File No.

IBM System/360 Time Sharing System

PL/I Subroutine Library
Program Number 360S-LM-512

This publication describes the internal sgpecificaticns
of PL/I Subroutine Library as a system component of IBM
System/36(0 Time Sharing System. The relationshigs
between the code produced by the TSS/360 PL/I compiler,
the PL/I library modules and the control program are
described, and summaries of the properties of individual
modules are provided. This information is intended for
use by those involved in program maintenance and by sys-—
tem programmers who are altering the program design.
Program logic information is not necessary for the use
and operation of the program.

S360-29

GY28-2052-0

Program Logic

PREFACE

This publication descrikes the object-
time PL/I Library package which forms an
integral part of the PL/I processing sys-
tem. General information covering the
overall design and conventions is provided
as well as information specific to the
various areas of language support.

The publication is intended primarily
for technical personnel who wish to under-
stand the structure of the likrary in order
to maintain, modify, or expand the PL/I
processing system.

Information relevant to this manual is
contained in the following IBM
publications:

IBM System/360 Operating System:

Principles of Operation, Form
A22-6821

PL/1I Lanquage Specification, Form
¥33-6003

IBM System/360 Time Sharing System:

Assembler Language, Form C28-2000

Concepts and Facilities,Form C28-2003

TSS/360 PL/I Reference Manual,
Cc28-2045

Form

System Programmer's Guide, Form
Cc28-2008

PL/I Library: Comgputaticnal Subrou-
tines, Form C28-2046

TSS/360 PL/I Programmer's Guide, Form
C28-2049

First Edition (June 1970)

This edition applies to Version 7, Mcdification O,
of IBM System/360 Time Sharing System, and to all
subsequent releases until otherwise indicated in new
editions or Technical Newsletters. Changes are
periodically made to the specifications herein; kefore
using this publication in connection with the operation
of IBM systems, refer to the latest edition of IBM
Systen/360 Time Sharing System: Addendum, Order No.
GC28-2043, for the editions of publications that are
applicable and current.

System Control Blocks, Form ¥Y28-2011

Assembler User Macro Instructicns,
Form C28-2004

TSS/360 PL/1I Compiler, Program Logic
Manual, Form Y28-2051

An introductory section, ‘'The PL/I
Liprary' and the first part of Secticn II
contain a general description of the
library as a component of IBM System/360
Time Sharing System, and general notes on
features of the system and the TSS/360 PL/I
Compiler that are used in the library
implementation. The remainder of Section
II describes the design of the library
modules in relationship to PL/I language
features, and indicates the use that is
rade of the control program to supgpert the
design.

The descriptive material is suprorted by
a set of wodule description summaries, data
control block descriptions, and several
appendixes. The module summaries, in Sec-
tion III, indicate the salient features of
individual mcdules in the library package,
and act as guides to the program listings
that are available as part of the PL/I
Library distrikution. The fourth section
contains detailed descriptions of the for-
mat and content of the control blocks used
by the P1/I Compiler. The appendixes con-
tain details of the system macro instruc-
tions used, library pseudo-registers and
macro instructions, and library internal
error codes.

This publication was prepared for production using an IBM computer

to update the text and to controli the page and line format.

Page

impressions for photo-offset printing were obtained from an IBM 1403

Printer using a special printing chain.

Requests for copies of IBM publications should ke made to your IBM
representative or to the IBM branch office servimg your locality.

A form is provided at the back ¢f this puklication for reader's

conments.

If the form has been removed, cowments may ke addressed to

IBM Corporation, Time Sharing System/360 Programming Publications,

Department 636, Neighborhood Road, Kingston, New York

©Copyright International Business Machines Ccrporation 1970

12401.

INTRCDUCTION: THE FL/I LIBRARY . . .
Fanction . . . ¢ . <« <« « < o .+ . .
USAQge v o o o o« o o = o o « o « o« =

SECTION I: METHOD OF OPERATION . . .

GENERAL IMPLEMENTATION FrATURES . . .
Naming Conventions

Linkage Conventions
Coding Conventions . . . ¢ .« « « .
Library Macro Instructions
Shared Library .« « « « « « « « « =
Linkage Editing « « « « « « o « o .
Data Representation

Communication Conventions
Input/Qutput . . . « « + « « « « .+ .
Files and Data Sets
File Addressing lechnique
Open/Close Functions
Explicit Opening « . . .
Implicit Opening . . . « .« + . « .
Stream-Oriented 1/0 (See Figure 9)
Record-Oriented /0O
Access Methoa Interfaces
The WAIT Statement
PL/1I Object Program Management . . .
Introduction

Automatic Storage: Storage Management
Controlled Storage: Storage Management

List Processing: Storage Management

Program Management
Exrror and Interrupt Handling
Standard 'System' Action
Program Interruptions
On Conditicns . . « « « « .«
Built-in Functions
Miscellaneous TSS/360 Interfaces . .
Data Processing Routines

I/0 Editing and Data Conversion . .

Structure of Library Conversion Package

I/0 Editing
Mode CONVersSioOnsS .« « « o« o « =« « =
Type CONVEISIONS « « « o o « o « =
String Cconversions
Arithmetic Conversions
Data Checking and Error Handliing .
Internal Ccnversions . .« « « « «
Computational Subroutines

SECTION II: MCDULE SUMMARIES
Control Program Interfaces
Data Processing . .« « « =« o o » o+ =

SECTION III: DATA AREA LAYCUTS . . .

COMPILER-GENERATED CONTROL BLOCKS . .
Array Dope Vector (ADV)
Dope Vector Descrigtor (DVD) . . .
Format Element Descriptor (FED) . .
library Communication Area (LCA) .
LIBRAKY WOEKSPACE {(IWS)
Standard seve area (ssa)

CONTENTS

B |
< . .1
v e .1
- .« 3

wwo~NunnuuouunE s &

I i §
.. . 11
P
. e . 12
« .. 17
« . . 21
< . . 22
- - . 23
« . . 23
.. . 24
. - . 25
- . . 27
. .« . 29
« « . 32
- - . 33
. « « 33
. « « 35
e « « 39
- . . 39
< « < 40
- . . 40
e . . 41
- <« . 43
< . . 4y
« . . Uy
« . . L4
« « . 45
- . . 46
- « . 46
.« . . 47
- .« . 53
. . « b4
- . . 54
. . .105
- . 106
. . 106
. . .108
. . .108
« « <109
. . 109
< - <110

iii

String Array Dope Vector (SADV)
String Dope Vector (SDV)
Structure Loge Vector « . « « « « « .« .
Symbol Table (SYMTAB) .« ¢ « v « o « o o o s o

INPUT/OUTPUT CONTROL BLOCKS .« o & « « o« « o « o =
Declare Control Block (DCLCB)« « « « .+ .
Event Variable . . . ¢ . ¢ ¢ ¢ ¢ 4+ 4o @ 4« ¢ . .
File Control Block (FCB e e e e e e e e e e
Input/Output Control Block (IOCB)
Open Control Block (OCB) . . .« ¢ « & v & « « &
Example of Chaining . . « « « +« « « « « & « «o

STORAGE-MANAGEMENT CONTROL BLOCKS . & « & o o « &
Area Variable . . « 4 ¢ ¢ ¢ 4 4 4 e 4 e o o o
Dynamic Storage Area (DSA) . . « « . . <« « . .
Variable Data Area (VDA) . . ¢ ¢ & o ¢ o « o «

SECTION 1V:

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:
CONDITIONS

APPENDIX E:

APPENDIX F:

APPENDIX G:

INDEX . . .

iv

APPENDIXES .« + o ¢ o o « o o « « o =

SYSTEM MACRO INSTRUCTIONS«

PL/I OBJECT PROGRAM PSEUDO-REGISTERS

LIBRARY MACRO INSTRUCTIONS

PL/I LIBRARY INTERNAL ERROR CODES AND

o e = « & » = - = » e e .« - ° - =

DUMP INDEX . . ¢ ¢ o o o o o o o o« «

PL/I LIBRARY MODULE NAMES AND ALIASES

PL/1 SHARED LIBRARY ARRANGEMENT . . .

® e e e & & @« s = .« . e e - s e -

* o e e . e « o

MESSAGES FOR ON

-

.110
-111
.112
-112

.114
.114
-115
.116
.119
122
L122
124
-124
.124
.124
-127
-128
.129

.131

.132
.134
.136
.138

.139

ILLUSTRATIONS

FIGURES

Figure 1. External Names Used by the PL/I Library . . . « « « « » . 4
Figure 2. Arithmetic Data Representation « ¢« « . + ¢« + « « 6
Figure 3. String Data Representation . . . ¢ ¢ & & 4 o « o o« 4+ « » 1
Figure 4. Statement-Lakel Data Representation . . . « . « « « « « . 1
Figure 5. File Addressing Scheme . .« « ¢ ¢« & « o o o « o « =« « « « 9
Figure 6. Format of the IHEQFOP Chain . . . « « ¢ ¢« & « &« « « « « » 10

Figure 7. Error Codes Indicating Causes of Failure in Open Process 11
Figure 8. Flow Through the OPEN Modules « .+ « ¢« « .+ « « « « 11
Figure 9. Modular Linkage Through Stream-Oriented I/C 13

Figure 10. Format of the Current File Pseudo-Register 14
Figure 11. Object Program Structure of GET/PUT e« e « e+ e « & s « 15
Figure 12. Exécutable Format Scneme . . . « e . - e e . . . 16

Figure 13. Data Management Access Methods for Record Orlented I/O . 18
Figure 14. Linkage of Access Modules in Record-Oriented I/O0 18

Figure 15. IHEWSAP Entry Points . . . ¢ . ¢« ¢ ¢« « « & o « & o« « o« - 23
Figure 16. Structure cf the Free-Storage Chain for Automatic

Variables ¢ v 4 4 e 4 4 i i e e e e e 4 e e e e e s e e e . s 26
Figure 17. Storage Allocation for a Ccntrclled vVariable 26
Figure 18. Format of Area Variable « « .« « « .« « . . 28

Figure 19. Example of DSA Chain . . . ¢ .« « « ¢« ¢« &« o +« o« &« « « « « 30
Figure 20. Continuation cof the DSA Chain« « . . <« . 31
Figure 21. Construction of the Save-area Chain 31
Figure 22. Structure of the DSA Chain When the Error-Handling

Subroutine is Entered After a New LWS Has Been Obtained e+ e o« . . 31
Figure 23. <ctructure of the DSA chain When the On-Unit DSA is

Attached . . + « ¢ 4 4 i 4 4 4 4 i e e 4 e e e e e a2 4 1 s e s« e« = « 32
Figure 24. Flow Through the Error Handling Routine (IHEWERR) 34
Figure 25. Frogram Interruptions and PL/I Conditions 35
Figure 26. Infcrmation Available Upon Entry to an Interrupt Routine 36
Figure 27. 01d Virtual Program Status Word « 36
Figure 28. PL/L OR Conditions« . & & ¢ ¢ 4 o 4 s+ o o« o « « « 37
Figure 29. Frormat of the Search Word Comparator « « « « « o 37
Figure 30. Module Usage indicated by Letters of Module Name 40

Figure 31. Structure of the Conversion Fackage e e e a4 . . b1
Figure 32. DELC Flag Byte for Character Representation of an

Arithmetic Data Item s e w e e e e s e e s e e s . U2
Figure 33. Input/Output Dlrectors for PL/1 Format Items U2
Figure 34. Conversion for Lists/Data Directed I/0 « « + « . . by
Figure 35. Modules for Type CONVErSiONS .« .+ « « = « & « o « « o » » LW

Figure 36. Modules for String CONVErSiONS . « « « + « « o o « « o o U5
Figure 37. Structure of the Arithmetic Conversion Package U5

Figure 38. Conversion Ccde Set in IHEQERR . « + « 4« & « « + o« « « . U7
Figure 39. Relationship of Data Form and Seventh Character of

Module NAmMe . < +« « & « o o & o o o o o o o a o o s o a =« 2 « « o« « o U8
Figure 40. String Operations and Functicns . . . <« <« . « « « « « « . U48
Figure 41. Arithmetic Operations . . .« .+ ¢ + o « & « o « o « o « « . U9

Figure 42. Arithmetic Functions o ¢ ¢ ¢ ¢ ¢« o o o« & « » o U9
Figure 43. Mathematical Functions . . « « ¢ ¢ + 4 4 o « « s« « 2 « + 50

Figure 44. Array Indexers and Functions . . . e e e e s e e + « « 51
Figure 45. <(<oincidence of Source and Target Flelds in Scme String -
Modules e e e e e e e e e e . e e « « e e« < « <« . 54

Figure 46. JFormat of the Array Dore Vector (AEV) e« s e e =« + . . <106
Figure 47. format of the Data Element Descriptor (DED)107
Figqure 48. Fformat of the DED Flag Byte . . . +. . + ¢« ¢ « ¢ o « . o .107
Figure 49. Library Communication Area (LCA) . . . « e e .+ . <109
Figure 50. 5tandard Format of Library Woxkspace (IWS) « . . .« « . 2110
Figure 51. Format of the Standard Save Area (SSA)111
Figure 52. Format of the SSA Flag Byte < <112
Figure 53. Format of the Primary String Array Dope Vector (SADV) . <112

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Methods
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

vi

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.

String Dope Vector Format o« o
Format of the Symbol Table (SYMTAB) .« .

- e e e

- » s s

Format of the Declare Control Block (DCLCB) . . .

Format of the Event Variable . . . e e
FCB for Stream-Oriented I/0
FCB for Record-Oriented I/0

Format of the I/O Control Block (IOCB) .
Values Used in Computing Size of IOCB for
Format of the Open Control Block (OCB) .
Example of Chaining of I/0 Control Blocks
Format of Area Variable
Format of the Dynamic Storage Area (DSA)
Format of the DSA Flag Byte
Format of the Variable Data Area (VDA) .

Format of the VDA Flag Byte
Format of the PRV VDA « +« + « «
Format of IWS VDA e e e e e e e

Internal Codes for ON Condltlon Entries .

Various

Access

+ s =

112
112
L1114
.115
.116
L1117
.120

.121
.122
.123
124
. 125
. 125
.125
. 125
.125
.125
.132

FUNCTION

The PL/I library was designed as a set
of reentrant object modules, each perform-
ing a single function or a group of related
functions.

The library wodules can be divided into
two grougs:

1. Those that act as an interface between
compiled code and the IBM System/360
Time Sharing System; these modules are
mainly concerned with input/output,
dynamic procgram and storage manage-
ment, and error and interrupt
handling.

2. Those that are closed subroutines spe-
cifically designed to perform arith-
metic computations, data conversions,
I/0 editing and string generic built-
in functions as the major part of
their task.

USAGE

The code produced by the PL/I compiler
includes many calls to PL/I Likrary
modules, where their specific functions are
required. The library modules themselves
reside in SYSLIB, and are dynamically
loaded when referenced during program
execution. The modules explicitly called
by object code will remain in virtual
storage until the user unlocads his object
module explicitiy. Thus, succeeding execu-
tions of the same module will not cause
reloading of library modules.

The PL/I library acts as the sole inter-
face between compiled code and the system.
The compiled code does not issue SVCs or
system macro instructions but instead

INTRODUCTION: THE PL/I LIBRARY

issues a library call. 2Although the
library module(s) called can issue an SVC
instruction, it is more convenient to use
system macro instructions. This method
means that wnen the system changes, only
the library module is rewritten, with the
call to the library from the compiler
remaining as before. Similarly, if the SVC
calling sequence changes, the system macro
is changed accordingly and the library
module need only be reassembled.

For further details on macro instruc-
tions, see IBM Systerv/360 Time Sharing Sys-—
tem: Assembler User Macro Instructions.
The system macro instructions used by the
library are listed in Appendix A.

User-designed modules can be substituted
for library modules; each user module 1is
given the name of the library module it is
meant to rerplace.

Under TSS, PL/I statements that are
related to a number of facilities will be
accepted for compilation but are not sup-
ported and will, during execution of the
PL/1 program, cause a diagnostic message to
be issued. The unsupported facilities, and
their associated system actions, are:

Facility System Action

Checkpoint Continue

Multitasking Revert to command mode
Sort/Merge Revert to command mode
Restart Continue or Finish condition

Teleprocessing Finish condition

Regional I/O Finish condition

Introduction: The PL/I Library 1

SECTION I

METHOD OF OPERATION

Page of GY28-2052-0, Issued September 15, 1970 by TNL GN28-3162

GENERAL IMPLEMENTATION FEATURES

NAMING CONVENTIONS

External Names

PL/I Library module names always begin
with IHEW; other external names always
begin with IHE. The uses and meanings of
these names are explained in Figure 1.

Registers: Symbolic Names

The following symbolic names are used in
the library modules for general registers
0-15:

Symbolic Symbolic
Register Name Register Name
0 RO 8 RH
1 R1,RA 9 RI
2 RB 10 RJ
3 RC 11 RX,WR
4 RD 12 PR
5 RE 13 DR
6 RF 14 ILR,RY
7 RG 15 BR,RZ

The following symbolic names are used
for the floating-point registers:

Symbolic
Name
FA
FB
FC
FD

Register

[N 3 SN

LINKAGE CONVENTIONS

Linkage between modules generally fol-
lows the system standard calling sequence.
The main features of this are:

1. Arguments are passed by name, not Ly
value. The addresses of the arguments
are passed, not the arguments
themselves.

2. These addresses are stored in a param-—
eter list.

3. The address of the list is stored in
register RA.

Some PL/I Library modules, however, are
called by a PL/I standard calling sequence.
The main features of this are:

1. Arguments are passed by name.

2. Arguments are passed in general
registers.

This standard can only be used where the
nunber of arguments is both fixed and less
than eight. If these conditions are not
met, the system standard is used. One PL/1
Library module, IHEWSAP, does not use eith-
er of these standards. The subroutines in
this module pass arguments by value as well
as by name.

Whichever standard is used, whenever one
nodule links to another a save area must be
provided for the contents of the registers
used by the called module. The save area
procedure is:

1. The calling module provides a standard
save area (SSBA) for the called module.
The address of this save area is
stored in register DR.

2. If the called module in turn calls
another module, it provides that
- module with a save area. Register DR
now contains the address of this new
save area. The save areas are chained
together ky the chain-back address
field in the new save area.

3. On return to the calling module, the
following will be unchanged:

Registers RB through LR
Program mask

while the following may be changed:

Registers RO, RA, and BR
Floating-point registers
Condition code

Page of GY28-2052-0, Issued September 15, 1970 by TNL GN28-3162

T T
| Number of |

B S

| i

|
|Characters|Format | Use Meaning |
L ey + J
€ L] T 1
i 7 | IHEWXXX|Module name | XXX are chosen for mnemonic |
b + } ———{identification of function. |
| 6 | IHEXXX |PL/I Library defined macrosj| |
b 1 1 4) 4
T T T T 1
7	IHEXXXX	Entry-point name	First six characters are module namre
	}	(omitting the W); the seventh identifies	
i i	the entry point within the mcodule.		
L 1 i } 4			
¥ 1 T T 1			
7	IHEQXXX	Pseudo-register name	XXX are chosen for mnemonic
			identification of function.
L—- 4L L i J
Figure 1. External Names Used by the PL/I Likrary

Page of GY28-2052-0, Issued Spetember 30, 1971 by TNL GN28-3192

The standard save area is a 76-byte area
in which the contents of all the general
registers can be saved. The format is
described in Section IV.

The library does not support intermodule
trace. Thexefore:

1. The chain-forward field in the SSA is
not set.

2. Calling sequence and entry-point iden-
tifiers are not employed.

CODING CONVENTIONS

Because all modules within the PL/I
Library are coded to be reenterable, the
following coding constraints must be
observed:

1. The modules are read-only.

2. Workspace (for save areas and tem-
porary work areas) is obtained within
an area dynamically allocated at pro-
gram initialization or by a call to
the Get VDA (variable data area) sub-
routine in IHEWSAP. (See 'Library
Workspace'.)

LIBRARY MACRO INSTRUCTIONS

Eight macro instructions are available
for use in the library modules; they reside
in PLIMAC. To obtain these instructions,
PLIMAC should be used with PLINDX when
assembling. Five of these, IHEYCVC,
IHEEVT, IHELIB, IHEZAP and IHEZZZ, set up
symbolic definitions and the other three,
IHECVC, IHESDR, and IHEPRV, set branches to
external modules, and set the current
addresses of the standard save area and the
pseudo-register vector (PRV) respectively.
The library macros are described in Appen-
dix C.

SHARED LIBRARY

With the exceptions of IHEWCVC, one copy
of all the PL/I library modules is shared
by all TSS users.

Shared modules cannot contain any type
of address constant, so these are collected
in the non-shared module IHEWCVC. Thus,
IHEWCVC contains a list of V-type address
constants for every library entry point
which can be called from another library
module. The order of these entries is pri-
marily alphabetical, but is irregqular where
certain library modules select V-cons by
their position in a table of V-conmns.

Section I:

To invoke a library module, library
macro IHECVC is used to load register BR
from the list of V-cons in IHEWCVC. This
is followed by the normal BALR instruction.

IHEWCVC also contains L-form and execut-
able macros. The macro expansions contain
address-dependent parameter lists or
address constants. The L-form macros are
used with the corresponding E-form: the
executable macros have no L-form and are
invoked with a BAL instruction.

Finally, IHEWCVC contains miscellaneous
address constants from the library.

The base address of IHEWCVC is set in
pseudo-register IHEQCTS by initialization
in IHESAP. Offsets in IHEWCVC are known to
all modules from the DSECT IHEZCVC, which
is part of macro IHELIB.

LINKAGE EDITING

A very significant space reduction
(twenty-fold) is obtained by combining the
library into two modules, CFBAI and CFBAJ,
which may reside on SYSLIB. CFBAI contains
30 control sections, all of which are
shareable and smaller than one page. CFBAJ
contains the un-shared routine IHEWCVC in a
single control section.

The arrangement of the original modules
is given in Appendix G.

DATA REPRESENTATION

Three types of data may exist within a
PL/I program:

1. Arithmetic
2. String
3. Statement-label

The internal representation and other
details of these three types are shown in
Figures 2, 3, and 4. The invocation count
used in the statement-label data represen-
tation is described in 'Program Management'®
later in this section.

Arithmetic or string data may be speci-
fied with the PICTURE attribute. A PICTURE
arithmetic data item is called a numeric
field and is represented internally as a
character string. An arithmetic data item
without a PICTURE attribute is called a
coded arithmetic data item (CAD) and is
represented internally in one of three sys-
tem formats:

Fixed-point binary
Floating-point
Packed decimal

General Implementation Features 5

Page of GY28-2052-0, Issued Spetember 30, 1971 by TNL GN28-3192

Some PL/I Library modules, however, are
called by a PL/I standard calling sequence.

The main features of this are:

This standard can only be used where the
number of arguments is both fixed and less
than eight. If these conditions are not
met, the system standard is used. One PL/I

jdivision is (p + 1,q), except when the SIZE condition is being checked.
loccurs, the first digit in the high-order byte must be checked to ensure that it is

When this

1. Arguments are passed by name. Library module, IHEWSAP, does not use eith-
er of these standards. The subroutines in

2. Arguments are passed in general this module pass arguments by value as well

registers. as by name.

r k3 1
| |]
| Data Type | Implementation |
| | |
l‘ L] % T | ¥ JI
| | | | Intermal | | |
| Scale| Base |Precision| format | Alignment | Processing |
i L i L L L Jd
r 1
| REAL data {
IL' R] L] T L3 T {
	Binary	P.q	Fixed-point	p>15: Word	Arithmetic operations are performed
		[Max p: 31j	jbinary	p<15: Half-	on p-digit integers: scale factor q
				word	is specified in a data element
]		descriptor. (See Figure u47)	
Fixed	+ + + + .				
jDecimali P.q	pPacked dec—	Byte	The p digits occupy FLOOR ((p + 2)/2)		
	jMax p: 15}	imal		bytes. Arithmetic operations as for	
}		(see			fixed binary.
{	mnote)				
k + + + + + i					
	Binary	p		p<21: Word	
		Max p: 53]}	p>21: Double-		
			Hexadecimal	word	The data is normalized in storage
Float } 4 4 floating- {before and after arithmetic operat-					
	Decimal	P] point {p<6: Word	ions. {		
i		Max p: 16}	p>6: Double-		
			{ word		
% ! L L 4 L {					
COMPLEX data					
} T T L) L] T Jl					
{	Binary	P.q	Fixed-point	p>15: Word	As for real fixed binary. The real
{		Max p: 31	binary	p<15: Half- j{and imaginary parts occupy adjacent	
				word {fullwords or halfwords, with the	
i					real part first.
Fixed} t + + + 4					
	Decimall Psq	Packed dec-	Byte	As for real fixed decimal. The real	
		Max p: 15{imal { J]and imaginary parts occupy adjacent			
]	{		fields, with the real part first.		
i 1 1 1 i i 4
T h g 1] 1 h i

f TBinary | P { jp<21: Word |As for real floating-point binary. |
H | |Max p: 53] |p>21: Double-|The real and imaginary parts occupy |
				word	adjacent fullwords or doublewords,
					depending on the precision, with the
			Hexadecimal		real part first.
Float } + {floating- } + 4					
	Decimal] P	point .	p<6: Word	As for real floating-point decimal.	
i		Max p: 16		p>6: Double-	The real and imaginary parts occupy
	i	i word	adjacent fullwords or doublewords,		
			}	depending on the precision, with the	
]	real part first.	
lr i i L i L {					
Note: When p is even, the effective precision for all arithmetic operations except					

|

|

J

|zero.
Lt

Figure 2.

Arithmetic Data Representation

| I

___ 1

| Implementation |

|
| Data typeb——---—---—--oo-— D
|

________________________________ T
| {Representation Length {Alignment |
o T frmmm 1
| Bit |1 binary digit | | Byte |

|per bpbit |Meximum length: 32,767. If a VARYING attribute is| (see note) |
b $———————————— {declared, maximum length is declared length, = |f-—-——--———-

|Character |1l character per|regardless of the string value.

|Note:

The string occupies CEIL (n/8) bytes.

1f the string comes within the scope of |

jan UNALIGNED attribute, the address of the first bit is provided by a byte address and |

| bit offset in an SDV.

Figure 3. sString Data Representation

Statement-Label Data
Representation

COMMUNICATION CONVENTIONS

The use of library modules in a PL/I
program requires that:

1. Working storage be provided for the
modules.

2. Techniques for passing :nformation
about arguments and program status be
provided.

Working storage is obtained as library
workspace (LWS). Secticon IV gives the for-
mat of LWS, which is allocated by the
library program management module IHEWSAP.

Two modes of communication are available
for passing information:

Uses parameter lists and
(See 'Linkage Conventions')

Explicit:
registers.

Implicit: Uses pseudo-registers or a
library ccrmunicaticn area.

Some library modules are interpretive
(as opposed to declarative), and according-
ly require that information regarding the
characteristics of their arguments Le supp-
lied. Such information is made available
to the library in the form of standardized
control blocks. The form and content of
the compiler-generated control blocks in
general use throughout the implementation
are described in Section IV; one or more
blocks is required according to the nature
of the data passed:

(See 'String Dope Vector' in Section IV.) |

Scalar arguments:
Data element descriptor (DED)
String dope vector (SDV)
Symbol takle (SYMTAB)

Array erguments:

Array dope vector (ADV)
String array dope vector (SADV)

Structures:

Structure dope vector
Dope vector descriptor (LVD)

Formats:
Format element descriptor (FED)
Special-purgose control klocks, such as

the file control block (FCB), are described
in this section and in Section IV.

Pseudo-Registexr Vector (PRV)

This is a 4096 byte table, consisting of
4 or 8 byte entries called pseudo-registers
(PRs). These PRs effectively operate as
implicit arguments giving information
about, for example, current program status.
BR1l references to specific PRs within the
PRV are made by the addition of a fixed
displacement to the PRV base address con-
tained in register PR.

All PRs used in the PL/I Likrary are
defined as a standard set of 29 in the
library macrc IHELIB; this macro is ccded
at the keginning of every library module.
The PRs used by the PL/I Library are shown
in Agpendix B.

liktrary Worksgace (LWS)

Secticn 1:

Various library modules require wocrking
stcrage:

1. For internal functions.

General Implementation Features 7

2. For linkage to other modules. (A reg-
ister save area must ke provided.)

Library modules which use likrary work-
space (LWS) refer to it by means of the
FPRV. A grcup cof pseudo-registers in the
PRV is set during LWS allocation to contain
the addresses cof ccontigucus areas within
IWS. (See Section IV.) Each of these
areas is at a different level.

The notion of level exists because of
inter-module linkage between likrary
modules:

1. A module which invokes no other
modules is assigned level 0.

2. A module which invokes other modules
is assigned a level numker greater
than the level number of any invoked
module.

3. A module which transfers control to
another module (i.e., does not expect
a return) is assigned the level numker
of that module.

Invocation of the exror-and-interrupt-
nandling subroutine is nct considered suf-
ficient to raise the level number of the
invoking module, since the error sukroutine
uses a special level.

Library workspace is allocated as pri-
mary or secondary LWS.

Primary LWS is allocated during program
initialization, before control is passed tc
the main procedure. The stcorage thus
obtained is not freed until the PL/I pro-
gram is finished.

Secondary LWS is allocated for special
purposes during program execution and is
freed when the situation for which it was
created no longer exists. It is allocated:

1. When an on-unit is entered from a
library module. This may lead to a
recursion proklem: Licrary modules
called may overwrite this LWS. To
avoid this, the existing LWS 1is
stacked, a new one obtained and all
the ILWS pseudo-registers updated.

2. When SNAP, system action or error mes-
sages are to be printed. The PRINT
subroutine may overwrite the existing
LWS: To avoid this, the saxe proce-
dure is followed as for an on-unit.

The library program management module
IHEWSAP controls the allccation of LWS and
the setting of the likrary pseudo-
registers. The library macro IHELIB con-
trols the length of LWS and of each area
within it. The LWS format can be changed

IHEPRV :

ky changing IHELIB and reassembling
IHEWSAP.

Modules using specific areas in 1S
address these areas by the following
library macrcs:

Used to address the LCA cr when
using an area as temporary workspace.

IHESDR: Used when a module requires a
standard save area for a module it is
calling.

Library Communication Area (LCA)

Within the area allocated for library
workspace is an area in which varicus syn-
bkoclic narmes are defined. These names are
used for implicit communication between
library modules (mainly the data conversion
wodules). This area is the library con-
municaticn area (LCA); its format and the
usage of the symbolic names are shcwn in
Section IV. The LCA address is stored in
the pseudo-register IHEQLCA.

In the LCA there is a docublewcrd inmedi-
ately kefore the first symkolic name. This
contains (in the first four bytes) the
address cf the prior generation of LCA
within a given PL/I program. This field is
used to readdress the LCA which existed
ktefore an ON block was entered. IHEQLCA
contains the address of the first symbolic
name.

Execution—-Time Dump

A PL/I user may obtain a dump at any
roint in his program by calling IHEWDUM;
the entry point used determines whethexr the
PL/I program will continue or terminate
after the dump.

IBELCUMC: Dump and continue

IHELCUMT: Dumgp and terminate

If the prcgram is being run nonconversa-
tionally, all pages containing save areas
cr file klocks will ke written on SYSCUT,
with DSNAME=PLILUMP. Identificaticn cf
required infcrmation (such as save area
locations) in the dump is difficult kecause
this information is not necessarily stored
in locations arranged in a chronolcgical
sequence. Tc¢ facilitate reading the dump,
therefore, two subroutines, IHEWZZC and
IHEWZZF, are provided. They extract cer-
tain information (chiefly about save areas
and cpened files) and print it as an index
to the dump. Full details of this informa-
tion are given in Arpendix E.

If the program is being run conversa-
tionally, there will be no automatic dung;
an index of the current areas will ke

printed and a PAUSE issued, to invoke the
command wrode. The user can taen display
any of the areas defined in the index, and
may return to the PL/I program by the GO
command .

INPUT/0OUTPLUT
FILES AND LDATA SETS

Within this publication, tne term 'data
set' refers to a collection of records that
exist on external storage. A file is known
as such only within a program.

The relaticnship ketween a file and a
data set is established when the file is
opened. The data set to be associated with
a file is identified ky the TITLE option.
If this option is omitted or an implicit
open occurs, a default identifier is formed
from the first eight characters cf the file
name. The data set identifier is not the
data set name, but the ddname (i.e., the
name of the DLEF command). Error messages
which are related to file coperations use
the full file name (1 through 31
characters).

The attributes of a file in some
instances restrict the attributes of its
associated data set, but in those instances
where device independence is possikble, the
full capabilities of the CDEF command are
availakle. Unit assignment, space alloca-
tion, recorxrd fcrmat and lengtn, and various
data management options (such as write-
verify) are established cn a dynamic basis.

FILE ADDRESSING TECHNIQUE

In order to accomodate reentrant usage
of a PL/1 module, which way imgply that the

ncdule exists in read-only storage, the
folleowing technique is employed to commun-
icate file arguments. All calls frcm con-
giled modules to the library involving file
argunents address a read-only contrcl
klcck, the DCLCB. The library, using a
field within this control block, is able tc
address a cell within the pseudo-register
vector generated for the PL/I program.

This cell, the file register, in turn
addresses a dynamically allocated control
klock, the file control blcck (FCB). (See
Figure 5.)

LCeclare Control Block (DCLCB)

This control klock, generated during
compilation, contains information dexived
from a file declaration {(either explicit or
contextual). In addition, it contains the
cffset within the PRV of the file register,
a fullword pseudo-register emplcyed within
the file addressing scheme. This pseudo-
register contains the address of a dynaric
storage area containing a file control
klock. The DCLCB is read-only, and thus
rermits compiled programs to exist within a
reentrant environment (which may imply that
the program is locaded into supervisor pro-
tected storage). The maximum length cf a
CCLCE is 56 Lytes.

File attributes specified within the
LCLCE may ke supplemented, kut not overrid-
den, by attributes specified in the OPEN
statement which opens the file. BAn excep-
tion to this rule is the LINESIZE cption,
which overrules record length information
declared in the ENVIRCNMENT attribute.

The format of the DCLCBE is descriked
fully in Section IV, ‘Input/Output Ccntrcl
Elocks'.

LCLCB FCB

0 31 0 31 0 31

“““““““““““““““““““““ b S | r““““’r"'""““‘"‘-"—“““““““"“l
| PRV offset | | | I l |
e 4 | | I | |
| I |] [| |
| | | | P | I
| I | 11 | |
| e == » | A (FCE) [| |
| | 1 4
| I | | | A (DCLCB) ;
| i | | p-— 1
| | | | I |
|] ! | I I
I] | i | |
| | i | | |
SR 4 e e 4 e e — e 4

Figure 5. File Addressing Scheme

Section I:

General Implementation Features 9

File Contrecl Block (FCB)

This control block is generated during
program execution when a file is opened.
The FCB storage is required in order to
accommodate reentrant usage of a given PL/I
module, for the FCB is not read-only. The
FCB contains fields for both the PL/I
Library and for TSS/360 data management.
The initial portion of an FCB is PL/I-
oriented, while the second portion is the
DCB required by data management for all
data set operations. The PL/I portion,
called the DCB-appendage, is descrikbed in
Section 1V; details of the various DCB ccn-
structions are available in the following
IBM puklications:

IBM Systen/360 Time Sharing System:
Contrcl Blccks

System

IBM System/360 Time Sharing System:
Assembler User Macrco Instructions

An FCB is generated for each file opened
within a program; an FCB cannot exist for
an unogened file.

When a file is opened, its generated FCB
is placed in a chain which links together
(through the TFOP field in the FCB) all
files opened in the PL/I program. When
files are closed, they are removed from the
chain. This chain, which is anchored in
the PRV cell IHEQFOP, exists in order to
rexform special PL/I closing processes at
program termination (whether normal or
abnormal). When a PL/I program terminates,
the object-program housekeeping routines
determine which files are currently open
for this PL/I program. This is performed
by the relevant housekeeping module calling
IHEWOCL (close), which scans the chain and

calls IHECLTE to close all open PL/I pro-
gram files. If the cell IHEQFOP is =zero,
then nc files are, at present, orpen for the
PL/I program. The IHEQFOP chain is shown
in Figure 6.

Program Execution

When program e€xecution is initiated, the
PRV (including all file registers) is
initialized to zero. When a file is orened
{grerared for I/0 operations), its asso-
ciated file register is set to address an
FCB; similarly, when a file is closed
explicitly, its file register is again set
to zero.

If the file is not opened, the file reg-
ister remains zero. If a file has gone
through the opening process but has failed
to be opened (UNDEFINEDFILE conditicn), the
high-order kyte (kits 0 to 7) of the file
register will contain an error code that
indicates the cause of failure. The codes
consist of two hexadecimal digits; they are
shocwn in Figure 7.

Two advantages of the use of the DCLCB
in the file addressing scheme are:

1. Because the DCICB, in conjunction with
an implicit opening statement, pro-
vides all the information necessary to
open a file, a file can be crened Lty
I/0 statements other than the OPEN
statement.

2. The address of the DCLCB can ke used
as the file identification in ON con-
ditions that relate to files. ON ccn-
ditions may be enabled for a file
before it is opened, since the DCLCB
address is always availakle.

PRV
- 1
| |
| |
pommmmm oo 1
IHEQFOP| e e 1
pmmm e { :
| | FCB1 FCB2 * FCB3
| I [ro——————————- 8 e T S e T it 1
| | | | I | I |
| | | | oo] [|
{ { - 1 | b 4 I b
| | | 0 | t—— | L-— | TFOP
| | f———————————— 4 b 4 b 1
| | | | | | | |
| i | | | I | |
| [|] | | I |
| { | | | | | [
| J L 4 (S, J S]
Note: The FCBs are opened in the order 1, 2, 3, etc.

Figure 6. Format of the IHEQFOF Chain

10

r~———- T e |
| Exrror | |
| code | Meaning |
o foomm e e
| 81 | Conflict between DECLARE and |
| | CPEN attributes |
i | i
82	File access methocd not
	supported
83	No klock size
84	No DDEF
85	TRANSMIT condition while
	initializing data set (only
	applicable to DIRECT OUTPUT
	REGIONAL files)
86	Conflict between PL/I attri-
	butes and environment options
87	Conflict between environment
	cptions and CDEF parameters
88	Key length nct sgpecified
89	Inccrrect klock size or logical
{	record size specified
8A	Line size greater than
	implementation-defined maximum
Ce e e 4
Figure 7. Error Codes Indicating Causes

of Failure in Cpen Process

CPEN/CIOSE FUNCTIONS

The opening of a file occurs either
explicitly by the use of an OFEN statement,
or implicitly because of other I1I/0 opera-
tion statements.

Opening a file involves the creation of
an FCB, the setting of a file register to
address the FCB, and the invocation of the
data management OPEN executor. The closing
of a file involves invccation of the data
management CLOSE executor, freeing FCB
storage, and clearing the asscciated file
register.

EXPLICIT CPENING

The modules involved in OPEN processing
are IHEWOCL, IHEWOPN, IBEWCPC, IHEWQFP, and
IHEWOPQ. These modules are link edited
together, and transfer control between one
another with either the CALL macro, oOr a
direct branch. The module IHEWOCL passes a
list of all necessary address constants and
pseudo-register offsets; this list is con-
tained in the library module I HEWSAP.

The flow through the OPEN nodules is
illustrated in Figure 8.

Section I:

All errors are communicated back tc IHE-
WOCL by means of the file registers; IHE-
WOCL then invokes the error handling sub-
routine. The error conditions are signaled
in the high~crder kyte of the file regis-
ter; IHEWOCL, upon detecting an errcr con-
diticn, sets kit 0 of this register to in-
dicate an unopenable file. The errcr codes
are shown in Figure 7.

Cren Control Block (OCRB)

One cf the parameters which may ke
rassed to IHEWCPN is the open contrcl klcck
(OCB), which is generated Ly the compiler.
This four-byte control block indicates the
attributes specified in the OPEN statement.
During the opening process, this infcrma-
tion is merged with that in the DCLCE in
order to construct the proper FCB and check
for attribute conflicts. (See Section IV
for details of the OCB.)

The Cpen Process

Cpen Process, Fhase I: IHEWOPN: This per-
forms file attrikute checking and default-
ing functions. If an attempt is made to
cpen a REGICNAL file, an error message will
ke issued tc SYSOUT; the file will be unde-
fined and the error condition raised. 1If,
in gfhase I, all files specified in the OPEN
statement have detected errors, a return to
IHEWCCL is made immediately. Ctherwise
phases 1II, III and IV are invoked and a
return is made to IHEWOCL from IHEWOPQ.

[T 1
| ocL [
e 1
I b ————- -
| OPEN/CLOSE | |
Lme S 3 i
| |
* |
==l 1 |
| OPN | |
———————————— 1 |
| OPEN | I
{ Phase I | 1
[, S 1 |
| |
& |
e 1 |
| QPO | |
frmmmm e 1 |
| OPEN | |
| Phase I1] |
b f—————— 3 |
| I
* |
[ro=————to— o 1 [m————————————— 9 |
| OFP | | OPC | |
e 4 pom] |
[OPEN | === OPEN Jp—— i
| Phase III | { Phase IV |
b 3 . 1

Figure 8. Flow Through the OPEN Mcdules

General Implementation Features 11

Open Process, Phase II: IHEWCPEO: This
obtains stcrage for an FCB for each file
keing opened, and sets fields in both the
DCB and DCB-arpendage accoxrding to the
declared attributes.

Open Process, Phase III: IHEWOPP: This
executes the OPEN macro, and accepts
DCB—exits.

Open Process, Phase IV: IHEWCPQ: This

calls reccrxd-oriented I/C modules (setting
their addresses in the FCRBR), and enters the
files being opened intc the IHEGFOP chain
of files opened in the current task.

Any files which devclve tc the TSS SYS-
OUT or SYSIN will not need to be opened;
however, the checking which is done in
these modules is useful, so only the actual
CPEN process (in IHEWOPP) will be kranched
around.

If, during Pnase II or Phase III, a file
is determined to be a RECCRD I/0 file, and
no JFCB exists for it, a diagnostic will be
issued, and return to command mode will be
effected by raising the "FINISH' condition.

The Close Process

This prccess consists of removing files
from the IHE(QFOP chain and freeing dynamic-
ally acquired storage {file contrcl Lklocks,
tuffers, exclusive control blocks, and 1I/0
control blccks).

Module IHEWOCL starts the close process;
for an explicit close it 1links to IHECLTA,
for an implicit close to IBECLTB. If the
last operation on a BUFFERED SEQUENTIAL
INDEXED OUTPUT embedded-key file, kefore it
is closed explicitly, is LOCATE, module
IHEWOCL replaces the embedded key with the
KEYFRCM opticn, before passing control to
IHEWCLT. For further information refer to
Indexed Data Sets.

The normal return from a KgY on-unit is
to the statement following that in which
the condition is raised. Consequently, if
the KEY condition is raised during the
execution of an explicit CLOSE statement,
the file will not be closed unless the on-
unit also includes a CLOSE statement.

In addition, if a file is closed impli-
citly, IHEWOCL scans the IHECFCP chain to
find the file. For an implicit close, all
events associated with I/0 event variables
in the IHEQCEVT chain are rurged, and the
associated IOCBs, if any, are freed.

Module IHEWCLT performs additional spe-
cial functions as follows:

12

Stream-oriented I/0:

If OUTPUT with U-format reccrds, the
last record is written.

Reccrd-oriented 1/0:

All incomrplete I/0 event variakles
asscciated with the file are set com-
rlete, aknormal, and inactive, and
the I/C operations are purged.

Any files which devclve to the TSS SYS-
OUT or SY¥SIN will not need to be clcsed;
however, the checking which is done is use-
ful, so only the actual CLCSE macro (in
IHEWCLT) will ke branched around.

IMPLICIT OPENING

If a file is not open and an I/0 opera-
tion is initiated, then one of the ccwpil-
er-interface modules (IHEWIOA, IHEWIOE, or
IHEWION) calls IHEWOCL at implicit-cren
entry point IHECCLC, passing any implied
parameters, and the open process begins.

If the OPEN modules return control to
IHEWOCL and the file is still uncpened, the
UNLEFINELFILE condition is raised.

STREAM-ORIENTED I/O (SEE FIGURE 9)

The stream-oriented I/0 facilities cf
PL/I prcvide fcr the transmission of data
items to or from extermal storage, withocut
consideraticns of logical and physical re-
cord lengths affecting the user prcgram.
These facilities block and deklock user
data items in a manner that is transgarent
to the user, sc that they can ke read and
written by the system's data management
routines. When a record area kecomes
filled (on output) or empty (on ingput), the
user data is continued on another reccrd;
the user will never be aware of this break.

Surrort fcr record access is provided by
the data management VAM and (¢SAM rcutines,
and SYSIN and GATWR macro instructions.

The VSAM and @SAM GET and PUT racrc
instructicns used are all locate mode, to
conserve space and time; SYSIN and GATWR
macrc instructions are used when the file
is SYSIN or SYSOUT, respectively.

Current File
The current file is that one which is
teing operated upon by an I/0 staterment; it

is established when an operation begins,
and removed when the operation is ccrm-
pleted. The current file is addressed
through the pseudo-register IHECCFL, which
addresses the LCICB for the file. This
pseudo-register is available for insgpection
upcn entry tc ON blocks, and during trans-
mission. Its format is shown in Figure 10.

Issued Spetember 30, 1971 by TNL GN28-3192

Page of G¥28-2052-0,

lllllllllllllllllllllllllllllllllllllll -y 3
I A i -
| |]
| | |
]] | 0
|] oo e o e s oo o e e e ey | 0]
i { 1 0l i M
| | + oM] o
| i ™D M|l LO { 7]]
1 | N Y ™ me i] m
| i > Q| H [m O - {) 0
| { ajHD] \ m Py
o o e e e l ehvute atemdunde L e] Q1IOoM [——— e o = e e o
I # | | * | | [T T | © | | M | s =}
| | | | | 0] o] _ - 0 | | | Lo lN'Y} (o]
| | w1 _ [b e b e e e e b e - [b M £Q B o ;
R E-N “BEE-R .D_ie_ SRR R 0) ”,,
_m_sPTin_D_tPTIL > O fc_ _R_t@ﬁ lllll - g X o |
R R E-REEE |00 [V X 0w] w
| | | [~ o e e e o s o e e e e | | ¥ © | | | M 0n o =t
| | | | O L] " * | “ m | | “ W0 “ o ew_‘ m
I L, J -1 mt L_12_J L a7 . @
A 2 lua 5 © T P800 -
i k- R o | 418 :
m o mm ! m.,m. o g
| I N R B | Fal 3
H —— — — 4
i T T i PO~ N |
_ | | i TR 0 w
- | | Y §yd% : w
e e e . A ,
KR ! | r7 1 2588 ¢ o |
gl b Y) Y R PR E I Ty >
- ~ 11}
“ D _ .m p T llllllllllllllllllllllllllllllllll V“ O “ o %m M T [V] _ o —— o—— d -
Nl gea A =1 00w PO | % |]
BRE-N I 000N HAC | T + o]
|] |] | MO~ D> OHW | | | >] [o] ;
'] 1 I =T o o
—ll‘l’s‘l!‘t T e ey s s s e i — s v] _ R _ K e t |
{ A i o = M 0 |
— [—— s S T S — ——— — —— ot sttt l!..!a’ll-l'lllllllllln‘lll‘llllllll'l_ _ _ Q 0 @ |
1 | | | w0
i (o e S et s iy | [S Sp—— [
] | b
i]]
_ | YT 8
“ N —— e et] 1 ~ 0
v B9 ! 52
I r¥T7-"73 R “ = &)
“ | | | [| Q | 9] w & =
| P >4 “ | & _ N S _ O 2
R E-R By 1A O | v
_ QM o) _ 0 _ t r — [0 c— ——— — Y T— — vo— T _ gy S————— — —— -l R e i m
EREE ITHITED |
_ T A | M [I =] [e e e sy [s S o — oy
i | i=e | > - —————-
[i I a0 | ~ - e o
[T e — oz - =)]
A & |BO | -4 A
| (P9 e e e s e s - O MY Ke——- 0O Mo Q N b4 =
] | on ou O lHm o
J | & o MR ¥
e e e e s e e s e e e e
I A | (<1 ¥
_ _ _ SAPRRR S—— A VA —— b oo el o e s el a
_ | | A 3
| .._.. \Y \] 3
o e e by oy = e s b e ey o g e o g i e o e e e e oo e e e i o e e e e e s e
be 1B |+ El 1 # | 1] R =
L | | P | _ (= - | om
[] | Q| | K | - | = Q
.A.HT_ [HE] | 2 | Z e o = 1O 1 H ER 3
1 O | ~ | O I DN I _m_m [] [s e e e e 1 Ry KW - =5 |/ M 2 (<))
= O I_Pt“ | | | _ (o] N Q & 0 (2] HQ
] I .m] .m] | O | © oo o | HOU W (]
| | _]] | | “ |] [o] | CZZ2Z Q
| | L] |] - | |] <N | [=NeoNeNe]
e e e s s el e e e s e} R e e L JHR S — s el Ao it e e e s s B
| A o
v) -
— ———— —— ———— — ———— o oty i s] F

Page of GY28-2052-0, Issued Spetember 30,

0 7 8 31
¥ T 1
] 0 i A (DCLCB) |
¢ + {
| i A (Abnormal return) |
i i 3
Figure 10. Format of the Current File

Pseudo-Register

Within a stream-oriented data specifica-
tion there may exist expressions which
involve function references. In turn, the
function procedure may itself perform I/0
operations or may refer to ON blocks that
perform I/0 operations. When this situa-
tion occurs, it is necessary to stack the
current file pseudo-register. The presence
of the COPY option in a GET statement and
the raising of the TRANSMIT condition for
an item in the data stream are flagged in
the fifth byte of IHEQCFL:

TRANSMIT to be raised on item: Bit 5=1
COPY option in statement: Bit 6=1
Current file in PRV: Bit 7=0
Current file stacked in DSA: Bit 7=1

Stacking of the current file is effected
by the L/0 initialization modules; upon
entering such a module (e.g., IHEWIOA and
IHEWIOB), the contents of the pseudo-
register IHEQCFL are stored in the DSA
(dynamic storage area) of the invoking pro-
cedure, as addressed by register DR. The
stacking cell is termed the current file
pseudo-register update. Upon termination
of an I/0 operation, either normally or by
means of a GO TO statement out of an ON
block, this cell is copied back into the
pseudo-register IHEQCFL.

GET and PUT statements with the STRING
option employ the current file pseudo-
register, but no abnormal return entry
exists. Instead, the latter four bytes
address a simulated FCB.

Standard Files

Within the PL/I language, the keywords
SYSIN and SYSPRINT indicate the standard
input and output files. At execution time,
SYSIN is interpreted as the TSS SYSIN, and
SYSPRINT as the TSS SYSOUT.

The standard files, SYSIN and SYSPRINT
have default titles equivalent to their
file names. The compilation of GET and PUT
statements without explicit FILE options
causes compile-time syntax substitution of
the file names SYSIN and SYSPRINT respec-—
tively. These files have the same compiled
linkage to the library as other files.
Within the library, SYSIN is not used; the
file SYSPRINT however, is used in the error

14

1971 by TNL GN28-3192

messages, and listing of data fields for
the COPY and CHECK options require the pre-
sence of this file.

Because the library and the source pro-
gram both use the SYSPRINT file, it is
necessary that they both refer to the same
DCLCB. Both the compiled DCLCB and the
library-supplied DCLCB for SYSPRINT (within
the module IHEWPRT) are supplied with the
same name, so that only one of them will be
placed within the linked program. The name
of both CSECTs is IHESPRT; the name of the
associated file register is IHEQSPR.

If the current file is SYSIN, a SYSIN
macro is issued to obtain stream input;
this will send a colon to SYSIN, to indi-
cate to the user that input is expected.
The input data will be placed in the buffer
provided for this file.

If the current file is SYSPRINT and the
task is conversational, the data specified
by the user in his PUT statement will be
immediately written out to his terminal by
a GATWR macro instruction. This data will
be followed by a return suppression
character, so that the user's terminal will
continue typing the next record on the same
line, unless the SKIP option is specified
in the next PUT statement.

If the current file is SYSPRINT and the
task is nonconversational, the data speci-
fied by the user in his PUT statement will
be placed in the output buffer, but will
not be written out until that buffer is
full, or until the SKIP option is specified
in a PUT statement.

The SYSIN and GATWR macros required for
SYSIN and SYSPRINT I/0 are contained in
library modules IHEWIOF and IHEWIOB.

Get/Put Object Program Structure

The code compiled for stream—-oriented
I/0 GET and PUT source statements has the
general structure illustrated in Figure 11.
There are three ‘call sets' compiled for
these statements:

1. Initialization:

This call invokes one of the I1/0
initiator modules, passing:

a. The address of the file DCICB.

b. The address of the termination
call. (This is the abnormal
return which is set within the
current file pseudo-register
IHEQCFL.)

¢. The address of the LINE or SKIP
value.

Page of GY28-2052-0,

Call set 1 Initislization

call

T

|
v

Data
Specification
cally

[—p
RS ——

o i e . gy
e e e e s

T

A

|

|

i

|

|

| |

ll V.
Call|set 2 .

|

|

|

|

|

|

|

|

|

Y

|
|
]
i
Vv

Data
Specification
ca 11n
T

[e — e sy
b e e e

|
U
v

Termination

.
|

Call set 3 |
| call
L

L |

Figure 11. Object Program Structure of

GET/PUT

The initialization process includes
stacking the current file, checking
the specified file (and opening it if
not already open), and performing any
necessary option operations.

2. Data specification:

This is a series of calls to perform
list-, data-, or edit-directed stream-
oriented I/0 operations. This series
is omitted only for GET/PUT statements
which have no data specification.
Details of the implementation of the
three forms of data specification
appear in 'Data Specificatiomns’',
below.

3. Termination:

This call invokes the terminal subrou-
tine of the module which performed the
initialization. At this point the
current file is unstacked and (for PUT
calls) V-format output records have
their record-length field updated.

Data Specifications

There are three forms of data
specification:

Section I:

Issued Spetember 30, 1971 by TNL GN28-3192

Data-directed
List~directed

Edit-directed

Compilation of any data specification
yields a series of one or more calls to the
library for transmission of data between
program storage and a record buffer. For
list- and data-directed 1/0, the data items
transmitted are passed by means of the
standard linkage described above. (See
*Linkage Conventions' earlier in this sec-
tion.) The PL/I standard (using registers)
is employed wherever possible; where it is
not, the system standard (using a parameter
list) is employed. For edit-directed 1/0,
the 'executable format scheme' described
below is required.

The ON CHECK facilities for data items
being input are supported by compiled code
between data-list item specifications, in
the instances of list- and edit-directed
I/0; data—-directed 1I/0 determines the exis-
tence of this condition from the symbol
table entry for a given data item.

Executable Format Scheme

The executakle format scheme exists to
support two requirements for edit-directed
data items:

1. The matching at object time of data-
list items with format-list items.

2. The evaluation of expressions during
an I/0 operation.

The scheme exists in compiled code for use
by the library format directors and conver-
sion package. (See 'I/O Editing and Data
Conversion' later in this section.)

The scheme is required because edit-
directed data specifications contain format
lists composed of format items that may
have expressions for replication factors
and format subfields. These expressions
may have to be evaluated with values read
in during a GET operation. Finally, the
use of dynamic replication factors and the
possible existence of array data-list items
of variable bounds prevent any pre-
determinable matching of data-list items
and format-list items.

Basically, the scheme calls for the
existence of two location counters, one for
a compiled series of data-list item
requests, the other for a compiled series
of format-list item specifications. These
two series are compiled as the secondary
calling set for a GET or a PUT operation.

General Implementation Features 15

Page of G¥Y28-2052-0, Issued Spetember 30,

To support the dynamic matching of a
format-list item with any data-list item, a
group of format directors exists within the
library; one of these directors receives
the call from the secondary compiled series
of format item specifications. A director
will determine which conversions are
required to satisfy the transmission of a
data item according to its internal repre-
sentation (described by its DED) and its
specified external representation
(described by a FED).

The structure of edit-directed compiled
code is illustrated in Figure 12. The
first column, ‘Primary code', consists of
calls to units in the second column, 'Sec-
ondary code'; that is, data-list items are
requesting a match with a format-list item.
The third column shows the flow within the
library as set up by format directors.

The scheme works as follows:

1. The address of the start of the
format-1list code (executable format)

is obtained.

Primary Code Secondary Code

Initialization
|

|
Vv
r 1 r 1

| Request p————————e >
|data item 1 | | format |
| transmission|
i 4

1971 by

Specify fp-———m—m—— >

TNL GN28-3192

Transmission of the first data item is
requested; its storage address and DED
address are loaded into registers RA
and RB.

Control is transferred to the execut-
akle format; at the same time the
location counter of the data-list code
is updated.

The executable format loads, into reg-
ister RC, the address of an FED.

A call is made to a format director
and at the same time the location
counter of the format-list code is
updated.

The format director causes the conver-
sion package to convert the data
according to DED and FED information,
storing the converted data in the spe-
cified storage address, if input, or
placing it in a buffer, if output.

Format Directors

Format |
| director
A !

1]
{
1 (3) %

L }
(V)|
] Conversion

o o

r 1

| Request |
|data item 2 }—-——-
!

transmission]
d

r]
| Specify |
format
| 2 |
L]

———

package

o ———
R——

| Format |
director
i B |
L y |

(2)

A
|
|
]

b e s e o

r

|

i

A
T))
{ Request |
jdata item 3 }p-————4

|transmission|
L i |

————q)———m—mu—T—n-——————r——-—-‘
[
|
!
X

I
|
|
|
+
|
|
|
l
]
|
|
|
|
4

= e

v
Termination

Figure 12. Executable Format Scheme

16

Page of GY28-2052-0,

7. Return is then made to the data-list
code, by means of the data-list loca-
tion counter, LR.

8. The above steps, 2 through 7, are
repeated until the end of the data-
list code is reached.

Within both primary and secondary code,
looping and invocation of function proce-
dures may occur. Within secondary code,
the appearance of control fcrmat items
(PAGE, SKIP, LINE, COLUMN, X) will cause
the location counter for primary code, reg-
ister LR, to be temporarily altered, so
that control is returned from the library,
not to the primary code, but to the secon-
dary code. This allows the data-list item
which activated the control format item to
be matched with a data format item.

Options

COPY
this option causes each data field
accessed during a GET operation to be
listed on the standard output file,
SYSOQUT. This is performed by calling
the module IHEWPRT. Each data field
occupies the initial portion of a line

STRING
this option causes a character string
toc be used instead of a record from a
file. This situation is made trans-
parent to the normal operation of the
I/0 modules since the initialization
module for GET/PUT STRING (IHEWIOC)
constructs a temporary FCRB for the
string. Information regarding the
address and length of the string is
set in the FCB fields 7TCBA, TREM and
TMAX. A temporary file register is
created in the second word of the
pseudo-register IHEQCFL. (A dummy
DCLCB is placed in front of the
generated FCB and consists of two
bytes which indicate the offset of the
dumny file register.)

PAGE, SKIP, LINE (print files)
these options cause the current record
{which is equivalent to a 'line') to
be put out, and a new record area to
be obtained. SKIP can also be used
with input to cause the rest of a re-
cord in the input stream to be
ignored. Record handling for these
functions is performed by the module
IHEWIOP. All printing options (and
format items) are supported by use of
the American National Standard FORTRAN
control characters:

1 Page eject
+ Suppress space befors printing
b Single space before printing

Section I1:

Issued Spetember 30, 1971 by TNL GN28-3192

0 Double space before printing
- Triple space before printing

For conversational tasks, PAGE will be
treated as a triple space; a SKIP of
more than 3 in an output file will be
treated as a triple space; and a LINE
request which implies more than 3
spaces will be treated as a triple
space.

SKIP (non-print files)

1. Input files: The SKIP {(n) option
causes the rest of the current
line (record) to be ignored in the
input stream, and a further
(n - 1) lines to be ignored.

If the task is conversational, and
SYSIN is the input file, then the
SKIP option is ignored.

2. Output files: The SKIP (n) option
causes the remainder of the cur-
rent line (record) to be ignored
and (n - 1) blank lines to be
inserted into the output stream
{(for conversational tasks, a maxi-
mum of 3 lines will be inserted).
Note that, for format-F records,
each line is padded with blanks;
for format-V and -U records, only
the necessary control bytes and
record lengths are supplied.

RECORD-ORIENTED I/O

Object Program Structure

In record-oriented I/0, the data enti-
ties accessible to the source program are
data management logical records (unlike
stream—-oriented 1/0, where the data enti-
ties are data fields, independent of record
boundaries).

A wider range of record access is there-
fore available with record-oriented I/O:
records may be keyed or not, may be direct-
ly or sequentially accessed, and may Le
manipulated within the data set by inser-
tion, replacement, or deletion. The spe-
cific facilities available vary according
to the data management access method em—
rloyed to support a given data set.

The data management facilities employed
are indicated in Figure 13, according to
the organization of the data set. Note
that not only the declared organization but
also the mode of access and the format of
records determine the chosen access method.
Details of the manner in which the access
methods are employed are provided in
*Access Method Interfaces'.

General Implementation Features 17

Page of GY28-2052-0, Issued Spetembei 30, 1971 by TNL GN28-3192

————>{ QSAM/VSAM
L

r T L] T T T 1
| | | |] RECORD | ACCESS |
| ORGANIZATION | ACCESS | MODE | BUFFERING | FORMAT | METHOD |
i i i 1 4 i 4
¥ 1 T L] T T 1
i | | INPUT | BUFFERED { ALL | QSAM/VSAM |
] | | | | | l
| CONSECUTIVE | SEQUENTIAL | OUTPUT } 4+ + 4
| | i | [| |
| | | UPDATE | UNBUFFERED | F, U,V | BSAM |
b + t + + t 1
| : | INPUT | s | |
i | | | BUFFERED { | |
i | SEQUENTIAL | OUTPUT | or | F, V. | VISAM |
| |] | UNBUFFERED |] (GET/PUT) |
| | | UPDATE | | | 1
| INDEXED b + t { + {
| | | INPOT | | | |
] | DIRECT | | UNBUFFERED | F, V [VISAM |
i | | UPDATE | { | (READ/WRITE) |
L 1 i L i L J
Figure 13. Data Management Access Methods for Record-Oriented I/O
r A 1
| Compiled |
| Code 3 1
L T 4]
| |
b |
r 1 r Y 1
i ION | | oswW |
F . 1 b - 1
| Compiler | | Wait |
| Interface | | |
L J L 4
T T
| |
I<- 4
]
p]
) 1
| r 1] r 1
| | ITN | | | ITD |
| b { | e
p b4 1 o e —y | VISAM |[K———mmm—t > VISAM |
i OCL | | CLT | | GET/PUT | | | GET/PUT |
b 4 b 4 | (format-v) | | | (format-F) |
| b > | L 1 | L 4
| OPEN/CLOSE | | CLOSE i |
L ¥} L 4 '
T T 1 [} 1
[| ™| | | ITE |
| b 1 | ¢ 1
i | VISAM | | | visaMm i
1 | READ/WRITE |< 4 >] READ/WRITE |
r 4 1 | (format-v) |] | (format-F) |
I OPN I L J I L d
L 1] i
I 1
[OPEN | |
| Phase I | | r 1
t T 4] | ITB]
| i § 1
i - >} |
f et L] r 1 T - 1 I ! BSAM I
| opo [I oPp a | OPQ I | L 3
i 3 i d L 4 i
T 1 [3 A r 1
| OPEN p——— >) OPEN b————-- > OPEN | |
{ Phase II | | Phase III | | Phase IV | | r 1
b £l L 1 L 4 l | ITG i
| t i
t i
3

Figure 14. Linkage of Access Modules in Record-Oriented 1I/0

18

General Logic and Fliow

The cverall flow of record-criented 1I/0
modules is illustrated in Ficure 14.
Module IHEWION is a general interface
module which is invoked ky a compiled call
for any record-oriented I/C statement.
This module interprets the requested I/0
operation, verifies its applicability to
the specified file (and, pcssiktly, impli-
cilty opens it), and then invokes an access
method interface module (characterized by
the module names IHEWIT*) to have the
cperation performed.

The verification of a statement is per-
formed by IHEWION by ANDing together a mask
at offset -8 from the FCB and the second
word of the Request Control Block. If the
result is zero then the statement is inval-
id. The mask in the FCB is set up by IHE-
WOPQ to indicate which statements are
valid, and the RCB contains the statement
type as a single bit in its second word.

On receiving control, the interface
module first rerforms any necessary key
analysis and record-variable length check-
ing, and estaklishes any control blocks
required. It then invokes data management
for the transmission cf a record. After
transmission, or (if the EVENT option is
emplcyed and BSAM is the access method)
after initiation of transmis:sion, control
returns to the general interface module
IHEWION, and thence to the comgpiled pro-
gram. Errors may be detected within IHEW-
ION before an interface module is invoked,
or within an interface mcdule either before
or after data management has been invoked.
The relevant ON condition is raised when
detected.

As indicated by the overall fiow dia-
gram, record-oriented I/0 is implemented in
such a fashion that the addition of further
access method interface modules requires
minimal changes (if any) within other parts
of the irplementation. The general inter-
face module IHEWION prcvides each access
method interface module with a standard pa-
rameter set:

RA: A (Compiled parameter list)
Parameter list:

A (DCLCR)

A (Reccrd dogpe vector/IGNORE/SDV)

A (Event variakle) /0/A (Error
return)

A (KEY|KEYFROM|REYTO SDV} /0

A (Regquest control klock)

Section 1I:

The record dope vector and the reguest
control klock are descriked kelow under
*Reccrd-Oriented 1I/0 Contrcl Blocks®'.

The interface mcdules are also invoked
to handle WAIT statements associated with
170 events. The WAIT module, having deter-
mined that an event variable (see Section
IV) is associated with a record-oriented
I1/0 operation, invckes the relevant I/O
transmitter (IHEWIT*), passing the follow-
ing parameters:

RR: A {(Compiled parameter list)
Parameter list:

A (DCICB)

A (ICCR being waited for)

A {(Event variable)

(Reserved)

A (Request control block)

The transmitter then completes the pre-
vicusly initialized record transmission, if
the access method was BSAM, and gerforns
any checking required kefore returning con-
trol to the WAIT module.

From the arguments, the interface nodule
is akle to determine fully the operation
requested of it. The location of the
required interface module is availakle to
IHEWION from the FCB associated with the
file; the field TACM in the FCB is set dur-
ing the open process to point to the agrro-
rriate wodule.

Thus, when extra interface modules are
provided, the only change required in the
cpen mocdules is the provision of code to
set TACM and any other FCB fields relevant
to the new access method interface.

Record-Oriented 1I/0 Control Blocks

Record Dcpe Vector (RDV): The record dogpe
vectcr is an eight-kyte klock that
describes the record variable. Its format
derends cn the type of statement and the
associated options:

Bytes ¢-3: A (INTO/FROM area), cr

A (POINTER variakle) for SET
option in READ statement,
or

A (kuffer) for LOCAIE
statement

Byte 4: Reserved

Bytes 5-7: Length of variakle

General Implementation Features 19

String Dope Vector (SCV): 7The address of
the string dope vector is passed instead of
that of the record dope vector to record
I/70 interface modules when the input or
cutput of varying strings is requested.

The string dope vector is an eight-byte
klock:

Bytes 0-3: A (INTO/FRCNM string)

Bytes #4-5: Maximum length of string

Bytes 6-7: Current length cf string
(cutput), undefined (input)

Request Contrcl Blcck: This eight-byte
clock contains the request codes, in the
first four bytes, for varicus RECORD I/0
operations and options. The format is
defined in thne BREQ field of the I/0 con-
trol block (IOCB). (See Section IV.}

The additional four bytes which are ccn-
tained in the compiler argument list are
not copied into the IOCB. Each type of
record-oriented I/0 statement is repre—
sented by one bit as follows:

Bit number Statement + options

4] REAL SET
1 READ SET KEYTO
2 REAL SET KEY
3 READ INTO
4 READ INTO KEYTO
5 READ INTC KEY
6 READ INTO KEY NOLOCK
7 READ IGNCRE
8 READ INTO EVENT
9 READ INTO KEYTC EVENT
10 REAL INTC KEY EVENT
11 READ INTO KEY NOLOCK EVENT
12 READ IGNCRE EVENT
13 WRITE FROM
14 WRITE FRCM KEYFRCM
15 WRITE FROM EVENT
16 WRITE FROM KEYFRCM EVENT
17 REWRITE
18 REWRITE FRCNM
19 REWRITE FROM KEY
20 REWRITE FRCM EVENT
21 REWRITE FROM KEY EVENT
22 LOCATE SET
23 LOCATE SET KEYFROM
24 DELETE
25 LELETE KEY
26 DELETE EVENT
27 LCELETE KEY EVENT
28 UNLOCK KEY
29-31 Reserved

I1/C control Block (IOCRB): Record-oriented
1/0 employs several data management access
methods that require that operation
requests be provided with a special form of
paranmeter list. This parameter 1list is
termed the data event control klock (DECB).
A DECB must be provided for each operation,
but may be reused when the operation is

20

ccrpleted. If several operations are cut-
standing (cwing to the use of the EVENT
cpticn in I/0 statements), then one DECB is
reguired for each operation.

In ordexr to meet these requirements, the
FL/I oren prccess allocates one or more 1/0
control blocks (IOCB), which are sukse-
quently wanipulated or increased in number
as follows:

DIRECT access (VISAM):
The IOCRBs are created by IHEWITE. Only
one ICCB is created at open tire; any
cthers required are created when needed.

SEQUENTIAL access (BSAM only):
All the required IOCBs are obtained at
open time; an attempt to use mwore than
those already in existence raises the
ERROR condition.

The IOCB tformat for koth these usages is
described in Section IV.

A numker of IOCB fields exist in order
to suppcrt the EVENT ortion. Since the
cperaticn is split into two parts --
initiation through the READ, WRITE, etc.,
statements, and completion Ly the WAIT
statement -- information regarding a parti-
cular operation must be retained fcr use at
the time of completion. For example, if a
hidden buffer is employed for a REAL, the
address cf the user's record variakle must
ke retained for subsequent movement from
the kuffer tc the specified area.

I0CB -- SEQUENTIAL Usage: Manipulation of

IOCBs for SEQUENTIAL usage is required cnly
fcr BSAM, which is employed for CONSECUTIVE
UNBUFFERED files.

A nunber of IOCBs is allocated during the
cpen process ky means of the GETPOCL macro;
subsequent selection of a particular IOCB
is made by a routine similar to that prc-
vided Ly the GETBUF macro. Whenever an
IOCB 1is selected, it is entered intc the
chain cf IOCBs currently in use; the TIAB
field in the FCB points to the last IOCR to
ke used.

The chain of IOCBs is required kecause
all I/0 operations must be checked in the
crder in which they were issued. This
chain is principally required for the EVENT
cpticn, which can cause more than one I/0
operation to be outstanding at a given
time.

The numker cf IOCBs (kuffers) allocated
is determined by the DDEF subparameter NCP.
The value of this subparameter should nct
ke greater than 1 unless the EVENT option
is employed; if NCP is unsgpecified a
default of 1 is used. If NCP = 1, there is
then one IOCB and one channel progran.

Page of GY28-2052-0,

The size of each IOCB varies, depending
upon the organization and the record format
of the data set. Section IV specifies the
size requirements.

IOCB -- DIRECT Usage: Manipulation of
I0CBs for DIRECT usage is required for
VISAM. One IOCB is allocated to a DIRECT
file when it is opened; subsequent selec-
tion of an IOCB is performed by IHEWITE.
Unlike SEQUENTIAL access, the order of I1I/0
operation is not normally considered.

The chain of IOCBs for a given file is
anchored in the TLAB field in the FCB. The
chain is released when the file is closed.

ACCESS METHOD INTERFACES

This section describes how the PL/I
Library relates to the various data manage-
ment access methods for record-oriented
1/0, and gives details of the support
required from the library for various PL/I
features. This information supplements,
but does not replace, that provided in the
module summaries and in the module listing
prefaces.

CONSECUTIVE Data Sets

The access methods employed for this
organization are:

1. QSAM or VSAM
2. BSAM

The choice between them is governed by the
file attributes BUFFERED and UNBUFFERED:

BUFFERED:
UNBUFFERED:

QSAM or VSAM
BSAM (F,V,U) (No automatic
blocking or deblocking)

The choice between VSAM and QSAM for BUF-
FERED files is determined by the data set
organization, as specified in the DDEF.

QSAM/VSAM (IHEWITG): A BUFFERED file is
specified in order to take advantage of
automatic transmission, process-time over-
lap, and blocking or deblocking of records.
All record formats may be handled.

The locate mode of the GET and PUT
macros is employed with this access method
for the fcllowing purposes:

1. To support the SET option in READ and
LOCATE statements, and to support the
REWRITE statement without the FROM
option. Module IHEWITG allocates the
data management buffers for the rec-
ords, and sets the pointer appropri-
ately. The first byte of a buffer is
always on a doubleword boundary; for

Section I:

Issued Spetember 30, 1971 by TNL GN28-3192

blocked records, the user must ensure
that his alignment requirements are
met by adjusting the lengths cf the
variables being transmitted.

2. To remove or add V-format control
bytes if the INTO or FROM option is
employed.

Closing a data set being created by QSAM
may cause output records to be written by
the close executor. If an error occurs
during the closing process, the system uses
the ABEND macro to end the PL/I program.

BSAM (IHEWITB): An UNBUFFERED file is spe-
cified in order to avoid the space and time
overheads of intermediate buffers when
transmitting records. Overlap of transmis-
sion and processing time is only available
if the EVENT option is employed.

BSAM requires the use of DECBs to com-—
municate information regarding each I/0
operation requested of it; see 'I/0 Control
Block (IOCB)' and System Control Blocks PLM
for details of the DECB. IHEWITB selects
an IOCB (which contains a DECB area) from
the IOCB {(buffer) pool for each input/
output operation. The IOCBs used for CON-
SECUTIVE organization do not contain hidden
buffers, except when V-format records are
employed. Hidden buffers are used in this
case so that the V-format contrcl bytes can
be eliminated from the record before the
data is moved into the record variable.
1f, however, the data set consists of F-
format unblocked records, and the size of a
record variable is less than the fixed size
of data set records, a temporary buffer
area is dynamically obtained. The use of a
temporary buffer area for input prevents
the destruction of data following the INTO
area; for output, it prevents triggering of
the fetch-protect interrupt.

INDEXED Data Sets

The access method employed for this
crganization is VISAM.

All usage of INDEXED data sets requires the
presence of buffers, even though the file
is UNBUFFERED or DIRECT.

VISAM SEQUENTIAL Access (IHEWITD and IHE-
WITN): SEQUENTIAL creation and access of
INDEXED data sets is performed by IHEWITD
for format-F records, and by IHEWITN for
format-V records. Creation requires that
keys be presented in ascending collating
sequence. The sequence is checked by the
library before the PUT macro is executed,
in order to synchronize a given WRITE
statement with the raising of the duplicate
KEY condition. This arrangement is neces-
sary because, since PUT ILOCATE is employed,

General Implementation Features 21

Page of GY28-2052-0,

VISAM would normally raise the condition
only on the subsequent PUT operation.

For records with embedded keys, when a
WRITE statement with a KEYFROM string
shorter than the key length, or a LOCATE
statement, is executed, the KEYFROM string
is placed in an area addressed by TPKA in
the FCB. In the next operation on the file
after a LOCATE statement (including a CLOSE
statement), the KEYFROM string is compared
with the key embedded in the data in the
buffer. If they are unequal, the KEY con-
dition is raised. On normal return from
the on—-unit, control passes to the next
statement in the program (that is, the one
following that which caused the KEY condi-
tion to be raised). The process of compar-
ing keys and raising the KEY condition is
repeated in successive statements that re-
fer to the file until the embedded key has
been changed. (After a LOCATE statement
has been executed, no further operations
are possible on the file until the record
has been transmitted; for records with
embedded keys, this cannot occur until the
KEYFROM string matches the embedded key.)

When a file is closed implicitly (that
is, on termination of a PL/I program), the
KEYFROM string overwrites the key part of
the record in the buffer, and the record is
written onto the data set. If the KEYFROM
string is not identical with the embedded
key, a message is printed on the task's
SYSOUT.

To support the REWRITE statement without
the FROM option, the key is saved on execu-
tion of a READ statement with the SET
option. When the REWRITE statement is
executed, if the embedded key is the same
as the saved key, a WRITE (type KS} macro
instruction is issued. If the key has
changed, the WRITE macro is not issued and
the KEY (specification) condition is
raised.

To support the DELETE statement without
the KEY option, the DELREC macro instruc-
tion is used.

If the file has the KEYED attribute, and
the mode is INPUT or UPDATE, the VISAM SETL
function is required in order to reposition
the indexes. The parameters for the SETL
macro are such that, for unblocked records,
the recorded key is transmitted as well as
the data record. For a READ statement, if
the KEY string is shorter than the key
length, the string is placed in an area
addressed by TPKA in the FCB. If the file

22

Issued Spetember 30, 1971 by TNL GN28-3192

is not KEYED (indicating that the KEY
option will not be employed), the VISAM
SETL routine is not locaded dquring the open
process.

Since buffers are employed, truncation
or padding of records is performed during
the move between the buffer and the record
variable. Padding bytes are undefined in
value.

Closing a data set being created or
updated by VISAM may cause output records
to be written. If an error occurs, output
entry to the SYNAD routine is prevented by
the close process having cleared the DCB-
SYNAD field before issuing the CLOSE macro.
The system uses the ABEND macro to termi-
nate the PL/I program.

VISAM DIRECT Access (IHEWITE and IHEWITM):
Direct access of INDEXED files is performed
by module IHEWITE for format-F records, and
by IHEWITM for format-V records.

VISAM requires the use of DECBs to com-
municate information regarding each I/0O
operation requested of it; see *I/O Control
Block (IOCB)', earlier in this section, for
details of the DECB and its use in VISAM.

Since a VISAM may destroy the contents
of the key and record fields when adding
new records to the data set, the key value
is moved into the buffer before VISAM is
invoked. Truncation or padding of the
character-string key to conform to the KEY-
LEN specification is performed during the
move.

A DELETE statement is implemented by the
DELREC macro instruction.

THE WAIT STATEMENT

Under TSS/360, the WAIT statement is
supported for awaiting the completion of
170 events. When the WAIT statement is
executed, compiled code calls the library
module IHEWOSW, passing the addresses of
the event variables associated with the
statement. If the required number of
events have been completed, return is made
to the user; if not, CHECK macros are
issued to await the completion of the
necessary I/0 operations.

Since QSAM, VSAM, and VISAM 1/0 opera-
tions are checked in line (i.e., as they
are issued), and are therefore complete

before the user receives contrcl after hav-
ing issued them, a WAIT statement issued
for an I/0 operation performed ky any of
these access methods will always find the
event completed; only in the case cf a BSAM
operation may the WAIT statement find the
event incomplete, and therefore be required
to await ccmgpletion.

PL/I OBJECT PROGRANM MANAGEMENT

INTRODUCTION

The PL/I Library provides facilities for
the dynamic management cf FL/I programs.
This involves:

1. Program management: Housekeeping at
the beginning and end of a program or
at entry to and exit from a fklock.

2. Storage management: Allcocation and
freeing of storage for automatic and
contrclled variakles, and for list
processing.

This section describes the requirements
for these facilities and their inplementa-
tion by the likrary. With the exceptions
of the compiler optimization routine and
storage management for list processing, all
the functions described are performed by
mcdule IHEWSAP, whose entry points are
listed in Figure 15; full details are given
in Section IXI.

Program Initialization

Certain functions must ke carried out on
entry to a PL/I program before the PL/I
main procedure is given control. One of
the library program-initializetion subrou-
tines is always given control cn entry to
the program. 1Its functions are:

Entry point Function
IHESADA Get LSA
IHESADB Get VDA
IHESALD Get controlled variable
IHESADE Get IWS
IHESADF Get library VLA
IHESAFA END
IHESAFE RETURN
IHESAFC GO TO
IHESAFLC Free VLCA/Free LWS
IHESAFF Free controlled variakle
IHESAFQ Abnormal rrogram termination
IHESAPA
IHESAPE Program initialization
IHESAPC
IHESAPD
IHESARA Environment modification
IHESARC Setting cf return code

Figure 15. IHEWSAP Entry Foints

Section I:

1. Allocation of storage for the PRV.
(See 'Comwunications Conventicns' in
this section.)

2. Initial allocation of LWS.

3. Passing the address of the likrary
error-handling subroutine (IHEWERR),
which assumes control when a program
interruption occurs, tc the syster.

Blcck Housekeeging: Proloques and

Erilcgues

Prologues and epilogues are the rcutines
executed on entry to and exit from a PL/I
procedure or begin block. The library suk-
rcutines contain those sections that are
common to all prologues and epilogues. The
functions ¢f the litkrary prologue sukrcu-
tine are:

1. To preserve the environment cf the
invcking klock.

2. To obtain and initialize automatic
stcocrage fcr the block.

3. Tc provide chaining mechanisms to
enakle the progress of the prcgran tc
be traced. A detailed description of
the chaining mechanisrs erployed is
rrovided kelow.

The wain functions of the erilcogue suk-
routine are:
1. To release storage for the blcck.
2. To recover the environment of the

invcking klock before returning con-
trol to it.

Stcrage Management

In TSS/360, virtual storage is cktained
cr freed by using the GETMAIN and FREEMAIN
racrcs. The library assumes responsibility
for obtaining and freeing storage in this
way in crder to provide an interface
Fetween compiled code and the ccntrcl
Erogram.

There are three types of dynamic storage
in PL/1: controlled, automatic, and based.
Eased stcrage is discussed in 'List Proces-
sing: Storage Management'.

Time Sharing System Facilities

The fclliowing facilities are provided by
T55/360. (See IBM System/360 Time Sharing
System: Assewmbler User Macro
Instructions.)

General Implementation Features 23

SPEC macro instructicn: States the address
of an interrupt handling routine with entry
goint IHEERRA, and indicates that it is to
handle program interrupt types 1 to 13, and
15.

SIR macro_instruction: Directs control of
program interrupt handling to a routine
specified in a SPEC macro instruction.

CIR macro instruction: Celetes control
references to the routine previously
defined to the system ky the SIR macro
instruction.

GATWR macro instruction: Used to send cer-
tain error messages to the user's SYSOUT.

GETMAIN macro_instruction: Reguests the
allocation of a contiguous block of virtual
storage to the user's task.

FREEMAIN macro instruction: Releases a
specified virtual storage area from a
user's task.

AUTOMATIC STORAGE: STCRAGE MANAGEMENT

Two tyres cf automatic storage area are
needed toc implement the functions described
abcve. These are:

1. The storage area associated with the
execution of a PL/I block, known as a
dynamic storage area (DSA).

2. The storage area mainly used for auto-
matic variables whose extents are
unknown at compile tine, kncwn as a
variable data axea (VL&).

Each type of storage area is identified by
flags set in the first byte. These flags
also indicate the existence of certain
cpticnal entries in the storage area. The
flag patterns are shown in Secticon IV.

Dynarmic Stcrage Area (DS2)

This area, always associated with the
execution of a PL/I klcck, is used to re-
cord the progress and environment of a pro-
gram. It also contains space for AUTOMATIC
variables declared in the klock and for
various optional entries. The minimum size
cf a DSA is 100 bytes. The format is
described in Section IV.

The address of the DSA associated with a
particular block is held in a pseudo-
register. Hence there is a pseudo-register
for each block; the grcur cf these pseudo-
registers is known as the display. The
address contained in a display pseudo-
register can be used to identify the DSA
associated with a non-recursive block when

24

a GC TO statement specifying a lakel in
that block is executed.

When a block is entered recursively, a
new [S2 is created for the invoked klock.
The address of the DSA associated with the
previous invccation of that klock is stored
in the display field of the new DSA. This
address is already stored in the arprropri-
ate pseudo-register, where it is now
replaced by the address cf the new L[SA.
When this latest invocation is finished,
the new LSA is freed and the address of the
previous DSA is restored to the apprcrriate
rseudo-register.

When there is a GC TO statement tc a
lakel in a recursive block or to a label
variable, a unique means of identifying the
klcck containing the lakel is needed. This
is accorplished by means of an invocation
count, which is stored in the invccatiocon-
count field in the DSA during the prologue.
The current invccation count is contained
in a pseudo-register and is increased by
cne each time a LCSA is obtained.

Variable bata Area (VDA)

A variakle data area is a special type
of automatic storage area used for
variables whcse extents are not kncwn at
compile time. This storage area is asso-
ciated with the storage obtained fcr a par-
ticular klock. The only housekeeping
necessary is that which provides a reans of
identificaticn of the type of storage area
and a method of associating it with a rpar-
ticular klock fcr epilogue purposes.

VDAs are used for three other purgcses:

1. Temporary storage fer library mcdules.
These areas are only distinguishakle
from an ordinary VD2 by the flag Lyte.
This is tc allow them to ke freed on a
GO TO, as described in the exanple in
'CSA Chain' under 'Block
Housekeeping'.

2. The PRV and primary LWS are contained
in a VDA, known as the PRV VLA, which
is chained kack to the external save
area.

3. Secondary LWS is contained in a sge-
cial likrary workspace VDA.

The fcrmats of the VDA, PRV VDA, and LWS
VDA are shown in Section IV.

Likrary Workspace (LWS)

The hcusekeeping associated with likrary
workspace can ke divided into two parts:

Page of GY28~2052-Q,

1. The identification of the area needed
as library workspace, and chaining
this to a previous allocation of auto-
matic storage and to any previous
library workspace.

2. The updating of the pseudo-registers
pointing at the various areas in
library workspace.

The first allocation of LWS is contained
in the PRV VDA; subsequent allocations are
contained in the LWS VDA. The pseudo-
register IHEQLSA always contains the
address of the current IWS. Save areas
within LWS are indicated thus:

1. The address of each save area is held
in a pseudo-register.

2. The beginning of each save area is
indicated by X'60' in the first byte.
(A DSA can often be readily distin-
guished from a save area in LWS by the
presence of X*8' to X'F"'" in its first
half byte. Section IV includes the
format of the first byte of the DSA.)

Allocation and Freeing of Automatic Storage

This section describes the methods of
controliing the allocation and freeing of
automatic storage for VDAs, DSAs and secon-
dary LWS.

To minimize the number of system
requests (i.e., GETMAINs) necessary to
obtain automatic storage, a page of storage
is obtained every time a GETMAIN is issued.
Areas are allocated by the library from
this page (or block) as required until a
request is made that is too big to be sat-
isfied from the remaining storage in the
block, then another page is obtained. So
that a check can be made as to whether the
amount of storage remaining in a block is
sufficient to meet an allocation, a record
of the amount is stored in the block. When
a storage area is freed, its length is
added to the available length in the block.
When the available length equals the total
length of the klock, the block is returned
to the supervisor.

Since storage areas are released in the
reverse order to their allocation, a chain-
back mechanism, with a pointer to the last
member of the chain, is provided.

Initially, sixteen pages of storage are
allocated for the PRV VDA. When further
requests are made for storage, they are
satisfied by allocations from the remaining
storage of this block. When a request can-
not be satisfied, another sixteen pages are
obtained by means of a GETMAIN macro.

These blocks are chained to the existing
blocks by the free-storage chain. (See
Figure 16.)

Section I:

First block:

Issued September 15, 1970 by TNL GN28-3162

In any klock that contains unallocated
storage (that is, contains free storage),
the first four words of the unallccated
storage are used for control purposes:

1st word: ILength (in bytes) of the
unallocated storage for that klock
(excluding the four ccntrol words)
2nd word: EBElock length

3rd word: A (Free storage length in
previous block)

4th word: A (Free stcrage length of
following block)

The first and last blocks require a
slightly different usage:

Uses the free-storage pseudo-
register IHEQSFC in the chaining forward
and kack:

1. IHECSFC contains A (Free-storage
length of first block).

2. 3rd word of block ccntains (A (IHEQSFC)
- 12), which is a dummy free-storage
length in the PRV.

Last block: 4th word contains 0

When a request for storage is received,
a search of the free-storage lengths,
starting from the first, is made. 1If a
free-storage length equal to or greater
than the length requested is found, the
request is satisfied from that block. The
free-storage length and pointers are
adjusted, as are the appropriate pointers
in the blocks on either side.

When storage is freed, the pointers are
adjusted, and the free-storage field in the
corresponding block is updated. If the
rage becomes available, it is freed ty
issuing a FREEMAIN macro, and the free-
storage chain pointers are adjusted
accordingly.

CONTRCILED STORAGE: STCRAGE MANAGEMENT
Controlled storage i< used for con-
trolled variables only; it is requested Ly
the ALLOCATE statement and freed by the

FREE statement.

Allocation of a particular controlled
variable may occur a number of times.
Since the latest allocation is always the
cne to ke used it is convenient to have a
pseudo-register pointing at it; this
rseudo-register is sometimes referred to as
an 'anchor word'. Each allccation is
chained kack to the previous allocation so
that the pseudo-register can be updated

General Implementation Features 25

Page of GY28-2052-0, Issued September 15,

1970 by TNL GN28-3162

Page 1 Page 2 Page 3
e 1 [T e 1 [T T T e T e 1
. L |
| i | Used Storage | | Used Storage |
| I | | I |
e - {1 | | | |
| | | | I I |
prmmm e 10 | I I
| | | | | I [
prmmmmm oo | I |
| | | | I | |
pmm e N I | |
| IHEQSFC e | | | | |
b EE i R t€-- | |
| | | | L (Free stcrage) | I |
| I B e — 1 [|
i } | | Block length | I |
I T B T ——— 1 | I
| | L—-p{ Chain-back pcinter | I |
I ! I 1 | |
| { | Chain-forward peinter {——— | | |
! I T L e I — 1
| i { | | | L (Free storage) |
| | | | [.
{ | | Free storage | [Blcck length |

I | B R 1
I | I | L~—§ Chain-kack pointer]
| I | | pommm oo 1
| | I | | Zero |
| | | I b= e 1
[! i | | |
i	}	Free storage	
	i	[
		[
[|] | I |
e 1 L e 4 L 4
Figure 16. Structure of tne Free-Storage Chain fcr Automatic Variables

when the current allocation is freed
(Figure 17). The length of each allocation
is recorded in the fullword field following
the chain-kback address. The length of tne
data is 12 bytes less than the length of
the allocation. The Task Invocation Count
is held in the TIC field.

When there is no allocation, the con-
tents cf the pseudo-register are zero.
kach allocation points to the previous

ALLOCATION 2

ailoccaticn, the pointer keing zero in the
first allocation, which is at the kcttcm of
the stack. Thus the various allocations of
a particular controlled variable beccre
rart of a push-down (ALLOCATE) pop-up
(FREE) 1list.

When a request is made to storage man-
agemwent for a new allocation, it is ser-
viced by issuing a GETMAIN macro. Twelve
kytes are added to the length requested,

ALLOCATION 1

1 e i r———-— T ==
| PR b1 | TIC PR offset | | TIC | PR cffset |
prmmmmm oo m e 1 1 bemmmmmm- I 1 e e 1
| | | | Chain-kack address F——-1 | 0 |
I T B S ——— T B 1
[[| Length I | Length I
| L | e 1
| | | | | I
| | |] | I
| | | ! [|
b 3 b e 1 e i

Figure 17.

26

Stcrage Allocaticn for a Controlied Variable

Page of GY28-2052-0,

for control purposes, and this new length
is rounded up to a page. The length

field contains the actual Length requested.
The pseudo-register is updated and points
to word four cof the area. When a request
is made to storage management to free an
allocation, it is serviced by updating the
pseudo~register and issuing a FREEMAIN
macro.

LIST PROCESSING: STORAGE MANAGEMENT

This section describes the functions of
module IHEWLSP, which controls the alloca-
tion and freeing cof storage for the PL/I
list-processing facility. The functions
involved are:

1. Allocation and freeing of system
storage for based variables.

2. Allocation and freeing of storage for
based variables in programmer-defined
areas (area variakles).

3. Assignments between area variables.

System Storage for Based Variakles

Storage for based variskles is allocated
and freed in a similar manner to controlled
storage, but it is not stacked since each
generation is associated with a particular
pointer value: reference may be made to
any current generation of kased storage by
associating the appropriate pointer value
with the name of the based variabkle. A
request for a new generatiom of based
storage is serviced by issuing a GETMAIR
macro, and storage is freed by the FREEMAIN
macro. Based storage is allocated only in
multiples of eight bytes: the sum of the
length of the wvariable and its offset from
a doubleword koundary is rounded up to a
multiple of eight bytes. 2All based storage
allocated in a PL/I program is freed at the
end of the PL/I program.

The AREA Attribute

The AREA attribute enables a programmer
to define a klock of storage (an area vari-
able) in which he can collect and make
reference to kased data. Space within the
area variable is requested and released Ly
ALLOCATE and FREE statements that include
an IN {area-variable) clause. Reference
can be made to a based variakle contained
by an area variable just as if the based
variable were in virtual storage. The con-
tents of one area variable can be assigned
to another area variable, and an area vari-
able can be handled as a single data item
in input/output operations.

Section I:

Issued September 15, 1970 by TNL GN28-3162

The Area Variable

The format of the area variable is shown
in Figure 18. The start of the area is
aligned on a doukleword koundary. The
first four fullwords are used for control
information, the remainder of the area
being the storage requested by the rro-
grammer in declaring the area variable.

The porticon of the area that has been allo-
cated to based variables is termed the
extent. When storage is allocated tc an
area variakle, its length is set in the
last three bytes of the first word, and the
seccnd word (offset of end of extent) is
set to zero.

Area Storage for Based Varxiables

Storage for based variables within an
area variakle is alloccated only in mul-
tirles cf eight kytes; each such allocation
is termed an element. The first request
for storage for a kased variable is satis-
fied by the allocation of the appropriate
nunmber of kytes starting at the beginning
of the unused space; the offset of the end
cf this allocation is set in the second
word of the area variakle, which now points
to the first available doubleword of unused
storage. Providing no storage has Leen
freed, further requests are met by further
contiguous allocations from the unused
space, the offset of the end of the extent
keing updated each time.

If the last allocation of the extent is
freed, the offset in the second woxd of the
AREA variakle is reduced. However, if
allocations other than the last in the
extent are freed, the extent is not
reduced: spaces, termed free elements, are
left. The length of each free element is
set in its first fullword, and a pointer to
the next smaller free element (in the form
cf an offset from the start of the area
variable) is set in the second word. If
there are no smaller free elements, the
second word of the free element points to
the fourth wcrd of the area variakle, which
is set to zero. The chain of free elements
is termed the free list, and is anchored in
the third word of the area wvariable, which
contains the offset of the largest free
element. When an area variable contains a
free 1list, the first bit of the flag byte
is set tc 1.

Whenever storage in an area variakle is
to be allocated to a based variakle, the
free list is searched for the smallest ele-
ment that will contain the based variable.
If no free element is large enough, sgace
is allocated from the unused part of the
area. If this, also, is too small, the

General Implementation Features 27

Page of GY28-2052-0, Issued September 15, 1970 by TNL GN28-3162

0 7 8 31
o- | Flags | Length cf AREA variatle i

e 1
fmmm— e 4- | Offset of End of Extent |
| o 4
| 8- | Cffset of largest Free Elerent |
T T T 4
oo r—~-—#-12- | Zero if rfree List |
Lo e oo eee
R | 1 A
I | I | i
| | | Allocated { |
b | | | |
o | | [|
Lo T e |
o | fom———— » Length of Free Element | *]
N e e 1 r
[b | Offset of next smaller Free Element | | :
I | fmmm e m e 1 | |
b | | | Free |
Lo | | | Element |
R T
o | e e I 1
b i | I I
b | | f }
P | | Allocated | Extent
. ! | l |
P I | | |
[| T $ommem |
| b Length cf Free Element | } |
l | T 1 | |
| o | Cffset of next sraller Free Element | | |
| e T 1 | z
| | | Free |
! | | Elewment |
| | oy
| e I z
i | | |
] | I i
[| Allocated | ‘
f | | |
| b Frmmmm e Y
b > 1

| |

| |

| Not Rllccated]

| |

l I

I !

| !

L e e e e e e e e 3

Figure 18. Fcrwat of Area Variakle

AREA condition is raised. when an element
is freed, it 1is placed in the free list
according to its size. If it is contigucus
with another tree element, tne two are
merged and included in the free list as a
single element. If the last element in the
extent is freed, the extent is reduced and
the element is noct placed in the free list.

28

Assignment Between Area Variables

When the contents of area
assigned to area variable B,
extent and the control words
length of A&) are copied into
length cf B is less than the
the ARER conditicn is raised.

variakle A are
the current
{except the

B. If the
extent of A,

The AREA Condition

If an on-unit is entered when the AREA
condition is raised during the execution of
an ALLOCATE statement, the ALLOCATE state-
ment is executed again after the on-unit
has been terminated normally. The return
address passed by compiled code is stored
in the library communications area (WREA)
tefore the on-unit is entered. On normal
terminaticn of the on-unit, IBEWERR returns
control to the address in WREZR.

If the ARLA conditicn is reised during
the execution of an assignment statement,
the statement is not executed again.

PROGRAM MANAGEMENT

Initialization of a PL/1i Program

On entry tc a PL/I program, one of the
likrary initialization sukroutines (IHESA-
PA, IHESAPB, IHESAPC, and IHESAPD) is
always given ccntrecl by the sugpervisor; the
entry point that is used depends on the
level of compiler cptimization reguired and
on whether the PL/I1 program is called from
an assembler-language routine. The ini-
tialization routine first obtains one page
of virtual storage for the PRV VDA.

The initialization routine zeros the
PRV, sets up the LWS pseudo-registers, and
issues SPEC and SIR macro instructions nam-
ing IHEWERR. 1In addition, IHESAPA and IHE-
SAPC enable a parameter on the statement
invoking the PL/I program to be passed to
the program. On exit from the initializa-
tion subroutine, registexr RA points at a
location containing the address of the SDV
of the parameter.

Termination of a PL/I Frogram

Normal Termination: Normal termination of
a PL/I procedure is achieved by an END or
RETURN statement, either of which involves
releasing the automatic storage assocciated
with the procedure. If a recuest is made
to free a DSA which would entail freeing
the DSA for the main procedure, IHESAFA
(END) or IHESAFRB (RETURN) raises the FINISH
condition and the program branches to the
error-hnandling sukroutine (1HEWERR). If
and when this subroutine returns control,
IHESAFA oxr IHESAFR causes all opened files
to be closed (by calling the library
implicit-close subroutine). Subsequently
all automatic storage, including the PRV
VDA, is freed. IHESARC is then called to
set the return code and return control to
the superviscr.

Abnormal Termination: A PL/I program is
considered to terminate abnormally when the
FINISH condition is raised ky any means

Section 1I1:

other than a RETURN, END, or SIGNAL FINISH
statement (e.g., when an execution-time
error occurs such that the ERROR ccnditicn
is raised). 1If there is not a GO TC out of
the ERROR or FINISH on-unit (if any), the
error-handling subroutine (IHEWERR} calls
IHESAFQ, which closes all the open files in
the manner descriked akove; IHESAFC returns
to the supervisor with a return ccde (2000
+ any return code already set (modulo
1024)) .

GO TO Statements

In PI/I, a GC TC statement not only
involves the transfer of contrecl tc a gpar-
ticular lakel in a klock but also requires
the termination of contained blocks. The
housekeeping requirements for this are:

1. A return address.

2. A weans of identifying the automatic
storage associated with the blcck to
be nmade current.

Identificaticn of the appropriate storage
depends on whether the environment is
recursive or ncn-recursive:

Recursive: A count (the invocation
count) is kept of the numker of times
any block is entered; this count can be
used to identify the storage for a gar-
ticular invocation.

Ncn-recursive: The address of the
storage for each block is required.

Cn-Units and Entry-Parameter Procedures

If, in a recursive environment, the pro-
gram enters (1) an on-unit, cr (2) a proce-
dure oktained ky calling an entry parame-
ter, that environment must ke restored to
the state that existed when the ON state-
ment was executed or the entry paraneter
was rassed. Similarly, at the exit from
the cn-unit ¢r the entry-parameter proce-
dure, the environment must be restcred tc
its former state.

If the on-unit or entry-parameter proce-
dure refers to autcmatic data in enccrpas-
sing blocks, these references will be to
the generations that existed when the ON
statement was executed or the entry parame-
ter was passed. These will not necessarily
e the latest generations.

The ccrrect environment is obtained by
restoring the display to what it was at the
time the ON statement was executed or the
entry parameter rassed.

When an on-unit is to ke entered, the

likrary error-handling subroutine calls
IHESARA and rasses it:

General Implementation Features 29

1. The address of the on-unit.

2. The invocation count of the DSA asso-
ciated with the procedure containing
the ON statement.

When an entry-parameter procedure is to
be called, compiled code kranches to IHE-
SARA and passes it:

1. The address of the called procedure.

2. The inveccation ccunt of the passing
procedure.

The state cf the display at the time of
passing is determined by examining the DSAs
of active Lklocks invoked kefore the passing
procedure. The display is modified and
control is transferred to the called
procedure.

Before an con-unit or an entry-parameter
LSA is freed, the display is restored, in a
similar manner to that descriked akove, to
the state it had immediately kefore the
on-unit was entered or the entry-parameter
procedure was called.

Block Housekeeping

The chaining of automatic storage areas
is required both for housekeeping purposes
and for storage management. In general,
both these functions are satisfied by the
automatic storage area chain (called the
DSA chain or ‘run time stack'). When a
liorary module is entered, an offshoot of
the DSA chain, known as the save-area
chain, may be formed.

DSA Chain: The DSA chain consists of the
external save area, PRV VDA, DSAs and VDAs.
DSAs are added to the chain as procedures
and blocks are entered. VLAs are added to
the chain after the DSA of the block in
which they are required. The gpseudo-
register IHEQSLA is always set to point at
the last allocation in the chain. Initial-
ly it points at the PRV VDA. Register DR
always points to the current save area.

Consider a sample program. Successive
areas are added to the chain thus:

1. PRV VLA

2. DSA (Main procedure)
3. DSA (Prccedure)

4. DSA (Begin block)

At this stage the storage map is as
shown in Figure 19. If the kegin klock
required a VDA this would be added toc the
end of the chain. Figure 20 shows an
example in which the begin block requirea
two VDAs. If the program now executes:

30

|
External |
|

PR S— |

I
4
| save area |
!
I
L

|
| DSA1 |«

1
| Dsa2 |
|
|

i
DSA 3 |
|
|
J

Figure 19. Example of DSA Chain

1. An END statement: The storage in the
chain is released, starting with the
area pointed at by IHEQSLA and finish-
ing when the current DSA has been
released. This leaves the chain with
items 1, 2 and 3 only.

2. A RETURN statement: All areas ur tc
and including the immediately encor-
passing procedure DSA are released,
leaving only items 1 and 2.

It is also possible to release the last VDA
in a chain without releasing any other
areas, by freeing the area pointed at ky
IHEQSLA.

I1f a GO TC statement referring to a
label in the main procedure had been
executed when the situation was as shown in
Figure 20, then either the invccaticn ccunt
cx the display of the main procedure would
ke passed to the library subroutine (IHE-
SAFC). This wculd then search back up the
chain until it found the DSA with that
invocaticn ccunt or display, and then make
tnis DSA current. It would then free:

1 [rom e 1 r - 1
a | | t | I®s |
{ DSA 2 | | DSA 3 =1 | |
{ | | | | | LSA |
| i | | | DR | |
R * ______ 1 [* _____ 1 | =P }
| | S ; Save area |
| | { |
DR | r——-—= toemm 1 i i
——— Py Ao 1 | | I {
| | i VDA | t 1
{ LSA 3 ; { j ; é
| |) | ;
¢ ! l | s
A THEQSLA | | g
| R S G l 1
[| VDA | e 4
R 1 | |
i | S, 4
| VDA i
| } Figure 21. Construction of the Save-area
| R ; ______ 3 Chain
|
IHEQSLA | [e e e - [————
———Pp———— d—m e)| | i LWS 1 1
| I | bsa 3 |-y | |
| VDA |] [LsSAa |
& | ey G T B 4
b] ; Lo]

Figure 20. Ccntinuaticon of the DSA Chain

|
e I s
1. All areas ur to and including the DSA | | | -4
allocated after the DSA to ke made | VDA S LWE |
current. | | (| |
I S I S *n
2. Any library VLCAs or LWS between the | 1| |
DSA to be made current and the follow- i I |
ing DSA. A VDA used by the library is p———— e 1+ b i
distinguished from one used by com- | N B |
piled code by the flags in the first | VDA | [|
byte. (See Secticn IV.) | || |
ety e I |
Save-Area Chain: When a PL/I klock calls a ’} [|
PL/I Library subroutine, the save area { [|
passed is that in the LSA for that block. IHEQSLA] | b 4
If the library routine calls a lower-level ——— P A S
library routine, the save area passed is IHEQISA | 1IWS VDA | |
that of the aprpropriate level in LWS. Thus —— P -4 |
a save-area chain is built up as an off- | LWS 2 b—-4
shoot of the DSA chain. (See Figure 21.) | {
Normally the save-area chain anwinds itself | Lsa i
as control returns up through the levels; s |
in the example, the chain would ke left | |
with DSaAs 1, 2 and 3 remaining. |save areas |
| |
Treatment of Interruptions: When a program L 4
interruption cccurs in a subroutine
(library or compiled code), the library Figure 22. Structure of the DSA Chain When
error-handling subrcutine (IHEWERR) is the Error-Handling Subroutine
entered and the address of the save area of is Entered After a New LWS Has
that subroutine is set in register DR. Peen Obtained

(See Figure 22.)

Section I: General Implementation Features 31

IHEWERR calls IBESALE, rassing its own
save area, to get a new IWS (LWS2). If
there is amn on-unit corresponding with the
interrupt condition, then, on return from
IHESADE, IHEWERR branches to IBESARA (which
modifies the display) and passes it the
save area LSA in LWS2. 1In turn, IHESARA
kranches to the on-unit and passes it the
same save area. The prologue for the on-
unit then calls IHESADA to obtain a DSA.
The DSA chain can now continue if required.
(See Figure 23.)

If there is no on-unit corresponding to
the interrupt condition, standard system
action is taken. (See "Error and Interrupt
Handling'.)

There are two possikle ways of freeing
the on-unit DSA:

1. By a GO TO statement from the on-unit.
If the GO TO is tc a statement in a
block associated with DSA 3, or earli-
er, then the save-area chain can sim-
ply be forgotten. Registers are re-
stored from the LSA to kecome current.

| S i) | 1
| | LWws 1 |
| DSA 3 |« | I
| I | | IsA |
B U S B ettt o 2t
) I |
| L--{Save area| |
e | b |
| I | I
| VEA | > LWE -4
| I | |
S G S B S et |
5 || l
| o l
| I |
e |
I I B e |
| vea | | | |
I R |
l——-—r—-——~' . |
I |
| . |
| [|
r————t-——— | | |
I		
LWs 2 -1		
N Gimnte 4		
X S !		
IHEQSLA, DR]		
_.._7__.._1._.......}		
on-anitj		
{ bDsa		
R E]		

Structure c¢f the DSA chain When
the On-Unit LSA is Attached

Figure 23.

32

2. By the on-unit issuing a request to
stcrage management to free the on-unit
DSA. When this is done, contrcl is
returned to the error-handling subrou-
tine at the point following that from
which contrcol was transferred to the
on-unit. The error-handling sukrou-
tine restores DR in the normal way to
point at LWE in LWS 1 and calls IHE-
SAFD to free IWS 2. Control is then
returned to the interrupted rcutine.
In the example, the situaticn wculd
now be as in Figure 21.

Execution-time Optimization

The ccmpiler contains an optimization
technique which minimizes the necessary
housekeering and provides faster execution
of the prologue and epilcgue. The techni-
que can cnly be applied if the optimization
option (OPT=01.Default) is specified for
the compilation of the main procedure of a
rrogram. In this case, a 512-byte storage
area is reserved at the end of primary LWS
during initialization and pseudo-register
IHEQSLA is set to the address of that save
area. The pseudo-register IHEQLWF contains
the address c¢f the reserved area attached
to the current IWS. A reserved area is
released only when its associated LWS is
released.

Whenever a DSA is allccated for the
innermost procedure or procedures (at the
sane depth) of a nest of procedures, the
cptimization technique will try to meet the
requirement from the reserved area. If
this is not possible (because the LSA
requires more than 512 bytes), the required
stcrage is oktained in the standard way,
using IHESADA.

A DSA allocated in the reserved area, or
a DSA allocated in STATIC storage at com—
pile time, is identified by a 'cne' in the
first bit of the second byte. (See IEM
System/360 Time Sharing System: PL/I Com-

gilexr, Program Ilogic Manual for a discus-

sion of DSAs in STATIC storage.)

ERROR AND INTERRUPT HANDIING

The PL/I Likrary handles two types of
conditions which cause interruption in the
main flow of a program during executiaon:

1. ON conditions, for which it is ross-
ible to specify an on-unit.

2. Executicn error conditions, for which
it is not possible to specify an
on-unit.

211 the conditions are listed in IBM
System/360 Time Sharing System: PL/I

Reference Manual.

Page of GY28-2052~0

When any of the conditions occur, con-
trol is passed to the library error han-
dling module IHEWERR. Figure 24 describes
the flow through this module.

Except for program interruptions, which
are discussed separately, all the condi-
tions are raised by compiled code within
the PL/I program. When the condition is
recognized (e.g., an end-of-file returmn
code from an attempt to read), the PL/I
program enters IHEWERR at the entry point
appropriate to the condition:

IHEERRB: ON conditions
IHEERRC: Non-ON conditions
IHEERRD: CHECK and CONDITION

If the condition is an ON condition, an
internal error code is placed in the
pseudo-register ITHEQERR before IHEERRB is
entered. The codes associated with each ON
condition are given in Appendix D.

STANDARD °*SYSTEM®' ACTION

If an ON condition is raised and there
is a matching ON field for the condition,
IHEWERR passes control to the on-unit via
IHESARA. Standard 'system' action is taken
if: (1) an ON condition is raised and
there is no matching ON field for the con-
dition; (2) the system action flag is set
in the matching ON field; oxr (3} an execu-
tion error or interrupt condition arises
for which no specific ON condition is
defined in PL/I (e.g., logarithm of a nega-
tive number).

Standard 'system' action consists of
printing an error message and, possibly,
raising the ERROR condition. The error
messages for the conditions are in
PL/I Programmer's Guide. After the error
message is printed, either processing con-
tinues or the ERROR condition is raised,
depending on the severity of the error.
Raising the ERROR condition usually leads
to the FINISH condition being raised.
Unless there is a GO TO statement in the
ERROR or FINISH unit, the program will
return to command mode.

When SNAP or PL/I ‘system' action mes-
sages must be printed, IHEWERR calls the
library module IHEWESM, which contains the
code needed to print SNAP and PL/I ‘'system'
action messages. These library error han-
dling modules contain error messages:

IHEWERD: Data processing error messages.

IHEWERE: Error messages other than those
in the other error message
modules.

Section I1:

Issued September 15, 1970 by TNL GN28-3162

IHEWERI: Input/output error messages for
non-ON conditions.

IHEWERO: Error messages for non-1I/0 ON
conditions.

IHEWERP: Error messages for I/0 ON

conditions.

An action indicator is obtained during the
process to determine whether normal proces-
sing should continue if the ERROR condition
is raised. The appropriate action is taken
when the message has been printed as
output.

PROGRAM INTERRUPTIONS

There are fifteen possible program
interruptions in TSS; the PL/I Library
handles all but significance. Seven of the
interruptions are related to computional ON
conditions in PL/I; the remaining seven are
treated as errors of a non-ON type (see
Figure 25).

The PL/I Library gains control of pro-
gram interruptions by a SPEC macro instruc-
tion, assembled as part of the GET PRV sub-
routine of the IHEWSAP library module. The
SPEC macro specifies which program inter-
ruptions will be processed by the PL/I
Library (all except significance) and spec-
ifies IHEERRA as the entry point of the
error handling routine. As a result of the
SPEC macro, an Interrupt Control Block
(ICB) is created, which contains the pro-
gram interrupt mask and the address of
IHEERRA.

Then IHEWSAP issues a SIR macro, which
specifies that IHEERRA is the entry point
for the current interrupt handling routine
{by giving the name of the ICB associated
with it) and sets the priority for the
interrupt routine.

Upon entry to the interrupt handling
routine at IHEERRA, register 0 is pointing
to the fifth word in a 64 word entry used
by the system (see Figure 26). The 25thand
26th words of the entry contain the old
VPSW, which contains the interrupt code and
the address in the PL/I program where con-
trol should return when the interrupt has
been handled (see Figure 27).

To enable program interruptions that may
occur during execution of the interrupt
handling routines, IHEWERR follows this
method of handling program interruptions:

General Implementation Features 33

Page of GY28-2052-0, Issued September 15, 1970 by TNL GN28-3162

| IHEERRC | | IHEERRA 1 IHEERRE 1 IHEERRL |
| Non-ON Conditions| j Prcgram Interrupts} { ON Conditiocns | |CHECK & CONDITION |
L o ———— B S o —————— [Jo—————— 5 N U D 4

Yespmm——mmue * ———————— 1 fm——————— * _________ 1 [—————— *.-_ _*

1 r 1
r——4 ERROR, CHECK or |« |Save environment; | |[Determine CN type| |Determine ON tyrge|
lFINISh ccndltlon?l | lrretend to super- | |from IHECERR | |from register RA |
———————— +-———=--—4 | {jvisor that hand- | tee——e——meqm—————d b el
No	{ling is complete;			
		set results if	*	
		necessary	—————t——	
	bt T - 4	Create search word;		
			search the LSA chain	
{. i * |for a match; if dis- | |
_________________ jNop~—-==-eodoeew—y¥Yes |abled in current DSA tq-—-—-———d

ngnk to IHEWESM %<—+——4ON condition for}f-y-w{return; if dummy, ig-}
I {this 1nterrupt9 ; lnore entry {

|If SNAP, link to
|ITHEWESM to print

|Determine which | |
|
| SNAP message |
i

|
|
|
;
|message is to be | i
}
|
|
|
|

o o e St e e e s e A, it . . s, e, P i S S . M W e o e, . Ao Bt S . . . o S
-
|
|
|
|
|
i
|
[

i
|
|
|
[
| printed H |
T 4 | b T
| | |
i ' *
[Y 1 |Yesp———nedoooe 1
| Print mwessage | bt +-—-{System action |
b T—————— 4 | |required? |
l i L I e P .
Y | % [No
R 1Yes p—————-- o 1 *
| Interrupt is ter-}---p{Raise ERROR | | ot ————— 1
|m1nat1ng type? i |condition | |]Branch to IHESARA |
———————— po——————=d - | |in crder to enter |
| No } | |on unit |
¥ | O r :
e 1 | | |
[Return | | | *
————————————————— 4 | |Yesproorr ¥y
b +---4invalid conversion|
.......... . [S S |
| [4 | No
' Y
[——— & ————— 1Y¥es po—mmmmm e ——— -L-“—~| Yes T T R e e
lError condition f{---»4{Raise FINISH - 4 ERROR condition? |
—————————— r———-d }condition | et
|Nc e - 4 | No

[r————————— * ————— 1Yes

"
| CHECK condition?}p——-p{Print CHECK | FINISH cond1t10n7}———)4 ABEND

e T 4 ljnformation } b4 b 4
| No b —_—— 4 jNo
| |

““““““““ &““’°1 r“‘-‘——;*—————"“‘1 r-"“'—‘*-"———’--—1

[FINiSH condition| keturn | | Return

|then terminate | b———— 4 e — 4

;wltn ABEND i

Figure 24. Flow Through the Error dandling Routine (IHEWERR)

34

[T T T T e e e 1
| Program Interruption | P1/I Condition |
= e e L e 4
| Interrupt Code Meaning | |
| 1 operation code | |
| 2 privileged operation i |
| 3 execution | Execution error |
| 4 protection { conditions not |
| 5 addressing | ccvered by a |
| 6 specification | PL/I defined condition |
| 7 data] |
| 8 fixed-point overflow | FIXEDOVERFLOW |
i 9 fixed-point divide | ZERO DIVIDE |
{ 10 decimal overflow i FIXEDOVERFLOW |
| 11 decimal divide i ZERODIVIDE |
12 exponerit overflow	OVERFLCW
13 exponert underflow	UNDERFLOW
14 significance	nct handled in PL/I
15 floating-point divide i ZERODIVIDE	
b e A e e 3
Figure 25. Program Interruptions and PL/I Ccnditicns
2. Bits 40 to 63 of the o0ld VPSW in tue macrcs are issued every time IHEWERR is
64 word entry are caanged to entered. These macros provide that, in the

contain the address of the
arrropriate entry point in IHE-
WERR; control is returned to
the sugpervisor.

3. TSS assumes the interruption has been
handled satisfactorily and
transfers control to the new
address in the o.d VPSW; thus
it enters module IHEWERR again.

Floating-point registers are saved in
the library communication area, and the old
VPSW is inspected to find the cause of the
interruption.

When fixed-point or decimal overflow
interruptions cccur, the SIZE condition may
ke raised. Therefore when one of tnese
interruptions occurs, the pseudo-register
IHEQERR must be inspected to see if the
SIZE code has been set. Similarly, if any
of the divide interrupticns occurs, IHEQERR
must be inspected to see if the ZERODIVIDE
code has been set. If it has, the condi-
tion is disabled and control returns to the
point of interruption.

Certain very unusual circiamstances may
result in a program interrupcion occurring
during the execution of IHEWERR or of one
of the library modules called from it. For
example, if the program destroys the PRV,
or the DSA chain, or parts of likrary work-
space, then it is likely that sonner or
later a specification or addressing inter-
ruption will occur.

Under these circumstances, to prevent
any attempt to re-enter IHEERRA on account
of the second interruption, SPEC and SIR

Section I1:

event c¢f an interruption, IHEWERR shall be
entered at entry pcint IHEERRE. Similarly,
a DIR macro is issued at each exit point,
to restore IHEERRA as the normal entry
Foint for program interruptions during the
execution of compiled code and library
routines.

When IHEERRE is entered, a message is
rrintea on SYSOUT and the FINISH condition
is raised.

ON CONDITIONS

The six classes of ON conditions defined
in PI1/1 are shown in Figure 28. Tc deal
satisfactorily with the situation when any
of these conditions arise, IHEWERR must:

1. Reccgnize the condition.

2. See if it is enabled.

3. 1If so, see if there is an on-unit for
the condition.

4. If there is an on-unit, transfer con-
trol to IHESARA, which, after dcing
the necessary housekeeping, will
transfer control to the on-unit.

5. If no on-unit, take system acticn for
tne condition.

6. Return to the interrupted program or

terminate, according to the prcvisions
of the PL/I language.

General Implementation Features 35

64 Wcrd Entry Word ’l' ————————————— 7! ————— ; ””””
1 } PRIV Status |

[

1
| 1 I '
b e e i | | |
| Forward Pointexr tc { b= 1 i
| Next Entry | 2 i | I
N — i | | |
| Forward Page Pointer | 3 | Task Mask | |
oo —mmeees 1 ! e 1
Reg 0 | Pointer to Interrupt { | | |
| | Conditiomns | 4 | | |
I T 1 prmm e 1 z
I | I
| S—— =
>i Length 120 Bytes ! 5 i iLC | |
b i | | |
| Register 13 | 6 f’ """"""" '{ ;
— s 1
| Unused | 7] cc | |
S —] | n |
| Register 14 | 8 po——————————— 1 Woxd 25
———————————————————————————— J | 1 |
| Register 15 | 9 i | |
1 | Program | {
i Register O +| 10 | Mask | |
| Register 1 | 11 } l‘ l'
_________ —— _{
| Registers 2-12 | 12-22 i l
b i | |16 |
| Nct used | 23 [] I
frmm o ¥ I I |
| Not used | 24 | | |
- e 1 t l |
| 01d VPsW | 25-26 [| |
———————————————————————————— 1 | Interrupt | |
| Floating Point Register 0 | 27-28] Code |]
____________________________ 4
| Floating Point Register 2 | 28-30 g il :
____________________________ .{
| Floating Point Register 4 | 31-32 % g :
____________________________ .{
| Floating Point Register 6 | 33-34 s ‘331 ’
____________________________ _‘
| Task Monitor RSPRV Flag | 35 }' “““““““““““ 132"“"‘ T
Reg 13 | Pushdown Pointer from ISA | 36] | |
I - 1 l | l
| | | I | |
L——->| Length = 108 Bytes | 37 | | [
b 1 | Instruction | i
| Backward Link 5 38 | cCounter | Word 26
| Forward Link | 39 li ll Il
prmmm e 1
| Register 14 (Return | I | |
| Linkage) | 40 } |I ll
____________________________ .’
| Register 15 (Entry Point) | 41 | |63 *
b e ————— 4 U S ¥ I S
| Registers 0-12 | 42-54 Figure 27. 014 vVirtual Program Status Word
[- 1
| PSECT Address of Called 1 In order to carry out these oreraticns
| Program 155 IHEWERR needs:
- - = - t
I A;allabie for Called | c6-63 1. Information passed when the errcr con-
L___f??fff ___________________ } dition arises.
f§ . . .
{_ffffffff ___________________ j 6 2. Information set by compiled code in
the DSA for each procedure. A two-
Figure 26. Information Availakle Upon word ON field is allocated in the DSA
Entry to an Interrupt Routine for this purpose.

36

| St T =T B B 1
{ | |Condit:ionj|

| Type | Condition |Prefixes | Default |
| | jpermitted|{situation|
b= S o -
| { CONV ERS ION } |

i | FIXEDOVERF LOW | | All |
Comput-	OVERFLOW	Yes	enabled
ational	SIZE		except
	UNDERFLOW	i SIZE	
i	ZERODIVIDE } {		
=== t-————————- e o			
jList	AREA	No	Always
pro-	i	enabled	
essing			
e fommmmmm e e A 1			
i	ENDFILs		
{ PENCING i i			
	ENDPAGE	{	
{Inputs/	KEY i	Always	
Output	NAME i No	enabled	
	RECORD		
	TRANSMIT i i		
i	UNDEFINEDFILE]	
prom e fommmm - L .			
Program	CHECK		
jcheck-	SUBSCRIPT-	Yes	Disabled
jout i RANGE			
[STRINGRANGE	i	
e — pommm e s i 4			
Prog-	CONDITION		Always
rammer		No	enabled
named		s	
T prpma L oo 1			
System	ERROR	No	Always
jaction |#FINISH | | enabled |
b S, i i 4

Figure 28. PL/1 ON Conditicns

Action by Compiled Code

Action taken by compiled code in pre-
paration for the possibility of a condition
arising during execution is summarized
here.

Prologue: The prologue allccates space in
the DSA for:

1. Every ON statement in the block.

2. Each ON condition disabled in the
block.

ON CHECK (identifier 1,......identifier n)
is interpreted as n ON statements.

For each cf the occurrences civen above,
the prologue stores information in the two
words in the DSA ON field:

1st word: Contains the error code for
the condition and the address of data
identifying the condition. This word is
called the search word comparator. (See
Figure 29.)

Section I:

8 1
| Type of CHN | Contents of woxd |
| ccndition p————- D 4
] | Byte 1| Bytes 2 to 4 |
pmmmmm oo o= om e 1
I 1/0 | | A (DCLCB) |
________________________________ 4
| CONDITION | | A (CSECT) |
e {Error fp-——————————————— 4
CHECK (label)		A (Symbol name &
	code	length)
CHECK (variable)		A (Symbol table)
———————————————— 1 A,
i Others | | Nothing stcred |
[S U 1
Figure 29. Format of the Search Word
Conparator

2nd wcrd: Byte 1:
set as follows:

Bits 0, 1 and 4 are

Bit 0 = 0 Not the last ON field in the
DSA
= 1 Last ON field in the LSA
Bit 1 = 1 Condition disabled
Bit 4 = 1 Dummy ON field

either kit 1 or bit
(See 'Prefix Optioms',

In the second word,
4 is set to 1.
kelow.)

ON Statement: When the ON statement is
executed, cormpiled code stores information
in the second word of the ON field:

Eyte 1:
Bit 2 = 0 SNAP not required
= 1 SNAP required
Bit 3 = 0 Normal
= 1 System action required
Bit 4 = 0 Nc longer dummy
Bytes 2~-4: A(on-unit)

Prefix options: An ON field for an ON con-
diticn must ke created by the prologue
whenever:

1. An ON statement is present in the
blcck.

2. An ON ccndition becomes disabled at
any time during the execution cf the
block.

3. CHECK is enabled within the block.

This ON field is always set to dummy by the
prologue. It is also set to disabled if:

1. The condition is disakled by a prefix
option in the block-header statement.

General Implementation Features 37

2. The condition is disabled by default
and there is no enakling prefix option
in the block-header statement, or
within the block. The exceptions to
this are CdHECK, SIZE, STRINGRANGE, and
SUBSCRIPTRANGE, which are dealt with
as follows:

CHECK: Nc ON fielids are created if
this condition is disabled by default.

SIZE, STRINGRANGE, and SUBSCRIPTRANGE:
If these conditions axe disabled by

default, flags are set in the flag
byte ¢f the DSA as fcllows:
SIZE: kit 7 =0
STRINGRANGE bit 2 = 0
SUBSCRIPTRANGE: pit 4 = 0

Execution of an ON staterent in the block
causes removal of the dummy flag and inser-
tion of the flags indicating the action
required. It does not remove the disable
flag if on. Execution of a REVERT state-
ment causes reinstatement of the dummy
flaqg.

During execution of the block, statements
may be executed which have disabling prefix
options in them. Compiled code must be
inserted before and after the statements
to:

1. Set the disabled flag before the
statement.

2. Restore the original flags after the
statement.

Similarly, to enable prefix options, com-
piled code must:

1. Set the disable flaqg off kefore the
statement.

2. Restore the original flags after the
statement.

Prefix opticns specified on outer blocks
carry down intc internal blocks. The
implementation of these blocks should be as
if the option had been explicit in each of
them.

Action by the Library

When an ON condition arises during
execution, IHEWERR gains control from one
of the fcllowing: ’

1. Ts5/360 (program interruptions)
2. Compiled code

3. Another library module

38

In case 1, the CN condition code
required is determined by inspecticn of the
program interrurt code in the old PSW. For
cases 2 and 3, the ON condition code is
rassed in pseudo-register 1HEQERR, excert
for the CHECK and CONDITION conditions,
when a parameter list is used. Frcom tnis
code and information passed in the calling
sequence, a search word is generated in
library workspace in all three cases; the
format of the search word is identical with
that of the search word comparator (Figure
29).

When the search word has Leen created,
IHEWERK initiates a search through the
chain of DSAs to determine the action to be
taken. Each DSA is analyzed in turn, from
the end c¢f the chain upwards towards the
keginning. The search proceeds as fcllows:

1. Bit 6 of the flag byte of the first
availakle £SA is tested to see if that
DSA contains any ON fields. Then:

a. No ON fields: If the DSA is the
current LSA and the condition is
SIZE, STRINGRANGE, or SUBSCRIP-
TRANGE, the flag byte of this DSA
is examined to see if the condition
is disabled:

Cisabled: the program returns to
the point of interruption.

Not disabled: The DSA is ignored.
If the condition is CHECK, the pro-

gram returns to the point cf
interruption.

b. ON fieids: The first word of each
ON field - the search word compara-
tor - is compared with the searxch
word to see if a match is fcund.

If a match is found, the second
word of the ON field in the DSA is
tested to see what action is
reguired.

2. If the last ON field is reached before
finding a match, then:

a. If the DSA is the current DSA and
the conditjion is SIZE, STRINGRANGE,
or SUBSCRIPTRANGE, the correspond-
ing flags in the DSA are tested.

b. The error code is tested to see if
the condition is CHECK.

This may result in a return to the point
of interrupt. If not, the next DSA is
cbtained and analyzed in the same way.

If a match has keen found, then the fol-
lowing tests are made:

1. Is the ccnditicn disakled by a prefix
option? (This test can cnly be app-
lied when the matching CN field is
contained in the current LSA.)

Disabled: No further prccessing in
IHEWERR; the program returns to the
point of interrupticn.

Not disabled: Next test is made.

2. Is the matching ON field a dummny ON
fieild?

Dummy ON field: The field is ignored
and the next DSA is coktained.

No dunmy ON field: Next test is made.

3. Is SNAP action required?

SNAP action required: A summary flow
trace is written on the system output
file. This output contains the ON-
condition abbreviation and trace-back
information identifying the procedures
in the chain. The statement number
may optionally be included. Each pro-
cedure is identified ty chaining back
through the DSA chain until a proce-
dure DSA is found and then using the
contents of register BR in the appro-
priate save area. The search ends
when the chain-back reaches the
external save area. An exanple of
this output is given in IBM System/360
Time Sharing System: PL/I Program-
mer's Guide.

SNAP action not required: Proceed

normaily.

When a match has kbeen found, and an on-
unit address is given, then, to guard
against the possibility of recursive use
when control returns from the on-unit by
means of a GO TO statement, a new block of
library workspace is oktained. This IWS is
added to the DSA chain as described earli-
er, in 'PL/I Object Program Management'.
In order to pass contrcl to the on-unit,
the recursion subroutine in IHEWSAP is
called; this establishes the correct
environment and then kranches to the on-
unit. Return from the on-unit may be made
in one of twc ways:

1. On ncrmal completion, control passes
to IBEWERR, which returns to compiled
code at the point following the
instruction which caused the condition
to be raised.

2. Execution of a GO TC statement. In
this case the GO TO subroutine (IHE-
SAFC or IHETSAG) is entered to carry
out the hcusekeeping descriked in
'PL/I Object Program Management'.

Section I:

EUILT-IN FUNCTIONS

The two built-in functions, ONLOC, and
ONCODE, may only be used in an on-unit;
they provide environmental information
associated with the raising of the latest
CN ccndition.

ONLOC

An interrupt can occur that can cause
entry to the on-unit in which ONLOC is spe-
cified. If this happens, the ONLOC built-
in function identifies the BCD name of the
entry point of the procedure in which the
interrupt occurs.

The address of this BCD name is computed
ky chaining kack through the DSA chain
until the first procedure DSA is reached
and by using the contents of BR in the
apprcpriate save area. The length of this
name and the maximum length are found;
these two lengths and the pointer to the
BCL nare are inserted in the target SDV
whose address has been passed to ONLOC as a
rarameter.

1f ONIOC is specified outside an on-
unit, a null string is inserted in the tar-
get SDV.

ONCOLE

The ONCODE built-in function picks up a
value from the WONC field in the likrary
communication area in IWS previocusly set by
IHEWERR. This value is implementaticn-
defined by the type of error that caused
the interruption. It may be specified in
any on-unit. If specified in an ERROR or
FINISH unit, the ONCODE will be that of the
error or condition that caused the ERROR cr
FINISH unit to ke entered.

If ONCODE is specified outside an on-
unit, a unigque ONCODE value (0) is
returned. A list of ONCODEs and explana-
tions of their use are given in IBM_ System/
360 Time Shaxring System: PL/I Programpmer's

Guide.

MISCELLANECUS TSS/360 INTERFACES

One function of the PL/I Library is to
provide a standard interface with TSS/360
which can ke utilized by compiled code.
The implementation described here concerns
support for PL/I language statements and
functions with a TSS/360 interface that
does nct fall into one of the categories
already discussed in this section. These
are the PL/I statements DISPLAY, LCELAY,
STOP and EXIT, and the built-in functions
TIME and DATE.

General Implementation Features 39

TSS/7360 will enable the PL/I Likrary to
issue macro instructions which support the
above-mentioned statements and functions.
The relationship is as follows:

PL/X Macro Instruction
DELAY STIMER

TIME EBCDTIME

DATE EBCLCTIME

DISPLAY GATWR, GATRD

Thus, the library support for language fea-
tures is as follows:

DELAY
the execution of the PL/I program is
suspended for the reguired tinme.

EXIT and STOP
both these statements raise the FINISH
condition and then cause normal ter-
mination of the PL/I program.

TIME
the time of day is returned to the
caller in the form HHNMMSStht where:

HH = hours (24-hour clock)
MM = minutes
SS = seconds

tht = tenths, hundredths and thou-
sandths of a second. (Since
it is only rossible to obtain