleted; that is, modules whose
MUT counts are nonzero at a certain point
in the unlinking process are judged to be
ineligible for deletion because of the
existence of ocutstanding explicit
references.

STORAGE MAP TABLE (CHAMAP)

The loader maintains a storage map table
(MAP) which contains one entry for each
control section involved in the allocation.
(See Figure 28.) The table is a conti-
guous, ordered set of two-word entries.

The first word contains the virtual storage
address of the beginning of the control
section; the second word contains the vir-
tual storage address of the beginning of
the corresponding CSD in the TDY. The
table is maintained in compact ascending
order according to the 32-bit, unsigned,
virtual storage address of the beginning of
the control section.

The maximum size of the table is estab-
lished at STARTUP time. A pointer to the
beginning of the table, the maximum length
of the table in bytes, and the current
length of the table are specified in the
TDY headings.

Virtual Storage Address of Beginning of Control Section

Virtual Storage Address of Beginning of CSD

Figure 28. Memory MAP Entry

HASH TABLES (CHASHT AND CHAUHT)

There are three hash tables whose loca-
tion and length are specified in the TDY.
The system hash tables contain hash entries
for SYSxxxxx symbols and symbols which
appear in control sections with the system
attribute. The user hash table contains
all other symbols.

A pointer in the TDY points to the ori-
gin of the privileged system hash table.
Nonprivileged system symbols (those not
beginning with CZ or CHB) are contained in
the nonprivileged system hash table, which
immediately follows the privileged table.

Each hash entry consists of a single
word which either contains the address of
the beginning of the first corresponding
DEF chain or is zero. The position of a
symbol in the hash table is determined by
the hashing algorithm. Whenever DEFs with
different names hash to the same hash
value, they are linked together through
their search links.

The hash value, H, is obtained by an
exclusive OR of the first four characters
of name with the last four characters.

This resultant 32 bits is now divided by
the hash divisor, and the remainder of this
division multiplied by 4 is a relative
index into the appropriate hash table.

Privileged Sysrem Hash Table
(SYSHASHP)

n=Hash Table Length
Nonprivileged System Hash Table
(SYSHASHNP)

n=Hash Table Length

User Hash Table
(USERHASH)

VACANT SPACE TABLE (VST)

The vacant space table is used for con-
trol section packing and contains three
types of entries (host, symbiont, and
available space entry) each three words in
length.

Host Entry

-

r

Word 1 |[Link to next host entry in
|table (zero if last)
L

T Y
2 |Page origin |number of bytes
| (20 bits) |available on
{page (12 bits)
L

s —

3 |Link to first symbiont entry if
| private control section.
|Pointer to SDST entry if public

| control section.
L

T el D P A

L

Appendix B: Tables 163



Symbiont Entry

r _— _
|Link to next symbiont entry for|
jthis page (zero if last)

5

Word 1

b _
2 }|Pointer to CSD

pe—

——————— —_— S
3 |Scratch page VMA if packed con-|
[section (zero if 1st control |
|[section on page) |
L —_

Available space entry
e 1
Word 1 |Link to next available space |
jentry (zero if last) |
e e e 4
2 |not used |
¢ -

¢

3 |not used |
i J

A host entry is created for the first
control section in a control section group
at a page boundary. It reflects unused
space on the last page cof the control sec-
tion group (if the last page contains
text). Host entries are maintained in
ascending order of the number of bytes
available on the page. Host entries are
not created for public pages if the amount
of unused space is less than 8 bytes. Host
entries for private pages are maintained
until the relocation of the page is
requested. If a host exists for the page
being relocated, it is deleted and relinked
into the available space entry list.

Symbiont entries are created for all but
the first control section in a private con-

164

trol section group. Hence the first con-
trol section (host) owns the page, and
secondary control sections (symbionts) are
packed into the page.’

Symbiont entries are not created for
public control sections. A host entry for
a public page points to the SDST entry
(host) that owns the page. If a control
section group is packed into a public page,
the SDST entry for the group is flagged as
symbiont.

A vacant space table pointer for each
storage class and an available space point-
er are maintained in the loader PSECT.
These are initially zero. The first time
SRCHPACK is requested to create a table
entry, a page of virtual memory is obtained
and available space entries are threaded to
the available space pointer.

Table pointers in the loader PSECT are
as follows:

- T T

r
|Pointer to next availlable space entry |

|Pointer to list for private storage key A|

|Pointer to list for private storage key B|

|Pointer to list for private storage key C|

f———— —_—

{Pointer to list for public storage key A |

Pointer to list for public storage key B |

Pointer to list for public storage key C |

———— - — |

o e S oo




APPENDIX C: ABBREVIATIONS

Adcon Address constant o] Authority code for the system
operator or privileged system
CHAISA DSECT for ISA programmer
CHARCS DSECT for recursive storage block P Buthority code for the systen
{in Resolve Symbol) programmer
CHASDM DSECT for SDM (shared data set
table entry) PCS Program control system
CHASHT DSECT for SYSHASH
PMD Program module dictionary
CHATDH DSECT for TDY heading
PSECT A prototype control section
CHAUHT DSECT for user hash table
PVAOT Pseudo vector available cffset
CHBMUT Entry point name of module usage table
table (in Unloader PSECT)
REF External symbol reference
CsSD Control section dictionary
RESTBL Relative external storage corres-
CSECT A control section other than a pondence table
prototype (PSECT) or COMMON or
DSECT RLD Relocation dictionary
DCB Data control block RN REF number
DDEF DDEF command or macro instruction SDST The shared data set table
DEF External symbol definition SPT Shared page table
EPE External page entry SYSHASHNP The nonprivileged system hash
table
GR General register
SYSHASHP The privileged system hash table
ISA Interrupt storage area
SYSLIB The system library
ISATDY Pointer in ISA to TDY
TDT Task data definition table
ISAUTH User authority cell in ISA
TDY Task dictionary
ISD Internal symbol dictionary
u Authority code for a "normal
IvM Initial virtual storage user"®
JFCB Job file control block USERHASH The user hash table

JOBLIB A user library created by a DDEF USERLIB The user library
command with a JOBLIB keyword

VMA Virtual storage address
MAP Memory map table
VMPT Virtual storage page table
MUT Module usage table (in Unloader
PSECT) vsT Vacant space table
MUTE Module usage table entry XpT External page table

Appendix C: Abbreviations 165




APPENDIX D: LOADER RESTRICTIONS

The following restrictions are imposed
on the TSS/360 user. Those marked with an
asterisk are enforced by the dynamic
loader:

1.* The user is not allowed to declare

166

either system or privileged control
sections. The dynamic loader will
erase such attributes from control
sections that are not contained in
modules extracted from SYSLIB. This
has a secondary effect: the user is
prevented from declaring entry points
whose names begin with the letters
SYS. The user may declare any other
form of entry point name.

No user-written program called by
type-III linkage nor any routine
called by such a program may execute a
LOAD, explicit CALL, or DELETE
statement.

Complex DEFs may not be defined in
terms of another complex DEF within
the same module. Such a situation
could result in a complex definition
loop, which the loader protects
against by not allowing such symbol
resolution in any case. Note that
this situation can only arise through
control section rejection or through
the link-editing together of two
modules. For example:

Module A

Pl PSECT
ENTRY El

C1 CSECT

El EQU *
END

Module B

P2 PSECT
ENTRY E2

El CSECT

E2 EQU *
END

If A and B are link-edited together,
and CSECT El1 is deleted by the prior
occurrence of DEF El1 in module A, com-
plex DEF E2 will be defined in terms
of complex DEF E1 within the same mod-
ule, a situation which the loader will
not allow.

If A and B are not link-edited, howev-
er, and the loader is called to LOAD
first A and then B, CSECT E1 will be
rejected by complex DEF El1 in A. This

will result in complex DEF E2 being
defined in terms of complex DEF E1 i
a different module. The loader will
allow this situation, but will ’S=sue
warning diagnostic.

The user is advised that executing &
CALL or LOAD of a CSECT name will ‘
return an R-value equal to its V-
value; namely, the origin of the
CSECT. Thus, calling reenterable rc
tines by CSECT name will result in t
PSECT address not being available wh
the routine is entered.

The loader will issue diagnostic. fc
undefined external references and su
stitute for them an illegal address
which will usually cause an address
specification error at attempted use
by the task. Such an error may not
produced, however, if the user shoul
dynamically modify a V-con containin
an undefined REF.

The user is advised to include no
adcons within public CSECTs. The
loader will refuse to resolve adcons
appearing on public pages.

Ccontrol section rejection arise ro
two sources: If a control sect..n
name is illegal, the control section
is rejected by the loader, or if a
control section name duplicates the
name of some previously entered DEF
(not necessarily a control section
name), the loader will reject the co
trol section. Control section rejec
tion means that none of the DEFs in
the rejected CSD are to be included
the allocation, and that any REFs th
might have been satisfied by such DE
must either be satisfied elsewhere o
go undefined. Control section rejec
tion may be caused by some anomalous
circumstance which will result a
diagnostic advising the user. zh
diagnostics and their causes are
listed under "Loader Diagnostics."™

No module may delete itself by a
DELETE operation, either as a primar
or secondary deletion candidate. Th
loader protects against this by remo
ing the deleting module from the can
didate list if it is ever poste
there.

The primary deletion candidate may n
be deleted if there are any outstand
ing implicit references to it after
the candidate list is construc’



10.* Secondary deletion candidates may not

11.

12.

be deleted if there are any outstand-
ing implicit or explicit references to
them after the candidate 1list is
constructed.

The loader will allow a module that is
loaded or called by another module to
delete that module, using a DELETE
procedure. The user is therefore
advised not to attempt to return to
the "caller™ in such a case, as it
will have disappeared. For example,
module A calls module B, whose first
step is to DELETE A. Any attempt by B
to return to A may cause an addressing
exception error and is in any case a
programming practice that is to be
avoided.

The following discusses TSS/360's
treatment of unnamed control sections.
Unnamed control sections arise from
three sources: a CSECT statement with
a blank symbol field, omission of any
CSECT statement, and declaring of
blank COMMON. Blank COMMON carries a
name of eight alphameric blanks; all
others carry a name of sixteen hexa-
decimal zeros. Unnamed noncommon con-
trol sections are treated as unique to
the module in which they were declared
by the following devices:

a. When the linkage editor processes
unnamed CSECTs, it substitutes a
unique number in the lower eight
hexadecimal digits of the name of
each such CSECT it processes. In
addition, the name part of each
REF (in the original module) that
references the unnamed CSECT is
also modified to match the altered
CSECT name. This technique pre-

13.*

serves unnamed references in the
event two such CSECTs are combined
during link editing.

When the dynamic loader processes
unnamed CSECTs (identified by the
fact that the first half of the
CSECT name consists of eight hexa-
decimal zeros), it adds further
modification to the name. Each
module as it is loaded is assigned
a unigque number, a module sequence
number, by the loader. The loader
places this number in the lower
four hexadecimal digits of the
first half of the name of each
unnamed noncommon CSECT and each
REF in the module that references
the CSECT. The combination of the
linkage editor's and the dynamic
lcader's treatment of unnamed non-
common CSECTs will prevent CSECT
rejection among such CSECTs. Of
course, blank COMMON sections may
cause rejection; the blank name is
handled just as any other name.
This is reasonable, since the con-
cept of control section rejection
was instituted for the purpose of
tying together common references
across modules.

Privileged system service routines may
define only external symbols that
begin with the letters CZ or CHB.

This means that all normal entry
points, CSECT names, and module names
must conform to this naming standard.
Furthermore, nonprivileged system rou-
tines may not define external symbols
beginning with CZ or CHB. (These
restrictions do not apply to user
programs.)

Loader Restrictions

Appendix D: 167



APPENDIX E: DIAGNOSTIC MESSAGES

This section contains a list of diag-
nostic messages that may be issued by the
dynamic loader. Each diagnostic contains
an explanation of the cause of the diag-
nostic, with loader action, where applic-
able. In this list, brackets are used to
denote that a substitution will be effected

by the loader; that is, that such bracketed
portions of the message are variable.

Those diagnostics that result in additional
serious load error indication by the loader
are marked by an asterisk (%) after the
diagnostic number.

r ————= T - - -

| DIAGNOSTIC ] COMMENT }
e ——— $ -
| 1. CZCDL0O02 CANCELLED: SYMBOL [x] TO BE |The lcoader is unable to find the symbol, x, |
| CALLED} NOT FOUND |that occurred in the operand field of an |
| LOADED |assembly LOAD or CALL statement or a com- |
| |mand language LOAD or RUN statement or, if |
| |it was found, all control sections were |
| |rejected in attempting to load it. It may |
| |also be true that a module was in fact |
| {loaded that defines x, but that x was |
| |resolved from a system module which the {
| |user is unable to reference, since x is i
| |posted in the SYSHASHP or SYSHASHNP table. |
b e e e e e e .
| 2. CZCDLO11 CANCELLED: LIBRARY SEARCH |The loader used the FIND function of VPAM |
| ERROR FOR [x] |to locate symbols in the external |
| |libraries. If FIND is called to locate |
i |some symbol, x, and returns with a code |
| | indicating some error, the loader will {
| |issue this diagnostic. |
== — } e e 4
| 3. CZCDLO10 UNNAMED CSECT ASSIGNED }Since unnamed CSECTs are assigned unigue l
| PRIVATE STORAGE |names within each task, it is impossible |
| |for the loader to correlate such names |
i |across tasks. The user must, therefore, |
| jname his public CSECTs. |
F - e e — O 1
| 4. CZCDL0O12 PROCEEDING: ILLEGAL ENTRY |This diagnostic arises from several |
i NAME [x] IN MODULE [al v |possible sources: |
| |
| |1. An SYSxxxxx symbol appearing in a non- |
| | system control section. |
| | |
] |2. See Figure 19, column 5, for a complete |
| | list of naming restrictions. |
e - o e :
| 5. CZCDL013 PROCEEDING: ENTRY POINT (x], |Self explanatory; the symbol, x, is |
| MODULE (al] DUPLICATES CSECT NAME IN |rejected |
| MODULE (bl | : |
b + S
| 6. CZCDL0O20 PROCEEDING: ENTRY POINT ([x], |The symbol, x, already exists within the |
} MODULE {al DUPLICATES ENTRY POINT IN |searched DEF chain; the symbol is rejected. |
| MODULE [b] ] |
b= S oo e {
| 7. CZCDL0O06 PROCEEDING: PUBLIC CSECT [x], |The loader has encountered a text page |
| MODULE [al. UNRESOLVED ADCONS |within a public CSECT that has adcons. |
| |This is not allowed. The adcons on this |
| {page will never be relocated if the user |
| |decides to proceed. |
L L 1

168



DIAGNOSTIC

COMMENT

—pe S oal
P e

CZCDLO14 PROCEEDING:
MODULE [al REJECTED,
POINT IN MODULE (bl

CSECT [x] IN
DUPLICATE ENTRY

|The loader has rejected the control section|
|named x because x already exists in the DEF|
|chain as an entry point (not a CSECT name). |
4

COMMON

CZCDI018 PROCEEDING: {NONCOMMON }

CSECT ([x1, MODULE [al{REJECTED BY
{COMMON }CSECT, MODULE (bl
NONCOMMON

=

T

|If a common section is rejected by the
|prior occurrence of a noncommon section of
|the same name (or vice versa), the loader
{issues this diagnostic.

e anm

CZCDI017 PROCEEDING:
CSECT [x], MODULE l[al

{PRIVILEGED
BY |READ-ONLY

NON-READ-ONLY

{ NONPRIVILEGED}
REJECTED

} CSECT, MODULE (bl

{This diagnostic results when either a
|non-read-only CSECT is rejected by a read-
|only CSECT or a nonprivileged CSECT is
|rejected by a privileged CSECT. For
|example, if some user CSECT A is rejected
{by some read-only CSECT A, any attempt by
|the user to store into A will result in a
|[storage protection error.

4

CZCDL016 TERMINATED: PRIVILEGED
CSECT [x]1, MODULE [al REJECTED BY
NONPRIVILEGED CSECT, MODULE (bl

+
|If a privileged CSECT name X is rejected by
|the prior occurrence of a nonprivileged
|CSECT name x, this diagnostic results.
|This situation could result in user code
{being executed in PSW key 0, so the loader
linitiates ABEND procedures immediately.

L

T
CZCDL015 PROCEEDING: LENGTH OF REJECTED|If the length of a rejected CSECT exceeds

CSECT ([x], MODULE [al EXCEEDS
LOADED CSECT OF MODULE [bl

|the length of the CSECT causing rejection,
|this diagnostic is issued. Since the user
|may possibly refer to that segment of the
|rejected CSECT that lies beyond the upper
{1imit of the already loaded CSECT, there
|exists the potential for either a storage
jprotection error or an erroneous reference
|into another CSECT or storage block.

4

CZCDL003 UNDEFINED REF [x] IN
MODULE [al.

ADDRESS FFFFF000 ASSIGNED

+
| The symbol x cannot be defined for this
|task. It does not exist in the libraries
| searched, was contained in a rejected
|CSECT, or exists in the wrong hash table.
|A nonreferable segment and page address is
|assigned.

ey

CZCDL008 PROCEEDING: REF [x] IN

MODULE [a] REFERS TO UNDEFINED COMPLEX

DEF, MODULE (bl

+
|One situation that might produce this
|message is: Module A has a complex DEF, B
| which has a REF to some symbol. There is
{discovered some REF that refers back to

| complex DEF R, still undefined.

3

et e s e s st i o, et s, e . i, e s, . s s e, e, S s, s . s bt e, S, s, W b e . e . e et s bt e e e e

+
CZCDL0O07 PROCEEDING: COMPLEX DEF [(x1 IN|In this case, some complex DEF x has a REF |
MODULE [al DEFINED AS COMPLEX DEF (yl,

MODULE (bl

jto complex DEF y which is defined in ]
janother module at the time the reference is|
|made. This warning is issued even though |
|the REF is properly satisfied. Should the |
jtwo modules that contain the REF and DEF by|
jlink-edited, attempts to locad the combined |
|module will result in diagnostic 14 for |
| that same REF. |
L J

Appendix E: Diagnostic Messages 169



- -
DIAGNOSTIC | COMMENT }

+ - i
16. CZCDUOO1 CANCELLED: ARGUMENT SYMBOL FOR|The unloader is unable to find the symbol x|
DELETE {x] NOT FOUND |in the TDY. Symbol x is that symbol which
|occurred in the operand field of either an
|assembled DELETE statement or a command
| language UNLOAD statement. This is issued
| by UNLINK (CZCDU1l) and is accompanied by a

e o . S e S84 e Sy o oy

|return code of 4.

|flicting lengths or alignments.

|

]

I

|

|

|

|
b= e +-——— |
|17. CZCDUOO2 CANCELLED: MODULE |The primary deletion candidate; that is, |
| DEFINING SYMBOL ([x] NOT UNLOADED - | the module that contains the symbol x named]
| QUTSTANDING REFERENCES |in a DELETE macro instruction or UNLOAD |
i |statement, was not, in fact, unloaded |
| | because of outstanding implicit references |
| |remaining to that module after the candid- |
| |ate list was constructed. This is issued |
i | by UNLINK (CZCDU1) and is accompanied by a |
i jreturn code of 8. |
- - - = - R itk |
{18. CZCDLOO4 CSECT [(x) IN MODULE lal |Refer to diagnostic #4 for explanation of |
| REJECTED - ILLEGAL FORM OF CSECT NAME |illegal forms. |
F 1 1
|19. CZCDL001 PROCEEDING: SYMBOL [x] IN | The loader could not find symbol x defined |
{ LIBRARY [al NOT OBJECT MODULE OR ENTRY |in a valid object module. This diagnostic |
| POINT | message is issued by LIBE SEARRCH (CZCDL3) |
| }and can be further explained with the i
| | EXPLAIN command. |
t - ——emee - S
|20. CZCDLO05 PROCEEDING: MODULE [x] | Loader found that module was produced |
| PRODUCED WITH LEVEL [A] ERRORS |with errors: |
| |1 = minor errors |
} |2 = major errors |
F - - -
|21. CZCDL009 PROCEEDING: MODULE ([x1l IS }Module name was either illegal or |
§ . ILLEGAL } |duplicate, a standard entry point is {
| {DUPLICATE , STANDARD ENTRY POINT NOT |not defined. |
i DEFINED [ . |
t +- -
}22. CZCDL0O21 PROCEEDING: CSECT I[xl], |The loader has rejected a control section |
] MODULE [al DUPLICATES A& CSECT IN |named [x] because x already exists in the |
{ MODULE {b]} | DEF chain as a CSECT name. |
F — e 1
{23. CZCCD201 CANCELLED: MODULE (x] NOT | The named module could not be unloaded f
] UNLOADED. OUTSTANDING REFERENCES. | when doing an ERASE, RELEASE, or a DELETE |
| jof the library from which the module was |
| [loaded. Another module (which was not |
| |unloaded) contains a reference to an |
} jexternal symbol in the named module. j
F + —
|24. CZCDL022 PROCEEDING: CONFLICTING |Q-CHAIN (CZCDL7) has encountered DXD g
| ALIGNMENT OR LENGTH WITH DXD [x} |instructions with identical names but con- |
| l

4

}25. CZCDL023 PUBLIC CSECT [(x] in MODULE [al|The loader cannot assign public storage to |
| ASSIGNED PRIVATE STORAGE |the control section named {x] in module {al}
| | because x's text length is greater than onej
i |segment (256 pages). Private virtual |
| | storage is assigned. f
. 1 -4

170



Where more than one page number is

indicated, the major reference is first.

abbreviations 165
absolute DEFs
(see external symbols)
access to loader tables 150
adcon group
CALL, LOAD 8,32
DELETE 12,78
adcons 2,9,29
ADD MUTE routine (CGCDG)
description 63
flowchart AA 92
routines called 63
ADD PMD routine (CGCCN)
description 44
flowchart AB 93
routines called u4
alias 3,12
ALLOCATE MODULE routine (CGCCA)
description 46
flowchart AC 94
routines called 46
allocation
(see storage assignment)
analysis aids 146-149
assembler language processor 1
assembly modules
LIBE MAINT (CZCDH)
LOADER (CZCDL) 14,32
LOADER LOGOFF(CZCCD)
UNLOADER(CZCDU) 14,71
ATTACH TEXT routine (CGCCK)
description 57
fiowchart AD 98
routines called 57
attributes of control sections
common 2,10,49
fixed length 1,29,50
privileged 2,47
prototype 2
public 2,10,47
read only 1,47
relation to authority code 47,146
system 2,41,47
variable length 1,50
(see also Appendix A)
authority codes
definition 6
use 39,47,146

14,88

14,81

BABY chain 63,73,76

BISEARCH routine (CGCCR)
description 35
flowchart AE 99

blank common control section
(see COMMON control section)

CALL
adcon group 8,32
expansion 8

macro instruction 5,7
CHECK DEF LEGAL routine (CGCCU)
description 48
flowchart AF 100
code
authority
(see authority code)
load option
(see load errors)
COMMON control sections
attribute 2
blank (unnamed) 10
rejection 10,49
(see also control sections)
complex DEFs
(see external symbols)
control section dictionary (CSD)
CSD heading 156
CsSD link 60,73
definition table 158
description 1,156
reference table 158
use 3
control sections
attributes

INDEX

(see attributes of control section)

COMMON 2,9
CSECT 5
group 1,55
packing 1,46
private 46,50
public 2,10
PSECT 2,4
rejection 10,49
(see also Appendix E, loader
restrictions)
unnamed 10,3
CSD link 60,73

data control block (DCB) 149
data definition (DDEF) 3
DCB (data control block) 149
DDEF command 3
DEF
(see external symbol)
DEFINE REF routine {(CGCCY)
description 62
flowchart AG 101
routines called 62
DELETE CALLER MUTES routine (CGCDB)
description 75
flowchart AH 102
DELETE
adcon group 12,71
macro instruction 8,12
DELETE MODULE routine (CZCDU2)
description 78
flowchart AI 103
routines called 78
DELETE SELECTED MUTES routine (CGCDCQC)
description 77
flowchart AJ 105

Index

171



deletion candidates
creation 12
elimination 13
diagnostic messages 168
(see also load errors)
DLINK SVC 9
DROP PMD routine (CGCCO)
description 80
flowchart AK 106
routines called 80
duplicate entry point names
(see contrel section rejection)
DXD 55
dynamic loader
assembly modules 14,15
construction 14
entry points 14,15,148
flowcharts 91-145
functions 7
linkage 14
loading example 11
loading process 8
{see also explicit linking)
restrictions 166
routine labels 15,148
routine linkages chart 18-28
routine linkages diagram 17
tables 150-164
unloading example 13
unloading process 12
{see also explicit unlinking)

END statement 5
ENTRY statement 3,5
entry point names
for dynamic loader 15
(for loaded modules see external
symbols)
errors
(see load errors)
EXPLICIT LINK routine (CZCDL1)
description 32
flowchart aL 107
routines called 32
explicit l1linking function
description 7,29
functional diagram 31
routine linkages chart 18-24
routine linkages diagram 30
explicit reference 13
EXPLICIT UNLINK routine (C2CDU1)
description 71
flowchart aM 108
routines called
in pass 1 71
in pass 2 74
explicit unlinking function
description 8
functional diagram 75
routine linkages chart 25-27
routine linkages diagram 72
external dummy section 6
external page table (XPT) 10,57
external page table entry 10
external symbols
definitions (DEFs) 3
absolute 3,47
complex 4,60

172

relocatable 3,47
lookup rules 9
posting 48
processing 10,54
references (REFs) 5,11,158
resolution 9,146
unresolved 31,38
values

vV-value 4,31,38

R-value 4,31,38

external storage 3

FIX routine (CGCCL)
description 61
flowchart AN 111
routines called 61
FIX PMD routine (CGCCJ)
description 60
flowchart a0 112
routines called 60
fixed-length control sections 1,29
FORTRAN language processor 1

GET STORAGE routine (CGCCW)
description 50
flowchart AP 113
routines called 50

GETSMAIN 47

hash chain
{see task dictionary)
HASH SEARCH routine (CZCDL2)
description 39
flowchart AQ 115
hash tables
hashing technique 6,39
pointer 29,39
split hash table 6
system hash tables
nonprivileged (SYSHASHP) 6,163
privileged (SYSHASHNP) 6,163
user hash table (USERHASH) 6,163
host 53,164

implicit reference 12,73

initial virtual storage 75,86

internal symbol dictiomary (ISD) 1,41
interrupt storage area 88,149
interruption, page-unavailable 11,57,67
IsA 88,149

Isp 1,41

job libraries 2-3
DDEF for 3

JOBLIB
(see job libraries)

language processors 1

LIBE MAINT routine (CZCDH)
description 88
flowchart AR 116
routines called 88

LIBE SEARCH routine (CZCDL3)



description 41
flowchart As 117
routines called 41
LIBESRCH macro instruction 14,41
libraries
hierarchy 3,11
job (JOBLIB) 2,8
user (USERLIB) 2,8
system (SYSLIB) 2,8
library maintenance function
description 8
routine linkages chart 27
routine linkages diagram 89
LINK DEFS routine (CGCCV)
description 54
flowchart AT 118
routines called 54
linkage editor 1
LOAD command 8-9
load errors
Cl option code 9,32
C2 option code 7,9,33
C3, CA option codes 12
load error switch 6,32,57
messages U49,64,168
LOAD
adcon group 7,8
command 8-9
macro instruction 7-9
macro instruction expansion 8
LOAD PMD routine (CGCCH)
description 43
flowchart AY 124
routines called 43
loader cleanup function
description 8
routine linkages chart 28
routine linkages diagram 87
LOADER CLEANUP routine (CZCCD4)
description 86
flowchart AU 119
routines called 86
loader logoff function
description 8
routine linkages chart 27
routine linkages diagram 83
LOADER LOGOFF routine (CZCCD1)
description 81
flowchart AW 121
routines called 81
LOADER PROMPT routine (CGCDPR)
description 64
flowchart AV 120
routines called 64
loader release function
description 8
routine linkages chart 28
routine linkages diagram 85
LOADER RELEASE routine (CZCCD2)}
description 84
flowchart AX 123
routines called 84
loading
(see dynamic loader)

MAP SEARCH routine (CZCDLS5)
description 34
flowchart AZ 125

routines called 34
MAP table 149,163

member

(see program module)
memory MAP table 149,163

MODIFY MUT COUNTS routine (CGCDA)
description 76

flowchart BA 126

MODIFY USE COUNTS routine (CGCDD)
description 76

flowchart BB 127

module

(see program module)
module public name switch
module usage table (CHAMUT)

47
149,

module usage table entry (MUTE)

MUT 149,16

1

MUT count 73,76

MUTE 149,1

names

control sections

module

61

60

5

161
149,161

nonconversational task load errors 9

nonprivileq

ed

(see attributes of control sections)

object program module
(see program module)

option code
c1 9,32
c2 9,33
c3, cu

packed control sections

S

12

packing table

page relocation function
description 7,11

69

paging mechanism 3

routine linkages chart 24

routine linkages diagram 68
PAGE RELOCATION routine (CZCDLH#)

description
flowchart BC 128

67

routines called 67

page table

47,106

(see virtual storage page table)
page unavailable interruption 11

paging supervisor 11
63,
partitioned data sets

PAPA chain

member

77

(see program module)
rejection of members

PCSA routine (CGCCT)
description
flowchart BD 129

PIL/I language processor

PMD

47

1

1,41

57,67

(see program module dictionary)

privilege

(see authority code)
privileged control sections

2,47

privileged system programmer 6
program libraries

creation

2

Index 173



hierarchy 3,11,43
JOBLIB 2
list 3
SYSLIB 2
USERLIB 2
program module
deletion 13
description 1
loading 8
names 60
residence
external 2
internal 3
unloading 12,71,84
verification 41
program module dictionary (PMD)
chain (TDY) 3
description 153,1
format of PMD entry 154
group 151
group header 151
heading 153
loading 9,43
preface 152
release 80
transfer 43
prototype control sections (PSECT) 2,4
pseudo vector available offset table
(PVAOT) 56
public control sections 2,10,47
PVAOT 56

Q-CHAIN routine (CZCDL7)
description 55
flowchart BE 130
routines called 55

Q-REF 55-56

R-value 4,31,54
read-only control sections 1,47
REF 159
(see also external symbol reference)
REJECT DIAG routine (CGCCP)
description 49
flowchart BF 132
routines called 49
relocatable address constants
(adcons) 2,8,29
relocatable DEFs
{see external symbols)
relocation dictionary (RLD) 58-59,159
sample 70
REF number (RN) 61
RESOLVE Q-REF routine (CGCRQ)
description 56
flowchart BG 133
routines called 56
RESOLVE SYMBOL routine (CGCCE)
description 36
flowchart BH 137
recursive storage DSECT 37
routines called 36
restrictions, naming 5,48
RLD 58-59,159
routines
labels 15,148

174

linkage charts 18-28
RUN command B8

SDST 8,29,51
SELECT HASH routine (CGCCB)
description 48
flowchart BI 139
SET SEARCH FLAGS routine (CZCDL6)
description 39
flowchart BJ 140
SETPAGE routine (CGCSP)
description 65
flowchart BK 141
routines called 64
SETXP routine 65
shared data set table (SDST) 8,29,51
shared page table (SPT) 29,51
shared storage 2,10,47
split hash table 6
SRCHPACK routine (CGCCC)
description 53
flowchart BL 144
routines called 53
standard entry point 4
STARTUP 75
storage assignment
public 47,52
real 3
virtual 1,10
storage map table (CHAMAP) 149,163
storage protection
authority codes 6
protection keys 10,50
system protection 6
symbiont 52,69,164
symbol
(see external symbol)
SYSLIB ™
(see system library)
system control sections 2,47
system library (SYSLIB) 2
system programmer 6

task monitor 9,32

task dictionary (TDY) 3,29,151-152
hash chain 9,78
heading (CHATDH) 150

TDY
(see task dictionary)

TEST USER COUNTS routine (CGCDE)
description 77
flowchart BM 145

text page
(see’ external page table and virtual
storage page table)

UNLOAD command 7,12
unloader

(see dynamic loader)
unnamed control sections 10,3
use count 76-77
user authority codes 39,47,146
user hash table (USERHASH) 6,163
user -library (USERLIB) 2,3
USERHASH 6,163
USERLIB 2,3



v-value 4,31,54

vacant space table (VST) 163,53,149
variable-length control sections 1,50
virtual storage allocation 1,9,50
virtual storage address(VvMa) 34

virtual storage page table (VMPT) 160,67
VMPT 160,67

VST 163,53,149

Index 175



GY28-2031-3

HIBIV

@

international Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
{U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

xspeoT oTweulg

‘¥ S$'n UT pajurad

€-1€02-8ZXD



