
IBM System/360 Time Sharing System

PL/I Subroutine Library

Program Number 360S-LM-512

File No. S360-29
GY28-2052-0

Program Logic

This publication describes the internal sfecificaticns
of PL/I Subroutine Library as a system component of IBM
System/360 Time Sharing System. The relationshifs
between tbe code produced by the TSS/360 PL/I compiler,
the PL/I I,ibrary modules and the control program are
described, and summaries of the properties of individual
modules are provided. This information is intended for
use by those involved in program maintenance and by sys­
tem progra.mmers who are altering the program design.
Program logic information is not necessary for the use
and opera t.ion of the program.

PREFACE

This publication descriLes the object­
time PL/I Library package which forms an
integral part of the PL/I processing sys­
tem. General information covering the
overall design and conventions is provided
as well as information specific to the
various areas of language support.

The publication is intended primarily
for technical personnel who wish to under­
stand the structure of the library in order
to maintain, modify, or expand the PL/I
~rocessing system.

Information relevant to this manual is
contained in the following IBM
publications:

IBM System/360 Operating System:

Principles of Operation, Form
A22-6821

PL/I Language Specification, Form
Y33-6003

IBM System/360 Time Sharing system:

Assembler Language, Form C28-2000

concepts and Facilities,Form C28-2003

TSS/360 PLiI Reference Manual, Form
C28-2045

System Programmer's Guide, Form
C28-2008

PL/I Library: ComEutational Subrou­
tines, Form C28-2046

TSS/360 PL/I Programmer's Guide, Form
C28-2049

First Edition (June 1970)

This edition aFplies to Version 7, Modification 0,
of IBM System/360 Time Sharing System, and to all
subsequent releases until otherwise indicated in new
editions or Technical Newsletters. Changes are
periodically made to the specifications herein; tefore
using this publication in connection with the operation
of IBM systems, refer to the latest edition of IBM
Systeml360 Time Sharing System: Addendum, Order No.
GC2S 2043, for the editions of publications that are
applicaole and current.

System Control Blocks, Form Y28-2011

Assembler User Macro Instructicns,
Form C28-2004

TSS/360 PL/I Compiler, Program Logic
Manual, Form Y28-2051

An introductory section, 'The PL/I
LiDrary' and the first part of Section II
contain a general description of the
library as a component of IBM System/360
Time Sharing System, and general notes on
features of the system and the TSS/360 PL/I
Compiler that are used in the library
implementation. The remainder of Section
II describes the dEsign of the library
modules in relationship to PL/I language
features, and indicates the use that is
rrade of the control program to sUFFort the
design.

The descriptive material is sUFForted by
a set of module description summaries, data
control block descriptions, and several
appendixes. The module summaries, in Sec­
tion III, indicate the salient features of
individual modules in the library Fackage,
and act as guides to the program listings
that are available as part of the PL/I
Library distritution. The fourth section
contains detailed descriptions of the for­
mat and content of the control blocks used
by the PL/I compiler. The appendixes con­
tain details of the system macro instruc­
tions used, library pseudo-registers and
macro instructions, and library internal
error codes.

This fOublication was prepared for production using an IBi>l comfOuter
to update the text and to contro~ the Fage and line format. Page
impressions for photo-offset printing were obtained from an IBM 1~03
Printer using a special printing chain.

Requests for copies of IB.M publications should l:e made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this putlication for reader's
cOlr.ments. If the form has been renoved f camrrents may l::e addressed to
IBM Corporation, Time Sharing System/360 Programming Publications,
Department 636, Neighborhood Road, Kingston, New York 12401.

©Copyright International Business Machines Corporation 1970

INTRODUCTION: THE FLII LIBRARY
Function
Usage • • • •

SECTION I: ME'r tiOD OF OPERATION

GENERAL IMPLE,"1.i!N'IA'I'ION Fl..ATURES
Naming Conventions
Linka':je Conventions ••.
Coding Conventions .•• •
Librar:y' Macro Instructions
Shared Library
Linkage Editing •.•••
Data Representation . . •
Comrr.unication Conventions •

InputlOutput •. • . . . • • •
Pi les and Data SE:ts • • .
File Addressing 'l'echnique
Open/Close Functions
Explicit Opening
Implicit Opening •.••
Stream-Oriented 1/0 (See Figure 9)
Record-Oriented I/O
Access Method Interfaces
The WAIT Statement

PLII Object Program z.:anagement
Introduction . . • • • • • .
Automatic Stor'age: Storage Management
Controlled Storage: Storage Management
List Processing: Storage Management •
Program Managerr,ent • • . • •

Error and Interrupt Handling
Standard 'System' Action
Program Interruptions • .
On Conditicns . • •
Built-in Functions ..••.

Miscellaneous TSS/360 Interfaces
Data Processing Routines

1/0 Editing and Data Conversion
Structure of Library Conversion Package
I/O Editing • • • •
Mode Conversions
Type Conversions
String conversions
Arithmetic Conversions
Data Checking and Error handling
Internal Ccnversions
computational subroutines . •

SECTION II: MODULE SUl-:MARIES
Control Program Interfaces
Data Proce~sing . . • • . •

SECTION III: DATA AREA LAYOUTS

COMPILER-GENE.KATED CONTROL BLOCKS
Array Dope Vector (ADV) . • .
Dope Vector Descriptor (DVD>
Format Element Descriptor (FED)
Library Communication Area (LCA)
LIBRARY WOF~KSPACE (LWS) .
Standard s~.ve area (ssa)

CONTENTS

1
1
1

3

4
4
4
5
5
5
5
5
7
9
9
9

11
11

• • 12
• 12

17
21

• • 22
23

· 23
24
25
27

• • 29
32
33
33

• • 35
39
39
40

• • 40
• • 41

43
44

• 44
44

• • 45
46

• 46
· 47

53
54

• 54

.105

• .106
.106

• .108
.108

• .109
.109

· .110

iii

string Array Dore Vector (SADV) •
Str ing Dope Vector (SDV) . • • •
structure Core Vector • .
Symbol Table (SYMTAB) • •

INPUT/OUTPUT CONTROL BLOCKS
Declare Control Block (DCLCB)
Event Variable • • • • • . •
File Control Block (FCB)
Input/Output Control Block (IOCB)
Open Control Block (OCB)
Example of Chaining • • • . . .

STORAGE-MANAGEMENT CONTROL BLOCKS •
Area Variable • • • • . • •
Dynamic Storage Area (DSA)
Variable Data Area (VDA)

SECTION IV: APPENDIXES. • •

APPENDIX A: SYSTEM MACRO INSTRUCTIONS

.110

.111

.112

.112

.114
• .114

.115

.116
• •. 119
• •• 122

• .122

· •• 124
.124

• .124
· •• 124

.127

• .128

APPENDIX B: PL/I OBJECT PROGRAM PSEUDO-REGIS'IERS •• 129

APPENDIX C: LIBRARY ~ACRO INSTRUCTIONS .131

APPENDIx D: PL/I LIBRARY INI'.c:RNAL ERROR CODES AND MESSAGES FOR ON
CONDITIONS •. • . . • • • • • • • • •• .132

APPENDIx E: DUMP INDEX .134

APPENDIX F: PL/I LIBRARY MODULE NAMES AND ALIASES • .136

APPENDIX G: PL/I SHARED LIBRARY ARRANGEMENT •• 138

INDEX • • • • .139

iv

ILLUSTRATIONS

FIGURES

Figure 1. External Names Used by the PL/I Library 4
Figure 2. Arithmetic Data Representation 6
Figure 3. S-cring Data Representation 7
Figure 4. S-tatement-La1::el Data Representation . 7
Figure 5. File Addressing Scheme 9
Figure 6. Fonrat of the It.iEQFOP Chain . • ••• 10
Figure 7. Error Codes Indicating Causes of Failure in Open Process 11
Figure 8. Flow Through the OPEN l-lodules . • . . • • • • . 11
Figure 9. i'lodular Linkage Through Stream-Oriented I/C • • • 13
Figure 10. Format of the Current File Pseudo-Register •• 14
Figure 11. Object Program Structure of GET/PUT 15
Figure 12. Executable Format Scneme • . • • . . • • . • 16
Figure 13. Data Management Access Methods for Record-Oriented I/O 18
Figure 14. Linkage of Access Modules in Record-Oriented I/O 18
Figure 15. IHEWSAP Entry Points . • • . • 23
Figure 16. structure of the Free-Storage Chain for Automatic
Variables • • • . • • . . • . • . . • •
Figure 17. Storage Allocation for a Contrclled Variable
Figure 18. Format of Area Variable
Figure 19. Example of DSA Chain
Figure 20. Continuation of the DSA Chain
Figure 21. Construction of the Save-area Chain
Figure 22. structure of the DSA Chain When the Error-Handling

26
26

• • 28
30
31

• 31

Subroutine is Entered After a New LWS Has Been Obtained •..• 31
Figure 23. Etructure of the DSA chai.n When the On-Unit DSA is
Attached •.•.••.••••.••.•.•.••.••• 32
Figure 24. F low Through the Error 'jandling Routine (IHEWE;RR) •• 34
Figure 25. Irogram Interruptions ana PL/I Conditions . • . . • 35
Figure 26. Information Available Upon Entry to an Interrupt Routine 36
Figure 27. Old Virtual Program Status Word • • • • • 36
F igur e 28. l'L/ I ON Conditions . . . • . . • . . . 37
Figure 29. I'ormat of the Search Word Comparator 37
Figure 30. t-lodule Usage indicated by Letters of Module Name •• 40
Figure 31. :::tructure of the Conversion Package . • • 41
Figure 32. DEC Flag Byte for Character Representation of an
Arithrr,etic Delta Itefll . . • . • . . . • . • • •.
Figure 33. Input/Output Directors for PL/I Forn,at Items
Figure 34. Conversion for List/Data Directed I/O
Figure 35. l'iodules for Type Conversions •. • . • •..
Figure 36. £<'lodules for String Conversions . • • . • . •
Figure 37. Structure of the Arithmetic Conversion Package
Figure 38. Conversion Code Set in ItlEQERR ••...

42
42

• • 44
• 44

45
• • 45

47
Figure 39. Helationship of Data Form and Seventh Character of
Module Name •.•.••.••••.••• • • • •
Figure 40. String Operations and Functions. ••••.
Figure 41. Arithmetic Operations. • ••.
Figure 42. j'\rithmetic Functions •.••
Figure 43. J<lathematical Functions
Figure 44. /\rray Indexers and Functions • • • •

48
• 48
· 49

• • • 49
• • • • • 50

51
Figure 45. Coincidence of Source and ~arget Fields in Some String -
Modules • . . • . •• .••.•...•.•.•.•• • • 54
Figure 46. Format of the Array Dope Vector (ArV) •• 106
Figure 47. fermat of the Data Element Descriptor (DED) • • • • • • .107
Figure 48. Fermat of the DED Flag BytE • • • • • • . • • • .107
Figure 49. Library communication Area (LCA) •• 109
Figure 50. -3tandard Format of Library Workspace nWS) •• 110
Figure 51. Format of the Standard Save Area (SSA) •• 111
Figure 52. Format of the SSA Flag Byte. • . • . • • .112
Figure 53. Format of the Primary String Array Dope Vector (SADV) •• 112

v

Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Methods •.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.

vi

String Dope Vector Format • • . . . • . • •
Format of the Symbol Table (SYMTAB) • . . •
Format of the Declare Control Block (DCLCB)
Format of the Event Variable • • .
FCB for Stream-Oriented I/O . • . •
FCB for Record-Oriented I/O
Format of the I/O Control Block (IOCB)

• 112
• 112
• 114
• 115

• • . 116
• 117
.120

Values Used in Computing Size of IOCB for Various Access

Format of the Open Control Block (OCB)
Example of Chaining of I/O Control Blocks
Format of Area Variable . . • . • • . • .
Format of the Dynamic Storage Area (DSA)
Format of the DSA Flag Byte • • • . . •
Format of the Variable Data Area (VDA)
Format of the VDA Flag Byte ••••
Format of the PRV VDA • • • • • •
Format of IWS VDA • • • • • •
Internal Codes for ON Condition Entries •

• 121
.122
.123
.124
.125
.125
.125
.125
.125
.125
.132

FUNCTION

The PL/I library was designed as a set
of reentrant object modules, each perform­
ing a single function or a group of related
functions.

The library wodules can be divided into
two groups:

1. Those that act as an interface between
conllJiled code and the IBM System/3eO
Time Sharing System; these modules are
mainly concerned with input/output,
dynauQc program and storage manage­
ment, and error and interrupt
handling.

2.

USAGE

Those that are closed subroutines spe­
cifically designed to perform arith­
metic corrputations, data conversions,
I/O editing and string generic built­
in functions as the major part of
their task.

The code produced by the PL/I compiler
includes many calls to PL/I Library
modules, where their specific functions are
required. The library modules then;selves
reside in SYSLIB, and are dynamically
loaded when referenced during program
execution. The modules explicitly called
by object code will remain in v~rtual
storage until the user unloads his object
module explicitly. Thus, succeeding execu­
tions of the same module will not cause
reloading of libr"ary modules.

The PL/I library acts as the sole inter­
face between compiled code and the syster,l.
The compiled coae does not issue SVCs or
system macro instructions but instead

INTRODUCTION: THE PL/I LIBRARY

issues a library call. Although the
library module(s} called can issue an SVC
instruction, it is more convenient to use
system macro instructions. This method
means that wnen the system changes, only
the library module is rewritten, with the
call to the library from the compiler
remaining as before. Similarly, if the SVC
calling sequence changes, the system macro
is changed accordingly and the library
module need only be reassembled.

For further details on macro instruc­
tions, see IBM Systerrv360 Time Sharing Sys­
t.em: Assembler User Macro Instructions.
The system macro instructions used by the
library are listed in Appendix A.

User-designed modules can be substituted
for library modules; each user module is
given the name of the library module it is
meant to replace.

Under TSS, PL/I statements that are
related to a number of facilities will be
accepted for compilation but are not sup­
ported and will, during execution of the
PL/I program, cause a diagnostic message to
be issued. The unsupported facilities, and
their associated systen. actions, are:

Facili~ System Action

Checkpoint continue

Multitasking Revert to corrmand mode

Sort/Merge Revert to command mode

Restart Continue or Finish condition

Teleprocessing Finish condition

Regional I/O Finish condition

Introduction: The PL/I Library 1

SECTION I

METHOD OF OPERATION

Page of GY28-2052-0, Issued September 15, 1970 by TNL GN28-3162

GENERAL IMPLEMENTATION FEATURES

NAMING CONVENTIONS

External Names

PLiI Library module names always begin
with IHEW; other external names always
begin with IHE. The uses and Ir.eanings of
these names are explained in Figure 1.

Registers: symbolic Names

The following symbolic names are used in
the library modules for general registers
0-15:

Symbolic Symbolic
Register Name Register Name

0 RO 8 RH
1 Rl,RA 9 RI
2 RB 10 RJ
3 RC 11 RX,WR
4 RD 12 PR
5 RE 13 DR
6 RF 14 LR,RY
7 RG 15 BR,RZ

The following symbolic names are used
for the floating-point registers:

Symbolic
Register

o
Name

FA
FB
FC
FD

2
4
6

LINKAGE CONVENTIONS

Linkage between modules generally fol­
lows the system standard calling sequence.
The main features of this are:

4

1. Arguments are passed by name, not by
value. The addresses of the arguments
are passed, not the arguments
themselves.

2. These addresses are stored in a param­
eter list.

3. The address of the list is stored in
register RA.

Some PL/I Library modules, however, are
called by a PLiI standard calling sequence.
The main features of this are:

1. Arguments are passed by name.

2. Arguments are passed in general
registers.

This standard can only be used where the
number of arguments is both fixed and less
than eight. If these conditions are not
met, the system standard is used. One PL/I
Library module, IHEWSAP, does not use eith­
er of these standards. The subroutines in
this module pass arguments by value as well
as by name.

Whichever standard is used, whenever one
module links to another a save area must be
provided for the contents of the registers
used by the called module. The save area
procedure is:

1. The calling module provides a standard
save area (SSA) for the called module.
The address of this save area is
stored in register DR.

2. If the called module in turn calls
another module, it provides that
module with a save area. Register DR
now contains the address of this new
save area. The save areas are chained
together by the chain-back address
field in the new save area.

3. On return to the calling module, the
following will be unchanged:

Registers RB through LR
Program mask

while the following may be changed:

Registers RO, RA, and BR
Floating-point registers
Condition code

Page of GY28-2052-0, Issued September 15, 1970 by TNL GN28-3162

r----------T-------T----------------------------T--,
\Number of I I I I
I Characters I Format I Use I Meaning I
~---------+-------+----------------------------+----------------------------------~
I 7 I IHEWXXX I Module name IXXX are chosen for mnemonic I
~----------+-------+----------------------------~identification of function. I
I 6 IIHEXXX IPL/I Library defined macros I I
.----------+-------+---------------------------+--------------------------------------~
I 7 I IHEXXXX! Entry-point name IFirst six characters are module name I
\ I I I (omitting the w}; the seventh identifies I
I I I I the entry point wi thin the module. I
t----------+-------+---------------------------+--~
I 7 \IHEQxxXIPseudo-register name IXXX are chosen for mnemonic I
I I I lidentification of function. I L-_________ ~ _______ ~ ___________________________ ~ _______________________________________ -J

Figure 1. External Names Used by the PL/I Litrary

4 • 1

Page of GY28-2052-0, Issued Spetember 30, 1971 by TNL GN28-3192

The standard save area is a 76-byte area
in which the contents of all the general
registers can be saved. The format is
described in Section IV.

The library does not support intermodule
trace. Therefore:

1. The chain-forward field in the SSA is
not set.

2. Calling sequence and entry-point iden­
tifiers are not employed.

CODING CONVENTIONS

Because all modules within the PL/I
Library are coded to be reenterable, the
following coding constraints must be
observed:

1. The modules are read-only.

2. workspace (for save areas and tem­
porary work areas) is obtained within
an area dynamically allocated at pro­
gram initialization or by a call to
the Get VDA (variable data area) sub­
routine in IHEWSAP. (See 'Library
Workspace'.)

LIBRARY MACRO INSTRUCTIONS

Eight macro instructions are available
for use in the library modules; they reside
in PLIMAC. To obtain these instructions,
PLIMAC should be used with PLINDX when
assembling. Five of these, IHEYCVC,
IHEEVT, IHELIB, IHEZAP and IHEZZZ, set up
symbolic definitions and the other three,
IHECVC, IHESDR. and IHEPRV, set branches to
external modules, and set the current
addresses of the standard save area and the
pseudo-register vector (PRV) respectively.
The library macros are described in Appen­
dix C.

SHARED LIBRARY

With the exceptions of IHEWCVC, one copy
of all the PL/I library modules is shared
by all TSS users.

Shared modules cannot contain any type
of address constant, so these are collected
in the non-shared module IH~wCVC. Thus,
IHEWCVC contains a list of V-type address
constants for every library entry point
which can be called from another library
module. The order of these entries is pri­
marily alphabetical, but is irregular where
certain library modules select V-cons by
their poSition in a table of V-cons.

To invoke a library module, library
macro IHECVC is used to load register BR
from the list of V-cons in IHEWCVC. This
is followed by the normal BALR instruction.

IHEWCVC also contains L-form and execut­
able macros. The macro expansions contain
address-dependent parameter lists or
address constants. The L-form macros are
used with the corresponding E-form: the
executable macros have no L-form and are
invoked with a BAL instruction.

Finally, IHEWCVC contains miscellaneous
address constants from the library.

The base address of lHEWCVC is set in
pseudo-register IHEQCTS by initialization
in IHESAP. Offsets in IHEWCVC are known to
all modules from the DSECT IHEZCVC, which
is part of macro IHELIB.

LINKAGE EDITING

A very significant space reduction
(twenty-fold) is obtained by combining the
library into two modules, CFBAI and CFBAJ,
which may reside on SYSLIB. CFBAI contains
30 control sections, all of which are
shareable and smaller than one page. CFBAJ
contains the Un-shared routine IHEWCVC in a
single control section.

The arrangement of the original modules
is given in Appendix G.

DATA REPRESENTATION

Three types of data may exist within a
PL/I program:

1. Arithmetic
2. String
3. Statement-label

The internal representation and other
details of these three types are shown in
Figures 2, 3, and 4. The invocation count
used in the statement-label data represen­
tation is described in 'Program Management'
later in this section.

Arithmetic or string data may be speci­
fied with the PICTURE attribute. A PICTURE
arithmetic data item is called a numeric
field and is represented internally as a
character string. An arithmetic data item
without a PICTURE attribute is called a
coded arithmetic data item (CAD) and is
represented internally in one of three sys­
tem formats:

Fixed-point binary
Floating-point
Packed decimal

Section I: General Implementation Features 5

Page of GY28-2052-0, Issued spetember 30, 1971 by TNL GN28-3192

Some PL/I Library modules, however, are
called by a PL/I standard calling sequence.
The main features of this are:

1. Arguments are passed by name.

2. Arguments are passed in general
registers.

This standard can only be used where the
number of arguments is both fixed and less
than eight. If these conditions are not
met, the system standard is used. One PL/I
Library module, IHEWSAP, does not use eith­
er of these standards. The subroutines in
this module pass arguments by value as well
as by name.

r-------------T---,
I I I
I Data Type I Implementation I
I I I
~-----T-------+--------_r-----------r_------------T-----------------------------------~
I I I I Internal I I I
IScalel Base I Precision I format I Alignment I Processing I
~----~-------~--------~-----------~-------------~-----------------------------------~
I REAL data I
~----r_------r__-------T-----------T-------------r_------------------------------------~
I IBinary I p,q IFixed-pointlp>15: Word IArithmetic operations are performed I
I I IMax p: 311binary Ip~15: Half- Ion p-digit integers: scale factor q I
I I I I I word I is specified in a data element I
I I I I I I descriptor. (See Figure 47) I
IFixed~-----_+_--------+-----------+-------------+_------------------------------------~
I I Decimal I p,q IPacked dec-I Byte 'The p digits occupy FLOOR ({p + 2}/2) I
, I IMax p: 15 1irnal I Ibytes. Arithmetic operations as for I
I I I (see I I 'fixed binary. I
I I I note) I I I I
~-----+-------+---------t-----------+_------------+-------------------------------------~
I IBinary I p I Ip~21: Word I I
I I IMax p: 531 Ip>21: Double-I I
I I I I Hexadecimal I word IThe data is normalized in storage I
IFloat~-----+---------~floating- ~-------------~before and after arithmetic operat- I
I I Decimal I p I point I p~6: Word 1 ions. I
I I IMax p: 161 I p>6: Double-I I
I I I I I word I I
~-----~------L---------~-----------~-------------~-----------_________________________ ~
I COMPLEX data I
~-----T------_r--------_r-----------T-------------T------------------------------------~
I IBinary I p,q IFixed-pointlp>15: Word lAs for real fixed binary. The real I
I I IMax p: 311binary Ip~15: Half- land imaginary parts occupy adjacent I
I I I I I word Ifullwords or halfwords, with the I
I I I I I I real part first. I
I Fixedt-------t---------t-----------t-------------+_-----------------------------------~
I I Decimal I p,q IPacked dec-I Byte lAS for real fixed decimal. The real I
I I IMax p: 151imal I land imaginary parts occupy adjacent I
I I I I I Ifields, with the real part first. I
~----+_-----_+_--------t-----------+_------------+_------------------------------------~
I IBinary I p I Ip~21: Word lAS for real floating-point binary. I
I I IMax p: 531 Ip>21: Double-IThe real and imaginary parts occupy I
I I I I I word I adjacent fullwords or doublewords, I
I I I I I Idepending on the precision, with the I
I I I I Hexadecimal I I real part first. I
IFloat~-------+--------~floating- ~-------------+-----------------------------------~
I I Decimal I p I point Ip~6: Word lAS for real floating-point decimal. 1
I I IMax p: 161 Ip>6: Double-IThe real and imaginary parts occupy I
I I I I I word ladjacent fullwords or doublewords, I
I I , , , Idepending on the precision, with the I
I I I I , I real part first. I
~----i-------i---------~-----------~------------~---------____________________________ ~
I Note: When p is even, the effective precision for all arithmetic operations except I
Idivision is (p + l,q), except when the SIZE condition is being checked. When this I
I occurs, the first digit in the high-order byte must be checked to ensure that it is I
I zero. I l ___ J

Figure 2. Arithmetic Data Representation

6

r---------T---,
I I Implementation I
IData type~---------------T--T----------~
i I Representation I Length I Alignment I
t---------t---------------t--t----------~
I Bit 11 binary digit I I Byte I
I Iper nit IMc.ximum length: 32,767. If a VARYING attribute is I (see note) I
t---------t---------------~dE'clared, maximum length is declared length, r----------~
I Character 11 character per In"gardless of the string value. I Byte I
I Ibyte I I I
r---------~---------------~--~----------~
INote: The string occupies CEIL (n/B) bytes. If the string comes within the scope of I
Ian UNALIGNED attribute, the address of the first bit is provided by a byte address and I
I bit offset in an SDV. (See' String Dope Vector' in Section IV.) I L __ J

Figure 3. Stri ng Data RefrE~s entation

o 7 8 31
r---l
I Invocation Count I
t--------T--------------------------------~
I I A (Statement label> I L ________ ~ ________________________________ J

Figure 4. Statement-Label Data
Representation

COMMUNICATION CONVENTIONS

The use of library modules in a PL/I
program requires that:

1. Working storage be prov:Lded for the
modules.

2. Techniques for passing ~nforrnation
about arguments and proqram status be
provided.

Working storage is obtained as library
workspace (LWS). Section IV gives the for­
mat of LWS, which is allocat,::d by the
library program management module IHEWSAP.

Two modes of communication are available
for passing information:

Explicit:
registers.

Uses parameter lists and
(See 'Linkage Conventions')

Implicit: Uses pseudo-registers or a
library ccrrrounicaticn area.

Some library modules are interpretive
(as opposed to declarative), and according­
ly require that information regarding the
characteristics of their arguments be supp­
lied. Such information is made available
to the library in the form of standardized
control blocks. The form and content of
the compiler-generated contr·::Jl blocks in
general use throughout the implementation
are described in Section IV; one or [fore
blocks is required according to the nature
of the data passed:

Scalar arguments:

Data element descriptor (DED)
String jope vector (SDV)
Syrr,bol table (SYMTAB)

Array arguments:

Array dope vector (ADV)
String array dope vector (SADV)

Structures:

structure dope vector
Dope vector descriptor (DVD)

Formats:

Format element descriptor (FED)

Special-purpose control blocks, such as
the file control block (FCB), are described
in this section and in Section IV.

Pseudo-Register Vector (PRV)

This is a 4096 byte table, consisting of
4 or 8 byte entries called pseudo-registers
(PRs). These FRs effectively operate as
implicit arguments givinq information
about, for exarr'ple, current program status.
All references to specific PRs within the
FRV are made by the addition of a fixed
displacement to the PRV base address con­
tained in register PRo

All PRs used in the PL/I Library are
defined as a standard set of 29 in the
library macro IHELIB; this macro is ccded
at the beginning of every library module.
1he PRs used by the PL/I Library are shown
in Arpendix B.

Library works face (LWS)

Various library modules require wcrking
storage:

1. For internal functions.

Section I: General Implementation Features 7

2. For linkage to other modules. (A reg­
ister save area must te provided.)

Library modules which use lit:rary work­
space (LWS) refer to it by means of the
PRV. A group of pseudo-registers in the
PRV is set during LWS allocation to contain
the addresses of centiguous areas within
LWS. (See Section IV.) Each of these
areas is at a different level.

The notion of level exists because of
inter-module linkage between library
modules:

1. A module \vhich invokes no other
modules is.assigned level O.

2. A module which invokes other modules
is assigned a level number greater
than the level number of any invoked
module.

3. A module which transfers control to
another module (i.e., does not expect
a return) is assigned the level numcer
of that mOdule.

Invocation of the error-and-interrupt­
handling subroutine is net considered suf­
ficient to raise the level number of the
invoking module, since the error subroutine
uses a special level.

Library workspace is allocated as pri­
zrary or secondary LWS.

Primary LWS is allocated during program
initialization, before control is passed to
the main procedure. Tne storage thus
obtained is not freed until the PL/I pro­
gram is finished.

Secondary LWS is allocated for special
purposes during program execution and is
freed when the situation for WhlCh it was
created no longer exists. It is allocated:

1. When an on-unit is entered from a
library module. This may lead to a
recursion problem: Litrary modules
called may overwrite this LWS. To
avoid this, the existing LWS is
stacked, a new one obtained and all
the LWS [seudo-registers Updated.

2. When SNAP, system action or error mes­
sages are to be printed. The PRINT
subroutine may overwrite the existing
LWS: To avoid this, the san;e proce­
dure is followed as for an on-unit.

The library program management module
IHEWSAP controls the allocation of 1"";S and
the setting of the library pseudo­
registers. The library macro IHELIB con­
trols the length of LWS and of each area
within it. The LWS format can be changed

8

1:y changing IREIIB and reassembling
IHHJSAP.

Modules using specific areas in LWS
address these areas by the following
library macros:

IBEPRV: Used to address the LCA cr when
using an area as temporary workspace.

IHESDP: Used when a module requires a
standard save area for a module it is
calling.

library Communication Area (LCA)

Within the area allocated for library
worksl-'ace is an area in which various sym­
bolic names are defined. These names are
used for implicit communication between
library uodules (mainly the data conversion
modules). This area is the library corr­
uunicaticn area (LCA); its format and the
usage of the symbolic names are shown in
Section IV. The LCA address is stored in
the pseudo-register IHEQLCA.

In the LCA there is a dcubleword iurredi­
ately before the first symbolic name. This
contains (in the first four bytes) the
address of the prior generation of LCA
within a given PL/I program. This field is
used to readdress the LCA which existed
before an ON block was entered. IHEQLCA
contains the address of the first symbolic
name.

Execution-Time Dump

A PL/I user may obtain a durrp at any
pOint in his program by calling IHEWDUM;
the entry point used deterrr.ines whether the
PL/I program will continue or terminate
after the durrp.

IBEr:UlviC: Dump and continue

IHEr:UMT: Dump and terminate

If the program is being run nonconversa­
tionally. all [ages containing save areas
cr file tlocks will be written on SYSOUT,
with DSNAME=PLIDUMP. Identification of
required information (such as save area
locations) in the dump is difficult because
this inforrration is not necessarily stored
in locations arranged in a chronolcgical
sequence. To facilitate reading the dump,
therefore, two sunroutines, IHEWZZC and
IHEWZZF, are provided. They extract cer­
tain information (chiefly about save areas
and cpened files) and print it as an index
to the dump. Full details of this inforrra­
tion are given in Afpendix E.

If the [rogram is being run conversa­
tionally, there will be no autorratic dumF:
an index of the current areas will te

printed and a PAUSE issued, to invoke the
command Ifode. The user can t.:1en display
any of the areas defined in the index, and
may return to the PL/I program by the GO
command.

INPUT/OUTPUT

FILES AND DATA SETS

Within this publication, t"le term 'data
set' refers to a collection of records that
exist on external storage. A file is known
as such only within a program.

The relaticnshif tetween a file and a
data set is established when the file is
opened. The data set to be associated with
a file is identified ty the TITLE option.
If this option is omitted or an implicit
open occurs, a default identifier is formed
from the first eight charactet:s of the file
name. The data set identifiet: is not the
data set name, but the ddname <i.e., the
name of the I:LEF command). Error messages
which are related to file operations use
the full file name (1 through 31
characters) •

The attributes of a file i:1 some
instances restrict the attributes of its
associated data set, tut in tnose instances
where device independence is 90ssible, the
full capabilities of the I:DEF command are
available. Unit assignment, space alloca­
tion, record fcrmat and lengt.n, and various
data management options (such as write­
verify) are established en a dynamic basis.

FILE ADDRESSING TECHNIQUE

In order to accomodate reentrant usage
of a PL/I rrodule, which rray imply that the

o 31 o

PRV

rrcdule exists in read-only storage, the
following technigue is employed to commun­
icate file arguments. All calls frcrr corr­
riled rrodules to the library involving file
arguments address a read-only contrcl
clock, the DClCB. The library, using a
field within this control block, is able to
address a cell within the pseudo-register
vector generated for the PL/I program.
~his cell, the file register, in turn
addresses a dynamically allocated control
l:lock, the file control block (FeB). (See
figure 5.)

Leclare Control Block (DCLCB)

This control block, generated during
compilation, contains information derived
from a file declaration (either explicit or
contextual). In addition, it contains the
offset within the PRV of the file register,
a fullword pseudo-register emplcyed within
the fiie addressing scheme. This pseudo­
register contains the address of a dynarric
storage area containing a file control
clock. The DCLCB is read-only, and thus
fermits compiled programs to exist within a
reentrant environment (which may irrply that
the rrograrr is loaded into supervisor pro­
tected storage). The maximum length cf a
[CLCB is 56 bytes.

File attributes specified within the
LCLCE may be supplemented, but not overrid­
den, by attributes specified in the OPEN
statement which opens the file. An excep­
tion to this rule is the LINESIZE aptian,
which overrules record length information
declared in the ENVIRON~ENT attribute.

The format of the DCLCB is described
fully in Section IV, 'Input/Output Ccntral
Elocks' .

FCB

31 o 31
r--------------T--------, r-----------------------, r----.,-----------------------,
I PRV offset I I
~------T-------J I
I I I
I I I
I I I

I I
I I
I I
I I

I
I
I
I

t-----------------------~ I

I I
! I
! I
I
I I

I
I
I

L ________________ + ______ I A (FCE) t-J I I
r-----------------------i t-----------------------~
I I I A (DCLCE) I

I I I r-----------------------~
I I I I I
I I ! I I
I I I I I
I I I I I I l _______________________ J L _______________________ J L _______________________ J

Figure 5. File Addressing Scheme

Section I: General Implementation Features 9

File Control Block (FCB)

This control block is generated during
program execution when a file is opened.
The FCB storage is required in order to
accommoda.te reentrant usage of a given PL/I
module, for the FCB is not read-only. The
FCB contains fields for both the PL/I
Library and for TSS/360 data management.
The initial portion of an FCB is PL/I­
oriented, while the second portion is the
DCB required by data management for all
data set operations. The PL/I portion,
called the DCE-appendage, is described in
Section IV; details of the various DCB con­
structions are available in the following
IBM publications:

IBM Systerr/360 Time Sharing System: System
Control Blecks

IBM System/360 Time Sharing System:
Assembler User Macro Instructions

An FeB is generated for each file opened
within a program; an FCB cannot exist for
an unopened file.

When a file is opened, its generated FCB
is placed in a chain which links together
(through the TFOP field in the FCB> all
files opened in the PL/I program. When
files are closed, they are removed from the
chain. This chain, which is anchored in
the PRV cell IHECFOP, exists in order to
perform special PL/I closing processes at
program termination (whether normal or
abnormal). When a PL/I program terminates,
the object-program housekeeFing routines
determine which files are currently open
for this PL/I program. This is performed
by the relevant housekeeping module calling
IHEWOCL (close), which scans the chain and

PRV
r-------------,
I I
I I
~-------------~

calls IHECLTE to close all open PL/I pro­
gram files. If the cell IHEQFOP is zero,
then nc files are, at present, open for the
PL/I program. The IHEQFOP chain is shown
in Figure 6.

Prograrr Execution

When program eXEcution is initiated, the
PRV (including all file registers) is
initialized to zero. When a file is opened
(prepared for I/O operations). its asso­
ciated file register is set to address an
FCB; similarly, when a file is closed
Explicitly, its file register is again set
to zero.

If the file is not opened, the file reg­
ister remains zero. If a file has gone
through the opening process but has failed
to be opened (UNDEFINEDFILE conditicn), the
high-order byte (bits 0 to 7) of the file
register will contain an error code that
indicates the cause of failure. The codes
consist of two hexadecimal digits; they are
shown in Figure 7.

Two advantages of the use of the DCLCB
in the file addressing scheme are:

1. Because the DCLCB, in conjunction with
an implicit opening staterrent, pro­
vides all the information necessary to
open a file, a file can be o~ened by
I/O statements other than the OPEN
statement.

2. The address of the DCLCE can be used
as the file identification in ON con­
ditions that relate to files. ON con­
ditions may be enabled for a file
before it is opened, since the DCLCB
address is always available.

IHEQFOPI ~--,
~-------------~ I

I I r-----~~~=----l ... --l r-----~~~~----l-...--' t-----~~~=----,
I I I I I I I I I I
I I I I I I I I I I
I I ~-------------~ I .-------------~ I ~-------------~
I I I 0 I l __ ~ I L __ ~ I TFOP
I I ~-------------~ .-------------i .-------------~
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I l _____________ J L _____________ J l _____________ J L _____________ J

Note: The FCBs are opened in the order 1, 2, 3, etc.

Figure 6. Format of the IHEQFOP Chain

10

r-------T---------------------------------,
I Error I I
I code I Meaning I
~-------+---------------------.------------~
I 81 I Conflict between DECLARE and I
I I OPEN attributes I
I ! I
, 82 I File access IIethod not I
I I supported I
I I I
I 83 I No block size I
I I I
I 84 I No DDEF I
I I I
I 85 I TRANSMIT condition wn~ie I
I I initializing data set (only I
I I applicable to DIRECT OUTPUT I
I I REGIONAL files) I
I I I
I 86 I Conflict between PL/I attri- I
I I butes and environment options I
I I I
I 87 I Conflict between environment I
I I cptions and DDEF parameters I
I I I
I 88 I Key length nct specified I
I I I
I 89 I Inccrrect block size or logical I
I I record size specif ied I
I I I
I 8A I Line size greater than I
I I implementation-defined maximum I L _______ ~ _________________________________ J

Figure 7. Error Codes Indicating Causes
of Failure in Open Process

OPEN/CLOSE FUNCTIONS

The opening of a file occurs either
explicitly by the use of an OPEN statement,
or implicitly because of other I/O opera­
tion statements.

Opening a file involves the creation of
an FCB, the setting of a file register to
address the FCB, and the invocation of the
data management OPEN executor. The closing
of a file involves invccation of the data
management CLOSE executor, freeing FCB
storage, and clearing the associated file
register.

EXPLICIT OPENING

The modules involved in OPEN processing
are IHEWOCL, IHEWOPN, IHEWOPC, IHEWOPP, and
IHEWOPQ. These modules are link edited
together, and transfer control between one
another with either the CALL Inacro, or a
direct branch. The module IHl~WOCL passes a
list of all necessary address constants and
pseudo-register offsets; this list is con­
tained in the library module IHEWSAP.

The flow through the OPEN nodules is
illustrated in Figure 8.

All errors are communicated back to IHE­
~OCL by neans of the file registers; IHE­
WOCL then invokes the error handling sub­
routine. The error conditions are signaled
in the high-crder byte of the file regis­
ter; IHEWOCL, upon detecting an error con­
diticn, sets bit 0 of this register to in­
dicate an unopenable file. The error codes
are shown in Figure 7.

0Een Control Block (OCB)

One cf the ~arameters which may be
~assed to IHEWCPN is the open contrcl block
(OCB), which is generated by the compiler.
This four-byte control block indicates the
attributes s~ecified in the OPEN statement.
During the opening process, this infcrrra­
tion is rrerged with that in the DCLCE in
order to construct the proper FCB and check
for attribute conflicts. (See Section IV
for details of the OCB.)

The Cpen Process

Open Process, Phase I: IHEWOPN: This per­
forms file attribute checking and defaUlt­
ing functions. 1£ an atten'pt is made to
cpen a REGIONAL file, an error rr,essage will
be issued to SYSOUT; the file will be unde­
fined and the error condition raised. If,
in phase I, all files specified in the OPEN
statement have detected errors, a return to
IHEWOCl is made immediately. Otherwise
Fhases II, III and IV are invoked and a
return is made to IHEWOCL from IHEWOPQ.

r--------------,
I OCL I
r--------------~
I r.-------------------------,
I OPEN/CLOSE I I
L-------T------J I

I I

r-------f------, I
I OPN I I
r--------------i I
I OPEN I I
I Phase I I I
l-------T------J I

I I

r-------t------, I
I oro I I
r--------------1 I
I OPEN I I
I Phase II I I
l-------T------ J I

I I

r-------t------, r--------------, I
I OFP I I OPQ I I
t--------------~ t--------------~ I
I OPEN I----~ OPEN I _____ J

I Phase III I I Phase IV I l ______________ J L ______________ J

Figure 8. Flow Through the OPEN Modules

Section I: General Im~lementation Features 11

Open Process, Phase II: IHEWCFO: This
obtains storage for an FCB for each file
being opened, and sets fields in both the
DCB and DCB-appendage according to the
declared attributes.

Open Process, Phase III: IHEWOPP: This
executes the OPhN macro, and accepts
DCB-exits.

Open Process, Phase IV: IHEWOPQ: This
calls record-oriented I/O modules (setting
their addresses in the FCB), and enters the
files being opened into the IHEQFOP chain
of files opened in the current task.

Any files which devolve to the TSS SYS­
OUT or SYSIN will not need to be opened;
however, the checking which is done in
these modules is useful, so only the actual
OPEN process (in IHEWOPP) will be branched
around.

If, during Pnase II or Phase III, a file
is determined to be a RECORD I/O file, and
no JFCB exists for it, a diagnostic will be
issued, and return to command mode will be
effected by raising the 'FINISH' condition.

The Close Process

This process consists of removing files
from the IHEQFOP chain and freeing dynamic­
ally acquired storage (file control blocks,
buffers, exclusive control blocks, and I/O
control blocks).

Module IHEWOCL starts the close process;
for an explicit close it links to IHECLTA,
for an im~licit close to IHECLTB. If the
last operation on a BUFFERED SEQUENTIAL
INDEXED OUTPUT embedded-key file, before it
is closed explicitly, is LOCATE, module
IHEWOCL replaces the embedded key with the
KEYFROM option, before passing control to
IHEWCLT. For further information refer to
Indexed Data sets.

The normal return froTIl a KEY on-unit is
to the statement following that in which
the condition is raised. Consequently, if
the KEY condition is raised during the
Execution of an explicit CLOSE statement,
the file will not be closed unless the on­
unit also includes a CLOSE statement.

In addition, if a file is closed impli­
citly, IHEWOCL scans the IHEQFCP chain to
find the file. For an im~licit close, all
events associated with I/O event variables
in the IHEQEVT chain are purged, and the
associated IOCBs, if any, are freed.

Module IHEWCl.T performs additional spe­
cial fUnctions as follows:

12

Stream-oriented I/O:

If OUTPUT ~ith V-format records, the
last record is written.

Record-oriented I/O:

All incomplete I/O event variables
asscciated with the file are set com­
flete, atnormal, and inactive, and
the I/C operations are purged.

Any files which devolve to the TSS SYS­
OUT or SYSIN will not need to be closed;
however, the checking which is done is use­
ful, so only the actual CLCSE macro (in
IHEWCL'l) will 1::e branched around.

IMPLICIT OPENING

If a file is not open and an I/O opera­
tion is initiated, then one of the ccrrpil­
er-interface modules (IHEWIOA, IHEWIOB, or
IHEWION) calls IHEWOCL at implicit-c~en
entry point IHEOCLC, passing any implied
parameters, and the open process begins.

If the OPEN modules return control to
IhEWOCL and the file is still unopened, the
UN~EFINELFILE condition is raised.

STREAM-ORIENTED I/O (SEE FIGURE 9)

The stream-oriented I/O facilities ef
PL/I provide fer the transmission of data
items to or from external storage, without
considerations of logical and physical re­
cord lengths affecting the user program.
These facilities block and del::lock user
data items in a manner that is transparent
to the user, se that they can be read and
written by the system's data managEment
reutines. When a record area 1::ecomes
filled (on output) or empty (on input), the
user data is continued on another recerd;
the user will never be aware of this break.

Support for record access is provided by
the data management VAM and QSAM routines,
and SYSIN and GATWR macro instructions.
The VSA~ and QSA~ GET and PUT nacrc
instructions used are all locate mode, to
conserve space and time; SYSIN and GATWR
nacre instructions are used when the file
is SYSIN or SYSOUT, resfectively.

Current File

The current file is that one which is
1::eing operated upon by an I/O statenenti it
is established when an operation begins,
and rerr,oved when the operation is ccrr­
Eleted. The current file is addressed
through the pseudo-register IHEQCFL, which
addresses the £CLCB for the file. This
pseudo-register is available for insfection
upon entry to ON blocks, and during trans­
mission. Its format is shown in Figure 10.

Page of GY28-2052-0, Issued Spetember 30,1971 by TNL GN28-3192

r---------, r-------, r---------, ,-------,
1 lOA * 1 I DDJ I 'DDI * , 'LDI * 1
~--------~ ~--,------~ ~---------~ r------~

,-~ GET ~-----, 1 P"rray I <------~ Data r-------->, List ~----------_,
1 1 Init/Terml 1 I input I 1 input 1 I input I , I L ________ J 1 L ______ J L __ -,-__ -J L---T----J I

I 1 1 I 1 I I I < _________________ J 1
I 1 I r-------, 1
I 1 1 I DDO *1 1
I r-----' I I ~-------~ ,
I I lOB *1 I I<-------------~ Data ~---------->I
I ~------~ I r-------, I I output I I
I <-i PUT J----> I 1 lOP * I I L __ ~----J I
1 I lnit/Terml I ~---,-----~ I I I
I L _________ J I I Printing I 1 ,----~-----, I
1 L-->ICor,trol 1--------------->1 I I I
I I I I I I 1
I L ________ J I r---~----, r----~----, I
I 1 'LOO * , 1 DDP I 1
I I r-----~ r---------i I
I r--------, 1 I List 1 I Array' I
L_>I OCL * 1<----------------------------, I<------f output, 'output 1 I

t-------~ I l _________ J l _________ J I
I CLOSE 1 I 1
I ~--------------------, I I
t---------~ I I r --------, r---------, I
I OPEN ~-------------, I I I lOX *' I see F33 * I I
I , <------"1 I I ~-------_f t---------~ ,
L----T----J I I ,<-------f X/column I I Format I I

1 I I I I format I I directors I I
I I , I L---T----J L---T----J I
I , I I I , I
I I , I L _____ ~-----J I
I I I I I

r-----Y--"1 r----J.----, r----~----, I ,--~--,
I OPN I I OPQ I I CLT 1 1 I IOD 1
t---------~ t---------~ t--------i I t--------~
1 OPEN I I OPEN I 'CLOSE I I<-------------~Datafieldl
, Phase I I I Phase IVI I I I , access I
l----T---J l----A---J L ________ J I L _____ J

I I I
I I I

r----l::'---, r-----'----, r----L --, ,-------,
I OPO I I OPP 1 1 IOF I 1 PRT 1
I-----i t---------i I .--------1 t---------~
I OPEN I I OPEN I ------------~>, Record I I write 1 I
IPhase II t-->,Phase 1111 I I access I<---------f SYSPRINTI<----------J
L ________ J L ________ -J I I (QSAM, I L ___ ~----J

,--------,
I SRC *1
t--------~
1 DATAFIELD I
IONCHAR I
IONFlLE orl
IONSOURCE ,
I I L _______ J

r-------,
1 IOC *1
t--------i
I GET/PUTt
I STRING I
1 I l ______ J

r--------,
I CNT *1
t------~
1 COUNT/ I
ILINENO I , ,
L _______ J

I I VSAM, 1 I
I I or TAM I I
I I Inter- I I
I I face) I I I L ________ -J I
l __________________________ -J

r--------,
I SRD *1
t--------~
I I
I ONKEY I L _______ J

Note: An asterisk indicates
that the module can be
entered directly from
compiled code.

Figure 9. Modular Linkage Through Stream-Oriented I/O

Section I: General Implementation Features 13

Page of GY28-2052-0, Issued Spetember 30, 1971 by TNL GN28-3192

o 7 8 31
r----------r------------------------------,
I 0 I A (DCLCB) I
~----------+------------------------------~
I I A (Abnormal return> I L __________ ~ ______________________________ J

Figure 10. Format of the Current File
Pseudo-Register

Within a stream-oriented data specifica­
tion there may exist expressions which
involve function references. In turn, the
function procedure may itself perform I/O
operations or may refer to ON blocks that
perform I/O operations. When this situa­
tion occurs, it is necessary to stack the
current file pseudo-register. The presence
of the COpy option in a GET statement and
the raising of the TRANSMIT condition for
an item in the data stream are flagged in
the fifth byte of IHEQCFL:

TRANSMIT to be raised on item: Bit 5=1

COpy option in statement: Bit 6=1

Current file in PRV: Bit 7=0

Current file stacked in DSA: Bit 7=1

Stacking of the current file is effected
by the I/O initialization modules; upon
entering such a module (e.g., IHEWIOA and
IHEWIOB), the contents of the pseudo­
register IHEQCFL are stored in the DSA
(dynamic storage area) of the invoking pro­
cedure, as addressed by register DR. The
stacking cell is termed the current file
pseudo-register update. Upon termination
of an I/O operation, either normally or by
means of a GO TO statement out of an ON
block, this cell is copied back into the
pseudo-register IHEQCFL.

GET and PUT statements with the STRING
option employ the current file pseudo­
register, but no abnormal return entry
exists. Instead, the latter four bytes
address a simulated FCB.

Standard Files

Within the PLiI language, the keywords
SYSIN and SYSPRINT indicate the standard
input and output files. At execution time,
SYSIN is interpreted as the TSS SYSIN, and
SYSPRINT as the TSS SYSOUT.

The standard files, SYSIN and SYSPRINT
have default titles equivalent to their
file names. The compilation of GET and PUT
statements without explicit FILE options
causes compile-time syntax SUbstitution of
the file names SYSIN and SYSPRINT respec­
tively. These files have the same compiled
linkage to the library as other files.
Within the library, SYSIN is not used; the
file SYSPRINT however, is used in the error

14

messages, and listing of data fields for
the COpy and CHECK options require the pre­
sence of this file.

Because the library and the source pro­
gram both use the SYSPRINT file, it is
necessary that they both refer to the same
DCLCB. Both the compiled DCLCB and the
library-supplied DeLCB for SYSPRINT (within
the module IHEWPRT) are supplied with the
same name, so that only one of them will be
placed within the linked program. The name
of hoth CSECTs is IHESPRTi the name of the
associated file register is IHEQSPR.

If the current file is SYSIN, a SYSIN
macro is issued to obtain stream input;
this will send a colon to SYSIN, to indi­
cate to the user that input is expected.
The input data will be placed in the buffer
provided for this file.

If the current file is SYSPRINT and the
task is conversational, the data specified
by the user in his PUT statement will be
immediately written out to his terminal by
a GATWR macro instruction. This data will
be followed by a return suppression
character, so that the user's terminal will
continue typing the next record on the same
line, unless the SKIP option is specified
in the next PUT statement.

If the current file is SYSPRINT and the
task is nonconversational, the data speci­
fied by the user in his PUT statement will
be placed in the output buffer, but will
not be written out until that buffer is
full, or until the SKIP option is specified
in a PUT statement.

The SYSIN and GATWR macros required for
SYSIN and SYSPRINT I/O are contained in
library modules IHEWIOF and IHEWIOB.

Get/Put Object Program Structure

The code compiled for stream-oriented
I/O GET and PUT source statements has the
general structure illustrated in Figure 11.
There are three 'call sets' compiled for
these statements:

1. Initialization:

This call invokes one of the I/O
initiator modules, passing:

a. The address of the file DeLCB.

b. The address of the termination
call. (This is the abnormal
return which is set within the
current file pseudo-register
IHEQCFL.)

c. The address of the LINE or SKIP
value.

page of GY28-2052-0, Issued Spetember 30, 1971 by TNL GN28-3192

r-------'----------,
Call set 1

I I
I Initic.lization I
I call I
L ________ ~---_----J

I

-1- r-------~-------,
I Data I
I Specification I
I <:all1 I

I
I
I
I
I
I
I

L--------T-------J
I ,
~

Calli set 2
I
I
I
I
I
I
I
I
I

I ,
I
I

r--------Y.--------,

't..

I Data I
I Specification I
I Galln I
L ______ ._~-------J

Call set 3

I
I v r-----------------,

I I
I Termination I
I Gall I l _________________ J

Figure 11. Object Program S-tructure of
GET/PUT

The initialization proc.;:!ss includes
stacking the current file, checking
the specified file (and opening it if
not already open), and performing any
necessary option operations.

2. Data specification:

This is a series of calls to perform
list-, data-, or edit-directed stream­
oriented I/O operations. This series
is omitted only for GET/PUT statements
Which have no data specification.
Details of the implementation of the
three forms of data specification
appear in 'Data Specifications',
below.

3. Termination:

This call invokes the terminal subrou­
tine of the module which performed the
initialization. At this point the
current file is unstacked and (for PUT
calls) V-format output records have
their record-length field updated.

Data Specifications

There are three forms of data
specification:

Data-directed

List-directed

Edit-directed

compilation of any data specification
yields a series of one or more calls to the
library for transmission of data between
program storage and a record buffer. For
list- and data-directed I/O, the data items
transmitted are passed by means of the
standard linkage described above. (See
'Linkage Conventions' earlier in this sec­
tion.) The PL/I standard (using registers)
is employed wherever possible; where it is
not, the system standard (using a parameter
list) is employed. For edit-directed I/O,
the 'executable format scheme' described
below is required.

The ON CHECK facilities for data items
being input are supported by compiled code
between data-list item specifications, in
the instances of list- and edit-directed
I/O; data-directed I/O determines the exis­
tence of this condition from the symbol
table entry for a given data item.

Executable Format Scheme

The executable format scheme exists to
support two requirements for edit-directed
data items:

1. The matching at object time of data­
list items with format-list items.

2. The evaluation of expressions during
an I/O operation.

The scheme exists in compiled code for use
by the library format directors and conver­
sion package. (See 'I/O Editing and Data
Conversion' later in this section.)

The scheme is required because edit­
directed data specifications contain format
lists composed of format items that may
have expressions for replication factors
and format subfields. These expressions
may have to be evaluated with values read
in during a GET operation. Finally, the
use of dynamic replication factors and the
possible existence of array data-list items
of variable bounds prevent any pre­
determinable matching of data-list items
and format-list items.

BaSically, the scheme calls for the
existence of two location counters, one for
a compiled series of data-list item
requests, the other for a compiled series
of format-list item specifications. These
two series are compiled as the secondary
calling set for a GET or a PUT operation.

Section I: General Implementation Features 15

Page of GY2B-2052-0, Issued Spetember 30, 1971 by TNL GN28-3192

To support the dynamic matching of a
format-list item with any data-list item, a
group of format directors exists within the
library; one of these directors receives
the call from the secondary compiled series
of format item specifications. A director
will determine which conversions are
required to satisfy the transmission of a
data item according to its internal repre­
sentation (described by its DED) and its
specified external representation
(described by a FED).

The structure of edit-directed compiled
code is illustrated in Figure 12. The
first column, 'primary code', consists of
calls to units in the second column. 'Sec­
ondary code'; that is. data-list items are
requesting a match with a format-list item.
The third column shows the flow within the
library as set up by format directors.

The scheme works as follows:

1. The address of the start of the
format-list code (executable format)
is obtained.

Primary Code

Initialization
I
I

Secondary Code

2. Transmission of the first data item is
requested; its storage address and DED
address are loaded into registers RA
and RB.

3. Control is transferred to the execut­
able format; at the same time the
location counter of the data-list code
is updated.

4. The executable format loads, into reg­
ister RC, the address of an FED.

5. A call is made to a format director
and at the same time the location
counter of the format-list code is
updated.

6. The format director causes the conver­
sion package to convert the data
according to DED and FED information,
storing the converted data in the spe­
cified storage address, if input, or
placing it in a buffer, if output.

Format Directors

~-----Y------i r------------, r------------,
I Request t---------->I Specify ~---------->I Format I
Idata item 1 I I format I I director 1<--------------,
I transmission I r----->I 1 ~--------->I A I I
L ____________ J I L-__________ J L----~T-----J I

I (1) I I (3) r-----2'------,
r------------+----------------------------------J I I Conversion I
'I I I package I
I I r----------J I I
I I I L----i\-------I

r-----y-----, I r-----------, I r------------1 I
I Request I I ,Specify I I I Format , I
Idata item 2 t-----+----->I format ~-----+---->I director I<---------------J
I transmission I , , 2 , I I B I l ____________ J , L ____________ J , L _____ ~-----J

, I (2) I
, I I
I I I

r------------t------------------------t----------- J

I I I
I I I

r-----'i------, I I
I Request I I I
Idata item 3 t-----I I
,transmission I I L ____________ J f

I
I

r-------------------------------------J
I
I

V
Termination

Figure 12. Executable Format Scheme

16

Page of GY28-2052-0, Issued spetember 30, 1971 by TNL GN28-3192

7. Return is then made to the data-list
code, by means of the data-list loca­
tion counter, LR.

8. The above steps, 2 through 7, are
repeated until the end of the data­
list code is reached.

Within both primary and secondary code,
looping and invocation of function proce­
dures may occur. Within secondary code,
the appearance of control format items
(PAGE, SKIP, LINE, COLUMN, X) will cause
the location counter for primary code, reg­
ister LR, to be temporarily altered, so
that control is returned from the library,
not to the primary code, but. to the secon­
dary code. This allows the data-list item
which activated the control format item to
be matched with a data formclt item.

Options

COPY
this option causes each data field
accessed during a GET operation to be
listed on the standard output file,
SYSOUT. This is perfoIEed by calling
the module IHEWPRT. Each data field
occupies the initial portion of a line

STRING
this option causes a character string
to be used instead of il record from a
file. This situation is made trans­
parent to the normal operation of the
I/O modules since the initialization
module for GET/PUT STRING (IHEWIOC)
constructs a temporary FC». for the
string. Information regarding the
address and length of 1:he string is
set in the FCB fields ~~CBA, TREM and
TMAX. A temporary file register is
created in the second. \lOrd of the
pseudo-register IHEQCFL. (A dummy
DCLeB is placed in front of the
generated FCB and cons::t.sts of two
bytes which indicate the offset of the
dummy file register.)

PAGE, SKIP, LINE (print files)
these options cause the current record
(which is equivalent to a 'line') to
be put out, and a new j::ecord area to
be obtained. SKIP can also be used
with input to cause thf: rest of a re­
cord in the input streilm to be
ignored. Record handling for these
functions is performed by the module
IHEWIOP. All printing options (and
format items) are supp)rted by use of
the American National Standard FORTRAN
control characters:

1 Page eject
+ Suppress space befor·e printing
b Single space before grinting

o Double space before printing
- Triple space before printing

For conversational tasks, PAGE will be
treated as a triple space; a SKIP of
more than 3 in an output file will be
treated as a triple space; and a LINE
request which implies more than 3
spaces will be treated as a triple
space.

SKIP (non-print files)

1. Input files: The SKIP (n) option
causes the rest of the current
line (record) to be ignored in the
input stream, and a further
(n - 1) lines to be ignored.

If the task is conversational, and
SYSIN is the input file, then the
SKIP option is ignored.

2. output files: The SKIP (n) option
causes the remainder of the cur­
rent line (record) to be ignored
and (n - 1) blank lines to be
inserted into the output stream
(for conversational tasks, a maxi­
mum of 3 lines will be inserted).
Note that, for format-F records,
each line is padded with blanks;
for format-V and -U records, only
the necessary control bytes and
record lengths are supplied.

RECORD-ORIENTED I/O

Object Program Structure

In record-oriented I/O, the data enti­
ties accessible to the source program are
data management logical records (unlike
stream-oriented I/O, where the data enti­
ties are data fields, independent of record
boundaries) •

A wider range of record access is there­
fore available with record-oriented I/O:
records may be keyed or not, may be direct­
ly or sequentially accessed, and may be
manipulated within the data set by inser­
tion. replacement, or deletion. The spe­
cific facilities available vary according
to the data management access method em­
ployed to support a given data set.

The data management facilities employed
are indicated in Figure 13, according to
the organization of the data set. Note
that not only the declared organization but
also the mode of access and the format of
records determine the chosen access method.
Details of the manner in which the access
methods are employed are provided in
'Access Method Interfaces'.

Section I: General Implementation Features 17

Page of GY28-2052-0, Issued SpetembeL 30, 1971 by TNL GN28-3192

r----------------T--------------T---------~-------------~------------T-----------------1
I I I I I RECORD I ACCESS I
I ORGANIZATION I ACCESS I MODE I BUFFERING I FORMAT I METHOD I
~----------------+--------------+----------+--------------+------------+----------------~
I I I INPUT I BUFFERED I ALL I QSAM/VSAM I
I I I I I I I
I CONSECUTIVE I SEQUENTIAL I OUTPUT t--------------+------------+----------------~
I I I I I I I
I I I UPDATE I UNBUFFERED IF, U, V I BSAM I
~----------------+--------------+----------+--------------+------------+----------------~
I I I INPUT I I I I
I I I I BUFFERED I I I
I I SEQUENTIAL I OUTPUT I or IF, V I VISAM I
I I I I UNBUFFERED I I (GET/PUT) I
I I I UPDATE I I I I
I INDEXED t--------------+---------_+--------------t------------t----------------~
I I I INPUT I I I I
I I DIRECT I I UNBUFFERED IF, V I VISAM I
I I I UPDATE I I I (READ/WRITE) I L ________________ ~ ______________ ~ _________ ~ ______________ ~ ____________ ~ ________________ J

Figure 13. Data Management Access Methods for Record-Oriented I/O

r-----------,
I Compiled I
I Code 1-------------1
l------T----J I

I I
I I

r------~----_, r------~----_,
I I~ I I O~ I
r---------~ t------------~
I Compiler I I Wait I
I Interface I I I
l ____ ~-----J l------T-----J

I I
I<-------------------l
I

r--~
I r------------1 I r------------1
I I ITN I I I lTD I
I r------------i I t------------~

r----y-------, r------------, I VISAM 1<--------+------>1 VISAM
I OCL I I CLT I I GET/PUT I I I GET/PUT I
t------------~ t------------~ I (format-V) I I I (format-F) I I r-----· >1 I L ____________ J I L ____________ J

I OPEN/CLOSE I I CLOSE I I L---T-------J L ____________ J r------------, I r------------1
I I ITM I I I ITE I
I t------------~ I t------------~
I I VISAM I I I VISAM I
I I READ/WRITE 1<--------+------>1 READ/wRITE I

r----y-------1 I (forn,at-V) I I I (format-F) I I OPN I L ____________ J I L ____________ J

t------------~ I
I OPEN I I
I Phas e I I I r------------1
L----T-------J I I ITB I

I I t------------~
I r------>f

r----~-------, r------------, r------------, I I BSAM I I OPO I I OPP I I OPQ I I L ____________ J

t------------~ t------------~ r------------i I
I OPEN r------>/ OPEN r------>I OPEN I t
I Phase II I I Phase III I I Phase IV I I r------------, L ____________ J L ____________ J L ____________ J I I ITG I

I r------------~
L------>t QSAM/VSAM I L ____________ J

Figure 14. Linkage of Access Modules in Record-Oriented I/O

18

General Logic and Flow

The overall f low of record-oriented I/O
modules is illustrated in Fi<;ure 14.
Module IHEWION is a general jnterface
rr,odule which is invoked .ty a compiled call
for any record-oriented I/O statement.
This module interprets the requested I/O
operation, verifies its applicability to
the specified file Cand, pos!;;itly, impli­
cilty opens it), and then invokes an access
method interface roodule (chal:acterized by
the module naroes IHEWIT*> to have the
operation perforreed.

The verification of a sta1:err,ent is per­
formed by IHEWION by ANDing Logether a mask
at offset -8 from the FCB and the second
word of the Request Control Block. If the
result is zero then the statement is inval­
id. The roask in the FCB is set up by IHE­
WOPQ to indicate which statements are
valid, and the RCB contains 1:he statement
type as a single bit in its second word.

On receiving control, the interface
module first performs any necessary key
analysis and record-variable length check­
ing, and establishes any coni:rol blocks
required. It then invokes data roanagement
for the transroission of a record. After
transmission, or (if the EVENT option is
employed and BSAM is the acc,=ss method)
after initiation of transrois3ion, control
returns to the general interEace roodule
IHEWION, and thence to the ctJropiled pro­
gram. Errors roay be detected within IHEW­
ION before an interface roodule is invoked,
or within an interface module either before
or after data management has been invoked.
The relevant ON condition is raised when
detected.

As indicated by the overall flow dia­
gram, record-oriented I/O is iroplemented in
such a fashion that the addition of further
access roethod interface ITlodules requires
minimal changes (if any) within other parts
of the irrplerrentation. The general inter­
face module IHEWION provides each access
method interface module with a standard pa­
rameter set:

RA: A (Compiled parameter list.)

Parameter list:

A (DCLCE)

A (Reccrd dope vector/IGNORE/SDV)

A (Event variable) /O/A (Error
return)

A (KEYIKEYFROMIKEYTO SDV) /0

A (Request control block)

The record dope vector and the request
control tlock are described below under
'Reccrd-Oriented 1/0 Control Blocks'.

The interface modules are also invoked
to handle WAIT stateroents associated with
I/O events. The WAIT module, having deter­
mined that an event variable (see Section
IV) is associated with a record-oriented
I/O operation, invckes the relevant I/O
transroitter (IHEWIT*), passing the follow­
ing pararr:eters:

RA: A (Compiled parameter list)

Parameter list:

A (DCICB)

A (IOCB being waited for)

A (Event variable)

(Reserved)

A (Request control block)

The transroitter then coropletes the pre­
viously initialized record transmission, if
the access method was BSAM, and perforrrs
any checking required before returning con­
trol to the WAIT module.

From the arguments, the interface ITodule
is atle to determine fully the operation
requested of it. The location of the
required interface module is available to
IHEWION from the FCB associated with the
file; the field TACM in the FCB is set dur­
ing the open process to point to the appro­
priate rrodule.

Thus, when extra interface modules are
provided, the only change required in the
cpen modules is the provision of code to
set TACt' and any other FCB fields relevant
to the new access rrethod interface.

Record-Oriented I/Q Control Blocks

Record Dore Vector (RDV): The record dope
vector is an eight-byte block that
describes the record variable. Its forrrat
depends en the type of statement and the
associated options:

Bytes 0-3: A (INTO/FROM area), cr
A (POINTER variable) for SET

option in READ statement,
or

A (tuffer) for LOCATE
statement

Byte 4: Reserved

Bytes 5-7: Length of variable

Section I: General Implementation Features 19

String Dope Vector (SDV): The address of
the string dope vector is passed instead of
that of the record dOfe vector to record
I/O interface modules when the input or
output of varying strings is requested.
The string dOfe vector is an eight-byte
tlock:

Bytes 0-3: A (INTO/FRC~ string)

Bytes 4-5: t'Jaximum length of string

Bytes 6-7: Current length of string
(output>, undefined (input)

Request Contrcl Elock: This eight-byte
Llock contains the request codes, in the
first four bytes, for various RECORD I/O
operations and options. The format is
defined in the BREQ field of the I/O con­
trol block (IOCB). (See Section IV.)

The additional four bytes which are ccn­
tained in the compiler argument list are
not copied into the IOCB. Each type of
record-oriented I/O statement is repre­
sented by one bit as follows:

Bit number
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29-31

Statement + options
READ SET
READ SET KEYTO
READ SET KEY
READ INTO
READ INTO KEYTO
READ INTO KEY
READ INTO KEY NOLOCK
READ IGNORE
READ INTO EVENT
READ INTO KEYTO EVENT
READ INTO KEY EVENT
READ INTO KEY NOLOCK EVENT
READ IGNORE EVENT
WRITE FROM
WRITE FROM KEYFROM
WRITE FROM EVENT
wRITE FROM KEYFRCM EVENT
REWRITE
REWRITE FROl<:
REWRITE FROM KEY
REWRITE FROM EVENT
REWRITE FROM KEY EVENT
LOCATE SET
LOCATE SET KEY FROM
DELETE
DELETE KEY
DELETE EVENT
I:ELETE KEY EVENT
UNLOCK KEY
Reserved

I/O Control Block (IOCB): Record-oriented
I/O employs several data management access
methods that require that operation
requests be provided with a s~ecial form of
fararreter list. This parameter list is
termed the data event control tlock (DECB).
A DECB must be provided for each operation,
but may be reused when the operation is

20

cerrpleted. If several o~erations are cut­
standing (owing to the use of the EVENT
option in I/O statements), then one DECB is
required for each operation.

In order to meet these requirements, the
FL/I Of en preCESS allocates one or more I/O
control blocks (IOCB), which are sutse­
guently rranipulated or increased in number
as £ollo","s:

DIRECT access (VISAM):
~he IOCEs are created by IHEWITE. Only
one IeCB is created at open tine; any
others requirEd are created when needed.

SEQUENTIAL access (BSAM only):
All the required IOCBs are obtained at
open time; an attempt to use more than
those already in existence raises the
ERROR condition.

The IOCB forrrat for both these usages is
described in Section IV.

A number of IOCB fields exist in order
to support the EVENT option. Since the
cpEration is split into two parts -­
initiation through the READ, WRITE, etc.,
statements, and completion by the WAIT
statement -- information regarding a parti­
cular operation must be retained fcr use at
the time of completion. For example, if a
hidden buffer is enployed for a REAI:, the
address ef the user's record variable must
be retained for subsequent movement from
the buffer te the specified area.

IOCB -- SEQUENTIAL Usage: Manipulation of
IOCBs for SEQUENTIAL usage is required enly
fer BSA~, which is employed for CONSECUTIVE
UNBUFFERED files.

A number of IOCEs is allocated during the
q::en process by rr,eans of the GETPOOI. rracro;
subsequent selection of a particular IOCB
is made by a routine similar to that pro­
vided by the GETBUF macro. Whenever an
IOCB is selected, it is entered into the
chain of IOCEs currently in use; the TI.AB
field in the FCB points to the last IOCE to
be used.

The chain of IOCEs is required because
all I/O operations must be checked in the
crder in which they were issued. This
chain is principally required for the EVENT
opticn, which can cause more than one I/O
operation to be outstanding at a given
tine.

The number of IOCBs (tuffers) allocated
is deterrrined by the DDEF subparameter NCP.
The value of this subparameter should not
be greater than 1 unless the EVENT option
is employed; if NCP is unsfecified a
default of 1 is USEd. If NCP = 1, there is
then one IOCB and one channel prograrr.

Paqe of GY28-2052-0, Issued Spetember 30, 1971 by TNL GN28-3192

The size of each IOCB varies, depending
upon the organization and the record format
of the data set. Section IV specifies the
size requirements.

IOCB -- DIRECT Usage: Manipulation of
IOCBs for DIRECT usage is required for
VISAM. One IOCB is allocated to a DIRECT
file when it is opened; subs,equent selec­
tion of an IOCB is performed by lHEWITE.
Unlike SEQUENTIAL access, th'e order of I/O
operation is not normally co:nsidered.

The chain of IOCBs for a given file is
anchored in the TLAB field in the FCB. The
chain is released when the file is closed.

ACCESS METHOD INTERFACES

This section describes how the PL/I
Library relates to the various data manage­
ment access methods for record-oriented
I/O, and gives details of the support
required from the library for various PL/I
features. This information supplements,
but does not replace, that provided in the
module summaries and in the module listing
prefaces.

CONSECUTIVE Data Sets

The access methods employed for this
organization are:

1 • QSAM or VSAM

2. BSAM

The choice between them is governed by the
file attributes BUFFERED and UNBUFFERED:

BUFFERED: QSAM or VSAM
UNBUFFERED: BSAM (F,V,U> (No automatic

blocking or deblocking)

The choice between VSAM and QSAM for BUF­
FERED files is determined by' the data set
organization, as specified in the DDEF.

QSAM/VSAM (IHEWITG): A BUFF'ERED file is
specified in order to take C:ldvantage of
automatic transmission, process-time over­
lap, and blocking or deblocking of records.
All record formats may be hc:cndled.

The locate mode of the GET and PUT
macros is employed with this access method
for the following purposes:

1. To support the SET option in READ and
LOCATE statements, and to support the
REWRITE statement without the FROM
option. Module IHEWITG allocates the
data management buffen; for the rec­
ords, and sets the pointer appropri­
ately. The first byte of a buffer is
always on a doubleword boundary; for

blocked records, the user must ensure
that his alignment requirements are
met by adjusting the lengths of the
variables being transmitted.

2. To remove or add V-format control
bytes if the INTO or FROM option is
employed.

Closing a data set being created by QSAM
may cause output records to be written by
the close executor. If an error occurs
during the closing process, the system uses
the ABEND macro to end the PL/I program.

BSAM (IHEWITB): An UNBUFFERED file is spe­
cified in order to avoid the space and time
overheads of intermediate buffers when
transmitting records. Overlap of transmis­
sion and processing time is only available
if the EVENT option is employed.

BSAM requires the use of DECBs to com­
municate information regarding each I/O
operation requested of it; see 'I/O Control
Block (IOCB), and System Control Blocks PLM
for details of the DECB. IHEWITB selects
an IOCB (which contains a DECB area) from
the IOCB (buffer) pool for each input/
output operation. The IOCBs used for CON­
SECUTIVE organization do not contain hidden
buffers, except when V-format records are
employed. Hidden buffers are used in this
case so that the V-format control bytes can
be eliminated from the record before the
data is moved into the record variable.
If, however, the data set consists of F­
format unblocked records, and the size of a
record variable is less than the fixed size
of data set records, a temporary buffer
area is dynamically obtained. The use of a
temporary buffer area for input prevents
the destruction of data following the INTO
area; for output, it prevents triggering of
the fetch-protect interrupt.

INDEXED Data Sets

The access method employed for this
organization is VISAM.

All usage of INDEXED data sets requires the
presence of buffers, even though the file
is UNBUFFERED or DIRECT.

VISAM SEQUENTIAL Access CIHEWITD and IHE­
WITN): SEQUENTIAL creation and access of
INDEXED data sets is performed by IHEWITD
for format-F records, and by IHEWITN for
format-V records. Creation requires that
keys be presented in ascending collating
sequence. The sequence is checked by the
library before the PUT macro is executed,
in order to synchronize a given WRITE
statement with the raising of the duplicate
KEY condition. This arrangement is neces­
sary because, since PUT LOCATE is employed,

Section I: General Implementation Features 21

Page of GY28-2052-0, Issued Spetember 30, 1971 by TNL GN28-3192

VISAM would normally raise the condition
only on the subsequent PUT operation.

For records with embedded keys, when a
WRITE statement with a KEYFROM string
shorter than the key length, or a LOCATE
statement, is executed, the KEYFROM string
is placed in an area addressed by TPKA in
the FCB. In the next operation on the file
after a LOCATE statement (including a CLOSE
statement), the KEYFROM string is compared
with the key embedded in the data in the
buffer. If they are unequal, the KEY con­
dition is raised. On normal return from
the on-unit, control passes to the next
statement in the program (that is, the one
following that which caused the KEY condi­
tion to be raised). The process of compar­
ing keys and raising the KEY condition is
repeated in successive statements that re­
fer to the file until the embedded key has
been changed. (After a LOCATE statement
has been executed, no further operations
are possible on the file until the record
has been transmitted; for records with
embedded keys, this cannot occur until the
KEYFROM string matches the embedded key.)

When a file is closed implicitly (that
is, on termination of a PL/I program), the
KEYFROM string overwrites the key part of
the record in the buffer, and the record is
written onto the data set. If the KEYFROM
string is not identical with the embedded
key, a message is printed on the task's
SYSOUT.

To support the REWRITE statement without
the FROM option, the key is saved on execu­
tion of a READ statement with the SET
option. When the REWRITE statement is
executed, if the embedded key is the same
as the saved key, a WRITE (type KS) macro
instruction is issued. If the key has
changed, the WRITE macro is not issued and
the KEY (specification) condition is
raised.

To support the DELETE statement without
the KEY option, the DELREC macro instruc­
tion is used.

If the file has the KEYED attribute, and
the mode is INPUT or UPDATE, the VISAM SETL
function is required in order to reposition
the indexes. The parameters for the SETL
macro are such that, for unblocked records,
the recorded key is transmitted as well as
the data record. For a READ statement, if
the KEY string is shorter than the key
length, the string is placed in an area
addressed by TPKA in the FCB. If the file

22

is not KEYED (indicating that the KEY
option will not be employed), the VISAM
SETL routine is not loaded during the open
process.

Since buffers are employed, truncation
or padding of records is performed during
the move between the buffer and the record
variable. Padding bytes are undefined in
value.

Closing a data set being created or
updated by VISAM may cause output records
to be written. If an error occurs, output
entry to the SYNAD routine is prevented by
the close process having cleared the DCB­
SYNAD field before issuing the CLOSE macro.
The system uses the ABEND macro to termi­
nate the PL/I program.

VISAM DIRECT Access (IHEWITE and IHEWITM):
Direct access of INDEXED files is performed
by module IHEWITE for format-F records, and
by IHEWITM for format-V records.

VISAM requires the use of DECBs to com­
municate information reqarding each I/O
operation requested of it; see 'I/O Control
Block (IOCB)', earlier in this section, for
details of the DECB and its use in VISAM.

Since a VISAM may destroy the contents
of the key and record fields when adding
new records to the data set, the key value
is moved into the buffer before VISAM is
invoked. TrUncation or padding of the
character-string key to conform to the KEY­
LEN specification is performed during the
move.

A DELETE statement is implemented by the
DELREC macro instruction.

THE WAIT STATEMENT

Under TSS/360, the WAIT statement is
supported for awaiting the completion of
I/O events. When the WAIT statement is
executed, compiled code calls the library
module IHEWOSW, passing the addresses of
the event variables associated with the
statement. If the required number of
events have been completed, return is made
to the user; if not, CHECK macros are
issued to await the completion of the
necessary I/O operations.

Since QSAM, VSAM, and VISAM I/O opera­
tions are checked in line (i.e., as they
are issued), and are therefore complete

before the user receives control after hav­
ing issued them, a WAIT staterrent issued
for an I/O operation performed by any of
these access rrethods will always find the
event completed; only in the case of a BSAl-',
operation rray the WAIT statement find the
event incomplete, and therefore be required
to await completion.

PL/I OBJECT PROGRAM MANAGEMEN1

INTRODUCTION

The PL/I Library provides facilities for
the dynarric management of PL/I programs.
This involves:

1. Program rranagement: Homo ekeeping at
the beginning and end of a ~rogram or
at entry to and exit fron, a clock.

2. Storage rranagement: All.ocation and
freeing of storage for autOIratic and
controlled variables, and for list
processing.

This section describes the requirements
for these facilities and their irrplementa­
tion by the library. With the exceptions
of the compiler optimization routine and
storage managerrent for list I:a"ocessing, all
the functions described are performed by
wodule IHEWSAP, whos e ent ry points are
listed in Figure 15; full details are given
in Section III.

Program Initialization

Certain functions must be carried out on
entry to a PL/I program befon, the PL/I
main procedure is given control. One of
the library program-initialization subrou­
tines is always given control on entry to
the program. Its functions are:

Entry point
IHESADA
IHESADB
IHESACD
IHESADE
IHESADF
IHESAFA
IHESAFB
IHESAFC
IHESAFD
IHESAFF
IHESAFQ
IHESAPA}
IHESAPE
IHESAPC
IHESAPC
IHESARA
IHESARC

Figure 15.

Get LSA
Get VDA

Function

Get controlled variable
Get LWS
Get library VDA
END
RLTURN
GO TO
Free VCA/Free LWS
Free controlled variable
Abnormal progran termination

Program initialization

Environment modification
Setting cf return code

IHEWSAP Entry Faints

1. Allocation of storage for the PRV.
(See 'Comrrunications Conventicns' in
this section.)

2. Initial allocation of LWS.

3. Passing the address of the library
error-handling subroutine (IHEwERR),
which assumes control when a program
intErruption occurs, to the system.

Bleck Housekeering: Prologues and
KEilcgues

PrologUeS and epilogues are the rcutines
Executed on entry to and exit from a PL/I
procedure or begin block. The library sub­
routines contain those SEctions that are
common to all prologues and epilogues. The
fUDctions of the library prologue subrou­
tine are:

1. To preserve the environrrent cf the
invcking l:lock.

2. To obtain and initialize autorratic
storage fer the block.

3. To provide chaining mechanisrrs to
enable the progress of the prcgrarr tc
be traced. A detailed description of
the chaining mechanisms errployed is
provided telow.

The main functions of the epilogue sub­
routine are:

1. To release storage for the blcck.

2. To recover the enviromr,ent of the
invcking block before returning con­
trol to it.

Storage t-'.anagement

In TSS/360, virtual storage is cbtained
cr freed by using the GETMAIN and FREEMAIN
rracrcs. The library assumes responsibility
for obtaining and freeing storage in this
way in order to provide an interface
between compiled code and the ccntrcl
frograrr.

There are three types of dynamic storage
in Pl/I: controlled, automatic, and based.
Eased storage is discussed in 'List Proces­
sing: Storage ~anagement'.

Time Sharing system Facilities

The fcllowing facilities are provided by
TSS/360. (See IBM system/360 Tirre Sharing
System: Assembler User Macro
Instructions.)

Section I: General Implementation Features 23

SPEC macro instructicn: States the address
of an interrupt handling routine with entry
foint IHEERRA, and indicates that it is to
handle program interrupt types 1 to 13, and
15.

SIR macro instruction: Directs control of
program interru~t handling to a routine
specified in a SPEC macro instruction.

DIR macro instruction: r:;eletes control
references to the routine previously
defined to the system ty the SIR macro
instruction.

GATWR nacro instruction: Used to send cer­
tain error messages to the user's SYSOUT.

GE~MAIN macro instruction: Requests the
allocation of a contiguous block of virtual
storage to the user's task.

FREE~~IN macro instruction: Releases a
specified virtual storage area from a
user's taSK.

AUTOMATIC STORAGE: STCHAGE ~ANAGEMENT

Two types cf automatic storage area are
needed to implement the functions described
above. These are:

1. The storage area associated with the
execution of a PL/I block, knoNn as a
dynanic storage area (DSA).

2. The storage area mainly used for auto­
matic variables whose extents are
unknown at compi Ie tin.e, known as a
variable data area (VDA).

Each type of storage area is identified by
flags set in the first bytE. These flags
also indicate the existence of certain
optional entries in the storage area. The
flag patterns are shown in Section IV.

Dynarric Stcrage Area (DSA)

This area, always associated with the
execution of a PL/I tlock, is used to re­
cord the progress and environment of a pro­
gram. It also contains space for AUTOMATIC
variables declared in the tlock and for
various optional entries. The minimum size
of a DSA is 100 bytes. The format is
described in Section IV.

The address of the DSA associated with a
particular block is held in a fseudo­
register. Hence there is a pseudo-register
for each block; the grcup of these pseudo­
registers is known as the display. The
address contained in a display pseudo­
register can be used to identify the DSA
associated with a non-recursive block when

24

a GO TO statement specifying a label in
that block is executed.

when a block is entered recursively, a
new [SA is created for the invoked block.
The address of the DSA associated with the
previous invocation of that block is stored
in the display field of the new DSA. 'Ihis
address is already stored in the appropri­
ate pSEudo-register, where it is now
replaced by the address of the new [SA.
when this latest invocation is finiShed,
the new [SA is freed and the address of the
previous DSA is restored to the appropriate
pseudo-register.

When there is a GO TO staterrent to a
label in a recursive block or to a label
variable, a unique means of identifying the
tlock containing the label is needed. This
is accorrplished by means of an j,nvQcatioQ
count, which is stored in the invocation­
count field in the DSA during the prOlogue.
1he current invocation count is contained
in a pseudo-register and is increased by
cne each time a [SA is obtained.

Variable Data Area (VDA)

A variable data area is a special type
of automatic storage area used for
variables whcse extents are not known at
compile tillie. This storage area is asso­
ciated with the storage obtained for a par­
ticular block. The only housekeeping
necessary is that which provides a rreans of
identificaticn of the type of storage area
and a method of associating it with a par­
ticular block fcr epilogue purposes.

VDAs are used for three other purposes:

L Temporary storage for library nodules.
These areas are only distinguishable
from an ordinary VDA by the flag byte.
This is to allow them to be freed on a
GO TO, as described in the exarrple in
'[SA chain' under 'Block
Housekeeping',

2. The PRV and primary LWS are contained
in a VDA, .known as the PRV VI:A, which
is chained back to the external save
area.

3. Secondary LWS is contained in a spe­
cial litrary workspace VDA.

The forrr·ats of the VDA, PRV VDA, and LWS
VDA are shown in Section IV.

Library Workspace (LWS)

The housekeeping associated with library
workspace can te divided into two parts: •

Page of GY28-2052-0, Issued September 15, 1970 by TNL GN28-3162

1. The identification of the area needed
as library workspace, and chaining
this to a previous allocation of auto­
matic storage and to any previous
library workspace.

2. The updating of the pseudo-registers
pointing at the various areas in
library workspace.

The first allocation of LvlS is contained
in the PRV VDA; subsequent allocations are
contained in the LWS VDA. The pseudo­
register lHEQLSA always contclins the
address of the current LWS. Save areas
within LWS are indicated thus:

1. The address of each SaVE! area is held
in a pseudo-register.

2. The beginning of each save area is
indicated by X'60' in the first byte.
(A DSA can often be readily distin­
guished from a save area in LWS by the
presence of XIS' to X'F" in its first
half byte. Section IV :Lncludes the
format of the first bytt:! of the DSA.)

Allocation and Freeing of Am:OItatic Storage

This section describes th.:! Itethods of
controlling the allocation and freeing of
automatic storage for VDAs, DSAs and secon­
dary LWS.

To minimize the number of system
requests (i.e., GETMAINs) necessary to
obtain automatic storage, a page of storage
is obtained every time a GETMAIN is issued.
Areas are allocated by the l.ibrary from
this page (or block) as required until a
request is made that is too big to be sat­
isfied from the remaining storage in the
block, then another page is obtained. So
that a check can be made as to whether the
amount of storage remaining in a block is
sufficient to meet an allocation, a record
of the amount is stored in the block. When
a storage area is freed, its length is
added to the available length in the block.
When the available length equals the total
length of the block, the block is returned
to the supervisor.

Since storage areas are released in the
reverse order to their allocation, a chain­
back mechanism, with a painter to the last
member of the chain, is provided.

Initially, sixteen pages of storage are
allocated for the PRV VDA. When further
requests are made for storage, they are
satisfied by allocations from the remaining
storage of this block. When a request can­
not be satisfied, another sixteen pages are
obtained by means of a GETt1A IN macro.
These blocks are chained to the existing
blocks by the free-storage chain. (See
Figure 16.)

In any block that contains unallocated
storage (that is, contains free storage).
the first four words of the unallocated
storage are used for control purposes:

1st word: Length (in bytes) of the
unallocated storage for that block
(excluding the four centrol words)

2nd word: Elock length

3rd word: A (Free storage length in
previous block)

4th word: A (Free storage length of
following block)

The first and last blocks require a
slightly different usage:

First block: Uses the free-storage pseudo­
register IHEQSFC in the chaining forward
and J::ack:

1. IHECSFC contains A (Free-storage
length of first block).

2. 3rd word of block ccntains (A (IHEQSFC)
- 12), which is a dummy free-storage
length in the PRV.

Last block: 4th word contains 0

When a request for storage is received,
a search of the free-storage lengths,
starting from the first, is made. If a
free-storage length equal to or greater
than the length requested is found, the
request is satisfied from that block. The
free-storage length and ~ointers are
adjusted, as are the appropriate pointers
in the blocks on either side.

When storage is freed, the ~ointers are
adjusted, and the free-storage field in the
corresponding block is u~dated. If the
rage becomes available, it is freed J::y
issuing a FREEMAIN macro. and the free­
storage chain Fointers are adjusted
accordingly.

CONTROLLED STORAGE: STORAGE MANAGEMENT

controlled storage is used for con­
trolled variables only; it is requested J::y
the ALLOCATE statement and freed by the
FREE statement.

Allocation of a particular controlled
variable may occur a number of times.
Since the latest allocation is always the
ene to be used it is convenient to have a
pseudo-register Fointing at it; this
fseudo-register is sometimes referred to as
an 'anchor word'. Each allocation is
chained back to the previous allocation so
that the pseudo-register can be updated

Section I: General Implementation Features 25

Page of GY28-2052-0, Issued September 15, 1970 by TNL GN28-3162

Page 1 Page 2 page 3
r----------------------, r-----------------------, r----------------------,
I PRV I I I
I I I I
I I I Used storage I Used storage
I I I I
/-----------------------++--, I I
I I I I I
~----------------------f I I I
I I I I I
~----------------------~ I I I
I I I I I
I-----------------------f I I I
I IHEQSFC 1----, I I I
~----------------------f L~---+-----------------------~---,
I I I I 1 (Free storage) I I
I I I ~-----------------------f I
I I I I Block l.ength I I
I I I t-----------------------~ I
I I L __ ~ Chain-back fCinter I I
i I t-----------------------~ I
I I I Chain-forward fointer t---, I I I
I I t-----------------------~ l_+_~----------------------~
I I I I I I L (Free storage) I
I I I I I t----------------------~
I I I Free storage I I I Block length I
I I I I I t-----------------------~
I I 1 I L_~ Chain-tack pointer I
I I I I t----------------------f
I I I I I Zero I
I I I I t----------------------+
I I I I I I
I I I I I Free storage I
I I I I I I
I I I I I I
I I I I I I l ______________________ J l _______________________ J l ______________________ J

Figure 16. structure of tne Free-Storage Chain for Autorratic Variables

when the current allocation is freed
(Figure 17). The length cf each allocation
is recorded in the fullword field following
the chain-back address. The length of tne
data is 12 bites less than the length of
the allocation. The Task Invocation Count
is held in the TIC field.

When there is no allocation, the con­
tents of the fseudo-regist~r are zero.
Each allocation points to the rrevious

allocaticn, the fointer being zero in the
first allocation, which is at the tottcrr of
the stack. Thus the various allocations of
a particular controlled variable beccne
fart of a fush-down (AllOCATE) pop-up
(f'REE) list.

When a request is made to storage rran­
agernent for a new allocation, it is ser­
viced by issuing a GETMAIN nacro. Twelve
bytes are added to the length requested,

ALLOCATION 2 ALLOCATION 1

r---------------------l r-----------T-----------, r----------T------------,
I PR 1----, I TIC I PR offset I I TIC I PR cffset I
t---------------------~ I t-----------~-----------1 t----------i------------~
I I I I Chain- tack address r---, I 0 I
I I I t-----------------------f I t-----------------------~
I I I I Length I I I Length I
I I l---~t-----------------------~ l---~-----------------------f

I I I I I I
I I I I I I
I I I I I I L _____________________ J l _______________________ J l _______________________ J

f'igure 17. storage Allocaticn for a Controlled Variable

26

Page of GY28-2052-0, Issued September IS, 1970 by TNL GN28-3l62

for control purposes, and 1:his new length
is rounded up to a page. The length
field contains the actual length requested.
The pseudo-register is updated and points
to word four of the area. When a request
is made to storage management to free an
allocation, it is serviced by updating the
pseudo-register and issuincf a FREEr·1AIN
macro.

LIST PROCESSING: STORAGE l~NAGEMENT

This section describes the functions of
module IHEWLSP, which cont.eols the alloca­
tion and freeing of storage for the PL/I
list-processing facility. The functions
involved are:

1. Allocation and freeing of system
storage for based variables.

2. Allocation and freeing of storage for
based variables in prograffimer-defined
areas (area variables).

3. Assignments between area variables.

System Storage for Based Variables

Storage for based variables is allocated
and freed in a similar manner to controlled
storage, but it is not stacked since each
generation is associated "'ith a particular
pointer value: reference may be made to
any current generation of based storage by
associating the appropriat.e pointer value
with the name of the based variable. A
request for a new generation of based
storage is serviced by is!;:uing a GET MAIN
macro, and storage is freed by the FREEMAIN
macro. Based storage is allocated only in
multiples of eight bytes: the sum of the
length of the variable and its offset from
a doubleword toundary is rounded up to a
multiple of eight bytes. All based storage
allocated in a PL/I progr<~ is freed at the
end of the PL/I program.

The AREA Attribute

The AREA attribute enables a programmer
to define a block of storage (an area vari­
able) in which he can collect and make
reference to based data. Space within the
area variable is requested and released by
ALLOCATE and FREE statements that include
an IN (area-variable) clause. Reference
can be made to a based va.riabl€ contained
by an area variable just as if the based
variable were in virtual 3torage. The con­
tents of one area variabl.= can be assigned
to another area variable, and an area vari­
able can be handled as a Single data item
in input/output operations.

The Area Variable

The format of the area variable is shown
in Figure 18. The start of the area is
aligned on a doubleword boundary. The
first four fullwords are used for control
information, the remainder of the area
being the storage requested by the pro­
grammer in declaring the area variable.
The portion of the area that has been allo­
cated to based variables is termed the
extent. When storage is allocated to an
area variatle, its length is set in the
last three bytes of the first word. and the
second word (offset of end of extent) is
set to zero.

Area Storage for Eased Variables

Storage for based variables within an
area variatle is allocated only in nul­
tiFles of eight tytes; each such allocation
is termed an element. The first request
for storage for a tased variable is satis­
fied by the allocation of the appropriate
number of bytes starting at the beginning
of the unuseu sFacei the offset of the end
cf this allocation is set in the second
word of the area variatle, which now points
to the first available doubleword of unused
storage. Providing no storage has been
freed, further requests are met by further
contiguous allocations from the unused
space, the offset of the end of the extent
being updated each time.

If the last allocation of the extent is
freed, the offset in the second word of the
AREA variable is reduced. However, if
allocations other than the last in the
extent are freed, the extent is not
reduced: spaces, termed free elements, are
left. The length of each free element is
set in its first fullword, and a pointer to
the next smaller free element (in the form
of an offset from the start of the area
variable) is set in the second word. If
there are no smaller free elements, the
second word of the free element points to
the fourth word of the area variable, which
is set to zero. The chain of free elements
is termed the free list, and is anchored in
the third word of the aI:ea variable, which
contains the offset of the largest free
element. When an area variable contains a
free list, the first bit of the flag byte
is set tc 1.

Whenever storage in an area variable is
to be allocated to a based variable, the
free list is searched for the smallest ele­
nent that will contain the based variable.
If no free element is large enough, space
is allocated from the unused part of the
area. If this, also, is too small. the

Section I: General Implementation Features 27

Page of GY28-2052-0, Issued September 15, 1970 by TNL GN28-3162

o 7 8 31
r--------------T------------------------------------,

0- I Flags I Length cf AREA varia tIE I
~--------------~------------------------------------~

r--------------4- I Offset of End of Extent f
I ~---1
I r----------- 8- I Cifset of Largest Free Elerrent I
I I t---~
j I r----... 12- i Zero if } ree List I I I I t---t--------------f
I I I I , i
I I I I Allocated I I
I I I I I I
, I I I I I

: I I r-----.t--------------~~~;~~-~f-;~~~-~l;~~~;---------------t-----+ I
I I i I r---i I I
I I L ___ + ______ I Offset of next smaller Free Element I I I
I I I t---~ I I
I I I I I Free I
I I I I I Element I
I I I I I I I

I I I ~---t-----t I
I I I I I I
I I I I I I
I I I I Allocated I Extent
I I I I I I
I I I I I I
! L------~-----~--------------~~~;~~-~f-;~:;-~l:~~~;---------------t-----+ I
I I ~---~ I I
I l ______ 1 Cffset of next srraller Free Element I i I

I r-----------------~---------------------------------~ I I
I I I Free I
I I I E1errent I
I I I I I

I ~---t- ____ t I
I I I!
I I I I
I I Allocated I I
i I I I

\ ~---L--------------t L ________________ ~ I

I I
I I
I I
I Not Allocated I
I I
I I
I I
I I L ___ J

figure 18. Fcrillat of Area Varia tIe

AREA ccndition is raised. when an element.
is freed, it is flaced in the free list
according to its size. If it is contiguous
wi th another tree element, tne t.wo are
fuerged and included in the free list as a
single elerrent. If the last element in the
extent is freed, the extent is reduced and
the element is not ~laced in the frEe list.

28

Assignment Bet~een Area Variables

When the contents of area varia tIe A are
aSSigned to area variaole B, the current
extent and the control wordS (except the
length of A) are cOFied into B. If the
length of B is less than the extent of A,
the AREA condition is raised.

The AREA Condition

If an on-unit is entered when the AREA
condition is raised during the execution of
an ALLOCATE statement, the ALLOCATE state­
ment is executed again after the on-unit
bas been terminated normally. The return
address passed by compiled code is stored
in the library communications area (WREA)
before the on-unit is entered. On normal
termination of the on-unit, IHEWERR returns
control to the address in WREA.

If the ARl-A conditicn is rc.ised during
the execution of an assignment statement,
the statement is not executed again.

PROGRAM MANAGEME.NT

Initialization of a PIlI Program

On entry tc a PIlI prograrr., one of the
lil:;rary initialization sul:;roui:ines (IHE::jA­
PA, IHESAPB, IHESAPC, and IHESAPD) is
always given control l:;y the sUfervisor; the
entry point that is used depends on the
level of compiler optin.ization required and
on whether the PL/I prograIli i:3 called from
an assembler-language routine. The ini­
tialization routine first obtains one page
of virtual storage for the PKJ VDA.

The initialization routine zeros the
PRY, sets up the LWS pseudo-registers, and
issues SPEC and SIR macro instructions nam­
ing IHEWERR. In addition, IHESAPA and IHE­
SA PC enable a parameter on tbe statement
invoking the FL/I progran to be passed to
the prograrr,. On exit from the initializa­
tion subroutine, register RA points at a
location containing the address of the SDV
of the parameter.

Termination of a PIlI Progran

Normal Termination: Normal termination of
a PL/I procedure is achieved by an END or
RETURN statement, either of ~hich involves
releasing the automatic storage associated
with the procedure. If a request is made
to free a CSA which would entail freeing
the DSA for the main procedure, IHESAFA
(END) or IHESAFB (RETURN) raises the FINISH
condition and the program branches to the
error-handling subroutine (IHEWERR). If
and when this subroutine returns control,
IHESAFA or IHESAFE causes all opened files
to be closed (by calling the library
implicit-close subroutine). Subsequently
all automatic storage, including the PRV
VDA. is freed. IHESARC is then called to
set the return code and retUl~n control to
the supervisor.

Abnormal Termination: A PL/T program is
considered to terminate abno::mally when the
FINISH condition is raised l:.:{ any means

other than a RETURN, END, or SIGNAL FINISH
statement (e.g., when an execution-time
error occurs such that the ERROR condition
is raised). If there is not a GO TO out of
the ERROR or FINISH on-unit (if any), the
error-handling subroutine (IHEWERR) calls
IHESAFQ. which closes all the open files in
the rranner described atovej IHESAFQ returns
to the supervisor ~ith a return code (2000
+ any return code already set (modulo
1024».

GO TO Statements

In PIlI, a GC TC statement not only
involves the transfer of control to a par­
ticular latel in a tlock but also requires
the termination of contained blocks. The
housekeeping requirements for this are:

1. A return address.

2. A neans of identifying the automatic
storage associated with the block to
be nade current.

Identification of the appropriate storage
depends on whether the environment is
recursive or ncn-recursive:

Recursive: A count (the invocation
count) is kept of the numl:;er of times
any block is entered; this count can be
used to identify the storage for a par­
ticular invocation.

Ncn-recursive: The address of the
storage for each block is required.

Cn-Units and Entry-Parameter Procedures

If, in a recursive environment, the pro­
gram enters (1) an on-unit, or (2) a proce­
dure ottained l:.y calling an entry pararre­
ter, that environment must l:.e restored to
the state that existed when the ON state­
ment was executed or the entry paraneter
was passed. Similarly, at the exit fron
the on-unit or the entry-parameter proce­
dure, the environment must be restored tc
its forner state.

If the on-unit or entry-parameter proce­
dure refers to automatic data in encorrpas­
sing blocks, these references will be to
the generations that existed when the ON
statement was executed or the entry parame­
ter was passed. These will not necessarily
te the latest generations.

The ccrrect environment is obtained by
restoring the display to what it was at the
time the ON statement was exeouted or the
entry parameter passed.

When an on-uni~ is to l:.e entered, the
library error-handling subroutine calls
IHESARA and passes it:

Section 1: General Implementation Features 29

1. The address of the on-unit.

2. The invocation count of the DSA asso­
ciated with the procedure containing
the ON statement.

When an entry-parameter procedure is to
be called, cOIl'piled code tranches to IHE­
SARA and passes it:

1. The address of the called procedure.

2. The invocation count of the passing
procedure.

The state of the display at the time of
passing is determined by examining the DSAs
of active blocks invoked before the passing
procedure. The display is fuodified and
control is transferred to the called
procedure.

Before an en-unit or an entry-parameter
LSA is freed, the display is restored, in a
similar manner to that descrited atove, to
the state it had irr,mediately tefore the
on-unit was entered or the entry-parameter
frocedure was called.

Block Housekeeping

The chaining of automatic storage areas
is required both for housekeeping purposes
and for storage management. In general,
both these functions are satisfied by the
automatic storage area chain <called the
DSA chain or 'run time stack'). When a
library module is entered, an offshoot of
the DSA chain, known as the save-area
chain, may be formed.

DSA Chain: The DSA chain consists of the
external save area, PrtV VDA, DSAs and VDAs.
DSAs are added to the chain as procedures
and blocks are entered. VDAs are added to
the chain after the DSA of the block in
which they are required. The ps€udo­
register IHEQSLA is always set to point at
the last allocation in the chain. Initial­
ly it points at the PRV VDA. Register DR
always points to the current save area.

Consider a sample program. Successive
areas are added to the chain thus:

1. PRV VDA
2. DSA (Main procedure)
3. DSA (Procedure)
4. DSA (Begin block)

At this stage the storage map is as
shown in Figure 19. If the tegin tlock
required a VDA this would be added to the
end of the chain. Figure 20 shows an
Example in which the begin block requirea
two VDAs. If the program now executes:

30

r -----------,
PR I PRV VDA ~---~-----------1
---)i-----------~ I I

I I I External I
I PRV I r-~ I

IHEQI.SA I I I I save area I
---~-----------~ I I I

I I I I I I LWS 1 I I l ___________ J

L----l------J I
I I
I I
I I

r----.1.------, I
I I I
I DSA 1 I-o(-J
I (Procedure) I
I I l-----t-----J

I
I
I r ____ ~.L _____ ,

I I
I DSA 2 I
I (Procedure) I
I I
L-----f-----J

I
IHEQSLA, DR I

---~-----~-----1
I I
I DSA 3 I
I (Begin) I
I I L ___________ J

Figure 19. Example of DSA Chain

1. An END statement: The storage in the
chain is released, starting with the
area pointed at by IHEQSLA and finish­
ing when the current DSA has been
released. This leaves the chain with
iterrs 1, 2 and 3 only.

2. A RETURN statement: All areas up to
and including the immediately encarr­
Fassing Frocedure DSA are released,
leaving only items 1 and 2.

It is also possible to release the last VDA
in a chain without releasing any other
areas, by freeing the area Fainted at by
IHEQSLA.

If a GO TC statement referring to a
label in the main procedure had been
executed when the situation was as shown in
Figure 20, then either the invocaticn count
cr the display of the main procedure would
be passed to the library subroutine (IHE­
SAFe). This would then search back up the
chain until it found the DSA with that
invocaticn count or display, and then make
this DSA current. It would then free:

r------------,
I I
I DSA 2 I
I I
I I
L----l------J

I
I

DR I
---~-----~------,

I I
I r::SA 3 I
I I
I I
l----l------J

I
I

r----~------,
I I
I VDA I
I I
l-----f------J

I
IHEQSLA I

---~-----~------,
I I
I VDA I
I I L ____________ J

Figure 20. Ccntinuatian af the DSA Chain

1. All areas u{: to and including the DSA
allocated after the DSA 1:.0 te made
current.

2. Any library V"CAs or LwS between the
DSA to be made current and the follow­
ing r::SA. A VDA used by 1:he library is
distinguished frOlIc one used by com­
piled code by the flags :in the first
byte. <See Secticn IV.)

Save-Area Chain: when a PL/I l:lock calls a
PL/I Library subroutine, the :3ave area
passed is that in the DSA for that block.
If the library routine calls a lower-level
library routine, the save area passed is
that of the a{:{:ropriate level in LWS. Thus
a save-area chain is built up as an off­
shoot of the DSA chain. (See Figure 21.>
Normally the save-area chain unwindS itself
as control returns up through the levels;
in the example, the chain would te left
with DSAs 1, 2 and 3 remaininq.

Treatment of Interruptions: 'iolhen a program
interruption cccurs in a subr':>utine
<library or compiled code), the library
error-handling subroutine (IHEWERR) is
entered and the address of the save area of
that sUbroutine is set in register DR.
(See Figure 22.)

r-----------, r-----------,
I I I LWS I
I DSA 3 j-oC--" I I
I I I I LSA i
I I I DR I I
L-----f-----J I --~---------1

I L-----i Save area I
I I I

r-----~-----, I I
I I I I
I VDA I ~-----------i
I I I I
L-----f-----J ~ I

I I I
IHEQSLA I I I
---~-----~-----, I I I VDA I L ___________ J

I I l ___________ J

Figure 21. Construction of the Save-area
Chain

r-----------, r-----------,
I I I LwS 1 I
I DSA 3 ~-1 I I
I I I LSA I
L-----t-----J ~--~-----------~-1

I I Save area I I
I I I I
I DR I I i

r-----i -----, --~----------i I
I I I ~ __ J

I VDA I r-~ LwE I
I I I I I
L-----f-----J I i---------1

I I I I
I I I I

r-----~----,-, I I I
I I I I I
I VDA I I I I
I I I I I
l----l----o --J I I I

I I I I IHEQSLA I I L ___________ J

--- -----~------, I
IHEQISA I IWS VDA I I

---~-----------i I
LwS 2 r--J

I I
I LSA I
I-------------i
I I
I Save areas I
I I L ___________ J

Figure 22. Structure of the DSA Chain When
the Error-Handling Subroutine
is Entered After a New LWS Has
:Peen Obtained

Section I: General Im{:lementation Features 31

IHEWERR calls IHESABE, rassing its own
save area, to get a ne'lll LWS (LWS2). If
there is an on-unit corresponding 'lIlith the
interrupt condition, then, on return frorr,
IHESADE, IHEWERR branches to IHESARA (which
modifies the display) and passes it the
save area LSA in LWS2. In turn, IHESARA
tranches to the on-unit and passes it the
same save area. The prologue for the on­
unit then calls IHESADA to obtain a DSA.
The DSA chain can now continue if required.
(See Figure 23.)

If there is no on-unit corresponding to
the interrupt condition, standard system
action is taken. (See 'Error and Interrupt
Handling' .)

There are two possitle ways of freeing
the on-unit DSA:

1. By a GO TO statement from the on-unit.
If the GO TO is to a statement in a
block associated with DSA 3, or earli­
er, then the save-area chain can sim­
ply be forgotten. Registers are re­
stored from the DSA to become current.

r---------, r----------,
I I I LWS 1 I
I DSA 3 k-, I I
I I I I LSA I
l ____ + ____ J I t---------jC-l

I l __ ~ Sa ve area I I
r----i ----, .---------~ I
I I I I I
I VBA I r-~ LWE ~ __ J

I I I I I
L----f----J I t---------1

I I I I
I I I I

r---- i ----, I I I
I I I ~---------~
I VBA I I I I
I I I I I
L----t----J I I I

I I I I
, I I I

r----.1.----, I I I
I I I I I I LWS 2 • __ J I I
I I I I l----f----J L _______ J

I
IHEQSLA, DR I __)o.y-____ .1. ____ ,

I I
I on-.mitl
I DSA I
l _________ J

Figure 23. Structure of the DSA chain When
the On-Unit DSA is Attached

32

2. By the on-unit issuing a request to
storage management to free the on-unit
DSA. When this is done, contrcl is
returned to the error-handling subrou­
tine at the point follo'llling that from
which control was transferred to the
on-unit. The error-handling subrou­
tine restores DR in the normal 'lIlay to
point at LWE in LWS 1 and calls IHE­
SAFD to free LWS 2. Control is then
returned to the interrupted rcutine.
In the examplE, the situaticn wculd
now be as in Figure 21.

Execution-time Optimization

The ccmpiler contains an optimization
technique 'lIlhich minimizes the necessary
housekeeping and provides faster execution
of the prologue and epilogue. The techni­
que can cnly be applied if the optimization
option (OPT=01.Default) is specified for
the cOlfpilation of the main procedure of a
program. In this case, a 512-byte storage
area is reserved at the end of primary LWS
during initialization and pseudo-register
IHEQSLA is set to the address of that save
area. The pseudo-register IHEQLWF contains
the address of the reserved area attached
to the current ~WS. A reserved area is
released only when its associated L~S is
releas ed.

Whenever a DSA is allocated for the
innermost procedure or procedures (at the
same depth) of a nest of procedures, the
cptilfization tEchnique will try to meet the
requirerrent from the reserved area. If
this is not possible (because the BSA
requires more than 512 bytes), the required
storage is ottained in the standard way,
using IHESADA.

A DSA allocated in the reserved area, or
a DSA allocated in STATIC storage at com­
pile time, is identified by a 'one' in the
first bit of the second byte. (See IEM
System/360 Time Sharing System: PL/I Com­
filer, Program ~ogic Manual for a discus­
sion of DSAs in STATIC storage.)

ERROR AND INTERRUPT HANDLING

The PL/I Library handles two types of
conditions which cause interruption in the
main flow of a program during execution:

1. ON conditions, for which it is fOss­
ible to specify an on-unit.

2. Execution error conditions, for which
it is not possible to specify an
on-unit.

All the conditions are listed in !~~
System/360 Time Sharing System: PI/I
Reference Manual.

?age of GY28-2052-0 Issued September 15, 1970 by TNL GN28-3162

When any of the conditions occur, con­
trol is passed to the library error han­
dling module IHEWERR. Figure 24 describes
the flow through this module.

Except for program inte:cruptions, which
are discussed separately, all the condi­
tions are raised by compil,ed code within
the PL/I program. When the condition is
recognized (e.g., an end-oE-file return
code from an attempt to read). t.he PL/I
program enters IHEWERR at the entry point
appropriate to the condition:

IHEERRB:
IHEERRC:
IHEERRD:

ON conditions
Non-ON conditions
CHECK and CONDITION

If the condition is an ON condition, an
internal error code is placed in the
pseudo-register IHEQERR before IHEERRB is
entered. The codes associated with each ON
condition are given in Appendix D.

STANDARD 'SYSTEM' ACTION

If an ON condition is raised and there
is a matching ON field for the condition,
IHEWERR passes control to the on-unit via
IHESARA. Standard' systen,' action is taken
if: (1) an ON condition is raised and
there is no matching ON field for the con­
dition; (2) the system act.ion flag is set
in the matching ON field; or (3) an execu­
tion error or interrupt condition arises
for which no specific ON condition is
defined in PL/I (e.g., logarithm of a nega­
tive number).

Standard 'system' actien consists of
printing an error message and, possibly,
rais ing the ERROR condi tie,n. The error I messages for the conditions are in
PL/I Programmer's Guide. After the error
message is printed, either processing con­
tinues or the ERROR condit.ion is raised,
depending on the severity of the error.
Raising the ERROR condition usua.l1y leads
to the FINISH condition being raised.
Unless there is a GO TO statement in the
ERROR or FINISH unit, the program will
return to co~~and mode.

When SNAP or PL/I • sys-::em' action mes­
sages must be printed, IH.E:WERR calls the
library module IHEWESM, which contains the
code needed to print SNAP and PL/I • system'
action messages. These library error han­
dling modules contain err<:>r messages:

IHEWERD: Data processing error messages.

IHEWERE: Error messages other than those
in the other error message
modules.

IHEWERI: Input/output error messages for
non-ON conditions.

IHEWERO: Error messages for non-I/O ON
conditions.

IHEWERP: Error messages for I/O ON
conditions.

An action indicator is obtained during the
process to determine whether normal proces­
sing should continue if the ERROR condition
is raised. The appropriate action is taken
when the message has been printed as
output.

PROGRAM INTERRUPTIONS

There are fifteen possible program
interruptions in TSS; the PL/I Library
handles all but significance. Seven of the
interruptions are related-to computional ON
conditions in PL/I; the remaining seven are
treated as errors of a non-ON type (see
Figure 25).

The PL/I Library gains control of pro­
gram interruptions by a SPEC macro instruc­
tion, assembled as part of the GET PRV sub­
routine of the IHEWSAP library module. The
SPEC macro specifies which program inter­
ruptions will be processed by the PL/I
Library (all except significance) and spec­
ifies IHEERRA as the entry point of the
error handling routine. As a result of the
SPEC macro, an Interrupt Control Block
(ICB) is created, which contains the pro­
gram interrupt mask and the address of
IHEERRA.

Then IHEWSAP issues a SIR macro, which
specifies that IHEERRA is the entry point
for the current interrupt handling routine
(by giving the name of the ICB associated
with it) and sets the priority for the
interrupt routine.

Upon entry to the interrupt handling
routine at IHEERRA, register 0 is pointing
to the fifth word in a 64 word entry used
by the system (see Figure 26). The 25thand
26th words of the entry contain the old
vpsw, which contains the interrupt code and
the address in the PL/I program where con­
trol should return when the interrupt has
been handled (see Figure 27).

To enable program interruptions that may
occur during execution of the interrupt
handling routines, lHEWERR follows this
method of handling program interruptions:

Section I: General Implementation Features 33

Page of GY28-2052-0, Issued September IS, 1970 by TNL GN28-3162

r-----------------, r------------------, r----------------, r------------------,
I IHEERRC I' I IHEERRA I I IHEERRE 1 I IHEERRr: I
~-----------------~ ~------------------~ t----------------~ t------------------~
I Non-ON Conditions I IProgram Interrupts I I ON Conditions I ICHECK 6 CONDITION 1
L--------T--------J L--------T---------J l--------T-------J l----------T-------J

I I I I

Yesr--------t--------, r--------*---------, r--------I--------, r---------t.-------,
r--~ ERROR, CHECK or ~, I Save environment; I I Determine eN type 1 I Deteruine ON type I
I IFINISH condition?1 I Ipretend to super- 1 Ifrom IHEQERR I Ifrom register RA I
I L--------T--------J I I vi sor that hand- I l--------T--------J L---------T-------J
I I No I lling is complete; I I I
I I I I set results if I J., I
I I I I necessary I r-------- I ------------, I
I I I L--------T---------J I Create search word; I j
1 I ! 1 Isearch the r:SA chain I I
I 1. I J. I for a match; if dis- I I
I ---______ ~________ INor--------I-------,Yes lab1ed in current DSA ~ _______ J

I ILink to IHEWESM I~-+--~ON condition fort-I-~return; if dummy, ig-I
I I----____ , ________ ~ I Ithis interrupt? I T Inore entry I
I I l ________________ J I L--------T------------.J

I ! I I I

I r--------t--------, I I r-------t----------,
i I Determine which I I I I If SNAP, link to I
I Irr,essage is to be 1 I I IIHEWESM to print I
I I printed I I I I SNAP rr.essage I
I l--------T--------J I I L-------T----------J
I I I I I

I r--------t.--------, 1 I Yes r-------t--------,
I IPrint rressage I L---------------------+---fsystem action I
I l--------T--------J I I required? I
I I r-----------~ l-------T--------J

I r--------*--------, Yes r-------L-------, I II No
I I Interrupt is ter- t---~Raise ERROR I I r------- ----------,
I Iminating type? I I condition I I IBranch to IHESARA I ! L ________ I~~------J L-------l--------J I I;~ ~~f~r to enter I
I J. I I l-------r--------- J

I r--------L -------, I I I

\ l~~~~:~ ___________ J I Iyesr-------t----------,
I L-----------+---flnva1id conversion I
L----------1 I l-------T---------- J

I r---------J I No

r----------Y-----1YeS r-------------1---, yesr-------*----------,
IError condition t---~Raise FINISH ~--------f ERROR condition? I
L----------T-----J I condition I l-------T---------- J INc L _________________ J INa

r----------Y-----,yes r-----------------, r-------!----------,yes r-----------,
ICHECK condition?t---~print CHECK I 1 FINISH condition?t---~ ABEND
L---------T-----J I information I l-------T----------J L ___________ J

INO L-------T---------J INa
I I I

r----------t-----, r-------t.---------, r-------t----------,
I PINISH condl tion I I Return I I Return I I then terrr,inate I L _________________ J l _________________ J

Iwith ABEND I L ________________ J

Figure 24. Flow Through the Error dandling Routine (IHEWERR)

34

r--T--,
I Program Int.erruption 1 Pl/I condition I
~--+--~
I Interrupt Code Meaning I I
I 1 operation code I I
I 2 ~rivilEged operation I I
I 3 execution I Kxecution error I
I 4 r::rotection I conditions not I
I 5 addressing I covered by a I
I 6 srecification I PL/I defined condition I
I 7 data I I
, 8 fixed-Foint overflow I .F IXEDOVERFLOW I
I 9 fixed- Foint divide I ZERO DIVIDE I
I 10 decimal overt low I .FIXEDOVERFLOW I
I 11 decimal divide I ZERODIVIDE I
I 12 exr;oneLt overf low ! OV E1<. FLOW I
I 13 eXFoner<t under flow I UNDERFLOW I
I 14 significance I net handled in PL/I I
I 15 £loatiLg-point divide I ZERODIVIDE I l __ L __ J

Figure 25. Program Interruptions and PL/I Ccndi tiom;

2. Bits 40 to 63 of the old VPSW in t<le
64 word entry ar~2 changed t.o
contain the addrE,ss of the
a~F:ropriate entry point in IhE­
WERki control is returned to
the su~ervisor.

3. TSS assumes the interruption has been
handled satisfaci:orily and
transfers controJ. to the new
address in the o~.d VPSWi thus
it enters module IHEWERR again.

Floating-point registers are saved in
the library communication area, and the old
VPSW is inspected to find the cause of the
interruption.

When fixed-point or decimal overflow
interruptions occur, the SIZE condition may
l:;e raised. Therefore when one of tnese
interruptions occurs, the pseudo-register
IHEQERR must be inspected to see if the
SIZE code has been set. Sim1larly, if any
of the divide interruptions occurs, IHEQ1!,RR
must be inspected to see if -,:he ZERODIVIDE
code has been set. If it hali, the condi­
tion is disabled and control returns to the
point of interruption.

Certain very unusual circumstances may
result in a program interruption occurring
during the execution of IHEWERR or· of one
of the library modules called from it. For
example, if the program destcoys the PRV,
or the DSA chain, or parts of library work­
space, then it is likely that sonner or
later a specification or addressing inter­
ruption will occur.

Under these circumstances, to prevent
any attempt to re-enter IHEE:RRA on account
of the second interruption, .3PEC and SIR

nacrcs are issued Every time IHEWERR is
entered. These rracros r;rovide that, in the
event of an interruption, IHEWERR shall be
entered at entry point IHEERRE. Similarly,
a DIR rracro is issued at each exit point,
to restore IHEERRA as the normal entry
faint for ~rograrn interruptions during the
execut:ion of compiled code and library
routines.

When IHEERRE is entered, a rressage is
frinted en SYSOUT and the FINISH condition
is raised.

ON CONDITIONS

The six classes of ON conditions defined
in Pl/1 are shown in Figure 28. Tc deal
satisfactorily with the situation when any
of these conditions arise, IHEWERR rrust:

1. Reccgnize the condition.

2. See if it is enabled.

3. If so, see if there is an on-unit for
t.he condition.

4. If there is an on-unit, transfer con­
trol to IrlESARA, which, after dcing
the necessary housekeeping, will
transfer control to the on-unit.

:>. If no on-unit, take system acticn for
tne condition.

6. Return to the interrupted program or
terminate, according to the provisions
of the PL/I language.

Section I: General Imr-:lementation Features 35

64 Word Entry Word
r----------------------------l
I ID I 1
t----------------------------~
I Forward Pointer to I
I Next EntI'y I 2
t----------------------------~
I l"orward Page Pointer ! 3
~----------------------------~

Reg 0 I Pointer to Interrupt I
I I Conditions I 4
I r----------------------------1
! I !
l ___ >j Length = 120 Bytes I 5

I I
t----------------------------1
I Register 13 I 6

r----------------------------1
I Unused I 7
~----------------------------1
I Register 14 I 8
t----------------------------1
I Register 15 I 9
r----------------------------i
I Register 0 I 10
r----------------------------i
I Register: 1 I 11

r----------------------------~
I Registers 2-12 I 12-22
t----------------------------i
I Not used I 23
t----------------------------i
I Not used I 24
r----------------------------{
I Old VPSW I 25-26
r----------------------------i
I Floating Point Register 0 t 27-28
r----------------------------i
I Floating Point Register 2 I 28-30
~----------------------------i
I Floating Point Register: 4 I 31-32
r----------------------------i
i Floating Point Register 6 I 33-34
r----------------------------i
I Task Monitor RSFRV Flag I 35
t----------------------------1

Reg 13 I Pushdown Pointer from ISA I 36
I r----------------------------1
I I I
l ___ > I Length = 108 Bytes I 37

r----------------------------1
I Backward Link I 38
r----------------------------i
I Forward Link I 39
t----------------------------1
I Register 14 (Return I
I Linkage) I 40
t----------------------------1
I Register 15 (Entry Point) I 41
t----------------------------i
I Registers 0-12 I 42-54
r----------------------------i
I PSECT Address of Called I
I Program I 55
r----------------------------{
I Available for Called I
I Program I 56-63
~----------------------------1
I Reserved I 64 l ____________________________ J

Figure 26. Information Availacle Upon
Entry to an Interrupt Routine

36

r-------------, -----1-----
I I..,.
I PRIV status I I
I I I
r-------------~ I
I I I
I I I
I Task Mask I I
I I I
I I I
I I I
t-------------~ I
! I I
I ILC I I
I I I
t-------------~ I
I I I
I cc I I
I I I
t-------------~ Word 25
I I I
I I I
I Program I I
I Mask I I
I I I
I I I
t-------------~ I
I 116 I
I I I
I I I
I I I
I I I
I I I
I Interrupt I I
I Code i I
I I I
I I I
I I I
I I I
I I I

r-------------1::-----i-----
I I I
I I I
I I I
I I I
I Instruction I I
I counter I Word 26
I I I
I I I
I I I
I f I
I I I
I 163 J. l _____________ J _____ 1 ____ _

Figure 27. Old Virtual Program Status Word

In order to carry out these operations
IHEWERR needs:

1. Information passed when the error con­
dition arises.

2. Information set by compiled code in
the DSA for each procedure. A two­
word ON field is allocated in the DSA
for this purpose.

r-------y-------------y---------y---------l
I I ICondiLonl I
I Type I Condition IPrefixes I Default I
I I I permit':ed I situation I
~-------t-------------+---------+----~----i
I I CONVERSION I I I
I I FIXEDOVERFLOW I I All I
IComput-IOVERFLOW I Yes I enabled I
lationaLISIZE I I except I
I I UNDERFLOW I I SIZE I
I IZERODIVIDE I I I
t-------t-------------+---------+---------i
IList I AREA I No I Always I
I pro- I I I enabled I
I essing I I I I
.-------+-------------+---------+---------i
I I ENDFIL£.; I I I
I I PENDING I I I
I I END PAGE I I I
IInput/ I KEY I I Always I
loutput INAME I No I enabled I
I I RECORD I I I
I ! TRANSMIT I i I
I I UNDEFINEDFILE I I I
t-------+-------------+---------+---------~
I Program I CHECK I I I
Icheck- ISUBSCRIPT- I Yes 'Disabledl
lout I RANGE I I I
I I STR INGRANGE I I I
~-------t-------------+---------+---------~
iProg- I CONDITION I I Always I
lrammer I I No I enabled I
I named I I I I
t-------+-------------+---------+---------i
lSystem IERROR I No I Always I
laction i#FINISh I I enabled I l _______ ~ _____________ ~ _________ ~ _________ J

Figure 28. PL/I ON Conditions

Action by ComEiled Code

Action taken by comfiled code in pre­
paration for the possibility of a condition
arising during execution is summarized
here.

Prologue: The prologue allocates space in
the DSA for:

1. Every ON statement in the block.

2. Each ON condition disabled in the
block.

ON CHECK <identifier 1, •.•..• identifier n)
is interpreted as n ON statements.

For each of the occurrences civen above,
the prologue stores information in the two
words in the DSA ON field:

1st word: Contains the error code for
the condition and the address of data
identifying the condition. This word is
called the search word comparator. (See
Figure 29.)

r----------------T------------------------,
I Type of CN I Contents of word I
I ccndition t------T-----------------i
I I Byte 11 Bytes 2 to 4 I
r----------------+------+-----------------4
I I/C I I A (DCLCB) I
t---------------~ t-----------------~
I CONDITION I I A (CSECT) I
~----------------iError t-----------------~
ICHECK <label> I IA (Symbol name & I
I I code ! length) I
ICHECK (variable) I IA (Syrrbol table> I
~----------------~ t-----------------~
I Others I I Nothing stored I l ________________ ~ ______ i _________________ J

Figure 29. Format of the Search Word
COIl'farator

2nd word: Byte 1: Bits 0, 1 and 4 are
set as follows:

Bit 0 = 0 Not thf? last ON field in the
DSA

1 Last ON field in the DSA

Bit 1 1 Condition disabled

Bit 4 1 Dummy ON field

In the second word, either bit 1 or bit
4 is set to 1. (See 'Prefix Oftions',
below.)

ON Statement: When the ON statement is
execut.ed, corr:filed code stores inforn;ation
in the second word of the ON field:

Eyte 1:

Bit: 2

Bit 3

Bit 4

o SNAP not required
1 SNAP required

o Normal
1 System action required

o No longer dummy

Eytes 2-4: ACon-unit)

Prefix ortions: An ON field for an ON con­
diticn must ce created by the prologue
whenever:

1. An ON statement is present in the
block.

2. An ON ccndition becomes disabled at
any time during the execution of the
block.

3. CBECK is enabled within the block.

This ON field is always set to dummy by the
prologue. It is also set to disabled if:

1. The condition is disabled by a prefix
option in the block-header statement.

Section I: General Implementation Features 37

2. The condition is disabled by default
and there is no ena1::ling rrefix option
in the block-header statement, or
within the block. The exceptions to
this are CtlECK, SIZE, STRINGRANGE, and
SUBSCRIP'IRANGE, which are dealt witt}
as follows:

CHECK: No ON fields are created if
this condition is disabled by default.

SIZE, STRINGRANGE, and SUBSCRIPTRANGE:
If these conditions are disatled by
default, flags are set in the flag
byte of the DSA as follows:

SIZE:
STRINGRANGE
8UESCRIP'I'RANGE:

.tit 7
bit 2
tit 4

o
o
o

Execution of an ON statement in the block
causes removal of the dummy flag and inser­
tion of the flags indicating the action
required. It does not remove the disable
flag if on. Execution of a REVERT state­
ment causes reinstatement of the dummy
flag.

During execution of the block, statements
may be executed which have disabling prefix
options in them. Compiled code must be
inserted before and after the statements
to:

1. Set the disabled flag before the
statement.

2. Restore the original flags after the
statement.

Similarly. to enable prefix options, con:­
piled code must:

1. Set the disable flag off before the
statement.

2. Restore the original flags after the
staterrent.

Prefix options specified on outer blocks
carry down into internal blocks. 'Ihe
implementation of these blocks should be as
if the option had been explicit in each of
them.

Action by the Library

When an ON condition arises during
execution, IHEWERR gains control fro~ one
of the following:

1. TSS/360 (program interruptions)

2. corr,riled code

3. Another library module

38

In case 1, the ON condition code
required is determined by inspection of the
[rograrr interrupt code in the old PSW. For
cases 2 and 3, the ON condition code is
[assed in pseudo-register IHEQERR, except
for the CHECK and CONDITION conditions,
~hen a rarameter list is used. Fran tnis
code and information passed in the calling
sequence, a search word is generated in
library workspace in all three cases; the
format of the search word is identical with
that of the search word comparator (Figure
29>'

When the search word has been created,
IHEWERR initiates a search through the
chain of DSAs to determine the action to be
taKen. Each DSA is analyzed in turn, from
the end cf the chain upwards towards the
beginning. The search proceeds as fellows:

1. Bit 6 of the flag byte of the first
available BSA is tested to see if that
DSA contains any ON fields. Then:

a. No ON fields: If the DSA is the
current GSA and the condition is
SIZE, STRINGRANGE, or SUBSCRIP­
'TRANGE, the flag byte of this DSA
is examined to see if the condition
is disabled:

Cisabled: the program returns to
the point of interruption.

Not disabled: The DSA is ignored.

If the condition is CHECK, the pro­
gram returns to tne point cf
interruption.

b. ON fields: The first word of each
ON field - the search word compara­
tor - is compared with the search
word to see if a match is fcund.
If a match is found, the second
word of the ON field in the DSA is
tested to see what action is
required.

2. If the last ON field is reached before
finding a match, then:

a. If the DSA is the current DSA and
the condition is SIZE, STRINGRANGE,
or SUBSCRIPTRANGE, the corresrond­
ing flags in the DSA are tested.

b. 'The error code is tested to see if
the condition is CHECK.

This rray result in a return to the point
of interrupt. If not, the next DSA is
obtained and analyzed in the same way.

If a rratch has teen found, then the fol­
lowing tests are made:

1. Is the condition disabled by a prefix
option? (This test can cnly be app­
lied when the matching OK field is
contained in the current CSA.)

Disabled: No further processing in
IHEWERR: the progran, retlcrns to the
point of interruption.

Not disabled: Next test is made.

2. Is the matching ON field a dummy ON
field?

Dummy ON field: The field is ignored
and the next DSA is obtained.

No durrmy ON field: Next test is made.

3. Is SNAP action required?

SNAP action required: A summary flow
trace is written on the ~:ystem output
file. This output contains the ON­
condition abbreviation and trace-back
information identifying the procedures
in the chain. The statement number
may optionally be included. Each pro­
cedure is identified ty chaining back
through the DSA chain un1:il a proce­
dUre DSA is found and t.hf~n using the
contents of register BR in the appro­
priate save area. The search ends
when the chain-back reaches the
external save area. An exarrple of
this output is given in :CBM System/360
Time Sharinq System: PL/I Program­
mer's Guide.

SNAP action not required:
normally.

Proceed

When a match has been found, and an on­
unit address is given, then, i:o guard
against the possibility of recursive use
when control returns frorr; the on-unit by
means of a GO TO statement, a new block of
library works pace is attained, This LWS is
added to the DSA chain as described earli­
er, in 'PL/I Object Program Management'.
In order to pass control to the on-unit,
the recursion subroutine in Ii:lEWSAP is
called: this establishes the correct
environment and then branches to the on­
unit. Return from the on-uni-:: may be made
in one of two ways:

1. On normal completion, co~trol passes
to IHEWERR, which returns to compiled
code at the point followlng the
instruction which caused the condition
to be raised.

2. Execution of a GO TO statement.. In
this case the GO TO subroutine (IHE­
SAFC or IHETSAG) is ente.ced to carry
out the housekeeping descrited in
'PL/I Object Program Management'.

BUILT-IN FUNCTIONS

The two built-in functions, ONLOC, and
ONCODE, may only be used in an on-unit;
they ~rovide environmental information
associated with the raiSing of the latest
ON ccndition.

ONLOC

An interrupt can occur that can cause
entry to the on-unit in which ONLOC is spe­
cified. If this happens, the ONLOC built­
in function identifies the BCD name of the
entry point of the procedure in which the
interrupt occurs.

The address of this BCD name is computed
by chaining tack through the DSA chain
until the first procedure DSA is reached
and by using the contents of BR in the
apprcpriate save area. The length of this
name and the maximum length are found;
these two lengths and the pointer to the
ECL name are inserted in the target SDV
whose address has been passed to ONLoe as a
r:aramet.er.

If ONIOC is specified outside an on­
unit, a null string is inserted in the tar­
get_ 8DV.

ONCOCE

The ONCODE built-in function picks up a
value frcm the WONC field in the library
comrrunication area in LWS previously set by
ItlEWERR. This value is implementaticn­
defined by the type of error that caused
the interruption. It may be specified in
any on-unit. If specified in an ERROR or
FINISH unit, the ONCODE will be that of the
error or condition that caused the ERROR or
FINISH unit to te entered.

If ONCODE is specified outside an on­
unit, a unique ONCODE value (0) is
returned. A list of ONCODEs and explana­
tions of their use are given in IB~~stem/
360 Time Sharing SYE.tem,: PL/I ?rograrrmer's
Guide.

~ISCELJ,ANEOU8 TS8/360 INTERFACES

One function of the PL/I Library is to
provide a standard interface with T8S/360
which can be utilized by compiled code.
The implementation described here concerns
support for PL/I language statements and
functions with a T88/360 interface that
does not fall into one of the categories
already diSCUSSE:d in this section. These
are the PL/I statements DISPLAY, CELAY,
STOP and EXIT, and the built-in fUnctions
TIME and DATE.

Section I: General Implementation Features 39

TSS/360 will enable the PL/I Library to
issue macro instructions ~hich support the
above-mentioned statements and functions.
The relationship is as follo~s:

PL/I

DELAY
TIME
DATE
DISPLAY

Macro Instruction

STIMER
EBCDTIME
EBCCTIME
GATWR, GATRD

Thus, the library support for language fea­
tures is as follo~s:

DELAY
the execution of the PL/I program is
suspended for the required time.

EXIT and STOP

TIME

DATE

both these statements raise the FINISH
condition and then cause normal ter­
mination of the PL/I program.

the time of day is returned to the
caller in the form HHrv:{IIJSStht ~here:

Btl hours (24-hour clock)
MM minutes
SS seconds
tht = tenths, hundredths and thou­

sandths of a second. (Since
it is only possible to obtain
the nearest hundreth under
TS8/360, the last digit ~ill
always be zero.)

the date is returned to the caller in
the form YYl"jMDD ~here:

YY year
MM month
DD day

DISPLAY
a message may be written on SYSOUT
with no interruption in execution or,
if a reply is expected, execution is
suspended until the user's reply is
received. If the EVENT option is em­
ployed, it ~ill not have any effect on
program execution; the program ~ill
not resume execution until a response
has been received from the user's
SYSIN.

DATA PROCESSING ROUTINES

I/O EDITING ANI: LATA CONVERSION

PL/I allows the user a wide choice in
selecting the representation for his data.
both on the external medium and internally
in storage; considerable flexitility is
permitted in specifying changes of data
type and form. The library conversion
package is designed to implement the full
set of editing and conversion fUnctions.

40

To avoid unnecessary duplication of code,
standard intermediate forms are used. This
bas the effect of reducing the nurrber of
library ITodules in the package to about
fifty, to cover about t~o hundred logical
conversions. To speed up processing,
direct routines are provided for some of
the most frequently used conversions, ~hile
the COIT;'filer generates in-line code for
some of the simpler ones.

To restrict further the storage require­
rrents for the litrary conversion package,
the PL/I compiler analyzes the actual
changes of data required for a particular
execution. Sometimes these are not fully
known at comrile time, and then a ~orst
case has to be taken.

With one exception, all the modules con­
tained within the library conversion pack­
age are called by means of the PL/I stan­
dard calling sequence (described in 'Lin­
kage Conventions'). The exception is
IHEwVCS (comrlex-to-string director) which
is called by the system external standard
calling sequence. The letters in the
module name indicate the module usage; see
Figure 30.

r------------------T----------------------,
I Letters I I
~------------------1 I
I 1 2 3 4 5 6 I Meaning I
t------------------+----------------------~
I I HEW D I Director I
t------------------+----------------------~
I I HEW K I Picture check I
t------------------+----------------------~
I I HEW V P I Conversion involving I
I I packed-decimal I
i I intermediate, except I
I I IHEVPG and IHEVPH I
t------------------+----------------------~
I I HEW V F I Conversion involving I
I I floating-point I
I I intermediate I
t------------------+----------------------~
I I HEW V K I Conversion involving I
I I numeric fields I
t------------------+----------------------~
I I HEW V S I Conversion inVOlving I
I I strings I
t------------------+----------------------~
I I B E W V C I Conversion involving I
I I external character I
I I data being converted I
I I to type string I
t------------------+----------------------~
I I HEW V Q I Direct conversion to I
I I improve preformance I
t------------------+----------------------~
I 1 HEW U P I Mode conversions I L __________________ ~ ______________________ J

Figure 30. Module Usage indicated cy Let­
ters of Module Name

r-------------,
I compiled I

r-----------------T----------~ code r----------T-----------------,
I I I I I I
I T l------T------J I !
I r-------------, I I I
I I Corrple:x I I I I
I r--~ format ~----------+----------------~ I
I I I directcr I I I !
I I L-----T------l I I I
I I I I I I
I I I I I I
I I T I V' I
I I r-------------, I r--------------, I
I I I con,ple}l- I I I Input/Out put I I
I I I to-string I ~---------~ format ~---------~
I I I directcr I I directors t-l I
I I l------r----- J L-----T------J I I
I I I I I I
I I I I I I I
I~-----+---------+-----------------t-----------------~ I I
I I I I I I I
I I I Y I I I
I i I r---------------, I I I
I I I I Str ing<- > I I I I
I I ~---------~ ari thmetic ~----------+--------+-------~
I I I I directors ~----------+-------~ I
I I I L------r------J ! I !
I I I I ! I I
II! I I I I
I ------+---------+-----------------~ I I I
I I I I I I I
I I I Y I Y I
I I I r-------------, I r------~------l I
I I I I Mode I I I Decirr,al I I
I I ~---------~ conversicn toc---------~ I constant<-> I I
I ! I I routines I I I arithmetic I I
I I I L------T------J I L------T------J I
I I I I I f+------~ I L _________ + _________________ + ________________ ~I I I

f I I I,. I
r-------------, I I I r-------------, I
I Arithmetic I I ! I I Direct I I
I conversion I~---------~-----------------J I I arithmetic I I
I director I I I conversion I I
l------T------J I l _____________ J I

I r-----------------~ I
I I I I
Y T f T

LWS
Level

No.

4

3

2

1

o

r-------------, r-------------1 r-------------, r------------,
I Arithmetic I
I conversion I
I routines I

I Data I
I analysis I
I routines I

I Picture I
I checking I
I routines I

I String I
I routines I 0
I I L _____________ J L __________ . ___ J l ______________ J l ____________ J

Note: <-> indicates a conversion in either direction

Figure 31. Structure of the Conversion Package

STRUCTURE OF LIBRARY CONVERSI::JN PACKAGE

To perform a change from a source data
item to a target data item may involve a
succession of steps and the use of several
individual library modules within the pack­
age. The structure of the litrary conver­
sion package is shown in Figu~e 31.

In association with each individual
ste'f, the attril::;utes of the source or the
target fields, or of both, must be known.
The required information is provided in the
calling sequences. Each data iterr has a
corres~onding format element descriptor
(FED) or data element descriptor (DED).
with one exception, the formats of these

Section I: General Implementation Features 41

r------T--,
I I Bit I
I r---------T--------~---------T---------T---------T---------T---------T----------~
I Code I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
r------t---------+---------+---------f---------+---------+---------+---------+----------~
I I I I Non- I I I I I I
I = 0 I 1 I 1 I sterling I Short I 1 I Decimal I Fixed I Real I

r------t---------+---------+---------+---------+---------+---------+---------+----------~
I = 1 I 1 I 1 I Sterlingi Long I 1 I Binary I Float I CcmFlex I
t------~---------~---------L---------L---------L------___ L _________ L _________ L __________ ~
I Note: Bits 0, land 4 are always 1. The nexadecimal 'lO' superimposed on the DED I
I flag byte indicates the presence of a halfword fixed point binary variable. Bit 3 is I
I set to 1 and bit 6 is set to o. I l ___ J

Figure 32. DED Flag Byte for Character Representation of an Arithmetic Data Iterr

control blocks are described in Section IV.
The exception is that of a DED generated at
execution time for communication between
library modules (see Figure 32).

This DED is created when it is necessary
to convert a character representation of an
arithmetic value to an intermediate coded
arithmetic data type, prior to conversion
to a string target. The form of this DED
is the same as that for a coded arithmetic
data item (CAD), and consists of a flag
byte and precision bytes representing the
quantities p and q. As for coded data, the
flag byte defines the attributes of the
corresponding data item: bit 1 is set to 1
to indicate that a character representation
of an arithmetic value is referred to.

Directors

The structure chart makes frequent
reference to 'directors'. These modules
are used to fulfill two main purposes:

1. The matching of source element with
target element, which may not be known
at compile time.

2. The controling of the .flo at object
time by means of interpretative infor­
mation passed to them.

The latter function is best illustrated by
the arithmetic conversion director (IHEW[;­
MA), where a single call detendnes the
flow through a sub-package of over twenty
ari thmetic conversion routines. (See below
in 'Arithmetic Conversions'.)

There are director routines at four
levels. (See Figure 35.) They are:

1. Complex format directors.

2. Input/output format directors and the
comFlex-to-string director.

3. String-to-arithmetic and arithmetic­
to-string directors.

4. Arithmetic conversion director.

All directors except the complex-to-string
director can be called directly from com­
piled code; the complex-to-string director
is invoked from the complex format direc­
tors or .from list/data-directed input only.

Any director can call any below it in
the structure.

Edit-directed I/O

Edit-directed transmission allows the
user to specify the storage area to which

r--------------------------------T------------------T-----------------------------------,
I I I Module Name I
I PL/I Format Item I Director t-----------------T-----------------~
I I I Input I output I
r--------------------------------t------------------t-----------------+-----------------~
I Complex I C I IHEWDIM I IHE~'lDOM I
I Fixed and floating point I l"/E I IHEWDIA I IHEWDOA I
I Bit string I B I IHEWDID I IHEWDOD I
I Character string I A I IHEWDIB I IHEwr;OB I
I Picture I P(DEC,S'IL) I IHEWDIE ! IHEWDOE !
I I P (CHAR) I IHEWDIB I IHEWDOB I l ________________________________ L __________________ L _________________ ~ _________________ J

Figure 33. Input/Output Directors for PL/I Format Iterrs

42

data is to be assigned or froD which data
is to be transmitted and the actual form of
the data on the external medium. The
information concerning storage areas is
specified in the source program ty means of
a data list, and the informat~~on about the
form of the data on the external medium by
means of a format list.

The library conversion package is
designed to implement the executable format
scheme discussed earlier by the execution­
time matchihg of list item and forrrat item
through the use of the director routines
mentioned above. The set of [/0 directors
provided and their association with the
PL/I data format items is shOlin in Figure
33.

I/O EDITING

Complex Directors: Complex format items on
the external medium may have :ceal and
imaginary r;arts of different attributes.
When the list item and the ta:cget field are
of type arithmetic, this situation is
handled in the complex directo.r by making
consecutive calls for real and irraginary
format items r and passing cont:rol. to the
particular format director aS30ciated with
the format item.

When the target field is a string,
however, there are two problems witch C for­
Illat items. First, the data on_ the external
medium must be scanned dynamicai.l.y in order
to deduce the attributes of t.'1e fox-mat
item. The information derived from this is
stored in a special DED. (See 'Structure
of Library Conversion Package'.) This DED
is necessary for the conversion of all for­
mat items and constants.

Second, the base, scale and precision of
the real and imaginary parts nave to be
compared, to determine the highest set of
attributes, so that the form of the con­
verted data in the string tar::Jet may be
known. This is done by invoking a special
director, called the complex-to-string
director, which performs the necessary ana­
lySis on the DEDs of the real and imaginary
parts of the C format item. Each item is
then converted by the rules of type conver­
sion to coded complex and then to string.

Input/output Directors: Tne input/output
directors named above (other than C format)
perform three rr.ajor functions. Because
there are slight differences between input
and output, the functions are described
under these headings.

Input: A call is made to IHEWIOD to requ­
est w bytes and a data fiel.d pointer. If
the w byteS can be obtained from the cur-

r~nt buffer, the address returned to the
in!=ut director is that of the data field in
the buffer itself. If not, a VDA is
obtained and the requisite field of w bytes
is buil·t up in the dynamic area. The VBA
address is stored in WSDV in the LCA.

These two conditions are normal. If, on
the other hand, an abnormal return cccurs
at thiE; Foint, this signifies that an END­
FILE condition exists and that a return has
~een wade from an ENDFILE on-unit. In this
case, the I/O director must return centrol
to the code associat;ed with the next PL/I
source statement, which is Fointed at by
the second word of pseudo-register IHEQCFL.

If there is no abnormal return, the tar­
get LED is insfected by the director rou­
tine and the first stage of the necessary
conversion process is initiated by means of
a suitable call to a routine below the
input director level. (See structure
chart, Figure 31.)

When the converSlon has been corrFleted
and the data item assigned to the list
item, the input director calls the I/O
fackage again. At t:his stage, the I/O rou­
tine tests for the TRANSMIT condition, and,
if necessary, calls IHEWER~, to specify
that the TRANSMIT condition is active, and
that the forrrat item transmitted is there­
fore suspect. In addition, any VDA that
has been allocated is freed.

Cutput: A call is made to the library I/O
package to obtain an address for the
external data item. If the w tytes speci­
fied can oe satisfied within the current
buffer, the address of the current buffer
pointer is returned; if not, a VDA is
obtained and the address of this dynarric
storage is Fassed ~ack. The source DED is
then inspected and a call is made to the
first sucroutine in the conversion package
to perform conversion.

After aSSignment of the data item to a
buffer area or VDA, a call to the afpropri­
ate I/O routine is made from the output
director. If a VDA was used, the output
field is split off into the appropriate
tuffers and the dynamic storage released.

Fer both input and output, control is
finally returned to compiled code.

List- and Data-Directed Input/Output

The total set of conversions required by
list/data-directed I/O is shown in Figure
34.

Section I: General Implementation Features 43

r---1
I INPU'I I
t-----------------------T---------------------------T-----------------------------------~
I String value I List item I Conversion I
t-----------------------t---------------------------t-----------------------------------1
I I Arithmetic I Character to arithmetic I
I Character string I Character string I Character string assignment I
I I Bit string I Character to bit string I
t-----------------------t---------------------------t-----------------------------------~
I I Arithmetic I Bit string to ari thrretic I
I Bit string I Character string I Bit string to character string I
I I Bit string i Bit string assignment I
t-----------------------t---------------------------t-----------------------------------1
I Arithmetic I Arithmetic I Arithmetic type conversion I
I (including I Character string I Arithmetic to character string I
I expression) I Bit string I Arithmetic to tit string I
~---_-------------------i---------------------------i-__________________________________ ~
I OUTPUT I
~-----------------------T---------------------------T-----------------------------------~
I List item I string value I Conversion I
r-----------------------t---------------------------t-----------------------------------~
I Arithmetic I Character representation I Arithmetic to character string I
I i of data value I I
t-----------------------t---------------------------t-----------------------------------~
I Bit string I Bit string in character I Bit to character I
I I form I I
~-----------------------+---------------------------t-----------------------------------~
I Character string I Character string I Character string assignment I l _______________________ i ___________________________ i _ __________________________________ J

Figure 34. Conversion for List/Data Directed I/O

Since all the conversions represented
deal with change of data from one internal
representation to another, the conversion
package is fully capable of performing the
conversion for list/data-directed I/O. The
type conversions are fully defined in the
PL/I language and the modules that imple­
ment them are given below. Some examples
of list/data-directed I/O are included in
IBM System/360 Time sharing System: PL/I
Programmer's Guide.

MODE CONVERSIONS

Since data may be declared COMPLEX, and
complex values may be written or read by
list-directed and data-directed input and
output, or by the C format item, two rou­
tines are provided to facilitate conver­
sions of mode during I/O editing and during
conversions between internal arithmetic and
string data.

TYPE CONVERSIONS

Four director routines are provided to
control the flow which enables changes
between data of type string and data of
type ari thrr,etic, as required by the PL/I
language. These routines, shown in Figure
35, are used by list-, edit- and daLa­
directed I/O and in some internal
conversions.

44

r-----------T-----------------------------,
I I TO: I
I ~----------T------------------~
I I Arithmetic I String I
I I ~--------T---------~
I I I Bit I Character I
t-----------t----------+--------+---------~
I FROM: I I I I
I Arithmeticl IIHEWDNB I IHEWDNC I
I I I I I
I Bit stringl IHEWDBN I I I
I I I I I
I Character I IHEWDCN I I I
I string I I I I l ___________ i __________ i ________ i _________ J

Figure 35. Modules for Type Conversions

STRING CONVERSIONS

A set of generalized interpretive rou­
tines is provided to support the pcssible
string conversions and assignments that may
exist. Each module interrogates source and
target inforrration contained in the string
dope vectors and DEDs in order to handle
truncation, radding, and alignment for
fixed and varying strings. Figure 36 shows
the rrodules rrovided; it should be noted
tnat there is no difference between a
source character string with a picture and
one without, as once the data has been
checked into the source field, no further
use is made of the picture.

r---------T-------------------------------,
I I TO: I
I ~-------T---------T-------------~
I I I I (::haracter I
I I Bit ICharacterl'"ith picturel
~---------+--------+---------+------------i
I FROM: I ! I I
IBit IIHEWVSA I IHEWVSB I IHEWVSF I
ICharacter!IHEWVSD I IHEWVSC I IHEWVSE I L _________ .l. ________ .1. _________ .l. _____________ J

Figure 36. Modules for string Conversions

ARITHMETIC CONVERSIONS

A direct routine IHEWVQA converts
floating-point data to fixed-point binary,
in order to provide fast processing of this
frequently used routine. Normally, howev­
er, all conversions (including this one)
are dealt with by the library ~onversion
package.

This package carries out editing and
conversions fer all type arithmetic source
fields which have type arithmetic target
fields. It also handles conversions of

format iterr,s and con£;tants, which are
character representations of arithrretic
type data. The flow control through this
sub-package is achieved ~y the arithmetic
conversion director described below.

The rrethod employed is to use an inter­
mediate form of representation according to
the form of the source data and to relate
this intermediate form to the target data,
either by direct conversion or by use of a
second interrrediate form (which implies
radix change). The two intermediate forrrs
in use are:

1. Packed decima 1 intermediate (PDI)
This consists of 17 digits and a sign,
together with a one-word scale factor
(WSCF), in ~inary, representing powers
of ten.

2. Long floating-point intermediate (FPI)
This is the standard internal forrr,
and consists of 14 hexadecimal digits.

The logical flow through the package is
shown in Figure 37.

r----------,
I Arithmetic I

r-------------------------------------iconversion.--------------------------------------,
I I directcr I !
I r-------------, L __________ J r-------------, I
I I Sterling I VKC I I I
~-~ numeric field ~-------------, r--------------~ Binary ~--~
I I I VKG I I VPG I constant I I I L _____________ J I I L ____________ J I

I ! I !
I r-------------, I I r-------------, I
I I Decimal I VKB I I VPB I Binary I I
~-~ numeric field r-c--------------~ t-------------)--\ fixed ~--~
I I da ta I VKF I I VFD I da ta I I I L _____________ J I I l _____________ J I

I r T I
I r-------------, r---------------, r--------------, I
I ,Decin;al I VPF I library I VPA I Library I I
~-~ f ixed I--C-----~ paclled decimal ~-----)--\ f loating- r oint I I
I I data I VPD ! intermediate I VFA I intermediate I I
I L _____________ J l-------T------J l------T-------J I
I I I I
I r-------------, I I r-------------, I
I I F format I VPE I I VFC I Floating- i I
.-~ character 1-oC----------- ---~ ~-------------.. I pOint I+-~
I I string I VPB I I VFE I data I I I L _____________ J I I l _____________ J I

I I I I
I r-------------, I I r-------------, I
I I E format I VPE I I I Bit stung I I
L_~ character I--C----------- ___ J L _____________ ~ constant I--C--J

I string I VPC VPH I I l _____________ J l _____________ J

Note: The three-letter names, e.g., VKC, are the last three letters of the module narr,e.
A name above the flow lines indicates a conversion from left to right; a name belcw the
line indicates a conversion £I-om right to left.

Figure 37. Structure of the],rithmetic Conversion Package

Section I: General Implementation Features 45

The arithmetic conversion director UHE­
WDMA) links tcgether the modules required
for a particular arithmetic conversion. It
is called either directly ty compiled code
or by other director routines. The flag
bytes in the source and target DEDs are
interrogated to determine which modules are
required for the current conversion and
their order of execution. The library com­
munication area is used to record informa­
tion required by successive modules as
follows:

WBRl Address of entry point of second
module

WBR2 Address of entry paint of third
module (if required)

WRCD Target information

The conversion director then passes con­
trol to the first module in the chain; the
first transfers control to the second, and
so on until the conversion is complete.
The last module returns to the program
which called the conversion director. ALI
the modules which can be first in the chain
set up by the conversion director use the
source parameters passed to this director.
The first conversion is always to the
intermediate form of the same radix as the
source. The results are stored in the fol­
lowing LCA fields:

WINT Binary results

WINT} Decirr,al results
WSCF

Three modules in the ari~hmetic package
deal with data on the external medium. Two
modules handle the outfut of F and E format
items from packed decimal intermediate for­
mat, and the third provides conversion from
F and E format items to packed decimal
intermediate format. The LCA fields used
for these modules are:

WFED A (FED) at infut

WFDT A(FED) at outfut

I:.JSWA\ Switches
WSWC,

WOCH A(Error character>:
built-in function

for ONCHAR

WOFD Dope vector for ONSCURCE built-in
fUnction

DATA CHECKING AND ERROR HANDLING

Checking is carried out on data on the
external medium for edit-, data- and list­
directed input and on internal data items
taking part in conversions.

46

Edit Directed

All data described by a picture is
matched against the picture description.
When a P format item is read in, this
checking is performed by one of three pic­
ture check routines (decimal, sterling, and
character) which is called by the appropri­
ate input director.

E' or E format items are checked against
the format element descriptor (FED). The
validi ty of the characters in the data iterr,
is investigated prior to conversion to
packed decimal intermediate format.

If B format items are assigned in the
target DED to a bit string, the items are
checked in the character-to-bit module.
Otherwise, a pre-scan within the B format
input director checks that all characters
in the string are eith~r zero or one.

If A format or B format is specified on
input without a w specification, the com­
piled code calls IHEWDIL (illegal-input
format director). This routine calls the
execution error package, passing an error
code. This causes a message to be printed
and the ERROR condition to be raised.

List/Data-Directed

Wit.bin the conversion package, the con­
stants which are converted to arithmetic
are checked in the appropriate internal
conversion modules.

Decimal constants are converted by the
F/E-to-PDI routine and are therefore
checked by that routine as above.

Binary constants are checked frior to
conversion to floating-point intermediate.

Bit string constants are checked prior
to conversion to floating-point
intermediate.

INTERNAL CONVERSIONS

Checking cf data is provided for the
following:

1- Character string to arithmetic.

2. Character string to bit string.

3. character string to pictured character
string.

4. Bit string to pictured character
string.

In cases ito 3 above, if an invalid
character is found the CONVERSION condition

is raised; in case 4, the ERROl{ condition
is raised.

When CONVERSION is raised, an error code
is passed to IHEWERR. The error code
passed depends:

1. On the type of operation (internal,
I/O, or I/O with TRANSMIT condition
raised).

2. On the various formats an,] conversions
involved. These consist of:

F fonnat
E forrr,at
B format
Character string to arithwetic
Character string to b~t string
Character string to pictm:ed character
string

P format (decimal, character and
sterling)

The internal error codes passed to IHEWERR
for ON-conditions are listed in Appendix E.

Different ONCODE values are set for each,
and may be interrogated in an on-unit pro­
vided for the CONVERSION condition. If the
condition is associated with 1/0, it is
also possible that a TRANS~~T condition rr,ay
be active. This can be tested in the on­
unit for CONVERSION. A list of ONCODE
values is given in IBM System/360 Time
Sharing System: PL/I Reference Manual.

The conversion package routines set the
follcwing information before invoking the
execution error package:

WOFD

WOCH

IHEQERR

Dope vector for field scanned

Address of character in error

Value of the error code. For
I/O editing, a 1 bit is set in
bit zero.

Bits 12 to 15 are set according
to the conversion being per­
formed. (See Figure 38.)

In addition to the occurrence of the
CONVERSION error, the SIZE condition can
also occur in the CONVERSION package. Once
again, a distinction is rrade letween
internal conversions and conversion~3
involving the external medium. In the
latter case, bit zero in IHEQERR is again
set to one.

In certain cases an illegal conversion
may be requested or an invalic parameter
may be passed to a conversion routine. In

r-----------------------------T-----------,
I Conversion I Code !
~-----------------------------+-----------i
I F format Ii!
I E format I 2 I
I B forrrat I 3 I
I Character string to I 4 I
I ari thmetic I I
I Character string to I 5 I
I bit stdng ! I
I Character string to I 6 I
I pictured charact(~r string I I
I P format (decimal> i 7 I
I P format (character) I 8 I
I P format (sterling) I 9 I l _____________________________ L ___________ J

Figure 38. Conversion Code Set in IHEQERR

these cases the conversion package calls
the error-handling subroutine, having set
register RA to point to an error code.
This causes a message to be printed which
describes the error found; the error­
handling subroutine then raises the ERROR
condition.

If a CONVERSION error occurs, the pro­
gram can proceed in three ways:

1. If system action is specified, a rres­
sage will be printed and the ERROR
condition raised.

2. If CONVERSION is disabled, the conver­
sion will continue, ignoring the
character in error.

3. If an on-unit exists, it will be
entered. If the on-unit returns con­
trol to the conversion routines, they
will assume that either the ONCHAR or
ON SOURCE FS€udo-variable has been used
to correct or replace the character or
field in error, and will automatically
retry the conve~sion.

Not~: If the pseudo-variables have not
been used to correct the error, and if the
on-unit attempts to return control to the
conversion, a message will be printed and
the ERROR condition raised.

COMPUTATIONAl SUBROUTINES

computational subroutines within the
PL/I Library supplement compiled code in
the implementation of operators and func­
tions within four main groups. These
groups are:

1. String Handling

2. Arithmetic evaluation

3. Mathematical functions

4. Array functions

Section I: General Implementation Features 47

In addition to the description provided
in this document, detailed information on
algorithms and performance is published in
IBM systern/360 Time sharing System: PL/I
Library: computational Sucroutines.

A number of error and exceptional condi­
tions not directly covered by PL/I-defined
ON conditions may occur in these subrou­
tines. In these cases, a diagnostic mes­
sage is printed and the ERROR condition
raised. By use of the ONCODE ruilt-in
function, the cause of interruption may be
ascertained in an ERROR unit and appropri­
ate action may be taken. A list of the
ONCODEs is given in IBM System/360 Time
Sharing System: PL/I Reference Manual.

When an aggregate of data items is being
processed, the indexing through the aggreg­
ate is achieved by in-line code, as the
library routines generally handle individu­
al elements only. The array fUnctions,
however, perform their own indexing, so
that only a single call from compiled code
is made.

For modules handling data in coded form,
character seven of the module name indi­
cates the type of data concerned; the mean­
ings of this character are given in Figure
39.

String Operations and FUnctions

The library string package contains
modules for handling both bit and character
string. The characteristics of the string
operations and functions are listed in
Figure 40. Generally, individual modules
handle a particular function or operation
for bit or for character string; in the
interests of efficiency however, additional
modules are provided to deal with byte-

r------------------T----------------------,
I Data I Character I
t------------------+----------------------~
I I Real or I
I Internal form I Real Complex Complex I
~------------------+----------------------~
I Binary I B U I
I Packed decimal I D V I
i Binary or I I
I packed decimal I F X I
I Short float I S W G I
I Long float I L Z H I l __________________ ~ ______________________ J

Figure 39. Relationship of Data Fern and
Seventh Character of Module
Name

aligned data for some of the bit string
operations.

The functions LENGTH and UNSPEC are
handled directly by compiled code; support
for BIT and CHAR is provided in the library
conversion package.

Linkage to the string subroutines is by
means of the PL/I standard for all func­
tiens except SUBSTR, INDEX and BOOL. The
functions REPEAT, HIGH, and LOW use the
PL/I standard as they are implemented as
entry points to the concatenation and
assign/fill routines.

The address and the maximum and current
lengths of a string are passed to library
modules by means of string dope vectors.
All string lengths supplied in SDVs are
assumed to be valid non-negative values;
unpredictable results will ensue if this
condition is not staisfied.

Conversions (e.g., of decimal integers
into binary integers for functions such as
REPEAT) and evaluation of expressions are
handled by the compiler, which is also
responsible fer recognizing instances of
byte-alignment which are suitable fer the
byte-aligned bit functions provided.

r-----------------T-----------------T----------------------------------r----------------,
I I I Bit string I I
I I ~-----------------T----------------~ I
I PL/I Operation I PL/I Function I General I Byte-aligned ICharacter Stringl
~-----------------t-----------------+-----------------+----------------+----------------~
I And I I Use EOOL I IHEWBSA I I
I Or I I Use BOOL I IHEWBSO I
I Not 1 I Use EOOL I IHEWBSN I
I Concatenate i REPEAT I IclEWBSK I IHEWCSK I
I Compare I I IHEWBSD I IHEWBSC IHEWCSC I
I Assign I I IHEWBSK I IHEWBSM IHEWCSM I
I Fill I I IHEWBSM I IHEWCSM I
I I HIGH/LOW I I IHEWCSM I
I I SUBSTR I IclEWBSS I IHEWCSS I
I I INDEX I IHEWBSI I IHEWCSI I
I I EQOL I IHEWBSF I I I L ________________ ~ _________________ ~ _________________ ~ ________________ ~ ________________ J

Figure 40. String Operations and Functions

48

r---,
I ARITHEMETIC OPERATIONS I
~--T---------T----------T---------T---------~
I I Binary I DeciITal I Short I Lcng I
I Operation i fixed I fixed I float I float I
~----------------------------.----------.---------l.---______ .L __________ .1. _________ .L _________ ~
I Real Operations I
~---T---------T---------T---------T---------~
I Integer exponentiation: x**n I IHEWXIB I IHEWXID I IHEWXIS I IHEWXIL I
I General expcnentiation: x**y i I I IHEWXXS I IHEWXXL I
I Shift-and-assign, Shift-and-load I I IHEWAPD I I I
~-_---.L-----____ l. ___________ .l. _________ .L _________ ~
I Complex Operations I
~---T---------T---------T---------T---------i
I Multiplication/division: Z.1.*Z2, Z~/Z2 I IHH~MZU I IHEWMZV I I I
I Multiplication: Z.1. *Z2 ! I I IHEWMZW I IHEWMZZ I
I Division: Z.1./ Z2 I I I IHEWDZW I IHEWDZZ i
I Integer exponentiation: z**o ! IHEWXIU I IHEWXIV I IHEWXIW I IHEWXIZ I
I General exponentiation: Z.1.**Z2 I I I IHEWXXW I IHEWXXZ I L ___ .l. _________ l. _________ ~ _________ .l. _________ J

Figure 41. Arithmetic OFerations

The general design of the string package
is influenced by the concept that complete
evaluation of the right-hand side of an
assignment statement occurs before the
assignment. In this evaluation, there is
usually an intermediate stage in which a
partial result is placed in a field acting
as a temporary result field. This does not
prevent the compiler from optimizing by
providing the actual target field of the
assignment as the temporary result field,
subject to the following conditions:

1. If the target field is the same as a
field involved in expression evalua­
tion, an intermediate area is required
to develop the result (unless other­
wise stated in the module description
summaries). For example, A = B II A
requires an intermediate field, but A
= A & B does not.

2. Padding of fixed-length strings does
not occur automatically when a string
operation is Ferformed, except in the
case of assignment of fixed-length
character strings and fixed-length
byte-aligned bit strings. Separate
routines are available for padding.

Arithmetic Operations and Functions

Library aritp .. metic modules frovide suf-­
port for all those arithmetic generic func­
tions and operations for which the compiler
neither generates in-line coce nor (as for
the fUnctions FIXED, FLOAT, EINARY, AND
DECIMAL) uses the library cor..version pack­
age. (See Figures 41 and 42.)

Linkage between comfiled code and the
arithmetic modules is established by means

of the system standard for the functions
sUPfcrted and by means of the PL/I standard
for the operations supported. The mcdule
descriI.tion summaries provide information
about linkage to individual modules.

Fixed-point data often require data ele­
ment descriptors (DEDs) to be fassed in
crder to convey information about precision
(p, q). Binary data is always assurred to
be stored in a fulbvord correctly aligned,
with 0 < pS 31. Decimal data is always
assurred to J::e facked in FLOOR (p/2) + 1
bytes where 0 < p S 15. Where such fields
introduce high-order digits beyond the spe­
cified precision, these digits must not be
significant.

In decimal routines, the target area is
assurred to be of the correct size to
accomodate tne result precision as defined
ty the language.

r---,
I ARITHMETIC FUNCTIONS !
t---------T-------T-------T-------T-------~
I IBinary I Decimal I Short I Long I
IFunction ifixed I fixed I float I float I
t---------~-------l.-------.l.-------.L-------~
I Real Arguments I
~---------T-------T-------T-------T-------~
IMAX, MIN IIHEWMXBIIHEWMXDIIHEWMXSIIHEWMXLI
[ADD I I IHEWADD I I I
~-------_-.L-------i_------l.-------.L-------~
I comflex Arguments I
t---------T-------T-------T-------T-------~
IADD I I IHEWADV I I i
IMULTIPLY I IHEWMPUI IHEWMPVI I I
I DIVIDE I IHEWDVU jIHEWDVV I I I
lABS I IHEWABUI IHEWABVj IHEWABWI IHEWABZ I l _________ l. _______ .L _______ l. _______ .L _______ J

Figure 42. Arithmetic Functions

Section I: General Irn~lementation Features 49

Where assignment to a smaller field is
required, the compiled code should generate
an intermediate field for the result and
subsequently make the assignment. This
does not apply to ADD, MULTIPLY and DIVIDE
with fixed-point decimal arguments, which
perform the assignment themselves. Such
action by cOIDfiled code avoids much unne­
cessary execution-time testing and enables
a clear distinction to be made between SIZE
and FIXEDOVERFLOW conditions.

Floating-point arguments are assumed to
be normalized in aligned fullword or doub­
leword fields for short or long precision
respectively; the results returned are
Similarly normalized.

Mathematical FUnctions

The library provides subroutines to deal
with all float arithmetic generic functions
and has separate modules for short and long
precision real arguments, and also for
short and long precision complex arguments
where these are admissible (see Figure 43).

Linkage to all mathematical subroutines
is by means of the system standard.

r---,
I Real. Arguments I
~---------------------T---------T---------~
I I Short I Long I
I Function I float I float I
t---------------------+---------t---------~
I SQRT I IBEWSQS I IHEWSQL I
!EXP I IHEWEXS I IHEWEXL I
I LOG, LOG2 ,LOG10 I IBEWLNS I IHEWLNL I
ISIN, COS,SIND,COSD I IHEWSNS I IHEWSNL !
I TAN, TAND I IHEWTNS I IHEWTNL I
IATAN, ATAND I IHEWATS I IHEWATL I
ISINH, COSH I IHEWSHS I IHEWSHL I
I TANH I IBEW'IHS ! IHEWTHL I
IATANH I IHEWHTS I IHEWHTL I
I ERF , ERFC I IHEWEFS I IHEWEF L I L-____________________ ~ _________ ~ _________ J

r---,
I cOlHflex Arguments I
~---------------------T---------T---------1
I I Short I Long I
I Function I float I float I
~---------------------t---------+---------1
I SQRT I IHEWSQW I IHEWSQZ I
I EXP I IHEWEXW I IHEWEXZ I
I LOG I IHEWLNW I IHEWLNZ I
ISIN,COS,SINH,COSH I IHEWSNW I IHEWSNZ I
I TAN, TANH i IBEWTNW I IHEWTNZ I
IATAN, ATANH I IHEWATW I IHEWATZ I L _____________________ ~ _________ ~ _________ J

Figure 43. Mathematical Functions

50

Where evaluation or conversion of an
argurrent is necessary, this is done prior
to the invocation of the library module.
Hence, all arguments passed to the mathe­
rratical subroutines must be of scale FLOAT.
As such, it is assumed that the arguments
are normalized in aligned full word or doub­
leword fields for short or long precision
respectively. The results returned are
normalized similarly.

Array Functions

The library provides support for com­
piled code in the implementation of the
PL/I array built-in functions SUM, PROD,
POLY, ALL, and ANY. (See Figure 44.)
Calls to array function modules are by
means of the system standard; the indexing
routines, which are used internally by the
library, use the PL/I standard calling
sequence.

In all cases, the source arguments are
arrays and the function value returned is a
scalar. The evaluation of this function
value requires only one call from compiled
code, indexing through the array being
handled internally within the library.

In the interests of efficiency, two sets
of modules are provided: those which deal
with arrays whose elements are stored con­
tiguously (simple arrays), and those which
also deal with arrays whose elements are
not in contiguous virtual storage (inter­
leaved arrays>.

In order to deal with array element
addressing, the library modules require an
array dore vector (ADV or SADV) to be
passed as an argument. The format of these
dope vectors is described in Section IV.
The nUIr,ber n, the number of dimensions of
the array, is required in addition to the
ADV or SADV, and is passed as a separate
argurrent.

The Pl/I language requires that the sca­
lar values resulting from the use of the
array functions, SUM, PROD, ana POLY,
should be floating-point. Since the
library Ifodules are addressing each array
element successively, the necessary calls
to the conversion routines (to change scale
from FIXED to FLOAT) are made from the SUM,
PROD, and POLY modules which have fixed­
faint arguments. In the case of ALL and
ANY functions, it is expected that any
necessary conversion to bit string will be
carried out before the library is invoked.

r-----------T--------------------------T------------------------,
I I Simple arrays, and I Interleaved string I
I I interleaved arrays of I arrays with fixed- I
I I variable-length strings I length elements I
r-----------t--------------------------t------------------------~
I Indexers I IHEVlJXS I IHEWJ XI I
I ALL, ANY I IHEVlNL1 I IBEWNL2 I l ___________ ~ __________________________ L ________________________ J

Note: IH.E.WJXI is also used for indexing through interleaved arithmetic arrays.
r---------------T-----------------------T--,
I I I Floating-J;oint arguments I
I PL/I I Fixed - faint r-----------------------T-----------------------~
I functions I argunents I Short precision I Long precision I
I r---------T-------------t---------T-------------t---------T-------------~
I I Simple I Interleaved I Simple I Interleaved I Simple I Interleaved I
t---------------t---------t-------------t---------t-------------t---------+-------------~
I sml real I IHEWSSF I IriEVlSMF I IHEWSSG I IHEWSl'1G I IHEwSSH I IHEwSMH I
I Complex I IHEWSS:X I IHEWSl'JX I IHEWSSG I IHEWSMG I IHEVlSSH I IHEWSMH I
I I I I I I I I
I PROD r€al i IHEWPSF I IHEWPDF I IhEWPSS I IH~wPDS I IHEWPSL I IHEWPDL I
I cOIr;r;lex I IHEWPSX I IHEVlPDX I IHEWPSW I IH.E.VlPDw I IHEWPSZ I IHEWPDZ I
I ~---------~-------------+---------L-------------+---------~-------------~
I POLY real I IHEhYGF I IHE.,YGS I IHEWYGL !
I cOIrr;lex I IHEh:YGX I HIEWYGW i IHEWYG Z I l _______________ L _______________________ L _____________ __________ ~ _______________________ J

Figure 44. Array Indexers aLd I"unctions

Section I: General Implementation Features 51

SEC'IICN II

MODULE SUMMARIES

This secti cn provides inforu;ation about
individual u,odules of the PL/I Library. It
serves as an introduction to the more
detailed accounts given in the prefaces to
the program listings. A brief statement of
fUnction is given; also provided are full
specifications of linkage and inter-modular
dependency. Since many library modules
~nvoke the execution error paCkage (IHE­
WERR), no reference is made to this module
in the 'Calls' section.

CONTROL PROGRAM INTERFACES

The 'Calls' and 'Called by' sections
include the use of the CALL macro to pass
oontrol. In those cases fflentioned in the
section on OPEN prooessing, a direct branch
is taken.

DATA PROCESSING

All integral values specified in the
'Linkage' section of the module description
will be represent(~d internally as fullword
binary integers. Target fields will also
be fullwords unless otherwise specified or
implied (for example, for long floating­
point results).

When fIXED data is passed to the
library, a OED is associated with it in the
linkage. In cases where the DED is not
interrogated, the appropriate ent.ry in the
'Linkage' section is marked with an
asterisk.

Complex arguments are assumed to have
real and irraginary parts stored next to
each other in that order, so that the
address of the real part suffices for both
of them. Both parts are described by the
same DED.

1/0 Editing and Data Conversions

Target fields may, if desired, be over­
lapped wi ttl SOUIce fields in all cases
except IHEWVSA, IHEWVSB, IHEWVSC, IHEWVSD,
IHEWVSE, and IH£WVSF.

Strin2~: A source string field may coin­
cide with a target st.ring field in t.he
modules listed in Figure 45. It should be
noted that use of the same address for the
dope vectors of source st.ring and target
string is not generally permitted, even
though t_he string fields themselves may be
overlapped. The exceptions to this are the
entry points IHEBS:KK and HlECS:KK, where a
considerable saving of time can be obtained
by using the same address for toth the
first source and target SDVs.

54

r----------T------------------------------,
t I Source/Target Coincidence I
I r---------------T--------------t
I Module I First Source I Either Source I
I I Field I Field I
r----------t---------------+--------------~
I IHEwBSA I Yes I I
I IBEwBSO I I Yes I
I IHEWBSK I Yes I I
! IHEWBS~, I Yes I I
I IHEWBSf' I I Yes I
I IHEWCSK I Yes I I
I IHEWCSIol I Yes I I l __________ ~ _______________ ~ ______________ J

Figure 45. Coincidence of Source and Tar­
get Fields in Some String
Modules

The first byte of the result prcduced by
t.he cOITJ;:arison modules IHEWESC, IHEWESD,
and IHEWCSC contains:

Bits

0 to
2 to
4 to

1
3
7

contents

Instruction length code 01
Ccndition code as below
Program mask (calli ng rcutine)

The condition code is set as follows:

00 Strings equal

01 First string compares low at first
inequality

10 First string compares high at first
inequality

Arithmetic: 'rarget fields may, if desired,
te overlapped with source fields in all
cases except IHEWXIU, IHEWXIV, IHEWXIW,
IdEWXIZ, IHEWXXL and IHEWXXS.

Mathematical: Target fields may. if
desired. be overlapped with source fields
in all cases except IHEWEFL, IHEWEFS,
IHEWLNW. IBEWLNZ, IBEWSQW and IHEWSQZ.

IHl:WABU

IHEABUO

Function: ABS (z). ~here z is coar1ex
fixed-point tinary.

RA: A (Parameter list)
Parameter list:

A(Z}
*A (DED for z)

A (Target>
*A (Target DED)

CO:mfilEd code

IHEWABV

Entry Point: IHEABVO

Function: ABS (z), where z is complex
fixed-point decimal.

Linkage:

RA: ACParameter list)
Parameter list:

A(z)
A (DED for z)
ACTarget)
A (Target DED>

Called by: compiled code

IHEWABW

Ca11s: IHEWSQS

Entry Point: IHEABWO

Function: ABS(z), where z is complex short
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(z}
A(Target}

ca11ed by: compiled code, IHEWSQW

IHEWABZ

Calls: IHEWSQL

Entry Point: IHEABZO

Function: ABS(z), when z is complex
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(z)
A(Target)

Cal1ed by: Ccmpiled code, IEEWSQZ

IHEWADD

Calls: IHEWAPD

Entry Point: IHEADDO

Function: ADD(x,y,p,q), Whele x and yare
real fixed-point decimal, anc, (p,q) is the
target precision.

Linkage:

RA: A(Pararreter list)
Parameter list:

A (x)

A(OED for x)
A{y)
A<DED for y)
A (Target)
A (Target CEL)

Called by: corrfiled code, IHEWADV

IHEWADV ----

Calls: IHE.WADD

Entry Point: IHEADVO

Function: ADD (w,z,p,q), where wand z are
complex fixed-point decimal, and (p,g) is
the target precision.

Linkaqe:

RA: A(Parameter list)
Pararr,eter list:

A (w)

A (OED for w)
A(z)
A (OED for z)
A (Target)
A(Target DED}

called J2y: Corr,piled code

IHEWAPD -----
Calls: IHEERRB

Entry Point: IHEAPDA

FUDct~on: To assign x to a target with
freclslon Cf2, q2)' where x is real fixed­
point decimal with precision (P1, q1), and
P1 S 31.

RA: A (x)
RB: A(DED for x)
RC: A(Target)
RD: A(DED for target)

Called by: IHEWADD, IHEWDVV, IHEWMPV

Entry Point: IHEAPDB

Function: Tc convert x to precision
(31,Q2)' where x is real fixed-point decim­
al with precision (P1, q1)' and F1 S 31.

linkage: As for IHEAPDA

Called by: IHEWADD, IHEWDVV

Section II: Module Summaries 55

IHEWATL

bntry Point: IhEATLl

Function: ATAN (x) where x is real long
floating-Faint.

Linkage:

RA: ACParameter list)
Parameter list:

A (x)

A(Target)

called~: compiled code

Entry Point: IHEATL2

Function: ATAN (y,x), where x and yare
real long floating-point.

Linkage:

RA: A{Parameter list)
Paran,eter list:

ACy)
A (x)

A(Target)

Called by: Compiled code, IHEWA'IZ, IHEWLNZ

£ntry Point: IHEATL3

Function: ATAND (x), where x is real long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A (Target)

Called by: ComFiled code

Entry Point: IHEATL4

Function: ATAND <y,x), here x and yare
real long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (y)
A(x)
A (Target)

Called by: Compiled code

IHEWATS

Entry Point: IHEATSl

Function: ATAN (x), wnere x is real short
floating-point.

56

linkage:

RA: A(Pararr.eter list)
Pararr.eter list:

A(x)
ACTarget)

called~: Con,piled code

Entry Point: IHEATS2

Function: ATAN (y,x), here x and yare
real short floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (v)
A (x)

A(Target)

~alled~: Comfiled code, IHEWATW, IHEWLNW

Entry Point: IHEATS3

Function: ATAND (x), where x is real short
floating-point.

Linkage:

RA: A(parameter list)
Parameter list:

A (x)

A (Target)

Called by: Compiled code

Entry point: IHEATS4

Function: ATAND (y,x), where x and yare
real short floating-point.

RA: A(Parameter list)
Parameter list:

A(y)
A(x)
A (Target)

Called by: Compiled code

IHEWATW

Calls: IHEWATS, IHEWHTS

Entry Point: IHEATWN

Function: ATAN (z), where z is complex
short floating-point.

Linkage:

RA: A(Parameter list>
Parameter list:

A(z)
A(Target}

Called by: compiled cede

Entry Point: IHEATWH

Calls: IHEATS2, IHEWHTS

Function: ATANH (z), where z is complex
short floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(z)
A (Target)

Called by: compiled code

IHEWATZ

Calls: IHEWATL, IHEWHTL

Entry Point: IHEATZN

Calls: IHEATL2, IHEWHTL

Function: ATAN (z), where z :_s complex
long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (z)

A (Target>

Called by: compiled code

Entry Point: IHEATZH

Calls: IHEATL2, IHEWHTL

Function: ATANH (z), when z "s complex
long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:
A(z)
A (Target)

Called by: compiled code

IHEWEEG

Entry Point: IHEBEGN

Function: Issues a GATWR maCJ:o instruct.ion
if the program does not have a main
procedure.

None

Called by: Compiled code

IHEWBSA

Entry ~cint: IHEBSAO

Function: AND operator (&) for two byte­
aligne~tit strings.

RA: A(SDV of first operand)
RE: A(SDV of second operand}
RC: A(SDV of target field)

Called by: COIrr;iled code

Entry Point: IHEBSCO

Function: To compare two tyte-alighed hit
strings.

RA: A (SDV of first operand)
RE: A(SDV ef second operand)
RC: A(Target)

Called~: Compiled code

IHEWESr:;

Entry Peint: IHEBSDO

Function: To compare two bit strings with
any alignment.

RA: A(SDV of first operand)
RE: A(SDV ef second operand)
RC: ACTarget)

Called E.Y! ComFileCi code

IHEWESE

Function: BOOL (Bit string, bit string,
string n~ nz n3 n).

Linkage:

RA: A(Parameter list)
Parameter list:

A(SrV of first source string)
A(SLV of second source string)
A(Fu11word containing bit pattern n~,

Section II: Module Suwmaries 57

n2 n3 n right justified)
A(SDV of target field>

Called by: Compiled code

HiEWBSI

Entry Point: IrlEBSIO

Function: INDEX (Bit string, bit string).

Linkage:

RA: A(Parameter list)
Parameter list:

A(SDV of first source string)
A(SDV of second source string)
A(Target field)

Called by: Compiled code

IHEWBSK ----
Entry Point: IHEBSKA

Function: To assign a bit string to a tar­
get field.

Linkage:

RA: A{SDV of source string)
RB: A(SDV of target field)

called by: compiled code

Entry Point: IrlEBSKK

Function: Ccncatenate operator (II) for
.tit strings.

Linkage:

RA:
RB:
RC:

A(SDV of first operand)
A (SDV of second operand)
A(SDV of target field)

Called by: Compiled code, IHESTGA

Entry point: IrlEBSKR

Function: REPEAT (Bit string,n).

Linkage:

RA: A (SDV of source string)
RB: A(n}
RC: A (SDV of target field}

called by: compiled code

IHEWBSM

Entry Point: IrlEBSMF

58

Function: To assign a byte-aligned bit
string to a byte-aligned fixed-length
target.

RA: A(SDV of source string)
RE: A(SDV of target field)

called by: compiled code

Entry Point: IHEBSMV

Function: To assign a byte-aligned bit
string to a byte-aligned VARYING target.

Linkage: As for IHEBSMF

calle~: corrpiled code

Entry Point: IHEBSMZ

Function: To fill out a bit string fron:
its current length to its maximum length
with zero bits.

Linkage:

RA: A (SDV)

Called by: Compiled code

IHEWBSN

Entry Point: IHEBSNO

Function: NOT operator (,) for a tyte­
aligned bit string.

Linkage:

RA: A(SDV of operand)
RE: A(SDV of target field)

Called ty: corrpiled code

IHEWBSO

Entry Point: IHEBSOO

Function: OR operator (I) for two byte­
aligned bit strings.

linkage:

RA: A(SDV of first operand)
RE: A(SDV of second operand)
RC: A(SDV of target field)

call~: Corrpiled code

IHEWBSS

Entry Point: IHEBSS2

Function: To f:roduce an SDV describing the
pseudo-variable or function S:JBSTR (Bit
string, i).

Linkage:

RA: A(Parameter list)
Parameter list:

A(SDV of source string)
A(i)
Dummy argument
A(Field for target SDV)

Called by: ccmpiled ccde

Entry Point: IH~BSS3

Function: To ~roduce an SDV describing the
pseudo-variable or function SUESTR (Bit
string, i, j).

Linkage:

RA: A(Pararr.eter list)
Parameter list:

A(SDV of source string)
A(i>
A (j)

A(Field for target SDV)

Called by: ccmpiled ccde

IHEWBS'I

Calls: IHEWBSF, IHEWBSI, IHEWBSS

Entry Point: IHEBSTA

Function: Translate bit string

Linkage:

RA: A(Parameter list)
Parameter list:

A(SOURCE/TARGET SDV)
A(REPLACEMENT SDV)
A(POSITIONAL SDV)

Called by: Ccmpiled code

IHEW13SV

Entry Point: IHEBSVA

Function: Verify bit string

Linkage:

RA: A(Parameter list)
Parameter list:

A(El SDV)
A(E2 SDV)
A(Result field)

Called by: compiled code

IHEWCFA -----
Entry Point: IHECFAA

Function: ONLCC: Locates the Bce narre of
the frccedure that contains the PL/I inter­
ruption that caused entry into the current
on-unit. If ONLOC is specified outside an
en-unit, a null string is returned.

Linkage!

RA: A(Pararreter list)
Parameter list:

A(Target SDV)

Called by: Compiled code

IHEWCFB

Entry Point: IHECFBA

Functicn: ONCODE: Returns a value corres­
ponding to the condition which caused the
interruf:tion. If specified outside an on­
unit, a unique code (0) is returned.

Linkage:

RA: A(Parameter list)
Pararreter list:

A(4-byte word-aligned target)

Called by: Compiled code

Entry Point: IHECFCA

Function: ONCOUNT: Returns a value equal
to the numLer of PL/I conditions and pro­
gram exceptions, including the current one,
that have yet t.o be processed. A zero
value is returned for all TSS/360
applications.

IHEWCKP

Entry Points: IHECKPS, IHECKPT

Function: Issues diagnostic message if
attellipt is made to use CHECKPOINT facility,
and continues execution.

Linkage: None

Called by: Compiled code (CALL IHECKPS or
CALL IHECKPT)

IHEWCLT -----

Calls: IH~WSAP, Supervisor (CLOSE, eCED,
FREE~.:AIN)

Section II: Module Sumrraries 59

Entry Point: IHECLTA

Function: Close files:

1. Free FCB.

2. Set file register te zero.

3. Remove file frorr IHEQEOP chain.

4. Purge outstanding I/O events, setting
event variables complete, abnormal,
and inactive.

No close is issued if the file is SYSIN or
SYSOUT.

Linkage:

RA: A(Parameter list)
Parameter list:

A (CI.OSE pa1.-ameter list)
A(Private adcons)

CLOSE parameter list:
A (DCLCB:L)
(Reserved)
(Reserved)

A (DCLCBn)
(Reserved)
(Reserved)
(High-order byte of last argument
indicates end of farameter list)

called by: lHEAOCL

Entry Point: IBECLTB

Function: To Cl.ose all files when a PL/I
J:.-rogram is terminated.

RA: A(Parameter list)
Paran,eter list:

F (number of files to be closed*4)
A(Adcon list)
A (lst FCE)

A(nth FCB)
(High-order byte of last argument indi­
cates end of parameter list.)

Called by: IHHWCL

IHEWCNT

Entry Point: IBECNTA

Function: Returns count of scalar items
transmitted on last I/O operation.

60

Linkage:

RA: A(parameter list)
Parameter list:

A (DCLCB)
A <Fullword)

Called by: Compiled code

Entry Point: IHECNTB

Function: Returns current line nunber
(LINENO) .

Linkage: As fer IHECNTA

Called by: Compiled code

IHEWCSC

Entry Point: IHECSCO

Function: Tc corrpare two character
strings.

Linkage:

RA: A (SLV of first operand)
RB: A(SDV of second operand)
Re: A (Target)

Called by: Corrr;iled code

IHEWCSI

Entry point: IHECSIO

Function: INDEX (Character string,
Character string).

Linkage:

RA: A(Pararreter list)
Parameter list:

A(SDV of first source string)
A(SCV of second source string)
A(Target field)

Called by: Compiled code

IHEWCSK

Entry Point: IHECSKK

Function: concatenate operator (II) for
character strings.

Linkage:

RA: A(SDV of first operand)
RE: A(SDV of second operand)
RC: A(SDV of target field)

Called by: Cowfiled code

Entry Point: IHECSKR

Function: REPEAT (Character string, n).

Linkage:

RA: A (SDV of source string)
RB: A(n}
RC: A(SDV of target field)

called by: compiled code

IHEWCSM

Entry Point: IHECSMF

Function: To assign a character string t_o
a fixed-length target.

Linkage:

RA: A (SDV of source string I
RB: A(SDV of target field)

Called by: Compiled code

Entry Point: IHECSMV

Function: To assign a character string to
a VARYING target.

Linkage: As for IHECSMF

Called by: compiled code

Entry Point: IHECSMB

Function: To fill out a chara:ter string
from its current length to its maximum
length with blanks.

Linkage:

RA: A(SDV)

Called by: Complied code

Entry Point: IHECSMH

Function: HIGH

Linkage: As for IHECSMB

Called by: Ccmpiled code

Entry Point: IHECSML

Function: LOW

Linkage: As for IHECSMB

Called by: Complied code

IHEWCSS

Entry pcint: IHECSS2

Function: To produce an SDV describing the
pseudo-variatle or function SuBSTR
(Character string, i).

RA: A(Parameter list)
Pararreter list:

A(SCV of source string)
A(i>
Durrrry argument
A(Field for target SDV)

Called t1: Compiled code

Entry Point: IHECSS3

function: To produce an SDV describing the
pseudo-variatle or function SUBSTR
(Character string, i, j).

RA: A(Parameter list}
Pararr,eter list:

A (SDV of source string)
A(i)

A (j)

A(Field for target SDV)

Called b}': Compiled code

IilEWCS'I

Entry Point: IHECSTA

Function: supplements translate character
string

Linkage:

RA: A (Parameter list)
Parameter list:

A(SDV of SOURCE/TARGET)
A(SDV of REPLACEMENT)
A(SDV of POSITIONAL)
A(Translate table)

Called by: Compiled code

IHEWCSV

:Entry I)cint: IH:ECSVA

Function:
string

Linkage:

SUfflements verify character

RA: A(Parameter list)
Parameter list:

A(El SDV}

Section II: Module Sumr.aries 61

A(E2 SDV)
A(Translate table)
A (Result field)

called~: Compiled code

IHEWCVC

Calls: Supervisor (DIR, EBCDTIME, FREE­
POOL, GATWR, GETBUF, GETPCCL, PAUSE, SIR,
SPEC, STINER, XTRCT)

Function: This module is a table contain­
ing the non-shareable part of the PL/I
library. It consists of V- and A-type
address constants, L-form macros, and
executable macros with parameter lists or
address constants. pseudo-register IHEQCTS
contains the case address of the module.

Called by: Compiled cede

IHEWDBN

Calls: IHEWDMA, IHEWUPA, IHEWUPB

Entry Point: ItiEDBNA

Function: To convert a bit string to an
arithmetic target with a s~eeified base,
scale, mode, and precision.

Linkage:

RA:
RB:
RC:
RD:

A (SOurce SDV)
A (Source IJED)
ACTarget)
ACTarget OED)

Called by: Cempiled code, IHEWDCA, IHEW­
DOE, IHEWDOM

IHEWDCN

Calls: IHEWDMA, IHEWUPA, IHEWUPB, IHEWVQB

Entry Point: IHEDCNA

Function: To convert a character string
containing a valid arithmetic constant or
complex expression to an arithmetic target
with specified base, scale, mode, and pre­
cision. The ONSOURCE address is stored.

Linkage:

RA: A(Source SDV)
RB: A(Source DE D)
RC: A (Target)
RD: A(Target OED)
WOFD: ACSource SDV)

Called by: Compiled code, IHEWDIB, IHEW­
DOA, IHEWDOE

62

!ntry ?oint: IHEDCNB

Function: As for IHEDCNA, but the ONSOURCE
address is not stored.

Linka~: As for IHEDCNA, but without WOFD

Called-EY: As for IHEDCNA

IHEWDDI -----

IHEWDDJ, IHEWIOF, IHEWLDI, IHEWSAP

Entry Point: IHEDDIA

Function: To read data from an input
stream and assign it to internal variables
according to symbol table information con­
ventions. Restrictive data list.

Linkage:

RA: A(Parameter list)
Pararreter list:

A(Symbol table:!.>

A(Symbol taclen>
(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point: IHEDDIB

Function: As for IHEDDIA, but no data
lis-t-.--

Linkage:

RA: A(Parameter list)
Pararreter list:

A (Symbol table chain)

called~: Compiled code

IHEWDDJ

Entry Point: IBEDDJA

Functi on: Tc COIT,pute the address of an
array element from source subscripts and an
ADV.

linkage:

RA: A(ADV)
RB: A(DED)
RC: A(Field for element address)
RD: A(Symbol table entry, 2nd part}
RE: A(SDV for subscripts)

Called by: IHEDDIA

IHEWDDO

Calls: IHEWDDP, IHEWIOF, IHEWLDO, IHEWPRT

Entry Point: lriEDDOA

Function: To convert data according to
data-directed output conventicns and to
write it onto an output strearr. For scalar
variables and whole arrays.

Linkage:

RA: A(Parameter list}
Parameter list:

A (Syrrbol table entrYj)

A(Symbol table entrYn)
(High-order byte of last argurr,ent
indicates end of Farameter list.)

Called by: ccmpiled code

Entry Point: IHEDDOB

Function: As for IHEDDOA but for array
variable elerr;ents.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Symbol table entrY1)
A(Element address 1)

A(Symbol table entrYn)
A(Element addressn)
(High-order byte of last argument
indicates end of parameter list.)

Called by: compiled cede

Entry Point: IHEDDOC

Function: '1'0 terminate data -directed
transmission.

Linkage: None

Called by: Ccmpiled code

Entry Point: IHEDDOD

Function: As for ItlEDr:OA, bUl: used to sup­
port the CHECK condition.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Symbol table entry)
A(Element address)

Called l~: IHEWERR, IHESAPA

Entry Point: IHEDDOE

functiQ~; In the absence of a data list,
to convert all data known within a block
according to data-directed output conven­
tions and to write it onto an output
stream.

linkagE;::

RA: A(parameter list}
Pararreter list:

A(First symbol table entry}

IBEDDPA

function: To prepare an array for sub­
script output operation, and to address the
first element.

Linkage:

RA: A(Field for A(VDA»
RB: A(FCB)
HC: A(Syrrbol table entry, 2nd Fart)

Ca~led by: IHEWDDO

!~Point: IHEDDPB

Luncti.on: To perform subscript output.

RA: A (Parameter list)
Pararrete.r list: A{VDA)

FuncticE: Tc address the next element.

RA: A (Pararr,eter list)
Pararreter list: A(VDA)
Return codes:

BR=O: Another element
BR=4: End of array

Called by: IHEWCDO

Entry Point: IHEDDPD

!:unctiQQ: To prepare an array for sub­
scrirt output operation for a given
element.

Section II: Module Surrmaries 63

Linkage:

RA:
RB:
RC:
RD:

A(Field for A(VDA»
ACFCB)
A(Symbol table entry, 2nd part)
A (Element)

called by: IHEwDDO

IHEWDIA

Calls: IHEWDMA, IHEWDNB, IHEWDNC, IHEWIOD,
IHEWUPA, IHEWUPB, IHEWVCA, IHEWVQB, IHEWV­
SA, IHEWVSC

Entry Point: IHEDIAA

Function: To direct the conversion of F
format data to an internal data type.

Linkage:

RA:
RB:
RC:

A(Target or target dope vector)
A (Target DED)
A(FED)

Called by: compiled code, IHEWDIM

Entry Point: IHEDIAB

Function: To direct the conversion of E
format data to an internal data type.

Linkage: As for IHEDIAA

Called by: As for IHEDIAA

I HEWDIB

Calls: IHEWDCN, IHEWIOD, IHEWKCD, IHEWVSC,
IHEWVSD, IHEWVSE

Entry Point: IHEDIBA

Function: To direct the conversion of A
format data to an internal data type.

RA: A(Target or target dope vector}
RB: A(Target DED)
RC: A (FED)

Called by: corr,piled code

Entry Point: IHEDIBB

Function: To direct the conversion of pic­
tured character string data to an internal
data type.

Linkage: As for IHEDIBA

Called by: Compiled code

64

Calls: IHEWDBN, IHEWDMA, IHEWIOD, IHEWUPA,
IHEWUPB, IHEWVSC, IHEWVSD, IHEWVSE

~ntr~Point: IHEDIDA

Function: To direct the conversion of -----external B format data to an internal data
tyr;e.

Linkage:

RA: A{Target or target dope vector)
RE: A(Target DED)
RC: A(FED)

Called by: compiled code

IHEWr:IE

Calls: IBEWr:MA, IHEWDMB, IHEWDMC, IHEWIOD,
IHEWKCA, IHEWKCB, IHEWUPA, IHEWUPB,
IHEWVSC, IHEWVSD, IHEWVSE

Entry Point: IHEDlEA

Function: To direct the conversion of
external data with a numeric picture forrrat
to an internal data type.

Linkage:

RA: A(Target or target dope vector)
RB: A(Target DED)
RC: A (FED)

Called by: Compiled code, IHEWDIM

IHEWr:;IL

Function: To set up appropriate error han­
dling when no width specification fer A
format input is given.

Linkag§:: None

Called ty: Compiled code

Entry Point: IHEDILB

Function: As for IHEDILA, but B format

Linkage: None

Called by: cOffipiled code

IHEWDIM

calls: IHEWDIA, IHEWDIE, IHEWIOD, IHEWKCA,
IHEWVCA, IHEWVCS

Entry Point: IHE~IMA

Function: To direct the conversion of
external data with C fcrffiat to an internal
data type.

Linkage:

RA: A(Target or target dope vector)
RB: A(Target DED)
RC: A(Real format directo:::>
RD: A(Real FED)
RE: A Cln,aginary format di:rector)
RF: A (Imaginary FEl])

Called by: compiled code

IHEWDMA

Transfers Control to: IHEI"iVFD, IHEWVFE,
IHEWVKB, IHEhVKC, IHEWVPE, IHE~~PF,

IHEWVPG, IH~wVPH

Entry Point: lriEDMAA

Function: To set up tne intermodular flow
to effect conversion from one arithmetic
data type to another.

Linkage:

RA: A (Source)
RB: A(Source DED)
RC: A (Target>
RD: A(Target DED)

Called by:

compiled code, I/O directors, IHEWDBN,
IHEWDCN, IHEWDNB, IBEWDNC, IHEWLDI,
IHEWPDF, IHEWP~X, IHEWPSF, IHEWPSX,
IHEWSMF, IHEWSMX, IHEWSSF, IHEWSSX,
IriEWUPB, IHEWVCS, IHEWVFA, IHEWVFB,
IHEWVFC, IHEWVPA, IHEWVPB, IHEWVPC,
IHEWVPD, IHEWVKF, IHEWVKG, IrlEWYGF,
IHEWYGX

IHEWDNB

Calls: IHEWDMA, IHEWVSA

Entry Point: lriEDNBA

Function: To convert an arithmetic source
with specified base, scale, node, and pre­
cision to a fixed-length bit string or a
VARYING bit string of specified length.

Linkage:

RA:
RB:
RC:
RD:

A(Source)
A(Source DED)
A(Target SDV)
ACTarget DED)

called by: Compiled code, IHEWDIA, IbEW­
DIE, lHEWDOD, IHEWVCS

IHEWDNC ----

Calls: IHEWDZV1A, IHEWUPA, IHEWVQC, IHEWVSC,
IHl:..WVSE

Function: To convert an arithmetic source
of s~ecified base, scale, mode, and preci­
sion to a character string or a pictured
character string.

RA:
RB:
RC:
Rl::

A (Source)
A(SourcE DED)
ll(Target SDV)
A (Target DED>

Called by: ComFiled code, IHEWDIA, IHEW­
LIE, IHEWDOA, IHEWl:OB, IHEWLDI, IHEWLDO,
IH1:.WVC~)

IHEWDOA -----

Calls: IHEWDBN, IHEWDCN, IHEWDMA, IHEWIOD,
IHEWVQC

Entry Point: IHEDOAA

Function: Tc direct the conversion of
internal data tc external F format.

RA: A(Source or source dope vector)
RE: A(Source DED}
RC: A (Fed)

Called by: Compiled code

Entry Point: IHEDOAB

Function: To direct the conversion of
internal data to external E format.

link~i:': As for IHEOOAA

Called by: As for IHEDOAA

IHEWDOB -----

Calls: IHEWDNC, IHEWIOD, IHEWVSB, IHEWVSC,
IHEWVSE, IHEWVSF

Entry Point: IHEDOBA

Function: To direct the conversion of
internal data to external A(w) format.

Section II: Module Summaries 65

Linkage:

RA: A(Source or source dope vector)
RB: ACSource DED)
RC: A (FED)

Called by: Compiled code

Entry Point: IHEDOEB

Function: To direct the conversion of
internal data to external A format.

Linkage:

RA:
RB:

A(Source or source dope vector)
A (Source DED)

Called by: COITt-'iled code

Entry Point: IH1c,DOBC

Function: To direct the conversion of
internal data to external pictured charact­
er format.

Linkage: As for IHEDOBA

Called by: Corrpiled code

lHEWDOD

calls: IHEWDNB, IHHHOD, IHEWVSB, IHEwVSC

Entry Point: IHEDODA

Function: To direct the conversion of
internal data to external B (w) format.

Linkage:

RA:
RB:
RC:

A(Source or source dope vector)
A (Source DE D)
A(FED)

called by: compiled code

Entry Point: InEDODB

Function: To direct the conversion of
internal data to external B format.

Linkage:

RA: A(Source or source dope vector)
RB: A(Source DED)

Called by: Compiled code

IHEWDOE

Calls: IHEwDBN, IHE';·mCN, IHEWDlY;A. IHEvHOD,
IHEwVSB

Entry Point: IHEDOEA

66

Function: To direct the conversion of
Internal data to external data with a nUlf.­
eric r;icture format.

RA: A(Source or source dope vector)
RB: A(Source DED)
RC: A(FED)

Called by: Com~iled code, IHEWVOM

IHLWDOM -----

Calls: IhEwDBN, IHEWUPA, IHEWUPB, IHEWVCA,
IhEwVCS

Entry Point: IHEDOMA

Function: To direct the conversion of an
internal data ty~e to external C format
data.

Linkage:

A(Source cr source dope vector)
RE: A(Source DED)
RC: A (Real fonrat director>
R[;: ACReal FED)
RE: A(Imaginary format director)
RF: A(Imaginary FED)

Called~: Compiled code

IHEW[;SP

Calls: System (GATWR, GATRD, GE'J.'MAIN,
FREEMAIN)

Entry Point: IHEDSPA

Function: To write a message to SYSOUT,
with-or-without a reply. The EVENT c~ticn
can te used for a message with a reply, but
it will have no effect on program
execution.

Linkage:

RA: A(Pararueter list)
Pararrceter list:

A(SDV for message)
A (Sr::V for reply)
A (Event variable)

(The farameter list is either one,
two, or three elements long, depend­
ing on the use of the REPLY and
EVENT oftions. The high-order byte
of the last argument indicates the
end of the parameter list.)

called by: compiled code

IHEWDUM

Calls: IHEWZZC

Entry Points: IHEDUMC, IHE.DUl-'J

Function: To index the curreLt areas and
PAUSE if conversational or dum];: the current
areas if nonconversational. Execution tnen
continues at the next statement.

Linkage:

RA: ACParameter list)
Parameter list:

A(Fullword binary integer, in range 0
through 255)

Called by: Compiled code
(CALL IHEDUMC or CALL IHEDUMJ)

Entry Points! IHEDU{>;P I IHEDU1~T

Function: Same as IHEDUMC, except that the
FL/I program is terminated.

Linkage: Same as IHEDUMC

Called by: compiled code
(CALL ItlEDUMP or CALL IHEDUNT)

A(w)
A(DED for w)
A (z)

A (OED fer z)

A (Target>
ACDED for target)

IHEWDZw -----

!:'uIls:.!io.!!: 211 Z2' where 21 and 22 are ccrr­
flex short floating-point.

RA: A (z:t)
RE: A Cz 2)

RG: A(Target)

IHEWDZZ --------

Ent.£L~'pint : IHEDZZO

IHEWDVU Function: Z1/Z2. where Z1 and Z2 are com­
plf~x long floating-point.

Entry Point: IHEDVUQ

Function: DIVIDE(w,z,p,q), wl1ere wand 2

are complex fixed-point tinar" and (p,g)
is the target precision.

Linkage:

RA: A(Parameter list)
Pararr,eter list:

A(w)
A(DED for w)
A{z)
A(DED for z)
A(Target)
A(DED for target)

called by: Compiled code

IHEWDVV

Calls: IHEWAPD

Entry Point: IHEDVVO

Function: DIVIDE (w,z,p,q), where wand z
are complex fixed-point decimal, and (p,g)
is the target precision.

Linkage:

RA: A(Parameter list)
Parameter list:

RA: A(Z1)

RB: A(Z2)

RC: A(Targe.t)

called~: COJq:iled code

IHEWEF'L

Calls: IHEWEXI

Entry pOint: IrlEEFLF

Function: ERF
floating-point.

(x) I where x is real long

1iI!~~~:

RA: A (Paralreter· list)
Parall'eter list:

II (x)

A (Target)

Call e.<.Ll2.:i: Compiled code

Entry Point.: IHEEFLC

Function: ERFC (x) , where x is real long
floating-point.

l~~ka~: As for IHEEFLF

Section II: Module SUIuraries 67

Called by: compiled code IHEWERR

IHEWEFS Calls: System (SIR, DIR, SPEC), IHEWrDO,
ItiEWESM,IHEWPRT, IHEWSAP

Calls: IHEWEXS

Entry Point: IHEEFSF

Function: ERF' ex), where x is real short
f loating-Foint.

Linkage:

RA: A{Parameter list}
Parameter list:

A(x)
A (Target)

Called by: compiled code

Entry Point: IriEEFSC

Function: ERFC tx), where x is real short
floating-point.

Linkage: As for IHEEFSF

Called by: Compiled cede

IRE-WERD

Function: Part of the error-handling rou­
tines, it contains the data-processing
error messages, and when required is called
ty IHEWESM.

IHEWERE

Function: Part of the error-handling rou­
tines, it contains the remaining error mes­
sages. That is, those not contained in
IHEERD, IHEERE, IHEERO and IHEERP, and when
required is called by IHEWESM.

IBEWERI

Function: Part of the error-handling rou­
tines, it contains the input/output error
messages for non-ON conditions, and when
required is called by IHEWESM.

IHEWERO

Function: Part of the error-handling rou­
tines, it contains the error messages for
non-I/O ON conditions, and when required is
called by IHEWESM.

IHEW1!.RP

Function: Part of the error-handling rou­
tines, it contains the error messages fcr
I/O ON conditions, and when required is
called by IHEWESM.

68

Entry Point: IHEERRA (Program Interrupt)

Function: To determine the identity of the
error or condition that has been raised,
and to determine what action must be taken
cn account of it. Several courses of
action are possible, including combinations
of:

(1) Entry into an on-unit
(2) SNAP
(3) No action - return to program
(4) Print error message and terrrinate
(S) Print error message and continue
(6) Set standard results into float

registers

Linkag~: None

falled~: Supervisor

Entry Point: IHEERRB (ON Conditions>

linkage:

RA: A(DCLCB) (for I/O conditions)
IHEQERR: Error code

Called by: Compiled code, library modules

Entry Point: IHEERRC (Non-ON errors)

Function: As for IHEERRA

Linkage:

RA: A(Two-byte error code>
A(F'our-tyte code if source program

error}

Called by: Compiled code, library modules

Entry Point: IHEERRD (CHECK, CONDITION)

Function: As for IHEERRA

FA: A(Parameter list)
Parameter list:

One-byte error code
Three-byte A(X)

X: SYf(:£ol tatle (CHECK variatle), or
Symbol length and name (CHECK
latel), or
Identifying CSECT (CONDITION)

Called by: compiled code

Entry Point: IHEERRE

Function: To accept control when a program
interrupt occurs in IHEWERR or in modules
that IHEWERR calls. A diagnostic message
is issued and return made to command mode.

Linkage: None

Called by: System

IHEWESM

Calls: System, IHEWERD, IHEI~ERE, IHEWERI,
IHEWERO, IHEWERP, IHEWPRT, IdEWSAP, IHEWTSA

Entry Point: lriEESMA

Function: To print out SNAP and system
action messages.

Linkage:

RA: A(First word of a licrary VDA to be
used as a save area and message
buffer)

RH: A(Current DSA)

Also passed are:
A (IHEPRTE) : Current LWE + 124
A(IHETSAL) or A(IHESADEI: current LWE

+ 128
A(IHETSAF) or A(IEESAFDI: current LWE

+ 132
Length of PRV: Current LWE+102

Called by: IHEWERR

Entry Point: IHEESMB

Function: To print CHECK (label) system
action messages.

Linkage:

RA: A (Label)
RB: ACLength of label)

Also passed:
A (IHEPTTB) or A(IBEPRTB): Current LWE

+ 124

Called by: IHEWERR

IHEWEXL

Entry Point: IHEEXLO

Function: EXP (x), where x .is real long
f loati ng-poi nt.

Linkage:

RA: A(~arameter list)
Parameter list:

A (x)

A (Target>

Called by: Compiled code, IHEWEFL, IHE­
~EXZ, IHEWSHL, IHEWSNZ, IHEWTHL, IHEWXXL

IHEWEXS ----
Entry Point: IHEEXSO

Function: EXP (x), where x is real short
floating-point.

RA: A{Parameter list)
Pararceter list:

A(x}
A (Target)

called~: cOIq.:iled code, Iffi:WEFS, IE£.­
WEXW, IHEWSHS, IHEWSNW, IHEWTHS, IHEWXXS

IHEWEXW

Calls: IHEWEXS, IHEWSNS

Entry Point: IHEEXWO

IEnction: EXP (z), where z is corcplex
short floating-point.

Linkage:

RA: A(Parameter list)
Pararceter list:

A(z)
A(Target)

called~: Compiled code, IHEWXXW

IHEWEXZ

Calls: IHEWEXL, IHEWSNL

Entry Point: IHEEXZO

Functicn: EXP (z), where z is comp1ex long
floating-point.

RA: A(ParamEter list)
Pararr.eter list:

A(z)
A(Target)

Section II: Module SUIl'maries 69

Called by: Compiled code, IHEWXXZ

IH:t,WHTL

Calls: IHEWLNL

Entry Point: IHEHTLO

Function: ATANH (x), where x is real long
float ing- pain t •

Linkage:

RA: ACParameter list)
Parameter list.:

A(x)
ACTarget)

Called by: Compiled cede, IHEWATZ

IHEWHTS

Calls: IHEWLNS

Entry Point: IHEHTSO

function: ATANtl (x), where x is real short
floating-point.

Linkage:

RA: ACParameter list)
Parameter list:

A(x)
A (Target)

Called by: Compiled cede, IBEWATW

IHEWIOA

Calls: IHEWIOP, IB£WOCL

Entry Point: IHEIOAA

Function: To initialize the GET operation,
and to check the file stat.us:

1. Open
2. Endfile
3. Invalid

Linkage:

RA: A(Parameter list)
Parameter list:

A (DCLCB)
A(Abnorual return)

called by: Compiled code

Entry Point: IREIOAB

.Function: To initialize the GET operation,
with the COPY option, and to check the file
status:

70

1. Open
2. Endfile
3. Invalid

binkage: As for IHEIOAA

Called by: COTI,piled code

Function: To initialize the GET operation
with the SKIP option, and to oheck the file
status:

1. Oren
2. Endfile
3. Invalid

RA: A(Parameter list}
Parameter list:

A(DCLCB)
A(Abnormal return)
A(Expression value)

call~~Qy: compiled code

Functlon: Tc tenninate the GET operation.

Linkage: None

called-EY! Compiled code

IHEWIOB

Ca lIs: IHEWIOP, IHEWOCL, System (GTWRC)

Entry-Point: IHEIOBA

Functio~: To initialize the PUT operation,
and to check the file status:

1. Open
2. Transmit error
3. Invalid

10 invoke GATE for GATE files.

RA: A(Parameter list)
Pararreter list:

A (DeLCB)
A(Atnormal return)

Entry Point: IHEIOBB

Function: To initialize PUT, and ferform
PAGE, and to check the file status:

1. Open
2. Transmit error
3. Invalid

'Fo invoke GATE for GATE file2.

Linkage: As for IHBIOBA

Called by: Ccm~iled code

Entry Point: IHEIOBC

Function: To initialize PUT, and per£orrr.
SKIP, and to check the file 2tatus:

1. Open
2. Transmit error
3. Invalid

To invoke GATE for GATE file2.

Linkage:

RA: A(Parameter list)
Parameter list:

A (DCLCB)
A(Abnorrr.al return>
A(Expression value}

Called by: Compiled cede

Entry Point: IHEIOED

Function: To initialize PUT, and perform
LINE, and to check the file ::,tatus:

1. Of-en
2. Translui terror
3. Invalid

To invoke GATE for GATE f ile~;.

Linkage: As for IHEIOEC

Called by: compiled code

l:.ntry Point: IHEIOBE

Function: To initialize PUT. and perform
PAGE and LINE, and to check the file
status:

1. Open
2. Transmit error
3. Invalid

To invoke GATE for GATE file~;.

Linkage: As for IHEIOBC

Called by: Compiled code

Entry Point: IHEIOBT

Function: To terminate the PUT operation.

Linkage: None

IHEWIOC ----
Calls: IHEWSAF, IHEWTSA

Entry Point: IHEIOCA

FUnC!~cn: To initialize the GET operation,
with the STRING option.

RA; A(Parameter list)
Pararreter list:

IdSDV)
A (DED)

Called by: Compiled code

Function: 'Ie initialize the GET operation,
with t.he STRIN(; and COPY options.

Linkage: As fer IHEIOCA

~alled by: corrpiled code

Entry Point:: IHEIOCC

Function: To initialize the PUT operation,
with the STRING option.

Linkage: As fer IEEIOCA

Called by: corrpiled code

Entry Point: IHEIOCT

Function: To terminate the GE~ or PUT
operations, with the STRING option.

Call ed by: Corr,piled code

IrlEWIOD

Calls: IHEWIOF, IHEA1SAP, IHEWPRT, IHEWPTT,
IHEWTSf,

Function: To obtain the next data field
trarr the record]:;uffer(s).

linkag~: Li]:;rar~ cOITmunication area (WSLV)

Called by: Format directors, IHEWIOX

Entry Point: IHEIODP

Function: To ottain space for a data field
in the record buffer(s).

Section II: Module Surrrr.aries 71

Linkage: As for IHEIODG

called by: Format directors, IH1:WIOX

Entry Point: IHEIOD1

Function: To terminate the data field
request.

Linkage: As fer IHEIO[G

Called by: Format directors

IHEWIOF

Calls: Data management (QSAM, VSAM, SYSIN,
GATWR)

Entry Point: IhEIOFA

Function: To obtain logical records via
data If,anagement interface modules, and
initiali~e FCB record ~ointers and
counters.

Linkage:

RA: A (FCB)

Called by: IHEIJDDI, Ii:lEWDDO, IHEWIOD, IHE­
WIOP, IHEWIOX, IHEWLDI, IHEWLDO, IHEWOCL,
IHEWPRT

IHEWION

Calls: IHBIITB, IHEWITD, IHEWITE, IHEWI1G,
IHEWITP, IHEWOCL

Entry Point: IHEIONA

Function: To verify a RECORD I/O request
and to invoke the appropriate data manage­
ment interface module to perform the
required operation.

Linkage:

RA: A(Parameter list)
Pararr,eter list:

A (DCLCB)
A(RDV)/(IGNORE facter)
A(EVENT variable)/(O)/A(Error return)
A(KEY!KEYFROMIKEYTO SDV)/(O)
A(Request control block)

Called Ly: Compiled code

HiEWIOP

Calls: IdEWIOF

Entry Point: IHEIOPA

Function: PAGE option/format

72

Lin~~§: No eXflicit parameters

Called cy: Compiled code, IHEWIOB, IHEwIBT

Entry Point: IHEIOPB

Function: SKIP option/format

Linkaqe:

RA: A (FED)
FED: Halfwcrd binary integer

called by: compiled code, IHEWIOA. IHE­
WIOE, IHl:WIBT

Entry Point: IHEIOPC

Function: LINE option/format

Linkage: As for IHEIOPB

Called cy: As for IHEIOPA

IHEWIOX

Calls: IHEWIOD, IHEWIOF

Entry Point: IHEIOXA

Function: To skip next n characters in
record(s).

Linkage:

RA: A (FEr:)
FED: Halfword binary integer

called by: Conrfiled code

Entry Point: IHEIOXB

Function: To place n blanks in record(s).

Linkage: As for IHEIOXA

Called by: Corrpiled code

Entry Point: IHEIOXC

function: To position to COLUMNen).

Linkage: As for IHEIOXA

Called cy: Corrpiled code

IHEWITB

Calls: Lata management (BSAM). System
(GETMAIN)

EntEY-Point: IHEITBA

Function: To provide the interface with
BSAM for CONSECUTIVE data sets with the
UNBUFFERED attribute.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:

A(DCLCB)
A(RDV)/A(IOCB)/A(IGNORE factor)/A(SDV)
A(Event variable)/(O)
A(KEYIKEYFROMIKEYTO SDV)/{O)
A(Request control block)

Called by: IHEwION

IHEWITD

Calls: Data management (VISAM), System
(GETMAIN), IEEWSAP, IH~WTSA

Entry Point: IHEITDA

Function:
VISAt-l for
data sets
(format F

Linkage:

To provide
creating or
when or:;ened
records).

RA: A(FCB)

the interface with
accessing INDEXED
for SECUENTIAL access

RB: A(Parameter list)
Parameter list:

A (DCLCB)
A(RDV} /A (SDV)
A{Error return)/(O)
A(KEY!KEYFROMIKEYTO SDV}/(O)
A(Request control block)

Called by: IHEWION

IHEWITE

Calls: Data rranagement (VISAM), System
(GET~~IN), IHEWSAP

Entry Point: IHEITEA

Function: To provide the interface with
VISAM for accessing INDEXED data sets
opened for DIRECT access (format F
records) •

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:

A (DCLCE)
A(RDV)/A(IOCB)/A(SDV)
A(Event variable)/(O)
A(KEYIKEYFROM SDV)/(O)
ACRequest control block)

Called by: I B EVlI ON

IBEWITG -----

Calls: Data management (QSAM, VSA~)

Entry Point: IHEITGA

Function: To provide the interface with
QSAM and VSAM for CONSECUTIVE data sets
opened fer RECCRD I/O with the BUFfERED
attribute.

RA: A(FCE)
RB: ACParameter list)
Pararreter list:

A (DCLCB)
A(RDV)/A(SDV)
A(Errcr return)/(O)
A (0)

A(Request control block)

Called l:;y: IRHHON

Calls: Data management (VISAM) I System
(GETY.AIN), IHEWSAP

Entry Point: IHEITMA

Func~~on: To provide the interface with
VISA~ for accessing INDEXED data sets
opened for LIRECT access (format V
records).

RA: A (feB)
RE: A(Parameter list)
Parameter list:

A (DCLCB)
A(RLV)/A(IOCB)/A(SDV)
A(Event variable)/tO)
ACKEYIKEYFROM SDV)/(O)
A(Reguest control block)

ca11ed by: IdEWION

IHEWITN ----

Calls: Data management (VISlWJ) , Systen
(GETMAIN), IHEWSAP, IHEWTSA

Entry Point: IHEITNA

Functicn: -------
VISAM for
data sets
(format V

Linkage:

Tc provide
creating or
when oFened
records) .

RA: A(FCB)

the interface with
accessing INDEXED
for SEQUENTIAL access

RE: ACParameter list)
Paralreter list:

Section II: Module Summaries 73

A(DCLCB)
A (RDV)/A (SDV)
A(Error return)/(O)
A(KEY!KEYFROMiKEYTO SDV)/(O)
A(Reguest control block)

Called by: IHEWION

IHEWJXI ----

Calls: IHEWSAP, IHEWTSA

Entry Point: IHEJXII

Function: To initialize IHEWJXI to give
bit addresses, and to find the first ele­
ment of the array.

Linkage:

RA: A (ADV)
RB: A(Numoer of dimensions)
On return:
RA: Bit address of first element

Called by: IHEWNL2, IHEWSTG

Entry Point: IHEJXIY

Function: As for IHEJXII but for byte
addresses.

Linkage:

RA: A (ADV)
RB: A(Nurnber of dimensions)
On return:
RA: A(First element>

Called by: IHEWOSW, IHEWPDF, IHEWPDL,
IHEWPDS, IHEWPDW, IHEWPDX, IHEWPDZ,
IHEWSMF, IHEWSMG, IHEWSME, IHEWSMX, IHEWSTG

Entry Point: IdEJXIA

Function: To find the next element of the
array.

Linkage:

No explicit arguments
Implicit arguments:

LCA
VDA, obtained in initialization

On return:
RA: Bit or byte address of the next

element
BR=O: Normal return
BR=4: If the address of the last ele­

ment of the array was provided on
the previous normal return

Called by: All modules calling IHEJXII and
IHEJXIY

74

IHEWJXS

Entry point: IHEJXSI

Function: To find the first and last ele­
ments of an array and to give their
addresses as bit addresses.

linkage:

RA: A(ADV)
RB: A(Nurrber of dimensions)
On return:
RO: Bit address of first elerrent
RA: B.it address of last element

Called by: IHENII

Entry Peint: IHEJXSY

Function: As for IHEJXSI but for byte
addresses.

RA: A{ADV)
RE: A(Number of dimensions>
On return:
RO: A(First element)
RA: A(Last element)

Called by: IHEWPSF, IHEWPSL, IHb~PSS,
IHEWPSW, IBEWPSX, IBEWPSZ, IHEWSSF,
IHEWSSG, IHEWSSH, IHEWSSX, IHEWNLI

IHEWKCA

~nt~Point: IHEKCAA

Function: To check that external data with
a decimal picture specification is valid
for that sFeeifieation.

Linkage:

RA: A (Source)
RB: A(Source OED)

Called by: IBEWDIE, IHEWDIM

IHEWKCB

Entry Point: IHEKCBA

Function: Te check that external data with
a sterling Ficture specification is valid
for that specification.

Linkage:

RA: A (Source)
RB: A{Source DED)

Called by: IHEWDIE

IHEWKCD

bntry Point: ItlEKCDA

Function: To check that external data with
a character picture specification is valid
for that specification. The ONSOURCE
address is stored.

Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEWDIB

Entry Point: ItlEKCDB

Function: As for IHEKCDA, but tne ONSOURCE
address is not stored.

Linkage: As for IH~KCDA

Called by: IHEWLDI

IHEWLDI

Calls: IHEWDCN, IHE' .. mMA, IHE\\'DNB, IHEWDNC,
IHEWIOF, IHEWKCD, IHEWPRT, IHEWSAP, IHEWT­
SA, IHEWUPA, IHEWUPB, IHEwVCA, IHEWVCS,
IHEWVSC, IHEWVSD

Entry Point: IHELIIA

Function: To read data from an input
stream and to assign it to internal
variables according to list-directed input
conventions.

Linkage:

RA: A(Parameter list)
Parameter list:

A (Variable.1)
A(DED 1)

A (Variablen>
A <DEDn)

(rligh-crder byte of las·t argument
indicates end of parameter list.)

Called by: Compiled code

Entry Point: IHELDIB

Function: As for IHEL[;IA but for single
variables.

Linkage:

RA: A(Variable)
RB: A (DED)

Called by: Compiled code

Entry Point: IHEIDIC

FUnction: To scan the value field (entry
for data-directed input).

Linkage:

RA: A(Buffer SDV)
RE: A(Control block)
Control block: H'VDA count so far'

X'Flag box' (one byte)
Return codes:

BH=O: Not last item
B1-<=4: Last item
BR=8: End of file encountered before

complete data field ccllected

Called Qy: IHEWCDI

Entry Point: IHELDID

Function: To assign a value to a variable
(entry for data-directed input).

RA: A(Varial::le)
RB: A(DED)
RC: A(Control tlock)
Control block: H'VDA count so far'

X'Flag box' (one byte)

CalleQ~: IHEWDDI

Calls: IHEWCNC, IHEWIOF, IHEWVSB, IHEWVSC

Entry Point: IHELDOA

Function: To frepare data for output
according to list-directed outfut conven­
tions, and to Flace it in an output stream.

RA: A (Paran:eter list>
Pararreter list:

A (Variablel.)
A (DED 1)

A(Variatlen)
A(CEDn)

(High-order byte of last argurrent
indicates end of parameter list.)

Called .ty: Compiled code

Entry Point: IHELDOB

Function: As for IHELDOA, but for only one
item of the list of data.

Section II: Module Summaries 75

Linkage:

RA: A(Variable)
RB: A(DED)

Called by: Ccmpiled code

Entry Point: IHELDOC

Function: As for IHELDOA, but used by data
directed outFut.

Linkage:

RA:
RB:
RC:

A (Variable)
A (DED)
A(FCB)

Called by: IHEWDDO
IHEWLNL

Entry Point: IHELNLE

Function: LOG(x), where x is real long
tloating-point.

Linkage:

RA: A(Parmeter list)
Pararr,eter list:

A(x)
A (Target)

Called by: compiled code IHEW~T~, IHEWLNZ,
IHEWXXL, IHEWXXZ

Entry Point: IHELNL2

Function: LOG(x}, where x is real long
floating-point.

Linka~: As for IHBINIE

called~: As for IHEINIE

Entry point: IHELNLD

Function: LOGIO(x), where x is real long
t loating-point.

Linkage: As for IHELNLE

Called ny: As for IHELNLE

IHEWLNS

Entry Faint: IHELNSE

Function: LOG(x), where x is real short
floating-point.

Linkage:

76

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code, IBEWHTS, IHEWL
W, IHEWXXS, IHEWXXW

Entry Point: IHELNS2

Function: LOG2(x), where x is real short
floating-point .•

linkage: As for IHELNSE

Called by: As for lHELNSE

Entry Point: IHELNSD

Function: LOGIO(x), where x is real short
floating-point.

Linkage: As for IHELNSE

called by: As for IHELNSE

IHEWINW ----

Calls: IHEWATS, IHEWLNS

Entry Point: IHELNWO

Function: lOG(z), where z is complex short
floating-point.

Linkage:

RA: A(Parameter list)
Parame.ter list:

A (z)

A (Target)

Called by: Compiled code, IHEWXXW

IHEWLNZ

Calls: IHEWATL, IHEWLNL

Entry Point: IHELNZO

Function: LOG(z), where z is complex long
floating-point.

Linkage:

RA: A(Paraweter list)
Parameter list:

A (z)

A(Target)

Called by: Cowpiled code, IHEWXXZ

IHEWISP

Calls: System (FREE~AIN, GETMAIN)

Function: Storage management for list
r-rocessing.

Entry Point: IBELSPA

Function: To provide storage in an area
variable for an allocation of a based
variable.

Linkage:

RA: A (Eight-byte wcrd-ali<;ined parameter
list)

RB: A(ALLOCATE statement)
Parameter list:

Byte 0: Not used
Bytes 1-3: A(Area variatle>
Byte 4: Offset of beginning of based

variable from douLleword
boundary

Bytes 5-7: Length of based variable

On return:

RA: ACEight-byte word-alicrned parameter
list)

Parameter list:
Byte 0: Not used
Bytes 1-3: A(Based variable)
Byte 4: Offset of teginning of based

variable from doubleword
boundary

Bytes 5-7: Length of based variable

Called by: compiled code

Entry Point: IrtELSPB

Function: To free storage aL,ocated to a
cased variable in an area var:_able.

Linkage:

RA: A (Eight-byte wcrd-aliqned parameter
list)

RB: A(Area variatle)
Parameter list:

Byte 0: Not used
Bytes 1-3: A(Based variacle)
Byte 4: Offset of beginning of based

variable from doubleword
boundary

Bytes 5-7: Length of based variable

Called by: compiled code

Entry Point: IHELSPC

Function: Assignments betwee'1 area
variables.

Linkage:

RA: A(Source area variabl2}
RB: A(Target area variable)

called by: Compiled cede.

Entry Point: IHELSPD

Function: To provide system storage for an
allocaticn of a tased variatle (using GET-
1"AIN macro).

Linkage:

RA: A(Eight-tyte word-aligned parameter
list)

Pararreter list:
Bytes 0-3: Not used
Byte 4: Offset of beginning of based

variable from doubleword
boundary

Bytes 5-7: Length of based variable

On return:

RA: A(Eight-byte word-aligned fararr,eter
list)

Parameter list:
Byte 0: Not used
Bytes 1-3: A(Based variatle)
Bytes 4-7: Not used

Called Qy: Compiled code

Entry ,oint: IHELSPE

Function: To free systerr, storage allocated
to a based variable (using FREEMAIN macro).

Linkage:

RA: A (Eight-l:::yte word-aligned parameter
list)

Paran,eter list:
Byte 0: Not used
Bytes 1-3: A(Based variable)
Byte 4: Cffset of beginning cf based

varial:::le from doubleword
boundary

Bytes 5-7: Length of based variable

Called b}:: corr,piled code

IHi!:W1"PU -----
£nt~~oint: IHEMPUO

Kunction: MULTIPLY (w,z,p,g), where wand
z are ccrrplex fixed binary, and (p,g) is
the target precision.

Linkage:

RA: A(Pararreter list)
Parameter list:

A(DED for w)
A(z)
~. WED for z)
A (Target)
A(DED for target)

Called oy: Compiled code

Section II: Module Summaries 77

IHEWMPV

Calls: IHEWAPD

Entry Point: IHEMPVO

Function: MULTlPLY (W,Z,F,q>, where wand
Z are complex fixed decimal, and (p,q) is
the target precision.

Linkage:

RA: A(Parameter list)
Parameter list:

A(w)
A(DED for w)
A(z)

ACDED for z)
A(Target)
A (DED for target)

called by: compiled code

IHEWMXE

Entry Point: IHEMXBX

Function: ~ffiX(X1,X2, ••• ,Xn)' where X1,X2
and xn are real fixed-faint Linary.

Linkage:

RA: A(Parameter list)
Parameter list:

A (x.1J
A (DED for x 1)

A(xn)
A (OED for xn)
A(Target)
A (Target DEL)

(High-order byte of last argument
indicates end of parameter list.)

Called by: Ccrr~iled code

Entry Point: IHEMXBN

Function: MIN(X1 ,X2, ••• ,xn), where X1 ,X 2
and Xn are real fixed-point binary.

Linkage: As for IHEMXBX

called by: compiled code

IHEWMXD

Entry Point: IHEMXDX

Function: MAX(X1 ,X2 , ••• , and Xn are real
fixed-Faint decimal.

78

linkage:

RA: A(Parameter list)
Parameter list:

A(X1)
A (OED for Xl.)

A(xn)
A (OED for xn)
ACTarget)
A Target DED)
(High-order byte of last argunent
indicates end of parameter list.)

Called by: compiled code

Entry Point: IHEMXDN

Function: MIN(xl. l x2""xn) I where X1,X2
and xn are real fixed-point decimal.

linkage: As for IHEMXDX

Called by: Compiled code

IHEWMXL ----
Entry Point: IHEMXLX

Function: MAX(Xl.,X2"",Xn), where X1,X2
and xn are real long floating-paint.

Linkage:

RA: A(Pararreter list)
Parameter list:

A (X1)
A(X2)

A (xn)
A (Target)
(High-order byte of last argurrent
indicates end of parameter list.)

Called ty: Compiled code

Entry Point: IHEMXLN

Function: MIN(xl.,x2, .•• ,xn>, where X1 ,X2
and Xn are real long floating-point.

linkage: As for IHEMXLX

Called by: Compiled code

IHEWMXS

Entry Point: IHEMXSX

Function: MAX(X1 ,X2,""Xn >, where X1 ,X2
and xn are real short floating-point.

Calls: IHEWJXS

Linkage:

RA: A(Parameter list)
Parameter list:

A (x1)

A (x:;!)

A(xn)
A(Target)
(High-order byte of last argument
indicates end of farametEr list.)

Called by: Compiled code

Entry Point: IhEMXSN

Function: MIN(x1,x2",.,xn), where X1 ,X2
and Xn are real short floating-point.

Linkage: As for IHEMXSX

Called by: compiled code

Function: Z1*Z2' where Z1 and Z2 are com­
plex fixed-point decimal.

RA: A(Z1.)
RE: A(DEr: for Z1.)
RC: A(z2)
RL: A(DEr: for Z2)
RE: A(Target)

*RF: A(Target DED)

Called by: compiled code, IHEWXIV

Function: Z1/Z2. where Z1. and Z2 are corr­
flex fixed-point decimal.

linkage: As for IHEMZVM

Called fly: Compiled code

Entry Point: IHEM2,WO

IHEWMZU Functlon: Z1*Z2' where Z1 and Z2 are corr­
flex short floating-point.

Entry Point: lriEMZUM

Function: Z1.*Z2' where z1. and Z2 are com­
plex fixed-point binary.

Linkage:

RA: A(z1.)
*RB: AWED for Z1.)

RC: A (Z2)
*RD: A WED for Z2)

RE: A(Target)
*RF: A(Target DED)

Called by: compiled code, IBEWXIU

Entry Point: IHEMZUD

Function: Z1./Z2, where Z1 and Z2 are com­
plex fixed-point binary.

Linkage:

RA: A (Z1.)
RB: A(DED for Z1.)
RC: A (Z2)

*RD: A(DED for Z2)
RE: A (Target>

*RF: A(Target DED)

Called by: Compiled code

IHEWMZV

Entry Point: IHEMZVM

Linkage:

RA: A(z1.)
RE: A (Z2)
RC: A (Target)

Called Qy! Compiled code, IHEWXIW

Entry Point: IHEMZZO

Function: Z~*Z2' where Z1. and Z2 are com­
plex long floating-point.

Linkage:

RA:
RB:
RC:

A (Z1.)
A (Z2)
A (Target)

Called by: Compiled code, IHEWXIZ

IHEWNLl

Calls: IHEW.JXS

Entry Point: IHENL1A

Function; ALL or ANY for a simple array
(or an interleaved array of VARYING ele­
ments) of byte-aligned elements and a byte­
aligned target.

Section II: ~odule Summaries 79

Linkage:

RA: A(Parameter list)
Parameter list:

A(SADV)
A(Number of dimensions)
A(DED of the array)

(ACIHEBSAO) for ALL, or
A(IHEESOO) for ANY)
A(SDV for Target field)

Called by: Compiled code

Entry Point: IHENL1L

Function: ALL for a simrle array (or an
interleaved array of VARYING elements) of
elements with any alignment, and a target
with any alignment.

Linkage:

RA: A(Parameter list)
Parameter list:

A (SADV)
A(Number of dimensions)
ACDED of the array)
ACIHEBSFO}
A(SDV for target field)

Called by: compiled code

Entry Point: IHENL1N

Function: As for IHENL1L, but ANY.

Linkage: As for IHENL1L

Called by: Compiled ccde

IHEWNL2

Calls: IHEWJXI

Entry Point: IHENL2A

Function: ALL or ANY for an interleaved
array of fixed-length tyte-aligned elements
and a byte-aligned target.

Linkage:

RA: ACParameter list)
Parameter list:

A (SADV)
A{Nurr.ber cf dimensions)
A(DED of the array)

(A(IHEBSAO) for ALL, or
A (IHEBSOO) for ANY)
A(SDV for target field)

Called by: Compiled code

Entry Point: IHENL2L

80

Function: ALL for an interleaved array of
fixed-length elements with any alignrr.ent,
and a target with any alignment.

Linkage:

RA: A(Parameter list)
Parameter list:

A(SADV)
A (Nulrl::er of dimensions)

*ACDED of the array)
A(IHEBSFO)
A(SDV for target field}

Called by: Compiled code

Entry Point: IHENL2N

Function: ANY for an interleaved array of
fixed-length elements with any alignment,
and a target with any alignment.

Linkage:

RA: A(Parameter list)
Pararreter list:

A (SADV)
A(Numl::er of dimensions)

*A(DED of the array)
A(IHEBSFO)
A(SDV for target field}

Called by: Corrpiled code

IHEWOCL -----

falls: System (DCBD, FREEMAIN), IHEWCLT,
IHEWIOF, IHEWITI, IHEWOPN, IHEWSAP

Entry Point: IHEOCLA

Function: Explicit open: links to IHEOP­
NAi handles error conditions detected by
IHEWOPN, IHEWOPO, IHEWOPP, IHEWOPQ or
IHEWOPZ.

Linkage:

RA: ACOPEN farameter list)
Parameter list: See IHEOPN

Called by: Compiled code, lHEWPRT

Entry Point: IHEOCLB

Function: Explicit close: links to
IHECLTA.

Linkage:

RA: A(CLOSE parameter list)
Parameter list: See IHECLTA

Called by: Comriled code

Entry Point: IHEOCLC

Function: To perform implicit open.

Linkage:

RA: A (OCB)
RB: A (DCLCE)

Called by: IHEWIOB, IHEI-HON, ltit.WSAP

Entry Point: IrlEOCLt

Function: Implicit close:

1. When a PL/I program is terminated, to
close all the files opened in the PL/I
program (by linking to IHECLTB).

Linkage:

RA: A(PRV of current task)

Called by: IHBIISAP

IHEWOPN

Calls: IHEWOPO (direct l::ranch), IHEWOPZ,
IHEWSAP, IHEW'l'SA

Entry Point: IBEOPNA

Function: Open files:

1. Merge declared attributes with OPEN
options.

2. invoke IHEWOPO.

Linkage:

RA: A(Parameter list)
Parameter list:

A(OPEN Parameter list)
A (Private Adcons)

OPEN Parameter list:
A (DCLCB1 }
A(OPEN Ccntrol tlcck1 }/O
A(TITLE-SDV1)/0
(Reserved)
(Reserved)
(Reserved)
A(LINESIZE1) /0
A (PAGESIZE1 }/0

A (DCLCBn)
A{OPEN Ccntrol blcckn)/O
A(TITLE-SDVn)/O
(Reserved)
(Reserved)
(Reserve)

A(LINESIZEn)/O
A(PAGESIZEn}/O
(High-order byte of last argument
indicates end of parameter list.)

Called ty: IHEWCCI

IHEWOPO -----.

Calls: System (DCB, DCBD, GETMAIN), IHE­
WOPP (direct branch),IHEWSAP, IHEWTSA

~nt!:Lroint.: IHEOPCA

Function: -----
1. To create and format the FCB.

2. To set file register to A(FCB).

RA: A (Paralleter li st)
Pararreter list:

A (IHBWOPN Pararreter list)
A(Subpararr.eter list)

Sub~ararreter list:
XL4'4*n' (where n is the number of

files to te opened)
x'Access/Organization Cod€1'
A.L3 (DCLCB1)
XL4'Merged attribute1'

X'Access/Organization Coden'
Ai3 (DCLCBn)
X.L4'Merged attributen'

Note: Access/Organization Code is
described in the module listing.

Ca lIed l2.Y: IHEWCPN

lHEWOPP

Calls: System (DCBD, GETMAIN, OPEN) r IHE­
wOPQ (direct branch), IHEWSAP, IHEWTSA

Entry Point: IHEOPFA

Function:
-~----

1. To invoke data management (OPEN
macro).

2. Tc est"ailish dEfaults at DCB exit.

3. To acquire initial lOCEs for BSAM.

RA: A(Parameter list)
ParalT€ter list:

A (IHEWOPN Paran:eter list)
A(Sut~aralT€ter list)

Subparameter list:
XL4'4*n' (wherE n is the number of
files to be opEned)
X'Access/Crganization COd€1'
AL3 (DCLCB1)

Section II: Module Summaries 81

XL4'Merged attribute1'

X'Access/Organization Coden'
AL3 (DCLCBn)
XL4'Merged attributen '

Note: Access/Organization Code is
described in the module listing.

Called by: IHEWOPO

IHEWOPQ

Calls: System (DCBD, GE'Il'(AIN),IHEWSAP,
IHEWTSA

Entry Point: IHEOPQA

Function:

1. '10 load record-oriented I/O interface
modules.

2. To link FCBs through the IHEQFOP
chain.

3. To acquire the initial IOCBs for VlSAM
linkage.

4. To simulate PUT' PAGE when opening a
PRINT file.

Linkage:

82

RA: A(Parameter list)
Parameter list:

A(IHEWOPN parameter list)
A(Subparameter list)
A(Data management OPEN parameter list)

subr~ararreter list:
XL4' 4*n' (where n is the number of

files to be opened)
X'Access/Organization Code1'
AL3(DCLCB1)
XL4'Merged attributes1 '

X'Access/Organization Coden'
AL3 (DCLCBn)
XL4'Merged attributesn'

Data management OPEN paran.eter list:
XL4'4*n' (where n is the number of

files to be opened)
xtFlags for data management OPEN

executor1)
AL3(DCB1)

X(Flags for data IIianagement OPEN
executorn)

AL3CDCBn)

Note: Access/Organization Code is described
in the module listing.

Called by: lHEWOPP

IHEWOSL

Entry point: IHEOSDA

Function: To ottain current date.

Linkage:

RA: A(ParaIIieter list)
Parameter list: A(Target SDV)

Called by: COIIipiled code

IHEWOSE

Calls: IHEWSAP, IHEWTSA (to terminate the
frograrr and return to command mode)

Entry Point: IHEOSEA

Function: To terminate the PL/I program
abnorIlIally, raising the FINISH condition.

Called 1:;y: Compiled code

IHEWOSI

Calls: STIMER IIiacro

Entry Point: IHEOSIA

Function: Te use the STIMER macro with the
wAIT ortion for the implementation of
rELAY.

Linkage:

RA: A(Parameter list)
Parameter list:

Interval of delay, in milliseccnds, in
a fullword

called~: Compiled code

IHEWOSS

Calls: IHEWSAP, IHEWTSA (to terminate the
program)

Entry Point: IHEOSSA

Function: To raise the FINISH condition
and abnormally terminate the program.

Linkage: None

Called by: Compiled code

IHEWOST

Calls: EBCDTIME macro

Entry Point: IHEOSTA

Function: To use the EBCDTIM;:!: macro to
obtain the time of day.

Linkage:

RA: A(Parameter list)
Parameter list: A (Target .3DV)

Called by: compiled code

IHEWOSW

Calls: Systerr (FREEMAIN), IclEJXI, IBEWSAP,
and the I/O transmit module whose address
is in the FCB.

Entry Point: IHEOSWA

Function: To determine whether a specified
number of events has occurred. If not, to
wait until the required number is complete,
and to branch to the 1/0 transrr,i t module
(which raises I/O conditions if necessary).

Linkage:

RA: A(Parameter list)
Parameter list:

Word 1:

1. If all events are to be waited on:
Byte 0 = X'FF'
Bytes 1-3 not used

2. If a specified number (N) of events is
to be waited on:

Byte 0 = X'OO'
Bytes 1 - 3 = A(N)

Subsequent words (one for each element or
array event):

1. Array event:
Byte 0 = dimensionality
Bytes 1 - 3 = A(ADV)

2. Element event:
Byte 0 = X' 00'
Bytes 1 - 3 = A(Event varial::le)

(High-order byte of last argument indicates
end of parameter list.)

Called by: ccmpiled code

IHEWPDF

Calls: IHEWDMA, IHEWJXI

Function: PROD for an interleaved array of
real fixed-point binary or decimal ele­
rrents. Result is real short or long
floating-point.

RA: A(Parameter list)
Parameter list:

A (Ar::V)
A(Number of dimensions)
A(DED ef the array)
A ('Iarget>
A(LED fer target)

Called!2Y: corrpiled code

IHEWPDL ----
Calls: IHEWJXI

Function: PROr: for an interleaved array of
real long floating-point elements. Result
is real long floating- point.

RA: A(Parameter list)
Parameter list:

A(AI:V)
A(Nurnber of dimensions)
A (Target)

Called by: Compiled code

THEWPDS

Calls: IHEWJXI

KunctiQ~: PROD fOL an interleaved array of
real short floating-point elements. Result
is real short floating-point.

RA: A(Paranetel list)
Parameter list:

A(ADV)
A (Number of dimensions)
A (Target)

Called by: com~iled code

IHEWPDW

Calls: IBEWJXI

Entry ~oint: IHEPDWO

Section II: Module Summaries 83

Function: PROD for an interleaved array of
complex short floating-point elements.
Result is complex short floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

ACADV)
A (Number of dimensions)
A(Target)

Called by: Ccmpiled code

IHEWPDX

Calls: IHEWDMA, IHEWJXI

Entry Point: IHEPDXO

Function: PROD for an interleaved array of
complex fixed-point binary or decimal ele­
ments. Result is complex short or long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (ADV)
A(Number of dimensions)
A(DED of the array)
A (Target>
A(DED for target)

Called by: compiled code

IHEWPDZ

Ca Ils: IHEWJXI

Entry Point: IHEPDZO

Function: PROD for an interleaved array of
complex long floating-point elements.
Result is comflex long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV)
A(Number of dimensions)
ACTarget>

Called by: Compiled code

IHEWPRT

Calls: IHEWIOF, IHEWOCL, IHEWSAP

Entry Point: IHEPRTA

Function: To COPY a data field on SYSOUT.

84

Linkage:

RA: A(character string)
RB: A(Half~ord containing length of

character string)

Called by: IHEWIOD, IHEWLDI

Entry Point: IHEPRTB

Function: To ~rite an error message on
SYSOUT. Also, to prepare for system action
for CHECK condition.

Linkage: As for IHEPRTA

Called by: IHEWDDO, IHEWERR, IHEWESM,
IHEWESS

IHEWPSF

Calls: IHEWDMA, IHEWJXS

Entry Point: IHEPSFO

Function: PROD for a single array cf real
fixed-point binary or decimal elements.
Result is real short or long
floating-point.

Linkage:

RA: ACParameter list)
Parameter list:

A (Ar;V)
A(Number of dimensions)
ACDED of the array)
A (Target)
A(DED for target)

called by: Compiled code

IHEWPSL

Calls: IHEWJXS

Entry Point: IHEPSLO

Function: PROD for a simple array of real
long floating-point elements. Result is
real long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (ADV)
A(Number of dimensions)
A (Target)

called by: Compiled code

IHEWPSS

Calls: IHEWJXS

Entry Point: IHEPSSO

Function: PROD for a sirrple array of real
short floating-point elements. Result is
real short floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (ADV)
A(Nureber of dimensions)
A (Target)

Called by: Compiled code

IHEWPSW

Calls: IHEWJXS

Entry Point: IHEPSWO

Function: PROD for a simple array of com­
plex short floating-point_ elE,ments. Result
is complex short floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (ADV)
A(Number of dimensions>
A(Target)

called by: compiled code

IHEWPSX

Calls: IHEWDMA, lHEWJXS

Entry Point: IHEPSXO

Function: PROD for a simple array of com­
plex fixed-point binary or decimal ele­
ments. Result is complex short or long
floating-point.

Linkage:

RA: A(Parameter list}
Parameter list:

A(ADV)
A (Nure·ber of dimensions)
A(DED of the array elements)
A(Target)
A(DED for target)

Called by: Compiled code

IHEWPSZ

Calls: IHEWJXS

Entry Point: IHEPSZO

Function: PROD for a simple array of COIf.­

plex long floating-point elements. Result
is comr;lex long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (Ar:V)
A(Number of dimensions)
A(Target)

Called by: compiled code

IHEWRES

Calls: IHESAFA

Entry Point: IHEREST

Function: To issue a diagnostic and call
IHESAFA to raise FINISH if an attempt is
rrade to use RESTART.

Linkage: None

Called by: Compiled code

Entry Point: IHERESN

Function: To issue diagnostic and return
to user program if attempt is made to can­
cel automatic restart.

Linkage: None

Called by: Compiled code

IHEWSAP

Calls: System (FREEMAIN, GETMAIN, SPEC,
SI~DIR), IHEWBEG, IHEWMAN, IHEWDDO, IHE­
WOCL, IHEWPRT

function: Storage management.

Entry Point: IHESADA (Get DSA)

Function: To provide a DSA for a procedure
or begin block and to set DR to pOint to
it.

RO:
BR:

Length of DSA
A(Current save area)

Called by: Prologues

Entry Point: IHESADB (Get VDA)

Function: To get a VDA for compiled code;
sets RA=A(VDA).

Section II: Module Summaries 85

Linkage:

RO: Length of VDA(excluding control
words)

DR: A(CUrrent save area)

Called by: compiled code

Entry Point: IHESADD (Get CONTROLLED
variable)

Function: To provide storage for an allo­
cation of a controlled variable, and to
place the address of its fourth word in its
pseudo-register.

Linkage:

RO: Length of area (not including con­
trol words)

RA: A (Controlled-variable
pseudo-register>

Called by: Compiled code

Entry Point: IHESADE (Get LWS)

Function: To provide a new LWS, and to
update the LWS pseudo-registers.

Linkage: None

Called by: Library modules

Entry Point: IHESADF (Get Library VDA)

Function: To provide a VDA for library
modules and to set RA A(VDA).

Linkage!

RO: Length of VDA (including control
words)

Called by: Library modules

Entry Point: IHESAFA (END)

Function: Frees the DSA current at entry
together with its associated VDAs. Request
to free the DSA of the main procedure
results in raising FINISH, closing all
opened files, releasing automatic storage
to the supervisor and finally returning to
the supervisor with a return code of zero.

Linkage: None

Called by: Epilogues

Entry Point: IHESAFB (RETURN)

Function: Frees all chain elements up to
and including the last procedure DSA in the
chain. Can terminate a main procedure as
in IHESAFA.

Linkage: None

86

call~: Compiled code

Entry Point: IHESAFC (GO TO)

Function: The DSA indicated by the invoca­
tion count, or pointed to by DR, is rrade
current. All chain elements up to this
rSA, with the Exception of its VDAs and
itself, are freed.

Linkage:

RA: ACEight-byte word-aligned parameter
list)

Parameter list:
Word 1 = Either Invocation count (zero

tit of word 2 = 0) or PR off­
set (zero tit of word 2 = 1)

Word 2 ACLocation to which control
is to be returned)

Called by: Compiled code

Entry Point: IHESAFD (Free VDA/LWS)

Function: Frees the VDA or LWS at the end
of the DSA chain.

Linkage: IHEQSLA: A(VDA or LWS to be
freed) (A VDA or LWS can be freed only when
it is the last allocation>

Called by: Compiled code, library modules

Entry Point: IHESAFF (Free controlled
variable)

Function: Frees the latest allocation of a
controlled variable, and updates the asso­
caited pseudo-register.

Linkage:

RA: A(Controlled variable
pseudo-register)

Called by: Compiled code

Entry Point: IHESAFQ

Function: To issue a DIR macro, close all
files and return to the command mode.

Linkage: None

Called by: Litrary modules, IHEDUMP, IHE­
WOSE, IHEWOSS

Entry Point: IBESAPA

Function:

1. To provide a PRV and LWS for a main
procedure, and to issue a SIR macro
referencing the ICB created by a SPEC
macro; then to transfer control to an
address constant named IHEMAIN.

2. To pass a parameter from the statement
invoking the PL/I progra::n.

Linkage:

L(LWS) from assembly of IHELIB

Called by: Initial entry

Entry Point: IrlESAPB

Function: As for IHESAPA, except that the
code handling the parameter is bypassed.

Linkage:

L(LWS) froIT assembly of IHELIB

Entry Point: IliESAPC

Function: As for IHESAPA, but also
reserves a 512-byte area for optimization
purposes.

Linkage:

L(LWS) from assembly of IHELIB

Entry Point: IHESAPD

Function: As for IHESAPB, but also
reserves a 512-byte area for optimization
purposes.

Linkage:

L(LWS) frorr assembly or IHELIB

Entry Point: IHESARA

Function: To restore the environment of a
program to what it was before:

1. The execution of an ON statement asso­
ciated with the on-unit to be entered,
or

2. The passing of the entrj parameter
associated with the called procedure.

Then to branch to the on-unit or the
procedure.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Entry parameter). The entry paran,e­
ter is an 8-byte field containing:

1st word: On-unit or Entry address

2nd word: Invocation count of the
DSA associated with either
the passing procedure or
the procedure in which the
ON statement was executed.

Called by: Compiled code, IHEWERR

Entry Point: IHESAHC

Function: To place the return code in the
pseudo-register IHEQRTC.

linkage:

RA: A(Parameter list)
Parameter list:

A(Return code} (The return code is
fixed binary with default precision.)

Called .Qy: Compiled code

IHEWSH(,

Calls: IHEWEXL

Function: SINH{x), where x is real long
floating-point.

linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)

Entry Point: IHESHLC

Function: COSH(x), where x is real long
floating-point.

Linkage: As for IHESHLS

Called~: Compiled code

IHEWSHS

Calls: IHEWEXS

Ent!:y Point: IHESHSS

Function: SINH(x), whe!:e x is real short
floating-point.

LinkagE:

RA: A (Paran'eter list)
Parameter list:

A (x)
A(Target)

Called~: Compiled code

Entry Point: IHESHSC

Function: COSH (x) , where x is real short
floating-point.

Section II: Module Summaries 87

Linkage: As for IHESHSS

Called by: Compiled code

IHEWSMF

Calls: IHEWD~A, IHEWJXI

Entry Point: ItlESMFO

Function: SUM for an interleaved array of
real fixed-point binary or decimal ele­
ments. Result is real short or long
floating-faint.

Linkage:

RA: A(pararneter list)
Parameter list:

A (ADV)
A(Nurnber of dimensions)
A(DED of the array}
A (Target)
A(DED for target)

Called by: Compiled code

IHEWSMG

Calls: IHEWJXI

Entry Point: IHESMGR

Function: SUM for an interleaved array of
real short floating-point elements. Result
is real short floating-point.

Linkage:

RA: A(Pararneter list)
Parameter list:

A (ADV)
A(Number of dimEnsions)
A(Target)

Called by: compiled code

Entry Point: IHESMGC

Function: SUM for an interleaved array of
complex short floating-point elements.
Result is complex short floating-point.

Linkage: As for IHESMGR

Called by: Compiled code

Function: SUM for an interleaved array of
real long floating-point elements. Result
is real long floating-paint.

Linkage:

RA: A(Parameter list}
Parameter list:
A (AIN)
A(Number of dimensions)
ACTarget)

Called by: Compiled code

Entry Point: IHESMHC

Function: SUM for an interleaved array of
complex long floating-point elements.
Result is complex long floating-paint.

Linkage: As for IHESMHR

Called by: Cowpiled code

IHEWSMX

IHEWDMA, IHEWJXI

Entry Point: IHESMXO

Function: SUM for an interleaved array of
complex fixed-point binary or decimal ele­
rrents. Result is complex short or long
floating-point.

1.inkage:

RA: A(Parameter list)
Parameter list:
A (ADV)
A(Number of dimensions)
A(DED of the array}
A (Target)
A(DED for target)

Called by: compiled code

IHEWSNL -----
Entry Point: IHESNLS

Function: SIN (x), where x is real long
floating-point.

Linkage:

RA: (Parameter list)
Parameter list:
A(x)

IHEWSMH A (Target)

Calls: IHEWJXI Called by: Compiled code, lHEWEXZ. IHEWSNZ

Entry Point: IHESMHR Entry Point: IHESNLZ

88

Function: SIND(x), where x is real long
floating-point.

Linkage: As for IHESNLS

Called by: Compiled code

Entry Point: IHESNLC

Function: COS (x) , where x is real long
floa ting-pain t.

Linkage: As for IHESNLS

Called by: compiled code, IhEwEXZ, IHEWSNZ

Entry Point: IhESNLK

Function: COSD(x) , where
floating-point.

Linkage: As for IHESNLS

Called by: Compiled code

IHEWSNS

Entry Point: IHESNSS

Function: SIN(x), wnere
f loa ting-point.

Linkage:

RA: A(Parameter list)
Parameter list:
A (x)

x is real long

x is real short

IHEWSNW ----

Calls: IHEWEXS, IHEWSNS

~ntry Point: IHESNWS

Function: SIN(z), where z is complex short
floating-point.

RA: A(Parameter list)
Parameter list:
A(z)
A(Target)

Called l2..:i: compiled code

Entry Faint: IHESNWZ

I"unction: SINH (z), where z is corq:lex
shor:t:"floating-Foint.

linkaq~: As for IHESNWS

called_l2..:i: compiled code

Entry Point: IHESNWC

Function: COS(z), where z is complex short
floating-point.

linkage: As for IHESNWS

Called by: Compiled code

Entry Point: IHESN\.;<K

A (Target) Function: COSH (z), where z is complex
short floating-point.

Called by: Compiled code, IHEWEXW. IHEwSNW

Entry Point: IHESNSZ

Function: SINC{x), where x is real short
tloating-point.

Linkage: As for IHESNSS

called by: Compiled code

Entry Point: IrlESNSC

Function: COS(x), where x is real short
f loa ti ng- poi nt.

Linkage: As for IHESNSS

Called by: compiled code, IHEWEXW, IHEWSNW

Entry Point: IrlESNSK

Function: COSDex), where x is real short
f loating-r;oi nt.

Linkage: As for IHESNSS

Called by: Ccmpiled code

~inkage: As for IHESNWS

S::~lled __ Qy: corrpiled code

IHEWSNZ

Calls: IHEWEXI, IHEWSNL

Entry Point: IHESNZS

Function: SIN(z), where z is ccrn~lex long
floating-point.

RA: A (Pararreter list)
Parameter list:
A (z)

A (Target)

Called l;y: corrpiled. code

Function: SINH(z), where z is complex long
floatiilg-point.

Section II: Module Surrmaries 89

Linkage: As for IHBSNZS

called by: Compiled code

Entry Point: IHESNZC

Function: COS(z) where z is complex long
floating-point.

Linkage: As for IHESNZS

Called by: Co~piled code

Entry Point: IrlESNZK

Function: COSH(z), where z is complex long
floating-point.

Linka~: As for IHESNZS

Called by: Cc~piled code

IHEWSPR

Entry Point: ItlESPRT

Function: Contains the default CCLeB for
SYSPRINT. This module is used only when no
other DCLeB is provided.

Called by: IHEWPR'I'

IHEWSQL

Entry Point: IHESQLO

.Function: SQRT(x), where x is real long
floating-point.

Linkage:

RA: ACParameter list)
Parameter list:
A(x)
A (Target)

Called by: Compiled code, IHEWABZ, IHEWSQZ

IHEWSQS

Entry Point: IHESQSO

Function: SQRT(x), where x is real short
f loating- point.

Linkage:

90

RA: A(Parameter list)
Parameter list:
A (x)

A(Target)

Cdlled~: Compiled code, IHEWABW, IHEWSQW

Calls: IHEWSQS, IHEWABW

Entry Peint: IHESQWO

Function: SQR'I(z), where z is complex
short floating-point.

Linkage:

RA: A(Parameter list)
Pararreter list:
A(z)
A(Target)

Called by: Compiled code

IHEWSQZ

Ca11§: IHEWABZ, IHEWSQL

Entry Point: IrlESQZO

Function: SQRT(z), where z is corrplex long
floating-point.

Linkage:

RA: A(ParamEter list)
ParametEr list:
A(z)
A{Target)

~alle~: compiled code

IHEWSRC

Entry Point: IHESRCA

Function: Returns SDV of erroneous field
(ONSOURCE pseudo-variatle). If used out of
context, the ERROR condition is raised.

LinkagE:

RA: A(Parameter list)
Parameter list:

A (Dummy SDV)

Called by: Compiled code

Entry Point: IHESRCB

Function: Assigns erroneous character to
target (ONCHAR built-in function). If used
cut of context, then 'blank' is returned.

Linkage:

RA: A(Parameter list)
Parameter list:

A('Iarget SDV)

Called by: compiled code

Entry Point: IHESRCC

Function: Returns SDV of erroneous field
(DATAFIELD). If used out of context, a
null string is returned.

Linkage: As for IHESRCA

Called by: Compiled code

Entry Point: IHESRCD

Function: Returns SDV of errcneous
character. (ONCHAR pseudo-vaIiatle). If
used out of context, the ERROR condition is
raised.

Linkage: As for IHESRCA

Called by: Ccmpiled code

Entry Point: IHhSRCE

Function: Returns SDV of the name of the
file (ONFILE) which caused entry to the
current ON block. If used out of context,
a null string is returned.

Linkage: As for IHESRCA

Called by: compiled code

Entry Point: ltIESRCF

Function: Returns SDV of erroneous field
(ONSOURCE built-in function). If used out
of context, a null string is returned.

Linkage: As for IHESRCA

Called oy: compiled code

IHEWSRD

Entry Point: IHESRDA

Function: RE.turns SDV of current key
(ONKEY built-in function). If used out of
context, a null string is returned.

Linkage:

RA: A(Parameter list)
Parameter list:

A (Dumroy SDV)

Called by: Compiled code

IHEWSRT

Entry Points: IHEWSRTA, Il:lEWSRTB,
IHEWSRTC, IhEWSRTD

Calls: GATWR macro

Function: To issue a diagnostic and return
to comnand mcde if an atterrpt is rr.ade to
use the SORT/MERGE facility.

Called ty: compiled code

IHEWSSF

Calls: IHEWDMA, IHEWJXS

Entry Point: IHESSFO

Function: SUM for a simple array of real
fixed-point binary or decimal elements.
Result is real short or long
floating-point.

linkage:

RA: A(Pararr'eter list)
Parameter list:
A (ADV)
ACNurrter cf dimensions)
ACDED of the array)
A (Target)
ACDED for target)

Called by: compiled code

Calls: IHEWJXS

Entry Point: IHESSGR

Function: SUM for a simple array cf real
short floating-point elements. Result is
real short floating-point.

Linkage:

RA: ACPararreter list)
Parameter list:
A (ADV)
A(Nurober of dimensions)
A (Target)

Entry Point: IHESSGC

Function: SUH for a simple array of com­
plex short floating-point elements. Result
is complex short floating-point.

linkage: As for IHESSGR

Called by: Compiled code

IHEWSSH

Calls: IHEW,JXS

Entry Point: IHESSHR

Section II: Module Summaries 91

Function: SUM for a simple array of real
long floating-point elements. Result is
real long floating-point.

Linkage:

RA: A(Pararreter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(Target)

Called by: Compiled code

Entry Point: ltiESSHC

Function: SUM for a siHlple array of com­
plex long floating-point elements. Result
is complex long floating-point.

Linkage: As for IHESSHR

Called by: Compiled code

Called by: coropiled code

Entry Point: IHESTGB

Function: Given a structure dope vector
and its LVD, assigns the result of conca­
tenating all the elements of the structure
to a string target.

Linkage:

RA: ACStructure dope vector)
RE: A (DVD>
RC: A(Target)

Called by: coropiled code

IHEWSTP

Calls: IHEWBSK, IHEWBSM, IHEWJXI

Entry Point: IHESTPA

Function: Assigns a bit or character str-
IHEWSSX ing to the elements of a scalar, array or

structure variable.
Calls: IHEWDMA, IHEWJXS

Entry point: IHESSXO

Function: SUM for a simple array of com­
plex fixed-point binary or decimal ele­
ments. Result is complex short or long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:
A{ADV)
A(Number of dimensions)
ACDED of the array)
A(Target)
A{DED for target)

Called by: Compiled code

IHEWSTG

Calls: IHEWJXI, IHEWBSK

Entry Point: IHESTGA

Function: Given a structure dope vector
and its DVD, returns a fullword containing
the string length which would result frorr,
the concatenation of all the elements of
the structure.

Linkage:

RA:
RB:
RC:

92

A(Structure dope vector)
ACDVD)
ACOne-word target field)

Linkage:

RA: A(Dope Vector)
RB: A(Dope Vector Descriptor)
RC: A (SDV)

Called by: Compiled code

IHEWSTR

Calls: IHEWSAP, IHEWTSA

Entry Point: IHESTRA

Function: To compute the address of the
first element of a structure and the total
length of the structure, using a corrplete
structure dope vector. The result in the
two-word target field is:

1st word: A(Start of structure), in
bytes and bit offset

2nd werd: Length of structure, in bytes

Linkage:

RA: A(Structure dope vector)
RE: A (DVr;)
RC: ACTwo-word target)

Called by: Corrpiled code

Entry Point: IHESTRB

Function: Given a partially completed
structure dope vector, to map a structure
completely, namely:

1. Locating each structure tase element
on the alignment boundary required Ily
its data tYfe.

2. calculating the offset of the start of
each base element from the byte
address of the beginning of the
structure.

3. Calc~lating the multiflie=s of all
arrays aI=fearing in the si~ructure and
calculating the offset of the virtual
origin of each array from the byte
address of the beginning <)f the
structure.

4. calculating the total len9th of the
structure.

5. calculating the offset from the maxi­
mur" alignment boundary in ttle struc­
ture to the byte aodress;)f the start
of the structure.

The result is a corr'fleted structure dope
vector, and a target field which contains:

o 7 8 31
r---,
I Zero I
t-------------T---------------------------~
I Offset, Length I L _____________ ~ ___________________________ J

Offset: Offset in bytes from the maximum
alignment boundary in the structure to the
start of the structure.

Length: Length of structure, in bytes.

Linkage: As for IHESTRA

Called by: compiled code

Entry Point: IdESTRC

Function: As for IHESTRB f bUi: using the
COBOL structure mafPing algorithm.

Linkage: As for IHESTRA

Called by: compiled code

IHEWTAE

Base Address of Table: IHEThBS

Function: This rr,odule is a table of
default inforrration provided :"or use at
installation or when individual program
replacements are required. 1-: contains:

1. Default PAGESIZE, LINESIZE, and left
and right margin fositions for all
PRINT files.

2. Default tabulation positions for list­
and data-directed PRINT file cutput.

IHEw'I£A

Functicn: Event varial:le assignment

RA: A(Source event varial:le)
RB: A(Target event variable)

Called l::;y: corrfiled code

Entry .t'cint: IHE'I' EVA

function: COMPLETION ps€udo-variatle
(COMPLETION(v) = expression): sets the
specified event variable complete or incom­
plete according to the evaluation ef the
eXfressicn.

RA: A(pararreter list)
Parameter list:

A(Event variable}
A{Fullwerd to hold completion value

Un bit 24)}

Called by: Comriled code

IHEWTHL

Calls: IBEWEXl

Entry Point: IHETHLO

Function: TANH(x), where x is real long
floating-peint.

linkage:

RA: A(Parameter list)
Parameter list:

A (x)

A{Target)

Called by: Compiled code, IHEWTNZ

IHEWTHS

Calls: IHEWEXS

Function: TANH(x), where x is real short
floating-point.

Section II: Module Summaries 93

Linkage: Function: TAN(z) where z is complex short
floating point.

FA: A(Parameter list)
Pararreter list:

A(x)
A(Target)

Called by: compiled code, IHEwTNw

IHEwTNL

Entry Point: ltiETNLF

Function: TAN(x), where x is real long
floating-poi nt.

Linkage:

FA: A(Parameter list)
Parameter list:

A (x)

A(Target)

Called by: Compiled code, IHEwTNZ

bntry Point: ltiETNLD

Function: TAND(x), where x is real long
floating point.

Linkage: As for IHETNIR

Called by: compiled code

IHEWTNS

Entry Point: IHETNSR

Function: TAN(x), where x is real short
floating-r::oint .

RA: A{Parameter list)
Parameter list

A(x)
A (Target)

Called Dy: Compiled code, IHEWTNw

Entry point: IHETNSD

Function: TAND(x}, where x is real short
floating-point.

Linkage: As for IHETNSR

Called by: Ccmpiled code

IHEWTNW

Calls: IHEwTHS, IHEWTNS

Entry Point: IHETNWN

94

Linkage:

FA: A(Parameter list)
Parameter list:

A (z)

A{Target)

Called by: Compiled code

Entry Point: IHETNWH

Function: TANH(z), where z is comr::lex
short flcating-roint.

Linkage: As for IHETNWN

Called by: Compiled code

IHEwTNZ

Calls: IHEWTHI, IHEWTNL

Entry Point: IHETNZN

Function: TAN(z>, where z is comr::lex long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (z)

A(Target)

Called tV: Comr::iled code

Entry Point: IHETNZH

Function: TANH(z), where z is complex long
floating-point.

Linkage: As for IHETNZN

Called by: corrr::iled code

IHEwTOZ;; ----
Calls: supervisor (GATWR)

Entry Point: IHETOMA

Function: Write error messages on SYSOUT.

Linkage:

RA: Address of fullword containing the
length of the message.

RE: Address of the error message text.

Called ty: IHEBEG, IHECKP, IHEOCL, IHEFES,
IHESRT.

IHEWTSA

Calls: System (GATWR)

Entry Points: IHETSAA. IHETSll.P

Function: To issue a diagnostic and return
to command mode because of an attempt to
use multitasking.

IHEWUPA

Entry Point: ItIEUPAA

Function: To zero the real part of a com­
~lex coded data item and to return the
address of the imaginary part.

Linkage:

RA: A (SourcE)
RB: A(Source BED)
WRCD: A<Imaginary part)

called by: IHEWDCN, IHEWDBN

Entry Point: IHEUPAB

Function: To return the addrE~ss of the
imaginary part of a complex coded data iterr
if switch is cn, and to zero i:he imaginary
part if switch is off.

Linkage:

RA: A (Source)
RB: A(Source DED)
WSWA: Switch for uf-date address only
WRCD: A(Imaginary part)

Called by: IHEWDBN, IHEWDCN, IHEWDIA, IHE­
WLDI, IHEWDID, IHEWDIE, IHEWDNC, IHEWDON,
IHEWVCS

IHEWUPB

Calls: IHEWDMA

Entry Point: IHEUPBA

Function: To zero the real part of a com­
plex numeric field and to retnrn the
address of the imaginary part.

Linkage:

RA: A(Source)
RB: A(Source DED)
WHCB: A(Imaginary part)

called by: IHEvIDCN, IHEWDBN

Entry Point: IHEUPBB

Functicn: To return the address of the
imaginary part of a complex numeric field
if switch is on, and to zero the imaginary
part if switch is off.

RA: A(Source)
HB: A(Source DED)
WSWA: Switch for update address only
WRcr;: A(~naginary part)

Called by: IHEWDBN, ItIEWDCN, IHEWJ:;IA, IHE­
~DID, IHEWDIE, IHEWDOM, IHEWLDI, IHEWVCS

IHEWVCA

Entry Point: IHEVCAA

Function: To define the attritutes of ari­
thmetic data in character form by producing
a DED (flags, p, q).

Linkage:

RA: A(Target DED)
WNCP: A(Start and end addresses of data

to be analysed)

Called by: IHEWDIA, IHEWDIM, IHEWDOM,
IHEWLDI

IHEWVCS

Calls: IHEWDMA, IHEWDNB, IHEWDNC, IHEWUPA

Entry Point: IHEVCSA

function: To direct the conversion of
character reFresentation of complex data to
internal string data. The character data
is first converted to coded complex, with
attributes derived from the real and
imaginary parts of the source data (accord­
ing to the arithmetic conversion package
rules) and then converted to string.

RA: A(Parameter list)
Parameter list:

A(Start and end addresses of real
data)

A(Real DED)
A(Start and end addresses of imaginary

data>
A (Irraginary DED)
A (Target SDV)
A(Target DED)
A(Real FEJ:;)
A (Imaginary FED)

Called by: IHEWDIM, IHEWDOM, IHEWLDI

Section II: Module Summaries 95

Entry Point: IHEVCSB

Function: As for IHEVCSA but the conver­
sion is to coded complex only.

Linkage: As for IHEVCSA

Called by: As for IHEVCSA

IHEWVFA

Calls: IHEWVTE

Entry Point: IHEVFAA

Function: Radix conversion: tinary to
decimal. To convert long floating-point to
packed decimal intermediate.

Linkage:

WINT: Long precision floating-point
number

Called by: IHEWDMA

IHEWVFB

Entry Point: IHEVFBA

Function: To convert a long precision
floating-point number to a fixed-point
binary number with specified precision and
scale factor.

Linkage:

WINT: Long precision flOating-point
number

WRCD: A(Target}
A(Target DED)

Called by: IHEWD~A

IHEWVFC

Entry Point: IHEVFCA

Function: To convert a long floating-point
number to a floating-point variable with
specified precision.

Linkage:

WINT: Long-precision floating-point
number

WRCD: A(Target)
A(Target DED)

Called by: IHEWDMA

96

IHEWVFD

Entry point: IHEVFDA

Function: To convert a fixed-point binary
integer with scale factor to long precision
floating-point.

Linkage:

Rl\: ACSource)
RB: A(Source DED)

Called by: IHEWDMA

IHEWVFE

Entry Point: IHEVFEA

Function: To convert a floating-point nurn­
ter of specified precision to long preci­
sion floating-point.

RA: A(Source)
RB: A(Source DED)

Called by: IHEWDMA

IHEWVKB

Entry Point: IHEVKBA

Function: To convert a fixed- or floating­
point decimal numeric field to packed
decireal intermediate.

Linkage:

RA: A(Source)
RE: A{Source DED)

Called by: IHEW~MA

IHEWVKC

Entry Point: IHEVKCA

Function: To convert a sterling nUIr,eric
fiel~to packed decimal intermediate.

RA: A(Source)
RB: A{Source DED)

Called by: IHEWDMA

IHEWVKF

Entry Point: IHEVKFA

Function: To convert packed decima 1 int:er­
mediate to a decimal fixed- or floating­
point numeric field with spec~fied
precision.

Linkage:

WINT:
WSCF:
WRCD:

Called by:

IHEv."VKG

Decimal integer
Scale factor
ACTarget)
A(Target DED)

IHEWDMA

Entry Point: IhEVKGA

Function: To convert r:acked decimal inter­
mediate to a sterling numeric field with
specified precision.

Linkage:

WINT:
WSCF:
WRCD:

Called by:

IHEWVPA

Decimal integer
Scale factor
A{Target)
]I (Target DED)

IHEWDMA

Calls: IHFvlVTB

Entry Point: IHEVPAA

Function: Radix conversion: decimal to
binary. To convert packed decimal interme­
diate to long precision floating-point.

Linkage:

WINT: Decimal integer
WSCF: Scale factor

Called by: IHEWDMA

IHEWVPE

Entry Point: IBEVPBA

Function: To convert packed decimal inter­
mediate to an F format item.

Linkage:

WINT:
WSCF:
WFDT:
WRCD:

Decimal integer
Scale factor
A{FED)
A (Target)

Called by: IHEWDMA

IHEWVPC

Entry l'oint: IHEVPCA

Function: To convert packed decimal inter­
mediate to an E format item.

Linkage:

WINT:
WSCF:
WFDT:
WRCL:

Called J2y:

IHEWVPD -----

Decimal integer
Scale factor
A (FED)
A (Target)

lHEWDMA

Entry Point: lHEVPDA

Functicn: To convert packed decimal inter­
mediate to a decimal integer with specified
precision and scale factor.

Linkage:

WINT:
WSCF:
WRCD:

Decirral integer
Scale factor
A (Target)
A(Target DED)

Called~: lHEWDMA

IHEWVP'::

Function: To convert an F/E format item to
facked-aecimal intermediate.

linkage:

RA: A(Source)
RB: A(Source DED)
WFEIJ: A (FEJ:)

Called by: IHEWDNA

II1EwVPF

Entry I'oint: IHEVPFA

Function: To convert a decimal integer
with s~ecified precision and scale factor
to packed decimal intermediate.

Linkage:

RA: A(Source)
RE: A(Source DED)

Called by: IHEWDMA

Section II: Module Summaries 97

IHEWVPG

Entry Point: IHEVPGA

Function: To convert a binary fixed- or
floating-point constant to long precision
floating-point.

Linkage:

WCNP: A(Beginning of constant)
A(End of constant)

Called by: lHEWDMA

lHEWVPH

Entry Point: IHEVPHA

Function: To convert a tit string constant
with up to 31 significant bits to long pre­
cision floating-point.

Linkage:

WCN1: A{Beginning of cor-stant)
A(End of constant)

Called by: IHEWDMA

IHEWVQA

Entry Point: IclEVQAA

Function: To convert a floating point num­
ber of specified precision to a fixed-point
binary number with specified precision and
scale factor.

Linkage:

RA:
RB:
RC:
RD:

A(Source Sr;V)
A(Source DED)
A (Target SCV)
A(Target DED)

Called by: Ccmpiled code, IHEWVQB

IHEWVQB

Calls: lHEWVQA, IHEWVTB

Entry Point: IHEVQBA

Function: To convert a decimal constant to
a coded arithmetic data type.

Linkage:

98

RA: A(First character of constant)
RB: A(Last character of constant)
RC: A{Target}
RD: A(Target DED)
WFED: A(FED} if constant is part of F

or E format input

WSWB: Switches specifying type of
source string

Called by: lHEWDCN, IHEWDIA

Calls: IHEWVSC, IHEWVSE

Entry Point: IHEVQCA

Function: To convert some coded arithmetic
data types to F or E format or character
string.

Linkage:

RA: A(Source SDV)
RE: A(Source DED)
RC: A(Target SDV)
RD: A(Target DED)
WFDT: A (FEr:)
WSWB: Switches specifying type of tar­

get string

Called tV: IHEWDNC, IHEWDOA

IHEWVSA

Entry Point: IHEVSAA

Function: To assign a fixed-length or
VARYING bit string to a fixed-length or
VARYING bit string.

Linkage:

RA:
RB:
RC:
RC:

A(Source
A(Source
A(Target
A (Target

SDV)
DED)
SDV)
DED)

Called by: compiled code, IHEWDIA, IHEWDNB

IHEWVSB

Entry Point: IHEVSBA

Function: To convert a fixed-length or
VARYING tit string to a fixed-length or
VARYING character string.

Linkage:

RA:
RB:
RC:
RD:

A(Source SDV)
A(Source OED)
A (Target SOV)
A(Target OED)

Called by: Compiled code, lHEWDOB, lHEW­
LOL, IHEWDOE, IHEWLDO

IHEWVSC

Entry Point: IHEVSCA

Function: To assign a fixed--length or
VARYING cha.:-acter string to a fixed-length
or VARYING character string.

Linkage:

RA: A(Source SDV)
RE: A(Source DED)
RC: A(Target SDV)
RD: A(Target DED)

Called by: Compiled code, IHEWDIA, IHEW­
DIB. IHEWDID, IHEWDIE, IHEWDI~C, IHEWDOB,
IHEWDOD, IHEWLDI, IHEWVQC

IHEWVSD

Entry Point: IHEVSDA

Function: To convert a fixed-~ength or
VARYING character string to a fixed-length
or VARYING bit ",tring. The ONSOURCh
address is stored.

Linkage:

RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target SDV)
RD: A{Target OED)
WODF: A(Scurce SDV)

Called by: compiled code, IEEWDIB, IHEW­
DID, IHEWDIE, IHEWLDI

Entry Point: IHEVSDB

Function: As for IHEVSDA, but the ONSOURCE
address is not stored.

Linkage: As for IHEVSDA, .t;u': without WODF

called by: As for IHEVSDA

Entry Point: IHEVE;EB

function: As for IHEVSEA, but the ONSOURCE
address is not stored.

finkaq~: As fer IHEVSEA, tut without WODF

call€d~: IHEWr:NC, IHEWVQC

IHEWVSF

Entry Point: IHEV~;FA

Function: 'fa convE-'rt a fixed-length or
VARYING tit string to a pictured character
string.

RA: A (Source SDV)
RE: A(Source OED)
RC: A (Target SDV}
RD: A {Target OED)

Called by: compih:d code, IdEWDOB

IhEWV~B -----
Base ~ddress of Tatle: IHEVTBA

Function: This rr,odule is a table of long
precision floating-point numbers re~resent­
ing rowers of 10 fl:om 1 to 70. It is used
by the IHEVWQB radix conversion routines
IHEWVPA, and IHEWVFA.

Linkag~: Not called. Referenced as
external data ty IHEWVPA, IHEWVQB and
IHEWVFA.

IHEWXIB

Entry Point: IHEXIBO

IHEWVSE Functj.on: x**n, where x is real fixed­
point binary and n is a positive integer.

Entry Point: IHEVSEA

Function: To assign a fixed-length or
VARYING character string to d fictured
character string. The ONSOURCE address is
stored.

Linkage:

RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target SDV)
RD: A{Target OED)
WGDF: A(Source SDV)

Called by: compiled code, IHEWDIB, IHEW­
DID, IHEWDIE, IHEWDOB

RA:
*RB:

RC:
RD:

*RE:

HiEWXID

A(x)
A (DED for ;()
A(n)
A (Target>
A (Target OED)

Entry Point: IHExrDO

Function: x**n, where x is real fixed­
point decimal, and n is a positive integer.

Section II: Module Surrmaries 99

Linkage:

RA: A (x)

RB: A(DED for x)
RC: A(n)
RD: A(Target)
RE: A(Target DED)

Called by: ccmpiled code

lHEWXIL

Entry Poi nt: IH£XILO

Function: x**n, where x is real long
floating-point, and n is an integer.

Linkage:

RA:
RB:
RC:

A (x)
A (n)

A(Target)

Called by: Compiled code

IHEWXIS

Entry Point: IHEXISO

Function: x**n, where x is real snort
floating-point, and n is an integer.

Linkage:

RA: A(x}
RB: A (n)

RC: A(Target)

Calle~: Compiled code

IHEWXIU

Calls: IHEwMZU

Entry Point: IHEXIUO

Function: z**n, where z is complex fixed
binary and n is a positive integer.

Linkage:

RA:
*RB:

RC:
RD:

*RE:

A (z)

AcnED for z)
A (n)

A(Target)
A (Target)

Called by: Compiled code

IHEWXIV ----

Calls: IHEWMZV

Entry Point: IHEXIVO

100

Function: z**n, where z is complex fixed­
point decimal and n is a positive integer.

Linkage:

RA: A (z)
RB: A(DED for z)
RC: A (n)

RD: A (Target>
*RE: A(Target DED)

called by: Compiled code

ItlEWXIW

IHEWMZW

Entry Point: IHEXIWO

Function: z**n, where z is complex short
floating-point, and n is an integer.

RA:
RB:
RC:

A(z)
A(n)
A (Target)

Called by: Compiled code

IHEWXIZ

Calls: IHEWMZZ

Entry point: IHEXIZO

Function: z**n, where z is complex long
floating/point, and n is an integer.

linkage:

RA: A(z)
RB: A (n)

RC: A ('I'arget)

Called by: Compiled code

IHEWXXL -----

Calls: IHEWEXI, IHEWLNL

Entry Point: IHEXXLO

Function: x**y, where x and yare real
long floating-point.

Linkage:

RA: A(y)
RE: A(x)
RC: A{Target)

called~: Compiled code

IHEWXXS

Calls: IHEWEXS, IHEWLNS

£ntry Point: IdEXXSO

Function: x**y, where x and yare real
short floating-point.

Linkage:

RA: A(y}

RB:
RC:

A (x)
A(Target)

Called by: Compiled code

IHEWXXW

Calls: IrlEWEXW, IHEWi.NS, IHIWlNW

Entry Point: IHEXXWO

Function: Z1**Z2' where Z1 ~nd za are com­
plex short floating-point.

Linkage:

RA: A(za)
RB: A(Z1)
RC: ACTarget)

Called by: compiled code

linkage:

RA: A(Parameter list)
Parameter list:

A(ADV of argument 1)
A(DED of argument 1)
A CAtV of argument 2)
A(DED of argument 2)
A (Target)
A (OED of target)

Called by: Corr'pilEd code

Entry Point: IHEYGFS

Function: As for IHEYGFV but X is scalar.

linkage:

RA: A(Pararr,eter list)
Pararreter list:

A(AtV of argument 1)
A(DED of argument 1}
A(Argurrent 2)
A (CED of argument 2)
A(Target)
A(DED of target)

called ty: Corrpiled code

IhEWYGL

Entry Point: IHEYGLV

Function: POLY (A,X) for both A and X vec-
IHEWXXZ tors of real long floating-point nurrbers.

Calls: IHEWEXZ, IHEWLNL, IHEWlNZ

Entry Point: ItlEX.ZO

Function: Z.1**za, where z.1 Clnd za are com­
plex long floating-point.

Linkage:

RA: A (za)
RB: A (Z1)
RC: A (Target)

Called by: Compiled code

IHEWYGF

Calls: IHEWDMA

Entry Point: IHEYGFV

Function: POLY (A,X) for .co"th A and X vec­
tors of real fixed-point binary or decimal
numbers. Result is real short or long
floating-paint.

Result is real long floating-point.

Linkage:

RA: A(Parameter list)
ParaIreter list:

A(ADV of argument 1)
A (ADV of arguIT;ent 2)
ACTarget)

~~lled_Qy: Compiled code

Entry Point: IHEYGLS

Function: As for IHEYGLV but X is scalar.

linkage:

RA: A(Parameter list)
Pararr,eter list:

A(Ar:V of argument 1)
A (Argumen t 2)
A (Target)

called~: Compiled code

IHEWYGS

Entry Point: IHEYGSV

Section II: Module Surrmaries 101

Function: POLY (A,X) for both A and X vec­
tors of real short floating-roint. Result
is real short floating-point.

Linkage:

RA: A(Parameter list}
Parameter list:

ACAGV of argument 1)
A(ADV of argument 2)
A (Target)

Called by: Compiled code

Entry Point: IHEYGSS

¥unction: As for IHEYGSV but X is scalar.

RA: ACParameter list)
Parameter list:

A(ADV of argurr.ent 1)
A(Argument 2)
A(Target)

Called by: Compiled code

IHEWYGW

Entry Point: IHEYGWV

Function: POLY (A,X) for both A and X vec­
tors of complex short floating-point.
Result is complex short floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV of argument 1)
A(ADV of argument 2)
A(Target)

Called by: compiled code

Entry Point: IHEYGWS

Function: As for IBEYGWV, but X is scalar.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV of arguroent 1)
A(Argurnent 2)
A (Target>

Ca lIed .!2Y: C cmpi led code

IHEWYGX

Calls: IHEWDMA

Entry Point: IHEYGXV

102

Function: POLY CA,X) for both A and X vec­
tors of complex fixed-point binary or
decimal numbers. Result is complex short
cr long floating-point.

RA: A (Paraweter list)
Paramet er list:

A(ADV of argument 1)
ACDED of argument 1)
A(ADV of argument 2)
A(DED of argument 2)
A(Target)
ACDED of target)

called~y: Comriled code

Entry Point: IHEYGXS

Function: As for IHEYGXV, but X is scalar.

Linkage:

RA: A(Pararr.eter list)
Pararr,eter list:

A (ALV of argument 1)

A(DED of argument 1)
A (Argument 2)
A(DED of argument 2)
A (Target)
A (LED of target)

Called hi: corrriled code

IHEWYGZ

Entry Point: IHEYGZS

Function: As for IHEYGZV, but X is scalar.

RA: A{pararoeter list}
Paraweter list:

A (AGV of argument 1)

A (Argument 2)
A (Target)

Called by: Compiled code

~ntry Point: IHEYGZV

Function: POLY (A,X) for both A and X vec­
tors of complex long floating-point num­
~ers. Result is complex long
floating-point.

Linkage:

RA: A(Pararr,eter list)
Parameter list:

A(ADV of argument 1}
A(ADV of argument2)
ACTarget)

Called by: Compiled code

IHEWZZC

Calls: IHEWZZF

Entry Point: IHEZZCA

Function: To provide informa1:ion about
open files and save areas. In nonconversa­
tional mode, a dump is given.

Linkage:

RA: A(Parameter list)
See source listing for pardmeter list.

IHEWDU~

IHEWZZF

Entry Point: IHEZZFA

Function: To provide the save area trace
that forms part of the output produced by
IH:E.WZZC.

RA: ACPararreter list)
See source listing for parameter list.

Called by: IHEWZZC

Section II: Module sumrraries 103

SECTION III

DATA AREA LAYOUTS

COMPILEa-GENERATED CONTROL BLOCKS

This is a description of all the
compiler-generated control blocks used by
the PL/I Library. They are in alphabetical
order. except for the Input/Output Control
Blocks and the storage Management Control
Blocks. which are described separately
later in this section. All offsets are
gi ven in hexadecimal f orrr.

ARRAY DOPE VECTOR (ADV)

This control block (see Figure 46) con­
tains information required in the deriva­
tion of elemental addresses within an array
data aggregate. The ADV is used for three
functions within the library:

1. Given an array. to step through the
array in row-major order.

2. Given the subscript val.ues of an array
element, to determine the element

.. address.

3. Given an element address. to determine
its subscript values.

Within PL/I implementation, arrays are
stored in row-major order. upward in
storage. The elements of an array are
normally in contiguous storage; if the
array is a member of a structure, its ele­
ments may be discontiguous. such disconti­
guity. however, is transparent to
algorithms which employ an array dope
vector.

023 7 8 15 16 31
r----T-----T------------------------------,
IBtO I I Virtual origin I
~----~-----~------------------------------~
I Multiplier 1 I
~---~
I I
I I
I I
t---~
I Multipliern I
r-------------------T---------------------1
I Upper bound1 I Lower Dound1 I
t-------------------+---------------------~
I I I
I I I
I I I
t-------------------+---------------------~
I Upper boundn I Lower boundn I l ___________________ ~ _____________________ J

Figure 46. Format of the Array Dope Vector
(ADV)

106

The ADV contains (2n + 1) 32-bit words.
where n is the number of dimensions of the
array. The number of dimensions in the
array is not described within the ADV, but
is passed to the library as an additional
argument.

Definitions of ADV Fields:

EtO (= Bit offset)
for an array of bit strings with the
UNALIGNED attribute. this is the bit
offset from the byte address of the
virtual origin.

Virtual origin
the byte address of the array element
whose subscript values are all zero.
i.e., X(O •••.• O); this element need
not be an actual member of the array,
in which case the virtual origin will
address a location in storage outside
the actual bounds of the array.

~ultiplier
these are fullword binary integers
which, in the standard ADV algorithrr,
effect dimensional incrementation or
decrementation to locate an elerrent.
Bit multipliers are used for fixed­
length bit string arrays; byte multip­
liers are used for everything else.

Uffer Bound
Halfword binary integer, specifying
the waximum value permitted for a sub­
script in the ith dimension. This
value may be negative.

Lower Bound
halfword binary integer. specifying
the minimum value permitted for a sub­
script in the ith dimension. The
value may te negative.

ADV Algorithm
given subscript values for an n­
dimensional array, the address of any
elerrent is computed as:

n
Address origin + S *M

i=l

where S value of the ith subscript
M value of the ith multiplier

For an array of bit strings with the
UNALIGNED attribute, the origin is a bit
address formed by concatenating the virtual
origin and the tit offset. For all other
arrays, the origin is the virtual origin.

r--------------T--------------------T---,
I I I Bytes I
I I t---------T-----T-----T-----T-----T-----------------~
I Data type I Representation I 1 I 2 I 3 I 4 I 5 I 6 and onwards I

r--------------+--------------------+---------+-----+-----+-----+-----+-----------------~
I I Fixed- point I I I I I I I
I I Floating-point I Flags I p I q I I I I
I Ari thn;etic I Packed decimal I I t I I I I
I r--------------------+---------+-----+-----t-----+-----t-----------------~
I I Numeric field I Flags I p 'q I w I 1 I Picture specn I
r--------------+--------------------t---------t-----t-----+-----+-----+-----------------~
I I Unpictured I Flags I I - I I I I
I String t--------------------+---------+-----~-----+-----~-----~-----------------~
I I Pictured 1 Flags I 1 I Picture specification I l ______________ ~ ______________ . ______ ~ _________ ~ ______ _____ i _____________________________ l
F'igure 47. Forrr.at of the Datcl Element Descriptor (DED)

Data element descript0rs (DEDS) contain
information derived from explicit or impli­
cit declarations of variatles of type ari­
thmetic and string. There arf~ four DED
formats; they are shown in FigurE 47.

Definitions of DED fields:

Flags
an eight-bit encoded forn of declared
information (Figure 48). Those flags
which are sFecified as zero must be
set to zero.

p byte
p is the declared or default precision
of the data iterr •.

q byte
q is the declared or default scale
factor of the data item, in excess-128
notation (i. e., if the implied frac­
tional point is between i:he last and
the next-to-last digit, q will have
the value 129).

For numeric fields, q is the resultant
scale factor derived from the apparent
precision as specified in the picture,
i.e., the numter of digit positions
after a V picture item as modified by
an F (scale factor) item.

Fer fixed decimal pictures, any expli­
cit scaling of the form F(±l) is com­
bined with the implied scale. as
described above, and reflected in the
DED. The F (±I) is then no longer
required and is removed from the
picture.

IN byte
w sFecifies the number of storage
units allocated for a numeric field.

1 byte(s)
1 specifies the number of bytes allo­
cated for the picture associated with
a numeric field. If the data item is
string. 1 occupies two bytes; if ari­
throetie, one tyte.

r------T--,
I Code I Bit I
I ~------------T-----T------------T---------T--------T-----------T-------T----------~
I I 0 ! 112 13 141 5 1617 I
~------t------------+-----+--·---------t---------+--------t-----------t-------t----------~
I = 0 I I * I Unaligned I Fixed I Picture I Bit I * I 0 I
~------i 0 = ~-----+-----------+---------+--------+-----------+-------t----------~
I I Stri ng I I I I No I I I I
I = 1 I I * I A ligned I Varying I Picture I Charact_er I * I 0 I
~------t------------+-----+-----------t---------+--------t-----------+-------+----------~
I I I I Non- 1 I Numeric I I I I
I = 0 I 1 = I * I sterling I Short I field I Decimal I Fixed I Real I

r------i Arithmetic t-----t-----------+---------+--------t-----------+-------+----------1
I = 1 I I * I S'cerling I Long I Coded I Binary I Float I Complex I
~------i------------~-----~-----------i---------L----- ___ ~ ___________ ~ _______ ~ __________ ~
1* These bits are used by the compiler. but, when a LED is passed to a library module, I
I they are always set to zer·::>. I
I I
INote: The hexadecimal '10' superimposed on the DED Flag byte indicates the presence I
I of a halfword fixed F)int binary variatle. Bit 3 is set to 1 and bit 6 is set I
I to O. I L ___ __________________________________ l

Figure 48. Format of the DED Flag Byte

Section III: corofiler-generated Control Blocks 107

Picture specification
this field contains the picture
declared for the data item. If the
data item is string, the picture may
occupy 1 through 32,767 tytesi if ari­
thmetic, 1 through 255 bytes. If the
original picture specification con­
tained replication factors, it will
have been expanded in full.

DOPE VECTOR DESCRIPTOR (DVD>

This provides a key for scanning the
standard array, string and structure dope
vectors. It consists of one entry for each
major structure, minor structure and base
element in the original declaration. Each
entry consists of one word and can have one
of two formats:

1. Structure:

012 7 8 15
r--T--T-----------T------------------,
I Fll F21 LIN I l __ L __ L ___________ ~ __________________ J

16 31
r------------------------------------,
I Offset I L ____________________________________ J

F1 o Structure

F2 0

L

N

Offset=

Level of structure

Dimensionality, including
inherited dimensions

Offset of containing
structure from start of
DVD
- 1 for a major structure

2. Base element:

108

012 7 8 9 10 15
r--T--T-----------T--T--T------------,
IFI1F21 L IF51F61 N I l __ ~ __ ~ __________ ~ __ i __ ~ ____________ J

16 17 18 23 24 31
r--T--T-----------T--T--T------------,
I F3 I F4J A I I I D I L __ ~_~ ___________ i __ i __ ~ ____________ J

Fl

F2

1 Base element

o Not end of structure
1 End of structure

L Level of element

F5 1 Area variable
0 Not area variable

F6 1 Event variable
0 Not event variable

N Dimensionality

F3 0 Not an aligned bit string
1 Aligned bit string

F4 0 Not a varying string
1 Varying string

A Alignment in bits (0 to 63)

D Length, if not a string, in
bits
0 if a string, in which case
the length is in the deFe
vector

FORMAT ELEMENT DESCRIPTOR (FED)

This control block contains information
derived from a format element within a for­
nat list specification for edit-directed
I/O. There are five forms of the FED:

1. Fornat item E:

1 2 3 4

r-------T---T---'
I wid I s I L _______ i ___ ~ ___ J

w width of data field in characters

d numter of digits following decimal
point

s = number of significant digits to be
placed in data field (ignored for
input)

2. Format item F:

1 2 3 4
r-------T---T---,
I wid I p I L _______ i ___ i ___ J

wand d: as for E format

p scale factor in excess-128
notation

3. Fornat items A, B, X:

1 2
r-------,
I w I l _______ J

w = as for E format

4. Format iten. P:

There are two forms of the FED for the
P format items, these being identical
to the DEDs for numeric fields and
pictured character strings.

5. Printing format items PAGE, SKIP,
LINE, COLUMN:

The FEDs for SKIP, LINE and COLUMN are
halfword binary integers. PAGE does
not have an FED.

LIBRARY COMMUNICATION AREA (LCA)

The library communication area (LCA -­
see Figure 49) is part of library wcrkspace
(LWS), the format of which is given in
Figure 50. The use of LWS and LCA is
described in "Communication Conventions" in
Section II.

I.IBRARY wORKSPACE (LWS)

The use of the Library Workspace (LWS)
is described in Section II. The format of
the LCA is given in Figure 49 and that of
the SSA in Figure 51.

r----------T--------T--,
I Symbolic I Length I I
I name I (bytes) I Function I
t----------t--------t---~

o I WBR1 I 4 I 2nd o.ddress for communication in arithmetic conversion I
I I I package. I

4 I WBR2 I 4 I 3rd c.udress for communication in arithmetic conversion I
I I I package. I

8 I WRCD I 8 I A (TCirget) ,A (DED): Implicit parameters for final conversion I
I I I in arithmetic scheme. Stored by arithmetic director. I

10 I WFED I 4 I A (Source FED): Implicit parameter for F or E format inFut I
I I I conversion. I

14 I WSCF I 4 I ScalE! factor for library decimal intermediate form. I
18 I WSDV I 8 I Input/output field dO Fe vector. I
20 I WINT I 9 I Library intermediate form storage area. I
29 I WSWA I 1 I Eight: 1-bit switches: Interroodular communication. I
2A I WSWB I 1 I Eight. 1-bit switches: General purpose switches. I
2B I WSWC I 1 I Eight: 1-bit switches: Not used across calls. I
2C I WOFD I 8 I Dope vector for ONSOURCE or ONKEY built-in functions. I
34 I WOCH I 4 I A (El:ror character): ONCHAR tuilt-in function. I
38 I WFCS I 150 I Character string (in required format) used by list-directed I

I I I and elata-directed output. I
CE I WCED I 4 I Library intermediate FED: String/ari thmetic conversion. I
D2 I WFDT I 4 I A (Tc,rget FED): Imflici t parameter for F or E format output I

I I I conVt~rs ion. I
D6 I WODF I 8 I SDV for DATAFIELD in error. I
DE I WCNV I 8 I Library GO TO control block. I
E6 I WFIL I 4 I A (DeLCB) for ONFILE. I
EA I WOKY f 8 I SDV mull string); requested when ON KEY built-in functicn used I

I I lout of context. I
F2 I WEVT I 4 I A5 (,,,vent variable) . I
F6 I WREA I 4 I RetUl:n address for AREA on-unit. I L __________ ~ ________ ~ _____ • ___ J

Alternative entries:

r----------T--------T---,
38 I WFC1 I 40 I Workspace for inter leaved array indexer. I
60 I WONC I 40 I Error code; storage area for contents of floating-point regis- I

I I I ters in error-handling subroutines. I L __________ ~ ________ ~ ___ ~

r----------T--------T-----·---,
38 I WCNP I 4 I Implicit parameter: A (Constant descriptor). I
3C I WCN1 I 8 I A (S-tart of constant), A (End of constant). I
44 I WCN2 I 8 I A (Start of constant), A (End of constant). I L __________ L ________ ~ __ J

Figure 49. Library Communication Area (LCA)

Section III: compiler-generated Control Blccks 109

o 7 8 31
IHEQLSA------~r--------T-----------------l

I I I
o I Flags I Length I

I I I
~--------i-----------------~
I I

4 I Chain-back address I
I (save area) I
I I
~--------------------------~
I I

8 I Chain-forward address I
I I
r--------------------------~

C I I
I Register save area I
I I
t--------------------------~

48 I (8 bytes unused) I
I I

IHEQLWO-------)f--------------------------~
50 I

I
Works race level 0 I

I
I I

IHEQLW1-------~--------------------------1
E8 I I

I I
I Workspace level 1 I
I I
I I

IHEQLW2-------~--------------------------~
180 I I

I I
I workspace level 2 I
I I
I I

IHEQLW3-------)f--------------------------~
218 I I

I I
I Works face level 3 I
I I
I I

IHEQLW4-------)t--------------------------~
2BO I I

I I
I Workspace level 4 I
I I
f I

IHEQLWE-------~--------------------------~
348 I I

I I
I Works face level E I
I I
I I

IHEQLCA-------)t--------------------------1
3EO I I

I I
I Library communication I
I area (LCA) I
I I
I I

IHEQLWF-------~--------------------------J

Figure 50. Standard Format of Library
Workspace (LWS)

110

STANLARL SAVE AREA (SSA)

Flags
one-byte code, employed by PL/I house­
keeping procedures to specify the
nature of the storage area in which
the SSA resides. (See Figure 52.)

Length
three-byte binary integer specifying
tne total length of the storage area
in which the SSA resides; used by PL/I
housekeeping to free dynamic storage
areas. (See 'PL/I Object Program Man­
agerrent'.) When OPT=Ol.Default is
used, bit 1 of these three bytes is
used as a flag.

Chain-back Address
Address of the SSA originally rrovided
for a module that now calls another
module.

Chain-forward Address
address of the SSA acquired ~ a
called module. This field is not set
for any PL/I Library module, since
intermodule trace is not sUFForted
within the library.

Return address of the calling module
contents of register LR on entry to
the called module, set by the calling
module to the address of the point of
return. All PL/I Library modules
return using register LR.

Entry Point of the called module
contents of register BR on entry to
the called module.

Locations 14 through 48
contents of the specified registers on
entry to the called module. PL/I
Library modules save all registers LR
through WR in order to meet the
requirements of a GO TO statement in
an en-unit. The register PR field is
set by the subroutine in IHEWSAP that
initializes the main procedure; it
rerrains unchanged throughout the task.
For some I/O macro expansions, the
content of register 14 is stored at
location 48.

STRING ARRAY DOPE VECTOR (SADV)

This control block (see Figure 53) con­
tains information required to derive,
directly or indirectly (through a secondary
array of SDV entries), the address of ele­
rrental strings. The SADV is identical to
the basic ADV. with the addition of a full­
word wnich describes the string length.

o

4

8

C

10

14

18

lC

20

24

28

2C

30

34

38

3C

40

44

48

offset

Symbolic
Name

OFCD

OFDR

OFLR

OFBR

OFRO

OFRA

OFRB

OFRC

OFRD

OFRE

OFRF

OFRG

OFRH

OFRI

OFRJ

OFwR

OFPR

General R'=gister

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

14

:3YlliLolic
Name

DR

LR,RY

BR,RZ

RO

R1,RA

RB

RC

RD

RE

RF

RG

RH

RI

RJ

RX,wR

PR

LR,RY

Standard Save Area

o 7 8 31
r--------------T--------------------------------,
I Flags I Length I
t--------------L--------------------------------~
I Chain-back address I
~---~
I Chain-forward address ,
r---~
I ,
~---~
I I
r---~
I Contents of register I
t---~
I I
t---~
I contents of register I
~---~
I contents of register I
t---~
I contents of register I
r---~
I contents of register I
t---~
I Contents of register I
t---~
I Contents of register I
r---~
I contents of register !
r---~
I Contents of register I
t---~
I Contents of register I
t---~
I I
t---~
I Pseudo-register pointer I
t---~
I I L ___ J

Figure 51. Format of the Standard Save Area (SSA)

Fixed-length strings requil:e only a pri­
mary dope vector. The two length fields
are set to the same value, which is the
declared length of the stringB.

VARYING strings require, in addition to
the primary dope vector, a secondary dope
vector. This consists of SDV entries for
each elemental string within 1:he array.
The secondary dope vector is addressed via
the primary dope vector l::y thl~ standard ADV
algori thrr,; having located the relevant SDV,
the actual string data is directly Ciddress­
able. The maximum-length field appended to
the ADV is set to the declared maximum
length of each array element. Tne current­
length field is set to zero.

The multipliers of the ADV for a fixed­
length string apply to the ac"tual string
data. Those of the ADV for a variable-

length string apply to the secondary dope
vectcr of SDV entries.

STRING DOPE VECTOR (SDV)

A string dope vector (SDV) is an 8-byte
word-aligned block that specifies stcrage
reguirerr.ents for string data. The format
of the SDV is shown in Figure 54.

Definition of SDV fields:

EtO (Bit offset)
if the string is a bit string, posi­
tions 0 to 2 of the SDV specify the
offset of the first bit of the string
within the addressed l::yte. The nit
offset is only applicable to bit str­
ings which form part of a data aggreg­
ate, and then only if that aggregate
has the UNALIGNED attribute.

Section III: compiler-generated Control Elocks 111

r---T-------------------------------------l
I I Meaning I
IBitt------------------T------------------~
I I = 0 I = 1 I
t---+------------------+------------------~
I 0 I Always = 1 I
t---t------------------+------------------~
I 1 INO statement num- IStatement number I
I Iber field in r:SA Ifield in DSA I
t---+------------------+------------------~
I 2 INO dummy ON field ISTRINGRANGE field I
I Ifor STRINGRANGE I created as for I
I I lother ON condi - I
I I I tionsions I
t---+------------------+------------------~
I 3 IProcedure DSA (Begin block DSA (
r---+------------------+------------------i
I 4 INO dun:my ON field ISUBSCRIPTRANGE I
I I for SUBSCRI PTRANGE I field created as I
I I I for other ON con- I
I I I ditions I
r---+------------------+------------------i
I 5 INon-recursive DSA, I Recursive DSA, I
I Iwithout display Iwith disflay up- I
l IUfdate field ldate field I
t---+------------------+------------------~
I 6 INO ON fields ION fields I
r---+------------------+------------------i
I 7 INo durrmy ON field lSIZE field createdl
I I for SIZE I as for other ON I
l I I conditions I l ___ ~ __________________ L __________________ J

Figure 52. Format of the SSA Flag Byte

o 15 16 31
r---,
I I
I I
I I
I ADV I
I I
I I
I I
r--------------------T--------------------~
I Maximum length I Current length/O I l ____________________ L ____________________ J

Figure 53. Format of the Primary String
Array Dope Vector <SADV)

023 7 8 15 16 31
r----T-----T------------------------------l
IBtO I I Byte address of string I
~---~-----L--------T---------------------~
I Maxi~um length I Current length I l ___________________ L _____________________ J

Figure 54. String Dope Vector Format Vee

Byte address of string
for both character and bit strings,
this three-byte field specifies the
address of the initial byte of the
string.

Maximum length

112

half word binary integer which speci­
fies the number of storage units allo­
cated for the string; byte count if
character string, bit count if bit

string. This value does not vary for
a particular generation of its asso­
ciated string.

Current length
halfword binary integer which sfeci­
fies the number of storage units,
within the rr,aximum length, currently
occupied by the string; only afflic­
able to strings with the VARYING
attricute.

The two length fields exist to accommod­
ate strings with the VARYING attribute; in
the instance of a fixed-length string, the
two fields contain identical values. Both
fields may contain a maximum value of
32,767.

STRUCTURE DOPE VECTOR

This control block contains inforrration
required to derive, directly or indirectly,
the address of all elements of the
structure.

The forn:at of a structure dope vector is
determined as follows. Tne din:ensions
which have been applied to the n:ajor struc­
ture or to minor structures are inherited
by the contained structure base elerrentsi
undirrensioned non-string base elements are
assigned a dope vector consisting only of a
single-word address field. The structure
dOfe vector is then derived by concatenat­
ing the dope vectors which the base ele­
ments 'Would have if they were not fart of a
structure, in the order in which the ele­
ments appear in the structure.

SYMBOL TABLE (SY~TAB)

The symbol table consists of one or !fore
entries which define the attritutes, iden­
tifier, and storage location of variables
'Which appear in the data list for data­
directed I/O. Each SYMTAB entry ccntains
the address of the next entry or a stopper.
Figure 55 describes the format of a SYMTAB
entry.

o 7 8 15 16 31
r---------T-------------------------------,
I 0 I Chain-forward address I
t---------+-------------------------------~
I Length I I
t---------J I
I Identifier I
I I
t---------T-------------------------------~
I 0 I AWED) I
t---------+-------------------------------~
I Flags I Field A I
t---------L---------T---------------------~
I Field B I I l ___________________ L _____________________ J

Figure 55. Format of the Symbol Table
(SYMTAB)

Definition of SYMTAB fields:

Chain-forward address
the address of the next E,ntry in the
symbol table; all symtol~, (identi­
fiers) known ""ithin a given block are
chained together. The last entry in
the chain is signaled by a zero chain­
forward address. (The symbol table of
a contained block must include the
symbol table of the contccining block;
hence the chain-forward address of the
last entry for variables declared in a
contained block is that of the first
entry in the symbol tabl(! of the con­
taining block.)

Length
number of characters comprising the
identifier. Maximum len~1th is 255
characters.

Identifier
the name declared for a variable. If
the variable is known by a qualified
nanle, the identifier includes separat­
ing periods.

D (= Dimensionality)
the number of dimensions declared for
an array variable; C = 0 for scalar
variables.

AWED)
address of the data element descriptor
associated with the variable.

Flags

Bit
()

1 = 1
2 1
3
4

(Res!::!rved)
ON CHECK for
ON CHECK for
(Reserved)
(Reserved)

the variable
label variable

567
000
001

o 1 0

Field A:

If STATIC

Variable is STATIC
Non-structured AUTOMATIC or CON­
TROLLED
Structured AUTOMATIC or CON­
TROLLED

address of data item or its dope
vector.

If AUTOMATIC (non-structured)
offset of data item or its dope vector
within DSA. (See note.)

If AUTOMATIC (structured)
offset of dope vector for data item
(""ithin a structure dope vector),
relative to origin of DSA. (See
note.)

If CONTROLLED (non-structured)
offset to data item or its dope
vector.

If CONTROLLED (structured)
as for AUTO~ATIC (structured), but
offset is relative to origin of struc­
ture dOfe vector.

Field B:

If STATIC
not used.

If AUTOMATIC
offset of display within PRV.

If CONTROLLED
offset of the anchor word (pseudo­
register) of the controlled variable.

Note: See Section II for description of
storage class implementation and for
definition of DSA.

Section III: Corrpiler-generated Control Blocks 113

INPUT/OUTPUT CONTROL BLOCKS

This describes the formats of the con­
trol blocks used by the PL/I Library I/O
interface modules, including those blocks
generated by the COIf'Filer. The fUnctions
of the blocks and the way in which they are
used by the liorary are descrited in Sec­
tion II. lln example of the chaining of I/O
control blocks is included. In the dia­
grams, all offsets are in hexadecimal.

DECLARE CONTROL BLOCK (DCLCB)

The declare control block, shown in
Figure 56, contains these fields:

DPRO
halfword binary integer (set by the
linkage editor) specifying the offset,
within the pseudo-register associated
with the declared file.

DC LA
four four-bit codes specifying the
file type, organization, access, and
mode:

Bl':te 1 ~
0001 xxxx STREAM
0010 xxxx RECORD

Organization
xxxx 0000 CONSECUTIVE
xxxx 0001 INDEXED

0 7 8 15 16 23 24 31
r------------------T-------------------, o I DPRO I DCLA I
t------------------+-------------------~

4 1 DBLK I DLRL I
~---------T--------+--------T----------~

8 I DCLD i DBNO I DCLB 1 DCLC I
t---------~--------+--------~----------~

C I DXAL INCP Value Reserved I
~------------------~-------------------~

10 ! (Reserved) I
~--------------------------------------~

14 I (Reserved) I
~---------T----------------------------~

18 I DFLN I I
t---------J I
I I
I DFIL ,
I I
I I
I I l ______________________________________ J

Figure 56. Fermat of the Declare Control
Block (DCLCB)

114

xxxx0010
xxxx0011
xxxx0100
xxxxOl0l

REGIONAL (1)*
REGIONAL (2)*
REGIONAL (3) *
TELEPROCESSING*

r:;BLK

(Stream-oriented I/O is supported only
for data sets of CONSECUTIVE
organization.)

Byte 2
0001 xxxx
0010 xxxx

Access
SEQUENTIAL
DIRECT

(These are used for record-oriented
I/O only.)

xxxx 0001
xxxx 0010
xxxx 0100
xxxx 1000

Mode
INPUT
OUTPUT
UPDATE
BACKWARDS

(Stream-oriented I/O uses INPUT and
OUTPUT only.)

halfword binary integer specifying the
length, in tytes, of the tlocks within
the data set:

F-format records
block length specified for data set
(constant for all blocks except pos­
sibly the last one).

U- , V-, VS- or VBS-format records:
maximum length of any block in data
set.

TP

DLRL

maximum message length.

halfword binary integer specifying the
length, in tytes, of the records
within the data set. Two or more rec­
ords may be grouped (blocked) to form
one physical block.

F-f orrrat records
record length specified for data set
(constant for all records>.

V-, VS- or VBS-format records
maximum length of any record in the
data set.

*Not used in TSS/360

U-format records

DCLD

DBNO

DCLB

DCLC

DXAL

DFLN

DFIL

this specification is noi: pennitted;
the block size defines the record
length.

one byte containing ENVIHONMENT
options:

Bit
o
1
2
3
4
5
6
7

°Ftion
LEAVE
COBOL file
CTLASA
CTL360
INDEXAREA
NOWRITE
REWIND
GENKEY

one-byte binary integer :~pecifying the
number of buffers to be allocated to
the file wilen it is opened, as speci­
fied by the BUFFERS option.

one byte containing attribute codes:

Bit Attribute
o KEYED
1 EXCLUSIVE
2 BUFFEREr::
3 UNBUFFERED
4 TRANSIENT*
5 (Reserved)
6 (Reserved)
7 (Reserved)

eight-bit code which specifies the
format of records within the data set:

Bits Code Format
----01 ----

0 and 1 V
0 and 1 10 F
0 and 1 11 U

2 (Reserved)
3 1 Blocked
4 1 VS/VBS
5 1 PRINT/G
6 1 R
7 (Reserved)

halfword binary integer specifying the
count in the INDEXAREA area enviorn­
ment option.

one-byte binary integer specifying the
length (minus one) in bytes of the
file name in the following field.

character string, up to 31 bytes long,
specifying the name of the file. If

*Not used in TSS/360.

there is no TITLE option in the OPEN
statement, the first eight characters
of this name are used as the narre of
the DDEF associated with the file dur­
ing program execution. (The corrpiler
will have padded the name with blanks
to extend it to at least eight charac­
ters in length.)

EVENT VARIABLE

The forrrat of this control block is
shown in Figure 57; event variables are
placed in two chains:

1.

2.

'Hie file chain, which is anchored in
the TEVT field of the FCB and includes
all active event variables related to
a file and for which there is no
corresponding IOCB. This chain
enables all associated event variables
that are not being waited on to be set
inactive, complete, and abnorrral when
a file is closed.

The event chain, which is anchcred in
tHE pseudo-register IHE~EVT, and
includes all active I/O event
variables associated with the PL/I
program. This chain facilitates the
setting of those event variables that
are not being waited on inactive, com­
plete, and abnormal on termination of
t:he PL/I program.

An example of the chaining of event
variables is given at the end of this sec­
tion on Input/Output Control Blocks.

EVFl

o

8-bit cede containing implementation
flags:

7 8 15 16 31
r---------T-------------------------------,
I EVF1 I EVEC I
t---------+-------------------------------~
I EVF2! EVIO I
t---------L-------------------------------~
I 8 EVCF I
r---1
I C EVCB I
~---------------------T-------------------~
I 10 EVS~ I Reserved I
r---------------------L-------------------~
I 14 EVFF I
t---~
I 18 EVFB I
t---~
I 1C EVPR I t __ ~

Figure 57. Format of the Event Variable

Section III: Input/Output Control Blocks 115

EVEC

EVF2

EVIO

EVCF

EVCB

EVST

EVFF

EVFB

EVPR

Flags Code Name

Active event variable 1000 0000 El".AC
I/O associations 0100 0000 EMIO
No WAIT required 0010 0000 EMNW
FCB address contained

in the first word 0001 0000 EMFC
This event variable

is to be checked 0000 1000 EMCH
DISPLAY event variatle 0000 0100 ENDS
IGNORE option with

this event 0000 0010 Er'HG

oontains the address of the DECB asso­
oiated with the event, or the address
of the FCB when no IOCB was obtained,
e.g., when READ IGNORECO) is executed.

PL/I ECBflag byte:

Flags
Wait
Complete

not used.

Code
1000 0000
0100 0000

Name
EMWE
EMCP

event variable chain-forward pointer. *

event variable chain-Lack pointer.*

status field:
normal status value: all .:eros.
abnorrr·al status value: low-order bit
is 1, remainder is zero (unless set
otherwise by STATUS pseudo-variable).

event variable chain-forward pointer
(file).

event variable chain-back pointer
(file) .

address of the PRV of PL/I program.

FILE CONTROL ELOCK (FCB)

The format of the file control block is
determined by whether the file is stream­
oriented (Figure 58) or record-oriented
(Figure 59). The fields in the FCB are:

*Not used in TSS/360.

116

o 7 8 15 16 23 24 31
r--------------------------------------,

-8 I TVAL I
t--------------------------------------~

-4 I TRES I
t--------T-----------------------------~

a I TFLX I TDCB I
r--------+-----------------------------~

4 I TTYP I TACM I
t--------+---------T-------------------~

8 I TFLA I TFLB I TLEN I
t--------+---------L-------------------~

C I TFIO I TDCL I
t--------i-----------------------------~

10 I TCBA I
t------------------T-------------------~

14 I TREM I TMAX I
t------------------L-------------------~

18 I TREC I
t--------------------------------------~

lC I TCNT I
t------------------T-------------------~

20 I TPGZ I TLNZ I
t------------------t--------T----------~

24 I TLNN I TFLC I TFLD I
t--------T---------L--------L----------~

28 I TFLE I TFOP I
t--------+-----------------------------~

2C I TFLF I TTAB I
r--------L-----------------------------~

30 I I
I I
I DCB I
I I
I I L ______________________________________ J

Figure 58. FCB for stream-Oriented I/O

TVAL

'IRES

'IFLX

TDCB

TTYP

word containing bits indicating which
statements are valid for this file.

reserved.

eight-bit code specifying error and
exceptional conditions:

Conditions
EOF on data set
Error on output
Errcr on input
Error on data field
Do not raise

TRANSMIT
List terminator
ENDPAGE raised

Code Name
10000000 TMEF
0100 0000 TMOE
0010 0000 TMIE
0001 0000 TMIT

0000
0000
0000

1000 TMNX
0010 TMLC
0001 TMEP

address of the DCB part of the FCB.

eight-bit code specifying I/O type:

Paqe of GY28-2052-0, Issued spetember 30, 1971 by TNL GN28-3192

o 7 8 15 16 23 24 31
r---------------------.--------------,

-8 I TVAL I
l-----------------.------------i

-4 I TRES I
~--------T--------------·-------------~

o I TFLX I TDCB I
~-------+---------------------------~

4 I TTYP I TACM I
l-------+--------T----·------------~

8 I TFLA I TFLB I TLEN I
~-------+-------~-------------------~

C I TFIO I TDCL I
~----4-----------------------------~

10 I TLAB/TCBA I
t-------------------------------~

14 I TPKA/TSWA I
~------------------------------------~

18 I TBBZ I
l-----------------------------~

lC I TADC I
~-----------------------------------~

20 I TLRR/TAID I
~--------------T-------~----------_t

24 I TLRL I TFLC I TFLD I
~-----~---------~-------~----------~

28 I TFLE I TFOP I
~----+-------~----------------..

2C I TFLF I TFMP I (Reserved) I
.------~---------~-------------------~

30 I TEVT I
~----------------------------------_t

34 I Zero I
r------------------------------------_t

38 I I
I I
I DCB I
I I
I I L ____________________________________ J

Figure 59. FCB for Record-Oriented I/O

TACM

TFLA

~ Code Name
STREAM I/O xx xx 0000 TMDS
RECORD I/O xx xx 0001 TMRC
STRING I/O XX.xx 0010 TMST
Temporary flags, 1000 xxxx TMTl
valid for single 0100 xxxx TMT2

I/O call only 0010 xxxx TMT3
0001 xxxx TMT4

address of I/O transit module. which
interfaces with data management access
methods. The names of all such
library modules are IHEWIT*, where *
is a letter identifying the module.

two four-bit codes specifying the
record format and the current file
mode:

Format
V (variable)
F (fixed)
U (undefined)

code
0001 xxxx
0010 xxxx
0100 xxxx

Name
TMVB
TMFX
TMUN

TFLB

TLEN

USASI control/print
file

Mode
INPUT
OUTPUT
UPDATE
BACKWARDS

lxxx xxxx

Code
xxxx 0001
xxxx 0010
xxxx 0100
xxxx 1000

eight-bit code specifying the
attributes:

Attribute Code
EXCLUSIVE 1xxx xxxx
UNBUFFERED x1xx xxxx
Hidden buffers xx1x xxxx
SYSOUT file xxx1 xxx x
Hidden buffer may

be required xxxx xl xx
KEYED xxxx xx1x
DIRECT xxxx xxx1

TMAS

Name
TMIN
TMOP
TMUP
TMBK

file

Name
TMEX
TMBU
TMHB
TMPT

TMHQ
TMKD
TMDR

halfword binary integer, specifying
the length, in bytes, of the FCB.

TFIO

TDCL

eight-bit code specifying the type of
I/O operation:

Operation
PUT
GET
EVENT option
with IGNORE

COpy option

Code
1000 0000
0100 0000

option 0000 0010
0000 0001

Name
TMPW
TMGR

TMEI
TMCY

address of the DCLCB defining the
file.

TCBA/TLAB

STREAM: TCBA
address of next available byte in a
buffer.

RECORD: TLAB
sequential: address of last IOCB
obtained.
direct: address of first IOCB in
chain.
TCBA:
sequential: address of last record
located.

TREM/TMAX/TPKA

STREAM: TREM
number of bytes rema~n~ng in current
record. This value is equal to TLNZ
when the record is initialized for
output.

TMAX
halfword binary integer specifying the
number of bytes in a record:

Section III: Input/Output Control Blocks 117

Page of GY28-2052-0, Issued spetember 30, 1971 by TNL GN28-3192

Input: the number of bytes read.

Output: the number of bytes initially
available.

For V format records, this number
includes the four-byte record control
field; for all record formats, it
includes the USASI control byte Cif
present) •

RECORD: TPKA
address of previous key. (Used for
LOCATE creation of INDEXED data sets,
and padding key for SEQUENTIAL INDEXED
data sets.)

TSWA
address of data in dummy buffer got at
OPEN time.

TREC/TBBZ

STREAM: TREC
address of buffer workspace CU-format
output) •

RECORD: TBBZ
length of IOCB.

TCNT/TADC

STREAM: TCNT
full word binary integer specifying the
number of scalar items transmitted
during the most recent I/O operation
(GET or PUT) on the file.

RECORD: TADC
address of the adcon list.

TPGZ/TLNZ/TLRR

118

STREAM: TPGZ
half word binary integer specifying the
maximum number of lines per page.
This field is only used for PRINT
files. A default value of 60 lines is
assumed if:

1. the OPEN statement that opens the
file does not include the PAGESIZE
option, or

2. an implicit open occurs.

TLNZ
half word binary integer specifying the
maximum number of characters per line.
A default line size is obtained from
the record length specified in the
ENVIRONMENT attribute if:

1. the OPEN statement that opens the
file does not include the LINESIZE
option, or

2. an implicit open occurs.

If the ENVIRONMENT attribute is not
specified. the record length used is
that specified in the associated DDEF
command.

If none of these specifies a record
size, and if the file is a print file,
a default length of 120 characters per
line is assumed.

The TLNZ value inCludes all characters
available within a line.

RECORD: TLRR
address of IOCB of last complete READ
operation. This is required whenever
the EVENT option is used; it provides
a means of identifying the last com­
plete READ operation when a REWRITE is
executed. In the case of spanned rec­
ords (in QSAM) this field holds the
length of the previously read record
if the previous operation was a READ
SET.

TAID
address of dummy work area for termin­
al identification.

TLNN/TLRL

STREAM: TLNN
halfword binary integer specifying the
current line number.

RECORD: TLRL

TFLC

maximum logical record length for the
file.

two 4-bit codes named TFDV and TFHE:

TFDV type of device

TFHE further file history

Meaning Code Name
TFDV TFHE

Paper tape 1000 0000 TMPA
Printer 0100 0000 TMPR
Conversational
input flag 0010 0000 TMCI

Previous operation
was READ with SET
option 0000 1000 TMPS

Attempt to close in
wrong task 0000 0100 TMDT

OPEN or CLOSE in
progress 0000 0010 TMOC

TFLD
eight-bit code specifying the organi­
zation of the data set associated with
the file:

TFLE

TFO,P

'IFLF

Organization Code Narr.e
CONSECUT IV £ X'OO' 'IMCN
INDEXED X'04' TMIX
REGIONAL (1) X'08' 'IMRl*
REGIONAL (2) X'OC' Tl<JR2*
REGIONAL (3) X'10' 'IMR3*
TELEPROCESSING X'14' TMTP*

eight-bit code sFecifyi~g the history
of the file:

History
Preceding operation

a READ
IGNORE in progress
CLOSE in progress
End of the extent

reached by the
last operation

Preceding operation
a REWRITE

Preceding operation
a LOCATE

I/O condition on
CLOSE

Implicit CLOSE

code Name

lCOO 0000 TMRP
0100 0000 TMIG
Oel0 0000 TMCL

OeOl 0000 TME'l

0000 1000 TMWP

0000 0100 TMLT

oeoo 0010 TMCC
oeoo 0001 TMC'I

address of the prior FCE opened in the
current PL/I program, or zero (if FCB
is the first FCB cpened).

eight-bit code specifying the load
module cede:

STREAM:

Miscellaneous
TAB table exists

Code
00000001

Name
TM'IB

RECORD:

TTAB

TFMP

Module Code
QSAl<J
BDAlVl
QISAM
BISAM
BSAM
BSAM load mode
Q'IAlI,
Tab control table

exists

Code Name
X'OO' TMQS
X'04' TMBD
X'OB' TMQI
X'OC' TMBI
X'10' T1V1BS
X'14' Tl<jBL
X'lB' TlVJQT

X'Ol' TMTB

address of TAB control table {PRINT
files only).

RECORD I/O only. This flag is used by
exclusive files to act as a lockout
flag when updating the chains of
IOCEs. A TS loop is performed on this
byte until it is freed. When the
chaining operation is complete, the
byte is set to zero.

*Not used in TSS/360.

'lEVT

eCE

foint~r to chain of active I/O event
variables associated with the file,
but for which there is no correspond­
ing IOCE: enables the event variables
to be set complete, inactive, and
abncrmal when the file is closed.

this field, variable in length and
forrrat, is the data control block
defined by the data management for the
various access methods.

INPUT/OUTPUT CONTROL BLOCK (IOCB)

This control tlock has three main divi­
sions (see Figure 60). The size of the
rOCE varies, as descrited in Figure 61,
according to the access method. The fields
in the IeCE are:

BACT

EPIO

BINO

BERR

EFCE

BREQ

one byte containing an activity flag
(used only in direct access):

Code
X'FF'
X'OO'

Meaning
In use
Free

chain-tack address of the previous I/O
control block.

chain-fcrward address of the next I/O
control block.

flag byte for record-oreinted I/O
si tua tions:

Situation Code
IOCB has been checked 00000001
I/O error exits 0000 0010
End-of-file has

cccurred 0000 0100
Possible lock for

REWRITE 0000 1000
Lock for

REWRITE 0001 0000
IOCE for VISAM

READ UPDATE mode 0100 0000
Dummy buffer acquired 1000 0000

address of the FCB for the file.

Name
BMCH
BMER

BMEF

BMPR

BMNR

EMr;F
BMDB

reguest control block. Four-byte
field specifying the request codes fer
associated operations (as passed by
the compiled calling sequence):

Section Ill: Input/Output Control Blecks 119

o 7 8 15 16 31

r-----------------T--T------I-------
o I BACT I BPIO I l'

t-----------------~--~ I
4 I BNIO I I

~-----------------T--~ I
8 I BERR I EFCB I I

t-----------------~--~ I
C I BREQ I I

~-----------------------------------T----------------------------------~ I
I BERC/BEFC/BXTC/BKYC I ERCC I laCE

t-----------------------------------~----------------------------------~ foundation
14 I BRVS I I

~--~ I
18 I BEVN I I

t--~ I
1C I BDFl I I

~-----------------------------------T----------------------------------~ I
20 I BDF2 I BDF3 I I

~-----------------------------------~----------------------------------~ I
24 I BDF4 I I

~--~ I

28 ~---------------------------------~~~~---------------------------------t------t-------
2C I BECB I f

~-----------------------------------T----------------------------------~ I
30 I BTYP I ELEN I I

~-----------------------------------~----------------------------------~ I
34 I BDCB I I

~--~ I
38 I BARE I BSAM/VISAM

r--~ DECB
3C I BSTS/BLOG I I

~--~ I
40 I BKVS/BKEY I I

t--~ I
44 I system use I I

~--~ I
48 I systerr, use I I

r--~ I
4C I system use I I

~--~ I

:: t--t------l-------
~--~ I

· I I I
· r--~ BSAM
· I I hidden
· I I buffer
· I I area

· I I I
I I I

· I I I
· I I I
· I I I
· I I I
· I I I
· I I I
· I I I sl l __ J T

Note: (The IOCB includes the Data Event Control Block (DECB) for the BSAM and VISAM
Interfaces)

Figure 60. Format of the I/O Control Block (IOCB)

120

r----------T-----------T------------------,
I ISequential I Direct I
I r-----------+------------------+
I I Consecutive I Indexed I
t----------+-----------+------------------~
I F-format I A I A I
I records I B I C I
I I I [;:\. I
I I I D2 I
I I I 16 I
I I I (Note 1) I
r----------+-----------+-------------------~
I V-format I A I I
I records I B I I
I I D2 I I
r----------+-----------+------------------~
I U-format I A I I
I records I B I I
r----------L-----------+------------------~
I A: Size of IOCB I Note 1: If RKP * I
I foundaticn I 0, tten D1 = 0 • I
I B: Size of BSAt'J DECB I If HFP = 0 then I
I C: Size of VISAM DECIJI for tlocked rec- I
I D: Size of hidden lords: D:\. = L, I
I buffer: I and for unblockedl
I D:\.: Length of I records: D1 = 2L, I
I recorded key I when L = lengt h I
I D2 : Length of I of rE-corded key. I
I block (record) I I
I I Note 2: 'Ihe data I
I I valuE is obtained I
I I by summing the I
I I size~; given under I
i I each entry. I l ______________________ L __________________ J

Figure 61. Values Used in corn~uting Size
of IOCB for Various Access
Methods

Bl::te 1
X'OO'
X'04'
X'OB'
X'OC'
X'10'
X'14'
X' lS'

Bl::te 2
X'OO'
X' 04'
X'OS'

Byte 3
X'OO'
X'04'
X'OS'

Byte 4
X'20'
X'40'

X'SO'

O~eration
READ
WRITE
REWRITE
DELETE
LOCATE
UNLOCK
WAIT

°Etion Set 1
None/SET
IGNORE
INTO/FROi"i

Option Set 2
None
KEYTO
NOLOCK

Option Set 3
EVENT option
VARYING record variable
(INTO>

VARYING KEY'IO

EERC/BEFC/BXTC/BKYC:
error codes for various conditicns.

HERe
LRHOR condition

EEFC
ENDFILE condition

BXTC
'I~ANSMIT condition

BKYC

BKCC

ERVS

BEVN

EDF1

KEY condition

L3ee 'Error and Interrupt Handling',
in Section II, for oetails of these
codes.)

errcr cede for RECORD condition.

(See 'Errer and Interru[t Handling',
in Section II, for details of these
codes.)

address of RDV or SCV for recerd
variatle.

address of eVEnt variat1.e; zero, if
none exists for associated operation.

BSAlv, : BDF 1
address of the user's record variable.

BD1'2

BSAt/: BDF2

BDF3

EDF4

length, in bytes, of the user's record
varia tie.

BSAM
length, in bytes, of the KEY'IO area.

BSAJ;'> BDF4:
address of the KEYTO area.

BDF5: BSAIv'
relative record number (REGIONAL (1».

LEeB fielas
see System Control Blocks PLM for
detailed description.

EDBF (BSAN)
start of hidden buffer.

Section III: Input/Output Control Blecks 121

o 4 8 12
r---------T----------T----------T---------,
I Type I 0 I Access I Mode I L _________ ~ __________ ~ __________ ~ _________ J

16 20 24 28 31
r---------T----------T----------T---------,
I Flag A I Flag B I Flag C ! Flag 0 I l _________ ~ __________ i __________ ~ _________ J

Figure 62. Format of the O~en Control
Block (aCB)

OPEN CONTROL BLOCK <OCB)

The forrrat of the or:en control block
(OCB) is shown in Figure 62. The fields in
the OCB are:

Type STK~AM 0001
RECORD 0010

Access SEQUENTIAL 0001
CIRECT 0010

Mode INPUT 0001
OUTPUT 0010
UPDATE 0100
EACKWARCS 1000

Flag A Bit; 0 KEYED
1 EXCLUSIVE
2 BUFFEREC
3 UNBUFFERED

Flag B 0 transient*

Flag C (Reserved)

Flag D Bit: 0 (Reserved)
1 PRI t<T
2 (Reserved)
3 (Reserved)

*Not supported in TSS/360.

122

EXAMPLE OF CHAINING

Figure 63 contains an example of the
chaining of FCBs, IOCBs, and event
variables in a PL/I program.

The program has opened two files, and
the addresses of their FCBs (FCBl and FCB2)
are stored in the PRV; the FCBs are placed
in a chain that is anchored in the pseudo­
register IrlEQFOP and uses the TFOP fields
in the FCBs.

10CBS

Two of the current I/O operations that
refer to FCBl required IOCBs. The IOCBs
are placed in a chain anchored in the TLAB
field of the FCB so that they can be freed
~hen the file is closed. The EVENT option
was used with two of the I/O operations:
the BEVN fields in IOCBs 1 and 3 therefore
point to the corresponding event variables.

Event Variables

The program has three active I/O event
~ariables. These are chained from the
pseudo-register IHEQEVT so that, on ter­
mination of the program, they can be set
complete, inactive, and abnormal. (Note
that the address in the chain-back field
EVCB in event variable 1 is not that of
IHEQEVT, but that of the field three words
higher: IHEQEVT is thus in the sarre posi­
tion relative to this address as EVCB is
relative to the first byte of the event
variable.) Event variables land 3 relate
to the file corresponding to FCB1, and rrust
be set ccmplete, inactive, and abnormal
when the file is closed. communication
with event variatles 1 and 3 is estaclished
via tne corresponding laCEs. But event
variable 2, which relates to an I/O opera­
tion for which an IOCB was not required, is
:placed in a chain anchored in the 'l'EVT
field of the FCB.

PRV

!

IHEOXlV

0

IHEOFOP --

4--
""FCBT'

:--- A(FCB 1)

IHEOEVT -

0

DClCB

Q1-
CJ

L_~ __ ----
-

L _____

EXCLUSIVE
BLOCKS

XCFF

XCBF

XCFT

XO!

XCFF - 0

XCBF

XCFT - 0

XCBT

;;
::":

-I-

FCB 1

--- ~
TDCl

I-
IFep C

'lAB

IEVT

.. >}

TXlV

-
""

EVCF

EVCB

-- [VEe
1------
I-

EVCF 0

Eves

EVFF 0

EVFB

Figure 63. Example of Chaining of I/O Control Blocks

Section III:

FC82

1-------\---

BEVN

BECB

BXlV

Input/Output Control Blocks 123

STORAGE- MANAG EMt.NT CON'IRO L BLOCK S

o 7 8 31
r----------T----------------------------,

o I See Note I Length cf Area Variable I
~----------i----------------------------~

4 I Offset of End of Extent I
t---------------------------------------~

B I Offset of Largest Free Element I
~---------------------------------------~

C I See Note I
t---------------------------------------~
I I
I I
I !
I I
I I
~---------------------------------------~
INote: If the area variable contains a I
Ifree list, bit 0 of the first byte is I
/set to 1, and the fourth word is set I
Ito O. I L _______________________________________ J

Figure 64. Format of Area Variable

This describes the formats of the con­
trol blocks used by the storage-management
modules of the PL/I Library. ~he functions
of the blocks and the way they are used are
described in Section II. In the diagrams,
all offsets are in hexadecimal.

AREA VARIABLE

An area variable is prefaced by a four­
word description of its extent (Figure 64).

DYNAMIC STORAGE AREA (~SA)

The fonrat of a dynamic storage area is
shown in Figure 65. The size of a DSA
varies; the minimum size is X'64' bytes.
The first byte contains flags (see Figure
66) describing the optional entries.

standard Entries

Standard Save Area: The area starting with
the flags and continuing up to and includ­
ing the register save area. (See Figure 51
and associated text.)

Current File: This field is eight bytes
long; its use is described in 'Current
File' in 'Stream-Oriented I/O' in Section
II.

InVocation Count: This field is eight
bytes long and contains:

124

1st word: Environment chain-back
address or zero

2nd wcrd: Invocation count

Optional Entries

[is play: This field is eight bytes long
and contains:

1st wcrd: Pseudo-register offset

2nd word: Pseudo-register update

If it occurs at all, the display field
always appears at offset 58.

statement Number: This field is fcur bytes
long; it is described in 'Error and Inter­
rupt Handling'. If it occurs at all, the
statement number always appears at offset
60; bytes 60-63 are always set to zero. If
there is nc statement number, this field
can be used for optional DSA entries, e.g.,
ON fields.

ON fields: Each ON field is two words
long. The ON fields are described in 'ON
Conditions' under 'Error and Interrupt Han­
dling'. The position of the first ON field
depends en whether there are entries in the
display update and statement number fields:

1. No display update, no statement nun:­
her: ON fields begin at offset 58.

2. Display update, but no statement num­
ber: ON fields begin at offset 60.

3. Statement number (with or without a
display update): ON fields begin at
offset 64.

The last ON field is indicated by bit U = 1
in the second word.

Remaining Entries

The dope vector formats are described
earlier in this section, in 'Compiler­
Generated Control Blocks'. The AUTOMATIC
data, workspace and parameter lists areas
are provided for use by the compiler.

VARIABLE DATA AREA (VDA)

A variable data area (see Figure 67) is
a SFecial tyfe of automatic storage area,
described in Section II. The first byte of
the VDA contains flags (see Figure 68)
describing the data. The PRV VDA is a VDA
which contains the PRV and primary LWS.
(See Figure 69). secondary LWS is con­
tained in the LWS VDA (Figure 70).

o 7 8 31
r---------T----------------------------,

o I Flags I length I
~---------.1.--------------------·--------1

4 I Chain-back address I
~--------------------------------------1

8 I Chain-forward address I
~--------------------------------------1

C I I
· I I
· I Register save area I
· I I

44 I I
~--------------------------------------1

48 I Current file I
I I
t--------------------------------------1

50 I Invocation count I
I I
.--------------------------------------1

58 IOPTIONAL ENTRIES: I
· I I
• I Display I
• 1 statement numJ:::er ,
• I ON fieldS ,

I I
1 Do~e vectors I
I I
I AUTOMATIC data I
I Wcn;:sr;ace ,
I Parameter lists I L ______________________________________ J

Figure 65. Format of the Dynarr,ic Storage
Area (DSA)

r---T-------------------------------------,
I I Meaning I
IBit.------------------T------------------~
I I =0 I =1 I
~---~------------------.1.------------------i
I 0 I Al wa y s = 1 I
.---t------------------T------------------i
I 1 INo staterrent num- I Statement number I
I I ber field in DSA ,field in DSA I
~---+------------------+------------------1
I 2 INa dummy ON field ISTRJNGRANGE field I
I Ifor STRINGRANGE Icreated as for I
Ii' other ON condi- ,
I I ,tiors ,
~--+------------------+------------------~
I 3 IProcedure DSA ,Begin block DSA I
t---+------------------+------------------i
i 4 INO dummy ON field ISUBECRIPTRANGE I
I Ifor SUBSCRIPTRANGE! field created as I
I I Ifor other ON con- I
I I I ditions ,
t---+-----------------t------------------i
I 5 INon-recursive DSA, I Recursive DSA, ,
I iwiUwut dis~lay Iwith display up- I
I I update field I datE: field I
t---t------------------+------------------~
I 6 i No ON fields ION fields I
I----+------------------+-------------------~
I 7 INa dUIf.my ON field I SIZE field createdl
i Ifor SIZE las for other ON I
I I I conditions I L ___ ..1. __________________ .1. ___________________ J

Figure 66. Format of the DSA Flag Byte

o 7 8 31
r--------T-------------------------------,

01 Flags 1 Length ,
t--------.1.-------------------------------~

41 Chain-back address I
t--1

81 I
I Data 1
I 1 L __ J

Figure 67. Format of the Variable Data
Area (VDA)

r-------------------T---------------------,
I Bit I 1
r---------T---------~ Meaning 1
10123145671 I
~---------+---------+---------------------~
I 0 0 1 0 1 0 0 0 0 I Ordinary VDA I
r---------+---------+---------------------1
I 0 0 1 0 I 0 0 0 1 1 VDA obtained for a I
I I 1 library subrcutine 1
r---------+---------+---------------------1
I 0 0 1 0 , 0 1 0 1 I VDA containing a I
1 I I secondary LWS 1
t---------+---------+---------------------~
I 0 0 1 0 I 1 0 0 1 , PRY VDA I l _________ .1. _________ .1. _____________________ J

Figure. 68. Format of the VDA Flag Byte

o 7 8 31
r--------T-------------------------------,

01 Flags I Length (= L(PRV) + L(LWS) + 8)1
t--------.1.-------------------------------~

41 A (External save are) 1
r--i
I I
I Library workspace (LWS) I
I 1
r--1
I 1
I L8.1 (DSA optimization area, I
I OPT=Ol only 1
I I l __ J

Figure 69. Format of the PRY VDA

o 7 8 31
r---------T----------------------------,

o I Flags 1 Length I
t---------~----------------------------1

4 1 Chain-back address I
~--------------------------------------~

8 1 Chain-back address 1
I (previous LWS) I
t--------------------------------------1
I (unused) !
t--------------------------------------1

10 1 1
I Library workspace (LWS) ,
I 1
~--------------------------------------1
I 1
1 LWF (DSA optimi zati on a rea, I
1 OPT=Ol only) 1

I 1 l ______________________________________ J

Figure 70. ForIfiat of LWS VDA

section III: Storage-Management Control Blocks 125

Pase of GY28-2052-0, Issued Spetember 30, 1971 by TNL GN28-3192

SECTION IV: APPENDIXES

SECTION IV

APPENDIXES

127

Page of GY28-2052-0, Issued Spetember 3D, 1971 by TNL GN28-3192

APPENDIX A: SYSTEM MACRO INSTRUCTIONS

The following table lists the system
macro instructions used by the PL/I library
and associates their use with individual
library modules.

System
Macro
ABEND

CHECK

CLOSE

Library Module
IHEWDUM, IHEWERR, IHEWZZC

IHEWITB

IHEWCLT

DCB IHEWOPO

DCBD

DELREC

DIR

EBCDTlME

ESETL

FINDJFCB

FREEMAIN

FREEPOOL

GATRD

I GATWR

GET

128

IHEWCLT, IHEWIOF, IHEWITB, IHE­
WITD, IHEWITE, IHEWITG. IHEWITM,
IHEWITN, IHEWOCL, IHEWOPO, IHE­
WOPP, IHEWOPQ

IHEWITD, IHEWITE, IHEWITM,
IHEWITN

IHEWERR, IHEWSAP, IHEWZZC

IHEWCVC

IHEWITD, IHEWITN

IHEWOPO

IHEWCLT, IHEWDSP, IHEWDUM, IHE­
WITB, IHEWITG, IHEWLSP, IHEWOCL,
IHEWOSW, IHEWSAP, IHEWZZC

IHEWCVC

IHEWDSP

IHEWCVC, IHEWDSP, IHEWSAP, IHEW­
TOM, IHEWTSA, IHEWIOF

IHEWIOF, IHEWITD, IHEWITG.
IHEWITN

GETBUF

GETMAIN

GET POOL

GTWRC

OBEY

OPEN

PAUSE

PUT

PUTX

READ

SETL

SIR

SPEC

STIMER

SYSIN

WRITE

XTRCT

IHEWCVC

IHEWDSP, IHEWDUM, IHEWITB, IHE­
WITD, IHEWITE, IHEWITM, ITEWITN,
IHEWLSP, IHEWOCL, IHEWOPO, IHE­
WOPP, IHEWOPQ, IHEWSAP. IHEWZZC

IHEWCVC

IHEWIOB, IHEWIOF, IHEWZZC

IHEWZZC

IHEWOPP

IHEWCVC

IHEWIOF, IHEWITD, IHEWITG,
IHEWITN

IHEWITG

IHEWITE, IHEWITM

IBEWITD, IHEWITN

IHEWCVC, IHEWERR, IHEWSAP,
IHEWZZC

IHEWCVC, IHEWERR, IHEWSAP.
IHEWZZC

IHEWCVC

IHEWIOF

IHEWITD, IHEWITE, IHEWITM,
IBEWITN

IHEWIOB, IHEWIOF, IHEWIOP,
IHEWZZC

APPENDIX B: PL/I OBJECT PROGRAM PSEUDO-REGISTERS

PL/I object programs requir,;: pseudo­
registers (symbolic name formai: IHEQxxx),
some of which are defined by the compiled
program, others by the library modules.
DUring execution of a frogram ;cegister PR
always points to the base of the PRV (see
'Pseudo-Register Vector', Section II).

IHEQADC

Pointer to a list of addres:3 constants
for use by the I/O routines:th€ list is
in IHEWSAP.

IHEQATV

Not used in TSS/360.

IHEQCFL

The current-file pseudo-register, 8-
bytes, word aligned. Used by .3TREAM I/O
modules for ilq::licit cOITlll,unication of the
file currently neing operated upon; see
'Current File' in 'Strealf'-Oriented I/O' in
Section II.

IHEQCTS

The base address of the non-sharable
module IHEWCVC.

IHEQECA

Four byte interruption communlcation
area.

IHEQERR

Serves as a parameter list when calling
IHEERRB. The code associated with the ON
condition to be raised is placed into IH£­
QERR. See 'ON Conditions' in Section II,
internal error codes Appendix D.

IHEQEVT

The anchor cell for tne incomplete I/O
event variables in a given PL/I program.
When IHEQEVT contains zero, nc I/O event
variable in the PL/I program is incomplete.

IHEQFOP

The anchor cell of the chain linking the
FCBs for the files opened in a given PL/I
program. When IHEQFOP is zero, none of the
files opened in this task are still open.
See 'File Control Block' in Section IV.

IHEQFVD

Pointer to the Free VDA module in
IHESAFD.

IHEQICA

Four £yte interruption con®unication
area.

IHEQINV

ccntains the invocation count, and is
updated by a library module each time a DSA
is obtained.

Pointer to the current generation of the
lil:::::rary corrmunication area; see 'Library
Workspace' in Section IV.

IHEQLPR

Length of the pseudo-register vector.
This is fixed, under TSS/360. and is 4096
l::ytes.

IHEQLSA

Pointer to the first save area in LWS,
which serves tloiO purposes: (1) the save
area provided l::y the error-handling rou­
tines for an on-unit. and (2) an area where
initial frogram information is saved (prc­
graJf mask, etc.). See Section IV.

IHEQLW 0, IHEQL~IHEQLW2, IHEQLW3, IHEQLW4

Pointers to the various levels of
library workspace; see 'Library Workspace'
in Section IV.

IHEQLWE

Pointer to the save area and works~ace
used by the error-handling routines when
calling other library routines {not an
on-uni t} .

Pointer to the reserved area attached to
the current LWS. Used for optimization in
storage rranagement. See 'Execution-tirre
Optirrization' in 'Program Management' in
Section IV.

ItfEQRTC

Contains the return code used in the
normal termination of a PL/I prograrr.

ApPEndix E: PL/I Object Program Pseudo-Registers 129

IHEQSAR

Contains an environment count used by
the display modification module (IHEWSAR)
when on-units and entry parameter proce­
dures are used in prologues and epilogues.

IHEQSFC

Pointer to free-storage within first
block of storage obtained by the initiali­
zation library module (IHEWSAP).

IHEQSLA

Pointer to the storage area most recent­
ly allocated by the storage management rou­
tines. The area may be a DSA or a VDA.

IHEQSPR

The file register for SYSOUT, the name
being standardized to allow usage of the
same FCB for both the source program and
the library modules. See 'Standard Files',
and 'File Addressing Technique' in Section
II.

IHEQTIC

Not used in TSS/360.

IHEQVDA

Pointer to the Get VDA module: set (in
IHEWSAP) to IHESADF.

IHEQXLV

Not used in TSS/360.

130

APPENDIX C: LIBRARY ~~CRO INSTRUCTIONS

IrlELIB A keY1Nord parameter OP=XX, where XX is
an RX instruction (default: L)

Operands: None

Result:

Definitions of LWS pseudo-registers.
Lengths of save areas in LWS.
Format of the library communication
area.
Definitions of save area of::sets.
Definitions of standard reg:Lster
assignments.
Definitions of offsets in module
IHEWCVC.

IHECVC

Operand: A four-character cod,,, denoting
the last four letters of an en'~ry point in
the library.

Result: Register BR is loaded with the
address of the entry point.

IHEYCVC

Operands: None

Result: Definition of all offsets in
module IHbWCVC.

Used by: IHELIB and IHEWCVC.

IHEEVT

Operands: None

Result: Definitions of the event variable
and its flags.

IHEPRV

Operands:

A three-character code denoting the last
three letters of a fseudo-register name
(default: LeA)
A code denoting a general register
(default: WR)

Result: The RX operation is performed on
the pseudo-register. This macro is gener­
ally used to store the pseudo-register
address in a general register.

IHESr:R

Operands:

A three-character code denoting a work­
sFace level (default: LWO)
A code denoting a general register other
than register DR (default: WR)

Result: The address of the required 1Nork­
space level is put into register DR.

IHEZAP

Operands: None

Result: ----
Definitions of the file control block
and its flag bytes.
Definiticn of the declare control block.
Cefinitions of various I/O address con­
stants, parameters, operations and
°ftions.
Definitions of the I/O control block and
its flag bytes.
Definitions of the event variable and
its flags.

Operands: DUMP/none

Result:

If the oFerand is omitted, or is not
DUMP, a full DSECT is generated. If the
oferand is DUMP, only the parameter list
for IHEZZC is defined as a DSECT.
Used only by IHEWDUM, IHEWZZC, IHEWZZF.

Afpendix C: Litrary Macro Instructions 131

APPENDIX :c: PLI I LIBRARY INTERNAL ERROR CODES AND ~lESSAGES FOR ON CONDITIONS

Among the errors that occur during pro­
gram execution are errors that are covered
by PL/I-defined conditions. If one of
these occurs, an appropriate error code is
passed to IHEWERR in pseudo-register IHE­
QERR. This code is a 4-digit hexadecimal
number. The two high-order digits denote
the PL/I condition (Figure 71); the last
digit may denote a specific error asso­
ciated with that condition.

r---------------T-------------------------l
I Code I Condition I
t---------------+-------------------------~
I 1000 I STRINGRANGE I
I 1800 I OVERFLOW I
I 2000 I SIZE I
I 2800 I FIXEDOVERFLOW I
I 3000 I SUBSCRIPTRANGE I
I 3800 I CHECK (late!) I
I 40XX I CONVERSION I
I 4800 I CHECK (variable) I
I 5000 I CONDITION (identifier) I
I 5800 I FINISH I
I 6000 I E..RROR I
I 6800 I ZERODIVIDE I
I 7000 I UNDERFLOW I
I 78XX I AREA I
I 8800 I NAME I
I 90XX I RBCORD I
I 9aXx I TRANSMI':l I
I AOOO I I/O SIZE I
I A8XX I KEY I
I BOOO I ENDPAGE I
I Baoo I ENDFILE I
I COOO I I/O CONVERSION I
I C8XX I UNDEFINEDFILE I L _______________ ~ _________________________ J

Figure 71. Internal Codes for ON Condition
Entries

If system action is required, an error
message will be printed. The messages
relating to the errors for the PL/I ON con­
ditions are given here.

Error code Message

132

1000 STRINGRANGE

1800

2000

2800

3000

4000

4001

OVERFLOW

SIZb

FIXEDOVERFIOW

SUESCRIPTRANGE

CONVERSION

CONVERSION ERROR IN F-FORMAT
INPUT

4002

4003

4004

CONVERSION ERROR IN E-FORMAT
INPUT

CONVERSION ERROR IN B-FORMAT
INPUT

ERROR IN CONVERSION FROM
CHARACTER STRING TO ARITHMETIC

4005 ERROR IN CONVERSION FROM
CHARACTER STRING TO BIT STRING

4006

4007

4008

4009

5000

5800

6000

6800

7000

7800

7801

ERROR IN CONVERSION FROM
CHARACTER STRING TO PICTURED
CHARACTER STRING

CONVERSIml ERROR IN P-FORMAT
INPUT (DECIMAL)

CONVERSION ERROR IN P-FORMAT
INPUT (CHARACTER)

CONVERSION ERROR IN P-FORMAT
INPUT (STERLING)

CONDITION

FINISH

ERROR

ZERODIVIDE

UNDERFLOW

AREA SIGNALED

AREA CONDITION RAISED IN ASSIG­
NMENT STATE~ENT

7802 AREA CONDITION RAISl!::C IN ALLOC­
ATE STATEMENT

8800 UNRECOGNIZABLE DATA NAME

9000 RECORD CONDITION SIGNALED

9001

9002

9003

RECORD VARIABLE SMALLER THAN
RECORD SIZE

RECORD VARIABLE LARGER THAN RE­
CORD SIZE

ATTEMPT TO WRITE ZERO LENGTH
RECORD

9004 ZERO LENGTH RECORD READ

9800 TRANSMIT CONDITION SIGNALED

9801 PERMANENT OUTPUT ERROR

9B02

ABOO

ABOl

AB02

AB03

AB04

AB05

AB06

A80?

B800

C800

C80l

PERMANENT INPUT ERROR

KEY CONDITIOU SIGN.1\LED

KEYED RECORD NOT FCUND

ATTEMPT TO ADD DUPLICATE KEY

KEY SEQUENCE ERROR

KEY CONVERSION ERROR

KEY SPECIFICATION ERROR

KEYED RELATIVE RECCRD/TRACK
OUTSIDE DATA SET LIMIT

NO SPACE AVAILABLE TO ADD KEYED
RECORD

END OF FILE ENCOUNTERED

UNDEFINEDFILE CONDITION
SIGNALED

FILE ATTRIBUTE CONFLICT AT OPEN

ca02

ca03

CB04

caos

CB06

CBO?

FILE TYPE NOT SUPPORTED

BLOCKSIZE NOT SPECIFIED

CANNOT BE OPENED (NO DD CARD)

ERROR INITIALIZING REGIONAL
DA'IA SET

CONFLICTING ATTRIBUTE AND
ENVIRONMENT PARAMETERS

CONFLICTING ENVIRONMENT AND/OR
DD PARAMETERS

caoa KEY LENGTH NOT SPECIFIED

ca09

CBOA

caOE

INCORRECT BLOCKSIZE AND/OR LOG­
ICAL RECORD SIZE

LINESIZE GT IMPLEMENTATION
DEFINED MAXIMUM LENGTH

CONFLICTING ATTRIBUTE AND DD
PARA~ETERS

Appendix D: PL/I Library Internal Error codes and Messages for ON Conditions 133

APPENDIX E: DUMP INDEX

The dump index provided by the subrou­
tines IHEWDUM, IHEWZZC and IHEWZZF contains
information about:

Files currently open

Current file

Save areas

On-units, interrupts and other details

This inforrration is output to SYSOUT.

If the task is conversational, the dump
index is followed by a PAUSE. The pro­
grammer may enter any valid commands: for
example, he may display areas defined by
the index. Execution of the program con­
tinues after a GO command.

If the task is nonconversational, then
all pages containing save areas or file
blocks are dumped to SYSOUT, with
DSNAME=PLIDUMP.

Files Currently Open

File name

A (DCLCB)

A(FCB)

A (DCB)

File-register offset in PRV

Current File

I/O Files: File name

A (DCLCB)

A(FCB)

A (DCB)

STRING Files: A(SDV)

Save Areas

A trace-back through the save-area chain
provides the following addresses:

134

A(AII save areas, including the library
save areas)

A(Current LeA)

A(PRV VDA)

A(VDA for LWS2)

Other Information

If a CALL was made:
A (CALL>
A(Procedure) or
A(Entry paint of library module)

If a BEGIN block was entered:
A (Entry point)

If a program interrupt occurs:
A <Interrupt>

If an on-unit was entered: Type of on­
unit. If this on-unit is the error on­
unit and was entered as a result of sys­
tem action the condition causing the
system action is given.

If IHEDMA occurs in the trace-back: The
names of the modules used in the conver­
sion are given.

The statement number (if it exists) is
given.

The following program illustrates the
use of the dump index:

1 TDUMP:
2
3

4
6
8
9

10

11
12
13
14
15 CONVPROC:
16

17

18

PROC OPTIONS(MAIN);
DCI A CHAR(4) INIT('ABCD');
DCL IHESARC ENTRY(FlXED
BIN) ;
ON ERROR CALL IHEDUMP;
ON CONV CALL CONVPROC;
CALL IHESARC(20);
PUT LIST ('THIS IS THE
FIRST LINE');
PUT SKIP LIST ('THIS IS THE
SECOND LINE');
OPEN FILE(XYZ) OUTPUT;
BEGIN;
X=Ai /* CONV ERROR */
END;
PROC;
DCL Y(-32768:-32768,-
32768:-32768) CHAR(64);
Z=Y(32767,32767); /*
ADDRESSING ERROR */
END TDUMP;

~his program produces the following output
and dUlrp index when in conversational mode.

If there had teen a current file, this
would have appeared after the section on
, Pi les Opened ty This Task.'

page of GY28-2052-0, Issued spetember 30. 1971 by TNL GN28-3192

Trl S IS THE FIRST LINE
TH S IS THE SECOND lINE
IH 8041 ADDRESSING INTERRUPT IN STATEMENT 00017 AT OFFSET ~OOOAC FROM ENTRY POINT CONVPROC

" TSS/%O PL/i lH=DU'IP 10:: 0::::"
:::::: FILES OPENED BY THIS T.4',K
XYl
SYSPRINT

DClCB 304000 FCB 3S0D30 DCB 3500&8 PR OFFSET DBa
DClCB 3 3000 FOB 350(28 DCB 350C&0 PR OFFSET 04C

:::::: CHAIN BACK THROUGH SAVE AREAS
3766F8 DSA FOR ERR ON-UN! CALLS IHEDUMP FROM 3001(2 (STMT

CALLS 300168 FROM 306428 leA
CAllS 30504A FROM 3063FA LCA

AT
AT

376000 SECONDARY lIBRARY WORKSPACE
376010 SAVE AREA FOR lIBRARY
363B58 SAVE AREA FOR lIBRARY
363990 SAVE AREA FOR LIBRARY
301198 DSA FOR PROC CONVPROC

INTERRUPT (,T 341056 LCA AT

363EF8 DSA FOR ERR ON-UNIT RAISED BY CONV CONDITION.
363800 SECONDARY lIBRARY WORKSPACE
363810 SAVE AREA FOR LIBRARY
365350 SAVE AREA FOR LIBRARY
3650FO SAVE AREA FOR LIBRARY
365188 SAVE AREA FOR LIBRARY
301110 DSA FOR BEGIN
3656FO DSA FOR PROC TDUMP
364000 PRV - PSEUDO REGIST~RS START AT 364008
002470 EXTERNAL SA

CALLS 341000 FROM 3002(E
CALLS 300228 FROM 300222

CALLS 300lC8 FROM 306428
CALLS 30504A FROM 3063EA
CALLS 306014 FROM 3430F2
CALLS 343000 FROM 3410D6
(ALLS 341000 FROM 300152
ENTERS BEGIN AT 300108

lA.LLS 300000

(STMT
(STMT

LCA AT
LCA AT
lCA AT
lCA AT

(STMT

3763F8
363BF8
363BF8
In

7)

303BF8
3653FO
3G53FO
3653FO
1 3)

Appendix E: Dump Index 135

Page of GY28-2052-0, Issued Spetember 30, 1971 by TNL GN28-3192

APPENDIX F: PL/I LIBRARY MODULE NAMES AND ALIASES

This appendix contains a table listing DIL DILA, DILE, DIL
the PL/I Library modules in alphabetical DIM DlMA, DIM
order along with their associated aliases; DMA DMAA, DMA
6 character alias names are CSECTs, 7 DNE DNBA, DNB
character alias names are entry points. DNC DNCA, DNC
For a description of each module, see Sec- DOA DOAll, DOAB, DOA
tion III, Module Summaries. In the DOB DOEll, DOBB, DOBC, DOB
interests of clarity, the preceding charac- DOD DODA, DODB, DOD
ters IHEW and IHE, as indicated by the DOE DOEA, DOE
f~rst entries, have been omitted. DOM DOMA, DOM

DSP DSPA, DSP
MODULE DUM DOMC, DUMJ. DUMP. DUMT. DUM
NAMES ALIASES DVU DVUO, DVU

OW DWO, DVV
IHEWABU IHEABUO. IHEABU DZW DZWO, DZW
ABV ABVO, ABV DZZ DZZO, DZZ
ABW ABWO, ABW EFL EFLC, EFLF, EFL
ABZ ABZO, ABZ EFS EFSC, EFSF, EFS
ADD ADDO, ADD ERD ERDA, ERD
ADV ADVO, ADV ERE EREA, ERE
lIFD APDA, APDB, APD ERr ERIA, ERI
ATL ATL1,2,3 and 4, ATL ERO EROA, ERO
ATS ATS1,2,3 and 4,ATS ERP ERPA, ERP
ATW ANH, ATWN, ATW ERR ERRlI, ERRB, ERRC, ERRD, ERRE, ERR
ATZ ATZH, ATZN, ATZ ESM ESMA, ESMB, ESM
BEG BEGA, BEGN, BEG EXL EXLO, EXL
BSA BSAO, BSA EXS EXSO, EXS
BSC BSCO, BSC EXW EXWO, EXW
BSD BSDO, BSD EXZ EXZO, EXZ
BSF BSFO, BSF HTL HTLO, HTL
BSI BSIO, BSI HTS HTSO, HTS

-.,.BSK BSKA, BSKK, BSKR, BSK lOA 10All, IOAB, IOAC, rOAD, 10AT, lOA
BSM BSMF, BSMV, B5HZ, BSM lOB 10BA, IOBB, IOBC, 10BD, lOBE,
BSN BSNO, BSN 10BT, lOB
BSO BSoo, BSO IOC IOCA, IOCB, 10CC, 10CT, 10C
BSS BSS2 and 3, BSS IOD 10DG, 10DP, lOOT, IOD
EST ESTA, BST rOF ITAZ, ITAX, IOFA, 10FB, ITAA, 10F
BSV BSVA, BSV ION IONA, ION
CFA CFAlI, CFA lOP IOPA, IOPB, IOPC, lOP
CFB CFBA, CFB lOX IOXA, IOXB, IOXC, lOX
CFC CFCA, CFC ITB ITBA, ITB
CKP CKPS, CKPT, CKP lTD ITDA, lTD
CLT CLTA, CLTB, CLT ITE ITEA, ITE
CNT CNTA, CNTB, CNT ITG ITGA, ITG
CSC CSCO, CSC ITM ITMA, ITM
CSI CSIO, CSI ITN ITNA, ITN
CSK CSKK, CSKR, CSK JXI JXIA, JXII, JXIY, JXI
CSM CSMB. CSMF, CSMH, CSML, CSMV, CSM JXS JXSI, JSXY
CSS CSS2 and 3, CSS KCA KCAlI, KCA
CST CSTA, CST KCB KCBA, KCB
CSV CSVA, CSV KCD KCDA, KeDB, KCD
evc xevc, evc LDI LDIA, LDIB, LDIC, LDI
DBN DBNA, DBN LDO LDOA, LDOB, LDOC, LDO
DCN DCNA, DCNB, DeN LNL LNL2, LNLD, LNLE, LNL
DDI DDIA, DDIB, DOl LNS LNS2, LNSD, LNSE, LNS
DDJ DDJA, DDJ LNW LNWO, LNW
DDO DDOA. DDOB, DDoe, DDOD, DDOE, DDO LNZ LNZO, LNZ
DDP DDPA, DDPB, DDPC, DDPD, DDP LSP LSPA, LSPB, LSPC, LSPD, LSPE, LSP
DIA DlAA, DIAB, DIA MPU MPUO, MPU
DIB DIBA, DIBB, DIB MPV MPVO, MPV
DID DIDA, DID MXB MXBN, MXBX, MXB
DIE OlEA, DIE MXD MXDN, MXDX, MXD

136

Pag': of GY28-2052-0 I Issued Spetember 30, 1971 by TNL GN28-3192

MXL MXLN, MXLX, MXL I THS THSO, THS
MXS MXSN, MXSX, MXS TNL TNLD, TNLR, TNL
MZU MZUD, MZUM, MZU TNS TNSD, TNSR, TNS
MZV MZVD, MZVM, MZV TNW TNWH, TNWN, TNW
MZW MZWO, MZW TOM TOMA, TOM
MZZ MZZO, MZZ TSA CTTA, DDTA, DDTB, DDTC, DDTD,
NL1 NL1A, NL1L, NL1N, NL1 DDTE, IBTA, IBTB, IBTC, IBTD,
NL2 NL2A, NL2L, NL2N, NL2 lBTE, IBTT, IGTA, INTA, OCTA,
OCL OCLA, OCLB, OCLC, OCL OCTB, OCTC, PTTA, PTTB, TCVA,
OPN OPNA, OPN TCVB, TERA, TPBA, TPRA, TSAA,
OPO OPOA, OPO TSAC, TSAD, TSAE, TSAF, TSAG,
OPP OPPA, OPP TSAL, TSAM, TSAN, TSAP, TSAR,
OPQ OPQA, OPQ TSAT, TSAV, TSAW, TSAX, TSAY,
OSD OSDA, OSD TSAZ, TSEA, TSSA, TSWA, TSA
OSE OSEA, OSE UPA UPAA, UPAB, UPA
OS1 OSIA, OSI UPB UPBA, UPBB, UPB
OSS OSSA, OSS VCA VCAA, VCA
OST OSTA, OST VCS VCSA, VCSB, VCS
OSW OSWA, OSW VFA VFAA, VFA
PDF PDFO, PDF VFB VFBA, VFB
PDL PDLO, PDL VFC VFCA, VFC
PDS PDSO, PDS VFD VFDA, VFD
PDW PDWO, PDW VFE VFEA, VFE
PDX PDXO, PDX VKB VKBA, VKB
PDZ PDZO, PDZ VKC VKCA, VKA
PRT PRTA, PRTB, PRT VKF VKFA, VKF
PSF PSFO, PSF VKG VKGA, VKG
PSL PSLO, PSL VPA VPAA, VPA
PSS PSSO, PSS VPB VPBA, VPB
PSW PSWO, PSW VPC VPCA, VPC
PSX PSXO, PSX VPD VPDA, VPD
PSZ PSZO, PSZ VPE VPEA, VPE
RES REST, RESN, RES VPF VPFA, VPF
SAP SADA, SADB, SADD, SADE, SADF, VPG VFGA, VPG

SAFA, SAFB, SAFC, SAFD, SAFF, VPH VPHA, VPH
SAFQ, SAPA, SAPB, SAPC, SAPD, VQA VQAA, VQA
SARA, SARC, SAP VQB VQBA, VQB

SHL SHLS, SHLC, SHL VQC VQCA, VQC
SHS SHSC. SHSS. SHS VSA VSAA, VSA
SMF SMFO, SMF VSB VSBA, VSB
SMG SM;C, SMGR, S~ VSC VSCA, VSC
SMH SMHC, SMHR, SMH VSD VSDA, VSDB, VSD
SMX SMXO, SMX VSE VSEA, VSEB, VSE
SNL SNLC. SNU, SNLS, SNL VSF VSFA, VSF
SNS SNSC, SNSK, SNSS, SNSZ, SNS VTB VTBA, VTB
SQW SQWO, SQW XIB XIBO, XIB
SNW SNWK, SNWC. SNWS, SNWZ, SNW XID XlDO, XID
SPR SFRT XIL XILO, XIL
SQL SQLO, SQL XIS XISO, XIS
SQS SQSO, SQS XIU XIUO, XlU
SQZ SQZO, SQZ XIV XIVO, XIV
SRC SRCA. SRCB r SRCC, SRCD, SRCE, XIW XIWO, XIW

SRCF, SRC XIZ XIZO, XIZ
SRD SRDA, SRD XXL XXLO, XXL
SRT SRTA, SRTB, SRTC, SRT XXS XXSO, XXS

I SSF SSFO, SSF XXW XXWO, xxw
SSH SSHC, SSHR, SSH XXZ XXZO, XXZ

I SSX SSXO, SSX YGF YGFS, YGFV, YGF
STG STGA, STGB. STG YGL YGLS, YGL
STF STPA, STP YGS YGSV, YGSS, YGS
STR STRA, STRB. STRC, STR YGW YGWV, YGWS, YGW
TAB TABS, TAB YGX YGXV, YGXS, YGX
TEA TEAA, TEA YGZ YGZV, YGZS, YGZ
TEV TEVA, TEV ZZC ZZCA, ZZC
THL THLO, THL ZZF ZZFA, ZZF

Appendix F: PL/I Library Module Names and Aliases 137

Page of GY28-2052-0, Issued Spetember 30, 1971 by TNL GN28-3192

APPENDIX G: PUI SHARED LIBRARY ARRANGEMENT

The PUI Library is arranged in two into it. In so far as possible, modules in
modules. Module CFBAI contains all the a control section refer only to each other
shared library modules, in control sections and have no references outside the control
which are one page or less in length. Each section other than to module IBEWCVC, which
control section is formed by linkage edit- contains all the address constants and is
ing and is named by the first module linked the only control section in module CFBAJ.

l"JOdule CFBAI (READONLY, PUBLIC, SYSTEM):

Control
Section Module Names

ABW ABW SQS SQW ABZ SQL SQZ ADD ADV APD DVV MPV BSA BSC BSD BSF CFC
ATW ATW ATS HTS LNW LNS XXW XXS EXS EFS TBS TNW TNS SBS EXW SNW SNS
ATZ ATZ ATL BTL LNZ LNL XXL XXZ EXZ EXL EFL TBL TNZ TNL
BSK BSK STG ERE XIB XID XIL
CST CST VSE BSC DNB CSV STP
001 DOl DDJ 000 DDP MXL MXS OSE OSS YGL YGS
DIA DIA DIB DID DIE DIM DCA DOB DOD DOE
DMA DMA VFA VFB VFC VFD VFE VKB VKC VPA VTB VPF VPE
DOM DOM DNC DEN DCN KCA KCD
OZW OZW ZZF ZZC TSA TOM
ERR ERR BSS CSS OIL SRC SRD YGW CNT BST
ESM ESM CKP ABV BEG XIZ YGZ YGX
lOA lOA LDI LOO TEV TEA
lOX lOX lOB IOC IOD IOF ION lOP
ITB ITB SRT
ITE ITE lTD
ITN ITN CLT OST
JXI JXI NL2 PDL PDS POW PDZ OSW 5MB SMG SMX SMF PDF PDX OVU CSM CSC
KCB KCB UPA UPB VCA VCS VSA VSB VSC VSO
OCL OCr. OPN OPQ MZU
OPO OPO MZV MZW MZZ OSI XIU XIV XIW CFA
OPP OPP XIS ITM
PRT PRT OSO LSP ITG DUM CFB
SAP SAP DZZ
SNL SNL SBL SNZ JXS NLI PSF PSL PSS PSW PSX
SPR SPR PSZ SSG SSH SSF SSX BSI BSM BSN
VKF VKF VKG VPB VPC VPD
VPG VPG VPH ERP ERO ERI ABU
VSF VSF VQA VQB VQC ERD CSI CSK MPV MXB MXD
YGF YGF TAB STR DSP BSV RES

Module CFBAJ (System)

Control Section: CVC

Modules: evc

1.38

Where more than one page rEference is
given, the major reference is first.

A format items 46
ABEND macro 22
abnormal return 43
abnormal termination 29
access method interfaces

CONSECUTIVE data sets
BSAM 21
QSAM/VSAM 21

INDEXED data sets
VISAM 21,22

address of current LSW 25
addressing interrupt 35
ADV (Array Dope Vector) 7,51
ADV field definition 106
aliases of modules 136
alignment, (fixed/varying strings) 44
ALL (arrays) 51
ALLOCATE statement 25,27
ANY (arrays) 51
AREA

alignment 27
attribute 27
based variables, extent 2"
condition 29

area storage for based variab:,es 27
area variable 27,124
area variable assignment 28
arguments

array 7
conversion 50
evaluation of 50
in mathematical subroutineB 50
scalar 7

arithmetic assignment, function and
operation 49

arithmetic conversions and editing 45
arithmetic data representation 6
arithmetic target fields 54
array, storage 106
array do Fe vector (ADV) 7, 10,S
array dope vector (ADV) field
definition 106

array element address 106
array fUnctions 50

ALL 50-51
ANY 50-51
POLY 50-51
PROD 50-51
SUM 50-51

arrays
interleaved 50
simFle 50

assignment of area variables 28
automatic storage 25

allocation 25
allocation requirements 25
chain back 25

freeing 25
automatic transmission 21

B fOTInat items 46
based varia ties

allocation 27
area storage

allocate 27
element 27
free elements 27
free list 27
offset 27

systerr storage 27
BCD name, address and length 39
bit functions, byte aligned 48
cit string conversion 48
tit string/Ficture character string
conversion 46

tlock header statement 38
block housekeeping 23

efilogues 23
object program management 30
prologues 23

clocks, non-recursive/recursive 24
EOOL function 48
BSAM

F-forrrat records 21
overlap of transmission 21
UNBUFFERED 21
V-format records 21

built-in function
DATE 39
ONCODE 39
ONLOC 39
TIl"JE 39

byte-aligned functions 48

C format items 44
CAD <Coded Arithmetic Data Iterr,) 5
calling sequence, PLiI 5
chain-back address 4
chaining of control clocks 122-123
chaining of IOCEs 123
change data (internal) 44

IN I:: EX

character string/arithmetic conversion 46
character string/bit string conversion 46
character string/picture string

conversion 46
CHECKPOINT 1
close Frocess

explicit 12
implicit 12

close QSAM data sets 21
coded arithmetic data item (CAD> 5
coding conventions 5
communication mode

explicit 7
implicit 7

communications conventions 7
compiled code, edit directed 15

Index 139

compiler-generated control blocks 106
complex arguments 54
complex directors 42
complex-to-string directors 42
computational subroutines 47
control blocks 7

compiler-generated 106
input/output 119-123
record I/O 19

control length allocation request 25
control program interfaces 54
controlled storage 25
conventions

coding 5
naming 4

conversion
fUnction 40
mode 44
of internal arithmetic 46
package structure 44-46

CONVERSION error code 47
conversion handling 44-45
conversion to bit string 44-45
conversions, arithmetic 45
conversions, string 44
COpy option 17
counter, location 15
current file

address 12
function references 13
stacking 13

current file dump index 134
current LWS address 25

data checking
data-directed 46
edit-directed 46
list-directed 46

data conversion 40
data element descriptor (DED) 107,41,7
data event control block (DECB) 21,121
aata form 40
data list 40
data processing 54
data processing routines 40
data representation 5,40

a ri tnmeti c 5
string 5

data sets 12
data specifications

data-directed 15
edit-directed 15
list-directed 15

data-directed data specifications 15
data-directed input/output 15
DATE built-in function 40
DCB-appendage 10
OCICB (Declare Control Block) 114
DECB (Data Event Control Block) 22
decimal overflow interrupt 35
declare control block 9,114
declare control block, format 9
DED

creation 41
flag byte 107

DED (Data Element Descriptor) usage 7
DED discussion 107,41

140

DED field definition 107
rELAY statement 39
dependency, inter-rrodular 54
eIR rracro 24
directors

ccmr::lex 43
input 43
input/output 43
output 43

directors, library format 15
disabling prefix options 37
[ISPLAY statement 40
DISPLAY with EVENT option 40
dope vector address restrictions 54
dope vector descriptor (DVD) 108,7
DSA

chain
forrr:at

32
125

save-area chain 31
size 32

[SA (Dynamic Storage Area) 125,30
DSA definition 30
rSA forrr,at 125
dump

execution time 8
subroutines 8

dumr:; index 134
DVD (Dope Vector Descriptor) 108,7
[VD structure 108
dynamic storage/area (DSA) definition 24
dynarric storage area (DSA) format 124-125

edit-directed compiled code 16
edit-directed data specification 15
edit-directed input/output 42
editing 43
editing arithmetic 45
entry-parameter procedures 29
epilogues 42
error codes 11
error handling 32

data-directed 46
edit-directed 46
flowchart 34
list-directed 46
module IHEWERR 33

error message printing 33
evaluation of arguments 50
event variables 115
executable format scheme 42,15,16
execution of program 10
EXIT statement 40
explicit close 12
EXPLICIT OPEN/CLOSE 11
external names 4

F/E format items 46
FCB (File Control Block) 116,10
FCB history flag 119
FED format 41,108
FED (Fonf,at Element Descriptor) usage 7
file

addressing 9
attributes 9
control block 10
in control block chaining 10

file control block (FCB) 116-119,10
address 10
discussion 10

file register 10-11
file/data relationship 9
float-arithmetic generic functions 50
floating-point arguments 50
form of data ~2
format

SSA 111
SSA flag byte 112

format, Fsuedc-register names 129
format directors

arithmetic conversion 43
arithrnetic-to-string 43
comFlex 43
complex-to-string 42
I/O 43
library 15
string-to-arithmetic 44

format element descriptor (FED) 108
format element descriptor usaqe 7
format item

A/B/X 108,46
E 108,46
F 108,46
P 109
picture 46

format item attributes 46
format list 43
formats 7
FPI (Long Floating Point InteJ:mediate) 45
free core chain

format 25
structure 26

free elements {area storage} 27
free list (area storage) 27
FREE staterrent 25,27
FREEMAIN macro 25,27

GATWR rracro 24
general dsign string package 48-49
general iroFlementation features 4
GET/PUT code structure 13
GETBUF macro 20
GETMAIN macro 25,26
GETPOOL macro 20
GO TO statements 29

HIGH/LOW fUnction 48

IHEWABU 54
IHEWABV 55
IHEWABW 55
IHEWABZ 55
IHEWADD 55
IHEWADV 55
IHEWAPD 55
IHEWATL 56
IHEWATS 56
IHEWATW 56
I Hl:.-WATZ 57
IHEWBEG 57
IHEWBSA 57
IHEWBSC 57

IHEWBS[; 57
IHEWBSF 57
IHEWBSI 58
IHEWBSK 58
IHEWBSM 58
IHEWBSN 58
IHEWBSO 58
IHEWBSS 58
IHEWBST 59
IHEWBSV 59
IHEWCFA 59
IHEWCFB 59
IHEWCFC 59
IHEWCKP 59
IHEWCL'I 59
IHEWCNT 60
IHEWCSC 60
IHEWCSI 60
IHEWCSK 60
IHEWCSN 61
IHEWCSS 61
IHE'WCST 61
IHEWCSV 61
IHJ,.WCVC 62
IHEWDBN 62
IHEW1XN 62
IrlEWDDI 62
IHEWI:ru 62
IHEwDDO 63
IHEW[;DP 63
IHEWDIA 64
IHEWCIB 64
IHEWDID 64
IHEWCIE 64
IH£WDIL 64
IHEW[;IJvl 64
IHEWDMA 65
IHEWI:NB 65
IHEWDNC 65
IHEwr;OA 65
IHEWDOB 65
IHEWI:OD 66
IHEWOOE 66
IHEWI:OM 66
IHEWDSP 66
IHEWWt-'J 67
IH£.WDVU 67
IHEWDVV 67
IHEWDZW 67
IHEW[;ZZ 67
IHEWEFL 67
IHEWEFS 68
IHEWEQxx (symbolic name of pseudo
registers} 129

IHEWERD 68
IHEWERE 68
IHEWERI 68
IHEWERO 68
IHEWERP 68
IHEWE«R 68
IH£WESM 69
IHEWEXL 69
IHEWEXS 69
IHEWEXW 69
IHEWEXZ 69
IHEWHTL 70
IHEWHTS 70
IHEWIOA 70

Index 141

IHEWIOB 70 IHEWSMX 88
IHEWIOC 71 IHEWSNL 88
IHEWIOD 71 IHEWSNS 89
IHEWIOF 72 IHEWSNW 89
IHEWION 72 IHEWSNZ 89
IHEWIOP 72 IHEWSPR 90
IHEWIOX 72 IHEWSQL 90
IHEWITB 72 IHEWSQS 90
IHEWITD 73 IHEWSQW 90
IHEWITE 73 IHEWSQZ 90
IHEWITG 73 IHEWSi<-C 90
IHEWITM 73 IHEWSRD 91
IHEWITN 73 IHEWSRT 91
IHEWJXI 7ij IHEWSSF 91
IHEWJXS 7ij IHEWSSG 91
IHEWKCA 7ij IHEWSSH 91
IHEWKCB H IHEWSSX 92
IHEWKCD 75 IHEWSTG 92
IHEWLDI 75 IHEWSTP 92
IHEWLDO 75 IHEWSTR 92
IHEWLNL 76 IHEW'TAB 93
IHEWLNS 76 IHEWTEA 93
IHEWLNW 76 IHEWTEV 93
IHEWLNZ 76 IHEWTHL 93
IHEWLSP 76 IHEWTHS 93
IHEWMPU 77 IHEWTNL 94
IHEWMPV 78 IHEWTNS 94
IHEWMXB 78 IHEWTNW 94
IHEWMXD 78 IHEWTNZ 94
IHEWMXL 78 IHEWTOlVJ 94
IHEW~XS 78 IHEWTSA 95
IHEWMZU 79 IHEWUPA 95
IHEWMZV 79 IhEWUPB 95
IHEWMZW 79 IHEWVCA 95
IHEWMZZ 79 IHEWVCS 95
IHEWNL1 79 IHEWVFA 96
IHEWNL2 80 IHEWVFB 96
IHEWOCL 80 IHEWVFC 96
IHEWOPN 81 IHEWVFD 96
IHEWOPO 81 IHEWVFE 96
IHEWOPP 81 IHEWVKB 96
IHEWOPQ 82 IHEWVKC 96
IHEWOSD 82 IHEWVKF 96
IHEWOSE 82 IHEWVKG 97
IHEWOSI 82 IHEWVPA 97
IHEWOSS 82 IHEWVPB 97
IHEWOST 83 IHEWVPC 97
IHEWOSW 83 IHEWVPJ: 97
IHEWPDF 83 IHEWVPE 97
IHEWPDL 83 IHEWVPF 97
IHEWPDS 83 IHEWVPG 98
IHEWPDW 83 IHEWVPH 98
IHEWPDX 8ij IHEWVQA 98
IHEWPDZ 8ij IHEWVSA 98
IHEWPRT 84 IHEWVSB 98
IHEWPSF 84 IHEWVSC 98
IHEWPSL 84 IHEWVSD 99
IHEWPSS 8ij IHEWVSE 99
IHEWPSW 85 IHEWVSF 99
IHEWPSX 85 IHEWVTB 99
IHEWPSZ 85 IHEWXIB 99
IHE\oiRES 85 IHEWXIC 99
IHEWSAP 85 IHEWXIL 100
IHEWSHL 87 IHEWXIS 100
IBEWSHS 87 IHEWXIU 100
IHEv<SMF 88 IHEWXIV 100
IHEWSMG 88 IHEWXIW 100
IHEWSMH 88 IHEWXIZ 100

1ij2

IHEWXXL 106
IHEWXXS 101
IHEWXXW 101
IHEWXXZ 101
IHEWYGF 101
IHEWYGL 101
IHEWYGS 101
IHEWYGW 102
IHEWYGX 102
IHEWYGZ 102
IHEWZZC 103
IHEWZZF 103
illegal conversion 47
illegal input, format director 46
implementation-defined system action 39
implicit close 12
INDEX function 48
indexing routines 50
initialization

PL/I r:;rogram 12
PRV 10
routines

entry point 29
exit 29

initialization of program 29
INPUT/OUTPUT 9
input/output

control block (IOCB)
control blocks 114
data-directed 43
directors 42
editing 43
list-directed 43

integral values 'linkage'
inter-modular dependency
interface modules, record
interfaces, TSS 39
interleaved arrays 50
internal change of data
internal conversions 46
interrupt handling 32
interrupts, treatment of
invalid paran.eters 47
invocation count 24
IOCB

creation 20
DIRECT usage 21
SEQUENTIAL usage 20
size 20

20,119-121

I/O 19

44

31

IOCB (Input/Output Control
Block) 20,119-121

IOCB, example of chaining 122-123

KEY sequence error condition 22
KEYFROM 22

LCA (Library Communication Area) 109,8
length control bytes 26
LENGTH function 48
library

conversion package 40
external names 4
format directors 15
macro lnstructions 5,131

library conmunication area (LCA) 109,8
library workspace

definition 7
levels

lcrimary 8
secondary 8

LINE or;tion 17
linkage

conventions 4
specifications 54

linkage editing 5
linkage to string subroutines 48
list proceSSing

based variables 27
storage 27

list proceSSing, allocation 27
list-directed data specification 15
list-directed input/output 43
LOCATE

GET 21
PUT 21

location counter 15
long floating r;oint intermediate
representation 45

LOW function 48
LWS (Library Wcrkspace) 24,109

definition 7
fcrnat 109
pseudo-registers 25
VLA 25

macro, library 131
nacre instructions

library 5,131
systen 1,128

main-storage management 23
nanagerrent

program 23
storage 23

rrathematical functions 50
natherratical target fields 54
miscellaneous '166/]60 interfaces 39
node conversions 44
module names 54-103

(see also IEEWxxx entries in
alphabetical order)

rrodule naIPes/aliases 136
module summaries ')4-103
rrodule usage 1
modules

as closed sutroutines 1
as interface 1

nultitasking 1

naning conventions 4
non-recursive block 24

OCB (OFen Control Block) 122,11
ON CEECK 15
on-conditions

ccmfiled code action 37
disabled 38
disatling prefix options 37
library 38
ON CHECK 38
ON STATEMENT 37
prefix options 37

Index 143

prologue 37
SNAP action 39
system action 33

ONCODE built-in function
ONLOC built-in function
open control block (OCB)
of-en process 11
OPEN/CLOSE

discussion 11
error codes 11
EXPLICIT 11
IMPLICIT 12
modules 11,12

39
39
122,11

optimization, execute-time 32
OUTPUT/INPUT 7
overlap target field 54

packed decimal intermediate
representaticn 45

padding (fixed-varying string) 44
PAGE option 17
picture character string 44
picture format items 46
PL/I internal error codes/messages 132-133
PL/I library

compatibility 1
function 1

PL/I library system macros 128
PL/I on-conditions 37
PL/I program management 23
PL/I program termination 29
PL/I pseudo-registers 129
PL/I standard calling sequence 5
PL/I statewents

DELAY 40
DISPLAY 40
EXIT 40
STOP 40

POLY (arrays) 50-51
precision, binary data 49
precision, decimal data 50
precision, fixed-point data 50
prefix options (on-conditions) 37
~rocess-time cverlap 21
PROD (arrays) 50-51
program execution 10
program initialization 23
program interru~tions 33-35
program management 23,29
prologues 23
PRY (Pseudo-Register Vector) 7
PRY initialization 10
PRY VDA 125,24
pseudo-register, defined 7
pseudo-register vector (PRV) 7
pseudo-registers, PL/I oeject programs 129
PUT statements 13

C,SA~j/VSAM

144

close 21
spanned records

LOCATE 21
READ SET 21
REWRITE 21

radix change 45
RDV (Record Dope Vector) 19
record blocking 21
record deblocking 21
record dope vector (RDV) 19
record input/output

control blocks 19,20
data rranagement access methods 18
general flow 19
interface modules 19
logic 19
mcdular linkage 18
statement type 20
staterrent verification 19
transIDltters 19

record variatle description 19
recursive block 30
regicnal I/O 1
REPEAT function 48
replication factors 15
request codes 20
request control tlock 20
restart 1
REVERT statement 38

SArV (String Array Dope Vector) 110,7
save area (dump index) 134
save area chain 31
save areas, standard 5
scalar values 50-51
SDV (String Dope Vector) 7
SDV discussion 20,111
search word comparator 37
SET option 21
shared library feature 5,138
shared modules 138
Simple arrays 50-51
SIR macro 24
SIZE conditicn (conversion) 47
SKIP option

ncn-rrint files 17
print files 17

SNAP 8
SORT/Ml!:RGE 1
source attritutes 41
source/target coincidence
SPEC macro 24
specifications, data 15
specifications, linkage
SSA (Standard Save Area)
SSA format 111
standard calling sequence
standard files

SYSIN 13
SYSPRINT 13

54

54
110-111,5

5

standard save area (SSA) 110-111
standard system action 33
statement verification, record I/O 19
STIMER macro 40
STOP statement 40
storage

freed 25
request 25
sea rch 25

storage identification
non-recursive 29
recursive 29

storage management
control blocks 124
macros 23,24

storage of arrays 106
stream input/output

data management 12
general 12
GET/PUT statements 13
initialization modules 13
mode 12
modular linkage 13

string array dope vector (SADV) 110,7
string conversions

general 44
modules 45

string data representation 7
string dope vector (SDV) 20,7,111
string handling 54
STRING option 17
string package, general design 48-49
string subroutines

address of string 48
bit 48
character 48
linkage to 48

Structure Dope Vector 108,7
structure of conversion package 41-42
structures 7
subparameter NCP (of DD statement) 20
subroutines

computational 47
error/exceptionaJ conditions 47

SUBSCRIPTRANGE condition 36
SUBSTR function 48
SUM (arrays) 50-51
symbol table (SYMTAB) 112,7
symbolic names

defined 8
of registers 1

SYMTAB (Symbol Table) 112,7
SYSIN files 13
SYSPRINT files 13
system action (on-conditions) 33
system macro instruction ',128

target fields
arithmetic 54

attributes 41
mathematical 54
overlap 54

task invocation count (TIC) 26
teleprocessing 1
termination, PL/I program

abnormal 29
normal 29

TIC (Task Invocation Count) 26
TIME built-in function 40
TIME macro 40
Time Sharing System facilities 23

DIR 24
FREEMAIN 24
GATWR 24
GETMAIN 24
SIR 24
SPEC 24

TITLE option 9
TRANSMIT condition 13
TRANSMIT condition test 47
transmitters, record I/O 19
truncation (fixed/varying strings) 44
type conversion (string arithmetic) 44

UNDEFINEDFILE condition 10
unique oncode value 39
UN SPEC function 48

value of array function 50-51
variable data area (VDA) 24,124
variable data area usage 5
varying string records 20
VARYING strings 111
VDA (Variable Data Area) 24,124
VDA usage 5
VI SAM

DIRECT access 21
SEQUENTIAL access 21

VSAM 21,22

WAIT statement 22
WAIT statement, interface modules 22
WREA (library communications area) 29

Index 145

GY28-2052-0

lnternational Business Machines Corporation
Data Processing Division
112 East Post Road. White Plains, NY 10601
USA Only

IBM World Trade Corporation
821 United NatlOns Plaza New¥ork, New¥ork 10017
! International:

G'l
0<
tv
<XI
t

tv
o
(Jl

tv
I
o

Technical Newsletter File No. S360-29

Re: Order No. GY28-2052-0

This Newsletter No. GN28-3192

Date: September 30, 1971

Previous Newsletter No. GN28-3162

IBM SYSTEM/360 TIME SHARING SYSTEM
PL/I SUBROUTINE LIBRARY
PROGRAM LOGIC MANUAL

@ IBM Corp. 1970

This Technical Newsl·etter, a part of Version 8, Modification 1, of
IBM System/360 Time Sharing System, provides replacement pages for
the subject publication. Pages to be inserted and/or removed are
as follows:

5,6
13-18
21,22

117,118
127,128
135-138

A change to the text is indicated by a vertical line to the left
of the change.

Summary of Ammendmen·ts

Miscellaneous cor:rections are made.

Note: In this manual,

• Cross-references to Section II should be to Section I.

• cross-references to Section III should be to Section II.

• Cross-references to Section IV should be to Section III.

Please file this COVt:=r letter at the back of the manual to provide
a record of the chanqes.

IBM Corporation, Programming Puhiications, Dept. 643, Neighborhood Road, Kmgston, N. Y 12401

PRINTED IN U.S.A.

