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INTRODUCTION

The time-shared operating system for the IBN System/360 Model 67,
T55/360 has a number of features that distinguish it from other systenms,
both conventional and interactive. When considering its sunitability,
you should have a basic understanding of time=sharing systems in general
and of TSS5/360 in particular. Such an understanding will help you
develop a true appreciation of TSS/360.

To this end, you should be aware of the wide range of published
material about this system. You should also be aware of the wide range
of experience with TSS/360.

To provide a foundation of knowledge upon which you can build, this
Compendium includes material designed to promote a basic understanding
of the most important concepts in T55/360. This basic material should
be supplemented by reading the full range of publications devoted to
the system, in particular:

Concepts and Facilities (C28-2003)

Introducing TSS5/360: A Primer for FDRTRAN Users (C28-2048)

Assembler Programmer's Guide (C28-2032)
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A summary of much of the information in the latter four publications
may be found in the TSS/360 Quick Guide for Users (X28-6400).

In studying the accompanying material, particular attention should
be paid to the following features of the system:

° Sharing
Code
Reentrant for efficient use of main storage
Saves loading time
Data
Saves external storage
Provides large shared data hase capability
° Foreground-initiated background
EXECUTE/BACK commands
Converts conversational task to nonconversational
® Command systen
User profiles
Permits user to define his own commands
Message handling
° Delta data sets
Installation flexibility
Addition of function
° Table-driven scheduler
Tailoring of system to meet installation needs
Flexible control of system resources
° Virtual memory
24-bit addressing provides 16 million bytes
32-bit addressing provides 4 billion bytes



fliminates overlay problen
Eliminates main-storage fragmentation
. Monitoring and debugging aids
Time Sharing Support System {TS5S)
Online system programmer's maintenance tool ~
Dynamic debugging of system prograns
Program Control System (PCS)
Dynamic object-time debugging tool
° Hardware serviceability aids
On-Line Test System {OLTS)
Hardware diagnostic tool
Does not interfere with other users
Virtual Memory Environment Recording ¥dit and Print (VMEREP)
Formatted recovery of error recordings to terminal
L Data management
Solves large-data-base prohlenms
Dynamic storage allocation Dynamic storage allocation

GENERAL SYSTEM DESCRIPTION

Time sharing can be described as the concurrent use of the resources
of a general-purpose computing system by a large number of users.
It is a logical extension of the growth in sophistication and scope
of the computing environment since its beginning nearly two decades
ago. In particular, TS5/360 serves as a logical extension for the
problem-solving needs that gave rise to the 1BM System/360 hardware

and to IBM System/360 Operating System. —

In commnon with other third-generation multiprogramming systemns,
the accent in TSS/360 is on "resource sharing”; a general-purpose time-
sharing system must be designed to share main storage, channel
facilities, and direct access (disk and drum) file space among a larqge
number of users., Strictly speaking, a single CPU does not share time;
it operates on only one task at any moment.

Unlike the goal of a batch multiprogramming system, which is to
maximize throughput, the goal of a time-sharing system is to make it
easier to use a computer while maintaining a very high degree of
utilization of the system resources.

To make TSS/360 casy to use, the following features are included:

Remote conversational terminals

An online command systen

Conversational language processors

A conversational program control system

Dynamic execution-time program linking

A one-level store concept

Protection and sharing for data and progranms

Large online storage for libraries of programs and data

To make efficient use of computer resources, TS5/360 employs:

System scheduled multiprogramming
Dynamic program relocation i

o g



-
|
|
|
|

Partition capabilities
For further information see:

Appendix A -- Lett, A, S., and Konigsford, W. L. TS55/360:
A Time-Shared Operating System, pp. 15-16.

SHARING

Two types of sharing are supported in TSS/360: data and code.
Data sets are shared through pointers in the system catalog (of which
each user's catalong is a part). The creator, or "owner", of a data
set may permit selective sharing by specified users or universal sharing
by all users; furthermore, he may permit read-only or read/write access,
again either selectively or universally, to his data set.

The sharing of code is accomplished through the segment and page
tables that support the system's dynamic address translation facility.
To take full advantage of code sharing, programs must be written in
a fashion that separates read-only, address-free instructions and data
from variable, address-dependent instructions and data.

For further information sece:

Appendix A -- Lett, A. S. and Konigsford, W. L. TS5/360: A Time—
Shared Operating System, pp. 26-28.

Appendix -B -- Martinson, J. R. Utilization of Virtual Memory

in Time Sharing System/360, pp. 4-7.

FOREGROUND-INITIATED BACKGROUND

After initiating a conversational task in TS55/360, three courses
of action are available to the user: (1) to complete the task
conversationally, (2) to initiate one or more independent,
nonconversational tasks (as part of his original task), or (3) to
complete his original task in nonconversational mode. The second
alternative may be accomplished by using the EXECUTE command one or
more times during a terminal session; each EXECUTE command will cause
a prestored task to be initiated and handled as an independent
nonconversational task. The third may be accomplished by issuing a
BACK command during the conversational task; this will cause a prestored
continuation (from the point at which the BACK command was issued)
of the task to be handled as an independent nonconversational task.

For further information see:

IBM System/360 Time Sharing System: Command System Users Guide
{C28-2001)

COMMAND SYSTEM

TSS/360 provides commands for managing tasks, managing data, using
language processors, controlling program execution, and tailoring the



command system to the installation's and/or user's needs. The systen-
supplied command names may be changed or abbreviated at the user's
discretion, and the user may establish whatever default values for
command parameters he desires.

The keynote of the TSS5/360 Command System, therefore, is flexibility.
The user has the option, and ability, of remaking the command systenm
to fit his needs, even to the extent that his becomes a AdAifferent
system. An additional feature is a message-handling capability that
permits the user to filter out system-supplied messages and/or to
insert his own.

For further information see:

Appendix C -- McKeehan, J. B. An Analysis of the TSS/360 Command
System II.

Appendix A -- Lett, A. S., and Konigsford, ¥W. L. TS5/360: A
Time-Shared Operating System, pp. 26-28.

DELTA DATA SEIS

Changes to the system can be tested to ascertain their effect,
without permanently updating the system, by means of delta data sets.
These changes may be either IBM-supplied maintenance packages or user-
initiated modifications. The changes, which remain in effect fronm
startup until shutdown, are contained in delta data sets and must
appear on one private volume (delta data set volume).

During the startup procedure, delta data sets are searched for
initial virtual memory, resident supervisor, and resident support
system centrol sections; then, system data sets on the TPL volume are
searched. After the query "DELTA DATA SETS?", the order of search
for these data sets is specified by the operator. There are three
loadlists: one for the resident supervisor, one for initial virtual
memory, and one for the resident support system. Only those control
sections identified by name in a loadlist are loaded. Since these
loadlists are control sections and are located by STARTUP in the same
manner in which any other control section is located, an alternate
loadlist from that contained in the system data sets can be included
in a delta data set. Such a loadlist might be used to add control
sections to initial virtuwal memory, to the resident supervisor, or
to the resident support system. Tasks executed during the current
session will run with all such modifications to initial virtual memory,
the resident supervisor, and the resident support systen.

For further information see:

IBYM System/360 Time Sharing System: System Generation and
Maintenance (C28-2010).

TABLE-DRIVEN SCHEDULER

CPU time in TSS/360 is scheduled by means of a system table that
permanently resides in main storage as a system control block. The
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supervisor refers to this table when scheduling tasks, both at task
initiation and during execution of the task, to determine when next
to schedule the task and for what amount of CPU time., The scheduling
table may contain as many as 256 scheduling levels, called S5TE.

The STP givenr te a task initially reflects the user priority angd
task type (that is, conversational or batch). Once a task has been
initiated, the supervisor may move a task to another level -- for
example, when a task is switched from conversational to batch mode.
Levels are also adjusted for tasks that have bheen determined to be
I /0-bound or execute-hound.

A programmer may also atfect the scheduling of a task. The PULS®H
macro-instruction changes the STE level of a task to another preset
"pulse-level" that is associated with the current level. The CHANGE
macro-instruction changes the task's level to a specified level. The
PRESENT macro-instruction displays the current schedule level of a
task.

For further information see:

Appendix A -=- Lett, A. S., and Konigsford, W. L. TSS5/360 A Time-
shared Operating System, pp. 19-20.

VIRTUAL MEMORY

The dynamic-address-transiation feature of the Model 67 is utilized
in TsSS/360 to provide a virtual memory, or virtual address space, equal
in size to the logical addressing capability of the system. When used
with the 32-bit addressing structure, this provides each user of the
system with 4 billion hvtes of addressablee storage; when used with
24-bit addressing, 16 million bhytes. To the user, this means freedom
from overlay considerations and improved throughput because it provides
a solution to the prohlem of main-storage fragmentation. The
translation process, which utilizes a two-level pnage table structure
and an associative register array, is completely automatic and the
user need not know where his program is in main storage during
execution.

For further information sco:

Appendix D -- Johnson, 0. W., and Martinson, J. R. Virtual
Memory in Time Sharing System/360.

Appendix B -- Martinson, J. R. Utilization of Virtual Memory
in Time Sharing System/360.

MONITORING AND DEBUSGI)

From an external view, the two TSS5/360 monitoring and debugging

aids -- Time Sharing Support System (TSSS) and Program Control System
{PCS) =-- are very similar. Indeed, many of their commands have the

same names and provide similar functions. However, TSSS is a systen
monitoring and debugging aid, while PCS is a user monitoring and
debugging aid.



T555 actually comprises a resident support system (RSS), which is
used with the supervisor, and a virtual support system (VSS), which
is used with a user's virtual memory (by a system programmer, not by
the user). Ry implanting dynamic statements (with the AT command)
at various points in the supervisor or a virtual memory and coupling
them with conditional (IF) statements, patches can be tested, dumps
or displays taken while execution is going on, and bugs corrected --
all while the system is operating.

PCS provides similar features to each user so that he can perfornm
similar functions within his own program. While PCS has certain limited
system applications, the power of TSSS makes the use of PCS unnecessary
in this case.

For further information see:

i1B1 System/360 Time Sharing System: Tipe Sharing Support Systenm
(C28-2006) .
131 System/360 Time 3haring System: Command System Users Guide
(C28-2001).

T55/360 provides remote as well as on-site hardware serviceability
facilities for the customer engineer. The remote capability is
significant that a customer engineer may run the hardware serviceability
aids from any physical location, provided he has terminal access to
T35/360. As a siqgnificant percentage of failures rasult in a "no-
trouble-found"” situation, this remote capability allows the customer
engineer to verify that he can recreate the failure before going on-
site to accomplish the repair. Tn addition, the on-site customer
engineer who may not be trained on a particular I/0 device can call
for assistance from a remote location having terminal access to his
installation.

The On-Line Test System {OLTS) is a set of programs provided for
testing I/0 devices in an operating TSS/360 environment. Since OLTS
runs in a multiprogrammed, time-sliced, relocated environment, it does
not require a physically partitioned subsystem. This greatly increases
the availability of the total system by eliminating downtime caused
by partitioning of unique components indispensable for the operation
of the systen.

OLTS is initiated by a customer engineer from a terminal after an
appropriate log-on procedure. The customer engineer communicates
through this terminal with the OLTS control program to specify the
device to be tested, the test programs to be run, and options to be
exercised. Through these means, he can obtain information about failure
symptoms, perform device adjustments or preventive maintenance, and
subsequently verify the successful repair of the device.

The core of OLTS is the control program with which the customer
engineer interfaces. It allows him to obtain device allocation fronm
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an operational TSS/360, interorets and carries out his commands,
sequences the test programs, and provides various other utility
functions.

The Virtual Memory ®nvironment Recording Edit and Print (VHMERED)
program employs the preservation-recording facility of TSS/360. VMEREP
retrieves the error-incident information recorded hy TS55/360 and prints
it in an English-langnage format useful to the customer engineer.

After an appropriate log-on procedure, the customer engineer may request
that the error-incident recording be printed at a terminal or scheduled
for output at a high-speed printing device.

For further information sce:

IBM System/360 Time Sharing System: On-Line Test Control Systenm
(Y28-20042) .

=

System/360 Time Sharing Syster: System Logic Summary (Y28-
9.
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DATA MANAGEMENT

Data Management in TSS/360 is supported by three "virtual" access
methods. They are termed "virtual" because, like virtual memory, they
utilize only one physical block size -- the U4096-hyte page. Fach of
the methods is physical-device independent; data set management is
performed only in virtual memory.

The virtual sequential access method (VSAM) permits records to bhe
retrieved in the order in which they were created. The virtual index
sequential access method (VISAM) parmits records to be retrieved by
key. The virtual partitioned access method {VPAM) permits VSA# and
VISA¥ data sets to be made members of a single data set in which each
of the members can he processed independently of the others.

For further information see:

Appendix B =-- Lett, A. S. The Approach to Data Management in
Time Sharing System/360.

Appendix A -- Lett, A. 5., and Konigsford, W. L. TSS/360: A
Time-shared Operating System, pp. 22-24.



APPENDIX A

TSS /360: A time-shared operating system

by ALEXANDER 8. LETT and WILLIAM L. KONIGSFORD

International Business Machines Corporation
Yorktown Heights, New York

INTRODUCTION

Experience with TSS/360 design, development, and
application has been varied and interesting. For ex-
ample, as we began putting the initial system together,
significant performance problems were observed that
had not been predicted by the earlier simulation efforts.
These problems had not been anticipated because the
paging characteristics assumed in the model develop-
ment were significantly better than the actual system
characteristics.

Measurements and analysis soon indicated that one
significant problem was in the organization of the dyna-
mic loader tables. This was overcome by splitting these
tables into functional sub-tables, which greatly re-
duced paging during the loading process.

However, the paging problem was widespread. In
most cases, the size of the actual code was two to three
times the size expected by the model. In addition to the
adverse effects on the available core space, this caused
the paging input/output traffic to be significantly
larger than expected, the level of possible multipro-
gramming to be smaller than expected, and the number
of tasks wholly contained on the paging drum to be
fewer than expected.

During the multi-terminal testing phase of TSS/360,
another significant paging problem was discovered.
Core-space control was based upon dynamically limit-
ing the number of tasks active in core to the maximum
that their estimated core usage would allow. A greater
number of tasks would cause a high rate of unproduc-
tive paging within the system; a lesser number would
not fully utilize the system facilities. The core-space
control was not functioning properly due to bugs. A
temporary solution was to restrict the number of active
tasks in core to a fixed number. This reduced the per-
formance problem but, when the same test cases were
later run under the correctly operating dynamic al-
gorithm for core-space control, the dynamic algorithm
was found to be consistently more effective than the

static algorithm had been. This generally valid con-
clusion has been demonstrated in all area of TSS/360.

Since the initial release of TSS/360 in October 1967,
performance has improved significantly with each sub-
sequent release. The initial emphasis was on building a
stable system, followed by extensive measurement-and-
analysis efforts to identify potential system modifica-
tions. Then, through comparatively small changes in
coding and resource management algorithms, the sys-
tem performance was significantly improved.

From the material presented in this paper, we feel
that several conclusions—which are supported by our
operating experience—can be drawn:

« Paging is a sound concept. As expected, it is a
direct solution to the dynamic-core-storage-al-
loeation problem.

» Paging also allows for a hierarchy of auxiliary
storage which, in the case of TSS/360, involves
high-speed drum and slower-speed but larger-
capacity disk files. A larger number of users
can be supported economically on a system by
subdividing each user’'s space requirements
between drum and disk storage. From experience,
sound algorithms can be developed for manage-
ment of this storage, which is critical to the over-
all performance of the system.

+ A data set access method based on page-size fixed
block images has the same simplicity of implemen-
tation and elegance of application as in the core-
storage situation.

+ In the improved command system, we have found
that a highly adaptive, open-ended system is not
only more valuable to terminal users, but simpler
to implement.

» The best strategies for resource allocation are
those that address the allocation of all system
resources in an integrated way, rather than op-
timizing specific sub-portions. In general, the
simple round-robin strategy is fairly good, but

This paper was presented at the 1968 Fall Joint Computer Conference
and appears in Volume 32 of the Conference Proceedings.

1968 by the American Federation of Information Processing
Societies, New York, New York, 10017.
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the need to emphasize certain characteristics
(such as response time to conversational requests)
requires the separation of resource requests by
priority.

It is the purpose of this paper to highlight the key
elements of TS8/360—control system organization,
user services, and task structure—in order to describe
and explain the design of a time-shared operating sys-
tem.

Control system organization

There are many possible resolutions to the questions
concerning the division of functions within a control
program, the interfaces between portions of the control
program, and the decision as to which portions are to be
resident in main storage and which nonresident.

In the design of TSS/360, the historical examples of
the MIT Compatable Time Sharing System! and the
IBM Time Sharing Monitor system? led towards the
concept of a small, fully resident monitor whose primary
function would be to create a multiprocessing, multipro-
gramming enviornment.

In T8S/360, this monitor is called the Resident
Supervisor. The Resident Supervisor is interrupt driv-
en, and is responsible for controlling the real resources
of the system and for performing services in response to
requests originating from tasks. A task represents the
environment in which a user’s processing is performed.
There is one task for each conversational user of the sys-
tem. A fundamental design decision was to provide
within each task the facilities of a full operating system.
Figure 1 depicts this overall system structure.

Task processing is always performed in relocation
mode with the dynamic-address-translation feature
activated. Tasks are therefore said to operate in
virtual memory.

The Resident Supervisor, on the other hand, does not
use dynamic address translation—that js, instructions
within the Resident Supervisor have main storage ad-
dresses, not logical addresses, as operands. The decision
to make the Resident Supervisor operate in the non-
relocation mode was based upon the efficiency resulting
from eliminating dynamic-address-translation overhead
and upon the increased protection resulting from the
fact that no location within the Resident Supervisor can
be addressed by a program operating in virtual memory.
Resident Supervisor routines, however, are capable of
addressing all of main storage and of executing all of the
instructions in the System/360 instruction set,.

Another basic TSS/360 design decision was to have
tasks be interrupt driven like the Resident Supervisor.
It was felt that this structure provided the maximum of
flexibility in task development. Accordingly, task-con-
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FIGURE 1—T8S/360 program structure

trol structure is in many ways analogous to the control
structure of the Resident Supervisor.,

In order to provide a wide variety of control program
services, while at the same time protecting user tasks
from each other, task virtual memory routines are di-
vided into two classes:

» vprivileged routines, which operate in the priv-
ileged state;

+ mnonprivileged routines, which operate in the non-
privileged, or user, state.

As the term implies, routines operating in the priv-
iliged state are authorized access to many supervisor
services denied to routines operating in the user state.
In this way, most parameter validation and other pro-
tection checking can i)e eliminated from the Resident
Supervisor. In addition to decreasing the overall size
of the Resident Supervisor, this arrangement allows su-
pervisor services to be more general and powerful.

The way in which the privileged state is implemented
is as follows:

» In a task’s virtual memory, pages that are allo-
cated to privileged routines (and their associated
tables and work areas) are assigned a storage pro-
tection key that differs from that assigned to user
programs. This will cause a storage-protect inter-
ruption if the privileged part of a task’s virtual
memory is addressed by a user program. Priv-
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ileged routines, on the other hand, can address
all of the task’s virtual memory.

+ The dynamic loader serviece routine will not
treat modules from a user’s library as privileged
routines. Thus, an ordinary user cannot cause his
own version of a system routine to be loaded and
executed as a privileged routine, a facility avail-
able to the systems programmer.

A user program normally requests system services
through instructions whose execution cause
an interrupt to the Resident Supervisor. (In sys-
tem/360 such interruptions are termed supervisor
calls.) In response to the supervisor call, the Re-
sident Supervisor, by manipulating CPU status,
creates a task interruption to invoke a privileged
system services routine. The privileged routine
can then determine if the user’s request is valid. If
it is, the privileged routine may then invoke other
TSS/360 supervisor calls while in the process of
performing services. If the request is not valid, it
will be rejected, thus preventing a nonprivileged
routine from causing incorrect system operation.
The reason for eommunicating between non-
privileged and privileged state via the Resident
Supervisor is that only the Resident Supervisor
can execute the instruction that alters a task’s
protection key and, therefore, its state.

The privileged system service routines constitute the
bulk of the TSS/360 operating system. These routines
are either shared by all tasks or are located in indepen-
dent service tasks. Printers, for example, are serially
shareable and thus are serviced through an independent
task. On the other hand, the dynamic loader provides
service to each task and is therefore shared in parallel.

System control elements

The Resident Supervisor is primarily composed of an
interrupt stacker, a queue scanner, several processors, a
number of error handling and service subroutines, a
dispatcher, and the tables that form the system’s data
base.

Entry into the Resident Supervisor is via an inter-
ruption. Some interruptions are processed immediately
either because of their urgency (e.g., interruptions de-
noting CPU malfunctions) or for efficiency (e.g., inter-
ruptions which require a change of task state).

For most interruptions, however, the interrupt
stacker builds a record called a generalized queue entry
(GQE), into which a description of the interruption is
placed. This GQE is then placed upon an appropriate
queue. A GQE is a standard control block used through-
out the Resident Supervisor to contain a deseription of
the work to be done by a device or facility that is con-

trolled by the Resident Supervisor. Quite frequently,
one control block may belong to several queues and con-
tain forward and backward pointers to each of them. In
processing these multi-threaded lists, the Resident
Supervisor becomes, in effect, a list processor.

Interruptions are disabled during processing in the
interrupt stacker. However, in contrast to many sys-
tems, the Resident Supervisor generally executes with
interruptions enabled to facilitate processing of inter-
ruption queues, on a priority basis, without regard to
sequence of arrival. When the interrupt stacker com-
pletes processing, it generally exits to the queue scan-
ner.

Every system needs some facility for sequencing the
work to be performed by the control program. In sys-
tems which operate with interruptions disabled, the
hardware priority-interruption system provides this
function for the interrupt-handling routines, and some
other control-program routine provides a similar func-
tion for the system'’s resource-allocation routines. With-
in TS8S/360, these two functions have been combined
into one centralized queue scanner and a scan table.
Each system queue is anchored in the scan table.

Because the queue scanner is a central facility within
the Resident Supervisor, it must operate efficiently if
the Resident Supervisor is to operate efficiently. To
achieve this efficiency, the queue entries in the scan
table are organized to minimize the number of entries
that must be inspected when the scanner is searching for
work. Moverover, the organization of scan-table entries
reflects an awareness of the possible interactions among
queues so that, for example, an exit is not made to a
processor only to find that a needed facility (such as an
I/O path) has been allocated to some other request.

When the queue scanner finds work that can be done,
it passes control to the appropriate processor; when it
determines that there is no currently available super-
visor work, control is transferred to the scheduler and
dispatcher.

TSS/360 was designed for a generalized multiprocess-
ing environment in which multiple CPUs may be
simultaneously executing the single copy of the Resi-
dent Supervisor. To facilitate multiprocessing, it was
necessary to define a number of programmed interlock
flags to prevent unwanted recursion and logical race
conditions. In general, TSS/360 used the approach of
defining a small number of interlocks, each covering a
wide scope. These interlocks generally guard entrance to
the queue processors and to the major system data
bases.

The purpose in minimizing the number of interlocks is
two fold:

« Tirst, placing interlocks at the entrance to the
queue processors tends to prevent a CPU from
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entering a path of logic only to soon be forced to
await the resetting of an interlock. When the
queue scanner finds an interlocked queue proces-
sor, it simply bypasses inspecting that queue and
proceeds to the next entry in the sean table.
 Second, in a multiprocessing situation, it is desir-
able to permit one CPU to perform error-recovery
procedures whenever another CPU encounters a
processor or storage unit error. Because all pro-
cessors use the single copy of the Resident Super-
visor, it may be necessary for the recovery CPU to
reset programmed interlocks initially set by the
malfunctioning CPU. This means that the re-
covery CPU must be aware of the reason why the
interlock was set. The fewer the system inter-
locks, the simpler the recovery procedures can be.

In general, a queue processor locks its associated

queue upon entry and unlocks the queue as soon as the

processor has dequeued a GQE for processing. In certain
cases a queue processor may lock a queue until some
specific future event or condition has occurred. Each
scan table entry has indicators reserved for such use.

TS8/360 has adopted a policy of concentrating the
physical locations of the interlock flags in an orderly
fashion within a very few key system tables. This has
proved to be a valuable aid to the development pro-
grammers, who can determine the status of the Resident
Supervisor by inspecting or displaying these system
tables.

The following is a brief deseription of the major pro-
cessors within the Resident Supervisor:

* Task Core Allocation: Controls the overall core
storage space; it processes requests for space allo-
cation and responds with the location assignments

o Auxiliary Storage Allocation: Controls auxiliary-
storage space; it processes requests for drum and
disk page-space allocation.

« Page Drum Reguest: Processes input or output re-
quests for the auxiliary paging drum. Because of
the unique mechanical characteristics of the drum
(several pages per track with instantaneous
switching), the requests are sorted by angular
position to maximize throughput.

 Page Drum Interrupt: Processes interruptions that
are the result of paging drum input/output opera-
tions. This processor will attempt to keep the
drum I/0O channel busy by adding drum requests
to an active drum I/O channel program. It calls
the page-posting routine to process the results and
releases core space when appropriate.

e I/0 Device Request: Processes requests for 1/0
operations to devices other than the auxiliary stor-
age drum; it first determines, by calling the path-

finding subroutine, if a free path to the requested
1/0 device is available and, if possible, reserves a
path.

I/0 device requests are either disk paging re-
quests or other I/O requests. For disk paging re-
quests, a subprocessor is called to convert the re-
quest into an I/O channel program. For other
1/0 requests, a request control block chained from
the queue entry already contains the I/0 channel
program. This I/O program is normally created
by the task requesting the I/0O. The I/O opera-
tion is started by the request processor, which re-
turns to the queue scanner.

» Channel Interrupt: Processes input/output inter-
ruptions that originate in other than the paging
drum. It determines if the interruption is syn-
chronous or asynchronous by verifying if a re-
quest on the corresponding device-request queue
had initiated the operation. If the interrupt is syn-
chronous, various processing is performed. If the
interrupt is asynchronous, an interrupt entry is
queued for the task currently associated with the
device. If no task is currently associated with the
device, and it is a terminal, the channel interrupt
processor will call a routine to create a new tasgk
that will then be dispatehed. The newly created
task will begin execution of the appropriate task-
initialization routines in response to its initial
interrupt.

o Timer Interrupt: Processes timer interruptions; it
determines if a task has reached the end of its
time-slice or whether a task-specified time interval
has elapsed. At time-slice end, various processing
is performed. For task-specified intervals, a task-
simulated timer-interrupt entry is queued for the
task.

TSS/360 error recovery and retry procedures are de-
signed to dynamically correct errors or to minimize the
effect of errors on the system as a whole. Although the
specific recovery procedures differ for each type of error,
the general approach to recovery is the same. Failing
operations are retried where possible, failing hardware
devices (e.g., a CPU or I/O device) are checked and
intermittent failures retried. Where an operation can-
not be retried at all or is retried without success,
“hard”’ failure is recognized and fault localization, to
the component level, is invoked. The failing element or
device is removed from the system in an orderly man-
ner, so that only the affected tasks are disrupted. An
environment record is gencrated for later analysis by
service personnel and the system continues operation.
It is only as a last resort, when recovery is not possible
and when removal of the failing component would
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render the system inoperative, that the system is shut
down.

In addition to the queue scanner’s scan table, the
Resident Supervisor contains data bases to describe
task status and to describe I/O path status.

Each task has associated with it a control table that is
separated into portions. The first portion is needed for
scheduling and control purposes, so it is kept con-
tinuously resident in main storage. The second portion
contains the task’s relocation tables that must be in
main storage during a task’s time-slice, but not neces-
sarily between a task’s time-slices.

To allow a user’s program to be highly device-inde-
pendent and to allow the Resident Supervisor to remain
relatively insensitive to dynamie changes in system con-
figuration, TSS/360 users normally employ device-
class codes that describe a device as a member of a class
of like devices. Furthermore, the TSS/360 access me-
thods employ symbolic addresses to designate devices.

The Resident Supervisor uses a group of tables, called
pathfinding tables, to translate a symbolic device ad-
dress into a hardware address that specifies a path
through a channel control unit, channel, and device con-
trol unit to the device. The supervisor-maintained path-
finding tables are used to determine if a device is busy
instead of attempting to physically address the device.
In a typical environment, it is expected that there will
be multiple paths to most devices. In such a situation,
the efficiency of I/O processing will be increased by re-
ducing the number of “busy” or ‘“unavailable” condi-
tions encountered during an attempt to initiate an I/O
operation. The use of common pathfinding tables also
assists in synchronizing I/0 processing in a multiproces-
sing environment, because an I/O interruption may be
accepted by any available CPU, not just the CPU that
initiated that operation.

In retrospect, the design of the Resident Supervisor
has proved to be sound and remains, in outline, essenti-
ally as initially described in 1965. Experience has
shown that it is nearly impossible to predefine an opti-
mal overall system. A significant amount of tuning of
resource-control algorithms and processing procedures
must be expected. We have found that the best method
to do this tuning is by modification and measurement of
the running system.

Task control elements

TS8S/360 includes a scheduling algorithm for deter-
mining the sequence of alloeation of CPU time to com-
peting tasks. As implemented initially, the scheduling
algorithm divided tasks into conversational and non-
eonversational groups.

The original algorithm followed a round-robin sched-
ule for the active tasks (those not waiting for the com-

pletion of some event, such as terminal input). Con-
versational tasks were scheduled for dispatch in con-
secutive order to the end of the list. At this point, a test
was made to determine if an installation-specified real-
time interval had elapsed. If not, the system devoted
the remainder of the interval to the round-robin execu-
tion of the nonconversational tasks. If the interval had
been exceeded, the system went back to redispatch the
first active conversational task.

As a result of system experience, this algorithm was
modified. All active conversational tasks are now dis-
patched in round-robin fashion until no further active
conversational tasks are available. Then the system be-
gins to dispatch active nonconversational tasks, but
with provision for pre-emption whenever a conver-
sational task becomes active. Instead of round-robin
execution of the nonconversational tasks, the system
tends to run to completion as many nonconversational
tasks as can be effectively multiprogrammed within the
available core resource. This modification was incor-
porated because round-robin scheduling for the non-
conversational tasks served no useful purpose and re-
duced system throughput by causing the system to do
additional paging in switching resources.

The scheduling algorithm outlined above is not con-
sidered to be the optimum for general time-sharing
operation in any specific customer’s installation. Ex-
perience with scheduling algorithms and their effect
upon the system dictated the need to provide a flexible
facility for modifying the task-scheduling algorithm.
TSS/360 is adding this facility, called the table-driven
scheduler, in which table entries are made to define se-
quences of states and attributes that a task can assume.
When created, each task is assigned an initial table
entry in which specific parameters explicitly state:

« the relative priority of every task associated with
that table entry

« whether such tasks may be interrupted by a
higher priority task

+ the time-slice quantum to be allocated to the task

« the maximum core space to be allocated to the
task

« other parameters concerned with the action to be
taken when execution of a task is suspended.

Execution of a task can be suspended for reasons such
as time-slice end, terminal-wait condition, or excessive
paging. Associated with each of these conditions is a
value specifying the table entry to be assumed by the
task on the occurrence of that condition.

The collection of schedule table entries, which can be
prepared at each installation, specify the scheduling al-
gorithm to be followed by the system. The table
entries can range from extremely simple ones that
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simulate a round-robin queue, through exponentially
related algorithms, to complex time-and-priority al-
gorithms,

The allocation of the CPU resources to tasks, to best
carry out the sequence selected by the scheduling al-
gorithm, is controlled by the dispatcher. The dispatcher
first determines if a new task can be placed into execu-
tion. This is determined by comparing an estimate of
the core pages a task is expected to require during its
next time-slice with the number of unreserved and
available core pages. The estimate of a task’s page
requirements is based on its activity in the preceding
time-slice. If enough core pages are available, the count
of available core pages is reduced by the estimated
number and the task is prepared for execution. This
dynamic control of the number of tasks allowed to con-
currently execute in core storage is vital to avoid over-
loading a paging system such as TSS/360.

A modification has been made to the dispatcher to
dynamically detect CPU-bound tasks. When more than
one task is ready for immediate execution, non-CPU-
bound tasks are dispatched before CPU-bound tasks.
Through this strategy, the system dynamically maxi-
mizes its probability of multiprogramming (overlapping
1/0 with computing).

When a task is selected for immediate CPU execu-
tion, a task-interrupt-control routine in entered. The
need for a task-interruption mechanism arises because
the Resident Supervisor processes requests for system
services in a logically independent fashion, that is, the
Resident Supervisor may be concurrently performing
several services for a task. There is no way to forecast
the order or time of completion of processing of each of
these services.

Therefore, for a task to operate asynchronously with
respect to the completion of system services, a task-in-
terruption mechanism has been created that is anal-
ogous to the hardware-interruption mechanism that
allows the Resident Supervisor to operate asynchro-
nously with respect to the real computer system. Opera-
tion of task interruptions is similar to hardware inter-
ruptions. The major difference is that the hardware in-
terruptions convey a change in the status of the entire
system to the Resident Supervisor, while the task inter-
tuptions represent a change in status of only that por-
tion of the system currently allocated to the task being
interrupted.

A task interruption is requested by a Resident Super-
visor routine when it discovers an event, such as I/0
completion, whose further processing is a task’s re-
sponsibility. However, a task is not always prepared to
receive an interruption; further, the task for which the
interruption is destined may not be the next task to be

dispatched. So there is a software queueing-and-masking
facility that is analogous to the hardware facility.

Before control is given to a task, the dispatcher trans-
fers control to the task-interrupt-control routine, which
checks the task’s interruption queues for unmasked
pending interruptions. If noneis found, control is given
to the task at the location saved in its control table.

If pending interruption is found, the task-interrup-
tion-control routine changes the location pointer to
point to an appropriate interruption processor of the
Task Monitor. Now, control will go to the interruption
processor. This action of influencing the dispatcher’s
transfer of control is called a task interruption.

The Task Monitor consists of a group of privileged ser-
vice programs that receive and process task interrup-
tions on a priority basis via queueing, seanning, and
dispatching mechanisms analogous to those of the Resi-
dent Supervisor. The Task Monitor may thus be consid-
ered a task-interruption handler, whereas the Resident
Supervisor is a hardware-interruption handler.

The Task Monitor performs these major functions:

+ Provides an interface with the Resident Super-
visor for receiving and analyzing task-oriented
interruptions.

+ Provides linkage to required service routines or
user routines, either by immediate dispatching
or by queueing the interruption for later dis-
patching in a priority sequence.

« Maintains the integrity of the task and service
routines that are dispatched, primarily through
save-area management.

The Task Monitor is designed to provide for flexible
handling across a wide range of interruptions. Thus, it
provides an ability to dynamically specify task-inter-
ruption-handling routines and to dynamiecally arm, dis-
arm, and change the relative priority of these routines.
As with the queue scanner of the Resident Supervisor,
provision has been made to use this generalized process
in an efficient manner,

User services

Because TSS/360 is a comprehensive operating.sys-
tem, it offers a wide variety of user servicest, such as:

+ Command system

« Program control subsystem

» System programmer support system

« Catalog management

+ Page-oriented data management

s Magnetic-tape and unit-record data management

*  Dynsmic program loading

+ Virtual memory allocation

» External storage allocation

3
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» Resource control and accounting

« Task-interruption control

« Language processors

From this list, we have chosen to describe in this sec-
tion the command system, the page-oriented data-
management services, and the dynamic-program-load-
ing services. Not only does each of these represent a
key aspect of TSS/360, but each has relevance to prob-
lems of general interest.

Command system

The command system is the principal interface be-
tween a time-sharing system and its users. Therefore, it
has a position of special importance in TS8S/360.

Initially, the TSS/360 project attempted to define a
set of commands that would be satisfactory for all users.
The result was a rigid set of commands that completely
satisfied no one. This experience led to the conclusion
that it is better to implement a command system than a
command language.

As a result, TSS/360 now contains a flexibile com-
mand system that is delivered with a set of simple com-
mands that can either be employed as is or be com-
pletely replaced and expanded in a straightforward
fashion. This approach allows each installation and,
more important, each user at an installation to cus-
tomize the system-user interface to his own needs.

In TSS/360, the syntax of the command system has
been separated from the semantic content of command
statements. This regularization of syntax and structure
has resulted in a simpler implementation utilizing a
single, centralized command analyzer and execution
facility.

The command-system syntax is simple and natural.
Each command consists of an operation name, which is
usually followed by one or more operands. As supplied
with the system, the delimiting character for the opera-
tion name is a blank or tab; the delimiter between
operands is a comma; the delimiter between commands
is either a semicolon or the end of a line of input; and
the line-continuation flag is a hyphen entered as the last
nonblank character of a line.

When an individual enters his commands conversa-
tionally, he is told of the actions taken by the system in
response to each command and, when necessary, he is
prompted for additional non-defaultable information
needed to complete an action, is informed of errors (if his
command entry is either incomplete or incorrect), and is
told of the options he may exercise in response to an
error. Special care has been taken to make the types of
options consistent for all commands. Nothing, for ex-
ample, could be more frustrating to a user than to be re-
quired to resubmit an operand with delimiters in one
situation and without delimiters in another.

Each user can establish his own spellings, abbrevia-
tions, or operation names for commands through a
SYNONYM facility. Use of this facility sets up one or
more equivalences for the original name but does not
destroy it.

Any command operand may be entered either by
position or by keyword. Keywords may appear in any
order and have the general form KEYWORD = value,
where KEYWORD is the name of the operand and
“yalue” is the actual value of the operand. For each
command operand, the user may select the form that is
most convenient for him. A keyword has a global mean-
ing since it is associated with the value to be passed, not
with the particular command invoked. Therefore, the
SYNONYM facility, available for command operation
names, is also available for keywords. In contrast to
many other systems, almost every command operand
has a default value. Moreover, the user need not accept
rigid default values for operands, for he can easily over-
ride those supplied with the system. For example, a
standard default for the FORTRAN compiler might be
to produce an object code listing. Any TSS/360 user can
individually change this default so that, in his case, the
language processor will not produce an object listing un-
less he specifically requests it.

TSS/360 maintains a special prototype data set that
is copied into the user’s library when he is initially
joined to the system. This data set, called a user pro-
file, contains three tables: the first specifies the initial
default values for command operands; the second con-
tains his character-translation list (to allow redefinition
of printing characters and control characters); and the
third contains command operation names and equiva-
lences. The user can modify any of the entries in these
three dictionaries, which, in conjunction with the com-
mand system, define his command language.

The command system includes as a fundamental fea-
ture a command procedure facility, which permits the
user to create a stored procedure comprising com-
mands and logical statements that control the flow of
command execution. Invocation of a command proce-
dure is identical to invocation of a system-supplied
command. The command statement consists of the pro-
cedure name followed by a series of parameters, whose
values are inserted by the command system at the prop-
er points in the procedure. The resultant statements
will be interpreted as though they had originated in the
input stream. For maximum power, command proce-
dures can be nested and/or recursive. When defining a
procedure, a user can utilize the facilities of the
TSS/360 text editor. Once defined, a procedure may be
edited, shared, copied, etc., as with any other file.

Another interesting feature of the command system
is the use of “null commands.” For example, immedi-
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ately after a user has signed on the system but before
control is returned to the terminal, TSS/360 auto-
matically invokes a command procedure ealled ZLO-
GON. As initially supplied with TSS/360, ZLOGON is
a “null” command—it does nothing. However, the in-
dividual may redefine the ZLOGON command proce-
dure to perform functions to augment the initialization
of his tagk. Thus, “null” commands are conceptually
similar to the “user exits” frequently associated with
general-purpose programs.

The command system also provides a facility for de-
fining new command primitives. Efficiency can be en-
hanced through use of this “Built-in” facility as the
command system can directly bypass much of the inter-
pretive processing required in the expansion of com-
mand procedures.

Still another feature of the command system avail-
able to the user is the ability to augment system-mes-
sage handling:

* He can request explanation of system messages or
of key words in such a message; word explanations
may continue to a number of levels.

+ He can dynamically specify the classification of
messages he is to receive; this filtering, or
masking, capability provides different message-
severity levels and message lengths.

* He can construet a personal message file that will
be igsued in lieu of the corresponding system-sup-
plied messages.

The command system also provides a flexible system
for handling attention interruptions that is quite use-
ful. For instance, suppose a user has forgotten to iden-
tify a library that contains a subroutine required by his
mainline program. When he receives a system diagnos-
tic message, he can use the attention button to re-enter
the command mode, define the library, and then resume
processing at the point where the message was issued.

The program control subsystem of the command sys-
tem is a powerful facility that permits a user to inspect
and modify programs during execution, These dynamic
control facilities eliminate the need for user-written de-
bugging and control instructions that must be pre-
planned, coded into the user’s programs, and then later
removed.

The output from the TSS/360 language processors
may optionally include a dictionary econtaining the
values and other attributes associated with the symbols
or variables used in the source program. Through the
use of this dictionary, the program control subsystem
can properly interpret debugging statements utilizing
source program symbols and can properly format its in-
put and output.

Even during the initial shakedown of TS8/360, there

were many users who insisted upon using the system
only because of the power associated with a dynamic
execution-control system. This has made clear that an
essential element of any interactive system must be a
dynamic symbolic debugging and control facility.

Page-oriented data management

The access methods that support page-oriented data
management in TSS/360 are called virtual access’
methods. The name “virtual” was given to these access
methods to reflect the fact that they utilize only one
physical block size—that of a page. The virtual ac-
cess methods were specifically designed for a time-shar-
ing environment and present a clear division between
data set management and physical device management.
Each of the three virtual access methods provides ac-
cess and processing capability for a specific type of data
set organization:

+ Virtual sequential access method (VSAM)
+ Virtual index sequential access method (VISAM)
* Virtual partitioned access method (VPAM)

In all three of these access methods, only data set
management is performed in virtual memory; the con-
struction and execution of channel programs and error
recovery (i.e., physical-device management is performed
by the Resident Supervisor. The direct-access volumes,
on which TSS/360 virtual organization data sets are
stored, are entirely formatted into fixed-length, page-
sized data blocks. No key field is required. The record-
overflow feature is utilized to allow data blocks to span
tracks as required.

The page-sized block for data storage was selected for
a number of reasons. For example, rotational delay is a
significant factor in direct-access throughput, since it
cannot be overlapped as mechanical-seek time can. Any
block size significantly smaller than a page would be
extremely wasteful of total direct-access capacity unless
elaborate strategies were utilized to avoid rotational
delay.

The need for a large block size is also apparent when
the simultaneous direct-access activities of multiple
users are considered. Due to conflicts in demands for ac-
cess arms, a mechanical seek may frequently be re-
quired before accessing a data block. A larger block size
makes better use of the total access cycle while, at the
same time, reducing the frequency of access requests by
each user,

The direct-access volume-packing efficiency is also
quite high for page-sized blocks. First, the data-record-
ing space is utilized at better than 909, of the theoreti-
cal capacity that could be obtained by the use of cylin-
der-length blocks. Second, the smallest external-storage
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allocation unit is a single page; hence, a large number of
small data sets can be kept on one volume. Further-
more, large data sets need not be allocated physically
contiguous external storage space. This contributes to
higher volume packing efficiency by reducing external-
storage space fragmentation.

The physical representation of a typical virtual se-
quential organization is shown in Figure 2. The speci-
fication of any virtual data set is contained within the
data set’s external page map, which is stored on the
direct-access volume together with the data pages.
There is one entry in the external page map for each
page-sized block occupied by the data set. The content
of an entry specifies the location of a block in external
storage. The position of the entry within the external
page map signifies the relationship of the associated
block relative to the other blocks in the data set.

For the three-page data set shown in Figure 2, the ex-
ternal page map shows that the first data block is
between the other two pages of the data set. This ex-
ample emphasizes that block relationships in the data
set are determined by the contents of the external page
map rather than by their physical position within the
volume. This concept allows the virtual access methods
true device independence across the range of direct-ac-

Page Formatted Disk

PAGE 3 PAGE | PAGE 2

External Page Map

PAGE | POINTER

PAGE 2 POINTER

e PAGE 3 POINTER

FIGURE 2—Typical virtual sequential organization

cess devices. That is, it is perfectly feasible for a data
set to have physical records recorded on, say, the IBM
2311 Disk Storage Drive and the IBM 2314 Direct
Access Storage Facility in any mixture. Furthermore,
because information is referenced relative to the begin-
ning of the data set'and not by its location with respect
to an external-storage device, it is entirely practical to
move data sets (or portions of data sets) among a
hierarchy of devices.

In a typical virtual index sequential organization,
three classes of blocks can be specified within the ex-
ternal page map: directory pages, data pages, and over-
flow pages. One entry, corresponding to the lowest re-
cord key in each data page, is placed in the directory.
Records are maintained in collating sequence within the
the data set by key value. To find a given record, the
directory is searched and then the data page containing
the record is searched. Locator entries, corresponding to
each record within a data page are stored in the back of
the data page. Space in overflow pages will be assigned
when record insertions exceed the capacity of a data
page. The record locators in the primary data page will
point to secondary locators within the overflow page.
The placement of data and locators within the same
block is a significant convenience associated with ¢hoos-
ing a fixed block size, and is in contrast to many con-
temporary systems.

In a typical virtual partitioned organization, two
classes of page blocks can be specified within the exter-
nal page: directory pages and member pages. The
partitioned organization directory contains an entry
describing each member, which is specified as a con-
tiguous group of entries within the member-data por-
tions of the external page map. Members are subsidiary
data groups that may have sequential or index sequen-
tial organizations (or any combination of the two).
Members can be expanded or contracted by simply
adding or deleting entries within the external page map.
The partitioned organization allows a user to manipu-
late individual members or to conveniently treat a
group of data sets as a single entity for purposes such as
creating libraries or sharing data sets through the system
catalog,

Two types of interlocks are provided to coordinate
simulatenous access to shared data sets by more than
one user:

« Read interlock: prevents another user from writ-
ing into the interlocked data space; other users
may have read-only access at the same time.

+ Write interlock: prevents another user from read-
ing or writing the interlocked data space; can be
get only when no other interlock is set.

Interlocks are established at various data space
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intervals, depending on the data set organization. Vir-
tual sequential organizations are interlocked at the
entire data set level. Virtual partitioned organizations
are interlocked at the individual-member level., Virtual
index sequential organizations, however, are interlocked
only at the individual data-page (block) level: this
allows a much finer level of sharing than is available in
most other systems. The control mechanism for sharing
has been simplified significantly by the choice of placing
interlocks at the level of the physical block, rather than
at the level of the individual record.

When a logical record is wanted (in a straightforward
case), the flow of control is as follows. The appropriate
external-storage address of the record’s page is obtained
from the external page map. This address and the
virtual memory address of a buffer are passed to the
Resident Supervisor in a request list.

The Resident Supervisor places the symbolic device
address and relative block number in the relocation-
table entry associated with the buffer’s virtual address.
However, the page itself is not yet read into main stor-
age. It is only when a user addresses s record in his vir-
tual memory buffer that a paging-relocation-exception
interruption occurs, causing the Resident Supervisor
paging processors to bring the page into main storage.

The virtual access methods write onto external stor-
age only those pages of the buffer that have been modi-
fied. When it is necessary to write a buffer page onto ex-
ternal stofage, the appropriate virtual access method
routine obtains an external-storage address for the page
from the external page map and passes the virtual
memory address of the buffer, together with this exter-
nal-storage address, to the Resident Supervisor. The
appropriate Resident Supervisor routines then write the
buffer page into the data set on external storage.

The external page table maps the external-storage
locations of a given portion of the data set into a vir-
tual memory buffer. The size of the buffer controls the
extent of virtual memory allocated to the data set. This
second level of mapping allows the user to process a
page-oriented data set that can be as large as 65,000
pages, which is a great deal larger than the 4096 pages
available in a 24-bit-addressed virtual memory.

T$SS8/360 brings into the buffer only those pages of the
data set that are currently needed. The size of this buf-
fer need not be limited to one page; it may be aslarge as
a segment (256 pages), thereby allowing a user to ad-
dress all or a portion of a data set in the same manner as
main storage.

The TSS/360 user thus has a choice that allows him
to treat a properly organized data set as a file or as one-
level storage. There are several advantages, however,
involved in the use of traditional data management
macro instructions, such as GET and PUT. For ex-

ample, while information within auxiliary storage is
vulnerable to a system failure, information that is main-
tained through macro instructions is updated dirvectly
on external storage, and is thus preserved across system
failures. In addition, macro instructions directly signal
when buffer contents are no longer required and thus en-
hance efficient auxiliary space management,

As described, the virtual access methods perform a
programmed search of duta set indexes in virtual stor-
age. Conceptually, this amounts to combining the bene-
fits of paging large indexes with the benefits of sub-
stituting high-speed auxiliary drum storage for slower
speed disk storage.

This concept of programmed searches can be ex-
tended by user progroms to secondary indexes for data
sets. For example, the TSS8/360 Assembler macro
library is maintained as a line data set for maintenance
purposes. However, the library must frequently be ac-
cessed alphabetically on the basis of macro instruction
name. A list of such names combined with the line num-
bers locating the maero instruetion is maintained,
alphabetically sorted, in o separate sequential daty set.
When it is desired to locate a particular macro instruc-
tion, the entire alphabetically arranged name list is
brought into virtual memory and a programmed search
is performed to locate the appropriate index (i.e., line
number) to the maero library.

We have found that implementation of the virtual ac-
cess methods required significantly fewer lines of code
than were required for a corresponding set of TSS/360
access methods used to support physical-sequential de-
vices, such as printers and magnetic-tape units. It is
apparent that the removal of device-dependent opera-
tions (with complex channel programs), the standardiza-
tion of block size, and the elimination of exceptional
procedures (such as end-of-volume operations) sim-
plified the actual coding for the virtual access methods.
Furthermore, the separation of data set management
from physical device management simplified debugging.

Program loading services

In TSS/360, program loading is dynamic; that is,
during execution one program may reference another
program that has not been previously processed by the
dynamic loader. Although not unique to TSS/360, this
is another of the means by which a user is given flexibil-
ity during his terminal sessions.

In most conventional systems, there are a number of
difficult design trade offs associated with dynamic load-
ing. For example, the available memory space must
be apportioned in some way between the storage re-
quirements of the link-loader and the option to leave
the program to be loaded in main storage. As another
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example, the cost of performing basic linking and un-
linking functions during program execution must be
traded off against the potential inefficiencies of passing
inter-module parameters by value.

In TSS/360, the loading process is performed in vir-
tual memory. The large virtual memory environment of
TS8S/360 permits a disassociation of claims on address
space from claims on main storage, and thus allows the
allocation of storage to be optimized on a system-wide
basis. Moreover, because of the large virtual store en-
vironment, it is seldom necessary to unlink program
modules. This makes it unnecessary to place system
restrictions upon the form of intermodule references.

A program module generated by a language processor
resides in the system as a member of a partitioned data
set before being loaded and, in this state, consists of at
least two parts: text and module dietionary. A third
part, an internal symbol dictionary, used by the pro-
gram control subsystem, is optional.

The text of the program module is divided into con-
trol sections. This division is determined by source
language statements for output generated by the As-
sembler, and automatically for output generated by the
FORTRAN compiler.

From a system standpoint, the purpose of control
sections is to allow a program to be divided into portions
whose virtual memory locations can be adjusted
(independently of other sections) by the dynamic
loader without altering or impairing the operating logic
of the program.

FFor the user, a control section is a segment of coding
or data that can usually be replaced or modified with-
out reassembling an entire program. A control section
also represents a segment of coding or data to which
attributes can be assigned independently.

At the time the user creates a control seetion, he may
assign a variety of attributes to it, such as:

« fixed length

+ variable length
« read-only

s+ privileged

« shared

The module dictionary consists mainly of a group of
control-section dictionaries, one for each control sec-
tion of the program module. A module dictionary de-
scribes the text: its length, attributes, external-symbol
references and definitions, and information to be used in
relocating address constants. Collecting all linkage data
into one module dictionary allows the TSS/360 dynam-
ic loader to caleulate linkage addresses without bring-
ing the larger text portion of the module into main stor-
age.
In TSS/360, the dynamic loader resides in virtual

memory. The basic functions of the loader are to load
programs into virtual memory—not into main storage—
and to relocate only those address constants that are in
pages of text actually referenced during execution of the
program,

The process of loading a program into virtual memory
does not involve the movement of any text and is per-
formed in the allocation phase of the dynamic loader.
Loading a program into virtual memory consists, in
largt part, of establishing the addressabilit; of the pro-
gram within the virtual store.

When the dynamic loader’s allocation phase is in-
voked, it utilizes the virtual access methods to locate
the program library containing the requested object
program module.

Utilizing information from the module dictionary, the
loader requests the allocation of a virtual memory for
the object module text. Virtual memory alloeation in-
volves the ereation of relocation table entries for the text
and the assignment of protection keys according to the
attributes of each control section. The loader next
places the external-storage addresses of the module’s
text pages into the relocation table entries just created.
Locations within a program are addressed through base
registers, index registers, and displacements. Base reg-
isters generally contain values obtained from address
constants. For each text page that contains address con-
stants, an “unprocessed by loader” flag will be set in the
appropriate relocation-table entry.

Among other functions during this phase, the dynam-
ic loader examines all external references of the mod-
ule, and obtains and processes the module dictionaries
for any additional object modules required to satisfy
these external references. This process results in the
dynamic loader recursively invoking itself as long as
additional dictionaries must be obtained.

When the allocation phase is complete, the dynamic
loader exits, supplying location values that correspond
to entry points in the loaded program.

The second phase of the dynamic loader is invoked
when a page containing address constants is referenced
and consequently brought into main storage during pro-
gram execution. Address constants on the page are ad-
justed to reflect the values calculated during the al-
location phase of the loader.

A secondary function of the dynamic loader is to en-
force the TS8S/360 protection rules concerning the load-
ing and referencing of program modules.

During the alloeation phase of the dynamic loader,
the content of each module dictionary is placed in a pri-
vate task table. Called a task dictionary, this table con-
tains the information needed to load (and unload) mod-
ules for particular task. A task dictionary consists of a
header containing three hash tables, and a body con-



26 Fall Joint Computer Conference, 1968

taining one module dictionary for each module loaded
for the task.

To link programs dynamically, the dynamic loader
must be able to look up all external-symbol definitions
in an efficient manner; hash tables, consisting of headers
and a number of hash chains, are used for this purpose.

To reduce the number of pages referenced during the
loading process and to prevent a nonprivileged user
from accidentally linking to a system routine or a sys-
tem routine from erroneously linking to a nonprivileged
user routine, three symbol tables are defined: privileged-
system, nonprivileged-system, and user.

The privileged-system table contains external sym-
bols defined in control sections with the privileged
attribute.

The nonprivileged-system table contains nonpriv-
ileged external symbols defined in control sections
with the system attribute. A further convention has
been adopted: the initial entry points of nonprivileged
system routines directly invoked by a nonprivileged
user (such as a language processor) may begin with cer-
tain reserved characters. This has the effect of making
these routines “‘execute-only’’ to the user.

With the two system symbol tables, instead of just
one, the dynamic loader does not need to search a hash
chain containing a large number of privileged symbols
when looking up nonprivileged symbols. As will be
shown, the loader does not normally reference the priv-
ileged system symbol table during system operation.

The third symbol table, constructed for the user, is
primarily protective. It provides close control over the
interface between the user and system routines by sep-
arating the user’s symbols from system symbols.

Although the loading and protection facilities just de-
scribed are quite powerful, it has already become ap-
parent that future computer systems might require ex-
tensions to these facilities. This is currently a subject of
study within IBM and elsewhere.®-®

Task structure

Within TSS/360, tasks function in the environment
of a large, segmented virtual store. Our knowledge of
the proper way to utilize this environment evolved as
the system was built and used.

Because of the large size of this address space, the
need for specifically declared overlays is eliminated.
This does not remove the need to plan program or-
ganization when efficient execution is desired; it merely
makes it possible to minimize planning. In a time-shar-
ing environment, where there is a premium placed upon
solving a problem quickly, this added flexibility is
significant and frequently desirable.

Initial virtual memory

During the initial stages of development, it was real-
ized that certain system service routines must reside
in each task’s virtual store when the task is initiated
(e.g., the dynamic loader). This virtual-store image
would be created during system startup. As the system
developed, it became apparent that efficiency could be
enhanced by including a large number of other system
routines in this initial virtual memory.

The TSS/360 routines that currently make up initial
virtual memory include all privileged system service
routines and many nonprivileged system programs,
such as the FORTRAN compiler.

By tightly pre-loading most system programs at sys-
tem startup, the overhead usually associated with
library searches, binding, and unbinding is significantly
decreased. The trade off here is time versus the auxil-
iary-storage space needed to hold the fully bound copy
of those routines included in initial virtual memory.

Still another advantage is obtained by binding at
system startup. Efficiency in a paging system is closely
associated with the degree of locality of reference over a
time-slice. In a highly modular system, it frequently
occurs that there are groups of routines that follow a
pattern such that all members of the group tend to be
referenced within a short period of time whenever any
one of them is referenced. Page-reference patterns as-
sociated with system programs can be significantly im-
proved by ordering routines with an affinity for each
other so that they are packed, as a group, into a mini-
mum number of pages.

In T'SS/360, this ordering is based upon a control sec-
tion name list that can be altered easily to optimize the
packing of system programs to minimize paging. This is
especially signifieant in TSS/360 because many control
sections are much less than a page in length.

Sharing

Virtual memory sharing in TSS/360 is utilized in
three ways:

+ When users share programs, they share the pure-
procedure sections of the program. Each user re-
ceives a private copy of any modifiable data con-
tained in the program.

« When users share data sets, they share a common
external page map control table.

« All tasks share certain common control tables
(such as the I/0 device allocation table).

Program modules designed for simultaneous sharing
by more than one task are called re-entrant. Such mod-
ules are characterized by their division into a shareable
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control section that does not change in any way during
execution and a private control section (PSECT) that
contains modifiable data and address constants.

While most system programs are re-enterable modules
with PSECTs, it is not necessary to use a PSECT when
composing a TSS/360 program. With greater effort for
special cases, it is possible to write re-enterable programs
where all parameters are held in CPU registers or where
working space is dynamically acquired.

When a re-enterable program is composed, all
modifiable data, work areas, and address constants may
be placed within a PSECT. Allowing the composer of a
program to create the PSECT relieves the caller of that
program of the requirement to know precisely what
address constants the called program requires.

The use of PSECTSs has effects upon the structure of
programs within TSS/360. Whenever a user loads a
shared re-enterable module, a private copy of its PSECT
is placed into the user’s private virtual memory, while
ghared access is established to a single copy of the pro-
gram’s re-enterable control sections. Programs are
shared in such a way that the PSECTs and the re-enter-
able portions of the called routines are separately
mapped into the task’s virtual memory. Moreover, be-
cause each user’s virtual memory is allocated dynami-
cally and independently, the single physical copy of a
re-entrant control section may be mapped into different
virtual memory locations for each coneurrent user (see
Figure 3). Therefore, to perform linkage to a re-entrant
routine, two virtual memory addresses must be supplied

The first address specifies the location at which execu-
tion of the program module will begin when control is
transferred. This is the conventional external reference
value.

The second address can be used to specify where the
PSECT of the linked module has been mapped within
the task’s virtual memory. If this pointer were not sup-
plied, the re-entrant module would have no way of
knowing, for instance, where the appropriate private
modifiable data are located since the PSECT may be
placed in different virtual memory locations in each con-
current task.

Putting all address constants and modifiable instrue-
tion sequences into one or more PSECTSs does not
guarantee that the resulting routine will be re-enterable
under all conditions. While this provides for intertask
re-enterability (i.e., sharing by a number of tasks),
intratask re-enterability must be considered.

A single task can re-enter the same program when it
receives a task interruption while executing a system
routine or when a routine is called recursively. In such
a situation, the PSECT will not protect task integrity,
gince within a single task there is only one copy of the
PSECT. This is why the Task Monitor provides either
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FIGURE 3—Sharing of programs in T8S/359

a push-down save-area or a means by which a routine
can protect itself from unwanted intratask re-entrancy.

A PSECT is generally used to hold the register save-
area for a re-entrant routine. Placing a save-area within
a PSECT, rather than into a push-down stack, reduces
overhead and facilitates tracing linkages during de-
bugging.

The sharing of programs in virtual memory is based
on many users actively using pure-procedure sections of
the same program (such as the FORTRAN compiler)
with resultant decreases in the paging overhead and
utilization of main storage. Because of the amount of
shared code in TSS/360, the probability that shared
pages will be simultaneously used is high only for a few
system routines. The primary value of shared code thus
lies in its read-only attribute, which allows only one
copy of a page of code to be on auxiliary storage. Dur-
ing the lifetime of the average task, there is a high prob-
ability that a number of users will mnvoke, say, the
FORTRAN compiler. Thus, instead of many copies of
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the compiler existing on auxiliary storage, there is only
one copy of its pure-procedure sections.

When users share a data set, they share the external
storage map table. They do not share buffers because
there is a low probability of two or more users fre-
quently accessing the same data at nearly the same time,
Further, each user can independently modify his copy in
the buffer without affecting other users.

When users share a program or a data set control
table, they share a common page table (see Figure 3).
This leads to a great deal of flexibility. For example, a
common page-table entry can be pointed to by segment-
table entries for several different tasks. However, shar-
ing of each such page table can be restricted to specific
groups of users. The way in which this sharing is accom-
plished is as follows:

Virtual memory service routines cannot directly ad-
dress shared page tables. Therefore, the Resident Super-
visor must provide a method of symbolically associating
the shared item with the page table that maps it.
A control table, located in shared virtual memory,
serves as the repository of sharing information. When-
ever a user invokes a program from a shared library or
opens a shared data set, the system searches the shared
data table.

Because each system user can catalog a shared pro-
gram or data set using any name he wishes, the search of
the shared data table is, by convention, based upon the
name established by the item’s owner. If the entity has
not been previously referenced during the session, then
an entry for this name will be created in the table.

Next, shared virtual memory is obtained for the
entity, The Resident Supervisor creates the required
number of shared-page-table entries and sends back the
symbolic identification number of the shared page table
and the location of the requested allocation within the
segment. This information is stored into the shared
data table. Thus, there is now an association between
the name of the entity to be shared and the page table
that maps the entity.

When another user invokes the shared module or
optns the shared data set, a search of the shared data
will yrield a match on the name. The symbolic page table
number can then be used in a supervisor call to request
that a segment-table entry for this user be made to
point to the proper shared page table.

Virtual memory sharing requires the use of pro-
grammed interlocks to prevent destructive intertask
interference. The use of interlocks for sharing, however,
requires careful control. For instance, system operation
can be severely affected if one task sets an interlock in a
system table and then becomes inactive for a long time.
Furthermore, substantial system overhead is incurred if
tasks waiting for the interlock to be reset are con-
tinually being dispatched only to find that the interlock
is still set. This type of problem is representative of the
many subtle considerations involved in the control of
extensive sharing among tasks in a time-sharing en-
vironment. We are still gaining experience and insight
into this aspect of the TSS/360 time-shared operating
system.
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UTILIZATION OF VIRTUAL MEMORY IN TIME SHARING SYSTEM/360

by J. R. Martinson

ABSTRACT

The concept of virtual memory provides the
fundamental ability to separate the address space that
is used by a program from the allocated real memory
that supports program execution. Thus, with a virtual
memory, program design does not need to consider
the availability of real memory and, as with
conventional systems, to plan for overlays. Real
memory becomes a true system resource that can be
dynamically allocated by the system to adapt to
real-time requirements.

Operating experience with the IBM System/360
Time Sharing System (TSS/360) has indicated that
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the effective utilization of virtual memory requires a
reevaluation of currently accepted programming
techniques. The emphasis shifts from a program’s
total space requirements to a program’s short-term
demands on real memory. The objective becomes the
optimization of useful information in regions of
virtual memory, even if this should increase total
program size.

This report explores the TSS/360 definition of
virtual memory and the program structure imposed
upon it. Guidelines are presented to describe how
programs should and should not be constructed for
effective utilization of virtual memory.
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INTRODUCTION

A virtual memory is a zero-origined* sequential
address space that is dynamically and continuously
mapped, as it js referenced, into the address space of
real memory.” The size of virtual memory is not
limited to the availability of real memory, and
sequential virtual memory addresses need not map to
sequential real memory addresses.

The IBM System/360 Time Sharing System
(TSS/360) virtual memory, as seen by a task **, has
an extent equal to the addressing capibﬂity of the
hardware in the System/360 Model 67.“ System/360
standard 24-bit addressing thus provides 16-million
bytes (as a special feature, 32-bit addressing provides
4-billion bytes) of virtual memory.

To facilitate utilization of this address space, the
TSS/360 virtual memory is organized as a sequence of
contiguous segments, with a maximum of 16
segments in the 24-bit system and a maximum of
4096 segments in the 32-bit system. Each segment
comprises a sequence of 256 pages, and each page
comprises 4096 bytes. To be consistent with this page
size, real memory is viewed as being divided into
4096-byte blocks.

A page is the smallest allocatable unit in virtual
memory, for the system controls a task’s use of
virtual memory on a page basis. An allocated virtual
memory page is, at any time, in one (or more) of four
states:

e Its content is in, and therefore mapped into,
a block of real memory.

® [ts content is in a data set on external
storage*** (IBM 2311 Disk Storage Drive or
IBM 2314 Direct Access Storage Facility).

® Its content has, at some time, changed from
its initial wvalue, and is on auxiliary
storage**## (IBM 2301 Drum Storage, IBM
2311 Disk Storage Drive, or IBM 2314 Direct

*Zero-origined: beginning at 0; the first address of a virtual
memory has a value of 0.

**Task: the basic unit permitted time-shared access to the
available computing facility. To facilitate system control over
a variable number of independent tasks, TSS/360 associates a
unique virtual memory with each task.

***External storage: in TSS/360, a collection of direct-access
storage on which a uset’s cataloged public and private data
sets are maintained.

***¥*¥Auxiliary Storage: in TSS/360, a collection of
direct-access storage used by the system to store the current
copy of any virtual memory page that is altered as a result of
task execution.
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Figure 1. The status of each allocated virtual
memory page is maintained in a page table and an
associated external page table. Each task has its own
tables.
Access Storage Facility). In this case, both
the initial and latest versions of the virtual
memory page must be retained.

® It has no initial content and has never been
referenced. The system will map the virtual
memory page, when it is referenced, into a
real memory block containing all Os.

Paging

The system maintains the status of each allocated
virtual memory page in a page table and an extension
to it, the external page table (see Figure 1). The
page-table entry indicates whether or not the virtual
memory page has been mapped into real memory
and, if it has, gives the associated real memory block
address. The corresponding external-page-table entry
provides the location of the virtual memory page
image on external or auxiliary storage.

e———— 32-bit address ———————

[(b 24 -bit oddress———

s + | P | D
0 78 112 1920 3

Figure 2. A virtual memory address comprises a
segment number, S, a page number, P, and a page
displacement, D. In the 24-bit addressing system, S
occupies four bits; in the 32-bit system, it occupies
eight bits.
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Figure 3. A simplified view of dynamic address translation. The virtual memory address has the form S_P,_D,

where S is the segment number, Pm

is the page number, and D is the page displacement. Using the segment and

page tab?es, this is translated into a real memory address. The real memory address has the form By D, where B
is the real memory block address and D is the same displacement as in the virtual memory address.

Any virtual memory address can be viewed as a 4-
(or, in 32-bit mode, 12-) bit segment number, S; an
8-bit page number, P; and a 12-bit page displacement,
D (see Figure 2). The System/360 Model 67
dynamic-address-translation hardware translates such
a virtual memory address into a real memory address.
This is done by translating a virtual memory page
address, which is uniquely identified by its segment
number and page number, into a real memory block
address, and subsequently applying the indicated
displacement (see Figure 3):

® The association between a task and a specific
virtual memory 1is accomplished by
associating the address of the task’s segment
table with the CPU assigned to the task. A
special hardware register, the segment table
register, is reserved for this purpose

® The pointer to a segment table, which is
contained in the segment table register, and
the segment number locate a segment-table
entry.

® The resultant pointer to a page table, which is
contained in the segment table, and the page
number locate a page-table entry.

® The page-table entry is used as follows:

® When the content of the page-table entry

is the real memory block address of the
virtual memory page, it is used with the
displacement to form the complete real
memory address.

When the content of the page-table entry
indicates that the virtual memory page is



unavailable in real memory, a hardware
interrupt is generated. The system then
uses the corresponding
external-page-table entry to bring the
appropriate page into real memory from
external or auxiliary storage.

As a task is given a slice of CPU time, the virtual
memory pages the task references will be read
(paged-in), as necessary, into blocks of real memory.
This process, initiated by the “unavailable” interrupt
generated by the dynamic-address-translation
hardware, is often referred to as “demand paging”. At
the completion of a task’s time-slice, all the real
memory blocks associated with the task are freed for
other use. Real memory blocks containing virtual
memory pages that did not change during the
time-slice are immediately released (a copy is already
on auxiliary or external storage); changed virtual
memory pages must be written (paged-out) to
auxiliary storage (see Figure 4).

It is this task “paging” activity that the system
attempts to multiprogram with other task execution.
The load a task presents to the system will be - in
direct proportion to its paging rate, which is the
number of virtual memory pages the task references
per unit of execution time. The paging activity is
therefore attributable, in part, to the manner in
which a task utilizes its virtual memory.

Sharing

If multiple segment tables (for different tasks)
contain entries that point to the same page table,
then the address space spanned by that page table will
be addressable in each of those virtual memories. This
mechanism provides for the dynamic sharing of entire
segments of a virtual memory among many tasks.

The system attempts to retain referenced shared
virtual memory pages (as compared to private pages,
which are released at the end of a time-slice) in real
memory for an extended time. The intent is to keep
such shared virtual memory pages in real memory for
use by tasks other than the task making the initial
reference. Thus, the shared virtual memory portion of
the system, which forms a base for the virtual
memory operation, will tend to remain in real
memory and reduce the system paging rate.

EFFECTIVE TASK UTILIZATION
OF VIRTUAL MEMORY

The paging rate a task presents to the system is the
single most important factor contributing to the
system’s effectiveness in processing the task. If
efficient multiprogramming is to be achieved during a
given real-time interval, the cross section of paging
rates for all tasks executing in that time interval must

be such that the total task-execution time can overlap
the total paging time. While the system must certainly
attempt to minimize the I/Q delay time associated
with a set of paging operations, it is a task’s
characteristics that control its paging rate. A task
objective of a low paging rate is essential for efficient
operation.
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Figure 4. When a task references a virtual memory
page that has not yet been mapped into real memory,
that page is read (paged-in) from external or auxiliary
storage into a block of real memory. When the task's
time-slice ends, only those pages that have been
modified are written (paged-out) onto auxiliary
storage.

Another consideration is the effective use of
auxiliary storage, which serves during task execution
as an extension to real memory (having significantly
slower access time). Any page of virtual memory that
changes (is written into), however so slightly, will at
some time reside in its entirety on auxiliary storage.
Furthermore, the most recently changed copy of a
virtual memory page will remain on auxiliary storage
until the task explicitly deletes the page from its
virtual memory. Once a virtual memory page is
allocated to auxiliary storage, the subsequent
read-access time to this page will differ, by as much as

=



an order of magnitude, depending on whether the
page is on drum or disk storage. The system maintains
a given task’s auxiliary storage on both drum and
disk, giving preference to the drum.

A task’s unjustifiable requirement for auxiliary
storage space can adversely affect system operation.

® [t can seriously compromise the system
objective of maintaining a task’s auxiliary
storage solely on drum.

@ It can limit, by decreasing the availability of
auxiliary storage, both the extent to which a
single task can use its virtual memory and the
number of tasks that will be granted
concurrent access to the system.

Virtual Memory Program Structure

A principal objective of the standard program-module
structure in TSS/360 is to permit program modules to
be shared selectively among active tasks. This
objective has been achieved by creating a program
structure that provides intertask program reentrancy
without requiring a program to dynamically allocate
its working storage.

A program is a collection of program modules.
Each program module usually consists of two
independently relocatable control sections (CSECTs):
the first, usually referred to as “the CSECT,”
contains read-only, address-free instructions (pure
procedure) and data; the second, usually referred to
as “the PSECT” (prototype CSECT), contains all
variable, address-dependent instructions and data.
The CSECT is task-independent and the PSECT is
task-dependent; hence, while the CSECT can be
actively shared among tasks, each task must have its
own private copy of the PSECT.

A CSECT contains:
® Executable read-only code
@ Data constants
® Nonrelocatable (absolute) address constants
e Nonrelocatable literals

® Any other nonmodifiable, address-free
information

A PSECT contains:
® Save-areas (used in the linkage process)

® [ ocal temporary (working) storage

® Parameter lists
® Relocatable address constants
® Relocatable literals

® Any other modifiable or location-dependent
information

Special attention should be given to the
placement of address constants in the PSECT. First,
address constants change as a result of relocation (the
process of relocating modules to virtual memory) and
binding; second the value of an address constant is
dependent upon the location of the object in virtual
memory (the location may differ from task to task).

The dynamic-loading process in TSS/360
allocates and relocates program modules to virtual
memory; the allocation function thus implements the
desired reentrancy when it allocates the CSECT to
shared virtual memory and the PSECT to private
virtual memory. Further, when executing shared code
in a multiple-CPU TSS/360 environment, this
program structure permits different tasks to be
dispatched to multiple CPUs without conflict.

Program Organization

Program organization refers to the external packaging
of program-module CSECTs to form the page images
of a complete program. The TSS/360 linkage editor
provides the facility for external packaging.

When program modules are dynamically loaded
from program libraries into virtual memory, every
CSECT is allocated at a page boundary (note that a
PSECT is a CSECT with the prototype attribute).
Therefore, as program modules interact, every
distinct CSECT reference will result in a
corresponding virtual memory page reference. When
this interaction is known in advance, a significant
reduction in the task’s paging rate can be achieved by
properly combining program-module CSECTs into
more compact pages. Packaging can be achieved as a
three-step process (see Figure 5).

First, the external referencing characteristics of
each module are determined, indicating how the
modules can interact (shown in Figure 5A).

Second, the dynamic module interaction is
ascertained. The objective is to determine the
high-frequency, mainline path through the set of
modules; this is the path that should be optimized
(shown in Figure 5B).

Third, the CSECTs of the dynamically interacting
modules are combined into a single compact CSECT
(shown in Figure 5C). Also, the PSECTs of the
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Figure 5. Program organization can be optimized by external packaging, which can be achieved as a three-step
process. First, the external referencing characteristics of each module are determined /4/. Then, the dynamic
module interactions are ascertained /B/. Finally, the dynamically interacting modules are combined in a single
CSECT and PSECT /C]. In the case shown here, in which module E normally is not referenced, the eight
mainline page references required in the single-CSECT-per-page organization are reduced to two in the optimized

organization.

dynamically interacting modules are combined into a
single compact PSECT. A fundamental assumption
follows from the imposed program structure: Module
interaction can be used as a basis for efficient CSECT
and PSECT packaging.

Note, however, that a CSECT should not be
packaged across a page boundary because, generally,
this will double the number of pages referenced by
the CSECT. (Of course, this assumes that the CSECT
is less than a page in extent.) This leads to a

rule-of-thumb: the extent of a CSECT or a group of
packaged CSECTs should be less than or equal to a

page.

Another important consideration when packaging
to optimize the program paging rate are the resultant
auxiliary-storage requirements. Observing the
rule-of-thumb, above, CSECTs that are subject to
change during program execution should be packaged
in as few page images as possible to conserve the
auxiliary storage required by the task.



MAINLINE
~~~~~~~~ MAINLINE
SELDOM
REFERENCED
MAiNLiNE Page HﬁJSEI:_DB_hﬁ_—'
E Boundary |IREFERENCED
70 7
UNUSED UNUSED

Figure 6. Program-module organization can be
optimized by internal packaging. In the case shown
here, prior to the organization of the control section
[left] two pages normally would be referenced, since
the mainline spans a page boundary. After
reorganization so that all of the mainline is contained
on one page /[right/, only that page normally would
be referenced.

Program-Module Organization

Program-module organization refers to the internal
packaging of program modules. For modules that are
self-contained (do not interact with other modules),
internal packaging is most appropriate and is
preferable to éxternal packaging. As with external
packaging, the TSS/360 linkage editor can be used to
perform internal packaging.

To minimize the paging rate, the program-module
organization selected should maximize program
information content on a module basis. The design of
the program module should be such that if part of a
program module is required during task execution,
the entire module is required. For example, the
portion of a program performing exception-condition
processing should be defined in a program module
that is separate from the module performing a
mainline function of the program.

In some cases, this objective can be attained
through proper organization of code or data within a
single module (see Figure 6). This situation arises
when the CSECT or PSECT of a module is in excess
of a page and contains information seldom referenced
in the mainline processing of the module. The
placement of the less frequently used information at
the “end” of the CSECT or PSECT will probably
reduce the number of pages referenced during task
execution.

Still another means of minimizing the paging rate
is the combination of a PSECT with its CSECT. Based
on the TSS/360 program structure, a program module
usually consists of a read-only CSECT and a variable,
task-oriented PSECT, each on its own page. Thus,

whenever the module is executed, a minimum of two
virtual memory pages will be referenced. It may be
desirable to package the content of a module’s
CSECT and PSECT into a single control section,
thereby reducing the number of pages to one. This
type of packaging should be attempted only if these
conditions exist:

e The CSECT must not be allocated to shared
virtual memory. (Such packaging will
generally result in a variable, task-oriented
CSECT).

® The combination of the CSECT and PSECT
should not cause the new component to span
a page boundary.

® Appropriate external packaging of this
module with others is not possible (see Figure
7). The concern here is that improper
packaging of this type will increase the
number of variable virtual memory pages
associated with the task and, consequently,
the task’s auxiliary-storage requirements.

'PSECT A
CSECT A |

“PSECT A
CSECT A |

CSECT A |
PSECT A

(A) Possible packaging of modules A and B

PAGES REFERENCED TO ACCESS
A B A& B
EXTERNAL D 2 o
PACKAGING
INTERNAL 1 1 2
PACKAGING

(B) Resultant pages referenced

Figure 7. To determine whether external or internal
packaging is more appropriate for given modules, the
possible packaging combinations and the resultant
number of pages referenced must be ascertained.




Auxiliary-storage requirements should also be
considered in the internal packaging of modules. If
any part of a virtual memory page changes as a result
of task execution, the entire page will be written to
auxiliary storage. Planning that avoids the mixture,
on one page, of read-only data with variable data will
contribute to the efficient use of auxiliary storage.
For example, consider a large read-only table prefixed
with a header that is modified during an initialization
process: If both the header and the table are allocated
to the same control section, then both will reside on
auxiliary storage at the completion of the
initialization process. A better organization would
locate the table in a read-only CSECT and the header
in a variable PSECT, as suggested by the TSS/360
program structure.

Coding Techniques for
Virtual Memory Program Modules

Effective utilization of virtual memory requires that
the characteristics of virtual memory programs differ
from those generally accepted for programs operating
in real memory. The prime considerations are the
minimization of the paging rate and the requirements
for auxiliary-storage space.

Minimizing the Paging Rate

When coding virtual memory program modules, it is
useful to think of virtual memory as a
one-page-overlay environment; that is, as if only one
virtual memory page can be referenced without
incurring the overhead of a page overlay. This
concept suggests several techniques.

First, many independent modules in a program
may have occasion to use some common utility
function. Such a function is usually defined as a
closed subroutine to which, during task execution,
linkage is effected as necessary (see Figure 8). With
virtual memory, this type of program organization is
often not the most acceptable because of the number
of virtual memory pages that must be referenced. The
short-run number of pages referenced may be less if
the subroutine is actually duplicated in-line at some,
or all, of the points of use.

Generally, this in-line duplication is feasible
whenever the extent of the resultant CSECT or
PSECT of the referencing module is not increased to
span a virtual memory page boundary. This
duplication can be achieved by using in-line
macro-expansion techniques.

Second, a common data area should be utilized
to contain the parameters, work areas, constants, or
other data that are frequently referenced by an
interactive set of program modules. This will tend to
increase the information content in the virtual
memory pages referenced by the modules.

FSECTA
B
PSECT B
 CSECT B
— "PSECT B

(A) Cas a closed

| (B) C as an open
subroutine

subroutine

Figure 8. For virtual memory programs, coding a
common utility as a closed (out-ofgine) subroutine
may result in a greater number of pages bein
referenced than by coding it as an open (in-lines)l
subroutine.

Third, multiple-page list structures must be used
carefully (see Figure 9). Of particular concern is a
table organization that employs a list structure to
provide fast access to a given element in the table. A
linear search in a single virtual memory page often
makes more efficient use of the system than does a
linked search in multiple virtual memory pages, even
if the instruction execution time of the former is
greater. (The true virtual memory task-execution time
is the sum of the central processor time and the
required paging time.)

Fourth, data sets acgessed by using the TSS/360
virtual access methods” can be processed in a
particularly efficient manner because of the size of
virtual memory. An entire data set can consist of one
logical record (up to 256 pages) so that, when the
data set is first accessed, its entire ¢ontent is
immediately mapped into virtual memory.
Subsequent access to the data set content is then
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Figure 9. When coding for virtual memory
applications, a linear search in a single page may be
more efficient than a linked search in multiple pages.
In the case shown here, four page references are
needed to locate D in the list-structured table, but
only one page reference is needed to locate D in the
sequential table.

possible through direct virtual memory references;
the access method overhead (including paging)
normally associated with data set access is thereby
eliminated.

Fifth, the techniques employed in initializing
large areas of virtual memory requires special
consideration. If such areas are completely initialized
at the same time, a significant burst of virtual
memory paging activity will be encountered as each
of the respective virtual memory pages is referenced.
The initialization of a virtual memory page should be
delayed until that page is otherwise used by the
program for the first time. In this way, the paging
activity associated with initialization is included with
the program’s required paging activity. It is noted
that the system will automatically initialize to O all
referenced virtual memory pages not having a
prespecified content.

Sixth, the design of a set of interacting program
modules should avoid or minimize the repetitive

invocation of one module by another during task
execution. In such a situation, the total number of
virtual memory pages referenced during the time
either module is active would probably include virtual
memory pages that contain both modules. Rather,
data should be blocked into or out of a program
module in a single invocation. For example, the
TSS/360 data management facility provides the
ability to open multiple data sets at the same time.

Auxiliary Storage Requirements

Coding techniques are also important in determining
how much auxiliary-storage space is required during
task execution. To achieve the objective of keeping
the use of auxiliary storage at a minimum, several
techniques are available.

First, virtual memory push-down stacks should
not be allowed to reach depths of more than 20 or 30
pages; exceeding this will contribute heavily to a
task’s auxiliary-storage requirement. Every virtual
memory page that contains data and that at some
time was in a stack will be on auxiliary storage, even
after the stack is “popped up”. The task must
explicitly free the associated virtual memory to
release the auxiliary-storage pages.

Second, virtual memory should not be used as
long-term storage for variable data without
consideration for the associated auxiliary-storage
requirement. In some cases, such data can be more
effectively processed by the data-management
facilities that will, given suitable directions, control
the amount of data in virtual memory and, therefore,
the amount of auxiliary storage.

Third, the use of the TSS/360 dynamic virtual
memory allocation facility for variable tables that are
in excess of two pages is important in the proper use
of virtual memory. If such tables are dynamically
allocated, it is possible to dynamically free the
associated virtual memory when the table content is
no longer required, thus releasing the corresponding
auxiliary storage. The alternative is to locate such
tables in a program module. However, the
auxiliary-storage space used for the tables then
cannot be released until the program module is
deleted.

Fourth, TSS/360 provides for the dynamic
allocation of program modules to virtual memory;
such modules may also be deleted from virtual
memory. It is good practice to delete a program
module from virtual memory when it is no longer
required. This will release any auxiliary-storage space
allocated to virtual memory pages belonging to a
module that may have changed (the module’s PSECT)
during program execution.



CONCLUSIONS

Operating experience with TSS/360 has clearly
demonstrated that, as is true with real memory,
efficient utilization of virtual memory depends upon
the programmer. As I have already indicated, the
characteristics of virtual memory programs differ
from those generally accepted for real memory
programs.

The techniques for coding in a virtual memory
environment that are given here are derived from
experience in the TSS/360 project; certainly, as the
project continues and our experience grows, it can be
expected that these techniques will be refined and
others developed to further optimize utilization of
virtual memory.

Nevertheless, operating experience with TSS/360
has already demonstrated the value of the virtual

memory concept. I believe that the implementation
of a virtual memory will be required in future
large-scale programming systems.
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AN ANALYSIS OF THE TSS/360 COMMAND SYSTEM Il *

by J. B. McKeehan

ABSTRACT

The design of a second-generation command system
for the IBM System/360 Time Sharing System
(TSS/360) has provided new insight into the relation-
ship of man and the machine-system. By emphasizing
the human aspects of a command system, an extreme-
ly flexible structure was produced.

Such a structure is easily achieved. Certain basic
structural elements are clearly defined: these include
a set of syntax rules, a central dictionary, a structured
event list, and a message processor. The proper use of
these elements produces a system that is responsive to
user needs and can easily be tailored to customer re-
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quirements. Examples of this structure are taken
from the TSS/360 Command System II.

Certain by-products of this design have proved to
be extremely powerful. In particular, the dynamic
quality of the system allows the user to create his
own form of the language. This attractive feature is
balanced by the fact that user-made changes to the
command system can be removed easily to allow a
basic system to re-emerge for troubleshooting pur-
poses.

* This report, under the same title, was presented at
the IBM Systems Development Division Programming
Symposium, Atlantic City, N.J., Sept. 24-27, 1968.
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PROLOGUE

With the advent of Command System II in the IBM
System/360 Time Sharing System (TSS/360),! a sig-
nificant step forward in the logic and structure of
command systems was achieved. The idea of Com-
mand System II began with the recognition that our
design approach to the initial command system had
been faulty. We had failed to produce a system re-
sponsive to user needs because of a lack of central
purpose in the design.

In designing the new command system, the first
step was to agree on the purposes for which it had to
exist.> Following that set of purposes inevitably led
to a basic structure, and with that to build on the
command syntax and semantics came into view.
Finally, the coding structure was laid on to develop
the structure. Let us now follow this analytical proc-
ess in some detail.

PURPOSES

The principle function users of any system wish to
accomplish is the processing of data. However, data
comes in many forms. Some of the more evident are
the source statements input to language processors,
the substantive information input to various processes
designed by the user, and the displays, listings, and
dumps output from the system to the user. It is im-
portant to note that the classification of data is mean-
ingful only in context. What may be meant for com-
pilation at one time may be meant to be interpreted
on another occasion.

Thus, there is no rigid distinction between “object
code” and other data. The same rules apply to all of
the forms data may assume, In order to achieve data
handling, several primary functions are required. In
the first place, a naming scheme must be devised, and
in the second, a way of controlling the residence and
motion of various pieces of data must be available to
the user.

One of the things most users wish to do is to
manipulate data, and we have found that they wish to
do this in a great number of ways.>** They want to
erase large pieces of data; to create large pieces of
data; to generate data within their programs; to cor-
rect data; and to reorder, restructure, and rearrange
data. Such functions are a prime consideration of a
command system.

Most importantly, users want to exchange and
share data. The ability to carefully define the access
other users may have to this data is a prime preroga-
tive. It is not sufficient to have only two categories of
sharing—yes and no. There must be options to share
at the read/write levels in addition. Further, there

must be an open set of sharing rules to allow the
eventual inclusion of such things as “execute only”
and ““write but not read.”

A second, and only slightly less important, func-
tion to be performed by a command system is to
provide a comfortable, efficient, and reasonable inter-
face with various subsystems. For instance, in
TSS/360 we consider as subsystems the Assembler,
FORTRAN Compiler, and certain functions used to
construct new commands. We also provide as part of
this interface the ability to insert new subsystems
into the structure. Among these, we allow the general
categories of user applications, that is, systems which
users may devise for whatever purposes. Of course,
most users will wish to insert additional languages or
language processors into the system, Many have the
requirement to insert a desk calculator mode of
operation.®*¢'7'8 Others want to put in text-editing
facilities similar to those in IBM’s ATS system, or
Lincoln Laboratory’s edit system.® If we did not pro-
vide a comfortable interface to such subsystems, one
which would allow the users to conveniently hook
their applications into our command system, then we
would have failed to provide a satisfactory interface.

A most important function the command system
must exhibit is that we must provide users of the
system with control of their environment; that is, the
degree of interaction between the system and the
users must be controllable by the users and not by
the system. The users must be able to specify the
kinds of devices and the residences of data, and they
must be able to sequence their operations in almost
any order they choose. Clearly, we must allow the
users to provide their own set of names and defaults
for various items, functions, and ideas in the system.

Last, but not least, is our acknowledgment that
the command system, at any stage of its develop-
ment, is incomplete and must therefore be extendable
in directions we cannot now predict.® To this end, a
maximum effort was expended to make this system
open ended: We must be able to add commands,
sub-systems, new data handling methods, and even
interfaces to other kinds of devices—for instance,
graphics, remote processors of various kinds, and
perhaps even someday a remote-job-entry structure.

BASIC STRUCTURE

In order to achieve the above purposes, we devised a
structure that provides the flexibility customers de-
sire without severely constricting them. We foresee
that, over a long period of time, this flexibility in the
structure of Command System II will essentially al-
low the user to create his own time-sharing system
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structured basically on what we provide. Indeed, one
of the things which we feel to be essential to the
structure of any command system is the ability of the
user to get what he wants out of the system. There
are those who feel that this be-all and end-all ap-
proach is obviously too expensive, too loose, too flex-
ible, and too costly. We hope to show that providing
this function is really no harder, and in fact in many
cases easier, than providing the rigid, limited struc-
tures we have seen in the past.

Syntax

One of the difficulties in preceding systems, and in-
deed in some of our current co-systems, is that a
language has been specified without allowing the dif-
ferentiation between syntax and vocabulary: the as-
sumption is made that vocabulary is a part of syntax.
We know this not to be the case. In Command Sys-
tem II, the language is defined by a set of syntax rules
and a dictionary which provides the vocabulary of the
language itself.

Vocabulary

One of the principle elements of the structure is a
centralized dictionary, which represents the vocabu-
lary of the system. This dictionary, which contains
the names and to a certain extent the control charac-
ters—syntax characters, if you like—to be used by the
system, can be substituted for at any time or modi-
fied. Thus, in TSS/360, synonyms, default values, and
new commands may be defined and put in the dic-
tionary. It is this dictionary which, in combination
with the rules of syntax, provides the essential
command-system structure.

Command Stream

Another important function of the command system
is to allow the creation of what we will call a sym-
bolic command stream; that is, we do not expect that
the system must go step-by-step with the user
through a series of commands. It is perfectly reason-
able for the user to point to a whole collection of
commands he wishes to utilize as his next functional
entity, and to refer to this series of commands by a
pseudo command name.

In order to accomplish such a function, it is neces-
sary to have a residence inside the system of remem-
bered commands that are yet to be executed. This
permits the user to enter commands at any speed he
desires and to allow the system to catch up with, but
never get ahead of, him. This concept of an internal
command stream is such that we can allow eventually
an asynchronous input mechanism. This structure
exists even though the asynchronous part of the input

stream has not yet been accomplished. The insertion
of groups of commands into the stream has already
been well established and is available in Command
System II.

User Profile

An important part of the new command system is the
user profile. This is a dossier of the user’s needs, re-
quirements, fetishes, etc., and presents a picture of
the user to the system. It is with this profile that the
user may establish the environment of the system he
wishes to have. The impression that the user wishes to
make will be read out of his profile when he logs on
and made a part of his central dictionary. This profile
includes all of the synonyms and defaults the user
wishes to establish which are different from those the
system normally provides. It also includes those spe-
cial symbols he wishes to create for subsequent refer-
ence, such as individual counters or a little mail box
for communication purposes. In addition, it includes
certain translate tables he is allowed to specify that
will allow him to convert the characters of his input
according to his desires. The user profile also contains
certain syntactical characters, such as continuations
and promptings, which will allow the user to describe
the way the system looks at his input.

We find the concept of the profile of great value to
users. Yet, experience has shown that users are a little
afraid to establish their own environment. For this
reason, we provide what we call a system prototype
profile. Thus, if the user is of the timid variety and
does not wish to establish his own environment for
control, the system will provide a reasonable form of
basic system on which he may operate without any
exercise of his own personality.

Command Vocabulary

Another feature of the structure of Command System
I is the open-ended form of its command vocabulary.
Rather than making command tables a preassembled
part of a centralized processor, we have allowed com-
mands to be added and subtracted from the system at
will.’ This can be done at two levels: one, the user
may add and subtract commands for his own environ-
ment at any time he desires and, two, he may write
commands which override system commands with the
same names. For example, if he doesn’t like the way
the system’s CATALOG command works, he can
write a CATALOG command of his own with the
same name (or, if he prefers, a different name) and it
will do what he wishes CATALOG to do. Of course,
he does this at his own risk, for he may lose as well as
add functions by such manipulation.



Perhaps more important is the fact that it is per-
fectly possible for the user to add new functions as
new commands to the system and to give them names
he can use conveniently. We provide a mechanism
which allows him to add his code as a command or to
link combinations of existing commands and his code
together into new functional entities that, to all in-
tents and purposes, look like commands,

Message File

In the same vein, the user is allowed to write his own
message file. We use exactly the same mechanism for
message file that we use for commands. The system
has one, a system prototype message file, which may
be overlaid by the user. If he does not care for the
phraseology of some system message and substitutes
another, the system will choose his version in lieu of
its own.

SYNTAX

The basic syntax of Command System II is independ-
ent of the vocabulary of the system. A set of syntax
rules were devised that concern themselves with the
line, the command name, and the command
operands.

The Line

A logical line and a physical line are usually thought
of as being synonymous, and frequently they may be.
As long as each line of input contains a single com-
plete command, the logical and physical lines are
identical. The separation begins to occur when a com-
mand is continued onto a second physical line; here
the logical line occupies some part of two physical
lines and a “continuation” character is required to
indicate this to the system. A third distinction also
may be made for those cases in which more than one
command is entered on a single physical line; separa-
tion between commands then must be made by speci-
fying an “end-of-command” character.

If each command entered is to be executed at
once, these distinctions are fairly inconsequential,
The need for more exactitude arises when the series
of commands is stored and invoked indirectly at a
later time. Let us examine a few sample lines:

DDEF DDNAME=X,DSNAME=Y,- (1)
DCB=(RKP=4,LRECL=132,KEYL-
EN=7,RECFM=V),UNIT=(DA,231-
4),VOLUME=(,MYVOL),DSORG=-

Vi

This is an example. of one logical (or, at least, techni-
cally logical) command occupying more than one

physical line. (Note that the Command System IT de-
fault character for “continuation” is the hyphen.)

DDEF X,,Y ;FTN A ; A (2)

This shows several commands occupying one physical
line. (Note that the default character tor “end-of-
command” is a semicolon.) In this case, all three com-
mands will be executed before a return to the user to
prompt for a new command. Sophisticated, well-
organized users find this a convenient way to reduce
the frequency of interaction with the system and at
the same time to achieve efficiency inside the system.

A note here is appropriate. If the amount of use-
less output can be reduced, the slowest part of any
terminal system is the human reaction. Thus, when a
user reacts to a system prompt, he should be able to
say as much as he wants to.? In this way, the user—
not the system—controls the scope of his input logic.
Many users are frequently annoyed by knowing what
they want to do for the next several commands but
being constrained to enter each command only when
the system feels it is appropriate.

There is no reason to suppose that a user’s thought
processes are somehow magically related to the physi-
cal size of the input device.

DDEF X,,SOURCE.MYPROG,UNI- (3)
T=(DA,2311),VOLUME=(,USERS-
1),DISP=OLD ; FTN MYPROG,Y ;
MYPROG 3,1,7D14

Here the user’s thought process clearly extends over
the physical line limit.

The Command Name

No system need be so presemptuous that the user is
constrained to use words that he doesn’t like for com-
mands. Perhaps the greatest confusion generator in
the past has been to change a command name. Nor
has there ever been a set of command names which
satisfied more than the designer.

In the non-human environment of the remote job
on the distant machine, users suffered strange names
gladly in order to get the system power that they
represented. Now, in the more nearly human time-
sharing environment, the system must be prepared to
meet the user on his ground, that is, on his terminal.
Here the user will be more affected by jargon names
because he will use them more often. Attempts to
make names more meaningful or palatable in the past
have only resulted in a new jargon set to replace the
old for most users. Hence, the solution lies in a differ-
ent direction: Let the user make up his own names.

In Command System II, a synonym capability al-
lows the user to establish the equivalence between



character strings of his choosing and the system vo-
cabulary. One restriction imposed is that the new
string of symbols cannot be longer than eight charac-
ters or contain certain delimiters, such as a blank. For
instance,

SYNONYM ?@%!=DDEF (4)

is a perfectly valid synonym, and renames the DDEF
command to 7@%! which may be more meaningful to
some users.

Of course, this facility does not destroy the orig-
inal name. Hence, it is possible to create several syno-
nyms for the same command name.

SYNONYM DD=DDEF (5)
will supplement (4) and allow any of the three strings

DD (6)

?7@%!

DDEF

to reference the same command.

The inclusion of this facility greatly eased the im-
plementation of the command system. It was neces-
sary to recognize only a single name for each com-
mand, not both a name and its abbreviated form. Nor
did the single name have to be esoterically satisfying.
The only requirement was that each name be unique
and conform to the rules of syntax.

The user, then, is expected to rename the com-
mands in the system to his taste. If these renames
look to him like “‘abbreviations,” then that is what
they are. It is now his prerogative.

The Operands

The problem of communicating variable data to sys-
tems has long been an awkward and sore point. Con-
siderable effort is being expended in the direction of
coherent programming to address this problem at the
coding level. At the human level, there are as many
schemes proposed as there are systems.

One of the basic tenets of the TSS/360 command
system is that input should be concise. This is a nor-
mal, conservative approach. The design of Command
System II is such that the system can be asked to
make the maximum number of inferences about the
user’s needs and desires. A monstrous example of the
contravention of this concept is that of (1), above.
However, the flexibility of the system allows con-
siderable reductions in this input. The DEFAULT
command establishes values to be utilized (inferred)
when the user fails to enter them explicitly:

DEFAULT DCB=(RKP=4,LRECL- (7)
=132,KEYLEN=7 RECFM=V)
DEFAULT DSORG=VI

Now (1) can be rewritten as

DD DDNAME=X,DSNAME=Y,UN- (8)
I T=(DA,2311),VOLUME=(,MYVO-
L)

which also utilizes (5) to shorten the input stream.
Suppose the user must enter this command many
times. He may eliminate more of this input by recog-
nizing that a positional form of this command is
equally valid. Thus, (8) may be rewritten

DD X,,Y,,(DA,2311),,(,MYVOL) (9)

But by now a new irritation is creeping in—the
intervening separator comma. Although the user has
saved key strokes, he has also introduced some uncer-
tainty, not on the system’s part but on his own. How
many commas does he truly require between UNIT
and VOLUME?

There is another way out. The synonym facility
used so conveniently for command names can also be
used on operand names.

SYNONYM B=UNIT,C=VOLUME (10)
allows the user to say
DD X,,Y,B=(DA,2311),C=(,MYVOL)(11)

which, although slightly longer than (9), is a lot more
certain. Note that, throughout the above, the inter-
changeable use of keyword and positional forms has
been acceptable. This greatly enhances the options
available to the user. There is no need to restrict the
use of positional parameters by requiring that they be
entered before keyword parameters, as is the case in
the assembler macro language. For instance, (11)
could be rewritten as

DD DDNAME=X,B=(DA,2311- (12)
),Y,C=(,MYVOL)

It will be noted that Y is still in the third position (it
follows the second comma not enclosed in guotes or
parentheses).

Frequently the user will want to turn off syno-
nyms and defaults. It is as easy to disconnect them as
to create them.

SYNONYM B=,C=, DD= ,?2@%!= (13}
DEFAULT DCB=,DSORG=

will restore the original state. An equally effective
way would have been to LOGOFF and then LOGON
again, Since the user had not made these a permanent
part of his environment, the equivalences would have
been lost.

In order to make synonyms and defaults part of
the user's permanent environment, they must be
placed in the user profile. This data set is associated
with each user as soon as he issues a PROFILE com-
mand for the first time. At that point, all the syno-
nyms and defaults the user has established are written
into the user profile. From then on, each time the



PROFILE command is issued, a new copy of the user
profile replaces the existing one.

It is interesting to note that, in certain procedural
syntaxes proposed for command systems, a different
approach is to ‘use reserved words rather than key-
words.!® The use of these reserved words does not
permit the restructuring of the language as con-
veniently as the scheme described above. The prin-
ciple reason is that the reserved word is not associated
with a value to be passed but with the command
invoked. Thus default and synonym functions are
without handles in the operands of the command.

COMBINED DICTIONARY

Having established all these facilities for the user, it is
mandatory that a convenient and rapid access to
these synonyms and defaults exist. As may well be
imagined, a centralized directory is a solution. Origi-
nally, the concept was taken to include all the items
that the user or the system might want to refer to.
This meant commands, stored procedures, data set
names, program names, program symbol tables, de-
faults, ete. It was discovered, however, that the size
of this table militated against system performance.
The final design, therefore, included only| those
elements—synonyms, defaults, command variables,
textual procedures, and built-in procedures—newly
added to the system. This directory is called the com-
bined dictionary.

The concepts of synonyms and defaults and some
of their usage have already been discussed. Therefore,
only command variables, textual procedures, and
built-in procedures will now be covered.

Command Variables

Command variables are a set of values whose names
reside in the combined dictionary. Characteristically,
users would like to be able to set some storage aside
for elements, such as recursion counts, limits, and
communication cells, that are not tied to a given pro-
gram. In Command System II, it is possible to create
a command variable by means of the SET command.

SET ABLE="NO’, BAKER=10 (14)

will establish these two symbols in the combined dic-
tionary, provided there are no external symbols with
the same names (ABLE or BAKER) and that these
names do not appear in an internal symbol dictionary
that is currently loaded. In other words, if the named
item does not appear in any of the extant diction-
aries, then an entry will be made for it. Once these
command variables or symbols have been established,
they may be referred to in other commands quite
freely; for example,

IF ABLET="YES’; SET BAKER=B- (15)
AKER + 1
DISPLAY BAKER

If a command references these, they may be reset,
displayed, and tested by suitable commands. Of
course, each time a reference is made to a command
variable, the entire set of pertinent dictionaries is
again searched to ascertain that no symbol with the
same name has been introduced in a user’s program.

It is possible to retire these command symbols in
several ways:

SET ABLE=,BAKER= (16)

will erase these symbols from the combined diction-
ary. Another way is for the user to LOGOFF and
then LOGON again. Since he had not made these
symbols a permanent part of his environment, they
will not be reestablished when he starts a new task.

If the user so wants, he may save his command
variables in the user profile in a fashion similar to that
for saving synonyms and defaults, which was dis-
cussed carlier. He accomplishes this by issuing the
PROFILE command with the first operand equal to
Y:

PROFILE CSw=Y (17)

This writes all existing command variables into the
user profile in addition to synonyms and defaults.

The importance of getting this data into the user
profile has not yet been made clear. Each time a task
is started and the user logs on, his user profile is used
to construct a part of the combined dictionary. Thus,
the only items with any persistance between tasks are
contained in the user profile.

One of the most frequent uses for command vari-
ables is as user flags, or latches, to control the action
of commands. This use is not yet clear but will be-
come so in the following discussion of procedures.

Procedures

In order to provide as uniform an interface as pos-
sible, all the system commands are defined in exactly
the same way that users are expected to define their
own commands. There are two mechanisms for com-
mand creation. The first allows a command to be
built up out of existing commands and modules of
code. The second allows a new function to be intro-
duced as a command and linked to direct-
ly.5:11:12.13 1t has been suggested that the facilities
for command creation must be highly guarded in
order to keep the system from being overrun with
superfluous commands. This view is quite foreign to
the basic design philosophy of the command system.
The entire thrust of the system is to allow the users
to create their own systems from this basic structure.



Textual Procedures

The first and simplest form of command is the textu-
al procedure. This is a series of commands put to-
gether to achieve some function. A name may be
assigned to this collation and the result will be indis-
tinguishable from one of the system’s original set. Let
us take a most practical example. As you will remem-
ber, we spent some time in the preceding section
worrying about the most convenient form of the
DDEF command. The conclusion was that there was
no really good, simple way to provide all the oper-
ands. In the case in question, the definition was of a
line data set that the language processors could accept
as input and that the text editor could manipulate.
The general form of this command is as follows:

DDEF DDNAME=?[1] ,DSORG=V- (18}
|, DSNAME=?[2] ,DCB=(RKP=4,L-
RECL=132,RECFM=V ,KEYLEN=-

7)

for a data set residing on public storage. If the data
set resides on a private volume, the following fields
must be added:

UNIT=(DA,?[3]},VOLUME=(?[4]) (19)

where the ?[] form indicates the variable informa-
tion. In the first instance, there are only two values to
be inserted, the DDNAME and the DSNAME of the
data set. If we assume that the data set should be of a
form suitable for the language processors, then the
form of the DSNAME is even more rigidly controlled
and that operand should appear as:

DSNAME=SOURCE.?[2] (20)

Let us create a command with only one variable
operand by making the DDNAME the same as the
module name, that is, by making the values to be
substituted for ?[1] and ?[2] identical. We will call
this command EDITPUB and proceed to define it as
follows:

PROCDEF EDITPUB (21)
PARAM EDITNAME

DDEF EDITNAME,VI,SOURCE.E-
DITNAME,(RKP=4,LRECL=132,-
RECFM=V,KEYLEN=7)

_END

As soon as the command PROCDEF was given, an
entry was made in the combined dictionary adding
the word EDITPUB to the vocabulary available to the
user. By the time the END command had been exe-

cuted, a copy of the text of this command had been

stored in the procedure library, which is a data set
much like a macro instruction library except that it
has no index. The index to it is maintained in the
combined dictionary.

The effect of this command is to allow the user to
say

EDITPUB MYPROG _ (22)
and get the following DDEF command executed:

DDEF MYPROG,VI, SOURCE.MY- (23)
PROG,(RKP=4,LRECL=132,REC-
FM=V,KEYLEN=7)

But this only solves the problem for the case in
which the data set resides in public storage. Of
course, it is possible to define a second command for
the private-volume case, but there would be a lot of
duplication in the second command compared to the
first. It should be possible to create a single command
that will take care of both cases at once. The signifi-
cant difference is that in one instance there is no
volume information and in the second there is. The
unit data is pretty much standard in any given instal-
lation, but we should allow it to be changed easily.
Let us examine this next sequence in some detail:

PROCDEF EDITDDEF (24)
PARAM EDITNAME EDITVOL,U-
NIT=XXX

IF'EDITVOL'=";DDEF EDITNAM-
E,VI,SOURCE.EDITNAME,(RKP=-
4 LRECL=132,RECFM=V,KEYLE-
N=7)

IF ‘EDITVOL" =" ; DDEF EDITN-
AME VI,SOURCE.EDITNAME,(R-
KP=4,LRECL=132,RECFM=V KE-
Y LEN=7),UNIT=XXX,VOLUME=-
EDITVOL

_END

Now this definition may seem rather esoteric, but
in fact as we shall see it is quite simple. In the first
place, we have defined three parameters; EDIT-
NAME, as before; EDITVOL, to specify the volume
of residence of the data set; and UNIT, to specify the
residence device when necessary. Note that the third
operand is specified in a strange way. The establish-
ment of a dummy operand for internal substitution
allows us to use UNIT as a keyword of the new com-
mand and yet be able to specify UNIT as a keyword
of the resultant DDEF command. We have established
by this mechanism that the string XXX is the object
of the internal substitution and that the keyword
UNIT only appears in calls to EDITDDEF.

The prime consideration is that the absence of
volume data means that the data set is to reside on
public storage. Thus, the first IF command tests the
existence of a real value for EDITVOL. If EDITVOL
is a null string (i.e., not explicitly given or defaulted
in the combined dictionary), the public form of
DDEF will be issued. If the first test is untrue (there



is a value for EDITVOL), the first form of DDEF will
be skipped. The second IF command must necessarily
be true if the first was not and so the longer form of
DDEF will be given. It is expected that the user who
creates this command would set up a default for
UNIT as follows:

DEFAULT UNIT=(DA,2314) (25)

This will allow him to omit the UNIT operand unless
he wishes to change the residence device. Now the
command given as

EDITDDEF MYPROG (26)

will achieve exactly the same result as EDITPUB did
before, while

EDITDDEF MYPROG,(,MYVOL) (27)
will result in the following DDEF being issued:

DDEF MYPROG,VI,SOURCE.MY- (28)
PROG,(RKP=4,LRECL=132,REC-
FM=V,KEYLEN=7),UNIT=(DA,23-

14) VOLUME=(,MYVOL)

which is just what we wanted.

This simple example has only scratched the surface
of the possibilities of this textual procedure scheme.
Many commands in the system have far more elabo-
rate procedures. The user’s imagination is the only
limit.

Now it is possible to demonstrate the use of com-
mand variables in a textual procedure. Consider the
following circumstances: The user wishes to print
more than one copy of a particular data set. He
would like to be able to specify the number of times
explicitly when he names the data set, which he can
accomplish with the following sequence:

PROCDEF MULTPR (29)
PARAM NAME, TIMES

SET DUMMY = TIMES

PRMULT NAME

_END

PROCDEF PRMULT

PARAM NAME

IF DUMMY>0; SET DUMMY = D-
UMMY-1; PRINT NAME

IF DUMMY1=0; PRMULT

_END

In this instance, the first procedure is merely the
necessary housekeeping required to initialize the com-
mand variable DUMMY. The textual procedure
PRMULT now uses DUMMY as a basis for decisions.
If DUMMY indicates that there are still more copies
to be made, it will call PRMULT again to get the next
PRINT issued. Thus the command

MULTPR MYDS, 2 (30)

requests two copies of MYDS. First, the value of
DUMMY is established as 2 and PRMULT is called
with MYDS as the name of the data set. Now the
sequence is as follows:

IF DUMMY>0 true
SET DUMMY = DUMMY-1 DUMMY now = 1
PRINT MYDS First Time

IF DUMMY O true
PRMULT

IF DUMMY>0 true
SET DUMMY=DUMMY-1 DUMMY now =0
PRINT MYDS Second Time

IF DUMMY O false

and no more recursion takes place. However, it
should be obvious this scheme will blow up if the
command is given as

MULTPR MYDS, -1 (31)
Although this possibility seems remote, there is no
need to permit infinite loops. A better way to do this
is as follows:

PROCDEF PRMULT (32)
PARAM NAME

IF DUMMY>1 ; SET DUMMY=D-
UMMY-1 ; PRMULT

PRINT MYDS

_END

In this case, the data set will always get printed at
least once, but more than once only if DUMMY is
greater than 1. Here the PRINT commands are col-
lected until as many as are required are present; then,
as the system works its way out of the recursive
stack, the PRINT commands are executed.

Built-in Procedures

In order to be as efficient as possible but still preserve
the centralized syntactical scheme, it was necessary to
evolve a mechanism that would provide the operand
analysis to resolve synonyms, defaults, and explicit
values, and to avoid the necessity of referring to a
data set for the operand list.'? The most desirable
circumstance would be to have each hard-coded com-
mand specify the keywords and the order in which
they were to be treated positionally. This implies that
the necessary information would be a part of the
coded module itself. From that idea the rest fol-
lowed. We define an entry point in a section of the
object code into which data may be written. Enough
space is set aside to allow each operand to be repre-
sented by a pointer, and with each such set-aside posi-
tion a keyword equivalence is given.

Thus evolved the concept of a built-in operand
descriptor and linkage pointer. Since the system
would insist on a rather easily followed but fairly



rigid linkage, a macro instruction called BPKD (built-
in procedure key definition) is provided. All that re-
mains is to give the macro instruction the internal
pointers to the keyword character strings to be used
in the linkage and the macro instruction generates the
rest. The final touch is to allow the specification of
the entry point to be used when the linkage is filled
in. The idea is that it would be possible to have sev-
eral “built-in” linkages in a single module without
confusion,

So far this has taken care of the code. But how is
the system to know that for a given name a special
piece of code exists? For this part of the linkage, a
command called BUILTIN is provided. It creates an
entry in the combined dictionary and puts a remem-
bered version into the procedure library. The diction-
ary entry consists merely of the name associated with
the command and the entry point containing the
BPKD description. Thus, the dictionary entry is suffi-
cient to find the right piece of code and to retrieve
the operand list from that code. Once the operand list
is obtained, the resolution proceeds just as though the
keywords were on a PARAM line of a textual pro-
cedure. The only difference occurs when all the oper-
ands are resolved; then the system passes control
directly to the object code involved at the entry point
specified without further ado.

Perhaps this sounds too elaborate to be quite effi-
cient. The alternative is to allow each piece of object
code to set up its own analysis of the input operands
and their defaults. However, the loss to the system is
immense. No longer will a single set of rules obtain.
The user will have to remember that this command
needs one form and that one another form. Further,
the centralized mechanism will be lost and unavail-
able to users who need to construct new commands.
Last, and perhaps least important, is that the analysis
code will be repeated endlessly—in every command
module that needs to resolve operands.

Dictionary Handlers

This, then, is the sum of all the types of entries that
reside in the combined dictionary. In order to manage
this dictionary, a set of generalized dictionary hand-
lers have been developed. Although the only diction-

Figure 1. Initial sublist expansion
of the MULTPR textual procedure.

ary they will work on now is the combined diction-
ary, they are not locked to it and can be used on any
dictionary the user desires. All that needs to change is
the pointer to the beginning of the dictionary.

LANGUAGE =SYNTAX + DICTIONARY

A language definition has always depended upon two
elements. First, the language must have form. In gen-
eral, this means that it must have an agreed upon set
of syntax rules. Of course, punctuation and juxtaposi-
tion are the cornerstones, and the concept of opera-
tors and operands fill most of modern grammar,

Second, and perhaps more imperfectly under-
stood, a language must be capable of conveying mean-
ing, or intelligence. The only way in which this may
be achieved is to have semantic values associated with
the symbols of the language. Then the rules of syntax
become useful.

It is just such a combination of grammar and
semantics that define most languages. Recently, the
world of programming has shown a tendency to treat
these concepts lightly. The imprecise definitions asso-
ciated with programming languages have hindered the
development and exchangeability of most of the
“languages” currently in vogue. In the case of Com-

mand System 11, a conscious effort has been made to
achieve a clean structure. The rules of syntax dictate

the “grammar” of Command System II, and the
combined dictionary entries give semantic value to
the terms used.

These two elements taken together represent the
language definition of Command System II. However,
it is not enough to have a language. Those command
systems which only define a language are woefully
incomplete. Most languages are considered dead un-
less they are in use, and a command system must be
considered in this light. Without an underlying system
that can comprehend and react well with the lan-
guage, no purpose is served. As will be seen, some
considerable thought has been devoted to the crea-
tion of a meaningful foundation to this system. No
great amount of detail will be expended on those
parts of the underlying system which are essentially
unchanged from previous systems. Rather, we shall
now consider those new or vastly improved areas.

MULTPR MYDS, 4 FIRST

SUBLIST

SET DUMMY=4 PRMULT MYDS SECOND
SUBLIST



MULTPR MYDS, 4

FIRST

SUBLIST
SET DUMMY = 4 PRMULT MYDS Ehsiieh
IF DUMMY>{; SET DUMMY=DUMMY=|; PRMULT MYDS PRINT MYDS THINDZ,

Figure 2. Continued expansion of the MULTPR textual procedure, including PRMULT, into sublists.

COMMAND STREAM

Throughout the preceding sections, much has been
said about how commands are interpreted and exe-
cuted. In particular the expansions of textual pro-
cedures make a number of “sub-commands™ available
at once. You will remember that in the multiple print
procedure—examples (29) through (32)—the PRINT
commands themselves were ‘“‘saved up” until all of
them had been accumulated and only then were they
executed. In a system that allows the nesting of com-
mands or procedures, the problems of switching the
attention of the system in and out of these con-
voluted schemes is at best difficult. In an effort to
make this as easy as possible for users to comprehend,
the system provides a set of “source list” handlers.
These complement the dictionary handlers in that
they deal with lists rather than tables.

In order to make this clear, let us examine the
“recursive” procedure used to exhibit multiple print
requests. If we wish to follow this expansion, it is
necessary to invoke the MULTPR procedure—
example (29) as modified by example (32)—with a set
of explicit parameters:

MULTPR MYDS, 4 (33)

When this is taken into the system, it occupies a posi-
tion in the source list. If it came from the terminal
and was the only command on the logical line, it is
the entire contents of the first sublist.

| MULTPR MYDS,4 |

The command analyzer recognizes that MULTPR is a
textual procedure and prepares a sublist to handle the
expansion of the set of commands that the procedure
represents (Figure 1); it then connects the sublist to
the original source list entry. Now control passes to
the SET command and after that to the PRMULT
procedure. Again the command analyzer prepares a
sublist for the expansion of PRMULT (Figure 2).

This process continues until each command on
some sublist can be executed without resorting to
another sublist. At that point, the sublist at the bot-
tom is exhausted and control reverts to the next high-
er sublist. The entire sequence will look something
like Figure 3. It is clear that the four PRINT com-
mands are executed last as control passes back
through the six sublists. In order to emphasize the
sequential nature of this event, the various values of
DUMMY as the source list is executed are shown in
the circles adjacent to the occurrences of DUMMY in
each sublist.

The source list handlers are generalized to manipu-
late any list-structured string. All that is required to
make them work on strings other than command se-
quences is a pointer to a new string origin. Since we
allow procedures to invoke procedures, the source list
must be structured to permit “levels” of commands
to exist. Thus, each call on a textual procedure is
taken to require a new level. The completion of the
execution of commands at any level is a signal to
revert to the previous level. This push-down/pop-up
scheme is not new. What is new is to make the han-
dling of commands nestable. Many systems in the
past have recognized single-thread (level) command
sequences. A few, notably the TX-2 RECKONER,
have allowed the invocation of a new level of the
entire system. The essential features that are new in
Command System II are that the push-down level of
the command sequences is independent of all other
activity in the system, that all levels have access to
the same data, and that the degree of involution does
not affect execution.

Once the mechanism is established, there are a
number of interesting side effects that bear noting.
For example, it is now possible to call the command
system recursively. That is, the command system can
be invoked from user’s object modules to execute



commands. At the completion of an exercise such as
this, the system will revert to the object code at the
next level. This produces the effect of making any
command or command procedure, either user or
system provided, available in a macro instruction
form. The technique here is to create a new sublist
upon the occurrence of the OBEY macro instruction
call. This sublist is isolated from the rest of the com-
mand source list in that its predecessor list is object
code and not another list. Thus, the command in-
voked via OBEY may in itself create as many sublists
as necessary and then work its way back out again.
When it is finished and the created list is complete,
the return is not to the next higher list but rather to
the object code from which the OBEY call occurred.

Another benefit possible is that the occurrence of
an attention interrupt allows the system to create a
new sublist. In this case, the commands the user en-
ters are kept on this sublist level until the user ele-
vates the system to the previous list by use of the GO
command. In this way, the user can intervene in a
command sequence and start a new sequence of com-
mands. This sequence will continue until the user ex-
plicitly asks the system to revert to the higher level.
There is no requirement that the user ever revert to
the original list, however. Our experience to date has
been that over a period of some time the user gets

MULTPR MYDS, 4

IF DUMMY >1; SET DUMMY=DUMMY - | ; PRMULT MYDS °

IF DUMMY > ; SET DUMMY=DUMMY-| ; PRMULT MYDS

deeper and deeper into sublists. The only cost of this
process to the user is that somewhere in his current
virtual memory reside the unfinished ends of these
suspended strings. If no reference is made to these,
they will not intrude and they will be eliminated at
LOGOFF.

When a sublist is completed, the space it occupied
is freed to be reused by the source list handlers. In
fact, the source list handlers are quite conservative of
space. Bven parts of lists that have been executed are
available for reuse. The only time that the system will
require very much space for the source list is in the
case in which a great number of commands are
stacked up at once for eventual execution or in the
case in which the user has made extensive use of the
attention button to leave uncompleted sublists
around.

The concept of the source list will eventually allow
the addition of soft copy devices, such as graphic
terminals. All that is needed is the added feature of
saving the lists before executing them. Thus, the
remember function, or audit trial, can be internally
collected without any great fuss.

The way the system operates is that the command
analyzer tries to find work in the source list. If none
remains, then the appeal is to the SYSIN to get the
next command. Of course, the user has the option of

FIRST

SUBLIST

SUBLIST

PRINT MYDS THIRD
PRINT MYDS SUBLIST
PRINT MYps ‘ s
S

Figure 3. Sublist structure for the MULTPR textual procedure when DUMMY is initially set to 4. The
value of DUMMY as the source list is executed is shown in the circle above that symbol in each sublist.
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fetching his input from the source list or the SYSIN
at will. If his data is to be generated by a procedure,
it may well be that the data will reside in the source
list. In other systems, the user is constrained to access
data from outside the system, either from the equiva-
lent- of a SYSIN or from an independent data set.
Seldom is the user free to generate data as though
they were commands and then access them internally.
The advantage of this scheme is that the distinction
between commands and data disappears. The user,
then, is perfectly free to construct a subsystem using
large parts of the existing structure. The input to the
subsystem may appear just as a command string to
the user and all the facilities of textual procedures are
available to his subsystem.

MESSAGE HANDLING

The perennial problem of when to publish a message
to the user and how much to say had plagued inter-
active systems from the beginning. There are several
schools of thought, and each disagrees violently with
the others.2'*% One of the problems is to describe the
different environments surrounding users. These
range from the neophyte who has never engaged in a
conversation with a system to the ultrasophisticated
user who has had a wealth of experience over several
years.

It is absurd to suppose that both these extremes
need the same level of messages. As a general rule, the
more familiar a user is with interactive systems the
less he wants the system to intrude with unnecessary
messages. Of course, what he considers unnecessary is
probably very necessary to the new user.

The content of the messages themselves is also a
point of discussion. There are those who don’t want
messages very often, but when the message is required
it should be quite explicit. There are those who want
only the absolutely most abbreviated form of a mes-
sage, what we would call at best cryptic. No system
with a single message handling scheme will ever satis-
fy all the needs expressed by users,

What can be done is to provide a vehicle that can
be tuned to the user’s needs. Older systems offered
the user the choice of a “coded” message (a unique
key which would guide him into a message book) or a

“full text” message (a paragraph of richly chosen

words). The all-or-nothing flavor of this type of
choice is unpopular. There are instances where the
usual messages should be very short but the unusual
ones should be long enough to be “meaningful.”

Command System II has endeavored to solve these
conflicting demands by providing a skeleton upon
which the user may build. The user prompter starts
with the assumption that all messages can be categor-
ized into severity classes:
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e Informational: a message which may tell the user
something about system activity but will have
little or no effect if left out.

e Warning: usually a diagnostic message that might
reveal some symptom the user should be aware
of; certainly not so serious that the system
should reject the current action,

e Normal error: a message issued concurrently
with termination of the current command but
not indicative of system problems, such as when
the user misspells the name of his program or
tries to do something entirely illegal; the large
majority of messages in any system seem to fall
into this category, usually because the message
fabricators tend to overestimate the severity of
the conditions that gave rise to the message.

e Serious error: a message indicating the system
has detected a symptom that places the user’s
task in grave danger of being aborted;in general,
such messages should engender a vigorous re-
sponse from the user,

e Terminal error: this is the bitter-end message; it
is the one which sadly informs the user that his
task is dead. There are probably two levels even
here—the one which involves only one user and
the major disaster which crashes the entire sys-
tem,

Since each message in Command System II has
been classified in this fashion, the user may choose to
suppress all messages below a suitable level of impor-
tance. As he raises the level of his acceptance, he gets
correspondingly less information but he does speed
up the action. Naturally, the choice of threshhold
must be easily adjusted. At some times the user, in
familiar territory, will want to suppress most mes-
sages; at other times, using less frequented parts of
the system, he will want more data to go on. The
mechanism here is a default value for the threshhold.

This implicit operand is set and reset by the DE-
FAULT command, even though the value is never
used in any command. To get all the messages in the
system

DEFAULT LIMEN=I (34)

where I specifies that the lowest level desired is in-
formational. The other codes are:

w Warning

N Normal error
X Serious error
T Terminal error

The system does not allow a higher class of thresh-
hold, one which could block the terminal message.
Thus, there is a message level that can be counted on
to get through to the user in any circumstance.

This scheme, however, still does not address the



problem of how much to say when the message is
finally issued. To exert some control, two mecha-
nisms are employed. The simplest is a variation on the
coded/full dichotomy. Now we recognize three cate-
gories of length. In the shortest, we issue only the
message identification; this is a unique string of char-
acters and will always be associated with some text.
Next we recognize a normal message; that is, a short
sentence which provides a synopsis of the problem or
event being reported. The third category is the ex-
tended message; here the emphasis is on completeness
and clearness. The user may choose any one of these
lengths and can shift back and forth with another
default:

DEFAULT BREVITY=S (35)

where S stands for standard, or normal, message. The
other codes are

E Extended messages
M Message identification only

But most users are not satisfied to set this thresh-
hold and live with it. Most want a short message of
some sort with the possibility of obtaining a longer
version if the short message is unclear. To provide this
function, we have incorporated an explanation
scheme in the message handler. Thus, it is possible to
place explanation messages—which will never appear
except on user demand—into the message file. Then,
when the meaning of a message is unclear to the user
and he wants elaboration, he says:

EXPLAIN (36)
and the system will retrieve the explanation message
with the same message identification as the last-issued
message. If there is no explanation message, the sys-
tem says so.

Once we had gone this far, it was easy to add a
word-explanation system. Thus, in a message, certain
words may be flagged as “explainable.” For example,
the user can say

EXPLAIN DSNAME (37)

and, if the word is explainable, the system will
retrieve the word explanation associated with
DSNAME. Of course, this explanation is keyed to the
last-issued message ‘again. In this vein, the user is al-

lowed to indicate the scope of his explainable word. .

He does this by assigning it a message identification
which is all or some part of the original message.
Since message identification is unique, the assignment
of message identifications may be regularized and
assigned in some logical fashion. In this sense, the
scope is indicated much in the same fashion as a
Dewey decimal classification is assigned: the more
places in the identification, the finer the scope.
Lastly, the user may not want to refer to the last-
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issued message. for this he must say

EXPLAIN TEXT CZASA037 (38)

where CZASA037 is the identification of the message
he wants the explanation for.

By such schemes, the wealth and power of a mes-
sage file is materially enhanced. The user has been
given some control of his environment again.

In all the foregoing it was assumed that the texts
of messages were fixed in the system. This is quite
natural, since no system in the past has been other-
wise endowed. Now we add the last bit of the
message-freedom bill. The user may create his own
message file and expect the message-handling facilities
to operate on it just as well as they do on the system
message file.

Even better, the user may not like the language or
phrasing of some of the system messages. He may
then overlay these by creating in his own message file
a new message with the same identification as the
system message. The user prompter will select his
message in preference to the system version. The mes-
sage will still be issued under the same conditions, but
the text is now what the user wants to see and not
what the system presumed was meaningful.

The system does not incur the extra cost in time if
there is no user message file. It examines the user’s
environment at LOGON and, if there is then no user
message file, it will not try to search it. This means
that the user will have to LOGOFF and then LOGON
after he has created his message file before it becomes
available to the system.



EPILOGUE

The entire thrust of the foregoing scemes has been to
provide a well-defined structure for the user while
allowing him to control his environment. There have
been no assumptions made about the kinds of useful
work the user may wish to accomplish. Such assump-
tions are dangerous and narrowing, There is every in-
dication that, as in all preceding systems, the pattern
of usage will grow and change as users begin to really
investigate the interactive system. Since this is the
case, the system must be prepared to adapt to the
new applications.

Yet the system must not be so loosely defined that
simple things cannot be done simply. It is imperative
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INTRODUCTION

Since the advent of computer operating systems, their
development has been in two distinct directions: first,
to efficiently use machine resources; second, to pro-
vide a better computing facility for the users. It has
become apparent that multiprogramming can be used
to improve computer-resource utilization. At the
same time, it has been learned that the solution of
many user problems is hampered by the limited ad-
dressing capability of the computer, which requires
planned overlays and data organizations that can ef-
fectively use them. On the other hand, multiprogram-
ming efficiency is critically dependent upon any pro-
gram using a minimum amount of main storage, or
real memory, so that as many programs as possible
can be coresident and, therefore, multiprogrammed.
Virtual memory offers a solution to both the effi-
ciency-minded computer-center manager and the
problem-oriented user, for it tends to maximize
resource utilization while it minimizes real memory
requirements.

A virtual memory is a zero-origined (beginning at
0) sequential address space that is dynamically and
continuously mapped, as it is referenced, into the ad-
dress space of real memory. The size of a virtual
memory is not limited to the availability of real mem-
ory and sequential virtual memory addresses need not
map to sequential real memory addresses,

Such a virtual memory has been implemented in
the IBM System/360 Time Sharing System
(TSS/360). The utility of this virtual memory is being
explored by IBM and customer alike.

ADVANTAGES OF VIRTUAL MEMORY

Virtual memory purports to solve two problems. One
is that it separates real memory management from
program address space needs. The other is that it in-
creases the program address space available.

In non-virtual memory systems, the programmer is
the manager of real memory. He must estimate how
big his program and data are and make arrangements
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Figure 1. Simple overlay
communication such as
this is often used by as-
semblers and compilers.
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typical of contemporary problem programs.
Since data can require coresidence [/eft], as
shown by the solid arrows, the data blocks can-

to have the space (real memory) allocated. However,
the estimates are difficult to make, especially if the
program space is data dependent. Furthermore, he is
usually penalized for making bad judgments. First. if
the program requires more space than he defined. 1t 15
thrown off the machine. Second, if he requests more
space than is needed, his job is apt to get a low priori-
ty and a long turn-about time. In addition, the system
may run poorly as a result of his over-specification of
space needs or even because he needed the full
amount of space for only a portion of the computa-
tion time.

From the system’s point of view, it has the prob-
lem of accomplishing multiprogramming. It must take
the information it demanded of the user and manage
the real memory space as part of its jobscheduling
function. The system has no real knowledge of the
actual address space being used, but only knows what
the user has told it.

In virtual memory systems, the address space is
always of the size needed to solve the problem. The

not be overlayed in a simple sequence; since the
programs call each other in a complex sequence
[right], as shown by the solid arrows, the pro-
grams cannot be overlayed in a simple sequence.

mechanism used to map virtual memory into real
memory can be as dynamic as necessary to suit the
system’s needs. With virtual memory, the user can
penalize neither his program’s operations nor the
system’s efficiency because his use of address space is
not a binding decision to allocate that much contigu-
ous memory. Even a dynamic increase in virtual mem-
ory address space imposes no problem to the system’s
real memory management facility.

Often, an algorithm requires more address space
than is available with real memory. The commonly
used technique for overcoming this problem is to plan
a set of overlays, which come in two forms, instruc-
tions and data.

Some algorithms are easily broken down into over-
lays. For instance, assemblers and compilers are readi-
ly broken into phases and often break data into
overlay blocks. These have the general intercommuni-
cation relationship illustrated in Figure 1.

However, a class of problem programs has emerged
that makes preplanned overlays very difficult to im-



plement. Their intercommunication relationships are
complicated and their order of use is not predeter-
mined (see Figure 2). These problems simply require
an address space larger than is practical with real
memory, )

In both of the cases described above, the address
space needed is larger than the real memory. Virtual
memory provides an alternative means.of increasing
address space without having to build boundless real
memnory.

EVOLUTION OF VIRTUAL MEMORY

Virtual memory has gone through three stages of de-
velopment as the problems, and the solutions to
them, have become more apparent. These evolution-
ary steps are pertinent to an understanding of the use
of virtual memory in TSS/360.

Single-Register Relocation

In a single-, or base-, register relocation scheme, the
user’s program is loaded into real memory (see Figure
3). A pointer to the origin of the real memory block
the program occupies is placed in the relocation regis-
ter. Then, each time the user references a virtual
memory address, the value in the relocation register is
added to it to arrive at the real memory address at
which the reference is located.

Although it can be debated whether single-register
relocation is a form of virtual memory, it is safe to
say that this technique separates the address space
defined by the user from the actual memory space to
be used.! However, in this scheme, virtual memory
was always confined to an area smaller than the sys-
tem’s available real memory and therefore did not
make any headway in solving the user’s overlay
problem.

One-Level Page Table

The basic step in the creation of a virtual memory is
the definition of a table. The index to the table is a
virtual memory page number; the value in the entry is
the real memory origin of the corresponding virtual
memory page. As part of the table definition, each
entry must contain an indicator of whether or not
that virtual memory page is actually in real memory
(see Figure 4).

By establishing such a system, we have created an
address space which is logically contiguous, although
not necessarily physically contiguous. It is divided in-
to pages, each of which is allocated to real memory
independently. This paged virtual memory has the
following properties:

RELOCATION
REGISTER
USER’S m@ REAL
PROGRAM MEMORY
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Program o
reference - elnory

. block

Real memory j
address

Figure 3. Single-register relocation was the first stage
in the evolution of the virtual memory concept.

e Adjacent pages in virtual memory do not need
to be allocated adjacent blocks in real memory.
Real memory management can limit itself to
handling only page-size blocks and thus solve
the fragmentation problem.

e Not all of a virtual memory is needed in real
memory simultaneously.? Therefore, the system
incorporates a mechanism that interrupts execu-
tion when the indicator for a page being refer-
enced shows that the page is not in real mem-
ory. The system can then use such an interrupt
as a signal to bring the referenced page into real
memory. This means that the system can allo-
cate real memory as it is needed by the virtual
memory program execution rather than as
address space is requested by the program.

e The available address space is expanded to the
smallest of (a) page-table size limitations, (b)
CPU instruction-addressing capability, or (c)
auxiliary space (drums, disks) that must hold a
copy of that portion of virtual memory not now
in real memory.

® The system has the complete responsibility to
detect the real memory needs of the problem
program and manage real memory accordingly.



The one-level-page-table implementation of virtual
memory, although it provides advantages over previ-
ous systems, has the following limitations:

e Simultaneous access to the same data by differ-

ent virtual memories is not accomplished.

e Some algorithms require variable size data
spaces depending upon the data to be processed.
(For example, the size of a FORTRAN compiler
symbol table depends upon the program being
compiled.) Leaving a large enough space to ac-
commodate the maximum symbol table would
leave holes in the page table for most users.

e The page tables could themselves require large
contiguous blocks of real memory.

Two-Level Page Tables

A two-evel page table (see Figure 5) is designed to
overcome these problems.* It defines a segment
table with each of its entries pointing to a page table.
Each page table is constructed as in the one-level page
table case. The virtual memory is thus divided into
segments, each of which is divided into pages.
Simultaneous access to a segment by different vir-
tual memories (sharing) is provided by allowing dif-
ferent segment tables to point to the same page table.

VIRTUAL MEMORY

PAGE TABLE

In this way, the segment is simultaneously accessible
to all those virtual memories whose segment tables
contain a pointer to the shared page table. This facil-
ity allows selected users to share portions of the same
virtual memory.

Variable-length data spaces are allocated in such a
manner as to begin on segment boundaries. Thus, a
page table can be made to grow as space is needed.
However, page tables are limited in size (to the size of
the segment) and can never require large, contiguous
blocks of real memory.

CHARACTERISTICS OF VIRTUAL MEMORY
IN TSS/360

The TSS/360 virtual memory is created using the
two-level-page-table structure inherent in the design
of the IBM System/360 Model 67. The characteristics
of the two-level structure, combined with the attri-
butes of TSS/360 software, provide the following
characteristics of TSS/360 virtual memory.

Segmentation

A virtual memory broken into several pieces, which in
some ways can be treated as different virtual mem-
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Figure 4. Structure of a one-level page table. Each
page-table entry contains an indicator that shows
whether that virtual memory page is in real memaory.
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Figure 5. Structure.of a
two-level page table.
Each segment-table en-
try points to a page ta-
ble; each page-table en-
try contains the status
of a virtual memory page.

ories, is called a segmented virtual memory.? It is
convenient to use this segmentation for sharing, data
segments, and page-table management.

Sharing

In designing TSS/360, it was necessary to establish a
mechanism for simultaneous access to both programs
and data. Although this sharing could have been done
on a page-by-page basis in a one-level-table virtual
memory, all known techniques for accomplishing this
would have introduced considerable inefficiency in
the supervisor by requiring a separate, software-
implemented shared-page table. In TSS/360, a virtual
memory segment can be shared simply by having
segment-table entries for separate virtual memories
point to the same page table. Each user in this case is
allowed to share any page in that segment.

Data Segments

In the course of programming an algorithm, it is fre-
quently convenient to describe a data segment that is
variable in length (up to maximum). For instance, the
symbol table of a compiler is variable in length, at
least until the first-pass compilation is complete. By

PAGE TABLES REAL MEMORY
4
Indicators !
T
4
/
/
!
/
/
Pointers to /
real memory
locations "/
-~ : A

describing a variablelength data segment, the real
memory address space is not necessarily allocated
until it is used. The ability to describe such data seg-
ments considerably simplifies the table-allocation
problems inherent in conventional systems.

Page-Table Management

Since a user’s virtual memory comprises both his pro-
grams and certain system functions, such as access-
method routines, it can grow to a considerable size.
Segmentation allows the page tables describing such a
virtual memory to be broken up into convenient
groups, so that large chunks of contiguous real mem-
ory are not required. Further, page tables need not
contain entries for unallocated portions of segments.
These management functions allow the supervisor to
save space that would ordinarily be required for page
tables and also to avoid the problem of requiring large
contiguous blocks of real memory to contain page
tables.



Data Sets

It is often necessary to assign an entire data set to a
portion of virtual memory in order to conveniently
address it. The TSS/360 virtual access method allows
the user to specify that a data set be assigned to a
segment for convenient processing.’

EXTERNAL STORAGE

IBM 2311 Disk Storage Drive
IBM 2314 Direct Access Storage Facility

Virtual Access Method |Specified by the user or
(VAM) implied by his actions

VIRTUAL MEMORY
IBM 2311 Disk Storage Drive
IBM 2314 Direct Access Storage Facility
1BM 2301 Drum Storage

System paging Inferred by
algorithm program reference
REAL MEMORY

IBM 2365 Processor Storage

Figure 6. The TSS/360 storage hierarchy.

In order to implement such a virtual access
method (VAM), note was taken of the storage hierar-
chy in TSS/360. We had already defined virtual mem-
ory to be contained on devices such as the IBM 2311
Disk Storage Drive and IBM 2314 Direct Access Stor-
age Facility (auxiliary storage) or in real memory (see
Figure 6). Both were page formatted. The job to be
done by VAM was to map external storage into vir-
tual memory and further to provide record and data
set services. To simplify the problem, VAM external
storage was defined as a page format. The capability
for a virtual memory program to change page-table
entries was also provided. This allowed VAM to simp-
ly map the data set pages of external storage into
virtual memory. The supervisor already had devel-
oped the paging mechanism to accomplish any
needed record transfer. VAM then was left with the
simple problem of managing data sets and their rec-
ords for the user, a clean though complex task. Error
recovery and similar functions are a supervisor re-
sponsibility and should not be confused with record
management, variable record lengths, etc.

Loading and Binding

Before discussing loading and binding, it is necessary
to define some terms as clearly and explicitly as pos-
sible.

Loading: the act of placing program modules and/or
data into the address space to be used in execu-
tion. In TSS/360, this means the assignment of
program modules and/or data to virtual mem-
ory. Note that real memory is not involved in
loading a virtual memory.

Dynamic loading: the act of loading a module at the
time it is determined to be required. This facili-
ty allows a program to be constructed so that
only the required modules will be loaded when
they are determined to be needed.

Relocation: when a module or control section is
loaded, it usually has some address constants
that must be incremented by the difference be-
tween the origin of the address space and the
address within that space assigned for the origin
of that module or control section. The incre-
menting of these address constants is the proc-
ess of relocation, and it is nominally done at
the time loading is accomplished.

Binding: modules or control sections often contain
external (to themselves) references. These refer-
ences are to external symbols which are to be
defined by other modules. The filling in of the
intermodule address constants “binds” the
modules together into a program and is called
binding. In the MULTICS system, program
modules are called program segments.® An orig-
inal intent of program segments was to elimi-
nate the need for binding program modules.
Both MULTICS and TSS/360 have linkage sec-
tions that require the eventual substitution of

~ virtual memory addresses for external symbols.

Address translation: a prerequisite to execution of a
program is that the address constants must al-
ready have been resolved, i.e., relocation and
binding must already have taken place. In a vir-
tual memory system, these address constants
point to virtual memory;the CPU in effect exe-
cutes a virtual memory program. To relate the
virtual memory addresses to real memory ad-
dresses requires a translation unit. In the Sys-
tem/360 Model 67, this is called the dynamic-
address-translation (DAT) unit. Its purpose is to
translate the virtual memory address called for
by the CPU into the real memory address at
which the appropriate virtual memory reference
can be found. This address translation is accom-
plished entirely by the Model 67 hardware so
long as the virtual memory being referenced is
in fact in real memory.



Mapping: on occasion, the address-translation proc-
ess will discover that a required page of virtual
memory is not contained in real memory. An
interrupt is given to the supervisor, whose re-
sponsibility it is to page the required virtual
memory into real memory and establish the
correspondence between them. The establish-
ment of this correspondence is called mapping,
and the page is said to be mapped into physical
memory.

Although they are often confused with loading,
binding, and/or relocation, address translation and
mapping do not change any address constants of the
virtual memory and can be ignored from a loading-
and-binding point of view. It is the province and
responsibility of paging to service the address-
translation hardware by accomplishing the appropri-
ate mapping as needed. Paging is ignorant of address
constants in virtual memory.

Module Formats

TSS/360 object-program-module formats are specifi-
cally designed for on-line storage and a paged virtual
memory. This avoids some of the problems seen in
other systems. In addition, it provides functional ad-
vantages. The most notable change from previous
systems is the elimination of the card-formatted ob-
ject module. The language processors produce mod-
ules in page format; these can be conveniently loaded
without the intermediate step of linkage editing.
Another significant change is the provision for an in-
ternal symbol dictionary (ISD), optionally produced
by TSS/360 language processors. The ISD, which is
contained in a separate page (or pages), is used during
debugging operations.

The format of the TSS/360 object module is
shown in Figure 7. The program module dictionary
(PMD) contains relocation information, external
symbol definitions, and reference information such as
is contained in the RLD and ESD of the IBM Sys-
tem/360 Operating System (0S/360) object-module
format. It also contains the attribute definitions for
each control section. The text of a module is laid out

as it will be required in virtual memory. Each control
section is origined on a page boundary and is defined

as an integral number of pages. The length of the
control section (in bytes) is contained in the PMD.

The Loading Process

Loading in TSS/360 is accomplished dynamically.
The loader has available to it an initial virtual mem-
ory, including a task dictionary (TDY) of defined ex-
ternal symbols. It has one library defined by the
system for the user and perhaps others explicitly de-
fined by the user.

When the user (by command or program macro
instruction call) asks that a module, control section,
or entry point be loaded, the loader checks the TDY
for the symbol. If the symbol is not found there, the
loader proceeds to search the libraries (partitioned
data sets) until the module to be loaded is found. It
then adds the appropriate information to the TDY
from the PMD.

The loader obtains space for each control section
according to its attributes and establishes the defini-
tion of all defined external symbols by entering their
virtual memory addresses in the TDY. It determines if
any external references are yet undefined and, if so,
continues the loading process until the definitions are
completed,

Program
Module
Dictionary
(PMD)

Internal
Symbol
Dictionary
(ISD)
[optional]

Figure 7. The TSS/360 object-module format,

Note that although all external symbols have been
defined, no address constants have been relocated
since the text has not been referenced. However, the
loader did establish the correspondence between a vir-
tual memory page and the location of the text on
external storage by asking the supervisor to make
appropriate page-table entries. It also identified those
pages that contain relocatable or external address
constants, The first time they are referenced, the
loader will be called to insert the values as defined in
the TDY.



_Allocation

Allocation of virtual memory is necessary to provide
system control. By providing for management of the
allocation (and freeing up) of virtual memory, these
serious problems are avoided:

e Once used, a virtual memory page must be kept
for potential later use unless explicitly freed.
This could impose much larger auxiliary-storage
requirements upon the system than are actually
needed.

e Virtual memory programs may have bugs. Wild
references should be caught and treated rather
than allowed to go undetected.

e Since certain system programs, as well as the
user’s programs, may be incorporated into his
virtual memory, a means of keeping track of the
assigned (and unassigned) space is essential to
avoid conflicting virtual memory assignments.

The TSS/360 virtual memory requires that the
user define his allocation requirements. A virtual
memory allocation facility is common to system
functions and user programs.

Protection

In TSS/360 virtual memory provides the primary
means of protecting against unauthorized access to
programs and data. Three kinds of protection are
implemented.

Protecting the Supervisor
from User Programs.

This protection is accomplished by not allowing the
supervisor to be contained within the virtual memory

of the user. The supervisor is executed with the
dynamic-address-translation (DAT) unit turned off.
The user program is executed with the DAT unit
turned on.

Protecting One User’s
Virtual Memory from Another’s

Since the virtual memories of different users are dis-
joint unless specific sharing (of segments) is per-
mitted, protection against unauthorized reference is
accomplished.

Protecting the System’s Virtual
Memory Programs from the User

TSS/360 uses storage keys to separate the levels of
access within a virtual memory (see Figure 8). Since
storage keys are used, protection is accomplished on a
page-by-page basis.

When a user program is operating the PSW key is
1. This provides read/write access to information
stored under key No. 1 and read-only access to infor-
mation stored under key No. 2 without fetch protec-
tion. The program has no access to system informa-
tion that is fetch protected. All calls to the system go
through the task monitor, which assures that proper
protection rules as well as proper linkages are used.
The task monitor serves to queue and handle inter-
rupts for virtual memory, which parallels the real
memory interrupt-handling facilities of System/360
and its associated programming.

Storage key =1 Storagekey =2 | Storagé key = 2

USER USER
READ/WRITE READ-ONLY SYSTEM

 TASK MONITOR

Fetch Protected

Figure 8. The use of storage keys in real mem-
ory. When a user program is operating, the PSW
key is 1; when a system program is operating, the
PSW key is 0, which provides unlimited access.
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USE OF VIRTUAL MEMORY

Virtual memory, as implemented in TSS/360,7 has a
number of applications that are being explored. These
applications involve one or more of the following:

Initial Virtual Memory

Initial Virtual Memory (IVM) is a set of program
modules that are prerelocated and bound to each
other during system startup (IPL). Initial virtual
memory is defined by an IVM load list, which de-
scribes the program components to be made a part of
IVM.

Resident on one or more paging devices, IVM is
separated into private and shared virtual memory seg-
ments. Shared segments always have only one copy
per system. Private segments have a pristine copy that
each virtual memory is given to start with. Any
change to one of those pages will cause a private page
to be generated that will last the duration of that
virtual memory.

The IVM concept provides an efficient system by
not requiring relocation of a frequently used system

function each time it is used. Further, it permits
system programs to be developed without the usual
overlay constraints. IVM also allows development
changes to be easily absorbed into the system, and
permits convenient optimization of pages spanned by
a particular function by means of a simple reorganiza-
tion of a load list.

Freedom From Overlaying

For large algorithms, such as a compiler or assembler,
planning overlays is a substantial problem, Often the
overlays do not efficiently utilize real memory be-

Main

program \

Figure 10. The actual subroutine calls in a
particular processing run (based on Figure 9).

¢



cause the program (or data) needed within the area is
small compared to the overlay area. Further, overlays
must be designed to fit a specific real memory address
space. When it becomes necessary to provide (1) a
small language processor and (2) a fast-running proc-
essor which is allowed to get larger, two compilers are
required if planned overlays are used.

It is feasible with paged virtual memory to design a
single processor that is operable in a small real mem-
ory environment and efficient in a large real memory
environment. Not only is the duplicate cost elimi-
nated, but also incompatibilities are eliminated be-
tween the two environments by the virtual memory
approach.

For problem programs, not only is a lot of effort
put into breaking the problem down into logically

complete divisions, but also just the debugging of the
overlay strategy takes substantial effort. In a paged
virtual memory, it is beneficial (perhaps even manda-
tory) to minimize the number of pages needed to
execute a particular function, especially if it is fre-
quently used. However, exception handling need not
adhere to these criteria. Exception-handling routines
can cross page boundaries, provided they are logically
complete, with a minimum degradation in perform-
ance. This permits a substantive saving in pro-
gramming effort not possible in non-virtual memory
systems.

New
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Figure 11. Desirable plex-structure characteristic for use in a virtual memory environment.
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Dynamic Program Growth

Assume that a program has been developed by a num-
ber of people to process some highly variable data
stream. The possible interconnections (subroutine
calls) are shown in Figure 9. Assume also that each
person makes changes from time to time to improve
his particular subroutines. The latest checked-out ver-
sion of each subroutine is desired.

Assume further that the subroutines to be called
are a function of the data provided, and that the data
processed in one operation will require references to
only 10% of the subroutines. For a particular process-
ing run, the subroutines to be used are shown in
Figure 10.

The best way to accomplish the processing, and in
some cases the only way, is to load a subroutine when
it is determined to be needed. This kind of problem
was extremely difficult to solve without virtual
memory, for at any time the likelihood of making a
program-space demand that could not be satisfied was
too great. Virtual memory, coupled with dynamic
loading, allows this dynamic program growth to occur
as necessary (up to the limit placed on the size of
virtual memory).

Flexible Data Structures

Several pointer-dependent data organizations have
been developed for various processing purposes. An
example is the *“‘plex” structure described by Ross
and Rodriquez.® One requirement of such structures
is that the pointers be as simple as possible, and for
this purpose virtual memory addresses are ideal. As
has been shown, virtual memory is convenient for
defining a simple addressing structure. This, in turn,

greatly simplifies the programmed use of the struc-
tures.

When such structures are adapted to virtual
memory, the convenience of addressing solves a sub-
stantial problem. However, it leaves the user wide
open to another problem: he must organize his data
space so that the probability of reference to a4 new
page is minimized. For example, if a new element of
data is being defined (see Figure 11), it should be put
in the same page (or group of pages) as those ele-
ments with which it is most closely associated. If the
user does a reasonable job of preventing random ref-
erences to virtual memory, he has preserved ef-
ficiency as well.

SUMMARY

The implementation of virtual memory in TSS/360
has accomplished a large portion of its goals. Al-
though the symbolic-addressing capability often dis-
cussed as part of program segmentation has not been
provided, it is quite clear that, within the TSS/360
virtual memory, problem programs and even system
programs are easier to define. We are beginning to
understand the new rules of program organization
that lead to efficient processing in a paged virtual
memory environment. The implementation of a
paged virtual memory in TSS/360 has successfully
separated the problem of managing the system’s re-
sources from the problem of constructing a user pro-
gram. This means that in TSS/360 the user’s inability
to accurately define his real memory requirements
does not deter the system from effective multi-
programming.
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THE APPROACH TO DATA MANAGEMENT IN TIME SHARING SYSTEM/360*

by Alexander S. Lett

ABSTRACT

New direct-access organizations were developed for
the dynamic-paging and time-sharing environment of
the IBM System/360 Time Sharing System
(TSS/360). These organizations are evaluated with re-
spect to performance, recovery, and programming.

A device-independent scheme, based on page-size
blocks and utilizing preformatted volumes, is the
foundation of the organizations. A design objective
was to provide a variety of data set organizations,
with emphasis on logical rather than physical records,
In TSS/360, the organizations are sequential, index
sequential, and partitioned. Users are provided with
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full dynamic sharing of data sets that are within a
pool of public data storage.

The key control table for each data set is the ex-
ternal page map, since all operations are performed
relative to the data set and the data page. A single
routine translates data set references to external-
storage references by using the external page map.
Input/output operations are performed by the resi-
dent supervisor. Data are recorded so that block
boundaries are of no concern to the user.

*This report, under the same title, was presented at
the IBM Systems Development Division Programming
Symposium, Swampscott, Mass., June 11-14, 1967.
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INTRODUCTION

The IBM System/360 Time Sharing System
(TSS/360) is the software support provided for the
IBM System/360 Model 67. The Model 67 is a large,
high-speed processor, derived from the Model 65
through the addition of dynamic-address-translation
hardware.! The TSS/360 operating environment in-
volves multitasking, dynamic paging, and time slic-
ing.2 Major components of the system are:

@ Resident supervisor

e Data management

e Command system

e Support programs

This report presents the novel aspects of TSS/360
data management in terms of the physical organiza-
tion of data storage, the user interface, and the
method of implementation. Also, in the final section,
the approach to data management selected for
TSS/360 is evaluated.

Among its many benefits, the selected approach
had significant implementation advantages that
should be considered by other groups developing data
management components.

PHYSICAL ORGANIZATION

A portion of the TSS/360 resident supervisor pro-
vides for the automatic input and output of page-size
blocks of data to and from main storage, as required
by each user’s program.* This paging feature facili-
tates simultaneous operation of many independent
user programs (tasks).

A block size of 4096 bytes for data storage was
selected since it was equal to the smallest unit of
main-storage allocation and because it could use the
page-oriented input/output facility provided in the
resident supervisor. TSS/360 data organization is
called virtual to reflect the page-size orientation of its
data blocks.

The data management component of TSS/360
must support the data set requirements of a large
number of simultaneous users. Since direct-access
storage devices permit this shared operation, they are
the primary medium for data set storage in TSS/360.

The direct-access volumes on which TSS/360 data
sets are stored have fixed-length page-size data blocks.
No key field is required, The record-overflow feature
is utilized to allow data blocks to span tracks as re-
quired, Eight page-size blocks are stored in each IBM
2311 Disk Storage Drive cylinder and 32 page-size
blocks are stored in each IBM 2314 Direct Access

* Division of the user’s program into pages of 4096 bytes is
an essential feature of TSS/360. The program space that is
subject to paging-is called virtual memory.
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Figure 1. Typical virtual-sequential organization.

Storage Facility cylinder. The entire volume, with the
exception of the cylinders used for labels and for
identification, is formatted into page-size blocks.
Most disk storage devices, such as the IBM 2311,
have removable packs. In TSS/360, the number of
concurrent users is much greater than the number of
separate volumes available. Consequently, most of the
available direct-access drives are designated as public
storage devices; their packs are not removed during
normal system operation and they are shared by all
users of an individual system. The use of private vol-
umes, with associated mounting and demounting,
plays a minor role in TSS/360 operations.
Three data set organizations are provided by
TSS/360 data management:
® Virtual sequential: data records are retrieved in
the sequence in which they were created.
® Virtual index sequential: data records are re-
trieved according to the value of a unique key
within each record.
® Virtual partitioned: a single data set is divided
into named members, each of which can be
processed independently of the others.

Virtual-Sequential Organization

The physical representation of a typical virtual-
sequential organization is shown in Figure 1. The
specification of any virtual sequential data set is con-
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tained within the data set’s external page map, which
is stored on the direct-access volume along with the
data pages. When a data set is opened for access, its
associated external page map is brought into main
storage. There is one entry in the external page map
for each page-size block occupied by the data set. The
content of an entry specifies the location of a block
in external storage. The position of the entry within
the external page map signifies the relationship of the
associated block and the other blocks in the data set.

For the three-page data set shown in Figure 1, the
external page map shows that the first data block is
between the other two pages of the data set. This
example emphasizes that block relationships in the
data set are determined by the contents of the exter-
nal page map rather than by physical position within
the volume,

Virtual-Index-Sequential Organization

In a typical virtual-index-sequential organization (see
Figure 2), three classes of blocks can be specified
within the external page map: directory pages, data
pages, and overflow pages. One entry, corresponding
to the lowest record key in each data page, is placed
in the directory. Records are maintained in collating
sequence within the data set by key value. To find a
given record, the directory is searched and then the
data page containing the record is searched. Locator

entries, corresponding to each record within a data
page, are stored in the back of the data page. Space in
overflow pages will be assigned when record inser-
tions exceed the capacity of a data page. The record
locators in the primary data page will point to sec-
ondary locators within the overflow page.

Virtual-Partitioned Organization

In a typical virtual-partitioned organization (see Fig-
ure 3), two classes of page blocks can be specified
within the external page: directory pages and member
pages. The partitioned organization directory con-
tains an entry describing each member, which is speci-
fied as a contiguous group of entries within the
member-data portion of the external page map.
Members, which are subsidiary data groups that may
be virtual-sequential or virtual-index-sequential or-
ganizations in any combination, can be independently
added or expanded or deleted or contracted by add-
ing or deleting entries within the external page map.

USER INTERFACE
TSS/360 data management was patterned after that
of the IBM System/360 Operating System (0S/360).
As in 0S/360, the data sets are processed by a series
of support programs called access methods; in
TSS/360, these are called virtual access methods.*
The assembler-language/user interface to these access

General Service
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g ¥ 3
Virtual Sequential Virtual Index Sequential Virtual Partitioned
(VS) (VIS) (VP)
GET GET FIND
PUT PUT STOW
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PUTX ESETL
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Figure 4. Summary of macro instructions used with the virtual access methods (VAM).
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methods is via macro instructions.® The macro in-
structions available to ordinary users are tabulated in
Figure 4.

The general-service macro instructions that specify
a data control block (DCB), label the various DCB
fields (DCBD), and open (OPEN) and close (CLOSE)
a data set are provided for all data set organizations.

For virtual-sequential organizations, macro instruc-
tions are provided to retrieve logical records (GET),
create logical records (PUT), set access location
(SETL), and update logical records (PUTX). Access
location can be specified as the beginning or end of
the data set, as a particular logical record, or as the
previous logical record (back space).

For virtual-index-sequential organizations, GET,
PUT, and SETL macro instructions are provided.
Since data-set sharing is allowed, the sharing inter-
locks can be released by the end of sequential access
(ESETL) and the release exclusive control (RELEX)
macro instructions. The capabilities to read (READ)
and write (WRITE) individual records by key and to
delete specific records (DELREC) are also included.

For virtual-partitioned organizations, only two
macro instructions are needed: one (FIND) prepares
for access to a specific member; the other (STOW)

stores the member characteristics into the partitioned
organization directory. A program may independent-
ly and simultaneously access several members of the
same virtual-partitioned data set. New members can
be added, and existing members extended or deleted,
without restriction.

Record Formats

The formats of logical records for virtual-sequential
and virtual-index-sequential organizations are shown
in Figures 5 and 6. Both fixed-length and variable-
length records are allowed. In variable-length records,
an extra control field, which specifies the length of
each logical record, is required at the front of each
record. Virtual-index-sequential logical records must
contain a key field, which may be either the first
bytes of each logical record or embedded within the
data portion of each logical record. Record lengths of
up to 1,048,576 bytes for virtual-sequential organiza-
tions and of up to 4,000 bytes for virtual-index-
sequential organizations are allowed. The apparent
restriction on the length of virtual-index-sequential
records can be easily circumvented if the user extends
the length of the key field to utilize multiple records
as a group.
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Data Set Sharing

One of the major features of TSS/360 data manage-
ment is the provision for the sharing of data sets
between users. The system catalog, a data set that
contains entries for data sets within the system, is
involved in data set sharing. The catalog is a virtual-
partitioned data set with a member for each user of
the system. The members contain indexes of data set
names. For example, let us assume a user (USER1)
has requested access to a data set with the compound
name USER1.ALPHA.TEST2. As shown in Figure 7,
the system catalog is searched as follows:

1. The master index (directory) of the catalog is
searched to find the private catalog (member)
for USERI.

2. The search of member entries shows that
ALPHA is associated with a shared data set
pointer (USERN.BETA); USERN is the original
owner of the shared data set involved.

3. The master index is searched again, this time to
find the private catalog for USERN to find
BETA.

Page Formatted

4. The catalog search is continued within the
member associated with USERN.

5. The last portion (TEST2) of the original com-
pound name is then used to select the catalog
description of the desired data set, which is ac-
tually named USERN.BETA.TEST?2.

The actual permission for, and limitations on, sharing
access are controlled by the catalog entries.

Two types of interlocks are provided to coordinate
simultaneous access to shared data sets by more than
one user:

® Read interlock: prevents another user from
writing into the interlocked data space: other
users may have read-only access at the same
time.

e Write interlock: prevents another user from
reading or writing the interlocked data space;
can be set only when no other interlock is set.

Interlocks are established at various data space in-

tervals, depending on the data set organization.
Virtual-sequential organizations are interlocked at the
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Figure 7. Access of a shared data set in TSS/360.
The user permitted to share the data set references

Data Set
USERN.BETATEST2

it as USER1.ALPHA.TEST?2; the original owner of
the data set has named it USERN.BETA.TEST?2.
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entire data set level. Virtual-partitioned organizations
are interlocked at the individual member level,
Virtual-index-sequential organizations are interlocked
at the individual data page (block) level.

IMPLEMENTATION

The cornerstone for implementing the virtual access
methods of TSS/360 is the external page map. There
is one entry in the map for each page-size block as-
signed to the data set. The map itself, along with
other descriptive information about the data set, is
stored in a special portion of each volume, called the
volume table of contents. When the data set is opened
for access, the data set description, including the ex-
ternal page map, is brought into main-storage for use
by the access methods.

An entry within the external page map is one word
(32 bits) long. The high-order 16 bits specify the
direct-access device on which the page-size block is
stored; the remaining 16 bits specify the exact block
within the device. The volumes are preformatted so
they can be addressed as a string of pages, without
regard for track or cylinder boundaries. Page-size
blocks are addressed in a relative manner, with the
initial page on the volume defined as relative page 0.

Pages pointed to by the external page map may be
assigned as directory, data, or overflow pages, as re-
quired for the data set. Since there is no physical
restriction concerning adjacency of data set pages, it
is a simple operation to insert or delete pages by mov-
ing entries in the external page map. The virtual ac-
cess methods treat the data set as a string of pages
that are addressed relative to the origin of the data
set. The position of an entry in the external page map
corresponds to its position relative to the data set.
When more than one class of page (directory, data, or
overflow) is present, the external page map is sub-
divided into contiguous entry groups with separate
pointers to each group. In this way, each class of data
set pages may be expanded or contracted independ-
ently of other classes.

Whenever input/output reference is needed, a com-
mon routine is invoked to convert the data set refer-
ences generated by the access methods into the
external-storage references required by the resident
supervisor routines. The conversion process utilizes
the contents of the external page map to prepare the
request list that is to be passed to the resident super-
visor. The request list specifies the main storage
address, external-device address, and the page block
(within the device) involved in the operation. Since
all items are of fixed length (4096 bytes) and the
direct-access volumes are preformatted in a known
pattern, this list completely specifies the major
parameters involved.

The request list is processed by a portion of the
resident supervisor concerned with the input/output
of page-size blocks. A channel command word (CCW)
list is developed. Because all direct-access volumes are
preformatted, the basic CCW list is simple:

® SEEK: to appropriate cylinder and track

® SEARCHIDEQ: look for block on track

® TIC: transfer back to SEARCH if not equal

® READ (or WRITE): read (or write) a 4096-byte
data block

The SEEK and SEARCHIDEQ values are calculated
by using a single device-dependent table and process-
ing routine to convert a relative page within a volume
into the cylinder, track, and block number on the
track. The READ (or WRITE) main-storage address
was supplied in the request list. If the optional read-
after-write verification is requested, an additional
SEEK, SEARCHIDEQ, TIC, and READ sequence is
added to the basic list. This basic CCW list is used for
all page operations. After the operation is completed,
control is returned to the access method.

The main portion of the access method for each
data organization is concerned with operations within
data pages. For virtual-sequential organizations, a
main-storage buffer is provided; it is large enough to
hold the maximum-length logical record, plus 4096
bytes, rounded out to a multiple of the page length.
The required number of data set pages is brought in
to fill the buffer. Thereafter, the location of each
logical record within the buffer is determined by the
access method. At some point, a logical record, which
is not complete with the current buffer contents, will
be encountered. In this case, the data set page con-
taining the start of that record is shifted to the front
of the buffer and succeeding data set pages are
brought in to fill the buffer again. A similar proce-
dure is followed for output. In this way, the user
program always deals with complete logical records,
without regard for page-size block boundaries.

In virtual-index-sequential organizations, the ac-
cess method utilizes three one-page buffers. The first
buffer is assigned to the last referenced directory
page; the second is assigned to the current data page;
and the third is assigned to the last-referenced over-
flow page. The access method utilizes the locator
fields in each data and overflow page to find the logi-
cal records as needed.,

In virtual-partitioned organizations, the access
method brings the directory into a buffer for process-
ing. When a member is accessed, pointers are set up in
such a way that the virtual-sequential or virtual-index-
sequential access methods can be used to process the
member data.

One interesting logical operation is to backspace
over a logical record. In virtual-sequential organiza-



tions of fixed-length records, this backspace involves
moving the current-position pointer back a distance
equal to the length of one record. For variable-length
sequential records, the access method adds a control
field, between the logical records, to specify the
length of the preceding logical record. This control
field supplies the information that moves the current-
position pointer the correct backward distance. In
virtual-index-sequential organizations, stepping back
through the locator records accomplishes the back-
space operation in the proper manner.

Associated with the external page map in main
storage are control fields used by the access methods
to process the data set. For nonshared (private) data
sets, this information is placed in the main storage
reserved for an individual user, For shared data sets,
the control information (including the external page
map) is placed in a portion of main storage accessible
to all user tasks. It is in this area that the sharing
interlocks are maintained by the access methods.
Through use of the test-and-set (TS) instruction, logi-
cal conflicts are avoided.

For shared data sets, any directories are also
placed in shared main storage when the data set is
accessed. However, the data pages are not placed in
shared main storage. Each concurrent user gets his
own private copy of the data pages within his buffer.
Only as a result of an explicit output request (PUT,
PUTX, or WRITE) will an external data page be
modified. When dealing with shared data sets, the
control information (including the directories) is
dynamically shared to maintain orderly access to the
external data pages.

EVALUATION

The outstanding value of the approach to virtual orga-
nization that was selected for data management in
TSS/360 is in the large reduction of implementation
effort that resulted. Actual savings are difficult to
estimate, Fortunately, within TSS/360, a meaningful
comparison can be established,

In addition to the virtual access methods, TSS/360
data management includes physical-sequential access
methods that are functionally similar to OS/360’s
basic sequential access method (BSAM) and queued
sequential access method (QSAM).

The virtual access methods that support parti-
tioned and index-sequential organizations as well sas
sequential organization required approximately 40%
less code than did the TSS/360 physical-sequential
access methods. It is apparent that the removal of
device-dependent operations (with complex CCW
lists), standardization of block size, and elimination
of exceptional procedures (such as end-of-volume
operations) for the virtual access methods simplified

the actual coding. Also, checkout was simpler due to
the separation of input/output from the access
methods themselves.,

Block Size
In terms of TSS/360 data management, the page size

of 4096 bytes seems optimal. It is as small as the

smallest unit of TSS/360 main-storage allocation. It is
large enough so that direct-access throughput is high.
Rotational delay is a significant factor in direct access
throughput, since it cannot be overlapped as mechan-
ical seek-time can. On the IBM 2311 Disk Storage
Drive, the rotational delay is approximately 30% of
the total data access time (exclusive of seek-time).
For the IBM 2314 Direct Access the Storage Facility,
the access time rises to 50% due to the faster byte
rate. Any block size significantly shorter than 4096
bytes would be extremely wasteful of total direct-
access capacity unless elaborate strategies were uti-
lized to avoid rotational delay.

The need for large block size is also apparent when
the simultaneous direct-access activities of multiple
users are considered. Due to conflicts in demands for
access arms, a mechanical seek may frequently be re-
quired before accessing a data block. The larger block
size makes better use of the total access cycle while,
at the same time, reducing the frequency of access
requests by each user. In on-line printing operations,
the block size of 4096 bytes will result in one access
during approximately every two seconds, thereby
holding access overhead to a minimal value.

The direct-access volume-packing efficiency also is
quite high for page-size blocks. First, the data-
recording space is utilized at better than 90% of its
theoretical capacity (if cylinderdength blocks were
written). The smallest allocation unit is a page-size
block, so a large number of small data sets can be
kept on one volume. Furthermore, the freedom from
requirements for physically contiguous storage space
will lead to higher volume packing,

Use of Direct-Access Devices

The virtual access methods minimize use of the data-
searching facilities of the direct-access control units.
The operation of these searching facilities would
lengthen the data-access cycle and thereby reduce
direct-access throughput. In the time-sharing environ-
ment, the throughput of direct-access devices will be
critical to overall performance. It is better to conduct
a programmed search in main storage than to extend
the direct-access cycle.

A weakness of the virtual organizations is in their -

vulnerability to certain external-storage failures. If
the volume copy of the external page map cannot be
read into main storage, there is no way to access the
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data set. This particular weakness is not present in
magnetic-tape storage (which has no need for a stor-
age map) but is characteristic of direct-access storage
organizations.

Another weakness is a result of the block inde-
pendence of logical records in the virtual-sequential
organization. If-any data page cannot be read into
main storage when processing variable-length records,
there is no simple way to correctly process the re-
mainder of the virtualsequential data set. This is be-
cause the access method would have no sure method
to determine the location of the first complete record
that starts in the following page.

Both of these problems lead to a dependence on
some form of back-up facility.

Extensions

Experience to date has turned up a performance
problem with respect to the organization of direct-
access volumes: In TSS/360, there is a high activity of
opening and closing many small data sets, This in-
volves processing the volume table of contents
(VTOC) area of the volume, which is formatted in
short (44-byte key and 96-byte data length) blocks
like other volumes created by IBM operating systems
(such as 0S/360). Direct-access operations on the
VTOC are predicted to be as high as two full seconds,
just to allocate space for a new data set.

Accordingly, this procedure is being revamped to
eliminate most of this direct-access overhead. First,
the system catalog data set entries are being modified
to point directly to data set control information in
the volume. This will eliminate a direct-access search,
which is required in the present procedure. Next, the
storage-allocation records will be replaced by a byte
map in a page-size block that records the status of
each page block in the volume. This will eliminate the
complicated chaining procedures required currently.
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Finally, the VTOC area will be eliminated with the
data set control information packed into page-size
blocks for ease of access.

The new storage-allocation map for each volume,
in conjunction with the approach of using an external
page map for each data set, provides the basis for the
future development of an efficient checkpoint/restart
facility. One of the basic requirements of such a facil-
ity is the ability to back up and reprocess data sets.
This means that update-in-place operations on data
sets cannot be allowed if restart may occur. The ex-
ternal page map provides the means to assign a new
data page to hold the updated image, rather than re-
using the original page. After the update, two versions
of the data set (each with its own external page map)
will exist. Their entries will differ only for the up-
dated pages and will be identical for any unmodified
pages. The total page storage space required for both
data sets would be equal to the sum of the original
data set pages plus the number of modified pages in
the new data set.

If a restart were required, only the original version
of the data set would need to be reopened for reproc-
essing, A potential problem with the sharing, between
versions, of unmodified data pages is in the release of
such pages when they are no longer required. In the
new storage-allocation map, a count field is provided
for each page in the volume, Whenever a page is in-
cluded in a new version of data set, the count is incre-
mented. Whenever a version is released, the count for
each data page of that data set is decremented. A
count of 0 indicates a page available for reassignment.

CONCLUSION

Fixed-block-length data organizations should be con-
sidered for future data management efforts. Experi-
ence with such organizations in TSS/360 has shown
that they provide significant logical flexibility, with
reduced implementation effort.
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